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9913



2



Abstract

We study a number of fractional quantum Hall systems, such as quantum Hall bi-

layers, wide quantum wells or graphene, where underlying multicomponent degrees

of freedom lead to the novel physical phenomena. In the quantum Hall bilayer at

the filling factor ν = 1 we study mixed composite boson-composite fermion trial

wave functions in order to describe the disordering of the exciton superfluid as the

bilayer distance is increased. We propose wave functions to describe the states of

the bilayer for intermediate distances and examine their properties. At the bilayer

total filling ν = 1/2 and ν = 2/5 we study the quantum phase transition between the

multicomponent Halperin states and the polarized, Abelian and non-Abelian, phases

as the tunneling term is varied. We use a combination of exact diagonalization and

the effective BCS model to study the transitions. Furthermore we introduce a re-

alistic model of the wide quantum well which is used to examine even-denominator

quantum Hall states at ν = 1/2 and ν = 1/4 in the lowest Landau level. Finally, we

explore some possibilities for the fractional quantum Hall effect in graphene based

on the multicomponent picture of spin and valley degrees of freedom.



Apstrakt

U ovoj tezi proučavamo nekoliko primera frakcionog kvantnog Hall-ovog efekta, u

sistemima kao što su kvantni Hall-ov dvosloj, široke kvantne jame i grafen, gde

vǐsekomponentni sistemi slobode dovode do novih fizičkih fenomena. U slučaju

kvantnog Hall-ovog dvosloja na punjenju ν = 1 proučavamo probne talasne funkcije

koje opisuju mešavinu kompozitnih bozona i kompozitnih fermiona, sa ciljem da

opǐsemo razuredjenje ekscitonskog superfluida sa povećanjem rastojanja izmedju slo-

jeva. U slučaju dvosloja na punjenju ν = 1/2 i ν = 2/5, proučavamo kvantne fazne

prelaze izmedju vǐsekomponentnih Halperin-ovih stanja i polarizovanih, abelijanskih

i neabelijanskih, faza koje nastaju sa povećanjem tuneliranja. Prelazi su analizirani

pomoću metoda egzaktne dijagonalizacije i efektivnog BCS modela. U nastavku

je uveden realistični model za široku kvantnu jamu koji je iskorǐsćen za ispitivanje

kvantnih Hall-ovih stanja sa parnim imeniocem na punjenju ν = 1/2 i ν = 1/4 u na-

jnižem Landau-ovom nivou. Na kraju, ispitivane su mogućnosti za frakcioni kvantni

Hall-ov efekat u grafenu na osnovu vǐsekomponentnog opisa koji uključuje stepene

slobode koju potiču od spina i rešetke.

Résumé

Nous étudions un certain nombre de manifestations de l’effet Hall quantique frac-

tionnaire dans les bicouches d’effet Hall quantique, des puits quantiques larges ou

le graphène, dans lesquels les degrés de liberté multicomposantes produisent des

phénomènes physiques insolites. Dans la bicouche d’effet Hall quantique du remplis-

sage total ν = 1, nous examinons les fonctions d’onde mixtes des bosons composites

et fermions composites afin de décrire la destruction de la suprafluidité excitonique au

fur et à mesure qu’on augmente la distance entre les deux couches. Nous proposons

des fonctions d’onde d’essai qui décriraient bien l’état de la bicouche quand il s’agit de

distances intermédiaires et nous y étudions leurs propriétés. Dans la bicouche d’effet

Hall quantique du remplissage total ν = 1/2 et ν = 2/5, nous étudions la transition

de phase quantique entre les états multicomposantes de Halperin et les phases po-

larisées (abeliannes et non-abeliannes) en fonction des modifications effectuées dans

le terme tunnel. Afin d’étudier les transitions, nous utilisons à la fois la diagonal-

isation exacte et la théorie effective BCS. Nous présentons d’autre part un modèle

réaliste du puits quantique large que nous utilisons dans l’examen des états avec un

dénominateur pair, à ν = 1/2 et ν = 1/4 dans le plus bas niveau de Landau. Nous

proposons enfin quelques états d’effet Hall quantique fractionnaire possibles dans le

graphène, celles-ci reposant sur l’image multicomposante qui concerne les degrés de

liberté de spin et de vallée.
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Foreword

The subject of this thesis are strongly correlated phases in two-dimensional electron systems

with an internal symmetry and in the conditions of strong magnetic fields and low temperatures

i.e. in the setting of the fractional quantum Hall effect. Before we delve into details on why

this field has generated such intense theoretical and experimental endeavours in the last decades

(Chapter 1), we would like to state, in broad terms, our interest and motivation for this work in

the general context of condensed matter physics.

Fractional quantum Hall effect (FQHE) has evolved in symbiosis with technological advances in

the fabrication of the high quality semiconductor heterostructures which harbor the so-called two

dimensional electron gases where electrons are characterized by very long mean free paths and

mobilities reaching tens of millions cm2/Vs at the time of writing. Such materials, when probed

in the extreme quantum limit of low temperatures and high magnetic fields, give rise to new

phases of matter: the topological quantum fluids. These phases of matter present a challenge for

the standard paradigms of condensed matter physics. For example, their physics is determined

by the Coulomb interaction which cannot be switched off in order to pursue a perturbational

approach – there is no “normal” state because in the absence of the interaction the ground state

is astronomically degenerate (which would, in itself, render any perturbative approach practically

impossible). The gap in the energy spectrum arises as a result of strong correlations to yield

a macroscopic quantum phenomenon that is quite distinct from Bose-Einstein condensation

or BCS superconductivity. The underlying particles of the FQHE are believed to be the so-

called composite fermions [1], which are the bound states of electrons and a discrete number of

quantized vortices. Composite fermions are topological entities whose properties (such as mass)

are generated solely by the interaction and not via Anderson-Higgs mechanism as in other fields

of physics. In fact, FQH states lie completely beyond Landau theory which classifies phases of

matter via their symmetries. Order parameters even for the simplest FQH states are non-local

and they are better described by the so-called topological order [2].

Phases of matter characterized by topological order are insensitive to local perturbations and

depend only on the global properties of the manifold on which they reside. In FQH systems,

topological ground states emerge from the most basic condensed matter Hamiltonian – the

Coulomb interaction between electrons. In the right circumstances, the topological invariance

emerges as the symmetry of this Hamiltonian in the low-energy, long-distance limit. The macro-

scopic manifestation of this emergent symmetry is the quantization of perpendicular resistance

Rxy and simultaneous vanishing of the longitudinal resistance Rxx (up to the exponential terms

exp(−∆/2kBT ) that depend on the size of the gap ∆ and temperature T ).

Apart from their very special ground states, FQH fluids also display excitations with fascinating

properties. One of those is the fractional charge: adding an electron to the strongly-correlated

FQH state e.g. at the filling factor ν = 1/3, will lead to the nucleation of three lumps of charges,

e/3 each, as a result of strong correlations. Another unprecented property of FQH excitations is

their anyonic exchange statistics. In two dimensions, it is topologically allowed that the exchange

of two quasiparticles results in the same wave function multiplied by a phase factor eiα, where

α is neither 0 (bosons) nor π (fermions). Therefore, quasiparticles which control most of the

observable properties of a physical system are fundamentally different in FQHE from those in
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more common condensed matter systems such as metals, magnets or liquid helium, where they

are either bosons or fermions. In fact, FQHE allows for even more exotic kinds of quasiparticles

with the so-called non-Abelian exchange statistics. Suppose that a system has a g-degenerate

ground-state multiplet Ψa, a = 1, . . . g. This could be the so-called Moore-Read Pfaffian state

at ν = 5/2. [3] Exchanging two quasiparticles can lead to the initial state Ψa being mapped

to a linear combination of some other states in the multiplet, so that the exchange operation is

represented not by a phase, but by a matrix Ψa → MabΨb. A subsequent exchange would lead

(in general) to a different matrix N and, because M and N do not necessarily commute, we

refer to this process as the non-Abelian braiding of quasiparticles. If we have in mind the FQH

state where the ground-state multiplet is topologically protected by the system’s excitation

gap, we can use the entangled state of the quasiparticles as a basis for a qubit and perform

quantum operations by braiding the quasiparticles. This idea is inherently free of decoherence

problems and could be a platform for fault-tolerant topological quantum computation [4, 5],

the potential practical importance of FQHE. Although recent proposals for TQC (see [6] and

references therein) seem more in favor of p-wave superconductors and topological insulators [7, 8],

FQH systems remain one of the most important arenas for investigating exotic excitations and

establishing non-Abelian statistics in nature.

If spin or some other internal quantum number of the electrons is not completely frozen out,

we deal with the multicomponent FQH systems. [9] These include electrons with spin, bilayer

structures where layer index assumes the role of the spin (Chapter 3 and 4), wide quantum wells

(Chapter 5), or graphene (Chapter 6), where valley and spin indices combine into an SU(4)-spin.

The most important experimental ramification to date has been the observation of Bose-Einstein

condensation of excitons in the ν = 1 quantum Hall bilayer. [10] The exciton in a quantum Hall

bilayer is formed by an electron in one layer and a hole opposite to it in the other layer. The

idea of exciton condensation has a long tradition, but it has proved elusive in the era before the

QH bilayer experiments. The importance of multicomponent degrees of freedom lies in that they

allow the formation of FQH states at filling factors which are more difficult to describe or do not

exist in polarized systems, such as ν = 1/2. They are also related to the non-Abelian states – the

latter can be viewed as the (anti)symmetrized versions of the former. This connection between

non-Abelian and multicomponent states and the quantum phase transitions between them is a

fundamental, open problem. Although the non-Abelian states in multicomponent systems are

likely to be very fragile and not directly useful for applications such as topological quantum

computation, the study of the multicomponent systems provides insight also into the polarized

states as the two of them share many characteristics in the low-energy description. This is one

of the goals of this thesis.
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Chapter 1

Introduction

It is now almost thirty years since the discovery of transport phenomena that go under the name

of integer [11, 12] and fractional [13, 14] quantum Hall effect. The field has much evolved since

those pioneering days, which is also reflected in a number of excellent reviews that now exist on

the subject [1, 15, 16, 17, 18, 19, 20, 21, 22]. In the present introduction we will summarize some

of the ideas that have been developed in the physics of fractional quantum Hall effect (FQHE)

in the past decades in order to pave the way towards the so-called multicomponent quantum

Hall systems that are the main subject of this thesis.

1.1 Fractional quantum Hall effect

The Hall effect has long served as a standard tool to characterize the charge carriers in con-

ductors and semiconductors: the motion of free (or more generally, Bloch) electrons in crossed

electric and magnetic fields, such as in the setup of Fig. 1.1, leads to a voltage drop in the direc-

tion perpendicular to the injected current. Within a semiclassical treatment, this voltage drop is

associated with the Hall resistivity ρH that depends linearly on the applied magnetic field B, as

a simple consequence of Galilean invariance. [15, 16] Some systems, however, show remarkable

Figure 1.1: Archetype of a quantum Hall experiment: the sample is in a perpendicular

magnetic field B while the current I is driven through it. The response of the

system is characterized by the longitudinal RL ≡ VL/I and the Hall resistance

RH ≡ VH/I.

departure from this kind of behavior. Using molecular beam epitaxy (MBE) and band engi-

neering, it is possible to design systems that effectively act as two-dimensional semiconducting

1
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planes, the so-called two-dimensional electron gases (2DEGs). This is conveniently achieved by

growing in a controlled way one type of semiconductor, GaAs, over another (AlxGa1−xAs), Fig.

1.2. The choice of these compounds is dictated by their similar lattice constants, but at the same

time slightly different band gaps. Upon doping, the electrons are captured on the atomically thin

interface between the two sides of the heterostructure, thus effectively moving in two dimensions.

In the extreme quantum limit, when magnetic field is strong (∼10T) and temperatures very low

Figure 1.2: GaAs heterostructure

(∼ mK), the response of the system is very different from the classical limit: Hall resistance RH

no longer varies smoothly as a function of the magnetic field but is locked around special values

given by RH = h/νe2 where RK = h/e2 = 25813.807Ω is the fundamental unit of resistance and

ν is an integer or simple fraction (ν = p/q), quantized to an accuracy unprecedented in solid

state physics. The law of quantization of RH is universal, independent of the type of the sample,

geometry and disorder. It also persists for a finite range of the control parameter (magnetic field

or electron density) around special values – the quantum Hall plateaus. At the same time, in the

region of a plateau, the longitudinal resistance displays activated transport Rxx ∼ exp(− ∆
2kBT )

in the limit of zero temperature. Any discussion of the fractional quantum Hall effect should

begin with the magnificent “skyline” such as the one of Fig. 1.3 [14] that shows the trace of RH

versus B and the consequent vanishing of Rxx. How does such an intricate, essentially exact

and universal phenomenon arise in systems as different as GaN heterostructures, [23] strained Si

quantum wells in Si-SiGe heterostructures [24], graphene [25, 26] or perhaps even organic metals

[27]? To answer this question, we begin with the problem of a single nonrelativistic electron

Figure 1.3: Integer and fractional quantum Hall effect. [14]

2
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1.1 Fractional quantum Hall effect

moving in two dimensions in a perpendicular uniform magnetic field ∇×A = Bẑ [28],

H =
1

2mb

(

p +
eA

c

)2

(1.1)

where mb is the band mass of the electron (0.067me in GaAs) and −e is the charge. This is a

standard textbook problem which can be solved in a gauge-invariant manner or by choosing a

specific gauge for the vector potential A. The popular choice for rotationally invariant problems

is the symmetric gauge,

A =
1

2
B× r. (1.2)

Here we choose the Landau gauge,

A = (0, Bx, 0), (1.3)

which directly casts the Hamiltonian (1.1) into a form analogous to the harmonic oscillator. We

obtain the discrete energy spectrum

En =

(

n+
1

2

)

~ωc, (1.4)

where the quantum number n = 0, 1, ... labels the equidistant Landau levels separated by the

cyclotron energy ~ωc = ~eB/mbc. The associated eigenvectors

φn,X(r) =
[

π22n(n!)2
]−1/4

exp
[

ikyy − (x− kyl
2
B)2/2l2B

]

Hn

[

(x− kyl
2
B)/lB

]

(1.5)

are expressed in terms of Hermite polynomials Hn and the characteristic magnetic length

lB =

√

~c

eB
. (1.6)

The eigenstates (1.5) are extended along the y-direction and localized around kyl
2
B in the x-

direction. If we assume that the system is confined to a rectangular cell Lx × Ly, then the

periodic boundary condition requires ky = 2πj/Ly, with j being an integer. Since the energy

(1.4) does not depend on ky, there is a number of degenerate states Ns inside each Landau level.

We enumerate them by the number of allowed values for j that give orbitals localized in the

interval 0 < kyl
2
B < Lx i.e.

Ns =
LxLy

2πl2B
=

Φ

Φ0
. (1.7)

In the above formula we have reexpressed Ns in terms of ratio of the magnetic flux through the

system Φ to the flux quantum, Φ0 = hc/e, which leads us to the definition of the filling factor

ν,

ν =
N

Ns
= 2πl2Bn, (1.8)

as a function of the 2D electron density n. The filling factor ν is the single most important

quantity that describes the 2DEG in the extreme quantum limit. First, we focus on the case

when ν is an integer number. Due to the single particle spectrum (1.4), the density of states

is a sequence of δ-functions with the weight Ns at the energies given by (1.4). This means

that the zero-temperature chemical potential µ =
(

∂E
∂N

)

B
has discontinuities at integer filling

factors and consequently the isothermal compressibility κ−1 = ρ2
(

dµ
dρ

)

T
vanishes. At integer

filling factors, compressing the system infinitesimally requires thus a finite amount of energy

(sufficient to overcome the cyclotron gap). The incompressibility at integer ν and the vanishing

of Rxx is a direct consequence of the Landau level structure. The observed plateaus in Rxy can

3



1. INTRODUCTION

be accounted for by disorder in real samples. Disorder modifies the spectrum in the manner

that degenerate LL states broaden into bands. The single particle states near the unperturbed

energies (1.4) form bands of extended states. [29] The extended bands are separated by localized

states which do not contribute to the transport (this is called “mobility gap”) and thus the Hall

plateaus may form.

Looking back at Fig. 1.3 we notice many cases with ν < 1 that seem to yield the same experi-

mental phenomenology as those with ν integer. If so, let us focus on the case ν < 1 for the time

being and ask what is the cause of incompressibility here. A simple combinatorial calculation

of how many ways there are for placing N electrons on Ns > N sites (N being a macroscopic

number) yields a vast ground state degeneracy. As it was realized and proved in the early 1980s,

it is the Coulomb repulsion between electrons that lifts this degeneracy and singles out a unique

incompressible ground state for particular values of ν that is identified by the presence of a

plateau in transport measurements and, more generally, the minimum in longitudinal resistance.

These incompressible states have many intriguing properties that we will describe in more detail

in the following Sections. All these properties can in principle be derived from the following

master Hamiltonian of a quantum Hall system of N electrons in magnetic field B:

H =
∑

i

Hsingle(ri) +
e2

ǫ

∑

i<j

1

|ri − rj |
+
∑

i

U(ri) + gµB · S. (1.9)

The first term represents the single particle Hamiltonians (1.1), followed by two-body Coulomb

interaction and one-body interaction with the positive background charges and the disorder,
∑

i U(ri). The last term describes the coupling of total spin S to the magnetic field. Hamiltonian

(1.9) has the following typical energy scales for a GaAs heterostructure (Fig. 1.2). The single-

particle energy scale is that of the cyclotron energy,

~ωc ≈ 20B [T] K, (1.10)

the Coulomb energy scales as

e2

ǫlB
≈ 50

√

B [T] K, (1.11)

the Zeeman splitting is

2gµBB · S ≈ 0.3B [T] K, (1.12)

with the unit of length being lB ≈ 25/
√

B [T] nm (1.6). For theoretical discussions, it is often

convenient to work in “God’s units” for the FQHE:

lB = 1,
e2

ǫlB
= 1, (1.13)

and those will be implicitly assumed in this thesis unless stated otherwise. Usually, a number

of approximations is made on the Hamiltonian (1.9). We will switch off disorder because we are

not interested in the physics of the plateaus, but only in the formation of incompressible states.

Furthermore, we assume that the cyclotron energy (1.10) is large enough so that we do not need

to explicitly treat more than a single Landau level. This assumption is actually incorrect in

the experiments but most calculations would be impossible or very difficult to do without it.

Furthermore, it is often customary to assume that the electron’s wave function is a δ-function in

the perpendicular direction, so that the dynamics is strictly two-dimensional. This is of course

just an approximation but there is no obvious way how the finite-width correction should be

implemented. For a heterostructure such as the one in Fig. 1.2, the self-consistent potential

experienced by the electrons can often be approximated by a triangular potential well. [30]

Although this problem can be solved exactly [28], it is more enlightening to use the variational

solution due to Fang and Howard,

φFH(z) =

√

27

2w3
z e−3z/2w, (1.14)
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1.2 Polarized electrons in the lowest Landau level

Figure 1.4: Quantum well with the two lowest subbands

which describes the confinement in the perpendicular z-direction in terms of a parameter w

related to the width of the 2DEG.

Alternatively, it is possible to produce samples in form of the quantum well, Fig. 1.4. A quantum

well device is made out of two nearby AlAs interfaces. Upon doping, the electrons fall into the

GaAs region and occupy, depending on the density, one or more subbands. In the simplest case,

one can take only the lowest subband which is given by

φISQW(z) =

√

2

w
sin
(πz

w

)

. (1.15)

Regardless of the choice of perpendicular confinement, the effective interaction in the plane is

given by

V eff(r) =
e2

ǫlB

∫

dz1

∫

dz2
|φ(z1)|2|φ(z2)|2
√

r2 + (z1 − z2)2
. (1.16)

For large distances r ≫ w the effective interaction reduces to pure Coulomb, but for small r it

is less repulsive. This effect can be qualitatively captured in a much simpler kind of ansatz for

the effective interaction, the so-called Zhang-Das Sarma (ZDS) potential [31]

V (r, d) =
e2

ǫ
√
r2 + d2

, (1.17)

which is just a Coulomb energy for the two point charges located in two planes separated by the

distance d. ZDS potential does not correspond to any obvious wave function in the perpendicular

direction, but it leads to the similar softening of the interaction as the realistic confinement

models (Chapter 5). It is advantageous to use it because a single parameter can be used to tune

directly the interaction potential and simulate the finite thickness of the sample (Fang-Howard

or infinite square well model allows one to tweak the single particle wave functions, but it is

generally not easy to see directly the effect of such a tweak on the interaction potential because

of the difficulty in evaluating the integral (1.16) in the closed form).

1.2 Polarized electrons in the lowest Landau level

Let us assume that ν < 1 so the kinetic energy is an overall constant that can be dropped from

the Hamiltonian (1.9). In this section we further assume that the magnetic field is so large that

the electron spin is frozen out. In the absence of disorder, the Hamiltonian is then reduced to

the form

H = PLLL

∑

i<j

1

|ri − rj |
PLLL (1.18)

5

Introduction/IntroductionFigs/intro_well.eps


1. INTRODUCTION

i.e. it contains nothing but the interaction (explicitly projected to the LLL by the operator

PLLL ). This is why the quantum Hall effect is referred to as the paradigm of strongly correlated

systems. In the case of a partially filled nth LL, one may separate the “low-energy” degrees of

freedom, which consist of intra-LL excitations, from the “high-energy” inter-LL excitations. In

the absence of disorder, all states within the partially filled LL have the same kinetic energy such

that intra-LL excitations may be described by considering only electron-electron interactions,

Hn =
1

2

∑

q

v(q)ρn(−q)ρn(q), (1.19)

where v(q) = 2πe2/ǫq is the 2D Fourier-transformed Coulomb interaction potential. The Fourier

components ρn(q) of the density operator are constructed solely from states within the n-th LL.

Eq. (1.19) is a Fourier-image of Eq. (1.18) and is valid for 2DEG as well as for other systems

such as graphene in the magnetic field (Sec. 1.5.5) if the density operators are appropriately

modified (Chapter 6).

1.2.1 Laughlin’s wave function

Since it contains only the interaction, Hamiltonian (1.18) is notoriously difficult to solve because

there is no obvious normal state to use as the starting point for the perturbation theory and

essentially one has to make an educated guess at what the ground state could possibly be. This

was first done by Laughlin [32] who proposed the following wave function for the states at filling

factors ν = 1/m,m− odd integer,

ΨL =
∏

i<j

(zi − zj)
m exp

(

−
∑

k

|zk|2/4
)

, (1.20)

zj = xj + iyj is the complex coordinate of an electron in the plane (lB = 1) and we will drop

the universal Gaussian factor from now on. To understand this wave function, one should use

the symmetric gauge (1.2) which yields LLL single particle wave functions that are analytic

functions of z and have definite angular momentum l, φl(z) ∼ zl exp(−|z|2/4). Using these

wave functions and the Jastrow-type variational ansatz known from the physics of liquid He,

Laughlin constructed the many-body wave function which captures the correct physics at the

filling factor ν = 1/3 which was observed at the time. Namely, he showed that ν = 1/m states

are incompressible fluids with a uniform density. The latter property is nontrivial to establish in

the disk geometry and a formal mapping to a 2D plasma is required [33] (in the finite systems,

on the contrary, it is very simple to verify this property numerically, see Chapter 2). Using a

flux insertion argument, Laughlin also demonstrated that incompressibility at a fractional filling

factor implies the existence of fractionally charge excitations [33] that were eventually observed

in shot noise experiments. [34, 35] An interesting consequence of the fractional charge of the

quasiparticles is their fractional mutual statistics. Based on general arguments [33, 36] (see also

Sec. 1.3.2), it is possible to write a wave function for the two quasiholes at u and v

Ψ2qh
L = (u− v)1/m

∏

i,j

(zi − u)(zj − v)ΨL({z}) exp
[

−(|u|2 + |v|2)/4m
]

. (1.21)

If we perform an exchange operation on the quasiholes u and v, we notice that the phase of the

wave function changes by π/m, instead of the usual π or 2π (for fermions and bosons, respec-

tively). In doing so, we assume that the wave function Ψ2qh
L is properly normalized. [37, 38, 39]

Thus, the quasiholes (and similarly, quasiparticles) in the Laughlin state obey anyonic (Abelian)

statistics. [40] In Sec. 1.3 we will see even more exotic possibilities for the mutual statistics of

quasiparticles that are possibly brought by strong correlations in FQHE. The experiments that

directly address the statistics of quasiparticles are largely based on interferometry principles and

have so far proved difficult to interpret.
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1.2 Polarized electrons in the lowest Landau level

Immediate support of Laughlin’s theory came however from exact diagonalization studies [41, 42]

which, among other things, identified the interaction that produces Laughlin’s wave function as

a unique zero energy ground state with the smallest angular momentum:

V (r) = V∇2δ(r), (1.22)

V being a positive constant that controls the value of the gap. Properly taking care of the short-

range correlations makes the Laughlin wave function an excellent description of the generic

Coulomb ground state, for fermions as well as for bosons. [43, 44] It was further shown that

the Laughlin state possesses a low-energy branch of collective modes called magneto-rotons [45]

(in analogy with rotons in liquid helium) and established that there is a hidden, so-called off-

diagonal long-range order [46] in the Laughlin ground state. The latter insight was a starting

point for the development of the effective Chern-Simons field theories for the fractional quantum

Hall states (see the following Section).

To close this brief overview of the Laughlin states, we stress that the Laughlin states are to this

day the first experimentally known examples of a new kind of matter which possesses topological

order. [2] The topological phase of matter is the one canonically characterized by the presence

of gap in the excitation spectrum, fractional quantum numbers (such as the quasiparticle charge

in the present case) and with a ground state degeneracy on topologically nontrivial manifolds,

[2, 47] although some of these may not be the necessary requirements. Not all of these properties

are easily proven even for the Laughlin state (e.g. there is no rigorous proof that the Laughlin

state is gapped in thermodynamic limit), but there is plenty of numerical evidence and the

overall consensus is that this is indeed the case.

1.2.2 Effective field theories

Zhang, Hansson and Kivelson have shown, building on an earlier work by Girvin and MacDonald

[46], that applying a singular gauge transformation to the electron coordinates can map them

into a system of bosons with an additional gauge interaction. [48, 49] In this representation, an

electron is viewed as a composite of a charged boson and a flux tube with an odd number of flux

quanta attached to it, Fig. 1.5. The gauge interaction generated this way is given by

Figure 1.5: Chern-Simons transformation to composite bosons

a(ri) =
Φ0

2π

θ

π

∑

j 6=i

∇iαij , (1.23)

where θ = (2p+1)π, 2p+1 = ν−1 and αij is the angle between the x-axis and the vector ri−rj .

The unitary transformation that connects the electronic and bosonic representations is given by

U = exp



−i
∑

i<j

θ

π
αij



 . (1.24)

The Lagrangian which describes the statistical gauge field a turns out to be the Chern-Simons

(CS) term:

La =
π

2θΦ0
ǫµνλaµ∂νaλ. (1.25)
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1. INTRODUCTION

The fact that all the indices are contracted with the Levi-Civita tensor (which plays the role of

the metric tensor) tells about the profound role of topology in these systems. Another hint at

this is the fact that the CS action is gauge-invariant only up to the surface terms – therefore

there ought to be degrees of freedom that live on the edge of the system and indeed – these

are the celebrated edge channels of the quantum Hall effect. [50] In a microscopic theory, they

are the zero-energy ground states of the Hamiltonian (1.22) with higher values of the angular

momentum compared to the Laughlin ground state.

Putting it all together, we can formulate a path integral description of our system in terms of

the bosonic fields φ:

S =

∫

dt

∫

d2r La +

∫

dt

∫

d2r Lφ (1.26)

Lφ = φ†(r) [i∂t − e(A0 + a0) + µ]φ(r)− 1

2m
|(−i∇+ e(A + a))φ|2

−1

2

∫

d2r′ρ(r)V (r− r′)ρ(r′). (1.27)

In the remainder of this Section, we present a brief overview of the mean-field solution of the

Hamiltonian defined by the action (1.26). More details can be found in the paper of Zhang [49]

and the book of Nagaosa. [51] The effective field “seen” by the composite bosons is given by

Beff = ∇× (a + A) = −Bez + Φ0
θ

π
ρ(r)ez, (1.28)

and is zero when ν = 1/(2p+1). Therefore, electrons at a filling factor ν with an odd denominator

can be understood as CS-transformed bosons without the external field. We will use the following

Madelung parametrization that represents a bosonic field φ(r) in terms of the product of the

amplitude ρ(r) and the phase factor θ(r):

φ(r) =
√

ρ(r)eiθ(r). (1.29)

Substituting this into the action S, one expands around the stationary point ρ0 for the bosonic

amplitude, performs a Fourier transform and integrates over the remaining degrees of freedom

δρ, θ and aµ, to arrive at the form

Leff =
∑

µ,ν

1

2
π̃µν(k)Aµ(−k)Aν(k), (1.30)

where k ≡ (ω,k), from which one can directly read off the response functions π̃µν . For example,

the term which couples to A2
0 represents the compressibility of the system and is given by

κ = lim
k→0

π̃00(k) = lim
k→0

1
Ṽ (0)

(|k|/2θ)2
1

Ṽ (0)

ρ0

m + (|k|/2θ)2 , (1.31)

where Ṽ (k) is the Fourier transform of V (r). Assuming that the density ρ0 is finite, one concludes

that compressibility (1.31) tends to zero.

For the usual Bose superfluid, the order parameter is the phase of the wave function of the

condensate and the Bose condensation is described in terms of the spontaneous breaking of U(1)

symmetry. The ordering can also be described by evaluating the following expectation value

lim
|r−r′|→∞

〈φ†(r)φ(r′)〉, (1.32)

which represents the element of the density matrix. [28] Condensation is manifested in the

nonzero value of this quantity when the system is said to display off-diagonal long-range order

(ODLRO). We can evaluate (1.32) by going back to the original form of the action S and eliminate

aµ while setting Aµ = 0. [49] The correlation function follows directly

〈θ(−k)θ(k)〉 =

2π
ν ωC

1
|k|2 + Ṽ (k)

ω2 − ω2
k

, (1.33)
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1.2 Polarized electrons in the lowest Landau level

where ω2
k = ω2

C + ρ0

m |k|2Ṽ (k) and ωC = 2πρ0

mν . The static correlation function is asymptotically

〈θ(−k)θ(k)〉 = −i
∫

dω

2π
〈θ(−k)θ(k)〉 = − 1

2ν

2π

|k|2 + o (1/|k|) . (1.34)

Going back to real space, (1.32) becomes

lim
|r−r′|→∞

〈φ†(r)φ(r′)〉 = ρ0〈eiθ(r)−iθ(r′)〉 ≈ ρ0e
〈θ(r)θ(r′)〉

∝ ρ0|r− r′|−1/2ν , (1.35)

where in the first line we expanded the exponential and used Wick’s theorem. The obtained

ODLRO (1.35) is algebraic and does not depend on the interaction V .

Magneto-roton excitations are described by topological vortices of this theory and, neglecting

their contribution to the ground state, one can derive Laughlin’s wave function directly as

the ground state description [49, 51] (see also Chapter 3). However, it has proved difficult to

generalize the composite boson theory for the non-Laughlin fractions and also to translate it into

a microscopic theory which can be tested numerically (some effort in this direction was made in

[52]). In Chapter 3 we will use a generalization of this kind of theory to describe the phases of

the quantum Hall bilayer at ν = 1.

1.2.3 Composite fermions

A compelling generalization of Laughlin’s theory exists for most of the polarized FQH states

observed in the LLL due to Jain. [1] This theory can be introduced following a similar trans-

formation as the one outlined in the previous Section, the only difference being that electrons

are now capturing an even number θ = 2p of flux quanta. This means that they preserve their

fermionic statistics and therefore are called composite fermions. When it happens that compos-

ite fermions have just the right number of available (residual) flux quanta left for them to fill

the integer number of ν∗ = n LLs, one can readily write down trial wave functions to describe

their ground state (the image of this ground state in terms of the original electrons will be a

complicated, strongly correlated state). Since the CF ground state is unique being the integer

QH state, the incompressibility follows immediately. There is an additional subtlety in that

electrons are not capturing flux tubes but rather vortices, as it is explained in great detail in

Ref. [1]. Here we quote the expression for the wave functions that describe the filling factors

ν = n
2pn±1 :

Ψν= n
2pn±1

= PLLLΦ±n

∏

i<j

(zi − zj)
2p, (1.36)

where Φ±n is the Slater determinant for n filled CF LLs which are called Λ levels (with a sign

depending on the direction of the residual magnetic field). Notice that unless n = 1, Φ±n

has non-analytic components because it is not a LLL function. Therefore, a projection operator

PLLL is required to explicitly project the whole expression to the LLL. The wave functions (1.36)

are remarkable test wave functions as they do not contain any variational parameters, yet they

show impressive agreement with the complicated ground states of realistic systems in numerical

calculations. The formation of CFs is a nonperturbative outcome of the strongly correlated

system, but similarly to the true quasiparticles known in other areas of physics, CFs are mostly

weakly interacting. For polarized electrons, the topological properties of their excitations are

Abelian.

1.2.4 Compressible state ν = 1/2

A striking feature in Fig. 1.3 is the absence of a plateau at ν = 1/2. Halperin, Lee and Read [53]

made a remarkable proposal for the state at ν = 1/2 as a compressible Fermi liquid state of CFs

9



1. INTRODUCTION

(CFL) that experience zero residual magnetic field. They calculated the response functions in

the long-wavelength effective theory and some of these features were verified in surface acoustic

wave experiments. [54] On the other hand, Rezayi and Read [55] have formulated a microscopic

wave function for such a compressible state at ν = 1/2,

ΨRR = PLLLF({z, z})
∏

i<j

(zi − zj)
2, (1.37)

where multiplication with a Slater determinant of free waves F ≡ det
[

eiki·rj
]

is necessary to

ensure a fermionic wave function. The relevance of (1.37) has been numerically demonstrated.

[55]

1.3 Second Landau level

In the second Landau level (2 < ν < 3), Fig. 1.6, there is a notable scarcity of FQH states.

