N
N

N

HAL

open science

Symbolic test case generation for testing orchestrators
in context
José Pablo Escobedo del Cid

» To cite this version:

José Pablo Escobedo del Cid. Symbolic test case generation for testing orchestrators in context.
Other [cs.OH]. Institut National des Télécommunications, 2010. English. NNT: 2010TELE0027 .

tel-00625319

HAL Id: tel-00625319
https://theses.hal.science/tel-00625319

Submitted on 21 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00625319
https://hal.archives-ouvertes.fr

0/

TELECOM

SudParis & miversit
_ BVT
ST eV

Theése de doctorat de Télécom SudParis dans le cadre de 1’école
doctorale S&I en co-accréditation avec
1'Université d’Evry-Val d’Essone

Spécialité:
Informatique

Par :
José Pablo Escobedo Del Cid

Thése prsentée pour 'obtention du dipléme de Docteur de
Telecom SudParis

Symbolic Test Case Generation for Testing
Orchestrators in Context

Soutenue le 25 novembre 2010 devant le jury composé de:

Hierons, Rob Rapporteur Prof. & I’Université de Brunel

Castanet, Richard ~ Rapporteur Prof. & LaBRI

Rusu, Vlad Examinateur Chercherur de recherche INRTA
Gaston, Christophe Examinateur Chercheur & CEA LIST DILS

Cavalli, Ana Co-directrice de thése Prof. & Télécom SudParis

Le Gall, Pascale Co-directrice de thése Prof. a 1'Université d’Evry-Val d’Essone

These n° 2010TELE0027

Symbolic Test Case Generation for
Testing Orchestrators in Context

(Génération Symbolique des Cas de Test pour Tester d’Orchestrateurs en Contexte)

Résumé de la these de
José Pablo Escobedo
Telecom SudParis
Supervisé par:

Ana Cavalli et Pascale Le Gall

ES services Web sont des logiciels qui offrent des fonctionnalités a des autres

machines a travers I’Internet. Les services Web sont basés sur 1’ Architecture

Orientée Services (SOA, pour son nom en anglais). Ils peuvent étre invoqués en
utilisant des standards pour le Web (normalement, SOAP [GHM07], UDDI [CHVRR04],
XML [BPSMT08], HTTP [FGM99], WSDL [CCMWO01]). Dans les derniéres années,
I’utilisation des services Web a augmenté a cause de la flexibilité qu’ils offrent, ainsi
comme de I’intégration des systemes hétérogenes. En plus, SOA ajoute de la valeur
dans le sens ou les services peuvent étre réutilisés et partagés; cela fait les systeémes
plus flexibles et adaptables en cas ol il y a des changements dans les processus des en-
treprises, et améliore 1’intégration des systemes [HSO05]. Aussi, des nouvelles facons
d’utiliser les services Web se sont développées, en combinant pour créer des services
plus complets et complexes. Le processus de réutiliser les services Web pour en créer
des nouveaux s’appelle composition des services Web, et son but principal est de per-
mettre la réutilisation des fonctionnalités proposées par les services Web. C’est pour
cette raison que 1’architecture SOA a été bien acceptée par les entreprises partout dans
le monde: elle aide a réduire le cofit et le temps qu’il faut pour créer des solutions, et
c’est la composition des services Web que nous étudions dans cette these. Plus spé-
cifiquement, on veut assurer leur correct comportement en utilisant des techniques du
test pour détecter des possibles erreurs.

Parmi les différents facons de créer des compositions des services Web, les deux qui
sont les plus utilisées sont ([Pel03]):

o Chorégraphies des services Web [MKB09], ou chaque service Web dans la com-
position interagis au méme niveau, en connaissant quand et comment se com-
muniquer avec le reste des services Web.

e Orchestrations des services Web [GIW04], ou il y a un composant central qui
guide le processus, en prenant des décisions selon les réponses des services Web.

Il y a aussi une autre fagon de faire des compositions des services Web, qui est basée
sur la Web sémantique, et qui n’est pas une orchestration mais plutdt une chorégraphie.
Parmi les trois types de faire des compositions mentionnés, les orchestrations sont les
plus utilisés (au moment de I’écriture de ce document). Une des raisons est ce que la
facon la plus utilisée de créer des orchestrations est en utilisant le standard WS-BPEL
(pour Web Services Business Process Execution Language), qui a été développée par
OASIS' (qui est un consortium qui guide le développement et I’adoption des standards
pour la communauté global informaticienne). En plus, WS-BPEL est basé sur XLANG
(Microsoft, 2001) et WSFL (IBM, 2001), et plusieurs entreprises connues ont participé
lors de ca création (Microsoft, IBM, SAP, Oracle, Adobe Systems, parmi autres).

D a la grande acceptation de cet nouvelle technique de combiner des services Web
pour créer des nouveaux, plus compléetes et complexes, des nouvelles facons d’assurer
leur correct comportement ont été aussi développées [vBKO06]. En plus, les orchestra-
tions ont des caractéristiques spéciales qui n’ont pas présentes dans des autres types
des systemes (comme les systémes unitaires), et les approches du test habituels (i.e.,
techniques du test unitaire utilisées avec des systémes isolés) ne les prennent pas en
compte. Dans cet these, on s’intéresse a cet probleme pour finalement apporter un
nouvel approche (boite noire) du test pour aider avec la validation et vérification des
orchestrations.

On va parler maintenant un peu plus sur les caractéristiques des orchestrations. Leur
composant central qui guide tout le processus s’appelle [’orchestrateur. Tous les ser-
vices Web involucrés dans 1’orchestration interagissent que avec I’orchestrateur et ja-
mais entre eux. De la méme facon, tout utilisateur de 1’orchestration (qui normale-
ment le fait a travers d’une application Web) interagisse avec I’orchestration que a
travers I’orchestrateur. C’est pour ce raisons que I’orchestrateur joue une role tres
important dans 1’orchestration, parce qu’il prend des décisions selon les réponses du
Web services et les entrées de 1'utilisateur. On considere les orchestrations comme
un type particulier des systémes a base des composants, ol il y a un composant cen-

Thttp://www.oasis-open.org/

tral (I’orchestrateur) qui interagisse avec I’environnement (I’utilisateur) et joue le role
d’interface du systeme.

Contexte de Notre Travail

"INTERET de notre travail consiste précisément en tester des orchestrateurs,

mais d’un point de vue particulier: en le testant dans son situation d’usage.

Tester un systeme veut dire de 1’exécuter pour trouver des erreurs. Cet ac-
tivité exige une grande quantité du temps dans les entreprises (50-70%) [NSOS8], et
cela provoque des délais dans les projets. Pourtant, I’activité du test doit étre le plus
automatique possible pour réduire le temps utilisé pour la faire. En plus, cela doit
étre fait de facon que cela assure, le plus possible, que le systeme aprés avoir étre
testé, fonctionne correctement (méme si, comme 1’on discute plus loin, on ne peut pas
étre slir qu’il n’y aura pas des erreurs). Pour des systemes ou il ne peut pas y avoir
des erreurs (comme c’est les cas pour les systemes dans les trains, avions, etc.), on
utilise I’aide des approches formels. Or, des modeles mathématiques sont utilisés pour
représenter la spécification des systemes (a la place des langages avec des ambiguités,
comme par exemple, le francais) et des techniques formelles sont utilisées pour tester
I'implémentation de la spécification d’un systeme (le systeéme mis au test, que dans
notre cas est 1’orchestrateur de I’orchestration). Cet fagon de tester des systemes en
utilisant des modeles est connu comme test a base des modeles.

Une activité en relation directe avec le test a base de modeles est connue comme con-
trole des modeles.

Dans quelques mots, le controle des modeles est une activité automatique qui, donné
le modele d’un systéme et une propriété donnée dans une formalisme logique (en pra-
tique, une variation de la logique temporelle), systématiquement vérifie si le modele
donné satisfait la propriété [Kat99]. Dans cet thése, on ne fait pas des contrdle des
modeles avec les modeles qu’on utilise. On suppose que les modeles sont correctes
mais, dans le contexte d’un processus de validation et vérification complete, faire du
controle des modeles est une activité complémentaire que doit tre fait avec le travail
présenté dans cet document.

En ce qui concerne le formalisme choisit pour représenter les spécifications, il y a
plusieurs parmi lesquels ont peut choisir [LVDO09], chacun en offrant différents avan-
tages et désavantages. On peut mentionner quelques différents types des modeles

qui on été utilisées pour faire du test, comme les modeles a base des états (comme
JML [L1799]), les modeles a base des transitions (comme FSM [LZCCO07], LTS [Tre08]),
les modeles opérationnels (comme Petri Nets [YJC10]), parmi autres. Le modele
choisit dépends des caractéristiques du systéme qu’on veut capturer, aussi comme la
familiarité qu’on a avec le modele.

Tester un systéme veut dire d’interagir avec lui (selon les objectifs du test) pour dé-
tecter des erreurs par rapport a sa spécification. Donc, a partir des modeles des sys-
témes, on peut extraire ces objectifs de test qui le systeme soumis au test (SUT) doit
respecter. Ceci est fait parce que c’est impossible de tester fous les comportements qui
sont décrits par les modeles qui représentent les spécifications des systeémes (sauf pour
des exemples triviales). Cet processus peut étre tres lent, méme infini. Pour cela, les
objectifs du test prennent en compte qu’un sous ensemble de tous les comportements
possibles du systeme, et pourtant, I’activité du test ne peut pas €tre complete: peut
importe 1’approche utilisé, I’activité du test peut que détecter les erreurs, mais pas leur
absence [Dij79].

Les objectifs du test sont sélectionnés pour tester des aspects spécifiques du systeme,
selon le type du test qu’on veut réaliser. Parmi les types du test, on peut mentionner:

e Tester la vitesse du systeme (test de performance).

o Tester la réaction du systeme lorsque le nombre de requettes augment (test du
stress).

o Tester la réaction du systeme lors des entrées erronées (test de robustesse).

e Tester combien du temps on peut compter avec le correct comportement du sys-
teme (test du dépendance).

Dans ce document, on s’intéresse a tester si le SUT fait ce qu’il doit faire. Ce type
du test est connu comme test de conformité et, plus spécifiquement, a comme biit de
déterminer si le comportement d’un SUT est correcte par rapport a son spécification
(qui est donnée sous la forme d’un modele). La spécification sur laquelle on parle est
une spécification des comportements du systeéme, i.e., elle décrit le comportement du
systeme en fonction des opérations qu’il peut effectuer. Dans le reste de ce document,
lorsqu’on parle sur la spécification d’un systeme, on parle de son spécification des
comportements.

Aussi, normalement lors de faire du test de conformité, la spécification du SUT n’est

pas connue, i.e., depuis le point de vue du testeur, le systeme est une boite noire. Cela
veut dire que, vu qu’on teste des systemes d’information, le testeur n’a pas acces au
code du SUT.

Pour le cas ou le testeur a acces, 1’activité du test est connue comme test au boite
blanche, et normalement a comme objectif d’assurer la couverture de différentes par-
ties du code. Dans le test au boite noire, lest tests sont obtenus entierement a partir
de la spécification du systeme (dans la pratique, en utilisant des objectifs du test) qui
décrit les comportements attendus de la boite noire [ULO7].

Finalement, un systéme peut étre testé a différent niveaux :
e is0lé (test unitaire),
e chaque composant est testé séparément (test de composants),

e le systeme est testé de maniere que ses différents composants interagissent cor-
rectement (test d’intégration),

o le systéme est testé lorsqu’il interagisse avec des autres systemes (qui lui enfer-
ment ou contient) (test en contexte),

e ou bien le systeme peut étre testé dans sa totalité (test de systemes).

Notre approche consiste donc a faire du test en contexte des orchestrateurs. Lors de
tester des systémes en contexte [Kho04], le (sous)systeéme qu’on veut tester est encas-
tré dans le systeme en sa totalité et en train d’interagir avec des autres composants, qui
constituent son contexte: le systeme dans sa totalité est composé du SUT et du reste
des composants. Par rapport a ce contexte, il y a plusieurs hypotheses qui son faites.
Las plus connues sont que les composants dans le contexte du SUT se comportent
correctement, i.e., ils n’ont pas des erreurs parce qu’ils conforment par rapport a leur
spécifications (qui sont supposées d’étre disponibles), et que la communication parmi
les composants marche correctement. En plus, normalement le SUT est testé que a
travers son contexte [ACJY03].

Notre Approche

AINTENANT on va dire plus sur comment faire du test de conformité en con-
texte (des boites noires) pour déterminer si un orchestrateur se comporte cor-
rectement selon sa spécification. Comme on a dit avant, les orchestrations

sont des types de systemes avec des caractéristiques spéciales, ou I’orchestrateur guide
le processus. Ainsi, le systéme qui est soumis au test est composé de 1’orchestrateur
et les services Web (ou composants) qui interagissent avec lui. Ces services Web con-
stituent le contexte de I’ orchestrateur, et on a comme objectif de assurer la conformité
de I’orchestrateur par rapport a son spécification lorsqu’il interagisse avec son con-
texte. Pourtant, pour pouvoir appliquer un approche classique du test pour ce type de
systemes, on devrait prendre en compte la spécification de 1’orchestrateur et de tous
les services Web avec celui-ci interagisse.

En faisant cela, on peut obtenir une représentation formel de tout le systeme. Di a
qu’on utilise des modeles mathématiques pour représenter chaque spécification (de
I’orchestrateur et de chaque service Web), la spécification de tout le systeme peut étre
obtenue en utilisant des manipulations mathématiques avec les modeles (comme le
produit cartésien, etc.). Par contre, il peut y avoir deux problemes en faisant cela: le
premier est que la spécification de tous les composants (I’orchestrateur ou services
Web) ne son pas toujours disponibles (et en plus dans une notation mathématique).
Cela peut se produire, par exemple, car les services Web sont développés par des so-
ciétés externes qui ne veulent pas donner des détails sur le comportement interne de
leur produits.

Le deuxieme probléme est connu sous le nom de explosion combinatoire et est provo-
qué parce que la combinaison de différents représentations formels de les spécifica-
tions des composants qui forment partie du systeéme peut donner comme résultat un
modele tres grand, qui est difficile de manipuler.

Donc, la premiere hypotheése qu’on fait est que la spécification de 1’orchestrateur est
toujours disponible et, méme si I’on travaille avec 1’approche boite noire, que le SUT
peut étre représenté par un modele formel (que I’on peut obtenir, par exemple, en
interagissant avec lui).

Pour attaquer les problemes décrits précédemment (explosion combinatoire) et la non
disponibilité des spécifications des services Web, on propose un approche qui consiste
de tester les orchestrateurs en prenant en compte que leur spécifications mais pas celles
de reste des composants dans le systeme, méme si les orchestrateurs interagissent avec
les services Web pendant qu’on les teste. Plus précisément, on prend en compte la
description de I'interface des services Web, qui est normalement disponible sous la
forme d’un fichier WSDL, mais qui décrit les servies d’un point de vue syntactique et
ne décrit pas leur comportement (du point de vue sémantique).

Notre approche est illustré dans la Figure 1: le contexte de 1’orchestrateur est I’utilisateur

et les services Weg W.S; et WS5; et on veut déterminer si I’ orchestrateur est conforme
par rapport a son spécification lorsqu’il interagisse avec WS et W S5.

Spec orchestrator

l Conforms

il | orchestrator

WS

WS

Figure 1: Teste de boite noire basé sur modeles pour déterminer la conformité de
I’ orchestrateur

Dans cette these, en prenant en compte que la spécification de I’ orchestrateur, on pro-
pose un approche pour tester les orchestrateurs en utilisant la technique de test de
boite noire, basée sur des modeles, dans le cas particulier ou les orchestrateurs inter-
agissent avec le reste des services Web dans le systeme pendant qu’on les teste. Ceci
représente une cas spéciale du test en contexte, ou le testeur peut contrdler ou piloter
I’orchestration en utilisant 1’orchestrateur.

Ceci est précisément I’une des contributions de notre travail, parce que la plupart des
travails qui on été fait pour tester des orchestrations et des systemes a base de com-
posants, simulent le contexte de I’orchestrateur, ou font I’hypothese que les spécifi-
cations de tous les services Web sont disponibles ([CFCB10, LZCH08, BvdMFRO6,
vRTO04]), mais, comme on a dit avant, ceci n’est pas toujours le cas. Aussi, on a choisit
la relation de conformité ioco pour tester les orchestrateurs en contexte [Tre96].

ioco veut dire, en anglais, conformité des entrées/sorties, et son idée de base est
que n’importe quel SUT est conforme par rapport a son spécification si, apres toute
séquence des interactions qui on été observés par le testeur en interagissant avec le
SUT (et qui est valide selon la spécification, i.e., est spécifiée), n’importe quel ob-
servation apres cet séquence est aussi spécifiée. S’il y a une observation faite par le
testeur qui n’est pas spécifiée, donc on peut conclure que le systeme qui est soumis au
test n’est pas conforme par rapport a son spécification.

Depuis I’année 1996, plusieurs travaux ont été basés sur cet relation de conformité [RBJ0O,
GGRTO06,vdBRT04,FTWO06], et a été aussi bien acceptée et utilisée dans des différents

domaines d’application (par exemple, en prenant en compte le temps [FT07]). En plus,
cet relation de conformité a comme avantage le fait d’autoriser des spécifications non
déterministes. En fait, ioco autorise des situations ou il y a de la sous-spécification
parce qu’elle ne force pas aux implémentations de considérer toutes les sorties possi-
bles (depuis un état), mais seulement quelques unes. Par rapport aux entrées, si une
entrée n’est pas spécifiée, n’importe quel observation faite dans le SUT apres cet entrée
est valide aussi.

En utilisant que la spécification de I’orchestrateur, on complément I’activité du test
des orchestrateurs en prenant en compte un autre probleme qui est commun lors de
travailler avec des orchestrations: commet pouvons-nous étre siirs que les services
Web qu’on choisit sont compatibles avec I’orchestrateur ? Dans cette thése, on montre
comment générer des comportements pour tester les services Web, et qui sont extraits
de la spécification de I’orchestrateur. Ces comportements sont précisément les com-
portements attendues pour les services Web de la part de I’orchestrateur. En plus, ces
comportements extraits de la spécification de I’orchestrateur peuvent étre vus comme
une spécification partiel pour les services web. En fait, les services Web peuvent offrir
plus des fonctionnalités que celles qui sont utilisées par 1’orchestrateur. Dans notre
approche, on choisit de ne prendre en compte tous les fonctionnalités qui ne son pas
utilisées par I’orchestrateur et on se focalise seulement dans celles qui sont utilisées.

Donc, on propose un approche pour tester le comportement correcte des orchestrations
en testant 1’orchestrateur en contexte et en testant aussi la compatibilité des services
Web, tout ca en prenant en compote que la spécification de 1’orchestrateur. En procé-
dant comme ca, on attaque deux problemes communs a [’heure de tester des systémes
avec des plusieurs composants: la manque de la disponibilité des spécifications des
composants et I’explosion combinatoire. En plus, on attaque cet dernier probleme en
utilisant [’exécution symbolique [Kin75, Cla76], qui a comme idée principale celle de
exécuter des programmes en utilisant des symboles a la place de donnés concrets, et de
générer une structure en forme d’arbre pour décrire tous les comportements possibles
du programme d’un maniére symbolique. En effet, dans notre approche, lest objectifs
du tests sont des sous-arbres des arbres symboliques, et on utilise un algorithme pour
tester la conformité du SUT qui est basé sur ces techniques symboliques.

Structure du Document

ETTE these est structurée dans deux parties. Dans la Partie 1, on présente la

partie théorique qui est la base de notre approche, ainsi comme 1’état de I’art

et 'introduction aux types des systemes sur lesquels on travaille dans le reste
de la these.

e Nous commencons au le Chapitre 2 en introduisant 1’état de I’art par rapport
aux types des systeémes que nous analysons: les orchestrations des services Web.
Nous présentons les différentes facons de créer des compositions des services
Web, les standards utilisés par les orchestrations et les systemes a base des com-
posants. Nous présentons aussi 1’architecture SOA, qui est la base des orchestra-
tions, et le langage le plus utilisé pour créer celles-ci: WS-BPEL (pour son nom
en anglais Web Services Business Process Execution Language). Finalement,
nous introduisons I’exemple que nous allons utiliser dans le reste de la these.

e Dans le Chapitre 3 nous introduisons la relation de conformité que nous util-
isons: ioco. In introduise la notation que nous utilisons pour représenter les spé-
cifications des systemes: les systemes a base des transitions étiquetées (LTS).
Nous utilisons les LTSs pour modeler les spécifications des systemes et les
SUTs. Plus spécifiquement, nous utilisons les IOLTS, qui ne sont plus que des
LTS ou les étiquettes sont divisées entre entrées et sorties. Nous commengons
par présenter les techniques utilisées pour tester des systémes unitaires et apres
nous continuons avec les systemes a base de composants. Plus spécifiquement,
nous présentons les résultats obtenus dans [vdBRTO03] lorsqu’ils utilisent la re-
lation de conformité ioco avec des systemes a base des composants. Finalement
nous présentons aussi des autres travaux qui ont été faits pour tester des systemes
similaires.

e Nous continuons dans le Chapitre 4 en présentant la version modifiée de ioco et
que nous définissons pour tester des orchestrateurs en contexte. Cette nouvelle
relation de conformité nous permet de prendre en compte des informations par
rapport au contexte des orchestrateurs, et on fait cela a partir des modifications
sur les spécifications des orchestrateurs (qui sont représentées par des IOLTs).
Ces modifications prennent en compte le statu des services Web qu’interagissent
avec I’orchestrateur. Dans ce chapitre, on introduise une classification pour les
différentes situations des services Web. Plus spécifiquement, nous classifions les
canaux utilisés par les services Web et nous disons qu’un canal est:

— Controlable, si le testeur joue le role du service Web, ou bien s’il contrdle
completement les informations qui sont envoyés sur le canal.

— Observable, si le testeur ne contrdle pas les informations qui sont envoyés
sur le canal, mais I’architecture du test est tel qu’il peut observer ces infor-
mations.

— Caché, si le testeur ne peut ni observer ni contrdler les informations qui
sont envoyés sur le canal.

La plus part du temps, lorsque nous travaillons avec des orchestrations, les ser-
vices Web sont simulés, mais cela n’est pas toujours le cas. Donc, dans la
suite du chapitre, on montre comment modifier les spécifications pour pren-
dre en compte ces statu. Inspirés par les travaux dans [vdBRTO03], on définit
aussi un autre relation de conformité, qu’on utilise quand il y a des actions
dans le SUT qui ne peuvent pas étre vus par le testeur (a cause de 1’architecture
du test). Nous finissons le chapitre en présentant nos résultats dans la forme
des deux théorémes, qui ont été définis pour répondre la question suivante:
s’il y a un erreur détecté lorsqu’on teste 1’orchestrateur en contexte, quelles
sont les hypotheses qui doivent étre faites pour déterminer que 1’erreur est dii
a I’orchestrateur et pas a son contexte?.

e Nous finissons la Partie 1 avec le Chapitre 5, qui completement le Chapitre 4,
c’est a dire, nous définissons une relation de conformité qui peut €tre utilisé pour
tester la compatibilité des services Web par rapport a comportements qui sont at-
tendus de la part de I’ orchestrateur. Pour faire cela, on génere les comportements
attendus pour les services Web a partir de la spécification de I’orchestrateur, en
utilisant des transformations mathématiques comme le miroir et la projection.
Plus spécifiquement, si tous les services Web sont compatibles par rapport a
I’orchestrateur (selon cet relation de compatibilité), alors il n’y aura pas des sit-
uations de blocage mortel dans le systeme.

Dans la Partie II, nous montrons comment exploiter les résultats de la Partie 1, ol les
spécifications sont exprimés d’un maniére concise en utilisant des systémes a base des
notations symboliques.

e Dans le Chapitre 6 nous introduisons les techniques d’exécution symboliques,
commengcant avec le formalisme symbolique que nous utilisons pour modeler les
spécifications des orchestrateurs. Apres, on présente I’exécution symbolique,
qui consiste a exécuter un programme (dans ce cas, les spécifications des sys-
temes) en utilisant des symboles a la place des données numériques. Le résultat
est un arbre qui représente tous les comportements possibles du systeme.

e Dans le Chapitre 7, nous appliquons applique les techniques symboliques in-
troduites dans le Chapitre 6 pour tester des orchestrateurs en contexte, c’est a
dire, on adapte le Chapitre 4 en utilisant des techniques d’exécution symbol-
iques. Dans ce chapitre on introduit aussi un algorithme basé sur des regles pour
tester les orchestrateurs. Cet algorithme est basé dans la relation de conformité
introduit dans le Chapitre 3 et est guidé par des objectifs du test. L’algorithme
exécute essentiellement 3 actions:

1. il calcule les valeurs pour envoyer au SUT a chaque fois qu’il est nécessaire
de le faire de la part du testeur et pour couvrir I’objectif du test,

2. il observe les réactions du SUT,

3. et il émet un verdict le plus t6t possible. En plus, I’algorithme émet des
verdicts sur des comportements du systeme que sont diis a des interactions
avec les services Web.

e Dans le Chapitre 8 nous appliquons les techniques symboliques pour générer des
comportements pour les services Web, c’est a dire, on adapte le Chapitre 5 dans
I’optique symbolique. Nous montrons que les comportements qui sont générés
(a partir des techniques de miroir et projection appliquées a des arbres symbol-
iques) peuvent étre utilisés pour déterminer si les services Web n’amenent pas a
I’ orchestration dans une situation de blocage mortel.

e Nous finissons la Partie 3 en présentant notre prototype, qui implémente I’algorithme
a base des regles et qui permet de tester des orchestrations des services Web
décrites dans WS-BPEL.

References

[ACIYO03] R. Anido, A. Cavalli, L. Lima Jr., and N. Yevtushenko. Test suite min-
imization for testing in context. Softw. Test., Verif. Reliab., 13(3):141—
155, 2003.

[BPSM*08] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C, 2008.
http://www.w3.org/TR/REC-xml/.

[BvdMFRO06] N.C.W.M. Braspenning, J.M. van de Mortel-Fronczak, and J.E. Rooda.

[CCMWOI]

[CFCB10]

[CHVRRO04]

[Cla76]

[Dij79]
[EGGC09a]

[EGGCO09b]

[EGGC10]

A Model-based Integration and Testing Method to Reduce System De-
velopment Effort. Electronic Notes in Theoretical Computer Science,
164(4):13-28, 2006. Proc. of the Second Workshop on Model Based
Testing (MBT 2006).

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. WSDL
(Version 1.1). W3C, March 2001. http://www.w3.org/TR/wsdl.

T.D. Cao, P. Félix, R. Castanet, and 1. Berrada. Online Testing Frame-
work for Web Services. In Proceedings of the 2010 Third International
Conference on Software Testing, Verification and Validation, ICST ’10,
pages 363-372, Washington, DC, USA, 2010. IEEE Computer Society.

L. Clement, A. Hately, C. von Riegen, and T. Rogers. @ UDDI
(Version 3.0.2). OASIS, October 2004. http://www.oasis-

open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-
20041019.htm.

L. A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Transactions on Software Engineering, 2(3):215-222,
1976.

E. Dijkstra. Structured programming. pages 41-48, 1979.

J.P. Escobedo, P. Le Gall, C. Gaston, and A. Cavalli. Exam-
ples of testing scenarios for web service composition. Techni-
cal Report 09003_LOR, TELECOM & Management SudParis, 2009.
http://www.it-sudparis.eu/.

J.P. Escobedo, P. Le Gall, C. Gaston, and A. Cavalli. Observability
and controllability issues in conformance testing of web service com-
position. In Testing of Communicating Systems and Formal Approaches
to Software Testing (TESTCOM/FATES), volume 5826 of LNCS, pages
217-222. Springer, 2009.

J.P. Escobedo, P. Le Gall, C. Gaston, and A. Cavalli. Testing web ser-
vice orchestrators in context:a symbolic approach. In Proc. of Soft-
ware Engineering Formal Methods (SEFM) *10. IEEE Computer Soci-
ety, 2010.

[FGM199]

[FTO07]

[FTWO06]

[GGRTO06]

[GHM07]

[GIW04]

[HSO5]

[Kat99]

[Kho04]
[Kin75]

[LT99]

[LVDO09]

R. T. Fielding, J. Gettys, J. C. Mogul, H. Nielsen, L. Masinter,
P. Leach, and T. Berners-Lee. RFC 2616: Hypertext Transfer Proto-
col - HTTP/1.1, 1999. http://tools.ietf.org/html/rfc2616.

L. Frantzen and J. Tretmans. Model-Based Testing of Environmental
Conformance of Components. In Formal Methods of Components and
Objects (FMCO), number 4709 in LNCS, pages 1-25, 2007.

L. Frantzen, J. Tretmans, and T.A.C. Willemse. A Symbolic Framework
for Model-Based Testing. In Intl. Workshops FATES/RV, volume 4262
of LNCS, pages 4054, 2006.

C. Gaston, P. Le Gall, N. Rapin, and A. Touil. Symbolic Execution
Techniques for Test Purpose Definition. In Testing of Communicating
Systems (TESTCOM), volume 3964 of LNCS, pages 1-18, 2006.

M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. Nielsen,
A. Karmarkar, and Y. Lafon. SOAP (Version 1.2). W3C, April 2007.
http://www.w3.org/TR/soap12-part1/.

J. Gortmaker, M. Janssen, and R. Wagenaar. The advantages of web
service orchestration in perspective. In ICEC ’04: Proceedings of the
6th international conference on Electronic commerce, pages 506-515,
New York, NY, USA, 2004. ACM.

M. Huhns and M. Singh. Service-Oriented Computing: Key Concepts
and Principles. IEEE Internet Computing, 9(1):75-81, 2005.

J.-P. Katoen. Concepts, Algorithms, and Tools for Model Checking,
1999.

A. Khoumsi. Test cases generation for embedded systems, 2004.

J. C. King. A new approach to program testing. In Intl. Conf. on Reli-
able Software, pages 228-233. ACM, 1975.

G. Leavens et al. The Java Modeling Language (JML). 1999.
http://www.eecs.ucf.edu/ leavens/JML/.

N. Lohmann, E. Verbeek, and R. Dijkman. Petri net transformations for
business processes — a survey. pages 46—63, 2009.

[LZCCO07]

[LZCHOS]

[MKBO09]

[NSO8]

[Pel03]

[RBJOO]

[Tre96]

[Tre08]

[ULO7]

[vBKO6]

[vdBRTO03]

M. Lallali, F. Zaidi, C., and Cavalli. Timed modeling of web ser-
vices composition for automatic testing. In SITIS ’07: Proceedings of
the 2007 Third International IEEE Conference on Signal-Image Tech-
nologies and Internet-Based System, pages 417-426, Washington, DC,
USA, 2007. IEEE Computer Society.

M. Lallali, F. Zaidi, A. Cavalli, and I. Hwang. Automatic timed test
case generation for web services composition. European Conference
on Web Services (ECOWS), 0:53-62, 2008.

S. Mitra, R. Kumar, and S. Basu. A Framework for Optimal Decentral-
ized Service-Choreography. In ICWS, pages 493-500, 2009.

S. Noikajana and T. Suwannasart. Web Service Test Case Generation
Based on Decision Table (Short Paper). In QSIC '08: Proceedings
of the 2008 The Eighth International Conference on Quality Software,
pages 321-326, Washington, DC, USA, 2008. IEEE Computer Society.

C. Peltz. Web services orchestration and choreography. In Computer,
pages 46-52. IEEE Computer Society, 2003.

V. Rusu, L. Bousquet, and T. Jéron. An Approach to Symbolic Test
Generation. In IFM ’00: Proceedings of the Second International Con-
ference on Integrated Formal Methods, pages 338-357, London, UK,
2000. Springer-Verlag.

J. Tretmans. Test generation with inputs, outputs and repetitive quies-
cence. Software - Concepts and Tools, 17(3):103—120, 1996.

Jan Tretmans. Formal methods and testing. In Robert M. Hierons,
Jonathan P. Bowen, and Mark Harman, editors, Formal Methods and
Testing, pages 1-38, Berlin, Heidelberg, 2008. Springer-Verlag.

M. Utting and B. Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann, 1 edition, 2007.

F. van Breugel and M. Koshkina. Models and Verification of BPEL,
2006.

H.M. van der Bijl, A. Rensink, and J. Tretmans. Component based
testing with ioco, 2003.

[vdBRT04]

[VRTO04]

[YJC10]

M. van der Bijl, A. Rensink, and J. Tretmans. Compositional testing
with ioco. In Workshop on Formal Approaches to Testing of Software
(FATES), volume 2931 of LNCS, pages 86—100, 2004.

H.M. van der Bijl, A. Rensink, and G.J. Tretmans. Compositional test-
ing with ioco. In A. Petrenko and A. Ulrich, editors, Formal Approaches
to Software Testing (FATES), volume 2931 of LNCS, pages 86100,
Berlin, 2004. Springer Verlag.

T. Yoo, B. Jeong, and H. Cho. A Petri Nets based functional validation
for services composition. Expert Syst. Appl., 37(5):3768-3776, 2010.

Abstract

In the last years, the Service-Oriented Architecture (SOA) has gained popularity
in the industry due to the advantages it offers: independence (low coupling), re-
usability and sharing of services. Web services are an example of SOA, which are
pieces of software offering functionalities trough the Internet. Due to their accep-
tance, new ways of using Web services have also emerged. The most popular is the
one known as Web service Orchestration. Orchestrations are the result of combining
different Web services in order to create new, more complete and complex ones. In
this type of systems, there is a central Web service guiding the whole process: the
orchestrator.

In this thesis, we focus on conformance testing of orchestrators in context: that
is, orchestrators interacting with Web services in the orchestration during the testing
phase. Moreover, we restrict to cases where only the specification of the orchestrator
is known. That is a usual practical case, since Web services are often developed by
companies that do not publish their specifications. Our objective is to determine
if, when an error is detected in the orchestration at the testing in context phase,
the error is due to a non conformance of the orchestrator. A first contribution of
this thesis is to define conformance relations (based on the conformance relation
ioco) allowing us to characterize conformance in context. Moreover, we provide
a classification of the different situations when testing the orchestrator, depending
on the nature of the testing architecture. The usage of our conformance relations
is strongly coupled to those testing architectures. For the different testing archi-
tectures, we state theorems allowing us to relate conformance in context and usual
unit conformance in the ioco framework. We then show how to put the formal
work in practice by means of symbolic techniques and of a rule-based online testing
algorithm, allowing us to detect non conformance of orchestrators while interacting
with orchestrators in context. The main symbolic technique we use is the symbolic
execution, whose basic idea is to execute programs using symbols instead of con-
crete data as input values, and to derive tree-like structures in order to describe all
possible computations in a symbolic way.

A directly derived and complementary work is to define Web service testing tech-
niques which allow one to determine if a given Web service can be used together with
an orchestrator without leading the resulting orchestration into deadlock situations.
Since we only take into account the specification of the orchestrator, this is done
only according to the the Web service behaviors expected from the orchestrator.

A final contribution of this thesis is the implementation of a prototype which
allows us to test implementations of orchestrators in their context of usage. This
prototype implements the rule-based online testing algorithm, as well as the rest of
technical operations to apply it in a testing architecture aiming at performing this
kind of tests with this kind of systems.

Keywords: ioco, SOA, test in context, orchestrators, symbolic testing, test
case generation.

Résumé

Les Architectures Orientées Services (SOA) se sont imposées depuis quelques an-
nées dans la plupart des entreprises par les nombreux avantages qu’elles procurent:
faible couplage, réutilisation et le partage des services. Puisqu’ils constituent des
logiciels offrant des fonctionnalités via Internet, les services Web s’inscrivent claire-
ment comme une instance de 'architecture SOA. Afin de faciliter encore leur usage,
de nouvelles fagons d’utiliser les services Web ont émergé. La plus connue d’entre
elles est celle connue sous le nom d’orchestration de services Web qui consiste a
combiner différents services Web afin d’en créer de nouveau par le biais d’un service
central Web, l'orchestrateur, guidant I’ensemble du processus.

Dans cette thése, nous nous intéressons au test de conformité des orchestrateurs
testés dans leur contexte, cest-a-dire interagissant avec des services Web. De plus,
nous considérons le cas de figure ou seule la spécification de l'orchestrateur est
connue. En effet, les services Web sont souvent développés par des sociétés tiers ne
publiant pas nécessairement leurs spécifications. Notre objectif est de déterminer
si une erreur détectée dans ’orchestration, i.e. I'orchestrateur dans le contexte des
services Web invoqués, peut s’expliquer par une non-conformité de l'orchestrateur.
Dans le cadre de la relation de conformité connue sous le nom de ioco, nous avons
précisé quels sont les liens rigoureux entre la conformité de 'orchestrateur au sens
ioco, et la conformité de l'orchestrateur en contexte. Nous avons effectué cette
étude en tenant compte des différentes situations en lien avec ’architecture de test.
Ces différentes situations sont reliées aux facilités d’accés et/ou de controle des
communications échangées entre 1’orchestrateur et les services Web. Nous adaptons
ensuite ce travail dans le cas ou les spécifications des orchestrateurs sont donnés sous
la forme de systémes de transitions symboliques a entrées/sorties. Nous fournissons
un algorithme de génération de séquences de test sous la forme d’un ensemble de
régle: sous I’hypothése que le systéme sous test est constitué de l'orchestrateur et
des services Web invoqués au sein de 1’orchestration, des verdicts de non-conformité
des orchestrateurs sont émis.

Nous avons aussi tiré parti de la donnée de la spécification de l'orchestrateur
pour inférer les comportements des services Web tels qu’attendus par l'orchestrateur.
Les comportements inférés peuvent servir d’objectifs de test de telle sorte qu'une
erreur de conformité mise & jour sur les services Web en question révélerait alors une
situation de blocage (dead-lock) dans une orchestration constitué d’un orchestrateur
conforme et des implémentations sous test des services Web.

Nous avons implémenté un prototype de génération de séquences de test des im-
plémentations des orchestrateurs considérés dans leur contexte d’utilisation consti-
tué des services Web. A D’aide de techniques d’exécution symbolique et de résolution
de contraintes, ce prototype met en oeuvre des opérations de transformations des
arbres d’exécution symbolique des spécifications afin de se placer du point de vue
de lorchestrateur en contexte, et implémente l'algorithme a base de régles.

Mots-clés: ioco, SOA, test en contexte, orchestrateurs, test symbolique, généra-
tion des cas de test.

Contents

1 General Introduction 1

I Test in Context of Component-based Systems via its Inter-

face 9
2 Web Service Orchestrations 11
2.1 Imtroduction 11
2.2 Service-Oriented Architecture 12
2.3 Webservices 13
2.4 Web Service Compositions: Orchestrations 14
2.4.1 Web Services Business Process Execution Language 16

2.4.2 Component-based Systems with Interfaces 17

2.5 Modeling Orchestrators 18
2.6 Conclusion. L 19

3 Conformance Testing 21
3.1 Imtroduction 21
3.2 Conformance Testing: ioco 22
3.2.1 Labeled Transition Systems 22

3.22 Unit Testing 30

3.2.3 Compositional Testing, 32

3.3 Related Work 39
3.3.1 Discussion 42

34 Conclusion. 43

4 Testing in Context for Orchestrators 45
4.1 Imntroduction 45
4.2 Informal Presentation of our Approach 46
4.3 Orchestrators and Their Specifications in Context 49
4.3.1 Orchestrators in Context 49

4.3.2 Specifications for Orchestrators in Context 54

4.4 Adaptation of ioco for Testing Orchestrators in Context 60
4.4.1 Adaptation of ioco and uioco to IOLT'Ss with Internal Actions 61

4.4.2 Conformance Testing of Orchestrators with no Hidden Channels 62

4.4.3 Conformance Testing of Orchestrators with Hidden Channels 68

4.5 Conclusion L 71

iv Contents
5 Eliciting Web Service Behaviors 73
5.1 Introduction 73
5.2 Motivation L 74
5.3 Technical Preliminaries 76
5.4 Correctness of Web Services with respect to Orchestrators 7
5.4.1 Web Services Communication Channels and Fairness Invocation 78

5.4.2 Web Service Quiescence 78

5.4.3 Traces for Web Services According to Orchestrators. 80

55 Conclusion 82

ITI Symbolic Approach for Testing Orchestrators in Context 85
6 Input/Output Symbolic Transition Systems 89
6.1 Introduction 89
6.2 Symbolic Transition Systems, 90
6.2.1 First order Logic for JOSTSs 91

6.2.2 Syntax of the IOSTSs 93

6.2.3 Behaviors of the IOSTSs 96

6.24 From IOSTSsto IOLTSs 100

6.3 Symbolic Execution. o oo o 102
6.3.1 Generating a Symbolic Execution Tree 103

6.3.2 Operations over the Symbolic Execution 108

6.3.3 Stop Criteria o 110

6.4 Conclusion. 111

7 Algorithm for Testing Orchestrators in Context 113
7.1 Introduction 113
7.2 Orchestrators in Context 114
7.2.1 Web services Status and Communication Channels 115

7.2.2 Partial Specifications for Orchestrators in Context 116

723 SUTincontext 122

7.3 Symbolic Test Purposes L. 122
7.4 Rule-based Algorithm oo 125
7.4.1 Key Notions of the Algorithm 125

7.4.2 Rules and Verdicts 128

7.4.3 Algorithm for Observable and Controllable Cases 130

744 Algorithm for the Hidden Case 133

7.5 Conclusion 134

8 A Method for Testing Web Service’s Compatibility 135
8.1 Introduction 135
8.2 Web service Behaviors Inferred from Orchestrators 136
8.2.1 Technical Preliminaries 136

8.2.2 Executable Behaviors for Web services 139

Contents

v
8.3 Testing the Deadlock-free Property 142
84 Conclusion. 142

9 Prototype for Test Case Generation 145
9.1 Imtroduction 145
9.2 Multiple Communication Channels 146
9.3 Implementation of the Rule-based Algorithm 147
9.4 Technical Aspects and Instrumentation of the Prototype 150

94.1 External Tools 150
9.4.2 Rest of Modules and Behavior of the Prototype 152
9.5 Usage of the Prototype: A Complete Example 154
9.5.1 Example of Two Verdicts 158
9.6 Conclusion. 160

10 Conclusion and Future Works 163

A Appendix 169
A.1 Outputs and User Interface of the Prototype 169
A.2 Verdicts of the Prototype 176

Bibliography 181

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7

List of Figures

Service-Oriented Architecture example. 12
Web service architecture example. 14
Orchestration’s structure example. 15
Online Travel Agency orchestration example. 15
Simplified WS-BPEL code for the OTA example. 17
Component-based system with an interface. 18
Modeling orchestrators. L. 19
LTS for the Slot Machine example. 23
LTS for the Slot Machine example with input/output labels. 25
IOLTS G for the Slot Machine example. 27
Quiescence enrichment for the Slot Machine example, Gs. 28
Not strongly responsive IOLTS. 29
SUT: input complete, quiescence-enriched, and without 7-transitions. 31
ioco examples. Lo 32
Product example. oo 34
Product according to Definition 3.2.12. 35
Hiding operation of Figure 3.8(b) according to Definition 3.2.13.. . . 35
Underspecification situation for the product. 37
Underspecification and hide operation example. 38
Orchestration example. oo oL 46
Communication channel status. 47
Slot Machine example: Orch in context of Rem. 52
Partial observation of Orch[Rem]. 53
Quiescence enrichment examples. 55
Quiescence equivalence. L 57
IT(Orch) for the Slot Machine example of Figure 3.3 in Section 3.2. 59
Slot Machine’s partial specification. 60
Different status for Web services with respect to the orchestrator. . . 74
Compatibility relation example. 82
One transition of an TOST'S. 95
IOSTS for the slot machine example. 96
IOLTS Gprg for the IOSTS of Figure 6.2. 101
Symbolic execution of a simple program example. 102
Symbolic execution of one transition example. 105
SE(G) based on the IOSTS of Figure 6.2.. 107
SE(G)s based on the symbolic execution of Figure 6.6. 109

viii

List of Figures

6.8

7.1

7.2

7.3
74
7.5
7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3

8.4
8.5

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

9.15

Al
A2
A3
A4
A5

T-reduction example. o oo 110

Classification of the communications on channels according to their

status. . ..o L 116
Full quiescence SE(Qrch)s for the symbolic execution SE(Qrch) of

the Slot Machine example (Figure 6.6). 118
WS input transformation IT(OQrch) for SE(Qrch)s of Figure 7.2. . . 119
Hiding operator HO(QOrch) for SE(Qrch)s of Figure 7.2.. 120
Observable behaviors of SE(Qrch). 121
Test purpose T P for Obs(Orch) of Figure 7.5(a). Accept(TP) =mns5. 124
Classification of events ev. oL 126
Verdicts of the algorithm. 128
Inputs of the algorithm for the controllable case. 132
Inputs of the algorithm for the hidden case. 133
Projection example. oL Lo o 138
Mirror example.o 139
Enrichment by Web service quiescence for the Slot Machine example

(Figure 6.6). 140
w-trace structure according to Figure 83. 141
Test purpose for a Web service. 143
Notion of multiple communication channels for IOSTSs. 147
Multiple communication channels in symbolic executions. 148
Constraint example for JaCoP. 151
Example of JaCoP for solving constraints. 152
JDeveloper BPEL plugin., 153
Oracle’s SOA BPEL console. 154
Modules of the prototype. L. 155
WS-BPEL code for the Slot Machine example. 156
Qrch for the slot machine example. 157
SE(Orch) of the Slot Machine example. 158
Full quiescence SE(Qrch)s for the Slot Machine example. 159
Hiding operator HO(QOrch) of the Slot Machine example. 160
Obs(QOrch) of the Slot Machine example. 161
WS.INCONC verdict for the Slot Machine example with hidden

communication channels. 0000000 161
Modified Slot Machine example to illustrate the W S.HY P.F AI L ver-

dict. 162
Prototype’s text version of Qrch of the Slot Machine example. 169
SE(Orch) for the Slot Machine example. 170
Full quiescence enrichment of Figure A.2. 171
Remote input transformation of Figure A.2. 172

HO(Qrch) of Figure A3, 173

List of Figures ix

A6 7-reduction of Figure A.5. 174
A.7 Choosing a target state in the prototype.. 175
A.8 Test algorithm for the Slot Machine example. 175
A9 Verdict PASS for Slot Machine example. 176
A.10 FAIL verdict for the modified Slot Machine example. 176
A11 INCONC verdict for the Slot Machine example. 177
A.12 PASS verdict for the Slot Machine example. 177

A.13 WeakPASS verdict for the modified Slot Machine example with hid-
den channels. 178

CHAPTER 1

General Introduction

machines over the Internet that work based on the Service-Oriented
Architecture (SOA). They can be invoked by means of Web related
standards (usually, SOAP [Gudgin 2007], UDDI [Clement 2004], XML [Bray 2008],
HTTP [Fielding 1999], WSDL [Christensen 2001]). In the recent years, the usage
of Web services has increased due to the flexibility and interoperability among het-
erogeneous platforms and operative systems that they provide. SOA adds value in

W EB services are pieces of software offering functionalities to other (remote)

terms of low coupling, re-usability of services and sharing; it makes the systems
flexible and adaptive in case of changes in the business process and improves the
integration of heterogeneous systems [Huhns 2005]. Besides, new ways of using Web
services have emerged, by combining them in order to create more complete (and
complex) services. This process of re-using and combining Web services is called
Web service composition, and its main objective is to allow the re-usability of the
functionalities proposed by the Web services. This is why this architecture has been
widely accepted by the enterprises all over the world: it helps reducing the cost
and time to create business processes, and this is the type of systems we work with
in this thesis, more specifically, we aim at ensuring their correct behavior by using
testing techniques.

Among the different ways of creating new Web service compositions, the two
that are the most used are ([Peltz 2003]):

o Web Service Choreographies [Mitra 2009], where every Web service involved
in the composition interacts at the same level, knowing when and how to
communicate with the rest of Web services.

o Web Service Orchestrations [Gortmaker 2004], where there is a central com-
ponent guiding the process in a centralized way, taking decisions based on the
answers it gets from the Web services.

There is also the composition of Web services based on the Semantic Web', which
is not an orchestration but more like a choreography. From the three previous ways
of composing Web services, orchestrations are the most popular among enterprises.
One of the reasons is that the most used standard for describing an orchestration
is the Web Services Business Process Ezecution Language (WS-BPEL) [Alves 2007]
(whose current version is 2.0), that is maintained by OASIS? (which is a consortium

"http://semanticweb.org
2http://www.oasis-open.org/

2 Chapter 1. General Introduction

that drives the development, convergence and adoption of open standards for the
global information society). Besides, it is based on XLANG (Microsoft, 2001) and
WSFL (IBM, 2001), and many well-known enterprises participated in its creation
(Microsoft, IBM, SAP, Oracle, Adobe Systems, among others).

Due to the high acceptance of this new technique of combining Web services
in order to create new, more complex ones, new ways to assure their correct be-
havior have been developed [van Breugel 2006]. Besides, orchestrations have special
characteristics that are not present in other types of systems (specially, stand-alone
systems), and usual testing approaches (i.e., unit testing techniques used with stand-
alone systems) do not to take them into account. We address this problem in this
thesis, in order to provide new (black-box) testing approaches to help in the valida-
tion and verification of orchestrations. Let us examine some characteristics of the
orchestrations. Its central component which guides the whole process is known as
the orchestrator. All the Web services involved in the orchestration interact only
with the orchestrator and never between them. Any user (by means of a Web ap-
plication) interacts with the orchestration also through the orchestrator. Thus, the
orchestrator has a very important role in the orchestration, taking decisions accord-
ing to the answer it gets from the Web services and the inputs sent by the user.
We consider orchestrations as particular component-based systems, where there is
a central component (the orchestrator) that interacts with the environment (user)
and acts as an interface of the system.

