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Notion of rogue waves in oceanography and other fields

Sailing is and always has been a dangerous activity because sea is an unpredictable element. For example here is how Philippe Lijour, first mate of the oil tanker Esso Languedoc describes the wave that hit the ship near Durban in South Africa in 1980 :

We were in a storm and the tanker was running before the sea. This amazing wave came from the aft and broke over the deck. I didn't see it until it was alongside the vessel but it was special, much bigger than the others. It took us by surprise. I never saw one again.

Another surprising and devastating phenomenon that can occur is the so called "Three sisters" wave. It consists of one huge wave followed by two others. All these waves have the particularity to be unexpectedly high and to appear suddenly before disappearing as suddenly. They are called rogue or freak. Testimonies and a list of occurrences can be found at [27]. Some descriptions are available in [START_REF] Ch | Physical mechanisms of the rogue wave phenomenon[END_REF][START_REF] Ch | Rogue waves in the Ocean[END_REF].

For a long time, sailors who survived rogue waves and told their stories weren't taken seriously. Nowadays, even if some losses of ships can be blamed on rogue waves when a human mistake is in fact the cause of the sinking, it makes no doubt that rogue waves are a reality. Lots of pictures are available on the Internet. A Google Image search for "rogue waves" returns over three millions hits including pictures in Figure 1.

But these pictures can't be the basis of scientific works. To be able to analyze and produce modelings of rogue waves we need official measurement by instruments. A good source for such recordings is oil platforms. For example Figure 2 shows the New Year wave that hit the Draupner platform in 1995 in the North sea. After that, the study of rogue waves took off.

The researches on rogue waves are very active. Several mechanisms are believed to be possible sources of appearance of rogue waves. We can cite

• Interaction with a current : Waves from one current are driven into a current of opposing direction. The wave train compresses into a rogue wave. For example in the Indian ocean the Agulhas current goes against the westerlies.

• Spatial focusing : Small waves coming from different directions (open sea, refraction from coast, etc.) interfere and energy concentration happens.

• Spatio-temporal focusing : Waves with a large group velocity overtake waves with a smaller group velocity located in front of them and a unexpectedly big wave is produced.

• Nonlinear focusing : A wave concentrates the energy from other smaller waves and becomes huge and unstable before collapsing.

This list is not exhaustive and we could add the effects of the wind or of the Benjamin-Feir instability. Current "state of art" is well reflected in the volume [START_REF] Akhmediev | Discussions and debate : Rogue waves -Towards a unifying concept ?[END_REF] and several books especially [START_REF] Ch | Rogue waves in the Ocean[END_REF].

As we pointed out, the classification of rogue waves doesn't depend as much on the height of the wave than its singularity with respect to other waves. To define rogue waves properly, we need parameters to describe the waves and the sea. First, the height of a wave H w is defined as the larger distance between the top of the considered crest and the bottom of the troughs before and after. Then, we can define the significant wave height H s of the sea as the average waves height over the higher third of the waves in a given time interval, usually between ten and thirty minutes. The considered wave is classified as rogue if If rogue waves are especially studied in oceanography, they have recently appeared in other fields like non-linear optics [START_REF] Dudley | Emergence of rogue waves from optical turbulence[END_REF][START_REF] Montina | Non-gaussian statistics and extreme waves in a nonlinear optical cavity[END_REF][START_REF] Solli | Optical rogue waves[END_REF], matter physics [START_REF] Bludov | Matter rogue waves[END_REF], physics of fluids [START_REF] Ganshin | Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium[END_REF] and even in financial markets [17,[START_REF] Yan | Financial rogue waves[END_REF]. The simplest model for deep water is the focusing non-linear Schrödinger equation. It was obtained in 1968 by Zakharov in [START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF] and it reads

H w H s > 2 
Even
ir t + r xx + 2|r| 2 r = 0. (1) 
Let denote by σ 1 , σ 2 , σ 3 , σ + , σ -the Pauli matrices

σ 1 := 0 1 1 0 , σ 2 := 0 -i i 0 , σ 3 := 1 0 0 -1 σ + := 0 1 0 0 , σ -:= 0 0 1 0 .
Let define U := U 0 + λU 1 and V := V 0 + λV 1 + λ 2 V 2 where U i and V j satisfy

U 0 := i(rσ + + rσ -), U 1 := 1 2 σ 3 , V 0 := -i|r| 2 σ 3 + (r x σ + -r x σ -), V 1 := -iU 0 , V 2 := -iU 1 .
Using these two matrices U and V we can write a zero curvature representation for the NLS equation. Equation ( 1) is equivalent to

U t -V x + (U V -V U ) = 0. (2) 
Equation ( 2) can be seen as the compatibility condition for the following overdetermined system of vectorial equations

F x = U F F t = V F (3) 
Here F is a two-components vector function

F := f 1 f 2 .
The following theorem can be found in [START_REF] Matveev | Darboux Transformations and solitons[END_REF] Theorem 1.