In principle, the increase in Landau level index favors the compressible phases such as charge

density waves, stripes and bubbles [56, 57] (in the third Landau level, e.g. there are no observed

FQH states except for weak indications of minima in longitudinal resistance, see Ref. [58]). The

curious feature in Fig. 1.6 is the presence of reentrant QH phases and a fully developed plateau

at the even-denominator filling ν = 2 + 1/2 = 5/2. [59, 60, 61]

Figure 1.6: FQHE in the second Landau level. [61]

1.3.1 The ν = 5/2 state

The most celebrated 2nd LL state, the ν = 5/2 state, remained enigmatic for some time upon

discovery because it was thought to depend crucially on the electron spin [62]. Subsequent

studies, as well as exact diagonalization [63], reached the consensus that 5/2 state is likely fully

polarized, although the question remains the subject of experimental studies to this day. If the

spin is frozen, a way to explain the incompressibility is to postulate that CFs form a p-wave

paired state, which is now referred to as the celebrated Pfaffian wave function first given by

Moore and Read [3, 64]

ΨPf = Pf

(

1

zi − zj

)

∏

i<j

(zi − zj)
2, (1.38)
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1.3 Second Landau level

where “Pf” stands for the Pfaffian

Pf Mij =
1

2N/2(N/2)!

∑

σ∈SN

sgnσ

N/2
∏

k=1

Mσ(2k−1)σ(2k)

for an N ×N antisymmetric matrix whose elements are Mij ; SN is the group of permutations of

N objects. The Pfaffian factor guarantees the correct exchange symmetry of the wave function

and acts only in the so-called neutral sector of the wave function, without affecting the filling

factor which is fixed by the Jastrow factor. The latter is referred to as the charge part of the

wave function. The Pfaffian wave function has a much richer spectrum of excitations than the

Laughlin states, its excitations carry charge e/4 and obey the so-called non-Abelian statistics.

[3, 65] If 2n quasiholes are introduced above the ground state, it can be shown they give rise to

2n−1 linearly independent states. [65] If we set N = 2 electrons and look for the wave functions

that describe the four quasiholes above the ground state, we obtain two independent states that

span the basis proposed by Nayak and Wilczek [66]:

Ψ4qh
0 =

(η13η24)
1/4

(1 +
√

1− x)1/2

(

Ψ(13)(24) +
√

1− xΨ(14)(23)

)

(1.39)

Ψ4qh
1/2 =

(η13η24)
1/4

(1−
√

1− x)1/2

(

Ψ(13)(24) −
√

1− xΨ(14)(23)

)

(1.40)

where η’s denote the positions of the quasiholes, x = η12η34

η13η24
and η12 ≡ η1 − η2 etc. We have

defined Ψ(12)(34) = Ψ
ν=1/2
L (z1 − z2)−1 × [(z1 − η1)(z1 − η2)(z2 − η3)(z2 − η4) + (z1 ↔ z2)] and

we assume that all of the quasihole wave functions are normalized [37, 38, 39]. If we focus on

the limit |x| ≪ 1, we have approximately

Ψ4qh
0 = 2−1/2(η13η24)

1/4
(

Ψ(13)(24) + Ψ(14)(23)

)

Ψ4qh
1/2 = 2−1/2(η13η24)

1/4
(

Ψ(13)(24) −Ψ(14)(23)

)

It is clear that the exchange e.g. of 1 and 3 leads only to the multiplication by a phase factor.

However, the interchange of 2 and 3 gives a rotation in the space {Ψ4qh
0 ,Ψ4qh

1/2}. Therefore, the

states Ψ4qh
0 and Ψ4qh

1/2 can be used as a basis for a qubit. Braiding of the qubit states can be used

to perform quantum operations which are protected from decoherence effects due to the FQH

gap. This is the motivation for using FQH states in topological quantum computation schemes.

Non-Abelian properties of ν = 5/2 excitations have so far been numerically demonstrated [67]

and experiments to test this are under way. [68] Several groups have reported the observation of

e/4 fractional charges at 5/2 filling. [69, 70] The key to establishing the non-Abelian statistics

in theory, apart from the ground state wave function (1.38), is to identify the Hamiltonian which

produces the given wave function as its densest zero-energy ground state, similar to (1.22). In the

case of the Pfaffian, this is the Hamiltonian which has no penalty for two electrons approaching

each other, but forbids the clustering of three electrons:

H3b = −
∑

i<j<k

Sijk

[

∇4
i∇2

jδ(ri − rj)δ(rj − rk)
]

, (1.41)

where Sijk is the symmetrizer. Numerical studies of realistic systems [71] have shown that

Pfaffian is a very good trial wave function for the ground state, especially if the interaction

is modified with respect to the pure Coulomb by adding some short-range potential of the

kind (1.22), and also by particle-hole symmetrizing the Moore-Read wave function. Note that

the Moore-Read wave function, being the ground state of 3-body interaction (1.41), is not

particle-hole symmetric. The state obtained via particle-hole conjugation of the Pfaffian wave

function (1.38) is called anti-Pfaffian [72, 73] and has recently received much attention as a

viable candidate for the description of the 5/2 state. [74, 75]
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1.3.2 Conformal field theory approach

In this Section we outline the method of conformal field theory (CFT) [76] that historically lead

to the construction of the trial wave function (1.38). Conformal field theories have successfully

been used to describe two-dimensional statistical mechanics models in the vicinity of critical

points, when the correlation length diverges and there is an emergent conformal symmetry.

[77] In two dimensions, this emergent symmetry is sufficient to derive critical exponents. FQH

systems, on the other hand, are not critical but CFT can nonetheless be used due to the following

observation (see [78] for a review of CFT in this context).

Take a free boson theory in 1+1-dimensional Euclidean spacetime, with the correlator given by

〈φ(z)φ(z′)〉 = − ln(z − z′). (1.42)

Further defining the normal-ordered vertex operators Vα(z) =: eiαφ(z) :, with the help of Wick’s

theorem, their correlators evaluate to

〈

∏

i

Vαi
(zi)

〉

=
∏

i<j

(zi − zj)
αiαj , (1.43)

if the neutrality condition is assumed
∑

i αi = 0 (or else the correlator identically vanishes). If we

choose αi =
√
m, we obtain precisely the polynomial part of the Laughlin wave function, (1.20).

The Gaussian factor can similarly be constructed assuming a uniform background charge. We

also get wave functions for n quasiholes (u1, ..., un) for free if we insert V1/
√

m(u1)...V1/
√

m(un)

into the correlator (1.43). Quasielectron wave functions can also be constructed with some effort.

[79]

Thus, CFT correlators have been shown to be a legitimate tool to produce candidate wave

functions for FQH states [3, 80, 81, 82, 83] if the latter can be verified by independent means.

In particular, Moore and Read [3] in their seminal work combined the chiral boson theory with

the Majorana fermion, described by correlator 〈χ(z)χ(z′)〉 = 1/(z− z′), to arrive at the Pfaffian

(1.38)

〈

∏

i

χ(zi)e
i
√

(2)φ(zi)

〉

. (1.44)

More generally, instead of a Majorana fermion, it is possible to use the Zk parafermion algebra

to construct generalizations of a Pfaffian paired state for the fillings ν = k/(k+2). [84] These are

the states which allow for clustering of k particles and forbid (k + 1)-particle clusters, with the

excitations having non-Abelian statistics. Case k = 2 is the Pfaffian and there are indications

that k = 3 is also physically relevant, being the particle-hole conjugate of the second LL ν = 2/5

state observed in the experiments. [61] Braiding of the quasiparticles in states with k = 3 and

k > 4 can be used to perform fault-tolerant quantum computation and hence presents an exciting

venue for further research. [5]

All of the previously described CFTs are known as unitary. There have been attempts [82] that

produce wave functions out of nonunitary CFTs, such as the so-called “Gaffnian” wave function

which is related to the so-called M(5, 3) minimal model [76] and describes a possible state at

the filling factor ν = 2/5. In numerical studies, Gaffnian appears as a serious contender for the

description of 2/5 state (the role shared by Jain’s CF state), but on general grounds [39, 85]

it is expected to describe a critical point rather than a stable incompressible phase. Both

Gaffnian and Jain 2/5 state have an underlying multicomponent structure which we explain in

the following Section. Deeper understanding of the role of nonunitary CFTs and related FQH

states is the subject of on-going research.
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1.4 Multicomponent quantum Hall systems

1.4 Multicomponent quantum Hall systems

In this thesis, we understand the term “multicomponent” to loosely refer to FQH systems with

an internal degree of freedom. This degree of freedom is most naturally provided by electron

spin when the magnetic field is not too strong to completely freeze out its dynamics. Looking at

the relative interaction strengths (1.10, 1.11, 1.12), we see that the Zeeman splitting is less than

the Coulomb or cyclotron energy in the accessible B range and we need to explicitly take it into

account. This was first suggested by Halperin [86] who also wrote down a generalization of the

Laughlin wave function for these systems. Halperin’s wave functions in the case of an ordinary

SU(2) spin are defined by dividing the electrons into two species (with ↑ and ↓ spin projection)

and introducing correlations among them, in a manner of Laughlin’s wave function (1.20), so

each electron “sees” the same number of flux quanta because they are indistinguishable particles:

ΨH
m1,m2,n({z↑j , z

↓
j }) =

N↑
∏

k<l

(

z↑k − z
↑
l

)m1

N↓
∏

k<l

(

z↓k − z
↓
l

)m2

N↑
∏

k=1

N↓
∏

l=1

(

z↑k − z
↓
l

)n

. (1.45)

We have dropped the Gaussian factors for simplicity and the set of the exponents (m1,m2, n)

characterize the wave function. The requirement that each electron “sees” the same number of

flux quanta translates into the condition m1(N↑ − 1) + nN↓ = m2(N↓ − 1) + nN↑. With the

help of the total number of electrons N = N↑ + N↓, the filling factor that this wave function

describes is

ν = ν↑ + ν↓ =
m1 +m2 − 2n

m1m2 − n2
, (1.46)

except when m1m2 − n2 = 0. The physical realization of the last condition is the Laughlin

ferromagnetic wave function m1 = m2 = n which does not fix the relative number of ↑ and ↓
particles. There is also an additional constraint that (1.45) needs to satisfy if it is to be a proper

trial wave function for the spinful system: it must be the eigenstate of the total spin operator

S2, which places constraints on the values of m1,m2, n. However, as we will see below, this

requirement can be lifted in certain situations where the SU(2) symmetry is not fully respected

by the Hamiltonian.

It is possible to write down also the generalization of Halperin wave functions for systems with

an SU(K) internal symmetry. These are expected to described quantized states in K-component

systems such as graphene (Sec. 1.5.5). In graphene, a valley and spin degree of freedom (for a

certain range of interaction strengths) combine into an effective SU(4) degree of freedom (K = 4).

Generalized Halperin wave functions are given by

ψSU(K)
m1,...,mK ;nij

({

z
(1)
j1
, z

(2)
j2
, ..., z

(K)
jK

})

= ΨL
m1,...,mK

× Ψinter
nij

(1.47)

which consists of a product of Laughlin wave functions

ΨL
m1,...,mK

=
K
∏

j=1

Nj
∏

kj<lj

(

z
(j)
kj
− z(j)

lj

)mj

for each of the components and a term

Ψinter
nij

=

K
∏

i<j

Ni
∏

ki

Nj
∏

kj

(

z
(i)
ki
− z(j)

kj

)nij

that takes into account the correlations between particles of different components. Many prop-

erties of these wave functions for general K can be worked out using the usual arguments such

as flux counting and plasma analogy to assess their stability and identify those that are viable

candidates to describe physical systems. [87]

Besides the intrinsic electron spin, multicomponent GaAs QH systems can be easily fabricated

in the experiment in the form of wide quantum wells (Sec. 1.4.1) or bilayers (Sec. 1.4.2), where
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the subband or layer index plays the role of the spin-like degree of freedom. In what follows

we will introduce these systems and provide an overview of the physical phenomena that are

studied in this thesis (Sec. 1.5).

1.4.1 Wide quantum wells

In Section 1.1 we introduced the quantum well structure (Fig. 1.4). It consists of two nearby

AlAs interfaces, resulting in a semiconductor quantum well. Upon doping, the electrons fall into

the GaAs region and occupy, depending on the density, one or more subbands. The width of

the well w is usually between 15 and 50nm, while the depth of the well is on the order of 0.4eV,

which is often much larger than other energy scales and therefore can be assumed infinite. The

splitting between the subbands, ∆SAS , scales as 1/w2, but it is expected to be renormalized in

each sample, so it is convenient to think of it as a free parameter. What may happen is that the

lowest two subbands are relevant for the low-energy description of the electrons, as indicated on

the left side of Fig. 1.4, while we can discard the rest of the higher energy levels. The reason why

we can sometimes keep only the two lowest subbands and discard the rest of the energy levels

is subtle because, in a single particle picture, the gap between the lowest and the first excited

subband is not very different from the one between the first excited and the second excited

subband. In Chapter 5 we will quantify the range of validity of the two-subband approximation

on the mean-field level. This calculation will show that, at least for some moderate values of

the well width, we can restrict the dynamics to the lowest two subbands. For the infinite square

well, the lowest two levels happen to be the sine functions, labeled S and A:

φS≡↑(z) =

√

2

w
sin
(πz

w

)

, φA≡↓(z) =

√

2

w
sin

(

2πz

w

)

. (1.48)

The two-subband model is often a very good approximation in the experiments and provides a

useful mapping of the quantum well system to a multicomponent description (see Chapter 5).

The internal symmetry in this case is provided by the subband quantum number instead of the

usual z-projection of spin. Therefore, we expect that FQH states observed in samples with the

geometry of a quantum well can be described by Halperin wave functions (1.45). Note, however,

that φS and φA have different symmetry regarding the reflection with respect to the center of

the well z = w/2: the former is symmetric, while the latter is antisymmetric (it possesses a node

at the center of the well). This implies that the problem does not have full SU(2) symmetry and

therefore we are not obliged to require the ΨH
m1,m2,n to be an eigenstate of S2.

1.4.2 Quantum Hall bilayer

Bilayer semiconductor structure consists of two quantum wells grown by MBE and spatially

separated by an insulating barrier that is on the same order of magnitude as the width of each

of the wells, Fig. 1.7. The key parameter that describes this system is d/lB , the ratio of center-

to-center distance d to the magnetic length lB . Applying gate voltage changes the electron

density in each layer, which in turns changes the effective magnetic length and therefore also

d/lB . Note that besides the top/bottom gates which control the electron density (and are not

in direct contact with the 2DEG), separate Ohmic contacts that are annealed onto the sample

can be used to probe electronic transport. Theoretically we describe the quantum Hall bilayer

imagining that there are two groups of electrons situated in the ↑ and ↓ layer. Electrons within

the same layer interact with the unscreened Coulomb interaction V intra(r), whereas electrons in

different groups repel each other by a slightly weaker interaction,V inter(r)

V intra(r) = e2/ǫr, V inter(r) = e2/ǫ
√

r2 + d2. (1.49)

Additional energy scale is set by the tunneling between the layers. However, it is possible to

fabricate bilayer systems which have negligible tunneling and interesting quantum mechanical
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Figure 1.7: Quantum Hall bilayer: two decoupled layers for large d (left) and the quantum

coherent state for small d (right).

coherence effects can then be established at sufficiently small d/lB , even in the lack of any

tunneling.

1.5 Multicomponent systems studied in this thesis

1.5.1 Quantum Hall bilayer at ν = 1

Certainly the most spectacular example of a multicomponent QH system is the quantum Hall

bilayer at total filling factor ν = 1 i.e. 1/2 in each layer. Here, one would ordinarily expect to

obtain a compressible state (Sec. 1.2.4). Murphy et al. [88] reported a vanishing of Rxx in such a

bilayer system when the distance d is less than 2lB , Fig. 1.8, even in the absence of any tunneling

between the layers. With nonzero tunneling, the critical distance becomes larger, as shown in the

inset of Fig. 1.8. This suggests that bringing the two layers close together establishes quantum

mechanical coherence between them, even when there is no explicit tunneling from one layer to

the other.

Figure 1.8: Quantum Hall effect at ν = 1. [88]

In the language of Halperin multicomponent states, we have a wave function for this kind of

state, called the 111 state: it is Ψ111. Because all the correlation exponents are the same, there

is a simple physical picture in Ψ111: it describes an exciton condensate where directly across

an electron in one layer there is a correlation hole in the opposite layer. This is particularly
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transparent in the wave function proposed by Fertig [89], Ψ111 =
∏

m
1√
2

(

c†m↑ + c†m↓

)

|0〉, which

can be understood as “grand canonical” generalization of Ψ111. The numbers of particles in ↑
and ↓ layer are not sharp in Ψ111 (i.e. their difference N↑ − N↓ fluctuates, while the sum is

fixed), but they are both individually conserved in Ψ111. Because the excitons are neutral, the

bilayer for d = 0 can also be understood as a composite boson condensate [90] (Sec. 1.2.2).

In d → 0 limit the SU(2) pseudospin rotation symmetry makes the bilayer system equivalent

to the Heisenberg problem, in which spins can rotate freely in three dimensions. At finite d,

the intralayer repulsion is stronger than interlayer repulsion. If the pseudospins would order

in the z-direction, all of the electrons would be in a single layer and the capacitive charging

energy would be large. That would lead to an “easy-plane” anisotropy in which the pseudospins

prefer to order in x − y plane and the symmetry is reduced to U(1) (see Ref. [91] for a quick

introduction to the physics of spin and pseudospin in quantum Hall systems). This is made

explicit by comparing the ground state of the easy-plane ferromagnet [9, 92]

ΨXY =
∏

m

1√
2

(

c†m↑ + eiφc†m↓

)

|0〉. (1.50)

to Ψ111. The phase φ represents a global phase difference between ↑ and ↓ particles and in-

terpolates between the symmetric (φ = 0) and antisymmetric (φ = π) superposition. Similar

to the BCS wave function of a superconductor, the phase φ is fixed, but the particle number

fluctuates. To be precise, the total number of particles is fixed, but the particle number differ-

ence between the layers is indefinite. However, contrary to the Cooper-pair order parameter, the

order parameter here

〈ψ†
↑(r)ψ↓(r)〉 ∼ eiφ(r)

is charge-neutral and can condense even in high magnetic fields.

In the absence of tunneling between the layers, the Hamiltonian of the system should not depend

on the phase φ, but it may nonetheless depend on its gradient

HXY =
ρs

2

∫

d2r |∇φ|2, (1.51)

ρs being the pseudospin stiffness which is typically about 0.5K [92] and represents the energy

cost of twisting the pseudospins out of their perfect alignment. This low-energy description is

known as the Berezinskii-Kosterlitz-Thouless (BKT) model. [51] It displays a topological phase

transition at finite temperatures on the order of ρs, driven by proliferation of vortices. The

transition occurs when the vortices in the phase field φ become unbound as a result of entropy

gain (although their interaction energy grows logarithmically with distance). In the context

of QH bilayer, vortices are known as merons and they carry both charge and vorticity. [92]

The broken U(1) symmetry in the bilayer at ν = 1 has received a stunning confirmation in

the experiments of Spielman et al. [93] who studied interlayer transport as a function of bias

voltage, Fig. 1.9. At large d/lB the interlayer conductance is strongly supressed. As the layers

are nearly decoupled for large d/lB , there is an energy penalty for an electron that tunnels from

one correlated state into the other as the latter needs to be reorganized to accomodate the extra

electrons. This is not so when d/lB is below 1.8. As seen in Fig. 1.9, a sharp resonance develops

at zero bias voltage which can be accounted for by the excitonic condensation in the 111 state.

Opposite to each electron there is now a hole and it is energetically advantageous for an electron

to tunnel. The effect is reminiscent of the Josephson effect, although strictly speaking the two

“weak links” in this case are parts of the same quantum state.

Further experimental support for the picture of an excitonic superfluid forming in the ν = 1

bilayer came from the so-called counterflow experiments. As the excitons are charge neutral

and hence do not carry a net current, their presence can be detected in a configuration in which

the injected currents in the two layers are equal in magnitude but flow in opposite directions,

Fig. 1.10. The fundamental charge carriers can be electrons [94] or holes. [95] As seen in
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Figure 1.9: Tunneling conductance dI/dV as a function of the interlayer bias voltage at total

filling of ν = 1 for several values of d/lB . [93]

Fig. 1.10, the parallel and counterflow configurations show qualitatively different behaviors at

ν = 1: Rxy is quantized for the former but has a minimum for the latter. From the tempera-

ture dependence, both the Hall and the longitudinal resistances show approximately activated

behavior, presumably vanishing in the T → 0 limit. The counterflow conductivity σCF
xx , which

is obtained from the longitudinal and the Hall resistances by matrix inversion, increases rapidly

with decreasing temperature. These results are taken to support the formation of excitonic su-

perfluidity at T = 0, but they also demonstrate the absence of perfect excitonic superfluidity at

nonzero temperatures in these bilayer systems. In spite of a sharp resonance, the height of the

interlayer tunneling peak remains finite in the limit of vanishing temperature. Theory predicts a

finite temperature Kosterlitz Thouless transition, [92] below which the Ohmic resistance in the

counterflow channel should vanish, resulting in a non-linear I − V characteristics. No evidence

of non-Ohmic behavior has been seen so far.

This points out to the fact that imperfect superfluidity may be attributed to the disordered

excitonic superfluid. [97] Further indications of this stem from the drag experiments, Fig. 1.11. A

current flowing in one layer induces a current in the other one as a result of interlayer momentum

relaxation by Coulomb interaction (when d/lB is not too large) or phonon exchange (for large

separations). If no current is being drawn through the other layer, a voltage is eventually

established that produces a current to cancel the induced current. The induced voltage in the

“passive” layer divided by the current in the “active” layer is called the drag resistance. For

simple Fermi liquids, the drag vanishes as T 2 as T → 0, because of the lack of phase space

allowing for inelastic scatterings, and for CFs at ν = 1/2 it vanishes as T 4/3. [98] The drag of

CFs has been investigated by Lilly et al. [99] in the weakly coupled region outside the 111 part

of the phase diagram in Fig. 1.8. They did not see a clear evidence of T 4/3 dependence and,

more surprisingly, discovered that the drag extrapolates to a nonzero value in the T → 0 limit.

That might suggest that the actual bilayer state in this region might not be weakly coupled.

The observation might be related to the work of Bonesteel et al. [100], that suggests that the

CS gauge field mediated interaction between CFs is attractive and induces an interlayer pairing

at any layer separation. This pairing turns out to be very important in theoretical studies of the

quantum Hall bilayer at ν = 1. [101, 102, 103, 104, 105]
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Figure 1.10: Rxx and Rxy for the bilayer ν = 1 system at T = 50mK, in the parallel

configuration when the currents are flowing in the same direction in both layers

(upper panel) and the counterflow configuration with the two layers contacted

individually (lower panel). The distance between the layers is d/lB = 1.58. [94]

We close this review of the quantum Hall bilayer by a disclaimer that our discussion was in-

tentionally focused almost exclusively on the fascinating experiments that have been done on

this system and are still performed at the time of writing. The field has also witnessed dra-

matic advances on the theoretical side to which our review cannot do justice. The fundamental

problem that the quantum Hall bilayer at ν = 1 poses to the theorist is how to connect the

small d limit (characterized by the effective CB quasiparticles, the incompressibility and the

Goldstone mode) with the large d limit described by compressible CF ν = 1/2 states. The way

to resolve this crossover, which also received compelling quantitative support, [103] is to assume

the mixed states which contain a coherent mixture of CFs and CBs with their relative ratio

being determined by the distance d. In Chapter 3 we present more details of this theory.

1.5.2 ν = 1/2

As we remarked in Sec. 1.2.4, ν = 1/2 in the LLL is a compressible state. In wide quantum

wells, however, an incompressible state is formed [106, 107], Fig. 1.12. For the results in Fig.

1.12, a 68nm wide quantum well was used. It was shown, by a self-consistent Hartree-Fock

calculation [106], that this system effectively acts as a bilayer system i.e. the charge distribution

forms two maxima close to the sides of the well. The distance between the two maxima is

the bilayer distance d. The system is obviously two-component because we have two groups of

electrons, one near each side of the well. A 1/2 plateau is seen in the approximate parameter

range 2.6 < d/lB < 8 with an activation gap on the order of 200 mK. In contrast, Ref. [107] used

a double quantum well geometry with a thin but high barrier to suppress interlayer tunneling.

Both experimental systems are two-component, however, and a natural explanation for the

incompressibility at ν = 1/2 is the Halperin wave function Ψ331. This wave function is not a

good representation of the ground state for small bilayer distances where the SU(2) symmetry

approximately holds. Also, if the width of the well is very large, the system is expected to

be compressible. There have been a few numerical studies of the problem of ν = 1/2 bilayer

[108, 109, 110] and they are generally consistent with each other and agree that Ψ331 is at the

origin of incompressibility for intermediate d.

We would like to note that Ψ331 can be understood as a paired state where the pairing is
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Figure 1.11: Coulomb drag resistances at T = 30mK in the vicinity of ν = 1 for various

d/lB . [96]

described by the Cauchy determinant. Using the Cauchy identity [111] (up to the unimportant

phase factor),

det

(

1

zi↑ − zj↓

)

=

∏

i<j(zi↑ − zj↑)
∏

k<l(zk↓ − zl↓)
∏

p,q(zp↑ − zq↓)
, (1.52)

we can rewrite Ψ331 in the following way

Ψ331 = det

(

1

zi↑ − zj↓

)

Φ2
1({Z}), (1.53)

where Φ2
1 =

∏

i<j(Zi − Zj)
2 represents the charge part and Z’s label all particles irrespective

of their spin index. Haldane-Rezayi state which also occurs at ν = 1/2 (Sec. 1.3.1) is the 331

state multiplied by a permanent, per [1/(zi↑ − zj↓)], a determinant with plus signs. [62, 112].

Using a linear algebra identity, Haldane-Rezayi state can be written in the form (1.53) where

the argument of the determinant is 1/(zi↑ − zj↓)2.

Another interesting identity that can be proved using elementary algebra is the following [113]

A

{

∏

i<j

(zi↑ − zj↑)
3
∏

k<l

(zk↓ − zl↓)
3
∏

p,q

(zp↑ − zq↓)
}

∝ Φ2
1({Z})Pf

(

1

Zi − Zj

)

, (1.54)

or in other words, antisymmetrizing the 331 state between ↑ and ↓ leads to the Pfaffian. This

suggests an interesting possibility. Let us imagine a wide quantum well or a bilayer, prepared

in an incompressible 331 state. The effect of tunneling between the two layers or subbands in a

quantum well is to organize the single particle states into even and odd superpositions, ↑ ± ↓.
For large tunneling, the even superposition ↑ + ↓ is energetically favored and the particles of

the even channel should therefore have the Pfaffian description. This transition is the subject of

Chapter 4.

1.5.3 ν = 2/5

Yet another example of the relevance of multicomponent FQH states presents itself at the filling

factor ν = 2/5 described by the state Ψ332. It is an eigenstate of the Casimir operator for the
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Figure 1.12: Quantum Hall effect at ν = 1/2 in the wide quantum well. [106]

SU(2) group which is easy to prove noting that an overall Laughlin-Jastrow factor
∏

i<j(Zi−Zj)
2

can be factored out of the wave function (Z’s describes electrons of both spins), leaving two

Slater determinants for ↑ and ↓ which trivially satisfy the Fock cyclic condition. [111] Therefore

Ψ332, being a spin-singlet, is an equally valid candidate for an unpolarized spin state (since the

populations are balanced, N↑ = N↓), as well as for a bilayer state where SU(2) symmetry is

broken at a finite distance between the layers. [108] There exists also a polarized CF state with

two filled CF Λ levels, (1.36). [1]

When the SU(2) symmetry is conserved and in the absence of Zeeman effect, the ground state of

the single layer is the Halperin 332 wave function (1.45) [114] but the energy splitting between

the unpolarized and the first excited polarized state is extremely small, which is also seen in

variational calculations. [1] Therefore there is a transition from an unpolarized to the CF state

above a critical value of the Zeeman energy ∆z, which was observed in the experiments. [115, 116]

In Sec. 1.3.2 we mentioned a so-called Gaffnian state which is also realized at the filling factor

ν = 2/5. Since this state derives from a nonunitary CFT, it is not likely that it describes the

polarized ν = 2/5 state which is one of the strongest experimentally observed fractions. However,

both Gaffnian and Jain states are intimately related to the Halperin 332 state. This connection

is obvious in the following manner of writing down the wave function of the Gaffnian, [108, 117]

ΨGaff = A

{

perm

(

1

zi↑ − zj↓

)

Ψ332({z↑, z↓})
}

, (1.55)

as an antisymmetrized product of a 332 state and a permanent, the determinant with plus

signs. Reminiscent of a transition driven by tunneling between the 331 state and the Pfaffian

discussed in Sec. 1.5.2, in a bilayer system at ν = 2/5 one can envision a transition between

the unpolarized 332 state and the polarized Jain CF state. In principle, there is a possibility for

Gaffnian to play a role of a critical state during this transition, as we discuss in Section 4.2.

1.5.4 ν = 1/4

Recently, Luhman et al. [118] reported experimental observations of the ν = 1/4 LLL state

possibly forming in a wide quantum well when the magnetic field is tilted, Fig. 1.13. This

experiment suggests that ν = 1/4 state is of two-component origin because it emerges with the

increase of a parallel component of the magnetic field B|| that leads to the decrease of ∆SAS . It
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1.5 Multicomponent systems studied in this thesis

Figure 1.13: Quantum Hall effect at ν = 1/4 in the presence of parallel magnetic field. [118]

was seen that ν = 1/2 behaves in a similar way, presumably due to being described by the 331

Halperin state. However, unlike ν = 1/2, ν = 1/4 does not depend sensitively on the variation of

the total density. Increasing the total density is expected to make the system more bilayer-like

and thus stabilize the two-component state.

In the experiments of Shabani et al. [119], instead of tilting the magnetic field, a charge imbalance

was created in a wide quantum well. It was claimed that this mechanism leads generally to the

strengthening of even-denominator LLL states, in particular ν = 1/2 and 1/4, Fig. 1.14.

Figure 1.14: Quantum Hall effect at ν = 1/2 and ν = 1/4 under density imbalance. [119]

In wide quantum wells, applying density imbalance leads to the increase of ∆SAS , which enables

the tuning of the system between the single-component and two-component regimes. For certain

densities, a minimum in Rxx was found at ν = 1/2 which disappears with the imbalance, [120]

consistent with the behavior expected for the 331 Halperin state. However, a surprising result

shown in Fig. 1.14 is that even for densities which do not show evidence of an incompressible

state in the balanced case, the extreme imbalance leads to an emerging minimum in Rxx. Possible
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candidates for such a state are the Moore-Read Pfaffian [121] or imbalanced two-component CF

states. [122]

At ν = 1/4 one can construct more than one Halperin’s wave function. Some likely possibilities

would be Ψ553, Ψ771 and a state which explicitly breaks the ↑ − ↓ symmetry, Ψ5,13,1. Because of

the very high correlation exponents, the latter two possibilities are very unlikely as they lead to

the charge density wave. The upper bound for the stability of bilayer states is determined by the

component of the lower filling factor. In these cases, both 1/7 or 1/13 are sufficiently low so that

Wigner crystal may be favored over the incompressible liquid. Moreover, there is a polarized

candidate in analogy to the Moore-Read Pfaffian (1.38), Ψ
1/4
Pf = Pf [1/(zi − zj)]

∏

i<j(zi − zj)
4.

Thus, the experiments of Luhman et al. and Shabani et al. implicitly suggest that there may be

a possibility to observe non-Abelian FQH states in the LLL if the sample has a special geometry

or is subject to especially tuned external fields. Chapter 5 presents a detailed study of ν = 1/2

and ν = 1/4 states in the wide quantum well.

1.5.5 Graphene

As a final example of multicomponent systems, we mention graphene, a one-atom-thick layer of

graphite, where “relativistic” QHE was recently seen.[25, 26] Electrons in graphene are described

by a relativistic 2D Dirac equation [123] and due to different Landau quantization, the resistance

plateaus are found at n = 2(2n′ + 1), in terms of an integer n′, i.e. with n = ±2,±6,±10, ....

Furthermore, a FQHE with n = 1/3 has very recently been observed. [124, 125] From the

electronic point of view, graphene is either a zero-overlap semimetal or a zero-gap semiconductor,

where the conduction and the valence bands are no longer separated by an energy gap. Indeed,

in the absence of doping, the Fermi energy lies exactly at the points where the valence band

touches the conduction band and where the density of states vanishes linearly. In order to vary

the Fermi energy in graphene, one usually places a graphene flake on a 300nm thick insulating

SiO2 layer which is itself placed on top of a positively doped metallic silicon substrate. In

contrast to 2D electron gases in semiconductor heterostructures which have mobilities on the

order of 10 million cm2/Vs, the mobilities achieved in graphene are rather low and typically on

the order of µ ∼ 104 − 105cm2/Vs. Notice, however, that these graphene samples are fabricated

in the so-called exfoliation technique, where one “peals” thin graphite crystals, under ambient

condictions, whereas the highest-mobility GaAs/AlGaAs laboratory samples are fabricated with

a very high technological effort.

Figure 1.15: Energy bands of graphene.

The band structure of graphene is described by the honeycomb lattice due to the sp2 hybridiza-

tion of the valence electrons. It is a triangular Bravais lattice with a two-atom basis {A,B}.
In a tight-binding model, where one considers electronic hopping between nearest-neighbouring

sites (for a site A, the nearest neighbors are B sites and vice versa) with a hopping amplitude t,

the effective Hamiltonian is purely off-diagonal in k-space and gives rise to two bands labeled by

λ = ±, plotted in Fig. 1.15. The valence band λ = − touches the conduction band (λ = +) in
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the two inequivalent corners K and K ′ of the first Brillouin zone. The Fermi energy lies exactly

in the contact points K and K ′ of the two bands unless the graphene sheet is doped. The inset

in Fig. 1.15 shows the band dispersion in the vicinity of the contact points K and K ′, the

linearity of which is sufficient to describe the low-energy electronic properties in graphene. The

conical form of the two bands is reminiscent of that of relativistic particles, which is also obvious

from the Dirac form of the Hamiltonian when it is expressed around K point, H = vσ · p. In

the continuum description of electrons in graphene we have two electron types, for the K and

K ′ point, which is the valley degeneracy. Together with the usual spin degeneracy, graphene is

implicitly a four-component system which is therefore characterized by a wave function which

is a SU(4)-spinor. The energy scale for lifting the valley/spin degeneracy are similar and much

smaller than the one set by the Coulomb interactions. SU(K) internal symmetry (approximately

realized in some range of the system parameters) can nonetheless be described with a simple

instance of the wave function (1.47) for K = 4 that is expected to describe quantized states in

four-component systems. Note that the exponents nij and njj ≡ mj define a symmetric 4 × 4

matrix M = (nij), which determines the component densities ρj – or else the component filling

factors νj = ρj/nB ,








ν1
ν2
ν3
ν4









= M−1









1

1

1

1









. (1.56)

Eq. (1.56) is only well-defined if the matrix M is invertible. If M is not invertible, some of the

component filling factors, e.g. ν1 and ν2, remain unfixed, but not necessarily the sum of the

two (ν1 + ν2). This is a particular feature of possible underlying ferromagnetic properties of the

wave function, [126] as we discussed in Sec. 1.4. The component filling factors in this context

are those that arise naturally in FQHE studies, i.e. they are defined with respect to the bottom

of the partially filled LL, in contrast to the graphene filling factor, νG, defined with respect to

the center of n = 0 level. In order to make the connection between the two filling factors, one

needs to choose

ν = ν1 + ν2 + ν3 + ν4 = νG + 2. (1.57)

In Chapter 6 we consider some particular subclasses of the trial wave functions (1.47), which are

natural candidates for a FQHE in graphene.
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Chapter 2

Numerical studies of the FQHE

In this Chapter we set up the numerical (exact) diagonalization of the FQH problem in finite

geometries. Throughout this thesis, by exact diagonalization (ED) we refer to the procedure

where the Hamiltonian of the system, subject to particular boundary conditions, is represented

in a convenient (finite) basis and its energy spectrum numerically evaluated using the computer.

