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Introduction

Ce document rassemble les résultats obtenus durant mes trois années de thése sous la direction
de Gilles Pages. Il est constitué de cing chapitres. Chaque chapitre est concu comme un article
indépendant comportant sa propre bibliographie, et est écrit en anglais.

Soit (2, .A,P) un espace probabilisé et F un espace de Banach réflexif séparable. La norme de
E est notée | - |. La quantification d’une variable aléatoire X prenant ses valeurs dans F consiste
en son approximation par une variable aléatoire Y prenant un nombre fini de valeurs dans F.
L’erreur résultant de cette discrétisation est mesurée par la norme LP de |X — Y'|. Si on se donne
un cardinal maximal N pour Y (€2), la minimisation de l’erreur revient au probléme d’optimisation

min {[[|X = Y]|[,, ¥ : @ — E mesurable, card(Y(Q)) < N}. (1)

Une solution au probléme de minimisation (1) est appelée quantifieur optimal de X. La quantifi-
cation optimale a d’abord été étudiée pour fournir une méthode de discrétisation de signal [5] et a
ensuite été introduite dans le domaine des probabilités numériques pour concevoir des méthodes
de cubature [12] ou pour résoudre des problémes d’arrét optimal multidimensionnels [3].

Le cas infini-dimensionnel est étudié depuis le début des années 2000, en particulier pour son
application & la quantification fonctionnelle, autrement dit la quantification de variables aléatoires
a valeurs dans des espaces fonctionnels. Cette étude a surtout porté sur le cas de la quantification
L? sur des espaces de Hilbert [9], mais d’autres espaces de Banach ont aussi été considérés [19].
Les processus stochastiques sont vus comme des variables aléatoires prenant leurs valeurs dans les
espaces de trajectoires considérés.

Cette thése présente quelques aspects de la quantification optimale et leur application a la
finance mathématique.

e Le premier chapitre porte sur 'application de la quantification optimale & la réduction de va-
riance par stratification. En effet, des aspects théoriques de la stratification montrent un lien
fort entre le probléme de la quantification quadratique d’une variable aléatoire et la réduction
de variance qui peut étre atteinte par cette méthode. Pour commencer, nous soulignons la
pertinence de la quantification pour définir les strates pour les méthodes d’échantillonnage
stratifié dans les cas fini-dimensionnels et infini-dimensionnels. Ensuite, nous abordons le
cas de la stratification fonctionnelle de processus gaussiens bi-mesurables. A cet effet, nous
proposons un algorithme de simulation de complexité linéaire pour la loi conditionnelle des
marginales d’un processus gaussien dans la cellule de Voronoi d’un quantifieur stationnaire de
ce processus. La méthode est complétement spécifiée dans les cas du mouvement brownien,
du pont brownien et des processus d’Ornstein-Uhlenbeck. Comme la quantification optimale
effective d’un processus gaussien requiert la connaissance de sa base de Karhunen-Loéve,
bien connue dans les cas du mouvement brownien et du pont brownien, nous détaillons en
annexe le calcul complet de la base de Karhunen-Loéve des processus d’Ornstein-Uhlenbeck.
Des tests numeériques sont effectués sur des problémes de valorisation d’options. Ce chapitre
est le résultat d’un travail conjoint avec Gilles Pages.

e Comme nous l'avons souligné plus haut, la connaissance de la base de Karhunen-Loéve est
nécessaire pour la construction effective d’un quantifieur quadratique de processus gaussien.
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Le second chapitre souligne la possibilité d’utiliser des méthodes numériques d’approximation
des solutions d’équations intégrales pour le calcul des bases de Karhunen-Loéve de processus
pour lesquels on ne dispose pas de formule fermée. Nous proposons d’utiliser la méthode dite
de Nystrom pour le probléme de la quantification optimale de processus gaussiens. Dans
les cas ou on dispose d’une formule fermée de référence, nous montrons que la méthode de
Nystrom permet d’obtenir une précision proche de 'erreur machine. Ensuite, le cas particu-
lier du mouvement brownien fractionnaire est traité. La cohérence des valeurs obtenues est
vérifiée numériquement grace & une méthode de « reconstruction » du processus gaussien.
Enfin, cela nous permet d’appliquer la méthode de stratification fonctionnelle développée au
premier chapitre au probléme de la valorisation d’une option asiatique dans le modéle de
Black & Scholes fractionnaire.

Dans le troisiéme chapitre, nous proposons une nouvelle approche de la quantification fonc-
tionnelle dans le cas d’'une semimartingale gaussienne continue X que nous baptisons la
« quantification partielle ». Cette approche consiste pour ’essentiel & ne quantifier que cer-
taines coordonnées de X (en nombre fini) sur sa base de Karhunen-Loéve. Le principal
résultat est que conditionnellement a ces coordonnées, X reste une semimartingale par rap-
port a sa propre filtration. Ce résultat est établi en utilisant des techniques de grossissement
de filtration. Ceci nous permet notamment de véritablement définir la stratification fonction-
nelle d’une solution d’équation différentielle stochastique dirigée par la semimartingale X et
de légitimer la méthode numeérique utilisée dans le premier chapitre dans le cas des équations
différentielles stochastiques. Nous prouvons également plusieurs résultats de convergence de
la quantification partielle d’EDS.

Dans le quatriéme chapitre, nous proposons une méthode de cubature basée sur la quantifi-
cation fonctionnelle pour la valorisation d’options vanilles dans le cas de modéles & volatilité
stochastique. On se place d’abord dans le méme cadre que dans article [14]. Ensuite, la
méthode est étendue aux cas de modéles comportant un terme de volatilité locale, souvent
appelés « modéles & volatilité locale stochastique ». Pour cela, nous proposons une nouvelle
approximation que nous appelons la « quantification normale ». Cette méthode est basée sur
les résultats relatifs a la quantification partielle de processus gaussiens introduite dans le
chapitre précédent. Nous effectuons des tests numériques dans le cas du modéle SABR. Ce
chapitre est le résultat d’un travail conjoint avec Gilles Pages.

Les recherches de plus proche voisin représentent une part critique de la plupart des algo-
rithmes d’optimisation de grilles de quantification, ainsi que des algorithmes de réduction
de variance utilisant un quantifieur Voronoi comme variable de contréle. Dans le cinquiéme
chapitre, nous proposons un nouvel algorithme de recherche de plus proche voisin lui-méme
basé sur une méthode de quantification vectorielle. La description compléte de la méthode
requiert ’exposé de quelques résultats de géométrie algorithmique relatifs aux diagrammes
de Voronoi.

Un intérét de la quantification optimale, tant pour son application & la cubature que pour ses
autres usages est que, une fois les quantifieurs calculés on peut les conserver pour un usage
futur. Sur le site web www.quantize.maths-fi.com [15], une grande base de données de
grilles de quantification de variables aléatoires gaussiennes est disponible au téléchargement.
Les grilles gaussiennes unidimensionnelles sont calculées avec une précision relative de 10732,
autrement dit, elles peuvent étre considérées comme exactes dans leur représentation en
simple, double et quadruple précision. En appendice, nous détaillons les méthodes utilisées
pour obtenir ces grilles « sur-optimisées » pouvant s’appliquer pour obtenir des grilles de
quantification en précision arbitraire.
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0.1 Principaux résultats du chapitre 1

Le principe de I’échantillonnage stratifié est de localiser la méthode de Monte-Carlo sur les éléments
d’une partition de I'espace d’état d’une variable aléatoire L%, X : (Q,A) — (E,€). On se donne
une partition £-mesurable (4;);c; de E, et nous appelons les éléments A; strates. On suppose que
les poids p; ;= P[X € A;] sont connus et strictement positifs. On considére ensuite une famille de

variables aléatoires indépendantes (X;);e; de distribution X; Lr (X|X € A)).

On suppose qu’on sait simuler les variables aléatoires X;, ce qui équivaut a supposer qu’on peut
écrire X; = ¢;(U), o U est uniformément distribuée sur [0,1]" avec r; € N* et ¢ : [0,1]"" — R
est calculable facilement.

L’idée de la stratification est d’utiliser l'estimateur suivant pour calculer E[F(X)], ou F est
une fonctionnelle & valeurs réelles telle que F(X) € L? :

M;
F(XTy = Yopinr (XD, )
i€l b k=1

ol M est le budget global de simulations de Monte-Carlo et M; := ¢; M est le budget alloué pour
le calcul de E[F(X;)] dans chaque strate, et (XF)r<1<as, sont M; réalisations indépendantes selon

L(X|X € A;). On impose naturellement que ) ¢; = 1.
iel
Cet estimateur est sans biais et sa variance est donnée par

o 1 p;
Var (FX)y,) = 37 ok
iel

ou
a;i := Var (F(X)|X € A;) = Var (F(X;)), i€l

Choix des budgets (¢;);c; de tirages alloués a chaque strate

e Le choix naturel, mais « sous-optimal » est de fixer ¢; = p; pour tout 7 € I. Deux raisons pour
un tel choix sont d’une part que la variance de ’estimateur obtenu est toujours inférieure &
celle de Destimateur standard de Monte-Carlo, et d’autre part que les poids p; des strates
sont généralement connus.

e Une autre possibilité est 'optimisation sous contrainte de la variance de Pestimateur (2),

dont la solution est
« __ DiOF;

qi - )
> PjOF,;
jeI

1e 1.

A ce stade, le probléme est qu’on ne connait pas explicitement les inerties locales U%J—. Dans
larticle [18], Etoré et Jourdain proposent un algorithme qui modifie les proportions des
simulations futures dans chaque strate de fagon adaptative et qui converge vers l'allocation
optimale.

Géométrie des strates

Maintenant, la principale inconnue est le choix de la partition (4;);c;. Ce choix est guidé
par lobjectif de réduction de la variance, mais aussi par la nécessité de pouvoir simuler les lois
conditionnelles £ (X|X € A4;). C’est 'objet de la section 0.1.1.

0.1.1 Pertinence de la quantification optimale quadratique pour conce-
voir les strates des méthodes d’échantillonnage stratifié

Le théoréme 0.1.1 réunit les précédents résultats énoncés sur la stratification et met en avant un
lien avec les notions d’inertie locale et d’inertie interclasse issues de la quantification quadratique.
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11 suggeére de choisir pour partition (A;);es les cellules de Voronoi associées & une quantification
quadratique optimisée de X, et surtout une troisiéme possibilité pour le choix d’allocation des
tirages entre les strates, qui a une efficacité uniforme sur les fonctionnelles F' lipschitziennes.

Théoréme 0.1.1 (Stratification universelle). Soit A = (A;)ic; une partition de E et Proj, » la
projection barycentrique associée & la partition A pour la variable aléatoire Z (définition 1.1.4).

1. Pour tout i € I, considérons l'inertie locale de la variable aléatoire X,
2 2
o? =E[|X — E[X|X € 4] ‘X €A

Alors pour toute fonction lipschitzienne F : E — R,

Viel, op;<[FlLpo; de sorte que sup op; < o;. (3)
[FlLip<1

2. Dans le cas du choix sous-optimal,
2
s (Lpiok) < Lmo? =X —EXlo({(X € 4} i€ 1)
[FlLip<1 ‘i€l ’ i€l 2

2
- HX - ProjA7X(X)H2.

3. Dans le cas du choix optimal,

sup (Zpﬂ%,i) < (ZPM)Q, (5)

[Fluip<1 “ie7 iel

2

(;pm)2 > || x ~ ElXIo({X € Ai},i € I)]Hj =[x~ Projux(x)] .

4. Si on considére des fonctions lipschitziennes a valeurs vectorielles ' : E — E, alors les
inégalités (3), (4) et (5) sont en fait des égalités.

0.1.2 Quantification et simulabilité dans les strates

Dans le cas particulier o X est une variable aléatoire gaussienne de loi A'(0, D), out D est une
matrice diagonale, on montre qu’il est possible de simuler exactement la distribution conditionnelle
de X dans un hyperrectangle avec un codt constant (voir section 1.3.3). Ce n’est pas le cas de la
distribution conditionnelle dans un polytope quelconque. Pour cette raison, une stratification par
quantification produit - résultant en des strates sous forme d’hyperrectangles - est préférable a la
quantification optimale dont les cellules de Voronoi sont des polytopes plus généraux.

Nous abordons maintenant le probléme de la stratification fonctionnelle de processus gaus-
siens bimesurables sur un intervalle [0, 7]. Nous supposons que le processus considéré est L2 et a
une fonction de covariance continue sur l'intervalle considéré. Les quantifieurs quadratiques opti-
maux de tels processus se trouvent sur ’espace engendré par leurs premiéres fonctions propres de
Karhunen-Loéve. La forme des cellules de Voronoi associées dans L?([0,7]) est donc trés simple
quand elle est exprimée dans cette base, en particulier dans le cas de la quantification produit.
La simulation de la loi conditionnelle de marginales de X, (Xy,,--- Xt ) pour une subdivision
0=ty <---<t, =T consiste alors

e tout d’abord & simuler la loi conditionnelle (fini-dimensionnelle) des premiéres coordonnées
de Karhunen-Loéve,

e puis la loi conditionnelle (gaussienne) des marginales de X connaissant ses premiéres coor-
données de Karhunen-Loeéve.
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Dans le cas de la quantification produit, la premiére étape a déja été traitée. La seconde étape
consiste en un simple conditionnement gaussien, qui peut donc étre effectué avec une complexité
de O(n?) en utilisant une factorisation de Cholesky. Ce cotit quadratique en le nombre de pas de
temps n’étant pas satisfaisant, nous proposons un nouvel algorithme de complexité O(d x n) ou
d est la dimension de quantification. Cette dimension de quantification d est plutot faible dans
le cas des processus gaussiens considérés, pour lesquels elle est asymptotiquement équivalente au
logarithme du nombre de strates. Par exemple, dans le cas ot X est un mouvement brownien
standard, la dimension de quantification pour une quantification de niveau N = 10* est de 9.
C’est cet algorithme de simulation, utilisant une approche bayésienne qui rend la stratification
fonctionnelle de processus gaussiens utilisable en pratique.

Sur la figure 1, on représente quelques trajectoires de la loi conditionnelle de 500 marginales
d’un mouvement brownien standard sachant que ce mouvement brownien appartient & la cellule
de Voronoi de la courbe épaissie sur le graphique. L’apparence des trajectoires obtenues suggére
de considérer la méthode comme une « méthode de Monte-Carlo guidée ».

3 T T T T

-3 ! !
0 0.2 0.4 0.6 0.8 1

FIGURE 1 — Tracé de quelques réalisations de la loi conditionnelle du mouvement brownien standard
sachant qu’il tombe dans la cellule de Voronoi L? de la courbe surlignée dans le quantifieur.

La méthode est appliquée a d’autres processus gaussiens, dans le chapitre 1 pour le pont brow-
nien et les processus d’Ornstein-Uhlenbeck, et dans le chapitre 2 pour le mouvement brownien
fractionnaire.

0.1.3 Quantification et stratification fonctionnelle des processus d’Ornstein-
Uhlenbeck

Les fonctions propres de Karhunen-Loéve ont une forme explicite dans les cas particuliers du
mouvement brownien standard et du pont brownien. Le cas particulier du processus d’Ornstein-
Uhlenbeck stationnaire avec paramétre de retour a la moyenne et volatilité égaux a 1 est traité
dans le livre [6, p.195]. En appendice du premier chapitre, nous calculons la décomposition de
Karhunen-Loéve des processus d’Ornstein-Uhlenbeck de paramétres quelconques (variance initiale,
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parameétre de retour a la moyenne et volatilité). Une procédure détaillée décrivant I'implémentation
de la méthode est aussi fournie.

Gréce a ce calcul, la quantification quadratique optimale et la stratification fonctionnelle des
processus d’Ornstein-Uhlenbeck sont possibles. Dans la suite, on vérifiera systématiquement si
les résultats de cette thése portant sur la quantification des processus gaussiens sont applicables

aux processus suivants : le mouvement brownien standard, le pont brownien et les processus
d’Ornstein-Uhlenbeck.

1.5 1.5

FIGURE 2 — Quantifieur produit optimal d’un processus d’Ornstein-Uhlenbeck centré partant de
ro = 0 (& gauche) et stationnaire (& droite) défini par V'EDS dr, = —r dt + dW,, sur [0, 3].

0.1.4 Application a la stratification de solutions d’équations différen-
tielles stochastiques

Dans le cas plus restrictif o X est en fait une semimartingale gaussienne centrée partant de 0,
on peut utiliser la stratification des marginales de X et les insérer dans le schéma d’Euler d’une
équation différentielle stochastique pour obtenir une stratification fonctionnelle de la solution de
I’équation différentielle stochastique considérée.

Cette approche de la stratification fonctionnelle pour les diffusions browniennes est justifiée &
plusieurs égards :

e Sous certaines conditions sur les coefficients de ’'EDS considérée, 'application qui au proces-
sus gaussien initial associe la solution de ’EDS est en fait une application lipschitzienne de
L?([0,T]) dans LP([0,T1]). De plus 'application qui & des marginales (X4, -- , X, ) associe
la suite des différences adjacentes (th — Xigs o Xy, — thfl) est aussi lipschitzienne. On
reste ainsi dans le cadre du théoréme 0.1.1 sur la stratification universelle.

e De plus, on verra au chapitre 3 que dans les cas cités précédemment, la loi conditionnelle
de X sachant que X tombe dans une cellule de Voronoi donnée est une semimartingale par
rapport & sa filtration naturelle. Cette propriété, démontrée plus loin dans la thése par des
arguments de grossissement de filtration permet de définir la stratification continue de la
solution d’une EDS. Ainsi, la loi conditionnelle de la solution de 'EDS associée & X est
en fait la solution de ’EDS associée & cette semimartingale. Utiliser ainsi les marginales
conditionnelles dans le schéma d’Euler correspond en fait & implémenter le schéma d’Euler
de 'EDS initiale conditionnée.

La fin de larticle présente quelques résultats numériques de cette méthode de réduction de variance
appliquée a des problémes de valorisation d’options.
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0.2 Principaux résultats du chapitre 2

Comme souligné précédemment, le quantifieur quadratique optimal d’un processus gaussien bi-
mesurable se trouve dans un plan principal de son opérateur de covariance, autrement dit, engendré
par les premiéres fonctions propres de Karhunen-Loéve. Pour cette raison, l'utilisation numeérique
d’un tel quantifieur nécessite d’avoir & sa disposition une méthode d’évaluation (rapide) de ses
fonctions propres de Karhunen-Loéve, ou au moins de celles qui correspondent aux plus grandes
valeurs propres. Les bases de Karhunen-Loéve du mouvement brownien, du pont brownien et des
processus d’Ornstein-Uhlenbeck sont connues, mais on ne dispose pas de formule fermée dans le
cas général.

Avoir a sa disposition une méthode numérique approchant les fonctions de base de Karhunen-
Loéve est le lien manquant pour la quantification d’autres processus gaussiens, comme le mouve-
ment brownien fractionnaire. La quantification du mouvement brownien fractionnaire est pourtant
intéressante en pratique car on dispose de beaucoup moins de méthodes numériques efficaces pour
ce processus que pour le mouvement brownien standard, dont la simulation est beaucoup moins
couteuse.

Dans le chapitre 2, on applique la méthode dite « de Nystrom » pour résoudre I’équation inté-
grale définissant le développement de Karhunen-Loéve. La méthode est tout d’abord testée dans le
cas des processus gaussiens cités précédemment pour lesquels on dispose de formules fermées pour
leur base de Karhunen-Loéve. Ensuite, on applique la méthode au cas du mouvement brownien
fractionnaire. Dans ce cas, afin de tester la validité de la méthode, on réalise une « reconstruction »
du processus initial, en le représentant comme la mixture de ses lois conditionnelles dans chacune
de ses cellules de Voronoi. Ainsi, en utilisant la méthode de simulation détaillée au chapitre 1,
on reconstruit théoriquement un mouvement brownien fractionnaire. La vérification consiste sim-
plement & effectuer une estimation par la méthode de Monte-Carlo de la fonction de covariance
du processus obtenu et de vérifier qu’on retrouve bien la fonction de covariance du mouvement
brownien fractionnaire.

Dans le tableau 1, on reporte les résultats de cette méthode de Monte-Carlo avec 10 millions
de tirage.

0.105061 | 0.138629 | 0.15846 | 0.173817 | 0.186687 0.105141 | 0.138748 | 0.158596 | 0.173959 | 0.186824
0.138629 | 0.277258 | 0.330656 | 0.365844 | 0.394071 0.138748 | 0.277417 | 0.330885 | 0.366075 | 0.394372
0.15846 | 0.330656 | 0.489116 | 0.557871 | 0.605929 0.158596 | 0.330885 | 0.489454 | 0.558177 | 0.606266
0.173817 | 0.365844 | 0.557871 | 0.73168 | 0.813313 0.173959 | 0.366075 | 0.558177 | 0.731923 | 0.813579
0.186687 | 0.394071 | 0.605929 | 0.813313 1 0.186824 | 0.394372 | 0.606266 | 0.813579 1.0003

TABLE 1 — Covariance théorique (& gauche) et estimée (a droite) E[X;, X; | du mouvement brow-
nien fractionnaire reconstruit, avec pour coefficient de Hurst H = 0.7. Le nombre de trajectoires
utilisées pour cette simulation de Monte-Carlo est 1 x 107.

Nous avons donc maintenant une méthode fiable pour calculer les bases de Karhunen-Loéve
de processus gaussiens plus généraux, nous permettant de calculer leur quantification optimale.
La figure 3 représente un quantifieur quadratique optimal du mouvement brownien fractionnaire
avec H = 0.25.

0.3 Principaux résultats du chapitre 3

Le chapitre 3 apporte de nouveaux résultats théoriques sur la quantification fonctionnelle et la
stratification. Tout le chapitre repose sur la notion de pont généralisé.

0.3.1 Les ponts généralisés

Soit X une semimartingale gaussienne centrée partant de 0 sur l’espace probabilisé (Q, A, P) de
filtration naturelle 7% sur [0,77]. Le théoréme de Fernique garantit que fOTE [X?] dt < +o0. Le



14

0 0.2 0.4 0.6 0.8 1

FIGURE 3 — Quantifieur N-optimal quadratique du mouvement brownien fractionnaire sur [0, 1]
de coefficient de Hurst H = 0.25 avec N = 20.

but est de calculer le conditionnement par rapport a une famille finie Z7 := (Z%)ier de variables
aléatoires gaussiennes, mesurables par rapport a o(X¢,t € [0,7]), ou I C N est une partie finie
de N*. Comme dans [1], on se restreint au cas ol les variables aléatoires (Z%.);cr sont les valeurs
finales de processus de la forme Z} = fg fi(s)dXs, i € I, pour une certaine famille finie f = (fi)ier
de fonctions L? ([0, 7). Le pont généralisé de (X;);ec(0,7] associé & f de valeur finale Z = (2;)ies

est le processus (X f E) ayant pour distribution

t€[0,T]
XL L(X|Zh=miel). (6)

Le cas du pont brownien sur [0,T] peut étre obtenu en prenant X un mouvement brownien
standard, [I| =1, f={f}et f=1.

En termes d’espaces de Hilbert gaussiens, si H est l'espace gaussien engendré par (X)ejo,1]
et HET est le sous-espace fermé de H engendré par (Z%);cr, on note H%-T son complémen-
taire orthogonal dans H. Toute variable aléatoire (gaussienne) G € H se décompose en G =

1
Projz (G)+ Proj%T (G), ot Projz et Proj%T sont les projections orthogonales sur Hz et H% .
X T
Avec ces notations, on a E [G|(Z})ier] = Projz_(G).

En fait, on va considérer des ponts browniens généralisés correspondant & certaines familles f
particuliéres. Comme X est un processus gaussien continu, sa fonction de covariance est continue
(voir |7, VIIL.3]). On note alors (e;X, A\;X);>1 ses fonctions propres et valeurs propres de Karhunen-
Loéve. Alors, si on définit la fonction fX comme la primitive de —eX s’annulant en t = T, i.e.

() = tT ;X (s)ds, une intégration par partie donne

T T
/ XeX (s)ds = / £ (s)dXs. (7)
0 0

Pour une partie finie I C N*, on note X’ et on appelle pont généralisé de Karhunen-Locve le
pont généralisé associé avec les fonctions (fi¥);cr et ayant pour point final = (y;)ies. Ce processus
a pour distribution £(X|Y; = y;,7 € I), ou Y; est la i-8me coordonnée de Karhunen-Loéve.
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0.3.2 Les ponts généralisés de Karhunen-Loéve comme semimartingales
Le théoréme de Jirina assure ’existence d’un noyau de transition

I
V2 (K0reion) BRY) x C?([0,s],R) = R,
correspondant a la loi conditionnelle £ (715‘ ((Xt)te[o,s]))-
On fait maintenant ’hypothése supplémentaire (H) que, pour tout s € [0,T) et toute fonction
(zu)ucp,s) € CY([0,s],R), la loi de probabilité V7| (X0)ecto.s)) (dy, (ﬂﬁu)ue[o,s]) est absolument

continue par rapport & la mesure de Lebesgue. On note 11 7 sa densité. La matrice de

1u)u€[0,s])
covariance de cette distribution gaussienne sur R! s’écrit

Q(s,7) ==K [(Zr —E [Z7|(Xu)ue(0.5]) ) (7T —E [Z7|(Xu)ucio.s] ) |(Xu)uep.sl]

Si X est une martingale, on a Q(s,T) ((f fi(u <X>u)> e’ Rappelons qu’une semi-
0.

martingale continue X est gaussienne si et seulement si (X) est déterministe (voir par exemple
[17]). Donc, cette hypothése supplémentaire équivaut & supposer que

Q(s,T) est inversible pour tout s € [0,T). (H)

Le théoréme suivant résulte d’une approche similaire & celle développée dans l’article [1] pour le cas
du mouvement brownien, qui est ici étendue au cas plus général d’une semimartingale gaussienne
continue centrée partant de 0. Les démonstrations font appel & des outils de grossissement de
filtration et les preuves sont détaillées au chapitre 3.

Théoréme 0.3.1. Sous Uhypothése (H), pour tout s € [0,T), et pour P -presque sdrement
_ T
JER, P HZT = y] est équivalente a P sur FX et sa dérivée de Radon-Nikodym est donnée par

S

dP ['|7T = ?] X uepo. 7@

dP |FX o, 7(7)

Proposition 0.3.2 (Les ponts généralisés comme semimartingales). Définissons la filtration GX
par GX =0 (7T,]-"tX), le grossissement de FX correspondant au conditionnement précédent. On

. . - del-|Zr Mix,) ..7(@)
considere le processus stochastique DY := [JP ]‘]:x = — 25
P ,

Sous Uhypothése (H), si DY est continue, alors X est une GX -semimartingale continue sur
0,T).

pour s € [0,T).

Remarque (Modification continue). Dans la proposition 0.3.2, si on suppose seulement que DY
a une modification continue DY, alors & chacune de ses modifications continues est associée une
GX -semimartingale continue sur [0,T) et toutes ces semimartingales sont des modifications les
unes des autres.

Proposition 0.3.3 (Continuité de DY). Si FX est une filtration brownienne standard, alors DY
a une modification continue.

On prouve dans le chapitre 3 que ’hypothése (H) est bien vérifiée dans le cas des ponts géné-
ralisés de Karhunen-Loéve du mouvement brownien standard, du pont brownien et des processus
d’Ornstein-Uhlenbeck. Le cas des processus d’Ornstein-Uhlenbeck fait appel & quelques complé-
ments sur les propriétés d’injectivité de l'intégrale de Wiener, développés en annexe.

e La premiére et principale conséquence de ce nouveau résultat est qu’en fait, la loi condi-
tionnelle d’une semimartingale gaussienne dans une cellule de Voronoi de son quantifieur
optimal (ou quantifieur produit optimal) reste une semimartingale (non gaussienne). Cette
propriété nous permet de définir précisément la stratification fonctionnelle de la solution
d’une équation différentielle stochastique, comme nous ’avons mentionné dans la présenta-
tion du chapitre 1.
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e De plus, ces résultats suggérent une nouvelle approche pour la quantification fonctionnelle
de solutions d’équations différentielles stochastiques, la quantification partielle.

0.3.3 Sur la quantification partielle

Sous les mémes hypothéses, considérons le développement de Karhunen-Loéve de X sur [0, 77,

X =Y v+ 3 aFaek, (8)

iel PEN*\T

ot (Yy)ier AN (0, diag(A;)ier). Soit maintenant YT un quantifieur stationnaire de taille N de Y.
YT peut s’écrire comme la projection au plus proche voisin sur un nuage I' = (v1,- - ,7n)-

YT = Projr(Y), ol Projp est une projection au plus proche voisin sur I'.

On définit maintenant le processus XL en remplacant Y par YT dans la décomposition (8),

XISV T S Rk,

i€l TEN*\T

La loi conditionnelle de X’*' sachant que Y tombe dans la cellule de Voronoi de ~; est la loi
d’un pont généralisé de Karhunen-Loéve de point final 7. En d’autres termes, on a quantifié les
coordonnées de Karhunen-Loéve de X correspondant & i € I et pas les autres. Ce processus ainsi
défini X1 est appelée quantification partielle de X.

Considérons ’équation différentielle stochastique
dS; = b(f, St)dt + O'(t, St)dXt, So=xz€R, te [0, T], (9)

ou b(t, x) et o(t, x) sont des fonctions boréliennes, lipschitziennes par rapport a x, ce uniformément

en t et ou o et b(-,0) sont bornées. Cette équation différentielle stochastique admet une unique

solution forte S. La loi conditionnelle de S sachant que Y; = y; pour ¢ € I est celle de la solution

forte de Déquation différentielle stochastique diSy = b(t, Sy)dt + o(t, Sp)dX [V, avec Sy = z et on
1.y IR X »

X, 7 est le pont généralisé de Karhunen-Loéve associé.

__ En conséquence, on définit la quantification partielle de S a partir de la quantification partielle
XTI de X en remplacant X par XU dans I’équation différentielle stochastique (9). La quantifi-
cation partielle SIT de S est le processus dont la loi conditionnelle sachant que Y tombe dans la
cellule de Voronoi de vj, est la solution forte de la méme équation différentielle stochastique ot X
est remplacé par le pont généralisé de Karhunen-Loéve de point final 7y,

a3IT = b (£, 507) di + o (1, 51T) AR

Le chapitre se termine par deux résultats de convergence (LP et presque stre) de ce schéma de
quantification partielle vers la solution de 'EDS (9).

0.4 Principaux résultats du chapitre 4
0.4.1 Quantification fonctionnelle de solutions d’équations différentielles
stochastiques

Une application de la quantification fonctionnelle de processus gaussiens X sur un intervalle [0, T
est la quantification d’une équation différentielle stochastique dirigée par X, dés qu’on peut définir
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Iintégrale stochastique correspondante. Dans le cas présent, on supposera que X est une semi-
martingale gaussienne continue centrée partant de 0. Des exemples typiques de tels processus sont
le mouvement brownien standard, le pont brownien et les processus d’Ornstein-Uhlenbeck centrés
partant de 0. Comme cela a déja été mentionné précédemment, le théoréme de Fernique garantit
que fOT E [th] dt < 400. De plus, la continuité trajectorielle du processus X implique la continuité
de sa fonction de covariance de T sur [0, T]?. On peut obtenir un quantifieur stationnaire de la
solution d’une EDS en remplagant X par un quantifieur stationnaire X dans 'EDS écrite au sens
de Stratonovich. Une premiére étude de cette question a été faite dans le cas unidimensionnel dans
larticle [10]. Le cas de diffusions multidimensionnelles plus générales est traité dans I’article [16],
en utilisant des techniques issues de la théorie des trajectoires rugueuses.

Formellement, considérons o le processus stochastique défini comme la solution forte de I’équation
différentielle stochastique

dO't = b(t,Ut)dt+9(t,Ut)dXt, og € ]R, (].0)

ou b(t,x) et O(t,z) sont des fonctions boréliennes, lipschitziennes par rapport a = uniformément
en t et [b(-,0)] + |0(-,0)] est bornée sur [0,7]. Sous ces conditions, il existe une unique solution
forte de ’EDS (10) sur Uintervalle [0,T]. On rappelle que si M et H sont des semimartingales
continues, l'intégrale de Stratonovich H o M est définie par H o M := H - M + %(H, M), ou
H - M désigne Uintégrale d’Ito6 de H par rapport & M. Si on suppose que 6(t,z) est dérivable
par rapport & x, on peut réécrire I’équation différentielle stochastique (10) en termes d’intégrale
de Stratonovich doy = b(t,o¢)dt — $d{(0(-,0), X); + 0(t,00) 0 dXy, oo € R. En utilisant que
d{0(-,0), X)) = 0. (¢, 0:)0(t, 0¢)d(X ), on obtient

1
dO't = b(t, O't)dt - 59;(@ O't)o(t, Ut)d<X>t + o(t, O't) 9] dXt

Rappelons qu’une semimartingale continue centrée est gaussienne si et seulement si (X) est une
fonction déterministe du temps, voir par exemple [17]. La variation quadratique (X) est explicite
dans les cas précédemment cités du mouvement brownien standard, du pont brownien et des
processus d’Ornstein-Uhlenbeck.

Dans cette équation, on remplace X par un quantifieur stationnaire de X . Ce faisant, on obtient
un ensemble d’équations différentielles ordinaires définissant un quantifieur stationnaire de o. Soit
donc y := (x%)1<i<n les trajectoires d’un quantifieur stationnaire de X. Les trajectoires (% )1<;<n
du quantifieur & sont les solutions des équations différentielles ordinaires

o o 1 o o o Y o
d5; = b(t, 5})dt — 50, (1, 5)0(t,51)d(X)0 + 0(t,5) (x') (®)dt, & =00 >0. (11)
Dans certains cas particuliers, ces équations différentielles peuvent avoir des solutions explicites,

comme dans le cas lognormal. Si on considére le cas ou b(t, z) = xu(t) et 0(t, x) = zy(t), 'équation
(11) devient

doi = Gipu(t)dt — 5.

v(t)? ~i i\’ ~i
5 d(X): +5iy(1) (X') (vdt, &} =00>0,

ce qui donne

st = v ([ wtonts + [0 () @y - 3 [0, (12)

Dans le cas général, on peut utiliser des méthodes numériques de résolutions d’équations différen-
tielles comme les méthodes de Runge-Kutta, ou le schéma de Bulirsh-Stoer, qui est particuliérement
adapté au cas de solutions d’équations différentielles trés réguliéres.

Sur la figure 4, nous représentons un quantifieur produit du processus défini par ’équation (12)
quand X est un processus d’Ornstein-Uhlenbeck sur [0, 3] issu de 0 avec des paramétres de retour
a la moyenne et volatilité tous deux égaux a 1, avec v =1, u = 0 et o9 = 100 et o x est un
5 x 2 X 2-quantifieur produit de X.
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FIGURE 4 — Quantifieur fonctionnel quadratique produit 5 x 2 x 2 de la solution de I’'EDS (11) sur
[0,3] quand X est un processus d’Ornstein-Uhlenbeck partant de 0 avec paramétres de retour a
la moyenne et volatilité de 1. Les paramétres de ’équation différentielle stochastique sont v = 1,
pn=0et op=100.

0.4.2 Application & la valorisation d’options vanilles dans les modéles a
volatilité stochastique

Considérons maintenant un modéle de volatilité stochastique sous une probabilité risque neutre
de la forme
( dF, = F,o,dW,, Fy >0,
doy = b(t,o)dt + 0(t,00)dWF, o9 >0, (13)
d(W, W), = pdt.
Le mouvement brownien W se décompose en la somme de W7 et d’'un mouvement brownien
standard W¥ indépendant de W°.

dWs = pdW? + /1 — p2dWE  ou W LW,

On note (F7)i>0 et (FF)i>o les filtrations naturelles des mouvements browniens W9 et WE.
La solution de 'EDS (13), F; = Fpexp (f(f o dWy — %f(f agds) peut s’écrire sous la forme d’un
produit

t 2t t 1_ 2 gt
F; = Fyexp (p/ osdW?J — p_/ des) exp (\/1 - p2/ o dWE — _p/ des), (14)
. 0 2 Jo g 0 2 Jo

"

=A =B

et le processus (A¢)sepo,r) ainsi défini est adapté & la filtration F7. Dans la suite, la fonction
Payoff(x,K) désigne ou bien la fonction (z — K)4+ ou bien (K — x)4, le Payoff d’un Call ou d’un
Put de prix d’exercice K. Un préconditionnement donne l’expression

E [Payoff(Frp, K)] = E[E [Payoft(Fr, K)|FZ]] )
=E [PrimeBS <AT, ((1 —p?) fOT Ugds))i,T, K)] ,

ou Ar est la valeur finale du processus défini dans I’équation (14) et ot PrimeBS(F, 0, T, K) est la
formule fermée pour le prix d’un Call ou d’un Put dans le modéle de Black et Scholes, sans taux
d’intérét ni dividende, avec un Forward F', une volatilité o, une maturité T et un prix d’exercice
K.
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A ce stade, on est donc confronté 4 un probléme de cubature par rapport a la distribution
du processus de volatilité o. Cette cubature est effectuée en utilisant le quantifieur fonctionnel
(81)1§i§]\[ de o.

N 1
E[Payoff(Fr, K)] ~ ZpiPrimeBS(AiT, ((1-p?) A ! 5'(s)%ds)) " T, K), (15)
=1

ot (A%)1<;<n désigne le quantifieur de A7 déduit de (%)1<i<n-

e Dans cette équation, (a;)1<i<n et (p;)1<i<n sont respectivement les trajectoires d’un quan-
tifieur fonctionnel de W et les poids associés. Les fonctions (6°)1<i<n sont les trajectoires
du quantifieur de o obtenues & partir de (o;)1<;<n en résolvant les EDO (11).

o Les valeurs correspondantes de ( fOT 3i(s)2ds) utilisées dans la formule (15) sont dé-

1<i<N
duites de cette quantification.

e Pour calculer les termes A%, on doit évaluer la version quantifiée de 'intégrale stochastique
[ o dWe = [Fag0dWe — L [Td(o, W), = [ og0dW? — L [T62(t,01)dt. Cela conduit
au quantifieur

2

_ r_ p [T ; P
Al — Fyexp (p/ & (1), ()t — 5/ 6%(t,50)dt — ?/ El(t)2dt> L 1<i<N
0 0 0

Dans le chapitre 4 on rappelle que ’erreur de cubature par quantification fonctionnelle station-
naire décroit logarithmiquement vers 0, ce qui est trés lent. Cependant, on peut considérablement
améliorer les performances pratiques de la méthode en utilisant une extrapolation de Richardson-
Romberg de ’erreur de cubature. Nous détaillons ces questions dans la section 4.2.2.

Les résultats numériques peuvent encore étre améliorés en utilisant une sorte de méthode
de réduction de variance pour la cubature par quantification, détaillée a la section 4.3.1. L’idée
principale est d’utiliser le Forward estimé par cubature au lieu du Forward théorique pour le calcul
de volatilité implicite. Ce faisant, on obtient un Smile de volatilité plus régulier, et plus proche de
sa valeur théorique quand on teste la méthode dans le cas particulier du modéle SABR.

La figure 5 représente le Smile de volatilité implicite estimé par cubature par quantification
(et extrapolation) et la valeur de référence donnée par la formule de Hagan de développement
asymptotique de faible maturité. On constate que la précision obtenue est suffisante pour une
utilisation en pratique de notre méthode.

0.4.3 La quantification normale

Dans la suite du chapitre 4, nous proposons un nouveau schéma de quantification de solutions
d’équations différentielles stochastiques, basé sur la notion de quantification partielle introduite
au chapitre 3. Ce schéma permet d’approcher la solution d’une équation différentielle stochas-
tique par une mixture de processus gaussiens. Pour cette raison, nous appelons cette méthode
d’approximation la « quantification normale ».

Définition 0.4.1 (Quantification normale). Soit X une martingale continue gaussienne centrée
partant de 0 sur [0,T]. Soit I une partie finie de N*. Considérons la décomposition

X=Y Vel & Y ATk,

i€l 1€N*\T

Soit T' un quantifieur stationnaire de Y = (Y;)iecr et YT la projection de Y correspondante. On
note XU et XU les quantifications fonctionnelles et partielles de X correspondant o T et I.
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FIGURE 5 — Smile de volatilité implicite dans le modéle SABR avec 8 = 1, v = 0.3, g9 = 0.2,
T =1 et p = —0.5. La courbe continue correspond & une extrapolation de Richardson-Romberg
pour le couple (208-54) de la formule de cubature basée sur la quantification fonctionnelle.

Soit S la solution forte de ’EDS
dSt = b(t, St)dt + U(t, St)dXt, SQ =, (16)

ot b(t,x) et o(t,x) sont des fonctions boréliennes, lipschitziennes par rapport ¢ x uniformément
ent et ot o et |b(-,0)| sont bornées. Alors on note

o SIT g quantification fonctionnelle de S, obtenue en remplagant X par XL dans ’EDS
(16) écrite au sens de Stratonovich.

o ST [q quantification partielle de S correspondante, obtenue en remplagant X par XY dans
EDS (16) comme au chapitre 3.

—~ —~ - iR _ _
Le processus XtI’F se décompose en th’F = XtI’F—FXI’O, o X 10 est le pont généralisé de Karhunen-
Loéve de point final 0 associé a I. On obtient

S/ =b (6,5 Y dt+o (6,57 ) dX] " + o (6,5 7) ax{®, SpT = (17)
Nous définissons la quantification normale de cette EDS comme la solution SIT de 'EDS
dSiT — (t 5:1,1“) dt ( SI.T\ ;oI aI.T 10 QLT _
1T = (t, 8! +o (6,8/")dx[" +o(t,57)ax]?, ST ==z
C’est la méme EDS que (17), dans laquelle §tIF est remplacé par §tIF dans les termes de volatilité

et de dérive.

Théoréme 0.4.1 (Erreur de quantification quadratique de la quantification normale d’EDS).
Avec les mémes notations et sous les hypothéses de la définition 4.4.4, pour tout t € [0,T) nous

avons

-~ a2
Su — Su

E { sup
w€[0,t]

] <oJ5 -5 s
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Remarque. Ces résultats peuvent étre aisément étendus au cas plus général de semimartingales
gaussiennes, dés qu’il existe une mesure localernent finie v sur [0,T] telle que pour presque tout
w € Q, le terme de variation finie dV (w) dans la décomposition canonique de X soit absolument
continu par rapport ¢ v.

A partir de la quantification normale d’une EDS, on peut facilement définir une notion de quantifi-
cation lognormale d’EDS en considérant la quantification normale de I’exponentielle de la solution
de V'EDS considérée (voir définition 4.4.5), et obtenir le méme type de controle d’erreur. Comme
c’est le cas pour la quantification fonctionnelle ordinaire, nous déduisons aisément des méthodes
de cubature associées & ces quantifications normale et lognormale, consistant dans le cas d’options
vanilles & approcher le prix d’une option dans un modéle a volatilité et dérive locale par une somme
pondérée de prix dans des modéles respectivement normaux et lognormaux. Nous faisons ensuite
la conjecture (appuyée par nos résultats numériques) que 'erreur de cubature de la quantification
normale se comporte comme ’erreur de cubature de la quantification fonctionnelle, en d’autres
termes,

e la stationnarité du quantifieur fonctionnel associé permet de gagner un ordre de convergence
pour l'erreur de cubature associée,

e l'erreur de cubature associée admet un développement asymptotique par rapport a la taille
du quantifieur N de la forme K&, + 0(€%) quand N tend vers +o0, ot £y est la distorsion
quadratique de la quantification fonctionnelle associée.

Ainsi, nous avons une méthode de cubature associée a la distribution d’équations différentielles
stochastiques de la forme
dSt = b(t, St>dt + O'(t, St)dXt,

i-e. comportant un terme de volatilité locale et un terme de dérive locale.

0.4.4 Application a la valorisation dans les modéles a volatilité locale
stochastique

On se place maintenant dans un cadre plus général. On suppose que sous une probabilité risque-
neutre, le Forward a pour dynamique

{ dFt = O'tth(t,Ft)th,

doy = b(t,o0)dt + 0(t, o) AW, (19)

ou W et W7 sont des mouvements browniens standards. On suppose que W se décompose en
pdWE + /1T — p2dW}E, ou W est indépendant W°. On note respectivement F et F7 les filtra-
tions naturelles des mouvements browniens W et W¥. De plus, on suppose que b(t, z) et 6(t, x)
sont boréliennes, lipschitziennes par rapport & = uniformément en ¢ € [0, 7] et que 6(¢,-) est de
classe C* pour tout ¢ € [0,7]. On suppose que g(t,x) est une fonction borélienne bornée et que
g(t,-) est de classe C1.

Cette situation correspond a de nombreux modéles & volatilité classique, comme SABR et
Heston. Nous détaillons les motivations de 'introduction de ce genre de modéles, impliquant un
terme de volatilité locale en plus de la volatilité stochastique dans l'introduction du chapitre 4.
Nous écrivons ’EDS (19) en termes d’intégrale de Stratonovich, ce qui donne

{ dF; = o.g(t, Fy)Fi\/1T — p2dWF + o:g(t, F;)Fyp o dW/?

20
—Zo2g(t, Fy)gl(t, ) F2dt — £ o2g(t, F,)2Fydt — SF,g(t, F)6(t, ov)dt. (20)

Considérons maintenant un quantifieur produit stationnaire o de W7, correspondant & la décom-
position N7 x -+ x N,,. La trajectoire de « correspondant au multi-indice ¢ := {1, , iy, -} est

de la forme
ot = Z \/A,‘vaf\i"ezv.

n>1
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La trajectoire de o correspondant au multi-indice 7 est définie comme la solution de 'EDO obtenue
en remplacant W7 par ot dans I’équation différentielle stochastique écrite en termes d’intégrale
de Stratonovich (20). On remplace le mouvement brownien W par son quantifieur ot et o par ot
dans ’équation (20). On obtient

dF; = o (t, F}) Fi/T— p2dW{
) ) ) ) PEAL ) ) 2
+ ot (15 Fp (0d) e — g (0, 18) gt (1, 12) (1) e
i\ 2

2

g () R gt (1) 0 (1) (D

2

v

i i
::Ft_p,i(t,Ft_) dt

= Fops (1, Fy) di + opg (1, F) Firy/T= paw”

En d’autres termes, Fi a une volatilité locale et une dérive locale. En préconditionnant par le
mouvement brownien W7, on obtient comme dans le cas précédent

E[(F - K)+] =E

E[(F, - K)+|f%]] : (22)

:¢((W:)te[o,T])

Cette espérance est ensuite calculée par la méthode de cubature issue de la quantification fonc-
tionnelle :
E[(F, — K)+]~ Y _ pids.
i€l

La fonction ¢ apparaissant dans 1’équation (22) correspond a la valorisation d’un Call ou d’un Put
dans un modéle a volatilité locale et dérive locale, comme dans I’équation (21). En conséquence et
contrairement au cas ol nous n’avions pas de terme de volatilité locale, nous ne disposons pas de
formule fermée. Nous proposons donc d’utiliser la méthode de cubature par quantification normale
pour traiter ce probléme. Nous nous reportons au chapitre 4 pour les résultats obtenus par cette
méthode.

