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Abstract

Internet is the hugest network the humanity has ever known. It provides

a large number of various services to more than two billion users. This

complex and growing topology lacks stability, which we can notice when

a voice call is dropped, when a web page needs to be refreshed, etc. The

initiator of this instability is the frequent events around the Internet. This

motivates us to unleash a profound study to tackle Internet stability and

suggest solutions to overcome this concern.

Internet is divided into two obvious levels: AS (Autonomous System) level

and router level. This distinction is reflected on the routing protocols that

control the Internet traffic through two protocol types: exterior (inter-AS)

and interior (intra-AS). The unique used exterior routing protocol is the

external mode of BGP (External Border Gateway Protocol), while there

are several used internal routing protocols.

Therefore, stabilizing the Internet is correlated to the routing protocol sta-

bility, which directs such efforts to the investigation of routing protocol

(BGP) behavior. Studying BGP behaviors results in that its external mode



(eBGP) suffers from long convergence time which is behind the slow re-

sponse to topology events and, in turn, the traffic loss. Those studies state

also that BGP internal mode (iBGP) suffers from several types of routing

anomalies that causes its divergence.

Therefore, we propose enhancements for both BGP modes: eBGP and iBGP

and try to meet the following objectives: Scalability, safety, robustness,

correctness, and backward compatibility with current version of BGP. Our

eBGP proposal eliminates the transient disconnectivity caused by slow con-

vergence by suggesting a backup strategy to be used upon the occurrence

of a failure. IBGP proposal (skeleton) gives an alternative to the existing

internal configurations, that we prove its freeness of anomalies.

Validation methods are essential to prove that the suggested enhancements

satisfies the attended objectives. Since we are tackling an interdomain sub-

ject, then it is not possible to do validation in the real Internet. We sug-

gested several validation methods to show that our enhancements meet the

above objectives. We used simulation environment to implement eBGP

backup solution and observe the convergence time and the continuous con-

nectivity. We relied on two tools: brite and rocketfuel to provide us with

inter and intra AS topologies respectively. And to ensure the safety of our

approaches we employed an algebraic framework and made use of its results.



Résumé

Internet est le réseau le plus important que l’humanité n’ait jamais connu.

Il fournit un nombre large et varié de services à plus de deux milliards

d’utilisateurs. Cette topologie grandissanté et complexe manque de sta-

bilité, ce qui peut être noté quand un appel voix est interrompu, quand une

page web a besoin d’être rafraichie, etc. Les initiateurs de cette instabilité

sont les événements fréquents autour de l’Internet. Cela motive notre étude

de l’analyse de la stabilité d’Internet et suggère des solutions à ce défaut.

Internet est divisé en duex niveaux évidents: le niveau AS (Systèmes Au-

tonomes) et le niveau routeur. Cette distinction est reflètée dans les pro-

tocoles de routage qui contrle le traffic Internet à travers deux types de

protocoles: exterieur (inter-AS) et intérieur (intra-AS). L’unique protocole

extérieur utilisé est le mode externe de BGP (External Border Gateway

Protocol), alors qu’il existe plusieurs protocoles de routage internes.

De fait, stabiliser l’Internet est corrélé à la stabilité du protocole de routage,

ce qui mène de tels efforts à l’investigation autour du comportement du

protocole de routage (BGP). L’étude des comportements de BGP en son

mode externe (eBGP) souffre de temps de convergence important ce qui

est sous la réponse lente des événements topologiques et ainsi la perte du

traffic. Ces études établissent aussi que le mode interne de BGP (iBGP)

souffre de plusieurs types d’anomalies de routage causant sa divergence.

De fait, nous proposons des améliorations aux deux modes de BGP: eBGP

et iBGP et essayons d’atteindre les objectifs suivants: passage à l’échelle,

sreté, robustesse et compatibilité avec la version courante de BGP. Notre

proposition de eBGP élimine la disconnectivité transitoire causée par une



convergence lente en suggérant une stratégie de backup lors de l’occurence

d’une panne. Notre proposition IBGP (skeleton) donne une alternative aux

configurations internes existantes, nous prouvons l’absence d’anomalies par

son utilisation.

Les méthodes de validation sont essentielles pour prouver que les améliorations

suggérées satisfont les objectifs attendus. Puisque nous étudions un sujet in-

terdomain, alors il n’est pas possible d’effectuer la validation dans l’Internet

réel. Nous avons suggéré plusieurs méthodes de validation pour montrer que

nos améliorations mènent aux objectifs susmentionnés. Nous avons utilisé

l’environnement de simulation pour implémenter une solution de backup

eBGP et observer le temps de convergence et de la connectivité permanente.

Nous nous sommes appuyés sur deux outils: brite et Rocketfuel pour nous

fournir des topologies inter et intra AS respectivement. Et pour prouver la

sreté de nos approches nous avons utilisé les méthodes algébriques et fait

usage de ses résultats.

Ce travail a abordé principalement la stabilité d’Internet. Cette problématique

est divisé en deux parties selon la hiérarchie de l’Internet: niveau AS et

niveau routeur. La topologie d’Internet, du point de vue du niveau AS,

est un ensemble de noeuds, représentant chacun un seul AS. La stabilité de

cette topologie est liée à la stabilité du protocole de routage qui est respon-

sable des échanges d’informations de routage entre les noeuds de l’Internet.

Du point de vue niveau routeur, chaque AS est une topologie complexe en

elle-même, il peut contenir des milliers de routeurs. La stabilité à ce niveau

est liée au protocole de routage à l’intérieur de chaque AS. L’instabilité in-

terne influe directement sur la stabilité de l’Internet mondial. Ce qui nous

motive à diviser notre travail en deux parties: routage inter-domaine et

intra-domaine.

Des propositions efficaces devraient être appliquées à des problématiques

bien spécifiées, c’est à dire d’avoir la possibilité de donner une preuve de



correction. Cela nous incite à employer un modèle formel du processus de

routage basés sur les algèbres abstraites, puis utiliser ce modèle pour valider

les caractéristiques de correction. Les sous-sections suivantes résument les

contributions de cette thèse.

1. External BGP

La convergence lente est un problème bien connu de BGP. D’une part, ren-

dre ce processus plus rapide peut entraner des comportements indésirables.

D’autre part, il n’y a aucune raison pour perdre du trafic depuis que de

nombreuses études ont montré que dans la plupart des cas, l’infrastructure

sous-jacente est connectée pendant le processus de convergence. Ce qui

nous motive autour de ce problème de convergence lente est de proposer

une solution à la résolution de perte de trafic.

Outre nos objectifs principaux, à savoir la connectivité continue, nous nous

sommes intéressés aux caractéristiques suivantes:

• Absence de boucle pendant et après le processus de convergence.

• limitation de la propagation des pannes.

• Améliorer le temps de convergence.

Afin d’atteindre les objectifs susmentionnés, nous avons proposés quatre

mécanismes:

1.1. Propagation des informations RC

L’idée de base de ce mécanisme est de créer plus d’informations pour empêcher

les autres noeuds de sélectionner des chemins de sauvegarde qui passent

par noeud défectueux. Cela pourrait être considéré comme un mécanisme



d’évitement de boucles. Dans certains cas, tous les chemins de sauveg-

arde (backup) peuvent contenir ces informations. Par conséquent, nous

proposons d’ajouter ces informations au niveau du routeur, car le nàeud

défaillant pourrait être un ASBR unique tandis que les voisins de l’ASBR

du même AS est toujours en cours d’exécution. Donc les informations RC

doivent être incluses que dans les messages d’annulation qui sont exportés

vers d’autres AS après s’être assuré qu’aucun autre ASBR peut atteindre

la destination perdu.

1.2. Solution de Backup

Les mécanismes sont divisés en deux phases:

- Calcul du chemin de Backup : il est effectué dans un état stable, chaque

noeud construit une liste de chemins de backup et les ordonne selon leur

disjonction du chemin principal de chaque préfixe.

- Sélection du chemin de Backup: une fois que le noeud reoit le message

d’annulation, il filtre les chemins de backup selon les information RC reus

et démarre alors en utilisant le meilleur chemin de backup.

1.3. Retrait sélectif

Ce mécanisme consiste à limiter la propagation de la panne. Il stipule que

si un noeud reoit un message de retrait (d’annulation) et n’a pas de backup,

alors il la diffuse à leurs voisins. Si c’est le cas, alors il le transmet unique-

ment au prochain noeud du backup si ce dernier était son prédécesseur dans

le vieux chemin primaire.



1.4. Temporisateur de routes transitoires

Puisque le chemin de backup n’est pas nécessairement la meilleure seconde

route, nous avons utilisé un timer supplémentaire (TRT) pour trouver le

meilleur nouveau chemin et l’installer dans le Loc-RIB au lieu du backup.

Cela garantit que le Loc-RIB contient les meilleurs chemins, qui est nor-

malement l’état stable.

Les résultats des simulations ont montré que la non-connectivité est (rel-

ativement) éliminée lors du processus de convergence. Un autre résultat

interessant de la simulation a été la limite des pannes qui est le nombre

d’AS qui sont touchés par les événements de la topologie. L’algèbre PBR

nous a donné un outil de validation pour prouver la sreté de notre solution

de backup proposée. En outre, cela nous aide à travers la politique des

liens, d’appliquer des conditions de sreté sur le chemin de backup de telle

manière que cela élimine les boucles dans la topologie, et ce pendant et

après le processus de convergence.

2. Internal BGP

La topologie des AS internes est une partie inhérente de l’Internet global,

et les événements internes sont un des facteurs qui influent sur la stabilité

de l’Internet. Cela rend la stabilité du iBGP essentiel pour une stabilité

globale de BGP.

Dans le routage intra-domaine, et selon la configuration interne, le trafic du

contrle et des données peut ne pas avoir des topologies semblables. Nous

avons compris que cette distinction est derrière la plupart des phénomènes

de divergence de routage intra-domaine. Cela nous motive à proposer une

alternative aux configurations intra-AS actuelles.



Nous proposons l’approche Skeleton comme une alternative aux configura-

tions actuelles comme: full mesh, la réflexion de route, ou confédération.

Skeleton est à la fois scalable et sans anomalies. Il assure la simplicité,

la correction, et la compatibilité avec les systèmes d’exploitation existants.

Skeleton est une solution facile à employer, il peut être déployé en utilisant

les dispositifs existants qui supportent la réflexion de routes.

Le modèle topologique proposé donne pour chaque ASBR un DAG attaché

à l’ASBR lui-même. Skeleton établit des sessions iBGP sur chaque branche

dans l’arbre. Cela garantit que chaque routeur interne reoit les informa-

tions de routage grce à son meilleur chemin pour quitter l’AS, et fait en

sorte que le trafic de contrle et de données suivent les mêmes chemins.

Pour augmenter la redondance de Skeleton, nous avons utilisé une stratégie

semblable à celle du backup proposée pour eBGP. Il stipule qu’un routeur

interne établit des sessions iBGP supplémentaires (passive) avec son second

meilleur prochain saut lié à une autre branche. Nous avons prouvé que cette

session supplémentaire garantit la robustesse contre les défaillances.

La caractéristique de correction est obtenue en prouvant que notre approche

répond à des conditions suffisantes. Le passage à l’échelle est garanti car le

nombre de sessions iBGP dans Skeleton est limitée par le nombre de liens AS

physiques internes. La compatibilité ascendante est garantie en utilisant le

mappage entre les modèles des réflecteur/client et successeur/prédécésseur.

Skeleton surmonte la problème d’asymmetrie en établissant des sessions

iBGP entre les voisins IGP seulement. En outre, les oscillations du MED

sont traitées en fournissant à tous les noeuds toutes les mises à jour de

routage de tous les noeuds de sortie, ce qui garantit une décision stable

à prendre par chaque noeud. Enfin nous montrons que la configuration

Skeleton est sr en utilisant l’algèbre de routage.



3. Méthodes de validation
La validation est une partie intégrante de cette thèse. Le premier défi a été

de choisir le meilleur outil de validation qui donne des preuves expérimentales

ou théoriques des propriétés alléguées de notre proposition. Nous avons

proposé plusieurs approches et tenté de leur faire satisfaire les propriétés

suivantes:

• Sreté: absence de boucles.

• Robustesse aux défaillances.

• Passage à l’échelle: consommation limitée des ressources réseaux.

• Compatibilité ascendante (backward): l’interopérabilité avec le BGP

conventionnel.

• Correction: atteindre l’état stable de la topologie.

Nous n’avons pas pu trouver un outil de validation qui nous permette de

prouver toutes les propriétés susmentionnées. C’est pourquoi nous avons

employé plusieurs méthodes pour valider nos approches séparément. Pour

notre proposition eBGP, nous comptons sur SSFNet comme un cadre de

simulation pour prouver que notre solution atteint la connectivité continue,

et de mesurer le temps de convergence ainsi que la propagation des pannes.

Nous avons ensuite utilisé l’algèbre de routage pour valider la propriété de

sreté de notre approche.

Dans notre proposition iBGP, nous avons utilisé l’approche Rocketfuel pour

récupérer des topologies internes de certains grands AS. Nous avons appliqué

notre approche sur les topologies et comparer nos résultats avec l’une des

meilleures configurations de réflexion de routes. Nous illustrons que nous

produisons moins de sessions iBGP. Cela garantit le passage à l’échelle de

Skeleton. Nous validons la sreté, la robustesse, et les propriétés de correction

en utilisant des conditions de correction suffisantes prises de (17; 20; 30).
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Chapter 1

Introduction

BGP (Border Gateway Protocol) (64) is the routing protocol that is responsible of

calculating and exchanging routes between all the ASes (Autonomous Systems). Once

this routing protocol suffers from any type of anomalies, then a traffic loss might occur

somewhere in the Internet. A protocol that organizes this huge topology should be

careful when taking reactions as a response to various events appeared in that topology.

This carefulness makes the Internet more quiet and stops the amplification of routing

events. However, this also has bad effect on delaying some necessary reactions.

BGP works in two modes, external and internal. EBGP (External BGP) is responsi-

ble of inter-AS routes exchanges, while iBGP (Internal BGP) diffuses externally learned

routes inside ASes. Routing events may come from either inter-AS policy change or

even from inside some ASes. Therefore, both external and internal stability have large

impact on the global Internal stability (6). This creates the needs to deeply study BGP

in its two modes and look for solutions to fix possible divergence problems. In this work

we propose two solutions to stabilize BGP in its two modes. To validate our propos-

als, we employ several tools and frameworks. The validation process is dependent on

the protocol we are illustrating. EBGP and iBGP are similar in their structures but

each one of them has its own concerns. For example, the convergence time is a real

concern in eBGP but it has not the same importance in iBGP. In the opposite side,

the number of BGP sessions causes a scalability concern in iBGP, where it is not in

eBGP. Therefore, the properties we would like to validate for each mode are different.

So the first step will be to determine what type of problems we are targeting for each
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mode, then we present our solutions to fix those problems. Finally, we show that our

proposals satisfy the waited properties.

This motivated us to use several Internet modeling schemes to validate some of the

correctness properties of our approach. Internet modeling is a large domain that covers

numerous topics, like topology modeling (55), behavior modeling (29), relationship

modeling (38), routing modeling (30), etc. The topic we are tackling is modeling the

routing process in the Internet, we did this in two directions: topological and functional.

Topological model is built according to the fact that BGP is a parallel process that

runs simultaneously for each prefix. This helps us in parallelizing the routing process

into sub-processes. Each sub-process represents an instance of the routing process that

is run in a certain node n to reach certain prefix ρ. n may receive signaling messages

from all its neighbor, but it selects one of them as a best path to reach ρ, unless it

employs load balancing technique. Therefore, the traffic that is either generated by n

or transiting it follows the selected best path to reach ρ. If we look at all the selected

paths to reach ρ, we notice that they form a tree rooted at the node that announces

ρ. Each path between a leaf node (end customer AS) and the hub node is a branch in

that topology.

Functional model is an algebraic structure (Π,�, L,⊕, φ) that is composed of a set

of composite policies Π, a set of labels L, special additive operation ⊕ to calculate

a policy of concatenated paths, an order � on Π to rank paths according to their

policies, and a null policy φ that represents a non valid path. This algebraic structure

represents the PBR (Policy Based Routing) algebra, that has been used to model the

routing decision process. Further, PBR algebra’s properties allow validating safety and

robustness characteristics of our proposed solutions which are summarized in the next

two sections.

1.1 External BGP

EBGP is the dominant interdomain routing protocol in the Internet. Each router in

the Internet has BGP table that contains all Internet prefixes. BGP employs several

timers to control the signaling flow, these timers cause slow BGP convergence. BGP

convergence is the process that runs after the occurrence of topology change, its role
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is to find new paths for every affected prefix. BGP convergence time is the amount of

time needed by the convergence process to get back to the stable state.