This method offers the possibility to study the quantum system in an unbiased manner and it was

used since the early days of the FQHE, for example in working out the physical properties of the

Laughlin wave function. [41] By now it has assumed the status of a standard tool in FQH studies

where perturbative approaches are not guaranteed to work and physical properties expected in

the thermodynamic limit can be identified already in very small systems. Although the energy

spectrum itself offers substantial information about the physical system, it is furthermore possible

to make direct comparison between the numerically-obtained eigenvector and the given trial

wave function believed to describe the system’s state. This amounts to evaluating a simple

scalar product between the two vectors and we refer to it as the overlap calculation. Knowledge

of the eigenvectors also allows one to calculate various operator mean values, propagators etc.

The virtue of exact diagonalization is its versatility because it can be applied to any system.

However, in practice the computational effort exponentially increases with the size of the system

and therefore ED is usually restricted to small systems. Despite this, ED remains a powerful

tool of choice for the theoretical studies of the FQHE.

Popular choices of the geometry in the FQH literature have been the disk [42], the sphere [127]

and the rectangle with periodic boundary conditions (torus) [128]. In this thesis we focus on the

latter two geometries which do not have open boundaries and therefore are particularly useful

in examining the bulk properties of incompressible FQH liquids. This Chapter will largely

present an overview of the pioneering papers by Haldane [42, 127, 129] and their extensions.

[1, 18, 21, 130]

2.1 Exact diagonalization: Sphere

The original insight of Haldane [127] was that the two-dimensional sheet containing electrons

can be wrapped around the surface of a sphere, while the perpendicular (radial) magnetic field

is generated by a fictitious Dirac magnetic monopole at the sphere’s center. The single particle

problem had previously been solved by Wu and Yang. [131, 132] We will quote the main results

without derivation. A recent pedagogical summary containing some of the derivations is given

in [1].

The magnetic flux through the surface of the sphere (measured in units of Φ0), is quantized to

be an integer and denoted by Nφ = 2Q. The position of an electron is given by the spherical

coordinates R =
√
QlB , θ, φ. Because of the rotational symmetry enforced by the choice of
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2. NUMERICAL STUDIES OF THE FQHE

the geometry, the orbital angular momentum and its z-component are good quantum numbers,

denoted by l and m, respectively. Due to the presence of the monopole, their allowed values are

l = |Q|, |Q|+ 1, . . . and m = −l,−l+ 1, . . . , l. Different angular momentum shells correspond to

Landau levels in the spherical geometry. The degeneracy of each Landau level is equal to the

total number of m values, i.e. 2l + 1, it is obviously finite and increasing by two units for each

successive Landau level. The single particle eigenstates are the monopole harmonics, denoted

by YQlm, which are a generalization of the familiar spherical harmonics for Q = 0. In the lowest

Landau level, they reduce to

YQQm =

√

2Q+ 1

4π

(

2Q

2Q−m

)

(−1)Q−mvQ−muQ+m, (2.1)

where u, v are the spinor variables [127]

u = cos θ/2eiφ/2, v = sin θ/2e−iφ/2. (2.2)

The spinor variables are not independent because |u|2+ |v|2 = 1 and we can transform to a single

z complex coordinate by stereographic mapping z = 2Rv/u, R being the radius of the sphere.

The basis states are given by zm/(1 + |z|2/4R2)1+Nφ/2, where the Lz momentum quantum

number is Lz = Nφ/2 −m. Note that if Nφ, R → ∞ (with Nφ/R
2 fixed), the sphere becomes

effectively flat and the single particle states reduce to those on the disk, zme−|z|2/4.

For N electrons, the filling factor corresponding to the thermodynamic limit (1.8) is given by

ν = lim
N→∞

N

2|Q| , (2.3)

but in case of the finite system the relation (2.3) requires a slight modification:

Nφ =
1

ν
N − δ, (2.4)

which defines the so-called shift, δ. The shift is the topological number that characterizes each

FQH state on the spherical surface. It is of order unity (e.g. the Laughlin state at ν = 1/3

has δ = 3) and it is required to specify the system in addition to the filling factor ν. In the

thermodynamic limit of an infinite plane, the shift plays no role, but for a finite sphere it is a

crucial aspect of the ED technique [42] as it can lead to an “aliasing” problem: at a fixed choice

of (Nφ, N), more than one quantum Hall state (having different ν, δ and, therefore, different

physical properties) may be realized.

We are now in a position to set up the Hilbert space which contains the Slater determinants

|m1,m2, . . . ,mN 〉 = c†m1
. . . c†mN

|0〉 built from the single-particle states labelled by mi. It is

often advantageous to exploit symmetries in order to reduce the dimension of the Hamiltonian

matrix because we only consider transtionally/rotationally invariant Hamiltonians. An obvious

symmetry which is used in the construction of Hilbert space is the conservation of Lz =
∑

imi

component. In principle it is possible to demand full rotational symmetry and diagonalize the

Hamiltonian in the invariant subspaces of the L2 operator, but the numerical implementation of

this symmetry is difficult. One can also use the symmetry under the discrete parity transforma-

tion Lz → −Lz in diagonalizing within Lz = 0 sector of the Hilbert space.

The general interacting Hamiltonian in the basis of states |m1,m2, . . . ,mN 〉 , expressed in second-

quantized form, is given by

H =
1

2

Q
∑

m1,m2,m3,m4=−Q

〈m1,m2|V |m3m4〉c†m1
c†m2

cm4
cm3. (2.5)
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2.1 Exact diagonalization: Sphere

The interaction V usually is such that it depends solely on the relative coordinate and not

the center of mass. This is the case for Coulomb (1.9) and any other physical interaction.

Furthermore, if the interaction involves only two particles at a time, it is convenient to express

the matrix element 〈m1,m2|V |m3,m4〉 in the following form

〈m1,m2|V |m3,m4〉 =

2Q
∑

L=0

L
∑

m=−L

〈Qm1, Qm2|L,M〉V2Q−L〈L,M |Qm3, Qm4〉 (2.6)

where the numbers V2Q−L are called the Haldane pseudopotentials and can be directly evaluated

(a useful formula for the Coulomb interaction in the LLL is given in [130]). Evaluated on the

sphere, V2Q−L represents the energy of two particles in a state with relative angular momentum

L in the plane. Apart from geometrical Clebsch-Gordan coefficients 〈L,M |Qmi, Qmj〉, the set

of {VL|L = 0, . . . , 2Q} uniquely specifies the interacting Hamiltonian in any one Landau level.

If the particles are fermions, the only physically relevant pseudopotentials are those with odd

2Q − L because of the exchange antisymmetry. Using the algebra of the harmonic oscillator

raising operators, it can be shown that the Fourier transform of the effective interaction Veff

of the nth LL projected to the LLL is simply related to the Fourier transform of the LLL

interaction V : Veff(k) =
[

Ln(k2

2 )
]2

V (k). Therefore, as long as we remain in a single Landau

level, the problem is uniquely specified by a simple sequence of numbers VL. Another important

insight also due to Haldane [42] was that specifying a few non-zero VL’s defines special short-

range Hamiltonians that uniquely produce certain FQH trial states as their zero-energy modes.

The simplest example is the Laughlin state at ν = 1/3 which is the unique, highest density zero

mode of the following pseudopotential Hamiltonian:

V1 > 0, V3 = V5 = . . . = 0 (2.7)

This is the hard-core interaction that is represented by (1.22) in the real space. We can numer-

ically obtain the ground state of the interaction (2.7), inserting (2.7) into the Hamiltonian (2.5)

and choosing the proper shift Nφ = 3N − 3. We will recover a unique zero-energy state with a

gap controlled by the value of V1 and a magneto-roton branch in the excitation spectrum, [45]

the known facts from the physics of the Laughlin state (Sec. 2.2.1).

2.1.1 Example: Effect of finite thickness on the Laughlin ν = 1/3 state

To illustrate the principle of numerical investigation, let us try to tackle the following simple

problem: what is the effect of finite layer width on the ν = 1/3 state. We can model the

finite-width FQH system using the effective Zhang-Das Sarma interaction, (1.17). We evaluate

the Haldane pseudopotentials for the ZDS interaction, numerically diagonalize the Hamiltonian

(2.5) for several values of the width parameter d and obtain the exact eigenvectors |Ψexact〉. On

the other hand, the ground state of the interaction (2.7) is just the Laughlin state |ΨL〉. By

evaluating the scalar product between the two vectors, 〈ΨL|Ψexact〉, we can monitor how well the

Laughlin wave function describes the exact ground state. We know that for d = 0 the overlap is

very large (nearly 1), which means that the Laughlin wave function is an excellent representative

of the ground state. More details on the numerical calculations are given in the Appendix. The

results for several values of d are given in Fig. 2.1. We see that the overlap decreases with

the thickness of the sample, which is consistent with the experiments that see the weakening of

the Laughlin state in the samples of very wide width. In the inset to Fig. 2.1 we repeated the

calculation for the first excited LL, using the effective interaction Veff as we explained above.

Here we may note that the Laughlin state is a much worse description of the exact state for

small values of d. Indeed, for N = 5 particles we even obtain zero overlap. Small overlap usually

means that we have a wrong candidate wave function. Zero overlap, on the other hand, means

that we are testing wave functions of different symmetry, e.g. an incompressible L = 0 state
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2. NUMERICAL STUDIES OF THE FQHE

(such as the Laughlin) against the compressible L > 0 state. However, for large d we see that

the Laughlin state is stabilized. Thus, we can argue that finite width has the opposite effect on

the Laughlin state in the two Landau levels: while it destabilizes the ν = 1/3, it enhances (and

may even be necessary for the appearance of) ν = 7/3 state.
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Figure 2.1: Overlap |〈ΨL|Ψexact〉| between the exact Coulomb state for finite width (ZDS

model) at ν = 1/3 and the Laughlin wave function N = 4 − 12 particles. [133]

Inset: same quantity but in the first excited Landau level i.e. ν = 7/3.

We would like to stress that in order to draw conclusions from the overlap calculations, one needs

to assure that a range of system sizes has been studied that would allow at least a minimal finite-

size scaling to be performed. The results should also be robust to the slight variation of the

interaction parameters in order to be able to identify the phase of the system. Still, examples

are known [82] where two fundamentally different trial states both have high overlaps with the

exact state and it is not obvious which one is the wrong candidate. In such cases, the study

should be complemented with the analysis of excitations, different choice of boundary conditions

(Sec. 2.2) and/or alternative tools like the entanglement spectrum.

2.1.2 Entanglement spectrum on the sphere

The idea of entanglement, borrowed from the field of quantum information [134, 135, 136],

provides a useful tool to study FQH states on the sphere [137] and torus [138]. Imagine that

the sphere is divided at a line of latitude into two regions, A and B, so that 2Q + 1 orbitals

are partitioned into NA
orb around the north pole and NB

orb around the south pole. A general

many-body state |ψ〉 can be decomposed on the product basis HA ⊗HB involving a sum over

the basis of subsystem A and and a sum over the basis of subsystem B. We can alternatively

perform a Schmidt decomposition (equivalent to the singular value decomposition of a matrix)

of |ψ〉
|ψ〉 =

∑

i
e−

1
2
ξi |ψi

A〉 ⊗ |ψi
B〉 (2.8)

where exp(− 1
2ξi) ≥ 0, |ψi

A〉 ∈ HA, |ψi
B〉 ∈ HB , and 〈ψi

A|ψ
j
A〉 = 〈ψi

B |ψ
j
B〉 = δij , giving exp (− 1

2ξi)

as the singular values and |ψi
A〉 and |ψi

B〉 the singular vectors. If the state is normalized,
∑

i exp (−ξi) = 1. The ξi’s can be thought of as the “energy levels” of a system with ther-

modynamic entropy at “temperature” T = 1. The entanglement entropy, S =
∑

iξi exp (−ξi)
i.e. the von Neumann entropy of the subsystem A, has been shown to contain information on

the topological properties of the many-body state. [139] The full structure of the “entanglement

spectrum” of levels ξi contains much more information than the entanglement entropy S, a single

number. This is analogous to the extra information about a condensed matter system given by

its low-energy excitation spectrum rather than just by its ground state energy. For model states,

such as Laughlin or Moore-Read, the low-lying part of the entanglement spectrum displays the
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structure of the Virasoro levels of the corresponding conformal field theory, up to some limit set

by the size of the spherical surface. The counting can be used as a fingerprint of topological

order also in the generic states, such as Coulomb, which have much more complicated Slater

decomposition than the model states. We illustrate this with the example of the entanglement

spectrum for the exact ground state of the Coulomb interaction at ν = 5/2, Fig. 2.2. A very

large system of N = 20 is split in two parts with the same number of particles and number

of orbitals. Because the FQH ground state is translationally and rotationally invariant (with

quantum number Ltot = 0 on the sphere), and the partitioning of Landau-level orbitals conserves

both gauge symmetry and rotational symmetry along the z-direction, in either block A or B

both the electron number (NA
e and NB

e ) and the total z-angular momentum (LA
z and LB

z ) are

good quantum numbers constrained by NA
e + NB

e = Ne, L
A
z + LB

z = 0. The entanglement spec-

trum splits into distinct sectors labeled by NA
e and LA

z . The low-lying part of the entanglement

spectrum (with the “banana”-like shape) displays the counting 1, 1, 3, 5, . . . which is the same

as that of the Moore-Read state (we show the entanglement spectrum of the Moore-Read state

in Chapter 5, Fig. 5.6). This result contributes to the belief that the generic ν = 5/2 state is

indeed described by the Pfaffian wave function. Furthermore, by changing the location of the

cut, one can establish that there are exactly three nonequivalent countings that one may obtain

and these correspond to the three topological sectors of the Ising CFT we mentioned in Sec.

1.3.2 (see also Sec. 2.2.1).
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Figure 2.2: Entanglement spectrum for N = 20 electrons on the sphere, Coulomb interaction

at the filling factor ν = 5/2. The block A consists of NA = 10 electrons and

lA = 19 orbitals, corresponding to the cut [0|0] in Ref. [137].

2.1.3 Example: Multicomponent states in the ν = 1/4 bilayer

We consider now a second example to illustrate the extension of ED formalism to the case

when there is an internal degree of freedom. This degree of freedom can be represented by an

ordinary SU(2) spin or the layer/subband index in bilayer systems or wide quantum wells. The

basis states are now specified by pairs of indices |j1, σ1; j2, σ2; . . . jNe
, σNe

〉, where σ =↑, ↓ is the

eigenvalue of the Sz projection of spin. If we are dealing with the physical spin, the Hamiltonian is

additionally contrained to be an eigenstate of S2 operator of the total spin which acts as a Casimir

operator for the SU(2) group. In the application to bilayer systems where the SU(2) symmetry

is broken for any nonzero value of d (distance between the layers), S2 no longer commutes

with the Hamiltonian and the maximal symmetry classification is provided by Sz. In addition,

while working in the Sz = 0 subspace, it is possible to use the discrete symmetry Sz → −Sz

to further reduce the dimension of the Hilbert space. Haldane’s pseudopotential formalism

is straightforwardly extended to the spinful/bilayer case which yields two sets of interaction

coefficients, V intra
L and V inter

L , for the intra and inter-layer interaction, respectively(we assume

the layers are indentical). We consider the filling factor ν = 1/4 in the LLL, which was the subject

of recent experiments [118], and for illustration purpose we analyze to what extent this state can
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be described by the multicomponent wave functions, Ψ5 5 3 ≡ 553, Ψ7 7 1 ≡ 771, introduced in

Sec. 1.4.1. The experiment where ν = 1/4 state was discovered was performed in a single wide

quantum well which we will study within a more complete model in Chapter 5. We assume the

system is effectively a bilayer, described by the interaction (1.49), and calculate overlap between

the exact state and each of the trial states as a function of d, Fig. 2.3. The trial states are defined

as the zero mode of the following potentials V intra
553 = {0, 1, 0, 1, 0, . . .}, V inter

553 = {1, 1, 1, 0, 0, . . .}
and V intra

771 = {0, 1, 0, 1, 0, 1, 0 . . .}, V inter
771 = {1, 0, 0, . . .}. 553 displays a familiar maximum [108]

in the overlap for intermediate distance between the layers. The 771 overlap starts to increase

with larger d, consistent with the large difference in the correlation exponents for intra and inter

components. Since our numerics is performed in the spherical geometry, 771 appears as the

usual incompressible state, but in the experiment this state would closely compete with the two

coupled Wigner crystals. We cannot address this competition in the spherical diagonalization

because this geometry is not adapted to assess states with broken translational symmetry. Note

also that we cannot make a direct comparison between the Coulomb ground state overlap with

each of the trial states, 553 and 771, because the latter are characterized by different shifts

(2.4), δ = 5 and δ = 7 respectively. This examples illustrates the fundamental problem of the

spherical geometry in describing the competition between different phases realized at the same

filling factor, but characterized by different shifts.
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Figure 2.3: Overlap between the exact bilayer state with 553 and 771 states for N = 8

particles on the sphere. [140]

2.2 Exact diagonalization: Torus

If we choose to work in the Landau gauge A = (0, Bx, 0), a more convenient way to compactify

the two-dimensional sheet of electrons is to apply the periodic boundary conditions. [18, 42,

128, 129] We assume that a finite number of electrons is placed in a unit cell a × b. The single

particle wave functions introduced in (1.5) need to be modified to comply with the magnetic

translations along both axes, and they assume the form (setting lB = 1)

φj(r) =
1

√

b
√
π

∞
∑

k=−∞
exp{i(Xj + ka)y − (Xj + ka− x)2/2}, (2.9)

where Xj = 2πj/b and j ranges from 0 to Nφ − 1. There are Nφ magnetic flux quanta through

the surface of the torus defined by the condition we wrote down in (1.7): Nφ = ab/2π. Because

of this constraint, it is useful to introduce a single number r called the aspect ratio, defined as

r = a/b, which fixes the geometry of the torus. Any two-body interaction depending on the

relative distance between particles, V (r), such as the Coulomb interaction, is conveniently made

periodic by condsidering its Fourier transform v(q)
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V (r) =
1

ab

′
∑

q

v(q)eiqr, (2.10)

where q takes values in the first Brillouin zone q = (2πs/a, 2πt/b) (s, t are integers) and where

v(q) = 2πe2/ǫ|q| is the Fourier-transformed Coulomb interaction. The prime on the sum in

(2.10) indicates that the q = 0 component has been cancelled by the uniform positive background

charge. Using (2.10) and (2.9), the matrix elements can be calculated [18] and the interaction

part of the Hamiltonian is again defined by (2.5). Apart from the two-body interaction terms,

the Hamiltonian contains the one-body terms which result from the interaction of the electrons

with their mirror images (a consequence of the periodic boundary condition). These one-body

terms depend only on the geometry of the torus and can be dropped from the Hamiltonian as

long as the aspect ratio is held fixed.

As in the case of the spherical geometry, it is useful to use symmetries in order to reduce the

dimension of the Hamiltonian matrix to be diagonalized, but instead of rotational symmetry one

must consider on the torus the magnetic translations along the x and y axes. The full treatment

of the magnetic translation symmetry in this context was first given by Haldane. [129] The

magnetic translation operator acting on a particle j is defined as

Tj(L) = exp (− i
~
L ·Kj), (2.11)

where the crystal momentum is Kj = −pj − eByjex. Consistency requires that encircling the

torus around the perimeter of the unit cell produces an identity operation, which yields the

condition ez · (a×b) = 2πNφ. Let us consider now a many-body system of Ne electrons and Nφ

flux quanta, so the filling factor ν = Ne/Nφ can be expressed in the reduced form ν = p/q, where

p, q are coprime numbers. Then we also have Ne = pN ′, Nφ = qN ′, where N ′ is the greatest

common divisor of Ne and Nφ. The center of mass translation operator simply translates each

of the particles independently, T (L) =
∏

j Tj(L). If the single particle wave functions are to be

unaffected by such a transformation, we find that the most general translation is for the vector

L =
1

Nφ
Lmn,

where Lmn = (ma, nb). Center of mass translations give rise to a degeneracy of q for each state

at the filling factor ν = p/q. [18, 129] Physical information is contained in the eigenvalues of the

relative translations

T̃j(L) =
∏

i

Tj(L/Ne)Ti(L/Ne). (2.12)

It can be shown that the spectrum of the operators of relative translations T̃j consists of N ′2

points in the inverse lattice, labeled by integers s, t = 0, . . . , N ′ − 1. These numbers are the

fundamental quantum numbers that classify the physical eigenstates of the Hamiltonian. They

are related to the physical momentum via

k =

√

2π

Nφr
[s− s0, r(t− t0)] (2.13)

where (s0, t0) corresponds to the zero momentum fixed by

ei2πs0/N ′

= ei2πt0/N ′

= (−1)pq(Ne−1). (2.14)

The incompressible states such as Laughlin’s in this notation are characterized by k = 0 ground

state and a gap to all excitations. The construction of the symmetry-adapted basis proceeds
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by noting how the relative translations along the x and y direction act on the many-body state

|j1, j2, . . . , jNe
〉:

T̃j(pnLyey)|j1, j2, . . . , jNe
〉 = exp (i2π

n

N ′ t)|j1, j2, . . . , jNe
〉, (2.15)

T̃j(pmLxex)|j1, j2, . . . , jNe
〉 = |j1 − qm, j2 − qm, . . . , jNe

− qm〉 (2.16)

where t =
∑

i ji (mod N ′). We see from the above equation that, for each given t, states can be

grouped into equivalence classes L under the action of the x-translation. We therefore arrive at

the following set of states, for each value of s and t (0 ≤ s, t ≤ N ′ − 1), that are the eigenstates

of both translation operators:

|(s, t);L〉 =
1

√

|L|

|L|−1
∑

k=0

exp (i2πsk/N ′)|j1 − qk, j2 − qk, . . . , jNe
− qk〉. (2.17)

Therefore, we only need to diagonalize the Hamiltonian in each of the subspaces |(s, t);L〉.
Discrete symmetries relate some of those subspaces to each other and thus further reduce the

range of s, t. Finally we stress that, contrary to the sphere, trial states on the torus are uniquely

specified by their filling factor and there is no shift (δ = 0).

2.2.1 Example: Abelian vs. non-Abelian states on the torus

We mentioned above that an incompressible state on the torus is characterized by k = 0 pseudo-

momentum. In Fig. 2.4 we show an example of the low-lying energy spectrum for N = 10

electrons on the torus at the filling factor ν = 1/3 and interacting with Coulomb and hard-core

V1 interaction (2.7). The latter interaction produces a unique zero-energy ground state with

k = 0, which is described by the Laughlin wave function, along with a characteristic magneto-

roton branch of excitations. The high overlap between the ground states of the two interactions,

as well as the general similarity of the low-lying spectra, is a convincing evidence that the

Coulomb interacting state at ν = 1/3 is the Laughlin state.
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Figure 2.4: Low-energy part of the spectrum of the Coulomb interaction on the torus for

N = 10 electrons at ν = 1/3 and the aspect ratio 0.99. Energies are shown

relative to the ground state and, for comparison, we also show the lowest states

of the hard-core V1 potential (2.7).

Furthermore, it is also possible to translate the Laughlin wave function (1.20) to the torus

geometry [141] (see Ref. [142] for the examples of many quantum Hall wave functions translated

into torus geometry). The expression for the filling factor ν = 1/m reads

Ψ 1
m

= ϑ
α/m+(Nφ−m)/2m

(m−Nφ)/2 (m
∑

i

zi/a|imb/a)×
∏

i<j

ϑ1((zi − zj)/a|ib/a)me−
1
2

P

i y2
i , (2.18)
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where ϑa
b (z|τ) =

∑

n e
iπτ(n+a)2+2πi(n+a)(z+b) (sum over all integers) are the Jacobi theta func-

tions and ϑ1 ≡ ϑ
1/2
1/2 is the standard odd theta function. α = 0, 1, . . . ,m − 1 gives the m

degenerate states that differ by a translation of the center of mass only. The relative factor in

Eq. (2.18) has been written down using a substitution 1/(zi − zj)→ ϑ1(zi − zj |τ).
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Figure 2.5: Low-energy part of the spectrum of the three-body Hamiltonian (1.41) on the

torus for N = 12 electrons at ν = 1/2 and aspect ratio 0.99. The three de-

generate zero-energy states are characterized by k = (0, N ′/2), (N ′/2, 0) and

(N ′/2, N ′/2).

For the non-Abelian states such as the Pfaffian, the construction above needs to be modified

because direct substitution in the denominator 1/(zi − zj) in (1.38) invalidates the periodicity.

The correct ansatz involves four Jacobi functions and reads

1/(zi − zj)→ ϑα(zi − zj |τ)/ϑ1(zi − zj |τ), α = 2, 3, 4 (2.19)

which explicitly gives us three ground states. This is the topological degeneracy characteristic

of the Moore-Read state. We can also recover this degeneracy by diagonalizing the 3-body

Hamiltonian (1.41), Fig. 2.5. We find exactly degenerate states in the sectors with pseudo-

momenta k = (0, N ′/2), (N ′/2, 0) and (N ′/2, N ′/2), unless we use a square or hexagonal unit

cell which can mask the non-Abelian degeneracy because of additional geometric symmetries.

Topological degeneracy therefore can be a useful tool to discriminate between Abelian and non-

Abelian trial wave functions in determining the nature of the generic (Coulomb) ground state.

If we focus on the filling factor ν = 1/2 or 2 + 1/2, there are many candidate states including

the obvious CFL (1.37), which is very sensitive to the variation of the unit cell shape and has

no distinctive ground-state degeneracy. Other compressible phases, such as bubble and stripe

phases, [56, 57, 71] are also possible. In Fig. 2.6 we show the energy spectrum of N = 14

electrons with the Coulomb interaction, in the LLL and second LL. We indicate the states that

are expected to form the topologically degenerate multiplet. In contrast to ν = 1/2 where the

presence of other states obscures the degeneracy, at ν = 5/2 we find the correct counting which

is a necessary prerequisite for the Pfaffian state. Haldane and Rezayi [71] showed that varying

the V1 component of the Coulomb interaction can lead to further stabilization of this degeneracy

and the increase of overlap with the Moore-Read wave function.

2.2.2 Example: Torus degeneracy of the 331 multicomponent state

Analysis of translation symmetry can be immediately generalized to the multicomponent states.

We can construct multicomponent Halperin states (1.47) from the Chern-Simons theory using

the so-called K-matrix [143] which turns out to be nothing else but a set of wave function
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Figure 2.6: Energy spectrum of N = 14 electrons on the torus at ν = 1/2 (left) and ν = 5/2

(right), for the aspect ratio of 0.99

exponents m1, ...,mK ; {nij}. The torus degeneracy of such a state is given by

det K = qN ′ (2.20)

where q is the denominator of the filling factor that describes the overall center-of-mass degen-

eracy, while N ′ is an integer that accounts for the different translations of the centers of mass

of the different components. The points which have parity invariance are k = (0, 0), (0, N ′/2),

(N ′/2, 0), (N ′/2, N ′/2) and therefore we can express N ′ as the sum of the number of k = 0 states

(N0) and the number of states that lie on the zone boundary NB . For homogeneous liquids, we

have N ′ = N0 + 3NB . [144] For the 331 state, we have q = 2 and the associated K-matrix is

given by

K =

[

3 1

1 3

]

which gives detK = 8. The explicit form of the 331 wave function in the torus geometry is

a straightforward generalization of (2.18) and can be found e.g. in Ref. [144]. Therefore, the

multicomponent degeneracy that distinguishes the 331 state is 4 and the degenerate ground

states are expected to have momenta k = (0, 0), (0, N ′/2), (N ′/2, 0), (N ′/2, N ′/2). We can

verify this fact to numerical precision using the pseudopotential interaction that produces the

331 state as the unique and densest zero mode. For Coulomb interaction, we expect the multiplet

of states to be only approximately degenerate. Let us consider the Coulomb bilayer system at

the filling factor ν = 1/2 as a function of distance d. We assume that the tunneling between

the layers is negligible and the layers are in balance, so Sz = 0 is a good quantum number.

The Hamiltonian for each d is diagonalized in all the different k sectors and the energies are

plotted relative to the ground state at a given d, Fig. 2.7. We consider N = 8 particles and set

the aspect ratio to r = 0.99, to avoid further degeneracies due to the special symmetry of the

Brillouin zone. To track the evolution of the ground state, we highlight the states belonging to

the momentum sectors of interest. We see that the tentative quadruplet of states for the 331

begins to form only beyond d ≥ lB . The multiplet structure is robust to variation of the aspect

ratio of the torus, which eliminates the CFL as the other competing phase at the same filling

factor (furthermore, CFL in the same-size system has additional degeneracies which are not seen

in the spectrum of Fig. 2.7). This is consistent with the result in the spherical geometry which

shows maximum overlap between the Coulomb state and the 331 for this range of d. However,

on the sphere the overlap is not very low for smaller d’s and even for d = 0. The torus spectra

clearly prove that the overlap on the sphere gives an incomplete picture because we also must

be in the region of d which gives us the correct ground-state degeneracy. The two geometries,

of course, should not give inconsistent results if a range of system sizes is considered and all the

competing phases are properly taken into account.

If we are to calculate the overlap on the torus between the trial and an exact state, we must
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a guide to the eye.

take into account the ground state degeneracy in the following way:

|〈Ψtrial|Ψ〉|2 ≡
1

|Strial|
∑

k∈Strial

|〈Ψtrial(k)|Ψ(k)〉|2, (2.21)

where Strial stands for the degenerate subspace expected for |Ψtrial〉. This amounts to adding

together the overlap squared for each of the expected members in the ground state multiplet

(normalizing the sum by the expected ground state degeneracy |Strial| to be 1 at maximum) and

the definition is obviously meaningful only in the case where we had previously established the

correct level ordering in the spectrum.

2.3 Summary

In this Chapter we have presented an overview of the exact diagonalization procedure adapted to

the spherical and torus geometries. Each of these geometries has its advantages and drawbacks.

The sphere is particularly suited to establish whether the ground state is a homogeneous L = 0

state and calculate its overlap with the given trial wave function. This task is computationally

easier than on the torus because single particle wave functions are simple analytic polynomials,

yielding a Hamiltonian matrix which is real and lends itself to the easy implementation of various

symmetries. On the other hand, due to the bias of shift, it is not straightforward to compare

different candidate wave functions describing the same filling factor on the sphere. One of the

main advantages of the torus geometry is the nontrivial ground state degeneracy of non-Abelian

and multicomponent states, which can be used as a fingerprint of a phase. The caveat, however, is

the existence of an additional geometric parameter, the aspect ratio of the torus. The particular

value of this parameter may favor one phase over the other and therefore a complete study

should investigate a wide range of values for the aspect ratio, which makes a computational task

much more involved.
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Chapter 3

Quantum disordering of the

quantum Hall bilayer at ν = 1

Quantum Hall bilayer (QHB) at ν = 1 continues to be the subject of many experimental and

theoretical studies. Much of the physics has been well established in the extreme cases when the

distance between layers, d, is (1) much smaller or (2) much larger than the magnetic length lB .

When d ≪ lB , i.e. inter and intra Coulomb interactions are about the same, the good starting

point and description is the Halperin state Ψ111 (1.45). The physics in Ψ111 is of the exciton

binding [10, 89]: an electron in one layer and a correlation hole directly oposite to it, in the

other layer, are in a coherent quantum-mechanical superposition in the manner of the Ψ111 wave

function. This exciton description can be a viewpoint of the phenomenon of superfluidity found

in these systems [93] and is closely connected to the concept of composite bosons (CBs) [48] that

can be used as natural quantum Hall quasiparticles in this system. When d ≫ lB we have the

case of the decoupled layers and the ground state (GS) is a product of two Fermi seas (1.37),

ΨRR({z↑}) × ΨRR({z↓}). The underlying quasiparticles are then CFs, the usual quasiparticles

of the single layer quantum Hall physics. [1]. To address the range of intermediate d, when

the system is a disordered superfluid, one may try to describe the basic physics by interpolating

between the two limits or, in other words, to construct mixed states of CBs and CFs. [101] This is

a phenomenological approach where we start from the identical electrons, split them into a group

of those that correlate as composite bosons and a group of those that correlate as composite

fermions. The wave function for the superfluid state at small d will involve mainly composite

bosons; the disordering of the CB superfluid is caused by “nucleation” of CF quasiparticles as

d is increased. In this Chapter we study such states using Chern-Simons theory. We begin by

introducing the Chern-Simons approach for the Halperin 111 state, deriving its basic properties

(such as the Goldstone mode and true ODLRO) and pointing out some of its weaknesses (Sec

3.1). We then generalize the theory to the mixed states of CBs and CFs (Sec. 3.2), study their

basic response (Sec. 3.3) and investigate possible phases that these wave functions define as

representatives of the universality classes, on the basis of analytic considerations and numerics

(Sec. 3.4). This Chapter summarizes the main results of Refs. [104] and [105] and presents some

new results of the numerical calculations (Sec. 3.4).