If F = f 1 f 2
is a solution of (3) for a real λ and matrices U (0) and V (0) constructed from a solution r 0 of (1) then r 1 defined by

r 1 := r 0 + 2iλ f 2 f 1 |f 1 | 2 + |f 2 | 2
is also a solution of (1).

For example, if we set r 0 := e 2it then f 1 and f 2 defined by

f 1 := -i √ 2x + √ 2 2 -2i √ 2t e -it , f 2 := √ 2x - √ 2 2 -2i √ 2t e it
give a solution of (3) for λ = 2. If we compute r 1 given in the previous theorem we get back, up to a sign, the famous Peregrine solution obtained in [START_REF] Peregrine | Water waves, nonlinear Schrödinger equations and their solutions[END_REF] which is the first example of non-trivial quasi-rational solution of NLS. Theorem 1 can be used recursively.

Once we obtain a new solution r 1 we are theoretically able to solve the associated system (3) with new matrices U (1) and V (1) . Then we can generalize it by a determinant formula (see [START_REF] Matveev | Darboux Transformations and solitons[END_REF]) or we can use iterative application of this theorem "by hand" as Akhmediev et al. did in their articles [START_REF] Akhmediev | Rogue waves and rational solutions of the NLS equation[END_REF][START_REF] Akhmediev | Waves that appear from nowhere and disappear without a trace[END_REF][START_REF] Ankiewicz | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF]. In these works the machinery of Darboux transformations was used to obtain some very remarkable but isolated solutions having a rogue waves behavior. In Section 2 we present a multi-parametric class of solutions showing the existence of multiple Peregrine breather. Solutions in [START_REF] Akhmediev | Rogue waves and rational solutions of the NLS equation[END_REF] can be obtained back from those with the right choice of parameters.

This method allows us obtain other solutions of NLS that are not quasi-rational. For example, from the same r 0 than previously and by solving the system for λ < 2 we can obtain a rational fraction in sinh(ωt) cos(ωx), cosh(ωt) cos(ωx), sinh(ωt) sin(ωx) and cosh(ωt) sin(ωx) multiplied by an exponential. It's the kind of solutions presented in [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions[END_REF] where the second order rational solutions were written down for the first time. It was then obtained by taking the rational limit of these "trigonometric-hyperbolic" solutions often called Akhmediev breather.

Darboux transform is not the only possible approach to construct solutions of NLS. Its integrability by the inverse scattering method was proved in the famous work [START_REF] Zakharov | An exact theory of two-dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media[END_REF] by [START_REF] Zakharov | An exact theory of two-dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media[END_REF]. A review of this topic and the Riemann-Hilbert problem approach can be found in [START_REF] Faddeev | Hamiltonian methods in the theory of solitons[END_REF][START_REF] Novikov | Theory of solitons : the inverse scattering method[END_REF]. It allowed to construct multi-soliton solutions. An another successful technics to obtain solutions of NLS is the algebro-geometric approach where solutions are expressed in terms of Riemann theta-functions of algebraic curves. Exact formulas are given in [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF][START_REF] Its | Exact integration of nonlinear Schrödinger equation[END_REF].

Shallow water model : the KdV and the KP equations

In [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF], Korteweg and de Vries derived the KdV equation to represent the traveling of a wave in a channel of shallow water

u t + 6uu x + u xxx = 0. (4) 
This equation can be seen at the compatibility condition of the following system

λψ = -ψ xx -uψ ψ t = -4ψ xxx -6uψ x -3u x ψ (5) 
In [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersive media[END_REF], Kadomtsev and Petviashvili wrote down a 2+1 generalization of this equation the so-called KP equation

(u t + 6uu x + u xxx ) x = -3α 2 u yy . (6) 
Once again, we can associate to this equation a system of linear differential equations

αψ y = -ψ xx -uψ ψ t = -4ψ xxx -6uψ x -3(u x -αv)ψ (7) 
where v satisfies v x = u y . If α = i (resp. α = 1) the equation is called KP-I (resp. KP-II). The KP-I model describes waves in a very shallow water when surface tension is strong and KP-II is used for the case of weak surface tension. From now we restrict ourselves to the case α = i.