0.5 Principaux résultats du chapitre 5

Considérons I' = {71,--- ,7~} C R? un ensemble de N points de R¢. Le probléme de la recherche
rapide de plus proche voisin consiste & déterminer pour un nouveau point x € R? quel est I’élément
de I' le plus proche de x.

Quand on doit effectuer un trés grand nombre de recherches dans le méme ensemble I', un
prétraitement sur I' sera profitable s’il permet de créer une structure de données rendant le temps
de recherche moyen plus court. Ce probléme a été résolu de maniére quasi-optimale dans le cas des
petites dimensions. La plupart des algorithmes ont une complexité asymptotique logarithmique en
le nombre de points et un temps de prétraitement de O(n logn). En pratique, les méthodes différent
par leur efficacité selon les ensembles de points auxquels ils sont confrontés et la distribution des
points dont on cherche le plus proche voisin.

Le probléme de la recherche rapide de plus proche voisin est particuliérement critique dans le
cas de la quantification vectorielle, d’une part parce que la plupart des algorithmes d’optimisation
de grilles de quantification, comme la méthode de Lloyd, nécessitent justement de faire un grand
nombre de recherches dans le quantifieur & optimiser, d’autre part parce que le calcul par la
méthode de Monte-Carlo des poids et distorsions locales nécessite lui aussi un grand nombre de
recherches. Enfin, c’est un probléme critique pour les méthodes de réduction de variance utilisant
un quantifieur Voronoi comme variable de controle, comme cela a été signalé dans l'article [8].

Beaucoup d’algorithmes de recherche de plus proche voisin reposent sur un partitionnement
récursif de ’ensemble I' résultant en une structure de recherche par arbre. La méthode la plus
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populaire est l’algorithme Kd-tree [4]. Cet algorithme a été améliorée dans larticle [11] par Mc-
Names qui tire avantage de la géomeétrie de ’ensemble I' en utilisant une analyse en composantes
principales de ’ensemble de points considéré.

Dans le chapitre 5, on propose un nouvel algorithme de recherche de plus proche voisin par
arbre de recherche. Comme les deux méthodes citées précédemment, I’ensemble I' est récursive-
ment partitionné jusqu’a ce qu’on ait un nombre suffisamment petit de points dans chaque noeud
terminal de Parbre. L’algorithme proposé tire profit de la géométrie du nuage de points en utilisant
des méthodes de partitionnement par quantification. En effet, la quantification vectorielle quadra-
tique est le pendant continu de critéres de classification automatique (et l’algorithme K-means
consiste simplement & appliquer ’algorithme de Lloyd & une distribution empirique).

Les tests effectués dans le chapitre 5 sur cette nouvelle décomposition du nuage de points
montrent qu’elle serait plus adaptée a la recherche de plus proches voisins que la décomposition
issue de l'arbre d’axe principal proposé dans [11]. Nous proposons donc un algorithme basé sur
cette nouvelle décomposition spatiale, similaire aux méthodes usuelles de recherche par arbre. Les
premiers tests effectués avec cette méthode montrent que s’il semble mieux résister & ’augmen-
tation de la dimension que les autres méthodes citées précédemment, il se comporte moins bien
que l’arbre d’axe principal en dimensions 2, 3 et 4. Nous proposons alors une optimisation de
lalgorithme permettant d’améliorer ses performances en petites dimensions. Cette optimisation
nécessite cependant un exposé plus approfondi de notions relatives aux maillages de Delaunay et
diagrammes de Voronoi.

0.A Principaux résultats de Pappendice A

Si X est une variable aléatoire L? sur R? et I' = {1, - ,yn} est un ensemble de N points dis-
tincts de R?, la meilleure facon d’approcher X par une variable > aléatoire prenant ses valeurs sur I
est d’utiliser une projection au plus proche voisin de X sur I', X' = Proj..(X). Le probléme d’op-
timisation (1) se traduit donc en un probléme de minimisation plus simple, portant sur I’ensemble
I:

min {|| X — Projp(X)|,,T C R card(T") < N} .

Nous nous référons a larticle [13] pour une revue des méthodes disponibles permettant de résoudre
ce probléme numériquement. Mentionnons par exemple ’algorithme CLVQ (Competitive Learning
Vector Quantization) qui est une sorte de méthode de gradient stochastique appliquée a l’erreur
de quantification, dont le gradient a une représentation intégrale. L’algorithme CLVQ converge
presque strement vers un quantifieur optimal (ce résultat de convergence n’a en fait été démontré
que dans le cas des distributions & support compact). Un autre algorithme couramment utilisé
pour la quantification est ’algorithme de Lloyd, qui converge vers un quantifieur stationnaire
non nécessairement optimal. La limite peut ne méme pas étre un minimum local de 'erreur de
quantification. La convergence vers un quantifieur optimal n’est & ce jour garantie que dans le
cas des distributions unidimensionnelles strictement log-concaves, comme les lois gaussiennes en
dimension 1. Dans ce cas, nous avons de plus unicité du quantifieur optimal. L’algorithme de Lloyd,
écrit de fagon formelle, implique le calcul d’espérances, qui en pratique peuvent étre évaluées par
des méthodes de Monte-Carlo. Cependant, dans le cas unidimensionnel, quand la densité et la
fonction de répartition sont connues, on dispose de formules fermées pour les espérances impliquées
dans ’algorithme.

Dans I'appendice A, nous nous consacrons a ’é¢tude des méthodes déterministes d’optimisation
de grilles de quantification pour le cas gaussien unidimensionnel. Ces méthodes déterministes per-
mettent d’obtenir des grilles trés rapidement avec une précision difficilement atteignable avec des
algorithmes stochastiques. Cela rend leur calcul « & la volée » possible pour les multiples appli-
cations utilisant les grilles de quantification unidimensionnelles, comme la quantification produit
de processus gaussiens. De plus, sur le site web www.quantize.maths-fi.com [15], nous mettons
a disposition une grande base de données de grilles de quantification gaussiennes. Pour produire
ces grilles de référence, nous utilisons ces algorithmes stochastiques et une librairie de calcul en
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précision arbitraire [2], qui nous ont permis de produire des grilles optimales unidimensionnelles
avec une précision relative de 10732 de la taille N = 1 & N = 10%. En d’autres termes, les grilles
unidimensionnelles proposées sur le site peuvent étre considérées comme ezxactes pour les nombres

flottants de simple, double et quadruple précision.
Dans le tableau ci-dessous, nous reportons les valeurs des points et des poids correspondant d’un
quantifieur quadratique N-optimal de la loi gaussienne centrée réduite sur R avec N = 9. Ces

valeurs numériques ont une précision relative de 10732,

Points Poids

—2.2546636359124154639723290300306382 3.1053737504986977564788528825468893 x 102
—1.4763917385976070721619675715970733 8.4483855789973427268858217803130418 x 1072
—0.91879588388282995755991264252455596  1.3232941900133077367386905238926516 x 10~1
—0.44363864762697592079813433780655785  1.6436025567507831709996174755021895 x 101
0.0 1.7554546405726100878504490686383316 x 10!
0.44363864762697592079813433780655785  1.6436025567507831709996174755021895 x 101
0.91879588388282995755991264252455596  1.3232941900133077367386905238926516 x 10!
1.4763917385976070721619675715970733 8.4483855789973427268858217803130418 x 1072
2.2546636359124154639723290300306382 3.1053737504986977564788528825468893 x 1072
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Chapter 1

Functional quantization-based
stratified sampling methods

Abstract

In this chapter, we propose several quantization-based stratified sampling methods to reduce
the variance of a Monte-Carlo simulation.

Theoretical aspects of stratification lead to a strong link between the problem of optimal L?-
quantization of a random variable and the variance reduction that can be achieved. We first put
the emphasis on the consistency of quantization for designing strata in stratified sampling methods
in both finite-dimensional and infinite-dimensional frameworks. We show that this strata design
has a uniform efficiency among the class of Lipschitz continuous functionals.

Then a stratified sampling algorithm based on product functional quantization is proposed
for path-dependent functionals of multi-factor diffusions. The method is also available for other
Gaussian processes such as the Brownian bridge or an Ornstein-Uhlenbeck process. We derive in
detail the quantization of the Ornstein-Uhlenbeck process.

The balance between the algorithmic complexity of the simulation and the variance reduction
factor has also been studied.

Joint work with Gilles Pageés.

Keywords: functional quantization, vector quantization, stratification, variance reduction, Monte-
Carlo simulation, Karhunen-Loéve, Gaussian process, Brownian motion, Brownian bridge, Ornstein-
Uhlenbeck process, fractional Brownian motion, principal component analysis, numerical integra-
tion, option pricing, Voronoi diagram, product quantizer, path-dependent option.
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28 CHAPTER 1. FUNCTIONAL STRATIFICATION

Introduction

The quantization of a random variable X consists in its approximation by a random variable Y’
taking finitely many values. This problem has been initially investigated for its applications to
signal transmission and for compression issues. (See [9].) In this context, quantization was a
method of signal discretization. The point of interest was to design the random variable Y in
order to minimize the resulting error for a fixed quantization level N. This led to the concept of
optimal quantization.

More recently, quantization was introduced in numerical probability to devise numerical inte-
gration methods [24] and to solve multidimensional stochastic control problems such as American
options pricing [1] and swing options pricing [2]. Optimal quantization has many other applica-
tions and extensions in various fields such as automatic classification (quantization of empirical
measures) and pattern recognition.

Since the early 2000’s, the infinite-dimensional setting has been extensively investigated from
both theoretical and numerical viewpoints with a special attention paid to functional quantization
[20, 25]. Bi-measurable stochastic processes are viewed as random variables taking values in their
path spaces such as L2 := L2([0, T, dt).

Still the Monte-Carlo simulation remains the most common numerical method in the field of
numerical probability. One reason is that it is easy to implement in an industrial configuration. In
the industry of derivatives, banks implement generic Monte-Carlo frameworks for pricing numerous
payoffs with a wide variety of models. Another advantage is that the Monte-Carlo simulation can
be parallelized.

Variance reduction methods can be used to reduce dramatically the computation time of a
Monte-Carlo simulation, or to increase its accuracy. Main variance reduction methods are (adap-
tive) control variate, pre-conditioning, importance sampling and stratification [10, 19]. The prob-
lem is that these methods may strongly depend on the payoff or the model and imply specific
changes in the practical implementation of the Monte-Carlo simulation. Thus, most institutions
do not implement the most advanced methods in practice except for marginal cases.

In this chapter, we point out theoretical aspects of quantization that lead to a strong link
between the problem of optimal L?-quantization of a random variable and the variance reduction
that can be achieved by stratification. We emphasize the consistency of quantization for designing
strata in stratified sampling methods in both finite-dimensional and infinite-dimensional frame-
works. Then we devise a stratified sampling algorithm based on product functional quantization
for path-dependent functionals of multi-factor Brownian diffusions. We show that this strata de-
sign has a uniform efficiency among the class of Lipschitz continuous functionals of the Brownian
motion. The simulation cost of the conditional path is O(n) where n is the number of discretiza-
tion dates, as for naive Monte-Carlo simulations. In this context, this stratification-based variance
reduction method can be considered as a guided Monte-Carlo simulation. (See Figure 1.5.) The
method extends to any Gaussian process as soon as its Karhunen-Loéve decomposition is explicitly
known. This is the case for the Brownian bridge or the Ornstein-Uhlenbeck process. The special
case of the Ornstein-Uhlenbeck process is derived in Appendix 1.A.

A very common situation is the case of Monte-Carlo simulations of multi-factor Brownian
diffusions approximated by their Euler scheme. The presented method is particularly adapted
to this situation. Even in the multidimensional case, no matter how the independent Brownian
motions are correlated or used afterwards; no matter if it is used for diffusing the underlying stock,
a stochastic volatility process or an actualization factor. Functional stratification can be used as
a generic variance reduction method. The point is that it is used upstream in the Monte-Carlo
framework. One does not need to re-implement the whole framework but only the way it is input
with Brownian motions. Thus quantization-based functional stratification can come along on the
top of a computation procedure. In the last section, numerical tests are provided with a benchmark
with an Up-In Call option pricing in the Black and Scholes model.

The chapter is organized as follows. Section 1.1 presents the main results about optimal quan-
tization that are required bellow. The emphasis is on the functional quantization of Gaussian
processes. Section 1.2 presents the first historic quantization-based variance reduction method:
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using quantization as a control variate variable, as proposed in [25, 18]. Then Section 1.3 out-
lines the links between quantization and stratification. The emphasis is on the Gaussian case.
The method is specified in the functional case for Gaussian processes in Section 1.4. We present
a simulation method for the Brownian motion and other examples of Gaussian processes (such
as the Ornstein-Uhlenbeck process and the Brownian bridge) that preserves the O(n) simulation
complexity where n is the number of time steps. In Section 1.5, we provide numerical experi-
ments of the method with option pricing problems arising in mathematical finance. Appendix
1.A presents the computation of the Karhunen-Loéve decomposition of Ornstein-Uhlenbeck pro-
cesses, and the related numerical methods. A procedure for the computation of the eigenvalues
is provided. Appendix 1.B provides closed-form expressions of a regression matrix needed for the
functional stratification fast simulation algorithm, in the cases of the standard Brownian motion,
the standard Brownian bridge and Ornstein-Uhlenbeck processes.

1.1 Optimal quantization, the abstract framework

1.1.1 Introduction to quantization of random variables

In the following, (2, A, P) is a probability space, and E is a reflexive separable Banach space. The
norm on F is denoted by |- |. We assume that the random variables are defined on (£2,.4,P). One
denotes N* := {1,2,---}.

The principle of the quantization of a random variable X taking its values in F is to approx-
imate X by a random variable Y taking a finite number N of values in E. The discrete random
variable Y is a quantizer of X.

The resulting error of this discretization is the LP-norm of |X — Y|. One wants to minimize
this induced error. This gives the following minimization problem:

min {|| X —Y||,;,Y : Q — E measurable, card(Y (Q2)) < N}. (1.1)

Definition 1.1.1 (Voronoi partition). Consider N € N*, I" = {~,--- ,yn} C E and let C =
{C4, -+ ,Cn} be a Borel partition of E. C is a Voronoi partition associated with T if Vi €

1,---,N}, C; C e FE, € —v| = i — Yily-
{ } {eeble—ml= _min &=}

If C = {C4,---,Cn} is a Voronoi partition associated with I' = {~q,--- ,yn}, it is clear that
Vie{l,---,N},v; € C;. C;is called Voronoi slab associated with v; in C' and ~; is the centre of
the slab C;.

One denotes C; = slabga(v;), and for every a € T', W (a|T') is the closed subset of E defined by

W(alr) = {y € B,ly - ol = minly — ]}

Definition 1.1.2 (Nearest neighbour projection). Let us consider the fized point set T = {y1,--- ,yn} C
E and C = {C,--- ,Cn} the associated Voronoi partition. The nearest neighbour projection onto

N
T is the application Projr := > vilc,.

i=1

Proposition 1.1.1. Let X be an E-valued LP random variable, and Y taking its values in the
fized point set T = {v1,--- ,ynv} C E where N € N. Set X' the random variable defined by

XT .= Projp(X) where Projp is a nearest neighbour projection onto I', called a Voronoi I'-quantizer
of X.
Then we clearly have ‘X - X\F‘ < |X —Y| as.. Hence HX - X\FH <X =Yp.

P

As a consequence of the previous proposition, solving the minimization problem (1.1) amounts
to solving the simpler minimization problem

min {|| X — Projp(X)|lp, T' C E, card(I') < N}. (1.2)



30 CHAPTER 1. FUNCTIONAL STRATIFICATION

The quantity || X — Projp(X)||, is called the mean LP-quantization error. When this minimum is
reached, one refers to optimal quantization.

The problem of the existence of a minimum has been investigated for decades on its numerical
and theoretical aspects in the finite-dimensional case [23, 11].

e For every N > 1, the LP-quantization error is Lipschitz continuous and reaches a mini-
mum. An N-tuple that achieves the minimum has pairwise distinct components, as soon as
card(supp(Px)) > N. This result stands in the general abstract case of a random variable
valued in a reflexive separable Banach space. (This has been prooved in [20].)

o If card(X(Q)) is infinite, this minimum strictly decreases to 0 as N goes to infinity. The
rate of convergence is ruled by Theorem 1.1.2 in the finite-dimensional case.

Theorem 1.1.2 (Zador). e (Sharp rate) (See [11]) Let r > 0 and X € LPT(P) for some
17> 0. Let Px(d€) = ¢(£)dE + u(d€) be the canonical decomposition of the distribution of X
(1 and the Lebesgue measure are singular). Then, (if ¢ # 0), the L" quantization error of
level N, En ., satisfies

-
+
sl

e (XY v T ([ o) N, (1.3)

where J,. 4 € (0,00).

e (Non-asymptotic upper bound) (See [22]) Let d > 1. There exists Cq,r,, € (0,00) such that,
for every R%-valued random vector X,

1

YN >1, En(X,RY < Coqrnl X|rinN"7. (1.4)

This mainly says us that min { HX — )A(H , card(T") < N} N Cpy p.aN~4. The first state-
P —> 00

ment of the theorem was first proved for distributions with compact supports by Zador in [32].
Then a first extension to general probability distributions on R? is developed in [5]. The first math-
ematically rigorous proof can be found in [11]. The non-asymptotic error bound of the second
statement is proved in [22].

In Figure 1.1, the Voronoi partition of a random N-quantizer and an L2-optimized N quantizer
of the N(0, I) distribution are given.

—4l

|
-3 -2-10 1 2 3 4 -3

Figure 1.1: Voronoi partition of a random quantizer and a L2-optimized N-quantizer of the
N(0, I) distribution in R2. (N = 48).
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1.1.2 Stationarity and centroidal Voronoi tessellations

We now assume that E is a separable Hilbert space (H, (-, ).
e Cn(X) is the set of L?-optimal quantizers of X of size V.

e Ey(X) is the minimal quadratic distortion that can be achieved when approximating X by
a quantizer of level N.

Definition 1.1.3 (Stationarity). A quantizer Y of X is stationary (or self-consistent) if
Y = E[X]|Y]. (1.5)

Proposition 1.1.3 (Stationarity of L2-optimal quantizers). A (quadratic) optimal quantizer is
stationary.

We refer to [11] for a detailed proof in the finite-dimensional setting and to [20] in the separable
Hilbert setting.

The stationarity is a particularity of the quadratic case (p = 2). In other LP cases, a similar
property involving the notion of p-centre occurs. A proof of is available in [12].

A consequence is, if Y = Projp(X) is an L%-optimal quantizer, and C' = {Cy,---,C,} is the
associated Voronoi partition, one has Vy € I', y = E[X|X € slab¢c(y)].

Proposition 1.1.4. Let X be an H-valued L* random variable. Let us denote by Dx the squared
quadratic quantization error associated with a codebook of size N with respect to X.

DY HY - R,
=, ,w) — E nglNlX—%-I?{] .

The distortion function DJ)\(, is |-| g -differentiable at N -quantizers T € H™ with pairwise distinct
components and

VDX(F):2(/ (%—g)PX(dg)) —o2(E| (X" -X)1,. . (16)
N Ci(I) 1sisN ( ) {XF:%} 1<i<N

Hence any Voronoi quantizer associated with a critical point of DJ)\(, 18 a stationary quantizer.
We refer to [27] for a detailed proof.

Definition 1.1.4 (Centroidal projection). Let C = {C1,--- ,Cn} be a Borel partition of H. Let

us define for 1 <i < N, Gi = { 0 in the other case,
X and C.

N
The centroidal projection associated C and X is the application Projo x : x = ) Gilc,(x).
i=1

the centroids associated with

Lemma 1.1.5 (Huyghens, variance decomposition). Let X be a H-valued L? random variable,
N

N € N* and C = (C)1<i<n a Borel partition of H. Consider Projo x = > Gilc, the associated
i=1

centroidal projection. Then one has,

Var(X) = E [|X — Projo x(X)|’] +E [[Proje x (X) — E[X]|*].

v

v~ "

:=(1) :=(2)

The variance of the random variable X decomposes itself into the intraclass inertia (1) plus the
interclass inertia (2).
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Proof:
Var(X) =E[|X — Proje x(X) + Proje x (X) — E[X]|”
=E[|X — Proj x (X)|*] +E [|Proje, x (X) — E[X]|’]
—() -2
+2E [(X = Projg x (X), Proje, x (X) — E[X])] .
::v3)
Now (3) = 0 since Proje, x (X) = E [ X|Proje x (X)]. O

1.1.3 Optimal quantization and principal component analysis
Reduction of dimension

The aim is now the reduction of the quantization problem to finite-dimensional subspaces of H.
For any finite-dimensional subspace U of H, we denote by IIyy the orthogonal projection onto U.

Proposition 1.1.6. Let U be a finite-dimensional linear subspace of H. Then

Ex(ly (X))2 < Ex(X)? < inf {E {gleig X — a|\2] JTCU 1< cardl < N}
=E[|X — Iy (X)]*] + (T (X))?.

In other words, the quadratic quantization error with respect to I' C U consists of the projection
error and the quantization error of the projected random variable. We refer to [20] for a detailed
proof.

Notation: Let dy(X) = min{dimspan(I'),I’ € Cy(X)} denotes the quantization dimension of
the level N of the quantization problem for X.
It follows from Proposition 1.1.6 that

. V' C H linear subspace
£4,(X) = min {E[IX — Ty (X)) + £ (T (X)), bace |

such that dim V' > dn (X)

Covariance operator of a random variable

Definition 1.1.5. Let X be a centered H-valued L? random variable.
The covariance operator Cx : H — H of X is defined by Cxy = E[(y, X)X].

1. In the finite-dimensional case, the matrix of C'x in the canonical basis is the covariance
matrix of X.

2. If X = (X¢t)e[0,7] is a bi-measurable centered process with covariance function I'x (s, t) :=
E[X,X:] satisfying [jo 7y 'x(s,s)ds < +oo. Then X can be seen as a L?([0, T}, dt)-valued
random variable with E [|X|2} < 0.

Cxy = / y(s)T'x (s, )ds, y€ L2([O,T], dt). (1.7)
[0,T]

In [20], it is proved that linear subspaces U of H spanned by n-stationary codebooks of Gaus-
sian measures correspond to principal components of X. In other words, they are spanned by
eigenvectors of C'x corresponding to the m largest eigenvalues. Thus these subspaces correspond
to the first m principal components of X .
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Theorem 1.1.7. Let T be an optimal codebook for the Gaussian random variable X, U = span(T)
andm = dimU. Then Cx(U) =U and E [|X - HU(X)|2] = ¥ A where M > A >--->0

j>m+1
are the ordered non-zero eigenvalues of Cx (written as many times as their multiplicity).

> AF =inf {E[|X —IIy(X)[’] : V C H linear subspace, dimV =m}.
j>m+1

We now deduce the final representation of Ex(X).

m 2
EN(X)?2= > A +én (@N (o,Aj.f)> for m > dy(X), (1.8)
j=1

j>m+41
m 2
Ev(X)??< Y A +én (@N(O,Af)) for 1 <m < dy(X). (1.9)
j>m+1 j=1

A detailed proof of this result is available in [20]. Equations (1.8) and (1.9) show that for the
quantization of a Gaussian process X, as soon as we know its Karhunen-Loéve basis (e:X),en-
and its eigenvalues (AX),en+, the problem of optimal L?-quantization comes to the problem of
the quantization of a Gaussian vector of dimension dy .

1.1.4 Product quantization

Let (en)nen+ be a Hilbert basis of H and I C N* be a nonempty finite subset of N*. For every
k € I, consider a Nj-tuple I'* = {x’f, e ,x?vk} CcR.

An easy way to construct a quantizer is to define the codebook I' by the set of the points x
such that for every k € I, (z,ex) € I'* and for every k € N*\I, (z, ex) = E[(X, ex)].

The Voronoi cells associated with such a codebook are hyper-parallelepipeds.

Proposition 1.1.8 (Case of independent marginals). With the same notations, if one assumes
that the marginals of X, ((X,e1), (X, ea),--) are independent, then one can choose for each k € T
the values T* = {x’f, - ,:C’ka} such that Y* = Projp. (X, ex)) is a stationary quantizer of (X, ex).

Then'Y = Projp(X) is a stationary quantizer of X.

This method yields a stationary quantizer with a simple projection rule. A drawback of product
quantization is that one needs to restrict to the case of independent marginals in order to preserve
stationarity.

1.1.5 Numerical optimal quantization

Various numerical algorithms have been developed to numerically obtain an optimal N-grid with a
minimal quadratic quantization error in the finite-dimensional setting. A review of these methods
is available in [27]. Let us mention Lloyd’s algorithm for the quadratic case, which is the natural
probabilistic counterpart of a classification algorithm due to Forgy [8].

Another algorithm is a stochastic gradient method which is suggested by the fact that the
L2-quantization distortion function is differentiable at any N-tuple having pairwise distinct com-
ponents and a Px-negligible Voronoi tessellation boundary and has an integral representation.
The algorithm is deeply investigated in [24].

Equation (1.6) shows that any Voronoi quantizer associated with a critical point of D= is a
stationary quantizer. In the case of one-dimensional distributions, such as the Gaussian distri-
bution, the Hessian of the distortion is known and can be represented by a tridiagonal matrix.
Hence, it is easy to invert and a Newton-Raphson method can be implemented. It is completely
detailed in [24] in the Gaussian case. It remains the fastest way to compute L?-optimal quantizers
of one-dimensional Gaussian variables.
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1.1.6 Quantization of Gaussian processes

Quantization

From now on, we will assume that X is a bi-measurable Gaussian process defined on the probability
space (2, A, P) satisfying E [|X|%2T] = ({T]E[Xf]ds < 0o. Moreover, we assume that the covariance

function I'X is continuous.
We have seen in Section 1.1.3 that in this context, as soon as one knows the Karhunen-Loéve

system (eX, \X),en+ of the covariance operator of X, the problem of the L?-optimal quantization
n n
m

of the process X comes to the quantization of a finite-dimensional Gaussian vector @ N (0, )\JX ), for

Jj=1
some positive integer m, the quantization dimension. The companion parameters of the functional
m
quantizer are easily deduced from the quantizer of @ AN(0,\) that is used.
j=1
All this is valid for any Gaussian process X with a continuous covariance function, as soon as
one knows its Karhunen-Loéve basis. Several usual Gaussian processes have explicit Karhunen-
Loéve expansions, such as the Brownian motion and the Brownian bridge. The Ornstein-Uhlenbeck
process admits a semi-closed-form for its Karhunen-Loéve expansion. (The formula is derived for
normalized parameters in the stationary case in [13, p.195].) In Section 1.A, the computation
of Karhunen-Loéve decomposition of the Ornstein-Uhlenbeck process is detailed in the general

Gaussian case (ro AN (mo, 0?)). As far as we know, the K-L expansion of the fractional Brownian
motion is not known.
Further in the chapter, numerical illustrations will be given for the following cases.

1. The Brownian motion (W:)ico,7):

eV (t) = \/gsin (W(n— 1/2)%) , A= <ﬁ>2 n>1. (1.10)

2. The Brownian bridge on [0, 7:

2
eBt) = \/%Sin (wn%) , A= (71-_7;1) , n>1. (1.11)

3. The Ornstein-Uhlenbeck process on [0, 7], starting from 0, and defined by the SDE
dre = —0rdt + odWr, (1.12)

with o > 0, § > 0 and W a standard Brownian motion on [0, T:

2
oU /N . 1 . ou._ O
en (t):= m sin(wnt), A= 102 n>1, (1.13)
2 4wn,

where (wn)n>1 are the strictly positive solutions of the equation
Osin(wnT) + wy cos(wnT) = 0,

sorted in an increasing order. (Based on results from Section 1.A.)
4. The stationary Ornstein-Uhlenbeck process on [0,7]. (See Section 1.A.)

In Figure 1.2, one can see an N-optimal L2-quantizer of the standard Brownian motion.

Product quantization

Thanks to Equations (1.8) and (1.9), product quantization of the finite-dimensional Gaussian
m

vector & 5 X N(0, )\JX) yields a stationary quantizer of the process X. In this context, let us

j=1
introduce the following notations:
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2.5
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0

Figure 1.2: Optimal quantizer of a standard Brownian motion on [0, 1].

The quantizer of X is X = PORVA.PS gnef , where &, is an optimal N,-quantizer of &, and

n>1
Ny x--+x N, <N, Nq,---,N, > 1. (Hence for large enough n, N,, = 1 so that &, =0.)
The paths of an Ny X - - - X N,-quantizer x and a multi-index ¢ = {41, - , iy, - } that produces

this quantization are of the form

xi= D VAraeX. (1.14)

n>1

A quantizer x defined by Equation (1.14) is called a K-L product quantizer. Furthermore, one
denotes by Opq(X, N) the set of the K-L product quantizers of size at most N of X.
In the case of a product quantization, the counterpart of Equation (1.8) is

E {m_in|X _X£|2] = i AEE { min

N,
&n — :Ez( 2
n=1 1S7;71SN71 "

] + XA

] +E [|X|%2T] - é AN

- E e i fen-ol

where m is the quantization dimension.

Product decomposition blind optimization

The lowest quadratic quantization error induced by a K-L-product quantizer having at most N
codebooks is obtained as a solution of the minimization problem

min {e(x), X € Ope(X, N)}, (1.16)
that is, thanks to Equation (1.15)

2
2

d
min{zl)\ffglj\glug—fn + zd: A, Ny x - x Np <N, dz1}. (1.17)
n= n>d+1

A solution of (1.16) is called an optimal K-L product quantizer.



36 CHAPTER 1. FUNCTIONAL STRATIFICATION

The blind optimization procedure consists in computing the criterion for every possible decom-
position N7 x --- x N, < N. For a given Gaussian process X, results can be kept off-line for a
future use. Optimal decompositions for a wide range of values of N for both Brownian bridge and
Brownian motion are available on the web site www.quantize.maths-fi.com [26] for download.
The blind optimization procedure is more thoroughly described in [25]. Let us remind that the
optimal decomposition depends on the parameters of the Ornstein-Uhlenbeck process (¢ and 6 in
Equation (1.12)) and the maturity.

Some values of optimal decompositions for the stationary Ornstein-Uhlenbeck process are given

in Table 1.1.

| N | Ny | squared L? quantization Error | Ny, decomposition ]
1 1 1.5 1
10 10 0.65318 5-2
100 96 0.40929 6-4-2-2
1000 960 0.29618 10-6-4-2-2
10000 | 9984 0.23150 13-8-4-3-2-2-2

Table 1.1: Record of optimal product decomposition values of the stationary centered Ornstein-
Uhlenbeck process given by dr; = —0ridt + cdW; on [0,T] with § =1, 0 =1 and T = 3.

Proceeding in this chapter, we will be confronted with other similar optimization problems
(with another criterion than the quadratic distortion). The blind optimization procedure will be
the way to compute optimal product decomposition databases.

In Figure 1.3, one can see examples of optimal product quantizers of the Brownian motion
and the Brownian bridge on [0,1]. In Figure 1.4, one can see optimal product quantizers of the
centered Ornstein-Uhlenbeck process starting from rg = 0 and a stationary Ornstein-Uhlenbeck

on [0, 3].
2.5 ‘ 1 : :
2 0.8
1.5 0.6
1 0.4
0.5 0.2
0 0
—0.5 —0.2
-1 —0.4
-1.5 —0.6
-2 —0.8
-25 ‘ ‘ ‘ L - ‘ R ‘
0 0.2 04 06 0.8 0 0.2 04 06 0.8 1

Figure 1.3: Optimal product quantizer of a standard Brownian motion (left) and a standard
Brownian bridge (right) on [0, 1].

Rate of decay for the quantization error

In [20], a precise link between the rate problem and Shannon-Kolmogorov’s entropy of X is estab-
lished. This allowed them to compute the exact rate of convergence of the minimal L2-quantization
error under rather general conditions on the eigenvalues of the covariance operator. Typical rates
are O(log(n)~*), a > 0. This conditions are fulfilled by a large class of processes, such as the
Ornstein-Uhlenbeck process and the Brownian motion.
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Figure 1.4: Optimal product quantizer of a centered Ornstein-Uhlenbeck process, starting from
ro = 0 (left) and stationary (right) given by dr; = —ridt + dW4, on [0, 3].

1.2 Quantization as a control variate: a first attempt to
quantization-based variance reduction

This method has been initially proposed in [25].

1.2.1 Quantization as a control variate variable

Let X : (2, A,P) — FE be a square-integrable random variable, consider N € N* and let T' =
{y1,- -+ ,y~n} be an N-codebook. We suppose that we have access to a I-valued quantizer ¥ =

N
Proj(X) = > yile,(X) where C = {Cy,---,Cn} is a partition of E. At this step, we do not
i=1

need Proj to be a nearest neighbour projection onto I'.
Let FF : E — E be a Lipschitz continuous function such that F(X) € L?(P). In order to
compute E[F(X)], one writes:

E[F(X)] =E[F(Proj(X))]+E [FA(JX) — F(Proj(X))]
= E [F(Proj(X))] + % > F (X)) — F (Proj (X)) +Ry (1.18)
(@) —r . _

(b)

where X(™) 1 < m < M are M independent copies of X, and Ry ar is a remainder term defined
by Equation (1.18).

Here, term (a) can be computed by quantization and term (b) can be computed by a Monte-
Carlo simulation. Now

| Ry a2 = ”(F(X)—\/%’roj(X))) < IFX)—F(Proj(x))ll2

B )%MP (X
S[F]Lip” *\;%( )||2'

Furthermore, \/MRMMEU\/' (0, Var (F(X) — F(Proj(X)))) -

Consequently, in the d-dimensional case, if F'is simply a Lipschitz continuous function
and if (Yy)nen = (ProjN(X))NeN is a rate-optimal sequence of quantizers of X,

HF(X) —F (ProjN(X)) H2 < [F]Lip%

and
Cx

IRN |2 < [F]Lipm'
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Likewise, in the case of the Brownian motion, if (WN)N>1 is a rate-optimal sequence

of product quantization of the Brownian motion, if F is simply a Lipschitz continuous functional,
then

_ C
N w
)= (F)], < Pl
and
Cw
R < |Flrip————75-
H N1M||2 — [ ]L leOg(N)l/2

1.2.2 Practical implementation: the problem of fast nearest neighbour
search

e The complexity of the projection: Concerning practical implementation, one notices in
Equation (1.18) that for every step of the Monte-Carlo simulation, one has to compute the projec-
tion Proj(X (™). This is the critical part of the algorithm when dealing with optimal quantization.
Hence, the efficiency of the quantization as a control variate variable is conditioned by the effi-
ciency of the projection procedure. When dealing with Voronoi quantization, this is the nearest
neighbour projection.

The problem of nearest neighbour projection, also known as the post-office problem [17], has
been widely investigated in the area of computational geometry. It is encountered for many
applications, such as pattern recognition and information retrieval.

The problem has been solved near optimally for the case of low dimensions. Algorithms differ on
their practical efficiency on real data sets. For large dimensions, most solutions have a complexity
that is exponential with the dimension, or require a longer query time than the obvious brute force
algorithm. In fact for dimension d > log NV, a brute force algorithm is usually the best choice. This
effect is known as the curse of dimensionality. Still, even in low dimension, fast nearest neighbour
search is a critical part of the algorithm. We refer to [31] for a review about fast nearest neighbour
search algorithms. Let us also mention [6] for a fast nearest neighbor search algorithm based on
vector quantization.

Concerning vector quantization, the speed of the projection can also be increased by relaxing
the hypothesis that the projection onto the quantizer is a nearest neighbour projection. It can be
done by designing other kind of partitions of the state space.

e The functional case: Another drawback of the method, when dealing with the functional
case is that one does not simulate the whole trajectory of the stochastic process but only its
marginals at discrete dates. Hence it is not possible to compute its projection. This problem
finds its solution in the simulation scheme for Gaussian processes derived in Section 1.4.2 for the
functional stratification.

A variance reduction technique using a functional quantizer of the Brownian motion as a control
variate has been proposed in [18].

1.3 Application of quantization to stratification

1.3.1 A short background on stratification

The base idea of stratification is to localize the Monte-Carlo simulation on the elements of a
measurable partition of the state space of a L? random variable X : (Q,.4) — (E,£).

e Let (A;)ier be a finite E-measurable partition of E. The sets A; are called strata. Assume
that the weights p; = P(X € A;) are known for ¢ € T and strictly positive.

e Let us define the collection of independent random variables (X;);c; with distribution
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Remark: One assumes that one can write X; = ¢;(U) where U is uniformly distributed on [0, 1]"
and ¢; : [0,1]" — R is an easily computable function. (One has r; € NU{+o0}, the case r; = 400
occurs for example in the case of the acceptance-rejection method.) This condition simply means

that the random variables X; & L(X|X € A;) are easy to simulate on a computer.

It is a major constraint for practical implementation of stratification methods. This simulability
condition usually has a strong impact on the possible design of the strata. In the following, one
will come back several times on this condition.

Let F: (E,€) — (R, B(R)) such that E[F?(X)] < +o0.
E[F(X)] = Z E[lixeay F(X)] = %piE[F(XﬂX € Aj
sz [F(X3)].

iel

The stratification concept comes into play now. Let M be the global budget allocated to
the computation of E[F(X)] and M; = ¢;M the budget allocated to compute E[F(X;)] in each

stratum. One assumes that > ¢; = 1. This leads to define the (unbiased) estimator of E[F(X)]:
i€l

M;
Xy, = Zpi% S P (xF), (1.19)
Y k=1

icl
where (XF)1<k<ns, is a L(X|X € A;)-distributed random sample.
Proposition 1.3.1. With the same notations:

Var( ) Z p—ia%l, (1.20)
where of,; = Var(F(X)|X € A;) = Var(F(X;)) Vi e I.

(XF). The random variables (Z;);c; are independent. We

Proof: Let us denote Z; = 1\}1

have F'( ) v = 2 DiZ;. Hence, by independence,
icl

1 2
Var ( ) sz Var(Z Zpl — Var (X:) = i Z p—l_afm-.
il il ier b
O
Optimizing the simulation allocation to each stratum amounts to solving the following mini-
mization problem:
p?
min —10'%1 where Pr = (qi)igj S R{F
(¢:)EP1 il q;

> ai= 1}. (1.21)

iel
Sub-optimal choice

The first natural choice is to set
¢%=pi, i€l (1.22)

The two motivations for this choice are the facts that the weights p; are known and because it
always reduces the variance.

T ot —Zezlpzom S E|(F00) - EFCOIX € A7) 14,(0)]

= [|[F(X) = E[F(X)]o( XEA} i€ I3
< IF(X) - [ ( )]II = Var(F(X)).
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Optimal choice

The optimal choice is the solution of the constrained minimization problem (1.21). Schwarz’s
inequality yields

2 2
DiOFi DiOF, 1/2 1/2
S nn = X P < (2 RR) P (304)
iel i€l Vi ier @ i€l
——
=1
As a consequence, the solution of the minimization problem corresponds to the equality case
in Schwarz’s inequality. Hence the solution of the minimization problem is given by

« __ DiOF;

qi - 9
> PiOF;j
jeI

iel (1.23)

2
and the corresponding minimal variance is given by ( > piapﬁi) .
iel
At this point, the problem is that one does not know the local inertia 0%71-. Still, using the fact
that LP norms are decreasing with p, one sees that

ors > B[ [F(X) ~E[F(OI{X € 4]l [{X € 43].

so that

2
2
(Zpiaﬂi> > HF(X) CE[F(X)|o({X € A}, i€ 1) H1
icl
In [29], Etoré and Jourdain proposed an algorithm for adaptively modifying the proportion of
further drawings in each stratum, that converges to the optimal allocation. This can be used in a
general framework.
In Section 1.3.2, we will see that the problem of designing good strata, in term of variance
reduction is linked with the problem of optimal quantization. Moreover, the case of quantization-
based strata have two other advantages:

e The weights p; are already known, which saves us from evaluating their values during the
Monte-Carlo evaluation.

e As concerns the optimal choice for the allocation parameters ¢;, one shows in Theorem 1.3.2
that weights can be chosen such that stratification has a uniform efficiency among the class
of Lipschitz continuous functionals. This weights have a closed-form expression in the case
of quantization-based stratification.

1.3.2 Stratification and quantization

The main drawback induced by using quantization as a control variate variable is that it requires
repeated computations of projections onto the quantizer. (Nearest neighbour search in the case
of a Voronoi quantizer.) The point when dealing with stratification is that one does not have
to use a projection procedure. The critical point now is the cost of the simulation of conditional
distributions £(X|X € A;), i € I.

Theorem 1.3.2 brings together previous results about stratification and highlights the relation-
ships with the notions of local inertia and intraclass inertia. It stresses the fact that stratification
has a uniform efficiency among the class of Lipschitz continuous functionals.

Theorem 1.3.2 (Universal stratification). Let A = (A;)icr be a partition (stratification) of E.
(Keep in mind the notation Proj, 5 for the centroidal projection associated with the random vari-
able Z and the partition A, defined in Definition 1.1.4).
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1. For every i € I, consider the local inertia of the random variable X,

o? =E[|X —E[X|X € Ai]|2‘X €A

Then, for every Lipschitz continuous function F : E — R,

Viel, OF,i < [F]Lipoi so that sSup Of; < o;. (124)
[FlLip<1

2. In the case of the sub-optimal choice (see Section 1.3.1),

2
swp (L piok,) < Tpio? = ||X ~EX|o({X € 4}, i e 1)
[FlLip<1 ‘i€l ' i€l 2 (1.25)

2
- HX ~ Proj, X(X)H .
’ 2

3. In the case of the optimal choice (see Section 1.3.1),

sup (ZpiUF,i)2 < (mei)z, (1.26)
i€l

[Flip<1 icl

and
2

(;pm)Q > HX “E[X|o({X € A}, i€ I)]Hj - HX - ProjAﬁx(X)Hl.

4. If one considers vector-valued Lipschitz continuous functions F' : E — E, then inequalities
(1.24), (1.25) and (1.26) hold as equalities.

Proof: One has
0%11- = Var (F(X)|X € A;)
=E[|F(X) —E[F(X)|X € 4]P|X € A}
<E[|F(X) - FE[X|X € A])*|X € A

Now using that F' is Lipschitz, it follows that

1
0%, < [F]iip;E [1X —E[X|X € AP Lixeay] = [F2lLipo?.

Items 2 and 3 easily follow from Item 1. Claim 4 is obvious by considering F' = Idg. O

The idea now is to set I = {1,--- , N} and use the partition {A;,---, Ay} and the N-codebook
N

I = {7, - ,y~n} associated with the projection Proj = ~ila,. In the case of a Voronoi
i=1

quantization, we have A; = slab4(v;).
Then for every i € I, there exists a Borel function ¢(v;,-) : [0,1]? — E such that ¢(v;,U) £
14,Px(de Jy
LIX|X € Aj) = 2 where U £ 1([0,1)9).
Theorem 1.3.2 suggests, in the case of Lipschitz continuous functional to set
Pioi

qgi = )
> Pjo;
jerI

Jel,

so that we have a uniform efficiency among the class of Lipschitz continuous functionals. This
budget allocation method will be further mentionned as the “universal stratification” weights.
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Remark. Note that the dimension q € {1,2,---} is arbitrary: one may always assume that g =1
by the fundamental theorem of simulation, but in order to obtain some closed-form expression for
d(vi,+), we are led to consider situations where ¢ > 2 or even infinite when considering a Von
Neumann acceptance-rejection method.

Now let (£,U) be a couple of independent random variables such that & has the distribution
of Y = Proj(X) and U £ U(]0,1]7). Then one checks that ¢(£,U) has the same distribution as
X, so that one may assume without loss of generality that X = ¢(Proj(X),U) and which in turn
implies that £ = Proj(X) i.e.

X = ¢(Proj(X),U), where U £JZ/I([O, 1]9) is independent of Proj(X).

In terms of implementation as mentioned above, one needs a simple form for the function
¢ (in term of computational complexity) which induces some stringent constraints for the strata
design.

Remark. Although we focus here on the universality of quantization for designing strata when
dealing with Lipschitz continuous functionals, let us mention the adaptative strata design methods
recently proposed in [30] and [16] for more general functionals.

1.3.3 Simulability for hyper-rectangles strata in the independent Gaus-

sian case
Consider a random variable X & N(0,14), d > 1. Let (e1,---,eq) be an orthonormal basis of
E = R% We set Nq,---,Ng > 1 the number of strata in each direction. So we consider for

1<i<d, —oo=uf <aj <--- <aly =+oo. The strata are

A = i—1:Ti,

d
{xeRd such that (e;,z) € [ ;Cl]}, g'EH{l,--- , N1}
=1

DX

=1

d
Then for every multi-index i € [[{1,---, N/},
=1

i

d
L(X]|xea)=QRcL (Z‘Z e [#4 _1,a]). where Z £ N(0,1).
=1

Then p; = P(4;) = [] (N($k)—/\/($k )) and for —oco < a < b < o0,

L ik ik —1
L(Z|Z € [a,b]) = N ((N(b) = N(a)) U + N(a)), UXuU(0,1]). (1.27)

1.4 Functional stratification of a Gaussian process

In the functional case, the state space of the random values are functional spaces. What is usually
done is to simulate a scheme to approximate marginals of the underlying process.

In this section, we assume that X is a centered R-valued bi-measurable Gaussian process on
[0,T] that satisfies fOTIE[XtQ]dt < oo. We are interested by the value of E[F(Xy,, Xy, -, Xy,)]
for some real function F', where 0 =ty < t; < --- <t, =T are n+ 1 dates of interest for the
underlying process.

(For example, X can be a standard Brownian motion on [0,7], and one computes the risk-
neutral expectation of a path-dependent payoff of a diffusion based on X.)

What is done in this section can be easily generalized to multidimensional processes in the case
where their coordinates are independent. (For example, when dealing with multi-factor Brownian
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diffusions, it does not matter how the Brownian motions are being correlated afterward.) Still we
restrict ourselves to the one-dimensional setting for clarity.

Let us assume that x € Ope(X, N) is a K-L optimal product quantizer of X. The codebook
associated with this product quantizer is the set of the paths of the form

N, . . .
Xi:Z )\flvgn )67)1(7 1:{117"'72717"'}7
n>1
with the same notations as in Section 1.1.6.
We now need to be able to simulate the conditional distribution

where A; is the slab associated with y; in the codebook.
To simulate the conditional distribution £(X|X € A;), one will :

e First, simulate the first K-L coordinates of X, using (1.27).

e Then simulate the conditional distribution of the marginals of the Gaussian process, its first
coordinates being fixed.

Remark. We have chosen to use K-L optimal product quantizers instead of optimal quantizers
because in this case, the Voronoi cells in this are hyper-rectangles, which allows us to simulate
the first K-L coordinates more easily than in the general case. Moreover, the rate of decay of
the quantization error is rate-optimal under some conditions on the Karhunen-Loéve eigenvalues
which are verified in the considered examples [20], and the actual value of the quadratic distorsion
remains very close to the optimal value in practice.

