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Abstract

The interparticle interactions in ultracold atomic gases can be tuned using Fano–Feshbach
scattering resonances, which occur in low–energy collisions between two atoms. These reso-
nances are usually obtained using an external static magnetic field. They turn ultracold atomic
gases into an experimental playground for the investigation of novel phases in which Quantum
Physics plays a key role. The work presented in this memoir is part of the theoretical effort
towards the search for yet unexplored quantum phases.

This manuscript is organised in two parts. The first one is devoted to composite bosons
formed in a 2D heteronuclear Fermi gas. We characterise the zero–temperature phase diagram
and show the gas–crystal phase transition in this system. Our results are promising in view of
future experiments with the 6Li–40K mixture.

In the second part, we propose an alternative to static–field Fano–Feshbach resonances.
The idea is to achieve the coupling by using a resonant microwave magnetic field. Our scheme
applies to any atomic species whose ground state is split by the hyperfine interaction. It does
not require the use of a static magnetic field. First, these resonances are presented using a
simple two–channel model. We then characterise them numerically using our own full–fledged
implementation of the coupled–channel approach. Our results yield optimistic prospects for
the observation of microwave–induced Fano–Feshbach resonances with the bosonic alkali atoms
23Na, 41K, 87Rb, and 133Cs.

Keywords: cold atoms, quantum gases, Feshbach resonance, cold molecules, quantum phase

transition, microwave–dressed atoms, cold collisions, coupled–channel method.

Résumé

Les interactions entre particules dans les gaz quantiques ultrafroids peuvent être contrôlées
à l’aide de résonances de Fano–Feshbach. Ces résonances de diffusion se produisent lors de
collisions à basse énergie entre deux atomes et sont généralement obtenues à l’aide d’un champ
magnétique statique externe. Elles font des gaz atomiques ultrafroids un terrain d’exploration
pour la recherche de nouvelles phases dans lesquelles la physique quantique joue un rôle clef.
Le travail présenté dans ce mémoire s’inscrit dans le cadre de la recherche de telles phases.

Ce manuscrit comporte deux parties. La première est consacrée à l’étude de bosons compo-
sites obtenus dans des gaz de Fermi hétéronucléaires 2D. Nous étudions le diagramme de phase
de ce système à T = 0 et nous mettons en évidence une transition de phase gaz–cristal. Nos
résultats sont prometteurs en vue d’expériences futures avec le mélange 6Li–40K.

Dans la seconde partie, nous proposons un nouveau type de résonance de Fano–Feshbach. Le
couplage à l’origine de cette résonance est obtenu à l’aide d’un champ magnétique micro–onde.
Notre méthode s’applique à n’importe quelle espèce atomique dont l’état fondamental est clivé
par l’interaction hyperfine. Elle ne nécessite pas l’utilisation d’un champ magnétique statique.
Nous décrivons d’abord ces résonances à l’aide d’un modèle simple à deux niveaux. Ensuite,
nous les caractérisons numériquement à l’aide de notre propre programme implémentant l’ap-
proche multi–canaux des collisions atomiques. Nos résultats ouvrent des perspectives optimistes
en vue de l’observation des résonances de Feshbach induites par un champ micro–onde avec
les atomes alcalins bosoniques suivants : 23Na, 41K, 87Rb et 133Cs.

Mots–clefs : atomes froids, gaz quantiques, résonance de Feshbach, molécules froides, transi-

tion de phase quantique, collisions froides, description multi–canaux des collisions atomiques.





How much better it is to get wisdom than gold,
and to get understanding rather to be chosen than silver.

Proverbs 16:16

In loving memory
of my grandfather Jules Salfati.
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Foreword

The achievement of Bose–Einstein condensation [1–3] has stimulated considerable de-
velopments in atomic Physics. Ultracold atoms have found applications in metrology
[4]. They are used in high–precision experiments with the aim of determining physical
constants [5] or testing the validity of fundamental theories [6]. Ultracold gases provide
promising building blocks for quantum information processing [7]. They can be cooled
down to quantum degeneracy and used to simulate condensed–matter systems [8] or to
model systems for the investigation of problems arising in astrophysics [9]. Collateral
work [10] has even lead to improved medical imaging methods.

A fundamental feature of ultracold atomic gases is that the interparticle interactions in
the gas can be tailored at will. The manipulation of the interactions is performed using
scattering resonances that occur in low–energy collisions between two atoms [11]. These
Fano–Feshbach resonances are usually obtained using an external static magnetic field
[12]. They have turned ultracold atomic gases into an experimental playground for the
investigation of novel phases of matter in which Quantum Physics plays a key role. Bose–
Einstein condensation stands among these new phases, and so do spinor condensates [13]
and the Mott–insulating phase [14]. Furthermore, effective dimensionality can also be
tuned by using a tight optical confinement of the gas in one or two directions. This has
allowed the investigation of the 1D Tonks–Girardeau gas [15, 16] and the 2D Berezinskii–
Kousterlitz–Thouless transition [17].

The work presented in this memoir is part of the theoretical effort underlying the
search for yet unexplored quantum phases. It is organised in two parts:

• The shorter first part illustrates how the manipulation of atomic interactions can
be applied to the search for new quantum phases. We focus on the crystalline
phase of a two–dimensional assembly of composite bosons formed in an ultracold
heteronuclear Fermi gas [18] and characterise the zero–temperature crystal–gas
phase diagram of this system [19]. Our results are promising in view of a possible
observation of this crystalline phase in a mixture of 6Li and 40K atoms.

• In the longer second part, the object of our analysis is the actual manipulation
of interactions in ultracold gases. We propose an alternative to static–field Fano–
Feshbach resonances. In our case, the coupling is achieved using a resonant mi-
crowave magnetic field [20]. This scheme is reminiscent of optical Feshbach res-
onances [21]. It applies to any atomic species whose ground state is split by the
hyperfine interaction. The microwave–induced resonances that we discuss in this
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Foreword

manuscript are present even when no static–field Feshbach resonances are accessi-
ble. They do not require the presence of a static magnetic field component, which
will be an asset in the investigation of new phases in spinor Bose–Einstein conden-
sates [22]. Our results yield optimistic prospects for experiments with 23Na, 41K,
87Rb, and 133Cs.

References

[1] M. H. Anderson et al. “Observation of Bose-Einstein Condensation in a Dilute
Atomic Vapor”. In: Science 269.5221 (1995), pp. 198–201. doi: 10.1126/science.
269.5221.198.

[2] C. C. Bradley et al. “Evidence of Bose-Einstein Condensation in an Atomic Gas
with Attractive Interactions”. In: Phys. Rev. Lett. 75.9 (Aug. 1995), pp. 1687–
1690. doi: 10.1103/PhysRevLett.75.1687.

[3] Kendall B. Davis et al. “Evaporative Cooling of Sodium Atoms”. In: Phys. Rev.
Lett. 74.26 (June 1995), pp. 5202–5205. doi: 10.1103/PhysRevLett.74.5202.

[4] S. Bize et al. “Cold atom clocks and applications”. In: Journal of Physics B:
Atomic, Molecular and Optical Physics 38.9 (2005), S449. doi: 10.1088/0953-4
075/38/9/002.

[5] F. Biraben. “Spectroscopy of atomic hydrogen”. In: The European Physical Journal-
Special Topics 172.1 (2009), pp. 109–119. doi: 10.1140/epjst/e2009-01045-3.

[6] Keng-Yeow Chung et al. “Atom interferometry tests of local Lorentz invariance in
gravity and electrodynamics”. In: Phys. Rev. D 80.1 (July 2009), p. 016002. doi:
10.1103/PhysRevD.80.016002.
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Part I.

A two–dimensional crystal of
composite bosons
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1. Introduction

The first part of the present manuscript focuses on the zero–temperature phase diagram
of a two–dimensional system of composite bosons formed in a heteronuclear fermionic
mixture with equal densities of the two species.

We consider an ultracold gas of fermionic atoms. In order to avoid a suppression
of the atomic interactions due to the Pauli principle, we consider a bipartite mixture,
i.e. a gas in which two types of atoms are present. These atoms may all belong to the
same atomic species, part of them being in a different internal state than the others.
Alternately, two different species of fermions, such as Lithium 6 and Potassium 40, may
be present in the mixture.

Assuming that the gas is cold enough for s–wave collisions to be dominant [1], the na-
ture (repulsive or attractive) and strength of the interaction between two distinguishable
atoms are encoded in a single real parameter, the scattering length a. This interaction
is represented by the following pseudopotential [2]:

Upseudo(r) =
4π~2

m
aδ(r) , (1.1)

where r is the interactomic distance.

The interatomic interactions in the ultracold gas can be tuned using a Fano–Feshbach
resonance. These resonances will be described in detail in Part II (in particular, see
Chapter 8), and we only briefly mention them here. Such a resonance is usually obtained
using a static magnetic field [3]. It occurs for a fixed value Bres of the magnetic field. For
fields B close to Bres, the scattering length diverges hyperbolically (see Fig. 1.1), which
makes it possible to set the scattering length to the desired value and sign by tuning the
magnetic field B.

1.1. Bosonic dimers obtained in a bipartite Fermi gas

The initial interest in bipartite fermionic mixtures has stemmed from the BEC—BCS
crossover [4, 5]. For negative scattering lengths (a < 0, right–hand half of Fig. 1.1),
fermions belonging to different components and with opposite momenta on the Fermi
surface form correlated pairs, and at sufficiently low temperatures the system is super-
fluid [6]. By contrast, for positive scattering lengths (a > 0, left–hand half of Fig. 1.1),
one has bosonic dimers representing weakly bound states of fermionic atoms of different
components. Such dimers have been observed in homonuclear Fermi gases [7–9] and,
more recently, in heteronuclear mixtures (see Fig. 1.2 and [10, 11]). These dimers are
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Figure 1.1. Feshbach resonance, BEC and
BCS regimes. The heteronuclear molecules
(composite bosons) are obtained on the BEC
side of the resonance.

weakly bound composite bosons, and Bose–Einstein condensates of homonuclear Li2 and
K2 dimers have been obtained in a number of experiments [12–14].

We focus on the case of positive scattering lengths a and further assume that a is much
larger than the characteristic range Re of the interatomic interaction potential. The
diatomic molecules obtained in this situation (in either homonuclear or heteronuclear
Fermi mixtures) exhibit two key features:

• They are the largest diatomic molecules obtained so far. Their size, which is
of the order of a, has reached thousands of angstroms in current experiments.
Accordingly, they are very weakly bound (their binding energy is . 10µK).

• They are very stable with respect to collisional relaxation. Their lifetime can be
of the order of seconds for typical densities (about 1013 atoms/cm3).

1.1.1. Collisional relaxation

The long lifetime of these dimers is specific to composite bosons made up of fermions.
It is due to the suppression of collisional relaxation caused by the Pauli principle.

The physics is the simplest in the case of homonuclear dimers [15, 16]. In order for a
weakly bound dimer to relax to a deeply bound state (whose size is of the order of Re),
at least three fermions should approach each other at a distance ∼ Re. Among these
three atoms, two are in the same quantum state. Recalling that the size of the dimers

Figure 1.2. Absorption images of a heteronu-
clear mixture of 6Li and 40K in which molecules
have been obtained by sweeping the magnetic
field from the (a < 0) side to the (a > 0) side
of a Feshbach resonance, after separation un-
der the action of a magnetic field during time
of flight (TOF). (Reproduced from [10].)
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1.2. Effective interaction between heteronuclear composite bosons

is ∼ a, the typical momentum of the atoms is k ∼ 1/a, and this three–body encounter
is Pauli–supressed by a factor of (k Re)

s ∼ (Re/a)s � 1, where s is of the order of 2.
In the case of heteronuclear dimers, the situation is more involved. The weakly bound

heteronuclear molecules can decay towards lower–energy states through two main chan-
nels [17]: (i) the relaxation into deeply bound dimer states and (ii) the formation of
trimer states.

The relaxation into deeply bound dimer states can occur in dimer–dimer collisions
when one heavy and two light fermions1 are within a distance ∼ Re from each other.
The relaxation rate acquires a dependence on the ratio M/m of the heavy to light
fermionic masses [18], but the suppression of collisional relaxation still holds.

The formation of a trimer state requires two heavy and one light atoms to come at a
distance R . a from each other. At such distances the light fermion mediates an effective
interaction between the two dimers which is attractive [17]. This attractive interaction
is proportional to −1/(mR2), and it competes with the Pauli repulsion, which manifests
itself through a centrifugal barrier which is proportional to 1/(MR2). The physics thus
depends on the value of the mass ratio M/m. For mass ratios M/m ∼ 1, the Pauli
repulsion is dominant and the trimer states do not exist. For mass ratios M/m > 13.6,
the attractive interaction dominates, and Efimov trimers can appear [19]. These trimers
cannot be described using the scattering length alone, and an additional three–body
parameter must be introduced.

Besides the Efimov trimers, one light and two heavy atoms may form “universal”
trimer states, which are well described in the zero–range approximation without intro-
ducing the three–body parameter [20]. They exist for the orbital angular momentum
` = 1 and mass ratios below the critical value M/m < 13.6, where the Efimov effect is
absent. One such state emerges for M/m ≈ 8.1. These universal trimer states also exist
above the critical mass ratio, but the trimer formation at such mass ratios is dominated
by the formation of smaller–` Efimov trimers.

1.2. Effective interaction between heteronuclear
composite bosons

We now concentrate on the case of bosonic dimers obtained in a Fermi mixture containing
two types of atoms, chosen such that the ratio M/m of the heavy to light fermion masses
is large. These dimers interact with one another via an exchange interaction mediated
by the light fermions [18, 19]. This interaction has been studied theoretically in two
situations:

1. The motion of the heavy atoms is two–dimensional, whereas that of the light atoms
is three–dimensional (abbreviated to 2× 3 in [17]).

1Experiments involving composite bosons are likely to be performed in the presence of an optical
lattice (see Section 5). The relaxation process involving one light and two heavy fermions is heavily
suppressed due to the presence of the lattice, as it requires the heavy fermions to occupy the same
lattice site.
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1. Introduction

2. The motion of both the heavy and light atoms is two–dimensional
(abbreviated to 2× 2 in [17]).

In dilute systems (i.e. if the mean intermolecular spacing R exceeds the scattering length
a of the interatomic interaction), this interaction can be modelled by an effective pair
potential. The detailed expression for the effective potential depends on the considered
situation (2 × 3 or 2 × 2), but in both cases the interaction between the dimers is
repulsive2.

Analytical expressions for this effective potential have been obtained in both situations
[17, 18] using the Born–Oppenheimer approximation. A detailed derivation of these
expressions is given in Chapter 3. In the 2 × 3 case, the effective potential U3D(R) is
given by:

U3D(R) = 4 |ε0| (1− (2κ0R)−1)
exp(−2κ0R)

κ0R
, (1.2)

where the composite–boson molecular size κ−1
0 is related to the binding energy |ε0| of a

single dimer:

|ε0| =
~2κ2

0

2m
, (1.3)

with m being the mass of the light fermion. In the 2×3 case the molecular size κ−1
0 = a.

In the 2× 2 case the effective potential U2D(R) reads:

U2D(R) = 4 |ε0|
[
κ0RK0(κ0R)K1(κ0R) − K2

0(κ0R)
]

, (1.4)

where K0 and K1 are modified Bessel functions [21]. In this regime, achieved by confining
the light–atom motion to zero–point oscillations with amplitude l0, the weakly–bound
molecular states exist at a negative a. For |a| � l0, the molecular size is given by
κ−1

0 =
√
πl0 exp(−

√
π/2 l0/a) [17, 22].

The potentials U3D(r) and U2D(r) are shown on Fig. 1.3. The range of these potentials
is given by the molecular size κ−1

0 . Therefore, the dimer–dimer interaction can be made
relatively long–ranged by selecting a value for a which does not greatly exceed the mean
intermolecular separation.

1.3. Zero–temperature phase diagram of a 2D system
of composite bosons

The interaction between the dimers described above is repulsive, and it can be made
long–range3. These are two indications that the 2D system of composite bosons may
exhibit a crystalline phase. Indeed, a triangular crystalline lattice maximises distances

2This is in contrast to the attractive effective interaction mediated by one light atom between two
heavy atoms at a distance R . a: see Section 1.1.1.

3The crystalline phase is also predicted to exist for very low two–dimensional densities n. In this
limit, the mean distance between molecules greatly exceeds the size of the molecule, and the system
behaves like a set of 2D hard–core bosons: see Section 2.2.
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Figure 1.3. Interaction potentials between
two composite bosons, for three–dimensional
(dashed red) and two–dimentional (solid blue)
motion of light atoms. Distances are expressed
in units of the composite–boson molecular size
κ−1

0 , and energies in units of the binding energy
|ε0| of a single molecule.

between neighbouring atoms, and it is likely to minimise the total interaction energy,
thus leading to classical equilibrium.

From the point of view of quantum mechanics, the phase (gaseous or crystalline) of
the system in its ground state is dictated by a competition between two effects: (i) the
repulsive interaction between pairs of dimers, and (ii) the kinetic energy of the dimers.
The first of these effects yields a contribution to the total energy, which is proportional
to 1/m (through the factor |ε0| in Eqs. (1.2) and (1.4)), whereas the contribution of
the kinetic energy is proportional to the inverse total mass of a dimer, which is close
to 1/M for large mass ratios. Therefore, the relative importance of these two effects
can be tuned by varying the ratio M/m of the masses of the heavy and light atoms.
Furthermore, interaction effects become more important if the two–dimensional density
n of the dimers increases.

The arguments above suggest an exploration of the phase diagram of the system at
zero temperature, by varying both the density n and the mass ratio M/m. We report
such an exploration in [17]. The phase diagram of the system is calculated for various
densities and mass ratios by Quantum Monte Carlo. A zero–temperature crystal–gas
phase transition occurs both in the 2 × 3 and 2 × 2 situations. The system is found to
be in the gaseous phase for low densities and mass ratios, where zero–point vibrations
dominate over the interaction energy. It is in the crystalline phase for high densities
and mass ratios, where interactions are dominant. The transition lines are obtained via
DMC calculations [23]. We also calculate them using two simpler methods, described
in detail in Chapter 2, whose results are in good agreement with the Quantum Monte
Carlo predictions.

1.4. Outline of the following chapters

The present part of this manuscript is organised in five chapters.

• In Chapter 2, we present two simple approaches to the calculation of the composite–
boson phase diagram. The approximate results which they yield for the crystal–gas
transition line are in good agreement with the Quantum Monte Carlo results.

11



1. Introduction

• Chapter 3 is devoted to the derivation of the analytical expressions (1.2) and (1.4)
for the effective interaction between composite bosons.

• In Chapter 4, we evaluate the decay rates of weakly bound composite bosons into
deeply bound states and trimer states.

• Chapter 5 briefly sketches an experimental proposal for the observation of the
crystalline phase of composite bosons.

• Chapter 6 reproduces our published article [17].

12



2. Simple approaches to the
crystal–gas phase diagram

We consider a two–dimensional assembly of composite bosons obtained in an ultracold
mixture of two different fermionic atoms. Throughout this chapter, we assume that the
2D density is sufficiently low for these composite bosons to be considered as basic entities
interacting via an effective pair potential which is repulsive (see Chapter 1 and [17]).

The nature of the ground state of such a system results from the competition between
two effects: (i) the zero–point kinetic energy, and (ii) the repulsive interaction between
composite bosons. If the zero–point vibrations are dominant, the ground state is gaseous.
On the other hand, if the interaction energy dominates, the ground state is crystalline.
The numerical analysis of the system, using Diffusion Monte Carlo [23], has revealed [17]
that the system should undergo a crystal–gas phase transition. The stable phase at
T = 0 K depends on two parameters:

• the 2D density n, and

• the ratio M/m of the heavy (M) to light (m) fermion masses in the mixture.

In this chapter, we present two approximate methods which allow for simple calcula-
tions of the phase diagram of the system, with little or no input from the QMC results
for this diagram. The first approach is based on a harmonic approximation to the crys-
tal Hamiltonian, and it relies on the Lindemann criterion to predict the critical mass
ratio as a function of the density. This approach is valid for all values of the parameters
M/m and n for which the composite nature of the molecules does not come into play.
The second method, which does not involve the Lindemann criterion, is only applicable
for very low densities. In this limit, the composite bosons are modelled by hard disks,
and for a given mass ratio the critical density can be deduced from accurate numerical
analyses of the fluid–crystal phase transition in hard–disk systems.

Both approximate approaches are in good agreement with the more accurate Quantum
Monte Carlo results.

2.1. The phase diagram in the harmonic approximation

2.1.1. Hamiltonian of the crystal

We consider a two–dimensional assembly of N composite bosons at an ultracold tem-
perature. More precisely, we assume that T = 0.

13



2. Simple approaches to the crystal–gas phase diagram

d

a1

a2

2π/3

Figure 2.1. Triangular lattice spanned by the two
(direct–lattice) vectors a1 and a2. Any given atom
(red) has six nearest neighbours (green).

Additionally, we assume that the system of composite bosons is in the crystalline
phase. The effective interaction between composite bosons is repulsive, therefore the
energy of the system decreases when the distance between nearest neighbours increases.
Among all two–dimensional Bravais lattices, the triangular lattice1 is the one which,
for a given density, achieves the greatest distance between nearest neighbours [24]. It is
therefore reasonable to assume that the system will crystallise into such a lattice. This
hypothesis has been confirmed by the results of Quantum Monte Carlo simulations [17].

The triangular lattice (see Fig. 2.1) is spanned by two vectors a1 and a2 such that:

(â1,a2) =
2π

3
and |a1| = |a2| = d , (2.1)

where the lattice parameter d determines the distance between nearest–neighbour lattice
sites. In the crystalline phase, the classical equilibrium positions of the particles2 are
the lattice sites rn, defined by:

rn = n1 a1 + n2 a2 , (2.2)

where n = (n1, n2) is a double integer index spanning the whole lattice. However, the
atoms are not fixed at their equilibrium positions, even at T = 0, due to quantum zero–
point vibrations. Let un be the displacement of particle n from the corresponding lattice
site. The position of this particle is then Rn = rn + un.

Assuming that the mean distance between composite bosons is larger than the size of
a single composite boson (determined by the fermion–fermion s–wave scattering length
a), two composite bosons experience a mutual interaction which can be modelled by an
effective potential Ueff(R) (the detailed nature of this interaction depends on whether
the motion of the light fermions is two– or three–dimensional, but it is isotropic and
repulsive in both cases). The total Hamiltonian of the system of N composite bosons in
its crystalline phase then reads:

H =
∑
n

P 2
n

2M
+ Vint((un)) , (2.3)

1We use the term “triangular lattice” as a synonym for “2D hexagonal Bravais lattice”.
2Throughout this chapter, the term “particle” refers to a composite boson.
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2.1. The phase diagram in the harmonic approximation

where M is the mass of the heavier atomic species3, and the total interaction energy
Vint((un)) is given by:

Vint((un)) =
1

2

∑
i 6=j

Ueff (|(ri − rj) + (ui − uj)|) . (2.4)

2.1.2. Harmonic crystal dynamics

We are interested in the ground state properties of the N–particle system described by
the Hamiltonian (2.3). This ground state has been numerically studied by Quantum
Monte Carlo methods [17]. In this Section, we introduce a harmonic approximation to
the N–particle Hamiltonian, which will be used to derive an approximate phase diagram
of the system (see Section 2.1.4) with minimal input from the Monte Carlo results.

If the system is in its crystalline phase, the amplitude of the displacement un of particle
n from the corresponding lattice site n is characterised by the root–mean–square (RMS)
displacement ln:

l2n = 〈Ω |u2
n|Ω 〉 , (2.5)

where |Ω 〉 is the exact N–particle ground state of the Hamiltonian H. The discrete
translational invariance of the crystal lattice implies that the RMS displacement is the
same for all particles in the crystal, i.e. ln = l. Deeply in the crystalline domain of
the phase diagram, the RMS displacement l is small compared to the characteristic
lengthscale Reff of the effective interaction Ueff(R) (i.e. l/Reff � 1), and we expand the
total interaction energy Vint as:

Vint = V
(0)

int + V
(1)

int ((un)) + V
(2)

int ((un)) + . . . . (2.6)

In Eq. (2.6) we have the following terms:

• The term V
(0)

int is the value of the interaction energy for all particles fixed at their
classical equilibrium positions rn. It is a constant number and has no incidence
on the dynamics of the crystal. It will be dropped in subsequent calculations.

• The term V
(1)

int ((un)) is the contribution to Vint which is linear in the displacements
(un). The expansion is performed around the classical equilibrium state of the
system, which minimises the total interaction energy Vint((un)). Therefore, this
term vanishes.

• The term V
(2)

int ((un)) is the contribution to Vint which is quadratic in the displace-
ments (un).

3The total mass of a composite boson is (M +m), where M and m are the masses of the heavier and
lighter atoms, respectively. However, the phase transition occurs for mass ratios M/m > 100 (see
Fig. 2.3), and the lighter mass m can thus be neglected in the kinetic energy part of Eq. (2.3).
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2. Simple approaches to the crystal–gas phase diagram

The harmonic approximation, used throughout this section, consists in neglecting all
terms containing products of three or more displacement operators. We have thus re-
placed the original Hamiltonian H by the approximate Hamiltonian Hharm given by:

Hharm =
∑
n

P 2
n

2M
+ V

(2)
int ((un)) . (2.7)

The Hamiltonian Hharm can be diagonalised in terms of phonons, each of which is the
quantum equivalent of a classical vibrational mode of the system.

Classical crystal vibrations

We first briefly introduce classical vibrational modes of the crystal [24, 25].
Each classical vibrational mode is characterised by (i) its wavevector k, and (ii) its

polarisation index p = 1 or 2. These two attributes can be condensed into a single
multi–index κ = (k, p). The classical vibrational mode κ corresponds to the following
lattice wave:

un = A eκ exp(i(k · rn − ωκt)) , (2.8)

where A is an arbitrary amplitude, the unit vector eκ gives the polarisation, and ωκ is
the frequency of the mode.

For a crystal which comprises N particles, there are 2N independent vibrational
modes. In order to characterise these modes, we write the quadratic part of the in-
teraction energy as:

V
(2)

int =
1

2

∑
pq

tup Λpq uq , (2.9)

where tup is the (real) transpose of up, and the (Λpq)’s are 2×2 real symmetric matrices
given by:

Λij
pq =

∂2U tot((un))

∂uip ∂u
j
q

∣∣∣∣∣
(un=0)

. (2.10)

The discrete translational invariance of the crystal lattice implies that Λpq = Λ(rp−rq).
We now introduce the momentum–space dynamical matrix Λ(k) defined as [24]:

Λ(k) =
∑
p

Λ(rp) e
−ik·rp = −2

∑
p

Λ0p sin2

(
1

2
k · rp

)
, (2.11)

where the second equality follows from the invariance of the crystal lattice under spatial
inversion. The classical vibrational modes of the crystal lattice are completely deter-
mined by the eigenelements of the dynamical matrices ˜Λ(k) [24]. For a given wavevector
k, Λ̃(k) is a 2 × 2 real symmetric matrix whose eigenvalues are Mω2

k,1 and Mω2
k,2,

where ωk,1 and ωk,2 are the frequencies of the two vibrational modes with wavevector k.
The corresponding (unit–normalised and orthogonal) eigenvectors ek,1 and ek,2 are the
polarisations of these vibrational modes.
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2.1. The phase diagram in the harmonic approximation

Quantum crystal vibrations

We now return to quantum mechanics and introduce the phonon annihilation (aκ) and
creation (a†κ) operators defined by the following relations [26]:

un = 1√
2N

∑
κ

(
~

Mωκ

)1/2 (
aκeκe

ik·rn + a†κe
∗
κe
−ik·rn

)
Pn = i√

2N

∑
κ

(M~ωκ)1/2 (−aκeκeik·rn + a†κe
∗
κe
−ik·rn

) (2.12)

The operators a†κ and aκ are the creation and annihilation operators for a phonon in the
mode related to the lattice wave of Eq. (2.8). They satisfy the bosonic commutation
rules [aκ, a

†
κ′ ] = δκ,κ′ and [aκ, aκ′ ] = [a†κ, a

†
κ′ ] = 0, where δκ,κ′ is the Krönecker symbol.

In terms of these operators, the Hamiltonian (2.7) reduces to that of 2N independent
harmonic oscillators indexed by κ:

Hharm =
∑
κ

~ωκ
(
a†κaκ +

1

2

)
, (2.13)

The ground state | 0 〉 of the Hamiltonian Hharm, corresponding to the absence of
any phonon excitation, is an approximation to the N–particle ground state |Ω 〉 of the
complete Hamiltonian H of Eq. (2.3). This approximate ground state can be used to
evaluate the RMS displacement l0 of a particle in the crystal around its lattice site:

l20 =
1

2N

∑
κ

~
Mωκ

. (2.14)

As expected from the discrete translational invariance of the system, the RMS displace-
ment l0 is the same for all particles in the crystal. It depends both on the distance
d between neighbouring lattice sites and on the mass ratio M/m. The dependence on
the mass ratio can be made explicit. Recalling that the effective potential Ueff(R) is
proportional to4 1/m and that the Mω2

κ are the eigenvalues of the matrix Λ(k), we find
that the frequency ωκ is proportional to (Mm)−1/2. Equation (2.14) then shows that l0
is proportional to (M/m)−1/4.

2.1.3. The specific case of the triangular lattice

In this Section, we apply the general formalism summarised in Section 2.1.4 to the
specific case of the 2D triangular lattice. We obtain an analytical expression for the
two branches of the phonon dispersion relation in the nearest–neighbour approximation
and compare these analytical results to numerical calculations including five rings of
neighbours.

4The effective interaction Ueff(R) between two composite bosons is mediated by the lighter fermions:
see Chapter 1.
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2. Simple approaches to the crystal–gas phase diagram

We express the displacement vectors (un) in an orthonormal basis (ex, ey) with ex =
a1/d. Equation (2.10) yields the following expression for Λ0p, where p = (p1, p2) is a
double integer index:

Λ0p = −1

4

d2

r2
p

[
(2p1 − p2)2 U ′′(rp) + 3p2

2
U ′(rp)

rp

√
3 p2(2p1 − p2) (U ′′(rp)− U ′(rp)

rp
)√

3 p2(2p1 − p2) (U ′′(rp)− U ′(rp)

rp
) 3p2

2 U
′′(rp) + (2p1 − p2)2U

′(rp)

rp

]
.

(2.15)
We assume that the range Reff of the effective potential Ueff(R) is significantly smaller

than the distance d between nearest–neighbour lattice sites. Therefore, we calculate
the dynamical matrices Λ(k) in the nearest–neighbour approximation. Equation (2.16)
yields:

Λ(k) =

[
4U ′′(d)s2

1 + (U ′′(d) + 3U
′(d)
d

)(s2
2 + s2

3)
√

3(U ′′(d)− U ′(d)
d

)(s2
3 − s2

2)√
3(U ′′(d)− U ′(d)

d
)(s2

3 − s2
2) 4U

′(d)
d

+ (3U ′′(d) + U ′(d)
d

)(s2
2 + s2

3)

]
,

(2.16)
where s1 = sin

(
1
2
k · a1

)
, s2 = sin

(
1
2
k · a2

)
, and s3 = sin

(
1
2
k · (a1 + a2)

)
. Equa-

tion (2.16) yields the following analytical expression for the two branches of the dis-
persion relation, which are obtained as the two eigenvalues of Λ(k):

mω2
1,2(k) = 2

(
U ′′(d) +

U ′(d)

d

)
(s2

1 + s2
2 + s2

3)± 2

(
U ′′(d)− U ′(d)

d

)
s2

0 , (2.17)

where s2
0 =

√
(s2

1 + s2
2 + s2

3)2 − 3(s2
1s

2
2 + s2

2s
3
3 + s2

3s
2
1). Equation 2.17 is symmetrical in

s1, s2, and s3, and is thus compatible with the six–fold symmetry of the two–dimensional
hexagonal lattice.

The wavevectors k are conveniently described in the reciprocal lattice basis (a∗1,a
∗
2)

defined by a∗i · aj = 2π · δij. The reciprocal lattice of a hexagonal lattice is also a
hexagonal lattice (see Fig. 2.2(right)):

|a∗1| = |a∗2| =
2π

d

2√
3

and (â∗1,a
∗
2) =

π

3
. (2.18)

The two branches ω2
1,2(k) of the dispersion relation are represented in Figure 2.2(right)

in the case of the pair potential characterising the interaction between two compos-
ite bosons in the fully two–dimensional situation (see Chapter 1), for wavevectors k
whose tips lie on the high–symmetry axes of the Brillouin zone[27]. The analytical re-
sults obtained in the nearest–neighbour approximation (Equation 2.17) are compared
to numerical calculations taking into account five rings of neighbours on a finite–sized
hexagonal lattice with 100 independent particles in both the a1 and a2 directions. Both
calculations have been performed for the lattice parameter κ0d = 2.0 (1/κ0 being the
composite–boson molecular size). For this lattice parameter, the two branches ω2

1,2(k)
of the dispersion relation are positive for all wavevectors in the Brillouin zone, which
ensures that the triangular lattice of composite bosons is stable with respect to harmonic
lattice vibrations.
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2.1. The phase diagram in the harmonic approximation

π
3

a∗1

a∗2

Γ
K

M
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 0.2

 0.4

ω
2

k

Γ M K Γ

Nearest neighbours
5 rings of neighbours

Figure 2.2. Left: Brillouin zone of the two–dimensional hexagonal Bravais lattice, with the
high–symmetry points Γ(0, 0), M(1

2 , 0), and K(1
3 ,

1
3). Right: the two branches ω2

1,2(k) of the
dispersion relation for the hexagonal lattice, for wavevectors k with origin Γ and whose tips lie
on the Γ–M–K–Γ path represented in red on the diagram on the left. The pair potential is the
one characterising the interaction of two composite bosons in the purely two–dimensional case.
The blue graphs correspond to the analytical result in the nearest–neighbour approximation;
the red graphs are numerical results taking into account five rings of neighbours. The lattice
spacing is κ0d = 2.0, and the squared angular frequencies ω2 are expressed in units of (~κ2

0/m)2,
where 1/κ0 is the composite–boson molecular size.

2.1.4. Calculation of the phase diagram using the Lindemann
criterion

We now use the dispersion relation derived in Section 2.1.3 to obtain an approximate
crystal–gas phase diagram of the system of N composite bosons.

For that purpose, we apply the phenomenological Lindemann criterion [25, 28]. We
assume at first that the system is in the crystalline phase. Combining Eq. (2.14) with
the analytical expression for the two branches of the dispersion relation (Eq. (2.17), we
numerically evaluate the RMS displacement l0 of a given particle around the correspond-
ing lattice site. The Lindemann criterion states that the crystalline phase is stable as
long as l0 < γd, where γ is a constant number which is of the order of 0.2. On the other
hand, if l0 > γd, the crystalline phase is unstable, and the ground state of the system
corresponds to a gaseous phase.

The value of the Lindemann parameter γ can be extracted from the Quantum Monte
Carlo results [17]. This parameter is weakly dependent on the considered scenario (see
Chapter 1): γ = 0.23 if both the heavy and the light atomic motions are two–dimensional,
and γ = 0.24 if the motion of the heavy atoms is two–dimensional whereas that of the
light atoms is three–dimensional.

Assuming that the value of the parameter γ is known, the Lindemann criterion, applied
within the framework of the harmonic approximation presented in Sections 2.1.2 and
2.1.3, provides a simple approach to the calculation of the phase diagram. For a given
two–dimensional density n = 2/[

√
3(κ0d)2], we calculate the RMS displacement lref

0 for
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2. Simple approaches to the crystal–gas phase diagram

Up to a normalization constant, G!0
is the wave function of

a bound state of a single molecule with energy "0 !
"@2!2

0=2m and molecular size !"1
0 . From Eqs. (1) and

(2) one gets a set of N equations:
P

jAijCj ! 0, where
Aij ! ##!$$ij %G!#Rij$#1" $ij$, Rij ! jRi "Rjj, and
##!$ ! limr!0&G!#r$ "G!0

#r$'. The single-particle en-
ergy levels are determined by the equation

 det&Aij#!; fRg$' ! 0: (3)

For Rij ! 1, Eq. (3) gives an N-fold degenerate ground
state with ! ! !0. At finite large Rij, the levels split into a
narrow band. Given a small parameter

 % ! G!0
# ~R$=!0j#0

!#!0$j ( 1; (4)

where ~R is a characteristic distance at which heavy atoms
can approach each other, the bandwidth is !" ) 4j"0j% (
j"0j. It is important for the adiabatic approximation that all
lowest N eigenstates have negative energies and are sepa-
rated from the continuum by a gap *j"0j.

We now calculate the single-particle energies up to
second order in %. To this order we write !##$ ) !0 %
!0
##% !00

###
2=2 and turn from Aij#!$ to Aij##$:

 Aij ! #$ij % &G!0
#Rij$ % !0

##@G!0
#Rij$=@!'#1" $ij$;

(5)

where all derivatives are taken at # ! 0. Using Aij (5) in
Eq. (3) gives a polynomial of degree N in #. Its roots #i
give the light-atom energy spectrum "i ! "@2!2##i$=2m.
The total energy E ! PN

i!1 "i is then given by

 E!"#@2=2m$
!
N!2

0%2!0!0
#

XN

i!1

#i%#!!0
#$0#

XN

i!1

#2
i

"
: (6)

Keeping only the terms up to second order in % and using
basic properties of determinants and polynomial roots we
find that the first order terms vanish, and the energy reads
E ! N"0 % 1

2

P
i!jU#Rij$, where

 U#R$ ! " @2
m

!
!0#!0

#$2
@G2

!0
#R$

@!
% #!!0

#$0#G2
!0
#R$

"
: (7)

Thus, up to second order in % the interaction in the system
of N molecules is the sum of binary potentials (7).

If the motion of light atoms is 3D, the Green function is
G!#R$ ! #1=4&R$ exp#"!R$, and ##!$ ! #!0 " !$=4&,
with the molecular size !"1

0 equal to the 3D scattering
length a. Equation (7) then gives a repulsive potential

 U3D#R$ ! 4j"0j!1" #2!0R$"1" exp#"2!0R$=!0R; (8)

and the criterion (4) reads #1=!0R$ exp#"!0R$ ( 1. For
the 2D motion of light atoms we have G!#R$ !
#1=2&$K0#!R$ and ##!$ ! "#1=2&$ ln#!=!0$, where K0
is the decaying Bessel function, and !"1

0 follows from [6].
This leads to a repulsive intermolecular potential

 U2D#R$ ! 4j"0j&!0RK0#!0R$K1#!0R$ " K2
0#!0R$'; (9)

with the validity criterion K0#!0R$ ( 1. In both cases,
which we denote 2+ 3 and 2+ 2 for brevity, the validity
criteria are well satisfied already for !0R ) 2.

The Hamiltonian of the many-body system reads

 H ! "#@2=2M$
X
i
!Ri

% 1

2

X
i!j

U#Rij$; (10)

and the state of the system is determined by two parame-
ters: the mass ratio M=m and the rescaled 2D density n!"2

0 .
At a large M=m, the potential repulsion dominates over the
kinetic energy and one expects a crystalline ground state.
For separations Rij < !"1

0 the adiabatic approximation
breaks down. However, the interaction potential U#R$ is
strongly repulsive at larger distances. Hence, even for an
average separation between heavy atoms "R close to 2=!0,
they approach each other at distances smaller than !"1

0

with a small tunneling probability P / exp#"'
###########
M=m

p
$ (

1, where '* 1. We extended U#R$ to R & !"1
0 in a way

providing a proper molecule-molecule scattering phase
shift in vacuum and checked that the phase diagram for
the many-body system is not sensitive to the choice of this
extension.

Using the DMC method [11] we solved the many-body
problem at zero temperature. For each phase, gaseous and
solid, the state with a minimum energy was obtained in a
statistically exact way. The lowest of the two energies
corresponds to the ground state, the other phase being
metastable. The phase diagram is displayed in Fig. 1.
The guiding wave function was taken in the Nosanow-
Jastrow form [12]. Simulations were performed with 30
particles and showed that the solid phase is a 2D triangular
lattice. For the largest density we checked that using more
particles has little effect on the results.

