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ABSTRACT

This Habilitation Thesis manuscript presents main resultsobtained during my research
activities carried out as Assistant Professor at Université Paris-Sud since 2005. At the
beginning of this period theeXtensible Markup Language(XML) was already recog-
nized as thede factostandard for representing semi-structured data. Also, XMLac-
quired an important role in data exchange and data integration systems. During this
period my research interests were in the intersection of database and programming
languages, and focused on the use of type-based static analysis to ensure safe and
efficient XML processing. In more detail, I focused on three research directions: i)
type-projection for efficient main-memory XML processing,ii) checking correctness of
schema-to-schema XML mappings in the context of data integration systems, and iii)
efficient algorithms to check XML schema inclusion (a crucial property to type-check
XML queries and updates). This Habilitation Thesis presents motivations, techniques
and results obtained along these lines of research.

RÉSUMÉ

Ce manuscrit d’Habilitation à Diriger des Recherches présente des résultats que j’ai
obtenus dans le cadre d’activités de recherche menées depuis 2005 en tant que Maître de
Conférences à l’Université Paris-Sud XI. Au début de cette période XML ( eXtensible
Markup Language) était déjà reconnus comme le standard pour la représentation de
données semi structurées. En même temps, XML c’est aussi affirmé comme format
de representation dans le contexte de l’intégration et l’échange de données. Pendant
cette période mes intérêts de recherche se sont situés à la confluence des langages des
bases de données et langages de programmation, et se sont focalisé sur l’utilisation des
systèmes de types pour assurer la sureté et optimisation desprogrammes manipulant
les données XML. Plus en détails, je me suis principalement intéressé à trois axes de
recherche: i) optimisation de requêtes et mise à jours XML via la projection de données,
ii) vérification de la correction desmappingsentre deux schémas XML, iii) algorithmes
efficaces pour la vérification d’inclusion entre schémas XML(une propriété qui est
à la base des systèmes de types pour requêtes et mises à jour XML). Ce manuscrit
d’Habilitation à Diriger des Recherches est consacré à ces trois axes de recherche, et
présente le contexte, les motivations et résultats obtenuspour chacun des axes.
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CHAPTER

1
INTRODUCTION

The last decade has seen the rapid expansion of theeXtensible Markup Languagein many appli-
cation fields. Born as the successor of SGML, XML soon became the natural way of representing
data with loose structure; furthermore, its great flexibility made it a universal data representation
format, and allowed the use of XML as a convenient medium for exchanging data between different
applications. Finally, XML also acquired an important rolein data exchange and data integration
systems.

To support the diffusion of XML, several tools for transforming, querying, manipulating, and
modeling XML data have been defined. In particular, theWorld Wide Web Consortium(W3C)
introduced XQuery [XQub] as the standard query language for XML data.

Since its introduction, XQuery has attracted a big deal of attention, from both industrial and
academic worlds. The research community has been involved in many research directions such as
complexity and expressivity analysis of XQuery fragments,techniques to optimize query evaluation,
security, static analysis, and data integration.

Many of the techniques devised in these research lines involve or rely on the use of schema
information. The W3C defined two schema languages for XML data: DTD [BPC+06] and XML
Schema [TBMM04, BM04]. While the first one comes from the document community as a language
to constrain the format of SGML documents, the second one is closer to the spirit of relational/object
DBMSs and general programming languages type systems. In terms of regular tree grammars, DTDs
correspond to local tree grammars, while XML Schemas correspond to the more expressive class of
single type tree grammars [MLMK05].

Schemas allow one to represent both the structure and the constraints of the data being pro-
cessed. Schemas, hence, play a key role in many XML database tasks, such as query optimization
[ABS99, FYL+09, FS98, BCF+02, BC09, BCCN06], data integration and exchange [BZH11, FB08,
BCF+02, CS09], and development of safe database applications [Che08a, CGMS06, DZLM04, PV,
SV02, AMN+01, PV00].

This thesis reports on main results I obtained during my research activity in the last years, after
I obtained my PhD degree. During this period I focused on three research directions, respectively
related to the three above mentioned tasks, and all relying on schema-based analysis, namely: i) ef-
ficient in-memory XML processing, ii) checking correctnessof schema-to-schema XML mappings,
and ii) efficient algorithms to check XML schema inclusion (acrucial operation to type-check XML
queries and updates).

The following three sections describe the context and results concerning these three research
lines; each section indicates the chapter presenting described results. A fourth section contains
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details about other works. This introductory chapter ends with a list of publications described in
each chapter of the thesis.

1 Main-memory XML processing

XQuery has been originally defined has a language to query XMLdatabases, but quickly became
the main tool to process XML data simply stored in files or generated by a stream, as happens
in many kinds of applications (e.g., streaming, information integration, full-text search). Most of
these applications do not necessarily need complex functionalities of traditional DBMSs, like for
instance those for the management of transactions, and secondary storage indexes. To meet this
kind of needs, many light-weight XQuery processors have been devised in recent years, like Galax
[gal], Saxon [saxb], QizX [qiz], and eXist [exi], just to mention some of the main ones (a richer list
can be found in [xqua]). These systems usually provide full compliance with respect to the W3C
specifications, and process data in a main-memory fashion: data to be manipulated are entirely
loaded in main memory before being processed.

Main-memory XQuery engines, often rely on smart internal XML representation and indexes,
built at loading time and still kept in main-memory, in orderto ensure efficient XML navigation,
the basic operation behind any kind of XML processing. However, main-memory engines suffer of
main-memory size limitations, making impossible the processing of large documents.

One of the main techniques that have been devised to overcomesuch limitation isXML pro-
jection. This consists of pruning out at loading time parts of the document that are not needed by
a query; the resulting document is called aprojection of the original document, and if used for
query evaluation, instead of the original document, it preserves query result. Since in many contexts
queries are likely to involve a small percentage of the original document, XML projection enables
main-memory systems to query very large documents even in the presence of a limited amount of
main memory.

It is worth mentioning that main-memory size limitations pose problems also for systems that
can not be classified as main-memory. This is the case for Monet-DB, one of the fastest XML query
engines available today. Its efficiency is due, in particular, to the stair-case operation [GvKT03] it
adopts in order to minimize the amount of intermediate results while evaluating XPath expressions.
MonetDB is rather a disk-based system, since it uses the diskas secondary storage system, thus
being able to process very large documents. However it uses as much main-memory as possible to
answer a query efficiently and performs its own page management by mapping memory pages to
the disk and reading them back when needed. Therefore for such a query engine, speed is directly
proportional to the amount of available memory: the more memory is available, the less swapping
occurs between pages on disk and pages in main memory. Experiments have shown that XML
projection can entail sensible improvements in terms of execution time [BCCN11].

In joint works with Veronique Benzaken, Nicole Bidoit, and Giuseppe Castagna, we investigated
two schema-based techniques to project XML documents:

• The first one is based on a key observation coming from my previous research activities
[Col04, CGMS04] in the context of type-checking systems for XQuery: duringtype-checking,
besides type information about the query result, type information about nodes that are needed
to compute the query result is inferred as well. Starting from this observation, we worked on
the definition of new type analysis techniques for XQuery allowing to infer, from a query and
an input schema, atype-projector, consisting of a quite precise over approximation of the set
of types of nodes that are strictly needed for query execution. This information is then used at
loading time to prune out nodes whose type is not in the type-projector.

• The second XML projection technique has been devised in order to optimize XML updates
expressed by means of the XQuery Update Facility language [xup]. Dealing with updates
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required to face two main problems: i) devising a technique to propagate to the original doc-
ument all the updates performed on the projected document, ii) devising a new notion of
type-projector enabling an efficient propagation process.

Results about XML projection for queries have been published in [BCCN06]. Results about
XML projection for updates have been published in [BCMS09b, BCMS09a, BBC+11b], and have
been obtained in the context of the two PhD projects of Amine Bahazizi and Marina Sahakian,
both co-supervised with Nicole Bidoit. Also, alternative techniques for type-projector have been
investigated in Federico Ulliana’s Master Thesis [Ull ], that I supervised.

The above results are presented in Chapter2.

2 Detection of corrupted XML mappings

As already outlined, XML is an universal data format that canbe used to represent the vast ma-
jority of data sources, from strongly structured data (e.g., relational data) to semistructured or even
unstructured data. This property made XML a natural medium for integrating heterogeneous data
sources.

One of the most important problems in data integration systems (both centralized and decentral-
ized) is themaintenanceof mappings. Mappings are dependencies among schemas, that are used
during query answering for reformulating queries or, as in data exchange systems [AL05a], for gen-
erating canonical solutions. Since a mappingm from Si to S j exploits the structural properties of
both schemasSi andS j , a sudden change in one of the schemas, let’s sayS j , may corrupt the
mappingm, so that its mapping rules are no longer true. Mapping corruption has a deep impact on
query answering, and essentially prevents the system from generating (useful) query results.

In a joint work with Carlo Sartiani, I dedicated a substantial part of my recent research activities
to the problem of XML mapping maintenance. Interestingly enough, obtained results involved a
binary relation over types based on XML projection, and according to which two types are related
if each instance of the first one is a projection of an instanceof the second one.

Main results obtained in this line of research are describedbelow.

• A mapping maintenance technique based on the following observation: unlike schema-to-
schema XML functions or transformations, an XML mapping does not output instances of the
target schema, but, rather,projectionsof target schema instances [HIMT03]. This is because,
in the data integration setting, it is often the case that some target elements do not have cor-
responding source elements. As a consequence, in order to check correctness of a mapping,
the projection relation among a type, inferred for the mapping output, and the target schema
is checked.

• A characterization of the type projection relation in termsof a notion of type simulation,
allowing for a better understanding of the properties of type projection itself, and, in particular,
of its relationship with subtyping.

• A type inference technique able to infer, quite precisely, the result type of an XQuery mapping
specification. This type system is an extension of the one proposed in my PhD Thesis [Col04].
The inferred type for the mapping is used in a type-projection comparison against the target
schema, as described in the first point.

• The proof of NP-completeness of the problem of checking the type projection relation, and
the definition of an algorithm which is polynomial in most practical cases. Exhaustive exper-
imental evaluation of an implementation of the proposed framework (type inference system
plus a checker for the type projection relation) confirmed its effectiveness.
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The above results have been published in [CS05b, CS06, CS09], in particular the journal paper
[CS09] collects all of them, and are presented in Chapter3.

3 Efficient XML subtype checking

XML schemas are an essential tool for the robustness of applications that involve XML data manip-
ulation and transformation. To solve any static analysis problem that involves such types one must
first be able to reason about their inclusion and equivalence.

XML schema languages are designed to describe ordered data,but they usually offer some sup-
port to deal with cases where the order among some elements isnot constrained. Also, XML schema
languages usually offer counting operators, enabling the specification of the the minimum and max-
imum number of times a value of given type can repeat in a sequence.

As shown in in [GMN07], the addition of interleaving (also calledshuffle) and counting opera-
tors to standard regular expressions raises the complexityof inclusion checking from PSPACE (or
EXPTIME, for Extended DTDs) to EXPSPACE. These are completeness results.

In a joint work with Giorgio Ghelli, Luca Pardini, and Carlo Sartiani, we worked towards the
characterization and study of classes of regular expressions (REs in the following) with interleaving
and counting, and for which the inclusion relation can be checked in polynomial time. Such sub-
classes can be used either to design a new schema language, orto design adaptive algorithms, that
use the PTIME algorithm whenever is possible, and resort to the full algorithm when needed. To
this aim, it is important that (i) the subclass covers large classes of XML types used in practice, (ii)
it is easy to verify whether a schema belongs to the subclass.

This research activity involved several steps:

• A first step was dedicated to the characterization of a class of REs based on the following two
restrictions. Each expression isconflict-free(or single occurrence) meaning that no symbol
appears twice, and counting is only applied to symbols or to disjunctions of symbols. These
restrictions are severe, but, as shown in [BNdB04] and [BNST06], are actually met by the vast
majority of the schemas that are used in practice.1 We designed a class of logical constraints
and proved that the semantics of conflict-free REs can be exactly captured by these constraints.
This allowed to rephrase sub-typing as constraint implication, and paved the way to a quadratic
algorithm for checking inclusion over conflict-free regulars expressions.

• A second step concerned the relaxation of symmetry of the previous technique, by allowing
the subtype to be any type. For this case we provided a quadratic algorithm for inclusion
checking. This technique is still based on constraints.

• A third step originated from the observation that in many cases types compared for inclusion
checking share a similar structure. We provided a new algorithm that is linear-time for types
featuring some similarity properties that can be detected in constant time. When these prop-
erties are not met the algorithm reverts to the above quadratic approach for those subparts of
the initial types for which similarity is not detected.

Results described in the above first step were first presentedin [GCS07] and then in a journal
paper [CGS09b]. Concerning the second step, results were presented in [CGS09a] but an extended
version is available [CGS11a]. Finally results in the third step were presented in [CGPS09].

Results obtained in the second and third steps are presentedin Chapter4; the technique described
in second step includes the symmetric case described in the first step [GCS07, CGS09b].

1“More that 99% of the REs occurring in practical schemas”, according to [BNST06]
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4 Other works

Some the results previously described have been also presented in a recent tutorial given at ICDE’11
[CGS11b], in collaboration with Giorgio Ghelli and Carlo Sartian. An overview on the problem of
updating XML data and schemas has been proposed in a book chapter [CGM+10], in collaboration
with Giovanna Guerrini, Marco Mesiti, Barbara Oliboni, andEmmanuel Waller.

In collaboration with Nicole Bidoit, I worked on techniquesto express DTD-like schemas with
references by means of the hybrid modal logic [Bla00]. Based on this coding, we then devised a
tableaux system to check that integrity constraints expressed by means of the hybrid modal logic are
consistent wrt a schema [BC07].

The constraint-based encoding of conflict-free XML schemaswith interleaving and counting,
that are presented in Chapter4, has been at the basis of analmostlinear method to check membership
of XML trees into a class of Extended DTDs with interleaving and counting. The resulting algorithm
has time complexity which is linear in the product of the input size with the maximal depth of all
the content models in the schema. This works has been presented in [GCS08], and has been carried
out in collaboration with Giorgio Ghelli, Luca Pardini and Carlo Sartiani.

In a joint work with Michele Bugliesi, Silvia Crafa and Damiano Macedonio [BCCM09] we
studied a type-based theory of DCA (Discretionary Access Control) models for a process calculus
that extends the pi-calculus with groups [CGG00].

List of publications described in this thesis, grouped by chapter

Chapter 1, works described in the above Other Works section

[CGS11b] D. Colazzo, G. Ghelli and C. Sartiani.Schemas for Safe and Efficient XML Pro-
cessing. IEEE International Conference on Data Engineering (ICDE), 2011.

[CGM+10] D. Colazzo, G. Guerrini, M. Mesiti, B. Oliboni, and E. Waller. Document and
Schema XML Updates. In Changqing Li and Tok Wang Ling, editors.Advanced Applications
and Structures in XML Processing: Label Stream, Semantics Utilization and Data Query
Technololgies, IDEA Group, 2010.

[BC07] N. Bidoit and D. Colazzo.Testing XML constraint satisfiability.Electronic Notes in
Theoretical Computer Science. Volume 174(6) : 45-61, 2007

[BCCM09] M. Bugliesi, D. Colazzo, S. Crafa and D. Macedonio.A Type System for Dis-
cretionary Access Control. Mathematical Structures in Computer Science (MSCS). Volume
19(4) : 839-875, 2009.

[GCS08] G. Ghelli, D. Colazzo and C. Sartiani.Linear Time Membership for a Class of XML
Types with Interleaving and Counting.ACM Conference on Information and Knowledge
Management (CIKM), pages 389-398, 2008.

Chapter 2: Type-based projection for efficient XML processing.

[BBC+11b] A. Baazizi, N. Bidoit, D. Colazzo, N. Malla and M. Sahakyan.Projection for
XML Update Optimization. 14th International Conference on Extending Database Technology
(EDBT), 2011.

[BCMS09b] N. Bidoit, D. Colazzo, N. Malla and M. Sahakyan.Projection-based optimization
for XML updates. International Workshop on Schema Languages for XML (X-Schemas),
2009. Also appeared in BDA’09.
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[BCCN06] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen.Type-Based XML Projec-
tion. International Conference on Very Large Data Bases (VLDB), 2006.

Chapter 3: Projection-based detection of corrupted XML schema mappings.

[CS09] D. Colazzo and C. Sartiani.Detection of Corrupted Schema Mappings in XML Data
Integration Systems.ACM Transaction on Internet Technology (TOIT). Volume 9(4), paper
14, 53 pages, 2009.

[CS06] D. Colazzo and C. Sartiani.An efficient algorithm for XML type projection.ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP), 2006.

[CS05b] D. Colazzo and C. Sartiani.Mapping Maintenance in XML P2P Databases.10th
International Symposium on Database Programming Languages (DBPL). LNCS 3774, pages
74-89, 2005.

Chapter 4: Efficient XML subtype checking.

[CGS09a] D. Colazzo, G. Ghelli, L. Pardini and C. Sartiani.Linear Inclusion for XML
Regular Expression Types.ACM Conference on Information and Knowledge Management
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CHAPTER

2

TYPE-BASED PROJECTION FOR

EFFICIENT XML PROCESSING

This chapter presents results about type-based projectiontechniques, both for XML queries and
updates. The chapter is composed of four main sections. Section 1 introduces some basic notation
used in the presentation of both techniques, respectively presented in Section2 and 3. Finally,
Section4 is dedicated to conclusions.

1 Preliminaries

This section is dedicated to basic notations, which will be used in the whole chapter. We will
focus on notation for the data model, schemas and related notions, used in following examples and
formalizations. We assume the reader to be familiar with theXQuery query and update languages.

Note that for the sake of uniform presentation, in this chapter we use a notation which may
sometimes differ from that of presented articles [BCCN06] and [BCMS09b, BCMS09a, BBC+11b].
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Data Model

An instance of the XQuery data model is a forestf generated by the following grammar:

Forests f ::= () | f , f | t
Trees t ::= si | l i [ f ]

A forest f is an ordered sequence of labelled orderedtrees(ranged over byt); () denotes the empty
forest.

An XML document is represented by a treet. Nodes are labelled byelement tags(ranged over
by l ) while, without loss of generality, we consider only leavesthat are text nodes (that is, strings,
ranged over bys) or empty trees (that is, elements that label the empty forest).

Each node in a forestf or treet has a uniqueidentifier (ranged over byi). Node identifiers are
needed to define several basic notions such as validation andquery semantics (see [BCCN06] for
full definitions).

Henceforth we will consider only well-formed forests:

Définition 2.1 (Good formation) A forest iswell formedif every identifieri occurs in it at most
once. Given a well-formed forestf and an identifieri occurring in it, we denote byf @i the unique
subtreet of f such thatt = si or t = l i [ f ′]. The set of identifiers of a forestf is then defined as
Ids( f ) = {i | ∃ t. f @i = t}.

We define a complete partial order� on forests (and thus on trees) by relating a forest with the
forests obtained either by adding or by deleting subforests:

Définition 2.2 (Projection (�)) Given two forestsf and f ′ we say thatf ′ is aprojectionof f , noted
as f ′ � f , if f ′ is obtained fromf by deleting some of its subtrees.

DTDs and validation

Following [LMM00] we define aDTD as alocal tree grammar, namely a pair(r,E) wherer is a
distinguishedtag nameandE is a set of productions (oredges) of the form{a1 = R1, . . . ,an = Rn}
such that

1. r is in {a1, . . . ,an} (it denotes the root element type).
2. tag namesai ’s are pairwise distinct;
3. eachRi is a regular expression over symbols{a1, . . . ,an}∪{String}, whereString is a special

symbol denoting the type of string values.

We writeSym(R) for the set of all symbols used inR (Sym(R) may includeString) andSym(E) for
the set of tag names defined inE (that is,{a1 . . .an}). We also say thatR is a regular expression
over(r,E), if R is a regular expression overSym(E)∪{String}. We will usea, b, c, d to indicate tag
names. We use Greek letters to range over sets of tag names (inparticular we useπ to stress that
it is a type projector(Def. 2.6) andκ andτ to stress that the set is used as a context or as a type,
respectively. When speaking ofDTDs we will often identify them with their set of edgesE, leaving
the rootr as implicit.

Définition 2.3 (Root id) Given a treet, if t = si or t = l i [ f ] then we defineRootId(t) = i.

Below we consider the root type of a tree defines as follows: ift = ai [ f ] thenr-type(t) = a else
r-type(t) = String.

Définition 2.4 (Valid Trees) A treet is valid with respect to aDTD (r,E), noted ast ∈ (r, E) if the
following conditions hold:
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1. t = r i [ f ] (the root element is typed by the root tag in the DTD);
2. for eachi in Ids(t), if t@i = bi[t1, ..., tn], thenb=R∈E and the wordr-type(t1), . . . , r-type(tn))

is generated byR.

2 Type-based projection for XML query optimization

XML data projection (or pruning) is an optimization technique adopted in the context of main-
memory XML query-engines. The main idea underlying XML projection is quite simple and pro-
ductive at once: given a queryQ over a documentt, the subtrees oft not necessary to evaluateQ
are pruned out, thus obtaining a smaller documentt ′. ThenQ is executed overt ′, hence avoiding to
allocate and process nodes that will never be reached by navigational specifications inQ.

As shown in [MS03, BCL+05], XML navigation specifications expressed in queries tend to be
very selective, especially in terms of document structure.Therefore, projection is likely to yield
significant improvements both in terms of execution time andin terms of memory usage (for main-
memory XML query engines, very large documents can not be queried without pruning).

In this chapter we present a projection technique based on the use of the schemas of queried
documents. In order to better highlight its features we firstoverview main schema-less approaches.

Related works: untyped apporaches

Marian and Siméon [MS03] propose that the actual data-needs of a queryQ (that is, the part of
data that is necessary to the execution of the query) is determined by statically extracting all paths
in Q. These paths are then applied tot at load time, in a SAX-event based fashion, in order to
prune unneeded parts of data. The technique is powerful since: (i) it applies to most of XQuery
core, (ii) it can be applied to a set of queries over the same document, and (iii ) it does not require
any a priori knowledge of the structure oft. However, this technique suffers some limitations.
First, the document loader-pruner is not able to managebackward axesnor path expressions with
predicates which, especially the latter, can contain precious information to optimise pruning. Also,
as a consequence of(iii ), the technique does not behave efficiently in terms of loading time and
pruning precision (hence, memory allocation) when// occurs in paths. Indeed, when// is present
in a projection path, the pruning process requires to visit all descendants of a node in order to decide
whether the node contains a useful descendant. What is worstis that pruning time tends to be
quite high and it drastically increases (together with memory consumption) when the number of
// augments in the pruning path-set. As a matter of facts, in this technique pruning corresponds
to computing a further query, whose time and memory usage maybe comparable to those required
to compute the original query. In particular, in this technique every occurrence of// may yield a
full exploration of the tree. Therefore, pruning executionoverhead and its high memory footprint
may jeopardize the gains obtained by using the pruned document. Finally, the precision of pruning
drastically degrades (even vanishes) for queries containing the XPath expressionsdescendant ::
node[cond], which are very useful and used in practice.

Bressanet al. [BCL+05] introduce a different and quite precise XML pruning technique for a
subset of XQuery FLWR expressions. The technique is based onthea priori knowledge of a data-
guide fort. The documentt is first matched against an abstract representation ofQ. Pruning is then
performed at run time, it is very precise, and, thanks to the use of some indexes over the data-guide,
it ensures good improvements in terms of query execution time. However, the technique is one-
query oriented, in the sense that it cannot be applied to multiple queries, it does not handle XPath
predicates, and cannot handle backward axes (recall that the encodings of [OMFB02] are defined
for XPath, and no extension to XQuery-like languages is known). Also, the approach requires the
construction and management of the data-guide and of adequate indexes.
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Our type-based approach

Our schema-based technique combines the advantages of the previously mentioned works while
relaxing their limitations. Unlike [MS03, BCL+05], our approach accounts for backward axes,
performs a fine-grained analysis of predicates, allows (unlike [BCL+05]) for dealing with bunches
of queries, and (unlike [MS03]) cannot be jeopardised by pruning overhead. Our solution provides
comparable or greater precision than the other approaches,while it requires always negligible or no
pruning overhead. Moreover, contrary to [MS03, BCL+05], our approach is formally proved to be
sound(projection preserves query semantics) and, furthermore,we can also prove it to becomplete
(it produces the best possible type-driven projection) fora substantial class of queries andDTDs.

