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Short Abstracts in French & English as per requirements of UM2. 

 

RÉSUMÉ  

La thèse s'articule autour du thème des FPGA embarqués (eFPGAs). Ce manuscrit analyse les solutions 

existantes actuellement et discute les challenges et opportunités de ces technologies; une analyse en profondeur 

des échecs des tentatives passées est également donnée. Sur la base des solutions existantes dans la littérature, 

une structure de eFPGA à topologie de type grille est proposée, décrite en  langage VHDL RTL. Cette solution 

comporte également les outils de programmation associés. Sur la base de cette proposition, des explorations sont 

menées quant à la pertinence des solutions proposées au sens de métriques d’actualité tells que densité logique, 

performance et consommation. Une des contributions notables de cette thèse repose sur la proposition d’une 

architecture de switch unifiée éliminant les blocs de connexions ainsi que l’interconnexion locale typique des 

FPGA actuels (telles que ceux modélisables dans le logiciel VPR) tout en autorisant une bonne routabilité. 

Toutes les expérimentations ont été menées sur une technologie CMOS 65nm faible puissance du fondeur 

STMicroelectronics, qui permet de fait d’obtenir des évaluations pertinentes. Une seconde contribution notable 

repose sur l’exploration de l’intégration de eFPGA dans un contexte système sur puce (SoC). Cette approche 

repose sur l’adjonction d’un eFPGA au sein d’un système intégré, au côté d’un processeur de type LEON3, la 

programmation s’effectuant sur la base d’une approche de type ESL. Deux explorations sont ainsi déclinées, 

comme unité  intégrée au sein du processeur et comme coprocesseur. Les résultats présentés  permettent ainsi 

d’analyser sous plusieurs angles les compromis possibles ainsi que les perspectives et limitations de ce type 

d’approches. Finalement, un cas d’étude est également présenté quant à l’intégration de mémoires de type 

magnétique (MRAM) au sein-même de l’architecture du eFPGA. 

Mots-clés: architecture eFPGA, outils CAO pour eFPGAs, enquête industrielle, accélération reconfigurable, 

ESL, MRAM  

 

ABSTRACT 

The thesis extensively revolves around embedded FPGAs (eFPGAs). It conducts detailed survey focused on 

programmable technologies to investigate potentials and challenges of eFPGAs and probable failure reasons of 

several past attempts of different kinds. Based on the survey knowledge, technology independent soft eFPGAs 

of FPGA-like mesh-based classical architecture with standard RTL programming flow are investigated. Detailed 

eFPGA architectural explorations (including CAD tools) are conducted to explore silicon-efficient (logic 

density, power, performance etc.)eFPGA architectures. Among notable innovations achieved is unified switch 

block with complete removal of connection block and local interconnect of classical mesh-based FPGAs (VPR-

like) while maintaining good routing efficiency. All experiments are conducted on 65nm CMOS low 

powerSTMicroelectronics process to get practical silicon values and perspectives. Finally eFPGAs in systems 

(SoCs) potentials and challenges are addressed. A reconfigurable acceleration scenario with ESL exploitation 

(for programming ease) and full silicon tradeoffs visualization is presented with integration of eFPGA with 

LEON3 processor (as a functional and co-processor unit, with also highlighting potential flaws of functional 

unit in industrial perspectives). An interesting case study for perspectives of emerging MRAM memories for 

eFPGAs is also presented. 

Keywords: eFPGA architectures, CAD tools for eFPGAs, industrial survey, reconfigurable acceleration, ESL, 

MRAMs 
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ABSTRACT 
(Extended) 

Rising design complexities and high manufacturing costs of System on Chip (SoCs) in deep submicron nodes 

(beyond 90nm) have reached levels where dedicated SoCs can no longer be designed for every application. 

They must have some post manufacturing flexibility to amortize the high development costs to several end 

markets. The Field Programmable Gate Arrays (FPGAs) are well known for their flexibility and ease of design 

modification. With the continuous architectural innovations and Moore’s law they have become programmable 

platforms and in many cases provide a good alternative to implement SoCs directly on them. Unfortunately 

FPGAs suffer from large silicon gap compared to ASICs/ASSPs. This restricts their use in many high volume 

applications, and despite enormous benefits of flexibility FPGAs still represent a small niche in industry from 

revenues stand point compared to ASICs/ASSPs. An obvious choice that comes in mind in such scenario is 

embedded FPGAs (eFPGAs) to bring benefits of FPGAs right inside SoCs, bridging their challenges for 

flexibility, product differentiation, time to market etc. However concept of eFPGAs is not new to industry and is 

historically well known for never succeeding, despite undeniable benefits and potentials. 

The thesis work extensively revolves around eFPGAs in three major themes. (i) Survey and analysis of 

programmable technologies to investigate scope, potential, challenges of eFPGAs. (ii) eFPGAs architectural 

explorations and tools infrastructure to create efficient customized eFPGAs. (iii) eFPGAs in SoCs investigations 

and perspectives (including beyond classical technologies/techniques). The general flow and aspects of 

discussions are as follows. 

The thesis presents detailed investigations of FPGAs and eFPGAs research challenges by analyzing state of the 

art in industrial and academic research. It conducts detailed survey focused on programmable technologies to 

address potentials and challenges of eFPGAs and probable failure reasons of several past attempts of 

programmable solutions of different kinds. Based on the knowledge gained from detailed investigations, 

motivations and potentials of FPGA-like technology independent soft eFPGAs are presented. The CAD tools 

and graphical infrastructure to create and explore customized eFPGAs with standard RTL programming flow is 

presented. Detailed eFPGA architectural explorations are conducted to create efficient soft eFPGA architectures 

with attractive silicon properties (logic density, power, performance etc.). Among notable innovations achieved 

is complete removal of connection block and local interconnect of classical mesh-based FPGAs (VPR-like) 

while maintaining good routing efficiency by investigating unified switch block architecture with specialized 

diverse connectivity of logic block to unidirectional routing network. All experiments are conducted on CMOS 

65nm low power STMicroelectronics (ST) process to get practical silicon values and perspectives. Finally 

eFPGAs in Systems (SoCs) potentials and challenges are addressed in detail. A case study of reconfigurable 

acceleration is presented with integration of eFPGA with LEON3 processor (as a functional unit and co-

processor, with also highlighting flaws of functional unit from commercial stand point). Use of ESL is 

investigated for programming ease of eFPGA while maintaining standard RTL flow and complete silicon 

tradeoffs of the conducted experiments are investigated. To further enhance the potentials of eFPGAs for 

systems, investigations and perspectives of beyond classics emerging Magnetoresistive Random Access 

Memories (MRAMs) is also briefly discussed as an interesting case study. 

 

Keywords: eFPGAs, FPGAs, CAD tools for eFPGAs, silicon analysis, survey of programmable technologies, 

FPGAs patents survey, SoC, reconfigurable computing, eFPGAs as co-processors, ESL, MRAMs for FPGAs 
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Prologue 
 

The origins of this thesis stretch back to the official founding of Menta in July 2007. When this thesis was 

created between Menta and LIRMM (University of Montpellier) under the umbrella of the CIFRE (in English: 

Industrial Contracts for training through Research) process of French Ministry of Higher Education and 

Research run by ANRT [5.11], the work started from December 2007. This created the first contracted 

employee/scientist for Menta and made the company from one man to the famous industry term ―two men in 

garage‖. Menta has matured and expanded over the years and at present (calendar Q2 2011) is the only known 

existing soft-eFPGA provider company. 

The motivations and origins of this thesis work were very exciting and challenging. The long-term road map 

unknown, directions unknown, partners unknown, markets unknown, competitors almost unknown (in terms of 

existence), Industry soon entered into 2008-2009 global economic crisis. The almost known tagline was to make 

embedded FPGAs and ―everyone who tried to do this died or left the business‖. This thesis is not a Holy Grail 

for Menta, but indeed has tried to answer several questions and created some solutions. The startup nature of 

Menta, the economic crisis philosophical influence, the research knowledge of LIRMM, help from hypothetical 

Director-X (Semiconductor Industry, see acknowledgements section) with articles/blogs/press news/industrial 

events etc. along with several other factors (intent is providing perspective not autobiography) combined and 

created an almost ideal CIFRE PhD scenario which has theme motivation ―You will become a doctor once you 

have defended your thesis, proving that you are capable of undertaking a substantial R&D project. You will be 

recognized for your participation in research and innovation, your keen capacity for tackling the problems 

facing a company, interaction with partners from different cultures. You will learn how to deal with the real-life 

situations your company faces, and acquire behavioral and interpersonal skills in the process‖ [5.11]. This 

thesis report is the connection of dots looking backwards to the knowledge gained. 

“I” will be back at END in epilogue. 
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Chapter 1: Introduction 
This chapter presents the global overview, motivations and contributions of this thesis work. Section 1.1 

provides the challenges that are currently faced by industry in scenario of this thesis and what observations 

can be drawn from them for research motivations and objectives. Section 1.2 describes the major 

contributions of the thesis work and finally section 1.3 provides the outline of the thesis report. 

1.1 Motivation & Objectives 
Rising design complexities and high manufacturing costs of System on Chip (SoCs) have reached levels 

where dedicated SoCs can no longer be designed for every application. They must have some post 

manufacturing flexibility to amortize the high development costs to several end markets [S-1].  The Field 

Programmable Gate Arrays (FPGAs) are well known for their flexibility and ease of design modification. 

With the continuous architectural innovations and Moore’s law they have become programmable platforms 

and in many cases provide a good alternative to implement SoCs directly on them. However FPGAs suffer 

from large silicon gap in terms of Area, Power and Speed [Kuon&Rose09, 5.2] compared to ASICs 

(Application Specific Integrated Circuits), ASSPs (Application Specific Standard Products). This restricts 

their use in many high volume applications despite enormous benefits of flexibility. Although FPGAs 

being a steadily growing market, still represents just about only 2% of the semiconductor industry and as 

of 2009 represents around 4 billion dollars market compared to more than 80 billion dollars market of 

ASICs and ASSPs [2.1][S-3b]. 

However as stated above, it is becoming more and more essential for SoCs to have some post 

manufacturing flexibility for addressing key issues like product differentiation, time to market etc. With an 

added challenge of power consumption, that has become most crucial issue in industry and forcing the SoC 

designs to be more and more heterogeneous and customized to be optimal in power budgets. This gives 

dual challenge to SoC designers. On one side the flexibility is required to meet tough market challenges 

and on the other side solutions should be as custom and non-flexible as possible to meet silicon budgets. 

An obvious choice that comes in mind in such scenario is embedded FPGAs (eFPGAs). eFPGAs allow 

bringing the well known FPGA benefits right inside the SoCs. However immediate question regarding 

eFPGAs is, how sound that idea is from technological and commercial perspective as the concept of 

eFPGAs is not new and well known in industry for never succeeding. What are the challenges and reasons 

that might have been the reasons of failures in the past and what can be learned from them as inspiration to 

avoid doing same mistakes. The goal and challenge for the SoCs is to seek some flexibility by having some 

programmable portions or IPs. FPGAs are most famous and dominant symbol of programmable devices 

but are not the only programmable devices. These challenges and observations lead to different questions 

and investigation motivations for eFPGA research, for instance. 

 What is the semiconductor industry landscape and how different technologies fit in it? 

 What are different types of competing programmable logic solutions? How they compare, what is their 

status and what are ongoing trends in industry and academic research? 

 Are FPGAs dominant in programmable logic space, if yes what makes them dominant? 

 Several efforts and innovative solutions in terms of programmable logic and reconfigurable computing 

have failed in past, what could be the reason and what can be learned from that? 

 Should eFPGAs follow FPGA-like conventional architecture, if yes what are the pros and cons? 

 How to create eFPGAs effectively? What lessons and motivations can be learned from the past? 

 How sound eFPGAs concept is for SoCs? What are the challenges, opportunities and perspectives? 

 Can some beyond classics emerging works/technologies help to solve/improve some classical 

problems related to FPGAs/eFPGAs? What can be the challenges and perspectives? 
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Based on such diverse rough motivations and challenges the thesis contributed in several topics, which 

finally led to three main axes of contribution that are discussed below. 

1.2 Contributions 
The contributions of thesis are graphically illustrated in figure 1. The thesis extensively revolves around 

eFPGAs, to investigate and address the objectives of the thesis; the research done can be divided into three 

major blocks or axes. They are represented as Red [R], Blue [B] and Green [G] in the figure. Brief details 

of contribution areas of figure 1 are explained below.  

 
Fig. 1: Research Blocks Graph of thesis contributions 

Survey & Analysis [R] 
The R axis acts as an umbrella covering the motivations and research directions, helping make well 

informed research decisions in the light of survey knowledge. It fundamentally addresses following 

aspects. 

 Study of state of art FPGAs in detail (literature, patents etc.) to find research challenges 

 Study of changing technological trends and challenges in industry (state of state of art) to get informed 

and trained for real-life challenges 

 Analyze potentials of different programmable technologies, inspect how/where eFPGAs fit in the 

spectrum and investigate the causes of failures of several past solutions in research and industry 

This axis partly covers the obligatory part of almost all theses (analyzing basics of the state of the art in 

that area), with additional emphasis on survey of industrial solutions to well categorize and understand 

real-life challenges of/for eFPGAs and other programmable technologies in a broad spectrum. 

Key Contributions: 

 In depth study of literature of leading FPGA vendors (research/commercial articles, patents etc.). 

Detailed study of academic research on FPGAs 

 Investigation of eFPGA/eFPGA-like efforts, solutions from industry and academics, visualizing 

probable reasons of past failures 

 Comprehensive survey of semiconductor industry, focused on programmable technologies with 

investigation of strengths and weaknesses (including failures of past) of different solutions 

 In context/learning of/from survey research, specialized design of references section of thesis 
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eFPGA Architectural Explorations [B] 
The B axis extensively deals for the research of eFPGA architecture to create efficient customized 

eFPGAs, it is the biggest contribution axis of this thesis work in terms of efforts done and time spent. It 

fundamentally addresses. 

 Architectural explorations and innovations using FPGA CAD and silicon investigations to create 

efficient FPGA-like (LUT-based) technology independent soft eFPGAs 

 Focus on beyond CMOS 90nm nodes (65nm was mostly used) to visualize static power challenges 

 Compare and tune architectures to be more area, power, timing efficient for benchmarks applications 

 Create tools infrastructure to facilitate and accelerate research investigations 

This axis is similar to classical FPGA architectural research. It deals with architectural innovations with the 

CAD and silicon visualizations of the architectures on advanced nodes (beyond 90nm for judging issues of 

leakage etc.) of real silicon process by implementing the architecture and analyzing the silicon properties 

of those architectures in terms of area, power and performance. Numerous tools were created to facilitate 

the exploration research. This axis performs combined CAD and silicon investigation for understanding the 

pros and cons of the under investigation architectures in terms of architectural efficiency (mapping 

benchmark applications) and silicon efficiency (logic density, speed, power).  Qualifying both is essential; 

architecture must succeed implementing benchmarks to qualify for the chosen architectural parameters 

(LUT size, cluster size, channel size, routing architecture etc.) to be appropriate for the target domain for 

which eFPGA is being created, and on the other hand the proposed architecture must have attractive silicon 

properties in terms of area, power and performance to be value added proposition for the end product 

(SoC, ASSP, ASIC etc). 

Key Contributions: 

 Exploration of unified SB (switch block) based architecture with eliminated local interconnect 

(LI) of logic block which is found in CB (connection block) based VPR-like architectures [4.1] 

 Soft technology independent architecture (multiplexer based routing, latch/flip-flop based 

configuration) with unidirectional/single-driver  routing architecture 

 eFPGA Creator™: tools suite to create and explore customized eFPGAs. This thesis contributed  

 Motivations for advanced GUI based tools infrastructure for exploration 

 Full/partial design of several portions of the tools suite for custom architectures exploration 

 Automatic hardware generation (VHDL and scripts) of custom architectures 

 Detailed analysis of fundamental architectural parameters (LUT size, cluster size, channel size 

etc.) on STMicroelectronics CMOS 65nmLP process for benchmark applications (MCNC [4.1]) 

for general overview 

 Exploration of connection of logic block to the routing architecture (through unified SB) in 

depopulated diverse ways to highly enhance silicon efficiency (rivals past published results)  

 Exploring power vs speed issues and challenges with change of threshold voltage (LVT, SVT, 

HVT) and process node type (LP, GP) on STMicroelectronics CMOS 65nm 

eFPGA in Systems [G] 
Since the thesis work is focused on embedded FPGAs, the G axis investigates the challenges and 

opportunities (from knowledge of R axis) of eFPGAs in systems scenario. It fundamentally addresses. 

 eFPGAs in SoC scenario as an IP 

 eFPGAs as reconfigurable accelerator 

 System integration challenges (in terms of physical integration, and value addition vs silicon tradeoff) 

 Investigation of perspectives of beyond classics technologies/methods for enhancing eFPGAs 

capabilities and potentials 
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The work and knowledge of B and G axes are highly interlinked. B quests for creating efficient eFPGAs 

and G visualizes how efficient they will be in some real scenarios. The philosophy behind the eFPGA of 

Menta is to create soft target independent customized eFPGAs programmable by standard flows for 

everybody and suitable for multiple potentials as seen in the concept system diagram with eFPGAs in 

figure 1. This axis investigates the potentials and challenges related to that in general and in detail the 

potentials of reconfigurable acceleration. It also highlights and investigates the perspectives of beyond 

classics emerging technologies to help solve some conventional problems and enhance eFPGAs potentials. 

Key Contributions: 

 General discussions for potentials of eFPGAs for industry,  reconfigurable computing 

(reconfigurable acceleration with standard RTL programming flow with ESL exploitation) 

 eFPGA interfacing with processors (as functional unit and co-processor unit), perform 

experiments (HW/SW co-design) with full silicon tradeoffs visualization on ST 65nmLP  

 Highlighting in industrial scenario: ESL benefits, potential flaws of reconfigurable functional unit, 

system integration challenges and issues for eFPGAs 

 A real and innovative case study for the potentials of beyond classics emerging MRAMs for 

enhancing eFPGAs capabilities (non-volatility, dynamic reconfiguration, multi-context, 

fabrication ease etc.), an interesting compliment for the eFPGA research work of this thesis 

 

1.3 Thesis Organization 
The thesis is organized in a suitable way to address the ideas, contributions and easier for the reader to 

understand. In addition the chapters are clusters of mini chapters to further elaborate the exact distinct 

objective of the chapter based on figure 1, which leads to three distinct chapters (with CAD infrastructure 

presented as separate chapter for ease of discussions). Furthermore all sections and subsections of the 

chapters in most cases are further characterized to effectively present the center ideas immediately for the 

reader. The outline of the chapters is as follows. 

Chapter2 details the contribution R of the thesis work. The chapter itself is composed of the three 

fundamental axes of the thesis [RBG] divided in three core sections. Section 2.1 outlines research 

challenges of FPGAs, as eFPGA has a classical LUT based architecture so understanding the FPGA 

challenges is obligatory. This section covers these aspects in detail in both industrial and academic 

scenario. Section 2.2 addresses the issues and work done with embedded FPGAs, which is essential for this 

thesis as it deals with embedded FPGAs so additional challenges regarding eFPGAs must be understood. 

Finally section 2.3 details the industrial survey and will address the major findings of the commercial 

research. It presents general overview of industry and its markets; survey focused on programmable 

technologies highlighting their strengths and weaknesses and finally investigates how/where eFPGAs fit in 

the spectrum of current changing trends in the industry. 

Chapter3 is an overview chapter of the CAD infrastructure of eFPGAs (partly and closely related to axis B 

contribution). It provides the fundamentals of eFPGA architecture, its programming flow and tools which 

program it and then in detail the eFPGA Creator with its user friendly graphical tools suite which helps to 

create customized eFPGA architectures. It will provide a comprehensive overview of the motivations, 

differentiations of the tool and its capabilities to create, analyze and implement customized eFPGAs, and 

contributions of this thesis work in that regard. 

Chapter4 addresses the research contribution B in detail which is the largest contribution of this thesis 

work in terms of time spent and experiments conducted. It describes the detailed experiments conducted 

for eFPGA architectural exploration in the light of knowledge gained from chapter 2 and with the help of 

eFPGA Creator (chapter 3). Section 4.1 presents general experiments to understand and investigate several 
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fundamental research challenges with FPGAs. Later sections detail architectural research done using 

eFPGA Creator for creating complex customized architectures which have higher density, higher speed 

and lower power compared to basic customized architectures of section 4.1 while still being capable of 

efficiently routing benchmark applications. All experiments are fully analyzed on ST65nm low power 

process for area, power and speed tradeoffs. 

Chapter5 presents the research contribution G. Section 5.1 provides general motivations and potentials of 

eFPGAs for SoCs, in particular as a reconfigurable accelerator. Section 5.2 presents detailed experiments 

conducted with eFPGAs and LEON3 integration. Section 5.3 outlines the system integration challenges in 

the light of industrial survey and experiments knowledge of the thesis. Finally the chapter presents the case 

study of using MRAMs (Magnetoresistive RAM) based eFPGAs in SoCs. It also briefly outlines the test 

chips that were taped out based on eFPGA architecture explored by this thesis (130nm MRAM based 

configuration test chip, 65nm latch/SRAM based configuration test chip).  

Chapter6 provides the conclusions and future outlook. 

References section is characterized and partitioned, it can also serve as a partial standalone chapter role. 

The citation of references in text is done with numerical reference (section.ref number) and sometimes 

additional information is augmented with the numerical reference for added ease of reading in context. The 

form used in general is [AuthorYear, ref.] or [Company_AuthorYear,  ref.]. Self citations have the form 

[S- number]. This creates a customized domain specific solution, combining benefits of several styles often 

used in citations. 

 

 

 

 

 

Disclaimer/Notice 

Tools created in the thesis work are property of Menta. The name of the tools (eFPGA Programmer, eFPGA Creator, FPGA 

Designer, Niagara etc.), the design flows, name of eFPGA components (eCB, eLB, eAB, ePB, eMB etc.) are copyrights of 

Menta. This report must not be considered or treated as any current, future product/plan or business strategy, roadmap of 

Menta. 
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Chapter 2: Survey & Investigation 

of Objectives [R] 
 

The first step of research is to analyze the state of the art in that area and 

the contributions done by other researchers. This chapter discusses deeper 

investigations of the three foundation axes (RBG) of this thesis work 

explained in chapter 1.  

Section 2.1 explains the fundamentals of FPGA architectures and 

challenges. First it explains the architecture fundamentals and explain them in the light of advances in the 

state of the art including the post 90nm silicon challenges that are becoming the biggest challenge to all 

semiconductor industry in general so understanding these challenges is obligatory as wrong research 

conclusions or directions can easily be made if not effectively considering them. The research of FPGAs is 

virtually impossible without FPGA CAD tools, so understanding the fundamentals of them is essential. In 

this regard FPGA CAD research done by highest cited academics is discussed along with architectural 

challenges addressed by several academic works. Recent trends have shown that to meet the FPGA 

challenges research has also been conducted in beyond classics technologies, a brief overview of these 

approaches will be discussed and among them MRAMs and their potentials in bit more detail in this 

regard, which is one of complimentary contributing part of this thesis work in terms of beyond classics 

perspectives. 

Section 2.2 discusses the embedded FPGA/embedded FPGA like solutions. In this regard very few success 

stories exist in industry, it will try to identify those approaches with their pros and cons. In principle more 

efforts are done in this area by academics than industry in different dimensions, it will present brief 

overview of these efforts in general and more relevant to this thesis work area in particular to find research 

motivations. 

Section 2.3 addresses a differentiating part of this thesis work which serves as the foundation basis of the 

research directions and motivations. It will briefly discuss the efforts for understanding and integrating in 

industry, a survey of patents study of FPGA vendors, a comprehensive overview of semiconductor industry 

markets and a survey of programmable technologies in technical and especially commercial scenario. 

2.1 FPGAs State of Art 
The section first provides the almost vendor independent basic fundamentals of FPGA architecture and 

then comprehensively surveys the architectural enhancements and challenges addressed by state of art 

FPGA vendors and academics research (separately addressed for more clearly identifying their 

contributions) to find research challenges and motivations. Finally it also addresses an overview of some 

beyond classics researches underway in industry and academics (like MEMS, NoCs, MRAMs etc.) to 

investigate their potentials for solving some FPGA challenges. The outline is as follows. 

Section 2.1.1 provides the fundamentals of FPGA architecture and terminologies which are not standard 

(all vendors use their own commercial names) but quite well known and recognized among research 

community to identify the research target. This section will help to understand later more advanced 

sections and also the research work conducted in this thesis.    

Section 2.1.2 addresses the key advancements of the state of the art FPGAs through the years and latest 

new challenges in addition to fundamental ones due to growing issues of power consumption in beyond 
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90nm era. The thesis has considered mostly Xilinx and Altera in discussions as they are the market leaders 

with more than 80% market share [Coudert09, 2.10] and are most advanced in technology. 

Section 2.1.3 will present several well recognized/cited research efforts from academics to address several 

key challenges of FPGAs architecture, in particular FPGA CAD. This further gives the insight to research 

challenges in addition to general overview from the state of the art research from section 2.1.2. 

Section 2.1.4 will briefly address research efforts in industry and academics to use beyond classic 

technologies (MEMS, MRAMs, NoC etc.) to address some of the key challenges of FPGAs. We will 

concentrate bit more on MRAMs which have been used in close partnership in this work to conduct some 

beyond classics experiments. They will be further addressed in more detail in chapter 5. 

2.1.1 FPGAs Fundamentals 
Field Programmable Gate Arrays (FPGAs) have greatly evolved since their invention and 

commercialization in late 1980s ([Xilinx_Freeman89, 3.1]) and have become complex programmable 

platforms. However the fundamentals have remained similar. This section provides a brief overview of the 

fundamentals of FPGA architecture in vendor independent manner to highlight the key issues of 

architecture and terminologies that are widely common among scientific literature. They will help to grasp 

the main ideas quickly and will help in later discussions of other researches (industrial and academic) and 

explanations of this thesis work in later chapters. All FPGA vendors have their own commercial names for 

these fundamental elements and architecture styles that differentiate one from the other. 

In a nutshell the foundation of FPGA can be described as a composition of three elements. First a logic 

block which has the Look-Up Table (LUT) to implement Boolean functions, paired with a Flip-Flop (FF) 

providing sequential behavior. The logic block is often composed of multiple LUT-FF pairs (logic 

elements) and usually referred as cluster in scientific literature. Second the programmable 

interconnect/routing architecture connects these clusters to route data. The third element is programmable 

I/Os which provide access to outside world.. The programming of FPGAs is mostly done by HDLs like 

standard ASIC flows of synthesis, place & route (PAR), and final step of bit/configuration generation 

makes FPGAs different than ASICs (CAD flow will be addressed in detail in section 2.1.3). The details of 

above mentioned architectural fundamentals along with some additional details are described below with 

the help of figure 2.1a and 2.1b. 

Island Style/Mesh based Architecture 

Figure 2.1a shows the generic block diagram of mesh based FPGA architecture [Betz&Rose99, 4.1]. The 

topology is often referred as ―Island Style‖ architecture in the literature where the logic blocks are 

surrounded by a sea of routing resources (connection block, switch block and routing channels) as shown 

in figure. The Island Style topology is the most widely used FPGA topology and is common among all 

leading FPGA vendors. The other less common topology is Hierarchical/Tree based (will be briefly 

addressed in section 2.1.3). This thesis work is also based on Island Style architecture. A brief detail of 

building blocks of the architecture is discussed below. 

Logic Block/Cluster 

The logic block (LB) is the main computational element of an FPGA that provides the fine-grained 

reconfigurable flexibility of an FPGA. In principle it is a Look-Up Table (LUT) + Flip-Flop (FF) block 

that implements combinational/sequential Boolean logic of the mapped application. The LUT + FF pair is 

frequently referred as a logic element (LE) or a basic logic element (BLE) in the literature. The logic block 

can be a single BLE, but in practice is often composed of multiple BLEs and is called a cluster in literature 

and cluster size is an important architectural parameter which describes how many BLEs are in a logic 
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block (LB). Figure 2.1a depicts the fundamentals of BLEs and LB. In our discussions in later chapters we 

will frequently use the following terms. 

 LUT Size: The size of LUT (3, 4, 6 etc.) in the LE/BLE, often referred as K 

 Cluster Size: Number of  LUTs (LEs) inside the cluster, often referred as N 

Routing Architecture 

Routing in some ways is the most challenging and exciting part of FPGA research. It is also the most 

expensive part in terms of silicon. The routing architecture can be divided into three fundamental parts. In 

scientific literature they are often referred as; switch block/box (SB), connection block/box (CB) and the 

routing channels/tracks. They are depicted in figure 2.1a; a brief overview is presented below. 

 Switch Block: The switch block (SB) is the main routing hub that controls the data traffic on routing 

channels by connecting data on the routing tracks to other tracks 

 Connection Block: The connection block (CB) is closely linked with SB from functionality 

perspective, and that is switching data. The SB connects different tracks with one another for routing 

the data and CB provides the data access for routing tracks to/from the logic block (LB). CB is often 

partially and sometimes fully merged with SB as their functionality and purpose is similar in many 

aspects (will be addressed further in later sections/chapters) 

 Routing Channels: The routing channels are the actual physical metal lines that create the data 

highway of the FPGA in connection with CB and SB. The amount of routing tracks in a routing 

channel are often referred as channel width/size and often represented as W in scientific literature 

 HOP: The routing HOP (long jump) is an added parameter/property of routing architecture that 

decides/depicts properties for long wires. The fundamental architecture shown in figure 2.1a has a 

HOP of 1 only as the communication in one jump is only possible between direct neighboring LBs. 

HOP will be addressed in more detail in later sections 

Programmable I/Os 

The programmable I/Os provide connectivity to outside world. The I/Os are often connected to the routing 

architecture through CB in a similar manner like LB. Since the routing channels are immense in size for 

realistic architecture and in principle can provide thousands of I/Os (physically impossible to manage due 

to package size), connection like that allows automatically an I/O reduction and control of the quantity of 

I/Os depending on the target needs. 

Routing Driver Styles 

The above discussions have just described the fundamentals of FPGAs. There are numerous higher levels 

and architectural complexity issues in real scenarios (some will be addressed in later sections). It will be 

interesting to explain one a bit higher-level aspect along with the basic fundamentals in this introductory 

section to facilitate ease of reading and discussions of later sections and chapters. Figure 2.1a depicts 

basics of SB and CB which were discussed above. Figure 2.1b provides a slightly more detailed overview 

of how they are actually implemented and work in connection with the LB. The figure illustrates two types 

of routing architectures that are referred as bidirectional (multiple drivers) and unidirectional (single 

driver) in the literature. Historically bidirectional routing remained widely used in architecture research 

and commercial FPGAs. However modern FPGAs use mostly unidirectional (or a mix of both) as they 

have been found to be superior compared to Bidirectional (contrary to prior beliefs) both by industrial and 

academic research, [Altera_Lewis03, 1.26] and [Lemieux04, 4.19] have addressed the issue in detail with 

experimental proofs. A brief distinction among the two styles can be described with figure 2.1b as. 
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 In a bidirectional routing architecture, multiple elements can drive a routing channel (hence also called 

multiple drivers routing). It can be seen from figure that the output of LB is connected to the routing 

tracks with pass-transistors allowing signal to flow in both directions. The tri-state buffers in 

conjunction allow a continuation or break point for a track. 

 In case of unidirectional routing, each routing track has only one driver (hence also called single 

driver) and that is a multiplexer which makes data to flow in only one direction on the track. The 

above mentioned references describe in detail how unidirectional outperforms bidirectional in almost 

all aspects (area, power, speed). In general since in reality the signal only flows in one direction in 

channels after an application is mapped (rarely a time multiplexing is done). The enhanced flexibility, 

added overhead costs of tri-state buffers, large pass-transistors and added configuration needed for 

bidirectional routing is useless. This thesis work is also focused on unidirectional routing architecture. 

 

 
Fig. 2.1a: FPGA architecture fundamentals: Island Style Architecture [Betz&Rose99, 4.1] 

 

 
Fig. 2.1b: FPGA architecture fundamentals: Uni/Bi directional routing [Lemieux04, 4.19] 
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2.1.2 FPGA vendors 
In this section the advancements of logic block, the routing architecture and the post 90nm challenges of 

power are discussed. As it is impossible to discuss effectively the state of the art in a limited scope of a 

chapter, only very brief global points are discussed that are used as inspiration in the thesis work explained 

in later chapters. The examples taken are from the latest literature of Xilinx and Altera which provide 

detailed in depth idea of architectural challenges in most modern FPGAs that currently exist. Additional in 

depth study of FPGA vendor’s patents will be discussed in section 2.3.1 (appendix A1), helping understand 

the complexity of state of the art solutions and challenges that they address. 

1- The Logic Block 
Figure 2.2 shows the BLE equivalents of modern devices of Xilinx and Altera. It can be seen that the 

fundamental concept of LUT-FF remains universal, however lot of enhancements have been made to 

provide more capabilities of doing more complex tasks. One example is carry chain logics, that facilitate 

creation of adders/subtractors more efficiently compared to implementing them using LUTs. Another 

critical enhancement is making the LUT other than logic being also capable of a small memory block and 

shift registers which significantly saves Flip-Flop usage to do the equivalent job. Figure 2.3 shows a 

detailed diagram of SLICEM (equivalent of logic block) of 40nm Virtex6 [Xilinx09, 1.3]. It is a cluster of 

four 6 input LUTs. The significant new changes in this architecture compared to several previous 

generations is doubling the number of FF to LUT ratio for more effectively implementing heavily 

pipelined functions and support for clock gating for addressing dynamic power reduction.  

LUT Size 

The LUT size is one of the most important architecture parameter in FPGAs, as shown in figure 2.4 

[Altera06, 1.20] the LUT is typically composed of configuration memory (mostly SRAM) LUT-mask and 

a set of multiplexers that select the configuration bit to drive output. The figure shows a LUT4 and also 

shows how LUT4 can be made by using two LUT3 and 2:1 multiplexer. It can be easily observed that 

silicon foot-print of LUT exponentially increases by increase of its size, for instance LUT6 will occupy 

more than four times the area of LUT4. LUT4 has remained a dominant choice among FPGA vendors for a 

long time and still now most FPGAs are LUT4 based. However a bigger LUT size has benefits in terms of 

speed as more logic is packed in a single LUT hence less global routing will be used when applications are 

mapped. Intuitively that also provides benefits in terms of power consumption, and finally the area of 

FPGA is highly dominated by interconnect compared to LUT size so changing the LUT size does not have 

a huge change in total area (chapter 4 will address these issues in more detail). For such reasons it is 

observed that both Xilinx and Altera have preferred the move to larger LUT sizes in their newer devices in 

different ways which is described below along with mapping efficiency challenges of bigger LUT sizes. 

Figure 2.5 shows the tradeoff of speed and cost for different LUT sizes. From logic mapping point of view, 

it can be observed that LUT6 does not have a high mapping efficiency as illustrated in figure 2.6. It can be 

seen that when targeting a LUT6-only architecture, more than half of the LUT6 are never fully utilized. 

Starting from Virtex 5 Xilinx moved to full LUT6 from LUT4 with some flexibility of using the LUT6 for 

implementing two logic functions with some shared inputs (in fig. 2.3 it can be seen that the LUT6 has two 

outputs). Altera has adopted a more adaptable approach in its Stratix series architecture to obtain a better 

tradeoff, they call it the Adaptive Logic Module (ALM) [Altera10, 1.14][Altera07, 1.18]. Instead of being 

a full LUT6 it is composed of smaller heterogeneous LUT sizes as illustrated in figure 2.7. The 

architecture can adapt to multiple configurations as shown in figure 2.8. This adaptability provides some 

superior benefits compared to a fix sized LUT6 of Xilinx as demonstrated in figure 2.8. 
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Fig. 2.2: The logic blocks (equivalent) of Stratix III and Virtex 5 [Altera, 1.15] 

 

 

 
Fig. 2.3: The SLICEM of Xilinx Virtex6 [Xilinx, 1.3] 
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Fig. 2.4: Building a LUT [Altera, 1.20] 

 

 
Fig. 2.5: Delay-Cost Tradeoff with LUT Size [Altera, 1.20] 

 

 
Fig. 2.6: The mapping efficiency of LUT6 [Altera, 1.20] 
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Fig. 2.7: The Detail of Altera StratixIV ALM [Altera, 1.14] 

 

 

 

 
Fig. 2.8: Implementing 5 and 3 input functions on Altera ALM and Xilinx LUT6 [Altera, 1.20] 
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2- Routing Architecture 
The most challenging and expensive part of an FPGA is the routing architecture that connects all the 

elements of FPGA. All FPGA vendors have architectural differentiations that distinguishes their product 

from competitor in some or special aspects. Figure 2.9 shows the abstract block diagram of Xilinx VirtexII 

devices [Xilinx07, 1.8]. It can be seen that all the fundamental logic (CLB) elements and specialized 

blocks like memory, multiplier, I/Os etc. are arranged in mesh style architecture/Island-Style as was 

discussed in introduction. Figure 2.10 illustrates the logic block surrounded by sea of routing resources 

[Altera07, 1.15]. This topology is common among majority of FPGA vendors; it is prominent and 

particularly favored due to its layout friendliness and scalability. The routing architecture in most cases can 

be divided into three fundamental parts (SB, CB and routing channels) as was discussed above. They are 

briefly revisited below for state of the art architecture comparison discussions. 

 
Fig 2.9: Global Architecture of Xilinx Virtex-II [Xilinx, 1.8] 

 
Fig. 2.10: Routing Architecture sides Altera (left), Xilinx (right) [Altera, 1.18] 

Switch Block & Connection Block 

The switch block performs the function of main switching hub of the routing channels. Its immense 

amount of routing switches/muxes provides the programmable interconnection of the routing tracks for the 

routing of the target application. In figure 2.10 (V/H switches) the basic principle is illustrated, showing 

the switch block serving as an interchange of traffic on horizontal and vertical channels. 

Connection block is closely linked with switch block and the logic block. From a technical stand point 

connection block is the switching component that connects the logic block to the routing tracks/channels. 

Figure 2.10 illustrates that, where the concept is shown for Altera Stratix series (left) and Xilinx Virtex 5 

devices (right) [Altera07, 1.18]. Altera connects (connection blocks) logic block to three sides of routing 

channels compared to two sides by Xilinx. Depending on the style of implementation of FPGA 

architecture, connection block can have different forms; it is possible to merge it with switch block 

(concept remains same) as seen in figure 2.9 of Xilinx style architecture where switch block performs all 

the switching activity. 
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Routing Channels & HOP 

The third fundamental element of routing architecture is the routing channels. These are physical metal 

lines (distributed on several metal levels), providing the data highway of the architecture. Their size/width 

(number of tracks) varies from application to application and in general set to the value high enough to 

allow FPGAs able to route industrial benchmarks [Altera05, 1.22]. 

The routing channels have significant influence on the performance of the mapped application. The 

challenges are two folded. First the routing channels are very expensive on silicon and their size (switch 

block and connection block size is also linked with them) greatly changes the silicon foot-print of the 

device which also indirectly influences on power consumption and speed. So the switch block and 

connection block architecture is big research challenge to efficiently use the channels. Secondly like 

general problem with automotive in-city, inter-city traffic etc., heterogeneous length routing channels are 

common in modern FPGAs (long wires) which provide different kind of highways for data traffic in 

FPGAs to have better speed and less congestion. Figure 2.11 shows the hierarchy of routing resources of 

Xilinx Virtex-II FPGA. Interesting point to note is that there are more long wires in the architecture (Long, 

Hex, Double) compared to direct wires to neighbors. The Altera Stratix series architecture is also 

composed of different length routing tracks including 4, 8, 16 and 24 [Altera06, 1.20].  Figure 2.12 shows 

how the logic block of Stratix IV (LAB) are connected to the multi length routing tracks in three directions 

as was shown in figure 2.10. The crossing of the routing tracks with multiple crosses in top middle of 

figure 2.12 represents the switch block that allows switching between different tracks. 

The pattern of the long wires in the global architecture is generally referred as a HOP (jump, long jump) in 

literature which explains how far a signal go from one logic block in a single HOP (jump). Figure 2.13 

shows the hop patterns of some latest devices of Xilinx and Altera. Starting from Virtex-5 Xilinx added 

several diagonal long tracks compared to Virtex-4 allowing a much wider access to the logic blocks 

(CLBs) in 2 HOPs. It can also be observed that for a single HOP Altera (right) has more logic blocks 

reachable compared to Xilinx and its HOP pattern has a more custom shape compared to regular and more 

expensive Virtex-5 pattern [Altera07, 1.23][Altera06, 1.20]. Chapter 4 will further address HOP in 

architectural explorations experiments. 

 

 
Fig. 2.11: Hierarchical Routing Resources of Virtex-II [Xilinx, 1.8] 
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Fig. 2.12: Logic Array Block (LAB) structure of Altera Stratix IV [Altera, 1.14] 

 
Fig. 2.13: The routing HOP [Altera, 1.23]; {Note: source image is blurry!} 

3- Architectural Heterogeneity 
The huge power of FPGAs of prototyping virtually any digital circuit due to their Fine-Grain flexibility of 

LUTs comes at a heavy silicon price. To address this issue, over time FPGAs got more and more 

heterogeneous by adding Hard Blocks of logic/memory [Altera_Betz10, 2.4] allowing bigger circuits to be 

implemented on them. The first elements came were memories in around mid 90s followed by multipliers 

and the trend went on and modern FPGA now contain multitude of heterogeneous blocks like DSPs, PLLs, 

memory controllers, high speed serial IOs and even Microprocessor cores. Figure 2.14 shows the abstract 

block diagram of 40nm Stratix IV device, similar properties are found in equivalent Xilinx devices. The 

feeling of high level of heterogeneity of modern FPGAs can be seen in it.  

Column Based Architectures 

Figure 2.15 shows the more elaborated view of this (figure 2.14) device showing how the fine grain logic 

(LEs) is mixed with general purpose coarse grain hard blocks (memory, multipliers, etc) in a column 

fashion. This is important point to note, like Island style architecture is common in most FPGAs, putting 

the hard blocks in columns is also very common among FPGA vendors as it provides better layout 

efficiency and ease of connection to route architecture compared to randomly placing them. 
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Fig. 2.14: Altera StratixIV block diagram [Altera, 1.14] 

 

 
Fig. 2.15: Stratix IV architectural elements with columns of hard blocks [Altera, 1.14] 

 

 

4- Post 90nm Challenges of Power vs. Performance 
Starting from 90nm the whole industry was struck with the issues of power consumption (static in 

particular) which has now become the paramount challenge for all semiconductor companies. For FPGAs 

it is further crucial as they already have a hard challenge of power compared to ASICs/ASSPs and as the 

value proposition of FPGAs is highly tied to Moore’s law for more logic density, they have to keep pace 

with the latest node. The issue of power has added an additional dimension in the challenges of FPGA 

research other than classical well-known challenges described above. Understanding their fundamentals is 

essential for finding research motivations. 

Both Xilinx [1.4][1.5][1.6][1.7] and Altera [1.16][1.19][1.23] have done numerous architectural and silicon 

innovations specifically to address power. A brief overview of key issues and how they have innovated to 

deal with these issues is presented below.  
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Static Power issues 

Figure 2.16 shows the exponential growth of static power over past few generations from being almost 

negligible to a significant value. 90nm is widely considered as an inflection point when industry observed 

the dominant issue of leakage power approaching dynamic power and has become a major design 

challenge for chip design in beyond 90nm nodes. Figure 2.17 shows the main components of leakage 

power and figure 2.18 illustrates them and design techniques that address them. The two key components 

of leakage are the gate leakage and source-drain leakage. As technology shrinks to new node for higher 

density (usually 2x of Moore’s law) represented by the mathematical formula shown in figure 2.19 

[Xilinx09, 1.4], the channel length and gate oxide thickness decreases hence increasing the leakage. 

Furthermore source to drain leakage exponentially grows with temperature compared to gate leakage as 

illustrated in figure 2.20 [Xilinx05, 1.7]. 

 
Fig. 2.16: Static & Dynamic Power vs Tech. Node [Xilinx, 1.7] 

 
Fig. 2.17: The Components of leakage current [Altera, 1.16] 

 
Fig. 2.18: The Leakage current Impact, sensitivity and Design techniques [Altera, 1.16] 

 

 

Fig. 2.19: The transistor density scale factor [Xilinx, 1.4] 
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Fig. 2.20: Leakage Power vs Temperature in 90nm Virtex-4 [Xilinx, 1.7] 

 

Innovations by Xilinx & Altera 

To address issues of static power both Xilinx and Altera have taken some similar and some differentiating 

approaches.  The gate leakage is mostly addressed by using multiple gate oxide thickness for different 

transistors depending on their criticality for timing. Xilinx used triple gate oxide [1.5][1.7] to address the 

issue starting from Virtex4. On 28nm node both Xilinx and Altera are switching to HighK Metal Gate 

(HKMG, that was first introduced and pioneered by Intel for its 45nm Hafnium innovation) technology of 

TSMC [Altera_Betz10, 2.4][Xilinx_Lysaght10, 2.5]. 

The source to drain leakage is related to threshold voltage and channel length (figure 2.18). In this regard 

both Xilinx and Altera have adopted different styles. Figure 2.21 shows the Programmable Power concept 

of Altera [1.16][1.19]. The place and route (PAR) tool adaptively assigns different threshold voltage to the 

logic blocks based on their timing criticality. The logic on critical path is set with low threshold voltage 

making the transistors to have high speed at expense of higher leakage (power vs performance) and non 

critical blocks are put to low leakage and low speed hence significantly saving static power. Compared to 

dynamically changing threshold voltage approach of Altera, Xilinx adopted to statically assign different 

threshold voltages to different transistors and in 40nm Virtex6 has exploited channel width also to address 

the issue. Figure 2.22 shows four primary types of transistors in Virtex 6 device having very few high 

leakage high speed 40nm transistors at the expense of area (power vs area) by using majority of transistors 

at 44nm [Xilinx09, 1.4]. 

 

 
Fig. 2.21: Programmable Power Technology of Altera through Quartus II [Altera, 1.16] 
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Fig. 2.22: Transistor type distribution in Virtex-6 FPGAs for combating power [Xilinx, 1.4] 

 

Power & Speed scaling vs Moore’s law 

From figure 2.23 and 2.24 it can be observed how challenging it is becoming to obtain double performance 

and power gain like in area when migrating to next nodes starting from 90nm. It can be seen that numerous 

architectural innovations have led to decrease the power in beyond 90nm Xilinx devices however the sharp 

classical benefits of going to next node have greatly decreased. For instance moving from 130nm to 90nm 

yielded in around 40% reduction in static and dynamic power. Moving further down it took almost two 

generations to get around 40% dynamic power decrease and static power is further lagging it but is 

decreasing due to new innovations. Comparing from figure 2.17 it shows how important the static power 

innovations are to move ahead. Similar issues regarding speed can be observed,  high gain in speed from 

130nm to 90nm Altera devices decreases in comparison going to 65nm. Such challenges are making harder 

to get full benefit of increased logic density of Moore’s law and power is emerging as the primary concern 

compared to area and speed in the past (trade power vs area). 

 
Fig. 2.23: The relative power consumption of Virtex FPGAs on different nodes [Xilinx, 1.4] 

 
Fig. 2.24: Performance and Density Improvement in Stratix FPGAs on different nodes [Altera, 1.23] 
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2.1.3 Academics 
The research of FPGA architecture is closely coupled with the FPGA CAD. Not only the CAD tools are 

needed to perform mapping of applications on an FPGA but also the exploration of new architectures and 

concepts is highly dependent on the quality and level of exploration freedom the tools provide to FPGA 

architect and researchers. Section 2.1.2 provided a comprehensive overview of advancement of FPGA 

architectures in leading FPGA vendors. Unfortunately it is difficult to analyze/get research benefit in a 

similar way from the CAD tools of state of art as they are proprietary and highly focused on the products 

of the respective companies. 

The FPGA CAD research is not the main contributing part of this thesis work (it was done by Menta’s 

CAD team in close link with this thesis), however understanding the fundamentals is mandatory for any 

FPGA research as knowing basic fundamentals of hardware is essential for FPGA CAD researchers. In this 

regard a good help was obtained by the most recognized and highest cited academic research in FPGA 

CAD and architecture from University of Toronto’s work  of VPR [Betz&Rose97, 4.12][Betz&Rose99, 

4.1] which has a de-facto status in FPGA research in academics. This not only gave insights of FPGA 

architecture and CAD challenges but also helped to understand the research work of many other scientists 

that is based or partially based on VPR. 

In this section first a brief overview of the FPGA CAD is presented, identifying the major steps for 

application mapping on FPGAs. Second a comprehensive overview of well recognized academic research 

addressing several key aspects of FPGA architecture during last ten years is discussed to get research 

motivations and finding room for new contributions. 

1- FPGA CAD 
Figure 2.25 shows a generic flow of FPGA CAD for mapping an application described in high level HDL 

(e.g. VHDL, Verilog) down to configuration streams that program the target FPGA. It is interesting to note 

that the flow is same/almost same for all the FPGAs. All the steps of flow are generally independent (no 

cross iterations) or are independent for most of the part (the works discuss here and in the thesis work). 

However the CAD tools of state of art can have more complex interlinks among different phases with 

several interactions and iterations among different phases for reaching a more optimal solution (e.g. 

physical synthesis, combined packing + placement + routing for timing closure etc.) [Cong06, 4.41].  

 
Fig. 2.25: Generic FPGA CAD flow [Betz&Rose99, 4.1] 
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The phases/steps of the flow are briefly described below. Routing is discussed in a bit more detail as 

understanding the concept of Routing Resource Graph (RRG) is essential for the exploration works and 

tools designed in this thesis. The deeper details are beyond the scope of this thesis. A more detailed 

overview of them can be found in [Betz&Rose99, 4.1][Cong06, 4.41]. 

Logic Synthesis 

The synthesis step transforms the circuit description mostly written in HDLs (e.g. VHDL, Verilog or 

mixed) into a network of Boolean logic consisting of gates and flip-flops/latches (and datapath operations 

like multipliers, adders, memories etc. for heterogeneous architectures). This step is usually technology 

independent (not always in state of art) with no FPGA specific optimizations done to the logic. The 

synthesizer optimizes the Boolean logic to have an optimal netlist of combinational and sequential 

elements (gates).  

Technology Mapping 

The technology mapping phase maps the output of synthesis to dedicated circuit structures of target device 

like on-chip multipliers, adders with dedicated carry-chains and embedded memories for optimized 

datapaths. The optimized control logic is mapped to logic blocks (BLEs as was discussed in the 

introduction). The datapath operations can be mapped to BLEs as well (universal prototype power of 

BLEs) if the dedicated circuit structures of Hard Blocks are not available or not convenient to use 

[Cong06, 4.41]. The tools like FlowMap [Cong94, 4.46], SIS & ABC (Berkeley University work of 

Brayton & Mishchenko) from academics are prominent examples of technology mapping (on BLE only 

mostly) which are widely used in academic research on FPGAs. The output of mapping is a netlist of 

LUTs and Flip-Flops/Latches. 

Clustering/Packing 

In more advanced tools this step is often combined with placement [Cong06, 4.41]. The clustering phase 

has/can have two main steps. First it packs the LUTs and FFs in the technology mapped netlist into BLEs. 

Depending on the sequential or combinational output of LUT in the netlist the 2x1 output multiplexer 

selects the required outputs. In state of the art, the BLE is more complex allowing simultaneous use of 

combinational and sequential output of LUTs and more complex FF structures as was discussed in state of 

art FPGAs overview.  

 
Fig. 2.26: Fully Connected Clustered Logic Block [Betz&Rose99, 4.1] 

 

The second step of clustering groups BLEs into clusters/logic blocks as shown in figure 2.26 depending on 

number of BLEs (cluster size, N) in the logic block of target FPGA.  The cluster block shown in figure 
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2.26 is a fully connected cluster [Betz&Rose99, 4.1] that makes all the inputs (I) and outputs (N) of the 

block logically equivalent providing the router added flexibility for routing.  One of major optimization 

goal of clustering is to cluster BLEs in such a way that the inter-communication between the clusters is 

minimized which allows lesser use of global routing resources and hence added speed of implemented 

circuit. The output after clustering (for homogeneous FPGAs) is a netlist of logic blocks that are placed 

and routed by the final steps. The VPack and T-VPack [Betz&Rose99, 4.1] are widely used academic tools 

in research for clustering the technology mapped netlists. 

Placement 

In the placement phase the algorithms determine which physical logic block within an FPGA should 

implement the corresponding logic blocks required by the circuit. The optimization goals are to place the 

connected logic blocks close together to minimize the required wiring (wire length-driven placement), 

sometimes place the blocks to balance the wiring density across the FPGA (routability-driven placement) 

or to maximize the circuit speed (timing-driven placement). Placement has a significant impact on the 

performance and routability of the mapped application. Among different types of placements are 

partitioning based, analytic, embedding-based and simulated annealing-based [Betz&Rose99, 

4.1][Cong06, 4.41].  

Routing 

Routing is one of the most basic, tedious, yet important step in FPGA design flow. It is the last step in the 

design flow prior to generating the bit-stream to program the FPGA. FPGA routing is similar to the general 

ASIC problem in terms of the objectives (need to successfully connect all signal nets subject to timing 

constraints). However, FPGA routing is more restricted in the sense that it can use only the prefabricated 

routing resources available on the target device; therefore to achieve 100% routability is more challenging 

in FPGAs [Cong06, 4.41]. 

To model all the available routing resources in an FPGA, a routing resource graph is created as an abstract 

data representation to be used by the routers. Given an FPGA architecture, the vertices in the routing-

resource graph represent the input and output pins of the logic blocks as well as the wire segments in the 

routing channels. The edges represent the programmable switches that connect the two vertices. A 

unidirectional switch, such as a buffer, is represented by a directed edge, while a bi-directional switch, 

such as a pass transistor, is represented by a pair of directed edges. To model the equivalent pins, a source 

vertex connects to all the logically equivalent output pins of a logic block, and a sink vertex connects from 

all the logically equivalent input pins of a logic block. Figure 2.27 shows an example of a routing-resource 

graph for a portion of an FPGA whose logic block contains a single two-input, one output LUT. In general, 

a node may have a capacity that indicates the maximum number of nets that can use this vertex in a legal 

routing. In shown example, the source vertex has capacity one, while the sink node has capacity two. 

Modern FPGAs have tens of thousands of logic blocks; the routing resource graph can be very large. Its 

generation is typically done automatically by a software program, which models the given FPGA, builds 

the routing-resource graph for a basic tile of the architecture, and then replicates the graph many times and 

stitches them all together to form the routing resource graph for the entire FPGA [Cong06, 4.41]. 