For both 2+ 3 and 2+ 2 cases the (Lindemann) ratio (
of the rms displacement of molecules to "R on the transition

FIG. 1 (color online). DMC gas-crystal transition lines for 3D
(triangles) and 2D (circles) motion of light atoms. Solid curves
show the low-density hard-disk limit, and dashed curves the
results of the harmonic approach (see text).
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Figure 2.3. Zero–temperature gas–crystal phase di-
agram of a 2D system of composite bosons, for 3D
(red) and 2D (blue) motion of light atoms. The var-
ied parameters are the reduced density nκ−2

0 (hori-
zontal axis) and the mass ratio M/m (vertical axis).
The triangles and circles are the DMC results, the
dashed curves show the results of the harmonic ap-
proach, and the solid curves show the low–density
hard–disk limit. (Reproduced from [17].)

the reference mass ratio M/m = 1. The RMS displacement at an arbitrary mass ratio
m/M is then given by l0 = lref

0 (M/m)−1/4 (see Section 2.1.2), and the Lindemann
criterion therefore predicts that the crystal–gas phase transition occurs for the following
critical mass ratio: (

M

m

)
crit

=

(
lref
0

γd

)4

. (2.19)

The predicted crystal–gas phase diagram is represented in Fig. 2.3, where the results of
Eq. (2.19) are seen to be in good agreement with the more accurate Quantum Monte
Carlo results [17].

2.2. Hard–core boson approximation for low densities

In this section, we focus on the low–density part of the phase diagram, in which the
typical value of the distance between two dimers is much larger than the range Reff of
the effective interaction potential Ueff(R). In this limit, and at low enough temperatures,
the details of the interaction potential no longer matter, and the low–energy scattering
properties of this potential are encoded in the corresponding s–wave scattering length.
This scattering length is a two–body parameter which can be extracted from the asymp-
totic behaviour of the zero–energy scattering wavefunction characterising the relative
motion of two colliding particles. In the case of a two–dimensional s–wave collision, the
large–R behaviour of this scattering wavefunction reads:

Ψ(R) =
R→∞

C ln(R/a2D) , (2.20)

where C is an arbitrary constant, and a2D is the sought two–dimensional s–wave scat-
tering length.

In the present case, the considered collision involves two composite bosons. The
relative motion of these particles is governed by the Hamiltonian h = P 2/M + Ueff(R),
where R is the relative position of the two particles, P is its conjugate momentum,
R = |R|, and the reduced mass of two particles of mass M is M/2. The effective
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2.2. Hard–core boson approximation for low densities

interaction Ueff(R) is proportional to 1/m, whereas the kinetic term is proportional to
1/M , therefore a2D is a function of the mass ratio M/m.

In the low–density limit, the potential may be replaced by any other potential which
has the same two–dimensional scattering length. The crystal–fluid phase diagram of a
two–dimensional assembly of hard disks at zero temperature has been studied numer-
ically using Quantum Monte Carlo methods [29]. Therefore, we replace the effective
potential Ueff(R) by a hard–disk potential UHD(R), characterised by the hard–disk di-
ameter D:

UHD(R) =

{
+∞ for R < D/2,

0 for R > D/2.
(2.21)

The scattering length characterising the s–wave collision between two hard disks of
radius D is given by5 aHD = D. Therefore, for a given mass ratio M/m, the hard–disk
radius is chosen to be equal to the ‘physical’ scattering length a2D(M/m).

The Quantum Monte Carlo analysis reported in [29] shows that a two–dimensional
system of N bosonic hard disks of radius D undergoes a crystal–fluid phase transition
at the critical density ncrit

HD = 0.33/D2. For densities nHD < ncrit
HD, the ground state of

the system exhibits no crystalline order, whereas for nHD < ncrit
HD the ground state is a

crystal (even though in the classical picture separated hard disks do not interact at all).
The numerical results for bosonic hard–disk systems yield a simple way to evaluate

the low–density part of the phase diagram of our system of composite bosons. For a
given mass ratio M/m (chosen large, so that the phase transtion occurs at low den-
sity: see Fig. 2.3), we calculate the scattering length a2D(M/m) characterising the low–
density and low–temperature scattering by the effective potential Ueff(R). Replacing
this effective potential by the hard–disk potential UHD(R), and choosing the radius
D = a2D(M/m) so as to leave the scattering length unchanged, the critical density for
the crystal–gas phase transition is thus close to ncrit(M/m) = 0.33/a2

2D(M/m).
The results of this approximate low–density approach are compared in Fig. 2.3 to the

more accurate Quantum Monte Carlo results, and a good agreement can be observed
between the two approaches for densities nκ−2

0 < 0.25.

5The centres of the two hard disks can never come any closer than 2 × D/2 = D. Combining the
asymptotic behaviour of Eq. (2.20), which is exact for R ≥ D, with the hard–disk condition Ψ(D) =
0, one obtains aHD = D.
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3. Born–Oppenheimer potentials for
the interaction between composite
bosons

The object of this chapter is the derivation of the analytical expressions (1.2) and (1.4)
for the potentials characterising the effective interaction between two composite bosons
in the 2 × 3 and 2 × 2 situations, respectively [17]. This derivation hinges on two ap-
proximations: (i) the zero–range approximation for the interatomic interaction, and (ii)
the Born–Oppenheimer approach, assuming that the motion of the heavy atoms is much
slower than that of the light atoms.

The zero–range approximation

As a first step, we consider the interaction between one heavy atom and one light atom.
We assume that the scattering length a characterising this interaction is much larger than
the range Re of the interaction potential. Under this assumption, the detailed nature of
the atomic interaction is no longer important, and it can be taken into account through
the boundary condition for the wavefunction at vanishing interparticle distances. In the
case of a 3D s–wave interaction between two atoms, this boundary condition reads [30]:

lim
r→0

(rψ3D)′

rψ3D

= − 1

a3D

, (3.1)

where a = a3D is the 3D scattering length, r is the interatomic distance, the (s–wave)
wavefunction ψ(r) describes the relative motion of the two atoms, and C is an unknown
constant. This boundary condition can be rewritten as:

ψ3D(r) = C

(
1

r
− 1

a3D

)
for Re � r , (3.2)

which is the familiar condition that the radial wavefunction be proportional to (r−a3D)
for Re � r. In the 2D case, the corresponding condition reads:

ψ2D(r) = C ln

(
r

a2D

)
for Re � r , (3.3)

where ψ2D is the wavefunction describing the 2D relative motion and a2D is the 2D
analog of the scattering length.
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3. Born–Oppenheimer potentials for the interaction between composite bosons

We now state the Bethe–Peierls boundary conditions (Eqs. 3.2 and 3.3) in a way
that does not depend on dimensionality (3D or 2D). For that purpose, we introduce the
free–particle Green’s function Gκ(r) for the bound–state energy1 ε = −~2κ2/2m, which
satisfies the following differential equation:

(−4+ κ2)Gκ(r) = δ(r) . (3.4)

In the 3D case, it is given by:

G3D
κ (r) =

e−κr

4πr
, (3.5)

whereas in the 2D case it reads:

G2D
κ (r) =

K0(κr)

2π
, (3.6)

where K0(x) is the modified Bessel’s function which decays exponentially for large x
[21]. Introducing κ0 = 1/a, where a = a3D or a2D depending on the considered case, Eqs.
3.2 and (3.3) both reduce to the condition:

ψ(r) = C Gκ0(r) for Re � r . (3.7)

The Born–Oppenheimer wavefunction

We now consider a system of N heavy atoms and N light atoms. We use the Born–
Oppenheimer approach [31], taking advantage of the motion of the N heavy atoms
being much slower than that of the N light atoms. We thus wish to describe the system
assuming that the heavy atoms are fixed at their positions {Ri}1≤i≤N .

Furthermore, we neglect the interaction between the identical light fermions (which
is zero in the zero–range approximation because of the Pauli principle). Hence, we wish
to calculate the wavefunction Ψ({Ri}, r) of a single light fermion in the presence of N
fixed heavy atoms. Note that the vectors {Ri} belong to the 2D plane of the heavy
atoms, whereas the vector r, giving the position of the light fermion, can be 3D or 2D
depending on the considered situation (2× 3 or 2× 2: see Chapter 1).

More precisely, we wish to calculate the N lowest eigenvalues of the Hamiltonian for
a single light fermion whose motion is free everywhere except at the positions of the
heavy atoms, where the Bethe–Peierls condition (3.7) is applied. The sum of these N
energies will provide the Born–Oppenheimer potential describing the effective interaction
between the molecules.

We seek the wavefunction of a single light fermion in the form

Ψ({Ri}, r) =
N∑
i=1

CiGκ(r −Ri) , (3.8)

1The mass m of a light atom is very close the reduced mass Mm/(M +m) of one light atom and one
heavy atom.
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which describes free motion everywhere except at the singular points Ri. The energy of
the state Ψ({Ri}, r) is ε = −~2κ2/2m. The Green’s functions Gκ are given by Eq. (3.5)
or by Eq. (3.6) depending on whether the motion of the light atoms is 3D or 2D, and
are calculated for the energy ε.

The coefficients Ci appearing in Eq. (3.8) are determined by applying the Bethe–
Peierls boundary condition at the N heavy atom positions {Ri}:

Ψ({Ri}, r) =
r→Ri

CiGκ0(r −Ri) . (3.9)

The coefficient of Gκ0 on the right–hand side of Eq. (3.9) is Ci in order to ensure that
both sides of the equality have the same irregular parts. These N boundary conditions
yield a system of N linear equations for the coefficients {Ci}1≤i≤N , which we write as

AC = 0 . (3.10)

In Eq. (3.10), C is the N–component vector (C1, . . . , CN), and A is an N × N real
symmetric matrix depending on κ and {Ri}, whose coefficients Aij are given by:

Aij = λ(κ) δij + Gκ(Rij) (1− δij) , (3.11)

where Rij = |Ri −Rj| and

λ(κ) = lim
r→0

[Gκ(r) − Gκ0(r)] . (3.12)

The linear system (3.10) has non–zero solutions if

det (A(κ, {Ri}) = 0 , (3.13)

which is a polynomial equation whose N roots (κi)1≤i≤N yield the sought N energies
εi = −~2κ2

i /2m.

Calculation of the total energy

For infinitely large separations Rij between heavy atoms, all off–diagonal elements in
A vanish, and Eq. (3.13) yields an N–fold degenerate ground state whose energy is
−~2κ2

0/2m. We now consider finite, albeit large, values of {Rij}. More precisely, we
assume that the following parameter remains small:

ξ =
Gκ0(R̃)

κ0λ′κ(κ0)
� 1 , (3.14)

where R̃ is a typical value for the {Rij} and λ′κ(κ0) = dλ/dκ, taken at κ = κ0.
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3. Born–Oppenheimer potentials for the interaction between composite bosons

Calculation of the determinant

We now calculate the determinant appearing in Eq. (3.13) to second order in ξ. The
parameter ξ being small entails that λ′κ(κ0) is large and, hence, that κ(λ) is a slowly–
varying function for small values of λ. We expand κ(λ) to second order in λ:

κ(λ) = κ0 + κ′λ λ+
1

2
κ′′λλ λ

2 , (3.15)

where κ′λ = ∂κ/∂λ and κ′′λλ = ∂2κ/∂λ2, all derivatives being taken at λ = 0. We also
expand Gκ(Rij) to first order in λ:

Gκ(Rij) = Gκ0(Rij) + κ′λ λ
∂Gκ0(Rij)

∂κ
. (3.16)

We introduce the N ×N symmetric matrix K such that:

A = λ (1 + K) , (3.17)

The matrix elements Kij depend on λ and are all of order ξ:

Kij(λ) =
1

λ

[
Gκ0(Rij) + κ′λ λ

∂Gκ0(Rij)

∂κ

∣∣∣∣
κ=κ0

]
(1− δij) . (3.18)

We calculate the determinant det(A) through the identity2:

det(A) = exp[Tr(lnA)] , (3.19)

where Tr(M) denotes the trace of the square matrix M . Noting that Tr(K) = 0,
Eqs. (3.17), (3.18), and (3.19) yield the following expansion for det(A) up to second
order in ξ:

det(A) = λN

(
1− 1

2
κ′2λ
∑
i 6=j

[
∂Gκ0(Rij)

∂κ

]2
)

− λN−1 1

2
κ′λ
∑
i 6=j

∂G2
κ0

(Rij)

∂κ
− λN−2 1

2

∑
i 6=j

G2
κ0

(Rij) + . . . (3.20)

Calculation of the total energy

The N roots λi of the polynomial (3.20) yield the N sought bound–state energies εi.
The total energy of N light fermions in the presence of the N fixed heavy fermions is
E =

∑N
i=1 εi, which, using Eq. (3.15), is given by:

E = − ~2

2m

[
Nκ2

0 + 2κ0κ
′
λ

N∑
i=1

λi + (κκ′λ)
′
λ

N∑
i=1

λ2
i

]
, (3.21)

2Equation (3.19) holds for any positive–definite symmetric matrix.
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where (κκ′λ)
′
λ = κ0κ

′′
λλ+κ′2λ . The quantities

∑N
i=1 λi and

∑N
i=1 λ

2
i are symmetric functions

of the roots {λi} of the polynomial (3.20). Hence, they can be expressed in terms of the
coefficients of this polynomial. Up to second order in ξ, we find:

N∑
i=1

λi =
1

2
κ′λ
∑
i 6=j

∂G2
κ0

(Rij)

∂κ
, (3.22)

N∑
i=1

λ2
i =

∑
i 6=j

G2
κ0

(Rij) . (3.23)

Finally, substituting Eqs. (3.22) and (3.23) into Eq. (3.21), the total energy E reduces
to:

E({Ri}) = −N ε0 +
1

2

∑
i 6=j

U(Rij) , (3.24)

where ε0 = −~2κ2
0/2m and the function U(R) is given by:

U(R) = −~2

m

[
κ0(κ′λ)

2∂G
2
κ0

(R)

∂κ
+ (κκ′λ)

′
λG

2
κ0

(R)

]
. (3.25)

Analytical expressions for the effective potentials

We have calculated the total energy E({Ri}) of N light atoms as a function of the
positions {Ri} of the heavy atoms. In the Born–Oppenheimer approach [31], the to-
tal energy of the light atoms gives the effective potential energy for the heavy atoms.
Therefore, Eq. (3.25) gives the total effective potential for a system of N composite
bosons. Dropping the constant energy offset (−N ε0), the structure of this equation
shows that the composite bosons interact via the effective pair potential U(R). We now
derive analytical expressions for this effective potential in the 2× 3 and 2× 2 situations.

If the motion of the light atoms is 3D (2 × 3 situation), the Green’s function G3D
κ is

given by Eq. (3.5). Equation (3.12) then leads to λ3D(κ) = (κ0 − κ)/4π. The effective
potential reads:

U3D(R) = 4 |ε0| (1− (2κ0R)−1)
exp(−2κ0R)

κ0R
, (1.2)

and the corresponding validity criterion, given by Eq. (3.14), is exp(−κ0R)/(κ0R)� 1.
If the motion of the light atoms is 2D (2 × 2 situation), the Green’s function G2D

κ is
given by Eq. (3.6). In this case, λ2D(κ) = ln(κ0/κ)/2π. The effective potential is given
by:

U2D(R) = 4 |ε0|
[
κ0RK0(κ0R)K1(κ0R) − K2

0(κ0R)
]

, (1.4)

and the validity criterion is K(κ0r)� 1.
Both criteria are well satisfied for κ0R ≥ 2.
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4. Decay processes for composite
bosons

The gaseous and solid phases of weakly bound molecules are actually metastable. The
main decay channels are the relaxation of molecules into deep bound states and the
formation of trimer states by one light and two heavy atoms (see Section 1.1.1 and [17]).

In order to achieve the large mass ratios M/m > 100 required for the realisation of
the crystalline phase, one should put heavy atoms in an optical lattice, where for a small
filling factor they acquire a large effective mass M∗. The crystalline phase then emerges
as a superlattice.

In this chapter, we focus on the stability of the dimers in an optical lattice, and we
evaluate the relaxation rates for the two main decay processes.

4.1. Collisional relaxation into deeply bound states

Let m be the mass of the light atoms, and M∗ the effective mass of the heavy fermions in
an optical lattice. For a large effective mass ratioM∗/m, the relaxation into deeply bound
states occurs when a molecule is approached by another light atom1 and both light-heavy
separations are of the order of the size of a deep bound state. This size is determined
by the range Re of the interatomic interaction, which satisfies Re � κ−1

0 , where κ−1
0

is the molecular size (see Section 1.2) and R̃ is a typical value for the distances {Rij}
between the heavy atoms. The released binding energy is taken by outgoing particles
which escape from the sample. The rate of this process is not influenced by the optical
lattice.

We estimate this rate in the solid phase and near the gas-solid transition to the leading
order in (κ0R̃)−1. At light–heavy separations r1,2 � κ−1

0 the initial-state wavefunction
for a single heavy atom (position R) and two light atoms (positions r1 and r2) reads:

Ψ̃(R, r1, r2) = B(κ−1
0 , R̃)ψ(r1, r2) . (4.1)

We write the wavefunction (4.1) as an antisymmetrized product of wavefunctions of the
form CiGκ(ri −R), where Gκ is the free–particle Green’s function, given by Eq. (3.5)
or by Eq. (3.6) depending on whether the motion of the light atoms is 3D (2 × 3 case)
or 2D (2× 2 case). For the 2× 3 case (κ−1

0 = a), we find

B ≈ (1/R̃a2) exp(−R̃/a) . (4.2)

1The relaxation involving one light and two heavy atoms is strongly suppressed, as it requires the
heavy atoms to approach each other and get to the same lattice site.
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4. Decay processes for composite bosons

The quantity W = B2R6
e is the probability of having both light atoms at distances ∼ Re

from a heavy atom, and the relaxation rate is ν3D ∝ W . As the short-range physics is
characterised by the energy scale ~2/mR2

e, we restore the dimensions and write:

ν3D = C(~/m)(Re/a)4(1/R̃2) exp(−2R̃/a), (4.3)

where the typical distance R̃ is linked to the 2D density by R̃−2 ≈ n. The coefficient C
depends on a particular system and is ∼ 1 within an order of magnitude. The relaxation
rate ν3D is generally rather low. For the 40K–6Li mixture, where Re ≈ 50 Å, even at
na2 = 0.24 (see Fig. 1) the relaxation time exceeds 10 s for the density n = 109 cm−2

and the scattering length a = 1600 Å. In the 2 × 2 case, for the same n and κ−1
0 the

probability W is smaller and the relaxation is slower.

4.2. Formation of trimer bound states

The formation of trimer bound states by one light and two heavy atoms occurs when
two molecules approach each other at distances R . κ−1

0 . It is accompanied by a release
of the second light atom.

4.2.1. Born–Oppenheimer wavefunction for a trimer

The existence of the trimer states is seen considering a light atom (position r) inter-
acting with two heavy ones (positions R1 and R2). We use the Born–Oppenheimer
approximation, assuming as a first step that the heavy atoms are fixed. We seek the
wavefunction of this system in the form:

Ψtrimer({R1,R2}, r) = C1Gκ(r −R1) + C2Gκ(r −R2) , (4.4)

where Gκ(r) is the (3D or 2D) free–particle Green’s function. Applying the Bethe–
Peierls boundary condition (3.7) at each of the two heavy–atom positions, we obtain a
second–order polynomial condition on κ (see Eq. (3.13)), whose roots yield the energies
−~2κ2/2m of the possible states Ψtrimer. The lowest–energy solution is the gerade state
(C1 = C2). In the Born–Oppenheimer approach, its energy ε+(R) introduces an effective
attractive potential acting on the heavy atoms, and the trimer states are bound states
of two heavy atoms in this potential.

4.2.2. Trimer formation in an optical lattice

In an optical lattice, the trimers are eigenstates of the Hamiltonian

H0 = − ~2

2M∗

∑
i=1,2

∆Ri
+ ε+(R12) . (4.5)

In a deep lattice, one can neglect all higher bands and regard Ri as discrete lattice
coordinates and ∆ as the lattice Laplacian. Then, the fermionic nature of the heavy
atoms prohibits them to be in the same lattice site.
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4.2. Formation of trimer bound states

For a very large effective mass ratio M∗/m, the kinetic energy term in H0 can be
neglected, and the lowest trimer state has the energy

εtr ≈ ε+(L) , (4.6)

where L is the spatial period of the lattice. It consists of a pair of heavy atoms localized
at neighbouring sites and a light atom in the gerade state. Higher trimer states are
formed by heavy atoms localized in sites separated by distances R > L. This picture
breaks down at large R, where the spacing between trimer levels is comparable with the
tunneling energy ~2/M∗L

2 and the heavy atoms are delocalized.
The scale of energies in a many–body system of composite bosons is much smaller than
|ε0|. Thus, the formation of trimers in molecule-molecule “collisions” is energetically
allowed only if the trimer binding energy is εtr < 2ε0. Since the lowest trimer energy
in the optical lattice is ε+(L), the trimer formation requires the condition ε+(L) . 2ε0,
which is equivalent to κ−1

0 & 1.6L in the 2× 3 case and κ−1
0 & 1.25L in the 2× 2 case.

This means that for a sufficiently small molecular size κ−1
0 , or for a sufficiently large

lattice period L, the formation of trimers is forbidden. At a larger molecular size or
smaller L the trimer formation is possible.

4.2.3. Rate of formation of trimers in an optical lattice

We now assume that κ−1
0 /L is large enough for the formation of trimers to be energeti-

cally allowed, and we calculate the rate of trimer formation.
For that purpose, we consider the interaction between two molecules as a reduced

three–body problem, accounting for the fact that one of the light atoms is in the gerade
state and the other one in the ungerade state (C1 = −C2). The gerade light atom is
integrated out and is substituted by the effective potential ε+(R). For the ungerade state
the adiabaticity breaks down at inter-heavy separations R . κ−1

0 , and the ungerade light
atom is treated explicitly.

The wavefunction of the reduced 3-body problem satisfies the Schrödinger equation[
H0 −

~2∇2
r

2m
− E

]
ψ({R}, r) = 0 , (4.7)

where the energy E is close to 2ε0, {R} denotes the set {R1,R2}, and r is the coordinate
of the ungerade light atom. The interaction between this atom and the heavy ones is
replaced by the Bethe–Peierls boundary condition (3.7) on ψ. The three–body problem
can then be solved by encoding the information on the wavefunction ψ in an auxiliary
function f({R̃}) [32] and representing the solution of Eq. (4.7) in the form:

ψ =
∑
{R̃},ν

χν({R})χ∗ν({R̃})f({R̃})Fκν (r, {R̃}) , (4.8)

where χν({R}) is an eigenfunction of H0 with energy εν ,
Fκν (r, {R̃}) = Gκν (r−R̃1)−Gκν (r−R̃2), and κν =

√
2m(εν − E)/~2. For εν < E, the
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4. Decay processes for composite bosons

trimer formation in the state ν is possible. This is consistent with an imaginary value
for κν and the Green function Gκν describing an outgoing wave of the light atom and
trimer.

We derive an equation for the function f in a deep lattice, where the tunneling energy
~2/M∗L

2 � |ε0|. Then the main contribution to the sum in Eq. (4.8) comes from the
states ν for which |εν − ε+(R12)| . ~2/M∗L

2. The sum is calculated by expanding κν
around κ(R12) =

√
2m(ε+(R12)− E)/~2 up to first order in (εν−ε+(R12))/ε0 and using

the equation (H0 − εν)χν = 0. The equation for f is then obtained by taking the limit
r → R1 in the resulting expression for ψ and comparing it with the boundary condition
(3.7). This yields [

− ~2

2M∗

∑
i=1,2

∆Ri
+ Ueff(R12)

]
f(R1,R2) = 0 , (4.9)

where the effective potential Ueff(R12) is given by

Ueff(R) =
~2κ(R)

m

λ(κ(R))−Gκ(R)(R)

(∂/∂κ)[λ(κ(R))−Gκ(R)(R)]
, (4.10)

and
λ(κ) = lim

r→0
[Gκ(r) − Gκ0(r)] . (3.12)

At large distances one has Ueff ≈ U(R)+2ε0−E, and for smaller R where ε+(R) < E,
the potential Ueff acquires an imaginary part accounting for the decay of molecules into
trimers. The number of trimer states that can be formed grows with the molecular size.
It eventually becomes independent of L, and so does the loss rate.

In this limit, we solve Eq. (4.9) for two molecules with zero total momentum under the
condition that f(R1,R2) is maximal for |R1−R2| = R̃ ≈ n−1/2. We thus obtain E as a
function of the density and mass ratio, and its imaginary part gives the loss rate ν for the
many body system. Numerical analysis for 0.06 < nκ−2

0 < 0.4 and 50 < M∗/m < 2000
is well fitted by

ν ≈ (D~n/M∗)(nκ−2
0 ) exp(−J

√
M∗/m) , (4.11)

withD = 7 and J = 0.95−1.4(nκ−2
0 ) for the 2×3 case, andD = 102, J = 1.45−2.8(nκ−2

0 )
in the 2 × 2 case. One can suppress ν by increasing M∗/m, whereas for M∗/m . 100
the trimers can be formed on a time scale τ . 1 s.
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5. Suggestion for a new experiment

In real experiments the ultracold mixture of fermionic atoms is in a trapping potential
created, for example, by an optical dipole trap [10, 33]: a red–detuned Gaussian laser
beam is added to the setup, and in order to minimise their total energy, neutral atoms
are attracted towards the focal point of the laser beam (solid red lines on Fig. 5.1).

The fermionic atoms are to be trapped, in the quantum degenerate regime, in the
presence of a static magnetic field tuned close to an interspecies Feshbach resonance
(in the case of a mixture of 6Li and 40K, such a resonance occurs, for instance, for the
magnetic field Bres = 159.5 G [34]). Molecules can be created on the BEC side of the
resonance (see Fig. 1.1) either by directly cooling the gas at a positive value of the
interatomic scattering length a, or by first cooling the gas on the BCS side and then
sweeping the magnetic field adiabatically through the resonance [10].

The two–dimensional regime for the heavy atoms is to be reached by loading the
heavy atoms into an optical lattice (see Fig. 5.1). In the 2× 3 situation, the light atoms
are present in the system because they take part in bound dimers involving the heavy
atoms. In order to achieve the 2×2 situation, an additional optical lattice, constraining
the motion of the light atoms to a 2D plane, is added to the setup.

The exploration of the full zero–temperature phase diagram reported in [17] requires
both the 2D density n and the mass ratio M/m to be varied. The density n can be
tuned by changing the number of trapped molecules: indeed, the 2D planes generated
by the optical lattice have a finite area S, and the density is thus ∝ N/S.

The ratio M/m of the bare atomic masses is a fixed number. Furthermore, in the case
of a 6Li–40K mixture, the bare mass ratio M/m = 6.7 is too low for crystallisation to be
observed: the crystalline phase is only expected for mass ratios M/m & 100 (see Fig. 2.3
and [17]). The large mass ratios required for the observation of the crystalline order can
be obtained using an additional optical lattice, represented by green horizontal wave
on Fig. 5.1). Assuming that the filling factor for the heavy atoms is small, this optical
lattice conveys an effective mass M∗ to the heavy atoms, which can be made very large.
The predicted crystalline phase should then appear as a superlattice. No interplay is
expected between the crystal lattice and the underlying optical lattice [19].

An optical lattice with a spatial period of 250 nm, inducing an effective mass M∗ =
20M for 40K atoms, should allow the crystalline phase to develop as a superlattice.
Using an interspecies Feshbach resonance [34], the scattering length can be tuned to
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5. Suggestion for a new experiment

waist
w

Iheavy

Ilight

IM

Heavy atoms
in 2D plane

Figure 5.1. Projected experimental
setup. The heavy atoms (purple) are
trapped within a 2D plane by an optical
lattice (Iheavy, blue wave). In order to
achieve the 2 × 2 situation, an additional
optical lattice is added to the setup in
order to constrain the motion of the
light atoms to a 2D plane (Ilight, dashed
red wave) The horizontal optical lattice
(green) conveys a tunable effective mass
to the heavy atoms.

a = 500 nm, corresponding to the binding energy ~2/(ma2) = 300 nK, and lower tem-
peratures are experimentally accessible in heteronuclear Fermi gases. With these param-
eters, crystallisation is predicted to occur for densities of the order of 107 atoms/cm2,
which are experimentally accessible as well.

The lifetime of composite bosons is determined by the rates of decay through the
relaxation to deeply bound states and the formation of trimers (see Section 1.1.1). For
the values of the experimental parameters chosen above, this lifetime is expected to be
of the order of a few seconds [17].
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6. Article 1: Crystalline Phase of
Strongly Interacting Fermi Mixtures
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We show that the system of weakly bound molecules of heavy and light fermionic atoms is char-
acterized by a long-range intermolecular repulsion and can undergo a gas-crystal quantum transition if the
mass ratio exceeds a critical value. For the critical mass ratio above 100 obtained in our calculations, this
crystalline order can be observed as a superlattice in an optical lattice for heavy atoms with a small filling
factor. We also find that this novel system is sufficiently stable with respect to molecular relaxation into
deep bound states and to the process of trimer formation.

DOI: 10.1103/PhysRevLett.99.130407 PACS numbers: 05.30.Fk, 03.75.Ss

The use of Feshbach resonances for tuning the interac-
tion in two-component ultracold Fermi gases of 6Li or 40K
has led to remarkable developments, such as the observa-
tion of superfluid behavior in the strongly interacting re-
gime through vortex formation [1], and Bose-Einstein
condensation of weakly bound molecules of fermionic
atoms on the positive side of the resonance (the atom-
atom scattering length a > 0) [2]. Being highly excited,
these extremely large diatomic molecules are remarkably
stable with respect to collisional relaxation into deep
bound states, which is a consequence of the Pauli exclusion
principle for identical fermionic atoms [3].

Currently, a new generation of experiments is being set
up for studying mixtures of different fermionic atoms, with
the idea of revealing the influence of the mass difference on
superfluid properties and finding novel types of superfluid
pairing. Weakly bound heteronuclear molecules on the
positive side of the resonance are unique objects [4,5],
which should manifest collisional stability and can pave
a way to creating ultracold dipolar gases.

So far it was believed that dilute Fermi mixtures should
be in the gas phase, like Fermi gases of atoms in two
different internal states. In this Letter we find that the
system of molecules of heavy (mass M) and light (mass
m) fermions can undergo a phase transition to a crystalline
phase. This is due to a repulsive intermolecular potential
originating from the exchange of light fermions and in-
versely proportional to m. As the kinetic energy of the
molecules has a prefactor 1=M, above a certain mass ratio
M=m the system can crystallize.

We show that the interaction potential in a sufficiently
dilute system of molecules is equal to the sum of their pair
interactions and then analyze the case where the motion of
heavy atoms is confined to two dimensions, whereas the
light fermions can be either 2D or 3D [6]. We calculate the
zero-temperature gas-crystal transition line using the dif-
fusion Monte Carlo (DMC) method and draw the phase

diagram in terms of the mass ratio and density. This phase
transition resembles the one for the flux lattice melting in
superconductors, where the flux lines are mapped onto a
system of bosons interacting via a 2D Yukawa potential [7].
In this case the Monte Carlo studies [8,9] identified the first
order liquid-crystal transition at zero and finite tempera-
tures. Aside from the difference in the interaction poten-
tials, a distinguished feature of our system is related to its
stability. The molecules can undergo collisional relaxation
into deep bound states, or form weakly bound trimers. We
analyze resulting limitations on the lifetime of the system.

We first derive the Born-Oppenheimer interaction po-
tential in the system of N molecules. In this approach the
state of light atoms adiabatically adjusts itself to the set of
heavy-atom coordinates fRg � fR1; . . . ;RNg and one cal-
culates the wave function and energy of light fermions in
the field of fixed heavy atoms. Omitting the interaction
between light (identical) fermions, it is sufficient to find N
lowest single-particle eigenstates, and the sum of their
energies will give the interaction potential for the mole-
cules. For the interaction between light and heavy atoms
we use the Bethe-Peierls approach [10] assuming that the
motion of light atoms is free everywhere except for their
vanishing distances from heavy atoms.

The wave function of a single light atom then reads

 ��fRg; r� �
XN
i�1

CiG��r�Ri�; (1)

where r is its coordinate, and the Green function G�
satisfies the equation ��r2

r � �
2�G��r� � ��r�. The en-

ergy of the state (1) equals � � �@2�2=2m, and here we
only search for negative single-particle energies (see be-
low). The dependence of the coefficients Ci and � on fRg is
obtained using the Bethe-Peierls boundary condition:

 ��fRg; r� / G�0
�r�Ri�; r! Ri: (2)
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Up to a normalization constant, G�0
is the wave function of

a bound state of a single molecule with energy �0 �
�@2�2

0=2m and molecular size ��1
0 . From Eqs. (1) and

(2) one gets a set of N equations:
P
jAijCj � 0, where

Aij � �����ij �G��Rij��1� �ij�, Rij � jRi �Rjj, and
���� � limr!0�G��r� �G�0

�r��. The single-particle en-
ergy levels are determined by the equation

 det�Aij��; fRg�� � 0: (3)

For Rij ! 1, Eq. (3) gives an N-fold degenerate ground
state with � � �0. At finite large Rij, the levels split into a
narrow band. Given a small parameter

 � � G�0
� ~R�=�0j�

0
���0�j � 1; (4)

where ~R is a characteristic distance at which heavy atoms
can approach each other, the bandwidth is �� 	 4j�0j��
j�0j. It is important for the adiabatic approximation that all
lowest N eigenstates have negative energies and are sepa-
rated from the continuum by a gap 
j�0j.

We now calculate the single-particle energies up to
second order in �. To this order we write ���� 	 �0 �
�0��� �

00
���

2=2 and turn from Aij��� to Aij���:

 Aij � ��ij � �G�0
�Rij� � �0��@G�0

�Rij�=@���1� �ij�;

(5)

where all derivatives are taken at � � 0. Using Aij (5) in
Eq. (3) gives a polynomial of degree N in �. Its roots �i
give the light-atom energy spectrum �i � �@2�2��i�=2m.
The total energy E �

PN
i�1 �i is then given by

 E���@2=2m�
�
N�2

0�2�0�
0
�

XN
i�1

�i����
0
��
0
�

XN
i�1

�2
i

�
: (6)

Keeping only the terms up to second order in � and using
basic properties of determinants and polynomial roots we
find that the first order terms vanish, and the energy reads
E � N�0 �

1
2

P
i�jU�Rij�, where

 U�R� � �
@

2

m

�
�0��0��

2
@G2

�0
�R�

@�
� ���0��

0
�G

2
�0
�R�

�
: (7)

Thus, up to second order in � the interaction in the system
of N molecules is the sum of binary potentials (7).

If the motion of light atoms is 3D, the Green function is
G��R� � �1=4�R� exp���R�, and ���� � ��0 � ��=4�,
with the molecular size ��1

0 equal to the 3D scattering
length a. Equation (7) then gives a repulsive potential

 U3D�R� � 4j�0j�1� �2�0R�
�1� exp��2�0R�=�0R; (8)

and the criterion (4) reads �1=�0R� exp���0R� � 1. For
the 2D motion of light atoms we have G��R� �
�1=2��K0��R� and ���� � ��1=2�� ln��=�0�, where K0

is the decaying Bessel function, and ��1
0 follows from [6].

This leads to a repulsive intermolecular potential

 U2D�R� � 4j�0j��0RK0��0R�K1��0R� � K
2
0��0R��; (9)

with the validity criterion K0��0R� � 1. In both cases,
which we denote 2� 3 and 2� 2 for brevity, the validity
criteria are well satisfied already for �0R 	 2.

The Hamiltonian of the many-body system reads

 H � ��@2=2M�
X
i

�Ri
�

1

2

X
i�j

U�Rij�; (10)

and the state of the system is determined by two parame-
ters: the mass ratioM=m and the rescaled 2D density n��2

0 .
At a largeM=m, the potential repulsion dominates over the
kinetic energy and one expects a crystalline ground state.
For separations Rij < ��1

0 the adiabatic approximation
breaks down. However, the interaction potential U�R� is
strongly repulsive at larger distances. Hence, even for an
average separation between heavy atoms �R close to 2=�0,
they approach each other at distances smaller than ��1

0

with a small tunneling probability P / exp���
�����������
M=m

p
� �

1, where �
 1. We extended U�R� to R & ��1
0 in a way

providing a proper molecule-molecule scattering phase
shift in vacuum and checked that the phase diagram for
the many-body system is not sensitive to the choice of this
extension.

Using the DMC method [11] we solved the many-body
problem at zero temperature. For each phase, gaseous and
solid, the state with a minimum energy was obtained in a
statistically exact way. The lowest of the two energies
corresponds to the ground state, the other phase being
metastable. The phase diagram is displayed in Fig. 1.
The guiding wave function was taken in the Nosanow-
Jastrow form [12]. Simulations were performed with 30
particles and showed that the solid phase is a 2D triangular
lattice. For the largest density we checked that using more
particles has little effect on the results.

For both 2� 3 and 2� 2 cases the (Lindemann) ratio �
of the rms displacement of molecules to �R on the transition

FIG. 1 (color online). DMC gas-crystal transition lines for 3D
(triangles) and 2D (circles) motion of light atoms. Solid curves
show the low-density hard-disk limit, and dashed curves the
results of the harmonic approach (see text).
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lines ranges from 0.23 to 0.27. At low densities n the
de Broglie wavelength of molecules is �
 � �R� ��1

0 ,
and U�R� can be approximated by a hard-disk potential
with the diameter equal to the 2D scattering length. Then,
using the DMC results for hard-disk bosons [13], we obtain
the transition lines shown by solid curves in Fig. 1. At
larger n, we have �< ��1

0 and use the harmonic expansion
of U�R� around equilibrium positions in the crystal, calcu-
late the Lindemann ratio, and select � for the best fit to the
DMC data points (dashed curves in Fig. 1).

The mass ratio above 100, required for the observation
of the crystalline order (see Fig. 1), can be achieved in an
optical lattice with a small filling factor for heavy atoms.
Their effective mass in the lattice M
 can be made very
large, and the discussed solid phase should appear as a
superlattice. There is no interplay between the superlattice
order and the shape of the underlying optical lattice, in
contrast to the recently studied solid and supersolid phases
in a triangular lattice with the filling factor of order one
[14]. Our superlattice remains compressible and supports
two branches of phonons.

The gaseous and solid phases of weakly bound mole-
cules are actually metastable. The main decay channels are
the relaxation of molecules into deep bound states and the
formation of trimer states by one light and two heavy
atoms. A detailed analysis of scattering properties of these
molecules will be given elsewhere, and here we focus on
their stability in an optical lattice.

For a large effective mass ratio M
=m, the relaxation
into deep states occurs when a molecule is approached by
another light atom and both light-heavy separations are of
the order of the size of a deep state, Re � ��1

0 [15]. The
released binding energy is taken by outgoing particles
which escape from the sample. The rate of this process is
not influenced by the optical lattice.

We estimate this rate in the solid phase and near the gas-
solid transition to the leading order in ��0

�R��1. At light-
heavy separations r1;2 � ��1

0 the initial-state wave func-
tion reads ~� � B���1

0 ; �R� �r1; r2�. Writing it as an anti-
symmetrized product of wave functions (1), for the 2� 3
case (��1

0 � a) we find B 	 �1= �Ra2� exp�� �R=a�. The
quantity W � B2R6

e is the probability of having both light
atoms at distances 
Re from a heavy atom, and the re-
laxation rate is 	3D / W. As the short-range physics is
characterized by the energy scale @

2=mR2
e, we restore the

dimensions and write

 	3D � C�@=m��Re=a�4�1= �R2� exp��2 �R=a�; (11)

where �R�2 	 n. The coefficient C depends on a particular
system and is 
1 within an order of magnitude. The
relaxation rate 	3D is generally rather low. For the K-Li
mixture where Re 	 50 �A, even at na2 � 0:24 (see Fig. 1)
the relaxation time exceeds 10 s for n � 109 cm�2 and
a � 1600 �A. In the 2� 2 case, for the same n and ��1

0 the
probability W is smaller and the relaxation is slower.

The formation of trimer bound states by one light and
two heavy atoms occurs when two molecules approach
each other at distances R & ��1

0 . It is accompanied by a
release of the second light atom. The existence of the
trimer states is seen considering a light atom interacting
with two heavy ones. The lowest energy solution of Eq. (3)
for N � 2 is the gerade state (C1 � C2). Its energy ���R�
introduces an effective attractive potential acting on the
heavy atoms, and the trimer states are bound states of two
heavy atoms in this potential.

In an optical lattice the trimers are eigenstates of the
Hamiltonian H0 � ��@

2=2M
�
P
i�1;2�Ri

� ���R12�. In a
deep lattice one can neglect all higher bands and regard Ri
as discrete lattice coordinates and � as the lattice
Laplacian. Then, the fermionic nature of the heavy atoms
prohibits them to be in the same lattice site. For a very large
mass ratio M
=m the kinetic energy term in H0 can be
neglected, and the lowest trimer state has energy �tr 	
���L�, where L is the lattice period. It consists of a pair
of heavy atoms localized at neighboring sites and a light
atom in the gerade state. Higher trimer states are formed by
heavy atoms localized in sites separated by distances R>
L. This picture breaks down at large R, where the spacing
between trimer levels is comparable with the tunneling
energy @

2=M
L2 and the heavy atoms are delocalized.
In the many-body molecular system the scale of energies

in Eq. (10) is much smaller than j�0j. Thus, the formation
of trimers in molecule-molecule ‘‘collisions’’ is energeti-
cally allowed only if the trimer binding energy is �tr < 2�0.
Since the lowest trimer energy in the optical lattice is
���L�, the trimer formation requires the condition
���L� & 2�0, which is equivalent to ��1

0 * 1:6L in the
2� 3 case and ��1

0 * 1:25L in the 2� 2 case. This means
that for a sufficiently small molecular size or large lattice
period L the formation of trimers is forbidden.

