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Abstract

The study of rogue waves is a booming topic mainly in oceanography but
also in other fields. In this thesis I construct via Darboux transform a
multi-parametric family of smooth quasi-rational solutions of the nonlinear
Schödinger equation that present a behavior of rogue waves. For a general
choice of parameters the second-order solutions give a model of "three sis-
ters" (three higher than expected waves in a row) while for a particular choice
of parameters we obtain the solutions given by Akhmediev et al. in a serie
of articles in 2009. Then these solutions allow me to construct rational solu-
tions of the KP-I equation that describe waves in shallow water.

Key-words : rogue waves, three sisters, NLS equation, KP-I equation, ra-
tional solutions, Darboux transform.





Résumé

L’étude des ondes scélérates est un sujet en plein essor principalement en
océanographie mais également dans d’autres domaines. Dans cette thèse, je
construit par transformation de Darboux une famille multi-paramétrique de
solutions quasi-rationnelles lisses de l’équation de Schödinger non linéaire
qui présentent un comportement d’ondes scélérates. Pour un choix générique
de paramètres les solutions de deuxième ordre donnent un modèle de "trois
sœurs" (une succession de trois vagues plus hautes que prévues) alors que
pour un choix particulier de paramètres on obtient les solutions présentées
par Akhmediev et al. dans une série d’articles de 2009. Ces solutions me per-
mettent ensuite de construire des solutions rationnelles de l’équation KP-I
qui décrit le mouvement des vagues dans une eau peu profonde.

Mots-clés : ondes scélérates, trois sœurs, équation NLS, équation KPI, so-
lutions rationnelles, transformation de Darboux.
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1 Introduction

1.1 Notion of rogue waves in oceanography and other
fields

Sailing is and always has been a dangerous activity because sea

is an unpredictable element. For example here is how Philippe

Lijour, first mate of the oil tanker Esso Languedoc describes the

wave that hit the ship near Durban in South Africa in 1980 :

We were in a storm and the tanker was running before the sea.

This amazing wave came from the aft and broke over the deck.

I didn’t see it until it was alongside the vessel but it was special,

much bigger than the others. It took us by surprise. I never saw

one again.

Another surprising and devastating phenomenon that can oc-

cur is the so called "Three sisters" wave. It consists of one huge

wave followed by two others. All these waves have the partic-

ularity to be unexpectedly high and to appear suddenly before

disappearing as suddenly. They are called rogue or freak. Tes-

timonies and a list of occurrences can be found at [27]. Some

descriptions are available in [22, 23].

For a long time, sailors who survived rogue waves and told their

stories weren’t taken seriously. Nowadays, even if some losses of

ships can be blamed on rogue waves when a human mistake is in

fact the cause of the sinking, it makes no doubt that rogue waves

are a reality. Lots of pictures are available on the Internet. A

Google Image search for "rogue waves" returns over three mil-

lions hits including pictures in Figure 1.

But these pictures can’t be the basis of scientific works. To be
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able to analyze and produce modelings of rogue waves we need of-

ficial measurement by instruments. A good source for such record-

ings is oil platforms. For example Figure 2 shows the New Year

wave that hit the Draupner platform in 1995 in the North sea.

After that, the study of rogue waves took off.

The researches on rogue waves are very active. Several mech-

anisms are believed to be possible sources of appearance of rogue

waves. We can cite

• Interaction with a current : Waves from one current are

driven into a current of opposing direction. The wave train

compresses into a rogue wave. For example in the Indian

ocean the Agulhas current goes against the westerlies.

• Spatial focusing : Small waves coming from different direc-

tions (open sea, refraction from coast, etc.) interfere and

energy concentration happens.

• Spatio-temporal focusing : Waves with a large group velocity

overtake waves with a smaller group velocity located in front

of them and a unexpectedly big wave is produced.

• Nonlinear focusing : A wave concentrates the energy from

other smaller waves and becomes huge and unstable before

collapsing.

This list is not exhaustive and we could add the effects of the

wind or of the Benjamin-Feir instability. Current "state of art"

is well reflected in the volume [6] and several books especially [23].