Context of our Work

The interest of our work consists precisely in testing orchestrators from a particular
point or view: by doing it in or out its context of usage. Now, testing consists in
executing a system in order to detect errors. Software testing is an activity that
consumes great software and time costs in the industry (50-70%) |Noikajana 2008],
and so causes software delivery delay. Therefore, the testing activity has to be as
much as possible an automated process in order to reduce the time employed in this
task. Besides, it has to be done in a way to ensure, as most as possible, that the
system, once it has been tested, will work correctly. For systems where no failures
are allowed, we have to make use of formal rigorous approaches in order to provide
the desired level of assurance. Thus, mathematical models are used to represent the
specification of systems (instead of using an ambiguous language like, for instance,
English) and formal techniques are used to test the implementation of a system’s
specification (the system under examination, that in our case is the orchestrator
within an orchestration, and is usually referred to as the system under test). This
way of testing systems by using models is known as model-based testing. Besides,
in order to ensure that a model correctly represents the behaviors of a system, a
technique called model checking has been developed and is currently an active field
of work [Fraser 2009]. Briefly, model checking is an automated technique that, given

a model of a system and a property stated in some appropriate logical formalism
(in practice, a variation of temporal logic), systematically checks the validity of
this property [Katoen 1999]. In this thesis, we do not perform any model check-
ing techniques on the models we use. We assume that our models represent the
specifications correctly, but, in the context of a complete validation and verifica-
tion process, performing model checking is a complementary activity that should
be performed together with the work presented in this document. Regarding the
formalism chosen to model systems, there are many to choose from [Lohmann 2009],
each one offering different advantages (and disadvantages). We can mention some
different types of models that have been used for testing purposes, like state-based
models (like JML [Leavens 1999]), transition-based models (like FSM [Lallali 2007],
LTS [Tretmans 2008]), operational models (like Petri Nets [Yoo 2010]), among oth-
ers. The chosen model depends on the characteristics of the system that one wants
to capture, as well as, of course, the degree of familiarity that one has with a given
notation.

From the models of the specifications one can then extract key behaviors (known
as test purposes) that the system under test has to respect. This is done because one
cannot verify all the behaviors described in the model of the specification, since that
would be a very long, even infinite, task. It follows that test purposes can only take
into account a finite subset of all possible behaviors of the system, and therefore, it
can never be complete: testing can only show the presence of errors, but not their
absence [Dijkstra 1979]. Thus, test purposes are selected in order to test specific
aspects of a system: they can aim at testing how fast the system can perform its
tasks (performance testing); how does it react when the number of requests made to
the system increases greatly (stress testing); how does it reacts when wrong inputs
are sent to it (robustness testing); how long can we rely on the correct functioning of
the system (reliability testing); and finally, the kind of test we are interested in, does
the system do what it should do? (conformance testing), or, more specifically, does
the behavior of system under test comply with its specification? More precisely,
the specification referred here is actually a behavioral one, i.e., it describes the
behavior of the system by means of the functions or operations that it can perform
(as opposed to its performance, usability, or reliability). In the rest of this thesis,
whenever we refer to the specification of a system, we are referring in fact to its
behavioral specification. Conformance testing is the approach we take in this thesis.
Besides, the usual configuration when performing conformance testing is that the
system under test is inaccessible, that is, it is perceived by the tester as a black-bozx.
It means that, since we are testing software-based systems, the tester does not have
access to the code of the system under test. For the case where we do have access,
the testing activity is known as white box-testing, and usually consists in ensuring the
coverage of the different parts of the code. In black-box testing, tests are designed
completely from the system’s specification (in practice, by means of a model and
test purposes) which describes the expected behavior of the black box [Utting 2007].
Finally, a system can be tested in different scales: in isolation (unit testing); each

4 Chapter 1. General Introduction

component in the system can be tested separately (component testing); the system
can be tested in order to ensure that several components work correctly (integration
testing); the system is tested when interacting with some other pieces of software
(that can encapsulate it or play the role of stubs) (testing in context); or the system
can be tested as a whole (system testing).

Our approach consists in performing testing in context for orchestrators. While
performing test in context [Khoumsi 2004], the targeted system under test is em-
bedded within a system and interacting with some other components of it, which
constitute precisely its context: the whole system is composed of the targeted sys-
tem under test and of all the components in its context. Different assumptions can
be made regarding the components in the context. The most classical hypotheses
are that components in the context are supposed to be faulty-free, i.e., they conform
to their specifications (that are thus available), and that communication with the
components works correctly. Besides, the usual approach is that the tester interacts
with the component under test only by means of its context [Anido 2003].

Our Approach

Now, let us say more about applying black-box model-based conformance testing
in context in order to determine if an orchestrator behaves accordingly to its spec-
ification. As introduced previously, orchestrations are a special kind of systems
where the orchestrator guides the whole process. Thus, the system that is under
test is composed of the orchestrator plus the Web services (or components) inter-
acting with it. Those Web services constitute the context of the orchestrator, and
we aim at ensuring the conformance of the orchestrator with respect to its speci-
fication while interacting with its context. Therefore, in order to apply a classical
testing approach to this type of systems, one would take into account the specifica-
tions of the orchestrator and of all the Web services interacting with it. Then, we
would obtain a model representing the specification of the entire system. Since we
use mathematical models to represent each specification (of the orchestrator and of
each of the Web services), the specification of the entire system can be obtained by
means of mathematical manipulations over all those models (like cartesian product,
union of sets, etc.). Nevertheless, there may be two problems when doing this: first,
the specification of all the components in the system (orchestrator and Web ser-
vices) is not always known (especially, under the form of a formal notation). This
can happen, for instance, because there can be some Web services that are devel-
oped by third parties who do not want to expose the internal behaviors of their
products. The second problem is the one known as the state explosion problem,
and it is caused because combining the different models of the specification of the
components in the system may result in an extremely large model, which becomes
difficult to manipulate [Valmari 1998]. The main hypothesis that we will make in
our approach is to assume that the specification of the orchestrator is always avail-
able, and, in order to tackle the previous problems, we propose an approach to test

the orchestrators by taking only into account its specification but not the ones of
the rest of Web services, even if orchestrators will interact with Web services during
the testing process. More strictly, we do consider the interface’s specification of the
Web services, (that is often available in practice by means of their associated WSDL
file), however, such a WSDL file does not provide a behavioral specification, since
WSDL describes the services that the Web service offers but says nothing about
their internal behavior.

Thus, in this work, by taking only the specification of the orchestrator, we
propose an approach to test the orchestrators studying a black-box model-based
conformance testing approach in the particular case where the orchestrators are
interacting with the rest of the system. This clearly represents a specialized case
of testing in context, where the tester can only control the orchestration via the
orchestrator. This is precisely one of the contributions of our work, since most of
the works concerning testing orchestrations and component based systems either
simulate the context of the orchestrator, or make the assumption that the specifi-
cation of all the Web services (or components) is available ([Cao 2010, Lallali 2008,
Braspenning 2006, van der Bijl 2003b]). Besides, we have chosen the ioco confor-
mance relation in order to test orchestrators in context [Tretmans 1996b]. ioco
(which stands for input/output conformance) choses to work on the basis of labeled
transition systems, and its basic idea is to test the conformance of a system under
test with respect to its specification by examining if, after any sequence of interac-
tions observed in the system under test (and that are valid according to the specifi-
cation, i.e., specified) any further observation is also specified. If there is an observa-
tion in the system under test that is not specified, then we can conclude that it does
not conform to its specification. Since 1996, several works have been based on this
conformance relation [Rusu 2000, Gaston 2006, van der Bijl 2004], which has been
widely accepted and extended on several domains of application [Schmaltz 2008,
Frantzen 2007, Frantzen 2006b]. Besides, it has the advantage of authorizing non-
deterministic specifications, because it does not require the implementations to con-
sider all the specified outputs but only some of them. Moreover, ioco authorizes
situations where there is underspecification, because if an input is not specified, the
implementation has the freedom to do whatever it wants.

In order to address the fact of not taking the specification of the Web services
into account, we complement the testing of orchestrators in context by dealing with
another common problem when testing orchestrations: how can we be sure to select
the Web services that are compatible with the orchestrator? By exploiting the
specification of the orchestrator, we show how to elicit behaviors which are expected
from the Web services by the orchestrator. These elicited behaviors can be seen as
a partial specification for the Web services, since it is the orchestrator that makes
use of them. A Web service could offer more functionalities than the ones requested
by the orchestrator; in our approach we choose to neglect those functionalities and
focus only on the ones of interest for the orchestrator.

6 Chapter 1. General Introduction

Thus, we propose an approach to test the correct behavior of orchestrations by
testing the orchestrator in context and by testing the compatibility of Web services,
all of this by taking into account only the specification of the orchestrator. By doing
S0, we aim at tackling two common problems when testing systems with multiple
components: the explosion problem and the lack of availability of specifications.

Plan of the Document
The thesis is structured in two parts. In Part I we present the theoretical framework
which grounds our approach.

e We begin in Chapter 2 by taking a look into the state of the art regarding the
type of systems we are interested in: Web services orchestrations.

e In Chapter 3 we introduce the conformance relation that we use. We first
present the formalism that we use in order to model the specification and
implementation of the orchestrators. Moreover, we present some results ob-
tained in [van der Bijl 2003a] when using the chosen conformance relation with
component-based systems, as well as some other related works.

e We continue in Chapter 4 by presenting the modified version of the confor-
mance relation, that we define in order to test orchestrators in context. This
conformance relation allows us to take into account pieces of information about
the context of the orchestrators by means of some modifications performed
over the specification of the orchestrator. Inspired by the results obtained
in [van der Bijl 2003a], we define another version of the conformance relation,
that is used when there are some actions in the system under test that cannot
be observed. We end this chapter by presenting our results by means of two
theorems that aim at answering to the question: if there is an error detected
while testing the orchestrator in context, under which hypotheses does it mean
that the error precisely belongs to the orchestrator?.

o We finish Part I with Chapter 5, which is the complementing work of Chap-
ter 4, that is, we present an approach to test the compatibility of Web services
with respect to an orchestrator. More specifically, we show how to test if a
given Web service does not lead an orchestrator into a deadlock state.

In Part IT we show how to exploit our results of Part I, where specifications are
expressed in a concise way by means of Symbolic Transition Systems.

e In Chapter 6 we introduce the symbolic execution techniques starting with
the symbolic formalism we use to model the specification of the orchestrators.
These models are symbolically executed generating a structure that represents
all the valid behaviors of the system.

e Chapter 7 is the symbolic version of Chapter 4, showing how to use the sym-
bolic execution technique in order to test the conformance of orchestrators in
context. Here we also present a rule-based algorithm (which is based on the
conformance relation introduced in Chapter 3) to test orchestrators in context
in which generation of test data sequences is guided by test purposes to be
covered. The algorithm performs essentially 3 actions: (1) it computes input
values to be sent to the system under test each time it is necessary in order
to cover test purposes, (2) it observes system under test reactions and (3) it
computes a verdict as soon as possible.

e Chapter 8 is the symbolic version of Chapter 5, consisting on eliciting be-
haviors that can be used to test the compatibility of Web services with the
orchestrator. We show how to generate test cases in order to determine if Web
services do not lead the orchestration into a deadlock situation.

e We finish Part IT by presenting our prototype tool, which implements the
rule-based algorithm allowing to test Web service orchestrations in the form
of WS-BPEL process implementations.

Part 1

Test 1n Context of

Component-based Systems via its
Interface

CHAPTER 2

Web Service Orchestrations

Contents

2.1 Imtroductiont 11

2.2 Service-Oriented Architecture 12

2.3 Web ServiCes v v v v v v v v vt v ittt e 13

2.4 Web Service Compositions: Orchestrations 14

2.4.1 Web Services Business Process Execution Language 16

2.4.1.1 Discussiono 16

2.4.2 Component-based Systems with Interfaces 17

2.5 Modeling Orchestrators. 18

2.6 Conclusionttt 19

2.1 Introduction

EB services are pieces of software offering specific operations (which to-
‘; ‘/ gether are called services) through the Web. The Web service architec-
ture is the architectural model used to make the Web services available
to the service consumers so they can use them in a standard way. This architecture
is in turn based on the Service-Oriented Architecture (SOA), which allows appli-
cations to use functionalities (called services) from other applications operating in
heterogeneous environments. Web services are currently used all over the Internet,
and in recent years they started to be combined in order to obtain more complex
services. This re-usage and combination of existing Web services in order to create
a new, more complex one, is called Web service composition. Moreover, among the
different types of existing Web service compositions, we are especially interested in
the one known as orchestration. An orchestration of Web services is a Web service
composition where there is a central Web service, called orchestrator, guiding the
composition. From a practical point of view, Web service orchestrations can be seen
as component-based systems with some particularities, as discussed later in this
chapter.
There are different technologies for creating new services using of existing ones.
Among the most known and used ones today there is the Web Services Business
Process Ezecution Language WS-BPEL standard [Alves 2007]. 'WS-BPEL, allows

12 Chapter 2. Web Service Orchestrations

one to create business processes by making use of available Web services. A business
process delivers a service supposed to by used by third parties.

In this chapter we introduce all of the concepts necessary to understand what
a Web service composition is. We start by introducing the Service-Oriented Archi-
tecture in Section 2.2. Web services are then introduced in Section 2.3. The notion
of Web service orchestration is described in Section 2.4 (as well as component-based
systems with similar characteristics). In Section 2.5, we discuss techniques to spec-
ify orchestrators, which is a key aspect of our work. We conclude this chapter with
Section 2.6.

2.2 Service-Oriented Architecture

Service-Oriented Architecture (SOA) [Huhns 2005] refers to an architecture based
on components offering services (these components are themselves called services)
and clients using them. In this context, a service is an application providing access to
some of its functionalities to other applications. Moreover, the services are supposed
to be independent one from the other. Then, the main objective of Service-Oriented
Architecture is to allow system designers to reuse functionalities, which is why this
architecture has been widely accepted by enterprises all over the world. Besides
the great advantage of re-using services, SOA can also be used in the opposite
way; that is, to decompose a complex service into multiple more simple ones, so
that a client can combine them later in order to have the complex service as a
result. Therefore, SOA adds value in terms of low coupling, re-usability of services
and sharing; it makes the systems flexible and adaptive in case of changes in the
business process and improves the integration of heterogeneous systems. Loose
coupling among services means that the mutual dependencies are minimized by
the use of standardized interfaces. One of the main advantages of SOA is that its
configuration can change dynamically as needed and without affecting the process’s

Service Broker

results.

Interact

e o

Figure 2.1: Service-Oriented Architecture example.

The most common example of SOA instantiation is the one provided by the
Web service architecture. As shown in Figure 2.1, a Service-Oriented Architecture

2.3. Web services 13

is typically composed of three basic parts:

a)

2.

The service consumer, which is the final user making use of the service. In the
case of Web services, in order to use the service, they must have an interface
with which the user can interact. This interface is known as Web application.

The service broker, which is the place where the service consumer can search
for a service. In the case of Web services, such broker is known as Universal
Description, Discovery and Integration (UDDI)[Clement 2004]. The UDDI can
be seen like a yellow pages service for phone numbers. In order to find a telephone
number, there has to be a place where one can search for it (by using the name
of the person). Thus, in order to find a Web service, it has to be listed in the
UDDI (by using the services).

The service provider, which, in the case of the Web service architectures are the
Web services themselves. Web services can be seen as (remote) pieces of software
offering some basic functionalities. They can be anywhere over the Internet and
are meant to provide a service to a machine and not directly to the user, as
commonly misunderstood. In order to be found by the clients, Web service
providers must publish the services they offer in the UDDI. In practice, however,
it may happen that the Web service providers never publish their services so
anyone can find it. This can happen if Web services are not meant to be public.
In this case the service consumers must know how to access them by other ways
—typically the case of the private enterprises.

3 Web services

Web services are pieces of software offering services throughout the Internet or any
other type of network. According to the World Wide Web Consortium', a Web
service s a software system designed to support inter-operable machine-to-machine

interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL [Christensen 2001]). Other systems interact with the
Web service in a manner prescribed by its description using SOAP [Gudgin 2007]
messages, typically conveyed using HTTP [Fielding 1999] with an XML [Bray 2008]
serialization in conjunction with other Web-related standards”? Let us say more
about those Web-related standards:

e WSDL. Stands for Web Service Description Language and is a format for
describing network services as a set of endpoints operating on messages con-
taining either document-oriented or procedure-oriented information.

e SOAP. Is a format for the XML-based information which can be used for
exchanging structured and typed pieces of information between peers in a
decentralized, distributed environment.

"http:/ /www.w3.org/
2http://www.w3.org/TR,/ws-gloss/

14 Chapter 2. Web Service Orchestrations

e HTTP. Stands for HyperText Transfer Protocol, and is the protocol used in
the Internet. It is an application-level protocol for distributed, collaborative,
hypermedia information systems.

e XML. Stands for eXtensible Markup Language, and is a text format that has
an increasingly important role in the exchange of a wide variety of data on the
Web and elsewhere.

e WSDL-S. Even if not explicitly mentioned in the definition of Web services,
Web Service Semantics (WSDL-S) [Akkiraju 2005] is a recent standard that
defines a mechanism to associate semantic annotations with Web services that
are described using WSDL, and it was created because the current WSDL
standard operates at the syntactic level and lacks the semantic expressiveness
needed to represent the requirements and capabilities of Web services.

Remark 1 At the time of writing this thesis, the REST [Fielding 2000] description
was gaining a lot of acceptance around the Internet. However, no specifications have
been published for creating compositions of Web services described in REST.

Register

HTTP
(Internet)

C

Web Service

’
Clie (WSDL, XSD)

Interact
(SOAP)

Figure 2.2: Web service architecture example.

Figure 2.2 depicts the typical Web service architecture. Web services are usually
invoked over the Internet, but they can be also used in any other kind of network
(LAN, VPN, etc.). The client in this case can be a Web application or another
Web service. The service broker instance is the UDDI and the client interacts with
the Web service by sending and receiving SOAP messages according to its WSDL
description file.

2.4 Web Service Compositions: Orchestrations

Web services can be combined in order to provide a new, more complex service.
As discussed in Chapter 1, in this thesis we focus on the Web service compositions
known as orchestrations. An orchestration is a Web service composition where there
is a central component guiding the whole process, called the orchestrator. In fact,
one cannot avoid thinking of an orchestration as an orchestra, the instrumental

2.4. Web Service Compositions: Orchestrations 15

user Orchestrator

Figure 2.3: Orchestration’s structure example.

ensemble, where the conductor guides all the musicians. Figure 2.3 depicts a typical
structure of an orchestration. All the Web services (W.S1 and W Ss) involved in the
orchestration communicate only with the orchestrator, which in turn is the only one
that communicates with the user. It is the orchestrator who invokes the Web services
when needed, and waits for their answers. If the Web services do not answer in time,
do not answer at all, or there is an error when interacting with a Web service, the
orchestrator can take some actions. Thus, the whole process can be reduced to the
invocation of Web services by the orchestrator, who in turn makes decisions based
on the answers it receives. The orchestrator is usually instantiated when invoked the
first time, and the instance is destroyed when it finishes executing all of its tasks.

e 2
ey

Figure 2.4: Online Travel Agency orchestration example.

Example 2.4.1 A typical example when introducing an orchestrator is the one of
the Online Travel Agency (OTA) depicted in Figure 2.: a user wants to plan his
vacation and he decides to use the online travel agency OTA. By using OTA, the
user can reserve his flight, accommodation and transport; all of this from a single,
centralized Web application. Now, technically speaking, each one of those services is
provided by three different Web services, and what the OTA offers is just the compo-
sition of those three Web services. Thus, OTA handles the different situations when,
for instance, for the dates the user wants, only the flight and hotel are available, or
when the hotel service sends the answer too late.

16 Chapter 2. Web Service Orchestrations

2.4.1 Web Services Business Process Execution Language

WS-BPEL is a language for specifying business process behaviors based on Web
services. A business process delivers a service in the context of a work organization.
Briefly, WS-BPEL defines how the interaction between Web services is coordinated
to achieve a business goal. A business process described with WS-BPEL takes ad-
vantage of the interoperability available between applications implemented using
Web standards (SOAP, WSDL, UDDI). Then, WS-BPEL serves as a standard pro-
cess integration model, allowing the interaction between different Web services in a
loosely coupled, platform independent way, and also giving a formal description of
the message exchange protocols used by the partners in the interactions; taking into
account different concepts like data-dependent behavior and recovery from excep-
tional conditions. Interactions with different partners occur through Web services
interfaces and are encapsulated in what is called partnerLinks. One can think of a
partnerLink as the the communication channel (link) used to interact with a Web
service (partner).

Example 2.4.2 Figure 2.5 depicts the simplified version of the WS-BPEL descrip-
tion of the OTA example. We can notice that there are definitions for: the part-
nerLinks, that is, the Web services with which the orchestrator will interact; the
variables that are going to be used to store and exchange data with the partners; and
the behavior of the orchestrator.

WS-BPEL, in the end, creates a new Web service, and has also an associated
WSDL file which exposes its operations, the data types and the links with the
partners with which it interacts. WS-BPEL offers basic and structured activities
in order to describe the process behavior. Among the basic activities there are the
receive, reply, and invoke ones, as well as the assign activity. Among the structured
activities there are the if activity, as well as the sequence, while, and repeatUntil
ones. Finally, WS-BPEL offers the option to handle the possible errors that may
arise when invoking the Web services. These errors may be due to the lack of
response of the Web services (by using timeouts), wrong answers from the Web
services, error message answers from the Web services, etc.

2.4.1.1 Discussion

In the WS-BPEL related literature, it is common to refer to the WS-BPEL descrip-
tion of a business process as an orchestration. However, strictly speaking, WS-BPEL
describes only the behavior of the central component, that is, the orchestrator. In
the sequel, we differentiate between the term orchestrator, to refer to description
of the business processes, and orchestration to refer to the whole system: the or-
chestrator and the Web services. Furthermore, in the sequel we no longer work
with orchestrators described in WS-BPEL, but in a symbolic formalism (IOST'S,
for Input/Output Symbolic Transition Systems), and we assume that is possible to
translate most usual Web service description languages into it (as it has been shown
for WS-BPEL in [Bentakouk 2009]).

2.4. Web Service Compositions: Orchestrations 17

<process name="OTA">

<partnerLinks>
<partnerLink name="client" />
<partnerLink name="FlightService" />
<partnerLink name="HotelService" />
<partnerLink name="CarService"/>

< /partnerLinks>

<variables>
<variable name="dates" />
<variable name="flight OK" />
<variable name="hotelOK" />
<variable name="carOK" />
<variable name="finalStatus" />

< /variables>

<sequence name="main" >
<receive name="receivelnput" partnerLink="client" variable="dates" />
<invoke name="invokeFS" partnerLink="FlightService" inputVariable="dates" />
<switch>
<case condition="getVariableData('flight OK’) = 'OK"" >
<assign>
<from expression="string("Flight: Reserved’)"/>
<to variable="finalStatus" />
< /assign>
< /case>
<otherwise>
<assign>
<from expression="string(’Flight: Not reserved’)"/>
<to variable="finalStatus" />
< /assign>
< /otherwise>
< /switch>
// The same process repeats itself for the Hotel and Car Services
<invoke partnerLink="client" inputVariable="finalStatus" />
< /sequence>

< /process>

Figure 2.5: Simplified WS-BPEL code for the OTA example.

As we describe later in this document, our objective is to provide an approach
to test orchestrators in general, which can be simply seen as a central components
guiding the process execution of other components of a system.

2.4.2 Component-based Systems with Interfaces

Orchestrations, in a more general way, can be seen as component-based systems
which have some special characteristics: there is a central component guiding the
system, every component communicates only with the central one, and the user
interacts with the system by means of the central component. WS-BPEL is the
most common way to describe orchestrations; nevertheless, these type of systems
can be described in several ways. Figure 2.6 depicts the structure of a component-
based system with an interface. In this figure there are three components interacting
with the orchestrator: Comp, Comps, and Comps.

18 Chapter 2. Web Service Orchestrations

Component-based system
Comp3
user Orchestrator
Comp,
Comp1

Figure 2.6: Component-based system with an interface.

The architecture is similar for the case of Figure 2.4, but in this case the user does
not necessarily interact with the system via the Internet, nor does the orchestrator
with the rest of the components. This communication can happen by means of
other communication channels like dedicated networks or any other physical link.
Thus, the user cannot see the interactions of the orchestrator with the rest of
the components, Comp;, Comps and Comps. From his point of view, the system
behaves exactly the same as if there were no remote components. The orchestrator,
and not the user, has to deal with the different situations where the components
do not react as required or do not react at all. It may also happen that there are
errors not in the components but in the communication channels represented in the
figure by the double-oriented arrows. In our work we, do not make a separation
between the component and the communication channel used to communicate with
the orchestrator: the orchestrator can interact with the Web service only by means of
the communication channel, that, we suppose, works correctly. For example, telling
that a Web service sends a value to the orchestrator means that the orchestrator
receives that value on its port connected to the communication channel.

2.5 Modeling Orchestrators

In this section we discuss different formalisms used to model orchestrators. For illus-
trative purposes, Figure 2.7 depicts a model of the OTA example. It represents its
behavioral description in the form of states and transitions representing the different
progressions in the system, as well as the communication with the Web services. The
model represents only the behavior of the orchestrator: the transition from state qq
to g1 represents the user sending the dates d to OTA, the transitions after that one
represent the exchange of messages between OTA and the Web services, sending
them the date d and receiving their answers a, to finally compute the answer f that
is sent back from OTA to the user (transition from ¢7 to ¢0).

There are many different formalisms that can be used to model the orchestrator

of our example, as well as any other type of system. They can be modeled by means
of:

1. Automata [Pu 2006, Wombacher 2004],

2. Finite State Machines [Lallali 2008, Chow 1978, Nakajima 2006],

2.6. Conclusion 19

Figure 2.7: Modeling orchestrators.

3. Petri Nets [Yoo 2010, Lohmann 2007, Dumas 2005, Yang 2005],
4. UML diagrams [Cambronero 2007, Li 2005],
5. Process Algebra |Camara 2006, Viroli 2004], etc.?

In our work we chose to work with Input/Output Symbolic Transition Sys-
tems (IOSTS) [Gaston 2006], for which we associate semantics in terms of In-
put/Output Labeled Transition Systems (LTS). IOSTSs have already been used for
testing purposes of Web services orchestrations and WS-BPEL. More specifically,
in [Bentakouk 2009], authors have made a detailed work on modeling most of the ac-
tivities and notions in WS-BPEL with Symbolic Transition Systems (a variation of
our IOSTSs), taking various notions of WS-BPEL into account, like events (inputs
and outputs) over partner links, time related activities, etc. Authors also provide
a detailed table showing how to translate each WS-BPEL activity into its JOSTS
equivalent representation. Thus, we can rely on the fact that IOSTSs are a good
option for working with orchestrations and WS-BPEL.

2.6 Conclusion

In this chapter we have introduced the basic concepts of Web service systems (or-
chestrations). Orchestrations have a central component called orchestrator guiding
the entire system. In an orchestration, Web services do not interact directly with
each other, but only with the orchestrator. The user interacts only with the orches-
trator. Our goal is to test orchestrators.

In the next chapter we examine techniques that are used to test orchestrations
and component-based systems.

3Surveys of various formalisms, specifically related to Web service compositions, can be found
in [Lohmann 2009, van Breugel 2006].

CHAPTER 3

Conformance Testing

Contents
3.1 Imtroductionttt 21
3.2 Conformance Testing: i0co« . v v v v v vt v v v v v o 22
3.2.1 Labeled Transition Systems 22
3.22 Unit Testing 30
3.2.3 Compositional Testing, 32
33 Related Work 39
3.3.1 Discussion 42
3.4 Conclusiont 43

3.1 Introduction

HE type of systems that we consider in this thesis is the one known as

I orchestrations. Orchestrations are composed of a central component called

orchestrator, playing the role of an interface between users and other compo-
nents called Web services. In this thesis we are interested in testing the orchestrators
of such systems. In this chapter we introduce the conformance relation that we use
to test orchestrations. The conformance relation is called ioco [Tretmans 1996b]
and is used to perform black-box testing of reactive systems. A reactive system is a
system that continuously interacts with its environment.

Conformance testing aims at determining if an implementation of a given system
is correct with respect to a specification of reference. The specification is assumed
to be given in a formal language, and the implementation under test also needs to
be represented in a formal way. Implementations are physical, real objects, that are
in principle not amenable to formal reasoning. This representation of a real object
by means of a formal, mathematical one, is called a model. We make the assumption
that the implementations under test can be modeled. This hypothesis is known as
test hypothesis [Heymer 2007, Tretmans 1996b].

ioco[Tretmans 1996b], stands for input/output conformance and refers to the
implementation relation (notion of correctness) on which the theory has been built.
The chosen formalism to model specifications and implementations is known as
labeled transition systems (LTS). LTSs are structures consisting of states with
transitions, labeled with actions, between them. In our work, however, we do not

22 Chapter 3. Conformance Testing

work directly with LT'Ss but with ITOLT'Ss, which are an specialization of LTSs
that distinguish between messages that are sent and messages that are received.
This will prove pertinent when testing orchestrations. Nevertheless, ITOLTSs can
behave as particular LT'Ss defined in [Tretmans 1996b] and [van der Bijl 2005], so
we can assume that the results provided by those works can also be directly applied
with TOLTSs.

In Section 3.2, we present the technical preliminaries of the approach, namely,
the LT'Ss and the IOLT'Ss structures and operations that we use in order to test
orchestrators. Then, we present the ioco conformance relation. We begin by intro-
ducing the case of unit testing and then we introduce the case of testing component-
based systems, since, as we discussed in the previous chapter, orchestrations can be
considered as an especial type of component-based systems, thus, we can also use
ioco to test them. In Section 3.3, we examine some of the related works. We finish
the chapter with the conclusions in Section 3.4.

3.2 Conformance Testing: ioco

In this section we present the conformance relation ioco [Tretmans 1996b], that
is the basis of our work. The terminology of ioco stands for input output confor-
mance. In Section 3.2.1, we introduce the automata known as Labeled Transition
Systerns (LTS) [Tretmans 1996b] and their specializations for the ioco theory. La-
beled transition systems are basically automata with labels over their transitions.
Those labels denote actions. LT'S are specialized to be efficient at representing Sys-
tems Under Test (SUT') and specifications, with the goal of defining a conformance
relation relying only on properties concerning traces of the SUT, that is, sequences
of emissions and receptions built by a tester interacting with the SUT. ioco is thus
dedicated to black-box testing. In Section 3.2.2, we introduce the ioco theory as
formal basis for black-box unit testing approaches. In Section 3.2.3, we present some
results ([van der Bijl 2003b]) concerning component-based systems in the frame of
the ioco theory, and we discuss the practical impact of those results in particular
regarding to our goal of testing orchestrations in context.

3.2.1 Labeled Transition Systems

LTSs are automata whose transitions are associated with labels denoting observable
actions of the system. Those actions may typically be communication messages or
observable internal actions. We use the label 7 to denote an internal action. The
states of an LT'S are abstractions of real states of the modeled system, and firing
a transition results on a state evolution associated to the occurrence of the action
labeling the transition.

3.2. Conformance Testing: ioco 23

Definition 3.2.1 (LT'S) Let L be a so-called set of labels.
A Labeled Transition System (LT'S) over L is a tuple (Q,init, Tr) where:

e () is a set of states
e init € () is the initial state

o Tr CQ XL xQ is a set of transitions

Notation 3.2.1.1 In the following, for any LTS G = (Q,init, Tr) over L, we use
the notations Qg, initg, and Trg in order to refer, respectively, to the set of states
Q, the initial state init, and the set of transitions Tr.

In the same way, for any transition tr € Trg of the form (q,a,q'), we use the
notations source(tr), target(tr) and act(tr) in order to refer, respectively, to the g,
q and a.

We represent an LTS in the standard way, that is, by means of a directed,
edge-labeled graph where nodes represent states and edges represent transitions.
Transitions are represented with an arrow — from their source state to their target
state.

lose

(L ()

token sequence

seed

Figure 3.1: LTS for the Slot Machine example.

Example 3.2.1 Let us introduce the Slot Machine example. Figure 3.1 depicts
the specification of its orchestrator by means of an LTS. The set of states is
{90, 01,92, g3}, where qo is the initial state (and depicted differently from the rest).
The set of labels is: {token, seed, sequence, win,lose}.

The functional behavior of a Slot Machine is the following: it receives a token
from the user and, according to a randomly generated sequence, gives him a prize or
not. In our example, we consider that the Slot Machine is composed of two compo-
nents: the slot machine’s interface (SM) and the Sequence Generator service (SG).
Moreover, SM is the orchestrator of the system, which means that it controls the
whole process by interacting with the user and with SG, acting and taking decisions

24 Chapter 3. Conformance Testing

based on their inputs as introduced in Section 2.4. More precisely, the orchestrator

(SM) behaves as follows:

The user enters a token into the corresponding interface of the Slot Machine,
SM. SM will then randomly generate both a seed based on the token, and the winner
sequence based on that seed. Next, it will send the seed to SG, which in turn will
randomly generate the sequence (in this case is just one number) for the user. SG
will then send the user’s sequence back to SM so the later can compare the user’s
sequence with respect to the winner sequence. Finally, it will send the final message
back to the user through the system’s interface. This message can say 'you win’, if
the user’s sequence s equal to the winner sequence, or ’you lose’ otherwise.

In the figure, messages are represented by labels. Thus, for instance, the transi-
tion qo token, q1 represents the user sending the token to the slot machine’s interface

SM, and the transition q; seed, qo represents SM sending the seed to the Sequence
Generator service SG.

Behaviors of LT'Ss are characterized from their associated traces. Traces are
possible successions of communication actions that are specified by an LTS. In
order to give the formal definition of traces, we introduce the notion of paths of
an IOLTS. A path of an LTS is a succession of transitions that can be fired
sequentially.

In the following, for any set .S, we note S* the set of words over S, which
contains the empty word €, and such that for any @ in S and m in S*, a.m is in S*
(by convention, a.c is a, and ’.” (dot) denotes the concatenation of words).

Definition 3.2.2 (Paths of G) Let L be a so-called set of labels, and
G = (Q,init,Tr) be an LTS over L.

The set of paths of G is the set Path(G) C Tr*, whose elements, together with
their associated target states, target(p), are defined as follows:

o the empty word € is in Path(G), and its target state, target(e), is initg

e for any p € Path(G), for any tr € Tr, pitr € Path(G) if and only if
target(p) = source(tr), and in this case target(p.tr) = target(tr)

Example 3.2.2 Let us consider the LTS introduced in Example 3.2.1. An example
of a path of that LTS is the sequence of transitions going from state qq to state g3
and then from q3 back to qo, that is, the sequence:

(QOa tOkena fh) '(q17 Seeda QZ)'(q25 sequence, Q3) '(q37 wina QO) .

In this example, we chose the case where the user sequence is equal to the winner
sequence.

3.2. Conformance Testing: ioco 25

llose

(2 (&)

?token ?sequence

Iseed

Figure 3.2: LTS for the Slot Machine example with input/output labels.

The trace of a path is the sequence of communication actions (inputs or outputs)
of the path. In the sequel, we introduce a distinguished symbol 7 as a particular
label denoting an internal action. That symbol is not necessarily present in sets of
labels associated to LT'Ss.

Definition 3.2.3 (Traces of G) Let L be a so-called set of labels, and G be an
LTS over L.

The set of traces of G, denoted Traces(G), is the subset of L*, defined as
{traces(p) | p € Path(G)}, where traces(p) is defined as follows:

e if p is € then traces(p) = ¢

e if p is of the form p'.tr, with act(tr) = 7, then traces(p) is traces(p)

o if p is of the form p'.tr, with act(tr) # T, then traces(p) is traces(p').act(tr)
Example 3.2.3 Let us consider the path of example 3.2.2:

(90, token, q1).(q1, seed, g2).(g2, sequence, g3).(g3, win, o).

Its trace is the sequence of actions of the transitions the path, that is, the actions
of the transitions going from state qo to q3 and from qs back to qo through the
transition with the label win:

token.seed.sequence.win.

As in [Tretmans 1996b, van der Bijl 2003b], we also use the distinction between
inputs and outputs. Outputs, identified by the symbol !, denote values sent form the
system to the environment. Inputs, identified by the symbol 7, correspond to values
sent from the environment to the system.

In [Tretmans 1996b, van der Bijl 2003b], sets of labels L are simply partitioned
into two subsets Ly and Ly, whose elements are respectively inputs and outputs.

26 Chapter 3. Conformance Testing

For the sake of readability, an element of L; (respectively of Ly) is denoted ?a
(respectively la) to signify that it denotes an input (respectively an output).

Example 3.2.4 Figure 3.2 depicts the LTS of the orchestrator (interface) of the
Slot Machine example (Ex. 3.2.1), where the set of labels is partitioned into inputs

and outputs. This partition allows us to better understand the behavior of the system:

. . . - ?token ?sequence .
SM can receiwve inputs in transitions gg — q1 and g _eauence, q3, while it can

emit outputs in transitions qp M) q2, q3 M qo, and qs 'loi> qo-

Furthermore, the user and SG constitute the environment of SM, and we can
distinguish the sense of the messages: whether they are sent from the environment
or emitted to it.

We slightly adapt the definition of inputs and outputs to also denote the com-
munication channels used to exchange messages. That information will be useful
in the sequel because we need to identify whether or not internal communications
between components of a system are observable. From a practical point of view,
such a message is observable if the communication channel it uses is instrumented
in order to allow one to observe messages transmitted on it. To reflect that fact at
the theoretical level, we need to denote channels. Therefore, an input (respectively,
output) is of the form c?v (respectively, clv) and denotes the reception (respectively,
the emission) of the value v through the channel ¢. In the sequel of this thesis, we
suppose that a set M of values is given.

Definition 3.2.4 (Communication actions) Let C be a set whose elements are
called communication channels.

The set of communication actions over C, denoted Act(C, M), is the set
I(C,M)UO(C, M) U {7}, where:

e clements of I(C, M) are of the form c?v, with ¢ € C and v € M, and are
called inputs

e clements of O(C, M) are of the form clv, with ¢ € C and v € M, and are
called outputs

We now proceed to define the abstraction-based model that we use in this thesis.
That model is name TOLT'S (for Input/Output Labeled Transition System) and is an
adaptation of the TOT'S models introduced in [Tretmans 1996b, van der Bijl 2005],
which is done in order to reflect our point of view on the messages.

Definition 3.2.5 (IOLTS) Let C be a set of communication channels.

An Input/Output Labeled Transition System (IOLT'S) over C is a labeled tran-
sition system over Act(C, M).

3.2. Conformance Testing: ioco 27

u_screen ! lose

O ()

u_start ? token sg_sequence ? sequence

sg_generate ! seed

Figure 3.3: IOLTS G for the Slot Machine example.

Notation 3.2.5.1 IOLTS are just particular LT'S's as introduced in Definition 3.2.1,
thus, the notations concerning LTS can also be adapted for IOLTS. That is, in
the following, for any IOLTS G = (Q,init, Tr) over C, we use the notations Qg,
initg and, Trg in order to refer, respectively, to the set of states Q, the initial state
init, and the set of transitions Tr.

In the same way, for any transition tr € Trg of the form (q,a,q’), we use the
notations source(tr), target(tr), and act(tr) in order to refer, respectively, to q, ¢/,
and a.

Example 3.2.5 Figure 3.3 depicts the IOLTS G of the orchestrator of the Slot
Machine example, introduced in Example 3.2.1. By using this notation, we can dis-
tinguish the set of communication channels:

{u_start, sg generate, sg sequence, u_ screen}.

Moreover, since we also partition the set of labels into inputs and outputs, we
can notice that the communication channels u_start and u_screen are used to
communicate with the user (u), and the communication channels sg _generate and
sg_sequence are used to communicate with the Sequence Generator service (SG).
If we restrict M to the set of values {token, seed, sequence, win, lose}, we can get
the following set of communication actions: {(u_ start?token), (sg_ generatelseed),
(sg_sequence?sequence), (u_ screenlwin), (u_ screenllose)}, which is precisely the
ones used by G'.

For testing reasons, it is important to identify under which situations a system
can be silent. Definition 3.2.5 of IOLT'S does not take into account these situations.
We make the classical hypothesis ([Tretmans 1996b]) that when there is a transition
from which no outputs or internal actions 7 are possible, i.e., when the system
cannot proceed autonomously without inputs from its environment, then silence
is mandatory. Moreover, it is the only circumstance under which the silence is

'n practice, for the set of communication actions, we should consider all possible combinations
of communication channels and values of M. We restrict it for the sake of readability.

28 Chapter 3. Conformance Testing

u_screen ! lose

u_start ? token sg_sequence ? sequence

sg_generate ! seed

Figure 3.4: Quiescence enrichment for the Slot Machine example, Gg.

allowed. In order to reflect this hypothesis, TOLT'S are enriched with new transitions
representing those silent situations. These transitions are qualified as quiescence
transitions.

Definition 3.2.6 (Quiescence enrichment for G) Let C be a set of communi-
cation channels and G be an IOLT'S over C.

The enrichment by quiescence of G is the LTS, denoted Gs, over the set of labels
Act(C, M) U {8} such that:

® QGg = QG
o 1nitg, = initg
o Trg, =Trg UTrs where T'rs is defined by:

for any q € Qg,, (¢,0,q9) € Trs if and only if there is no (q,act,q’) € Trg
with act is T or of the form clv

The notations concerning TOLT'Ss can also be adapted for TOLT'Ss enriched
with quiescence.

Example 3.2.6 Based on the IOLTS G of Figure 3.3, Figure 3./ depicts the qui-
escence enrichment of G according to Definition 3.2.6. Note that in states qy and
q2, there are no output nor T-transitions leaving from them, so the system has to be
quiescent: it could happen that the user does not send any token to SM or that the
sequence is not sent from SG. In such cases, SM (the orchestrator) cannot evolve by
itself since no internal actions nor outputs can be fired, and so, we make that lack
of reaction visible.

It is tmportant to note that this situation of quiescence is an accepted behavior of
the system. Figure 3.4 represents the specification of an orchestrator, then if the
implementation is quiescent in any of those states, then it would be a valid behavior.
This would not be the case if the implementation was quiescent state in, for example,
state q1.

3.2. Conformance Testing: ioco 29

c?a c!x

T

Figure 3.5: Not strongly responsive IOLT'S.

In practice, the action § denotes the expiration of a timer whose duration is
specified by an expert. Loops characterized by quiescent transitions represent suc-
cessive observations of the timer expiration without observing any outputs from the
system.

Before going any further, it is important to give one hypothesis we make re-
garding the TOLT'Ss that we use. For technical reasons, we only consider strongly
responsive IOLTSs as in [van der Bijl 2003a]. An TOLT'S is strongly responsive if
it always eventually enters in a quiescent state, i.e., if it does not have infinite 7 or
output transitions.

Definition 3.2.7 (Strongly responsive IOLTS) Let G = (Q,init,Tr) be an
IOLTS over C.

Let Live(G) be the greatest subset of Path(G) verifying that for all p € Live(G),
Itr € Tr, with act(tr) € O(C, M) U {7}, and such that p.tr € Live(G).

G 1s strongly responsive if and only if Live(G) =0

Let us consider Figure 3.5. It depicts an IOLT'S which is not strongly responsive.
The system could enter in an infinite 7 loop from ¢; that cannot be distinguishable
from a quiescent situation. Since from state g; there is always the possibility to fire
the 7 transition, the quiescent situation as introduced in Definition 3.2.6 cannot be
allowed in that state. However, from the tester point of view, the system could be
perceived as silent. That is why we consider that the IOLTSs that we work with
are strongly responsive. From hereon, even if not specified, all considered TOLT'Ss
are assumed to be strongly respounsive.

As in [Tretmans 1996b], and in order to take into account the quiescent situa-
tions, we define the notion of suspension traces of an IOLT'S, which is no more than
the set of traces of an TOLT'S enriched by quiescence. Moreover, the set of traces
defines the behavior of the IOLT'S. This behavior is also known as semantics.

30 Chapter 3. Conformance Testing

Definition 3.2.8 (Semantics of an IOLTS) Let G be an IOLTS over C.

The set of suspension traces of G, denoted STraces(G), is Traces(Gs). The
semantics of G is defined by STraces(G).

Example 3.2.7 Let us consider the IOLTS enriched by quiescence of example
3.2.6. An example for a suspension trace of Gg is the one that goes from the state qo
(taking quiescence into account) to state g3 (again taking quiescence into account)
and then back to qo:

0*.u_ start?token.sg generatelseed.d*.sg sequence?sequence.u_ screenlwin.

3.2.2 Unit Testing

ioco defines, in a formal way, a notion of correctness of an implementation of the
specification of a system, SUT (for System Under Test), with respect to the speci-
fication. Therefore, we need a mathematical representation of the SUTs and their
specifications.

Specifications are nothing more than TOLTSs. Before defining an SUT, we
introduce the technical definition of input complete IOLTS: an IOLTS is input
complete if it is completely specified for input actions, i.e., if every input in I(C, M)
is accepted by any state of the transition system.

Definition 3.2.9 (Input complete IOLTS) Let G be an (possibly enriched by
quiescence) IOLTS over C.

G is an input complete IOLTS if and only if for any q € Qg, for any
a € I(C, M), there exists tr € Trg of the form (q,a,q’)

In fact, an input complete TOLTS is a reformulation in our techmnical con-
text of the IOTS notion introduced in [Tretmans 1996b, van der Bijl 2003b]. As
in [Tretmans 1996b, van der Bijl 2003b], we make the assumption that an SUT can
be seen as an TOLT'S that we do not know, but for which we can discover associ-
ated traces by interacting with it. That is, we do not need to have the IOLT'S of
the SUT, we just assume that it could by modeled by it. As in [Tretmans 1996b,
van der Bijl 2003b], we assume that this JOLT'S is input complete to specify that
it never refuses any inputs (sent by the tester). It does not mean that the SUT
will use it (functionally). We assume such JOLT'Ss to be enriched by quiescence to
reflect possible silence of the system under test. Finally, since we are using a black-
box approach, we assume that there are no internal actions 7 in the SUT. From
the point of view of the tester, the SUT is a black-box that is characterized by the
sequence of outputs that he can observe according to the inputs that he sends. It
does not make any sense to talk about internal actions of the SUT, since, even if
the SUT performs such internal actions, they are not perceived by the tester.

3.2. Conformance Testing: ioco 31

Figure 3.6: SUT': input complete, quiescence-enriched, and without 7-transitions.

Definition 3.2.10 (SUT System Under Test) A System Under Test over C is
an input complete IOLTS enriched by quiescence, satisfying:
Vir € Trsyr,act(tr) # T

Let us consider Figure 3.6. It depicts an SUT for the signature over the set of
communication channels {c}, and under the assumption that M = {a,b}. We can
notice that: in both states, the SUT accepts all inputs (it is input complete); when
it can not evolve by itself (in state g1, because it is waiting for the input b) it goes
into a quiescent state (it is quiescence enriched); and that, since it is defined by the
interactions with the tester, it has no internal actions (7-transitions).

Let us now introduce the ioco conformance relation. The definition is based on
[Tretmans 1996b] but defined here over IOLT'Ss.

Definition 3.2.11 (ioco conformance relation) Let G be an IOLTS and SUT
be an system under test, both of them over C.

SUT ioco G if and only if Yo € STraces(G), Yo € O(C, M)U{d}
0.0 € Traces(SUT)= 0.0 € STraces(G)

Intuitively, an SUT conforms to G if and only if after any specified trace of
input/output actions sequence that have been built by interacting with the SUT,
any observation made on the SUT is specified in G.

Example 3.2.8 Figure 3.7 depicts different implementations (SUT's) for the Slot
Machine example’. Based on the IOLTS Gs of Figure 3.4, we can notice that iy
of Figure 3.7 ioco Gy, because after any specified sequence of events, the outputs
emitted by i1 are also specified. Even if the implementation chooses to handle the
possible situations where there is an error in the implementation of the Sequence
Generator service SG, it does not interfere with the fact that after any specified
sequence of events, any output in iy is also specified. iz also toco Gs. Even if
the implementation never gives a prize to the user, and even if it also takes the

2 We consider that the implementations are input complete. This is not explicitly shown in the
figure for the sake of readability

32 Chapter 3. Conformance Testing

'
u_screen ! error sg_error ? err

sg_error ? err

sg_generate ! seed

u_start ? token sg_generate ! seed

sg_error ? err

u_screen ! error

u_start ? token sg_generate ! seed

(C) i3

Figure 3.7: ioco examples.

possible case of error into account but does nothing, every output of iy after any
specified trace is also specified. Finally, i3 does not ioco (4eee) Gs, because after
the specified sequence u_ screen?l.sg generatel6.sg sequence?4, the non-specified
u_ screenlerror can be observed.

Finally, ioco has been used as the basis of different approaches. Among them
we can mention taking time into account ([Schmaltz 2008]), environmental con-
formance ([Frantzen 2007]), and adapting it to the context of symbolic models
([Jeannet 2005]). ioco has also been applied to test Web services ([Frantzen 2009,
Frantzen 2006a]). Some of these woks are discussed in Section 3.3, but mentioned
here in order to accentuate the wide acceptance of the ioco theory. Besides, several
tools have also implemented an ioco-based test generation algorithm, among which
there are TGV [Jard 2005], TestGen [He 1999] and TorX [Tretmans 2003].

3.2.3 Compositional Testing

The previous definition of ioco (Definition 3.2.11) is mainly targeted to perform
conformance testing of stand-alone systems. In this section we present the results
of the works provided by [van der Bijl 2003b]. for ioco applied to component-based
systems. Component-based systems are systems which are in turn composed of more

3.2. Conformance Testing: ioco 33

systems, called components. Together, components constitute a new more complex
system offering new functionalities. The integration of components can be mod-
eled mathematically by synchronizing their actions and internalizing their common
actions. This synchronization and internalization may be typically defined as two
separate operations: a product, which represents the system resulting of communi-
cations between components, and the hiding operation, which restricts observability
of internal actions.