BGP convergence time might take several minutes during which the topology may

suffer from traffic loss while the underline topology is connected. This motivates us

to look for a solution for this transient disconnectivity. Two ideas were investigated:

First, convergence time reduction by tuning BGP timers and employing trigger updates.

Second, using temporary path during the convergence process. We found out that

reducing convergence time has several bad effects on network stability. Thus we worked

on the second idea, that is to save a backup path for each prefix and use it in case of

losing the primary path.

Therefore, the objective of our proposed eBGP enhancements is to eliminate the

packet loss during the convergence process without a huge increase the convergence

time. The validation of this solution should ensure that there is no packet loss during

the re-convergence process. This is done by using the simulation environment SSFNet

(3), where the topologies are generated using the topology generators BRITE (60).

Validating this proposal shows also that the enhanced eBGP will be free of loops. This

is done theoretically using algebraic framework (30).

Our approach to enhance eBGP is based on four mechanisms that can be summa-

rized as follows:

• during the stable state, each node calculates a list of backup paths and rank them

according to their disjointness from the primary path.

• Once a failure is detected, the concerned (that are directly connected to the

failure) nodes add root cause information to the withdraw messages.

• When a node receives a withdraw message containing root cause information,

it filters out the backup paths that contain the root cause node and sends a

withdraw message to a selected group of its neighbors.

• The nodes that install backup paths run a new timer, upon its expiration they

update their Loc-RIB by replacing the backup path with the best path according

to BGP preference.

The obtained simulation results show that we have zero packet loss upon failures oc-

currence. Further, and due to the selective withdraw, we limited the number of ASes
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affected by failures, which decreases the number of nodes that unleash their convergence

process.

In addition to the backup path disjointness enforcement, we apply safety conditions

to ensure that the transient connectivity respects the inter-AS relationships. This

makes the converged, and converging, topology safe according to (30).

1.2 Internal BGP

Intra-AS stability has equivalent importance on Internet stability as the Inter-AS one.

Three known intra-AS configurations are used currently inside ASes:

1. Full mesh: it states that each ASBR (AS Border Router) has iBGP sessions

with all other ASBRs and all internal BGP speakers. The only concern that

this solution suffers from is the scalability. Although it is optimal for small

autonomous systems, but it does not scale for large networks because it produces

a number of iBGP sessions of the order O(n2), n is the number of ASBRs. This

consumes routers’ resources and affects badly the network performance.

2. AS confederation: it partitions the autonomous system into sub-ASes, it em-

ploys the full mesh solution inside each sub-AS, and employs enhanced version of

eBGP between sub-ASes. The problem from which this solution suffers is that it

increases the convergence time needed after internal failures.

3. Route reflection: It partitions the autonomous system into clusters, routers in-

sides each cluster are divided into reflectors and clients. Clients establishes iBGP

sessions with one or more reflectors. Route reflectors are fully meshed between

each other. Clients have no complete visibility of the internal topology, and their

decisions are enforced by the reflectors, which causes non-optimal routing deci-

sions. Moreover, signaling and forwarding loops are more likely to happen when

there are routers whose signaling paths are different from their best forwarding

one.

Our objective is to give a solution that is scalable (limited number of iBGP sessions)

and gives complete visibility to all routers. Our proposed solution, the skeleton, is based

on three main ideas: First, each internal node establishes an iBGP session with each
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best next hop towards each ASBR. Second, iBGP sessions are established between one-

hop neighbors only. Third, all skeleton nodes are capable of reflecting routes. Results

show that skeleton produces much more less iBGP sessions than any known iBGP

configurations. We prove, using routing algebra, that skeleton configuration is safe

(free of routing anomalies).

To increase the robustness of skeleton against internal failures, we have suggested

additional iBGP sessions to be used as backup ones. Backup selection method is similar

to the one used for eBGP and based on our proposed topological model.

1.3 Reader’s Guide

The remainder of this dissertation is organized as follows:

- Chapter 2 introduces the Internet topology and talks about its history from the

time where it was connecting few sites to the current time where it connects tens of

thousands of autonomous systems. This chapter gives also an overview of the routing

protocol BGP in its two modes, it shows the different types of routing anomalies that

BGP suffers from. We present in this chapter the modeling scheme we will use to vali-

date the proposed solutions. We then end this chapter by talking about the motivations

and objectives of our work.

- Chapter 3 scans some of the related works of enhancing eBGP and details our

approach to stabilize eBGP. It presents the four mechanisms used in our proposal to

guarantee the absence of packet loss during the convergence process of eBGP.

- Chapter 4 validates our proposed approach to enhance eBGP. We first prove that

our proposal is safe using the routing algebra modeling scheme. Then we show our

simulation results using SSFNet, and finally we analyze them and discuss the perfec-

tioning of our approach.

- Chapter 5 gives an overview of some works related to the enhancements of iBGP

configurations. It details the our approach (Skeleton) as a new iBGP configuration

that guarantees the safety and stability of AS internal topology.

- Chapter 6 validates the Skeleton approach by proving the scalability, correctness,

safety, and robustness of Skeleton as an intra-AS configuration.
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- Chapter 7 concludes this dissertation and proposes possible future directions to be

followed in interdomain routing.
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Chapter 2

Background

This chapter gives an overview of the Internet from its early history till the current

huge topology in its first section. Section II talks in details about the routing protocol

BGP (Border Gateway Protocol) along with the routing anomalies that may happen

upon topology changes. Section III introduces the topological modeling scheme used

for routing protocols. Section IV presents the routing algebra used to validate our

proposals. We end this chapter by listing our motivations behind this work as well as

the objectives that we try to achieve.

2.1 Internet Overview

2.1.1 Internet History

In 1957 Soviet Union sent the first unmanned satellite (Sputlink 1) into orbit. In

order to secure America’s lead in technology, United States found DARPA (Defense

Advanced Research Project Agency) in February 1958. DARPA planned a large scale

computer networks in order to accelerate knowledge transfer. This network would

become the ARPANET. Furthermore, three other concepts were to be developed which

are fundamental for history of the Internet:

• The concept of a military network by the RAND corporation of America.
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• The commercial network of NPL (National Physics Laboratory) in England. NPL

is the founder of packet switching approach.

• The scientific network, Cyclades, in France. Cyclades was composed of small net-

works connected together. In contrast with ARPANET, during communication

between sender and receiver the computers were not to intervene anymore, but

simply serve as a transfer node. This was implemented at the physical layer.

Inspired by the Cyclades network and driven by the incompatibility between net-

works, the international organization for standardization found the OSI (Open Stan-

dard Interconnection) reference model. The innovation of the OSI reference model is

to standardize the network from its ends. Then TCP assimilated the preference of OSI

model and gave the way to TCP/IP protocol family. A standard which guaranteed

compatibility between networks and merged them creating the Internet. By February

1990, the ARPANET hardware was removed but the Internet was up and running with

less than one thousand FIB (Forwarding Information Base) entries (2).

From its beginning, the Internet appeared as a network of networks. Each of

those networks can have its own topology and technology, and they are managed au-

tonomously, that is why we call each of them an AS (Autonomous Systems). However,

two other components form the Internet: Routing protocol and inter-AS relationships,

which we introduce in the following two subsections.

2.1.2 Internet Relationships

Understanding the topological structure of the Internet gives the ability to predict

routes in the Internet. However, the Internet is composed of large number of ASes

resulting in complex interactions, which motivates several works like (15; 16; 33; 63) to

propose prediction methods that infer the inter-AS relationships and their types.

Gao (16) was the first to formulate and systematically study the AS relationships

inference problem. Gao assumed that every BGP path must comply with the following

hierarchical pattern: an uphill segment, followed by zero or one peer-peer link, followed
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by a downhill segment. Paths with this hierarchical structure are valley-free or valid.

Paths that do not follow this hierarchical structure are called invalid and may result

from BGP misconfigurations. Following this definition of valid paths, Gao proposed an

inference heuristic that identified top providers and peering links based on AS degrees

and valid paths.

Following (16) Subramanian et al. (33) developed a mathematical formulation of

the inference problem. They cast the inference of AS relationships into the Type of

Relationship (ToR) combinatorial optimization problem. The authors speculated that

ToR is NP-complete and developed a heuristic solution that takes as input the BGP

tables collected at different vantage points and computes a rank for every AS. The

heuristic then infers AS relationships by comparing ranks of adjacent ASs.

Di Battista et al. (15) showed that ToR is indeed NP-complete, developed mathe-

matically rigorous approximate solutions to the problem and proved that it is impos-

sible to infer peer-peer relationships under the ToR formulation framework. For this

reason, their solutions infer customer-peer relationships only and ignore peer-peer and

sibling-sibling relationships.

The relationships among ASs in the Internet represent the outcome of policy deci-

sions governed by technical and business factors of the global Internet economy. Precise

knowledge of these relationships is therefore an essential building block needed for any

reliable and effective analysis of technical and economic aspects of the global Internet,

its structure, and its growth. Links between ASes are controlled financially depending

on which AS provides service to which AS (25; 53; 63). Thus, ASes can be divided into

levels according to their positions in the Internet hierarchy. Top level ASes provide In-

ternet service to all their neighbors and do not buy service from any AS, while bottom

level ASes buy service from several ASes and do not provide service to any AS. This

gives a label for each link according to the relationship type between the two end ASes.

We mean by an AS relationship the established logical session between two AS peers,

which may be carried over one or more physical links, it can be categorized either per

prefix or per peer. A per peer AS relationship can have one of the following types:
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• customer-provider : is a link between two ASes one of them, the provider, provides

(sells) Internet service to the other, the customer. From the provider point of

view, this link is labeled as a customer link, and is labeled as provider link from

customer’s point of view.

• peer-peer : is a voluntary interconnection of administratively separate Internet

networks for the purpose of exchanging traffic between the customers of each

network. In such relationship, neither party pays the other for the exchanged

traffic; instead, each derives revenue from its own customers 1.

A per prefix relationship comes from the complex commercial agreements between

AS nodes, where we can find an inter-AS link between two ASes a and b representing

customer relationship in both directions. This happens when we look at this relation-

ship from prefix point of view, so it can be seen as a customer link for a subset of

prefixes and a provider one for another subset. In other words, a is a provider of b

for a set of prefixes S1 and b is a provider of a for a set of prefixes S2 6= S1 and peers

elsewhere.

Inter-AS relationships play an important role in routing decision nowadays. They

are implemented in a per router basis using the optional transitive communities at-

tribute (11; 48). However, this attribute does not give the Internet nodes the sufficient

information of all the inter-AS relationships along the received path. In this disserta-

tion, we propose a new attribute that has the same format of AS Path attribute and

carries the relationships types between all the paths’ routers.

2.1.3 Interdomain Routing

We have seen in the previous subsection that the Internet is a set of connected networks

(ASes or domains), paths between these ASes are calculated using EGP (Exterior

Gateway Protocol). EGP is responsible of diffusing IP prefixes between ASes and

1Another types like backup or sibling may exist in the Internet, they can be considered as special

type of customer-provider or peering links.
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IGP (Interior Gateway Protocol) is responsible of exchanging routes inside each AS.

Interdomain routing is the process of finding best paths between different domains or

ASes.

The rapid increase in IP prefixes makes the needed number of interdomain paths

huge, and the increase in Internet nodes (ASes) increases the number of possible paths

for each IP prefix. This complicates the Internet topology and arises the stability

and scalability concerns for the protocol that manages it, that is the routing protocol.

These challenges causes the EGP protocols to diverge or to have slow convergence.

Since BGP (Border Gateway Protocol) is the dominant interdomain routing protocol

in the Internet, this makes it a target for several research subjects to resolve those

challenges. Next section gives an overview of BGP in its two modes eBGP (External

BGP) and iBGP (Internal BGP).

2.2 Border Gateway Protocol

BGP is a path vector protocol used to carry routing information between ASes. The

term path vector comes from the fact that BGP routing information carries a sequence

of AS numbers that identifies the path of ASes that a network prefix has traversed. The

path information associated with the prefix is used to enable loop prevention. BGP is a

policy based routing protocol due to its metric, which is based on preference of several

attributes.

BGP uses TCP (Transport Control Protocol) as its transport protocol (port 179).

This ensures that all the transport reliability is taken care of by TCP and does not

need to be implemented in BGP, thereby simplifying the complexity associated with

designing reliability into the protocol itself.

Routers that run a BGP routing process are often referred to as BGP speakers.

Two BGP speakers that form a TCP connection between one another for the purpose

of exchanging routing information are referred to as neighbors or peers.

Most of BGP’s implementations employ two RIBs (64) (Routing Information Base),
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the first one is the Adj-RIB-In in which the router stores the NLRIs (Network Layer

Reachability Information) learned by its neighbors. The second one is the Loc-RIB

which is a subset of the Adj-RIB-In, it contains only the best route for each NLRI.

This best route is to be announced to the peers.

2.2.1 BGP Messages

• OPEN message: to open a BGP session between peers.

• UPDATE message: to transfer reachability information among peers. This mes-

sage is used to either advertise a feasible route to a peer or withdraw infeasible

routes. The UPDATE message is usually referred to as a BGP advertisement.

• NOTIFICATION message: sent when an error condition is detected. The BGP

session is immediately shut down after this message is sent.

• KEEPALIVE message: periodically exchanged to verify that the peer is still

reachable.

2.2.2 BGP Attributes

A variable-length sequence of path attributes is present in every UPDATE message,

except for an UPDATE message that carries only the withdrawn routes. Each path

attribute is a triple (attribute type, attribute length, attribute value) of variable length.

BGP attributes are divided into four categories:

1. Well-known mandatory: An attribute that has to exist in the BGP UPDATE

packet. It must be recognized by all BGP implementations. If a well-known

attribute is missing, a NOTIFICATION error is generated, and the session is

closed. This is to make sure that all BGP implementations agree on a standard set

of attributes. An example of a well-known mandatory attribute is the AS PATH

attribute.
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2. Well-known discretionary: An attribute that is recognized by all BGP implemen-

tations but that might or might not be sent in the BGP UPDATE message. An

example of a well-known discretionary attribute is LOCAL PREF.

3. Optional transitive: An attribute that is not required to be supported by all

BGP implementations. If an optional attribute is not recognized by the BGP

implementation, that implementation looks for a transitive flag to see whether

it is set for that particular attribute. If the flag is set, which indicates that the

attribute is transitive, the BGP implementation should accept the attribute and

pass it along to other BGP speakers.

4. Optional nontransitive: When an optional attribute is not recognized and the

transitive flag is not set, which means that the attribute is nontransitive, the

attribute should be quietly ignored and not passed along to other BGP peers.

BGP path attributes, as defined in (64), are as follows:

• ORIGIN: is a well-known mandatory attribute that defines the origin of the path

information.

• AS PATH: is a well-known mandatory attribute that is composed of a sequence

of AS path segments.

• Next Hop: is a well-known mandatory attribute that defines the (unicast) IP

address of the router that should be used as the next hop to the destinations

listed in the NLRI field of the UPDATE message.

• MULTI EXIT DISC: is an optional non-transitive attribute. The value of this

attribute may be used by a BGP speaker’s decision process to discriminate among

multiple entry points to a neighboring AS.

• LOCAL PREF: is a well-known attribute. A BGP speaker uses it to inform

its other internal peers of the advertising speaker’s degree of preference for an

advertised route.
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• ATOMIC AGGREGATE: is a well-known discretionary attribute and used when

a BGP speaker aggregates several routes for the purpose of advertisement to a

particular peer.

• AGGREGATOR: is an optional transitive attribute, which may be included in

updates that are formed by aggregation.

The adaptability of BGP has come from its attributes and the ability to add new

ones as optional attributes, without raising any compatibility problem with another

implementation.

Routing protocols calculate a numeric value for each route and then compare be-

tween them to select the best one. Apart from those routing protocols, when a BGP

speaker receives more than one route towards certain destination, it does not calcu-

late one value for each route, instead, it compares its attributes one by one using the

following order:

1. It prefers the highest local preference value.

2. If equal, it prefers the shortest AS path.

3. If equal, it prefers the lowest origin code.

4. If equal, it prefers the lowest MED.

5. If equal, it prefers the closest IGP neighbor.

6. If equal, it prefers the lowest next hop BGP ID (tie breaking).

2.2.3 BGP Timers

BGP implements several timers to control the flow of its messages and to limit its

control message overhead. Those timers increase the time needed for new changes in

the topology to propagate, and hence increase the time needed for this topology to

converge, which leads to a notable disconnectivity. But at the same time, those timers
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have an important role in stabilizing the Internet and in protecting from the flapping

routes. BGP employs five timers:

1. ConnectRetry Timer: once expires, it drops the TCP connection and releases all

BGP resources.

2. Hold Timer: its expiration indicates that the BGP connection has completed

waiting for the back-off period to prevent BGP peer oscillation.

3. Keepalive Timer: it determine the interval between two successive KEEPALIVE

messages.