1.4.1 Simulation of marginals of the Gaussian process, given its d first
K-L coordinates

In this setting, the aim is to simulate the conditional distribution

T T T
A Xsef(s)ds,ﬂ Xsegf(s)ds,---,ﬂ Xseif(s)ds) (1.28)

where (Xt)iepo,r) is a L? R-valued Gaussian process, and (ej , Aj¥ Jken- is the Karhunen-Loéve
system associated with the process X.

As X is a Gaussian process, (Xto, e X fOT Xse¥X(s)ds, - ,fOT Xsej((s)ds) is a Gaussian
fOT XgeX(s)ds Xt,

and V = , the conditional
fOT XseX(s)ds Xt,
distribution (1.28) is given by the transition kernel v(y, 4) = N (Afv|y(y),cov(V - ]E[V|Y])),
where Afy |y : R? — R™ is an affine function corresponding to the linear regression of V on Y,
AfV|Y(Y) = E[V|Y]-

e The conditional expectation writes Afy |y (Y) = E[V]+Ry|yY where Ry |y = cov(V,Y) cov(Y) 1.

As cov(Y) = (()\Z-Xéij))Kin, and cov(V,Y) = ((AF e (t:)))o<i<n,1<k<d, one has

E(Xto,--- X,

vector. Hence, if we denote Y :=

Ryy = ((ef(ti)))OSign,lgjgd' (1.29)
e The covariance matrix is
K :=cov(V-E[VY]) =E[(V-RyyY) (V- RyyY)]
= cov(V) = 2cov (V, RyyY) + cov (RyyY)
= cov(V) — cov (RV|YY>
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d
= ((cov(V}, Vi) — Z e (t)er (tk)>> ‘
i=1 0<k,l<n

Now, we are able to simulate according to this probability distribution.

The easiest way of doing this in the definite positive case is to compute the Cholesky factor-
ization of the matrix K, but in this case, the simulation of a simple path requires an n x n matrix
multiplication, which complexity is quadratic. This solution is not satisfactory for our purpose.

1.4.2 Faster simulation of conditional paths - Bayesian simulation

As pointed out above, the natural method to simulate £(V|Y') requires for each path a multipli-
cation by a Cholesky transform of K whose cost is O(n?). This cost is too high.

e Yet, in the context of this chapter, d is the quantization dimension of the process. It is close
to log(N) if N is the number of strata, and n, the number of time steps, is usually very large
compared to d.

e Moreover, we make the assumption that the cost of the simulation of (Xy,,- - , X, ) is O(n).
(So is the case for the Brownian motion, the Ornstein-Uhlenbeck process or the Brownian
bridge for example.)

e The idea here is that the conditional distribution £(V|Y") is determined through the Bayes
lemma, by the conditional distribution £(Y|V) and the two marginal distributions £(V') and
L(Y).

One knows that V = E[V]Y] jL— Z where Z £ N(0,cov(V — E[V|Y])) is independent of Y.
Hence one is able to simulate according to L(V|Y = y) if one can simulate the distribution of Z,
writing L(V|Y =y) = E[V|Y = y] + L(Z).

This decomposition corresponds to the splitting of the Karhunen-Loéve expansion:

Vo d ei (to) N ex (to)
= VA : Y VG
v ES aw )T
) —EV|Y] ’ =7

To simulate Z, one simulates the distribution of V' and the conditional distribution £(Z|V).

Onehas  L(Z|V) K6y — LEV|Y]V) X 6y — Afyy LY |V)
% 8y — Afyy N (E[Y|V], cov(Y — E[Y |V])).

If Afyy is the affine function corresponding to the regression of Y on V' and Ry |y its linear part,

cov(Y —E[Y|V]) =cov(Y) + cov(E[Y|V]) — 2cov(Y,E[Y|V])
=cov(Y) — Ry |y cov(V)'Ry|y.

This yields Z = V — Afy)y (G) where G & N'(Afy v (V),cov(Y) — Ry |y cov(V) Ry y).
Finally, the algorithm writes:

e Simulate V. (cost of O(n).)

e Simulate G & N (Afy|V(V), cov(Y) — Ry|v COV(V)tRy‘V)
(cost of O(d x d)).
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e Compute Z =V — Afy)y(G). (cost of O(d x n)).

e The random variable T' = Afy |y (y) + Z satisfies T £ LVI)Y =y).

Let us remind the fact that the affine function Afy |y is trivially defined in Equation (1.29),
because coordinates of Y are independent. Other matrices implied in this algorithm are computed
prior to any Monte-Carlo simulation.

In the general case, the matrix Ry |y needed by the method can be computed by performing a
numerical least-square regression.

Still, in the case of the standard Brownian motion, the standard Brownian bridge and Ornstein-
Uhlenbeck processes, there are closed-form expressions for the matrix Ry |y, available in Appendix

1.B. In these cases, the numerical least-square regression can be avoided.
In the case of the standard Brownian motion, if t; = T _ jh, 0 < j < n, this yields Ry |y =

n

X A,US] >

o for j ¢ {0,n}, ay; = AW 2eiw(tj)—efv(t]i—l)—efv(tﬁl),

® a0 = )\fv( (ew)/ (to) — w),

3

® a;y = )\XV(—EZ'W@")TYV@"’I) — (e-W)I (tn))

K2

Now, we have a very fast and easy way to simulate the conditional distribution (1.28) at our
disposal.

In Figures 1.5 and 1.6, we plot a few paths of the conditional distribution of various Gaussian
processes knowing that they belong to a given L? Voronoi cell. The appearance of the drawing
suggests to consider the method as a “guided Monte-Carlo simulation”.

1.4.3 Blind optimization procedures

2
We have seen in Section 1.3.2 that the quantity d(x) = ( > pi%’) is an upper bound of the
x: €T

variance of the estimator, given in Equation (1.19) in the case where the functional is 1-Lipschitz
continuous. Hence one may want to minimize this criterion instead of the L?-quantization error.
This yields the minimization problem

min {d(x), X € Opy(X, N)} (1.30)

instead of the minimization problem (1.16).

The same kind of blind optimization procedure as in Section 1.1.6 can be performed. Some
values of the optimal decomposition for the standard Brownian motion are given in Table 1.2.

Optimal product decompositions for both Brownian bridge and Brownian motion and for a
wide range of values of N are available on the web site www.quantize.maths-fi.com [26] for
download. When comparing all the decompositions obtained for a quantizer size smaller than
11000, one notices that in the case of the Brownian motion, the optimal decompositions for
both criteria are “almost” always the same. The only values where decompositions differ are the
ranges 270 — 271 and 3328 — 3359. The two criteria do not have very different values for the two
decompositions. Therefore, in practice, one can use the same decomposition database for the two
applications.

Nonetheless, in the case of the Brownian bridge and the Ornstein-Uhlenbeck process, one
notices that the optimal decompositions for the variance and the optimal decomposition for the
L2-distortion differ more often.
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Figure 1.5: Plot of a few paths of the conditional distribution of the Brownian motion, knowing
that its path belong to the L? Voronoi cell of the highlighted curve in the quantizer.
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Figure 1.6: Plot of a few paths of the conditional distribution of the Brownian bridge (left) and
the stationary Ornstein-Uhlenbeck process (right), knowing that its path belong to the L? Voronoi
cell of the highlighted curve in the quantizer.

| N | N,yee | d(x) | N, decomposition |
1 1 0.5 1
10 10 9.75689 - 102 5-2
100 96 5.10548 - 10~2 12-4-2
1000 966 | 3.51289-10~2 23-7-3-2
10000 | 9984 | 2.63721-1072 | 26-8-4-3-2-2

Table 1.2: Record of optimal product decomposition record values of the standard Brownian
motion with respect to the criterion (1.30).



1.5. APPLICATION TO OPTION PRICING 47

1.4.4 Functional stratification of solutions of stochastic differential equa-
tions

Let us consider the stochastic differential equation
dF; = b(f,Ft)dt-i-U(t,Ft)dXt, te [O,T], Fy = fo (131)

where X is a centered continuous Gaussian semimartingale starting from 0 and where b and o are
Lipschitz continuous in z uniformly in ¢ € [0,7] and |b(-,0)| + |o(-,0)] is bounded over [0,T]. In

this situation, the SDE (1.31) admits a unique strong solution and sup |X;| has r-moments for
te[0,T]

every r € (0,00).

Remark. In this case, the continuity assumption on the Gaussian process ensures that fOT E[X2]ds <
00, thanks to Fernique’s theorem, and also ensures the continuity of the covariance function, (See
[15, VII1.3]).

The most common approach to perform a Monte-Carlo simulation with the solution of such a
stochastic differential equation, is to use a discretization scheme such as the Euler scheme [10]. In
this setting, we propose to simply replace Gaussian process X by a stratified version of X in the
Euler scheme. This approach is justified in many aspects:

1. In [7], using filtration enlargement techniques, it is proved that under some additional hy-
pothesis on the Gaussian semimartingale X, its conditional distribution in a strata is still
a semimartingale with respect to its own filtration. This additional hypothesis is satisfied
by the Brownian motion, Ornstein-Uhlenbeck processes and the Brownian bridge. Thus,
plugging the stratified Euler scheme into the stochastic differential equation amounts to use
the Euler scheme of these conditional stochastic differential equations.

2. In the one-dimensional setting, if we make the additional hypothesis on ¢ and b that

e 0 € CY([0,T] x R,R) is positive and bounded,
o ¥(t,2) € 0,T] x R, [b(t,2)] < C(1+ |a)

as soon as the drift of the Lamperti transform of the SDE (1.31) is Lipschitz continuous, it is
proved in [21] that the unique strong solution of (1.31), seen as a functional of the underlying
Gaussian process X is | - ||p-Lipschitz continuous.

Hence one stands in the case of a Lipschitz continuous functional where one can use the
results of Section 1.3.2 about universal stratification.

3. The function (Xy,,---,X¢,) = (Xt — Xy, -+, Xt, — X4, ), that maps the marginals of
the Brownian motion to the corresponding increments used in the Euler scheme, is a linear
map from R?*! to R™ and thus Lipschitz continuous as well.

In the next section, we perform numerical experiments for which a stratified Brownian motion is
plugged in the Euler scheme of the considered SDE. Another example with an Ornstein-Uhlenbeck
process is also provided.

1.5 Application to option pricing

Now, we are able to simulate the conditional distribution of a Gaussian process, given one of its
Voronoi cells in a product quantizer. One condition is to know an orthonormal Hilbert basis that
diagonalizes its covariance operator. The cases of the Brownian motion, the Brownian bridge and
the Ornstein-Uhlenbeck process have been handled.

The special case of the Brownian motion allows us to use functional stratification as a generic
variance reduction method for the case of functionals of Brownian diffusions. Even in the mul-
tidimensional case, no matter how the independent Brownian motions are correlated or used



48 CHAPTER 1. FUNCTIONAL STRATIFICATION

afterwards; no matter if it is used for diffusing the underlying stock, a stochastic volatility process
or an actualization factor. It can be used as a variance reduction method.

Hence, this is a very interesting variance reduction method to be used in an industrial way,
independently of the path-dependent payoff or the model (as soon as it uses Brownian diffusions
or one of the other proposed Gaussian processes). Users do not have to set up complicated
adjustments when using it.

In the following of this section, the method is used to illustrate its performance on simple
one-dimensional cases. One begins with the case of a continuous-time Up-In Call option in the
Black and Scholes model, for which a closed-form expression is known, and used as a Benchmark.

1.5.1 Benchmark with an Up-In Call option pricing in the Black and
Scholes model

Here, one benchmarks the numerical method for a path dependent option in a case where a
theoretical value is known: a barrier option in the Black and Scholes Model.

For the sake of simplicity, consider a log-normal Black and Scholes diffusion with no drift (no
interest rate and no dividend).

One has a closed-form expression for the continuous barrier option. A numerical correction
proposed by Broadie and Glasserman [4] is done to get the closed-form price to be compared to.
The number of Monte-Carlo simulations is 100000 in every case.

One prices an Up-In Call option with different values of the initial spot S, the strike K, the
barrier H, the volatility o, the maturity 7', and the number of fixing dates for the discrete barrier
n. In every case, a 95% confidence interval is given. So is the variance of the estimator.

The numerical results are reported in Table 1.3 when using the method with 20 stratas and
Table 1.4 when using the method with 100 stratas. In this tables, the first column correspond to
Broadie and Glasserman’s closed-form expression proxy. The second one corresponds to a simple
Monte-Carlo estimator. The last three columns correspond to a stratified sampling estimator with
different simulation allocation for each strata.

The “sub-optimal weights” column stands for the allocation budget of Equation (1.22). The
“Lip.-optimal weights” column stand for the “universal stratification” budget allocation proposed
in Section 1.3.2. Both of these two cases have explicit allocation rules. Last column, “optimal
weights” corresponds to an estimation of the optimal budget allocation given in expression (1.23).

Parameters Broadie & Simple Strat. estimator Strat. estimator Strat. estimator
Glasserman'’s estimator sub-optimal weights Lip.-optimal weights optimal weights
proxy
S =100, K = 100 14.0379 13.9281 13.9283 13.9364
H =125, 0 =0.3, 13.9597 [13.8705, 14.2053] [13.8491, 14.0071] [13.8519, 14.0047] [13.8827,13.9901]
T =1.5, n = 365 Var = 729.2518 Var = 162.4650 Var = 151.9481 Var = 75.1319
S =100, K = 100 1.4206 1.3659 1.3510 1.3602
H =200, 0 = 0.3, 1.3665 [1.3442,1.4969] [1.3106, 1.4211] [1.3039, 1.3981] [1.3472,1.3732]
T =1, n =365 Var = 151.6366 Var = 79.5118 Var = 57.7425 Var = 4.4053
Table 1.3: Numerical results for the Up-In Call option, with 20 stratas.
Parameters Broadie & Simple Strat. estimator Strat. estimator Strat. estimator
Glasserman'’s estimator sub-optimal weights Lip.-optimal weights optimal weights
proxy
S =100, K = 100 14.0379 13.9382 13.9511 13.9483
H =125, 0 = 0.3, 13.9597 [13.8705, 14.2053] [13.8720, 14.0043] [13.8874, 14.0150] [13.9047,13.9919]
T =1.5, n = 365 Var = 729.2518 Var = 114.0634 Var = 105.8760 Var = 49.5071
S =100, K = 100 1.4206 1.3296 1.3493 1.3611
H =200, 0 = 0.3, 1.3665 [1.3442,1.4969] [1.2825,1.3768] [1.3093, 1.3893] [1.3508,1.3715]
T =1,n =365 Var = 151.6366 Var = 57.8899 Var = 41.6666 Var = 2.8099

Table 1.4: Numerical results for the Up-In Call option, with 100 stratas.
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1.5.2 Test with an Auto-Call pricing in the CEV model

Here, we stand in the case were the stock follows a CEV model with no drift

£
S, = oSZdW,, 0<pB<2.
The simulation scheme that is used here is a Euler scheme on In(S;). One has

8
51

2
dIn(S,) = —%sf—th +0S2  aw,.

Let us remind the fact that there are closed-form expressions for vanilla option pricing in this
model that can be expressed as a function of the noncentral chi-square distribution [14]. A first
test of consistency for the method was to check that we could find the same price when performing
such a Monte-Carlo simulation. The tested path-dependent payoff that we consider here is the
so-called “Auto-Call” payoff.

Description of the Auto-Call payoff:

S; is the stock price at time ¢ and t; < -+ < t, = T is a schedule of observation dates. K
and H, the “strike” and the “barrier” are two fixed values with which S will be compared to. P
denotes the “nominal”, and C' a zero-coupon bond of maturity 7.

At the first date ¢; of the schedule, if Sy, > K, the holder of the option gets (1 + C)P and
the product stops. If Sy, < K, one waits until the second date of the schedule. If S;, > K, the
holder gets (1 4+ C)P and the product stops. And so on... If S; does not reach K until the last
date t, =T.

At t, =T, if St > K, the holder gets (1 + C)P. It H < Sy < K, the holder gets P and if
St < H, he gets PSYT.

The numerical results are reported in Table 1.5 when using the method with 20 and 50 stratas.
The parameters of the model are 5 = 1.5, Sy = 100, ¢ = 0.3. For the payoff, K = 110, H = 80,
P =100, C = 0.07. The considered observation dates are {1,2,3}. The number of time steps in
the Euler scheme is 300 and one performs 100000 Monte-Carlo simulations in every case.

Number of strata Simple Strat. estimator Strat. estimator Strat. estimator
estimator sub-optimal weights Lip.-optimal weights optimal weights
99.0598 99.0839 99.0886 99.0477
20 [98.9887,99.1310] [99.0438, 99.1239] [99.0488, 99.1284] [99.0184, 99.0769]
Var = 131.8089 Var = 41.8067 Var = 41.2888 Var = 22.2549
99.0598 99.0507 99.0790 99.0444
50 [98.9887,99.1310] [99.0129, 99.0886] [99.0414, 99.1166] [99.0179, 99.0709]
Var = 131.8089 Var = 37.3150 Var = 36.8408 Var = 18.2954

Table 1.5: Numerical results for the Auto-Call option in the CEV model, with 20 and 50 stratas.

1.5.3 Test with an Asian option pricing in the one-factor Schwartz’s
model

Here, we stand in the case of a stock which follows the following SDE:
dSt = 9(0( —In St)Stdt + UStth, (132)
under the risk-neutral probability.
The stochastic process X = In(S) is an Ornstein-Uhlenbeck process:
o2

This model, proposed by Schwartz in [28] is an example of stochastic behavior of commodity
prices that takes into account mean reversion. Such exponentials of Ornstein-Uhlenbeck processes
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are very common in commodity derivatives models. One particularity in these markets is that the

spot is not directly observed. Derivatives mostly rely on futures of the considered commodity. Still,

one takes this one factor “toy” model as a simple case study for our variance reduction method.
The considered payoff is an Asian option on a discrete schedule of observation dates tg < - - <

n
t, = T. K is the “strike” of the option whose payoff is <n+r1 3 Sy, — K)
k=0

One uses the stratified estimator with the Ornstein-Uhlenbeck process.+ Optimal product de-
compositions for the criterion (1.30) are used and available in Table 1.6 where the numerical results
are reported.

The numerical parameters are Sy = 100, § = 0.3, @ = In(110), o0 = 0.3 and K = 100. One

performs 100000 Monte-Carlo simulations in every case. The observation dates are (z%) {0, m}
with 7 = 3 and n = 36. o

Number of strata Simple Strat. estimator Strat. estimator Strat. estimator
and product decomposition estimator sub-optimal weights Lip.-optimal weights optimal weights
9.8485 9.8867 9.8848 9.8846
20 [9.7508, 9.9462] [9.8632,9.9102] [9.8624,9.9073] [9.8695, 9.8997]
20=10x 2 Var = 248.3156 Var = 14.3132 Var = 13.1090 Var = 5.9547
9.8485 9.8835 9.87862 9.8845
50 [9.7508,9.9462] [9.8608,9.9061] [9.8555,9.8983] [9.8702, 9.8987]
48=10x5 Var = 248.3156 Var = 13.4003 Var = 11.8787 Var = 5.2949
9.8485 9.8883 9.8924 9.8844
100 [9.7508,9.9462] [9.8661,9.9105] [9.8716,9.9133] [9.8706, 9.8782]
100 =10 x 5 x 2 Var = 248.3156 Var = 12.8434 Var = 11.3508 Var = 4.9664

Table 1.6: Numerical results for the Asian option in Schwartz’s model, with 20, 50 and 100 stratas.

To perform this computation, one had to use a non-centered Ornstein-Uhlenbeck quantizer.
Building such a quantizer is a straightforward extension of the centered case. As showed in Section
1.A, if r is an Ornstein-Uhlenbeck process on [0, T following the dynamic dr; = 8(p—r:)dt+odWs,

c .
ro ~ N(mg, ), with nonzero values of p1 and mg, one has

centered Ornstein-Uhlenbeck process ) ' (1.34)

_ —0t -6t
X = mee "+ ﬁ(l © 2+ ( corresponding to mo = =0

(1)=non-stochastic path

Hence, one only needs to add the expectation (1) to the centered optimal (product) quantizer to
get an optimal (product) quantizer for the non-centered case. An example of such a non-centered
Ornstein-Uhlenbeck product quantizer is available in Figure 1.7.

1.5.4 Commentaries on the numerical results

In every tested case, one notices that the quantization-based stratified sampling method reduces
noticeably the variance of the Monte-Carlo estimator. The “universal stratification” allocation
proposed in Theorem 1.3.2 overcomes the sub-optimal weight allocation. Still in the case of the
Auto-Call, its advantage is not very perceptible.

Moreover, the “optimal allocation” estimation yields a very good variance reduction factor.
This suggests to implement either a simple prior rough estimation of the optimal allocation or a
more sophisticated algorithm such as the one proposed in [29] by Etoré and Jourdain.

1.A Computation of the Karhunen-Loéve expansion of the
Ornstein-Uhlenbeck process
In this section, one details the Karhunen-Loéve decomposition of the Ornstein-Uhlenbeck process.

Proposition 1.A.3 brings the results together. Section 1.A.3 presents the numerical method for
computing this decomposition.
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Figure 1.7: Functional 10 x 2-product quantizer of an Ornstein-Uhlenbeck process starting from
ro = 6 defined by the diffusion dry = 0(u — r4)dt + ocdW; with p =15, 0 = 0.3 and § = 0.8 on [0, 3].

1.A.1 The Ornstein-Uhlenbeck process
The Ornstein-Uhlenbeck process is defined by the SDE

dry = 0(u — ry)dt + odWy, with ¢ > 0 and 0 > 0. (1.35)

The equation is solved by applying Ito’s formula to the process U, := r,e%". One gets
t
re =roe 4 pu(1l — e + / o aw,. (1.36)
0

If one assumes that ro is Gaussian (ro L N(mg,0?)) and is independent from W, the process
(7¢)1=0 is Gaussian. One has E[r;] = moe~ " +pu(1—e~%) and cov(rs, ) = g—;e_‘g(s‘”) (629 min(s,t) _ 1)+
o2e 00s+), .
Moreover tlim Var(r;) = g5 (the long-term variance). If the initial variance o2 is equal to long-

—00

. 2 . . . . 2
term variance Z;, the process is stationary and the covariance writes cov(rs,r:) = 45

The total variance of the process on [0, 7] is

T 2 2 —20T
9 o°T 9 O 1 e
= [ Var(r,)ds = 2= SR Y T
Ir2ll2 A ar(rs)ds = == + <UO 29) <29 20 )

1.A.2 The Ornstein-Uhlenbeck covariance operator

€—0|s—t| .

The Ornstein-Uhlenbeck covariance operator is given by

T 2 T
TOYVf(t) = / %679(S+t) (629 min(s,t) _ 1) f(s)ds —|—/ 02e 06+ f(5)ds. (1.37)
0 0

Computing the Karhunen-Loéve decomposition of the Ornstein-Uhlenbeck process
TOY is a compact Hermitian positive operator on the separable Hilbert space L2([0,7]). Hence
there is an orthonormal basis of V consisting of eigenvectors of 7€V and each eigenvalue is real

and strictly positive. Moreover ||TOU||2 < ‘7220T + % (e‘zGT — 1). One has

t 2 T 2 T 2
TOUf(t) = / g—aee(sft)f(s)ds —|—/ g—gee(tfs)f(s)ds —|—/ (og — (27_9> efe(s“)f(s)ds.
0 t 0
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Proposition 1.A.1. If f € C([0,1]), and if g = TV f, then
9" —0°g=—o"f, (1.38)

with
03g'(0) = (0% = 003) g(0)  and  ¢'(T) = —0g(T). (1.39)

" o® ogs-n) T o o ! o’ 0(s+t)
v s—t v t—s 2 _ v —0(s+t
A 29 ¢ f(s)ds—l—l 29 ¢ f(s)ds—&—A (00 29> e f(s)ds
o? ‘ 0(s—t o? r o(t 2 o? T 0(s+t
gt = —7/ D f(s)ds + 7/ I f(s)ds — <000 - 7) / e 0t £(5)ds
0 t 0
o0 t T . T o?
g'(t) = - </ f(s)e?Cds —l—/ f(s)eg(té)ds> + 9/ (00’3 - 7) e 0T £(5)ds — o2 f(1).
0 t 0

One gets g”(t) = 6%g(t) — o f(t). Moreover, Equation (1.39) comes when identifying expressions with
t=0andt="T. (]

Proof:

Q

—~
~

=
Il

Proposition 1.A.2. Conversely, if g € C?([0,T]) and if functions f and g satisfy Equations
(1.38) and (1.39) then g = TOUV f.

u 1

Proof: Computing T°Vg" yields:

TOU o/ (#) = tU_2 0(s— t) d To? 0(t s) "(s)d T 2_‘7_2 —0(s+t) 1 d
§'(0) = [ 350G s+ [ S5 s+ [ (af = 5 ) g ()

An integration by parts yields

2 2
TOVg" = —03g'(0)e™% — o2g(t) + Gg(0)e~* — (60F — %) g(0)e =% + 6TV g(t)
= —02g(t) + 0?T°Y¢g(t) thanks to (1.39).

O
Now, by necessary conditions, 79V f = \f < 029 = A(6%g — ¢"'). One obtains
A" + (6% — M0*)g = 0. (1.40)
Hence the solution of the ordinary differential equation (1.40) on [0,7] has the form g¢(t) =
A cos(wt) + Bsin(wt), with w = M S A= ;’jeg.
Equation (1.39) yields wBo? = (0% — GUO)A. Hence, function g(x) writes
git) =K (wag cos(wt) + (02 — 0a7) sin(wt)) .
Hence ¢'(T) = —0g(T) yields
wo? cos(wT) + ( w?od + 0% — 620, ) sin(wT") = 0. (1.41)

Conversely, by the same computation, one sees that A, €]0, |79V ||2] is an eigenvalue of TOV if
and only if Equation (1.41) is fulfilled.

Proposition 1.A.3. Finally, if one knows the sorted increasing sequence (wy,) of the strictly pos-
itive solutions of Equation (1.41), the Karhunen-Loéve eigensystem (eOU, )\QU) of the Ornstein-

n

Uhlenbeck covamance operator TOU are given by:
° \OU = ”+92, and

e cOU(t) = K, (wnao cos(wnt) + (0 — 007) sin(wnt)) , where K, is the normalization constant.
If (0,00) # (0,0), K,, is given by

1 1 1
2 _ 202 2y(1 _
1/K; = 5070 (0% —00§) (1 — cos(2w,T)) + 200w (T + o sm(2wnT)>

+ %(02 — 003)2(T - — sin(2wnT)). (1.42)

Wn
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Case of a deterministic start point: In this case (09 = 0), one has

1
ou .
t) = —/————— t).
( ) T _ sin(2w,T) Sln(wn )
2 4wy,

. . 2
Stationary case: In the stationary case, 03 = 25, one has

eOU(t) -C, (wn cos(wpt) + 6 sin(wnt)) ;

n

where C), is the normalization constant. C), is given by

2

1/C? = g(l — cos(2wnT)) 42 (T +

. sin(2wnT)) N 6* (T B sin(2wnT))'

2wn 2 2wn

1.A.3 Numerical computation of the Karhunen-Loéve decomposition of
the Ornstein-Uhlenbeck process

As we have seen in the previous section, everything comes to evaluate numerically the strictly
positive solutions of Equation (1.41).

Deterministic start point

In this case, (09 = 0), one can check that elements of {% +kT, ke N} are not solutions of
Equation (1.41), thus the equation comes to

ftan(wl') = —w. (1.43)

The case where § = 0 comes to the case of the Brownian motion, hence one assumes that
0 # 0. Solutions of this equation are illustrated in Figure 1.8. One can easily show that a unique
solution w,, lies in each interval (”—217 — o7 ”—IZT), for n € N*.

nm iy
lim w, — (— - —) -0
e T 2T

Non-deterministic start point

Let us assume now that o9 # 0 and consider Equation (1.41) again. The term —w?03 + 6002 — 6?03
never vanishes on (0, +00) if 6202 — 6o > 0.

First case: 920(2) — 002 > 0.

Here, everything comes to the equation

OJO'2

t T) = .
an(wT) w202 + 6202 — Ho?

(1.44)

Solutions of this equation are illustrated in Figure 1.9.

We can easily show that Vn € N*, Jlw € (%, T+ %) that is solution of Equation (1.41).

Moreover a solution lies in (O, %) if and only if (0?02 — 00%)T — 0% < 0.
Second case: 6203 — o2 < 0.

Here, the term —w?02 + 002 — %02 vanishes for w = V := | /9‘;—2 — 62, If V is not a solution of
0

Equation (1.41), (i.e. if V' does not belong to {% +kT|k € N}), no other value of this set is a
solution, and everything comes again to the same Equation (1.44). Solutions of this equation are
illustrated in Figure 1.10. We can then easily show that ¥n € N*N]V, +ool, Jlw € (%, T T %), w

is solution of Equation (1.41). Moreover, in every nonempty interval (%” — = %’T + %) N0, V),

27>
k € N* there is another solution of the equation.
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tan(wll')—
—wlll

0 #F  E+F E+F  FF
Figure 1.8: (Deterministic start point). Solutions of Equation (1.43). (Ornstein-Uhlenbeck

process starting from a determined point ro, o9 = 0.) Numerical values for this figure are T = 3,
oc=1and 0 =3.

!
0
w w2
s s m s 27 s 3
0 o7 a7 T T srt T  wTT

Figure 1.9: (Non-deterministic start point, %03 — 602 > 0). Solutions of Equation (1.43).

(Ornstein-Uhlenbeck process starting from rg AN (0,08), 0o # 0.) Numerical values for this
figure are T = 3,0 =1, 0 = 3 and 03 = 0.4.

A procedure for computing Ornstein-Uhlenbeck eigenvalues

A procedure for the computation of the n-th eigenvalue of the Ornstein-Uhlenbeck covariance
operator is given in Algorithm 1.A.1. In this algorithm, the function search(a, left, right) stands
for a root finding method. It fills argument a with the root of Equation (1.41) that is bracketed
by [left, right].

In the author’s implementation, one uses Brent’s method [3] as a reliable root finding method.
As Newton-like methods, Brent method can take advantage of a guess of the value of the root.
(We then need a bracketing method: the idea is to start from a small interval around the guess,
which is geometrically expanded, until the limiting range [left, right] is reached.)
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95

Algorithm 1.A.1 Ornstein-Uhlenbeck eigenvalue (0, o, 0, T, n)

Require: § >0, 0 >0, 00 >0, T>0, n>1.
if 09 = 0 then

{There is a unique solution wy, of (1.41) in the interval (”77 — 57 “%) }
nm s nm
Search(wn, T T 97> T)

else
{Here oo > (l,}
if (%02 —00?) >0 then
{'l“ho vertical asymptote of the right-hand side of Equation 1.44 lies on the left of 0. }
if (6?02 — 00%)T — 0? < 0 then
{‘l'horc is a unique solution wy, of (1.41) in the interval (0. %) }
search(wn,w (—lm | = )

T T 2T
else
{The smallest strictly positive solution wi of Equation (1.41) lies in the interval (ﬁ ,;) }
nm nm s
search(wn, =, T+ ﬁ)
end if
else

{'l“ho vertical asymptote of the right-hand side of Equation 1.44 lies on the right of 0. }
N il DL a2 _ g2
if — o7 > 903 6? then

search(wn, (n-n (n-Ur 4 x )

T T 2T
e (47w 2
else if ——= — 7= < 1/95—3 — 0? then

search(wn, = o ”—T’T)

. 2 1 2
else if 4 — 75 <\ /0% — 02 and "7 — % >\ /0% — 02 then
2
search (wn, % — 7, /023 — 67).

else
o2 _ g2 nm _ m
search(wn,,/ﬁgg 02, 7% QT).

end if

end if
end if

2

An & SErgE-

Return )\,,.
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w2

s s s s 2m s 3
0 o7 ar t T ar v 7T T T

Figure 1.10: (Non-deterministic start point, 6?0% — 6% < 0). Solutions of Equation (1.43).

(Ornstein-Uhlenbeck process starting from rg AN (0,03), 0o # 0.) Numerical values for this
figure are T = 3,0 =1, 0 = 3 and o3 = 0.3.

A numerical guess for the value of w,.

As we have seen, we use a root finding method for evaluating numerically the value of w,,. In this
section, we propose a numerical guess for this quantity, that can be used as a starting point in the
root finding method.

4(8—72)a3

. . . . . + .
Function tan is approximated on (—%, g) by the rational fraction ¥ (x) := ijzz, which

2

is a good uniform approximation of tan on this interval. || tan —1/)||£0_7’§) = % ~ 0.02075.
Now, in the case of the Ornstein-Uhlenbeck eigenvalue computation, for a deterministic start
point, Equation (1.43) can be approximated by

0Yp(w, T +nmw) = —w, n>1. (1.45)

This comes to a polynomial equation of degree 3 for every n > 0 which has a unique solution

wf,%“ess € (% — 57, "—T’T) This numerical guess yields a good accuracy for approximating the value
of wy,.

1.B Closed-form expression for Ry in the cases of the Brow-
nian motion, the Brownian bridge and Ornstein-Uhlenbeck
processes

In this section, we use the same notations as in Section 1.4.2. We give the closed-form expression of
the matrix Ry |y := ((ij))1<i<d,0<j<n € Man(R) which corresponds to the affine function A fy
defined by E[Y|V] = Afy|v(V), in the cases of the standard Brownian motion the standard
Brownian bridge and Orunstein-Uhlenbeck processes on [0, 7).

In the general case, this linear least-square minimization can be performed numerically, but this
preliminary step can become time-consuming when the number of simulation dates grows. Thus,
these closed-form expressions become important for this purpose.

Consider tg = 0 <t < --- <t, =T a subdivision of [0, T], and let us assume that X is one of
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the above cited processes. Then X is a Markov process, and
T
E [/ XeX(s)ds
0

where [} is an affine function.

t1+1

Xy X ] ZE[ X.eX(s)ds

=7 (Xe; Xej10)

thvth+1:| ’ (146)

1.B.1 The case of the standard Brownian motion

Now, assuming that X = W is a standard Brownian motion on [0,7], using Equation (1.46),
we have, if ¢; # t;1, f;(x,y) = E[ fitt (x—i— (y — x) +YB t”l tj) er(s)ds], where

vy li+17% s a standard Brownian bridge on [t;,¢;41]. Hence,

S—tj
) titl ¢4 — g iv1 g ¢ ) )
fizy) == (/ %ef"(s)ds) +y (/ ﬁe}”(s)ds) =z A} +yBj.
171 J+1 — Uy 171 J+1 — Uy

=A :=B?
J J

t:+1 t

Simple computations lead to

[jj# eV (s)ds = %ﬁ <cos (7‘r <z _ %) %J) ~ cos (w <z 3 %) %)) |

fttjj“ selV(s)ds = \/%W(ZL_E) (t»cos (7r (z — %) %ﬂ) — tj+1 COS (7T (z — %) tj:,fl))
+[( T ) (sim (m (i — 3) ) —sin (x (i— 1) %)) .

n—1
Hence E [ [ WseyV(s)ds‘th,... W] = z AW, + BIW,

and

n
> a;; Wy, with, for every
i=0

J+1

1<j5<n, aU—Al—i—B 1,0410—14Z andam—B

n—1-

1A,V >

o If tjfl < tj < tj+1,

_ oy e — )l (8) = (G = t5)ed” (1) — (6 = ti-1)ed” (E41)

o
‘ (tj+1 —t5)(t; — tj-1)
If ¢ =t ts —\W wy’ t (tj+1) e (75)
J—1 =15 <tjt1, Qg = A (ei)(j)_m—t

w w
_ _aw (e (E)—e (1) wy/
Ity <ty =tjr1, aj; =X\ (# - (6i ) (t5)) -
If ti—1 =1t =tj11, aij = 0.

o o= Ai — A ((efv)l(to) —(tllel) 7 _(to)) if ¢1 # to,
0 in the other case.

e o g A () () (1) b # e,
nt 0 in the other case.

(The equality cases are useful when dealing with small time steps that make the numerical evalu-
ation of eV (t;4+1) — eV (¢;) inaccurate.)
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1.B.2 The case of the standard Brownian bridge

If X = B is a standard Brownian bridge on [0, T], Equation (1.46) yields, if t; # t; 41, fi(z,y) =
E [ tij“ (x + tji;tjtj (y —x)+ (Ysji’fjf“_tj» eiB(S)dS], where Yfi’fj“_tj is a standard Brownian
bridge on [t;,t;+1]. Hence, very similarly to the case of the standard Brownian motion,

i YRt —s g s —t; g i i
A =a ([ PR s v ([ e is) = a4y

(&
ot ;o bt

=A :=B!
J J

Simple computations lead to:

tit 2T t; t;
B .Uy LUg41
C(s)ds =\ 7 o ( ( T) ( T )) AT
lj €; (S) S i COS | T2 Cos | 1 ( 4 )
and

tia _ _ 2 _ .
[j sef (s)ds = %% (tj cos (mt%) — tj41CO8 (m’—tjjfl))—ﬂ/ % (%) (sin (m’—tjjfl) — sin (m%ﬂ)) .

(1.48)
n—1 ) . n

Hence E UOT BseP(s)ds|By,, - - 7Btn] =Y (A;-Btj + B;.Btjﬂ) = Y «a;j By, with, for every 1 <
=0 i=0

j<n,ay = A} + Bj_q, ajo = Ap and o, = B .
Moreover, we have

A; _ )\? ((GZB>/(t]) _ eiB(tj-l‘l) — ezB(tJ)> , (149)

tit1 =t

B P (e?(tj+1) —el(ty) _ (eP)’ (tj+1)> . (1.50)

tit1 =1
o Ift; 1 <t; <tjq,

(tjpr —ti—1)el (t;) — (tjp1 —tj)ef (ti—1) — (t; —tj—1)el (tj1)
(tj+1 —tj)(t; — tj—1) '

B
g = A

B B
- ) _\B B\’ e; (tj41)—e (t5)
Wtj1 =t; <tji1, @iy =2A; ((ei ) (tj) — - éHlftj =)

eB(ty)—eP(t;_1) /
Ift; 1 <tj=tjr1, o5 = AF (ﬁ - (65) (t5)) -
If tj,1 = t]‘ = t]‘+1, Qg5 = 0.
B BY/ P (t)—eP(t) )
e o= A%) = Aj ((61 ) (to) ti—to if t # to,
0 in the other case.

B (el (tn)—el (tn_1) B/ :
«am=B_ =N (T - (&) (tn)) if tn # tn-1,
0 in the other case.

(The equality cases are useful when dealing with small time steps that make the numerical evalu-
ation of eP(t; 1) — eB(t;) inaccurate.)

Remark. A noticeable fact is that we obtain exactly the same expression as for the Brownian
motion, where (e!V', \W') is replaced by (eZ,\D).
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1.B.3 The case of centered Ornstein-Uhlenbeck processes

We assume here that X = r is an Ornstein-Uhlenbeck process defined on [0, 7] by the SDE dr; =

—0Orydt + odWy, with 8 > 0, 0 > 0, W a standard Brownian motion on [0,7T] and 7 £ N(0,02)
independent of W. Consider tg = 0 < t; < --- < t, = T a subdivision of [0,7]. Considering
Equation (1.46) and using the conditional Fubini theorem, we obtain

) ti+1
fzj (th ) th+1) =K [/ Tse?U(S)dS
tj

tjta
— ou
e, rtjﬂ] = [ E |:TS|T’tj,’I”tj+l:| e (s)ds,
3

Now, we easily prove that

E eftit1—s) _ o—0(tjr1—s) ef(s—t;) _ o—0(s—t;)
[T5|th ’ th“] =T eftir1—t;) — o—0(tjr1—t;) F Tt eftiri—t;) — e—0(tjr1—t;)"
Hence
i tit1 ee(tj+1*8) _ 679(tj+1*5) ou tit1 ee(sftj) _ efe(sftj) ou
filz,y) =z e (s)ds | +y ei (s)ds |,
4 O (tir1=t5) _ o=0(tjr1-1;) 4 O (tit1=15) _ o=0(tj41-15)
e e
where (e,?U)n>1 are the Karhunen-Loéve eigenfunctions of the considered Ornstein-Uhlenbeck
process. -
n—1 n
Hence E UOT rsePU(s)ds|ry,, - - ,rtn] = > (A;-th + B;-thﬂ) =Y ayjre,, with for every 1 < j <
j=0 i=0
n, a;; = A; + B 4, aip = Ap and oy = B .

As previously, the equality cases will be handled. It is useful in numerical applications, when
dealing with small time steps that make the numerical evaluation of e?Y (¢;41)—efY (¢;) inaccurate.

The Ornstein-Uhlenbeck process starting from 0

In this case (03 = 0), as proved in Appendix 1.A, the Karhunen-Loéve eigensystem is given by
1 2

QV(t) i= | ——— | sin(wat), \OU .= 7

T _ sinQRw,T) w% + 62
2 4wy,

n>1, (1.51)

where w,, are the (sorted) strictly positive solutions of the equation 6 sin(w,,T') + wy, cos(w,T) = 0.
For K € R, w € R* and (t,,t,) € R?, we have

ty
[a exp(K's) sin(ws)ds = I@L—Fw? (emb sin(wts) — et sin(wta)> _KQL—HU? (eKtb cos(wtp) — efta cos(wta)) .

1

T  sin(2w;T)
27 dw,

Using this formula with w = w;, and multiplying by , we obtain

! exp(Ks)ef’V (s)ds = _K (eKtbe-OU(tb) - eKt“e-OU(ta))—# (emb (e-OU)/ (ty) — ™' (eQU)/ (ta)) :
ta 7 K2 + w2 (3 (3 K2 + w2 (3 7

This yields

ti+1 —
/ ee(tj+1—s)eiOU(S)dS — 9 (60U (t_]-‘,-l) _ ee(tj+1_tj)e?U (t]))
tj

62 +w? \ "
N m ((eiOU)/ (tj41) — i) (2U) (tj)) . (1.52)



60 CHAPTER 1. FUNCTIONAL STRATIFICATION

B ta—s) OU 0 ou —0(tje1—t;) OU
A e eV (s)ds = g (9 (ty10) — 7"V 1))
1 / Y /
oz ((07) () — e (e09) 1)) . (153)
ti+1 0
9(5775]‘) OU d — 9(tj+1*tj) OU ts _ OU ts
[ e s = gy (I 1) ~ 1)
1 o / /
_ 72 +w2 (69(t1+1 tj) (€?U> (tj+l) _ (€?U> (tj)) ) (154)
ti+1 —0
79(5775]‘) OU d — 70(tj+17t]‘) OU ts _ OU ts
[t = g (e €0 (tj:1) - €2V (1))
1 Y / /
T ET (6 Blti41=t) (6?[]) (tj+1) — (6?[]) (tj)) - (1.55)
Finally, we have
Ai -0 QQ?U(tj+1) e e9i+1—t5) 4 o—0(tj+1-15)
J 92"""1‘2 eftit1—tj) — o—0(tj+1—t;) v 17 e0(tj+1—1t5) — o—0(tj+1—1;5)
1 ouvy’
—I—m(ei ) (t;), (1.56)
and
_ 0 0(tj+1—t;5) —0(tj+1—1;) 2e0U (¢t
Bj = eV () G G ) —
J 02 + wi2 ¢ eftit1—t;) — o=0(tj+1—t;5) eftir1—t;) — e—0(tjy1—t;)
1 ’
R (e2Y) (tj41). (L57)

We recompose the coefficients ((ci;))1<i<d,0<j<n Of the regression matrix.

ouU

! .
77) vanishes.

e Forevery 1 < j <n, a;; = A% 4+ Bj_;. The terms involving (e
o )= Af) and oy, = B!_.
e What equality cases concerns, we can easily prove that lim A% =0and lim B ;=0
tjp1—t; J tji—1—t; J
and deduce the corresponding formula when some dates in the schedule are equal.

The general Ornstein-Uhlenbeck process

In this case (ro 5 N(0,03) with 62 > 0), as proved in Appendix 1.A, the Karhunen-Loéve
eigensystem is given by

2

. g
eOV(t) = K, (wnag cos(wpt) + (02 - 90(2)) sm(wnt)) ; \OU . — PR n>1, (1.58)
where w,, are the (sorted) strictly positive solutions of the equation
wno? cos(wnT) + (00 — 6%0F — w2o?) sin(w,T) = 0,
and
1 1 1 sin(2w,T)\ 1 2 sin(2w,T)
] = mag (02 — 903) (1—cos(2wnT))+§U§w,2z (T + T>+§ (02 — 903) (T — T> .
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We can factorize Equation (1.58) and write

0% — 0o

N

eQU(t) := Kp\Jw2od + (02 — 908)2 sin(wpt + ¢p), with ¢, = arccos

and A9V = w?g—;% n > 1. Using that for K € R, w € R* and (t,,) € R?,
o K
: _ Kty _ Kta
la exp(Ks) sin(ws + ¢)ds = e (e sin(wty + @) — e " sin(wtq + ¢))

B w
K2+ w?

(eKtb cos(wty + @) — e cos(wta + ¢)) , (1.59)

1A,V ) >

this case.
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Chapter 2

The Nystrom method for functional
quantization with an application to
the fractional Brownian motion

Abstract

It is recognized that the constructive quadratic optimal functional quantization of a Gaussian
process requires the numerical evaluation of its Karhunen-Loéve eigensystem (see [15]). Closed-
form expressions are available for several processes such as the Brownian motion, the Brownian
bridge and Ornstein-Uhlenbeck processes, but not in the general case. For example, the Karhunen-
Loéve decomposition of the fractional Brownian motion is not known.

In this chapter, the so-called “Nystrom method” is tested to compute optimal quantizers of
Gaussian processes. In particular, we derive the optimal quantization of the fractional Brownian
motion by approximating the first terms of its Karhunen-Loéve decomposition.

A numerical test of the “functional stratification” variance reduction algorithm is performed
with the fractional Brownian motion.

Keywords: integral equation, Nystrém method, functional quantization, vector quantization,
Karhunen-Loéve, Gaussian process, Brownian motion, Brownian bridge, Ornstein-Uhlenbeck, frac-
tional Brownian motion, numerical integration, optimal quantization, product quantization, vari-
ance reduction, stratification.
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Introduction

Let (Q,.A,P) be probability space, and E a reflexive separable Banach space. The norm on E is
denoted by | - |.

The quantization of a random variable X, taking its values in F consists in its approximation
by a random variable Y taking finitely many values. The resulting error of this discretization is
the L? norm of | X — Y|. If we settle on a fixed maximum cardinal N for Y (Q2), the minimization
of the error comes to the following optimization problem:

min {|[|[X = Y|[,, ¥ : @ — E measurable, card(Y(Q)) < N}. (2.1)

A solution of (2.1) is an optimal quantizer of X. This problem was first investigated for signal
transmission and compression issues. More recently, quantization has been introduced in numer-
ical probability to devise quadrature schemes [18], solving multidimensional stochastic control
problems [2] and for variance reduction [4]. Since the 2000’s, the infinite-dimensional setting has
been investigated from both theoretical and numerical viewpoints, especially in the quadratic case
[15] but also in other Banach spaces [27]. One elementary property of a L? optimal quantizer is
the stationarity: E[X|Y] =Y.