At a larger molecular size or smaller L the trimer for-
mation is possible. For finding the rate we consider the
interaction between two molecules as a reduced 3-body
problem, accounting for the fact that one of the light atoms
is in the gerade and the other one in the ungerade state
(C1 � �C2). The gerade light atom is integrated out and is
substituted by the effective potential ���R�. For the unger-
ade state the adiabaticity breaks down at interheavy sepa-
rations R & ��1

0 , and the ungerade light atom is treated
explicitly. The wave function of the reduced 3-body prob-
lem satisfies the Schrödinger equation

 �H0 � @
2r2

r=2m� E� �fRg; r� � 0; (12)

where the energy E is close to 2�0, fRg denotes the set
fR1;R2g, and r is the coordinate of the ungerade atom. The
interaction between this atom and the heavy ones is re-
placed by the boundary condition (2) on  . The 3-body
problem can then be solved by encoding the information on
the wave function  in an auxiliary function f�f ~Rg� [16]
and representing the solution of Eq. (12) in the form
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  �
X
f ~Rg;	


	�fRg�

	�f ~Rg�f�f ~Rg�F�	�r; f ~Rg�; (13)

where 
	�fRg� is an eigenfunction of H0 with energy �	,
and F�	�r; f ~Rg� � G�	�r� ~R1� �G�	�r� ~R2� with

�	 �
��������������������������������
2m��	 � E�=@2

p
. For �	 < E the trimer formation

in the state 	 is possible. This is consistent with imaginary
�	 and the Green function G�	 describing an outgoing
wave of the light atom and trimer.

We derive an equation for the function f in a deep
lattice, where the tunneling energy @

2=M
L2 � j�0j.
Then the main contribution to the sum in Eq. (13) comes
from the states 	 for which j�	 � ���R12�j & @

2=M
L
2.

The sum is calculated by expanding �	 around ��R12� ��������������������������������������������
2m����R12� � E�=@

2
p

up to first order in ��	 �
���R12��=�0 and using the equation �H0 � �	�
	 � 0.
The equation for f is then obtained by taking the limit r!
R1 in the resulting expression for  and comparing it with
the boundary condition (2). This yields

 

�
��@2=2M
�

X
i�1;2

�Ri
�Ueff�R12�

�
f�R1;R2� � 0; (14)

where the effective potential Ueff�R12� is given by

 Ueff�R� �
@

2��R�
m

����R���G��R��R�

�@=@�������R���G��R��R��
: (15)

At large distances one has Ueff 	 U�R� � 2�0 � E, and
for smaller R where ���R�<E, the potential Ueff acquires
an imaginary part accounting for the decay of molecules
into trimers. The number of trimer states that can be
formed grows with the molecular size. Eventually it be-
comes independent of L and so does the loss rate.

In this limit, we solve Eq. (14) for two molecules with
zero total momentum under the condition that f�R1;R2� is
maximal for jR1 �R2j � �R 	 n�1=2. We thus obtain E as
a function of the density and mass ratio, and its imaginary
part gives the loss rate 	 for the many-body system.
Numerical analysis for 0:06< n��2

0 < 0:4 and 50<
M
=m< 2000 is well fitted by 	 	 �D@n=M
��n��2

0 ��

exp��J
�������������
M
=m

p
�, withD � 7 and J � 0:95–1:4�n��2

0 � for
the 2� 3 case, and D � 102, J � 1:45–2:8�n��2

0 � in the
2� 2 case. One can suppress 	 by increasing M
=m,
whereas for M
=m & 100 the trimers can be formed on a
time scale � & 1 s.

In conclusion, we have shown that the system of weakly
bound molecules of heavy and light fermionic atoms can
undergo a gas-crystal quantum transition. The necessary
mass ratio is above 100 and the observation of such crys-
talline order requires an optical lattice for heavy atoms,
where it appears as a superlattice. A promising candidate is
the 6Li-40K mixture as the Li atom may tunnel freely in a
lattice while localizing the heavy K atoms to reach high

mass ratios. A lattice with period 250 nm and K effective
mass M
 � 20M provide a tunneling rate 
103 s�1 suffi-
ciently fast to let the crystal form. Near a Feshbach reso-
nance, a value a � 500 nm gives a binding energy 300 nK,
and lower temperatures should be reached in the gas. The
parameters n��2

0 of Fig. 1 are then obtained at 2D densities
in the range 107–108 cm�2 easily reachable in experi-
ments. For n � 108 cm�2 the rate of the trimer formation
is of the order of seconds, and these peculiar bound states
can be detected optically.
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7. Conclusion and outlook

The subject of the first part of the present manuscript has been the calculation of
the zero–temperature phase diagram of a two–dimensional system of composite bosons
formed in an ultracold mixture containing two different types of fermionic atoms. This
system has been predicted to undergo a zero–temperature crystal–gas phase transition
[17], due to the competition between the zero–point kinetic energy of the molecules and
the repulsive interaction between them due to an exchange of light fermions.

The phase diagram of the system has been accurately calculated using the Diffusion
Monte Carlo method. We have presented two simple approaches which allow an ap-
proximate calculation of this phase diagram (see Chapter 2). The results of these two
approaches are in good agreement with the accurate DMC results reported in [17]. Our
first approach relies on a harmonic approximation for the total interaction energy in the
crystal phase, and the crystal–gas transition line is determined using the phenomenolog-
ical Lindemann criterion. Our second approach, which does not rely on the Lindemann
criterion, is applicable for very low densities. In this limit, the system behaves like a set
of 2D hard–core bosons, and the existing prediction [29] for the phase transition in this
simpler system can be used.

Prospects for theoretical extensions of this work include the development of a con-
venient method to distinguish between the crystal and gas phases in experiments. For
example, low–energy vibrational modes of the system can be excited using a rotating
anisotropic potential. The calculation of the low–energy spectrum for the crystal phase,
and its comparison to the corresponding spectrum for molecular Bose–Einstein conden-
sates in the usual gaseous phase, may yield such a method.

Another planned extension on the theory side deals with the behaviour of the system
at high densities. The increasing high–density part of the dashed blue line in the crystal–
gas phase diagram (Fig. 2.3) suggests that the crystal of composite bosons will melt for
higher densities in the 2 × 2 case. This quantum melting has yet to be confirmed and
understood. The beginning of an explanation, in terms of a classical harmonic stability
analysis of the 2D triangular lattice, is presented in [35].

The study of heteronuclear fermionic mixtures presented in this part of the manuscript
also yields interesting experimental prospects.

First, the phase diagram that we discussed is promising for the observation of the
zero–temperature crystal–gas phase transition (see Chapter 5). Such an experiment
could be performed, for instance, using heteronuclear Fermi mixture containing equal
numbers of 6Li and 40K atoms. In order to achieve the large mass ratios required to
observe crystallisation, an optical lattice can be used to endow the 40K atoms with a
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heavier effective mass, while the 6Li atoms tunnel freely through the lattice. An opti-
cal lattice with a spatial period of 250 nm, inducing an effective mass M∗ = 20M for
40K atoms, should allow the crystalline phase to develop as a superlattice. Using an
interspecies Feshbach resonance [34], the scattering length can be tuned to a = 500 nm,
corresponding to the binding energy ~2/(ma2) = 300 nK, and lower temperatures are
experimentally accessible in heteronuclear Fermi gases. With these parameters, crys-
tallisation is predicted to occur for densities of the order of 107 atoms/cm2, which are
experimentally accessible as well.

Another interesting prospect is the transfer of the (highly excited) composite bosons
obtained on the BEC side of the Feshbach resonance to their ground state. Similar
experiments have already been performed with molecules consisting of bosonic atoms
(85Rb133Cs [36, 37], 87Rb2 [38], and 7Li133Cs [39, 40]) and with fermionic 40K87Rb
molecules [41, 42]. Heteronuclear molecules in their ground state have a large elec-
tric dipole moment (0.6 Debye for 40K87Rb). The dipolar gases thus obtained exhibit
anisotropic long–range dipole–dipole interactions [43]. These long–range interactions will
strongly affect the physics of Bose–Einstein condensation. The realisation of ground–
state composite bosons in the quantum degenerate regime will allow for an experimental
exploration of the predicted novel phases [44].

Finally, the collisional stability of weakly–bound heteronuclear molecules (see Section
1.1.1 and [18, 45]) involves few–body effects such as the formation of Efimov trimers.
(see e.g. [46] for evidence of the Efimov effect through the measurement of the rate of
three–body recombination in an ultracold atomic gas). Heteronuclear Fermi mixtures
offer a promising alternative system for the experimental investigation of these few–body
effects.
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8. Introduction

The second part of this manuscript presents a new scheme we have developed for the
manipulation of interactions in ultracold atomic gases using microwave magnetic fields.

The possibility to tailor the nature (repulsive or attractive) and the strength of atomic
interactions is a key feature of ultracold atomic systems, making them a versatile exper-
imental playground for the exploration of a vast range of collective quantum phenomena
[1, 2]. Let us illustrate this statement with three examples where the manipulation of
interactions plays an important role.

We first consider an ultracold gas of bosonic atoms in a trap, cooled down below the
critical Bose–Einstein condensation temperature. The stability of the condensate in the
trap depends on the nature of the atomic interaction [3, 4]. Repulsive atomic interactions
favour large condensate sizes and compete against the confinement due to the trapping
potential: hence, repulsive interactions lead to stable Bose–Einstein condensates, such
as the one observed with Rubidium 87 in 1995 (see Fig. 8.1(left) and [5]). On the other
hand, if the atomic interactions are attractive, the gas tends to increase its density at
the centre of the trap: the atomic interactions no longer compensate the confinement
due to the trap, and, for large enough atom numbers, the Bose–Einstein condensate
implodes. Changing the nature of the atomic interaction makes it possible to go from
one regime to the other. For example, starting from a condensed gas of Rubidium 85
atoms, in which condensates are naturally stable, Cornell and Wieman [6] have made
the atomic interaction attractive using a Fano–Feshbach resonance [7] and witnessed the
implosion of the Bose–Einstein condensate (see Fig. 8.1(right)).

Next, we turn to quantum–degenerate Fermi gases. In order to avoid a suppression

Figure 8.1. Left: Stable Bose–Einstein condensate in an ultracold gas of Rubidium 87 atoms.
Right: Remaining atoms in the trap after a ‘burst’ in an unstable condensate of Rubidium 85
atoms in which the scattering length has been tuned to a negative value. (Reproduced from
[5] and [6], respectively).
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Figure 8.2. Illustration of the two different regimes ex-
pected in an ultracold Fermi gas. For strong attrac-
tive interactions (a < 0, right), the system is in the
BCS regime, and its ground state is made up of long–
ranged Cooper pairs. For strong repulsive interactions
(a > 0, left), diatomic (bosonic) molecules appear, and
the ground state is a BEC of these molecules.

Figure 8.3. Ramsey fringes obtained
with the SYRTE Cesium fountain
clock, which allows frequency mea-
surements with an accuracy ≈ 10−16.
(Reproduced from [12]).

of the atomic interaction due to the Pauli principle, we assume that the gas contains
two different types of atoms: the mixture contains either a single atomic species present
in two different internal states [8] or two different atomic species [2]. The ground state
of such a system once again depends on the nature of the interaction [9]: for strong
attractive interactions, the ground state comprises long–ranged diatomic Cooper pairs,
whereas for strong repulsive interactions, diatomic molecules appear (see Fig. 8.2). Fano–
Feshbach resonances have been used to explore the crossover between these two different
regimes [9].

Our third example is related to metrology. Atomic clocks use ultracold atomic in-
terferometry to provide the most accurate time and frequency measurements to date,
with uncertainty estimates as low as a few 10−16 [10]. In Cesium atomic fountain clocks,
oscillations between two different hyperfine atomic states are probed with a microwave
magnetic field whose frequency is tuned close to the atomic transition frequency, using
Ramsey interferometry (see Fig. 8.3). However, atomic interactions in the clock cause
the atomic transition frequency to be shifted away from the single–atom hyperfine tran-
sition frequency by a small amount called the clock shift [11]. This clock shift is highly
sensitive to the interaction parameters, and it is one of the most important limitations
on the accuracy of the clocks. A precise control over the atomic interactions would allow
smaller fluctuations of the clock shift, thus leading to improved clock accuracies.
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Figure 8.4. Fano–Feshbach resonance induced by a static magnetic field (in the absence of
inelastic processes). Left: The static magnetic field couples the incident scattering state in the
open channel to a bound state of the two atoms in the closed channel; the scattering resonance
occurs for magnetic fields such that the scattering state and the bound state have neighbouring
energies. Right: Illustration of the parameters characterising a Feshbach resonance: the
background scattering length abg, the resonance width ∆B, and the resonance position Bres.

8.1. Static–field Fano–Feshbach resonances

The manipulation of atomic interactions is presently performed in ultracold atomic ex-
periments through the use of Fano–Feshbach resonances. These scattering resonances
typically occur in the presence of a static magnetic field (see [1, 7] for a review of the
theory and experimental applications of static–field Feshbach resonances).

We now give a simplified physical picture for Feshbach resonances occurring in static
magnetic fields (see the left–hand part of Fig. 8.4). These resonances are due to the
dependence of the magnetic moment of a given atom on its internal state. Let us consider
a pair of atoms colliding at very low energies, in a given two–atom internal state, which
is represented in blue on Fig. 8.4. We assume that another two–atom internal state is
accessible to the atom pair, and we consider a bound dimer state relating to this internal
state, represented in red. The blue and red two–atom states relate to different internal
states, hence, their magnetic moments are different. Therefore, it is possible to tune
the difference in energies between the blue and red two–atom states by adding a static
magnetic field. For values of the magnetic field for which the blue and red two–atom
states have similar energies, a scattering resonance occurs.

This scattering resonance causes a divergence in the scattering length a(Bstat), which
exhibits the following behaviour in the vicinity of the resonance:

a(Bstat) = abg

(
1− ∆B

Bstat −Bres

)
, (8.1)

where Bstat is the amplitude of the static magnetic field. In Eq. (8.1), Bres is the value
of the static magnetic field at which the resonance occurs, the background scattering
length abg is the value of the scattering length for values of Bstat that are sufficiently
far from Bres, and the resonance width ∆B gives the range of values of Bstat around
Bres for which the scattering length a is substantially affected by the resonance. The
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resonance parameters Bres, abg and ∆B are illustrated on the right–hand part of Fig. 8.4.
Tuning the static magnetic field close to the resonant value Bres therefore makes it
possible to set the scattering length to an arbitrary value and sign. Positive scattering
lengths correspond to an effective atomic interaction which is repulsive, whereas negative
scattering lengths correspond to attractive interactions [13].

Fano–Feshbach resonances in static magnetic fields have proved to be an invaluable
tool [1, 2, 9] to manipulate the interaction properties of a number of atomic species, such
as Lithium, Potassium, or Cesium. In order for a Feshbach resonance to be a convenient
experimental tool, it has to be broad enough (∆B & 10G), so that the scattering length
can be tuned to the desired value with sufficient accuracy despite the presence of small
stray magnetic fields. Broad Feshbach resonances are available for all three atoms listed
above (see [7] for a list of available Feshbach resonances: all three atoms listed above
exhibit resonances whoses widths satisfy |∆B| > 50 G).

However, broad static–field resonances are not available for all atomic species. Fur-
thermore, these resonances often occur for large magnetic fields. For example, all known
Feshbach resonances in 23Na occur for magnetic fields larger than 850 G and their widths
are smaller than 1.5 G [14]. The observation of resonances in 87Rb is even more involved,
as the broadest available resonance is less than 200 mG wide and occurs for a magnetic
field larger than 1000 G [15]. These resonances in Sodium and Rubidium have been ob-
served; however, their observation requires elaborate experimental setups involving large
coils and highly stabilised currents, and they are thus more difficult to use as a tool in
more complex experiments. The manipulation of interactions in atoms such as 87Rb and
23Na thus calls for other experimental schemes.

8.2. Previous work on alternative Feshbach resonances

Alternative schemes causing Feshbach resonances have already been considered, based
on the use of electromagnetic fields that are not pure static magnetic fields:

• Marinescu and You ([16], November 1998) have suggested using
DC electric fields ;

• Our scheme is especially reminiscent of the optically–induced Feshbach resonances,
first proposed by Fedichev, Kagan, Shlyapnikov and Walraven ([17], Septem-
ber 1996). These resonances are due to a coupling between the scattering state and
the resonant bound state caused by an oscillating electric field whose frequency
is in the optical range. They have been experimentally demonstrated in [18, 19].
However, the lifetimes of the atomic samples undergoing optically–induced Fes-
hbach resonances are severely limited by the losses due to spontaneous emission
through the resonant bound state, which is an electronically–excited dimer.

• Moerdijk, Verhaar, and Nagtegaal ([20], June 1996) have considered Sodium
atoms in the lower hyperfine manifold (f1 = 1, f2 = 1), trapped in a static mag-
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netic field, and suggested using a radio–frequency magnetic field whose frequency
is tuned close to the single–atom Zeeman splitting to induce scattering resonances.
A detailed analysis of their scheme is presented in Section 11.4, where we empha-
size the similarities and differences between their RF–induced resonances and the
microwave-induced resonances that we describe in our own published work [21].

8.3. Outline of the following chapters

In the present part of this manuscript, we describe an alternative to static–field Fano–
Feshbach resonances where the incident scattering state is resonantly coupled by a mi-
crowave magnetic field to a bound state corresponding to a different two–atom internal
state. All states taking part in the resonance belong to the electronic ground level of
the atoms. The microwave magnetic field amplitude is kept fixed, and the resonance is
reached by tuning the microwave frequency.

These microwave–induced resonances occur even in the absence of a static magnetic
field. Their characteristics are not directly related to those of the resonances induced by
static fields. Their widths are proportional to the squared amplitude of the oscillating
magnetic field.

For the sake of simplicity, we focus on the case of bosonic alkali atoms, but neither of
these assumptions is essential. We study the microwave–induced resonances occurring
with 7Li, 23Na, 41K, 87Rb, and 133Cs. Except for 7Li (for which a broad static–field
resonance is already available [22]), our results yield optimistic prospects for experiments
with all of these atoms.

The present part of this manuscript is organised in seven chapters.

• Chapter 9 is introductory. It provides an overview of our analysis of the microwave–
induced Feshbach resonances, based on a simple model involving two coupled
square wells. It briefly presents many of the concepts used and described in depth
in later chapters.

• Chapter 10 introduces the Hamiltonian we have used to describe collisions between
two alkali atoms in the presence of an oscillating magnetic field. We analyse its
simple block structure, exploited in all subsequent chapters.

• Chapter 11 contains a detailed description of the approaches we have used to
characterise the microwave–induced Feshbach resonances, based on the resonances
we have analysed in [21].

• In Chapter 12, we present our own implementations of the numerical methods
we have used to calculate the multi–channel wavefunctions characterising the two
atoms in the presence of static and oscillating magnetic fields.

• Chapter 13 reproduces our published article [21].
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• Chapter 14 is devoted to static–field Feshbach resonances. We have numerically
reproduced Feshbach resonances observed in 133Cs for very small magnetic fields
(SYRTE–Observatoire de Paris), which to our knowledge had remained unex-
plained. We interpret these measurements as s–wave resonances involving the
weakest–bound triplet dimer state in 133Cs.

• In Chapter 15, we present numerical results for microwave–induced Feshbach res-
onances involving experimental parameters accessible in a Cesium fountain clock.
These realistic parameters lead to calculations involving a larger number of coupled
channels, and inelastic processes are accounted for.
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9. An overview of microwave–induced
Feshbach resonances

This chapter initiates our analysis of scattering resonances occurring in ultracold atomic
systems. We focus on a low–energy collision between two atoms occurring in the presence
of a microwave magnetic field. Our goal is to justify that, for an appropriate choice of
the microwave frequency, a scattering resonance occurs, which can be used to tune the
interaction within the ultracold gas. This goal is achieved in Chapter 13, where our
published results [21] are presented.

An accurate description of these microwave–induced Feshbach resonance requires
elaborate numerical coupled–channel calculations involving a precise description of the
atomic interaction. These numerical calculations will be presented in later chapters. In
this preliminary chapter, we give a simplified analysis of these resonances. This analy-
sis is based on the two–square–well model: the interaction between two atoms, in the
presence of an oscillating magnetic field, is represented by two coupled square wells.

We start with a brief review the scattering properties of a single square–well potential.
Then, we show that a suitable choice of two square–well potentials can be used to model
the interaction between two atoms, reproducing the key physical parameters involved in
a microwave–induced resonance. The two–square–well model yields an exact analytical
expression for the scattering length a as a function of the magnetic field amplitude and
frequency: we use this expression to derive approximate values for the characteristics of
microwave–induced resonances. These approximate values are in good agreement with
the accurate results presented in later chapters.

Our presentation of the two–square–well model will lead us to introduce many of
the concepts involved in the description of scattering resonances. In this preliminary
chapter, we only briefly describe these concepts, and refer to the relevant sections in
later chapters where they are described in greater detail.

9.1. One single square well

We consider two identical alkali atoms in their ground state, ignoring — as a first step —
their internal state structure1. Their mutual interaction can be modelled by a centrally–
symmetric ‘electronic’ potential V (r) [23]. This potential will be described in detail in
Chapter 10. In this introductory chapter, we simply highlight its three key properties:

• For large interatomic distances (r & a few tens of a0, where a0 = 53 nm is the Bohr

1This internal state structure will be taken into account starting from Section 9.2

55



9. An overview of microwave–induced Feshbach resonances

r
lvdw

repulsive
core

attractive
Van der Waals tail

EB

V(r)

weakly bound
state

asymptotic
scattering state
wavefunction

a

r

E
n
e
rg

y
 E

a

Figure 9.1. Left: sketch of the ‘physical’ electronic potential characterising the interaction
between two identical ground–state alkali atoms. Right: simplified isotropic square–well po-
tential mimicking the scattering properties of the ‘physical’ potential.

radius), the potential V (r) describes an attractive Van–der–Waals interaction of
the form V (r) = −C6/r

6;

• The potential has a repulsive inner core (for r . 10 a0) owing to the Pauli repulsion
between the electrons for atoms that are close together.

• For all atomic species considered in this work (7Li, 23Na, 41K, 87Rb, and 133Cs), the
ground–state electronic potentials exhibit a minimum for interatomic distances of
the order of 10 a0.

The typical shape of such a potential is sketched on the left–hand part of Fig. 9.1.

9.1.1. A simple model for the interaction between two atoms

Figure 9.1(left) shows that the ‘physical’ interaction potential V (r) is essentially an
isotropic potential well. The simplified model presented in this chapter replaces the
‘physical’ potential by a simpler one which has similar scattering properties as far as
ultracold collisions are concerned. We choose to work with the isotropic square–well
potential VSW(r) represented on the right–hand part of Fig. 9.1.

The isotropic square well of Fig. 9.1(right) is fully characterised by two parameters: its
width l and its depth |ED|. The range of the ‘physical’ potential V (r) is determined by
the Van–der–Waals length lvdw associated with the long–range behaviour of the potential

V (r) (for large r, V (r) ≈ −C6/r
6, and the Van der Waals length is lvdw = (mC6/~2)

1/2
/2

[24]), therefore we choose the width to be close to lvdw: l = γlvdw, where γ is a positive
number of order 1. For a given width l, the depth |ED| of the well determines the value
of the scattering length a associated with the potential well, the number of bound states
supported by the well, and the energy of the weakest bound state.

56



9.1. One single square well

9.1.2. Scattering length and bound state energies of a square well

The scattering properties and the bound–state structure of the isotropic square–well
potential are well known [25]. Let us briefly review the key results of this standard
problem. These results are relevant to the study of scattering resonances for two reasons:
(i) they provide a simple example of a scattering resonance, and (ii) they shed light
on the link between the value of the scattering length and the binding energy of the
weakest–bound state.

We consider a collision between two identical atoms whose mutual interaction is de-
scribed by the potential VSW. The Hamiltonian describing the relative motion of the
two particles reads:

HSW =
p2

2mr

+ VSW(r) , (9.1)

where mr = m/2 is the reduced mass, r is the relative position and p is its conjugate
momentum. The spherical symmetry of the potential VSW(r) makes it possible to seek
eigenstates of HSW having a definite value of the angular momentum `2 = `(`+ 1). We
shall focus on the s–wave interaction (` = 0), which dominates the ultracold regime [26],
and which is described by the following radial Hamiltonian deduced from Eq. (9.1):

HSW =
p2
r

2mr

+ VSW(r) , (9.2)

where pr is the radial component of the relative momentum operator p. In particular,
the ultracold scattering properties of HSW are encoded in the s–wave scattering length
a associated with HSW. This scattering length is given, in terms of the well width l and
the well depth |ED|, by:

1− a

l
=

tan(kDl)

kDl
, (9.3)

where kDl = (|ED|/El)1/2 and El = ~2/(2mrl
2). The (possibly many) bound state

energies, measured from the threshold energy of the square well, are the EB = −El (κl)2,
where (κ, k) are solutions of the following two coupled equations:{

(kDl)
2 = (κl)2 + (kl)2

κl = −kl/ tan(kl)
(9.4)

The scattering length a and the bound state energies EB are plotted on Fig. 9.2 as
a function of the parameter kDl = (|ED|/El)1/2. If the well depth ED is chosen such
that (2nB − 1)π

2
< kDl < (2nB + 1)π

2
(where nB is an integer), the square well supports

exactly nB bound states. Furthermore, the scattering length diverges each time a new
bound state appears in the well, i.e. for all values of ED such that kDl = (2nB + 1)π

2
.

These well–known divergences in the scattering length are the signature of zero–energy
scattering resonances.

The comparison between the top and bottom parts of Fig. 9.2 also reveals a strong
connection between the value of the scattering length and the position of the highest–
energy bound state supported by the potential well. For depths |ED| such that a/l is
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Figure 9.2. Scattering length (top) and bound state energies (bottom) for a single isotropic

square well, as a function of the parameter kDl = (|ED|/El)1/2. Scattering lengths are mea-
sured in units of the well width l and energies in units of El = ~2/2mrl

2.

negative (such as for kDl < π/2, i.e. very shallow wells), the potential supports no weakly
bound state. If the depth of the potential is increased, the scattering length remains
negative, and it becomes arbitrarily large as one approaches the scattering resonance at
kD = (2nB+1)π

2
. Immediately after the resonance, a/l is positive, and the well supports

a very weakly bound state. A subsequent increase in the well depth causes a to decrease
and the highest–energy bound state to become deeper bound.

We have rigorously justified the connection between the value of a and the presence
(or absence) of a weakly bound state only in the specific case of the isotropic square–well
potential of Fig. 9.1(right). However, it remains valid for the ‘physical’ interaction po-
tential V (r) (see e.g. [27, 28]). We will refer to this connection in the following chapters.
For example, the triplet scattering length for 7Li being negative (aT = −28 a0) indicates
that the triplet potential for Lithium does not support a weakly–bound molecular state
(see Section 11.1.4). Similarly, the triplet scattering length for 133Cs being positive and
large (aT = 24 lvdw) is a strong indication that the triplet potential for Cesium supports
a very weakly bound molecular state (see Section 11.2.4).

9.2. The two–square–well model for
microwave–induced Feshbach resonances

We now account for the internal–state structure of the two atoms. We introduce the
two–square–well model on the particular example of the microwave–induced resonance
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Figure 9.3. The two–square–well model for microwave–induced Feshbach resonances: the two
‘physical’ potentials (left) are replaced by two isotropic square–well potentials (right). The
nuclear spin i, the hyperfine quantum numbers f1, f2, and the two–atom spin projection MF

labelling the potential curves will be introduced in Chapter 9.

involving the (MF = 2i− 1) and (MF = 2i) internal–state subspaces, which are coupled
by a σ+–polarised magnetic field; the definitions of the relevant internal–state subspaces
are deferred to Chapter 9, and the resonance described in this section is characterised
in greater detail in Chapter 10.

We consider a low–energy collision between two identical alkali atoms, both of which
are in their ground hyperfine state, in the presence of an oscillating magnetic field. The
frequency of the oscillating field is tuned close to the hyperfine transition frequency for
a single atom. One of the atoms may absorb a photon, which causes the atom pair
to transit to the upper hyperfine state. We call | g 〉 (“ground”) the lower–energy two–
atom internal state, and | e 〉 (“excited”) the higher–energy two–atom internal state:
the energies of these two states differ by the hyperfine transition energy ∆Ehf . The
interaction between the two atoms depends on the two–atom internal state, and we
thus introduce two different electronic potentials Vg and Ve, modelling the interatomic
interaction in the states | g 〉 and | e 〉, respectively2. These two potentials, coupled by
the oscillating magnetic field, are represented on the left–hand part of Fig. 9.3.

We assume that the excited–state potential curve Ve supports a weakly–bound dimer
state with the binding energy |ET |. If the frequency ω/2π of the oscillating magnetic field
is tuned close to the energy difference ~ω0

res = ∆Ehf−|ET | between the threshold energy
of the potential well Vg and the energy of the bound state in Ve (see Fig. 9.3(left)),
a scattering resonance occurs. This resonance causes a hyperbolic divergence in the
scattering length a(ω) characterising ultracold collisions between two atoms in the state
| g 〉 (see Chapter 11). For frequencies close to the resonant frequency ωres,

a(ω) = abg

(
1 +

∆ω

ω − ωres

)
, (9.5)

where abg is the background scattering length and ∆ω is the resonance width (see
Fig. 11.2).

2A more accurate description of the atomic interaction will be introduced in Section 10.2.
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We will show in Section 11.1.2 that the resonance width ∆ω is proportional to B2
osc,

where Bosc is the amplitude of the oscillating magnetic field. The coupling between the
two channels | g 〉 and | e 〉 causes the resonance frequency ωres to be slightly shifted away
from ω0

res (see [1] and Section 11.1):

ωres = ω0
res + αB2

osc . (9.6)

The main goal of the present work is to characterise the microwave–induced Feshbach
resonances described by Eqs. (9.5) and (9.6), i.e. to evaluate the resonance width ∆ω
and the resonance shift α for given choices of the two–atom states | g 〉 and | e 〉 and
of the resonant bound state |ET |. An accurate characterisation of these resonances
will be presented in Chapter 11. These accurate results are obtained through complex
numerical calculations based on the coupled–channel approach (see Chapter 12). In this
section, we present a simplified approach based on the square–well potentials introduced
in Section 9.1. This simple model can be solved analytically (see Section 9.2.5) and yields
numerical results for the resonance characteristics (see Section 9.2.6) which are in good
agreement with the full–fledged coupled–channel results of Chapter 11 (see Table 11.2).

Analyses of Feshbach resonances in terms of two coupled square wells have previously
been reported [29]. The two–square–well model presented in this chapter has been devel-
opped independently, within the context of microwave–induced resonances (rather than
resonances induced by static fields [7]); it is not equivalent3 to the one presented in [29].

9.2.1. Choice of the square wells modelling the atomic interaction

Our simple model is based on replacing each of the potential well Vg and Ve of the left–
hand side of Fig. 9.3 by the isotropic square–well potentials shown on the right–hand side
of this figure. In order to define these two wells, four parameters have to be specified:
the two well widths lg and le, and the two well depths |Eg| and |Ee|.

The ‘physical’ electronic potentials Vg and Ve have the same spatial range, determined
by the Van–der–Waals length lvdw which is the same for | g 〉 and | e 〉 [24]. Consequently,
we choose the two square wells to have the same width l = lg = le = γ lvdw, where γ is
a positive number of order 1.

The resonance we are describing occurs in the ultracold regime, where the scattering
properties of the potentials Vg and Ve are encapsulated in the corresponding scattering
lengths ag and ae. Therefore, we require the two square wells of Fig. 9.3(right) to have
the same scattering lengths as the corresponding original potentials.

The strength of the coupling between the incoming scattering state in the potential Vg
and the resonant bound state in the potential Ve is determined by the overlap between
the two corresponding wavefunctions (see Section 11.1.2). This overlap depends on the

3For instance, the model described in [29] uses a closed–channel square well which is infinite for r > l,
whereas both of our wells are finite for all values of r > 0. Furthermore, they choose the width
of both square wells to be equal to the Van–der–Waals length lvdw, whereas our square–well width
is an adjustable parameter which we tune to reproduce the binding energy of the closed–channel
bound state: see Section 9.2.1.
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9.2. The two–square–well model for microwave–induced Feshbach resonances

binding energy of the resonant bound state: a weakly bound state has a large spatial
extent, leading to a large overlap and a strong coupling to the scattering state; a deeply
bound state has a small spatial extent, and its coupling to the scattering state is thus
much smaller (see Section 11.1.4). Hence, we wish the square–well potential representing
Ve to support a bound state which has the same binding energy |ET | as the resonant
bound state in Ve.

We call |ϕscat
g 〉 the threshold–energy scattering state wavefunction in the square–

well potential representing Vg, and |ϕbound
e 〉 the wavefunction of the bound state hav-

ing the energy −|ET | in the square–well potential representing Ve. The overlap F =
〈ϕbound

e |ϕscat
g 〉 between these two wavefunctions is the sum of two contributions: F =

F< + F>, where F< corresponds to the inner r < l region in which the square wells
are non–zero, and F> corresponds to the outer region (r > l) where both square well
potentials vanish. Let us assume at first that one of the two well depths is much larger
than the other: we take |Eg| � |Ee| (but the argument also holds in the opposite limit).
In this case, the kinetic energy available in the r < l region is much larger for an atom
pair in the state | g 〉 than it is for an atom pair in the state | e 〉. Therefore, in the
region r < l, the wavefunction ϕg(r) oscillates much faster than ϕe(r) does: these fast
oscillations average F< to zero. This is not the expected behaviour for the inner part
of the overlap, where the oscillations occur in phase and build up a non–vanishing con-
tribution to the total overlap (see the multi–channel numerical results for the overlaps,
represented on Figs. 11.5). In order to avoid this non–physical averaging, the depths |Eg|
and |Ee| should have the same orders of magnitude, i.e. the two square–well potentials
should support the same number of bound states4 nB = ngB = neB.

To sum up, the four square well parameters lg, le, Eg and Ee are chosen to satisfy the
following four conditions:

1. The two square–well potentials have the same width l, which is of the order of,
but not equal to, the Van–der–Waals length of the original potentials;

2. The square–well potentials have the same scattering lengths ag and ae as the
original potentials Vg and Ve;

3. The highest–energy bound state of the square–well potential representing Ve has
the same binding energy as the resonant bound state in Ve;

4. The two square–well potentials support the same number of bound states.

The parameters ag, ae, l, and nB defining the two square–well potentials of our sim-
plified model are collected in Table 9.1 for all considered alkali atoms. For the sake of
simplicity, we choose the smallest number of bound states nB for which the four condi-
tions stated above can be simultaneously satisfied (nB = 1 or 2 for all considered atomic
species). We have checked that using a larger number of bound states ngB = neB does not
substantially modify the results obtained with this model. On the contrary, choosing a

4Figure 9.2 shows that the depth of a square–well potential supporting nB bound states roughly
behaves as |ED| ≈ El π2n2

B .
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7Li 23Na 41K 87Rb 133Cs
Scattering lengths for the wells Vg and Ve

ag (a0) 5.0 55 64 100 -2500
ae (a0) -28 65 60 99 2400

Energy of resonant state
|ET |/h (MHz) 12000 200 140 25 5 · 10−3

Parameters of the two–square–well model
l/lvdw 0.77 1.2 0.77 1.01 2.3
ng

B = ne
B 1 2 2 2 2

Table 9.1. Parameters for the two–square well model: scattering lengths ag and ae (measured
in units of the Bohr radius a0 = 52.9 · 10−12 m), width l, and number of bound states ngB = neB
in the two wells.

different number of bound states in the two wells leads to results that are farther away
from the accurate coupled–channel results of Table 11.2.

The specific case of Cesium 133

In the particular case of 133Cs, the resonant bound state is so weakly bound (|ET | =
h·5 kHz = 2·10−3Evdw, where Evdw = ~2/2mrl

2
vdw is the Van–der–Waals energy [24]) that

its binding energy is completely determined by the scattering length of the corresponding
potential [1]: |ET | = ~2/2mra

2
e, where ae = 2400 a0. Hence, the quantities ae and |ET |

contain equivalent information. When defining the square–well potentials mimicking Vg
and Ve for Cesium, we enforce the conditions 1, 2, and 4 above, but we do not apply
the condition 3 on the energy |ET | = h · 5 kHz of the weakest bound state. Instead, we
require the square–well potential representing Ve to have two bound states, and choose
the square–well parameters such that the deeper bound state has the same binding
energy as the second–highest bound state of Ve, namely h · 110 MHz.

9.2.2. The Hamiltonian of the two–square–well model

We now include a constant coupling between the two channels | g 〉 and | e 〉, which
models the coupling of the microwave magnetic field to the total electronic spin of the
atom pair. More specifically, we consider the following two–channel radial Hamiltonian,
which describes the relative motion of the atom pair in the presence of an oscillating
magnetic field of amplitude Bosc:

H =
p2
r

2mr

1 +

(
Vg(r) 0

0 Ve(r)

)
+

(
0 0
0 −~δ

)
+

(
0 ~Ω1

2
~Ω1

2
0

)
. (9.7)

In Eq. (9.7), the operator p2
r/2mr 1 is the kinetic energy of the reduced particle, the

second term is an r–dependent diagonal matrix which models the electronic interaction
Vel (see Section 10.2.4), and the third term includes the detuning ~δ = ~ω − ∆Ehf of
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the microwave frequency ω/2π with respect to the single–atom hyperfine splitting ∆Ehf .
The last term is a constant symmetric matrix which only has off–diagonal elements and
models the coupling of the two channels due to the magnetic dipole coupling between
the microwave magnetic field and the total electronic spin S. The strength Ω1 of the
coupling between the channels | g 〉 and | e 〉 relates to the amplitude Bosc of the oscillating
magnetic field through:

~Ω1

2
= µBBosc , (9.8)

where we have assumed that the g–factor of the resonant bound state is g = 1.
The Hamiltonian (9.7) is the simplified version, within the framework of the two–

square–well model, of the two–atom Hamiltonian (10.13) presented in Chapter 10 and
used in all subsequent chapters. The two Hamiltonians have a similar structure, and the
terms appearing in them are discussed in greater detail in Section 10.2.2.

9.2.3. The microwave–dressed two–atom states

In this section, we briefly present the microwave–dressed two–atom states. These dressed
states are the stationary states of a pair of atoms that are infinitely far away from each
other.

We first introduce the total potential Vtot(r), which is the 2× 2 operator defined by:

Vtot(r) =

(
Vg(r) 0

0 Ve(r)

)
+

(
0 0
0 −~δ

)
+

(
0 ~Ω1

2
~Ω1

2
0

)
, (9.9)

so that the Hamiltonian (9.7) reads H = p2

2mr
1 + Vtot(r).

For r > l, both of the square–well potentials Vg(r) and Ve(r) vanish. The matrix
Vtot(r) does not vanish, but it reduces to a constant matrix V∞:

V∞ = Vtot(r > l) =

(
0 ~Ω1

2
~Ω1

2
−δ

)
. (9.10)

The matrix V∞ is real and symmetric, therefore it has two orthogonal eigenvectors | g̃ 〉
and | ẽ 〉, which are the microwave–dressed (two–atom) internal states [30]. The coupling
terms ~Ω1/2, modelling the magnetic dipole interaction between the atom pair and the
oscillating magnetic field, do not depend on r: their presence causes the dressed states
to differ from the ‘bare’ two–atom states | g 〉 and | e 〉.

Note that the dressed states | g̃ 〉 and | ẽ 〉, as well as the corresponding dressed energies
Eg̃ and Eẽ, depend both on the coupling strength Ω1 and on the detuning δ.