3.1 Chern-Simons theory for the Halperin 111 state

We have introduced the 111 Halperin state in (1.45). Here we show how this wave function can

be obtained as the ground state of a Chern-Simons theory in a particularly transparent way and

derive some of its basic physical properties. These conclusions were previously obtained in more

powerful approaches such as the one in Ref. [92].
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We begin with the bosonic Lagrangian density

L111 =
∑

σ

{φ†σ(i∂t − a0 +A0 + σB0)φσ −
1

2m
|(−i∇+ a + A + σB)φσ|2}

+
1

2π
a0(∇× a)− 1

2

∫

d2r′
∑

σ,σ′

δρσ(r)Vσσ′(r− r′)δρσ′(r′) (3.1)

where φ is the bosonic field, σ =↑, ↓ enumerates the layers, a is a Chern-Simons gauge field, Aµ

and Bµ are the external fields (the former couples to the charge and the latter couples to the

pseudospin, e.g. B could the electric field which is oppositely directed in the two layers). The

interaction is defined by Vσ,σ′ (for symmetry reasons, V↑,↑ = V↓,↓ and V↑,↓ = V↓,↑). Introducing

VC =
V↑↑+V↑↓

2 , VS =
V↑↑−V↑↓

2 , the interaction part becomes diagonal:

− 1

2
δρVCδρ−

1

2
δρSVSδρS , (3.2)

where δρ ≡ δρ↑ + δρ↓ and δρS ≡ δρ↑ − δρ↓. Note that the Lagrangian density (3.1) in the limit

d→ 0 has the SU(2) symmetry, but the presence of the term VS breaks the symmetry down to

U(1). The main disadvantage of our Lagrangian density is that it neglects the LLL projection.

For technical reasons it is simpler to work in Coulomb gauge [51] and a0 integration yields the

following constraint:

∇× a = 2πδρ. (3.3)

We treat the bosonic fields by the ansatz

φσ =
√

ρσ + δρσe
iθσ ,

and introduce further notation θ ≡ θ↑ + θ↓,θS ≡ θ↑ − θ↓, δa ≡ a + A,ρ ≡ ρ↑ = ρ↓. After

Fourier transformation, the Lagrangian (3.1) splits into a part which contains only θ (the charge

channel) and the part involving θS (the pseudospin channel):

L111 =
iω

2
δρθ + δρA0 −

ρ|k|2
4m

θ2 − ρ

m
(δa)2 − 1

2
δρVCδρ

+
iω

2
δρSθS − δρSB0 −

ρ|k|2
4m

θ2S −
ρ

m
B2 − 1

2
δρSVSδρS , (3.4)

including the constraint (3.3). The parameter ρ
m is called the pseudospin stiffness (the phase

fluctuations are described by an elastic term in the Lagrangian). In Eq. (3.4) we supressed the

dependence on the wave vector k ≡ (ω,k), so the quadratic terms [X + Y ]
2

in fact stand for

[X(−k) + Y (−k)] [X(k) + Y (k)].

As we mentioned above, our starting Lagrangian neglects the LLL projection and, owing to this,

it splits into a charge and a pseudospin channel (the two channels would have been coupled had

we performed the projection rigorously). For the charge channel only, it is easy to obtain a ρ−ρ
correlation function by Gaussian integration over θ and a. From this, similarly to (1.31), it is

easy to see that the system is incompressible for k → 0. The order is of algebraic type, just like

in the single layer (1.35), because

LC =
1

2
θ(−k)1

4

ω2 − ω2
k

VC(k) + (2π
|k |)2

2ρ
m

θ(k), (3.5)

where ω2
k = ω2

C + 2ρ
m |k|2VC(k) and ωC = 4πρ

m , and we had set beforehand Aµ = 0. The equal-time

correlator is therefore

〈θ(−k)θ(k)〉 = −2× 2π

|k|2 + o(1/|k|), (3.6)
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which is similar to the result for a single layer (1.34), and therefore the ODLRO

lim
|r−r′|→∞

〈φ†(r)φ(r′)〉 ∝ 〈ei(θ(r)−θ(r′))〉 ∼ |r− r′|−2, (3.7)

is also algebraic. In the pseudospin channel the situation is more interesting. The effective

Lagrangian in this case is

LS =
1

2
θS(−k)ω

2 − 2ρ
mVS(k)|k|2
4VS(k)

θS(k), (3.8)

assuming that the external field Bµ = 0 to avoid clutter. The correlator is then

〈θS(−k)θS(k)〉 =
4VS(k)

ω2 − 2ρ
mVS(k)|k|2

. (3.9)

From the pole of the correlation function we find the dispersion relation for the pseudospin mode:

ω0(k) =

√

2ρ

m
VS(k) · |k|, (3.10)

which is the well-known acoustic mode from the theory of superfluids [51], also derived in Moon

et al. [92]. In the long-wavelength limit we can estimate VS(k) = 1
2ǫ (

2π
|k| − 2π

|k|e
−|k|d) ≈ π

ǫ d, plug

in m ≈ 0.07me, ρ ≈ 2.5× 1010cm−2, d/lB = 1.6, ǫ = 12.6, to conclude that the Goldstone mode

obtained from the Chern-Simons theory exceeds the measured value [93] by as much as an order

of magnitude, which illustrates the quantitative weakness of Chern-Simons theory.

The real-space correlation function for θS is

〈θS(r)θS(r′)〉 =
1

|r− r′|

√

md

2πǫρ
, (3.11)

which leads to the true ODLRO in the pseudospin channel:

〈φ†(r)φ(r′) ∝ lim
|r−r′|→∞

e〈θ(r)θ(r′)〉 −→ const. (3.12)

Therefore, in the pseudospin channel, the system is superfluid, compressible and possesses a

linear (acoustic) mode which is the cause of the tunneling resonance in Spielman experiment.

[93]

On the other hand, Halperin’s 111 wave function also naturally follows from the Lagrangian (3.1).

First we focus on the charge channel only. In this channel, θ and δρ are mutually constrained

in a Berry-like term, which implies the commutation relation between them [θ(k), δρ(k′)] =

2iδ(k + k′). The Hamiltonian in the charge sector can be evaluated as [51]

HC =
ρ

m

[ |k|2
4
θ(−k)θ(k) + (

2π

|k| )
2δρ(−k)δρ(k)

]

+
1

2
δρ(−k)VC(k)δρ(k). (3.13)

Upon the substitution θ(k)→ −2i ∂
∂δρ(−k) , one can recognize the harmonic oscillator Hamiltonian

and the ground state is therefore

Ψgs ∝ exp

[

−1

2

∑

k

2π

|k|2 δρ(−k)δρ(k)

]

. (3.14)

Using δρ(r) =
∑

(r − zi↑) +
∑

(r − zi↓) − δρ, going to the real space (with some subtleties in

integration, explained in Ref. [51]), we obtain that Ψgs is nothing but the modulus of Halperin’s

111 wave function:

Ψgs = |Ψ111|. (3.15)
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3. QUANTUM DISORDERING OF THE QUANTUM HALL BILAYER AT ν = 1

Figure 3.1: Universality classes of the wave functions Ψ1 (a) and Ψ2 (b), together with their

paired versions, (c) and (d), respectively.

Thus we have obtained the ground state wave function in the bosonic picture. The original

fermionic wave function can be obtained by an inverse Chern-Simons transformation, which in

this case is given by

U =
∏

i<j

zi↑ − zj↑
|zi↑ − zj↑|

∏

k<l

zk↓ − zl↓
|zk↓ − zl↓|

∏

m,n

zm↑ − zn↓
|zm↑ − zn↓|

. (3.16)

Upon acting by U we recover the full 111 wave function: UΨgs = Ψ111. If we take into account

also the pseudospin channel, it can be shown [51] that its contribution is a simple constant

for d = 0. For d nonzero, and especially towards d ∼ lB , the system experiences quantum

fluctuations and its ground state begins to show significant deviations from the 111 state.

3.2 Trial wave functions for the quantum Hall bilayer

In the previous Section we have seen that the 111 state provides a description of the quantum

Hall bilayer for d = 0 and perhaps small nonzero d’s. As d is increased towards d ∼ lB , the

quantum fluctuations grow strong and the superfluid undergoes disordering. To describe the

intermediate distances, we may try to, classically speaking, divide electrons into two groups,

one in which the electrons are correlated as CBs and the other as CFs. [101] The ratio between

the numbers of CBs and CFs would be determined by the distance between layers. The wave

function constructed in this way would need an overall antisymmetrization in the end, but also

intercorrelations among the groups as each electron of the system “sees” the same number of flux

quanta through the system (equal to the number of electrons). This requires that the highest

power of any electron coordinate is the same as the number of electrons in the thermodynamic

limit. If we denote by a line the Laughlin-Jastrow factor
∏

A,B(zA−zB) between the two groups

of electrons, A and B (A,B = CB,CF ), the possibilities for the QHB wave functions can be

summarized as in Fig. 3.1.

If we ignore the possibility of pairing between CFs, [145] denoted by wriggly lines in Fig. 3.1(c)

and Fig. 3.1(d), we have two basic families of the wave functions depicted in Fig. 3.1(a) and

Fig. 3.1(b). The requirement that each electron “sees” the same number of flux quanta through

the system equal to the number of electrons (as we are at ν = 1) very much reduces the number

of possible wave functions in the mixed CB - CF approach. We can consider, for example, the
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3.2 Trial wave functions for the quantum Hall bilayer

possibility depicted in Fig. 3.1(a) which stands for the following wave-function in the LLL,

Ψ1 = PLLLA↑A↓
{

∏

i<j

(zi↑ − zj↑)
∏

k<l

(zk↓ − zl↓)
∏

p,q

(zp↑ − zq↓)

×F(w↑, w↑)
∏

i<j

(wi↑ − wj↑)
2 × F(w↓, w↓)

∏

k<l

(wk↓ − wl↓)
2

×
∏

i,j

(zi↑ − wj↑)
∏

k,l

(zk↑ − wl↓)
∏

p,q

(zp,↓ − wq,↑)
∏

m,n

(zm↓ − wn↓)
}

, (3.17)

where A↑ and A↓ denote the overall antisymmetrizations, ziσ are the coordinates of CBs in the

layer σ =↑, ↓ and wiσ are the coordinates of CFs in the layer σ. In the thermodynamic limit,

the relation between the number of particles and flux quanta reads,

N b
φ = Nb↑ +Nb↓ +Nf↑ +Nf↓,

Nf↑
φ = 2Nf↑ +Nb↑ +Nb↓,

Nf↓
φ = 2Nf↓ +Nb↑ +Nb↓, (3.18)

where we denoted by N b
φ and Nfσ

φ separately the number of flux quanta which electrons that

correlate as CBs and CFs respectively see, Nbσ and Nfσ are the number of CBs and CFs inside

the layer σ, respectively. The requirement constrains Nφ = N b
φ = Nfσ

φ , where Nφ is the number

of flux quanta through the system. This leads to the additional requirement Nf↑ = Nf↓ which

leaves Nb↑ − Nb↓ unconstrained, connected with the Bose condensation phenomenon that this

wave function should be part of [10, 89, 92, 104].

The only additional way to introduce the correlations among the electrons is as follows:

Ψ2 = PLLLA↑A↓
{

∏

i<j

(zi↑ − zj↑)
∏

k<l

(zk↓ − zl↓)
∏

p,q

(zp↑ − zq↓)

×F(w↑, w↑)
∏

i<j

(wi↑ − wj↑)
2 × F(w↓, w↓)

∏

k<l

(wk↓ − wl↓)
2

×
∏

i,j

(zi↑ − wj↑)
2
∏

k,l

(zk↓ − wl↓)
2
}

. (3.19)

This wave function is depicted in Fig. 3.1(b). Whereas the intercorrelations in the first family

in Fig. 3.1(a) are in the spirit of Ψ111 correlations, those in the second family in Fig. 3.1(b),

represented by Ψ2, are in the spirit of the decoupled states, ΨRR × ΨRR, where we correlate

exclusively inside each layer. In this case the flux-counting reads:

N b↑
φ = Nb↑ +Nb↓ + 2Nf↑,

N b↓
φ = Nb↑ +Nb↓ + 2Nf↓,

Nf↑
φ = 2Nf↑ + 2Nb↑,

Nf↓
φ = 2Nf↓ + 2Nb↓, (3.20)

which leads to the constraints Nb↑ = Nb↓ and Nf↑ = Nf↓.

We can imagine a mixture of both intercorrelations (of Fig. 3.1(a) and Fig. 3.1(b)) in a single

wave function but these mixed states, by their basic response [104], fall into one of the universality

classes depicted in Fig. 3.1. In Sec. 3.4 we will explicitly consider these possibilities and prove,

in the scope of a CS theory, that the case Fig. 3.1(b) does not support a Goldstone (gapless)

mode which exists for the state depicted in Fig. 3.1(a). These generalized states therefore belong

to the universality class of the state depicted in Fig. 3.1(b) for which in the scope of CS theory

we find in the low-energy spectrum only a gapped collective mode.[104]
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3. QUANTUM DISORDERING OF THE QUANTUM HALL BILAYER AT ν = 1

3.3 Basic response of trial wave functions

A transport theory à la Drude [101] can easily be formulated for the wave functions (3.17) and

(3.19) if we consider that CFs bind two quanta of magnetic flux, unlike CBs which bind only

one quantum of magnetic flux. As long as we remain in the RPA approximation, they can all

be treated as free particles moving in the presence of the effective field which is given by the

sum of the external and self-consistently induced electric field. We neglect the projection to the

LLL which is the arena where all the physics must be taking place. Nevertheless, we use the

field theories established in the works of Zhang et al. [48] of CBs and Halperin et al. [53] for

CFs because even analyses done in the advanced, LLL-projected-type of theories, in the work of

Murthy and Shankar [146], came to the conclusion that the usual CS theories are qualitatively

accurate. CS theories are known to yield correct physical picture and provide accurate quantum

numbers and response functions, whereas they fail when it comes to calculating energies, gaps

etc., which we saw in the previous Section in case of the velocity of the Goldstone mode. We

furthermore neglect the overall antisymmetrization built in the classes of Fig. 3.1. We can justify

this neglect (1) by taking the point of view that stems from similar situations with quantum Hall

states like hierarchy and Jain’s constructions that in the low-energy sector can be considered as

multicomponent systems, [147] or (2) a posteriori because the results of the effective description

of the classes in Fig. 3.1 are quite sensible and are expected for the states we are familiar with

from the numerics (the state in our Fig. 3.1(a) was analyzed in [101]). (We do not ask a CS

theory for detailed answers anyhow.)

To set up the Chern-Simons RPA approach, we consider the first case (Ψ1), when the effective

field as seen by particles in the layer σ is given by:

E
σ
f = Eσ − 2ǫJσ

f − ǫ(J1
b + J2

b), (3.21)

E
σ
b = Eσ − ǫ(J1

b + J2
b + J1

f + J2
f ), (3.22)

where Jσ
f(b) denote Fermi- and Bose-currents in the layer σ and ǫ =

[

0 RK

−RK 0

]

, RK = h
e2 .

Transport equations are Eσ
f(b) = ρσ

f(b)J
σ
f(b) and, as required by symmetry, ρ↑f(b) = ρ↓f(b), while

the total current is given by Jσ = Jσ
b + Jσ

f . We define single layer resistance (ρ11) and drag

resistance (ρD) as follows::

E↑ = ρ11J↑, (3.23)

E↓ = ρDJ↑. (3.24)

When both layers have the same filling, ν1 = ν2 = 1/2, the tensors ρb, ρf are diagonal (because

the composite particles are in zero net field) and ρb = diag [ρbxx, ρbxx], ρf = diag [ρfxx, ρfxx] . In

drag experiments we have additionally J↓ = 0,J↑−finite. Then from (3.21)-(3.24) via elementary

algebraic manipulations [104], we can arrive at the following limits for the resistivities. At large

d/lB the number of CBs is small because the condensate is disordered and ρbxx is large compared

to RK , which is the typical Hall resistance. On the other hand, from the experiments [148] we

know that generally ρfxx ≪ RK . Furthermore, even as d/lB is decreased, we expect ρfxx to

increase only slightly, [101] whereas ρbxx becomes very small in the superfluid phase. All in all,

we have two characteristic limits: (1) the limit of small d/lB when ρbxx ≪ ρfxx ≪ RK , and (2)

the large d/lB limit when we can assume ρfxx ≪ RK ≪ ρbxx. In the large d/lB limit, we obtain

asymptotically

ρD
xx ≈ −

2R2
K

ρbxx
, ρD

xy ≈ 4RK

(

RK

ρbxx

)2

, |ρ11
xx| ≈ |ρD

xx|. (3.25)

The semicircle law follows directly from the previous formulas:

(

ρD
xx

)2
+

(

ρD
xy −

RK

2

)2

≈
(

RK

2

)2

, (3.26)
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3.4 Chern-Simons theory for the mixed states

in agreement with Fig. 1.11 and Ref. [149]. In the opposite limit (when d/lB is reduced), ρbxx →
0 and we obtain the quantization of Coulomb drag, [94, 150] ρD

xy ≈ RK , ρ
D
xx ≈ −ρ2

bxx/(2ρfxx)→
0, which trivially satisfies the semicircle law. Thus, Ψ1 can satisfy the semicircle law in the two

asymptotic extremes.

Let us turn now to the case of Ψ2 (3.19). From Fig. 3.1 the formulas for effective fields are

modified into [104]:

E
σ
f = Eσ − 2ǫJσ

f − 2ǫJσ
b , (3.27)

E
σ
b = Eσ − ǫ(J1

b + J2
b + 2Jσ

f ). (3.28)

In this case as well, there are two physically significant limits depending on the values of ρbxx

and ρfxx. When ρbxx ≪ ρfxx ≪ RK :

ρD
xx ≈ −

ρfxx

2
, ρD

xy ≈
1

4

ρ2
fxx

RK
, ρ11

xx ≈
ρfxx

2
, (3.29)

and the semicircle law (3.26) follows, whereas |ρD
xx| = |ρ11

xx|. On the other hand, in the regime

ρfxx ≪ RK ≪ ρbxx, we have asymptotically

ρD
xx ≈ −2

ρ2
fxx

ρ2
bxx

RK

ρbxx
RK ≪ RK , ρD

xy ≈ RK

ρ2
fxx

ρ2
bxx

≪ RK , (3.30)

which still satisfies the semicircle law, but on the same “side” (small ρD
xx, ρ

D
xy like in (3.29)).

Thus in case of Ψ2 we are able to derive only one limiting case of the semicircle law and we do

not obtain the quantization of Hall drag resistance. We are unable to derive the entire semicircle

law as e.g. ρbxx varies, neither for Ψ1 nor Ψ2.

3.4 Chern-Simons theory for the mixed states

In this Section we construct a Chern-Simons theory inspired by the wave functions of the two

families, (3.17) and (3.19). This is a phenomenological theory because, unlike the work of

Zhang et al. [48, 49] and Halperin et al. [53], we will divide the electrons (which are of course

identical particles) into different groups characterized by different flux attachment (some will

correlate as bosons and the others as fermions), dropping the overall antisymmetrization. We

expect nonetheless that this approach will yield a qualitatively correct picture when it comes

to calculating the basic response of the system, which is the aim of the present Section. This

way we will demonstrate, in the RPA approximation, that the states in Fig. 3.1(a) and Fig.

3.1(c) represent superfluids, and the states in Fig. 3.1(b) and Fig. 3.1(d) represent disordered

superfluids, compressible and incompressible, respectively.

3.4.1 Case Ψ1

Because of the flux counting relations (3.18), in formulating the Lagrangian density for the wave

function Ψ1 we need to take into account the following gauge field constraints:

1

2π
∇× aFσ = 2δρFσ + δρB↑ + δρB↓,

1

2π
∇× aBσ = δρF↑ + δρF↓ + δρB↑ + δρB↓. (3.31)

In general we would need four gauge fields aFσ,aBσ, but in this particular case it is evident

that only two of them are linearly independent: aC = (aF↑ + aF↓)/2 = (aB↑ + aB↓)/2 and

aS = (aF↑ − aF↓)/2, and (3.31) expressed in the Coulomb gauge reads: i|k|aC

2π = δρ↑ + δρ↓ ≡ δρ
and i|k|aS

2π = δρF↑ − δρF↓ ≡ δρF
S (aC , aS are the transverse components of the gauge fields).
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3. QUANTUM DISORDERING OF THE QUANTUM HALL BILAYER AT ν = 1

These are the constraints we wish to include into the functional integral via Lagrange multipliers

aC
0 and aS

0 :

LCS =
1

2π

1

2
aC
0 (∇× aC) +

1

2π

1

2
aS
0 (∇× aS) . (3.32)

The full Lagrangian density in “God’s units” is given by [151]:

L =
∑

σ

{Ψ†
σ(i∂0 − aFσ

0 +A0 + σB0)Ψσ −
1

2m
|(−i∇+ aFσ −A− σB)Ψσ|2}

+
∑

σ

{Φ†
σ(i∂0 − aBσ

0 +A0 + σB0)Φσ −
1

2m
|(−i∇+ aBσ −A− σB)Φσ|2}

+LCS −
1

2

∑

σ,σ′

∫

d2r′δρσ(r)Vσσ′δρσ′(r′), (3.33)

where σ enumerates the layers, Ψσ i Φσ are composite fermion and composite boson fields in

the layer σ and the densities are δρσ = δρF
σ + δρB

σ . By A (and B) here we mean external

fields in addition to the vector potential of the uniform magnetic field, AB, which is accounted

for and included in gauge fields aF (B)σ. The external fields A and B couple to charge and

pseudospin, as before (Sec. 3.1). The interaction part of the Lagrangian is easily diagonalized

by introducing VC = (V↑↑ + V↑↓)/2 and VS = (V↑↑ − V↑↓)/2. The strategy for integrating out

the bosonic functions is the Madelung ansatz φσ =
√
ρσ + ρσe

iθσ , which expands the wave

function in terms of a product of its amplitude and phase factor, while fermionic functions are

treated as elaborated in Ref. [53]. After Fourier transformation, within the quadratic (RPA)

approximation, and introducing substitutions δρi
C = δρi

↑ + δρi
↓, δρ

i
S = δρi

↑ − δρi
↓, i = F,B and

θC = (θ↑+θ↓)/2, θS = (θ↑−θ↓)/2, all the terms neatly decouple into a charge C and a pseudospin

S channel. [104] This calculation is analogous to the one used for the 111 state in Sec. 3.1 and

we obtain (using the compact notation explained there)

LC = K00

(

δaC
0

)2
+K11 (δaC)

2
+

1

2π
aC
0 i|k|aC −

δρB
Cδa

C
0 +

iω

2
δρB

CθC −
ρb

m

|k|2
4
θ2C −

ρb

m
(δaC)

2 − 1

2

|k|2a2
C

(2π)2
VC (3.34)

LS = K00

(

δaS
0

)2
+K11 (δaS)

2
+

1

2π
aS
0 i|k|aS

+δρB
SB0 +

iω

2
δρB

S θS −
ρb

m

|k|2
4
θ2S −

ρb

m
B2 − 1

2
VS

(

δρB
S +

i|k|
2π

aS

)2

, (3.35)

where δaC
0 ≡ aC

0 − A0, δaC ≡ aC − A, δaS
0 ≡ aS

0 − B0, δaS ≡ aS − B, ρb is the mean density

of bosons in each layer. K00(k) and K11(k) are the free-fermion correlation functions (density-

density and current-current, respectively) in the RPA approximation. [2]

Focusing on the charge channel only, we can extract the density-density correlator defined in

Eq. (1.31):

πC
00(k) =

( |k|2π )2

2ρb

m − 2K11 + VC( |k|2π )2 − (
|k|
2π

)2

2ρb|k|2

mω2 −2K00

. (3.36)

In the limiting case x ≡ mω/|k|kf ≪ 1, where nf is the fermionic density, the density-density

K00 and current-current K11 correlation functions are K00 ≈ m
2π (1 + ix),K11 ≈ − |k|2

12πm + i
2nf

m x,

and we conclude that as ω → 0 (and then k → 0) the system is incompressible in the charge

channel, so long as there is a thermodynamically significant density of bosons ρb.

In the pseudospin channel, we are primarily looking for the signature of a Bose condensate i.e.

whether there exists a Goldstone mode of broken symmetry and what is the long range order of

the state. The correlator is

〈θS(−k)θS(k)〉 =
VS

ω2
1
2
VS+α

α − 2ρbVS

m |k|2
, (3.37)
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3.4 Chern-Simons theory for the mixed states

where α = 1
4K

−1
00 − K11(

2π
|k| )

2. Indeed, there exists a Goldstone mode, albeit with a small

dissipative term:

ω0(k) =

√

2ρbVS

m
|k| − i VS

16π3/2√nf
|k|3. (3.38)

In the above we have assumed nf is nonzero. For nf = 0 we obtain only the real part in Eq.

3.38, which is just the Goldstone mode of the 111 state. Note that introducing pairing among

CFs (expected in the real system on the basis of analytical [100] and numerical work [102, 103])

removes the imaginary term [151].

Even for large x, it is easy to check that the pole remains at the same value if we assume

ρb ≫ nf (which is, in fact, the most appropriate assumption in this case). Also, the imaginary

term disappears in this case. Such a robust Goldstone mode implies the existence of a true

ODLRO and the genuine Bose condensate. Goldstone mode ω0(k), (3.38), is easily observed in

Fig. 3.2, where we plotted the real part of density-density correlation function of the pseudospin

channel πS
00(k), [104] in terms of parameters Q ≡ |k|/kf and x ≡ ω/(|k|kf ). Other (fixed)

parameters are: m = lB = 1, d = 0.5, ǫ = 12.6, VS = πd/ǫ, ρb +nf = 1/(4π), η = nf/ρb = 1/10.

Figure 3.2: Real part of the pseudospin channel density-density correlation [104] and the

Goldstone mode in the case of Ψ1

3.4.2 Case Ψ2

Let us return to the second case, that of Ψ2 (3.19) and dominant intracorrelations. According

to Fig. 3.1, we now have the following gauge field constraints:

1

2π
∇× aFσ = 2δρFσ + 2δρBσ,

1

2π
∇× aBσ = 2δρFσ + δρB↑ + δρB↓. (3.39)

It is obvious that in this case we have only 3 linearly independent gauge fields, namely aC =
aF↑+aF↓

2 = aB↑+aB↓

2 , aS = aF↑−aF↓

2 and aFS = aB↑−aB↓

2 . The full Lagrangian is given by (3.33)

where LCS is now

LCS =
∑

i=C,S,FS

1

2π

1

2
ai
0 (∇× ai) .

Once again, the Lagrangian decouples into a charge and a pseudospin channel. The charge

channel of Ψ2 is incompressible. [104] In the pseudospin channel, the calculation of the density-

density correlator leads to the conclusion that in this channel the system is compressible (see
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also Fig. 3.3). The θ − θ correlator is

〈θS(−k)θS(k)〉 =

1
|k|2 βγ

( ω
2π )2(β + γ)− 2ρb

m βγ
, (3.40)

where β = 1
2K00

( |k|2π )2 + 2ρb

m , γ = VS( |k|2π )2−2K11. For small |k|/kf and x, the correlator diverges

for ω0 = 4πρb

m = const, which obviously contradicts the original assumption for the range of x

and hence we reject this pole. For x≫ 1 (and still |k| ≪ kf ) we obtain two poles:

ω0(k) =
4πnf

m

√

1

2
+ η − 1

2

√

1 + 4η, (3.41)

Ω0(k) =
4πnf

m

√

1

2
+ η +

1

2

√

1 + 4η, (3.42)

where η = ρb/nf is the ratio of boson to fermion density. (3.41) and (3.42) hold for any η,

although in the physical limit that we are presently interested in, η may be regarded as small. In

Fig. 3.3 we plotted the real part of the density-density correlation function for the pseudospin

channel of Ψ2. [104] In contrast to Fig. 3.2, here we opt for ω and Q as free parameters and set

d = 1.5 and η = ρb/nf = 1/10 as the more likely values in this case. The distinctive feature of

Fig. 3.3 at ω ∼= 1 is the plasma frequency Ω0 and the smaller singularity at ω ∼= 1/10 corresponds

to ω0. There is also a striking absence of Goldstone mode in this case.

Figure 3.3: Real part of the pseudospin channel density-density correlation [104] in the case

of Ψ2

We now proceed to calculate the ODLRO in the pseudospin channel of Ψ2. As it turns out,

ODLRO will be nontrivially modified and assume algebraic form. We expect that interaction

does not affect the value of the characteristic exponent [49] and therefore set VS ≡ 0. Bearing

in mind that we work in the long wavelength limit, we arrive at the following expression for the

correlator:

〈θS(−k)θS(k)〉 =
(2πωP /|k|2)

[

ω2 − ω2
P η
]

[ω2 − ω0(k)2] [ω2 − Ω0(k)2]
, (3.43)

where we introduced ωP =
4πnf

m . After contour integration over ω [49], one obtains:

〈θS(−k)θS(k)〉 = − 2π

|k|2 f(η)

where f(η) = 1√
1+4η

, which leads to the following expression for the ODLRO:

〈eiθS(r)e−iθS(r′)〉 ∝ 1

|r− r′|f(η)
. (3.44)
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For η →∞ when there are no CFs, the correlator (3.44) is a constant. However, Ψ2 is expected

to represent the system when η is small. In that case, even at T = 0, we obtain the algebraic

ODLRO

〈eiθS(r)e−iθS(r′)〉 ≈ |r− r′|−(1−2η+o(η2)),

which indicates that Ψ2 represents a disordered fluid, although possibly with some remaining

intercorrelation.

3.4.3 Generalized states

We can imagine that, apart from Ψ1 and Ψ2, we may have a state that contains a combination

of both. We can analyze the response of the state which, in addition to Ψ2, includes (in each

layer) a different kind of CFs that connect to the CB in the manner of Ψ1. This gives us the

following gauge field constraints:

1

2π
∇× aBσ = δρB↑ + δρB↓ + δρ

(1)
F↑ + δρ

(1)
F↓ + 2δρ

(2)
Fσ, (3.45)

1

2π
∇× aFσ

1 = δρB↑ + δρB↓ + 2δρ
(1)
Fσ + 2δρ

(2)
Fσ, (3.46)

1

2π
∇× aFσ

2 = 2δρBσ + 2δρ
(1)
Fσ + 2δρ

(2)
Fσ, (3.47)

where the superscripts (1), (2) indicate CF species in each layer. CS theory easily follows from

the above gauge field equations and yields incompressible behavior in the charge channel. In the

pseudospin channel [104] we can derive the following correlation function:

〈θS(−k)θS(k)〉 =
VS +

2nf2

m ( 2π
|k| )

2

ω2 − ( 2ρbVS

m |k|2 + (4π
m )2ρbnf2)

(3.48)

to see that the low-energy spectrum is dominated by the plasma frequency:

ω0(k) =
4π

m

√

ρbnf2, (3.49)

where nf2 is the density of the CFs which bind exclusively within the layer they belong to. We

conclude that the mixed state fall into the universality class of Ψ2.

3.5 Possibility for a paired intermediate phase in the bi-

layer

The classes of wave functions (3.17) and (3.19) (and their paired versions) represent possible

outcomes of superfluid disordering in the quantum Hall bilayer before the system is in the phase

of decoupled Fermi liquids. We now explain how these wave functions generalize the concept of

superfluid disordering of the more traditional theories for small d/lB (Sec. 3.5.1). The connection

will be established on the basis of the predicted first-order (phonon) correction to the 111 state,

which is expected to be universal at small d/lB . In doing so, we identify a simple possibility

for the pairing function at small d/lB in our mixed state approach. Furthermore, a question

can be asked whether, for larger d ∼ lB , the superfluid disordering in the bilayer can lead to an

intermediary paired phase before the layers decouple and each forms a CF liquid. We discuss

this question in Sec. 3.5.2 where we present one of the many candidate wave functions for such

a phase. This wave function is singled out because it incorporates a pairing with the same

angular momentum as the one we derived for small d/lB (this form of pairing is also supported

by numerical studies [102, 103]), but we argue that the phase it describes is likely compressible.

We conclude by showing several numerical results for the transition which give some support to

the scenario of a direct transition between the 111 phase and the CFL (Sec. 3.5.3).
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3.5.1 First-order corrections to the 111 state

As we mentioned, for small d/lB we expect our construction Ψ1 to yield the same first-order

correction to the 111 state as the other theories that evaluated this correction from the phonon

contribution. As we start from the small d/lB limit, the physical interpretation of the correction

in our approach is the inclusion of CFs into the CB condensate.

The traditional [49] CS field theory in the RPA approximation [152] of the bilayer problem at

ν = 1 (which in the neutral channel reduces just to the problem of an ordinary superfluid with

the phonon contribution) finds the following correction to the Ψ111 state [153]:

Ψph = exp
{

− 1

2

∑

k

√

VS(k)
ρ/m

|k| ρS
kρ

S
−k

}

Ψ111 (3.50)

where ρS
k ≡ ρ

↑
k − ρ

↓
k, VS(k) is the interaction in the neutral channel, m is the electron mass and

ρ̄ is the uniform total density. The form of the correction in the pseudospin sector in Eq.(3.50)

is easily derived along the same lines as in the case of Ψ111, which belongs to the charge sector,

in Eqs.(3.13,3.14). In the small d limit VS(k) = πd and we can expand the expression Ψph as

Ψph = Ψ111 −
(

∑

k

c
√
d

|k| ρ
S
−kρ

S
k

)

Ψ111 + · · · (3.51)

where c is a positive constant. The terms after the first one represent corrections, in the order

of importance, to the Ψ111 ansatz as d increases. The form of the correction is fixed by the basic

phenomenology and sum rules for a superluid in two dimensions. [154]

To show how the wave function Ψ1 (3.17) generalizes the expansion (3.51), let us rewrite the

unprojected wave function Ψ1 in the following way:

Ψ1 = A↑A↓
{

Ψ111(z↑, z↓)ΨRR(w↑)ΨRR(w↓)
∏

i,j

(zi↑ − wj↑)
∏

k,l

(zk↑ − wl↓)
∏

p,q

(zi↓ − wq↑)
∏

m,n

(zm↓ − wn↓)
}

, (3.52)

where, as before, zσ’s and wσ’s denote coordinates of the electrons belonging to the layer with

index σ and A↑ and A↓, as before, stand for the antisymmetrizations. ΨRR was defined in (1.37).

