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ABSTRACT

This Habilitation Thesis manuscript presents main resiitained during my research
activities carried out as Assistant Professor at UniveiBaris-Sud since 2005. At the
beginning of this period theXtensible Markup LanguadXML) was already recog-
nized as thale factostandard for representing semi-structured data. Also, XddL
quired an important role in data exchange and data integratistems. During this
period my research interests were in the intersection ddl@dete and programming
languages, and focused on the use of type-based staticsentdyensure safe and
efficient XML processing. In more detail, | focused on thresaarch directions: i)
type-projection for efficient main-memory XML processiiiychecking correctness of
schema-to-schema XML mappings in the context of data iategr systems, and iii)
efficient algorithms to check XML schema inclusion (a crupi@perty to type-check
XML queries and updates). This Habilitation Thesis presembtivations, techniques
and results obtained along these lines of research.

RESUME

Ce manuscrit d’Habilitation a Diriger des Recherches priesées résultats que jai
obtenus dans le cadre d’activités de recherche menées@iils en tant que Maitre de
Conférences a I'Université Paris-Sud XI. Au début de ceftéople XML (eXtensible
Markup Languaggétait déja reconnus comme le standard pour la représamtdd
données semi structurées. En méme temps, XML c’est augsnéfiomme format
de representation dans le contexte de l'intégration ehfiége de données. Pendant
cette période mes intéréts de recherche se sont situés aflaetce des langages des
bases de données et langages de programmation, et se sdis&fear |'utilisation des
systemes de types pour assurer la sureté et optimisatioprdgeammes manipulant
les données XML. Plus en détails, je me suis principalenréatessé a trois axes de
recherche: i) optimisation de requétes et mise a jours XMlasprojection de données,
ii) vérification de la correction demappingsntre deux schémas XML, iii) algorithmes
efficaces pour la vérification d’'inclusion entre schémas X{he propriété qui est
a la base des systemes de types pour requétes et mises a ja)r & manuscrit
d’Habilitation a Diriger des Recherches est consacré aroesdxes de recherche, et
présente le contexte, les motivations et résultats obtgouschacun des axes.
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INTRODUCTION

The last decade has seen the rapid expansion aéXtensible Markup Languadge many appli-
cation fields. Born as the successor of SGML, XML soon becdraaatural way of representing
data with loose structure; furthermore, its great flexipithade it a universal data representation
format, and allowed the use of XML as a convenient mediumxXohanging data between different
applications. Finally, XML also acquired an important rodedata exchange and data integration
systems.

To support the diffusion of XML, several tools for transfanm, querying, manipulating, and
modeling XML data have been defined. In particular, YWerld Wide Web Consortiurf\w3C)
introduced XQueryXQub] as the standard query language for XML data.

Since its introduction, XQuery has attracted a big deal t#fraiion, from both industrial and
academic worlds. The research community has been involvathny research directions such as
complexity and expressivity analysis of XQuery fragmetgshniques to optimize query evaluation,
security, static analysis, and data integration.

Many of the techniques devised in these research linesvieval rely on the use of schema
information. The W3C defined two schema languages for XMIlad&TD [BPC"06] and XML
SchemaTBMMO04, BM04]. While the first one comes from the document community asguage
to constrain the format of SGML documents, the second onesecto the spirit of relational/object
DBMSs and general programming languages type systemanhs t#f regular tree grammars, DTDs
correspond to local tree grammars, while XML Schemas cpard to the more expressive class of
single type tree grammarsILMKO05].

Schemas allow one to represent both the structure and thstraoms of the data being pro-
cessed. Schemas, hence, play a key role in many XML datassisg such as query optimization
[ABS99 FYL 109, FS98 BCF02, BC09 BCCNO04, data integration and exchand&qH11, FBO§,
BCF"02, CS09, and development of safe database applicatiQiep8aCGMS06 DZLMO04, PV,
SV02 AMN +01, PVOQ.

This thesis reports on main results | obtained during myare$eactivity in the last years, after
| obtained my PhD degree. During this period | focused onethiesearch directions, respectively
related to the three above mentioned tasks, and all relyirggcbema-based analysis, namely: i) ef-
ficient in-memory XML processing, ii) checking correctne§schema-to-schema XML mappings,
and ii) efficient algorithms to check XML schema inclusiorcfacial operation to type-check XML
queries and updates).

The following three sections describe the context and resancerning these three research
lines; each section indicates the chapter presenting ibescresults. A fourth section contains
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details about other works. This introductory chapter enidk & list of publications described in
each chapter of the thesis.

1 Main-memory XML processing

XQuery has been originally defined has a language to query Xsthbases, but quickly became
the main tool to process XML data simply stored in files or gatesl by a stream, as happens
in many kinds of applications (e.g., streaming, informatiotegration, full-text search). Most of
these applications do not necessarily need complex fumaditees of traditional DBMSs, like for
instance those for the management of transactions, andd&gostorage indexes. To meet this
kind of needs, many light-weight XQuery processors have liewised in recent years, like Galax
[gall, Saxon faxh, QizX [qiz], and eXist Exi], just to mention some of the main ones (a richer list
can be found inxqud). These systems usually provide full compliance with ezdgo the W3C
specifications, and process data in a main-memory fashiata @ be manipulated are entirely
loaded in main memory before being processed.

Main-memory XQuery engines, often rely on smart internal XMpresentation and indexes,
built at loading time and still kept in main-memory, in orderensure efficient XML navigation,
the basic operation behind any kind of XML processing. Havemain-memory engines suffer of
main-memory size limitations, making impossible the pesieg of large documents.

One of the main techniques that have been devised to oversoatelimitation isXML pro-
jection This consists of pruning out at loading time parts of thewsoent that are not needed by
a query; the resulting document is callegm@jection of the original document, and if used for
guery evaluation, instead of the original document, it press query result. Since in many contexts
gueries are likely to involve a small percentage of the aagdocument, XML projection enables
main-memory systems to query very large documents evereiprissence of a limited amount of
main memory.

It is worth mentioning that main-memory size limitationsspgroblems also for systems that
can not be classified as main-memory. This is the case for MdBeone of the fastest XML query
engines available today. Its efficiency is due, in particutathe stair-case operatioGyKTO03] it
adopts in order to minimize the amount of intermediate tesuhile evaluating XPath expressions.
MonetDB is rather a disk-based system, since it uses theadisdecondary storage system, thus
being able to process very large documents. However it ussasiah main-memory as possible to
answer a query efficiently and performs its own page managelyemapping memory pages to
the disk and reading them back when needed. Therefore forasqgoery engine, speed is directly
proportional to the amount of available memory: the more s available, the less swapping
occurs between pages on disk and pages in main memory. Ewres have shown that XML
projection can entail sensible improvements in terms o€etien time BCCN11].

In joint works with Veronique Benzaken, Nicole Bidoit, aniiGeppe Castagna, we investigated
two schema-based techniques to project XML documents:

e The first one is based on a key observation coming from my puaviesearch activities
[Col04, CGMSO04 in the context of type-checking systems for XQuery: dutiyyge-checking,
besides type information about the query result, type métiron about nodes that are needed
to compute the query result is inferred as well. Startingnftbis observation, we worked on
the definition of new type analysis techniques for XQuergwihg to infer, from a query and
an input schema, ype-projector consisting of a quite precise over approximation of the set
of types of nodes that are strictly needed for query exenufibis information is then used at
loading time to prune out nodes whose type is not in the typgeptor.

e The second XML projection technique has been devised inrdodeptimize XML updates
expressed by means of the XQuery Update Facility languagyd.[ Dealing with updates
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required to face two main problems: i) devising a techniguerbpagate to the original doc-
ument all the updates performed on the projected documigrtevising a new notion of
type-projector enabling an efficient propagation process.

Results about XML projection for queries have been pubtishefBCCN0O§. Results about
XML projection for updates have been published B®CMS09h) BCMS09a BBC" 11k, and have
been obtained in the context of the two PhD projects of Amiadd&izi and Marina Sahakian,
both co-supervised with Nicole Bidoit. Also, alternativhniques for type-projector have been
investigated in Federico Ulliana’s Master Thedill], that | supervised.

The above results are presented in Chapter

2 Detection of corrupted XML mappings

As already outlined, XML is an universal data format that b@nused to represent the vast ma-
jority of data sources, from strongly structured data (eajational data) to semistructured or even
unstructured data. This property made XML a natural medionirftegrating heterogeneous data
sources.

One of the most important problems in data integration syst@oth centralized and decentral-
ized) is themaintenancef mappings Mappings are dependencies among schemas, that are used
during query answering for reformulating queries or, asdatagxchange systemal[054], for gen-
erating canonical solutions. Since a mappingrom .7 to .} exploits the structural properties of
both schemas”; and.”j, a sudden change in one of the schemas, let's&gymay corrupt the
mappingm, so that its mapping rules are no longer true. Mapping ctioofas a deep impact on
query answering, and essentially prevents the system feamargting (useful) query results.

In a joint work with Carlo Sartiani, | dedicated a substarrt of my recent research activities
to the problem of XML mapping maintenance. Interestinglpw@gh, obtained results involved a
binary relation over types based on XML projection, and adicg to which two types are related
if each instance of the first one is a projection of an instari¢ke second one.

Main results obtained in this line of research are descritebolw.

¢ A mapping maintenance technique based on the followingreagen: unlike schema-to-
schema XML functions or transformations, an XML mappinggloet output instances of the
target schema, but, rath@rpjectionsof target schema instancesIMT03]. This is because,
in the data integration setting, it is often the case thatestarget elements do not have cor-
responding source elements. As a consequence, in ordeet cbrrectness of a mapping,
the projection relation among a type, inferred for the magmutput, and the target schema
is checked.

e A characterization of the type projection relation in terofsa notion oftype simulation
allowing for a better understanding of the properties oétgpjection itself, and, in particular,
of its relationship with subtyping.

e Atypeinference technique able to infer, quite precisélg,result type of an XQuery mapping
specification. This type system is an extension of the ongge®d in my PhD Thesi€pl04).
The inferred type for the mapping is used in a type-projectiomparison against the target
schema, as described in the first point.

e The proof of NP-completeness of the problem of checking ybe projection relation, and
the definition of an algorithm which is polynomial in most gtiaal cases. Exhaustive exper-
imental evaluation of an implementation of the proposeth&aork (type inference system
plus a checker for the type projection relation) confirmedeitectiveness.
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The above results have been publishedd&(5h CS06 CS09, in particular the journal paper
[CS09 collects all of them, and are presented in Chafter

3 Efficient XML subtype checking

XML schemas are an essential tool for the robustness ofegijais that involve XML data manip-
ulation and transformation. To solve any static analysibfam that involves such types one must
first be able to reason about their inclusion and equivalence

XML schema languages are designed to describe orderedodidthey usually offer some sup-
port to deal with cases where the order among some elementsdsenstrained. Also, XML schema
languages usually offer counting operators, enablingpleeification of the the minimum and max-
imum number of times a value of given type can repeat in a segue

As shown in in GMNO7], the addition of interleaving (also calleshuffl§ and counting opera-
tors to standard regular expressions raises the complakibclusion checking from PSPACE (or
EXPTIME, for Extended DTDs) to EXPSPACE. These are compleds results.

In a joint work with Giorgio Ghelli, Luca Pardini, and Carl@®&iani, we worked towards the
characterization and study of classes of regular expnes$iRESs in the following) with interleaving
and counting, and for which the inclusion relation can beckkd in polynomial time. Such sub-
classes can be used either to design a new schema languageesign adaptive algorithms, that
use the PTIME algorithm whenever is possible, and resotiédll algorithm when needed. To
this aim, it is important that (i) the subclass covers lafdgsses of XML types used in practice, (ii)
it is easy to verify whether a schema belongs to the subclass.

This research activity involved several steps:

o Afirst step was dedicated to the characterization of a cleR&s based on the following two
restrictions. Each expressiondenflict-free(or single occurrencemeaning that no symbol
appears twice, and counting is only applied to symbols oigjudctions of symbols. These
restrictions are severe, but, as showrBifiIB04] and BNST0q, are actually met by the vast
majority of the schemas that are used in practid®e designed a class of logical constraints
and proved that the semantics of conflict-free REs can belgxaptured by these constraints.
This allowed to rephrase sub-typing as constraintimpboatind paved the way to a quadratic
algorithm for checking inclusion over conflict-free regglaxpressions.

e A second step concerned the relaxation of symmetry of théiqurs technique, by allowing
the subtype to be any type. For this case we provided a quadigbrithm for inclusion
checking. This technique is still based on constraints.

¢ A third step originated from the observation that in manyesaypes compared for inclusion
checking share a similar structure. We provided a new algorthat is linear-time for types
featuring some similarity properties that can be deteatezbnstant time. When these prop-
erties are not met the algorithm reverts to the above quadaproach for those subparts of
the initial types for which similarity is not detected.

Results described in the above first step were first preseémfggCS07 and then in a journal
paper CGS09h. Concerning the second step, results were presentéiGisD9qbut an extended
version is availableCGS114 Finally results in the third step were presented@@[PS0J.

Results obtained in the second and third steps are presar@adptert; the technique described
in second step includes the symmetric case described irrghstép GCS07 CGS09h.

1“More that 99% of the REs occurring in practical schemastoading to BNST0g



4. Other works 7

4 Other works

Some the results previously described have been also peelsara recent tutorial given at ICDE’'11
[CGS11B, in collaboration with Giorgio Ghelli and Carlo SartiannAverview on the problem of
updating XML data and schemas has been proposed in a bootecf@@M10], in collaboration
with Giovanna Guerrini, Marco Mesiti, Barbara Oliboni, aachmanuel Waller.

In collaboration with Nicole Bidoit, | worked on techniquesexpress DTD-like schemas with
references by means of the hybrid modal logita0(. Based on this coding, we then devised a
tableaux system to check that integrity constraints exg@eby means of the hybrid modal logic are
consistent wrt a schem&C07).

The constraint-based encoding of conflict-free XML schem#h interleaving and counting,
that are presented in Chapteihas been at the basis ofalmostinear method to check membership
of XML trees into a class of Extended DTDs with interleavimgi@ounting. The resulting algorithm
has time complexity which is linear in the product of the ihpize with the maximal depth of all
the content models in the schema. This works has been peeser{GCS0§, and has been carried
out in collaboration with Giorgio Ghelli, Luca Pardini an@® Sartiani.

In a joint work with Michele Bugliesi, Silvia Crafa and Damia Macedonio BCCMO09 we
studied a type-based theory of DCA (Discretionary Accesst@t) models for a process calculus
that extends the pi-calculus with grougd3G0Q.

List of publications described in this thesis, grouped by chpter

Chapter 1, works described in the above Other Works section

[CGS11B D. Colazzo, G. Ghelli and C. Sartianschemas for Safe and Efficient XML Pro-
cessing IEEE International Conference on Data Engineering (IC2B)L1.

[CGMT1Q] D. Colazzo, G. Guerrini, M. Mesiti, B. Oliboni, and E. WalleDocument and
Schema XML Updatesn Changging Li and Tok Wang Ling, editor&dvanced Applications
and Structures in XML Processing: Label Stream, Semanttdizdtion and Data Query
TechnololgiesIDEA Group, 2010.

[BCO7] N. Bidoit and D. ColazzoTesting XML constraint satisfiabilityelectronic Notes in
Theoretical Computer Science. Volume 174(6) : 45-61, 2007

[BCCMO9 M. Bugliesi, D. Colazzo, S. Crafa and D. Macedoni&.Type System for Dis-
cretionary Access ControlMathematical Structures in Computer Science (MSCS). fielu
19(4) : 839-875, 2009.

[GCS0§ G. Ghelli, D. Colazzo and C. Sartiafiinear Time Membership for a Class of XML
Types with Interleaving and CountingACM Conference on Information and Knowledge
Management (CIKM), pages 389-398, 2008.

Chapter 2: Type-based projection for efficient XML processng.

[BBCT11H A. Baazizi, N. Bidoit, D. Colazzo, N. Malla and M. SahakyaRrojection for
XML Update Optimizationl4th International Conference on Extending Databaserkgoby
(EDBT), 2011.

[BCMS094 N. Bidoit, D. Colazzo, N. Malla and M. Sahakyarojection-based optimization
for XML updates. International Workshop on Schema Languages for XML (X-3ths),
2009. Also appeared in BDA09.
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[BCCNOQ V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyigpe-Based XML Projec-
tion. International Conference on Very Large Data Bases (VLDB)&

Chapter 3: Projection-based detection of corrupted XML sckema mappings.

[CS09 D. Colazzo and C. SartianiDetection of Corrupted Schema Mappings in XML Data
Integration Systems ACM Transaction on Internet Technology (TOIT). Volume 9(@aper
14, 53 pages, 2009.

[CS04 D. Colazzo and C. SartianiAn efficient algorithm for XML type projectiorACM
SIGPLAN Conference on Principles and Practice of Declaed®rogramming (PPDP), 2006.

[CS05) D. Colazzo and C. SartianiMapping Maintenance in XML P2P Database&0th
International Symposium on Database Programming Langu@@PL). LNCS 3774, pages
74-89, 2005.

Chapter 4: Efficient XML subtype checking.

[CGS094 D. Colazzo, G. Ghelli, L. Pardini and C. SartianLinear Inclusion for XML
Regular Expression Type®ACM Conference on Information and Knowledge Management
(CIKM), pages 137-146, 2009.

[CGS09BD. Colazzo, G. Ghelli and C. Sartiaritfficient Inclusion for a Class of XML Types
with Interleaving and Countingnformation Systems. Volume 34(7) : 643-656, 2009. Also
appeared in International Symposium on Database Prognaginainguages (DBPL), LNCS
4797, 2007.

[CGPS09 D. Colazzo, G. Ghelli, L. Pardini and C. SartianLinear Inclusion for XML
Regular Expression Type®ACM Conference on Information and Knowledge Management
(CIKM), pages 137-146, 2009.

Chapter 5: Work in progress and perspectives.

[CS1] D. Colazzo and C. SartianiPrecision and Complexity of XQuery Type Inference.
ACM SIGPLAN Conference on Principles and Practice of Deatige Programming (PPDP),
2011.

[BBC11g M.A. Baazizi, N. Bidoit, and D. ColazzoEfficient Encoding of Temporal XML
Documents.International Symposium on Temporal Representation araséteng (TIME),
2011.

[BCU104 N. Bidoit, D.Colazzo and F. UllianaDetecting XML Query-Update Independence.
Bases de Donnés Avancées, 2010.
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TYPE-BASED PROJECTION FOR
EFFICIENT XML PROCESSING

This chapter presents results about type-based projetamiques, both for XML queries and
updates. The chapter is composed of four main sectionsio8€ecintroduces some basic notation
used in the presentation of both techniques, respectivelgemted in Sectio and 3. Finally,
Sectiond is dedicated to conclusions.

1 Preliminaries

This section is dedicated to basic notations, which will lsecuin the whole chapter. We will
focus on notation for the data model, schemas and relatéohsoused in following examples and
formalizations. We assume the reader to be familiar withdQeiery query and update languages.
Note that for the sake of uniform presentation, in this chapte use a notation which may
sometimes differ from that of presented articBE[CN0F and [BCMS09h BCMS09aBBC*11H4.
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Data Model
An instance of the XQuery data model is a forégtenerated by the following grammar:

Forests f = () | f,f |t
Trees t = s | lj[f]

A forest f is an ordered sequence of labelled orddreds(ranged over by); () denotes the empty
forest.

An XML document is represented by a treeNodes are labelled bglement tag¢ranged over
by I) while, without loss of generality, we consider only leatiest are text nodes (that is, strings,
ranged over by) or empty trees (that is, elements that label the empty fpres

Each node in a foredt or treet has a uniquédentifier (ranged over by). Node identifiers are
needed to define several basic notions such as validatiog@erny semantics (seBCCNOg for
full definitions).

Henceforth we will consider only well-formed forests:

Définition 2.1 (Good formation) A forest iswell formedif every identifieri occurs in it at most
once. Given a well-formed fore$tand an identifier occurring in it, we denote by@i the unique
subtreet of f such that = s ort = I;[f/]. The set of identifiers of a foredtis then defined as

lds(f) = {i | 3t. f@i =t}.

We define a complete partial ordgron forests (and thus on trees) by relating a forest with the
forests obtained either by adding or by deleting subforests

Définition 2.2 (Projection (x)) Given two forestd andf’ we say thaf’ is aprojectionof f, noted
asf’ < f, if ' is obtained fromf by deleting some of its subtrees.

DTDs and validation

Following [LMMO0O] we define abTD as alocal tree grammayrnamely a paiKr,E) wherer is a
distinguishedag nameandE is a set of productions (@dge} of the form{a; = Ry,...,ah = Ry}
such that

1. risin{ay,...,an} (it denotes the root element type).

2. tag names;’s are pairwise distinct;

3. eaclR is aregular expression over symbgés, . .., an} U {String}, whereStringis a special
symbol denoting the type of string values.

We write Syn{R) for the set of all symbols used R (Syn{R) may includeString) andSyn{E) for

the set of tag names definedEn(that is,{a;...a,}). We also say thaR is a regular expression
over(r,E), if Ris a regular expression ovByn{E) U {String}. We will usea, b, c, d to indicate tag
names. We use Greek letters to range over sets of tag hamgar{icular we usetto stress that

it is atype projector(Def. 2.6) andk andT to stress that the set is used as a context or as a type,
respectively. When speaking ofrbs we will often identify them with their set of edggs leaving

the rootr as implicit.

Définition 2.3 (Root id) Given a tred, if t =5 ort = ;[f] then we defindRootldt) =1i.

Below we consider the root type of a tree defines as follows=fg[f] thenr-type(t) = aelse
r-type(t) = String

Définition 2.4 (Valid Trees) A treet is valid with respect to @1D (r,E), noted ag € (r, E) if the
following conditions hold:
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1. t =r;[f] (the root element is typed by the root tag in the DTD);
2. foreach inlds(t), if t@i = bi[ty, ..., tn], thenb = R€ E and the word-type(ts), . .., r-type(tn))
is generated biR.

2 Type-based projection for XML query optimization

XML data projection (or pruning) is an optimization techméggadopted in the context of main-
memory XML query-engines. The main idea underlying XML gajon is quite simple and pro-
ductive at once: given a quefy over a documertt, the subtrees df not necessary to evaluafg
are pruned out, thus obtaining a smaller docuntterithenQ is executed over, hence avoiding to
allocate and process nodes that will never be reached bygatémal specifications i.

As shown in MS03 BCL*05], XML navigation specifications expressed in queries tenbe
very selective, especially in terms of document structurkerefore, projection is likely to yield
significant improvements both in terms of execution time iangrms of memory usage (for main-
memory XML query engines, very large documents can not beepieiithout pruning).

In this chapter we present a projection technique based ®@ungh of the schemas of queried
documents. In order to better highlight its features we @ivgrview main schema-less approaches.

Related works: untyped apporaches

Marian and SiméonNIS0J propose that the actual data-needs of a qu@ifhat is, the part of
data that is necessary to the execution of the query) isrdeted by statically extracting all paths
in Q. These paths are then appliedttat load time, in a SAX-event based fashion, in order to
prune unneeded parts of data. The technique is powerfusiicit applies to most of XQuery
core, (ii) it can be applied to a set of queries over the same documehftjignit does not require
any a priori knowledge of the structure df However, this technique suffers some limitations.
First, the document loader-pruner is not able to marzgkward axesor path expressions with
predicates which, especially the latter, can contain precinformation to optimise pruning. Also,
as a consequence (fi), the technique does not behave efficiently in terms of laadime and
pruning precision (hence, memory allocation) whgroccurs in paths. Indeed, whe is present

in a projection path, the pruning process requires to Visitesscendants of a node in order to decide
whether the node contains a useful descendant. What is vgotisat pruning time tends to be
quite high and it drastically increases (together with mgmemnsumption) when the number of
// augments in the pruning path-set. As a matter of facts, mtéthnique pruning corresponds
to computing a further query, whose time and memory usagelmaymparable to those required
to compute the original query. In particular, in this tecue every occurrence ¢gf/ may yield a
full exploration of the tree. Therefore, pruning executawerhead and its high memory footprint
may jeopardize the gains obtained by using the pruned daaturRmally, the precision of pruning
drastically degrades (even vanishes) for queries conigithie XPath expressiori®scendant ::
node[cond, which are very useful and used in practice.