We assume Eg̃ < Eẽ. The dressed–state energy splitting ~Ω = Eẽ − Eg̃ is given by
(see Fig. 11.7):

Ω =
(
Ω2

1 + δ2
)1/2

. (9.11)

A more detailed presentation of the microwave–dressed two–atom states will be given
in Section 11.2.2.
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9.2.4. The two–channel scattering state

We are interested in the scattering length a(δ,Ω1), associated with collisions between
atoms which are asymptotically all in the lowest–energy dressed state | g̃ 〉, for given
values of the detuning δ and the coupling strength Ω1. We thus solve for the zero–energy
stationary scattering state |Ψ0 〉 of the Hamiltonian (9.7). The state |Ψ0 〉 is a two–
channel wavefunction, in the sense that it has two r–dependent components 〈 g |Ψ0(r) 〉
and 〈 e |Ψ0(r) 〉. It depends on the detuning δ and on the coupling strength Ω1. It is
defined by the stationary Schrödinger equation:

H|Ψ0 〉 = Eg̃|Ψ0 〉 , (9.12)

along with the asymptotic behaviour (exact for r > l):

|Ψ0 〉 =
r>l

(
1− a

r

)
| g̃ 〉 + fẽg̃

e−κr

r
| ẽ 〉 . (9.13)

Note that the asymptotic behaviour of Eq. (9.13) is expressed in the dressed–state basis
{| g̃ 〉, | ẽ 〉} (rather than in the bare–state basis {| g 〉, | e 〉}). The constant κ characterises
the decay of the closed–channel component 〈 g̃ |Ψ0(r) 〉:

κl = (~Ω/El)
1/2 . (9.14)

A lengthier discussion of multi–channel wavefunctions, open and closed channels, and
boundary conditions will be given in Section 12.1.3.

9.2.5. Analytical expression for the scattering length

The scattering length a and the scattering amplitude fẽg̃ appearing in Eq. (9.13) are
unknown a priori : they are determined from the large–r behaviour of the wavefunction
components 〈 g̃ |Ψ0(r) 〉 and 〈 ẽ |Ψ0(r) 〉, respectively.

The two–square–well model allows for an exact calculation of the scattering length a.
It can be expressed analytically in terms of the well depths |Eg| and |Ee|, the coupling
strength Ω1, and the detuning δ:

a

l
= 1 − (κl)u1u2 + sin2 Ψu1 + cos2 Ψu2

1 + (κl) (cos2 Ψu1 + sin2 Ψu2)
. (9.15)

The auxiliary parameters appearing in Eq. (9.15) are defined below:

u1 =
tan(k1l)

k1l
and u2 =

tan(k2l)

k2l
, (9.16)

cos(2Ψ) =
δ

Ω

~δ + |Ee| − |Eg|
~χ

+
Ω1

Ω

Ω1

χ
, (9.17)

~χ =
(
(|Ee| − |Eg|+ ~δ)2 + (~Ω1)2

)1/2
, (9.18)

k1l =

( |Ee|+ |Eg| − ~Ω− ~χ
2El

)1/2

and k2l =

( |Ee|+ |Eg| − ~Ω + ~χ
2El

)1/2

. (9.19)
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7Li 23Na 41K 87Rb 133Cs
Energy of resonant state and resonance frequency

|ET |/h (MHz) 12000 200 140 25 5 · 10−3

ω0
res/2π (GHz) 11 16 0.12 6.8 9.2

Results of the two–square–well model
α (kHz/G2) 0.34 12 32 163 −900 · 103

∆ω2SW/2π (Hz/G2) 6.2 1300 222 100 −3.3 · 109

Table 9.2. Characteristics of the microwave–induced Feshbach resonances in 7Li, 23Na, 41K,
87Rb, and 133Cs involving the triplet bound states with energies ET , calculated using the
two–square–well method. The resonance width ∆ω is proportional to B2

0 , and it is given for
B0 = 1 G. The results for the resonance widths ∆ω and shifts α are in good agreement with
the coupled–channel results collected in Table 11.2.

9.2.6. Numerical results

We have numerically calculated the scattering length a(ω) given by Eq. (9.15), for mag-
netic field amplitudes Bosc of the order of 1 G and frequencies ω/2π close to the zero–field
resonance frequency ~ω0

res = ∆Ehf−|ET |, as illustrated on Fig. 9.4 in the particular case
of 23Na. Our numerical results confirm that the scattering length diverges hyperboli-
cally for frequencies close to ω0

res, as expressed by Eq. (9.5). They also confirm that
the resonance width ∆ω and the shift on the resonance frequency (ωres − ω0

res) are both
proportional to B2

osc.

Our results for the resonance characteristics ∆ω and α are collected in Table 9.2.
These results are in good agreement with the coupled–channel results of Table 11.2.

In this first chapter on scattering resonances, we have introduced the parameters
involved in the description of microwave–induced Feshbach resonances: the background
scattering length abg, the resonance width ∆ω, and the resonance frequency ωres/2π. We
have presented a simple model for these resonances: the two–square well model. This
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9. An overview of microwave–induced Feshbach resonances

model leads to an exact analytical expression of the scattering length a. We have used it
to derive orders of magnitude of the resonance positions and shifts for the bosonic alkali
atoms 7Li, 23Na, 41K, 87Rb, and 133Cs.

We have also briefly presented the key concepts involved in the analysis of ultra-
cold scattering resonances, among which the electronic interaction between two atoms,
dressed two–atom states, and multi–channel scattering wavefunctions. All of these con-
cepts will be described in greater detail in Chapters 10 and 11.

Starting from Chapter 10, we relinquish the two–square–well model of the present
chapter and turn towards more accurate approaches. These approaches are more in-
volved as they require numerical coupled–channel calculations. Our accurate coupled–
channel results are given at the end of Chapter 11 (in particular, see Table 11.2), and
the numerical methods we have used to obtain them are presented in Chapter 12.
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10. The Two–Atom Hamiltonian

In Chapter 9, we have presented a simple two–square–well model which provides orders of
magnitude for the characteristics of microwave–induced Feshbach resonances. However,
an accurate description of these resonances can only be obtained by accounting for
the coupling between multiple two–atom internal states. The present chapter and the
following one are devoted to the application of multi–channel scattering theory to the
characterisation of Feshbach resonances.

This chapter introduces the model we have used to describe collisions between two
alkali atoms in a magnetic field [20, 31]. The first section is introductory and briefly
reviews the properties of a single alkali atom in a magnetic field. In the next section,
we describe the Hamiltonian describing two atoms in the presence of a magnetic field
which may have both static and oscillating components. The last section is devoted to
the symmetries of the two–atom Hamiltonian. These symmetries yield a simple block–
matrix structure, which will be exploited in all subsequent chapters to determine the
scattering channels that are relevant for the description of a given resonance.

10.1. A single atom in a magnetic field

We start by describing the internal states of a single atom. For simplicity’s sake, we
focus on the case of a bosonic alkali atom, such as Sodium 23 (23Na), Rubidium 87
(87Rb), or Cesium 133 (133Cs). We describe the internal state of this alkali atom in
terms of two spins1: (i) a single electron spin s, which models the internal state of the
single valence electron, and (ii) the nuclear spin i. The modulus of the electron spin
satisfies s = 1/2. The quantum number i, which determines the modulus of the nuclear
spin i, is a characteristic of the considered atom, and it must be half–integer for bosonic
alkalis: for 23Na and 87Rb, i = 3/2, whereas in the case of 133Cs, i = 7/2 [32].

10.1.1. One atom in the absence of a magnetic field

In the absence of a magnetic field, the internal state of a single atom is governed by the
following Hamiltonian, which describes the hyperfine coupling [33] between the electron
and nuclear spins of a single atom:

vhf = ahf s · i =
1

2
ahf

(
f 2 − s2 − i2

)
, (10.1)

1Throughout this manuscript, lowercase letters denote single–atom quantities and operators. Their
uppercase counterparts represent the corresponding two–atom quantities.
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Figure 10.1. Single–atom hyperfine states for an alkali atom with nuclear spin i = 3/2, such
as 23Na or 87Rb: there are 3 states with f = f− = 1 and 5 states with f = f+ = 2.

where the operator f is the total single–atom spin: f = s+ i.
Equation (10.1) shows that the Hamiltonian vhf conserves both hyperfine quantum

numbers f and mf , where mf characterises the total spin projection fz. Therefore, it
is convenient to describe the internal states of a single atom using the hyperfine basis
states | f,mf 〉. For an alkali atom, f can take two values: f− = i−1/2 and f+ = i+1/2.
The internal–state subspace thus has dimension (2f− + 1) + (2f+ + 1) = 4i + 2. The
single–atom hyperfine states are represented on Fig. 10.1 in the case of an atom with
nuclear spin i = 3/2, for which the internal–state subspace has dimension 8. In the case
of an atom with nuclear spin i = 7/2, the internal–state subspace has dimension 16.
In the absence of a magnetic field, all hyperfine states | f,mf 〉 with the same quantum
number f are degenerate.

10.1.2. One atom in a static magnetic field

If a static magnetic fieldBstat is added to the system, the Hamiltonian acquires a Zeeman
term vZ. Choosing the direction ez of the static magnetic field as the quantisation axis,
the total single–atom Hamiltonian reads [33]

hstat = vhf + vZ , (10.2)

where

vZ = 2
µBBstat

~
sz , (10.3)

µB is the Bohr magneton, and sz is the projection along ez of the electron–spin operator.
The Hamiltonian hstat conserves the spin projection mf , but it no longer conserves f .

10.1.3. One atom in an oscillating magnetic field

We now add to the system an oscillating magnetic field Bosc, whose frequency ω/2π is
tuned close to the hyperfine transition frequency of the considered atoms, i.e. in the
microwave range. We still assume the presence of a static magnetic field Bstat, whose
direction determines the quantisation axis ez.

We use a quantum description for the oscillating field, and we assume that all of its
photons are in the same mode. We call a† the creation operator for a photon in the
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10.2. Two atoms in a magnetic field

relevant mode, and ε its polarisation. The magnetic field operator is then given by [30]:

Bosc =
b0√

2
(εa+ ε∗a†) , (10.4)

where b0 is related to the magnetic field amplitude Bosc = b0

√
N , and N is the total

number of photons, which we assume to be � 1.
The magnetic field and the atom are coupled via the magnetic dipole coupling term:

w = −m ·Bosc , (10.5)

where m = −2µB s/~ is the total magnetic dipole operator for the atom [33], assuming
that the valence electron has zero orbital angular momentum (l = 0).

We focus on the case of a σ+–polarised magnetic field about the quantisation axis ez:
ε = ex+iey√

2
. Equations (10.4) and (10.5) then yield2:

w = w1 (s+a+ s−a†) , (10.6)

where

w1 =
µBb0

~
, (10.7)

and s± = sx ± isy are the ladder operators for the electron spin.
Including both the static fieldBstat and the oscillating fieldBosc, the total single–atom

internal–state Hamiltonian reads:

h = vhf + vZ + ~ω a†a+ w . (10.8)

The Hamiltonian h conserves none of the quantum numbers f , mf , and N (only the
sum (mf +N) of the atomic spin and the photon number is conserved). The stationary
states of the Hamiltonian h are thus dressed states of the joint system “single atom and
oscillating magnetic field”, which can be expressed as linear combinations of basis states
of the form | f,mf , N 〉.

10.2. Two atoms in a magnetic field

In Section 10.1, we described the internal–state subspace for a single atom in the pres-
ence of a magnetic field. However, the resonances we wish to describe involve a collision
between two atoms. In this section, we introduce the complete two–atom Hamiltonian,
which takes into account both the internal–state and magnetic terms described in Sec-
tion 10.1, and the coupling between the spatial dynamics and the internal degrees of
freedom of the atoms.

2Strictly speaking, the magnetic field also couples to the nuclear spin i. However, this coupling is very
weak, as the nuclear gyromagnetic ratios gi are about 1000 times smaller than that of the electron
(gs = 2). This coupling is included in our numerical calculations, but we omit it in Eqs. (10.3) and
(10.5) for the sake of clarity.
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10. The Two–Atom Hamiltonian

Figure 10.2. Two–atom basis states | {f1,m1, f2,m2}+ 〉 for an alkali atom with nuclear spin
3/2. The single–atom states carry the labels a, . . . , h defined on Fig. 10.1. The subspaces
characterised by opposite values of MF have similar structures, therefore only the positive–
MF subspaces are represented.

10.2.1. The two–atom internal states

We consider two bosonic alkali atoms in the presence of the oscillating magnetic field
described above. The internal–state subspace is spanned by basis vectors of the form
| {f1,m1, f2,m2}+ , N 〉, where the superscript + denotes bosonic symmetry, and fj and
mj, j = 1 or 2, determine the total spin modulus (f 2

j ) and projection (fjz) for each of
the two atoms. Disregarding the photon quantum number N , there are 36 different two–
atom internal states if the nuclear spin is i = 3/2, and 124 two–atom states if i = 7/2.
The two–atom internal states for atoms with i = 3/2 are represented on Fig. 10.2,
where they are sorted by total spin projections MF = m1 +m2 and by the single–atom
hyperfine quantum numbers [f1, f2].

10.2.2. The two–atom Hamiltonian

The Hamiltonian describing the relative motion of the two atoms in the presence of the
static and oscillating magnetic fields reads [20, 31]:

H =
p2

2mr

1 + Vel(r) + Vhf + VZ + ~ω a†a+W . (10.9)

The Hamiltonian (10.9) contains the following terms:

• The first term, p2/2mr, is the kinetic energy of the reduced particle, whose mo-
mentum is p and whose (reduced) mass is mr = m/2, where m is the mass of a
single atom. The identity operator 1 stresses that this term does not act on the
internal states of the atom pair.

• The operator Vel(r) is the electron–interaction term. It is spherically symmetric
(r = |r|), and it couples the motion of the atom pair to its internal states. It will
be described in more detail in Section 10.2.4.
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10.2. Two atoms in a magnetic field

• The operator Vhf is the hyperfine interaction term. It is the sum of the hyperfine
interactions v

(j)
hf for the two atoms, hence it reads:

Vhf = ahf (s1 · i1 + s2 · i2) , (10.10)

where sj and ij are respectively the electron and nuclear spin for the atom j.

• The operator VZ is the Zeeman term, which describes the coupling between the
static magnetic fieldBstat and the electronic spins. It is the sum of the single–atom
Zeeman terms v

(j)
Z :

VZ = 2
µBBstat

~
Sz , (10.11)

where Sz is the projection along ez of the total electron spin S = s1 + s2.

• The term ~ω a†a gives the bare photon energies.

• The final term, W , is the magnetic dipole term coupling the atomic internal states
to the oscillating magnetic field. It is the sum of the two single–atom coupling
terms w(j). Assuming that Bosc is σ+–polarised, it reads:

W = w1

(
S+a+ S−a†

)
, (10.12)

where w1 is defined by Eq. (10.7) and S± = Sx ± iSy are the ladder operators of
the total electron spin S.

Neglected terms

We have neglected one contribution to the two–atom Hamiltonian (10.9): the weak spin–
dependent interaction Vss(r). This interaction consists of two parts: (i) the spin–spin
dipole interaction [34], and (ii) the second–order spin–orbit interaction [35]. These two
parts are both anisotropic, and hence the operator Vss(r) couples different partial waves.
This spin–dependent coupling causes weak inelastic relaxation and gives rise to small
resonance strengths [7, 36]. We neglect it in our numerical calculations. In Section 11.4,
we discuss its role in RF–induced Feshbach resonances [20].

10.2.3. Restriction to s–wave collisions

The spherical symmetry of the electron–interaction term Vel(r) makes it possible to seek
eigenstates of H which have a definite quantum number `, characterising the modulus
of the angular momentum ` of the reduced particle. We focus on s–wave collisions
(` = 0), which yield the dominant contribution in the ultracold regime3 [26]. Therefore,

3Collisions in other partial waves ` > 0 involve an additional term in the radial Hamiltonian H: the

centrifugal barrier `(`+1)
2mr r2

. For low incident energies, this barrier prevents the incident particles from
coming close enough (small r) to be scattered by the remaining terms in the Hamiltonian.
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Eq. (10.9) reduces to the following radial Hamiltonian for the relative motion of the two
atoms:

H =
p2
r

2mr

1 + Vel(r) + Vhf + VZ + ~ω a†a+W , (10.13)

where pr is the radial component of the momentum p of the reduced particle.

10.2.4. The electronic interaction term

The interaction between the two atoms is modelled by a potential operator Vel(r), which
depends on the interatomic distance r = |r| and on the two–electron spin state: the two
spin–1/2 electrons can combine to form either a singlet state (total electron spin S = 0)
or a triplet state (S = 1). The operator Vel(r) can be expressed as [31]:

Vel(r) = VS(r)PS + VT (r)PT , (10.14)

where VS(r) and VT (r) are the singlet and triplet electronic interaction potentials, and
PS and PT are the projectors onto the electron–singlet and triplet subspaces.

The operator Vel depends on r and thus couples the spatial motion of the atoms to
their internal states. Furthermore, the basis states | {f1,m1, f2,m2}+ , N 〉 do not all have
a well–defined total electron spin S (see Section 10.3.3), therefore Vel causes couplings
between these states.

For a given atomic species, the electronic interaction potentials VS(r) and VT (r) which
appear in Eq. (10.14) share the same dispersive behaviour for large r (van der Waals
interaction), characterised by a power–law decay to zero of the form −C6/r

6. For smaller
values of r, VS and VT differ because of the exchange interaction Vexch, defined by

Vexch(r) = (VT − VS)/2 , (10.15)

which decays exponentially for large r (see Eq. (12.12)). The electronic potentials are
represented on Fig. 10.3 in the case of 23Na.
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S
I

Figure 10.4. Illustration of the spin recoupling phenomenon. For large interatomic separa-
tions, the electron spin of each atom couples to the corresponding nuclear spin. For small
interatomic separations, the two electron spins couple together.

10.2.5. The spin–recoupling phenomenon

The spin–recoupling phenomenon [1] is a dynamical change in the coupling scheme for
the four spins (two electron spins sj, two nuclear spins ij) involved in the collision be-
tween two atoms. Its qualitative description can be directly read off the Hamiltonian
(10.9). It is due to a competition between two terms in the Hamiltonian: (i) the hyper-
fine interaction Vhf , given by Eq. (10.10), and (ii) the exchange interaction Vexch, given
by Eq. (10.15). For large interatomic separations (r � 30 a0), Vhf dominates over Vexch

(|VT (r)−VS(r)| � ahf), and the electron and nuclear spin of each atom couple together.
On the contrary, for small interatomic separations (r � 20 a0), the exchange interaction
dominates over the hyperfine interaction: |VT (r) − VS(r)| � ahf : The electronic inter-
action tends to separate electronic singlet and triplet states, therefore the two electrons
couple together. This effect is schematically depicted on Fig. 10.4.

10.3. Block–matrix structure of the two–atom
Hamiltonian

The mathematical property underlying the spin–recoupling phenomenon is that the hy-
perfine term Vhf and the electron interaction Vel do not commute [1]. Furthermore, the
magnetic dipole coupling W commutes with neither of these two operators. Hence, there
is no basis which diagonalises the complete Hamiltonian H of Eq. (10.13). Instead, there
are bases which separately diagonalise each term of this Hamiltonian. In this section,
we describe two bases for the internal–state subspace, in which the Hamiltonian has a
simple block–matrix structure.

10.3.1. Relevance of the quantum numbers F and MF

As a first step, we assume that both the static and oscillating magnetic field are turned
off: Bstat = Bosc = 0. The two–atom Hamiltonian H of Eq. (10.13) reduces to:

H0 =
p2
r

2mr

1 + Vel(r) + Vhf . (10.16)

The two atoms carry a total of four spins: two electron spins sj and two nuclear spins
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ij. The addition of these four spins yields the total two–atom spin F :

F = s1 + i1 + s2 + i2 . (10.17)

The Hamiltonian H0 commutes with the total spin F 2 and its projection Fz along the
quantisation axis ez:

• The kinetic energy term is rotationally invariant.

• The single–atom spins sj and ij are vector operators4, and the scalar products
sj · ij are thus scalar operators, hence they commute with F 2 and Fz. Therefore,
so does Vhf .

• The electron interaction can be rewritten as [37]:

Vel(r) =

(
1

4
VS(r) +

3

4
VT (r)

)
+ (VT (r)− VS(r))

s1 · s2

~2
. (10.18)

The operator s1 · s2 is a scalar operator, and VS(r) and VT (r) depend only on r,
therefore Vel is rotationally invariant.

It is therefore relevant to use internal–state basis vectors which have well–defined quan-
tum number F and MF , which characterise the modulus of F and its projection Fz,
respectively.

In the presence of static and oscillating magnetic fields, the quantum numbers F and
MF are no longer conserved. However, we show below that the Hamiltonian H does
have a simple block–matrix structure in bases involving these quantum numbers.

10.3.2. Two bases for two spin–coupling modes

We focus on the subspace characterised by given values of the quantum numbers F and
MF . There are two distinct bases5 spanning this subspace, corresponding to the two
coupling modes represented on Fig. 10.4:

1. The two electron spins couple together (S = s1 + s2) and the two nuclear spins
couple together (I = i1 + i2), then F results from the addition of S and I. This
coupling mode results in the ‘molecular’ basis :

eM = (|S, I, F,MF 〉) , (10.19)

and corresponds to the left–hand part of Fig. 10.4.

2. The two spins on each atom couple together (fj = sj + ij), then F results from
the addition of f1 and f2. This coupling mode results in the ‘atomic’ basis :

eA = (| {f1, f2}εf , F,MF 〉) , (10.20)

and corresponds to the right–hand part of Fig. 10.4.

4Each of these four operators V satisfies the characteristic commutation relations [Fi, Vj ] =
i
∑
k εijk Vk, where εijk is the antisymmetric unit tensor.

5For a given (F,MF ) subspace, the ‘frame transformation’ linking the basis states in eA to those in
eM is conveniently expressed in terms of Wigner 9j coefficients.
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Consequences of bosonic symmetry The basis states in eM and eA are all either
symmetric or antisymmetric under the exchange of the two atoms. In order to enforce
bosonic symmetry, the ‘molecular’ basis eM only contains states with (S + I) even. In
the case of the ‘atomic’ basis eA, the (anti–)symmetric two–atom states of Eq. (10.20)
are defined by:

| {f1, f2}εf , F,MF 〉 =
1√

2(1 + δf1,f2)
(| f1, f2, F,MF 〉+ εf | f2, f1, F,MF 〉) . (10.21)

Bosonic symmetry requires that eA only contain states such that εf = (−1)f1+f2−F .

10.3.3. Analysis of the subspaces characterised by (F,MF )

Let us consider an internal–state subspace characterised by given quantum numbers
(F,MF ). The addition rules for angular momenta and the symmetry properties described
in Section 10.3.2 constrain the dimension and electron–spin properties of this subspace.

If F is odd (F = 2i, 2i− 2, . . ., or 1):
The (F,MF ) subspace has dimension 1. It is spanned by the single internal–state vector
| {f+, f−}+, F,MF 〉 = |S = 1, I = F, F,MF 〉, which is electronic–triplet.

If F is even (F = 2i+ 1, 2i− 1, . . ., or 0):
The (F,MF ) subspace has dimension 3. It is spanned by three ‘atomic’ basis states:
| {f+, f+}, F,MF 〉, | {f+, f−}−, F,MF 〉, and | {f−, f−}, F,MF 〉,
or, equivalently, by three ‘molecular’ basis states:
|S = 1, I = F + 1, F,MF 〉, |S = 0, I = F, F,MF 〉, and |S = 1, I = F − 1, F,MF 〉.
It has no well–defined total electronic spin S.

The (F even ,MF ) block is affected by a finite–size effect for F = 2i+ 1. In this case,
the first two ‘molecular–basis’ states do not exist: the (F = 2i + 1,MF ) subspace has
dimension 1 and is electronic–triplet.

Other finite–size effects affect other (F even ,MF ) blocks, but for simplicity’s sake we
shall not describe them here6.

10.3.4. Ordering of the basis states in eA and eM

Bringing together the ‘molecular’ basis states spanning the (F,MF ) subspaces as de-
scribed above, we obtain the complete ‘molecular’ basis eM, which spans all internal
states accessible to the atom pair. We order these basis states by values of MF , decreas-
ing from MF = 2i + 1 to MF = −(2i + 1). Within each subspace characterised by a
given value of MF , we order the states as shown in Table 10.1:

6However, they are accounted for in all of our results.
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• we sort the states by decreasing values of F , from F = 2i+ 1 to |MF |;

• Within each (F,MF ) subspace that is not one–dimensional, we sort them by de-
creasing values of I.

Similarly, we construct the complete ‘atomic’ basis eA by collecting the basis states
for all (F,MF ) subspaces. We order them by decreasing values of MF ; within a given
MF subspace, we order them as shown in Table 10.2:

• We sort the states by decreasing values of F .

• Within each (F,MF ) subspace that is not one–dimensional, we sort them by de-
creasing values of (f1 + f2).

10.3.5. Block–matrix structure in the ‘molecular’ basis eM

Restriction of the Hamiltonian to a stable (MF +N) subspace

The operators Vel, Vhf and VZ all commute with Fz, and do not act on the photon number.
The photon energy term ~ω a†a commutes with the photon number operator a†a, and
does not act on the atomic spins. In the case of a σ+–polarised oscillating magnetic field
Bosc, the coupling term W σ+

commutes neither with Fz nor with a†a. However, a direct
calculation yields [

W σ+

,
Fz
~

+ a†a

]
= 0 , (10.22)

which can be seen as a consequence of the conservation of angular momentum for the
system “two atoms in the presence of the magnetic field”. Therefore, for a given value of
N0, the subspace spanned by all states |S, I, F,MF , N 〉, where N is the photon number
and MF + N = N0, is stable under H. We choose N0 � 1, its exact value being
arbitrary: the physically meaningful parameter is the average magnetic field amplitude
Bosc = b0

√
N0, where b0 has been introduced in Eq. (10.4).

We write H = p2r
2mr

+ Vtot(r), where the total matrix potential Vtot(r) reads:

Vtot(r) = Vel(r) + Vhf + VZ + ~ω a†a+W . (10.23)

We are interested in a matrix representation of the restriction of Vtot(r) to the stable
subspace described above.

We find that this matrix has a simple ‘block’ structure in the ‘molecular’ basis eM

described in Section 10.3.4. This block structure is represented on Fig. 10.5. The next
few paragraphs focus on its derivation.
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Figure 10.5. ‘Block–matrix’ structure, of the restriction of H to the stable subspace spanned
by ‘molecular’ all states |S, I, F,MF , N 〉 such that MF + N = N0 (valid for a σ+–polarised
magnetic field Bosc), in the case of an alkali atom with nuclear spin i = 3/2 (such as 23Na
or 87Rb). Each elementary square corresponds to one matrix element. The black blocks
correspond to given values of MF , decreasing from MF = 4 to MF = −4. The red blocks
represent the contribution of Vel +Vhf (given values of MF and F ), the green blocks correspond
to VZ (given values of MF , S, and I), and the blue blocks correspond to W (given values of S
and I, ∆MF = ±1). All matrix elements which are not filled in with colour are zero.
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{f+, f+} {f+, f−}± {f−, f−}
F = 2i+ 1 | {f+, f+}, 2i+ 1,MF 〉
F = 2i | {f+, f−}+, 2i ,MF 〉
F = 2i− 1 | {f+, f+}, 2i− 1,MF 〉 | {f+, f−}−, 2i− 1,MF 〉 | {f−, f−}, 2i− 1,MF 〉
F = 2i− 2 | {f+, f−}+, 2i− 2,MF 〉
F = 2i− 3 | {f+, f+}, 2i− 3,MF 〉 | {f+, f−}−, 2i− 3,MF 〉 | {f−, f−}, 2i− 3,MF 〉
F = 2i− 4

...

Table 10.2. ‘Atomic’ basis states | {f1, f2}ε, F,MF 〉 in a given MF block. All states on a given
line (resp. column) have the same quantum number F (resp. {f1, f2}ε). The states are ordered
as shown in the Table, read from left to right and from top to bottom. The electronic–triplet
states (S = 1) are shown in green.

Contribution of the rotationally invariant terms

We have shown in Section 10.3.1 that the operators Vel and Vhf are rotationally invariant.
Furthermore, the photon–energy term ~ω a†a does not act on the atomic spins.

These three terms conserve F , MF , and N . Therefore, they can only mix the states
that appear in a given line of Table 10.1. Hence, they contribute the red blocks of
Fig. 10.5, each of which corresponds to a subspace characterised by given values of F
and MF .

To be more specific:

• The operator ~ω a†a only contributes diagonal matrix elements, which, within each
MF subspace, are all equal to (N0 −MF )~ω;

• The expression (10.14) for the electronic interaction Vel shows that it is diagonal
in the ‘molecular’ basis eM. For a given value of r, it contributes VT (r) along each
triplet state (typeset in green in Table 10.1), and VS(r) along each singlet state;

• The hyperfine term Vhf is not diagonal in the basis eM (although it is diagonal in
the basis eA).

Contribution of the Zeeman term

The Zeeman term VZ breaks rotational invariance, as it singles out the direction ez of
the static magnetic field: it does not conserve the total spin modulus F .

The expression (10.11) for VZ shows that it is proportional to Sz, which is the pro-
jection along z of the total electronic spin operator S. This implies that VZ conserves
the quantum numbers S, I, and MF . Additionally, Sz, and hence VZ, give zero when
applied to any singlet state. These remarks show that VZ can only mix triplet states
which belong to a given column of Table 10.1. Hence, it contributes the green blocks
of Fig. 10.5, each of which corresponds to a subspace characterised by S = 1 and given
values of I and MF .
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10. The Two–Atom Hamiltonian

Furthermore, S is a vector operator, therefore VZ obeys the vector selection rule [37]
on the quantum number F : it can have non–zero matrix elements only in between
states whose quantum numbers F1 and F2 satisfy |F1−F2| ≤ 1. The green–block matrix
elements which do not satisfy this criterion are zero, and are shown in white on Fig.
10.5.

Contribution of the magnetic dipole coupling term

The magnetic dipole coupling term W does not conserve F , MF , or N .
As pointed out in Section 10.3.5, W conserves the sum (MF +N). Furthermore, it is

a sum of two terms which involve S+ and S− (see Eq. (10.12). Hence, it conserves the
quantum numbers S and I, and it gives zero when acting on any singlet state.

The operators S± have non–zero matrix elements only in between states whose quan-
tum numbers MF1 and MF2 satisfy |MF1 −MF2| = 1. Therefore, W connects a given
triplet column of Table 10.1, belonging to a subspace with given MF , to the correspond-
ing column of Table 10.1 in the subspaces having the total spin projections MF + 1 and
MF − 1. It contributes the blue blocks on Fig. 10.5.

Finally, the S± are the ladder operators for the vector operator S, therefore W obeys
the vector selection rule on F . The blue–block matrix elements which do not satisfy this
criterion are zero, and are shown in white on Fig. 10.5.

80



11. Characterising the resonances

We consider a collision between two bosonic alkali atoms, in the presence of an oscillating
magnetic field. If this collision occurs at sufficiently low energy, it is fully characterised
by the corresponding scattering length a [1, 26]. We assume that both atoms are asymp-
totically in their lowest–energy hyperfine state. The oscillating magnetic field acts on
the internal atomic states, and it may cause a coupling to a weakly–bound dimer state
relating to different internal states. If the microwave frequency ω approaches the en-
ergy difference between the incident scattering state and a weakly–bound dimer state
(see Fig. 11.1), the pair of atoms undergoes virtual spin–flip transitions which cause a
resonant variation of the scattering length with ω.

In this chapter we show that, for low–enough amplitudes Bosc of the oscillating mag-
netic field, these resonances yield a hyperbolic divergence in the scattering length as a
function of the microwave frequency ω (see [21], reproduced in Chapter 13):

a(ω) = abg

(
1 +

∆ω

ω − ωres

)
, (11.1)

where ωres is the resonant frequency, ∆ω is the resonance width, and abg is the back-
ground scattering length (i.e. the value of the scattering length for frequencies ω which
are far from ωres; see Fig. 11.2). We show that the resonant frequency ωres is close to the
hyperfine transition frequency ∆Ehf/~, and that the resonance width ∆ω scales with
the squared amplitude B2

osc of the oscillating magnetic field.
We describe two approaches we have used to characterise microwave–induced reso-

nances. We illustrate these appproaches on the specific case of the microwave–induced
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Figure 11.1. Fano–Feshbach resonance in a collision be-
tween two atoms, induced by an oscillating magnetic
field.
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Figure 11.2. Definitions of the resonance fre-
quency ωres, the resonance width ∆ω, and the
background scattering length abg, for a hyper-
bolic microwave–induced resonance.

resonance studied in the published article of Chapter 13. We calculate the resonance fre-
quencies and widths for the bosonic alkalis 7Li, 23Na, 41K, 87Rb, and 133Cs. Our results
yield optimistic prospects for an experimental observation of these resonances using the
four latter species.

11.1. The two–subspace approach

11.1.1. Reduction to a two–subspace problem

We consider a collision involving a pair of atoms whose asymptotic state is
| f−,mf = i− 1/2; f−,mf = i− 1/2 〉 (this is the state labelled ‘bb’ on Fig. 10.2). This
two–atom state carries the quantum numbers {f−, f−} and the two–atom total spin
projection MF = 2i − 1. An inspection of Table 10.2 shows that it has a well–defined
quantum number F = 2i − 1. In terms of the molecular basis eM, it belongs to the
three–dimensional block characterised by F = MF = 2i− 1, and Table 10.1 shows that
it does not have well defined electronic and nuclear spins.

Throughout this chapter, we assume that no static magnetic field is present: Bstat =
0 and, hence, the Zeeman term VZ = 0. The coupling between the atom pair and
the oscillating magnetic field is described by the magnetic dipole coupling term W =
w1(S+a+ S−a†) of Eq. (10.12). The atom pair can either...

• absorb a photon, in which case its total spin projection MF increases by 1, or

• emit a photon, in which case its total spin projection MF decreases by 1.

The conservation of energy, applied to the system “atom pair and electromagnetic field”,
requires the emission of a photon by the atom pair to be accompanied by a decrease
in the energy of the pair. This is not possible in the present case as both atoms are
asymptotically in the lowest–energy hyperfine state f−. Therefore, the atom pair can
only absorb a photon. This process corresponds to a direct coupling of the (F = MF =
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11.1. The two–subspace approach

M=2i

M=2i-1

F=2i+1

F=2i

F=2i+1

F=2i

F=2i-1

I=2i

I=2i

Figure 11.3. Block–matrix representation, in the ‘molecular’ basis eM, of the restriction of H
to the subspaces MF = 2i− 1 and MF = 2i. The diagonal purple (MF = 2i, F = 2i+ 1), blue
(MF = 2i, F = 2i), and green (F = MF = 2i− 1) blocks represent the contribution of Vhf and
Vel, and respectively correspond to the purple, blue, and green potentials of Fig. 11.1. The red
off–diagonal blocks (S = 1, I = 2i) represent the coupling term W . The asymptotic state of
the atom pair belongs to the three–dimensional F = MF = 2i−1 subspace (green 3×3 block).

2i − 1) subspace to the (F = MF = 2i) subspace. The block–matrix structure of the
Hamiltonian H (Eq. (10.13)), restricted to these two subspaces, is shown on Fig. 11.3.

The vector selection rules enforced on W (see Section 10.3.5) imply that this operator
has no non–zero matrix element linking the subspaces (F = MF = 2i − 1) and (F =
2i+ 1,MF = 2i). Therefore, the (F = MF = 2i− 1) subspace is directly coupled by W
to only one subspace, characterised by F = MF = 2i. This makes it possible to restrict
the Hamiltonian to the four–dimensional subspace spanned by the (F = MF = 2i − 1)
and (F = MF = 2i) blocks. The resulting 4 × 4 Hamiltonian, whose block structure is
represented on Fig. 11.4, has a two–subspace structure:

• The (F = MF = 2i − 1) subspace (dimension 3), which contains the asymptotic
state of the atom pair, is the open subspace;

• The (F = MF = 2i) subspace (dimension 1) is the closed subspace;

• The coupling is due to the magnetic dipole coupling operator W .

M=2i
F=2i

M=2i-1
F=2i-1

I=2i

I=2i Figure 11.4. Block structure of the Hamiltonian H, restricted to the
subspace spanned by the (F = MF = 2i − 1) block (green) and the
(F = MF = 2i) block (blue) (basis eM). This Hamiltonian has a two–
subspace structure, where the green block is the open subspace, the
blue block is the closed subspace, and the coupling (red blocks) is due
to the magnetic dipole coupling W .
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11. Characterising the resonances

We call H0 the ‘bare’ Hamiltonian describing the two atoms in the absence of any
magnetic field (Bstat = Bosc = 0):

H0 =
p2
r

2mr

1 + Vel + Vhf . (11.2)

The results of Section 10.3.5 show that the subspaces (F = MF = 2i − 1) and (F =
MF = 2i) are both stable under H0. We introduce the restrictions Hop and Hcl of H0

to these two subspaces. Tables 10.1 and 10.2 show that the (F = MF = 2i) subspace is
one–dimensional, and that it is spanned by the electronic–triplet state

| η1 〉 = | {f+, f−}−, F = 2i,MF = 2i 〉 = |S = 1, I = 2i, F = 2i,MF = 2i 〉 . (11.3)

We also introduce the 1× 3 coupling operator Ŵ defined by:

Ŵ =
µBBosc

~
〈 η1 |S+| ζ1 〉

(
1 0 0

)
, (11.4)

where | ζ1 〉 = |S = 1, I = 2i, F = 2i− 1,MF = 2i− 1 〉 is the only state in the basis eM

which is directly connected to 〈 η1 | by S+. Assuming that the electromagnetic field
initially contains N photons (with N � 1), the two–subspace Hamiltonian of Fig. 11.4
reads:

H2sub =

(
Hcl + (N − 1)~ω Ŵ

Ŵ † Hop +N~ω

)
, (11.5)

where we have used the fact that the atom pair must absorb a photon to transit from the
open subspace to the closed subspace. Next, we note (see Table 10.1) that the closed
subspace is spanned by a single electronic–triplet state. Introducing the single–atom
hyperfine splitting ∆Ehf , the detuning ~δ = ~ω−∆Ehf of the microwave frequency with
respect to ∆Ehf , and the energy E{f−,f−} of two atoms in their ground hyperfine state
(in the absence of any magnetic field), the two–subspace Hamiltonian reduces to:

H2sub =
(
N~ω + E{f−,f−}

)
1 +

(
HT − ~δ Ŵ

Ŵ † Hop − E{f−,f−}

)
, (11.6)

where

HT =
p2
r

2mr

+ VT (r) (11.7)

is the (single–channel) triplet Hamiltonian.
An approximation for the resonance frequency ωres can be read off Equation (11.6):

the resonance occurs for frequencies close to the frequency ω0
res for which the (diagonal)

open–subspace and closed–subspace components of H2sub are equal. We recall that
the atom pair collides with the energy E{f−,f−}, which is the scattering threshold of
Hop. Furthermore, Table 10.2 shows that the closed–channel state carries the quantum
numbers {f+, f−}, which correspond to the hyperfine energy E{f+,f−} = E{f−,f−}+∆Ehf .
Calling |ET | the binding energy of the resonant (triplet) bound dimer state in the closed
channel, we thus obtain:

ω0
res = ∆Ehf − |ET | . (11.8)
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11.1. The two–subspace approach

11.1.2. Main results of the two–channel approach

We now apply the standard two–channel results to the Hamiltonian (11.6) Our goal
is to extract from H2sub information concerning the resonance frequency ωres and the
corresponding resonance width ∆ω.

The Hamiltonian (11.6) differs from the standard two–channel Hamiltonian as the
coupling operator Ŵ is a constant with respect to r, and, hence, does not vanish for
r → ∞. This causes a difference ∆ of the threshold scattering energy of H2sub with
respect to that of Hop + N~ω. This difference in threshold energies is associated with
single–atom dressed–state effects [20]. If the detuning ~δ = ~ω−∆Ehf of the microwave
frequency ω with respect to the single–atom hyperfine splitting ∆Ehf is greater than

µBBosc, then ~∆ ∼ (µBBosc)2

~δ . The two–channel results are applicable to H2sub if ∆� |ET |
and can be neglected. Near the resonance, where δ ≈ −|ET | (see Eq. (11.8)), this
condition requires µBBosc � |ET |.

In the regime where ∆ is negligible, the solution of the two–channel model within the
single–resonance approximation [1] yields the expected hyperbolic divergence (11.1) for
the scattering length a(ω) in the vicinity of the resonance. It predicts the resonance
frequency:

ωres = ω0
res + αB2

osc , (11.9)

where ω0
res is defined by Eq. (11.8), and the additional term αB2

osc is a small shift on
the resonance frequency, due to the coupling between the open and closed subspaces,
which is proportional to the square of the magnetic field amplitude. The two–channel
approach provides an expression for the coefficient α in terms of the bound–state wave-
function |ϕT 〉 and the open–channel Green’s function G+

op(E{f−f−}); however, the shift
αB2

0 is more easily obtained within the framework of the full coupled–channel approach
described in Section 11.2, and we shall not discuss the two–channel result for the coeffi-
cient α.