As in the case of NLS, these systems allow us to construct new solutions of ( 4) and ( 6) from simpler ones with the help of the following theorem Theorem 2. Let u be a solution of (4) (resp. ( 6)) and let ψ and ψ 1 two solutions of (5) (resp. ( 7)) for this u for different λ. Let denote by σ := ∂ x log ψ 1 . Then u defined by

u := u + 2∂ x σ
is also a solution of (4) (resp. ( 6)) and a solution of the associated system is given by ψ := ψ xσψ.

This theorem can easily be generalized in the following way Theorem 3. Let u be a solution of (4) (resp. ( 6)) and let ψ, ψ 1 , . . . , ψ n be solutions of (5) (resp. ( 7)) for this u. Then u defined by

u := u + 2∂ 2 x log W (ψ 1 , . . . , ψ n )
is also a solution of (4) (resp. ( 6)) and a solution of the associated system is given by

ψ := W (ψ 1 , . . . , ψ n , ψ) W (ψ 1 , . . . , ψ n ) .
Here W (g 1 , . . . , g n ) denotes the Wronski determinant of functions g 1 , . . . , g n with respect to x i.e. the determinant of the matrix A with entries

A ij := ∂ i-1
x g j . A proof of this theorem can be found in [START_REF] Matveev | Darboux transformation and the solutions to the KP equation depending on functional parameters[END_REF]. In Section 4 we will show that it allows to generate a family of smooth real rational solutions of the KP-I equation from the quasi-rational solutions of the focusing NLS equation.

KdV is one of the most, if not the most, studied equation in the literature. It's the first equation where soliton solutions have been found and the first equation that have been successfully integrated via the inverse scattering method. After that, it was found that other equations admit similar results including KP. Different axis of development emerged in the study of these two solitons equations like construction of algebro-geometric solutions [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF], study of solitons and rational solutions [START_REF] Ablowitz | Solitons and rational solutions of nonlinear evolution equations[END_REF][START_REF] Bordag | Two-dimensional solitons of the KP equation and their interaction[END_REF][START_REF] Krichever | Rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of N particles on a line[END_REF][START_REF] Matveev | Some comments on the rational solutions of the Zakharov-Shabat equations[END_REF][START_REF] Pelinovsky | Rational solutions of the KP hierarchy and the dynamics of their poles I[END_REF][START_REF] Pelinovsky | Rational solutions of the KP hierarchy and the dynamics of their poles II[END_REF] or theory of Darboux transforms [START_REF] Liu | Vectorial Darboux tranformations for the KP hierarchy[END_REF][START_REF] Matveev | Darboux transformation and the solutions to the KP equation depending on functional parameters[END_REF][START_REF] Matveev | Darboux Transformations and solitons[END_REF][START_REF] Matveev | Darboux transformations and coherent interaction of the light pulses with twolevel media[END_REF].

Construction of solutions

Darboux transform for the non-stationary Schrödinger equation

Let consider the 1+1 non-stationary Schrödinger equation with potential u(x, t)

iψ t + ψ xx + u(x, t)ψ = 0. (8) 
As stated in [START_REF] Matveev | Darboux Transformations and solitons[END_REF], this equation satisfies the following remarkable property Theorem 4. If f 1 , . . . , f n , f are solutions of (8) for a base potential u 0 (x, t) then

ψ := W (f 1 , . . . , f n , f ) W (f 1 , . . . , f n ) is also a solution of (8) for the potential u(x, t) := u 0 (x, t) + 2∂ 2 x log W (f 1 , . . . , f n ).
All these Darboux transform theorems are particular cases of a more general covariance theorem for several integrable systems obtained by Matveev.For completeness this theorem is presented in appendix A. Its use with a base potential u 0 (x, t) := 0 already gives us interesting solutions.