Bressaret al. [BCL"05] introduce a different and quite precise XML pruning techré for a
subset of XQuery FLWR expressions. The technique is basldeanpriori knowledge of a data-
guide fort. The documerttis first matched against an abstract representatiéh &fruning is then
performed at run time, it is very precise, and, thanks to #eaf some indexes over the data-guide,
it ensures good improvements in terms of query executiop.titdowever, the technique is one-
query oriented, in the sense that it cannot be applied toipheiljueries, it does not handle XPath
predicates, and cannot handle backward axes (recall teartbodings of QMFBO0Z are defined
for XPath, and no extension to XQuery-like languages is kmovAlso, the approach requires the
construction and management of the data-guide and of atieiakexes.
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Our type-based approach

Our schema-based technigue combines the advantages ofetrieysly mentioned works while
relaxing their limitations. Unlike 1ISO3 BCL"05], our approach accounts for backward axes,
performs a fine-grained analysis of predicates, allowsKaiBCL"05]) for dealing with bunches
of queries, and (unlikeM|S03) cannot be jeopardised by pruning overhead. Our solutioriges
comparable or greater precision than the other approashds, it requires always negligible or no
pruning overhead. Moreover, contrary td$03 BCL"05], our approach is formally proved to be
sound(projection preserves query semantics) and, furthermearesan also prove it to beomplete
(it produces the best possible type-driven projectionpfsubstantial class of queries ambs.

We have devised our framework in three main steps:

1. In the first step, we consider a simplified version of XPath,dub XPath, which includes
only upward/downward axes and unnested disjunctive pa¢etic We define for XPaltta
static analysis that determines a set of type namggeaprojector that is then used to prune
the document(s). One of the particular features of this@gogr is that our pruning algorithm
is characterised by a constant (and low) memory consumatidrby an execution time linear
in the size of the document to prune. More precisely, a pbased on type projectors is
equivalent to a single bufferless one-pass traversal ghéineed document (it simply discards
elements not generated by any of the names in the proje&oij.embedded in query proces-
sors, pruning can be executed during parsing and/or vaitdlahd brings no overhead, while
if used as an external tool it requires a time always smadlien tor equal to the time used
to parse the queried document. Soundness and (partial)letampss results for the static
analysis are stated.

2. The second step consists of extending the analysis to loéevKPath (more precisely, to
XPath 1.0). This is done by associating to each XPath q@eyXPatt query P which
soundly approximated, in the sense that the projector inferredRas also a sound projector

for Q.

3. The final step is to extend the approach to XQuery (hencEPttth 2.0). This is obtained
by defining a path extraction algorithm as done iiS03. Our path extraction algorithm
improves in several aspects the oneld&03. It also computes the XPdtlapproximation of
the extracted paths so that the static analysis of the feptedn be directly applied to them.

Type projectors

Given a tred valid with respect to @7D (r,E), we can use subsets 8fn{E) to project that tree.
Essentially, only nodes that are associated with namesiptbjecting subset &8yn{E) are kept

in the projection. Of course not every subseSgfi{E) can be used to project a tree, since we want
to delete whole subtrees (not nodes in the middle of a tree$,if we discard some tag symbol, we
must also discard all the tags it generates. In order to dédimeally this notion we need to define
the reachability relatior>g, that we introduce below together with several other dédin that we
use later on in this chapter.

Définition 2.5 (Forward Reachability) Given apTD (r,E) anda € Sym{E), we writea=¢ b <—
a—r € E andb € Syn{r). We use={ and=-£ to denote respectively the transitive closure, and
the transitive and reflexive closure afg.

Strings of names are callezthainsdenoted byc, ¢, ,... In particular we us€hains, g)(a) to
denote the set of all chains rootechatlefined agaa; ... an | a=g a1 = ... = an,n > 0}. With
a little abuse of notation, usgynic) to denote the set of all tag symbols occurring in a clwain
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Définition 2.6 (Type-Projectors) Given abTD (r,E), a (possibly empty) set C Syn{E) is atype
projectorfor (r,E) if and only if there exist€ C Chaing;, g)(r) such that

n= _J Namesc)

ceC

A type projector is thus a union of sets of names, where eattiese sets is generated (i.e. reached)
by a sequence of productions starting from the root oftilie. A type projector can be used to
prune a valid tree as follows:

Définition 2.7 (Type Driven Projections) Let rtbe a type projector fofr, E) andt a tree such that
€ (r,E). Theteprojection oft, noted as$\, is defined according to the following rules:

LIf\NTT = 1i[f\rg iflemn
W = () it ¢
S\T = 5 if Stringe 1
S\T = () if String¢ 1t

|
—~
™
=
2
S

-~
=
=)

(f, fH\m

In words, projection erases (by replacing it by an emptyd$trevery node that corresponds to a
name not int.

Lemma 2.1 Letttbe a type projector fo(r,E). Then for every tree¢ (r,E) it holds(t\m) <t.

Type-projectors for XPath?, overview

This section has a twofold purpose: first it provides examjilastrating how a type-projector
is associated to an XPatlyuery, then it present the formal inference system togetligr main
properties.

XPatH is defined by the following grammar:

Path ::= Step| StegCond | Path/Path
Step = Axis::Test
Axis self | child | descendant

parent | ancestor | ancestor-or-self
descendant-or-self

Test = tag|node|text

wheretagis a meta-variable ranging over element tags, and

Cond := SPath| Condor Cond
SPath ::= Step| SPatlySPath| /SPath

Consider the following DTOre port, E) describing medical reports, borrowed fro@HF"07),
and whereE consists of the following productions:
report = (sectionx)
section = (title, content)
title = String
content = (String | anesthesia | prep | incision | action | observation)*
anesthesia =  String
prep = ( String | action)x*
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incision = ( String | geography | instrument)*
action = ( String | instrument )*

observation = String

geography = String

instrument = String

and the following queries XPdtlgueries:

Q1 = /report/section/title

Q2 = /descendant:node/title

Q3 = /descendant:: node/action/instrument/ancestor::node
Q4 = /descendant:: node[geography or instrument]

Given a valid documerid, a projection oD which is sound foQ; must contain report, section,
and title nodes (of course, if these nodes arB)nEach title node that may appearinbelongs to
the query result, as a consequence each descendant of gielmnigt belong to the projection as
well. So, a type-projector entailing a sound projectiondisT = {report,section,title,String}.
Note that anyt’ includingr still is a sound type-projector fap;.

For simple queries like);, a sound type-projector can be inferred by using standatit st
type inference technique€plo4, CGMS04, as follows. We recall that static type inference for
XPath allows to statically determine a superset of the tygfasodesresultedby a query. So in
this case, it would be sufficient to perform type inferencedib the prefixes ofQ; plus the query
Q1/descendant :: node (needed to include type of nodes for the final result):

/report : {report}
/report/section . {section}
/report/section/title o {title}

/report/section/title/descendant::inode : {String}

and consider the union of these inferred types.

This simple and direct approach also works@t in the sense that it produces a sound projector
for this query. Unfortunately, the resulting projector ibbe useless as it coincides with the set of
all DTD types, due to the presence of the préefixscendant :: node.

These two examples highlight a strict connection betwepr-grojector inference and tradi-
tional type-inferenceGMS06 DFF" 10]. At the same time, by means @b, we see that a simple
type-inference based approach has serious limitationgseless type-projectors can be inferred.
However, type-inference still remains the basic tool: idesrto infer a precise type-projector
for a query/descendant :: node/Path we can proceed as follows. First the type of the prefix
/descendant :: node is inferred, then this type is filtered/refined by retainingyoelement types
that areproductivefor the subsequent paffath The obtained set is a first component of the final
projector, which of course includes the projector inferi@dPathas well.

Deciding whether a typa in the DTD is productive for a relative patPath can be done by
first inferring the type ofPath, by assuming that its navigation starts from nodes of tgpand
then by checking non-emptiness of the inferred type. Fdaim, for the previous DTD, the path
action/instruments productive forprep, while it is not for the typesection

So, for the quer®-, the first step selects all the DTD types, and a second stegts@nlyre port
and sectiontypes, which are productive for the stéfitle. This allows to infer a type-projector
coinciding to that of the equivalent que®}.

Now, consider the quer®s. A projector for theforward prefix

/descendant ::node/action/instrument

is inferred according to what just described. This typgiisstrument}. To complete the inference
the lastbackwardstep has to be taken into account. A naive approach woulceprbas follows: a
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type for the las step is inferred starting from the tfpestrument}, which is inferred for the prefix.
That is all types which are ancestors of this type in the DTé&cansidered as the remaining portion
for the projector. The problem with this approach is its lawgision: here also the typacision
would be considered in the projector, while a sound prapector Q3 does not requiréncision
nodes. This unneeded type can be filtered out by using theafilfy ingredient: during the type-
projector inference for the prefi‘descendant :: node/action/instrument we also keep track
of types that are traversed. This contextual informatiothis case consists of the set

K = {report,section,content,action,instrument}

and during type inference is collected into a set cafledtext This set is then intersected with the
type forancestor :: node, inferred as previously described, so that the unwatited sion type
is ruled out.

Again, by means of intersection of intermediate inferrgquely; a precise projection can be in-
ferred for queries containing conditional stepegCond. Consider the quer@,. If we consider
the type inferred for the first step as part of the final prajgahen this degenerates to the set of all
DTD types. On the other hand, by simply restricting to onlyay of the first step that are productive
for at least one of the condition [geography or instrument], the more precise projector

= {report7 section,content,action,instrument, incision}

is obtained.

Type-projector inference for XPath!.

In this section we present type-projector inference ruteplémenting the above described ap-
proaches. According to what we have seen, type-projectes mely on type inference rules, so
we first focus on the presentation of these last ones.

Type inference rules for XPatt.

Type inference rules for XPdttare collected in Figur@.1. These rules prove judgements of the
form
(Tc,Ke) Fe Path: (tr,Kr)

meaning that given aTD E, starting from the names i, and the current context, the pathPath
generates the namegsin an updated contex, .

Type inference rules make use of two functigks(t, Axis) and Te(T, Tes), mimic Axis navi-
gation andTestfiltering on a setr of E types. For instance, for the previously used DTD we have

Ae({prep},child) = {String, iaction}

Ag({prep},descendant) = {String, action,instrument}

Ag({instrumen}, parent) = {incision, action}

Ag({instrumen},ancestor) = {incision, action, prep,content,section,report}
Te({String action},action) = {action}

Te({String action},text) = {String}

Te({String, action},node) = {String, action}

The two functions can be defined in straightforward way (8£&JN0q for details) and can be
composed in the obvious way for typing a single XPath #teis:: Test
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Primitive Single Step

Axise  {self, child,

2 g Axis:inode : (Ag(Zr,AXis) , Xk UAE(Zr,Axis)) descendant}

Axise {parent, ancestor}

> kg AXxis:inode: (Ag(Xr,AXis)) Ny , Ag(Zk,AXis) N Zy)

Test# npode
Shgself i Test (Te(Z, Tesy, (Zk NAe(Te(Z, Tes),ancestor)) UTe(Z:, Tesh)

Va € 3;,P; € Cond, ({ai},3)FeP;: 2V
Y g self :inode[Cond: (T, (ZxNAg(T,ancestor))UT)

1={a|3j.5 # 2}

Encoded Single Step

Y Fg AXis:inode/self :: Test ¥ et/ node
A
3 g Axis:: Test: ¥/ Axis# self

2 e Axis:: Tesy/self ::node[Cond : ' Testsnode
vV
e Axis:: TesfCond : ' Axis# self

Composed paths

> g Step: ¥’ 3 g Path: ¥/
3 g Step/Path: &'

FIGURE 2.1: Inference rules for single step queries

The rules inf Fig.2.1are relatively simple to understand. The first two rules Enpént our main
idea: when we follow an axiéxis we compute the type big (X, Axis); if the axis is a downward
one, then we add this type to the current context, othenfideiaxis is an upward one, then we
intersect it with the current context (both for the type martl for the context part). The rule for
self :: Testis slightly more difficult since it discards from the curresst of nodes those that do
not satisfy the test: the type is computedby(Z, Tes), while the context is obtained by erasing
all the names that were in there just because they generagedfdhe discarded nodes; to do it it
generates (the type of) all ancestors of the nodes satisthi@ test, and intersects them with the
current context. These first three rules are enough to typleeapaths of the formixis:: Testsince,
as stated by the fifth typing rule, all remaining cases are@ed asAxis:: node/self :: Test

The fourth rule is the most difficult one: recall th@abndis a disjunction ofsimplepaths; the
typet is obtained by discarding froi; all (names of) nodes for whicBondnever holds; thus for
eachX; in Z; we compute the type of all the paths@ond and keep irt only names for which at
least one path may yield a non-empty result; the context theomputed as in the third rule, by
discarding from the context all names that generated ontyasaliscarded frorh;.

Once more, all the remaining cases of conditional stepsrareced by this one, as stated by the
sixth rule. Finally, step composition is dealt as a logiagl c

This system has bee proved to be sound (details can be fod&CiiN11]). In the following
[P](t) denotes the set of nodes resulted by the evaluatidhaft. Also, as expected, we assume
that the type on an element node is the element tag (of cduedgpe of a string node String).
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Theorem 2.1 (Soundness of Type Inferencelet (r,E) be abTD, t a tree such that€ E, and P a
path such that{r},{r}) e P: (1,k). Ifa node is in[P] (t) then the node type is in

Besides soundness, the proposed system also enjoys tygaeteness for a wide class of cases,
described next. This has been proved to holdsfguarded, non-recursive, and parent-unambiguous
DTDS):

e x-guarded DTD are those using regular expressions where lic&n only be used inside a
*-type,

e parent-unambiguous DTDs are such that for each pair of tgpebl 1 andl 2, if thel2 is used
in the content model definition dfL, thenl2 can not be used in the content model oflan
which can be reached b¥ by following DTD productions.

Non-recursivity and-guardedness are properties enjoyed by a large number ahoaiy used
DTDS. As an example, the reader can considepthes of the XML Query Use Cases$d: among
the tenDTDs defined in the Use Cases, seven are both non-recursive-gndrded, one is only
x-guarded, one is only non-recursive, and just one does tigfysaither property. Furthermore,
other studiesCho02 BNdBO04] provide a detailed classification of real world DTDs shogvthat
non-x-guarded unions are quite infrequent.

Concerning the parent-unambiguous property, althaugbs satisfying this property are less
frequent (five on the tenTDs in [usq), its absence is in practice not very problematic sincdy on
the presence of thearent axis may hinder completeness.

Theorem 2.2 (Completeness of Type Inferencelynder the same assumption of the previous The-
orem (Soundness), {f,E) is x-guarded, non-recursive, and parent-unambiguous, thereéeh
a € T there exists £ E such that a node ifi°] (t) has typen.

To see why completeness does not hold in general considéoltbeing DTD rooted ats and

which is recursive and netguarded
{c=a|b; a=ax,String b= String}

and the following two querieself :: c[child :: @] /child :: b andself :: ¢/child :: a/parent :
node The type inferred for the first query contai@swhile the query is always empty. This is due
to the nonk-guarded uniom | b: if we had(a| b)« instead, then the query might yield a non-empty
result, therefora must correctly (and completely) be in the query type. The@sdauery shows
the reason why completeness does not hold in presence o§i@tiand backward axes (recursion
with only forward axes does not pose any problem for compkste). The type of the second query
should be{c}, but instead the typéc,a} is inferred. This is due to the recursian= ax,...: since
a=- a, onceais reached it is kept in the inferred type for every backwaeg s

The techniques developed in my PhD The§i&MS04 Col04 can be adapted to recover com-
pleteness for cases like the first query, while a more saphted type analysis could solve the prob-
lem with the second. It is worth observing, however, thatéf lax thex-guardedness constraint,
and if we keep child and parent axes, plusiibéde test condition, then the problem of inferring an
exact set of types is NP-complete. This can be easily showsing results on XPath satisfiability,
widely studied in recent years (see for instandelp3, LRWZ04, Mar04, MSV03, BFG09). The
proof follows by considering that:

e The problem of determining whether a p&tproduce a non empty result for at least one
instance of a DTD, is NP-complete for the above describediXffagment and non-recursive
DTDs with unguarded uniorBFG09.

e A sound and complete type inference system infers a non etyypyif and only if the path
produces a hon empty result on a schema instance.
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The type inference technique we have proposed is polynokvilaht motivated us in the research
of large fragments for which type-completeness hold wasrtwige formal evidence of the high
precision of the inference systems we devised. If compéstehold for large classes of cases, then
for remaining cases the inference is likely to remain higirgcise. From a practical point of view,
precision of type inference is crucial since it implies psamn of type-projector inference (next
section), which in turn implies high reduction of memory dee for query evaluation.

Type-projector inference rules for XPath'.

As already said, type-projector rules strongly relies guetyules reported in the previous section.
We have seen that for simple pa®iep/ ... /Step, we may consider as type projector with respect
to (r,E) the selJ,_1 ,TiU{r}, wherefori=1...n:

({r},{r})Fe Step/.../Step: (1,—)
(we use “-" as a placeholder for uninteresting parameters). and tiigapproach is sound but not
precise at all: for an expressi@escendant :: node/Path the use of the above union yields a set
containingt; defined as

({r},{r}) Fe descendant :: node : (T1,—)

that s, all descendants of the ro6t{no pruning is performed). For a precise type-projectorhasee
to discard, at least, all names that are descendatdat that are not ancestors of a node matching
Path These are the nambs Te(Ag({S},descendant), node) such that

({b},K) FE descendant :: node/Path: (&, —)

for some appropriate context A similar reasoning applies tincestor.
Type-projector rules performing such a selection are tepan Figure?2.2. These rules prove
prove judgements of the form

(U,K') IFg Path: 1t

meaning that that given aTbp E, starting from the names in. and the current contex, the
type-projectontis inferred forPath

In order to infer a precise type-projector for paths formgdabsingle step, if the step has no
condition (first rule), then the type inference of the preigection is enough; otherwise (second
rule) the step is transformed into a complex path (a simjitk to avoid the definition of several
rules). Thanks to the third rule the type inference can warfust one node at a time, and thanks to
the fourth and fifth rules, it just analyses paths whose carapts have one of the following three
forms: (i) self::Test (ii) self::inode[Cond, or (iii) Axis:node. These three cases are handled
by the “Primitive Rules” of Figure.2: The first rule handles the caég simply by collecting the
current context. The second rule handles the ¢&ageby collecting besides the context also all the
parts that are necessary to compute the condition (whidmeimutle is expanded in its more general
form); the casdiii ) is handled by the last three rules which are nothing but slighations of the
same rule according to the particular axis taken into acc@ath rule infers the typeobtained by
discarding from the typégay, ...,an} of the step, all names that are useless for the rest of the path
and then uses thisto continue the inference of the projector.
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Base and induction |

>t Step: (T,K) 2 |Fg StefCond/self ::node: Tt
> IFg Step: TUK > IFg StefiCond : 1t
({ai},K)IFeP:m -+ ({an},K)IFe P: T, o trer
({a1,..an},K) IFeP: | T PP
i=1..n

Encoded Rules|

2 IFg Axis:inode/self ;1 TeSYP: T testsnode
A
Y |Fg Axis:: TesyP: 1t Axis# self

2 I-g Axis:: Tesyself ::node[Cond/P: Tl testsnode
vV
Z - Axis:: TesfCond /P : Tt Axis# self

Primitive Rules |

({b},K)Fgself:Test T XIFeP:m
({b},K) IFg self :: TesyP:{b}tum

({b},K) Fg self ::node[Pior...orPy|: £ ZIFgP:mm ZIeR:Tg
({b},K) IFg self ::node[Pior...orP|/P: {b}UnUmU--- U,

n>1

({b},K) Fg Axis::node : ({ai,...,an},K’)

({ai}, Kl) Fe P: by (T,K') ke P:md Axise {parent,child}
({b},K) IFg Axis::node/P:TUT 1={a |5 #2}uib}

({b},K) Fg desc :inode: ({a1,...,an},K’)
({a},k’) Fe desc :inode/P: X' (1,k’)IFg child::node/P: 10
({b},K) IFg desc ::node/P: TUT

T={a |5 #2}u{b}

({b},k) Fg ancs::node: ({ay,...,an},K)
({&},K') g ancs ::node/P: I (1,k') IFg parent :: node/P: T
({b},K) IFg ancs ::node/P: TUT

T={a | % # 2} u{b}

FIGURE 2.2: Projectors inference rules (whetecs anddesc are shorthands faincestor and
descendant)
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The main theorem enjoyed by type-projector inference isidoass.

Theorem 2.3 (Soundness of projector inference)et(r,E) be abTD and P a path. If{s},{s}) IFe
P : m, thenTtis a type projector fofr,E) and for every tc E:

[PI(t) = [P} (t\™

Besides soundness, the proposed system also enjoys tpg@eateness for a wide class of cases
we describe next. By type-completeness for an inferred-prpgectort we mean that if discard a
type fromrt, then the resulting projection does not preserve query sgosa

Type-completeness of projector inference requires cotaipéess of the type inference (Theorem
2.4), and the following properties: an XPath quépys strongly-specified (i) its predicates do not
use backward axesii) alongQ and along each path in the predicate®Qothere are no two con-
secutive (possibly conditional) steps whdssstpart isnode, and(iii ) each predicate i@ contains
at most one path and this does not terminate by a step wies$is node. For instance, among the
following queries, only the first two are strongly-specified

1.descendant ::node/self :: @/ancestor i node
2.descendant :: node[child :: b]/self :: a/parent :: node
3.descendant ::node/ancestor ::node/self :: a
4.descendant ::node[child :: b/child:: node|/self ::a
4.child :: aldescendant :: node/parent :: b|]/child:: ¢

Once more, we are in presence of a very common class of quiriésstance, almost all paths
in the XMark and XPathMark benchmarks are strongly specified

Theorem 2.4 (Completeness of projector inferencelet(r, E) be ax-guarded, non-recursive, and
parent-unambiguousTD, and P a strongly-specified path. (s}, {s}) IFe P : 1, then there exists
t € E such that for each & T, if W = 1\ ({a} UAe({a},descendant)), then

[PI(t\r) # [P] (t\r()

Handling full XPath 1.0 and FLWR expressions

XPath 1.0 has many features not considered in the XRathment, notably:

e Horizontal axes (e.qg., following-sibling, following).

e Predicates making use of complex conditions (involvingjgnction, negation, functions,
etc.)

We could deal with the missing XPath features by adding $iggoference rules. Instead we
opt to use an approximation of missing mechanisms in termmsesfhanisms featured by XPéth
As shown by experiments we conducted, this results in a googpoomise between simplicity and
effectiveness.

Concerning missing axes, the approximation is performetivaylogical rewriting passes. In
the first pass we rewrite preceding and following axes asfipé the W3C specificationsfud.
Namely, we substitute each st@gis:: Testwith Axis€ {preceding,following} by the following
equivalent pathncestor-or-self ::node/(AXis-sibling) :: node/descendant-or-self :: Test

The second pass is the one which introduces the approximsitioe it replaces all steps of the
form Axis:: Testwith Axis€ {preceding — sibling following-sibling} by the path expres-
sionparent::node/child::Test
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Clearly, the static analysis of the approximation yieldesslprecise projection than the one we
could obtain by working directly on the original query. Hoxee, we still achieve good precision of
pruning in practice as we will next, when discussion abopeeinents. For instance, by applying
the above rewriting to XPathMark queries Q9 and Q11, we wkleta prune a document down to
7.5% of its original size.