As we pointed out, the classification of rogue waves doesn’t

depend as much on the height of the wave than its singularity

with respect to other waves. To define rogue waves properly, we

need parameters to describe the waves and the sea. First, the
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height of a wave Hw is defined as the larger distance between the

top of the considered crest and the bottom of the troughs before

and after. Then, we can define the significant wave height Hs

of the sea as the average waves height over the higher third of

the waves in a given time interval, usually between ten and thirty

minutes. The considered wave is classified as rogue if

Hw

Hs

> 2

Even if this is the standard definition of rogue waves it’s not com-

pletely satisfactory. First it doesn’t cover every occurrence of what

we would like to call a rogue wave. For example the three sisters

wave that hit the Louis Majesty in March 2010 in the Mediter-

ranean didn’t satisfy this criterion but killed two persons. Second

it doesn’t take into account what many specialists consider as a

fundamental property of rogue waves : a short lifetime.

If rogue waves are especially studied in oceanography, they have

recently appeared in other fields like non-linear optics [14, 36, 40],

matter physics [11], physics of fluids [19] and even in financial

markets [17, 41].
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Figure 1: Some pictures of rogue waves
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Figure 2: The Draupner wave
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1.2 Deep water model : the NLS equation

The simplest model for deep water is the focusing non-linear Schrödinger

equation. It was obtained in 1968 by Zakharov in [42] and it reads

irt + rxx + 2|r|2r = 0. (1)

Let denote by σ1, σ2, σ3, σ+, σ− the Pauli matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)

σ+ :=

(
0 1
0 0

)
, σ− :=

(
0 0
1 0

)
.

Let define U := U0 + λU1 and V := V0 + λV1 + λ2V2 where Ui

and Vj satisfy

U0 := i(rσ+ + rσ−),
U1 := 1

2σ3,

V0 := −i|r|2σ3 + (rxσ+ − rxσ−),
V1 := −iU0,

V2 := −iU1.

Using these two matrices U and V we can write a zero curvature

representation for the NLS equation. Equation (1) is equivalent

to

Ut − Vx + (UV − V U) = 0. (2)

Equation (2) can be seen as the compatibility condition for the

following overdetermined system of vectorial equations
{
Fx = UF

Ft = V F
(3)

Here F is a two-components vector function

F :=

(
f1
f2

)
.

The following theorem can be found in [34]
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Theorem 1. If F =

(
f1
f2

)
is a solution of (3) for a real λ and

matrices U (0) and V (0) constructed from a solution r0 of (1) then

r1 defined by

r1 := r0 + 2iλ
f2f1

|f1|2 + |f2|2
is also a solution of (1).

For example, if we set r0 := e2it then f1 and f2 defined by

f1 := −i
(√

2x+
√
2
2 − 2i

√
2t
)
e−it,

f2 :=
(√

2x−
√
2
2 − 2i

√
2t
)
eit

give a solution of (3) for λ = 2. If we compute r1 given in the

previous theorem we get back, up to a sign, the famous Peregrine

solution obtained in [39] which is the first example of non-trivial

quasi-rational solution of NLS. Theorem 1 can be used recursively.

Once we obtain a new solution r1 we are theoretically able to solve

the associated system (3) with new matrices U (1) and V (1). Then

we can generalize it by a determinant formula (see [34]) or we can

use iterative application of this theorem "by hand" as Akhmediev

et al. did in their articles [2, 3, 8]. In these works the machinery of

Darboux transformations was used to obtain some very remark-

able but isolated solutions having a rogue waves behavior. In

Section 2 we present a multi-parametric class of solutions showing

the existence of multiple Peregrine breather. Solutions in [2] can

be obtained back from those with the right choice of parameters.

This method allows us obtain other solutions of NLS that are

not quasi-rational. For example, from the same r0 than previously

and by solving the system for λ < 2 we can obtain a rational frac-

tion in sinh(ωt) cos(ωx), cosh(ωt) cos(ωx), sinh(ωt) sin(ωx) and
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cosh(ωt) sin(ωx) multiplied by an exponential. It’s the kind of

solutions presented in [4] where the second order rational solu-

tions were written down for the first time. It was then obtained

by taking the rational limit of these "trigonometric-hyperbolic"

solutions often called Akhmediev breather.

Darboux transform is not the only possible approach to con-

struct solutions of NLS. Its integrability by the inverse scattering

method was proved in the famous work [43] by Zakharov and

Shabat in 1971. A review of this topic and the Riemann-Hilbert

problem approach can be found in [16, 30]. It allowed to con-

struct multi-soliton solutions. An another successful technics to

obtain solutions of NLS is the algebro-geometric approach where

solutions are expressed in terms of Riemann theta-functions of

algebraic curves. Exact formulas are given in [10, 29].