Let q 2n (k) be the polynomial defined by

q 2n (k) := n j=1 k 2 - ω 2m j +1 + 1 ω 2m j +1 -1 B 2 , ω := exp iπ 2n + 1 (9)
where B is a free real parameter and m j are integers satisfying

0 ≤ m j ≤ 2n -1, m l = 2n -m j (10) 
for all l and j. Then, for any k,

f (k, x, t) := exp(kx + ik 2 t + Φ(k)) q 2n (k) (11) 
where Φ(k) is of the form

Φ(k) := i 2n l=1 ϕ l (ik) l , ϕ j ∈ R, (12) 
is a solution of ( 8) with u 0 = 0. We can construct other solutions by applying a differential operator in k to f or by evaluating in different values of k. For example, let f j be defined by

f j (x, t) := D 2j-1 k f (k, x, t) | k=B , j = 1 . . . , n, (13) 
f n+j (x, t) := D 2j-1 k f (k, x, t) | k=-B , j = 1 . . . , n (14) 
where

D k := k 2 k 2 + B 2 ∂ k . According to the previous theorem ψ(x, t, k) = W (f 1 , . . . , f 2n , f ) W (f 1 , . . . , f 2n )
is a solution of (8) for the potential u(x, t) = 2∂ 2 x log W (f 1 , . . . , f 2n ). Furthermore, for any constant C, s C defined by

s C (x, t) := Cψ(x, t, 0)
is a rational solution of the non-stationary Schrödinger equation for the potential u(x, t).

Reduction to the NLS equation

Let assume that, for a conveniently chosen C, the solution s

C satisfies u(x, t) = 2 |s C (x, t)| 2 -B 2 . ( 15 
)
Then s C , now denoted by s, is a rational solution of the modified non-linear Schrödinger equation

is t + s xx + 2(|s| 2 -B 2 )s = 0. ( 16 
)
From there, we can easily construct a non-singular quasi-rational solution of (1) given by the formula r(x, t) := s(x, t)e 2iB 2 t . Theorem 5. If C = ±q 2n (0)B 1-2n then s is a smooth rational solution of (16).

Proof of the reduction relation

The proof presented here is a modified and simplified version of the article [START_REF] Eleonskii | Rational multisoliton solutions to the NLS equation, Soviet Doklady 1986 sect[END_REF] written by Eleonskii, Krichever and Kulagin . It consists in a residue analysis of a couple of meromorphic differentials constructed from the dual Baker-Akhiezer function introduced by Cherednik in [START_REF] Cherednik | On the dual Baker-Akhiezer functions[END_REF]. Before tackling the proof of Theorem 5 itself, we need an easy algebraic lemma. Lemma 6. The polynomial q 2n defined by (9) satisfies

2k 2 q 2n (k)q 2n (-k) = (k 2 + B 2 ) 2n+1 + (k 2 -B 2 ) 2n+1 . ( 17 
)
Proof w satisfies w 2m+1 = w 4n+2-2m-1 = w 2(2n-m)+1 which leads to

2k 2 q 2n (k)q 2n (-k) = 2k 2 n j=1 k 2 - ω 2m j +1 + 1 ω 2m j +1 -1 B 2 n j=1 k 2 - ω 2(2n-m j )+1 + 1 ω 2(2n-m j )+1 -1 B 2 = 2 2n+1 l=1 k 2 - ω 2l+1 + 1 ω 2l+1 -1 B 2 .
The roots of (X + B 2 ) 2n+1 + (X -B 2 ) 2n+1 satisfy

x l + B 2 x l -B 2 2n+1 = w 2n+1 , l = 1, . . . , 2n + 1 which yields x l + B 2 x l -B 2 = w 2l+1 or equivalently x l = w 2l+1 + 1 w 2l+1 -1 B 2 .
Hence

(k 2 +B 2 ) 2n+1 +(k 2 -B 2 ) 2n+1 = 2 2n+1 l=1 k 2 - ω 2l+1 + 1 ω 2l+1 -1 B 2 = 2k 2 q 2n (k)q 2n (-k)
Let dΩ be the meromorphic differential defined by

dΩ := q 2n (k)q 2n (-k) (k 2 -B 2 ) 2n dk.
Taking into account the previous lemma, we can re-write

dΩ = (k 2 + B 2 ) 2n+1 + (k 2 -B 2 ) 2n+1 2k 2 (k 2 -B 2 ) 2n dk.
In the neighborhoods of each of the points k = ±B, we use two local parameters:

E(k) := k + B 2 k , z(k) = k - B 2 k satisfying the relation E 2 = z 2 + 4B 2 . It yields dΩ = E 2n+1 z 2n+1 + 1 dE 2 .
or equivalently:

dΩ = (z 2 + 4B 2 ) n z 2n + z 2B 1 + z 2 4B 2 -1 2 dz 2 .
This leads to the following asymptotic expansion when z → 0 for dΩ, near the points k = ±B:

dΩ = α ± 0 z 2n + α ± 1 z 2n-2 + . . . + α ± n-1 z 2 + O(1) dz (18) 
It is clear that D k = ∂ z and the derivatives of ψ with respect to z are given by

∂ m z ψ = W (f 1 , . . . , f 2n , D m k f ) W (f 1 , . . . , f 2n ) which gives us ∂ 2j-1 z ψ| k=±B = 0 j = 1, . . . , n.
Therefore an expansion of ψ in the neighborhood of k = ±B when z → 0 has the form:

ψ = β ± 0 + β ± 1 z 2 + . . . + β ± n-1 z 2n-2 + O(z 2n ). (19) 
Equations ( 12), ( 18) and ( 19) guarantee that dΩ 1 and dΩ 2 defined by the formulas dΩ 1 := ψ(x, t, k)ψ(x, t, -k) dΩ and

dΩ 2 := (k + B 2 k ) dΩ 1
are meromorphic differentials with vanishing residues in B and -B. If we consider these differentials defined on the compact sphere CP 1 then the sum of residues equals 0 hence res ∞ dΩ 1 = 0 and res 0 dΩ 2 = -res ∞ dΩ 2 .

When k belongs to a neighborhood of ∞, ψ and dΩ admit the following expansions:

ψ(x, t, k) = 1 + ξ 1 (x, t) k + ξ 2 (x, t) k 2 + . . . e kx+ik 2 t+φ(k) , ( 20 
) dΩ = 1 + 2nB 2 k 2 + . . . dk such that dΩ 1 = 1 + ξ 1 -ξ 1 k + ξ 2 + ξ 2 -|ξ 1 | 2 + 2nB 2 k 2 + . . . dk.
From these expansions we easily see that

res ∞ dΩ 1 = ξ 1 -ξ 1
which means that ξ 1 is real and

-res ∞ dΩ 2 = ξ 2 + ξ 2 -ξ 2 1 + (2n + 1)B 2 . Lemma 7. If {m 1 < • • • < m n } ∈ F n then m 1 = 0 and either m 2 = 1 or m n = 2n -1.

Proof

Let assume m 1 > 0. Then {m 1 , . . . , m n } and {φ n (m 1 ), . . . , φ n (m n )} are disjoint hence their union is a subset of {1, . . . , 2n -1} of cardinality 2n which is absurd. Now let assume m 2 > 1 and m n < 2n-1. Then {m 2 , . . . , m n } and φ n (m 2 ), . . . , φ n (m n ) are disjoint hence their union is a subset of {2, . . . , 2n -2} of cardinality 2n -2 which is absurd. We can remark that we can't have m 2 = 1 and m n = 2n -1 simultaneously. Proposition 8. ψ defined by 

ψ : {1, 2n + 1} × F n -→ F n+1 (m, {0, m 2 , . . . , m n }) -→ {0, m 2 + 1, . . . , m n + 1, m}
m i = M i . Let {0 < p 2 < • • • < p n+1 } be an element of F n+1 . If p 2 = 1 then it's the image of (1, {0, p 2 -1, . . . , p n+1 -1}) otherwise it's the image of (2n + 1, {0, p 2 -1, . . . , p n -1}). Corollary 9. card (F n ) = 2 n-1 Proof Proposition 8 yields card (F n+1 ) = 2 card (F n ) and card (F 1 ) = 1
In the rest of this thesis, we set m j = j -1.

Analysis of these solutions

These solutions apparently depend on 2n + 1 parameters but only 2n -2 of them are important. B is the well-known re-scaling parameter. If s(x, t) is a solution then

s(x, t) := Bs(Bx, B 2 t)
is also a solution. Then, we can set B = 1 without loss of generality. Using phases ϕ 1 and ϕ 2 means replacing x and t with (x-ϕ 1 ) and (tϕ 2 ) which is irrelevant for the derivatives. ϕ 1 and ϕ 2 are just translation parameters that don't change the profile of the solution.

Case n=1

Here, we obtain essentially one solution, the Peregrine solution given which reads

s(x, t) = -3 + 4x 2 + 16t 2 -16it 1 + 4x 2 + 16t 2
for ϕ 1 = 0 and ϕ 2 = √ 3 4 . A plot is given in Figure 3.