Concerning missing conditions in predicates, we opt to itevavery predicat&xp expressible
in XPath to a simple conditio@ondsuch thatCondis a sound approximation &xpwith respect
to data needs: the projection determined@ondpreserves the semantics t6xp. In other words,
if we take a generic XPath que€yand approximate all its predicates to infer a projectdhen the
execution of (the originall) on a given document or on the document prunedtlyjeld the same
result. This rewriting, together with the treatment of ririgsaxes, allows us to deal with a large
subset of XQuery and XPath queries, covering those in XPatkljfFra03 and XMark [SWK'02]
benchmarks.

Let us outline the rewriting by an example. Consider the ijoatd

[position()>1and parent: :node/book/author="Danté" and year>1313

In our system this predicate is approximated by

[ self::node or parent::node/book/authofryear ]

Essentially, given a predicatexpwe obtain a conditiotCondthat soundly approximates it by
retaining the disjunction of all structural conditionsk@liparent : :node/book/author and year
in the previous example), plus eithésscendant-or-self: :node Or self :: node if Some non-
structural condition is present (for instangesition () >1). The choice betweese1f : :node and
descendant-or-self: :node depends on the functions and operators used in the condftion
instance functions likposition or count requireself::node since their execution requires only
the root nodes; instead a function suchsasing needs the whole tree. Formal definitions can be
found in BCCNOQ.

Type-projector inference for generic XQuery FLWR XQuenpeessionq is performed by a
two-steps process:

1. A set of paths XPath{Pathy, ... Path,} is extracted from the queny, according to a path-
extraction mechanisms resembling to that/df§03. During the extraction, conditions are
approximated as previously explained.

2. For each pathBath a projector; is inferred according to rules for XPdthFor he wholeg,
the projector isJ;T; (projectors are closed under union) is inferred.

Experiments

We gauged and validated our approach by testing it both orXBethMark Fra03 and on the
XMark [SWK'02] benchmarks. Extensive test results can be foun@®ENOg, where we used
Galax as a query engine. Other tests were performed in adwion BCCN1] by using Saxon
and Monet-DB as well.

Conducted tests confirmed expected results: thanks to thalihg of backward axes and of
predicates the precision of our pruning is in general natitehigher than for current approaches;
the pruning time is linear in the size of the queried docunagthas a very low memory footprint;
the time of the static analysis is always negligible (loweairt half a second) even for complex
queries andTDs. But benchmarks also brought unexpected (and pleasantjseIn particular,
they showed that type-based pruning brings benefits thategorul those of the reduced size of
the pruned document: by excluding a whole set of data strest(those whose type names are
not included in the type projector), the pruning may dradiycreduce the resources that must be
allocated at run-time by the query processor. For instaogebenchmarks show that for several
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XMark and XPathMark queries our pruning yields a documersehsize is two thirds of the size
of the original document, but the query can then be processieg three times less memory than
when processed on the original document.

As an aside, it is worth observing that the presented tecieniglies on the definition of a new
type system for XPath able to handle backward axes, whichtitotes a contribution on its own.

For what concerns the overhead of the optimisation, testBromed that it is always negligible,
both in memory and time consumption: the only noticeablelowad is pruning time, which is linear
in the size of the pruned document, but can be embedded imtgrdparsing and/or validation (e.g.,
for 60MB documents computing the projector took around @Bi¢e pruning and saving the pruned
document to disk was always below 10s). These results werirmed by further experiments on
largeDTDs (e.g.xHTML) and long XPath expressions (twenty steps or so).

3 Projection for XML updates

XML projection, as described in the previous section, catwecapplied directly for updating XML
documents, simply because given an updedeer a documertt, and a strict projectiot! of t, we
haveu(t) = u(t’); in particularu(t’) lacksu(t) subtrees pruned out during the projectior.of

This chapter presents a type-based projection technigué&jaery Update Facilityfup] which
overcomes the above problem in the following way. First, meghniques to infer a type-projector
1 from an updates and an input DTD are provided; the type-projector is usedrtgegt a valid
input documentt so that the resulting projectidhis used for update execution. Second, a streaming
algorithm calledviergeis presented; , the algorithm performs a parallel and syom@us parsing of
t andu(t’) in order to produce the final resuift).

For the sake of efficiency, theergestep is designed so that (a) only child position of nodes and
the projectomtare checked in order to decide whether to output elemeriteodf u(t’) and (b) no
further changes are made on elements after the partial egpdacument(t’) has been computed:
output elements are either elements of the original doctib@relements ofi(t’).

Related Work

The approach here presented introduces substantial imsustt the type based approach for queries
presented in the previous chapter. As it will be explained,fer updates a three-level projector is
adopted, while the projector proposed in Chaptés one level. A three level projector, allows to
optimize (minimize) the size of projections. In particyiaallows to avoid keeping in the projection
useless text nodes that would be kept with the techniqueosembin Chapte?: this can result into
substantial improvements since in many cases large padisooiments consist of textual content.

Other works propose techniques to optimize update exettitite by using static analysis in
order to detect independence between several update iopsrato that query rewriting techniques
can be used for logical optimizatio®RS07 GRS08 BBFV05, BC09. The work here presented
is definitely orthogonal wrt that line of research, and irdtie¢ke two techniques can be combined in
order to increase the efficiency in terms of time.

Some recent work$CBO07, Feg1(Q addressed the problem of translating an XQuery update ex-
pressionu into a pure query expressidp,, with the aim of executing the updatevia the query
Qu. The advantages of these approaches are that updates caecbéed even if the XQuery en-
gine only deals with queries, and well established queryrdpation techniques can be adopted to
optimize update execution. A peculiar characteristic esthapproachesCB07, Fegl1(is that the
queryQy needs to select and return all nodes that are not updatelé, tvbse which are updated are
selected and processed to compute new nodes. As a consegqusing standard projection tech-
nigues BCCNO0G MS03 for the queryQ, would lead to no improvement, since tiwaoledocument
would be projected.
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Itis worth observing that, although not directly, existprgjection technique&CCNOG MS03
could be used for a single update, provided that the prajetdeument is used only to compute the
update pending list, so that this last one can be then propaathe input documentin a streaming
fashion. Such approach would require some techniquesasitoitthose here developed in order to:
opportunely determine the projection, and make node itygmeirsistent in order to propagate, in the
second phase, the calculated update pending list. Thi:apiphas two drawbacks. Firstly, it does
not allow to use XML querying engines in a straight mannerapwpose to do: controlling the two
phase evaluation of XML updates would become necessargn88c this approach would perform
very inefficiently in the quite frequent case where a bunamudates has to be executed, according
to a given order, because each update would need to be folbepsed one after the other entailing
the document to be processed/paredidnes. The approach here presented is different in that it
allows to evaluate the updates by processing the proposed method just once: d glalxctor can
be easily inferred (it is sufficient to consider the union afle update projector); theupdates are
evaluated on the global projection wrt the specified ordeallfy, the updates are propagated on the
original document in a single pass, using therge function. As testified by performed tests (that
will be commented next), this results in a much more efficggntessing.

Overview

This section is devoted to introducing and illustratingptigh examples, the main features of our
method. We first focus on the merge process, and then swihéwv kind of type-projector which
is required by the merge process itself in order to ensuréesesal efficient propagation of updates
to the original document.

Merge, a first example. Let us consider the example in Fig.3 based on the update
for $x in /doc/a where $x/d return delete $x/b

Assume that the partial updated documefit) has been produced by updating the document
t’, a projection of the original documenteading tot’. In order to produce the final resuift), we
parse and merge the initial documéaind the partial updated documei(t’).

Before commenting the examples, let us spend some wordg #imadopted notation. In the
figure, each node of the initial documeris adorned with its labela b, ...) and with an identifier
i inside square brackets (1, 1.1, ...). A node imhose identifier ig is next denoted by@i. We
assume that the identifier of a node icarries on information about the node positiot,iaccording
to document order.

In the projectiort’ of t, the identifier of a projected node is preserved, therefanai not reflect
the new position of the node in (it is the case, for instance, of the nad@214 in Fig. 2.3.4). In
the partial updated documen(t’), new identifiers are assigned to inserted or replaced nages (
next examples).

Let us focus on the merge process. While mergiagdu(t’), nothing special happens until the
alabeled nodes@1 andu(t’)@1 are met. Just after, the two nodes examinekldrgeare: the first
child nodet@1.1 labelledb of t@1, and the first child nodgt’)@14 labelledd of u(t)@1 .

Here, child rank 4 ofi(t")@1.4 is strictly greater than the child rank 1t@®1.1. Also, the label
b belongs to the projectart, indicating that the node®1.1 has been projected th Thus, the node
t@11 is not output (it has been deleted by the updatéhe original documeritis further parsed.

The next two nodes examined at@12 labelledc andu(t’)@14 labelledd. Once again, the
child rank 4 ofu(t’)@14 is strictly greater than the child rank 2 @12, however this time, the
labelc does not belong to the projectathe nodd @12 was not needed for the partial update and
thus not projected it) and thus the node@1.2 is output in the final result, the original document
t is further parsed. The process will continue pardirand u(t’) until both documents are fully
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scanned. Note that, positions of nodes (more precisely chitk) in the initial document play a
crucial role in theMerge process.

doc = a* b = String Tho={doc a,b,d}
a = b*c*d? d = (f|g)* Tolb=Tleb==
(1) ThepTD D (2) The projectortfor u
w %
€ €
a / \ a a o0 a
1 2] 1] 2)
//[ ]\\ 2 . 2
b c c d d b d d
11 (12 1.3 [14 [2.1) 11 (14 [23)
| S S
" f g f f
oof 143 [142 211 [212
(3) XML document (4) Projectiort’ of t wrt 1t
doc doc
le] le]
1 \
a a a / \ a
[y 2 [y 2
1 1 VARERN 1
d d c ¢ d d
14 21 12 (13 |14 21

f' \9 f f
141 (142 [211] [212

(5) Partial update(t’) (6) Final resultu(t)
FIGURE 2.3: A motivating example of the Update Scenario

Dealing with insertion Consider the update, specified by
for $x in /doc/a return insert as last <e>’new’</e> into $xandthe sampTD

D and document of Fig.2.3.1 and2.3.4. Intuitively, the path corresponding to data relevantfie
updateu; is /doc/a and the types of nodes traversed by this pathrare{doc a}. The projection
m(t) of t as well as the partial update(my (t))are illustrated in Figur@.4. Recall that node iden-
tifiers inTy (t) correspond to node identifierstinthe same holds for unchanged nodesifr (t)),
and that new (inserted or replaced) nodes;ifru (t)) are given new identifiers. In Figuge4, i and
i’ are new identifiers.

We see now how the merging of the initial documeiind the partial result; (T (t)) is done in
order to produce the final reswif(t). Once the root nodes of the two documents have been visited,
the two nodes examined byergeare:t@11 labelledb and the new node; (Tu(t)) @i labellede.
Here, the new identifierconveys no information about child rank of the new node araheéfithe
projector tells us that the nod@11 has been projected out, there is no way to decide whether it
has to be output before the inserted node or vice-versa.llReca the assumption made fiderge
information about the update is not available.

In order to solve this problem, related to insertion, we aptd new notion of projector, taking
into account that for the update the path/doc/a s the target of an insertion. The projecigy,
will have 2 components: the tygocof category ‘node only’ and the typeof category ‘one level
below’. Applying this new projector to a document proceeslifodlows: the nodes labelled by types
of category ‘node only’ are projected; the nodes labelledypes of category ‘one level below’
are projected together with each of thefildren Descendants of these children are not projected,
unless other components of the projector require this ptioje.
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FIGURE 2.4: Dealing with insertion
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FIGURE 2.5: Dealing with mixed-contents

For our example, applying the projectay, =(Tho, Toib) With Tho={doc} andTyp={a} to the
document leads to the documenmt,, (t) depicted in the table above together with the partial update
u1 (T, (t)). Since now the new nodes are inserted in a projection cangaall their siblings, it is
easy to check that the documen#du, (T, (t)) can be merged in a valid, simple and efficient way.

It is worth observing that our projector avoids unnecessade projection: the projection of all
children of a ‘one level below’ node is forced, but labelsloége children do not take part of the
projector.

Dealing with String and mixed-content We now modify theoTD D by redefining the rule fdo as
b—(String| ¢)* and consider the update specified byfor $x in /doc/a where $x/b/text()=’foot’
return delete $x/d. Intuitively, /doc/a/d and/doc/a/b/text() are the paths corresponding to
data relevant for the update. The associated types are={doc a,b, Stringd}. Let us con-
sider the documertt and its projection(t2) both given in Figure?2.5. Notice that projectingy
wrt T has the side effect to concatenate the Stangs’fo’ and 'ot’ and consequently, the node
up(T(t2)) @14 labelledd is deleted when the updatgis applied on the projected documett,).
Recall the assumption thiergeis not supposed to change the elements parsedimduy(Ti(t2))
and has only access to the projector. Thus, we cannot expaatrierging the initial documeiy
and the partial updated result(T(t2)) will produce the final updated document.

The problem here is due to mixed-content nodes and solveddoljfying the projector in the same
way as for insertion. The new projectmy, generated for the example will have 2 components:
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Tho={doc a,d} of category ‘node only’ andi,={b} of category ‘one level below’.

Dealing with element extraction Consider the@Tb D and the updates for $x in /doc/a return
replace $x/b with $x/d. First, it is clear thateplace updates have to be treated like insert wrt to
the target patl$x/b: replace is a delete followed by an insert. Second, becéaspath/doc/a/d

is meant to return the element copied at the target node cempy /doc/b, the complete subtrees
rooted at nodes of type have to be completely projected. For this update, we profmogenerate

a projectorry, composed of three sets of types,,={doc} of category ‘node only'Ton={a} of
category ‘one level below’, anm.p,={d} of category ‘everything below’ (abbreviated below).

Let us explain the behavior of the 3-level type projector thve category ‘everything below’: a
node labelled by a type of this category is projected togettith its sub-forest. Indeed, applying
the projectorry, on the document of Fig. 2.3.4 produces almost the whole document with the
exception of the String 'oof’” which is pruned out.

As already outlined, this third component of the projectamees higher precision and efficiency
wrt [BCCNO4. In particular, it allows avoiding to include in the profecthe types of the nodes in
the subtree of av below’ node and accelerates the projection process it-self

Type-projector Inference and then Merge Algorithm

As we have seen, given an updatever an XML documenit valid wrt the DTD, our optimization
technigue relies on 3 steps:

e An update type projectatis inferred fromu and thedTD (r, E), andt is projected wrtrt

e The updates is evaluated over the projected documett) producing a partial result(ti(t));

e The fully updated documeni(t) is built by merging the initial documen@andu(Tt)).

We see in more details each of these steps. As expected, folliheing part we assume that
the identifieri in the root node of a treg [ f] actually is a position identifier, as depicted in previous

examples. Also, differently form the previous chapter, wsweme here that textual nodes have no
(position) index.

Update type-projector and its inference Our 3-level type projectors are defined as follows.

Définition 2.8 (Type Projector)  Given aDTD (r, E) over the alphab€el, a type projectortis a
triple (Tho, Tolb, Tleb) Such that fralso denotesi Ut UTken):

1. C
2. Tho, Thlp andTiep, are pairwise disjoint, and
3. remand for eaclbeTtthere exist@icmsuch thak(a)=Randb occurs inR.

The Tt (resp.mTop andTep) component oftcontains ‘node only’ types (resp. ‘one level below’ and
‘V below’ types). Notice that condition 3) ensures some cleguoperty wrt thedoTD E: labelaeTt
cannot be deconnected from the root labalthough it does not need to be connected in all possible
manners (see projectoy below). Notice that th&tringtype itself never belongs to a type projector
Tt as already explained, a string is projected “indirectlyien its parent node type is of category
'olb’ or ’eb’.
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1 Merge(fi | fu) = fu if fi=()
otherwiseassumefi=t;, f/
2 ti o Merge(f/ | fu) ifti=s,
otherwiseassumedabel(t;)=a,
3 Merge(f/ | fu) if acmand eitherfy=() or fu=ty, f, with pogt,)>pogt;)
4 TreeMergét; | ty) o Merge(f/ | fy) if aem, fy=ty, f, andpogt;)=pogty)
5 ti o Merge(f/ | fy) if agm
FIGURE 2.6: The functiorMerge
cl CMergdfi| fy) = fu if fi=(0t,
¢l 0 if fu=0),
otherwiseassumef,=ty, f|,
c2 ty o CMerge(f; | fy) if ty=sor newty,),
otherwiseassumefj=t;, f;
c.3 CMerge(f/ | fy) if ti=sorlabel(tj)=a with acrtandpogt,) > pogti)
c4  TreeMergét | ty) o CMerggf/ | fy) if acm, label(ti))=a, andpogt;)=posty)
c5 ti o CMerge(f/ | fu) if agmandlabel(ti)=a

FIGURE 2.7: The functiorCMerge

Définition 2.9 (Type Projection) Given a DTDDTD (r, E), the type projectorn=(Tho, Toln, Teb)
and the documente (r, E), the projectiort\tis defined according to what follows.

LE\T = L[f\r] | € Tho
LI\ = KA 1€ Top
W\t = K[f] | € Tep

where

N°(0)=0 NR°(s)=s N[, ) = K[f\rd, N0 ()

The closure property 3) of definitioh.8 entails that the result of a type projection is a well-
formed tree, although it may not conform to thep D.

Concerning the inference of a the type-projector from anatgd and an input DTD, this op-
eration relies on path extraction from updates. We do nortdpere path extraction rules (see
[BBCT11H for details). In a nutshell, the rules extract from an updathree kinds of paths,
Pno, Polb and Pep, respectively selectingo, olb andeb nodes during update evaluaion. The 3-
componentst,o, T and Ty of the type-projector are then obtained by using type-ptojanfer-
ence as described in Sectigstarting form, respectively, the extracted pa@hs, Poip, andPep.

The merge phase

The task ofMergeis to build the resulti(t) of the updates overt starting from the initial tre¢ and
the updated partial trag1t(t)). The main assumption here is that the input docurhena p-store,



28 Chapter 2. Type-based projection for efficient XML procegsi

implying that node identifiers correspond to node positionthe document. The functioMerge
uses this information, the 3-level projectoand nothing else.

For the purpose of insert and replace operations, it is asduhat the update generates 'new’
(not already used it) identifiers. Also, when = g][f], in definitions we us@ogt) to indicate the
position identifieri of the root element of, andlabel(t) to indicate that labeh of this last one.
Finally, the predicateew(t) holds whert is a newly inserted tree.

The functionsvergeandCMergeare formalized in Fig2.6and Fig2.7. For the sake of simplic-
ity, the update projectaris kept implicit in the specification.

The functionsMerge and CMerge have to be thought of as mechanisms parsing in parallel two
forests:f; belonging to the initial treeand f, belonging to the updated partial tre@(t)); parsing
synchronization is captured by the fact that the parent siodé and f, are assumed to share the
same identifier; because of projection and upditepntains identifiers belonging tobesides the
new ones due to insert and replace operation.

The two functions differ on the following pre-conditions:

e Merge assumes that (1) the parent nadef the forestf; is of category ‘node only’ which
implies that, because of synchronization, i) none of thel@wpl trees inf, is of type String,
i) root identifiers of top level trees ify, belong to those of;.

e CMergeconsiders that (11) the nodds of category ‘one level below’ which implies that each
node inrooty( f;) has been projected and thabts(f,) are exactly the top level nodes &f
that have to be output byMerge

The functionMergeproceeds as follows:
Line 2 takes care of the case where the current parset] wéd; is a string value. The assumption
T entails that it has been pruned outrioyT hus, the string; is simply output.
Line 3 deals with the case where the ladef the root oftj belongs tat (thus a subtree df has been
projected) and thg root does not occur iffy, (tj has been projected and then deleted by the update).
Whenfy is not empty, this latter fact is identified by comparing ttheritifiers of the currently parsed
nodes (which are positions iff): pogt,)<pogti) indicates that the tree comes after the tretg in
the forestf;. Thust; is not output.
Line 4 takes care of synchronization on the root nodeg ahdt;: these nodes can only differ by
their labels because of some renaming. In that case, thertredergét; | t,) is output.

Finally, line 5 deals with the case where the labef t; root does not belong to the projector
implying thatt; has been pruned out. Hengés output.

As said before, the functiobMerge specified in Fig2.7, is built assuming (f1). Parsingand
fu in parallel is thus essentially guided By, as opposed tblerge
Line c.2 deals with the case where the current parsedtieef, is either of typeStringor a newly
inserted element. This latter case is identified by checlihgther the identifiepodty) is new.
Hence, the treg, is output. The reader may notice that no movefpis performed: a simple case
analysis shows that synchronization is recovered throtiggr @ases.
Line c.3 is similar to line 3, although it should be paid atiemto the sub-case where the root;of
is of typeString t; is then ignored because therrespondingstring element inf, (updated or not
by u) has, eventually, already been output by a previous agitaf line c.2.
Lines c.4, c.5 are the dual of lines 4, 5 of thierge definition. The reader should pay attention to
line c.5 where, although implicit, the equalippsti)=pogt,) holds (as opposed to the case "line 7"
of Merge): even ifa ¢ T, because of (1), the node identifiedfmygt;)=pogt,) is in both forests;
and fy.

In [BBC" 114, we have proved that our update mechanism based on thesByj@e projection
and the merge process preserves update semantics:
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Theorem 2.5 Let u be an update over D armdbe the inferred type projector for u. Then for each
tree teD, we haveMerge(t | u(Ti(t))) ~ u(t).

Above, the equivalence means equality up to node identifiers.

Implementations and Experiments

In order to validate the effectiveness of our method, botljigation and merge algorithms have been
implemented in Java. The algorithvtergehas been implemented by means of two threads, parsing
t andm(t) respectively. These threads are defined in terms of clasgamed by extending existing
SAX parser classesfxd. The two threads interact with each other according to trealicer-
Consumer pattern.

Experiments

Several tests have been performed using our Java impletioerdad 7 updates Ul - U7 on XMark
documents of growing size. These updates, together withabgociated projectors, cover the main
update operations made available by XQuery Update Fagifisert, rename, replace and delete).
All experiments were performed on a 2.53 Ghz Intel Core 2 Dachine (2 GB main memory)
running Mac OSX 10.6.4 .

The main aim of our tests was to evaluate our projection btesgthique. We focused on two
systems Saxon and QizX, and used the whole set of 7 updates.

Concerning Saxon, tests results showed that our techniggeeeds in its primarily purpose:
making possible to update very large documents with in-nrgregstems, in the presence of mem-
ory limitations.

Concerning QizX, this system has less severe memory liimitst being able to process rather
large documents. However we still have great improvementsrims of memory: with projection,
we could update up to 2GB for updates, while without progacthe limit was 520 MB. However, for
QizX, projection also ensures sensible total executioe tieduction. This is in part due to the fact
that QizX needs a significant time to build auxiliary indea¢toading time. This improvement also
testifies the effectiveness of our design choices at thepimj, path extraction, and Merge function
level. For the 52MB document, we had the following reductiofh execution times, expressed in
percentages: Ul (45,4%), U2 (60,3%), U3 (74,3%), U4 (72,29) (45,2%), U6 (63,6%), U7
(24%). We had similar percentages for documents of othessiz

A last kind of tests we made concerns the computation of augrgojection for all the updates,
executed in the following order: U1, U2, U3, ..., U7. The doant has been projected once, then
all the updates have been evaluated on the projection, aalty/fivierge has been executed once to
obtain the final document. With Saxon and QizX this took, eetipely, 82 and 64 seconds on the
128MB document. For this document, the sum of total timesleddo projecting, updating and
merging for each single update was much higher, respegth8l and 194 seconds for Saxon and
QizX.