We now assume that X is a bi-measurable stochastic process on [0, T'] verifying fOT E [|X:[?] dt <
oo so that it can be considered as a random variable valued in the Hilbert space H = L2([0,T]).
We assume that its covariance function I'* is continuous. In the seminal article on Gaussian
functional quantization [15], it is shown that in the centered Gaussian case, linear subspaces U of
H spanned by N-stationary quantizers correspond to principal components of X. In other words,
they are spanned by eigenvectors of the covariance operator of X. Thus, the quadratic optimal
quantization of Gaussian processes involves its Karhunen-Loéve decomposition (ef X Jn>1-
To perform optimal quantization, the Karhunen-Loéve expansion is first truncated at a fixed order
m and then the R™-valued Gaussian vector, constituted of the m first coordinates of the process
on its Karhunen-Loéve decomposition, is quantized. To reach optimal quantization, we have to de-
termine both the optimal rank of truncation dX (N) (the quantization dimension) and the optimal

dX(N

dX (N)-dimensional Gaussian quantizer corresponding to the first coordinates, é )N (O, )\JX)
j=1

Usual examples of such processes are the standard Brownian motion on [0, T], the standard Brow-
nian bridge on [0,T7], the fractional Brownian motion and Ornstein-Uhlenbeck processes.
m
Another possibility is to use a product quantization of the distribution @ N (0, )\JX ) The
=1
product quantization is the Cartesian product of the optimal quantizers 0% the standard one-
dimensional Gaussian distributions A (OvAg()lging(N)' In the case of independent marginals,
this yields a stationary quantizer, i.e. a quantizer Y of X which satisfies E[X|Y] = Y.This
property, shared with optimal quantizers, results in a convergence rate of a higher order for
the quantization-based cubature method, as we can see in [21]. One advantage of this setting
is that the one-dimensional Gaussian quantization is a fast procedure. In [20], deterministic
optimization methods (as Newton-Raphson) are shown to converge rapidly to the unique optimal
quantizer of the one-dimensional Gaussian distribution. Moreover, a sharply optimized database
of quantizers of standard univariate and multivariate Gaussian distributions is available on the web
site www.quantize.maths-£fi.com [22] for download. Still, we have to determine the quantization
level for each dimension to obtain optimal product quantization. In this case, the minimization of
the distortion comes to:

( a )
miniZS?Vj (V(02)+ Y )\JX,le---degN,d21}. (2.2)
j=1

j>d+1

A solution of (2.2) is called an optimal K-L product quantizer. This problem can be solved by
the “blind optimization procedure”, which consists in computing the criterion for every possible
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decomposition Ny X - -+ x Ng with N7 > --+ > Ny. The result of this procedure can be kept off-line
for a future use. Optimal decompositions for a wide range of values of N for both Brownian motion
and Brownian bridge are available on the web site www.quantize.maths-fi.com [22]. Another
fact on quadratic functional product quantization is that it is shown to be rate-optimal.

In [16], the rate of convergence to zero of the quantization error is investigated. A complete
solution is provided for the case of Gaussian processes under rather general conditions on the eigen-
values of the covariance operator. Rates of convergence are available for the above cited examples
of Gaussian processes. The asymptotics of the quantization dimension dX(N) are investigated.
The following theorem combines these results:

Theorem 2.0.1 (Functional quantization asymptotics). Let X be a centered bi-measurable Gaus-
sian process on [0,T] with a continuous covariance function. Let us denote by (ef,)\f)n>1 its
Karhunen-Loéve eigensystem. Let (Yn)n>1 be a sequence of quadratic optimal N -quantizers for
X. We assume that

Afw%asn—)oo (b>1).

We have:
e span(Yy(Q2)) = span {e{{, . ,effx(N)} and dX(N) 2, 2b~ 7T log(N) as N — oo.

o EN(X) =X = Ynl2 ~ VE\/bE(b—1)~1(2In N)~ "= as N — co.

It is shown in [15] that the Karhunen-Loéve eigenvalues of the fractional Brownian motion,

()\EH ) . verify

H
ABT nZTHH as n — 0o,
for some positive constant vg. Thus the fractional Brownian motion satisfies the hypothesis of
Theorem 2.0.1.
From a constructive viewpoint, the numerical computation of the optimal quantization or the
optimal product quantization requires a numerical evaluation of the Karhunen-Loéve eigenfunc-
tions and eigenvalues, at least the very first terms. (As seen in Theorem 2.0.1, the quantization
dimension of usual Gaussian processes increases asymptotically as the logarithm of the size of
the quantizer, so that it is most likely that it is small. For instance, the quantization dimension
d"(N) of the Brownian motion with N = 10000 is 9.) The Karhunen-Loéve decompositions of
usual Gaussian processes have closed-form expressions. It is the case for the standard Brownian
motion, the Brownian bridge and Ornstein-Uhlenbeck processes. (The case of Ornstein-Uhlenbeck
processes is detailed in [4]).

1. The Brownian motion (W:)¢eo,17,

W (1) = \/gsin (W(n— 1/2)%) L A= (ﬁ)z n> 1. (2.3)

2. The Brownian bridge on [0, 7],

2
eB(t) = 1/ % sin (Wn%) , A= (ﬂ_—j;l) , n>1. (2.4)

3. The Ornstein-Uhlenbeck process on [0, T, starting from 0, defined by the SDE dr: = 0(mu—r:)dt +
odWy, with 0 > 0, 6 > 0 and W a standard Brownian motion on [0, 7], (see [4]).

2
oU 1 . ouU (e
= ———— " n = 55, > .
en (1) Gt sin(wnt), A e n>1, (2.5)
2 4wn,

where wy, are the (sorted) strictly positive solutions of the equation

0 sin(wnT) + wy cos(wn,T) = 0.
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4. The stationary Ornstein-Uhlenbeck process on [0, 7], defined by the same SDE with ro AN (O, ‘2’—;),
(see [4]).

0_2

eQY(t) := Cp (wn cos(wnt) + Osin(wnt)), A= g "Zb (2.6)

where w,, are the (sorted) strictly positive solutions of the equation

20wy, cos(wnT) + (02 — wi) sin(w,T) =0,
and

1 0 wWn sin(2w,T) 6> < sin(2wnT)>
oz =3 (1 — cos(2wnT)) + 2 (T+ o )—l— 5 T Yoo .

In [4], the general setting of an arbitrary initial variance oo for the Ornstein-Uhlenbeck process
is handled. A procedure for the computation of w, is also provided. Other examples of explicit
Karhunen-Loéve expansions are available in [5] and [25]. In [11], Istas derived a semi closed-form
expression for the Karhunen-Loéve expansion of the spherical fractional Brownian motion.

In a more general setting, we do not have a closed-form expression for the Karhunen-Loeve
decomposition. For instance, as far as we know, the K-L expansion of the fractional Brownian
motion is not known. Hence, a numerical method to evaluate first Karhunen-Loéve eigenfunc-
tions is the “missing link” on the path to the constructive optimal quantization of more Gaussian
processes.

However, we can derive rate-optimal quantization of Gaussian processes using other series
expansions as proposed by Luschgy and Pagés in [17, 19]. In this setting, the case of the fractional
Brownian motion can be derived using a rate-optimal series expansion established by Dzhaparidze
and van Zanten in [8, 9] as done by Junglen and Luschgy in [14]. Admissible series expansions
for this approach can also be derived with the method proposed by Jaimez and Valderrama in
[12]. In their article, they consider the transformation ¢ : (X¢)icja,p) = (f(£)X7@))te[a,5), Where
7 : [a, 8] = R is a strictly increasing continuous function such that 7(«) = a and 7(8) = b
and f is a continuous strictly positive function on [«, 8]. They prove that the Karhunen-Loéve
expansion of (X¢)¢cjo,7] With respect to Lebesgue’s measure is transformed into the Karhunen-
Loéve expansion of (f(£)X,u))te with respect to the measure f(t)~2d7(t). Other constructive
approaches for functional quantization are proposed by Wilbertz in [27].

Here, we experiment with the so-called “Nystrom method” [1, 6, 24] for approximating the
solution of the functional eigenvalue problem which defines the Karhunen-Loéve decomposition.
First, we compare the result of the numerical method with the closed-form expressions available
for the Brownian motion, the Brownian bridge and Ornstein-Uhlenbeck processes. Then we handle
the special case of the functional quantization of the fractional Brownian motion.

Functional quantization of Gaussian processes have numerous applications in numerical prob-
ability. In [4], a variance reduction method based on the functional quantization of a Gaussian
process was proposed. This method can be seen as a “guided Monte-Carlo simulation” (see Figure
2.3). Still, it was only applicable with Gaussian processes for which we could have a numerical
evaluation of the Karhunen-Loéve eigenfunctions. Such a variance reduction method would be
of high interest in Monte-Carlo simulations implying the fractional Brownian motion because its
simulation schemes have a high complexity.

Subsequently, we test this “functional stratification” variance reduction algorithm with option
pricing problems within the context of the counterpart of the classical Black and Scholes model
for the fractional Brownian motion. First, the case of a vanilla option is benchmarked with the
closed-form expression available in this case. Then the case of discrete barrier options is tested.

2.1 The Nystrom method

Let X be a bi-measurable Gaussian stochastic process on [0, 7] defined on the probability space
(€2, A,P). We assume that [, 7 E[X2]ds < oo. Let us denote by I'* the covariance function of X
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defined by T'X (¢, s) = cov(X;, X5). We assume that I'X is a continuous function on [0, T x [0, T .
The covariance operator Cx of X is defined by Cx f = [, [X(-,s)f(s)ds. It is a symmetric

positive trace-class operator on L?([0,7]). The Karhunen-Loéve basis associated with X, denoted
by (eX),>1 is the Hilbert basis of L2([0,7) constituted of the eigenvectors of C'y indexed following
the decreasing order of eigenvalues. Now, we are led to solve numerically the eigenvalue problem

/TPX('aS)fk(S)dS—Akfk, k>1, (2.7)
0

where both the eigenvalues and the eigenvectors have to be determined. The Nystrém method

n
relies on the choice of a quadrature rule fOT f(s)ds =~ Z w; f(s;), where (w;)1<;<n is the sequence

of weights of the quadrature rule and (s;)1<;<n are the abscissas at which f is evaluated. If we
plug this quadrature rule in Equation (2.7), we get

Zw] (t,55) fu(s;) = M fr(t) te0,7). (2.8)

Evaluating Equation (2.8) at the quadrature points yields the approximate eigenvalue problem

ij (5iy55) fr(s5) = A fu(si) 1<i<n. (2.9)
fr(s1)

Let f denote the vector : , let (KGj)i<ij<n be the matrix (FX(SivSJ'))lgi,jgn' We
fr(sn)

define the diagonal matrices A and D by A := (diag(Ax))1<k<n and D := diag(wy)1<k<n. Then
Equation (2.9) becomes
KDf = \f. (2.10)

Therefore, within this approximation, the functional eigenvalue problem turns into a matrix
eigenvalue problem. As K is a covariance matrix, it is symmetric. However, since the weights
are not equal for most quadrature rules, the matrix KD is not symmetric. As mentioned in [24],
numerical methods for matrix orthogonalization are much simpler in the symmetric case. As a
consequence, we should restore the symmetry if possible, or favor uniformly weighted quadrature
rules. The method proposed in [24] to restore symmetry is the following:

Multiplying Equation (2.10) by D'/? = diag(,/wi)1<i<n on the left, we get

(DY2KDY?)h = Ah, where h=D'?f. (2.11)

Equation (2.11) is now in the form of a symmetric eigenvalue problem. In our framework
(square-integrable kernels), this provides a good approximation of the n largest eigenvalues and
the associated eigenfunctions.

2.1.1 Choice of the quadrature method

Classical numerical methods for real-valued symmetric matrix diagonalization are
e The Jacobi transform for symmetric diagonalization.

e A tridiagonalization (by Givens or Householder reduction) followed by a QL algorithm with
implicit shifts.

In the case where X is assumed to be pathwise continuous on [0,T], Fernique’s theorem ensures that
f[o B E[X?2]ds < oo (see e.g. [13]), and TX is also continuous (see [13, VIIL.3]).
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All these numerical methods have a O(n?) complexity. As a consequence, the natural choice for
the quadrature method would be the highest order to keep n as small as possible (as a Gaussian
quadrature method).

However we will see, that the Nystrom method associated with lower order quadrature rules
may admit an asymptotic error expansion in even powers of the step sizes as soon as the covariance
function is differentiable (or continuous and piecewise differentiable). So is the case for the trape-
zoidal quadrature rule and the generalized midpoint quadrature rule. As a consequence, instead of
using the high order integration rule, we prefer to use a Richardson-Romberg extrapolation on the
result of the whole procedure with the trapezoidal quadrature formula or the midpoint quadrature
formula.

We could reach an accuracy which approaches the machine roundoff error on the first eigenval-
ues when we benchmark this method on the Brownian motion, the Brownian bridge or Ornstein-
Uhlenbeck processes.

An argument in favor of the midpoint rule is that it is an equiweighted quadrature rule, so that
the Nystrém method comes to a symmetric matrix eigenvalue problem. Moreover, the quadratic

n-optimal codebook for the uniform distribution on a real interval [a, b] is (a + (z - %) b_T“) I<icn

so that the quantization-based quadrature rule coincides with the midpoint rule.

2.1.2 Choice of the interpolation method

The natural choice is to use Equation (2.8) as an interpolation method for evaluating f,

70 = 5 ST (5 Aulsy) (2.12)

n
The same Richardson-Romberg extrapolation can be performed between values of Y w;TX (¢, ;) fx(s;)
j=1
with different orders n to compute this integral. The result is then divided by the extrapolated
value of \j.

A remark on the interpolation method

One purpose of the quantization of a Gaussian process X, is to perform a quantization of the
solution of a SDE driven by X, as soon as the corresponding stochastic integral can be defined.
We can obtain a quantizer of the diffusion by inserting the quantizer of the Gaussian process in
the diffusion equation written in the Stratonovich sense. The most accomplished study on this
subject is [23]. This work is mostly specific to the Brownian motion but main results remain valid
for continuous semi-martingales that satisfy the Kolmogorov criterion such as the Brownian bridge
and Ornstein-Uhlenbeck processes.

Still, a future work could be to extend these results to solution of SDE driven by the frac-
tional Brownian motion and other related processes. In this case, we may also need a numeri-
cal approximation of the time-derivative of the eigenfunction in the Karhunen-Loéve decompo-
sition. If I'X is (weakly) differentiable, a natural evaluation method for the derivative would be

fi®) = 52 il w; 0T X (¢, 55) fi(s5)-
=z

One problem is that this method yields an irregular approximation of the derivative. For
example, this yields a piecewise constant derivative in the case of the Brownian motion. This
causes numerical instabilities when using Runge-Kutta integration methods for ordinary differen-
tial equations, which rely on the regularity of the considered Cauchy problem.

As a consequence, a more regular interpolation method can give more satisfactory results when
dealing with diffusions. (Spline or rational interpolation methods for instance.)
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2.2 Benchmark on known Karhunen-Loéve expansions

In this section, we compare the numerical results obtained with the Nystrém methods in cases
for which we have a closed-form expressions of the Karhunen-Loéve expansion. The multi-steps
Richardson-Romberg extrapolation consists in using the asymptotic error estimate of the method
K, K 1
Vzun—Fﬁ-i-F‘f'"'-i-O(%).
Writing this expression for p different values of n allows us to solve a p X p linear system to nullify
the p — 1 first orders of convergence. The three-steps Richardson-Romberg extrapolation with
n =k, n =1and n =m gives the following solution:

Uk (m? — 12) + U4 (k2 — m2) + Upom?(12 — k?)
(m2 = 2)(12m? + k* — m2k2 — I2k?)

This result is naturally invariant by any permutation of the coefficients (k, m,1). We observed less
accurate results when using higher-order Richardson-Romberg extrapolation, so that we settled
on a three-steps extrapolation which seems to be a good compromise.

2.2.1 Eigenvalues accuracy

Tables 2.1 and 2.2 report the Karhunen-Loéve eigenvalues of the Brownian motion and of the
Brownian bridge on [0,1]. Table 2.3 deals with the stationary Ornstein-Uhlenbeck process on
[0,1] defined by the SDE

d’f‘t = —’f‘tdt + th, (213)

r 1
To ~ N <O, 5) .
The first column gives the theoretical value given by the closed-form expression. Following columns
give the value computed with the Nystrom method with a regular step size with 25, 50 and 100
points. The last column gives the relative error of a three-steps Richardson-Romberg extrapolation
method between n = 25, n = 50 and n = 100.

Mid-point Mid-point Mid-point Mid-point Nystrom
Closed-form Nystrém Nystrom Nystrom 25 — 50 — 100 Richardson-Romberg

25 points 50 points 100 points relative error
0.405284735 0.405418094 0.405318070 0.4052930680 1.5984 x 10~ 13

0.0450316372

0.0451652077

0.0450649853

0.0450399714

1.1607 x 10~ 10

0.0162113894

0.0163453833

0.0162447639

0.0162197259

2.4950 x 10~°

0.00827111703

0.00840574996

0.00830453112

0.00827945541

1.8869 x 1078

0.00500351524

0.00513900777

0.00503698224

0.00501185691

8.5733 x 10~3

Table 2.1: Record of the first five eigenvalues of the Karhunen-Loéve decomposition of the Brow-
nian motion on [0, 1].

With regard to the above numerical results, the Nystrom method gives a satisfactory accuracy
for performing functional quantization of these processes.

2.2.2 Eigenfunctions accuracy

We now compare the closed-form expression of the eigenfunction with the approximation obtained
by “Richardson-Romberg extrapolated mid-point Nystrém method”. In Table 2.4, we report the ra-
tio between highest absolute difference between the closed-form expression and the approximation
on a 300 points regular mesh of [0, 1] on the one hand and the maximum value of the closed-form
expression on the other hand. The tested cases are the Brownian motion, the Brownian bridge
and the stationary Ornstein-Uhlenbeck process defined by the SDE (2.13) with 0 = 1 and 6 = 1.
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Mid-point Mid-point Mid-point Mid-point Nystrom
Closed-form Nystrom Nystrom Nystrom 25 — 50 — 100 Richardson-Romberg

25 points 50 points 100 points relative error
0.101321184 0.101454622 0.101354524 0.101329517 1.0181 x 10~ 1!
0.0253302959 | 0.0254640514 | 0.0253636556 | 0.0253386309 6.5299 x 1010

0.0112579093

0.0113921955

0.0112913019

0.0112662463

7.4651 x 1079

0.00633257398

0.00646760876

0.00636601285

0.00634091389

4.2158 x 1078

0.00405284735

0.00418885438

0.00408634582

0.00406119097

1.6188 x 107

Table 2.2: Record of the first five eigenvalues of the Karhunen-Loéve decomposition of the Brow-
nian bridge on [0, 1].

Mid-point Mid-point Mid-point Mid-point Nystrom
Closed-form Nystrom Nystrom Nystrom 25 — 50 — 100 Richardson-Romberg
25 points 50 points 100 points relative error

0.369405405

0.3696101981

0.3694566011

0.3694182037

2.8612 x 1013

0.0690018877

0.06916548001

0.06904275722

0.06901210328

8.5348 x 10~ 12

0.0225442436

0.02268929627

0.02258041792

0.02255328167

6.9035 x 1010

0.0106644656

0.01080431390

0.01069923895

0.01067314723

7.7028 x 1077

0.00613945693

0.006277759263

0.006173702808

0.006147997976

4.2950 x 10~8

Table 2.3: Record of the first five eigenvalues of the Karhunen-Loéve decomposition of the station-
ary Ornstein-Uhlenbeck process defined on [0, 1] by the SDE dr; = —rdt +dWy, 1o EN (0, %)

Richardson-Romberg
50 — 100 — 200
relative error

€1

€2

€3

€4 €5

Standard
Brownian motion

on [0,1]

2.7414 x 1076

2.4685 x 1075

6.8433 x 1075

1.3473 x 107* | 2.2315 x 10~*

Standard
Brownian bridge
on [0,1]

1.0964 x 1072

4.3908 x 107°

9.8867 x 107°

1.7584 x 10™* | 2.7245 x 10~*

Stationary Ornstein-Uhlenbeck
process on [0, 1]
with o =1and § =1

3.0076 x 107

1.6107 x 1072

4.9283 x 107°

1.0442 x 107* | 1.8157 x 10~*

Table 2.4: Record of the largest relative error on the Karhunen-Loéve eigenfunctions approxima-
tion by the Richardson-Romberg extrapolated mid-point Nystrom method (relative with respect
to the maximum of the eigenfunction). The number of time steps used for the 3-steps Richardson-
Romberg extrapolation are 50, 100 and 200. We used 300 equally spaced points on [0,1]. Each
column corresponds to an eigenfunction.

2.3 Quantization of the fractional Brownian motion

The normalized fractional Brownian motion B, is a centered Gaussian process on [0, 7], which
has the following covariance function:

I‘BH(t,s) =

N~

(18P +1s

21— Js —e21T),

(2.14)
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where H € (0,1) is called the Hurst parameter. If H = % then the process is the standard
Brownian motion.

A simple application of the Nystrém method presented in Section 2.1 produces regularly shaped
functional quantizers of the fractional Brownian motion. In Figure 2.1, a 5x2x 2-product quantizer
of the fractional Brownian motion with 3 different values of the Hurst parameter is plotted.

2

262 01 06 08 1 D

02 04 06 08 1 10 02 04 06 08 1
Figure 2.1: 5x2x 2-product quantizer of fractional Brownian motions on [0, 1] with Hurst exponent

H =0.3 (left), H = 0.5 (middle) and H = 0.7 (right).

Still, for H < %, the covariance function of the fractional Brownian motion has singularities
that break the convergence of the mid-point integration rule in even powers of the step sizes.
Indeed, the derivative of t — ra” (t,s) has an infinite limit as ¢ — 0% and as (t — s~ or t — s™).
It breaks also the convergence of the whole associated Nystrom method in even powers of the
step sizes. In [1, 6, 24], several methods to handle such boundary and diagonal singularities are
proposed. We will deal with this in Section 2.3.1

However, so is not the case for H > %, and we can trust in the results of the method in this
case. In Table 2.5, we report the first five Karhunen-Loéve eigenvalues of the fractional Brownian
motion on [0, 1] with Hurst exponent H = 0.7. The number of time steps are 128, 256 and 512.
Last column yields the corresponding three-steps Richardson-Romberg extrapolation. All the
computation has been performed with an octuple precision floating point number implementation
to increase the accuracy of the 513 x 513-matrix eigensystem computation. (Let us recall that
in the case of the Brownian motion on [0, 1], when performing the same computation, we get an
relative error smaller than 1 x 10~7 for the first five eigenvalues.)

Mid-point Mid-point Mid-point Mid-point

Nystrom Nystrom Nystrom Nystrom

128 points 256 points 512 points 128 — 256 — 512 Richardson-Romberg
0.374536638 0.374533535 0.374532774 0.374532521757236
0.0250351543 | 0.0250343274 | 0.0250341354 0.0250340726875501

0.00728913038

0.00728860123

0.00728848368

0.0072884458064217

0.00322117252

0.00322075790

0.00322066901

0.0032206406932789

0.00176153269

0.00176116702

0.00176109039

0.00176106615722872

Table 2.5: Record of the first five eigenvalues of the fractional Brownian motion on [0, 1] with
Hurst exponent H = 0.7.

2.3.1

Kernel singularities when H < %

As pointed out above, the covariance function of the fractional Brownian motion has a boundary
singularity as ¢t — 04 and a diagonal singularity. In this section, we will use classical methods to
handle this kind of singularities. See [1, 6, 24| for a review of these method.
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Handling the boundary singularity

Change of variable
The singular behavior covariance function I'B” of the fractional Brownian motion, defined in
Equation (2.14) can be removed by a change of variable. The change of variable u = ¢/ and

v = s? in integral (2.7) yields:

H
[T (o) g (07 ot = (u). (2.15)

(The second change of variable aims at preserving the symmetry of the Kernel.)
This leads to

T2H 1 N N oH
[ 5 (ful 1ol = fur o
0

Quadrature rule on a single interval

We now derive a quadrature rule on [0, 7] with respect to the weight function w(v) = 54v ! =
ﬁv with o := ﬁ 1. The aim is to make the quadrature rule exact with affine functions as
for the trapezoidal quadrature rule is, in the case of an integration with a constant weight.

)fk (vﬁ) 221)211 Ldv = )\kfk( ﬁ) (2.16)

/22 “(ax + b)dr = wy(al +b) + w,(ar +b)  V(a,b) € R2
l

This yields

1 a b
a+2 a+2 a+1 a+1 . 2
—< (r -1 )—|——a+1(r -1 )>—a(wll+wrr)+b(wl+wr) V(a,b) € R”.

2H \a+ 2
( 1 r >< w; ) LH#( a+2_la+1)
v ) e )= et e )

The solution of the linear system is

i.e.

o — 1 (ot DIt 4 pot2 — (o + 2)19F Ly " — 1 (a+ Drot2 4 19+2 — (o + 2)retl
YT oH (a+1)(a+2)(r—1) © T T 2H (a+1)(a+2)(r—1)
This is
[zt 4 2Hrsn ! — (2H + 1)izmy el 2zt — (2H + 1)rm
w; = ) Wy =

(2H + 1)(r — 1) (2H + 1)(r — 1)

Quadrature rule for equally spaced abscissas

Let us now consider the equally spaced abscissas points z; = i<, i = 0,1,---,n. We now
use these weights n times to integrate on intervals (25, 271), (a:fﬁ asty - (@28, 22 to

obtain the extended rule of quadrature. The convergence rate of this method is the same as for
the trapezoidal rule.

Handling the diagonal singularity

We now have to handle the diagonal singularity |u — ’U|2H in Equation (2.7). One classical method
is to use the smoothness of the solution by subtracting the singularity.

T H T H
/ P57 (t,5)f(s)ds :/ PPt ) (F(s) = £(8)) ds +r(t) f(2),
0 0
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where r(t) = fOT I'B”(t,s)ds. The discretized eigenvalue problem is now transformed into

I
M=

Ak fr(ti) wi K (fu(ty) — fr(ts)) +r(t) fu(ts)

<
Il
-

(2.17)

S

J

w; Ky fi(ty) + <T(tz‘) - ﬁ:oijij> Ju(ts).

I
-

We now define the diagonal matrix D := diag(w;)1<i<n as in Section 2.1. Moreover, we denote

A := diag <r(ti) - ijij> . Equation (2.17) writes
=0

1<i<n

Mefr = KD fi, + Afy.

Multiplying by D# yields b = (DZK D% + A) h, with h = D¥f. As a consequence, we obtain
again a symmetric matrix eigenvalue problem. In the case of the fractional Brownian motion, the
function r(t) = fOT ra” (t,s)ds is derived explicitly:

1 <T2H+1 _ u2H+1

r(t) =3 +u2HT—w>.

2H +1 2H +1

Optimal quantization of the fractional Brownian motion

We now use this approximation of the Karhunen-Loéve basis to perform an optimal quantization
of the fractional Brownian motion with a 50-100-200 three-step Richardson-Romberg extrapolated
Nystrom method.

In Figure 2.2, we display the quadratic optimal N-quantizer of the fractional Brownian motion
on [0,1] with Hurst exponent H = 0.25 and N = 20. In this case, the quantization dimension is
3.

0 0.2 0.4 0.6 0.8 1

Figure 2.2: Quadratic N-optimal quantizer of the fractional Brownian motion on [0, 1] with Hurst
parameter H = 0.25 and N = 20.

2.4 Application to the functional stratification of the frac-
tional Brownian motion

In this section, we experiment with the functional quantization-based stratified sampling algorithm
proposed in [4] with the fractional Brownian motion.
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2.4.1 Background on stratification

Let E be a separable Hilbert space. The idea of stratification is to localize the Monte-Carlo
simulation on the elements of a measurable partition of the state space of a L? random variable
X:(Q,A) — (E,e).

e Let (A;)icr be a finite e-measurable partition of a E. The sets A; are called strata. Assume
that the weights p; = P(X € A;) are known for ¢ € T and strictly positive.

e Let us define the collection of independent random variables (X;);c; with distribution

Let F: (E,e) = (R, B(R)) such that E[F?(X)] < +o0.
E[F(X)] = ZPiE[F(X)|X € Ail = ZPZE[F(X’L)]
il il

Let M be the global budget allocated to the computation of E[F(X)] and M; = ¢; M the budget
allocated to compute E[F(X;)] in each stratum. We assume that Y ¢; = 1. This leads to define

iel
the (unbiased) estimator of E[F(X)]:
I 1 &
F(X)y = _pigp > FXD), (2.18)
i€l ! k=1
where (XF)1<k<nr, is a L(X|X € A;)-distributed random sample.
Proposition 2.4.1. With the same notations:
Var (F(X)I ) L 3 Pl (2.19)
oM ier ¢ o ‘

where of,; = Var(F(X)|X € A;) = Var(F(X;)) Vi€ 1.

In [4], it is pointed out that theoretical aspects of quantization lead to a strong link between the
problem of optimal L2-quantization of a random variable and the variance reduction that can be
achieved by stratification. Three types of allocation rules for the budgets (¢;)iecr are proposed:

e The “sub-optimal rule” is to set
¢ =pi, tel. (2.20)

Two possible motivations for this choice are the facts that the weights p; are known and
because it always reduces the variance.

e The “optimal rule” is obtained when minimizing the variance in Equation (2.19). The solution
of the minimization problem is given by

== e (2.21)
" X DpioR;
Jjel

and the corresponding minimal variance is ( > piop,i)Q.

il
A counterpart of this method is that we do not know explicitly the solution (g})icr. In
[26], Etoré and Jourdain proposed an algorithm for adaptively modifying the proportion
of further drawings in each stratum, that converges to the optimal allocation. This can be
used in a general framework. Another practical solution is to implement a simple prior rough
estimation of the optimal allocation.
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e The “Lipschitz optimal” rule. When the partition (4;);es is a Voronoi partition associated
with an optimal quantizer of X, the following setting is considered

Di0;

4= e
b Y o
jeI

iel, (2.22)

where o; is the local inertia of the random variable X, 02 = E [|X ~E[X|X € 4] ‘X € Ai] .

It is proved that this setting has a uniform efficiency among the class of Lipschitz continuous
functionals. Moreover, local inertia (o;);e; are known. This solution overcomes the “sub-
optimal choice” in every test done in [4].

2.4.2 On the functional stratification of Gaussian processes

Let X be a centered bi-measurable Gaussian process on [0, T'] with a continuous covariance function
on [0,T]?. We are interested by the value of E[F(X;,, X¢,, -, Xs,)] where 0 =ty < t; < --- <
t, =T are n + 1 dates of interest for the underlying process. Let us assume that x € Opy (X, N)
is a K-L product quantizer of X. The codebook associated with this product quantizer is the set

of the paths of the form
Ny, ) ) .
Xi:Z )‘fxgn )enX7 1:{117"'72717"'}7
n>1
where (ef,)\ff) is the Karhunen-Loéve decomposition of the process X on [0,7] and :Efi\[") is
the i,th element of an optimal quantizer of size INV,, of the standard one-dimensional Gaussian

distribution.
We now need to be able to simulate the conditional distribution

where A; is the slab associated with x; in the codebook. To simulate this conditional distribution,
we will:

e First, simulate the first K-L coordinates of X. A detailed simulation procedure is available
in [4]

e Then simulate the conditional distribution of the marginals of the Gaussian process, its first
coordinates being fixed.

In this setting, we need to simulate the conditional distribution

T T T
E(Xto, e Xy / Xse‘lxds,/ Xex (s)ds, - - ,/ Xex (s)ds) (2.23)
0 0 0

Conditional simulation: In [4], two solutions are proposed for the simulation of the conditional
distribution (2.23).

e The first one is the naive Cholesky method for Gaussian vector simulation, which has a
quadratic complexity in the number of time steps. This first simulation scheme was not
competitive for linearly simulatable processes such as the Brownian motion. In the following,
we will mention this method as the brute force method.

e The other solution, detailed in [4] requires a prior simulation of the unconditional distribution
of (X, -+, X, ) and has then a linear additional cost. This algorithm will be mentioned
in the following as the Bayesian algorithm. For Gaussian processes which have a linear
simulation scheme in the unconditional case (as Ornstein-Uhlenbeck processes, the Brownian
bridge and the Brownian motion), this method is of high interest.
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2.4.3 The case of the fractional Brownian motion

Possible methods for simulating the fractional Brownian motion on a schedule ¢ty < t; < --- <,

are
e the naive Cholesky method which has quadratic complexity,

e and the circulant matrix method which has a O(nln(n)) complexity |7, 28|. The circulant
matrix method is also available for the multifractional Brownian motion [29].

No exact simulation scheme with a linear complexity exists for the fractional Brownian motion. If
we choose the Cholesky method, there is no interest in using the Bayesian algorithm proposed in
[4]. The brute force Cholesky method is adapted to this situation.

In every other case, if the unconditional simulation method has a smaller complexity, we have
interest to use the Bayesian algorithm which has a linear additional cost to the unconditional
simulation.

In Figure 2.3, we plot a few paths of the conditional distribution of the fractional Brownian
motion with Hurst parameter H = 0.3 knowing that they belong to a given L? Voronoi cell.

4

3t .

21 ,

iy

byl AV

(Rl

Al n| A,

il “‘\ w"

ﬂ
| |

i
Vf\yiwmw i

(\ |
”MN e Mm n‘n Y‘

I

— 1|l
A '“* ,

—9| I/ Al l“‘;\.;

3 I w"mmwaﬂn%‘%
—oFr \

v

A

0 0.5 1

1.5

2

2.5

3

Figure 2.3: Plot of a few paths of the conditional distribution of the fractional Brownian motion
with Hurst parameter H = 0.3 on [0, 3], knowing that its path belong to the L? Voronoi cell of
the highlighted curve in the quantizer.

2.4.4 Gaussian process reconstruction

The first numerical test of the functional stratification of the fractional Brownian motion is a
method to validate both the eigenfunction computation by the Nystrom method and the functional
stratification algorithm.

Indeed, one can rebuild the considered Gaussian process from its stratification, by following
the steps bellow

e First, simulate the discrete weighted distribution of the strata index (i, p;)ics to select the
strata.

e Then simulate the conditional distribution £ (Xto, e, Xy,

in the strata by the method described above.

Xe Ai) of the Gaussian process

The result should be distributed according to the distribution of the underlying Gaussian process.

In Table 2.6, we report the covariance structure E [Xtith] i< estimated by a Monte-Carlo
<i,j<n
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7

simulation when X is a fractional Brownian motion with Hurst parameter H = 0.7. The tested
schedule is (zT) - with 7= 1 and n = 5. The product decomposition of the quantization is
TSN

n/o<i<
10 x 5 x 2.
0.105061 | 0.138629 0.15846 0.173817 | 0.186687 0.105141 | 0.138748 | 0.158596 | 0.173959 | 0.186824
0.138629 | 0.277258 | 0.330656 | 0.365844 | 0.394071 0.138748 | 0.277417 | 0.330885 | 0.366075 | 0.394372
0.15846 0.330656 | 0.489116 | 0.557871 | 0.605929 0.158596 | 0.330885 | 0.489454 | 0.558177 | 0.606266
0.173817 | 0.365844 | 0.557871 0.73168 0.813313 0.173959 | 0.366075 | 0.558177 | 0.731923 | 0.813579
0.186687 | 0.394071 | 0.605929 | 0.813313 1 0.186824 | 0.394372 | 0.606266 | 0.813579 1.0003

Table 2.6: Theoretical (left) and estimated (right) covariance E[X;, X; ] of the rebuilt fractional
Brownian motion with H = 0.7. The number of generated paths for this Monte-Carlo simulation
was 1 x 107.

In every tested case, when generating Table 2.6, the theoretical value lies in the 95% confidence
interval. These confidence intervals were not displayed for briefness. We obtain the same order of
accuracy with other values of H € (0,1).

2.4.5 Application to option pricing

A stochastic integral with respect to the fractional Brownian motion has been introduced in [10]
by Helliot and van der Hoek, and in [3] by Biagini, @ksendal, Sulem and Wallner, using the white
noise theory. They proposed a generalization of the Black-Scholes model. As in the classical
Black-Scholes market, two assets are available:

o A risk-free asset whose price is given by

dsy = rSpdt (2.24)

e and a risky asset whose price is given by
dS; = pSidt + 0S;dBY (2.25)

where r, ;1 and o are constants and B is fractional Brownian motion with Hurst parameter
H.

It has been shown that this market presents no arbitrage opportunity and is complete. Moreover,
the solution of the stochastic differential Equation (2.25) is given by

1
Sy = Sp exp <UB£I + ut — 502152[{) . (2.26)

The following theorem, proved in [10] deals with the price of a European Call option.

Theorem 2.4.2 (Fractional Black-Scholes formula). The price at every time t € [0,T] of a
European Call option with strike price K and maturity T is given by

C(t,8) = SN (dy) — Ke " T=YN (dy) (2.27)

where )
In () + (T —t) + G (T2 — 2H)
di = — , (2.28)

2
] () + (T - 1) - G(TH - ) )26
2T oN/T2H _ (20 ' (2.29)
This closed-form expression is used to benchmark our simulation scheme of the fractional
Brownian motion.

and
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Benchmark with a barrier option in a H-fractional Black and Scholes model

Here, we test the numerical method for a barrier option in the fractional Black and Scholes model.
For the sake of simplicity, we consider a log-normal Black and Scholes diffusion with no drift (no
interest rate and no dividend). The chosen Hurst exponent is H = 0.3. The numerical results are
reported in Table 2.7.

The results are displayed for different values of the initial spot S, the strike K, the barrier B,
the volatility o, the maturity 7" and the number of equally spaced fixing dates n.

In this table, the first column corresponds to a simple Monte-Carlo estimator. The last three
columns correspond to stratified sampling estimators with different allocation strategies for the
Monte-Carlo simulations.

The “sub-optimal weights” column stands for the allocation budget of Equation (2.20). The
“Lip.-optimal weights” column stand for the “universal stratification” budget allocation of Equa-
tion (2.22). Both these two case have explicit allocation rules. Last column, “Optimal weights”
corresponds to an estimation of the optimal budget allocation given in expression (2.21).

Simple Strat. estimator Strat. estimator Strat. estimator
Parameters estimator sub-optimal weights Lip.-optimal weights optimal weights
S =100, K = 100 12.5947 12.5674 12.5566 12.5890
B =125, 0 = 0.3, [12.4429, 12.7466] [12.4732,12.6615] [12.4654, 12.6477] [12.5201, 12.6579]
T=15n=11 Var = 600.5711 Var = 230.8692 Var = 216.3442 Var = 123.5426
S =100, K = 100 1.3412 1.3826 1.3613 1.3769
B =200, 0 = 0.3, [1.2677,1.4146] [1.3140,1.4511] [1.3002, 1.4224] [1.3530, 1.4009]
T=1,n=11 Var = 140.5978 Var = 122.2808 Var = 97.1538 Var = 14.9352

Table 2.7: Numerical results for the Up-In Call option, with 100 = 10 x 5 x 2 stratas.

We notice that the quantization-based stratified sampling method noticeably reduces the variance
of the Monte-Carlo estimator. The universal stratification allocation rule (2.22) proposed in [4]
overcomes the sub-optimal weight allocation. Moreover, the “optimal allocation” estimation yields
a better variance reduction factor.
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Chapter 3

Partial functional quantization and
generalized bridges

Abstract

In this chapter, we develop a new approach to functional quantization, which consists in dis-
cretizing only the first Karhunen-Loéve coordinates of a continuous Gaussian semimartingale X.
Using filtration enlargement techniques, we prove that the conditional distribution of X know-
ing its first Karhunen-Loéve coordinates is a Gaussian semimartingale with respect to its natural
filtration.

This allows us to define the partial quantization of a solution of a stochastic differential equation
with respect to X by simply plugging the partial functional quantization of X in the SDE.

Then we provide an upper bound of the LP-partial quantization error for the solution of SDE
involving the LPT¢-partial quantization error for X, for ¢ > 0. The a.s. convergence is also
investigated.

Incidentally, we show that the conditional distribution of a Gaussian semimartingale X, know-
ing that it stands in some given Voronoi cell of its functional quantization, is a (non-Gaussian)
semimartingale. As a consequence, the functional stratification method developed in [7] amounted,
in the case of solutions of SDE, to using the Euler scheme of these SDE in each Voronoi cell.

Keywords: Gaussian semimartingale, functional quantization, vector quantization, Karhunen-
Loéve, Gaussian process, Brownian motion, Brownian bridge, Ornstein-Uhlenbeck, filtration en-
largement, stratification, Cameron-Martin space, Wiener integral.
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Introduction

Let (2, A,P) be a probability space, and F a reflexive separable Banach space. The norm on E is
denoted by |- |. The quantization of a F-valued random variable X consists in its approximation
by a random variable Y taking finitely many values. The resulting error of this discretization is
measured by the LP norm of | X — Y|. If we settle on a fixed maximum cardinal for Y (), the
minimization of the error comes to the following minimization problem:

min{|||X—Y||

¥ i Q — E measurable, card(Y(Q2)) < N} . (3.1)

A solution of (3.1) is an optimal quantizer of X. This problem, initially investigated as a signal
discretization method [10], has then been introduced in numerical probability to devise cubature
methods [22] or to solve multidimensional stochastic control problems [4]. Since the early 2000’s,
the infinite-dimensional setting has been extensively investigated from both constructive numerical
and theoretical viewpoints with a special attention paid to functional quantization, especially in
the quadratic case [17] but also in some other Banach spaces [28]. Stochastic processes are viewed
as random variables taking values in their path spaces such as L2 := L2([0, T, dt).

We now assume that X is a bi-measurable stochastic process on [0, T'] verifying fOT E [|X:[?] dt <
400, so that this can be viewed as a random variable valued in the separable Hilbert space
L2([0,T]). We assume that its covariance function I'* is continuous. In the seminal article
on Gaussian functional quantization [17], it is shown that in the centered Gaussian case, linear
subspaces U of L?([0,T]) spanned by L?-optimal quantizers correspond to principal components
of X. In other words, they are spanned by the first eigenvectors of the covariance operator of
X. Thus, the quadratic optimal quantization of Gaussian processes involves its Karhunen-Loéve
decomposition (eX, A\X),>1.

If Y is a quadratic N-optimal quantizer of the Gaussian process X and dX (N) is the dimension
of the subspace of L?([0,7]) spanned by Y (), the quadratic quantization error Ex(X) verifies

E(X)= Y A +& (éN(O,Af)) for m > d¥ (N). (3.2)

j>m+1
EX(X)< >0 M +& (@N (o,xf)) for 1 <m < dX(N). (3.3)
jzm+1 j=1

To perform optimal quantization, the decomposition is first truncated at a fixed order m and
then the R™-valued Gaussian vector, constituted of the m first coordinates of the process on its
Karhunen-Loéve decomposition, is quantized. To reach optimality, we have to determine the opti-
mal rank of truncation d* (V) (the quantization dimension) and the optimal d*X (N )-dimensional
aX ()
quantizer corresponding to the first coordinates @ N (0, )\]X ) . Usual examples of such processes
j=1
are the standard Brownian motion on [0, 7], the Brownian bridge on [0, 7], Ornstein-Uhlenbeck
processes and the fractional Brownian motion. In Figure 3.1, we display the quadratic optimal N-
quantizer of the fractional Brownian motion on [0, 1] with Hurst exponent H = 0.25 and N = 20.

aX (V)
Another possibility is to use a product quantization of the distribution @ N(0,A%). The
j=1

product quantization is the Cartesian product of the optimal quadratic quantizers of the standard
one-dimensional Gaussian distributions N (0, A )19de< ~)- In the case of independent marginals,
this yields a stationary quantizer, i.e. a quantizer ¥ of X which satisfies E[X|Y] = Y. This
property, shared with optimal quantizers, results in a convergence rate of a higher order by one for
the quantization-based cubature method. One advantage of this setting is that the one-dimensional
Gaussian quantization is a fast procedure. In [23], deterministic optimization methods (as Newton-
Raphson) are shown to converge rapidly to the unique optimal quantizer of the one-dimensional
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Figure 3.1: Quadratic N-optimal quantizer of the fractional Brownian motion on [0, 1] with Hurst
parameter H = 0.25 and N = 20. The quantization dimension is 3.

Gaussian distribution. Moreover, a sharply optimized database of quantizers of standard univariate
and multivariate Gaussian distributions is available on the web site www.quantize.maths-£fi.com
[25] for download. Still, we have to determine the quantization size for each direction to obtain
optimal product quantization. In this case, the minimization of the distortion (3.2) comes to:

( a )
miniZ&j (M (0.2X)) + 30 MK, Nix o x Ng< N, dzl}. (3.4)
j=1

j>d+1

In [17], the rate of convergence to zero of the quantization error is investigated. A complete
solution is provided for the case of Gaussian processes under rather general conditions on the eigen-
values of the covariance operator. Rates of convergence are available for the above cited examples
of Gaussian processes. The asymptotics of the quantization dimension dX(N) is investigated in
[18, 20].

From a constructive viewpoint, the numerical computation of the optimal quantization or
the optimal product quantization requires a numerical evaluation of the Karhunen-Loéve eigen-
functions and eigenvalues, at least the very first terms. (As seen in [17, 18, 20|, under rather
general conditions on its eigenvalues, the quantization dimension of a Gaussian process increases
asymptotically as the logarithm of the size of the quantizer. Hence it is most likely that it is
small. For instance, the quantization dimension of the Brownian motion with N = 10000 is
9.) The Karhunen-Loéve decompositions of several usual Gaussian processes have a closed-form
expression. This is the case for the standard Brownian motion, the Brownian bridge and Ornstein-
Uhlenbeck processes. (The case of Ornstein-Uhlenbeck processes is derived in [7], in the general
setting of an arbitrary initial variance oy. A pseudo-algorithm for the computation of wy is also
provided.) Another example of explicit Karhunen-Loéve expansion is derived in [8] by Deheuvels
and Martynov.

In the general case, no closed-form expression of the Karhunen-Loéve expansion is available.
For instance, the Karhunen-Loéve expansion of the fractional Brownian motion is not known. To
fulfill the requirement of a numerical evaluation of those functions, it is possible to use numerical
methods related to integral equations to solve the eigenvalue problem that defines the Karhunen-
Loéve expansion. A review of these methods is available in [3]. In [6], the so-called “Nystrom
method” is used to compute the first terms of the Karhunen-Loéve decomposition of the fractional
Brownian motion for its optimal functional quantization.