The computation of the first derivatives gives us

∂ x (|s| 2 ) = 64x(-4x 2 +48t 2 +3 (1+4x 2 +16t 2 ) 3 ∂ t (|s| 2 ) = 256t(-12x 2 +16t 2 +1 (1+4x 2 +16t 2 ) 3
which leads to three critical points in (0, 0),(

√ 3 2 , 0) and (- √ 3 
2 , 0). A study of the Hessian matrix in these points shows that (0, 0) is a local maximum where |s| = 3 and the other two are local minima where s = 0. Now, we will study the energy of this solution. Of course, as the base level is 1, the energy in its strict meaning is infinite. But we can adapt the definition of energy to obtain two integral relations :

+∞ -∞ |s(x, t| 2 -1 dx = 0 (22) 
and

+∞ -∞ |s(x, t) -1| 2 dx = 4π √ 1 + 16t 2 (23) 
The first relation shows that the excitation below the surface compensate exactly the excitation above, and that at every moment of time. The second is the first of a list of moments that can be obtained by integration by parts.

Case n=2

The solutions obtained here depend on two parameters ϕ 3 and ϕ 4 . For convenience, we choose

ϕ 1 := 3ϕ 3 , ϕ 2 := 2ϕ 4 + 3 + √ 5 16 10 -2 √ 5.
We obtain

s(x, t) = 1 -12 G(2x, 4t) + iH(2x, 4t) Q(2x, 4t) (24) 
where 

G(x, t) := x 4 + 6g 2 (t)x 2 + 2βx + g 0 (t) H(x, t) := tx 4 + 2h 2 (t)x 2 + 2βtx + h 0 (t) Q(x, t) := x 6 + 3g 2 (t)x 4 -2βx 3 + 3q 2 (t)x 2 + 6βg 2 (t)x + q 0 (t)
= t 2 + 1 g 0 (t) := 5t 4 + 18t 2 -4αt -3 h 2 (t) := t 3 -3t + α h 0 (t) := t 5 + 2t 3 -2αt 2 -15t + 2α q 2 (t) := t 4 -6t 2 + 4αt + 9 q 0 (t) := t 6 + 27t 4 -4αt 3 + 99t 2 -36αt + β 2 + 4α 2 + 9
In these formulas parameters α and β are given by We can remark that the profile shown in Figure 6 is different of the other two. The system of three peaks of similar height is replaced by one giant peak surrounded by four peaks of smaller amplitude.

α := (5 + √ 5) 10 -2 √ 5 -96ϕ 4 , β := 96ϕ 3 .
In this case the solution ( 24) is the second order solution obtained by Akhmediev et al. in [START_REF] Akhmediev | Rogue waves and rational solutions of the NLS equation[END_REF]. 

Higher order solutions

In this subsection conjectures about solutions obtained for n > 2 are presented. We have to work from plots of solutions. Two of them can be found in figures 7 and 8. It represents third and fourth order solutions when all phases are equal to zero. It's believed to be the general profile. The solutions seem to have in general n(n+1) 2 maxima of comparable amplitude and n(n+1) minima.

But once again for exceptional solutions we should observe the appearance of a "super-peak" surrounded by n(n + 1) -2 peaks of significantly smaller amplitudes. t with y and ϕ 3 with -4t then f defined by [START_REF] Bludov | Matter rogue waves[END_REF] satisfy

if y = -f xx f t = -4f xxx
and so do the functions f j defined by ( 13) and ( 14). 

Proof

The fact that u is a solution comes from Theorem 3 and condition [START_REF] Eleonskii | Rational multisoliton solutions to the NLS equation, Soviet Doklady 1986 sect[END_REF]. The integral relation is derived from the Wronskian representation u(x, y, t) = 2∂ 2

x log W (f 1 , . . . , f 2n ).

It means that relation [START_REF] Ch | Physical mechanisms of the rogue wave phenomenon[END_REF] holds for every solution of NLS constructed in Section 2.

These solutions are clusters of peaks traveling to infinity, possibly on a line. Two series of plots for different values of ϕ 4 are presented in figures 9 and 10. We set ϕ 1 = ϕ 2 = 0. 