Definition 3.2.12 (Product between two IOLTSs) Let G and H be two
IOLTS respectively over Cy and Cy. The synchronous product of G and H, de-
noted G @ H, is an IOLTS (Q,init, Tr) over C; U Cs such that:

* @=Qc X Qu
e init = (initg, inity)
o T'r is defined as follows:

— If (q1,cv,q}) € Trg and (g2, c?v, ¢) € Try, such that c € C1 N Ca, then
((q1,92), clv, (@1, 43)) € Tr

— If (q1,¢?v,q}) € Trg and (g2, cv, qh) € Try, such that c € C1 N Cy, then
((q1,92),clv, (q1,45)) € T

— For any (q1,a,q)) € Trg where a is T or is of the form c?v or clv with
¢ ¢ Cy N Cy, then, for any ¢2 € Qu, ((q1,92),a, (¢},q2)) € T'r

— For any (q1,a,q)) € Try where a is T or is of the form c?v or clv with
c ¢ C1 N Cy, then for any g2 € Qg, ((q1,42),a,(d),q2)) € Tr

As shown in Definition 3.2.12, the transitions of the resulting JOLT'S are defined
according to the following intuitions:

e When a component emits through a channel, and when the other component
is ready to receive, the communication occurs and is considered as an emission
at the system level.

e Actions that do not correspond to communications between components exe-
cute asynchronously.

Example 3.2.9 Figure 3.8(a) depicts two IOLTS G and F. G represents the spec-
ification of the slot machine’s interface, whereas F represents the specification of
the Sequence Generator service. The IOLTS of Figure 3.8(b) depicts the resulting
IOLTS, GQF, after applying Definition 3.2.12:

1. Transition (qo,u_ start?token,q1) of G does not synchronize with F.

2. Transition (q1,sg_generatelseed, q2) of G synchronizes with the transition of F
(¢0, sg_ generate?seed, ¢}).

34 Chapter 3. Conformance Testing

sg_sequence ? sequence @

sg_generate ? seed sg_sequence ! sequence

sg_generate ! seed T

u_screen ! lose

u_start ? token

(a) Two IOLTS: G and F.

sg_sequence ? sequence

u_screen ! lose

u_start ? token

sg_generate ! seed

(b) GRF

Figure 3.8: Product example.

3. The internal action T of F in transition (¢}, 7,q5) does not synchronize with G.

4. Transition (g2, sg_ sequence?sequence, q3) of G synchronizes with the transition
of F (g4, sg_ sequence!sequence, q)).

5. Finally, transitions (q3,u_screenllose, qy) and (g3,u_screenlwin,qp) of G do
not synchronize with F.

It may happen that even if both JOLT'S are strongly responsive, the resulting
IOLTS is not. Consider Figure 3.9: the two IOLT Ss depicted in Figure 3.9(a) are
strongly responsive, whereas their product, depicted in Figure 3.9(b), is not. Thus,
we consider only IOLT'Ss for which the synchronous product is strongly responsive.

The hiding operation consists in internalizing certain communication actions by
transforming them into the action 7.

3.2. Conformance Testing: ioco 35

]
cvac?a c?a cla cla

(a) Two strongly responsive JOLT'S. (b) Resulting not strongly
responsive IOLT'S

Figure 3.9: Product according to Definition 3.2.12.

Definition 3.2.13 (Hiding operation over an IOLTS) Let G = (Q,init,Tr)
be an IOLTS over C, and let C C C.

Hide(C,G) is the IOLTS over C'\ C defined as follows:
® Qnidec,c) = QG
® Nityige(c,c) = initg
® T'rhide(c,c) s defined as follows:
— for any transition (q,a,q') € Trg with a of the form cAv, with A € {?,1}
and c € C; (Qa T, q/) € TTHide(C,G)
— for any transition (q,a,q') € Trg with a of the form cAv, with /A € {?,!}

and c ¢ C; ora=r, (qa a, q/) € TTHide(C,G)

Example 3.2.10 Figure 3.10 depicts the hiding operation applied to the IOLTS
GQ®F of Figure 3.8. In this ezample, C = {sg generate,sg sequence}, thus,
communication actions going through those channels are perceived as internal actions
(T-transitions).

u_screen ! lose

u_start ? token

Figure 3.10: Hiding operation of Figure 3.8(b) according to Definition 3.2.13.

36 Chapter 3. Conformance Testing

The extension of the ioco testing framework to component based systems in-
tends basically to address the state explosion problem induced by the product of
the specifications of components (IOLT'Ss). Briefly, in [van der Bijl 2003b], the
authors address the following question: if single components of a system conform to
their specifications, what can be said concerning conformance of the whole system
according to its specification? The answer is that the composed system conforms to
its specification with the hypothesis that the product and hiding operation are well
implemented and that specifications of the components are input complete. This
results in two theorems:

The first one states that, if the specifications of the components are modeled
by input complete IOLT'Ss, and if the implementations of the components conform
to their specifications, then the synchronous product of the implementations also
conforms to the synchronous product of the specifications.

Theorem 3.2.1 Let S; (respectively So) be an IOLT'S over Cy (respectively Cs),
and Iy (respectively 1) be an SUT over Cy (respectively Cs).

Then,

I i0co S1 A Iy ioco So = I} QI ioco S; Q) S»

The second theorem shows that, if the specification of a system is modeled by
an input complete IOLT'S, then, if an implementation conforms to its specification,
the result is preserved trough the hiding operation.

Theorem 3.2.2 Let S be an input complete IOLTS defined over C, let 1 be an
SUT over C, and let C C C.

Then,

I ioco S = Hide(C,I) ioco Hide(C,S)

However, from the previous theorems, authors of [van der Bijl 2003a] show that
if the input complete hypothesis is omitted, the results of Theorems 3.2.1 and 3.2.2
do not hold anymore.

Underspecification can be present in the specification as underspecified inputs
or outputs. The underspecification of outputs is always explicit. For any state all
possible outputs are specified. The underspecification of inputs is implicit. It is
not mandatory to consider all possible inputs at a given state (and if any input
is not considered, the resulting TOLT'S is not input complete). The idea behind
the underspecification of inputs is that the specification does not characterizes how
the implementation deals with those inputs: after an underspecified input in the
implementation, anything can happen. More specifically, after any state reached
after an unspecified input, every action from the label set is correct. This situation
is called a chaotic behavior [van der Bijl 2003a).

3.2. Conformance Testing: ioco 37

c?x clx clx
clx
s s, s ®s,

1
c?x
‘ C!X

i i i ® i

clx clx

clx

Figure 3.11: Underspecification situation for the product.

To help explaining the problems that arise due to the underspecification of inputs
when working with component-based systems, let us consider Figure 3.11. The three
upper images depict specifications of two given components, s; and so, and their
product, s; &) s2. The three lower images depict two possible implementations iy and
iy of, respectively, s1 and sa, and their product i; Q) ia. For the sake of readability,
quiescence enrichment (specifications and implementations) and input completeness
(implementations) are not depicted in the figure. We can notice that, according to
Definition 3.2.11, i; ioco s; and iz ioco s3. However, we can notice that i &) iz
jeee s1 Q) sq, since there exists an output clz in i; @ iz after clz, while there is no
output after clz in s1) ss.

A consequence of the definition for the product is that underspecification of
inputs of some components may induce underspecification of internal communica-
tions at the system level. Since those internal actions are denoted as outputs, an
occurrence of such a communication at the implementation level breaks ioco. Con-
sidering again Figure 3.11, even though sy can output a second z, it cannot do so
in 51 @) s2, because s1 cannot input the second z. s1 is underspecified for ¢?x in ¢j:
even though the implementation i; is allowed to accept a second c?z as input, the
correct behavior after the second z is not specified.

Now, concerning the hiding operation, let us consider the Figure 3.12. The
left side image depicts the specification of a given system, s, and a possible im-

38 Chapter 3. Conformance Testing

Figure 3.12: Underspecification and hide operation example.

plementation, i, both with the input set {¢1?7a} and output set {ci!z,cily, calz}.
For the sake of readability, quiescence enrichment (specifications and implemen-
tations) and input completeness (implementations) are not depicted in the figure.
We can notice that i ioco s. The right side image depicts the result of hiding
¢y in both s and i: we get Hide({c2},s) and Hide({c2},i). We can notice that
Hide({c2},1) ieee Hide({cy},s), because the implementation Hide({c2},i) may
emit ¢!y after ¢1?a, while in Hide({cz2},s) this action is forbidden.

Analysis shows that s is underspecified for ¢;7a in g9 (i.e., after co!2) because it
says nothing about how an implementation should behave after the trace c3!z.c17a.
The proposed implementation has an unspecified output ¢;ly after ca!z.c1?a (which
does not break ioco). However, if ¢ca becomes unobservable due to hiding, then traces
c2!z.c17a and ¢17a collapse and become indistinguishable. In this case, Hide({cz2},s)
specifies that after ¢;?a, only § is allowed; however, Hide({cz2},1) still has the un-
specified output ¢1ly. Thus, hiding creates confusion about what part of the system
is underspecified.

The discussion above explains why implementations and specifications are sup-
posed to be input complete in Theorems 3.2.1 and 3.2.2.

In order to relax the input complete hypothesis, authors in [van der Bijl 2003a]
propose to adapt the conformance relation ioco. This results on the conformance re-
lation uioco: the idea is to restrict the set of traces over which we reason when test-
ing the conformance of the implementations. This set of traces is denoted UT'races
and is the same as STraces but without the underspecified traces.

3.3. Related Work 39

Definition 3.2.14 (Specified traces of G) Let G be an IOLT'S over C.

The set of specified traces of G, denoted UTraces(G), is the set of all
o € STraces(G) such that there do not exist two paths p and p1 of G5 such
that:

e o can be decomposed in o1.a.09 with a € I(C, M)
e o is the trace of p
e 01 is the trace of p1

o for any tr € Trg; with source(tr) = target(p1), o1.a is not the trace of pi.tr
Then, uioco is simply ioco restricted to UTraces.

Definition 3.2.15 (uioco conformance relation) Let G be an IOLTS and
SUT be an system under test, both of them over C'.

SUT wuioco G if and only if Vo € UTraces(G), Yo € O(C, M)U{d}
0.0 € Traces(SUT)= 0.0 € STraces(G)

By using only the specified traces of the JOLT Ss, authors in [van der Bijl 2003a]
relax the input complete hypothesis of Theorem 3.2.3.

Theorem 3.2.3 Let Sy (respectively Sa) be an IOLT'S over Cy (respectively Cs),
and 1y (respectively 1) be an SUT over Cy (respectively Cs).

Then,
I} uioco S; A Iy uioco So = 1) Q Iy uioco S; Q Iy

By using Theorem 3.2.3, we see that in order to assert that a component-based
system behaves correctly (under the hypothesis that the communication between the
components is correctly modeled by the synchronous product), it is only necessary to
test each component with respect to its specification: in our context, the orchestrator
and each Web services, which can be naturally considered as components of a system
(orchestration). Note that the result is no useful to conclude something on the whole
system if an error is discovered during the unit testing phase of I; or I5.

3.3 Related Work

The component-based systems testing framework proposed in [van der Bijl 2003b] is
technically close to our approach and was carefully examined throughout the chap-
ter. In this section, we present a brief overview of contributions which are technically
less close to our proposal than [van der Bijl 2003b], but which focus on various as-
pects of Web service systems testing, as well as component-based ones. Finally, we

40 Chapter 3. Conformance Testing

discuss the differences between problematics addressed by those contributions and
those addressed by our approach.

Among the works concerning testing of Web service orchestrations, we can men-
tion [Cao 2010, Lallali 2008, Li 2005, Mayer 2006, Yuan 2006, Cao 2009]. They use
different notations and focus on different aspects of the orchestrations (like taking
time into account), but what is important to us is that they all simulate Web services
supposed to interact with the orchestration. In order to simulate the Web services, it
is necessary to have their specification, or at least some behavioral description. Be-
sides that, and strictly speaking, simulating all the Web services interacting with the
orchestrator corresponds to performing some kind of unit testing on the orchestra-
tor. For instance, in [Cao 2010], authors perform conformance testing for WS-BPEL
orchestrators (taking time into account) by performing an online testing approach.
The specification of the orchestrator is modeled by means of a Timed-Extended
FSM and from which test purposes can be extracted. They define a conformance
relation reasoning over the traces of the system under test and of its specification,
and developed a prototype tool in order to perform an online testing algorithm on
the orchestrators.

Another similar work for testing orchestrators (and more similar to our approach)
is the one proposed in [Bentakouk 2009] (which is examined also in Section 6.1): au-
thors test the orchestrator in context, with the assumption that the tester does not
have access to the Web services interacting with the orchestrator. In our case this
corresponds to the case where the Web services are hidden. Authors provide a
complete translation from WS-BPEL to Symbolic Transition Systems (which are
introduced in Chapter 6), that are used to model the specification of the orchestra-
tor (given in WS-BPEL). Moreover, this same translation is the one we adopt in our
approach when testing instances of orchestrators (this work is presented in Chap-
ter 9). By using symbolic techniques, authors define an online testing algorithm
(also implemented in a tool) to perform functional testing of the orchestrators.

Regarding component-based systems (and besides the works already examined
of [van der Bijl 2003b, van der Bijl 2003a]), in [Braspenning 2006], authors propose
an approach to perform model-based integration testing. The idea is to use models
of the components in order to test if they work together correctly. They take into
account the specification of the components in order to generate such models (by
means of process algebra) and they assume that those specifications are available.
Thus, the entire system is modeled by means of parallel compositions of all the
models of the components and it is submitted to validation and verification with
model checking tools. When a component is implemented, authors propose a model-
based testing approach in order to check if the implementation of the component
conforms to the model used in the model-based integration testing step. By doing
so, the implemented component will interact correctly with the entire system. Thus,
with their approach, authors help at reducing the time when performing integration
testing of components, which is usually done until all the implementations of the
components in the system are available. By performing integration testing before

3.3. Related Work 41

finishing the implementation of the component, less time is waisted fixing the errors.
This work is similar to ours for the case when all the Web services are controlled by
the tester.

Another similar approach is the one proposed in [Faivre 2007], where authors
work with Input/Output Symbolic Transition Systems and define the correctness of
a component-based system by means of testing each individual component of the
system using the ioco conformance relation. In order to do that, authors assume
that the specification of every component in the system is available. Then, authors
propose to derive test purposes a given component of the system from the behaviors
of the components that encapsulate them.

The works presented before are similar to ours for the case of testing orchestrators
in context. Now we take a look at works that are similar to the one we present in
Chapter 5, where we give an approach to test if a given Web service behaves as
expected from the orchestrator. This is done by extracting the behaviors of the
Web service (or component) to test from the specification of the orchestrator (or
another component(s)) of the system.

In [Frantzen 2007], authors introduce the eco conformance relation to test the
environmental conformance of components. Authors assume that there are two types
of specifications for the components: the interface and the behavioral ones, and that
the interface’s specification of a component can be divided in two: the one of the
services it offers and the one of the services it invokes. In their approach, authors
propose to test components only with the knowledge of the interfaces specifications
to determine if a component interacts correctly with its environment. Moreover,
the specification of the services that a component invokes is obtained from the en-
vironment’s specification. For testing the component according to the services it
provides (usually this information is provided in the interface specification of the
component), authors propose to use uioco. Then, eco aims at testing if a compo-
nent behaves as expected from the environment via the specification of the services
that the environment invokes from the component under test. Thus, they inverse
the inputs and outputs of the interface’s specification of the environment, which is
given by means of an LT'S. In this way, they test the conformance of the implemen-
tation of a component with respect to what the environment expects from it, i.e.,
if the outputs that the component produces can be accepted by the environment,
and if the outputs produced by the environment can be accepted by the component.
Authors also assume that the implementation of the component under test can be
modeled as an input complete IOLT'S (that they call IOTS). Then, test cases are
generated from the environment in order to check if after any trace in UTraces of
the environment’s LTS, whether all outputs produced by the implementation of the
component (its IOTS) are included in the set of inputs of the environment. Besides,
since the component under test is tested according to the environment, in eco there
is no notion of quiescence situations, since the implementation of a component is
not forced to request a service just because the environment is ready to accept such
a request. Thus, in their approach, quiescence is not an observation.

42 Chapter 3. Conformance Testing

In [Bertolino 2008], authors give an approach to test Web services supposed to
interact with other Web services (not exactly in the scope of a Web service orches-
tration). In order to test them, authors simulate the rest of Web services taking into
account their specifications, functional and extra-functional, which they suppose are
available. Then, they use Symbolic Transition Systems to model the interfaces of
services (functional specifications) to be simulated, and use the eco environmental
conformance to ensure the generation of functionally correct responses and requests
from the simulated Web services.

Another similar approach, in the sense that it is the Web services that are
tested, is the one proposed in [Sinha 2006], where authors deal with the lack of
knowledge of the behavior of the Web services by including in the test activity the
WSDL-S standard, which gives more information about the behavior of the Web
service. Then, they use Extended FSM in order to model the specifications of the
Web services and to generate test cases which can be used to test the functional
conformance of the Web services. This work can be complementary to our approach
introduced in Chapter 5.

In [Bravetti 2007], authors test the conformance of services with respect to Web
service choreographies by using what they call services contracts as specifications
for the Web services. Authors check whether the Web services behave correctly
according to the specification of the choreography. In order to do that, they use both
the interface specification of the Web services (WSDL) and what is known as their
service contracts, which can roughly be seen as a more complete specification than
the WSDL of the Web services. Then, they perform the projection techniques (which
are used also in our approach in Chapter 5) and, together with the information of
the service contracts, they give an approach (using process calculus) to check if Web
services conform with respect to what is expected from them by the choreography.

Finally, in [Bertolino 2009] authors present the PLASTIC validation framework,
which is rather a combination of existing methods in order to test Web services
(strictly speaking, the proposed methodology could be applied to any instantiation
of the SOA, but it focuses on the Web services technology). This framework (which
include some other tools) allow them to perform offline testing (testing Web services
in a laboratory) by relying on the ioco and eco conformance relations, and assuming
that behavioral specifications (augmented WDSL ones) are available for the Web
services. They can also perform online testing (testing Web while being used) while
simulating the needed services in such a way that they yield the correct functional
and extra-functional behavior with respect to a given specification.

3.3.1 Discussion

In the first part of the works listed in previous section, we analyzed the ones which
are close to our approach for testing orchestrators. However, most of them address
the problem in a different way, especially by assuming that the specification of
all the components or Web services in the system is given, and that they can be
simulated. However, we test orchestrators by taking into account the fact that they

3.4. Conclusion 43

may potentially be plugged to contexts comnsisting of a collection of remote Web
services while being tested, and that we have less information of the system: as
detailed in next chapter, we only take into account the WSDL of the Web services
and the specification of the orchestrator. With respect to [Bentakouk 2009], the
main difference regarding our approach is is that we use IOLT'S for the theoretical
part of our approach and we do not focus on WS-BPEL; besides, our approach
can be more parametrized: the communication channels with the Web services can
not only be hidden, they can be observable or controllable. Finally, we also elicit
behaviors in order to test Web services.

Regarding the elicitation of behaviors in order to test Web services, in the second
part of the presented works we examined some of the related works which share the
notion of testing components or Web services from the knowledge of the specification
of the system. This specification reflects the usage of a given component in the
system and so it can be used to test the given component. The closest work to our
approach is [Frantzen 2009], since in our case the environment could be seen as the
orchestrator. However, we use symbolic techniques (presented in Part IT), and we
have the notion of test purposes (key behaviors that are tested on the SUT) that
they do not. [Bravetti 2007] is also very close to our approach. The main difference
with them is that we use symbolic techniques and that the systems we consider
are not choreographies but orchestrations. Regarding the rest of works, the main
difference is that we assume to have less information about the Web services, and
that the type of systems that they work with are not the same as ours (orchestrators).

3.4 Conclusion

In this chapter we have presented the conformance relation ioco, that is the one that
we use as the basis in the rest of this thesis. We started by introducing the LT'Ss
automata, and then the IOLT'Ss, which are the adaptation of LT'Ss that we use, and
that include the notions of inputs and outputs messages, as well as communication
channels. We have also presented some operations and notions defined over the
IOLT Ss that are going to be used in the next chapters in order to test orchestrators
in context, and to elicit behaviors for the Web services from the orchestrator’s
specification.

We have started by introducing ioco for testing stand-alone systems, and then
we have also shown that, if we take into account several components (and therefore
the synchronous product and hiding operations when modeling the specification of
the entire system), some situations may arise. Therefore, we introduce the uioco
conformance relation, which differs form ioco by the fact that the former one only
takes the specified traces when reasoning about the conformance of implementa-
tions of component-based systems with respect to their specifications. Thus, we
have shown that in a component-based system, it suffices only to test the com-
ponents with respect to their specifications to be sure that the component-based
system will behave correctly. In our case, it would mean to test the orchestrator

44 Chapter 3. Conformance Testing

and the Web services with respect to their specifications to be sure that the orches-
tration will behave correctly. However, the previous results can be obtained only
if the specifications are input complete, and under the assumptions that both the
components and the composed system are correctly implemented.

Finally, we have presented some related works, showing that, with the exception
of [Bentakouk 2009], and for the best of our knowledge, there are no works that
have been done to test orchestrators while being used. Moreover, in our approach
we only take into account the specification of the orchestrator. We take into account
only the partial specification of the Web services (WSDL) and choose to ignore their
behavioral specification. This reduces largely the explosion problem and allows us
not to make the same assumptions about the specifications and the implementation
of the components and their composition. Since the orchestrator is the one in charge
of guiding the whole process, it is also possible, under certain hypothesis, to give
some results about the correctness of the orchestrator being tested while interacting
with the Web services.

Regarding our work done to test if Web services are compatible with the or-
chestrator, more similar works have been done, specially the ones of [Frantzen 2009]
and [Bravetti 2007], but none of them deal with orchestrations by using the symbolic
techniques that we use. Besides, we assume that we only have the specification of
the orchestrator and the interface description of the Web services.

In the next chapters we show our approach for testing orchestrators in context
and eliciting behaviors for the Web services from orchestrator’s specifications.

CHAPTER 4
Testing in Context for
Orchestrators

Contents
4.1 Introduction, 45
4.2 Informal Presentation of our Approach 46
4.3 Orchestrators and Their Specifications in Context 49
4.3.1 Orchestrators in Context 49
4.3.2 Specifications for Orchestrators in Context 54
4.4 Adaptation of ioco for Testing Orchestrators in Context . . 60

4.4.1 Adaptation of ioco and uioco to ITOLT'Ss with Internal Actions 61
4.4.2 Conformance Testing of Orchestrators with no Hidden Channels 62
4.4.3 Conformance Testing of Orchestrators with Hidden Channels 68
4.5 Conclusionttt e 71

4.1 Introduction

N this chapter we present an approach to test orchestrators in context. That

is, orchestrators potentially interacting with some Web services. We consider

that we only know the specification of the orchestrator and not the behavioral
specifications of the Web services (we only have the information of their interface
via their associated WSDL).

The situation of the Web services supposed to be present in the orchestration can
range between two extremes according to the testing architecture: (a) The orches-
trator does not communicate with any remote Web services. The tester simulates all
the Web services behaviors; (b) All the Web services are remotely connected to the
orchestrator, the tester does not control any of the Web services. Thus, the orches-
trator is tested by interacting with the whole orchestration. In Case (a), the tester
has full control of the orchestrator, which eases the testing process. In Case (b), the
testing process discovers errors on a system composed of the orchestrator and the
Web services. That is, the errors can be due to the interactions between the orches-
trator and the Web services. Messages exchanged between the orchestrator and the
Web services are not controllable, which makes the testing process more complex
than in Case (a). Between those two extremes, there can be the case where the

46 Chapter 4. Testing in Context for Orchestrators

Rem

~— N

ws,

user Orch

ws,

Figure 4.1: Orchestration example.

tester simulates only some Web services while making use of the implementations
of the rest. Moreover, Case (b) can be subdivided into two sub-cases by considering
observability issues concerning messages exchanged between the orchestrator and
the Web services. Case (b.1): in the testing architecture, some of these messages
can be observable, which means that the orchestration is instrumented in order to
allow the tester to observe those messages. We suppose that such an instrumen-
tation is realized on the computer where the orchestrator is deployed. Case (b.2):
some other messages may be unobservable (we say hidden). That situation may
result from technical limitations concerning accessibility to media used to connect
the Web services and the orchestrator.

By taking the above presented facts into account, the system with which the
tester interacts is no longer a stand-alone one, but can be seen as composed of two
parts: the local one, composed of the orchestrator and the simulated Web services;
and the remote one, composed of the remote implementation of the Web services.
This particularity that the system with which the tester interacts is not the system
to be tested, together with the fact that we only have a specification of the system
to be tested (i.e., the orchestrator), leads us to slightly adapt the ioco theory for our
purpose. We define new conformance relations to study correctness of orchestrators
in context and give theorems to relate our testing in context approach to usual unit
testing in the ioco framework. The theorems basically state that, under certain
hypothesis, if there is an error in the orchestrator in context, then the error is in
the orchestrator itself.

We begin this chapter by introducing an informal presentation of our approach
in Section 4.2. Then, in Section 4.3, we show how to adapt the IOLT'S framework in
order to model the SUT's in context, as well as how to obtain partial specifications for
orchestrators in context. In Section 4.4, we define two basic conformance relations
in context, which are an adaptation of ioco and uioco, and, based on them, we
give the two theorems mentioned above. We conclude the chapter in Section 4.5.

4.2 Informal Presentation of our Approach

In this section we give an informal description of our approach. We introduce some
notions that are formally defined in the next sections.

We begin by describing some characteristics of the type of systems that we are
interested in testing. Figure 4.1 depicts an orchestration. Orch represents the or-

4.2. Informal Presentation of our Approach 47

chestrator and W.S1 and W S5 represent two Web services with which Orch interacts.
The user of the system interacts with the orchestration which is composed of the
orchestrator and the Web services. Moreover, he interacts with the system only by
means of the orchestrator, so it can be seen as the interface of the system. From the
point of view of Orch, WS1 and W.S2 behave as a single remote system (that we call
Rem) and with which Orch interacts through two different communication channels
represented by the two arrows in the figure. For the user, the interaction between
Orch and the Web services is not visible. Thus, we say that the user interacts with
Orch in the context of Rem (Orch[Rem]).

In our approach, like we did in Section 2.5, we suppose that Orch and Rem can
be modeled by means of IOLT'Ss. Thus, Orch in context of Rem can intuitively be
seen as a restriction of all the possible behaviors of Orch due to the interaction with
Rem. We can characterize this restriction by means of an product between Orch
and Rem (see Definitions 4.3.1 and 4.3.3), which results in an LTS, Orch[Rem],
on which the messages sent by Rem to Orch have a special characteristic: they are
inputs from the point of view of Orch but they are not controlled by the user. We
call those inputs observations.

Remis WS, + WS,

Rem is empty E
ws, 1 : I ws,
I e = e [I orn
| 3 |
ws, H
(a) controllable. (b) hidden.
Rem is WS ,
i Remis WS , ws, ;
ws, ; E I o ||t
I Orch |- @ - i) I WS,
']
(c) observable. (d) controllable and hidden.

Figure 4.2: Communication channel status.

It is important to note that we do not propose an approach to test the system
Orch[Rem], but one to test Orch, where Orch is interacting with Rem. Let us
discuss more deeply about the nature of Rem. As we mentioned in the Introduction,
our approach takes into account different situations for the Web services. Figure 4.2
depicts these different situations. The first case (Figure 4.2(a)) corresponds to the
situation where the tester simulates the Web services. In fact, this architecture is
the usual for unit testing of Orch. If a given Web service is simulated by the tester,
we say that the communication channels initially used by Orch to interact with
that Web service are controllable. In this case, Rem is empty, and corresponds

48 Chapter 4. Testing in Context for Orchestrators

to an TOLTS with no transitions. The second case (Figure 4.2(b)) corresponds to
the situation where the Web services are present and no instrumentation allows the
tester to observe their interactions with Orch. Channels used for those interactions
are said to be hidden. Rem consists of WS] and W S,. In Figure 4.2(c), WS is
simulated and WSy is not. The channel initially plugged to WS; is accessible by
the tester, an the one effectively plugged to W.Ss is said to be observable, since it
can be accessed by the tester. Rem consists of W.S. Finally, Figure 4.2(d) depicts
the same situation than in Figure 4.2(c), except that the channel connected to W .S
is hidden. Again, Rem is restricted to W Ss.

The previous classification allows us to partition the set of communication chan-
nels C used by Orch into three sub-sets C., Cy and C,, for the set of channels
controllable, hidden and observable, respectively. Since the hidden channels (the
set C}) are not observable by the tester, this last one does not, strictly speaking,
interact with Orch in the context of Rem, Orch[Rem], but with Orch[Rem] where
the messages sent through the channels in C} are not observable. The tester can
observe the messages sent through channels in C,, and the tester can, of course,
always observe the messages sent though C.. If we take all this information and
restrictions into account, we get a system with which the tester interacts, that is
no longer Orch[Rem] but rather the one that we note Obs(Orch[Rem],C,), which
corresponds to Orch[Rem| where only messages emitted through C, are observable
(as far as we only deal with messages exchanged with Web services, since messages
emitted through C. are also observable). Thus, our objective is to give an algorithm
that allows us to test Obs(Orch[Rem],C,) in such a way that the detection of an
error induces the non-conformance of Orch with respect to its specification. That
is, we test Orch not in isolation but by interacting with Orch in the context of Rem
and taking into account the observability restrictions.

In order to achieve our objective, we need one more element: the specification of
Obs(Orch[Rem], C,). As said before, we only use the specification of Orch, which
we assume is always available. This specification is an TOLT'S that we note Qrch
in the sequel. From this specification, we build the one of Obs(Orch|[Rem],C,)
that we call partial specification of Orch in the context of Rem, and that we note
Obs(Qrch). We achieve this in three steps:

I. We identify under which situations the system Orch[Rem] can be quiescent.
However, since we are considering a system composed of Orch and Rem, we
have to identify the situations where Orch[Rem| can be quiescent due to qui-
escence of Orch: this corresponds to the case introduced in Definition 3.2.6;
and those where Orch[Rem| can be quiescent due to quiescence of Rem.

II. We transform the inputs of Orch sent by Rem into observations. This simple
transformation takes the inputs of Orch of the form ¢?¢, where c is a commu-

nication channel used by Rem, and transforms it by ¢!t.

III. We hide the communications through the hidden channels in Cp,.

4.3. Orchestrators and Their Specifications in Context 49

By now, we have all the elements that we need in order to adapt the ioco confor-
mance relation for testing orchestrators in context: the SUT, which in this case is
Obs(Orch|Rem], C,), and its partial specification, Obs(Qrch). With these elements
we define a theorem which highlights that, under the hypothesis that the transition
systems are strongly responsive, then, if there is an error in Obs(Orch[Rem],C,),
it reveals an error in Orch itself. Since introducing the hiding operation can make
unobservable some underspecified inputs on hidden channels, we make two versions
of the theorem: one for the cases where all the communication channels are either
controllable or observable, and another one that takes into account the hidden case.

4.3 Orchestrators and Their Specifications in Context

In this section we introduce the formal definition of the operations introduced in the
previous section. First we show how to model Orch[Rem] by taking into account
the observability restrictions in order to obtain Obs(Orch[Rem],C,), and then we
show how to get its partial specification.

4.3.1 Orchestrators in Context

To reflect the point of view of the orchestrator, we slightly extend the TOLT'S frame-
work into so-called IOLTS with internal actions. The main idea is to distinguish
the various actions of the orchestrator as they relate to the system’s user or Web
services. So, actions are composed of: inputs of the form c?v, denoting local requests
from the user; outputs of the form clv, denoting results sent locally to its user or to
the remote part; the 7 unobservable action; internal actions of the form ¢lv (where
¢ is a channel used by Orch to communicate with Web services) corresponding to
values sent by Rem to Orch, and called, as discussed in Section 4.2, observations;
and quiescence actions, used to characterize the quiescence of an orchestrator in-
duced by the lack of communication with Web services. Such an action of the form
dlei, ..., cn], where ¢q,. .., ¢, are channels used to communicate with Web services,
denotes the quiescence of an orchestration induced by a lack of reactiveness of Web
services using some channels in {c1,...,c,} to communicate with the orchestrator.

Definition 4.3.1 (IOLTS with internal actions) Let C be a set of communi-
cation channels and C. C C be a set of so-called internal channels.

An IOLTS over C with internal actions over C, is a LTS G over
Act(C, M) U Int(Cy, M) UA(C,) where:

e Int(Cy, M) contains internal actions of the form ¢lv with ¢ € C, and v € M

e A(C,) contains silent actions é[w] where w € C,.*

Notation 4.3.1.1 In the following, the set of communication channels over which
internal actions are defined is not relevant, we simply use the terminology IOLTS
with internal actions.

50 Chapter 4. Testing in Context for Orchestrators

The notations concerning IOLTS's can also be adapted for IOLTS's with internal
actions.

In the following, for any IOLTS with internal actions over the set of labels
Act(C, M) U Int(C,, M) U A(C,), we use the notations Intg and Ag to refer, re-
spectively, to Int(Cy, M) and A(C,).

In the following, the silent action d]] is denoted & for the sake of simplicity, and
has the usual meaning of quiescence.

In the sequel we need to extend the hiding operation, introduced in Defini-
tion 3.2.13 in Section 3.2, for the case of ITOLTSs with internal actions, since the
set of communication actions is no longer the same. Moreover, this hiding operation
will be used when defining the conformance relation in order to test orchestrators
where there are hidden communication channels.

Definition 4.3.2 (Hiding operation for IOLTSs with internal actions) Let
C be a set of communication channels, let C, C C be a set of so-called internal
channels, let G be an IOLTS over C' with internal actions over Cy., and let C C C,..

Hide(C,G) is the IOLTS over C'\ C with internal actions over C; \ C defined
as follows:

® Qmuide(c,G) = KG
® Nt yige(c,c) = inite
® Trhigec,c) s defined as follows:

— for any transition (q,a,q’) € Trg with a of the form c/Av or cAv, with
Ae {?7 '} and ¢ € C7 (qa T, q/) € TTHide(C,G)

— for any transition (q,a,q’) € Trg with a of the form c/Av or cAv, with
Ae{ll}andcgC, ora=T, ora€ Ag, (¢,0,9) € TTHide(c,G)

As explained in Section 4.2, from the point of view of the orchestrator, Orch,
the set of remote Web services can be modeled by a single SUT" that communicates
through channels of the subset C) of the set of communication channels C used by
Orch. The SUT, denoted Rem, characterizes a set of traces that contains inputs
corresponding to values sent by Orch to the Web services, and outputs denoting
the reaction of the Web services. In order to give a formal representation of Orch
in the context of Rems, we use a dedicated product.

! Let us recall that an SUT is an input-complete TOLTS enriched with quiescence, and in
practice does not contain any 7-transitions.

4.3. Orchestrators and Their Specifications in Context 51

Definition 4.3.3 (Orch in context of Rem) Let Orch be a SUT over C, let
C, C C, and let Rem be a SUT over C,.

Orch in the context of Rem is the IOLTS over C, denoted Orch[Rem], with
internal actions over C,., where:

O QOrch[Rem] = Qorch X QRem
O initOrch[Rem] = (initOrchvinitRem)

® TTOrchiRem) 18 defined as follows:

- If (q,cv,q)) € Troren and (q2,c?,q5) € Trrem then
((q1,92), v, (1, 45)) € Trorch[Rem]

—If (qi,c?v,¢)) € Troren and (q2,clv,qh) € Trrem then
((q1,92), 2, (41, 43)) € TTOrch[Rem]

— For any (q1,a,4q}) € Troren, where a is T or is of the form c?v or clv,
with ¢ ¢ C., then for any g2 € Qrem, ((q1,42),a; (41,92)) € TT0rch[Rem]

— For any (q1,0,q1) € Troreh, for any (q2,9,q2) € TrTRem then
((q1,92), 9, (q1,92)) € Trorch[Rem)

The first item of previous definition corresponds to values sent by Orch to Rem.
Such values are outputs of Orch and thus denoted as outputs. The second item
corresponds to values sent by Rem to Orch. These messages are not controlled by
the tester, and from the point of view of Orch they are inputs; however, from the
point of view of the tester they are outputs of the whole system since he does not
control them. In order to differentiate them from values sent by Orch, we model
them as observations of the form ¢lv. The third item states that the transitions of
Orch introducing the internal action or the communication actions with the user,
execute asynchronously with respect to Rem. Finally, the fourth item corresponds
to quiescent situations. Quiescence of Orch[Rem] occurs whenever no outputs or
observation can occur. Since Orch and Rem are SUT’s, they are input complete.
Therefore, due to the first and second items, each time Orch or Rem may emit
an output, Orch[Rem] emits either an output or an observation. For this reason,
quiescence is allowed if and only if quiescence is observed for Orch and for Rem.

Example 4.3.1 Consider Figure 4.3. Based on the Slot Machine example (Ex-
ample 3.2.5), let us assume that the left hand image of Figure 4.3(a) depicts one
possible implementation of the slot machine’s interface (it is supposed to also be
input complete, but it is not depicted for the sake of readability), Orch; while the
right hand one depicts one possible implementation corresponding to the Sequence
Generator service, Rem (it is also assumed to be input complete). Then, together
they compose one possible implementation of the Slot Machine, as depicted by Fig-
ure 4.3(b) and which results after applying Definition 4.3.3 to the SUT's Orch and
Rem, i.e., Orch[Rem]. The inputs from Rem are represented as observations for
two reasons: first, inputs from Rem should not be treated the same as inputs from

52 Chapter 4. Testing in Context for Orchestrators

sg_error ? err

u_screen ! error

sg_generate ? seed sg_sequence ! sequence

sg_error ! err

u_start ? token sg_generate ! seed

(a) Orch and Rem

u_screen ! error

o eror 1 err

u_screen ! lose

u_start ? token

sg_generate ! seed

(b) Orch in context of Rem

Figure 4.3: Slot Machine example: Orch in context of Rem.

the user; second, from the point of view of the tester, all communications between
Rem and Orch are percewed as outputs from the system.

Now, it may happen that Orch[Rem] is not fully observable by the tester. In-
deed, as discussed in Section 4.2, some communication channels used by the Web
services may be hidden. In order to reflect these situations, we partition the set of
channels used by the orchestrator.

Definition 4.3.4 (Partitioned set of communication channels) Let S be a
set of communication channels.

A partition for a set of channels C is the given of three sets Cp, C,, and C.,
such that

e C=C,UCLUC,
e C,NCL=C,NC.=C,NC, =10

Elements of C, are called observable channels of C, elements of Cy, are called
hidden channels of C, and elements of C. are called controllable channels of C'. We
denote C, = C, U Cy, the set of remote channels

4.3. Orchestrators and Their Specifications in Context 53

u_screen ! error

u_screen ! lose

u_start ? token

Figure 4.4: Partial observation of Orch[Rem].

Channels of C. are those used by the tester to interact with Orch[Rem]. This
set contains, of course, the channels used by the user to communicate with the
system, but also all the communication channels intended to communicate with the
Web services whose functional role is simulated by the tester. Channels of C, are
those plugged to Web services for which messages transmitted through them can
be intercepted and observed by the testing architecture. Finally, channels of C}, are
those plugged to Web services and such that the testing architecture does not allow
the tester to observe the messages transmitted through them. In the following, any
set of channels C is considered as partitioned into Cj, C,, and C, even if it is not
specified.

Orch[Rem] can be modeled in its testing architecture by hiding in it the hidden
channels just as it is done in Definition 4.3.2.

Definition 4.3.5 (Partial observation of Orch in context of Rem) Let Orch
be a SUT over C, and let Rem be a SUT over C,.

The partial observation of Orch[Rem] through C,, denoted
Obs(Orch[Rem), C,), is Hide(Cy, Orch[Rem)])

Example 4.3.2 Figure /.4 depicts the partial observation of Orch[Rem]| through
Co, =0, and Cj, = {sg_generate,sg_sequence, sq_error}. That is, the Sequence
Generator service SG is not simulated by the tester, and the communication channels
used by the slot machine’s interface SM to communicate with it are hidden. In this
case, the tester cannot see what happens while SM interacts with SG, since he can

only observe the outputs of SM. However, if an error occurs, it can be due to SM or
to SG.

Let us make some few comments concerning partial observations of orchestra-
tors. In the sequel, partial observations are used as systems under test. The main
difference with usual SUTs (as introduced in Definition 3.2.10 in Section 3.2), is

54 Chapter 4. Testing in Context for Orchestrators

that a partial observation of an orchestrator may contain 7-transitions. We forbid
7-transitions in SUT's in order to make the product of Definition 4.3.3 easier. Be-
sides, since we assume that the SUT can be obtained by interacting with the system
under test, it makes no sense to model any internal action, since, even if the system
does perform them, they are not visible from outside the system. However, that is
not a restriction since 7-transitions in SUT's are not observable from the tester point
of view, and for any TOLTS with 7-transitions it is possible to define another one
characterizing the same traces but with no 7-transitions. Here, as we discuss in the
sequel, having 7-transitions in partial observations of orchestrators will no cause any
particular technical problem, since we only manipulate it by means of its associated
traces. Note that since both Orch and Rem are input complete respectively on C
and C;., Orch|Rem] is input complete over C'\ C,., and that set exactly characterizes
the set of channels which are controlled by the tester (i.e., C'\ C, = C¢). Finally, re-
garding the quiescent situations, Orch[Rem] is also enriched by quiescence, but, as
said before, quiescence can be observed only with both Orch and Rem are quiescent.

4.3.2 Specifications for Orchestrators in Context

In this section we show how to build specifications of partial observation of orches-
trators in context as introduced in Definition 4.3.5. As discussed in the previous
sections, our only prerequisite is the knowledge of the orchestrator’s specification.
Thus, we build the partial specification in four steps, taking into account the status
of the communication channels used by the orchestrator to communicate with the
Web services. As motivated by Section 4.2 and as we did in Definition 4.3.4, we also
partition the set of communication channels C' used by Orch into three sub-sets:
C.,Cy and C,, for the set of channels controllable, hidden and observable, respec-
tively, and we define the sub-set of channels used by Orch to communicate with the
Web services as C = C, U C,. In the sequel of this chapter, we assume that such
partitions are defined.

Taking this classification into account, in Definition 4.3.6 we enrich the speci-
fication with quiescence due to the lack of reaction by the Web services. In Def-
inition 4.3.7 we enrich the specification with quiescence as defined in Section 3.2,
Definition 3.2.6. We differentiate those two quiescences because the algorithm pre-
sented in Chapter 7 handles them differently, and their observations may yield dif-
ferent verdicts. Now, as discussed in Section 4.2, messages sent to the orchestrator
by the Web services have the particular status of observations, and we apply this
transformation in Definition 4.3.9. In Definition 4.3.10 we define the specification
of an orchestrator in context in a testing architecture where we hide the messages
on hidden channels.

4.3. Orchestrators and Their Specifications in Context 55

Definition 4.3.6 (Internal quiescence) Let Orch be an IOLTS over C.

The internal quiescence enrichment of Qrch is the IOLT'S with internal actions
over C, denoted Orchs,, such that:

L4 Q@rch(;i = Q(D)rch U Q5
© init@reh@ = nitereh

L4 Tr@rchgi = Tr(O)rch U TTJ;
where Qs and Trs are defined as follows:

for any q € Qoyen for which:

— there is no (q,act,q’) € Troren such that act is T or is of the form clv

— there exists (q,c?v,q") € Tropen, with ¢ € G,

if we note {c1,--- ,cn} the greatest set of channels of C, for which there ex-
ists (q,¢j?v,q5) € Tropen with 1 < j < n, then, there exists a unique state
g5 € Qs such that: (q,d[c1---cnl,q5) € Trs, (g5,0[c1---cn),q5) € Trs, and for
any (q,c?,q") € Troren with ¢ & C., we have (gs,c?v,q') € Trs

d[c,]

(a) IOLTS with only input tran- (b) Internal quiescence enrichment (Defini-
sitions. tion 4.3.6) of IOLT'S of Figure 4.5(a).

(¢) IOSTS with no internal quiescence.

Figure 4.5: Quiescence enrichment examples.

In order to illustrate Definition 4.3.6, let us consider the JOLT'S depicted in

56 Chapter 4. Testing in Context for Orchestrators

Figure 4.5(a), with ¢; ¢ Cr and ¢z € C,, and let us enrich it with internal quiescence.
We obtain the TOLTS depicted in Figure 4.5(b). The transition from ¢ to gs
reflects the quiescent situation induced by the absence of reaction of the Web service
supposed to interact with the orchestrator through ca. The loop on gs reflects the
fact that the user will observe continuously this quiescent situation until it performs
the input v on the channel c¢;, which is depicted by the transition going from g5 to
q1-

Let us note that for the JOLT'S of Figure 4.5(c), there is no quiescence enrich-
ment for the state g. If no message is received, the system is supposed to emit the
message v through c.

Now, Definition 4.3.7 is just an adaptation of the classical quiescence enrichment
as introduced in Section 3.2, Definition 3.2.6.

Definition 4.3.7 (Full quiescence) Let Orch be an IOLTS over C.

The full quiescence enrichment of Qrch for C,. is the IOLT'S over C' with internal
actions over C., denoted QOrchs,, such that:

e Q@rch(;f = Q@rch(;i
° init@rch(;f = nitQreh

© TT@’I‘Chg = Tr@rch,;i U TT(;E,
where T'rs, 1s defined as follows:

for any ¢ € Qoren, (4,0[,q9) € Trs, if and only if there is no
(g,act,q') € Troren such that act is T, act is an output or act is an
mput of the form c?v with ¢ € C,

Notation 4.3.7.1 In the following, for the sake of readability, we note & for §]].

Note that actions of the form c?v with ¢ € C}. have to be considered as internal
actions from the tester’s point of view. Therefore states enriched with full quiescence
cannot have outgoing transitions labeled by such an action. Quiescence due to the
absence of reaction in such channels is taken into account in Definition 4.3.6.

We have given two successive definitions in order to take into account the two
types of quiescence that can be found in an orchestrator in context, but this has been
done in that way merely for pedagogical reasons, because the distinction between
internal and external quiescence is important for our algorithm defined later in
Section 7.4. We can, however, give a single definition in order to identify under
which situations an TOLT'S with internal actions can be quiescent. The resulting
structure takes into account both internal and external quiescences. This definition
is the following one.

4.3. Orchestrators and Their Specifications in Context 57

Definition 4.3.8 (Quiescence in context) Let G be an IOLTS over C.

The quiescence in context enrichment of G is the IOLTS over C with internal
actions over C,., denoted GA, such that:

® Qo =QcUQs
e inilg, = initg

o T'rg, =TrgUTrs,
where Qs and Trs are defined as follows:

for any q € Qg for which there is no (q,act,q') € Trg such that act is T or
1s of the form clv:
let us note Cy the set {c € C, | 3 (¢q,c?v,¢') € Trg}. If Cy is not empty we
note it {c1,...,cp}. We define m as c1---cpn if Cy is not empty and as the
empty word € otherwise. Then, there exists a unique state qgs € Qs such that

(¢:8[m],q5) € Trs, (g5,8[m),q5) € Trs, and for any (q,c,q) € Tre with
c ¢ Cy, we have (q5,cv,q") € Try

Notation 4.3.8.1 In the following, for the sake of readability, we note ¢ for §]].

(a) Two IOLTSs. (b) Full quiescence Def. 4.3.7. (c) Quiescence in context Def. 4.3.8.
Figure 4.6: Quiescence equivalence.

Let us consider Figure 4.6. The column in Figure 4.6(a) depicts two basic
I10ST Ss:

58 Chapter 4. Testing in Context for Orchestrators

e The upper one is the trivial IOLT'S consisting of only one state ¢, and no
transitions. The second one characterizes a single transition from ¢g to gq.
The channel ¢, is supposed to be in C'\ C,.

e Figure 4.6(b) depicts their full quiescence enrichment according to Defini-
tion 4.3.7: for the upper IOLT'S, since there are no possible actions to be
taken from ¢, quiescence can be observed and there is no way out; for the
lower IOLTS, since ¢, € C'\ C,., we can also observe quiescence.

e Figure 4.6(c) depicts the quiescence enrichment of the TOLT'Ss according to
Definition 4.3.8: for the upper IOSTS, since there is no transition leaving
from ¢ whose action is 7 or of the form clv, then m is the empty word and
there is no way to leave the quiescence situation. For the lower ITOLTS, the
first condition is also true and m is also the empty word (since ¢, ¢ C;),
so quiescence is allowed. However, since ¢, ¢ C;, it is possible to leave the
quiescent situation from g5 by an input c¢,?v.

On these examples, we see that both quiescence enrichments of Definitions 4.3.7
and 4.3.8 are the same.

As glimpsed before, distinguishing between quiescent actions of respective forms
d[cl - ¢,] and 6] (or more simply just §) is useful for our algorithm, since it gives
an indication about a potential cause of the quiescence. However, at the semantical
level, 6 and §[cy - - ¢y represent a same situation: the quiescence of the system
under test. Therefore, from now, when we work at the semantical level (i.e., on sets
of traces), we collapse the two notations d[c; - - - ¢»] and 0, which do not have to be
differentiated. We will keep the distinction when working at a symbolic level (in
Part II), so that our algorithm (which operates at a symbolic level) can differentiate
between those two forms of quiescence.

At the IOLT'S level, we authorize to identify occurrences of any d[c; - - - ¢,] in
any trace as an occurrence of §. Also, in the sequel, for any transitions of the form
tr = (q,0[c1--cn),q), we allow indifferently to say that act(¢r) is d[cy - - - ¢p] or 6,
since those two actions will always be treated in the same way in all definitions of
Sections 4.3-5.4.