We have devised our framework in three main steps:

1. In the first step, we consider a simplified version of XPath,we dub XPathℓ, which includes
only upward/downward axes and unnested disjunctive predicates. We define for XPathℓ a
static analysis that determines a set of type names, atype projector, that is then used to prune
the document(s). One of the particular features of this approach is that our pruning algorithm
is characterised by a constant (and low) memory consumptionand by an execution time linear
in the size of the document to prune. More precisely, a pruning based on type projectors is
equivalent to a single bufferless one-pass traversal of theparsed document (it simply discards
elements not generated by any of the names in the projector).So if embedded in query proces-
sors, pruning can be executed during parsing and/or validation and brings no overhead, while
if used as an external tool it requires a time always smaller than or equal to the time used
to parse the queried document. Soundness and (partial) completeness results for the static
analysis are stated.

2. The second step consists of extending the analysis to the whole XPath (more precisely, to
XPath 1.0). This is done by associating to each XPath queryQ a XPathℓ queryP which
soundly approximatesQ, in the sense that the projector inferred forP is also a sound projector
for Q.

3. The final step is to extend the approach to XQuery (hence, toXPath 2.0). This is obtained
by defining a path extraction algorithm as done in [MS03]. Our path extraction algorithm
improves in several aspects the one of [MS03]. It also computes the XPathℓ approximation of
the extracted paths so that the static analysis of the first step can be directly applied to them.

Type projectors

Given a treet valid with respect to aDTD (r,E), we can use subsets ofSym(E) to project that tree.
Essentially, only nodes that are associated with names in the projecting subset ofSym(E) are kept
in the projection. Of course not every subset ofSym(E) can be used to project a tree, since we want
to delete whole subtrees (not nodes in the middle of a tree), thus if we discard some tag symbol, we
must also discard all the tags it generates. In order to defineformally this notion we need to define
the reachability relation⇒E, that we introduce below together with several other definitions that we
use later on in this chapter.

Définition 2.5 (Forward Reachability) Given aDTD (r,E) anda∈Sym(E), we writea⇒E b ⇐⇒
a→ r ∈ E andb∈ Sym(r). We use⇒+

E and⇒∗E to denote respectively the transitive closure, and
the transitive and reflexive closure of⇒E.

Strings of names are calledchainsdenoted byc, ci , c′,... In particular we useChains(r,E)(a) to
denote the set of all chains rooted ata, defined as{aa1 . . . an | a⇒E a1⇒E . . .⇒E an,n≥ 0}. With
a little abuse of notation, useSym(c) to denote the set of all tag symbols occurring in a chainc.
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Définition 2.6 (Type-Projectors) Given aDTD (r,E), a (possibly empty) setπ ⊆ Sym(E) is a type
projectorfor (r,E) if and only if there existsC⊆ Chains(r, E)(r) such that

π =
⋃

c∈C

Names(c)

A type projector is thus a union of sets of names, where each ofthese sets is generated (i.e. reached)
by a sequence of productions starting from the root of theDTD. A type projector can be used to
prune a valid tree as follows:

Définition 2.7 (Type Driven Projections) Let π be a type projector for(r,E) andt a tree such that
t ∈ (r,E). Theπ-projection oft, noted ast\π, is defined according to the following rules:

l i [ f ]\π = l i [ f \π] if l ∈ π
l i [ f ]\π = () if l 6∈ π
si\π = si if String∈ π
si\π = () if String 6∈ π
( f , f ′)\π = ( f \π),( f ′\π)

In words, projection erases (by replacing it by an empty forest) every node that corresponds to a
name not inπ.

Lemma 2.1 Let π be a type projector for(r,E). Then for every tree t∈ (r,E) it holds(t\π)� t.

Type-projectors for XPathℓ, overview

This section has a twofold purpose: first it provides examples illustrating how a type-projector
is associated to an XPathℓ query, then it present the formal inference system togetherwith main
properties.

XPathℓ is defined by the following grammar:

Path ::= Step | Step[Cond] | Path/Path

Step ::= Axis::Test

Axis ::= self | child | descendant
| parent | ancestor | ancestor-or-self
| descendant-or-self

Test ::= tag | node | text

wheretag is a meta-variable ranging over element tags, and

Cond ::= SPath | Condor Cond
SPath ::= Step | SPath/SPath | /SPath

Consider the following DTD(report, E) describing medical reports, borrowed from [CFF+07],
and whereE consists of the following productions:

report = (section*)

section = (title, content)

title = String

content = (String | anesthesia | prep | incision | action | observation)*

anesthesia = String

prep = ( String | action)*
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incision = ( String | geography | instrument)*

action = ( String | instrument )*

observation = String

geography = String

instrument = String

and the following queries XPathℓ queries:

Q1 = /report/section/title
Q2 = /descendant :: node/title
Q3 = /descendant :: node/action/instrument/ancestor :: node
Q4 = /descendant :: node[geography or instrument]

Given a valid documentD, a projection ofD which is sound forQ1 must contain report, section,
and title nodes (of course, if these nodes are inD). Each title node that may appear inD belongs to
the query result, as a consequence each descendant of such node must belong to the projection as
well. So, a type-projector entailing a sound projection forQ1 is τ= {report,section,title,String}.
Note that anyτ′ includingτ still is a sound type-projector forQ1.

For simple queries likeQ1, a sound type-projector can be inferred by using standard static
type inference techniques [Col04, CGMS04], as follows. We recall that static type inference for
XPath allows to statically determine a superset of the typesof nodesresultedby a query. So in
this case, it would be sufficient to perform type inference for all the prefixes ofQ1 plus the query
Q1/descendant :: node (needed to include type of nodes for the final result):

/report : {report}
/report/section : {section}
/report/section/title : {title}
/report/section/title/descendant :: node : {String}

and consider the union of these inferred types.
This simple and direct approach also works forQ2, in the sense that it produces a sound projector

for this query. Unfortunately, the resulting projector would be useless as it coincides with the set of
all DTD types, due to the presence of the prefix/descendant :: node.

These two examples highlight a strict connection between type-projector inference and tradi-
tional type-inference [CGMS06, DFF+10]. At the same time, by means ofQ2, we see that a simple
type-inference based approach has serious limitations, asuseless type-projectors can be inferred.
However, type-inference still remains the basic tool: in order to infer a precise type-projector
for a query/descendant :: node/Path, we can proceed as follows. First the type of the prefix
/descendant :: node is inferred, then this type is filtered/refined by retaining only element types
that areproductivefor the subsequent pathPath. The obtained set is a first component of the final
projector, which of course includes the projector inferredfor Pathas well.

Deciding whether a typea in the DTD is productive for a relative pathPath can be done by
first inferring the type ofPath, by assuming that its navigation starts from nodes of typea, and
then by checking non-emptiness of the inferred type. For instance, for the previous DTD, the path
action/instrumentis productive forprep, while it is not for the typesection.

So, for the queryQ2, the first step selects all the DTD types, and a second step selects onlyreport
andsectiontypes, which are productive for the step/title. This allows to infer a type-projector
coinciding to that of the equivalent queryQ1.

Now, consider the queryQ3. A projector for theforward prefix

/descendant :: node/action/instrument

is inferred according to what just described. This type is{instrument}. To complete the inference
the lastbackwardstep has to be taken into account. A naive approach would proceed as follows: a
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type for the las step is inferred starting from the type{instrument}, which is inferred for the prefix.
That is all types which are ancestors of this type in the DTD are considered as the remaining portion
for the projector. The problem with this approach is its low precision: here also the typeincision
would be considered in the projector, while a sound projection for Q3 does not requireincision
nodes. This unneeded type can be filtered out by using the following ingredient: during the type-
projector inference for the prefix/descendant :: node/action/instrument we also keep track
of types that are traversed. This contextual information inthis case consists of the set

κ = {report,section,content,action,instrument}

and during type inference is collected into a set calledcontext. This set is then intersected with the
type forancestor :: node, inferred as previously described, so that the unwantedincision type
is ruled out.

Again, by means of intersection of intermediate inferred types, a precise projection can be in-
ferred for queries containing conditional stepsStep[Cond]. Consider the queryQ4. If we consider
the type inferred for the first step as part of the final projector, then this degenerates to the set of all
DTD types. On the other hand, by simply restricting to only types of the first step that are productive
for at least one of the condition in[geography or instrument], the more precise projector

τ = {report,section,content,action,instrument,incision}

is obtained.

Type-projector inference for XPathℓ.

In this section we present type-projector inference rules implementing the above described ap-
proaches. According to what we have seen, type-projector rules rely on type inference rules, so
we first focus on the presentation of these last ones.

Type inference rules for XPathℓ.

Type inference rules for XPathℓ are collected in Figure2.1. These rules prove judgements of the
form

(τc,κc) ⊢E Path: (τr ,κr)

meaning that given aDTD E, starting from the names inτc and the current contextκc, the pathPath
generates the namesτr in an updated contextκr .

Type inference rules make use of two functionsAE(τ,Axis) andTE(τ,Test), mimic Axis navi-
gation andTestfiltering on a setτ of E types. For instance, for the previously used DTD we have
:

AE({prep},child) = {String, iaction}
AE({prep},descendant) = {String, action,instrument}
AE({instrument},parent) = {incision, action}
AE({instrument},ancestor) = {incision, action, prep,content,section,report}

TE({String, action},action) = {action}
TE({String, action},text) = {String}
TE({String, action},node) = {String, action}

The two functions can be defined in straightforward way (see [BCCN06] for details) and can be
composed in the obvious way for typing a single XPath stepAxis:: Test.
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Primitive Single Step

Axis∈ {self, child,
descendant}Σ ⊢E Axis:: node : (AE(Στ,Axis) , Σκ∪AE(Στ,Axis))

Axis∈ {parent, ancestor}
Σ ⊢E Axis:: node : (AE(Στ,Axis))∩Σκ , AE(Σκ,Axis)∩Σκ)

Test6= node

Σ ⊢E self :: Test: (TE(Στ, Test) , (Σκ∩AE(TE(Στ, Test),ancestor))∪TE(Στ, Test))

∀ai ∈ Στ,Pj ∈ Cond, ({ai},Σκ) ⊢E Pj : Σi j

τ = {ai | ∃ j.Σi j
τ 6=∅}

Σ ⊢E self :: node[Cond] : (τ , (Σκ∩AE(τ,ancestor))∪ τ)

Encoded Single Step

Σ ⊢E Axis:: node/self :: Test: Σ′ Test6= node
∧

Axis 6= selfΣ ⊢E Axis:: Test: Σ′

Σ ⊢E Axis:: Test/self :: node[Cond] : Σ′ Test6= node
∨

Axis 6= selfΣ ⊢E Axis:: Test[Cond] : Σ′

Composed paths
Σ ⊢E Step: Σ′′ Σ′′ ⊢E Path: Σ′

Σ ⊢E Step/Path: Σ′

FIGURE 2.1: Inference rules for single step queries

The rules inf Fig.2.1are relatively simple to understand. The first two rules implement our main
idea: when we follow an axisAxis, we compute the type byAE(Στ,Axis); if the axis is a downward
one, then we add this type to the current context, otherwise if the axis is an upward one, then we
intersect it with the current context (both for the type partand for the context part). The rule for
self :: Testis slightly more difficult since it discards from the currentset of nodes those that do
not satisfy the test: the type is computed byTE(Στ,Test), while the context is obtained by erasing
all the names that were in there just because they generated one of the discarded nodes; to do it it
generates (the type of) all ancestors of the nodes satisfying the test, and intersects them with the
current context. These first three rules are enough to type all the paths of the formAxis:: Testsince,
as stated by the fifth typing rule, all remaining cases are encoded asAxis:: node/self :: Test.

The fourth rule is the most difficult one: recall thatCond is a disjunction ofsimplepaths; the
typeτ is obtained by discarding fromΣτ all (names of) nodes for whichCondnever holds; thus for
eachXi in Στ we compute the type of all the paths inCond, and keep inτ only names for which at
least one path may yield a non-empty result; the context thenis computed as in the third rule, by
discarding from the context all names that generated only names discarded fromΣτ.

Once more, all the remaining cases of conditional steps are encoded by this one, as stated by the
sixth rule. Finally, step composition is dealt as a logical cut.

This system has bee proved to be sound (details can be found in[BCCN11]). In the following
JPK(t) denotes the set of nodes resulted by the evaluation ofP on t. Also, as expected, we assume
that the type on an element node is the element tag (of course the type of a string node isString).
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Theorem 2.1 (Soundness of Type Inference)Let (r,E) be aDTD, t a tree such that t∈ E, and P a
path such that({r},{r}) ⊢E P : (τ,κ). If a node is inJPK(t) then the node type is inτ.

Besides soundness, the proposed system also enjoys type-completeness for a wide class of cases,
described next. This has been proved to hold for∗-guarded, non-recursive, and parent-unambiguous
DTDs):

• ∗-guarded DTD are those using regular expressions where union | can only be used inside a
∗-type;

• parent-unambiguous DTDs are such that for each pair of labeltypesl1 andl2, if the l2 is used
in the content model definition ofl1, thenl2 can not be used in the content model of anl3
which can be reached byl1 by following DTD productions.

Non-recursivity and∗-guardedness are properties enjoyed by a large number of commonly used
DTDs. As an example, the reader can consider theDTDs of the XML Query Use Cases [use]: among
the tenDTDs defined in the Use Cases, seven are both non-recursive and∗-guarded, one is only
∗-guarded, one is only non-recursive, and just one does not satisfy either property. Furthermore,
other studies [Cho02, BNdB04] provide a detailed classification of real world DTDs showing that
non-∗-guarded unions are quite infrequent.

Concerning the parent-unambiguous property, althoughDTDs satisfying this property are less
frequent (five on the tenDTDs in [use]), its absence is in practice not very problematic since, only
the presence of theparent axis may hinder completeness.

Theorem 2.2 (Completeness of Type Inference)Under the same assumption of the previous The-
orem (Soundness), if(r,E) is ∗-guarded, non-recursive, and parent-unambiguous, then for each
α ∈ τ there exists t∈ E such that a node inJPK(t) has typeα.

To see why completeness does not hold in general consider thefollowing DTD rooted ats and
which is recursive and not∗-guarded

{c= a | b; a= a∗,String; b= String}

and the following two queriesself :: c[child :: a]/child :: b andself :: c/child :: a/parent ::
node. The type inferred for the first query containsa, while the query is always empty. This is due
to the non∗-guarded uniona | b: if we had(a | b)∗ instead, then the query might yield a non-empty
result, thereforea must correctly (and completely) be in the query type. The second query shows
the reason why completeness does not hold in presence of recursion and backward axes (recursion
with only forward axes does not pose any problem for completeness). The type of the second query
should be{c}, but instead the type{c,a} is inferred. This is due to the recursiona= a∗, . . . : since
a⇒E a, oncea is reached it is kept in the inferred type for every backward step.

The techniques developed in my PhD Thesis [CGMS04, Col04] can be adapted to recover com-
pleteness for cases like the first query, while a more sophisticated type analysis could solve the prob-
lem with the second. It is worth observing, however, that if we relax the∗-guardedness constraint,
and if we keep child and parent axes, plus thenode test condition, then the problem of inferring an
exact set of types is NP-complete. This can be easily shown byusing results on XPath satisfiability,
widely studied in recent years (see for instance [Hid03, LRWZ04, Mar04, MSV03, BFG08]). The
proof follows by considering that:

• The problem of determining whether a pathP produce a non empty result for at least one
instance of a DTD, is NP-complete for the above described XPath fragment and non-recursive
DTDs with unguarded union [BFG08].

• A sound and complete type inference system infers a non emptytype if and only if the path
produces a non empty result on a schema instance.
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The type inference technique we have proposed is polynomial. What motivated us in the research
of large fragments for which type-completeness hold was to provide formal evidence of the high
precision of the inference systems we devised. If completeness hold for large classes of cases, then
for remaining cases the inference is likely to remain highlyprecise. From a practical point of view,
precision of type inference is crucial since it implies precision of type-projector inference (next
section), which in turn implies high reduction of memory needed for query evaluation.

Type-projector inference rules for XPathℓ.

As already said, type-projector rules strongly relies on type rules reported in the previous section.
We have seen that for simple pathsStep1/. . ./Stepn, we may consider as type projector with respect
to (r,E) the set

⋃
i=1...n τi ∪{r}, where fori = 1. . .n:

({r},{r}) ⊢E Step1/. . ./Stepi : (τi ,−)

(we use “−” as a placeholder for uninteresting parameters). and that this approach is sound but not
precise at all: for an expressiondescendant :: node/Path: the use of the above union yields a set
containingτ1 defined as

({r},{r}) ⊢E descendant :: node : (τ1,−)

that is, all descendants of the rootX (no pruning is performed). For a precise type-projector, wehave
to discard, at least, all names that are descendants ofX but that are not ancestors of a node matching
Path. These are the namesb∈ TE(AE({s},descendant), node) such that

({b},κ) ⊢E descendant :: node/Path: (∅, −)

for some appropriate contextκ. A similar reasoning applies toancestor.
Type-projector rules performing such a selection are reported in Figure2.2. These rules prove

prove judgements of the form

(τ′,κ′) E Path: π

meaning that that given aDTD E, starting from the names inτc and the current contextκc, the
type-projectorπ is inferred forPath.

In order to infer a precise type-projector for paths formed by a single step, if the step has no
condition (first rule), then the type inference of the previous section is enough; otherwise (second
rule) the step is transformed into a complex path (a simple trick to avoid the definition of several
rules). Thanks to the third rule the type inference can work on just one node at a time, and thanks to
the fourth and fifth rules, it just analyses paths whose components have one of the following three
forms: (i) self::Test, (ii) self::node[Cond], or (iii ) Axis::node. These three cases are handled
by the “Primitive Rules” of Figure2.2: The first rule handles the case(i) simply by collecting the
current context. The second rule handles the case(ii), by collecting besides the context also all the
parts that are necessary to compute the condition (which in the rule is expanded in its more general
form); the case(iii ) is handled by the last three rules which are nothing but slight variations of the
same rule according to the particular axis taken into account: each rule infers the typeτ obtained by
discarding from the type{a1, ...,an} of the step, all names that are useless for the rest of the path,
and then uses thisτ to continue the inference of the projector.
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Base and induction

Σ ⊢E Step: (τ,κ)

Σ E Step: τ∪κ

Σ E Step[Cond]/self :: node : π

Σ E Step[Cond] : π

({a1},κ)E P : π1 · · · ({an},κ)E P : πn
if no other
rule applies

({a1, . . . ,an} , κ)E P :
⋃

i=1..n

πi

Encoded Rules

Σ E Axis:: node/self :: Test/P : π Test6= node
∧

Axis 6= selfΣ E Axis:: Test/P : π

Σ E Axis:: Test/self :: node[Cond]/P : π Test6= node
∨

Axis 6= selfΣ E Axis:: Test[Cond]/P : π

Primitive Rules
({b},κ) ⊢E self :: Test: Σ Σ E P : π

({b},κ)E self :: Test/P : {b}∪π

({b},κ) ⊢E self :: node[P1or . . .orPn] : Σ Σ E P : π Σ E Pi : πi
n≥1

({b},κ)E self :: node[P1or . . .orPn]/P : {b}∪π∪π1∪·· ·∪πn

({b},κ) ⊢E Axis:: node : ({a1, ...,an},κ′)

({ai},κ′) ⊢E P : Σi (τ,κ′) E P : π′ Axis∈ {parent,child}
τ = {ai | Σi

τ 6=∅}∪{b}({b},κ)E Axis:: node/P : τ∪π′

({b},κ) ⊢E desc :: node : ({a1, ...,an},κ′)

({ai},κ′) ⊢E desc :: node/P : Σi (τ,κ′)E child :: node/P : π′
τ = {ai | Σi

τ 6=∅}∪{b}
({b},κ)E desc :: node/P : τ∪π′

({b},κ) ⊢E ancs :: node : ({a1, ...,an},κ′)

({ai},κ′) ⊢E ancs :: node/P : Σi (τ,κ′) E parent :: node/P : π′
τ = {ai | Σi

τ 6=∅}∪{b}
({b},κ)E ancs :: node/P : τ∪π′

FIGURE 2.2: Projectors inference rules (whereancs anddesc are shorthands forancestor and
descendant)
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The main theorem enjoyed by type-projector inference is soundness.

Theorem 2.3 (Soundness of projector inference)Let(r,E) be aDTD and P a path. If({s},{s})E

P : π, thenπ is a type projector for(r,E) and for every t∈ E:

JPK(t) = JPK(t\π)

Besides soundness, the proposed system also enjoys type-completeness for a wide class of cases
we describe next. By type-completeness for an inferred type-projectorτ we mean that if discard a
type fromτ, then the resulting projection does not preserve query semantics.

Type-completeness of projector inference requires completeness of the type inference (Theorem
2.4), and the following properties: an XPath queryQ is strongly-specifiedif (i) its predicates do not
use backward axes,(ii) alongQ and along each path in the predicates ofQ there are no two con-
secutive (possibly conditional) steps whoseTestpart isnode, and(iii ) each predicate inQ contains
at most one path and this does not terminate by a step whoseTestis node. For instance, among the
following queries, only the first two are strongly-specified.

1. descendant :: node/self :: a/ancestor :: node

2. descendant :: node[child :: b]/self :: a/parent :: node

3. descendant :: node/ancestor :: node/self :: a

4. descendant :: node[child :: b/child :: node]/self :: a

4. child :: a[descendant :: node/parent :: b]/child :: c

Once more, we are in presence of a very common class of queries: for instance, almost all paths
in the XMark and XPathMark benchmarks are strongly specified.

Theorem 2.4 (Completeness of projector inference)Let(r,E) be a∗-guarded, non-recursive, and
parent-unambiguousDTD, and P a strongly-specified path. If({s},{s}) E P : π, then there exists
t ∈ E such that for each a∈ π, if π′ = π\ ({a}∪AE({a},descendant)), then

JPK(t\π) 6= JPK(t\π′)

Handling full XPath 1.0 and FLWR expressions

XPath 1.0 has many features not considered in the XPathℓ fragment, notably:

• Horizontal axes (e.g., following-sibling, following).

• Predicates making use of complex conditions (involving conjunction, negation, functions,
etc.)

We could deal with the missing XPath features by adding specific inference rules. Instead we
opt to use an approximation of missing mechanisms in terms ofmechanisms featured by XPathℓ.
As shown by experiments we conducted, this results in a good compromise between simplicity and
effectiveness.

Concerning missing axes, the approximation is performed bytwo logical rewriting passes. In
the first pass we rewrite preceding and following axes as specified in the W3C specifications [xquc].
Namely, we substitute each stepAxis:: Testwith Axis∈ {preceding,following} by the following
equivalent pathancestor-or-self :: node/(Axis-sibling) :: node/descendant-or-self :: Test

The second pass is the one which introduces the approximation since it replaces all steps of the
form Axis:: Testwith Axis∈ {preceding−sibling,following-sibling} by the path expres-
sionparent::node/child::Test.
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Clearly, the static analysis of the approximation yields a less precise projection than the one we
could obtain by working directly on the original query. However, we still achieve good precision of
pruning in practice as we will next, when discussion about experiments. For instance, by applying
the above rewriting to XPathMark queries Q9 and Q11, we were able to prune a document down to
7.5% of its original size.

Concerning missing conditions in predicates, we opt to rewrite every predicateExpexpressible
in XPath to a simple conditionCondsuch thatCondis a sound approximation ofExpwith respect
to data needs: the projection determined forCondpreserves the semantics forExp. In other words,
if we take a generic XPath queryQ and approximate all its predicates to infer a projectorπ, then the
execution of (the original)Q on a given document or on the document pruned byπ yield the same
result. This rewriting, together with the treatment of missing axes, allows us to deal with a large
subset of XQuery and XPath queries, covering those in XPathMark [Fra05] and XMark [SWK+02]
benchmarks.

Let us outline the rewriting by an example. Consider the predicate
[position()>1and parent::node/book/author="Dante" and year>1313]
In our system this predicate is approximated by

[ self::node or parent::node/book/authororyear ]

Essentially, given a predicateExpwe obtain a conditionCondthat soundly approximates it by
retaining the disjunction of all structural conditions (like parent::node/book/author and year
in the previous example), plus eitherdescendant-or-self::node or self :: node if some non-
structural condition is present (for instance,position()>1). The choice betweenself::node and
descendant-or-self::node depends on the functions and operators used in the condition: for
instance functions likeposition or count requireself::node since their execution requires only
the root nodes; instead a function such asstring needs the whole tree. Formal definitions can be
found in [BCCN06].