The expression for the resonance width involves the bare open– and closed–channel
wavefunctions. The open–channel wavefunction is the threshold–energy scattering state
|Ψ(2i−1)

k=0 〉, in the presence of N photons. For large interatomic separations, this state cor-
responds to the two–particle state | {f−, f−}, F = 2i− 1,MF = 2i− 1 〉, in which both

atoms have f = mf = i − 1/2. The closed–channel wavefunction |Ψ(2i)
0 〉 = |ϕT , η1 〉,

where | η1 〉 is defined by Eq. (11.3) and ϕT (r) is the wavefunction of the resonant
weakly–bound (triplet) dimer state, in the presence of N − 1 photons.

The two–channel model predicts the following resonance width:

~∆ω =
1

2π

mr

abg~2
(µBBosc)

2
∣∣∣〈Ψ(2i)

0 |S+|Ψ(2i−1)
k=0 〉

∣∣∣2 . (11.10)

It is proportional to the squared amplitude B2
osc of the magnetic field, and to the spin–

flip Franck–Condon factor characterising the strength of the coupling between the open
and closed channels.
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11. Characterising the resonances

7Li 23Na 41K 87Rb 133Cs (1) 133Cs (2)
Binding energy of resonant triplet state and resonance frequency
|ET |/h (MHz) 12000 200 140 25 5 · 10−3 110
ω0

res/2π (GHz) 11 16 0.12 6.8 9.2 9.1
Two–subspace approach

∆ω/2π (Hz/G2) 6 1400 350 60 −5.8 · 109 −4500

Table 11.1. Numerical values for the resonance widths ∆ω, obtained using the two–subspace
method, for the bosonic alkalis 7Li, 23Na, 41K, 87Rb, 133Cs. The binding energies |ET | of
the resonant triplet bound states are also shown. For all atoms except Cesium, the considered
bound state is the highest–energy bound state of the triplet potential. For Cesium, the columns
labelled Cs(1) and Cs(2) respectively refer to the highest and second–highest triplet bound
states.

11.1.3. Numerical results

The evaluation of the resonance widths given by Eq. (11.10) requires the numerical

calculation of the wavefunctions ϕT (r) (one channel) and Ψ
(2i−1)
k=0 (r) (three channels).

The methods used for these numerical calculations will be presented in Chapter 12. Our
numerical results for the resonance widths, obtained within the two–subspace approach
with the bosonic alkalis 7Li, 23Na, 41K, 87Rb, 133Cs, are collected in Table 11.1.

We have restricted our analysis to s–wave collisions, therefore the open– and closed–
channel wavefunctions can be expressed in terms of the corresponding radial wavefunc-
tions u

(2i−1)
k=0 and uT (r):

Ψ
(2i−1)
k=0 (r) =

Y 0
0

r
u

(2i−1)
k=0 and ϕT (r) =

Y 0
0

r
uT (r) , (11.11)

with Y 0
0 = 1/

√
4π being the spherical harmonic for l = m = 0. In terms of these radial

wavefunctions, the overlap involved in the expression (11.10) for the resonance width
reads:

〈Ψ(2i)
0 |S+|Ψ(2i−1)

k=0 〉 = 〈 η1 |S+| ζ1 〉
∫ ∞

0

dr uT (r)〈 ζ1 |u(2i−1)
k=0 〉(r) . (11.12)

The radial bound–state wavefunction uT (r), and the radial wavefunction component

〈 ζ1 |u(2i−1)
k=0 〉(r), are plotted on Figs. 11.5 for all five considered atoms. Both wavefunc-

tions show oscillations for small values of r, for which the electronic potentials VS and VT
are large and negative (see Fig. 10.3) and, hence, the kinetic energy is large. For large

values of r, the zero–energy scattering state component 〈 ζ1 |u(2i−1)
k=0 〉(r) varies linearly

with r, whereas the bound–state wavefunction uT (r) decays exponentially.
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(c) Potassium 41
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(e) Cesium 133 (2nd–highest bound state)
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(f) Cesium 133 (highest bound state)

Figure 11.5. Radial wavefunctions (arbitrary units) versus the interatomic distance r (in units
of the Bohr radius a0), for the bosonic alkalis 7Li, 23Na, 41K, 87Rb, and 133Cs. Blue curve:
radial wavefunction uT (r) of the last bound state of the Triplet Hamiltonian. Red curve:

〈 ζ1 |u(2i−1)
k=0 〉(r). Green curve: partial overlap P (r), defined by Eq. (11.13). An additional

graph (Fig. 11.5(e)) is shown for 133Cs, illustrating the overlap obtained with the second–
highest Triplet bound state.
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Figures 11.5 also show the dependence on r of the ‘partial’ overlap P (r), defined by1

P (r) =

∫ r

r0

dρ uT (ρ)〈 ζ1 |u(2i−1)
k=0 〉(ρ) , (11.13)

so that 〈Ψ(2i
0 |S+|Ψ(2i−1

k=0 〉 = 〈 η1 |S+| ζ1 〉P (r → ∞). The plots of P (r) show that, for
all considered cases except the resonance in 133Cs involving the highest triplet bound
state of (Fig. 11.5(f)), the contribution to the overlap of the small–r region (where the
wavefunctions oscillate) and the large–r region (where the wavefunctions reach their
asymptotic behaviour) have opposite signs and comparable magnitudes: this leads to a
reduction of the total overlap and, hence, to smaller resonance widths than could have
been expected by neglecting the large–r wavefunction ‘tails’.

The resonance in 133Cs involving the highest triplet bound state (see Fig. 11.5(f) and
the column labelled 133Cs(1) in Table 11.1) is particularly large. In this specific case, the
resonant bound state is very weakly bound (|ET |/Evdw ≈ 2 · 10−3, where the van–der–
Waals energy Evdw [24] is an energy scale associated with the large–r behaviour of the
electron potentials) and thus has a very large spatial extent, determined by the scattering
length aT = 2500 a0: in this particular case, the large–r contribution dominates, which
leads to a very large resonance width compared to the results obtained with all other
atoms (see Table 11.1). However, the two–channel result for this giant resonance is only
applicable for magnetic fields which satisfy µBBosc . |ET | (i.e. Bosc . 4 mG), above
which dressed–state effects affect the shape of the resonance, as explained in Section
11.2.

To our knowledge, no experimental measurement of the weakly–bound state in 133Cs
has yet been published. The large value of the triplet scattering length (aT = 2500 a0)
is a strong indication that it does exist (see Section 9.1.2). Furthermore, we interpret
the Feshbach resonances occurring in 133Cs for small static magnetic fields, analysed in
Chapter 14, as experimental evidence of its existence.

11.1.4. Narrow resonances for Lithium and Rubidium

The numerical results for the resonance widths, collected in Table 11.1, show that
microwave–induced Feshbach resonances are particularly narrow for 7Li (∆ω = 6 Hz/G2)
and 87Rb (∆ω = 60 Hz/G2). The reasons behind such narrow resonances are different
for the two atoms.

In the case of 7Li, the triplet scattering length aT , characterising collisions in the
closed channel, is negative: aT = −28 a0 [38]. Thinking along the lines of bound states
in a square–well potential (see Section 9.1.2), a negative scattering length is a good
indication that the highest bound state is deeply bound. Indeed, the binding energy
of the last triplet bound state is |ET | = h · 12 GHz, whereas the corresponding binding

1 In Eq. (11.13), the lower bound r0 is the small non–zero value of r at which the accumulated–phase
boundary condition is applied: see Chapter 12. The contribution to the overlap of the 0 < r < r0

region is neglected in the two–subspace approach; it is taken into account in the coupled–channel
approach presented in Section 11.2.
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energies for all other considered atoms are of the order of 100 MHz. The wavefunction
Ψ

(2i)
0 (r) of this deeply–bound state has a very small spatial extent, hence its overlap with

the open–channel wavefunction Ψ
(2i−1)
k=0 is also small. In accordance with Eq. (11.10),

this leads to a narrow resonance width.
In the case of 87Rb, the narrowness of the resonance stems from the near–degeneracy

of the singlet and triplet scattering lengths: aS = 90 a0 and aT = 99 a0 [39] differ
by less than 10%. Therefore, the singlet and triplet Hamiltonians have very similar
properties as far as ultracold collisions are concerned. In particular, the scattering–state
wavefunction Ψ

(2i−1)
k=0 and the bound–state wavefunction Ψ

(2i)
0 are almost eigenstates of

the same Hamiltonian, and are therefore almost orthogonal. This leads to a small overlap
for these two wavefunctions and, hence, to a narrow resonance width.

11.1.5. Limitations of the two–subspace approach

The two–subspace approach provides simple expressions for the resonance frequency
(Eq. (11.9)) and width (Eq. (11.10)). It exhibits a simple scaling with B2

osc for both of
these parameters.

However, this approach has one main limitation: it does not account for Ŵ not going
to zero for large values of r. The effect of such a ‘long–ranged’ coupling term can be
neglected for small Bosc, but it affects the shape of the resonance for larger magnetic
field amplitudes.

Furthermore, the two–subspace approach neglects a small contribution to the Franck–
Condon factor of Eq. (11.10), coming from the small–r region (see footnote 1).

In the next section, we present a more elaborate approach which properly accounts
for W not vanishing for large interatomic separations, and which does not require the
small–r part of the wavefunctions to be neglected. This new approach confirms our two–
channel results for small values of Bosc. It also allows for a straightforward calculation
of the shift αB2

osc. Finally, it enables us to explore the behaviour of the resonance in
133Cs involving the highest triplet bound state for magnetic fields larger than 5 mG.

11.2. The coupled–channel approach

In this section, we give up the simple scaling laws obtained with the two–subspace
approach of Section 11.1.1, in favour of a more accurate and more general coupled–
channel approach. We assume, as in the previous section, that the magnetic field has
no static component: Bstat = 0 and VZ = 0.

11.2.1. Hamiltonian for the coupled–channel approach

Within the framework of the two–subspace method of Section 11.1, we were only in-
terested in internal states which were connected to each other, by the magnetic dipole
coupling term W , via the absorption or emission of a single photon. However, the system
we are considering actually contains two atoms, each of which can absorb a photon.
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Figure 11.6. Block–structure of the two–atom
Hamiltonian H, restricted to the subspace
spanned by the (MF = 2i− 1) (green), (MF =
2i) (blue and purple), and (MF = 2i + 1) (or-
ange) blocks, as used in the coupled–channel
approach (8 coupled channels).

We assume, as we did in Section 11.1, that the asymptotic state of the atom pair
relates2 to both atoms having the quantum numbers f = mf = 2i − 1, in the presence
of N photons (N � 1). This asymptotic state belongs to the (MF = 2i − 1) subspace
(dimension 5). In the case of a σ+–polarised magnetic field, this subspace is connected
to the (MF = 2i) subspace through the absorption of a photon by one atom, and to the
(MF = 2i + 1) subspace through the absorption of a photon by each of the two atoms.
Therefore, we consider the restriction of the two–atom Hamiltonian H (Eq. (10.13)
to the eight–dimensional subspace spanned by the (MF = 2i − 1) block (dimension
5), the (MF = 2i) block (dimension 2), and the (MF = 2i + 1) block (dimension 1).
This restricted Hamiltonian operates on an internal–state subspace whose dimension is
Nstates = 5 + 2 + 1 = 8. The block–structure, in the basis eM, of this eight–channel
Hamiltonian is represented on Fig. 11.6.

11.2.2. Microwave–dressed two–atom states

We have already pointed out (see Section 11.1.2) that the magnetic dipole coupling
W does not vanish for small r. The coupled–channel approach accounts for the ‘long–
range’ nature of W through the use of microwave–dressed two–atom states, which we
now present.

We first introduce the r–dependent potential part Vtot(r) of the Hamiltonian H, which

is the (matrix) operator defined by H = p2r
2mr

+ Vtot(r):

Vtot(r) = Vel(r) + Vhf + ~ω a†a+W . (11.14)

The electronic interaction Vel(r) decays as −C6/r
6 for large r, therefore Vtot asymptoti-

cally reduces to an r–independent (Nstates ×Nstates) matrix V∞:

V∞ = Vtot(r →∞) = Vhf + ~ω a†a+W . (11.15)

2This assumption will be stated more accurately in Section 11.2.2.
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δ=ω-ΔEhf

E

M
F=
2i+

1

M
F=2i

MF=2i-1

Figure 11.7. Dressed–state energies, for a
given magnetic field amplitude Bosc > 0, as
a function of the frequency detuning δ. The
multiple–state structure of the (MF = 2i − 1)
and (MF = 2i) subspaces is not represented.

The operator V∞ is real and symmetric. Its eigenstates are the microwave–dressed two–
atom states. We call

eD = {|D1 〉, . . . , |DNstates 〉} (11.16)

the basis of eigenstates of V∞, ordered such that the corresponding eigenvalues satisfy
εD1 ≤ . . . ≤ εDNstates

. Note that the dressed states |Dn 〉 and the corresponding energies
εn depend on the magnetic field amplitude Bosc as well as on the microwave frequency
ω/2π.

Had no approximation been performed on the Hamiltonian H, V∞ could have been
written as a sum of one–atom operators, and therefore the microwave–dressed states
that we have just defined would have reduced to tensor products of two single–atom
microwave–dressed states. However, for the calculations presented here, this factori-
sation is only approximate, as we have restricted H to the subspace spanned by the
Nstates = 8 internal states having MF = 2i− 1, 2i, or 2i+ 1 (see Section 11.2.1).

In the absence of the oscillating magnetic field (Bosc = 0), the basis states in eD

coincide with those of the ‘atomic’ basis eA (although their ordering is not the same
in eA and eD, as the states are not sorted by increasing energies in Table 10.2). For
nonzero, albeit small3, values of Bosc, the basis states in eA and eD remain close to each
other. For larger values of Bosc, the “dressed” states in eD are linear combinations of the
“bare” states in eA, as illustrated on Fig. 11.7 [30].

The relevance of the dressed–state basis eD stems from the fact that, when projected
into it, the Nstates coupled components of a Schrödinger equation associated with H
asymptotically decouple. Therefore, the eigenstates of H can be sought such that the
asymptotic internal state of the atom pair is one of the microwave–dressed states in eD.

We wish to calculate the s–wave scattering length characterising the collision, in the
presence of the oscillating magnetic field, between two atoms whose asymptotic two–
atom internal state is |D1 〉 — we choose the lowest–energy dressed state so as to
avoid inelastic processes causing losses into lower–energy channels [33]. This scatter-
ing length can be extracted from the asymptotic behaviour of the corresponding zero–
energy scattering–state wavefunction. The sought Nstates–component wavefunction |Ψ 〉

3More precisely, the dressing of the atomic states by the microwave magnetic field is negligible if the
Rabi frequency µBBosc/~ is much smaller than the amplitude |δ| of the detuning of the microwave
frequency with respect to the hyperfine transition frequency.
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satisfies both the stationary Schrödinger equation:

H|Ψ 〉 = εD1 |Ψ 〉 (11.17)

and the large–r boundary conditions [37]:

〈D1 |Ψ(r) 〉 =
r − a
r

(entrance channel) (11.18a)

〈Dp |Ψ(r) 〉 = Ap
exp(−κpr)

r
for 2 ≤ p ≤ Nstates (closed channels), (11.18b)

where ~κp = (2mr(ε
D
N − εD1 ))1/2 for all closed channels p > 1. In other words, for large

interatomic separations r, the radial wavefunction reduces to the usual linear form (r−a)
in the entrance channel (where, asymptotically, no kinetic energy is present) and decays
exponentially in all closed channels. In Eqs. (11.18), the real numbers Ap and the real
scattering length a are initially unknown: their values are extracted from the asymptotic
behaviour of the wavefunction Ψ(r) after its numerical calculation.

In order to fully define the wavefunction |Ψ 〉, an additional condition must be speci-
fied, which enforces that Ψ(r) be regular at r = 0 [25]:

lim
r→0

(rΨ(r)) = 0 . (11.19)

Technical difficulties, arising from the electronic potentials VT and VT being less well–
known for small values of r, lead us to replace the condition (11.19) by the “accumulated–
phase” boundary condition [31], applied at a non–zero minimal radius r0 (see Chap-
ter 12), but this more elaborate condition has a similar interpretation.

The Schrödinger equation (11.17), along with the boundary conditions for large r
(Eqs. (11.18)) and small r (Eq. (11.19), defines a two–point boundary–value problem
which we solve numerically using the methods described in Chapter 12.

11.2.3. Results for small oscillating magnetic fields

For a given atomic species and a given value of the magnetic field amplitude Bosc, we
solve the Schrödinger equation of Section 11.2.2 for various values of the microwave
frequency ω close to the zero–field resonance frequency ω0

res. Figure 11.8 shows plots
of the scattering length a(ω), calculated using this method, with 23Na and the two
magnetic field amplitudes Bosc = 0.25 G and Bosc = 1 G. These plots confirm that the
scattering length diverges hyperbolically near the resonance. They also confirm that
the effect of increasing the magnetic field amplitude is two–fold, as predicted by the
two–subspace approach in the small–Bosc regime: (i) the resonance width increases, and
(ii) the resonance frequency is shifted away from ω0

res.
For each considered atomic species, we have checked that, in the small–Bosc regime,

the resonance width ∆ω and the frequency shift (ωres − ω0
res) are proportional to B2

osc

(see Figs. 11.9), as predicted by the two–subspace approach (Eqs. (11.9) and (11.10)).
The numerical results for this approach are summarised in Table 11.2. The results

for the resonance widths are in very good agreement with the two–subspace results of
Table 11.1. Furthermore, the results for the resonance widths and shifts are of the same
order as those obtained with the two–square–well model of Chapter 9.
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Figure 11.8. Scattering length a(ω) for
Sodium atoms, near the resonance occurring
at ω0

res/2π = 1600 MHz, for two values of the
magnetic field amplitude: Bosc = 0.25 G (blue)
and Bosc = 1 G (green).

7Li 23Na 41K 87Rb 133Cs (1) 133Cs (2)
Binding energy of resonant triplet state and resonance frequency
|ET |/h (MHz) 12000 200 140 25 5 · 10−3 110
ω0

res/2π (GHz) 11 16 0.12 6.8 9.2 9.1
Full–fledged 8-channel numerics

α (kHz/G2) 0.33 6.8 21 120 −830 · 103 30
∆ω8ch/2π (Hz/G2) 3.2 1400 350 60 −5.8 · 109 −4800

Comparison with the two–square–well model

β = ∆ω8ch

∆ω2SW
0.97 1.1 1.6 0.60 1.7 n/a

Table 11.2. Characteristics of the microwave–induced Feshbach resonances in 7Li, 23Na, 41K,
87Rb, and 133Cs involving the triplet bound states with energies ET , calculated using the
coupled–channel method. The resonance width ∆ω is proportional to B2

0 , and it is given for
B0 = 1 G.
The column labelled “133Cs (1)” relates to the resonance in Cesium involving the highest triplet
bound state, whereas the column labelled “133Cs (2)” relates to the resonance involving the
second–highest triplet bound state.
The coupled–channel results of this Section are compared to the results of the two–square–well
model presented in Table 9.2. The ratio β = ∆ω8ch

∆ω2SW
of the resonance widths obtained with the

two approaches depends on the considered resonance but always remains of order 1.

93



11. Characterising the resonances

 0

 40

 80

 0  1  2  3  4  5

∆
ω

/(
2

π
) 

(H
z)

Amplitude of oscillatory field B0 (G)

∆ω(1G)/2π*B0
2

Coupled channels

(a) Lithium 7, ∆ω/2π = 3.2 Hz/G2

 0

 1000

 2000

 0  10  20  30

∆
ω

/2
π

 (
k

H
z)

Amplitude of oscillatory field B0 (G)

∆ω(B0=1G)/2π*B0
2

Coupled channels

(b) Sodium 23, ∆ω/2π = 1400 Hz/G2
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(e) Cesium 133, ∆ω/2π = −4800 Hz/G2

 0

 5

 10

 0  1  2  3  4  5

(ω
re

s-
ω

re
s0

)/
2

π
 (

k
H

z)

Amplitude of oscillatory field B0 (G)

α*B0
2

Coupled channels

(f) Lithium 7, α = 0.33 kHz/G2
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(g) Sodium 23, α = 6.8 kHz/G2
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(h) Potassium 41, α = 21 kHz/G2
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(i) Rubidium 87, α = 120 kHz/G2
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(j) Cesium 133, α = 30 kHz/G2

Figure 11.9. Characterisation of the mw–induced resonances in 7Li, 23Na, 41K, 87Rb, and
133Cs(2) using the coupled–channel method. Figures (a) to (e) show the resonance widths
∆ω(Bosc)/2π as a function of Bosc. Figures (f) to (j) show the shifts (ωres − ω0

res)(Bosc)/2π on
the resonance frequencies. Both the widths and the shifts are proportional to B2

osc for small
magnetic field amplitudes.
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Figure 11.10. Scattering length a(ω), calculated using the full coupled–channel approach in
the case of 87Rb atoms with Bosc = 1 G. The first–order resonance (intersection A of Fig. 11.11)
is visible at δ/2π = −25 MHz. The two second–order resonances (intersections B and D) yield
small features at δ/2π = −12.5 MHz and +13 MHz.

A bird’s–eye view of the dependence a(ω)

The relevance of the coupled–channel approach is not limited to the vicinity of the zero–
field resonance frequency ω0

res: it can be used to evaluate the scattering length a for any
microwave frequency ω.

Figure 11.10 shows a plot of a as a function of the detuning δ (defined in Sec-
tion 11.1.2), calculated for a collision involving two 87Rb atoms. The plot explores a
50 MHz–wide range of detunings centred on zero. The main resonance is clearly visible
near δ = −25 MHz.

The plot reveals that the value of the background scattering length changes contin-
uously from an asymptote which is > 100 a0 for negative detunings to another which
is ≈ 99 a0 for positive detunings. This is a dressed–state effect [30] which can be un-
derstood by examining the dressed–state energy–level diagram of Fig. 11.7, keeping in
mind that, for large r, the colliding atoms are asymptotically the lowest–energy dressed
state. For δ < 0, this state is close to the MF = 2i− 1 asymptote, and the background
scattering length is aF=MF=2 = 100.5 a0, in agreement with the value observed on the
δ < 0 part of Fig. 11.10. On the other hand, for δ > 0, the lowest–energy dressed
state lies close to the MF = 2i + 1 asymptote: the (MF = 2i + 1) subspace is purely
electronic–triplet, therefore the background scattering length is aT = 99 a0, as confirmed
by the δ > 0 part of Fig. 11.10.

Two additional small features are visible on Fig. 11.10: one for δ ≈ −12.5 MHz and
the other for δ ≈ +12 MHz. These are narrow second–order resonances, whose causes
are explained on Fig. 11.11. The narrow resonance for δ < 0 is due to the second–order
coupling between the incident atoms in the (MF = 2i− 1) subspace, in the presence of
N photons, and the triplet bound state in the (MF = 2i+ 1) subspace, in the presence
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of (N − 2) photons: it corresponds to the intersection B on Fig. 11.11. The narrow
resonance for δ > 0 is due to the second–order coupling between the incident atoms in
the (MF = 2i + 1) subspace, in the presence of (N − 2) photons, and the bound state
in the (MF = 2i − 1) subspace, in the presence of N photons: it corresponds to the
intersection D.

The intersection C does not yield a first–order resonance for positive detunings, be-
cause it corresponds to a coupling between the subspaces (MF = 2i) and (MF = 2i+ 1).
Both of these subspaces are purely electronic–triplet, therefore the spin–flip Franck–
Condon factor involves an overlap between two wavefunctions which are eigenstates of
the same Hamiltonian: these two wavefunctions are orthogonal, leading to a Franck–
Condon factor which is zero and thus to a vanishing resonance width.

11.2.4. A giant resonance in Cesium

The coupled–channel channel allows us to explore the large–Bosc behaviour of the res-
onance in 133Cs involving the highest triplet bound state (|ET | = h · 5 kHz, columns
labelled “Cs(1)” in Tables 11.1 and 11.2). In this particular case, Eqs. (11.9) and (11.10)
are inapplicable for magnetic field amplitudes larger than |ET |/µB = 4 mG.

Graphs of the scattering length a(δ), calculated using the coupled–channel method
for various values of Bosc, are shown on Fig. 11.12. For small amplitudes (Bosc = 0.1 mG
and 1 mG), the behaviour of a(δ) is similar to the one shown on Fig. 11.10 for 87Rb: the
main resonance at δ = h·(−5) kHz, the ‘step’ corresponding to the change in background
scattering lengths near δ = 0, and the two narrow second–order resonances are all visible
on the plot for Bosc = 1 mG. For larger magnetic field amplitudes (Bosc ≥ 5 mG), the
scattering length becomes very large for ~ω ≈ ∆Ehf , but the resonance is no longer
hyperbolic: the δ < 0 asymptote corresponds to aF=MF=6 = −2500 a0, whereas for
large δ > 0 the scattering length goes to aT = +2500 a0. This ‘giant’ resonance has
an approximate width of the order of 1 MHz for Bosc = 1 G. Its non–standard shape
results from the interplay between (i) the two–atom resonance and (ii) the (single–
atom) dressed–state effect leading to different background scattering lengths for δ < 0
and δ > 0.

11.2.5. Applicability in more general situations

The coupled–channel approach has a wide applicability. We have used it to characterise
the resonance involving the highest–energy triplet bound state in 133Cs for more realis-
tic experimental parameters, which lead to a greater number of coupled channels and
require inelastic collisions to be accounted for: see Chapter 15. We have also used it to
characterise static–field Feshbach resonances occurring in 133Cs for very small magnetic
field amplitudes: these static–field resonances are described in Chapter 14.
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Figure 11.11. Asymptotic energy–level diagram for the atom pair in the presence of the
electromagnetic field. The solid lines show the threshold energies of the (MF = 2i − 1) (N
photons), (MF = 2i) (N − 1 photons), and MF = 2i + 1 (N − 2 photons) subspaces. The
dashed lines show the energies of the triplet bound state in each of these subspaces. The dotted
red line shows the incident state of the two atoms (it is different for δ < 0 and δ > 0). The
intersection A yields the main resonance. The intersections B (δ < 0) and D (δ > 0) yield
narrow, second–order resonances. The resonance corresponding to intersection C is suppressed,
because it corresponds to a connection between two purely electronic–triplet subspaces.
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Figure 11.12. The “giant” resonance in Cesium, involving the highest triplet bound state
(|ET | = h · 5 kHz = µB · 4mG). The scattering length a is expressed in units of 1000 a0.
For small magnetic field amplitudes (Bosc . 5 mG), the resonance is hyperbolic, with ∆ω ≈
−5.8 GHz/G2. For larger magnetic field amplitudes, the resonance is contaminated by single–
atom dressed–state effects and is no longer hyperbolic. For Bosc = 1 G, the non–hyperbolic
resonance has an approximate width of the order of 1 MHz.

11.3. Experimental prospects

We wish to use the microwave–induced resonances characterised in this chapter as an
experimental tool to manipulate the collisional properties of ultracold atoms. Ideally,
they should enable experimentalists to tune a to any desired value and sign.

In order for this to be possible, the resonance width ∆ω has to be larger than all
experimental frequency broadenings. Two noteworthy sources of broadening are (i) stray
static magnetic fields and (ii) the inhomogeneity of the microwave transition frequency
due to atomic interactions [13].

The fluctuations in the ambient static magnetic field can be brought down to less
than 1 mG using a standard magnetic field shield (advanced setups used in atomic clock
experiments [40] lead to fluctuation amplitudes which are smaller than 1µG). Magnetic
field fluctuations of 1 mG lead to a frequency broadening of the order of 1 kHz (within a
factor of 2, depending on the Landé factors of the sublevels involved in the resonance).

The inhomogeneity of the mw transition is also expected to be of the order of 1 kHz.
Consequently, in order for a resonance to be experimentally relevant, its width has to

be greater than 1 kHz. Recalling that the resonance width scales with B2
osc, the question

amounts to which magnetic field amplitudes can be produced in the desired microwave
frequency range. Using small resonant transmitting loop antennas in the near–field
regime [41, 42], it is possible to reach amplitudes Bosc ∼ 10 G using a reasonable incident
electromagnetic power (below 10 W).

For the magnetic field amplitude Bosc = 10 G, the widths of all identified resonances
except the one involving 7Li (see for instance Table 11.2) are much larger than 1 kHz.
Our results thus yield optimistic prospects for an experiment with all considered species
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except 7Li. The absence of a broad microwave–induced resonance for 7Li is not a drastic
issue, as a broad static–field Feshbach resonance is available for this atom [22].

Other experimental schemes are being considered for the observation of microwave–
induced resonances. For example, the microwave magnetic field could also be ‘sprayed’
onto the atoms from the end of a waveguide connected to a powerful mw amplifier
[43]. Alternatively, the experiment could be performed in a cavity which is reflective
for mw fields but transparent in the optical domain [44]. The most promising scheme
presently seems to be the observation of the large resonance in 133Cs using an atomic
fountain clock. The experimental parameters relevant for such an observation lead to a
more involved theoretical description: a greater number of coupled channels is involved,
and inelastic collisions must be taken into account. The results of this more elaborate
calculation are presented in Chapter 15.

11.4. Comparison with RF–induced Feshbach resonances

To our present knowledge, the first published proposals for the manipulation of ultracold
scattering properties using oscillating electromagnetic fields date back to 1996: (i) Mo-
erdijk, Verhaar, and Nagtegaal reported a theoretical analysis of resonances induced by
radio–frequency magnetic fields [20], and (ii) Fedichev et al. proposed using optically–
induced Feshbach resonances [17].

In this section, we focus on the work reported in [20] by Moerdijk et al.. In the fourth
section of that paper, the authors consider 23Na atoms in a static magnetic trap. They
assume that all of the atoms are in the ground hyperfine manifold (f = i−1/2 = 1), and
that the static magnetic field amplitude at the centre of the trap is zero. They study
the effect of an additional radio–frequency magnetic field on atoms at the centre of the
trap, and they focus on the RF frequency4 ω/2π = 7 MHz. They perform coupled–
channel calculations of the scattering matrix characterising a cold collision between two
Sodium atoms which are asymptotically both in the state | f = 1,mf = −1 〉, for the
fixed RF frequency ω/2π = 7 MHz and for Rabi frequencies ωr/2π ranging from 0 to
700 MHz. They report a series of narrow scattering resonances (whose widths ∆ωr/2π
are of the order of 100 Hz for temperatures of the order of T = 3µK) occurring for
ωr/2π ≈ 60 MHz, 200 MHz, . . . , and a broader resonance occurring for ωr/2π = 255 MHz
(whose width is ∆ωr/2π ≈ 40 kHz at the same temperature). Their plot of the S–matrix
element characterising collisions in the presence of the RF field is shown on Fig. 11.13.

To our knowledge, these resonances have not yet been observed experimentally. The
broad resonance occurs for a Rabi frequency ωr/2π which is 36 times larger than the RF
frequency ω/2π = 7 MHz. Its observation will require the use of RF amplitudes of the
order of 500 G. In contrast, the microwave–induced resonance involving Sodium which
we have characterised in Sections 11.1 and 11.2 have comparable widths for magnetic field
amplitudes of the order of Bosc = 5 G, and it can be made even broader by increasing the
oscillating magnetic field amplitude as its width is proportional to B2

osc (see Fig. 11.9(b)).

4The static magnetic field is zero, hence the detuning δ from the Zeeman splitting is equal to ω.
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Figure 11.13. Real part of the S–
matrix element characterising a col-
lision between two Sodium atoms in
the state | f = 1,mf = −1 〉 in the
presence of a radiofrequency magnetic
field, as a function of the Rabi fre-
quency ωr. No static field is present
(Bstat = 0), the RF frequency is
ω/2π = δ/2π = 7 MHz and the col-
lision energy is E/kB = 100µK.
(Reproduced from [20].)

This large discrepancy between the magnetic field amplitudes required to achieve the
same resonance width is due to a difference in the nature of the coupling which causes the
resonance. In the case of the resonances we have studied in Sections 11.1 and 11.2, the
incident channel is coupled to the resonant two–atom bound state by the magnetic dipole
coupling W. In contrast, we will show in Section 11.4.2 that the resonances reported in
[20] cannot be due to the magnetic dipole coupling alone: this term affects the energies of
the resonant states but it cannot cause a coupling between them. The coupling causing
these latter resonances is provided by the weak spin–dependent interaction Vss(r) (see
Section 10.2.2). They can therefore be seen as the oscillating–field equivalent of ‘narrow’
Feshbach resonances [1] (whereas the microwave–induced resonances we describe are
analogous to ‘broad’ resonances as they do not involve Vss).

11.4.1. Hamiltonian in the lower hyperfine manifold

In this section and in Section 11.4.2, we neglect the spin–dependent interaction Vss, just
like in Sections 11.1 and 11.2. The two–atom Hamiltonian thus conserves the spatial
angular momentum ` (see Section 10.2). For the sake of clarity, we focus on s–wave
collisions, but the argument holds for any (even) value of `. The effect of the anisotropic
coupling term Vss will be considered in Section 11.4.3.

Following [20], we restrict our analysis to the lower hyperfine manifold. The nuclear
spin of Sodium atoms is i = 3/2, therefore there are three single–atom states in this
manifold: these are the | f = 1,mf 〉, with mf = +1, 0, and −1. We are considering
s–wave collisions (i.e. the angular momentum is ` = 0), for which the two–atom internal
states should be symmetric, therefore the quantum number F , giving the total two–atom
spin, may be either 0 or 2 (but not 1: see Section 10.3.2). Hence, the lower hyperfine
manifold (f1 = 1, f2 = 1) comprises six two–atom states:

• 5 states having F = 2: the | f1 = 1, f2 = 1, F = 2,MF 〉, with −2 ≤MF ≤ 2;

100



11.4. Comparison with RF–induced Feshbach resonances

• 1 state having F = 0: | f1 = 1, f2 = 1, F = 0,MF = 0 〉.
In order to determine the state of the system “two atoms in the presence of the radio–

frequency magnetic field” completely, the quantum number N , giving the number of
photons, has to be specified as well. For the sake of simplicity, we assume that the
radio–frequency magnetic field is σ−–polarised56. In this context, the magnetic dipole
coupling term is W = W σ− and reads:

W σ− = w1 (S+a† + S−a) , (11.20)

where w1 is defined by Eq. (10.7). The conservation of angular momentum implies that
the quantum number N0 = −MF + N is conserved (see Section 10.3.5). Therefore, we
choose a value7 for N0 and we restrict the Hamiltonian H of Eq. (10.13) to the six–
dimensional stable subspace spanned by the states
| f1 = 1, f2 = 1, F = 2,MF , N = N0 +MF 〉 (−2 ≤MF ≤ 2) and
| f1 = 1, f2 = 1, F = 0,MF = 0, N = N0 〉.

Just like in Section 10.3.5, we write H = p2r
2mr

+ Vtot(r), where the total potential
matrix Vtot(r) reads:

Vtot(r) = Vel(r) + Vhf + VZ + ~ω a†a+W . (10.23)

We are interested in the block structure of the matrix representation of Vtot(r) restricted
to the stable subspace defined above.

• The electronic–interaction term Vel conserves both F and MF , and it thus only
contributes diagonal matrix elements.

• All of the six relevant states bear the hyperfine quantum numbers f1 = f2 = 1,
therefore the hyperfine term Vhf only contributes a constant to the Hamiltonian
(Vhf = −5

2
ahf 1).

• The photon–energy term ~ω a†a contributes the usual diagonal matrix elements.

• The Zeeman term VZ obeys the vector selection rule on F (see Section 10.3.5),
therefore it does not couple the (F = 2) subspace to the F = 0 state. Furthermore,
it conserves the total spin projection MF , therefore it only contributes diagonal
matrix elements.

• The magnetic dipole coupling term W also obeys vector selection rules, hence, it
does not couple the (F = 2) and (F = 0) subspaces. It contributes off–diagonal
coupling terms within the (F = 2) subspace (represented in blue on Fig. 11.14).

5This assumption is not a requirement: any polarisation which is perpendicular to the quantisation
axis can be seen as a linear combination of σ+ and σ− polarisations. In the context of the evaporative
cooling of Sodium atoms mentioned in [20], the resonant term is the second one, because the low–
field–seeking single–atom state | f = 1,mf = −1 〉 has a higher energy than the untrapped states
| f = 1,mf = 0 〉 and | f = 1,mf = +1 〉 [45].

6This polarisation is defined by the vector eσ− = (ex − iey)/
√

2: see also Fig. 15.1.
7We choose N0 � 1, its exact value being arbitrary: see Section 10.3.5.
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Figure 11.14. Block–matrix structure of the restriction of
the radial two–atom Hamiltonian(Eq. 10.13) to the (f1 =
1, f2 = 1) hyperfine manifold for two spin–3/2 alkali atoms
such as 23Na. More specifically, we consider the restric-
tion of H to the stable six–dimensional subspace spanned
by the states | f1 = 1, f2 = 1, F = 2,MF , N = N0 −MF 〉
and | f1 = 1, f2 = 1, F = 0,MF = 0, N = N0 〉. The r–
dependent part of the Hamiltonian is diagonal, and it is the
same for all (F = 2) states (red diagonal matrix elements).
The off–diagonal blue blocks in the (F = 2) subspace are
due to the magnetic dipole coupling term W .

Finally, we point out an additional property of the (diagonal) matrix elements of Vel

within the (F = 2) subspace. These matrix elements are expressed in terms of the triplet
and singlet electronic potentials as:

Vel
F=2,MF (r) = 〈 f1 = 1, f2 = 1, F = 2,MF |Vel(r)| f1 = 1, f2 = 1, F = 2,MF 〉 =

VT (r)
[
|〈 f1 = 1, f2 = 1, F = 2,MF |S = 1, I = 3, F = 2,MF 〉|2

+ |〈 f1 = 1, f2 = 1, F = 2,MF |S = 1, I = 1, F = 2,MF 〉|2
]

+VS(r) |〈 f1 = 1, f2 = 1, F = 2,MF |S = 0, I = 2, F = 2,MF 〉|2
(11.21)

The values of the scalar products 〈 f1 = 1, f2 = 1, F = 2,MF |S, I, F = 2,MF 〉 appear-
ing on the right–hand side of Eq. (11.21) are independent of the total spin projection
MF [37]. Therefore, the (diagonal) matrix element V F=2

el (r) is the same for all of the
F = 2 states8 | f = 1, f = 1, F = 2,MF 〉.

The block structure of the restriction of the Hamiltonian to the lower hyperfine man-
ifold (f1 = 1, f2 = 1) is illustrated on Fig. 11.14. The important properties of this block
structure can be summarised as follows: (i) The (F = 2) and (F = 0) subspaces are
uncoupled, and (ii) within the F = 2 subspace, the electronic interaction Vel(r) is purely
diagonal and does not depend on MF (Vel(r) = V F=2

el (r) 1F=2).

11.4.2. Absence of resonances due to the magnetic dipole coupling

The goal of this section is to justify that the magnetic dipole coupling W alone cannot
cause a resonance within the lower hyperfine manifold. As in Section 11.4.1, the effect
of the spin–dependent coupling term Vss is neglected.

Let us assume that a resonance caused by W occurs between the open channel | op 〉
and the closed channel | cl 〉. The two–subspace approach predicts that the resonance
width ∆ω is proportional to the strength of the coupling between the two channels (see

8This result is a consequence of the rotational invariance of the electronic interaction Vel. In particular,
it implies that the scattering length a(F = 2) does not depend on the total spin projection MF [46].
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Eq. (11.10) and [1]):
∆ω ∝ |〈Ψcl |W |Ψop 〉|2 , (11.22)

where |Ψop 〉 and |Ψcl 〉 are the wavefunctions in the open and closed channels, re-
spectively. The decoupling between the (F = 0) and (F = 2) subspaces, described
in Section 11.4.1, makes it possible to choose open– and closed–channel wavefunctions
which have a well–defined quantum number F .

If the wavefunctions |Ψop 〉 and |Ψcl 〉 correspond to different values of F (i.e. one of
them has F = 2 and the other has F = 0), the matrix element on the right–hand side
of Eq. (11.22) is zero because W does not connect the (F = 2) and (F = 0) subspaces.

We now assume that |Ψop 〉 and |Ψcl 〉 bear the same quantum number F . For the sake
of definiteness, we take F = 2 (but the argument also holds for F = 0). The operator
V F=2

el (r) not depending on the spin projection MF makes it possible to choose open–
and closed–channel wavefunctions of the form:

|Ψop(r) 〉 = ϕF=2
op (r)|χF=2

op 〉 and |Ψcl(r) 〉 = ϕF=2
cl (r)|χF=2

cl 〉 , (11.23)

where |χF=2
op 〉 and |χF=2

cl 〉 are two (RF–dressed) two–atom internal states belonging
to the (F = 2) subspace, and the (single–channel) spatial wavefunctions ϕF=2

op (r) and
ϕF=2

cl (r) are both eigenfunctions of the spatial Hamiltonian

HF=2
spatial = p2

r/2mr + V F=2
el (r) . (11.24)

The open–channel wavefunction is a scattering state of HF=2
spatial, and the closed–channel

wavefunction is a bound state of the same Hamiltonian. Two different eigenfunctions
of the same (Hermitian) Hamiltonian are always orthogonal, hence 〈ϕF=2

op |ϕF=2
cl 〉 = 0.