4. MAOI (Min AS Origination Interval) Timer: it determines the minimum amount

of time that must elapse between successive advertisements of UPDATE mes-

sages that report changes within the advertising BGP speaker’s own autonomous

systems.

5. MRAI (Min Route Advertisement Interval) Timer: it determines the minimum

amount of time that must elapse between an advertisement and/or withdrawal of

routes to a particular destination by a BGP speaker to a peer. This rate limiting

procedure applies on a per-destination basis, although its value is set on a per

BGP peer basis.

2.2.4 BGP Finite State Machine

1. Idle State: This is the first stage of the connection. BGP is waiting for a Start

event, which is initiated by an operator or the BGP system. An administrator

establishing a BGP session through router configuration or resetting an already

existing session usually causes a Start event. After the Start event, BGP initializes

its resources, resets a ConnectRetry timer, initiates a TCP transport connection,

and starts listening for a connection that may be initiated by a remote peer. BGP

then transitions to a Connect state. In case of errors, BGP falls back to the Idle

state.
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Figure 2.1: BGP Finite State Machine (24)
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2. Connect State: BGP is waiting for the transport protocol connection to be com-

pleted. If the TCP transport connection is successful, the state transitions to

OpenSent (this is where the OPEN message is sent). If the transport connection

is unsuccessful, the state transitions to Active. If the ConnectRetry timer expires,

the state remains in the Connect stage, the timer is reset, and a transport con-

nection is initiated. In case of any other event (initiated by system or operator),

the state goes back to Idle.

3. Active State: BGP tries to acquire a peer by initiating a transport protocol

connection. If the transport connection is established, it transitions to OpenSent

(an OPEN message is sent). If the ConnectRetry timer expires, BGP restarts

the ConnectRetry timer and falls back to the Connect state. In addition, BGP

continues to listen for a connection that might be initiated from another peer.

The state might go back to Idle in case of other events, such as a Stop event

initiated by the system or the operator.

4. OpenSent State: BGP is waiting for an OPEN message from its peer. The OPEN

message is checked for correctness. In case of errors, such as a bad version number

or an unacceptable AS, the system sends an error NOTIFICATION message

and goes back to Idle. If there are no errors, BGP starts sending KEEPALIVE

messages and resets the KEEPALIVE timer. At this stage, the hold time is

negotiated, and the smaller value is taken. In case the negotiated hold time is 0,

the Hold Timer and the KEEPALIVE timer are not restarted.

At the OpenSent state, the BGP recognizes, by comparing its AS number to the

AS number of its peer, whether the peer belongs to the same AS (Internal BGP)

or to a different AS (External BGP).

When a TCP transport disconnect is detected, the state falls back to the Active

state. For any other errors, such as an expiration of the Hold Timer, the BGP

sends a NOTIFICATION message with the corresponding error code and falls

back to the Idle state. Also, in response to a stop event initiated by the system
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or the operator, the state falls back to the Idle state.

5. OpenConfirm State: BGP waits for a KEEPALIVE message. If a KEEPALIVE

is received, the state goes to Established, and the neighbor negotiation is com-

plete. If the system receives a KEEPALIVE message, it restarts the Hold Timer

(assuming that the negotiated Hold Time is not 0). If a NOTIFICATION mes-

sage is received, the state falls back to the Idle state. The system sends periodic

KEEPALIVE messages at the rate set by the KEEPALIVE timer. In case of any

transport disconnect notification or in response to any stop event (initiated by

the system or the operator), the state falls back to Idle. In response to any other

event, the system sends a NOTIFICATION message and returns to the Idle state.

6. Established State: This is the final stage in the neighbor negotiation. At this

stage, BGP starts exchanging UPDATE packets with its peers. Assuming that it

is nonzero, the Hold Timer restarts at the receipt of an UPDATE or KEEPALIVE

message. If the system receives any NOTIFICATION message (if an error has

occurred), the state falls back to Idle.

The UPDATE messages are checked for errors, such as missing attributes, du-

plicate attributes, and so on. If errors are found, a NOTIFICATION message is

sent to the peer, and the state falls back to Idle. If the Hold Timer expires, or

a disconnect notification is received from the transport protocol, the system falls

back to the Idle state.

2.2.5 BGP Convergence

BGP sends updates only upon topology changes. Once a topology change (physical link

failure, router failure, policy change in either originating AS or one of the transit ASes,

or addition/deletion of network prefixes) takes place, BGP speakers react by starting

their decision process and calculate the new routes according to the new topology. The

time between the instability event and the stable state is referred to as convergence

time.
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BGP convergence time can be divided into two levels: Internet-wide level and node

level. Internet-wide convergence is a theoretic definition that refers to the global stable

state of the Internet, which states that each node for each of its RIB’s prefixes has

reached the stable state. However, the global state can not be measured or predicted

since there is no single authority that manages this huge topology. The node level

convergence time is calculated on a per-prefix basis. In our work, as stated in chapter

3, we divide the convergence process into a number of parallel processes equal to the

number of prefixes. Therefore, the convergence time we are tackling in our study is

∆tρn = t2n − t1n, where: ∆tρn is the convergence time needed by node n to re-converge to

a stable state concerning the prefix ρ. t1n is the instance at which node n lost the prefix

ρ, t2n is the instance at which node n has a stable path towards ρ.

The delay caused by BGP convergence time is composed of two intervals: the delay

needed by BGP timers and UPDATE messages to propagate between peers, and the

delay needed by the decision process. This latter consists of three phases:

1. Phase I: Each route received from a BGP speaker in a neighboring AS is ana-

lyzed and assigned a preference level. The routes are then ranked according to

preference, and the best one for each network advertised to other BGP speakers

within the autonomous system.

2. Phase II: The best route for each destination is selected from the incoming data

based on preference levels, and used to update the Loc-RIB.

3. Phase III: Routes in the Loc-RIB are selected to be sent to neighboring BGP

speakers in other ASes.

BGP convergence is the process of calculating best paths (highest policy) towards

each Internet prefix. A converged network is the one in which each node has available

path towards each Internet prefix. The importance of BGP convergence appears when

failures take place somewhere in the Internet. Topology’s reaction between the failure

and the converged state is called the convergence process. Optimal convergence should
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satisfy three characteristics:

C1. Best path selection: Each Internet node should receive enough information to be

able to select the best path.

C2. Robustness: Recovery after failures should be immediate.

C3. Safety: Safe topology is the one that has neither oscillating paths nor routing

loops.

Conventional BGP convergence process violates C1 because the only information

available along BGP path is the AS PATH attribute, which is not sufficient to select

paths that fit the needs of ASes. To reach the robustness, a failover mechanism should

exist which is not the case with conventional BGP. Therefore, it violates C2. BGP

employs the MRAI (Minimum Router Advertisement Interval) timer for route flap

dampening, and uses the AS PATH attribute to avoid routing loops. However, these

mechanisms are not sufficient to ensure topology safeness (9; 58).

2.2.6 Internal BGP

EBGP is the mode that control BGP sessions between two routers related to two

different ASes. IBGP is the mode that control BGP sessions between routers in the

same AS. EBGP sessions are established only between two BGP speakers that are

physically connected. However, iBGP may establish sessions between two speakers

that are not directly connected, that is because iBGP depends on an IGP (Interior

Gateway Protocol) routing protocol to calculate the path between the two end peers.

Routers that have both eBGP and iBGP neighbors are called ASBRs (AS Border

Routers). They are the responsible of diffusing externally learned routes within their

own AS. (64) states that an iBGP speaker is not able to re-advertise internally learned

routes from its iBGP peers, that is because iBGP has no loop detection mechanism.

Therefore, full mesh topology should be maintained among the ASBRs, thereby, each

internal node should establish iBGP sessions with all ASBRs to guarantee complete

visibility. However, iBGP full mesh has scalability concerns:

• Number of iBGP sessions: For an AS that has n internal router and a ASBR,
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the needed number of iBGP sessions in a full mesh topology is: na+ a(a−1)
2 . This

may cause extra overhead on ASBRs.

• Administration: The configuration management of this huge number of sessions

is tough.

• BGP table size: Increased number of neighbors increases the number of paths for

each route, which leads to memory consumption.

To resolve the scalability concerns of full mesh iBGP, two alternative configurations

have been appeared:

2.2.6.1 AS Confederation

AS confederation (47) divides the AS into smaller ASes. Each sub-AS has a private AS

number and contains a set of routers. IBGP topology inside each sub-AS is full mesh.

BGP sessions between routers from different sub-ASes are managed by an enhanced

version of eBGP. This new protocol that might be called as eiBGP (External iBGP), has

enhanced AS PATH attribute to include sub-AS information. It has also enhancements

related to the handling of MED, Loc Pref, and Next Hop attributes.

AS confederation needs attentive design method. Increasing the number of sub-

ASes decreases the number of routers inside each sub-AS and, in turns, decreases the

number of needed iBGP sessions, which is a positive point. At the same time, this

increases the number of eiBGP sessions, which creates scalability concern. Further,

increased number of eiBGP sessions causes inherited divergence problem since eiBGP

is an enhanced version of eBGP, which is known to converge slowly.

Vice versa, Decreasing the number of sub-ASes increases the number of routers

inside each sub-AS and, in turns, increases the number of iBGP sessions, which arises a

scalability concern. However, the positive point is that it simplifies the eiBGP topology.
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2.2.6.2 Route Reflection

RRS (Route Reflections Solutions) (57) was motivated by the scalability problem of

FMS (Full Mesh Solution). RRS successfully resolves scalability concerns by reducing

the needed number of iBGP sessions. However, it causes new types of divergence

problems and configuration dependent routing loops and oscillations.

BGP route reflection is based on reducing the number of iBGP sessions by giving

certain nodes (Route Reflectors) the ability of redistributing the received routes. RRS

divides the AS into clusters, each cluster has one or more RR and the rest of nodes are

their clients. RRs establish iBGP sessions with their clients and their non-client peers.

Top level RRs should be fully meshed. When RR receives a route from an iBGP peer,

it selects the best path based on its path selection rule. If the path was received from

a non-client peer then it reflects it to all its clients. If the path was received from a

client, it reflects it to all its clients and non-clients peers. Clients’ paths are limited to

those advertised by their RRs. For the sake of redundancy, clients may establish iBGP

sessions with RRs either in the same or different cluster.

Employing RRS may lead to the following signaling and forwarding anomalies:

1. Non complete visibility:

Using RRS does not guarantee that each node would have a complete visibility.

That is because internal nodes do not receive routing updates from all the ad-

vertising ASBRs, which leads to an incomplete information and, in turn, to a

non-optimal decision of the best BGP next hop (ASBR). Consider the topology

in figure 2.2, continuous lines indicate physical links and dash ones indicate iBGP

sessions. The numbers next to the continuous lines are the IGP costs.

Figure 2.2 shows a simple scenario in which an internal node’s traffic quit the

AS from a non optimal egress node (if hot potato is implemented). C2 gets all

the routes from RR, it does not receive any route from C1 or C3. Thus C2 will

never know about paths from C1. If a prefix ρ is advertised by both C1 and C3,

the traffic from C2 will quit the AS from C3 where the best path is via C1.
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Figure 2.2: Non complete visibility

2. Route Oscillation:

Route oscillation occurs when the topology is no longer able to converge to a sta-

ble state. This happens when a subset of routers within an AS exchange routing

information forever without being able to settle on a stable routing configuration.

Misconfiguration is the main reason behind the route oscillation. When internal

clusters contain nodes whose preferred egress points are not in the same cluster,

then an oscillation might occur. For example, consider the configuration in fig-

ure 2.3 1 where it is not possible to settle on a stable state. The preferred egress

point of the route reflector of each cluster is in the neighboring cluster because

bi < ai. RRi oscillates between two states. 1) It selects αi as preferred exit point.

2) It selects αi+1 as preferred exit point and withdraws αi.

The l clusters form a signaling loop which causes the route oscillation. Simi-

lar scenarios of oscillations might take place due to MED attribute (9) or path

asymmetry (5). The main reason behind such signaling anomalies is the lack of

visibility.

1Route reflectors are supposed to be fully meshed, but to avoid excessive clutter in the figure, we

did not show all the iBGP sessions (dashed lines).
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Figure 2.3: Route Oscillation

3. Routing Loops:

Routing loop is the passage of the routed traffic by the generating node more

than one time. The reported reason behind iBGP forwarding loops is that the

path between an internal node and its exit point contains at least one node that

has different exit point. RRS topologies might cause routing loops either inside

the AS or even outside (20). We illustrate only the internal routing loops. An

example of a routing loop is shown in figure 2.4 where we have: bi > bi+1 + ai+1 .

Dispute wheel (20) is one of the configurations that causes forwarding loops. In

figure 2.4, ni has an iBGP session with RRi from which it gets all the routing

information. Its path to its egress node RRi passes by another node ni+1. ni+1

has a different egress node RRi+1 and the path between them passes by another

node and so on. If ni has an iBGP session with its preferred egress node RRi−1

the forwarding loop will not occur. In other words, if internal nodes establish

iBGP sessions based on the selection of preferred egress points, then we can have

loop free topologies. This is the main idea of Skeleton as we will see later.
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Figure 2.4: Forwarding loop (Dispute Wheel)

2.3 Internet Modeling

Internet topology is a graph of nodes, where nodes represent ASes (Autonomous Sys-

tems) and edges represent inter-AS links. This is a deterministic model that can be

obtained in the stable state, as proposed in (23; 61). However, Internet is a changing

topology which makes any fixed representation inaccurate. Topology changes, in terms

of Internet routing, form routing events that may disrupt the stability of the routing

protocol. Moreover, and because of that Internet is a huge topology, it takes routing

protocol long time to reconverge after a routing event. The convergence of the Internet

routing protocol is a challenging problem that can not be eliminated, but it can be

enhanced.

Internet routing is a complex process, it runs between tens of thousands of ASes,

carrying hundreds of thousands of prefixes (2). This makes it hard to be described

formally. However, that process can be divided into parallel sub-processes that run
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simultaneously for each separate prefix.

This section presents a model of Internet routing that describes both inter/intra

AS topologies. In addition, it models the decision process of Internet routing protocol

BGP using routing algebra. We first present the topological model of both inter/intra

AS. We denote prefix-based Internet model for inter-AS topology, and ASBR-based

model for intra-AS one. We then present the routing algebra of (30), which states

that of certain properties are satisfied then the inter/intra AS topology converges to

prefeix/ASBR based model.

2.3.1 Topological Modeling

The Internet is a network of networks, its representation depends on the level of its

hierarchy we are illustrating. In our study we propose modeling schemes for both AS

level and router level. We use the AS level model when studying an EGP protocol,

and we use the router level when we study an IGP protocol. We show that when the

external/internal topology is safe, then it converges to prefix/ASBR based model.

The topological modeling approach employs the graph theory in representing the

topology we study. This gives a simple model on which we can easily understand and

apply the functional model. Next subsection gives a quick overview of graph principles

that we will use in our modeling scheme. Second subsection presents the prefix based

model that looks at the Internet from AS level point of view. Third subsection apply

the prefix based model on the intra-AS topology.

2.3.1.1 Overview

A graph G(V,E) is a representation of a set of vertices V and a set of edges E where

each edge connects pair of vertices from V . In interdomain routing, V represents the

set of ASes, and each edge in E represents an inter-AS physical link between two

neighboring ASes. Some times there might be several physical links connecting two

ASes. In such cases we represent them by a single edge. Our representation does

not take into consideration the logical connections that might be established between
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two far ASes through IP (Internet Protocol) tunnels. Graphs that have directed edges

are called directed (or asymmetric) graphs and those with undirected edges are called

undirected (or symmetric) graphs. In intra AS topology, the set V represents the set

of routers, and E represents the physical links between routers. Routers that are not

BGP speakers (i.e. they use static or default routes to exit the AS) are transparent.

A tree is an undirected graph in which any two vertices are connected by exactly

one simple path. In other words, any connected graph without cycles is a tree. This

definition fits converged networks and models the data plane. However, Internet nodes

may have more than one path to reach each others. Moreover, a path from node a to

node b might be different form the path from node b to node a. This leads to that

the represented graph should be directed and loop free. This modeling graph called

DAG (Directed Acyclic Graph), which is a directed graph with no directed cycles. Our

topological model uses DAGs to represents both the inter and intra AS topologies.

2.3.1.2 Prefix-based Internet model

In network routing we distinguish between two planes: control plane and data plane.

Control plane represents the signaling flow of the routing messages, the graph the

models it is called the routing graph. Data plane represents the traffic flow according

to the routing decision, the graph that models it is called forwarding graph. This

distinction leads to different representation for routing and forwarding.

Network topology can be modeled as a graph, its nodes are either ASes or routers,

its edges are physical links. Network convergence is a parallel process that is run for

each prefix separately. This parallel process can be divided into a number of single

processes equal to the number of prefixes.