Type-projector inference for generic XQuery FLWR XQuery expressionq is performed by a
two-steps process:

1. A set of paths XPathℓ {Path1, . . .Pathn} is extracted from the queryq, according to a path-
extraction mechanisms resembling to that of [MS03]. During the extraction, conditions are
approximated as previously explained.

2. For each pathsPathi a projectorτi is inferred according to rules for XPathℓ. For he wholeq,
the projector is∪iτi (projectors are closed under union) is inferred.

Experiments

We gauged and validated our approach by testing it both on theXPathMark [Fra05] and on the
XMark [SWK+02] benchmarks. Extensive test results can be found in [BCCN06], where we used
Galax as a query engine. Other tests were performed in a full version [BCCN11] by using Saxon
and Monet-DB as well.

Conducted tests confirmed expected results: thanks to the handling of backward axes and of
predicates the precision of our pruning is in general noticeably higher than for current approaches;
the pruning time is linear in the size of the queried documentand has a very low memory footprint;
the time of the static analysis is always negligible (lower than half a second) even for complex
queries andDTDs. But benchmarks also brought unexpected (and pleasant) results. In particular,
they showed that type-based pruning brings benefits that go beyond those of the reduced size of
the pruned document: by excluding a whole set of data structures (those whose type names are
not included in the type projector), the pruning may drastically reduce the resources that must be
allocated at run-time by the query processor. For instance,our benchmarks show that for several
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XMark and XPathMark queries our pruning yields a document whose size is two thirds of the size
of the original document, but the query can then be processedusing three times less memory than
when processed on the original document.

As an aside, it is worth observing that the presented technique relies on the definition of a new
type system for XPath able to handle backward axes, which constitutes a contribution on its own.

For what concerns the overhead of the optimisation, tests confirmed that it is always negligible,
both in memory and time consumption: the only noticeable overhead is pruning time, which is linear
in the size of the pruned document, but can be embedded in document parsing and/or validation (e.g.,
for 60MB documents computing the projector took around 0.5swhile pruning and saving the pruned
document to disk was always below 10s). These results were confirmed by further experiments on
largeDTDs (e.g.XHTML ) and long XPath expressions (twenty steps or so).

3 Projection for XML updates

XML projection, as described in the previous section, cannot be applied directly for updating XML
documents, simply because given an updateu over a documentt, and a strict projectiont ′ of t, we
haveu(t) 6= u(t ′); in particularu(t ′) lacksu(t) subtrees pruned out during the projection oft.

This chapter presents a type-based projection technique for XQuery Update Facility [xup] which
overcomes the above problem in the following way. First, newtechniques to infer a type-projector
π from an updateu and an input DTD are provided; the type-projector is used to project a valid
input documentt so that the resulting projectiont ′ is used for update execution. Second, a streaming
algorithm calledMerge is presented; , the algorithm performs a parallel and synchronous parsing of
t andu(t ′) in order to produce the final resultu(t).

For the sake of efficiency, theMergestep is designed so that (a) only child position of nodes and
the projectorπ are checked in order to decide whether to output elements oft or of u(t ′) and (b) no
further changes are made on elements after the partial updated documentu(t ′) has been computed:
output elements are either elements of the original document t or elements ofu(t ′).

Related Work

The approach here presented introduces substantial novelties wrt the type based approach for queries
presented in the previous chapter. As it will be explained next, for updates a three-level projector is
adopted, while the projector proposed in Chapter2 is one level. A three level projector, allows to
optimize (minimize) the size of projections. In particular, it allows to avoid keeping in the projection
useless text nodes that would be kept with the technique proposed in Chapter2: this can result into
substantial improvements since in many cases large parts ofdocuments consist of textual content.

Other works propose techniques to optimize update execution time by using static analysis in
order to detect independence between several update operations, so that query rewriting techniques
can be used for logical optimization [GRS07, GRS08, BBFV05, BC09]. The work here presented
is definitely orthogonal wrt that line of research, and indeed, the two techniques can be combined in
order to increase the efficiency in terms of time.

Some recent works [FCB07, Feg10] addressed the problem of translating an XQuery update ex-
pressionu into a pure query expressionQu, with the aim of executing the updateu via the query
Qu. The advantages of these approaches are that updates can be executed even if the XQuery en-
gine only deals with queries, and well established query-optimization techniques can be adopted to
optimize update execution. A peculiar characteristic of these approaches [FCB07, Feg10] is that the
queryQu needs to select and return all nodes that are not updated, while those which are updated are
selected and processed to compute new nodes. As a consequence, using standard projection tech-
niques [BCCN06, MS03] for the queryQu would lead to no improvement, since thewholedocument
would be projected.
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It is worth observing that, although not directly, existingprojection techniques [BCCN06, MS03]
could be used for a single update, provided that the projected document is used only to compute the
update pending list, so that this last one can be then propagated to the input document in a streaming
fashion. Such approach would require some techniques similar to those here developed in order to:
opportunely determine the projection, and make node identity persistent in order to propagate, in the
second phase, the calculated update pending list. This approach has two drawbacks. Firstly, it does
not allow to use XML querying engines in a straight manner as we propose to do: controlling the two
phase evaluation of XML updates would become necessary. Secondly, this approach would perform
very inefficiently in the quite frequent case where a bunch ofn updates has to be executed, according
to a given order, because each update would need to be fully processed one after the other entailing
the document to be processed/parsedn times. The approach here presented is different in that it
allows to evaluate then updates by processing the proposed method just once: a global projector can
be easily inferred (it is sufficient to consider the union of each update projector); then updates are
evaluated on the global projection wrt the specified order; finally, the updates are propagated on the
original document in a single pass, using theMerge function. As testified by performed tests (that
will be commented next), this results in a much more efficientprocessing.

Overview

This section is devoted to introducing and illustrating, through examples, the main features of our
method. We first focus on the merge process, and then switch toa new kind of type-projector which
is required by the merge process itself in order to ensure a safe and efficient propagation of updates
to the original document.

Merge, a first example. Let us consider the example in Fig.2.3based on the update

for $x in /doc/a where $x/d return delete $x/b

Assume that the partial updated documentu(t ′) has been produced by updating the document
t ′, a projection of the original documentt leading tot ′. In order to produce the final resultu(t), we
parse and merge the initial documentt and the partial updated documentu(t ′).

Before commenting the examples, let us spend some words about the adopted notation. In the
figure, each node of the initial documentt is adorned with its label (a, b, ...) and with an identifier
i inside square brackets (1, 1.1, ...). A node int whose identifier isi is next denoted byt@i. We
assume that the identifier of a node int carries on information about the node position int, according
to document order.

In the projectiont ′ of t, the identifier of a projected node is preserved, therefore it may not reflect
the new position of the node int ′ (it is the case, for instance, of the nodet ′@1.4 in Fig. 2.3.4). In
the partial updated documentu(t ′), new identifiers are assigned to inserted or replaced nodes (see
next examples).

Let us focus on the merge process. While mergingt andu(t ′), nothing special happens until the
a labeled nodest@1 andu(t ′)@1 are met. Just after, the two nodes examined byMergeare: the first
child nodet@1.1 labelledb of t@1, and the first child nodeu(t ′)@1.4 labelledd of u(t ′)@1 .

Here, child rank 4 ofu(t ′)@1.4 is strictly greater than the child rank 1 oft@1.1. Also, the label
b belongs to the projectorπ, indicating that the nodet@1.1 has been projected int ′. Thus, the node
t@1.1 is not output (it has been deleted by the updateu), the original documentt is further parsed.

The next two nodes examined are:t@1.2 labelledc andu(t ′)@1.4 labelledd. Once again, the
child rank 4 ofu(t ′)@1.4 is strictly greater than the child rank 2 oft@1.2, however this time, the
labelc does not belong to the projectorπ (the nodet@1.2 was not needed for the partial update and
thus not projected int ′) and thus the nodet@1.2 is output in the final result, the original document
t is further parsed. The process will continue parsingt andu(t ′) until both documents are fully
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scanned. Note that, positions of nodes (more precisely child rank) in the initial document play a
crucial role in theMergeprocess.

doc = a* b = String
a = b*,c*,d? d = (f | g)∗

πno={doc,a,b,d}
πolb=πeb=∅

(1) TheDTD D (2) The projectorπ for u

doc
[ε]

a
[1]

b
[1.1]

’oof’

c
[1.2]

c
[1.3]

d
[1.4]

f
[1.4.1]

g
[1.4.2]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

doc
[ε]

a
[1]

b
[1.1]

d
[1.4]

a
[2]

d
[2.1]

(3) XML documentt (4) Projectiont ′ of t wrt π
doc
[ε]

a
[1]

d
[1.4]

a
[2]

d
[2.1]

doc
[ε]

a
[1]

c
[1.2]

c
[1.3]

d
[1.4]

f
[1.4.1]

g
[1.4.2]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

(5) Partial updateu(t ′) (6) Final resultu(t)

FIGURE 2.3: A motivating example of the Update Scenario

Dealing with insertion Consider the updateu1 specified by

for $x in /doc/a return insert as last <e>’new’</e> into $x and the sameDTD

D and documentt of Fig.2.3.1 and2.3.4. Intuitively, the path corresponding to data relevant for the
updateu1 is /doc/a and the types of nodes traversed by this path areπ1={doc,a}. The projection
π1(t) of t as well as the partial updateu1(π1(t))are illustrated in Figure2.4. Recall that node iden-
tifiers in π1(t) correspond to node identifiers int, the same holds for unchanged nodes inu1(π1(t)),
and that new (inserted or replaced) nodes inu1(π1(t)) are given new identifiers. In Figure2.4, i and
i′ are new identifiers.

We see now how the merging of the initial documentt and the partial resultu1(π1(t)) is done in
order to produce the final resultu1(t). Once the root nodes of the two documents have been visited,
the two nodes examined byMergeare: t@1.1 labelledb and the new nodeu1(π1(t))@i labellede.
Here, the new identifieri conveys no information about child rank of the new node and even if the
projector tells us that the nodet@1.1 has been projected out, there is no way to decide whether it
has to be output before the inserted node or vice-versa. Recall here the assumption made forMerge:
information about the updateu1 is not available.

In order to solve this problem, related to insertion, we opt for a new notion of projector, taking
into account that for the updateu1 the path/doc/a is the target of an insertion. The projectorπu1

will have 2 components: the typedocof category ‘node only’ and the typea of category ‘one level
below’. Applying this new projector to a document proceeds as follows: the nodes labelled by types
of category ‘node only’ are projected; the nodes labelled bytypes of category ‘one level below’
are projected together with each of theirchildren. Descendants of these children are not projected,
unless other components of the projector require this projection.
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FIGURE 2.4: Dealing with insertion

doc
[ε]

a
[1]

b
[1.1]

’fo’
c

[1.1.2] ’ot’

c
[1.3]

d
[1.4]

doc
[ε]

a
[1]

b
[1.1]

’foot’

d
[1.4]

doc
[ε]

a
[1]

b
[1.1]

’foot’

doc
[ε]

a
[1]

b
[1.1]

’fo’
c

[1.1.2] ’ot’

d
[1.4]

t2 π2(t2) u2(π2(t2)) πu2(t2)

FIGURE 2.5: Dealing with mixed-contents

For our example, applying the projectorπu1=(πno,πolb) with πno={doc} andπolb={a} to the
documentt leads to the documentπu1(t) depicted in the table above together with the partial update
u1(πu1(t)). Since now the new nodes are inserted in a projection containing all their siblings, it is
easy to check that the documentst andu1(πu1(t)) can be merged in a valid, simple and efficient way.

It is worth observing that our projector avoids unnecessarynode projection: the projection of all
children of a ‘one level below’ node is forced, but labels of these children do not take part of the
projector.

Dealing with String and mixed-content We now modify theDTD D by redefining the rule forb as
b→(String| c)∗ and consider the updateu2 specified byfor $x in /doc/a where $x/b/text()=’foot’

return delete $x/d. Intuitively, /doc/a/d and/doc/a/b/text() are the paths corresponding to
data relevant for the updateu2. The associated types areπ2={doc,a,b,String,d}. Let us con-
sider the documentt2 and its projectionπ2(t2) both given in Figure2.5. Notice that projectingt2
wrt π2 has the side effect to concatenate the twoStrings’fo’ and ’ot’ and consequently, the node
u2(π2(t2))@1.4 labelledd is deleted when the updateu2 is applied on the projected documentπ2(t2).
Recall the assumption thatMergeis not supposed to change the elements parsed int2 andu2(π2(t2))
and has only access to the projector. Thus, we cannot expect that merging the initial documentt2
and the partial updated resultu2(π2(t2)) will produce the final updated document.
The problem here is due to mixed-content nodes and solved by modifying the projector in the same
way as for insertion. The new projectorπu2 generated for the example will have 2 components:



26 Chapter 2. Type-based projection for efficient XML processing

πno={doc,a,d} of category ‘node only’ andπolb={b} of category ‘one level below’.

Dealing with element extraction Consider theDTD D and the updateu3 for $x in /doc/a return

replace $x/b with $x/d. First, it is clear thatreplace updates have to be treated like insert wrt to
the target path$x/b: replace is a delete followed by an insert. Second, because the path/doc/a/d
is meant to return the element copied at the target node computed by/doc/b, the complete subtrees
rooted at nodes of typed have to be completely projected. For this update, we proposeto generate
a projectorπu3 composed of three sets of types:πno={doc} of category ‘node only’,πolb={a} of
category ‘one level below’, andπeb={d} of category ‘everything below’ (abbreviated ‘∀ below’).

Let us explain the behavior of the 3-level type projector wrtthe category ‘everything below’: a
node labelled by a type of this category is projected together with its sub-forest. Indeed, applying
the projectorπu3 on the documentt of Fig. 2.3.4 produces almost the whole document with the
exception of the String ’oof’ which is pruned out.

As already outlined, this third component of the projector ensures higher precision and efficiency
wrt [BCCN06]. In particular, it allows avoiding to include in the projector the types of the nodes in
the subtree of a ‘∀ below’ node and accelerates the projection process it-self.

Type-projector Inference and then Merge Algorithm

As we have seen, given an updateu over an XML documentt valid wrt the DTD, our optimization
technique relies on 3 steps:

• An update type projectorπ is inferred fromu and theDTD (r, E), andt is projected wrtπ.

• The updateu is evaluated over the projected documentπ(t) producing a partial resultu(π(t));

• The fully updated documentu(t) is built by merging the initial documentt andu(π(t)).

We see in more details each of these steps. As expected, in thefollowing part we assume that
the identifieri in the root node of a treeai [ f ] actually is a position identifier, as depicted in previous
examples. Also, differently form the previous chapter, we assume here that textual nodes have no
(position) index.

Update type-projector and its inference Our 3-level type projectors are defined as follows.

Définition 2.8 (Type Projector) Given aDTD (r, E) over the alphabetΣ, a type projectorπ is a
triple (πno,πolb,πeb) such that (π also denotesπno∪πolb∪πeb):

1. π⊆Σ

2. πno, πolb andπeb are pairwise disjoint, and

3. r∈π and for eachb∈π there existsa∈π such thatE(a)=Randb occurs inR.

Theπno (resp.πolb andπeb) component ofπ contains ‘node only’ types (resp. ‘one level below’ and
‘∀ below’ types). Notice that condition 3) ensures some closure property wrt theDTD E: labela∈π
cannot be deconnected from the root labelr although it does not need to be connected in all possible
manners (see projectorπ4 below). Notice that theStringtype itself never belongs to a type projector
π: as already explained, a string is projected “indirectly" when its parent node type is of category
’olb’ or ’eb’.



3. Projection for XML updates 27

1 Merge( fi | fu) = fu if fi=()
otherwiseassumefi=ti , f ′i

2 ti ◦ Merge( f ′i | fu) if ti = s ,
otherwiseassumelabel(ti)=a,

3 Merge( f ′i | fu) if a∈π and eitherfu=() or fu=tu, f ′u with pos(tu)>pos(ti)

4 TreeMerge(ti | tu) ◦Merge( f ′i | fu) if a∈π, fu=tu, f ′u andpos(ti)=pos(tu)

5 ti ◦ Merge( f ′i | fu) if a6∈π

FIGURE 2.6: The functionMerge

c.1 CMerge( fi | fu) = fu if fi=()t,

c.1′ () if fu=(),
otherwiseassumefu=tu, f ′u

c.2 tu ◦ CMerge( fi | fu) if tu=sor new(tu),

otherwiseassumefi=ti , f ′i
c.3 CMerge( f ′i | fu) if ti=s or label(ti)=a with a∈π andpos(tu)> pos(ti)

c.4 TreeMerge(ti | tu) ◦ CMerge( f ′i | fu) if a∈π, label(ti)=a, andpos(ti)=pos(tu)

c.5 ti ◦ CMerge( f ′i | fu) if a6∈π andlabel(ti)=a

FIGURE 2.7: The functionCMerge

Définition 2.9 (Type Projection) Given a DTDDTD (r, E), the type projectorπ=(πno,πolb,πeb)
and the documentt ∈ (r, E), the projectiont\π is defined according to what follows.

l i [ f ]\π = l i [ f \π] l ∈ πno

l i [ f ]\π = l i [Πolb
π ( f )] l ∈ πolb

l i [ f ]\π = l i [ f ] l ∈ πeb

where

Πolb
π (()) = () Πolb

π (si) = si Πolb
π (l i [ f ], f ′) = l i [ f \π],Πolb

π ( f ′)

The closure property 3) of definition2.8 entails that the result of a type projection is a well-
formed tree, although it may not conform to theDTD D.

Concerning the inference of a the type-projector from an updateu and an input DTD, this op-
eration relies on path extraction from updates. We do no report here path extraction rules (see
[BBC+11b] for details). In a nutshell, the rules extract from an update u three kinds of paths,
Pno, Polb andPeb, respectively selectingno, olb andeb nodes during update evaluaion. The 3-
componentsπno, πolb andπeb of the type-projector are then obtained by using type-projector infer-
ence as described in Section2 starting form, respectively, the extracted pathsPno, Polb andPeb.

The merge phase

The task ofMerge is to build the resultu(t) of the updateu overt starting from the initial treet and
the updated partial treeu(π(t)). The main assumption here is that the input documentt is a p-store,
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implying that node identifiers correspond to node positionsin the document. The functionMerge
uses this information, the 3-level projectorπ and nothing else.

For the purpose of insert and replace operations, it is assumed that the updateu generates ’new’
(not already used int) identifiers. Also, whent = ai [ f ], in definitions we usepos(t) to indicate the
position identifieri of the root element oft, and label(t) to indicate that labela of this last one.
Finally, the predicatenew(t) holds whent is a newly inserted tree.

The functionsMergeandCMergeare formalized in Fig.2.6and Fig.2.7. For the sake of simplic-
ity, the update projectorπ is kept implicit in the specification.

The functionsMerge andCMergehave to be thought of as mechanisms parsing in parallel two
forests: fi belonging to the initial treet and fu belonging to the updated partial treeu(π(t)); parsing
synchronization is captured by the fact that the parent nodes of fi and fu are assumed to share the
same identifier; because of projection and update,fu contains identifiers belonging tot, besides the
new ones due to insert and replace operation.

The two functions differ on the following pre-conditions:

• Merge assumes that (†) the parent noden of the forest fi is of category ‘node only’ which
implies that, because of synchronization, i) none of the toplevel trees infu is of typeString,
ii) root identifiers of top level trees infu belong to those offi .

• CMergeconsiders that (††) the noden is of category ‘one level below’ which implies that each
node inroots( fi) has been projected and thatroots( fu) are exactly the top level nodes offu
that have to be output byCMerge.

The functionMergeproceeds as follows:
Line 2 takes care of the case where the current parsed treeti of fi is a string value. The assumption
† entails that it has been pruned out byπ. Thus, the stringti is simply output.
Line 3 deals with the case where the labela of the root ofti belongs toπ (thus a subtree ofti has been
projected) and theti root does not occur infu (ti has been projected and then deleted by the update).
When fu is not empty, this latter fact is identified by comparing the identifiers of the currently parsed
nodes (which are positions infi ): pos(tu)<pos(ti) indicates that the treeti comes after the treetu in
the forestfi . Thusti is not output.
Line 4 takes care of synchronization on the root nodes oftu andti : these nodes can only differ by
their labels because of some renaming. In that case, the treeTreeMerge(ti | tu) is output.

Finally, line 5 deals with the case where the labela of ti root does not belong to the projectorπ
implying thatti has been pruned out. Henceti is output.

As said before, the functionCMerge, specified in Fig.2.7, is built assuming (††). Parsingfi and
fu in parallel is thus essentially guided byfu, as opposed toMerge.
Line c.2 deals with the case where the current parsed treetu of fu is either of typeStringor a newly
inserted element. This latter case is identified by checkingwhether the identifierpos(tu) is new.
Hence, the treetu is output. The reader may notice that no move onfi is performed: a simple case
analysis shows that synchronization is recovered through other cases.
Line c.3 is similar to line 3, although it should be paid attention to the sub-case where the root ofti
is of typeString: ti is then ignored because thecorrespondingstring element infu (updated or not
by u) has, eventually, already been output by a previous application of line c.2.
Lines c.4, c.5 are the dual of lines 4, 5 of theMergedefinition. The reader should pay attention to
line c.5 where, although implicit, the equalitypos(ti)=pos(tu) holds (as opposed to the case "line 7"
of Merge): even ifa 6∈ π, because of (††), the node identified bypos(ti)=pos(tu) is in both forestsfi
and fu.

In [BBC+11b], we have proved that our update mechanism based on the 3-level type projection
and the merge process preserves update semantics:
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Theorem 2.5 Let u be an update over D andπ be the inferred type projector for u. Then for each
tree t∈D, we have:Merge(t | u(π(t)))∼ u(t).

Above, the equivalence∼means equality up to node identifiers.

Implementations and Experiments

In order to validate the effectiveness of our method, both projection and merge algorithms have been
implemented in Java. The algorithmMergehas been implemented by means of two threads, parsing
t andπ(t) respectively. These threads are defined in terms of classes obtained by extending existing
SAX parser classes [saxa]. The two threads interact with each other according to the Producer-
Consumer pattern.

Experiments

Several tests have been performed using our Java implementation and 7 updates U1 - U7 on XMark
documents of growing size. These updates, together with their associated projectors, cover the main
update operations made available by XQuery Update Facility(insert, rename, replace and delete).
All experiments were performed on a 2.53 Ghz Intel Core 2 Duo machine (2 GB main memory)
running Mac OSX 10.6.4 .

The main aim of our tests was to evaluate our projection basedtechnique. We focused on two
systems Saxon and QizX, and used the whole set of 7 updates.

Concerning Saxon, tests results showed that our technique succeeds in its primarily purpose:
making possible to update very large documents with in-memory systems, in the presence of mem-
ory limitations.

Concerning QizX, this system has less severe memory limitations, being able to process rather
large documents. However we still have great improvements in terms of memory: with projection,
we could update up to 2GB for updates, while without projection the limit was 520 MB. However, for
QizX, projection also ensures sensible total execution time reduction. This is in part due to the fact
that QizX needs a significant time to build auxiliary indexesat loading time. This improvement also
testifies the effectiveness of our design choices at the projector, path extraction, and Merge function
level. For the 52MB document, we had the following reductions of execution times, expressed in
percentages: U1 (45,4%), U2 (60,3%), U3 (74,3%), U4 (72,2%), U5 (45,2%), U6 (63,6%), U7
(24%). We had similar percentages for documents of other sizes.

A last kind of tests we made concerns the computation of a unique projection for all the updates,
executed in the following order: U1, U2, U3, ..., U7. The document has been projected once, then
all the updates have been evaluated on the projection, and finally Merge has been executed once to
obtain the final document. With Saxon and QizX this took, respectively, 82 and 64 seconds on the
128MB document. For this document, the sum of total times needed to projecting, updating and
merging for each single update was much higher, respectively 181 and 194 seconds for Saxon and
QizX.

4 Conclusion

In Section2 we have presented a type-based projection approach for optimizing main-memory XML
query processors. Experiments we have conducted showed clear advantages of applying our opti-
misation technique to query XML documents. Also, our technique improved the state of the art
for several aspects: for performances (better pruning, more speedup, less memory consumption),
for the analysis techniques (linear pruning time, negligible memory and time consumption), for its
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generality (handling of all axes and of predicates), and, last but not least, for the formal foundation
it provides (correctness formally proved, limits of the approach formally stated).