 In many cases, one needs to build the placement and routing tools for an FPGA under development in 

order to provide quantitative evaluation of the choice of various architecture parameters before finalizing 

the FPGA architecture. In this case, one needs to generate a routing-resource graph from a set of 

architecture parameters, as the real FPGA model is not yet available. The typical set of parameters needed 

for routing include [Betz&Rose99, 4.1]: 
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a) Number of logic block’s input and output pins. 

b) Side(s) of the logic block from which each input and output is accessible. 

c) Logic equivalence between the various input and output pins. 

d) Number of I/O pads that fit into one row or column of the FPGA. 

e) Relative widths of the horizontal and vertical channels. 

f) Relative widths of the channels in different regions of the FPGA. 

g) Switch block topology used to connect the routing tracks. 

h) Fc values for logic block inputs and outputs, as well as I/O; pads (Fc represents the number of routing 
tracks in the channel that each input or output pin connects. The Fc value may vary for an input pin, an 

output pin, or an I/O pad). 

i) Wire segment types and distributions: for each segment type, one needs to specify segment length, 
fraction of tracks in the channel with such type, type of switches, and population of the switches on the 

segment, etc. 

Parameters (a) to (f) are needed for global routing, and additional parameters (g) to (i) are needed for 

detailed routing. A good routing resource generation tool should be able to:  

 Detect any inconsistency in architecture parameter specification 

 Provide reasonably good assumptions of the missing parameter in case of partial architecture 

specification (which is quite common in the early stage of architecture exploration).  

One important contribution of the VPR placement and routing tool is that it provides a simple language for 

the user to specify a reasonable set of architecture parameters for an FPGA under investigation and 

generates the corresponding routing-resource graph automatically [Betz&Rose99, 4.1][Betz&Rose00, 

4.11]. 

 
Fig. 2.27: Modeling FPGA routing as a directed graph [4.10] 

 

Bitstream Generation 

It is the final step of the flow. It takes as input the mapping, placement and routing information and 

generates the bitstream to program the configuration cells of LUTs, routing, IOs, Hard Blocks etc. to 

implement the mapped application on the target FPGA. 
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2- Architectural Research 
This section provides brief overview of prominent contributions from academics for addressing 

fundamental research challenges of FPGAs. A good global overview on advancements and challenges in 

FPGA architecture can be found in [Kuon.Tessier.Rose08, 4.2] and of FPGA CAD in [Cong06, 4.41]. 

LUT Size & Cluster Size 

The first fundamental question that comes in every FPGA researcher mind is what the best LUT size is for 

an FPGA. Is there a magic LUT size (2, 3, 4, 5, 6, 7 etc.) that can be best global choice for FPGAs. The 

answer is bit complex; one cannot just compare two FPGA architectures based on the LUT size they use. It 

depends a lot on the architecture style of FPGA, the way LUTs are used in that and the properties/quality 

of CAD tools that map applications, which leads to final properties/capabilities of that FPGA. It also 

depends on the target requirements for that FPGA (speed, area or power optimized etc.). However LUT 

size of 4 since the early 90s and even now is the most widely used LUT size among most of the FPGAs 

providing a nice tradeoff among major criteria like area, power, and speed efficiency. 

LUT size is often investigated along with the cluster size as both have an impact on each other. The effect 

of LUT and cluster size was addressed in detail for a fully connected cluster in [Betz&Rose99, 4.1] 

[Ahmed&Rose04, 4.8][ Marquardt.Betz.Rose00, 4.9].  They indicated that for best area and delay tradeoff 

the LUT size from 4-6 and cluster size of 3-10 are the best choice. [Cong06, 4.41] shows work done to 

address the clusters with heterogeneous LUT size like found in Altera’s Stratix series as was observed in 

state of the art discussions section. 

Routing Architecture 

Routing is the most challenging and exciting part of FPGA research. It has several areas to address such as 

architecture topologies, SB patterns, heterogeneous wire lengths, uni/bi-direction routing, and silicon 

implementation issues etc. 

One of most important aspect of VPR tools suite is its ease of creation of routing architecture at a higher 

abstraction level using some fundamental properties given in architecture description file (as was discussed 

in last section) [Betz&Rose99, 4.1]. This allows experimenting different architectures with ease of creating 

them through VPR. Original VPR [Betz&Rose97, 4.12] was focused on bidirectional routing architecture 

which was common in FPGAs until early 2000s. Modern FPGAs use unidirectional routing (as was 

discussed in fundamentals section in beginning). The work of [Lemieux04, 4.19] explains the benefits of 

unidirectional routing over bidirectional. VPR 5 [Luu.Kuon.Rose09, 4.5] has updated the possibility to use 

unidirectional routing along with better architecture description mechanism using XML and support for 

basic hard blocks. The architecture of Switch Block (SB) has an impact on the routing efficiency of the 

routing architecture. [Wilton97, 4.25] proposed a new kind of SB (Wilton) with added routability due to 

the diversity it offers to route among channels when they cross a SB. [Imran&Wilton99, 4.35] enhanced 

the Wilton switch for multi-length routing architectures. The work [Lemieux&Lewis02, 

4.21][Lemieux&Lewis02, 4.22] addressed the issues of diversity of SB and explores the benefits by 

experimenting different architectures. Chapter 4 will address these issues and SB in detail. 

Routing architecture has another challenge that is hard to address by classical hardware innovations; 

applications mapped on the FPGA have different requirements of routing. Some require normal some low 

and some very high (chapter 4 will address them in more detail), however once the device is fabricated one 

cannot change the routing architecture. [Tom.Leong.Lemieux06, 4.18] addresses the issue by software at 

the expense of using more logic blocks than needed (often possible in real cases) to route the un-routable 

designs by depopulating the logic blocks in congested areas. 
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The physical silicon implementation of the architecture also has a significant effect on the characteristics 

of the architecture. [Betz&Rose99, 4.1][Kuon&Rose09, 5.2][Kuon&Rose08, 4.6][Kuon&Rose08, 

4.7][Lemieux&Lewis02, 4.23] [Lee.Lemieux.Mirabbasi08, 4.16][Lemieux04, 4.19] have addressed several 

issues of transistor sizing, buffers, multiplexer designs etc. 

Power Consumption 

Power consumption is the newest and hottest challenge at present in industry and academics. Compared to 

research on classical fundamentals of FPGA that spans around two decades more focused on area and 

speed, less work exists in this new area, as it has become a hot challenge around mid 2000s. However it 

will definitely rapidly grow in coming years, as power has become main center of focus among three 

fundamental pillars of Area, Power, and Speed. Some interesting work can be found in academic research 

addressing some of the power challenges that were observed in state of the art discussions section 2.1.2. 

[Anderson05, 4.85][Cong04, 4.42] discusses the challenges of power and addresses the CAD and 

architectural innovations to reduce both static and dynamic power. [Lee.Chen.Cong05, 

4.48][Lee.Chen.Cong03, 4.49] address architecture evaluation based on power by using their framework 

fpgaEVA-LP and explores the LUT size and cluster size in light of power. [Lee&Cong04, 

4.50][Chen&Cong04, 4.51] explores architectures and CAD for the use of multiple supply and threshold 

voltages to reduce the power. [Hsieh&Cong08, 4.52] proposes use of flip-flops in the FPGA (along with 

CAD infrastructure to avoid data hazards due to additional pipelining due to FF insertions) to act like a 

glitch-filtering firewall for decreasing the dynamic power in the routing architecture. 

[Lamoureux.Lemieux.Wilton08, 4.15] also addresses glitch-filtering issue using hardware innovations by 

making the data at inputs of LUT arrive at same time by using delay elements with small area overhead. 

[Chow.Luk.Wilton05, 4.37] discusses the use of dynamic voltage scaling in FPGAs by using logic delay 

measurement circuit. [Wilton.Ang.Luk04, 4.38] addresses the gain in energy reduction by writing 

applications on FPGA with more pipelining (guide for FPGA programmer). 

FPGAs vs ASICs Gap 

A question often come-up in everyone’s mind is, how much is the difference between FPGAs and ASICs 

or in simple words the FPGAs vs ASICs silicon gap. FPGAs have great benefit in terms of programming 

flexibility compared to ASICs however it is widely known that huge interconnects and fine grain nature of 

computing model of FPGAs leads to high silicon cost (area), slower speed and higher power consumption. 

But how much is that difference?, negligible, large or very large remained a curiosity among researchers 

and industry. 

To answer this question in general is really complex; one has to make a borderline or start point to answer 

this question. To illustrate it a bit further for a given source application there will be multiple ways to 

implement it on ASICs and similar goes for an FPGA. FPGA is not a universal entity; each device from 

same or different vendors will/can have different results. Finally the one who has the highest capability and 

insight to answer this question is the FPGA vendors, but it is straightforward to understand that it is not an 

easy task for them from commercial point of view to answer these questions openly and fairly!. 

[Kuon&Rose07, 4.3] from academics has addressed the FPGA vs ASIC Gap issue and is one of the most 

inspiring source of knowledge among academics and industry. It has compared the gap on the 90nm node 

for benchmark applications on standard cells and 90nm Stratix II with co-operation of Altera to give inside 

to the area figures of their device (such things are mostly closed for public). It is found in their work that: 

 Area Gap: around 35X for pure LUT based FPGA (homogeneous FPGA) 

 Speed Gap: around 3X-5X 

 Power Gap: around 14X , for dynamic Power 
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These gaps can be reduced by use of hard blocks. This work serves as a motivation for FPGA researchers 

and vendors about importance of these gaps and there is still so much more to be done to make FPGAs a 

real competitor to ASICs/ASSPs. This provides a motivation for researchers to investigate heterogeneous 

FPGAs. Work on this direction is still greatly lacking and at a very basic level in academic research 

compared to other areas of FPGA that are widely addressed. VPR 5 [Luu.Kuon.Rose09, 4.5] is a step 

towards heterogeneity that has upgraded original VPR for allowing basic hard blocks experimentation. 

[Parvez10, 4.53][Parvez.Marrakchi.Mehrez10, 4.54] has also addressed this direction. It has also explored 

the potentials of Application Specific Inflexible FPGAs (ASIF) for reducing the ASIC vs FPGAs gap by 

proposing a new kind of middle device that is targeted and optimized for few known target applications. 

Different Arch. Styles (other than Island Style) 

Majority of the FPGAs are island-style in terms of architectural topology as was discussed before. It still 

remains the most dominant choice among FPGA vendors due to its layout friendliness. Research is also 

conducted for some other topologies like Hierarchical/Tree based styles. [Kuon.Tessier.Rose08, 4.2] 

presents an overview and references to work done in this direction and what are the physical 

implementation and application mapping issues of hierarchical architecture which makes island-style 

preferred choice among FPGA vendors. [Marrakchi08, 4.58][Mrabet09, 4.57][Marrakchi&Mehrez09, 

4.56] has also addressed the pros and cons involved with tree based routing architectures and island-style 

and have proposed a mix of both to achieve better results compared to island-style-only architecture.  

Automatic Layout Generation of FPGAs 

Efficient silicon implementation has a huge impact on the characteristics of FPGA. State of the art FPGAs 

are fully/partially custom designed and spend huge effort on layouts to get optimal implementation of the 

architecture. Works like [Toronto-Giles, 4.13][Mrabet09, 4.57][Parvez10, 4.53] have proposed methods 

and tools to facilitate automatic generation of FPGA layouts that are not optimal like real state of art 

layouts in terms of density etc. but can provide a good tradeoff in some cases to rapidly create layouts of 

FPGA architecture on different technology nodes saving long manual layout development/migration time. 

 

2.1.4 Beyond Classics emerging works 
So far this chapter has discussed several aspects and challenges concerning FPGAs architecture. It is worth 

noticing that with all the innovations and research done to improve FPGAs the fundamentals have 

remained quite same since beginning ([Xilinx_Freeman89, 3.1]). FPGAs are composed of programmable 

LUTs, programmable interconnect connects these LUTs. SRAM is still the de-facto configuration element 

for most of FPGAs (Xilinx+Altera SRAM FPGAs alone have above 80% market share [Coudert09, 2.14]). 

During last few years research has also been conducted in some non conventional or beyond classics 

directions for addressing the challenges of FPGAs. Most of them are still more at research level and will 

take a while for maturity before they may reach mainstream in industry. Their potentials to address specific 

FPGA challenges are very promising. This section presents a brief overview of some of the trends and how 

they are interesting for FPGA architecture challenges. For simplicity both academic and industrial 

solutions are presented together. MRAMs will be discussed in a bit more detail in this thesis work as they 

are a complimentary contribution of this thesis to observe, describe and present the industrial potential of 

MRAMs for FPGAs in general and in particular to eFPGAs (chapter 5.4 will address them in more detail).  

The characterization can be generalized into two main categories, first innovations in architectures using 

un-conventional techniques, and second innovations for using un-conventional technologies for 

configuration of FPGAs. They are briefly highlighted below. 
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Architecture 
The FPGAs are well known for huge cost of routing interconnect and high power consumption. With 

Moore’s law the density and die size of FPGAs have grown. For very large multi-million gates FPGAs, the 

clock distribution is also becoming a great challenge due to large die size. Several modern techniques used 

in SoCs (GALS, Mesochoronous, Asynchronous etc.) are relatively difficult to exploit on FPGAs due to 

the inherent issues of FPGAs fundamental architecture. [Kuon.Tessier.Rose08, 4.2] has discussed some 

un-conventional research directions to address some challenges of FPGAs. Among some notable directions 

are asynchronous FPGAs that help to have high speed operation, reduce power and ease clock issues. 

Achronix (see in next section and patents appendix A1) is a commercial example of this direction. 

Academic research is also conducted in this direction [Teifel&Manohar, 4.59-4.62][Chaudhuri09, 4.102]. 

Another notable commercial example is Tabula (see in next section and patents appendix A1), it has 

created a highly time multiplexed FPGA-like programmable device which makes specialized use of 

dynamic reconfiguration at a very high speed. Network on Chip (NoC) have also gained attention as a 

good candidate to address the routing and ease of clock distribution kind of challenges of FPGAs. FPGAs 

with their large heterogeneous mesh of programmable and hard elements inherently provide a complex 

Systom on Chip (SoC) like scenario where potentials of NoCs can be fully/partially exploited to observe 

what benefits can be obtained. There are several research issues to address and will take a while to judge 

how suitable NoCs/Hybrid NoC+Classical routing can be for mainstream FPGAs. Concepts to use NoC 

(packet switching), time-multiplexed routing etc., are under investigation among the FPGA vendors (see 

patents appendix A1 for more details) [Xilinx_Young09, 3.30][Xilinx_Trimberger07, 

3.29][M2000_Reblewski09, 3.75]. Another recent research idea from academics is using high speed serial 

communication (packets) in routing compared to immense parallel network of routing tracks (big portion is 

always unused for any application mapped) to have a more efficient architecture [Teehan&Lemieux09, 

4.17]. Work on 3D technologies such as die stacking etc. is also under investigation and now commercially 

begins on 28nm Xilinx FPGAs [Xilinx10; 1.9, 1.10]. In longer term scientists are investigating about 

nanotechnologies if they can replace or compliment CMOS in FPGAs [PanelFPGA09, 2.10]. 

Configuration  
Besides the architecture a significant portion of FPGA in terms of Area and Power consumption is the 

configuration of FPGAs that makes the FPGA function the mapped application. SRAM is still the king in 

this regard. Flash is the second most famous memory used in FPGAs. Research has been conducted to find 

new memories and also new ways to put that memory in the architecture to obtain benefits other than just 

classical ones (volatile/non-volatile, area etc.). [Chen.Lewis.Mitra09, 4.107] as a joint work of academics 

(Stanford) and industry (Altera) have shown the early concept of using nano-electro-mechanical (NEM) 

relays for use in FPGAs routing. Their zero leakage and low resistance is very attractive for power 

reduction; they can be fabricated on top of standard CMOS giving fabrication and enhanced area reduction 

benefits. The hysteresis characteristics of NEM can also provide potentials of non-volatility. 

[Muller&Thakkar08, 4.108] from Berkeley also addresses a similar direction. [M2000_Ebeling10, 3.77] 

presents potentials of MEMS (micro-electro-mechanical-systems) for switching elements in FPGAs. 

MRAMs (magneto-resistive RAMs) have also been seen as having great potentials for FPGAs in terms of 

non-volatility, dynamic reconfiguration, multi-context, fabrication ease with conventional CMOS etc. 

Chapter 5.4 will address them in more detail. The research work/references regarding MRAMs presented 

in this thesis is from University of Montpellier LIRMM lab and its close collaboration with Menta, 

recognized by industry observers [EEtimes09, 4.78][EEtimes10, 4.79]. A comprehensive overview of 

potentials can be found in [S-4][S-5]. Deeper details are beyond scope of discussions and can be found in 

[Bruchon07, 4.73][Guillemenet&Torres08, 4.74][Guillemenet&Torres08, 4.75][Guillemenet&Torres10, 

4.76][Cargnini10, 4.77][LIRMM, 4.80]. 
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2.2 Systems with embedded FPGAs (eFPGAs) 
Since this thesis work is focused on FPGA-like embedded FPGAs, section 2.1 covered extensively the 

fundamentals of FPGAs as knowing them is essential to conduct research on eFPGA architecture. This 

section in a similar fashion like section 2.1 investigates embedded FPGAs (eFPGAs) or similar solutions in 

industry and academics for research motivations. Figure 2.28 illustrates a theme diagram highlighting the 

fundamental concept of eFPGA in systems. The present day chips are composed of plenty of IPs 

(Intellectual Property) like microprocessors, memories, special functions etc. eFPGA IPs can help 

providing programmable IPs which brings the well known benefits of FPGAs directly inside the SoC. 

Chapter 5 will address this topic in detail. 

 
Fig. 2.28: Theme concept of eFPGA IP in SoC/ASIC/ASSP 

2.2.1 Industry 
The concept of eFPGAs is not new in industry; however it never had any wide success. That remained a 

big challenge for this thesis work and in addition for the thesis being in an industrial context was an added 

motivation for deeply analyzing industry, state of art and past researches not only for scientific inspirations 

but also focusing on why they failed and learn from those mistakes (section 2.3 will further address these 

issues in general industrial survey). This section discusses some examples from industry that exist or 

existed representing the eFPGA/eFPGA-like concept. 

1- General overview 
Some companies that provide/provided eFPGAs or systems with eFPGAs are discussed below. 

Abound Logic (former M2000) 

Abound Logic (former M2000) is the most notable example of company that provided embedded FPGAs 

(FlexEOS macros) based on ST process [D&R04, 2.23][D&R05, 2.24][D&R05, 2.25][D&R05, 

2.26][EETimes06_C.Gross, 2.29]. The products that are publically known to have used their eFPGAs are 

the 130nm GreenField-STW21000 [EETimes07_P.Clarke, 2.30][ST05, 2.27] microcontrollers of ST for 

wireless market and the Morpheus project chip [2.28]. Figure 2.29 shows the 90nm Morpheus project chip 

block diagram and die picture. A 12 mm² eFPGA of M2000 is highlighted in the figure. The FlexEOS 

SRAM based eFPGAs of M2000 had logic densities of 1340LUT4 per mm² on 90nm. However from the 

website of company it seems they have abandoned the eFPGAs business, now they make low cost ultra 

high density TSMC 65nm FPGAs. Unfortunately there is very limited public information available about 

the device architecture, tool and tools efficiencies, customers and researchers feedback of experiments 

done on those eFPGAs to get some scientific observation etc. for their abandoned FlexEOS eFPGAs. 

Analyzing some of their patents [Reblewski&Lepape03, 3.72][Lepape09, 3.73][Lepape10, 3.74] it appears 

that their architecture is hierarchical/partly hierarchical (not classical island-style) that leads to their 

superior logic densities competitive differentiation claim against Xilinx & Altera. 
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Fig. 2.29: 90nm Morpheus Chip with eFPGA of Abound Logic/M2000 [2.28] 

Atmel (CAP MCUs) 

The CAP microcontrollers of Atmel [2.34] are an interesting commercial example of importance of 

eFPGAs and particular challenges related with eFPGAs when chip designers consider their use. The CAP 

MCU provides MCU infrastructure based on ARM7 processor and AMBA bus. It has a metal 

programmable (MP) block efficiently connected with AMBA where customized functions can be 

implemented to have a differentiated product. The MP block is only one time programmable (in Fab in few 

weeks) and has a gate array of high density close to standard cells (not FPGA-like structured ASIC 

architecture). This allows very compact, faster and power efficient implementations but only one time 

programmable (in many real cases it is a good proposition like Structured ASICs one time 

programmability vs reconfigurable silicon heavy solution). Figure 2.30 shows the concept of Atmel CAP. 

The differentiation functions are implemented in a separate FPGA (development board) for evaluations 

and then can be easily migrated to the MP block for mass production using tools of Atmel to create a single 

chip MCU solution. 

 
Fig. 2.30: Atmel CAP Microcontrollers with Metal Programmed (MP) embedded fabric [2.34] 

IBM-Xilinx eFPGAs for SoCs (2002) 

In 2002 IBM and Xilinx made a partnership to have embedded FPGAs of Xilinx on IBM 90nm process for 

the Cu-08 ASICs products of IBM. Three cores were planned from 10K to 40K gates with up to 640 I/Os. 

Multiple eFPGAs could also be integrated within a single ASIC device [Xilinx02, 2.35]. There is not much 

information available about the Cu-08 product [IBM, 2.36] and evidence of continued products in this 

direction. However around same time a similar thing happened in Xilinx FPGAs of the well known hard 
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IBM Power PC processor inclusion in the Virtex2 pro devices, that continued for several generations of 

Xilinx FPGAs. 

Varicore (Actel) 

In 2001 Actel introduced a new class of SRAM based Varicore embedded FPGA IP cores based on 180nm 

Chartered Semiconductor Manufacturing process. The cores were used in ASICs, ASSPs, SoC devices to 

help speed products to market and increase the life of those products once in the market. The cores were 

available from Actel for customers using Chartered process [D&R01, 2.37] [EEtimes01, 2.38] (fab 

dependent solution). The product line was abandoned by Actel and no technology information details 

about these cores can now be found on their web. 

 In a 2006 annual report [Actel06, 2.40] Actel explains some background and reason of abandoning the 

product as. ―We introduced our VariCore embeddedable reprogrammable gate array (EPGA) logic core 

based on SRAM technology in 2001. Revenues from VariCore EPGAs did not materialize and the 

development of a more advanced VariCore EPGA was cancelled. In this case, a market that we believed 

would develop did not emerge‖. ―In 2000, we acquired Prosys Technology, Inc. (Prosys) for consideration 

valued at $26.2 million. We acquired Prosys for technology used in our VariCore FPGA logic core, which 

was introduced in 2001 but for which no market emerged‖. 

In addition in this report Actel describes their move to make SRAM based FPGAs in late 1990s that they 

abandoned. ―In 1999, we acquired AGL for consideration valued at $7.2 million. We acquired AGL for 

technology used in the unsuccessful development of an SRAM-based FPGA‖. 

Adaptive Silicon 

Adaptive Silicon [D&R01, 2.41][D&R01, 2.42][EETimes99, 2.43] in 2001 proposed Multi-Scale Array 

(MSA) embedded programmable logic cores at 180nm from LSI Logic and TSMC. Unlike most others 

MSA was not LUT based but coarse grain architecture with array of 4-bit ALUs that could be programmed 

by their software tools called Millennium PLC using RTL flow. Due to being coarse grain the solution was 

more silicon efficient compared to fine grain LUTs.  The company did not succeed and no technical 

information is available anymore except industry news/press releases. 

Leopard Logic 

In 2002 Leopard Logic proposed HyperBlox FP SRAM based embedded FPGA cores that were process 

specific to TSMC 180nm and also were part of TSMC’s IP Alliance program [D&R02, 2.44]. Their tools 

suite Leopard Logic’s ToolBlox allowed easy integration of these cores in SoCs. The company went out of 

business like others and no detailed information is now available about their architecture and tools except 

industry news/press releases. 

2- FPGAs-2010 with Hard Processors (FPGA or eFPGA!)  

The two opposite trends: FPGA vendors putting hard blocks in their devices and ASICs/ASSPs vendors 

looking for limited flexibility in their devices in form of eFPGAs or similar cores has always remained in 

discussions in industry. It was shown above that two leading FPGA vendors (Xilinx, Actel) also at a time 

proposed embedded FPGAs to specific client (Xilinx-IBM) or general market (Actel Varicore) but 

abandoned soon. Altera never went in this direction like Xilinx and Actel. The view point of opposite side 

were (now getting further relevant due to power) also very prominent that customers do not want full PLDs 

but only limited flexibility only where needed. The programmable logic inherently is much silicon 

expensive compared to equivalent hard implementation [EETimes99_LSI, 2.43]. It is well known that 

industry never saw a significant success with eFPGAs. The other side (FPGAs) continued to succeed over 

passage of time in putting hard blocks to continue making their devices a competitive solution against the 
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ASICs. As of 2010 FPGAs have reached to a point in heterogeneity that their fine grained programmable 

logic have started to seem like an eFPGA surrounded by several hard blocks and bus infrastructures like 

SoCs and in fact have become more like a Configurable SoC than FPGA [Xilinx10_P.Lysaght, 

2.5][Altera10_V.Betz, 2.4][Xilinx, 1.2][Altera, 1.27][Actel, 1.28].  

Figures 2.31 show the latest devices from Actel and Xilinx with Hard processor blocks of ARM. It can be 

observed that FPGAs are approaching SoCs, SoCs like design challenges, SoCs like programming. It is 

interesting to look that the design on modern FPGAs is becoming more and more IP centric with 

Processor, the surrounding IP infrastructure of that Processor with more and more hard blocks with fine 

gained classical structure shrinking continuously for differentiated functions (eFPGAs are meeting FPGAs 

on FPGAs!). The 28nm EPP of Xilinx is much like a SoC with eFPGA, coming from an FPGA vendor 

[Xilinx10_P.Lysaght, 2.5]. 

 

Fig. 2.31: FPGAs with Hard ARM: Xilinx 28nm EPP and Actel 130nm Smart Fusion (source: web) 

2.2.2 Academics 
The work done in academics in this regard can be divided into two main classes. One direction is using the 

classical FPGA like LUT based architecture and the other is coarse grain architectures which are widely 

addressed in academics. FPGA-like architecture will be discussed in detail as this thesis work is based on 

FPGA-like eFPGAs and briefly overview of the references of coarse-grain research will be provided. 

1- FPGA-like embedded FPGAs 
The previous section discussed about the two opposite side trends of industry. FPGAs seeking reducing 

their gap with ASICs with hard blocks and ASICs seeking flexibility using embedded programmable cores 

(did not succeed but nevertheless many attempts were made due to obvious attractive reasons and 

potentials that embedded programmable cores can bring to ASICs). Different works in academics have 

addressed issues related to eFPGAs and their system integration scenario. 

In [Wilton.Kafafi.Saleh05, 4.31] authors have addressed the challenges and issues involved with eFPGAs, 

in particular soft eFPGAs. This work was done around 2003-2004 and the examples of failed businesses of 

several companies around 2001-2002 which were discussed above were an inspirational example for them. 

It addresses nicely the fundamental issues related with eFPGAs, they summarized their views as follows. 

1) Tools for the design and integration of programmable fabrics are not widely available as yet. This is 

somewhat of a chicken-and-egg problem: existing tools and flows will not be enhanced to support the seamless 

integration of programmable logic cores until this design technique becomes mainstream, and the design 
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technique will not become mainstream until the tools are enhanced to support programmable logic cores. 

However, as chip design costs escalate, the economics of chip design will be a strong driver for increased 

hardware programmability. 

2) Programmable logic cores come in relatively fixed formats. That is, the integrated circuit designer cannot 

modify the overall size of the fabric or the internal structure of the programmable logic core. The integrated 

circuit designer must choose a programmable logic core that is closest to the desired size; this could lead to 

wastage of chip area. This can be addressed by providing tiles of programmable logic that can be snapped 

together to form a design logic fabric of the desired size to minimize the area penalty. 

3) Embedded programmable logic is not as efficient as hardwired logic in terms of area, power and speed. 

There are, however, special-purpose fabric generators emerging that can provide a better tradeoff between 

these specifications, depending on the target application. 

 
Fig. 2.32: Hardware comparison between standard custom FPGA (left) and Soft FPGA (right) [4.31] 

 
Fig. 2.33: Directional (left) and Gradual (right) [4.31] 

To address some of these issues their work proposed soft eFPGAs which unlike custom FPGAs/eFPGAs 

are written in HDL and can be synthesized using standard ASIC tools making them easier to integrate in 

the SoCs. As they are soft and mapped on the standard cell library they use flip-flops and multiplexers of 

the standard cell library unlike pass-transistors, tristate-buffers, SRAM cells that are used in FPGAs or 

hard eFPGA blocks. Figure 2.32 shows this difference.  They proposed two architectures for creating soft 

eFPGAs shown in figure 2.33. First a directional architecture that is similar to the classical island-style 

architecture but only allows data flow in one direction to avoid combinational loops for the synthesis tool 

while integrating it in SoC. Moreover it only implements combinational circuits (flip-flops are used for 

configuration but no flip-flop associated with LUT for sequential logic). Second a gradual architecture that 

attempts to further improve area efficiency. This research work focused very small sized eFPGAs (less 

than 100 LUTs) where the architecture is simplified to implement small combinational logics. VPR was 

modified to map applications on these proposed architectures. 
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[Akenova.Lemieux.Saleh07, 4.14] has addressed reducing the gap between the soft eFPGAs compared to 

hard eFPGAs with their proposed Soft++ methodology. As the FPGA architecture is highly regular and 

composed of fundamentally two elements (configuration cells and multiplexers) other than flip-flops in 

LUT-FF pair for sequential implementation. This work has proposed to create standard cells of custom 

layout of basic elements like SRAM and multiplexers, and use these cells (they call them tactical cells) 

instead of general standard cells of full CMOS multiplexers and flip-flops for configuration element. This 

allows greatly improving the silicon efficiency of soft eFPGAs while ease of using standard synthesis 

flows, hence providing a semi-custom solution between pure soft and full custom hard eFPGA.  

[Quinton&Wilton07, 4.27] addresses the challenges regarding interfacing eFPGAs with buses and propose 

solutions in this regard. 

[Neumann&Noll08, 4.87] presents a framework to create customizable eFPGAs from higher level of 

description of architecture parameters for arithmetic oriented application domains. 

2- Coarse-Grain Reconfigurable Architectures 
Coarse grain architectures perform computation at a level higher than 1-bit fine grain LUT computation 

which is standard among FPGAs (there are several coarse grain blocks in modern FPGAs but they are 

connected with fine grain computation model of LUTs and interconnect logic). Compared to research on 

FPGAs or eFPGAs, the area of coarse grain architecture is widely and deeply addressed in academics. 

There are several directions in which research is conducted on coarse grain, e.g. Array of ALUs, custom 

processors with reconfigurable data paths, array of very small RISC machines etc. On industrial side 

unfortunately the history of coarse grain is painful with several failed attempts from many companies (next 

section will address them/issues with them).  

Deeper details and survey on research done on coarse-grain architectures (like was done for FPGAs) is 

beyond the scope of this thesis. However general overview of these works was done for inspiration. A 

good comprehensive survey of research done in this area can be found in [Hartenstein01, 4.64][Brunelli08, 

4.89]. Some notable examples include Totem Project [4.97][Huck&Compton, 4.98][Compton03, 4.99], 

XiRisc [Lodi03, 4.104], GARP [Hauser&Wawrzynek97, 4.105], PipeRench [Goldstein00, 4.106], Xputer 

[Becker97, 4.90] etc. [Becker&Vorbach03, 4.91] presented a system of coarse grain hardware acceleration 

unit (PactXPP) connected with general purpose LEON processor with AMBA bus. 

A detailed overview, potentials of reconfigurable computing, challenges and efforts for education in this 

direction, the potential flaws of current Von-Neumann based computer science can be best achieved from 

keynote talks and related publications of Prof. Reiner Hartenstein [4.65-4.72]. 

Coarse-Grain vs Multicore: Coarse-Grain research remained quite hot throughout the 1990s and early 

2000s (above mentioned references can provide an overview) in academia, however it failed to 

succeed/penetrate in industry (FPGAs dominated, next section will provide overview), which lowered the 

momentum of research in this direction. While it still is partly active in research but the rise of another 

wave of multicore era in second half of 2000s has further dampened the research in coarse-grain direction 

as majority of researchers switched to this new wave which partly uses inspirations of coarse-grain also 

(computation in space). At present from research and industrial stand point the major competitive waves in 

Reconfigurable Computing domain are FPGAs and rising multicore. Next section will provide further 

details along with several other industrial trends, failure reasons of past etc. 
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2.3 The Semiconductor Industry 
This chapter is explaining the contribution R of the thesis work. Chapter 1 explained the nature and 

dimensions of the contribution of this work. The above two sections 2.1 and 2.2 presented the details of 

state of the art in industry and academic research for the areas of FPGAs and embedded FPGAs. This 

section outlines a general industrial survey with taking into account commercial aspects also, since the 

discussions will be incomplete without realizing this aspect of industry as no real-life challenge can be met 

without knowing real-life (CIFRE motivation [5.11]). Nevertheless to maintain the scientific intent the 

thesis has restricted the discussions of commercial investigations to their general scientific conclusions for 

technological challenges that are interesting and essential to know for all research community. The general 

overview of the contents in this section is as follows. Sections 2.3.1 briefly outlines the investigations of 

this thesis work done to better understand industrial aspects. The rest of the sections will detail the 

comprehensive overview of major findings of the research done for survey of types and potentials of 

several programmable technologies in industry [S-3a, S-3b] to get global overview of potentials and 

challenges regarding eFPGAs. 

2.3.1 Understanding Industry in general 
One of the major objectives of this work was to get trained for industry [5.11]. So understanding the basics 

of complexities of the Industry (technical and commercial) to well prepare to be integrated in industry was 

an important objective. Efforts, studies and several contributions [S-1][S-2][S-3][S-6][S-7] were made in 

this regard. As commercial discussions are kept to minimum, below are two important areas that helped a 

lot for getting educated in this regard. 

1- Industrial articles and press news (From IEEEtimes to EEtimes) 
There is a quite known phenomenon in industry regarding eFPGAs, ―everyone who tried to do this died or 

left the business‖. Since this thesis work was in an industrial context, finding/discovering answers to such 

issues was almost mandatory. Any researcher who finds out that sometimes strange things happen in 

reality (this thesis work was no different) he/she obviously goes in a deep curiosity of Why?. Things like 

how can this thing ever fail?, Why NoCs have not replaced buses?, Why industry is not going crazy for 

nano-technologies?, Why bio-inspiration rarely inspired anyone?, Why coarse-grain did not replace 

FPGAs?, FPGAs are so powerful and amazing why don’t they replace everything?, … (hypothetical list 

can go on and on). To investigate such complex issues help was sought by deep study of industrial articles, 

press news, industrial events/conferences, webcasts etc. to make practical industrial survey. Key findings 

and conclusions of this commercial research will be outlined in next sections [S-3]. [5.7][5.8][5.9] also 

provided general understanding of industry.  

2- Patents study of State of the Art 
A general overview of state of the art technologies in most cases can be achieved by product brochures, 

datasheets, webinars, conferences etc. However to understand deeply the architectural innovations, patents 

are a good scientific literature (although their intent is not just scientific!). They comprehensively present 

highly innovative solutions and give an overview of how state of art manage/solve complicated real-life 

problems and provide good motivations and directions for research challenges. Dozens of patents of 

leading FPGA vendors were analyzed in the thesis work; some prominent ones are referred in [3]. 

Appendix A1 provides a comprehensive survey of patents study done for FPGA vendors focused on 

several aspects of FPGAs (logic block, routing architecture, tile-based layout, configuration, hard blocks, 

emerging trends etc.). 
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2.3.2 Global overview of Industry 
This section provides a global overview of industry, the cyclic nature of industry and some major 

challenges it is currently facing. 

1- Semiconductor Industry markets and market leaders 
Figure 2.34 provides overview of semiconductor industry in a nut shell for 2009. In 2009 global 

semiconductor revenues were around 230 billion dollars [2.1]. On the top left a detailed pie graph 

[EEtimes10, 2.15] shows distribution of major markets. The dominance of Computers and 

Communications is prominent. On the right there is a table of top 25 semiconductor companies [2.1] which 

represent almost 70% of entire semiconductor industry. Further among them high dominance of Intel and 

several memory giant companies is prominent (obvious from the huge share of computers in the industry). 

On the bottom left [S-3b] the bar graph provides the details of market share from technology point of view 

(compared to market type in top left graph) with special emphasis on programmable logic devices market. 

It is clearly evident that ASICs and in particular ASSPs have a very high market share compared to PLDs 

(FPGAs, CPLDs etc.).  FPGAs with 3.3 billion dollars market roughly represent around 1.5% of 230 

billion dollar semiconductor industry. This also gives a brief idea of the vastness and huge size of the 

overall industry. In the PLD market Xilinx and Altera are the top market leaders having more than 80% 

market share of the PLD market. Figure 2.35 shows the top FPGA vendors and their market share details 

and the overall FPGA market revenue change in last ten years (the 2001 dotcom bust and 2008-2009 

economic crises can be immediately seen in that) [Coudert09, 2.14][EEtimes10, 2.20]. To get some insight 

of, in what kind of markets FPGAs are used a hint can be obtained from Xilinx (being no. 1 and Altera 

being direct competitor has similar markets too). On the bottom right of figure 2.34 is the graph of Xilinx 

revenue distributions based on market in 2010 (source: Xilinx website). The strongest segment evident is 

communications. Comparing this graph with the top left graph of figure 2.34 clearly shows in what kind of 

segments FPGAs go and how big those segments are in overall scenario. This on one hand shows still great 

room of new opportunities for FPGAs to grow in, and also shows why they are still a very small niche in 

industry as all the high and big markets are highly dominated by ASSPs, Computers etc. from top most 

semi conductor companies. 

2- Makimoto’s Wave: The cyclic nature of Industry 
The iconic Moore’s law [2.2] is the main driving source of industry for more than four decades (and still 

expected for around 1 more). During late 1980s Tsugio Makimoto in Hitachi observed another 

phenomenon regarding the cyclic nature of industry. He observed that for last several decades industry was 

switching between Standardization and Customization and that the duration after it switches is almost 10 

year. He plotted a cyclic graph to show this phenomenon that became highly famous as Makimoto’s wave 

in the 1990s and particularly for his forecast of boom of Field Programmable Devices [S-3b]. The wave is 

shown in figure 2.36. Surprisingly it still seems valid and as of now (2010) according to the graph the 

industry entered again in the 10 year customization cycle in around 2007. If one observe it seems quite 

valid as more customized solutions are getting prominent in industry, FPGAs top vendors also are 

providing specialized target domain specific FPGAs [S-3b]. [Xilinx07_Trimberger, 2.6] illustrates current 

period as the specialization age of FPGAs for creating more target optimized FPGAs.  
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Fig. 2.34: Semiconductor industry 2009 (230 B$) markets and market leaders [S-3b][2.1][2.15] 

 
Fig. 2.35: Top FPGA/PLD vendors market share and revenues [2.14][2.20] 

 

 
Fig. 2.36: Makimoto’s Wave: Cyclic nature of Industry (Source: open web) 
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3- Challenges of Power Consumption 
In general at present, entire semiconductor industry is under great challenge for power consumption. As 

Moore’s law crossed 90nm, the challenges of power, in particular static power became very prominent 

throughout industry. The birth of MPSoCs around mid 2000s was also result of that.  The issues of power 

challenges are multifold. Firstly the biggest source of reducing dynamic power historically was scaling of 

the supply voltage. As technologies have moved beyond 90nm the supply voltage has almost flattened 

around 1.0V, furthermore in these finer geometries static power has become significant due to leakage 

(section 2.1.2 presented the scenario for FPGAs). On the products side trends towards more and more 

portable devices with high computational power is mainstream, making obvious the challenges of power 

concerning battery based devices. Further on top the rising costs of energy and green requirements are 

further pushing demands for non battery based devices to be also power efficient. The issues regarding 

power consumption of data centers and servers are further pushing industry to innovate for low power 

devices. Figure 2.34 presented huge market shares of ASSPs/ASICs compared to FPGAs, power is one of 

the major factors behind that, as despite of the numerous benefits of FPGAs, the large silicon gap that they 

have compared to ASSPs/ASICs makes them difficult to enter in several high volume applications.  

2.3.3- Types of Programmable Hardware 
This section briefly outlines different classes of hardware that exist in industry and can come under the 

category of programmable hardware. 

1- High-end MPSoCs 
On the highest end of industry are the general purpose processors from Intel, AMD etc. They represent the 

historic computers evolution and its dominance in industry, directly and indirectly (companion markets 

which also boom because of it like memories etc.). In mid 2000s when issues of power became imminent 

the trend of Multicore was set in industry by these high end products, symbolizing the challenges of power 

consumption. Figure 2.34 presented the high market share of computers in industry. This is a very 

specialized class of products with very limited competition from other technologies. This category is 

beyond scope of discussions of this work. 

2- Heterogeneous MPSoC Platforms 
Coming one step down, another very prominent class are heterogeneous MPSoC platforms that are getting 

increasingly important in industry due to rise in low power portable devices. Micro Controller Units 

(MCUs) can also be placed in this category. The discussions will focus more on larger systems for ease of 

discussion as they cover some of the main features of MCUs also. Such devices are rich in IPs with a 

processor centric design that controls several IPs as specialized accelerators. ARM is very dominant in this 

market as the processor IP provider. Figure 2.37 shows the well known OMAP4 platform of TI which 

presents the concept; a dual core ARM processor is surrounded by numerous IPs (also DSPs) to perform 

specialized functionalities to augment the Processor. Similar competitive devices exists from vendors like 

Samsung, Qualcomm, Broadcom, Nvidia (tegra) and most recent well known A4 chip from Apple. Such 

devices are mainly targeted for mobile devices, providing a platform with high computational power at low 

power. Figure 2.34 showed mobile devices are becoming a very prominent market in industry and so is 

among a major focus of several large players (including Intel with Atom and AMD upcoming Bobcat 

processors). In such devices the main source of flexibility and differentiation for the customer is through 

the processor by software (iPhone is very prominent example of software differentiation). 

3- FPGAs 
FPGAs are most prominent devices regarding programmable hardware. They provide the huge flexibility 

to change or upgrade the design after fabrication, saving huge costs that will need to be spent if using 

ASSPs/ASICs. However as was discussed in previous sections, the large silicon gap of FPGAs prevent 
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them to enter in high end markets that are highly dominated by ASSPs and computers (the two categories 

discussed above), figure 2.38 illustrates that. 

However with Moore’s law, getting ever more logic densities and continued architectural innovations 

FPGAs are getting increasingly popular in several medium or lower volume applications where their ease 

due to flexibility provides a good tradeoff for the high cost needed to create ASICs/ASSPs on the newest 

nodes (FPGA leaders are always among the first adopters of newest node to get competitive benefits, with 

28nm devices coming soon). The newer trends of processor centric FPGAs from Xilinx shown in figure 

2.39 will further push FPGAs to enter in non conventional markets. 

 
Fig. 2.37: OMAP4 platform of TI (source: TI web) 

 
Fig. 2.38: Main markets for ASSPs (source: Xilinx web) 

 
Fig. 2.39: Xilinx 28nm Zynq-EPP devices (source: Xilinx web), {Note: source image is blurry!} 
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4- Versus (vs) FPGAs (MPPAs, Coarse-Grain, Structured ASICs etc.) 
As was discussed above, FPGAs are most prominent programmable devices but have a large silicon gap in 

terms of area, power and speed. There are several other dimensions (their market share is very small 

compared to FPGAs) to address this issue to create programmable solutions that have flexibility similar to 

FPGAs but are more silicon efficient. They can be characterized into three major categories, Massively 

Parallel Processor Arrays (MPPAs), Coarse-Grain and Structured ASICs. 

MPPAs are a relatively new type of devices consisting of an array of processors. They gained traction after 

the industry moved to Multicore due to power issues. The central theme of MPPAs is to use processor of 

relatively small size in large quantity to perform FPGA-like (non Von Neumann) computing. The efficient 

programming of these devices is still relatively complex due to parallel programming challenges, setting 

aside that issue they have easier software programming model compared to RTL programming of FPGAs 

which is much faster from compilation point of view that is getting significant in FPGAs as their densities 

have immensely increased with Moore’s law. Furthermore due to coarser grain nature they have good 

potentials to exploit features like DVFS (Dynamic Voltage and Frequency Scaling), adaptability etc. that 

are relatively complicated and difficult on FPGAs due to their inherent fine grain nature of hardware. 

Figure 2.40 on the left hand side shows an example of MPPA architecture from Tilera (tilera.com). More 

details about MPPAs can be found in [Butts08, 2.11]. 

 
Fig. 2.40: MPPAs and Coarse Grain architecture styles 

Coarse Grain architectures exist in multiple forms; it is not simple to characterize them like FPGAs and 

MPPAs. In general, the coarse grain architecture in contrast to MPPAs use smaller computational blocks, 

like ALUs, multipliers etc. to perform the computation. As the computation is block level compared to 1-

bit fine grain modal of FPGAs, the solutions are more silicon efficient. The programming of coarse grain is 

mostly compile-based (software) like MPPAs. The right hand side of figure 2.40 shows an example of 

coarse grain architecture from Mathstar (source: web) called FPOA (Field Programmable Object Array). 

Structured ASICs are a bit different class of devices; they are programmable but one time only. They are 

based on FPGA architecture where the programming of configuration is done at mask-level thereby 

significantly reducing the silicon overhead due to elimination of large amount of configuration SRAM 

cells in the device hence significantly improves the silicon gap of FPGAs from ASICs. They are offered by 

leading FPGA vendors (Xilinx EasyPath, Altera HardCopy) and also from some other companies, a 

prominent example is eASIC with their nextreme devices (easic.com). 
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2.3.4- FPGAs and vs FPGAs 
Section 2.3.3 covered in general different types of programmable hardware that exist in industry in the 

order of their market share. As this thesis work is focused on FPGAs, this section investigates in a bit more 

detail the last two types of that section to have more insight about the pros and cons of them and why 

FPGAs are so dominant. 

1- History of PLD startups 
Figure 2.41 shows a detailed history graph of several companies who entered into programmable business 

for last almost 3 decades. It also shows the business status of the companies, the throughout success of 

current top 4 FPGA vendors (Xilinx, Altera, Lattice, Actel) is prominent in it. It is interesting to observe so 

many have tried to enter into PLD business (including very big names like Intel, IBM, Samsung, Toshiba 

etc.) and failed or abandoned the business. 

2- Dominance of FPGAs: Fundamental Pros & Cons 
This section briefly addresses the fundamental dominating potentials of FPGAs from technology stand 

point (setting aside the business duopoly of the Big-2) and some fundamental cons that keep them still 

small niche compared to ASSPs. 

RTL Programming 

Since their invention in mid 1980s the fundamental target and objective of FPGAs has remained the field 

programmable capability of prototyping the ASICs. Based on that the model of programming FPGAs is 

inherently HDL. It is the foundation source of designing the ASICs, is highly mature and industry standard 

with state of the art tools support. 

Universal Nature/Prototype Power 

The strongest strength of FPGAs is that they have universal capabilities due to their prototype ability and 

HDL programming model. This is not fully true for a microprocessor in a sense that even microprocessor 

can be prototyped on FPGA and soft processors are mainstream, the inverse is quite complex (although 

theoretically possible but too slow, well known simulation vs prototype speed issues). This power helps 

FPGAs absorb complex functionalities in form of Hard Macro blocks. It can be a processor, an IP or 

anything else. Since the programming model is HDL it gives instant usability of the component without 

any burden of new standards or languages. Highly mature in-house or 3rd party synthesis tools are 

available due to standard RTL flow. 

IP eco-system leverage 

The RTL flow of FPGAs provides an added benefit to IP eco-system of the industry. It is easier to port IPs 

both for ASICs and FPGAs as both use RTL. This also holds true for FPGAs of different vendors because 

they all use RTL flow, so porting the design to another FPGA is not extremely complicated like it 

sometimes is in microprocessors where legacy code plays a high role in its success and market dominance. 

Furthermore as RTL is inherently parallel, mapped application is automatically optimally parallelized by 

CAD (Computer Aided Design) tools utilizing the best of the target hardware resources (this still is one of 

major difficulty for multicore/multicore-like solutions). 

 FPGAs have become Programmable Platform 

Moore’s law is the major driving source for all the industry and is particularly important for giant 

semiconductor companies, FPGAs success has also been highly attributed to it. Like Intel for 

microprocessors, the FPGA vendors are also always among the first adopter on new technology node and 

remain ahead in this regard to most of the remaining segments of industry, the regular nature of FPGA 
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architecture provides them added scaling edge. Both de facto FPGA giants (Xilinx and Altera) are hitting 

28nm in 2011. By continuously following Moore’s law and architectural upgrades based on changing 

market needs FPGAs have now become capable of implementing entire SoCs. In fact they have turned 

now in a complex heterogeneous mix of coarse-grain elements and classical fine grained LUTs. The term 

FPGA (Field Programmable Gate Arrays) no longer correctly justify the capabilities of modern FPGAs. 

As an example Xilinx has already started the term Programmable Platforms for its devices. 

FPGAs vs ASICs Silicon Gap 

On the down side, the high programmable and prototype capabilities come with a very high price in terms 

of Area, Power and Speed which makes FPGAs in many cases too hard to be used as a product. It was seen 

in previous section (2.1.3) that FPGAs have a gap of around 30-40X in terms of Area, 12-14X in terms of 

Power and 4-5X in Speed when compared to an ASIC [Kuon&Rose07, 4.3], a bit further can be addressed 

on  that matter now based on industrial observations for why FPGAs still forge ahead with these sheer 

gaps. It can be seen that the gaps are very high and very different for the three categories. First the biggest 

one is in area, this somehow gets slightly compensated by the fact that FPGAs are always a few 

generations ahead in Moore’s law and since they are programmable devices for large segment of clients so 

they have mass production that further helps to reduce the cost. For timing sometimes using the parallel 

nature of FPGAs some exploitation can be tried with tradeoff in Area and Power. However the critical 

aspect certainly lies in power consumption that is now considered a major challenge in ASICs and 

therefore surely becomes further prominent in FPGAs. This is the hardest challenge for FPGAs 

[FPGA06Panel, 2.9]. As the architecture of FPGAs is inherently made with huge flexibility of prototyping, 

it is relatively difficult for FPGAs to take full leverage of the advanced power management schemes used 

in latest SoCs like DVFS (Dynamic Voltage and Frequency Scaling), clock gating, GALS (Globally 

Asynchronous Locally Synchronous) etc. It is there where the vs FPGA can have an edge above FPGAs 

due to coarser grain nature and programming style that have some superior potentials to exploit the latest 

advancements in the above mentioned power management techniques. Because no matter how many Hard 

Macros FPGAs absorb in them they have to maintain their original dominating potential of prototyping and 

target a wide segment of market which makes them low cost. 

Huge Compile Time 

The high dominating potential of RTL programming makes the compile time of designs (Synthesis, 

Mapping, and Place & Route) on FPGAs much larger compared to software compilation of designs on 

processors. As FPGAs have immensely increased in logic density over time due to Moore’s law this issue 

is now getting crucial for design space exploration of large designs on FPGAs. In general also for normal 

designs, designers often find it very time consuming for design space exploration of RTL designs on 

FPGAs due to their long compile time (inevitable due to fine grain hardware) compared to 

microprocessors.  
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Fig. 2.41: History of Programmable Logic Device (PLD) startups 
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3- Survey of vs FPGAs companies 
[Williston09, 2.13] presents an industrial survey of several MPPA, coarse grain companies, the list of the 

companies and their products are shown in figure 2.42. Some companies in the list are out of business and 

survey gives commercial details about the failure of them. 

COMPANY PRODUCT 

Ambric AM2000 family-344 Processors 

Aspex Semiconductor (U.K.) Linedancer 4,096 Processors 

BrightScale BA 1024 Video Processor 

ClearSpeed Technologies Multithread 96-element array processor 

Coherent Logix, Inc. hx2100 HyperX-based DSP 

CPU Technology, Inc. Acalis7 Field-Programmable MultiCores 

Element CXI Reconfigurable Array 

Elixent/Panasonic (U.K.) D-Fabrix Array 

IMEC (Belgium) ADRES: Coarse Grain Array for VLIW's 

Intellasys Scalable Embedded Array 24 processors 

IP Flex (Japan) DAP/DNA-955 16-bit processors 

MathStar Field Programmable Object Array 

Motorola Labs Reconfig. Streaming Vector Processor 

NEC (Japan) Dynamically Reconfigurable Logic Engine 

PACT XPP Technologies XPP 3C-64 processors 

PicoChip Designs (U.K.) picoArray Massively Parallel Array 

Plurality (Israel) Hypercore Processor: 16-256 cores 

Rapport Inc. Kilocore KC-256 with 256 processors 

Recore (Netherlands) Montium Tile Processors 

Silicon Hive (Netherlands) Moustique Block Accelerators 

Stream Processors Inc. Storm-1 Family-80 32-bit ALUs 

Tabula ABAX 3PLD 

Tilera TilePro36 & 64 

Fig. 2.42: Industrial survey of MPPAs and Coarse Grain companies [2.13] 

4- Why vs FPGAs mostly failed/fail 
It is widely known that majority of the vs FPGA (also new FPGA startups) failed to succeed or found very 

limited acceptance. This section tries to briefly highlight the possible reasons based on knowledge gained 

from this thesis work and industrial expert’s opinions. The above sections discussed the fundamental pros 

and cons of FPGAs. If one try to analyze from technology stand point (setting aside the more prominent 

business realities) the fundamental pros of FPGAs have usually been the fundamental cons of vs FPGAs 

(coarse grain in particular) solutions. As most of these solutions were novel and due to obvious 

programming complexity issues had to create some new or flavored versions of standard languages (often 

C) for their compilers to take efficient use of the hardware. Such solutions can be good for research 

projects or some very specialized applications but it is virtually impossible for them to find wide spread 

acceptance in industry due to lack of standards behind them. The companies see them as a risky investment 

because almost all the source code is wasted if want to switch to another provider. Furthermore industry is 

highly IP dominant, FPGAs enjoy benefits of IPs as they are mostly RTL based. For vs FPGAs solution it 

is very hard to take benefit of that. Furthermore from software IP point of view (as vs FPGAs are mostly 

software programmable), the software is always in standard languages and furthermore the legacy code has 

a very crucial benefit in industry and is mostly behind the dominating monopoly of a processor. 

Furthermore from business point of view [2.13][2.14] have highlighted that the quality and particularly 

cost of the offered EDA tools for programmable solutions in many cases is more prominent reason of 

failure than the hardware. So the EDA tools of programmable devices have to be ideally free or very low 
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cost compared to the cost of the silicon tools (this also explains why even leading giants like Xilinx, Altera 

provide a full tools suite free or at a fraction of cost of 3
rd

 party tools for clients, making it not obligatory to 

use 3
rd

 party tools, hence ensuring that tools cost does not create an entry barrier for lower end clients). 

