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Calcul d’It6 étendu

Résumé : Nos différents résultats consistent principalement a établir des exten-
sions du calcul stochastique classique. Pour (X;);>¢ processus de Markov, il s’agis-
sait a l'origine de donner dans les quatre cas suivants, la décomposition explicite
de F(X;,t) en tant que processus de Dirichlet, sous des conditions minimum sur
I fonction déterministe a valeurs réelles.

Dans le premier cas, X est un processus de Lévy réel avec composante brownienne.
Dans le deuxieme cas X est un processus de Lévy symétrique sans composante
brownienne mais admettant des temps locaux en tant que processus de Markov.
Dans le troisieme cas, X est un processus de Markov symétrique général sans
condition d’existence de temps locaux mais F'(x,t) ne dépend pas de t. Dans le
quatrieme cas, nous supprimons I’hypothese de symétrie du troisieme cas.

Dans chacun des trois premiers cas, on obtient une formule d’It6 a la seule condi-
tion que la fonction F' admette des dérivées de Radon-Nikodym d’ordre 1 locale-
ment bornées. On rappelle que dans ’hypothese o X est une semi-martingale, la
formule d’Ito classique nécessite que F soit C?. C’est I'hypotheése que nous devons
prendre dans le quatrieme cas.

Le premier cas excepté, chacune des formules d'It6 obtenues s’appuie sur la con-
struction de nouvelles intégrales stochastiques par rapport a des processus aléatoires
qui ne sont pas des semi-martingales.

Extended It calculus

Abstract : Our main results are extensions of the classical stochastic calculus.
For a Markov process (X¢)¢>0, the problem is to give the explicit decomposition
as a Dirichlet process of F(X;,t) under minimal conditions on F, real-valued
deterministic function. We consider the four following cases.

In the first case X is a real-valued Lévy process with a Brownian component. In
the second case, X is a symmetric Lévy process without Brownian component,
but admitting a local time process as a Markov process. In the third case, X is a
general symmetric Markov process without condition of existence of local times,
but F(z,t) does not depend on ¢. In the fourth case, we suppress the assumption
of symmetry of the third case.

In each of the first three cases, we obtain an It6 formula under the only condition
that the function F' admits locally bounded first order Radon-Nicodym deriva-
tives. Note that under the assumption that X is a general semimartingale, the
classical It6 formula requires C? functions. This is what we have to assume in the
fourth case.

First case excepted, each of the obtained It6 formulas requires the construction
of a new stochastic integral with respect to random processes which are not semi-
martingales.



Mots clés : fonctionnelle additive , décomposition de Fukushima, formule d’Ito6,
processus de Lévy, temps local, calcul local espace-temps, correspondance de Re-
vuz, calcul stochastique, processus de Markov symétrique, processus symétrique
stable, processus d’énergie nulle.

Keywords : additive functional, Fukushima decomposition, It6 formula, Lévy
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Chapitre 1

Introduction

La formule d’Ito est un outil fondamental de la théorie des probabilités. En par-
ticulier, pour (X;);>o semimartingale et F' fonction déterministe de C*!(IR?), elle
fournit le développement explicite du processus (F'(X3,t));>0 mais également sa
structure stochastique de semimartingale :

t
F(X,t) = F(X,0)+ / %—I;(XS_,S)ds
0

LOF 1 [to*F
—(X,_ Xs+ = — (X X° 1.0.1
+ i 81:( s, 8)d st 5 i E)xQ( s8)d < X¢>, (1.0.1)
oF
+ F(X,,8)— F(X,,8) — —(Xs_, s)AX,}.
O;St{ (Xsy8) = F(Xomy 8) = 5 (X, 8)AX ]

De nombreux auteurs ont cherché a étendre cette formule, soit en allégeant les
conditions de régularité sur F' soit en considérant d’autres processus X que des
semimartingales. Mais il survient toujours de nouveaux probléemes requérant 1'u-
tilisation de la formule d’It6 sous des conditions encore plus générales. C’est ce qui
maintient ce sujet ouvert. A titre d’illustration, citons les articles de Peskir [39],
[40]. Pour prouver un résultat d’unicité pour le probleme de I'option américaine
[40], il doit d’abord établir une formule d’It6 pour le mouvement brownien et des
fonctions F' qui sont partout C*(R x R, ) sauf sur un ensemble {(z,t) : z = b(t)}
avec b fonction continue.