An application of the quantization of a Gaussian process X, is to perform a quantization
of the solution of a SDE with respect X, when a stochastic integration with respect to X can
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be defined. In the following, we will assume that X is a continuous Gaussian semimartingale
on [0,7]. The Brownian motion, the Brownian bridge and Ornstein-Uhlenbeck processes are
semimartingales, but the fractional Brownian motion with Hurst exponent H # % is not. We can
obtain a stationary quantizer of the diffusion by inserting the quantizer of the Gaussian process in
the diffusion equation written in the Stratonovich sense. In [26], Pagés and Sellami proved the a.s.
convergence of this quantization when the quantizer size goes to infinity. The rate of convergence
is also investigated. This work is mostly specific to the Brownian motion but main results remain
valid for continuous semimartingales which satisfy the Kolmogorov criterion such as the Brownian
bridge and Ornstein-Uhlenbeck processes.

3.1 Quantization-based cubature and related inequalities

The idea of quantization-based cubature method is to approach the probability distribution of the
random variable X by the distribution of a quantizer Y of X. As Y is a discrete random variable,

N
we can write Py = Y p;d,,. If F': E — R is a Borel functional,
i=1

E[F(Y)] = ZPiF(?Ji)' (3.5)

Hence, if we have access to the weighed discrete distribution (y;,p;)1<i<n of Y, we are able to
compute the right-hand side of Equation (3.5). Now, we review some error bounds that can be
derived when approaching E[F(X))] by the quantity (3.5). See [24] for more details on error
bounds.

1. If X € L?,Y a quantizer of X of size N and F is Lipschitz continuous, then
[EF(X)] = E[F(Y)]] < [Fluip[| X = Yl2. (3.6)
In particular, if (Yn)n>1 is a sequence of quantizers such that J\}im IX = Yn|l2 =0, then
— 00

N
the distribution . pNo,~ of Yy converges weakly to the distribution Px of X as N — oc.
i=1 ¢

This first error bound is a straightforward consequence of |F(X) — F(Y)| < [FlLip| X = Y.

2. If Y is a stationary quantizer of X, i.e. Y = E[X|Y], and F is differentiable with an
a-Holder differential DF (o € (0,1]), then

[E[F(X)] - E[F(Y)]| < [DFa|| X - Yl3*. (3.7)

In the case where F has a Lipschitz continuous derivative (o = 1), we have. [DF]|; =
[DF]Lip. For example, if F is twice differentiable and D*F is bounded, then [DF]Li, =
ID?F ||

This particular inequality comes from the Taylor expansion of F' around X and the stationarity
of Y.

3. If F is a convex functional and Y is a stationary quantizer of X,
E[F(Y)] <E[F(X)]. (3.8)

This inequality is a straightforward consequence of the stationarity property and Jensen’s inequal-

1ty.
E[F(Y)] = E[F(E[X|Y])] < E[E[F(X)|Y]] = E[F(X)].
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3.2 Functional quantization and generalized bridges

3.2.1 Generalized bridges

Let (X¢)¢ejo,7] be a continuous centered Gaussian semimartingale starting from 0 on (2, A, P) and

FX its natural filtration. Fernique’s theorem ensures that [; E [X?] dt < +oo (see Janson [13]).
We aim here to compute the conditioning with respect to a finite family Zr := (Z%.);cs of Gaussian
random variables, which are measurable with respect to o(Xy,¢ € [0,T]). (I C N is a finite subset
of N*.) As Alili in [1] we settle on the case where (Z%);cs are the terminal values of processes of

the form Zj = [ fi(s)dX,, i € I, for some given finite set f = (f;)ier of L},.([0,T]) functions.
The generalized bridge for (X;)c[o,r) corresponding to f with end-point Z = (2;)ses is the process

(X 73) that has the distribution
te[0,T)
XTFE L(X|Zh =z, i€1). (3.9)

For example, in the case where X is a standard Brownian motion with |I| = 1, f = {f} and
f =1, this is the Brownian bridge on [0,7]. If X is an Ornstein-Uhlenbeck process this is an
Ornstein-Uhlenbeck bridge.

Let H be the Gaussian Hilbert space spanned by (X)sep,r] and H the closed subspace of H
spanned by (Z4);e;. We denote by H% its orthogonal complement in H. Any Gaussian random
T

1
variable G of H can be orthogonally decomposed into G = Projz (G)+ Proj%T (G), where Projz_

and Proj%T are the orthogonal projections on HET and H%- . (Proj%T = Idyg — PrOjET)' With
X T
these notations, E [G|(Z)ic1] = Projz_(G).

Other definitions of generalized bridges exist in the literature, see e.g. [21].

3.2.2 The case of the Karhunen-Loéve basis

As X is a continuous Gaussian process, it has a continuous covariance function (see [13, VIIL3]).
We denote by (e;*, \;*);>1 its Karhunen-Loéve eigensystem. Thus, if we define function f;¥ as the

antiderivative of —eX that vanishes at t = T, i.e. fX(t) = [ eX(s)ds, an integration by parts
yields
T T
/ XoeX (s)ds = / X (s)dX,. (3.10)
0 0

In other words, with the notations of Section 3.2.1, we have Y; := fOT XseX(s)ds = Zi.

For some finite subset I C N*, we denote by X'¥ and call K-L generalized bridge the generalized
bridge associated with functions (f;X);c; and with end-point ¥ = (y;)ics. This process has the
distribution £(X|Y; = y;,i € I).

In this case, the Karhunen-Loéve expansion gives the decomposition

X= YVl Y el (3.11)

i€l JEN\T
——
=Projz (X) =ProjL (X)
Zr

where (§;);en+\s are independent standard Gaussian random variables. This gives us the projec-
tions Projz = and Proj%T defined in Section 3.2.1. It follows from (3.11) that a K-L generalized
bridge is centered on E [X|Y; = y;,4 € I] and has the covariance function

XY (5,) = cov(X,, Xp) = D AN e (s)e (1) (3.12)
iel
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We have [ TXIY(t,t)dt = ¥ A¥.

iEN*\T
Moreover, thanks to decomposition (3.11), if X7V is a K-L generalized bridge associated with X
with terminal values ¥ = (y;):er, it has the same probability distribution as the process

S e () + Xi - (/ X,eX ds>e()

el iel

This process is then the sum of a semimartingale and a non-adapted finite-variation process.

Let us stress the fact that the second term in the left-hand side of (3.11) is the corresponding K-L

generalized bridge with end-point 0, i.e. Proj%T = X109,

In [7], an algorithm is proposed to exactly simulate marginals of a K-L generalized bridge with a

linear additional cost to a prior simulation of (Xy,,--- , Xt ), for some subdivision 0 =ty < t; <
-t, =T of [0,T]. This was used for variance reduction issues. Note that the algorithm is easily

extended to the case of (non-K-L) generalized bridges.

3.2.3 Generalized bridges as semimartingales

For a random variable L, we denote by P [-|L] the conditional probability knowing L. We keep
the notations and assumptions of previous sections. (X is a continuous Gaussian semimartingale
starting from 0.) We consider a finite set I C {1,2,---} and (f;):csr a set of bounded measurable

functions. Let X/*¥ be the generalized bridge associated with X with end-point 7 = (y;);cs. For
iel, Zi = [l fi(s)dX, and Z, = (Zi)ser.

Jirina’s theorem ensures the existence of a transition kernel

V7T|((Xt)te[o,s]) : B(RI) x CY ([0,s],R) — Ry,

corresponding to the conditional distribution £ (7t

((Xt)te[o,s]))-
We now make the additional assumption (#) that, for every s € [0,7") and for every (zy)ucjo,s) €
C° ([0, s],R), the probability measure V2| (X0)reto.n)) (dy ($u)u€{075]) is absolutely continuous

with respect to the Lebesgue measure. We denote by Il r its density. The covariance

uw€[0,s]y
matrix of this Gaussian distribution on R! writes

Q(s.7) :=E[(Zr - E[Zr|(X)ucw0.0]) (Z7 — E [Z7](Xu)ucro.s]) |(Xu)uep.sl] -

If X is a martingale, we have Q(s,T) ((f filu <X>u))(Z here We recall that a con-

tinuous centered semimartingale X is Gaussian if and only if (X) is deterministic (see e.g. |27]).
Hence, this additional hypothesis is equivalent to assume that

Q(s,T) is invertible for every s € [0,T). (H)

The following theorem follows from the same approach as the homologous result in the article by
Alili [1] for the Brownian case. It is generalized to the case of a continuous centered Gaussian
semimartingale starting from 0.

Theorem 3.2.1. Under the (H) hypothesis, for any s € [0,T), and for P _-almost every j € R,
P [-|7T = y] is equivalent to P on FX and its Radon-Nikodym density is given by

P [|7T = y] . H(XH)UE[O,S]vT(y)
dP |Fx Mor(m)
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Proof: Consider F a real bounded F:X-measurable random variable and ¢ : R — R a bounded
Borel function.

e On one hand, preconditioning by Zr yields

E[F¢(Zr)| =E[E [F|Zr] 6(Z1)] = / $(DE [F[Zr = 7| o x (7)dy. (3.13)
RI

e On the other hand, as F' is measurable with respect to F2X, preconditioning with respect to
FX yields

B[Po(Zr)] = B [FE[6Zn|FY]] =B [ [ o@)ix.cp.0 (5]

Now, thanks to Fubini’s theorem

E[Fo(Zr)] = [ 60 [Fllcc 0 )] 05 (3.14)
RI

Identifying Equations (3.13) and (3.14), we see that for P -almost surely y € R’ and for every
real bounded F:X-measurable random variable F,

(3.15)

_ I B
IE[F|ZT=§] =K {Fw]

o, 7(7)

Equation (3.15) characterizes the Radon-Nikodym derivative of the probability P [-|7T = y] on
FX. 0

We now can use classical filtration enlargement techniques [12, 14, 29].

Proposition 3.2.2 (Generalized bridges as semimartingales). Let us define the filtration GX by
GX =0 (7T,]-}X), the enlargement of the filtration FX corresponding to the above conditioning.

dP[-|Z7=7]

. . o T(xy),er0.0.7 @
We consider the stochastic process DY := =P —eled

)
X = T s for s €[0,T).
Under the (H) hypothesis, and the assumption that DY is continuous, X is a continuous G~ -
semimartingale on [0,T).

Proof: DV is a strictly positive martingale on [0, T') which is uniformly integrable on every interval
[0,¢] € [0,T). Hence, as we assumed that it is continuous, we can write DY as an exponential

_ _ _ _ =1 _ _
martingale DY = exp (LY — 1 (L7) ) with LY = [ (DY) dDY (as D} =1).
Now, as X is a continuous (FX,P)-semimartingale, we write X = V4 M its canonical decompo-
sition (under the filtration FX).

e Thanks to Girsanov theorem, M7 := M — <M, Ly> is a (}'X, P HZT = y] )—martingale.

— A consequence is that it is a (QX P [-|7T = y] )—martingale.

— And thus M%7 is a (G¥,P)-martingale.
For more preciseness on this, we refer to [2, Theorem 3] where the proof is based on
the notion of decoupling measure.

e Moreover, conditionally to Z, V is still a finite-variation process V, and is adapted to G¥X. O



88 CHAPTER 3. PARTIAL FUNCTIONAL QUANTIZATION

Remark (Continuous modification). In Proposition 3.2.2, if one only assumes that DY has a
continuous modification DY, then with each one of its continuous modifications is associated a
continuous G~ -semimartingale on [0,T), and all these semimartingales are modifications of each
other.

Proposition 3.2.3 (Continuity of DY). If FX is a standard Brownian filtration, then DY has a
continuous modification.

Proof: Consider s € [0,7'). Under the (H) hypothesis, the density Il(x,), .,z Writes

€l

Tix, ) g (@) = (27 det Q(s, 1)~ % exp (7 E [Zr|(Xuduco.] ) Q1) (7 - E [Zr| Ku)uerona] ) ) -
(3.1

6)

Let us define the stochastic process H by H, := E [ZT| w)uelo, S]] The so-defined process

H is a F¥X local martingale. Thanks the Brownian representation theorem, H has a Brownian
representation and has a continuous modification. The continuity of s — det Q(s,T) and s —
Q(s,T)~* follows from the definition of Q(s,T) and the continuity of H (up to a modification).
Hence, DY has a continuous modification. ([

Remark. o The measurability assumption with respect to a Brownian filtration is satisfied in
the cases of the Brownian bridge and Ornstein-Uhlenbeck processes.

o This hypothesis is not necessary so long as the continuity of the martingale Hy = E [ZT| w)uelo, S]]
can be proved by any means.

On the canonical decomposition
Observing that <M7 L§> = <X, Ly> we can compute the canonical decomposition of X7, We

have )
LY — /t dH(Xu)ue[o,s]yT(y)
' 0 H(Xu)ue[o,s]ﬁT(y) ’

and

I
I (TI(x,) 0.0, 7(@)) = _% In (27 det Q(s, T))

_% (y E[ZT| uE[O s]])Q(SaT)i (y E[ZT| uE[O s]])*
Using that for a semimartingale S, dIn S = % — %d <% . S’>, we obtain

A(xXu) e, @) _ finite-variation
~m —dn (H(Xu)ue[o o] T(y)) T process

d((y IE[ZT| uGOs]])Q (S T) (y IE[ZT| *uGOS]]) ) +(f"v' p')
= (dE [ZT| uG [0 s]]) Q" (S T) (y E [ZT| €lo s]]) (f"V' p')'

H(Xu)uE[O BE

Hence,
d(X,L7) =d(X.E[Zr|(Xu)ucwo.1]). Q75 T) (5~ E [Zr|(Xu)uepo.n]) -

o In the case where X is a martingale, owing to the definition of Z;, we haveVj € I, E [Z%‘(XU)UE[O,S]] =
Jo fi(u)dX, so that

a(x,17) = (&)@ 6.7) (7~ E [24|(Xudueron]) ) dlX)s
= ¥ s X QD)) (v —E (7 \(Xu>ue[05]])d<x>s.

i€l jeI

(3.17)
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As a consequence, M — [; Z;fi(s) Z] (Q(S,T)*l)ij (yj —-E [Z%‘(Xu)ue[O,s]]) d(X)s is a
1€ J€

(QX,]P’ [-|7t = y])—martingale. We have recovered Alili’s result on the generalized Brow-
nian bridge [1].

o In the case where the Gaussian semimartingale X is a Markov process, for every j € I there
exists g; € L?([0,T]) such that E [ZJT‘(X welo S]] [o fi(w)dX, + gj(s)X,. Indeed,

E 23,

(Xu)uE[O,s]:| .

s T
::gj‘(rs)Xs

Hence, if one assumes that (g,),es are finite-variation functions (which is is case when X is ei-
ther an Ornstein-Uhlenbeck process or a Brownian bridge), we have d <X E [ZT| w)uelo, ]] >

(7(s) +9(s)) d(X),. And thus

a(X.27) = ((F)+ <>)Q1<S,T>(y E [24|(X)uena]) ) dtx
= X (i) +9i() T (Qs. 1)), (i B[4 \<xu>ue[os]])d<x>s.

Generalized bridges and functional stratification

With the same set of notations, we set Y = Z7 and YT = Projp(Y) = Z vile, (V) a stationary
quantizer of Y (where I’ = {71, -,y } and C = {C4,--- ,Cn} are respectlvely the associated
codebook and Voronoi partition).

Proposition 3.2.4 (Stratification). Under the (H) hypothesis, for any s € [0,T), for any k €
{1,---,N}, P [/};F = ”yk] > 0 and the conditional probability P H/};F = ’yk] is equivalent to P on
FX.

Proof: Obviously, if A € F2X is such that P[A] = 0, we have P [A‘/};F = *yk] = 0. Conversely, B €

FX satisfies P [B‘/};F = Fyk] = 0, then pre-conditioning by Y, we get E [E [1]3>|Y]‘/}>F = yk] = 0.

Thus, [, P[B|Y = y]dPy(y) = 0. Hence P[B|Y = 7] = 0 for Py-almost every 7 € Cj.

yeCl
Since Py (Cy) > 0, there exists at least an § € Cj, such that P[B|Y =7] = 0. Now thanks to
Theorem 3.2.1, P[B] = 0. O
Proposition 3.2.5 (Stratification). Let us define the filtration GX by GX = o (}'tX,/};F), the
enlargement of FX corresponding to the conditioning with respect to YT, Fork e {1,--- N}, we
_ | el 77
consider the stochastic process DJ* := ————— \FX for s €0,T).

Under the (H) hypothesis, and the assumption that D is continuous, the conditional distri-
bution E X‘YF of X knowing in which Voronoi cell Zy falls, is the probability distribution of a

GX -semimartingale on [0,T).
Proof: Using that P ‘YP = yk] is equivalent to P on F2X, thanks to Proposition 3.2.4, we can
mutatis mutandis use the same arguments as for Proposition 3.2.2, P [~|7T = y] being replaced

by P[-[YT =]

D7 is a strictly positive martingale on [0,7") uniformly integrable on every [0,¢t] C [0,T).
1

Hence, as D"* is continuous by hypothesis, it is an exponential martingale D)* = exp (L;Yk -3 (L’Yk>s>,
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with L}* = fot (DY*)" ' dDys (as DJ* = 1). Now, as X is a continuous (F~X,P)-semimartingale,
we write X = V + M its canonical decomposition (under the filtration FX).

e Thanks to Girsanov theorem, M7 := M — (M, L) is a (fX,]P H?F = vk])—martingale.
As a consequence, it is a (QX,]P’ H?F = %])-martingale and thus M?F is a (QX,IED)_

martingale.
e Moreover, conditionally to ?F, V is still a finite-variation process V, and is adapted to G~ .

Proposition 3.2.6 (Continuity of D). If FX is a Brownian filtration, then D has a continuous
modification.

Proof: By definition, D is a F¥-local martingale on [0, T]. The conclusion is a straightforward
consequence of the Brownian representation theorem. ([

Considering the partition of L?(]0, T]) corresponding to the Voronoi cells of a functional quantizer
of X, the last two propositions show that the conditional distribution of the X in each Voronoi cell
(strata) is a Gaussian semimartingale with respect to its own filtration. This allows us to define the
corresponding functional stratification of the solutions of stochastic differential equations driven
by X.

In |7], an algorithm is proposed to simulate the conditional distribution of the marginals (Xy,, - - , Xt,)
of X for a given subdivision 0 = to < t; < --- < t, =T of [0,T] conditionally to a given Voronoi
cell (strata) of a functional quantization of X. The simulation complexity has an additional linear
complexity to an unconditioned simulation of (Xy,,-- -, X:,). We refer to [7] for more details.

To deal with solutions of SDE, it was proposed in [7] to simply plug these marginals in the Euler
scheme of the SDE. Proposition 3.2.5 now shows that this amounts to simulate the Euler scheme
of the SDE driven by the corresponding (non-Gaussian) semimartingale.

3.2.4 About the (H) hypothesis

The martingale case

In the case where X is a continuous Gaussian martingale, the matrix Q(s,t) defined in Section
. t
3.2.3 writes Q(s,t) = ((J! fi(u)f; (u)d<X>u))(i)j)612.

For 1 < s <t < T, the map (-|-) : (f,g9) — fstf(u)g(u)d<X>u defines a scalar product on
L?([s,t],d(X)). Hence Q(s,t) is the Gram matrix of the vectors of L?([s,t],d(X)) defined by the
restrictions to [s,t] of the functions (f;)icr. Thus, it is invertible if and only if these restrictions
form a linearly independent family of L?([s,],d(X)). (Another consequence, is that if Q(s,t)
is invertible for some 0 < s < ¢ < T, then for every (u,v) such that [s,t] C [u,v], Q(u,v) is
invertible).

For instance, if X is a standard Brownian motion on [0, 7], the functions (f{*);e; (associ-
ated with the Karhunen-Loéve decomposition) are trigonometric functions with strictly different
frequencies. Hence, they form a linearly independent family of continuous functions on every
nonempty interval [s,T') C [0,T"). Moreover, the measure d(X) is proportional to the Lebesgue
measure on [0,7] and thus Q(s,T) is invertible for any s € [0,T"). Hence, the (H) hypothesis is
fulfilled in the case of K-L generalized bridges of the standard Brownian motion.

The standard Brownian bridge and Ornstein-Uhlenbeck processes

The Brownian bridge and the Ornstein-Uhlenbeck process are not martingales. Hence, this crite-
rion is not sufficient and the invertibility of matrix Q(s,T’) has to be proved by other means.
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Following from the definitions of Q(s,T) and Zr, in the case of the K-L generalized bridge

(X )ue[o,s]])
Xu|(Xuhuetoa]) [(Kudueo] — (3:19)

Q. Ty =E[ (f FXwdx, —E[f] X

< (S ¥ wax, —E[f] fX
= cov ([T fX (w)dXx(”, [T X (u X(S))

where (X&S)) has the conditional distribution of X knowing (Xu)ue0,s]-

u€[s,T|
e When X is a standard Brownian bridge on [0, T, X is a Brownian bridge on [s, T], starting
from X, and arriving at 0.

It is the sum of an affine function and a standard centered Brownian bridge on [s, 7.

e When X is a centered Ornstein-Uhlenbeck process, Xff) is an Ornstein-Uhlenbeck process
on [s,T|] starting from X, with the same mean reversion parameter as X.

It is also the sum of a deterministic function and an Ornstein-Uhlenbeck process starting from 0.

As a consequence, in these two cases, the quantity cov (fST X (u )ax<?, f ¥ (u )ax$ ) can be

computed by plugging either a centered Brownian bridge on [s, T] or an Ornstein-Uhlenbeck start-
ing from 0 instead of X (*) in Equation (3.18). This means that Q(s, T) is the Gram matrix of the

random variables (fST le(u)dGu) - where the centered Gaussian process (Gy)yues,r is either a

standard Brownian bridge on [s,T] or an Ornstein-Uhlenbeck process starting from 0 at s. Thus
it is singular if and only if there exists (a;)ier # 0 in RY such that

/ (Z i fi( > dG, =0 a.s.. (3.19)

iel

i=g(u)

The case of the Brownian bridge

In the case where X is the standard Brownian bridge on [0, T, functions ( ;¥

*Yier are C* functions
and G is a standard Brownian bridge on [s,T]. An integration by parts gives fST Gsg'(s)ds =
0 a.s. and thus ¢’ = 0 on (s,T) and thus g is constant on [s,T]. The functions (f;X);c; form
a linearly independent set of functions and, as they are trigonometric functions with different
frequencies, they clearly don’t span constant functions, so that Equation (3.19) yields a1 = --- =
ay, = 0. Hence the (H) hypothesis is fulfilled in the case of K-L generalized bridges of the standard

Brownian bridge.

The case of Ornstein-Uhlenbeck processes
In the case where X is an Ornstein-Uhlenbeck process on [0, T'], G is an Ornstein-Uhlenbeck process
on [s,T] starting from 0. The injectivity property of the Wiener integral related to the Ornstein-
Uhlenbeck process stated in Proposition 3.2.7 below, applied on [s, T, shows that Equation (3.19)

2
amounts to g Lo(leTLd0 0 and thus
S a0, (3.20)
icl
Again, as (f{¥)ics are linearly independent, we have ay = --- = a,, = 0. Hence the (H) hypothesis

is fulfilled in the case of K-L generalized bridges of the Ornstein-Uhlenbeck processes.

Proposition 3.2.7 (Injectivity of the Wiener integral related to centered Ornstein-Uhlenbeck
processes). Let G be an Ornstein-Uhlenbeck process defined on [0,T) by the SDE

dGy = —0Gdt + odW; with o > 0 and 6 > 0,
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where W is a standard Brownian motion and Gy AN (O, 08) is independent of W.

If g € L2([0,T)), then we have

L2(0,1))

T
/g(s)dGszo & g 0.
0

Proof: The solution of the Ornstein-Uhlenbeck SDE is

Lot
G = Goe % +/ oW, .
——’

0
independent of W = “————~r—"
=GY

The so-defined process (G?) +€[0,T] is a centered Ornstein-Uhenbeck process starting from 0 and
satisfying the same SDE as G. Hence, we have

T T s
/ g(8)dGs = —HGO/ g(s)e%ds +/ g(s)dGP.
0 0 0

Thus, by independence, if fo $)dGs = 0 then fo 5)dGY = 0. This means that we only have
to prove the proposition in the case of an Ornstein- Uhlenbeck process starting from 0.

We now assume that UO = 0 and we temporarily make the additional assumption that 0T < é

If g € L?([0,T]) and fo s)dGs = 0, then 9f0 s)Gsds = Ufo $)dWy, and thus, if I‘OU
denotes the covariance functlon of G,

5 / / (O)TOV (s, )dsdt = o2 A " o(s)ds. (3.21)

Applying Schwarz’s inequality twice, we get

/ / ()TOU (s, £)dsdt < OTg(t)th\/AT AT (TOU (s, 4))? dsdt.

Moreover, provided that
T 5 ol
A A (rOU(s,0))" dsde < 7. (3.22)

Equality (3.21) implies fOTg(s)st =0.

Now, we come to the proof of Inequality (3.22). The covariance function of the Ornstein-Uhlenbeck
process starting from 0 writes

2
oU _ 0 _6(s+t) (20 min(s,t) _
r (s,t)—%e (e 1).
If t € [0,T7], we have

2 2 9
Sy (TO9(s,0))%ds = Jo (TOV(s,0))" ds + [, (TOY(s,1))" ds
o (2 — fe—20tgp — o= 20(T—t) _ 9p—20t | 9,—20T _ 6_20(T+t)> 7

and thus

T T 2 2
/ / (rOY(s, 1)) dsdt = @ (=5 + 467 + 80Te 2T 4 4= 20T 4 =107,
0

Consequently, the function ¢ defined by ¢(6 fo fo (TOY (s, 15))2 dsdt — ‘g—j writes

1 4
9(0) = 1 (9’—4 (—21+ 40T + 80¢ =TT 4 de =207 4 o= 4T
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We have ¢(6) < —16 4+ 1207 which leads to Inequality (3.22) thanks to the fact that 67 < 2.

We now come back to the general case where we might have 67 > %. If this is the case, let us
consider T :=T — , so that 0 (T — T) < %. For t € [T, T], we have

—o(t-T Lot
G = Gze (t ) + /~ o’ aw .
—_— T
ind d f (Ws ~ =~
independent of ( )SE [T,T] =GO

The so-defined process (5?) [% T] is a centered Ornstein-Uhenbeck process starting from 0 and

satisfying the same SDE as G. Hence, by independence, if fo $)dGs = 0, then fT GO =0.

Lz([TyT])

As 0 (T— T) < 5, we can apply the result to (ég)te[%T] so that g‘ [%T] 0. If

T < 4, we then have g )

3 0. If it is not the case, we use the same method by using the

decomposition of [O T] into [ — —] and [ — %, ~] and so on. An easy induction finally shows
L2([0,T])

thatg = 70

The inverse implication is obvious. ([

The case of a more general Gaussian semimartingale
In Appendix 3.A, we investigate the problem for more general Gaussian processes.

3.3 K-L generalized bridges and partial functional quantiza-
tion

We keep the notations and assumptions of Section 3.2.2. As we have seen, Equation (3.11) de-
composes the process X as the sum of a linear combination of Y := (V;);e; and an independent
remainder term. We now consider YT a stationary Voronoi N-quantization of Y. YT can be
written as a nearest neighbor projection of Y on a finite codebook T' = (1, -+ ,yn).

Yyl = Projr(Y),  where Projp is a nearest neighbor projection on T

For example, YT can be a stationary product quantization or an optimal quadratic quantization of
Y. We now define the stochastic process X /T by replacing Y by YT in the decomposition (3.11).
We denote X' = Proj; 1-(X).

XIT=SVEF Y e

icl iEN*\T

The conditional distribution of X©.T given that Y falls in the Voronoi cell of ~;, is the probability
distribution of the K-L generalized bridge with end-point 7. In other words, we have quantized
the Karhunen-Loéve coordinates of X corresponding to 7 € I, and not the other ones.

The so-defined process X©I' is called a partial functional quantization of X.

3.3.1 Partial functional quantization of stochastic differential equations

Let X be a continuous centered Gaussian semimartingale on [0, 7] with Xy = 0. We consider the
SDE
dS; = b(f, St)dt + O'(t, St)dXt, So=x €R, and t € [O,T], (323)
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where b(t,x) and o(t,z) are Borel functions, Lipschitz continuous with respect to x uniformly in
t, o and |b(-,0)| are bounded. This SDE admits a unique strong solution S.

The conditional distribution given that Y; = y; for i € I of S is the strong solution of the stochastic
differential equation dS; = b(t, S¢)dt + o(t, S)dX]7, with Sy = = € R, and for ¢ € [0,T], where
th 'Y is the corresponding K-L generalized bridge.

Under the (H) hypothesis, this suggests to define the partial quantization of S from a partial
quantization XIT of X by replacing X by XIT in the SDE (3.23). We define the partial quan-
tization ST as the process whose conditional distribution given that Y falls in the Voronoi cell
of 7y is the strong solution of the same SDE where X is replaced by the K-L generalized bridge
with end-point ;. We write

dSPT =b (1, 8/ ") dt + o (t,5") dx[T. (3.24)

3.3.2 Convergence of partially quantized SDE

We start by stating some useful inequalities for the sequel. Then we recall the so-called Zador’s
theorem which will be used in the proof of the a.s. convergence of partially quantized SDE.

Lemma 3.3.1 (Gronwall inequality for locally finite measures). Consider Z an interval of the
form [a,b) or [a,b] with a < b or [a,00). Let p be a locally finite measure on the Borel o-algebra of
Z. We consider u a measurable function defined on Z such that for allt € Z, f(f lu(s)|p(ds) < 4o0.
We assume that there exists a Borel function ¥ on Z such that

u(t) <(t) + / u(s)u(ds), Vtel.
[a;t)
If | either v is non-negative,
or t — p([a,t)) is continuous on I and for all t € T, f(f [¥(s)|u(ds) < oo,

then u satisfies the Gronwall inequality.

u(t) < ¢(t) + ¥(s) exp(p([s, ) u(ds)-

[a;1)

A proof of this result is available in [9, Appendix 5.1].

Lemma 3.3.2 (A Gronwall-like inequality in the non-decreasing case). Consider Z an interval
of the form [a,b) or [a,b] with a < b or [a,00). Let u be a locally finite measure on the Borel
o-algebra of . We consider u a measurable non-decreasing function defined on Z such that for
all t € Z, f; lu(s)|u(ds) < +00. We assume that there exists a Borel function ¢ on I, and two
non-negative constants (A, B) € R3 such that

wt) < vt)+ A [ uls)ulds) + B /[ , oPtds), e T (3.25)

la;t)

If | either v is non-negative,
ort — p([a,t)) is continuous on Z and for all t € T, fat [(s)|p(ds) < oo,
then u satisfies the following Gronwall inequality.

u(t) < 20(t) + 2 (24 + B?) ) w(s)exp ((24 + B?) p([s, 1)) u(ds).

la,t
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Proof: Using that for (z,y) € R%, /2y < 1 (% + By), we have

</W> U(S)Q#(d5)> % : (u(t) /[a,t) u(s)u(ds)> % = % + g /[a,t) u(s)p(ds).

Plugging this in the Inequality (3.25) yields

u(t) < 29(t) + (2A + BQ) / u(s)p(ds).

[a,t)
Applying the regular Gronwall’s inequality (Lemma 3.3.1) yields the announced result. (]
Theorem 3.3.3 (Zador, Bucklew, Wise, Graf, Luschgy, Pages).

1. (Sharp rate) Consider r > 0, and X be a R¥-valued random variable such that X € L™*"
for some n > 0. Let Px(d¢) = ¢(£)dE + v(dE) be the Radon-Nikodym decomposition of the
probability distribution of X. (v and the Lebesque’s measure are singular). Then if ¢ # 0,

1

~ it=
EN,T(X) N:oo Jra X <Ad (bdiﬂ(u)du) ! x N™d,

where j;,d € (0, 00).

2. (Non-asymptotic upper bound) There exists Cy, ., € (0,00) such that, for every R%-valued
random vector X, )
YN 21, Enp(X) < CapllXIlrn N7

The first statement of the theorem was first established for probability distributions with compact
support by Zador [30], and extended by Bucklew and Wise to general probability distributions
on R? [5]. The first mathematically rigorous proof can be found in [11]. The proof of the second
statement is available in [19].

The real constant jr,d corresponds to the case of the uniform probability distribution over the
unit hypercube [0, 1]%. We have J,.; = F(r+ 1)"7 and Jyy = ﬁ (see [11].)

LP convergence of partially quantized SDE

Lemma 3.3.4 (Generalized Minkowski inequality for locally finite measures). Consider Z an
interval of the form [a,b) or [a,b] with a < b or [a,00). Let u be a locally finite measure on the
Borel o-algebra of Z. Then for any non-negative bi-measurable process X = (Xi)iez and every

p € [1,00),
o

Proposition 3.3.5 (Burkholder-Davis-Gundy inequality). For every p € (0,00), there exist two

< / 1| ppa(dt).
P T

positive real constants chG and C'EDG such that for every continuous local martingale (X¢)epo0,1)
null at 0,
P |VXr| < | s x| <P X)a|
p s€[0,T] p
P

We refer to [27] for a detailed proof.

Proposition 3.3.6 (L? inequality). Let G be a standard Gaussian random variable valued in R.
There ezists a constant Cp, > 0 such that for every M > 1

2 2
\/zM”_lexp <—MT> <E [|G|p1‘g‘>M] < CpyMP ™ exp (—MT> .
T
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Consequently

1
2\7 1 M? M?
( ?) M3 exp (‘g) |G LG, < ()P0 exp <—%>

where q is the conjugate exponent of p.

Proposition 3.3.7 (The non-standard case and L? reverse inequality). If H := oG has a variance
of 0%, we obtain

1
q

|H 1], < 0HG1\G\>M

o

= (G Wp( )" exp (—502)
> (3.26)

_77M

Conversely, for some fized n > 0, and if M > 1, we have

qn
M> [-a2(p—1)W | — = <1 (3:27)

po2 (CZQ)Q/;DUQq/p)

"

=M,

where W is the Lambert W function.

Theorem 3.3.8 (LP quantization of partially quantized SDE). Let X be a continuous centered
Gaussian martingale on [0,T] with Xo = 0. Let S be the strong solution of the SDE

dSt = b(t, St)dt + U(t, St)dXt, SQ =,

where b(t,x) and o(t,x) are Borel functions, Lipschitz continuous with respect to x uniformly in
t, o and |b(-,0)| are bounded.

We consider X''T a stationary partial functional quantization of X and ST the corresponding
partial functional quantization of S, i.e. the strong solutions of

ds{"t =b (t, §{F) dt+ o (t, §t”> dxXT ST =g

Then, for every p € (0,00), € >0 and t € [0,T), there exists a positive constant K et Such that

sup
v€e[0,t]

S, — iﬂ <KX, (HY - ?FHHE) , (3.28)

P

where Y is defined from X by Equation (3.11) and YT is the nearest netghbor projection on I'.

Proof: We decompose the process X into X; = Y. YieX(t) + th’ﬁ and X' into X{F =
i€l

> ?Z-Fe;x (t) + th’o, where YT is the nearest neighbor projection of Y on I'.

i€l

For some k € {1,---, N}, conditionally to YT = Yk, we have
t

Sy — S”_/ (b(u, Su) = b (u, SIF))du+Z/ o(u, 8u) — o (u, SE)) Y des* (u)
0 i€l

+Z/ (Yi = V7 0w, Su)deX (u) + A(a(u,Su)—U(u,gi’F))GudQQu

icl
t
. oIr r
+ [ (o5 = o (u.55)) di..
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This gives (conditionally to YT = Vi)

s 517 < [b]mp/ Su = St dutloluspl 1] max [(eX) (w) (malx YF>/ S 5|
1€ S
0 u€[0,T] 0
t
! — ~

maxI X ‘T }/i_YF w) LT udX u

+[o] ||31§;;] (X) (w) >v-¥. | [ (o5 = o (u.51)) Guat)
u€|0, g

_|_

A (o(u, Su) — o (u,8L7))) dM,

As a consequence, conditionally to YT =,

max
ve(0,t]

~ t ~
Sy — Sﬁ’r‘ < [b]Lip/ max |S, — Sﬁ’r‘ du
0

v€E[0,u]

t ~
o) e |(e5)' 0] (e [FF) [ |5 = 82

u€el0

Yi—?ir + max

ve[0,t]

+ [0]max] | max ‘(ezx)/ (u)‘ Tiezl

u€[0,T]

A (o, 84) = 0 (1, 517)) Gud(X),

+ max
ve[0,t]

| (o5~ o (u.507)) di,

0

To shorten the notations, we denote, for a random variable V' and a non-negligible event A,
Vpa = IE[VP|A]1/p. Hence, using the Minkowski inequality and the generalized Minkowski
inequality for locally finite measures (Lemma 3.3.4), we get

~ t ~
max | S, — Sﬂ < [lLip / max |8, — ng‘ du
ve[0,t] P AYT =1} 0 ||velou] p{YT=v;}
t
+ [o]Lip|{| max ‘(ef(>/ (u)‘ (max ‘YZFD / max |S, — S}F‘ du
el el 0 ||velo,u] p {?p: }
w€[0,T] ) Yk
+[o]Lip|I] max (e;-x)l (u)‘ T Z Y, —YF + || max / (J(u, Su)—o0 (u, §£F)> Gud(X )y
icl 4 —~ ve(0,t] | Jo yr— }
u€[0,T7] i€l p{Y =3} pAY T =k
+ || max o(u,Sy) —o u,gi’r d]’\zu .
ve[0,1] A ( ( ) ( )) PAYT =7}
Now, from the Burkholder-Davis-Gundy inequality,
~ t ~
max |S, — Sﬂ < [bluip / max | Sy — ng‘ du
ve[0,t] P AYT =1} 0 ||velou] p{YT=v;}
t
+ [o]Lip|{| max ‘(eix)/ (u)‘ (max ‘Y;FD / max |S, — S&F‘ R du
uez[eo{T] iel 0 ||velo,u] P AYT =1}
+loluiplt] max | () @) 7> [v: - ¥F
1€ ~
we[0,T] iel p{YT=}
t
+ ‘ / ‘U(u, Su) — o (u, Sﬁf)‘ IGuld(X)u|
0 p Y =y}
t ~ 2
+CBba \/ / (o(u, Su) = o (u, Su")) " d(X ) ) (3.29)
0 p{YT =}
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Now, from Schwarz’s inequality

S |v-vr

1]

S

; ~ AYT=y}
i€l :Dv{YF:%} p{Y =} . o
From the generalized Minkowski inequality
t SI,T SI,T
o(u,Sy) — o (u, S ‘Guqu or_y H w,S) —o (wSEIN Gl . ax.
il 50 o sz ] s, < w50 oG, a0
:fot H(U(U,Su)—O'(U,S’LILvF))G I\G |>M+ ( ( ))Gu1|Gu\§M p{?r_v }d<X>u
) =Tk
< fot H(U(U,Su) -0 (%Sé’F)) Gulic, |>MH e F_y } d(X)u
k
+ H Gu1 ~ d(X)u
fO ( ( )) |G“‘SM P,{YF:W%} < >
¢
< 200 max fy IGuYuz |, g,y X )u + Mloluip fo\ HM?F:%}MXM.
We obtain, thanks to Proposition 3.3.7
S.) — o (u, LT ‘ Guld(X).
) ( ) Gl >MP{YF i}
a1
< 2o (X)a(Cy) /70 M exp( W) +Mloluip i |50 = 57 5, dtX0n,
::‘7;1\/1
where v? = m[aox] (Var(G,,)). Moreover
u€|0,t
2
! TSI )2 ! SIT
/ (O’(U,Su) -0 (u, Su' )) d(X )y < / max v ‘ d{X)y.
0 (Prm} 0 160 N
D, =Yk v€E[0,u] p YT =y}
Hence, Equation (3.29) becomes
max |5, —SIF‘ ~ < [oLipl1] max ‘\/|I HY YFH .
v€E(0,] PAYT =7} u€[0 1 p{Y 'Yk}
—AX
¢
+ [b]Lip/ max_|Sy, — SIF‘ du
0 [[velul pAYT =1}
/ — t ~
+ [o]Lip|{| max ‘ e (u)‘ (max‘YiFD/ max SU—Sg’F‘ du
p uez[eo{T] ( ) iel 0 ||velo,u] p,{?F:’)’k}
9 1/2
¢
+CZ§DG / 2 || max ‘ d{X )y
0 el
¢
+M[J]Lip/ max |, —SIF‘ d(X)y. (3.30)
—OX.M

We can then apply the “Gronwall-like” lemma 3.3.2 for locally finite measures to the non-decreasing

function
1/p
Plep
v€E(0,t]

=E { sup
pAY =74} velo]
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and with the locally finite measure u defined by p(du) = du + d(X),, and we obtain

sup |Sy — §5F

v€E[0,t]

~n P~ 1/p
< (Afu«: HY _yr ‘YF - %} +W> exp (B + CXM) u((0,1)))

~
pAYT =}

< (A;qa [y =95 =] "+ nM) exp (B7 ([0, 1)) exp (CMu(0,))

~

-—<i>(’Yk)

where E;°7* is an affine function of max |(7);|. This yields
1€

(4

Now, fore >0 and p =1+ % and ¢ = }%1 =1+ £ the conjugate exponent of p, we have, thanks
to Holder’s inequality

o (¥7)

sup

—~~11/p
v€E(0,t] }

EHY—?FP

+ v ch (Y") Hp) exp (CXM u([0,1))) .

§7§’F‘ <
p

o sy <oy el -],
<l e[l -f
Hence,
ol =57 o )] <o 7oy e -5
q L

Now, as the so-defined function ¢ is convex and as YT is a stationary quantizer of Y, we have
tharks to Equation (3.8), |¢ (Y")’| <ll¢ ()" 7 and H¢ (Y7) ‘ <o) ,.
q P

Now, thanks to Proposition 3.3.7, we can ensure that ny < n = HY —yr

by taking
pte

q||lY—-YT
M = \/—vt(p— nw ( % where ¢ is the conjugate exponent of p and W is the

Lambert W function. We finally have the following error bound

2
q HY -Yr
sup Su — §£’F S OX,s,I exp [O']Lip —vt(p — 1)W —2—21);5 HY — ?F
ve[0,t] pthCpq/pvtq P pie
Finally, we can conclude by observing that W(u) — 0. O

u—0

Remark (Without the stationarity property). The last step of the demonstration of Theorem

3.3.8 (the use of Jensen’s inequality) relies on the stationarity of the quantizer Y .
Now, without this stationarity hypothesis and under the additional assumption

N B(0,1) #0, (A)
we have for every i € 1
Y| < MU <2|Vi|+1, where~* €T nB(0,1).
Hence

max <2max|Y|—|—1
i€l
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Now, we can notice that the function ¢(x) defined in the demonstration of Theorem 3.5.8 writes
o(x) = 1/)(n_1alx x;) for some non-decreasing function . This implies
1€

6 (V) = v (max¥:) < v (max @i +1)) = o(2¥] +1)
Hence, we can obtain the same conclusion as in Theorem 3.3.8.

Corollary 3.3.9 (LP convergence). With the same notations and hypothesis as in Theorem 3.3.8,
consider (E(VI’F")HGN a sequence of partial functional quantizers of X and (gl’r")neN the corre-
sponding sequence of partial quantizers of S.

If we make the additional assumption that the associated sequence of quantizers (?F")neN is
rate-optimal for the LPT¢ convergence for some € > 0, then for every t € [0,T) we have

p} — 0 (n 1H).

— 0, we have a.s. d (?F",Y) — 0. Hence, there exists Ny € N

P n—oo n—00

E { sup |Sy — §£’F"

u€[0,t]

Proof: As HY —YT»

such that for every n > Ny, I',, verifies hypothesis (A). From this observation, the result is
straightforward consequence of Remark 3.3.2 and Zador’s theorem 3.3.3, which defines the optimal
convergence rate of a sequence of quantizers. (I

The a.s. convergence of partially quantized SDE

Theorem 3.3.10 (Almost sure convergence of partially quantized SDE). Let X be a continuous
centered Gaussian martingale on [0,T] with Xo = 0. Let S be the strong solution of the SDE

dSt = b(t, St)dt + U(t, St)dXt, SQ =,

where b(t,x) and o(t,x) are Borel functions, Lipschitz continuous with respect to x uniformly in
t, o and |b(-,0)| are bounded.

We consider ()?LF’“)%N a sequence of partial functional quantizers of X and SLTw the corre-
sponding partial functional quantization of S, i.e. the strong solutions of

43I = b (1,507 ) dt 4 o (1,57) aX T, G =

We assume that the sequence of partial quantizers of X is rate-optimal for some p > |I|, i.e. that
there exists a constant C such that

p} < Cn~ T

E HY —yT
for every n € N*, where Y is defined from X by Equation (3.11) and YT is the nearest neighbor

projection on T'. Then for every t € [0,T), §tIF" converges almost surely to Sy.

Proof: From Corollary 3.3.9, if ¢ € [0,T'), there exist three positive constants Kx ¢ r, C; and K,
and Ny € N such that for n > No,

~ pP—€
E| sup |S,—SLI» =0 (n_%) .
w€[0,t]
Hence, as I% > 1, Beppo-Levi’s theorem for series with non-negative terms implies
[ grr,|? 75]
E Z sup Sy, — S, " < +o0.
I]lZl u€(0,t]
~ pP—€ ~
Thus Y sup |S, — SLT» <400 P—a.s. sothat sup |S, —SII»| — 0P —a.s. O
n—oo

n>1u€[0,t] u€(0,t]
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Remark (Extension to semimartingales). In Theorems 3.3.8 and 3.8.10, we limited ourselves to
the case where X is a local martingale. The proofs are easily extended to the case of a semi-
martingale X as soon as there exists a locally finite measure v on [0,T] such that for every w €
the finite-variation part dV (w) in the canonical decomposition of X is absolutely continuous with
respect to v. In particular, this is the case for the Brownian bridge and Ornstein-Uhlenbeck pro-
cesses whose finite-variation parts are absolutely continuous with respect to the Lebesgue measure
on [0,T].

3.A Injectivity properties of the Wiener integral

In this appendix, we recall some results on the definition of the Wiener integral with respect to
a Gaussian process. We focus on the injectivity properties. Here, we pay special attention to the
special case of the Ornstein-Uhlenbeck processes.

The covariance operator and the Cameron-Martin space

Consider X a bi-measurable centered Gaussian process on [0, 7] such that fOTE[Xf]dt < 00 and
L*(P)

with a continuous covariance function TX on [0, T]x [0, T]. We denote by H := span {X,,t € [0, 7]}
the Gaussian Hilbert space spanned by (X¢)ic[o,77- The covariance operator Cx of X is defined
by
Cx: L*[0,T]) — L2([0, 7))
y = Cxy=E[(y, X)X].

We have Cxy(t) = E[(y, X)X]|(t) = E [fOT Xsy(s)dth] = fOT I X(t, s)y(s)ds where TX(t,s) =
E[X:X,] is the covariance function of X.