1.3 Shallow water model : the KdV and the KP equa-
tions

In [25], Korteweg and de Vries derived the KdV equation to rep-

resent the traveling of a wave in a channel of shallow water

ut + 6uux + uxxx = 0. (4)

This equation can be seen at the compatibility condition of the

following system
{
λψ = −ψxx − uψ

ψt = −4ψxxx − 6uψx − 3uxψ
(5)

In [21], Kadomtsev and Petviashvili wrote down a 2+1 gener-

alization of this equation the so-called KP equation

(ut + 6uux + uxxx)x = −3α2uyy. (6)
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Once again, we can associate to this equation a system of linear

differential equations

{
αψy = −ψxx − uψ

ψt = −4ψxxx − 6uψx − 3(ux − αv)ψ
(7)

where v satisfies vx = uy. If α = i (resp. α = 1) the equation

is called KP-I (resp. KP-II). The KP-I model describes waves in

a very shallow water when surface tension is strong and KP-II is

used for the case of weak surface tension. From now we restrict

ourselves to the case α = i.

As in the case of NLS, these systems allow us to construct new

solutions of (4) and (6) from simpler ones with the help of the

following theorem

Theorem 2. Let u be a solution of (4) (resp. (6)) and let ψ and

ψ1 two solutions of (5) (resp. (7)) for this u for different λ. Let

denote by σ := ∂x logψ1. Then ũ defined by

ũ := u+ 2∂xσ

is also a solution of (4) (resp. (6)) and a solution of the associated

system is given by

ψ̃ := ψx − σψ.

This theorem can easily be generalized in the following way

Theorem 3. Let u be a solution of (4) (resp. (6)) and let ψ, ψ1, . . . , ψn

be solutions of (5) (resp. (7)) for this u. Then ũ defined by

ũ := u+ 2∂2x logW (ψ1, . . . , ψn)
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is also a solution of (4) (resp. (6)) and a solution of the associated

system is given by

ψ̃ :=
W (ψ1, . . . , ψn, ψ)

W (ψ1, . . . , ψn)
.

Here W (g1, . . . , gn) denotes the Wronski determinant of func-

tions g1, . . . , gn with respect to x i.e. the determinant of the ma-

trix A with entries

Aij := ∂i−1
x gj.

A proof of this theorem can be found in [31]. In Section 4 we

will show that it allows to generate a family of smooth real rational

solutions of the KP-I equation from the quasi-rational solutions

of the focusing NLS equation.

KdV is one of the most, if not the most, studied equation in the

literature. It’s the first equation where soliton solutions have been

found and the first equation that have been successfully integrated

via the inverse scattering method. After that, it was found that

other equations admit similar results including KP. Different axis

of development emerged in the study of these two solitons equa-

tions like construction of algebro-geometric solutions [10], study

of solitons and rational solutions [1, 12, 26, 33, 37, 38] or theory

of Darboux transforms [28, 31, 34, 35].
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2 Construction of solutions

2.1 Darboux transform for the non-stationary Schrödinger
equation

Let consider the 1+1 non-stationary Schrödinger equation with

potential u(x, t)

iψt + ψxx + u(x, t)ψ = 0. (8)

As stated in [34], this equation satisfies the following remark-

able property

Theorem 4. If f1, . . . , fn, f are solutions of (8) for a base poten-

tial u0(x, t) then

ψ :=
W (f1, . . . , fn, f)

W (f1, . . . , fn)

is also a solution of (8) for the potential

u(x, t) := u0(x, t) + 2∂2x logW (f1, . . . , fn).

All these Darboux transform theorems are particular cases of

a more general covariance theorem for several integrable systems

obtained by Matveev.For completeness this theorem is presented

in appendix A. Its use with a base potential u0(x, t) := 0 already

gives us interesting solutions.

Let q2n(k) be the polynomial defined by

q2n(k) :=
n∏

j=1

(
k2 − ω2mj+1 + 1

ω2mj+1 − 1
B2

)
, ω := exp

(
iπ

2n+ 1

)

(9)
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where B is a free real parameter and mj are integers satisfying

0 ≤ mj ≤ 2n− 1, ml 6= 2n−mj (10)

for all l and j. Then, for any k,

f(k, x, t) :=
exp(kx+ ik2t+ Φ(k))

q2n(k)
(11)

where Φ(k) is of the form

Φ(k) := i

2n∑

l=1

ϕl(ik)
l, ϕj ∈ R, (12)

is a solution of (8) with u0 = 0. We can construct other solutions

by applying a differential operator in k to f or by evaluating in

different values of k. For example, let fj be defined by

fj(x, t) := D
2j−1
k f(k, x, t) |k=B , j = 1 . . . , n, (13)

fn+j(x, t) := D
2j−1
k f(k, x, t) |k=−B , j = 1 . . . , n (14)

where

Dk :=
k2

k2 +B2
∂k.