Using S↑ and S↓, symmetrizers inside each layer, the same function, Ψ1, can be written as:

Ψ1 = S↑S↓
{

∏

k<l(wk↑ − wl↑)
∏

p<q(wp↓ − wq↓)
∏

i,j(wi↑ − wj↓)
F(w↑)F(w↓)

}

Ψ111

where Ψ111 denotes the Vandermonde determinant (Slater determinant in the LLL) of all co-

ordinates in which all groups equally participate. By using the expressions for the densities of

electrons in each layer, ρσ(η) =
∑

i δ
2(η−zσ

i )+
∑

i δ
2(η−wσ

i ), we can rewrite the wave function

in the following way,

Ψ1 =

∫

d2η1↑ · · ·
∫

d2ηn↓
{

∏

k<l(ηk↑ − ηl↑)
∏

p<q(ηp↓ − ηq↓)
∏

i,j(ηi↑ − ηj↓)

F(η↑)× F(η↓)× ρ↑(η1↑) · · · ρ↓(ηn↓)Ψ111(z↑, z↓)
}

, (3.53)

where n is the total number of electrons that correlate as CFs. The equality is exact; any time

we have in the product of ρ’s the same layer electron coordinate more than once, the Laughlin -

Jastrow factors of η’s in the same layer force the wave function to become zero. This expression

reminds us of a dual picture in terms of some quasiparticles with η coordinates as in [33]. It can

be shown that these quasiparticles have to be fermionic. [105]

Now, by virtue of (3.53), we can see that the wave functions of Fig. 3.1(c) allow for the corrections

to the 111 state which are more general than the one used in the expansion (3.51), the only
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g(z) = const (no pairing)
∑

k f1(d)
1

(kx+iky)ρ
↑
kρ

↓
−k

g(z) = 1/z no correction when multiplies Ψ111

g(z) =
√

z/z
∑

k f2(d)
1
|k|ρ

↑
kρ

↓
−k

g(z) = 1/z
∑

k f3(d) ln(|k|lB)ρ↑kρ
↓
−k

Table 3.1: Phonon correction for different choices of the pairing function. The func-

tions f1, f2, and f3 define the weight of each correction in terms of the bi-

layer distance d. In the first case (no pairing) the correction is proportional to
P

k

1
(kx+iky)

ρ↑

k
ρ↓

−k
, but we expect that with no constraint on the number of CFs

(as in Eqs.(3.50) and (3.51); see also discussion below Eq.(3.53)), this will cor-

respond to
P

k

1
(kx+iky)

ρS
kρS

−k i.e. zero (no correction) due to the antisymmetry

under k → −k exchange.

constraint we need to satisfy is the equal number of ρ↑k’s and ρ↓k’s because in writing down the

classes of Fig. 3.1 we explicitly distinguished ↑’s from ↓’s and fixed the number of ↑’s and ↓’s to

be equal.

Let us compare the first phonon corrections in both approaches to find out which possibilities

for pairing are allowed among the most simple choices for the weak pairing function. From the

usual CS theory, the first phonon correction is ∼ ∑k
1
|k|ρ

↑
−kρ

↓
k. On the other hand, the mixed

wave function in Fig. 3.1(c) suggests the following simplest correction for two CFs:

∫

d2η1↑

∫

d2η2↓
1

(η1↑ − η2↓)
g(η1↑ − η2↓)ρ↑(η1↑)ρ↓(η2↓), (3.54)

where g is the pairing function. If we take the “obvious” choice g(z) = 1/z, we do not obtain

any correction. This is because we need to evaluate

∫

d2η1↑

∫

d2η2↓
1

(η1↑ − η2↓)2
ρ↑(η1↑)ρ

↓(η2↓), (3.55)

which, after switching to center of mass/relative coordinate, reduces to solving the following

Fourier transform
∫

d2η
1

η2
exp{ik · η}. (3.56)

This can be evaluated analytically [105] to find that it does not depend on k:

∫

d2η
1

η2
exp{ik · η} = −π. (3.57)

Therefore the correction in this case is proportional to

(

∑

k

ρ↑kρ
↓
−k

)

Ψ111, (3.58)

and in real (coordinate) space this becomes:

∫

d2η ρ↑(η)ρ↓(η)Ψ111 =
∑

i,j

∫

d2η δ2(η − zi↑)δ
2(η − zj↓)Ψ111

=
∑

i,j

δ2(zi↑ − zj↓)Ψ111 = 0, (3.59)

i.e. no correction at all.

Taking the next choice g(z) =
√

z/z (z is the complex conjugate of z), the expression in Eq.(3.54)

reduces to the form of the first phonon contribution in the long-distance limit with the 1
|k|

singularity, (3.51). Thus g(z) =
√

z/z accommodates the usual (on the level of RPA) superfluid

description given in (3.51), which which can lead also to a pseudospin density wave. [152]
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Thus, we have shown that g(z) = 1/z does not yield any correction to the 111 state (it can be

shown analogously that g(z) = const i.e. no pairing, also produces a trivial correction), while the

choice g(z) =
√

z/z recovers the formula (3.51). We can continue exploring the simple choices

for pairing, e.g. the next possibility in the order of weakness of pairing that retains the same

angular momentum for the pairing as g(z) =
√

z/z is g(z) = 1/z. The phonon contribution in

this case turns out to be ∼ ∑k ln(|k|lB)ρ↑kρ
↓
−k. [105] Therefore, we can summarize our results

as in Table 3.1.

3.5.2 Discussion

Having identified some simple pairing functions allowed in the bilayer system starting from

Ψ1 and the small d/lB , we can ask whether any of those may lead to a paired phase in the

intermediate range of d/lB . If the translation symmetry remains unbroken as we increase d,

one of the viable candidates is a wave function in Fig. 3.1(d) with the pairing g(z) = 1/z.

This pairing has the same angular momentum as g(z) =
√

z/z, but it also has an additional

amplitude factor. If we take the choice g(z) = 1/z and examine the final form of the state of

Fig. 3.1(d) when there are no CBs, we are lead to its following forms,

Ψ̃2 = det

(

1

zi↑ − zj↓

)

∏

i<j

(zi↑ − zj↑)
2
∏

k<l

(zk↓ − zl↓)
2

= det

(

1

zi↑ − zj↓

)

det

(

1

zk↑ − zl↓

)

Ψ111, (3.60)

where we used the Cauchy determinant identity. The neutral part of Ψ̃2 (i.e. the two deter-

minants which do not carry a net flux through the system as Ψ111 does) can be viewed as a

correlator of vertex operators of a single nonchiral bosonic field. According to [3] CFT corre-

lators not only describe quantum Hall system wave functions, but also can be used to find out

about excitation spectrum and connect to its edge and bulk theories. As customary in CFT

applications in quantum Hall physics, we can construct (neutral) excitations in terms of vertex

operators eiβ1φ(w,w∗) and eiβ2θ(w,w∗), where φ(w,w∗) = φ(w)+φ(w∗), θ(w,w∗) = φ(w)−φ(w∗),

and φ(w) and φ(w∗) are holomorphic and antiholomorfic parts of the bosonic field respectively

(see Ref. [105] for details). The insertion of these vertex operators corresponds to single-valued

expressions that multiply Ψ2 only if β2 = 1/2. [105] If the low-lying spectrum were consisting of

β1 = 1/2 and β2 = 1/2 quasiparticle excitations, the system would be described by the so-called

BF Chern-Simons theory or the theory of 2D superconductor. [155] The mutual statistics of

quasiparticles - quasiparticles and vortices, in this theory is semionic (due to the fact that vor-

tices carry half-flux h/2ec quantum) and that this is also the case with our excitations can be

easily checked via CFT correlators. [105] Combining the analysis with the charge part (Ψ111) in

which only charge-1 excitations are allowed (half-flux quantum excitations are strongly confined

[156]) we may come to the conclusion that the degeneracy of the system GSs on the torus must

be 4. [155, 157] However, the expression for the first kind of excitations eiβ1φ(w,w∗) allows a real

continuum for the value of β1 exponent including β1 = 0 [105] and therefore we expect a com-

pressible (gapless) behavior of the system despite the incompressibility of the charge channel,

despite the seemingly topological behavior in the neutral sector.

3.5.3 Numerical results

There are many comprehensive numerical studies of the QH bilayer at ν = 1. [101, 102, 103,

158, 159, 160] In particular, elaborate studies in Refs. [101, 103] demonstrated the relevance of

CB-CF constructions that we introduced in Sec. 3.2 for the clean systems (no impurities). Trial

wave functions of this kind describe a continuous crossover between the CB superfluid and the

two decoupled CF liquids via an intermediate p-wave paired phase that in our analysis of Sec.

3.5.1 corresponds to Ψ̃2, 3.60. Here we would like to focus on addressing the question whether
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3.5 Possibility for a paired intermediate phase in the bilayer

such a phase is allowed in numerics. This question is relevant in light of the new experimental

results which indicate that the CF liquid phase in the usual samples is partially spin-polarized.

[161] Since 111 state is a QH ferromagnet, the experiments appear to preclude the possibility of

a smooth crossover and instead suggest a first-order transition. [162] For larger Zeeman fields,

the transition becomes smooth and the critical point drifts to larger values of d. [161, 163]
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Figure 3.4: QH bilayer ν = 1 on the torus, N = 16, a/b = 0.99.

The topological content of Ψ̃2 is the 4-fold ground state degeneracy on the torus. In Ref. [103]

this degeneracy was analyzed as a function of d and different shapes of the torus unit cell, but no

definite conclusion was drawn due to the strong finite size effects. We corroborate this finding

by diagonalizing a larger system of N = 16 particles, Fig. 3.4. Four seemingly degenerate states

can be identified in the lowest lying spectrum starting from d = 1.4lB , but the gap decreases

smoothly with the increase of d, which suggests that these states could be part of the compressible

CF liquid. Two decoupled CF liquids are allowed to display a fourfold degeneracy due to their

center of mass motion. This degeneracy, contrary to the one of Ψ̃2, has no topological content,

but in a finite system it may nonetheless persist for some variation of the aspect ratio or other

parameters.

On the other hand, if we choose to look at the system on the sphere, Ψ̃2 is characterized by the

shift δ = 1, like the 111 state, whereas CF liquid state occurs at δ = 2. Therefore, we are unable

to directly compare e.g. the overlaps of the exact ground state with the 111 state and CF liquids.

Instead, one must calculate a physical quantity which is meaningful in the thermodynamic limit

to discriminate between phases. Ground state energy is an example of such a quantity; it defines

the transition point dC between the 111 state and CF liquids as the value of d/lB above which

the ground state energy is lower at the shift δ = 2 than at δ = 1. We have analyzed the ground

state energies as a function of d for a range of system sizes N = 6 through N = 16, and for both

shifts δ = 1, 2, Fig. 3.5. The values for the energy in Fig. 3.5 include the background charge

correction and the rescaling of the magnetic length in order to carefully compare the energies

of the systems on the two different FQH spheres. We notice that beyond d ∼ 1.4lB , which we

identified as the critical value for the appearance of 4-fold degeneracy on the torus, we can no

longer describe the system at the shift of δ = 1. Nevertheless, the two energies remain very

close to each other and the paired wave function such as Ψ̃2 is not ruled out as a candidate

for the description of the system. It may either describe an excited state of the CF liquid or

a phase with a tiny gap that would be hard to discern from an ordinary compressible state in

the experiment. We obtain a more quantitative estimate of the critical dC ≈ 1.6lB by linear

extrapolation for N →∞ (Fig. 3.6).

Therefore it is likely that the 111 phase goes directly into the CF liquids even at this finite value

of d and not via the p-wave paired state. Note that we have not proved that the we have a direct

transition between the shift of the ground state (δ = 1 vs. δ = 2). In order to do that, one would
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Figure 3.5: Ground state energies on the sphere for the QH bilayer at the shift of δ = 1

and 2. We show the system of N = 8 (which has a filled CF shell in each layer)

and the largest system with N = 16 electrons (without filled CF shells). Similar

results are obtained for other system sizes.
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Figure 3.6: Critical bilayer distance dC defined as the crossing point of the ground-state

energies at shifts δ = 1 and δ = 2 on the sphere. Linear extrapolation for

N → ∞ yields dC ≈ 1.6lB and does not involve the smallest system N = 8

which shows strong finite-size effects.

want, for each fixed d, to diagonalize the Hamiltonian for all the available system sizes and make

the thermodynamic extrapolation of the energies (with the appropriate corrections) as a function

of 1/N . While this works nicely for the shift of δ = 1, in case of CF shift δ = 2 the ground state

energy has a nontrivial dependence on 1/N which reflects the shell-filling effect. The dependence

of energy on 1/N is somewhat similar to Ref. [164], except that the energy minima occur for

N/2 = n2, n = 2, 3, . . . In between the minima, the energy has a local maximum. Therefore, in

order to perform a reliable extrapolation, a few minima/maxima would be required, but since

we are only able to diagonalize up to N = 16, that gives us a single minimum n = 2. However,

the fact that for all the available systems we consistently obtain lower ground state energy for

sufficiently large d strongly suggests that the transition involves a change in shift at finite d.

3.6 Conclusion

In conclusion, we have introduced the model states Ψ1,Ψ2 and their paired versions to describe

the superfluid disordering in the quantum Hall bilayer. The key question in this analysis is:
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3.6 Conclusion

what is the nature of the compressible phase at larger d/lB that still harbors some of the

intercorrelation present at smaller d/lB [96]?

The answer to this question cannot be given by looking at simple transport properties as both

Ψ1 and Ψ2 (in certain regimes) recover the semicircle law. [96] On the other hand, our picture

is certainly incomplete because it does not explicitly include the effects of disorder (which must

be very relevant for the physics of bilayer in the regimes d ∼ lB - a simple way to see this is

to look at the behavior of measured counterflow resistances [94, 95] ρCF
xx , ρCF

xy that enter the

insulating regime very quickly after passing through ν = 1). Fertig and Murthy [97] provided a

realistic model for the effects of disorder and in their disorder-induced coherence network in the

incompressible phase of the bilayer, merons (vortices) are able to sweep by hopping across the

system, causing the activated behavior of resistance (dissipation) in counterflow. This finding is

consistent with our scenario based on the first family of wave functions (without weak pairing).

[105]

Quantum Hall bilayer was also probed using resonant Rayleigh scattering [165] for samples with

different tunneling amplitudes and when the in-plane magnetic field is present. They detected

a nonuniform spatial structure in the vicinity of the transition, suggesting a phase-separated

version of the ground state. If we think in terms of the phase-separated description, our picture

must be in the spirit of the Stern and Halperin proposal [149] but instead of the 1/2 compressible

phase coexisting in a phase separated picture with the superfluid phase (Ψ1), we assume the

existence of Ψ2.

On the other hand, in a translatory invariant system, the analysis on the basis of mixed states

does not preclude an intercorrelated, paired liquid state for the neutral sector. Numerical studies

give some evidence for a paired phase (Sec. 3.5.3) which is likely to be masked by the Fermi

liquid state appearing at a finite critical d.
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Chapter 4

Transitions between

two-component and non-Abelian

states in bilayers with tunneling

In this Chapter we explore the possibility of creating non-Abelian states out of two-component

ones in the quantum Hall bilayer via tunneling mechanism. In particular we focus on the two

problems: (a) whether it is possible to create the Moore-Read Pfaffian in the LLL by appplying

tunneling to the two-component 331 state at ν = 1/2 in the LLL, and (b) we analyze the

transition from the 332 Halperin state to the Jain ν = 2/5 polarized state and examine whether

critical states, presumably gapless, such as Gaffnian or the permanent state, may play a role in

the transition region. Note that we neglect the electron spin in the present discussion. These

two problems represent two classes of transitions: in the first case, as we will show later, we

have an incompressible-compressible transition, whereas in the second case we have a transition

between the two incompressible states. Tunneling as a perturbation that drives the transition

from the two-component to a one-component FQH system was studied previously by analytical

[166] and numerical [167] means. Current Chapter summarizes the results of Refs. [121] and

[168].

4.1 Transition between 331 Halperin state and the Moore-

Read Pfaffian

As we saw in Sec. 1.5.2, owing to a mathematical identity, antisymmetrizing the neutral (Cauchy

determinant) part of Ψ331 between ↑ and ↓ leads to the Moore-Read Pfaffian. [117, 169] However,

such a procedure is a complex mathematical entity because it creates a state with different phys-

ical properties (non-Abelian statistics out of the Abelian), while we are interested in a physical

mechanism that mimics the antisymmetrization in an experimental situation. We restrict our

discussion to the Coulomb bilayer system, as a generic two-component system with the antisym-

metrization mechanism provided by the tunneling term ∼ −∆SASSx. The tunneling term favors

the even superposition (channel) where one expects to find a weakly paired (Moore-Read) phase.

We establish that this route towards the Moore-Read state is complicated by the presence of the

compressible CFL, which is the resulting phase for large tunneling. The results obtained within

the present bilayer model are relevant also in the study of wide quantum wells [118, 119, 120] as

the latter can, with moderate approximations, effectively be described by a bilayer Hamiltonian,

where the tunneling term mimics the effective confinement gap between the lowest and the first

excited electronic sublevel (see Chapter 5). [140] The remainder of this Section is organized as
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follows. We first introduce the BCS model due to Read and Green; this is an effective theory

which hides many subtleties of the physical system inside a few parameters such as the single

particle dispersion or the pairing function. These parameters will likely be modified with the

change in tunneling, but we will, nevertheless, verify that despite its crudeness, BCS predictions

are in agreement with exact diagonalization calculations, so that combining the two approaches

we can obtain a complete picture of the transition. At the end, we will discuss an extension of

the BCS model in a way that surpasses the exact diagonalization capabilities, but which can

give us a clue as to how one can engineer the Pfaffian state in bilayers exclusively in the LLL.

4.1.1 BCS model for half-filled Landau level

At ν = 1/2 (or ν = 2 + 1/2), the CFs experience a zero net magnetic field, [53, 170] and if we

limit ourselves to the neutral part of |ΨPf〉 (1.38), they may be described within the framework

of the effective BCS model introduced in the seminal work of Read and Green. [171] We consider

the system to be at zero temperature and neglect fluctuations in the Chern-Simons gauge field

that are related to the charge part of |ΨPf〉. [172] The Hamiltonian which describes the Cauchy

pairing between ↑ and ↓ particles with tunneling ∆SAS reads

H =
∑

k

[

ǫ̃k(c†k↑ck↑ + c†k↓ck↓) +
(

∆kc
†
k↑c

†
−k↓ + H.c.

)

− ∆SAS

2
(c†k↑ck↓ + c†k↓ck↑)

]

, (4.1)

where ǫ̃k = ǫk−µ, in terms of the putative CF dispersion relation ǫk and the chemical potential

µ, which is assumed positive µ > 0. Notice that because of the vanishing net magnetic field,

the 2D wave vector k = (kx, ky) is again a good quantum number. The order parameter ∆k =

∆0(kx − iky) is chosen to describe p-wave pairing and ∆0 is a constant. This may seem like

a drastic simplification, but it leads to the physical conclusions [171] which agree with exact

diagonalization results, as we show below. Furthermore, there is a number of assumptions

implicit to the effectivel model defined by (4.1), such as that ∆k and µ are not renormalized by

the tunneling (while they should be evaluated self-consistently from the Bogoliubov-de Gennes

equations) and that CFs have a single-particle-like dispersion relation with a well-defined mass.

For fixed tunneling, ∆k is also expected to depend on the interaction and the well width or bilayer

distance. Note also that as it stands, Hamiltonian (4.1) does not distinguish between Landau

levels i.e. it has the same form for the LLL and first excited LL and detailed microscopic theory

is needed to model ∆k and ǫ̃k to account for their difference. All of these effects are outside the

scope of the treatment in this Chapter.

With the help of the even, ck,e = (ck,↑ + ck,↓)/
√

2, and odd spin combinations ck,o = (ck,↑ −
ck,↓)/

√
2, the Hamiltonian (4.1) decouples into an even and odd channel, [171] H = He +Ho,

where (the index τ denotes the even and odd channel, τ = e, o)

Hτ =
∑

k

[

(ǫk − µτ )c†k,τ ck,τ +
(

∆τ
kc

†
k,τ c

†
−k,τ + H.c.

)]

, (4.2)

in terms of the chemical potentials µe = µ+∆SAS/2 and µo = µ−∆SAS/2 for the even and odd

channels, respectively. Furthermore, the even/odd p-wave order parameters read ∆e
k = ∆k/2 =

(∆0/2)(kx − iky) and ∆o
k = ∆−k/2 = −(∆0/2)(kx − iky).

For moderate tunnelings, it is instructive to view the effective chemical potential µeff of the

whole system as the weighted sum of the two channels, µeff = Pµe + (1 − P )µo. In this crude

approximation P measures the population of the even channel (1/2 ≤ P ≤ 1) and may have

a complicated dependence on ∆SAS . In particular, for some values of ∆SAS we may be below

the critical line µeff = P∆SAS defined by µo = 0 and inside the non-Abelian (Pfaffian) phase.

However, in the limit of large tunneling, the system is dominated by the even channel and

the chemical potential of the whole system is µeff = µe because P = 1. Remember that the

associated BCS wave function in the even channel reads

|ψBCS〉 =
∏

k

(

1 + gkc
†
k,ec

†
−k,e

)

|vacuum〉, (4.3)
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4.1 Transition between 331 Halperin state and the Moore-Read Pfaffian

in terms of the pairing function gk = vk/uk = −(Ek,e − ǫ̃k,e)/∆
e∗
k ∼ µe/∆0 (see below). One

notices then that an increase of the chemical potential µeff controlled by the large value of the

tunneling parameter ∆SAS is equivalent to a reduction of the order parameter ∆0. Therefore

the BCS system will eventually be transformed into the one of the Fermi liquid. We can see this

more explicitly by examining the relevant excitations of the even channel, [171]

E =
√

(ǫk − µe)2 + ∆2
0k

2, (4.4)

in the limit of large µe around k = |k| = 0. They become unstable and k = 0 becomes a

point of local maximum. The minimum is expected to move to |k| = kF , the Fermi momentum.

[171] Therefore if ∆0 does not “renormalize” with increasing ∆SAS , the net effect of the strong

tunneling (µe ≫ µ) on the Cauchy pairing is to drive the system into a Fermi liquid. This is

not unexpected because one retrieves an effective one-component system in this limit, where all

particles are “polarized“ in the even channel. However, even if the system becomes compressible

in order to find a minimum at |k| = kF , the wave function (4.3) still describes its excited state.

Therefore, Pfaffian in this system may arise either as an excited state of the CFL or as an

intermediate state before complete polarization. We revisit the BCS approach in Sec. 4.1.4,

with a slightly different perspective in which the antisymmetrization is imposed, in a functional

formalism, with the help of a Lagrangian multiplier which plays a similar role as the present

tunneling term ∆SAS .

As we pointed out earlier, the population of the even channel P may be a complicated function

of tunneling. In the following section we use exact diagonalization of small finite systems in

order to get a hint of the form of this dependence P = P (∆SAS) and determine the nature of

possible phases as P increases from 1/2 to 1.

4.1.2 Exact diagonalization

Here we study the full interacting quantum Hall bilayer Hamiltonian for small finite systems in

the presence of tunneling, [110, 173]

H = −∆SASSx +
∑

i<j,σ∈↑,↓
V intra(riσ − rjσ) +

∑

i,j

V inter(ri↑ − rj↓), (4.5)

where in coordinate representation we have 2Sx =
∫

dr
[

Ψ†
↑(r)Ψ↓(r) + H.c.

]

, Ψ†
σ(r) creates a

particle at the position r in the layer σ. We have decomposed the interaction into terms between

electrons belonging to the same layer (V intra) and those residing in opposite layers (V inter). We

consider a short-range interaction, defined as

V intra
331 (r) = V1∇2δ(r), V inter

331 (r) = V0δ(r), (4.6)

which produces the 331 state as the densest and unique zero energy state when V0, V1 are chosen

positive. [42, 65] We also consider long-range Coulomb interaction,

V intra
Coul (r) = e2/ǫr, V inter

Coul (r) = e2/ǫ
√

r2 + d2, (4.7)

where d is the distance between layers. Note that we are diagonalizing an explicitly lowest

Landau level problem. We fix the total number of particles in our calculations to be an even

integer and, unless stated otherwise, take d = lB , which merely sets the range for the distance

between the layers where the Coulomb ground state is supposed to be fairly well described by the

331 wave function (compare with Sec. 2.2.2). In what follows, we consider spherical and torus

geometry for exact diagonalization. When we compare the exact ground state with |ΨPf〉, it is

understood that the latter is defined in the even basis i.e. single-particle states are understood

to be even combinations of the original ↑, ↓ states.

In Fig. 4.1 we present results of exact diagonalization on the sphere for the short-range (331)

Hamiltonian (4.6) and long-range (Coulomb) Hamiltonian (4.7). 331 and Pfaffian trial states
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occur at the same value of the shift, thus we are able to track their evolution as a function of

tunneling simultaneously. We also use 〈Sx〉, the expectation value of the Sx operator in the

ground state, to monitor the two-component to one-component transition, whereas 〈Sz〉 remains

zero throughout, which is due to the weaker interlayer as compared to the intralayer interaction.

Starting from the long-range Hamiltonian (Fig. 4.1, left panel), we see that the 331 state gives

way to a Pfaffian-like ground state, with the overlap quickly saturating to a value of around

0.92. [110, 173] The transition occurs for ∆SAS ≃ 0.1e2/ǫlB which agrees well with the typical

experimental value and shows little size dependence when the largest accessible system N = 10

is considered (note that the subsequent N = 12 system suffers from the aliasing problem). On

the other hand, notice that for the short-range Hamiltonian (Fig. 4.1, right panel), the 331

state is much more robust to perturbation by ∆SAS : before it reaches full polarization in the

x-direction (maximum 〈Sx〉), the overlap with both incompressible states drops precipitously

beyond some critical ∆SAS which is rather size-sensitive (it also depends on the values of the

parameters one chooses in Eq. (4.6), but the qualitative features of the transition are reproduced

for many different choices of V0, V1).
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Figure 4.1: Overlaps between the exact ground state of the Coulomb bilayer (left panel) and

short range 331 Hamiltonian (right panel) with the 331 state (O331) and the

Pfaffian (OPf), as a function of tunneling ∆SAS . Also shown on the right axis

is the expectation value of the Sx component of pseudospin (for N = 8 system)

which characterizes the two-component to one-component transition.

We see nonetheless that the breakdown of a two-component phase yields a one-component state

manifested by 〈Sx〉 → N/2 (this is the limit P → 1 from Sec. 4.1.1). At the transition to

the one-component state, 〈Sx〉 develops a small but visible kink which we show on the right

side of Fig. 4.1. Focusing on the large tunneling limit, we find that the nature of the ground

state is effectively that of the single layer (polarized) ground state for the symmetric interaction

V +(r) =
[

V intra(r) + V inter(r)
]

/2. This intuitive result was directly verified for all the available

system sizes, including very large N = 10 system on both sphere and torus. In view of this, it is

not surprising that the large-tunneling limit of the short-range Hamiltonian is the compressible

CFL: V + in this case reduces to the repulsive hard core V1 pseudopotential which has a tendency

to produce the Jain CF state. This is also apparent in the fact that the ground states for large

tunneling are obtained in the angular momentum sectors that agree with the predictions for the

excitations of the CFL yielding overlap of 0.99 with the excited CF sea ground state. In Chapter

5 we will explain in more detail the non-zero angular momentum excitations of the CFL. In a

nutshell, because the CFs at ν = 1/2 are in a zero effective field, they fill a number of shells (the

single particle states in the spherical geometry are monopole harmonics (2.1)). When there is an

extra flux, such as when the shift is changed to the one of the 331 state, the excited states can

be constructed which in a number of cases (though not always) turn out to have the maximum

angular momentum, reminiscent of Hund’s rule in atomic physics. [1] In the present case, we

find the Hund rule to be perfectly satisfied for the large tunneling ∆SAS .
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4.1 Transition between 331 Halperin state and the Moore-Read Pfaffian

Therefore, the results for the short-range Hamiltonian are suggestive that we may have a direct

331-CFL transition in the thermodynamic limit because the transition point seems to be shifting

towards smaller tunnelings as we increase N . In the Coulomb case, on the other hand, we

observe a curious saturation of the ground state overlap with the Pfaffian. We attribute this

feature to the effect of the long range Coulomb potential on a finite system. One notices that

by adding an asymptotic tail to the “intra” component of the short-range pseudopotentials

V intra
L = V intra

L,331 +α/2
√
L (α nonzero for L ≥ 3) , one progressively increases the critical value of

∆SAS for the abrupt drop of the overlaps as α→ 1 (pure Coulomb). In fact, for N = 8, 10 it is

sufficient to consider only V intra
3 to achieve the saturation and push the critical value of ∆SAS

to infinity.

Results for the Coulomb interaction in the large ∆SAS limit (Fig. 4.1) are similar to those

obtained in Ref. [133] where single-layer Zhang-Das Sarma interaction was used. As long as

we are in the large ∆SAS limit, V +(r) interaction produces numerically the same effect as the

Zhang-Das Sarma interaction. In particular, transition to a Moore-Read Pfaffian will be induced

if the layer separation d is sufficiently large. [133] Of course, these two interactions are different

from each other and the fact that they yield the same phenomenology (phase transitions as d

is varied) only means we are probing a critical state where even the slightest perturbation away

from pure Coulomb interaction (coupled with the bias of the shift) is sufficient to generate a

small gap. However, despite large overlap, the gap remains very small after the transition. As

we argued in Sec. 4.1.1, from the BCS model for large tunneling we expect the ground state to

be described by a CFL, however the Pfaffian (4.3) can still describe an excited state. This is a

low-lying excited state, as the calculation of ground state energies shows, Fig. 4.2. In Fig. 4.2
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Figure 4.2: Ground state energy for N = 8 and N = 10 electrons on the sphere, d = lB , for

shifts of 2 and 3.

we plotted the ground state energy for two shifts on the sphere which correspond to the Pfaffian

and CFL. We included the background charge corrections and rescaled the magnetic length to

account for the finite size effects. [1] Because of the availability of only two system sizes, we are

unable to perform a more rigorous finite size scaling of the data. If we fix d = lB as in Fig. 4.2,

we notice that large ∆SAS gives the ground state at the shift δ = 2 and the excited state closely

above is the Pfaffian. This agrees with the interpretation that the Pfaffian describes an excited

state of the CFL. If we increase d, we can recover the ground state at the shift of 3 for the whole

range of ∆SAS , which is additional evidence of the critical nature of the Pfaffian phase that we

are describing.

In Fig. 4.3 we show the relevant low energy part of the spectrum of the Hamiltonians (4.6) and

(4.7) as a function of tunneling, measured relative to the ground state (right axis), for N = 8

electrons on the torus and the fixed aspect ratio 0.97 in the vicinity of the square unit cell. We

identify the multiplet of 4 states that build up the 331 phase, whose exact degeneracy for the

short-range Hamiltonian and small ∆SAS (left panel) is partially lifted in case of the Coulomb
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interaction (right panel). 331 phase is destroyed for sufficiently large ∆SAS when the k = (1, 1)

state (fourfold degenerate) comes down and eventually forms a gapless branch with (0, 4) and

(4, 0) members of the 331 multiplet (other excited states not shown). We identify the large-

tunneling phase as the CFL phase because exactly the same spectrum is seen in a single layer

with Coulomb interaction and the same aspect ratio. This transition is quantitatively reflected

also in the overlap with the trial 331 states and CFL as a function of tunneling (Fig. 4.3, left

axis). Upon a closer look at Fig. 4.3, one notices that the torus spectra suggest little qualitative
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Figure 4.3: Low-energy part of the spectrum (relative to the ground state) of the short-

range 331 (left panel) and the long-range Coulomb Hamiltonian (right panel)

for N = 8 electrons on the torus at ν = 1/2 and aspect ratio a/b = 0.97 as a

function of tunneling ∆SAS (right axis). Also shown (left axis) is the overlap

with the phases we identify as the 331 state and the CFL.

difference between the short-range and the Coulomb Hamiltonian. In particular, we do not see

any indication of the Pfaffian threefold ground-state degeneracy for large ∆SAS which could be

expected from the large overlap on the sphere (Fig. 4.1). To reconcile these two results, we

again focus on the large tunneling limit and vary the aspect ratio of the torus to investigate the

possibility of an emergent Pfaffian phase (Fig. 4.4). We assume that in the large tunneling limit,

we have effectively a single layer (polarized) ground state for the symmetric interaction V +(r).

In Fig. 4.4 we show the spectrum of the single layer system of N = 14 electrons interacting

with V +(r) as a function of aspect ratio and connect the levels that have the quantum numbers

of the Moore-Read Pfaffian. We also include the background charge correction. [128, 174] One

notices that, with the exception of a very narrow range of aspect ratios around 0.4, there is

no evidence of a clear Moore-Read degeneracy. A narrow region where we see the threefold

multiplet of states for N = 14 also exists for N = 8, but is obscured by the presence of higher

energy levels in systems of N = 10 and 12 electrons. Thus we conclude that it cannot represent

a stable phase, but a possibility remains that it is a critical phase which becomes stronger as

one approaches the thermodynamic limit or as one changes the interaction away from the pure

Coulomb.

We note that varying d (at the fixed aspect ratio) does not lead to any qualitative change in

the ground state degeneracy as long as V +(r) interaction is used. This is clearly different from

Zhang-Das Sarma interaction which induces level crossings in the spectrum in such a way that

for large d (typically beyond 4lB), a Pfaffian degeneracy is seen for big enough systems, [175, 176]

such as N = 12 and N = 14 (it is not visible in systems N = 8 and N = 10). This is similar to

the results in the second Landau level [175], as well as the calculations on the sphere [133], but

the prohibitively small gap suggests that such a state, if it exists, is very fragile.
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Figure 4.4: Spectrum of the N = 14 electrons in a single layer at ν = 1/2 interacting with

V +(r) (d = lB), as a function of aspect ratio. We highlight the states with

quantum numbers of the Moore-Read Pfaffian.

4.1.3 Pfaffian signatures for intermediate tunneling and a proposal for

the phase diagram

We now summarize our ED results in the two geometries in order to make a connection with

the BCS analysis of Sec. 4.1.1 and sketch possible paths of the ν = 1/2 two-component system

with tunneling in the phase diagram of Read and Green, [171] see Fig. 4.5. In Fig. 4.5, µ

has the meaning of the effective chemical potential µeff of the whole system as in Sec. 4.1.1,

renormalized by ∆SAS , i.e. µ = µ(∆SAS). It is assumed that it can be approximated by the

value of the chemical potential of the dominant even channel, µeff ≃ µe and the separation

between the Abelian and non-Abelian phases in Fig. 4.5 is defined by setting then the value

of the chemical potential of the odd channel to zero, i.e. µo ≃ µ(∆SAS) − ∆SAS = 0. This

approximation renders necessary taking into account the renormalization of the parameters in

the BCS Hamiltonian (4.1) with tunneling, as in Ref. [171].