Until now, all inputs and outputs are treated from the point of view of Orch.
That is, inputs and outputs from and to the user are treated in the same way as
those of Rem. However, we need to be able to differentiate between them. We then
convert inputs that are not controllable by the user into observations in the sense
of Definition 4.3.1.

4.3. Orchestrators and Their Specifications in Context 59

u_screen ! lose sg_sequence ! sequence

u_start ? token sg_generate ! seed

Figure 4.7: IT(QOrch) for the Slot Machine example of Figure 3.3 in Section 3.2.

Definition 4.3.9 (Remote Input/Output transformation of Orch) Let
Orch be an IOLTS over C.

The remote input/output transformation of Qrch is the IOLTS with internal
actions over C,., denoted IT(Qrch), such that:

* Qrr(0rch) = Qorchs,
O Z.nitlT((O)rch) = Z.nit([)rchlgf

® Trir(@reh) 8 such that for all tr € Tr@mhéf,

— if tr is of the form (q,c?v,q’), with ¢ € Cy., then (q,¢v,q") € Trr(@ren)
— if tr is of the form (q,a,q’), where a is not of the form c?v with ¢ € C,.,
then (g,a,q") € Trrporen)

Note that in Definition 4.3.9, we could have equivalently used Ga in the place
of Orchs,.

Example 4.3.3 Let us recall the specification of the orchestrator of the Slot Ma-
chine example, depicted in Figure 3.3 of Section 3.2. Figure 4.7 depicts its remote
input/output transformation according to Definition 4.5.9, with the assumption that
C, = {sg_generate,sg sequence}. In this case, the reception of the sequence gen-
erated by the Sequence Generator service is an observation from the point of view of
the tester. Thus, we reflect this situation on the specification of Orch.

Finally, in order to get the partial specification of Orch, Obs(Qrch), we hide the
communication actions going through the hidden channels. In order to do that, we
apply the hiding operation of Definition 3.2.13 (Section 3.2) over the set C}, to the
IOLTS obtained after applying Definition 4.3.9, IT(Qrch).

60 Chapter 4. Testing in Context for Orchestrators

Definition 4.3.10 (Partial specification of Orch in context of Rem) Let
Orch be an IOLTS over C.

The partial specification of Orch[Rem] through C,, denoted Obs(Qrch), is de-
fined as:
Hide(Ch, IT(Orch))

u_screen ! lose

u_start ? token

Figure 4.8: Slot Machine’s partial specification.

Example 4.3.4 Figure /.8 depicts the partial specification Obs(Qrch) for the Slot
Machine example by applying Definition 4.3.10 to the IOLTS of Figure J.7. By
abuse, we consider in this ezample that C;, = {sg_generate, sg_sequence}. Thus,
those communication channels are hidden and the messages going through them are
not perceived by the tester.

We now have the two elements needed to define the conformance relation in
context: Obs(Orch[Rem],C,) and its partial specification, Obs(Qrch).

4.4 Adaptation of ioco for Testing Orchestrators in Con-
text

In this section we present how do we adapt the ioco and uioco conformance relations
in order to use them in the context of IOLT'Ss with internal actions. We call these
conformance relations ioco and uioco.

Based on the conformance relations we introduce, we then define two theorems
allowing us to relate conformance of orchestrators in context to usual unit confor-
mance of orchestrators. The first theorem concerns cases where all internal channels
are observable, and is based on ioco. The second one concerns cases where some
channels are hidden, and is based on uioco.

4.4. Adaptation of ioco for Testing Orchestrators in Context 61

Section 4.4.1 concerns adaptations of ioco and uioco, while Sections 4.4.2
and 4.4.3 concern, respectively, the theorems discussed above.

4.4.1 Adaptation of ioco and uioco to IOLTSs with Internal Ac-
tions

We begin by adapting ioco for IOLT'Ss with internal actions. This adaptation is
straightforward, the only change is in the set of traces that we consider.

Definition 4.4.1 (ioco) Let G; and Gy be two IOLTSs over C with internal
actions over C,.

G2 10co Gq if and only if Vo € Traces(Gy), Yo € O(C, M) U {d}
0.0 € Traces(Gz) = 0.0 € Traces(Gy)

Notice that ioco is the trivial restriction of ioco where observations are treated
as particular inputs: indeed, as ioco defines no restriction about inputs that may
follow a trace in the system under test, ioco also does not define any restriction
on inputs or observations that may follow a trace of the system under test (here
modeled as Gg). The restrictions on outputs are the same than in ioco.

In order to define uioco, we first introduce a notion of UTraces (as in Sec-
tion 3.2.3) restricted to transitions with observations.

Definition 4.4.2 (Specified traces of an IOLT'S with internal actions) Let
G be an IOLT'S with internal actions over C,..

The set of specified traces of G, denoted UTraces(G), is the set of all
o € Traces(G) such that there do not exist two paths p and p1 of G such that:

e o can be decomposed in o1.a.09 with a of the form c?v or ¢l
e 0 is the trace of p
e 01 is the trace of p1

o for any tr € T'rg with source(tr) = target(p1), o1.a is not the trace of p1.tr

Again, we notice that observations are treated as particular inputs with regard
to Definition 3.2.14 of Section 3.2.3. This is natural because observations are indeed
inputs that only have the particularity to be uncontrollable by the tester.

We now define uioco, which is a trivial adaptation of uioco as ioco is a trivial
adaptation of ioco.

Definition 4.4.3 (uioco) Let Gy and Ga be two IOLTSs over C with internal
actions over C,.

G2 utoco Gy if and only if Vo € UTraces(Gy), Yo € O(C, M) U {5}
0.0 € Traces(Gz) = 0.0 € Traces(Gy)

62 Chapter 4. Testing in Context for Orchestrators

4.4.2 Conformance Testing of Orchestrators with no Hidden Chan-
nels

Taking into account only the cases where all the communication channels used be-
tween Orch and Rem are either controllable or observable, that is, the system under
test of Definition 4.3.3, Orch[Rem], we show that if Orch ioco conforms to Qrch,
then Orch[Rem] ioco IT(Qrch).

Let us recall that in the end, our goal is to evaluate the conformance of Orch with
respect to Qrch by interacting with Orch[Rem] (here consisting of Orch|[Rem] —see
discussion in Section 4.2). In this perspective, Theorem 4.4.1 is very useful since it
means that if one finds an error in Orch[Rem] (i.e., Orch[Rem] ioco IT(Qrch)),
then, necessarily the error comes from Orch and not from the remote Web services
in Rem (i.e., Orch ieee Orch).

Theorem 4.4.1 Let Orch be an IOLTS over C, and let Orch and Rem be two
SUT's respectively over C and C,.

Orch ioco Orch = Orch[Rem] ioco IT(QOrch)

Proof of Theorem 4.4.1.

Next definition introduces a function allowing us to associate any trace of any
TIOSLTS with internal actions to a usual suspension trace by transforming obser-
vations into inputs, and internal quiescence actions into usual quiescence actions.

Definition 4.4.4 Let C be a set of channels and M be a set of values. Let us note
Act(C, M) = Act(C, M) U Int(Cy, M), and let us note Act C (Act(C, M) U {5})*
the set of traces of Act(C, M) such that o € Act if and only if:

for any decomposition o1.a.09 of o, with a of the form ¢\, then, if we note o1 as

00.b, we have b # 6.

The externalization function of Cy in C Ext : Act — (Act(C, M)U{d})* is such
that Ext(e) = ¢, and for any trace 0.a € Act we have:

e if a is of the form c?v or clv or § then Ext(c.a) is Ext(o).a,
o if a is of the form ¢lv then Ext(o.a) is Ext(o).c?v.
Proposition 4.4.1.0.1 Ext is an injective function.

Proof.

By induction:

Basic case: There exists a unique o such that Ext(o) ise: o is e,

4.4. Adaptation of ioco for Testing Orchestrators in Context 63

Inductive step: Let ¢’ be o.a, and let us suppose that there exists a unique o’
such that Ext(c”) = o. Let us show that there exists a unique '’ such that
Ext(c") = o'. Trivially, 0" is o”.b, where b is of the form ¢ if a is of the
form c?v, with ¢ € Cy, and b is a otherwise.

Note that if o' is of the form o1.6.c?a, with ¢ € Gy, then, there is no 0" such
that Ext(c") = o', because o’ could not belong to Act.

O

The next definition allows one to associate any path of an orchestrator in context,
to the corresponding path of the orchestrator considered as a unit.

Definition 4.4.5 Let Orch and Rem be two SUT's respectively over C and C,.. We
define the function ExtPath : Path(Orch[Rem]) — Path(Orch) as follows:

o if p is e ExtPath(p) is €

e if p is of the form pp.tr where tr is of the form ((q1,q2),a, (q},q5)) then
ExtPath(pp.tr) = ExtPath(pp).tr', where tr' = (q1,c?v,q2) if a is of the
form ¢, and tr’ is (q1,a,q2) otherwise

Proposition 4.4.1.0.2 With notations of Definition 4.4.5, for any
o € Traces(Orch[Rem]), for any p € Path(Orch[Rem)]), such that o = traces(p),
we have Ext(o) = traces(ExtPath(p)).

Proof.

We give the proof by induction on the form of o:

Basic case: If o is €, then p is necessarily a (possibly empty) sequence of tran-
sitions whose associated actions are 7. Thus, ExtPath(p) is also necessar-
ily a (possibly empty) sequence of transitions whose associated actions are T.
Therefore, traces(ExtPath(p)) is €. Now, from Definition 4.4.4, since o is
e, we have Ext(c) = €. Thus, for all p such that o € traces(p), we have
Ext(o) = traces(ExtPath(p)).

Inductive step: We note o as ¢’.a. Since o = traces(p), p is necessarily of the

form p,.tr.ps where traces(pp,) = o', act(tr) = a, and ps is a possibly empty
sequence of transitions whose associated actions are T.

Let us suppose that:

(H): Ext(o’) = traces(ExtPath(pp)),

and let us reason on the form of a:

64 Chapter 4. Testing in Context for Orchestrators

Case (a): Ifais of the form T, then Ext(c) = Ext(o’).c?v, and ExtPath(p’ .tr)
is of the form ExtPath(p').tr’, where tr' is a transition such that act(tr') =
c?. By Definition 3.2.3 of traces and from (H), we deduce Ext(c) =
traces(ExtPath(py.tr)). Moreover, since ps is a possibly empty sequence
of transitions whose associated actions are 7, we also deduce from Defi-
nition 3.2.3 that Ext(o) = traces(ExtPath(pp.tr.ps)), that is, Ext(c) =
traces(ExtPath(p)).

Case (b): Ifais not of the form v, then Ext(c) = Ext(c’).a, and ExtPath(p' .tr)
is of the form ExtPath(p’).tr', where tr' is a transition such that act(tr') = a.
The remaining of the proof is the same than in Case (a).

O

Next Lemma sates that if a trace is a trace of Orch[Rem], then its externalization
is a suspension trace of Orch.

Lemma 4.4.1.1 Let Orch and Rem be two SUT's respectively over C' and C,.. For
any o € Act, we have:

o € Traces(Orch[Rem]) = Ext(o) € Traces(Orch)

Proof.

It suffices to show that for any o € ;17:;5, if 0 € Traces(Orch|Rem]), then there
erists p' € Path(Orch) such that Ext(c) = traces(p’).

This is obvious because, since o € Traces(Orch|Rem)), there existsp € Path(Orch[Rem))
such that o = traces(p). Now, from Proposition 4./.1.0.2 we have Ext(o) =
traces(ExtPath(p)). We conclude by defining p' as ExtPath(p).

O

We now adapt the function EztPath of Definition 4.4.5 to the case of orches-
tration’s specifications.

Definition 4.4.6 For any IOLTS Qrch over C
ExtPaths : Path(IT(Orch)) — Path(Qrchs) as follows:

s we define

e ExtPathg(e) =

e ExtPaths(p.(q,act,q')), where act is T or of the form c?v or clv, is:
ExtPathgs(p).(target(ExtPathg(p)), act(tr), target(tr))

ExtPathgs(p).(target(ExtPathgs(p)), c?v, target(tr))

e ExtPaths(p.(q,act,q)), where act is of the form § is:

(
(
(
e FExtPaths(p.(q,act,q)), where act is of the form clv is:
(
(
ExtPaths(p).(target(ExtPathg(p)), 0, target(Ext Pathg(p)))

4.4. Adaptation of ioco for Testing Orchestrators in Context 65

Intuitively, ExtPathg differs from ExtPath to take into account that transitions
labeled with some § in IT(Qrch) have?:

e cither some state g (¢ being a state of Qrchs) as source, and some state gs
(introduced at the quiescence enrichment step) as target state,

e or define loops on some step gs defined at the quiescence enrichment step.

In order to identify the corresponding paths in Orchg, we have to map those
transitions to those of the form (g, d,q) in Qrchg, as it is done in the last item of
Definition 4.4.6.

Proposition 4.4.1.1.3 We note Ext(zc_;f) the subset of Act(C,M)* such that

o € Eaxt(Act) if and only if 30’ € Act with ¢ = Eat(co’), and we note
ExtPathg : Path(IT(Orch)) — {p € Path(Orch)|traces(p) € Ext(Act)}

—_——

ExtPathg is surjective.

Proof.

Any path p =ty - - t,, of {p € Path(Qrch)|traces(p) € Ext(;lgf)} can be associ-
ated with one pathp' = ¢y ---t), of Path(IT(Qrch)), satisfying ExtPathg(p') = p,
where p' is such that:

o for all mazimal sub sequences try---try,, of p such that for all
i € [l,--- ,m[act(tr;) is 0, and act(try,) is of the form c?v, then,the sub -
sequence try---tr), is such that:

— either tr]---tr), _, istry---trm_1, and tr; =--- =tr,, _,,
and try = -+ = try_1, and tr), is try, (c is necessarily in C'\ C;.),

— orforalli € [l,--- ,m[, act(tr}) is of the form §, source(tr]) = source(tr;),
target(tr]) is the state source(tr;)s (as defined in Definition 4.3.7), for
all j €]l,---m[, we have source(tr}) = target(tr) = source(tr)s, and
source(tr))) = source(tr))s, target(tr],) = target(try), and act(tr],)

is act(try,) (c is necessarily in C'\ C,).

e for all k < n such that tr} does not occur in a sequence as described above,
we have tr, is try if act(try) is not of the form c?v with ¢ € Cy, and tr), is
(source(try),clv, target(try)) otherwise.

O

Proposition 4.4.1.1.4 With notations of Definition 4.4.6, for any
o € Traces(IT(Orch)), for any p € Path(IT(Qrch)) such that o = traces(p), we

have Ext(c) = traces(ExtPathg(p))

2See Definitions 4.3.7 and 4.3.9

66 Chapter 4. Testing in Context for Orchestrators

Proof.
We give the proof by induction on the form of o:

Basic case: If 0 is €, then p is necessarily a (possibly empty) sequence of transi-
tions whose associated actions are 7. Thus, Emjﬁ&/ths(p) 15 also necessar-
ily a (possibly empty) sequence of transitions whose associated actions are T.
Therefore, traces(Ex/t_]sahS(p)) is €. Now, from Definition 4.4.4, since o is
e, we have Ext(c) = . Thus, for all p such that o € traces(p), we have
Ext(o) = traces(Ex?]S_a/ths(p)).

Inductive step: We note o as ¢’.a. Since o = traces(p), p is necessarily of the
form pp.tr.ps; where traces(p,) = o, act(tr) = a, and ps is a possibly
empty sequence of transitions whose associated actions are T.

Let us suppose that:

(H): Ext(c’) = traces(ExztPathgs(pp)),

and let us reason on the form of a:

Case (a): If a is of the form T, then Ext(c) = Ext(c’).c?v, and
Ex?]s_a/ths(p/.tr) is of the form Ex?];?t/thg(p’).trl, where tr' is a transition
such that act(tr') = c?v. By Definition 3.2.3 and from (H), we deduce
Ext(o) = traces(Em%hS(pp.tr)). Moreover, since ps is a possibly
emptly sequence of transitions whose associated actions are 7, we also
deduce from Definition 3.2.3 that Ext(c) = traces(E;v/t-IBahS(pp.tr.ps)),
that is, Ext(o) = traces(Ex%hS(p)).

Case (b): If a is not of the form ¢lv, then:

e cither a is of the form 8, and in this case we have Ext(c) = Ext(o’).d,
and Ex%hs(p’.tr) is of the form Ex%hs(p’).tr’, where tr' is a
transition such that act(tr’) = §. The remaining of the proof is the
same than in Case (a),

e ora is not of the form &, and in this case we have Ext(c) = Ext(o’).a,
and Ex/t_lsahg(p’.tr) is of the form Ex/t_lsahs(p’).tr', where tr' is a
transition such that act(tr’) = a. The remaining of the proof is the
same than in Case (a).

Lemma 4.4.1.2 For any o € :4\075, we have:
Ext(o) € STraces(Qrch) = o € Traces(IT(Orch)).

4.4. Adaptation of ioco for Testing Orchestrators in Context 67

Proof.

Since Ext(o) € STraces(Orch), there exists a path p in Orch such that
Ezxt(o) = traces(p), and p € {p € Path(Orch)|traces(p) € Ext(Act)}
E:E/t_];ahg is surjective, thus there exists p' € Path(IT(Qrch)) such that
ExtPaths(p) = p
From Proposition 4.4.1.1.4, Ext(traces(p')) = traces(ExtPathg(p’))
Since E.Z‘?]S&/ths(pl) =p and Ext(c) = traces(p),
we have Ext(traces(p’)) = Ext(o)
Now, since Ext is injective, we have
traces(p’) = o, and thus, o € Traces(IT(Qrch)).

Proof of Theorem 4.4.1:
We want to prove:

Orch ioco Orch = Orch[Rem)] ioco IT(Qrch)
We suppose:

(1): Orch ioco Orch,
which means by definition:
(2): Yo € STraces(Orch), Yo € O(C, M) U {d}

0.0 € Traces(Orch) = 0.0 € STraces(Orch)
Now, from Lemma 4.4.1.1,

(3): Vo € Act,
o € Traces(Orch|Rem)) = Ext(o) € Traces(Orch)

From (3), we deduce:
(4): Vo € Act, Yo € O(C, M) U {6}

0.0 € Traces(Orch[Rem]) = Ext(o.0) € Traces(Orch)
Now, clearly Ext(c.0) = Ext(o).Ext(0), thus, from (4), we have:

(5): Vo € Act, Yo € O(C, M) U {5}

0.0 € Traces(Orch[Rem]) = Ext(o).Ext(o) € Traces(Orch)

68 Chapter 4. Testing in Context for Orchestrators

Since Ext(o) € O(C, M) U {6}, and Ext(o) = o, we deduce from (2) and (5):

(6): Vo € Act, Yo € O(C, M) U {6}

0.0 € Traces(Orch[Rem]) = Ext(o).Exzt(o) € STraces(Orch)

Now, traces of IT(Qrch) are traces of Act. So, from (6), we have:

(7): Yo € Traces(IT(Orch)), Yo € O(C,M) U {4}

0.0 € Traces(Orch[Rem]) = Ext(o).Ext(o) € STraces(Orch)

Now,since Ext(0.0) = Ext(c).Ext(o), from (7), we have:

(8): Yo € Traces(IT(OQrch)), Yo € O(C, M) U {5}

0.0 € Trace(Orch[Rem]) = Ext(c.0) € STraces(Orch)

From Lemma 4.4.1.2 we have:
(9): For all o € Traces(IT(Orch)),

Ext(0.0) € STraces(Orch) = 0.0 € Traces(IT(Orch))

Thus, from (8) and (9), we conclude:
Vo € Traces(IT(Orch)), Yo € O(C,M)U {4}
0.0 € Traces(Orch[Rem]) = 0.0 € Traces(IT(Orch))

O

4.4.3 Conformance Testing of Orchestrators with Hidden Channels

In order to obtain a similar theorem to Theorem 4.4.1 when taking into account
hidden actions over some set of channels Cj, we add the restriction that the IOLTS
Orch be a so-called input complete for Cy,, that is: for any state ¢ € Qqyrep, for any
c € Cyp and v € M, there exists (¢,c?v,q') € Troren. Moreover, we also must
reason with the uioco conformance relation: i.e., the result of Theorem 4.4.2 does
not hold when replacing uioco by ioco for the same reason that in Theorem 3.2.3:
underspecification of inputs or observations induce underspecification in the internal
actions if underspecified inputs or observations are hidden.

4.4. Adaptation of ioco for Testing Orchestrators in Context 69

Theorem 4.4.2 Let Orch be an IOLTS over C and input complete on Cy, and
let Orch and Rem be two SUT's respectively over C' and C,.

Then,
Orch ioco Orch = Obs(Orch[Rem], C,) uioco Obs(Orch)

Proof of Theorem 4.4.2.
We know from Theorem 4.4.1 that

Orch ioco Orch = Orch[Rem)] ioco IT(Qrch)

Let us show that if Qrch is input complete over Cj:

Orch ioco Qrch = Obs(Orch[Rem], C,) uioco Obs(Qrch)

Let us define a forgetful function over traces and paths of IT(Qrch) or Orch[Rem].
For o € Traces(IT(Orch) or in Traces(Orch[Rem]), we define Ug, (o) (or simply
U(o)) by:

e ifo=¢, thenU(c) =¢

e for 0 = d’.a, if a is of the form c!t or ¢lt, with ¢ € Cy, then U(o) = U(d”), else
Ule)=U(c").a

We define in a similar way the application Upyen (resp. Ugpren) over paths of
Orch[Rem] (resp. of IT(Qrch)). Transitions with an action over Cj, simply become
T-transitions.

By remarking that I7(Qrch) inherits from the hypothesis of input-completeness
of Qrch over C, let us now give the proof of the theorem:

proof of Theorem 4.4.2:

Let 0.0 be a trace of Traces(Obs(Orch[Rem)|,C,)), with o an output and such
that o belongs to UTraces(Obs(Qrch)). Let us note p2 such that U(traces(p?)) = o.

Let us note k a trace of Orch[Rem] verifying that U(k) = 0.0, and the last tran-
sition carries the o action (that is, k is written k'.0). Such a trace exists necessarily
since 0.0 1s a trace of Obs(Orch|Rem], Cy).

Let us introduce for any trace p defined over the signature of IT(Qrch):

Pathgren(p) = {p € Path(IT(Orch)) | traces(p) = p}

Let us demonstrate by an inductive reasoning that for each sub-trace p that is a
prefiz of o, i.e., o can be written p.7, then Pathg.ch(p) is not empty.

Basic case: The case p = ¢ is clear.

70 Chapter 4. Testing in Context for Orchestrators

Inductive step: Let us consider p of the form p.a. By hypothesis, Pathg(u) con-
tains a path p,, verifying traces(p,) = p. Let us reason by case on the form of
a:

Case (a): If a is of the form ¢'t, then as IT(QOrch) is input-complete over
Ch, then each path of Pathgr.n(1) can be extended as a path of trace p.a,
and thus Pathgch(p) is not empty.

Case (b): If a is of the form ct, then as Orch[Rem] ioco IT(Qrch, and as p
is a trace of both Traces(IT(Qrch)) and Orch|[Rem], then p.a is a trace
of Traces(IT(Qrch)), and thus Pathgn(p.a) is not empty.

Case (¢): If a is of the form c?t: let us suppose that paths of Pathgeen (1)
cannot be extended with a transition whose action is c?t, then let us note
p1 one of such a paths that cannot be extended. Then, U(p2) and U(py)
are two paths of Obs(Qrch) verifying that there exists a trace oo such that
traces(U(p2)) = traces(U(p1)).c?t.oo, and verifying that U(py) cannot
be extended with a transition carrying a c?t action. This contradicts the
fact that o has been chosen among UTraces(Qrch). It means that all
paths of Pathoren(p) can be extended as paths of the trace p.a. Thus
Pathgyen(p) is not empty.

Thus, we have established that for any trace o of Traces(Obs(Orch|Rem], C,))N
UTraces(Obs(Qrch)), for a possible trace &' of Orch[Rem] corresponding to o, veri-
fying that U(k') = o, then under the hypotheses that Orch ioco Orch, and that Orch
is input complete over Cp,, there necessarily exists a path p, in Path(IT(Qrch)) ver-
ifying traces(p,) = K'.

As by Theorem 4.4.1, Orch[Rem] ioco IT(Qrch), then, as k' is a common
trace of Orch[Rem] and IT(Qrch) that is followed by an output o in Orch[Rem],
necessarily k.0 is also a trace of IT(Qrch), for which the trace U(k'.0) = U(x').0
is a suspension trace of Obs(Orch).

Thus, we get:

Vo € Traces(Obs(Orch[Rem], C,)) N UTraces(Obs(Orch)), Yo € O(C, M)

0.0 € Traces(Obs(Orch|Rem], C,)) = 0.0 € Traces(Obs(Orch))

That is:

Obs(Orch[Rem], C,) uioco Obs(Qrch)

4.5. Conclusion 71

4.5 Conclusion

In this chapter we have defined a formal framework allowing us to relate conformance
in context of orchestrators to their usual unit conformance. This is done in the ioco
framework. In order to do so, we have taken into account the different possible status
of the communication channels used by the orchestrator to communicate with the
Web services. For any given channel, if it is is controlled by the tester, then it is
said to be controllable; if it is not accessible at all, it is said to be hidden; and if it
is not controlled but the tester can see the information going through it, then it is
said to be observable.

By using this classification, and by means of some operations, we have shown
how to obtain Orch[Rem)], and Obs(Orch[Rem], C,). The former one is the assumed
TIOLTS with internal actions that represents the implementation of the orchestrator,
Orch, in the context its remote part, Rem, when all the communication channels
used by Orch to communicate with Rem are either controllable or observable; and
the later one is the assumed IOLTS with internal actions representing Orch in the
context of Rem when there are hidden channels. Both TOLT'S with internal actions
are obtained by some operations and modifications on the ones assumed to model
their implementations.

Besides, he have also shown how to define the partial specification for an or-
chestrator in context. We achieve this by means also of the classification of the
communication channels and of basically applying three operations over Qrch: full
quiescence enrichment and remote input/output transformation for the observable
and controllable cases (producing as a result I7T(Qrch)), plus the hiding operation
when there are some hidden channels (producing as a result Obs(Orch)).

Finally, we have presented the conformance relations that we define in order to
test orchestrators in context: ioco and uioco. For these two relations we state two
theorems allowing us to ensure that non conformance in context implies non con-
formance at the unit level. The first theorem makes use of ioco and concerns the
case where all communication channels used for interactions between the orchestra-
tor and the Web services are controllable or observable, while the second theorem
makes use of uioco, and concerns the case where some of the communication chan-
nels are hidden. Both theorems state that if we are able to build a test architecture
so that we can test the conformance of Orch in context of Rem, if an error is de-
tected during this testing phase, such an error reveals in fact a non conformance
of the orchestrator with respect to its specification in the sense of ioco (or uioco,
depending on the testing architecture).

CHAPTER 5

Eliciting Web Service Behaviors

Contents
5.1 Imntroductiont 73
5.2 Motivation 0 ittt 74
5.3 Technical Preliminaries 76

5.4 Correctness of Web Services with respect to Orchestrators 77

5.4.1 Web Services Communication Channels and Fairness Invocation 78

54.2 Web Service Quiescence 78
5.4.3 Traces for Web Services According to Orchestrators 80
5.5 Conclusionttt 82

5.1 Introduction

INDING the right Web service to ensure the right behavior of an orchestration

is a difficult task, especially when the behavioral specification of the Web

service is not available. Even if it is available, the composed system could be
so large that one could face the ezplosion problem [Valmari 1998]. In this chapter
we give the semantics of a foundation for an approach to test the compatibility of
the Web services with respect to orchestrators (the approach itself is described in
Sections 8.2,8.3) by taking into account only the expected behaviors of the Web
services as they are expressed in the orchestrator’s specification.

More specifically, we aim a testing if the Web services (when composed with
an orchestrator) do not lead the whole orchestration into a deadlock situation. We
begin by eliciting from the set of traces of the orchestrator a set of traces charac-
terizing intended behaviors of the Web services. This set will serve as the basis of
the approach presented in Chapter 8. In order to elicit such behaviors from the or-
chestrator’s specification, we need to identify the situations where the Web services
are allowed to go into a quiescent situation without leading the orchestration into
a deadlock state. A Web service can be quiescent only if the orchestrator is not
expecting an answer from it in order to move forward and if this answer is the only
way for the orchestrator to move forward.

Once the valid quiescent situations of the Web services are identified, we proceed
to transform the behaviors from the point of view of the orchestrator to the point

74 Chapter 5. Eliciting Web Service Behaviors

of view of the Web services. From these elicited behaviors, we the define a correct-
ness relation between the Web services and a structure representing those elicited
behaviors. That correctness relation reflects a compatibility property between the
concerned Web service and the orchestrator.

Finally, the work presented in this chapter is similar to the one presented in
[Angelis 2010], where authors use specifications of orchestrators to extract numerical
behaviors that can be projected on Web services interfaces. The goal is to define unit
test cases for Web services participating in the orchestration. They do this by taking
into account only the information provided by the orchestrator’s specification and
the interface description of the Web services (WSDL). However, they use numerical
model-based testing techniques, and in our approach we use symbolic techniques,
as shown in Chapter 8.

We start this chapter with Section 5.2 by informally examining the different
interaction situations of Web services with the orchestrator in order to identify
when a Web service may remain quiescent while not causing deadlock situations.
In Section 5.3, we introduce the technical operations used in Section 5.4 to identify
intended behaviors of the Web services. Then, we define the correctness relation
discussed above. Section 5.5 is a conclusion of the chapter.

5.2 Motivation

OO =0 00 =@

a) Input. (b) Output.

.act ¢ Act(C,, M). . C @

(c) No synchronization.) Non-determinism.

Figure 5.1: Different status for Web services with respect to the orchestrator.

Orchestrators interact with Web services. From the orchestrator’s point of view,
we have no knowledge of the intended behaviors of the Web services. However, it
is possible to define some fundamental compatibility constraints between an orches-
trator and the Web services with which it interacts regardless of their functional
roles. First of all, each Web service should be able to receive any message that the
orchestrator sends to it. Concerning messages sent by Web services to the orchestra-
tor, it may happen that those messages occur on channels that are not used by the
orchestrator, because Web services are by nature pieces of software of generic usage
that may be used by several orchestrators and that may provide more information

5.2. Motivation 75

than required by a given orchestrator. Such messages will be simply ignored by the
orchestrator of interest. The only important point is that messages required by the
orchestrator are actually sent by the Web services. In the sequel of this section we
discuss, intuitively, in which cases such a message is required. From the perspec-
tive of a user of a system composed of an orchestrator communicating with Web
services, a basic requirement is that the whole system does not fall into a deadlock
state (or just deadlock). Therefore, a message will be required whenever its absence
would cause the system to deadlock. In Figure 5.1 we consider an orchestrator and
a connected Web service, both of them denoted as IOLT'Ss. For each case (a), (b),
(¢), and (d), the left part (respectively right part) of the figure represents sequences
of actions leading from a state g (respectively g;) of the orchestrator (respectively
of the Web service) to some states ¢1, or ¢1 and g (respectively ¢}, or ¢; and ¢j),
depending on the considered case. gqp is a state reached after some execution of
the orchestrator and ¢ is the corresponding state reached by the Web service. We
consider four cases: for each of them the left part specifies a sequence of actions
performed by the orchestrator and the corresponding right part denotes the required
behavior of the Web service.

(a) In the case of Figure 7.1(a), the orchestrator requires a message a from the Web
service to reach g;. Moreover, the state of the orchestrator cannot change by
some other sequence of actions. If the Web service does not send a from ¢, that
would lead to a deadlock situation to the system composed by the orchestrator
and the Web services. Therefore, the Web service is required to send a and thus
cannot be quiescent.

(b) In the case of Figure 7.1(b), the orchestrator sends the message a to the Web
service. In that case the Web service may remain quiescent until it receives the
message a. This quiescence is depicted by d,,, where ¢ is the quiescence action

as introduced in Section 3.2, and &, represents an arbitrary long finite sequence
of 9.

(¢) In the case of Figure 7.1(c), the orchestrator performs an action act which does
not denote an interaction with the Web service. In this case, the intended
behavior of the Web service depends on the actions that will follow act and thus
we cannot infer any required behaviors for the Web service at this step.

(d) The case of Figure 5.1(d) denotes a situation where actions of the cases of
Figures 7.1(a) and 7.1(b) are non-deterministically possible concerning the or-
chestrator, and in this situation the Web service may react as in the case of
Figure 7.1(a) or as in the case of Figure 7.1(b).

A last case, which is not depicted, corresponds to a situation where no actions
allow the orchestrator to evolve. In this situation the Web service may remain qui-
escent. However, regardless of that situation, an analysis of the four cases described
above shows that authorizing the Web service to be quiescent may only be decided

76 Chapter 5. Eliciting Web Service Behaviors

when the orchestrator sends a message to the Web service. For this reason, we
will impose that any orchestrator always finally invokes all its associated Web ser-
vices unless its execution terminates. This corresponds to the fairness invocation of
Web services property introduced later in Section 5.4 (Definition 5.4.1). This neces-
sary restriction is reasonable with respect to real life orchestrators which generally
characterize finite sequences of interactions with Web services.

5.3 Technical Preliminaries

We begin by introducing two technical operations that will be useful in order to
elicit behaviors of Web services from behaviors of the orchestrator. These opera-
tions are defined over the traces of the IOLT'S representing the specification of the
orchestrator.

The first operation is used to, given a particular set of communication channels,
restrict the behaviors of the TOLTS by projecting the associated traces on this
chosen set of communication channels. The idea is to remove all actions that have
nothing to do with the channels of interest.

Definition 5.3.1 (Projection) Using notations of Definition 3.2.4, let C and C
be two sets of communication channels verifying C C C, and let S be a set of finite
sequences of communication actions in (Act(C, M) U {0})*.

We note S |c the set {sq | | sq € S}, where sq | is defined as follows:
e if sq=¢ then sql=¢
e if sq = sq’.a, then
— fora & Act(C,M)U {6}, sq l=sq' |
— for a € Act(C, M) U {5}, sq = (s¢' |).a
Example 5.3.1 Let us consider the IOLTS of Figure 3.3 (Section 3.2), which cor-
responds to the IOLTS of the orchestrator of the Slot Machine example. The follow-
ing is a sequence of communication actions sq of that IOLTS: the one going from

state qo to q3 and then back to qy through the transition labeled with u_ screenlwin,
that is, the sequence:

u_ start?token.sg _generatelseed.sg sequence?sequence.u_ screenlwin.

If we define C to be the set of communication channels:
C = {sg_generate,sg sequence},
then, the projection of sq over C is the sequence:

sg_generatelseed.sg_sequence?sequence.

5.4. Correctness of Web Services with respect to Orchestrators s

That is, we simply remove the communication actions that are not of our interest.

Now we introduce a mirroring operation ([Jeannet 2005]) whose basic idea is to
reverse all the communications’ status: emissions become receptions and recipro-
cally. This is done so that the traces that are extracted from the specification of the
orchestrator are no longer perceived from the perspective of the orchestrator, but
from the one of the Web service.

Definition 5.3.2 (Mirroring) Let C be a set of communication channels.

The mirroring operation Mir : (Act(C,M) U {6})* — (Act(C, M) U {d})* is
defined by:

o Mir(e)=c¢

o if sq is of the form sq'.clv, then Mir(sq) = Mir(sq').c?v

e if sq is of the form sq'.c?v, then Mir(sq) = Mir(sq').clv

o if sq is of the form sq'.6, then Mir(sq) = Mir(sq').0

Example 5.3.2 Let us consider the IOLTS of Figure 3.3 (Section 3.2), which cor-
responds to the IOLTS of the orchestrator of the Slot Machine example. The follow-
ing is a sequence of communication actions sq of that IOLTS: the one going from
state qo to q3 and then back to qo through the transition labeled with u_ screen!win,
that is, the sequence:

u_ start?token.sg _generatelseed.sg sequence?sequence.u_ screenlwin.

Then, the mirroring of sq is the sequence:

u_ startltoken.sg generate?seed.sg sequencelsequence.u_ screenlwin.

That is, we simply reverse the sense of the communication actions.

With these basic operations, we proceed to show how to elicit the required
behaviors for the Web services from the specification of the orchestrator.

5.4 Correctness of Web Services with respect to Orches-
trators

In this section we characterize the notion of correctness of Web services with respect
to an orchestrator. We begin by identifying in the orchestrator’s specification, Orch,
communication channels which are used to interact with Web services. Then, we
identify under which circumstances the Web services are allowed to be quiescent.

78 Chapter 5. Eliciting Web Service Behaviors

Finally, we define the set of traces that are used to state the correctness property,
and we state that property.

5.4.1 Web Services Communication Channels and Fairness Invo-
cation

An orchestrator’s specification Orch is just an IOLTS defined over a set C of
distinguished channels: they are either communication channels with users, or com-
munication channels dedicated to communicate with Web services. We suppose that
a set W of so-called Web service names is given, which allows us to differentiate be-
tween the channels used to communicate with each of the Web services. The set of
communication channels C'is then of the form C' = C. U J,cyw Cuw (let us remind
that C, is the set of communication channels under the control of the user), and
satisfies that the channels are associated exclusively to one remote part (user or
Web service): for all w # w' € W, C.NCy = 0 and C,, N Cyy = 0. Note that
concerning the partitions of the form C., Cj, and C, introduced in Definition 4.3.4
in Section 4.3.1, U, cw Cuw forms a partition of C; = C, UC,. In the sequel, any set
of communication channels C' over which an orchestrator is defined, is supposed to
be of the form C. U J,cw Cw as described above.

As introduced in Section 5.2, we impose the fairness invocation of Web services
on the Web services communicating with the orchestrator. This property is formally
defined as follows.

Definition 5.4.1 (Fairness invocation of Web services property) With
notations of Definition 3.2.2, let Qrch be an IOLT'S over C.

Orch satisfies the fairness invocation of Web services property if and only if, for
all w € W, such that Cy, # 0, we have:

for any p € Path(Qrch), there does not exist an infinite sequence of tran-
sitions (tr;)ien with source(tri) = target(p), and for all i € N,
target(tr;) = source(triy1), and such that for all i € N, we have
act(tr;) & O(Cy, M)

5.4.2 Web Service Quiescence

We now show how to enrich the traces of an orchestrator’s specification Orch with
the quiescence symbol § in order to specify under which circumstances a Web ser-
vice may remain quiescent while interacting with the orchestrator. The underlying
intuition is that the absence of reaction of the Web service should not cause any
deadlock in the whole system’s (the orchestration: orchestrator and Web services)
execution. Let us note that even though we use the same symbol §, it should not be
understood in the same way as the one introduced in Section 3.2.1, which actually
represents the situations where the system under test can be quiescent with respect
to its specification; whereas in Definition 5.4.2, § refers to the quiescence of some

5.4. Correctness of Web Services with respect to Orchestrators 79

Web services as it is observed from the orchestrator’s point of view (i.e., d is added
in the traces of the orchestrator’s specification).

Definition 5.4.2 (Traces of a path with w-quiescence) Let
Orch = (Q,init,Tr) be an IOLTS over C, let w be a Web service of W,
and let p € Path(Qrch) be a path of Orch.

The set SQq(p) of traces of p with w-quiescence is minimally defined by:
o if p=c¢, then SQu(e) = {&}

o if there does not exist tr” such that p.tr” € Path(Qrch), then $q.0, € SQuw(p)
for any sq € SQyu(p) and 6y, € {6}*

o if p = p.tr € Path(Qrch) with tr € Troren, then for any s¢’ € SQqyu(p') we
have:

— sq.act(tr) € SQu(p)
— if act(tr) € O(Cy, M), then sq'.0m.act(tr) € SQu(p) for any 6 € {0}*

As discussed in Section 5.2, the second item of Definition 5.4.2 authorizes Web
service quiescence for paths that cannot be continued, and the third item builds
traces from consecutive actions of paths of the specification while authorizing Web
service quiescence before the Web service is invoked.

Example 5.4.1 Let us consider again our Example 3.2.5 of the Slot Machine. Ac-
cording to the IOLTS G (Orch) of Figure 3.3, the following is path p of Qrch:

(qo,u_ start?token,q1).(q1,sg_generatelseed, q2). (q2,.59 _sequence?sequence, qs).
(g3, u_ screenlwin, qp).

Then, the following is a trace, sq, with w-quiescence of p:

u_ start?token.6*.sg _generatelseed.sg _sequence?sequence.u_ screenlwin.d*.

Note that this w-quiescence is different from the one introduced in Section 3.2.
First, this quiescence is introduced over the traces of Orch and not over Qrch itself.
Second, even if we use the same symbol §, this quiescence represents the fact that the
Web service (the Sequence Generator service SG, in this case) can remain quiescent
without leading the orchestration into a deadlock state as discussed in Section 5.2.
In this case, SG can remain quiescent only before it is invoked (before executing the
transition labeled by sg generatelseed), and most important, when exvecuting the
transition sg_sequence?sequence, it is not allowed to remain silent, since it would
lead the orchestration into a deadlock situation because the orchestrator cannot evolve
by itself: it needs the answer from SG.

80 Chapter 5. Eliciting Web Service Behaviors

5.4.3 Traces for Web Services According to Orchestrators

The traces of Orch enriched with Web service quiescence, and from which we can
extract the desired Web service behaviors, are defined as the set of all the paths
with w-quiescence of Qrch.

Definition 5.4.3 (Traces of Orch with w-quiescence) Let Orch be an IOLT'S
over C

The set of traces of Orch with w-quiescence is defined as:

SQw((D)TCh) = UpEPath((D)rch) SQW <p)

We can now proceed to perform the transformations over the intended behaviors
of the Web services from the point of view of the orchestration into suspension traces
from the point of view of the Web services. Technically speaking, this is done by
combining the projection operation removing useless actions, and the mirroring
operation exchanging the role of emissions and receptions.

Definition 5.4.4 (w-traces according to Orch) Let Orch be an IOLTS over
C.

The set STr(OQrch,w) of w-traces according to QOrch is the set
Mir(SQw(Orch) lc,)

Example 5.4.2 Following our example of the Slot Machine, if we consider the w-
quiescence trace sq of Erample 5.4.1, and if we define the set of communication
channels Cy, = {sg generate,sg sequence} (which are the communication chan-
nels used by the slot machine’s interface to interact with the Sequence Generator
service), the w-trace according to Qrch, Mir(SQ.(0rch) lc,)(sq), is:

0*.sg_generatelseed.sqg sequence!sequence.d*.

Which s the result of applying the mirror, projection and Web service quiescence
to the sequence of communication actions obtained from the orchestrator of the Slot
Machine example (with C, = {sg_generate, sg_ sequence}):

u_ start?token.sg _generatelseed.sqg sequence?sequence.u_ screenlwin.

Thus, this trace can be used to verify if the implementation of the Sequence
Generator service is compatible with Qrch.

We now define our correctness relation for Web services with respect to orches-
trators. This relation is characterized by a property relating the Web services seen
as usual SUTs and the w-traces according to the orchestrator, where w refers to
the concerned Web service.

5.4. Correctness of Web Services with respect to Orchestrators 81

Definition 5.4.5 (Compatibility relation) Let Orch be an IOLTS over C, let
w € W,and let WUT be an SUT over Cwyr, verifying Cy, C Cwur.

We note Traces(WUT)|c,, the subset of traces of WUT whose elements cannot
be decomposed as 01.c?v.02, where 01,09 € (Act(Cy, M) U{0})* and ¢ ¢ C,,.

WUT is compatible with Qrch if and only if:

e CwurNCe=10
e for all w' # w, Cp N Cwyr =0

o for any o € (Traces(WUT)|c,) ¢, NSTr(Orch,w),

Jo € Act(Cy, M) U {6},
0.0 € (Traces(WUT)|c,,) dc,= 0.0 € STr(Orch,w)

Note that the compatibility condition given in Definition 5.4.5 is characterized
as the usual ioco relation between a restriction of WUT’s traces and STr(Qrch, w).
The restriction of traces of WUT, denoted Traces(WUT)|¢,, , simply contains WUT
behaviors that result from invocations of the orchestrator: all traces containing
invocations trough some communication channels that do not belong to Cy, are just
not considered. Then, the traces Traces(WUT)|c, are projected on the set of
communication channels Cy, ((Traces(WUT)|¢c,,) 4c,,) in order to make disappear
all occurrences of outputs on channels that do not belong to C,,.

Let us consider two WUT's over a set of communication channels {c,e} as de-
picted in Figures 5.2(a) and 5.2(b) (for the sake of readability, input completion
and quiescence enrichment are omitted form the figures. Input completion would
simply add loops on all states for all inputs that do not appear in a transition of
some state).

Now, in Figure 5.2(c) we depict, abusively in the form of an JOLT'S, the set of
traces STr(Orch,w) of some orchestrator defined over C. w may be either WUT}
or WUTy (both are defined over the set {c,e} of communication channels). We
have that STr(Qrch,w) is {m.c?u.clo.m’ | m € {§}*,m € {§}*} for both WUT}
and WUTs.

The usage of the operation | removes all traces on WUT] that contains invoca-
tions on the channel e, since they do not have to be compared with traces of Qrch
(Orch never specifies what happens after such invocation). Thus, Traces(WUT1)|c
is {m.c?u.m’ | m € {6}*,m € {6}*}. Applying lc on Traces(WUT1)|c has no
effect since elements of Traces(WUT))|c do not contain any occurrence of actions
of the form e?v; (by definition of |¢) or elvy (v; and vy are any elements of M).
Thus, (Traces(WUTY)|c) o= {m.c?u.m’ | m € {6}*,m € {§}*} and, since it con-
tains c?u.d which does not belong to STr(Orch, WUT}), we have that WUT] is not
compatible with Qrch. Even though the presence of the output clo in WUT} would

82 Chapter 5. Eliciting Web Service Behaviors

(b) WUTs. (c) STr(Orch,w).

clo

c?u c?u
G o o
e?u elu
clo clo
(a) WUT.

Figure 5.2: Compatibility relation example.

have let us suppose that WUT) interacts correctly with Qrch, in fact, the output
clo results from two successive invocations: c?u and e?u, while Orch specifies that
clo can be observed after only one invocation c?u.

Now, considering WUT5, we have that Traces(WUTs)|c is Traces(WUT3), and
the application of |¢ makes disappear the occurrences of elu in Traces(WUTs)|c.
That is, (Traces(WUTs)|c) o= {m.c?u.clom’ | m € {6}*,m € {6}*}, which is
exactly STr(Qrch, WUTy). Therefore, WUT3 is compatible with Qrch.

In Chapter 8, we show how to adapt our testing framework in order to evaluate
the correctness relation given in Definition 5.4.5.

5.5 Conclusion

In this chapter we have shown how to elicit behaviors from Qrch in order to state a
compatibility relation for Web services supposed to be plugged to the orchestrator.
Those behaviors are precisely the ones specified by the orchestrator. First, we need
to identify the valid quiescence situations of the Web services. We assume that the
orchestrators we consider invoke all the Web services involved in the orchestration.
This property is called fairness invocation of Web services and is necessary because
the situations where the Web services are allowed to be quiescent are precisely
determined when the orchestrator is interacting with them. Once these situations
have been identified, we proceed to transform the traces from Orch by means of the
mirroring and projection operations. We have defined the compatibility relation as
a relation between traces of a Web service under test and traces reflecting behaviors
of the Web services expected by the orchestrator. Then, the compatibility relation
is formalized in a similar way to the ioco relation.

This work complements the one presented in Chapter 4, where the orchestrator

5.5. Conclusion 83

itself is tested in context to determine if it conforms to its partial specification. In
this way, and under some hypothesis, we can test the conformance of the orches-
trator with respect to its partial specification and the compatibility of the Web
services (for which we do not have their specification), with respect to their elicited
behaviors (expected behaviors) from the orchestrator’s specification. Thus, we have
shown that for orchestrations, which are a special type of component-based systems
where there is a central component guiding the entire system, and because of this
central component, we can perform some interesting tests that allow us to check the
conformity of the orchestrator and the compatibility of the Web services with the
orchestrator.

Part 11

Symbolic Approach for Testing
Orchestrators in Context

87

In this part of the thesis, and hereon, we no longer work with TOLTSs but
with generic representations of them: Input/Output Symbolic Transition Systemns
10STS. 10STSSs are presented with detail later in this document, but here we focus
in explaining why we make the transition from IOLT'Ss to IOSTSs. IOSTSs are
concise representations of usual IOLT'Ss, introducing symbolic data to characterize
internal states, to express firing conditions of transitions and to denote messages
exchanged through communication channels. Thus, IOSTSs are a way to encode
IOLTSs in such a way that it allows to explicit the relation and dependencies
between the data.

We use IOLTSs for the theorization of our approach mainly because ioco is
defined by using them as their models of the specifications and implementations
(more strictly, it uses LT'Ss, which are similar structures regarding the JOLTSs).
Thus, choosing the JOLT'Ss allows us to use the results obtained with LTS and
ioco ([Tretmans 1996b, van der Bijl 2003b, van der Bijl 2003a]) and adapt them to
define the formal basis of our approach, as presented in Part I. Besides, there are
various works based on LT'Ss and its variations ([Jéron 2004, Tretmans 1996a]), so
we can rely on the fact that they are well suited for formal works with conformance
testing.

We use IOST'Ss hereon mainly because:

e By using them we can reduce the situations of non-determinism. IOSTSSs,
as defined in the following chapter, introduce more precise information in
the transitions. Especially, they introduce the notion of guards, which are
conditions of the transitions. Thus, when there are two transitions leaving
from the same state, in several cases, one can know which or why one of the
two transitions is executed.

e JOSTSs introduce the concept of attribute variables. That is, instead of enu-
merating all possible real data when modeling systems, an TOST'S uses these
attribute variables (called also symbols). This abstraction of real data helps
reducing the number of situations when the model reaches a large number of
states. This problem is also known as state explosion problem [Valmari 1998].

e The testing algorithm we define (based on the one presented in [Gaston 2006])
is given in a symbolic way, based on symbolic execution techniques. Thus, by
using TOST'Ss to model the specifications of the systems under test, and by
using the symbolic techniques presented later, we can use the algorithm to
test the conformance of implementations with respect to their specifications.

e JOSTSs are a general abstraction of the TOLT'Ss, and as presented in the
following chapter, for each TOST'S there is a unique IOLT'S associated with
it. Semantics of an TOSTS is also given by means of an JTOLTS. It means
that both automata are closely related, and that the operations performed
over IOST'Ss could also be expressed with IOLT'Ss and vice-versa. Thus, the
results of Part I apply also for TOST'S.