According to the previous theorem

ψ(x, t, k) =
W (f1, . . . , f2n, f)

W (f1, . . . , f2n)

is a solution of (8) for the potential u(x, t) = 2∂2x logW (f1, . . . , f2n).
Furthermore, for any constant C, sC defined by

sC(x, t) := Cψ(x, t, 0)

is a rational solution of the non-stationary Schrödinger equation

for the potential u(x, t).
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2.2 Reduction to the NLS equation

Let assume that, for a conveniently chosen C, the solution sC
satisfies

u(x, t) = 2
(
|sC(x, t)|2 − B2

)
. (15)

Then sC , now denoted by s, is a rational solution of the mod-

ified non-linear Schrödinger equation

ist + sxx + 2(|s|2 − B2)s = 0. (16)

From there, we can easily construct a non-singular quasi-rational

solution of (1) given by the formula

r(x, t) := s(x, t)e2iB
2t.

Theorem 5. If C = ±q2n(0)B1−2n then s is a smooth rational

solution of (16).

2.3 Proof of the reduction relation

The proof presented here is a modified and simplified version of the

article [15] written by Eleonskii, Krichever and Kulagin . It con-

sists in a residue analysis of a couple of meromorphic differentials

constructed from the dual Baker-Akhiezer function introduced by

Cherednik in [13]. Before tackling the proof of Theorem 5 itself,

we need an easy algebraic lemma.

Lemma 6. The polynomial q2n defined by (9) satisfies

2k2q2n(k)q2n(−k) = (k2 + B2)2n+1 + (k2 − B2)2n+1. (17)
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Proof
w satisfies

w2m+1 = w4n+2−2m−1 = w2(2n−m)+1

which leads to

2k2q2n(k)q2n(−k) = 2k2
n∏

j=1

(
k2 − ω2mj+1 + 1

ω2mj+1 − 1
B2

) n∏

j=1

(
k2 − ω2(2n−mj)+1 + 1

ω2(2n−mj)+1 − 1
B2

)

= 2
2n+1∏

l=1

(
k2 − ω2l+1 + 1

ω2l+1 − 1
B2

)
.

The roots of (X +B2)2n+1 + (X − B2)2n+1 satisfy

(
xl +B2

xl − B2

)2n+1

= w2n+1, l = 1, . . . , 2n+ 1

which yields (
xl +B2

xl − B2

)
= w2l+1

or equivalently

xl =
w2l+1 + 1

w2l+1 − 1
B2.

Hence

(k2+B2)2n+1+(k2−B2)2n+1 = 2
2n+1∏

l=1

(
k2 − ω2l+1 + 1

ω2l+1 − 1
B2

)
= 2k2q2n(k)q2n(−k)

Let dΩ be the meromorphic differential defined by

dΩ :=
q2n(k)q2n(−k)
(k2 − B2)2n

dk.

Taking into account the previous lemma, we can re-write
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dΩ =
(k2 + B2)2n+1 + (k2 − B2)2n+1

2k2(k2 − B2)2n
dk.

In the neighborhoods of each of the points k = ±B, we use

two local parameters:

E(k) := k +
B2

k
, z(k) = k − B2

k

satisfying the relation E2 = z2 + 4B2. It yields

dΩ =

(
E2n+1

z2n+1
+ 1

)
dE

2
.

or equivalently:

dΩ =

(
(z2 + 4B2)n

z2n
+

z

2B

(
1 +

z2

4B2

)− 1

2

)
dz

2
.

This leads to the following asymptotic expansion when z → 0
for dΩ, near the points k = ±B:

dΩ =

(
α±
0

z2n
+

α±
1

z2n−2
+ . . .+

α±
n−1

z2
+O(1)

)
dz (18)

It is clear that Dk = ∂z and the derivatives of ψ with respect

to z are given by

∂mz ψ =
W (f1, . . . , f2n, D

m
k f)

W (f1, . . . , f2n)

which gives us

∂2j−1
z ψ|k=±B = 0 j = 1, . . . , n.