Figure 4.5: Possible outcomes of tunneling on a twocomponent system such as the direct

transition to a Fermi liquid (as expected for the short range interaction on the

sphere) or to a critical Moore-Read Pfaffian for long range (Coulomb) interaction,

in the context of phase diagram after Read and Green. [171] Note that the value

for µF ∼ 1/m∗ is interaction-dependent due to the renormalized CF mass m∗

and we may have different dividing lines µ = µF depending on the kind of the

interaction. [53]

On the sphere, we first recall a very large difference in ∆C
SAS , the critical value of tunneling

required to fully polarize the system in the x-direction, for the two interactions considered.

A much larger value for the short-range 331 Hamiltonian suggests that the chemical potential

for the even channel in this case is much more strongly renormalized than for the long-range
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Coulomb interaction and therefore such a system may directly move from 331 state through the

Abelian phase and into a CFL, Fig. 4.5.

A question we ask at this point is whether the CFL, a likely phase at P = 1, leaves room

for other one-component states to form as we increase the tunneling. In particular, is there a

possibility for a system to evolve along the trajectory which touches the critical line or briefly

transits through the non-Abelian phase in Fig. 4.5? Such an intermediate state could possess

significant overlap with the Moore-Read Pfaffian, but it would necessarily have a small gap and

we refer to it as “critical Pfaffian”.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.02  0.04  0.06

O
ve

rla
p

∆SAS[e2/εlB]

P=1

O331
OPf

Figure 4.6: Overlaps between the exact ground state of N = 10 electrons on the sphere with

the 331 state (O331) and the Pfaffian (OPf), as a function of tunneling ∆SAS ,

for the Coulomb bilayer Hamiltonian and d = 0.4lB .

On the sphere, a suitable system to detect the signature of the critical Pfaffian is the Coulomb

N = 10 system where the large-tunneling phase is compressible for d . 0.5lB . [133] We therefore

fix d = 0.4lB and vary ∆SAS (Fig. 4.6). For ∆SAS = 0, we are still largely in the 331

phase and for large ∆SAS we are in the CFL; however, for intermediate tunnelings we see a

developing Pfaffian that establishes in a narrow range around ∆SAS = 0.04e2/ǫlB . Therefore,

despite “weaker” incompressibility for small ∆SAS and full compressibility for large ∆SAS , for

intermediate tunneling we find evidence for the Pfaffian, as suggested by the green trajectory in

Fig. 4.5).
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Figure 4.7: Low-energy part of the spectrum (relative to the ground state) of the Coulomb

Hamiltonian (with d = lB) for N = 8 electrons on the torus at ν = 1/2 and

∆SAS = 0.03e2/ǫlB , as a function of the aspect ratio. Shaded region represents

the tentative phase with the Pfaffian degeneracy.

The effects of CFL physics are rendered more transparent in the torus geometry, where we have

identified the dominant phases as 331 and CFL (Fig. 4.3), with a direct transition between the

two of them. We choose a value for ∆SAS = 0.03e2/ǫlB which places the system in the center

of the transition region (compare also with Fig. 4.6) and examine the spectrum of an N = 8

system as a function of aspect ratio for an emerging Pfaffian degeneracy, Fig. 4.7. In torus
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4.1 Transition between 331 Halperin state and the Moore-Read Pfaffian

geometry there is no subtle dependence on d, so we take as before d = lB . In agreement with

the results on sphere, we find a region of aspect ratios where the correct Pfaffian degeneracy is

visible.

Previous results lend support to the scenario of an intermediate critical phase in a long-range

Coulomb system, which has a small gap (Fig. 4.7) but possesses large overlap with the Moore-

Read Pfaffian (Fig. 4.6). A stronger indication of topological degeneracy is likely to be found

in a model that assumes non-zero thickness of each layer, [175] but that would lead also to a

substantial decrease of the gap. [177]

4.1.4 Generalized tunneling constraint

In Sec. 4.1.2 we found that in a system with a fixed number of particles and the tunneling

commonly expressed as −∆SASSx, there is no unambiguous evidence for the Pfaffian phase in

finite systems that can be studied by ED. This evidence appears most striking when Coulomb

overlaps in the spherical geometry are considered (Fig. 4.1), but the torus geometry, which treats

both phases on the same footing, suggests that the CFL is the likely outcome of tunneling on

the 331 state. By combining the analysis from Read-Green theory with exact diagonalization,

we have identified the mechanism leading to this: it is the increase of the effective chemical of

the even channel. Therefore, one must find a way to prevent the effective even-channel chemical

potential from becoming too large if the weakly-paired phase is to be established in the system.

In this Section, we discuss a way to express this requirement formally via “generalized tunneling

constraint”. On the level of the BCS model used in Sec. 4.1.1, this constraint leads to a stable

weak-pairing phase in the even channel. Experimental implementation of this constraint is

feasible in a system which is in contact with a reservoir with which it can exchange particles.

The basic guideline is that we need to find a way to “identify” ↑ with ↓ electrons, thereby

converting from Cauchy determinant pairing (which describes the p-wave pairing of ↑ and ↓
particles) to the the spinless Pfaffian pairing. Within functional formalism, that amounts to

adding a term of the form

χ(r)[Ψ↑(r)−Ψ↓(r)] (4.8)

to the Langragian density via Grassmannian Lagrange multiplier χ(r). We will assume instead

that we can alternatively express this via the constraint

λ(r)[Ψ†
↑(r)−Ψ†

↓(r)][Ψ↑(r)−Ψ↓(r)], (4.9)

in terms of the bosonic multiplier λ(r). By construction this constraint affects only the odd

channel. Within the mean-field approximation of a spatially constant multiplier λ(r) = λ, one

may identify λ = ∆SAS/2, i.e. the effect of the multiplier is the same as the tunneling term in

Sec. 4.1.1, except for an overall decrease of the chemical potential:

µ → µ− λ,

which eventually yields a λ-independent chemical potential in the even channel,

µe = µ,

as mentioned above. Integration over the Lagrange multiplier projects to Ψ†
oΨo = 0, where

Ψ†
o = [Ψ†

↑(r) − Ψ†
↓(r)]/

√
2 is again the odd spin superpostion written in terms of the fermion

fields Ψσ(r), i.e. it leaves us with no density in the odd channel.

The BCS Hamiltonian including the constraint (4.9) has the same form as (4.1) except that now

ǫ̃k = ǫk−µ+λ, as a consequence of the above-mentioned shift in the chemical potential. We can

diagonalize it by a Bogoliubov transformation and show [121] that the stationary point for the

BCS Hamiltonian is given by λ → +∞ and we have strong coupling in the odd channel, while

the chemical potential of the even channel is constant µe = µ and it can be weakly paired. [171]
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The previous discussion was on the simplified model of 331 physics in terms of neutral fermions

with an additional constraint that leads to the Pfaffian, but seems artificial and hard to imple-

ment in an experimental setting. Nevertheless it suggests a possible way to achieve the stable

Pfaffian phase. With respect to ordinary tunneling, the generalized constraint can be modeled

by strong tunneling and an additional term in the effective description, λN , where N is the total

number of particles and λ tunneling strength as before. The chemical potential (of the whole

system) depends on the tunneling and changes as µ − λ. Then we have the following physical

picture in mind: as we take λ > 0 this decrease of the chemical potential with tunneling will

imply the decrease of the density of the system. On the other hand from the solution of the

BCS system with the generalized constraint, we see that the effective chemical potential of the

even channel stays the same (equal to µ). This means also that the number of particles in the

even channel stays the same, so the effects of the tunneling and the additional term cancels,

but the polarization P increases with tunneling. Thus we effectively maintain the same effective

parameter µ with tunneling, its value will not increase, and we will be able to achieve the stable

Pfaffian phase. This will correspond to the evolution along a straight line parallel to ∆SAS-axis

in the phase diagram like in Fig. 4.8.

Figure 4.8: Generalized tunneling contstraint: the descrease of the density of the system

evolves the system along the horizontal line in the phase diagram of Read and

Green [171] into the non-Abelian phase.

Therefore, in principle, by changing the density of the system we can achieve a stable Pfaffian

phase. We would like to compare the present discussion which is based on the simplified model of

neutral fermions (mean field in nature, with the simplifying assumption ∆o = −∆e = constant

i.e. independent of tunneling) with exact diagonalization in the LLL in the previous section.

The proposal outlined here calls for an open system with adjustable density (which demands

also the adjustment of magnetic field B) to achieve the stable Pfaffian phase. Although doing

so will preserve the filling factor, in general changing the total density may enhance the role of

LL mixing and thus invalidate the LLL assumption in the exact diagonalizations. It will also

lead to the renormalization of the parameters of the BCS effective model not taken into account

in Sec. 4.1.1. Indeed, when lowering the total chemical potential via the generalized constraint,

the density is also decreased. On the other hand the ratio between interaction strength (e2/lB)

and cyclotron frequency (ωc ∼ 1/l2B) is proportional to 1/
√
ρ, from which we see that the LLL

projection is invalidated if the density is significantly reduced. Therefore to reach and establish

the Pfaffian phase it is likely that LL mixing has to be taken into account. This has been

discussed in the recent literature [75, 178] as a way to stabilize the Pfaffian phase. Here we seek

the Pfaffian in a two-component setting when a parameter of the system λ is varied, which makes

the inclusion of higher LLs harder. If we remain in the LLL, changing of the density amounts

to simple rescaling of spectra (e2/lB → c e2/lB with c > 0), which cannot induce any signficant

effect such as the change in the nature of (quasi)degeneracy of ground states on the torus. Even
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if the evidence for a Pfaffian phase is rather weak for the system sizes studied here, one may

hope that the increase of these sizes will improve the case for such a state in the LLL as the odd

channel may assume the role of the first excited Landau level before a complete polarization.

4.2 Transition from 332 Halperin to Jain’s state at ν = 2/5

In this Section we study the transition from Halperin’s two-component 332 state (1.45) to the

one-component Jain state at the filling factor ν = 2/5 (1.36) via tunneling. The interest is

threefold: we would like to find out (a) about the nature of quantum phase transitions between

topological phases which are similar (332 and Jain’s state have the same ground state degeneracy

[129, 143, 179] but different shift [42, 180]), (b) we would like to find if Gaffnian [82] can be

characterized as a critical state in these circumstances when the gap closes, and (c) we explore

possible consequences for the effective description of the Jain state due to a better understanding

of the transition.

4.2.1 The system under consideration

We consider the bilayer system at the filling factor ν = 2/5 defined by the Hamiltonian (4.5).

As we outlined in Sec. 1.5.3, in the small tunneling regime the ground state of the Hamiltonian

(4.5) at ν = 2/5 is the 332 Halperin state for two distinguishable species of electrons. Due to

the fact that the correlation exponents between electrons of the same layer are bigger than those

between electrons of the opposite layers, we expect the 332 wave function (1.45) to be more

appropriate for non-zero d e.g. in the range d ∼ lB . However, as it possesses the necessary

symmetry properties, [42] it can be a candidate also for d = 0. The properties of the 332 wave

function (1.45) were numerically verified in Ref. [108].

As the tunneling strength ∆SAS is increased, the electrons find it energetically favorable to be

in the superposition of two layers, ↑ + ↓, and the system loses its two-component character.

The effective single-component state is characterized by full polarization in the x-direction. At

ν = 2/5 in the LLL, a compelling candidate for the polarized state is Jain’s CF state, (1.36).

Note that a single index now suffices to label the electron coordinates as the pseudospin index

is implicitly assumed to be ↑ + ↓. An alternative candidate for the polarized state at ν = 2/5

exists, which is the so-called Gaffnian state, (1.55). In the notation of Eq. (1.55) one can think

of the Gaffnian as originating from the two-component 332 state with the additional pairing

represented by the permanent. [117, 181] The two-component state is made single-component

under the action of the antisymmetrizer A between ↑ and ↓ electron coordinates. Gaffnian

(1.55) has generated a surge of interest because in finite size (spherical) exact diagonalization it

shows high overlaps with the Coulomb ground state, comparable to those of Jain’s state, yet the

topological properties of the two states are very different. [82] Moreover, the strong evidence

for Gaffnian in numerical calculations is puzzling in view of the fact that it is a correlator of a

non-unitary conformal field theory and hence not expected to describe a stable phase. [39] In the

spherical geometry, Jain’s state and the Gaffnian can only be distinguished by their excitation

spectrum [182] or by using advanced tools such as the entanglement spectrum. [183]

Since the antisymmetrizer A can, to some extent, be mimicked by the tunneling term, [121]

and since the Gaffnian incorporates the pairing defined by the permanent, there is an additional

natural candidate for ν = 2/5 which we refer to as the permanent state,

Ψperm = Ψ332 perm{ 1

z↑ − z↓
}. (4.10)

This state distinguishes between ↑ and ↓ electrons, hence it is expected in the limit of intermediate

tunneling ∆SAS before a full x-polarization has been achieved. Like the Gaffnian, the state (4.10)

is related to a non-unitary conformal field theory [65] and one may expect that it plays a role of

the critical state in the transition region before full x-polarization.
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In the following Sections we study numerically the transitions between two-component and one-

component states at the filling factor ν = 2/5 and present a possible interpretation of the results

within an effective bosonic BCS model.

4.2.2 Exact diagonalizations

In this Section we study the transition at ν = 2/5 via tunneling ∆SAS using exact diagonalization

in the spherical and torus geometries to gain complete insight into topological properties of

the different competing trial states. We use Coulomb interaction (1.49), as well as the short-

range interaction that defines the 332 state as its unique and densest zero mode, V intra =

{0, V a
1 , 0, 0, . . .} and V inter = {V0, V

e
1 , 0, 0, . . .}. There is some freedom in choosing V0, V

a,e
1

apart from the requirement that they should all be positive and we set them to unity. Values of

V0, V
a,e
1 control the gap for the 332 state and thereby affect the critical value for the tunneling

∆SAS in the following discussion, but our main conclusions remain unaffected by this choice. In

the case of Jain’s state we do not have a pseudopotential formulation (a useful ansatz that does

not lead to a unique zero-energy eigenstate is {0, V1, 0, 0, . . .}).
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Figure 4.9: Overlaps between the exact Coulomb bilayer ground state for d = lB and the 332

(O332) and Gaffnian state (OGaff), as a function of tunneling ∆SAS . Data shown

is for Ne = 6 and 8 electrons. Note that O332 and OGaff can not be directly

compared due to the difference in shift between the 332 state and the Gaffnian.

In Fig. 4.9 we present our results for the case of the Coulomb bilayer on the on the sphere

with the bilayer distance d equal to lB . Overlaps of the exact ground state with the 332 state

and the Gaffnian are calculated as a function of tunneling ∆SAS . Separate diagonalizations

have been performed because the two trial states, 332 and Gaffnian, occur in slightly different

Hilbert spaces due to the mismatch in shift (δ = 3 and δ = 4, respectively). Following the rapid

destruction of the 332 state with the increase of ∆SAS , the overlap with the Gaffnian state rises

to the high value known from earlier studies in a single-layer model. [82, 183] This occurs at

the point when the system is almost fully x-polarized. Consequently, the overlap with the Jain

state for large ∆SAS is also high and virtually indistinguishable from that of the Gaffnian on

the scale of this figure.

In the torus geometry, Figs. 4.10 – 4.13, trial states which represent topological phases are

uniquely specified by their filling factor ν = p/q. What is then characteristic of the Abelian

states such as the 332 and Jain’s state, is that on the torus they only posses the ground state

degeneracy due to the motion of the center of mass of the system, equal to q, [129] which we will

mode out in the data. In the case of Gaffnian the degeneracy of the ground state is expected

[82, 184] to be doubled with respect to the trivial one i.e. equal to 2× 5 = 10. In the literature
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there is no consensus that Gaffnian is a gapless state, [82, 182] but if we can establish that the

nature of the lowest lying states is as expected for the Gaffnian, we could nonetheless claim its

presence at the transition from the 332 to the Jain’s state.
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Figure 4.10: Energy spectrum of the SU(2)-symmetric 332 Hamiltonian on torus (in arbi-

trary units) for Ne = 8 and aspect ratio 0.97. The k = 0 levels that cross define

regions of fully polarized 〈Sx〉 = N/2 and unpolarized 〈Sx〉 = 0 phases.

In Fig. 4.10 we plot the low energy spectrum of the 332 short-range Hamiltonian on the torus

for N = 8 electrons and close to the square unit cell (aspect ratio a/b = 0.97). We observe

the 332 state, distinctly marked by its zero energy, which remains unaffected by ∆SAS until

level crossing is induced with the excited polarized state. The state characterized by 〈Sx〉 =

N/2 that becomes the ground state for large tunneling develops into a Jain CF state, (1.36).

This is expected because the original system defined in terms of V intra
c (r), V inter

c (r) (1.49), in

the limit of very large tunneling becomes an effective one-component model with the modified

interaction
[

V intra
c (r) + V inter

c (r)
]

/2. [121] For the short-range 332 Hamiltonian, this is simply a

V1 pseudopotential which yields a good approximation to Jain’s state. Furthermore, as we vary

the aspect ratio of the torus, we find the following thin torus configuration ...0 1 0 0 1..., which

is that of the Jain state. [185] For an excellent introduct to the thin torus, consult Ref. [186].

Fig. 4.11 shows the energy spectrum of the Ne = 8 Coulomb bilayer system on the torus with

the same aspect ratio a/b = 0.97 (slightly different from unity to avoid accidental geometric

degeneracy) and distance between layers is set to d = lB . We identify incompressible states

for small and large tunneling as the 332 and the Jain state, with the transition between them

occurring for ∆C
SAS ≈ 0.018e2/ǫlB . The states can be identified e.g. with respect to the Fig.

4.10 by calculating overlaps. If we denote the ground state of the short-range and Coulomb

Hamiltonian for a given tunneling ∆SAS as Ψshort(∆SAS) and ΨC(∆SAS), respectively, we obtain

the following overlap 〈Ψshort(∆SAS = 0)|ΨC(∆SAS = 0)〉 ≈ 0.95. This means that for Coulomb

bilayer interaction we have the 332 state for zero tunneling. Also, in the large tunneling limit,

we obtain e.g. 〈Ψshort(∆SAS = 0.05)|ΨC(∆SAS = 0.05)〉 ≈ 0.948, i.e. Jain’s state.

If we define the quantity which describes the density of the odd channel, N/2 − 〈Sx〉, the

transition is characterized by an approximately linear or even step-like discontinuity in the plot

of N/2 − 〈Sx〉 as a function of ∆̃SAS = ∆SAS − ∆C
SAS , Fig. 4.12. In the transition region,

an approximate doublet of states with k = 0 Haldane pseudomomenta is formed (Fig. 4.11).

Although the doublet has the expected quantum numbers of the Gaffnian, [184] the specific

root configurations in the thin torus limit [185] cannot be unambiguously identified as those of

the Gaffnian. Both of the members of the doublet share the following thin torus configuration

...0 1 0 0 1..., among other spurious patterns, which is that of the Jain state. Moreover, the
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Figure 4.11: Energy spectrum relative to the ground state of the Coulomb bilayer on torus,

for Ne = 8 electrons, d = lB and aspect ratio 0.97. An approximate doublet of

states with k = (0, 0) Haldane pseudomomenta is formed around the transition

point ∆SAS ≈ 0.018e2/ǫlB .

member of the doublet higher in energy has a lower polarization 〈Sx〉 than the ground state.

These facts suggest that the excited k = 0 state in the transition region is a spinful CF state

rather than the (polarized) Gaffnian.

For the long-range Coulomb interaction on the torus and the aspect ratio close to 1, the transition

between the Jain and 332 state proceeds as an avoided level crossing or a smooth crossover

without an obvious closing of the gap. The gap is expected to close in the thermodynamic limit

between the two distinct topological phases. On the other hand, for the short-range interaction

that defines the 332 state as the zero-energy ground state and for the identical geometry of the

torus (a/b = 0.97), it appears that the gap closes, Fig. 4.10. This difference between Figs. 4.10

and 4.11 can be attributed to the symmetry of the interaction. For the short range interaction

used in Fig. 4.10, V inter
1 = V intra

1 , hence it does not break the SU(2) symmetry. In this case, the

tunneling part of the total Hamiltonian, being proportional to Sx component, commutes with

the interaction part and we expect level crossing which we indeed observe in Fig. 4.10. The

interaction in the bilayer with d = lB , on the other hand, breaks SU(2) invariance (Fig. 4.11),

but we can nevertheless show that the level crossing persists and can be induced by changing

the aspect ratio of the torus away from unity. In Fig. 4.13 we show one such energy spectrum

(without the ground state energy subtraction) when the aspect ratio is equal to 0.5. The level

crossing is induced by deforming the system towards the crystalline limit, when the Coulomb

interaction is increasingly of short range. Note, however, that the states at ∆SAS = 0 and

∆SAS-large are still 332 and Jain’s, respectively (verified by the overlaps with the ground state

of the short-range interaction and by their thin torus limit).

4.2.3 Intepretation of the results within an effective bosonic model

High overlaps with the Gaffnian on the sphere around and after the transition, as well as the

crossover via level repulsion in Fig. 4.11 on the torus, can be a motivation for considering the

system of CS-transformed composite bosons [49, 187] (↑ and ↓) that pair in the way of p-wave

in a picture of the underlying neutral sector physics. As we already pointed out in the preceding

section, the high Gaffnian overlaps are not to be taken as a proof that we have the Gaffnian phase

after the transition, in the thermodynamic limit, but may serve as a motivation for discussing

the role for the Gaffnian as a critical state. More generally, as the system is closer to the one-

component limit, the theory may inherit the pairing structure built in the Gaffnian state and
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Figure 4.13: Energy spectrum of the Coulomb bilayer on torus (in arbitrary units) for Ne = 8

and aspect ratio 0.5.

this is captured in the permanent state, (4.10). As we mentioned in Sec. 4.2.1, the connection

between the Gaffnian (1.55) and the permanent state (a p-wave state of bosons) (4.10) is the

antisymmetrization. We assume that the operation of antisymmetrization corresponds, in the

language of effective theory, to a tunneling term. [121]

The effective description in this case is not as clean-cut as in the analysis of Sec. 4.1 and some

additional approximations need to be introduced, apart from the ones mentioned before. One

first begins with performing the CS transformations in the field-theoretical description of the

system (4.5) that leaves, in the mean field, ↑ and ↓ bosons that pair in the way of a p-wave. At

ν = 2/5, for no tunneling, in the presence of Coulomb or suitable short range interaction, we

expect that the bilayer (two-component) system is described by 332 state. We know very well

how to define the CS transformation to bosons in these circumstances, for the first time it was

given in Ref. [187]. It entails a transformation from electronic Ψσ fields to bosonic Φσ fields:

Ψσ(r) = Uσ(r)Φσ(r) (4.11)
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where

Uσ(r) = exp{−i
∫

dr′arg(r− r′)[3ρσ(r′) + 2ρ−σ(r′)]} (4.12)

where arg(r − r′) is the angle the vector r − r′ forms with the x axis. In the mean field (when

the fluctuations of gauge fields are neglected) we, in fact, describe a system of ↑ and ↓ bosons

that interact. Therefore we have in the first approximation two ordinary Bose condensates. By

the virtue of the Anderson-Higgs mechanism i.e. gauge fluctuations, the two Goldstone modes

become gapped and the two gapped bosonic systems describe the two-component 332 system.

The complication comes when we consider the tunneling term as an extra perturbation and an

extra term in our starting Hamiltonian for the electrons. The tunneling term is

HT = −λ
(

Ψ†
↑(r)Ψ↓(r) + Ψ†

↓(r)Ψ↑(r)
)

, (4.13)

where λ denotes the tunneling amplitude in this section. Due to the CS transformation (4.11)

this can not be translated simply into the hopping of bosons because:

Ψ†
σΨ−σ = Φ†

σU
†
σU−σΦ−σ (4.14)

and only in the mean field approximation for which

U†
σU−σ ≈ I (4.15)

(where I is the identity) we have a simple tunneling of bosons i.e.

HT ≈ −λ
(

Φ†
↑(r)Φ↓(r) + h.c.

)

(4.16)

The necessary assumption in Eq.(4.15) is ρs = ρ↑(r) − ρ↓(r) ≈ 0 i.e. that the fluctuations in

density in ↑ parallel the ones in ↓, or the fluctuations in the pseudospin density are negligible.

This is a crucial approximation that reconciles the CS transformation with the tunneling term

and enables the similar analysis as in Sec. 4.1. Unfortunately, this approximation is difficult to

quantify, but nonetheless we expect to get the qualitatively correct insight into the transition.

Additional justification for the bosonic model arises from numerics. Namely, the results for SU(2)

symmetric interaction (4.10) and Coulomb interaction (4.11) both reflect the abrupt change in

polarization at the transition. In this case, we may use the SU(2)-invariant interaction as a

starting point and the symmetric-antisymmetric basis for the Chern-Simons transformation.

This way, the tunneling term will retain the same form as in the fermionic basis.

Treating the residual interaction in a mean field manner i.e. taking the Hartree-Fock and BCS

decomposition, we come to the following form of the Hamiltonian for the effective description of

↑ and ↓ bosons around the k = 0 point in the momentum space:

H =
∑

k

(

∑

σ

ǫ̃kb
†
kσbkσ − λ(b†k↑bk↓ + b†k↓bk↑) + ∆k b

†
k↑b

†
−k↓ + ∆∗

k b−k↓bk↑

)

(4.17)

where ǫ̃k = ǫk − µ, σ =↑, ↓ and ∆k is the p-wave order parameter function ∆k ∼ kx − iky. The

question of mutual statistics (between ↑ and ↓ electrons and the ensuing composite bosons) may

be raised but we assume that it is bosonic. In Ref. [168] we show that the Hamiltonian above

can be diagonalized by a Bogoliubov transformation to obtain two pairs of eigenvalues:

E + λ,E − λ, and − E + λ,−E − λ, (4.18)

where E =
√

ǫ̃2k − |∆k|2. The last two eigenvalues −E±λ correspond to well-defined excitations

of the system. For µ > 0:

− E ± λ ≈ −µ+ ǫk +
∆2

2µ
± λ (4.19)

i.e. we have an ordinary, non-interacting boson description where the tunneling λ defines the

transition at λ = µ from the two Bose condensates to a one Bose condensate (one disappears
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because µeff = µ − λ < 0 i.e. we have vacuum for these particles). This motivates to consider

that a viable composite boson effective description of the ν = 2/5 Jain’s state is with only one

composite boson condensate and a Bose vacuum. This stems as a natural consequence from our

analysis and the multicomponent approach to Jain’s states. [117] Any effective description of

quantum Hall states must encompass the edge physics as the low energy physics of these states

happens on the edge. In the effective description based on composite bosons [50] of the ν = 2/5

fractional quantum Hall edge, one encounters both charge and neutral modes that propagate in

the same direction as relativistic particles and the discrepancy with respect to experiments [188]

has to be resolved [189]. In the effective description based on composite fermions, [190] at ν = 2/5

edge only the charge mode is propagating, in agreement with the experiment, but the reason why

the neutral mode does not propagate is not obvious. Here we suggest an effective picture of the

multicomponent degrees of freedom of Jain’s state at ν = 2/5 via a Bose vacuum. Any time we

have to describe an excitation of the system that involves also these, multicomponent, degrees

of freedom, we excite a boson in a vacuum that propagates, not relativistically, but according

to Schrödinger equation [191], which in an effective description can be neglected with respect to

the charge wave propagation along the edge.

Going back to the eigenvalue problem, one may consider the remaining pair of the eigenvalues:

E ± λ. (4.20)

It is then obvious from (4.19) that these excitations are unstable and hence may relate to the

excited states. In fact, it can be shown [168] that these excitations, in the long distance limit,

describe a permanent state (4.10), if we assume that the Hamiltonian H is regularized by a

phenomenological term H + λN . [121] Therefore before reaching the strong tunneling limit and

the incompressible FQH state connected with the single BCS condensate in this description at

ν = 2/5 (Jain’s state), we may find a state at the transition that evolves from an excited state

described by the permanent. It may appear mysterious why we choose the theory with pairing

to describe a transition which the numerics seem to suggest to occur between two Abelian states.

As we pointed out in Sec. 4.1, the formalism of Read and Green [171] also applies to the situation

where the pairing structure of the theory is reflected in what turns out to be the excited state

(such as the Pfaffian), whereas the ground state (i.e. CFL) has no pairing.

4.3 Conclusions

In Section 4.1 we investigated the possibility of creating the Moore-Read Pfaffian out of the paired

two-component 331 state via tunneling. Exact diagonalization, performed under the constraint

of the LLL projection and the fixed total number of particles, could not detect a stable Pfaffian

phase, but a critical one between 331 and CFL phases. While the short-range interaction is likely

to favor a direct transition from the 331 to the CFL phase, long-range Coulomb interactions leave

the possibility for a Pfaffian-like phase if the parameters of the system are tuned in a special

way. Based on the connection between our numerical results and the effective BCS Hamiltonian

theory of paired states, we argue that one way to stabilize the Pfaffian state is to change the

density (number of particles) of the system while increasing the tunneling.

The transition at ν = 2/5 is studied in the presence of Coulomb interaction appropriate for the

quantum Hall bilayer and a model short-ranged interaction appropriate for the 332 Halperin’s

state. We established an avoided level crossing in the first case and, in the latter, a first order

transition. With respect to the appearance of the Gaffnian state in the transition region between

332 and Jain, we can conclude that in finite systems this is only possible for the interaction that

breaks SU(2) invariance, like the Coulomb bilayer interaction, but remains an unlikely possibility

because of the difficulty in establishing the thin torus limit for the approximate k = 0 doublet

found for the torus with the aspect ratio close to unity (Fig. 4.11). Within the effective bosonic

model, we find that the transition in the presence of the Coulomb interaction may be viewed as
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a transition from two Bose condensates to a Bose condensate and a Bose vacuum, as one type of

bosons gradually disappears from the system. The outcome, with the Bose vacuum, can serve

as an effective description of the Jain state.
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Chapter 5

Wide quantum wells

In this Chapter we explore multicomponent and non-Abelian states in wide quantum wells.

The first system we analyze in Sec. 5.1 is a single QH layer with finite thickness. We model

the thickness by the Zhang-Das Sarma (ZDS) potential and find quantum phase transitions

between compressible and incompressible states as the parameter of the ZDS interaction is var-

ied. In particular, we show that incompressible ground states evolve adiabatically under tuning

the parameter of ZDS interaction, whereas the compressible ones are driven through a phase

transition. Overlap calculations show that the resulting phase is increasingly well described

by appropriate analytic model wave functions (Laughlin, Moore-Read, Read-Rezayi). This sce-

nario is shared by both odd (ν = 1/3, 1/5, 3/5, 7/3, 11/5, 13/5) and even denominator states

(ν = 1/2, 1/4, 5/2, 9/4). In particular, the Fermi liquid-like state at ν = 1/2 gives way, at large

enough value of the width parameter, to an incompressible state identified as the Moore-Read

Pfaffian on the basis of its entanglement spectrum. The second system we analyze (Sec. 5.2) is

explicitly a two-component model of the quantum well which takes into account the two low-

est subbands. We make a direct connection between this model of the quantum well and the

effective-bilayer model. We focus on the filling factors ν = 1/2 and ν = 1/4. In the case of

former, we explore the transition between the 331 state and the Moore-Read Pfaffian, subject

of Chapter 4. At ν = 1/4 we investigate the nature of the ground state examining different

multicomponent candidates (553, 771, Haldane-Rezayi state) and the generalized Moore-Read

Pfaffian. This Chapter contains some unpublished results and summarizes the main findings of

Refs. [133] and [140].

5.1 Finite thickness and phase transitions between com-

pressible and incompressible states

As a warm-up to the realistic quantum well model that is the subject of Sec. 5.2, here we address,

via large-scale ED calculations on finite spheres, the important and interesting question of how

to tune various FQH ground states between ungapped compressible and gapped incompressible

phases by continuously varying the effective electron-electron interaction in a single QH layer.

We show that a simple single-parameter parametrization of the effective interaction through the

ZDS model (1.17) provides a flexible and powerful method of studying quantum phase transitions

(QPTs) between compressible and incompressible phases at both even and odd-denominator

FQH states. ZDS interaction (1.17) for the quantum well of width w

V (r, w) =
e2

ǫ
√
r2 + w2

, (5.1)

possesses a rich structure that can drive the system from parameter regions where it appears

to be compressible (manifested by the ground state that breaks rotational invariance i.e. the
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value of angular momentum L 6= 0) towards the incompressible region where the ground state

is rotationally invariant (L = 0), along with the corresponding overlap with the trial states like

Laughlin [32] or paired states (Moore-Read Pfaffian [3], Read-Rezayi [84] etc.) jumping to a value

close to unity and an energy gap opening up in the excitation spectrum. In agreement with the

experimental phenomenology, we find that the well-known odd-denominator incompressible FQH

states (e.g. 1/3, 1/5, 7/3, 11/5) are robust and usually do not manifest any interaction-tuned

QPT whereas the more fragile, even denominator (e.g. 1/2, 1/4, 5/2, 9/4) FQH states typically

exhibit characteristic QPT from a compressible to an incompressible phase as the Coulomb

interaction is softened by increasing the ZDS tuning parameter.

We emphasize that the ZDS interaction (5.1) appears to have the same qualitative pseudopoten-

tial decomposition as the realistic models (e.g. the Fang-Howard, infinite square well, etc.). In

Fig. 5.1 we plot the few strongest pseudopotentials on the sphere, calculated for ZDS and the

infinite square well confinement. For each width, we normalize the corresponding pseudopoten-

tials by the value of V0. The successive sets of Vm show the softening effect of the perpendicular

confinement. We see that, although the parameter w cannot be directly compared between the

ZDS and the infinite square well model, the pseudopotential decomposition qualitatively appears

the same.
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Figure 5.1: Comparison of the few largest pseudopotentials (normalized by V0(w)) for the

Zhang-Das Sarma (ZDS) interaction and those for the infinite square well model

(ISQW).

However, it was also observed in Ref. [140] that realistic confinement models such as the infinite

square well do not always reproduce the QPTs induced by the ZDS interaction, suggesting there

may be subtle quantitative differences between ZDS and alternative confinement models which

are important in the vicinity of a QPT. In this Section we focus on the ZDS model in carrying out

our ED studies since a single parameter enables us to study FQH QPTs in a compact manner

because it yields a particularly simple form of the effective interaction. In order to establish

the connection with the experiments, we should mention that w in the ZDS model corresponds

roughly to the root-mean-square fluctuation in the electron coordinate in the transverse direction,

[175] although ZDS interaction (5.1) does not yield any simple wave function for the confinement

in the perpendicular direction.