Thus, the resonance width is zero:

∆ω ∝
∣∣〈χF=2

op |W |χF=2
cl 〉

∣∣2 ∣∣〈ϕF=2
op |ϕF=2

cl 〉
∣∣2 = 0 , (11.25)

which finishes the proof that the magnetic dipole coupling term W alone cannot cause
any resonance within the (f = 1, f = 1) hyperfine manifold.

11.4.3. Resonances due to the spin–dependent interaction Vss

We have justified in Section 11.4.2 that the magnetic dipole coupling W alone cannot
cause resonances within the lower hyperfine manifold (f1 = 1, f2 = 1). We now justify
that the resonances reported by Moerdijk et al. [20] are due to the spin–dependent inter-
action Vss(r) (see Section 10.2), and we identify the resonant two–atom states yielding
the resonances visible on Fig. 11.13.

The complete two–atom Hamiltonian

The complete two–atom Hamiltonian, including Vss(r), reads:

Hcomplete =
p2
r

2µ
+

`2

2µr2
+ Vtot(r) + Vss(r) = H + Vss(r) , (11.26)

103



11. Characterising the resonances

where ` is the angular momentum of the reduced particle, the operator Vtot(r) is defined
by Eq. (10.23), and H is the Hamiltonian introduced in Section 11.4.1. The spin–
dependent interaction Vss(r) can be expressed as [47]:

Vss(r) = f(r) [s1 · s2 − 3(s1 · r̂)(s2 · r̂)] . (11.27)

It is anisotropic and, hence, couples partial waves with different angular momenta ` [7];
therefore, the centrifugal term `2/2µr2 is included in Eq. (11.26) and in H.

We apply the two–channel model to the Hamiltonian Hcomplete (see also Section 11.1
and [1]), considering H as the bare Hamiltonian and Vss as the coupling operator.

Choice of the open– and closed–channel wavefunctions

The symmetry considerations presented in Sections 11.4.1 and 11.4.2 fully apply to the
bare Hamiltonian H. Thus, the bare open– and closed–channel wavefunctions can be
chosen within specific (f1 = f2 = 1, F,N0, `) subspaces, where the quantum number
F gives the total (electronic and nuclear) two–atom spin, the integer N0 specifies the
RF–dressed manifold, and the partial–wave index ` determines the angular momentum
of the reduced particle.

The incident state used in [20] describes a collision of two atoms which, for large
separations, are both in an RF–dressed state relating to | f = 1,mf = −1 〉, with the
incident energy Einc = kB · 100µK. This two–atom wavefunction has components with
angular momenta ` = 0, 2, . . . We choose the open channel to be the component having
the angular momentum `op, which is of the form:

|Ψ(F=2,Nop
0 ,`op)

op (r) 〉 = ϕ(F=2,`op)
op (r)|χ(F=2,Nop

0 )
op 〉 , (11.28)

where |χ(F=2,Nop
0 )

op 〉 is an RF–dressed two–atom state belonging to the (f1 = f2 = 1, F =

2, Nop
0 ) subspace and the (single–channel) spatial wavefunction ϕ

(F=2,`op)
op (r) is the scat-

tering state of HF=2,`op

spatial with the energy Einc, the spatial Hamiltonian H
(F=2,`)
spatial being

defined by:

H
(F=2,`)
spatial =

p2
r

2mr

+
`(`+ 1)

2mrr2
+ V

(F=2)
el (r) . (11.29)

The closed–channel wavefunction may belong to any subspace (f1 = f2 = 1, F,N cl
0 , `

cl)
which is coupled to the open–channel state by Vss. In particular, the quantum number
F must be 2 or 0, and the partial wave `cl must be even. According to [48], the two
highest bound states of two Sodium atoms satisfying these conditions are F = 2 states:

• The state | ν = 15, ` = 0, SI = (13), F = 2 〉 has the binding energy h · 90 MHz;

• The state | ν = 14, ` = 4, SI = (13), F = 2 〉 has the binding energy h · 900 MHz.

Our aim is to show that the RF–induced resonances visible on Fig. 11.13 are due to these
two weakly–bound states. For that purpose, we consider a closed–channel wavefunction
of the form:

|Ψ(F=2,Ncl
0 ,`

cl)
cl (r) 〉 = ϕ

(F=2,`cl)
cl (r)|χ(F=2,Ncl

0 )
cl 〉 , (11.30)
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where |χ(F=2,Ncl
0 )

cl 〉 is an RF–dressed two–atom state in the (f1 = f2 = 1, F = 2, N cl
0 , `

cl)

subspace (where `cl = 0 or 2), and the (single–channel) spatial wavefunction ϕ
(F=2,`cl)
cl (r)

is a bound state of H
(F=2,`cl)
spatial .

RF–dressed energies of the open– and closed–channel wavefunctions

We now evaluate the ‘bare’9 energies of the open–channel state |Ψ(F=2,Nop
0 ,`op)

op 〉 and the

closed–channel state |Ψ(F=2,Ncl
0 ,`

cl)
cl 〉 as a function of the Rabi frequency ωr.

Within a given (f1 = f2 = 1, F = 2, N0, `) subspace, the ‘bare’ Hamiltonian H reads:

H = H
(F=2,`)
spatial + V (F=2,N0)

∞ , (11.31)

where H
(F=2,`)
spatial is defined by Eq. (11.29), and V

(F=2,N0)
∞ is given by:

V (F=2,N0)
∞ = (−5

2
ahf +N0 ~ω) + ~ω Fz +

µBBosc√
N0

(S+a† + S−a) . (11.32)

The operator H
(F=2,`)
spatial only acts on the spatial part of the wavefunction, whereas the

operator V
(F=2,N0)
∞ only acts on the internal–state part. Consequently, the energy of each

of the two bare states (Eqs. (11.28) and (11.30)) is a sum of two terms, corresponding
to the contributions of the spatial and internal–state parts of the wavefunction.

The contribution of the spatial part is an eigenvalue of H
(F=2,`)
spatial and, hence, does not

depend on the magnetic field amplitude.
The contribution of the internal–state part is an eigenvalue of V

(F=2,N0)
∞ , which does

depend on the magnetic field amplitude. We wish to express this dependence in terms
of the Rabi frequency ωr, defined by ~ωr = −

√
2µBBosc/4 [20]. The Wigner–Eckart

theorem [25] shows that the restriction of the vector operator S to the subspace (f1 =

f2 = 1, F = 2) satisfies S = −F /4. The operator V
(F=2,N0)
∞ thus reduces to:

V F=2,N0
∞ = (−5

2
ahf +N0 ~ω) + ~ω Fz +

~ωr√
2N0

(F+a† + S−a) . (11.33)

The diagonalisation of this operator within the five–dimensional (f1 = f2 = 1, F =
2, N0, `) subspace yields five RF–dressed states, whose energies are represented on Fig. 11.15
as a function of ωr, for the fixed RF frequency ω/2π = 7 MHz.

We first consider the open–channel wavefunction |Ψ(F=2,Nop
0 ,`op)

op 〉. Neglecting the small
contribution10 due to the spatial component, its ‘bare’ energy is:

Eop(ωr) = Eint
op (ωr) , (11.34)

9These two states are eigenfunctions of the ‘bare’ Hamiltonian H, and their ‘bare’ energies are the
corresponding eigenvalues of H.

10This contribution is of the order of +h · 2 MHz for the parameters used in [20].
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Figure 11.15. Energies of the five RF–dressed
two–atom states in the (f1 = f2 = 1, F =
2, N0, `) subspace, calculated for the RF fre-
quency ω/2π = 7 MHz.

where the internal–state energy Eint
op (ωr) is the eigenvalue of V

(F=2,Nop
0 )

∞ corresponding

to the eigenstate |χ(F=2,Nop
0 )

op 〉.

We now turn to the bare energy of the closed–channel wavefunction |Ψ(F=2,Ncl
0 ,`

cl)
cl (r) 〉:

Ecl(ωr) = −|Eb|+ Eint
cl (ωr) , (11.35)

where |Eb| is the binding energy of the bound state ϕ
(F=2,`cl)
cl (r) of the spatial Hamiltonian

H
(F=2,`cl)
spatial , and Eint

cl (ωr) is the eigenvalue of V
(F=2,Ncl

0 )
∞ corresponding to the eigenstate

|χ(F=2,Ncl
0 )

cl 〉. In Eq. (11.35), the separation between the spatial–state and internal–state
contributions to the energy (Eb and Eint

cl (ωr), respectively) is not a perturbative result:
it stems from our restricting the analysis to a given (f1 = f2 = 1, F = 2, `) subspace,
within which the electronic interaction Vel does not couple the spatial motion of the
atoms to their internal states (see Section 11.4.1).

Identification of the RF–induced resonances reported in [20]

A divergence on Fig. 11.13, occurring for a given Rabi frequency ωres
r , can be explained

in terms of a resonance between two ‘bare’ states |Ψop 〉 and |Ψcl 〉 if the corresponding
‘bare’ energies are equal for a Rabi frequency ωr which is close to ωres

r .

The entrance channel used in [20] is an RF–dressed scattering state relating, for small
ωr, to the bare two–atom state | f1 = f2 = 1, F = 2,MF = −2, Nop

0 − 2 〉. The corre-
sponding threshold energy is represented by the dashed red line on Figs. 11.15 and
11.16.

We first consider the bound state | ν = 15, ` = 0, SI = (13), F = 2 〉, which has the
binding energy h · 90 MHz [48]. Within each (f1 = f2 = 1, F = 2, ` = 0, N0) subspace,
this level is split into five RF–dressed bound states. The left–hand part of Fig. 11.16 rep-
resents the dependence on ωr of the energies of the five dressed bound states relating, for
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Figure 11.16. RF–dressed energies of two high–energy Sodium dimer states reported in [48],
calculated within given (f = 1, f = 1, F = 2, `) subspaces for the fixed detuning δ/2π =
7 MHz, as a function of the Rabi frequency ωr. Left: RF–split energies of the bound state
| ν = 15, ` = 0, SI = (13), F = 2 〉 (binding energy: 90 MHz). Right: RF–split energies of the
bound state | ν = 14, ` = 4, SI = (13), F = 2 〉 (binding energy: 900 MHz). On both plots, the
dashed red line represents the | f1 = f2 = 1, F = 2,MF = −2 〉 dissociation threshold, and the
intersections mentioned in the text are circled in black.

small ωr, to the bare states11 | f1 = f2 = 1, F = 2,MF , ` = 0, N = Nop
0 − 2 〉, for −2 ≤

MF ≤ 2. The dressed state relating to (MF = −1, N = Nop
0 − 2) (solid orange line) has

the same energy as the the open–channel state (dashed red line) for ωr ≈ 450 ·106 rad/s,
which is close to the Rabi frequency ωr ≈ 375·106 rad/s of the first resonance observed on
Fig. 11.13. Furthermore, the internal states | f1 = f2 = 1, F = 2,MF = −1, `cl = 0, N = Nop

0 − 2 〉
(closed channel) and | f1 = f2 = 1, F = 2,MF = −2, `op = 2,m` = 1, N = Nop

0 − 2 〉 (open
channel) are coupled together12 by the spin–dependent interaction Vss (the total spin pro-
jection MF + m` and the photon number N = Nop

0 − 2 are conserved, |`op − `cl| ≤ 2,
|F op − F cl| ≤ 2, and |Mop

F −M cl
F | ≤ 2; see [7, 47]). Therefore, the resonance predicted

for ωr ≈ 375 · 106 rad/s is due to a coupling of the `op = 2 component of the incident
scattering state, via Vss, to the bound state | ν = 15, `cl = 0, SI = (13), F = 2 〉.

We now consider the bound state | ν = 14, ` = 4, SI = (13), F = 2 〉, which has the
binding energy h · 900 MHz [48]. This level is split into five RF–dressed bound states
within each (f1 = f2 = 1, F = 2, ` = 4, SI = (13), N0) subspace. The right–hand part of
Fig. 11.16 represents the dependence on ωr of the energies of the five dressed bound states
relating, for small ωr, to the bare states | f1 = f2 = 1, F = 2,MF , ` = 4, N = Nop

0 − 2 〉,
for −2 ≤ MF ≤ 2. The energies of the four highest–energy dressed states cross the

11 These five dressed states belong to five different dressed–state manifolds: the state bearing the
quantum number MF belongs to the (N cl

0 = Nop
0 −MF − 2) manifold. The dressed–state energies

do depend on N cl
0 through the photon–energy term N cl

0 ~ω, but this dependence is weak, as ω/2π =
7 MHz is small compared to the dressed–state splitting which is of the order of 100 MHz for ωr =
500 rad/s and increases for larger Rabi frequencies (see Figs. 11.16).

12The open–channel wavefunction cannot be chosen with `op = 0 because Vss conserves (MF +m`).
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threshold energy once, for Rabi frequencies which are close to the resonant Rabi fre-
quencies ωres

r ≈ 1300 · 106 rad/s, 1600 · 106 rad/s, 1850 · 106 rad/s, and 4000 · 106 rad/s
observed on Fig. 11.13.

The closed–channel internal states | f1 = f2 = 1, F = 2,M cl
F , `

cl = 4,mcl
` , N = Nop

0 − 2 〉
are coupled to the s–wave open–channel states
| f1 = f2 = 1, F = 2,MF = −2, `op = 0, N = Nop

0 − 2 〉 (choose M cl
F + mcl

` = −2 in or-
der to conserve the total angular momentum) to second order in Vss. Thus, the four
resonances mentioned above can be explained in terms of a second–order coupling
via Vss of the s–wave component of the incident scattering state to the bound state
| ν = 14, ` = 4, SI = (13), F = 2 〉 to second order in Vss.

The resonance occurring for ωres
r ≈ 4000 · 106 rad/s has a multi–peaked structure, at

least seven peaks being visible on Fig. 11.15. This structure can be explained in terms
of two effects:

1. For large Rabi frequencies ωr, the open–channel wavefunction |Ψ(F=2,Nop
0 ,`=0

op 〉 and

the closed–chanel wavefunction |Ψ(F=2,Nop
0 −1,`=4

cl 〉 both have non–vanishing com-
ponents for all −2 ≤ MF ≤ 2. For each MF ≤ 1, the open–channel component
bearing the quantum numbers (MF , ` = 0, N = Nop

0 + MF ) resonates with the
closed–channel component whose quantum numbers are (MF + 1, ` = 4,m` =
−1, N = Nop

0 +MF ). This accounts for four of the observed peaks.

2. The closed–channel state | f1 = f2 = 1, F = 2,MF = −1, `cl = 4,mcl
` , N = Nop

0 − 2 〉
is also coupled, to first order in Vss, to the d–wave open–channel state
| f1 = f2 = 1, F = 2,MF = −2, `op = 2,mop

` , N = Nop
0 − 2 〉. This coupling, and the

corresponding ones for the dressed–state components along MF = −1, 0, and +1,
account for the remaining peaks observed on Fig. 11.15.

11.4.4. Differences between RF–induced and MW–induced
Feshbach resonances.

We have shown that the RF–induced Feshbach resonances within the lower hyperfine
manifold, presented in [20], cannot be due to the magnetic dipole coupling term alone
(see Section 11.4.2). These resonances thus involve the weak spin–dependent interac-
tion Vss(r). By contrast, the microwave–induced Feshbach resonances which we have
described in Sections 11.1 and 11.2 do not involve Vss(r): they are due solely to the
magnetic dipole interaction W between the two electron spins and the magnetic field.

This is the main difference between the work reported in [20] and the one we present
in our published article [21]. Radio–frequency induced resonances can be seen as the
oscillating–field equivalent of ‘narrow’ Feshbach resonances, whereas microwave–induced
resonances, which do not involve Vss, are analogous to ‘broad’ Feshbach resonances
[1]. In this sense, microwave–induced Feshbach resonances are more closely related to
optically–induced Feshbach resonances [17], where the incident two–atom state is coupled
to an electronically–excited dimer state using a resonant oscillating electric field: these
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latter resonances are due to the electric–dipole coupling and, like microwave–induced
resonances, they do not rely on Vss.

The couplings involved being different also has an impact on the partial waves tak-
ing part in the resonances. The isotropic magnetic dipole coupling W conserves the
angular momentum `, and the microwave–induced resonances we have described only
involve s–wave Physics (see Section 10.2). On the other hand, the spin–dependent
interaction Vss(r) is not isotropic, and it does not cause resonances between s–wave
states; therefore, at least one of the two resonant states has a spatial angular momen-
tum ` ≥ 2. We have identified the bound states causing the RF–induced resonances re-
ported in [20] to be the s–wave level | ν = 15, ` = 0, SI = (13), F = 2 〉 and the ` = 4 level
| ν = 14, ` = 4, SI = (13), F = 2 〉, whose binding energies are h·90 MHz and h·900 MHz,
respectively [48]. The s–wave level is resonant with the d–wave component of the inci-
dent scattering state, and the ` = 4 level is resonant with both the s–wave and d–wave
components of the incident scattering state.

Microwave–induced Feshbach resonances exploit a stronger coupling mechanism, there-
fore they allow for the use of weaker magnetic fields. We focus on the small magnetic
field regime, where the Rabi frequency associated with the oscillating field amplitude
Bosc is much smaller than the detuning δ of the frequency from the hyperfine transition
frequency. In the specific case of Sodium, the microwave–induced resonance occurs for
the detuning δ/2π = −200 MHz, and the amplitude Bosc = 1 G, corresponding to a Rabi
frequency of the order of 1 MHz, yields a resonance which is broad enough to be observed
experimentally (∆ω/2π > 1 kHz: see Table 11.2 and Section 11.3).

In this regime (Rabi frequency much smaller than detuning), the dressing of a single
atom due to the microwave is negligible, and the dominant effect is the two–atom reso-
nance between the incident scattering state and a well–defined bound state. Our weak
microwave magnetic fields not affecting the single–atom Physics could turn out to be an
important asset, for example in the context of experiments involving atomic clocks.

109





12. The numerical calculation of
two–atom wavefunctions

This chapter describes the challenges presented by the numerical calculation of multi–
channel scattering wavefunctions, and the approaches that we have used to meet them.

We have written our own, fully independent implementations of all of the programs de-
scribed in this chapter. The data used as input (the large–r singlet and triplet electronic
potentials, the corresponding scattering lengths, and the hyperfine atomic structure) are
available1 in the published litterature (see [21] and references therein).

The difficulties associated with the calculation of two–atom wavefunctions can be
summarised as follows:

1. The wavefunctions are solutions of a differential system involving boundary con-
ditions at both ends of the integration interval.

2. The electronic potentials are not known with sufficient accuracy for small inter-
atomic separations.

3. The physically acceptable solution is the one for which all closed–channel compo-
nents asymptotically decay to zero, but other solutions of the same Schrödinger
equation asymptotically involve growing exponentials.

4. The two–atom wavefunction may involve many coupled channels.

5. The two–atom wavefunction may be non–real.

We start with a precise statement of the differential system we wish to solve and of the
boundary conditions involved (Section 12.1). Then, we introduce the accumulated–phase
approach [31], which circumvents the need for accurate information on the inner parts of
the electronic potentials (Section 12.2). Next, we present the two numerical approaches
we have used to calculate two–atom wavefunctions. Our first approach, presented in
Section 12.3, is based on the relaxation method. This approach addresses points 1, 2,
and 3 above. This is the approach we have used to perform the calculations presented
in the published article of Chapter 13. However, this method is not readily extended to
address points 4 and 5. Our second approach, presented in Section 12.4, is based on the
shooting method. This more elaborate approach addresses all five difficulties mentioned
above.

1We thank Prof. S. Kokkelmans for providing up–to–date electronic potentials for 87Rb.
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12. The numerical calculation of two–atom wavefunctions

12.1. The multi–channel scattering state wavefunction

In this first section, we give a precise definition of the wavefunction we wish to calculate.
This definition is similar to the one given in Section 11.2, but we now state it in more
general terms to include the effects of inelastic collisions and of a static magnetic field
Bstat (in addition to the oscillating magnetic field Bosc).

12.1.1. Hamiltonian

The scattering problem of interest is described by the radial Hamiltonian of Eq. (10.13):

H =
p2
r

2mr

1 + Vel(r) + Vhf + VZ + ~ω a†a+W , (10.13)

where we have restricted our analysis to s–wave scattering (no centrifugal term in the
Hamiltonian), and we have allowed for both an oscillating magnetic field (magnetic
dipole coupling term W ) and a static magnetic field (Zeeman term VZ).

The Hamiltonian H operates on an infinite–dimensional space of internal states. For
bosonic alkali atoms, this internal–state space is spanned, for example, by the states
| {f1,m1, f2,m2}+, N 〉, where fj and mj are the two hyperfine quantum numbers of
atom j, the notation {. . .}+ denotes bosonic symmetry, and the arbitrary integer N
gives the number of photons. However, just like in Chapter 11, arguments stemming
from the conservation of energy and angular momentum make it possible to restrict H
to a finite–dimensional internal–state subspace2, whose dimension we call Nstates.

12.1.2. Dressed two–atom states

We define the dressed two–atom state basis eD in the same way as in Section 11.2.2. We
introduce the total r–dependent potential part Vtot(r) of the Hamiltonian H:

Vtot(r) = Vel(r) + Vhf + VZ + ~ω a†a+W . (12.1)

This operator asymptotically reduces to an r–independent operator V∞:

V∞ = Vtot(r →∞) = Vhf + VZ + ~ω a†a+W , (12.2)

which is a real and symmetric Nstates × Nstates matrix. Its Nstates eigenstates make up
the dressed two–atom state basis

eD = {|D1 〉, . . . , |DNstates 〉} , (12.3)

ordered such that the corresponding eigenvalues satisfy εD1 ≤ . . . ≤ εDNstates
.

2This finite–dimensional subspace depends on the incident state of the two atoms and on the polari-
sation of the oscillating magnetic field Bosc.
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12.1. The multi–channel scattering state wavefunction
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Figure 12.1. Threshold energies of the open
(εm < E), entrance (εn0 = E) and closed
(εp > E) channels. For large r, the radial wave-
function oscillates in all open channels, behaves
like (r− a) in the entrance channel, and decays
exponentially in all closed channels.

12.1.3. Schrödinger equation and boundary conditions

We wish to calculate the scattering length a = an0 characterising the collision between
two atoms whose incident internal state is a given microwave–dressed two–atom state
|Dn0 〉. The scattering length can be extracted from the asymptotic behaviour of the
outgoing stationary scattering state [37] of H for the energy E = εDn0

. This scattering
state |Ψn0 〉, which is an Nstates–component wavefunction, is defined by the Schrödinger
equation:

H|Ψn0 〉 = εDn0
|Ψn0 〉 , (12.4)

along with the large–r boundary conditions

〈Dm |Ψn0(r) 〉 = Bm
1

r
exp(ikmr) for m < n0 (open channel) (12.5a)

〈Dn0 |Ψn0(r) 〉 =
r − an0

r
(entrance channel) (12.5b)

〈Dp |Ψn0(r) 〉 = Ap
1

r
exp(−κpr) for p > n0 (closed channel) (12.5c)

where ~km = (2mr(εn0 − εm))1/2 for all open channels m < n0 (εm < εn0) and ~κp =
(2mr(εp−εn0))

1/2 for all closed channels p > n0 (εp > εn0). In Eqs. (12.5), the (complex)
coefficients Ap and Bm, as well as the (complex) scattering length an0 , are not known a
priori ; they can be extracted from the asymptotic behaviour of Ψn0(r) after it has been
calculated. In other words, for large interatomic separations, the radial wavefunction
r|Ψn0(r) 〉 reduces to a pure outgoing wave in all open channels, has the usual linear form
in the entrance channel, and decays exponentially in all closed channels. The definitions
of the open, entrance, and closed channels, as well as the asymptotic behaviours of the
radial wavefunction components in these channels, are illustrated on Fig. 12.1.

Note that our choice of the incident state of the atom pair as an eigenstate of V∞
implies that the microwave dressing of the internal states and the AC Zeeman shift
on their energies are taken into account in our calculations. Also note the absence of
kinetic energy in the channel |Dn0 〉 for large values of r, which causes the boundary
conditions (12.5) to be spherically symmetric and thus ensures compatibility with our
assumption of pure s–wave scattering.
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12. The numerical calculation of two–atom wavefunctions

The Schrödinger equation (12.4) is a system of Nstates coupled differential equations.
In order for its solution to be uniquely determined, Nstates conditions have to be applied
in addition to Eqs. (12.5). These conditions have already been stated in Section 11.2.2;
they enforce that the radial solution be regular [25] at r = 0:

lim
r→0

(rΨ(r)) = 0 . ( (11.19))

12.1.4. In terms of radial wavefunctions

Exploiting the rotational symmetry in real space, we introduce the s–wave radial wave-
function |U 〉 defined, as in Eqs. (11.11), by [25]:

Ψn0(r) =
Y 0

0

r
Un0(r) , (12.6)

where Y 0
0 = 1/

√
4π is the spherical harmonic for l = m = 0. In terms of |Un0 〉, the

Schrödinger equation (12.4) reduces to a standard system of Nstates coupled second–order
differential equations:

d2

dr2
Un0 =

2mr

~2
(Vtot(r)− εn0) Un0 . (12.7)

The large–r boundary conditions (12.5) become:

〈Dm |Un0(r) 〉 =
√

4π Bm exp(ikmr) for m < n0 (open channel) (12.8a)

〈Dn0 |Un0(r) 〉 =
√

4π (r − an0) (entrance channel) (12.8b)

〈Dp |Un0(r) 〉 =
√

4π Ap exp(−κpr) for p > n0 (closed channel), (12.8c)

and the regularity condition reads:

Un0(r = 0) = 0 . (12.9)

12.1.5. Real and non–real scattering lengths

An imaginary part Im(an0) 6= 0 in the scattering length an0 is the signature of the
presence of inelastic processes [33]. If the incident internal state of the atom pair is the
lowest–energy internal state |D1 〉, the conservation of energy forbids inelastic processes,
therefore a1 is a real number. On the other hand, if the incident internal state is a
higher–energy dressed state |Dn0 〉 (n0 > 1), the atoms may undergo an inelastic decay
into lower–energy channels (the conservation of energy being ensured by an increase in
their kinetic energy): thus, an0 is not real.

From a mathematical point of view, the potential term Vtot(r) appearing in the dif-
ferential system (12.7) is real. Any solution of this system which is specified by real
boundary conditions will be real; if the boundary conditions are not real, the solution
may no longer be real. If the incident two–atom state is |D1 〉, the only open channel is
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the entrance channel, and Eqs. (12.4) show that all boundary conditions involve only real
numbers: this leads to a real wavefunction |Ψ1 〉 and, hence, to a real scattering length
a1. If the incident two–atom state is |Dn0 〉 with n0 > 1, other open channels are present
besides the entrance channel; the wavefunction asymptotically behaves as an outgoing
spherical wave in each of these channels: such spherical waves have non–zero imaginary
parts, therefore the wavefunction |Ψn0 〉 is not real, which leads to a scattering length
an0 which is not real.

12.2. The Accumulated–Phase approach

12.2.1. Description of the electronic interaction potentials

The only r–dependent term in the two–atom Hamiltonian (10.13) is the electronic in-
teraction operator Vel(r), expressed by Eq. (10.14) in terms of the singlet and triplet
potentials VS and VT . These latter potentials can, in turn, be written in terms of a
‘dispersive’ part Vdisp and an ‘exchange’ part Vexch [31]:

VS,T (r) = Vdisp(r)∓ Vexch(r) , (12.10)

The dispersive part is a power series in 1/r2 whose leading term is the van–der–Waals
interaction −C6/r

6:

Vdisp(r) = −
(
C6

r6
+
C8

r8
+
C10

r10
+ . . .

)
. (12.11)

An analytical description of the exchange term is available only for large values of r
(r & 20 a0) [49]:

Vexch =
1

2
Jr[7/(2αa0)−1] exp(−2αr) , (12.12)

where α is related to the atomic ionisation energy EI by EI = Eh · (α a0)2 [39] and
Eh = 4.36 · 10−18 J is the Hartree energy.

Equations (12.11) and (12.12) show that, for r & 20 a0, the electronic potentials VS
and VT are characterised by a small number of parameters (the dispersion coefficients
Cj, the energy J , and the coefficient α). These few parameters can readily be extracted
from the available experimental high–precision measurements and are thus known with
very good accuracy. The description of the electronic potentials for smaller interatomic
distances is more involved and less accurate. However, the scattering properties of these
potentials are very sensitive to their short–range details.

Our two–atom wavefunction calculations have been performed using the Accumulated
Phase approach, developped by Verhaar and coworkers [31, 50]. This approach encap-
sulates all of the short–range Physics into a boundary condition applied at a minimum
non–zero radius r0, of the order of 20 a0. This boundary condition is formulated in terms
of four parameters which can be tuned to reproduce available results, such as the values
of the singlet and triplet scattering lengths aS and aT .
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Figure 12.2. Zero–energy turning points RS
and RT for the Singlet and Triplet electronic
potentials of 87Rb.

We describe this approach in the next two sections: we first focus on the single–
channel case, and then describe our implementation of the approach in the context of a
multi–channel problem.

12.2.2. Single–channel wavefunction

We start with the single–channel case, and we consider a radial wavefunction u(r) which
is a solution of the following Schrödinger equation:

d2

dr2
u(r) =

2mr

~2
(V (r)− E)u(r) , (12.13)

where V (r) one of the two electronic potentials VS(r) or VT (r). The energy E can be
zero, positive, or negative, as long as it remains small compared to the depth of the
potential V (E ∼ ± a few ahf ∼ ± a few tens of GHz).

We define the turning point R(E) by the condition:

V (R(E)) = E . (12.14)

This definition is illustrated in Fig. 12.2 on the particular case of the electronic potentials
for 87Rb, for E = 0.

For r0 > R(E), the WKB approach [33] yields the following form for the radial
wavefunction u(r0):

u(r0) = A
sin Φ(E, r0)√

k(r0)
, (12.15)

where ~k(r0) = [2mr (E − V (r0))]1/2 is the local momentum at r0 and

Φ(E, r0) =

∫ r0

R(E)

dr k(r) + constant (12.16)

is the accumulated phase up to r0, the constant being chosen to ensure the regularity
condition u(r = 0) = 0. The range of relevant energies near the threshold E = 0 being
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12.2. The Accumulated–Phase approach

small, we use a linear approximation to the accumulated phase at r0:

Φ(E, r0) = Φ0 + E ΦE
0 + . . . , (12.17)

where Φ0 = Φ(E = 0, r0) and ΦE
0 = ∂Φ

∂E

∣∣
E=0,r0

.

Choosing r0 > R to be as small as possible (in our calculations, r0 ranges from 10 a0

to 20 a0), while maintaining the validity of the WKB approach, Eqs. (12.15) and (12.17)
yield a boundary condition on the logarithmic derivative of u, which is applied at the
non–zero minimal radius r0 but still enforces the regularity condition at r = 0:

u′(r0)

u(r0)
=

1

~
[2mr (E − V (r0))]1/2

tan(Φ0 + E ΦE
0 )

+
1

4

V ′(r0)

E − V (r0)
, (12.18)

where the prime denotes derivation with respect to r.

Calculating the accumulated–phase parameters

For each electronic potential VS or VT , the boundary condition defined by Eq. (12.18)
encapsulates all of the short–range Physics into the two real numbers Φ0 and ΦE

0 .
The parameter Φ0 is the accumulated phase for E = 0. We adjust it such that the

zero–energy scattering state wavefunction, which behaves like u(r) =
√

4π(r − a) for
large values of r, has the correct scattering length a = aS or aT .

The coefficient ΦE
0 has a simple integral expression in terms of the potential V (r) for

R < r < r0. First, we note that both electronic potentials VS and VT are very steep
for energies close to the dissociation threshold (see Fig. 12.2): RT and RS only vary
signicantly on a scale of a few hundreds of GHz, whereas the energies relevant to us are
of the order of tens of GHz. Therefore we take R(E) ≈ R(E = 0), both for the singlet
for the triplet potentials. Now, the energy–derivative of Eq. (12.16) yields [51]:

ΦE
0 = ~mr

∫ r0

R(E=0)

dr

[2mr (E − V (r))]1/2
, (12.19)

The denominator of the integrand being the local momentum ~k(r). An approximation
for ΦE

0 can be calculated from Eq. (12.19) using the ‘inner parts’ of the electronic poten-
tials. For all of the atoms we have considered, this approximation has been sufficiently
accurate to reproduce the positions of known static–field Feshbach resonances.

12.2.3. Multiple channels

We now move on to the implementation of the accumulated–phase approach in the
multiple–channel case.

The scattering problems we are interested in are described by the two–atom Hamil-
tonian H and involve multiple scattering channels which are coupled to each other (see
Fig. 10.5 for a block–matrix representation of H which illustrates the channel couplings
in the ‘molecular’ basis eM). There is no basis in which these channels uncouple for all
values of r.
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Figure 12.3. Three ranges of values of r leading to different coupling schemes, illustrated on
the case of the 133Cs potentials. For r < r0, the exchange interaction dominates (Vexch(r) �
Vhf) and the basis states in eM are uncoupled. For r > runc, the hyperfine interaction dominates
(Vexch(r) � Vhf) and the mw–dressed states in eD are uncoupled. For r0 < r < runc, no
decoupling occurs and coupled–channel calculations are required.

However, as already mentioned in the context of spin recoupling (Section 10.2.5), a
decoupling does occur for small interatomic separations. As shown on Fig. 12.3 in the
case of 133Cs, the exchange interaction Vexch is much larger than the hyperfine inter-
action Vhf for r . 20 a0. The Zeeman term VZ and the magnetic dipole term W are
themselves much smaller than the hyperfine interaction3, therefore the exchange inter-
action yields the dominant contribution for small r. This term is diagonal in any basis
whose states have definite two–electron spins S. In particular, all of the internal states
in the ‘molecular’ basis eM are decoupled for r . 20 a0.

Therefore, if the minimum radius r0 (chosen to be the same in all scattering channels) is
small enough to be in the range for which this decoupling occurs, the accumulated–phase
boundary condition can be applied separately to each wavefunction component in the ba-
sis eM. For example, in the particular case of 133Cs, r0 = 20 a0 leads to Vexch(r0) = 50 ahf

(where ahf is the coefficient appearing in Eq. (10.10) which determines the hyperfine
energy splitting), which is sufficient to ensure the singlet–triplet decoupling for r ≤ r0.

3For instance, the magnetic field amplitude Bosc = 10 G leads to µBBosc = h · 14 MHz, whereas ahf is
of the order of tens of GHz.
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The adiabatic accumulated phase approach

The accuracy of the accumulated–phase approach can be improved [31] by accounting
for the ‘adiabatic’ mixing between states in eM caused by the hyperfine term for r smaller
than, but close to, r0.

For that purpose, we apply the accumulated–phase approach, not in the basis eM, but
in the basis ẽM which diagonalises Ṽtot(r0) = (Vtot(r0)−VS(r0)1), keeping in mind that all
terms in this matrix other than the exchange interaction Vexch(r0) = (VT (r0) − VS(r0))
are small corrections. In particular, this matrix contains Vhf , therefore the use of a
basis in which it is diagonal accounts for the contamination due to Vhf . The ‘adiabatic’
approximation resides in the fact that, although the basis states in ẽM no longer have
definite values of the quantum number S, we still assume that the corresponding spatial
components are pure singlet and triplet waves.

In order to identify the ‘singlet’ and ‘triplet’ channels in ẽM, we note that Ṽtot(r0)

acting on an electronic–triplet state contains Vexch(r0) > 0, whereas Ṽtot(r0) acting on an
electronic–singlet state does not. Furthermore, we recall that Vexch(r0) is the dominant

contribution to Ṽtot(r0). Therefore, introducing NS
states, the number of accessible internal

states which are electronic–singlet, we approximate the spatial parts corresponding to
the NS lowest–energy eigenstates of ẽM to pure singlet waves, and the spatial parts
corresponding to the remaining (N −NS) eigenstates to pure triplet waves.

12.3. The relaxation method

In this section and the next one, we present the two numerical approaches we have used
to calculate two–atom wavefunctions.

As mentioned in the introduction of this chapter, the differential system to be solved
is a two–point boundary–value problem, as it involves boundary conditions at both ends
of the integration interval. Two types of approaches are available for the numerical
solution of such problems [52]: (i) relaxation methods and (ii) shooting methods. We
have experimented with both approaches. We first briefly present an approach based on
the relaxation method.

12.3.1. From a second–order differential system to a first–order one

The Schrödinger equation (12.7) is a system of Nstates coupled second–order differential
equations. Our first step is to rewrite it as a system of 2Nstates coupled first–order
differential equations:

Y ′(r) =

(
0 1

2mr

~2 (Vtot(r)− εn0) 0

)
Y (r) = G(r,Y (r)) with Y (r) =

(
Un0(r)
U ′n0

(r)

)
,

(12.20)
where the vectors Y (r) andG(r,Y (r)) have 2Nstates–components, and the prime denotes
derivation with respect to the variable r.
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12. The numerical calculation of two–atom wavefunctions

12.3.2. Discretisation of the differential system

We choose the integration interval to be [r0, rmax]. The lower bound r0 > 0 is the radius
at which the accumulated phase boundary condition is applied: we choose r0 = 10 a0 for
7Li, r0 = 16 a0 for 23Na, 41K, and 87Rb, and r0 = 20 a0 for 133Cs. The upper bound rmax

is chosen to be sufficiently large for the total potential matrix Vtot(rmax) (Eq. (12.1) to
have reached its asymptotic value V∞, given by Eq. (12.2): we choose rmax = 1000 a0 for
all considered atoms.

The relaxation method is based on the use of a mesh representing the integration
interval. Following [52], we use an evenly–spaced mesh. The density of mesh points
must be sufficiently large to accomodate for the oscillating behaviour of the wavefunc-
tion for small values of r (see Figs. 11.5): our implementation uses Mpoints = 4 · 105

mesh points evenly spaced from r0 to rmax. The sought solution Y (r) is represented by
(2NstatesMpoints) numbers, giving the values of the 2Nstates components Yj(rk) at each of
the Mpoints mesh points rk (0 ≤ k ≤Mpoints − 1).

The relaxation method replaces the 2Nstates coupled equations (12.20) by finite–difference
equations at each mesh point. The finite–difference at the mesh point xk (1 ≤ k ≤M−1)
reads:

Yk − Yk−1 − (rk − rk−1)G

(
rk−1 + rk

2
,
Yk−1 + Yk

2

)
= 0 , (12.21)

where the vectors Yk−1 and Yk have 2Nstates components and give the numerical values
for the 2Nstates coupled waves at the mesh points rk−1 and rk. There are 2Nstates(Mpoints−
1) such finite–difference equations; the boundary conditions provide 2Nstates additional
equations. Therefore, the discretisation process leads to 2NstatesMpoints coupled equations
for an equal number of unknowns.

We solve these coupled equations using an iterative ‘relaxation’ procedure based on
the multidimensional Newton method [52], exploiting the strong sparsity and the specific
block structure of the linear systems involved.

12.3.3. Stability of the relaxation method

This first approach is the approach we have used for all of the numerical results presented
in the published article of Chapter 13. Our choice of this method was due to the following
remark (point 3 in the introduction of this chapter). The solutions of the Schrödinger
equation (12.7) may asymptotically involve both growing exponentials exp(+κpr) or
decaying exponentials exp(−κpr), in all closed channels p > n0. The only physically–
acceptable solution is the one which can be normalised, i.e. the one which involves only
decaying exponentials. However, the existence of the unacceptable ‘growing’ solutions
may contaminate the numerical calculation of the ‘decaying’ one. The use of relaxation
methods helps to avoid such a contamination, because of its enforcing conditions at each
mesh point (rather than only at the two ends of the integration interval).
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12.3.4. Limitations of our implementation

The use of an evenly–spaced mesh, in conjunction with the oscillatory nature of the
wavefunction components for small values of r, causes our implementation to require
a large number of mesh points. Most of these mesh points are located in the large–r
region, where a comparable accuracy could be obtained with a much smaller mesh point
density. This issue could be solved by using a mesh with variable step sizes.

The present implementation (using evenly–spaced meshes) leads to long relaxation
times. For example, each graph represented on Fig. 11.12, which results from calculations
involving 8 coupled internal states (see Section 11.2), took several days to obtain. Such a
slow convergence prohibits the use of this method for problems involving larger numbers
of coupled internal states, such as the static–field resonances of Chapter 14 (up to 14
coupled states) or the microwave–induced resonances involving the (MF = 0) subspace
presented in Chapter 15 (48 coupled states).