5- New FPGA startups, their differentiation 
This section gives a short overview of some new FPGA startup companies. It focuses on their key 

differentiation to find niche among FPGA market space which is highly dominated by the Big-2 (Xilinx, 

Altera). As was discussed above that programming has often been the reason of failing of several solutions. 

It is worth noticing among all these new startups that they all use standard RTL flow even if some have un-

conventional solution. Other noticeable thing is that TSMC is the FAB for almost all of them. That is 

making TSMC almost a de-facto fab of all the FPGAs. Actel, and Altera are well known for TSMC and 

Xilinx also has moved to TSMC HighK Metal Gate (HKMG) for its 28nm devices. 

Abound Logic (www.aboundlogic.com) 

Abound Logic (former M2000) is focused on creating low cost ultra high density FPGAs for prototyping, 

high performance computing and telecom applications. Their current proposed Raptor FPGAs [1.34] are 

built on TSMC 65nm and have logic densities in range of 750K LUTs, with numerous hard macro blocks 

of memories, DSPs, SerDes, Ethernet, PCI etc. The company is also known for providing the embedded 

FPGA FlexEOS macros a few years back when it was M2000. Their eFPGA is found in the Morpheus 

project [2.28]. According to their website it seems that they no longer support eFPGAs. Now their focus is 

fully on developing configurable logic SoCs. Some notable architectural patents are referred in [3]. 

SiliconBlue (www.siliconbluetech.com) 

SiliconBlue has a major focus on low-power FPGAs which can be used for battery-based portable devices. 

Their iCE65 FPGA devices family is built on low-power TSMC 65nm process. They have done several 

innovations in packaging and configuration mechanism to make their devices very compact, low-power 

and single chip solution for the target. Their FPGAs have very low static power. Their FPGAs compared to 

other providers are relatively small, logic cells (LUT4+FF) range from 1200 to 16000. They have 

embedded memory blocks and phase-lock loops (PLL) as hard macros. They also propose their FPGAs in 

the form of a Die for SIP (System in Package) solutions.  One of their most appreciated innovations is a 

single chip solution using embedded non-volatile XPM memory from Kilopass which loads the 

configuration to SRAMs of FPGA on power up [1.33][1.34].  

Achronix (www.achronix.com) 

Achronix is the first FPGA to be commercially launched which is different from conventional 

architectures. They have developed Asynchronous FPGAs. This allows very high speed operations. 

According to the company they claim to deliver world’s fastest FPGAs with frequencies up to 1.5GHz. 

Their Speedster family of FPGAs is fabricated on TSMC 65nm process [1.36]. Their logic densities go up 

to 164K LUTs. In addition they have hard blocks of memory, multipliers, SerDes, PLLs and memory 

controllers. Their CAD tools suite ACE (Achronix CAD Environment) provides a seamless classical RTL 

tools flow for the programmer by hiding all the effects of Asynchronous FPGA hardware. Their target 

market segments are networking, telecommunication, DSP, high performance computing, military and 

aerospace etc. The company has got special attention of industry in 2010 when they announced partnership 

with Intel to make 22nm FPGAs on Intel process [1.37], that is exceptional as Intel is well known in 

industry to never/rarely share its process technology. Some notable architectural patents are referred in [3]. 
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Tabula (www.tabula.com) 

Tabula’s technology can be considered as a masterpiece of dynamic reconfiguration. The device is not 

physically 3D in manufacturing; they call the time as 3
rd

 axes. By this advantage their ABAX 3PLD 

devices fabricated on 40nm TSMC [1.39] process when compared to an equivalent classical 2D FPGA 

have gains of around 2.5X in logic density, 2.0X in Memory and 3.7X in DSP performance. More 

importantly as stated before, despite of the architecture which is completely un-natural physically, the 

programming model according to the company is purely standard RTL based. Their 3D Spacetime 

Compiler makes this possible. Some notable architectural patents are referred in [3]. 

Tier Logic with 3D FPGAs (Company has Folded) 

Tier Logic (in July 2010 the company has closed business and www.tierlogic.com is no more available!) 

actually fabricated a 3D device. Their groundbreaking innovation was that they completely removed the 

configuration SRAM cells from the silicon and implemented them on top of the metal layers using Thin 

Film Transistor (TFT) technology from TOSHIBA. This allows almost doubling the logic density of the 

FPGA fabric as the millions of SRAM configuration cells are no longer there. This also helps in increased 

performance and power saving. The major benefit they proposed lied in the fact that the configuration is on 

the top of device, it is therefore very easy to transform the device to an ASIC (Structured ASIC concept) 

by just removing the SRAM layer and replacing it with programming the metal layer while keeping same 

timing [EETimes10, 2.45]. Some notable architectural patents are referred in [3]. 

6- New Trends among top FPGA vendors 
FPGAs vendors have continuously kept evolving their devices based on market needs and competitor 

solutions potentials. Some notable new trends among top vendors can be characterized as follows. 

Hard Processor: Although the concept is not new but FPGA vendors are particularly focusing on this 

direction, not just for putting a hard block of processor but to take the leverage of its legacy code 

dominance and rich IP-ecosystem. The newest solutions of Xilinx (28nm EPP Zynq-7000 series devices) 

and Actel (SmartFusion) devices were discussed in section 2.13. Having a Hard ARM processor inside the 

FPGA brings the processor dominance of ARM in embedded systems and its rich IP-ecosystem around 

AMBA [Xilinx10_Lysaght, 2.5]. Furthermore the hard processor (regarding huge FPGAs vs ASICs gap) is 

lot more silicon efficient compared to equivalent soft implementation of it. Altera is also following similar 

dimensions [Altera, 1.27] [EEtimes10, 2.49][EEtimes10, 2.50]. 

Interest in ESL: It was discussed above in the fundamental pros and cons of the FPGAs that compile time 

is getting significant in FPGAs due to the RTL flow. It has also been often felt that the RTL design flow of 

FPGAs present an added knowledge challenge for software designers who are more acquainted with 

C/C++. Furthermore in most cases design and verification of RTL is much longer and complicated 

compared to software. FPGA vendors are specifically focusing on the potentials of ESL to bridge this gap. 

Although it does not solve any compile time issue, but gives a step of ease for the designers to program 

their designs on FPGAs like software. The ESL tools allow a medium with full backend support to write 

the applications in more familiar and easier ANSI C/C++ and the tools automatically transform them into 

RTL that is then mapped on FPGAs with classical tools, making RTL code in principle like assembly 

language. With advancement of ESL tools rich in capabilities ESL is a prominent future direction among 

FPGA vendors [Xilinx10_Lysaght, 2.5] and they are significantly investing in this direction [2.51]. 

3D Stacking: To further improve Moore’s law benefits beyond two-dimensional scaling, the die-stacking 

is getting common in industry. Xilinx 28nm devices use specialized form of die-stacking to build larger 

and heterogeneous devices with better yield control [Xilinx, 1.9][Xilinx, 1.10]. 
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2.3.5- Industry is heading for Platform Collision 
The above sections covered different types of programmable hardware. Many of them are competitive and 

getting more and more competitive to each other. This section will try to analyze this issue from future 

collisions perspective in the light of pros and cons of those solutions and what role eFPGAs can/will play 

in that scenario. 

1- Cloudy Future 
Previous sections covered several solutions that exist in industry (along with their market share) that can be 

treated as programmable hardware. Setting aside the high-end PC market that is a very specialized and 

huge portion of industry one can categorize three main dimensions/waves of solutions that are heading for 

collision for competitiveness, they are shown in figure 2.43. This section tries to analyze from technology 

stand point, they are miles apart in current market share (as we seen above) and that influence in many 

cases overrides technology in industry. It will observe, what are their dominating benefits vs each other. 

FPGAs continue to go more and more heterogeneous to increase the competitive value compared to 

ASICs/ASSPs in several cases, they are transforming into programmable SoCs. The new trends of adding 

hard processors will further strengthen the move towards that direction. They will continue to increase in 

dominance by having range of customized products targeted for specialized domains. However it is 

relatively difficult for FPGAs to create customized solutions for every possibility. Their strength is largely 

in the horizontal business model which makes the devices low cost due to mass production of a narrow 

range of products. 

The ASSPs (including MCUs) are becoming programmable platforms, they represent in principle opposite 

side of FPGAs spectrum. FPGAs are continuously getting heterogeneous to reduce the expensive fine grain 

tradeoff for differentiation functions only making them more and more competitive to ASICs/ASSPs with 

the power of inherent flexibility of FPGAs. ASSPs/ASICs are already built up with exactly the things that 

are needed, what they lack is a limited flexibility for differentiation. Processor with flexibility of software 

at present is central source of flexibility. In addition the trends for using programmable or configurable IPs 

are also prominent among them in various forms for some limited flexibility, for instance small portions of 

high density non-volatile memories IPs, specialized processors IPs, coarse grain like solutions IPs. 

eFPGAs clearly seem to be an interesting ingredient for future to compete with the inverse scenario of 

FPGAs.  

Third is the emerging wave of primarily vs FPGA solutions. Currently their biggest challenge to create a 

significant competitive threat is the parallel programming crisis. This wave is further complicated by 

several similar competitive solutions within itself. A broad distinction can be made as MPPAs and coarse 

grain. They have some similar challenges; most prominent of them is programming crisis. However in this 

regard they slightly differ. Coarse grain historically suffered additionally because their problem to go 

forward was in most cases just their own problem of having good compilers and some language extensions 

to make them efficiently usable. On the other hand MPPAs are facing the challenge of parallel 

programming which is an industry wide challenge now as industry has moved to multicore era. This 

phenomenon can give an added benefit to them over coarse grain whose parallel programming crisis is 

similar but not same (coarse grain generally do not use processors for computing). Will coarse grain also 

get an indirect benefit of the efforts of parallel programming; it is difficult to say with certainty. But as the 

biggest force and undisputed king who is driving the industry at present is power consumption. In that 

regard potentials of efficient computing style of coarse grain cannot be neglected. MPPAs are very stylish 

and attractive to reconfigurable research community but the central processing component is the same old 

friend von Neumann machine which is famously known to be inefficient computing device [Hartenstein, 

4.64-to-4.72]. eFPGAs are also highly attractive for MPPA like machines to bring the usual marriage of 

HW/SW co-design. 
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What seems highly visible is that industry is heading for platform collision with several players with 

different kind of solutions heading for same or similar markets (GPGPUs are also getting traction for 

several non-conventional solutions). Industry experts are already seeing this collision course ahead 

[EEtimes10, 2.17]. Who will win, loose, soon fighting survival battle is clearly difficult to understand and 

foresee. What is certain is that ―One Ring will rule them all, and that is power consumption‖ [S-3b]. 

 
Fig. 2.43: Industry is heading towards Platform Collision [S-3b] 

2- Is eFPGA a missing IP 
The above discussions observed that eFPGAs clearly present great opportunities in several markets. It 

seems clearly a missing ingredient in the industry [S-1]. However then usual question mentioned before 

again rises, eFPGAs never succeeded in industry is well known. This clearly raised the motivation that 

―should we learn from past or run from past‖. Sometimes things change with time and sometimes things 

fail just because time was not right. Around 10 years ago FPGAs were not as prominent as they are now, 

the challenges of power and market pressures were not like they are now. Around 10 years ago Altera 

made Excalibur devices with Hard ARM processor, which was an industrial flop, and Altera abandoned 

Hard Processors for a decade (now planning again for 28nm devices [Altera, 1.27]). Similar thing was 

done/announced in 2010 (although Xilinx had Power PC for years, but the nature of new move is different) 

when two leading FPGA vendors announced devices with Hard ARM processor and entire industry is 

wowing at it to be the great innovation and need of the time. Intel Stellarton [Intel, 2.48] [EEtimes10, 2.49] 

(Atom + Altera FPGA system in package) is another prominent example of growing importance of 

FPGAs/embedded FPGAs in industry in context of scenarios discussed in figure 2.43. 

There is a need to find ways, how to remove the barriers that kept eFPGAs difficult to succeed in past, this 

thesis work has tried to address some. 
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2.4 Summary 
This chapter covered in detail the contribution R of this thesis work including the research motivation 

explorations for B and G (chapter 1), with discussions divided in three distinct sections that can 

thematically be divided into two parts. The first part (section 2.1 and 2.2) investigated in detail the research 

done in industry and academics regarding FPGAs and eFPGAs and second part (section 2.3) addressed in 

detail the major findings of industrial analysis to get a global picture of all the technologies, their status 

and potentials and trends in industry. The main findings and motivations they provide for research 

directions for this thesis work are described below. 

General Findings 

Section 2.1 investigated in detail the architecture fundamentals of FPGAs, observed the advances in state 

of the art solutions and academic research to find research challenges of FPGA architecture. It found 

importance of FPGA CAD for FPGA architectural research. It also investigated some beyond classics 

research efforts on/under way to address some architectural challenges of FPGAs. 

Section 2.2 analyzed the present and past solutions in industry in the direction of eFPGAs. It investigated 

research efforts by academics in classical FPGA-like eFPGAs and some different forms of programmable 

solutions (coarse grain etc.). 

Section 2.3 detailed the general industrial survey findings to see the global picture of the issues, find out 

pros and cons of different programmable technologies and what their status in industry is. It investigated 

the fundamental advantages of FPGAs compared to competing solutions which give them edge over them 

to find potentials of classical FPGA–like eFPGAs. It observed the changing trends in industry and the 

collision course it is heading towards to see if/can eFPGAs fit in that scenario. 

Conclusions for the thesis 

Following are the prominent points learned from this chapter for the thesis regarding research work 

motivations and challenges for eFPGAs. 

 Standards play a very important role in industry. The research work must focus on the importance of 

that issue e.g. regarding tools, programming, architectural implementation and integration etc. 

 Power consumption has become a critical and challenging issue throughout industry 

 eFPGA with a classical FPGA-like architecture is advantageous. It helps to leverage the dominant 

points of FPGAs (RTL flow, IP eco-system benefits, high flexibility etc.) 

 eFPGA should be highly customizable and flexible enough to target several technologies 

instantly/easily (avoid having strictly fab/node dependent full custom solution) 

 eFPGA must be efficient in architecture, small and highly customized (silicon gap challenge) for target 

demands to prove a good value proposition for SoCs 

 User friendly infrastructure should be created to facilitate creation of customized eFPGAs with full 

software support to program them (adaptable CAD) 

 Investigate potentials and challenges of eFPGAs in systems to understand their value proposition 

 Investigate new/beyond  classics technologies/methods that can enhance the potentials of eFPGAs 

The next chapters address these general motivations. Chapter 3 presents the tools infrastructure which 

facilitates to create and explore customized eFPGAs. Chapter 4 will address in detail the architectural 

explorations and innovations for eFPGAs based on the knowledge gained from research survey of this 

chapter. Chapter 5 will discuss the efforts for eFPGAs in systems. It will also describe some beyond 

classics technologies perspectives to enhance the classical properties of eFPGAs. 
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Chapter 3: CAD Infrastructure of 

eFPGA 
 

The research of FPGA architecture is virtually impossible without the CAD 

tools infrastructure for creating, exploring, programming and validating 

different architectures to find better architectures as was discussed in 

chapter 2. Since this work is targeted for embedded FPGAs (eFPGA) it is 

essential to have the entire FPGA CAD infrastructure (as eFPGA has 

FPGA-like classical architecture) to program them. Furthermore due to being eFPGA brings additional 

challenge and opportunities to create customized eFPGAs targeted to specific needs. This objective in 

general is similar to all FPGA vendors but is particularly more crucial for eFPGAs as the target market 

segment can/may be narrower compared to FPGAs which even if are domain specific are targeted for a 

relatively wider range of applications in that domain to keep their benefits of horizontal model which 

makes them low cost with mass production (chapter 2). With eFPGAs it is possible to further fine tune the 

architecture based on end market/client needs to have better silicon tradeoff due to adding eFPGAs. So 

other than the programming tools it is important to have powerful user-friendly infrastructure to facilitate 

creation of efficient eFPGAs and programming tools to adapt to any architectural changes and 

customizations done. 

This chapter primarily is an overview chapter for the thesis work describing the CAD tools infrastructure 

of eFPGAs. This thesis work is more focused on hardware, and programming tools are not the main 

contribution of this thesis work as was described in chapter 2, this work contributed in the motivation of 

the adaptable nature of programming tools and use them for architectural exploration and indicating rooms 

of new innovations for programming tools to address architectural enhancements (the usual FPGA co 

hardware-software challenges). Section 3.1 provides the basics of eFPGA architecture explored in this 

thesis work, knowing them are essential for discussions of this and next chapters. Section 3.2 explains the 

adaptable eFPGA programming tools suite of Menta (eFPGA Programmer), which provides standard RTL 

flow for programming the eFPGAs. Finally section 3.3 describes in detail the infrastructure of graphical 

tools suite (eFPGA Creator), which facilitates to create and explore eFPGAs. The key contributions of 

thesis work are outlined below, deeper details about the tools, how they are made and work are proprietary 

of Menta and are beyond the scope of discussions. 

Contributions of thesis work: eFPGA Creator is a large infrastructure with several set of tools and 

components. The whole tools suite is not the direct contribution of this thesis work; however a brief 

overview of the whole tools suite is presented to facilitate the ease of discussions. The thesis work is 

heterogeneously involved in several aspects/design of the tools/sub portions which cannot be easily 

separated and explained. The prominent and coarser gained contributions of this thesis which are either 

direct contribution or a base contribution (upgraded by Menta) can be categorized as. 

 General motivations for tools, flows, potentials of eFPGAs and how to exploit them [S-1][S-7] 

 Architectural exploration infrastructure in Library and Architecture managers, component based 

design philosophy and its benefits/challenges/potentials 

 Hardware generator (automatic VHDL and basic scripts for implementation on target technology) 

 Foundation of analyzer system and its tools to facilitate and accelerate research/exploration [S-9] 

 Industrial overview and potentials/challenges (technical and commercial) of eFPGA Creator for 

industry [S-6] 
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3.1 Architecture Fundamentals of eFPGA 
This section provides basic fundamentals of eFPGA architecture that is investigated in this work. Although 

this chapter is primarily focused on CAD infrastructure (next chapter is dedicated for architectural 

research) explaining the basic fundamentals here facilitates the discussions of this and the next chapter 

where they will be addressed in detail. 

3.1.1 Island style uni-directional routing Architecture 
Figure 3.1 shows fundamental diagram of eFPGA (homogeneous in this case) architecture. It can be 

clearly seen it is classical island-style architecture. As was stated in chapter 2 the commercial names of 

components vary among all the companies but fundamentals remain almost the same. For the case of 

eFPGA it can be observed that eLB (will be discuss in next section) represents the logic block or CLB of 

scientific literature. An important point to note is that eLB is directly connected to the SB, compared to the 

connection box approach of which is common in other literatures, as was observed in chapter 2 (shown in 

more detail in figure 3.3 for illustration); the switch block performs all the switching (in principle it is 

similar as was discussed in chapter 2). The eFPGA has unidirectional routing architecture achieved 

through multiplexers. Furthermore eFPGA is pure soft (written in VHDL) and technology independent. 

There are no pass-transistors, tri-state buffers, SRAM cells etc. The routing and configuration architecture 

is built up with standard multiplexers and Latch/FF of standard cells library of the target node to which the 

RTL of eFPGA is ported hence giving technology independence of soft eFPGA.  

Key Motivations to select this style 

Motivations like island-style, uni-directional routing etc. are well known for FPGA researchers as was 

discussed in chapter 2. Following are some of the additional key motivations to investigate eFPGA 

architecture in this direction (figure 3.2). Chapter 4 will address these points in more detail. 

 Soft eFPGA target: Since the motivation is to create soft eFPGA (technology independent, easy 

integration in SoC with silicon tool flows) with multiplexers based switching, this type of architectural 

configuration provided a relative ease of design compared to classical architectures (figure 3.3) which 

are primarily based for transistor based full custom designs 

 Uni-directional routing: The uni-directional routing architecture as was observed in chapter 2 (figure 

2.1) already merges the output CB with SB for creating single driver architecture 

 No Local Interconnect: The eLB is directly connected to SB, The input for every BLE (classical 

LUT+FF element) comes from SB and their outputs go to SB (feed-backs are done through SB as 

shown in figure 3.2). The conventional local interconnect (LI) depicted in figure 3.3 inside the logic 

block while provides the superior benefits for routing by providing the logic equivalence for the inputs 

and outputs of logic block (LB) as was discussed in chapter 2 (figure 2.26), is highly penalizing in 

terms of area, its depopulation or complete elimination is a strong research area of FPGA architecture 

research (see patents appendix A1 for details of state of the art in this area) 

 Relatively new what-if research contribution: The classical island-style architecture for figure 3.3 is 

well addressed and explored. This partially new type of architecture is also good for research 

contribution by providing some new what-if investigations results 

 Unified SB (no CB): The unified SB with CB (input and output) merged in it also provides a research 

ease by focusing entirely on SB as it performs all the switching and joint optimization potentials can 

be investigated (chapter 4 will address it in detail) 

 Easier Tile/Component handling: Having an architecture of the form of figure 3.2 reduces the amount 

of components to build a tile and managing them (this point will get explained in eFPGA Creator 

discussions in later sections) 
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Fig. 3.1: Fundamentals of eFPGA Architecture 

 

 
Fig. 3.2: Details of eFPGA architecture fundamentals 

 

 
Fig. 3.3: Fundamentals of a classical Mesh architecture ([Betz&Rose99, 4.1]) for comparison 
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General Architecture Parameters 

Following are some fundamental architecture parameters of eFPGA in relation with figure 3.2. They will 

be explored in detail in chapter 4. 

LUT size: The size of LUT inside the BLEs. It is often represented by K in literature; this thesis will use 

the same for consistency. 

Cluster size: Number of BLEs inside eLB (logic block). Often represented as N, same will be used here 

Channel width: The size/width of routing tracks; It is often represented as W, same will be used here, in 

addition since the architecture is unidirectional. For this work another variable U is used for experiments in 

this thesis, which is W/2 (the thesis use equal number of input and output tracks in exploration)  

SB parameters: The SB (in connection with CB) has multiple architecture parameters in scientific 

literature to characterize the property of architecture [Betz&Rose99, 4.1]. Some key elements are 

highlighted in figure 3.2 and 3.3 for instance: Fc,in (number of routing tracks LB input pin connects to), 

Fc,out (number of routing tracks LB output pin connects to), Fs (flexibility of routing tracks in SB for 

switching) etc. Chapter 4 will address them in more detail in advanced discussions and explorations. 

3.1.2 Building Blocks of eFPGA 
Figure 3.4 illustrates conceptual overview of the five building blocks of eFPGA Core architecture 

interconnected by the routing architecture trough the unified fundamental block SB (not shown for 

simplicity) which was discussed in previous section, and connected to the outside world by I/Os units. The 

well known benefits of island-style architecture are visible in it. Since eFPGA is an IP this gives an added 

opportunity compared to device FPGAs to decide the quantity, parameters and position of these blocks 

based on target needs. While explorations with only homogeneous eFPGAs are discussed in this work 

(chapter 4), the tools and work done by the thesis is already done to adapt to these heterogeneity of 

building blocks to build heterogeneous customized eFPGAs in future research.  A brief description of the 

five building blocks is described below to give an overview of their motivation and purpose. 

 
Fig. 3.4: Building blocks of eFPGA Architecture 

eLB (embedded Logic Block): The eLB is the foundation building block of eFPGA Core that provides the 

foundation fine grain flexibility. It is the classical logic block component of an FPGA. The parameters of 

elB (LUT size, cluster size etc.) are customizable. Chapter 4 will address it in detail. 

eMB (embedded Memory Block): The eMB is the embedded SRAM memory blocks to provide the hard 

memory blocks. The quantity (number of eMB blocks), position (in middle, corner etc.) and properties 
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(single/dual port, data width, size) can be customized based on target needs. eMB are target node 

dependent due to obvious reasons. The Fabs (including 3
rd

 party companies) provide several options for 

these blocks and their standard cell libraries to be easily integrated with standard RTL flow. 

eAB (embedded Arithmetic Block): The eAB is the basic arithmetic block. It can be a simple ALU, 

multiplier, DSP etc. Like eMB their properties, quantity and position can be customized based on target 

needs. 

ePB (embedded Processor Block): The ePB provides the benefit of having a small microprocessor in the 

eFPGA Core. Although a soft implementation of processor can be done using eFPGA programming 

resources, the value proposition is much higher for putting a hard processor block (particularly from a 3
rd

 

party, that is often the case) to have the silicon tradeoff benefits as putting a soft processor on a soft 

eFPGA will/can be expensive. 

eCB (embedded Custom Block): The eCB is most distinguishing block of eFPGA Core. Since eFPGA is 

an IP it brings the opportunity compared to device FPGAs to put some dedicated customized blocks based 

on target needs to have benefits of bridging the usual heavy silicon gap of programmable solutions 

compared to hardwired implementation. eCB can be components like complete cryptographic cores, PLLs, 

SerDes, Memory controllers, I/O controllers etc. Like ePB, eCB can be from 3
rd

 party or SoC vendor 

integrating eFPGA. The infrastructure of eFPGA tools facilitates to integrate these blocks in eFPGA 

architecture.  

3.1.3 eFPGA Core 
As was discussed above, the architecture of eFPGA is highly customizable and target independent due to 

soft nature of eFPGA (written in VHDL), based on that there are two main possibilities of eFPGA Core. 

The pure soft version (this thesis work is focused on that) which can be ported to any process or the custom 

implementation (layout) of the logical design of soft version. They are briefly described below. 

eFPGA Core-S (Synthesizable): The pure synthesizable version gives the highest flexibility for 

implementation due to target independence. Written in VHDL it allows immediate portability to any 

process node or fab. This feature alone has its own technical and commercial benefit. Chapter 2.2 

discussed some past approaches where the provided eFPGA was on a specific process node, creating like 

that leads to higher silicon efficiency compared to soft approach. But it restricts the user to a specific node 

or fab which may or may not be easy or feasible in many cases for the SoC vendor to switch his entire 

design to another process just to add a programmable IP. Having a soft eFPGA removes these barriers. 

Furthermore since eFPGA is highly customizable and of small sizes, in many cases the silicon tradeoff 

with hard implementation can be balanced with the benefits which come due to soft implementation. 

eFPGA Core-H (Hard): The hard implementation of eFPGA transforms the soft version to a specific 

node with custom design (layout) to highly increase the silicon efficiency. This option is ideal for mass 

production where the ROI (Return On Investment) justifies creating an optimal silicon implementation. 

Hence the concept of soft and/or hard eFPGA helps to bridge some of the past barriers for eFPGAs to be 

used in SoCs to provide the obvious benefits (Chapter 5 will further address them). 

3.2 eFPGA Programmer™: eFPGA Programming tools suite 
Figure 3.5 shows the flow of eFPGA Programmer tools suite which provides the standard RTL flow for 

programming the eFPGA. eFPGA Programmer is built keeping both technical and commercial 

considerations in perspective. It was observed in chapter 2 that programming tools of the programmable 

solutions have a deep impact on the success of a solution and the programmable solution providers must 

have low cost (ideally free) and good quality tools for their products. eFPGA Programmer is built on same 

philosophy, with taking further benefit of using 3
rd

 party Synthesis tool  instead of creating one due to 
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being eFPGA! (it will be integrated in a SoC so high quality 3
rd

 party Silicon tools will already be 

available) hence focusing more on back-end. 

eFPGA Programmer itself is not a contribution of this thesis, it was built by CAD team of Menta in close 

contact with thesis work which extensively use this tool for applications mappings and architectural 

explorations (chapter 4). An overview of the tool is presented to facilitate discussions. Below brief 

explanation of front-end and back-end of eFPGA Programmer is presented. Deeper details are beyond 

scope of this work. 

3.2.1 Front-end 
The front-end of the tool uses Synopsys Design Compiler (DC) for synthesis. It is not the part of eFPGA 

Programmer from licensing point of view. However for the reasons discussed above this does not cause 

any problem (license cost burden on clients issue discussed in chapter 2) as eFPGA is not a device but is 

integrated inside a SoC and the high-end de-facto silicon tools will already be available and can be easily 

used at the front end of eFPGA programmer, providing the strong VHDL/Verilog or mixed design entry 

ease. The synthesizer maps the design on the generic technology library of Menta (MGTECH) and the 

RTL netlist is forwarded to backend (eFPGA Programmer) which performs all the conventional FPGA 

CAD flow for mapping the design on eFPGA. 

3.2.2 Back-end 
The back-end of eFPGA programmers has familiar FPGA design flow. The mapping portion of the tools 

suite is based on enhanced ABC tools from Berkeley University [4.83][Brayton&Mishchenko, 4.86] which 

performs further logic optimization and LUT mapping of the synthesized netlist and pass on to proprietary 

clustering, placement & routing (PAR) tools. The architecture files provide all the information to perform 

these steps. The tools are highly adaptable to architecture changes and customization through the 

architecture files which are generated by eFPGA Creator (details in next section) hence providing instant 

programming tools (adaptable CAD) support for created eFPGA. 

 
Fig. 3.5: eFPGA Programmer Flow 
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3.3 eFPGA Creator™: eFPGA Creation GUI tools suite 
This section presents an overview of the eFPGA Creator tools suite which facilitates creation and 

exploration of customized eFPGAs. It first describes the general motivations and global overview of the 

tools suite. Then later sections explain the major components of tools suite. 

3.3.1 Motivations & General Overview 
This section provides general motivations and overview of eFPGA Creator tools suite. It first describes the 

motivations behind creating these tools, what were some of the inspiration sources and a brief overview of 

the tool which will be discussed in more details in the rest of this chapter. 

1- Two objectives: Creation of eFPGA, Exploration of eFPGA 
The discussions in this thesis have frequently used the term customized eFPGAs, efficient eFPGAs in the 

text until now. What is a customized eFPGA? The general guess that comes in mind is architectural 

customization i.e. changing LUT size, cluster size, channel width, I/Os, dimensions of array etc. based on 

target needs. Indeed it is true and a major goal of eFPGA Creator is that same foundation areas but they are 

not the only one!. The philosophy of eFPGA Creator is closely tied with the philosophy of soft eFPGA. 

This makes eFPGA Creator in some aspects similar and in some aspects different than other works e.g. 

VPR, which is more focused on exploring hard FPGAs with custom layouts that is common in all 

commercial device FPGAs, but at same time significant part of VPR’s architectural exploration applies to 

all FPGA/eFPGA implementation independent architectural explorations. 

There are two fundamental objectives of eFPGA Creator that are both tightly interlinked yet distinguished 

from each other. This point is important to note as it is slightly complex.   The first objective is to create 

efficient customized eFPGAs based on the available set of library of the available components of eFPGA 

Core which are pre-designed, pre-verified and in some cases even silicon validated by test chips. [S-6] 

addressed this philosophy in commercial perspective; it will be discussed in more detail in next sections. 

The second objective is the architectural exploration part which helps to create these comprehensive 

libraries which are collection of several best cases and types which can either directly be suitable for target 

eFPGA or a good start point to narrow down the design space exploration direction. Having these things in 

mind it can be easily understand how closely these two things will be linked with each other yet different 

from each other particularly from a commercial stand point. These things will get further elaborated in 

later sections when the flow and main blocks of eFPGA Creator will be explained. 

Based on these objectives the next biggest questions are how to make this entire infrastructure, what 

similar examples exist in industry or academics and are there graphical tools which facilitate creation of 

user friendly tools. These points are briefly discussed below. 

2- Inspiration from VPR: ease of “what-if” experiments 
The VPR tools [Betz&Rose99, 4.1] are the most inspiring and de-facto in FPGA architecture research 

community. The major benefit and motivation behind these tools is to facilitate the task of an FPGA 

architect to explore wide range of ―what-if‖ architectural exploration by specifying the architecture 

parameters at a higher level [Betz&Rose00, 4.11]. With the description of some key parameters in 

architecture file, VPR creates the architecture with automatically resolving problems in the generated 

architecture if some conflict or bad choice arise due to unspecified architecture parameters [Betz&Rose00, 

4.11] (as only key parameters are specified in architecture file), hence creating an architecture ready to be 

experimented by implementing benchmark applications. The VPR technology was acquired by Altera in 

2000 [1.24] and is foundation of their proprietary FPGA Modeling Toolkit (FMT) which enhanced VPR to 

deal with state of art FPGAs complexity with first successful use to design Stratix™ architecture 

[Altera_Lewis05, 1.22]. 
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The ―what-if‖ experiments ease and the corresponding adaptable CAD provided nice inspiration for 

eFPGA Programmer and eFPGA Creator, doing similar thing but in a bit different way with partially 

similar and partially different objectives. It will be discussed in more detail in later sections. 

3- Inspiration for GUI based tools: added user friendliness dimension 
Graphical User Interface (GUI) other than the obvious aesthetics provides great help and boost in 

productivity of several problems. While conducting a research work it is often desired by researchers to 

have some graphical tools to facilitate and accelerate their research work. However it is like industrial ROI 

(Return On Investment) form of scenario. There is a tradeoff related with such approaches to judge the 

amount of time spent on creating them compared to benefits in return. Over the years the tools to help 

create GUIs have greatly evolved and have reached a state that it is becoming easier for researchers to 

quickly create fine GUIs with complex features to aide in their experiments. As this thesis work is 

industrial so the inherent commercial scenario related with GUI based tools provided further need and 

motivation to create GUI based infrastructure. When one considers about GUIs, two prominent names 

come in mind that are in wide spread use and need no introduction, Eclipse (www.eclipse.org) and Qt 

(qt.nokia.com). Qt was selected as it better served objectives and needs, furthermore its C++ programming 

model further helped to work and integrate with it. Next sections will present the tools suite and it will be 

seen how facilitated the flows and tools are due to GUI, serving the two objectives of eFPGA Creator 

(Creation and Exploration of eFPGAs). 

4- Global Overview of the tools suite 
Figure 3.6 presents theme diagram of eFPGA Creator, providing the global overview of the tools suite with 

its two objectives/flows discussed above. To better explain the flows and how they differ, it is essential to 

get basic idea of building elements of eFPGA Creator which are briefly described below and are explained 

in detail in next sections. 

 
Fig. 3.6: eFPGA Creator Tools suite global overview 
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Library Manager 

The library manager is like a central database of all the components that can be used for creating or 

exploring eFPGA. It is composed of components like eLBs, SBs etc. with different architectural 

parameters (like LUT size, cluster size, channel sizes, SB topologies etc.). It can be considered like a kind 

of standard cell library of eFPGA components with which the eFPGA Core is built. Section 3.3.2 will 

discuss it in detail. 

Architecture Manager 

Architecture manager builds the architecture of eFPGA Core using components from the library of library 

manager. It can be considered as a database of architectures. It creates the hardware of the core for silicon 

implementation and corresponding architecture description files for eFPGA CAD tools (eFPGA 

Programmer) for implementing applications. Section 3.3.3 will discuss it in detail. 

HDL generator (Silicon Manager) 

The HDL generator creates VHDL files, front-end and back-end scripts for implementing the eFPGA RTL 

on a selected process. HDL Generator is presented as a separate entity in theme figure for ease of 

discussion and illustration. All these tools and managers are highly interlinked in terms of design and 

working which will be illustrated in later sections. 

eFPGA Programmer 

eFPGA Programmer is the programming tools suite of eFPGA and was discussed it in detail in previous 

section. It maps the benchmark applications on the target eFPGA. The corresponding architecture files 

(including silicon information) provide all the architectural and timing information needed to map 

applications on the created architecture. 

Analyzer 

The analyzer tools help to facilitate analysis of benchmark applications on the target architecture. This 

provides a decision stand point if the architecture specifications are meeting the requirements and if not 

what will be the better tuning direction to optimize the architecture (architecture parameters, architecture 

heterogeneity, silicon implementation etc.). Section 3.3.4 will discuss it in detail. 

eFPGA Creation & eFPGA Exploration 

With the basic understanding of the basic blocks in figure 3.6 described above, the theme of two objectives 

(can be considered as two modes/phases of eFPGA Creator) can now be explained with the help of figure 

3.6 and can be seen how closely these two aspects are interlinked yet somehow distinct. 

During Exploration more emphasis is put on exploring new concepts and better architecture components 

(this part is much similar like FPGA architecture research) in this case relatively moderate stress is put on 

silicon implementation as main objective is to analyze new architecture concepts and get an approximate 

idea about their silicon properties (area, power, speed etc.) to judge the benefits that can be achieved with 

those architecture innovations. The objective is to create efficient components database for the library. 

During Creation the eFPGA creator creates an eFPGA architecture using the available components in the 

library manager which are pre-analyzed and in ideal case can even be silicon proven (test chip etc.). In this 

phase the emphasis is not on exploring architectural innovations of components (like changing properties 

of logic blocks, routing architectures etc.). The core is created/re-created using the available components in 

the library to match the target requirements (the process is facilitated by the analyzer), more stress is put on 
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silicon implementation in addition to the built-in help of eFPGA Creator, to build more optimal solution in 

a product scenario.  

It can now easily be seen how interlinked these two phases are and in reality a mix of both is/can be used 

which is illustrated in the figure by interlink of the managers in two phases. Next sections will further 

illustrate that. At present eFPGA Creator has relatively stronger focus on Creation compared to 

Exploration. However Exploration part although being in continuous evolution and development is already 

built up to a level that it continues fueling innovation for creating new ideas and improvements to Create  

efficient eFPGAs. Chapter 4.2 will address the detailed experimented conducted using these tools. 

3.3.2 Library Manager (eFPGA components creation) 
The library manager provides an infrastructure to create a central database of building components/blocks 

of eFPGA architecture. It can be considered like a kind of standard cell library of eFPGA components with 

which different eFPGA Cores can be built. The tool consists of several sub tools which facilitate creation 

of customized components and their silicon implementation. A brief description of the flow is explained 

below and then the major components of the flow are discussed in more detail with snapshots of some of 

the portions to provide a feeling about the tools. 

Figure 3.7 describes the global overview of the flow of library manager. It starts with the GUI editors 

which can create a new or edit an existing component in the library. The customization of components in 

particular SB-eLB (Tile) is done with user friendly GUIs giving the power to create different kind of 

―what-if‖ customizations to experiment the behavior. The created or edited component is stored in the 

library which makes it available for architecture creation or exploration. In addition to that the library 

manager has also built-in tools to generate VHDL of the designed component (Tile) along with all the 

silicon scripts for a selected process (In experiments presented in this work 65nm ST process is used) 

making it very easy for the researcher or hardware designer to quickly implement the component on silicon 

on any desired process node in almost push-button user friendly way. The silicon manager keeps track for 

the library about status of silicon implementations of the components. With this entire flow one gets not 

only a database of customized components but also their silicon implementation which is very helpful in 

architecture exploration or creation as it provides a pre-knowledge about the silicon properties of these 

components (like area, power, timing, configuration size etc.) to make architectural decisions. Chapter 4 

will present several experiments using these tools. 

 
Fig. 3.7: Library Manager flow/overview 



- 77 - 

 

1- GUI Wizards & Editors 
Figure 3.8 shows snapshot of the main library tree window (also visible in figure 3.9). It can be seen that 

the library contains several components (Tiles) with different characteristics. It can also be noticed there 

are two libraries in the library manager, in this case CTY_Phase1_Part1_wiz and CTY_Phase1_Part2 

respectively. There is no limit of the size or number of libraries for the library manager. Having multiple 

libraries provides the obvious benefits of categorizing components for ease of use and management, e.g. 

one library can have components more suited for higher speed and one for higher density etc. Figure 3.9 

illustrates some portions of the component creation/edition GUIs. The current infrastructure provides VPR 

like ―what-if‖ architectural experiments ease infrastructure at a graphical level which in some aspects is 

stronger than it and in some aspects weaker at present because it is still under investigation to find the most 

appropriate ways.  

 
Fig. 3.8: Library Manager: library tree, components explorer 

 

The GUIs provide a hybrid mix of automatic generation and fine grain customization of architecture 

parameters. Top of figure 3.9 shows the main window for creating a component, the fundamental 

parameters like LUT size, cluster size, channel size can be provided here and if desired a component based 

on default architecture model can instantly be created in a single click. If desired the fine grain tuning of 

architecture parameters (similar like fc,in and fc,out of scientific literature, figure 3.3) can be customized 

with the help of user friendly GUIs as shown in figure. This at present is more time consuming than VPR 

but provides greater degree of ―what-if‖ freedom in comparison. Furthermore since everything is GUI 

based it highly accelerates the creation time (minutes instead of hours) compared to past manual entry 

styles which VPR improved with high level architecture description [Betz&Rose00, 4.11]. In VPR the 

enormous ease comes by specifying some key parameters in architecture file and then it automatically 

translates that into complete architecture with automatically resolving some architectural conflicts by the 

underlying algorithms [Betz&Rose00, 4.11]. This while gives great freedom to FPGA architect but at the 

same time slightly looses the ―what-if‖ motivation. As it is the algorithm which decides what to do, so if 

one wants to do something different the software must be modified, furthermore the VPR model takes high 

benefit of the logical equivalence of the logic blocks due to fully connected local interconnect, both for 

CAD flow and target hardware as it facilitates many things but at the same time almost restrict the 

experiments conducted with the local Interconnect connection box model. Since most of the research 

works done in last decade are fully or partially based on VPR, in many cases they have conducted similar 
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kinds of experiments which were addressed in [Betz&Rose99, 4.1]. [Lemieux&Lewis01, 4.24] addressed 

the issue of fully connected local interconnect and explored reducing the flexibility (hence area overhead 

due to it) without degrading critical path. Chapter 4 will discuss experiments to investigate ―what-if‖ local 

interconnect is completely removed scenario in terms of area, power, speed and keeping the consideration 

of soft eFPGA issues. 

 
Fig. 3.9: Library Manager: some snapshots of editor GUIs 

 

2- Hardware Generation 
Library manager has built-in hardware generation. This allows instantly creating VHDL of any component 

in the library. As the eFPGA is pure soft, the generated HDL is technology independent, so it can be 

implemented on any process node using the standard cell libraries of that process. To further facilitate the 

implementation the hardware generator automatically creates the basic front-end and back-end scripts for 

the chosen process (ST65nm in case of this thesis) for the synthesis and place & route tools of Synopsys 

and Cadence. This highly accelerates and facilitates the implementation of the design by saving all the time 

to manually write these scripts and edit them for minor changes. All is automatically done by the help of 

graphical tools shown in figure 3.10. 

In addition to that, the soft target independent nature of eFPGA and full support of hardware and script 

generation allows creating multiple implementations of a same component. They can be on different nodes 

or with different options on same node, e.g. GP (General Purpose)/LP (Low Power) or different threshold 

voltages etc. This highly facilitates the decision making in architecture generation where one can readily 

see silicon tradeoffs depending on target needs. The silicon manager (figure 3.7) manages the information 

for correspondence with the library components. This also helps to reuse the silicon implementations since 
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one only have to implement them once. Furthermore based on the maturity status of these implementations 

a better informed decision can be made at architecture level. [S-6] presented the concept as a seven stages 

(7even Star) evaluation method where a more confident decision of choice of components can be made 

based on their silicon maturity which is crucial in commercial scenario where silicon proof is very 

important (getting more and more crucial in beyond 90nm technologies). This further highlights the 

motivations for the two flows of eFPGA Creator (Creation and Exploration) that were discussed above.  

 

 
Fig. 3.10: Library Manager: Scripts generator 
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3.3.3 Architecture Manager (eFPGA Core creation) 
The architecture manager provides an infrastructure of creating eFPGA Core using the components from 

library manager. Figure 3.11 presents the flow of architecture manager (notice it is tightly coupled with 

library manager as they both share information), it is briefly discussed below and then main components 

are discussed with snapshots of some portions of the tool (like library manager was discussed). 

The flow starts with the GUI editor tools which help to create a new architecture or edit an existing one. 

All the components used inside the architecture are obtained from library manager. It automatically creates 

missing or required new components for core generation (e.g. components at the boundary of core, I/Os 

etc.) if they are not already available in library and store them in the library for future reuse. Similar to 

library manager the architecture manager has hardware generator which creates HDL of the Core and of 

the components inside the core (if the HDL was not already generated for them and put it in the library 

manager). Scripts are generated for core implementation with the options to choose which implementation 

of the components one want to use (theme that was discussed above in library manager). The core silicon 

manager keeps track of silicon implementations (in analogy to silicon manager of library manager). Finally 

the architecture files generator creates all the architecture files needed by eFPGA Programmer to map 

benchmark applications on the created architecture. Main components of architecture manager are 

described below. 

 
Fig. 3.11: Architecture Manager flow/overview 

1- GUI wizards & Editors 
Figure 3.12 shows snapshot of the main tree window of architecture manager (also visible in figure 3.13). 

It lists all the created architectures and provides infrastructure to create, edit, implement and analyze 

(discussed in next section) architectures. Figure 3.13 shows the main windows for creating a new 

architecture. It can be seen how simple and straightforward it is and the tight integration with library 

manager. A main tile is selected from a selected library; the architecture parameters (number of LUTs, 

I/Os) are provided either in form of quantity or parameters, and if no further customization is desired, 

instantly the architecture is created and added to architecture manager. The diagram on bottom shows 

graphical editor of architecture which allows deeper tuning of architecture like fine tuning the I/O 

requirements, architectural heterogeneity etc. which is lot easier and straight forward to graphically 

manipulate and edit compared to text entries or graphical wizards. 
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At this point one can further visualize the benefits of the library of components. The architecture manager 

uses only components from library and since it is tightly coupled with library manager (figure 3.11) if 

some missing component is found due to some customizations decided (like components on border, 

specialized I/O etc.) it is automatically created by architecture manager through library manager and added 

to library (including the option of finer customization using library manager component editors). Thus high 

reuse is obtained due to library based structure. 

 
Fig. 3.12: Architecture manager 

 

2- Hardware Generation 
In a similar fashion like library manager there is a hardware generator in architecture manager which 

generates hardware for the core. However there is a difference between the two as the implementation of 

core is not simple like a component. The library based approach further helps here as the hardware of the 

components is already implemented in the library manager flow. The core generator reuses the 

implemented design of components (.lib, .lef etc. files if already exist) to build up the core. The core 

generator creates the top level VHDL which wraps all the building components which are already 

implemented and available in library. Hence the implementation is/can be order of magnitude easier and 

faster compared to starting from the scratch. If some new components arise in creation of core they will be 

implemented using the library manager flow and will be available for future reuse. Furthermore since all 

the building components are already implemented, it further helps to have rough pre-idea of silicon 

properties of architecture (like area, static power, silicon status etc.) without even implementing it which 

further accelerates the design space exploration. 

3- Architecture files generation 
Architecture files generator creates all the architecture files needed for eFPGA Programmer (figure 3.5) to 

implement benchmark applications on the created architecture. From figure 3.11 it can be seen that the tool 

gathers all the architectural and silicon information and builds the detailed architecture files of the created 

architecture. This process is long and computation intensive as architecture files are very large in size (also 

proportional with architecture size) as they carry all the routing architecture, timing information etc. Figure 

3.14 shows snapshot of the generator tool. To facilitate computation efficiency exploiting the multi-core 

PCs which are common now, the tool provides option of multithreading and compute in parallel. In the 

figure the computation is in progress on four threads. This helps accelerating the generation time. 
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Fig. 3.13: eFPGA Creator Architecture Manager Snapshots 

 

 
Fig. 3.14: eFPGA Creator Arch. Files generator 



- 83 - 

 

3.3.4 Analyzer (Design Space exploration) 
The analyzer infrastructure facilitates analysis of benchmark applications mapped on the architecture. To 

make analysis more effective and illustrative, support for GUI is used. The early inspirations for creating 

graphical tools for analysis evolved from the work in [S-9]. With the rich graphical infrastructure of Qt it 

became easier and effective to upgrade some of the analysis tools of [S-9] and create several new tools in 

addition which became possible due to advanced graphics facilities of Qt and their integration into eFPGA 

Creator. A brief description of the flow is presented below and then main elements that are analyzed are 

discussed in more detail. 

Figure 3.15 shows the flow of analyzer, the theme diagram of eFPGA creator (figure 3.6) is also 

represented on bottom right to facilitate discussions. It is interesting to note that the analyzer is closely 

coupled with the library and architecture managers. The flow of analyzer is simple and as follows. The 

application benchmarks are implemented on architecture or a group of architectures from the architecture 

manager database. The results of implementations are analyzed using analyzer tools suite; based on them 

the appropriate architecture that closely matches the requirements is selected. The analysis also helps to 

find the fine tuning direction for customization. Based on the clues obtained from analysis one can either 

go to the architecture manager to create a new architecture/new implementation of architecture (e.g. 

implementation with different threshold voltage for power vs speed tradeoffs etc.), or go to the library 

manager to create a new component which is more appropriate for target application (e.g. routing 

characteristics, LUT/cluster size, hard components etc.). Hence it can be noted that all the tools are closely 

interlinked with each other. 

All the analysis tools are integrated in the eFPGA Creator making it convenient and faster to perform the 

flow of figure 3.15. Figure 3.16 shows a global view of how the analysis tools are closely coupled inside 

the eFPGA creator. Brief details of some major areas of analysis are discussed below. 

 

 
Fig. 3.15: eFPGA Creator Analyzer 
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Fig. 3.16: eFPGA Creator Analyzer GUI cockpit 

1- Mapping, Clustering & Placement 
Mapping analyzer tool is shown in figure 3.17. It helps to analyze the LUT mapping statistics of the 

mapped application. Chapter 2.1.2 discussed about the LUT mapping efficiency issue for different LUT 

size in the state of art discussion and noted that the efficiency of mapping was different for different LUT 

sizes and goes down as LUT size increases. This tool helps to visualize these issues for experiments. In 

figure 3.17 the tool is depicting statistics of a mapped application on a LUT4 based architecture and it can 

be observed that for this application almost half of all the LUTs used are fully utilized as LUT4. 

Clustering analyzer tool is depicted in figure 3.18. It helps to analyze how efficiently the LUTs are 

utilized in cluster (eLB), e.g. if eLB has a cluster size of 4 and there are 100 eLBs used by the application 

the tool will analyze how efficiently they were packed up with the LUTs inside them. This information can 

be easily represented in a table like shown in figure 3.17 for LUT mapping but thanks to the graphical 

infrastructure the tool helps not only to see the efficiency but also the visual positions of the distribution 

inside the core. In figure 3.18 it can be seen that almost all the clusters are fully (100%) packed for this 

application and those that are not are clearly identified. 

Placement analyzer tool is shown in figure 3.19; it is similar in principle like the clustering analyzer tool 

and provides a visual view of all the components placed/used in the architecture including the I/Os. 

 

 
Fig. 3.17: LUT mapping analyzer  
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Fig. 3.18: Clustering efficiency analyzer 

 
Fig. 3.19: Placement analyzer 

2- SB & eLB 
Routing is the most complex and exciting part of FPGA architecture research. Numerous tools were 

created in this thesis work for analyzing routing or matters closely linked with routing. Figure 3.20 shows 

the traffic analysis of the eLB in connection with SB (figure 3.2). On the top of the figure some of the 

routing analyses are visible and one can get a feeling how in-depth the routing is analyzed. The analysis 

details for a mapped application are depicted in a table and sowing how the incoming traffic of eLB is 

distributed from outside world point of view. The first column shows the inputs of eLB and for each of that 

the possible traffic from four dimensions/ports of SB (North, South, East and West) and from the 

feedbacks of eLB itself (represented as South West based on figure 3.2) is analyzed. Such analyses greatly 

help in architectural exploration for customizing the switch box architecture which will be discussed in 

detail in chapter 4. 

3- Global Routing 
The global routing analysis provides high level architecture overview to investigate issues like channel 

width requirements, routing congestions, hop analysis etc. 

Channel analysis 

Figure 3.21 shows the snapshots of the tools for channel analysis and routing congestion of a mapped 

application. The combination of tabular and graphical information helps to analyze key information which 

is crucial in architectural considerations.  In figure 3.21 the routing statistics and corresponding congestion 

plot is illustrated. It can be seen that the application took maximum of 24 tracks to successfully route on 

the target architecture which in this particular case has physical channel size of 24 also, which means the 

architecture is utilized to its maximum limits (most of the time it is not the case), what is further interesting 

to note is that this high value of 24 tracks was only used 3 times during Place and Route, two of them can 

be seen in congestion graph (showing routing congestion for horizontal channels ChanX, the third one is 



- 86 - 

 

on ChanY). On average the channel utilization remains at around 15 as shown in the table, meaning almost 

half of the tracks are never used. This shows how complex the routing challenges are. These issues will be 

discussed in detail in chapter 4. It can be observed how much research ease is provided by these graphical 

tools for FPGA architect. 

 
Fig. 3.20: SB-eLB traffic analyzer 

 

 
Fig. 3.21: Global routing analysis 

 

HOP Analysis 

Another important aspect in global routing is HOP as was discussed in chapter 2.1.2. It helps analyzing the 

global traffic in the architecture and investigating the exploration of long wires. Figure 3.22 shows the 

snapshot of hop analyzer which allows investigating the hop analysis of benchmark applications mapped 

on the architecture. Chapter 4 will discuss hop analysis experiments in more detail. 
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Fig. 3.22: Hop Analysis 

4- Silicon 
The silicon analyses are slightly different than the architectural analyses discussed above in a sense that 

they provide fixed information which is benchmark independent. The elements of silicon analyses are 

aspects like area, power (static), timing, configuration size etc. of components of eFPGA and of the core. 

Chapter 4 will discuss some silicon analysis tools which were made for early experiments using TCL/Tk 

[S-9], some of them are ported to eFPGA Creator analyzer. Figure 3.23 shows the area distribution 

analysis tool which shows the breakdown of main components of the tile. An interesting point to observe 

in figure 3.23 is that due to soft implementation the contribution ratio between logic and configuration is 

slightly different than the classical layout based FPGA designs with pass-transistor routing etc. This is due 

to the fact that soft eFPGA uses multiplexers for all kind of switching in the architecture hence the physical 

hardware is relatively logic dominant compared to configuration as the amount of configuration bits in a 

multiplexer based routing compared to pass-transistor based routing is less due to obvious reasons (with a 

tradeoff of multiplexer vs pass-transistor area). This also brings some interesting considerations while 

exploring the architecture to keep the perspective of soft eFPGA which leads to multiplexer based routing 

where configuration size/bits can abruptly change with slight change in parameters if not carefully 

considered; chapter 4 will address these aspects further. 

 

 
Fig. 3.23: Tile Area distribution analysis 
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3.4 Summary 
This chapter discussed fundamentals of eFPGA hardware and CAD (eFPGA Programmer) tools. It 

provided an overview of the eFPGA Creator tools suite; explaining its fundamentals, details of building 

blocks, differentiations/comparison of the tools with comparative/existing approaches (e.g. VPR etc.), 

contributions of this thesis work. The key points observed/discussed are described below. 

 eFPGA under experimentation has classical FPGA-like island-style architecture, it uses uni-directional 

(single driver) routing architecture and it has no classical connection blocks (CB) or local interconnect 

(LI). A unified switch block (SB) performs all switching. It has highly scalable blocks based structure 

 eFPGA is pure soft (written in VHDL) and technology independent 

 eFPGA Programmer provides standard RTL programming flow for eFPGA 

 eFPGA Creator tools suite provides a user friendly GUI based infrastructure for creation and 

exploration of customized eFPGAs. The infrastructure is composed of several building blocks (library 

manager, architecture manager, hardware generator, analyzers etc.). Library manager provides an 

infrastructure to create customized blocks/components (eLBs, SBs, Tiles etc.) and also serves as a 

database of components. Architecture manager helps create eFPGA core and also acts as database of 

architectures. Hardware generators allow automatic hardware and scripts generation of created 

components/architectures for silicon implementation. Analyzers help to explore the architectures. 