Unless there exists a BGP prefix hijack, an Internet prefix may not be announced

by more than one AS node. However, in some cases where a customer connects to

several providers without being part of any of them, then each of those providers is

considered as an announcing AS node.

The network can be represented as a DAG rooted at the prefix (ρ) announcing node
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dρ. The resulted topology is a subgraph with the same set of vertices and a subset of

edges, we call it ρ-converged subgraph Cρ. This subgraph consists of branches Bρ

terminated at hub node dρ, the number of these branches is limited by the number of

directly connected neighbors of dρ.

Figure 2.5.a shows a sample topology, the paths to reach prefixes announced by

nodes f,d,b form subgraphs as shown in figures 2.5.b,c,d respectively.

Figure 2.5: Prefix-based Model

DAG is a loop free graph, however, in case of failures, the topology will change and

loops may take place. In figure 2.5.b, if node d fails, and both nodes b,g select each

other to reach prefixes announced by f, then a forwarding loop will take place between

b and g. To ensure the network stability after the occurrence of a failure, it should

be guaranteed that the network keeps its structure as a DAG during and after the

convergence process. This means that the topology type before and after the failure

should follow the DAG model.
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2.3.1.3 ASBR-based AS model

ASBR-based model is a subgraph of the internal AS physical graph with the same

set of nodes and a subset of intra-AS links. These subgraphs form DAGs rooted at

the ASBRs. Branches of this topology are the best IGP (Interior Gateway Protocol)

paths calculated between leaf routers and ASBRs. Figure 2.6 shows an example of

AS topology with corresponding ASBR-based AS model, where A,B,C are ASBRs and

1,2,3,4 are internal routers. For the sake of simplicity, we suppose that all inter-router

links have IGP metric value equal to 1.

Figure 2.6: ASBR-based model

2.3.2 Functional Modeling

Modeling BGP convergence has been tackled by few works. Griffin and Sobrinho (22)

proposed a high level declarative language based on the routing algebra framework of

Sobrinho (30). The proposed language, RAML (Routing Algebra Meta Language), has
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the key property that correctness conditions can be derived easily. It has the ability to

express any routing protocol while retaining the ability to derive algebraic properties

that is related directly to the convergence ones. Sobrinho (30) has proposed an algebra

for routing based on walks and signatures. His work forms a good start in applying

algebraic theory on network routing. Sobrinho proposed an algebra for routing as an

ordered septet (W,�, L,Σ, φ,⊕, f) where:

• W is a set of weights.

• L is a set of labels.

• Σ is a set of signatures.

• � is a total order on W .

• ⊕ is a binary operation that maps pairs with a label and a signature into a

signature.

• f is a function that maps signatures into weights.

• φ is a special signature.

This generic definition gives the possibility to choose the above sets and function

according to the tackled subject. Once this algebra is determined according to a routing

protocol, then all what we need is to prove the strict monotonic property of this algebra

in order to show that it converges to an optimal state. This guarantees the safety and

robustness characteristics of that protocol.

According to Sobrinho, the algebra is monotone if for all l ∈ L and σ ∈ Σ, f(σ) �

f(l ⊕ σ), while the strict monotonicity condition is: for all l ∈ L and σ ∈ Σ, f(σ) ≺

f(l⊕σ). The strict monotonicity has an essential advantage over the monotonicity, for

example, in next hop forwarding, the path cost from the next hop should be (strictly)

less than the path cost of the current node. This is indispensable to avoid loops.

PBR (Policy Based Routing) protocol selects paths by preferring those with high-

est policies. Internet paths should be selected by calculating their policies, and then
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selecting the compliant ones. Operations between policies need to be done in a well

defined space.

We remind that the objective behind employing the routing algebra in our work is to

ensure that our proposed solutions lead to optimal convergence; that is the convergence

towards a DAG topology as defined in the previous section.

We reform the routing algebra to make it easier and simpler to be applied without

affecting its generality. We define a composite set of path policies Π which represents the

of signatures Σ in the routing algebra. We define the function f is the identity function.

This gives that the set of weights W is identical to Π. Therefore, the routing algebra

that we will work on, which we will call the PBR algebra, has the form: (Π,�, L,⊕, φ),

where:

• Π is a set of composite path policies.

• ⊕ is a binary operation on Π.

• L is a set of labels.

• � is a total preorder on Π. Note that we relax the antisymmetric condition

since it may not be true in all cases. For example, if we take the path pol-

icy represented by the AS Path attribute, then we can have two path policies

℘1 = {ASa, ASb, ASc}, ℘2 = {ASα, ASβ, ASγ}. For some prefixes, ℘1 might be

preferred over ℘2 and the opposite for other prefixes. However, ℘1 6= ℘2.

• φ is the policy of a none valid path.

To guarantee the correctness of a protocol, it is sufficient to prove the following

properties:

1. Order preservation: ∀` ∈ L,℘b, ℘c ∈ Π− {φ}, ℘b � ℘c : `⊕ ℘b � `⊕ ℘c.

2. Monotonicity: ∀℘a ∈ Π− {φ}, ∀` ∈ L : ℘a � `⊕ ℘a.

3. Strict monotonicity: ∀℘a ∈ Π− {φ},∀` ∈ L : ℘a ≺ `⊕ ℘a.
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In chapters 4 and 6 we employ this algebra to prove the strict monotonicity property

and thereby the safety and robustness of our proposed approaches.

2.4 Motivations and Objectives

The increasing number of AS nodes in the Internet, which exceeds nowadays 35,000

ASes, see figure 2.7, along with the complex relationships between them create severe

challenges on the routing process. Moreover, the tremendous number of announced

prefixes, see figure 2.8, increases the load on this process. With such a complex topology,

BGP suffers from relatively long convergence time and is not guaranteed to converge

(21). Moreover, its divergence may cause undesired packet loss (42).

Figure 2.7: AS Counts (2)

However, stabilizing BGP comes on the cost of its convergence time. In other

words, Maintaining continuous connectivity to reduce packet loss means increasing

BGP stability, which leads to longer convergence time. And reducing the convergence

time affects (badly) BGP stability and, in turns, increases packet loss.

In this work we believe in that the connectivity is the main objective of the In-

ternet, connectivity means packet delivery. So having slightly longer convergence time
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Figure 2.8: Forwarding Information Base 1990-2010 (2)

while ensuring continuous connectivity is better than losing traffic for the sake of fast

convergence. This motivates us to propose a backup solution for BGP increases its

stability and guarantees continuous connectivity but with slightly slower convergence

process.

Interdomain events (topology change, policy change, etc) are not the only affecting

factor on eBGP convergence time, but it can be affected by the intra-AS events (6).

This makes studying BGP stability is attached to its both modes (external and inter-

nal). Therefore, Internal anomalies listed in subsection 2.2.6.2 may disrupt the external

connectivity, which leads to more events in the external topology. Thus the eBGP con-

vergence process will run more times and then more possibility of interdomain packet

loss. This motivates us to propose a new iBGP solution that ensures internal stability

and, in turn, improve the global stability.

The main mission of any routing protocol is to build a logical topology that guaran-

tees data connectivity. So any new approach in this domain must hold several properties

to be accepted as an applicable and useful protocol. In this dissertation we tackle the

following properties, which we think are sufficient to have happy topology:

1. Safety: a safe topology is the topology that is free of loops (routing and forward-
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ing).

2. Scalability: scalable protocol is the one that does not highly consume topology

resources like: link utilization (with high number of control packets), router’s re-

sources (CPU, memory) that nay be caused due to huge number of iBGP sessions,

etc.

3. Correctness: correct configuration is the one that reach the topology to the in-

tended stable state, which is the state that respects the designed routing policy.

4. Robustness: is the ability to resist all types of events (topology or policy changes).

5. Backward compatibility: it states that the enhanced protocol should be opera-

ble with the conventional one. This property is essential when we deal with a

heterogeneous topology like the Internet.

We have employed several tools (rocketfuel, brite, SSFNet) and frameworks (routing

algebra, topology modeling) to validate each of the above properties in chapters 4 and

6.
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External BGP

3.1 Related Works

Today’s Internet is the interconnection of more than 30,000 ASes with continuous in-

crease, where the BGP table size has exceeded 300,000 entries and expected to jump

over 350,000 by the end of 2010 (2). These numbers have direct impact on the scala-

bility of BGP, since they affect both the number of BGP messages and its convergence

time (8). Measurements and experimental studies (6; 14) have shown empirical results

on the impact of routing events, either inside or between ASes. BGP is not guaranteed

to converge (21), the huger the Internet, the lesser this guarantee is. It was observed

that BGP can be behind more than 50% of the performance problems of voice calls

because of its slow convergence time (42). Several contributions (8; 19; 39; 41; 42) have

agreed on that BGP may take more than 30 minutes to converge where the underly-

ing infrastructure is connected. Several proposals (10; 32; 41; 44) were appeared to

illustrate the BGP convergence time problem but none of them talked about the em-

ployment of their solution in the real world Internet. Further, they have not mentioned

how to fix the backward compatibility problem of their solution. However, the added

value of our proposal is the backward compatibility with current BGP. This is reflected

on the design of our enhancements to be practical and usable in the current Internet.

Obradovic (45) has proposed a real-time model for BGP with which he could put
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an upper bound of the convergence time which is estimated by O(n), where n is the

number of AS nodes in the network. Sun et al. (62) reduced this bound to the order of

the diameter of the network by using the root cause notification. These proposals have

tried to clarify the convergence time problem and modeling it, but they have never

talked about the disconnectivity caused by BGP re-convergence process, which is the

real concern in this domain.

Katabi et al. (42) have done measurements on VOIP calls through the Internet.

They claimed that most of the previous works have concentrated on documenting the

voice performance problem with an assumption of that all VOIP’s performance prob-

lems are caused by congestion. They claim also that more than of 50% of performance

problems are caused by BGP. This shows that BGP is a serious concern for the real

time applications.

Katabi et al. (41) stated that it is impossible to design an Inter-domain routing

protocol that converges fast enough for real-time applications. They have suggested a

new protocol R-BGP (Resilient BGP), which is based on the pre-calculation of backup

path. The backup path is then to be advertised to the next-hop of the primary one.

However, R-BGP has no loop avoidance mechanism, and it does not limit the failure

propagation. This latter has a direct impact on BGP convergence time. R-BGP has no

flushing mechanism to reorder the paths in Loc-RIB, hence non-optimal paths might

exist whereas the optimal ones are existed in Adj-RIB-In.

Pei et al. (10) improve the convergence time of BGP by limiting it with the order

of the network diameter, as well as reducing the number of BGP messages exchanged

during the convergence process. This is achieved by adding to each BGP message

an identifier (root-cause) indicating the cause of the BGP message. BGP-RCN (10)

is mainly based on loop avoidance to improve the convergence time, but it does not

illustrate the main problem which is the transient disconnectivity. Yannuzzi et al.

(39) have evaluated the proposed solution in (10) and claimed that it suffers from the

problem of identifying (accurately) the root cause of a failure. They have presented

three objectives of the Inter-domain routing: reducing the number of BGP messages
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exchanged during convergence, scalability, and reducing the BGP convergence time.

They stated that it is difficult to exceed some of the inter-domain routing limitations

due to the worldwide deployment and the autonomousity of the entities through the

Internet.

Although, all previous solutions have admitted that it is impossible to reduce the

convergence time to zero, most of them concentrated on reducing it and forgot about

the disconnectivity caused during this time. We also have tried to reduce the conver-

gence time, but we were more interested in keeping the connectivity during the path

recalculation phase. This gives our proposal additional advantages, no matter how

much we could reduce the convergence time since we gain the continuous connectivity.

To our knowledge, there is no proposal that has tackled BGP convergence time while

illustrating the following points:

• Transient disconnectivity elimination.

• Loop avoidance.

• Limiting failure propagation.

• Ensuring intended stable state.

In the next chapter, we show that our proposal meets the above points through

different mechanisms: first, we combine the root cause (10) with the backup strategy

(41) in our design, second, we send the backup information in a new optional attribute

instead of proposing a new protocol, third, we employ selective withdraw mechanism

to limit the propagation of failure, forth, we added a new timer TRT (Transient Route

Timer) to ensure that the Loc-RIB contains the best path, this is referred to as the

intended stable state. The validation of our proposal is in the next chapter.

3.2 Stabilizing EBGP

This section presents our approach that illustrates the transient disconnectivity of BGP

during its re-convergence process. Although reducing the convergence time is not our
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Figure 3.1: a. traffic between A and B before link failure between ASes 5 and 7

b. Dashed line shows the traffic flow in the temporary phase, continuous line shows the

flow in the converged state

main objective in this work, but when designing our solution we were aware of keeping

that time as short as possible.

Once a topology suffers from a link failure, the time needed to re-converge is divided

into two parts: the first one is the failure propagation time, and the second one is the

period of the recalculation of alternative path. During this time the topology may

suffer from transient disconnectivity, and hence packets are dropped.

In the rest of this chapter we assume that the node we are studying has another

possible choice (path) to the lost NLRI (Network Layer Reachability Information), in

other words, the underlying infrastructure is connected. If this is not the case, nothing

can be done to prevent the disconnectivity (as in figure 3.1.a, if the link between AS9

and AS8 is lost, then AS9 can do nothing).
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Let us consider the scenario in figure 3.1, where the primary path between the two

networks A and B is AS1, AS3, AS5, AS7. If the link between AS5 and AS7 fails, then

AS5 has no other choice because AS3 has not informed it about the other two possible

paths. Therefore, packets that were passing through AS5 will be dropped until AS3

moves to AS4 or AS6, or until AS1 turns to AS8.

On one hand, BGP timers play an important role in reducing the number of UP-

DATE messages and eliminating route flapping by creating time intervals between BGP

messages. On the other hand, they calm the reactions against failure events which, in

turn, slow the re-convergence of BGP. This fact makes reducing the convergence time

an inherent trade-off. Griffin et al. (19) showed that we cannot expect a net gain

in convergence time by reducing the MRAI initial value below the default value (30

second).

In fact, the key problem behind BGP slow convergence is the possible traffic loss

during the convergence process, which is referred to as transient disconnectivity. Instead

of working on reducing the convergence time and causing undesirable results, we have

chosen to admit the slow convergence and tackle its key problem, that is the transient

disconnectivity.

Our approach as shown in figure 3.2 states that each node, in the stable state,

runs the backup algorithm and builds a list of backup paths ranked according to their

disjointness with the primary one. Once a failure occurs, the closest nodes to that

failure add the root cause information and disseminate withdraw messages to a subset

of their neighbors. Each node that receives a withdraw message select a backup path

with respect to the received root cause information and then switch to it while running

the TRT timer. Once the TRT expires, the node updates its Loc-RIB by installing the

new best route instead of the backup one. This last step ensures the intended stable

state because the standard convergence process runs in parallel with our proposed

mechanisms. next subsections details the four mechanisms that form our solution.
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Figure 3.2: eBGP proposal
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3.2.1 Propagating RC Information

This is a loop avoidance mechanism, the node that loses a peer adds its own AS number

to the withdraw message, so the receiving nodes avoid any path that passes again by this

node. Previous works, like (10; 50), refer to this information as Root Cause Information.

The RC info is filled in the BNH/RC (Backup Next Hop/Root Cause) Optional

Non-transitive attribute. To clarify this procedure we apply it on the scenario in figure

3.1.

• In the stable state the BPSA (Backup Path Selection Algorithm) is applied to

build the backup database for each AS. AS3 receives UPDATE messages contain-

ing network B from its neighbors and selects AS5 as its primary next-hop. Upon

applying the BPSA, AS3 finds that the most disjoint path from the primary one is

via AS4. AS5 receives the advertisements from AS3 and AS7. AS7 is its primary

next-hop and cannot be its BNH since this violates condition (1) of BPSA. AS5

cannot also choose AS3 since this violates condition (2). Therefore, AS5 looks for

network B in its neighbors’ backup information, i.e. the BNH attribute, AS7 has

no backup to network B, while AS3 has its backup via AS4. The result is that

AS5 installs a backup path to B which is [AS3, AS4, AS7].

• In the Non-Stable state we consider two possible failures:

– Case I: Failure in the link between AS5 and AS7. Once the failure happens,

AS5 clears all the NLRIs learned by AS7. Then, it looks for the BNH of

this path which is AS3, after that, AS5 adds itself as an RC info and sends

trigger withdrawal to AS3. Finally, AS5 installs the backup info directly into

its Loc-RIB and starts sending and forwarding traffic immediately. At this

point, the traffic coming from net A to B follows the dashed line in figure

3.1.

– Case II: Failure between AS3 and AS5. AS3 detects that its peer AS5 (its

primary next-hop towards network B) has been lost. It verifies its backup
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path and installs the one via AS4 instead of the old one in the Loc-RIB, and

stops the failure at this limit till TRT expiration.