The Cameron-Martin space of X, (or reproducing Hilbert space of Cx), which we denote by Ky,

is the subspace of L?([0,77]) defined by Kx = {t = E[ZX;],Z € H}. Kx is equipped with the
scalar product defined by

(k1,ko)x =E[Z17Z2] i Kk =E[Z;X], i=1,2,

so that (Kx, (-)x) is a Hilbert space, isometric with the Hilbert space {(y, X) :y € LQ([O,T])}H.
Kx is spanned as a Hilbert space by {Cx(y) : y € L*([0,T])}

The Wiener integral

Here, we follow the same steps as Lebovits and Lévy-Véhel in [16] and Jost in [15] for the definition
of a general Wiener integral. The difference here is that we use the quotient topology in order to
define the Wiener integral in a more general setting.

We define the map U : H — Kx defined by U(Z)(t) = E[ZX;]. By definition of H and Kx, U
is a bijection and for any s € [0,T], we have U(X,) = I'(s,-). Consequently, Kx is spanned
by (I‘X (s, '))se[o,T] as a Hilbert space. Now, we linearly map the set of the piecewise constant
functions £([0,T1]) to the Cameron-Martin space Kx by

J: &(0,T) — Kx
l\s,t\ = FX(tv')_FX(Sv')a

where |a, b| stands either for the interval [a,b], (a,b), (a,b] or [a,b). We equip £(]0,T]) with the
bilinear form (-, -); which is defined by

<fvg>J = <Jfa Jg>X .
It is a bilinear symmetric positive-semidefinite form.

Remark. The so-called reproducing property shows that <1|01t|, 1|015|>J = TX(t,5) + T%(0,0) —
'*(0,s) —I'*(0,t). When Xo =0 a.s., this gives <1|0)t|, 1‘075‘>J =T%X(s,1).
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Now, we define the equivalence relation ~ on E([0,T]) by = Y if (x —y,z—y),; =0. On the
quotient space E([0,T]) := £([0,T])/ ~ the bilinear form (-,-); is positive-definite and thus it is

a scalar product on E([0,T]). In this context, J defines an (isometric) linear map from E([0, 7))
to Kx. Then, considering the completion F of E([0,T]) associated with this scalar product, J is
extended to F and U~ o J : F — H is an (isometric) injective map that we call Wiener integral
associated to X.

/Tf(t)dXt =U""1 o J(f).
0

Injectivity properties of the Wiener integral
As we have just seen, the Wiener integral is an (isometric) injective map from F' to H. Still, for
example, when dealing with a standard Brownian bridge on [0, T, || 10,7 ||J = 0, so that there are
functions of £([0,7T]) which have a nonzero L? norm and a zero || - | ; norm. Injectivity only holds
in the quotient space E([0,T]) = £([0,T])/ ¥ and its completion F'.

It is classical background that in the special case of a standard Brownian motion, || - ||; exactly
coincides with the canonical L? norm so that F = L?([0, T]).

Study of the case of Ornstein-Uhlenbeck processes
From now, we will assume that X is a centered Ornstein-Uhlenbeck process defined on [0, 7] by
the SDE
dX; = —0Xdt + odW; with 0 >0 and 6 > 0,

where W is a standard Brownian motion and X, & A/ (0,03) is independent of W. We make the

additional assumption that 07 < %. The covariance function writes

2
FX(S,t) — %6—9(84-15) (eQmin(s,t) _ 1) + USG_G(S—H),

Proposition 3.A.1 (Semi-norm equivalence on £([0,T])). There exist two positive constants ¢
and C such that for every f € £([0,T1), cllfllz < I flls < C|fll2.

Proof: Let us consider f € £([0,7]). We have

IF113 = Var (=0 i f(s)Xuds + 0[5 f(s)dW)
<2Var (0 [y f(s)Xads) +2Var (o fi f(s)dW,) .

The solution of the Ornstein-Uhlenbeck SDE is

t
Xi=  Xee %+ / oD aw, . (3.31)
SN—— 0
independent of W = “——
::X,?

The so-defined process (X,?) +€[0,T] is a centered Ornstein-Uhlenbeck process starting from 0. Hence
we have

£ < 2Var (Xof [y f(s)e=®*ds) +2Var (0 f; £(s)X0ds) +2Var (o [y f(s)dW.)
< 20°T Var(Xo) [y f(s)%ds +2Var (0 fy f(5)Xds) +2Var (o [y f(s)dW.) .

We have seen in the proof of Proposition 3.2.7 that Var (0 fOT f(s)XSOds) < Var (a fOT f(s)dWS).
Hence

T

1915 < (20°Tof +40%) [ f(sas.

N———— — — —
:=C2

This is the desired inequality.
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Now we write

t 7 T s T T
A )X =0 A F(s)Xoe di+\<—9 A f(s)XSds>l+a A F(s)dW,

v

—at -~ —at
.—GO :G{ .—Gz

where (Gg, ai, Gg) is Gaussian and G} is independent of GJ and GJ. Hence

ar <Atf(8)dXs> > Var (G{ +G§) = Var (G{) + Var (Gg) + 2 cov (G{,Gg)

> Var (G{) + Var (Gf 2\/Var Gf) Var Gf (\/Var Gj - \/Var (G{)) i . (3.32)

It has been shown at the beginning of the proof of Proposition 3.2.7 that there exists a constant
K < 1 independent of f such that Var (G{) < K Var (Gg) K was defined by

S ey

where I'" is the covariance function of the Ornstein-Uhlenbeck process starting from 0. Plugging
this into Equation (3.32) yields

ar (/ f(s)dXS> > (1 - \/E)2Var (Gg) - (1 _ \/E)zaz 112
’ —

1=c?

This is the wanted inequality. O

A straightforward consequence of Proposition 3.A.1 is that || f|l; = 0 < || f]l2 = 0 so that
equivalence classes in £([0,7]) for the relation ~ are almost surely equal functions. Another

consequence is that the sets of Cauchy sequences and convergent sequences for the two norms on
E([0,T]) coincide, and thus the corresponding completions of E([0,7]) are the same. In other
words, in the case of Ornstein-Uhlenbeck processes that satisfy the condition 07 < %, we have
F = L*([0,T)).
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Chapter 4

Pricing vanilla options in stochastic
volatility models with cubature rules
based on functional quantization

Abstract

In this chapter, we propose a cubature scheme based on the functional quantization of stochastic
processes for the pricing of vanilla options in stochastic volatility models.

We first put ourselves in the same framework as in [27] to clarify the main steps of the procedure.
Meanwhile, we introduce a kind of variance reduction method for computing implied volatilities
with functional quantization-based cubature.

Then the method is extended to the case of stochastic volatility models with embedded local
volatility, often called “local stochastic volatility models”. For this purpose, we propose a new
quantization scheme for stochastic differential equations which we call “normal quantization”. This
approximation is based on a recent approach to functional quantization called “partial functional
quantization” which has been introduced in [5].

We perform numerical experiments in the case of the SABR model.

Joint work with Gilles Pageés.

Keywords: Gaussian semimartingale, functional quantization, partial quantization, Karhunen-
Loéve, Brownian motion, Brownian bridge, Ornstein-Uhlenbeck, cubature method, option pricing,
vanilla option, stochastic volatility, local stochastic volatility.
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Introduction

The first historical stock price model which was able to fit market vanilla option prices is Dupire’s
local volatility model. Among all the models that fit market vanilla option prices, it is the only
diffusion whose dynamics is driven by a unique Brownian motion, which gives it a specific relevance.
The practical advantage of using this model is that the so-called Dupire’s formula gives an easy
way of calibration as soon as one has a continuous set of option prices at ones disposal (for every
strike and maturity).

In terms of probability distributions, the fact that Dupire’s model fits the market vanilla option
prices simply means that it fits the marginal distributions of the spot implied by the market at
future dates. However, the knowledge of these marginal distributions does not entirely characterize
the transition probabilities of the spot price between these future dates.

Modeling these transition probabilities is essential to price those derivatives that don’t only
depend on marginal distributions of the spot price, such as forward-start options. Thus, using a
local volatility model for the pricing of such options comes to make an arbitrary choice and turn a
blind eye to the modeling of these transition probabilities. Such a choice is usually motivated by the
tractability of Dupire’s model and the difficulties raised by the problem of transition probabilities
modeling.

The approach of practitioners for the modeling of these transition probabilities is the use of
stochastic volatility models. A requirement for a model to be tractable is that we must be able to
efficiently price the financial instruments with which it has to fit, so that we can run optimization
algorithms and calibrate the parameters of the model. Usually, for accounting purposes, these
instruments have the vanilla options among them. Stochastic volatility models are an active field
of research, and many approaches have been developed for constraints mentioned already. The
necessity to rapidly compute vanilla options prices has become a discriminatory criterion in the
choice of a model, often even more than any other of its advantages and drawbacks.

A common approach in financial institutions is the use of so-called local stochastic volatility
models. The basic idea is to first roughly calibrate a crude stochastic volatility model, with a
reasonable number of parameters, whose behavior reproduces the principal features of the smile
dynamics that one wants to see. The smile dynamic refers to these transition probability distribu-
tions expressed as “Black & Scholes implied volatility” for the corresponding forward start vanilla
options. This small number of parameters is not sufficient to fit every listed vanilla option price.
Then an additional local volatility term is plugged in in order to recover the perfect consistency
with the vanilla option prices. Ideally, this corrective function should be close to 1.

In this chapter, we devise numerical methods for the pricing of vanilla options for a wide class
of stochastic volatility models with an embedded local volatility term. First, we follow the steps
of the method proposed in [27] to deal with crude stochastic volatility models. The principle is to
perform a preconditioning with respect to the volatility process and a cubature method based on
functional quantization. One obtains a vanilla option price in the stochastic volatility model as a
weighted sum of closed-form option prices (with non-stochastic volatility).

Then we attempt to apply this method to the case of a local stochastic volatility model. In
this case, the transformation of the stochastic differential equation required by our method shows
a local drift and a local volatility in the obtained diffusion equation. In order to deal with it,
we propose a new approximation scheme for stochastic differential equations called the “normal
quantization”. This technique is inspired by the new approach to functional quantization, the
“partial functional quantization” recently developed in [5]. In doing so, we obtain a cubature
formula for the price of a vanilla option in a local stochastic volatility model as a weighted sum of
finitely many options prices in lognormal spot models. We test this new cubature formula in the
case of the SABR model.

The chapter is organized as follows: the first section provides a short introduction to functional
quadratic optimal quantization. Section 4.2 is devoted to the cubature schemes based on optimal
quantization and the possibility of using Richardson-Romberg extrapolation methods. Section 4.3
provides a brief description of the method when applied to the simple case where no local volatility
term is involved. Section 4.4 deals with the more general cases of local stochastic volatility models
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and the difficulty raised by the addition of a local volatility function. We present the normal
quantization scheme for stochastic differential equations which was addressed above. Then we
perform numerical tests in the case of the SABR model.

4.1 Some backgrounds on functional quantization

4.1.1 Functional quantization of Gaussian processes

Let (Q,.A,P) be a probability space, and (F,|-|) a separable Banach space. For N € N* the N-
quantization of a E-valued random variable X consists in its approximation by a random variable
Y taking at most N values. The resulting error of this discretization is measured by the LP norm
of | X — Y|. The minimization of the error yields the following minimization problem:

min{|||X—Y||

Y 1 — E measurable, card(Y () < N} . (4.1)

A solution of (4.1) is an optimal quantizer of X. This problem, initially considered in the finite-
dimensional case was first investigated for signal transmission issues [12]. Then it has been in-
troduced in numerical probability to devise cubature methods [25]. Since the 2000’s, the infinite-
dimensional setting has been extensively investigated from both constructive numerical and theo-
retical viewpoints with a special attention paid to functional quantization, especially in the Hilbert
case [21] but also in some other Banach spaces [34]. Stochastic processes are viewed as random
variables taking values in their path spaces such as L2 := L?([0,T],dt). As applications are
concerned, functional quantization has been used to design cubature schemes [27] and variance
reduction methods [6, 20].

Here, we assume that X is a bi-measurable stochastic process on [0, T'] verifying fOT E [|X:[?] dt <
+00, so this can be viewed as a random variable valued in the separable Hilbert space L2([0,T]).
We make the assumption that the covariance function of X, denoted by I'* is continuous. In
[21], it is shown that in the centered Gaussian case, linear subspaces U of L?([0,7]) spanned by
L?-optimal quantizers correspond to principal components of X, i.e. are spanned by the first eigen-
vectors of the covariance operator of X. Hence, the quadratic optimal quantization of Gaussian
processes involves its Karhunen-Loéve decomposition (e, AX),>1.

If Y is a quadratic N-optimal quantizer of the Gaussian process X and dX (N) is the dimension
of the subspace of L?([0,7]) spanned by Y (), the quadratic quantization error Ex(X) verifies

(X)= Y A +& (é/\/ (O,Aj.f)> for m > d*(N). (4.2)
j=1

j>m+1

ENX) < Y A+ (éN(o,Af)) for 1 <m < dX(N). (4.3)

j>m+1

To perform optimal quantization, the decomposition is first truncated at a fixed order m and

then the R™-valued Gaussian vector, constituted of the m first coordinates of the process on its

Karhunen-Loéve decomposition, is quantized. To reach optimal quantization, we have to determine

the optimal rank of truncation dX(N) (the quantization dimension) and to determine the opti-
aX(n)

mal d* (N)-dimensional quantizer corresponding to the first coordinates @ N (0, AX ) Usual

j=1

examples of such processes are the standard Brownian motion on [0,77], the standard Brownian
bridge on [0, 7], Ornstein-Uhlenbeck processes and the fractional Brownian motion.

dX (V)
Another possibility is to use a product quantization of the distribution @ N(0,AX). The
j=1

product quantization is the Cartesian product of the optimal quadratic quantizers of the standard
one-dimensional Gaussian distributions N (0, )\iX)lgz'ng(N)- In the case of independent marginals,
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this yields a stationary quantizer, i.e. a quantizer Y of X which satisfies E[X|Y] = Y. This
property, shared with optimal quantizers, results in a convergence rate of a higher order by one
for the quantization-based cubature scheme, as we will see in Section 4.2.1. One advantage of this
setting is that the one-dimensional Gaussian quantization is a fast procedure. In [26], deterministic
optimization methods (as Newton-Raphson) are shown to converge rapidly to the unique optimal
quantizer of the one-dimensional Gaussian distribution. Moreover, a sharply optimized database
of quantizers of standard univariate and multivariate Gaussian distributions is available on the web
site www.quantize.maths-fi.com [28] for download. Still, we have to determine the quantization
size in each direction to obtain optimal product quantization. In this case, the minimization of
the distortion (4.2) comes to the following minimization problem

(a4 \
miniZS}’w (NVOA) + 3 AX, Nix - x Ny < N, d21}. (4.4)
j=1

j>d+1

A solution of (4.4) is called an optimal product quantizer. This problem can be solved by the “blind
optimization procedure”, which consists in computing the criterion for every possible decomposition
Nyx--+xNgwith Ny > --- > Nyg. The result of this procedure can be kept off-line for a future use.
Optimal decompositions for a wide range of values of IV for both Brownian motion and Brownian
bridge are available on the web site www.quantize.maths-fi.com [28]. Another fact on optimal
functional product quantization is that it is shown to be rate-optimal.

In Figure 4.1, we display a quadratic optimal N-quantizer of the fractional Brownian motion
on [0, 1] with Hurst exponent H = 0.25 and N = 20 and a quadratic 5 X 2 x 2-product quantizer
of the stationary Ornstein-Uhlenbeck process defined by the SDE dr; = —rdt + dW, on [0, 3.

2 1.5
1.5 1
1
0.5 0.5
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Figure 4.1: Optimal product quantizer of fractional Brownian motion on [0,1] with Hurst pa-
rameter H = 0.25 on the left and a quadratic 5 x 2 x 2-product quantizer of the stationary
Orustein-Uhlenbeck process defined by the SDE dr; = —rydt + dW, on [0, 3] on the right.

In [21], the rate of convergence to zero of the quantization error is investigated. A complete
solution is provided for the case of Gaussian processes under rather general conditions on the
eigenvalues of the covariance operator.

From a constructive viewpoint, the numerical computation of the optimal quantization or the
optimal product quantization requires a numerical evaluation of the Karhunen-Loéve eigenfunc-
tions and eigenvalues, at least the very first terms. (The quantization dimension of usual Gaussian
processes increases asymptotically as the logarithm of the size of the quantizer!, so it is most likely
that it is small. For instance, the quantization dimension d"V(N) of the Brownian motion with

IThis holds in the case of the optimal product quantization. As optimal quantization concerns, it is a conjecture,
supported by numerical evidence. We refer to [22, 24] for more details on asymptotics of the quantization dimension
dX(N).
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N = 10000 is 9.) The Karhunen-Loéve decompositions of several usual Gaussian processes have
a closed-form expression. It is the case for the standard Brownian motion, the Brownian bridge
and Ornstein-Uhlenbeck processes.

1. The Brownian motion (W:):co,17,

eV (t) == \/%sin (w(n— 1/2)%) , o= <7r(n+1/2)>27 n> 1. (4.5)

2. The Brownian bridge on [0,7],

2
eB(t) =4/ % sin (Wn%) , A= (W—q;) , n>1 (4.6)

3. The Ornstein-Uhlenbeck process on [0, T'], starting from 0, defined by the SDE dry = 0(mu —r¢)dt +
odWy, with o > 0, 8 > 0 and W a standard Brownian motion on [0,7]. (See [6]).

2
ou 1 . ou g
€n ( ) T _ S on, T) Sln(WAn )7 n win +927 n-=1, ( )
2 4wy,

where wy,, are the (sorted) strictly positive solutions of the equation

0sin(wx,, T) + wx,, cos(wx,T) = 0.

4. The stationary Ornstein-Uhlenbeck process on [0, 7], defined by the same SDE with ro AN (O, g—;)
(See [6]).

2

ou L . ouU . g
en (t) = Cn (wa, cos(wx,t) + Osin(wa,t)), Ap = W7 n>1, (4.8)

where wy,, are the (sorted) strictly positive solutions of the equation
20w, cos(wx,, T) + (92 — w,z\n) sin(wx,T) =0,

and

. 2 .
C’L% = g(l—cos(2w,\nT))+% (T+%::T)) +% (T— %) .
The case Ornstein-Uhlenbeck processes is derived in [6], in the general setting of an arbitrary
initial variance og. A procedure for the computation of w) is also provided. Other examples
of Karhunen-Loéve expansions with closed-form expressions are derived in [7] by Deheuvels and
Martynov.

In general, no closed-form expression for the Karhunen-Loéve expansion is available. For
instance, as far as we know, so is the case of the Karhunen-Loéve expansion of the fractional
Brownian motion. To fulfill the requirement of a numerical evaluation of those functions, it is
possible to use numerical methods related to integral equations to solve the functional eigenvalue
problem that defines the Karhunen-Loéve decomposition. A review of these methods is available in
[2]. In [4], the so-called Nystrom method is used to compute the first terms of the Karhunen-Loéve
decomposition of the fractional Brownian motion for its optimal functional quantization.

4.1.2 Quantization of solutions of stochastic differential equations

An application of the quantization of a Gaussian process X is to perform a quantization of the
solution of a stochastic differential equation with respect X, (as soon as we can define the cor-
responding stochastic integral). In the present case, we assume that X is a continuous Gaussian
semimartingale on [0, T]. As a consequence, we have fOT E[X?]dt < oo owing to Fernique’s theorem,
and X has a continuous covariance function (see [18, VIIL3]).

We can obtain a stationary quantizer of the diffusion by plugging the quantizer of the Gaussian
process into the diffusion equation written in the Stratonovich sense. In [29], the a.s. convergence
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of this quantization to ¢ when the quantizer size goes to infinity is proved. Moreover, the rate of
convergence of the quantization error for the SDE solution is the same as for the considered Gaus-
sian process. The article [29] is mostly specific to the Brownian motion but main results remain
valid for continuous semimartingales which satisfy the Kolmogorov criterion like the Brownian
bridge and Ornstein-Uhlenbeck processes.

For instance, let us consider o the stochastic process defined as the strong solution of the
following SDE, with respect to X on [0,T]:

doy = b(t, O't)dt + 9(1%, Ut)dXt, oo € R, (49)

where b(t, ) and 0(t, z) are Borel functions, Lipschitz continuous with respect to = uniformly in ¢
and |b(-,0)| 4 |6(-,0)| is bounded on [0,7]. Then a unique strong solution of (4.9) exists on [0, 7]
(see e.g. [19, Theorem A.3.3]).

We recall that if M and H are continuous semimartingales, the Stratonovich integral H o M is
defined by HoM = H-M+4(H, M) where H-M stands for the Ito integral of H with respect to M.
If 6(¢, x) is differentiable with respect to z, we can write the SDE (4.9) in the Stratonovich form,
dUt = b(t, O't)dt—f— H(t, O't) 9 dXt — %d<9(, U.), X>t Moreover, d<9(, 0'.), X>t = 9;(1%, Ut)e(t, O't)d<X>t.
Thus, we obtain

dO’t = b(f, Ut)dt — %9;(1%, Ut)e(t, O't)d<X>t + H(t, O't) o dXt (410)

We recall in mind that a continuous centered semimartingale X is Gaussian if and only if (X) is
deterministic (see e.g. [30]). Now, we replace X by the components of stationary quantizer of X.
In doing so, we obtain a functional quantization of o. As we assumed that the covariance function
'Y is continuous, Mercer’s theorem ensures that the Karhunen-Loéve eigenfunctions associated
with non-zero eigenvalues are continuous functions. In the cases cited above, the eigenfunctions
associated with non-zero eigenvalues are C*° functions. In the following, we will assume that (X
and the Karhunen-Loéve eigenfunctions of X are C! functions. The quadratic variation has a
closed-form expression in the following cases:

e The standard Brownian motion: d{X); = dt.

e The Ornstein-Uhlenbeck process defined by the SDE dX; = 6 (u — X;) dt + 0°YdW, where
o0 >0,60>0and W is a standard Brownian motion on [0,T]: d(X); = (UOU)2 dt.

e The standard Brownian bridge on [0,7]: we can write dX; = —%Zdt + dW;. This yields
d(X); = dt.

We refer to [3] for examples of stochastic volatility models which involve Ornstein-Uhlenbeck
process. Another example is the A-SABR model proposed by Henry-Labordére in [16] who de-
rived short-maturity asymptotics for this model. Moreover, exponentials of Ornstein-Uhlenbeck
processes are used to model the dynamics of commodity future prices [31].

Plugging the quantizer into the Stratonovich SDE

We consider x = (x*)1<i<n a functional quantizer of X. x can either be an optimal quantization
or a stationary K-L product quantization. (In the second case, x is usually indexed by a multi-
index.) Here, we replace the process X by its quantizer into the Stratonovich SDE (4.10). This
yields an ordinary differential equation for every i € {1,---, N}. The quantization (5%);<;<n of
o is composed by the following ordinary differential equations

d5; = b(t,57)dt — 50,,(,57)0(t, 5})d(X ), + 6(t,5}) (XZ)' (t)dt, &= a0 > 0. (4.11)

In some cases, these equations may have explicit solutions, but in the general case, we have to use
numerical methods, like higher-order Runge-Kutta schemes or Bulirsch-Stoer methods. See the
book [15] for a review of the numerical methods for solving this kind of ODE.
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The lognormal case

Let us consider the case where b(¢,z) = zu(t), and (¢, z) = xy(¢). Equation (4.11) becomes

467 — 5 u(t)dt — Aﬂ(t)2d XY, 4+ 5 ¥ ~i
6} = Gip(t)dt — 5, —3=d(X), +5iy(t) (X') (D)dt, 5 = o0 >0,
which leads to

~i t t Y 1 t 9

0, = 0pexp <A w(s)ds +A v(s) (Xl) (s)ds — EA 0% (s)d<X>S) . (4.12)
When + is constant, (4.12) becomes

_ t _ _ A2
G = 0g exp (A w(s)ds + (Xz(t) - XZ(O)) v — 7<X>s> . (4.13)

In Figure 4.2, a functional N-quantizer with N = 20 of a log-Ornstein-Uhlenbeck process is
plotted (i.e. the process defined by Equation (4.13) when X is an Ornstein-Uhlenbeck process).
This quantizer of o is obtained from a 5 x 2 x 2 K-L product quantizer of a centered stationary
Ornstein-Uhlenbeck with a mean reversion and a volatility both equal to 1. This product quantizer
is then plugged into the SDE (4.13), with oo = 100, v =1 and p(s) = 0.
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Figure 4.2: Functional quadratic 5 x 2 x 2-product quantizer of the log-Ornstein-Uhlenbeck process
on [0,3]. The parameters of the diffusion are: v =1, 4 = 0 and o9 = 100.

4.2 Quantization-based cubature

4.2.1 Basic formula and related inequalities

The idea of quantization-based cubature scheme is to approach the distribution of the random
variable X by the distribution of a quantizer Y of X. As Y is a discrete random variable, we can

N
write Py = )~ p;dy,. If F: E — R is a Borel functional,
i=1

E[F(Y)] =D _piF (y:). (4.14)

Hence, if we have access to the weighted discrete distribution (y;,p;)1<i<ny of Y, we are able to
compute the sum (4.14). Now, we review some error bounds that can be derived when approaching
E[F(X))] by the quantity (4.14). See |27] for more details on error bounds.
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1. If X € L?,Y a quantizer of X of size N and F is Lipschitz continuous, then
[EF(X)] —E[FY)]] < [Fluip[|[ X = Yl2. (4.15)
In particular, if (Yn)n>1 is a sequence of quantizers such that A}im IX = Yn|l2 =0, then
—00

N
the distribution . pNo,~ of Yy converges weakly to the distribution Px of X as N — oc.
i=1 ‘

This first error bound is a straightforward consequence of |F'(X) — F(Y)| < [Fluip| X = Y.

2. If Y is a stationary quantizer of X, i.e. Y = E[X|Y], and F is differentiable with an
a-Hélder differential DF (o € (0,1]), then

[E[F(X)] - E[F(Y)]| < [DFa[IX - Y|5*. (4.16)

When F has a Lipschitz continuous derivative (o = 1), we have. [DF)y = [DF]vip and, if
F is twice differentiable and D*F is bounded, then we can replace [DF]Lip, by 1|/ D?F||w.

This inequality comes from the Taylor expansion of F' at X.

[F(X) = F(Y)=DF(Y).(X-Y)| < s IDF(z) = DF(Y)|||X = Y| < [DF]a] X - Y|,

where || - || stands for the operator norm on L(L?([0,7T])). Hence
[E[F(X)] - E[F(Y)] - E[DF(Y).(X = Y)]| < [DF]E [|X = Y|'™].
Moreover, by stationarity,
EDFY) (X -Y)=E[E[DFY).(X -Y)|Y]]=E[DFY).EX -Y|Y]]=0. (4.17)

As a consequence, stationarity results in a convergence rate of a higher order by one for the
quantization-based cubature scheme.

3. If F is a convex functional and Y is a stationary quantizer of X,

E[F(Y)] < E[F(X)]. (4.18)

This inequality is a straightforward consequence of the stationarity property and the Jensen
inequality.
E[F(Y)] = E[F(E[X|Y])] < E[E[F(X)[Y]] = E[F(X)].

4.2.2 Richardson-Romberg extrapolation

In a general setting, an asymptotic expansion of the error of a convergent numerical method makes
possible the use of convergence speeding procedures like the Richardson-Romberg extrapolation
method proposed in [11].

The quadratic N-optimal quantizer, Yy of the uniform distribution on [a, b] is showed to be

the equiweighted codebook (a + (i~ %) Z)_Ta) 1<i<N

the classical mid-point quadrature method. In the case of a 2n times differentiable function, using
the Euler-Maclaurin formula, we can show that the quadrature error is the sum n entirely even
powers of the step-size b_T“, which is proportional to the quadratic quantization error | X — Y ||2.
This makes possible the use of multistep Richardson-Romberg extrapolation in this special case.

In the general setting of a non-uniform random variable X, a quadratic-optimal N-quantizer

Yx of X and a C! functional with Lipschitz continuous derivative, Equation (4.16) does not provide

. The associated quadrature rule coincides with
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a true asymptotic expansion which would allow us to use a Richardson-Romberg expansion, but
it suggests to use a higher-order Taylor expansion of F(X) — F(Yx) to get one.

We denote by £y = || X — Yu||2 the quantization error. It follows from Taylor’s formula that
there exists a vector ¢ € [X, Yn] such that

E[F(X)] =E[F(Yn)]+E[(DF(Yy),X —Yy)|+3E [D*F(Yn)(X - Yn)®?]

=0 owin Yto (4.17).
’ +3E[¢(X —YN)®3] + 0 (E[|X — YN [*])
=E[F(Yy)]+ 3E [D*F(Yn)(X - Yn)®2] + O (E[IX — ¥a[’]).

(4.19)

In [13], Graf et al. proved that the asymptotics of the L® quantization error induced by a
sequence of L"-optimal quantizers stays rate-optimal in the case of probability distributions on
R?, with s < r + d for a class of distributions including the Gaussian distribution. In this case,

3
this leads to E [|X — Yn[*] = O (E [1X — Y22 ) This holds e.g. for the Brownian motion.

Unfortunately, no sharp equivalence between £% and E [DQF(YN)(X — YN)®2] has been estab-
lished yet. Still, Equation (4.19) suggests to use a Richardson-Romberg extrapolation with respect
to £%. The two-steps extrapolation between N = k and N = [ yields the following approximation
of the expectation,

E[F(W)IE; — BIF(Vi)]E7

E[F(X)] ~ =

(4.20)

Although, this kind of Richardson-Romberg extrapolation is not fully justified yet, it dramatically
increases the efficiency of quantization-based cubature formulas.

When the exact value of £ is not known, we can also rely on the asymptotic expansion with
respect to the quantization level.

Remark (Romberg extrapolation with respect to the quantization level). Using the results of
[21], in a hypothesis on the asymptotics the eigenvalues of the covariance operator, the rate of
convergence of optimal quantizers and K-L optimal product quantizers is < (In(N)~%) with,

e o = H in the case of the fractional Brownian motion with Hurst exponent H.

e o = 1 in the case of the standard Brownian bridge or Ornstein-Uhlenbeck processes defined

by the SDE (dry = 6(mu — r)dt + odWy).

|

Replacing the distortion En by its asymptotics W as N — oo in Equation (4.20) yields the
following estimator of the expectation.

E[F())(in1)** = EIF(V)](n k)"

E[F(X)] ~ (In1)%* — (In k)%

(4.21)

Numerical experiments carried out in [33] by Wilbertz showed that using the quadratic dis-
tortion £2 when available instead of its asymptotic form generally improves the efficiency of the
extrapolation.

Experiments with higher-order Richardson-Romberg extrapolations have been tested. Unfortu-
nately, no significant results were obtained, so that we settled for the two-steps extrapolation
formula.

Remark (Choice of the Romberg extrapolation couples). We have noticed that the result of the
extrapolation are usually improved when choosing the two quantizer sizes k and | that immediately
follow a break of quantization dimension. That is the reason why the couple (208 — 54) is used in
the following for the case of the Brownian motion.
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4.3 Vanilla option pricing in stochastic volatility models

Here, we start with a special case of stochastic volatility model. For the sake of clarity, we will
handle this simple case completely before considering a more general model. We assume that,
under the risk-neutral measure, the forward price of a risky asset is the solution of the system of
SDE
( dF, = F,00dW;, Fy >0,
doy = b(t,o)dt + 0(t,00)dWF, o9 >0, (4.22)
d(W, W), = pdt.

4.3.1 Conditioning with respect to the volatility
SDE resolution
The Brownian motions W is decomposed into W7 and an independent standard Brownian motion
wE,
dWy = pdW? + /1 — p2dWF  where W LW,
Let us denote by (F7)i>0 and (FL)i>o the filtrations of the Brownian motions W and W¥. The

solution of SDE (4.22), F; = Fyexp (f(f o dWs — 1 [ afds) can be decomposed into the following
product.

t 2t t 1,2 rt
F; = Fyexp (p/ osdW?7 — p_/ des) exp (\/1 - p2/ o dWE — ——r / ogds), (4.23)
0 2 Jo . 0 2 Jo g

"

=As =By

where the process (A¢)¢cjo,7] is adapted to F°.

Preconditioning

In this section, the function Payoff(x, K') can either be the function (x — K)1 or (K — z)4, the
payoff of a Call or Put option with strike K. Following the method proposed e.g. in [27], the
preconditioning with respect to 7 yields a simple expression:

E [Payoff(Frp, K)] = E[E [Payoft(Fr, K)|FgZ]] )
=E [PrimeBS (AT, ((1 —p?) fOT U?dS))i,T, K)] ,

where Ar is defined in Equation (4.23) and where PrimeBS(F, o, T, K) is the closed-form expres-
sion for the price of a Call or Put option in the Black & Scholes model, with no interest rate, a
forward F, a volatility o, a maturity 7" and a strike K.

Now, the pricing comes to a cubature problem with respect to the volatility path (os)sco, 7). This
cubature is performed by using the functional quantizer (");<;<n of o.

N T 1
E[Payoft(Fr, K)] = ZpiPrimeBS (AiT, ((1 - p2)A 3i(s)2ds)) T, K), (4.24)

where (A%)1<;<n denotes the quantizer of A7 deduced from (5%);<;<n-

e In this equation, (a;)i1<i<n and (p;)i<i<ny are the paths of a functional quantizer of W¢
(either an optimal quantizer or an optimal product quantizer) and its weights respectively.
Functions (5%);<;<n are the paths of the quantizer of o obtained from (c;)1<i<n by solv-
ing the ODE’s (4.11), derived from the diffusion equation (4.22) satisfied by the volatility
(written in the Stratonovich sense).

e The corresponding values of ( fOT Ei(s)st) needed in formula (4.24) are deduced from

1<i<N
this quantization.
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e To compute the term A%, we need to evaluate the quantized version of the stochastic integral
[Foawg = [Fogoawe =L [T do, W), = [ oy 0dW? — L [T6(t,04)dt. This leads to
the quantizer

, T o (T ‘ o2 [T .
Al = Fyexp <p/ 5 (£)al,(t)dt — 5/ o(t,5)dt — 5/ 8Z(t)2dt>, 1<i<N.
0 0 0
The corresponding integrals on [0, 7] may be computed by classical quadrature methods.

First numerical experiments

Here, we perform a first numerical test in the special case where we set b(¢,01) = 0 and 6(t, 0¢) =
~voy in the SDE (4.22). In this case, the volatility is lognormal. An expansion for small maturities of
the implied volatility is derived in [14] for this model. We compare the results of the quantization-
based cubature with this short-maturity asymptotics which is known to be very accurate for
reasonable values of the parameters.

In Table 4.1, we report the option prices obtained by the short-maturity asymptotics and the
quantization-based cubature formula with different sizes of the quantizer and various values of the
parameters.

Closed-form 208 curves 208 — 54
Parameter values small-maturity | crude cubature | Richardson-Romberg
asymptotics formula extrapolation
K=100%, T =1
v=0.3, 00 =0.3 11.8459 11.7394 11.8296
p=-0.5
K=130%,T=1
v=0.3,00=0.3 3.0062 2.9215 3.0001
p=-—0.5
K=70%,T=1
v=0.3, 00=0.3 31.9075 31.9645 32.0730
p=-08
K =100%, T =1
v=0.5, 00 =0.3 12.2440 11.9936 12.2277
p=0.2
K =130%, T =0.5
vy=1,00=0.3 2.0116 1.8217 1.9458
p=0

Table 4.1: Record of the prices obtained with crude (extrapolated) functional quantization-based
cubature schemes, with various values of the diffusion parameters.

We can see that despite the slow (logarithmic) rate of decay of the quantization error in the
functional case, and thanks to Romberg extrapolation, we could reach a good accuracy on the
option price with a reasonable size of the quantizer. We will see in the next section that it can
still be improved using some kind of variance reduction method.

A kind of “variance reduction method” for computing implied volatility

In the Black & Scholes model, where the asset price follows a geometric Brownian motion with a
constant volatility, the vanilla option price is an increasing function of the volatility (if the strike
is not zero). Conversely, for a given vanilla option price, the Black & Scholes implied volatility
is the unique value of the volatility for which the Black & Scholes formula recovers the price; i.e.
the implied volatility associated with a given forward Fy, maturity T, strike K, and option price
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P is defined by

P = PrimeBS (F), T, K, ImpliedVolBS (F;, T, K, P)) . (4.25)

Although the volatility is not constant on the market, the value of implied volatility is much easily
interpretable than the crude price of an option, because the magnitude of the variations of the
option price are strongly depending on the parameters (maturity, strike, forward).

On the other hand, for strikes which are deep out of the money, the sensitivity of the option
price to the volatility is very small, which makes it difficult to recover the value of the volatility
from a given price.

Because of this computational obstacle, and as practitioners are more interested by implied
volatility than true option prices, many pricing approaches for stochastic volatility model directly
focus on the dynamics of the implied volatility [14, 1, 17, 10].

A fact that we have experienced, is that the accuracy of the implied volatility obtained from the
quantization-based cubature method is significantly improved when using the estimated forward
rather than the theoretical forward to compute the implied volatility, and the resulting volatility
smile is more regularly shaped. This remains true when using Richardson-Romberg extrapolation
methods. Thus, we obtain more accurate results when following the steps:

1. Use the functional quantization-based (extrapolated) cubature formula to get a first esti-
mation Pgstimatea Of the option price E [Payoff( Frr, K.

2. Use the same (extrapolated) cubature formula to get the estimation Fygimatea Of the for-
ward price E [Fr].

3. Compute the Black & Scholes implied volatility of the option corresponding to these two
values,
OEstimated = ImpliedVolBS (FEstimateda T, K, PEstimated) .

4. Return the Black & Scholes price corresponding to the theoretical forward and this implied
volatility,
Pripal = PrimeBS (FOa T, K, UEstimated) .

This can be understood as a variance reduction method for the functional quantization-based
cubature. In Figure 4.3, the implied volatility smile estimated by the (extrapolated) functional
quantization-based cubature formula, and the value computed by the closed-form short-maturity
asymptotics are depicted.

The case of long maturities or (equivalently) high volatilities

When dealing with long maturities or equivalently, high volatilities, the short-maturity asymp-
totics of the SABR model derived in [14] becomes inaccurate. In this setting, the results of the
cubature rule should be compared to a reference Monte-Carlo simulation. In the case of the SABR
model, we noticed that the quantization-based method becomes more precise when the maturity
increases whereas the short-maturity asymptotics naturally becomes less and less accurate. This
phenomenon is illustrated in Figure 4.4, where the implied volatility smile is depicted, computed
by the three methods: Monte-Carlo simulation, short-maturity asymptotics and (extrapolated)
functional quantization-based cubature formula.
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Figure 4.3: Implied volatility smile in the SABR model with 3 =1, v=0.3, 09 = 0.2, T =1 and
p = —0.5. The continuous curve corresponds to a (208-54)-Richardson-Romberg extrapolation of
the functional quantization-based cubature formula.
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Figure 4.4: Implied volatility smile in the SABR model with 5 =1,y =0.3, 0o = 0.2, T = 20 and
p = —0.5. The continuous curve corresponds to a (208-54)-Richardson-Romberg extrapolation of
the functional quantization-based formula.

4.4 Local stochastic volatility

We now consider a more general case. We assume that the forward diffusion model under the
risk-neutral probability is
{ dFt = Utth(ta Ft)thu (426)

dUt = b(t, O't)dt + G(f, Ut)thU.

where W and W are standard Brownian motions. We assume that W is decomposed into pdW, +
/1= p2dW}, where W is independent of W°. We denote respectively by FZ and F° the natural
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filtrations of W7 and W¥. Moreover, we assume that b(t,z) and 6(t,2) are Borel functions,
Lipschitz continuous in x uniformly in ¢ € [0, 7] and that 6(¢,-) is C* for every t € [0,T]. We
assume that g(¢,) is a bounded Borel function such that g(¢,-) is Ct.

This situation is very common. In the first place, many stochastic volatility models, such as
the SABR model correspond to this situation. Furthermore, this is also the case of local stochastic
volatility models which have been discussed in the introduction.

4.4.1 Stratonovich equation

Let us write the diffusion in the Stratonovich form, for the Brownian motion W7.
dF; = poig(t, Fy)Fy 0 WY + o1g(t, Fy)Fi\/1 — p2dW /[ — gd (og(-, F)F,W?),. (4.27)
We now compute the quantity (og(-, F)F,W?). If we denote f(¢,x) = xg(t,x), we have:

( do, = b(t,0,)dt + 0(t,00)dW,

finite-variation
g
df (t, Fy) = fo(t, Fy)dEF; + < process )

Thus,

d<0f('7 F)7 WU>t = O'tf; (t7 Ft)d<F7 WU>t + f(t7 Ft)d<a7 W(T>t
=0y (g, (t, Fy) Fy + g(t, Fy)) d(F, W)y + f(t, Fy)d(o, W),
= poig(t, Fy)g,(t, Fy) Fdt + poig(t, Fy)? Fydt + f(t, Fy)d(o, W ).

We plug this expression into Equation (4.27) to get

{ dF, = og(t, F)Fi\/1 — p2dW}[ + o1g(t, F;)Fyp o dW/?

4.28
—gofg(t, F)g.(t, F,)F2dt — éafg(t, Fy)?Fudt — SFg(t, Fy)d{o, W7);. (4.28)

Moreover, using (4.26) we have d{o, W), = 0(t, o )dt.

4.4.2 Plugging the functional quantizer

Let us now consider a N1 x --- x N, product quantizer o of W°.

The path of « corresponding to the multi-index i := {1, -+ , iy, -} has the form
ol = Z )\,VIV:CZ"eZV.
n>1

The path of o corresponding to the multi-index i is defined as the solution of the ODE obtained
when replacing W7 by ot in the diffusion written in the Stratonovich sense (4.28). We replace the
Brownian motion W by its quantizer ot and o by o* in Equation (4.28).

dFf = Fiotg (t,Ff) \/T= p? dWf

i i
::Ft_ei(t’Ft_)

+ arg (4 FF) Fip (o) (dt — Kijig (1.%) . (1) ()" a (4.29)
t

—Mg ( 7Ff)2 Fidt — §Fig (¢, FF) 0 (t,07) dt

2

"

i %
=Fru (t,Ft—) dt

= Fips (1 Fp) dt + Fi0; (1, F7) dwy'

In other words, Ff has a local volatility and a local drift.
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4.4.3 Preconditioning
As we have seen in Section 4.4.2, we are facing a set of diffusion equations with local volatility

and local drift. (See Equation (4.29).) We now try to follow the steps of Section 4.3.1.

E[(F, — K)4] =E|E[(F, — K)|F7] | (4.30)

:¢((W;r)tE[O,T])

This expectation is approximated with the cubature formula based on functional quantization.

N
E[(F; — K)4] = ZP@(%‘), (4.31)

where (o;)1<i<n and (p;)1<i<n are respectively the paths and the associated weights of a station-
ary functional quantizer of W. The value ¢(«;) in Equation (4.31) corresponds to the price of a
Call or Put option with a local volatility and a local drift as in Equation (4.29). Unfortunately,
no closed-form expression exists for this general case. However, we can use a common numerical
method as a finite difference scheme for the associated (one-dimensional) Kolmogorov backward
PDE (4.32) to overcome this difficulty.

%Hi(t, :E)2x28827¥ + Ni(tax)x%_‘;(t7 T) + %_‘t/ =0
V(T,x) = Payoff(T, x).

We obtain the same order of precision as in the previous case but with a longer computation time.

(4.32)

e In other words, we can see the functional quantization of the volatility as a way to approxi-
mate the value of the solution of a two-dimensional PDE with a weighted sum of the values
of solutions of one-dimensional partial differential equations.

e This is easily extended to multi-factor stochastic volatility models.

In Figure 4.5 we plot the implied volatility smile in the SABR model, computed with the

small-maturity asymptotic and with the quantization-based cubature formula, coupled with a
simple Monte-Carlo simulation.
As an alternative for the PDE approach, we now introduce a new quantization scheme for stochastic
differential equations which we call “normal quantization”. This approximation is based on a
recent approach to functional quantization called “partial functional quantization” which has been
introduced in [5]. In Section 4.4.4 we recall some background on partial functional quantization.
Then we come to the normal quantization of stochastic differential equations.

4.4.4 Normal functional quantization and stochastic differential equa-
tions

When plugging a stationary quantizer in place of the Gaussian process in a multidimensional SDE
written in the Stratonovich sense, one obtains a quantizer of the solution of the SDE. It has been
shown in [29] that the solutions of the quantized solutions of the ODE converge toward the solution
of the SDE when the quantizer size goes to infinity. A first approach to this problem (but in a
more restrictive setting) has been done in [23] for the one-dimensional setting, using the so-called
Lamperti transform. This is the same transformation which was originally used by Wong and
Zakai in [35]. It is also related to some articles of Doss and Sussman on the connection between
stochastic and ordinary differential equations [8, 9, 32]. In [23], this transformation was used to
prove some contractivity properties of the It6 map under some constraints on the parameters of
the SDE.

In this section, we first briefly come back on these contractivity properties and the Lamperti
transform. Then we recall the main results on partial functional quantization of stochastic differ-
ential equations, which was first introduced in [5]. We finally introduce the normal quantization
of solutions of stochastic differential equations.
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Figure 4.5: Implied volatility smile in the SABR model with 5 = 0.7,y =0.3, 09 = 0.2, 7 = 1 and
p = —0.5. The continuous curve corresponds to a (208-54)-Richardson-Romberg extrapolation of
the functional quantization-based cubature formula.

The Lamperti transform and contractivity of the Ité6 map

Let us consider the SDE
dS; = b(t,Sp)dt +0(t,S;)dX;, So=xz€R, andte][0,T], (4.33)

where b(t, ) and 6(t,z) are Borel functions, Lipschitz continuous with respect to = uniformly in
t, 6 is bounded and |b(-,0)| is bounded. This SDE admits a unique strong solution S.

Definition 4.4.1 (Lamperti transform). Consider Z an open interval, xo € T and 6 : [0,T| xZ —
R* a function satisfying the (L) hypothesis defined bellow.

() 0eC (0T xT,RY),

| (i) V(t,z)€[0,T]xZ, 0<0(t,x) <O+ |z|),

{ (151) if T # R we make the additional assumption that
d d,

\ VEE0,T],  Jing too)nz e(fg) =+ooand [ .nr 9(55) = +oo.

The Lamperti transform associated with 6 and xo is defined by S(t,z) = ffo 9(‘150 on [0,T] x Z.

Under the assumption (£), the so-defined function S is C12([0,T] x Z) with
08 T/100
E(tax) - LD (ﬁa) (t,f)dé,

aS 1 %8 1 00

Moreover, for every t € [0,T],  + S(¢, x) is continuous and strictly increasing in Z.