4 Conclusion

In Section?2 we have presented a type-based projection approach foniaptg main-memory XML
guery processors. Experiments we have conducted showadatdeantages of applying our opti-
misation technique to query XML documents. Also, our tegheiimproved the state of the art
for several aspects: for performances (better pruningempeedup, less memory consumption),
for the analysis techniques (linear pruning time, neglegibemory and time consumption), for its
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generality (handling of all axes and of predicates), argt,bat not least, for the formal foundation
it provides (correctness formally proved, limits of the eqggch formally stated).

The technique we have presented in Secfidras been the first XQuery update optimization
technique based on the use of projection and schema inflerm&ne of its main distinctive features
is a new notion of projector allowing to strictly minimizeethesulting projection, and to efficiently
propagate updates from the updated projection to theliditabase. Another distinctive feature is
that the proposed framework can be exploited without chaany internal part of the query/update
engine.

Both presented techniques deal with DTDs. The extensioMb ®chema has been considered
in [BCCN11], a full version of BCCNOg. Concerning projection for updates, the extension to
XML Schema is subject of current investigations, and reswill be integrated in the full version of
[BBCT11H.
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PROJECTIONBASED
DETECTION OF CORRUPTED
XML SCHEMA MAPPINGS

Current data integration technologies proviggformanddeclarativeinterfaces to access data dis-
persed omultiple sources, possiblgeterogeneousndautonomous

A main task in data integration is the maintenance of schemjapmgs. A schema mapping
from a source schem#’ to a target schem& describes how to translate data conformingso
into data conforming ta@7, and it can be used to reformulate queriess6iinto queries over, and
vice versaaccording to th&lobal-As-ViewGAV), Local As View(LAV), and Global-And-Local-
As-View(GLAV) paradigms pI188, UlI89, FLM99]. Schema mappings are used during query an-
swering for reformulating queries or, as in data exchangeesys PLO5b], for generating canonical
solutions; schema mappings, hence, allow the system tewvettdata that are semantically similar
but described by different schemas.

A schema mapping isorruptedwhen it fails in matching the source or the target schema. The
presence of a corrupted mapping can significantly affectyqoeocessing, as it may make no more
accessible the corresponding remote data source or maygeadeaningless query results.

Mapping maintenance is a time-consuming, complex, andrestpe activity, and is usually per-
formed by the system/site administrator, who manually éesp schemas and mappings in order to
find errors in mappings definitions; as a consequence, gegponses to sudden mapping corrup-
tions are not possible. To aid and accelerate errors detesteveral tools and techniques for assist-
ing the administrator in maintaining schema mappings haenlescribed in the recent past (see
[MAL *085], for instance). These techniques are usually based on ¢imitoning of some arbitrary
parameter, like, for instance, the “quality” of samplesrafisformed data instances or transformed
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gueries, and usually do not offer guarantees about the ater@ss of the approach.

In more detail, the above depicted techniques have two nmrawlzhcks. First, they are not
complete since wrong rules that are not used for reforrmgdatiquery or for transforming a sample
data instance cannot be discovered. Second, they usugllireean interaction with query answer-
ing or data transformation algorithms; this implies thash techniques cannot directly check for
mapping correctness, but, instead, check for the corrsstoka mapping wrt a given reformula-
tion or transformation algorithm. Hence, a significant wesds of these techniques is that they
refer to a notion of mapping correctness which is stronglateel to the properties of a particular
reformulation and/or transformation algorithm.

This chapter describes results presented f2§J5hH CS04 and then in a journal pape€[B09.
The chapter is about a static analysis technique for maingischema mappings in XML data
integration systems, where mappings are specified by méa¢@uery clausesX{Qub.

Given a schema mappimgfrom . to .7, we assume that a sche¥g, describing the structure
of the imagem(.¥) is available (through an inference process), and then wepaoe, wrt the
target schema” according to aype projectiomotion, which generalizes the notion of relational
projection, and captures and formalizes the intended stiesasf mapping correctness of typical
data integration systemsi[MTO03]. If this comparison for projection succeeds, we are suat th
the mapping rules describe data that are “compatible” with target schema; moreover, as an
important consequence, if the mapping is deemed as cotteatyeformulated queries will always
be consistent with the target schema.

The above depicted framework requires the existence of gubtype.#, for m; in order to
show that this assumption is not restrictive, we provide itecgfficient type inference system, able
to infer such upper-bound, at static time, starting frorm and its input schema”; we will also
show that the inferred scheré, is quite close tan(.), thus entailing an high degree of precision
in the corruption checking process.

As already mentioned, one of the main strengths of this aggrbes on the fact that the combi-
nation of type projection and type inference results in anégue that is independent from queries
posed against the integrated database, does not rely oy gfiermulation algorithms/techniques,
and it iscompletei.e., any incorrect mapping will be detected. As a final rdmte solution pro-
posed in this paper can be used in both traditional and dedized data integration systems, as
well as in data exchange systemsKMTO05]).

This chapter is structured as follows. Sectibprovides an overview trough examples of the
proposed framework. Sectidghdescribes the notion of mapping correctness, relying onythe
projection relation. Then Sectighdiscusses decidability, complexity and an efficient aldoni
to check type projection. A brief overview of a technigue feapping type inference is given in
Section4, while experiments, related works and conclusions aress@ly discussed in Sections
5,6 and7.

1 Motivating Scenario

In both examples and formalizations, in this chapter we adomtation for types which is different
from that of previous chapters. It is basedregular expression typemtroduced and used in the
XDuce [HP03 and XQuery PFF10Q] type languages. Examples and the formal treatment arerbett
handled with this notation.

We motivate our technique by referring to a decentralized adegration scenario, where mul-
tiple data sources are connected by means of one-to-onamgapp his scenario is a generalization
of centralized approaches, where each data source is magped(single) global schema. For the
sake of simplicity, we assume a minimal configuration, cdsipg two data sources onlyp{ and
p2), so as to focus on mapping correctness rather than on gefryrrulation or routing issues.

Each data source hosts a bunch of XML data, described by ansc{# for p; and.7 for py);
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these schemas are connected through a schema mappingftiidiving we will use the expression
“schema mapping” to denote any mapping between types). Epping can be defined according
to theGlobal-As-ViewW(GAV) approach, or to theocal-As-View(LAV) approach. Our approach is
based on LAV mappings, where the target (local) schema ixitbes! in terms of the source (global)
schema; nevertheless, this approach applies to GAV mappingsince, as noted iifgt04, a LAV
mapping fromp; to p, can be interpreted as a GAV mapping framto p;.

In our framework, a mapping from . to .7 is a set of queries that specify how to translate
data belonging te” into data conforming to a projection of . A mapping, hence, can be regarded
as a specification rather than an actual transformation f#6to .7, as it is not forced to detail the
construction of all target elements.

Mapping queries are expressed in the same query languagéougmsing general queries: this
language, callegiXQ, is roughly equivalent to the FLWR core of XQuery. We retiee reader to
[Col04, CGMS04 Che08Mpfor detailed presentations and results aloXm.

Data integration scenarios like this are usually managdt miediationapproaches, where
queries are reformulated by means of schema mappings arehtralized warehouse is used. The
correctness of the query answering process for a given glepgnds on the properties of the re-
formulation algorithm as well as on the correctness of thppirags involved in the transformation:
indeed, if the mapping fails in matching the target schemafrtansformed query will probably fail
as well.

The evolution of the integrated database, namely the clsaing#ata source schemas, can dra-
matically affect the quality of schema mappings and, inipaldr, lead to the corruption of existing
mappings. This will reflect on query answering and on exgstiptimization techniques for decen-
tralized and centralized systems, such as the mapping csitigmoapproach described imtH04].

The following example illustrates the basic concepts offhery language, provides an intuition
of the projection-basednapping correctness notion, and shows how mapping indoesg can
reflect on query answering and data transformation.

Consider a decentralized data sharing system for musimiration. The system allows users to
share data about their (legally owned) music files, so toodiscinformation about their preferred
songs and singers. Each user publishes, on a voluntary basidescription of all the songs she is
storing on her computer or iPod.

Assume that a user in Cupertino publishes her music datalaseding to the following schema.

CupMDB = mySongs [(Song) *]

Song = song[Title, Artist, Album, MyRating]
Title = title[String]

Artist = artist[String]

Album = album[String]

MyRating = myRating[Integer]

This schema groups data by song, and, for each song, refgéiertitle, the artist name (a singer
or a band), the album title, as well as a personal rating métion.

Suppose now that another user in Seattle publishes heradatarcording to the following
(different) schema.

SeattleMDB = musicDB[Artist*]

Artist = artist[Name, Provenance, Track*]
Name = name[String]

Provenance = provenance[Continent, Country]
Continent = continent [String]

Country = country[String]

Track = track[Title, Year, Genre]

Title = title[String]

Year = year[Integer]
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Genre = genre[String]

This schema groups data by artist and, for each artist,Isiét@i name and provenance, as well
as the list of corresponding tracks.

To make these databases interact together, a proper scheppénmis required, as schemas nest
data in very different ways. Assume that the user in Cuperimploys the following mapping (a
set of XQuery queries) to map her schema into the Seattledmshema.

SeattleMDB <-
Qi1($input): for $a in $input/song/artist
return artistl[
name [$a/data ()],
for $s in $input/song,
$art in $s/artist
where $art/data() = $a/data()
return track[for $t in $s/title,
return $t]]
Q2($input): for $db in /mySongs
return musicDB[Q1($db)]

This mapping can be expressed by a single query, by ne@irigto Q2, however the above
presentation offer a modular view of the mapping. When esging a complex mapping, it is
convenient to decompose its XQuery specification into sdvetated queries.

This mapping specifies how data conforming to a fragment efGpertino schemalpum
and myRating elements are discarded) can be transformed into data coimgrto a fraction of
the Seattle-based schema (for instaipreyenance elements are discarded). In other words, the
schema mapping takes into accoupta@jectionof the two schemas. This is a very common situation
in data integration systems, as usually only a fraction ofatically related heterogeneous schemas
can be reconciled. In particular, as the Seattle user scheesmnot suppodlbum andmyRating
elements, they must be ignored in the mapping. Furthernsimeg the Cupertino schema does
not provide information about song genre, correspondiegiehts are not generated, hence any
transformed data instance must be regarded as a projedtiarSeattle-compliant data instance.
As this mapping is only a specification, the actual transgdiom can be derived by applying, for
instance, a chase-like approach a la Clio.

Assume now that Seattle slightly changes its schema anayticplar, the way artist names are
represented: instead of a simplame element, information about artist’s first name and second
name is inserted into teame elementName = name[first[String],second[String]].

This change in the target schema makes the Cupetin®eattle mapping incorrect. Indeed,
this mapping specifies the construction of simple contame elements, which are now no more
allowed in the target schema. It should be observed thairahtiee mapping cannot fix this problem,
as incorrect mappings generate incorrect transformations

The incorrectness of the mapping from Cupertino to Seatttettvo main consequences. First
of all, the actual transformation that we can derive from th&pping fails in creating instances
of Seatt1eMDB from instances ofupMDB: indeed, the transformation still generates simmene
elements in the target instance, which can no longer be tedtemd validated against the target
schema. A second consequence is that, just as for datadrarafon, even query reformulation
fails, in the sense that any query involvingme elements is incorrectly reformulated. To illustrate
this point, consider the query shown in Figaré (a). This query, submitted by a user in Cupertino,
asks for the titles of all songs published by Burt Bacharddie query is first executed locally in
Cupertino. Then, the system reformulates the query so tolm@eattle schema; this reformulation
is performed by using standard LAV query rewriting algamith (one can think o€upMDB as the
global schema angleatt1eMDB as the local schemal/[H03, THO4]?.

2We show a minimal transformed query, obtained by minimizing original transformed query and by deleting all
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songs_Bacharach[
for $a in $seadb//artist,
$n in $a/name,
$t in $a/track
let $bb := ‘““Burt Bacharach’’
where $n = $bb
return song[$t/title]

songs_Bacharach[
for $s in $cupdb//song,

$t in $s/title,

$a in $s/artist
let $bb := ‘“‘Burt Bacharach”
where $a = $bb
return song[$t]

(a) Cupertino user query.

(b) Transformed Cupertino user query.

FIGURE 3.1: Reformulation of a user query.

At the end of the reformulation process, the reformulateztgishown in Figur&.1(b), is then
sent to the Seattle site. Unfortunately, the transformeshydoes not match the new schema of
Seattle users, so the Cupertino user cannot gather reridtie Seattle site.

This example clearly pinpoints the maintenance issuesitiis# in data integration systems and,
in particular, in those systems reconciling autonomou$-b&sed data sources. Furthermore, this
example highlights that the relationship between a scheaggping and its target schema cannot
be modeled through a standard subtyping reladide XQuery/XDuce/CDuce, as this form of sub-
typing is based on set inclusion. Indeed, the output typéefmhapping is not a subtype of the
target type, as the target schema prescribes the preserecgenire element, which, instead, is
not generated by the mapping. The nature of schema mappmgses a more flexible and gen-
eral way of comparing types thansabtyping-basedomparison. This is the main motivation for
the introduction ottype projectionwhich captures the Piazz&l[MTO03] intuition of mappings as
“transformation + projection” (i.e., non-functional trigformation). We quote a part of this work:

At the core, the semantics of mappings can be defined as falld@iven an XML
instance]s, for the source nod8and the mapping to the targét the mapping defines
a subset of an instance;, for the target node. The reason thats a subset of the
target instance is that some elements of the target may nsitiaxthe source (e.g.,
the publisher element in the examples). In fact, it may even be the case¢haired
elements of the target are not present in the source. Inaetterms]t is aprojection
of some complete instantg of T on a subset of its elements and attributes.

This characterization is, indeed, common to most data iat&Eg and data exchange systems, and
points out that a schema mapping specifiema-functionakransformation from a source schema
< to atarget schem&’. In the following sections we will provide a formalizatiohtgpe projection

for an even wider class of schema mappings: we will regardgping as a set of rules that specify
how to transform a source data instarige . into afragmentof one or more data instances
conforming to.7, the actual transformation fron¥’ to .7 being obtained through a chase-like
process.

2 Mapping Validity and Correctness

This section describes the notions of mapping validity (rmong rules wrt the source schema)
and mapping correctness (no wrong rules wrt the target sehefhese notions are central to our
approach, and allow for the definition of an operational &vegtechnique.

The syntax of the type language we adopt is is shown in FigLitg)) is the type for the empty
sequence valueB denotes the type for base values (without loss of generaligyonly consider
string base values), typdsU andT | U are, respectively, product and union types, and, finally,

redundant subqueries



36 Chapter 3. Projection-based detection of corrupted XMlesth mappings

Types T = O empty sequence
| B base type
| I[T] elementtype
| T,T sequence type
| T|T uniontype
| T repetition type
Base Type B = String

FIGURE 3.2: Type language

T=x is the type for repetition. Types are unordered, as no glotddr on XML data dispersed on
multiple sources can be established: this aspect signifjcantreases the hardness of comparing
two XML types, as usual heuristics and optimizations basetype ordering cannot be applied in
this context.

Since types are unordered, in the following we will cons@product typdy, ..., T, as identical
to all its possible permutatiog), .. ., Trn)- Moreover, as our types actually are XDuce unordered
types, we also have that () is identical toT, and that(T,T’),T” is identical toT,(T’,T”). This
conforms to the corresponding laws over the data model.

Furthermore, the type language includes horizontal ré@itgpes (allowed by type$x) but
does not include vertical recursive types, like, for ins&@rthe one defined by this recursive defini-
tion

Part=partname [Description, Partx*]

This is motivated by the fact that most mapping languageseatrpowerful enough to transform
trees with arbitrary depth, whose structure can only be ddfiyy vertical recursive types. Also, it
should be observed that many mapping tools like Clio do nppstt recursive types, as chasing
(i.e., the closure of a mapping against a schema) may notrtatenon recursive types. For these
reasons we believe that discarding vertical recursivegyp@ot restrictive in the study of schema
mapping languages.

The semantics of types is standard: we [iEfto denote the set of forests described by the type
T; the definition is standardjS09.

Subtyping, which is used next to prove decidability of typej@ction, is defined via type se-
mantics, as shown below.

Définition 3.1 (Semantic subtyping) Given two typesl andU, T is a subtype oU if and only if
the semantics of is contained into the semanticslof

T<U < [T]CV]

Schema Mappings

In this section we introduce and formalize our notion of sohenappings. In our vision, a schema
mapping is the specification of a transformation from a sesahema” to a target schem&’.

Définition 3.2 (Mapping) Let . be a source schema and It be a target schema. A schema
mappingm from . to .7 is an assertion fron¥’ to .7 of the form(Q, {qi}i), whereq; is a query
from . to .7, andQ is an outer query referring each
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The previous definition states that a mapping is compose@hbyrary query Q), which defines
the overall structure of the mapping, and by a setsmiondanassertiongq; }i, which correlate frag-
ments of ¥ with fragments of7. The intuition behind this distinction is to provide more dodarity
to a schema mapping by separating the way assertions araldsgefrom their specification. For
instance, in the previou&eattleMDB mapping,Q- is the primary query, whil€); is a secondary
assertion. For the sake of simplicity, we will denote the bamation of a primary query and a set of
secondary assertions @1, -

By the previous definition, a schema mapping is a specificaifothe actual transformations
between source data and target data. Indeed, both the grijaary and secondary assertions can
be incomplete, in the sense that they do not cover all theegiésrof the target schema. Of course,
our mappings can be enriched and modified to represent a etartphnsformation by using, for
instance, a chasing strategy. We prefer to focus on mappisigsspecification tool because this
notion captures the essence of schema mappings; furtheyorare a mapping has been deemed as
correct, the actual transformation can be easily and autoafiy generated by existing tools.

Correctness

In this section we will introduce the notion of mapping viljdand mapping correctness. Validity
is characterized by the following definition.

Définition 3.3 (Mapping validity) A mappingm= (Q,{qi}i) from . to .7 is valid if and only
if the combination of the primary query and the secondaryrigeds correct wrt#, in the sense
that, for each non-empty subqueryf Q|(q),), there exists a data instandef .’ such that, when
evaluated o, g will return a non-empty result.

Consider the schemas the previgeattleMDB mapping. This mapping is valid wrt the source
schema, as each subquery (path expression, in particatarhs no empty results for some valid
input.

Assume now that the source schema is modified as follows:

Song = song[EnglishTitle, Artist, Album, MyRating]
EnglishTitle = englishTitle[String]

The mapping now becomes invalid wrt the new source schendaeth assertio@, contains a
nested query accessitile elements, which are no longer present in the schema.

Mapping validity implies that a valid mapping must be cotrect the source schema, i.e., it
must match the structure of the source schema. We adopt érg gorrectness notion described in
[Col04, CGMS04 and [CS054. Mapping validity allows for identifying mappings thatesbsolete
i.e., that contain rules referring to fragments of the sesichema that have been changed or deleted.
From now on, we will assume that each mapping is valid, andf@mmapping correctnessand
therefore on the detection of errors wrt the target schema.

Our notion of mapping correctness is based on the followioiipn of data projection. Intu-
itively, f1 is a projection offy, denoted ad; < f, if there exists a subterrfg in fo such thatfs
matchesfy; this is very close (up to simulation) to the relational ijon, where = Tiars if rq is
equal to the fragment b obtained by discarding noA-attributes.

The notion of data projection we are going to formalize iasally the same as the one pro-
posed in previous chapters, the only difference comes frmmmeutativity of forest concatenation.
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Définition 3.4 (Value projection) The value projection relatiog is the minimal relation such that:

0 < f fife < fafs if (LS fsnfas fa)
b < by i 2 f IR RS fAf<fa
f < £,0 I[fi] < I[fz] iffiSH
fi,fo < fo,f1

Note that in data projection we require structural matchiwalgile exact matching on leaf base
valuesb is not required.

Définition 3.5 (Mapping correctness)A mappingm = (Q,{q;};) from . to .7 is correctif and
only if, for each data instance ., there exists & data instancd s~ such thaQq,(d») S do.

The above definitions state that a mapping frofnto .7 is correct if and only the result of
Qj{q};) On a value conforming to”’ is mapped, according to tffgrelation, into a value conforming
to 7. < is aninjectivesimulation relation among values, inspired by the progettperator of the
relation data model.

Our notion of mapping correctness relies on the comparistrden the semantics of the map-
ping, i.e., the set of its results when applied to instanddbesource schema, and the semantics
of the target schema. In this sense, we can say that our nisteemantic as it only depends on
the semantics of the source and target schemas, as well ke afdpping. This does not imply
that our notion is able to capture the intended semanticsmfpping: this problem, indeed, is
Al-complete and cannot be completely solved by an autontatic Before concluding this sec-
tion, some final remarks are needed. The notion of XML pragactve adopt is a generalization
of that introduced by1S03, where leaf values are taken into account too. Also, ouionoof
correctness is independent from the mapping specificatioguage, since it is defined in terms of
query (mapping) outputs, hence it is applicable in othea d@egration scenarios where mappings
are inferred by semi-automatic tools; for instance, ouraggh can be easily applied to mappings
described in terms of source-to-target dependencies. Bemerally, our approach can be applied
to any mapping language for which suitable notions of tygerance and type projection can be
defined.

3 Checking Correctness via Type-Projection

Definitions3.5and3.4 describe our notion of mapping correctness, but they cadirexttly be used
to check whether a mapping is correct or not. To obtain a coctste definition, we need to switch
from values to types.

Définition 3.6 (Type projection) Given two typesl; andT,, we say thafl; is a projection ofT,
(Tj_ 5 Tz) if and only if: Vdj_ . Tj_ Edz . Tz. dj_ 5 dz.

As for the value projection relation, the type projectiotatien is semantic, and states that a
typeT; is a projection of a typ@ if, for each data instanady conforming toTy, there exists a data
instancad, conforming toT, such that; is a projection ofl,.

Type projection is quite different from standard subtypisimce it is based on the idea that
T1 < T2 if Ty matches a fragment @b, while Ty < T, implies thatT; is more specific thafh,.

Consider now our initial example, and the following type:

TinyMDB = musicDB[Artistx*]

Artist = artist[Name, Provenance]

Name = name[String]

Provenance = provenance[Continent, Country]
Continent = continent[String]

Country = country[String]
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This type is actually a projection of SeattleMDB, as eaclyMBB instance is a projection of a
SeattleMDB instance. However, TinyMDB is not a subtype cdit8eMDB, as TinyMDB instances
lack track elements, which are mandatory for SeattleMDB instancesusktype projection in
mapping correctness checking, we must correlate type gifojeand mapping correctness. To this
aim, if we assume that for each query we can infer a type caintpill the query results, we can
use the inferred type to check mapping correctness, asatedién the following proposition.

Proposition 3.1 (Mapping correctness via type projection)Given two schemag” and.7, if m=
(Q.{ai}i) is a schema mapping frorf to .7, and U an upper-bound for @, ,,; (for each fe [.7],

Qg (f) € [U]), then mis correct if US 7.

As we will see next, quite precise query upper bound typesheasystematically inferred by
means of a type-inference algorithm able to prove judgmefritse forml = Q : U, whererl is an
environment containing information about the source s@hefnandU is the inferred upper bound
type for the mappin®.

Referring to our initial example, the output type of #eatt1eMDB mapping is the following:

OutputType = musicDB[Ax]
A = artist[N, Ti1x]

N = name[String]

T1 = track[T2]

T2 = title[String]

This type is a projection of the target SeattleMDB schemachéhe mapping can be deemed as
correct.

The notion of mapping correctness just presented addreksaages in the structure of a schema.
As there are several kinds of updates that can be appliectteans, it is worth to explore the various
forms of schema changes, so to understand to what extenbtaniis effective.