88

From the above mentioned facts, IOST'Ss are a good option for modeling sys-
tems. Moreover, the prototype we developed uses the IOST'Ss and the symbolic
techniques as its basis, and it would have been more difficult to develop it by us-
ing only IOLTSs, since the models of the systems under text would have been
significantly large.

Finally, theoretical results are advantageously presented in an LTS framework
because this framework is simpler and because the size of models does not matter
to state theoretical results. On the contrary, in practice, for defining models and for
applying tools and algorithms, the size and algorithm efficiency become of primary
interest. This mainly explains the interest of JOST'Ss with respect to IOLTSs.
Besides, this approach of developing the theory with the LTS framework and taking
it to the symbolic framework has already been done, as well as adaptations of ioco
to STS. Those approaches are similar to ours, the main difference consists in the
way that test purposes are defined. In [Rusu 2000, Jeannet 2005], test purposes are
given by means of automata. In [Frantzen 2006b], inputs are computed according to
the observations until a verdict is emitted. Our approach is based on [Gaston 2006],
where test purposes are selected from the unfolded specification of the system.

CHAPTER 6
Input/Output Symbolic
Transition Systems

Contents

6.1 Introductionttt 89
6.2 Symbolic Transition Systems 90
6.2.1 First order Logic for IOSTSs 91
6.2.1.1 Datatypes 91

6.2.1.2 Semanticso 92

6.2.2 Syntax of the IOSTSs 93
6.2.3 Behaviors of the IOSTSs 96
6.2.4 From I0STSs to IOLTSs 100

6.3 Symbolic Executiont 102
6.3.1 Generating a Symbolic Execution Tree 103
6.3.2 Operations over the Symbolic Execution 108
6.3.3 Stop Criteria 110

6.4 Conclusion 111

6.1 Introduction

N this chapter we present what is known as the the symbolic execution tech-
I niques that we use in order to test orchestrators in context and the com-
patibility of Web services. By using IOSTSs and symbolic execution tech-
niques [Pasareanu 2009, King 1975, Clarke 1976], we can translate the work done
in Part I from the numeric version (based on IOLT'Ss) to the symbolic one (based
on IOSTSs). The basic idea of the symbolic execution is to execute programs or
specifications using symbols instead of concrete data as input values, and to derive
symbolic executions (tree-like structures) in order to describe all possible computa-
tions, behaviors or situations of the program in a symbolic way.
10STSs introduce the notion attribute variables to represent concrete data and
this is why they are extremely well fitted to be used together with the symbolic
execution technique. The fact of using attribute variables instead of concrete data
greatly reduces the state explosion problem [Valmari 1998], and introduces interest-
ing advantages when performing the testing activity, as we show in next chapters.

90 Chapter 6. Input/Output Symbolic Transition Systems

The symbolic execution trees resulting from the symbolic execution of an IOSTS
has some interesting properties that are worth mentioning: first, each symbolic state
in the tree-like structure can have any number of child states, each one representing
different situations that can happen in the system. Then, each state has a unique
underlying execution path leading to it. It means that there is a concrete sequence
of inputs that can be given to the system that will reach that path. Second, every
time there is a decision to make, different branches of the tree represent the different
decisions that can be taken and, what is more interesting, the decisions that have to
be taken in order to reach a given state of one branch of the tree are different from
the ones that have to be taken in order to reach any other state in any other branch.
These decisions are stored in states of the tree (usually, when speaking about a tree
structure, it has no states but nodes; however, in our work, we took the decision to
call them states), and can be thought of as accumulators of properties which the
inputs must satisfy in order to perform an execution that follows a particular path.
Besides storing the decisions that are taken, we also store the history of transitions
that were executed in the form of symbolic traces.

The symbolic execution tree represents all the possible behaviors of the system
in a symbolic way, thus, if one wants to execute one of those behaviors in the system,
it suffices to find concrete data for the different symbols in the corresponding branch
satisfying the conditions accordingly, so one can guide the system to a specific state.

Finally, the symbolic execution has already been used to test different types
of systems. In [Bentakouk 2009], authors use symbolic execution techniques in an
approach similar to ours (their test purposes are a unique branch of the three,
while in our case, we use more general test purposes represented by subtrees of the
symbolic execution). Among other works using the symbolic execution technique
for testing purposes (not only black-box model-based testing but also structural
testing) we can refer to [Khurshid 2003, Xie 2005, Tillmann 2006, Inkumsah 2008].

In this chapter we begin with Section 6.2 by introducing the IOST'Ss, for which
we present their syntax and semantics. Then, we show how to apply symbolic exe-
cution techniques on IOST'Ss in Section 6.3, where we also present some operations
that will prove useful in the generation of test cases. We conclude the chapter with
Section 6.4.

6.2 Symbolic Transition Systems

In this section we introduce the syntax of the TOSTSs as well as their semantics.
We begin by introducing the data upon which the IOST'Ss are built. This data
is characterized by means of usual multi-sorted first-order logic. In practice, those
data essentially comprise the Presburger arithmetic, and some enumerated types for
ensuring constraint solving capacities.

Based on these data, we introduce the rest of concepts related to an IOSTS:
their signature, the communication actions, and so on. Finally, as motivated by
the introduction to Part II, we define how to obtain a unique IOLT'S from a given

6.2.

Symbolic Transition Systems 91

108TS.

6.2.1 First order Logic for /0STSs

6.2.1.1 Datatypes

A data type signature is a couple © = (S5,0p) where S is a set of type

Let

names and Op is a set of operation names, each one provided with a pro-
file s; -+ sp1 — sy (for i < n,s; € S). In the following, even if it is not
explicitly defined, all data types are related to a given signature €.

Example 6.2.1 Let us consider the signature Qn = (Sn, Fn) associated to
the specification of elementary arithmetic.

e Sy = {nat,bool}

o Fy = {0:— nat,

succe : nat — nat, (successorship)
+ : nat X nat — nat, (addition)
<:nat X nat — bool, (inequality less than)

true :— bool,
false :— bool}

V= H Vs be a set of typed variable names. The set of Q-terms with
sesS
variables in V' is denoted Tq(V) = U Ta(V)s and is inductively defined as

seS
usual over Op and V. The application Type : To(V) — S is the function

such that for each t € To(V)s, Type(t) = s. In the following, we overload the
notation Type by defining Type(X) = s for any set X C V;. T(0) is simply
denoted Tq.

Example 6.2.2 Using the signature Qn = (Sn, FN), let us consider the typed
variable names V. = Viat U Voo, with Vpar = {z,y} and Vieoy = 0. The
following are some Qn-terms with variables in V (T, (V)):

0, z,y, succ(0), succ(z), succ(y), +(0,0).

The following are some examples of couples of the form (t,s), with
Type(t) = s, according to Type : Ta (V) — S:

(0,nat), (suce(zx),nat), (+(0,0),nat).
Notation 6.2.0.1 In the following, for the sake of simplicity, we adopt an

infiz notation instead of the prefix one. For instance, we note 0+ 0 instead of

+(0,0).

92 Chapter 6. Input/Output Symbolic Transition Systems

A Q-substitution is a function ¢ : V. — Tq(V) preserving types, that is, as-
sociating to each variable v of type s, a term ¢ in T(V) also of type s.
In the following, we note T (V)Y the set of all Q-substitutions of the vari-
ables V. Any substitution ¢ may be canonically extended to terms (with
o(f(tr...tn)) = f(o(t1))... f(o(tn))). The identity -substitution over
the variables V, Idy, is defined as Idy(v) = v for all v € V.

Example 6.2.3 Based on Ezamples 6.2.1 and 6.2.2, we can define the follow-
ing Qn-substitution o : V — Ta, (V) such that o(z) =2+ 1 and o(y) =y +1,
and is noted [t — z+ 1,y — y + 1].

For example, we have then o(x+y) = (x+ 1)+ (y + 1).

The set Senq(V) of all typed equational Q-formulae contains the truth values
true, false and all formulae built using the equality predicates ¢ = ¢’ for
t,t' € Ta(V)s, and the usual connectives =, V, A.

Example 6.2.4 Based on the signature and terms of Examples 6.2.1 and 6.2.2,
we can define the following formulae:

o=y
o (0 = suce(x))

e r+0==zx

o x + succ(y) = succ(x + y)

6.2.1.2 Semantics

A Q-model is a set M whose elements are associated with a type in S, and we
note My C M the subset of M whose elements are associated with s. Each
fis1---sp, — s € Op, is interpreted as a function
fv: Mg, x - x My, — M.

We define Q-interpretations as applications v from V to M preserving types and
extended to terms in To (V). MV is the set of all Q-interpretations of V in M.

A model M satisfies a formula ¢, denoted by M = ¢, if and only if, for all
interpretations v, M =, ¢, where M =, t = ¢’ is defined by v(t) = v(t'),
and where the truth values and the connectives are handled as usual. Given
a model M and a formula ¢, ¢ is said satisfiable in M if there exists an
interpretation v such that M =, ¢.

M denotes a given (:-model and values of M are qualified as concrete.

In the rest of this thesis, we suppose that data types of our IOST'Ss correspond
to the generic signature 2 = (S,0p), and are interpreted in a fixed model M.
Q contains the usual datatypes bool, integer, and string, provided with classical
operations as + (addition), — (subtraction), and * (multiplication). This is left
implicit in the sequel.

6.2. Symbolic Transition Systems 93

6.2.2 Syntax of the I05TSs

Based on the datatypes presented in Subsection 6.2.1, we define the attribute vari-
ables, which are typed variables used to store data inside states of the transition
systems that we use. We note this set as A = U As. Thus, messages in an IOSTS

seS
can be either attribute variables or terms over them, and which are sent over what

we define as communication channels. We note C' the set of communication channels
that are used by a given IOST'S. As for IOLT'S, messages sent through communi-
cation channels can be of two types:

e Outputs; which are emissions of values from the system to its environment
over a communication channel in C, denoted c!t, where ¢ is the name of the
channel and t is the value emitted and defined as a term of T (A).

e Inputs; which are receptions over a channel in C, denoted as c¢?z where c is
the name of the channel and x is the attribute variable where the received
value is stored.

TOSTS are defined over a signature, which is a structure that contains all the
variables and communication channels that can be used by an IOST'S.

Definition 6.2.1 (IOSTS signature) Let A be a set of typed variables and C' be
a set of communication channels.
An IOSTS signature ¥ is defined as the tuple (A, C)

Remark 2 In the following, we consider that all IOSTS are defined over a signa-
ture 3.

Example 6.2.5 Let us consider the signature Xgn = (Asm, Csm) that is used later
in our examples, with the set of attribute variables and communication channels
given by:

Asm = {token, seed, win_seq, seq}.

Csm = {u_start,sg_generate, sg_sequence,u_ screen}.

Usage of the set of attributes variables and communication channels is introduced
later in Ezample 6.2.7. Here, it is important to notice that communication channels
of the form u_ start, where the u in the name of the communication channel states
that it is used for interactions with the user by means of the operation start, or of
the form sg_generate, where sg states that the communication channel is used to
interact with the Web service sg by means of the operation generate.

We now define the communication actions that can be used by an 10STS.
Communication actions can be inputs or outputs sent by communication channels,
or they can be internal actions. Internal actions represents the fact that the system
is executing an operation that does not involve any communication with the exterior.
As for IOLT'Ss, the internal action is generically denoted by 7.

94 Chapter 6. Input/Output Symbolic Transition Systems

Definition 6.2.2 (Communication actions) Let X be an IOSTS signature.
The set of communication actions over ¥ is defined as Act(X) = I(Z)UO(X)U{r},
where:

o IX)={clz |z €A ceC}
e O(X)={clt|teTa(A),ceC}

Example 6.2.6 Based on the signature Xs,, of Example 6.2.5, we can give some
communication actions in Act(Xgm):

sg_generatelseed, which represents an output sent to a component in the system by
means of the term with a single variable.

u_ screen!’lose’, which represents an output sent to the user by means of a con-
stant. This constant (and another one introduced later, win’) is used later in
Ezample 6.2.7 to denote constant strings that represent messages sent to the user.
Since constants never change of value, we did not include them in the set of attribute
variables Agp,: they belong to the set of terms €.

T10OSTSs are structures composed of states, an initial state, and transitions going
from one state to another. Transitions are composed of: guards, which are condi-
tions that have to be satisfied in oder to fire the transition; communication actions,
introduced in Definition 6.2.2; and affectations, representing the modifications on
the attribute variables when firing the transition.

Definition 6.2.3 (IOSTS over ¥) Let ¥ = (A, C) be an IOSTS signature.
An IOSTS over X is a tuple G = (Q,init, Tr) where:

e () is a set of state names
o init € Q) is the initial state

o Tr C Q x Seng(A) x Act(X) x To(A)4 x Q is a set of transitions

Notation 6.2.3.1 In the following, for any IOSTS G of the form (Q,init, Tr)
over X3, we use the notations Qg, initg, and Trg in order to refer, respectively, to
Q, init, and Tr.

In the same way, for any transition tr € Trg of the form (q,,act,p,q’) we
use the notations source(tr), guard(tr), act(tr), sub(tr), and target(tr) in order to
refer, respectively, to q, ¢, act, p, and ¢'. If sub(tr) does not affect any variable in
A, we note it Idy, which stands for the identity function over the set A.

We represent an JOST'S in the standard way, that is, by a directed, edge-labeled
graph where nodes represent states and edges represent transitions. Transitions are
represented with an arrow — representing the flow of the communication from their
source state to their target state. Moreover, if guard(tr) = true, then it is omitted
in the graph; if sub(tr) = Idy, then it is also omitted in the graph.

6.2. Symbolic Transition Systems 95

Figure 6.1: One transition of an IOST'S.

Before giving an example of an IOST'S, let us say more about the notion of a
transition. Basically, a transition represents the change of a state in the system.
This change of state can be due to a reception or emission of a value (output c!¢
or input ¢?z), or to the execution of an internal action (7) that does not involve
any communication with the environment. Besides of the communication action, a
transition also has important information associated with it, namely, the necessary
condition that has to be valid in order to execute the transition (the guard), as
well as the attribute variables that are modified from one state to another. Let us
consider the transition ¢tr depicted on Figure 6.1. Here, the set of attribute variables
is {d,v}, a and b are terms of , and ¢ is a communication channel of C'. In order
to go from state ¢g to state g1, the condition a > b (guard(tr)) has to be satisfied.
Only when the value of the attribute variable a is greater than the one of b the
transition can be fired. If this condition is true, then the system can receive a value
over the communication channel ¢ that will be stored on the attribute variable v.
Once the reception over the variable v is performed, the affectation is executed (d is
incremented in one unit) and the system is finally in state ¢;. Note that the order
of execution of the elements of the transition is: first we check guard(tr); then a
new value for the variable v can be received over c; and finally, the affectation is
executed and the system is in state q;.

Thus, IOST Ss have important information of the modeled system, since, besides
the information provided by the transitions, they represent its status by means of
the variables in each state, and show, in each state, the affectations that are made
over such variables.

Example 6.2.7 Let us recall the Slot Machine example introduced in Part I in
Chapter 3: the system is composed of the orchestrator (slot machine’s interface,
SM) and of one remote Web service (the Sequence Generator service, SG). The user
interacts with SM by sending it a token, them SM interacts with SG in order to
determine a sequence for the user, which is finally notified whereas he or she won
(because his or her assigned sequence was equal to the winner sequence) or not.

Figure 6.2 depicts the IOSTS G for the Slot Machine ezample. Its signature is
the one introduced in Example 6.2.5 and its set of communication actions the one
that can be obtained from Xgn = (Asm,Csm). The set of states is {qo,q1,42,q3}-

u_ start?token

Transition qo q1 denotes the reception of a value sent from the
seed=random(token)

win_ seqg=random(seed)
user through the communication channel u_ start and stored in the attribute vari-

96 Chapter 6. Input/Output Symbolic Transition Systems

seq <> win_seq
u_screen ! 'lose'

seq = win_seq
u_screen ! 'win'

u_start ? token

seed = random(token) sg_sequence ? seq

win_seq = random(seed)

sg_generate ! seed

Figure 6.2: IOSTS for the slot machine example.

able token; as well as the modification of the attribute variables seed and win_ seq
according to the received value and by means of a dedicated computation function
random(integer).

Its structure is similar to its respective IOLT'S of Figure 3.3 in Section 3.2.1,
but we can notice that the IOSTS is more complete, in the sense that it also takes
into account the firing conditions of each transition, it represents the status of the
variables in each state, and shows the affectations that are made over such variables.
Finally, as glimpsed before, we consider the random(integer) function as a dedicated
computation function over its argument (for instance, random(x) = x*2+1).

6.2.3 Behaviors of the /OSTSs

The behavior of an TOST'S, also called its semantics, is defined by the notion of the
interpreted traces that can be generated from it. Traces are possible successions of
communication actions that are specified by an IOSTS. However, those succession
of communication actions are to be interpreted in order to get real values. Therefore,
we give a series of definitions that are needed in order to define the behavior of
an TOSTS. We start by defining the notion of concrete actions, which are the
interpretations of the communication actions.

Definition 6.2.4 (Concrete actions) Let ¥ = (A, C) be an IOSTS signature.

Se set of concrete actions over X is the defined as Actpr(X) = Iy (Z)UO N (X)U
{7}, where:

I (C) ={ctv | ce C,v e M}

Oym(C)={clv|ceCyve M}

The value v is the interpretation of the received or emitted terms.

6.2. Symbolic Transition Systems 97

Example 6.2.8 Based on Figure 6.2, we take the communication action of the tran-
sition going from qo to q1, that is, u_ start?token. One possible interpretation, i.e.,
a concrete action of the attribute variable token, is the concrete value 1, that would
give the concrete action u_ start?l, corresponding to the fact that the environment
(the user) sends the value 1 that is to be stored in the attribute variable token.

Traces of an IOLT'S are built from sequences of transitions. The semantics of
an JOSTS is then built upon the semantics that we give to the transitions.

Definition 6.2.5 (Semantics of a transition) Let G = (Q,init,Tr) be an
10STS over X.

The semantics of a transition tr € Tr of the form (q,p,act,p,q') is the relation
Run(tr) € M4 x Actpr(2) x M4, such that (v;,actyr,vy) € Run(tr) if and only if:

o if act is of the form c!t, then M |=,, ¢, vy = v;0p and actpy = clv(t)

e if act is of the form c?x, then M =, @, there exists v, such that v,(z) = vi(z)
for every z # x, vy = v, 0 p, and actyr = c?vg(x)

e if act is of the form T then M |=,, ¢, vy = v;op and actyy =T
Notation 6.2.5.1 In the following, Run(tr) stands for the run of a transition and,

for any run v of Run(tr) of the form (v;, actar,vy), we use the notations source(r),
act(r), and target(r) in order to refer, respectively, to v;, actyr, and vy.

The application v; is the interpretation of variables before executing the transi-
tion, and vy is the interpretation of the variables after the execution of the transition.
act)y is the interpretation of either the value sent or received in the communication
action of the transition or the internal action 7.

Example 6.2.9 Based on Figure 6.2, let us consider again the transition going from
qo to q1. A possible run for the transition is the case where the attribute variables
before executing the transition have the values:

[token — 0, seed — 0, win_seq — 0, seq — 0],

and with the final values (after executing the transition):

[token — 1, seed — 6, win_seq — 4, seq — 0] (the values of seed and win_seq
depend on the definition of the function random, which is not described here).

Paths are sequences of transitions beginning at the initial state of the IOSTS.

98 Chapter 6. Input/Output Symbolic Transition Systems

Definition 6.2.6 (Paths of an IOSTS) Let G = (Q,init,Tr) be an IOSTS

over X.
The set of paths, denoted, by abuse, Path(G), contains all the finite sequences
try - - -try, of transitions of T'r such that:

e source(try) = init
o for every i, 1 <1i < m, target(tr;) = source(tri+i)

We define, for any q € Q, the set Path(q) C Path(G), such that p € Path(G),
p=try---try, p € Path(q) if and only if target(tr,) = q

Notation 6.2.6.1 In the following, for a path p = try ---try, the length of the path
p is denoted length(p) = n.

Note that the set Path(q) contains all the paths such that the target state of
the last transition of the path is q.

Example 6.2.10 Based on the IOSTS of Figure 6.2, a finite of that IOSTS is
the one composed by the transitions going from state qo to q2. That 4s, the path
composed by the transitions:

(qo, true,u_ start?token, p,q1).(q1,true, sg generatelseed, Id,qs), with
p: [seed = random(token), win seq — random(seed)].

This path is also an element of the set Path(qs).

The run of a path is the sequence of runs of the transitions in the path, where the
target state shares the variable interpretation with the source state of the consecutive
transitions.

Definition 6.2.7 (Runs of paths) Let G be an IOSTS over X.

The set of tuns of a path p, denoted Run(p), for a path p = try---tr, in
Path(G), are sequences r1 - - -1y, such that:

e for alli <n, r; is a run of tr;, r; € Run(tr;)

o for all i < n, target(r;) = source(tri;1)

We define the runs of paths of G, denoted RP(G), as
RP(G) = Upepatn(c) Bun(p)

For the same testing reasons that for JOLT'Ss (Section 3.2, Definition 3.2.7),
we make the hypothesis that the TOSTS we use are strongly responsive, i.e., they
always eventually enter in a quiescent state, or, what is the same, they do not have
infinite 7 transitions or outputs.

6.2. Symbolic Transition Systems 99

Definition 6.2.8 (Strongly responsive [0STS) Let G be an IOSTS.

Let Live(G) be the greatest subset of Path(G) verifying that for all p € Live(G),
Itr € Tr, with act(tr) € O(X) U {7} such that p.tr € Live(G).

G 1s strongly responsive if and only if Live(G) =0

Live(G) of Definition 6.2.8 represents the set of behaviors of G that can continue
infinitely without any intervention from the exterior. Since in the test activity it is
necessary to interact with the system, and more especially, observe its reactions, in
our work we test only systems that can be modeled by means of strongly responsive
IOSTSSs, or, what is the same, only TOST'Ss whose subset Live(G) is the empty
set.

The interpretations of the communication actions of the paths are called concrete
traces, and are defined as follows.

Definition 6.2.9 (Concrete traces) Let G be an IOSTS over ¥, and let
p € Path(G).

The set of concrete traces of a path p, denoted traces(p), is the set
UreRrun(p){traces(r)}, where traces(r) is inductively defined as follows:

e if r is g, then traces(r) is e

o if p is of the form p'.tr and r is of the form r’.a, where v’ € Run(p’) and
a € Run(tr), then:
— if act(a) is T, we have traces(r) is traces(r')
— if act(a) is not T, we have traces(r’) = traces(r).act(a)
Example 6.2.11 If we take the path in Figure 6.2 going from states qo to q3, and

then again to qo by the transition with the communication action u_ screen!’win’,
a possible sequence of concrete traces of that path is:

u_start?l. sg generatel6. sg sequence?d. u_ screen!’win’.

Finally, the behaviors of an IOSTS, also called its semantics, are defined as the
set of all the concrete traces that can be obtained from its paths.

Definition 6.2.10 (Semantics of an IOSTS) Let G be an IOSTS over ¥.. The
semantics of G is defined as:

Traces(G) = U traces(p)
pEPath(G)

For testing reasons, as we did in Part I, what is interesting for us is the set
of suspension traces which can be built from the traces of the system. Suspension

100 Chapter 6. Input/Output Symbolic Transition Systems

traces are the ones that are built by taking into account the quiescent situations of
the system, that is, the situations where it cannot evolve by itself. Thus, suspension
traces represent the real semantics of the systems, especially for testing purposes. In
our approach, we define such traces by means of the symbolic execution techniques,
as introduced in Definition 6.3.9. Until now, we have defined the automata under
which we base the symbolic execution: the IOST Ss; as well as the traces that are
defined by them in a natural way.

6.2.4 From [0STSs to IOLTSs

As discussed in the introduction to Part II, in this section we show the relation
between the TOLTSs and the IOST'Ss in a more systematic way. More specifi-
cally, we show how to build an IOLTS from an IOSTS. Basically, it suffices to
interpret the attribute variables introduced in the JOST'Ss (in the states and in
the transitions) and define enumerated states and transitions with those interpreta-
tions. Thus, JOSTSs are just intentional definitions of JOLT'S, and from any given
10STS we can obtain an IOLT'S by applying the following definition.

Definition 6.2.11 (IOLTS associated to an IOSTS) Let G be an IOSTS
over ¥ = (A,0).

The associated IOLTS of G, denoted Grrs = (QG,rs, Mt rg: LTGLrg) OVET
Act(C, M), is such that:

e Vg € Qg, the set of numerical states of ¢ is defined as num(q) = {(p,v) | p €
Path(q) ANv € MA}

e the set of numerical states of G is defined as num(G) = |J,co num(q)
Then:

® Qc,rs = num(G) U {initg}

o nitg, g = iNitg

o T'rg, g s defined as follows:

— for allv € M4, (indtg g, T, (6,7)) € TG rg
— for all tr = (q,,act,p,q) € Trg, for all (p,v) € num(q) such that

M =, ¢, then ((p,v),actyr, (ptr,v')) € Trg, ¢, where actyr and V' are
defined as follows:

* if act is of the form clt (resp. T) then V' = vop, and actyr =lc v(t)
(resp. actyr = T)

* if act is of the form c?x then there exists v such that v°(z) = v(2)
forall z #x, vV =v%o0p, and actyr = Tc_v*(x)

Note that Grrs has a tree-like structure: it has an initial state (root) initg, ¢
and for any state of Qg, ¢ there is at most one path leading to it.

6.2. Symbolic Transition Systems 101

o

?u_start_1

((qo,ufstart?token,q1),token=1...) ooe

!sg_generate_6

(...(ql,sgfgeneratelseed,qz),token:l;seed=6...) .ee

?sg_sequence_4

(..-(9,,59_sequence?seq,q,),token=1;seed=6;seq=4...) eee

lu_screen_'lose’ lu_screen_'win’

(...(a5u_screen!'lose’,q,),token=1;seed=6;seq=4...) see (...(a5,.u_screen!'win',q), token=1;seed=6;seq=4...) e+

« ~

Figure 6.3: IOLTS Gprg for the IOSTS of Figure 6.2.

The first two items in Definition 6.2.11 indicate how to build the set of states
of Gyrg. For each state in ¢ € Qg, we can define its set of respective numerical
states by defining the set of pairs whose first element is a path leading to ¢, and the
second one can be any interpretation of the attribute variables.

The first item in the construction of Trg,,, denotes the construction of the
states that can be reached from the initial state. Such set of states is the set of all
the possible interpretations of the attribute variables in A. The second item shows
how to build the transitions between the set of numerical states. Basically, if the
communication action in tr € T'rg is an output of the form clt, then the numerical
transition has as final states all the possible interpretations of the attribute variables
in the affectation of the transition. If the communication action is an input of the
form c?x, then the transition has as final states the resulting interpretation of both
attribute variables in the affectation of ¢r and the variables in the communication
action.

Remark 3 The traces that can be obtained from the LTS Grrg are, by construc-
tion, the traces that can be obtained from the IOSTS G, since the traces of an
IOSTS are constructed by interpreting the attribute variables of the paths in Path(G).
Thus, any trace in Grrg is also a concrete trace in G, and reciprocally.

Example 6.2.12 Figure 6.3 depicts one part of the associated IOLTS Gprg to the
10STS G of Figure 6.2. Note that, for readability reasons, not all the information
nor every interpretation is depicted, and the tree was cut when reaching the initial
state for the second time. Also, the final structure is similar to the IOLTS for
the Slot Machine example, of Figure 3.3 (Section 3.2), but here Gprs has a tree

102 Chapter 6. Input/Output Symbolic Transition Systems

structure, so the loops are presented as repeated successions of transitions. In other
words, Grrg is the unfolded version of the IOLTS.

6.3 Symbolic Execution

Symbolic execution [King 1975] is a technique that consists in executing a program
by using arbitrary symbols instead of real data. Thus, computational operations
involving conditions, assignments, etc., receive symbols as inputs and produce sym-
bolic formulae as outputs. This technique has the advantage, first, of reducing the
state explosion problem, and second, of fitting extremely well with the IOSTSs:
the IOST'Ss are then executed by using symbols instead of concrete data. The idea
is to generate a tree-like structure which represents all the behaviors accepted by
the IOSTS in a symbolic way.

fo
1: Function Example(X); iz»zo, X=X

{Path Condition: TRUE

2: IF X > 0 THEN;

3: Z=x; | e
T T "

4: ENDIF; 5 3

5: RETURN (Z); 2Xgs XX, Z%io, ><ac>l<_0_ .

6: END; Path Condition: x>0 Path Condition: x <0

(a) Program code. (b) Symbolic execution.

Figure 6.4: Symbolic execution of a simple program example.

To better understand the idea of the symbolic execution, let us consider the
Figure 6.4. Figure 6.4(a) shows the code of a function Exzample(X). Figure 6.4(b)
shows its associated symbolic execution, where for each variable in the program, a
symbol is introduced to denote its initial value. Note that it has a tree-like structure,
since each time a decision has to be taken (for example, when encountering a while
or an if instruction), a new branch is added to the tree. This branch represents the
decision that was taken or condition that has to be met in order to reach the states
of the branch (or states of the system). Thus, each state has an associated path
condition, which is the set of conditions that have to be met in order to reach that
state. In order to reach the left branch, xg must be greater than 0. Besides, in the
tree-like structure, we can store more relevant information. In the figure, we can
see that in each state of the tree we store the symbols representing the value of the
variables (symbolic values) and the path condition of the state.

We begin this section by introducing the syntax-related notions of the symbolic
execution, as well as how to obtain it from a given IOST'S. Then we define the
behaviors associated with a symbolic execution, and we finish the section by in-
troducing two operations (quiescence enrichment and 7-reduction, Definitions 6.3.9
and 6.3.10) that are going to be used in the next chapters in order to test orches-
trators in in context and elicit behaviors to test Web services.

6.3. Symbolic Execution 103

6.3.1 Generating a Symbolic Execution Tree

We start by introducing the values, called fresh variables, that we use when applying
the symbolic execution technique to IOST'Ss. Those values are in fact symbols, and
we note the set of fresh variables by F', where F'N A =). In the sequel, we assume
that this set F' is given even if not specified, as well as the corresponding I0ST'S
signature defined over it.

We introduce now the notion of symbolic traces. Symbolic traces are used in the
symbolic execution as a way to store information about the exchanged communica-
tion actions, as well as the d situations.

Definition 6.3.1 (Symbolic traces) Let ¥p = (F,C) be a signature.

The set of symbolic traces over F denoted, by abuse, Traces(Xr), is the set of
all finite sequences over Act(Xp) U {d}

Symbolic traces can be interpreted as concrete ones, denoting exchanges of con-
crete values by introducing, for each symbol, a concrete data.

Definition 6.3.2 (Concrete traces) Let Traces(Xr) be a set of symbolic traces.

Given an interpretation v : ' — M and a symbolic trace ts € Traces(X), the
interpretation of ts, denoted by v(ts), is the trace obtained by replacing in ts:

e any action of the form c?z by c?v(z)

e any action of the form clt by clv(t)

Notation 6.3.2.1 In the following, for any v = 7, v(ts) is called an interpreted
trace.

Symbolic states are used to store pieces of information concerning the execution,
namely the symbolic trace related to the current state of the symbolic execution,
the reached state of the orchestrator’s specification, the symbolic values assigned
to the attribute variables, and the constraints on those symbolic values after the
execution. Moreover, the constraints which are stored within the symbolic states
are called path conditions, and can be seen as the accumulator of properties which
the inputs must satisfy in order for an execution to follow the particular associated
path.

Definition 6.3.3 (Symbolic states) Let G be an IOST'S over X.

A symbolic state 1 is a quadruple (ts,q,o,m) where ts € Traces(Xr), ¢ € Q,
o € To(F)4, and w € Senqg(F).
We note S for the set of symbolic states over G and F

104 Chapter 6. Input/Output Symbolic Transition Systems

Notation 6.3.3.1 In the following, for any n € S of the form (ts,q,0,7), we use
the notations ts(n), state(n), sub(n), and pc(n) in order to refer, respectively, to ts,
q, o, and T.

When generating the symbolic execution tree, it may happen that some symbolic
states are not reachable. That is, the path condition of the symbolic state is not
satisfiable. Thus, we define the set of satisfiable symbolic states.

Definition 6.3.4 (Satisfiable symbolic states) Let G be an IOSTS over ¥,
and let S be the set of all symbolic states over G and F.

Ssat 18 the set of symbolic states of the form (ts,q, o,) for which there exists an
interpretation v : F — M such that v =7

Example 6.3.1 Let us consider the symbolic state n of the form (ts,q,o,7), such
that m = (a > b) A (b > ¢) A (¢ > a). As 7 is clearly unsatisfiable if interpreted over
the usual integers, we discard this type of symbolic states.

The symbolic execution of an IOSTS results from the symbolic execution of
its transitions. Symbolic executions of transitions are denoted as triples (n, sa,),
where 7 is the symbolic state from which the transition is executed, sa is the symbolic
interpretation of the communication action introduced in the transition, and 7’ is
the symbolic state reached by the execution.

Definition 6.3.5 (Symbolic execution of a transition) Let G = (Q,qo,TT)
be an IOSTS over ¥ = (A,C).

For any tr € Tr and n € S, such that source(tr) = state(n), a symbolic execu-
tion of tr from n is a triple (n,sa,n') € S X Act(Xp) X S such that:

o if act =7, then sa =T, and
i = (ts(n), target(tr), sub(n) o sub(tr), 7(n) A sub(n)(guard(tr)))

o if act = clt, there exists a fresh variable z of F', not occurring in n such that
sa = clz, and
n' = (ts(n).sa, target(tr), sub(n) o sub(tr),
m(n) A sub(n)(guard(tr)) A z = sub(n)(t))

e if act = c’x, there exists a fresh variable z of F', not occurring in n such that®
sa = c?z and
7 = (ts(n).sa, target(tr), sub(n){us) o sub(tr), m(n) A sub(n)(guard(tr)))

“Olurs2] is the application ¢’ verifying o' (z) = z and Vy # z, o' (y) = o(y).

Note that, according to the usual definition of symbolic execution of TOSTS
([Gaston 2006]), the symbolic action corresponding to a communication action of
the form clt is directly clsub(n)(t)). In our approach, however, we chose to use a

6.3. Symbolic Execution 105

new symbolic variable each time that a value is emitted (c!z, with z = sub(n)(¢))).
This modification does not affect the semantics of the symbolic execution but has the
inconvinient of introducing more fresh variables. However, it proves useful when elic-
iting behaviors from the symbolic execution (Chapter 8): outputs are transformed
into inputs and vice-versa.

Notation 6.3.5.1 In the following, str denotes a triple (n,sa,n’) and we use the
notations source(str), act(str), and target(str) in order to refer to, respectively, 7,
sa, and 1.

init: (e, q,, ag.true)

e u_start ? token,

u_start ? token ny: (u_start ? token, q,, o4, true)

seed = random(token)

win_seq = random(seed) .
o, token—token,, seed—seed;, win_sed—win_seqq,
seg—seq,
o token—token,, seed—seed,, win_seq—win_seq,
seg—seq,
(a) One transition of an TOSTS. (b) Symbolic execution of the transition.

Figure 6.5: Symbolic execution of one transition example.

Example 6.3.2 Let us consider Figure 6.5. Figure 6.5(a) depicts a transition of
an IOSTS (the IOSTS of the Slot Machine example of Figure 6.2). Figure 6.5(b)
depicts its symbolic execution. Note that there are two symbolic states (Defini-
tion 6.5.3) init and n;.

init contains the information before executing the transition: the symbolic trace
ts(init) is € since it is the initial state, its associated state state(init) of the IOSTS
is qo, the affectation sub(init) = o is the assignation of a value to each attribute
variable, and the path condition pc(init) is true for the same reason that it is the
initial state (there is no condition needed to be satisfied in order to reach this state).

The symbolic transition is labeled with the communication action of tr, but sub-
stituting the variables with their corresponding symbols. In this case, the commu-
nication action act(tr) = u_ start?tokeny, representing the fact that we are receiv-
ing a new value (symbol) to be stored on the variable token. The symbolic target
state target(tr) is m, which stores the same information as init except for the fact
that now the symbolic trace is now st(m) = u_ start?tokeny and its affectation
sub(ne) = o1 takes into account the fact that the value of the variable token is
no longer the symbol tokengy but tokeny. The path condition pc(ny) is the same as
pe(init) because guard(tr) = true.

106 Chapter 6. Input/Output Symbolic Transition Systems

Intuitively, as for the case of programs, the symbolic execution of an IOST'S can
be seen as a tree whose edges are symbolic states and vertexes are labeled by sym-
bolic communication actions. The root is a symbolic state made of the TOSTS’s
initial state, the empty symbolic trace, the path condition true (there is no con-
straint to begin the execution), and of an arbitrary initialization og of variables of
A associating to each attribute variable a new and different fresh variable of F'.
Vertexes are computed by choosing a source symbolic state n already computed
and by symbolically executing a transition of the JOSTS whose source is the state
introduced in 1. The symbolic communication action is computed from the transi-
tion’s communication action and from the symbolic values associated to attribute
variables in 7. A target symbolic state is then computed: it stores the target state
of the transition, the complete symbolic trace that has been executed in order to
reach the state (and which is computed by using the symbolic trace of the source
state and appending the new trace), a new path condition derived from the path
condition of n and from the transition guard of the transition, and the new symbolic
values associated to attribute variables.

Definition 6.3.6 (Symbolic execution of an IOSTS) Let G = (Q,qo,Tr) be
an IOSTS over ¥ = (A,C).

The symbolic execution, denoted SE(G), of G is the restriction (init, Rsat) to
Ssat of the couple (init, R) where:

o init = (e, qo, 00, true) such that Vx € A, oo(x) € F and oq is injective

e R C S X Act(ZFp) x S is such that for all n € S, and tr € Tr with
source(tr) = state(n), there exists exactly one symbolic execution of tr from
n in R. Moreover, for (m,cAz,n}) and (n2, dAw,nh) in R with A € {!,?},
we have z # w

Remark 4 The symbolic execution is unique, up to the choice of the involved fresh
variables.

Example 6.3.3 Figure 6.6 depicts the symbolic execution for the IOLTS of Fig-
ure 0.2. For readability reasons, affectations and symbolic traces are not directly
shown inside the symbolic states but in separate frames. The symbolic execution is
shown until symbolic states n4 and ns, where the initial state of G is re-visited for
the second time.

In this case, there is only one decision that had to be made, and is the one
regarding the value of the variable seq. If its value (seqi) is equal to the value of
the variable win_seq (win_seqi), then the right branch is taken. The left branch
represent the state of the system where seq # win_seqy. As illustrated by the
figure, symbolic states are structures which accumulate important information that
will prove useful in the testing activity.

6.3. Symbolic Execution 107

Affectations

- - init: (e, Ao co,true)

c,: token—token , seed—seed, win_seg—-win_seq,
seg—se

47589 u_start ? token,

o,: token—token , seed—seed,, win_seg—win_seq,,
seq—seq, n,: (ts,, g, o, true)

o,: token—token , seed—seed,, win_seg—win_seq,,

sg_generate ! seed,
seg-seq,

Symbolic traces n,: (ts,, q,, o, true)

ts,: u_start?oken
1 1 sg_sequence ? seq,

ts,: ts,.sg_generatelseed,

. n.: (ts,, a5, o, true)
ts,: ts,.sg_sequence?eq, 3 37 H3r 91

ts,: ts,.u_screen!'lose’
u_screen ! 'lose' u_screen ! 'win'

ts,: tsa.u_screen!'win'

n,: (ts,, 4y, o, seq,<>win_seq,) ng: (tsg, Gor o seq,=win_seq,)

¥ 2
Figure 6.6: SE(G) based on the TOST'S of Figure 6.2.

Note that the constants Tlose’ and win’ are not symbols, and we would have
had to introduce one symbolic variable for each of them in order to use them in the
example of the symbolic execution, as well as a condition in oder to keep the value
of the variable constant. For the sake of readability, we abuse and use directly the
constants. This is also done in the rest of the related examples.

Paths of a symbolic execution are the sequences of symbolic transitions that
start at the initial state.

Definition 6.3.7 (Paths of SE(G)) Let SE(G) = (init,Rsqat) be a symbolic

execution.

The set of paths of SE(G), denoted by abuse Path(SE(G)), contains all the
finite sequences stry - - - stry, of transitions of Rsqt, such that:

e source(stry) = init
o for every i, 1 <i <mn, target(str;) = source(stri+i)

Notation 6.3.7.1 In the following, if (ts,q,o0,7) occurs as a state of SE(G), then
we say that (ts,q,o,7) belongs to SE(G), and we note (ts,q,0,7) € SE(G).

Example 6.3.4 Let us consider the symbolic execution of Figure 6.6. A finite path
of that tree is the sequence of symbolic transitions going from the root state init until
the symbolic state ns, that is, the sequence:

(init,u_ start?tokeny,n).(n1, sg_generatelseedi,n2).(n2, sg_sequence?seqi,n3).(n3, u_ screen!win’, ns).

108 Chapter 6. Input/Output Symbolic Transition Systems

We define the behaviors (also known as semantics) of a symbolic execution by
means of its symbolic traces.

Definition 6.3.8 (Semantics of a symbolic execution) Let
SE(G) = (init, Rsat) be a symbolic execution.

The semantics of SE(G) is defined as:

Traces(SE(G)) = Up=(ts.g.0.mesE@) V(ts(n))

VET

Remark 5 Note that the traces that can be obtained from SE(G) are, by construc-
tion, the traces that can be obtained from the IOSTS G, since traces of an IOSTS
are constructed by interpreting the attribute variables of the paths in Path(G), and
the concrete traces of SE(G) are no more than the interpretation of the traces ob-
tained from traversing (i.e., the symbolic execution) the IOSTS.

6.3.2 Operations over the Symbolic Execution

The first operation is the quiescence enrichment of the symbolic execution. The idea
behind this enrichment is the same as for JOLT'S introduced in Section 3.2.1 (Defi-
nition 3.2.6), that is, the situations where the system can remain silent are identified
and made observable in the symbolic execution. A system can remain silent only if
it can not evolve by itself, i.e., if from a given state in the symbolic execution there
are only input transitions. Strictly speaking, if there are any transitions that can be
fired and whose action is not an input, then the quiescence situation is also allowed
only if the negation of the disjunction of all path conditions of such transitions is
satisfiable.

Definition 6.3.9 (Quiescence enrichment of a symbolic execution) Let G
be an IOSTS, and SE(G) = (init, Rsqt) be its symbolic execution.
If, for any n € Ssat, we note:

o react(n) = {str | str € Rsat, str = (n,act,n’),act € I(Xp)}
o fr= /\strereact(n) —pc(target(str)) if react(n) # O and true otherwise

Then, the enrichment by quiescence of SE(G) is SE(G)s = (init, Rs), where
Rs is the least relation (Reat URq) defined by:

® Ry C Ssat X {0} X Ssar is such that for all n in Ssat, we have:

(777 67 71/) € Rq
with 11" = (ts(n).9, state(n), sub(n), w(n) A fy)

According to Definition 6.3.9, f, is the auxiliary formula used to define if qui-
escence is allowed or not: if there are only input communication actions for the

6.3. Symbolic Execution 109

init: (¢, q, o,,true)

8 u_start ? token,
n,: (8.8, Ay, oy, true) n,: (ts;, 4,, o, true)
sg_generate ! seed,
n,: (ts,, 4y, o, true)
) sg_sequence ? seq,
n,: (ts,.8, 45, o, true) n;: (ts;, g5, o, true)

u_screen ! 'lose' u_screen ! 'win'

n,: (ts,, Ao Oy seq, <>win_seq,) ng: (tss, Agr O seq,=win_seq,)

2 22

Figure 6.7: SE(G)s based on the symbolic execution of Figure 6.6.

transitions, then f, is true (this means that if the system cannot evolve because it
is waiting for some intervention from the environment, it is allowed to be quiescent),
otherwise, it is the conjunction of the negation of all the path conditions of the target
states of the transitions which do not have an input as their communication action
(if this condition is satisfiable, it means that it may happen that the system cannot
evolve by itself). Thus, quiescence is allowed only if f,, together with the path
condition of the source state of the transition being examined (7 (7)), is satisfiable.

Example 6.3.5 Figure 6.7 denotes the quiescence enrichment of the IOSTS G of
Figure 6.6. In this case, the quiescence situation is allowed only in states init and
n9: in state init, the slot machine’s interface is waiting for the token from the user,
and in state N2 it is waiting for the value of seq from the Sequence Generator service;
in both cases, it cannot evolve if it does not receive a message from them. For the
rest of symbolic states, if we apply the Definition 6.3.9, the respective conditions are
not satisfiable, meaning that in those states the system is supposed to react. Finally,
for readability reasons, we cut the tree as in Ezample 6.3.3 and also for the newly
added quiescent states.

The other operation we perform is the one called 7-reduction. It consists on
removing the internal actions (7) from the symbolic execution. This operation will
prove useful for writing the algorithm of test case generation in the next chapter.
Indeed, the 7-reduction operation simplifies the tree-like structure while preserving
traces.

110 Chapter 6. Input/Output Symbolic Transition Systems

Definition 6.3.10 (7-reduction of a symbolic execution) Let
SE(G) = (init,Rsat) be a symbolic execution.

The T-reduction of SE(G)s is SE(G), = (init, R;), where R, is the least rela-
tion such that for any sequence (1, sa1,m2) <+ (M, SAn, Mn+1) of transitions in Rs
it satisfies:

e there exist no elements of the form (n,7,1m1) in Rs
® sa, AT and V1 <i<mn, sa; =T
then (N1, San, Mnt1) € Rr

Note that even if some transitions are removed from SE(G)s after applying
Definition 6.3.10, the symbolic execution still has relevant information about them:
the symbolic traces and the path conditions are not affected by the T-reduction.

init: (¢, 9o no,true)
u_start ? token,

gt (&8, Qy, 6, true) n,: (ts;, g, o, true)
init: (s, Qy, oy true)
T
u_start ? token
n,: (ts,, g,, o, true) ‘
n,: (3, Qg o4, true) n,: (ts,, a,, o,, true)

8 T
3
Nt (85,8, qequencer Tz Oy trUE) N33 (ts,, a5, o,, true)
0t (t5,.5, Ay, o, true)
u_screen ! 'lose’ u_screen ! 'win'
u_screen ! 'lose' u_screen ! 'win'
N, (ts,, gy, 0, S€q,<>win_seq,) ns? (tSg, Gy, 0, Seq,=Win_seq,) n,t (ts,, Gy, o, seq,<>win_seq,) ng: (tsg, Qg o, Seq,=win_seq,)
(a) SE(G1)s with 7-transitions. (b) T-reduction (Def. 6.3.10).

Figure 6.8: T-reduction example.

Example 6.3.6 If we apply the T-reduction to Figure 6.6, it remains the same, since
there are no 7 transitions in SE(G)s. Thus, we consider the symbolic execution
SE(G1)s of Figure 6.8(a), where we replace some communication actions of the
transitions by 7. Figure 6.8(b) depicts the T-reduction of SE(Gq)s.

6.3.3 Stop Criteria

Symbolic executions are infinite structures but, in practice, we cannot work with
infinite structures, so we need to define ways to stop the generation of the symbolic
execution tree structure. This notion is known as stop criteria. Besides the stop cri-
teria called restriction by inclusion given in [Gaston 2006] and that can be perfectly
applied to our symbolic execution, we introduce a more simple criterion called root
re-visited or depth reached. Thus, we have:

6.4. Conclusion 111

1. Restriction by inclusion criterion, which is not detailed here (for details,
refer to [Gaston 2006]).

2. Root re-visited or depth reached criterion, whose idea is to stop the
symbolic execution when the initial state of the respective IOSTS is re-visited
or when a certain depth has been reached.

6.4 Conclusion

In this chapter we have introduced the TOST'Ss structures, which are the basis of
the work presented in the rest of this thesis. JOST'Ss are symbolic characterizations
of the IOLT' Ss presented in Part I, and introducing symbolic data to characterize
internal states, to express firing conditions of transitions and to denote messages
exchanged through channels. In fact, we have shown that there is a unique IOLT'S
canonically associated to each TOSTS. IOSTSs are used to model specifications
of orchestrators, and then are symbolically executed in order to generate a tree-like
structure that represents all the valid behaviors that any implementation of the
specification should offer. TOSTSs are executed by using the so-called symbolic
execution technique, whose main idea is to execute programs or specifications by
using symbols instead of concrete data. This symbolic execution tree structure will
serve as the basis when testing the conformance of orchestrations with respect to
their specifications. We have also shown the operations that we will apply on those
symbolic execution structures and that will prove useful in the following chapters.

With the introduction of the symbolic technique, we are ready to show how to
apply the work presented in Part I to the IOST'Ss and their symbolic executions
in order to test orchestrators in context, and to elicit behaviors to test the compat-
ibility of Web services. In fact, the next two chapters can be seen as the symbolic
counterpart of Chapters 4 and 5.