RC info provides the Internet nodes with additional information concerning the

topology event, which helps in making more stable decisions. However, if all received

paths includes the RC node, then the received node has no choice rather than selecting

a path that passes by an RC node. A situation like this can be illustrated when we

look at the AS node as a set of routers. Therefore, this concern can be resolved if we

add the following enforcement:

RC information is added only by the ASBRs that send withdraw messages to external

peers.

Following this enforcement leads to that the ASBR that loses an external peer should

not add the RC info to the UPDATE messages destined to the internal peers. The

ASBR that receives a withdrawn route from an internal peer knows (thanks to iBGP)

whether the lost prefix is accessible via another ASBR or not. If so, it does not add

RC info, else, it adds it.

3.2.2 Backup Solution

The backup path selection algorithm is divided into two separate phases: first, building

backup paths list during the stable state and rank them according to their disjointness

with the primary one, second, selecting backup path upon receiving the withdraw

message that contains the root cause information.

Our proposed solution includes enhancements for the network performance in two

states:

• Stable State: when there is no failure in the topology, BGP speakers scan their

routing table and calculate the best backup paths using BPSA, and then dissemi-

nate them through the new attribute BNH to a selected group of their neighbors,

as we will see in the selective withdraw mechanism.
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• Non-stable State: when a failure takes place, each node faces one of two possible

scenarios:

– It loses one of its peers: it formulates an update message to withdraw all the

paths whose next hop is the lost peer. It includes in this update message

the RC information through the new attribute BNH/RC. If it has a backup

path, then it installs it immediately in its Loc-RIB and runs the decision

process to select the new best path.

– It receives an UPDATE message containing a withdrawn route: it reads the

RC info to avoid the selection of any path that passes by the node that

originated this message, then it withdraws that route from its neighbors

being used it as next-hop to the withdrawn prefix.

The (BPSA) Backup Path Selection Algorithm respects the following conditions:

1. Avoids the backup path whose BNH is the same as the lost primary one.

2. Avoids the backup path which passes again by the same node.

3. Avoids the backup path that contains the RC information.

4. Considers the inter-AS relationships.

It works as follows:

• It looks for an alternative neighbor that can route the traffic to the lost prefix.

If it finds a neighbor that can play the role of a BNH and respects the above

conditions, then it selects it.

• It fills the backup info in an “Optional Non-transitive” attribute (BNH) and sends

it in a BACKUP UPDATE message to its primary next hop. That is because

all the other neighbors receive an update message containing its primary path.

Therefore, those neighbors are able to select the announced primary path as

their backup. An example that justifies this choice is in figure 3.1.a, let AS8 be
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the primary next-hop of AS1 to reach network B, and let AS3 its backup next-

hop. Both AS2 and AS3 do not need to know about the backup next-hop of

AS1. However, AS8 needs this backup information, thereby selects AS1 as BNH,

whereas AS2 selects AS1’s primary path as backup one.

• If it could not find that neighbor, it searches the advertised neighbors’ paths to

find the possible backup paths through the value of BNH attribute.

• If more than one possible backup path exist, it selects the most disjoint path,

which is the one that has the minimum number of common nodes with the primary

one. And if there is more than one disjoint path, then the standard BGP path

preference procedure is applied.

3.2.3 Limiting Failure Propagation

The objective behind this filter is to limit the propagation of failures in the network, and

to stop them at the node that has backup path toward the lost NLRI. The node, which

receives a withdraw message and has no backup path for the lost NLRI, disseminates

the withdraw message. However, if it has a backup path, we distinguish between two

cases:

• Its backup next-hop is its predecessor in the primary path: In this case the

withdraw message should be forwarded only to that node. For example, in figure

3.1, AS3 is the backup next-hop of AS5 to reach network B, where AS5 is AS3’s

primary next-hop to reach the same network. In this case AS5 must send a

withdraw message to AS3.

• Its backup next-hop does not relate to the primary path. In this case the withdraw

message should be stopped at that node. In figure 3.1, AS3 does not need to

propagate the withdraw message received from AS5 since its backup next-hop is

AS4.

The node that installs a backup path in its Loc-RIB instead of the primary one

should inform its neighbors that are using it as next hop to reach ρ. However, and
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for the sake of continuous connectivity, we propose that the node will put off such

announcement until it converges to the best path. That is because the backup path,

as we will see in the next sections, is not necessarily the second best one. This amount

of time to wait is related to the TRT timer. Once this the TRT timer expires, it

disseminates an UPDATE massage carrying both the withdrawn path (unfeasible) and

the backup path (feasible).

This has the following advantages:

• The connectivity is assured during the inter-advertisements interval (MRAI).

• Neighboring nodes receive one update message and execute immediately the phase

II of the decision process, which notably reduces their convergence time. That is

because this latter will be independent of MRAI timer.

• Increases stability.

3.2.4 Transient Route Timer

TRT (Transient Route Timer) is a timer used to ensure the intended stable state. Upon

its expiration, it forces the node’s BGP instance to run its preference calculation to look

for the policy compliant path, and then move it to the Loc-RIB. The motivation behind

the employment of this timer is that the backup path is not necessarily the second best

path, and since it is installed in the Loc-RIB, this latter need to be refreshed to ensure

that it contains the best policy compliant paths towards all prefixes. The initial value of

this timer should cover the duration of the transient instability of the topology, through

which the convergence process is run.

Recall the example in figure 3.1, AS1 has three paths in its Adj-RIB-In towards

network B. We assume that it selects AS3 as it best path to B. Let AS2 be the second

best. Upon applying the BPSA it finds that AS8 is the best backup path (most disjoint

path). If the link between AS1 and AS3 fails, AS1 moves directly to its backup path,

which is via AS8. There is no event that will trigger AS1 to move to AS2, which is
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preferred over AS8. To change such unintended state we introduce the TRT to trigger

AS1 to move to its BGP policy best route after the loss of the route via AS3.

Failure propagation, using our proposal, looks like a damped wave whose amplitude

(amplitude represents the number of affected nodes) decreases when the failure goes

farther from the root cause. It starts with its maximum amplitude, because a node

failure affects all its neighbors. Once that event reaches a node that has a backup path,

it stops it. That is why the amplitude decreases. TRT represents approximately the

wave period and acts as a pause before the nodes replace backup paths with the new

best ones.

3.3 BPSA vs DUAL

One of the algorithms that can be discussed when looking for a solution to stabilize

BGP is DUAL (Diffusion Update Algorithm) (12; 18). In addition to the routing

table, DUAL uses two other tables: Topology and Neighbor tables. Neighbor table

contains all the directly connected routers. Topology table contains all the routing

information sent by the neighbors listed in neighbor table. DUAL enforces each router

to select a successor and a feasible successor. Successor router is the neighbor that has

the minimum calculated cost. Feasible successor is the one that meets the feasibility

conditions, which states that the advertised distance of the feasible successor must be

less than the calculated distance of the successor. This condition ensures that the

backup path (feasible successor) is loop free.

Several aspects can be discussed about DUAL:

• One of the main concerns of DUAL is that the diffusion calculations need a (rel-

atively) long time to be done in a huge topology like the Internet. DUAL adapts

quickly to routing changes in medium scale networks (7; 28), but its behavior

cannot be expected in very large scale networks like the Internet.

• BGP uses path vector routing and it is not possible to push it to employ DUAL

due to that DUAL is not interoperable with path vector routing. Moreover,
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Figure 3.3: A simple scenario to compare the feasible successor of DUAL with disjointness

backup path

applying DUAL’s feasibility condition on BGP metric needs further investigation

since BGP has no metric value that can be compared.

• Comparing the feasibility condition with our disjointness condition, we figure out

that the disjointness is an easier condition than the feasibility one and at the same

time it ensures freeness of loops. Figure 3.3 shows a simple scenario, if we apply

DUAL and look from b’s stand point, we notice that its successor is node a to

reach destination d, and it has no valid feasible successor because the advertised

distance from c is larger than best distance to d. However, if we apply our BPSA

we notice that b accepts c as its backup next hop. Therefore, if the link between

a and b fails, and DUAL is employed, then node b enters the active state and

calculate a new successor. However, and using BPSA, node b moves directly to

its backup path.

• Although our approach care about traffic loss more than slow convergence of

BGP, but we are still aware that BGP convergence time should not be very long,

and our results show a slight increase in the convergence time. However, DUAL

will cause BGP to have a very slow convergence time.

No previous works have analyzed DUAL in a large scale network, so a good future

work might be to employ DUAL in Internet-like simulation framework and observe its

behavior. Then we may judge if it can be used in interdomain routing.

65



3. EXTERNAL BGP

66



Chapter 4

Validation and Analysis

In this section we present the experimental validation, and then we analyze the obtained

results. We prove that our proposal ensures the following characteristics:

• Limiting failure propagation.

• Robustness (continuous connectivity).

• Safety (no routing loops).

• Intended stable state.

• Backward Compatibility.

4.1 Safety

Our stabilizing solution tackles the transient disconnectivity that follows a failure in

the network. It ensures continuous connectivity while the network is converging to its

stable state. It depends on backup paths calculated during the stable state. We prove

now that those backup paths leads to safe state.

The algebra that describes the backup path selection process depends on two prin-

cipal parameters carried in two attributes: AS Path of the primary path and RC in-

formations included in the received withdraw messages. Based on the routing algebra,
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we define an algebraic structure that describes how our solution selects backup paths,

then we prove that this choice is safe.

The algebra of backup path selection is (Π,�, L,⊕, φ) where the set of policies Π

is the standard BGP attributes plus the addition optional attribute that is the inter-

AS relationship type. However, we will illustrate only the AS Path attribute, which

plays the principal role in selecting the backup path. Therefore, Π = {0, 1} × N ×

{π, c, v, p, φ} × ap, where π is the policy of a trivial path, ap is the path vector carried

in the AS Path attribute, and c, v, p are the relationship types: customer, provider,

and peer respectively. The positive integer parameter reflects is the avoidance level of

the backup path. Its initial value is zero, it augments when the number of common

nodes increase. The 0/1 parameter takes the value 1 if the RC node is found in the

advertised AS path and 0 elsewhere.

The set of labels L = {c, v, p} × {app} × {rc} where app is the AS path of the

primary path and rc is the root cause AS node sent by the withdraw messages. The

comparator � is the lexicographic ≤. The operation ⊕ is defined in the following table.

⊕ (b, d, c, ap) (b, d, v, ap) (b, d, p, ap)

(c, app, rc) (b, d, c, ap) (b, d, φ, ap) (b, d, φ, ap)

(v, app, rc) (b, d, v, ap) (b, d, v, ap) (b, d, v, ap)

(p, app, rc) (b, d, p, ap) (b, d, φ, ap) (b, d, φ, ap)

b = 1 if rc ∈ ap and 0 elsewhere, and d is the number of common nodes with the

primary path. The less these two members are the better the backup path is. The RC

information is determined by the sender node and may not be changed by transient

nodes, thereby the value of b will not be changed after we apply any label to received

path. The same is for d, because the number of common nodes is not changed after

applying the local label since the current node is not considered in the calculation of

d. Therefore, the monotonic property of this algebra is guaranteed by the third and

fourth members of Π as proven in (30).
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Note that the operation ⊕ states that, for example, extending a provider path by

a peer or customer one leads to impossible path φ. However, and since backup paths

are used temporarily, we may accept to violate inter-AS relationship guidelines to have

more possible backup paths. This case might be useful in the case where all the paths

(the respect the AS relationships safety guidelines) contain the RC node. In other

words, a valley backup path is better than a path that contains the RC node.

4.2 Experimental Validation

This section presents the simulation results upon applying our approach on topologies

that were built using BRITE (60). Our measurements were done in three phases:

First, we collect statistical data from real ISPs (Internet Service Providers), second,

we run the simulation using the standard BGP, and finally, we re-run the simulation

on the same topologies of phase II using the Enhanced BGP. We start this section by

introducing the auxiliary tools we have used: Brite and SSFNet.

4.2.1 Brite

Brite (60) is a topology model, its goal is to produce a topology generation framework

which improves the state of the art and is based on design principles which include repre-

sentativeness, inclusiveness, and interoperability. Representativeness leads to synthetic

topologies that accurately reflect many aspects of the actual Internet topology (e.g.

hierarchical structure, degree distribution, etc.). Inclusiveness combines the strengths

of as many generation models as possible in a single generation tool. Interoperabil-

ity provides interfaces to widely-used simulation applications such as ns, SSFNet and

OmNet++ as well as visualization applications.

While rocketfuel was used for intra-AS topology model, brite is used as topology

generator for inter-AS topologies. The generated topologies were introduced to SSFNet

where we apply our proposed eBGP enhancements.
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4.2.2 SSFNet

SSFNet (3) is a simulation environment that is capable of running network routing

protocols on imported topologies. This open source tool allows to modify the imple-

mentation network protocols, which makes it suitable for us since we need to modify

the BGP implementation. We have used SSFNet simulator to apply the eBGP backup

solution on topologies generated by Brite tool. It is divided into two levels. The core

level includes protocol implementations using java language. The second level is the

configuration one, where the network topologies are designed and the protocol models

are selected using DML (Domain Modeling Language). The implemented Models are:

NIC (link layer implementation), IP, TCP, UDP, OSPF, BGP, HTTP, sockets, and

NetFlow collectors.

4.2.2.1 Points of Interests

Simulation in SSFNet starts by the configuration phase, in which we design the desired

topology. The problem we have faced in SSFNet is that it is not an interactive tool

that allows inserting changes in order to do the needed measurements to calculate the

convergence time. Thus, we have had to introduce additional DML functions to fit our

needs.

SSFNet was run on topologies generated by brite (60) tool. We then inserted topol-

ogy changes (addition and deletion) to trigger BGP convergence process and measures

its delay.

Setting up the simulation environment starts by converting SSFNet into a real-

time interactive tool, the second task was to insert measurement functions to give us

the value of the convergence time, and finally we implement our enhancements and

integrate them into the BGP implementation.

4.2.2.2 Detailed Modifications

- Calibrating the simulation time: This step is necessary to give us a correct estima-

tion time. We have built a new class (SSF.OS.RTSim.class) that converts the original
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simulation ticks into the real-time ones, all our DML files refer to this class in order to

have real-time simulation results.

- Adding events: We add additional DML functions to be parsed by the simulator. The

role of them is to cause link failures or create new links in the illustrated topology.

- Java threads: Processing the new DML functions needs additional threads, methods,

and classes to be built in the core implementation of SSFNet, as well as new functions

in all the classes that implements TCP/IP layers reaching to the BGP class.

- Change listener: SSFNet uses change listener classes to get notifications upon any

changes in the routing table, we added our own listeners to get notifications upon link

failures, we also create new functions in the existed listeners to run the backup process

upon the changes in the routing table.

- BGP class: We integrate our own functions in this class, the stable state enhance-

ments were added in the main function, where the non-stable state ones were added

through a separate thread.

- BPSA: The implementation of the backup path selection algorithm was added in the

BGP class.

- RC Information: The fulfillment of the RC attribute takes place in the BGP class by

the node that receives the failure notification.

- New attribute: Our new attribute is added to the BGP message header in the Router-

Info class and marked as Optional non-transitive ones.

- Backup path: The backup next hop carried in the BNH attribute is saved in the

routing table, so we added this entry in the Route class called BNH.

- BGP path: Current SSFNet BGP metric calculation (dop function) depends on one

attribute only which is the LOCAL PREF, we modified this function to take into

consideration the AS Path as well as BNH attribute when we have two equal local-

preference paths.
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4.2.2.3 Why SSFNet?

We have chosen SSFNet (3) as a test environment for our solution. SSFNet has a

good implementation for BGP and provides two layers (Java and DML) for building

the needed topologies. We were compelled to add new modules to SSFNet since it

does not support all what we need to validate our solution. We applied our solution to

topologies of up to 10000 nodes, and due to a software limitation we could not simulate

the real number of ASes in the Internet which is more than 30000 nodes. The choice of

simulation as a mean to validate an approach for an inter-domain routing protocol like

BGP might seem critical. The simulation’s added values over experimentation are:

• We need to modify the BGP implementation, however, commercial routers do

not give the ability to access its built in operating systems, and hence there is no

way to have Internet nodes that fit our needs.

• Setting up a special (practical) environment to test our enhancements will be

limited in both the number of nodes and the number of links.

• Scanning previous works that depended on experimental validations, we notice

that researchers were limited to the environment they test, and they have no

ability to generate the needed events to test the topology reaction. Simulation

helps in testing complex topologies and generating all types of events.

Experimentation is still more convincing validation method than simulation, and

we are not trying to change this. However we argue that simulation is an important

step before moving to the experimental one.

4.2.3 Data Collection Phase

This phase includes statistical information collected from two running ISPs. Three

objectives are behind this phase: first, putting hands on the divergence problem that

Internet nodes (ASes) are suffering from, second, collecting information about the most

frequent events in the Internet, third, building practical evaluation of possible solutions.
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Figure 4.1: Convergence Time in Seconds as a function of topology’s total degree

The results of this phase are just a minimized version of those announced in the CIDR

Report (2). But the added value was the recommendations we have got from the ISPs’

network administrators.