Next chapters address the exploration of eFPGA architecture and investigation of eFPGAs in systems 

using these tools and knowledge of chapter 2. Chapter 4 will address in detail the architectural exploration 

of eFPGA to investigate creation of efficient eFPGAs. Chapter 5 will discuss integration of eFPGAs in 

SoCs scenario, reconfigurable acceleration and some beyond classics perspectives. 
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Chapter 4: eFPGA Architectural 

Explorations [B] 
 

The FPGA architecture research in many aspects is similar to the 

famous quote of Antoine de Saint-Exupéry: 

 ―Perfection is finally attainted not when there is no longer anything to 

add, but when there is no longer anything to take away‖. (wikiquote) 

This chapter presents in detail the eFPGA architectural exploration research contributions of this thesis 

work. Since eFPGA has a classical LUT based FPGA-like architecture, the research conducted is similar 

like FPGA architecture research addressed in scientific literature (term eFPGAs and FPGAs will be often 

synonymously used in this chapter). However issues related with soft eFPGAs have been kept in 

consideration as a motivation during research explorations. This chapter discusses experiments conducted 

in the beginning and at the end of the thesis work. It will provide some insight among connecting 

motivations of different dimensions of thesis work. The outline of the chapter is as follows. 

Section 4.1 explains in detail the basic explorations done on almost all fundamental aspects of FPGA 

architecture research for general overview based on the motivations obtained from state of the art and 

academic research (chapter 2). This section explores fundamental issues like LUT size, cluster size, 

channel analysis, routing challenges, issues of power consumption in beyond 90nm nodes and basic 

comparisons from state of the art solutions. Most of the work addressed in this section is based on [S-9]. 

The explorations addressed in this section provided some of the motivations behind the creation of eFPGA 

Creator, eFPGA Programmer and served as a foundation start point of system level research exploration 

(will be discussed in chapter 5) by providing the flexible hardware of eFPGAs for experimentation with 

silicon information [S-7][S-8]. 

Section 4.2 addresses advanced experiments of customizing eFPGAs using knowledge of section 4.1 and 

exploration ease and infrastructure provided by eFPGA Creator. This section presents detailed experiments 

for analyzing tradeoffs in area, power and speed on ST65nm process by exploring different architectural 

customization for creation of customized eFPGAs which are validated by mapping benchmark applications 

to judge their routability tradeoffs in response of customizations done. This work provides more silicon 

efficient architectures with higher customization compared to basic customizations of section 4.1. 

 

4.1 Basic Explorations for General Overview 
This section discusses in detail the basic eFPGA architectural explorations with eFPGA CAD and silicon 

analysis to obtain a general overview of challenges and research directions. Most of the work presented in 

this section is based on [S-9]. This section first briefly presents the experimentation methodology by 

presenting the experimentation flow, CAD tools, benchmark applications, adaptable VHDL of eFPGA 

hardware and exploration GUI tools for architectural and silicon analysis. Then later sub sections present 

in detail the explorations for LUT size, LUT mapping efficiencies vs LUT size, clustering and channel, 

routing challenges and investigations, challenges of power consumption in beyond 90nm nodes and some 

basic comparison of results with state of the art to get inspiration for research challenges and directions. 
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4.1.1 Experimentation Methodology 
This section presents the experimentation methodology for the explorations addressed in section 4.1. It 

presents the experimentation flow, CAD flow for mapping benchmark applications on different eFPGA 

architectures, the adaptable VHDL of eFPGA hardware to facilitate changing several fundamental 

parameters of eFPGA and visualizing the silicon properties by silicon implementation on different target 

nodes (90nm, 65nm and 45nm). To facilitate the analysis several basic GUI tools using Tcl/Tk, HTML 

were created which are briefly discussed. 

1- Experimentation flow and Benchmarks 
Figure 4.1a outlines the global flow used for eFPGA architectural explorations in section 4.1. It can be 

observed that the flow performs the exploration of fundamental parameters of eFPGA (LUT size, cluster 

size and channel size). The flow is composed of three main components; eFPGA CAD, eFPGA adaptable 

VHDL and Analysis tools. The flow and components are briefly outlined below. 

 
Fig 4.1a: Experimentation flow for basic explorations 

eFPGA CAD: These early experiments [S-9] used the VPR (version 4.3) tools of Toronto University 

[Betz&Rose99, 4.1] for the CAD flow for mapping the bench marks. They were modified slightly for the 

experiments (unidirectional architecture). These tools were selected as their quality is well recognized in 

academics and industry with high citations. Furthermore they target mesh based architecture which was 

target of this work also so explorations done with these experiments were useful with later tools (eFPGA 

Programmer, eFPGA Creator) which were under construction and investigation in parallel while these 

experiments were conducted. The simplicity and limitations of the basic flow can be seen in figure 4.1a. 

The eFPGA CAD allows mapping benchmark applications on different eFPGA architectures and effect of 

changing the fundamental parameters can be explored and visualized by analysis tools. However it is 

important to note that in the basic flow (figure 4.1a) there is no link between eFPGA CAD and silicon 

information, due to that comparison of different architectures in terms of speed for the mapped benchmark 

applications is not possible in the basic exploration. eFPGA Creator (chapter 3) enabled advanced 

explorations which will be addressed in section 4.2. The benchmark applications used for the experiments 

are outlined below. 

Benchmarks: For the benchmarks, the MCNC benchmarks were used [Yang91, 4.82]. We selected the 20 

MCNC benchmarks (Toronto 20, [Betz&Rose99, 4.1][Njuguna&Jain08, 4.81]) which are common in the 

scientific literature related to FPGA architecture, making it easier for researchers to compare results of 

different research works. Table 4.1 lists the circuits with their I/O characteristics and number of LUT4 

(flip-flops are not shown) required to map these circuits using the SIS tools of Berkeley University [4.83]. 

It is interesting to note that the benchmark circuits cover a wide variety of circuits, like high I/O, high logic 

etc., later sections will analyze some findings about channel based on these diversities. 
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Circuit Inputs Outputs No. of LUT-4 

ex5p 8 63 1064 

tseng 52 122 1047 

apex4 9 19 1262 

misex3 14 14 1397 

alu4 14 8 1522 

diffeq 64 39 1497 

dsip 229 197 1370 

seq 41 35 1750 

apex2 38 3 1878 

des 256 245 1591 

bigkey 229 197 1707 

s298 4 6 1931 

spla 16 46 3690 

frisc 20 116 3556 

elliptic 131 114 3604 

pdc 16 40 4575 

ex1010 10 10 4598 

s38417 29 106 6406 

s38584 38 304 6447 

clma 62 82 8383 

Table 4.1: 20 MCNC benchmarks, statistics with LUT4 mapping using SIS 

2- Adaptable HDL of eFPGA: Silicon exploration ease 
As the main motivation since beginning was towards a soft eFPGA, it was essential to have a highly 

adaptable and flexible HDL of eFPGA which can be customized for different fundamental architectural 

parameters (LUT size, cluster size, channel size etc.). This aspect, as was discussed in chapter 3 (with pros 

and cons) in some ways differentiates this work compared to several other FPGA architecture exploration 

works found in scientific literature (most notable VPR/VPR-like).  

To facilitate experimentations a highly generic architecture of eFPGA was created in VHDL which is used 

in all these basic explorations presented in sections below. The design is highly flexible and with the 

generics of VHDL several fundamental parameters like LUT size, cluster size, channel size, array 

dimensions, even multi-context (not discussed in this work) etc. can be controlled. This allows rapid 

silicon implementation of explored parameters along with CAD experimentation of mapping benchmark 

applications on the explored architectures as illustrated in figure 4.1a. Figure 4.1 illustrates the 

architectural fundamentals of eFPGA tile (chapter 3). The adaptable VHDL of eFPGA allows 

experimenting different architecture possibilities by changing all the fundamental parameters as shown in 

figure. This section addresses investigations based on adaptable VHDL of eFPGA. The SB topology used 

throughout the experiments is Disjoint [Wilton97, 4.25][Masud99, 4.35]. This adaptable VHDL of eFPGA 

provided key motivations for HDL generator of eFPGA Creator (chapter 3), which will be used for 

advanced explorations in section 4.2 allowing customizations of SB-R and SB-eLB multiplexers. 

Silicon implementation: For the silicon libraries this work used 65nm LP, 90nm GP and 45nm LS process 

technologies of ST provided by CMP (cmp.imag.fr). Except few comparative cases all work in this thesis 

is on 65nmLP for which the widest range of libraries was available for analyzing different parameters like 

effect of threshold voltage, temperature, supply voltage etc. Figure 4.1a shows the flow. The VHDL of tile 

customized to explored parameters is synthesized (front-end) with Synopsys Design Compiler on the 

chosen process node parameters and provides good approximate silicon statistics of area, power* (static, 

dynamic on statistical toggle rates; section 4.1.6 will address this methodology as pessimistic power) and 

speed for the tile (not the benchmark execution speed!, section 4.2 will address benchmark speed). 
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Fig 4.1: Basic Hardware (Tile) of eFPGA Architecture 

3- Basic GUI exploration tools 
In many ways the FPGA architecture research revolves around tools or perhaps is all about tools; tools 

for design, tools for implementation, tools for exploration and even tools to explore exploration. To 

facilitate the analysis of large amount of exploration data both architectural (FPGA CAD mapping, PAR 

etc.) and Silicon (Area, Power, Timing etc.) several basic GUI tools were created. These tools and their 

concepts later became the foundation of high-end GUI Analyzer tools of eFPGA Creator which were 

discussed in chapter 3. The created tools can be divided into two main categories, architectural exploration 

tools and silicon exploration tools. The deeper details about these tools, how they work and made is 

proprietary of Menta and is beyond scope of discussions, the thesis only presents and discusses the results 

obtained with the help of these tools. 

Architectural Exploration tools analyze the outcomes of the application mappings by the CAD tools on 

the explored architectures as shown in figure 4.1a. The analysis statistics includes elements like LUT 

mapping, clustering, routing, hop etc. Several tools with HTML based GUI for elaborated outputs were 

created, the major tools included: Mapping Analyzer, Clustering Analyzer, Routing Analyzer, Channel 

Analyzer and Hop Analyzer. 

Silicon Exploration tools help graphically analyzing the outputs of silicon implementation for area, power 

and speed for different architectures under exploration as shown in figure 4.1a. They highly facilitate cross 

analysis of different architectures and visualize the silicon tradeoffs to help directing the customization 

direction in co-observation with the Architectural Exploration tools. These tools were created with the help 

of Tcl/Tk (www.tcl.tk). Creating the tools using Tcl/Tk while giving nice features of creating basic 

graphics (Tk GUI) in addition also helped in the fact that Tcl (Tool Command Language) is often used like 

a de-facto standard for communicating with silicon tools. This also provided a dual help; easy to learn and 

creating scripts for silicon tools. 

Next sub sections of section 4.1 present results of exploring several fundamental architectural parameters 

using the methodology described above, majority of results presented are from [S-9]. 
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4.1.2 LUT Size 
The first and foremost element and workhorse of an FPGA is a Look-Up Table (LUT). This section 

presents the exploration done for LUT size. Several results obtained were similar like addressed by 

previous works without much surprise as clues were already obtained from works like [Ahmed&Rose04, 

4.8][Betz&Rose99, 4.1][Altera07, 1.18]. However doing these experiments again was interesting because 

it was essential to get silicon and architectural statistics for under exploration eFPGA architecture and 

while doing so the thesis work did some complimentary work also to further examine some issues. The 

details of explorations are described below. 

1- Mapping efficiency vs LUT Size 
Bigger LUT sizes have relatively poor mapping efficiency (from logic packing ability of CAD standpoint) 

compared to smaller LUT sizes. As the LUT size grows exponentially by increasing its inputs due to 

obvious reasons (e.g. LUT6 is more than 4 times bigger than LUT4), the mapping efficiency is an 

important research area and consideration regarding the LUT size. Chapter 2 presented the Adaptive Logic 

Modules (ALM) innovation of Altera which finds its key motivations from mapping efficiency issues.  

[Altera_Lewis05, 1.22] explains different directions of investigations that Altera conducted in this regard 

while innovating heterogeneous and adaptable ALM logic block.  However another interesting point which 

closely attach to the story of LUT size is that the LUT size itself is dwarfed by the sheer area that the 

interconnect architecture takes, it will be soon observed in silicon observations. FPGAs are masterpiece of 

transistor waste; in many aspects the FPGA architects while continuously innovating to bridge this gap 

also take smart benefit to mange this waste to tradeoff for some other property e.g. area can often be traded 

for speed. For such reasons as was discussed in chapter 2, the speed and intuitively also power (from 

routing perspective) benefits of bigger LUT sizes often overshadow their area overhead and mapping 

inefficiency. Bigger LUT sizes are common in commercial solutions with LUT4 still being most common 

in majority of FPGAs (from counting types/companies point of view not market share which only for 

Xilinx is more than 50% and it now uses LUT6). 

Table 4.2 presents the mapping efficiency statistics for targeting different LUT sizes (fixed homogeneous 

size). The results are from the average mapping (SIS) statistics of 20 MCNC benchmarks. Figure 4.2 

illustrates statistics of table 4.2 in more detail with split up contribution of partially mapped LUTs. It 

clearly shows the drop in mapping efficiency with increase the LUT size. The graph shows similar patterns 

like were observed in figure 2.6 from Altera in chapter 2. The values differ (for Altera they observed 

efficiencies of LUT4 around 55%, LUT5 around 35% and LUT6 around 30% respectively) as they vary 

from benchmarks and CAD tools however the trend of weaker efficiency of bigger LUTs is visible. To 

further investigate this issue some cross experiments were conducted by mapping some of the MCNC 

benchmarks on Xilinx Virtex-II Pro FPGA (is LUT4 based) by using Synplicity (now Synopsys) 

synthesizer which is well know 3rd party FPGA synthesizer for its superior quality. The results of 

investigation are illustrated in table 4.3. Comparing the number of LUT4 used compared to table 4.1 one 

can see a significant improvement. The improvement can be attributed to two main components; firstly the 

Virtex-II has a more complex logic block structure with heterogeneity of carry chains, muxes, multiple 

capabilities of LUT etc. these features indirectly decrease the raw LUT utilization, the second factor is 

superior algorithms of the tool compared to academic SIS tools which further optimize the consumption. 

Considering only the second component (for ease of discussion) the first thing that comes to mind by 

seeing the LUT count is that mapping algorithms would have taken more efficient use of LUT4 and 

contributed in decreased number of LUT in addition to better logic optimization. When we analyze the 

mapping efficiency in the table we see some surprising observations that mapping efficiency instead of 

going up (from 67.45% of SIS) has gone down to around 48% (more similar like Altera 55%). Although 

that does not mean an end to mapping tools which are a continued research topic and perhaps some future 

innovations can help better exploitation but it is apparent and illustrates that the LUT mapping efficiency 

phenomena is quite generic and all FPGAs (including leading) have lot of underutilized LUTs in mapped 
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applications. At present Altera is the only prominent state of the art example which utilizes adaptable 

heterogeneous LUT structures enabled by their ALM structure and corresponding CAD tools (SMT) 

[Altera_Lewis05, 1.22]. 

LUT size Mapping Efficiency % 

LUT-3 75 

LUT-4 67.45 

LUT-5 57 

LUT-6 49.76 

Table 4.2: Mapping efficiency of different LUT sizes for 20 MCNC with SIS mapping 

 

 
Fig. 4.2: mapping efficiency distribution for different LUT sizes for 20 MCNC with SIS mapping 

Circuit Total LUT4 %LUT-4 %LUT-3 %LUT-2 

alu4 471 51.168 29.724 19.108 

dsip 941 71.413 22.848 5.739 

des 1149 48.651 37.076 14.273 

bigkey 1542 38.132 52.399 9.468 

s38417 1770 47.514 33.842 18.644 

s38584 2809 43.147 41.616 15.201 

clma 5134 34.496 53.428 12.076 

Average 
 

47.8 38.7 13.5 

Table 4.3: Mapping efficiency of benchmarks on Virtex II Pro with Synplicity synthesis tool 

 

Figure 4.3 illustrates the overview of statistics of number of LUTs needed (normalized to LUT4) for 

implementing 20 MCNC benchmarks while targeting different LUT sizes. We can see the effect of 

mapping efficiency issue by cross viewing figure 4.2. Taking as an example LUT4 (used as reference) in 

this case, if the benchmarks are targeted on LUT3 based architecture it requires 1.3X LUT3 compared to 

LUT4 instead of 2X (LUT4 has double logic capacity compared to LUT3). Going on the other side number 

of LUT6 (has 4 times logic capacity compared to LUT4) required to map the benchmarks are 65% (instead 

of 25%) compared to LUT4. The hints for these differences can be seen in figure 4.2. Since all the partially 

packed LUTs also occupy a complete LUT to implement them and more the LUT size increases more are 

partially packed LUTs e.g. In case of LUT6 we can see that more than half of LUT6 are partially packed. 

 Next section presents the silicon exploration of these experiments; we will keep these observations in 

consideration in discussions of silicon findings. 
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Fig. 4.3: Total LUTs needed by 20 MCNC mapping for different LUT sizes, normalized to LUT-4 

2- Silicon Exploration 
The above section investigated the LUT size mapping issues independent of the architecture parameters as 

they are independent of cluster size, actual place and route etc. In the next phase we made thorough 

investigation of silicon statistics based on architectural parameters which were required to effectively 

implement the 20 MCNC benchmarks. 

We implemented the 20 MCNC benchmarks for different values of LUT size and cluster size and 

investigated the channel size requirements (will be discuss in more detail in next sections). Figure 4.4 

illustrates silicon statistics of the tiles (the graphs are based on [S-9] with old names, Clb = eLB and 

Sbox+Interface = SB) of the architecture with channel size slightly higher than the average (arithmetic) 

channel size needed to place and route the benchmarks. The results for LUT size {3, 4, 6} and cluster size 

8 are shown. We fully analyzed all the benchmarks for LUT size {4,6} (approximated for LUT3 based on 

observation) and found that the channel required in two cases was almost similar. This while being a good 

sign was bit of a surprise as what was expected is noticeably larger channel required for LUT6, since the 

number of inputs of eLB significantly increases when moving from LUT4 to LUT6. We can see the areas 

and area distributions of these architectures on 65nm LPLVT (Low Power Low Voltage Threshold), as 

architecture in examined case is homogeneous a tile can directly give good enough idea of architecture 

properties. As these silicon synthesis results are for actual hardware on a real process with architecture 

parameters based on suitable parameters obtained from CAD analysis of benchmarks we can make some 

interesting observations and investigations from them. Table 4.4 summarizes some key parameters from 

figure 4.4 silicon observations and figure 4.3 mapping observations. First if we observe the percentage of 

Tile (configuration + logic) we see that how small LUTs (eLB) in general is compared to interconnect 

architecture (often known to be more than 80% in general). Now as we increase the LUT size we observe 

the percentage of LUT in tile increases, thanks to the channel requirements observations as we discussed 

above. This on first impression gives the hint that when we increase LUT size the corresponding routing 

requirements do not grow in same proportion and hence the ratio of LUT (actual computation element of 

FPGA) to routing improves. Now if we analyze the last two columns (keeping these scenarios in 

perspective) some interesting observations can be made. The first column shows the area normalized to 

LUT4 architecture, the second column shows the observations of figure 4.3 for LUT mapping efficiencies. 

If we make a comparison now keeping LUT4 as a reference, an equivalent architecture based on LUT3 

will be 0.8 times in area with logic mapping capacity of 0.75 this clearly shows LUT4 is a better choice 

compared to LUT3 as there is almost a similar result in terms of area however LUT4 will outperform 

LUT3 in terms of speed and power (since more logic in one LUT). Going now on the other direction, 

LUT6 architecture will be 1.7 times bigger on silicon and provides 1.54 times more logic capacity 
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compared to equivalent LUT4 architecture. Here we can observe a feeling of tradeoff between area and 

speed, switching to LUT6 from LUT4 will have a slight area penalty. But if we consider on more global 

perspective the LUT6 still seems more attractive as the area tradeoff is not so high and the price paid for 

area can have good tradeoff achieved by speed and power benefits of LUT6. Furthermore it also shows 

another example of FPGA CAD importance; an advanced mapping tool which can take more efficient use 

of LUT6 can outperform LUT4 in terms of area also. These are general observations; we will investigate a 

bit deeper in section 4.2. But from them also a general idea is obtained that why LUT4 still is a good 

enough general choice for overall nice tradeoffs of area, power, and performance among most vendors, and 

LUT6 (bigger LUT to trade area for speed and power, thanks to Moore’s law) is common among biggest 

market share leaders in direct or adaptive form (Xilinx and Altera) as was discussed in chapter 2. 

 
Fig. 4.4: LUT size comparison for area efficiency 

 

LUT size 
% of 

Conf. 

% of 

Logic 

% of Tile 

(Conf.+Logic) 

Area 

Normalized to 

LUT4 arch. 

Logic Capacity wrt 

LUT4 (mapping 

efficiency considered) 

LUT-3 4.3 3.03 7.33 0.8 0.75 

LUT-4 6.8 2.62 9.42 1 1 

LUT-6 15.47 4.48 19.95 1.7 1.54 

Table 4.4: Percentage of LUTs area in total Tile area and mapping considerations 

4.1.3 Cluster and Channel 
This section explains the exploration about the cluster and channel size. The LUT size exploration is 

closely related with the cluster size as different heterogeneous mix of combination and final interconnect 

architecture can highly influence the overall results. [Ahmed&Rose04, 4.8] explored that cluster size of 3 

to 10 is a good value with LUT sizes of 4 to 6 (discrete homogeneous) and concluded that if an effective 

way of creating a cluster without getting the high area overhead of large LUT sizes (as we saw in last 

section) and the local multiplexing interconnect is developed, superior results can be achieved compared to 

using the classical architecture like they explored. Altera’s ALM innovation [Altera_Lewis&Ahmed05, 

1.22] has its motivations on such ideas. As this whole section (4.1) is discussing the basic explorations 

done in this work, this section describes the effect of channel size with cluster, the silicon exploration in 

that scenario and the effect of feedbacks. The experiments are done using LUT size of 6 and some with 

LUT size 4. 
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1- Channel width vs Cluster size 
In a similar fashion like the LUT size exploration defined above, we implemented the 20 MCNC 

benchmarks for different cluster sizes (LUT size fixed at 4) and estimated the corresponding average  

channel width required for that cluster size (arithmetic average of minimum channel required for each 

benchmark for successful routing). Figure 4.5 illustrates the outcomes of the findings. We physically 

analyzed until cluster size 12 and extrapolated for some higher values based on the trends observed. We 

see from the graph that the channel size requirements do not grow in same proportion as the cluster size, 

e.g. going from cluster 4 to cluster 16 the channel width requirements approximately only double 

compared to 4 times increase in cluster size. This provides an interesting clue that the bigger clusters sizes 

can help exploit the benefit of this behavior as channel is often the most expensive part of the FPGA 

architecture. Next section describes the corresponding silicon explorations on ST65nmLP process and we 

will observe that in under experimented architecture the increased local multiplexing (SB-eLB muxes, 

figure 4.1) overrides the channel exploitation benefits of larger cluster sizes. Section 4.2 will address this 

issue (similar to Fc,in of scientific literature). 

 

 
Fig. 4.5: Average Channel width (max) vs Cluster size for 20 MCNC 

2- Silicon Exploration 
Figure 4.6 describes some observations from silicon synthesis of different architectures with LUT size of 6 

and different cluster sizes. The channel sizes were set closer or at suitable value based on CAD 

explorations. The graph on top left shows the area of the Tile along with contribution of different elements 

of tile, the graph on top right shows the percentage composition of different elements of Tile. The graph on 

the bottom shows the logic density (LUTs/mm²) which is on one hand good measure of comparing 

architectures and on other hand essential element for eFPGAs.  

Importance of Logic Density: For classical device based FPGAs logic density in many cases is not very 

critical or relevant for general description as they are characterized by the amount of logic (LUTs, hard 

blocks etc.) and I/Os that are available for the corresponding device. It is one of the reasons the logic 

density and die size etc. are mostly unknown and un-public for commercial FPGAs. However for eFPGA 

since it is an IP the comparison metrics and motivations are bit different and logic density of the 

architecture is a finer way of judging architecture for FPGA architects and SoC designers as it rapidly 

gives a rough idea about silicon feasibility and cross comparison of different architectures. 

If we analyze the logic density exploration we observed that all the expected gains for higher cluster sizes 

were nullified by the sheer increase in local interconnect (SB-eLB muxes, mentioned as interface in figure 

4.6) and buffering. The effect is more prominent as in the explorations in this phase there was no control of 

depopulation of SB-eLB multiplexers (as was discussed above). In section 4.2 we will investigate one step 

0

20

40

60

80

100

1 4 6 8 10 12 14 16 18 20

C
h

an
n

e
l w

id
th

Cluster Size

Avg. Chan width vs Cluster size for 20 MCNC



- 98 - 

 

deeper customizations enabled by eFPGA Creator and try to address this issue. But even at this raw 

experimentation level we can see that the eFPGA architecture is reaching around 300+ LUT6/mm² logic 

densities which is not very bad for a pure soft, technology independent architectures. [S-7][S-8] 

investigated eFPGAs in system perspectives using the best architecture found in these basic experiments 

(chapter 5 will address those experiments). 

 
Fig. 4.6: Area comparisons for different cluster sizes 

 

Figure 4.7 shows the results for power for these experiments (pessimistic power, section 4.1.6 will address 

the details about the method). The graph on the left hand side shows the plot of total power of the 

experimented tiles on 65nmLP process at 100MHz, 1.0Volts and 25 degrees temperature at default 

statistical toggle rates of Synopsys’s Design Compiler (not accurate power but gives good approximate 

perspective for general overview and cross comparison). The static power is negligible in these 

experiments as the process is low power and temperature is 25 degrees (we will see these effects in later 

section on power). Indeed the power will go higher for a block as one increases cluster size, so to better 

visualize the behavior (similar theme as was done for area with logic density) the graph on the right side 

shows the power relative to cluster size 4 and we can observe a similar inverted view for power compared 

to logic density graph of figure 4.6 (more gates means more power) and see that the cluster 4 is relatively 

providing better power efficiency. 

Figure 4.8 shows the timing statistics of the experimented tiles (Note: the critical path of tile by Design 

Compiler, it is not the application critical path; in section 4.2 we will explore real application delay). The 

behavior is self explanatory, we can observe that as we increase the cluster size the amount of logic in the 

critical path in tile increases because the size of the SB-eLB multiplexers increase with the increase of 

cluster size. A relatively strange behavior was observed for cluster 29 and 30 (can be treated as experiment 

noise and neglected) where instead of getting higher compared to cluster 24 it actually dropped. We tried 

to investigate the behavior and what was found as a reason was that Design Compiler chose different kind 

of multiplexers and buffering for these cases which changed the overall behavior. As to why it did that we 

got no plausible explanation, however this gave an idea that much can be played around with the silicon 

tools options and constraints to achieve different behaviors for the same hardware. 
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Fig. 4.7: Power comparisons for different cluster sizes and relative to cluster size 4 

 

 
Fig. 4.8: Timing comparisons for different cluster sizes 

3- Clustering Feedback analysis 
In the previous section we analyzed different cluster sizes and in silicon exploration observed that the 

interconnect multiplexers (SB-eLB) to provide a unified connection block plus fully connected local 

interconnect (logically similar to figure 2.21 in chapter 2) have a large silicon overhead. There are two 

contributors to the inputs of those multiplexers (figure 4.1). First the larger part is the inputs to the cluster 

from outside world (routing tracks). Second relatively smaller but yet area consuming part is the feedbacks 

of the cluster. To provide a fully connected structure each output of BLE (LUT+FF pair) is fed back to 

every single input of every BLE (figure 4.1). This section describes the feedback statistics to get a feeling 

of over flexibility of fully connected feedbacks.  

Figure 4.9 shows the feedbacks statistics obtained for different cluster sizes (clustered with TVPack [4.1]) 

using Clustering Analyzer tool. The results will vary based on clustering CAD algorithms but the general 

trend might be similar. We observe from the graph that there is a steady increase in number of feedbacks as 

the cluster size grows. However what is significant to note is that the amount of feedback compared to 

hardware flexibility provided by a fully connected structure is very low. For instance if we take the case of 

cluster size 10 as example, the graphs shows that on average for all benchmarks the amount of feedback in 

the cluster is around 6, which is fed to 40 inputs (10x4, Lut size in these experiments is 4) of the 10 LUT4 

in the cluster where 34 (40-6) are a waste of hardware flexibility. The graph also illustrates average 

statistics of distribution of the feedbacks in the cluster, for the analyzed case the 6 feedbacks in the cluster 

are used by 4 distinct LUTs meaning a good split distribution with some LUTs having more than 1 input 

which is feedback from the cluster outputs. 
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Fig. 4.9: Average feedback statistics for different cluster sizes for 20 MCNC benchmarks 

4.1.4 Routing Analysis 
Routing in general is the most expensive and in many ways most challenging and exciting part of FPGA 

research. This section briefly describes the explorations done on different aspects of routing analysis. It 

first describes the challenges of fluctuating channel size demands for different applications and their 

corresponding challenges for FPGA design decision to cope with that. Second an overview of the channel 

utilizations efficiency, challenges for mapped applications is discussed. Third it provides an overview of 

data traffic in tile for architectural enhancement clues and finally hop analysis to investigate the benefits of 

heterogeneous routing with long and diagonal wires. 

1- Channel size challenges 
The channel size requirements of the FPGA highly vary from application to application. While conducting 

architectural exploration, often one of main objective is to find the minimum routing channel needed for 

target application. [Betz&Rose99, 4.1] proposed the method of binary search to find the minimum routing 

requirement for the mapped application and use 20% more routing than minimum requirement as a 

tolerance. Finding minimum routing requirement for each application is essential for FPGA architects as it 

helps in several decisions, this style has remained similar in several VPR based/like research works from 

many researchers. However it does not fully represent a real life FPGA challenges scenario, where an 

FPGA has to be capable of dealing wider varieties of applications. [Altera_Lewis05, 1.22] describes the 

challenges with the state of art FPGAs regarding channels. As the commercial FPGA needs to be able to 

route all the commercial benchmarks and not the average (like often found in academic literature) so a 

higher weight is put on the largest channel hungry benchmarks. Because a single benchmark of very high 

requirements can make the architecture too expensive they do not strictly use absolute maximum but allow 

some discretion. To compare architectures a metric of satisfying around 99% of benchmarks is used. This 

illustrates how challenging this issue is in real-life scenarios. 

Figure 4.10 shows the minimum channel size requirements of the 20 MCNC benchmarks for different 

LUT4 based clusters of different sizes (1, 4, 6, 8, 10, 12); we can observe how fluctuating the requirements 

are for channels for different benchmarks. Furthermore if we have a look at the statistics of the benchmarks 

from table 4.1 and analyze the graph of figure 4.10 we can see that there is no easy or apparent metric of 

judging the channel requirements of a benchmark based just on its size or I/O requirements. Regarding the 

discussions concerning state of art above, if we have to create FPGA architecture able to target all these 

benchmarks e.g for cluster size 12 (c12) we need channel size of around 80 (required for ex1010 and clma) 

to pass all benchmarks. A choice of channel around 50-60 will satisfy majority of them (even in that case 

many are over served in terms of channels). [Tom&Lemieux06, 4.18] proposed an interesting way using 

CAD to implement un-routable designs due to channel restriction at the expense of using/wasting some 

extra LUTs by depopulating the clusters of congested areas. Furthermore if we compare the results of 
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figure 10 with other research works for uni-directional routing (e.g. [Luu&Rose09, 4.5]) we observe that 

the channel demands are much similar for our architecture although being fundamentally different on some 

aspects (no CB and no logical equivalence exploitation of eLB inputs and outputs due to eliminated 

classical local interconnect). 

 
Fig. 4.10: Min. channel width requirement for different cluster sizes for benchmarks 

2- Routing efficiency analysis 
In previous section we discussed the channel variation challenges across benchmark applications. This 

section describes a somewhat related issue about the routing statistics of mapped applications which also 

reveal some interesting observations that are not well addressed in academic literature. In last section we 

observed that the benchmark having the highest routing demands set the mark for the worst case scenario 

and routing architecture is designed to cope with it. In a similar fashion when an application is mapped on 

an FPGA, the utilization of channels is highly heterogeneous due to obvious reasons as unlike hardwired 

ASIC design where router creates wires for routing, the FPGA has pool of routing resources and router has 

to use these resources. The highest demanding channel requirements (highest congestion area/areas) create 

the bar of the channel size requirements for that benchmark application. Figure 4.11 shows a snapshot of 

channel efficiency analyzer tool which analyzes every benchmark and overall statistics of benchmarks 

(figure 3.21 in chapter 3 is enhancement of this tool). We can see that on average (keeping in mind in 

addition that all benchmarks are analyzed for architecture with the minimum channel required for them!) 

there are large amount of channels which are partially packed, only a small percentage of high requirement 

channels (in worst case can be a single channel/track) create the requirement threshold and whole 

architecture since FPGA has to be generic (or as generic as possible) is created with that channel size. 

3- Tile traffic analysis 
The tile traffic analysis explores the data traffic flow in the tile. It investigates how the input traffic of eLB 

is distributed in the channels of SB in four directions/ports (North, South, East, West as shown in figure 

4.1) and how the outputs of eLB are distributed in the channels of SB. These investigations gave basic 

clues about the optimization areas like the SB-R and SB-eLB multiplexers (similar to Fc,in and Fc,out). 

Figure 4.12 shows a snapshot of the traffic analysis tool of Routing Analyzer which provides average 

statistics of different benchmarks and overall statistics of a set of benchmarks (figure 3.20 in chapter 3 is 

enhancement of this tool). Section 4.2 will address in detail the architectural enhancements and 

explorations in this regard. The high waste of routing resources (normal and inevitable in FPGAs) for a 

chosen application can be visualized in the figure (red boxes) highlighting several routing tracks in 

connection with eLB inputs and outputs are never used (motivations for routing architecture depopulation 

for increasing silicon efficiency). 



- 102 - 

 

 
Fig. 4.11: Routing efficiency analysis statistics 

 

 
Fig. 4.12: Tile traffic analysis 

4- Hop Analysis 
Hop analysis helps to get clues about the heterogeneous long and diagonal routing wires. Extending the 

concept of tile traffic analysis which investigates intra-tile traffic, the hop analysis analyzes the inter-tile 

traffic patterns to visualize the nature of traffic in the architecture for benchmark applications. Figure 4.13 

shows a basic diagram to illustrate the hop for single length (length 1) architecture by showing the 

Manhattan distance a signal can travel on routing architecture in a single hop (jump). The figure is 

intuitive, in a single jump the reference tile (shown as 0) is connected to direct four neighbors (shown as 

1), in two hops the data (crossing trough the first hop tiles) can reach to eight tiles (shown as 2) and so on. 

In case of heterogeneous long and diagonal wires the data can directly (long jump) reach to other tiles, 

enhancing the performance. The objective and challenge of hop analysis is to explore how much benefit 
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can be achieved with long hops and how much should be the ratio/quantity of heterogeneous wires to make 

an area efficient solution while providing enhanced performance benefits of longer hops. Figure 4.14 

shows the detailed statistics observed for 20 MCNC benchmarks (figure 3.22 in chapter 3 is enhancement 

of this tool). The pattern observations are summarized in the table; we can see how much traffic was on 

average at different hop levels. e.g. if a length-2 long wires and length-1 diagonal wires are used they will 

enhance the data reach to almost double (25%) compared to only single hop length-1 architecture.  

 
Fig. 4.13: Routing Hop 

 
Fig. 4.14: Hop Analysis 

4.1.5 Challenges of Power Consumption 
This section describes the general explorations to investigate the effect of process technology scaling in 

beyond 130nm nodes (where voltage scaling is flattening, static power becoming major concern) and the 

effect of threshold voltages in power vs speed scenarios. 

1- Area, Power, Speed comparison at 90, 65, 45nm nodes 
At these finer nodes there are a wide range of library options provided by Fabs e.g. GP (General Purpose), 

LP (Low Power), several threshold voltages (low, standard, high) etc. to cover a wide range of consumer 

requirements based on target markets. For our experiments we had an access to only a subset of libraries of 

ST provided through CMP. The following libraries were used: 90nmGP, 65nmLP and 45nmLS. Figure 

4.15 shows the silicon statistics of a tile (LUT-4, cluster-4, and channel-42) on different nodes. Some 

interesting observations can be made from graphs. Firstly for area we observe the Moor’s law smooth 

effect of doubling the transistors. The gain from 90nm to 65nm is slightly less than 2X in the graph. We 

investigated the reason and found that in the 90nm standard cell library there was Mux 8x1 while in 65nm 

and 45nm library Mux 4x1 is the largest Mux. As the eFPGA has highly Mux dominated architecture the 

lack of larger Mux in the libraries turned out to be a slight disadvantage from silicon perspective. Now if 
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we observe the graphs for Power and Timing things are much different compared to nice improvements in 

Area. We can observe that supply voltage is not scaling down like past in finer nodes hence limiting the 

power scaling benefits. It is important to consider that the library for 90nm is GP while those of 65nm and 

45nm are LP, GP process is faster compared to LP but has high leakage as a tradeoff, hence higher power 

consumption.  

 
Fig. 4.15: Comparative Area, Power and Timing comparison on 90, 65 and 45nm 

 
Fig. 4.16: Power vs Speed with different threshold voltages 

2- Power vs Speed: effect of threshold voltage 
In the previous section we tried to observe the effect of process scaling on area, power and speed. This 

section shows highlights of the effect of threshold voltage on power and speed for a fixed node. We 

conducted experiments on 65nmLP in this regard. Figure 4.16 illustrates the explorations. The results are 
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divided in three categories based on low, standard and high threshold (LVT, SVT, HVT) respectively. For 

each category different experiments are illustrated showing effect of supply voltage (0.9, 1.0 and 1.3 volts) 

and temperature (-40, 25, 105 and 125 degrees) variation using the best, nominal and worst case libraries. 

As the process is LP, the static power is not very high, however we can see the effect of voltage and high 

temperature which shoots up static power as it has strong dependence on them as was discussed in chapter 

2.1.2. The interesting part to observe in these graphs is the variation of power and speed with the change of 

threshold voltage (power vs speed). Threshold voltage significantly changes the static power (leakage). For 

a distinct comparison we can observe that strong shoot of static power at a worst case (1.3V, 125degrees) 

is almost eliminated by increased threshold voltage however the benefits of higher threshold for power 

come at a price of speed which is significantly higher for high leakage transistors. That highlights another 

aspect of challenges of power. In chapter 2.1.2 we observed how state of art deal with these issues with a 

complex mix of transistors and threshold voltages to achieve better tradeoffs in this regard. 

4.1.6 Comparison with State of Art 
In the last phase of the basic explorations we used some of our results and tools to compare our findings to 

state of art FPGAs to find motivations and get a rough idea of how we compare to state of art. Below two 

major explorations done are briefly described. 

The HOP 

Figure 4.17 shows the experiments of HOP analysis for patterns of Xilinx’s Virtex-5 and Altera’s Stratix-

III which were observed in chapter 2 (figure 2.13). Although the experiments cannot be fully correlated 

with Xilinx and Altera devices and judgment of one over another but provides good basic understanding of 

potentials and comparison of different hop styles. The analyses are done using our Hop Analyzer tool; we 

added some features in the tool to display the hop results like the patterns of Xilinx Virtex-5 and Altera 

Stratix III. It is important to note that there are no physical long wires in the explored architecture; the 

architecture is purely homogeneous with only fundamental single length wires. The benefit of analyzing 

like that is that we get an interesting rough idea of potentials of different hops, which helps to move to next 

step of physically deciding the length and quantity of long wires. 

 
Fig. 4.17: Hop Comparison of Virtex-5 and Stratix-III for inspiration 
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In figure 4.17 on top we can see the hop patterns (physical) of Virtex-5 and Stratix-III as were discussed in 

chapter 2. Analyses of the average statistics of 20 MCNC benchmarks are shown in the tables. We can see 

that for single hop Stratix-III has higher data reach compared to Virtex-5, going higher both devices have 

similar characteristics. This also provides the inspiration of the diagonal long wires innovation of Virtex-5 

in addition to classical long wires which are common in all commercial FPGAs. 

Core Power Consumption 

Finally we made some comparisons of our results about power consumption (both static & dynamic). 

Power while being the hardest challenge for research and industry at present is also the hardest element to 

evaluate and analyze compared to area and speed. However getting some basic idea was essential to have a 

feeling. The soft technology independent nature of eFPGA helped in this regard. [Altera_Video, 1.25] 

describes a comparison of core power consumption of Altera’s EP3SL150 and Xilinx’s XC5VLX110 

which are 65nm devices. This provided a help to get an idea of power consumption in state of art, 

furthermore as it demonstrates the core power this provided additional help as pads (I/Os) of device stand 

alone can consume significant power and are not main concern of this work as eFPGA is an IP. The power 

consumption of the two devices is computed physically (core supply voltage and current) by mapping 

several benchmarks from opencores (opencores.org) to fill the devices. The reported total core powers of 

the devices are reported as 1.9W for EP3SL150 and 2.3W for XC5VLX110 respectively at 100MHz. We 

took the Altera results for next step as the demonstration was from Altera. We used the EPE (Early Power 

Estimator) tool utility of Altera which is freely available on their web to find the core static power of 

EP3SL150 which was found to be 269mW at 25 degrees. 

Pessimistic dynamic power: As dynamic power highly depends on the transition activities, it was very 

hard to get equivalent results. For that we made a pessimistic approach taking benefit of soft technology 

independence nature of eFPGA to get a rough idea for inspiration. Firstly in order to be fair in comparison 

we estimated the power consumption of an eFPGA with 150,000 LUT-6 (cluster 4, channel 32) which is 

lot more than 57000 ALMs of the target device, we did that because Altera device has several hard macro 

blocks (memories, multipliers etc.), routing architecture is much deeper, it will not be fair if we just 

compare on number of LUT bases. Secondly to be further pessimistic in order to get worst case figures we 

estimated power at different toggle rates (TR) and static probabilities (Stp) for a single Tile and multiplied 

the result by total tiles. Table 4.5 presents the results that we obtained for static power (SP) and dynamic 

power (DP) at 65nm (same target node).  We can see that our initial results of eFPGA are not so bad. 

Because there is no kind of power management in eFPGA at the moment and it’s a purely soft core with 

raw customized architecture compared to highly optimized full custom Altera FPGA and also not all tiles 

in eFPGA will be switching at the same level. Furthermore eFPGA is supposed to be very small (few 

thousand LUTs at maximum). This provided motivations for future innovations and foundation of system 

integration evaluation experiments of [S-7][S-8] (Chapter 5 will address that). 

 

65nm LP process. 1.0V, 25 degrees. 100MHz LVT SVT HVT 

Static Power (mW) 382 31.5 3.3 

Normal: Dyn. Power (W) @ (Tr-0.25,Stp-0.25) 6.9 6.732 7.794 

High: Dyn. Power (W) @ (Tr-0.50,Stp-0.5) 14.29 13.99 16.14 

Very High: Dyn. Power (W) @ (Tr-1.0,Stp-0.50) 28.61 28.01 32.33 

Table 4.5: Pessimistic Power of 150000 LUT6 eFPGA at different threshold voltages 
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4.2 Explorations with Tile Customization (eFPGA Creator) 
This section provides second level of research explorations of this thesis work for eFPGA architectural 

exploration. In section 4.1 we covered the basic fundamentals which in addition to survey knowledge of 

chapter 2 provided practical knowledge and motivations for the research work. As was discussed in 

introduction of section 4.1, in basic explorations we were restricted to only higher/coarse grain 

customization experiments due to limitations of CAD tools and adaptable VHDL. Compared to previous 

section where SB was almost a black box in a way we could not change anything other than channel size, 

this section specifically focuses on SB customization (for a comparison with scientific literature in some 

ways similar to the Fc,in and Fc,out research challenges). Section 4.2.1 provides general motivations along 

with some further architectural challenges which are more appropriate and easy to discuss at this point. It 

provides the experimentation methodology, tools, benchmarks used for experiments. Sections 4.2.2 and 

4.2.3 are the core of this section and describes detailed experiments for SB-R and SB-eLB multiplexers 

(figure 4.1) respectively, section 4.2.4 briefly address the combination of best results of these two sections 

to find the optimal architectures of this research work. Finally section 4.2.5 addresses some further 

investigation frontiers which will also provide ease for some of the discussions of chapter 6.  

4.2.1 Experimentation motivations and methodology 
This section provides fundamental motivations for these second levels of experiments and the 

experimentation methodology for the experiments by explaining the CAD tools and benchmarks. 

1- General motivations 
Since the motivation behind this thesis work is to investigate soft eFPGAs, this in some aspects make/can 

make the exploration challenges and issues relatively different than full custom layout based FPGAs which 

are common in all commercial devices and academic research (VPR/VPR-like) have also mostly focused 

on full custom device based FPGAs as they are mainstream. In case of soft eFPGA all the switching is 

done through standard cell library multiplexers of target node (no pass-transistors/tri-state buffers etc.). In 

some manners it can change the architectural scenario significantly. 

 
Fig. 4.18: The equivalent comparison of classical soft and soft eFPGA architecture  

 

Custom vs Soft Hardware: Figure 4.18 theoretically explains the scenario of a classical CB based 

architecture equivalent (clone) soft eFPGA architecture model and the unified SB based soft eFPGA model 

that is investigated in this thesis work. If we briefly analyze the figure some interesting observations can be 

made which also highlight the pros and cons of the two styles. For making a rough equivalent comparison 
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assume a LUT size of 4, cluster size of 4 and channel size of 48 (are quite realistic parameters). We assume 

Fc values to be 1 (for input and output) and Fs = 3.  If we analyze the two models of figure 4.18 we come 

across following results. 

 Classical: Muxs, CBin = 48bit, LI = 14bit, CBout <= 5bit, SB = 3bit;    Conf = (6+4+3+2)bits 

 Unified SB: Mux, SB-eLB <= 100bit, SB-R <= 7bit;   Conf = (7+3)bits 

These are the worst case possible results for the two cases. If we take a closer look at the results and figure 

4.18 we can see that for the worst case the unified SB model is larger in terms of area (immense sized SB-

eLB multiplexer) but will be relatively faster than classical approach as the total mux depth (10bits) is 

lesser than the classical architecture (15bits). Another big difference between the layouts based architecture 

and soft counterpart is that in custom layout the CB multiplexers are implemented (often) with pass-

transistors. This while logically creates same scenario, is practically quite different compared to 

multiplexers. In custom layout the CB size (Fc,in and Fc,out) do not have a significant effect on speed due 

to obvious reason of pass-transistors based switching [Betz&Rose99, 4.1][Marquardt.Betz.Rose00, 4.10]. 

However in case of multiplexers the delay will significantly vary as CB muxes depth will vary with Fc 

value. This provides some initial motivations to explore the potentials and customizations of unified SB 

model if it can have better silicon efficiency compared to classical model (in soft eFPGA scenario). 

Inspiration from State of Art: The classical CB based custom architecture shown in figure 4.18 is based 

on VPR architecture model which is/has been widely used and experimented in research community and 

most of the works have tried to improve some aspects of it without/rarely making any fundamental change. 

If we analyze the state of art several different kinds of topologies and styles exist particular to the vendors. 

VPR is closely related to Altera (due to historical reasons [1.24]). In [1.22][1.26] Lewis et al have 

explained Altera architecture based on enhancement of VPR to state of art. Appendix A1 provides 

examples of state of art FPGA patents, which have some aspects similar but very different architecture 

styles. They also provided some additional motivation to explore some different what-if cases. 

Unified SB inspirations: Some of the motivations described above and specific exploration flexibility and 

ease enabled by eFPGA creator provided an inspiration to experiment some different architectural scenario 

compared to re-addressing and improving the classical VPR model architecture. The unified SB 

architecture is partly similar to classical architecture that is widely addressed in research. These relatively 

new kind of experiments are less addressed in research due to somehow VPR wide sense limitations and 

will be a good contribution to community for observing and cross analyzing some new what-if scenarios. 

The next section describes some of the key exploration objectives and motivations behind them. 

2- Exploration objectives 
The key objective of these explorations is to customize the SB-R and SB-eLB multiplexers as shown in 

figure 4.19 to create more silicon efficient architectures and observe how competitive this solution is 

compared to CB +LI based classical architecture. The major objectives can be described as follows. 

 How suitable/penalizing it is to completely remove the fully connected local interconnect (LI) 

 The effect of SB-R and SB-eLB multiplexers customization on silicon efficiency 

 The effect of SB-R and SB-eLB multiplexers customization on routing flexibility (channel width 

requirements for successful routing) 

 The effect of SB-R and SB-eLB multiplexers customization on routing efforts (routing time, routing 

iterations change due to decreased flexibility of routing because of customization) 

 What are the best ways/styles to create efficient custom architectures 

 The algorithmic friendly ways of efficient customizations to augment them easily into eFPGA Creator 

for wider design space exploration 

 Exploration in discrete  manner to clearly identify effect of each customization 
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Fig. 4.19: The investigation objectives of SB customization  

3- CAD flow and Benchmarks 
These experiments were conducted using the eFPGA Creator and eFPGA Programmer tools that we 

discussed in chapter 3 (the tools from 3Q 2010 version were used for these experiments). The customized 

tiles (SB, eLB) were created using the graphical infrastructure of library manager (chapter 3). The 

hardware of eFPGA was auto generated and silicon implemented by hardware generators of eFPGA 

Creator (chapter 3). The target node used for the experiments was ST65nm LP-SVT process. The timing 

information about the experimented architectures for eFPGA Programmer are obtained by the extractions 

of timing (.sdf, .v files of Design Compiler, only front-end was used in presented experiments) information 

from silicon flow. The experiments were focused on a LUT size of 4, cluster size 4, channel size 48. The 

eFPGA cores of 1024LUTs and 256 I/Os were created for every custom tile for experimentation using the 

architecture manager (chapter 3). 

For the benchmark applications we selected 10 benchmarks from section 4.1 and added one more MCNC 

benchmark (k2). The 11 benchmarks that are used in the following experiments are shown in table 4.6. We 

can notice a decrease in the number of LUT4 for the benchmarks compared to table 4.1 (SIS mapping). 

The enhanced quality is due to the mapping done by eFPGA Programmer which uses a slightly modified 

version of ABC mapping tools of Berkeley University [4.83][Brayton&Mishchenko10, 4.86]. 

S No. Circuit inputs outputs I/Os LUT4 

1 ex5p 8 63 71 240 

2 tseng 52 122 174 743 

3 apex4 9 19 28 742 

4 misex3 14 14 28 426 

5 alu4 14 8 22 614 

6 diffeq 64 39 31 714 

7 seq 41 35 76 781 

8 apex2 38 3 41 714 

9 k2 45 45 90 546 

10 s298 4 6 10 856 

11 ex1010 10 10 20 922 

Table 4.6: Selected benchmarks for tile customization experiments, mapped with eFPGA Programmer 
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4.2.2 SB-Routing Multiplexers optimization 
This section details the explorations of different customization ways of SB-R (routing) multiplexers 

optimization. It first describes the experimented custom architectures properties and then the silicon 

implementation and benchmark mappings results are presented in detail. 

1- Custom Architecture types 
The SB-R multiplexers (figure 4.19) are the routing multiplexers which allow switching of different 

routing tracks inside the SB and transmission of outputs of eLBs to the routing network. The objective is to 

reduce the size of these multiplexers in such a way that more silicon efficient (area, power, speed) 

architecture is created with minimal tradeoff to the routing efficiency for mapped applications. For 

experimentation seven distinct types of customizations were investigated based on the knowledge of 

chapter 2 and section 4.1. All of them have LUT size 4, cluster size 4. Choosing a fixed LUT size and 

Cluster size for exploration is also a what-if motivation for specifically investigating a scenario where 

some fundamental parameters are fixed and for them best routing architecture is explored. The inspiration 

partially came from state of art where often the fundamental parameters are fixed to an apparent magic 

value which are often similar (LUT4, Cluster4; LUT4, Cluster8 etc. which do not change often/abruptly in 

different generations of architecture) while the routing architecture varies. 

They can be divided in three themes which are discussed below and shown in figure 4.20 in detail with 

their architectural properties (including algorithmic description for more complex structures). 

Base (Full) 

tsr_F: Represents the base for reference with highest flexibility for routing. This case was used throughout 

section 4.1 in the presented experiments and represents the worst case in section 4.2 experiments. 

Theme/Strategy 1 (cutting ports partly/fully) 

The customizations of this theme are partly inspired by our state of art discussions in chapter 2 (figure 

2.10) for routing architecture sides. It addresses the effects of cutting eLB outputs partly/fully from ports. 

tsr_noN: The traffic of eLB outputs is fully cut from North (N) port, {three-sided routing}. 

tsr_noNE: The traffic of eLB outputs is fully cut from North (N) and East (E) ports, {two-sided routing}. 

tsr_50pAll: The traffic of eLB outputs is distributed to 50% of all four ports. In principle it is equal to 

tsr_noNE scenario, instead of fully cutting two ports 50% of each port is used. 

Theme/Strategy 2 (diverse customization) 

The customizations of this theme address diverse customization in different forms in such a way that every 

SB-R multiplexer has one eLB output connected instead of all. As the Fs value is fixed to 3 this provides a 

near perfect scenario from multiplexer size point of view making it an optimal value of 4 from 

configuration (full 2 bit) stand point. This is also an interesting motivation issues (particularly for soft 

eFPGA as its harder to make custom fast paths/mux inputs which are common in state of art) which is/has 

been often ignored in research works, adding a single more input (increase Fs or eLBout) will lead to 

abrupt move to higher underutilized configuration value (3 bit) and delay penalty of increased multiplexer 

depth. Since SB-R multiplexers are huge in terms of quantity (channel size are usually high for realistic 

architectures) the penalty of area and delay (critical paths often pass through several SB) is multiplied. 

tsr_c1: The eLB outputs are distributed as one on each port. This represents the similar classical scenario 

in VPR architecture where each LB pin is only connected to one side of routing tracks through input or 

output CB (relatively more layout friendly way for full custom).  
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tsr_c2: The eLB outputs are smoothly connected to all four ports in the manner shown mathematically in 

figure 4.20. This highlights a differentiating factor of eFPGA architecture with unified SB enabled by 

eFPGA Creator and eFPGA Programmer to exploit. In conventional VPR architecture it is not possible to 

create such connections as each pin of LB is dedicated to one side through a CB prohibiting such type. 

tsr_c3: In a similar motivation like tsr_c2 the eLB outputs are distributed in further diverse and interleaved 

manner explained mathematically in figure 4.20 along with some issues related to channel size 

For all the cases in the seven custom tiles the SB-eLB multiplexers are kept fixed to the worst case 

scenario of highest flexibility to clearly observe the effect of each customization of SB-R. 