Therefore an expansion of ψ in the neighborhood of k = ±B
when z → 0 has the form:

ψ = β±
0 + β±

1 z
2 + . . .+ β±

n−1z
2n−2 +O(z2n). (19)
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Equations (12), (18) and (19) guarantee that dΩ1 and dΩ2

defined by the formulas

dΩ1 := ψ(x, t, k)ψ(x, t,−k) dΩ

and

dΩ2 := (k +
B2

k
) dΩ1

are meromorphic differentials with vanishing residues in B and

−B. If we consider these differentials defined on the compact

sphere CP 1 then the sum of residues equals 0 hence

res∞ dΩ1 = 0

and

res0 dΩ2 = −res∞ dΩ2.

When k belongs to a neighborhood of ∞, ψ and dΩ admit the

following expansions:

ψ(x, t, k) =

(
1 +

ξ1(x, t)

k
+
ξ2(x, t)

k2
+ . . .

)
ekx+ik2t+φ(k), (20)

dΩ =

(
1 +

2nB2

k2
+ . . .

)
dk

such that

dΩ1 =

(
1 +

ξ1 − ξ1

k
+
ξ2 + ξ2 − |ξ1|2 + 2nB2

k2
+ . . .

)
dk.

From these expansions we easily see that

res∞ dΩ1 = ξ1 − ξ1

which means that ξ1 is real and

−res∞ dΩ2 = ξ2 + ξ2 − ξ21 + (2n+ 1)B2.
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Substituting (20) into (8) we obtain the formulas

u = −2∂xξ1

and

i∂tξ1 + 2∂xξ2 + ∂2xξ1 − 2∂xξ1ξ1 = 0. (21)

The real part of (21) combined with the reality of ξ1 yields

∂x

(
ξ2 + ξ2 −

u

2
− ξ21

)
= 0

or, equivalently,

ξ2 + ξ2 − ξ21 =
u

2
+ A(t).

Therefore

−res∞ dΩ2 =
u

2
+ A(t) + (2n+ 1)B2.

Since res0 dΩ2 = B2|ψ(x, t, 0)|2|q2n(0)|2B−4n = |s(x, t)|2, we

have
u

2
+ A(t) + (2n+ 1)B2 = |s(x, t)|2.

Comparing the behaviors when |x| → ∞ in this identity, we get

A(t) = −2nB2 which completes the proof of the crucial relation

(15). Now, we can use the remark in [29] that any meromorphic

solution of the focusing NLS equation can’t have real poles xj(t).

2.4 Further remarks on condition (10)

In this subsection we denote by Fn the set

Fn := {{m1 < · · · < mn} ⊂ {0, . . . , 2n− 1} , ∀i, j, mi +mj 6= 2n} ,
by φn the bijection

φn : {1, . . . , 2n− 1} −→ {1, . . . , 2n− 1}
m 7−→ 2n−m

and by φ̃n its restriction to {2, . . . , 2n− 2}.
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Lemma 7. If {m1 < · · · < mn} ∈ Fn then m1 = 0 and either

m2 = 1 or mn = 2n− 1.

Proof
Let assumem1 > 0. Then {m1, . . . ,mn} and {φn(m1), . . . , φn(mn)}
are disjoint hence their union is a subset of {1, . . . , 2n− 1} of car-

dinality 2n which is absurd.

Now let assumem2 > 1 andmn < 2n−1. Then {m2, . . . ,mn} and{
φ̃n(m2), . . . , φ̃n(mn)

}
are disjoint hence their union is a subset of

{2, . . . , 2n− 2} of cardinality 2n− 2 which is absurd. We can re-

mark that we can’t have m2 = 1 and mn = 2n−1 simultaneously.

Proposition 8. ψ defined by

ψ : {1, 2n+ 1} × Fn −→ Fn+1

(m, {0,m2, . . . ,mn}) 7−→ {0,m2 + 1, . . . ,mn + 1,m}

is a bijection.

Proof
Let assume that (m, {0,m2, . . . ,mn}) and (M, {0,M2, . . . ,Mn})
have the same image by ψ. If m 6=M then 1 and 2n+1 are both

in the set which is impossible. Then m =M and it’s straightfor-

ward that mi =Mi.