We found that the withdraw messages are about 30% of the total received events, while

the announcements form 70%. Those events cover nearly all the prefixes in the routing

table in all the days except weekends. In fact, the variation was not only from one day

to another but also during the same day. The huge value of the standard deviation

in results was justified by the network administrators to be due to some maintenance

operations that took place periodically. The collected statistics were through several

days. We have not mentioned the exact numbers because they are changing daily and

the relative ratios are more interesting for us. One of the most interesting watches

was the disappearance of some prefixes in the routing table. The percentage of those

prefixes was nearly 1% of prefixes in the routing table. This reflects the changing nature

of the Internet as well as the need to illustrate ite frequent events and the divergence

caused by those events.
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Figure 4.2: Convergence Time in Seconds as a function of decimal logarithmic values of

the number of nodes (ASes)

4.2.4 Standard BGP

We have performed measurements on simulated topologies without any enhancements

in BGP implementation. We have measured the convergence time according to its

affecting parameters (number of nodes, number of edges, timers, etc). The convergence

time we have measured is the global convergence time, that is the time interval between

the instance of failure event and the instance where all the nodes converge to their stable

state.

We have done the following experiments and compare them with those in phase III:

Experiment 1:

We run the simulation for 12 different topologies with different number of ASes. For

each topology we apply different events including link/node failures and calculate the

arithmetic mean value of the convergence time. The results are shown in figure 4.2.

Experiment 2:

We run the simulation for different topologies with different total degrees but with the
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same number of nodes N. The results are shown in figure 4.1.

Experiment 3:

The objective of this experiment is to calculate the number of affected nodes by failure

events. The calculated number reflects the failure propagation in the topology. For

each topology with fix number of nodes N, we applied several events and counted the

affected nodes as in figure 4.3. The node is considered to be affected if it receives a

withdraw message concerning the disconnected prefix.

4.2.5 Enhanced BGP

We have used the same topologies of the phase II and we have done the same experi-

ments while using the enhanced implementation of BGP.

Experiment 1:

For each tested topology in phase II, we applied the same events and measured the

convergence time. Figure 4.2 shows the convergence time as a function of the number

of nodes, where each value of the convergence time reflects the arithmetic mean value

of several tests. During this experiment we made sure of the continuous flow of the

traffic between the two end points.

Experiment 2:

We fixed the number of nodes to 1000 and changed the number of total degrees in the

network, and then applied the same events of phase II. We compared our results with

those of phase II as shown in figure 4.1.

Experiment 3:

We have used our enhanced version of BGP and apply the same events on the same

tested topologies used in experiment 3 in Phase II. The results are shown in figure 4.3.
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Figure 4.3: Number of affected ASes as a function of the total number of ASes in the

topology

4.3 Analysis

4.3.1 Convergence Time

Many previous works tried to decrease the BGP convergence time, few of them talked

about the continuous connectivity. In our work we believe that it is not possible to

make the Internet as a fast convergence topology since this has bad effects on its

stability. This directed our interest to both: finding a solution for traffic routing while

the topology is converging, and reducing the convergence time as possible without

affecting the stability of the Internet. However, and due to the trade-off between fast

convergence and traffic loss, we have chosen to resolve the traffic loss without increasing

the convergence time tremendously. We first need to remind that the convergence time

we are measuring is the global convergence time, which is the time interval between

the failure event and the instance where all the nodes are stable. This is an impossible

measurement in the real Internet, but it is possible in the simulation environment.

The latest CIDR Report (2) has stated that most of Internet nodes have a 0 count

of the stable paths during a period of one month. Our statistics in phase I showed also
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that about 1% of prefixes in the routing tables were disappearing for periods ranging

from several seconds to several minutes. We conclude from these statistics that BGP

convergence process may affect all prefixes in the routing table of all the nodes in the

Internet. This shows the severity of the convergence time problem and the need to

protect Internet data from loss. Therefore, our work has come not only to reduce the

time of disappearance of some prefixes from the routing table, but also to allow the

continuous connectivity since most of Internet nodes have always another possible path.

Figure 4.2 shows a slight enhancement in the convergence time. Our experiments

also ensure zero data loss, even though our trace route results have given non-policy

compliant paths. The slight enhancements in the convergence time came from that

the TRT timer was not considered in those experiments. Therefore, the measured time

does not reflect the real convergence time since the topology is not in its intended stable

state. Taking TRT into consideration will increase slightly the convergence time but

will ensure the intended stable state.

Running the same experiment using standard BGP implementation gives transient

disconnectivity during a larger interval. This led to accept non-policy compliant paths

during the TRT interval because it is still better than the traffic loss. One might think

of Internet instability due to the existence of such paths, our answer to this concern is

first, those paths are not advertised to the rest of the network and they are used locally

to bypass the link failure, second, those paths are used for relatively short period of

time (TRT).

The difference in the values of convergence time shown in figure 4.2 is due to limiting

the failure event within a failure boundary. Figure 4.1 reflects the impact of the number

of links on the convergence time. It shows a bigger difference than that appeared in

figure 4.2. That is because the number of links affects directly the probability of having

an alternative path. Furthermore, more links means more nodes that have backup path.
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4.3.2 Failure Propagation

Failure propagation is expressed by the number of nodes that hear about the failure. We

consider that a node has information about a failure if it receives a withdraw message

concerning the lost link/node. Our approach states that a node should not forward a

withdraw message if it has a backup one, which draws a boundary of the failure. This

gives that the number of affected nodes using our enhancements is, to some extent,

independent from the total number of nodes. Figure 4.3 shows that using the standard

BGP implementation causes a spread of failure that reach to about 10% of the nodes

in the topology. It shows also that the graph of the standard BGP is linear in its

best case, where the graph of the enhanced BGP seems to be saturated at a value less

than 200 ASes. This means that, in the current Internet that has more than 30000

ASes, certain failures might disrupt 3000 AS around the world. Whereas using the

enhanced implementation limits the number of affected nodes to 200. Thereby, we can

guarantee, in a topology of 30000 ASes like the Internet, that the number of affected

ASes is bounded by 300 as a rough estimate.

4.3.3 BNH/RC Attribute

BGP may not send an update message of a certain NLRI to its selected next-hop to

reach the same NLRI. However, for each prefix, we propose that each node sends a

backup update message, if it has backup path towards that prefix, to its primary next-

hop to inform it about that backup path. This backup information is carried in a new

optional non-transitive attribute called BNH.

This choice ensures the interoperability of our solution with conventional BGP, and

helps in carrying the needed information. Adding new optional attribute to BGP was

already validated in (56) and it was shown to resolve the problem of interoperability.

This new attribute either contains the backup next hop address when carried in an

update message containing a new NLRI, or it contains the root cause information

when carried in an update message containing a withdrawn route.
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4.4 Discussion

Slow convergence is a well known concern of BGP. On one hand, making this process

faster may result in unwanted behaviors. On the other hand, there is no reason for

losing traffic since many studies showed that in most cases the underlying infrastructure

is connected during the convergence process. This motivates us to turn around the slow

convergence problem and propose a solution to overcome the traffic loss problem.

Besides solving the disconnectivity problem, we have tackled two another important

issues: failure propagation and intended stable state. Our results showed that the

number of affected ASes has been reduced when applying our approach, which decreases

the number of nodes that run their decision process and, in turn, increases topology’s

stability.

Since the backup path is not necessarily the second best route, we have employed

an additional timer (TRT) to fetch the new best path and install it in the Loc-RIB

instead of the backup one. This ensures that the Loc-RIB contains best paths, which

is the intended stable state.

However, TRT slows the convergence process, because once a node move from its

backup path to its best one it diffuses it. This enters the topology in a converging

state. Several ideas might be employed to have smooth transition from the backup to

the best path depending on the provided features from the existing routers’s operation

systems.

Load balancing feature is almost existed in all nowadays routers. Balancing traffic

between the backup path and the new best route makes the transition between them

smooth and allows the backup path to be used while the network is converging. This can

be reflected on previous figures in section 4.2, where they show results in the absence of

TRT. Therefore, employing load balancing technique will probably make them accurate

even in the existence of TRT.

Figure 4.3 brings us back to DUAL. With such a (relatively) small number of

affected nodes, DUAL may behave well and converge quickly.
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Chapter 5

Internal BGP

Chapter 3 presented our approach to stabilize eBGP using several mechanisms. At that

chapter we have considered ASes as simple nodes, which is not the real case. In fact,

ASes might be complex networks or routers, moreover, instability internal events may

disrupt the global stability as claimed by (6). This motivated us to illustrate internal

stability and study its affecting factors.

Being under a single administration makes things less challenging than being co-

operated with thousands of other nodes. Therefore, employing a stabilizing solution

for iBGP is easier that eBGP. Although both eBGP and iBGP have the same protocol

structure but they differ in their behaviors. For example, iBGP can establishes BGP

session with an internal neighbor that is not directly connected to it, while eBGP may

not (unless it uses IP tunnels). Since iBGP runs in a smaller network than eBGP, this

makes its convergence faster unless there is a permanent loop. So the issue we have

illustrated in eBGP, that is the packet loss during slow convergence is not a severe

concern for iBGP.

However, iBGP anomalies are due to misconfiguration inside the AS as reported

by several works. Three main methods are existed for the intra-AS configuration. All

of them generate two distinct data and control planes. We argue that this distinction

is behind most of iBGP anomalies and propose a solution that gives similar data and

control planes. We validate our approach in the next chapter.
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5.1 Related Works

Both alternatives, route reflection and confederation solve the scaling problem of full

mesh iBGP (13). RRS changes the behavior of iBGP by allowing the reflectors to

redistribute internally learned routes. Confederation changes the behavior of eBGP by

employing it between sub-ASes of the same AS.

Hares and White (54) is among the very few works that employs AS confederation

as intra-AS configuration. They used it to heal the AS split problem caused by some

types of internal failures.

RRS anomalies and route deflections were reported by several studies (4; 5; 13; 20;

34; 37). The main reason behind those anomalies is that RRS (57) has not defined

neither a constructing method to divide the AS into clusters, nor a selection procedure

of which nodes should play the role of reflectors and which ones play the role of clients.

Thus many proposals appeared to either define a constructing method or check the

correctness of running configuration.

The checking works proposed methods and procedures to check the correctness of

iBGP configuration. Griffin and Wilfong (20) showed that the determination of iBGP

configuration correctness is NP-hard, but they proposed sufficient conditions to ensure

the signaling and forwarding correctness. Buob et al (37) presented a methodology to

check the deflection that may occur between an internal router and its exit points.

Some of the constructing works suggested major modifications to the RRS while

others gave tuning enhancements. Musunuri and Cobb (40) inserted two new modifi-

cations to RRS: first, each RR (Route Reflector) sends multiple feasible routes to its

peers instead of sending its best path. Second, each RR saves a preference list for each

of its clients, each list contains all ASBRs sorted according to their distance from the

client. Their solution, S-iBGP (Stable iBGP), is difficult to employ because the prefer-

ence list has concerns related to performance and scalability in large topologies. Rawat

and Shayman (5) gave a list of constraints, when respected, the resulted configuration

will be free of forwarding loops and persistent routing oscillations. The determination
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of correctness of the proposed configuration is NP-hard according to (20). Moreover

their approach does not improve the number of iBGP sessions.

Vutukuru et al (36) proposed the BGPSep algorithm which is based on graph sep-

aration method. BGPSep is a pure graph theory algorithm, neither the IGP costs nor

the state of the internal nodes (border or internal) are taken into consideration when

building the separators. It has the same order of the number of needed iBGP sessions

like FMS which is O(n2) where n is the number of ASBRs.

Xiao and Nahrstedt (35) introduced a new principle of iBGP reliability based on

TCP (Transport Control Protocol). They state that the exponential backoff manner

of TCP retransmission and the large retransmit interval are behind the fragility of

iBGP against network failures. They proposed a reliability model for iBGP sessions

that suggests relations between failure probability and BGP timers as well as TCP

retransmission behavior. This model helps in both determining the optimal value of

BGP timers, and finding a better TCP retransmission mechanism. Further, they found

that applying this model may result in making RRS more reliable than FMS.

5.2 Motivations and Objectives

Intra-AS divergence has direct impact on global instability. Current iBGP configura-

tions give no optimistic results concerning the stability inside the autonomous systems.

This motivates us to look for an alternative intra-AS configuration that ensures stability

and robustness.

In AS confederation a special version of eBGP (eiBGP) inside huge ASes may create

concerns related to slow convergence inside the AS. This depends on how the internal

topology is divided. Choosing clusters in RRs, and sub-ASes in confederation are two

critical problems in both proposals. Throughout the different solutions proposed to

enhance iBGP configuration and according to many studies, we agreed on that the

reported iBGP anomalies and divergence problems come from misconfiguration inside

the AS, especially when dividing the AS.
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Figure 5.1: Inter-AS oscillation caused by internal oscillation

Figure 5.1 shows how an internal divergence causes inter-AS instability. AS7 has two

paths to reach network A, AS3 is its preferred next hop (shortest AS path). The route

reflector RRa selects R2 as its preferred exit router to reach network A. The resulted

path between networks B and A is: AS7-AS3-AS1(R1-RRa-R2)-AS5-AS6. However,

RRa receives un update from its peer route reflector RRb indicating that its preferred

exit router to reach network A is R3. R3 has lower IGP metric than R2, so RRa moves

to R3 and withdraws the ancient path. This withdraw message reaches to AS3 and

in turn to AS7, this latter moves to AS8. Two possible events will reach to AS7 to

get back to AS3: First, RRb receives an update from RRa concerning network A, so

it moves to R2 as its preferred exit router. Thus, it withdraws the ancient path from

R4 which in turn will send it to AS2 and so on till it reaches AS7. Second, once RRb

withdraws its ancient path, RRa will be among the receivers of this withdraw so it

will get back to R2 and withdraws the path via R3 and AS4. In both cases AS7 will

get back to AS3. Since, the oscillation between RRa and RRb is permanent, AS7 will
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oscillate between AS3 and AS8 permanently.

Our main objective is to give a correct and employable configuration without the

need of changing routers or their operating systems. The proposed solution is not an

enhancement to neither RRS nor confederation, it is a third alternative of full mesh

iBGP. This approach takes the internal graph as input and gives the Skeleton graph

as an output. We mean by the internal or IGP graph the representation of routers

and links inside the AS, where each router represents a node and each physical link (or

multiple links) between two routers represents an edge in that graph. Skeleton does

not divide the AS neither into clusters nor into sub-ASes. It might be considered closer

to RRs than to confederation since its nodes are able of reflecting routes.

To meet these objectives we show that Skeleton satisfies the sufficient correctness

conditions provided by (20). Safety and robustness characteristics are ensured using the

PBR algebra. The scalability of our approach is guaranteed due to that each Skeleton

iBGP session is established over single physical link, as detailed in chapter 6.

5.3 BGP Skeleton

The basic idea of Skeleton (51) can be summarized in three points:

• The calculation of the best path between each internal node and each egress one.

• Skeleton iBGP sessions are established between IGP neighbors only. In other

words, iBGP sessions are established over one hop physical links only.

• All Skeleton nodes are capable of forwarding (reflecting) internally learned routes.

We present in figure 5.2 a simple topology, dash lines represent iBGP sessions and

continuous lines represent physical links, with IGP costs next to them. In the first

case where RRS is employed, node b is a route reflector and a, c, d are its clients. P,Q

are two paths for the same destination. b selects the path advertised by a that has a

smaller IGP cost than d. c receives routing information only from its reflector b, so it

will never hear about the path advertised by d which is its preferred egress point. In
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the second case, where the Skeleton is employed, b, c have the necessary iBGP sessions

to get all the routes from a, d. Moreover, they are able to reflect routes to each others,

hence, a, d can hear the routes from each others. Thus all the nodes are able to quit

the AS using the optimal path.

Figure 5.2: RRS vs Skeleton

The objective of our approach is to give an alternative iBGP configuration that

ensures scalability, stability, and robustness. It is based on building a subgraph (Skele-

ton) depending on the required iBGP sessions between the nodes. An iBGP session is

required between each node and the optimal next hop nodes towards all the ASBRs.

This method ensures that each node receives all the advertised prefixes from the opti-

mal next hop to each ASBR, and hence all the nodes in the AS are able to determine

their best exit point.

FMS (Full mesh solution) is an optimal solution, but it does not scale for large

networks. RRS is known to have problems like route oscillation and forwarding loops,

most of these problems are related to that the iBGP session is over a multiple IGP links.

AS confederation employs eBGP inside the AS which may impose slow convergence

inside large ISPs (Internet Service Providers). Our approach differs from these solutions

in the following points:

• It does not divide the AS into clusters or Sub-ASes.