The technique we have presented in Section3 has been the first XQuery update optimization
technique based on the use of projection and schema information. One of its main distinctive features
is a new notion of projector allowing to strictly minimize the resulting projection, and to efficiently
propagate updates from the updated projection to the initial database. Another distinctive feature is
that the proposed framework can be exploited without changing any internal part of the query/update
engine.

Both presented techniques deal with DTDs. The extension to XML Schema has been considered
in [BCCN11], a full version of [BCCN06]. Concerning projection for updates, the extension to
XML Schema is subject of current investigations, and results will be integrated in the full version of
[BBC+11b].
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3

PROJECTION-BASED
DETECTION OF CORRUPTED

XML SCHEMA MAPPINGS

Current data integration technologies provideuniformanddeclarativeinterfaces to access data dis-
persed onmultiplesources, possiblyheterogeneousandautonomous.

A main task in data integration is the maintenance of schema mappings. A schema mapping
from a source schemaS to a target schemaT describes how to translate data conforming toS

into data conforming toT , and it can be used to reformulate queries onS into queries overT , and
vice versa, according to theGlobal-As-View(GAV), Local As View(LAV), and Global-And-Local-
As-View(GLAV) paradigms [Ull88, Ull89, FLM99]. Schema mappings are used during query an-
swering for reformulating queries or, as in data exchange systems [AL05b], for generating canonical
solutions; schema mappings, hence, allow the system to retrieve data that are semantically similar
but described by different schemas.

A schema mapping iscorruptedwhen it fails in matching the source or the target schema. The
presence of a corrupted mapping can significantly affect query processing, as it may make no more
accessible the corresponding remote data source or may produce meaningless query results.

Mapping maintenance is a time-consuming, complex, and expensive activity, and is usually per-
formed by the system/site administrator, who manually inspects schemas and mappings in order to
find errors in mappings definitions; as a consequence, quick responses to sudden mapping corrup-
tions are not possible. To aid and accelerate errors detection, several tools and techniques for assist-
ing the administrator in maintaining schema mappings have been described in the recent past (see
[MAL +05], for instance). These techniques are usually based on the monitoring of some arbitrary
parameter, like, for instance, the “quality” of samples of transformed data instances or transformed
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queries, and usually do not offer guarantees about the completeness of the approach.
In more detail, the above depicted techniques have two main drawbacks. First, they are not

complete since wrong rules that are not used for reformulating a query or for transforming a sample
data instance cannot be discovered. Second, they usually require an interaction with query answer-
ing or data transformation algorithms; this implies that these techniques cannot directly check for
mapping correctness, but, instead, check for the correctness of a mapping wrt a given reformula-
tion or transformation algorithm. Hence, a significant weakness of these techniques is that they
refer to a notion of mapping correctness which is strongly related to the properties of a particular
reformulation and/or transformation algorithm.

This chapter describes results presented first [CS05b, CS06] and then in a journal paper [CS09].
The chapter is about a static analysis technique for maintaining schema mappings in XML data
integration systems, where mappings are specified by means of XQuery clauses [XQub].

Given a schema mappingm fromS to T , we assume that a schemaSm describing the structure
of the imagem(S ) is available (through an inference process), and then we compareSm wrt the
target schemaT according to atype projectionnotion, which generalizes the notion of relational
projection, and captures and formalizes the intended semantics of mapping correctness of typical
data integration systems [HIMT03]. If this comparison for projection succeeds, we are sure that
the mapping rules describe data that are “compatible” with the target schema; moreover, as an
important consequence, if the mapping is deemed as correct,then reformulated queries will always
be consistent with the target schema.

The above depicted framework requires the existence of an output typeSm for m; in order to
show that this assumption is not restrictive, we provide a quite efficient type inference system, able
to infer such upper-boundSm at static time, starting fromm and its input schemaS ; we will also
show that the inferred schemaSm is quite close tom(S ), thus entailing an high degree of precision
in the corruption checking process.

As already mentioned, one of the main strengths of this approach lies on the fact that the combi-
nation of type projection and type inference results in a technique that is independent from queries
posed against the integrated database, does not rely on query reformulation algorithms/techniques,
and it iscomplete, i.e., any incorrect mapping will be detected. As a final remark, the solution pro-
posed in this paper can be used in both traditional and decentralized data integration systems, as
well as in data exchange systems ([FKMT05]).

This chapter is structured as follows. Section1 provides an overview trough examples of the
proposed framework. Section2 describes the notion of mapping correctness, relying on thetype
projection relation. Then Section3 discusses decidability, complexity and an efficient algorithm
to check type projection. A brief overview of a technique formapping type inference is given in
Section4, while experiments, related works and conclusions are respectively discussed in Sections
5, 6 and7.

1 Motivating Scenario

In both examples and formalizations, in this chapter we adopt a notation for types which is different
from that of previous chapters. It is based onregular expression types, introduced and used in the
XDuce [HP03] and XQuery [DFF+10] type languages. Examples and the formal treatment are better
handled with this notation.

We motivate our technique by referring to a decentralized data integration scenario, where mul-
tiple data sources are connected by means of one-to-one mappings. This scenario is a generalization
of centralized approaches, where each data source is mappedinto a (single) global schema. For the
sake of simplicity, we assume a minimal configuration, comprising two data sources only (p1 and
p2), so as to focus on mapping correctness rather than on query reformulation or routing issues.

Each data source hosts a bunch of XML data, described by a schema (S for p1 andT for p2);
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these schemas are connected through a schema mapping (in thefollowing we will use the expression
“schema mapping” to denote any mapping between types). The mapping can be defined according
to theGlobal-As-View(GAV) approach, or to theLocal-As-View(LAV) approach. Our approach is
based on LAV mappings, where the target (local) schema is described in terms of the source (global)
schema; nevertheless, this approach applies to GAV mappings too, since, as noted in [Tat04], a LAV
mapping fromp1 to p2 can be interpreted as a GAV mapping fromp2 to p1.

In our framework, a mappingm from S to T is a set of queries that specify how to translate
data belonging toS into data conforming to a projection ofT . A mapping, hence, can be regarded
as a specification rather than an actual transformation fromS to T , as it is not forced to detail the
construction of all target elements.

Mapping queries are expressed in the same query language used for posing general queries: this
language, calledµXQ, is roughly equivalent to the FLWR core of XQuery. We referthe reader to
[Col04, CGMS04, Che08b] for detailed presentations and results aboutµXQ.

Data integration scenarios like this are usually managed with mediationapproaches, where
queries are reformulated by means of schema mappings and no centralized warehouse is used. The
correctness of the query answering process for a given querydepends on the properties of the re-
formulation algorithm as well as on the correctness of the mappings involved in the transformation:
indeed, if the mapping fails in matching the target schema, the transformed query will probably fail
as well.

The evolution of the integrated database, namely the changes in data source schemas, can dra-
matically affect the quality of schema mappings and, in particular, lead to the corruption of existing
mappings. This will reflect on query answering and on existing optimization techniques for decen-
tralized and centralized systems, such as the mapping composition approach described in [TH04].

The following example illustrates the basic concepts of thequery language, provides an intuition
of the projection-basedmapping correctness notion, and shows how mapping incorrectness can
reflect on query answering and data transformation.

Consider a decentralized data sharing system for music information. The system allows users to
share data about their (legally owned) music files, so to discover information about their preferred
songs and singers. Each user publishes, on a voluntary basis, the description of all the songs she is
storing on her computer or iPod.

Assume that a user in Cupertino publishes her music databaseaccording to the following schema.

CupMDB = mySongs[(Song)*]
Song = song[Title, Artist, Album, MyRating]
Title = title[String]
Artist = artist[String]
Album = album[String]
MyRating = myRating[Integer]

This schema groups data by song, and, for each song, represents the title, the artist name (a singer
or a band), the album title, as well as a personal rating information.

Suppose now that another user in Seattle publishes her database according to the following
(different) schema.

SeattleMDB = musicDB[Artist*]
Artist = artist[Name, Provenance, Track*]
Name = name[String]
Provenance = provenance[Continent, Country]
Continent = continent[String]
Country = country[String]
Track = track[Title, Year, Genre]
Title = title[String]
Year = year[Integer]
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Genre = genre[String]

This schema groups data by artist and, for each artist, details her name and provenance, as well
as the list of corresponding tracks.

To make these databases interact together, a proper schema mapping is required, as schemas nest
data in very different ways. Assume that the user in Cupertino employs the following mapping (a
set of XQuery queries) to map her schema into the Seattle-based schema.

SeattleMDB <-
Q1($input): for $a in $input/song/artist

return artist[
name[$a/data()],
for $s in $input/song,

$art in $s/artist
where $art/data() = $a/data()
return track[for $t in $s/title,

return $t]]
Q2($input): for $db in /mySongs

return musicDB[Q1($db)]

This mapping can be expressed by a single query, by nestingQ1 into Q2, however the above
presentation offer a modular view of the mapping. When expressing a complex mapping, it is
convenient to decompose its XQuery specification into several related queries.

This mapping specifies how data conforming to a fragment of the Cupertino schema (album
andmyRating elements are discarded) can be transformed into data conforming to a fraction of
the Seattle-based schema (for instance,provenance elements are discarded). In other words, the
schema mapping takes into account aprojectionof the two schemas. This is a very common situation
in data integration systems, as usually only a fraction of semantically related heterogeneous schemas
can be reconciled. In particular, as the Seattle user schemadoes not supportalbum andmyRating
elements, they must be ignored in the mapping. Furthermore,since the Cupertino schema does
not provide information about song genre, corresponding elements are not generated, hence any
transformed data instance must be regarded as a projection of a Seattle-compliant data instance.
As this mapping is only a specification, the actual transformation can be derived by applying, for
instance, a chase-like approach à la Clio.

Assume now that Seattle slightly changes its schema and, in particular, the way artist names are
represented: instead of a simplename element, information about artist’s first name and second
name is inserted into thename element:Name = name[first[String],second[String]].

This change in the target schema makes the Cupertino→ Seattle mapping incorrect. Indeed,
this mapping specifies the construction of simple contentname elements, which are now no more
allowed in the target schema. It should be observed that chasing the mapping cannot fix this problem,
as incorrect mappings generate incorrect transformations.

The incorrectness of the mapping from Cupertino to Seattle has two main consequences. First
of all, the actual transformation that we can derive from themapping fails in creating instances
of SeattleMDB from instances ofCupMDB: indeed, the transformation still generates simplename
elements in the target instance, which can no longer be accepted and validated against the target
schema. A second consequence is that, just as for data transformation, even query reformulation
fails, in the sense that any query involvingname elements is incorrectly reformulated. To illustrate
this point, consider the query shown in Figure3.1(a). This query, submitted by a user in Cupertino,
asks for the titles of all songs published by Burt Bacharach.The query is first executed locally in
Cupertino. Then, the system reformulates the query so to match Seattle schema; this reformulation
is performed by using standard LAV query rewriting algorithms (one can think ofCupMDB as the
global schema andSeattleMDB as the local schema) [MH03, TH04]2.

2We show a minimal transformed query, obtained by minimizingthe original transformed query and by deleting all
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songs_Bacharach[
for $s in $cupdb//song,

$t in $s/title,
$a in $s/artist

let $bb := “Burt Bacharach”
where $a = $bb
return song[$t]

(a) Cupertino user query.

songs_Bacharach[
for $a in $seadb//artist,

$n in $a/name,
$t in $a/track

let $bb := “Burt Bacharach”
where $n = $bb
return song[$t/title]

(b) Transformed Cupertino user query.

FIGURE 3.1: Reformulation of a user query.

At the end of the reformulation process, the reformulated query, shown in Figure3.1(b), is then
sent to the Seattle site. Unfortunately, the transformed query does not match the new schema of
Seattle users, so the Cupertino user cannot gather results from the Seattle site.

This example clearly pinpoints the maintenance issues thatarise in data integration systems and,
in particular, in those systems reconciling autonomous, web-based data sources. Furthermore, this
example highlights that the relationship between a schema mapping and its target schema cannot
be modeled through a standard subtyping relationà la XQuery/XDuce/CDuce, as this form of sub-
typing is based on set inclusion. Indeed, the output type of the mapping is not a subtype of the
target type, as the target schema prescribes the presence ofa genre element, which, instead, is
not generated by the mapping. The nature of schema mappings imposes a more flexible and gen-
eral way of comparing types than asubtyping-basedcomparison. This is the main motivation for
the introduction oftype projection, which captures the Piazza [HIMT03] intuition of mappings as
“transformation + projection” (i.e., non-functional transformation). We quote a part of this work:

At the core, the semantics of mappings can be defined as follows. Given an XML
instance,IS, for the source nodeSand the mapping to the targetT, the mapping defines
a subset of an instance,IT , for the target node. The reason thatIS is a subset of the
target instance is that some elements of the target may not exist in the source (e.g.,
thepublisher element in the examples). In fact, it may even be the case thatrequired
elements of the target are not present in the source. In relational terms,IT is aprojection
of some complete instanceI ′T of T on a subset of its elements and attributes.

This characterization is, indeed, common to most data integration and data exchange systems, and
points out that a schema mapping specifies anon-functionaltransformation from a source schema
S to a target schemaT . In the following sections we will provide a formalization of type projection
for an even wider class of schema mappings: we will regard a mapping as a set of rules that specify
how to transform a source data instanceIS : S into a fragmentof one or more data instancesIT
conforming toT , the actual transformation fromS to T being obtained through a chase-like
process.

2 Mapping Validity and Correctness

This section describes the notions of mapping validity (no wrong rules wrt the source schema)
and mapping correctness (no wrong rules wrt the target schema). These notions are central to our
approach, and allow for the definition of an operational checking technique.

The syntax of the type language we adopt is is shown in Figure3.2. () is the type for the empty
sequence value,B denotes the type for base values (without loss of generality, we only consider
string base values), typesT,U andT | U are, respectively, product and union types, and, finally,

redundant subqueries.
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Types T ::= () empty sequence

| B base type

| l [T] element type

| T,T sequence type

| T | T union type

| T∗ repetition type

Base Type B ::= String

FIGURE 3.2: Type language

T∗ is the type for repetition. Types are unordered, as no globalorder on XML data dispersed on
multiple sources can be established: this aspect significantly increases the hardness of comparing
two XML types, as usual heuristics and optimizations based on type ordering cannot be applied in
this context.

Since types are unordered, in the following we will considera product typeT1, . . . ,Tn as identical
to all its possible permutationsTπ(1), . . . ,Tπ(n). Moreover, as our types actually are XDuce unordered
types, we also have thatT,() is identical toT, and that(T,T ′),T ′′ is identical toT,(T ′,T ′′). This
conforms to the corresponding laws over the data model.

Furthermore, the type language includes horizontal recursive types (allowed by typesT∗) but
does not include vertical recursive types, like, for instance, the one defined by this recursive defini-
tion

Part=partname[Description, Part*]

This is motivated by the fact that most mapping languages arenot powerful enough to transform
trees with arbitrary depth, whose structure can only be defined by vertical recursive types. Also, it
should be observed that many mapping tools like Clio do not support recursive types, as chasing
(i.e., the closure of a mapping against a schema) may not terminate on recursive types. For these
reasons we believe that discarding vertical recursive types is not restrictive in the study of schema
mapping languages.

The semantics of types is standard: we useJTK to denote the set of forests described by the type
T; the definition is standard [CS09].

Subtyping, which is used next to prove decidability of type projection, is defined via type se-
mantics, as shown below.

Définition 3.1 (Semantic subtyping)Given two typesT andU , T is a subtype ofU if and only if
the semantics ofT is contained into the semantics ofU :

T <U ⇐⇒ JTK⊆ JUK

Schema Mappings

In this section we introduce and formalize our notion of schema mappings. In our vision, a schema
mapping is the specification of a transformation from a source schemaS to a target schemaT .

Définition 3.2 (Mapping) Let S be a source schema and letT be a target schema. A schema
mappingm from S to T is an assertion fromS to T of the form(Q,{qi}i), whereqi is a query
from S to T , andQ is an outer query referring eachqi .
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The previous definition states that a mapping is composed by aprimaryquery (Q), which defines
the overall structure of the mapping, and by a set ofsecondaryassertions{qi}i, which correlate frag-
ments ofS with fragments ofT . The intuition behind this distinction is to provide more modularity
to a schema mapping by separating the way assertions are assembled from their specification. For
instance, in the previousSeattleMDB mapping,Q2 is the primary query, whileQ1 is a secondary
assertion. For the sake of simplicity, we will denote the combination of a primary query and a set of
secondary assertions asQ[{qi}i ].

By the previous definition, a schema mapping is a specification of the actual transformations
between source data and target data. Indeed, both the primary query and secondary assertions can
be incomplete, in the sense that they do not cover all the elements of the target schema. Of course,
our mappings can be enriched and modified to represent a complete transformation by using, for
instance, a chasing strategy. We prefer to focus on mappingsas a specification tool because this
notion captures the essence of schema mappings; furthermore, once a mapping has been deemed as
correct, the actual transformation can be easily and automatically generated by existing tools.

Correctness

In this section we will introduce the notion of mapping validity and mapping correctness. Validity
is characterized by the following definition.

Définition 3.3 (Mapping validity) A mappingm= (Q,{qi}i) from S to T is valid if and only
if the combination of the primary query and the secondary queries is correct wrtS, in the sense
that, for each non-empty subqueryq of Q[{qi}i ], there exists a data instanced of S such that, when
evaluated ond, q will return a non-empty result.

Consider the schemas the previousSeattleMDBmapping. This mapping is valid wrt the source
schema, as each subquery (path expression, in particular) returns no empty results for some valid
input.

Assume now that the source schema is modified as follows:

...
Song = song[EnglishTitle, Artist, Album, MyRating]
EnglishTitle = englishTitle[String]
...

The mapping now becomes invalid wrt the new source schema. Indeed, assertionQ1 contains a
nested query accessingtitle elements, which are no longer present in the schema.

Mapping validity implies that a valid mapping must be correct wrt the source schema, i.e., it
must match the structure of the source schema. We adopt the query correctness notion described in
[Col04, CGMS04] and [CS05a]. Mapping validity allows for identifying mappings that areobsolete,
i.e., that contain rules referring to fragments of the source schema that have been changed or deleted.
From now on, we will assume that each mapping is valid, and focus onmapping correctness, and
therefore on the detection of errors wrt the target schema.

Our notion of mapping correctness is based on the following notion of data projection. Intu-
itively, f1 is a projection off2, denoted asf1 . f2, if there exists a subtermf3 in f2 such thatf3
matchesf1; this is very close (up to simulation) to the relational projection, wherer1 = πAr2 if r1 is
equal to the fragment ofr2 obtained by discarding non-A attributes.

The notion of data projection we are going to formalize is essentially the same as the one pro-
posed in previous chapters, the only difference comes from commutativity of forest concatenation.
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Définition 3.4 (Value projection) The value projection relation. is the minimal relation such that:

() . f f1, f2 . f3, f4 if ( f1 . f3∧ f2 . f4)
b1 . b2 f1 . f3 if ∃ f2 : f1 . f2∧ f2 . f3
f . f ,() l [ f1] . l [ f2] if f1 . f2

f1, f2 . f2, f1

Note that in data projection we require structural matching, while exact matching on leaf base
valuesb is not required.

Définition 3.5 (Mapping correctness)A mappingm= (Q,{qi}i) from S to T is correct if and
only if, for eachS data instancedS , there exists aT data instancedT such thatQ[{qi}i ](dS ). dT .

The above definitions state that a mapping fromS to T is correct if and only the result of
Q[{qi}i ] on a value conforming toS is mapped, according to the. relation, into a value conforming
to T . . is aninjectivesimulation relation among values, inspired by the projection operator of the
relation data model.

Our notion of mapping correctness relies on the comparison between the semantics of the map-
ping, i.e., the set of its results when applied to instances of the source schema, and the semantics
of the target schema. In this sense, we can say that our notionis semantic, as it only depends on
the semantics of the source and target schemas, as well as of the mapping. This does not imply
that our notion is able to capture the intended semantics of amapping: this problem, indeed, is
AI-complete and cannot be completely solved by an automatictool. Before concluding this sec-
tion, some final remarks are needed. The notion of XML projection we adopt is a generalization
of that introduced by [MS03], where leaf values are taken into account too. Also, our notion of
correctness is independent from the mapping specification language, since it is defined in terms of
query (mapping) outputs, hence it is applicable in other data integration scenarios where mappings
are inferred by semi-automatic tools; for instance, our approach can be easily applied to mappings
described in terms of source-to-target dependencies. Moregenerally, our approach can be applied
to any mapping language for which suitable notions of type inference and type projection can be
defined.

3 Checking Correctness via Type-Projection

Definitions3.5and3.4describe our notion of mapping correctness, but they cannotdirectly be used
to check whether a mapping is correct or not. To obtain a constructive definition, we need to switch
from values to types.

Définition 3.6 (Type projection) Given two typesT1 andT2, we say thatT1 is a projection ofT2
(T1 . T2) if and only if: ∀d1 : T1 ∃d2 : T2. d1 . d2.

As for the value projection relation, the type projection relation is semantic, and states that a
typeT1 is a projection of a typeT2 if, for each data instanced1 conforming toT1, there exists a data
instanced2 conforming toT2 such thatd1 is a projection ofd2.

Type projection is quite different from standard subtyping, since it is based on the idea that
T1 . T2 if T1 matches a fragment ofT2, while T1 < T2 implies thatT1 is more specific thanT2.

Consider now our initial example, and the following type:

TinyMDB = musicDB[Artist*]
Artist = artist[Name, Provenance]
Name = name[String]
Provenance = provenance[Continent, Country]
Continent = continent[String]
Country = country[String]
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This type is actually a projection of SeattleMDB, as each TinyMDB instance is a projection of a
SeattleMDB instance. However, TinyMDB is not a subtype of SeattleMDB, as TinyMDB instances
lack track elements, which are mandatory for SeattleMDB instances. Touse type projection in
mapping correctness checking, we must correlate type projection and mapping correctness. To this
aim, if we assume that for each query we can infer a type containing all the query results, we can
use the inferred type to check mapping correctness, as indicated in the following proposition.

Proposition 3.1 (Mapping correctness via type projection)Given two schemasS andT , if m=
(Q,{qi}i) is a schema mapping fromS toT , and U an upper-bound for Q[{qk}k]

(for each f∈ JS K,
Q[{qk}k]

( f ) ∈ JUK), then m is correct if U. T .

As we will see next, quite precise query upper bound types canbe systematically inferred by
means of a type-inference algorithm able to prove judgmentsof the formΓ ⊢ Q : U , whereΓ is an
environment containing information about the source schemaS , andU is the inferred upper bound
type for the mappingQ.

Referring to our initial example, the output type of theSeattleMDBmapping is the following:

OutputType = musicDB[A*]
A = artist[N, T1*]
N = name[String]
T1 = track[T2]
T2 = title[String]

This type is a projection of the target SeattleMDB schema, hence the mapping can be deemed as
correct.

The notion of mapping correctness just presented addresseschanges in the structure of a schema.
As there are several kinds of updates that can be applied to a schema, it is worth to explore the various
forms of schema changes, so to understand to what extent our notion is effective.

In its most common interpretation, a schema consists of a type, describing the structure of the
instances of the schema, and of a set of constraints over datainstances. As a consequence, a schema
change may affect the type, the set of constraints, or both.

In our work we focus our attention on the type component of a schema, hence any change in the
set of constraints is not supported. This choice is motivated by the fact that, as previously said, we
assume that data sources are autonomous, hence it is unlikely that a data source makes constraints
externally visible.

We can consider five main kinds of structural changes that canbe applied to a schema: the
removal of existing type definitions (e.g. the removal of an element type); the change of a datatype
inside an element content type (e.g., the switch fromString to Int), the relocation of a fragment
of a schema to a new location; the renaming of an element type;and the insertion of new type
definitions inside the schema. In the following paragraphs we will explore the applicability of our
approach to these kinds of updates on both the source and the target schema.

Source schema Changes in the source schema of a mapping may affect its validity. When a type
definition is removed from the source schema, the validity ofa mapping is affected only if the
definition was used and referred in the mapping (we assume, ofcourse, that the new schema is well-
formed). For instance, assume that the definitionArtist = artist[String] is removed from the
source schema (CupMDB) seen in a previous example. The mapping becomes invalid, asit tries to
access a no longer existing fragment of the schema. The querycorrectness notion we described in
[Col04, CGMS04] can easily capture all errors implied by a type definition removal.