2- Silicon Properties 
The silicon properties (ST65nm LP-SVT) of all the above mentioned custom tiles are described in table 4.7 

for a LUT size 4, cluster size 4 and channel size 48 (represented as tsr_Ls Cs Chs, tsr_4 4 48 for instant 

readability of fundamental properties). The table shows details of area and configuration breakdowns of 

major components of the tile. The logic density (LUTs/mm
2
), the static power and pessimistic dynamic 

power with default toggle rates and static probability values of Design Compiler. It is interesting to note 

the silicon properties according to the discussions of the seven tiles above. We can see that tsr_noNE and 

tsr_50pAll have same area; similarly all the tiles of theme 2 are architecturally equivalent from silicon 

point of view. Figure 4.21 and 4.22 graphically illustrates the properties of area and logic density showing 

how silicon efficient the custom tiles are compared to base tsr_F.  

3- Architectural analysis (benchmarks mapping) 
Finally we implemented all the benchmarks of table 4.6 on all the custom architectures, the results are 

illustrated in table 4.8 to table 4.10. Several parameters were analyzed to judge different customizations. 

The most important one is the maximum channel width used and critical path delay. The experiments are 

different also in a way that they are done in more practical and real-life like scenario. Instead of iterating 

for every benchmark individually to find minimum channel width (common in literature) all benchmarks 

are treated equally and mapped on a fixed architecture. The analyzers (chapter 3) gives the maximum 

channel used by each benchmark (provides roughly the equivalent of minimum channel width, see 

appendix A2 for more details) this helps to compare effect of different customizations as evident in the 

tables. The routing iteration tells about increased routing efforts/time tradeoff due to reduced flexibility of 

customization. The average channel width directly does not give much significant clue but is interesting to 

visualize how underused the channels are on average for any real scenario (was discussed it in section 4.1 

also). By observing the results we can see that tsr_50pall and tsr_c1 performed poorly compared to others. 

To further validate it we repeated all experiments on channel size of 36 (provide higher pressure on router) 

which are shown in table 4.11 to 4.13 proving the observation (see Appendix A2 for silicon statistics). 

If we analyze table 4.11 to 4.13 further in the light of figure 4.20 and figure 4.21 some interesting 

observations can be made. The tsr_noN and tsr_noNE both yield similar results, so the two-sided routing in 

the raw form is an interesting and more silicon efficient choice. The results of tsr_50pAll are surprising 

compared to tsr_noNE; it might be that cutting the 50% of all ports yield higher routing constraint 

compared to tsr_noNE as none of the channel can be fully exploited (plus there is no logical equivalence 

due to removed LI). The theme 2 except tsr_c1 yields the best silicon efficient and routing efficient (with 

very low tradeoff) architectures. We can clearly see the benefit of diversity here which distinguishes these 

experiments from several past works (CB based). It is interesting to note that tsr_c1 created the classical 

VPR-like architectural scenario where each LB pin is connected to one side of channels, due to lack of 

logical equivalence exploitation in this case due to eliminated LI, routing was severely constrained. The 

diversity of tsr_c2 and tsr_c3 almost nullified that problem yielding good routing efficiency despite no 

logical equivalence of eLB outputs. Figures 4.23 to 4.25 highlight the key outcomes of experiments, 

showing improved silicon efficiency (speed in particular), with negligible tradeoffs in routing efficiency. 
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Fig. 4.20: The series of SB-Routing mux customization 

 



- 113 - 

 

  
Base Theme 1 Theme 2 

ST 65LPSVT   

1.3V-m40C 
tsr_4448_F 

tsr_4448_ 

noN 

tsr_4448_ 

noNE 

tsr_4448_ 

50pAll 

tsr_4448 

_c1 

tsr_4448 

_c2 

tsr_4448 

_c3 

Conf. 

bits 

Total 468 444 420 420 372 372 372 

SBOX 400 376 352 352 304 304 304 

eLB 68 68 68 68 68 68 68 

Area 

(um²) 

Total 15023 14361 13794 13794 12740 12740 12740 

SB-R 2440 2064 1697 1697 1211 1211 1211 

SB-eLB 6720 6720 6720 6720 6720 6720 6720 

eLB 418 418 418 418 418 418 418 

Conf. 4043 3825 3686 3686 3257 3257 3257 

Buff. 1402 1334 1273 1273 1134 1134 1134 

Logic Density 

(LUT4/mm²) 
266 279 290 290 314 314 314 

Area Normalized to 

base arch. F 
1.00 0.96 0.92 0.92 0.85 0.85 0.85 

Power 

Static 

(nW) 
452 433 417 417 385 385 385 

Dyn.* 

(uW/MHz) 
3.67 3.57 3.33 3.32 3.06 3.04 3.06 

Table 4.7: Silicon properties of 7 custom routing mux tiles for channel size 48 (*pessimistic power) 

 

 
Fig. 4.21: Area breakdown for different SB-R customizations 

 

 
Fig. 4.22: Logic Density for different SB-R customized architectures 
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Circuit tsr_4448_F 

 
Ch. Max Ch. Avg R. Iter Delay(ns) 

ex5p 20 4.3 5 11.77 

tseng 20 8.4 5 13.6 

apex4 35 16.4 6 21 

misex3 25 8.3 5 13.1 

alu4 29 11.5 6 16.41 

diffeq 21 8.9 5 15.64 

seq 33 15.4 6 16.7 

apex2 36 14.17 7 18.4 

k2 30 11.1 5 17.28 

s298 36 17.3 7 23.87 

ex1010 35 18.7 8 20.45 

Arith. Mean 29.1 12.22 5.91 17.11 

Table 4.8: PAR results for tile tsr_4448_F 

 

Circuit tsr_4448_noN tsr_4448_noNE tsr_4448_50pAll 

 
Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 
R. Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 
R. Iter 

Delay 

(ns) 

ex5p 23 4.7 5 10.42 21 5.2 5 10.22 20 4.5 5 10.31 

tseng 22 8.9 5 14.58 22 9.5 5 12.1 20 8.4 6 13.1 

apex4 35 16.6 7 18.12 35 17.3 8 16.1 RF 
   

misex3 26 8.4 6 11.57 28 9 5 11.55 22 8.4 7 11.53 

alu4 31 11.7 6 14.59 29 12.3 7 13.72 26 11.7 7 16.28 

diffeq 25 9.4 6 14.89 27 9.8 6 14.14 22 9.3 7 15.74 

seq 33 15.9 6 14.42 36 17.12 7 13.33 29 16.2 10 15.82 

apex2 40 14.9 7 16.8 35 15.8 7 16.22 29 14.9 9 16.44 

k2 30 11.5 7 13.48 32 12.4 7 12.51 25 11.8 9 14.29 

s298 38 18 7 22.16 41 19.42 7 18.47 RF 
   

ex1010 37 19.32 7 17.95 36 20.5 7 16.36 RF 
   

Arith. 

Mean 
30.91 12.67 6.27 15.36 31.1 13.48 6.45 14.06 24.1 10.65 7.5 14.19 

Table 4.9: mapping results of tsr_4448 theme1 tiles 

 

Circuit tsr_4448_c1 tsr_4448_c2 tsr_4448_c3 

 
Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 
R. Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

ex5p 24 5.4 6 9.37 18 4.4 4 8.1 19 4.4 5 8.38 

tseng RF 
   

20 8.4 6 11.2 20 8.4 6 10.6 

apex4 RF 
   

38 15.8 6 14.6 35 15.7 7 13.58 

misex3 30 9.5 6 10.07 26 7.87 6 9.28 27 8 5 9.37 

alu4 31 13.2 6 13.05 29 11.3 6 11.67 29 11.3 5 11.43 

diffeq RF 
   

26 9 5 11.62 23 9 6 11.65 

seq RF 
   

33 15 7 11.41 32 15 7 12.43 

apex2 RF 
   

31 14.1 7 13.91 32 14 7 13.69 

k2 36 13.3 6 13 28 11.2 7 11.13 31 11 7 10.19 

s298 RF 
   

36 16.6 7 18.45 34 17 7 17.1 

ex1010 RF 
   

37 18.5 14 14.02 35 18.4 13 14.25 

Arith. 

Mean 
30.25 10.35 6 11.37 29.3 12 6.82 12.31 28.82 12.02 6.8 12.06 

Table 4.10: mapping results of tsr_4448 theme2 tiles 
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Circuit tsr_4436_F 

 
Ch. Max Ch. Avg R. Iter Delay(ns) 

ex5p 21 4.49 5 12.85 

tseng 21 8.4 7 14.08 

apex4 33 16.83 8 20.22 

misex3 25 8.1 6 12.36 

alu4 26 11.84 7 16.41 

diffeq 22 9.1 6 16 

seq 32 15.98 8 15.86 

apex2 30 15.24 7 18.57 

k2 29 11.38 6 15.61 

s298 32 17.84 9 24.94 

ex1010 33 19.45 8 20.27 

A. Mean 27.64 12.6 7 17.02 

Table 4.11: PAR results for tile tsr_4436_F 

 

Circuit tsr_4436_noN tsr_4436_noNE tsr_4436_50pAll 

 
Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 
R. Iter 

Delay 

(ns) 

ex5p 22 4.8 5 11.84 21 5.2 5 10.2 19 4.6 6 11.8 

tseng 24 8.9 5 12.81 20 9.7 6 12.29 19 8.5 7 12.7 

apex4 33 17.5 8 18.2 33 17.8 9 16.2 RF 
   

misex3 26 8.6 6 12.1 29 9.4 6 11.1 22 8.4 9 13.3 

alu4 29 11.8 6 14.2 29 12.7 7 13.3 22 12.3 60 14.66 

diffeq 23 9.3 7 15 25 9.8 6 14.11 18 9.4 14 16.39 

seq 30 16.5 7 14.6 33 17.5 7 13 RF 
   

apex2 32 16 8 16.6 32 17 8 15.58 RF 
   

k2 30 12 6 14.44 31 12.9 7 12.33 RF 
   

s298 36 18.3 8 22.97 33 19.8 11 20.9 RF 
   

ex1010 34 20.5 10 17.3 34 21.2 20 17.4 RF 
   

Arith. 

Mean 
29 13.1 6.9 15.46 29.1 13.9 8.4 14.22 20 8.64 19.2 13.77 

Table 4.12: mapping results of tsr_4436 theme1 tiles 

 

Circuit tsr_4436_c1 tsr_4436_c2 tsr_4436_c3 

 
Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

ex5p 25 5.73 5 9.75 20 4.6 6 8.98 22 4.48 5 8.8 

tseng RF 
   

20 8.3 6 10.83 20 8.3 5 11.03 

apex4 RF 
   

RF 
   

RF 
   

misex3 26 9.8 6 10.37 25 8.2 8 9.4 23 8.2 7 9.59 

alu4 30 13.7 7 12.35 27 11.3 10 11.46 26 11.4 10 11.64 

diffeq RF 
   

22 8.96 7 12.84 24 8.78 6 12.87 

seq RF 
   

31 15.6 8 12.27 30 15.8 8 11.57 

apex2 RF 
   

33 14.9 7 14.16 33 14.7 7 13.85 

k2 32 14 7 12.07 28 11.6 8 11.83 29 11.5 7 11.8 

s298 RF 
   

RF 
   

RF 
   

ex1010 RF 
   

RF 
   

RF 
   

Arith. 

Mean 
28.3 10.8 6.25 11.14 25.8 10.43 7.5 11.47 25.9 10.4 6.9 11.39 

Table 4.13: mapping results of tsr_4436 theme2 tiles 
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Fig. 4.23: Average critical path delay of benchmarks for different SB-R customizations 

 

 
Fig. 4.24: Average routing statistics of benchmarks for different SB-R customizations  

 

 
Fig. 4.25:  Silicon tradeoffs for different SB-R customizations (*pessimistic power) 
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4.2.3 SB-eLB Interconnect Multiplexers optimization 
In a similar fashion and motivation like the previous section, this section details the explorations of 

different customization ways of SB-eLB multiplexers optimization. It first describes the experimented 

custom architectures properties and then the silicon implementation and benchmark mappings results are 

presented in detail. 

1- Custom Architecture types 
The SB-eLB multiplexers (figure 4.19) are the routing multiplexers which allow switching of different 

routing tracks to the inputs of eLBs or in other words connect eLB inputs to the routing network. These 

multiplexers are lesser in quantity compared to SB-R muxes but much larger in size (figure 4.19). The 

objective is to reduce the size of these multiplexers in such a way that more silicon efficient (area, power, 

speed) architecture is created with minimal tradeoff to the routing efficiency for mapped applications. For 

experimentation seven distinct types of customizations were investigated in a similar fashion like SB-R 

explorations of previous section. 

They can be divided in three themes similar to SB-R explorations which are discussed below and shown in 

figure 4.26 in detail with their properties. The feedbacks (eLB outputs) are fully connected to eLB inputs. 

Base (Full) 

tse_F: Exactly similar like tsr_F of previous section. It provides the base case for reference with highest 

routing flexibility (worst silicon efficiency). It represents worst case of figure 4.19. 

Theme/Strategy 1 (cutting ports partly/fully) 

The customizations of this theme are partly inspired by our state of art discussions in chapter 2 (figure 

2.10) for routing architecture sides. It addresses the effects of cutting eLB inputs partly/fully from ports. 

tse_noN: The eLB inputs are fully cut from traffic of North (N) port, {three-sided routing}. 

tse_noNE: The eLB inputs are fully cut from North (N) and East (E) port traffic, {two-sided routing}. 

tse_50pAll: The eLB inputs are connected to 50% of all four ports of SB. In principle it is architecturally 

equivalent to tse_noNE, instead of fully cutting two ports 50% of all four are used. 

Theme/Strategy 2 (diverse customization) 

The customizations of this theme address diverse customization in different forms in such a way that every 

eLB input is connected to an equivalent of a single port only (four times optimal than the base case) 

yielding a highly silicon efficient solution particularly in terms of area (since SB-eLB muxes are very large 

as we noticed also in section 4.1 silicon discussions). 

tse_c1: Each eLB input in a repetitive order as LUT input in cluster is diversely connected to all four ports 

in a manner shown mathematically in the figure 4.26. 

tse_c2: In a similar fashion like tse_c1 the eLB inputs are diversely connected in more interleaved form to 

all four ports in the mathematical manner shown in figure 4.26. 

tse_c3: Each eLB input in a repetitive order as LUT inputs in cluster is connected to a single port. This 

represents a near similar classical scenario of VPR-like CB based architecture where each pin is connected 

to a single side of routing through the CB (relatively more layout friendly way for full custom). 
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For all the cases in the seven custom tiles the SB-R multiplexers are kept fixed to the worst case scenario 

of highest flexibility to clearly observe the effect of each customization of SB-eLB. Furthermore eLB 

outputs are fully connected to each eLB input in these experiments providing full flexibility. 

2- Silicon Properties 
The silicon properties (ST65nm LP-SVT) of all the above mentioned custom tiles are described in table 

4.14 for a LUT size 4, cluster size 4 and channel size 48 (represented as tse_Ls Cs Chs, tsr_4 4 48 for 

instant readability of fundamental properties). The table shows details of area and configuration 

breakdowns of major components of the tile. The logic density (LUTs/mm
2
), the static power and 

pessimistic dynamic power with default toggle rates and static probability values of Design Compiler. It is 

interesting to note the silicon properties according to the discussions of the seven tiles above. We can see 

that tse_noNE and tse_50pAll have same area; similarly all the tiles of theme 2 are architecturally 

equivalent from silicon point of view. Furthermore we can also observe the configuration size abrupt 

change issue partly here (in a slightly different scenario). Moving from tse_F to tse_noN we observe that 

the area goes down obviously but configuration size is same (will not always be the case) due to large 

multiplexer sizes of SB-eLB, when we go higher in mux size the addressable range dramatically changes 

due to obvious reasons (e.g conf. size of 7 can select from 65 to 128 signals). Figure 4.27 and 4.28 

graphically illustrates the properties of area and logic density showing how silicon efficient the custom 

tiles are compared to base tsr_F. Compared to SB-R investigation here we see dramatic improvements in 

area due to high gains of SB-eLB mux size customization (particularly for theme 2) as shown in graphs. 

3- Architectural analysis (benchmarks mapping) 
Finally we implemented all the benchmarks of table 4.6 on all the custom architectures, the results are 

illustrated in table 4.15 to table 4.17. In a similar fashion and motivations described in SB-R explorations 

we observed the effects of customization on channel demands, routing iteration and delay of critical path. 

If we analyze table 4.15 to 4.17 further in the light of architecture properties (figure 4.26), silicon 

properties (table 4.14 and figure 4.27) and knowledge gained from SB-R investigations some interesting 

observations can be made. In a similar manner like was for SB-R the tse_noN and tse_noNE both yield 

similar results, so the two-sided routing in the raw form is an interesting and more silicon efficient choice. 

The results of tse_50pAll are poor in this case too. Theme 2 (except tse_c3) provides the best silicon 

efficient architectures with acceptable tradeoff in terms of channel demand.  As we observed poor results 

for the SB-R case of tsr_c1 similar scenario was observed in SB-eLB for an equivalent case of tse_c3 in 

which we distributed the eLB inputs in a classical CB based VPR-like architecture style to unique ports. 

Due to lack of logical equivalence (eliminated LI) poor results were obtained. The diverse distribution of 

tse_c1 and tse_c2 greatly nullified that problem. It is important to note that for SB-eLB experiments the 

natural logical equivalence of eLB inputs in a marginal/group form as LUT (BLE) inputs was not exploited 

as it was not fully supported by the version of eFPGA Programmer which was used for experiments. That 

feature is almost universal in all commercial FPGAs (adaptable LUT configuration) and assumed in all 

research works (VPR etc.). Revising these experiments with this marginal equivalence exploitation will 

further improve the presented results. 

Figures 4.29 to 4.31 illustrate the key aspects of research findings of table 4.15 to 4.17. It is interesting to 

note that for the case of SB-eLB explorations we achieved a significant gain for the area (logic density) but 

for the critical path delay the effect was nearly flat (to better illustrate, in the graphs compared to tables we 

took the average of each case by ignoring last two benchmarks). The reason is that often the critical path 

passes to several SBs in its way to reach other tiles. Hence multiple SB-R crossings dominate the total 

delay compared to fewer SB-eLB crossings. The physical long wires and improved routing algorithms can 

further help and better exploit more silicon efficient architectures. Nevertheless with SB-R and SB-eLB 

explorations we have greatly improved the eFPGA architectural efficiency with negligible tradeoff on 

routing efficiency (win-win situation) compared to base architectures which we explored in section 4.1.  



- 119 - 

 

 
Fig. 4.26: The SB-eLB multiplexers optimizations experiment custom architectures 
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Base Theme 1 Theme 2 

ST 65LPSVT 

 1.3V-m40C 
tse_4448_F 

tse_444_ 

noN 

tse_4448_ 

noNE 

tse_4448_ 

50pAll 

tse_4448 

_c1 

tse_4448 

_c2 

tse_4448 

_c3 

Conf. 

bits 

Total 468 468 452 452 436 436 436 

SBOX 400 400 384 384 368 368 368 

eLB 68 68 68 68 68 68 68 

Area 

(um²) 

Total 15023 13550 11769 11758 9881 9881 9881 

SB-R 2440 2440 2440 2440 2440 2440 2440 

SB-eLB 6720 5232 3600 3600 1984 1984 1984 

eLB 418 418 418 418 418 418 418 

Conf. 4043 4066 3960 3960 3810 3810 3810 

Buff. 1402 1394 1351 1340 1229 1229 1229 

Logic Density 

(LUT4/mm²) 
266 295 340 340 405 405 405 

Area Normalized to 

base arch. F 
1.00 0.90 0.78 0.78 0.66 0.66 0.66 

Power 

Static 

(nW) 
452 415 365 365 304 304 304 

Dyn.* 

(uW/MHz) 
3.67 3.45 2.87 2.91 2.44 2.41 2.42 

Table 4.14: Silicon properties of 7 custom SB-eLB mux tiles for channel size 48 (*pessimistic power) 

 

 
Fig. 4.27: Area breakdown for different SB-eLB customizations 

 

 
Fig. 4.28: Logic Density for different SB-eLB customized architectures 
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Circuit tse_4448_F 

 
Ch. Max Ch. Avg R. Iter Delay(ns) 

ex5p 20 4.27 5 11.77 

tseng 20 8.4 5 13.6 

apex4 35 16.4 6 20.99 

misex3 25 8.26 5 13.1 

alu4 29 11.49 6 16.41 

diffeq 21 8.93 5 15.64 

seq 33 15.37 6 16.7 

apex2 36 14.2 7 18.38 

k2 30 11.1 5 17.28 

s298 36 17.3 7 23.87 

ex1010 35 18.7 8 20.45 

Arith. Mean 29.1 12.22 5.91 17.11 

Table 4.15: PAR results for tile tse_4448_F 

 

Circuit tse_4448_noN tse_4448_noNE tse_4448_50pAll 

 
Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

ex5p 23 5 5 11.65 27 5.72 6 12.92 18 4.54 6 11.88 

tseng 28 9.2 6 13.44 24 11 7 14.64 20 8.6 6 14.12 

apex4 36 17.6 7 20.72 39 20.25 7 19.96 RF 
   

misex3 28 8.9 6 12.73 31 10.4 8 13.3 23 8.5 7 12.54 

alu4 31 12.3 7 17.8 33 14.3 8 17.73 24 12 10 16.98 

diffeq 24 9.6 7 15.93 29 11.7 7 17.2 19 9 7 15.6 

seq 37 16.9 7 16.13 37 19.2 7 15.84 RF 
   

apex2 34 15.6 7 19.35 38 18.8 8 19.23 24 16.4 94 22.84 

k2 33 12.7 7 14.06 36 14.4 7 16.56 25 13.4 55 18.57 

s298 41 19.1 7 24.5 41 21.3 8 28.06 RF 
   

ex1010 38 20.7 8 21.06 41 24.5 8 21.98 RF 
   

Arith. 

Mean 
32.1 13.4 6.7 17.03 34.2 15.6 7.4 17.95 21.86 10.3 26.43 16.08 

Table 4.16: mapping results of tse_4448 theme1 tiles 

 

Circuit tse_4448_c1 tse_4448_c2 tse_4448_c3 

 
Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 
R. Iter 

Delay 

(ns) 

Ch. 

Max 

Ch. 

Avg 

R. 

Iter 

Delay 

(ns) 

ex5p 30 6.5 6 10.9 30 6.4 6 12.01 32 7.3 6 12.8 

tseng 25 9.4 5 12.76 27 9.4 5 13.1 RF 
   

apex4 42 23.5 10 20.63 41 23.5 24 21.2 RF 
   

misex3 34 12.3 6 12.25 33 12.2 7 11.2 33 13.6 8 13.41 

alu4 36 16.9 7 15.46 38 16.7 7 17.2 37 18.2 7 16.74 

diffeq 27 10.4 6 15.34 26 10.7 6 15.34 RF 
   

seq 39 23.5 15 15.92 43 23 12 15.3 RF 
   

apex2 41 22.36 12 17.85 40 22.5 10 19.23 RF 
   

k2 38 15.8 7 15.4 39 15.78 8 15.63 39 17.6 8 15.9 

s298 RF 
   

RF 
   

RF 
   

ex1010 RF 
   

RF 
   

RF 
   

Arith. 

Mean 
34.7 15.63 8.22 15.17 35.2 15.58 9.4 15.58 35.25 14.18 7.25 14.7 

Table 4.17: mapping results of tse_4448 theme2 tiles 
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Fig. 4.29: Average critical path delay of benchmarks for different SB-R customizations 

 

 
Fig. 4.30: Average routing statistics of benchmarks for different SB-eLB customizations 

 

 
Fig. 4.31: Silicon tradeoffs for different SB-eLB customizations (*pessimistic power) 
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4.2.4 Combined optimizations and explorations 
This section provides general comparison of the results achieved in SB-R and SB-eLB customization 

investigations in the previous sections with the classical architecture published results (VPR-like). It 

investigates merging of the SB-R and SB-eLB explorations to find joint optimal architecture for these 

investigations. A brief overview of the process node parameters variation like threshold voltage, process 

type etc. on power vs speed on the best found architecture is also presented. 

1- General Comparison with classical architecture 
In the previous sections we extensively explored different dimensions of customization of SB-R and SB-

eLB multiplexers to find silicon efficient architectures with only marginal tradeoff in routing efficiency 

due to decreased flexibility. It will be interesting to revisit figure 4.18 and make some comparisons with 

published results of classical architecture to find what we have achieved through these new experiments 

and what pros and cons were observed. Although full direct comparison (silicon+architecure) is relatively 

difficult to make since we are not investigating layout based architectures. However the relative 

comparison of logical architecture (in terms of parameters like Fc etc.) can be roughly made to get an idea. 

[Marquardat.Betz.Rose00, 4.10] has investigated the tradeoffs of cluster based FPGAs (VPR) and found 

that for MCNC benchmarks the best value for Fc,in for cluster size of 4 (our case) is 0.6W and W/N for 

Fc,out. According to our explored investigations in previous sections we found the optimal values of SB-R 

multiplexers to be Fs+1 (tsr_c2 and tsr_c3 topologies) and for SB-eLB multiplexers to be U+N (tse_c1 and 

tse_c2 topologies), however they were explored and found separately (next section will address that). 

Figure 4.32 illustrates these results in connection with figure 4.18. We can clearly observe that these new 

experiments by exploiting the diverse form of connectivity of logic block (eLB) inputs and outputs to the 

routing network through unified SB has led to attractive results which rival the widely addressed classical 

architecture with connection block and fully connected local interconnect. It is worth noticing that the 

experiments that we conducted were not exploiting the natural logical equivalence of LUT inputs, 

exploiting that will further help improving results which are already attractive. The next section explores 

the combination of best results of previous two sections to investigate how well they perform together. 

 
Fig. 4.32: Architectural results comparison between classical (CB+LI) and unified SB eFPGA 

2- Combined experiments for SB-R+SB-eLB joint best cases 
In the previous section we observed high architectural efficiency (figure 4.32) achieved through unified SB 

with diverse connectivity of eLB inputs and outputs to the routing network by independently exploring SB-

R and SB-eLB customizations. This section investigates merging of the explorations to find optimal 

benefits of both cases. We observed during explorations, that SB-R customizations led to significant 

improvements in speed (figure 4.25), while SB-eLB was yielding significant improvements for logic 

density (figure 4.31). The joint explorations were conducted in six different cases divided into three themes 

which are described below. For simplicity detailed exploration results for benchmarks mapping and silicon 

statistics of tiles are not presented, they can be found in Appendix A2. 
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Theme 1 (Combining the best cases of SB-R and SB-eLB) 

In the first theme, the best cases of SB-R (tsr_c2, tsr_c3) and SB-eLB (tse_c1, tse_c2) were explored in the 

form of two cases which are shown below. They failed to map any benchmark application, the reduced 

flexibility of the best cases combined was too-restrictive for router to route the benchmarks. It will be 

interesting for future investigations to better understand reasons and innovations to address that. 

Case 1: SB-R c2 + SB-eLB c1  ; Case 2: SB-R c3 + SB-eLBc2  

Theme 2 (Combining second best of SB-R and best of SB-eLB) 

From the knowledge of unsuccessful behavior of theme 1, the degree of hardware routing flexibility was 

increased in hybrid way. The second best case of SB-R exploration that was two ports elimination 

(tsr_noNE) was selected as SB-R and the best cases of SB-eLB (tse_c1, tse_c2). The two explored cases 

are shown below. Unlike theme 1 theme 2 explorations succeeded to map benchmarks effectively, the 

detailed exploration results can be seen in appendix A2. 

Case 3: SB-R noNE + SB-eLB c1  ; Case 4: SB-R noNE + SB-eLB c2 

Theme 3 (Combining best of SB-R and second best of SB-eLB) 

In a similar fashion like theme 2, in theme 3 the best case of SB-R (tsr_c2, tsr_c3) and second best case of 

SB-eLB with two ports elimination (tse_noNE) was used. The experiments were successful like theme 2. 

The details of experiments can be found in appendix A2. 

Case 5: SB-R c2 + SB-eLB noNE  ;  Case 6: SR-Rc3+SB-eLB noNE 

 

Fig. 4.33: Detailed analysis of Silicon tradeoffs for all experiments (*pessimistic power)  
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innovations (tsr), SB-eLB innovations (tse) and the combined effect of theme 2 (best for area) and theme 3 

(best for speed). For theme 2 and theme 3 both the corresponding cases provided near similar result so 
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anyone can be chosen. So in conclusion of the long explorations, two architectures can be presented as the 

overall best (Golden Tiles). Their detailed silicon properties can be found in appendix A2. 

 t_4-4-X_rc2-enoNE (Theme 3: Case 5): Best for Speed 

 t_4-4-X_rnoNE-ec1 (Theme 2: Case 3): Best for Area and Power 

Based on target needs/constraints (area, speed, power etc.) the best eFPGA Core can be created with 

selecting one of these tiles pattern (LUT-4, Cluster-4) with suitable channel size (48 was used in presented 

experiments, can highly vary based on target applications as we discussed in section 4.1.4). 

3- Effect of threshold and process node type (power vs speed) 
We outlined the effect of threshold voltage on power and speed in discussions of power consumption 

challenges in section 4.1.5. This section provides a revisit to the discussions with extended experiments. 

We took the best tile (Theme 2: Case 3) from previous section and analyzed in detail the effect of threshold 

voltage and process type on power vs speed. The details of experiments are discussed below. 

Table 4.18 shows the details of silicon statistics of the tile on various options of ST65nm process. What is 

further interesting in these experiments compared to the section 4.1.5 experiments is that in these 

experiments the GP (General Purpose) process is also experimented in addition to LP (Low Power) which 

was not available to us when we conducted the experiments of section 4.1 [S-9]. This allows observing the 

relative effect between LP and GP process on power and speed on same process node (we observed cross 

90nm GP and 65nm LP comparison in figure 4.15). We can clearly observe the huge impact of threshold 

voltage and process type on static power. It is important to note that there is a slight difference in supply 

voltage (power has a square relation with voltage). We tried to make as best equivalent comparison as 

possible. For both cases the equivalent nominal case libraries for LP and GP were used. We can see the 

high variation of static power with the change of threshold voltage from low to high and despite a small 

difference in supply voltage, a phenomenal shoot in static power for GP process. The last row of the table 

highlights the magnitude of change in static power in relation with LPSVT process which we used 

throughout for majority of our experiments in this thesis work.  

ST 65nm Process 1.2V_25degreeC 1.0V_25degreeC 

t_4448_rnoNE-ec1 LPLVT LPSVT LPHVT GPLVT GPSVT GPHVT 

Area (um
2
) 8864 8676 8398 8662 8674 8687 

Dynamic Power* (uW/MHz) 1.89 1.82 1.39 1.62 1.47 1.34 

Static Power (nW) 8200 682 32 821000 118000 19000 

Static Power relative to LPSVT 12 1 0.047 1204 173 27.86 

Table 4.18: Silicon statistics of best tile (*pessimistic power) 

Figure 4.34 graphically illustrates the results of table 4.18; we can observe static power from being 

negligible in LP to significant in GP, with exceptionally high for GPLVT. Figure 4.35 shows the relative 

critical path delay variation with respect to LPSVT process for the benchmark applications (detailed results 

can be found in appendix A2). We can clearly observe the power vs speed scenario. This also highlights 

how a same logical architecture can have multiple electrical implementations varied by process type with 

significant difference in power and speed for same area (notice in table 4.18, the area remains almost same 

for all types). 

Benefits of Full custom FPGAs: We observed in chapter 2, how state of art FPGAs make complex use of 

different transistor types, threshold voltage etc. to combat power vs speed with best possible tradeoffs. This 

also highlights the benefits of full custom layout based FPGAs (commercial FPGAs are full custom as ROI 

justifies that), which implement the same logical architecture with different electrical options for 

implementation. Such things are relatively quite hard to exploit with soft eFPGAs (tradeoff of target 

independence), that is why the motivation of this work is small sized custom eFPGAs where silicon 
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tradeoff with ease of technology independence and customization is affordable and good value proposition. 

In practice, even for logical architecture components (LUTs, Multiplexers etc.), state of art use different 

kind of electrical architectures addressing some specific architecture challenges (e.g. some inputs of 

multiplexers faster than others, different topologies of multiplexers optimized for speed or area etc.) which 

can be analyzed in patents of state of art [3] (see patents survey of appendix A1 for details). 

[Kuon&Rose09, 5.2] provide good basics in this regard. 

 
Fig. 4.34: Effect of threshold voltage and process type of same node on power 

 
Fig. 4.35: Relative speedup for benchmarks for different ST65nm process node types 

4.2.5 Miscellaneous Experiments Perspectives 
This section provides some miscellaneous experiments frontiers, for which the basic study and 

infrastructure was almost completed in the thesis work but no exhaustive experiments were conducted (due 

to timing constraints and heterogeneity of contributions) as were elaborated throughout the chapter. This 

section briefly highlights them and will also facilitate discussions of chapter 6 for future outlines. 

1- Feedbacks optimization 
Throughout our explorations of SB-eLB multiplexers, the feedbacks of the logic block (eLB) were kept 

fully connected (SB-eLB <=4U+eLBout). While for small cluster sizes the value of eLBout compared to 

channel size (U = W/2) is often very small, however as cluster size increases this value starts getting 

bigger. Furthermore in any case, the fully connected structure connects each LUT (BLE) output to each 

and every input of all the LUTs in the cluster. This leads to over flexibility that is panelizing in terms of 

area (and also speed, based on mux size change). In section 4.1.3 we analyzed details of feedbacks 

statistics (figure 4.9) which clearly indicated the penalizing nature of fully connected feedbacks. In a 

similar fashion like SB-R and SB-eLB explorations, the investigation of feedbacks depopulation while 

maintaining good routing efficiency will be interesting and are not extensively addressed in research 

literature. Appendix A1 provides some examples of state of the art for inspiration in this regard. 
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2- SB Topology (Diversity) and Flexibility 
Throughout our experiments in this thesis work we used disjoint SB which is most widely used/published 

topology among FPGA researchers. The SB topology itself is also a wide research area and several kinds 

have been proposed, [Wiliton97, 4.25][Lemieux&Lewis02, 4.21][Fan, Cheung et al03, 4.92][Fan, Cheung 

et al04, 4.93] provide a good general overview of efforts done.  In our SB-R and SB-eLB explorations we 

observed how diversity helped achieve superior results; it will be interesting to conduct some new 

experiments utilizing the eFPGA Creator customization infrastructure to investigate benefits of diversity 

which was a major motivation for above mentioned works. Furthermore all the experiments that we 

conducted were on a square eFPGA, in reality eFPGA will/may often have rectangular shape in SoC. It 

will be essential to investigate challenges for irregular SB (the horizontal and vertical channels of different 

size). [Altera_Lewis,Betz et al03, 1.26] highlights the issues of directional bias for rectangular FPGA 

cores, where it is more silicon efficient to have horizontal and vertical routing channels of different sizes. 

Throughout our experiments we used the Fs = 3 for SB flexibility. This value has almost remained de-facto 

in published works as it provides ease of pattern (topology) design and good-enough routing flexibility. It 

will be interesting to investigate different values of Fs (homogeneous, heterogeneous in SB) in connection 

with the diversity of SB topology to explore different what-if cases. 

3- Effect of LUT and Cluster size 
In the presented explorations the work was strongly focused on LUT size 4, cluster size 4 (based on 

motivation; fix the basics at some value and innovate routing for it). Several innovations and attractive 

results were obtained from the explorations. It will be interesting to extend these explorations learning 

(diversity etc.) into generalized algorithmic forms to perform a wider design space exploration for different 

LUT and cluster sizes to achieve further optimal architectures. A basic revisit to investigations of section 

4.1.2 (LUT size) for the fundamental architecture style with timing was performed (see appendix A2), 

which revealed for our current architecture style in raw form LUT3 and LUT6 are inefficient compared to 

LUT4, while LUT5 showed best overall properties. It will be interesting to further investigate that with 

optimal (golden tiles-like) patterns for a wider range. 

4- Explorations with Architectural Heterogeneity 
Last but not the least, a significant frontier of FPGAs to combat the silicon gap is architectural 

heterogeneity, which is common in all commercial FPGAs, but is still in very early stages in academic 

research. Several efforts are on way but breakthrough of the magnitude of VPR of late 1990s has still not 

happened in this regard and the research gap for heterogeneous FPGAs (multitude of complex hard blocks, 

carry chains, multi clock etc.) between commercial FPGAs and academic research is continuously 

increasing. [FPL09Keynote_Rose, 4.4] has also addressed similar rising challenges issues. It will be one of 

the biggest and interesting research challenges for eFPGA to provide the complete motivation theme of 

customization for target. It will be interesting to perform first stage experiments in following dimensions. 

Long Wires: Are well addressed in research work for VPR-like architectures. New experiments for 

eFPGA architecture in connection with SB explorations (topology, flexibility etc.) using the knowledge of 

section 4.1.4 and facilities of eFPGA Creator will be interesting. 

Hard Macro Blocks: Performing first level experimentation for the heterogeneous building blocks of 

eFPGA (chapter 3) in relation with long wires and SB explorations (routing challenges of hard blocks) will 

be obligatory. The hard blocks exploration can be divided into two types/classes; general purpose (columns 

of basic blocks of memory etc.) and application specific (larger blocks, primarily on the boundary of core). 
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4.3 Summary 
This chapter presented in detail the contribution B (chapter 1) of the thesis work related to architectural 

exploration of eFPGAs to create efficient customized architectures. It explained in detail the fundamental 

explorations in section 4.1 related to the effects of LUT size (along with mapping efficiency issues), cluster 

size, channel size challenges, routing analysis, the effects and challenges of power consumption in beyond 

90nm technologies and some basic comparisons with state of art for inspirations. Section 4.2 extensively 

addressed second level of customizations to create more silicon efficient SB with negligible tradeoffs in 

routing efficiency. The work was divided into two main parts of SB; the SB-R and SB-eLB respectively. 

With successive experiments based on knowledge of chapter 2, section 4.1 and facilities of eFPGA Creator 

and eFPGA Programmer, architectures of finer quality with attractive properties were explored and finally 

joined together for obtaining best of both. A comprehensive overview of partially ongoing and near future 

experiments was also presented. The key points observed/discussed can be summarized as follows. 

 The eFPGA architecture with unified SB (chapter 3.1) was explored in detail on the MCNC 

benchmarks with CAD and silicon explorations. Several tools were made to facilitate explorations 

 The mapping efficiency decreases with increase in LUT size (the phenomena is quite universal) 

 The area of LUT is negligible compared to interconnect (routing) area and routing demands do not 

grow in same proportion like LUT size. Motivation of bigger LUT sizes 

 For the explored eFPGA architecture style in raw form, LUT4 is more silicon efficient than LUT3 and 

LUT6 (for current mapping efficiency of eFPGA Programmer), LUT5 provided attractive results 

 The channel size demands do not grow in same proportion as increase in cluster size (motivation for 

larger clusters), but lack of an intelligent intra and inter cluster routing architecture can nullify 

exploitation of this potential 

 The channel size demands highly fluctuate among benchmarks, making it most complex architectural 

parameter to manage for a range of benchmarks while having an optimal architecture 

 Power consumption is a huge challenge for beyond 90nm nodes. The power vs speed tradeoff is 

significant at these nodes. The voltage scaling is flattening and static power is continuously getting 

higher. The threshold voltage can provide some benefits for static power at cost of speed 

 The unified SB based architecture with eliminated conventional fully connected local interconnect in 

raw form is inefficient compared to VPR-like CB+LI based architecture. By making an effective use 

of diversity of eLB (logic block) inputs and outputs connection to the routing network in SB can 

significantly improve architectural efficiency which is competitive to the classical widely explored 

VPR-like architectures 

 The presented explorations provided some key observations that can help in exhaustive revisit for 

these and several other possibilities (including more efficient two layer SB-eLB structure, eLB outputs 

logical equivalence investigations by mux at eLB out etc.) and other sate of art architecture styles 

 The explorations provided efficient pure soft eFPGA architectures with reasonable parameters 

reaching logic densities of the range 400+ LUT4/mm
2
 on 65nm 

 FPGAs/eFPGAs are masterpiece of transistor waste (like microprocessor+ram), even the finest tuned 

architecture is/can be highly inefficient. The potentials of FPGAs (indirectly eFPGAs) are very high 

and promising (chapter 2), in addition to the classical, beyond classics techniques must also be 

investigated by researchers to further improve different architectural challenges 

The next chapter presents the eFPGAs in systems, experimentation of eFPGAs as reconfigurable 

accelerators, system integration challenges and an interesting case study for emerging MRAMs 

perspectives for eFPGAs.  The results presented in next chapter [S-7] are based on section 4.1 [S-9].   
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Chapter 5: eFPGA in Systems [G] 
 

Since the thesis focused on embedded FPGAs, it was essential to have 

basic experiments for system integration in addition to eFPGAs 

architectural exploration (chapter 4), to have the idea of system 

integration challenges and potentials of eFPGAs in systems. This 

chapter will address general motivations and potentials of eFPGAs for 

SoCs, potentials for reconfigurable acceleration with eFPGA with its 

standard RTL programming flow and benefits of using ESL tools due to 

that. Then greater part of the chapter discusses HW/SW co-design experiments done by using eFPGA as 

reconfigurable accelerator with two processors (Plasma and LEON3) [S-7][S-8]. The work with LEON3 

processor (www.gaisler.com) will be discussed in detail. Two major questions arise while using a 

reconfigurable accelerator, programming complexity and silicon tradeoffs. The work has tried to address 

both issues by investigating ESL for added programming ease and complete silicon tradeoffs analysis for 

area, power, and speed on ST65nm low power (LP) process. The chapter also presents an interesting case 

study of the perspectives of beyond classics MRAMs based eFPGAs for SoCs [S-4][S-5]. Finally it 

presents briefly the test chips at 130nm (MRAM configuration), 65nm (Latch/SRAM configuration) that 

were made based on eFPGA architecture (chapter 4.1) of this thesis work. The test chips themselves are 

not direct contribution of this thesis. 

5.1 General Motivations 
This section discusses potentials enabled by the eFPGAs in SoCs and a revisit to the potentials of eFPGAs 

as reconfigurable accelerators which can be a prominent application of eFPGAs in SoCs. 

5.1.1 eFPGAs potentials in SoCs 
The fundamental motivations of eFPGAs are well known and potentials are undeniable. We saw in detail 

in chapter 2 that there have been several attempts in industry in this regard since late 1990s (both from 

startups and leading FPGA vendors) and tried to address that some things have changed over time 

compared to past and eFPGAs can now have a strong potential in industry. Below are some well known 

and some added benefits observed during research of this thesis work regarding eFPGAs. 

1- Product Differentiation, Time to market 
The most prominent benefit for which historically (even now) eFPGAs were proposed or found potentials 

in industry was issues like product differentiation and fast time to market. The increasing complexity of 

SoCs and their huge development costs at beyond 90nm nodes is making difficult to design dedicated SoCs 

for each and every application. They require some post manufacturing flexibility. This allows amortizing 

high design costs over several end applications. The potentials of FPGAs in such regards are well known. 

eFPGAs bring these benefits right inside the SoCs providing a flexible hardware capability in addition to 

flexibility by software which is very common among the SoCs through a processor [S-1]. That also allows 

SoC vendors to rapidly create differentiated solutions among their own products and catching up with the 

competitors by bringing their solutions fast to the market. 

2- SoC prototyping (testing new ideas) 
FPGAs are de-facto prototype devices due to their fine grain nature. Large emulation systems (multiple 

FPGAs) or stand alone very large FPGAs (with hundreds of thousands of logic blocks and hard blocks) are 

in wide use for prototyping SoCs. As we discussed in chapter 2, with the advancements of architectures 

and continued increase in logic density due to Moore’s law, FPGAs have become programmable platforms 

and are directly used as a programmable SoC for many applications where their tradeoffs in terms of cost, 



- 130 - 

 

power and speed are acceptable compared to high costs of designing a SoC. If we thinking in an opposite 

direction (FPGA vs eFPGA scenario), an eFPGA can be beneficial for prototyping SoCs. SoCs usually are 

made up of in-house or 3
rd

 party IPs interconnected (e.g. AMBA etc.) with each other and controlled by a 

processor (e.g. ARM, MIPS etc.). Most of the IPs or designs remain same when moving to next node or 

making new experiments with some new differentiated IPs. Having some eFPGAs in the SoC can help in 

this regard, making SoC itself its prototype platform [S-2].  eFPGAs can/may be removed in the final mass 

production  depending on requirements, or can be kept or reduced in size/specifications to provide the post 

manufacturing benefits of differentiation and time to market discussed above.  

3- Multiple possibilities (differentiation, experimentation, reconf. acceleration etc.) 
With FPGA-like fine grain architectural nature, multiple eFPGAs of different sizes and architectural 

specifications can be used in a SoC to provide multiple benefits. Figure 5.1 shows a theoretical concept 

diagram showing SoC with multiple eFPGAs. From the figure we can also observe the discussions of 

above points and see opposite nature of eFPGA compared to FPGA. In most cases of FPGA designs, huge 

portion of expensive fine grain resources are used to implement fixed IPs from 3
rd

 party. Only few 

differentiated IPs are written for which the flexible nature of FPGA provides an ease of design and 

integration. We saw in chapter 2 that newest trends of FPGA vendors of putting hard processor blocks and 

ever increasing hard macro blocks also illustrates the IP based design nature of SoCs where most of the 

design is fixed and having small amount of fine grained flexibility is a better proposition from cost, 

performance and power point of view. Figure 5.1 shows three different case scenarios for eFPGAs in SoC 

which complement the above discussions. A stand alone eFPGA Core of suitable size (top right) is good 

for product differentiation. A larger eFPGA Core (bottom) can provide several benefits like product 

differentiation, experimenting new ideas, I/O interfacing and much more. Furthermore due to parallel 

nature of eFPGA hardware (like FPGAs) several things can be done in parallel and independent of each 

other, a potential harder to obtain from other non-FPGA-like programmable solutions. Finally the 

reconfigurable acceleration; although in principle other cases are also performing the same thing 

(processor being the master) but some specific eFPGA with architecture tuned to target application 

domains can be very attractive for co-processing the intensive computations of processor in parallel to 

provide performance enhancements and power reduction which is already becoming mainstream in high-

end computing for servers with processor + FPGA computing, eFPGAs can bring a similar benefit on a 

smaller scale in embedded systems SoCs (we will discuss this type of experiments in detail in this chapter). 

 
Fig. 5.1: Concept SoC scenario with eFPGAs 
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4- Soft eFPGAs (technology independence) 
As eFPGA is pure soft it can be ported to any fab and process node, so the benefits of eFPGA can be 

immediately obtained without the bottleneck of a fab-specific or node-specific hard eFPGA solution. Since 

eFPGAs are supposed to be of small size and are highly customizable and technology independent, such 

features in many cases can provide a good silicon tradeoff between hard eFPGA and soft eFPGA. With 

additional possibility of creating a more efficient semicustom or full custom solution of eFPGA (hard 

eFPGA) based on market size of end product. Hence providing dual benefit of immediate availability of 

soft eFPGA and migrating it to hard if market size is large and justify ROI (Return On Investment). 

5.1.2 eFPGAs as reconfigurable accelerators 
This section provides a brief overview of potentials of reconfigurable acceleration using eFPGAs in 

general and in particular in the light of eFPGA RTL programming flow, customization capabilities and 

new trends and challenges in industry. 

1- Not new concept, mostly failed, why again 
We addressed in chapter 2 in detail about the pros and cons of different programmable technologies and 

why many of them failed while FPGAs survived and continued to become stronger and stronger. In the 

area of reconfigurable acceleration huge work is done in industry and academics (particularly in 

academics). Several novel and innovative solutions were proposed, but is well known that most of them 

failed or never found wide acceptance in industry [Brunelli08, 4.89][Hartenstein01, 4.64][S-3][S-7]. From 

motivational point of view, that historical perspective does not provide an enthusiastic start for a researcher 

and particularly for a company (case for this thesis work). To try to find answers to what might be the 

reasons of failure is more important than jumping into the same adventure again, going in same direction 

(there was nothing wrong technically with most of past efforts), doing the same thing, coming up with a 

similar solution like past. And finally finding a nice place in the famous graveyard of Reconfigurable 

Computing and IEEE/ACM/EEtimes memorial of citations/news which after few years of death is the only 

source remaining for new researchers to study those efforts. As investigating technologies and digging 

deep into failure reasons is one of the three foundation axes of this thesis work (chapter 1), so while 

conducting basic research experiments [S-7][S-8] in this area, efforts were made to investigate in industrial 

scenario what might be the obvious and probable reasons of failures in this direction in past. The thesis 

work has tried to visualize the new waves of challenges and trends in industry and investigating what 

opportunities they bring to enhance potentials of solutions in this area (chapter 2). Next sections along with 

scientific experiments will also try to investigate some of these issues. 

2- Standard RTL flow and rise of ESL tools 
We saw in chapter 3 that the programming flow of eFPGA is standard HDL based like is in commercial 

FPGAs. This gives high ease to programmer for programming eFPGAs, plus it also allows re-using of 

several existing HDL (VHDL/Verilog) functions, IPs to quickly implement them on eFPGAs (the IP re-use 

benefits of FPGAs which we discussed in Chapter 2). Furthermore as the flow is RTL based eFPGAs 

automatically can enjoy the benefits of ESL tools which further help the programmers to write their 

applications at a higher level in ANSI C/C++ (also SystemC) and ESL tools automatically transforms them 

into RTL comparable (in some cases even better, in design space exploration scenario) to optimal hand 

coded HDL.  

This gives dual benefit of RTL programming model of eFPGAs. We discussed in chapter 2.3 that 

programming model was one of the most prominent reasons of failures of several solutions in past, where 

due to lack of standards and obvious design mapping complexity, the solutions had to create a new 

language or a flavored version of a standard language to allow their compilers to optimally map 

applications to those hardware. RTL flow of eFPGA allows taking benefit of mature state of the art 

synthesis tools and now as industry is highly focused on benefits of ESL, this additionally gives benefit to 
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take leverage of commercial ESL tools which essentially deal standard RTL flow, giving the programming 

ease benefit which was a main motivation of several past works.  

3- Out of Box thinking: use weakness as strength 
FPGAs are well known for high power consumption.  Apparently it might really sound very strange to 

think about FPGAs to help reduce power consumption. However FPGAs have remarkable other properties 

which have only been partially used or exploited in industry. We addressed semiconductor industry 

markets in chapter 2 and saw that FPGAs are still a small niche (nearly 2%) of semiconductor industry. 

Why and where FPGAs are used is well known (we saw some details in Chapter 2) but if we analyze how 

they are used, it becomes quite evident that most of the time they are implementing static functions, which 

sometimes can be upgraded which makes FPGAs attractive but rarely or in very limited cases they are 

actually used as a reconfigurable platform, which also explains the products like Structured ASICs (FPGA 

to ASIC migration) which are provided by leading FPGA vendors also. FPGAs (although there are other 

technologies like coarse grain etc.) represent the most prominent symbol of reconfigurable devices but it is 

true that rarely they are ever used in industry to perform Reconfigurable Computing. On the commercial 

side  Xilinx was the only FPGA vendor that provided features like dynamic reconfiguration (Now Altera 

too is providing in 28nm Stratix V) which clearly indicated that there was not a high demand in industry 

for such features and Xilinx also acknowledge not wide spread use of dynamic reconfiguration 

[Xilinx07_Trimberger, 2.6]. 

This second power of FPGAs to be really used as a reconfigurable computing device holds prominent 

potentials to address some key problems in industry (in academics it is a large research area and hundreds 

of interesting papers in conferences can be found, all based or limited to features provided by Xilinx 

FPGAs due to obvious reasons). As our work is focused on eFPGAs, this gives additional opportunities to 

exploit such features with customized eFPGA IPs, which exploit benefits of reconfigurable accelerators. In 

next sections we will show our work of using eFPGAs as reconfigurable accelerators using conventional 

architecture to explore potentials of eFPGAs to enhance performance and save power which is becoming 

very crucial in industry. At the end of the chapter we will briefly discuss how some future technologies 

(MRAMs) can provide significant opportunities for exploiting reconfigurable accelerators like non-

volatility, dynamic reconfiguration and more importantly multi-context on classical CMOS process with 

very low silicon overhead compared to conventional architecture. 

4- Basic Experiments done with Two Processors (Plasma & LEON3) 
Prior Art: There are different research works done in the past in academic research regarding potentials of 

reconfigurable accelerators which provided some motivations and inspirations for these experiments. 

[Brunelli08, 4.89] provides a survey of some of the approaches like XiRisc [4.104], Garph [4.105], 

PipeRench[4.106] etc. Chapter 2.2 provided some details and issues for coarse-grained-like architectures. 

eFPGA Differentiation: What distinguishes this thesis work from several past research efforts is that 

eFPGA is conventional FPGA-like architecture, which in general is useful for multiple purposes 

(reconfigurable acceleration is one of them but not the only one!). It is useful for wide range of 

applications for SoCs, utilizes standard programming flows (RTL).  With further distinction of potentials 

of ESL (due to RTL flow) exploitation for addressing programming complexity issue (was among major 

motivations of compilation based reconfigurable accelerator efforts in several past solutions). 

An exhaustive reconfigurable computing experimentation is beyond the scope of this thesis work. These 

experiments were performed in the contribution G (chapter 1) aspect of this thesis work to investigate how 

sound eFPGAs might be from some system scenario stand point in terms of silicon tradeoffs, 

programmability etc. The simplest, straightforward and yet very important aspect to investigate was 

reconfigurable acceleration, which brings the well known and addressed HW/SW co design scenario. We 

conducted the experiments keeping the motivations of past works in mind and tried to address the 
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challenges on the base of survey knowledge of this thesis work (as explained above). The experiments 

were conducted with two processors, a free MIPS-like Plasma/Mlite processor from OpenCores 

(opencores.org) and LEON3 processor, presented in [S-7][S-8]. Only the work with LEON3 [S-7] is 

described in detail in next sections as it was more detailed and superset of the work with Plasma [S-8]. 

5.2 eFPGA with LEON3 Processor 
This section describes in detail the work of eFPGA integration with LEON3 processor as a functional unit 

and a co-processor unit for experimenting use of eFPGAs as reconfigurable accelerator for performance 

enhancement and power reduction (with analyzing silicon tradeoffs) along with the ESL to investigate the 

programming ease potentials [S-7]. The eFPGA used in this work (LUT size 6, cluster size 4, channel size 

32) was based on work of [S-9] which was discussed in chapter 4 (section 4.1).  