Finally, this approach does not make use of the uncoupling which occurs for relatively
large r: as shown on Fig. 12.3 for 133Cs, the exchange interaction is negligible compared
to the hyperfine energy term for distances greater than runc ≈ 45 a0 (in the case of
133Cs, the choice of runc = 45 a0 yields Vexch(rmax) = 10−8 ahf). Therefore, even though
the electronic potentials have not yet completely vanished, the electronic term Vel is
diagonal in any basis, and the channels all decouple in the dressed–state basis eD.

Our second approach, described in the next section, is not affected by any of these
limitations.

12.4. An approach based on the shooting method

In this last section, we describe the second approach we have used for the numerical
calculation of two–atom wavefunctions. This second approach has been implemented to
circumvent the limitations of the relaxation method described in Section 12.3: it does
not use a mesh with a fixed step, it exploits the linearity of the differential system defined
by Eq. (12.20) and the uncoupling that occurs for r > runc, and it runs considerably
faster than our relaxation codes.

For this second approach, we abandon the ‘relaxation’ method of Section 12.3 and
turn towards a ‘shooting’ scheme. We also relinquish the first–order differential system
of Eq. (12.20), and go back to the original radial Schrödinger equation (12.7).

We operate on the integration interval [r0, rmax], defined in Section 12.3.2. We do not
manually discretise this interval.

12.4.1. Two standard ‘shooting’ methods

We first briefly describe two standard methods involving ‘shooting’: the basic ‘shooting’
method and ‘shooting towards a fitting point’ [52].

In its basic implementation, the ‘shooting’ method consists in choosing ‘guess’ values
for the Nstates components of the wavefunction U(r0) and those of its derivative U ′(r0)
such that the boundary conditions at the lower bound r0 are satisfied. The solution
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is then ‘propagated’, using any initial–value differential equation solver, through the
integration interval towards the upper bound rmax. This ‘shot’ is successful if the com-
ponents of U(rmax) and U ′(rmax) satisfy the boundary conditions at rmax. If the ‘shot’
is not successful, the initial ‘guess’ values are improved (for example, using Newton’s
method for finding the zeros of a multi–variable function), and the whole procedure is
iterated until a successful ‘shot’ is fired.

A more elaborate approach, called ‘shooting towards a fitting point’, involves the
choice of an intermediate ‘fitting point’ rfit within the integration interval [r0, rmax].
‘Guesses’ are made for the wavefunction components and derivatives at the lower bound
r0, chosen such that the boundary conditions at r0 are satisfied; the solution is ‘prop-
agated’, in the increasing–r direction, up to rfit. Similarly, ‘guesses’ are made for the
wavefunction components at rmax satisfying the boundary conditions at that point; the
solution is ‘propagated’, in the decreasing–r direction, down to rfit. The ‘double–shot’ is
successful if the wavefunction components and derivatives obtained at rfit through the
forward and backward propagations are equal. If it is not successful, the ‘guess’ values
at r0 and rmax are improved, and the whole procedure is iterated until the backward–
and forward–propagated solutions match at rfit.

12.4.2. Shooting and fitting for a linear problem

The ‘shooting’ approach implemented in our program is a variant of ‘shooting towards
a fitting point’, which we have adapted to the case of a linear problem in order to
circumvent the need for iterations.

The radial Schrödinger equation (12.7) is a system of Nstates coupled second–order
Schrödinger equations. We call En0 its set of solutions, which is a 2Nstates–dimensional
vector space.

Calculating basis solutions

As in the standard ‘shooting to a fitting point’ method, we introduce a ‘fitting radius’ rfit

within the integration interval [r0, rmax]. The choice of the value of rfit will be discussed
in Section 12.4.3.

The Nstates accumulated–phase boundary conditions applied at r0 (see Section 12.2)
define an Nstates–dimensional subspace of En0 . We calculate a basis of Nstates indepen-
dent functions (Xi(r)), each of which satisfies the Nstates accumulated–phase boundary
conditions. These functions are determined, for r0 ≤ r ≤ rfit, by integrating in the
increasing–r direction starting from initial values at r0.

We now turn to the boundary conditions at the upper bound rmax. The number of open
channels (including the zero–energy entrance channel) is n0; we call Ncl = Nstates − n0

the number of closed channels. We first focus on the closed–channel components. The
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large–r boundary condition:

〈Dm |Y (r) 〉 = 0 for m < n0 (open channel) (12.22a)

〈Dn0 |Y (r) 〉 = 0 (entrance channel) (12.22b)

〈Dp |Y (r) 〉 =
√

4π Ap exp(−κpr) for p > n0 (closed channel), (12.22c)

where the (Ap)’s are arbitrary numbers and the (κp)’s are defined as in Section 12.1.3,
define an Ncl–dimensional subspace of En0 , for which we calculate a basis (Yj(r))1≤j≤Ncl

.
Next, we focus on the open–channel components (including the zero–energy entrance

channel n0). The large–r boundary conditions

〈Dm |Z(r) 〉 =
√

4π Bm exp(ikmr) for m < n0 (open channel) (12.23a)

〈Dn0 |Z(r) 〉 =
√

4π Bn0 (entrance channel) (12.23b)

〈Dp |Z(r) 〉 = 0 for p > n0 (closed channel), (12.23c)

where the (Bm)’s are arbitrary numbers and the (km)’s are defined as in Section 12.1.3,
define an n0–dimensional subspace of En0 , for which we calculate a basis (Zl(r))1≤l≤Ncl

.
Finally, we calculate the single function T (r), defined by the large–r boundary con-

dition:

〈Dm |T (r) 〉 = 0 for m < n0 (open channel) (12.24a)

〈Dn0 |T (r) 〉 =
√

4π r (entrance channel) (12.24b)

〈Dp |T (r) 〉 = 0 for p > n0 (closed channel). (12.24c)

The functions (Yj(r)), (Zl(r)) and T (r) are determined, for rfit ≤ r ≤ rmax, by integrat-
ing in the decreasing–r direction starting from initial values at rmax.

Note that the numerical calculation of the functions (Xi), (Yj), (Zl), and T only
involves boundary conditions at one end of the integration interval (i.e. they are not
two–point boundary value problems). Therefore, it can be performed using any of the
standard numerical solvers for differential equations. We use an algorithm, based on
Stoermer’s rule [52], which is optimised for second–order systems of the form y′′ = f(r,y)
(where the first–order derivative y′ does not appear). Our implementation includes
adaptive stepsize control: the discretisation of the intervals [r0, rfit] and [rfit, rmax] is
done automatically, with an r–dependent step size that is chosen to improve accuracy
and efficiency.

Calculating the physical wavefunction

The ‘physical’ wavefunction U(r), defined for r0 ≤ r ≤ rmax, is the function in En0 which
satisfies both the accumulated–phase boundary conditions of Section 12.2 and the large–
r behaviour of Eqs. (12.8). For values of r smaller than rfit, it is a linear combination of
the (Xi)’s:

U(r) =
Nstates∑
i=1

xiXi(r) for r0 ≤ r ≤ rfit. (12.25)
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12. The numerical calculation of two–atom wavefunctions

For r ≥ rfit, it can be expressed in terms of the (Yj)’s, (Zl)’s and T :

U(r) =

Ncl∑
j=1

yj Yj(r) +

n0∑
k=1

zkZl(r) + T (r) for r0 ≥ r ≤ rfit. (12.26)

The requirement that both U(r) and U ′(r) be continuous at the fitting point r =
rfit yields a linear system of 2Nstates equations which determines the 2Nstates complex
coefficients (xi)1≤i≤Nstates , (yj)1≤j≤Ncl

, and (zk)1≤k≤n0 .

12.4.3. Exploiting the large–r uncoupling of the dressed two–atom
states

We have already mentioned (see Section 12.3.4) that the fast decay of the exchange
interaction Vexch(r) (see Eq. (12.12)) and Fig. 12.3) causes the electronic interaction
term Vel(r) to become spin–independent for r ≥ runc, where runc is of the order of a
few tens of a0 (we take runc = 45 a0 for 133Cs). This causes the channels defined by the
dressed two–atom states (|Dn 〉) to become uncoupled for r ≥ runc.

In order to take advantage of this uncoupling, we choose the fitting point rfit to be equal
to the uncoupling radius runc. Suitable choices of the values at rmax for the functions
(Yj), (Zl), T , and their derivatives, thus reduces their calculation, for rfit ≤ r ≤ rmax,
to single–channel calculations. The large–r boundary conditions for T are specified by
Eqs. (12.24). We choose the following values at rmax for the functions (Yj)1≤j≤Ncl

and
(Zl)1≤l≤n0 :

〈Dn |Yj(rmax) 〉 = δn,(n0+j) and 〈Dn |Y ′j (rmax) 〉 = −κ(n0+j) δn,(n0+j) (12.27a)

〈Dn |Zl(rmax) 〉 = δn,l and 〈Dn |Z ′l(rmax) 〉 = ikl δn,l (12.27b)

In Equation (12.27b), we use the convention kn0 = 0 for the entrance channel, so that
|Yn0(r) 〉 is asymptotically equal to |∆n0 〉 for large values of r. The scattering length a
is directly related to the corresponding (complex) coefficient zn0 :

zn0 = −
√

4π a , (12.28)

as can be obtained from the asymptotic behaviour of Eq. (12.26).

12.4.4. Accounting for the fast exponential decay in closed channels

When projected in the dressed–state basis, the closed channel components asymptoti-
cally behave like decaying exponentials exp(−κpr) (see for instance Eqs. (12.22)). If κp
is large (i.e. if the channel energy εp is large), the integration in the decreasing–r direc-
tion starting from the boundary condition of Eq. (12.27a) will quickly yield very large
numerical values for Yj(r), which may cause numerical instabilities. We now explain
how to avoid these instabilities.
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12.4. An approach based on the shooting method

We focus on a closed channel |Dp 〉 with a large channel energy εp. More specifically,
we assume that

VS,T (rfit) + εp > εn0 . (12.29)

We consider the function Yj(r), defined for rfit ≤ r ≤ rmax by the boundary condition of
Eq. (12.27a) and the single–channel Schrödinger equation:

Y ′′j (r) =
2mr

~2
(V p

tot(r)− εn0)Yj(r) , (12.30)

where j = p − n0, Yj(r) = 〈Dp |Yj(r) 〉, and V p
tot(r) = 〈Dp |Vtot(r)|Dp 〉. The condi-

tion (12.29) ensures that the potential term (V p
tot(r) − εn0) appearing in Eq. (12.30)

never goes to zero. It is then readily seen4 that Yj(r) never goes to 0 for rfit ≤ r ≤ rmax.
Therefore, we introduce the logarithmic derivative Wj(r) of the function Yj(r), defined
by:

Wj(r) =
Y ′j (r)

Yj(r)
. (12.31)

The Schrödinger equation (12.30) translates onto Wj(r) as the following first–order
equation:

W ′
j(r) +W 2

j (r) = (V p
tot(r)− εn0) , (12.32)

and the boundary condition at rmax (Eq. 12.27a) reduces to Wj(rmax) = −κp. The
function Wj(r), being related to the logarithm of Yj(r), is no longer very large for values
of r close to rfit.

When solving the linear system of Section 12.4.2 giving the values of the coefficients
(xi), (yj), and (zk), the values of Yj(rfit) and Y ′j (rfit) can be replaced by 1 and Wj(rfit),
respectively: this amounts to changing the boundary conditions (12.27a) to include the
additional condition Yj(rfit) = 1.

12.4.5. Calculating complex wavefunctions using real basis
functions

We have already pointed out in Section 12.1.5 that the ‘physical’ wavefunction U(r)
is real in the absence of inelastic processes, but that it becomes non–real as soon as
inelastic processes are present, i.e. as soon one of open the open channels |Dm 〉 satisfies
εm < E, where E is the energy of the colliding atom pair.

We now show that such a complex wavefunction may be calculated from functions
(Xi(r)), (Yj(r)), T (r), and functions related to the (Zl(r)) which are all real.

We recall that the total potential operator Vtot(r) is a real matrix for all values of r.
Additionally, the boundary conditions (12.24) and (12.27a), respectively defining T (r)
and the functions (Yj(r)), are real, therefore the functions T (r) and (Yj(r)) are real for

4The value Yj(rmax) > 0. Integrating from rmax back towards rfit, Eq. (12.30) shows that, as long as
Yj(r) does not change signs, its second derivative Y ′′j (r) is positive. This entails that Y ′j (r) < 0 and,
hence, that the function goes farther away from zero when r decreases towards rfit.
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12. The numerical calculation of two–atom wavefunctions

rfit ≤ r ≤ rmax. Similarly, the boundary conditions at r0 defining the functions (Xi(r))
can be chosen to be real, which leads to the (Xi(r))’s being real for r0 ≤ r ≤ rmax.

The boundary condition (12.27b), defining the functions (Zl(r)) for 1 ≤ l < n0, are
non–real, and thus lead to non–real solutions. However, each of the complex (Zl(r))’s
is a linear combination of two real functions in En0 :

For 1 ≤ l < n0, Zl(r) = Zc
l (r) + iZs

l (r) , (12.33)

where Zc
l (r) and Zc

l (r) are defined by the following real boundary conditions at rmax:

〈Dn |Zc
l (rmax) 〉 = cos(kl rmax) δn,l and 〈Dn |Zc ′

l (rmax) 〉 = − sin(kl rmax) δn,l ,
(12.34a)

〈Dn |Zs
l (rmax) 〉 = sin(kl rmax) δn,l and 〈Dn |Zs ′

l (rmax) 〉 = cos(kl rmax) δn,l .
(12.34b)

This remark allows the calculation of the (n0− 1) complex functions (Zl)1≤l<n0 in terms
of the 2(n0 − 1) real functions (Zc

l )1≤l<n0 and (Zs
l )1≤l<n0 .

12.5. Summary

In this chapter, we have presented the two approaches we have used for the numeri-
cal calculation of two–atom wavefunctions. Both of them use the accumulated–phase
approach (Section 12.2) to encapsulate the short–range physics into a boundary condi-
tion applied at a non–zero radius r0 for which the singlet and triplet potentials are well
known.

Our first approach (Section 12.3) is based on the relaxation method for the solution
of two–point boundary–value problems (first challenge mentioned in the Introduction).
This method is stable and accurate, but it requires a very fine mesh to accomodate
for the short–range oscillations of the wavefunction. It is thus ill–suited for problems
involving many coupled channels, such as the ones involved in Chapters 14 and 15.

Our second approach (Section 12.4) is based on the shooting method. It is much faster
than our relaxation approach. It exploits the linearity of the Schrödinger equation
as well as the large–r uncoupling of the dressed two–atom states. It allows for the
description of inelastic processes through the calculation of complex wavefunctions. It
yields an accurate evaluation of the exponentially–decaying closed–channel components.
It requires no iteration: the physical wavefunction is determined as a linear combination
of (Nstates+Ncl+2n0) real solutions of the Schrödinger equation, among which (Ncl+2n0)
involve a single channel.

Our first method has been used for all numerical calculations presented in the pub-
lished paper of Chapter 13. These calculations involved at most eight coupled channels.

Chapter 14 is devoted to the characterisation of Feshbach resonances in 133Cs induced
by small static magnetic fields: this characterisation requires coupled–channel calcu-
lations involving up to fourteen coupled channels. Chapter 15 focuses on microwave–
induced Feshbach resonances involving two 133Cs atoms whose incident state asymptot-
ically belongs to the (MF = 0) subspace. These resonances involve inelastic processes
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12.5. Summary

(and hence non–real wavefunctions), and the corresponding calculations include up to
forty–eight coupled channels. Our second method has been used for all numerical cal-
culations presented in both of these chapters.
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13. Article 2: Microwave–Induced
Fano–Feshbach resonances
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2Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65/67, NL-1018 XE Amsterdam, The Netherlands

3Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Supérieure, 24 rue Lhomond, F-75231, Paris, France
(Received 2 October 2009; published 15 April 2010)

We investigate the possibility to control the s-wave scattering length for the interaction between cold bosonic
atoms by using a microwave field. Our scheme applies to any atomic species with a ground state that is split by
hyperfine interaction. We discuss more specifically the case of alkali-metal atoms and calculate the change in the
scattering length for 7Li, 23Na, 41K, 87Rb, and 133Cs. Our results yield optimistic prospects for experiments with
the four latter species.
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Cold atomic gases constitute model systems to investigate
a wealth of collective quantum phenomena, ranging from
few-body physics [1,2] to condensed matter problems [3,4].
In particular one can control the strength of the interparticle
interactions using scattering resonances that occur in a col-
lision between two atoms with low energy. These so-called
Fano-Feshbach resonances (FFR’s) arise when the entrance
collision channel, with an energy threshold Eth, is coupled to
another channel that supports a molecular bound state b at
an energy Eb close to Eth [1,5–7]. The scattering length that
characterizes the s-wave scattering between the two atoms has
a dispersive variation with Eth − Eb, and can, in principle, be
tuned to a value with arbitrary sign and magnitude.

In practice, FFR’s are generally obtained by adjusting the
external magnetic field. One takes advantage of the degenerate
structure of the lowest electronic energy level of the atoms. In
the case of alkali-metal atoms that are widely used in cold
atom experiments, the degeneracy emerges from the spins
of the valence electron and of the nucleus. If the magnetic
moment of the bound level b is different from that of the
entrance channel, the energy difference Eth − Eb can be tuned
by scanning the external field. This leads to a resonant variation
of the scattering length, with a width that depends on the
coupling between the two channels and hence on the details of
the interaction between the colliding atoms. For some atomic
species, such as Li, K, or Cs, these magnetic FFR’s have
been an invaluable tool for many studies related to atom-atom
interactions [1–4]. However, the absence of external control
on the width of magnetic FFR’s and their occurrence only for
fixed values of the magnetic field may constitute a serious
drawback. For Na atoms (23Na), for example, the identified
resonances are in the 1000 G region with a width around
1 G or less [8,9]. Similar values are found for polarized
Rb atoms (87Rb) [10]. These large field values and narrow
widths severely limit the use of FFR’s for these species.

In this Rapid Communication we study an alternative to
magnetic FFR’s, where the entrance channel is resonantly
coupled by a microwave (mw) field to a bound state in
another collision channel. All relevant states correspond to
the electronic ground level of the atoms, and the resonance

*david.papoular@lptms.u-psud.fr

is reached by adjusting the frequency of the mw. The width
of the resonance is related to the strength of the magnetic
dipole coupling between the two channels and is proportional
to the mw intensity. Our scheme is reminiscent of optical
FFR’s, as proposed in [11] and experimentally demonstrated in
[12,13]. There, the bound state b was an electronically excited
dimer. Although optical FFR’s, which rely on electric rather
than magnetic dipole coupling, allow, in principle, stronger
resonances, their practical use is limited by the unavoidable
losses due to spontaneous emission processes. One can also use
a pair of laser beams to coherently couple two states from the
ground electronic level [14]. However, for a given change of
the scattering length this method leads to a similar spontaneous
emission rate as in the case of a single-photon excitation [15].
So far the lifetimes of atomic samples submitted to optical
FFR were limited to tens of milliseconds, which is likely to be
too short to reach a many-body equilibrium state. By contrast
mw-FFR’s do not suffer from any spontaneous emission
process and the associated loss rates should be comparable
to those observed with magnetic FFR’s.

So far the use of mw or rf fields has been discussed
in relation to manipulating existing FFR’s [16–18]. Zhang
et al. [17] proposed considering magnetic FFR’s for atomic
states dressed by a two-color Raman process or by an rf field.
The idea was to provide an independent control of different
scattering lengths in multicomponent gases. The rf coupling
of several magnetic FFR’s has been studied experimentally
and theoretically in [18]. The analysis showed that the main
role of rf is to couple the bound states that give rise to these
resonances. Our idea of inducing new FFR’s by using mw
fields brings in a novel physical context. We focus on the
case of zero static magnetic field, which is presently put
forward in the studies of ground-state properties and quantum
phase transitions in spinor Bose gases. Such experiments
require extremely low magnetic fields (<10 mG), and the
manipulation of the interatomic interactions becomes crucial
for the observation of quantum transitions and their dynamics.
Our scheme is also different from [16] where a resonant
oscillating magnetic field was used to enhance the production
of diatomic molecules near an existing FFR. In our case
the bound state that is coupled to the entrance channel is
only virtually populated, and no molecule is produced in the
collision.

1050-2947/2010/81(4)/041603(4) 041603-1 ©2010 The American Physical Society
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FIG. 1. (Color online) Fano-Feshbach resonance in a collision
between two atoms, induced by an oscillatory magnetic field. If
the mw frequency ω approaches the energy difference between the
incident scattering state and a weakly bound dimer state, the pair of
atoms undergoes virtual spin-flip transitions which cause a resonant
variation of the scattering length with ω.

For simplicity we study in the following a collision between
two identical bosonic atoms prepared in the same internal state.
Our treatment can be straightforwardly extended to fermionic
particles and to mixtures of atoms in different internal states.
More specifically, we consider alkali-metal atoms whose
ground level is split by the hyperfine interaction into two
sublevels with total spins f+ = i + 1/2 and f− = i − 1/2,
where i is the nuclear spin. The frequency ω of the mw field is
chosen close to the hyperfine splitting �Ehf between these two
sublevels (see Fig. 1). The various collision channels can then
be grouped into three categories corresponding to asymptotic
states with (i) both atoms in f+, (ii) one atom in f+ and one in
f−, and (iii) both atoms in f−. We consider in the following the
case of a f−f− collision and the mw induces a quasiresonant
transition to a bound state in a potential from the f+f− group
as shown in Fig. 1.

We describe the system in the center-of-mass frame of the
atom pair. Neglecting the weak coupling between the atomic
spins, the atom-atom interaction is spatially isotropic. We
limit our analysis to s-wave collisions governed by the radial
Hamiltonian (see [19] and references therein)

H = p2

2µ
+ Vc(r) + Vhf + h̄ω a†a + W = H0 + W, (1)

where r is the interatomic distance, p is its conjugate
momentum, and µ = m/2 is the reduced mass of the atom pair.
The central part Vc(r) of the interaction is given by Vc(r) =
VS(r)PS + VT (r)PT , where PS and PT are the projection
operators onto the electronic-singlet and triplet subspaces. The
term Vhf = ahf(s1i1 + s2i2) is the hyperfine interaction, where
sj and ij stand for the spin operators of the electron and nucleus
of atom j . We use a quantum description for the mw field and
a† is the creation operator for an mw photon in the relevant
mode. The magnetic dipole interaction between the atoms and
the mw is W = −MB, where M is the total magnetic dipole
operator of the atom pair and B = b0(εa + ε∗a†)/

√
2 is the

magnetic field operator for the mode of polarization ε. As usual

in the dressed-atom approach [20], the amplitude b0 and the
number of photons N in the mw mode are arbitrary. The only
relevant physical quantity is the amplitude of the applied mw
field B0 = b0

√
N (with N � 1). We assume that the magnetic

field is σ+ polarized with respect to the quantization axis ez.1

The valence electron in each atom has zero angular momentum
and W reduces to2

W = W1 (S+ a + S− a†), (2)

where W1 =µBb0/h̄, µB is the Bohr magneton and S± =Sx ±
iSy , with S= s1+s2 being the total electron spin.

We study the scattering properties of H using two different
methods: (i) if the mw Rabi frequency µBB0 is much smaller
than the binding energy |ET | of the dimer and the level spacing
in the closed channel, the scattering is well described by a
single-resonance two-channel model; (ii) for µBB0 � |ET |, a
more general description is obtained through a full coupled-
channel calculation.

We first describe method (i). We consider H as a two-
channel model [1] where H0 is the bare Hamiltonian and
W is the coupling operator. The symmetries of H0 allow
the choice of bare open- and closed-channel wave functions
which have well-defined photon numbers N , total spin F ,
and total spin projection MF along the quantization axis (F =
s1 + i1 + s2 + i2), whereas W directly couples subspaces with
�MF = −�N = ±1. The coupling term W does not vanish
in the limit of infinitely separated atoms. Hence, there is a
difference � in the scattering threshold energy of H compared
to that of H0. If the detuning δ of the mw with respect to the
single-atom hyperfine splitting �Ehf is greater than µBB0, then
� ∼ (µBB0)2/δ. Method (i) is applicable when � � |ET |
and can be neglected. Near resonance, where |δ| ∼ |ET |, this
condition requires µBB0 � |ET |.

We start by stating a selection rule associated with
W . All internal states in the MF = 2i + 1 and MF =
2i subspaces are electronic-triplet states. More precisely,
the MF = 2i + 1 subspace has dimension one, with
|S = 1, I = 2i, F = 2i + 1,MF = 2i + 1〉 as a basis vector
(I determines the modulus of the total nuclear spin I =
i1 + i2). The MF = 2i subspace has dimension two,3 and
it is spanned by |η1〉 = |S = 1, I = 2i, F = 2i,MF = 2i〉
and |η2〉 = |S = 1, I = 2i, F = 2i + 1,MF = 2i〉. The spa-
tial components of the eigenfunctions of H0 in these subspaces
decouple from the internal states and are all eigenfunctions of
the triplet Hamiltonian HT = p2/2µ + VT (r). The bare open-
and closed-channel spatial wave functions are thus orthogonal.
The operator W does not act on the spatial parts of the wave
functions. Hence, its matrix element between an open-channel
state with MF = 2i and a bound state with MF = 2i + 1 is

1This restriction leads to simpler algebra, but is not essential: any
polarization can be decomposed into σ± components and, for a given
ω, only one of the components will induce the desired resonant
coupling to a bound state.

2In Eq. (2) we omit a small coupling of the mw to the nuclear spins
which does not affect the results.

3For s-wave collisions between bosons, only symmetric internal
states are relevant.
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zero. Therefore, W cannot induce any resonance between these
two subspaces.

We now consider a resonance between the MF = 2i −
1 subspace (dimension five) and the MF = 2i subspace.
For the bare open-channel wave function we choose the
MF = 2i − 1 threshold-energy scattering state |�(2i−1)

k=0 〉, in
the presence of N photons. For large interatomic sep-
arations, this state corresponds to the two-particle state
|f−f−, F = 2i − 1,MF = 2i − 1〉 in which both atoms have
f = mf = i − 1/2 (see Fig. 1). The bare closed-channel wave
function is chosen in the form |�(2i)

0 〉 = |ϕT , η1〉, where ϕT (r)
is a bound state of HT and |η1〉 is defined previously (see
Fig. 1).

The single-resonance two-channel model leads to the usual
behavior for the scattering length as a function of the frequency
ω close to an FFR resonance

a(ω) = abg

(
1 + �ω

ω − ωres

)
. (3)

The background scattering length abg corresponds to a col-
lision in the absence of mw, between two atoms in the
state |f = i − 1/2,mf = i − 1/2〉. The resonance position
is given by h̄ωres ≈ �Ehf − |ET | + αB2

0 , where αB2
0 is a

small shift due to the coupling between the open and closed
channels [1]. The width �ω of the mw FFR is

h̄�ω = 1

2π

µ

abgh̄
2 (µBB0)2

∣∣ 〈�(2i)
0

∣∣S+∣∣�(2i−1)
k=0

〉 ∣∣2
. (4)

It is proportional to the mw intensity B2
0 and to the spin-flip

Franck-Condon factor |〈�(2i)
0 |S+|�(2i−1)

k=0 〉|2.
For a given atomic species, method (i) requires the

calculation of �
(2i−1)
k=0 (r) and ϕT (r). We account for the

spin-recoupling phenomenon [1] through the coupled-
channel method [21], encode the short-range physics in
the accumulated-phase boundary condition [19,22], and use
the relaxation method [23] to solve the resulting two-point
boundary-value differential systems.4

We performed calculations for 7Li, 23Na, 41K, 87Rb,
and 133Cs. We use the hyperfine splittings reported in [24]
and the singlet and triplet potentials from [10,25–34]. The
accumulated-phase boundary condition is applied at the radii
r0 = 10 a0 for 7Li, r0 = 16 a0 for 23Na, 41K and 87Rb, and
r0 = 20 a0 for 133Cs. We calculate the initial phases of the
zero-energy scattering wave functions at r0 through back-
integration using the singlet and triplet scattering lengths
[10,27–29,32,35]. The energy derivatives of these phases are
taken from [19,28] for 87Rb and 23Na, and are calculated
for the other species using the triplet and singlet potentials.
Our results are given in Table I. In practice we find that
the broadest resonance widths �ω, as given by Eq. (4) are
obtained by choosing ϕT (r) as the highest bound state of
the triplet potential. For all considered atomic species except
133Cs, this is the resonance we report in Table I. However,
in the case of 133Cs, the highest-energy bound state is so
weakly bound (|ET | = h5 kHz) that the hyperbolic behavior
of a [Eq. (3)] is not valid for B0 � 1 mG, and we therefore

4The same approaches were used for method (ii).

TABLE I. Characteristics of the mw-FFR in 7Li, 23Na, 41K, 87Rb,
and 133Cs involving the triplet bound states with energies ET . The
width �ω scales as B2

0 and is given for B0 = 1 G.

7Li 23Na 41K 87Rb 133Cs

|ET|/h (MHz) 12,000 200 140 25 110
ωres/2π (GHz) 12 1.6 0.12 6.8 9.1
α (kHz/G2) 0.33 6.8 21 120 30
�ω/2π (Hz) 6 1400 350 60 −4500

report the resonance obtained with the second-highest bound
state of VT (|ET | = h110 MHz).

The largest resonance width is obtained for 133 Cs
(−4500 Hz for B0 = 1 G). Relatively large widths are also
obtained for 23Na and 41K. In the case of 87Rb, the singlet
and triplet scattering lengths differ by less than 10% [10].
Hence, the near-threshold properties of the singlet and triplet
Hamiltonians are similar. The open- and closed-channel wave
functions are thus nearly orthogonal, which leads to a reduction
of their overlap and to a narrower resonance. For 7Li the
triplet scattering length is negative [35] and HT does not
support weakly bound molecular states [1]. The last bound
state has a small spatial extent, which leads to an even narrower
resonance.

We now turn to method (ii), where we take into account that
colliding atoms are asymptotically in dressed atomic states.
This method can be used for larger Rabi frequencies, such
that µBB0 � �. We restrict the full Hamiltonian H to the
eight-dimensional subspace spanned by all internal states in
the MF = 2i + 1, 2i, and 2i − 1 subspaces. For given values
of B0 and ω, we calculate the eight-component scattering state
|�B0,ω〉 of H corresponding, for large interatomic separations,
to dressed-state atoms with zero kinetic energy. The scattering
length a(B0, ω) is extracted from the asymptotic behavior of
this wave function. For a given µBB0 � |ET |, we checked
that we recover the hyperbolic behavior of Eq. (3). We also
evaluated the coefficient α giving the shift of the resonance
position ωres (see Table I).

Method (ii) allows us to investigate the mw-FFR in 133Cs
involving the highest bound state of VT , where Eq. (3) is
not applicable for B0 � 1 mG. To avoid inelastic processes
we assume that the atoms are asymptotically in the lowest
atomic dressed state. For large δ < 0, this state corresponds
to the two-particle state |f−f−, F = 2i − 1,MF = 2i − 1〉,
and therefore a = abg = −2500 a0. For large δ > 0 it corre-
sponds to |f+f+, F = 2i + 1,MF = 2i + 1〉, with a = aT =
2400 a0. For B0 � 1 mG the resonance is hyperbolic, as
predicted by method (i) [see Eq. (3)]. For larger B0 the
scattering length becomes very large for h̄ω ≈ �Ehf , but a(ω)
no longer satisfies Eq. (3). Figure 2 shows how the dependence
a(ω) evolves when B0 increases from 0.1 mG to 1 G. In the
δ > 0 region, collisions between atoms in the “stretched”
state f+ = mf = i + 1/2 = 4 occur with a large inelastic
rate because of dipole-dipole interactions [36]. Therefore, one
should operate in the δ < 0 region, where the contamination
of the collision state by the stretched state is small. A detailed
modeling of the large-B0 FFR’s will be presented elsewhere.
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FIG. 2. (Color online) Resonance in 133Cs involving the bound state with energy |ET | = h5 kHz = µB4 mG, for B0 ranging from 0.1 mG
to 1 G, calculated using method (ii). The scattering length a is expressed in units of 1000 a0.

Our results draw optimistic prospects for modifying the
scattering length in atomic gases using a mw field. Using
small resonant transmitting loop antennas in the near-field
regime, it is possible to reach mw magnetic field amplitudes
B0 ∼ 10 G in the desired frequency range, while keeping
a reasonable incident electromagnetic power (below 10 W).
The resonance widths obtained for the hyperbolic resonances
in all atomic species except 7Li are then well above 1 mG,
and thus notably exceed typical magnetic field fluctuations in
setups with an efficient magnetic shielding. The nonhyperbolic
resonance obtained with 133Cs has a width of the order of
1 G for B0 = 1 G. Our scheme can be readily transposed to
fermionic atoms, multicomponent gases, and heteronuclear

mixtures, and it can allow for a fine tuning of interspecies
interactions in all three cases.
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14. Static–Field Feshbach resonances

In this chapter, we temporarily steer away from microwave–induced Feshbach resonances
(we will return to these in Chapter 15) and turn to resonances induced by static mag-
netic fields. These static–field Feshbach resonances have been extensively studied, both
theoretically and experimentally, in the context of ultracold atomic systems [7, 53–55].

The first section is introductory: it recalls the structure of the Hamiltonian govern-
ing collisions in a static magnetic field, and the parameters characterising a static–field
Feshbach resonances. In the second section, we focus on Feshbach resonances that have
previously been studied, and we show that our numerical calculations recover the pub-
lished parameters characterising these resonances. The third, and main section of this
chapter is devoted to the theoretical description of Feshbach resonances that have been
observed in Cesium for very small magnetic fields. To our knowledge, these observa-
tions had remained unexplained. Our numerical results show that these resonances are
due to s–wave collisions and suggest that they involve the highest–energy bound state
(|ET | = h · 5 kHz) of the triplet electronic potential. This interpretation of the SYRTE
measurements makes it possible to view them as experimental evidence for the existence
of the very weakly bound triplet state in 133Cs, which is involved in the resonances
described in Section 11.2.4 and in Chapter 15.

14.1. Two atoms in a static magnetic field

We consider a collision between two bosonic alkali atoms in the presence of a static
magnetic field Bstat. No oscillating magnetic field is added to the setup: throughout this
Chapter, we assume Bosc = 0. Consequently, the radial Hamiltonian (10.13) reduces to:

H =
p2
r

2mr

1 + Vel(r) + Vhf + VZ . (14.1)

We call ez the direction of the static magnetic field: Bstat = Bstat ez. As explained
in Section 10.3.1, the Hamiltonian H of Eq. (14.1) commutes with Fz. Thus, two–atom
internal–state subspaces corresponding to different values of the quantum number MF

are rigorously uncoupled. The Zeeman term VZ does not commute with F 2, therefore,
within each (MF ) subspace, the (F,MF ) sub–blocks are coupled to each other.

The uncoupling property of the previous paragraph can be read graphically off the
block–matrix representation of the complete Hamiltonian (10.13) in the ‘molecular’ basis
eM, shown on Fig. 10.5. The absence of an oscillating magnetic field (Bosc = 0) causes
the blue blocks (corresponding to the magnetic dipole coupling W ) to vanish; hence the
black blocks, each corresponding to a given value of MF , are uncoupled. Within each
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14. Static–Field Feshbach resonances

M=2i-1

F=2i+1

F=2i

F=2i-1

I=2i

I=2i-2

Figure 14.1. Block–matrix structure of the Hamiltonian
describing the collision of two atoms in the presence
of a static magnetic field Bstat, but no oscillating field
(Bosc = 0). We assume that the atoms are initially
in a ‘Zeeman–dressed’ two–atom state belonging to the
MF = (2i− 1) subspace (5 coupled channels).

(black) (MF ) block, the (red) (F,MF ) sub–blocks are still coupled to each other by the
green blocks, corresponding to the Zeeman term VZ.

The coupling term VZ may cause scattering resonances for specific values Bres of the
static magnetic field. These resonances are the ‘standard’ static–field Fano–Feshbach
resonances that have extensively been investigated in ultracold atomic systems, both
theoretically and experimentally [7]. Neglecting inelastic collisions, the variation of the
scattering length a(Bstat) exhibits a hyperbolic divergence for values of the static field
Bstat close to the resonance position Bres:

a(Bstat) = abg

(
1− ∆B

Bstat −Bres

)
, (14.2)

where abg is the background scattering length and ∆B is the resonance width.

14.2. Recovering known Feshbach resonance results

Our coupled–channel programs allow us to recover the published parameters for pre-
viously studied (s–wave) static–field resonances. We illustrate this on the particular
example of the resonances involving a pair of atoms which is asymptotically in the
lowest–energy ‘Zeeman–dressed’ state, i.e. the one relating to both atoms having the
quantum numbers f = mf = i − 1/2 in the absence of the static magnetic field. Note
that, throughout this chapter, the ‘Zeeman dressing ’ of the two–atom states is due to the
presence of the static magnetic field Bstat through the Zeeman term VZ (in contrast to
the microwave dressing of the two–atom states, due to the photon–energy and magnetic
dipole terms (~ω a†a+W ), encountered in Chapter 11).

The ‘bare’ two–atom state | f−,mf = i− 1/2; f−,mf = i− 1/2 〉 belongs to the (MF =
2i − 1) subspace. The uncoupling presented in Section 14.1 shows that the relevant
scattering process is described by the restriction of H to this (stable) subspace. The
block–matrix structure of the restricted Hamiltonian is shown on Fig. 14.1: it involves
five coupled channels.

We have calculated the scattering length a(Bstat) numerically, using the coupled–
channel method, for 7Li, 23Na, 41K, and 87Rb (nuclear spin i = 3/2), and 133Cs (nuclear
spin i = 7/2). Our results, obtained with the ‘shooting’–based approach described in
Section 12.4, are plotted on Figs. 14.2. These results are in good agreement with the
resonance parameters Bres, ∆B, and abg, collected in [7] and reproduced in Table 14.1.
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14.2. Recovering known Feshbach resonance results
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Figure 14.2. Static–field Fano–Feshbach resonances in 7Li, 23Na, 41K, 87Rb, and 133Cs, as
calculated with the ‘shooting’ approach. Our results are in good agreement with the published
values in [7] and [56] (see Table 14.1).
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14. Static–Field Feshbach resonances

Bres (G) ∆B (G) abg (a0)
7Li 736.8 −192.3 −25

23Na
907 1 63
853 2.5 · 10−3 63

41K

856.8 2 · 10−3 (n/a)
661.2 0.2212 (n/a)
409.6 7.775 · 10−3 (n/a)

87Rb

1007.4 0.21 100
911.7 1.3 · 10−3 100
685.4 6 · 10−3 100
406.2 0.4 · 10−3 100

133Cs
800 87.5 1940
547 7.5 2500
−11.7 28.7 1720

Table 14.1. Published values for the resonance
parameters Bres, ∆B, and abg, for the s–
wave resonances involving two atoms in the
lowest–energy hyperfine–Zeeman state, relating
to both atoms having f− = mf = i − 1/2 for
Bstat = 0. (the resonance parameters for 41K
are reproduced from [56], those for the other
atomic species are taken from [7]).

(a) MF = 3 (b) MF = 2 (c) MF = 1

Figure 14.3. Low static–field resonances measured at SYRTE with 133Cs atoms in the two
hyperfine states | f = 4,mf = 0 〉 and | f = 3,M 〉, with M = 3, 2, or 1. For each value of M ,
the plot represents the measured clock shift as a function of the static magnetic field amplitude.
(Reproduced from [57].)

14.3. Low static–field resonances in Cesium

The SYRTE group (Observatoire de Paris) has reported [57] the observation of Feshbach
resonances in 133Cs for small static magnetic fields (Bstat ≈ tens of mG), in systems
containing atoms in two different hyperfine states: the clock state | f = 4,mf = 0 〉, and
| f = 3,mf = M 〉 with M = 3, 2, or 1. To the knowledge of the SYRTE researchers,
these observations have remained unexplained.

We have reproduced these Feshbach resonances numerically. In this section, we present
our numerical results and justify that the resonances observed at SYRTE are s–wave
resonances involving the highest bound state of the triplet potential (binding energy
|ET | = h · 5 kHz).

138



14.3. Low static–field resonances in Cesium

14.3.1. The relevant coupled channels

For a given value of M , the ‘bare’ two–atom state | {f+,mf1 = 0; f−,mf2 = M}+ 〉 be-
longs to the (MF = M) subspace. Thanks to the decoupling described in Section 14.1,
the scattering process which gives rise to the resonances of Figs. 14.3 is thus described by
the restriction of the Hamiltonian (14.1) to the (stable) (MF = M). The block–matrix
structure of the restricted Hamiltonian is represented on Figs. 14.4 for M = 3, 2, and
1. The (MF = 3) subspace contains 10 channels coupled by VZ, the (MF = 2) subspace
contains 13 coupled channels, and the (MF = 1) subspace contains 14 channels.