With this choice of the interaction, we use the overlap between the exact, numerically diagonal-

ized finite system, and a candidate analytical wave function (e.g. the Moore-Read wavefunction)

to determine the tentative quantum phase of the system. We calculate the overlap as a con-

tinuous function of the varying Hamiltonian which is being tuned by w. All the model wave

functions studied in this section are Jack polynomials that have squeezable configurations [192]

which can be efficiently generated and compared with the exact ground state. In doing so, we

disregard the aliased cases [133] from our considerations (we discussed the aliased states below

the formula 2.4).
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5.1 Finite thickness and phase transitions between compressible and

incompressible states

We have already examined the effect of ZDS interaction on the Laughlin states in Sec. 2. It will

be shown in what follows that the induced QPT that we have seen earlier for N = 5, ν = 7/3

is not an exceptional case. In Fig. 5.2 we show the overlap results of finite-size calculations on

ν = 1/2 in the LLL and ν = 5/2 in the SLL with ZDS interaction. In Fig. 5.3 we present data
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Figure 5.2: Overlap |〈ΨPf |Ψexact〉| between the exact ZDS ground state for finite width w/lB
at ν = 1/2 and the Pfaffian for N = 8 − 18 particles. Inset: same quantity but

in the first excited Landau level i.e. ν = 5/2. Only non-aliased states are shown.

Note: the critical width of the QPT increases with system size, however for the

three available points and N → ∞, it extrapolates to a value of 4lB .

on ν = 1/4 in the LLL. In this case, the Moore-Read Pfaffian is defined as

Ψ
1/4
Pf (z1, ..., zN ) = Pf

(

1

zi − zj

)

∏

i<j

(zi − zj)
4. (5.2)

We note in passing that, contrary to the finite-width models which change all pseudopotentials

at once, one may start from the pure Coulomb interaction and vary just a few strongest pseu-

dopotentials. [71] One can vary either V1 or V3 (or both), but this procedure does not lead to

the phase transitions in all the cases as ZDS interaction does.
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Figure 5.3: Overlap |〈ΨPf |Ψexact〉| between the exact ZDS ground state for finite width w/lB
and the Pfaffian at ν = 1/4.

At ν = 1/2 a QPT is induced by increasing the parameter w. Certain particle numbers yield

good overlap already for zero thickness and their overlap improves as w increases. Other particle

numbers produce ground states with well-defined values of L > 0 that undergo a QPT at a

critical value of the thickness. For ν = 5/2, the Coulomb ground state for zero thickness is

already reasonably well approximated [71, 193] by the Moore-Read Pfaffian and the effect of
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ZDS interaction is only to increase the overlap in a smooth way. However, the increase is

substantial – up to 20% for the largest system amenable to ED. This adiabatic continuity of the

Moore-Read description for the SLL ν = 5/2 has been discussed in Refs. [177, 193].

The non-zero values of L that appear at ν = 1/2 in the LLL can be fully understood from the

CF theory. [164] Indeed, former work hinted at the possibility of p−wave paired CF state as

a result of CF sea being perturbed by ZDS interaction. [194] However, in Ref. [194] only the

variational energies of trial states were compared.
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Figure 5.4: Overlap |〈Ψexact(w = 0)|Ψexact(w)〉| between the exact ZDS state for finite width

w/lB at ν = 1/2 and the CF sea state defined to be exact Coulomb ground state

for zero thickness. Red circles represent filled CF shells (N = n2, n = 3, 4) , blue

triangles are the lowest excited states ∆N = N − n2 = ±1 and so on.

In Fig. 5.4 we show that one can establish a connection between the ZDS-induced QPT and

the Pfaffian and CF sea states in the LLL at ν = 1/2. Because the CF sea state and the

Moore-Read Pfaffian occur at different shifts on the sphere (-2 and -3, respectively), one cannot

simultaneously study their evolution with w. However, by analyzing the excitations of CF sea

occuring at the Pfaffian shift, one can show (using Hund’s rule) that the L values obtained in

ED at the Pfaffian shift (Fig. 5.2) are indeed those stemming from the CF sea excitations.

Moreover, assuming that the Coulomb ground state in the LLL for zero thickness is exceedingly

well approximated by Rezayi-Read wave function (1.37), [55] we define the CF sea state for our

purposes as the interacting Coulomb ground state for zero thickness and study its overlap with

the w ≥ 0 ground states, Fig. 5.4. CF theory tells us that (at the shift of -2) the L = 0 config-

urations are obtained when the CF shells are completely filled i.e. for N = n2, n = 1, 2, 3, . . .,

Fig. 5.5. These configurations are particularly robust and adding/subtracting electrons from

Figure 5.5: CF levels for N = 8 and N = 9.

them (∆N = N − n2 = ±1,±2, · · · ) creates a configuration that is destroyed at some critical

value of the width which depends on how far away the system is from the filled shell. Obvi-

ously, there is ambiguity in defining precisely the critical width where the CF sea is destroyed,

but this argument nonetheless provides further support for the claim that the ZDS-induced

compressible–incompressible transition indeed proceeds via destruction of CF sea towards the

Moore-Read Pfaffian. Transition of the same kind can be relevant for the multicomponent can-

didates [195] at ν = 3/8. We emphasize that the possible finite-width-induced LLL ν = 1/2 FQH
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5.1 Finite thickness and phase transitions between compressible and

incompressible states

state that we find arising out of the destabilization of the CF sea, even if it exists, is likely to

be extremely fragile with a neutral excitation gap smaller than 0.03e2/ǫlB . [177] However, nu-

merically extrapolated gap is generally known to be difficult to relate to the experimental value

[196] and in our data we cannot rule out the possibility that it goes to zero in thermodynamic

limit.

Another way to look at the QPT towards the Moore-Read Pfaffian is to analyze the entanglement

spectrum we introduced in Section 2.1.2 (originally proposed in Ref. [137]). This is a powerful

way to identify topological order in the given ground state wave function and establish a direct

connection with the underlying CFT that produces the given ground state as its correlator and

thus offering more information than the simple overlap calculation. [139] In Fig. 5.6 we show

the change in the entanglement spectrum for N = 18 particles at ν = 1/2 in the LLL, before

and after QPT. For w < lB , there is no visible CFT branch in the entanglement spectrum – the

generic Coulomb part dominates, leading to a likely compressible ground state. After the QPT,

a CFT branch separates from the Coulomb part of the spectrum and the level counting begins

to match the first few Virasoro levels of the Ising CFT. This is additional evidence in favor of

the possibility of a finite-width-induced QPT to an incompressible half-filled single-layer LLL

FQH state.

 2

 4

 6

 8

70 75 80 70 75 80 70 75 80

ξ

Lz
A                    Lz

A                    Lz
A

w/lB=0.8 w/lB=1.0 MR Pfaffian

Figure 5.6: Entanglement spectrum of the exact ground state for N = 18 particles at ν = 1/2

in the LLL, just before (w/lB = 0.8) and after (w/lB = 1.0) the QPT, and

the spectrum of Moore-Read Pfaffian for comparison. Vertical axes show the

quantity ξ = − log λA, where λA are the eigenvalues of the reduced density

matrix of the subsystem A which comprises of 8 particles and 15 orbitals, given

as a function of angular momentum LA
z . Data shown is only for the partitioning

denoted by [0|0] in Ref. [137], other sectors give a similar result.

We have also examined the effect of ZDS potential on other even denominator and paired states.

For Read-Rezayi ν = 3/5 state a QPT is induced around w ∼ 4lB and, in the SLL, a ν = 9/4

state is similarly stabilized when ZDS parameter is around w ∼ 3lB .

Therefore, we can conclude that the continuous tuning of the interaction through the ZDS

Hamiltonian enables a direct study of FQH quantum phase transitions showing that the usual

odd denominator states are robust in both the LLL and the SLL, whereas the fragile even

denominator FQH states are stable only in a regime of the interaction strength where the bare

electron-electron interaction is considerably softer than the pure 2D Coulomb interaction. We

find that the ZDS interaction allows for the existence of non-Abelian incompressible FQH states

even at unusual even fractions such as 1/2, 1/4, and 9/4, raising the intriguing possibility that

such exotic non-Abelian states may indeed exist if one can sufficiently soften the interaction along

the ZDS prescription. Whether this can be physically achieved in 2D semiconductor systems

remains an interesting open question and may require some ‘reverse engineering’ of the quasi-2D

samples to achieve a suitable density profile using the fact that the width parameter in the ZDS
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5. WIDE QUANTUM WELLS

model corresponds roughly to the variance of the electron position in the transverse direction.

5.2 Two-subband model of the quantum well

In the preceding Section we used a simple, one-component model of the wide quantum well.

In this Section we will introduce a realistic model that takes into account the two lowest sub-

bands as the relevant low-energy degrees of freedom available to the electrons. We consider an

infinite square well of width w in the direction z ∈ [0, w], Fig. 1.4. The electronic motion in

the z-direction will then be quantized, yielding an electronic subband structure. Instead of a

full description with all the electronic subbands, we only consider the two lowest subbands (we

comment on the validity of two-subband approximation in Sec. 5.2.1). We identify the two

subbands with the two pseudospin states, Ψ↑,↓ = φ↑,↓(z)YNφ/2,Nφ/2,m(θ, φ), where φ↑,↓ were

defined in (1.48) but we now label them as ↑ and ↓, instead of by their reflection symmetry

property (symmetric and antisymmetric, respectively). Y ’s represent monopole spherical har-

monics with −Nφ/2 ≤ m ≤ Nφ/2 (we assume that the states are entirely within the LLL). If the

energy splitting between the subbands is denoted by ∆SAS , the corresponding second quantized

Hamiltonian is given by [197]

H = −∆SASSz −∆ρSx +
1

2

∑

{m}

∑

{σ}
V σ1σ2σ3σ4

m1,m2,m3,m4
c†m1σ1

c†m2σ2
cm4σ4

cm3σ3
, (5.3)

where the first term stands for the Zeeman splitting between the subbands, followed by the

term which represents the density imbalance ∆ρ. For the infinite square well, ∆SAS is directly

determined by the width of the well w, however it is expected to be renormalized in each sample,

so it is convenient to think of it as a free parameter.

The matrix elements V σ1,σ2,σ3,σ4
m1,m2,m3,m4

can be evaluated from the Haldane pseudopotentials for the

effective in-plane interaction

V σ1,σ2,σ3,σ4

2D (r1 − r2) =
e2

ǫlB

∫

dz1

∫

dz2
φ∗σ1

(z1)φ
∗
σ2

(z2)φσ3
(z1)φσ4

(z2)
√

|r1 − r2|2 + (z1 − z2)2
, (5.4)

where the position variables are expressed in units of lB such that the integral is dimensionless.

To evaluate the pseudopotentials for the effective interaction (5.4) we sample the pseudopoten-

tials for the interaction 1/
√
r2 + z2 for many values of z and then use numerical interpolation

scheme to perform the integral over z variables.

As we are interested in the possible phases that may occur and the transitions between them, we

expect the model described by the Hamiltonian (5.3) to be qualitatively correct and in agreement

with other confinement models (e.g. the Fang-Howard, (1.14)) that assume the lowest subband

to be symmetric and the first excited one to have a node. Any difference of the confining potential

away from the infinite square well will modify the energy eigenvalues and the associated wave

functions φσ(z). However, it is expected that the energies are more strongly affected than the

wave functions. In particular, the nodal structure of the wave functions is robust, such that the

two lowest eigenstates of the infinite well faithfully represent the underlying features. However,

we will allow for the general values of the level splitting ∆SAS to account for the variations in

the eigen-energies.

5.2.1 Connection between the quantum-well model and the bilayer

The wide quantum well allows the electrons to reduce their mutual Coulomb repulsion by explor-

ing more efficiently the z-direction, and it has been argued that due to this effect, a spontaneous

bilayer may be formed, under appropriate conditions. [106, 109] Here, a connection is made

between both two-component models, on the basis of the Hamiltonian (5.3). We consider the
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quantum well to be symmetric around w/2, i.e. the lowest subband (↑) state is symmetric, and

the first excited one (↓) is antisymmetric. Furthermore, we consider, in this section, the electrons

to be in the 2D plane, for illustration reasons, although the conclusions remain valid also in the

spherical geometry.

The interaction part of the Hamiltonian (5.3) may be rewritten in terms of the density and spin-

density operators projected to a single Landau level. The Fourier components of the projected

density operator of pseudospin-σ electrons reads

ρ̄σ(q) =
∑

m,m′

〈

m
∣

∣e−iq·R∣
∣m′〉 c†mσcm′σ ,

in terms of the 2D wave vector q and the guiding-center operator R, the latter acting on the

states labeled by the quantum numbers m. It is furthermore useful to define the total (projected)

density operator

ρ̄(q) = ρ̄↑(q) + ρ̄↓(q) (5.5)

and the projected pseudospin density operators,

S̄µ(q) =
∑

m,m′

〈

m
∣

∣e−iq·R∣
∣m′〉 c†mσ

τµ
σ,σ′

2
cm′σ′ , (5.6)

where τµ
σ,σ′ are the usual 2× 2 Pauli matrices with µ = x, y, z.

Using (5.5) and (5.6), we can organize the terms in the Hamiltonian (5.3) into density-density

interaction and terms beyond, which may be described as a spin-spin interaction. Indeed, the

density-density part consists of the effective interactions (5.4) V ↑↑↑↑
2D , V ↓↓↓↓

2D , and V ↑↓↑↓
2D = V ↓↑↓↑

2D .

Notice that the interactions in the first excited subband (↓) are generally weaker than in the

lowest one (↓) because the wave function φ↓(z) possesses a node at w/2, in the center of the

well, i.e. V ↑↑↑↑
2D > V ↓↓↓↓

2D . With the help of the (spin) density operators (5.5) and (5.6), the

density-density part of the interaction Hamiltonian reads

Hρ−ρ =
1

2

∑

q

VSU(2)(q)ρ̄(−q)ρ̄(q) + 2
∑

q

V z
sb(q)S̄z(−q)S̄z(q) +

∑

q

V z
B(q)ρ̄(−q)S̄z(q), (5.7)

in terms of the SU(2)-symmetric interaction

VSU(2)(q) =
1

4

[

V ↑↑↑↑
2D (q) + V ↓↓↓↓

2D (q) + 2V ↑↓↑↓
2D (q)

]

, (5.8)

and the SU(2)-symmetry breaking interaction terms

V z
sb(q) =

1

4

[

V ↑↑↑↑
2D (q) + V ↓↓↓↓

2D (q)− 2V ↑↓↑↓
2D (q)

]

(5.9)

and

V z
B(q) =

1

2

[

V ↑↑↑↑
2D (q)− V ↓↓↓↓

2D (q)
]

. (5.10)

The remaining 12 interaction terms, which cannot be treated as density-density interactions, fall

into two different classes; the 8 terms with three equal spin orientations σ and one opposite −σ
are zero due to the antisymmetry of the integrand in Eq. (5.4). The remaining 4 interaction

terms with two ↑-spins and two ↓-spins are all equal due to the symmetry of the quantum well

around w/2,

V x
sb ≡ V ↑↑↓↓

2D = V ↓↓↑↑
2D = V ↑↓↓↑

2D = V ↓↑↑↓
2D . (5.11)

They yield the term

Hz
sb = 2

∑

q

V x
sb(q)S̄x(−q)S̄x(q) , (5.12)

which needs to be added to the interaction Hamiltonian (5.7), as well as the term

HSAS = −∆SAS S̄
z(q = 0) , (5.13)
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which accounts for the electronic subband gap between the ↑ and the ↓ levels, and the density-

imbalance term

H∆ρ = −∆ρ S̄x(q = 0). (5.14)

Collecting all terms, the Hamiltonian (5.3) thus becomes

H =
1

2

∑

q

VSU(2)(q)ρ̄(−q)ρ̄(q) + 2
∑

q

V x
sb(q)S̄x(−q)S̄x(q) + 2

∑

q

V z
sb(q)S̄z(−q)S̄z(q)

+
∑

q

V z
B(q)ρ̄(−q)S̄z(q)−∆SAS S̄

z(q = 0) −∆ρ S̄x(q = 0) . (5.15)

Several comments are to be made with respect to this result. First, we have checked that for the

infinite-square-well model as well as for a model with a parabolic confinement potential there is

a natural hierarchy of the energy scales in the Hamiltonian (5.15),

VSU(2) > V x
sb & V z

B & V z
sb . (5.16)

This hierarchy is valid for the interaction potentials in Fourier space and hence as for the pseu-

dopotentials as well.

Whereas the first term of the Hamiltonian describes the SU(2)-symmetric interaction, the second

and the third one break this SU(2) symmetry. Because V x
sb(q) > V z

sb(q) > 0 for all values of q,

states with no polarization in the x- and the z-direction are favored, with 〈Sx〉 = 0 and 〈Sz〉 = 0,

respectively. Due to the hierarchy (5.16) of energy scales, a depolarization in the x-direction is

more relevant than that in the z-direction. These terms are similar to those one encounters in

the case of a bilayer quantum Hall system, where due to the finite layer separation a polarization

of the layer isospin in the z-direction costs capacitive energy. [92]
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W

0.2

0.4

0.6

0.8

1.0

Vm
inter

Vm
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m=3

m=2

m=1

m=0

Figure 5.7: Ratio of the few strongest, inter and intra, bilayer pseudopotentials V inter
m /V intra

m

derived from an underlying quantum well model, as a function of width w. Note

the saturation of the ratios for large widths w, illustrating the limit of validity

of the quantum well model.

The fourth term of the Hamiltonian (5.15) is due to the stronger electron-electron repulsion in

the lowest electronic subband as compared to the first excited one, where the wave function

possesses a node at z = w/2. In order to visualize its effect, one may treat the density, which we

consider to be homogeneous in an incompressible state, on the mean-field level, 〈ρ̄(q)〉 = νδq,0,

in which case the fourth term of Eq. (5.15) becomes νV z
B(q = 0)S̄z(q = 0) and, thus, has the

same form as the subband-gap term (5.13). It therefore renormalizes the energy gap between the

lowest and the first excited electronic subbands, and it is natural to define the effective subband
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gap as

∆SAS → ∆̃SAS = ∆SAS − νV z
B(q = 0) = ∆SAS − γν

e2

ǫlB

w

lB
, (5.17)

where γ is a numerical prefactor that depends on the precise nature of the well model. The

expression (5.17) is easy to understand – whereas the subband gap ∆SAS tends to polarize

the system in the ↑ state, namely in narrow samples, the second term in Eq. (5.17) indicates

that the interactions are weaker in the ↓ subband. From the interaction point of view, it is

therefore energetically favorable to populate the first excited subband. This effect becomes

more pronounced in larger quantum wells. Notice furthermore that this argument also delimits

the regime of validity of the two-subband approximation of the wide quantum well; when the

term γν(e2/ǫlB)× (w/lB) becomes much larger than the bare subband gap ∆SAS , the electrons

may even populate higher subbands, which are neglected in the present model, and the system

eventually crosses over into a 3D regime.

It is also useful to consider an approximation to the Hamiltonian (5.3)

H ≃ 1

2

∑

q

VSU(2)(q)ρ̄(−q)ρ̄(q) + 2
∑

q

V x
sb(q)S̄x(−q)S̄x(q)− ∆̃SASS̄

z(q = 0). (5.18)

The Hamiltonian (5.18) neglects a particular term ∝ S̄z(−q)S̄z(q), which turns out to constitute

the lowest energy scale in the interaction Hamiltonian (5.3) [see Eq. (5.16)]. Notice that the

Hamiltonian (5.18) has the same form as the Hamiltonian which describes a bilayer quantum

Hall system, [92] up to a rotation from the z- to the x-axis. In this rotated reference frame, one

may define the intra- and inter-layer interactions as

Vintra(q) = VSU(2)(q) + V x
sb(q) =

1

4

[

V ↑↑↑↑
2D (q) + V ↓↓↓↓

2D (q) + 2V ↑↓↑↓
2D (q)

]

+ V ↑↑↓↓
2D (q) (5.19)

and

Vinter(q) = VSU(2)(q)− V x
sb(q) =

1

4

[

V ↑↑↑↑
2D (q) + V ↓↓↓↓

2D (q) + 2V ↑↓↑↓
2D (q)

]

− V ↑↑↓↓
2D (q) . (5.20)

As for the case of the true bilayer, the thus defined intra-layer interaction is stronger than the

inter-layer interaction, for all values of q.
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Figure 5.8: Densities of the single-particle states in the rotated frame, |±〉.

The above mapping of the WQW model onto the effective bilayer works best for not too large

well widths. As the well width W becomes very large, the effective bilayer distance d̃ saturates.

To see this, we can calculate the Haldane pseudopotentials V σ1σ2σ3σ4
m , where m is the relative

angular momentum of the two electrons. The pseudopotentials for the effective interaction (5.4),

written on the disk for simplicity, are

V σ1σ2σ3σ4

m =

∫

d2k

(2π)2
e−k2

Lm(k2)V σ1σ2σ3σ4

2D (k),
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number of particles N 6 8 10 6 8

number of flux 2Q 9 13 17 19 27

Lz = 0 (polarized) 19 151 1514 1242 61731

Lz = 0, Sz = 0 (SU(2) spin) 900 39131 2006736 37800 7613345

Lz = 0 (SU(2) with tunneling) 2496 123711 7050864 113128 26035319

Table 5.1: Maximum Hilbert space dimensions for some of the systems studied in this Chap-

ter.

where Lm is the Laguerre polynomial and the Fourier transform V σ1σ2σ3σ4

2D (k) can be evaluated

analytically. Then, we can construct linear combinations (5.19) and (5.20) of V σ1σ2σ3σ4
m to get

the effective bilayer pseudopotentials, V intra
m and V inter

m . We plot the ratios of the few strongest

V intra
m and V inter

m in Fig. 5.7 as a function of w. We notice that the limits saturate for large w,

indicating that the inter-layer repulsion decreases very slowly with respect to intra-repulsion for

larger w, thus suggesting that the model becomes unrealistic in this regime.

Since our ED calculations employ the Hamiltonian (5.3), in order to compare the numerical

results with the Halperin states (1.45) which are the native eigenstates of the true bilayer Hamil-

tonian, we can apply the mapping between the two models described above in a reverse fashion.

As Halperin wave functions are commonly labeled by the single particle states | ↑〉, | ↓〉 (which

are the eigenstates of Sz) and defined by interaction potentials {VA, VE}, we can imagine a lin-

ear transformation (rotation from z to x) that transforms them into (unnormalized) symmetric

|+〉 = | ↑〉+ | ↓〉 and antisymmetric |−〉 = | ↑〉 − | ↓〉 combinations. The single-particle densities

for the transformed states are shown in Fig. 5.8, thus |±〉 are “bilayer-like” single particle wave

functions, localized towards the sides of the well. Then, by inverting the Eqs. (5.19) and (5.20),

we obtain the set of interaction potentials that generate the Halperin states (m,m′, n) in a quan-

tum well description. In this Chapter, Halperin states (1.45) are understood to be indexed by

|+〉, |−〉 instead of the usual notation | ↑〉, | ↓〉, unless explicitly stated otherwise.

In the remainder of this Chapter we present results of the exact diagonalization of the Hamil-

tonian (5.3). We consider a range of systems some of which have rather large dimension of

the Hilbert space, listed in Tab. 5.1 which illustrates the exponential increase in Hilbert space

dimension with the number of particle and number of internal degrees of freedom.
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Figure 5.9: Phase diagram in ∆ρ − ∆SAS space for the quantum well of N = 8 particles on

the sphere, w/lB = 2.0 (left) and w/lB = 4.0 (right): overlaps between the exact

ground state and Halperin 331 state (a), Moore-Read Pfaffian (b), and the mean

value of Sx (c) and Sz (d) operator of pseudospin.
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5.3 ν = 1/2 in a quantum well

At the filling factor ν = 1/2 the competing phases we consider here are the 331 Halperin state

and the Moore-Read Pfaffian (in Ref. [140] data can be found also for the Haldane-Rezayi state,

[62]).

In Fig. 5.2.1 we show the overlaps with each of the competing phases, along with the mean

values of Sx and Sz operators. The system is N = 8 electrons for two values of the quantum

well width, w/lB = 2.0 and w/lB = 4.0. Regarding the 331 state, we note that its high overlap

is surprisingly robust to variation in either ∆SAS or ∆ρ. On the other hand, the Pfaffian state

appears only for large values of the imbalance and in the region where the system is fully x-

polarized (maximum 〈Sx〉). This means that we have effectively a single-component system,

although with a more complicated interaction. However, as we have already shown in Chapter

4, the Pfaffian in this kind of system is very fragile. It can describe a phase with a minuscule

gap or an excited state of the CFL.
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Figure 5.10: Phase diagram in ∆ρ−∆SAS space for the quantum well of N = 8 particles on

the sphere at ν = 1/2 in the second LL and width w/lB = 4.0: overlaps between

the exact ground state and Halperin 331 state (a), Moore-Read Pfaffian (b),

and the mean value of Sx (c) and Sz (d) operator of pseudospin.

We also note that the highest overlap with the Pfaffian occurs for the same value of ∆SAS for

which the 331 overlap is maximal. This testifies to the transition proceeding via the destruction

of the 331 state under the increase of density imbalance. In the experiment, however, imbalancing

the quantum well leads also to the increase in ∆SAS , [120] which suggests that in interpreting

the plots, our system may be evolving along curved trajectories in the ∆SAS − ∆ρ diagram.

Note, furthermore, that we have defined our 331 state to be an eigenstate of the Sx operator in

the terminology of the true bilayer and not the usual Sz operator (naively defining the Halperin

state to be the eigenstate of Sz does not give any appreciable overlap with the exact ground

state). There is a simple reason why this needs to be done: because the states of the quantum

well possess nodal structure (1.48), the true bilayer states (like the Halperin states) need to be

rotated first from z to x direction, in order to match the property of reflection (anti)symmetry,

before direct comparison can be made.

If we multiply the interaction with the appropriate form factors to describe the second LL, Fig.

5.10, we notice that 331 state is significantly weaker and the transition to the Pfaffian starts

from a compressible state. This is consistent with the expectations for the second LL where

Halperin states are generally weak and ν = 5/2 is described by the Moore-Read state.
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Figure 5.11: Neutral gap for N = 8 electrons on the sphere at ν = 1/2 in the LLL and

imbalance set to ∆ρ = 0.1e2/ǫlB , as a function of width w and tunneling

∆SAS .

Another quantity which can give some insight into the stability of a state is the neutral gap for

creating a particle-hole excitation, Fig. 5.11. We again work in the LLL and set the imbalance to

a value where the Pfaffian state is much stronger than the 331 state, but neither of the overlaps

is strictly zero. Even in this “unfavorable” situation for the 331 state, we find that the neutral

gap is largest in the regions of the phase diagram that correspond to a nonzero overlap with the

331.
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Figure 5.12: Energy spectrum of the quantum well Hamiltonian (5.3) for ∆SAS = ∆ρ = 0

and various widths of the well w in the torus geometry (N = 8 electrons at

ν = 1/2 and aspect ratio 0.97).

If we study the quantum well model in the torus geometry, we can distinguish phases by their

topological degeneracy (Sec. 2.2.2). In Fig. 5.12 we show the LLL torus spectra for N = 8

electrons in the quantum well as a function of width w, when both tunneling and imbalance are

set to zero. In this limit, Sz is a good quantum number. For small w there is a complicated

structure in the lowest-lying part of the spectrum, but beyond w = 4.5lB a characteristic four-

fold degeneracy emerges, signifying the 331 state.

We know that applying the imbalance to the 331 state, at best, may lead to a “critical” Pfaffian

state which has a small gap and is very sensitive to the variation of the interaction parameters.

Therefore, we set w = 4.0lB which places us in the transition region and study the effect of

imbalance, Fig. 5.13. Although we see a gap opening up, the ground state multiplet does not
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5.4 ν = 1/4 in a quantum well
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Figure 5.13: Energy spectrum of the quantum well Hamiltonian (5.3) on the torus for w =

4.0lB , ∆ = 0.004e2/ǫlB as the imbalance is increased from zero (N = 8 electrons

at ν = 1/2 in the LLL and aspect ratio 0.97).

have the correct topological degeneracy of the Moore-Read state.

5.4 ν = 1/4 in a quantum well

We proceed with analyzing the quantum well at ν = 1/4, Fig. 5.14. The competing phases are

the 553, 771 and 5,13,1 Halperin states, the Moore-Read ν = 1/4 Pfaffian and the Haldane-

Rezayi state at ν = 1/4. The overlap with the 771 and 5,13,1 state is negligible in the range

of widths w/lB . 10.0, and therefore we will exclude them from the present discussion. Note

that, similarly to the 331 state in Sec. 5.3, the 553 state hereinafter is defined as an eigenstate

of the Sx operator (if defined as an eigenstate of Sz, the overlap with the exact ground state is

negligible). In this Section we also set the imbalance term to zero.
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Figure 5.14: Overlap between the exact Coulomb state of the quantum well for N = 8

particles on the sphere at ν = 1/4 with the 553 Halperin state (a), the Moore-

Read Pfaffian (b) and Haldane-Rezayi (c) state. The expectation value of the

Sz component of the pseudospin is plotted in (d).

The 553 state is found in a sizable parameter range, but the maximum overlap is moderate

compared to the 331 case previously studied (0.74 for w/lB = 4.5). Haldane-Rezayi state

generally has a small overlap (not exceeding 0.2) and the evolution of 〈Sz〉 is remains smooth,
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whereas the Moore-Read Pfaffian develops with the increase in ∆SAS but, once the system

reaches full polarization, it is destroyed (compare with Fig. 4.6). To shed more light on how

this occurs, it is useful to look at the “cross section” of Fig. 5.14 for a fixed value of the width

w/lB = 10.5, chosen to represent the region where the Pfaffian phase is most clearly pronounced

(Fig. 5.15).
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Figure 5.15: Overlap between the exact Coulomb state of the quantum well for N = 8

particles on the sphere at ν = 1/4 and w/lB = 10.5 with the 553 Halperin

state, the Moore-Read Pfaffian and Haldane-Rezayi states (left axis). The

expectation value of the Sz component of the pseudospin is given on the right

axis. The shaded region denotes where the ground state is no longer rotationally

invariant (L > 0).

Although the Pfaffian overlap peaks in the region where that of 553 starts to drop, very abruptly

both overlaps fall to zero, and the ground state is no longer rotationally invariant. The fact that

L > 0 is a hallmark of compressibility. Precisely at the transition point, a small kink is now

visible in 〈Sz〉. A compressible ground state with L > 0 may also indicate a phase with modulated

charge density, such as the Wigner crystal. Indeed, an insulating behavior, as one would expect

for an electron crystal, has been found at filling factors slightly above ν = 1/5. [198] Such a

state is not captured in the present ED calculations on the sphere.

5.5 Conclusion

In this Chapter we have presented a realistic model for the wide quantum wells used in the

experiments of Luhman et al. and Shabani et al. Several candidate states, multicomponent

Halperin and single-component, non-Abelian states, have been studied systematically within this

model of the quantum well in exact diagonalization. Halperin states, as a rule, are generically

very robust to perturbation by either tunneling ∆SAS or density imbalance ∆ρ. The non-Abelian

states such as the Moore-Read Pfaffian at ν = 1/2 and ν = 1/4 are obtained in the regime when

the system is fully x-polarized, but the caveats are the very small gaps and proximity to the

compressible CFL state. On the basis of the mapping between a quantum well and a bilayer

Hamiltonian, these conclusions agree with our bilayer results in Chapter 4.

Although we believe that our quantum well model takes properly into account the effects of

finite thickness, we have entirely neglected the effect of the in-plane magnetic field which may

nevertheless prove essential in order to stabilize the incompressible state at ν = 1/4 in the

experiment of Luhman et al.. The existing experimental work [199] on the ν = 2/3 state

witnessed that the introduction of an in-plane magnetic field may lead to a strengthening of

the minimum in Rxx, thus inducing the same one-component to two-component transition as

by varying ∆SAS . Similar strengthening occurs for ν = 1/2 if the tilt is not too large. [199]

Therefore, the application of the in-plane field may be a likely reason to further stabilize the 553

state at ν = 1/4 if the symmetric-antisymmetric gap ∆SAS is sufficiently small. Including the
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5.5 Conclusion

effect of an in-plane field is a rather complicated problem, even in the simpler models, because

the motion along z-axis is no longer separable from the in-plane motion. Another possibility is

that ν = 1/2 state in the wide quantum well is an imbalanced two-component CF state, [122]

however there is no such simple candidate for ν = 1/4.

In order to answer without ambiguity which of the possibilities is actually realized in the quantum

well under the experimental conditions of Refs. [118, 119], it would be useful to know the

dependence of the activation gap as a function of ∆SAS and also as a function of transferred

charge from the front to the back of the quantum well using a gate biasing. These results would

help to discriminate between the one-component and two-component nature of the ground state.
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Chapter 6

Graphene as a multicomponent

FQH system

This Chapter explores interacting states in graphene in a strong magnetic field. Due to the

valley and spin degrees of freedom, graphene can be described by an internal SU(4) symmetry.

We analyze how the four-component structure of graphene may have particular signatures in

possible FQHEs. We introduce the interaction model for electrons restricted to a single graphene

LL (Sec. 6.1) and concentrate on the spin-valley SU(4) symmetric part of the interaction model,

which constitutes the leading energy scale. In Section 6.2 we investigate via the pseudopotential

method the possible FQH states in graphene in the LLs n = 0 and 1. Recent reviews [200, 201]

contain many details on the interaction model for graphene and expectations for a FQHE, as

well as the original papers [200] and [202] that this Chapter is based on.

6.1 Interaction model for graphene in a strong magnetic

field

From a theoretical point of view, long-range interactions in graphene are expected to be relevant.

Let us look at the dimensionless ratio rs of the characteristic Coulomb energy EC and the kinetic

energy Ekin:

rs =
EC

Ekin
=

e2/ǫl

~vF kF
≈ 2.2

ǫ
, (6.1)

where we substituted EC = e2/ǫl (l being the average inter-electronic distance and ǫ the dielectric

constant of the graphene sheet environment) and Ekin = ~vF kF ∼ ~vF /l, vF being the Fermi

velocity. Therefore, the ratio rs places graphene in an intermediate range of correlation strengths

(large values of rs would signal strong coupling). Notice in (6.1) that a convenient way to vary

the correlation strength in graphene is via adjustment of the dielectric constant of the substrate.