 
Fig. 5.2: eFPGA integration with LEON3 as functional unit and co-processor 

5.2.1 eFPGA-LEON3 System Integration 
The LEON3 [5.22] is a configurable processor core written in VHDL and uses the SPARC (Scalable 

Processor ARChitecture) instruction set (SPARC V8 manual) [5.23]. The advantage of the availability of 

its source helps to make modifications to explore new concepts. eFPGA was integrated with LEON3 

processor in two ways; as a functional unit and a co-processor unit as shown in figure 5.2. Brief details are 

described below. 

1- As a Functional Unit (processor pipeline) 
Figure 5.2 shows eFPGA integrated inside the LEON3 processor as a functional unit. We integrated it like 

the Multiply/Divide unit. We created a new custom instruction for eFPGA which allows executing data in 

eFPGA creating a virtually reconfigurable instruction whose execution is based on the programmed 

hardware inside eFPGA. 

2- As a Co-Processor Unit 
On the right hand side of figure 5.2 eFPGA integration as a co-processor unit is shown. In LEON3 the co-

processor interface is only partially implemented. We created the entire interface based on the SPARC 

manual on which the LEON3 processor is based and designed. According to the manual the co-processor 

interface is similar to FPU (Floating Point Unit) interface but is flexible and custom dependent. We only 

created subset of interface which was needed by us (simple data transfer to/from eFPGA). This also helped 

avoiding unnecessary silicon overhead and required very few cycles to send and receive data. We only 

implemented 8 registers in the register bank and only used basic Load, Store and CPOP (co-processor 

operate) instructions of SPARC V8 manual [5.23]. 
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This setup created a basic Processor + Reconfigurable accelerator platform to perform different 

experiments and also to analyze the pros and cons of functional unit vs co-processor unit in technical and 

commercial perspective. The eFPGAs are configured using a compact configuration unit which loads the 

configuration bitstream from main memory into the eFPGA through the AMBA bus at the start of 

execution. Figure 5.2 shows a configuration unit attached to the co-processor eFPGA. Similar unit is 

attached with functional unit eFPGA. The configuration units are controlled by LEON3 processor through 

software providing ease of use and flexibility. The configuration portion and configuration load time is not 

the part of this discussion, as this work did not perform run time dynamic reconfiguration but 

independently analyzed several possibilities step by step as we will see in section 5.2.3. The eFPGA was 

loaded with the configurable hardware in the beginning of execution and then comparisons were made on 

execution times as we will see in details in sections below. 

5.2.2 Experimentation Flow 
The experimentation flow is shown in figure 5.3. It starts with an application written in ANSI C/C++. The 

application is profiled for identifying the computation intensive critical areas of the application. The 

Hardware-Software (HW/SW) partitioning is done based on the profiling knowledge. The extracted critical 

computation is transformed into HDL by using ESL tools (and/or manual HDL coding). The software is 

compiled and run on LEON3 and hardware is mapped on the eFPGA using the eFPGA CAD tools and 

finally the co SW + HW execution is done and the performance enhancements and silicon tradeoffs are 

observed. Brief details of the steps of exploration flow of figure 5.3 are described below. 

1- Application Profiling (HW/SW partitioning) 
The first main step of the flow is HW/SW partitioning. To facilitate this step (ideal case would be 

automatic) we created a simple profiling tool with the help of SimpleScalar modeling tool [5.25], which 

analyzes the application on a MIPS-like model. Although LEON3 is not a MIPS instruction set processor, 

but to get a profiling look at the execution of application it does not really matter too much and we will see 

in experiment results that the knowledge gained from the profiling tool was quite close to what we actually 

achieved on real execution. To further facilitate visualization of the profiling tool results, we created an 

HTML based user friendly output of results to easily visualize the output of profiler, like critical functions, 

level of their criticality, overview of every single C instruction of the application from computational 

criticality, execution trees etc. A snapshot of the outputs of the tool is shown in figure 5.4 for a feeling of 

user-friendliness of the tools. The details of the profiling tool are beyond scope of this discussion. The tool 

provided a great ease of analysis of applications (although being approximate) which would have been 

very time consuming and difficult if would have been manually done by simulating application on LEON3 

with special arrangements to get a similar overview. 

2- Application mapping (use of ESL) 
The major concern while conducting HW/SW co-design like experiments is the programming of the 

reconfigurable unit. As the programming model of eFPGA is RTL based (chapter 3), it provided great help 

in this regard. We investigated this property in two ways. First the classical and straightforward way to 

write the HDL (VHDL in our case) of the partitioned hardware, implement it on eFPGA with the eFPGA 

Programmer (renamed, was Niagara in [S-7]).  Second exploit and investigate the potentials of ESL tools 

to automatically transform the partitioned C/C++ code to RTL and map it to eFPGA, hence eliminating the 

manual HDL coding need. For this purpose we used Catapult ESL tool of Mentor Graphics (mentor.com). 

3- Analyze Silicon tradeoffs (Area, Power, Speed) 
Another major concern regarding use of reconfigurable accelerators after programming issues is silicon 

tradeoffs. It is pretty straight forward that processing in parallel yields to higher processing throughputs, so 

observing and presenting just speedups achieved (often is/was the only thing addressed in such works) 

with using a reconfigurable accelerator is not a good and fair contribution, in fact it might even be 
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pointless in realistic scenarios. To try to fully visualize the scenario as much as possible, we investigated 

silicon tradeoffs in terms of area, power and speed on a 65nm low power process of ST. That gives a more 

clear idea of the criticality and challenges regarding use of reconfigurable accelerators. 

 

 
Fig. 5.3: Experimentation flow 

 

 

 
Fig. 5.4: Profiling AES Application Critical function 
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5.2.3 Experiment with AES algorithm 
This section presents the details of experiments done with AES (Advanced Encryption Standard) 

application using the flow discussed in previous section. 

1- Profiling AES 
In the first step we profiled the AES application with our profiling tool discussed above and we will see 

below how advantageous this tool was for making decisions and conducting experiments. Table 5.1 and 

Table 5.2 show the main results of the profiling for the critical functions and critical instructions of the 

application. 

Table 5.1 indicates that MixColumns is a critical function in AES application accounting for almost half of 

the computation load of the application. Table 5.2 shows the top 4 most computation intensive instructions 

in the application. It show that line 356 of the code is most computational expensive accounting for almost 

25% of the execution time. Figure 5.5 shows the code of the MixColumns function which was identified as 

the critical function from Table 5.1. We see that the instruction identified as most expensive from table 5.2 

is at the heart of the function in deep nested loops. To investigate the benefits of reconfigurable 

acceleration keeping silicon tradeoffs in perspective we divided this function into 4 Steps as shown in 

figure 5.5 and step by step implemented and investigated them for performance gains and silicon tradeoffs. 

Next sections explain the details. 

2- Mapping HW/SW partitioned portions on LEON3+eFPGA 
We implemented the critical function shown in figure 5.5 in hardware in four gradual steps to see the 

overall gain in terms of area, power and speed. These four steps are as follows. In step 1 we implemented 

only Product function in hardware. Table 5.3 and 5.4 show  the results of this implementation for number 

of clock cycles if eFPGA in pipeline is used vs if eFPGA as a co-processor is used along with the eFPGA 

hardware resources needed (which are off course same for both cases). The AES algorithm takes 40358 

clock cycles for pure software execution on LEON3 processor, by moving Product function to eFPGA, 

number of required clock cycles came down to 30430 for pipeline implementation and 30447 for co-

processor and gave a speedup of almost 1.3X. The eFPGA took only 41 LUT6 for hand coded VHDL and 

44 LUT6 for Catapult generated VHDL. In step 2 we implemented the ―xor‖ in addition to Product 

function, in step 3 we implemented the inner most ―for‖ loop and finally in step 4 we implemented the 

complete function. Results for all these implementations are shown in table 5.3 and 5.4 with the speedup 

achieved in all these steps and the used hardware resources of eFPGA for both hand coded VHDL and 

Catapult generated VHDL. It can be observed how the gain in performance gradually increases by 

transferring more and more computation to eFPGA. However it is very important to note the relative 

increase in hardware resources. We can see that step 3 is giving a good speedup with very small amount of 

eFPGA resources (only 67 LUT6 for hand coded VHDL).  

Another interesting observation in table 5.3 is that the speed-up achieved with integrating eFPGA inside 

the processor pipeline and using it as a co-processor is almost same on overall application level analysis. 

Individually for execution there is off course a difference because with co-processor interface we have to 

spend some additional cycles to load data into co-processor registers and there is some further delay which 

is caused by co-processor controller state machines. For our case the difference is much less also because 

we created a very compact and fast co-processor interface custom to our needs which requires very few 

clock cycles for performing the data transactions between processor and eFPGA. For a more realistic and 

standard case the latency of data transfers will increase but is interesting to note that it will still be more 

attractive and efficient solution compared to an eFPGA accelerators connected through the Bus (figure 5.1) 

which have their own particular advantages with relatively larger eFPGAs but will be much less efficient 

for tightly coupled accelerator with the processor (due to the obvious scenario with Buses). Furthermore it 



- 137 - 

 

also gives some insights of benefits of co-processor vs functional unit approach from technological and 

commercial perspectives. We will discuss it in more detail in section 5.3. 

Frequency issue: It is important to note that for these experiments it was assumed that both LEON3 and 

eFPGA are running at same frequency (100MHz, as we will see in next section). In reality this might not 

always be the case (processors are usually much faster). However for our cases 100MHz for eFPGA was a 

good approximate assumption based on knowledge of chapter 4 experiments. As stated before these 

experiments were based on [S-9] eFPGA with limited knowledge about timing, with improved experiments 

of section 4.2 that we discussed, it validates that we had a good assumption about 100MHz eFPGA speed 

(we saw several much larger benchmarks running in around 50-100MHz range). 

Function name Called Avg. Cycles Total Cycles % of execution 

main 1 179838 179838 100.00% 

AES 1 147224 147224 81.90% 

MixColumns 9 10904 98140 54.60% 

Product 576 53 30549 17.00% 

KeyExpansion 1 30396 30396 16.90% 

SubByte 10 1642 16422 9.10% 

ShiftRows 10 1633 16333 9.10% 

AddRoundKey 11 1453 15990 8.90% 

SubWord 10 396 3960 2.20% 

RotWord 10 146 1466 0.80% 

Table 5.1: Profiling of AES application 

Line CODE CYCLES % 
No. times 

Executed 

Avg. 

Cycles 

356 C[i][j]=(Product(T[k][j],Matrix[i][k]))^ (C[i][j]); 42194 23.68% 576 73.25 

442 
SousKey[j][k][i]=SousKey[j][k1][i]^SousKey[j][k][i-

1]; 
13352 7.49% 120 111.27 

247 T[j][i]=sbox[(T[j][i]/16)][(T[j][i]%16); 13007 7.30% 160 81.29 

388 T[j][i]=(T[j][i])^(K[j][i][Round]); 12190 6.84% 176 69.26 

Table 5.2: Profiling of all C instructions in AES Code 

 

 
Fig. 5.5: Profiling AES Application Critical function 
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With Functional Unit 

eFPGA (Cycles) 
Gain X Times 

With Co-Processor 

eFPGA (Cycles) 
Gain X times 

STEP-1 30430 1.326 30447 1.325 

STEP-2 30722 1.313 30735 1.313 

STEP-3 23752 1.699 23767 1.698 

STEP-4 16244 2.484 16265 2.481 

Table 5.3: Different LEON3+eFPGA Implementation Steps 

 Performance gain with functional unit and co-processor unit eFPGAs (Pure Soft LEON3 40358 Cycles) 

 
STEP-1 STEP-2 STEP-3 STEP-4 

VHDL: 

Hand 

11 Tiles 

(41-LUT6, 0FF) 

10 Tiles 

(39-LUT6, 0FF) 

17 Tiles 

(67-LUT6, 8FF) 

127 Tiles 

(506-LUT6, 324FF) 

VHDL: 

Catapult 

11 Tiles 

(44-LUT6, 0FF) 

18 Tiles 

(72-LUT6, 33FF) 

33 Tiles 

(130LUT6, 78FF) 

205 Tiles 

(819-LUT6, 604FF) 

Table 5.4: eFPGA hardware resources for each step with ESL & Manual VHDL 

 

 
Fig. 5.6: eFPGA resources for ESL vs Hand Coded VHDL 

3- Analyzing Silicon Tradeoffs at 65nm (Area, Power, Speed) 
In this section we will analyze the silicon tradeoffs of the experiments. Table 5.5 presents synthesis results 

of LEON3 processor core (no FPU) on ST65nm LPLVT (Low Power Low Voltage Threshold) process 

libraries of ST Microelectronics provided by CMP [5.13]. For cache memory we used 32K instruction and 

32K data cache (value usually found in processors of ARM and MIPS). For SRAM memory blocks for 

cache memory we used 65nm High Density (HD) low leakage memory blocks of STMicroelectronics 

provided by CMP. From the datasheet of memory blocks we found the static power (at 25
o
C) and dynamic 

power (at 100MHz, with normal activity rate of 50%). 

Analyzing the complete system for power with exact toggle activities was very complicated so as first step 

pessimistic power analysis approach was used (chapter 4) using the power estimation of tile through 

synthesis using Synopsys Design Vision at different toggle rates and static probabilities and multiply the 

results to number of tiles to get approximation of the core power. Through this pessimistic way the results 

are not accurate but give a good approximation value for having overview as in actual case power in most 

cases will be less than this pessimistic value as not all nets will be toggling, so if interesting results are 

observed in pessimistic case in reality they can be even better. Table 5.6 shows power statistics of an 

eFPGA core of 484LUT6 (based on [S-9]). It has LUT size 6, cluster size 4 and channel size 32 with logic 

density of approx. 320LUT6/mm
2
, results are for 65nm ST process. Figure 5.7 shows a detailed overview 

of silicon tradeoffs of the experiment results of table 5.7. We see that step-3 for AES implementation 
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provides a good tradeoff. We also analyzed DES application; for it we achieved almost 10X speed-up by 

spending only 95 LUT6. From table 5.7 we see that we achieved it by just spending 0.296mm
2
 of 

additional silicon due to eFPGA which only consumes approximately 4.18mW of total power. So the 

LEON3 processor which we found has maximum frequency of almost 185MHz at 65nm LP, with eFPGA 

it can be possible to get 10 times more DMIPS for DES in same frequency. If we apply Dynamic 

Frequency Scaling (DFS) while executing DES we can decrease the dynamic power of LEON3 almost 10 

times by only spending around 4mW of additional power overhead of eFPGA. The very high gain in DES 

with very attractive silicon tradeoffs compared to AES is due to nature of the application. This also 

explains the challenges of having a high logic density for eFPGAs to provide a reasonable margin of 

coping with requirements of different applications. 

Good Potentials: A very important point to consider here is that eFPGA at the moment has no power 

management and is completely soft core written in VHDL and is under continuous research to greatly 

enhance the architecture. Even at soft implementation level (which we are using for fast exploration and 

technology independence) and pessimistic power comparison, we can observe the promising advantages 

that can be achieved by adding a small eFPGA IP to the designs. Also we can observe in table 5.6 that our 

eFPGA has a very low static power (can be attributed to soft standard cell based nature of eFPGA with no 

pass-transistors etc. which usually are more leaky compared to full CMOS). Furthermore it is interesting to 

note that encouraging results are obtained even with basic customized eFPGA [S-9] (chapter 4.1) which 

was used in [S-7] on which these results are based (pre eFPGA Creator experiments!). We discussed 

several architectural enhancements in chapter 4.2 which led to more efficient and customized architectures. 

Revisiting these experiments using those new architectures will further enhance these results significantly 

in terms of area, power and performance. Furthermore section 5.4 will discuss additional beyond classic 

potentials to further enhance the capabilities of eFPGAs for reconfigurable acceleration. 

65nm LP Area (mm²) 
Static Power at 25°C 

(uW) 

Dynamic Power at 

100MHz (mW) 

Core 0.191 85.3 5.75 

32K/32K Cache 0.4 25.63 14.9 

Total 0.591 110.93 20.65 

Table 5.5: Area and Power consumption of LEON3 processor at 100MHz 

 

65nm LP process: 1.0V, 25degrees, 100MHz LVT SVT HVT 

Static Power (mW) 1.27 0.105 0.011 

Dynamic Power (mW) @ (Tr-0.25, Stp-0.25) 23 22 25 

Dynamic Power (mW) @ (Tr-0.50, Stp-0.5) 47.6 46.6 53.8 

Dynamic Power (mW) @ (Tr-1.0, Stp-0.50) 95.36 93.36 107.8 

Table 5.6: Pessimistic Power Statistics of 484 LUT-6 eFPGA 

 

 

Speedup 

Gain X 

Area 

(mm2) 

Stat. Power 

25°C (uW) 

Dyn. Power 

100MHz (mW) 

STEP-1 1.3 0.128 8.61 1.804 

STEP-2 1.3 0.122 8.2 1.716 

STEP-3 1.7 0.209 14.07 2.948 

STEP-4 2.48 1.578 106.2 22.264 

DES 10 0.296 19.95 4.18 

Table 5.7: Performance gains with Silicon Tradeoffs 
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Fig. 5.7: LEON3+eFPGA silicon tradeoffs for different implementations 
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5.2.4 Benefits of ESL vs Optimal Hand coded HDL 
In our experiments described above, we observed that the HDL generated by Catapult is giving close 

results to hand coded VHDL. It is widely known that with ESL the final RTL depends a lot on the way 

source C/C++ is written and the parameters of optimization given to the tool. We have found the same 

issues, it can be seen that in some cases the differences between hand-coded VHDL and ESL is larger than 

others (specially last 2 steps) because of the style of implementation. However we have found that 

programming through ESL is much faster and easier to verify. In case of Catapult the built-in support for 

different levels of verification and integrated support of ModelSim for simulation made it very easy to 

write the code and quickly verify compared to hand coded VHDL. Figure 5.8 shows some snapshots of 

Catapult tool, we can observe the integrated tools environments and design space exploration ease benefits. 

We can check several implementation options for target HDL at a higher level, like tradeoffs in area for 

decreasing latency and increasing throughput, pipelining etc. That is relatively difficult and time 

consuming to do at HDL level. 

Furthermore we only had an access to an old version of Catapult from 2006. ESL tools have greatly 

improved over time, we observed in chapter 2 that ESL is a strong focus in industry at present, both the 

SoC designers and particularly FPGA designers/vendors have significant interest in the benefits of ESL; it 

might be interesting future investigation to revisit these experiments with the latest version of tools and 

cross comparing among different ESL tools (Synopsys, Mentor, AutoESL, Cadence etc.).  

 

 
Fig. 5.8: Benefits of ESL compared to Hand coded HDL (Snapshots of Mentor’s Catapult) 
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5.3 System Integration Challenges 
This section briefly provides general motivations and observations learned from this thesis work regarding 

system integration challenges for eFPGAs in technical and commercial scenarios. First it provides general 

overview of the challenges for system integration. Second some basic efforts done to connect eFPGAs in 

system with AMBA buses are described. Finally it provides a view point for Processor inside FPGA vs 

FPGA inside Processor which has been often overlooked in research (particularly in academic), it tries to 

explain in technical and particularly commercial scenario why these two approaches apparently similar are 

often miles apart in reality.  

5.3.1 General overview 
This section highlights some of the general issues and challenges regarding eFPGAs system integration 

which were found/deployed/provide future motivations in the research of this thesis work survey 

investigations and practical experiments. 

Importance of Standards: We observed in our discussions in chapter 2 that standards are very important 

in industry. Throughout the investigations and experimentations in this work this issue was kept in focus 

for motivations and research directions. We observed the importance of standard RTL flow and discussed 

eFPGA Programmer which provides a standard programming flow for the eFPGA. In HW/SW co-design 

experiments we investigated ESL use to address the issue of programming complexity of reconfigurable 

accelerator in a standard way. This has been a major focus of several RC (Reconfigurable Computing) 

researchers in past to explore an effective solution. We observed that dawn of ESL in industry is opening 

potentials to exploit several good points of past research efforts to create an effective HW/SW solution, 

with state of the art emerging tools support. Going one step further brings the challenge of how to integrate 

the eFPGA in SoCs in standard and effective way (as important and perhaps more critical than the software 

flows etc.).  While investigating this issue several standard ways used in industry were found (proprietary, 

open source, emerging etc.), among them most widely used in SoC design is AMBA from ARM which has 

a de-facto status in majority of SoC designs. We described our experiments with LEON3 above; LEON3 

uses AMBA 2.0, so it gave some basic idea of start point of working with AMBA. Some basic 

investigations to connect eFPGA with AMBA were done which will be briefly described in next section. 

Silicon properties: While eFPGA is an FPGA from architectural standpoint, there is an enormous 

challenge regarding eFPGAs in SoCs which further magnifies the well known weak points of FPGAs. On 

the top of them is the large silicon gap, we addressed this challenge of FPGAs in chapter 2 (section 2.1.3), 

but it is interesting to note that this issue is further challenging for eFPGAs, particularly form commercial 

stand point. The eFPGA in addition to providing/satisfying the flexibility demands of SoC have to provide 

them in an acceptable silicon budget to justify the value proposition for SoC. It is for such reasons the 

philosophy regarding eFPGAs in this thesis work has remained to be very small, highly customized (this 

work is just the first step) and domain specific, used only where flexibility is essential. Furthermore we 

also investigated some beyond classic approaches to further increase the potential of eFPGAs (MRAMs) 

which we will briefly highlight in section 5.4. 

Silicon tools issues: The integration of eFPGA in the target design/SoC should be easy/flexible using the 

standard silicon tools flow. The soft technology independent nature of eFPGA also helps in easy 

integration of eFPGA using standard silicon flows along with the other components in the design. 

Fabrication and verification issues: FPGAs are a specialized form of hardware in a sense that although 

being a straightforward highly scalable digital circuit their particular nature of immense routing often lead 

to relatively higher amount of metal layers (common in high-end Xilinx and Altera devices) with special 

process/features provided by Fab. In the case of eFPGA this issue gets further crucial as it is an IP not a 

separate device/die. An unusual or expensive fabrication demand of eFPGA from fabrication point of view 
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compared to all the other elements (IPs) in the SoC can lead to tough decisions for the SoC vendor. The 

eFPGA architectures that we explored in this work are compact, light weight and can effectively route in 5 

metal layers on a standard 7 metal layer ST process. A test chip on 65nm (see end of chapter) was also 

made to prove and verify the architecture (not direct contribution of this work) and is fully functional, 

hence making it effective for integration without any barriers.   

Verification (beyond scope of this thesis) is a significant challenge for eFPGAs. It is often the hardest part 

(getting harder at every new node) in chip design, is particularly special for programmable devices like 

FPGAs and add 1 bar of additional challenge for eFPGAs. 

5.3.2 Basic experiments with AMBA 
In continuation of the work with LEON3 [S-7], some basic experiments were done to integrate the eFPGA 

with LEON3 through AMBA (AHB and APB) and create a basic platform to conduct experiments. 

However no exhaustive work like [S-7] was done and it is among the future perspective of the thesis to 

create a full infrastructure following the industry standards for IP integration.  

Figure 5.9 shows the basics of the work done which emerged using the knowledge of LEON3 experiments 

and the challenges regarding system integration. A low gate count wrapper of flip-flops around the IOs of 

eFPGA was created in the form of four banks. The Banks Controller manages the communication of data 

in and out of eFPGA through the AMBA bus which is controlled by software from LEON3 making it very 

flexible to conduct experiments. The Banks also provide a buffer for silicon tools by isolating the eFPGA 

from the timing paths from rest of the SoC, facilitating the timing closure by silicon tools. Hence this basic 

infrastructure provided an easy integration; good software control over eFPGA for making experiments 

(helpful in verification also). 

  
Fig. 5.9: Basic experiments for eFPGA communicating with AMBA (AHB and APB) 

5.3.3 Processor inside FPGA vs FPGA inside Processor perspectives 
At this point one very important factor ―Processor inside FPGA vs FPGA inside Processor‖ can also be 

briefly analyzed in the light of survey research, experience from experiments conducted; to visualize 

potentials of eFPGAs in the scenario. Historically one has largely failed compared to the other although 

theoretically being quite same. When we try to put an FPGA inside a processor (functional unit) some 

crucial problems arise which have often been overlooked or ignored in many previous works. Despite it is 

the best and most optimal way to get the reconfigurable accelerator, it suffers at least three major 

flaws/cons which makes it un-acceptable especially for industry in most cases [S-3].  

 It changes the processor integrity both hardware and software (processor vendors including end 

customers do not like that) 

 Easy said than done, it is complex to find an effective way of connecting it to the processor data path 

and estimating the best size and granularity of the reconfigurable portion 
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 In principle it makes the processor guy the solution provider, who in addition to compete and innovate 

in two different domains (due to that) has also to adapt his processor for every change needed due to 

reconfigurable portion 

The end result in most cases is chaos, it is such and several other reasons that all leading processor 

companies and SoC vendors usually do not like to hear or create such solutions. One must not confuse with 

the custom processors like Tensilica, ARC etc. (successful in industry) in the current discussion scenario; 

they are custom to a target, not reconfigurable data path to adapt to a target.  

Going the other way around makes the story quite different and is the reason why processors inside FPGA 

devices (soft/hard) have enjoyed huge success and are now going to next level (software centric design 

with hard processors, as discussed in chapter 2). It makes things lot easier and sound both technically and 

commercially in comparison to the other way around approach. The processor IP provider fully 

concentrates on his product differentiation and does not have to make a modified IP for every end 

customer and due to that all end customers also take the benefit of software dominance of that processor. 

The FPGA companies based on their target market create products which combine the benefits of software 

(standard processor) and their reconfigurable hardware. The complex functions can be moved to the 

reconfigurable part and act like an IP to the processor; furthermore ESL is emerging for helping auto 

transform the software to hardware conversion for software developers. 

The concept extends for SoC providers also; they can take leverage of same concept to differentiate their 

products by using in house or 3
rd

 party eFPGAs, a die from FPGA vendors (SIP) and connect it as a 

peripheral with standard interfaces. All players fully focus on differentiation of their IP/Product/SoC. 

Figure 5.10 illustrates the three scenarios (trilogy of Reconfigurable Accelerators). 

 
Fig. 5.10: The trilogy of Reconfigurable Accelerators (problem of reconfigurable functional unit) 
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5.4 MRAM based eFPGAs case study 
This section briefly outlines perspectives of MRAMs for eFPGAs. We observed in chapter 2 that MRAMs 

are among prominent beyond classic emerging elements which in addition to their candidacy of universal 

memories have some distinguishing properties that can be exploited particularly for FPGAs. Section 5.4.1 

describes basic fundamentals of MRAMs, about their working principle, the hybrid CMOS hardware, some 

basic properties of MRAMs compared to SRAM and FLASH are described, and different types of 

MRAMs and their properties are discussed. Section 5.4.2 explains the perspectives of MRAMs for 

eFPGAs in the light of survey research and conducted experiments of this thesis work. Section 5.4.3 

highlights the taped out test chips to validate the concepts. 

This section is mostly based on the joint research work presented in [S-4][S-5], the MRAM detailed layout 

works, simulations and test chips are not contribution of this thesis work, this work using the survey 

knowledge of industry, FPGAs and conducted experiments helped to provide eFPGA architecture, tools 

and perspectives for MRAM based eFPGAs. 

5.4.1 MRAMs fundamentals 
This section provides the basics of MRAMs based hybrid CMOS circuit for configuration cell. The basic 

properties of MRAMs compared to FLASH and SRAM are described and comparison of different types of 

MRAMs is presented. The deeper details are beyond the scope of discussions, only the fundamentals are 

discussed for providing the general overview and ease of discussions for perspectives. 

1- Working principle and Hybrid CMOS hardware 
In the MRAM technology, storage information is not controlled by electrical charges (as in EEPROM or 

FLASH) but by a change of resistance of a magnetic nanostructure (the magnetic tunnel junction (MTJ)). 

A MTJ consists of two ferromagnetic layers separated by a thin tunnel oxide layer, one of the 

ferromagnetic layer’s magnetization is pinned (fixed), while the magnetic orientation of the second layer 

(free layer, soft layer or storage layer) is free. The resistance of the MTJ is either low (Rp) or high (Rap) 

depending on the magnetization orientation of the free layer relative to the pinned reference layer, parallel 

or anti-parallel. The resistance variation is characterized by the TMR (Tunneling Magneto-Resistance) 

ratio that is defined by the TMR = (Rap–Rp)/Rp, currently the TMR is about 150% [Crocus, 5.16]. 

Thermally Assisted Switching (TAS) approach combines a local heating of the junction (allowing 

discriminating the junction that has to be written) and a single low amplitude magnetic field. This writing 

method also requires several steps that are depicted in figure 5.11. When the junction is heated above the 

blocking temperature (~150°C) by a current (Iheat: ~270µA) flowing through the junction, the 

magnetization of the ferromagnetic layer is freed and can be reversed under the application of a single low 

amplitude magnetic field. The magnetic field is maintained after the heating current is released so that the 

junction cools down under magnetic field to ensure that the magnetization stored in the free layer is pinned 

correctly. We can see the write-line on which a write current pulse is applied. The magnitude of this 

current must be high enough (Iwrite: ~8mA) such as the generated magnetic field is larger than the 

coercive magnetic field. For the heat, switch and field cool steps the programming timing could be realized 

in less than 35ns [Crocus, 5.16] (for brief comparison SRAM : < 10ns, FLASH : > 150μs). 

For the design of hybrid circuits CMOS/Magnetic, it will be necessary to transform the magnetic 

information into electrical information, to achieve that a hybrid circuit designed is shown in figure 5.12 

[Guillemenet08, 4.58]. The structure of the TAS-MRAM cell (figure 5.12) consists of cross-coupled 

inverters (MN1 & MP1, MN2 & MP2), two MTJs for a non-volatile storage with complementary values to 

unbalance the latch during a read step. The figure also illustrate that (will be further explained later) 

MRAMs are stacked above the CMOS in higher metal layers with no physical link with silicon substrate of 

CMOS. The writing line is implemented in a ―U‖ shape such as allowing writing the data and its 
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complement in the two MTJs of each MRAM cell by providing opposite magnetic fields H1 and H2. Two 

transistors MP3 and MP4 are driven on their gates by a signal ―sense‖, which act as ―isolation‖ transistors 

(to preserve the data stored is the latch during a write step) and selection transistors MN3 and MN4 are 

used to enable the heat operation. This structure operates during the read mode (writing CMOS latch) as 

follows: When the signal ―sense‖ is at low logic level, transistors MP3 and MP4 are switched on allowing 

to pass a read current across MTJs until the latch. The intensity of these current are both different (Imin 

and Imax) because these MTJs are in opposite state (Rmax and Rmin). In consequence, a differential 

potential is generated at the boundary of the latch (Vmin and Vmax) unbalancing it. At this moment, the 

latch is in a meta-stable state. Then, when the signal ―sense‖ goes from the low to the high logic level, 

transistors MP3 and MP4 are switched off, depriving the contribution of energy in the latch to maintain it 

in the meta-stable state. The structure is going to fall over thus automatically towards the closest stable 

state (in this case Vout =―1‖). The total read cycle is about 1ns [Guillemenet08, 4.58]. 

 
Fig. 5.11: Step sequences of TAS write operation in MTJ 

 
Fig. 5.12:  MRAM transistor level Hybrid CMOS circuit 

 
Fig. 5.13: Basic Properties and types of MRAMs 

2- Types and Properties 
As stated before MRAMs are among the candidates of universal memories [5.20][5.21], figure 5.13 

provides an overview of MRAMs compared to mainstream memories (DRAM is not discussed as we are 

focused on memories in use in FPGAs configuration). The table illustrates how MRAM compares in 
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different aspects to SRAM and FLASH. The table on the right hand side explains the properties of 

different types of MRAMs [Guillementet10, 4.60]. The major difference between different types is the 

writing current. The FIMS (Field-Induced Magnetic Switching) is among the first one proposed. It has a 

high write current which penalizes the silicon area as large transistors and metal wires are needed to 

support that high current. The TAS (Thermally Assisted Switching) that was used in our works improves 

this issue. Finally the STT (Spin Torque Transfer) is under major focus of industry at present which further 

improves the write current issue significantly. As STT is same like TAS from fabrication stand point all 

our work is upgradable to STT, leveraging its superior benefits. Next section discusses the perspective of 

MRAMs for eFPGAs. 

5.4.2 Perspectives for eFPGAs 
This section provides the perspectives of MRAMs for eFPGAs. We have classified them into five 

categories to highlight the distinct benefits which MRAMs bring compared to classical solutions. They are 

thematically illustrated in figure 5.14 concept diagram in form of five major distinctions (5ive Stars of 

MRAMs) which are discussed below. 

1- Re-Programmable Non-Volatility  
Having a non-volatile solution for FPGAs is highly attractive and often desired. The major motivations for 

that are well known. It provides a single chip solution which is instant-on (eliminates need of external non-

volatile memory). For eFPGAs these advantages become further prominent. The instant-on feature is very 

attractive from power point of view; eFPGA can be shut down (fully/partly) when not used, to save power 

which is a crucial challenge at present.  In addition to having non-volatility it is also desired that the non-

volatility is multiple time programmable (MTP) compared to one time programmable (OTP) only. At 

present FLASH is the leader in this area, but as we discussed in chapter 2 [S-5] there are some downsides 

with FLASH where MRAMs provide superior benefits (illustrated in figure 5.13 also). We will discuss it 

further in the fabrication section below shortly.  

2- Radiation Hardness 
As the storage of information in MRAMs is magnetic compared to electric, it provides enhanced radiation 

hardness ability to MRAMs based solution compared to classical ones. Radiation Hardness (beyond scope 

of this thesis work) is an important requirement in critical applications (military, aerospace etc.). MRAMs 

based eFPGAs in addition to being non-volatile also achieve superior characteristics for radiation 

immunity. [Cargnini&Guillemenet10, 4.61] describes how MRAMs can help in this regard compared to 

conventional SRAM based solutions.  

3- Shadowed Dynamic Reconfiguration 
Dynamic Reconfiguration is an interesting aspect of FPGAs which helps to further exploit the 

programmability benefits of FPGAs for several dimensions for instance increased area and power 

efficiency by reusing the full or portion of the device. We discussed in section 5.1 in general discussions 

about the status and growing potentials of dynamic reconfiguration. For eFPGAs dynamic reconfiguration 

can be further interesting compared to device FPGAs. For instance, as an eFPGA is small IP in system it 

can be frequently/based on needs reconfigured to perform different tasks (MRAM are re-programmable 

and much faster to write compared to FLASH). Also as eFPGA is a customizable IP, architecture with 

more dynamic reconfiguration friendly configuration system can also be designed based on target needs. 

Furthermore MRAMs based hybrid CMOS configuration provides a unique opportunity for dynamic 

reconfiguration i.e. Shadowed Dynamic Reconfiguration (on the fly). Figure 5.15 illustrates the concept; 

we explained the basic operation of hybrid CMOS cell above with which the figure can easily be 

described. As the central latch (cross coupled inverters) is isolated from the MRAM portions by the 

transistors controlled by ―sense signal‖ we can write new value to the MRAMs while the device is running 

(latch is providing the configuration to device), this is shown in figure in three steps/phases. We can see 
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that in phase-b we upgrade the value of latch from phase-a MRAM values and in phase-c we write new 

values to MRAM without disturbing the value of the latch which can be switched to new value any time 

like was done in phase-b. This shows how MRAMs can provide a remarkable benefit for dynamic 

reconfiguration by virtually providing an inherent dual-context solution with same base hardware. Similar 

characteristics with conventional techniques will require additional transistors. 

4- Multi-Context (with low silicon overhead) 
Multi-Context in some aspects is an enhanced form of Dynamic Reconfiguration. The concept is very 

impressive as it utilizes the profound benefit of the programmable logic capability of FPGAs. By having 

more than one layer of configuration allows rapid switching to a new functionality (ultra high speed 

dynamic reconfiguration). However achieving such features come at a heavy silicon price and make the 

value proposition of multi-context weaker compared to tradeoff for most cases, at present no commercial 

FPGA support multi-context (we discussed Tabula solution in chapter 2 but that is relatively a different 

style of architecture). We described above the unique benefits of MRAMs for dynamic reconfiguration, 

they also provide superior features in regards of multi-context compared to classical solutions. Figure 5.16 

highlights the scenario. It is intuitive to understand the multi-context hybrid architecture principle and 

working from the discussions above. We can see that compared to classical solution of double the 

configuration plus multiplexer overhead for the case of MRAMs we only need to add a pair of MTJs to add 

a new context which is clearly more silicon efficient. Furthermore from our discussions of Shadowed 

Dynamic Reconfiguration above it must be noticed that each context inherently has a virtual dual-context. 

Adding physically more contexts on one hand will enhance direct instant switching among different 

configurations, and on the other hand also provides potentials of clever exploitation of shadowed dynamic 

reconfiguration among multiple contexts to further enhance the capabilities of eFPGA for instant switching 

to different configurations (particularly interesting for a co-processing scenario shown in figure 5.14). The 

table on bottom compares the transistor count for MRAM based vs conventional solution. We can see that 

how rapidly the transistors increase with increasing context for conventional solution compared to 

MRAMs solution.  

Con of MRAM: The table also depicts that a single MRAM configuration cell is more expensive than a 

classical 6T SRAM, this issue is significant from device FPGA stand point if a target demand is 

conventional with no multi-context and dynamic reconfiguration (often the case in reality). Also from 

power stand point if the nature of target application domain does not allow exploitation of instant-

on/shutdown potential it is trivial to observe that MRAM based cell will have more static power compared 

to SRAM (more transistors leak). This provides research motivation for finding more compact memory 

cell architectures (are already underway by research community). 

5- Integration and Fabrication ease with conventional CMOS 
All the benefits and potentials that we have been discussed above can easily be nullified if the MRAMs 

cannot/too hard to integrate and fabricate with the rest of the design. For eFPGAs this issue is further 

significant as complex demands of just one IP can make the SoC level decisions and silicon budgets 

complex and can force a revisit to the value proposition of that IP in global scenario. In such regards also, 

MRAMs have promising advantages. Figure 5.17 illustrates the integration and fabrication ease benefits of 

MRAMs. The principles are explained based on our work done on MRAM based FPGAs between Menta 

and Lirmm (University of Montpellier) however it explains the fundamental benefits of MRAMs in 

practical scenario of industry. The figure on the left hand side shows how the configuration cells of hybrid 

CMOS are integrated with the architecture of eFPGA (in future they can be directly available from Fabs). 

We can see that all the flows are based on standard hardware design flows and using the classical well 

known state of art silicon tools.  

The figure on the right hand side shows the fabrication flow where several interesting observations can be 

made. The first and most important point is that the MRAMs are integrated (stacked) on the top of 
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conventional CMOS process. This is a significant benefit from both technological and commercial stand 

point. We briefly covered this issue already in chapter 2 discussions [S-5]. Having the MRAMs on the top 

allows using conventional CMOS process, taking leverage of the latest node (difficult with FLASH [S-5]) 

where MRAM can still be of some different node (already in our experiments we used 130nm CMOS and 

120nm MRAM, in principle other way around is also possible). Furthermore MRAMs require fewer mask 

levels compared to FLASH (figure 5.13), giving further benefits from cost point of view.  

 

 

 

 
Fig. 5.14: Perspectives of MRAMs for eFPGAs (the 5ive stars) 

 

 

 
Fig. 5.15: MRAM based Shadowed Dynamic Reconfiguration 
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Fig. 5.16: MRAM based Multi-Context configuration cell vs classical Multi-Context cell 

 
Fig. 5.17: MRAM integration and Fabrication with standard tools and standard CMOS 

Test Chips (MRAMs, Latch/SRAM based configuration) 
This section provides brief details of the test chips made in close collaboration with this thesis work which 

utilized the eFPGA architecture (fully/partially modified to meet test chip issues) that was explored in this 

thesis (chapter 4.1). 

MRAM based configuration Test Chips (ST130nm) 
MRAMs still have a way to go before they become main stream like FLASH/DRAM but the interest and 

roadmaps of industry is positive enough to claim that they are becoming a reality now and are not just a 

research project anymore [S-5][5.17][5.18]. The test chips taped out by LIRMM and Menta in ANR 

(French National Research Agency) project [EEtimes09, 4.78][EEtimes10, 4.79][S-4] are a living proof of 

that. To validate the research concepts and potentials of MRAMs discussed above some test chips are 

taped out on 130nm (130nm ST CMOS + 120nm Crocus MRAM). This further distinguishes the years of 

research of LIRMM on MRAMs for FPGAs to be among world’s first known MRAM based FPGA test 

chips tape outs. The test chips are not direct contribution of this work and deeper details are beyond the 

scope of discussions. The fundamentals are provided here for the completion of discussion for advocating 

the above mentioned perspectives which will become easy to exploit and manufacture as MRAMs continue 

to get evolved and matured. 

Figures 5.18 and 5.19 show two taped out test chips for validating MRAM based FPGAs on 130nm 

process [S-4] (130nm ST CMOS, 120nm Crocus MRAM, MRAM post processing by CEA-LETI [5.19]). 
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The first one is a small 2x2 architecture with 4 LUT-4 connected with a routing architecture. The second 

one is a large FPGA with 1444 LUTs (LUT-4, Cluster-4, Channel-16) on which practical applications can 

be mapped for experimentation. The test chips are under experimentation for functionality. 

 
Fig. 5.18: MRAM 130nm small 4 LUT-4 Test Chip (ST CMOS + Crocus MRAM) 

 
Fig. 5.19: MRAM 130nm 1444 LUT-4 FPGA Test Chip (ST CMOS + Crocus MRAM) 

Latch/SRAM based configuration Test Chip (ST65nm) 
Figure 5.20 shows a 1mm

2
 (core= 430 um

2
) test chip on 65nm LPSVT process. The chip has 16 tiles 

(LUT6, Cluster-4, Channel-16), 12 of them use Latch-based configuration (pure soft) and 4 use SRAM-

based configuration (partially custom). There are 32 pads. The chip has been verified for functionality and 

deeper experimentation is under way. 

 
Fig. 5.20: ST65nm eFPGA Test Chip of Menta (64 LUT-6) 
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5.5 Summary 
The chapter presented the contribution G (chapter 1) of this thesis work to explore the challenges and 

potentials related to systems perspectives for eFPGAs. Section 5.1 provided a general overview of the 

potentials of eFPGAs for SoCs in the light of changing dimensions in industry. It revisited the potentials of 

reconfigurable accelerators and highlighted the prospects of eFPGAs in the spectrum with their leverage of 

standards for programming, IP eco-system, benefits of ESL exploitation, flexible hardware. Section 5.2 

addressed in detail reconfigurable acceleration experiments with LEON3+eFPGA with focusing on 

programming complexity by exploring ESL use and detailed silicon tradeoff analysis to visualize a more 

realistic picture for the challenges and potentials for eFPGAs in this regard. Section 5.3 discussed the 

challenges regarding system integration for eFPGAs in the light of survey knowledge and conducted 

experiments. It also briefly addressed the ―Processor inside FPGA vs FPGA inside Processor‖ perspectives 

and tried to highlight the possible reasons (that have often being ignored by researchers) for high failure of 

reconfigurable data path like solutions in industry based on survey knowledge of this thesis work. 

Conventions are not enough to move ahead, section 5.4 highlighted the perspective of beyond classics 

MRAMs for eFPGAs which can significantly help augmenting the potentials of eFPGAs in future SoCs. 

An overview of test chips was also given which makes the explored architecture of this thesis work silicon 

proven for both conventional and beyond classic technologies. 

The key points observed/discussed can be summarized as follows. 

 eFPGAs can provide promising potentials for product differentiation, time to market and multitude of 

other benefits for SoCs 

 The soft, technology independent eFPGAs provide instant portability to any process, removing the 

fab/node dependent solution barrier. If ROI justifies a hard solution can also be made 

 The reconfigurable acceleration can help in growing challenges of industry regarding performance and 

power walls. A revisit to the potentials of Reconfigurable Computing is needed to leverage its benefits 

and find solution for the past mistakes in standard industrial way 

 The rise of ESL and FPGA-like hardware of eFPGAs can help bringing FPGAs benefits to SoCs 

 eFPGAs can provide attractive solution as a reconfigurable accelerator, experimental investigations 

were conducted with a standard processor (LEON3) with full silicon tradeoff visualizations 

 ESL has a promising future for SoCs, FPGAs and eFPGAs 

 eFPGAs must follow an industry standard (like AMBA etc.) to be integrated with systems, they must 

have attractive silicon properties (area, power, speed) for a value proposition for SoC. They must be 

easy to integrate using standard tool flows and should be easy to fabricate (no special requirements) 

 The beyond classic MRAMs can provide salient benefits like non-volatility, radiation hardness, 

shadowed dynamic reconfiguration, multi-context and ease of fabrication and integration etc. Such 

features can help highly augmenting the potentials and value proposition of eFPGAs for SoCs 

The next chapter concludes this thesis work and provides future outlook. 
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Chapter 6: Conclusions & Future Lines 

of Research 
 

This chapter concludes the thesis work, explains the summary of 

contributions, knowledge gained and provides the possible future lines of 

research. 

6.1 Conclusions 
This thesis extensively revolved around embedded FPGAs (eFPGAs). It tried to investigate industry for its 

changing trends, crucial challenges it is facing at present where programmable devices have strong 

potentials and how/where/if eFPGAs fit in that spectrum. It conducted a survey of programmable 

technologies for their potentials and status in industry and tried to explore why FPGAs 

dominate/historically dominated in that area compared to other related/competitive approaches. In-depth 

study of FPGAs was made to understand their research challenges for creating FPGA-like embedded 

FPGAs. In the light of survey knowledge, the concept and motivation of soft eFPGAs was presented with 

standard RTL programming flow and rich tools infrastructure to perform architectural exploration of 

eFPGAs. Detailed architectural explorations were performed to create customized silicon efficient eFPGAs 

(area, power, performance). Since the scenario of eFPGA is incomplete without systems; efforts were done 

to investigate challenges, perspectives of system integration for eFPGAs, practical experiments in the 

direction of reconfigurable acceleration with standard processors were conducted. To further enhance the 

potentials of eFPGAs for systems, investigations in beyond classical technologies and methods were also 

explored and an overview of perspectives of emerging MRAM memories in this regard was presented. 

Contribution Axes: The thesis contributions were classified in three major dimensions/axes in the 

introduction (chapter 1) namely; R (Industrial Survey & Analysis), B (eFPGA Architectural Explorations) 

and G (eFPGA in Systems), the entire thesis was tightly coupled to them in the form of chapter 

organizations and discussions. The joint knowledge of these three axes was addressed as an auxiliary 

fourth axis in the form of tools suite (eFPGA Creator) which facilitates creation of efficient eFPGAs. The 

following sections describe brief overview of the contributions done and gained knowledge which helps to 

define future outlines. 

6.1.1 Summary of Contributions 
The summary of contributions of the thesis work is briefly described below in form of chapters. 

Chapter 1 provided the global overview and challenges of industry/academia at present, presented 

motivations, objectives and key contributions of thesis, and graphically bounded them to key dimensions 

facilitating flow of thesis discussions. 

Chapter 2 investigated in detail the fundamentals of FPGAs, eFPGAs and a general survey particularly 

focused on programmable technologies. It covered in-depth analysis of FPGA research challenges and 

advances in state of art and academic research. It investigated previous efforts in industry and academics 

for eFPGAs or similar directions. An extensive global survey of semiconductor industry was presented 

(perhaps first one of its kind), analyzing different markets and their status. It specifically focused on 

programmable technologies and provided a qualitative and quantitative analysis of different types of them 

with their market position and potentials. It discussed in detail the potentials and strengths of FPGAs and 

versus FPGAs technologies to discover reasons of FPGAs dominance. The chapter provided detailed 

motivations and guidelines for the work done and presented in the thesis. 
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Chapter 3 provided an overview of the architecture fundamentals of eFPGA explaining the motivations 

behind them, particularly in soft eFPGA scenario. It briefly outlined the CAD tools (eFPGA Programmer), 

which provides the standard RTL programming flow. It discussed in detail the philosophy of eFPGA 

creation and exploration tools suite infrastructure (eFPGA Creator) and explained the efforts done to create 

these tools which provide a user-friendly infrastructure for architectural explorations on real process nodes. 

Chapter 4 extensively addressed the eFPGA architectural explorations which are the biggest contribution 

of this thesis work in terms of time spent on experiments, gathering knowledge and infrastructure to 

perform those experiments. It presented the exploration in two levels. First level presented in depth general 

explorations for nearly all fundamentals (LUT size, cluster size, channels, routing architecture challenges 

and also growing importance of power etc.). Second level conducted deeper levels of customizations for 

further enhancing the silicon efficiency (area, power, speed) of eFPGAs while maintaining good routing 

efficiency. It investigated how the routing efficiency of eFPGA can be enhanced by connecting the logic 

block in diverse ways to less flexible silicon efficient routing architecture and found promising directions 

of new kinds of architectures (with eliminated conventional connection block and local interconnect) 

which compare/rival past published (VPR/VPR-like) research attempts. It also briefly provided some near 

term directions of enhancement of achieved results and observations to wider design space exploration. 

Chapter 5 addressed eFPGAs in systems potentials, challenges and perspectives. It provided a general 

overview of the challenges of industry where eFPGAs can play interesting part; a particular emphasis was 

put on reconfigurable acceleration in the light of benefits that eFPGAs can bring with their specific 

properties (standard programming, high flexibility, IP-leverage etc.) reviving motivations of several similar 

past efforts that unfortunately failed. A practical exploration of reconfigurable acceleration scenario with 

standard processors was investigated and presented with focus on programming complexity and silicon 

tradeoffs visualizations. The challenges regarding eFPGAs for real-life system integration were 

highlighted. View point for possible reasons of several failures of reconfigurable data path like past efforts 

was presented in industrial scenario. Conventions are not enough to move ahead, perspectives for beyond 

classics potentials of MRAMs for eFPGA was presented. Brief overview of test chips taped out based on 

eFPGA architecture of this work was provided which makes this work silicon proven on conventional 

(65nm CMOS) and beyond classics (130nm CMOS+MRAM). 

References section was created as an interactive stand alone chapter with categorized bibliography.  

6.1.2 Knowledge Gained 
Some key aspects of the general knowledge gained from the contributions are briefly described below that 

were discussed in detail in the thesis report and corresponding contributions [S]. 

Semiconductor Industry: Extensive study of semiconductor industry was done including beyond 

technology commercial aspects of industry (beyond scope of thesis discussions). A detailed survey focused 

on programmable technologies was conducted to explore potentials and status of different technologies 

including investigations to understand reasons of failures of several past efforts. The potentials and 

challenges for eFPGAs in changing trends in industry were investigated. 

In-depth knowledge of FPGAs: Since the research conducted in this thesis work focused on FPGA-like 

eFPGAs, an in-depth study of FPGAs was done. The thesis investigated scientific and commercial 

literature of the state of art, studied patents to observe real-life challenges and how state of art deal with it, 

performed detailed analysis of academic research. Extensive practical experimentations were done to 

investigate eFPGA (in principle FPGA) architecture. 

Importance of Standards: Standards play a vital role in industry. From commercial aspect can even 

monopolize some technologies/companies. Setting aside the commercial aspect, the complexities of chip 
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design and related surrounding eco-system has gone so high that it is often very hard for non standard 

technologies/innovations to succeed finding a niche in industry despite they are offering some highly 

innovative solutions to key challenges. This brings the high challenge to scientists both in industry and 

academics to clearly understand the challenges and devise effective roadmaps that pave the way for new 

innovations (protection of innovation from dying) that have strong potentials to get standardized in a 

longer term or provide strong competition to existing solutions which bring industry to inflexion point of 

tough and revolutionary decisions. As an example there is a lot to learn for researchers from the FPGA vs 

Coarse Grain story, and at present slow and steady move of industry to multicore in different dimensions. 

Challenges of Power Consumption: Since Moore’s law crossed 90nm node, power consumption has 

become a paramount issue and challenge throughout the industry and has shaken almost four decades of 

science and business legacy. Power consumption has become a particular research and commercial 

challenge for FPGAs also, against competitive technologies. 

Challenges for eFPGAs: The eFPGAs have natural undeniable potentials and several attempts have been 

made both from industry and academics in past (chapter 2), however it is well known that hardly it ever 

succeeded in industry. Considering eFPGAs technical challenges, following key things are worth noticing 

which were discussed and some were addressed in the thesis. 

 Tools: Play a vital role and usually had been main reason of failures of many. They should be high 

quality and must provide some standard flow (RTL or ANSI C/C++ etc.). RTL is more interesting for 

FPGA-like eFPGAs as it provides dual exploitation benefits (ESL) and IP eco-system leverage 

 Silicon Gap: FPGAs are well known for their large silicon gap with ASICs, this issue gets further 

prominent for eFPGAs. The eFPGA must have attractive logic density in acceptable power budgets 

and desired performance requirements of target ASIC/ASSP/SoC to be an interesting value proposition 

 Hard vs Soft: Is related with the silicon gap issue. FPGAs (eFPGAs) have a specialized class of 

hardware which can be better implemented in full custom (like commercial FPGAs) to have as silicon 

efficient solution as possible. However the target scenario of FPGAs and eFPGAs is (can be) very 

different. FPGAs are devices that are mass produced for a specific fab node. eFPGAs process node is 

determined by target device. In deep submicron nodes creating full custom designs have become 

extremely challenging and expensive even for a single node. Covering a broad range of fabs/nodes is 

virtually impossible (ROI issues). Soft technology independent customized eFPGAs of small sizes can 

bridge this fab/node dependence gap in different scenarios. Something is better than nothing! 

 Integration: An effective and standard integration both in terms of silicon tools and industry standard 

IP interfacing (AMBA, NoC etc.) with the SoC is crucial 

 Customization: A rich infrastructure which facilitates creation of target dependent customized 

efficient eFPGAs for SoCs with good value proposition for all above mentioned challenges 

Potentials of Beyond Classics: There is a limit of conventional research of FPGA architecture to address 

the challenges of FPGAs which has nearly two decades of history of innovations. There are some emerging 

technologies (MRAMs, MEMS, 3D-stacking etc.) and newer communication techniques (packet switching 

etc.) that have been neglected or partially explored by researchers that can provide some good potentials 

for FPGAs and are now gaining attraction among researchers in both academics and industry. 