The same considerations apply to the relocation of a fragment of the schema to a new location,
and to the renaming of element type definitions. These changes may induce errors in a mapping
(remember that we see a mapping as a specification, hence it can be incomplete) only if they affect
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the portion of the schema that is visited by the mapping; again, the technique we developed in
[CGMS04] is able to identify and notify all errors induced by these schema updates.

Consider the schemas and the mapping of our main example and assume that the source schema
is modified as follows.

CupMDB = (Song)*
Song = song[Name, Artist, Album, MyRating]
Name = name[String]
Artist = artist[String]
Album = album[String]
MyRating = myRating[Integer]

The new source schema contains aname element in place of the oldtitle element (element renam-
ing); furthermore, the collection ofsong elements has been relocated to the outermost position in
the schema (type relocation). Both changes make the mappingno longer valid and induce errors
that are easily identified by the approach we described in [CGMS04], since the mapping tries to
access schema fragments no longer existing. The switch froma datatype to another one is not di-
rectly supported in the approach we described in [CGMS04], as our type system uses a single base
type. However, it can be easily seen that an extension to multiple datatypes is trivial and that all
corruptions induced by this kind of changes can be identified.

The enrichment of the source schema with new type definitionsnever alters the validity of a
mapping. Indeed, all type definitions accessed by the mapping are still present, so there is no error
that a type-checking algorithm can detect. For instance, ifwe modify the source schema of Example
??as follows:

Song = song[Title, Artist, Album, MyRating, ChartPosition]
ChartPosition = chartPosition[String]

all type definitions used by the mapping are still accessible.

Target schema The considerations we did for changes in the source schema apply also to the
changes on the target schema. In particular, all corruptions induced by the removal of a type def-
initions, by the renaming of an element type definition, and by the relocation of a fragment of the
schema are identified and notified. Furthermore, value projection and type projection can be easily
extended to support multiple datatypes.

As for mapping validity, mapping correctness is not affected by the insertions of new type defi-
nitions in the target schema. This is fully reasonable, as our mappings may be incomplete.

As we have seen, our approach is able to capture all errors induced by astructuralupdate on the
target schema. However, when a structural update is coupledwith a modification in the intended se-
mantics of the schema, things change. Referring to our previous example, assume thatSeattleMDB

is modified as follows:

Artist = artist[Name, WName, Provenance, Track*]
WName = wName[String]

whereWName models the working name of an artist andName its actual name. Observe thatCupMDB

does not distinguish between the actual and the working nameof an artist, so allCupMDB name
elements are interpreted as working names.

By addingWName, we do not violate the correctness notion of the previous section. However,
the intended semantics of the schema has now been modified, asName now represents actual names.
Such a change makes the mapping no more adequate, as it maps working names fromCupMDB into
SeattleMDB actual names.
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Any change in the intended semantics of a schema can make the mapping no more adequate.
However, checking that a mapping is “semantically” adequate to its source and target schema can-
not be automatically performed by a maintenance tool, as this problem is definitely AI-complete.
It should be observed that even detecting a change in the intended semantics of the schema of an
autonomous data source is, in the general case, not feasibleand requires the intervention of a devel-
oper.

Dealing with this kind of corruptions, hence, it is definitely not easy. However, our approach can
be easily extended to provide useful support to the developer. Indeed, type projection checking can
be used to identify the fragments of the target schema that are covered by the mapping; in the same
way, validity checking relates the mapping queries with thefragments of the source schema visited
by the mapping. By exploiting this information, we can analyze the behavior of the mapping on
both the source and the target schema (a preliminary implementation of this approach can be found
in the current version of our maintenance tool.3

By observing that a change in the intended semantics of a schema is more likely to corrupt a
mapping if it affects a fragment that is close to those touched by the mapping, we can notify to
the developer any schema change that is sufficiently close (according to some proper metric) to the
portions of the schema involved in the mapping. As an example, in the case of working names
and actual names, this extension will pinpoint the schema change as potentially harmful, as it is
very close toname elements, which are touched (covered) by the mapping. Of course, no formal
properties can be stated and proved for this extension; however, it provides useful information at a
very low extra cost.

Decidability and Complexity of Type Projection

As we have seen in the previous sections, and in Proposition3.1 in particular, if one can establish
a projection relation between the inferred type and the target schema of a mapping, the correctness
of the mapping is proved. In order to move towards a practicalcorrectness checking technique, we
first need to prove decidability of the type-projection relation.

To prove that type projection is decidable we rely on a particular notion oftype approximation.
Type approximation weakens types by enriching base and element types with a union with the empty
sequence type; this allows one to relate type projection to standard subtyping for commutative types,
whose decidability has been proved by [Huy85].

Type approximation is based on the idea of weakening types byintroducing unions with the
empty sequence type.

Définition 3.7 (Type approximation) Given a typeU , we indicate withU� the type obtained by
U just by replacing each subexpressionU ′, corresponding to a tree typel [_] or B, with U ′? ( that is
(U ′ | ())). Formally:

()�
△

= () T |U� △

= T� |U� l [T]�
△

= l [T�]?

B� △

= B? T,U� △

= T�,U� T∗�
△

= T�∗

Decidability of type projection relation is stated by the following theorem.

Theorem 3.1 (Type projection as sub-typing)

T .U ⇔ T <U�

The previous theorem states that type projection betweenT andU can be checked by weakening
U and, then, by checking for the existence of a subtyping relation betweenT andU�. This result

3It is available athttp://www.unibas.it/sartiani/projects/gamma.html).
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proves decidability of type projection, since [Huy85] proved that inclusion for commutative regular
grammars isΠp

2-hard and is in CoNEXPTIME. This result also identifies an upper bound for the
complexity of type projection; however, in the following wewill show that a better upper bound for
complexity of projection can be found by relying on a type simulation approach.

The previous theorem, stating that type projection is equivalent to subtyping, once the right hand-
side of the comparison has been approximated, gives rise to afundamental question, i.e., whether
type projection can be replaced, in the context of data integration and data exchange, by subtyping.
A strong reason for discarding subtyping, in favor of type projection, is its algorithmic complexity.

So in order to efficiently check type projection, we propose in the following an alternative char-
acterization of type projection which is not based on subtyping and which is a first step towards an
efficient algorithm.

Before illustrating our technique for checking type projection, it is worth to analyze the compu-
tational complexity of type projection. From Theorem3.1 we know that type projection is equiv-
alent to subtype-checking when the right hand-side of the comparison has beenweakened, i.e.,
T . U ⇐⇒ T < U�. SinceU can be transformed intoU� in polynomial time and space, this
theorem also states that type projection cannot be more expensive than subtype-checking. Inclu-
sion among commutative type is known to be in CoNEXPTIME [Huy85], hence CoNEXPTIME is
an upper bound for type projection too. We will see next that this upper bound can be refined to
EXPTIME.

For what concerns the complexity lower bound, we first introduce a supplementary operation
called.-membership.

Définition 3.8 (.-membership) Given a data model instancef and a typeT, we say thatf .memT
if and only if ∃ f ′ ∈ JTK. f . f ′.

The relation.memis here called.-membership as it is the counterpart of membership for inclu-
sion and equivalence problems. It should be observed thatf . f ′ can be decided in polynomial time
in the size off and f ′.

The following theorem shows that.-membership is NP-complete.

Theorem 3.2 .-membership is NP-complete.

The complexity of.-membership provides a lower bound for the complexity of type projection,
as shown by the following corollary.

Corollary 3.1 Type projection is NP-hard.

Type Projection as Type Simulation

Type simulationis asymbolicrelation among types, whose main aim is to provide a convenient way
to characterize and check for type projection.

Type simulation is defined among types indisjunctive normal form, i.e., types where products
are distributed across unions. A typeT can be normalized by applying the normalization function
norm(T), defined as shown in Table 3.1. It is easy to show that the evaluation ofnorm(T) always
terminates.

norm() works by transforming types, while preserving their semantics, so that the transformed
types can be easily compared by the simulation relation (andby the corresponding algorithm). For
instance,norm(T ′∗,U ′∗,U) transforms a product of repetition types, which is hard to formalize in
the simulation rules, into a *-guarded union, for which mucheasier simulation rules exist.

To eliminate some ambiguity, the rules of thenorm() must be applied in the order in which they
are defined.norm() can be applied to any type, and its relevance resides in the proof of equivalence
between simulation and projection, as it will be clear in therest of the paper.



3. Checking Correctness via Type-Projection 43

Table 3.1.norm() function.

norm(())
△

= ()

norm(B) △

= B

norm(l [T])
△

=

{⋃
l [Ai ] if norm(T) = A1 | . . . | An

l [norm(T)] otherwise

norm(T |U)
△

= norm(T) | norm(U)

norm(T ′∗,U ′∗,U)
△

= norm((T ′ |U ′)∗,U)

norm(T,U)
△

=







norm(A1,U) | norm(A2,U) if norm(T) = (A1 | A2)

norm(T,A1) | norm(T,A2) if norm(U) = (A1 | A2)

norm(T),norm(U) otherwise

norm(T∗)
△

= norm(T)∗

The core of normalization is the transformation of type expressions in conjunctive normal form
into equivalent ones in disjunctive normal form (see the third and the sixth rule in Table 3.1). As a
consequence,norm() has an EXPTIME worst case time complexity, and the normalized type may
have an exponential size wrt the original type. Despite this, for a vast class of typesnorm() can be
computed in PTIME. This class contains types where unions are always guarded by a∗-operator
(∗-guarded types), as shown by the following definition.

Définition 3.9 (SGT) A typeT is in SGT (star-guarded types) if it can be generated by the following
grammar:

*-Types T ::= () | B | l [T] | T,T | U∗

Union Types U ::= T | T |U

Proving that for∗-guarded typesnorm() is polynomial is straightforward.∗-guardedness is a
property enjoyed by a large number of commonly used DTDs and XSDs. For instance, the reader can
refer to [Cho02] and to [BNdB04] for a detailed classification of real world DTDs: this classification
shows that non-∗-guarded unions are quite infrequent. In any case, in order for norm() to blow up,
the∗-guarded union restriction must be systematically violated, so a few occurrences of∗-unguarded
are harmless.

It is worth to notice that optional types of the formA | (), even though representing a relatively
frequent kind of non-∗-guardedness, does not affect the complexity ofnorm() since they can be
rewritten intoA by preserving projection. So, from now on we can make the assumption that types
do not contain optional typesA | (). This is assumption is non-restrictive since, as proved in [CS09],
they can be safely eliminated.

It is easy to prove that thatnorm() preserves the semantics of types: for each typeT, JTK =
Jnorm(T)K.

Définition 3.10 A typeT is prime if and only if norm(T) = T andT 6= A | B.

Prime types play a crucial role in our framework. Since primetypes are invariant under nor-
malization and they cannot be union types, their semantics never contain mutually exclusive tree
structures. For this reason, a prime type can be considered as a whole during projection checking,
without the need of any kind of further transformation. Thisis ensured by the following lemma,
formalizing the main property enjoyed by prime types.

Lemma 3.1 (Upward closure) If T is prime, then∀ f1, f2 ∈ JTK.∃ f ∈ JTK. fi . f

We will need the following lemma that deals with projection among *-types. Essentially, as far
as prime types are concerned, this lemma states that a typeT∗ is in the projection relation only wrt
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to typesU containing a *-type at the top level, that isU = U1∗,A with A not containing *-types at
the top level; moreover, only the *-type contributes to the projection, the proof being based on the
cardinality of sequences.4

Lemma 3.2 If T∗ and U are prime, then T∗.U ⇔ U = (U1)∗,A and T∗. (U1)∗.

We can now state the definition oftype simulation.

Définition 3.11 (Type simulation) The type simulation relation� among normalized types is de-
fined as follows.

1) B � B
2) () � U
3) l [T] � l [U ] if T �U
4) T1 � U2,U3 if T1 �U2∨T1�U3
5) T1,T2 � U3,U4 if (T1 �U3∧T2�U4)
6) T1 � U2 |U3 if T1 �U2∨T1�U3 andT1 6=V1 |V2
7) T1 | T2 � U if T1 �U ∧T2�U
8) T � U∗ if T �U
9) T∗ � U∗ if T �U∗
10) T1,T2 � U∗ if T1 �U ∗∧T2�U∗

Rules 1-3 are straightforward as well as Rule 8. Rules 4-5 describe the simulation among product
types, while Rules 6-7 illustrate the simulation among union types. Rules 8-10, finally, are dedicated
to repetition types.

Rules for product types are of special interest. In particular, Rule 5 shows that simulation be-
tween product types isinjective, hence capturing the injective nature of projection: for instance,T
= Album,Albumcannot be projected intoU = Album, as data conforming toT have two distinct
album elements, while data conforming toU have only onealbum element. Injectivity may be
broken by repetition types, or when sequence types are in theimmediate scope of a repetition type.

Rules 6-7 describe the simulation for union types. These rules pinpoint the commutative and
non-injectivenature of union types.

Type projection is equivalent to type simulation. The proofis a bit involved and can be found in
[CS09].

Theorem 3.3 Given two normalized types T and U:

T .U ⇔ T �U

Type Projection Checking

In the previous section we showed the equivalence between type projection and type simulation. This
allows for the construction of anefficient, simulation-basedprojection-checking algorithm. The
algorithm is actually anot-so-naiveimplementation of the type simulation rules. Indeed, a naive
implementation of these rules would lead to a super-exponential algorithm, due to the following
reasons. First of all, a recursive comparison of two typesT1 andT2, as suggested by the simulation
rules, would lead to manybacktrackingoperations, in particular when comparing union or product
types: for instance, when comparingl [m[T]] with l [m[B]], l [m[T ]] (whereT 6= B), a naive algorithm
would (i) apply Rule 4 for product types and choosel [m[T]] and l [m[B]] as types to be compared,
(ii) start the comparison of the chosen types, and (iii) go back to Rule 4 and step (i) when the
comparison fails. This problem can be solved byflattening T1 andT2, and by constructing atype
matrix (simTypesin our algorithm), whose rows and columns are associated, respectively, to type

4Recall that each prime type can have at most one *-type at the top level.
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terms inT1 and inT2. The type matrix is then used to compare each type term inT1 with each type
term inT2 according to the hierarchy of type terms (hence, terms occurring in very distant fragments
of T1 andT2 are not compared); by doing so, the algorithm does not perform backtracking, nor it
performs comparisons among types that are “incompatible” according to the type term hierarchy.

The second key factor that makes naive algorithms super-exponential is the comparison among
product types. The type simulation definition states that, if outside the immediate scope of a repe-
tition type,Z1, . . . ,Zn � V1, . . . ,Vm if and only if each typeZi can be mapped into a distinct type in
V1, . . . ,Vm, so that there do not existZi andZ j (i 6= j) such thatZi andZ j are mapped into the same
type termVh. This problem is also present in many subtype-checking algorithms, and can be naively
solved by generating all possible assignments ofZi to Vj types and by choosing an injective one:
this can be done in super-exponential time, as the possible assignments areO(

(m
n

)

).
An alternative solution for the comparison of product typescan be obtained by observing that

this problem is equivalent to a0-1 maximum flowproblem onbipartite graphs. Indeed, one can build
a bipartite graphG , whose first partitionP1 contains one node per eachZi type, and whose second
partitionP2 contains one node per eachVj type; nodes inP1 are connected to a sources, while
nodes inP2 are connected to a sinkt. P1 andP2 are connected together through edges satisfying
the simulation relation, i.e., an edge fromZi to Vj is inserted inG if Zi � Vj . Each edge has two
possible values for its flow: 0 and 1. The sources emits a flow ofn units, soZ1, . . . ,Zn simulates
V1, . . . ,Vm if and only if a flow of n units reaches the sinkt. This can be determined by using a
quite standard 0−1 maximum flow algorithm on bipartite graph, whose complexity is O((n+m)3)
[Gol98]. A similar technique is also used in [CPR05] for subtype-checking of product types in a
rather restrictive type language.

Our algorithm for type projection checking is formalized in[CS09]. Concerning its complexity,
we proved that its worst case complexity, while comparingT andU , is O(nm(n+m)3), wheren is
the number of terms inT, andm is the number of terms inU .

We previously showed that type projection is NP-hard. The above PTIME complexity does not
conflict with that result, as the simulation checking algorithm works on normalized types only, and
normalization has exponential complexity in the case of non*-guarded types.

4 Mapping Type Inference

As previously stated, our approach can be used to verify thata mappingm from T to U is correct
only if we are able to infer a typeU ′ describing the structure of the output ofm, that is a typeU ′

such that: for eachf : T, m( f ) : U ′. So,m is correct ifU ′ .U holds.
Depending on the “precision” of the inferred typeU ′, it may happen thatm is correct while

U ′ . U does not hold. Such afalse-negativeis due to the fact that the type system has not been
clever enough to infer a very precise type for the mapping, that is, a type whose semantics is quite
close to the set of the mapping co-domain. Of course, in the presence of false negatives we bother
the user with error warnings without any real motivation; furthermore, in this case it is very likely
that the user makes unneeded (the mapping is correct!) efforts to change the mapping. So, it is
crucial to develop inference techniques that return quite precise inferred types and decrease false
negatives, so to improve the effectiveness of our approach.

In [CS09] we illustrate how a quite precise output type can be inferred for a mapping expressed
in the µXQ language [Col04, CGMS04, Che08b]: since µXQ is rather expressive, we are quite
confident that the proposed inference technique can be generalized to different mapping approaches.
To this end we provide opportune query typing rules, prove soundness of the resulting type system,
and also show that the resulting typing algorithm is preciseand efficient at the same time.
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5 Experimental Evaluation

In the previous sections we analyzed the theoretical properties of a projection-based approach for
capturing errors in schema mappings. Furthermore, we proved that this approach has exponential
complexity in the general case, and it is polynomial on many practical cases.

To experimentally validate the usefulness of the proposed approach, we have performed exten-
sive tests by using a Java implementation of the type inference system and the projection checking
algorithm. Experiments focused key aspects: precision andscalability.

An experimental analysis of the precision properties of ourapproach is important as type in-
ference may generate over approximations of the output typeof a given schema mapping, which,
in turn, may lead tofalse negatives, i.e., mappings that are deemed as incorrect even though they
are perfectly legal. Hence, our approach can be considered practically useful only if it keeps false
negatives very low (or does not generate false negatives at all in most common practical scenarios).
As a consequence, our first battery of experiments analyzes the precision of our approach on the data
integration benchmark described in [ATV08]. This benchmark comprises most transformations used
in practical scenarios and represents an interesting way tovalidate our approach on “real world” sce-
narios. Performed tests confirmed the high precision of the type inference system, no false negatives
have been produced.

The second battery of experiments focused on scalability. We performed our scalability tests on
the schema of the XML-encoded version of DBLP (available athttp://dblp.uni-trier.de/xml/).
This dataset has already been used for experimental evaluations of data integration and exchange
techniques, and reflects the features of commonly used schemas [HHP+07, BMP+08]. While the
source schema we used essentially consists of the DBLP DTD, the target schema we used features
a significantly different element nesting wrt the source schema.

As our approach has a (single) exponential worst case complexity, its practical usefulness lies
in its ability to beautifully scale and perform even on largeschemas or complex mappings: a very
precise maintenance algorithm is useless if it is slow on complex schemas and/or mappings. As a
consequence, we analyzed the behavior of the algorithms when the number of rules in the mapping
or the size of the source and/or target schemas change. In allconsidered cases, both type inference
and projection checking algorithms scaled well, by showingthat despite the exponential worst case
complexity, our algorithms perform well in practical scenarios.

6 Related Work

Only a few works deal with the problem of mapping maintenancein data integration systems.
[VMP04] present a framework and a semi-automatic tool (called ToMAS) for the incremental main-
tenance of Clio-like mappings. The key objectives of the paper are to preserve as much as possible
the semantics of the mappings to be adapted and to avoid the reformulation of the whole mapping
system, so to decrease the efforts required for the maintenance. To achieve these goals, the frame-
work adopts an incremental maintenance strategy, based on the knowledge of a detailed list of the
basic update steps applied to the schemas (either the sourceor the target schema). Of course, this
strategy can be applied only when this information is known to the mapping designer, which is un-
likely in the case of autonomous data sources. This approach, hence, is best suited for integration
contexts where all data sources are controlled by cooperating organizations (or the same organiza-
tion at all); in this sense, this approach is complementary to our one, which assumes that the data
sources are fully autonomous and can be applied even in the absence of a detailed list of incremental
updates.

It should be observed that, unlike our approach, ToMAS supports changes in both the structure
and constraints of a schema; however, the correctness notion of ToMAS has a coarser grain than our
one, as a mapping is deemed as incorrect (and adapted) when itjust works on the same fragment of
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the schema that has been modified.
The same correctness notion of [VMP04] is used in [YP05], where Hu and Popa propose an

ex-postadaptation technique. The idea, inherited from [MRB03], is to create a mapping from the
old version of the schema to the new version of the schema, andto compose this mapping with the
existing mapping. Of course, these approaches are subject to well-known non-closure issues related
to mapping composition.

Both the approaches of [VMP04] and [YP05] are based on the theoretical framework of Clio.
Adapting our approach to support this framework is relatively easy, as mappings are expressed
through correspondences and logical associations, whose output type can be easily inferred. Fur-
thermore, this framework uses a nested-relational type system, where only labelled union types are
supported; this kind of union types is less powerful than non-labelled unions (used in our type sys-
tem as well as in XML Schema), and we strongly suspect that type projection can be decided in
polynomial time when unions are labelled (see [BP99] for a detailed discussion about the reasons
why labeled union types are not adequate for semistructureddata and XML).

An alternative technique for detecting corrupted mappingsin XML data integration systems
is the one described in [CS05a]. This technique is based on the use of a type system capable of
checking the correctness of a query, in a XQuery-like language [CGMS04], wrt a schema, i.e., if the
structural requirements of the query are matched by the schema. By relying on this type system, a
distributed type-checking algorithm verifies that, at eachreformulation step, the transformed query
matches the target schema, and, if an error is raised, informs the source of the target peers that there
is an error in the mapping.

The technique described in [CS05a] has two main drawbacks. First, it is notcomplete, since
wrong rules that are not used for reformulating a given querycannot be discovered. Second, the
algorithm requires that a query were reformulated by the system before detecting a possible error
in the mapping; this implies that the algorithm cannot directly check for mapping correctness, but,
instead, it checks for the correctness of a mapping wrt a given reformulation algorithm. Hence,
mapping correctness is not aquery-independent, semantics-basedproperty, but is strongly related
to the properties of the reformulation algorithm.

Most works on mapping maintenance, in the context of data integration or data exchange sys-
tems, focus on the problem of detecting corrupted data sourceswrappers. These approaches [Kus00,
LMK03] are based on checkers that learn the most prominent syntactical features of data sources,
and warn the administrator when newly probed data fail in matching these features. Since they focus
on syntactical changes only, these approaches are quite limited and unsatisfactory. Essentially the
same approach forms the basis for the Maveric system [MAL +05], which systematically monitors
the characteristics of wrappers and mappings in data integration systems. The novelty of Maveric is
its improved accuracy and efficiency, but it still does not offer any correctness or completeness prop-
erties for error discovering. These approaches can be integrated with our maintenance technique, as
checkers can be instructed to periodically infer the schemaof external data sources, hence allowing
for a type projection checking.

Our system bears some resemblance with Spider [CT06]. Spider is a debugger for schema
mappings based on the logical dependencies framework of Clio. Spider works by analyzing the
correspondences between a source data instance and a targetdata instance, so to help the mapping
designer in understanding the behaviour of a mapping. Thesecorrespondences are expressed by a
forest of minimal routes, which link target elements with source elements (and other target elements
too). Our system is not an alternative to Spider, but, instead, can be regarded as a complementary
tool that can be used after a mapping has been created and successfully deployed: indeed, our tool
comes into play when the integration system is running, while Spider is used before setting up the
system.

There exist some similarities between our notion of type projection and the subsumption relation
described in [KS01], but these similarities are quite vague, as subtyping implies projection while the
same does not hold for subsumption.
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7 Conclusion

This chapter has presented a technique based on type inference and type projection checking for
detecting corrupted mappings in XML data integration systems. This technique can be used in any
context where a schema mapping approach is used, and it is based on a semantic notion of mapping
correctness, unrelated to the query transformation algorithms being used. This form of correctness
works on the ability of a mapping to satisfy the target schema, and it is independent from queries.

By reducing type projection to standard subtyping among weakened types, we proved that type
projection is decidable [Huy85]. We characterized type projection in terms of type simulation,
and, then, used the type simulation rules to define a checkingalgorithm. The algorithm employs
an alternative technique for comparing product types, based on the use of a 0− 1 maximum flow
algorithm.