In its most common interpretation, a schema consists of @, tgpscribing the structure of the
instances of the schema, and of a set of constraints oveirdéaces. As a consequence, a schema
change may affect the type, the set of constraints, or both.

In our work we focus our attention on the type component of@&st, hence any change in the
set of constraints is not supported. This choice is motiiatethe fact that, as previously said, we
assume that data sources are autonomous, hence it is yrhila¢la data source makes constraints
externally visible.

We can consider five main kinds of structural changes thatbeaapplied to a schema: the
removal of existing type definitions (e.g. the removal of lEmeent type); the change of a datatype
inside an element content type (e.g., the switch f&tming to Int), the relocation of a fragment
of a schema to a new location; the renaming of an element typeé;the insertion of new type
definitions inside the schema. In the following paragrapbsmill explore the applicability of our
approach to these kinds of updates on both the source anartfet schema.

Source schema Changes in the source schema of a mapping may affect itdtyaMdhen a type
definition is removed from the source schema, the validity ehapping is affected only if the
definition was used and referred in the mapping (we assuneeurse, that the new schema is well-
formed). For instance, assume that the definitiohist = artist[String] is removed from the
source schemac{pMDB) seen in a previous example. The mapping becomes invalidl tréss to
access a no longer existing fragment of the schema. The goemgctness notion we described in
[Col04, CGMSO04 can easily capture all errors implied by a type definitiomoal.

The same considerations apply to the relocation of a fragofehe schema to a new location,
and to the renaming of element type definitions. These clsanmgg induce errors in a mapping
(remember that we see a mapping as a specification, henaeliecacomplete) only if they affect
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the portion of the schema that is visited by the mapping; raghie technique we developed in
[CGMSO04 is able to identify and notify all errors induced by theskesma updates.

Consider the schemas and the mapping of our main examplesantha that the source schema
is modified as follows.

CupMDB = (Song)*

Song = song[Name, Artist, Album, MyRating]
Name = name[String]

Artist = artist[String]

Album = album[String]

MyRating = myRating[Integer]

The new source schema containseene element in place of the oltitle element (element renam-
ing); furthermore, the collection afong elements has been relocated to the outermost position in
the schema (type relocation). Both changes make the mappitgnger valid and induce errors
that are easily identified by the approach we described®NIS04, since the mapping tries to
access schema fragments no longer existing. The switch drdatatype to another one is not di-
rectly supported in the approach we describedd®MS04, as our type system uses a single base
type. However, it can be easily seen that an extension toipteuiatatypes is trivial and that all
corruptions induced by this kind of changes can be identified

The enrichment of the source schema with new type definiti@ver alters the validity of a
mapping. Indeed, all type definitions accessed by the magppia still present, so there is no error
that a type-checking algorithm can detect. For instansegifnodify the source schema of Example
??as follows:

Song = song[Title, Artist, Album, MyRating, ChartPosition]
ChartPosition = chartPosition[String]

all type definitions used by the mapping are still accessible

Target schema The considerations we did for changes in the source schepig also to the
changes on the target schema. In particular, all corruptioduced by the removal of a type def-
initions, by the renaming of an element type definition, apdhe relocation of a fragment of the
schema are identified and notified. Furthermore, value gtioje and type projection can be easily
extended to support multiple datatypes.

As for mapping validity, mapping correctness is not affddtg the insertions of new type defi-
nitions in the target schema. This is fully reasonable, asmappings may be incomplete.

As we have seen, our approach is able to capture all erronséutby sstructuralupdate on the
target schema. However, when a structural update is couptech modification in the intended se-
mantics of the schema, things change. Referring to our puevéxample, assume tfsatatt1eMDB
is modified as follows:

Artist = artist[Name, WName, Provenance, Trackx]
WName = wName [String]

whereWName models the working name of an artist alhe its actual name. Observe thatpMDB
does not distinguish between the actual and the working nafna@ artist, so alCupMDB name
elements are interpreted as working names.

By addingwName, we do not violate the correctness notion of the previouicrec However,
the intended semantics of the schema has now been modifigshasow represents actual names.
Such a change makes the mapping no more adequate, as it maqasgwames fronCupMDB into
SeattleMDB actual names.
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Any change in the intended semantics of a schema can makeappimg no more adequate.
However, checking that a mapping is “semantically” adeguafts source and target schema can-
not be automatically performed by a maintenance tool, asptoblem is definitely Al-complete.
It should be observed that even detecting a change in thedatesemantics of the schema of an
autonomous data source is, in the general case, not feasithleequires the intervention of a devel-
oper.

Dealing with this kind of corruptions, hence, it is definjtelot easy. However, our approach can
be easily extended to provide useful support to the develdpaeed, type projection checking can
be used to identify the fragments of the target schema tleat@rered by the mapping; in the same
way, validity checking relates the mapping queries withfthgments of the source schema visited
by the mapping. By exploiting this information, we can azalyhe behavior of the mapping on
both the source and the target schema (a preliminary impitatien of this approach can be found
in the current version of our maintenance tcol.

By observing that a change in the intended semantics of arsliemore likely to corrupt a
mapping if it affects a fragment that is close to those toddme the mapping, we can notify to
the developer any schema change that is sufficiently clas®(ding to some proper metric) to the
portions of the schema involved in the mapping. As an exanipléhe case of working names
and actual names, this extension will pinpoint the schenzengé as potentially harmful, as it is
very close toname elements, which are touched (covered) by the mapping. Ofseomo formal
properties can be stated and proved for this extension; et provides useful information at a
very low extra cost.

Decidability and Complexity of Type Projection

As we have seen in the previous sections, and in Propositibim particular, if one can establish
a projection relation between the inferred type and thestasghema of a mapping, the correctness
of the mapping is proved. In order to move towards a practicalectness checking technique, we
first need to prove decidability of the type-projection tigla.

To prove that type projection is decidable we rely on a paldicnotion oftype approximation
Type approximation weakens types by enriching base andegletypes with a union with the empty
sequence type; this allows one to relate type projectiotatodard subtyping for commutative types,
whose decidability has been proved Ijuly85.

Type approximation is based on the idea of weakening typestbyducing unions with the
empty sequence type.

Définition 3.7 (Type approximation) Given a typelJ, we indicate withU < the type obtained by
U just by replacing each subexpressidh corresponding to a tree type | or B, with U’? ( that is
(U’ 1())). Formally:

09 = (  TIUT £ TIUS AT S AT
BY £ B? TUY £ TIUI TxI £ T%

Decidability of type projection relation is stated by thédwing theorem.

Theorem 3.1 (Type projection as sub-typing)

T<U & T<uU<

The previous theorem states that type projection betWwesmmdU can be checked by weakening
U and, then, by checking for the existence of a subtypingiceldietweenl andU <. This result

31t is available ahttp://www.unibas.it/sartiani/projects/gamma.html).
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proves decidability of type projection, sindely85 proved that inclusion for commutative regular
grammars isrlg-hard and is in CONEXPTIME. This result also identifies an empipound for the
complexity of type projection; however, in the following wéll show that a better upper bound for
complexity of projection can be found by relying on a typesiation approach.

The previous theorem, stating that type projection is exjaivt to subtyping, once the right hand-
side of the comparison has been approximated, gives riséudamental question, i.e., whether
type projection can be replaced, in the context of data ratégn and data exchange, by subtyping.
A strong reason for discarding subtyping, in favor of typejection, is its algorithmic complexity.

So in order to efficiently check type projection, we propasthe following an alternative char-
acterization of type projection which is not based on suibtyand which is a first step towards an
efficient algorithm.

Before illustrating our technique for checking type praiea, it is worth to analyze the compu-
tational complexity of type projection. From Theorém we know that type projection is equiv-
alent to subtype-checking when the right hand-side of theparison has beeweakenedi.e.,
T<U < T <U<. SinceU can be transformed intd < in polynomial time and space, this
theorem also states that type projection cannot be morensikgethan subtype-checking. Inclu-
sion among commutative type is known to be in CONEXPTINEI}85, hence CONEXPTIME is
an upper bound for type projection too. We will see next thi tipper bound can be refined to
EXPTIME.

For what concerns the complexity lower bound, we first inimela supplementary operation
called<-membership

Définition 3.8 (<-membership) Given a data model instandeand a typel, we say thaf <memT
ifand only if 3f" € [T].f < f'.

The relation<memis here called<-membership as it is the counterpart of membership for inclu
sion and equivalence problems. It should be observedtfiat’ can be decided in polynomial time
in the size off andf’.

The following theorem shows thgt-membership is NP-complete.

Theorem 3.2 <-membership is NP-complete.

The complexity of<-membership provides a lower bound for the complexity oétppojection,
as shown by the following corollary.

Corollary 3.1 Type projection is NP-hard.

Type Projection as Type Simulation

Type simulatioris asymbolicrelation among types, whose main aim is to provide a conneniay
to characterize and check for type projection.

Type simulation is defined among typesdisjunctive normal formi.e., types where products
are distributed across unions. A tyfecan be normalized by applying the normalization function
norm(T), defined as shown in Tablel3.It is easy to show that the evaluationradrm(T) always
terminates.

norm() works by transforming types, while preserving their sentanso that the transformed
types can be easily compared by the simulation relation fgrttie corresponding algorithm). For
instancenorm(T’x,U’x,U) transforms a product of repetition types, which is hard tonfalize in
the simulation rules, into a *-guarded union, for which meelsier simulation rules exist.

To eliminate some ambiguity, the rules of therm() must be applied in the order in which they
are definednorm() can be applied to any type, and its relevance resides in @ pf equivalence
between simulation and projection, as it will be clear inrb&t of the paper.
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Table 3.1.norm() function.
I

norm(()) 2
norm(B) 2B
A I A if norm(T)=Az|...|An
norm(l [T]) - {Hn([)rr]n(T)] othervrtl‘i(se) .
norm(T |U) £ norm(T) | normU)
norm(T’s,U’«,U) 2 norm((T'|U")x,U)
norm(Aq,U) | norm(Az,U) if norm(T) = (Aq | A2)
norm(T,U) L {norm(T,Al) | norm(T,Ap)  if normU) = (A1 | Az)
norm(T),norm(U) otherwise
norm(T ) L norm(T )=

The core of normalization is the transformation of type eggions in conjunctive normal form
into equivalent ones in disjunctive normal form (see thedthind the sixth rule in Table B. As a
consequencerorm() has an EXPTIME worst case time complexity, and the normdligpe may
have an exponential size wrt the original type. Despite foisa vast class of typasorm() can be
computed in PTIME. This class contains types where unioesaslways guarded by &operator
(x-guarded types), as shown by the following definition.

Définition 3.9 (SGT) AtypeT isin SGT (star-guarded types) if it can be generated by thesng
grammar:

*-Types Ta=a=( |B |I[T] | T,T | Ux

UnionTypes U =T | T|U

Proving that for«-guarded typesorm() is polynomial is straightforward=-guardedness is a
property enjoyed by a large number of commonly used DTDs &8idsX For instance, the reader can
refer to [Cho0g and to BNdBO4] for a detailed classification of real world DTDs: this clifisation
shows that non-guarded unions are quite infrequent. In any case, in oaterdrm() to blow up,
thex-guarded union restriction must be systematically viaase a few occurrences efunguarded
are harmless.

It is worth to notice that optional types of the forv (), even though representing a relatively
frequent kind of none-guardedness, does not affect the complexityofim() since they can be
rewritten intoA by preserving projection. So, from now on we can make therapian that types
do not contain optional types| (). This is assumption is non-restrictive since, as prove@Bd9,
they can be safely eliminated.

It is easy to prove that thatorm() preserves the semantics of types: for each fpéT] =

[norm(T)].
Définition 3.10 A typeT is primeif and only if norm(T) = T andT # A| B.

Prime types play a crucial role in our framework. Since priyges are invariant under nor-
malization and they cannot be union types, their semangesmcontain mutually exclusive tree
structures. For this reason, a prime type can be consideradmvnole during projection checking,
without the need of any kind of further transformation. Tisiensured by the following lemma,
formalizing the main property enjoyed by prime types.

Lemma 3.1 (Upward closure) If T is prime, thervfy, fo € [T].3f € [T]. i <f

We will need the following lemma that deals with projection@ng *-types. Essentially, as far
as prime types are concerned, this lemma states that &tyfgein the projection relation only wrt
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to typesU containing a *-type at the top level, thatls= U1, A with A not containing *-types at
the top level; moreover, only the *-type contributes to thej@ction, the proof being based on the
cardinality of sequences.

Lemma 3.2 If Tx and U are prime, then ¥<U < U = (Up)x,A and T« < (Up)x.
We can now state the definition tyfpe simulation

Définition 3.11 (Type simulation) The type simulation relatiorx among normalized types is de-
fined as follows.

1) B < B

2 . =

3) I[T] =< U] if T<U

4 T = UzUsz if Ty XUvTy 2U3

5) T,T, =< UgUs if (Tt xUsAT2 < Us)

6) T < U2|U3 ilejUZ\/leU3andT17éV1|V2
7 T|T. < U if T <UAT,<U

8 T = Us  ifT <U

9) T < Usx if T<Ux

10) T, < Us  #fTi<UsAT,<Us

Rules 1-3 are straightforward as well as Rule 8. Rules 4-&ritesthe simulation among product
types, while Rules 6-7 illustrate the simulation among arjges. Rules 8-10, finally, are dedicated
to repetition types.

Rules for product types are of special interest. In paricuRule 5 shows that simulation be-
tween product types imjective hence capturing the injective nature of projection: fatamce,T
= Album Albumcannot be projected intd = Album as data conforming td have two distinct
album elements, while data conforming td have only onealbum element. Injectivity may be
broken by repetition types, or when sequence types are iimimediate scope of a repetition type.

Rules 6-7 describe the simulation for union types. Thesesrplnpoint the commutative and
non-injectivenature of union types.

Type projection is equivalent to type simulation. The prsd bit involved and can be found in
[CS09.

Theorem 3.3 Given two normalized types T and U:

T<U & T=<U

Type Projection Checking

Inthe previous section we showed the equivalence betweerptpjection and type simulation. This
allows for the construction of aefficient simulation-basegrojection-checking algorithm. The
algorithm is actually axot-so-naivémplementation of the type simulation rules. Indeed, a @aiv
implementation of these rules would lead to a super-expiaieaigorithm, due to the following
reasons. First of all, a recursive comparison of two typeandT,, as suggested by the simulation
rules, would lead to manlyacktrackingoperations, in particular when comparing union or product
types: for instance, when compariqon[T]] with [[m[B]],I[m[T]] (whereT # B), a naive algorithm
would (i) apply Rule 4 for product types and chodf®[T]] andI[m[B]] as types to be compared,
(i) start the comparison of the chosen types, and (iii) gokb Rule 4 and step (i) when the
comparison fails. This problem can be solvedflaytening T andT,, and by constructing &ype
matrix (simTypesn our algorithm), whose rows and columns are associatspertively, to type

4Recall that each prime type can have at most one *-type abfhketel.
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terms inT; and inT,. The type matrix is then used to compare each type terfa with each type
term inT, according to the hierarchy of type terms (hence, terms oicgyin very distant fragments
of T1 andT, are not compared); by doing so, the algorithm does not parfacktracking, nor it
performs comparisons among types that are “incompatitdedaing to the type term hierarchy.

The second key factor that makes naive algorithms supesretgial is the comparison among
product types. The type simulation definition states tHaiytside the immediate scope of a repe-
tition type,Zs,...,Z, < V1,..., Vi if and only if each typ&; can be mapped into a distinct type in
V1,...,Vim, SO that there do not exigf andZ;j (i # j) such tha®; andZ; are mapped into the same
type termvi,. This problem is also present in many subtype-checkingélgos, and can be naively
solved by generating all possible assignmentg;db V; types and by choosing an injective one:
this can be done in super-exponential time, as the possibigraments ar®((7)).

An alternative solution for the comparison of product typas be obtained by observing that
this problem is equivalent to@& 1 maximum floygroblem orbipartite graphs Indeed, one can build
a bipartite grapl¥Z, whose first partition??, contains one node per eaghtype, and whose second
partition &%, contains one node per ea?htype; nodes in%; are connected to a soursewhile
nodes in%%, are connected to a sirtk 271 and &7, are connected together through edges satisfying
the simulation relation, i.e., an edge franto V; is inserted ir if Z; <V;j. Each edge has two
possible values for its flow: 0 and 1. The souscemits a flow ofn units, soZy,...,Z, simulates
Vi,...,Vmq if and only if a flow of n units reaches the sirtk This can be determined by using a
quite standard 6 1 maximum flow algorithm on bipartite graph, whose compieistO((n+m)3)
[Gol9g. A similar technique is also used iCPR0J for subtype-checking of product types in a
rather restrictive type language.

Our algorithm for type projection checking is formalized §S09. Concerning its complexity,
we proved that its worst case complexity, while compafingndU, is O(nm(n+ m)3), wheren is
the number of terms iff, andmis the number of terms id.

We previously showed that type projection is NP-hard. Theval®TIME complexity does not
conflict with that result, as the simulation checking altfori works on normalized types only, and
normalization has exponential complexity in the case offignarded types.

4 Mapping Type Inference

As previously stated, our approach can be used to verifyatmappingm from T to U is correct
only if we are able to infer a typg’ describing the structure of the outputrof that is a typeJ’
such that: for eacli : T, m(f) : U’. So,mis correctifu’ < U holds.

Depending on the “precision” of the inferred typ€, it may happen tham is correct while
U’ < U does not hold. Such false-negativés due to the fact that the type system has not been
clever enough to infer a very precise type for the mappingf, i) a type whose semantics is quite
close to the set of the mapping co-domain. Of course, in thegmrce of false negatives we bother
the user with error warnings without any real motivationtfiermore, in this case it is very likely
that the user makes unneeded (the mapping is correct!) tetimichange the mapping. So, it is
crucial to develop inference techniques that return quigeipe inferred types and decrease false
negatives, so to improve the effectiveness of our approach.

In [CS09 we illustrate how a quite precise output type can be inféfoe a mapping expressed
in the uXQ language €ol04, CGMS04 Che08l: since uXQ is rather expressive, we are quite
confident that the proposed inference technique can be gt to different mapping approaches.
To this end we provide opportune query typing rules, prowmsoess of the resulting type system,
and also show that the resulting typing algorithm is preais efficient at the same time.
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5 Experimental Evaluation

In the previous sections we analyzed the theoretical ptigsenf a projection-based approach for
capturing errors in schema mappings. Furthermore, we drthat this approach has exponential
complexity in the general case, and it is polynomial on maiagfical cases.

To experimentally validate the usefulness of the propoggdaach, we have performed exten-
sive tests by using a Java implementation of the type inferegstem and the projection checking
algorithm. Experiments focused key aspects: precisiorsaathbility.

An experimental analysis of the precision properties of @pproach is important as type in-
ference may generate over approximations of the outputdypegiven schema mapping, which,
in turn, may lead tdalse negatives.e., mappings that are deemed as incorrect even though the
are perfectly legal. Hence, our approach can be consideeatigally useful only if it keeps false
negatives very low (or does not generate false negativdsiatraost common practical scenarios).
As a consequence, our first battery of experiments analiiegsrécision of our approach on the data
integration benchmark described iIV08]. This benchmark comprises most transformations used
in practical scenarios and represents an interesting waglittate our approach on “real world” sce-
narios. Performed tests confirmed the high precision ofyipe inference system, no false negatives
have been produced.

The second battery of experiments focused on scalabiligyp@fformed our scalability tests on
the schema of the XML-encoded version of DBLP (availablesatp: //dblp.uni-trier.de/xml/).
This dataset has already been used for experimental eialsaif data integration and exchange
techniques, and reflects the features of commonly used schgthiPt07, BMP*08]. While the
source schema we used essentially consists of the DBLP DhEQiatget schema we used features
a significantly different element nesting wrt the sourceescé.

As our approach has a (single) exponential worst case caibplis practical usefulness lies
in its ability to beautifully scale and perform even on lagplemas or complex mappings: a very
precise maintenance algorithm is useless if it is slow onglerischemas and/or mappings. As a
consequence, we analyzed the behavior of the algorithms tigenumber of rules in the mapping
or the size of the source and/or target schemas change.daredidered cases, both type inference
and projection checking algorithms scaled well, by showvtivag despite the exponential worst case
complexity, our algorithms perform well in practical sceaoa.

6 Related Work

Only a few works deal with the problem of mapping maintenaimceata integration systems.
[VMPO04] present a framework and a semi-automatic tool (called T&Wr the incremental main-
tenance of Clio-like mappings. The key objectives of thegoape to preserve as much as possible
the semantics of the mappings to be adapted and to avoidfibrendation of the whole mapping
system, so to decrease the efforts required for the maintendo achieve these goals, the frame-
work adopts an incremental maintenance strategy, basduedimbwledge of a detailed list of the
basic update steps applied to the schemas (either the smutice target schema). Of course, this
strategy can be applied only when this information is knowvthe mapping designer, which is un-
likely in the case of autonomous data sources. This apprdetce, is best suited for integration
contexts where all data sources are controlled by cooperatganizations (or the same organiza-
tion at all); in this sense, this approach is complementmyur one, which assumes that the data
sources are fully autonomous and can be applied even in gemeab of a detailed list of incremental
updates.

It should be observed that, unlike our approach, TOMAS stpmdanges in both the structure
and constraints of a schema; however, the correctnessratimMAS has a coarser grain than our
one, as a mapping is deemed as incorrect (and adapted) wbetvitorks on the same fragment of
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the schema that has been modified.

The same correctness notion &f\IP04] is used in [YP0Y, where Hu and Popa propose an
ex-postadaptation technique. The idea, inherited fradRB03), is to create a mapping from the
old version of the schema to the new version of the schematcacmimpose this mapping with the
existing mapping. Of course, these approaches are subjeit-known non-closure issues related
to mapping composition.

Both the approaches o/ MP04] and [YPOY are based on the theoretical framework of Clio.
Adapting our approach to support this framework is reld§iveasy, as mappings are expressed
through correspondences and logical associations, whapetaype can be easily inferred. Fur-
thermore, this framework uses a nested-relational typesysvhere only labelled union types are
supported; this kind of union types is less powerful than-farelled unions (used in our type sys-
tem as well as in XML Schema), and we strongly suspect tha prpjection can be decided in
polynomial time when unions are labelled (s&®"Pq for a detailed discussion about the reasons
why labeled union types are not adequate for semistructiatsdand XML).

An alternative technique for detecting corrupted mappimg¥ML data integration systems
is the one described irC[S053. This technique is based on the use of a type system capéble o
checking the correctness of a query, in a XQuery-like laggy@GMS04, wrt a schema, i.e., if the
structural requirements of the query are matched by thensgh8y relying on this type system, a
distributed type-checking algorithm verifies that, at eeeformulation step, the transformed query
matches the target schema, and, if an error is raised, isftrensource of the target peers that there
is an error in the mapping.

The technique described i€E054 has two main drawbacks. First, it is nobmplete since
wrong rules that are not used for reformulating a given quamnot be discovered. Second, the
algorithm requires that a query were reformulated by théesydefore detecting a possible error
in the mapping; this implies that the algorithm cannot disecheck for mapping correctness, but,
instead, it checks for the correctness of a mapping wrt angreéormulation algorithm. Hence,
mapping correctness is notgaiery-independensemantics-basegroperty, but is strongly related
to the properties of the reformulation algorithm.