Industry is heading for platform collision: With the pressure generated by power consumption and ever 

increasing design complexity and costs of newer process nodes, several technologies which were relatively 

quite different or nonexistent in the past are heading for similar markets that will/may lead to collision in 

future [S-3] (chapter 2). eFPGAs will/can play an important technical and commercial role in the colliding 

future (of Heterogeneous MPSoCs, FPGAs, MPPAs etc.). 

eFPGAs Research Outcomes: The research conducted in this thesis explored architectures, potentials and 

challenges for soft eFPGAs with RTL programming flow. It was found that eFPGAs of good silicon 



- 156 - 

 

properties were achieved with architectural exploration. Since all investigations were done on real silicon 

process (65nm for most part) the results presented show realistic properties that can be exploited in SoCs, 

some basic analysis for eFPGA in SoCs were also conducted to illustrate the potentials. It was also 

observed that the concept of pure soft eFPGAs helped to exploit proven standard cell libraries and state of 

art silicon tools to implement the architecture on target nodes with silicon properties (logic densities up to 

400+ LUT4/mm
2
) that compare/rival basic automatic layout generation published works in academics. 

However there is still a long road to go to have competitive industrial level properties (the actual beyond 

thesis target of eFPGA of this thesis work). The next section provides future outlines of research. 

6.2 Future Directions 
The thesis work explored and contributed in several directions to investigate the potentials and challenges 

regarding eFPGAs. In general terms since eFPGA is FPGA-like, nearly all challenges of FPGAs apply to 

it. The state and advancements of state of art FPGAs are well known, so in an industrial scenario can 

already provide the road to future challenges from a company stand point (beyond scope of breadth and 

complexity of a thesis), since in principle any FPGA vendor can make eFPGA /vice versa.  

Based on the knowledge gained and experiments conducted in this thesis, there can be several future 

outlines. Figure 6.1 shows thematically some interesting future innovation areas which are briefly 

explained below in the form of a chronological order providing limited sense of priority. 

 
Fig. 6.1: Innovation wheel for future research ideas 

Near term: 

The most interesting near future extension for this thesis work will be extension of section 4.2.  

Extended Explorations: We observed interesting results with significant improvements of silicon 

efficiency of architectures by SB customizations. Extensive design space exploration in several dimensions 

will be interesting to explore further possibilities and better architectures. Section 4.2.5 highlighted some 

exploration directions in this regard. 

Architectural Heterogeneity: One of the biggest elements to combat the silicon gap of FPGAs is hard 

macro blocks. They are highly common in commercial FPGAs, but still are in very early stage in academic 

research. Hard blocks further help in customizing eFPGA architecture to target needs. It will be interesting 

to conduct first level experiments for exploring the heterogeneous blocks addressed in section 3.1.2. 

Enhanced CAD and tools: Further up-gradation of exploration tools, eFPGA Programmer and eFPGA 

Creator. An interesting addition to the flow of eFPGA Creator (section 3.3) will be adding an approximate 
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timing model on some specific node based on the knowledge gained by silicon implementations. This will 

allow accelerated design space exploration. In current case the silicon implementation phase brings the 

obvious long delay which is highly penalizing when conducting numerous new experiments. An 

approximate timing modeling which can help distinguishing and comparing relative gains by architectural 

customizations will significantly help enhanced design space exploration. Instead of all only set of more 

interesting architectures will be physically implemented for deeper investigations. 

Mid. term: 

It will be interesting to investigate enhancement of system integration work and experiments (chapter 5) to 

standard interfaces (AMBA etc.) to create and explore more real-life scenario. Analyze eFPGA with 

industrial benchmark applications in system scenario to explore the tradeoffs and find/explore eFPGA 

architecture enhancements and customization. 

Longer term: 

In the longer term it will be attractive to investigate more advanced architectural explorations that are 

competitive to state of the art solutions and challenges of eFPGAs in complex SoCs. Since eFPGA is an IP 

the investigation of beyond classical methods and approaches will/can be further interesting compared to 

FPGAs. Chapter 5 presented the perspectives of beyond classic MRAMs for eFPGAs, it will be nice to 

explore those concepts in detail to find attractive new solutions. Appendix A3 provides some interesting 

aspects of using NoCs, MRAMs etc. that will be worth experimenting to explore their potentials for 

systems (Heterogeneous Reconfigurable MPSoCs) and the fundamental eFPGA/FPGA architecture for 

routing challenges and heterogeneous hard blocks (IP) integration. The FPGAs are specialized hardware 

and through full custom design several electrically different implementations of a logical architecture can 

be made. The thesis work focused on pure soft eFPGAs along with the motivations behind them. However 

the potentials of custom (hard/semi hard) eFPGAs cannot be ignored. It will be interesting to explore ways 

to bridge hard and soft eFPGAs. And finally in industrial scenario it requires both technical and 

commercial contributions for success; it will be interesting to make higher level commercial contributions 

also for advancement of eFPGAs. 

6.3 Concluding Remarks 
While the concept of eFPGAs is not new and furthermore does not have an encouraging history, the 

changing dimensions in industry provide potentials and motivations for revival of eFPGAs, It surely is a 

missing IP in industry which can play a prominent role in current and especially future SoCs. Efforts must 

be made to learn from past mistakes and remove the barriers that inhibited eFPGAs success in past. This 

thesis tried to contribute in this regard in several dimensions. The strong future of eFPGAs in 

Heterogeneous MPSoCs, Configurable SoCs etc. seems imminent. 
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Epilogue 
The last act of/as CIFRE 

PhD in addition to being final (in general!), is a specialized adventure in the university-level education. It is the 

first time a student actually comes across a complex back-end entity (mostly invisible to outside world) of 

university, called academia. Which is the foundation/tightly-linked part of research empire and the FAB which 

tapes-out Doctors and Professors (Cham [5.10] mentioned herein as one reference addresses this entity with 

philosophical depth). Since this thesis work was hybrid (Prologue), it provided an opportunity to independently 

work/observe in parallel in/with the two distinct worlds [5.11] of ―academia‖ and its complex counterpart ―the 

industry‖.  This perhaps was the hardest thing I had to deal with in my PhD, however in tradeoff, the start-up 

nature of Menta specifically helped to observe industry with further depth (beyond technology). Having had the 

power/gift/burden of officially being at the same time ―iIndustry + iAcademia‖, helped me to investigate and 

penetrate these two (part similar yet miles apart) distinct worlds in a way which would have been virtually 

impossible in any other configuration (pure PhD, pure professional etc.). Tomorrow (logical) I will/have to lose 

one power (general future/direction of CIFRE PhDs is well known [5.11]), however cherishing memories of the 

adventures and knowledge gained will surely help/guide in future as they indeed heavily did during the thesis. 

As a last act of CIFRE, it brings me to contribute/document some of the top global (unbiased) findings described 

below in spirit of both academia (we share) and industry (grab differentiation). Those of skill in the areas will 

instantly recognize that points mentioned are symbolic and can be extended to plurality of points/discussions 

and real examples (beyond scope/intent of thesis/epilogue). What I observed/learned/investigated is. 

In one embodiment an entity called Semiconductor Industry: 

 We are not primarily doing this for the humanity, it’s our business, if we don’t do it someone else (competitor) will 

 If one can’t control/protect one’s market share, be visionary enough to foresee future before enemy (needs can/may be 

created); he will/may be doomed, no matter how big/dominant one is (tomorrow will/may not take care of itself) 

 There are usually two ways to do business: 1- Have something that no one has, use/create dominance of/through that;  

2- Find weakness of the enemy, use that as strength and crush him with it 

 Science alone can/does not run/drive the industry, it takes TWO (geeks + businessmen) to do wonders 

 We protect knowledge (patent), exploit/help academia, steal ideas, buy ideas, can/damage science for business, even do 

miracles of science, are often at high risks (market/economy). All is fair in love & war, damn hard we try playing that! 

In another embodiment a corresponding (not entire*) entity called Academia: 

 We love: to share, cite and be cited (the beauty & burden of selfless academia) 

 There are two distinct kinds of professors in the world: those who contribute science and those who contribute 

themselves in the name of science. In real-life many do/must/have to use a mixture of it for obvious reasons 

 The finest minds of academia (professors) are/made so diversely overloaded that often they don’t/can’t find fair enough 

time for what they are/wished/supposed to be overloaded for (homogeneous academia vs heterogeneous industry) 

 IEEE/ACM paid downloads business model is/has gone outdated in/for internet era: Google business model supremacy 

 Only Professors can live happily ever after (wonders of teaching/tenure): it depends on them how happily they enjoy 

their ever after (the legends not even retire, ever after). No place is more prestigious and safer than the University! 

 

Looking forward: I suspect I am/will be back once again in my life’s inescapable wave of uncertain 

heterogeneity. I believe this phenomenal training will guide the future; & technology will have/maintain 

a strong market share of my contributions in future adventures (insert here a complex smile!). 

- THE END - 

 

*Middle embodiments like CNRS/Faunhofer-like were not investigated as Industry/Academia! 
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Appendix 
The appendix provides some extended discussions, tables, figures, general document statistics etc. of the 

thesis. A1 provides a comprehensive survey of referred patents in relation with the patents study 

discussions of chapter 2.3.1. A2 provides extended tables and discussions for chapter 4.2. A3 provides 

abstract perspectives for NoC and MRAMs for Heterogeneous MPSoC platforms, and for routing 

architecture of eFPGA for efficiency and 3
rd

 party hard blocks (IP) integration. A4 provides general 

statistics of the thesis document. 

A1: General overview/survey of FPGA vendors Patents 
This appendix provides a comprehensive overview of the patents survey referred in [3] in perspective of 

the discussions during chapter 2.3.1 for obtaining general broad idea about state of art solutions for 

research motivations and challenges. Deeper details of them are beyond scope of thesis discussions. The 

additional contributing part of patents survey reference section [3] and the way it is presented is collecting 

key fundamental patents which are helpful for FPGA researchers for motivations and provide them an easy 

access to vast (thousands) patents of vendors for deeper investigations based on their research area. The 

discussions are categorized in different key areas/aspects of FPGAs research. 

It is interesting/important to note that all patents provide scientific ideas with the invention presented in 

them and are mostly but not necessarily always (particularly for giant vendors) used in the production 

devices. The prime intent of the patent is to prevent the competitors/new-comers from using that idea in as 

wide sense as possible. 

Foundation Patents 

This section briefly outlines the foundation patents of some (others include Lattice, Atmel, QuickLogic 

etc.) leading FPGA vendors, granted to their founders in late 1980s for providing a historical perspective. 

The later sections will address in detail particular aspects and advancements areas of present day FPGAs. 

[Xilinx_Freeman89, 3.1] described a programmable logic and interconnect architecture. This patent is 

among the most famous patents in the history of semiconductor industry, it is credited for the invention of 

FPGA and is the foundation of present day LUT based SRAM FPGAs, which is near universal among 

almost all FPGA vendors now. [Altera_Hartmann88, 3.35] described a programmable logic device with 

AND and OR gate arrays using the CMOS EPROM floating gate technology. [Actel_ElGamal89, 3.55] 

described a programmable interconnect architecture using Anti-fuses.  

1- Logic Block 

All commercial FPGAs use clustered logic blocks. In addition heterogeneous capabilities e.g. carry chains, 

multiple functionalities of LUT etc. are also common (chapter 2.1). This section provides a brief survey of 

logic block patents. 

[Xilinx_Kondapalli07; 3.5, 3.6][Xilinx_Young08, 3.9] illustrate in detail the LUT6 based logic block 

architecture (Slice). The sheer complexity and multitude of heterogeneous functionalities in state of art can 

be observed in it. The logic block in addition to classical logic implementation of LUT is also optimized 

for using LUT6 as RAM, shift register etc. Special architectural innovations allow efficient 

implementations of adders, accumulators, multipliers etc. The highly depopulated feedbacks connectivity 

to the LUT inputs can also be observed in it. 

[Altera_Lewis10, 3.36] and [Altera_Kaptanoglu06, 4.37] provide some insight to the adaptable LUT 

innovations of Altera (chapter 2.1.2) by creation of logic elements composed of group of smaller LUTs 

compared to a full LUT6 that are connected in a special manner to provide more silicon efficient solution. 
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[Altera_Lewis10, 3.38] describes an efficient manner of connecting the logic elements in the logic block 

(LAB). [Altera_Lewis08, 3.39] presents architecture enhancements of logic block by having more than one 

flip-flop per LUT leading to more registered outputs than combinational or combinational output that can 

drive more than one flip-flop. [Altera_Padalia10, 3.40] presents CAD techniques for efficient clustering of 

logic elements in logic blocks (LAB) in connection with placement information. [Altera Leventis06, 3.41] 

presents interconnect structure for inside and outside of logic block. The above mentioned patents also 

provide insight on the challenges and potentials of depopulation of local interconnect for the feedbacks and 

input signals and efficient connectivity of the combinational and sequential outputs of logic elements 

[Actel_Feng09, 3.56] describes an efficient depopulated local interconnect architecture in two levels of 

multiplexers which are dramatically smaller in size compared to the two levels (CB+LI as we discussed in 

chapter 4.2) of classical VPR-like explored architectures (this patent is quite interesting for VPR-like 

architecture researchers). [M2000_Reblewski03, 3.72] presents highly optimized depopulated logic block 

architecture for feedbacks. It also uses logic block outputs depopulation (some logic elements outputs are 

only used for feedback hence decreasing total number of logic block outputs for routing network). 

[M2000_Lepape09, 3.73][M2000_Lepape10, 3.74] provides enhancements to previous mentioned [3.72] to 

add heterogeneity in the logic block, e.g. adders, special-function elements etc. inside the logic block. 

In addition to adding heterogeneity in logic blocks, research is also conducted in heterogeneous use of 

logic blocks or their architecture to exploit different benefits. [Xilinx_New01, 3.7][Xilinx_Kaviani03, 3.8] 

present enhancement of using some of the interconnect multiplexers (similar to SB-eLB multiplexers in 

this thesis work) which route signals to input of logic elements (or LUTs) to be used also for implementing 

multiplexers for mapped applications (saving logic resources used if implemented using logic blocks). 

[TierLogic_Madurawe08, 3.93] discusses integration of carry logic inside the LUT hardware. 

[TierLogic_Dorairaj09, 3.94] presents use of latch to implement logic for enhancing logic capacity. 

2- Routing Architecture 

Routing is most interesting and complex part of FPGA architecture research. All FPGA vendors have their 

specialized architecture that differentiates them from their competitors; this is further backed up by the 

differentiated CAD tools of corresponding vendors which efficiently utilize the hardware for mapped 

applications. Like we observed sheer complexity of logic block in previous section same goes for routing 

architecture in state of art. The routing is generally composed of complex hierarchies of heterogeneous 

length of wires along with specialized electrical implementation (we will discuss in more detail in later 

section on silicon implementation) innovations for buffers, specialized multiplexers etc. to further enhance 

capabilities and efficiency of architecture. This section provides a brief survey of architectural patents. 

[Xilinx_Tavana99, 3.10] presents in detail the routing architecture of tile based (common in all commercial 

devices, will discuss further in next section) FPGAs. It also helps providing insight to complex routing 

structure of state of art FPGAs along with intense depopulation of routing flexibility (what was partly 

addressed by this thesis work also in chapter 4.2) in the routing matrix (SB) and logic block. The logic 

block architecture presents specialized form of multilayer switching levels with high depopulation which 

overall is further silicon efficient compared to classical CB+LI (VPR-like) architecture and complete 

single layer unified SB architecture that we addressed in chapter 4.2. [Xilinx_Young99; 3.11, 3.12] 

provides details about hierarchical long lines with bidirectional and unidirectional interconnects. 

[Xilinx_Young02, 3.13] describes an efficient method of extending the routing architecture of architecture 

while maintaining the configuration compatibility with original architecture. [Xilinx_Young07; 3.14, 3.15] 

describe in detail with illustrative diagrams the long and diagonal lines based architecture innovations, the 

hop patterns, staggered routing tracks etc. 

[Altera_Lewis05, 3.43] presents the 3-sided routing architecture (chapter 2.1.2) where the logic block 

(LAB) connects to three neighboring channels providing attractive features to exploit layout of LAB, block 
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memories connection ease, better redundancy control for defective LABs if needed etc. It also explains the 

issues related with 1-sided, 1.5-sided, 2-sided and 4-sided architectures. [Altera_Betz04, 3.44] presents 

heterogeneous interconnection architecture where some routing tracks are faster than the others and logic 

block pins are connected to the tracks in a heterogeneous manner to exploit area versus speed scenario in a 

silicon efficient way. [Altera_Hutton08, 3.45] presents hierarchical organization of logic blocks to 

efficiently share special resources like clock etc. [Altera_Lewis08, 3.42] presents special interconnect lines 

to allow connecting logical elements in different (nearby) logic blocks directly. [Altera_Hutton07, 3.47] 

presents an efficient way of directly transporting the date to/from IO pads to deep inside the core through 

dedicated long lines at a higher speed. 

[Actel_Lien04, 3.59] presents a tile based architecture where each tile is composed of an array of logic 

blocks, the tiles are surrounded by JTAG, Configuration and BIST interfaces on the outer edge of tiles. The 

architecture also consists of hard blocks of RAM between outer perimeter of tiles and I/O pads. 

[Actel_Kaptanoglu09; 3.60, 3.61] present the routing architecture for a specialized semi hierarchical FPGA 

architecture with array of tiles of large clusters of logic blocks.  

3- Column (tiles) based architecture 

Using tile based mesh architecture with columns of same tiles (logic blocks, hard blocks etc.) is universal 

in almost all commercial FPGAs. It allows high layout scalability, efficient design of routing networks, 

clock distributions, redundancy control (for defective areas) and several other benefits. This section 

provides a brief overview of patents describing/advocating tile based architectures. 

[Xilinx_Young09, 3.16] explains in detail the layout challenges for state of art FPGAs. It presents benefits 

and issues related to column based tile layouts where each column is entirely composed of same kind of 

tiles (the logic blocks, hard blocks etc.). By adjusting the width of the column to an effective value 

efficient layout is achieved. It also presents innovation for putting I/O pads instead of classical boundary of 

device, directly in the device (core!) in columns of I/O pads which provide superior benefits compared to 

classical boundary I/Os in different aspects. [Xilinx_Trevor09, 3.18] presents inserting application specific 

blocks columns in the device (structured-asic-like/asic-like scenario) to create application specific devices 

without disturbing the fundamental architecture. [Xilinx_Tavana99, 3.10] also presents tile based 

architecture for layout scalability by repetitive use of layout of same tiles (is the foundation motivation of 

column-based/tile-based architectures in commercial FPGAs). [Altera_Lewis05, 3.43] (That we discussed 

in previous section also) presents the routing architecture for similar tile-based columnar FPGA 

architectures motivations and exploitations for routing and hard macros etc. [Actel_Feng08, 3.58] presents 

a tile-able architecture with logic blocks distributed in large groups of tiles (semi hierarchical architecture 

topology), the hard blocks are integrated in a specialized manner outside the core fine grained logic blocks 

area, however the logic blocks use highly regular architecture (keeping tile based motivation for layout). 

4- Hard Blocks 

The architectural heterogeneity (different kind of blocks in addition to heterogeneity of functionalities of 

fundamental logic block which we discussed above) is common in all commercial FPGAs with strong 

following of column based architecture motivations as discussed above. This section provides a brief 

overview of patents in this regard. 

The hard blocks exist in different forms and varieties in commercial FPGAs. The general purpose blocks 

like small memories, multipliers etc. are common in commercial FPGAs and follow the column based 

approach motivations. Second levels of hard blocks (some are becoming general also) include components 

like clock managers, high speed serial I/Os etc. they are also generally deployed in column based fashion. 

[Xilinx_Young09, 3.16] that we discussed above for column based architectures present aspects of these 

blocks along with basic ideas of third level of further complex blocks like e.g. a processor core. To achieve 
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greater level of flexibility and efficient utilization of hard blocks it is often desired/needed that the hard 

blocks provide multiple options and are efficient to be fractured down or combined together to form bigger 

blocks, e.g. the general purpose blocks of memories (SRAM) are designed to have multiple and adaptable 

capabilities. [Xilinx_Young99, 3.19][Xilinx_Pang02, 3.20][Altera_Cliff07, 3.48] present several aspects 

of/for memory blocks in FPGAs. [Xilinx_New02, 3.27] presents methods for multiplier hard block 

integration. [Xilinx_Douglas04, 3.28] presents interconnect architecture for connectivity of hard blocks 

like microprocessors. 

Another style of putting hard blocks is separating them from the main fine grain logic blocks portion and 

make the FPGA architecture in a relatively SoC-like fashion where different blocks are combined together 

(large block of dense layout-friendly logic blocks and different kinds of hard blocks including analog 

components). Such style is prominent for FPGA devices of Actel. [Actel_Beal10, 3.65] presents one such 

example. [Actel_Bakker09_3.64] presents a programmable system on chip architecture with block of 

programmable logic along with digital, analog blocks, memories and microprocessor (similar to smart 

fusion devices of Actel which we observed in chapter 2.3.4). 

5- Silicon implementation (electrical design differentiations) 

All commercial FPGAs are custom designed with huge layout efforts to create optimal electrical 

implementation of the logical architecture at the target node. Throughout the patents been addressed above, 

most of them provide some aspects of physical design challenges. While creation of layout for the logical 

design of FPGA, several electrical implementations are possible. This aspect alone is huge research area 

and source of a competitive edge among the vendors. From almost smallest base components (e.g. LUT, 

Flip-Flop, SRAM cells) to global routing architecture and hard blocks; numerous exploitations are done to 

address several issues e.g. area efficiency, speed, power etc. This section provides a brief overview of 

some of the aspects in connection with the discussions in chapter 2.1.2 and chapter 4. 

[Xilinx_Young06, 3.2] presents LUT design using different kind of transistors (varied in gate oxide 

thickness, operating voltage, gate length etc.) for configuration, stages of multiplexer design, buffers etc. to 

create a silicon efficient power versus performance solution. [Xilinx_Young06, 3.3][Xilinx_Young06, 3.4] 

present architecture structures for creating LUT-6. [Xilinx_Duong97, 3.25] presents the single buffered six 

pass transistor based switch box element. [Altera_Lewis06, 3.50] presents low power routing multiplexers 

with efficient silicon implementation to reduce static and dynamic power, different modes of operation 

(power vs speed) etc. [Altera_Lewis07, 3.51] describes merged logic elements routing multiplexer 

structure for improved speed of transfer of data between logic elements in two different logic blocks. 

[Altera_Lewis09, 3.49] presents the methods for controlling speed and power for the FPGA (is/similar-to 

the programmable power technology of Altera). 

6- Configuration 

The configuration architecture provides the configuration infrastructure of FPGA. There can be multiple 

types of configuration architectures for a same logical architecture of FPGA. The configuration 

architecture/methods/systems are a standalone diverse research/differentiation area among FPGA vendors 

with multiple levels and dimensions of challenges like configuration memory type (volatile/non-volatile), 

advanced features (partial/dynamic reconfiguration etc.), security (particularly for non-volatile FPGAs), 

radiation hardness etc. This section provides a brief overview of patents on configuration for general 

overview (configuration was not main objective/concern of this thesis work and was not deeply 

investigated like logic blocks, routing architectures etc.). 

[Xilinx_Rau02, 3.21] details a configuration memory architecture infrastructure and programming 

methodologies for SRAM-based FPGA. [Xilinx_Schultz01, 3.22] addresses in detail methods and 

structures for configuration, particularly advanced features like partial reconfiguration, the feeling of 
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complexity of configuration infrastructure in state of art can be observed in it. [Xilinx_Trimberger07, 3.23] 

presents different methods for configuration. [Xilinx_Trimberger07, 3.24] presents methods and 

infrastructure for overriding defective configuration memory in FPGA. Security is a major concern for 

FPGAs (particularly non-volatile configuration based, where configuration has to be loaded from external 

source at each power up) to prevent illegal use of design by stealing the configuration bitstream. 

[Xilinx_Pang05, 3.26] addresses methods to prevent reading back the decrypted bitstream out of the device 

which was loaded in encrypted from outside memory/system (decryption done by FPGA internally). 

[Actel_McCollum09, 3.67] present the structure of non-volatile memory cell in the CMOS inverter form 

with one of transistor non-volatile (Flash etc.). [Actel_Plants08, 3.66] presents hardware structures for 

controlling SRAM cells by non-volatile Flash cells. [Actel_Dhaoui10, 3.68] presents radiation-tolerant 

Flash-based memory cells architectures (the silicon overhead of added transistors to make the system 

radiation hardened can be observed in it). 

7- Beyond Classic/Un-conventional/New Trends 

Throughout our discussions above we addressed the areas and challenges which are common and 

fundamental in almost all FPGAs and still are the largest research area. However over the past few years, 

researchers in both industry and academics have also started investigating in un-conventional dimensions 

to address challenges of FPGAs, to further strengthen their technological and commercial position in 

changing landscapes of industry. This section provides a brief overview of patents (vendor by vendor 

basis) of relatively un-conventional architecture innovations, trends etc.  

[Xilinx_Trimberger07, 3.29] presents a time-multiplexed interconnect infrastructure composed of two 

layers of routing, one conventional circuit switching routing network of FPGAs and a secondary shared 

subway routing network which can be time-multiplexed. The classical network can be used for critical 

signals and lower speed signals can be transmitted through the time-multiplexed routing network. The 

invention in a wide sense provides a combined circuit switching plus packet switching routing network.  

[Xilinx_Young09, 3.30][Xilinx_Young09, 3.31][Xilinx_Young10, 3.32] present architectures for 

implementing hard handshake logic in the routing architecture. The inventions are presented in the 

scenario of clock skew challenges in large FPGAs for meeting setup and hold time requirements of 

synchronous design implementations. [Xilinx_Rahman09, 3.33] and [Xilinx_Chaware11, 3.34] address 

motivations and innovations of 3D die-stacking of multiple FPGAs. 

[M2000_Reblewski09, 3.75] presents a selective packet-switching based routing infrastructure to 

communicate between different clusters of logic. [M2000_Reblewski10, 3.76] presents methodologies for 

addressing the issues of yield during fabrication for fabricated devices by assigning functionality of a 

defective logic portion to other portion managed through hardware. The above mentioned inventions are 

presented in the scenario of yield issues for fabricating large FPGAs; use of packet-based network 

facilitates identification and remapping of defective clusters of logic to other available clusters after 

production. [M2000_Ebeling10, 3.77] presents the invention of use of MEMS (Micro-Electro-Mechanical 

Systems) for FPGAs switching elements for crossbars, LUTs etc. MEMS can allow exploiting some 

special features like, low resistance, zero-leakage, non-volatility etc. compared to classical transistor based 

configuration system. 

[Achronix_Manohar09, 3.79][Achronix_Manohar10, 3.80][Achronix_Manohar09, 3.78] present inventions 

for automatic conversion of synchronous design into asynchronous designs which can be mapped on an 

asynchronous hardware. The industry historically has and still is synchronous designs dominated; the tools 

and flows are well developed for synchronous designs, furthermore due to that dominance a vast amount of 

existing designs are synchronous. The challenge for automatic and seamless conversion of synchronous 

designs into asynchronous designs taking benefits of asynchronous designs and efficiently implementing 

them on asynchronous hardware is the background motivation of these inventions (differentiation of 
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Achronix FPGAs). [Achronix_Manohar10, 3.81] presents in detail the hardware components of the 

asynchronous FPGA and methods to implement asynchronous applications on them. 

[Achronix_Manohar10, 3.82] presents challenge for fault tolerance in asynchronous circuits; due to 

absence of clock, the transient faults can cause glitches that cannot be filtered and can disrupt the 

computation. It presents the invention for fault tolerant asynchronous circuits. 

[Tabula_Redgrave09, 3.83] describes the invention of packet-switching use for fast configuration and 

debug of the programmable device along with the hardware details. [Tabula_Schmit11, 3.84] describes 

methods and underlying hardware to implement the standard input design in multiple cycles (sub-cycles) 

on the time multiplexed device which reconfigures rapidly and efficiently in an innovative manner 

compared to classical equivalents (dynamic/partial reconfiguration). [Tabula_Hutchings08, 3.85] presents 

programmable device with hybrid circuits that can function for both logic and interconnect 

implementation, the presented novel architecture exploits the use of multiplexers which in addition to be 

controlled by configuration data can also be controlled by signals internally computed (mapped 

application). [Tabula_Teig09, 3.86] describes the invention of a programmable device with storage 

elements in the routing fabric (in wide sense storage at output of routing multiplexer) which can be used 

for different un-conventional techniques like e.g. configuration cell (adaptive unlike fixed configuration 

cells in classical FPGA architectures). [Tabula_Rohe10, 3.87] presents novel ideas of long wires in routing 

network with heterogeneous patterns among different logic blocks (classically the routing network is 

homogeneous for all blocks) which are repeated in a specialized regular fashion thereby increasing the 

interconnectivity among logic blocks by providing more diversity and avoiding redundant routing behavior 

of classical FPGA routing architectures. 

[TierLogic_Madurawe09, 3.88] addresses three dimensional design of programmable device. The 

invention is discussed in the perspective of easy FPGA to ASIC design migration. The configuration 

memory of FPGAs occupies significant silicon area. The invention presents concept of 3D stacking of 

configuration memory on the logic using technologies like TFT (Thin Film Transistors). 

[TierLogic_Madurawe10, 3.89] and [TierLogic_Madurawe10, 3.90] further illustrate the concept FPGA to 

ASIC migration in perspective of 3D stacked configuration memory. [TierLogic_Madurawe91, 3.91] 

presents time-multiplexed routing interconnect in perspective of 3D stacked configuration memory. 
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A2: Extended tables and discussions of Chapter 4 
This appendix provides the extended tables of chapter 4which present the detailed experiment results of 

some of the discussions which referred to this appendix for further details. A comprehensive summary of 

these extended tables to make the cross interlink with chapter 4 is presented below. 

SB-R explorations (section 4.2.2) 

Table A2.1 provides the silicon statistics for the seven SB-R exploration tiles for channel width 36 which 

were used in the second iteration (corresponding to table 4.7 for channel size 48) for proof of concept. 

Motivation and proof of Chan max. used vs Chan min. needed in published works (section 4.2.2) 

Channel size is one of the most important and challenging aspect of FPGA architecture research. Finding 

the minimum channel width needed to effectively route an application is an important part of architectural 

exploration and decision making (as we discussed in detail in chapter 4.1.4). [Betz&Rose99, 4.1] proposed 

a binary search method to repeatedly iterate PAR to reach minimum channel width. While this is one of the 

best ways to actually know the minimum channel needed but was quite complicated for our eFPGA 

Creator flow in current form (chapter 3) as unlike VPR which automatically builds new architecture for 

iteration eFPGA Programmer needs to be provided with new architecture for each iteration created by 

eFPGA Creator which indeed is lengthy (creation + silicon implementation). However knowledge of 

minimum channel is obligatory for exploration, otherwise the detailed explorations that we conducted 

(with channel width set to 48) could easily lead to false conclusions about the architectural innovations we 

explored, since if channel width is arbitrarily at a very high size compared to benchmarks need, making 

successive iterations for tuned customization (as we did) and observing successful PAR could be due to 

inherent flexibility of vast routing available due to large channel size than needed giving router enough 

freedom to route despite reduced architectural routing flexibility due to customization. To address this 

issue we took the benefit of eFPGA Creator analysis tools suite (chapter 3) which directly inform the 

maximum of the channel used (in connection with minimum of channel needed, which is common in VPR-

like research explorations). This assumption was theoretically also sound since the fact than Placement and 

Routing are independent in eFPGA Programmer like VPR (simulated annealing) so Placer is unaware of 

the routing architecture and performs the best placement which the router finally routes (not always the 

case in state of art as we discussed in chapter 2). Table A2.2 practically illustrates that this was a good 

assumption, it shows the fundamental base architecture (highest flexibility) successively iterated for 

decreasing channel width (creating VPR like scenario) to find minimum overall channel width. It can be 

seen there is negligible effect when routing constraints are tightened for router by decreasing physical 

channel size and ultimately benchmarks start failing to be routed. Hence the maximum channel used 

parameter of our experiments provides a good approximate equivalent of minimum channel needed, while 

saving enormous time for repeated iterations, allowing focusing on main investigations of customizations. 

Combined SB-R + SB-eLB optimizations (section 4.2.4) 

Table A2.3 provides detailed silicon statistics for best cases SB-R + SB-eLB explorations for theme 2 and 

theme 3 tiles. Table A2.4 and A2.5 provide detailed PAR statistics of benchmark applications mapping on 

theme 2 and theme 3 tiles based architectures (theme 1 failed to map benchmarks, so is not shown).  
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Base Theme 1 Theme 2 

ST 65LPSVT _1.3V-

m40C 

tsr_4436_

F 

tsr_4436

_ noN 

tsr_4436

_ noNE 

tsr_4436

_ 50pAll 

tsr_4436_ 

c1 

tsr_4436_ 

c2 

tsr_4436_ 

c3 

Conf. 

bits 

Total 396 378 360 360 324 324 324 

SBOX 328 310 292 292 256 256 256 

eLB 68 68 68 68 68 68 68 

Area 

(um²) 

Total 12077 11596 11139 11139 10312 10200 10200 

SB-R 1819 1544 1270 1270 904 878 878 

SB-eLB 5232 5232 5232 5232 5232 5191 5191 

eLB 418 418 418 418 418 368 368 

Conf. 3419 3261 3124 3124 2796 2796 2796 

Logic Density 

(LUT4/mm²) 
331 345 359 359 388 392 392 

Area Normalized to F 1.00 0.96 0.92 0.92 0.85 0.84 0.84 

Power 

Static (nW) 371 357 344 344 318 307 307 

Dyn*. 

(uW/MHz) 
3.2 3.02 2.83 2.82 2.51 2.44 2.44 

Table A2.1: Silicon statistics of SB-R experimented tiles at LUT4, Cl4, Ch36 (*pessimistic) 

 

t_F-Lut4_Cl4_ChX For Ch-48 For Ch-36 For Ch-24 

Circuits PAR Ch. Max PAR Ch. Max PAR Ch. Max 

ex5p 20 21 20 

tseng 20 21 20 

apex4 35 33 RF 

misex3 25 25 21 

alu4 29 26 23 

diffeq 21 22 21 

seq 33 32 RF 

apex2 36 30 RF 

k2 30 29 24 

s298 36 32 RF 

ex1010 35 33 RF 

Table A2.2: PAR statistics of base tile (_F topology) for decreasing channel width 

 

  
Base Theme 3 Theme 2 

ST 65LPSVT _1.3V-m40C t_4448_F 
t_4448_rc2-

enoNE 

t_4448_rc3-

enoNE 

t_4448_rnoNE-

ec1 

t_4448_rnoNE-

ec2 

Conf. bits 

Total 468 356 356 388 388 

SBOX 400 288 288 320 320 

eLB 68 68 68 68 68 

Area 

(um²) 

Total 15023 9448 9448 8687 8687 

SB-R 2440 1198 1198 1673 1673 

SB-eLB 6720 3603 3603 1989 1989 

eLB 418 418 418 418 418 

Conf. 4043 3124 3124 3403 3403 

Buff. 1402 1105 1105 1204 1204 

Logic Density 

(LUT4/mm²) 
266 423 423 460 460 

Area Normalized to F 1.00 0.63 0.63 0.58 0.58 

Power 

Static (nW) 452 296 296 275 275 

Dyn.* 

(uW/MHz) 
3.67 2.26 2.26 2.08 2.08 

Table A2.3: Silicon statistics of best case (SB-R + SB-eLB) hybrid tiles (*pessimistic) 
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Circuit t_4448_SB-RnoNE_SB-ec1 t_4448_SB-RnoNE_SB-ec2 

 
Ch. Max Ch. Avg R. Iter Delay(ns) Ch. Max Ch. Avg R. Iter Delay(ns) 

ex5p 32 7.6 6 11.04 32 7.2 6 9.64 

tseng 27 10.8 6 11.1 24 10.8 5 10.85 

apex4 43 25.4 40 17.2 44 25.76 93 17.35 

misex3 33 12.9 6 10.1 33 13 7 10.66 

alu4 37 18 8 13.4 39 18 9 12.24 

diffeq 30 11.5 6 13 29 11.4 6 13 

seq 42 25.2 45 12.5 41 25.48 89 12.78 

apex2 41 24 16 13.75 45 24 20 13.77 

k2 40 17.6 10 12.06 38 17.5 8 11.14 

s298 RF 
   

RF 
   

ex1010 RF 
   

RF 
   

A. Mean 36 17 15.9 12.68 36 17 27 12.38 

Table A2.4: benchmarks PAR statistics for SB-R+SB-eLB theme 2 tiles 

 

Circuit t_4448_SB-Rc2_SB-enoNE t_4448_SB-Rc3_SB-enoNE 

 
Ch. Max Ch. Avg R. Iter Delay(ns) Ch. Max Ch. Avg R. Iter Delay(ns) 

ex5p 26 5.6 6 8.98 26 5.8 7 8.6 

tseng 26 10.6 7 11.1 26 10.5 6 10.5 

apex4 38 19.4 10 14.86 41 19.7 14 14.26 

misex3 32 10.5 7 9.38 30 10.2 7 9.42 

alu4 31 14.3 6 12.04 32 14.27 7 11.29 

diffeq 29 11.06 7 12.15 28 11 6 12.2 

seq 37 19.1 8 11.75 38 19.4 8 11.19 

apex2 37 18 7 13.32 38 18 8 12.5 

k2 35 14.1 7 11.24 36 14.3 7 11.36 

s298 37 20.8 13 18.59 41 21 13 18.8 

ex1010 RF 
   

RF 
   

A. Mean 32.8 14.34 7.8 12.34 33.6 14.4 8.3 12.01 

Table A2.5: benchmarks PAR statistics for SB-R+SB-eLB theme 3 tiles 

 

Revisit to LUT size effect on silicon efficiency (sections 4.1.2, 4.2.5) 

In continuation and relation of section 4.1.2 (table 4.4) and perspectives discussions of section 4.2.5, 

experiments were conducted for multiple LUT sizes with base architecture (_F topology) in the light of 

silicon tradeoffs, mapping efficiency and benchmarks mapping. Table A2.6 shows the silicon statistics of 

base tiles for different LUT sizes (with cluster 4 and channel width 48). Tables A2.7 and A2.8 show 

detailed results of mapping benchmark applications on corresponding architectures. It can be seen that 

channel size demands are almost similar for all cases (as we observed and discussed in section 4.1.2), 

however what is interesting to observe is that LUT6 based architecture is relatively slower than LUT4 (the 

theoretical benefits of LUT6 is degraded due to poor mapping efficiency). TableA2.9 and corresponding 

figure A2.1 illustrates the findings relative to LUT4. We can see that LUT3 clearly is poor for silicon 

efficiency. LUT5 provides an interesting value proposition (better than LUT4 for explored benchmarks). 

The LUT6 silicon tradeoff due to poor mapping efficiency is visible in graph along with slower speed, 

which results from the fact that individually LUT6 has higher delay than smaller LUTs and since the total 

LUTs needed for LUT6 (mapping efficiency) do not shrink enough for PAR compared to LUT4 e.g.  
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ST 65LPSVT _1.3V-m40C t_4448_F (LUT4) t_3448F(LUT3) t_5448F(LUT5) t_6448F(LUT6) 

Conf. bits 

Total 468 408 560 716 

SBOX 400 372 428 456 

eLB 68 36 132 260 

Area 

(um²) 

Total 15023 12464 18081 22793 

SB-R 2440 2396 2396 2396 

SB-eLB 6720 5040 8400 10080 

eLB 418 216 818 1625 

Conf. 4043 3540 4759 6080 

Buff. 1402 1272 1708 2612 

Logic Density (LUT/mm²) 266 321 221 175 

Power 
Static (nW) 452 371 552 717 

Dyn*. (uW/MHz) 3.67 2.99 4.63 6.42 

Table A2.6: Silicon statistics of base tile for different LUT sizes (*pessimistic) 

 

 

Circuit t_6448_F (LUT6 arch.) t_4448_F (LUT4 arch.) 

 
No. 

LUT6 

Ch. 

Max 

Ch. 

Avg 

R. 

Iter 
Delay(ns) 

No. 

LUT4 

Ch. 

Max 

Ch. 

Avg 

R. 

Iter 
Delay(ns) 

ex5p 154 16 2.9 4 10.05 240 20 4.27 5 11.77 

tseng 643 27 8 6 15.68 743 20 8.4 5 13.6 

apex4 548 36 14.9 7 23.9 742 35 16.4 6 20.99 

misex3 231 20 5 5 13.5 426 25 8.26 5 13.1 

alu4 410 25 7.8 5 18.7 614 29 11.49 6 16.41 

diffeq 566 26 9.45 6 21.01 714 21 8.93 5 15.64 

seq 555 39 13.23 7 23.19 781 33 15.37 6 16.7 

apex2 476 32 11.6 7 20.5 714 36 14.2 7 18.38 

k2 438 36 11.1 7 18.96 546 30 11.1 5 17.28 

s298 585 33 15.4 7 26.8 856 36 17.3 7 23.87 

ex1010 632 41 18 7 26.15 922 35 18.7 8 20.45 

A. Mean 476.2 30.1 10.7 6.2 19.86 663.5 29.1 12.22 5.91 17.11 

Table A2.7: benchmarks PAR statistics for base tile architecture (LUT6, LUT4) 

 

Circuit t_3448_F (LUT3 arch.) t_5448_F (LUT5 arch.) 

 
No. 

LUT3 

Ch. 

Max 

Ch. 

Avg 

R. 

Iter 
Delay(ns) 

No. 

LUT5 

Ch. 

Max 

Ch. 

Avg 

R. 

Iter 
Delay(ns) 

ex5p 354 22 4.36 6 13.6 193 22 4 5 9.75 

tseng 979 21 6.8 5 16.2 671 26 7.7 5 11.97 

apex4 964 33 14.8 6 24.1 636 37 16 7 18.05 

misex3 606 29 8 6 16.9 327 22 6.4 5 11.5 

alu4 867 28 11 6 20.93 481 27 9.8 6 13.32 

diffeq 1031 21 8.2 5 19.85 598 27 9.5 6 15.44 

seq 1021 34 13.6 7 23.94 691 35 16 7 15.4 

apex2 891 27 11.34 7 20.39 621 30 13.3 7 15.41 

k2 713 32 9.7 6 19.8 527 35 12.3 6 15.9 

s298 1126 33 15 7 34.31 709 36 17.3 7 19.42 

ex1010 1126 32 16 7 21.75 725 35 16.9 7 18.9 

A. Mean 879.8 28.4 10.8 6.2 21.1 561.73 30.2 11.7 6.2 15 

Table A2.8: benchmarks PAR statistics for base tile architecture (LUT3, LUT5) 
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ST65LPSVT_1.3V-m40C t_3448F(LUT3) t_4448_F (LUT4) t_5448F(LUT5) t_6448F(LUT6) 

Logic Density (LD) 321 266 221 175 

LUTs needed 880 664 562 476 

LD/LUT needed 0.365 0.401 0.393 0.368 

Avg. BM Delay (ns) 21.1 17.11 15 19.86 

Table A2.9: Relative comparison of different LUT sizes 

 

 
Fig. A2.1: Relative comparison of different LUT sizes with respect to LUT4 

Power vs Speed: effect of threshold voltage and process type (section 4.2.4) 

Table A2.10 shows the detailed benchmarks mapping results (variation in speed) on same logical 

architecture (area optimized golden tile) that is implemented on different process options of 65nm. The 

effect of changing threshold voltage on speed and significant change in speed from LP (Low Power) to GP 

(General Purpose) is clearly visible which comes at price of power consumption (addressed in section 

4.2.4). 

t_4448_rnoNE-ec1 Critical Path Delay (ns), ST65nm process 

Circuit Ch. Max LPLVT LPSVT LPHVT GPLVT GPSVT GPHVT 

ex5p 32 14.42 18.11 25.97 8.21 10.98 15.32 

tseng 27 14.5 18.16 26.75 8.35 10.95 15.05 

apex4 43 22.33 28.72 40.98 12.97 17.24 23.8 

misex3 33 12.99 16.69 23.67 7.68 10.04 13.73 

alu4 37 17.22 21.98 30.6 9.97 13.31 18.2 

diffeq 30 16.7 21.44 31.1 9.54 12.55 17.9 

seq 42 16.08 20.75 29.4 9.37 12.3 17.47 

apex2 41 18 22.68 33.1 10.11 13.4 19.08 

k2 40 15.68 20.01 28.44 9.04 11.84 16.41 

A. Mean 36 16.44 20.95 30 9.47 12.51 17.44 

Table A2.10: benchmarks PAR statistics of best SB-R+SB-eLB architecture for varied 65nm process types 
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A3: NoC+MRAM Perspectives for eFPGAs/eFPGAs-based-

Systems 
This appendix provides an abstract overview of perspectives of NoC (Network on Chip) and MRAMs for 

eFPGAs, SoC with eFPGAs and also potentials of unconventional eFPGAs for SoCs. The discussions are 

highly abstract with no physical hardware proposition/results. They are based on the knowledge gained 

from the thesis work (industrial survey, experiments done, challenges observed etc.). They can be 

interesting potential research areas for researchers in general and a long term extension for this thesis work 

for conventional plus beyond classics for the two foundation axes B (eFPGA architecture) and G (eFPGA 

in systems) respectively which are briefly outlined with theme diagrams below. 

eFPGA/FPGA routing, 3
rd

 party IP integration 

Routing is the most challenging and expensive part of FPGA architecture. Chapter 4 addressed in dental 

the challenges regarding routing. One of particular issue noted was strong variation of channel size 

requirements from application to application and partial packing of channels even for single application 

(few high congestion regions/channels advocate channel demands for entire device). Chapter 2 addressed 

in detail the advancements and trends in industry with growing potentials of programmable technologies. It 

was also observed that there is a growing interest among FPGA vendors and also academia to investigate 

beyond classic methods/styles to improve potentials of FPGAs. Appendix A1 outlined several patents 

demonstrating un-conventional trends that are gaining attention in FPGA vendors for architectural 

innovations in different dimensions. The growing interest in direct/partial form of packet switching was 

notable among leading FPGA vendors and some startups. The configuration is another prominent aspect 

and challenge of FPGAs. Chapter 5.4 addressed the perspectives of emerging MRAMs for FPGAs in 

variety of new opportunities to exploit/experiment. Figure A3.1 presents an abstract theme diagram of 

heterogeneous eFPGA (see chapter 3.1.2 for component details) suggesting/advocating the investigation 

perspectives for NoC+MRAM for enhancing potentials of un-conventional eFPGAs with more focus on 

reconfigurable data computation element for SoC compared to classical prototype element (which has its 

own significance but is not always a good/efficient choice).  

Heterogeneous Reconfigurable MPSoCs 

eFPGAs are symbol of heterogeneity in a system due to programmable hardware. Figure A3.2 illustrates a 

theme diagram of heterogeneous MPSoC platform. The platform is shown as composition of three main 

domains. The general purpose domain (GPD) consists of main central processor (single/multicore) like 

those of ARM/MIPS/Intel etc. large enough to execute complex applications and operating systems. The 

corresponding application specific domain (ASD) provides series of target dependent IPs as hardwired 

accelerators. Conventional eFPGAs (Ec) like the ones explored in this thesis work can provide flexibility 

benefits (product differentiation etc.). The third domain represented as programmable hybrid domain 

(PHD) is an interesting futuristic research frontier demonstrating the inevitable benefits and potentials of 

classical and beyond classical eFPGAs for many core processor research frontiers. The PHD is abstractly 

shown to be composed of different combination of processing elements with packet based 

intercommunication (NoC). Small RISC machines (Px) with memory (distributed memory scenario). Stand 

alone beyond classics eFPGAs (Ex), and hybrids PEx elements (RISC with eFPGA co-processor as was 

briefly outlined in chapter 5 discussions for MRAMs perspectives). It can clearly be observed that eFPGAs 

have significant potentials of research community to unlock doors for new experiments (they can’t be 

achieved easily by prototyping on standard FPGAs!). 

It is interesting to note that these apparently quite forward looking concepts presented in this appendix are 

not in far future from reality in wide sense. Modern FPGAs have already reached a form quite close to 

figure A3.2 (GPD + ASD, PHD can be partly prototyped). The Heterogeneous MPSoC platforms are 
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already composed of GPD + ASD (no eFPGA at present) and several players in industry are trying to find 

niche for PHD-like IPs/devices in different forms (mostly MPPAs etc. as was observed in chapter 2). 

eFPGAs are indeed a missing ingredient for Reconfigurable Computing research community also and must 

be addressed by research community for the advancement of application specific eFPGAs for PHDs 

exploration, exploitation of emerging memories (MRAMs etc) for eFPGAs and Processors. Research on 

such dimensions has good potential for ROI for academia and industry for future (at least 5 years down the 

road when such technologies will hopefully start getting mature). 

 
Fig. A3.1: Beyond Classics Routing Architecture potentials in/for eFPGA 

 

 
Fig. A3.2: Heterogeneous Reconfigurable MPSoCs (SoC with PHDs) 
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A4: Document Statistics 
This appendix provides approximate statistics of thesis report for general information/overview. 

The thesis report is written with Microsoft Office 2007, in Times New Roman 10.5 font with 1.15 Line 

Spacing on A4 paper with normal border of one inch on all four sides. 

Table A4.1 provides approximate statistics for all the six chapters (Core), the front-end (everything before 

chapter 1), the back-end (everything after chapter 6 excluding References) and References. The 

approximate statistics are based on Microsoft Word statistics. 

Table A4.2 provides statistics of References section. 

  
No. 

Pages 

No. 

Figs.+Tables 
No. Words 

Words Density 

(Words/Page) 

% of Total 

(Words) 

Core 

Ch-1 5 1 2391 478 3.0 

Ch-2 44 43 18268 415 23.1 

Ch-3 22 23 7828 356 9.9 

Ch-4 40 53 16513 413 20.9 

Ch-5 24 27 10510 438 13.3 

Ch-6 5 1 2638 528 3.3 

Core Total 140 148 58148 415 73.4 

Others 

Front-end 13 0 7157 421 9.0 

Back-end 18 13 7517 418 9.5 

References 16 0 6349 397 8.0 

Others 

Total 
47 13 21023 447 26.6 

Thesis 

draft 

Grand 

Total 
191 161 79171 415 100.0 

Table A4.1: Approximate Statistics of Thesis report 

 

 
No. References % of Total 

FPGA Vendors 40 11.8 

Industry (General) 51 15.0 

FPGAs Patents 94 27.7 

Academics 108 31.9 

Books and Others 37 10.9 

Self 9 2.7 

Total 339 100.0 

Table A4.2: Statistics of References 
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Abbreviations 
 

BLE  Basic Logic Element 

CAD  Computer-Aided Design 

CB  Connection Block/Box 

CMOS  Complementary Metal Oxide Semiconductor 

eFPGA  embedded Field Programmable Gate Array 

ESL  Electronic System Level (design at higher abstraction level) 

FPGA  Field Programmable Gate Array 

GP  General Purpose (process type) 

GUI  Graphical User Interface 

HDL  Hardware Description Language 

HM  Hard Macro 

HW/SW Hardware/Software (in HW/SW co-design scenario) 

LD  Logic Density (number of LUT per square millimeter) 

LI  Local Interconnect 

LP  Low Power (process type) 

LUT  Look-Up Table 

LVT  Low Voltage Threshold (process type, also corresponding High: HVT, Standard: SVT) 

MPSoC  Multi Processor System on Chip 

MRAM  Magneto-resistive Random Access Memory 

NRE  Non Recurring Engineering 

NVM  Non-Volatile Memory 

PAR  Place and Route 

RC  Reconfigurable Computing 

ROI  Return On Investment 

RTL  Register Transfer Logic 

SB  Switch Block/Box 

SoC  System on Chip/System on a Chip 
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PhD Contributions 
 

Major Technical and Commercial contributions of PhD. 
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 SoC Configurability- Balancing Manufacturing and R/D Costs. With 

Gartner, ARM, ST, MIPS, Transmeta and Menta. IP08, December 2008, Grenoble, FRANCE [ Slides]  

 IP/SoC Prototyping. With Bull, ST, Mentor Graphics, EVE, Synplicity and Menta.  IP07, December 

2007, Grenoble, FRANCE [Slides] 

International Conferences 

 PC member ReConFig10 (Track: High Performance Reconfigurable Computing), Cancun, MEXICO  

 PC member ReConFig09 (Track: High Performance Reconfigurable Computing), Cancun, MEXICO  

 Session Chairman IP08 (Session: Prototyping 2), Grenoble, FRANCE  

International Publications 

 ''Survey of new trends in Industry for Programmable hardware: FPGAs, MPPAs, MPSoCs, Structured 

Asics, eFPGAs and new wave of innovation in FPGAs''. Syed Zahid Ahmed, Gilles Sassatelli, Lionel 

Torres, Laurent Rouge. FPL-10, 31Aug-2Sep 2010, Milan, ITALY. [Paper][SLIDES*]. 

 ''A Dynamic Reconfigurable MRAM based FPGA''. Lionel Torres, Yoann Guillemenet, Syed Zahid 

Ahmed. ERSA-10 invited keynote paper, July 2010, Las Vegas, USA. [Paper] 

 ''MRAM based eFPGAs: programming and silicon flows, exploration environments, MRAM current 

state in Industry and its unique potentials for FPGAs''. Yoann Guillemenet, Syed Zahid Ahmed, Lionel 

Torres, Alexandre Martheley, Julien Eydoux, Jean-Baptiste Cuelle, Laurent Rouge, Gilles Sassatelli. 