Remark. It follows from hypothesis ((L),(ii)) that |S(t,z)| > Llog(1+ |z[). Hence, if T = R,
claim ((L),(#ii)) is a consequence of the first two assumptions.
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A consequence is that, for every ¢ € [0,T7], S(¢,-) has a (continuous) inverse function defined on
R. This inverse function, denoted by S; ! satisfies S; *(z¢) = 0 and |St_1(y)| < €Yl —1 for every

y € R. Furthermore, S; * is differentiable and (S’;l)/ (y) satisfies 0 < (S’;l)/ (y) =146 (t, S;l(y)> <

C (14187 (w)]) < CeCll. Hence, ¥t € [0,T], ¥(y,y') € R%, S, (y) — S;7 ' (y)| < CeCmaxullvDy—
Y-

Proposition 4.4.1. If 0 is bounded on [0,T] X I by ||0||max, we easily prove that S; " is ||0]| max-
Lipschitz continuous, namely

vt e [0,T], Y(y,y) € R%|S7 () = ST ()] < [0llmaxly — /.

> >
Moreover (t,5) — S; *(y) is continuous on [0, T] xR, since the sets {(t, y): S (y) < c} = {(t, y):y < S(t,c)}
are closed for every c € R.

Applying 1t0’s formula to Y; := S(¢t, F}) yields

b B a0 00
2y, = (5@,5) [ (&%) (a&)d&) a2 2 pyax, vax. (s

finite-variation part

The Lamperti transform fulfills its task to yield a SDE with a constant diffusion coefficient equal
to 1.

Remark. Under the additional assumption that the measure d(X) is absolutely continuous with
d

respect to the Lebesgue measure on [0,T), with a density 7x := % Equation (4.34) becomes
dY, = B(t,Yy)dt + d X, with
b5 W 1 99 100 )
t = = — —— | (¢ —— (1,5, t) ] . 4.
B(t,) (a [ (%) G0+ 550 (657 w) (4.3)

Therefore, 5 :[0,T] x R — R is continuous as soon as b and Tx are.

Study of the transformed SDE (4.34)
Let p € [0,00] and h € LY. We consider the integral equation in (L%, - ||,)

t y(s) t
vy =+ [ <§<s,y<s>>— (75 <s,s>d§> dst 3 [ 56 u(e)d00). + hie). (430

The existence and uniqueness of a solution for (4.36) in L%. follows from the approach used for
Ordinary Differential Equations, assuming that the mapping H,, : L} — L. defined by

t y(s) t
=t [ (Gt - [ (G50) o) s 3 [ S s, +n)

0 0
is contractive for small enough T'.

Remark (Contractivity of H,). A sufficient condition for H, to be contractive, in the case where
d(X) is absolutely continuous with respect to the Lebesgque measure, is the function S(t,x) to be
Lipschitz continuous with respect to x uniformly in t. In this setting H, will be contractive for
T[ﬁ]Lip < 1.

Thus, H, has a unique fixed point in L, for T'[B]rip < 1. A global solution of (4.36) in L. for
any fixed T' > 0 can be constructed inductively by simply sticking pieces of solutions on intervals
[kTo, (k + 1)Tp] with T[B]Lip, < 1 starting at the appropriate values. Note that the resulting
solution does not depend on p as long as h € L% and that when h and 7x are continuous, the
solution y is continuous too.

Using standard Gronwall techniques and the inequality (u + v)? < 2P~1(uP + vP) when p €
[1,00), we show that the mapping ¥, : L}, — L. by
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“W,, (h) is the unique solution of (4.36) in L%
satisfies Y = ¥, (X) and is || - ||,-Lipschitz continuous.

Proposition 4.4.2 (Contractivity of the Itd map). The main consequence of this, is that the Ito
map, defined as the composition S’t_l o H, is contractive on [0,T] for small enough T as soon as
0 is bounded and B(t,x) is Lipschitz continuous with respect to x uniformly in t.

Partial functional quantization and generalized bridges

Here, we recall the definitions and the main results related to the partial functional quantization
of continuous Gaussian semimartingales, which was introduced in [5].

Let (X¢)tejo,r] be a continuous centered Gaussian semimartingale starting from 0. In this case,
the contlnulty assumption on the Gaussian process ensures, thanks to Fernique’s theorem that
fo [X?]dt < oo and also ensures the continuity of the covariance function. (See [18, VIIL3]). Wi
denote by (e, A\ )i>1 the Karhunen-Loéve eigensystem of X.

Let I be a finite subset of N. We consider Z; = (Z:f)ze 1 the terminal values of processes of
the form Z} = fo fi(s)dXs, i € I, for some given finite set f = (fi)ier of L2 ([0, 7]) functions.

Definition 4.4.2 (Generalized bridge). A generalized bridge for (Xi)iepo,r) corresponding to f

with end-point Z = (2;):e1 is a process (X?’E) that has the distribution L (X|Z% = z;,1 € I).

t€[0,T]
For example, in the case where X is a standard Brownian motion with |I| = 1, f = {f} and
f =1, this is the Brownian bridge on [0,7]. If X is an Ornstein-Uhlenbeck process this is an
Ornstein-Uhlenbeck bridge.

Definition 4.4.3 (K-L generalized bridge). A K-L generalized bridge is a generalized bridge
associated with the set of functions (f;X),c, defined by f*(t) := tT eX(s)ds, where (eX)i>1 are
the Karhunen-Loéve eigenfunctions of X .

In the case of a K-L generalized bridge, an integration by parts shows that fOT XeeX(s)ds =
[ FX(5)dX s and thus Y; := [if XeX(s)ds = Zi.

The Karhunen-Loéve expansion gives the decomposition

x=YveX * 3 faer (4.37)

icl ieN*\T
——
E[XY]

K-L generalized bridge
with end-point 0

where (§;);en-+\7 are independent standard Gaussian random variables. It follows from (4.37) that
a K-L generalized bridge is centered on E [X|Y; = y;,7 € I] and has the covariance function

XY (5,1) = cov(Xe, Xi) = D AN e (s)e (1), (4.38)
i€l
We have [/ TXIY(t,t)dt = Y A¥. Moreover, thanks to decomposition (4.37), if X7 is a K-L
iENF\T
generalized bridge associated with X with terminal values § = (y;)icr, it has the same distribution

as the process
> e () + X — (/ X,eX ds>e()

i€l iel

This process is then the sum of a semimartingale and a non-adapted finite-variation process. Let
us define the matrix Q(s,T) for s € [0,T] by

Q(s.7) =K [(Zr - E[Zr|(X)ucw0.0]) (Z7 — E [Z7](Xu)ucro.s)]) |(Xu)uep.sl] -




4.4. LOCAL STOCHASTIC VOLATILITY 125

We make the additional assumption (H) that
Q(s,T) is invertible for every s € [0,T). (H)

Remark (On the (H) hypothesis). In [5], it is proved that the (1) hypothesis holds in the cases
of K-L generalized bridges of the Brownian motion, the Brownian bridge and Ornstein- Uhlenbeck
processes.

Theorem 4.4.3 (Generalized bridges as semimartingales). Let us assume that F~ is a Brownian
filtration. We define the filtration GX by G = o (7T,]:tx), the enlargement of the filtration

FX corresponding to the above conditioning. Under the (H), the generalized bridge XFH s a
continuous GX -semimartingale on [0,T) (up to a modification).

A detailed proof, using filtration enlargement techniques is provided in [5] in a slightly more general
setting.
Now, in the same set of notation, we consider the orthogonal decomposition (4.37) again and

YT = Projp(Y) a stationary Voronoi N quantization of Y. (Projp is a nearest neighbor projection
onT.)

We now define the stochastic process xIr by replacing Y by YT in the decomposition (4.37). We
denote X' = Proj; p(X).

XIT =S yTe i 3 \/,Txex (4.39)

i€l TEN*\T

The conditional distribution of XT given that Y falls in the Voronoi cell of 7 is the distribution
of the K-L generalized bridge with end-point ;. In other words, we have quantized the Karhunen-
Loéve coordinates of X corresponding to ¢ € I, and not the other ones. The so-defined process
XU is called a partial functional quantization of X. Theorem 4.4.3 suggests to define the partial

quantization of the solution S of the SDE (4.33) from a partial quantization X 'T of X by replacing
X by X'T in the SDE (4.33). We define the partial quantization ST as the process whose
conditional distribution given that Y falls in the Voromnoi cell of ~; is the strong solution of the
same SDE where X is replaced by the K-L generalized bridge with end-point v;. We write

dSPT = (t,SP")dt+0 (t,507) ax] T,
Theorem 4.4.4 (LP mean quantization error of partially quantized SDE). Let X be a continuous
centered Gaussian martingale on [0,T) with Xo = 0. Let S be the strong solution of the SDE

dSt = b(t, St)dt + H(t, St)dXt, SO =T,

where b(t,x) and 0(t,x) are Borel functions, Lipschitz continuous with respect to x uniformly in
t, 0 and |b(-,0)| are bounded.

We consider X''T a stationary partial functional quantization of X and STT the corresponding
partial functional quantization of S, i.e. the strong solutions of

dSP = (6,5 ) dt+0 (+,507) ax[ "t Syt =

Then, for every p € (0,00), € >0 and t € [0,T), there exists a positive constant Kg&tl such that

sup
v€e(0,t]

Su — 50|

<KX, (HY _ ?FH ) , (4.40)
p+e

P
where Y is defined from X by Equation (4.37) and YT is the nearest neighbor projection on T.

A detailed proof is available in [5]. It is also possible to handle the case where we have no

stationarity hypothesis, when dealing with a convergent sequence of quantizers (?N )N>1 for

large enough N. For more details on this, see [5].
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From partial functional quantization to functional quantization

If X is a continuous centered Gaussian semimartingale, we consider I a finite subset of N* and
XU the corresponding optimal quadratic K-L partial functional quantization. Moreover, setting
to 0 the other Karhunen-Loéve coordinates, we denote by XU the associated quadratic optimal
functional quantization. From Equation (4.37, we deduce

2

)

2

= 3
GEN*\T

N N
2 2

where X7V is the K-L generalized bridge associated with I and X and with end-point 0.

Now we consider the SDE (4.33) again, and respectively S*I' and ST' the partial functional
quantization and the functional quantization of S associated with I and I'. Using the triangle
inequality, we have

HS—S‘\I’F < HS—§I’F +H§”—§IvF (4.41)
P P P
The term HS — SIT| can be controlled thanks to Theorem 4.4.4. Moreover, when d(X) is
P
absolutely continuous with respect to the Lebesgue measure A on [0,7] with 7x := %, and

the function S(t,y) defined in Equation (4.35) is Lipschitz continuous with respect to x uniformly
in ¢, the term H§I’F — SLT| can be controlled by HXI’F — XIT|| thanks to a contractivity
P P

property of the Itd6 map (Proposition 4.4.2). In this setting, we finally obtain

H?LF gl —o <HXI*6 ) . (4.42)
p

p

Then, plugging this into Equation (4.41), we obtain an upper bound error for the quantization
error for the solution of the stochastic differential equation.

The normal quantization of stochastic differential equations

We first briefly recall some inequalities which will be useful in the sequel.

Proposition 4.4.5 (Doob’s inequality). Let M be a continuous local martingale on Ry with
My =0. Then for every T > 0,

E { sup M2| <4E[(M),].

te[0,T]

Proposition 4.4.6 (Some inequalities related to the Gaussian distribution). Let G be a standard
Gaussian random variable valued in R. Consider M > 0. We have

2M exp (—MT2>

E [G? 116150 = Ners +2N(=M). (4.43)
Moreover
1 M?
N(=M)=P|G> M] < §exp <_T> . (4.44)
Thus

E [G21|G|>M] < <% + 1) exp (—MT2>

Under the additional assumption that M > 1, we obtain

2 M2\
JE[G21|G|>M] SM(E+1> exp <—7> if M>1.
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Proof: The proof of Equality (4.43) is left to the reader. Inequality (4.44) comes from

oo _z2 oo _ (atM)?
N(=M) =P|G > M] :\/%IMS 2d:1::\/%5f0 e d3:2 ] .
= \/%e_MT fooo e Mze—5 dg < %6_% Jo e~ Tdr = %e‘T
And the proof of the last claim is straightforward. O

Proposition 4.4.7 (The non-standard case and reverse inequality). If H := oG has a variance
of 02, we obtain

20M M? M 20M M?
2 _ o2 _ 2 2
E[H 1|H|>M] -7 [G 1|G|>1"V[] C Ver P <_202>+2U N<_ U) = (\/ﬁ o )exp <_2U2> .

2 M?
And if M > 1, we get E [H21|H|>M] < <—U + 02> M exp ( ) Conversely, for some fized

~ \V2r 202
::;M
n >0, and if M > 1, we have
n2
M>-W St = M=
(75 + %)
=M,

where W is the Lambert W function.
Definition 4.4.4 (Normal quantization). Let X be a continuous centered Gaussian martingale

L
on [0,T]. Let I be a finite subset of N*. We reconsider the decomposition (4.37), X = Y. YieX +

iel
NX ¢ X
> A e

ieEN*\T

Let T be a stationary codebook for Y = (Y;);er and YT the corresponding Voronoi quantizer of

Y. We denote by XIT gnd XTT the corresponding functional quantization and partial functional
quantization of X.

Let S be the strong solution of the SDE
dSt = b(f, St)dt + H(t, St)dXt, SQ =, (445)

where b(t,x) and 0(t,x) are Borel functions, Lipschitz continuous with respect to x uniformly in
t, 0 and |b(-,0)| are bounded. Then we denote by

o SIT the corresponding functional quantization of S, obtained by replacing X by XL in the
SDE (4.45) written in the Stratonovich form.

o SIT the corresponding partial functional quantization of S, obtained by replacing X by XIr
in the SDE (4.45) as derived above and in [5].

. SIT . NI 3 S 8 ol S 10
Thanks to Equation (4.89), the process X, is decomposed into X, = X, + XY, where X"
is the corresponding K-L generalized bridge with end-point 0. We obtain

dS;" = (6,8 ) dt+0 (t,57)ax! " +0(t.5") ax/®, §T = (4.46)
We define the normal quantization ST of this SDE by
dS;" = (6,8 ) dt+0 (t,8")ax!" +0(t.5"") ax/®, T =a

This is the same SDE as (4.46), where we have replaced §tIF by §tIF in the drift and the volatility.
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Remark. With the same notations, SIT s simply defined by

t t t _
St = 33—|—/ b(s,SIT) ds +/ 0 (s, SIT) dx " +/ 0 (s, ST) dx!O.
0 0 0
The principal interest of the normal quantization of stochastic differential equations is that it
yields Gaussian processes, so that it is likely that one can obtain closed-form expressions when
using it as a cubature scheme.

Theorem 4.4.8 (Quadratic error of the normal quantization scheme for SDEs). We keep the
notations and assumptions of Definition 4.4.4. Then, for every t € [0,T) we have

~ 2
E | sup ‘Si’r —Si’r‘
w€[0,t]

oasoff ).

Proof: 1 %nd l: being fixed, to simplify notations, we will denote X = )A(I’F, X = XIT,
S =80T §:= 80 and S := ST, We have

5-Bi= [(0(5) (58t [ (0(05) 0 (s.5.)) et [

0 0

t

(0(s.5) -0 (s8.)) dx!o.

In [5], the canonical decomposition of X!V is derived. It writes X0 = <X, L0> + X - <X, LO>,
—_—
B =V =M
where dVy = G,d(X)s and (Gs)sepo,r) is a centered continuous Gaussian process.

Hence we have, conditionally to YT = Y,
a0 (5.5) b (. 8)) ds| +al gy (0 (s.5) —0(s.5.)) ag(as|
4 ‘fot (6 (5.5.) — 0 (5.5)) Gud(X)s ‘i ‘fot (6 (5.5.) — 0 (s.5.)) M, ’

<ar (W 82, max (a;W) I s

Lip w€0,T]

gt_gt

Sy — S,

2

)

+4(X)r [ (0 (s,8.) — 0 (s,5.))” G2d(x), + 4

S (6(55.) — 0 (s,5.)) i,

where oy, stands for the deterministic path of X conditionally to YT = ~%. This yields

§S —§S yT 2%] ds

E H@ _53

‘ 2

we[0,T]

ca00r [(B[(0(55) -0 (. 5) ¢
[ (5.5 0 (8.)) ait.

We now use Doob’s inequality (Proposition 4.4.5) to the last term of Equation (4.48). Using that
d(M)=d(X17) = d(X), we get

2 ‘

7 = o] <4t (1, + 0 max @hw)”) [E]

V=] dx),

2

YT = 'yk} . (4.48)

+4E{

u . N — 2 N t - N N
E s A (9 (s,ss) —0(3,85))dMS YF—%} §4A E [(9 (s,ss) —9(3,55))2 yr :yk] d(X)s.
Thus
u - N _ 2 P t . PN IPN
4R Lsel[lgfﬂ A (0(s,8:) —0(s.8:)) dM,| |[Y" =] < 16[9]iip/ E [(S - 5.) ‘yl“ _ %] d(X)s
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Inserting this into (4.48) yields

2 2

~ P . t ~ -~ .
Sy —Su| YT =~ | <4T ([b]fip + [0]7;, max (a;(u)f) / E { S, — S| |YT = %} ds
0

we[0,T]

E { sup
u€(0,t]

t ~ ~ 12
+ 16[9]%ip/ E { sup |Sy — Su
0

u€|0,s]
+ax)r [(E[(0(s.5) -0 (=.5)) ¢

We now focus on the last term in (4.49). For M > 1, we decompose the expectation on {|Gs| > M}
and {|Gs| < M}. We obtain, using that G is independent of YT,

E [(9 (.5.) — 0 (s,§s))2G§

< MPOIGE [ (8. - 5.) V7 = ] + s M exp (-25) (2 +02).

Yyl = %} d(X),

YT = %] d(X)s. (4.49)

~ ~ ~N\2|~
T =] < 22008, E [ (5. - 8.) |77 = ] + 40 [G21i6,501]

202 Ner

where v2 = Var(Gy). If we define, for s € [0,T), v}? := sup Var(G,) we obtain

u€l0,s]
~ = 12|op 9 2 2 k I o Pl
E | sup |Sy, — Su| |V =y | <4T ([b]Lip + [H]Lip max (aj(u)) > / E { Ss— S5 Y = %} ds
u€l[0,t] u€[0,T] 0

-~ .2
Su — Su

¢
+ 16[9]%ip/ E { sup vyl = %} d{X)s
0

u€(0,s]

~ 2
Su — Su

t
400, [ B { up
0 u€(0,s]

?F = Vk} d<X>s

2

20 2) M
S * M _
+ vy exp < 272

+ 160X e (S s ) (450)

~ v
~~

=NMm

We define the locally finite measure p(dt) = d(X), + dt. We can ensure that

t
77M§775:/E{
0

by setting M = {/-W (—’7—22), where C; := 16<X>2T[9]12nax(
Lambert W function. This finally yields

~ ~ 12|~
S — S| [YT = 'yk] wu(ds)

2v:2
27

+Uz‘2) and where W is the

~ = 2|~
E Su— S| YT = | < (47 (012, + 102 ’ 2)
E | < (a7 (W + 0 o (ak(0)
2
2 112 n
We can conclude by observing that W(u) = 0. O
u—

We can prove the analogous result of Theorem 4.4.8 for the general L? framework, following the
same steps except that Doob’s inequality for continuous (local) martingales is replaced by the
Burkholder-Davis-Gundy inequality (which holds for every p > 0).

Remark (Extension to semimartingales). In Theorem 4.4.8, we limited ourselves to the case
where X is a local martingale. The proofs are easily extended to the case of a semimartingale X
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as soon as there exists a locally finite measure v on [0,T] such that for every w € Q the finite-
variation part dV (w) in the canonical decomposition of X is absolutely continuous with respect to
v. For instance, this is the case for the Brownian bridge and Ornstein- Uhlenbeck processes whose
finite-variation parts are absolutely continuous with respect to the Lebesgue measure on [0,T].

Definition 4.4.5 (The lognormal quantization of stochastic differential equations). From Defini-
tion 4.4.4 of the normal quantization of stochastic differential equations, we can naturally define

the lognormal quantization it of an SDE of the form

{ dSt = Stu(t, St)dt + S’tﬁ(t, St)dXt
SQ =,

10
as the exponential of the normal quantization (log(S))  of the logarithm of the solution

1

If the measure d{X) is absolutely continuous with respect to the Lebesgue measure X on [0,T] and
Tx = % and if we define b(t,x) := pu(t,x)dt — 30(t,x)gx (t), as soon as so-defined functions b

and 0 satisfy the hypothesis of Definition 4.45, we have

_ 2
E { sup |Sy — Su
w€[0,t]

Yy = ”yk} =0 <H§’*F - §”Hz> . (4.51)

Cubature method based on lognormal quantization for local volatility models

Consider the following stochastic differential equation

{ dS, = Sib(t, Si)dt + S,8(t, S,)dX:,
So = so,

where X is a continuous centered Gaussian semimartingale starting from 0, b(¢,z) and 0(t, x) are
Borel functions, Lipschitz continuous with respect to x uniformly in ¢, 6 is bounded and |b(-,0)]
is bounded. We also assume that d(X) is absolutely continuous with respect to the Lebesgue
measure A on [0,7] and 7x := % is continuous. Moreover, we assume that the function 5(¢,y)
defined by Equation 4.35 is Lipschitz continuous with respect to y uniformly in .

Then we can consider the lognormal quantization " of S associated with the finite set I ¢ N*
and I' = {71, ,yn} a stationary codebook of (Y;);cr. Then we have

v 5100, (1,507 6 (1, 517)

<I.T o arr
S; = Spexp / b(t,St’ )dt—/ d(X ),
0 0 2

SIT 2
_/T wﬂmﬁ/%@ﬁgm) d)?tz,er/Tg(t,?ng) ngﬁ)’ (4.52)
0 2 0 0

which, conditionally to YT = vk is lognormal.

The first proposed cubature formula is, if one is interested by the quantity E[(St — K)4] (or
E[(K — S7)+]), to make the following approximation

E[(Sr - K)4]~E[(Sr - K) | = ip VT =] E[(Sr-K), V7 =]

where the right-hand term of the expression can be derived as a weighted sum of closed-form
expressions.
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We recall that if G 5 N(m,%?%) and L = exp(G), we have

2

E[(L — K)+] = exp <m + %) N(d1) — KN(dQ),

and
2

b
E[(K — L)4] = KN(—ds2) — exp <m + 7) N(—dy),
where dy = %H(K) and d; = do+X. In the setting of Formula (4.52), the conditional expectations

=1, s e . e .
my, of log (ST ) conditionally to Y = ~; are easily computed. As the conditional variances ¥y

are concerned, we devote the Appendix 4.A to the computation of Var (fOT g(t)dXtI’a) where X71:0
is the associated K-L generalized bridge and g € L?([0, T)).

Proposition 4.4.9 (Lognormal quantization cubature error). With the same set of notations and
hypothesis, we have

E[(Sr - K)4]-E[(Sr-K) | =0 (HX - )?I’FHus) ’

for any e > 0.

Proof: This is a straightforward consequence of Equations (4.51), (4.41), (4.42) and Theorem
4.4.4. (]

Remark (Richardson-Romberg extrapolation for the lognormal cubature method). A conjecture,

supported by our numerical experiments is that in the case where XIT s an optimal K-L product
quantizer of X, we have

E((Sr — K)+] ~E[(Sr-K), | =C||x ‘)?I’FHE o (HX ‘X\I’FHD ’

for some positive constant C. In other words, this means that as for crude quantization of S, sta-
tionarity results in a convergence rate of a higher order by one for the quantization-based cubature
scheme. We conjecture that this rate is in fact a sharp rate of convergence. This highly suggests
to implement Richardson-Romberg extrapolations for the lognormal quantization-based cubature
formula, similar to the one we use with functional quantization (Equation (4.20)).

4.4.5 Lognormal quantization for local stochastic volatility models

The lognormal quantization-based cubature for SDE with a local drift and a local volatility, derived
in the previous section provides an accurate vanilla option pricing method for this kind of models.
Consequently, we have a method at our disposal to evaluate the function ¢ defined in Equation
(4.30). Hence, we have found the missing link on our path to vanilla option pricing in local
stochastic volatility models. In this section, we benchmark our method on the case of the SABR
model with 5 # 1.

The SABR model with § # 1

In this section, we present numerical results when using the normal quantization method with the
classical SABR model proposed in [14]. In this model, we assume that, under the risk-neutral
measure, the forward price of a risky asset is the solution of the SDE

dF, = FloydW,, Fy >0, (4.53)
where the volatility o is the solution of the SDE

doy = b(t,o)dt + 0(t,00)dW7, o9 >0, (4.54)
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with g € [0,1] and d(W, W), = pdt. (The model presented in Section 4.3 corresponded to the
special case where 8 = 1).

In Figure 4.6 we display the implied volatility smile estimated by the (extrapolated) functional
quantization-based cubature formula, and the value computed by the closed-form short-maturity
asymptotics.

0.141 Short mé\turity,‘ﬂ =0.7
_____ SABR small-maturity asymptotic
0.121 ]
Romberg extrapolation
0.1k quantization cubature 100 — 208. |
) N Romberg extrapolation
0.08L \\\ quantization cubature 10 — 54. i
0.06}
0.041
0.021

60% 70% 80%  90% 100% 110% 120% 130%

Figure 4.6: Implied volatility smile in the SABR model with 8 = 0.7, v = 0.3, 0 = 0.2, T =1
and p = —0.5.

e The dotted line curve corresponds to the SABR small-maturity asymptotic.

e The thin (blue) continuous curve corresponds to a Romberg extrapolation of the functional
quantization-based cubature method. The Romberg extrapolation couples are 10 — 54 for the
lognormal quantization and 54 — 208 for the volatility quantization.

e The thicker (green) continuous curve corresponds to a Romberg extrapolation of the functional
quantization-based cubature method. The Romberg extrapolation couples are 100 — 208 for the
lognormal quantization and 54 — 208 for the volatility quantization.

As we can see in Figure 4.6, the lognormal quantization scheme does not provide correct results
for far-out-of-the-money options, for which the PDE approach is preferable. A remark is that
the vanilla option payoff is not a regular functional in L?([0,T]) (because it only depends on the
marginal at t = T'). We might experience better results with more regular functionals as the payoff
of an Asian option. The range of strike for which we get accurate values of the implied volatility
increases with the size of the lognormal quantizers that we use.

4.A Computing Var (fOT g(t)dXtI’ﬁ) where X’V is a K-L gener-
alized bridge and g € L*([0,T])

Considering the decomposition

X -x-y "X (53s) X0,

icl

[ owaxit= [Cgax -3 ([ xeros) ([ o).

icl

We have
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Thus, as (fOT XseiX(S)dS)iel LN (O,diag ()\;-X)Z.E]), we have

Var <ATg(s)ngﬁ> — Var ([ >+2/\X </ gsdegf(s))

iel

23 ([ o) e [ [ gax. [ x|

i€l

2

Now, identifying fOT XeeX(s)ds = fo fX(s)dX, where f7 is defined as in Definition 4.4.3, we
have

5[[ Tg(s)dxs [ xex o] =& [ [ ssax. [ preax].

Hence we need to derive the terms Var (fOT g(s)dXS> and E [fOT 9(8)dX, fOT fiX(s)dXs].

4.A.1 The case of the standard Brownian motion

In the case where X = W is a standard Brownian motion, we have Var (fOT g(s ) fo s)%ds

and E [ [ g(s)dW, [y £V (s)dW.] = [ g 5)ds.

The result can be simplified using the closed form expression of the Karhunen-Loéve eigen-
functions of the standard Brownian motion which is given in Section 4.1.1. We easily obtain
V) =Y (e XV) (t). We finally obtain

Var (fo Yawl 0) OT g%(s)ds — ZI)\W (f g(s)de}’v(s))2
ic (4.55)
= Iy Fe)ds = £ e (I a1 ()"

4.A.2 The case of the standard Brownian bridge

In the case where X Bis a standard Brownian bridge, we write B, = W, — t%. This yields
fo s)dBs = fo fo s)ds. Thus we get
2

([ av) [ e (o)
e[/ Coan, [ s = Co) P s~ [ otoras [ s eas

The result can be simplified using the closed-form expression of the Karhunen-Loéve eigenfunctions
of the standard Brownian bridge which is given in Section 4.1.1. We easily obtain

FE() = AP (F) - (W—i) \/gcos(ﬂ'n),

and thus, using this expression, we get
Var ([ g(s)dBI0) = [ g*(s)ds — %(f <>ds) +ZA-B(foT (s)deP(s))”
2% (Jo 9(5)del (5)) (Jo 9()fF ()ds = £ i g(s)ds fy 1 (s)ds)
= [ g?(s)ds — % (fng(s)ds) - z AP ([T g(s)deF (s))”

and

T
) 2631 (fOTg(S)deF(S)) (foT g(s)ds) (— <%) \/gcos(wn) — %A fE(s)ds

~

)

v

-0
(4.56)
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so that

2

Var <ATg(s)stLa> _ AT 2(s)ds — % (ATg(s)ds>2 Y <ATg(s)delB(s)> . (457)

el
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Chapter 5

A fast nearest neighbor search
algorithm based on vector
quantization

Abstract

In this chapter, we propose a new fast nearest neighbor search algorithm, based on vector
quantization. Like many other branch-and-bound search algorithms [1, 10|, a preprocessing recur-
sively partitions the data set into disjoint subsets until the number of points in each part is small
enough. In doing so, a search-tree data structure is built. This preliminary recursive partition of
the data set is based on the vector quantization of the empirical distribution of the initial data
set.

Unlike previously cited methods, this kind of partitions does not a priori allow eliminating
several brother nodes in the search tree with a single test. To overcome this difficulty, we propose
an algorithm to reduce the number of tested brother nodes to a minimal list that we call “friend
Voronoi cells”. The complete description of the method requires a deeper insight into the properties
of Delaunay triangulations and Voronoi diagrams.

Keywords: vector quantization, fast nearest neighbor search, Voronoi diagram, Delaunay trian-
gulation, principal component analysis.

137



138 CHAPTER 5. A NEW FAST NEAREST NEIGHBOR SEARCH ALGORITHM

Introduction

The problem of nearest neighbor search, also known as the post-office problem [7] has been widely
investigated in the area of computational geometry. It is encountered for many applications, such
as pattern recognition and vector quantization.

The post-office problem has been solved near optimally for the case of low dimensions. Algo-
rithms differ in their practical efficiency on real data sets. For large dimensions, most solutions
have a complexity that grows exponentially with the dimension, or require a longer query time
than the obvious brute force algorithm. In fact, it has been noticed that, if n is the size of the
data set and d is the dimensionality, the best choice becomes linear search when d > K log(n) for
some positive constant K which depends on the chosen algorithm. This effect is known as the
curse of dimensionality.

Concerning the application to (Voronoi) vector quantization, nearest neighbor projections are
recognized to represent the critical part of most codebook optimization algorithms. In this case,
the large amount of nearest neighbor searches we have to do shows that a preprocessing of the
data set will be profitable if it reduces the average query time. Still, in some cases, the codebook
is chosen so that nearest neighbor search is performed easily, (as when dealing with product quan-
tization). Moreover, non-Voronoi quantization methods can also be designed in order to simplify
the projection procedure while preserving some important properties of optimal quantizers, such
as the stationarity in the quadratic case.

Let us also point out a field recently emerging under the name of dual quantization [11, 12].
In this context, the nearest neighbor search, i.e. the location of a point in a Voronoi partition, is
replaced by the analogous procedure in the Delaunay triangulation. This localization procedure
in Delaunay triangulations has been widely investigated in the practical viewpoint in terms of
reduction of its computational complexity. We refer to Devillers, Pion and Teillaud for a review
on this subject [2].

Many nearest neighbor search algorithms rely on a recursive partitioning of the data set result-
ing in a search-tree data structure [1, 10]. The method proposed by McNames in [10] improved
the classical Kd-tree algorithm [1] by taking advantage of the shape of the data set thanks to
principal component analysis. The “principal axis tree” algorithm performs much faster than the
classical Kd-tree when the coordinates of the data set are correlated and it seems to handle better
the growth of dimensionality.

In our case, the proposed algorithm uses vector quantization as a clustering method to perform
this recursive partitioning and to take advantage of the geometry of the data set. It is classical
background that when dealing with empirical distributions, the quadratic vector quantization
problem is equivalent to the reduction of the intraclass inertia of the related partition, and the
specification of the classical Lloyd algorithm in this case turns out to be the k-means clustering
algorithm.

We will see that one drawback of this kind of partition is that, like other tree-based search
algorithms, after determining the closest neighbor of a query in a leaf-node of the tree, the proce-
dure has to move up to the parent node and determine whether brother nodes have to be explored
or not. Unlike Kd-tree and “principal axis tree”, our so-called “quantization tree” can’t eliminate
several brother nodes by a single test. This is the motivation for the development of our friend
node algorithm.

The chapter is organized as follows. Section 5.1 is devoted to classical definitions and notations
related to vector quantization. The link to the classification problem is pointed out. Section 5.2
recalls some definitions of computational geometry which will be useful in the sequel. As both the
fields of vector quantization and algorithmic geometry deal with the notion of Voronoi diagram,
we pay particular attention to distinguishing the corresponding definitions and notations. Section
5.3 makes a brief presentation of both the Kd-tree [1] and “principal axis tree” [10] algorithms. We
deal with some optimizations that will be applicable to our quantization tree as well. Section 5.4
presents the “crude” quantization tree, i.e. without using any friend node algorithm. It is presented
as the natural counterpart of these two branch-and-bound algorithms with a quantization-based
partition of the data set. Section 5.5 presents the friend node algorithm which was discussed above.
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Finally, the last section provides some performance comparisons between the different algorithms
on various data sets.

5.1 Vector quantization and Voronoi tessellations

We consider (€2, A, P) a probability space and F a (real) finite-dimensional Euclidean space. The
principle of a random variable X taking its values in F is to approach X by a random variable Y
taking a finite number of values in F.

Definition 5.1.1 (quantizer). In this surrounding, the discrete random variable Y is a quantizer
of X.

If X € LP, the quantization error is the LP norm of |X — Y|, where |- | denotes the Euclidean
norm on E. The minimization of this error yields the following minimization problem

min{||X —Y,,Y : @ — E measurable, card(Y(Q2)) < N}. (5.1)

Definition 5.1.2 (Voronoi partition). Consider N € N*, T' = {y1,--- ,yn} C E and let C =
{C4, -+ ,Cn} be a Borel partition of E. C is a Voronoi partition associated with T if Vi €
{1, N}, Gic{ e b [ —vl= min_[{—l}
je{l,-,N}

If C = {C1,---,Cn} is a Voronoi partition associated with I' = {~1,---,yn}, it is clear that
Vie{l,---,N}, v; € C;. C;is called Voronoi slab associated with v; in C' and ~; is the center of
the slab C;.

We denote C; = slabg(y;). For every a € T, W(a|T') is the closed subset of E defined by

W(all') = {y €FE, ly—al=minly —7|}-
~el’

Definition 5.1.3 (Nearest neighbor projection). Consider I' C E a finite subset of E. A nearest
neighbor projection onto I' is an application Projp that satisfies

Vo € E, |z — Projp(z)| = min|z — .
~el’

To be more precise, if Projp is a measurable nearest neighbor projection onto I', there exists a

Voronoi partition C = {C1,--- ,Cn} associated to I" such that Projp = ]XV: vile,.
i=1

Proposition 5.1.1. Let X be an E-valued LP random variable, and Y taking its values in the
fized point set T = {y1,--- ,yn} C E where N € N. Set X' the random variable defined by
X' = Projp(X) where Projp is a nearest neighbor projection on T, called a Voronoi I'-quantizer
of X.

Then we clearly have ‘X - )?F‘ <|X —Y| as.. Hence HX - )A(FH <X =Y.

P

A consequence of this proposition is that solving the minimization problem (5.1) amounts to
solving the simpler minimization problem

min {[| X — Projp(X)|l,, T C E,card(T') < N} . (5.2)

The quantity || X — Projp(X)|[, is called the mean LP-quantization error. When this minimum is
reached, we refer to LP-optimal quantization.

The problem of the existence of a minimum has been investigated for decades on its numerical
and theoretical aspects in the finite-dimensional case [5]. For every N > 1, the LP-quantization
error is Lipschitz continuous and reaches a minimum. An N-tuple that achieves the minimum has
pairwise distinct components, as soon as card(supp(Px)) > N. This result stands in the general
case of a random variable valued in a reflexive separable Banach space [8]. If card(X (Q2)) is infinite,
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this minimum strictly decreases to 0 as N goes to infinity. The asymptotic rate of convergence, in
the case of non-singular distributions is ruled by the Zador theorem [5]. A non-asymptotic upper
bound for the quantization error is also available [9].

We now focus on the quadratic case (p = 2). For a L? random variable X, we now denote
by Cn(X) the set of L?-optimal quantizers of X of level N and ey (X) the minimal quadratic
distortion that can be achieved when approximating X by a quantizer of level N. A quantizer Y
of X is stationary (or self-consistent) if Y = E[X|Y].

Proposition 5.1.2 (Stationarity of L2-optimal quantizers). A (quadratic) optimal quantizer is
stationary.

The stationarity is a particularity of the quadratic case. In other LP cases, a similar property
involving the notion of p-center occurs. A proof is available in [6].

Definition 5.1.4 (Centroidal projection). Let C = {C1,---,Cn} be a Borel partition of E. Let

us define for 1 <i < N, G; = { EX|X €G] ifP[X € Ci] #0,

0 in the other case, the centroids associated with
X and C.

N
The centroidal projection associated C and X is the application Projo x : w v+ ) Gilco, ().
i=1

Lemma 5.1.3 (Huyghens, variance decomposition). Let X be a E-valued L? random variable,
N

N € N* and C = (C;)1<i<n a Borel partition of E. Consider Projo x = > Gi1c, the associated
i=1

centroidal projection. Then one has,

Var(X) = E [|X — Projo x (X)|’] +E [[Proje, x (X) — E[X] |2l.

:=(1) :=(2)

The variance of the probability distribution X decomposes itself as the sum of the intraclass
inertia (1) and the interclass inertia (2).

Proof:
Var(X) =E[|X - Projo x(X) + Projg x (X) — E[X]]

~E [|x — ProjaX(X)|2]l+E [[Proje, x (X) — E[X]|"]
—() Re)
+2E [(X = Proj¢, x (X), Projo x (X) — E[X])] .

v

:=(3)

2

Now (3) = 0 since Projo x(X) =E [X|Proj07X(X)]. O

5.2 Backgrounds on theory of polytopes

Let E be a d-dimensional vector space and E* its dual.
Definition 5.2.1 (k-flat). A k-flat is a k-dimensional affine subspace E.

Definition 5.2.2 (convex polyhedron and convex polytope). A convex polyhedron is the intersec-
tion of a finite subset of closed halfspaces. If it is bounded, it is a convex polytope.

Definition 5.2.3 (cell). A cell is the intersection of a finite set of flats and open halfspaces. And
thus, equivalently, it is the relative interior of a convex polyhedron. If R C E, we denote by cell(R)
the relative interior of the convex hull of R.
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Definition 5.2.4 (Leibniz halfspace). For (a,b) € E? let us denote by H(a,b) := {a: € RY||z—a| <
|z — b|} the Leibniz halfspace associated to (a,b).

Definition 5.2.5 (simplex). A simplex is cell(R) where R is a set of affinely independent points.

e A 2-dimensional simplex is the interior of a triangle.

e A 3-dimensional simplex is the interior of a tetrahedron.

Definition 5.2.6 (circumsphere). A circumsphere of a set R C E is a sphere S of E such that
RCS.

Definition 5.2.7 (face). A face of a convex polyhedron P is the relative interior of the intersection
of a hyperplane supporting P with the closure of P.

Proposition 5.2.1. Let P be a convex polyhedron, a face of P is a cell, and a face of a face of P
is a face of P.

Definition 5.2.8 (k-face). A k-face is a a face whose affine closure has dimension k.

Definition 5.2.9 (cell complex). A cell complez is a finite collection of pairwise disjoint cells so
that the face of every cell is in the collection.

Definition 5.2.10 (opposite k-faces). Two distinct k-cells of a cell complex are opposite if they
have a common (k — 1)-face.

Definition 5.2.11 (triangulation). Let S be a finite point set of E. A triangulation T of S is a
cell complex whose union is the convex hull of S and whose set of O-cells is S.

Definition 5.2.11 is a non-standard definition because cells are not required to be simplices. This
formalism is due to Fortune [4].

Definition 5.2.12 (proper triangulation). A proper triangulation is a triangulation all whose
cells are simplices.

Any triangulation can be completed to a proper triangulation by subdividing non-simplicial cells.

5.2.1 Voronoi diagrams and Delaunay triangulations
Voronoi diagram

Let E be a d-dimensional Euclidean space, and S a finite subset of E. In the following, elements
of S will be called sites.

Definition 5.2.13 (Voronoi cell). For a nonempty subset of S, R C S, the Voronoi cell of R,
denoted V(R) is the set of all points in E that are equidistant from all sites in R, and closer to
every site of R than to any site not in R.

Proposition 5.2.2. o Clearly, isT € S, V({r}) is the set of all points strictly closer to r than
to any other site. In particular, it is the interior of the Voronoi slab associated to r in S.
(See the definition of a Voronoi slab in Section 5.1.)

o V(R) may be empty.
o Any point of E lies in V(R) for some R C S.

Definition 5.2.14 (Voronoi diagram). The Voronoi diagram V is the collection of all nonempty
Voronoi cells V(R) for R C S.
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Delaunay triangulation

Definition 5.2.15 (Delaunay cell). If R C S, and V(R) is a nonempty Voronoi cell, then the
Delaunay cell D(R) is cell(R).

Definition 5.2.16 (Delaunay triangulation). The Delaunay triangulation D of S is the collection
of Delaunay cells D(R), where R varies over subsets of S with V(R) nonempty.

Proposition 5.2.3 (Empty circumsphere property). For R C S, cell(R) is a Delaunay cell if and
only if there is a circumsphere of R that contains no site of S\R in its interior.

Proof: This follows from the definition of the Voronoi cell V(R), which is nonempty if and only
if R admits an empty circumsphere. ([

— Voronoi diagram

— Delaunay triangulation

+ Data set S

| |
-2 =15 -1 =050 05 1 1.5 2

Figure 5.1: Voronoi diagram and Delaunay triangulation of a data set S of size 10. We have
C € Vs({s1,82}). So C is the center of an empty circumsphere of {s1, s2}. The point Cia3 is the
center of the circumsphere of the Delaunay triangle {s1, s2, s3}.

Theorem 5.2.4. Let S be a set of n points in E with Voronoi diagram V and Delaunay triangu-
lation D. Then

1. V is a cell complex that partitions E.
2. D is a triangulation of S.

3. V and D are linked by the following duality relation:
For R,R' C S, V(R) is a face of V(R') if and only if D(R’) is a face of D(R).

4. V(R) is unbounded if and only if every site of R is on the boundary of the convex hull of S.

We refer to [4] for a detailed proof.

Locality

Definition 5.2.17 (locally Delaunay). We consider two opposite d-cells cell(R) and cell(R') in
a triangulation T with circumspheres C and C’'. cell(R) and cell(R') are locally Delaunay if
R\RNC = 0. This is equivalent to R\R' N C' = {).

A triangulation is locally Delaunay if every pair of opposite d-cells is locally Delaunay.
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Lemma 5.2.5 (Delaunay and locally Delaunay). A triangulation is Delaunay if and only if it is
locally Delaunay.

We refer to [4] for a detailed proof.

Definition 5.2.18 (General position). Let S be a nonempty finite set of sites in E. S is in general
position if no d+ 1 points of S are affinely dependent and if no d+ 2 points of S lie on a common
sphere.

Definition 5.2.19 (Incircle list). In the following, if S is a finite nonempty set of sites, D is a
Delaunay triangulation of S and x € E is a fized point, we call incircle list and denote by ICLp(x)
the set of d-cells of D whose circumsphere contains x.

If S is in general position, no Delaunay cell of S is degenerated. Every cell of the triangulation is
a simplex and for any R C S, V(R) has dimension d + 1 — | R|.

Computing the Delaunay triangulation and the Voronoi diagram

Whereas the Voronoi diagram was defined before the Delaunay triangulation, it has been recog-
nized that it is easier to devise algorithms in terms of Delaunay triangulation, especially because
of the locality property 5.2.5.

A common data structure for Delaunay triangulations is a graph structure where each simplex
is a “node”. The node contains the indices of the d + 1 sites of the simplex and the pointers
to the adjacent simplices. Null pointers are used when the simplices lie on the boundary of
the triangulation. Cells of lower dimension are not directly represented in the graph structure.
Another convenient convention is that the kth pointer stored in the node corresponds to the facet
obtained by deleting the kth site in the node. Moreover the order is chosen so that the orientation
of every simplex in the triangulation remains always positive.

Here, we present the principles of incremental algorithms for Delaunay triangulations. In this

kind of algorithms, sites are added one by one, and the Delaunay triangulation is modified to
include each new site. Many other algorithms have been designed for computing the Delaunay
triangulation, especially in dimension 2. Moreover, computing the Delaunay triangulation of the
Voronoi diagram in the one-dimensional case simply amounts to sorting the data set. An advantage
of incremental algorithms is that they are valid in any dimension. Moreover, for another purpose
in the following, we will need a new algorithm (the friend node algorithm presented in Section
5.5) that requires a stage which is very similar to the insertion of a new point in the Delaunay
triangulation. Hence we will focus here on incremental algorithms.
Let S = (s1,-+-,sn) be a nonempty finite set of sites of F of cardinal N. We define the sets
Sk = (s1,---,s5) for k € {1,---,N}. Now, for a fixed integer i < N, let us consider D; the
Delaunay triangulation of S;. We inspect the situation of s;;1 with respect to the Delaunay
triangulation D;. From this analysis, the Delaunay triangulation will be modified locally to build
a new Delaunay triangulation D;y; of S;;1. When all the sites of S will be processed, we will
have the complete Delaunay triangulation D of S.

Three situations can occur, if S is in general position:
1. s;41 lies in the interior convex hull of S;.
2. s;41 does not lie in any circumsphere of any simplex of D;.
3. s;41 lies outside of the convex hull of S; but belongs to a circumsphere of a simplex of D,.

(1) In the first situation, let us denote by S := ICLp,(si+1) and Fi,--- , F}, the external faces of
S of any dimension k£ < d. We can show that the cell complex defined by

Dy := (Dl\S) U {Cell(Fj,Si_,_l)j, 1<5< p} U { {Si—i-l} }

is the Delaunay triangulation associated to S;41. In a more general setting, we have the following
property:
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Proposition 5.2.6 (star-shaped incircle list). Let S be a nonempty finite set of sites of E and
x € E that lies on the convex hull of S. Consider C the union of the d-cells of ICLp(x) and of
all its faces. Then C' is star-shaped from x, that is for any point p € C, [z,p] C C.