• All the internal nodes inside the AS are Skeleton nodes. And all of them are

capable of reflecting routes.
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• Nodes are not classified as reflector and clients nodes.

• Besides the IGP routing protocol, iBGP is the only routing protocol that runs

inside the AS to diffuse external prefixes.

• Skeleton edges set is a subset of the set of total edges.

We denote C-iBGP (Complete iBGP) the configuration in which each node es-

tablishes iBGP sessions with all its IGP neighbors. Physical and C-iBGP graphs are

identical. Skeleton is a subgraph of the C-iBGP graph, its nodes are all the AS nodes,

and its edges are a subset of C-iBGP. Each edge is an iBGP session carried over an IGP

link between two Skeleton nodes. The main drawback of C-iBGP is that it amplifies the

number of routing updates, which causes churns of updates that have negative impact

on the performance of the network. C-iBGP diffuses the received Internet prefixes to

all its directly connected neighbors, and then each neighbor does the same. Regard-

ing the huge number of Internet prefixes, the act of re-diffusing routes inside the AS

by each node to all its neighbors has severe effect on the performance of the internal

routers. In addition, this increases the link utilization by the control traffic. To fix

this performance issue, we propose the Skeleton algorithm to build a partial complete

iBGP.

5.3.1 Skeleton Algorithm

INPUT: Set of Nodes (V )∧ Set of ASBRs (Γ) ∧ IGP graph G(V,E)

OUTPUT: Skeleton Subgraph GS(V,ES)

ES ←− φ

for each n ∈ V do

for each α ∈ Γ do

s←− βn(α)

/* βn(α): gives the best IGP next hop to reach the ASBR α from n * /

IBGP (n, s)

/* IBGP: is a function that establishes an iBGP session between n and s * /
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ES ←− ES ∪ {n
iBGP←→ s}

/* the new edge is added to the Skeleton subgraph * /

end for

end for

Our algorithm takes the physical graph as an input and apply the following steps

on each internal node n ∈ V :

• Calculates, for all the internal nodes, the best IGP path towards each ASBR

α ∈ Γ.

• Extract the next hop of the calculated path.

• Establish an iBGP session with the extracted next hop.

This algorithm gives the internal nodes two advantages:

• Each node gets advertisements for each prefix ρ from all the advertising ASBRs

γρ, which allows it to choose the best egress node.

• It gets the advertisements from its preferred next hop, which allows it to optimally

reach its optimal exit point.

5.3.2 Skeleton Session Types

We define three types of relationships between Skeleton nodes:

• Successor: In each path Pn0,αj = n0n1 · · ·nm−1nm (nm = αj), we consider that

ni+1 is a successor to ni and we write: ni+1 = successorαj (ni) which means that

ni+1 is the preferred next hop for ni to reach αj . The successor reflects all its

routes to its predecessor.

• Predecessor: We consider that ni is a predecessor to ni+1 and we write: ni =

predecessorαj (ni+1). The predecessor reflects its routes and routes of its prede-

cessor to its successor.
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• Peer: For two or more intersected paths in l > 1 common nodes. If there exists

(n,m) ∈ Pi,αi ∩ Pj,αj so that: n = successorαi(m) ∧m = successorαj (n). In this

case we denote: n = peer(m) which is equivalent to m = peer(n). The two peers

exchange all their routes.

Figure 5.3 shows a simple topology of 8 nodes, 4 ASBRs {a,b,c,d} and 4 internal

nodes {i,j,k,l}. We illustrate only two nodes k and l. The best four paths for node

k to reach the egress nodes a,b,c,d are {a}, {b}, {j,c}, {l,d} respectively. Thus k ’s

best next hops are a,b,j, l , this leads that iBGP sessions should be established between

k and its best next hops. We can write k = predecessora(a) = predecessorb(b) =

predecessorc(j) = predecessord(l). The four paths for node l to reach a,b,c,d are

{a}, {k, b}, {k, j, c}, {d} respectively. Thus l ’s best next hops are a, k, d, so iBGP

sessions should be established between l and its best next hops, and we can write:

l = predecessora(a) = predecessorb,c(k) = predecessord(d). This is equal to that:

a = successora(l), k = successorb,c(l), d = successord(l).

Figure 5.3: Example: Skeleton Graph

Node k is the successor of l to reach b and c, and l is k ’s successor to reach d.

Thus k = peer(l). In this particular example, the number of iBGP sessions reaches its

maximum value of 10 sessions, which is the number of IGP (physical) links. While in
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FMS it is equal to: e(e−1)
2 + ne = 22 where e is the number of ASBRs and n is the

number of internal nodes.

5.3.3 Comparisons

5.3.3.1 Skeleton vs Confederation

Skeleton may look similar to AS confederation if we choose that each sub-AS is a single

router. However they differ from each other in two main points:

1. The intra AS protocol is iBGP in Skeleton configuration, but it is a special type

of eBGP (eiBGP) in confederation.

2. Sub-ASes are connected (BGP peering) to all their neighbors, which makes it like

C-BGP but not like Skeleton.

5.3.3.2 Skeleton vs RRS

In a topology that implements RRS, if we make each cluster of a single router, then

will this configuration be like Skeleton?. According to the definition of route reflection

configuration (57), each cluster must contain at least one route reflector. This makes

all internal routers are route reflectors, which leads to that they should be fully meshed

according to (57). This is not the case in Skeleton, because internal nodes may not be

fully meshed.

5.3.4 Implementation

RRS is supported by all routers’ operating systems. This makes it mandatory to

find mapping relationship between Skeleton and RRS in such a way that makes the

implementation of our approach feasible for the network operators.

In each path Pn0,αi = n0n1 · · ·nm−1nm between n0 and an ASBR nm = αi, we con-

figure αi as a route reflector with nm−1 is one of its clients. Each node in each Skeleton

path plays a role of client with its successor and a reflector with its predecessor. Thus

it receives the clients’ routes, then it reflects them with its own ones to its successor.
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The latter does the same till we reach an ASBR. In the opposite direction, each ASBR

exports all its routes to all its predecessors, then each one of them reflects these routes

to all its predecessors till we reach the end nodes. This guarantees that each ASBR

diffuses all its eBGP routes to the other nodes of the AS, and all the ASBRs know

about all the prefixes inside the AS.

u = successorα(v) ⇔ v = predecessorα(u) is equal to that v is a client to the

route reflector u in the RRS notion. Thus the successor relationship resembles the

client-reflector one in RRS, the predecessor relationship resembles reflector-client one

in RRS, and the peering is equivalent to reflector-reflector relationship in RRS. Using

this method ensures the employment nature of our model using the same operating

systems in the existed routers.

Skeleton is implemented as a module in OpenNMS (1). This module discovers the

topology and build the input file in a cch format (43)1. Skeleton algorithm is then

applied on the cch file and gives a list of pairs of nodes. Each pair represents two nodes

between which there should be an iBGP session. The last step is the configuration of

routers using the mapping with RRS.

1In our case, we did not use opennms to generate the cch files, because we either got them from the

Rocketfuel project, or generating them by applying the Rocketfuel method to discover real topologies.
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Chapter 6

Validation

Skeleton validation is divided into three parts:

• Scalability: This validation phase is done by applying our approach on some large

real ASes and compare the number of iBGP sessions with both FMS and one of

RRS proposals.

• Safety and Robustness: We use our proposed PBR algebra to prove that Skeleton

ensures these two characteristics.

• Correct configuration: This is an additional validation step that put the previous

two validation methods together. In this validation part, we show that Skeleton

configuration satisfies the sufficient correctness conditions proposed in (17; 20).

6.1 Scalability Evaluation

We evaluate the performance of our algorithm on five large real-world topologies. Three

topologies were taken from the Rocketfuel project (43), and the other two are discovered

using the rocketfuel method. The ISP backbone topologies are summarized in Table

6.1 1.

1The presented numbers are approximate values, this does not affect the results since the objective

is to apply our approach on a real-like topologies.
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Internal ASBRs

Name ASN Routers a Links Nbmax Nbavg

Tiscali 3257 276 161 400 13 4

Ebone 1755 163 87 300 16 8

TiNet 9121 325 125 525 15 3

Opentransit 5511 355 134 600 12 4

Abovenet 6461 367 138 1000 25 7

Table 6.1: ISP Backbones

Rocketfuel (43) is an ISP (Internet Service Provider) topology mapping engine. It

uses trace route technique to get accurate ISP topology. It is an alternative mechanism

to the brute force one, which requires a large number of traces to produce an accurate

topology. Traceroutes were sourced from 800 vantage points hosted by nearly 300

traceroute web servers. It started by mapping 10 ISPs in Europe, Australia and the

United States. In that process, authors constructed a database of over 50 thousand

IP addresses representing 45 thousand routers in 537 POPs connected by 80 thousand

links. Rocketfuel uses an innovative alias resolution technique to find which IP addresses

represent interfaces on the same router.

We have used the produced topologies to apply our skeleton approach on them.

Rocketfuel’s topologies have been used for scalability validation of skeleton configura-

tion. Skeleton configuration was applied and then we calculated the number of iBGP

sessions and compare the resulted number with both full mesh and one of the route

reflector solutions (41).

In the collected test beds, we were interested in additional measurements that help

in demonstrating our approach. In table 6.1, we introduce the average Nbavg and

maximum Nbmax number of nodes’ neighbors. This helps in estimating the maximum

limit of the number of iBGP sessions.

We applied our approach on the ISPs listed in table 6.1, and study the scalability
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of our approach by measuring the number of iBGP sessions. Through our observations

we found that FMS is not employed in any tier-1 ISP. Thus we are not interested in

comparing our results to FMS that has deterministic results ≈ O(a2).

The idea of our approach is to establish an iBGP session between every node and

each one of its best next hop neighbor towards each ASBR node. A neighbor can be a

preferred next hop node for multiple ASBRs, and there is only one neighbor that can

be the best next hop to a certain ASBR, unless the IGP routing protocols is configured

to load the balance between multiple paths. This gives that in the worst case each node

establishes iBGP sessions with all its directly connected neighbors.

Recall table 6.1, we can notice that the average number of neighbors in an AS is

relatively small in comparison with the number of the ASBRs. Hence the number of

iBGP sessions in an AS that uses Skeleton approach is limited by the value Nbavg×a ≈

O(a). However, In the topologies listed in Table I, we notice that the number of

physical links inside the AS is smaller than Nbavg × a. Since Skeleton iBGP sessions

are established over physical links, the number of iBGP sessions may not exceed the

number of physical links.

Figure 6.1 shows the number of iBGP sessions upon applying the Skeleton algorithm

on the topologies listed in Table I. We compare our results with the number of physical

links which we found that it is the minimum limit.

Figure 6.1: Physical links vs Skeleton iBGP sessions
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Although our results might seem close to its maximum limit (the number of physical

links), the maximum limit is still much more smaller than other RRS related proposals.

Figure 6.2 compares our results with those from (36) when the two approaches are

applied on three backbones taken from (43).

Figure 6.2: BGPSep vs Skeleton

One of the main differences between our approach and RRS dependent ones, is

that the latter needs to establish full mesh iBGP sessions in the reflectors layer, while

Skeleton does not divide the nodes into reflectors and clients, and requires no full mesh

iBGP sessions between any two subsets of nodes.

6.2 Proof of Correctness

To ensure the correctness and safety of our configuration, we show in this section

that iBGP configuration, produced by our approach, satisfies the sufficient correctness

conditions given by (20) and (30).

6.2.1 Signaling Correctness

Griffin and Wilfong (20) gave sufficient conditions under which a generalized configu-

ration is signaling correct. We first present the sufficient conditions, and then translate

them to Skeleton notions, and finally we prove that the Skeleton approach satisfies
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them.

6.2.1.1 Sufficient Conditions

• For an arc(u, v) ∈ up, u exports only its routes and those of its clients to the

reflector v.

• For an arc(u, v) ∈ down, u exports all routes to v.

• For an arc(u, v) ∈ over, u exports its routes and those of its clients to v.

Where:

• arc(u, v) ∈ up represents the signaling of route update messages from a client u

to its route reflector v.

• arc(u, v) ∈ down represents the signaling of route update messages from a route

reflector u to one of its clients v.

• arc(u, v) ∈ over represents the signaling of route update messages between two

route reflectors u and v.

6.2.1.2 Translation to Skeleton

In a path between n0 and an ASBR α, Pn0,α = n0n1 · · ·nm−1nm (nm = α), the sufficient

conditions can be written as follows:

• ni exports only its routes and the routes of ni−1 to ni+1

• ni exports all routes to ni−1.

• u exports all its routes and those of its predecessors to v = peer(u).

6.2.1.3 Proof

The first two points can easily be concluded from the successor-predecessor relationship

between the nodes ni−1, ni, ni+1. The third point is true because it is equal to saying
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that v = successor(u) ∧ v = predecessor(u), thus each node sends all its routes and

those of its predecessor to its peer.

6.2.2 Forwarding Correctness

Griffin and Wilfong (20) proved that if a signaling correct generalized configuration

satisfies the following conditions, then we have a correct generalized configuration. In

this section we prove that the generalized configuration in Skeleton model satisfies these

sufficient conditions.

6.2.2.1 Sufficient Conditions

• If (v, u) ∈ up and (w, u) /∈ up then it must be that u prefers paths from v over

those from w.

• For any nodes u and v, sp(u, v) = P for some valid signaling path P .

The first condition states that each node u ranks the path that passes by its client

before those that they do not. And the second condition means that the signaling paths

between any two nodes should be the shortest path between them.

6.2.2.2 Translation to Skeleton

We first need to clarify that in Skeleton we do not distinguish between signaling and

forwarding paths because it does not have iBGP sessions over routed paths.

The first condition states that each node u ranks the path that passes by its pre-

decessor before those that they do not. The second condition says that one of the

signaling paths between any two nodes should be the shortest path between them.

6.2.2.3 proof

• Condition 1: The way Skeleton is built ensures that an internal node gets all

external prefixes from its successors. Preferring successor paths over predecessor

ones might lead to deflections. But this preference does not exist in Skeleton,
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because the space of choices (of external routes) of an internal node is limited to

the paths advertised by its successors.

• Condition 2: Skeleton is built in such a way that ensures that each node estab-

lishes an iBGP session with each of its preferred next hops to ASBRs. Thus the

signaling paths are always over the shortest link between any pair of nodes.

6.2.3 Safety

This solution is based on Skeleton, where iBGP sessions are established between direct

neighbors only. Sobrinho (30) has built an algebra to model the route reflection con-

figuration of iBGP. He concluded a sufficient condition under which iBGP converges

to a stable state: dist(reflector(k), k) ≤ dist(j, k) for all clients k and all reflectors j,

where reflector(k) is the route reflector of k of the same cluster.

We have seen in subsection 5.3.4 that Skeleton configuration can be implemented

using the route reflection notion. Each internal node can be considered as a client to

all its adjacent iBGP neighbors. And since those adjacent neighbors are chosen as the

best next hops to reach the ASBRs, so the above condition is satisfied, thereby the

Skeleton configuration makes iBGP converges to a stable state.

6.3 Robustness

Intra-AS topologies (network of routers) are less complex than the Internet (network

of ASes), this makes its convergence faster. The importance of intra-AS robustness

appears mostly in transit ASes, where the internal topology must ensure a safe and

robust connectivity between the two end ASBRs (in-router and exit router).

The best way to ensure robustness is to give all internal nodes the ability to switch

to an available path once the primary one is down. In BGP speaking, creating more

available paths costs more iBGP sessions in networks that use single-hop iBGP sessions

only.

Among the main differences between eBGP and iBGP, is that eBGP is a signaling
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and forwarding protocol. However, iBGP has only a signaling functionality and leaves

the forwarding one to the IGP protocol. This special characteristic of iBGP is behind

its probable divergence. All previous iBGP configurations (full mesh, route reflection,

and confederation) have separate signaling and forwarding intra-AS graphs. One of the

most distinction between Skeleton and other configuration methods is that it enforces

identical signaling and forwarding graphs. This has pros and cons as we will see in the

next subsection.

A failure of one physical link between two internal routers in Skeleton graph ends

one iBGP session between them. One of them r2 is the best next hop of the other r1 to

reach a certain ASBR α, such a failure stops updates from α to r1. If r1 has no other

iBGP session with any of its neighbors, then it will be unable to reach any external

prefix. But if r1 has another iBGP session with another neighbor r3 that is related to

different branch, then r1 is able to overcome that failure.

As we have seen in the previous subsection, Skeleton produces iBGP topology simi-

lar to the eBGP one. This leads to that we can apply similar backup solution inside the

AS, which gives continuous connectivity inside the AS as long as the physical topology

is connected. However, an internal node has not iBGP sessions with all its neigh-

bors. Therefore, to make the backup solution feasible inside the autonomous system,

we introduce the principle of complete iBGP (52). It states that each internal router

establishes iBGP sessions with all its neighbors, thereby, the number of iBGP sessions

is equal to the number of physical links inside the AS.