Most works on mapping maintenance, in the context of daggnation or data exchange sys-
tems, focus on the problem of detecting corrupted data sswrappers These approachesiis0Q
LMKO3] are based on checkers that learn the most prominent sigatfetatures of data sources,
and warn the administrator when newly probed data fail ircimiagy these features. Since they focus
on syntactical changes only, these approaches are quitedimand unsatisfactory. Essentially the
same approach forms the basis for the Maveric systésl [ 05], which systematically monitors
the characteristics of wrappers and mappings in data iatiegrsystems. The novelty of Maveric is
its improved accuracy and efficiency, but it still does ndépény correctness or completeness prop-
erties for error discovering. These approaches can berattstjwith our maintenance technique, as
checkers can be instructed to periodically infer the schehexternal data sources, hence allowing
for a type projection checking.

Our system bears some resemblance with Spi@&i0f. Spider is a debugger for schema
mappings based on the logical dependencies framework of @pider works by analyzing the
correspondences between a source data instance and adatayétstance, so to help the mapping
designer in understanding the behaviour of a mapping. To@sespondences are expressed by a
forest of minimal routes, which link target elements witlhisze elements (and other target elements
too). Our system is not an alternative to Spider, but, istean be regarded as a complementary
tool that can be used after a mapping has been created aressfidly deployed: indeed, our tool
comes into play when the integration system is running, evBjpider is used before setting up the
system.

There exist some similarities between our notion of typggmtion and the subsumption relation
described inKS01], but these similarities are quite vague, as subtypingiesgirojection while the
same does not hold for subsumption.
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7 Conclusion

This chapter has presented a technique based on type ioéeagl type projection checking for
detecting corrupted mappings in XML data integration aysteThis technique can be used in any
context where a schema mapping approach is used, and itad basa semantic notion of mapping
correctness, unrelated to the query transformation dtgos being used. This form of correctness
works on the ability of a mapping to satisfy the target scheand it is independent from queries.

By reducing type projection to standard subtyping amongkered types, we proved that type
projection is decidableHuy85. We characterized type projection in terms of type siniatat
and, then, used the type simulation rules to define a che@tgayithm. The algorithm employs
an alternative technique for comparing product types, dasethe use of a 6 1 maximum flow
algorithm.

The equivalence between type projection and type simulaiiowed us to discover some inter-
esting properties of type projection, such as the injectateire of product types and the behavior of
product and union types inside repetition types.

The use of a maximum flow algorithm for the projection of prothypes allowed for designing
a correct and complete projection-checking algorithm withynomial time complexity on normal-
ized types.
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EFFICIENT XML SUBTYPE
CHECKING

This chapter is dedicated to results about efficient algorit for checking inclusion among XML
schemas, namely a quadratic algorithm for the asymmetse vdere the sub type is any type
and the super type is a conflict-free type (Sectlppand a more efficient algorithm, still for the
asymmetric case, which is linear when compared types mes structural similarity properties,
and which is quadratic otherwise (Secti®)n The chapter ends with conclusive remarks (Sectjon

1 Efficient Asymmetric XML Subtyping

Different extensions of Regular Expressions (REs) witlerleaving operators and counting are
used to describe the content models of XML in the major XMLetyanguages, such as DTDs, XML
Schema, and RELAX-NGHWO04, rel0]]. This fact raised new interest in the study of such extended
REs, and, specifically, in the crucial problem of languagéusion. As pointed out by Mayer and
Stockmeyer [1S94] and by Gelade et al. GMNO7], the problem is EXPSPACE-complete. This
prevents any practical use of unrestricted versions oflaegxpressions extended with interleaving
and counting.

In [CGS09hwe introduced a class of “conflict-free” REs with interlé@y and counting, whose
inclusion problem is in PTIME. The class is characterizedHhgysingle occurrence of each symbol
and the limitation of Kleene-star and counting to symbolenék, an expressi@i& b*, denoting
the interleaving of a sequenceai$ andb's, is conflict-free, whilea-b-aand(a-b)* are not. These
very strict constraints have been repeatedly reportediag betually satisfied by the overwhelming



50 Chapter 4. Efficient XML subtype checking

majority of content models that are published on the Walhich makes that result very promising,
and of immediate applicability to the problem of comparinwg different human-designed content
models.

However, the main use of subtype-checking is in the contestpae-checkingwherecomputed
typesare checked for inclusion intexpected typedhis happens in three major cases (in each case
we useJ for the human-defined expected type, &nfibr the expression whose type is computed by
the compiler):

(i) when a function, expecting a typkfor its parameter, is applied to an expressign
(i) when the result of an expressifris used to update a variable, whose typbas been declared;

(iii) when the bodyE of a function is compared with the human-declared outpué typof the
function, in order to declare it type-correct.

In all these cases, the expected type is defined by a prograrheree we can restrict it to a
conflict-free type with little harm. However, the computgge reflects the structure of the code.
Hence, the same symbol may appear in many different posijtaond Kleene star may appear every-
where. In this situation, the ability to compare two conffiete types is too limited, and we have to
generalize it somehow. Consider, for instance, the fohgw{Query-like function.
function alpha($y: int*) as (a*& b*) {

for $xin By

returnif ($x<0)
then a
else a,b,a

A type-checker would infer a typéa+ (a-b-a))* for the body of this function, a type that
correspond to the structure of the code. This inferred tgpet conflict-free, and must be compared
for inclusion with the conflict-free declared output ty(@e & b*).

Handling situations like this seemed very hard for a timee Tésult in CGS09h is based on
an exact description of conflict-free types through comstsawhich reduces type inclusion to con-
straint implication. The smallest generalization of theftiot-free single-occurrence and Kleene-
star limitations makes types impossible to be exactly diesdrby our constraints. This problem
does not arise if types are extended with intersectiongesinur constraints are closed by intersec-
tion. However, we showed inJGS09 that just one outermost use of binary intersection in the
subtype makes inclusion NP-hard.

This chapter presents a generalization of result<ia $09) without leaving PTIME. This is
obtained by considering tresymmetric inclusion probleme., the problem of verifying whethd&r
is included inUJ, whereT is unconstrained and is conflict-free. Surprisingly enough, for this case
inclusion is still in PTIME.

This result entails that a programmer must only declare itiifee types, but the compiler can
use the whole power of extended REs to approximate the refsaity expression. The key for this
result is understanding that, while the supertype has toaetly described by the constraints, this
is not necessary for the subtype.

To summarize, the contributions presented in this chapésthe following:

e we show that type inclusion can be reduced to constraintid@ipbn if the constraint extrac-
tion function fully characterizes the supertype;

5Quoting Bex et al. BNST0§ “an examination of the 819 DTDs and XSDs gathered from therGages (including
many high-quality XML standards) as well as from the web egdareveals that more than 99% of the REs occurring in
practical schemas are CHARES (and therefore also SORE=$ also Martens et alMNSBO€]); our conflict-free types are
more expressive than CHARES; similar results, in the higiyeaof 90%, have been reported by Barbosa et alBir5Pg]
and by Choi et al. inCho03.



1. Efficient Asymmetric XML Subtyping 51

o for each of the different kinds of constraints that our coaist language can express, we
provide a polynomial algorithm to verify whether a geneyipd T satisfies that constraint;

e by combining the previous two contributions, we provide adpatic algorithm to test whether
T isincluded inJ, whereT andU are extended REs with interleaving and counting, provided
thatU is conflict-free, with no limitations off .

Apart from the practical interest of a PTIME inclusion algiom with no limitation on the sub-
type, this work also shows that the constraint approachléstatueliver interesting results in situa-
tions where traditional automata-based techniques areasytto apply.

Results presented in this chapter are those publishe@@5D9%, but we will present them
according to the full versionfGS114

Related Work
Some Flavors of Determinism

Membership testing for full REs with interleaving and cangtis NP-hard MS94], hence extended
languages meant for practical use are usually endowed wiitle sestrictions, aimed to reduce mem-
bership complexity. These restrictions are typically gesd to allow for the efficient construction
of a compact deterministic automaton, and we introduce thera, since they also play a relevant
role for the complexity of RE inclusion.

A typical restriction isl-unambiguitythat means (informally) that, when a string is analyzed,
any analyzed character can be matched against one specifactdr in the regular expression, that
is determined by the part of string that has been read sodaexample(ab)*ais 1-unambiguous,
but (a?b)*ais not: while readinda. .., we do not know whethea should be matched against the
first a or the second one. Single-occurrence is a stronger formi®ttnstraint, meaning that no
character occurs twice in an expression, which triviallpiies 1-unambiguity. Conflict-freedom as
defined here implies single-occurrence, hence also impli@sambiguity.

Strong determinisns a constraint stronger than 1-unambiguity, having to di \Wieene-star
and with counting. Consider the expressial..2]) [2..3]. While readingaa..., we do not know
whether the second matches the second repetitionafn a[l..2], or whether we should match
the wholea[1..2] with the firsta, and the second with the first character of the second repetition
of a[1..2]. Strong determinism means, very informally, that the p&stiong that has already been
read and the current character determine both the nextdeaftch and which counting operator
(or Kleene star) is affected (se8 GM0Y for a formal definition). Conflict-freedom implies strong
determinism: since the content of a counting operator isgne character, there is no ambiguity
about the effect of each character on the only counting ¢gettzat may contain it.

XML Schema is an important example of a language that is baseRlEs with counting, plus
an extremely limited form of interleaving: ttedl group, that only allows symbols to be interleaved.
XML Schema adopts a constraint knownlasique Particle Attributio(UPA) ([TBMMO04], Section
3.6.6). There is some debate about the actual meaning afdhatraint, but it is usually interpreted
as a way to require 1-unambiguitiCT07, GGM0Y. RELAX-NG [rel0]] is another important
language based on REs extended with a form of interleavirigydcounting. They adopt unordered
concatenation, rather than shuffling, so tfett)& (cde) only recognizes the two wordsbcdeand
cdeab RELAX-NG does not impose any form of unambiguity in genglat they impose that, for
any instance of &4, ..., Ey), the first characters recognized by eexpressions are all mutually
disjoint.

Conflict-freedom is very restrictive, but is trivial to dediand check. The precise definition and
automated checking of 1-ambiguity and strong determinisadit less trivial. InGGMO09, cubic
time algorithms to test for 1-unambiguity and strong detaism are presented. IiK[I10], Kilpelai-
nen presents @(n?/log(n)) algorithm to test whether a RE with counting is 1-unambigy@nd



52 Chapter 4. Efficient XML subtype checking

describes how some well-known studies and implementatibtiee same notion are actually incor-
rect.

Inclusion of regular expressions with interleaving and coating

The problem of inclusion of regular expressions with irgaviing has been studied in many papers,
but none of them provides PTIME inclusion algorithms fordaages with interleaving, counting,
and an expressive power that is acceptable for our inteng@étation.

In [MS94], Mayer and Stockmeyer studied the complexity of membershiclusion, and in-
equality for several classes of regular expressions wittrleaving and intersection. In particular,
interleaving is proved to make inclusion EXPSPACE-conglet

Starting from the results oM S94, Gelade et al. EMNO7] studied the complexity of decision
problems for DTDs, single-type EDTDs, and EDTDs with ind@xing and counting. By consid-
ering several classes of regular expressions with int@rigaand counting, they showed that their
inclusion is almost invariably EXPSPACE-complete, everewleounting is restricted to terminal
symbols only; they also showed how these results extendriousakinds of schemas for XML
documents. We did not discuss here how to extend our resaitsREs to XML schema languages
because the problem is indeed solved@MNO7], where it is shown how an inclusion algorithm
for REs can be lifted to schema languages that use that di&Ssowithout changing the complex-
ity class. In KT03, KT07] Kilpeldinen and Tuhkanen proved that inclusion is NP-Hardegular
expressions with counting even if attention is restrictedi-inambiguous REs.

The properties of a commutative type language for XML datseHhseen discussed by Foster et
al. in [FPSOT. Here, the authors essentially described the technidwessused while implement-
ing a type-checker for commutative XML types. Their typedaage resembles our language of
conflict-free types, as repetition types can be appliedeémeht types only, and interleaving is sup-
ported. The paper is focused on heuristics that improvebi#y, but do not affect computational
complexity.

RELAX-NG [rel0]] and XML SchemalfW04] are two well-known type languages that allow
some form of interleaving and counting.

XML Schema adopts counting plus a very weak form of interilegwwith the UPA constraint.
The coNP-hard problem presented for 1-unambiguous REsawithting in KT03, KT07] can be
easily expressed by a 1-unambiguous XML Schema, hence XMEer8a inclusion is coNP-hard.

RELAX-NG restricts the use of interleaving€]01], Section 7.4) and has no counting. How-
ever, it does not restrict the expressions that use no @erlg, hence inclusion for RELAX-NG is
PSPACE-hard{oz77.

In [CGS09h we defined a polynomial time algorithm for inclusion of cactfifree types, but
we were not able to extend the result to reach any more getlasd. In that paper, we specified
the constraint extraction procedure that we use here, arptowed that it is exact for conflict-free
types.

Asymmetric inclusion of XML types has been studied elsewhiarthe recent past. We dis-
cuss some of these papers here, but they are not very retevant problem since they deal with
languages without interleaving and without counting. @87 Colazzo and Sartiani showed that
complexity of RE inclusion can be lowered from EXPSPACE toFHXME when a weaker form of
conflict-freedom is satisfied by the supertype. GGLN0Y, by using automata-based encodings
of types, Champaveére et al. provide polynomial algorithonsteck inclusion among EDTDs, with
the restriction that the supertype is 1-unambiguousHiovfL(] Hovland provides an efficient algo-
rithm to check inclusion of standard REs. The algorithm rmngolynomial time. It is sound and
complete when the supertype is 1-unambiguous, otherwgsaltforithm may either terminate with
a definite answer or may signal its inability to answer beedhs supertype is not 1-unambiguous.
The algorithm is defined via an inference system driven byrRiEe syntax, hence avoiding possibly
expensive automata construction.
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Types and Constraints

We use the term “types” as a synonym for “extended regularesgions”. Hence a “type” denotes
a set of words. Aconstraintis a simple word property expressed in the constraint laggwee
introduce below; a constraint denotes the set of words #tafg it. We say that a typ€ satisfies
a constrainF when every word il satisfiesF, that is, when the denotation of is included in
that of F. Hence, every type is upper-approximated by the set of alstraints that it satisfies.
In [CGS09h we introduced conflict-free types. For these types, thigpfaximation” is exact,
meaning that a word belongs to a conflict-free type if and ahlly satisfies all of its associated
constraints.

Our algorithm is based on translating the supertype intoreesponding set of constraints and
verifying, in polynomial time, that the subtype satisfiescdlthese constraints. In a mixed com-
parison, constraints provide an exact characterizatioritfe conflict-free supertype, but just an
upper-approximation for the subtype; we will prove belowttthis does not affect the correctness
or completeness of the algorithm.

The Type Language

We describe here the specific syntax that we use for types.

We adopt the usual definitions for words concatenatipw,, and for the concatenation of two
languaged ;- L,. Theshuffle or interleaving operatomi; &ws, is also standard, and is defined as
follows.

Définition 4.1 (v&w, L1&Ly) The shuffle set of two wordgw € 2*, or two languageks, L, C 2*,
is defined as follows; notice that eaghor w; may be the empty worel

def
V& W = {VIWi oVpeWn | Vi V=V, Wi Wa =W, Vi €XF w € 2% n> 0}

def
Ll& L2 = UW1€L1, woelyp W]_&WZ

Whenv € wi&wsp, we say that is a shuffle ofw; andws,; for examplew; - wp andws- wy are
shuffles ofw; andws.
We consider the following type language for words over ahalyet>:

Ti= ¢ |a|Tmn | T4+T | T-T|T&T | T!

where:a€ X, me (N\{0}), n€ (N, \{0}), andn > m. The seflN, isINU {x}, wherex behaves
as—+oo, i.e., foranyn € IN,, x > n.

€ is a singleton type that only contains the empty wardhe typeT! denotes the set af words
minuseg; aT! type is well-formed only if a subterm of has shapa. The typeT [m..n] denotes
words that are formed by concatenatingords fromT, with m<i <n.

Note that expressions like[0..n] are not allowed, due to the dom&iN \ {0} ) of m, but the type
T [0..n] can be equivalently represented Byl..n] + €. The mandatory presence of asubterm in
T! guarantees thal contains at least one word that is different fraphenceT! is never empty,
which, in turn, implies that we have no empty types.

Définition 4.2 (sym{w),sym(T)) For any wordw, symw) is the set of all symbols appearingwn
For any typeT, syn{(T) is the set of all symbols appearingin

The semantics of types is inductively defined by the follayguations.
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[e] = {¢}
[a] = {a}
[T+T] = [MJU[T]
[ T2] = [T [T2]
[T&T] = [Ti]&[T2]
M) = [T1\{}
[Tm.n)] = {wlw=wp....wj, Yiel.j.we[T], m<j<n}

We will use® to range over product operatorand & when we need to specify common prop-
erties, such as, for exampldT ® €] = [e® T] = [T]. We will use® to range over, &, and
+.

Types that contain the empty wog@re callechullableand are characterized as follows. Observe
that N(T [m..n]) = N(T) becausen cannot be 0.

Définition 4.3 N(T) is a predicate on types, defined as follows:

N(e) = true
N(a) = false
N(T!) = false
N(T[m..n)) = N(T)
N(T+T’) = N(T)or N(T")
N(T®T) = N(T)and NT')

Property 4.1 (N(T)) - NT)
S =

In this system, no type is empty, and any symbalym(T) appears in some word af.

Lemma 4.1 (Not empty) For any type T:

[T1#2 (1)
acsymT) & Iwe[T].aesymw) (2)

Constraints

Constraints are expressed using the following logic, wlaebec 3, a#bina<b, ACXZ, BCZ,
me (N\{0}),ne (N, \{0}), andn>m:

F = A" | At=B" | a?m.n] | uppefA) | a<b

We do not explicitly consider conjunctive constraifte\ F’ since we will always associate types
with setsof constraints, whose conjunction the type has to satisbnsaint semantics is defined
in Figure4.1.

The following special cases are worth noticing.

a € = uppe(A) € Ea?m.n
eE=a<b bEa<b a
a WEoT=AT  wEote ot
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wEAT & symw)NA# g, i.e. somen € Aappears iw
wEA" =BT & aorwpEBT
wkEa?m.n| (n#x) <« if aappearsiw, then it appears at leasttimes and at
mostn times
wEa?m.x] < if aappears iw, then it appears at leasttimes
W= uppefA) < symw) CA
wWEa<b < tr}ebre is no occurrence afin w that follows one occurrence

of binw

FIGURE 4.1: Constraint semantics.

Observe thaA™ is monotone, i.ew = AT andw is subword ofw/ imply thatw' = A, while
uppefA) anda < b are anti-monotone.

A constraintF denotes the set of words that satisfy it, and a set of cons$r& denotes the
words that satisfy eadh € .#, as follows.

Définition 4.4 ([F] and [.#] ) For any constrairnf, set of constraints?:

def

L wwkEF} 17] & neeslFl

[F]

A type satisfies a constraint if all of its words do. The pregaefinition allows us to express
this as set inclusion.

Définition4.5(L=F, T EF, T =.%) For any set of wordg, type T, constraint=, set of con-
straints.#:

L)ZF Edef Lg[[F]] T)ZF S def [[Tﬂg[[Fﬂ T):ﬁ’ S def [[Tﬂg[[ﬁ]]

Constraints and Subtyping

Consider a constraints language a typeT and a set of constraintgt. We define three properties
that.71t C % may satisfy forT:

e soundness%y is sound forT if T | %7, thatis,[T] C [%7].

o .Z-completeness: a soun#y is complete for# andT if [.#]=[{F € .# | T = F}], that
is, .Z71 is the most precise description dfthat can be expressed through

e exactnessZt is exact forT if [T] = [.%7].

A completeZ7 is not necessarily exact fdr, for example, no constraint set in our language is exact
for the type(aa)[1..2] (denoting{aa,aaaa}). However, if T admits in.# an exact constraint set
771, then all and only its7#-complete sets of constraints are exact.

In the same way, a functic&i mapping types to sets of constraints, is called sogidbmplete/exact,
if €(T) is, respectively, sound?-complete, or exact, for any.

In [CGS09h we defined a class of “conflict-free types”, defined as thgped that respect the
following restrictions (hereafter we will use the metaiahteU for conflict-free types):

e symbol countingif U has a subterrt)’ [m..n], thenU’ must be the type, for somea € X
(only symbols can be counted or subject to Kleene-star);
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e single occurrenceif U has a binary subterid; ® Uy, thensymU;) NnsymUz) = @ (no
symbol appears twice).

The symbol-counting restriction means that, for exampfees$ like(a: b)* cannot be expressed.
However, it has been found that DTDs and XSD (XML Schema Difimj schemas use repetition
almost exclusively ag® or as(a+ ...+ z)°P (where ope {+,*}, see BNST04), which can be
immediately translated to types that only count symbokmkhto theld;&U, andU! operators. For
instance(a+...+2)* can be expressed &8°& ...&z"), wherea* is a shortcut fon[1..x| +€, while
(a+...4+2)* can be expressed &8°& ...&z")!.

The main result of CGS09h is the following exactness theorem.

Theorem 4.1 There exists an exact constraint extraction function forftct-free types.

The proof of CGS09b is constructive, since we actually define a constraintaetion func-
tion ¥ (U) satisfying[U] = [¢'(U)]. This function can be used to reduce asymmetric inclusion to
constraint-checking, as follows.

Proposition 4.1 (Mixed subtyping) If € is exact for U, thefT| C [U] & T = ¢ (V).

The property is asymmetric becalsenust admit an exact constraint-extraction function, but
can be any typé.

This observation is obvious once it is framed in the righttegt) but it provides a way to gen-
eralize our previous results that is very interesting: eathan hunting for generalizations of the
conflict-free family in the narrow precinct of those typeatthan be exactly described, we can aim
for the whole set of extended REs in the left hand sidgTdf C [T”], if we stay modest with the
right hand side.

To exploit this observation, we need now to complement tlesonstraint-extraction o[GS09h
with a procedure to test foF = ¢ (U). In [CGS09h we provided a cubic algorithm for the case
whenT is conflict free, while we proved that the problem is NP-hattewT ranges over conflict-
free types with intersection.

In [CGSO09, we defined a constraint-extraction function that is exaictonflict-free types. For
each type, this function extracts five classes of consgaintoccurrenceonstraints’ ¢’ (U ), order
constraints/¢'(U), cardinality constraintZeroMinMaxU ), lower-boundconstraintsSIf(U), and
upper-bounctonstraintaipper3U ), that is, the exact function that we are going to use is defised

¢U) = €¥€U)uo€U)UZeroMinMaxU)Uupper3U)USIf(U)

To apply Propositiort.1, in [CGS09) we exhibit, for each componefst (U) (where%;(U) is one
of ¢ (U), 0% (U), etc.), an algorithm to verify whether, for eaere 4 (U), T = F, whereT is a
general type.

The algorithms for co-occurrence, ordering and cardipatinstraints run all in quadratic time,
while the upper and lower bound constraints are checked imgarltime algorithm.

Co-Occurrence Constraints

The first componerig¢’(U) of ¢ (U) extracts a set of co-occurrence constraints with siepe>-
B*, and is defined as follows, whef& | —-N(U)} denotes the singletoff } when NU) is false,

6We use the lettet) since we apply this theorem to conflict-free types only, baictually holds for any typel that is
exactly described by’ (U).
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and denotes the empty set otherwiS&[S09h.

CE(€) = o

¢z@amn) £ o

¢ (U)) A )

CEU1+Up) T 46U UEEUy)

CEU1ol;) £ {symUn)" = symUz)* | -N(Uy)}

U {symU,)" = sym(Us1)" | =N(U1)}
UEE(U)U €€ (Up)

Example 4.1

o ¢¢(a[l.2]-b[2..x]) ={a" = b", bt = a'}

e ¢ (a[l.2]- (b[2..x]+€)) ={bT =a'}; a" = b isnoting¢(U) becauseb[2..x] +¢€) is
nullable.

e ¢%¢(a[l..2)- (b[2..+]+c[l.x] +¢€)) = {bc" = a'};
e ¢%¢(a[l..1-(b[2..2)-c[3..3])) ={at = bc", bc" = a, b = ¢, ¢ = bt};

Since%’' ¢ (U) yields constraints with shage™ = B, in the following we present an algorithm
to testT |= AT = BT for any general typd .