The equivalence between type projection and type simulation allowed us to discover some inter-
esting properties of type projection, such as the injectivenature of product types and the behavior of
product and union types inside repetition types.

The use of a maximum flow algorithm for the projection of product types allowed for designing
a correct and complete projection-checking algorithm withpolynomial time complexity on normal-
ized types.
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CHAPTER

4

EFFICIENT XML SUBTYPE
CHECKING

This chapter is dedicated to results about efficient algorithms for checking inclusion among XML
schemas, namely a quadratic algorithm for the asymmetric case where the sub type is any type
and the super type is a conflict-free type (Section1), and a more efficient algorithm, still for the
asymmetric case, which is linear when compared types meet some structural similarity properties,
and which is quadratic otherwise (Section2). The chapter ends with conclusive remarks (Section3).

1 Efficient Asymmetric XML Subtyping

Different extensions of Regular Expressions (REs) with interleaving operators and counting are
used to describe the content models of XML in the major XML type languages, such as DTDs, XML
Schema, and RELAX-NG [FW04, rel01]. This fact raised new interest in the study of such extended
REs, and, specifically, in the crucial problem of language inclusion. As pointed out by Mayer and
Stockmeyer [MS94] and by Gelade et al. [GMN07], the problem is EXPSPACE-complete. This
prevents any practical use of unrestricted versions of regular expressions extended with interleaving
and counting.

In [CGS09b] we introduced a class of “conflict-free” REs with interleaving and counting, whose
inclusion problem is in PTIME. The class is characterized bythe single occurrence of each symbol
and the limitation of Kleene-star and counting to symbols. Hence, an expressiona∗& b∗, denoting
the interleaving of a sequence ofa’s andb’s, is conflict-free, whilea·b·a and(a·b)∗ are not. These
very strict constraints have been repeatedly reported as being actually satisfied by the overwhelming



50 Chapter 4. Efficient XML subtype checking

majority of content models that are published on the Web,5 which makes that result very promising,
and of immediate applicability to the problem of comparing two different human-designed content
models.

However, the main use of subtype-checking is in the context of type-checking, wherecomputed
typesare checked for inclusion intoexpected types. This happens in three major cases (in each case
we useU for the human-defined expected type, andE for the expression whose type is computed by
the compiler):

(i) when a function, expecting a typeU for its parameter, is applied to an expressionE;

(ii) when the result of an expressionE is used to update a variable, whose typeU has been declared;

(iii) when the bodyE of a function is compared with the human-declared output type U of the
function, in order to declare it type-correct.

In all these cases, the expected type is defined by a programmer, hence we can restrict it to a
conflict-free type with little harm. However, the computed type reflects the structure of the code.
Hence, the same symbol may appear in many different positions, and Kleene star may appear every-
where. In this situation, the ability to compare two conflict-free types is too limited, and we have to
generalize it somehow. Consider, for instance, the following XQuery-like function.

function alpha($y : int∗) as (a∗& b∗) {
for $x in $y
return if ($x6 0)

then a
else a,b,a

}

A type-checker would infer a type(a+ (a · b · a))∗ for the body of this function, a type that
correspond to the structure of the code. This inferred type is not conflict-free, and must be compared
for inclusion with the conflict-free declared output type(a∗ & b∗).

Handling situations like this seemed very hard for a time. The result in [CGS09b] is based on
an exact description of conflict-free types through constraints, which reduces type inclusion to con-
straint implication. The smallest generalization of the conflict-free single-occurrence and Kleene-
star limitations makes types impossible to be exactly described by our constraints. This problem
does not arise if types are extended with intersection, since our constraints are closed by intersec-
tion. However, we showed in [CGS09b] that just one outermost use of binary intersection in the
subtype makes inclusion NP-hard.

This chapter presents a generalization of results in [CGS09b] without leaving PTIME. This is
obtained by considering theasymmetric inclusion problem, i.e., the problem of verifying whetherT
is included inU , whereT is unconstrained andU is conflict-free. Surprisingly enough, for this case
inclusion is still in PTIME.

This result entails that a programmer must only declare conflict-free types, but the compiler can
use the whole power of extended REs to approximate the resultof any expression. The key for this
result is understanding that, while the supertype has to be exactly described by the constraints, this
is not necessary for the subtype.

To summarize, the contributions presented in this chapter are the following:

• we show that type inclusion can be reduced to constraint implication if the constraint extrac-
tion function fully characterizes the supertype;

5Quoting Bex et al. [BNST06] “ an examination of the 819 DTDs and XSDs gathered from the Cover Pages (including
many high-quality XML standards) as well as from the web at large, reveals that more than 99% of the REs occurring in
practical schemas are CHAREs (and therefore also SOREs)” (see also Martens et al. [MNSB06]); our conflict-free types are
more expressive than CHAREs; similar results, in the high range of 90%, have been reported by Barbosa et al. in [BLS06]
and by Choi et al. in [Cho02].
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• for each of the different kinds of constraints that our constraint language can express, we
provide a polynomial algorithm to verify whether a generic typeT satisfies that constraint;

• by combining the previous two contributions, we provide a quadratic algorithm to test whether
T is included inU , whereT andU are extended REs with interleaving and counting, provided
thatU is conflict-free, with no limitations onT.

Apart from the practical interest of a PTIME inclusion algorithm with no limitation on the sub-
type, this work also shows that the constraint approach is able to deliver interesting results in situa-
tions where traditional automata-based techniques are noteasy to apply.

Results presented in this chapter are those published in [CGS09a], but we will present them
according to the full version [CGS11a].

Related Work

Some Flavors of Determinism

Membership testing for full REs with interleaving and counting is NP-hard [MS94], hence extended
languages meant for practical use are usually endowed with some restrictions, aimed to reduce mem-
bership complexity. These restrictions are typically designed to allow for the efficient construction
of a compact deterministic automaton, and we introduce themhere, since they also play a relevant
role for the complexity of RE inclusion.

A typical restriction is1-unambiguity, that means (informally) that, when a string is analyzed,
any analyzed character can be matched against one specific character in the regular expression, that
is determined by the part of string that has been read so far. For example,(ab)+a is 1-unambiguous,
but (a?b)∗a is not: while readingba. . ., we do not know whethera should be matched against the
first a or the second one. Single-occurrence is a stronger form of this constraint, meaning that no
character occurs twice in an expression, which trivially implies 1-unambiguity. Conflict-freedom as
defined here implies single-occurrence, hence also implies1-unambiguity.

Strong determinismis a constraint stronger than 1-unambiguity, having to do with Kleene-star
and with counting. Consider the expression(a[1..2]) [2..3]. While readingaa. . ., we do not know
whether the seconda matches the second repetition ofa in a[1..2], or whether we should match
the wholea[1..2] with the firsta, and the seconda with the first character of the second repetition
of a[1..2]. Strong determinism means, very informally, that the part of string that has already been
read and the current character determine both the next leaf to match and which counting operator
(or Kleene star) is affected (see [GGM09] for a formal definition). Conflict-freedom implies strong
determinism: since the content of a counting operator is just one character, there is no ambiguity
about the effect of each character on the only counting operator that may contain it.

XML Schema is an important example of a language that is basedon REs with counting, plus
an extremely limited form of interleaving: theall group, that only allows symbols to be interleaved.
XML Schema adopts a constraint known asUnique Particle Attribution(UPA) ([TBMM04], Section
3.6.6). There is some debate about the actual meaning of thatconstraint, but it is usually interpreted
as a way to require 1-unambiguity [KT07, GGM09]. RELAX-NG [rel01] is another important
language based on REs extended with a form of interleaving, but no counting. They adopt unordered
concatenation, rather than shuffling, so that(ab)&(cde) only recognizes the two wordsabcdeand
cdeab. RELAX-NG does not impose any form of unambiguity in general, but they impose that, for
any instance of &(E1, . . . ,En), the first characters recognized by theEi expressions are all mutually
disjoint.

Conflict-freedom is very restrictive, but is trivial to define and check. The precise definition and
automated checking of 1-ambiguity and strong determinism are a bit less trivial. In [GGM09], cubic
time algorithms to test for 1-unambiguity and strong determinism are presented. In [Kil10], Kilpeläi-
nen presents aO(n2/log(n)) algorithm to test whether a RE with counting is 1-unambiguous, and
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describes how some well-known studies and implementationsof the same notion are actually incor-
rect.

Inclusion of regular expressions with interleaving and counting

The problem of inclusion of regular expressions with interleaving has been studied in many papers,
but none of them provides PTIME inclusion algorithms for languages with interleaving, counting,
and an expressive power that is acceptable for our intended application.

In [MS94], Mayer and Stockmeyer studied the complexity of membership, inclusion, and in-
equality for several classes of regular expressions with interleaving and intersection. In particular,
interleaving is proved to make inclusion EXPSPACE-complete.

Starting from the results of [MS94], Gelade et al. [GMN07] studied the complexity of decision
problems for DTDs, single-type EDTDs, and EDTDs with interleaving and counting. By consid-
ering several classes of regular expressions with interleaving and counting, they showed that their
inclusion is almost invariably EXPSPACE-complete, even when counting is restricted to terminal
symbols only; they also showed how these results extend to various kinds of schemas for XML
documents. We did not discuss here how to extend our results from REs to XML schema languages
because the problem is indeed solved in [GMN07], where it is shown how an inclusion algorithm
for REs can be lifted to schema languages that use that class of REs without changing the complex-
ity class. In [KT03, KT07] Kilpeläinen and Tuhkanen proved that inclusion is NP-hardfor regular
expressions with counting even if attention is restricted to 1-unambiguous REs.

The properties of a commutative type language for XML data have been discussed by Foster et
al. in [FPS07]. Here, the authors essentially described the techniques they used while implement-
ing a type-checker for commutative XML types. Their type language resembles our language of
conflict-free types, as repetition types can be applied to element types only, and interleaving is sup-
ported. The paper is focused on heuristics that improve scalability, but do not affect computational
complexity.

RELAX-NG [rel01] and XML Schema [FW04] are two well-known type languages that allow
some form of interleaving and counting.

XML Schema adopts counting plus a very weak form of interleaving, with the UPA constraint.
The coNP-hard problem presented for 1-unambiguous REs withcounting in [KT03, KT07] can be
easily expressed by a 1-unambiguous XML Schema, hence XML Schema inclusion is coNP-hard.

RELAX-NG restricts the use of interleaving ([rel01], Section 7.4) and has no counting. How-
ever, it does not restrict the expressions that use no interleaving, hence inclusion for RELAX-NG is
PSPACE-hard [Koz77].

In [CGS09b] we defined a polynomial time algorithm for inclusion of conflict-free types, but
we were not able to extend the result to reach any more generalclass. In that paper, we specified
the constraint extraction procedure that we use here, and weproved that it is exact for conflict-free
types.

Asymmetric inclusion of XML types has been studied elsewhere in the recent past. We dis-
cuss some of these papers here, but they are not very relevantto our problem since they deal with
languages without interleaving and without counting. In [CS07] Colazzo and Sartiani showed that
complexity of RE inclusion can be lowered from EXPSPACE to EXPTIME when a weaker form of
conflict-freedom is satisfied by the supertype. In [CGLN09], by using automata-based encodings
of types, Champavère et al. provide polynomial algorithms to check inclusion among EDTDs, with
the restriction that the supertype is 1-unambiguous. In [Hov10] Hovland provides an efficient algo-
rithm to check inclusion of standard REs. The algorithm runsin polynomial time. It is sound and
complete when the supertype is 1-unambiguous, otherwise the algorithm may either terminate with
a definite answer or may signal its inability to answer because the supertype is not 1-unambiguous.
The algorithm is defined via an inference system driven by theREs syntax, hence avoiding possibly
expensive automata construction.
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Types and Constraints

We use the term “types” as a synonym for “extended regular expressions”. Hence a “type” denotes
a set of words. Aconstraint is a simple word property expressed in the constraint language we
introduce below; a constraint denotes the set of words that satisfy it. We say that a typeT satisfies
a constraintF when every word inT satisfiesF, that is, when the denotation ofT is included in
that of F . Hence, every type is upper-approximated by the set of all constraints that it satisfies.
In [CGS09b] we introduced conflict-free types. For these types, this “approximation” is exact,
meaning that a word belongs to a conflict-free type if and onlyif it satisfies all of its associated
constraints.

Our algorithm is based on translating the supertype into a corresponding set of constraints and
verifying, in polynomial time, that the subtype satisfies all of these constraints. In a mixed com-
parison, constraints provide an exact characterization for the conflict-free supertype, but just an
upper-approximation for the subtype; we will prove below that this does not affect the correctness
or completeness of the algorithm.

The Type Language

We describe here the specific syntax that we use for types.
We adopt the usual definitions for words concatenationw1·w2, and for the concatenation of two

languagesL1· L2. Theshuffle, or interleaving, operatorw1&w2 is also standard, and is defined as
follows.

Définition 4.1 (v&w, L1&L2) The shuffle set of two wordsv,w∈ Σ∗, or two languagesL1,L2⊆ Σ∗,
is defined as follows; notice that eachvi or wi may be the empty wordε.

v&w
def
= {v1·w1 · . . .·vn·wn | v1 · . . .·vn = v, w1 · . . .·wn = w, vi ∈ Σ∗, wi ∈ Σ∗, n> 0}

L1&L2
def
=

⋃
w1∈L1, w2∈L2

w1&w2

Whenv∈ w1&w2, we say thatv is a shuffle ofw1 andw2; for example,w1·w2 andw2·w1 are
shuffles ofw1 andw2.

We consider the following type language for words over an alphabetΣ:

T ::= ε | a | T [m..n] | T +T | T ·T | T&T | T!

where:a∈ Σ, m∈ (N \{0}), n∈ (N∗ \{0}), andn≥m. The setN∗ is N∪{∗}, where∗ behaves
as+∞, i.e., for anyn∈N∗, ∗ ≥ n.

ε is a singleton type that only contains the empty wordε. The typeT! denotes the set ofT words
minusε; a T! type is well-formed only if a subterm ofT has shapea. The typeT [m..n] denotes
words that are formed by concatenatingi words fromT, with m≤ i ≤ n.

Note that expressions likeT [0..n] are not allowed, due to the domain(N\{0}) of m, but the type
T [0..n] can be equivalently represented byT [1..n]+ ε. The mandatory presence of ana subterm in
T! guarantees thatT contains at least one word that is different fromε, henceT! is never empty,
which, in turn, implies that we have no empty types.

Définition 4.2 (sym(w),sym(T)) For any wordw, sym(w) is the set of all symbols appearing inw.
For any typeT, sym(T) is the set of all symbols appearing inT.

The semantics of types is inductively defined by the following equations.



54 Chapter 4. Efficient XML subtype checking

JεK = {ε}
JaK = {a}

JT1+T2K = JT1K∪ JT2K

JT1·T2K = JT1K· JT2K

JT1&T2K = JT1K&JT2K

JT!K = JTK\ {ε}
JT [m..n]K = {w | w= w1· . . .·wj , ∀i ∈ 1.. j. wi ∈ JTK, m≤ j ≤ n}

We will use� to range over product operators· and & when we need to specify common prop-
erties, such as, for example:JT � εK = Jε � TK = JTK. We will use� to range over·, &, and
+.

Types that contain the empty wordε are callednullableand are characterized as follows. Observe
that N(T [m..n]) = N(T) becausem cannot be 0.

Définition 4.3 N(T) is a predicate on types, defined as follows:

N(ε) = true

N(a) = false
N(T!) = false

N(T [m..n]) = N(T)

N(T +T ′) = N(T) or N(T ′)

N(T �T ′) = N(T) and N(T ′)

Property 4.1 (N(T))
ε∈JTK ⇔ N(T)

In this system, no type is empty, and any symbol insym(T) appears in some word ofT.

Lemma 4.1 (Not empty) For any type T :

JTK 6=∅ (1)
a∈ sym(T) ⇔ ∃w∈ JTK. a∈ sym(w) (2)

Constraints

Constraints are expressed using the following logic, wherea,b∈ Σ, a 6= b in a≺ b, A⊆ Σ, B⊆ Σ,
m∈ (N \{0}), n∈ (N∗ \{0}), andn≥m:

F ::= A+ | A+ Z⇒ B+ | a?[m..n] | upper(A) | a≺ b

We do not explicitly consider conjunctive constraintsF ∧F ′ since we will always associate types
with setsof constraints, whose conjunction the type has to satisfy. Constraint semantics is defined
in Figure4.1.

The following special cases are worth noticing.

a ε |= upper(A) ε |= a?[m..n]
ε |= a≺ b b |= a≺ b a
a w |=∅

+ Z⇒ A+ w |=∅
+ Z⇒∅

+
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w |= A+ ⇔ sym(w)∩A 6=∅, i.e. somea∈ A appears inw

w |= A+ Z⇒ B+ ⇔ a or w |= B+

w |= a?[m..n] (n 6= ∗) ⇔ if a appears inw, then it appears at leastm times and at
mostn times

w |= a?[m..∗] ⇔ if a appears inw, then it appears at leastm times

w |= upper(A) ⇔ sym(w) ⊆ A

w |= a≺ b ⇔ there is no occurrence ofa in w that follows one occurrence
of b in w

FIGURE 4.1: Constraint semantics.

Observe thatA+ is monotone, i.e.,w |= A+ andw is subword ofw′ imply thatw′ |= A+, while
upper(A) anda≺ b are anti-monotone.

A constraintF denotes the set of words that satisfy it, and a set of constraintsF denotes the
words that satisfy eachF ∈F , as follows.

Définition 4.4 (JFK and JF K ) For any constraintF , set of constraintsF :

JFK
def
= {w | w |= F} JF K

def
= ∩F∈F JFK

A type satisfies a constraint if all of its words do. The previous definition allows us to express
this as set inclusion.

Définition 4.5 (L |= F , T |= F, T |= F ) For any set of wordsL, typeT, constraintF, set of con-
straintsF :

L |= F ⇔def L⊆ JFK T |= F ⇔def JTK⊆ JFK T |= F ⇔def JTK⊆ JF K

Constraints and Subtyping

Consider a constraints languageF , a typeT and a set of constraintsFT . We define three properties
thatFT ⊆F may satisfy forT:

• soundness:FT is sound forT if T |= FT , that is,JTK⊆ JFTK.

• F -completeness: a soundFT is complete forF andT if JFTK = J{F ∈F | T |= F}K, that
is, FT is the most precise description ofT that can be expressed throughF .

• exactness:FT is exact forT if JTK = JFTK.

A completeFT is not necessarily exact forT, for example, no constraint set in our language is exact
for the type(aa) [1..2] (denoting{aa,aaaa}). However, ifT admits inF an exact constraint set
FT , then all and only itsF -complete sets of constraints are exact.

In the same way, a functionC mapping types to sets of constraints, is called sound/F -complete/exact,
if C (T) is, respectively, sound,F -complete, or exact, for anyT.

In [CGS09b] we defined a class of “conflict-free types”, defined as those types that respect the
following restrictions (hereafter we will use the meta-variableU for conflict-free types):

• symbol counting: if U has a subtermU ′ [m..n], thenU ′ must be the typea, for somea ∈ Σ
(only symbols can be counted or subject to Kleene-star);



56 Chapter 4. Efficient XML subtype checking

• single occurrence: if U has a binary subtermU1 �U2, then sym(U1)∩ sym(U2) = ∅ (no
symbol appears twice).

The symbol-counting restriction means that, for example, types like(a·b)∗ cannot be expressed.
However, it has been found that DTDs and XSD (XML Schema Definition) schemas use repetition
almost exclusively asaop or as(a+ . . .+ z)op (where op∈ {+,∗}, see [BNST06]), which can be
immediately translated to types that only count symbols, thank to theU1&U2 andU ! operators. For
instance,(a+ . . .+z)∗ can be expressed as(a∗& . . .&z∗), wherea∗ is a shortcut fora[1..∗]+ε, while
(a+ . . .+ z)+ can be expressed as(a∗& . . .&z∗)!.

The main result of [CGS09b] is the following exactness theorem.

Theorem 4.1 There exists an exact constraint extraction function for conflict-free types.

The proof of [CGS09b] is constructive, since we actually define a constraint extraction func-
tion C (U) satisfyingJUK = JC (U)K. This function can be used to reduce asymmetric inclusion to
constraint-checking, as follows.

Proposition 4.1 (Mixed subtyping) If C is exact for U, thenJTK⊆ JUK⇔ T |= C (U).

The property is asymmetric becauseU must admit an exact constraint-extraction function, butT
can be any type.6

This observation is obvious once it is framed in the right context, but it provides a way to gen-
eralize our previous results that is very interesting: rather than hunting for generalizations of the
conflict-free family in the narrow precinct of those types that can be exactly described, we can aim
for the whole set of extended REs in the left hand side ofJT ′K ⊆ JT ′′K, if we stay modest with the
right hand side.

To exploit this observation, we need now to complement the exact constraint-extraction of [CGS09b]
with a procedure to test forT |= C (U). In [CGS09b] we provided a cubic algorithm for the case
whenT is conflict free, while we proved that the problem is NP-hard whenT ranges over conflict-
free types with intersection.

In [CGS09b], we defined a constraint-extraction function that is exactfor conflict-free types. For
each type, this function extracts five classes of constraints: co-occurrenceconstraintsC C (U), order
constraintsOC (U), cardinality constraintsZeroMinMax(U), lower-boundconstraintsSIf(U), and
upper-boundconstraintsupperS(U), that is, the exact function that we are going to use is definedas

C (U) = C C (U)∪OC (U)∪ZeroMinMax(U)∪upperS(U)∪SIf(U)

To apply Proposition4.1, in [CGS09b] we exhibit, for each componentCi(U) (whereCi(U) is one
of CC (U), OC (U), etc.), an algorithm to verify whether, for eachF ∈ Ci(U), T |= F , whereT is a
general type.

The algorithms for co-occurrence, ordering and cardinality constraints run all in quadratic time,
while the upper and lower bound constraints are checked by a linear time algorithm.

Co-Occurrence Constraints

The first componentCC (U) of C (U) extracts a set of co-occurrence constraints with shapeA+ Z⇒
B+, and is defined as follows, where{F | ¬N(U)} denotes the singleton{F} when N(U) is false,

6We use the letterU since we apply this theorem to conflict-free types only, but it actually holds for any typeU that is
exactly described byC (U).
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and denotes the empty set otherwise [CGS09b].

CC (ε) def
= ∅

CC (a[m..n])
def
= ∅

CC (U !)
def
= CC (U)

CC (U1+U2)
def
= CC (U1)∪CC (U2)

CC (U1 �U2)
def
= {sym(U1)

+ Z⇒ sym(U2)
+ | ¬N(U2)}

∪ {sym(U2)
+ Z⇒ sym(U1)

+ | ¬N(U1)}
∪ CC (U1)∪ C C (U2)

Example 4.1

• CC (a[1..2]·b[2..∗]) = {a+ Z⇒ b+, b+ Z⇒ a+}

• CC (a[1..2]· (b[2..∗]+ ε)) = {b+ Z⇒ a+}; a+ Z⇒ b+ is not inC C (U) because(b[2..∗]+ ε) is
nullable.

• CC (a[1..2]· (b[2..∗]+ c[1..∗]+ ε)) = {bc+ Z⇒ a+};

• CC (a[1..1]· (b[2..2]·c[3..3])) = {a+ Z⇒ bc+, bc+ Z⇒ a+, b+ Z⇒ c+, c+ Z⇒ b+};

SinceCC (U) yields constraints with shapeA+ Z⇒ B+, in the following we present an algorithm
to testT |= A+ Z⇒ B+ for any general typeT.

We focus on constraints with shapea+ Z⇒ A+ because of the following property, that is an im-
mediate consequence of the definition ofA+ Z⇒ B+.

Property 4.2 (Union) For any word w and constraint A+ Z⇒ B+:

w |= A+ Z⇒ B+ ⇔ ∀a∈ A. w |= a+ Z⇒ B+

Our algorithm reducesa+ Z⇒ B+ to Σ+ Z⇒ B+, as it will be shown later. From now on, we
abbreviateΣ+ Z⇒ A+ asA++. This notation is justified by the strict relationship betweenA++ and
A+: every non-empty word satisfiesΣ+, hence a wordw satisfiesA++ if w is empty or ifw satisfies
A+ (Property4.3).