The backup solution that we need to employ inside the autonomous system states

that, besides Skeleton’s iBGP sessions, each router establishes an iBGP session with a

router from different branch for each ASBR-based subgraph. This choice meets with

the disjoint property of the backup path for eBGP, that is the backup path should have

as minimum common nodes with the primary one as possible.

In the stable state, these additional iBGP sessions do not break the star-ness prop-

erty of ASBR-based model, because this property describes the forwarding side of this

model not the signaling one. Once a failure occurs, the backup signaling path becomes
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the backup iBGP session that ensures the signaling flow. The main objective of our

proposed configuration is to make all internal nodes aware of all external updates,

which is ensured by backup signaling paths. However, and since the backup sessions

are not necessarily established with the second best next-hop, forwarding traffic may

have different path according to the IGP decision, which makes it responsible of the

internal routing convergence. In this type of configuration, intra-AS robustness inherits

the same order of IGP robustness. Francois et al. (46) states that sub-second link-state

IGP convergence can be easily met on an ISP network without any compromise on sta-

bility. Therefore, making BGP of the same robustness order of an IGP routing protocol

is a good achievement.

Three concerns may be appeared because of the additional iBGP sessions inside the

autonomous systems: Router’s resource consumption, signaling overhead, and routing

anomalies. We discuss them in the rest of this section.

6.3.1 Router CPU Utilization

Once an update message is received by a BGP speaker, it performs the following tasks

(24; 49). First, the appropriate RIB-In needs to be updated. Ingress filtering, as defined

in the routers configuration, has to be applied to the route announcement. If it is not

filtered out, the route undergoes the BGP route selection rules and it is compared

against other routes. If it is selected, then it is added to the BGP routing table and

the appropriate forwarding table entry is updated. Egress filtering then needs to be

applied for every BGP peer (except the one that sent the original announcement). New

BGP announcements need to be generated and then added to the appropriate RIB-out

queues. Statistics show that BGP process may increase the CPU (Central Processing

Unit) usage to 100% (49). These statistics were collected from eBGP speaker receiving

an update from eBGP neighbor, which reflects the high cost for each new eBGP session.

However, adding a new iBGP session has not the same cost since iBGP neighbors do

not send as much updates as an eBGP one, because intra-AS topology is less changing

than the external one. Further, most iBGP sessions are related to Skeleton, this means
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that most of internal routers have sessions with their best IGP next hops and may not

transit update messages between ASBRs. Moreover, Skeleton nodes send updates to

their one-hop neighbors only, which means that BGP process has no need to look for

its BGP next hop in the routing table since its is directly connected.

Despite the above discussion, Skeleton with its backup sessions produces much more

less iBGP sessions than other proposed internal configuration, as in figure 6.2 that com-

pares Skeleton’s iBGP sessions with R-BGP (41) that performed notable improvement

in the number of iBGP sessions.

6.3.2 Signaling Overhead

Signaling overhead may cause high link utilization, BGP employs several timers to

control its signaling flow. MRAI timer enforces an amount of time between update

messages to reduce signaling overhead (CPU and link). Update messages in Skeleton

topology are destined to direct neighbors only, this means that each inter-router link

carries only the update messages originated by its end routers. However, in all other

configuration that use multi-hop iBGP sessions, same link carries all signaling traffic

between any pair routers whose IGP path traverses this link. Therefore, each additional

(backup) iBGP session will not cause more than, at most, two update messages each

MRAI interval.

6.3.3 Routing Anomalies

Skeleton approach ensures that every internal router gets updates from all ASBRs,

this makes iBGP’s signaling traffic passes over the preferred IGP path. Additional

iBGP sessions (backup) have no effect on the traffic flow, they just replicate routing

information for some routers. The following discussion investigates whether the backup

iBGP sessions in Skeleton graph increase the internal routing anomalies:

• Non optimal exit router: An internal router may select a non optimal ASBR as

its BGP next-hop if it does not receive routing updates from its optimal one.

However, one of the most valuable objectives of Skeleton is to ensure that each
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internal router receives updates from its preferred exit point. Additional iBGP

sessions act in the opposite direction, because it adds BGP neighbor, and in turn,

increases the visibility of internal routers in such a way that it receives updates

from optimal and non-optimal ASBR. Standard BGP preference leads to the

selection of optimal ASBR.

• Route oscillation: It occurs when one or more router is not able to settle on a

stable configuration. Oscillation is a result of non-complete knowledge of internal

topology. Once each internal router has all the needed routing information to

optimally exit its AS, then there will be no oscillations. As in the previous point,

additional backup iBGP sessions increase the internal routing visibility, so it has

no bad effect on the routing decision.

• Routing loops: routing loops may not occur in a DAG topology. Skeleton’s

backup iBGP sessions creates additional sessions between different branches which

changes the topology type. However, this change is at the signaling level only,

but at the forwarding level the ASBR-based model conserves the DAG topology

no matter how many additional backup sessions are added.

6.3.4 Multi-hop vs single-hop iBGP session

One of the most distinct properties of Skeleton is that it establishes its iBGP sessions

between one-hop neighbors only. This may, on one hand, simplifies iBGP topology, and

may, on the other hand, arises scalability concern. Table 6.2 compares between the two

methods using different criteria.

6.4 Discussion

We discuss in this section two points: first, is Skeleton a complete iBGP graph?. Second,

what did we mean by a backup iBGP session?.
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Complete iBGP configuration states that an iBGP session should be established

over each physical link. Figure 6.1 compares between Skeleton iBGP sessions and

physical links, that is identical to complete iBGP graph. Adding backup iBGP sessions

to Skeleton graph may make it complete graph. However, we have seen in section

6.3 that router overhead may be increased because of this additional sessions. This

motivates us to make the backup sessions different from the primary ones. We suggest

to establish backup iBGP sessions between routers’ logical interfaces. This gives us the

ability to activate and deactivate them when necessary.

Therefore, our proposed configuration might be built in a way different to that in

section 5.3.1. That is to establish iBGP sessions over all physical links, but with logical

interfaces terminations. Then, and according to the ASBR-based model, we keep all

sessions over the branches and deactivate the rest (put them in passive mode).

There is still an open challenge that is how to make the activation of passive sessions

done automatically after the occurrence of failures. This issue is related to routers’

implementation and is part of our future work.
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Single-Hop Multi-Hop

Failure
A failure in a link stops sig-
naling exchanges between the
two end routers.

A failure in a link that re-
lates to an IGP best path be-
tween two iBGP peers does
not stop exchanging update
messages as long as there is
another possible IGP path.

Recovery

The recovery is immediate
due to the backup iBGP ses-
sions that ensures backup sig-
naling connectivity with all
ASBRs.

The recovery is of the order of
IGP convergence.

Link Overhead
Each link carries the signaling
of its two end routers only.

Each link carries all signal-
ing traffic between all routers
whose inter IGP path traverse
this link.

Router CPU load

Update messages are pro-
cessed at each router. How-
ever, in single-hop based con-
figuration, update messages
senders are limited to physical
neighbors only.

Update messages are sent to
remote routers and processed
only by the end routers, all
routers between the sender
and receiver forward it as
any data traffic. However,
multi-hop iBGP sessions re-
quires much more sessions
than those that they do not,
especially for ASBRs.

BGP process

All internal routers MUST
run BGP process, being a
BGP speaker means that the
router should process each
BGP update message and se-
lects the best path, and then
disseminates it to other BGP
neighbors

A subset of internal routers
should be BGP speakers.
However, all of them should
maintain a full BGP routing
table, unless they employ de-
fault routes.

Routing table

All internal routers have a
complete Internet routing ta-
ble, however, route summary
should be employed to reduce
the size of internal routers’
routing table. Small routers
may have default routes to
other high capacity internal
routers.

Default routes may substi-
tute that huge routing table,
however, if an internal node
is connected to several AS-
BRs, where each subset of pre-
fixes has different exit router,
then the complete routing ta-
ble will exist.

Table 6.2: Single-hop vs Multi-hop iBGP sessions
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This work tackled principally the Internet stability. Illustrating this problematic is

divided into two parts according to the hierarchy of the Internet: AS level and router

level. Internet topology, from AS level point of view, is a set of nodes, each represents

a single AS. Stability of this topology is related to the stability of the routing protocol

that is responsible of exchanging routing information between Internet nodes. From

router level point of view, each AS is a complex topology by its own, it may contain

thousands of routers. Stability at this level is related to the routing protocol inside each

AS too. Internal instability affects directly the global Internet stability. This motivates

us to divide our work into two parts: inter-domain and intra-domain routing.

Efficient proposals should be applied to well modeled problematic, that is to have

the ability to give a correctness proof. This incites us to employ a formal model of

the routing process based on abstract algebra, and then use that model to validate the

correctness characteristics. The following subsections scan our contributions in this

thesis.
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7.1.1 External BGP

Slow convergence is a well known concern of BGP. On one hand, making this process

faster may result in unwanted behaviors. On the other hand, there is no reason for

losing traffic since many studies showed that in most cases the underlying infrastructure

is connected during the convergence process. This motivates us to turn around the slow

convergence problem and propose a solution to overcome the traffic loss problem.

Besides our main objective, that is the continuous connectivity, we were interested

in the following characteristics:

• Freeness of loops during and after the convergence process.

• limiting failure propagation.

• Improve the convergence time.

To meet the above objectives we have proposed four mechanisms:

7.1.1.1 Propagating RC information

The basic idea of this mechanism is to create additional information to prevent the other

nodes from selecting backup paths that pass through the failed (root cause) node. This

might be considered as a loop avoidance mechanism. In some cases, all backup paths

may contain that information. Therefore, we propose to add this information at the

router level, because the failed node might be a single ASBR while the neighboring

ASBR of the same AS is still running. So the RC information is to be included only

in the withdraw messages that are exported to other ASes after making sure that no

other ASBR can reach the lost destination.

7.1.1.2 Backup solution

This mechanisms is divided into two phases:

- Backup path calculation: This is done during the stable state, each node builds a list

of backup paths and rank them according to their disjointness from the primary path
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of each prefix.

- Backup path selection: Once a node receives a withdraw message, it filters the backup

paths according to the received RC information, and then starts using the best backup

path.

7.1.1.3 Selective withdrawal

This mechanism is to limit the propagation of failure. It states that if a node receives

withdraw message and has no backup one, then it disseminates it to their neighbors. If

it has, then it forwards it only to its backup next hop if this latter was its predecessor

in the old primary path.

7.1.1.4 Transient route timer

Since the backup path is not necessarily the second best route, we have employed an

additional timer (TRT) to fetch the new best path and install it in the Loc-RIB instead

of the backup one. This ensures that the Loc-RIB contains best paths, which is the

intended stable state.

Simulation results have shown that disconnectivity is (relatively) eliminated during

the convergence process. Another interesting simulation result was the failure bound-

ary, which is the number of ASes that are affected by topology events. PBR algebra

gave us an extra validation tool to prove the safety of our proposed backup solution.

Moreover, it helps us, through the relationship policy, to apply safety conditions on the

backup path in such a way that makes the topology free of loops during and after the

convergence process.

7.1.2 Internal BGP

Internal AS topology is an inherent part of the global Internet, and internal events are

one of the affecting factors of the Internet stability. This makes the stability of iBGP

essential for global BGP stability.
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In intra-domain routing, and according to the internal configuration, control and

data traffic may not have similar topologies. We figured out that this distinction

is behind most of intra-domain routing divergence phenomenon. This motivates us to

propose an alternative to the current known intra-AS configurations that maps between

data and control traffic paths.

We propose the Skeleton approach as an alternative to current configurations like:

full mesh, route reflection, or confederation. Skeleton is both scalable and anomaly free.

It ensures simplicity, correctness, and compatibility with existing operating systems.

Skeleton is an easy to employ solution, it can be deployed using the existing devices

that support route reflection.

The proposed topological model gives for each ASBR a DAG rooted at the ASBR

itself. Skeleton establishes iBGP sessions along each branch in that tree. This ensures

that each internal router receives routing information through its best path to quit

the AS, and enforces that control and data traffic follow the same paths as well. To

increase skeleton’s redundancy we have employed a similar backup strategy to the one

proposed for eBGP. It states that an internal router establishes additional (passive)

iBGP session with its second best next hop related to different branch. We showed

that this additional session ensures robustness against failures.

The correctness characteristic is held by proving that our approach satisfies sufficient

conditions. The scalability is guaranteed because the number of iBGP sessions in skele-

ton is limited by the number of internal AS physical links. The backward compatibility

is guaranteed using the mapping between reflector/client and successor/predecessor

models. Skeleton overcomes the asymmetricity concern between iBGP peers through

establishing iBGP sessions between IGP neighbors only. Moreover, MED oscillations

are treated by providing every node with all the routing updates from all the egress

nodes, which guarantees a stable decision to be taken by each node. Finally we prove

that Skeleton configuration is safe using the routing algebra.
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7.1.3 Validation Methods

Validation is an inherent part of this dissertation. The first challenge was to choose

the best validation tool that gives experimental or theoretical proofs of the claimed

properties of our proposal. We proposed several approaches and tried to make all of

them satisfy the following properties:

• Safety: freeness of loops.

• Robustness against failures.

• Scalability: limited consumption of network resources.

• Backward compatibility: the interoperability with conventional BGP.

• Correctness: reach the topology to the intended stable state.

We could not find a validation tool with which we can prove all the above properties.

That is why we have employed several methods to validate our approaches separately.

For our eBGP proposal, we rely on SSFNet as a simulation framework to prove that

our solution achieves the continuous connectivity, and to measure the convergence time

as well as failure propagation. We then employed the routing algebra to validate the

safety property of our approach.

In our iBGP proposal, we have used the rocketfuel approach to retrieve internal

topologies of some large ASes. We applied our approach on those topologies and com-

pare our results with one of the best route reflection configurations and shows that

we produce less iBGP sessions. This ensures the scalability of Skeleton. We validate

the safety, robustness, and correctness properties using sufficient correctness conditions

taken from (17; 20; 30).

7.2 Future Work

Our main objective in this work was to fulfill the stability gap from which the Internet

topology suffers. However, and like any other work, ours is not perfect and has its own
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limitations and bugs. Therefore, there are still many addons to make our proposed so-

lutions better and more usable. This section lists some of the possible future directions

in interdomain routing.

7.2.1 Additional parameters

AS relationships play an important role in Internet stability (16). It reflects the com-

mercial agreements between ASes, and determines the rules under which a transit AS

may accept forwarding traffic. Taking inter-AS relationships into consideration is done

locally between each AS and its neighbors. However, neighboring ASes may not agree

on the same policy. For example, an AS may select a path to a certain destination via

a peering AS, but its customers may prefer not to send traffic over a peering link if

they have another option that has no peering links.

Therefore, we think of that adding a new optional attribute that carries the inter-

AS relationship type may improve the BGP decision process. However, we should

first investigate whether this additional information can be employed using the existing

attributes like the communities one!

Another possible parameters that we think it deserves to be considered when BGP

select its paths are the external and internal metric. The internal metric is the path

cost for each AS between the incoming ASBR and the outgoing one. The external

metric represents the link cost between ASes.

7.2.2 Security

Several works like (26; 27) have stated that BGP is vulnerable to damaging attacks,

and no countermeasures prevent bogus routes from being injected and diffused by BGP.

This makes the security policy is indispensable when working on BGP.

Previous works concentrated on prefix hijacking and other anomalies in eBGP.

However, in network security, more than 70% of security threats come from the inside

of the networks. This leads to that although intra-AS BGP speakers are controlled

by single authority, they are subject to the same security threats that the external
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speakers suffer from.

We argue that single hop iBGP sessions is one step towards securing iBGP sessions.

The composite policy proposed in PBR algebra allows the addition of new policy mem-

bers and, thereby, takes them into consideration during the decision process. This helps

in selecting paths that avoid untrusted ASes in eBGP process.

7.2.3 Quality of Service

Talking about quality of service in the context of interdomain routing is still objected

by the Internet community. They argue that routing protocol should not be aware

of applications’ issues because this may create additional overload on a protocol that

carries hundreds of thousands of prefixes.

One possible step is to make BGP aware of QoS control protocols like RSVP (Re-

source Reservation Protocol). In this case BGP will be aware of a digest of QoS

information. A step towards this objective was done by Kumaki et al. (31). We are

optimistic that we can model the QoS policy in our proposed PBR algebra, so we can

prove that more reliable paths can be selected when introducing this additional policy.

7.2.4 Abstract Routing

Modeling the routing process may have additional advantages other than those related

to formal validation. One possible benefit is to use routing models for academic and

design objectives. Taylor and Griffin (59) have proposed a configuration language to

model routing operation in an abstract way. Their work is a good step to use routing

algebra for non-research objectives. A good future plan is to build a simple abstract

routing model that can be used to teach students routing baselines as a step before

detailing the routing protocols.
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