Solutions of the Johnson equation

In [START_REF] Johnson | Water waves and Korteweg-de-Vries equations[END_REF] the author introduces a two dimensional generalization of the cylindrical KdV equation called the Johnson equation (or cylindrical KP equation) that reads

v t + v xxx + 6vv x + v 2t x = 3v yy t 2 . ( 25 
)
As stated in [START_REF] Klein | Cylindrical Kadomtsev-Petviashvili equation : old and new results[END_REF], the Johnson equation is closely related to the KP-I equation.

Proposition 11. If u is a solution of ( 6) then v defined by v(x, y, t)

:= u(x + y 2 t 12 , yt, t)
is a solution of [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF].

We can use this change of variables to construct solutions of (25) from the solutions of KP-I presented above. Some of these solutions are represented in figures 11 and 12 for different values of ϕ 4 and ϕ 1 = ϕ 2 = 0. We can remark that this time the influence of ϕ 2 on these solutions is more complicated than a translation. 

Conclusion and open questions

The solutions presented here were obtained for the first time in the article [START_REF] Eleonskii | Rational multisoliton solutions to the NLS equation, Soviet Doklady 1986 sect[END_REF] by Eleonskii, Krichever and Kulagin in 1986 up to some inaccuracies. Surprisingly this work has been overlooked in the integrable systems community and the rogue waves community until now. I'm inclined to believe that the work presented here have several advantages over the original exposition :

• The quasi-rational solutions of the NLS equation are described in a simpler and more elegant way using Wronski determinants.

• Using a Darboux transformation approach for the non-stationary Schrödinger equation gives a simplified version of the proof.

• It also allows us to construct for "free" a large family of real non-singular rational localized solution of the KP-I equation which might be associated with shallow water rogue waves.

• Maybe more than everything else it contains a qualitative study of these solutions making their multi-rogue waves behavior obvious.

• Finally the approach used here can be extended to many other equations of physical interest, for example the vectorial NLS equation. This work is in progress.

Nonetheless, several questions stay open.

First, a better understanding of the location and the dynamics of peaks and holes would be interesting. It would also provide a better understanding of the propagation of the peaks of the associated solution of KP-I.

Then, we can tackle the problem of higher values of n. If, theoretically, the same scheme can be applied for solutions obtained with n ≥ 3, the amount of calculations would be overwhelming and the results not very satisfactory in the long term. To obtain similar results for generic n, we need to work from the Wronskian formula. Maybe, a re-writing of this formula in terms of theta functions or Fredholm determinants would help. See [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF][START_REF] Gaillard | From finite-gap solutions of KdV in terms of theta functions to solitons and positons[END_REF][START_REF] Its | Exact integration of nonlinear Schrödinger equation[END_REF] for more information.

We can also wonder about the generality of these solutions. Can we choose the different parameters in the definition of f j more generally and still obtain rational solutions with a system of peaks ? What is the position of these solutions among all rational solutions of NLS ? Finally, other well-known equations admit rogue rational solutions. For example, some special rational solutions of the Hirota equation having the behavior of higher order Peregrine breathers were obtained in [START_REF] Ankiewicz | Rogue waves and rational solutions of the Hirota equation[END_REF]. It could be interesting to use the same method as here to obtain the more general family of rational solutions.

A Covariance theorem

In this section the subscript denotes the derivative with respect to the evolution variable z and the prime or power notation is used for the derivative with respect to x. Theorem 12. Let f be a solution of

f z = n m=0 u m (x, z)f (m) (26) 
and let denote by φ another solution of ( 26) and σ = φ φ . Then ψ defined by

ψ = (∂ x -σ)f (27) 
satisfies

ψ z = n m=0 u m (x, z)ψ (m) (28) 
where u m are defined by .

As φ is solution of (26) the terms for j = 0 in the right-hand side of the last equation cancels out the term φ z x x 0 φ -1 ψ dτ in the left-hand side. Hence 

Multiplying both sides of this relation by φ -1 and differentiating by x we get the following formula :

(φ -1 ψ) z = φ -1 n k=1 u k k j=1 C j k φ (k-j) (φ -1 ψ) (j-1)
x .

We can easily check that (31) yields, up to a factor φ -1 , equation [START_REF] Liu | Vectorial Darboux tranformations for the KP hierarchy[END_REF] with the u m defined in theorem 12.

This result can be generalized in the case of a matricial equation (see [START_REF] Matveev | Darboux Transformations, Covariance Theorems and Integrable systems[END_REF]). It can also be used iteratively. In this case the formula is simpler than expected.