CHAPTER 7
Algorithm for Testing
Orchestrators in Context

Contents
7.1 Imntroductiont 113
7.2 Orchestrators in Contexto v v v v 114
7.2.1 Web services Status and Communication Channels 115
7.2.2 Partial Specifications for Orchestrators in Context 116
723 SUT incontext 122
7.3 Symbolic Test Purposes 122
7.4 Rule-based Algorithm 125
7.4.1 Key Notions of the Algorithm 125
74.2 Rulesand Verdicts 128
7.4.3 Algorithm for Observable and Controllable Cases 130
7.4.4 Algorithm for the Hidden Case 133
7.5 Conclusion 134

7.1 Introduction

ITH the assumption that the specification of the orchestrator Orch is

‘; ‘/ available, we propose a symbolic approach to test the orchestrator by

taking into account its different situations or contexts of usage. Those

contexts may vary from the case where all the Web services are simulated or con-

trolled by the tester, to the case where the tester has no access at all to any of the
Web services involved in the orchestration.

Thus, we show how to adapt the specification of the orchestrator by taking
the classification of the communication channels into account. The specification is
given in the form of the symbolic execution of Orch and represents all the possible
and valid behaviors of the system. We modify the symbolic execution according
to the status of the communication channels by means of different transformations
of the symbolic execution tree: the quiescence enrichment, remote input/output
transformation and hiding operations (already presented for JOLT'S in Chapters 3
and 4, and here they are adapted for the IOST'Ss). After applying these operations

114 Chapter 7. Algorithm for Testing Orchestrators in Context

and removing form the symbolic tree the internal communications (7-reduction)
the resulting structure is the partial specification of the orchestrator in context.
Once we have this structure, we proceed to define the system under test in context:
Obs(Orch|Rem], C,), like introduced in Section 4.3, as well as the behaviors that we
want to test in it. These behaviors are known as test purposes, and correspond to
finite sub-trees of the partial specification, each path of such a sub-tree characterizing
a class of executions to be covered by some generated test cases.

Then, we define a rule-based algorithm which is based on the one of [Gaston 2006].
The goal of the algorithm is to check if a partial observation of an orchestrator in
context conforms to its partial specification. Our algorithm is defined in the context
of the ioco conformance relation but, as discussed in this chapter, can be easily ex-
tended to the uioco one (both of those relations already introduced in Section 4.4).
The algorithm is defined in the form of a set of rules, which follows the intuition
behind the ioco conformance relation, that is, the IUT implementing the SUT is
stimulated and for each observation we verify if such observation is accepted by the
specification or not and, furthermore, if the SUT remains in the path of behavior
that the tester wants to verify.

We begin this chapter with Section 7.2 by introducing the classification of the
communication channels according to their status. Then, taking that classification
into account, we show how to modify the symbolic execution in order to generate
the partial specification of the orchestrator in context. We finish the section by
introducing the notion of system under test in context for the case of orchestrations.
We continue en Section 7.3 by showing how to extract test purposes from the partial
specification. In Section 7.4 we present our rule-based algorithm, which is introduced
first for the controllable an observable cases (ioco) and then for the hidden case
(uioco). Section 7.5 presents the conclusion of the chapter.

7.2 Orchestrators in Context

In this section we show how to transform the specifications in the form of symbolic
executions of an ISOST, SE(QOrch), into partial specifications of orchestrators in
context, Obs(Orch). These transformations are basically done according to the sta-
tus of the communication channels used to interact with the Web services. Thus,
we transform the symbolic execution of the orchestrator’s specification so that the
traces associated to the resulting structure will correspond to the traces of the un-
derlying JOLT'S modified by the operations described in Chapter 4: enrichment by
quiescence, remote input/output transformation, and hiding operator; and with the
introduction for the symbolic case of the 7-reduction operation (Definition 6.3.10).
Let us briefly recall that the quiescence enrichment aims at identifying the situations
where the orchestrator can remain silent; the remote input/output transformation
aims at transforming the inputs sent from the remote Web services to the orchestra-
tor into observations, when such inputs are sent over observable channels from the
point of view of the tester; the hiding operator makes unobservable the communi-

7.2. Orchestrators in Context 115

cation actions going through hidden channels (this is achieved by considering such
actions as internal ones); and the 7-reduction operation removes the 7 transitions
from the symbolic execution tree while preserving important information. We nat-
urally apply these operations consecutively at the symbolic level by starting from
the symbolic execution tree SE(Qrch). Finally, we also show how we assume that
the orchestrator in context under test can be modeled.

7.2.1 Web services Status and Communication Channels

As already introduced in Section 4.2, in this section we briefly recall the classification
of the communication channels according to their status. We distinguish the cases
where the internal interactions between the Web services and the orchestrator are
controllable (Web services are simulated), hidden (no access by the test architecture)
or observable (collected by the test harness). Figure 7.1 depicts this classification
in the context of test architectures. In the figure, CP stands for Control Point, and
represents the interface of the test architecture used to send and receive information
through the controllable communication channels. OP stands for Observation Point,
and represents the interface of the test architecture used to observe the information
going through the observable communication channels. Thus, a channel is said to
be:

e Controllable if the tester may send inputs and observe outputs on it.
e Hidden if the tester cannot access the communication channel.

e Observable if the tester can access the communication channel so that com-
munications can be observed.

Following the same intuitions introduced in Section 4.2, we partition the set of
communication channels C' introduced in Definition 6.2.1 (Section 6.2) into three
sub-sets:

(1.) C, for the controllable channels,
(2.) Cy, for the hidden channels, and
(3.) C, for the observable channels.

We also use the notations Orch to refer to the orchestrator implementing the
specification Qrch, and Rem to refer to the remote part of the system corresponding
to the Web services interacting with Orch. Besides, the set of communication
channels used to interact with Rem is denoted C,. In this way, where there are
hidden or observable communication channels in C;, and the user no longer interacts
only with Orch, but with Orch in the context of Rem, denoted Orch[Rem], where
there are some channels in C. that can be accessed by the tester and some other ones
that are completely hidden. In the same way, the set of communication channels
used by Orch is also partitioned.

116 Chapter 7. Algorithm for Testing Orchestrators in Context

Spec of Orch

User Link

Orch

Test
Algorithm

Test Purpose
(user + WS)

(a) Controllable.

Spec of Orch

Spec of Orch

Test
Test
Test Purpose Test
Purpose s | ithm
(user) i Algorithm (user)gd i Algorithm :
Rem
(b) Hidden. (c) Observable.

Figure 7.1: Classification of the communications on channels according to their
status.

7.2.2 Partial Specifications for Orchestrators in Context

According to the classification of channels presented in Subsection 7.2.1, we now
show how to transform the specification of an orchestrator in the form of a sym-
bolic execution tree, SE(Orch), into an specification of the orchestrator in context.
Therefore, we introduce a series of modifications that are performed as a sequence
of operations over symbolic execution structures. The resulting structure will then
serve as the basis of our algorithm in order to test the conformance of the orches-
trators in context.

We begin by modifying the enrichment by quiescence introduced in Defini-
tion 6.3.9, since now that we are taking into account the situation of the commu-
nication channels, we need to include the quiescence caused by the lack of response
of the Web services. This corresponds to the internal quiescence for the IOLTS
of Definition 4.3.6, Section 4.3, adapted here to the symbolic level and with the
difference that, since we are now working with the tree structures, once we reach
a quiescence state due to a Web service, we do not allow any further inputs from
it, since from the user’s point of view it is in a blocked situation. If a Web service
enters into a quiescence situation, then it needs external intervention in order to

7.2. Orchestrators in Context 117

react. Thus, we define the operation enrichment by full quiescence, which in turn
is composed of the external quiescence and that corresponds to the one that indi-
cates that the orchestrator can go into a quiescence situation due to the fact that it
cannot evolve by itself, without intervention from the exterior, and of the internal
quiescence, which is the quiescence situation provoked by the lack of synchronization
or response from the Web services.

Definition 7.2.1 (Enrichment by full quiescence) Let
SE(Orch) = (init, Rsat) be a symbolic execution.
If, for any n € Ssat, we note:

o react(n) = {str | str € Rsu, str = (n,act,n’),act ¢ I(Xr)}

 fn = Nstrereact(n) Pc(target(str)) if react(n) # 0 and true otherwise
e for any c € C, U Cy, In(c,n) = {str | str € Rsa, str = (n,c?z,n')}

* fne = Vstrermn(en) pctarget(str)) if In(c,n) # 0 and false otherwise

Then, the enrichment by full quiescence of SE(Qrch) = (init, Rsat) is the de-
noted, by abuse, as the couple SE(Orch)s = (init, Rs) where Rs is the least relation
(Rsat U Rpg URys) \ Rjunk defined by:

External quiescence: Rpq C Sear X {0} X Seat is such that for all n in Seq,

we have (1,6,1") € Rpyq
with 1" = (ts(n).0, state(n), sub(n), 7(n) A fn A Neec,uc, ~fie)

Internal quiescence: Ris C Ssar X {0} X Ssat s such that for all n in Ssat,

we have (n,86,n') € Rys

with n' = (ts(n).0c, state(n), sub(n), 7(n) A fo A £),

and in this case, for all c € Cp, U C,, for any str’ € In(c, source(str)) with
str € In(c,n) then str' € Rjunk

According to Definition 7.2.1, f, is the auxiliary formula used to determine if
quiescence due to the impossibility of the orchestrator to move forward is allowed
or not: if there are only input communication actions for the transitions, then f;, is
true, otherwise, it is the conjunction of the negation of all the path conditions of the
target states of the transitions which do not have an input as their communication
action.

f7/7,c is the auxiliary formula used to determine if quiescence due to the Web
services is allowed or not: if the orchestrator is waiting for some inputs of any
remote Web service (through communication channels in Cj, or in C,), then it is
allowed to remain quiescent, and f,’hc is the disjunction of all the path conditions
of the target states of the transitions which have an input (from a remote Web
service) as their communication action. If there is none input expected from any

118 Chapter 7. Algorithm for Testing Orchestrators in Context

init: (e, gy, o, true)
u_start ? token1

n,: (e.9, dgr O true) My (tSl, 4y, oy, true)

/{ sg_generate ! seed,

n,: (ts,, q,, o, true)

) sg_sequence ? seq,

n,: (ts,.8 o,, true) 5! (ts;, g;, o,, true)

sg_sequence’ qZ'

u_screen ! 'lose' u_screen ! 'win'

n,: (ts,, 4, o, seq,<>win_seq,) ng: (tsg, 4y, o5, Seq,=win_seq,)

2 22

Figure 7.2: Full quiescence SE(Qrch)s for the symbolic execution SE(Orch) of the
Slot Machine example (Figure 6.6).

Web service, f{w is false (the orchestrator cannot be quiescent due to the lack of
reaction of the Web services).

Thus, internal quiescence is allowed only if the conjunction of f, with the path
condition of the source state of the transition being examined (7w(n)), and with the
negation of f,'hc, is satisfiable. External quiescence is allowed only if the conjunction
of f, with the path condition of the source state of the transition being examined
(m(n)), and with f, ., is satisfiable.

Finally, note that, for the internal quiescence, no more receptions are allowed on
the channel c if a quiescence situation has already been stated on that channel.

Example 7.2.1 Figure 7.2 depicts the full quiescence enrichment for the symbolic
ezecution SE(QOrch) of the Slot Machine example, that is, of the symbolic execution
of Figure 6.6. Note that in state n3, the orchestrator is waiting for a response from
the Sequence Generator service SG, and it may happen that SG never answers. Thus,
the orchestrator is allowed to enter into a quiescence state. Finally, the resulting
structure is the same as the one depicted in Figure 6.7 in Section 6.3 for the usual
quiescence, however, here the quiescence situation added in the node n3 is due to the
internal quiescence, and thus, it does not represent the same situation. As it is the
case of Figure 6.6, the resulting tree-like structure was cut for readability reasons.

As a reminder, we should have had to introduce symbolic variables for the con-

7.2. Orchestrators in Context 119

init: (¢, 4,, oy, true)
u_start ? token1
n,t (e.8, qy, o, true) n,: (ts,, q,, o;, true)

/{ isggenerate ! seed,

n,: (tSz, 4y, Gy, true)

sg_sequence ! seq,

n,: (ts,.8 true) ns: (ts;, g, o, true)

sg_sequence’ qZ’ Oyr

u_screen ! 'lose’ u_screen ! 'win'

) ne: (ts., q,, ., seq,=win_seq,)
n,: (ts,, d, o,, seq,<>win_seq,) z R 1 &

Figure 7.3: WS input transformation IT(Orch) for SE(Qrch)s of Figure 7.2.

stants lose’ and win’, but we did not do it for the sake of readability.

The next operation consists on transforming the inputs from remote Web services
into observations. This is the symbolic counterpart of Definition 4.3.9, and the idea
behind it is that inputs from remote Web services should not be treated as inputs
from the user, since they are not controlled by the user. In fact, from the point of
view of the tester, those inputs are actually observations.

Definition 7.2.2 (WS input transformation) Let SE(QOrch) = (init, Rsqt) be
a symbolic execution.

The WS input transformation of SE(Qrch)s; is defined as
IT(Orch) = (init, Rrr), where Ry is defined as follows:

for all (n,sa,n’) in Rs, if sa is of the form c?z with ¢ € C,, then
(n,¢z, (ts(n).c z, state(n'), sub(n'), w(1'))) is in Ryr, else (n,sa,n’) is in Ry

Example 7.2.2 Figure 7.3 depicts the WS input transformation applied to the
10STS QOrch of Figure 7.2. Inputs from the Sequence Generator service are trans-
formed into observations, since it is like that that the tester perceives them (with the
assumption the communication channels are observable). Moreover, we note those
observations with an overline over the communication channel in order to know that
they actually come from the Web services and not from the user.

120 Chapter 7. Algorithm for Testing Orchestrators in Context

init: (¢, q,, o, true)

5 u_start ? token1
n,t (e.8, qy, o, true) n,t (tsl, q,, o, true)
.l .
n,: (ts,, 45, o, true)
5 T
;' (tsz.ﬁsgisequence, g, o, true) ng: (ts;, a;, oy, true)

u_screen ! 'lose’ u_screen ! 'win'

n,: (ts,, g, o,, seq,<>win_seq,) ng: (tsg, q,, o,, seq,=win_seq,)

Figure 7.4: Hiding operator HO(Orch) for SE(Qrch)s of Figure 7.2.

In order to take the hidden channels into account, we first define the symbolic
version of the hide operation introduced in Definition 3.2.13, Section 3.2. This
operation transforms the communications actions through the hidden channels into
internal ones, since from the point of view of the tester, they are non distinguishable
one from the other (for helping in that case, we keep the traces).

Definition 7.2.3 (Hiding operator) Let SE(Qrch) = (init, Rsat) be a symbolic
ezecution.

The hiding operator of SE(Qrch) is defined as HO(Qrch) = (init, Rgo), where
Ruo s defined as follows:

for all (n,sa,n’) in Ryr, if sa is of the form cAt with ¢ € Cp, and A € {!,7}, then
(n, T, (ts(n), state(n'), sub(n'), ©(n')) is in Ruo, else (n,sa,n') is in Ryo

Example 7.2.3 Figure 7.4 depicts the hiding operator applied to the symbolic exe-
cution of Figure 7.2, with the assumption that the communication channels used to
interact with the Sequence Generator service SG are hidden. Thus, first the WS in-
put transformation (Definition 7.2.2) is preformed but, since there are no observable
communication channels, the structure remains the same. Then, the hiding opera-
tor is performed (Definition 7.2.3) and the resulting structure is the one depicted in
Figure 7.4.

7.2. Orchestrators in Context 121

From the perspective of the tester, in this case SG becomes indistinguishable
from the orchestrator under test since the communication actions going through such
channels are no longer observable to the tester but perceived as internal actions.

The partial specification of the orchestrator in context, that we call observable
behaviors of SE(QOrch), is nothing more than the result of applying successively the
quiescence enrichment, the WS input transformation operation, the hiding operation
and the 7-reduction (Definition 6.3.10, Section 6.3) on the symbolic execution of the
IOSTS of the orchestrator’s specification Qrch.

Definition 7.2.4 (Observable Behaviors of SE(Qrch)) Let
SE(Qrch) = (init,Rsat) be a symbolic execution.

The observable behaviors of SE(Qrch) is defined as Obs(Qrch) = (init, Rops),
where Rops 4 the least relation such that for any sequence (n1,sa1,n2)
(M, $An, Mnt1) of transitions in Ryo it satisfies:

e there exist no elements of the form (n,7,m) in Ruo
o sa, #7T andV1 <i<n, sa; =T

then (7717 Sanan;z) € RObs-

We define the reachable states of Obs(Qrch), denoted Syeqch, as the set of sym-
bolic states in Ssqtr such that, for a given 1 € Ssat, N € Sreach if and only if there
erists a sequence (11,8a1,Mm2) -..(Mn—1,SAn—1,Mn) with m1 = init, n, = n, and for
all i < mn, (n;, sai,Ni+1) € Rows

init: (e, 9o no,true)

u_start ? token,

n,: (€8, Ay, 6, true) n,: (tsy, q,, o, true) init: (¢, q,, o,,true)
: (2 Qg o/

sg_generate ! seed, K u_start ? token.

n,: (ts,, a,, oy, true) N, (68, Qg oy true) n,: (ts,, ay, oy, true)

3 sg_sequence ! seq,
N5t (88580 cequencer v Oy tTU€) M3 (ts,, a5, o, true)
u_screen ! 'lose’ u_screen ! 'win'
u_screen ! 'lose' u_screen ! 'win'
n,: (ts,, q,, o,, seq,<>win_seq,) N5t (t5 Gy 0 S€d,=win_seq,) 1, (ts,, dg, 0, Seq; <>win_seq,) ns: (tsg, G, 0, Seq,=win_seq,)
4 4! Hlor T2 1 1 /(
(a) Observable case. (b) Hidden case.

Figure 7.5: Observable behaviors of SE(QOrch).

Example 7.2.4 Figure 7.5 depicts the observable behaviors of the symbolic exe-
cution of Figure 6.6. Both trees are the result of applying the quiescence enrich-
ment, WS input transformation, hiding and T-reduction operations consecutively on

122 Chapter 7. Algorithm for Testing Orchestrators in Context

SE(Qrch). Figure 7.5(a) depicts the observable behaviors of SE(Qrch) with the
assumption that the communication channels used by the slot machine’s interface
to communicate with the Sequence Generator service are observable. In this case,
since there are no T-transitions, the hiding and T-reduction operations do not affect
the tree. Figure 7.5(b) depicts the observable behaviors of SE(Qrch) with the as-
sumption that the communication channels used by the slot machine’s interface to
communicate with the Sequence Generator service are hidden. Thus, from the point
of view of the tester, the communication actions going through those channels are
internal actions (T), which are removed from the tree when applying the T-reduction
operation.

The semantics of Obs(Orch) is defined by the traces of its reachable symbolic
states.

Definition 7.2.5 (Semantics of Obs(Orch)) Let Obs(Qrch) be the observable
behaviors of SE(Qrch).

The semantics of SE(Qrch), denoted, by abuse, Traces(SE(Qrch)), is defined
as
Traces(SE(Orch)) = U,cs,..., t5(0)

7.2.3 SUT in context

In order to model the system under test, we simply use the same notion of SUT
presented in Subsection 4.3.1. That is, if the underlying TOLT'S of the orchestrator’s
specification Qrch is built upon the signature Act(A4,C), then SUT is of the form
Obs(Orch|Rem],C,) (Definition 4.3.5, Section 4.3), where Orch is defined over A
and C, and Rem is defined over A and C, U Cj,. Thus, Obs(Orch[Rem], C,) is the
system which takes all the information of the status of the communication channels
into account and represents the system under test in its context of usage.

7.3 Symbolic Test Purposes

The symbolic execution tree represents all the valid behaviors that an implemen-
tation of the orchestrator can perform, and the partial specification (observable
behaviors) represents these behaviors taking into account the different status of the
communication channels with the Web services. Then, if the tester wants to test
if a given implementation of an orchestrator in context behaves as supposed to, it
suffices to take the behaviors described by the partial specification and execute them
on the implementation system under test. One could think of executing every be-
havior of Obs(Orch) in Obs(Orch|Rem], C,). However, this process would represent
an infinite process due to the nature of the symbolic execution trees, and thus we
select some important behaviors that Obs(Orch[Rem],C,) should respect. These
behaviors are called test purposes and are usually selected by some expert of the

7.3. Symbolic Test Purposes 123

system, someone that knows what are the crucial behaviors of the system that need
to be tested. In this section, we show how to technically define such test purposes.
In our case, test purposes correspond to finite sub-trees of the partial specification,
each path of such a sub-tree characterizing a class of executions to be covered by
some generated test cases.

We begin by introducing the concept of a target state. A target state is the
final observation of the desired behavior to test. The target states must be reached
by a symbolic transition whose communication action is an output. That is, an
observable event from the point of view of the tester.

Definition 7.3.1 (Target state) Let Obs(Qrch) = (init, Rops) be the observable
behaviors of SE(QOrch).
A target state is a state ' € Obs(Qrch) such that there ewists (n,clz,n') € Rops

Example 7.3.1 A target state can be, for instance, 15 in Obs(Qrch) of Figure 7.5
(in both cases). That is, we want to test the case where the sequence is a winner
sequence and the user gets the prize.

Now we define the notion of a complete desired behavior to test, i.e., a test
purpose. A test purpose is nothing more than a sub-tree of the symbolic execution
whose all paths end on a target state.

Definition 7.3.2 (Test purpose) Let Obs(Orch) = (init, Rops) be the obseruv-
able behaviors of SE(QOrch).

A test purpose, denoted TP, for Qrch, is any finite sub-tree (init, RTp) of
Obs(Qrch), where R7p C Rops, and whose all paths end on a target state.

Notation 7.3.2.1 In the following, we use the notations n € TP to say that 1 is
the source or the target state of some symbolic transition in Ryp.

Example 7.3.2 If we take 05 in Obs(Qrch) of Figure 7.5(a) as the only target state,
the corresponding test purpose TP for Obs(Qrch) is the one depicted in Figure 7.6.
In this case, the test purpose represents the entire behavior of the orchestrator (in-
puts, outputs, and observations, as well as the internal conditions and affectations)
that has to be met in order to get to reach target state: the user gets the prize (s).

Target states are symbolic states and so they have an associated path condition.
In our rule-based algorithm, we use the logical disjunction of all the path conditions
of all the target states of a test purpose in order to verify if at any given moment
(no matter which state n € Obs(SE(QOrch)) we consider), we are at least in the path
of a target state (i.e., if this condition is satisfiable). This condition is called target
condition.

124 Chapter 7. Algorithm for Testing Orchestrators in Context

init: (¢, 4y, o,,true)

u_start ? token,

-

n,: (ts;, q,, o, true)

sg_generate ! seed,

-«

n,: (ts,, q,, o, true)

sg_sequence ! seq,

-«

ns: (ts;, g5, o, true)
u_screen ! 'win'

ng: (tsg, q,, o,, seq,=win_seq,)
Figure 7.6: Test purpose T P for Obs(Qrch) of Figure 7.5(a). Accept(T P) = ns.

Definition 7.3.3 (Target condition) Let Obs(Qrch) be the observable behaviors
of SE(Qrch). Let us note”
Accept(n, TP) = {0 € Rops | Im € Act(Sp)*,n > n' and 1 € Accept(TP)}

The target condition of TP for any n € Rops, denoted targetCond(n, TP), is
defined as the formula:

Vn/EAccept(n,TP) pc(n/)

“ Where m is a sequence of communication actions of the form my - - - my, such that there exists
a path in the symbolic execution tree of the form 7 L n

Example 7.3.3 Following our example, if we consider Figure 7.5(a) and we assume
Accept(TP) = {ns} (so we get TP depicted in Figure 7.6), then, for instance, the
target condition of m is sequ = win_seq1, which is the disjunction of all target
states that can be reached from it (ns). No matter in what state of the tree we are,
if this condition is satisfiable, it means that we can still reach the target state.

Test purposes are usually selected by experts of the system that know the key be-
haviors that have to be tested. However, we mention some criteria in order to select
test purposes in an automated way, the first two already defined in [Gaston 2006]:

1. All paths of length n criterion, which consists on selecting as test purposes
all paths of the symbolic execution of length n that end with an output. In
this way, the tester can make a trade-off between the size of the test purposes
and the testing cost.

2. k-inclusion criterion, which consists on selecting as test purposes a subpart

7.4. Rule-based Algorithm 125

of a symbolic execution with no redundant behaviors, where k denotes the
number of basic behaviors that are verified not to be redundant.

3. Root re-visited or depth reached, which, as for the symbolic execution,
consists on selecting as test purposes the paths of the symbolic execution of a
given depth or the paths that are cut when the initial state of the associated
IOSTS appears for the second time.

This last criterion is particularly well adapted for testing orchestrators, since
revisiting the initial state can be thought of as ending the process (in WS-BPEL,
for instance, the instance of the orchestrator is destroyed when the final state is
reached).

7.4 Rule-based Algorithm

In this section we define our rule-based algorithm to test the conformance of orches-
trators in context, in which generation of test data sequences is guided by test pur-
poses to be covered. This algorithm is based on the one presented in [Gaston 2006]
and extended with two verdicts that take into account the interactions with the Web
services.

We start this section by introducing some key notions of the algorithm and then
we give the verdicts that the algorithm can emit. Then we define the rule-based
algorithm and we provide a detailed example for the case where the communication
channels are controllable or observable. Finally, we present the adjustments that
have to be made to the algorithm in order to also take into account the hidden
channels.

7.4.1 Key Notions of the Algorithm

Our algorithm aims at executing a symbolic execution tree-like structure, called a
test purpose, on a system under test in order to produce test verdicts. The test
purpose and the system under test are synchronized by coupling emissions and
receptions. The main advantage of characterizing test purposes from a symbolic
execution of OQrch is that the testing process can be expressed as a simultaneous
traversal, of both, the symbolic execution and the test purpose. Verdicts are emitted
according to the fact that the observed behavior, in the form of a sequence of inputs
(stimuli) and outputs (observations), does or does not belong to the test purpose
and to the symbolic execution.

We start by introducing the notion of a context, denoted (7, f). A context
denotes a state that can be reached from another state taking into account all
previous observations/stimuli encountered to reach it. It is composed of a symbolic
state 11 € Speach, and a formula f whose variables are in F' and expressing constraints
induced by the sequence of previously encountered inputs/outputs. As there may

126 Chapter 7. Algorithm for Testing Orchestrators in Context

be many contexts compatible with a sequence of observations/stimuli, we use sets
of contexts, denoted SC.

Spec of Orch

Purpose |— Test
(user : Algorithm :

WS

Rem
Figure 7.7: Classification of events ev.

The second concept is the notion of an event. An event can be an observation
or a stimuli and is a value sent or received through a communication channel. We
use the notation ev to denote an event, and we note:

1. Orch.obs(ev) to say that ev is of the form clv, with ¢ € C.,UC, and v € M, or
is the quiescent action 9.

2. WS.obs(ev) to say that ev is of the form ¢lv, corresponding to an observation of
a message sent by some Web service, ¢ € C,.

3. obs(ev) to say that ev is of one of the two forms previously described.

4. stim(ev) to say that ev is of the form c?v with ¢ € C¢, corresponding to a stimulus
made by the tester.

This classification of events is as depicted in Figure 7.7, where numbers in the
figure correspond to the ones of the list just introduced.

Moreover, any v € M occurring in such events can be symbolically denoted by
a term ¢t € To((), where ¢ is a term with no variables (¢ is said to be a ground
term) such that v(t) = v for all Q-interpretation v : F — M. In the following,
values in M will simply be denoted by any corresponding ground term. Events ev
will be abusively considered as element of Act(X), up to this direct correspondence
between values and ground terms.

Given a set of context SC, we define the function that generates the set of sym-
bolic states that can be reached from any symbolic state in SC' after the occurrence
of an event ewv.

7.4. Rule-based Algorithm 127

Definition 7.4.1 (Function Next(ev, SC)) Let Obs(Orch) = (init, Rops) be the
observable behaviors of SE(Qrch), SC be a finite set of contexts, and ev € Act(Xp).

If ev is of the form cAt, with AN € {?,!}, then (/, f') € Next(ev,SC), with
n = (ts(n).cAt, ¢, 7', 0’), if and only if:

o there exists (n, f) € SC such that (n,cAu,n’) € Rops
o fis fA(t=mw) and f' A7 is satisfiable

If ev 1is of the form &, then (1, f') € Next(ev,SC) if and only if there erists
(n,f) € SC such that (n,6,17') € Rows, and f’ is f, and f' A7’ is satisfiable

Remark 6 If there exists such a context (v, f') for all contexts (n, f) in SC, then
Nezt(ev, SC) is said to be conservative.

Due to the discussion presented in Section 3.2.3, when taking hidden communi-
cation channels into account (uioco), we require O\~ to be input complete on those
channels. In order to define test purposes for those situations (as introduced later
in Section 7.4.4), we require that, for any ev of the form W.S.obs(ev), Next(ev, SC)
is conservative.

We now define three more notions that are going to be used in our algorithm
when computing a verdict. The first one is the set Skip(SC), which consists of the
set of contexts whose symbolic state is in 7P and whose formula in conjunction
with the targetCond(n, TP) formula is satisfiable, that is, the set contexts from
which a target state can eventually be reached.

Definition 7.4.2 (Skip(SC)) Let SC be a set of contexts.

Skip(SC) = {(n. f) | (n,f) € SC,n € TP,
(targetCond(n, TP) A f)is satisfiable}

The second notion is the set Pass(SC), which consists on all the contexts in
Skip(SC) whose symbolic states are in Accept(TP).

Definition 7.4.3 (Pass(SC)) Let SC be a set of contexts.

Pass(SC) ={(n, f) | (n, f) € Skip(5C),n € Accept(TP)}

The third notion is the set Report(SC), which is no more than the set of sym-
bolic traces and the conjunction of formulae in SC. This set provides important
information that will help the tester in determining what might have happened in
the system in order to reach a given verdict.

Definition 7.4.4 (Report(SC)) Let SC be a set of conteats.

Report(SC) = {(ts,m A f) | ((ts,q,0,7), f) € SC}

128 Chapter 7. Algorithm for Testing Orchestrators in Context

7.4.2 Rules and Verdicts

(ny0,) : . ‘: (T]lr‘P1) 5"""Accept(TP) = {nz}
cllig cib SC = {(nye,)> cla c'b SC = {(T'lll(Pl)}
obs(ev) =e!z WS.obs(ev) =€ !z
(T]zr(Pz) (‘13/%93) »vx»»c’ ec cc ; (UZAPZ) (1]3/‘[)3) cl e e co v Cc

Next(ev,SC) = &

(a) FAIL.

(Myry) e

cla c'b SC= {(nl,wl)}
obs(ev) =c!b :
(ye;) (ngegdresC.

Next(ev,SC) = {(n;,0)}
Skip(Next(ev,SC)) = &

Next(ev,SC) = &

(b) WS.HY P.FAIL.

(y,9,) / Accept(TP) = {n,}

cla clb sC= {(nl,q)l)}
 WS.obs(ev) =E!b

(y0,) (n305) . €€ C)

Next(ev,SC) = {(n,0,)}
Skip(Next(ev,SC)) = &

(¢c) INCONC. (d) WS.INCONC.
(n " '(p]_) e () e s
¢/ Accept(TP) = {n,} "y, / Accept(TP) = {n,}
cla c!b SC = {(ﬂll(Pl)} cla cla SC = {(1111([)1)} A

obs(ev) =c!a
(M5r0,) (305)€ceCouC

obs(ev) =c!a
(M5r9,)

Next(ev,SC) = {(n,,p,)}
Pass(Next(ev,SC)) = {(n,,,)}

Next(ev,SC) = {(n,,9,),(n5,05)>
Pass(Next(ev,SC)) = {(n,,¢,)}

(e) PASS. (f) WeakPASS.

Figure 7.8: Verdicts of the algorithm.

The algorithm is given as a set of rules, each one emitting a verdict or building a
new context, according to the observation of an event ev of the form introduced in
Section 7.4.1. In practice, most of the times we build a new context and stimulate
the system under test. The algorithm ends with the emission of a verdict. Each
verdict is described by means of inference rules holding on sets of contexts. The
rules are of the form:

SC
Result

cond(ev),

where SC' is a set of contexts, Result is either a set of contexts or a verdict, and
cond(ev) is a set of conditions including the observation (obs(ev), Orch.obs(ev) or
W S.obs(ev)) or the stimulus (stim(ev)), which justifies the evolution of the set of
context. The idea behind the rules, as depicted in Figure 7.8, is that, given the

7.4. Rule-based Algorithm 129

current set of contexts SC, if cond(ev) is verified, then the algorithm may achieve
a step with ev as elementary action. Six verdicts can be defined (four previously
defined in [Gaston 2006], and two new ones regarding Web service observations):

1. FAIL, when the behavior belongs neither to TP or to Obs(Qrch) (Rule 2
for Orch.obs(ev), given in next section —Sect. 7.4.3). In this case, the set
Next(ev, SC) is the empty set, meaning that the observation does not lead
Obs(Orch|[Rem], C,) to any specified state in Obs(Qrch). Thus, this is an invalid
behavior of Obs(Orch[Rem],C,). This verdict is depicted in Figure 7.8(a): the
value z is observed on the channel e, which is an unexpected (invalid) observation
of Obs(Orch[Rem],C,).

2. WS.HY P.FAIL, when a reception on an observable channel is observed, but is
not specified in Obs(Orch) (Rule 2. WS for W S.obs(ev), given in next section).
As for the previous rule, an unspecified state in Obs(Qrch) is reached, however,
in this case the observation does not come from Orch but from a remote Web
service in Rem (thus, the observation is done on an observable communication
channel). Thus, this is an unexpected behavior of the Web service. However,
we cannot conclude that there is a failure in the Web service since we are not
taking its specification into account, and it may be the case that from the Web
service’s perspective, it is in fact a valid behavior. This is why we give the
verdict WS.HY P.FAIL, which stands for Web Service Hypothetical FAILure.
This verdict is depicted in Figure 7.8(b): the value z is observed (sent to the
orchestrator) on a channel used by the Web service where the orchestrator was
not expecting anything.

3. INCONC, when the behavior belongs to Obs(Orch) but not to TP (Rule 3
for Orch.obs(ev), given in next section). In this case, the observation does lead
Obs(Orch[Rem), C,) to an specified state in Obs(Qrch) (the set Next(ev, SC) is
not empty), but this state is not in 7P (the set Skip(Next(ev, SC)) is empty).
The verdict stands for inconclusive because even if one is sure that the target
state cannot be reached from the new set of context (Next(ev, SC')), the trace is
compatible with the specification. Thus, this does not correspond to an invalid
behavior even if it does not belong to the test purpose. This verdict is depicted
in Figure 7.8(c). Even if in the figure there is no way to reach the target state
from 73, it is still a valid behavior according to Qrch.

4. WS.INCONC, when a reception on an observable channel happens, belonging
to Obs(Qrch) but not to TP (Rule 3.WS, given in next section). As for the
previous case, the set Next(ev, SC) is not empty but the set Skip(Next(ev, SC))
is, however, in this case the observation does not come from Orch but from Rem.
This verdict is depicted in Figure 7.8(d).

5. PASS, when the behavior belongs to a path of 7P ending by a target state and
not to any other path of Obs(Orch) (Rule 4, given in next section). In this case,
the observation makes the sets Next(ev, SC) and Pass(Next(ev, SC)) to be the

130 Chapter 7. Algorithm for Testing Orchestrators in Context

same, thus, it means that the only reachable state(s) taking ev into account are
precisely the target state(s) (usually is only one state that is reached, but it could
be more). This is a successful test and the verdict is depicted in Figure 7.8(e).

6. WeakPASS, when the behavior belongs to a path of 7P ending by an accept
state and to at least one other path of Obs(Orch) (Rule 5, given in next section).
In this case, the sets Next(ev, SC) and Pass(Next(ev, SC)) are not empty but
they are not the same, meaning that there are some states in Next(ev, SC) that
can be reached with ev but that are not target states, and this is mainly due to
the non-determinism of Obs(Orch[Rem],C,) when there is an observation that
can lead to at least two different states. Even if the IOSTSs and symbolic
executions use conditions and guards, it may happen that the same condition (or
the lack of it) allows more than one state to be reached with a single observation.
This verdict is depicted in Figure 7.8(f).

7.4.3 Algorithm for Observable and Controllable Cases

If all the communication channels are either observable or controllable, sequences
of stimuli and observations built by the interaction between the algorithm and the
SUT are modeled as elements of STraces(SUT), and the algorithm is defined in
Algorithm 2. For readability reasons, we use the notation Next for Next(ev, SC).
Note also that for the verdicts FAIL and WS.HY P.FAIL, we include the obser-
vation that provoked the verdict.

Let us explain Rule 4: in this case, the condition is actually composed of
two other ones: Pass(Next(ev,SC)) = Next(ev,SC) and Next(ev,SC) # 0.
This means that, in order to apply the action PASS, Report(Next), this condi-
tion has to be satisfiable by taking into account the event obs(ev) and by using
the set of contexts SC. That is, the set of contexts resulting of applying the
function Next(ev, SC) (of Definition 7.4.1), must be the same as the resulting
set of contexts of applying the Definition 7.4.3 (with SC = Next(ev, SC), i.e.,
Pass(Next(ev, SC))). Only if this condition is satisfiable, the verdict PASS, jointly
with the Report(Next(ev, SC)), can be emitted.

Example 7.4.1 Let us present a guided example of our rule-based algorithm taking
into account that Obs(Orch) is the one depicted in Figure 7.5(a), and that the test
purpose TP is the one depicted in Figure 7.6. Both trees are (re)depicted together
in Figure 7.9. The target state is 15, so Accept = {ns}, and the target condition is
seq) = win_ seq.

1. The orchestrator is waiting for an event. Rule 6 is applied. The tester computes
an stimulus that will guide the SUT (Obs(Orch[Rem],C,)) to the desired target
state. For instance, the tester computes the stimulus stim(u_ start?l). Thus,
the set of contexts SC = {(init,true)}, Next(ev,SC) = {(m,true)} and the
set Skip(Next(ev,SC)) = {(m,true)} # 0 (since the target condition is
satisfiable). The tester sends the value 1, which we know is the value of the

7.4. Rule-based Algorithm 131

Algorithm 1: Rule-based algorithm to test the conformance of orchestrators

in context.
Rule 1: The observation is compatible with 7 P but no target state is

reached.

Noal obs(ev), Skip(Next) # 0, Pass(Next) = ()

Rule 2: The Orch observation is not expected in Obs(Qrch).

SC
FAIL, Report(SC), ev

Rule 2.WS : The WS observation is not specified in Obs(Qrch).

Orch.obs(ev), Next = ()

SC
WS.HY P.FAIL, Report(SC), ev

Rule 3: The Orch observation is specified in Obs(Orch) but not in T P.

SC
INCONC, Report(Next)

Rule 3.WS: The WS observation is specified in Obs(QOrch) but not in T P.

SC
WS.INCONC, Report(Next)

Rule 4: All symbolic states in Next are in Accept(T P).

SC
PASS, Report(Next)

W S.obs(ev), Next =)

Orch.obs(ev), Next # 0, Skip(Next) = ()

W S.obs(ev), Next # 0, Skip(Next) = ()

obs(ev), Pass(Next) = Next, Next # ()

Rule 5: Some next contexts have states in Accept(T P), but not all of them.

SC
WeakPASS, Report(Next)

obs(ev), Pass(Next) # 0, Pass(Next) # Next

Rule 6: Stimulate the SUT

Next stim(ev), Skip(Next) 7 0

132 Chapter 7. Algorithm for Testing Orchestrators in Context

init: (¢, q,, ,,true) L
or g init: (s, qy, oy, true)

u_start ? token
! u_start ? tokenl

gt (€8, gy o, true) n,: (ts;, a,, o, true)

n,: (ts,, q,, o,, true)
sg_generate ! seed, . 10

sg_generate ! seed,
n,: (ts,, a,, oy, true)

n,: (ts,, g, oy, true)

J sg_sequence ! seq,

sg_sequence ! seq,

Myt (15,845 sequencer 9or O/ tru€) myt (tsy, 3, oy, true) - "
n,t (ts;, g5, o, true)

u_screen ! 'lose’ u_screen ! 'win'

u_screen ! 'win'

ne: (ts., ,, 6,, seq,=win_se
N, (ts,, g 0, seq,<>win_seq,) N5¢ (855 Qg 051 Seq, q:)

/{ ng: (tsg, Qg 0, Seq;=win_seq,)

(a) Obs(Qrch). (b) TP.

Figure 7.9: Inputs of the algorithm for the controllable case.

symbolic variable token; and, as we know the random algorithm used by the
implementation (or at least the one specified by Qrch), we also know that the
values computed for seed; and win_ seq, are, respectively 6 and 4.

2. An observation happens, that is, Orch.obs(ev) = obs(sg generate!6). It means
that the orchestrator sends the value 6 to the Sequence Generator service through
the communication channel sg_generate. So, token; = 1, seedy = 6 and
win_seq; = 4; thus, the new sets of contexts are now: SC = {(m,true)},
Next(ev, SC) = {(ne, true)}, Skip(Next(ev, SC)) = {(na, true)} (since the tar-
get condition is satisfiable) and Pass(Next(ev,SC)) = 0. Therefore, Rule 1
1s applied.

3. An observation happens, that is, W S.obs(sg_sequence?d). It means that the
Sequence Generator service sends the wvalue 4 to the slot machine’s interface
through the communication channel sqg _sequence. So, token; = 1, seed; = 6,
win_seqy; = 4, and seqy = 4; thus, the new sets of contexts are, in this step:
SC = {(na,true)}, Next(ev, SC) = {(n3,true)}, which is the same as the set
Skip(Next(ev, SC)) = {(ns, true)} (since the target condition is satisfiable), and
Pass(Next(ev,SC)) = 0. Therefore, Rule 1 is applied. Note that in this state,
quiescence was accepted, but the Sequence Generator service reacted before enter-
ing into a quiescence situation. Also, we suppose that the Sequence Generator
service sends the value 4, which is in fact the winner sequence. However, in a
real case scenario and since the Sequence Generator service is not controlled by
the tester, this is only an assumption and several observations would have to be
made in order to test this path of the tree.

4. An observation happens, that is, Orch.obs(ev) = obs(u_ screen!’win’). It means
that the orchestrator sends the value win’ to the user service through the com-
munication channel u_screen (in fact, this value should be also stored in a

7.4. Rule-based Algorithm 133

new symbolic variable, but as explained before, we abusively skip this step for
the sake of readability). So, token; = 1, seed; = 6, win_seq; = 4, and
seq1 = 4; thus: SC = {(ns,true)}, Next(ev,SC) = {(ns,seq1 = win_seqq)},
Skip(Next(ev,SC)) = Pass(Next(ev, SC)) = {(n5, seqn = win_seq1)}. There-
fore, Rule 4 is applied and the verdict PASS is emitted, jointly with the collected
information Report(Next(ev,SC)) = { (u_start?tokeni. sg_generatelseed;.
sg sequence?seq;. u_screenl’win’}, token = 1 Aseed = 6 Awin_seq = 4
wedgeseq = 4)}.

7.4.4 Algorithm for the Hidden Case

If we take the hidden channels into account, in order to extend the algorithm to
uioco, we consider events as elements of Act(C \ Cp, M), and we simply have to
check that, at each step of an application of a rule involving an event W S.obs(ev)
from a set of context SC, we have that Next(ev, SC) is conservative. If it is not the
case, the algorithm should stop and send a verdict expressing that the characterized
sequence of actions does not belong to UTraces(Orch). Similarly Rule 6 should
only be applied for events ev such that Next(ev, SC) is conservative.

init: (g, gg, o, true)
init: (¢, q,, og,true)
u_start ? token1
u_start ? token,

n,: (tsy, q,, oy, true)

n,: (8.8, qy, oy, true) n,: (ts;, ay, oy, true)

u_screen ! 'win'

u_screen ! 'lose’ u_screen ! 'win'
n,: (ts,, gy, o,, s€q,<>win_seq,) ng: (tsg, Ay, 0, S€q,=win_seq,) ngt (tsg, dg, o, s€q,=win_seq,)
(a) Obs(Qrch). (b) TP.

Figure 7.10: Inputs of the algorithm for the hidden case.

Example 7.4.2 Let us consider Figure 7.10. Figure 7.10(a) depicts the Obs(Qrch)
with the assumption that the communication channels are hidden, and Figure 7.10(b)
depicts a test purpose for that Obs(Qrch). In our previous example, the property
that Next(ev, SC) is conservative holds (for each event that was observed in the
Web service), so apart from the fact that Obs(Qrch) and TP are different, the rest
remains the same the same. That is, from the steps in Example 7.4.1, only the steps
2 and 3 are omitted, the rest are the same.

134 Chapter 7. Algorithm for Testing Orchestrators in Context

Finally, our algorithm is based on the one presented in [Gaston 2006, Touil 2006],
but extended by the addition of two new verdicts regarding interactions with the
Web services, and with minor changes in the definition of the sets used together
with the algorithm. Also, the inputs of the algorithm changed, specially for the
symbolic execution. In this case, Obs(Orch) has more information than the symbolic
execution without any modifications. However, the key behavior of the algorithm
was not changed so we can naturally assume that the theorem of correctness and
completeness given in [Touil 2006] can also be obtained with our version of the
algorithm. The theorem states that!:

Correctness: If Obs(Orch[Rem]|,C,) conforms to Orch, no matter what test
purpose we consider, there is no way to compute the verdict FAIL in the
algorithm.

Completeness: If Obs(Orch[Rem],C,) does not conform to Qrch, then there
exists a test purpose for which the algorithm produces the verdict FAIL.

7.5 Conclusion

In this chapter we have presented a symbolic approach to test orchestrators in their
context of usage. By taking the different status of the communication channels used
by the Web services to interact with the orchestrator into account, we proceeded
to generate the observable behaviors, Obs(Qrch), of the orchestrator in context by
performing consecutively on the symbolic execution the quiescence enrichment, WS
input transformation, hidden and 7-reduction operations. We have shown how to se-
lect the behaviors to test in Obs(Orch[Rem], C,) which are called test purposes. By
using the test purposes and the observable behaviors of the orchestrator in context,
we have defined the rule-based algorithm to test the conformance of orchestrators in
context. This algorithm is based on ioco for the observable and controllable cases,
and on uioco for the observable, controllable and hidden cases. The algorithm stim-
ulates Obs(Orch[Rem],C,) and emits a verdict as soon as possible, jointly with a
report that proves useful for the tester when determining the cause of the verdict.

In the next chapter, we conclude Part II with the symbolic counterpart of
Chapter 5, which complements this work by means of generating behaviors from
SE(Orch) in order to test the Web services to determine if they are compatible
with the orchestrator.

!See [Touil 2006] for a proof.

CHAPTER 8

A Method for Testing Web
Service’s Compatibility

Contents
8.1 Imtroductionttt 135
8.2 'Web service Behaviors Inferred from Orchestrators 136
8.2.1 Technical Preliminaries 136
8.2.2 Executable Behaviors for Web services 139
8.3 Testing the Deadlock-free Property 142
84 Conclusion e, 142

8.1 Introduction

HE symbolic execution represents the valid behaviors for an implementation
I of the orchestrator. In this chapter we take advantage of the fact that
the orchestrator is the one that guides the whole system to extract some
behaviors from its symbolic execution in order to test the compatibility of Web
services involved in the process. We do this mainly because it is common not
to have the complete and precise behavioral specification of all the Web services
involved in the orchestration. Thus, we aim at testing the compatibility of the Web
service behaviors as they are expected from Qrch. In fact, the Web services may
offer more services and functionalities than the ones requested from Orch, but by
studying the behaviors of Orch, we do not consider all of them. In order to generate
the behaviors from the symbolic execution of Qrch, we introduce two operations:
projection and mirror, which are they symbolic version of the ones presented in
Chapter 5. Roughly speaking:

The projection operation only keeps the interactions between Orch and the tar-
geted Web services.

The mirror operation inverses receptions and emissions so that behaviors are con-
sidered from the point of view of the Web service instead of OQrch.

As for the numerical case (Section 5.4), we also identify the situations where

the Web services are allowed to be quiescent without leading the orchestrator into

136 Chapter 8. A Method for Testing Web Service’s Compatibility

a deadlock state. The resulting structure is the set of all the valid behaviors of the
Web service as expected from the orchestrator.

With the assumption that the orchestrator invokes all the Web services involved
in the orchestration (fairness invocation of Web services property), we can consider
the behaviors described above as test cases that can be used together with our
algorithm presented in Section 7.4 in order to test Web services. More specifically,
we use the compatibility relation introduced in Section 5.4 to test Web services.
We say that if a Web service meets the compatibility relation with respect to the
behaviors that Orch expects from it, then it meets the deadlock-free property. This
also means that the Web service cannot lead the orchestration into a deadlock state.

We begin this chapter in Section 8.2 by introducing the technical preliminaries
of our work, including the mirror and projection operations at the symbolic level.
With these operations, and together with the quiescence enrichment for the Web
services, we show how to extract the behaviors for the Web services from the ones
of the orchestrator. In Section 8.3 we show how the extracted behaviors can be used
to test the deadlock-free property of a given Web service. Section 8.4 concludes the
chapter.

8.2 Web service Behaviors Inferred from Orchestrators

In this section we show how to obtain Web service behaviors from the symbolic
execution of Qrch (the specification of the orchestrator), SE(Qrch). In order to do
that, we begin by defining the technical preliminaries which are a series of notions
and operations that are then used to define the executable behaviors for Web ser-
vices. Thus, those behaviors are extracted from SE(Qrch) after some modifications.

8.2.1 Technical Preliminaries

As for the numerical case presented in Section 5.4, we suppose that a set W of
so-called Web service names is given, which allows us to differentiate between the
channels used to communicate with the user and with each of the Web services.
Thus, we partition the set of communication channels C' (introduced in Defini-
tion 6.2.1, Section 6.2) in such a way that C' is now of the form C.UJ,,cy Cw, and
satisfying: for all w # w' € W, C.N Cy = 0 and Cy, N Cyy = . We assume that a
corresponding set of fresh variables F, is associated to each Web service, and, for
every w # w', Fiyy N Fyr = 0.