Définition 4.6 (A++)

A++ def
= Σ+ Z⇒ A+

Property 4.3 (T |= A++ and T |= A+)

T |= A++ ⇔ JTK\ {ε} |= A+

T |= A+ ⇔ JTK |= A++ & ¬N(T) (3)

Our algorithm to testT |= a+ Z⇒ B+ may be based either onA+ or onA++. We focused on a
version that is based onA++ because of the following lemma, that specifies an easy way to compute
A++. An inductive computation ofA+ is more involved, since it needs to resort onA++ for theT!
case.
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Lemma 4.2 (T |= A++ ) For any type T , T1 and T2:

(1) ε |= A++

(2) a |= A++ ⇔ a∈ A
(3) T [m..n] |= A++ ⇔ T |= A++

(4) T1 �T2 |= A++ ⇔ (T1 |= A++ & ¬N(T1))∨ (T2 |= A++ & ¬N(T2))
∨ (T1 |= A++ & T2 |= A++)

(5) T1+T2 |= A++ ⇔ T1 |= A++ & T2 |= A++

(6) T! |= A++ ⇔ T |= A++

Our algorithm for co-occurrence constraints checking stronly relies on Theorem4.2. It specifies
thatT |= a+ Z⇒ B+ holds iff, for each occurrenceai of a insideT, we can find a subtermT ′ of T that
containsai and such thatT ′ |= B++.

As a small optimization, we show that the search for an ancestor of a that satisfiesB++ can be
restricted to product termsT1 �T2.

Theorem 4.2 (T |= a+ Z⇒ B+ from T ′ |= B++) For any type T , any B⊆ Σ, any a∈ (Σ \B), the
following sentences are equivalent.

1. T |= a+ Z⇒ B+;

2. for each occurrence of a inside T , the occurrence is part ofa subterm T′ of T such that
T ′ |= B++ and such that T′ = T1 �T2, for some T1 and T2.

Based on previous results (Property4.3and Lemma4.2), we have devised an algorithm COIM-
PLIES to verify that, for eachA+ Z⇒ B+ ∈ C C (U), T |= A+ Z⇒ B+ holds (see [CGS11a, CGS09a]
for details).

COIMPLIES buildsCC (U), which can easily be made in timeO(|U |× |U |), and then for each
A+ Z⇒ B+ ∈ CC (U), the following two operations are performed:

• by a bottom-up visit of the parse tree ofT, T |= B++ is checked, and also each subtreeT ′ such
thatT ′ |= B++ is marked; this phase is performed by mimicking Lemma4.2, in O(|T|+ |B|)
time.

• for eacha∈ A, the node corresponding toa in theT parse-tree is checked to verify whether it
has been marked by the previous step; this operation can be performed inO(|T|+ |A|) time.

The algorithm concludes thatT |= A+ Z⇒ B+ if the second above step succeeds.
COIMPLIES performs the two above operations once for eachA+ Z⇒ B+ ∈ CC (U), i.e., at most

twice for each� in U . Since|A|+ |B| ≤ |U |, COIMPLIES hasO(|U | × (|T|+ |U |)) worst case
time complexity, which is even better than the algorithm that we defined in [CGS09b] for the pure
conflict-free case.

Remark 4.1
AlthoughC (U) isF -complete for a conflict-free typeU , C C (U) is not complete forU with respect
to constraints with shapeA+ Z⇒ B+. For example,CC (a) is the empty set, which denotes the whole
Σ∗, and it could be made more precise by adding any non-trivialA+ Z⇒ B+ sound fora, such as, for
example,b+ Z⇒ c+, which is sound sinceb is disjoint froma, and excludes words such asb.

C (U) is F -complete because it complementsCC (U) with the constraint upper(sym(U)). For
example, in this case, upper(a) makesb+ Z⇒ c+ redundant.

A similar remark holds for the order constraints that we define in the next section:OC (U)
is complete for order constraints that only use symbols insym(U), but is not complete for every
possible order constraint. However, our result does not require that every component ofC (U) is
complete on its class of constraints, but only that the wholeof C (U) is F -complete.
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Order Constraints

Let us defineP(T) as the set of all pairs of different symbols(a,b) such that there exists a word in
JTK where ana comes before ab.

Définition 4.7 (Pairs)

P(T)
def
= {(a,b) | a 6= b, ∃w1,w2,w3. w1 ·a ·w2 ·b ·w3 ∈ JTK}

Order constraints specify which pairs cannot appear in a word, henceP(T) is related to order
constraints as follows.

Property 4.4 T |= a≺ b ⇔ a 6= b and(b,a) 6∈P(T)

We verify whether a pair(b,a) ∈P(T) by testing, for each instance ofa and b in T, their
Lower Common Ancestor (LCA) in the syntax tree ofT; to this aim, we will manipulate a decorated
version ofT, l(T), where each instance of a leaf is decorated with a distinct index i, and is denoted
asai, and will consider the words generated byl(T).

For example, ifT = a+b, thenl(T) = a1+b2, and the LCA ofa1 andb2 in l(T) (LCAl(T)[ai,b j ])
is +. The fact that the LCA ofa1 andb2 is + implies thata1 andb2 never appear together in a
word of l(T), hence(b2,a1) 6∈P(l(T)), hence, since no other instance ofa andb is present inT,
(b,a) 6∈P(T). In a1&b2, the LCA is &, meaning that both(a,b) and(b,a) are inP(T). The
use of LCA is justified by Lemma4.1: with any two typesT1 andT2, as soon asai ∈ sym(T1) and
b j ∈ sym(T2), thenT1 has a word witha andT2 has a word withb, hence(a,b) and(b,a) are in
P(T1&T2). In a typea· b, order is relevant:(a,b) ∈P(T) but (b,a) 6∈P(T). We express this
by extending the usual definition ofLCAl(T)[ai,b j ], assuming that it returns a pair�d, where the
directiond is→ if the leafai comes beforeb j in T, and is← otherwise; we ignore the direction
when� 6= · (see Example??).

LCAl(T)[ai ,b j ]∈{& ,·→} implies that(a,b)∈P(T), but(a,b)∈P(T) also holds whenLCAl(T)[ai ,b j ]∈
{+,·←}, provided that the LCA is in the scope of aT [m..n] operator withn> 1, as in(a+b) [1..2]
or in (b· a) [1..2]; for this reason, inl(T), we mark as�r (for repeated) all binary operators� in
the scope of aT [m..n] with n> 1, and use�1 for all the other operator instances. Finally, if many
occurrences ofa andb appear inT, then(a,b) ∈P(T) as soon as one pair(ai ,b j) satisfies the test
we described.

The formalization of an algorithm implementing the above method is detailed in [CGS11a,
CGS09a]. The algorithm complexity isO(|T|2 + |U |2). Hence, also in this case, the extension
from conflict-free inclusion to asymmetric inclusion

Cardinality Constraints

A cardinality constraintT |= a?[m..n] specifies the minimum and maximum number of times that
a may appear in a word ofT wherea actually appears, which we will denote here as Minapp(T,a)
and Max(T,a). Minapp(T,a) is different from the minimum number of times thata may appear in
any word ofT, which we will denote here as Min(T,a). For example, Minapp((a[3..∗]+b),a) = 3
while Min((a[3..∗]+b),a) = 0. Observe that this distinction has no meaning when we countthe
maximum number of occurrences ofa in a word ofT.

The cardinality constraints for a conflict-free type simplycorrespond to the instances of the
counting operator. In particular, the cardinality constraint component ofC (U) is ZeroMinMax(U),
defined as follows;ZeroMinMax(U) is trivially complete for conflict-free types and for constraints
with shapea?[m..n] anda∈ sym(U) [CGS09b]:

ZeroMinMax(U) = {a?[m..n] | a[m..n] subterm ofU}



60 Chapter 4. Efficient XML subtype checking

General types are trickier, because of symbol repetition and generalized counting. In particular,
the lowest allowed cardinality fora in T may depend on the validity ofa+ on some subterm of
T. Consider, for example, the typea[2..∗]·a[3..∗]: it clearly satisfiesa?[5..∗]. However, the type
(a[2..∗]+ ε)· (a[3..∗]+ ε) only satisfiesa?[2..∗]: sincea is optional on both sides, we consider here
min(2,3) rather than 2+3. Finally, (a[2..∗]+ ε)· (a[3..∗]) satisfiesa?[3..∗]: sincea is optional in
the first subterm, we have to consider the bound of the second.In the same way, whilea[3..∗] [4..∗]
satisfiesa?[12..∗], the type(a[3..∗]+ ε) [4..∗] only satisfiesa?[3..∗].

We solve this issue by recursively computing both Minapp(T,a) and Min(T,a) at the same time.
This allows us to compute Minapp(T1 �T2,a) and Minapp(T [m..n] ,a) as follows.

Minapp(T1 �T2,a) = min(Minapp(T1,a)+Min(T2,a), Min(T1,a)+Minapp(T2,a))
Minapp(T [m..n] ,a) = Minapp(T,a)+ (m−1) ·Min(T,a)

The first equation corresponds to the fact that any word ofT1 � T2 that containsa is built by
combining a word ofT1 that containsa with any word ofT2, or by combining a word ofT2 that
containsa with any word ofT1. The reader may verify that the formula works with all the examples
we presented. The second equation is very similar: a word ofT [m..n] that containsa is obtained
by combining a word ofT that containsa with m− 1 words ofT. Unfortunately, the recursive
computation of Min(T!,a) needs one further notion, the minimum number of occurrencesof a in a
non-empty word ofT, which we will denote as Min!(T,a). To sum up, we need the following three
functions to be computed.

Définition 4.8 (Min(T,a), Min!(T,a), Minapp(T,a)) Let W be a set of words,a a symbol, andT a
type.

MinOrStar(W,a)
def
= minw∈W |w|a if W 6=∅

MinOrStar(W,a)
def
= ∗ if W =∅

Min(T,a)
def
= MinOrStar(JTK,a)

Min!(T,a)
def
= MinOrStar((JTK\ {ε}),a)

Minapp(T,a)
def
= MinOrStar({w | w∈JTK & w |= a+},a)

In [CGS11a] we give a set of properties of these three functions that allow them to be inductively
computed inO(|T|) time.

The upper bound is much easier, and is defined and computed as follows. We need no special
symbol for Max(∅,a), since we never apply Max(T,a) to an empty set.

Définition 4.9 (Max(T,a))

Max(T,a)
def
= maxw∈JTK |w|a if (maxw∈JTK |w|a) ∈N

Max(T,a)
def
= ∗ if ∀n∈N. ∃w∈JTK. |w|a > n

Lemma 4.3 (Max(T,a))

Max(T1+T2,a) = max(Max(T1,a),Max(T2,a))
Max(T1 �T2,a) = Max(T1,a)+Max(T2,a)
Max(b,a) = if b = a then1 else0
Max(T [m..n] ,a) = n ·Max(T,a)
Max(T!,a) = Max(T,a)
Max(ε,a) = 0

By the definition of Minapp(T,a) and Max(T,a), cardinality constraint satisfaction can be de-
cided as follows.



2. Linear XML subtyping 61

Corollary 4.1
T |= a?[m..n] ⇔ m≤Minapp(T,a) ∧ Max(T,a)≤ n

From above commented properties, we can derive an algorithm,CARDIMPLIES, to verify that a
general typeT satisfies everyF in ZeroMinMax(U). The algorithm computes, in one pass, the values
of Min(T,a), Min!(T,a), Minapp(T,a) and Max(T,a). The values of Minapp(T,a) and Max(T,a)
are then used to verify the constraint satisfaction. CARDIMPLIES can be computed in timeO(|U |×
|T|).

Upper Bounds and Lower Bounds

The upper bound and lower bound components ofC (U) are defined below.

Définition 4.10 (Upper and Lower components ofC (U))

Lower-bound:SIf(U)
def
= if ¬N(U) then{sym(U)+} else∅

Upper-bound:upperS(U)
def
= {upper(sym(U))}

Notice that the problem of constraint implication is simplified by verifying the implication of
lower and upper bounds at the same time, as we do here: we do notneed to explicitly test whether
T |= sym(U)+; by restricting ourselves to the case whenT |= upperS(U), we only have to check that
N(T)⇒ N(U), as proved below.

Theorem 4.3 (Implication of SIf(T2) and upperS(T2)) For any two types T1 and T2:

T1 |= SIf(T2)∪upperS(T2)

⇔ (N(T1)⇒ N(T2)) & sym(T1)⊆ sym(T2)

The corresponding function UpperLowerImplies simply executes the test of Theorem4.3, hence
we provide no pseudocode.

Summing up

We have recalled each of the five components of the constraint-extraction functionC (U), and, for
each componentCi , we defined a function that verifies, for any generalT, whetherT |=Ci(U). Since
the union of these five components is exact for conflict-free types, the following theorem holds.

Theorem 4.4 For any type T , for any conflict-free type U,JTK ⊆ JUK iff all of CoImplies(T, U),
OrderImplies(T, U), CardImplies(T , U), UpperLowerImplies(T, U) returntrue.

CoImplies, OrderImplies, and CardImplies have quadratic time-complexity, while UpperLower-
Implies is linear. The only case whose complexity is affected by the presence of general types in the
subtype position is that of cardinality constraints, wherethe presence of multiple occurrences of a
symbol and the nesting ofT [m..n] operators both concur in making the problem less trivial.

2 Linear XML subtyping

The algorithm presented in the previous chapter is quadratic both in the best and in the worst cases.
Indeed, that algorithm extracts a set of “constraints” fromthe candidate supertype and verifies that
each constraint is satisfied by the subtype, which involves aquadratic amount of work, even in cases
when the two types are very similar, or equal.
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This chapter presents a new algorithm, still for the asymmetric caseT ≤ U considered in the
previous chapter, which is linear-time in the common situations where compared types are similar,
and resorts to the quadratic approach only for those specificportions of the two types where it seems
to be necessary.

This new algorithm has a more traditional “structural” approach: it visits both types in parallel
from the top, matching the topmost operator and recurring onthe children. This approach is not
complete, since EREs may be included in cases when the topmost operators are permuted in quite
complex ways, hence the structural approach should be combined with the quadratic approach to
yield a complete algorithm. A naïve algorithm could just apply an incomplete set of structural rules
and, when these fail, go back to the original types and apply the quadratic algorithm. Hence the
algorithm would be better than the quadratic one in those cases when the structural rules suffice, but
would impose an overhead otherwise. Unfortunately, choosing the optimal set of structural rules is
impossible under this approach. A simple set of rules would be very effective in only a small set of
cases. A richer set of rules would enlarge the set of cases where the algorithm is effective, but would
impose a higher overhead in those cases where the structuralwork is useless. Our understanding
of the “typical” workload of a type-checking compiler is toolimited for a reasoned choice of an
optimal set of rules.

We overcome this problem by designing a set of no-backtracking structural rules: whenever
these rules rewrite a comparison into a set of simpler comparisons, the new set is not just a sufficient
condition for the previous comparison, but it is equivalent. In this way, once a comparison that
matches no rule is found, we do not need to go back to the initial types, but we can apply the
quadratic algorithm to the smaller type fragments, so that the algorithm is always convenient over
the baseline. These no-backtracking rules for EREs are the main contribution of this work, together
with a technique to select the applicable rule in constant time.

In this chapter we present a linear structural algorithm forcomparing binary types, and prove
that it can resort to the quadratic one in case of failure without any backtracking. This algorithm
can be then extended to to n-ary types, so to generalize the structural to most comparison cases. We
will make an overview about this extension, and report some experimental results showing that the
flat structural algorithm can be up to ten times faster than the quadratic algorithm presented in the
previous chapter.

Structural approach

Introduction

Our algorithm is based on the assumption that subtyping would typically be applied to types that are
very similar, such asb≤ a+b+ c, or a·b·c≤ a&b&c or a·b≤ a?·b?, wherea? abbreviatesa+ ε.
Most of these cases may be proved by combining transitivity,associativity and commutativity with
some obvious structural rules, such as:

• Monotonicity:T1≤U1 ∧ T2 ≤U2⇒ T1 �T2≤U1 �U2

• Union: T1 ≤ T1+T2

• Product:T1·T2≤ T1&T2.

Our algorithm is defined, as usual, by a set of deduction ruleswhich are meant to be used to de-
terministically reduce the consequence to the premises. For example, one may encode monotonicity
of ‘·’ by the following rule.

T1≤U1 T2 ≤U2

T1·T2≤U1·U2
(TENTATIVE-··)
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Unfortunately, this rule requires backtracking: if we apply it to (a· b)· c≤ a· (b· c), it would
reduce it toa·b≤ a, c≤ b·c; the second set does not hold, but still the original judgement was true.
Our basic observation is that backtracking is not needed if the symbols ofU1 andU2 are disjoint, as
always happens sinceU is conflict-free, and if the symbols ofT1 andT2 are respectively included in
those ofU1 andU2. In this case, the rule needs no backtracking: the judgementin the conclusion
holds if, and only if, all those in the premises do hold, as expressed by the following property.

sym(T1)⊆ sym(U1) ∧ sym(T2)⊆ sym(U2)⇒ (T1·T2≤U1·U2⇔ T1≤U1∧T2≤U2)

The situation is slightly more complex for union types: if wesubstitute· with + in the above
property, the double implication does not hold, as in the following example:a?+b≤ a+b? holds,
symbol inclusion holds, but stilla?≤ a does not hold. This problem can be solved by separating
empty words from non-empty words, as follows. We first define akernel-subtypingrelationT ≤k U ,
as follows.

Définition 4.11 (T ≤k U)
T ≤k U ⇔def JTK\ {ε} ⊆ JUK\ {ε}

Now, we have the following double implication.

sym(T1)⊆ sym(U1) ∧ sym(T2)⊆ sym(U2)

⇒ T1+T2≤U1+U2

⇔ T1≤k U1 ∧ T2≤k U2 ∧ N(T1+T2)⇒ N(U1+U2)

While it is quite natural to define≤ and≤k by mutual recursion, our algorithm recursively
computes thekernel-subtypingrelationT ≤k U only, since the standard subtyping relationT ≤U ,
defined asJTK⊆ JUK, can be easily derived by adding a linear-time test(N(T)⇒N(U))) to T ≤U ,
as specified by the following, obvious, property.

Property 4.5 T ≤U ⇔ (T ≤k U ∧ (N(T)⇒N(U)))

Symbol inclusion tests and use ofT ≤k U give us the ability to write rules that require no
backtrack. Our algorithm uses these rules to reduce the problem as far as possible and, once no rule
can be applied, it resorts to the quadratic algorithm. We need now to define a good set of rules, rich
enough to deal with a good set of cases, but still with the property that looking for the next rule to
apply should be extremely fast, so that the algorithm is linear on the size of the types.

We now introduce the rules, and will then formalize the algorithm, and discuss its correctness
and its cost.

Structural sub-type rules

As previously discussed, our structural rules have the following shape.

CondR(T,U)
TR

1 ≤k UR
1 , . . . ,T

R
n ≤k UR

n

T ≤k U
(R)

The premise is formed by a conditionCond(T,U), and a finite number of predicatesT r
i ≤k U r

i ,
with T r

i andU r
i sub-terms of, respectively,T andU . The rule means that, ifCondR(T,U) holds, then

T ≤k U is equivalent toTR
1 ≤k UR

1 , . . . ,T
R
n ≤k UR

n . The algorithm selects a rule whoseCondR(T,U)
holds, and uses it to rewrite the conclusion to the premises.
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The conditionCondr(T,U) of every rule is composed by a pattern-matching part and a part that
depends, among other things, on symbol inclusion. The pattern-matching part is usually written in
the rule conclusion, hence we will follow this habit, and write

sym(T1)⊆ sym(U1)∧sym(T2)⊆ sym(U2)
T1≤k U1,T2 ≤k U2

T1+T2≤k U1+U2
(ABBR-DIVIDE++)

instead of:

T = T1+T2∧U =U1+U2∧sym(T1)⊆ sym(U1)∧sym(T2)⊆ sym(U2)
T1≤k U1,T2 ≤k U2

T ≤k U
(DIVIDE++)

The structural subtyping rules are collected in Table4.1. All of these rules are ‘bidirectional’,
meaning that, when all the conditions hold, the premises areequivalent to the conclusion. As previ-
ously discussed, bidirectionality is a consequence of the fact thatsym(U1) andsym(U2) are disjoint,
of the symbol inclusion conditions, and of the use of≤k in the++ case.

Most of the rules are self explicative, and their bidirectionality is proved in [CGPS09]. The
only non-trivial detail is the use of nullability in the premises. In the three (DIVIDE��) rules
the nullability condition is needed for the direct implication to be sound. If the first nullability
condition were violated, we would haveε∈ JT1K, a non empty wordw2 in JT2K andε /∈ JU1K. Hence,
w2 would belong toT1 � T2 and w2 would not contain any symbol fromU1, hence it could not
belong toU1 �U2, which only contains words that contain some symbol fromU1. Observe that this
complication derives from the use of≤k, sinceT1≤U1 would imply N(T1)⇒ N(U1), and similarly
for T2.

Nullability of U2 in the (NFOCUS�) rules is not related to≤k, but it is the kernel of the rule
itself, which is based on the observation that, ifε ∈ JU2K, thenJU1K ⊆ JU1 �U2K. The same obser-
vation, applied to both factors, justifies the (NDIVIDE) rules.

Observe that this set of rules is by no means complete. For example, one may add the following
rule, to take commutativity of ’+’ into account.

sym(T1)⊆ sym(U2)∧sym(T2)⊆ sym(U1)
T1≤k U2,T2 ≤k U1

T1+T2≤k U1+U2
(REV-DIV ++)

Unfortunately, associativity is at least as important as commutativity, but is far more difficult to deal
with. We hence present here just a minimal set of rules, to illustrate the basic ideas, and we discuss
our approach to associativity and commutativity later.

The algorithm

The algorithm is described below. It first calls the auxiliary algorithmPREPROCESS(T,U), which
prepares the types for efficient subtype checking. The algorithm then verifies whether a ruler
exists such thatCondr(T,U) holds. If the rule exists, it is applied, and the problem is split in simpler
problems, to be solved in subsequent iterations of the while-loop. When we find a subproblem where
no rule is applicable, the algorithm resorts to the quadratic algorithm ORACLE(T,U) described in
[CGS09a].
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sym(T1)⊆ sym(U1)∧sym(T2)⊆ sym(U2)
T1 ≤k U1,T2≤k U2

T1+T2≤k U1+U2
(DIVIDE++)

sym(T1)⊆ sym(U1)∧sym(T2)⊆ sym(U2)
∧ (N(T1)∧ (sym(T2) 6=∅)⇒N(U1))
∧ (N(T2)∧ (sym(T1) 6=∅)⇒N(U2))

T1≤k U1∧T2≤k U2

T1&T2≤k U1&U2
(DIVIDE&&)

sym(T1)⊆ sym(U1)∧sym(T2)⊆ sym(U2)
∧ (N(T1)∧ (sym(T2) 6=∅)⇒N(U1))
∧ (N(T2)∧ (sym(T1) 6=∅)⇒N(U2))

T1≤k U1∧T2≤k U2

T1·T2≤k U1&U2
(DIVIDE · &)

sym(T1)⊆ sym(U1)∧sym(T2)⊆ sym(U2)
∧ (N(T1)∧ (sym(T2) 6=∅)⇒N(U1))
∧ (N(T2)∧ (sym(T1) 6=∅)⇒N(U2))

T1≤k U1∧T2≤k U2

T1·T2≤k U1·U2
(DIVIDE · ·)

sym(T1)⊆ sym(U1)∧sym(T2)⊆ sym(U2)
∧N(U1)∧N(U2)

T1≤k U1∧T2≤k U2

T1+T2≤k U1&U2
(NDIVIDE+&)

sym(T1)⊆ sym(U1)∧sym(T2)⊆ sym(U2)
∧N(U1)∧N(U2)

T1≤k U1∧T2≤k U2

T1+T2≤k U1·U2
(NDIVIDE+ ·)

sym(T)⊆ sym(U1)
T ≤k U1

T ≤k U1+U2
(FOCUS+)

sym(T)⊆ sym(U1)
T ≤k U1 ∧ N(U2)

T ≤k U1&U2
(NFOCUS&)

sym(T)⊆ sym(U1)
T ≤k U1 ∧ N(U2)

T ≤k U1·U2
(NFOCUS·)

TABLE 4.1: The structural rules
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CHECK(T,U)

1 PREPROCESS(T ,U)
2 push (T,U) in todo
3 while (todo 6= ∅)
4 do
5 pick (T,U) from todo
6 if (∃ r such thatCondr(T,U))
7 then push T r

1 ≤U r
1, . . . ,T

r
n ≤U r

n in todo
8 else if(not ORACLE(T,U))
9 then return false

10 return true

The following theorems specify some sufficient conditions aboutCondr(T,U) which guarantee
that the algorithm is correct and is linearORACLE, meaning that it runs in linear time, apart from the
time spent by ORACLE.