Let {0 < p2 < · · · < pn+1} be an element of Fn+1. If p2 = 1 then

it’s the image of (1, {0, p2 − 1, . . . , pn+1 − 1}) otherwise it’s the

image of (2n+ 1, {0, p2 − 1, . . . , pn − 1}).

Corollary 9. card (Fn) = 2n−1

Proof
Proposition 8 yields card (Fn+1) = 2 card (Fn) and card (F1) = 1
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In the rest of this thesis, we set mj = j − 1.

3 Analysis of these solutions

These solutions apparently depend on 2n+1 parameters but only

2n − 2 of them are important. B is the well-known re-scaling

parameter. If s(x, t) is a solution then

s̃(x, t) := Bs(Bx,B2t)

is also a solution. Then, we can set B = 1 without loss of general-

ity. Using phases ϕ1 and ϕ2 means replacing x and t with (x−ϕ1)
and (t−ϕ2) which is irrelevant for the derivatives. ϕ1 and ϕ2 are

just translation parameters that don’t change the profile of the

solution.

3.1 Case n=1

Here, we obtain essentially one solution, the Peregrine solution

given which reads

s(x, t) =
−3 + 4x2 + 16t2 − 16it

1 + 4x2 + 16t2

for ϕ1 = 0 and ϕ2 =
√
3
4 . A plot is given in Figure 3.

The computation of the first derivatives gives us

∂x(|s|2) = 64x(−4x2+48t2+3
(1+4x2+16t2)3

∂t(|s|2) = 256t(−12x2+16t2+1
(1+4x2+16t2)3

which leads to three critical points in (0, 0),(
√
3
2 , 0) and (−

√
3
2 , 0).

A study of the Hessian matrix in these points shows that (0, 0)
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is a local maximum where |s| = 3 and the other two are local

minima where s = 0.

Now, we will study the energy of this solution. Of course, as

the base level is 1, the energy in its strict meaning is infinite.

But we can adapt the definition of energy to obtain two integral

relations : ∫ +∞

−∞

(
|s(x, t|2 − 1

)
dx = 0 (22)

and ∫ +∞

−∞

(
|s(x, t)− 1|2

)
dx =

4π√
1 + 16t2

(23)

The first relation shows that the excitation below the surface

compensate exactly the excitation above, and that at every mo-

ment of time. The second is the first of a list of moments that can

be obtained by integration by parts.

3.2 Case n=2

The solutions obtained here depend on two parameters ϕ3 and ϕ4.

For convenience, we choose

ϕ1 := 3ϕ3, ϕ2 := 2ϕ4 +
3 +

√
5

16

√
10− 2

√
5.

We obtain

s(x, t) =

(
1− 12

G(2x, 4t) + iH(2x, 4t)

Q(2x, 4t)

)
(24)

where

G(x, t) := x4 + 6g2(t)x
2 + 2βx+ g0(t)

H(x, t) := tx4 + 2h2(t)x
2 + 2βtx+ h0(t)

Q(x, t) := x6 + 3g2(t)x
4 − 2βx3 + 3q2(t)x

2 + 6βg2(t)x+ q0(t)
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Figure 3: The Peregrine solution
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with

g2(t) := t2 + 1
g0(t) := 5t4 + 18t2 − 4αt− 3
h2(t) := t3 − 3t+ α

h0(t) := t5 + 2t3 − 2αt2 − 15t+ 2α
q2(t) := t4 − 6t2 + 4αt+ 9
q0(t) := t6 + 27t4 − 4αt3 + 99t2 − 36αt+ β2 + 4α2 + 9

In these formulas parameters α and β are given by

α := (5 +
√
5)

√
10− 2

√
5− 96ϕ4, β := 96ϕ3.

Figures 4 to 6 show this solution for different value of ϕ3 and ϕ4.

We can remark that the profile shown in Figure 6 is different of the

other two. The system of three peaks of similar height is replaced

by one giant peak surrounded by four peaks of smaller amplitude.

In this case the solution (24) is the second order solution obtained

by Akhmediev et al. in [2].
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Figure 4: ϕ3 = 0 and ϕ4 = 0
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Figure 5: ϕ3 = 1 and ϕ4 =
5+

√

5
96

√
10− 2

√
5
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Figure 6: ϕ3 = 0 and ϕ4 =
5+

√

5
96

√
10− 2

√
5
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3.3 Higher order solutions

In this subsection conjectures about solutions obtained for n > 2
are presented. We have to work from plots of solutions. Two of

them can be found in figures 7 and 8. It represents third and

fourth order solutions when all phases are equal to zero. It’s be-

lieved to be the general profile. The solutions seem to have in gen-

eral n(n+1)
2 maxima of comparable amplitude and n(n+1) minima.