14.3.2. Choice of the incident ‘Zeeman–dressed’ two–atom state

For the sake of clarity, we focus in this section on the resonances involving the (MF = 3)
subspace, but the argument we present is also directly applicable to resonances involving
the (MF = 2) and (MF = 1) subspaces.

As explained in Section 12.1.3, we choose the incident two–atom state to be a ‘Zeeman–
dressed’ two–atom state, i.e. an eigenstate of the operator V∞ defined by Eq. (12.2). In
the absence of an oscillating magnetic field (Bosc = 0), the operator V∞ reduces to:

V∞ = Vtot(r →∞) = Vhf + VZ . (14.3)

We order the Zeeman–dressed states1 {|DMF=3
1 〉, . . . , |DMF=3

10 〉} by increasing energies
εMF=3

1 ≤ . . . ≤ εMF=3
10 . We seek the Zeeman–dressed state |DMF=3

n 〉 which relates, in the
absence of any magnetic field, to the ‘bare’ two–atom state | {f+,m1 = 0; f−,m2 = 3}+ 〉.

Our numerical calculations are performed using the exact Zeeman–dressed states and
energies obtained through the diagonalisation of V∞ within the subspace (MF = 3). In
order to relate these Zeeman–dressed states to the separated–atom states | {f1,m1; f2,m2}+ 〉,
we now sketch a perturbative approach, considering VZ as a small coupling term2.

The bare two–atom internal states | {f1,m1; f2,m2}+ 〉 belonging to the (MF = 3)
subspace can be grouped in three categories:

• 3 states have both atoms in the hyperfine state f+ (f+f+);

• 5 states have one atom in f+ and the other in f− (f+f−);

• 2 states have both atoms in the hyperfine state f− (f−f−).

In the absence of any magnetic field, all states within each of these three groups are
degenerate, and their energies are related to the hyperfine energy ∆Ehf :

Ef+f+ = Ef+f− + ∆Ehf = Ef−f− + 2∆Ehf . (14.4)

1The Zeeman–dressed states |DMF
j 〉, and the corresponding energies εMF

j , depend both on the total
spin projection MF and on the magnetic field amplitude Bstat.

2The perturbative approach is licit, as the Zeeman term is of the order of µB · 10 mG ≈ h · 10 kHz,
whereas the hyperfine term is of the order of ahf ≈ h · 10 GHz.
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(c) MF = 1

Figure 14.4. Block matrix structure of the
Hamiltonians describing the collision of two
atoms in the presence of a static magnetic field
Bstat, but no oscillating magnetic field (Bosc =
0). We assume that the atoms are initially in a
‘Zeeman–dressed’ two–atom state belonging to
a given (MF ) subspace, with MF respectively
equal to 3 (10 coupled channels), 2 (13 coupled
channels), and 1 (14 coupled channels).
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14.3. Low static–field resonances in Cesium

Bstat

E{mf1,mf2}+

{mf1,mf2}+

{4,−1}+

{3, 0}+

{2, 1}+

{1, 2}+

{0, 3}+

Ef+f−

0

Figure 14.5. Degeneracy lifting, by the
Zeeman term VZ, between the states
| {f+,mf1; f−,mf2}+ 〉 of the subspace
(MF = 3), for small static mag-
netic fields Bstat. The incident state
| {f+,mf1 = 0; f−,mf2 = 3}+ 〉 is represented
in red.

For the range of magnetic field amplitudes considered here (Bstat ≈ 10 mG), the Zeeman
term VZ is always much smaller than the hyperfine energy ∆Ehf , therefore the three
hyperfine groups (f+f+), (f+f−), and (f−f−) are not mixed by VZ.

The ‘bare’ incident two–atom state | {f+,m = 0; f−,m = 3}+ 〉 belongs to the (f+f−)
group. We are thus interested in the leading–order degeneracy lifting of the five (f+f−)
states due to VZ = 2µBBstat Sz. Recalling that the operator Sz conserves the quantum
number MF , a direct calculation shows that the restriction of VZ to the (f+f−) group
is diagonal:

〈 {f+,m1; f−,m2}+ |VZ| {f+,m′1; f−,m′2}+ 〉 = δm1,m′1
δm2,m′2

(2µBBstat)
m1 −m2

2i+ 1
,

(14.5)
where i = 7/2 is the nuclear spin of a single 133Cs atom. Standard perturbation the-
ory [25] applied to the degenerate energy levels in the (f+f−) group shows that, to
leading order in Bstat, the sought Zeeman–dressed states are the separated–atom states
| {f+,m1; f−,m2}+ 〉, and that the dependence of the Zeeman–dressed energies on Bstat

is given by:

E{f+,m1;f−,m2}+ = Ef+f− + (2µBBstat)
m1 −m2

2i+ 1
. (14.6)

The degeneracy lifting of the (f+f−) states due to VZ is illustrated on Fig. 14.5.
This figure shows that the Zeeman–dressed state relating to the ‘bare’ incident state
| {f+,m1 = 0; f−,m2 = 3}+ 〉 depends on the sign of the static magnetic field Bstat: for
Bstat > 0, it is the lowest–energy Zeeman–dressed state in the (f+f−) group, which is3

|DMF=3
3 〉, whereas for Bstat < 0, it is the highest–energy Zeeman–dressed state in the

(f+f−) group, which is |DMF=7
7 〉.

3The two lowest–energy dressed states relate to the two bare states in the (f−f−) group.
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14. Static–Field Feshbach resonances

Similar arguments allow us to identify the incident states | {f+,m = 0; f−,m = M}+ 〉,
M = 2 or 1, with the relevant Zeeman–dressed states |DMF

j 〉 in the (MF = 2) subspace
and the (MF = 1) subspace. For all three considered values of M , the relevant Zeeman–
dressed state depends on the sign of Bstat. Furthermore, the incident Zeeman–dressed
state never is the lowest–energy dressed state, as the Zeeman–dressed states relating to
the (f−f−) group have lower energies: therefore, the atom pair may undergo inelastic
decay into lower–energy channels.

14.3.3. Numerical results and interpretation

The magnetic–field dependence of the scattering lengths characterising the collisions de-
fined above (M = 3, 2, or 1), obtained numerically using our ‘shooting’–based coupled–
channel program (Section 12.4), is represented on Figs. 14.6. These graphs reveal the
presence of Feshbach resonances, whose calculated positions are compared to the posi-
tions measured by SYRTE [57] in Table 14.2. In all three cases, our predictions for the
positions of the widest resonances are in good agreement with the measured positions.
Our results reveal the existence of additional, as yet unobserved, narrow resonances.

Resonance positions Bres [mG]
MF = 1 MF = 2 MF = 3

measured calculated measured calculated measured calculated
−11± 5

2.7 4.0 3.0
5.1 8 7.2 4.2

18± 3 16.5 25 22 5± 1 5.5

Table 14.2. Comparison between the resonance positions measured by SYRTE and those
calculated using our coupled–channel code. Our numerical results show four resonances in the
MF = 1 subspace, three in the MF = 2 subspace, and three in the MF = 3 subspace, in
agreement with the expected number of resonances in each subspace (see text).

The Hamiltonian (14.1), used in our coupled–channel calculations, conserves the total
angular momentum `2 (see Section 10.2.3). It does not contain any centrifugal term
and thus corresponds to s–wave collisions (` = 0). Our numerical results reproduce the
observed resonances, which proves that the latter are due to s–wave collisions.

The scattering lengths a(Bstat) plotted on Figs. 14.6 are non–real. Furthermore, the
calculated resonances do not yield hyperbolic divergences of a, but rather a smooth,
dispersive variation. Both of these features are signatures of the occurrence of inelastic
collisions. These inelastic processes were expected to take place (see Section 14.3.2)
because of the presence of the lower–energy Zeeman–dressed states relating to the (f−f−)
group.

Within a given (MF ) subspace, the closed channels yielding the observed small–field
resonances are likely to be the states |ϕT 〉| {f+f−}+, F,MF 〉, F odd, where |ϕT 〉
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14.3. Low static–field resonances in Cesium

-100

-50

 0

 50

 100

-5  0  5  10

S
ca

tt
er

in
g
 l

en
g
th

 a
 [

1
0
0
0
 a

0
]

Static magnetic field B [mG]

Cs

Re(a)

Im(a)

(a) | {f+,mf = 0; f−,MF = 3}+ 〉

-15

-10

-5

 0

 5

 10

-20  0  20  40

S
ca

tt
er

in
g
 l

en
g
th

 a
 [

1
0
0
0
 a

0
]

Static magnetic field B [mG]

Cs

Re(a)

Im(a)

(b) | {f+,mf = 0; f−,MF = 2}+ 〉

-5

 0

 5

-25  0  25  50

S
ca

tt
er

in
g
 l

en
g
th

 a
 [

1
0
0
0
 a

0
]

Static magnetic field B [mG]

Cs

Re(a)

Im(a)

(c) | {f+,mf = 0; f−,MF = 1}+ 〉

Figure 14.6. Feshbach resonances in Cesium in low static magnetic fields. The incident atoms
are asymptotically in the two–atom Zeeman–dressed states relating to | f+,mf1 = 0 〉 and
| f−,mf2 〉, with mf2 = 3, 2, or 1, corresponding to the three Hamiltonians whose block–
matrix representations are shown in Figs. 14.4. The resonance positions are highlighted by
golden dashed lines.
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14. Static–Field Feshbach resonances

is the spatial wavefunction of the highest-energy triplet bound state (binding energy
|ET | = h · 5 kHz) and the internal–state ket describes a two–atom state which is purely
electronic–triplet (see Section 10.3.3). This statement is supported by the following two
observations:

• Our calculations show no similar resonances in 87Rb, which does not have a very
weakly–bound triplet state (for 87Rb, the binding energy of the highest triplet
bound state is |ET | = h · 25 MHz [58]);

• The observed resonance positions are of the order of |ET |/µB = 4 mG.

For a given value of MF , there are as many resonances as there are different internal
states of the form | {f+, f−}+, F,MF 〉, F odd. The total spin F results from the coupling
of two atomic spins f1 and f2 having the quantum numbers f+ = i+ 1/2 = 4 and f− =
i− 1/2 = 3 respectively, and it must therefore satisfy MF ≤ F ≤ 2i = 7. Furthermore,
F must be odd in order to ensure the bosonic symmetry of the two–atom internal states.
Consequently, four resonances are expected for MF = 1 (F = 7, 5, 3, 1), whereas there
are only three resonances for MF = 2 and MF = 3 (F = 7, 5, 3). The variation a(Bstat)
of the scattering length a as a function of the magnetic field Bstat, shown on Figs. 14.6,
exhibits the expected number of resonances in all three MF subspaces.
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15. Towards an experimental
observation of our predictions

The microwave–induced resonances characterised in Chapter 11 are those whose theo-
retical description is the simplest: they can be modelled in terms of a small number of
coupled channels, and they do not involve inelastic processes. However, these are not
the resonances which are the most readily accessible experimentally.

An experimental study of the microwave–induced resonances in 133Cs is likely to be
performed soon using the Cesium fountain clocks set up at SYRTE—Observatoire de
Paris. The experimental parameters in these fountain clocks differ from the conditions
considered in Chapter 11 in three respects:

1. A small homogeneous static magnetic field is present in the experimental setup;

2. The microwave source is π–polarised (rather than circularly polarised);

3. The atoms are most easily prepared in the lowest–energy hyperfine state having
zero spin projection along the axis defined by the static field.

In this chapter, we characterise the microwave–induced resonances occurring in 133Cs
due to the very weakly–bound triplet dimer state in the experimental conditions listed
above. The description of these resonances requires a larger number of coupled channels,
and inelastic processes must be accounted for.

We start by recalling the dependence of the magnetic dipole coupling on the polari-
sation of the oscillating magnetic field. Then, assuming that no static magnetic field is
present, we determine the microwave–dressed two–atom state which relates to the bare
two–atom state mentioned above. We present a plot of the dependence of the (complex)
scattering length a(ω) in the frequency range for which the weakly–bound triplet state
is expected to be resonant, and we qualitatively explain many of the features of this
plot. Finally, we include the effect of an additional small static magnetic field along the
quantisation axis, and we show that this static field only has a small qualitative impact
on the microwave–induced resonances.

15.1. Two atoms in a linearly–polarised magnetic field

Up to Chapter 13, we had only considered microwave–induced resonances caused by
circularly–polarised magnetic fields. In the present chapter, we abandon circularly–
polarised fields and turn to a linearly–polarised magnetic field, whose direction is par-
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15. Towards an experimental observation of our predictions

Bstat

σ+
σ-

π
Figure 15.1. The three basis polarisations for
the oscillating magnetic field in the presence of
a static field componentBstat = Bstatez. The π
polarisation is linear and parallel to Bstat. The
σ+ and σ− polarisations are circular and cor-
respond to fields that rotate counter–clockwise
and clockwise about Bstat, respectively.

allel to the ambient static magnetic field. In this section, we describe the Hamiltonian
modelling an ultracold collision between two atoms in this magnetic field configuration.

15.1.1. Magnetic field polarisation and magnetic dipole coupling

We choose the unit vector ez to be along the quantisation axis. In the absence of a static
magnetic field, as was the case in Chapter 11, the choice of the quantisation axis is arbi-
trary. However, in this chapter, we will consider non–zero static field components Bstat,
and we choose the quantisation axis to be (positively) parallel to the static magnetic
field: ez = Bstat/Bstat.

The magnetic dipole coupling W term depends on the polarisation ε of the magnetic
field Bosc. In the general case, ε is a three–component unit vector with complex coeffi-
cients, which can be expressed in the polarisation basis (εσ+ , εσ− , επ), where the three
(complex) unit basis vectors are defined by:

εσ+ = (ex + i ey) /
√

2 (σ+ circular polarisation) (15.1a)

εσ− = (ex − i ey) /
√

2 (σ− circular polarisation) (15.1b)

επ = ez (π linear polarisation). (15.1c)

The three basis polarisations of Eqs. (15.1) are illustrated on Fig. 15.1: the polarisa-
tions εσ+ and εσ− are circular polarisations about the quantisation axis ez, whereas the
polarisation επ is linear and parallel to ez.

The magnetic dipole coupling terms W corresponding to the basis polarisations of
Eqs. (15.1) read [59]:

Wσ+ = w1 (S+a + S−a†) (15.2a)

Wσ− = w1 (S−a + S+a†) (15.2b)

Wπ =
√

2 w1 Sz (a + a†) . (15.2c)

The coupling term used in chapters 11 and 13 is Wσ+ , which expresses that the atom
pair may absorb one photon, in which case the total spin projection MF increases by
one unit, or emit a photon, in which case the total spin projection decreases by one
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15.2. In the absence of a static magnetic field

unit. These processes enforce the conservation of angular momentum, as σ+–polarised
photons carry one unit of angular momentum along ez.

In this chapter, we focus on the π–polarised case: the coupling term Wπ expresses that
the atom pair may absorb or emit a photon, and that neither of these processes causes
a change in the total spin projection. These two latter processes are also compatible
with the conservation of angular momentum, as π–polarised photons carry no angular
momentum.

15.1.2. Hamiltonian and relevant coupled channels

The Hamiltonian describing two atoms in the presence of a π–polarised magnetic field
is similar to Eq. (10.9), where the coupling operator W is replaced by Wπ. In its radial
s–wave form, it reads:

H =
p2
r

2mr

1 + Vel(r) + Vhf + VZ + ~ω a†a + Wπ . (15.3)

We assume that the two incident atoms are in the (dressed state relating to the)
‘bare’ two–atom state | f−,mf = 0; f−,mf = 0 〉, in the presence of N photons whose
frequency is close to the hyperfine energy ∆Ehf . This ‘bare’ incident state belongs to
the (MF = 0, N photons) subspace. Being in their lowest-energy hyperfine state f−,
each of the two atoms may absorb one photon, but neither may emit a photon. Hence,
the coupling term W connects the ‘incident’ subspace (MF = 0, N photons) subspace
to the (MF = 0, N − 1 photons) and (MF = 0, N − 2 photons) subspaces, through the
absorption of a single photon, and of a photon by each atom, respectively. The block–
matrix structure, in the ‘molecular’ basis eM, of the restriction of the Hamiltonian to
these three subspaces is represented on Fig. 15.2. The (MF = 0) blocks corresponding
to different photon numbers are distinct, therefore the restricted Hamiltonian operates
on Nstates = 3× 16 = 48 coupled channels.

15.2. In the absence of a static magnetic field

In this section, we assume that the magnetic field has no static component (Bstat = 0).
The effect of an additional static component will be presented in Section 15.3.

In the absence of a static magnetic field, the quantisation axis ez is defined by the
direction of the linearly–polarised oscillating magnetic field Bosc.

15.2.1. Choice of the incident dressed two–atom state

As explained in Section 12.1.3, we choose the incident state of the two atoms, in the
presence of the magnetic field, to be a ‘dressed’ two–atom state, i.e. one of the Nstates =
48 eigenstates of the symmetric matrix V∞, defined by Eq. (12.2):

V∞ = Vtot(r →∞) = Vhf + VZ + ~ω a†a+Wπ . (12.2)
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Figure 15.2. Block–matrix structure, in the molecular basis eM, of the Hamiltonian describing
a collision between two atoms in the presence of a static magnetic field Bosc (contributing
the green VZ blocks) and a π–polarised magnetic field Bosc (contributing the blue W blocks),
restricted to the (MF = 0, N photons), (MF = 0, N−1 photons), and (MF = 0, N−2 photons)
subspaces (Nstates = 48 coupled channels). In the absence a of static magnetic field (Bstat = 0),
the green VZ blocks vanish, but the three distinct (MF = 0) blocks are still coupled by the
blue W blocks.
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15.2. In the absence of a static magnetic field

The choice of the incident state n0 among these Nstates states is dictated by the internal
state of the atoms before the microwave field is turned on in the actual experiment:
we assume that the experiment is performed with atoms that are all in the same state
| f−,mf = 0 〉 in the absence of the microwave field. Therefore, we are looking for the
dressed two–atom state |Dn0 〉 which has the largest overlap with the ‘bare’ two–atom
state | f−,m1 = 0; f−,m2 = 0 〉, in the presence of N photons.

In the case of the static–field Feshbach resonances, we have used a perturbative analyt-
ical approach to determine the relevant ‘dressed’ two–atom state (see Section 14.3.2). In
the present case, the situation is slightly more intricate as two parameters are involved:
the magnetic field amplitude Bosc and the detuning δ, defined by ~δ = ~ω − ∆Ehf

(there was only one parameter in the static–field case: the magnetic field amplitude
Bstat). Hence, we replace the analytical approach of Section 14.3.2 with a closely related
numerical approach which we now describe.

The left–hand part of Fig. 15.3 shows a plot of the ‘bare’ energies of the two atoms in
the presence of the microwave field (i.e. neglecting the couplings due to VZ and W : the

plotted energies are the eigenvalues of V
(0)
∞ = Vhf +~ω a†a) as a function of the detuning

δ. We assume that ~|δ| is large enough compared to µBBosc for the microwave dressing
not to mix the bare states too strongly away from their bare–state asymptotes plotted
in Fig. 15.3(left).

The index n0 of the relevant ‘dressed’ state is determined as follows from Fig. 15.3(left).
We start from the quantum numbers describing the ‘bare’ two–atom state: the quantum
numbers {f−, f−} indicate that we should look at the lower group of three lines, and
the photon number N points towards the horizontal line in this group. The degeneracies
(given by the small integers on the left part of the plot) then imply that, for negative
detunings close to δ = 0: (i) there are four such bare states, and (ii) there are 4+4+7 =
15 states that have lower energies. Thus, the relevant dressed two–atom states are1

|D16 〉, |D17 〉, |D18 〉, and |D19 〉. Subsequently, a plot of the overlaps of these four
dressed states with the bare two–atom state | f−,m1 = 0; f−,m2 = 0 〉 for Bstat = 0,
Bosc = 1 mG, and detunings δ/2π ≈ −5 kHz (which is the detuning expected to cause a
coupling to the weakest–bound triplet bound state of two 133Cs atoms), shown on the
right-hand side of Fig. 15.3, reveals that the sought dressed state is |D16 〉.

Note that the choice of |D16 〉 as the dressed state relating to the ‘bare’ state specified
above is valid only for a given range of the parameters δ and Bosc around the values given
above. For example, for positive detunings (and the same magnetic field amplitudes),
the dressed state relating to | f−,mf = 0; f−,mf = 0 〉 is |D31 〉 (see the δ > 0 half of
Fig. 15.3).

15.2.2. Inelastic processes

The dressed state we have selected (n0 = 16) is not the lowest–energy dressed state.
Consequently, the two atoms can undergo inelastic collisions which bring them to states
with lower energy than the incoming state.

1The two–atom dressed states |Dj 〉 are ordered by increasing energies: see Section 12.1.2.
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Figure 15.3. Left: ‘Bare’ energies of the two atoms in the presence of the microwave field,

as given by the Hamiltonian V
(0)
∞ . The green lines correspond to MF = 0 (N photons), the

blue lines to MF = 1 (N − 1 photons), and the red lines to MF = 2 (N − 2 photons). The
solid lines represent states belonging to the {f−f−} group, the dashed lines to {f+f−} and
the dotted lines to {f+f+}. For given values of the quantum numbers {f1, f2} and MF , all of
the states | {f1, f2}±, F,MF 〉 are degenerate: the corresponding degeneracies are given by the
small integers on the left–hand part of the plot.
Right: Overlaps between the mw–dressed states |Dn 〉 and the ‘bare’ state
| f−,m1 = 0; f−,m2 = 0, N 〉 (N is the photon number), calculated for Bstat = 0 and Bosc =
1 mG. Only the dressed states yielding the largest overlaps are represented: D13, D14, D15,
D16 for δ < 0, and D28, D29, D30, D31 for δ > 0.
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15.2. In the absence of a static magnetic field

The microwave–dressed two–atom states |Dj 〉 are ordered by increasing energies.
Therefore, there are fifteen states whose energies are lower than |D16 〉. The left part of
Fig. 15.3 shows that, for negative and small detunings δ, among these fifteen states,

• 4 belong to the ({f−, f−}, M = 0, N − 2 photons) group
(energy −2∆Ehf lower than the incident state);

• 4 belong to the ({f−, f−}, M = 0, N − 1 photons) group
(energy −∆Ehf lower than the incident state);

• 7 belong to the ({f+, f−}, M = 0, N photons) group
(energy −∆Ehf lower than the incident state);

The inelastic processes cause the scattering length an0 to acquire an imaginary com-
ponent; in Re(a(ω)), the hyperbolic divergence predicted by the two–channel model in
the absence of inelastic collisions is replaced by a dispersive dependence on ω which does
not diverge at the resonance frequency (see Fig. 15.4).

Note that the only inelastic processes taken into account in our calculations are those
due to the interaction with the magnetic field through the coupling term2 Wπ. In
particular, the weak anisotropic spin–spin interaction Vss (see Section 11.4.3 and [39])
are not accounted for.

15.2.3. MW–induced resonances involving the dressed state D16

We have used our ‘shooting’–based coupled–channel program (see Section 12.4) to cal-
culate the scattering length a(ω) associated with the dressed two–atom state |D16 〉, for
Bstat = 0 (no static magnetic field) and the magnetic field amplitude3 Bosc = 1 mG. The
dependence a(ω) is represented on Fig. 15.4, for a range of detunings around δ = 0 and
of the order of |ET | = h · 5 kHz, where |ET | is the binding energy of the weakest bound
state of the triplet potential for 133Cs. For the range of detunings explored on this figure,
the dressed state |D16 〉 relates to the bare state | f−,mf1 = 0; f−,mf2 = 0 〉 for δ < 0,
and to | f+,mf1 = 0; f+,mf2 = 0 〉 for δ > 0.

The main microwave–induced resonance

The main resonance due to the weakest bound state in the Triplet potential is expected
to occur for detunings δ close to ~δ0

res ≈ −|ET | = h · (−5kHz) (see Eq. (11.8). Indeed,
Fig. 15.4 exhibits a multi–peaked resonance for δ/2π ≈ −5 kHz.

2In the presence of a static magnetic field, the Zeeman coupling term VZ may also cause inelastic
processes. These are absent in this Section as Bstat = 0, but will be present in Section 15.3, where
Bstat 6= 0.

3We work with small magnetic field amplitudes (Bosc < |ET |/µB ≈ 4 mG, where |ET | = h ·5 kHz is the
energy of the weakest–bound triplet bound state of two 133Cs atoms) in order to avoid an interplay
between the two–atom resonance that we describe here and single–atom dressed–state effects near
the hyperfine transition frequency: see Section 11.2.4.
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Figure 15.4. Frequency dependence a(ω) of the (complex) scattering length a(ω) associ-
ated with the dressed two–atom state |D16 〉, calculated for Bosc = 1 mG, Bstat = 0, and
−10 kHz ≤ δ

2π ≤ 6kHz. The dressed state relates to | f−,mf1 = 0; f−,mf2 = 0 〉 for δ < 0 and
to | f+,mf1 = 0; f+,mf2 = 0 〉 for δ > 0.

This resonance is analogous to the one that we have identified with 133Cs atoms that
are asymptotically all in the state | f−,mf = i− 1/2 〉 (see Chapter 11: it is analogous
to the resonance due to the intersection A on Fig. 11.11). The present resonance differs
from the previous one in two respects:

1. Because of inelastic processes, a(ω) has a non–zero imaginary part which becomes
important near the resonance;

2. The multi–peaked structure is a signature of the presence of multiple resonant
closed–channel states.

These features are new in the context of microwave–induced resonance, but they have
already been encountered in our analysis of the small static–field Feshbach resonances
measured at SYRTE (see Chapter 14).

Let us focus on the second new feature. The choice of |D16 〉 as the incident two–
atom ‘dressed’ state determines the open–channel block to be (MF = 0, N photons).
The absorption of a single π–polarised photon connects this block to the (MF = 0, N −
1 photons) block, which therefore contains the closed channels. The resonance we are
discussing occurs for ~δ ≈ −|ET | and is therefore due to the triplet bound states in
(MF = 0, N − 1 photons) which have odd F : F = 7, 5, 3, 1. These multiple closed–
channel states yield the multi–peaked structure observed on Fig. 15.2.
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15.2. In the absence of a static magnetic field

The second–order resonance occurring for negative detunings

The resonance occurring at δ/2π ≈ −1
2

5 kHz is a two–photon resonance involving the
(MF = 0, N photons) and (MF = 0, N − 2 photons) blocks. It is analogous to the
second–order mw–FFR resonance involving the MF = 2i − 1 (open) and MF = 2i + 1
(closed) subspaces which we have previously encountered (see Section 11.2.4 and the
intersection B on Fig. 11.11).

Its single–peak character can be understood in terms of an energy–conservation argu-
ment. The incident atoms are in a (dressed) state which relates to a bare two-atom state
belonging to the {f−f−} group within the (MF = 0, N photons) block. The absorption
of two photons, each of which has a frequency tuned close to the hyperfine transition
energy, will therefore lead to a state belonging to the {f+f+} group (conservation of
energy) within the (MF = 0, N−2 photons) block. There is only one purely triplet state
which satisfies these two conditions, namely | {f+f+}, F = 2i+ 1 = 8,MF = 0, N − 2 photons 〉.
Therefore, the two–photon resonance involving the MF = 0 (open) and MF = 2 (closed)
subspaces should only have one peak.

No second–order resonance occurs at4 δ/2π ≈ +1
2

5 kHz. This is due to the absence
of a triplet two–atom state satisfying the required energy–conservation condition. In-
deed, on the δ > 0 side of the anticrossing, the incident two–atom state belongs to the
({f+, f+},MF = 0, N − 2 photons) block. The emission of two photons would connect
the incident state with one in the ({f−, f−},MF = 0, N photons) block, which contains
no triplet internal state, and thus does not support a weakly–bound state whose binding
energy would be ≈ h · 5 kHz.

A narrower first–order resonance for positive detunings

Figure 15.4 shows that a resonance occurs for detunings δ/2π ≈ +5 kHz. This is a
first–order resonance involving the (MF = 0, N − 2 photons) block (open subspace) and
the (MF = 0, N − 1 photons) block (which contains the closed triplet channels).

This first–order resonance corresponds to the intersection C on Fig. 11.11. Unlike in
Section 11.2.3, this resonance is not suppressed. Indeed, in the present situation, the
incident two–atom internal state for δ > 0 has non–zero components along the states
| {f+, f+}, F,MF = 0 〉 with F = 6, 4, 2, and 0: these four internal states are not purely
electronic–triplet and may thus take part in resonances involving triplet closed channels.

However, this first–order resonance on the δ > 0 side of the graph is much narrower
than its δ < 0 counterpart, as |D16 〉 has a large overlap with the purely–triplet state5

| {f+, f+}, F = 8,MF = 0 〉.
4The resonance corresponding to the intersection D on Fig. 11.11 is not suppressed, but it occurs

for detunings ~δ ≈ + 1
2 |Eb|, where |Eb| is the binding energy of a bound state supported by an

(F even,MF ) block and is expected to be of the order of a few tens of MHz.
5For δ > 0, the incident dressed two–atom state is close to the bare state | f+,mf = 0; f+,mf = 0 〉,

whose squared overlap with | {f+, f+}, F = 8,MF = 0 〉 is 0.38. Only the F = 6, 4, 2, and 0
components cause a resonance; their total squared overlap with the incident state is only ≈ 0.62,
which explains the narrowness of the calculated resonance.
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Figure 15.5. Overlaps between the
dressed states |Dn 〉 and the ‘bare’ state
| f−,m1 = 0; f−,m2 = 0, N 〉 (N is the photon
number), calculated for Bosc = 1 mG and
Bstat = 1.6 mG. Only the dressed states
yielding the largest overlaps are represented:
|D16 〉, |D17 〉, |D18 〉, |D19 〉 for δ < 0, and
|D28 〉, |D29 〉, |D30 〉, |D31 〉 for δ > 0 (this
graph is the analog, for the Bstat 6= 0 case, of
Fig. 15.3(right)).

15.3. In the presence of a static magnetic field

We now describe the effect of an additional static magnetic field Bstat along the quan-
tisation axis ez. We choose the amplitude Bstat = 1.6 mG, which is the typical static
magnetic field amplitude in a Cesium fountain clock experiment [60]. The amplitude of
the oscillating magnetic field is Bosc = 1 mG, as in Section 15.2. We find that the addi-
tional static field only has a small effect on the microwave–induced resonances described
in the previous Section.

The argument concerning the choice of the entrance channel, presented in Section 15.2.1,
relies only on the degeneracies of the bare two–atom states and on the assumption that
both components of the magnetic field (static and oscillatory) are small enough for the
dressed–state energies not to lie too far away from their bare–state asymptotes (see the
left part of Fig. 15.3). Therefore, this argument is still applicable, and shows that the
relevant dressed states for negative detunings (δ/2π ≈ −5 kHz) are |D16 〉, |D17 〉, |D18 〉,
and |D19 〉.

A plot of the overlaps of these four states with | f−,m = 0; f−,m = 0 〉, calculated
for the magnetic field amplitudes Bosc = 1 mG, Bstat = 1.6 mG, and detunings δ/2π ≈
−5 kHz, represented on Fig. 15.5, shows that the sought dressed state is |D16 〉. Note,
however, that the dressed states |Dj 〉 depend on all magnetic field parameters, and in
particular on Bstat; hence, the dressed state |D16 〉 discussed here is not the same as the
one discussed in Section 15.2.1.

The scattering length a(ω) associated with the incident dressed state |D16 〉 is rep-
resented on Fig. 15.6. The δ < 0 part of this figure exhibits a wide double–peaked
resonance which is very similar to the one obtained in the absence of a static magnetic
field (see Fig. 15.5). On the δ > 0 part of the graph, the effect of the static magnetic
is to split the narrow first–order resonance at δ ≈ 5 kHz, which has a single main peak
for Bstat = 0, into separate components. This multiple–peaked structure is due to the
presence of multiple triplet states in the (MF = 0, N −1 photons) subspace. Indeed, the
states | {f+, f−}+, F,MF = 0 〉, with F = 1, 3, 5, and 7, are all purely triplet and thus
each support a weakly–bound state whose binding energy is |ET | = h · 5 kHz and which
may contribute a peak to the resonance at δ/2π ≈ +5 kHz.
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Figure 15.6. Frequency dependence a(ω) of the (complex) scattering length a(ω) associated
with the dressed two–atom state |D16 〉, calculated for Bosc = 1 mG, Bstat = 1.6 mG, and
−10 kHz ≤ δ/2π ≤ 6kHz. The dressed state relates to | f−,mf1 = 0; f−,mf2 = 0 〉 for δ < 0
and to | f+,mf1 = 0; f+,mf2 = 0 〉 for δ > 0.
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16. Conclusion and outlook

The object of the work presented in the second part of this manuscript has been to
describe a new type of scattering resonance occurring in ultracold atomic systems: the
microwave–induced Fano–Feshbach resonances. Scattering resonances occur when a low–
energy scattering state of a pair of colliding atoms, in given internal states, is coupled
to a bound state of the two atoms in a different two–atom internal state. In the case
of the “standard” Feshbach resonances, the coupling between the scattering state and
the resonant bound state is obtained using a static magnetic field. Microwave–induced
Feshbach resonances are caused by couplings generated by oscillating magnetic fields
whose frequencies are tuned close to the atomic hyperfine splitting.

Just like their static–field counterparts, microwave–induced Feshbach resonances cause
a hyperbolic divergence in the scattering length (see Eq. (11.1)). Therefore, they can
be used to set the value of the scattering length to any desired value and sign, and thus
to tailor the nature (attractive or repulsive) and strength (strongly–interacting regime,
ideal gas, . . . ) of the interactions within the ultracold atomic sample. They also allow
the scattering length to be adiabatically scanned through the resonance (e.g., in view
of an experimental study of a BEC—BCS crossover): such a scan can be performed,
for example, by working at a fixed magnetic field amplitude and slowly ramping the
magnetic field frequency from one side of the resonance to the next.

Despite their kinship, microwave–induced Feshbach resonances differ from static–field
resonances in quite a few respects. Microwave–induced Feshbach resonances occur even
in the absence of any static magnetic field. The resonance frequencies and widths of
microwave–induced resonances are not directly related to the characteristics of static–
field resonances. Furthermore, the widths of microwave–induced resonances are propor-
tional to the squared amplitude of the magnetic field, and these resonances can therefore
be made very broad if a powerful microwave source is available.

We have focused on the case of bosonic alkali atoms, although neither of these two
assumptions is essential. We have characterised the microwave–induced resonances oc-
curring in 7Li, 23Na, 41K, 87Rb, and 133Cs using three different approaches: (i) the
two–square–well approach (Section 9.2), (ii) the two–channel approach (Section 11.1),
and (iii) the coupled–channel approach (Section 11.2). The first approach involves a
simple model from which orders of magnitude for the resonance positions, widths, and
shifts can be extracted without resorting to elaborate numerical methods. The sec-
ond approach yields simple scaling laws for the resonance width and the shift on the
resonance position due to the interchannel coupling. The third approach is the most
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accurate and general: it remains applicable in the presence of larger oscillating fields
(Section 11.2.4), it accounts for inelastic processes, and for the presence of both static
and oscillating fields (Chapter 15). The results of all three approaches (Tables 9.2, 11.1,
and 11.2) are in good agreement with each other.

Our numerical results for the resonance widths lead to optimistic experimental prospects
with all atoms except 7Li (for the oscillating field amplitude Bosc = 10 G, all predicted
resonance widths are much larger than 1 kHz, except for 7Li; see the discussion in Sec-
tion 11.3). In the case of 7Li, the absence of a microwave–induced resonance is not a
hindrance, as a very broad static–field Feshbach resonance is already available [22].

The divergence associated with a microwave–induced resonance is actually hyperbolic
only for magnetic field amplitudes that are small enough. For all atoms except 133Cs,
the resonance remains hyperbolic for magnetic field amplitudes of the order of 10 G (see
Fig. 11.9). In the specific case of 133Cs, the resonance involving the weakly bound triplet
dimer state (binding energy |ET | = h·5 kHz) becomes non–hyperbolic for magnetic fields
as small as 5 mG (see Fig. 11.12). We have analysed the large–field behaviour of this
resonance in terms of a competition between the two–atom resonance and single–atom
dressed–state effects (Section 11.2.4).

Small static–field resonances have been observed in Cesium fountain clocks at SYRTE–
Observatoire de Paris [57]. To our knowledge, these resonances had since remained un-
explained. We have shown (Section 14.3) that they are s–wave resonances involving the
same weakly bound dimer state discussed in the previous paragraph.

Finally, we have characterised microwave–induced Feshbach resonances in Cesium in-
volving experimental parameters that are relevant for a prospective observation in a
Cesium fountain clock experiment (Chapter 15). The description of the resonances oc-
curring in these situations involves numerous coupled channels; inelastic collisions, as
well as the effect of a small additional static magnetic field, have been accounted for.

All of the numerical calculations presented in this manuscript have been performed
with our own implementations of the coupled–channel method, using the accumulated
phase approach. These implementations are described in Chapter 14.

Throughout the present part of this manuscript, we have characterised the collisional
properties of ultracold atoms using scattering lengths only. Scattering lengths are zero–
temperature quantities; in most cases, the scattering properties at non–zero, albeit small,
temperatures may be deduced from the zero–temperature case [1]. However, in the par-
ticular case of Cesium, the very large value of the triplet scattering length (aT = 2500 a0)
causes atomic interactions to be strongly affected by thermal effects [61]. An experiment
performed in a Cesium fountain clock will be sensitive to these thermal effects, even for
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temperatures as low as T = 1µK. We are currently working on the inclusion of these
thermal effects in our theoretical description.

Our method can be extended to the case of heteronuclear mixtures. Microwave–
induced resonances may thus be used to tune the interaction in such systems (e.g in
experiments related to the work presented in the first part of this manuscript) in situa-
tions where static–field Feshbach resonances are not easily accessible.

Microwave–induced Feshbach resonances are present even in the absence of a static
magnetic field. This situation is actively studied in the context of spinor Bose gases.
Microwave–induced resonances could be used to tune the sign of the interaction between
various hyperfine states, possibly leading to novel accessible quantum states.
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la constante de structure fine à l’aide d’une fontaine atomique double Rubidium-
Césium”. PhD thesis. Université Paris VI, 2005.
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de césium”. PhD thesis. Université Pierre et Marie Curie, 2001.
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who directed LPTMS during that time, for their very warm welcome.

My Ph.D. work has been supervised by Prof. G. Shlyapnikov. Every encounter with
Gora has been inspirational. His drive for research and his benevolence seem to have
no bounds. It has been a great privilege to benefit from his clear explanations and
his well–thought–out advice. Gora’s interests extend far beyond Physics, his sense of
humour is outstanding, and it has been a great pleasure to learn a little about Russian
history and culture from him. I would like to convey my very sincere thanks to him for
all of his help and involvement in this work.

I am hugely indebted to Prof. J. Dalibard (LKB, ENS–Paris) for his luminous ex-
planations and his constant optimism. I am very grateful for his availability and his
willingness to help. I have also learnt a lot about pedagogy from him.

I am very much beholden to Profs. S. Stringari (Univ. Trento) and J. Walraven
(Univ. Amsterdam) for the interest they have shown for this work, and for readily ac-
cepting to act as Referees for my defence. My special thanks also go to Profs. O. Dulieu
(LAC), R. Kaiser (INLN), and E. Trizac for accepting to take part in the Jury.

Many thanks are due to Drs. P. Rosenbusch and S. Bize (SYRTE–Observatoire de
Paris), who have patiently explained the experimental issues associated with atomic
clocks. The interest they have expressed for our work on microwave–induced resonances
has been instrumental in seeing it through. I warmly thank S. Bize for inviting me to
give a seminar at SYRTE.

Dr. D. Petrov has kindly guided my first steps at LPTMS. I thank him for his help
and explanations concerning our theoretical work on composite bosons.

I wish to thank Prof. C. Salomon (LKB, ENS–Paris) for his enthusiastic presentation
of the experimental challenges of the study of heteronuclear Fermi mixtures.

I am very grateful to Prof. M. Leduc (LKB, ENS–Paris and IFRAF), who, along
with J. Dalibard, suggested that I contact G. Shlyapnikov in the first place. Moreover,
IFRAF’s generous financial support has enabled me to attend ICAP 2010 in Australia.

167



Acknowledgements

I thank Profs. J. Robert, P. Mendels, N. Pavloff, and Dr. F. Caetano for giving me
the chance to take part in the teaching effort at Univ. Paris–Sud, and for sharing their
invaluable experience. I am very much obliged towards Dr. L. Capéran (Lycée Louis–
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