ReConFig09, December 2009, Cancun, MEXICO. [Paper] [Slides]  

 ''FPGA Designer GUI Tools Suite: A complete hardware and software infrastructure for creating 

customizable eFPGA IP blocks of Menta''. Syed Zahid Ahmed, Alexandre Martheley, Laurent Rouge, 

Julien Eydoux, Jean-Baptiste Cuelle. IPESC09, December 2009, Grenoble, FRANCE. [Paper] [Slides]  

 ''Exploration of power reduction and performance enhancement in LEON3 processor with ESL 

reprogrammable eFPGA in processor pipeline and as a co-processor''. Syed Zahid Ahmed, Julien 

Eydoux, Laurent Rouge, Jean-Baptiste Cuelle, Gilles Sassatelli, Lionel Torres. DATE-2009, April 

2009, Nice, FRANCE. [Paper] [Slides]  

 ''Power consumption reduction explorations in processors by enhancing performance using small ESL 

reprogrammable eFPGAs''. Syed Zahid Ahmed, Julien Eydoux, Michael Fernandez, Laurent Rouge, 

Gilles Sassatelli, Lionel Torres. ReConFig08, December 2008, Cancun, MEXICO. [Paper] [Slides]  

 ''eFPGA architecture explorations: CAD and Silicon analysis of beyond 90nm technologies to 
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content/uploads/2010/04/comparison_of_embedded_nvm.pdf   

23- FlexEOS Embedded FPGAs from M2000 Now Production Ready in 0.13um (2004): 

http://www.design-reuse.com/news/7965/flexeos-embedded-fpgas-m2000-0-13um.html  

24- M2000 Intros Largest 90nm eFPGA (2005): http://www.design-reuse.com/news/9614/m2000-intros-

largest-90nm-efpga.html  

http://en.wikipedia.org/wiki/Semiconductor_sales_leaders_by_year
http://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
http://fpl2009.org/download/FPL2009-Betz.pdf
http://conferenze.dei.polimi.it/FPL2010/presentations/Keynote4.pdf
http://conferenze.dei.polimi.it/FPL2010/presentations/Keynote2.pdf
http://ce.et.tudelft.nl/FPL/trimbergerFPL2007.pdf
http://ce.et.tudelft.nl/FPL/dickinsonFPL2007.pdf
http://ce.et.tudelft.nl/FPL/bhattFPL2007.pdf
http://conferences.ece.ubc.ca/isfpga2007/www/2006/panel.html
http://www.ece.wisc.edu/~kati/fpga2009/FPGA2009panel.html
http://www.techonline.com/learning/techpaper/212202148
http://www.techonline.com/learning/course/212002400
http://www.dspdesignline.com/blogs/212700925
http://www.ocoudert.com/blog/2009/09/15/why-fpga-startups-keep-failing
http://www.eetimes.com/electronics-news/4088277/Viewpoint-Is-semiconductor-industry-consolidation-inevitable-
http://www.eetimes.com/electronics-news/4088277/Viewpoint-Is-semiconductor-industry-consolidation-inevitable-
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=224600583
http://www.eetimes.com/news/semi/showArticle.jhtml?articleID=223101261
http://www.eetimes.de/en/5-reasons-why-samsung-scares-japan.html?cmp_id=7&news_id=222902107
http://www.eetimes.de/en/5-reasons-why-samsung-scares-japan.html?cmp_id=7&news_id=222902107
http://www.eetimes.com/electronics-news/4079289/How-Samsung-out-hustled-Japan-Inc--item-1
http://www.eetimes.com/electronics-news/4079289/How-Samsung-out-hustled-Japan-Inc--item-1
http://www.signallake.com/innovation/SamsungOuthustledJapan102008.pdf
http://www.eetimes.com/electronics-blogs/programmable-logic-designline-blog/4033356/A-dissenting-opinion-on-the-programmable-imperative-
http://www.eetimes.com/electronics-blogs/programmable-logic-designline-blog/4033356/A-dissenting-opinion-on-the-programmable-imperative-
http://www.tsmc.com/download/english/a05_literature/08_TSMC_Embedded_Non-Volatile_Memory.pdf
http://www.tsmc.com/download/english/a05_literature/08_TSMC_Embedded_Non-Volatile_Memory.pdf
http://www.kilopass.com/technology/embedded-nvm-comparison
http://www.kilopass.com/technology/embedded-nvm-comparison
http://www.kilopass.com/wp-content/uploads/2010/04/comparison_of_embedded_nvm.pdf
http://www.kilopass.com/wp-content/uploads/2010/04/comparison_of_embedded_nvm.pdf
http://www.design-reuse.com/news/7965/flexeos-embedded-fpgas-m2000-0-13um.html
http://www.design-reuse.com/news/9614/m2000-intros-largest-90nm-efpga.html
http://www.design-reuse.com/news/9614/m2000-intros-largest-90nm-efpga.html
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25- M2000 Opens Silicon Valley Office Serving eFPGA Customers Throughout North America (2005): 

http://www.design-reuse.com/news/9732/m2000-opens-silicon-valley-office-serving-efpga-customers-

throughout-north-america.html  

26- M2000 unveils optimized eFPGA architecture for DSP functions (2005): http://www.design-

reuse.com/news/9858/m2000-optimized-efpga-architecture-dsp-functions.html  

27- STMicroelectronics Introduces Highly Integrated Microcontroller with Embedded Programmable 

Logic for Wireless Infrastructure Applications (2005): 

http://www.st.com/stonline/press/news/year2005/p1416h.htm  

28- Multi-purpOse dynamically Reconfigurable Platform for intensive HEterogeneoUS processing 

(MORPHEUS). www.morpheus-ist.org 

29- Catherine Gross (2006): Embedded FPGA to reach 65-nm in 2007, says M2000: 

http://www.eetimes.com/electronics-news/4185518/Embedded-FPGA-to-reach-65-nm-in-2007-says-

M2000  

30- Peter Clarke (2007): Newly-funded M2000 preps FPGA product family: 

http://www.eetimes.com/electronics-news/4189612/Newly-funded-M2000-preps-FPGA-product-

family   

31- Dylan McGrath (2009): Where are they now? M2000: http://www.eetimes.com/electronics-

blogs/programmable-logic-designline-blog/4033108/Where-are-they-now-M2000  

32- FPGA startup crunch: Abound banks on roots, density (2009): http://www.eetimes.com/electronics-

news/4183338/FPGA-startup-crunch-Abound-banks-on-roots-density  

33- Abound claims dense interconnect is key to Raptor FPGA (2009): http://eetimes.eu/en/abound-claims-

dense-interconnect-is-key-to-raptor-fpga?cmp_id=7&news_id=217100249  

34- Atmel CAP Microcontrollers (130nm): http://www.atmel.com/products/AT91CAP  

35- IBM Licenses Embedded FPGA Cores from Xilinx for Use in SoC ASICs (2002): 

http://www.xilinx.com/support/documentation/white_papers/wp164.pdf  

36- IBM Cu-08 ASIC : https://www-01.ibm.com/chips/techlib/techlib.nsf/products/ASIC_Cu-08  

37- Embeddable, reprogrammable IP cores available from Actel on chartered 0.18-micron process (2001, 

Vericore eFPGAs of Actel): http://www.design-reuse.com/news/481/embeddable-reprogrammable-ip-

cores-available-actel-chartered-0-18-micron-process.html  

38- Actel moves to embed FPGA in standard and custom chips (2001): 

http://www.eetimes.com/electronics-news/4156884/Actel-moves-to-embed-FPGA-in-standard-and-

custom-chips   

39- Actel Introduces Varicore EPGA (Embedded FPGA) IP Cores (2001): 

http://www.wirelessdesignonline.com/article.mvc/Actel-Introduces-Varicore-EPGA-Embedded-

FPGA-0001?VNETCOOKIE=NO  

40- Actel 2006 Annual report (hints and details of abandoned businesses of SRAM FPGAs and Varicore 

eFPGAs): www.actel.com/documents/ir/reports/AnnualReport2006.pdf  

41- Adaptive Silicon claims to cut cost of embedded programmable logic in SoC designs (2001): 

http://www.design-reuse.com/news/878/adaptive-silicon-claims-cut-cost-embedded-programmable-

logic-soc-designs.html  

42- Adaptive Silicon's MSA 2500 Programmable Logic Core TSMC Test Chips Are Fully Functional 

(2001): http://www.design-reuse.com/news/661/adaptive-silicon-msa-2500-programmable-logic-core-

tsmc-test-chips-fully-functional.html  

43- LSI Logic ASICs to add programmable-logic cores (1999): http://www.eetimes.com/electronics-

news/4038331/LSI-Logic-ASICs-to-add-programmable-logic-cores  

44- Leopard Logic and TSMC enable configurable silicon platforms based on hyperblox FP embedded 

FPGA cores (2002): http://www.design-reuse.com/news/4354/leopard-logic-tsmc-configurable-

silicon-platforms-hyperblox-fp-embedded-fpga-cores.html   

45- Dylan McGrath (2010, on TierLogic), FPGA startup: Process tech eases ASIC migration : 

http://www.eetimes.com/electronics-news/4088048/FPGA-startup-Process-tech-eases-ASIC-migration  

http://www.design-reuse.com/news/9732/m2000-opens-silicon-valley-office-serving-efpga-customers-throughout-north-america.html
http://www.design-reuse.com/news/9732/m2000-opens-silicon-valley-office-serving-efpga-customers-throughout-north-america.html
http://www.design-reuse.com/news/9858/m2000-optimized-efpga-architecture-dsp-functions.html
http://www.design-reuse.com/news/9858/m2000-optimized-efpga-architecture-dsp-functions.html
http://www.st.com/stonline/press/news/year2005/p1416h.htm
http://www.morpheus-ist.org/
http://www.eetimes.com/electronics-news/4185518/Embedded-FPGA-to-reach-65-nm-in-2007-says-M2000
http://www.eetimes.com/electronics-news/4185518/Embedded-FPGA-to-reach-65-nm-in-2007-says-M2000
http://www.eetimes.com/electronics-news/4189612/Newly-funded-M2000-preps-FPGA-product-family
http://www.eetimes.com/electronics-news/4189612/Newly-funded-M2000-preps-FPGA-product-family
http://www.eetimes.com/electronics-blogs/programmable-logic-designline-blog/4033108/Where-are-they-now-M2000
http://www.eetimes.com/electronics-blogs/programmable-logic-designline-blog/4033108/Where-are-they-now-M2000
http://www.eetimes.com/electronics-news/4183338/FPGA-startup-crunch-Abound-banks-on-roots-density
http://www.eetimes.com/electronics-news/4183338/FPGA-startup-crunch-Abound-banks-on-roots-density
http://eetimes.eu/en/abound-claims-dense-interconnect-is-key-to-raptor-fpga?cmp_id=7&news_id=217100249
http://eetimes.eu/en/abound-claims-dense-interconnect-is-key-to-raptor-fpga?cmp_id=7&news_id=217100249
http://www.atmel.com/products/AT91CAP
http://www.xilinx.com/support/documentation/white_papers/wp164.pdf
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/ASIC_Cu-08
http://www.design-reuse.com/news/481/embeddable-reprogrammable-ip-cores-available-actel-chartered-0-18-micron-process.html
http://www.design-reuse.com/news/481/embeddable-reprogrammable-ip-cores-available-actel-chartered-0-18-micron-process.html
http://www.eetimes.com/electronics-news/4156884/Actel-moves-to-embed-FPGA-in-standard-and-custom-chips
http://www.eetimes.com/electronics-news/4156884/Actel-moves-to-embed-FPGA-in-standard-and-custom-chips
http://www.wirelessdesignonline.com/article.mvc/Actel-Introduces-Varicore-EPGA-Embedded-FPGA-0001?VNETCOOKIE=NO
http://www.wirelessdesignonline.com/article.mvc/Actel-Introduces-Varicore-EPGA-Embedded-FPGA-0001?VNETCOOKIE=NO
http://www.actel.com/documents/ir/reports/AnnualReport2006.pdf
http://www.design-reuse.com/news/878/adaptive-silicon-claims-cut-cost-embedded-programmable-logic-soc-designs.html
http://www.design-reuse.com/news/878/adaptive-silicon-claims-cut-cost-embedded-programmable-logic-soc-designs.html
http://www.design-reuse.com/news/661/adaptive-silicon-msa-2500-programmable-logic-core-tsmc-test-chips-fully-functional.html
http://www.design-reuse.com/news/661/adaptive-silicon-msa-2500-programmable-logic-core-tsmc-test-chips-fully-functional.html
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46- Altera (M. Hutton and R. May), "Programmable Solutions for Automotive Systems", Invited Paper 

DATE06. http://sites.google.com/site/mhutton1/2006_DATE_MH_auto.pdf?attredirects=0  

47- Actel (S. Kaptanoglu, G. Bakker, A. Kundu, I. Corneillet), ―A new high density and very low cost 

reprogrammable FPGA architecture‖, conference paper FPGA-99 

48- Intel Stellarton, Atom+Altera FPGA chip (IDF 2010): 

http://newsroom.intel.com/servlet/JiveServlet/download/1186-26-2523/Day2_IDF_Keynote_Davis.pdf  

49- Rick Merritt (2010), Intel packs Atom into tablets, set-tops, FPGAs: 

http://www.eetimes.com/electronics-news/4207694/Intel-packs-Atom-into-tablets--set-tops--FPGAs  

50- Clive Maxfield (2010), Altera launches major embedded initiative: 

http://www.eetimes.com/electronics-news/4209541/Altera-launches-major-embedded-initiative  

51- Xilinx Acquires AutoESL to Enable Designer Productivity and Innovation With FPGAs and 

Extensible Processing Platform (2011): http://press.xilinx.com/phoenix.zhtml?c=212763&p=irol-

newsArticle&ID=1521536&highlight=  

3- Patents of FPGA Vendors 
All of the referred patents can be downloaded (PDF) for free using European Patent Office search engine 

(http://ep.espacenet.com ), each referred patent is hyperlinked to its respective bibliographic data page. The 

year mentioned in citations is the year when patent was published/granted (not filing year). Patents which 

are more cumulative in terms of references to previous works are preferred to be listed as they give better 

ease to researchers to navigate other and past works (is relatively harder for patents compared to 

publications). Furthermore for giant vendors, the authors with several patents are also mentioned (Area of 

research, total patents), to further help navigating research works ease based on author name.  

The patents survey list covers majority (but not all) of FPGA vendors. FPGA design has several levels of 

complexity/issues (architecture, CAD, layout, configuration, security, specialized blocks, verification etc.) 

which are heavily addressed and patented by the vendors. This research work mainly focused on basic 

fundamentals of the architectural innovations (logic block, routing architecture etc.), distinct innovations of 

emerging startup companies and cutting edge futuristic work directions of FPGA leaders. 

Furthermore this patent survey and the way it is presented contributes additionally for researchers by 

giving an example of start point of how-to access and analyze patents which are vital parts of state of the 

art research but often ignored by researchers due to their complex organization, writing theme (harder than 

publication), access, browsing infrastructure etc. compared to researcher-friendly publications/conferences. 

Xilinx (All Patents List, 3000+) 

Some (not limited!) notable authors/co-authors: Steven P. Young (Architecture; 150+), Stephen M. 

Trimberger (Configuration, Security, Architecture; 150+) 

1- Ross Freeman, ―Configurable electrical circuit having configurable logic elements and configurable 

interconnects‖, US4870302, 1989 (Credited FPGA Invention Patent) 

2- Steven P. Young, Venu M. Kondapalli, Martin L. Voogel, ―PLD lookup table including transistors of 

more than one oxide thickness‖, US7053654B1, 2006 

3-  Steven P. Young, Venu M. Kondapalli, Ramakrishna K. Tanikella, ―Six-input look-up table for use in 

a field programmable gate array‖, US7061271B1, 2006 

4- Steven P. Young, Venu M. Kondapalli, Ramakrishna K. Tanikella, ―Six-input look-up table and 

associated memory control circuitry for use in a field programmable gate array‖, US7075332B1, 2006 

5- Venu M. Kondapalli, Trevor J. Bauer, Manoj Chirania, Philip D. Costello, Steven P. Young,  

―Programmable lookup table with dual input and output terminals in shift register mode‖, 

US7215138B1 , 2007 

http://sites.google.com/site/mhutton1/2006_DATE_MH_auto.pdf?attredirects=0
http://newsroom.intel.com/servlet/JiveServlet/download/1186-26-2523/Day2_IDF_Keynote_Davis.pdf
http://www.eetimes.com/electronics-news/4207694/Intel-packs-Atom-into-tablets--set-tops--FPGAs
http://www.eetimes.com/electronics-news/4209541/Altera-launches-major-embedded-initiative
http://press.xilinx.com/phoenix.zhtml?c=212763&p=irol-newsArticle&ID=1521536&highlight
http://press.xilinx.com/phoenix.zhtml?c=212763&p=irol-newsArticle&ID=1521536&highlight
http://ep.espacenet.com/
http://v3.espacenet.com/searchResults?PA=xilinx&DB=EPODOC&submitted=true&locale=en_EP&ST=advanced&compact=false
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19890926&CC=US&NR=4870302A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19890926&CC=US&NR=4870302A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20060530&CC=US&NR=7053654B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20060530&CC=US&NR=7053654B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20060530&CC=US&NR=7053654B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20060613&CC=US&NR=7061271B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20060613&CC=US&NR=7061271B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20060711&CC=US&NR=7075332B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20060711&CC=US&NR=7075332B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20070508&CC=US&NR=7215138B1&KC=B1
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6-  Venu M. Kondapalli, Trevor J. Bauer, Manoj Chirania, Philip D. Costello, Steven P. Young,  

―Programmable lookup table with dual input and output terminals in RAM mode‖, US7265576B1, 

2007 

7- Bernard J. New, Richard A. Carberry, ―Programmable logic device having configurable logic blocks 

with user-accesible input multiplexers‖, US6292019B1, 2001 

8- Alireza S. Kaviani, ―FPGA with improved structure for implementing large multiplexers‖, 

US6556042B1, 2003 

9- Steven P. Young, Trevor J. Bauer, Manoj Chirania, Venu M. Kondapalli, ―Programmable logic block 

with dedicated and selectable lookup table outputs coupled to general interconnect structure‖, 

US7375552B1, 2008 

10- Danesh Tavana, Wilson K. Yee, Victor A. Holen, ―FPGA architecture with repeatable titles including 

routing matrices and logic matrices‖, US5883525A , 1999 (the detailed global arch ideas) 

11-  Steven P. Young, Kamal Chaudhary, Trevor J. Bauer, ―FPGA repeatable interconnect structure with 

hierarchical interconnect lines‖, US5914616A , 1999 

12- Steven P. Young, Trevor J. Bauer, Kamal Chaudhari, Sridhar Krishnamurthy,  ―FPGA repeatable 

interconnect structure with bidirectional and unidirectional interconnect lines‖, US5942913A , 1999 

13- Steven P. Young, ―Expandable interconnect structure for FPGAs‖,  US6396303B1, 2002 

14- Steven P. Young, ―Integrated circuit with programmable routing structure including diagonal 

interconnect lines‖, US7276934B1, 2007 

15- Steven P. Young, ―Integrated circuit with programmable routing structure including straight and 

diagonal interconnect lines‖, US7279929B1, 2007 

16- Steven P. Young, ―Columnar Floorplan‖, US7557610B2, 2009 

17- Steven P. Young, ―Efficient tile layout for a programmable logic device‖, US7274214B1, 2007 

18- Trevor J. Bauer, Steven P. Young, ―Formation of columnar application specific circuitry using a 

columnar programmable logic device‖, US7478359B1, 2009, (structured-asic-like scenario) 

19- Steven P. Young, ―FPGA architecture having RAM blocks with programmable word length and width 

and dedicated address and data lines‖, US5933023A, 1999 

20- Raymond C. Pang, Steven P. Young, ―Block RAM having multiple configurable write modes for use 

in a Field Programmable Gate Array‖, US6373779B1, 2002 

21-  Prasad Rau, Atul V. Ghia, Suresh M. Menon,  ―Configuration memory architecture for FPGA‖, 

US6501677B1, 2002 

22- David P. Schultz, Lawrence C. Hung, F. Erich Goetting, ―Method & structure for configuring 

FPGAs‖, US6204687B1, 2001 

23- Stephen M. Trimberger,  ―Programmable logic device and method of configuration‖, US7199608B1, 

2007 

24-  Stephen M. Trimberger,  ―Integrated circuit with circuitry for overriding a defective configuration 

memory cell‖, US7187597B1, 2007 

25- Khue Dong, Stephen M. Trimberger, Alok Mehrotra, ―Programmable single buffered six pass 

transistor configuration‖, US5600264A, 1997 

26- Raymond C. Pang, Walter N. Sze, John M. Thendean, Stephen M. Trimberger, Jenifer Wong, 

―Programmable logic device with method of preventing readback‖, US6981153B1, 2005 

27-  Bernard J. New, Steven P. Young, ―Method and apparatus for incorporating a multiplier into an 

FPGA‖, US2002057104A1 , 2002 

28-  Stephen M. Douglas, Steven P. Young, Nigel G. Herron, Mehul R. Vashi, Jane W. Sowards, 

―Programmable gate array having interconnecting logic to support embedded fixed logic circuitry‖, 

US6798239B2 , 2004 (PowerPC/like) 

29-  Stephen M. Trimberger, Austin H. Lasia, ―FPGA with time-multiplexed interconnect‖, 

US7268581B1, 2007 

30- Steven P. Young,  ―Integrated circuits with novel handshake logic‖, US7605604B1, 2009 

http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20070904&CC=US&NR=7265576B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20010918&CC=US&NR=6292019B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20010918&CC=US&NR=6292019B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20010918&CC=US&NR=6292019B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20030429&CC=US&NR=6556042B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20080520&CC=US&NR=7375552B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20080520&CC=US&NR=7375552B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19990316&CC=US&NR=5883525A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19990316&CC=US&NR=5883525A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19990316&CC=US&NR=5883525A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19990622&CC=US&NR=5914616A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19990622&CC=US&NR=5914616A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19990622&CC=US&NR=5914616A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19990824&CC=US&NR=5942913A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19990824&CC=US&NR=5942913A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19990824&CC=US&NR=5942913A&KC=A
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31- Steven P. Young, ―Integrated circuits with bus-based programmable interconnect structures‖, 

US7635989B1 , 2009 

32- Steven P. Young, ―Pipelined unidirectional programmable interconnect in an integrated circuit‖, 

US7759974B1, 2010 

33- Arifur Rahman, Stephen M. Trimberger, Bernard J. New, ―Integrated circuit with through-die via 

interface for die stacking‖, US7518398B1, 2009 

34- Raghunandan Chaware, Arifur Rahman, ―Low cost bumping and bonding method for stacked die‖, 

US7863092B1, 2011 

Altera (All Patents List, 2800+) 

Some (not limited!) notable authors/co-authors: David Lewis (Architecture; 70+), Vaughn Betz (CAD, 

Architecture; 50+), Michael Hutton (CAD; 40+) 

35- Robert F. Hartmann, Sau-Ching Wong, Yiu-Fai Chan, Jung-Hsing Ou, ―Programmable Logic Array 

device using EPROM technology‖, US4774421A, 1988 (Among Altera foundation patents) 

36- David Lewis, Bruce Pedersen, Sinan Kaptanoglu, Andy Lee, ―Fracturable lookup table and logic 

element‖, US7800401B1, 2010 

37- Sinan Kaptanoglu, David Lewis, Bruce Pedersen, ―Fracturable incomplete look up table area efficient 

logic elements‖, US7030650B1, 2006 

38- David M. Lewis, Paul Leventis, Andy L. Lee, Henry Kim, Bruce Pedersen, Chris Wysocki, 

Christopher F. Lane, Alexander Marquardt, Vikram Santurkar, Vaughn Betz, ―Versatile logic element 

and logic array block‖, US7671626B1, 2010 

39- David Lewis, ―Programmable logic device having logic modules with improved register capabilities‖, 

US7459932B1, 2008 

40- Ketan Padalia, Kimberly Bozman, Vaughn Betz, ―Techniques for grouping circuit elements into logic 

blocks‖, US7707532B1, 2010 

41- Paul Leventis, David Lewis, ―Flexible routing resources in a programmable logic device‖, 

US7098687B1, 2006 

42- David Lewis, David Cashman, ―Programmable logic device having logic array block interconnect 

lines that can interconnect logic elements in different logic blocks‖, US7456653B2, 2008 

43- David M. Lewis, Paul Leventis, Andy L. Lee, Brian D. Johnson, Richard Cliff, Srinivas T. Reddy, 

Christopher F. Lane, Cameron R. McClintock, Vaughn Betz, Chris Wysocki, Alexander R. Marquardt, 

―Routing architecture for a programmable logic device‖, US6970014B1, 2005 

44- Vaughn Betz, Jonathan Rose, ―Heterogeneous interconnection architecture for programmable logic 

devices‖, US6828824B2, 2004 

45- Michael D. Hutton, Bruce Pedersen, Sinan Kaptanoglu, David Lewis, Tim Vanderhoek, ―Organization 

of logic modules in programmable logic devices‖, US7368944B1, 2008 

46- Tim Vanderhoek, Vaughn Betz, David Cashman, David Lewis, Michael Hutton, ―Programmable logic 

device architecture and methods for implementing logic in those architectures‖, US7716623B1, 2010 

47- Michael D. Hutton, David Lewis, ―Programmable routing structures providing shorter timing delays 

for input/output signals‖, US7312633B1, 2007 

48- Richard G. Cliff, Srinvas T. Reddy, Andy L. Lee, David Lewis, ―Multiple size memories in a 

programmable logic device‖, US7236008B1, 2007 

49- David Lewis, Vaughn Betz, Irfan Rahim, Peter McElheny, Yow-Juang W. Liu, Bruce Pedersen, 

―Apparatus and methods for adjusting performance of integrated circuits‖, US2009289696A1, 2009 

50- David Lewis, ―Low power routing multiplexers‖, US2006256781A1, 2006 

51- David Lewis, ―Merged logic element routing multiplexer‖, US7215141B2, 2007 

52- David Lewis, ―High speed techniques for simulating circuits‖, US7283942B1, 2007 
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53- Christopher Lane, Ketan Zaveri, Hyun Yi, Giles Powel, Paul Leventis, David Jafferson, David Lewis, 

Triet Nguyen, Vikram Santurkar, Michael Chan, Andy Lee, Brian Johnson, David Cashman, 

―Programmable logic device with redundant circuitry‖, US6965249B2, 2005 

54- David M. Lewis, Vaughn Betz, Paul Leventis, Michael Chan, Cameron R. McClintock, Andy L. Lee, 

Christopher F. Lane, Srinvas T. Reddy, Richard Cliff, ―System and method for optimizing routing 

lines in a programmable logic device‖, US6895570B2, 2005 

Actel (All Patents List, 800+) 

Some (not limited!) notable authors/co-authors: Sinan Kaptanoglu (Architecture; 25+), Jonathan Greene 

(Architecure, Configuraition; 25+) 

55- Abbas A. El Gamal, Khaled A. El-Ayat, Jonathan W. Greene, Ta-Pen R. Guo, Justin M. Reyneri, 

―Programmable Interconnect Architecture‖, US4873459A, 1989 (Among Actel foundation patents) 

56- Wenyi Feng, Sinan Kaptanoglu, ―FPGA architecture having two-level cluster input interconnect 

scheme without bandwidth limitation‖, US7545169B1, 2009 

57- King W. Chan, William C. T. Shu, Sinan Kaptanoglu, Chi Fung Cheng, ―Dedicated interface 

architecture for a hybrid integrated circuit‖, US7389487B1, 2008 

58- Sheng Feng, Jung-Cheun Lien, Eddy C. Huang, Chung-Yuan Sun, Tong Liu, Naihui Liao, Weidong 

Xiong, ―Tileable Field-Programmable gate array architecture‖, US2008238477A1, 2008 

59- Jung-Cheun Lien, Sheng Feng, Tong Liu, ―Field-Programmable Gate Array Architecture‖, 

US6774672B1, 2004 

60- Sinan Kaptanoglu, ―Architecture for routing resources in a Field Programmable Gate Array‖, 

US7579868B2, 2009 

61- Sinan Kaptanoglu, ―Block level routing architecture in a field programmable gate array‖, 

US7557611B2, 2009 

62- Benjamin S. Ting, ―Architecture and interconnect scheme for programmable logic circuits‖, 

US7646218B2, 2010 

63- John E. McGowan, William C. Plants, Joel D. Landry, Sinan Kaptanoglu, Warren K. Miller, ―Flexible, 

high-performance Static RAM architecture for Field Programmable Gate Array ‖, US5744980A, 1998 

64- Greg Bakker, Khaled El-Ayat, Theodore Speers, Limin Zhu, Brian Schubert, Rabindranath 

Balasubramanian, Kurt Kolkind, Thomas Barraza, Venkatesh Narayanan, John McCollum, William C. 

Plants, ―Programmable system on a chip‖, US7613943B2, 2009 

65- Samuel W. Beal, Sinan Kaptonoglu, Jung-Cheun Lien, William Shu, King W. Chan, William C. 

Plants, ―Enhanced Field Programmable Gate Array‖, US7755386B2, 2010 (FPGA+Fixed logic) 

66- William C. Plants, ―SRAM cell controlled by FLASH memory cell‖, US7408815B2, 2008 

67- John McCollum, Hung-Sheng Chen, Frank Hawley, ―Non-volatile programmable memory cell for 

programmable logic array‖, US7590000B2, 2009 

68- Fethi Dhaoui, Zhigang Wang, John McCollum, Richard Chan, Vidyadhara Bellippady, ―Radiation-

tolerant flash-based FPGA memory cells‖, US7768317B1, 2010 

69- Arunangshu Kundu, ―Clock tree network in a field programmable gate array‖, US7545168B2, 2009 

70- Jonathan W. Greene, John McCollum, Volker Hecht, ―Circuits and methods for testing FPGA routing 

switches‖, US7804321B2, 2010 

71- Jonathan W. Greene, Gregory Bakker, Vidyadhara Bellipady, Volker Hecht, Theodore Speers, ―PLD 

providing soft wakeup logic‖, US2010156457A1, 2010 

Abound Logic/M2000 (All Patents List, 15+) 

72- Frederic Reblewski, Olivier Lepape, ―A reconfigurable integrated circuit with a scalable architecture‖, 

US6594810B1, 2003 
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http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7646218B2&KC=B2&FT=D&date=20100112&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19980428&CC=US&NR=5744980A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19980428&CC=US&NR=5744980A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=19980428&CC=US&NR=5744980A&KC=A
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7613943B2&KC=B2&FT=D&date=20091103&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7755386B2&KC=B2&FT=D&date=20100713&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7408815B2&KC=B2&FT=D&date=20080805&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7590000B2&KC=B2&FT=D&date=20090915&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7590000B2&KC=B2&FT=D&date=20090915&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20100803&CC=US&NR=7768317B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20100803&CC=US&NR=7768317B1&KC=B1
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7545168B2&KC=B2&FT=D&date=20090609&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7804321B2&KC=B2&FT=D&date=20100928&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7804321B2&KC=B2&FT=D&date=20100928&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7804321B2&KC=B2&FT=D&date=20100928&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20100624&CC=US&NR=2010156457A1&KC=A1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20100624&CC=US&NR=2010156457A1&KC=A1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20100624&CC=US&NR=2010156457A1&KC=A1
http://v3.espacenet.com/searchResults?PA=m2000&DB=EPODOC&submitted=true&locale=en_EP&ST=advanced&compact=false
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=6594810B1&KC=B1&FT=D&date=20030715&DB=EPODOC&locale=en_EP
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73- Olivier V. Lepape, ― Reconfigurable integrated circuit with scalable architecture including one or more 

adders‖, US7498840B2, 2009 

74- Olivier V. Lepape, ―Reconfigurable integrated circuits with scalable architecture including a plurality 

of special function elements‖, US7768301B2, 2010 

75- Frederic Reblewski, Cesar Douady, ―Packet-oriented communication in reconfigurable circuit(s)‖, 

US7568064B2, 2009 

76- Frederic Reblewski, Olivier Lepape, ―Reconfigurable circuit with redundant reconfigurable clusters‖, 

US2010095147A1, 2010 

77- Carl Ebeling, Frederic Reblewski, Olivier V. Lepape, Jean Barbier, ―Crossbar device constructed with 

MEMS switches‖, US2010108479A1, 2010 

Achronix (All Patents List, 8+) 

78- Rajit Manohar, ―Converting a synchronous circuit design into an asynchronous design‖, 

US2010005431A1, 2010  

79- Rajit Manohar, ―Automated conversion of synchronous to asynchronous circuit design 

representations‖, US2009319962A1, 2009 

80- Rajit Manohar, Gregor, Martin, John Lofton Holt, ―Synchronous to asynchronous logic conversion‖, 

US7739682B2, 2010 

81- Rajit Manohar, Clinton W. Kelly, ―Reconfigurable logic fabric for integrated circuits and systems and 

methods for configuraing reconfigurable logic fabrics‖, US2010013517A1, 2010 

82- Rajit Manohar, Clinton W. Kelly, ―Fault tolerant asynchronous circuits‖, US2010207658A1, 2010  

Tabula (All Patents List, 70+) 

83- Jason Redgrave, Teju Khubchandani, Brad Hutchings, Steven Teig, Hermann Schmitt, ―Configuralbe 

IC with packet switching configuration network‖, WO2009131569A1, 2009  

84- Herman Schmit, Michael Butts, Brad L. Hutchings, Steven Teig, ―Method of mapping a user design 

defined for a user design cycle to an IC with multiple sub-cycle reconfigurable circuits‖, 

US7872496B2, 2011 

85- Brad Hutchings, Herman Schmit, Jason Redgrave, ―Hybrid Logic/Interconnect Circuit in a 

configurable IC‖, US2008100336A1, 2008 

86- Steven Teig, Herman Schmit, Jason Redgrave, ―Configurable IC having a routing fabric with storage 

elements‖, US7525344B2, 2009 

87- Andre Rohe, Steven Teig, ―Configurable Integrated circuit with built-in turns‖, US7737722B2, 2010 

Tier Logic/Viciciv (All Patents List, 15+) 

88-  Raminda Udaya Madurawe, ―Three dimensional integrated circuits‖, US2009039918A1, 2009 

89- Raminda U. Madurawe, ―Semiconductor devices fabricated with different processing options‖, 

US7759705B2, 2010 

90- Raminda U. Madurawe, Peter Ramyalal Suaris, Henry White, ―MPGA products based on a prototype 

FPGA‖, US7673273B2, 2010 

91-  Raminda U. Madurawe, ―Programmable logic devices comprising time multiplexed programmable 

interconnect‖, US7759969B2, 2010 

92- Raminda U. Madurawe, Nij Dorairaj, ―Programmable logic based latches and shift registers‖, 

US7573294B2, 2009 

93- Raminda U. Madurawe, ―Look-up table structure with embedded carry logic‖, US7466163B2, 2008 

94- Nij Dorairaj, ―Using programmable latch to implement logic‖, US7602213B2, 2009 

 

http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7498840B2&KC=B2&FT=D&date=20090303&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7498840B2&KC=B2&FT=D&date=20090303&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7768301B2&KC=B2&FT=D&date=20100803&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7768301B2&KC=B2&FT=D&date=20100803&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7568064B2&KC=B2&FT=D&date=20090728&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20100415&CC=US&NR=2010095147A1&KC=A1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20100506&CC=US&NR=2010108479A1&KC=A1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20100506&CC=US&NR=2010108479A1&KC=A1
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20100506&CC=US&NR=2010108479A1&KC=A1
http://v3.espacenet.com/searchResults?PA=achronix&DB=EPODOC&submitted=true&locale=en_EP&ST=advanced&compact=false
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=2010005431A1&KC=A1&FT=D&date=20100107&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=2009319962A1&KC=A1&FT=D&date=20091224&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=2009319962A1&KC=A1&FT=D&date=20091224&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=2009319962A1&KC=A1&FT=D&date=20091224&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7739628B2&KC=B2&FT=D&date=20100615&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=2010013517A1&KC=A1&FT=D&date=20100121&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=2010013517A1&KC=A1&FT=D&date=20100121&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=2010013517A1&KC=A1&FT=D&date=20100121&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=2010207658A1&KC=A1&FT=D&date=20100819&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/searchResults?PA=tabula+inc&DB=EPODOC&submitted=true&locale=en_EP&ST=advanced&compact=false
http://v3.espacenet.com/publicationDetails/biblio?CC=WO&NR=2009131569A1&KC=A1&FT=D&date=20091029&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=WO&NR=2009131569A1&KC=A1&FT=D&date=20091029&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=WO&NR=2009131569A1&KC=A1&FT=D&date=20091029&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7872496B2&KC=B2&FT=D&date=20110118&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7872496B2&KC=B2&FT=D&date=20110118&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7872496B2&KC=B2&FT=D&date=20110118&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7525344B2&KC=B2&FT=D&date=20090428&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7525344B2&KC=B2&FT=D&date=20090428&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7525344B2&KC=B2&FT=D&date=20090428&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7737722B2&KC=B2&FT=D&date=20100615&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/searchResults?PA=Tier+logic&DB=EPODOC&submitted=true&locale=en_EP&ST=advanced&compact=false
http://v3.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=D&date=20090212&CC=US&NR=2009039918A1&KC=A1
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7759705B2&KC=B2&FT=D&date=20100720&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7673273B2&KC=B2&FT=D&date=20100302&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7673273B2&KC=B2&FT=D&date=20100302&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7759969B2&KC=B2&FT=D&date=20100720&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7759969B2&KC=B2&FT=D&date=20100720&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7573294B2&KC=B2&FT=D&date=20090811&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7466163B2&KC=B2&FT=D&date=20081216&DB=EPODOC&locale=en_EP
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=7602213B2&KC=B2&FT=D&date=20091013&DB=EPODOC&locale=en_EP
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4- Academics 
Publications are grouped under the name of research head in case of five or more publications from same 

author/co-author (names of Professors are in non-priority random order!). All publications/presentations 

(where applicable) are hyperlinked to the direct access provided by Professors or institutes web pages, to 

maintain equivalent click-to-get like form of this reference section like for industrial references and 

patents. Reference 4.1 (VPR book) is an exceptional alias of 5.1. 

Prof. Jonathan Rose (Toronto Univ.), FPGA architecture and CAD: http://www.eecg.toronto.edu/~jayar  

1- V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs, Kluwer 

Academic Publishers, February 1999. ISBN 0-7923-8460-1 {same as ref. 5.1of books section} 

2- I. Kuon, R. Tessier and J. Rose "FPGA Architecture: Survey and Challenges", Foundations and Trends 

in Electronic Design Automation: Vol. 2: No 2, 2008, pp. 135-253 

3- I. Kuon and J. Rose, "Measuring the Gap between FPGAs and ASICs" in IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, NO. 2, Feb. 2007 

4- J. Rose, ―The Evolution of Architecture Exploration of Programmable Devices‖, FPL-2009 Keynote 

5- J. Luu, I. Kuon, P.Jamieson, T. Campbell, A. Ye, M. Fang, and J. Rose "VPR 5.0: FPGA CAD and 

Architecture Exploration Tools with Single-Driver Routing, Heterogeneity and Process Scaling," in 

FPGA-2009 

6- I. Kuon and J. Rose, "Automated Transistor Sizing for FPGA Architecture Exploration" in DAC '08, 

ACM/IEEE Design Automation Conference, June 2008, pp. 792-795 

7- I. Kuon and J. Rose "Area and Delay Trade-offs in the Circuit and Architecture Design of FPGAs," in 

ACM Symposium on FPGAs, February 2008, pp. 149-158 

8- E. Ahmed and J. Rose, "The Effect of LUT and Cluster Size on Deep-Submicron FPGA Performance 

and Density‖ , IEEE Trans. on VLSI, March 2004, pp. 288-298. 

9- Andy Ye, J. Rose, ―Using Bus-Based Connections to improve Field-Programmable Gate-Array 

Density for implementing Datapath Circuits‖, IEEE Trans on VLSI, May 2006, pp. 462-473 

10- A. Marquardt, V. Betz and J. Rose, ``Speed and Area Tradeoffs in Cluster-Based FPGA 

Architectures'',  IEEE Transactions on VLSI Systems, February 2000, pp. 84 - 93. 

11- V. Betz and J. Rose, ``Automatic Generation of FPGA Routing Architectures from High-Level 

Descriptions'' , FPGA-2000 

12- V. Betz and J. Rose, "VPR: A New Packing, Placement and Routing Tool for FPGA Research" in 7th 

International Workshop on Field-Programmable Logic, London, August 1997, pp. 213-222.  

13- The GILES/ATL Project Documents - Automated Layout of FPGAs from Architectural Specification  

Prof. Guy Lemieux (UBC) , FPGA architecture and CAD: http://www.ece.ubc.ca/~lemieux  

14- V. Aken'ova, G. Lemieux, R. Saleh, ``Soft++: An Improved Embedded FPGA Methodology for SoC 

Designs'', IEEE Transactions on VLSI, 2007 

15- J. Lamoureux, G. Lemieux, S. Wilton, ``GlitchLess: Dynamic Power Minimization in FPGAs through 

Edge Alignment and Glitch Filtering'', IEEE Transactions on VLSI, November, 2008 

16- E. Lee, G. Lemieux, S. Mirabbasi, ``Interconnect Driver Design for Long Wires in Field-

Programmable Gate Arrays'', Journal of Signal Processing Systems, Springer, 51(1), April 2008 

17- P. Teehan, G. Lemieux, M. Greenstreet, ―Towards Reliable 5Gbps Wave-pipelined and 3Gbps Surfing 

Interconnect in 65nm FPGAs'', FPGA-2009.  presentation 

18- M. Tom, D. Leong, G. Lemieux, ―Un/DoPack: Re-Clustering of Large System-on-Chip Designs with 

Interconnect Variation for Low-Cost FPGAs'', IEEE International Conference Computer-Aided 

Design, San Jose, November 2006.  presentation 

19- G. Lemieux, E. Lee, M. Tom, and A. Yu, ―Directional and Single-Driver Wires in FPGA 

Interconnect'', IEEE International Conference on Field-Programmable Technology, Brisbane, 

Australia, pp. 41-48, December 2004. Best Paper Award.  presentation 

http://www.eecg.toronto.edu/~jayar
http://www.eecg.toronto.edu/~jayar/pubs/kuon/foundtrend08.pdf
http://www.eecg.toronto.edu/~jayar/pubs/kuon/kuontcad06.pdf
http://fpl2009.org/download/FPL2009-Rose.pdf
http://www.eecg.toronto.edu/~jayar/pubs/luu/luufpga09.pdf
http://www.eecg.toronto.edu/~jayar/pubs/luu/luufpga09.pdf
http://www.eecg.toronto.edu/~jayar/pubs/luu/luufpga09.pdf
http://www.eecg.toronto.edu/~jayar/pubs/kuon/kuondac08.pdf
http://www.eecg.toronto.edu/~jayar/pubs/kuon/kuonfpga08.pdf
http://www.eecg.toronto.edu/~jayar/pubs/ahmed/tvlsi_march_04.pdf
http://www.eecg.toronto.edu/~jayar/pubs/ahmed/tvlsi_march_04.pdf
http://www.eecg.toronto.edu/~jayar/pubs/ye/yetvlsi06.pdf
http://www.eecg.toronto.edu/~jayar/pubs/ye/yetvlsi06.pdf
http://www.eecg.toronto.edu/~vaughn/papers/tvlsi2000_arm.pdf
http://www.eecg.toronto.edu/~vaughn/papers/tvlsi2000_arm.pdf
http://www.eecg.toronto.edu/~vaughn/papers/fpga2000.pdf
http://www.eecg.toronto.edu/~vaughn/papers/fpga2000.pdf
http://www.eecg.toronto.edu/~jayar/pubs/betz/fpl97vpr.pdf
http://www.eecg.toronto.edu/~jayar/pubs/ATL/ATL.html
http://www.ece.ubc.ca/~lemieux
http://www.ece.ubc.ca/~lemieux/publications/akenova-tvlsi2007.pdf
http://www.ece.ubc.ca/~lemieux/publications/akenova-tvlsi2007.pdf
http://www.ece.ubc.ca/~lemieux/publications/akenova-tvlsi2007.pdf
http://www.ece.ubc.ca/~lemieux/publications/lamoureux-tvlsi2008.pdf
http://www.ece.ubc.ca/~lemieux/publications/lamoureux-tvlsi2008.pdf
http://www.ece.ubc.ca/~lemieux/publications/lamoureux-tvlsi2008.pdf
http://www.ece.ubc.ca/~lemieux/publications/lee-jvlsisp2007.pdf
http://www.ece.ubc.ca/~lemieux/publications/lee-jvlsisp2007.pdf
http://www.ece.ubc.ca/~lemieux/publications/teehan-fpga2009.pdf
http://www.ece.ubc.ca/~lemieux/publications/teehan-fpga2009.pdf
http://www.ece.ubc.ca/~lemieux/publications/presentations/teehan-fpga2009talk.pdf
http://www.ece.ubc.ca/~lemieux/publications/tom-iccad2006.pdf
http://www.ece.ubc.ca/~lemieux/publications/tom-iccad2006.pdf
http://www.ece.ubc.ca/~lemieux/publications/presentations/tom-iccad2006.ppt
http://www.ece.ubc.ca/~lemieux/publications/lemieux-fpt2004.pdf
http://www.ece.ubc.ca/~lemieux/publications/lemieux-fpt2004.pdf
http://www.ece.ubc.ca/~lemieux/publications/presentations/lemieux-fpt2004.ppt
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20- D. Yeager, D. Chiu, G. Lemieux, ``Congestion Estimation and Localization in FPGAs: A Visual Tool 

for Interconnect Prediction'', International Workshop on System-Level Interconnect Prediction, Austin, 

TX, March 2007.  presentation 

21- G. Lemieux, D. Lewis, ``Analytical Framework for Switch Block Design'', Field-Programmable Logic 

and Applications, La Grande Motte, France, pp. 122-131, September 2002.  presentation 

22- G. Lemieux, D. Lewis, ``Checkerboard Switch Block Topologies for Routing Diversity'', poster at 

ACM/SIGDA International Symposium on FPGA-2002. presentation (HTML) 

23- G. Lemieux, D. Lewis, ``Circuit Design of FPGA Routing Switches'', ACM/SIGDA International 

Symposium on FPGAs, Monterey, CA, pp. 19-28, February 2002.  presentation (HTML only) 

24- G. Lemieux, D. Lewis, ``Using Sparse Crossbars within LUT Clusters'', ACM/SIGDA International 

Symposium on FPGAs, Monterey, CA, pp. 59-68, February 2001. 

Prof. Steve Wilton (UBC), FPGA architecture and CAD: http://www.ece.ubc.ca/~stevew  

25- Steven J.E. Wilton, ``Architecture and Algorithms for Field-Programmable Gate Arrays with 

Embedded Memory'', PhD thesis, University of Toronto, 1997. 

26- J. Lamoureux, S.J.E. Wilton, "FPGA Clock Network Architecture: Flexibility vs. Area and Power", 

FPGA-2006.  

27- B. Quinton, S.J.E. Wilton, "Embedded Programmable Logic Core Enhancements for System Bus 

Interfaces",  FPL-2007 

28- B.R. Quinton, S.J.E. Wilton, "Programmable Logic Core Based Post-Silicon Debug For SoCs", 4th 

IEEE Silicon Debug and Diagnosis Workshop, Germany, May 2007. [slides]  

29- N. Kafafi, K. Bozman, S.J.E. Wilton, ``Architectures and Algorithms for Synthesizable Embedded 

Programmable Logic Cores'', in the ACM International Symposium on Field-Programmable Gate 

Arrays, Monterey, CA, Feb 2003, pp. 1-9. [slides]   

30- K.K.W. Poon, S.J.E. Wilton, A. Yan, "A Detailed Power Model for Field-Programmable Gate 

Arrays", in ACM Transactions on Design Automation of Electronic Systems (TODAES), 2005 

31- S.J.E. Wilton, N. Kafafi, J. Wu, K. Bozman, V. Aken'Ova, R. Saleh, "Design Considerations for Soft 

Embedded Programmable Logic Cores", IEEE Journal of Solid-State Circuits, 2005 

32- T. Wong, S.J.E. Wilton, "Placement and Routing for Non-Rectangular Embedded Programmable 

Logic Cores in SoC Design", FPT-2004 

33- J.C.H. Wu, V. Aken'Ova, S.J.E. Wilton, R. Saleh, ``SoC Implementation Issues for Synthesizable 

Embedded Programmable Logic Cores'', in IEEE Custom Integrated Circuits Conference, 2003 

34- S.J.E. Wilton, R. Saleh, ``Programmable Logic IP Cores in SoC Design: Opportunities and 

Challenges'', in the IEEE Custom Integrated Circuits Conference, San Diego, CA, May 2001 

35- M. Imran Masud, ``FPGA Routing Structures: A Novel Switch Block and Depopulated Interconnect 

Matrix Architecture'', M.A.Sc. Thesis, December 1999. 

Joint with Prof. Wayne Luk (Imperial College London): http://www.doc.ic.ac.uk/~wl  

36- P. Jamieson, W. Luk, S.J.E. Wilton, G. Constantinides, "An Energy and Power Consumption Analysis 

of FPGA Routing Architectures", FPT-2009 (poster presentation) 

37- C.T. Chow, L.S.M. Tsui, P.H.W. Leong, W. Luk, S. Wilton, "Dynamic Voltage Scaling for 

Commercial FPGAs", FPT-2005. Best Paper Award 

38- S.J.E. Wilton, S-S. Ang, W. Luk, "The Impact of Pipelining on Energy per Operation in Field-

Programmable Gate Arrays'', FPL-2004. Included in Lecture Notes in Computer Science 3203, 

Springer-Verlag, pp. 719-728. Best Paper Award   [slides]  

39- S.J.E. Wilton, C.H. Ho, P.H.W. Leong, W. Luk, B. Quinton, "A Synthesizable Datapath-Oriented 
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Embedded FPGA Fabric for Silicon Debug Applications", in ACM Transactions on Reconfigurable 
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44- "Is the Second Wave of HLS the One Industry Will Surf on?", DATE-2009 Panel 
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62- David Fang, John Teifel, Rajit Manohar, ―A High-Performance Asynchronous FPGA: Test Results‖, 

FCCM-2005 

63- Patents list  (http://vlsi.cornell.edu/~rajit/pub_all.html ) 

Prof. Reiner Hartenstein (Univ. Kaiserslautern), Reconfigurable Computing: http://hartenstein.de  

64- R. Hartenstein, ―A Decade of Reconfigurable Computing: a Visionary Retrospective‖, DATE-2001 

embedded tutorial, [Paper] 

65- R. Hartenstein, ―Reconfigurable Computing: the Roadmap to a New Business Model - and its Impact 

on SoC Design‖, SBCCI-2001 keynote, [Paper] 

66- R. Hartenstein, ―Enabling technologies for reconfigurable computing‖, Part 4, Tampere, 2001 lecture, 

includes Prof. Jonathan Rose (when will FPGAs kill ASICs slides also); Other: [Part1][Part2][Part3] 

67- R. Hartenstein, ―Reconfigurable HPC: Torpedoed by Deficits in Education?‖,RHPC-2004 keynote  

68- R. Hartenstein, ―From organic computing to reconfigurable computing‖, PASA-2006 keynote 

69- R. Hartenstein, ―The von Neumann Syndrome‖, 2007 invited paper in SVMS Delft, 2007 

70- R. Hartenstein, ―Multicore programming and the CS education dilemma‖, MPSoC-2009 keynote 

71- R. Hartenstein, ―A visionary retrospective about reconfigurable computing education ‖, ReCoSoC-10 

72- R. Hartenstein, ―Reconfigurable computing: boosting Software education for the Multicore era‖, SPL-

2010 keynote 

LIRMM (Univ. of Montpellier) MRAM work; Prof. Lionel Torres: http://www.lirmm.fr/~torres  
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cells for dynamically reconfigurable fine grain architecture‖, PhD thesis, Univ. of Montpellier, 2007 
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98- S. Hauck, K. Compton, K. Eguro, M. Holland, S. Phillips, A. Sharma, "Totem: Domain-Specific 

Reconfigurable Logic", submitted to IEEE Transactions on VLSI Systems 
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100- K. Compton, S. Hauck, ―Reconfigurable Computing: A Survery of Systems and Software‖, ACM 

Computing surveys, 2002 

101- Larry McMurchie, Carl Ebeling, ―PathFinder: A negotiation-based performance-driven router for 

FPGAs‖,  FPGA-1995 

102- Sumanta chaudhuri, Asynchronous FPGA Architectures for Cryptographic Applications ,(Slides), 

Phd Thesis, May 15th 2009, Paris, FRANCE 

103- Sumanta chaudhuri,  ―Diagonal tracks in FPGAs: a performance evaluation‖ ,(Slides). FPGA-

2009 

104- A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, R. Guerrieri, ―A VLIW processor with 

reconfigurable instruction set for embedded applications‖, IEEE journal of Solid-State Circuits, 2003  

105- J. R. Hauser, J. Wawrzynek, ―Garp: a MIPS processor with a reconfigurable coprocessor‖, 

FCCM-97 

106- S. C. Goldstein et al, ―PipeRench: A reconfigurable architecture and compiler‖, IEEE Computer, 

2000 

107- Chen Chen, Roozbeh Parsa, Nishant Patil, Soogine Chong, Kerem Akarvardar, J Provine, David 

Lewis, Jeff Watt, Roger T. Howe, H.-S. Philip Wong, Subhasish Mitra, ―Efficient FPGAs using 
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5- Books & Others 
Books 

1- Vaughn Betz, Jonathan Rose, Alexander Marquardt, ―Architecture and CAD for Deep-Submicron 

FPGAs‖, Springer, 1999 

2- Ian Kuon, Jonathan Rose, ―Quantifying and Exploring the Gap Between FPGAs and ASICs‖, 

Springer, 2009 

3- Ian Kuon, Russell Tessier, Jonathan Rose , ―FPGA Architecture: Survey and Challenges‖, Now 

Publishers Inc., 2008 

4- Erik Brunvand, ―Digital VLSI Chip Design with Cadence and Synopsys CAD Tools‖, Addison-

Wesley, 2009 

5- David Chinnery, Kurt Keutzer, ―Closing the Gap Between ASIC & Custom: Tools and Techniques for 

High-Performance ASIC Design‖, Springer, 2002 

6- David Chinnery, Kurt Keutzer, ―Closing the Power Gap between ASIC & Custom: Tools and 

Techniques for Low Power Design‖, Springer, 2010 

7- Akio Morita, ―Made in Japan: Akio Morita and Sony‖, NY E.P. Dutton & Co, 1986 

8- Sea-Jin Chang, ―Sony vs Samsung: The Inside Story of the Electronics Giants' Battle For Global 

Supremacy‖, Wiley, 2008 

9- Merrill R. Chapman, ―In Search of Stupidity, over 20 years of high-tech marketing disasters‖ , Apress, 

2006  

10- Jorge Cham, ―Piled Higher & Deeper‖ (1997- Present): http://www.phdcomics.com  

Companies/Organizations etc. 

11- CIFRE Phd : http://www.anrt.asso.fr/fr/espace_cifre/accueil.jsp   /  English Brochure : 

http://www.anrt.asso.fr/fr/pdf/plaquette_cifre_complete_avril2009_GB.pdf     

12- Menta SAS (embedded FPGAs): www.menta.fr , www.efpga.com  

13- CMP (Circuits Multi-Projects) http://cmp.imag.fr  

14- Qt (Nokia) Cross-platform application and UI framework: http://qt.nokia.com   

15- Freescale’s MRAM spun out: www.everspin.com/technology.html  

16- Crocus MRAM technology: www.crocus-technology.com  

17- MRAMs information/news: www.memorystrategies.com/report/focused/mram.htm  

18- MRAMs information/news: www.mram-info.com  

19- MRAM post processing above CMOS: http://www-leti.cea.fr  

20- Universal Memories: http://en.wikipedia.org/wiki/Universal_memory 

21- Magenetoresistive RAM (MRAM): http://en.wikipedia.org/wiki/MRAM   

22- LEON3, Garisler research (Aeroflex): www.gaisler.com  

23- SPARC V8 manual: www.sparc.com/standards/V8.pdf  

24- OpenCores: http://opencores.org  

25- SimpleScalar tools: www.simplescalar.com  

General Knowledge 

26- How to Have a Bad Career in Research/Academia (Prof. David A. Patterson, 2001): 

http://www.cs.berkeley.edu/~pattrsn/talks/BadCareer.pdf  

27- Prof. Joe Wolfe, ―How to write a PhD thesis‖: www.phys.unsw.edu.au/~jw/thesis.html  

28- Dr. Steve Easterbrook, ―How theses get written: some cool tips‖: 
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