But once again for exceptional solutions we should observe the

appearance of a "super-peak" surrounded by n(n + 1)− 2 peaks

of significantly smaller amplitudes.
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Figure 7: Solution of order 3 with all phases equal to 0



4 SOLUTIONS OF THE KP-I AND THE CKP EQUATIONS 32

Figure 8: Solution of order 4 with all phases equal to 0

4 Solutions of the KP-I and the CKP equations

4.1 Solutions of the KP-I equation

With this family of multi-parametric solutions of NLS we can

associate a family of solutions of the KP-I equation. If we replace
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t with y and ϕ3 with −4t then f defined by (11) satisfy
{
ify = −fxx
ft = −4fxxx

and so do the functions fj defined by (13) and (14).

Theorem 10. u(x, y, t) := 2
(
|s|2 − B2

)
is a smooth real solution

of KP-I that satisfies

∀ t u(x, y, t) −→ 0 when x2 + y2 −→ +∞

and

∀ y, t
∫ +∞

−∞
u(x, y, t) dx = 0.

Proof
The fact that u is a solution comes from Theorem 3 and condi-

tion (15). The integral relation is derived from the Wronskian

representation

u(x, y, t) = 2∂2x logW (f1, . . . , f2n).

It means that relation (22) holds for every solution of NLS con-

structed in Section 2.

These solutions are clusters of peaks traveling to infinity, pos-

sibly on a line. Two series of plots for different values of ϕ4 are

presented in figures 9 and 10. We set ϕ1 = ϕ2 = 0.
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Figure 9: Solution of KP-I with ϕ4 = 0
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Figure 10: Solution of KP-I with ϕ4 =
5+

√

5
96

√
10− 2

√
5
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4.2 Solutions of the Johnson equation

In [20] the author introduces a two dimensional generalization

of the cylindrical KdV equation called the Johnson equation (or

cylindrical KP equation) that reads

(
vt + vxxx + 6vvx +

v

2t

)
x
=

3vyy
t2

. (25)

As stated in [24], the Johnson equation is closely related to the

KP-I equation.

Proposition 11. If u is a solution of (6) then v defined by

v(x, y, t) := u(x+
y2t

12
, yt, t)

is a solution of (25).

We can use this change of variables to construct solutions of

(25) from the solutions of KP-I presented above. Some of these

solutions are represented in figures 11 and 12 for different values of

ϕ4 and ϕ1 = ϕ2 = 0. We can remark that this time the influence

of ϕ2 on these solutions is more complicated than a translation.
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Figure 11: Solution of CKP with ϕ4 = 0
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Figure 12: Solution of CKP with ϕ4 =
5+

√

5
96

√
10− 2

√
5



5 CONCLUSION AND OPEN QUESTIONS 39

5 Conclusion and open questions

The solutions presented here were obtained for the first time in the

article [15] by Eleonskii, Krichever and Kulagin in 1986 up to some

inaccuracies. Surprisingly this work has been overlooked in the

integrable systems community and the rogue waves community

until now. I’m inclined to believe that the work presented here

have several advantages over the original exposition :

• The quasi-rational solutions of the NLS equation are de-

scribed in a simpler and more elegant way using Wronski

determinants.

• Using a Darboux transformation approach for the non-stationary

Schrödinger equation gives a simplified version of the proof.

• It also allows us to construct for "free" a large family of real

non-singular rational localized solution of the KP-I equation

which might be associated with shallow water rogue waves.

• Maybe more than everything else it contains a qualitative

study of these solutions making their multi-rogue waves be-

havior obvious.

• Finally the approach used here can be extended to many

other equations of physical interest, for example the vectorial

NLS equation. This work is in progress.

Nonetheless, several questions stay open.

First, a better understanding of the location and the dynamics

of peaks and holes would be interesting. It would also provide a

better understanding of the propagation of the peaks of the asso-

ciated solution of KP-I.
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Then, we can tackle the problem of higher values of n. If, the-

oretically, the same scheme can be applied for solutions obtained

with n ≥ 3, the amount of calculations would be overwhelming

and the results not very satisfactory in the long term. To obtain

similar results for generic n, we need to work from the Wronskian

formula. Maybe, a re-writing of this formula in terms of theta

functions or Fredholm determinants would help. See [10, 18, 29]

for more information.