(2) The second situation is the simplest. If Fy,--- , F), are the external faces of the triangulation
D; (of any dimension k < d) that are visible from s;11. We can show that the cell complex defined
by

Diy1:=D; U {Ceﬂ(Fﬁ siv1)j, 1 <j < p} U { {siv1} }
is the Delaunay triangulation associated to S;+1.

(3) In the third situation, if we denote by & = ICLp,(s;+1) the set of elements of D; whose
circumsphere contains s;11 and Fi, - - - , F), are the external faces) of this set which are not visible
from s;11 and Fpy1,- -+, Fpyq are the external faces of D; that are not faces of elements of S and
that are visible from x;;;. We can show that the cell complex defined by

Diy1:= (Di\S) U {Cell(Fjasi-i-l)jv 1<j< p} U { {siv1} }
is the Delaunay triangulation associated to S;y1.

The first triangulation D441 is made of a simple simplex defined by the d + 1 first inserted points.

One important modification of the incremental algorithm consists in inserting sites in a random
order. Its expected running time is better than the worst-case running time for the incremental
algorithm.

The worst-case complexity of computing the Delaunay triangulation of n points in a d-dimensional
Euclidean space E is O (n log(n) + nl%] )

On the practical implementation
The first step is the Localization. It consists in finding whether the new site x is in the convex
hull of S or not, and if it is the case, in what Delaunay cell of the triangulation Ts z lies. A
survey on localization methods is available in [2]. When z is inside of the convex hull of S, the
localization procedure return the index of the the Delaunay cell where it lies. This corresponds to
the Situation (1). When z is outside of this convex hull, the localization returns a Null pointer.
This corresponds to Situations (2) and (3).

The second step consists in finding the list of the Delaunay cells whose circumsphere contains x
(the incircle list). In Situation (1), this list contains at least the Delaunay cell where z is located.
Owing to Proposition 5.2.6, we know that the union of these Delaunay cells is star-shaped so that
it can be determined locally by testing connected cells in the graph structure presented above.

The last step consists in deleting the Delaunay cells of the incircle list and connecting the new site
to the external faces of the incircle list or the visible faces of the convex hull of S depending on
the situation (1), (2) or (3).

5.3 Classical examples of fast nearest neighbor search algo-
rithms in low dimensions

Given a set of n points, {z1, -+ ,x,} C E, the nearest neighbor problem is to find the point
that is closest to a query point ¢ € E. Many algorithms have been proposed to avoid the large
computational cost of the obvious brute force algorithm. When one has to perform a large amount
of nearest neighbor searches, a preprocessing of the data set will be profitable if it reduces the
average query time.
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The problem is optimally solved in the one-dimensional case. The best algorithm consists in
sorting the data set by the unique coordinate of its points during a preprocessing stage. (Approx-
imative cost of O(nln(n))). The search algorithm consists in a simple binary search whose cost is

sy + O(1):
In the case of low dimensions, most fast search algorithms still have an approximative prepro-
cessing cost of O(nlog(n)) and an average search cost in O(log(n)) in low dimension. The criterion

of choice among them relies on

e their effective speed on real data sets,
e the required memory,

o the sensitivity of the speed to the dimensionality.

A first obvious optimization called partial distance search (P.D.S.) consists in a simple modifi-
cation of the brute force search: during the calculation of the distance, if the partial sum of square
differences exceeds the distance to the nearest neighbor found so far, the calculation is aborted.
This almost always speeds up the nearest neighbor search procedure.

5.3.1 The Kd-tree algorithm

The Kd-tree algorithm is the archetype of the branch-and-bound nearest neighbor search tree. It
is very popular because of its simplicity.

Building the tree:
e Every point of the data set is associated to the root node.

e The data set is being partitioned into two subsets of cardinal {%J +1or {%J The first

group corresponds to large values of the first coordinate of the sites, and the second one
corresponds to small values.
e Each subset is associated to a child node of the root node.

e The process is repeated on each child node recursively using the coordinate axis in a cyclic
order, until there are less than two points in each node.

Searching in the tree: Let ¢ be the query point.

e The search procedure begins by searching in what child node ¢ is (depending of its first
coordinate).

e This child node is then searched, and the process is repeated recursively until a terminal
node is reached.

e A trivial nearest neighbor search is performed in the terminal node. (Partial Distance Search
optimization can be used.)

e The procedure moves up to the parent of the terminal node.

e If the distance dy between ¢ and the hyperplane that splits the data set is smaller than the
distance dpin to the nearest neighbor found so far, the other child node is searched.

e The procedure continues its way back to the root node.

Complexity: Except in one dimension where the search complexity is logarithmic (it amounts
to a binary search), the worst case for the Kd-tree corresponds to the case where every node of
the tree is explored. Then the worst-case complexity is time exponential. The distances to every
point is computed. The complexity of the preprocessing is O(d x nlog(n)).
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Figure 5.2: K-d tree elimination condition: if the distance dy between the query point ¢ and the
brother node is smaller than the distance di, to the nearest neighbor found so far, say p, the
brother node has to be explored.

5.3.2 The principal axis tree algorithm

The Principal Axis Tree (PAT) is a generalization of the Kd-tree proposed by McNames in [10].
Instead of using a coordinate axis to sort the data set, its principal axis is used at each step.
Moreover, the number of child nodes in the tree can be greater than 2 at each generation.

Building the tree:

e Every point of the data set is associated to the root node.

e The data set is being partitioned in n. subsets whose cardinality is LnﬂcJ +1or L%J along
its principal axis.

e Each subset is associated to a child node of the root node.

e The process is repeated on each child node recursively until there are less than n. points in
each node.

e At each step, the principal axis, and maximal and minimal values of subset projections on
the principal axis are kept in memory.

Optimizing the elimination condition:

Region 5

Figure 5.3: Elimination condition of the principal axis tree.
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We refer here to Figure 5.3. We can improve the lower bound to the points that belong to child
nodes of brother nodes. For any point ¢ in region 1 and z in region 2, we have d*(q,z) > d2, +d3,.
This result is then used again to get a lower bound to points in region 3, and 4 and so on.
d3, > d3, Va € Region 3,
d*(q,z) > d2y+d33+d3, Vre Region 4.
Searching in the tree: Let ¢ be the query point.
e The search process begins by searching in which child node ¢ is (by computing its projection
on principal axis).

This child node is then searched, and the process is repeated recursively until a terminal
node is reached.

A partial distance search is then performed in the terminal node.
e The procedure moves up to the parent of the terminal node.
e The elimination condition is checked to decide if brother nodes have to be searched or not.

e The procedure continues its way back to the root node.

Choice of parameter n.: For normal or uniform random data sets (and distribution of query
points), best overall performances are obtained with n. = 7 (independently from dimensionality
for d < 10). (The same optimal value is obtained by McNames in [10].) In the case where the data
set is an optimal quantizer of those distributions, best performance is obtained with n. = 13.

Complexity: Space storage is O(n). Except in the one-dimensional setting where the search
complexity is logarithmic (it comes to a binary search), the worst case for the principal axis tree
corresponds to the case where every node of the tree is explored. Then the worst-case complexity
is time exponential (2" comparisons of coordinates). n distances are computed. The complexity
of the preprocessing is O(d x nlog(n)).

Algorithm performance: On a 5000 points Gaussian data set in R2, the depth of the tree is 4.
e 27 (partial) distances,

e 15 scalar products,

e 9 binary searches

are performed in average.
Why using this space partitioning? The idea is that good empirical performance of PAT are
due to the fact that it takes advantage of the shape of the data set. Yet obviously when both query
point distribution and data sets lie on a smaller dimension (k < d) subspace of E, one retrieves
the same complexity as when using the same algorithm on a k-dimensional space. This intrinsic
dimension is often less than the spatial dimension of the space. In a more general setting, PAT
takes advantage of large correlations in the data set coordinates.

However if one uses the same number of child nodes n. in Kd-tree and PAT tree, we see that

e Preprocessing time is longer for PAT than for Kd-tree.

e The first traversal of the tree to a terminal node is more costly (projections have to be
computed).

But PAT is still faster because its geometrical partition of the space fits the data set in a more
relevant way. To be precise, it happens less often than one has to search a brother node with PAT
than with Kd-tree.

In [3], the same space decomposition was proposed for the nearest neighbor search problem
(but using the only 2 child node at each generation). They justify the use of this decomposition
using a heuristic criterion, according to which the best possible decomposition of the data set into
two subsets for branch-and-bound nearest neighbor search is to split the data set with respect to
its projection on the principal axis.
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5.4 A new quantization-based tree algorithm

As we have seen in previous sections, a good space decomposition that fits to the data distribution
may lead to a faster branch-and-bound nearest neighbor search algorithm, if less brother nodes
have to be explored. The traversal of the tree can be a little more expensive if it is compensated
by the gain due to the fact that less nodes are explored.

Principal component analysis and optimal quantization are two types of projection of a prob-
ability distribution. Similar inertia decompositions hold in the quadratic case (Huyghens lemma).

PAT is based on a recursive space decomposition based on the principal component analysis
of the underlying data set. The initial idea here is to design a branch-and-bound algorithm based
on a recursive quantization of the empirical distribution of the underlying data set.

5.4.1 The crude quantization tree algorithm
Building the tree:
e Every point of the data set is associated to the root node.

e The data set is being partitioned into n. subsets corresponding to the Voronoi cells of an
optimized quantizer of the empirical distribution of the data set.

e Each subset is associated to a child node of the root node.

e The process is repeated on each child node recursively until there are less than a certain
number of points in each node.

Some other computations are done during the preprocessing that will be detailed further on.

Remark. One notices that the resulting search tree is not balanced and may have some longer
branches.

Searching in the tree: Let ¢ be the query point.

e By performing trivial nearest neighbor searches in the node quantizer the search algorithm
traverses the tree to a terminal node where a trivial partial distance search is performed.

e The procedure moves up to the parent of the terminal node.

e The elimination condition, (developed further on) is checked to decide whether brother nodes
have to be searched or not.

e The procedure continues its way back to the root node.

Consistency of the space decomposition:

Implementing only the way down to the terminal node (with n. = 7 in both principal axis tree
and quantization tree), we naturally do not obtain always the index of the nearest neighbor. But
we have noticed that the result is more often the right one with the quantization tree than with
the principal axis tree.

For instance, in dimension 2, on a 5000 points Gaussian data set, on a million Gaussian query
points, we notice:

e 56 percent of false results with PAT.
e 16 percent of false results with the quantization tree.

Similar results are obtained with other values of the parameters and other data set distributions.
This empirical test makes us reasonably optimistic about the performance of a branch-and-bound
tree based on this decomposition.

Still, the cost of the way through the search tree is more expansive with the quantization tree
(as described above).
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e For the “quantization tree”, we have to perform trivial nearest neighbor search to find the
right child node.

e For “principal axis tree”, we only compute a projection and perform a binary search.

Moreover, it was proved in [13] that in the case of Gaussian distributions, the affine subspace
spanned by stationary quantizers corresponds to the first principal components of the considered
Gaussian distribution. (This result, extended to the infinite-dimensional case in [8] allows us to
efficiently compute optimal quadratic quantizers of bi-measurable Gaussian processes.) Hence, in
this case, this shows that the quantization tree with two branches at each generation is related to
the principal axis tree.

First elimination condition If the center of the Voronoi cell corresponding to the current node
is A, the first rough method to decide whether a brother node with center B has to be explored
or not is compute the distance do of the query point @ to the Leibniz halfspace H(B, A). Then
the node corresponding to point B is explored if ds is smaller than the distance to the nearest
neighbor found so far, d;. We have do = ATB — AQ cosa where « is the angle between AQ and

AB and QB? = QA? + AB? — 2AQABcosa so that = cosa = W. This yields

2 2
dy = %. Hence, the computation of the distance to the Leibniz halfspace requires one
subtractions QA2 —QB?, (QA? and Q B? can be computed during the search in the quantizer in the
parent node), and one multiplication by ﬁ. (ﬁ can be computed during the preprocessing.)

Thus it is clear that the nearest brother node corresponds to the second nearest neighbor in the
quantizer, and the second nearest to the third nearest neighbor, and so on. Hence, brother nodes
have to be explored in the order defined by the distances of its centers to the query point.

We can also use the same optimization of the lower bound proposed by McNames in [10] and
presented in Section 5.3.2. Referring to Figure 5.4, the lower bounds d; are recursively incremented
when exploring brother nodes.

Figure 5.4: Optimization of the elimination condition for the quantization tree d* > d? + d3 + d3.

Performance of this first quantization tree algorithm. This first algorithm has been imple-
mented and its empirical performances have been compared to the two previously exposed PAT
and Kd-tree in terms of empirical performances.

Intermediate performances between our implementations of Kd-tree and PAT were obtained in
small dimensions. Although, as we will see further in empirical tests, it seems to handle better the
increase of dimensionality. The preprocessing time, that requires small quantizer computations is
also more costly than both PAT and Kd-tree.

5.4.2 Optimizations for the quantization tree

To reduce the average query time, we are now proposing a new optimization procedure which
reduces the number of brother nodes to be checked.
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Figure 5.5: Cell B is “hidden” from cell A.

Let us consider the Voronoi diagram plotted in Figure 5.5. In this figure, we obviously know that
when the query point is in a cell A, its nearest neighbor cannot be in cell B, because cell B is
“hidden” by closer cells. One has to give a precise mathematical sense to “hidden” in this sentence.
However, in the quantization tree as it has been described, the distance of query point to H(a, b)
has to be computed.

A first idea is to compute for each 1 < i < n. a list of “friends” among brother nodes in which
the nearest neighbor can be when ¢ is in cell <.

This list has to be large enough to ensure that it contains the nearest neighbor but as small
as possible in order to reduce the computations of elimination conditions.

As concerns the choice of the parameter n., we have to take into consideration that increasing
n. makes the depth of the tree smaller but also makes the nearest neighbor search slower for each
generation of the search tree.

How can we obtain a friend Voronoi cells list? The first observation about obtaining such
a friend list is that it is not a simple problem. Indeed, this list is a priori not reduced to adjacent
cells in the Voronoi diagram. Moreover, in some cases, the minimal friend list can be quiet large.
So is the case for unbounded Voronoi cells for example.

0 14
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Figure 5.6: In these cases, the nearest neighbor of the query point ¢ may be p although p is not
in an adjacent Voronoi cell.

A procedure to obtain such a friend Voronoi list is proposed in Section 5.5.
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5.5 Some optimizations for the quantization tree algorithm

In Section 5.2.1, basic definitions about Voronoi diagrams and Delaunay triangulations that are
prerequisites to this section have been recalled.

Remark (Voronoi slabs and Voronoi cells). From their respective definitions, one can easily deduce
the following properties:

o Let S C FE be a finite set of sites, let C' be an associated Voronoi partition and consider
s € S. Then it is clear that V({s}) = slabc(s).

o The points of the Voronoi cells V(R) with R C S and card R > 1 belong to the boundaries
of Voronoi slabs.

o As a consequence, for s € S, as the boundary V ({s}) is constituted of its faces of lower
dimensions, a previous remark yields V({s}) = slab(s) and 0slabg(s) = 0Vs({s}).

Notations: In the following of this section, if S C F is a finite set of sites in F, one will denote
by Ts the Delaunay triangulation of S, DGg the Delaunay graph of S, Vg its Voronoi diagram.
For R C S, Vs(R) will represent the Voronoi cell of R in S. If C'g is a Voronoi partition associated
to S, and s € S, slabg(s) will denote the Voronoi slab associated to S is the Voronoi partition C'.

Proposition 5.5.1. An obvious property is if S is a finite set of sites of E, and p € S,

Vs({ph) = () H(p,s)

SES,s#p

Proposition 5.5.2. If S is a finite set of sites of E, andp € S, Vs({p}) = N H(p,s).
{S,p}EDGS

Lemma 5.5.3. Let S C E be a nonempty finite set of sites in E and x € E\S. Consider s € S,
the following assertions are equivalent:

1. {z,s} € DGgya}-
2. Vs({s}) N Vsugay({z}) # 0.
3. Vs({s}) N H(z,s) #0.
Proof: See Figure 5.7 for an illustration of the proof.
e (1. = 2.) Assume that {z,s} € DG gy, then by definition, it is equivalent to Vsu .y ({7, s}) #

0.

Vsugay ({2, s}) is (d—1)-face of Vgy,) (). Moreover, by definition of Voronoi cells, Vs ({7, s}) C
Vs({s}), which is open. As a consequence, Vy € Vsygz) ({2, 5}), Ve > 0, B(y,e)NVsyuia () #
0. And for small enough ¢, B(y, ) C Vs({s}). We conclude that Vs({s}) N Vsu(sy({x}) # 0.

e (2. = 3.) is obvious owing to Proposition 5.5.1.

e 3.= 1) Ify € Vs({s}) N H(x,s), let us show that Vg, ({z,s}) # 0.

Consider the segment [s,y]. By convexity, [s,y] C Vs({s}). Thus every point of [s,y] is
closer to s than to any other point of S. On the other hand, it can either be closer to s than
to x, or closer to x than to s or at the same distance.

We now define the applications f : [0,1] — [s,y] C Eby f(A) =As+(1-AN)yand A: E - R
by A(p) = d(p,x) — d(p, s).
Ao f is a continuous function with Ao f(0) > 0, Ao f(1) < 0. The intermediate value

theorem shows that there exists A* such that Ao f(X\*) = 0 and thus f(\*) € Vayugay ({2, s}).
(]
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Figure 5.7: If the query point ¢ lies on the dark gray region H(z,s) NVs({s}) its nearest neighbor
may be z.

The first modification made in the quantization tree algorithm is to assume that the points of
the quantizer at each generation are points of the underlying codebook I'. (In order to fulfill this
requirement, we project an optimal quantizer onto the codebook.)

Corollary 5.5.4. Let I' = {71, ,vn} be a codebook of E. S = {s1,---,sp} C T be a subset of
I'. Let Projp be a nearest neighbor projection on T'. T is being partitioned into p subsets 1 ... TP
with T'* = T' Nslabg(s;), by their nearest neighbor projection on S.

Consider q € E. If q € slabg(s) for some s € S and t = Projp(s) then {t,s} € DGgu;y-

Proof: This is a straightforward consequence of the previous lemma. ([

Notation: Let S be a set of sites in E. For a point ¢ in E, we denote Plg(t) = {s €S, {s,t} e

DG SU{t}}- The notation PI stands for “Pseudo-Insertion”.

From an algorithmic viewpoint, the Delaunay graph of S being computed, PIg(t) stands for
the sets of points in S, that are connected to ¢ when updating the Delaunay graph to take account
of this new point.

Implementing a procedure that computes PIg(t) is very similar to the insertion procedure of
a point t in Tgs.

First friend node algorithm: This leads to a first method to compute a friend list:

For every point p of the underlying codebook,
e Compute s = Projg(p) and Pls(p).

e Then for every point s’ € PIg(p), insert s in the set of friends of node s’.

This method gives a first algorithm to compute friend list. Still, when the data set is large, it
is very expensive because one has to deal with all the points of the data set.

In fact it is possible to compute an acceptable friend list by using Lemma 5.5.3 without using
the points of the underlying data set.

Fast friend node algorithm: In this section, another method to compute friend node lists is
devised which does not need to deal with the complete underlying data set but only the underlying
codebook.
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When keeping the same notations, the principle of the method is to compute for every slabg(s),

s € S, of the Voronoi partition Cg, the set UPIs(s) := |J PlIg(p). It is the union of all the
peEslabg (s)

pseudo-insertions of points of slabg(s). If one is able to compute this set, the resulting friend

nodes algorithm simply writes:

For every point s € S,
e Compute UPIg(s).

e Then for every point s’ € UPIg(s), insert s in the set of friends of node s'.

The question is: how can we compute UPIg(s)?

Lemma 5.5.5. With the same notations, one has UPIs(s) = |J Pls(p). In other words, we
pedslabg(s)

have to check points of the boundary Oslabg(s) of slabg(s).
Remark. Let us recall that, thanks to Proposition 5.2.2, (0slabg(s) = 0Vs({s}).

Proof: Consider z € slabg(s) such as s’ € PIg(z). Let us define =*, such that {z*} = [z,s']| N
6V5(8).

e Onehas H(z*,s") D H(x,s'). So Vs({s'})NH(z*,s") D Vs({s'})NH(x,s’), hence Vg({s'})N
H(z,s') # 0 = Vs({s'}) N H(z*,s') # 0 that is equivalent to s’ € PI(z*) thanks to the
Lemma 5.5.3.

e Finally, Vx € slabg(s),Vs' € PIg(z),3z* € dslabg(s) such that s’ € PIg(z*). O

Remark. As there are not a finite number of sites on the boundaries, this does not give an effective
method for computing UPIg(s) yet.

As seen in Section 5.2.1, computing the set PIg(z) corresponds almost to the same algorithm as
the insertion procedure in an incremental triangulation algorithm, that is:

e Localization of z in the triangulation,
e Computation of the set IC'L(x),

e Ulg(z) is the set of points that belong to a cell of ICL(z) plus, if z is outside the convex
hull of S, the points of the external faces of Ts that are visible from .

Lemma 5.5.6. Let S be a nonempty finite set of sites in E. We consider the circumsphere C' of
Delaunay d-cell of the Delaunay triangulation Ts. We denote by c its center and r its radius. Let
s be a site of S.

If Vs({s}) C C # 0 then c+ (s — ¢) € Vs({s}).

[s—c

The proof is straightforward. This leads to an algorithm to compute sets (UPIs(s))ses-

e For every Delaunay d-cell D of Ts

— Compute the center ¢ and radius r of its circumsphere.

— For every site s € S that is not in D, compute p := ¢+ leii\ € Vs({s}), and check

if the site s is the nearest neighbor of p in S. If so is the case, then the points of the
Delaunay d-cells D belong to U PIs(s).

e Then deal with unbounded Voronoi cells:

— For every external face F' of the Delaunay triangulation, compute a normal vector up
directed toward the exterior of the convex hull of S.
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— For two distinct external faces Fy and F» of the Delaunay triangulation, if (ug , up,) >
0 then for every (s1,s2) € Fy X Fy, s1 € UPIg(s2) and so € UPIg(s1).

In Figure 5.8, we present some friend Voronoi lists in the 2-dimensional case.

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Figure 5.8: Examples of friend Voronoi cells in a two-dimensional Voronoi diagram in the case of a
bounded Voronoi cell (left) and in the unbounded case (right). In both case, the dark gray region
is the considered Voronoi cell and the light gray regions are the friend Voronoi cells.

5.6 Test with real data sets

To perform the following tests, the quantization tree algorithm and the friend-node optimization
have been implemented in the C++ programming language. Because of the additional features
related to computational geometry that we needed, as the pseudo-insertion procedure, we had to
implement a Delaunay triangulation. All the figures presented in this chapter were generated with
this implementation of the Voronoi diagram with which we performed the following tests.

5.6.1 Tests on Gaussian and uniform data sets

In Tables 5.1, 5.2 and 5.3, we report the execution time for 10 millions independent nearest
neighbor queries on data sets of size 5000 generated with a Gaussian pseudorandom generator
and with a uniform pseudorandom generator on the hypercube. The best overall performances
were obtained with n. = 35 children by node for the quantization tree. The tests were performed
with an Intel Pentium Dual CPU at 2GHz. We noticed that in dimensions d = 2 and d = 3, we
had intermediate performances between the “principal axis tree” and the Kd-tree algorithms. In
dimension 4, the performance of the “principal axis tree” and the “quantization tree” are close one
to each other. Finally, it seems that the quantization tree has a better behaviour in dimensions
greater than 5 where it significantly outperforms the two other implemented methods.

Remark (Computational cost or the preprocessing for the friend cell algorithm). An important
fact that we have experienced is that, in higher dimensions, the friend cells list becomes larger and
there is no more competitive advantage in using it in dimension higher than 7 (when having less
than 30 branches per generation in the quantization tree). Moreover, as it requires to compute
Delaunay triangulations during the preprocessing, whose complexity exponentially increases with
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| [d=2[d=3[d=4]d=5][d=6[d=7] d=3 |
Quantization tree | 1.76s | 2.75s | 5.35s | 8.93s | 15.99s | 28.06s | 52.31s
Principal axis tree | 1.21s | 1.86s | 4.49s | 10.87s | 20.14s | 41.56s | 82.30s

Kd-tree 1.88s | 3.71s | 8.54s | 17.13s | 31.06s | 60.67s | 118.93s

Table 5.1: Execution time of 10 millions random queries on a data set of 5000 points, generated
with a Gaussian pseudorandom generator.

| [d=2[d=3]d=4[d=5]d=6d=7] d=8 |
Quantization tree | 2.59s | 3.87s | 6.46s | 11.90s | 27.54s | 45.78s | 84.63s
Principal axis tree | 1.33s | 2.44s | 4.94s | 12.78s | 41.02s | 62.33s | 119.88s

Kd-tree 2.82s | 5.20s | 11.32s | 24.20s | 47.51s | 87.61s | 164.52s

Table 5.2: Execution time of 10 millions random queries on a data set of 10000 points, generated
with a Gaussian pseudorandom generator.

| [d=2[d=3 [d=4[d=5[d=6[d=7]d=3 |
Quantization tree | 1.62s | 2.30s | 3.75s | 6.47s | 10.33s | 15.91s | 32.62s
Principal axis tree | 0.74s | 1.52s | 2.81s | 6.71s | 16.53s | 28.03s | 47.53s

Kd-tree 1.54s | 2.82s | 5.46s | 10.64s | 18.50s | 31.60s | 55.71s

Table 5.3: Execution time of 10 millions random queries on a data set of 5000 points, generated
with a uniform pseudorandom generator.

the dimension, the computational cost of the friend cell preprocessing makes it useless in higher
dimensions.
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Appendix A

Accurate quadratic quantization of
the one-dimensional Gaussian
distribution

Abstract

In this chapter, we detail properties of the deterministic methods available to compute opti-
mal quadratic quantization of one-dimensional distributions. We focus on the case of the one-
dimensional standard Gaussian distribution for which we provide a database of optimal quantizers
for a wide range of values of the quantizer size. This precomputed database allows a faster compu-
tation of the functional quantization of Gaussian processes, and is also useful for other purposes.
The methods used to compute this database are available with an arbitrary precision. The nu-
merical values provided in the database have a relative precision of 10732,

Keywords: Gaussian distribution, elliptic distribution, vector quantization, log-concave, numer-
ical integration, arbitrary precision, floating point, Lloyd algorithm, Newton-Raphson.
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Introduction

Let (2, A,P) be a probability space. The principle of the quantization of a R%-valued random
variable X is to approximate X by a random variable Y taking at most N values. The discrete
random variable Y is a quantizer of X. The resulting error is the LP norm of |X — Y| where
| - | is the Euclidean norm on R? and p > 1. The minimization of the error yields the following
minimization problem

min{||X — Y||,,Y : Q@ — R? measurable , card(Y (Q)) < N}. (A1)

This problem has been initially investigated for its application to signal transmission issues [8].
More recently, quantization has been introduced in numerical probability to devise quadrature
methods and variance reduction algorithms [23, 5]. The case of other metrics and spaces (as
infinite-dimensional functional spaces) has been investigated in the literature [9, 14].

Optimal quantization has also been used for automatic classification issues [26], and as a grid
generation method [6, 27].

Definition A.0.1 (Voronoi partition). Consider N € N*, I' = {y1,--- ,yn} C R? and let C =
{Cy,---,Cn} be a Borel partition of RY. C is a Voronoi partition associated with T if Vi €

1,"-,N,CiC ERd, — Y| = i — Yilg.
{ ¥ {¢ €=l = _min €=}
If C = {Cy,---,Cn} is a Voronoi partition associated with T' = {1, -+ ,vn}, it is clear that
Vie{l,--- ,N},v € C;. C; is called Voronoi slab associated with v; in C' and ~; is the center of
the slab C;.

One denotes C; = slabc(7;), and for every a € T', W(a|T') is the closed subset of R? defined by

W(all') = {y € R |y —a| = min |y — vl} :
yel’

Definition A.0.2 (Nearest neighbour projection). Let us consider the fized point set T = {y1,--- ,yn} C
R? and C = {C},--- ,Cn} a Voronoi partition associated with T'. The nearest neighbour projection

on I is the application Projr := JXV: Yilc,.

1=1
Proposition A.0.1. Let X be an R*-valued LP random variable, and Y taking its values in the
fized point set T' = {y1,--- ,yn} C R? where N € N. Set X' the random variable defined by
XT .= Projp(X) where Projp is a nearest neighbour projection on I', called a Voronoi I'-quantizer
of X.
Then we clearly have ‘X - )?F‘ < |X —Y| as.. Hence HX - )A(FH <X =Y.

P

A consequence of this remark is that solving the minimization problem (A.1) amounts to solving
the simpler minimization problem

min {||X = Projp(X)|p, T € RY, card(I) < N}. (A.2)

The quantity || X — Projp(X)||, is called mean LP-quantization error of LP distorsion. When this
minimum is reached, we refer to LP-optimal quantization.

The problem of the existence of a minimum has been investigated for decades on its numerical and
theoretical aspects in the finite-dimensional case [18, 9]. For every N > 1, the LP-quantization
error is Lipschitz continuous and reaches a minimum. An N-tuple that achieves the minimum
has pairwise distinct components, as soon as card(supp(Px)) > N. This result stands in the
general case of a random variable valued in a reflexive separable Banach space [14]. If card(X (2))
is infinite, this minimum strictly decreases to 0 as IV goes to infinity. The asymptotic rate of
convergence for non-singular distributions is ruled by the Zador theorem [9]. A non-asymptotic
upper bound for the quantization error is also available [15].

We now focus on the quadratic case (p = 2). For a L? random variable X, let us now denote
by Cn(X) the set of L?-optimal quantizers of X of level N and en(X) the minimal quadratic
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distortion that can be achieved when approximating X by a quantizer of level N. A quantizer Y
of X is stationary (or self-consistent) if ¥ = E[X|Y].

Proposition A.0.2 (Stationarity of L?-optimal quantizers). A (quadratic) optimal quantizer is
stationary.

The stationarity is a particularity of the quadratic case. In other LP cases, a similar property
involving the notion of p-center occurs. A proof is available in [10].

A.1 Optimization algorithms for quadratic vector quantiza-
tion

Various algorithms have been developed to obtain numerically an optimal N-grid with a mini-
mal quadratic quantization error in the finite-dimensional setting. A review of these methods is
available in [23]. The most common method is the Lloyd algorithm [13]. Another algorithm is a
stochastic gradient method, which is suggested by the fact that the L2-quantization error function
is differentiable at any N-tuple having pairwise distinct components and a Px-negligible Voronoi
tessellation boundary, and has an integral representation. The algorithm is investigated in [19].
Let us also mention an evolutionary algorithm approach by Hamida and Mrad in [17].

The Lloyd algorithm.
If I'° is a quantizer of X of size N, whose points are all distinct, we define the sequence of quantizers
(FS)SEN by
st1 = E[X|Projps (X)](Q)
= (E[X|X € Ci(I*)])1<icn

where C;(I'®) is the ith cell of the Voronoi tessellation associated with I'®.
Proposition A.1.1. The sequence (|| X — Projp.(X)||2)sen s decreasing.

However, it is not proved that Projp.(X) converges in the general case. When it does, the limit
verifies the stationarity property X=E [X ‘5(\ ]

Proof: For every s € N, let us denote by C* = {Cf,---,C%} the Voronoi partition associated
with I'® that verifies
N
Projp. = » Tilc:.
i=1

If we define G¥ = E[X|X € C¢], Lloyd’s algorithm simply writes T5** = G¢. Thanks to Proposi-
tion A.0.1
1X = Projpas1 (X)l2 < [ X — E[X] Projp. (X)][2- (A.3)

Moreover, by definition of the conditional expectation, E[X | Projp.(X)] is the best L? approxima-
tion of X by a function of Projp.(X), hence

[ X — E[X]Projpr. (X)][l2 < | X = Projp. (X)]l2. (A4)

The combination of both Inequalities (A.3) and (A.4) yields the conclusion. O

More results are available in the one-dimensional setting. If the density of X is logarithmically
concave, there exists a unique optimal quantizer, and the Lloyd algorithm converges toward this
quantizer exponentially fast [11]. A deeper study of the properties of the Lloyd algorithm is
provided by Du and Emelianeko in [7].

As concern the LP setting with p # 2, a method similar to Lloyd’s algorithm using conditional
p-centers instead of conditional expectations can be used (see e.g. [25]).
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A.2 Explicit Newton-Raphson procedure

Let X be an R%-valued L? random variable. Let us denote by DX the squared quadratic quanti-
zation error associated with a codebook I' = {~1,--- ,yn} of size N with respect to X.

DX : (Rd)N - R,

(7, ,v) = E 1§%1SDN|X_%

HE
N
The distortion function D% is | - |-differentiable at N-quantizers I' = {v1,--- ,yn} € (Rd)

N

with pairwise distinct components and a Px-negligible Voronoi partition boundary |J 9C;(T).
i=1
Moreover, for such a quantizer T,

VDX () = 2(/@ (y: — QPX(CE))@SN —2 <IE {()?F - X) 1{?@_%}}) . (AB)

c 1<i<N

N
It is proved in [9] that every optimal quantizer satifies Px < U 8@(1“)) = 0. (In particular, a
i=1
Voronoi quantizer associated with a critical point of D is a stationary quantizer.)

We also notice that for such a quantizer (verifying the boundary condition), Equation (A.5) can
be differentiated again. Thus, as soon as the starting point is close enough to a local minimum of
the quadratic distortion, we can use a Newton-Raphson minimization procedure. (An N-optimal
codebook has N pairwise distinct points as soon as the approximated distribution does weight
more than N points.)

In the one-dimensional setting, if X is a R-valued random variable and if Px is absolutely continu-
ous with respect to the Lebesgue measure, the Newton-Raphson method takes a simple form. We
denote by f the probability density function and F' the probability cumulative function of X. Con-
sider = {1, -+ ,an}, 21 <--- <y acodebook. Set x;.1 = (v; +x;41)/2, j=1,--- N -1,
T1=—00 and z 1 = co. The quadratic distortion of the Voronoi quantization of X correspond-
ing to this codebook writes

pX@ =3 [ @ -0 (4.6)

The Newton-Raphson procedure for optimal quadratic codebook computation is used in [19] for
the Gaussian case.

A.2.1 The Hessian matrix of the quadratic distortion

With these notations, and thanks to (A.5)

sy 1

=201 (F (oy) — F (0y)) -2 [ estone (A7)
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The computation of the second order derivatives is then straightforward.
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The other coefficients of the Hessian matrix are equal to zero.
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A.2.2 Tridiagonal Newton-Raphson

We are now able to implement a Newton-Raphson method to find a zero of dD;X in RY, starting
from z(©) € RN. We compute recursively

() = () _ [d2Dﬁ (x("))]il - dDX (z™).

In practice, we do not have to explicitly invert matrix d2 D+ (z(™). Indeed, this comes to z("+1) =
(") —~,,, where 7, is the solution of the tridiagonal linear system [d2DJ)\{, (:C("))] Yn = dDy (x(")).
The resolution of a tridiagonal linear system has a O(NN) complexity [24]. Still, in some cases, the
algorithm proposed in [24] may fail. The convergence is only guaranteed for matrices having the
diagonal dominance property, which is not verified here. An implementation for the general case,
using elimination with partial pivoting and row interchanges is available in the Lapack project [1].

A.2.3 Accurate computation of the Hessian matrix

When filling the coefficients of the Hessian matrix, we have interest to take care how expressions
of Equation (A.8) are evaluated. For the evaluation of the term F (xH%) - F (Ii,%), we can
take advantage of the possible symmetry of the probability distribution. For example, if X has a
symmetric probability density function, then F(b) — F(a) = F(—a) — F(—b). This is the case for
the standard normal univariate distribution. As floating point numbers have a constant relative
precision on their range of definition (except for denormalized numbers), we always have interest
to compute this difference on the side where the magnitude of the value of F' is the smallest.

At this point, the accuracy of the estimation of the Hessian matrix relies on the accuracy of the
evaluation of the cumulative distribution function F' and the probability density function f.

A.3 Explicit Lloyd algorithm in the elliptic case

We now stand in the case where the probability density function f has the form f(z) = g(z?).
(This is the case for an elliptic distribution.) We consider G a primitive of g.

A.3.1 Closed-form position of the centroids in the elliptic case

With these hypothesis
N xf(z)dx = N xg(x?)dr = Lofres 2xg(x?)dr = 1 (G (172 ) -G (172 )) (A.9)
T, 1 B x, g B T, 1 g 2 i+3 i3 ' '
i—3 i i-3

For instance, when X is distributed according to the standard univariate Gaussian distribution,

we have g(t) = \/% exp (—%) and G(t) = —\/% exp (—%) Equation (A.9) becomes

2 2
/IH% 1 ( $2> d 1 Ii—% Ii-‘,—%
X ex —_— r = —F— ex — — ex — .
e V2 P\ Vom \ P 2 P 2
2

The Lloyd algorithm takes a very simple form.
( z© —

-

A.3.2 Accurate computation of the centroids

)

ey ) e ).

= 8

Here, the same remark as in Section A.2.3 holds: one can take advantage of the possible symmetry
of the distribution for the computation of the term F (Iii)l) - F (x(f)l )

2 =3
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A.3.3 Convergence of the algorithm

Du and Emelianeko proved in [7] that, in the one-dimensional case, for any starting point z(%),
that the Lloyd algorithm converges globally. Moreover, it is well known [11] that in the case of
a logarithmic concave density function, the Lloyd algorithm converges globally to a unique fixed
point, which is the optimal quadratic codebook of the distribution.

As a consequence, the convergence of the algorithm toward an optimal quadratic codebook is guar-
anteed for the standard normal distribution, which is an elliptic distribution, with a log-concave
probability density function. However, the Student ¢ distribution with u degrees of freedom, which
is elliptic, does not have a log-concave probability density function, for any value of parameter u.
Thus, even though the convergence of the algorithm is guaranteed, the limit may depend of the
starting point z(?),

A.4 Explicit Levenberg-Marquardt method in the Gaussian
case

A.4.1 On the Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm was initially developed in [12, 16] as a numerical method
for minimizing a function of several variables. It is particularly adapted to the minimization of
functions of the form

N
F(x) =) (i — filx))*. (A.10)
i=1
In vector notations, Equation (A.10) writes F(z) = |ly — f(2)||* = (y — f(z))" (y — f(z)), where
Y1 f1
y= : and f = : . Differentiating this expression gives
Yn fn
oF

@) =—(y- F@)' Tp(@) = Tp() (y = f(x) = =2J (@) (y = f(2)), (A.11)

where J; is the Jacobian matrix of f.

The optimization consists in an iterative procedure. At each step, the current approximation of
the minimum argument x is replaced by z+§. Approximating 25 (z+6) by —2J4(z) (y = f(z +9))
and f(z +0) by f(z) + J¢(z)d in Equation (A.11) yields

oF

55 (@ +0) = =2J¢(2) (y = f(2) = J;(x)d).

Now, setting the left-hand side to zero yields J;.J;6 = J}(y— f(x)). This linear system of equations
can be solved numerically. (This corresponds to the Gauss-Newton iteration.) The idea of the
Levenberg-Marquardt algorithm is to replace this equation by

(J5J5 + Ndiag(J5T5)) 6 = Jh(y — f(x)), (A.12)

for some A\ > 0. The value of A\ changes at each iteration. If it grows, the method is closer to the
gradient algorithm, whereas when A is close to zero, this comes to the Gauss-Newton algorithm. An
usual choice for the sequence (A, )nen is, to multiply or divide A by a fixed value v > 1 depending
on whether the new value of F' is higher or smaller than the previous one. If F(x + §) > F(z),
Ant1 = v\, and if F(z — ) < F(2), Apq1 = 22
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A.4.2 Application to optimized quantization

We observe that the LP quantization error has the form of function F' in (A.10). Indeed, with the

notations of Section A, with I' = {~;,--- ,yn} C R?,
N N
IX = Projr(X)|2 = STE[X — wilf1xec] = Y fi(D)?,
i=1 i=1
with f;(T \/E [[X —vilPlxec;].

Moreover function f; only depends on the elements of T' which are connected to v; in the
Delaunay triangulation of T' (and ~y; itself). In the one-dimensional case, where I' is the sorted
sequence {21 < --- < zx}, this comes to say that f; only depends on x;_1, z; and 2;11.

A.4.3 Computation of the Jacobian matrix J; in the one-dimensional
elliptic case

Denoting « = (z1,- - ,zn), we have f;(z \/fm ”} x; — &) f(&)dE.
2

Now, the non-zero partial derivatives are

o 30 = (¥ () (0= 0)* = 47 ) (-2

+
[N
8
—~
B!
—
B
+
1ol
~
|
B!
—
8
|
ol
~—
~—
|
~
Q
/N
8B
+
ol
N—"
|
Q
/N
8
T [N}
[N
SN—"

ofi _ 1 1
* 0T 41 (I) o 2fz( ) (5 (Il o IH‘% f (xl"'% ) ’

)
o oZ(0)= gty (3w —wy) f ().

We still need an explicit formula for the quantity f;(z).

:}if%(:vi—é“)2f(€)d§ =$?:ijtlf §)d¢ + ?_52 d§_2$i:if+%§f(§)d§
=t (F(wy) = F (wi—%)) (G (#2,) -6 (224)) +:_i+%€2f(§)d€
=t (P (o) = F () = (6 (o) -6 (22)) 2

In the standard Gaussian case, i.e. when f(z) = — exp (—%), F =N, g(t) = = exp (—%)

and G(t) = —\/%— exp ( ) we obtain
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A.5 Starting point for optimization algorithms

In the general case of a R%valued random variable X, a natural starting point for quadratic
quantization optimization is a set of IV independent copies of X. Still, in a more specific setting,
one can take advantage on informations that we have on the distribution (symmetry, asymptotics
of the distribution tails).

As concern the Gaussian distribution, the specification of Pagés and Sagna’s results on the
asymptotics of L"-optimal quantizer radius [22] to the quadratic quantization of the standard one-
dimensional Gaussian probability distribution provides an equivalent of the radius of an optimal
quadratic quantizer.

PN 61n(N).

So that a natural simple starting point would be N equidistant abscissas between —4/6 In(/N) and
61n(N).
. . on .
However, numerical tests presented in [22] show that the convergence of Jom) to 1 is very

slow. (The ratio increases with N and is close to 0.86 for N = 10000).

A.6 One-dimensional Gaussian quantizer database

A.6.1 High precision computation

On the website www.quantize.maths-fi.com [21], we provide a sharply optimized database of
Gaussian quantizers for a wide range of sizes and dimensions. This precomputed database allows
a faster computation of (product) functional quantization of Gaussian processes [20, 5], and is also
useful for other purposes [3]. The one-dimensional database provides 32 significant figures of the
optimal quadratic quantization of the Gaussian distribution. The numerical computations used
an implementation of multiple precision floating point numbers available in the ARPREC library
[2], developed by Bailey et al. available at http://crd.1bl.gov/~dhbailey/mpdist/.

The ARPREC libraries make available basic operations for arbitrary precision floating point num-
bers together with an implementation of usual special functions. The Gaussian cumulative distri-
bution function is computed using the Chiarella and Reichel formula [4].

_t?
e 2at

1 e~k o 1
Vor t_2+k§>:lk2a2—|—t2/2 + _ V2mt

N(t) =—

l—e "=

where ¢ < 0 and |E| < %e_”2/°‘2. The parameter « is chosen small enough to ensure that the

error E is sufficiently small. (Given an absolute precision of p digits, if a < & where & is defined
by 1077 = 5e=™ /%" we have |E| < 1077.)

Moreover, provided that ¢ > —/2plog 10, the formula is also accurate to a relative error of 107P.
A.6.2 The Gaussian database available on www.quantize.maths-fi.com

The files are in text format and is in the form of a matrix. In every case, filenames are N_d_nopti
where N is the quantizer size and d is the dimension. For a given size N, the text files are organized
as follows. It presents in the form of a matrix G = (G; ;) with N + 1 rows and d + 3 columns.

e Onrow ¢,e=1,--- , N: Element 7 of the grid and its companion parameters.
Gi1 = (weight of the Voronoi cell i) = PIN(0, 1) € Ci(G)].

{Gi;,j=2,---,d+2} = (coordinates of element 7).
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fci(c) |2 = Gi.aPN (0, I2)(dz)
G;
. fCi(G) |z — G4,alN(0, 14)(dz)

Gid+s = (conditional local L' distorsion of the cell z) = G .

Gidi2 = (conditional local L? distorsion of the cell z) =

e On last row (i = N 4+ 1):
GN+1)]‘=0 forj=1,---,d+1.
GN+1,4+2 = (quadratic distorsion of the quantization grid) .
GNi1,d42 = (L1 distorsion of the quantization grid) .

e In particular we can verify that

N
Z Gi1=1,
im1

N N
Gi1Giar2 = GNy1,a42, and Gi1Gi a3 = GN41,d+3-
P =1

A.6.3 A numerical example of optimal grid with 32 significant figures

In the following table, we provide numerical values for the points and the corresponding weights
of a quadratic N-optimal quantizer of the univariate standard Gaussian distribution with N = 20.

These numerical values have a relative precision of 10732,

Points Weights

—2.9079606783683841963010327564498190 4.7524748771175782543725573022952456 x 1073
—2.2787139395025731289271610321795226 1.4574794203175608186209279080806336 x 10~2
—1.8569773889164496515754309935113130 2.6167977870684019356572298202272326 x 102
—1.5234142919930826826479444306240991 3.8153342170807815367544210261608918 x 102
—1.2384672136365404555283444318004377 4.9623785627087823397837755897103597 x 1072
—0.98364244453385000026716350824798553  5.9948614410758147973469475590025768 x 10~2
—0.74853328930631609137856427740167036  6.8675125400963623653532164782940411 x 1072
—0.52648815187174733961270205792353364  7.5478203095746321193432533376470300 x 1072
—0.31279137562308180794704077291571033  8.0132035254861491696064717890529078 x 102
—0.10376258179382386864836865927211592  8.2493647088797570920965007615948020 x 10~2
0.10376258179382386864836865927211592  8.2493647088797570920965007615948020 x 10~2
0.31279137562308180794704077291571033  8.0132035254861491696064717890529078 x 102
0.52648815187174733961270205792353364  7.5478203095746321193432533376470300 x 10~2
0.74853328930631609137856427740167036  6.8675125400963623653532164782940411 x 102
0.98364244453385000026716350824798553  5.9948614410758147973469475590025768 x 1072
1.2384672136365404555283444318004377 4.9623785627087823397837755897103597 x 1072
1.5234142919930826826479444306240991 3.8153342170807815367544210261608918 x 1072
1.8569773889164496515754309935113130 2.6167977870684019356572298202272326 x 102
2.2787139395025731289271610321795226 1.4574794203175608186209279080806336 x 10~2
2.9079606783683841963010327564498190 4.7524748771175782543725573022952456 x 1073

We notice that the reported values are exactly symmetric with respect to 0, as expected. More
optimal quantization grids are available on the website www.quantize.maths-fi.com [21], in the
form presented in Section A.6.2.
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