We focus on constraints with shapé = AT because of the following property, that is an im-
mediate consequence of the definition?df = B™.

Property 4.2 (Union) For any word w and constraint A= B*:
WEA"=B" & VacAwkEa' =BT

Our algorithm reducea™ = Bt to =+ = BT, as it will be shown later. From now on, we
abbreviatee™ = AT asA'". This notation is justified by the strict relationship beéné\™ and
AT every non-empty word satisfi&s", hence a wordv satisfiesA™ " if wis empty or ifw satisfies
AT (Property4.3).

Définition 4.6 (A*™)

At L s At

Property 4.3 (T = AT and T = AY)

TEA™ o [T]\{e} FAT
TEA" o [TJEA' & -N(T) (3)

Our algorithm to tesT = at = Bt may be based either 0" or on A™*. We focused on a
version that is based on™ because of the following lemma, that specifies an easy wagrpate
AT, An inductive computation oA™ is more involved, since it needs to resortAn™ for the T!
case.
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Lemma 4.2 (T EATT) Foranytype T,Tand E:

(1) eE=A"t

(2) aEAtt & acA

(3) Tm.nEATT & TEAM

4) TiehEAT & (MEA" & -NM))V (LEATT & -N(T2))
V (Tl |=A++ & T2|=A++)

(5) I+ L EATT o TEAT & T, AT

(6) TIE=ATH & TEAH

Our algorithm for co-occurrence constraints checkingrdyreelies on Theorem.2. It specifies
thatT = a™ = BT holds iff, for each occurrena of ainsideT, we can find a subter of T that
containsg; and such that’ = B*.

As a small optimization, we show that the search for an ancesia that satisfie8™ can be
restricted to product termg ® To.

Theorem 4.2 T Ea' = B" from T =B*") For any type T, any B Z, any ac (£\ B), the
following sentences are equivalent.

1. TEat = B;

2. for each occurrence of a inside T, the occurrence is para sibterm T of T such that
T’ =B and such that T=T; ® T,, for some Tand .

Based on previous results (Propefity and Lemmat.2), we have devised an algorithnmoQv -
PLIES to verify that, for eactA* = BT € ¥4 (U), T = AT = BT holds (see CGS11aCGS09%
for details).

ColMPLIES builds €€ (U ), which can easily be made in tint|U| x |U|), and then for each
At = Bt € ¥4 (U), the following two operations are performed:

e by a bottom-up visit of the parse treedf T = B* " is checked, and also each subffésuch
thatT' = BT™ is marked; this phase is performed by mimicking Lem#n in O(|T| + |B|)
time.

o for eacha € A, the node corresponding &in theT parse-tree is checked to verify whether it
has been marked by the previous step; this operation canrfigrped inO(|T| + |A|) time.

The algorithm concludes thait= A" = B if the second above step succeeds.

ColmMPLIES performs the two above operations once for eith= Bt € ¥%¢(U), i.e., at most
twice for each® in U. Since|A| + |B| < |U|, ColMPLIES hasO(|U| x (|T|+ |U])) worst case
time complexity, which is even better than the algorithnt tha defined in CGS09 for the pure
conflict-free case.

Remark 4.1

Although% (U) is .%-complete for a conflict-free type, €% (U ) is not complete fod with respect

to constraints with shaps® = B*. For example%’% (a) is the empty set, which denotes the whole
>*, and it could be made more precise by adding any non-tiviak- BT sound fora, such as, for
examplep™ = c*, which is sound sinch is disjoint froma, and excludes words such las

% (U) is #-complete because it complemefstg’ (U ) with the constraint uppésyn(U)). For
example, in this case, upgej makesb™ = ¢ redundant.

A similar remark holds for the order constraints that we defimthe next sectionz¢ (U)
is complete for order constraints that only use symbolsyim(U), but is not complete for every
possible order constraint. However, our result does natireghat every component & (U) is
complete on its class of constraints, but only that the wbdi€ (U ) is . -complete.
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Order Constraints

Let us defineZ?(T) as the set of all pairs of different symbdks b) such that there exists a word in
[T] where ara comes before b.

Définition 4.7 (Pairs)

(M E (@b) | azb, Iwy,waws wr-a-we-b-ws e [T]}

Order constraints specify which pairs cannot appear in awwnce?’(T) is related to order
constraints as follows.

Property4.4 Tlka<b < a#band(ba) g 2(T)

We verify whether a paifb,a) € #(T) by testing, for each instance afandb in T, their
Lower Common Ancestor (LCA) in the syntax treelafto this aim, we will manipulate a decorated
version ofT, I(T), where each instance of a leaf is decorated with a distimgbin and is denoted
asa;, and will consider the words generatedllfy ).

For example, iff =a+b, thenl(T) = a; +by, and the LCA ofay andbz in I (T) (LCA 1) (&, bj])
is +. The fact that the LCA of; andbs is + implies thata; andb, never appear together in a
word of [(T), hence(by,a1) € Z(1(T)), hence, since no other instancescdndb is present iriT,
(b,a) & Z(T). Inai&by, the LCA is &, meaning that botka,b) and(b,a) are in #(T). The
use of LCA is justified by Lemma&.1: with any two typesT; andT,, as soon as; € sym(T;) and
bj € syn(T»), thenT; has a word witha and T, has a word withb, hence(a,b) and(b,a) are in
Z(T1&Ts). In a typea- b, order is relevant(a,b) € &(T) but (b,a) ¢ &(T). We express this
by extending the usual definition &fCA 1)[ai,bj], assuming that it returns a paid, where the
directiond is — if the leafa; comes befordy; in T, and is« otherwise; we ignore the direction
when® # - (see Examplé@?).

LCA(T)[ai,bj] € {&,-7 } impliesthat(a,b) € Z(T), but(a,b) € #(T) also holds whehCA 1) [a;, bj] €
{+,-}, provided that the LCA is in the scope offgm..n] operator withn > 1, as in(a+ b) [1..2]
or in (b-a)[1..2]; for this reason, in(T), we mark as®, (for repeated all binary operators in
the scope of & [m..n] with n > 1, and use®; for all the other operator instances. Finally, if many
occurrences of andb appear ifiT, then(a,b) € &2(T) as soon as one pdia;, bj) satisfies the test
we described.

The formalization of an algorithm implementing the abovethod is detailed in CGS11a
CGS09% The algorithm complexity iO(|T|? + |U|?). Hence, also in this case, the extension
from conflict-free inclusion to asymmetric inclusion

Cardinality Constraints

A cardinality constrain = a?[m..n] specifies the minimum and maximum number of times that
amay appear in a word 6f wherea actually appears, which we will denote here as MRT,a)

and MaxT,a). Min?PP(T a) is different from the minimum number of times tretmay appear in
any word ofT, which we will denote here as M, a). For example, MiAPP((a[3..x] + b),a) = 3
while Min((a[3..«] +b),a) = 0. Observe that this distinction has no meaning when we citient
maximum number of occurrencesain a word ofT.

The cardinality constraints for a conflict-free type simplyrrespond to the instances of the
counting operator. In particular, the cardinality conistraomponent of¢' (U ) is ZeroMinMaxU ),
defined as followsZeroMinMaxU) is trivially complete for conflict-free types and for corestrts
with shapea?[m..n] anda € symU ) [CGS098:

ZeroMinMaxU) = {a?m..n| | a[m..n] subterm olU }
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General types are trickier, because of symbol repetitiah generalized counting. In particular,
the lowest allowed cardinality fa# in T may depend on the validity aft on some subterm of
T. Consider, for example, the tygd2..x]- a[3..x]: it clearly satisfie?[5..x]. However, the type
(al2..x] +¢€)- (a[3..x] + €) only satisfiea?[2..x]: sinceais optional on both sides, we consider here
min(2,3) rather than 2+ 3. Finally, (a[2..x] +€)- (a[3..%]) satisfiesa?[3..x]: sincea is optional in
the first subterm, we have to consider the bound of the sedoride same way, whila[3..x] [4..x]
satisfiesa?[12..x], the type(a[3..x] + €) [4..x] only satisfies?[3..x].

We solve this issue by recursively computing both #if{T,a) and Min(T,a) at the same time.
This allows us to compute M##P(T, ® T,,a) and MirfP(T [m..n],a) as follows.

Min®PP(M ®Tp,a) = min(Min®PP(Ty,a) + Min(T,a), Min(Ty,a) + Min3PP(T,, a))
Min®PP(T [m..n],a) = Min?PP(T,a)+ (m—1)-Min(T,a)

The first equation corresponds to the fact that any wordi;@ T, that contains is built by
combining a word ofT; that containsa with any word ofT,, or by combining a word off, that
containsa with any word ofT;. The reader may verify that the formula works with all theragpdes
we presented. The second equation is very similar: a wof[of.n] that contains is obtained
by combining a word ofT that containsa with m— 1 words of T. Unfortunately, the recursive
computation of MifT!, a) needs one further notion, the minimum number of occurreatasn a
non-empty word ofl, which we will denote as Mii{T,a). To sum up, we need the following three
functions to be computed.

Définition 4.8 (Min(T,a), Min'(T,a), Min®PP(T a)) LetW be a set of wordsa a symbol, and a
type.

MinOrStafW,a) = minyew |W|a if W#£ o
MinOrStarw,a) = « ifW=0
Min(T,a) e MinOrSta([T],a)

Min!(T,a) ' Minorsta(([T]\ {€}),a)

Min2PP(T a) e MinOrStaf{w | we[T] & wiE=at},a)

In [CGS114we give a set of properties of these three functions thatethem to be inductively
computed irO(|T|) time.

The upper bound is much easier, and is defined and computedl@ss. We need no special
symbol for MaX@, a), since we never apply M&X, a) to an empty set.

Définition 4.9 (Max(T,a))

def .
Max(T,a) = maXye[7] Wla  if (MaXuepry [Wla) € N

Max(T,a) < if vneN. 3we [T]. [wla > n

Lemma 4.3 Max(T,a))

Max(Ti+Tz,a) = maxMax(Ti1,a),Max(Tz,a))
Max(T1® To,a) = Max(Ty,a)+Max(Tz,a)
Max(b, a) = if b=athenlelse0
Max(T[m..nj,a) = n-Max(T,a)

Max(T!, ) = Max(T,a)

Max(e, a) = 0

By the definition of MirfPP(T,a) and MaxT,a), cardinality constraint satisfaction can be de-
cided as follows.
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Corollary 4.1
T Ea?m.n] & m<Min®PT,a) A Max(T,a) <n

From above commented properties, we can derive an alggf@ARDIMPLIES, to verify that a
general typd satisfies everf in ZeroMinMaxU ). The algorithm computes, in one pass, the values
of Min(T,a), Min'(T,a), MinPP(T, a) and MaxT,a). The values of Mii’P(T,a) and MaxT,a)
are then used to verify the constraint satisfactionRGIMPLIES can be computed in tim@(|U | x
D).

Upper Bounds and Lower Bounds

The upper bound and lower bound componentg’@ ) are defined below.

Définition 4.10 (Upper and Lower components ofs’(U))
Lower-bound:SIf(U) LT -N(U) then{symU)*} else@

Upper-bound:upper3U) & {uppefsymU))}

Notice that the problem of constraint implication is sinfiplil by verifying the implication of
lower and upper bounds at the same time, as we do here: we adeedto explicitly test whether
T |=symU)™; by restricting ourselves to the case whep= upper$U ), we only have to check that
N(T) = N(U), as proved below.

Theorem 4.3 (Implication of SIf(T,) and upper$T,)) For any two types fand T:

T1 = SIf(T2) Uupper3Ty)
& (N(T1) = N(T2)) & sym(Ty) C sym(Ty)

The corresponding function UpperLowerlmplies simply exes the test of Theoret3, hence
we provide no pseudocode.

Summing up

We have recalled each of the five components of the conseatraction functior#’(U), and, for
each componer#;, we defined a function that verifies, for any gendralvhetherfT |=%{(U). Since
the union of these five components is exact for conflict-fypes, the following theorem holds.

Theorem 4.4 For any type T, for any conflict-free type [T] C [U] iff all of Colmplies(T, U),
Orderlmplies(T, U), Cardimplies(T, U), UpperLowerim@{@, U) returntrue.

Colmplies, Orderlmplies, and Cardimplies have quadratietcomplexity, while UpperLower-
Implies is linear. The only case whose complexity is affddig the presence of general types in the
subtype position is that of cardinality constraints, whitwe presence of multiple occurrences of a
symbol and the nesting @f[m..n] operators both concur in making the problem less trivial.

2 Linear XML subtyping

The algorithm presented in the previous chapter is quadath in the best and in the worst cases.
Indeed, that algorithm extracts a set of “constraints” frtwe candidate supertype and verifies that
each constraint is satisfied by the subtype, which involgasaalratic amount of work, even in cases
when the two types are very similar, or equal.
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This chapter presents a new algorithm, still for the asymimetseT < U considered in the
previous chapter, which is linear-time in the common sitret where compared types are similar,
and resorts to the quadratic approach only for those specifions of the two types where it seems
to be necessary.

This new algorithm has a more traditional “structural” aggozh: it visits both types in parallel
from the top, matching the topmost operator and recurringhenchildren. This approach is not
complete, since EREs may be included in cases when the témpesators are permuted in quite
complex ways, hence the structural approach should be caubiith the quadratic approach to
yield a complete algorithm. A naive algorithm could just lg@m incomplete set of structural rules
and, when these fail, go back to the original types and apmyquadratic algorithm. Hence the
algorithm would be better than the quadratic one in thosescatien the structural rules suffice, but
would impose an overhead otherwise. Unfortunately, chmgpie optimal set of structural rules is
impossible under this approach. A simple set of rules woelddry effective in only a small set of
cases. Aricher set of rules would enlarge the set of caseseuinealgorithm is effective, but would
impose a higher overhead in those cases where the struatoialis useless. Our understanding
of the “typical” workload of a type-checking compiler is tdimited for a reasoned choice of an
optimal set of rules.

We overcome this problem by designing a set of no-backtrackiructural rules: whenever
these rules rewrite a comparison into a set of simpler coispas, the new set is not just a sufficient
condition for the previous comparison, but it is equivaleht this way, once a comparison that
matches no rule is found, we do not need to go back to the limjtees, but we can apply the
guadratic algorithm to the smaller type fragments, so thataigorithm is always convenient over
the baseline. These no-backtracking rules for EREs are #ie contribution of this work, together
with a technique to select the applicable rule in constamé ti

In this chapter we present a linear structural algorithmcfamparing binary types, and prove
that it can resort to the quadratic one in case of failure authany backtracking. This algorithm
can be then extended to to n-ary types, so to generalizertheistal to most comparison cases. We
will make an overview about this extension, and report sorpeemental results showing that the
flat structural algorithm can be up to ten times faster thangthadratic algorithm presented in the
previous chapter.

Structural approach

Introduction

Our algorithm is based on the assumption that subtypingavyplcally be applied to types that are
very similar, such ab < a+b+c,ora-b-c<a&b&cora-b<a?b?, wherea? abbreviatea -+ ¢.
Most of these cases may be proved by combining transiti&ftgociativity and commutativity with
some obvious structural rules, such as:

e Monotonicity:T1 <U; A o <Uxy=>T1@ T <Ui® Uy
e UnionT1 <N+ T
e ProductT; To < Th&To.

Our algorithm is defined, as usual, by a set of deduction rhésh are meant to be used to de-
terministically reduce the consequence to the premisesexXample, one may encode monotonicity
of - by the following rule.

T <Uy T, <Up
T1- T, <Up-Uz

(TENTATIVE--")
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Unfortunately, this rule requires backtracking: if we apjtlto (a-b)-c < a- (b- ¢), it would
reduce ittoa-b < a, ¢ < b-¢; the second set does not hold, but still the original judgemas true.
Our basic observation is that backtracking is not needdtitymbols ofJ; andU; are disjoint, as
always happens sintg is conflict-free, and if the symbols @i andT, are respectively included in
those ofU; andU,. In this case, the rule needs no backtracking: the judgemehe conclusion
holds if, and only if, all those in the premises do hold, asregped by the following property.

Ser'(Tl) - syrr(Ul) A Ser(Tz) - syrr(Uz) = (Tl- T, <Up-Ux & Ti <U AT, < U»)

The situation is slightly more complex for union types: if webstitute with + in the above
property, the double implication does not hold, as in thiofaihg examplea?+b < a+ b? holds,
symbol inclusion holds, but stih? < a does not hold. This problem can be solved by separating
empty words from non-empty words, as follows. We first defiRermel-subtypingelationT <\ U,
as follows.

Définition 4.11 (T <xU)
T <kU Sqer [T]\ {e} C [U]\ {e}

Now, we have the following double implication.

symT1) € sym{Uz) A syn(Tz) € symUz)
= TNi+T2<U+U;
ST <Ui AT <Ux A N(TlJrTg) = N(U1+U2)

While it is quite natural to definel and <y by mutual recursion, our algorithm recursively
computes thé&ernel-subtypingelationT <y U only, since the standard subtyping relatibr< U,
defined agT] C [U], can be easily derived by adding a linear-time {&&fT) = N(U)))to T <U,
as specified by the following, obvious, property.

Property45 T <U < (T <cUA (N(T) = N(U)))

Symbol inclusion tests and use of <x U give us the ability to write rules that require no
backtrack. Our algorithm uses these rules to reduce thdgmods far as possible and, once no rule
can be applied, it resorts to the quadratic algorithm. Wel masv to define a good set of rules, rich
enough to deal with a good set of cases, but still with the @rtygthat looking for the next rule to
apply should be extremely fast, so that the algorithm isaliren the size of the types.

We now introduce the rules, and will then formalize the aipon, and discuss its correctness
and its cost.

Structural sub-type rules

As previously discussed, our structural rules have theotig shape.
Condk(T,U)
TlR <k UlRa---anR <k Urllq
T <kU

(R)

The premise is formed by a conditi@ond T, U), and a finite number of predicat®$ <, U/,
with T" andU;" sub-terms of, respectivelj,andU. The rule means that, @ondk(T,U) holds, then
T <k U is equivalent tarR < UR ... TR <  UR. The algorithm selects a rule whoSendk(T,U)
holds, and uses it to rewrite the conclusion to the premises.



64 Chapter 4. Efficient XML subtype checking

The conditionCond (T,U) of every rule is composed by a pattern-matching part and tathpetr
depends, among other things, on symbol inclusion. Thensattatching part is usually written in
the rule conclusion, hence we will follow this habit, and teri

syn(Ty) C syn{Uz) Asyn(Tz) C sym(Uz)
T <k U1, T2 < U2

Ti+ T <Ui+Uz

(ABBR-DIVIDE ++)

instead of:

T=Ti+ToAU =Up+Uz Asyn(T1) C symUz) Asym(Tz) C syn(Uz)
T1 <k U1, To <cUp

T <(U

(DIVIDE++)

The structural subtyping rules are collected in Tahle All of these rules are ‘bidirectional’,
meaning that, when all the conditions hold, the premisegquévalent to the conclusion. As previ-
ously discussed, bidirectionality is a consequence ofdhethatsyn(U;) andsymU,) are disjoint,
of the symbol inclusion conditions, and of the use<gfin the++ case.

Most of the rules are self explicative, and their bidirectitity is proved in CGPS09 The
only non-trivial detail is the use of nullability in the présas. In the three (DIVIDB®) rules
the nullability condition is needed for the direct impliiat to be sound. If the first nullability
condition were violated, we would hages [T;], a non empty wordv, in [T2] ande ¢ [U1]. Hence,
wy would belong toT; ® T, andw, would not contain any symbol frofd;, hence it could not
belong toU; ® Uz, which only contains words that contain some symbol fidmObserve that this
complication derives from the use gk, sinceT; < U; would imply N(T1) = N(U1), and similarly
for To.

Nullability of U, in the (NFOCU®) rules is not related t&ly, but it is the kernel of the rule
itself, which is based on the observation thag & [U,], then[U1] C [U1 ® U2]. The same obser-
vation, applied to both factors, justifies the (NDIVIDE) esl

Observe that this set of rules is by no means complete. Fongleaone may add the following
rule, to take commutativity of '+’ into account.

symT1) € sym{Uz) Asym(Tz) € sym(Us)
Ty <k Uz, Tz <Ug

Ti+ T <Ui+Uz

(REV-DIV ++)

Unfortunately, associativity is at least as important asictativity, but is far more difficult to deal
with. We hence present here just a minimal set of rules, tstitate the basic ideas, and we discuss
our approach to associativity and commutativity later.

The algorithm

The algorithm is described below. It first calls the auxiliatgorithm PREPROCESET,U), which
prepares the types for efficient subtype checking. The glgorthen verifies whether a rule
exists such thaEond (T,U) holds. If the rule exists, it is applied, and the problem i gpsimpler
problems, to be solved in subsequent iterations of the whdp. When we find a subproblem where
no rule is applicable, the algorithm resorts to the quadi@tiorithm QRACLE(T,U) described in
[CGS09%
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sym(T1) € sym(U1) Asym(Tz) € sym(Uz)
T1 <k U1, T2 < U2

Ti+ T <Ui+Uz

sym(T1) C syn{Uz) Asym(Tz) C sym(Uy)
A (N(T1) A (sym(T2) # @) = N(U1))
A (N(T2) A (sym(Ty) # @) = N(Uz))
T1 <kUi ATz < Up

T1& T <KU1&Uo

sym(T1) C syn{Uz) Asym(Tz) C sym(Uy)
A (N(T2) A (sym(Tz) # @) = N(Uq))
A (N(T2) A (sym(Th) # @) = N(Uz))
T1 <kUi ATz < Up

T1-To <k U1&U7

sym(T1) C syn(Uz) Asym(Tz) C sym(Uy)
A (N(T2) A (sym(Tz) # @) = N(Uq))
A (N(T2) A (sym(Ty) # @) = N(Uz))
Ty <kUi ATz < Up

T1-To < Uz-Up

sym(T1) € syn(Ua) Asym(Tz) C syn(Uy)
AN(U1) AN(Uy)
Ty <kU1 ATz < Up

T1+ T <k U1&U2

sym(Tz1) € symUs) Asyn(Tz) C symUz)
AN(U1) AN(U2)
Ty <kU1 ATz < Up

T+ To <cUz-Up

sym(T) C symUs)
T <kUp

T <kU1+U;

sym(T) C symUs)
T <kU1 A N(Uz)

T <U1&U>

sym(T) C sym{U1)
T <(U1 A N(Uz)

T <kU1-Uz

TABLE 4.1: The structural rules
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(DIVIDE++)

(DIVIDE&&)

(DIVIDE - &)

(DIVIDE - )

(NDIVIDE+&)

(NDIVIDE +-)

(Focust)

(NFOCUSR)

(NFOCUsS')
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CHECK(T,U)
1 PREPROCESET U)
2 push (T,U)intodo
3 while (todo# ©)
4 do
5 pick (T,U) fromtodo
6 if (3r such thaCond (T,U))
7 thenpush T <Uj,..., Ty <U] intodo
8 else if(not ORACLE(T,U))
9 then return false

10 returntrue

The following theorems specify some sufficient conditionsw@ Cond (T,U) which guarantee
that the algorithm is correct and is lin€&f°'€, meaning that it runs in linear time, apart from the
time spent by @ACLE.

Theorem 4.5 (Correctness)The structural algorithm is correct if, for any rule r and apgair of
types T and U, the following holds.