Additionally, we can estimate the Thomas-Fermi wave vector kG
TF which defines the characteristic

length λTF ∼ 1/kG
TF above which the Coulomb interaction potential is screened:

kG
TF ∼ rskF ∼

√
nel, (6.2)

which vanishes at the Dirac points where the carrier density nel goes to zero. Therefore, the

screening length is very large in graphene and one has to treat the long-range Coulomb interaction

directly, instead of attempting to use a Hubbard-like model.

In order to quantify the degree of separation between the energy scales in graphene in the

magnetic field, one needs to compare the typical energy for exchange interaction

VC = e2/ǫRC ≃ 25
√

B[T]/ǫ
√

2n+ 1 meV,
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in terms of the cyclotron radius RC = lB
√

2n+ 1, with the magnetic length lB =
√

~/eB =

25/
√

B[T] nm, to the LL separation

∆n =
√

2~(vF /lB)(
√
n+ 1−

√
n).

In spite of the decreasing LL separation in the large-n limit, the ratio between both energy scales

remains constant and reproduces the fine-structure constant of graphene,

αG = VC/∆n = e2/~vF ǫ ≃ 2.2/ǫ.

Notice that the Coulomb interaction respects the fourfold spin-valley degeneracy to lowest order

in a/lB ≃ 0.005
√

B[T], where a = 0.14 nm is the distance between nearest-neighbour carbon

atoms in graphene. [201] This fourfold spin-valley symmetry is described in the framework of the

SU(4) group which covers the two copies of the SU(2) spin and the SU(2) valley isospin. Lattice

effects break this SU(4) symmetry at an energy scale VC(a/lB) ≃ 0.1B[T]/ǫ meV [203, 204, 205,

206], which is roughly on the same order of magnitude as the expected Zeeman effect in graphene

[207]. Other symmetry-breaking mechanisms have been proposed [208, 209, 210, 211] but happen

to be equally suppressed with respect to the leading interaction energy scale VC . An exception

may be graphene on a graphite substrate, where the natural lattice commensurability of the

substrate and the sample may lead to a stronger coupling than for graphene on a SiO2 substrate

[212]. This yields a mass term in the Dirac Hamiltonian which lifts the valley degeneracy of the

zero-energy LL [208].

Based on these considerations, graphene in a strong magnetic field may thus be viewed as a

four-component quantum Hall system. An interesting theoretical expectation resulting from

this feature is the formation of a quantum Hall ferromagnet at ν = ±1 [203, 204, 213, 214] with

SU(4)-skyrmion excitations, which may have peculiar magnetic properties [214, 215]. Also for

the FQHE, the SU(4) spin-valley symmetry is expected to play a relevant role and has been

considered within a CF approach [216] as well as one based on SU(4) Halperin wave functions

[87, 126].

In the case of a partially filled LL, we can use the Hamiltonian we defined in (1.19), describing

only intra-LL excitations, where the Fourier components ρλn(q) of the density operator are

constructed solely from states within the n-th LL in the band λ (λ = + for the conduction and

λ = − for the valence band). This construction is analogous to that used in the conventional

2DEG, but the density operators ρn(q) are now built up from spinor states of the 2D Dirac

equation,

ψξ
λn,m =

1√
2

(

|n− 1,m〉
λ|n,m〉

)

(6.3)

for n 6= 0 and

ψξ
n=0,m =

(

0

|n = 0,m〉

)

(6.4)

for the zero-energy LL n = 0, in terms of the harmonic oscillator states |n,m〉 and the guiding-

center quantum number m = 0. Here, we have chosen the first component of the spinor to

represent at the K point (ξ = +) the amplitude on the A sublattice and that on the B sublattice

at the K ′ point (ξ = −). Notice that the valley and the sublattice indices happen to be the same

in the zero-energy LL n = 0 and that, thus, a perturbation that breaks the inversion symmetry

(the equivalence of the two sublattices) automatically lifts the valley degeneracy [208, 209, 210,

211]. In terms of the spinor states (6.3) and (6.4), the density operator may be written

ρλn(q) =
∑

ξ,m

(

ψξ
λn,m

)†
e−iq·rψξ

λn,m′c
†
λn,m;ξcλn,m′;ξ , (6.5)

where c
(†)
λn,m;ξ annihilates (creates) an electron in the state ψξ

λn,m. In Eq. (6.5), we have neglected

the contributions that are off-diagonal in the valley index. Indeed, these contributions give rise
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to a rapidly oscillating phase exp(±iK · r) in the matrix elements, where ±K = ±(4π/3
√

3a)ex

is the location of the K and K ′ points, respectively, and yield terms in the Hamiltonian (1.19),

which break the valley-SU(2) symmetry of the interaction. They are suppressed by a factor a/lB
with respect to the leading interaction energy scale e2/ǫlB [203] and, for the sake of simplicity

and because of their smallness, we neglect these terms here.

Within the symmetric gauge, A = (B/2)(−y, x, 0), the position operator r in Eq. (6.5) may be

decomposed into the guiding-center position R and the cyclotron variable η. Whereas the latter

only affects the quantum number n, R acts on m, and we may therefore rewrite the density

operator (6.5), ρλn(q) = Fn(q)ρ̄(q), as a product of the projected density operator

ρ̄(q) =
∑

ξ;m,m′

〈

m
∣

∣e−iq·R∣
∣m′〉 c†λn,m;ξcλn,m′;ξ (6.6)

and the graphene form factor

Fn(q) =
1

2

(〈

n− 1
∣

∣e−iq·η∣
∣n− 1

〉

+
〈

n
∣

∣e−iq·η∣
∣n
〉)

=
1

2

[

Ln−1

(

q2

2

)

+ Ln

(

q2

2

)]

e−q2/4

(6.7)

for n 6= 0, in terms of Laguerre polynomials, and

Fn=0(q) =
〈

0
∣

∣e−iq·η∣
∣ 0
〉

= e−q2/4 (6.8)

for n = 0. With the help of the projected density operators, the interaction Hamiltonian (1.19)

reads

Hλn =
1

2

∑

q

vG
n (q)ρ̄(−q)ρ̄(q), (6.9)

where we have defined the effective interaction potential for graphene LLs,

vG
n (q) =

2πe2

ǫq
[Fn(q)]

2
. (6.10)

Notice that the structure of the Hamiltonian (6.9) is that of electrons in a conventional 2DEG

restricted to a single LL if one notices that the projected density operators satisfy the magnetic

translation algebra [45]

[ρ̄(q), ρ̄(q′)] = 2i sin

(

q′ ∧ q

2

)

ρ̄(q + q′), (6.11)

where q′ ∧ q ≡ q′xqy − qxq′y is the 2D vector product. This is a remarkable result in view of

the different translation symmetries of the zero-field Hamiltonian; whereas the electrons in the

2DEG are non-relativistic and therefore satisfy Galilean invariance, the relativistic electrons

in graphene are Lorentz-invariant. However, once submitted to a strong magnetic field and

restricted to a single LL, the translation symmetry of the electrons is described by the magnetic

translation group in both cases.

6.1.1 SU(4) symmetry

The most salient difference between the conventional 2DEG and graphene arises from the larger

internal symmetry of the latter, due to its valley degeneracy. This valley degeneracy may be

accounted for by an SU(2) valley isospin in addition to the physical SU(2) spin, which we

have omitted so far and the symmetry of which is respected by the interaction Hamiltonian.
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Figure 6.1: Pseudopotentials for graphene and the 2DEG in n = 0 (graphene and 2DEG,

circles), n = 1 (graphene, squares), and n = 1 (2DEG, triangles). The energy is

measured in units of e2/ǫlB . The lines are a guide to the eye.

Similarly to the projected charge density operator (6.6), we may introduce spin and isospin

density operators, S̄µ(q) and Īµ(q), respectively, with the help of the tensor products [215]

S̄µ(q) =
(

Sµ ⊗ 1̂
)

⊗ ρ̄(q),

Īµ(q) =
(

1̂⊗ Iµ
)

⊗ ρ̄(q). (6.12)

Here, the operators Sµ and Iµ are (up to a factor 1/2) Pauli matrices, which act on the spin and

valley isospin indices, respectively. The operators (Sµ ⊗ 1̂) and (1̂⊗ Iµ) may also be viewed as

the generators of the SU(2)×SU(2) symmetry group, which is smaller than the abovementioned

SU(4) group. However, once combined in a tensor product with the projected density operators

ρ̄(q), the SU(2)×SU(2)-extended magnetic translation group is no longer closed due to the non-

commutativity of the Fourier components of the projected density operators. By commutating

[S̄µ(q), Īν(q)], one obtains the remaining generators of the SU(4)-extended magnetic translation

group [215], which is, thus, the relevant symmetry that describes the physical properties of

electrons in graphene restricted to a single LL.

6.1.2 Effective interaction potential and pseudopotentials

Another difference, apart from the abovementioned larger internal symmetry, between the 2DEG

and graphene in a strong magnetic field arises from the slightly different effective interaction

potentials in the n-th LL. The effective interaction for graphene is given by Eq. (6.10) whereas

that in the conventional 2DEG reads

v2DEG
n (q) =

2πe2

ǫq

[

Ln

(

q2

2

)

e−q2/4

]2

. (6.13)

The difference between the two of them vanishes for n = 0, as well as in the large-n limit [203],

but leads to quite important physical differences in the first excited LL (n = 1) when comparing

graphene to the 2DEG.

For the discussion of the FQHE, as we have seen in Chapter 2, it is more appropriate to use

Haldane’s pseudopotential construction. In the plane, the pseudopotentials of a given interaction

potential vn(q) in Fourier space, such as (6.13) or (6.10), are easily obtained with the help of

V n
ℓ =

∑

q

vn(q)Lℓ(q
2)e−q2/2. (6.14)

The pseudopotentials for n = 0 and n = 1 in graphene and the 2DEG are shown in Fig. 6.1,

which allows us to make some qualitative statements about a potential FQHE in graphene as

compared to that of the 2DEG. First, apart from the internal symmetry, the polarized FQHE

states in the zero-energy LL are expected to be the same in graphene as in the 2DEG because

there is no difference in the effective interaction potential. The only difference stems from the

larger internal symmetry in graphene, which affects the unpolarised FQHE states in n = 0.
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Second, the n = 1 LL in graphene is much more reminiscent of the n = 0 LL than of the n = 1

LL in the 2DEG. From an interaction point of view, one would therefore expect that the quantum

phases encountered in the n = 1 graphene LL are merely a copy of those in n = 0. Furthermore,

if one considers spin-polarised FQHE states, only pseudopotentials with odd angular momentum

are relevant due to the fermionic nature of the electrons. It is apparent from Fig. 6.1 that odd-ℓ

pseudopotentials are systematically larger in n = 1 than in n = 0. Therefore, the overall energy

scale of FQHE states in n = 1 is slightly larger (by ∼ 10%) than in n = 0, and one would expect,

somewhat counterintuitively, that the n = 1 FQHE states are more stable than those in n = 0,

for the same B-field value. These qualitative predictions [203] have been corroborated within

ED studies, where only the valley isospin degree of freedom was considered and the physical spin

was taken as completely polarized [217, 218].

6.2 Multicomponent trial wave functions for graphene

In the following, we consider some particular subclasses of the trial wave functions (1.47), which

are natural candidates for a FQHE in graphene. Explicitely, we label the four spin-valley com-

ponents as 1 = (↑,K), 2 = (↑,K ′), 3 = (↓,K), and 4 = (↓,K ′), where the first component

denotes the spin orientation (↑ or ↓) and the second the valley (K or K ′). We investigate wave

functions, where all intracomponent exponents are identical mi = m, i.e. we consider the same

interaction potential for any of the components, as it is the case in graphene. Furthermore, we

consider n13 = n24 ≡ na and n12 = n14 = n23 = n34 ≡ ne, which makes an explicit distinction

between inter-component correlations in the same valley (na) and those in different valleys (ne).

This distinction may occur somewhat arbitrary – indeed, it does no longer treat the spin on the

same footing as the valley isospin – but it happens to be useful in some cases if one intends to

describe states with intermediate polarization, such as for a moderate Zeeman field. The equiv-

alence between spin and valley isospin is naturally restored for ne = na. We use the notation

[m;ne, na] to describe these subclasses of trial wave functions (1.47), the validity of which we

check by ED of N particles on a sphere [42].

6.2.1 [m; m,m] wave functions

If all exponents are identical odd integers m, we obtain a completely antisymmetric orbital

wave function, which is nothing other than the Laughlin wave function (1.20). In this case, the

distinction between the components vanishes, and the component filling factors are not fixed –

one may, without changing the orbital wave function, fill only one particular component as well

as another or distribute the particles over all components. Only the total filling factor is fixed

at ν = 1/m. The corresponding exponent matrix M (1.56) is indeed not invertible (of rank 1),

and the residual freedom of distributing the electrons over the four components may be viewed

as the arbitrary orientation of a four-spinor in SU(4) space. The Laughlin wave function in

graphene is therefore associated with an SU(4) ferromagnetism, similar to that of the state at

νG = ±1 [203, 204, 213, 214, 215], where a graphene quantum Hall effect has been observed at

high magnetic fields [207].

As already mentioned above, the Laughlin wave function has the good property of screening all

pseudopotentials with angular momentum ℓ < m and has, for m = 3, the usual large overlap

with the Coulomb ground state [216]. However, states described by the [m;m,m] wave function

are ground-state candidates for the filling factors ν = 1/m, which correspond to the graphene

filling factors (see Eq. 1.57) νG = −2+1/m or hole states at νG = 2−1/m. These filling factors

do not correspond to the FQHE at νG = ±1/3 observed in the experiments [124, 125].
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Figure 6.2: Splitting of the single-particle SU(4) energy levels in the presence of Zeeman

field ∆z, with the remaining SU(2) degeneracy due to the valley index K.

6.2.2 νG = 1/3 state in graphene

If the spin-valley degeneracy is (at least partially) lifted, e.g. in the manner of Fig. 6.2, we may

understand the νG = 1/3 state as the ν = 2+1/3 FQH state of a 2DEG system with an internal

SU(4) symmetry which is broken by a Zeeman field. This would require the Zeeman field to be

enhanced, e.g. via a cooperative effect by the formation of a quantum Hall ferromagnetism as

the background state at νG = 0. If so, the natural trial state for this system would be given by,

in the obvious notation,

ΨSU(4) =
∏

i<j

(z
K+,↑
i − zK+,↑

j )
∏

k<l

(z
K−,↑
k − zK−,↑

l )

∏

m<n

(zK+,↓
m − zK+,↓

n )3
∏

p<q

(zK−,↓
p − zK−,↓

q )3
∏

r,s

(zK+,↓
r − zK−,↓

s )3, (6.15)

where the first line describes a filled ↑ shell and the remaining part is the effective SU(2) ferro-

magnet state at ν = 1/3 in the ↓ shell. If the SU(4) symmetry is not broken by a field such as

Zeeman, there will be many more degenerate states and the wave function (6.15) is not expected

to represent the ground state. We will present arguments that the wave function (6.15) describes

interesting physics beyond the simple Laughlin ν = 1/3 FQH state. Because of the numerical

difficulty of treating explicitly the SU(4) case, we focus on the analogous toy model with the

broken SU(2) symmetry:

ΨSU(2) =
∏

i<j

(z↑i − z
↑
j )
∏

k<l

(z↓k − z
↓
l )3. (6.16)

The spectrum of the SU(2) model as a function of Zeeman field ∆z is given in Fig. 6.3. The

wave function ΨSU(2) (6.16) can be shown to occur for the number of flux quanta given by

Nφ = 3/4N − 3/2 on the sphere. The data shown is for the largest system (N,Nφ) = (22, 15)

where ΨSU(2) is found in the sector with 2Sz = 10. This is also the largest value of Sz for

which an incompressible state can be constructed for the given (N,Nφ). Therefore, in our finite

system, as ΨSU(2) becomes the ground state for some nonzero ∆z, it remains the ground state

regardless of the how large the Zeeman field becomes. Note that we have shown only one or

two lowest lying energies per Sz sector, therefore the upper part of Fig. 6.3 may have additional

levels beyond those shown. These, however, are of no importance for our discussion.

We must stress that the system sizes we have considered here are rather small: in the Sz sector

that corresponds to ΨSU(2), the rotationally invariant L = 0 subspace has dimension 6 for

N = 22. We believe nevertheless that for a state such as Laughlin’s, this is sufficient to uncover

the essential physics. The physical picture that emerges from Fig. 6.3 is the following. For zero

or very small ∆z, our trial wave function is not a good description of the ground state. As soon

as there is some amount of Zeeman splitting (≈ 0.01e2/ǫlB), it becomes the ground state of the

system (with 0.99 overlap). However, the excitation spectrum at that point is still not that of

the Laughlin state due to the presence of the low-lying spin-flip excitations.
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Figure 6.3: Energy spectrum for N = 22 electrons at the filling ν = 1 + 1/3 as a function of

∆z. We highlight the states belonging to particular Sz sectors for comparison.
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Figure 6.4: Energy spectrum relative to the ground state for N = 22 electrons at the filling

ν = 1 + 1/3 as a function of angular momentum L and for the fixed ∆z =

0.05e2/ǫlB . We highlight the states belonging to the particular Sz sectors that

define the lowest-lying spin-flip excitations. The magnetoroton branch is shown

in green for 2Sz = 10.

More specifically, we can study the spectrum as a function of angular momentum L for a fixed

value of ∆z = 0.05e2/ǫlB in the middle of this region, Fig. 6.4. The green symbols show the

Laughlin ground state and a fully developed magnetoroton branch. The magnetoroton branch is

expected to become the lowest excitation for large values of ∆z (above 0.08e2/ǫlB in Fig. 6.3),

when the system displays the complete phenomenology of the Laughlin ν = 1/3 FQH state. For

intermediate Zeeman field we predict that, although the ground state is the Laughlin state, there

is a possibility for a richer spectrum of excitations involving spin. Additional studies are needed

to identify the excitations in this regime of Zeeman fields and determine the critical ∆z.

6.2.3 [m; m− 1,m] wave functions

Another simple choice for the multicomponent wave function is [m;m−1,m], where the intervalley-

component exponents are decreased by one. It also screens all pseudopotentials Vℓ<m in any

pair of electrons within the same valley, but an electron pair in two different valleys is affected
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6. GRAPHENE AS A MULTICOMPONENT FQH SYSTEM

number of particles N 4 6 8 10

overlap O in n = 0 0.990 0.985 0.979 0.970

overlap O in n = 1 0.965 0.882 0.896 0.876

Table 6.1: Overlap O between the 332 wave function and the state obtained from exact

diagonalization of the effective interaction potential in n = 0 and n = 1.

by the pseudopotential Vℓ=m−1. The filling factor, where this wave function may occur, is

ν =
2

2m− 1
,

i.e. at slightly larger densities as the Laughlin wave function with the same m. The exponent

matrix M is still not invertible but of rank 2, and indeed only the filling factors in the two valleys,

νK = ν1 + ν3 and νK′ = ν2 + ν4, respectively, are fixed, νK = νK′ = 1/(2m − 1). The wave

function, thus, describes a state with ferromagnetic spin ordering, but which is valley-isospin

unpolarized. One may alternatively view this [m;m−1,m] wave function as a tensor product of

an SU(2) Halperin (m,m,m− 1) isospin-singlet wave function [86] and a completely symmetric

(ferromagnetic) two-spinor that describes the physical spin.

We have verified within exact diagonalization calculations that the [3; 2, 3] wave function (m = 3)

describes indeed, to great accuracy, the ground state in graphene at ν = 2/5. It was shown by

ED in Ref. [216] that, for N = 4 and 6 particles, the physical properties are indeed governed by

an SU(2) symmetry, as suggested by the [m;m− 1,m] wave function. The overlap between this

trial state and the one obtained by ED with an implemented SU(2) symmetry of the Coulomb

interaction in n = 0 and 1 is shown in Tab. 6.1 for up to 10 particles. [200] It is above 97%

for all studied system sizes in the zero-energy LL n = 0, but slightly smaller (∼ 88%) in n = 1.

We have used the planar pseudopotentials (6.14) in the calculation of the n = 1 LL and checked

that the difference is less than 1% in n = 0 when compared to using the more accurate spherical

ones, even for the smallest system sizes N = 4 and 6.

It has been shown that the ground state at ν = 2/5 in the conventional 2DEG is well described

by an unpolarized 332 SU(2) Halperin wave function once the spin degree of freedom is taken into

account [219]. This wave function is identical to the CF wave function when including the SU(2)

spin. The energy difference between the polarized and the unpolarized 2/5 states is, however,

relatively small as compared to the Zeeman effect at the corresponding magnetic fields, such that

a polarized state is usually favoured. Intriguing spin transitions have furthermore been observed

experimentally at ν = 2/5 and hint to even more complex physical properties of the 2/5 FQHE

[220, 221]. Notice that the situation of the [3; 2, 3] state in graphene is remarkably different from

that in the 2DEG: even in the presence of a strong Zeeman effect, only the ferromagnetically

ordered physical spin is polarized, while the state remains a valley-isospin singlet. Whether such

a valley-isospin singlet state is indeed encountered in graphene depends sensitively on the valley-

symmetry breaking terms; whereas a possible easy-axis ferromagnetism, as has been proposed

for the zero-energy LL n = 0 [204], may destroy the [3; 2, 3] state, it is favoured in the case

of an easy-plane valley-isospin anisotropy, which may occur in the n = 1 graphene LL due to

intervalley coupling terms of the order VC(a/lB) [203].

We have furthermore studied the 554 wave function (m = 5) at ν = 2/9. Its overlap with the

state obtained by ED is lower than for the (3, 3, 2) case (with O = 0.941 for N = 4 and O = 0.892

for N = 6), but remains relatively high.

6.2.4 [m; m− 1,m− 1] wave functions

Another candidate is the [m;m− 1,m− 1] wave function [87] which may describe FQHE states

at

ν =
4

4m− 3
.
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The corresponding exponent matrix M is now invertible, and the filling factor of each spin-

valley component is ν = 1/(4m− 3), i.e. the state is an SU(4) singlet. As for the [m;m,m] and

[m;m−1,m] wave functions, all intracomponent correlations are such that the pseudopotentials

Vℓ<m are screened, but Vℓ=m−1 is relevant for all intercomponent interactions.

As an example, we consider the [3; 2, 2] wave function (m = 3), which is a candidate for a possible

graphene FQHE at ν = 4/9. Our ED calculations with an implemented SU(4) symmetry, for

N = 4 and 8 particles, indicate that this trial wave function describes indeed to great accuracy

the ground state for the Coulomb interaction potential in the n = 0 LL, with an overlap of

O = 0.999 for N = 4 and O = 0.992 for N = 8. In n = 1, it is O = 0.944 for N = 8, for the

case where one uses the planar pseudopotentials (6.14). These results indicate that a possible

4/9 FQHE state in graphene is, remarkably, of a completely different nature than the CF state

at ν = 4/9 in a one-component system, such as the conventional 2DEG with complete spin

polarization. It is, nevertheless, an open issue to what extent the SU(4) singlet state survives if

one takes into account the Zeeman effect at high magnetic fields, which favours a polarization

in the spin channel. A complementary CF calculation with an SU(4) symmetry has revealed

that, at ν = 4/9, states with intermediate SU(4) isospin polarization – such as a valley-isospin

singlet with full spin polarization – may exist, with a slightly higher energy than the CF SU(4)

singlet [216], which is indeed identical to the [3; 2, 2] wave function. One may, therefore, expect

a transition between two 4/9 states with different polarization when the Zeeman energy outcasts

the energy difference between the two states. This is similar to the abovementioned 2/5 state in

a conventional 2DEG [219].

6.3 Conclusions

In conclusion, we have investigated theoretically some particular features of the FQHE in

graphene as compared to the 2DEG. The electrons in graphene lose their relativistic charac-

ter associated with the Lorentz invariance once they are restricted to a single LL, in which case

the translations are governed by the magnetic translation group, as in the 2DEG case. The

main difference between the 2DEG and graphene arises from the approximate SU(4) spin-valley

symmetry, which is respected in a wide energy range. Another difference arises from the spinor

character of the wave functions, which yields a different effective electron-electron interaction in

graphene as compared to the 2DEG. The graphene interaction potential in the first excited LL

n = 1 (in both the valence and the conduction band) is shown to be similar to that in the central

zero-energy LL n = 0, yet with a slightly larger overall energy scale (roughly 10% larger).

The FQHE at ν = 1/3 is described as a Laughlin state [32] with SU(4)-ferromagnetic spin-valley

ordering, similar to the state at ν = 1 [203, 204, 213, 214, 215]. We have presented an additional

candidate for the νG = 1/3 state with a symmetry broken by the Zeeman field. The latter has

the ground state described by the Laughlin wave function and novel spin excitations for the

intermediate range of Zeeman fields.

Furthermore, the system may profit from its internal degrees of freedom by choosing a state with

partial and full SU(4)-isospin depolarisation at ν = 2/5 and ν = 4/9, respectively. The [3; 2, 3]

state at ν = 2/5 is a valley-isospin singlet, but its physical spin is ferromagnetically ordered and

may eventually be oriented by the Zeeman effect. The state at ν = 4/9 is described in terms of

a [3; 2, 2] Halperin wave function, which is an SU(4) singlet with necessarily zero spin and valley

isospin polarisation. A possible FQHE at ν = 4/9 in graphene may therefore be sensitive to

the Zeeman effect at high magnetic fields, and one may expect transitions between states with

different polarisation, similar to the 2DEG at ν = 2/5 and 2/3 [220, 221].
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Chapter 7

Outlook

In this thesis we have presented studies of a variety of systems where multicomponent degrees

of freedom determine the physics or can be used as a proxy towards more exotic, non-Abelian

phases of matter. The latter remain one of the most exciting theoretical concepts advanced in

condensed matter physics awaiting their experimental confirmation. Such phases include, among

others, the p-wave paired phase in the ν = 1 bilayer, the Pfaffian-like states in the wide quantum

wells or yet unobserved analogues in graphene, which all represent exciting venues for future

studies.

The quantum Hall bilayer at ν = 1 remains the subject of much experimental work. Recent

studies point out to the importance of spin physics in the incompressible-compressible transition

that was entirely neglected in almost all of the theoretical work including our discussion in

Section 3. The question of an intermediate phase between the 111 state and the two Fermi

liquids ,although an unlikely possibility, remains open. Moreover, the new measurements probe

the nature of the critical current in the zero bias anomaly experiments and find that the simple

models of a clean, homogeneous bilayer are insufficient and more work is needed to understand

the fine details of the disordering of the QH bilayer superfluid.

Understanding of the non-Abelian phases of matter in the context of FQHE has significantly

advanced over the last decade, but this knowledge is certainly incomplete because we do not know

what kind of physical interaction favors such phases of matter and how they can be potentially

engineered in real samples. Is there a ν = 5/2 analogue of the Moore-Read state in graphene?

Having a clearer idea of material properties, even outside the usual GaAs structures, that would

favor states such as the Moore-Read Pfaffian should also give a definitive answer as to whether

the even-denominator states in the wide quantum wells in the LLL are non-Abelian or not. The

effect of Landau level mixing which seems to play an important role in the experiment should

also prove interesting to study in more detail. Systems such as graphene bilayers could be useful

to develop a feeling for the magnitude of its effect because graphene bilayer represents a case of

an extreme LL mixing when the zeroth and first excited LL can be brought to coincide.

Finally, there is a fundamental theoretical problem of the role of non-unitary conformal field the-

ories and the wave functions they define as the trial QH states. Can these describe incompressible

QH states and, if not, what is the precise nature of gaplessness of their excitations.
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Appendix A

DiagHam

Numerical calculations in this thesis have been performed using DiagHam libraries:

http://www.nick-ux.org/diagham/

DiagHam is a set of C++ classes and in-built programs that provide the framework for exact

diagonalization of various quantum models, in particular the fractional quantum Hall effect.

It is subject to the GPL public license and the source code is most easily obtained from the

Subversion repositories:

svn checkout https://www.nick-ux.org/diagham/svn/trunk DiagHam

The minimal installation assumes that internal DiagHam libraries will be used for full diagonal-

ization. In the root of the checked-out source package one needs to execute

./bootstrap.sh

./configure <options>

make

where configure supports various options that can be listed with the switch --help. For FQHE

programs, one has to use --enable-fqhe. In addition, it is possible to use Lapack libraries for

full diagonalization, routines from Gnu Scientific Library (GSL), partial support for MPI etc.

DiagHam has been used for very large-scale diagonalization problems (matrices of the order 108).

Diagonalization of a given quantum lattice model such as the FQHE proceeds by defining (1)

the Hilbert space of the system and (2) the Hamiltonian which acts on the vectors in the given

Hilbert space. The Hilbert space of the FQH system depends on the kind of particles (fermions or

bosons), the geometry (disk, sphere and torus) and the internal symmetry (fully polarized, SU(2),

SU(3), SU(4)). Hamiltonian on the other hand also depends on the kind of interaction (two-

body, three-body etc.). We work in the Fock basis where states |j1, j2, . . . , jNe
〉 are understood

as binary forms of integer numbers, which makes it easy to manipulate them. This is referred

to as the usual n-body basis, however DiagHam also allows to define reduced bases such as the

squeezed (Haldane) basis, which is useful for Jack polynomial states. Interaction is defined by

creation and annihilation operators, cj and c†j , which act like bit operators on the vectors.

In the remainder of this Appendix we will illustrate the typical steps in the standard calculations

from Sec. 2. To obtain Fig.2.1 one needs to calculate the ground state of the finite-thickness

Coulomb interaction on the sphere for the given number of electrons and flux quanta and compare
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it with the Laughlin state. Any two-body interaction is parametrized by Haldane pseudopoten-

tials and to obtain such a decomposition for the Coulomb interaction on the sphere, one can use

the following code:

/DiagHam/FQHE/src/Programs/FQHEOnSphere/CoulombPseudopotentials --landau-level

<LL> --nbr-flux <Nφ> -d <width or distance> -o <output file>

The full list of options for any in-built DiagHam program can be obtained with the switch -h.

The above will calculate the Haldane pseudopotentials on the sphere for the given number of

flux quanta Nφ and the thickness or distance parameter d (1.17) in the Landau level LL=0,1,...

The series of pseudopotentials will be stored in a given output file.

Now we may proceed to the actual diagonalization which is done by QHEFermionsTwoBodyGeneric

routine:

/DiagHam/FQHE/src/Programs/FQHEOnSphere/QHEFermionsTwoBodyGeneric

--nbr-particles <N> --lzmax <Nφ> --nbr-lz <NLz
> --interaction-file <file>

-interaction-name <interaction name> -S --processors <Nprocessors> --nbr-eigen

<Neigen> --full-diag <dimmax> --eigenstate -m <memory>

The essential parameters are the number of electrons N , flux quanta Nφ, the interaction (given

in the file e.g. as generated by CoulombPseudopotentials), the number of Lz sectors NLz
(for

the ground state it is sufficient to consider only Lz = 0). The number of sought eigenvalues is

controlled by an option n and the parameter full-diag determines what is the largest size of

the Hamiltonian matrix that should be fully diagonalized. If the actual dimension is less than

that indicated by full-diag, we will obtain all eigenvalues of the matrix; if the dimension is

bigger than full-diag, Lanczos algorithm will be used for diagonalization. In the latter case,

there are additional options which should be understood before blindly calling the program. The

switch eigenvectors is needed if we seek also the eigenvectors of the Hamiltonian matrix (they

will be stored in binary files following the DiagHam naming convention). Finally, there is a

range of options which are not essential but are very useful in speeding up the calculation. The

switch S invokes the symmetric multiprocessing mode which divides the calculation between a

few processors whose number is given by processors. The amount of RAM memory that can be

allocated to store the matrix is defined by the number -m (in megabytes). It is always advisable

to store the whole matrix in memory if possible. If the matrix requires a larger memory than

available, the program will calculate the remaining matrix elements “on the fly”. This is of

course much slower than reading them off the RAM, but it is the only choice for very large

systems. Lanczos algorithm is fortunate in that it does not require the knowledge of the entire

matrix, but only the action of the Hamiltonian H on the given vector v, v′ ← Hv, which can

be calculated at each iteration. The virtue of the Haldane pseudopotential description is that

by repeating the same calculation, only with a different interaction (2.7), we can obtain the

decomposition of the Laughlin state. After that, we only need to evaluate the scalar product:

/DiagHam/src/Programs/GenericOverlap <Coulomb eigenvector> <Laughlin

eigenvector>

which will give us the overlap between the two. DiagHam contains the routines for diagonaliza-

tion of FQH systems with SU(K),K = 2, 3, 4 spin which are straightforward extensions of the

one for polarized systems. For SU(2) spin, one needs to specify the Sz projection of the spin

and define the interaction via different kinds of Haldane pseudopotentials (V ↑↑, V ↑↓, V ↓↓). To

diagonalize the Coulomb bilayer on the torus for the given distance d between the layers, one

would use the following command line:

/DiagHam/FQHE/src/Programs/FQHEOnTorus/FQHETorusFermionsWithSpinAndTranslations
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-p <N> -l <Nφ> -s <Sz> -x <Kx> -y <Ky> --interaction-name coulomb -d <d> -r

<aspect ratio>

and append the usual Lanczos/full diagonalization options. The above will perform a diagonal-

ization of the bilayer Hamiltonian in the given momentum sector K = (Kx,Ky).

After obtaining the eigenvectors, various quantities can be calculated e.g. to evaluate the en-

tanglement spectrum on the sphere corresponding to the given state eigenvector, one first

calculates the reduced density matrix:

/DiagHam/FQHE/src/Programs/FQHEOnSphere/FQHESphereFermionEntanglementEntropy

<eigenvector> --density-matrix <density matrix file>

Using the reduced density matrix stored in density matrix file, one can calculate the entan-

glement spectrum:

/DiagHam/FQHE/src/Programs/FQHEOnSphere/FQHESphereEntanglementSpectrum

<density matrix file> -n <number of particles in subsystem A> -l <number of

orbitals in subsystem A> -o <output file>

for the given choice of particles and orbitals in the subsystem A.
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[199] T. S. Lay, T. Jungwirth, L. Smrčka, and M. Shayegan. Phys. Rev. B, 56:R7092, 1997. 86

[200] Z. Papić, M. O. Goerbig, and N. Regnault. Solid State Commun., 149:1056, 2009. 89, 96

[201] M. O. Goerbig. Electronic properties of graphene in a strong magnetic field. In

arXiv:1004.3396. 2010. 89, 90
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[215] B. Douçot, M. O. Goerbig, P. Lederer, and R. Moessner. Phys. Rev. B, 78:195327, 2008.

90, 92, 93, 97
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