Each Web service, has then, an associated sub-signature, defined over its corre-
sponding set of communication channels.

8.2. Web service Behaviors Inferred from Orchestrators 137

Definition 8.2.1 (Web service sub-signature) Let W be a set of Web service
names, and let C be a set of channels partitioned as Ce U Jyew Cw, Fuw a set of
fresh variables, ¥y = (Fy, C) be an IOSTS signature, and w € W be a Web service
name.

The sub-signature of w is defined as:
E’L]g = (Fun Cw)

In the sequel, we suppose that a Web service sub-signature 3% is given.

As discussed in Section 5.2, authorizing the Web service to be quiescent may only
be decided when the orchestrator sends it a message. For this reason, we impose
that any orchestrator always finally invokes all its associated Web services unless
its execution terminates. This corresponds to what we call the fairness invocation
of Web services. This necessary restriction is reasonable with respect to real life
orchestrators which generally characterize finite sequences of interactions with Web
services.

Definition 8.2.2 (Fairness invocation of Web services property) Let
SE(Orch) = (init, Rsqt) be a symbolic execution.

The fairness invocation of Web services property is such that:

for any w such that Cy, # 0, there does not exist an infinite sequence of consecutive
symbolic transitions (strp)nen with stry, € Raat, source(strg) = init, and for
all i € N, target(str;) = source(striy1), and such that for all i € N, we have
act(str;) € O(Zp™, F)

We now present the necessary operations to transform the behaviors from the
point of view of the orchestrator to the one of the Web services. We achieve this
by defining the symbolic version of the projection and mirroring operations, intro-
duced in Definitions 5.3.1 and 5.3.2 in Section 5.3 for the IOLT'Ss. The projection
operation’s idea is to remowve all the interactions in the symbolic execution that do
not involve the Web service under test.

Definition 8.2.3 (Projection of SE(G)) Let SE(G) = (init,Rsat) be a
symbolic ezecution, and let A C Act(XF) be a subset of the communication actions
over Y.

The projection of SE(G) over A, denoted SE(G) la, is the cou-
ple (init,R4), where Ry is the least relation so that for any sequence
(m,8a1,m2) *+ (Mmy SQm, Mm+1) of transitions in Rgat, we have:

e if there exists (1), act,m) in Rsat, then act € A
o sam €A andV1<i<m, sa; ¢ A

then (M1, S@m, Mm+1) € Ra

138 Chapter 8. A Method for Testing Web Service’s Compatibility

init: (g, g, o,,true)
sg_generate ! seed,
n,: (ts,, a,, o, true)

Sg_sequence ? seq,;

n5t (ts;, g5, oy, true)
Figure 8.1: Projection example.

Example 8.2.1 Figure 8.1 depicts the projection of the symbolic execution SE(G)
of Figure 6.6 presented in Section 6.3 (corresponding to the Slot Machine example),
and with the assumption that it is projected over the subset of communication ac-
tions A = {F,{sg generate,sg sequence}}. Thus, all the information in SE(G)
that has nothing to do with the communication actions in A is just ignored in the
resulting structure SE(G) |4, that is, all the interactions between the user and the
slot machine’s interface (since in this case there is only one Web service in the
orchestration).

The mirror operation transforms all communication actions as if they were seen
from the point of view of a Web service. It basically consists on transforming inputs
into outputs and vice-versa.

Definition 8.2.4 (Mirror of a symbolic execution) Let SE(G) = (init, Rsat)
be a symbolic execution.

The mirror of SE(G), denoted Mir(SE(G)), is the couple (init, Mir(Rsat)),
where for each str € Rgar of the form (n,sa,n'), Mir(str) is defined as follows:

e if sa is of the form c\z, then Mir(str) = (n,c?z,7')
e if sa is of the form c?z, then Mir(str) = (n,clz,n)

o clse, Mir(str) = str

Example 8.2.2 Figure 8.2 depicts the mirror of the symbolic execution SE(G) of
Figure 6.6 presented in Section 6.3. The idea of this operation is simple: to trans-
form inputs into outputs and vice-versa, so the interactions between the slot ma-
chine’s interface and the Sequence Generator service SG are represented from SG’s
point of view. In this example, transforming the interactions with the user makes no
sense, and that is why we use the mirroring operation together with the projection
one, as explained in next section.

8.2. Web service Behaviors Inferred from Orchestrators 139

init: (e, o oo,true)
u_start ltoken]
ny (tsl, 9y Gy, true)
sg_generate ? seed,
n,: (ts,, q,, o, true)

sg_sequence ! seq,
gt (tsE, Gy Oy true)
u_screen ? 'lose' u_screen ? 'win'

ny: (ts,, 4, o,, seq,<>win_seq,) ng: (tsg, g, 0,, seq,=win_seq,)

2 +

Figure 8.2: Mirror example.

8.2.2 Executable Behaviors for Web services

We start by introducing the Web service quiescence enrichment over SE(Qrch).
This quiescence enrichment differs from the one introduced in Definition 6.3.9 in
Section 6.3, which refers to the situation where the orchestrator may remain silent;
and from the one introduced in Definition 7.2.1 in Section 7.2, which refers to the
quiescence due to lack of response of Web services. The quiescence introduced here
aims at identifying the situations where a Web services can be quiescent without
leading the orchestrator into a deadlock state. Thus, it can be quiescent if the
orchestrator is not expecting anything from it and also, strictly speaking, if the
orchestrator can not execute any action.

Definition 8.2.5 (Enrichment by Web service quiescence) Let
SE(Qrch) = (init,Rsqat) be a symbolic execution, and w € W be a Web
service name.

The enrichment by w-quiescence of SE(Qrch), denoted SE(Qrch)s™, is the re-
striction to Ssat of the couple (init, Rsqt UA), where A C S X {0} x S is defined as
A1 UAg, and where A1 and Ao are respectively defined as follows:

o for any n € S, let us note React¥(n) the set of all (n,sa,n’) € Rsar such
that sa € O(X%), and Il,(n) the formula false if Reacty(n) = 0, and

v(n’sa’n')EReact};’(n) pc(n') otherwise,
then (n,d, (ts(n).d, state(n), sub(n), pc(n) Al,(n)) € Ay

e for any n € S, let us note React¥,(n) the set of all (n,sa,n’) € Rsar, and

oy (n) the formula true if React?,(n) = 0, and /\(n,sa,n’)eReact;f”(n) —pc(n')
otherwise,

then (0,9, (ts(n).d, state(n), sub(n), pe(n) A llau(n)) € Az

140 Chapter 8. A Method for Testing Web Service’s Compatibility

init: (¢, 4, o,,true)
u_start ? token,
n,: (ts,, g, o, true)
3 sg_generate ! seed,
n,: (ts,.8, 4g, o, true) n,: (ts,, q,, oy, true)

sg_sequence ? seq,

ns: (tsy, g5, o,, true)

u_screen ! 'lose’ u_screen ! 'win'

n,: (ts,, 4y, o, seq,<>win_seq,) ngt (tsg, Ay, 0,, S€q,=win_seq,)

~ ~

Figure 8.3: Enrichment by Web service quiescence for the Slot Machine example
(Figure 6.6).

The auxiliary formula IT,(7) is used to determine if Web service quiescence can
be allowed in the sense of the discussion presented in Section 5.2, where we concluded
that a Web service can be quiescent only when the orchestrator sends it a message.
I1,(n) is then the disjunction of all the path conditions of the target states of precisely
the transitions denoting the emission of a message to a Web service. If there is none,
II,(n) is false (quiescence due to interactions with the Web services is not allowed
since there are no communications with them). Thus, Web service quiescence is
allowed only if the path condition of the target states in conjunction with II,(7n) is
satisfiable.

In the same way, the auxiliary formula II;(n) is used to determine if Web
service quiescence can be allowed due to the impossibility to move forward by the
orchestrator, that is, the negation of all the path conditions of all the target states
of the transition under examination. If this situation happens, the Web service is
allowed to be quiescent. If there are no states that can be reached from the current
one (which is not usually the case), Iy (n) is true (Web service quiescence can be
allowed). Thus, Web service quiescence is also allowed if the path condition of the
target states of the examined transitions in conjunction with I, (n) is satisfiable.

Example 8.2.3 Figure 8.3 depicts the enrichment by Web service quiescence for
the Slot Machine example. That is, Definition 8.2.5 was applied to the symbolic
execution SE(G) of Figure 6.6, where G is in fact QOrch. We can see that in state
N1, the Sequence Generator service SG is waiting for the request of the slot machine’s
interface SM. This is the only situation where it can be silent. In n3, SM is waiting
for a sequence form SG, and the quiescence is not allowed, since if it does not send
the requested value, SM cannot evolve by itself, and thus it would enter in a deadlock

8.2. Web service Behaviors Inferred from Orchestrators 141

init: (¢, q,, oy true)

S sg_generate ?seed,

N (tSl.é, Agr Oy true) 1), (tsz, 9,7 Oy true)

sg_sequence ! seq,

n; (tsy, a5, o, true)

22

Figure 8.4: w-trace structure according to Figure 8.3.

situation.

We are now ready to define the w-traces that represent behaviors that can be
used to test if a given Web service is compatible with an orchestrator. These be-
haviors are nothing more than the result of applying the projection and mirror
operations on SE(Qrch)s” for a given Web service name w. Besides, we explicitly
remove any possible quiescent situation that is not allowed for the Web service.

Definition 8.2.6 (w-trace structure according to the orchestrator) Let
SE(Orch) be a symbolic execution, let w € W be a Web service name, and let
us consider the symbolic structure (init, Rsqt) = Mir(SE(Qrch)s” lc,). Let us
define Rjunk the set of all transitions (', clz,n") such that there ewists in Rsar a
transition of the form (n,d,1').

The symbolic structure of w-traces according to Qrch is defined as:
(init, Ry) = (init, (Rsat \Rjunk))

According to Definition 8.2.6, w-traces according to Orch are the result of ap-
plying the mirror and projection operation to SE(QOrch) enriched with Web service
quiescence with respect to a given Web service w, that is, Mir(SE(Qrch)s" lc,,)-
However, due to the nature of those operations, there may be some situations where
we can have a trace like the following: o¢.d.clz, that is, according to that trace, w
may emit a value after quiescence is observed. As already mentioned, a quiescent
situation is allowed only if the system cannot emit and output or execute an inter-
nal action. This trace breaks our requirements for allowing quiescence. Thus, we
remove such traces by means of the auxiliary set of symbolic states R junk-

Example 8.2.4 Figure 8.4 depicts the w-trace structure according to the orches-
trator of the Slot Machine example. This structure is nothing more than the result
of enriching SE(Qrch) with Web service quiescence, removing the transitions from

142 Chapter 8. A Method for Testing Web Service’s Compatibility

the symbolic execution of Figure 8.3 that do not interact with SG, from converting
inputs into outputs and vice-versa, and explicitly removing any possible quiescence
situations where SG cannot be quiescent (which in this case there was none). Then,
this trace represents a behavior that the Sequence Generator service has to provide
in order to correctly interact with the slot machine’s interface. The rest of behaviors
of the Sequence Generator service are not in need to be tested. More precisely, if
SG specifies other behaviors, they do not concern interactions with Orch (the spec-
ification of the slot machine’s interface), and then we are not interested in testing
them.

8.3 Testing the Deadlock-free Property

The resulting symbolic execution structure (init, R,,) defines the behaviors of the
Web service w that are inferred from the orchestrator’s specification, including the
situations where the Web service w can be quiescent. These behaviors precisely
capture the requirements upon Web services that the whole system does not meet
a deadlock situation.

In Section 7.4, we have defined a rule-based algorithm to test orchestrators in
context. The same algorithm can be used to test Web services against (init, Ry,).
However, in this case, all the communication channels are observable, thus the
verdicts associated to Web services are useless. Thus, we can obtain a simplified
version of the algorithm with only 4 verdicts: WeakPASS, when the behavior
belongs to the test purpose and to, at least, one path of the symbolic execution
which is not in the test purpose; PASS, when the behavior belongs to the test
purpose and not to any path of the symbolic execution which does not belong
to the test purpose; INCONC (for inconclusive), when the behavior belongs to
the symbolic execution and not to the test purpose; and finally, FAIL, when the
behavior belongs neither to the test purpose nor to the symbolic execution.

Testing a Web service (using our algorithm introduced in Section 7.4) against
(init, R,) amounts to test the deadlock-free property. Any FAIL verdict discov-
ered for a given system SUT will mean that if the corresponding SUT is used to
implement the Web service w, then a situation of deadlock can occur.

Example 8.3.1 If we consider again Figure 8.4, we can define the test purpose
depicted in Figure 8.5 (with Accept = {n3}) and use it, jointly with our algorithm, to
test the compatibility of any implementation of the Sequence Generator Web service
with respect to Qrch (slot machine’s interface).

8.4 Conclusion

This chapter complements the symbolic approach for testing orchestrators in con-
text. We have shown how to test if the Web services do not lead the orchestration
(involving an orchestrator specified by Orch) into a deadlock state. In order to do

8.4. Conclusion 143

init: (¢, 4,, oy, true)

sg_generate ? seed,

n,: (ts,, q,, o;, true)

sg_sequence ! seq,

s (ts3, 45, Oy true)

Figure 8.5: Test purpose for a Web service.

that, we have presented the notions of the signature associated with each of the Web
services interacting with the orchestrator, the mirror and projection operations, as
well as identified the situations where the Web service can be quiescent without
leading the orchestration into a deadlock state. This state is avoided if every time
that the orchestrator is waiting for an answer of the Web service (and only for that
answer) in order to move forward, then the Web services are forced to react, other-
wise, it can remain silent. The resulting traces (w-trace structure according to the
orchestrator) can then be used together with our algorithm presented in Section 7.4.
The test purposes in this case are sub-trees of the w-trace structures.

Thus, we have shown that even if we only take into account the specification of
the orchestrator, since orchestrations are a special type of component-based system
where the orchestrator is not only the interface of the system but also the component
that guides the system, it is possible, under some hypotheses, to test partially Web
services involved with the orchestrator.

In the next chapter we show how we have implemented a prototype of our algo-
rithm to test orchestrators in context.

CHAPTER 9
Prototype for Test Case
Generation

Contents

9.1 Imtroductionttt 145
9.2 Multiple Communication Channels 146
9.3 Implementation of the Rule-based Algorithm 147
9.4 Technical Aspects and Instrumentation of the Prototype . 150
9.4.1 External Tools 150
9.4.1.1 Constraint Solver: JaCoP 150

9.4.1.2 WS-BPEL Editor: JDeveloper 151

9.4.1.3 WS-BPEL Engine: Oracle’s SOA 152

9.4.2 Rest of Modules and Behavior of the Prototype 152
9.4.2.1 Technical Details of the Prototype 154

9.5 Usage of the Prototype: A Complete Example 154
9.5.1 Example of Two Verdicts 158

9.6 Conclusion e 160

9.1 Introduction

ASED on the symbolic approach introduced in Chapter 7, in this chapter we
B present the implementation of the rule-based algorithm to test orchestrators

in context. The algorithm performs essentially 3 actions: it computes input
values to be sent to the implementation under test IUT, each time it is necessary,
in order to cover test purposes; it observes IUT reactions; and it computes a verdict
as soon as possible.

In order for the algorithm to work we need: the specification of the orchestrator
by means of an TOST'S, the symbolic execution of the TOSTS, and the adapta-
tion of the symbolic execution regarding the status of the Web services for testing
orchestrators in context. Besides, an instance of the orchestrator’s specification is
also needed, i.e., the implementation under test. This IUT is described by means
of the WS-BPEL specification. In this chapter we present the prototype that was
developed to cover all of the previous points. External tools are used together with

146 Chapter 9. Prototype for Test Case Generation

the prototype for different purposes: first, a constraint solver is needed when gen-
erating concrete data from the symbolic execution in order to perform the tests on
the IUT. Regarding the IUT, an editor of the WS-BPEL specification is needed, as
well as a tool to deploy the WS-BPEL process instances.

The specification of the orchestrator is given by means of its WS-BPEL descrip-
tion. That is, WS-BPEL is used both to describe the behavioral specification of the
orchestrator, and to define the instance of that specification, i.e., the IUT. Thus,
the first thing we need to do is to represent the WS-BPEL specification by means
of an IOSTS. In order to do that, we introduce the notion of multiple communica-
tion channels in Section 9.2. In Section 9.3, we present the implementation of the
rule-based algorithm, which is the core module of the prototype. In Section 9.4, we
present the constraint solver that we use, JaCoP', the JDeveloper WS-BPEL edi-
tor? used to design WS-BPEL processes, the WS-BPEL engine SOA? used deploy
the WS-BPEL process instances, as well the rest of modules of the prototype and
its general behavior. In Section 9.5, we present a complete example of usage of the
prototype by making use of the Slot Machine example. We conclude this chapter
with Section 9.6.

9.2 Multiple Communication Channels

We introduce the notion of multiple communication channels in order to better deal
with the exchange of values defined in WS-BPEL, which can be composed of different
parts. In WS-BPEL it is possible to send message structures in the <receive>,
<reply> and <invoke> activities. However, with our IOSTS, we do not have
the notion of an structured message, therefore, we use the multiple communication
channels notion to send and receive multiple values in one single transition. A
similar notion of multiple value exchanges in a single transition has been already

used with Symbolic Transition Systems [Frantzen 2006b].

. ? d?
In fact, the usual presentation of sequences of the form ¢ <% ¢ —% ¢"

presents the disadvantage of possibly allowing internal actions between the transi-
tions, interfering, by doing so, with the test process (for instance, in the sequence

. az
previously given, quiescence could be allowed in transition ¢ —% ¢”). Thus the
need to introduce multiple communication channels, which can be thought also as a
sequence of transitions that have an atomic behavior: if one transition is executed,

all the transitions (involved with the structured message) are executed. Then, the
clx

sequence of transitions ¢ LN q 4y, q" becomes just q 2y, q". By doing
this, first, we better represent the way WS-BPEL manipulate data, and second, it
is a notation easy to adapt to the symbolic execution. Now, this notion of multi-
ple communication channels could have been introduced before (in the definition of

"http://jacop.osolpro.com/
2http://www.oracle.com /technetwork /developer-tools/jdev/overview /index.html
3http://www.oracle.com /us/technologies/soa/index.html

9.3. Implementation of the Rule-based Algorithm 147

communication actions, for instance), but in order not to grow heavy the notations,
we preferred to keep the usual single emission/reception representation. Here, at
the prototype level, and in order to better work together with IUTs, we introduce
it in a natural way.

LS ident ! id
LS _amount ! a

u_ident ? id

u_amount ? a

LS_ident !'id

u_duration ? d
u_amount ? a
5 5%

u_duration ? d u_ident ? id
b := true
min :=d

(a) Single channels. (b) Multiple communication chan-
nels.

Figure 9.1: Notion of multiple communication channels for JOST'Ss.

For the case of IOST'Ss, the notion of multiple communication channels is rep-
resented in Figure 9.1. Figure 9.1(a) depicts how we would represent the exchange
of messages composed of different fields in our approach. Figure 9.1(b) depicts how
we actually represent the exchange of composed messages in the prototype. This
simple idea is used for the prototype to work correctly together with the WS-BPEL
process instances, in such a way that every time a structured message is sent or
received, this can be modeled as a single transition.

Figure 9.2(a) depicts the symbolic execution of the IOST'S of Figure 9.1(a).
Figure 9.2(b) depicts the symbolic execution of the IOST'S with multiple commu-
nication channels of Figure 9.1(b). The only subtlety is then to ensure that the
symbolic execution of the transition depicted in Figure 9.1(b) does not introduce
any interference between the different receptions.

Thus, the notion of multiple communication channels allows us to model the
specification of the orchestrators in a more structurally brief way, as well as facili-
tating the test process.

9.3 Implementation of the Rule-based Algorithm

In this section we present the pseudo code of the implementation of the rule-based
algorithm introduced in Section 7.4. This implementation is the most important
module of the prototype and it was implemented in the Java programming language.

Algorithm 3 presents the pseudo code of the implementation, which follows the
intuition of the ioco conformance relation. Its inputs are: the specification of the
orchestrator in context under test Obs(G), a test purpose TP, and a parameter
someTime representing an amount of time that the test algorithm waits for an

148 Chapter 9. Prototype for Test Case Generation

init

3

u_duration ? d1

.34_

=

u_amount ? a,

<—
-
=

=
N

u_duration ? d
u_amount ? a
u_ident ? id

"y
LS_ident! id1
LS_ident ! id
)
|]

u_ident ? id;

—
w

<—

=
N

-«—

LS _amount ! a

LS_amount ! a,

—
=
wv

(a) Single channels. (b) Multiple communi-
cation channels.

Figure 9.2: Multiple communication channels in symbolic executions.

observation before trying to send an stimulus. If this parameter is small, the stimuli
are prioritized over observations and vice-versa. Regarding the observations on the
IUT, the queue Observations is used to store them®.

The function Update(Obs(G),NextStimulus,SC,Next,Skip, Pass) updates the sets
Neat, Skip and Pass according to the set of contexts SC (which is also updated)
and to the event NextStimulus, which is either an element of the queue Observations
or an input computed by the Update() function and stored in NextStimulus.ev()®
(the sets Next, Skip, and Pass are updated according to, respectively, Defini-
tions 7.4.1, 7.4.2, and 7.4.3). The behavior of the Update() function is the following
one: for each child of each symbolic state occurring in some context of the current
set of contexts (SC), if the the transition of Obs(G) leading to the child state is
labeled by an action that can be synchronized with the computed event (observation
or stimulus), then a new context is computed accordingly and is added to the set
Neut (if the counstraint induced by the sequence of actions is compatible with the
path condition of the child state). If the child state is also in 7P, and targetCond
is satisfiable (according to Definition 7.3.3, targetCond is the logical disjunction of
the path conditions of all the symbolic states in TP), then it is added to the set

4We assume that the queue cannot receive an infinite number of events, this means that the
IUT is supposed to be strongly responsive.

5Note that such an input is only used if Observations is empty at the next step and is useless
otherwise.

9.3. Implementation of the Rule-based Algorithm 149

Skip. If the child node is a target state of 7P, then it is added to the set Pass.
Finally, a new stimulus is computed in such a way that, if possible, the IUT remains
in the path of TP, and is stored in NextStimulus.ev() (the stimulus is computed
by making use of Obs(G) and TP).

The behavior of the test algorithm can be seen as traversing simultaneously the
two trees Obs(G) and T P, by stimulating and observing the IUT, so that a verdict
can be emitted as soon as possible according to the fact that the observed behavior
of the IUT does or does not belong to both trees and is or not in the path of 7°P.
Rules of Section 7.4 are applied and, as long as Result remains a set of contexts
(Rule 1 for obs(ev) and Rule 6 for stim(ev)), the process continues. The algorithm
ends when a verdict is emitted.

Algorithm 2: Pseudo-code of the Java-based prototype of the rule-based

algorithm of test case generation.

Data: Obs(G), Test Purpose TP # Root(Obs(G)), someT'ime
Result: One of the verdicts described in Sec.7.4
: begin

1

2 Init(Obs(G), SC, Next, Skip, Pass)

3 Update(Obs(G), NextStimulus.ev(), SC, Next, Skip, Pass)

4: while (true) do

5: timer < reset()

6: while (Observations # empty) do

7 ev < Observations.getFirst()®

8: timer < reset()

9: Update(Obs(G), ev, SC, Next, Skip, Pass)
10: if (Next =0 &6 ev.sender() ¢ WS) then
11: L return FAIL, Report,ev /* Rule 2 */
12: if (Next =0 €6 ev.sender() € WS) then
13: L return WS.HY P.F AIL, Report, ev /* Rule 2.WS x/
14: if (Next # 0 €6 Skip =0 &6 ev.sender() ¢ WS) then
15: L return INCONC, Report /* Rule 3 */
16: if (Next # 0 €6 Skip =0 €€ ev.sender() € WS) then
17: L return WS.INCONC, Report /* Rule 3.WS x/
18: if (Pass # 0 &6 Pass = Next) then
19: L return PASS, Report /* Rule 4 */
20: if (Pass # 0 €€ Pass # Next) then
21: L return WeakPASS, Report /* Rule 5 x/
22: | wait(someTime) /* Prioritize obs. vrs. stim. */;
23: if (timer < Timeout €€ NextStimulus.ev() # null) then
24: 1UT.stimulate(NextStimulus.ev()) /* Rule 6 */
25: timer < reset()
26: | Update(Obs(G), NextStimulus.ev(), SC, Next, Skip, Pass)
27: else if (timer > Timeout) then

/* Timeout reached: Quiescent state */

28: NextStimulus.ev() + Quiescence
29: IUT.stimulate(NexztStimulus.ev())
30: | Update(Obs(G), NextStimulus.ev(), SC, Next, Skip, Pass)
31: end

“Rule 1 is implicitly applied for each observation every time that a verdict is not reached: the
algorithm continues processing the queue.

According to the pseudo-code of Algorithm 3, after initialization in lines 2 and 3,

150 Chapter 9. Prototype for Test Case Generation

a while loop begins and will finish until a verdict is emitted (line 4). After initializing
the timer, the first step of the algorithm consists in processing the observations sent
from the IUT to the environment (the tester, or more specifically, the test harness)
and stored in the queue Observations (line 6). Each observation of the queue is
examined: the time is reset, sets SC, Next, Skip and Pass are updated (lines 7 to
21), and the rules described in Section 7.4 are applied, showing how the verdicts
are produced. Besides, jointly with the verdict, a Report is provided. This report
consists of the trace of the symbolic state(s) present in SC when the verdict is
emitted. For the WS.HY P.FAIL and F AIL verdicts, the observation that caused
the verdict is also given. If no verdict is found, the algorithm waits for someTime
amount of time before trying to read again from the queue Observations (line 22).
When there are no more observations in the queue then, if the timer has not reached
Timeout and if there is a stimulus capable to guide the IUT to a target state, then
this stimulus is sent, the timer is reset and the sets and next stimulus are updated
(lines 23 to 26). Finally, if there is not a stimulus, we wait for Timeout amount of
time to state that the IUT is in a quiescent state. If this happens, quiescence is
emitted and the sets are updated according with the observation of the quiescent
situation (lines 27 to 30).

9.4 Technical Aspects and Instrumentation of the Pro-
totype

In order to test a WS-BPEL process instance, we use external tools to deal with the
constraint solving of symbolic conditions in Obs(G) (so we can send concrete data
to the IUT), as well as to handle the edition and deployment of the implementation
of the orchestrators as WS-BPEL process instances. In this section we present the
external tools that are used together with the prototype as well as the rest of the
prototype’s modules that were developed.

9.4.1 External Tools
9.4.1.1 Constraint Solver: JaCoP

The symbolic execution presents all the possible behaviors of the implementation of
an orchestrator in a symbolic way. Thus, if we want to ezecute one of those behaviors
in the implementation, it suffices to take the path of the symbolic execution repre-
senting the desired behavior, interpret it and send the concrete data to the IUT. In
order to interpret the symbols in the symbolic execution tree, we use a constraint
solver [Hoffman 2005]. The purpose of a constraint solver is, as its name suggests,
to propose solutions for a given constraint, in our case it is used to propose real data
for the symbols of the symbolic execution, provided with a formula considered as a
constraint. Those data has to satisfy the conditions over the symbols.
For instance, suppose that we have the following symbolic transition:

((57 qo,a — ao,tTUB) ,C?CL, (C?a’qlaa — ai, (al * 3) > (al - 3)))

9.4. Technical Aspects and Instrumentation of the Prototype 151

This transition is only fired if the condition (a1 * 3) > (a1 — 3) is satisfiable.
Thus, the tester needs to find some values that make the constraint satisfiable in
order to send the solution through the channel ¢ to the IUT. In this case, the tester
has to solve the condition (aj *3) > (a1 — 3) and send the corresponding value of a.
This is a trivial case and one can compute the value of a easily (for instance, a = 4).
However, as we move forward in the symbolic execution tree, the path condition of
the symbolic states gets more and more complex. For this reason, as it is classical,
we use an external constraint solver.

Figure 9.3: Constraint example for JaCoP.

In our case, the chosen constraint solver is JaCoP, which stands for Java Con-
straint Programming Solver. The main reason we chose JaCoP is because it is open
source and is developed in Java. JaCoP admits only integer and boolean variables,
so when using it to solve constraints over enumerated types or strings, messages are
mapped to integer numbers. Figure 9.4 shows an example of JaCoP to solve the
following constraint: there is a graph with 4 nodes, labeled vy, va, v3, and vy, as
depicted in Figure 9.3. The condition is to find a color (number) for each node in
such a way that there are no two adjacent nodes sharing the same color.

As we notice in Figure 9.4, values are initialized and one variable is created for
each node in the graph (v[0] for node vg, and so on, lines 8-13). Then, the conditions
are set in lines 15 to 19, and finally JaCoP is requested to find a solution (lines 21
to 28): if it finds one, it gives the value for each variable, and if it does not, the
program prints *** No. In this case, the solution is fond and the result is printed
out: Solution: v0=1, vi=2, v2=3, v3=1.

9.4.1.2 WS-BPEL Editor: JDeveloper

In order to design the WS-BPEL processes we use the Oracle’s JDeveloper editor,
together with its corresponding plugin for WS-BPEL. JDeveloper is a free integrated
development environment that simplifies the development of Java-based SOA appli-
cations and user interfaces. The WS-BPEL editor allows to design the WS-BPEL
process in both graphical and textual ways, as shown in Figure 9.5. One of the main

reasons we chose JDeveloper is because it is free and can be easily integrated with
Oracle’s SOA.

152 Chapter 9. Prototype for Test Case Generation

1 import JaCoP.core.*;
2 import JaCoP.constraints.XneqY;
3 import JaCoP.search.*;
4 import java.util.*;
5 public class Main {
6 static Main m = new Main ();
7 public static void main (String[] args) {
8 Store store = new Store(); // define FD store
9 int size = 4;
10 // define variables
11 Variable[|] v = new Variable[size[;
12 for (int i = 0; 1 < size; i++)
13 v[i] = new Variable(store, "v" -+ i, 1, size);
14 // define constraints
15 store.impose(new XneqY(v[0], v[1]));
16 store.impose(new XneqY(v[0], v[2]));
17 store.impose(new XneqY(v[1], v[2]));
18 store.impose(new XneqY (v[1], v[3]));
19 store.impose(new XneqY (v[2], v[3]));
20 // search for a solution and print results
21 Search label = new DepthFirstSearch();
22 SelectChoicePoint select = new InputOrderSelect(store, v, new IndomainMin());
23 boolean result = label.labeling(store, select);
24 if (result)
25 System.out.println("Solution: " + v[0]+", "+v[1] +", "+v[2] +", "+Vv[3]);
26 else
27 System.out.printIn("*** No");
28 }
29 }

Figure 9.4: Example of JaCoP for solving constraints.

9.4.1.3 WS-BPEL Engine: Oracle’s SOA

In order to deploy the WS-BPEL process instances, we chose Oracle’s SOA. Among
the tools we tried, Oracle’s SOA was the one that better fitted to our needs. It is easy
to install and user friendly. Besides, it offers the possibility to simulate some of the
message exchanges, to introduce human tasks and to audit all the communications.
These characteristics are useful because we can simulate the Web services when
needed, and find out where the error was when there is failure. For instance, if the
Web service is controllable, we can replace it by a human task. Figure 9.6 shows
the interface of Oracle’s SOA.

9.4.2 Rest of Modules and Behavior of the Prototype

In order to test a WS-BPEL process implementation, the prototype performs the
following tasks (as depicted in Figure 9.7):

9.4. Technical Aspects and Instrumentation of the Prototype 153

Oracle JDeveloper - papercase.jws : SlotMachineorch. jpr.

- S-bPUMAEIER B3 B B
vopel | bpel | STestC xsd_|[@lopelxmi | @ Testcrednkatingservie (=l

Drill Down Stack: LA

bpel | daLoank

Jeiadsu gy | swauoduod

L L
ShawDetaied Nade Informatian

st ([Messages | 6P messages [ODE|

[ElLog

epel | oL earor

Figure 9.5: JDeveloper BPEL plugin.

1. It receives as input the specification of the WS-BPEL process instance by means
of an TOSTS, Orch. The first module of the prototype is then the one that
allows the tester to manually enter this IOSTS. As explained in Section 2.5, we
take as inspiration the the work of [Bentakouk 2009] to represent WS-BPEL as
10STSs.

2. Then, another module symbolically executes Orch and generates SE(QOrch). We
stop the generation of the tree when we reach a given (variable) depth or when
we visit the root state for the second time, as explained in Section 6.3. After
that, this module asks the tester for the status of the different communication
channels (countrollable, observable, or hidden) and applies the transformations
described in Chapter 7 in order to obtain Obs(Qrch).

3. Finally, the module introduced in Section 9.3 firsts asks the tester for the test
purposes and then executes the Algorithm 3 presented before, and each time a
constraint has to be solved, JaCoP is invoked; if the communication is supposed
to happen with a controllable Web service, we simulate the Web service by a
SOA’s human task. If the communication is supposed to happen with a hidden
Web service, we emulate the Web service which becomes an embedded part of
the IUT. If the communication is supposed to happen with an observable Web
service, then the inputs sent by the Web services are just given as observations
to the test algorithm. Also, quiescence situations are manually indicated by the
tester.

154 Chapter 9. Prototype for Test Case Generation

ORACLE' Enterprise Manager 10g
BPEL Control

Title: Instance #60001 of SlotMachineOrch
Reference Id: 60001 Tree Finder
BPEL Process: SlotMac b (v, 1.0}

Manage Flow Audit Debug Interactions Sensor Values Test

Visual representation of the history of this BPEL business flow

“)
|

receivelnput

E)

assign (79)

(B85 I
L

assign (91}

invokeSG

|

receiveSG

|

A

Figure 9.6: Oracle’s SOA BPEL console.

9.4.2.1 Technical Details of the Prototype

The modules of the prototype make a total of 3,794 lines of code in Java (according
to the Ubuntu package sloccount®). The execution time depends on the situation
of the communication channels and the interaction with the tester. The time for
solving a condition increases according to the domain of the variables and to the
number of constraints in the condition, however, the prototype was not submitted
to any performance requirement. The use case has been validated manually.

9.5 Usage of the Prototype: A Complete Example

In this section we show the complete process when testing an orchestrator in context.
We take the Slot Machine example and we show one by one the steps to follow when

using the prototype.

1. First, we consider the specification of the orchestrator given by means of a WS-
BPEL description. For the Slot Machine example, Figure 9.8 shows a simplified
version of its WS-BPEL description. We can notice that there are two part-
nerLinks (lines 2-5), one to communicate with the user and the other one to

Shttp://packages.ubuntu.com/dapper /sloccount

9.5. Usage of the Prototype: A Complete Example 155

e

10STS |:> Symbolic execution tree :> Test purposes Tester
Processing Communication channels status Online algorithm

Tester Web service behaviors Verdict
= —- : k
= ‘

Figure 9.7: Modules of the prototype.

WS-BPEL process

communicate with the Sequence Generator service, there is also the definition of
the variables that are used in the business process execution (lines 6-12). Finally,
the behavior of the orchestrator (slot machine’s interface) is given (lines 13-52):
first, the user invokes the orchestrator by sending it a token (line 14); then, the
variables are initialized according to the token (lines 15-26) and the seed is sent
to SG (line 27). The generated user’s sequence is received from SG (line 28)
and is compared with the computed winner sequence. If they are the same, the
final message to be sent to the user is set to 'win’ (lines 30-39) and to ’false’
otherwise (lines 40-50). The process ends by sending the final message to the
user (line 51).

2. The next step is to represent the WS-BPEL description of Figure 9.8 by an
I10STS, denoted Orch. Then, its text version is given as an input file to the pro-
totype (see Figure A.1 in Appendix A). Its manual representation is (re)depicted
in Figure 9.9. Taking as reference Figure 9.8 we can notice that the attribute vari-
ables and communication channels correspond to the ones used in the WS-BPEL
description. For instance, the WS-BPEL variable token is received through the
partnerLink user by invoking the operation start; thus, the name u_ start is
used in Qrch to represent it. Also, the flow of the WS-BPEL business process is
naturally represented in Orch.

3. Once Orch has been given as an input, the prototype is compiled and executed.

4. The first output is the symbolic execution SE(Qrch) in graphical and text mode,
generated as defined in Section 6.3 (Definition 6.3.6) and depicted in Figure A.2
in Appendix A. The symbolic execution tree generation stops according to the
criterion root re-visited or depth reached, that is, when a cycle of the slot machine
is completed and the message is sent to the user. As for Orch, SE(Orch) has
been already introduced, but we depict it here again in Figure 9.10 to make the
reading easier.

5. The second output is the full quiescence enrichment of SE(Qrch), both in graphic
and text mode, as depicted in Figure A.3 in Appendix A. This quiescence enrich-
ment is done according to Definition 7.2.1 in Section 7.2. Its manual version is

156 Chapter 9. Prototype for Test Case Generation
1 <process name="SlotMachineOrch" >
2 <partnerLinks>
3 <partnerLink name="user"/>
4 <partnerLink name="SequenceGenerator" />
5 < /partnerLinks>
6 <variables>
7 <variable name="token"/>
8 <variable name="seed" />
9 <variable name="sequence" />
10 <variable name="winnersequence" />
11 <variable name="finalMessage" />
12 < /variables>
13 <sequence name="main" >
14 <receive name="receivelnput" partnerLink="user" variable="token" operation="start"/>
15 <assign>
16 <copy>
17 <from expression="random(token)" />
18 <to variable="seed" />
19 < /copy>
20 < /assign>
21 <assign>
22 <copy>
23 <from expression="random(’seed’)" />
24 <to variable="winnersequence" />
25 < /copy>
26 < /assign>
27 <invoke name="invokeSG" partnerLink="SequenceGenerator" inputVariable="seed"
operation="generate" />
28 <receive name="receiveSG" partnerLink="SequenceGenerator" variable="sequence"
operation="sequence" />
29 <switch>
30 <case condition="getVariableData(’sequence’) = getVariableData(’winnersequence’)" >
31 <sequence>
32 <assign>
33 <copy >
34 <from expression="string(’win’)" />
35 <to variable="finalMessage" />
36 < /copy >
37 < /assign>
38 < /sequence>
39 < /case>
40 <otherwise >
41 <sequence>
42 < assign>
43 <copy >
44 <from expression="string(’lose’)"/>
45 <to variable="finalMessage" />
46 < /copy>
47 < /assign>
48 < /sequence>
49 < /otherwise>
50 < /switch>
51 <invoke partnerLink="user" inputVariable="finalMessage" operation="screen"/>
52 < /sequence>
53 < /process>

Figure 9.8: WS-BPEL code for the Slot Machine example.

9.5. Usage of the Prototype: A Complete Example 157

seq <> win_seq
u_screen ! 'lose'

seq = win_seq
u_screen ! 'win'

u_start ? token

seed = random(token)
win_seq = random(seed)

sg_sequence ? seq

sg_generate ! seed

Figure 9.9: Orch for the slot machine example.

depicted in Figure 9.11. For the moment, in the prototype, for each quiescence
state that is generated, we stop the symbolic tree.

6. The next step consists in preparing the partial specification of Qrch, Obs(Orch),
according to the status of the communication channels of the Sequence Generator
service SG. We start by showing the hidden case. After indicating the hidden
status of the communication channels to the prototype, the modified symbolic
execution HO(Qrch) (obtained by applying Definition 7.2.3 in Section 7.2 to the
WS transformation of SE(Qrch)s of Figure 9.11) is calculated and given in its
text an graphical versions. The resulting structure computed by the prototype is
depicted in Figure A.5 in Appendix A. A more clear, manual version, is depicted
in Figure 9.12. There are two transitions denoting interactions trough hidden
communication channels, sg generate and sg _sequence. Since observations
are no possible in those channels, they are treated as internal actions and the
communication actions are replaced by 7.

7. The next output is the 7-reduction of HO(Qrch), both in text an graphical
mode, as depicted in Figure A.6 in Appendix A. This reduction is done according
to Definition 6.3.10 in Section 6.3, and which basically removes the transitions
labeled with 7. Its manual representation is depicted in Figure 9.12. In fact, since
the channels used by the slot machine’s interface to interact with SG are hidden,
from the tester’s perspective the system just receives a token and gives the answer
'win’ or ’lose’. The resulting structure is Obs(Qrch), which is the specification
that we will consider as a reference to test the WS-BPEL implementation under
test IUT of the Slot Machine.

8. The following step consists in asking the tester to enter the target state(s). Such
states are identified by the state’s label. Each symbolic state in the path of
the target state is also marked, computing 7P at the same time. This step is
depicted in Figure A.7 in Appendix A.

158 Chapter 9. Prototype for Test Case Generation

Affectations

- init: (e, Ao co,true)
G,: token—token , seed—seed, win_seq—win_seq,
seg—se
475%% u_start ? token,
o, token—token,, seed—seed,, win_seq-win_seq,,
seq—seq, n,: (ts;, q;, o,, true)

c,: token—token,, seed—seed,, Winfseq—»Win,Seqﬂ

sg_generate ! seed,
seg-»seq,

Symbolic traces n,: (ts,, g, oy, true)

ts,: u_start?oken, ?
sg_sequence ? seq,

ts,: ts,.sg_generatelseed,

ts,: ts,.sg_sequence?seq, ns: (tsy, a3, o, true)

ts,: tsz.ufscreen!'lose'))
u_screen ! 'lose u_screen ! 'win'

ts,: ts3.ufscreen!'win'

n,: (ts,, 9, o, seq,<>win_seq,) st (tSg, 4o, 0,/ S€q,=win_seq,)

~ ~

Figure 9.10: SE(Orch) of the Slot Machine example.

9. Taking Obs(Orch) and TP as inputs (assuming that the target state is 15 and
that the someTtime parameter discussed in Section 9.3 is set to 5 seconds), the
online test algorithm is executed by interacting with the tester, requesting him
or her to enter the respective observations and stimuli observed and sent to the
IUT. The algorithm stops until a verdict is given. One part of the execution
of the test algorithm of the prototype for the Slot Machine example is given in
Figure A.8 in Appendix A, and the emission of a verdict is given in Figure A.9
in Appendix A.

9.5.1 Example of Two Verdicts

Here, the WS.INCONC verdict is depicted in Figure 9.14: the value 4 (for
the symbolic variable token,) is sent to the IUT through the communication
channel (respectively partherLink) u_start (respectively user, operation start)
and the observed event is a quiescence state (in this example, we assumed that
the Timeout parameter is 30 seconds, and SG does not answer in that time).
Since we know the behavior of the random() function, we also know the values of
the seed and the win_seq variables. The quiescence situation is a valid behavior
of Obs(Orch), however, it is due to the lack of reaction of SG and this observation
is not in the path of 7P; therefore the verdict WS.INCONC is given, together
with a Report that contains the history of the communications (internal and
external) as well as the values of the variables before emitting the verdict.
Rule

Moreover, if we use the simplified notation SC t—> SC’ to denote the exe-
action

cution of rule Rule due to the action action (which can be an observation or a
stimulus), such that applying the rule Rule makes the set of contexts to change

9.5. Usage of the Prototype: A Complete Example 159

init: (g, q,, o,,true)
u_start ? token1
n,t (.8, Qg o, true) n,: (ts,, q,, o, true)
/{ l sg_generate ! seed,
n,: (ts,, g5, o, true)

d sg_sequence ? seq,

n,: (ts,.8 true) ns (ts;, ds, oy, true)

sg_sequence’ qZ’ Oy

u_screen ! 'lose’ u_screen ! 'win'

n,: (ts,, 4y, o,, seq,<>win_seq,) ng: (tsg, 4, o,, seq,=win_seq,)

Figure 9.11: Full quiescence SE(Qrch)s for the Slot Machine example.

from SC to SC’, then, for this example, we have the following sequence of ap-
plications of rules:

o _Rule 6, {(m, true)} Bule 3WS - yw e INCONC
u_start?4 4

In order to give an example of the verdict WS.HY P.F AIL, we need to modify
the Slot Machine example with at least one more interaction with SG. Thus, we
assume that the slot machine’s interface SM after receiving the token through the
communication channel u__start from the user, instead of directly requesting the
sequence to SG, first asks for the amount of the prize (also to SG), and only after
receiving the answer, SM asks for the sequence. Finally, is not reasonable to refer
to WS.HY P.F AIL if we cannot observe the communication channels of the Web
service, so we assume that they are observable. The new Obs(QOrch) for illustrat-
ing this verdict is depicted in Figure 9.15(a). Taking 77 as the new target state
(the equivalent of 75 of Figure 9.13, i.e., the user wins the prize), Figure 9.15(b)
depicts the WS.HY P.FAIL verdict obtained because, after sending the value 4
over the channel u_ start, the value 7 is observed in the communication channel
sg_sequence: this means that 7 is the value of the symbolic variable seq; instead
of the one for amount; that should be observed over the communication channel
sg_prize. This behavior is not expected by Obs(Qrch); therefore the verdict
WS.HYP.FAIL.

For this example, the sequence of applications of rules according to our algorithm

160 Chapter 9. Prototype for Test Case Generation

init: (¢, q,, o, true)

5 u_start ? token1
n,t (e.8, qy, o, true) n,t (tsl, q,, o, true)
s .
n,: (ts,, 45, o, true)
5 T

n,t (ts,.8 true) nyt (ts;, q;, oy, true)

sg_sequence’ q2’ G1’

u_screen ! 'lose’ u_screen ! 'win'

n,: (ts,, g, o,, seq,<>win_seq,) ng: (tsg, q,, o,, seq,=win_seq,)

2 27

Figure 9.12: Hiding operator HO(QOrch) of the Slot Machine example.

is:
B {(mtrue)) 2SS WS HY PRAIL
u_start? sg_prizel

The controllable case is not shown since it corresponds to perform unit testing
on Obs(Orch). Scenarios for the rest of verdicts are depicted in Appendix A.

9.6 Conclusion

In this chapter we have presented the technical details of the prototype for testing
orchestrators in context, which implements the rule-based algorithm introduced in
Chapter 7. However, besides the implementation of the rule-based algorithm, the
TOSTS representing the orchestrator’s specification is also needed in order to sym-
bolically execute it and generate the set of valid behaviors of the orchestrator in
context, that is, taking the status of the communication channels into account. An
instance of the orchestrator is also needed in order to apply our algorithm as well
as a constraint solver to send concrete data to WS-BPEL instances. In this chapter
we have presented all the modules of the prototype that were implemented in order
to deal with all the previous requirements, as well as the external tools chosen to
be used together with the prototype. Finally we have also shown how to use the
prototype by means of a complete example.

9.6. Conclusion

161

init: (e, Ao co,true)
u_start ? token,

N, (.8, 4y, o, true) n,: (ts;, a,, o, true)

n,: (ts,.8 true)

sg_sequence’ Apr Oy

u_screen ! 'lose’ u_screen ! 'win'

n,: (ts,, a4y, o,, seq,<>win_seq,) ng: (tsg, dy, o,, seq,=win_seq,)

2 22

Figure 9.13: Obs(Orch) of the Slot Machine example.

1. stimuli: u_start—4

2. obs: 5

3. Verdict: WS.INCONC, {u_start?oken,.sg_generatelseed, ,token=4"seed=2"win_seq=6"seq=seq,}

Figure 9.14: WS.INCONC verdict for the Slot Machine example with hidden

communication channels.

At present time, elicitation of behaviors in order to test the compatibility of
Web services (Chapter 8) has not been yet implemented in the prototype. However,
this implementation is easy since, as we can deduce by Section 8.3, we just need to
enrich SE(Qrch) with Web service quiescence and then perform the projection and
mirroring operations (Definitions 8.2.5, 8.2.3 and 8.2.4 in Section 8.2.3), and use it
as the specification (which is not the specification of the Web service, but the one of
the expected behaviors of Qrch) in order to test the Web service implementations.

162 Chapter 9. Prototype for Test Case Generation

init: (¢, gy, oy, true)
Affectations

6, token—stoken,, seed—seed,, win_seq—win_seq, 8 u_start ? tokenl
seq—seq, amount—amount,

gt (8.8, 4y, o4, true)

: (ts,, 9y, oy, true
o,: token—token,, seed—seed,, win_seq >W\’n,SEQ,v Ty (17 Gy Oy)

seq-»seq, amount-—»amount, /{ sg_amount ! seed
| ! 1
szi‘Okeﬂ »token,, seed—seed,, win_seq—win_seq;,
seq—»seq,, amount—amount, Ny (tSz, Ay, 64/ true)
oy token—token,, seed-»seed,, win_seq—»win_seq;, k] s_g prize | amount
| ! 5

seg-»seq,, amount—amount,

Symbolic traces Nyt (858, priger s Oy true) M3t (ts;, g5, o, true)
ts;: uistar‘t’tokeni

sg_generate ! seed,

tsz: ts]4sg7amount'seed]
n,: (ts,, q,, o, true

ts,: ts,.sg_prizelamount, i (15, Gy 0,)

ts,: ts,.sg_generate!seed, 3

sg_sequence ! seq;

ts,: ts,.sg_sequence!seq,

. ose' . . .
ts,: ts,.u_screen!'lose ng: (ts4.osgisequmce, Ay Oy true) ng: (s, g, o, true)

ts,: tsj.uiscreen"win'

u_screen ! 'lose’ u_screen ! 'win'

ng: (tsg, Gy, o5, S€G, <>wWin_seq,) n,: (ts,, 4y, o5, seq,=win_seq,)

2 4
(a) Obs(QOrch) for the modified version of the Slot Machine example.

1. stimuli: u_start—4
2. obs: sg_sequence—7

3. Verdict: WS.HYP.FAIL, {u_start?token .sg_amount!seed,token=4"seed=2"win_seq=6"seq=seq,~amount=amount }, sg_sequence!7

(b) WS.HY P.FAIL verdict.