We can also wonder about the generality of these solutions.

Can we choose the different parameters in the definition of fj
more generally and still obtain rational solutions with a system of

peaks ? What is the position of these solutions among all rational

solutions of NLS ?

Finally, other well-known equations admit rogue rational solu-

tions. For example, some special rational solutions of the Hirota

equation having the behavior of higher order Peregrine breathers

were obtained in [9]. It could be interesting to use the same

method as here to obtain the more general family of rational so-

lutions.
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A Covariance theorem

In this section the subscript denotes the derivative with respect to

the evolution variable z and the prime or power notation is used

for the derivative with respect to x.

Theorem 12. Let f be a solution of

fz =
n∑

m=0

um(x, z)f
(m) (26)

and let denote by φ another solution of (26) and σ = φ′

φ
. Then ψ

defined by

ψ = (∂x − σ)f (27)

satisfies

ψz =
n∑

m=0

ũm(x, z)ψ
(m) (28)

where ũm are defined by

ũn = un,

ũm =
n∑

k=m+1

k∑

j=m+1

C
j
kC

m
j−1

[
(u′k − σuk)φ

(k−j) + ukφ
(k−j+1)

] (
φ−1
)(j−1−m)

+
n∑

k=m

k∑

j=m

C
j
kC

m
j ukφ

(k−j)
(
φ−1
)(j−m)

0 ≤ m ≤ n− 1.

Proof
Considering (27) as a differential equation for f we can write

f = φ

∫ x

x0

φ−1(τ, z)ψ(τ, z) dτ. (29)

Substituting (29) in equation (26) we get

φz

∫ x

x0

φ−1ψ dτ+φ

∫ x

x0

(φ−1ψ)z dτ =
n∑

k=0

uk

k∑

j=0

C
j
kφ

(k−j)

(∫ x

x0

φ−1ψ dτ

)(j)

.
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As φ is solution of (26) the terms for j = 0 in the right-hand

side of the last equation cancels out the term φz
∫ x

x0

φ−1ψ dτ in

the left-hand side. Hence

φ

∫ x

x0

(φ−1ψ)z dτ =
n∑

k=1

uk

k∑

j=1

C
j
kφ

(k−j)
(
φ−1ψ

)(j−1)
. (30)

Multiplying both sides of this relation by φ−1 and differentiating

by x we get the following formula :

(φ−1ψ)z =

(
φ−1

n∑

k=1

uk

k∑

j=1

C
j
kφ

(k−j)(φ−1ψ)(j−1)

)

x

. (31)

We can easily check that (31) yields, up to a factor φ−1, equation

(28) with the ũm defined in theorem 12.

This result can be generalized in the case of a matricial equation

(see [32]). It can also be used iteratively. In this case the formula

is simpler than expected.

Theorem 13. Let φ1, . . . , φN be linearly independent solutions

of (26). The result of a N -step Darboux transformation applied

to f is given by

ψN := DNf =
W (φ1, . . . , φN , f)

W (φ1, . . . , φN)

Proof
We prove this by induction on N . For N = 1 it’s the previous

theorem. Let assume that

ψN−1 =
W (φ1, . . . , φN−1, f)

W (φ1, . . . , φN−1)
.

Then

φ[N ] =
W (φ1, . . . , φN−1, φN)

W (φ1, . . . , φN−1)
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is a solution of the equation satisfied by ψN−1. If we denote by

σ[N ] the logarithmic derivative of φ[N ] then

ψN = ψ′
N−1 − σ[N ]ψN−1.

DN is a differential operator of order N of the form

DN = ∂Nx +
N−1∑

m=0

am∂
m
x (32)

such thatDNf = 0 when f = φi. The coefficients am are solutions

of a system ofN equations and can be written down with Cramer’s

formula. Then we can see that the right-hand side of (32) is the

development along the last column of

W (φ1, . . . , φN , .)

W (φ1, . . . , φN)
.

We can also generalize the formulas for the coefficients of the

equation. For example

un−2[N ] = un−2+nun

N∑

m=1

σ[m]′ = un−2+nun∂
2
x log(W (φ1, . . . , φN)).
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B Maple code for plots

Here an example of the code used to produce the plots. This cor-

responds to Figure 4.
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