Theorem 4.5 (Correctness)The structural algorithm is correct if, for any rule r and anypair of
types T and U, the following holds.

Condr(T,U) ⇒ (T ≤U ⇔ T r
1 ≤U r

1 ∧ . . .∧T r
n ≤U r

n)

Theorem 4.6 (LinearityORACLE) The structural algorithm is linearORACLE provided that:

• PREPROCESS(T,U) is in O(|T|+ |U |);

• every rule consumes some input, i.e., for any rule r an integer kr > 0 exists such that, for any
pair of types T , U:

(|T|+ |U |)− (|Tr
1 |+ |U

r
1|+ . . .+ |Tr

n |+ |U
r
n|)≥ kr

• the test “find r such that Condr(T,U)” runs in time O(|T|+ |U |) when is negative, and in time
O(kr) when it finds the rule r.

Correctness and linearity

We do not report here about details of correctness and linearity proofs, the reader can refer to
[CGPS09] for details, we only give some hints about the main ingredients.

Concerning correctness of presented subtype rules, this consists of proving that each rule corre-
sponds to a double implication.

Proof of linearity is based on the fact that rule selection can be performed in constant time.
Applicability conditions are a combination of the following components:

1. pattern matching, such asT = T1 �T2

2. boolean combination of nullability and symbol emptiness, such as N(T1)∧ (sym(T2) 6=∅)⇒
N(U1)

3. symbol set inclusion, such assym(T1)⊆ sym(U1)

Component (1) is obviously inO(1). A linear time bottom-up traversal can be used to decorate
each node ofT andU with attributes recording its nullability and the emptiness of symbol set,
hence solving component (2). Component (3) requires a bit more of work, and it relies on a kind
of decoration of both typesT andU aiming at relating sub expressionT ′ of T with the smallest
sub-expressionU ′ in U such thatsym(T ′) ⊆ sym(U ′). This can be obtained by a linear bottom-up
parsing of the parse tress ofT andU , and once available it allows to check symbol set inclusion in
constant time.



2. Linear XML subtyping 67

Beyond binary types

The algorithm as presented embodies the main ideas behind our structural approach. However it is
quite limited because it ignores basic commutativity and associativity properties of type operators.
For example, it would fail on all of the following examples.

a+b≤ b+a

a+b+a≤ b+a+ c

a· (b·c)≤ (a·b)·c

a&(b&c)≤ (c&b)&a

a+(b+ c)≤ b?&((a?+d)+ c)

The first example shows that commutativity should be taken care of, and the second one elab-
orates a bit on this. The third example illustrates associativity. The fourth example shows that the
simple approach of normalizing how operators are associated is not sufficient, because associativity
and commutativity should be treated together. We solve thisissue by adopting a flat version of all
type operators, where every operator has an arbitrary number of arguments. Flattening solves asso-
ciativity, but leaves commutativity open; we may solve thisby reordering all addends alphabetically,
but that would require more than linear time. Moreover, the last example shows that flattening and
then reordering is not enough: since the product of nullablefactors is a supertype of union, one
would need to consider some pairs of operators together.

The approach we presented in [CGPS09] solves all these issues. First of all, we generalize
all binary operators to their n-ary version, and we preprocess the types, in linear time, to collapse
all consecutive application of the same binary operator into one application of an n-ary operator.
Second, when applying adividerule to a pair of types�(T1, . . . ,Tn) and�(U1, . . . ,Um), we find, for
eachTi , the minimum subtermU ′j of someU j that contains all of symbols ofTi — that is,U↓sym(Ti )

— and we recur on the pair(Ti ,U ′j) rather than on(Ti ,U j), and this solves the issue presented in the
fifth example. By recurring on(Ti ,U↓sym(Ti )), we merge the effect of thedividerule with that of the
focusrules, and avoid two separate sets of rules.

We do not report here details about the rules, and refer the reader to [CGPS09] for a detailed and
formal presentation.

Test results

As for any improvement, it is mandatory to show that the “optimized” algorithm is more efficient
than the original one and that its applicability conditionscan be easily satisfied, so to justify its
implementation.

In [CGPS09] we report results about extensive experiments. Starting from the observation
in [GMN07] that most human designed XML types are inconjunctive normal form, where each
factor has the form(a1+ . . .+ak), (a1+ . . .+ak)?,(a1+ . . .+ak)

∗, or (a1+ . . .+ak)
+, we focused

our experiments on CNF types and compared the performance ofthe structural algorithm with that
of the quadratic algorithm on the four main kinds of factors.

Both the structural algorithm and the quadratic algorithm presented in the previous chapter have
been implemented in Java 1.5 and all experiments were performed on a 2.16 Ghz Intel Core 2 Duo
machine (3 GB main memory) running Mac OSX 10.5.7.

As already stated, in our experiments we evaluate the performance of our algorithm on CNF
types, with four main categories of factors:(a1 + . . .+ ak), (a1+ . . .+ ak)?, (a1 + . . .+ ak)

∗, and
(a1 + . . .+ ak)

+. For the sake of completeness, we also evaluate our algorithm on a DNF types
scenario, where types are indisjunctive normal form(e.g., the subtype and the supertype are a union
of products). In the supertype we impose the conflict freedomconstraint, hence terminal symbols
are unique and counting is applied only to terminal symbols,while these restrictions are relaxed in
the subtype, which can be any legal type. In our experiments we compared the performance of the
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structural algorithm with that of the plain mixed algorithmof [CGS09a]; in particular, we evaluate
the scalability of the algorithms by increasing the number of addenda in each factor of both the
supertype and the subtype from 10 to 100. To make the experiments even more realistic and test the
flat algorithm, the supertype contains a 20% of randomly distributed labels. We only generated pairs
of types which satisfy the subtype test, since this is the dominating situation when the algorithm is
run by a compiler.

Test results reported in [CGPS09] show that the structural algorithm significantly outperforms
the plain one in most of considered cases.

3 Conclusion

In the first part of this chapter, we presented an algorithm tocheck subtyping among EREs types
with the only restriction that the supertype must be conflict-free, as it commonly happens while
typechecking XML programs. This algorithm has quadratic complexity, both in the best and worst
cases, it strongly exploits the conflict-free restriction over the supertype, but does not exploit any
structural similarities between the subtype and the supertype to further accelerate inclusion checking.

In the second part we have presented a more efficient algorithm, still dealing with the kind of
mixed comparisons considered in the first part, but which also exploits possible structural similarities
between the types being compared. The new algorithm proceeds in a top-down fashion, and is
based on a set of structural subtyping rules, that are applied whenever a structural similarity is
detected; when these similarity conditions are not satisfied, the algorithm just resorts to the quadratic
algorithm.
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CHAPTER

5
WORK IN PROGRESS AND

PERSPECTIVES

This chapter discusses works in progress and future directions related to topics dealt with in this
Thesis.

1 Work in Progress

Schemas for Detecting XML query-update independence

A query and an update are independent when the query result isnot affected by update execution, on
any possible input database. Detecting query-update independence is of crucial importance in many
contexts. It is crucial to minimize view re-materialization after updates, when the view is defined
by a query; it is crucial to ensure isolation, when queries and updates are executed concurrently; as
outlined in [BC09], it is also crucial to enforce access control policies, when the query is used to
define the part of the database that must not be changed by a user update.

In all these contexts, benefits are amplified when query-update independence can be checked
statically. In order to be useful, every static analysis technique must be sound: if query-update
independence is statically detected, then independence does hold. The inverse implication (com-
pleteness) can not be ensured in the general case, since static independence detection is undecidable
(see [BC09]). This means that if a static analyzer is used, for instance, in a view maintenance system,
sometimes views are re-materialized after updates even if not needed, because the analysis has not
been smart enough to statically detect a view-update independence. Useless view re-materialization
frequently occurs if a static analyzer with low precision isadopted. This can lead to great waste of
time, since view materialization cost can be proportional to the database size.

Schema-based detection of XML query-update independence has been recently investigated.
The state of the art technique has been presented in [BC09]. This technique infers from the schema
the set of node types traversed by the query, and the set of node types impacted by the update. The
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query and the update are then deemed as independent if the twosets does not overlap. This technique
is effective since the static analysis: i) is able to manage awide class of XQuery queries and updates,
ii) can be performed in a negligible time, and iii) as a consequence, even on small documents it can
avoid expensive query re-computation when independence wrt an update is detected. However,
the technique has some weaknesses. As illustrated in [BC09], in some cases independence is not
detected due to the nature of the proposed type inference rules, and in particular by some kind of
over approximation made by some of them.

For example, this technique can not detect independence between the queryQ1 = //a//c and
U1 = delete//b//c, when the schema says thatc descendants ofb nodes are never descendants of
a nodes as well. This is because the type inference technique proposed in [BC09] infers the type
{c} for the query path and the update path, without considering contextual information about the
inferred types. Since the query and update types overlap, independence is wrongly excluded. Also,
the technique is likely to not detect independence, when XPath axes requiring ancestor or descendant
navigation are used.

Another kind of low precision of this technique is independent from the way XPath axes are
typed. ConsiderQ2 = //title andU2 = for x in //bookreturn insert < author/ > into x,
over data typed by the well known bibliographic DTD used in the XQuery Use Cases [CFF+07]. The
technique proposed in [BC09] infers{book} as the set of impacted types ofU , while{bib,book, title}
as the set of types traced by the query. Since the two sets share the typebook, the system does not
detect independence, while it should.

In none of the above mentioned cases, independence can be detected by techniques not using
schema information. This is the case for the path-based approach proposed by in [GRS08], which
deals with the problem of update-commutativity detection,and which can be directly extended for
detecting query-update independence. The same holds for the recent destabilizers-based approach
proposed in [BC10]. Both approaches do not consider/use schema information,and as a conse-
quence deem paths like//a//c and//b//c (Q1−U1 example) as overlapping, since, for instance,
documents matching the path/a/b/c match both paths; a similar reasoning holds for//title and
//book(Q2−U2 example), since schema constraints are not considered.

Contributions

In the context of Federico Ulliana PhD thesis we are working on a novel schema-based approach for
detecting XML query-update independence. Differently from traditional type systems for XQuery
[BC09, Che08a, CGMS06], our system is able to infer sequences of labels (hereaftercalledchains)
that are vertically navigated in a schema instance by query and update paths. More precisely, for
each node that can be selected by a query/update path in a schema instance, the system infers a chain
recording: a) all labels that are encountered from the root to the selected node, and b) the order in
which these labels are traversed.

The contextual and ordering information respectively provided by a) and b) is at the basis of
an extremely precise static independence analysis. For instance, by considering the simple schema
r ← (a|b)∗, a← c, b← c, for theQ1 path//a//c we infer the chainr.a.c, while for theU1 path
//b//c we infer the chainr.b.c. Disjointness of these two chains can be simply checked, thus
allowing, differently from the existing approaches [BC09, BC10], to detect independence for the
Q1−U1 pair. For theQ2−U2 the query chainbib.book.title and the update chainbib.book.author
are inferred from XQuery Use Cases DTD [CFF+07]; as these two chains diverges after thebook
symbol, we can conclude independence.

Our independence analysis technique is based on chain inference rules able to deal with all XPath
axes. The resulting technique ensures all the advantages and the precision level of both [BC09] and
[GRS08], while it improves on precision to a large extend: it enables to detect independence for
difficult cases, like the ones previously illustrated, for which [BC09] and/or [GRS08] fail.

A key feature of our technique concerns the way recursive DTDs are handled. These DTDs
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require special care in order to avoid inferring infinite sets of chains when XPath expressions use
recursive axes (e.g. descendant and following). We show howa finite upper bound, on the number
of chains to be inferred, can be determined in terms of structural properties of the query and the
update.

Some preliminary results about this work have been published in [BCU10b], while more mature
results are considered for future submissions, and are described below.

• We provide a chain inference system able to infer a set of chains from a DTD and XQuery
query/update. We proved that chain inference soundly approximates the set of chains a
query/update has to traverse in the DTD instances in order tocompute the result. We then
provide a notion of chain-based independence and prove it tobe sound wrt the semantics
notion of query-update independence.

• In the presence of recursive schemas, chain-based independence analysis may involve an infi-
nite number of chains. We showed that the analysis can be carried out by restricting on a finite
subset of the possibly infinite sets of query and update chains. We prove that the resulting
finiteanalysis turns out to be equivalent to theinfiniteanalysis. This is reminiscent of the well
known Finite Model Property technique used in the context offinite model theory [P. 01].

• We have performed extensive tests by using a Java implementation of the finite analysis. We
used the XMark testbed used in [BC09]. Concerning precision, obtained test results show that
our technique ensures sensible improvements on [BC09]. Test results also show that sensible
improvements in terms of time savings can be ensured by avoiding re-evaluation of queries
deemed as independent of an update.

We are currently investigating optimizations for a succinct representation of inferred chains.
Obtained results, highlighted that in many cases inferred chains share common prefixes and/or suf-
fixes. While redundancy of prefixes can be easily dealt with byusing a tree-based representation of
inferred chains, controlling the redundancy of suffixes is subtle and more difficult to deal with.

Partitioning and Projecting XML Data

As we have seen, XML projection is a well established technique allowing main-memory XML
query engines to query very large documents. These projection techniques are quite effective in a
wide class of cases, but still fail when the projected documents are too big to be loaded in main
memory. This can happen in two basic scenarios. First, when the query traverses a large part of
the input documents, projection may become ineffective as the projected documents may almost
coincide with the original ones; for instance, this can be the case for full-text search queries, or
queries performing content-preserving transformation ofa large fragment of the input. Furthermore,
when working on very large documents, e.g., the XML dump of Wikipedia, no projection technique
is currently able to trim the input documents to fit the size ofthe available main memory.

To overcome these limitations, in the context of Noor Malla PhD thesis, we are investigating a
new projection technique, based on a path-based approach, so that it can be used even in the absence
of a schema.

The technique relies on the observation that, in many practical cases, queries first select a se-
quence of nodes by means of a subquery (e.g, an XPath expression), and then iterate on this sequence
to do some operations on the subtrees rooted at nodes in the sequence. We dub such queries asiter-
ativequeries

In this work we are devising novel projection techniques that deal with iterative queries, and
improve the scalability of existing main memory engines on this class of queries.

To deal with the cases where the size of projection is likely to exceed the maximal size that a
main-memory XML processor can manage, we provide a static analysis technique, based on path
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analysis, allowing one to recognize whenQ is iterative, and to infer path information to partition
the input documentD in several partitionD1, . . ., Dn, such thatQ(D) is equal to the concatenation
Q(D1), . . . ,Q(Qn). Inferred path information is used for both partitioning and projecting, so that
each partition is guaranteed to contain only information strictly necessary for processingQ. The
maximal size of each partition is determined in terms of the particular main-memory engine.

As a second contribution, we extend the above technique to the case where a document has to be
partitioned and projected in order to be queried by several queries taking part of a workload.

Both techniques have been formalized and implemented. Extensive test results on XMark doc-
uments whose size ranges from to 1GB to 5GB have shown that: i)for most main-memory query
engines standard projection fails in many cases either by considering XMark queries or other prac-
tical relevant queries; ii) in the cases where standard projection work, even if we apply partitioning
plus projection execution time does not increase, and iii) in cases involving iterative queries and
where standard-projection fails, out method scales beautifully, allowing to process until 5GB doc-
uments (actually, since partitioning and results composition can be done in streaming, there is no
size upper-limit for iterative queries), iv) when projection o is performed for a workload of multiple
queries, standard projection is more likely to fail, while our partitioning technique still scales up.

These results will be the subject of future submissions for conference publication. Currently,
we are investigating applications/extensions m to XML updates. We aim at identifying a class
of iterative updates, and devise a partitioning algorithm allowing one to update large documents,
without the need of a merge operation (Chapter2). Also, we plan to investigate how to exploit the
potential parallelism inherent in our techniques: once partitions are created, a query/update can be
run in parallel on all the partitions.

Compact Representation of Temporal XML Documents

The management of temporal data is a crucial issue in many applications such as finance, banking,
travel reservations, geographical information systems etc. With the increasing use of XML for
data exchange and representation, the issue of developing temporal extensions for XML is gaining
importance.

Current work on temporal XML concentrate on time-stamp XML documents, a concrete model.
Although many proposals have addressed the issue of querying time-stamp XML documents, there
has been less in-depth investigation of how to efficiently build or maintain temporal XML docu-
ments, keeping track of data evolution over time.

To fill this gap, in the context of Amine Baazizi PhD thesis, weare investigating techniques
ensuring compact representation of temporal XML documentsunder updates. Each time an update
is performed on the current snapshot, the document resulting from the update is opportunely merged
with the historical database, recording all changes.

Two merging techniques have been devise, the first one uses noinformation about the particular
update, while the second one does, and also uses projection-based techniques to efficiently manage
both the update and the merging process.

Both methods have been implemented, and tests have shown that the second method outperforms
the first one in terms of compactness of the historical document.

A paper including these results has been recently accepted for publication [BBC11a].
We are currently working on extensions of these results. Namely, on more extensive tests, and on

new merge/projection techniques in the presence of multiple updates from then to n+1 instances.

XQuery Type-Checking

As we have seen, XQuery has been designed by World Wide Web Consortium (W3C) as a standard
query language for XML. XQuery is a functional, Turing-complete, strongly typed language. A key
feature of XQuery is its type system, and a formal specification is proposed by the W3C [DFF+10].
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In XQuery any language expression is statically typed and its type is used during program type-
checking, even though the programmer can disable this feature.

In XQuery, types of input data and functions are defined in terms of regular expression types,
but it is quite easy to write queries that generate non-regular languages. As a consequence, any
type system for XQuery has to rely on atype inferenceprocess that approximates the (possibly non-
regular) output type of a query with a regular type. This approximation process, while mandatory
and unavoidable, may significantly decrease the precision of the inferred types. This is the case
of the W3C proposed type system, which relies on some over-approximating rules for expressions
widely used in practice (e.g.,for-iterations). Another source of undesired over-approximation is
given by rules to type horizontal and upward XPath axes, for which the typeanyis always inferred.

It is a common folklore that W3C has sacrificed precision in favor of better complexity, and
that the W3C typing algorithm runs in polynomial time. An alternative and more precise approach
for typing XQuery has been proposed in [Col04, CGMS04] and used as a basis for other proposals
[Che08a, BCCN06]. This type system, used in theµXQ language, has a more precise type inference,
at the price of a potential exponential explosion of the query output type.

Though the two above mentioned approaches are relatively well known today by the database
and programming language communities, a formal, rigorous,and complete analysis showing in
which cases the two proposals differ in terms of precision and complexity for type inference, is
still missing. Such formal analysis could have a practical relevance as well, since it would provide
important information to implementation designers.

In a recent work we filled this gap by providing a first comparative analysis. Besides providing
a clean and simple formalization of the main typing mechanisms of both approaches, we formally
studied their complexity, showed in which cases the W3C excessively over-approximates inferred
types, identified cases for which inference precision can bedramatically improved, and propose new
type rules to better handle these cases. We also showed that,contrary to the common belief, the W3C
type system may itself infer types of exponential size wrt the query and the input size.

A paper collecting these results has been recently acceptedfor conference publication [CS11].

2 Perspectives

Future research directions are described in the next sections.

Type-based debugging of XML transformations

One of the main use of subtype checking is in the checking of correctness of transformations from a
schemaS1 to another schemaS2. In many cases the transformation is defined via an XQuery query
Q, and its correctness is checked by first inferring a typeSfor Q results starting from the query itself
and the input schemaS1, and then by checking the inclusionS≤ S2. If this inclusion check fails
then the transformation is deemed as incorrect and should berevised.

In many cases the transformation is made of complex query expressions, and in the case type
checking fails the correction process is likely to be quite cumbersome. To facilitate this task new
type-based techniques could be devised. First of all the process of inferring a query typeSshould be
equipped withquery-provenancemechanisms allowing to opportunely decorate each subexpression
of the inferred schemaSwith the parts of the query this subexpression is inferred from. Secondly,
the sub-typing checking algorithm should be instrumented with mechanisms able to precisely locate
sub expressions of compared types responsible for the failure of the inclusion checking.

In the case of failure of the inclusion checkingS≤ S2, parts of the queryQ that should be
changed can be located by opportunely combining information inferred by the two above techniques.
A similar technique can be devised to aid the debugging of corrupted schema-to-schema mappings
(Chapter3)



74 Chapter 5. Work in progress and perspectives

Another future direction in the context of query type-checking, concerns the problem of type
inference for XQuery in the presence of interleaving and counting. This problem is mostly unex-
plored, and entails the study of interesting subproblems, like the analysis of approaches to ensure
precise type inference at a reasonable time cost.

Projection for XML security

A nice and powerful type-based technique to define and enforce access control policies on XML
documents typed by a DTD has been proposed in [FCG04]. This technique has the advantage that
security policies are: defined by opportunely enriching theDTD, and enforced by rewriting each
query by matching it wrt the enriched DTD, so that the rewritten query can be safely executed on
the original document, without the need of materializing security views.

A weakness of this technique is that is server-oriented: if aclient asks for the execution of a
query then the document can not be sent to the client for queryexecution, due to obvious security
issues. Also, this solution excludes view materializationwhich can be fruitful in some contexts. A
more serious weakness is that the technique only deals with the forward fragment of XPath. Hence,
the technique does not take into account queries expressed in full XPath or XQuery.

To overcome these limitation, we plan to rely on schema basedXML projection. Actually XML
projection can be naturally used for enforcing access control policies, under the assumption that
parts that do not have to be accessed by a user are pruned out during projection. Starting from this
fact, new projection techniques can be devised for enforcing security. This new technique has to be
such that the projection can be quickly computed, and at the same time only contain information
that can be seen by the user (in other words the projection cancontain only information that a user
can obtain by using a query). This requires a special handling of information specified in security
policies.

Another interesting aspect connected to security, is the handling of updates. We plan to investi-
gate projection-based techniques to enforce secure execution of updates. In particular, this requires
a new notion of projector, and a new merge process (see Chapter 2).

Efficient large scale management of Web data

The last years have seen a high concentration of research activities around the design and devel-
opment of systems that scale to data volumes typically foundin Web search indexes, large scale
warehouses, and scientific applications. The main approachis based on massive parallelization,
exploiting large numbers of cheap computers, often exploiting multicore hardware.

In this context, new architectures and programming paradigms have been proposed in order o
overcome limitations of traditional DBMS architectures, typically their missing scalability, elasticity
and fault tolerance. Among these proposals the MapReduce paradigm [DG04] has emerged as an
effective and simple model, according to which data manipulation programs are written as map and
reduce functions, which process key/value pairs and can be executed in many data-parallel instances.
However, several complex database operations can not be easily programmed by means of map
and reduce functions. This is the case, in particular, of operations requiring multiple inputs, like
joins. Also, current database solutions based on map-reduce lack a tight integration of indexing and
storage, which prevents data access optimization, a crucial ingredient for efficient query processing.

In the Leo team (which I joined on February 2010) we have recently started research activities
aiming at conceiving efficient algorithms for processing queries and updates on Web data. To this
end we will leverage the Stratosphere7 platform in order to take advantage of its PACT programming
model [ABE+10, BEH+10]. The PACT model is a powerful extension of MapReduce. One ofits
main strengths consists in second-order functions that define properties on the input and output data

7http://stratosphere.eu/
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of their associated first-order functions. This is at the basis of simple and highly parallelizable
program specifications for complex database operations.

In a first step, we are interested in the use of PACT primitivesfor the efficient management of
extremely large indexes over XML and RDF data. We will focus on indexes formed by (key, value)
pairs, in order to cope with the PACT data model. We will devise several kind of indexes and define
optimal strategies by means of the PACT programming model inorder to efficiently access and
update the indexes.

As a subsequent step, we plan to switch to the problem of generating efficient PACT workflows
starting from XQuery/SPARQL queries. We will first rely on available PACT primitives, and then,
based on what learnt in the above depicted first step, we will propose extensions to the PACT pro-
gramming model with new primitives that better fit with the generation of efficient workflows for
XML/RDF management.

This research plan is part of a wider research project recently accepted by the European Institute
of Innovation & Technology (EIT)8. For this project, that involves several european partners, I am
the local scientific coordinator for the University of ParisSud partner.

8http://eit.ictlabs.eu/
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