Figure 9.15: Modified Slot Machine example to illustrate the WS.HY P.FAIL ver-
dict.

CHAPTER 10

Conclusion and Future Works

orchestrations. In this type of systems, the orchestrator is the one who
guides the entire process in a centralized way, whereas the user and Web
services (or components) interact with the system via the orchestrator. In this

3. N orchestrator is the main component in the type of systems known as

thesis we have shown an approach to test orchestrators in their context of usage
in such a way that, if an error is found in this testing phase, then, under certain
hypotheses, the error indicates an unconformance of the orchestrators with respect
to their specifications. We have also shown an approach to determine if Web services
are or not compatible with a given orchestrator. For both testing approaches, we
take into account only the specification of the orchestrator, and we ignore the ones
of the rest of Web services involved in the orchestration.

Conclusions

In the first part of the thesis, we have started by setting the formal basis of our work,
which takes as reference the ioco conformance relation applied to component-based
systems. The ioco conformance relation basically states that a system under test
conforms to its specification only if any observation in the system under test after any
specified trace is also specified. By making use of the IOLT'Ss in order to model the
specification of the orchestrators under text, we adapt it by a series of operations
that reflect its situation of usage. One first contribution is precisely the explicit
distinction of such situations. Since we test the orchestrator while interacting with
the Web services, it may happen that the tester has complete control over the Web
service (like, for instance, simulating it). We say in this case that the communication
channels used to interact with the Web services (or, what is the same from this point
of view, the Web services) are controllable. If the Web services are not accessible
at all by the tester, we say that the communication channels are hidden. Finally,
an intermediate case can occur: the Web service may not be controlled by the tester,
but the communication channels are accessible in such a way that pieces information
going through them can be observed. We say in this case that the communication
channels are observable.

With the previous classification, we proceed to generate the partial specification
(or specification in context) of the orchestrator. We build this partial specification
by means of the following technical operations: full quiescence, to identify where
the system is silent (due to the impossibility to move forward by itself or because

164 Chapter 10. Conclusion and Future Works

of the lack of reaction of the Web services); WS input transformation, to make a
distinction between the inputs sent by the user to the orchestrator and those sent
by the Web services over observable channels (since those inputs are actually ob-
servations); and the hiding operator, to make communication actions going through
hidden channels to be treated as internal actions (since it is like that that they are
perceived by the tester). By assuming that the system under test can be modeled as
a special IOLT'S (enriched by quiescence, denoting the inputs from the remote Web
services through observable channels as special observations, without 7-transitions,
and input-complete), we define a conformance relation in context, that we call ioco,
and that can be used to test the conformance of orchestrators in context, that is,
by taking into account the status of the communication channels used to interact
with the Web services. Inspired by [van der Bijl 2003b], we define another variation
of ioco, called uioco, and that, when there are hidden communication channels,
does not take all the traces of the partial specification when reasoning about the
conformance of the orchestrator in context: it takes into account only the fully
specified traces (as opposed to ioco, that takes into account traces where there are

underspecified inputs).

We finish this discussion by presenting two theorems (one based on ioco and
the other one based on uioco) that provide an answer to the main concern of our
work: if an error is detected while testing the orchestrator in context, the error is in
fact due to the orchestrator. This result holds under the hypotheses that the system
under test can be decomposed into the implementation of the orchestrator and the
implementation of the remote Web services, and that communication between them
is captured by the product of their models.

Then, we have shown how to elicit behaviors for testing the deadlock-free prop-
erty of Web services interacting with the orchestrator (the deadlock-free property
guarantees that a Web service does not lead the orchestration into a deadlock state).
We do not consider the specification of the Web services and we elicit those behav-
iors from the orchestrator, that is, only the behaviors that are expected from the
orchestrators are taken into account. By doing this, we reduce the state explosion
problem and we give a solution to the common problem of not having the spec-
ifications of the Web services in hand for testing purposes. These behaviors are
extracted from the traces of the TOLTS of the orchestrator’s specification after
some modifications: enrichment by Web service quiescence, which identifies under
which situations the Web service can be quiescent without leading the orchestration
into a deadlock state; and mirror and projection operations, which basically trans-
form the behaviors from the point of view of the orchestrator to the point of view of
the Web services. With these elicited behaviors, a given Web service can be tested
by using the classical ioco, but in this case not in order to test the conformance of
the Web services with respect to their specification, but with respect to the expected
behaviors of the orchestrator (in other words, we test them in order to verify the
deadlock-free property).

165

In the second part of the thesis, once we have grounded the theory of our ap-
proach, we move to the field of the symbolic techniques. ITOSTSs are symbolic
characterizations of TOLTSs and are thereon used to model the specifications of
the orchestrators. Moreover, the semantics of an JOST'S can be given in the form
of an IOLTS, and therefore the results obtained in the first part of the thesis, also
apply on them. We use the symbolic techniques because they are better fitted to
model orchestrators, since they include more information about the modeled system,
introducing firing conditions on the transitions and making explicit the relation be-
tween the data. Besides, the symbolic execution works very well in conjunction with
the TOST'Ss, and symbolic execution’s resulting structures represent all the possi-
ble behaviors of the orchestrator in a symbolic way, reducing the state explosion
problem. Symbolic executions are then submitted to a series of transformations,
in a similar way that we did for the numerical case (working with JOLT'Ss) and
based on the same hypothesis (classification of communication channels), but with
the main difference that in this case we also apply the 7-reduction operation, which
removes the internal actions from the specification. The final structure represents
the possible behaviors of the orchestrator in context, and thus can be seen as the
partial specification of the orchestrator in context. This structure is given as an
input to our rule-based test algorithm, together with the desired behaviors to test
in the system under test (test purposes) which are in fact subtrees of the partial
specification. This algorithm is used to test the conformance of a system under test
with respect to its specification and follows the idea of ioco (more specifically, of
ioco) by stimulating the system under test according to the test purposes extracted
from the specification, and emitting a verdict according to the observations as soon
as possible. More important, another contribution in this thesis is the introduction
of two verdicts that are directly related to the activities of the Web services involved
in the orchestration; Web services of whom we do not consider their specification.
Those verdicts are: WS.HY P.FAIL, which means that an error was detected and
that it is possibly due to a failure in a Web service (however, since we do not take
into account the specification of the Web services, we cannot be sure —the only
thing we know is that it did not answer according to what the orchestrator was
expecting); and WS.INCONC, which indicates that the Web service reacted in
such a way that it is not an observation that is part of the test purpose, but that it
is still a valid observation according to the specification.

Then, we have defined a methodology to generate test cases in order to test
Web services to determine if they are deadlock-free with respect to the orchestrator,
meaning that they do not lead the orchestration into a deadlock state. The test cases
are elicited from the specification of the orchestrator, and can be used together
with our rule-based test algorithm. In this case, the system under test are the
implementations of the Web services that interact with the orchestrator. Any FFAIL
verdict would mean that, if the Web service under test is used to interact with the
orchestrator, then a situation of deadlock can occur.

166 Chapter 10. Conclusion and Future Works

In the last chapter of this thesis we have presented another aspect of our con-
tributions: the prototype tool which implements the rule-based testing algorithm
described before as well as some other modules in order to test an instance of an
orchestrator described in WS-BPEL. In order to do this, external tools are also used
to design and deploy the WS-BPEL process instances and to solve the constraints of
the symbolic execution trees. Thus, we have shown that our theoretical work can be
applied by means of the symbolic execution techniques in order to test implemen-
tations of orchestrators in their context of usage. More important, we have shown
that, since orchestrations are especial systems where there is a central component
guiding the whole process, by taking into account only the specification of this cen-
tral component, we can still give interesting results about its conformance: we can
test the conformance of orchestrators while interacting with the Web services and
generate test cases in order to determine if a given Web service can interact with
the orchestrator without leading it into a deadlock state.

Perspectives

Regarding the perspectives of the work presented in this document, first, it would
be interesting to take time delays into account. In order to do that, we have to take
as a basis a conformance relation which also takes time into account (for instance,
tioco [Schmaltz 2008]). Then, we could extend our results by taking time into
account so we can take also into account the WS-BPEL activities that are related
with timeouts. This is an important aspect of WS-BPEL and orchestrations in
general, in the sense that it is common to define actions that have to be taken when
a component does not react in a given period of time. From a certain perspective, our
notion of quiescent situations in the system aims at dealing with those situations
where a Web service does not react, but not every time that this happens the
orchestration has to go into a quiescent state: for instance, WS-BPEL provides ways
to handle these situations (by means of event handlers), so the process execution
can continue and different actions can be taken, like invoking another Web service
if the first one does not react on time.

There are also some other activities in WS-BPEL that would be interesting to
take into account. Even if our purpose was not to focus on WS-BPEL, there are
some notions like fault handling and error recovery that are common to every type
of systems.

All the previous perspectives can also be implemented in the prototype tool. This
prototype successfully implements our rule-based testing algorithm, but it would
be interesting to improve it and automatize the testing activity. Currently, the
interaction between the prototype and the WS-BPEL process instances is done
by hand. Improving the technical aspect of the prototype by including time and
automatizing the test harness is an interesting work to do. This automation can be
achieved by giving as an input to the prototype the WSDL of the Web services that

167

interact with the orchestrator, and use automatically generated SOAP messages to
communicate with them.

Finally, a more general perspective would be to apply our approach for the
case of integration testing. The idea is to consider component-based systems with
an interface, that is, the user interacts with the whole system by means of the
component acting as the interface but that does not guide the whole system. Then,
we can consider the specification of the interface component and of some of the rest
of components but not all of them: we want to avoid the state explosion problem. In
fact, taking into account the specification of the hidden components would be a way
to start (in order to avoid the number of inconclusive verdicts related to the remote
components —Web services, in our approach), adding more and more specifications
until we reach a certain limit (for instance, a given size of the model). Then, we could
apply the techniques presented in this thesis in order to test the conformance of the
components whose specification is being considered. Our elicitation techniques could
also be applied in order to test if the rest of components are compatible (not leading
the whole process into a deadlock state) with the ones that are under examination.

APPENDIX A

Appendix

A.1 Outputs and User Interface of the Prototype

1. IOSTS

As we can notice in Figure A.1, the constraints are given in a special format so
then they can be parsed and solved by JaCoP. Also, since JaCoP only deals with
integer an boolean variables, we map the 'win’ and ’lose’ messages to integer
constants. Besides, we have chosen to deal with the boolean variables also as
integers, 1 for true and 0 for false.

I0STS iosts = new IOSTS{rootState);
iosts.setVariables(new LinkedList<String=());

// initialize variables
iosts.addvariable("t");
iosts.addvariable("s");
iosts.addvariable("w");
iosts.addvariable("e");
iosts.addvariable("m");

// a1
LinkedList<Transition> qlchildTrs = new LinkedList<Transition>();
State glState = new State("ql", glchildTrs)

/1 q@ -> gl

LinkedList<String> gq@qlcomAction® = new LinkedList<String=();

g@qlcomAction®.add("u;7;t:v");

LinkedList<String> qeqlAffectation® = new LinkedList<String=();
qeqlaffectation®.add("w;6:c,-,t:v");

Transition getrans® = new Transition("true",q8glcomActione,qeqlaffectatione,"user”, "user",qlState
rootState.addChildTransition(g@transe);

/792
LinkedList<Transition> q2childTrs = new LinkedList<Transition>();
State g2State = new State("g2", q2childTrs)

/7 gl -> q2

LinkedList<String> glq2comAction® = new LinkedList<String=();

gqlq2comAction®.add("s;!;e:v");

Transition qltrans® = new Transition("true",qlg2comAction®,null,"sg","ws",q25tate, false,"!");
glState.addChildTransition(qltrans@);

/7 q3
LinkedList<Transition> q3childTrs = new LinkedList<Transition>();
State g3State = new State("g3", g3childTrs)

// 92 -> q3

LinkedList<String> g2q3comAction® = new LinkedList<String=():

q2q3comAction®.add("s;?7;s:v");

Transition q2trans@ = new Transition("true",q2g3comAction®,null,"sg","ws",hq3State, false,"?");
q2state.addChildTransition(q2transe);

// 93 -> g@ two times

LinkedList<String> q3g@comAction® = new LinkedList<String=();

q3qecomAction®.add("u;!;m:v");

Transition q3trans® = new Transition("s:v;=;w:v",q3gBcomAction®,null,"user”,"user”,rootState,fals
q3state.addChildTransition(q3transe);

Figure A.1: Prototype’s text version of Orch of the Slot Machine example.

170 Appendix A. Appendix

2. Symbolic Execution

Figure A.2 depicts the symbolic execution of the Slot Machine example as given
by the prototype. The upper (resp.lower) image depicts its graphical (resp. tex-
tual) representation. Its manual, and more clear, version, is depicted in Fig-
ure 6.7. Important information associated to each state is printed in the graph-
ical version, however, to have a more clear representation of this information, it
is also printed out in the text version.

Symbolic Execution Tree

n_peTed, qo, 1 frue}
] i

fuserju f t1;
n_l: _(e:ﬂiéér’?il;f'a'l._r?l‘ true)
i i

(=q)s | 40;

1591804, g2, r_L, trus}
i

(s@)s 7 §1:

n_3: (e;us_e(ft’i;’s?;-!edi‘t‘;g‘{sl:. o3, r_2, true)

{user; 7 (05 Lm0,
n_& (ejuserrtliEgled;sgist userim;, g0, r_2, s1=wl} o .
i i n_5: (e;userttl;sgled;sg?sl;yserimd;, g, r_2, s1/=wl)

(a) Graphical representation.

1 n_@, PARENT : nullpc: true, sa: tau

2 n_1, PARENT : SEtree@b6eceSpc: true, sa: (user)u ? tl;, channel type: user, chan

3 n 2, PARENT : SEtree@l4693c7pc: true, sa: (sg)s ! e8;, channel type: ws, channe

4 n_3, PARENT : SEtree@3a6727pc: true, sa: (sg)s ? sl;, channel type: ws, channe

5 n_4, PARENT : SEtree@665753pc: sl=wl, sa: (user)u ! m@;, channel type: user,

6 n_5, PARENT : SEtree@665753pc: sl!=wl, sa: (user)u ! m@;, channel type: user,
(b) Text version.

Figure A.2: SE(QOrch) for the Slot Machine example.

A.l.

Outputs and User Interface of the Prototype

171

3. Quiescence Enrichment

Figure A.3 depicts the quiescence enrichment of SE(Qrch) depicted in Fig-
ure A.2. As for the previous case, both graphical and text versions are shown.

Quiescence is represented by the word delta. Thus, quiescence is allowed in two

states of the symbolic execution: this situations represent the impossibility of the

orchestrator (the slot machine’s interface) to move forward by itself, since it is

waiting for an input from the user or the Sequence Generator service.

Quiescence Enrichment

[

n_0: T8, q0! F0; true)

(user,

f_L: (eil8er?tLli G, r L, true)
i]

(sg)s | 40

n_2: (eipeBi?tlisgisty, g2, r_1, true)
i]

(sg)s 7 skt \del

n_3: (ejuserfiisgletizgysl;, q3, r_2, trush
i)
{user] 3 [0z Lm0;

Eiggleisgfetiuserim0;, qO, r_2, sl=wl} o e
) n_5: (s;user?tl;sgled;sg?sl;yserimD;, qO, r_2, sll=wl)

(a) Graphical representation.

Quiescence enrichment finished.
Tree after Quiescence Enrichment:
1 n @, PARENT : nullpc: true, sa: tau

del

PQ: fe; \delta, 60, 1.0, true)

WSQ: (e‘ussl/”tl;sg‘eu‘ \de\\!*aiws‘ g2 r_1, eq(Z,1))

(sg)s ? s1;, channel type: ws, channel status: con

2 ﬁil, PARENT : SEtree@b6eceSpc: true, sa: (userju ? tl;, channel type: user, channel status: con

3 PQ, PARENT : SEtree@bbeceSpc: true, sa: \delta, channel type: pqg, channel status: con

4 n 2, PARENT : SEtree@l4693c7pc: true, sa: (sg)s ! e®;, channel type: ws, channel status: con

5 n_3, PARENT : SEtree@3a6727pc: true, sa:

6 WSQ, PARENT : SEtree@3a6727pc: eq(Z,1), sa: ‘\delta, channel type: wsq, channel status: con

7 n 4, PARENT : SEtree@665753pc: sl=wl, sa: (user)u ! m@;, channel type: user, channel status: con
8 n_5, PARENT : SEtree@65753pc: sl!=wl, sa:

(b) Text version.

(userju ! m@;, channel type: user, channel status: con

Figure A.3: Full quiescence enrichment of Figure A.2.

172 Appendix A. Appendix

4. WS Input Transformation

Figure A .4 depicts the WS input transformation of Figure A.3. In this case, the
communication channels used by the slot machine’s interface to interact with the
Sequence Generator Web service are supposed to be observable. If an input is of
the form c?a, where ¢ is a communication channel used to interact with a Web
service, then, after applying the WS input transformation of Definition 7.2.2, in
the prototype it is represented by ¢ _la.

Observable channels

n_piT&), qo, F0; trueh
7]

(user] T il

fer \delta, O, 0, true)

N1t (iliBerttLy, §L.r_L. true)

tsgls | 40;

n_2: (e;usBretl;sgign;, g2, r 1, true)
i)

(s i \de

n_% (ewserfilisgledizgisl:, o3, r 2, true) N
f] WSQ: (siusef?tl;sgled; \delfia_ws, g2, r_1, eq(2,1)}

(user, i Uz Lmnd;

1i8g1e0;:5g751 userimo;, 4O, r 2. s1=wl) P N
' n_5: teiusertilisglediagrsliser!imo;, o, r_2, s1i=wl}

(a) Graphical representation.

Please enter the list of OBSERVABLE channels sepparated by colons:
sg

[sq]

Channel in transition (sg)s ! e®; marked as obs

Channel in transition (sg)s ? sl; marked as obs

Channel transformed into an observation in transition: (_sg_) s_ ! sl;
Tree after WS input transformation:

1 n @, PARENT : nullpc: true, sa: tau

2 n_1, PARENT : SEtree@b6ece5pc: true, sa: (user)u ? tl;, channel type: user, channel status: con

3 PQ, PARENT : SEtree@b6ece5pc: true, sa: \delta, channel type: pq, channel status: con

4 n_2, PARENT : SEtree@14693c7pc: true, sa: (sg)s ! e®@;, channel type: ws, channel status: obs

5 n 3, PARENT : SEtree@3a6727pc: true, sa: (sg) s ! sl;, channel type: ws, channel status: obs

6 WSQ, PARENT : SEtree@3a6727pc: eq(Z,1), sa: \delta, channel type: wsq, channel status: con

7 n_4, PARENT : SEtree@665753pc: sl=wl, sa: (userju ! m@;, channel type: user, channel status: con
8 n 5, PARENT : SEtree@665753pc: sl!=wl, sa: (userju ! m@;, channel type: user, channel status: con
Siblings: {8=1, 1=2, 2=1, 3=2, 4=2}

(b) Text version.

Figure A.4: Remote input transformation of Figure A.2.

A.1. Outputs and User Interface of the Prototype 173

5. Hiding Operator

The hiding operator of Figure A.3 is depicted by Figure A.5. In this case, the
communication channels with the Sequence Generator Web service are supposed
to be hidden. In the prototype, the internal action 7 is represented by the word
tau. Thus, the two transitions representing communications with the Sequence
Generator service are labeled with tau.

2] Hidden channels

n_0: 81, g0, F0: true)
(userlu 74k Tas

n_L: (RiiSerttls @k, r 1, true) T T
i] PQ: {e; Ydelta, go, r 0, true)

tau

n_2: (e;sBrtl;5g180;, g2, t 1, true)

tau et

n_3: (eyuserfflisgledizgisls, q3. r_2, true) LT
i] WSQ: (ejusertl;sglel; \delta_ws, g2, r 1, eqi2,1)}

(user T [05 Lm0;

1:5gien;sgFELuserimo;, qo, r 2, s1=wl) p »
] n_S: (e;user?t

letisg7sligserimd;, g0, r_2, s1i—wl}
g e i

(a) Graphical representation.

Please enter the list of HIDDEN channels sepparated by colons:
59

[sa]

Channel in transition (sg)s ! e®; marked as hid

Channel in transition (sg)s ? sl; marked as hid

Channel transformed into a hide operation in transition: tau
Channel transformed into a hide operation in transition: tau
Tree after Hiding Operation:

1 n_8, PARENT : nullpc: true, sa: tau
2 n 1, PARENT : SEtree@b6ece5pc: true, sa: (userju ? tl;, channel type: user, channel status: con
3 PQ, PARENT : SEtree@bfece5Spc: true, sa: \delta, channel type: pg, channel status: con
4 n_2, PARENT : SEtree@l4693c7pc: true, sa: tau, channel type: ws, channel status: hid
5 n_3, PARENT : SEtree@3a6727pc: true, sa: tau, channel type: ws, channel status: hid
6 WSQ, PARENT : SEtree@3a6727pc: eq(Z,1), sa: \delta, channel type: wsq, channel status: cen
7 n_4, PARENT : SEtree@665753pc: sl=wl, sa: (userju ! m@;, channel type: user, channel status: con
8 n 5, PARENT : SEtree@665753pc: sl!=wl, sa: (user)u ! m@;, channel type: user, channel status: con
Siblings: {8=1, 1=2, 2=1, 3=2, 4=2}
(b) Text version.

Figure A.5: HO(Orch) of Figure A.3.

174

Appendix A. Appendix

6. T-reduction

Figure A.6 depicts the 7-reduction applied to Figure A.5. Transitions with com-
munication actions tau (7) are just removed from the tree. The resulting struc-
ture is then the partial observation of the slot machine’s interface (Obs(G)).
This structure is the one that the prototype takes as a reference for selecting test
purposes and for reasoning about the conformance of the IUT.

dlelt,
WSQ: (e:userztlisglen; detta_ws. o2, r_1, eq(z.1))

Node removed from tree: n 2
Node removed from tree: n 3
Tree after Tau Reduction:

1 n @, PARENT :

2 n_1, PARENT :
3 PQ, PARENT :
4 W5Q, PARENT :
5 n_4, PARENT :
6 n_5, PARENT :
Siblings: {e=1, 1=2, 2=3}

nullpc: true, sa: tau

SEtree@b6eceSpc: true, sa: (userju ? tl;, channel type: user, channel status: con
SEtree@bbece5Spc: true, sa: \delta, channel type: pg, channel status: con
SEtree@14693c7pc: eqiZ,1), sa: \delta, channel type: wsq, channel status: con
SEtree@l4693c7pc: sl=wl, sa: (user)u ! m@;, channel type: user, channel status: con
SEtree@l4693c7pc: sl!=wl, sa: (user)u ! m@;, channel type: user, channel status: con

n_0¢ 81, G0, F0s true)

(useriur iy G
n_1: teilgerttly G, r 1, trua) o T
{] PQ: {e: \dlelta, qO. 1.0, true)

(userju | mo; 1m0:

n_4: (ejusertil;sgleD;sgrslipiserimd;, g0, r 2, sl=wl) i
A n_S: (euserrtlisgletisgrsliUserim0;, g0, r_2, s1!=wl)

(a) Graphical representation.

(b) Text version.

Figure A.6: 7-reduction of Figure A.5.

A.1. Outputs and User Interface of the Prototype 175

7. Choosing Target State

Target states are chosen by typing their labels. When searching for the target
state in the tree (if it is found) all the intermediate symbolic states are marked
so the prototype knows that they are part of the test purpose (they are in the
set TP). This process is depicted in Figure A.7.

Enter target state and press enter:
n>s
found!

Node marked as target state. Path to node parked as TP.
Test purpose path:

ne; nl; n2,; n3; n_5 ; Target state successfully marked!

Figure A.7: Choosing a target state in the prototype.

8. Executing the Test Algorithm

The test algorithm is executed by interacting with the tester: the tester enters
the observations performed on the system under test, as well as the stimuli sent

to it. Quiescence situations are also manually entered. This process is depicted
in Figure A.8.

About to perform online test algorithm...

The queue is now [SEtree@bbeces]

Working with node : SEtree@b6ece5

Withy tag : n_@

Proceeding with rule NEXT, celar sets

Enter observations in the form: channelName,varName,value;[channelName,varName,value;...] (enter T for timeout0, Q to 'emmit' quiescence): user,tl,1
Observations [Ljava.lang.String;@5e0602 to be synched
(Re)staring: The queue is []

working with node n @

Working with child node (Next candidate) : n 1

About to compare obs t1 with node info t1

Observation synched... perform constraint solving
adding to child input vars 1: tl with value 1

Depth First Search DFS8

solution : [tr=l, t1=1, wi=1]
Nodes : 2

Decisions : 2

Wrong Decisions : @
Backtracks : @

Max Depth : 2

Solution found, adding into NEXT

Depth First Search DFS8

No of solutions : 2

Last solution : [tr=1, tl=1, wl=1]

Nodes : 8

Decisions : 8

wWrong Decisions : @

Backtracks : 6

Max Depth : 8

TargetCond satisfiable; search for values

adding note n_1 to SKIP

checking if it is a target state (node n 1).... false
Found a next context. Adding node to queue : SEtree@ld693c?
With label : n 1

Continue algorithm? (N for quit)

Figure A.8: Test algorithm for the Slot Machine example.

Emission of a Verdict

The algorithm continues it execution until a verdict is found. The emission of a
verdict (PASS) is depicted in Figure A.9.

176 Appendix A. Appendix

Depth First Search DF515

No of solutions : 2

Last Solution : [sl1=1, wl=1, tr=1, tl=1, wil=1]
Nodes : 5

Decisions : 5

Wrong Decisions : @

Backtracks : 8

Max Depth : 5

TargetCond satisfiable; search for values
adding note n_5 to SKIP
checking if it is a target state (node n 5).... true
adding note n 5 to PASS
Found a next context. Adding node to queue : SEtree@laf9e22
With label : n 5

obs es true y timeoutO es false y SynchWithObs es true
Continue algorithm? (N for quit)n
The queue is now [SEtree@laf9e22]
Working with node : SEtree@laf9e22
Withy tag : n 5
And the verdict is:

Pass
jopez@kangourou:~/work/tesis/implementation/java/strees ||

Figure A.9: Verdict PASS for Slot Machine example.

A.2 Verdicts of the Prototype

Our test algorithm aims at emitting a verdict for the system under test. As intro-
duced in Section 7.4, there are 6 possible verdicts: 2 related to interactions with Web
services, and 4 related to the orchestrator itself. Moreover, in this section we only
present the 4 verdicts regarding the orchestrator, since the other two were already
exemplified in Section 9.5.

1. FAIL

The sequence of execution of rules for the modified Slot Machine example (intro-
duced in Section 9.5) in order to reach a FAIL verdict is:

Rule 2

p Bule &, {(m,true)} ———— FAIL, and the verdict is given
u_start?4 u_screen!’lose’

because Next(u_screenVlose’,{(n1,true)}) = 0.

1. stimuli: u_start—4
2. obs: u_screen—'lose’

3. Verdict: FAIL, {u_start?token token=4"seed=2"win_seq=6"seq=seq,~amount=amount }, u_screen!'lose'

Figure A.10: FAIL verdict for the modified Slot Machine example.

2. INCONC

The sequence of execution of rules for the Slot Machine example to reach an
INCONC verdict is:

A.2. Verdicts of the Prototype 177

Rule 6 Rule 3

{(m,true)} INCONC, and the verdict is given

u_start?4 u_screen!’lose’
because Next(u_screenllose’, {(m,true)}) = {(n, seq <> win_seq1)}, but
Skip(Next(u_screenllose’, {(n1,true)})) = 0.

1. stimuli: u_start—4
2. obs: u_screen—'lose'

3. Verdict: INCONC, {u_start?token,,token=4"seed=2"win_seq=6"seq=seq }

Figure A.11: INCONC verdict for the Slot Machine example.

3. PASS

The sequence of execution of rules for the Slot Machine example in order to reach
a PASS verdict is:

Rule 4

p Bl &, {(m,true)} ———— PASS, and the verdict is given
u__start?4 u_screen!’win’

because Next(u screenVwin’, {(m,true)}) = {(ns,seq1 = win_seq;)}, and
Pass(Next(u_screen!’lose’, {(m,true)})) = {(ns, seqq = win_seqy)}.

1. stimuli: u_start—4
2. obs: u_screen—'win’

3. Verdict: PASS, {u_start?token .sg_generate!seed,.sg_sequence?seq,,token=4"seed=2"win_seq=6"seq=63}

Figure A.12: PASS verdict for the Slot Machine example.

4. WeakPASS

For the WeakPASS verdict, we can refer to [Gaston 2006]. In order to obtain
a WeakPASS verdict, there has to be non-determinism in the system, which is
not the case for the Slot Machine example. It would apply, for instance, in an
ATM where the message transaction denied can be due to the fact that the user
is requesting an amount of money which is superior to the amount that he or she
has in his or her account, or because the total amount of money withdrawn by
the user is superior to the daily allowed amount to be withdrawn. In this case,
if the target state is, let us say, the first case where the amount of the request is
superior to the one the user has in his or her account, and if the tester observes
the message transaction denied, it may happen that this observation leads to
the target state or to the other case, where the daily amount has been reached.
Therefore the verdict is WeakPASS.

Nevertheless, in order to make our example as complete as possible and to avoid
introducing a whole new example, let us consider the example of the modified

178 Appendix A. Appendix

Slot Machine, with the assumption that the communication channels are hidden.
The (once more) new Obs(Orch) is depicted in Figure A.13(a). If our target
state is to detect the quiescence situation due to the lack of response of SG when
it is asked for the amount of the prize, then we get the WeakPASS verdict,
as depicted in Figure A.13(b). This verdict is due to the fact that we cannot
discriminate between the two quiescence situations: one can be due to the lack
of response of SG when requesting it for the amount of the prize, and the second
one can be due to the lack of response of SG when requesting it for the user’s
sequence.

The sequence of execution of rules for this version of the modified Slot Machine
example in order to reach a WeakPASS verdict is:

fule 6 {(m, true)} % WeakPASS, and the verdict is given because

u__start?4

Pass(Next(0, {(n1,true)})) = {(ns, true)}, but Next(d, {n}) = {(ns, true), (ns, true)}.

init: (e, q,, co,true)

) u_start ? tokenl
n,t (&9, dgr g true) n,: (ts;, q,, o, true)
-
))
N (tsz.dsgiprize, d,, oy, true) UM (ts4.6sgisequence, 4, o, true)
P
ng: (tsg, gg, o5, true)
u_screen ! 'lose’ u_screen ! 'win'
Ne: (tse, Ggr Ogr seq, <>win_seq,) n,: (ts,, Uyr g seq,=win_seq,)

(a) Obs(QOrch) of the modified Slot Machine example with hidden channels.

1. stimuli: u_start—4
2.0bs: §

3. Verdict: WeakPASS, {u_start?oken, ,token=4"seed=2"win seq=6"seq=seq,~amount=amount }

(b) WeakPASS verdict.

Figure A.13: WeakPASS verdict for the modified Slot Machine example with hid-
den channels.

A.2. Verdicts of the Prototype 179

The verdicts WS.HY PFAIL and WS.INCONZC are not presented here since
they were already presented in Section 9.5.

Bibliography

[Akkiraju 2005] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt,
A. Sheth and K. Verma. WSDL-S (version 1.0). W3C, 2005. http:
//waw.w3.org/Submission/WSDL-S/. 14

[Alves 2007] A. Alves and et al. SEE MOUNIR. Web Services Business Process Exe-
cution Language Version 2.0. OASIS, April 2007. http://docs.oasis-open.
org/wsbpel/2.0/0S/wsbpel-v2.0-0S8.html. 1, 11

[Angelis 2010] F. De Angelis, A. Polini and G. De Angelis. A Counter-Example
Testing Approach for Orchestrated Services. In ICST *10: Proceedings of the
2010 Third International Conference on Software Testing, Verification and
Validation, pages 373—-382, Washington, DC, USA, 2010. IEEE Computer
Society. 74

[Anido 2003] R. Anido, A. Cavalli, L. Lima Jr. and N. Yevtushenko. Test suite
minimization for testing in context. Softw. Test., Verif. Reliab., vol. 13,
no. 3, pages 141-155, 2003. 4

[Bentakouk 2009] L. Bentakouk, P. Poizat and F. Zaidi. A Formal Framework for
Service Orchestration Testing based on Symbolic Transition Systems. In Test-

ing of Communicating Systems and Formal Approaches to Software Testing
(TESTCOM/TFATES), The Netherlands, 2009. 16, 19, 40, 43, 44, 90, 153

[Bertolino 2008] A. Bertolino, G. De Angelis, L. Frantzen and A. Polini. Model-
Based Generation of Testbeds for Web Services. In Testing of Communicating
Systems and Formal Approaches to Software Testing (TESTCOM /FATES),
numéro 5047 de LNCS, pages 266-282, 2008. 42

[Bertolino 2009] A. Bertolino, G. De Angelis, L. Frantzen and A. Polini. The
PLASTIC Framework and Tools for Testing Service-Oriented Applications.
In A. De Lucia and F. Ferrucci, editeurs, Proceedings of the International
Summer School on Software Engineering — ISSSE 2006-2008, numéro 5413
de Lecture Notes in Computer Science, pages 106-139. Springer, 2009. 42

[Braspenning 2006] N.C.W.M. Braspenning, J.M. van de Mortel-Fronczak and J.E.
Rooda. A Model-based Integration and Testing Method to Reduce System De-
velopment Effort. Electronic Notes in Theoretical Computer Science, vol. 164,
no. 4, pages 13-28, 2006. Proc. of the Second Workshop on Model Based
Testing (MBT 2006). 5, 40

[Bravetti 2007] M. Bravetti and G. Zavattaro. Towards a Unifying Theory for
Choreography Conformance and Contract Compliance. In Software Com-
position, LNCS, pages 34-50, 2007. 42, 43, 44

182 Bibliography

[Bray 2008] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C, 2008. http:
//wuw.w3.org/TR/REC-xml/. 1, 13

[Camara 2006] J. Camara, C. Canal, J. Cubo and A. Vallecillo. Formalizing WS-
BPEL Business Processes Using Process Algebra. Electron. Notes Theor.
Comput. Sci., vol. 154, no. 1, pages 159-173, 2006. 19

[Cambronero 2007] M.-E. Cambronero, J. J. Pardo, G. Diaz and V. Valero. Using
RT-UML for modelling web services. In SAC, pages 643-648, 2007. 19

[Cao 2009] T.D. Cao, P. Felix, R. Castanet and 1. Berrada. Testing Web Services
Composition Using the TGSE Tool. IEEE Congress on Services, vol. 0, pages
187-194, 2009. 40

[Cao 2010] T.D. Cao, P. Félix, R. Castanet and I. Berrada. Online Testing Frame-
work for Web Services. In ICST, pages 363-372, 2010. 5, 40

[Chow 1978] T.S. Chow. Testing Software Design Modeled by Finite-State Machines.
Software Engineering, IEEE Transactions on, vol. SE-4, no. 3, pages 178 —
187, may. 1978. 18

[Christensen 2001] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana.
WSDL (version 1.1). W3C, March 2001. http://www.w3.org/TR/wsdl. 1,
13

[Clarke 1976] L. A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Transactions on Software Engineering, vol. 2(3), pages 215—
222, 1976. 89

[Clement 2004] L. Clement, A. Hately, C. von Riegen and T. Rogers. UDDI (version
3.0.2). OASIS, October 2004. http://www.oasis-open.org/committees/
uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019 . htm. 1, 13

[Dijkstra 1979] E. Dijkstra. Structured programming. pages 41-48, 1979. 3

[Dumas 2005] M. Dumas, C. Ouyang and A. Rozinat. Choreography Conformance
Checking: An Approach based on BPEL and Petri Nets (extended version).
BPM Center Report BPM-05-25, BPMcenter.org, 2005. 19

[Escobedo 2009a] J.P. Escobedo, P. Le Gall, C. Gaston and A. Cavalli. Ezam-
ples of Testing Scenarios for Web Service Composition. Rapport tech-
nique 09003 LOR, TELECOM & Management SudParis, 2009. http:
//www.it-sudparis.eu/.

[Escobedo 2009b] J.P. Escobedo, P. Le Gall, C. Gaston and A. Cavalli. Observability
and Controllability Issues in Conformance Testing of Web Service Compo-
sition. In Testing of Communicating Systems and Formal Approaches to
Software Testing (TESTCOM/FATES), 2009.

Bibliography 183

[Escobedo 2010] J.P. Escobedo, P. Le Gall, C. Gaston and A. Cavalli. Testing Web
Service Orchestrators in context:a symbolic approach. In Proc. of Software

Engineering Formal Methods (SEFM) '10. IEEE Computer Society, 2010.

[Faivre 2007] A. Faivre, C. Gaston and P. Le Gall. Symbolic Model Based Test-
ing for Component oriented Sytems. In Testing of Communicating Systems
(TESTCOM), volume 4581/2007 of LNCS, pages 90-106, 2007. 41

[Fielding 1999] R. T. Fielding, J. Gettys, J. C. Mogul, H. Nielsen, L. Masinter,
P. Leach and T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol —
HTTP/1.1. 1999. http://tools.ietf.org/html/rfc2616. 1, 13

[Fielding 2000] T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, 2000. 14

[Frantzen 2006a] L. Frantzen, J. Tretmans and R. d. Vries. Towards Model-Based
Testing of Web Services. In A. Polini, editeur, International Workshop on
Web Services - Modeling and Testing (WS-MaTe), pages 67-82, Italy, 2006.
32

[Frantzen 2006b] L. Frantzen, J. Tretmans and T.A.C. Willemse. A Symbolic
Framework for Model-Based Testing. In Intl. Workshops FATES/RV, vol-
ume 4262 of LNCS, pages 40-54, 2006. 5, 88, 146

[Frantzen 2007] L. Frantzen and J. Tretmans. Model-Based Testing of Environmen-
tal Conformance of Components. In Formal Methods of Components and
Objects (FMCO), numéro 4709 de LNCS, pages 1-25, 2007. 5, 32, 41

[Frantzen 2009] L. Frantzen, M. N. Huerta, Z. G. Kiss and T. Wallet. On-The-
Fly Model-Based Testing of Web Services with Jambition. In R. Bruni and
K. Wolf, editeurs, Intl. Workshop on Web Services and Formal Methods
(WS-FM), numéro 5387 de LNCS, pages 143-157, 2009. 32, 43, 44

[Fraser 2009] G. Fraser, F. Wotawa and P. Ammann. Testing with model checkers:
a survey. Softw. Test., Verif. Reliab., vol. 19, no. 3, pages 215261, 2009. 2

[Gaston 2006] C. Gaston, P. Le Gall, N. Rapin and A. Touil. Symbolic Ezecution
Techniques for Test Purpose Definition. In Testing of Communicating Sys-
tems (TESTCOM), volume 3964 of LNCS, pages 1-18, 2006. 5, 19, 87, 88,
104, 110, 111, 114, 124, 125, 129, 134, 177

[Gortmaker 2004] J. Gortmaker, M. Janssen and R. Wagenaar. The advantages of
web service orchestration in perspective. In ICEC ’04: Proceedings of the 6th

international conference on Electronic commerce, pages 506-515, New York,
NY, USA, 2004. ACM. 1

[Gudgin 2007] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. Nielsen,
A. Karmarkar and Y. Lafon. SOAP (Version 1.2). W3C, April 2007. http:
//www.w3.org/TR/soapl2-partl/. 1, 13

184 Bibliography

[He 1999] J. He and K. Turner. Protocol-inspired hardware testing. In Proc. Testing
Communicating Systems XII, pages 131-147. Kluwer Academic Publishers,
1999. 32

[Heymer 2007] S. Heymer and J. Grabowski. Formal Methods and Conformance
Testing - or - What are we testing anyway? 2007. 21

[Hoffman 2005] C. M. Hoffman and R. Joan-Arinyo. A brief on constraint solving.
vol. 2, no. 5, pages 665-663, 2005. 150

[Huhns 2005] M. Huhns and M. Singh. Service-Oriented Computing: Key Concepts
and Principles. IEEE Internet Computing, vol. 9, no. 1, pages 75-81, 2005.
1, 12

[Inkumsah 2008] Kobi Inkumsah and Tao Xie. Improving Structural Testing of
Object-Oriented Programs via Integrating Evolutionary Testing and Symbolic
Ezecution. In Proc. 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2008), pages 297-306, September 2008.
90

[Jard 2005] C. Jard and T. Jéron. TGV: theory, principles and algorithms: A tool
for the automatic synthesis of conformance test cases for non-deterministic
reactive systems. Int. J. Softw. Tools Technol. Transf., vol. 7, no. 4, pages
297-315, 2005. 32

[Jeannet 2005] B. Jeannet, T. Jéron, V. Rusu and E. Zinovieva. Symbolic Test
Selection based on Approximate Analysis. In TACAS, volume 3440 of LNCS,
pages 349-364, 2005. 32, 77, 88

[Jéron 2004] T. Jéron. Contribution & la génération automatique de tests pour les
systémes réactifs. Habilitation & diriger les recherches, Université de Rennes
1, March 2004. 87

[Katoen 1999] J.-P. Katoen. Concepts, Algorithms, and Tools for Model Checking,
1999. 3

[Khoumsi 2004] A. Khoumsi. Test cases generation for embedded systems, 2004. 4

[Khurshid 2003] S. Khurshid, C.S. Pasareanu and W. Visser. Generalized Symbolic
Ezecution for Model Checking and Testing. In Hubert Garavel and John Hat-
cliff, editeurs, TACAS, volume 2619 of Lecture Notes in Computer Science,
pages 553-568. Springer, 2003. 90

[King 1975] J. C. King. A new approach to program testing. In Intl. Conf. on
Reliable Software, pages 228-233. ACM, 1975. 89, 102

[Lallali 2007] M. Lallali, F. Zaidi, C. and Cavalli. Timed Modeling of Web Ser-
vices Composition for Automatic Testing. In SITIS ’07: Proceedings of the

Bibliography 185

2007 Third International IEEE Conference on Signal-Image Technologies and
Internet-Based System, pages 417-426, Washington, DC, USA, 2007. IEEE
Computer Society. 3

[Lallali 2008] M. Lallali, F. Zaidi, A. Cavalli and I. Hwang. Automatic Timed Test
Case Generation for Web Services Composition. European Conference on

Web Services (ECOWS), vol. 0, pages 53-62, 2008. 5, 18, 40

[Leavens 1999] G. Leavens et al. The Java Modeling Language (JML). 1999. http:
//wuw.eecs.ucf.edu/"leavens/JML/. 3

[Li 2005] Z. Li, W. Sun, Z. B. Jiang and X. Zhang. BPELJWS unit testing: frame-
work and implementation. In International Conference on Web Services
(ICWS), volume 1, pages 103-110. IEEE Computer Society, 2005. 19, 40

[Lohmann 2007] N. Lohmann. A Feature-Complete Petri Net Semantics for WS-
BPEL 2.0. In K. va Hee, W. Reisig and K. Wolf, editeurs, Proceedings of
the Workshop on Formal Approaches to Business Processes and Web Services
(FABPWS’07), pages 21-35. University of Podlasie, June 2007. 19

[Lohmann 2009] N. Lohmann, E. Verbeek and R. Dijkman. Petri Net Transforma-
tions for Business Processes — A Survey. pages 4663, 2009. 3, 19

[Mayer 2006] P. Mayer and D. Liibke. Towards a BPEL unit testing framework. In
Workshop on Testing, analysis, and verification of web services and applica-
tions (TAV-WEB), pages 33-42. ACM, 2006. 40

[Mitra 2009] S. Mitra, R. Kumar and S. Basu. A Framework for Optimal Decen-
tralized Service-Choreography. In ICWS, pages 493-500, 2009. 1

[Nakajima 2006] S. Nakajima. Model-Checking Behavioral Specification of BPEL
Applications. Electr. Notes Theor. Comput. Sci., vol. 151, no. 2, pages 89—
105, 2006. 18

[Noikajana 2008] S. Noikajana and T. Suwannasart. Web Service Test Case Gen-
eration Based on Decision Table (Short Paper). In QSIC ’08: Proceedings
of the 2008 The Eighth International Conference on Quality Software, pages
321-326, Washington, DC, USA, 2008. IEEE Computer Society. 2

[Peltz 2003] C. Peltz. Web services orchestration and choreography. In Computer,
pages 46-52. IEEE Computer Society, 2003. 1

[Pu 2006] G. Pu, X. Zhao, S. Wang and Z. Qiu. Towards the Semantics and Ver-
ification of BPEL4WS. Electronic Notes in Theoretical Computer Science,
vol. 151, no. 2, pages 33 — 52, 2006. Proceedings of the International Work-
shop on Web Languages and Formal Methods (WLFM 2005). 18

186 Bibliography

[Pasdareanu 2009] C. Pasireanu and W. Visser. A survey of new trends in symbolic
execution for software testing and analysis. Int. J. Softw. Tools Technol.
Transf., vol. 11, no. 4, pages 339-353, 2009. 89

[Rusu 2000] V. Rusu, L. Bousquet and T. Jéron. An Approach to Symbolic Test
Generation. In IFM '00: Proceedings of the Second International Conference
on Integrated Formal Methods, pages 338-357, London, UK, 2000. Springer-
Verlag. 5, 88

[Schmaltz 2008] J. Schinaltz and J. Tretmans. On Conformance Testing for Timed
Systems. In FORMATS ’08: Proceedings of the 6th international conference
on Formal Modeling and Analysis of Timed Systems, pages 250-264, Berlin,
Heidelberg, 2008. Springer-Verlag. 5, 32, 166

[Sinha 2006] A. Sinha and A. Paradkar. Model-based functional conformance testing
of web services operating on persistent data. In TAV-WEB ’06: Proc. of the
2006 workshop on Testing, analysis, and verification of web services and
applications, pages 17-22, New York, NY, USA, 2006. ACM. 42

[Tillmann 2006] N. Tillmann and W. Schulte. Unit Tests Reloaded: Parameterized
Unit Testing with Symbolic Ezecution. TEEE Softw., vol. 23, no. 4, pages
38-47, 2006. 90

[Touil 2006] A. Touil. Ezécution symbolique pour le test de conformité et le test de
raffinement. PhD thesis, Université dEvry-Val-D’Essonne, December 2006.
134

[Tretmans 1996a] J. Tretmans. Conformance testing with labelled transition sys-
tems: Implementation relations and test generation. In Computer Networks
and ISDN Systems, volume 29, pages 49-79. Elsevier B.V., 1996. 87

[Tretmans 1996b] J. Tretmans. Test Generation with Inputs, Outputs and Repetitive
Quiescence. Software - Concepts and Tools, vol. 17, no. 3, pages 103-120,
1996. 5, 21, 22, 25, 26, 27, 29, 30, 31, 87

[Tretmans 2003] G. J. Tretmans and H. Brinksma. TorX: Automated Model-Based
Testing. In A. Hartman and K. Dussa-Ziegler, editeurs, First European
Conference on Model-Driven Software Engineering, Nuremberg, Germany,
pages 31-43, December 2003. 32

[Tretmans 2008] Jan Tretmans. Model Based Testing with Labelled Transition Sys-
terns. In Formal Methods and Testing, pages 1-38, 2008. 3

[Utting 2007] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann, 1 édition, 2007. 3

[Valmari 1998] A. Valmari. The State Ezplosion Problem. In Lectures on Petri
Nets I: Basic Models, Advances in Petri Nets, the volumes are based on the

Bibliography 187

Advanced Course on Petri Nets, pages 429-528, London, UK, 1998. Springer-
Verlag. 4, 73, 87, 89

[van Breugel 2006] F. van Breugel and M. Koshkina. Models and Verification of
BPEL, 2006. 2, 19

[van der Bijl 2003a] H.M. van der Bijl, A. Rensink and J. Tretmans. Component
Based Testing with 1oco, 2003. 6, 29, 36, 38, 39, 40, 87

[van der Bijl 2003b] H.M. van der Bijl, A. Rensink and J. Tretmans. Compositional
Testing with ioco. In Formal Approaches to Software Testing (FATES), pages
86-100, 2003. 5, 22, 25, 30, 32, 36, 39, 40, 87, 164

[van der Bijl 2004] M. van der Bijl, A. Rensink and J. Tretmans. Compositional
Testing with ioco. In Workshop on Formal Approaches to Testing of Software
(FATES), volume 2931 of LNCS, pages 86-100, 2004. 5

[van der Bijl 2005] H.M. van der Bijl, A. Rensink and J. Tretmans. Action Refine-
ment in Conformance Testing, 2005. eemcs1564. 22, 26

[Viroli 2004] M. Viroli. Towards a Formal Foundation to Orchestration Languages.
Electron. Notes Theor. Comput. Sci., vol. 105, pages 51-71, 2004. 19

[Wombacher 2004] A. Wombacher, P. Fankhauser and E. Neuhold. Transforming
BPEL into annotated deterministic finite state automata for service discov-
ery. In 2nd International Conference on Web Services (ICWS 04), pages
316-323, Los Alamitos, California, USA, July 2004. IEEE Computer Society
Press. 18

[Xie 2005] T. Xie, D. Marinov, W. Schulte and D. Notkin. Symstra: A Framework
for Generating Object-Oriented Unit Tests Using Symbolic Ezecution. In
TACAS, pages 365-381, 2005. 90

[Yang 2005] Y. Yang, Q.P. Tan, J. Y. and F. Liu. Transformation BPEL to CP-nets
for verifying Web services composition. page 6 pp., aug. 2005. 19

[Yoo 2010] T. Yoo, B. Jeong and H. Cho. A Petri Nets based functional validation
for services composition. Expert Syst. Appl., vol. 37, no. 5, pages 3768-3776,
2010. 3, 19

[Yuan 2006] Y. Yuan, Z. Li and W. Sun. A Graph-Search Based Approach to
BPEL4WS Test Generation. In Intl. Conf. on Software Engineering Ad-
vances, page 14, 2006. 40