Theorem 13. Let φ 1 , . . . , φ N be linearly independent solutions of [START_REF] Krichever | Rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of N particles on a line[END_REF]. The result of a N -step Darboux transformation applied to f is given by D N is a differential operator of order N of the form

D N = ∂ N x + N -1 m=0 a m ∂ m x ( 32 
)
such that D N f = 0 when f = φ i . The coefficients a m are solutions of a system of N equations and can be written down with Cramer's formula. Then we can see that the right-hand side of ( 32) is the development along the last column of W (φ 1 , . . . , φ N , .) W (φ 1 , . . . , φ N ) .

We can also generalize the formulas for the coefficients of the equation. For example 

B Maple code for plots

Here an example of the code used to produce the plots. This corresponds to Figure 4.
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 1 Figure 1: Some pictures of rogue waves

Figure 2 : 10 1. 2

 2102 Figure 2: The Draupner wave

  is a bijection. Proof Let assume that (m, {0, m 2 , . . . , m n }) and (M, {0, M 2 , . . . , M n }) have the same image by ψ. If m = M then 1 and 2n + 1 are both in the set which is impossible. Then m = M and it's straightforward that

Figure 3 :

 3 Figure 3: The Peregrine solution

Figures 4 to 6

 6 Figures 4 to 6 show this solution for different value of ϕ 3 and ϕ 4 .We can remark that the profile shown in Figure6is different of the other two. The system of three peaks of similar height is replaced by one giant peak surrounded by four peaks of smaller amplitude. In this case the solution[START_REF] Klein | Cylindrical Kadomtsev-Petviashvili equation : old and new results[END_REF] is the second order solution obtained by Akhmediev et al. in[START_REF] Akhmediev | Rogue waves and rational solutions of the NLS equation[END_REF].
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 4556 Figure 4: ϕ 3 = 0 and ϕ 4 = 0

Figure 7 :Figure 8 :

 78 Figure 7: Solution of order 3 with all phases equal to 0

Theorem 10 .

 10 u(x, y, t) := 2 |s| 2 -B 2 is a smooth real solution of KP-I that satisfies ∀ t u(x, y, t) -→ 0 when x 2 + y 2 -→ +∞ and ∀ y, t +∞ -∞ u(x, y, t) dx = 0.

Figure 9 :Figure 10 :

 910 Figure 9: Solution of KP-I with ϕ 4 = 0
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 1112 Figure 11: Solution of CKP with ϕ 4 = 0

u n = u n , 1 = φ x x 0 φ - 1

 101 (u kσu k )φ (k-j) + u k φ (k-j+1) φ -1 (j-1-m) j u k φ (k-j) φ -1 (j-m) 0 ≤ m ≤ n -1.Proof Considering (27) as a differential equation for f we can write f (τ, z)ψ(τ, z) dτ.

  φ (k-j) φ -1 ψ (j-1) .

ψ

  N := D N f = W (φ 1 , . . . , φ N , f ) W (φ 1 , . . . , φ N )ProofWe prove this by induction on N . For N = 1 it's the previous theorem. Let assume thatψ N -1 = W (φ 1 , . . . , φ N -1 , f ) W (φ 1 , . . . , φ N -1) .Thenφ[N ] = W (φ 1 , . . . , φ N -1 , φ N ) W (φ 1 , . . . , φ N -1 )is a solution of the equation satisfied by ψ N -1 . If we denote by σ[N ] the logarithmic derivative of φ[N ] then ψ N = ψ N -1σ[N ]ψ N -1 .

u n- 2

 2 [N ] = u n-2 +nu n N m=1 σ[m] = u n-2 +nu n ∂ 2x log(W (φ 1 , . . . , φ N )).

Remerciements

Substituting [START_REF] Johnson | Water waves and Korteweg-de-Vries equations[END_REF] into [START_REF] Ankiewicz | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF] we obtain the formulas u = -2∂ x ξ 1

The real part of ( 21) combined with the reality of ξ 1 yields

Therefore

Since res

Comparing the behaviors when |x| → ∞ in this identity, we get A(t) = -2nB 2 which completes the proof of the crucial relation [START_REF] Eleonskii | Rational multisoliton solutions to the NLS equation, Soviet Doklady 1986 sect[END_REF]. Now, we can use the remark in [START_REF] Its | Exact integration of nonlinear Schrödinger equation[END_REF] that any meromorphic solution of the focusing NLS equation can't have real poles x j (t). [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF] In this subsection we denote by F n the set 

Further remarks on condition