Cond(T,U) = (T<U <& T/ SU[A...ATI <U))

Theorem 4.6 (Linearity®RACLE) The structural algorithm is line&=A°E provided that:
e PREPROCESET,U) isin O(|T|+ |U|);

e every rule consumes some input, i.e., for any rule r an imtkge- 0 exists such that, for any
pair of types T, U:

(ITI+ V) = (T + U1+ ...+ [Ta |+ U] > ke

o the test “find r such that CondT,U)” runsin time O(|T |+ |U|) when is negative, and in time
O(k;) when it finds the rule r.

Correctness and linearity

We do not report here about details of correctness and ligganmoofs, the reader can refer to
[CGPS09for details, we only give some hints about the main ingretiie

Concerning correctness of presented subtype rules, thiste of proving that each rule corre-
sponds to a double implication.

Proof of linearity is based on the fact that rule selection ba performed in constant time.
Applicability conditions are a combination of the follovgicomponents:

1. pattern matching, suchas=T;® T,

2. boolean combination of nullability and symbol emptineseh as NT1) A (sym(Tz) # @) =
N(U1)

3. symbol set inclusion, such agn{T;) C syn(U;)

Component (1) is obviously i®(1). A linear time bottom-up traversal can be used to decorate
each node oflf andU with attributes recording its nullability and the emptiaesf symbol set,
hence solving component (2). Component (3) requires a bierabwork, and it relies on a kind

of decoration of both type¥ andU aiming at relating sub expressidr of T with the smallest
sub-expressiob)’ in U such thasym(T’) C symU’). This can be obtained by a linear bottom-up
parsing of the parse tress 6fandU, and once available it allows to check symbol set inclusion i
constant time.
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Beyond binary types

The algorithm as presented embodies the main ideas behirsiraatural approach. However it is
quite limited because it ignores basic commutativity arebastivity properties of type operators.
For example, it would fail on all of the following examples.

at+b<b+a

a+b+a<b+a+c

a-(b-c)<(a-b)-c

a& (b&c) < (c&b)&a

a+ (b+c)<b?&((a?+d)+c)

The first example shows that commutativity should be takee o and the second one elab-
orates a bit on this. The third example illustrates asswiiat The fourth example shows that the
simple approach of normalizing how operators are assatiateot sufficient, because associativity
and commutativity should be treated together. We solveisiise by adopting a flat version of all
type operators, where every operator has an arbitrary nuafla@guments. Flattening solves asso-
ciativity, but leaves commutativity open; we may solve thygeordering all addends alphabetically,
but that would require more than linear time. Moreover, tst Example shows that flattening and
then reordering is not enough: since the product of nullféxéors is a supertype of union, one
would need to consider some pairs of operators together.

The approach we presented i@GPS09 solves all these issues. First of all, we generalize
all binary operators to their n-ary version, and we prepsedbe types, in linear time, to collapse
all consecutive application of the same binary operatar arte application of an n-ary operator.
Second, when applyingdividerule to a pair of type®(Ty,...,Ty) and®(Uy, . ..,Un), we find, for
eachT;, the minimum subterrt)! of someU; that contains all of symbols & — that is,U dsymT)

— and we recur on the paffii, U{) rather than or{Ti,Uj), and this solves the issue presented in the
fifth example. By recurring ofiT;,U |syy;)), we merge the effect of thdividerule with that of the
focusrules, and avoid two separate sets of rules.

We do not report here details about the rules, and refer Haerdo CGPS09for a detailed and
formal presentation.

Test results

As for any improvement, it is mandatory to show that the “oyitied” algorithm is more efficient
than the original one and that its applicability conditiara be easily satisfied, so to justify its
implementation.

In [CGPS09 we report results about extensive experiments. Startiom fthe observation
in [GMNO7] that most human designed XML types aredonjunctive normal formwhere each
factor has the fornag + ... +ax), (a1 +... +a&)?, (a1 +... +a)*, or (g +... + a) ™, we focused
our experiments on CNF types and compared the performartbe structural algorithm with that
of the quadratic algorithm on the four main kinds of factors.

Both the structural algorithm and the quadratic algorithmespnted in the previous chapter have
been implemented in Java 1.5 and all experiments were peefbon a 2.16 Ghz Intel Core 2 Duo
machine (3 GB main memory) running Mac OSX 10.5.7.

As already stated, in our experiments we evaluate the padioce of our algorithm on CNF
types, with four main categories of factor@; + ... + &), (a1+... +&)?, (a1 + ... + &)*, and
(a1 +...+a)". For the sake of completeness, we also evaluate our algootha DNF types
scenario, where types aredisjunctive normal fornfe.g., the subtype and the supertype are a union
of products). In the supertype we impose the conflict freedonstraint, hence terminal symbols
are unique and counting is applied only to terminal symbalsle these restrictions are relaxed in
the subtype, which can be any legal type. In our experimeatsampared the performance of the
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structural algorithm with that of the plain mixed algoritleh[CGS09% in particular, we evaluate
the scalability of the algorithms by increasing the numbleaddenda in each factor of both the
supertype and the subtype from 10 to 100. To make the expetsnregen more realistic and test the
flat algorithm, the supertype contains a 20% of randomlyidisted labels. We only generated pairs
of types which satisfy the subtype test, since this is theidatimg situation when the algorithm is
run by a compiler.

Test results reported irfCIGPS09 show that the structural algorithm significantly outpenfis
the plain one in most of considered cases.

3 Conclusion

In the first part of this chapter, we presented an algorithrchieck subtyping among EREs types
with the only restriction that the supertype must be confliee, as it commonly happens while
typechecking XML programs. This algorithm has quadratimptexity, both in the best and worst
cases, it strongly exploits the conflict-free restrictiareiothe supertype, but does not exploit any
structural similarities between the subtype and the sypetb further accelerate inclusion checking.
In the second part we have presented a more efficient algorghill dealing with the kind of

mixed comparisons considered in the first part, but whioh @kploits possible structural similarities
between the types being compared. The new algorithm preceed top-down fashion, and is
based on a set of structural subtyping rules, that are applteenever a structural similarity is
detected; when these similarity conditions are not satisfiee algorithm just resorts to the quadratic
algorithm.
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This chapter discusses works in progress and future directielated to topics dealt with in this
Thesis.

1 Work in Progress

Schemas for Detecting XML query-update independence

A query and an update are independent when the query regolt édfected by update execution, on
any possible input database. Detecting query-update érigmce is of crucial importance in many
contexts. Itis crucial to minimize view re-materializatiafter updates, when the view is defined
by a query; it is crucial to ensure isolation, when queries @ndates are executed concurrently; as
outlined in BCOY, it is also crucial to enforce access control policies, whige query is used to
define the part of the database that must not be changed by apdse.

In all these contexts, benefits are amplified when query-epidadependence can be checked
statically. In order to be useful, every static analysisitégue must be sound: if query-update
independence is statically detected, then independerez ltlmd. The inverse implication (com-
pleteness) can not be ensured in the general case, siricérstapendence detection is undecidable
(see BC09). This means that if a static analyzer is used, for instaimc@view maintenance system,
sometimes views are re-materialized after updates evest ii@eded, because the analysis has not
been smart enough to statically detect a view-update imibgrece. Useless view re-materialization
frequently occurs if a static analyzer with low precisiom@pted. This can lead to great waste of
time, since view materialization cost can be proportionghe database size.

Schema-based detection of XML query-update independeasdéen recently investigated.
The state of the art technique has been presentéli0g. This technique infers from the schema
the set of node types traversed by the query, and the set eftypds impacted by the update. The
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guery and the update are then deemed as independent if tisetswdoes not overlap. This technique
is effective since the static analysis: i) is able to managila class of XQuery queries and updates,
i) can be performed in a negligible time, and iii) as a consege, even on small documents it can
avoid expensive query re-computation when independentamwupdate is detected. However,
the technique has some weaknesses. As illustrate@@®9, in some cases independence is not
detected due to the nature of the proposed type inferenes,rahd in particular by some kind of
over approximation made by some of them.

For example, this technique can not detect independeneebetthe quer); = //a//c and
U; = delete//b//c, when the schema says tltadlescendants df nodes are never descendants of
a nodes as well. This is because the type inference techniqumged in BC0Y infers the type
{c} for the query path and the update path, without considerimgextual information about the
inferred types. Since the query and update types overldppendence is wrongly excluded. Also,
the technique is likely to not detectindependence, wherniX&ees requiring ancestor or descendant
navigation are used.

Another kind of low precision of this technique is indepentditom the way XPath axes are
typed. Considef); = //title andU, = for x in //bookreturn insert < author/ > into X,
over data typed by the well known bibliographic DTD used mXQuery Use Case€FF"07]. The
technique proposediB09 infers{book} as the set of impacted typesldf while {bib, book title}
as the set of types traced by the query. Since the two sets 8tetypebook the system does not
detect independence, while it should.

In none of the above mentioned cases, independence candumedeby techniques not using
schema information. This is the case for the path-basedappmproposed by ingRS0§, which
deals with the problem of update-commutativity detectemg which can be directly extended for
detecting query-update independence. The same holdsdaetent destabilizers-based approach
proposed in BC1(. Both approaches do not consider/use schema informadioth,as a conse-
quence deem paths likg'a//cand//b//c (Q1 — Uy example) as overlapping, since, for instance,
documents matching the patl/b/c match both paths; a similar reasoning holds fgtitle and
//book(Q2 — U, example), since schema constraints are not considered.

Contributions

In the context of Federico Ulliana PhD thesis we are workingmovel schema-based approach for
detecting XML query-update independence. Differentlyrfrivaditional type systems for XQuery
[BCOY9 Che08aCGMS04, our system is able to infer sequences of labels (hereadtézdchaing
that are vertically navigated in a schema instance by quedyupdate paths. More precisely, for
each node that can be selected by a query/update path inmmaatgance, the system infers a chain
recording: a) all labels that are encountered from the tté¢ selected node, and b) the order in
which these labels are traversed.

The contextual and ordering information respectively jded by a) and b) is at the basis of
an extremely precise static independence analysis. F@nios, by considering the simple schema
r « (alb)*, a+ ¢, b+« c, for theQq path//a//c we infer the chairr.a.c, while for theU; path
//b//c we infer the chairr.b.c. Disjointness of these two chains can be simply checkeds thu
allowing, differently from the existing approachdé3}09, BC1(, to detect independence for the
Q1 — U; pair. For theQ, — U the query chaitbib.booktitle and the update chalsib.bookauthor
are inferred from XQuery Use Cases DTDHF"07]; as these two chains diverges after thmok
symbol, we can conclude independence.

Our independence analysis technique is based on chaientfierules able to deal with all XPath
axes. The resulting technique ensures all the advantagabaiprecision level of botBC09 and
[GRSO0§, while it improves on precision to a large extend: it enaltle detect independence for
difficult cases, like the ones previously illustrated, fdrigh [BC09 and/or [GRS0§ fail.

A key feature of our technique concerns the way recursive ®&f handled. These DTDs
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require special care in order to avoid inferring infinitesset chains when XPath expressions use
recursive axes (e.g. descendant and following). We showahfimite upper bound, on the number
of chains to be inferred, can be determined in terms of siratproperties of the query and the
update.

Some preliminary results about this work have been puldigh@8CU10H, while more mature
results are considered for future submissions, and areibdeddelow.

e We provide a chain inference system able to infer a set ofhshiaom a DTD and XQuery
qguery/update. We proved that chain inference soundly aqpates the set of chains a
qguery/update has to traverse in the DTD instances in ordeonapute the result. We then
provide a notion of chain-based independence and provelieteound wrt the semantics
notion of query-update independence.

¢ In the presence of recursive schemas, chain-based indepemédnalysis may involve an infi-
nite number of chains. We showed that the analysis can biedaut by restricting on a finite
subset of the possibly infinite sets of query and update shaive prove that the resulting
finiteanalysis turns out to be equivalent to thénite analysis. This is reminiscent of the well
known Finite Model Property technique used in the contefinite model theoryIp. 01.

e We have performed extensive tests by using a Java impletr@ntd the finite analysis. We
used the XMark testbed used BC09. Concerning precision, obtained test results show that
our technique ensures sensible improvement8&0f. Test results also show that sensible
improvements in terms of time savings can be ensured by iandpié-evaluation of queries
deemed as independent of an update.

We are currently investigating optimizations for a suctirepresentation of inferred chains.
Obtained results, highlighted that in many cases inferhadins share common prefixes and/or suf-
fixes. While redundancy of prefixes can be easily dealt withidipg a tree-based representation of
inferred chains, controlling the redundancy of suffixeaiistle and more difficult to deal with.

Partitioning and Projecting XML Data

As we have seen, XML projection is a well established teamigllowing main-memory XML
query engines to query very large documents. These profetdchniques are quite effective in a
wide class of cases, but still fail when the projected doasare too big to be loaded in main
memory. This can happen in two basic scenarios. First, whemuery traverses a large part of
the input documents, projection may become ineffectivehasprojected documents may almost
coincide with the original ones; for instance, this can be ¢hse for full-text search queries, or
queries performing content-preserving transformatiomlafge fragment of the input. Furthermore,
when working on very large documents, e.g., the XML dump dfiyddia, no projection technique
is currently able to trim the input documents to fit the sizéhefavailable main memory.

To overcome these limitations, in the context of Noor MalldRhesis, we are investigating a
new projection technique, based on a path-based apprazitiatst can be used even in the absence
of a schema.

The technique relies on the observation that, in many malctiases, queries first select a se-
quence of nodes by means of a subquery (e.g, an XPath exprgssid then iterate on this sequence
to do some operations on the subtrees rooted at nodes inghersee. We dub such queriesitas-
ativequeries

In this work we are devising novel projection techniques theal with iterative queries, and
improve the scalability of existing main memory enginestun tlass of queries.

To deal with the cases where the size of projection is likelgxceed the maximal size that a
main-memory XML processor can manage, we provide a statitysis technique, based on path
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analysis, allowing one to recognize whéxis iterative, and to infer path information to partition
the input documerD in several partitiorDy, ..., Dp, such thaQ(D) is equal to the concatenation
Q(D1),...,Q(Qn). Inferred path information is used for both partitioninglgprojecting, so that
each partition is guaranteed to contain only informatioittty necessary for processing. The
maximal size of each partition is determined in terms of tagipular main-memory engine.

As a second contribution, we extend the above techniquestoabke where a document has to be
partitioned and projected in order to be queried by severatigs taking part of a workload.

Both techniques have been formalized and implementednBixetest results on XMark doc-
uments whose size ranges from to 1GB to 5GB have shown thilr iost main-memory query
engines standard projection fails in many cases either bgidering XMark queries or other prac-
tical relevant queries; ii) in the cases where standardeptimn work, even if we apply partitioning
plus projection execution time does not increase, andriiigases involving iterative queries and
where standard-projection fails, out method scales biedlytiallowing to process until 5GB doc-
uments (actually, since partitioning and results compmsitan be done in streaming, there is no
size upper-limit for iterative queries), iv) when proj@gtio is performed for a workload of multiple
queries, standard projection is more likely to fail, whil& partitioning technique still scales up.

These results will be the subject of future submissions émference publication. Currently,
we are investigating applications/extensions m to XML upda We aim at identifying a class
of iterative updates, and devise a partitioning algoritHiomang one to update large documents,
without the need of a merge operation (ChaferAlso, we plan to investigate how to exploit the
potential parallelism inherent in our techniques: oncdifians are created, a query/update can be
run in parallel on all the partitions.

Compact Representation of Temporal XML Documents

The management of temporal data is a crucial issue in marlicappns such as finance, banking,
travel reservations, geographical information systeras &¥ith the increasing use of XML for

data exchange and representation, the issue of develapimgpral extensions for XML is gaining

importance.

Current work on temporal XML concentrate on time-stamp XMicdments, a concrete model.
Although many proposals have addressed the issue of qaeigie-stamp XML documents, there
has been less in-depth investigation of how to efficientliydoar maintain temporal XML docu-
ments, keeping track of data evolution over time.

To fill this gap, in the context of Amine Baazizi PhD thesis, are investigating techniques
ensuring compact representation of temporal XML documentier updates. Each time an update
is performed on the current snapshot, the document regditbm the update is opportunely merged
with the historical database, recording all changes.

Two merging techniques have been devise, the first one usaesommation about the particular
update, while the second one does, and also uses projdxiad techniques to efficiently manage
both the update and the merging process.

Both methods have been implemented, and tests have showhetsgcond method outperforms
the first one in terms of compactness of the historical docume

A paper including these results has been recently acceptgaiblication BBC113.

We are currently working on extensions of these results. &lgran more extensive tests, and on
new merge/projection techniques in the presence of meltiptates from the to n+ 1 instances.

XQuery Type-Checking

As we have seen, XQuery has been designed by World Wide Weso@tarm (W3C) as a standard
guery language for XML. XQuery is a functional, Turing-colete, strongly typed language. A key
feature of XQuery is its type system, and a formal specificeit proposed by the W3OFF"10].
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In XQuery any language expression is statically typed asdyjpe is used during program type-
checking, even though the programmer can disable thisratu

In XQuery, types of input data and functions are defined imgeof regular expression types,
but it is quite easy to write queries that generate non-esgahguages. As a consequence, any
type system for XQuery has to rely ortype inferenc@rocess that approximates the (possibly non-
regular) output type of a query with a regular type. This agpnation process, while mandatory
and unavoidable, may significantly decrease the precididheoinferred types. This is the case
of the W3C proposed type system, which relies on some ovameapnating rules for expressions
widely used in practice (e.gfor-iterations). Another source of undesired over-approxiomas
given by rules to type horizontal and upward XPath axes, fuckvthe typeanyis always inferred.

It is a common folklore that W3C has sacrificed precision wofaof better complexity, and
that the W3C typing algorithm runs in polynomial time. Anealtative and more precise approach
for typing XQuery has been proposed {0dl04, CGMS04 and used as a basis for other proposals
[Che08aBCCNOg. This type system, used in tpeXQ language, has a more precise type inference,
at the price of a potential exponential explosion of the gueitput type.

Though the two above mentioned approaches are relativdlykmawn today by the database
and programming language communities, a formal, rigoramns, complete analysis showing in
which cases the two proposals differ in terms of precisiod emmplexity for type inference, is
still missing. Such formal analysis could have a practiedvance as well, since it would provide
important information to implementation designers.

In a recent work we filled this gap by providing a first comp&analysis. Besides providing
a clean and simple formalization of the main typing mechasisf both approaches, we formally
studied their complexity, showed in which cases the W3C ssieely over-approximates inferred
types, identified cases for which inference precision casrbmatically improved, and propose new
type rules to better handle these cases. We also showeddh#try to the common belief, the W3C
type system may itself infer types of exponential size wetdery and the input size.

A paper collecting these results has been recently accémtednference publicatiorS11].

2 Perspectives

Future research directions are described in the next sectio

Type-based debugging of XML transformations

One of the main use of subtype checking is in the checking wéctness of transformations from a
schemd5, to another schem%. In many cases the transformation is defined via an XQuergyque
Q, and its correctness is checked by first inferring a tfar Q results starting from the query itself
and the input schem&, and then by checking the inclusi®< . If this inclusion check fails
then the transformation is deemed as incorrect and shoulehvized.

In many cases the transformation is made of complex quersessjpns, and in the case type
checking fails the correction process is likely to be quitenbersome. To facilitate this task new
type-based techniques could be devised. First of all thegz®oof inferring a query typggshould be
equipped witlguery-provenancmechanisms allowing to opportunely decorate each subssipre
of the inferred schem8with the parts of the query this subexpression is inferredhfr Secondly,
the sub-typing checking algorithm should be instrumentiéd mechanisms able to precisely locate
sub expressions of compared types responsible for thedaifithe inclusion checking.

In the case of failure of the inclusion checkigg< S, parts of the query that should be
changed can be located by opportunely combining informatiferred by the two above techniques.
A similar technique can be devised to aid the debugging alupted schema-to-schema mappings
(Chapter3)
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Another future direction in the context of query type-chiagk concerns the problem of type
inference for XQuery in the presence of interleaving andntiog. This problem is mostly unex-
plored, and entails the study of interesting subprobleiks,the analysis of approaches to ensure
precise type inference at a reasonable time cost.

Projection for XML security

A nice and powerful type-based technique to define and emfaccess control policies on XML
documents typed by a DTD has been proposed®d04. This technique has the advantage that
security policies are: defined by opportunely enriching EfieD, and enforced by rewriting each
guery by matching it wrt the enriched DTD, so that the rewrituery can be safely executed on
the original document, without the need of materializinguséy views.

A weakness of this technique is that is server-oriented: diient asks for the execution of a
qguery then the document can not be sent to the client for gesgution, due to obvious security
issues. Also, this solution excludes view materializatidrich can be fruitful in some contexts. A
more serious weakness is that the technique only deals latfotward fragment of XPath. Hence,
the technique does not take into account queries exprasselt XPath or XQuery.

To overcome these limitation, we plan to rely on schema bA8&id projection. Actually XML
projection can be naturally used for enforcing access obpwlicies, under the assumption that
parts that do not have to be accessed by a user are prunedrimg pitojection. Starting from this
fact, new projection techniques can be devised for enfgrsaturity. This new technique has to be
such that the projection can be quickly computed, and atahgegime only contain information
that can be seen by the user (in other words the projectiocaatain only information that a user
can obtain by using a query). This requires a special hapdiiinformation specified in security
policies.

Another interesting aspect connected to security, is tinellireg of updates. We plan to investi-
gate projection-based techniques to enforce secure éxr@itupdates. In particular, this requires
a new notion of projector, and a new merge process (see Gligpte

Efficient large scale management of Web data

The last years have seen a high concentration of researgitiestaround the design and devel-
opment of systems that scale to data volumes typically fanndleb search indexes, large scale
warehouses, and scientific applications. The main apprizabhsed on massive parallelization,
exploiting large numbers of cheap computers, often expbpiulticore hardware.

In this context, new architectures and programming paradigave been proposed in order o
overcome limitations of traditional DBMS architecturagitally their missing scalability, elasticity
and fault tolerance. Among these proposals the MapReduegligan [DG04] has emerged as an
effective and simple model, according to which data mawifoth programs are written as map and
reduce functions, which process key/value pairs and cardmuéed in many data-parallel instances.
However, several complex database operations can not g pasgrammed by means of map
and reduce functions. This is the case, in particular, ofatns requiring multiple inputs, like
joins. Also, current database solutions based on map-edduk a tight integration of indexing and
storage, which prevents data access optimization, a ¢ingi@dient for efficient query processing.

In the Leo team (which | joined on February 2010) we have régastarted research activities
aiming at conceiving efficient algorithms for processing@uges and updates on Web data. To this
end we will leverage the Stratosphépgatform in order to take advantage of its PACT programming
model ABE"10, BEH"10]. The PACT model is a powerful extension of MapReduce. Onigsof
main strengths consists in second-order functions thatelpfioperties on the input and output data

http://stratosphere.eu/
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of their associated first-order functions. This is at theida$ simple and highly parallelizable
program specifications for complex database operations.

In a first step, we are interested in the use of PACT primitfeeshe efficient management of
extremely large indexes over XML and RDF data. We will focasridexes formed by (key, value)
pairs, in order to cope with the PACT data model. We will dexgeveral kind of indexes and define
optimal strategies by means of the PACT programming modelrder to efficiently access and
update the indexes.

As a subsequent step, we plan to switch to the problem of géngrefficient PACT workflows
starting from XQuery/SPARQL queries. We will first rely onagtable PACT primitives, and then,
based on what learnt in the above depicted first step, we vapgse extensions to the PACT pro-
gramming model with new primitives that better fit with thengeation of efficient workflows for
XML/RDF management.

This research plan is part of a wider research project rgcaatepted by the European Institute
of Innovation & Technology (EIT. For this project, that involves several european parfiens
the local scientific coordinator for the University of Pa8isd partner.

8http://eit.ictliabs.eu/
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