Chacun des chapitres suivants de cette these va fournir un nouvel outil. Au
chapitre 2, il permet de s’affranchir de fagon optimale des conditions restrictives
de la formule (1.0.1) pour les processus de Lévy avec composante brownienne.
Puis dans chacun des chapitres 3, 4, et 5, nous construisons un nouveau calcul
stochastique par rapport a des processus qui ne sont pas des semi-martingales. Il
donne lieu chaque fois & une extension de la formule (1.0.1) pour successivement
les processus de Lévy symétriques, les processus de Markov symétriques et les
processus de Markov non nécessairement symétriques. Les processus de Markov
considérés sont a valeurs dans un espace métrique. Ce qui permet d’envisager
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Introduction

des exemples tels que les superprocessus, les processus de branchements ou bien
encore |'historique d’un processus de Markov.

Supposons qu’une fonction F'(x,t) possede des dérivées d’ordre 1 de Radon-
Nikodym ainsi que les propriétés minimum d’intégration pour que I’expression

LOF LOF
. E(XS_,S)CZS— . %

existe. Si l'on veut écrire une extension de (1.0.1) pour une telle fonction F, il
faut trouver une expression alternative a

1 ["O°F OF

-/ 5 (X 9)d < X >, + > {F(X,,5) — F(X._,s) - o (X 9)AX}

0 x

2 Ox?
0<s<t

F(X,,t) — F(X,,0) — (X,_, 8)dX,

(1.0.2)
qui ne nécessiterait pas l'existence de dérivées d’ordre supérieur a 1. Plusieurs
auteurs ont résolu cette question en utilisant la notion de temps local. Meyer [34]
fut le premier a alléger les conditions sur F' en introduisant une intégrale par
rapport aux temps locaux, suivi par Bouleau et Yor [6] , Azéma, Jeulin, Knight et
Yor [1], Eisenbaum [10], Ghomrasni et Peskir [22], Eisenbaum et Kyprianou [13].
Dans le cas ou le processus X est discontinu, les expressions alternatives a (1.0.2)
proposées par ces auteurs nécessitent des conditions supplémentaires sur F' ou sur
X du fait de la présence de I'expression :

S P - X - 2 (x gax,)

0<s<t

En ce sens, nous pouvons dire que ces formules ne sont pas optimales. Dans le cas
particulier du mouvement brownien, Eisenbaum [10] a montré que (1.0.2) coincide

avec . oF
1 x
—5 /0 /R %(Z', S)dgs

ou (¢, € R;t > 0) est le processus des temps locaux du mouvement brownien.
Cette intégrale ne nécessitant pas de conditions supplémentaires sur F', la formule
d’Ito ainsi obtenue peut donc étre considérée comme optimale.

Au chapitre 2, nous présentons une formule d’Ito6 optimale pour les processus
de Lévy X possédant une composante brownienne (0B, t > 0). Cette formule
nécessite I'intégration de fonctions déterministes sur R x R* par rapport au pro-
cessus (L7, x € R;t > 0) des temps locaux de X en tant que processus de Markov.
La condition ¢ # 0 nous permet d’exploiter directement la construction du calcul
stochastique par rapport a (¢7,x € R, t > 0) processus des temps locaux de X en
tant que semimartingale, établie dans [13]. En effet ces deux processus sont reliés
par

1
(Li,z € Rt >0) = (54,7 € Rt >0).
o
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On obtient la décomposition explicite en tant que processus de Dirichlet de F'( X, t)
sans condition supplémentaire sur F'.

Au chapitre 3, nous traitons le cas ou X est un processus de Lévy sans com-
posante brownienne (¢ = 0). Le processus ((f,z € R,t > 0) est alors iden-
tiquement nul. Nous devons supposer l'existence de (L{,z € R,t > 0) qui est

équivalente a la condition
/ ! ¢ <
—_— 00
r 1+ ()

ou ¢ est 'exposant caractéristique de X.

Nous supposons de plus que X est symétrique. Selon Fukushima [19], nous savons
déja que pour toute fonction u élément de I'espace de Dirichlet de X, u(X) admet
la décomposition suivante :

w(Xy) = u(Xo) + M* + N (1.0.3)

ou M™ est une martingale de carré intégrable et N* est une fonctionnelle additive
continue d’énergie quadratique nulle. De plus, pour toute fonction ® de classe C?,
Chen, Fitzsimmons, Kuwae et Zhang [7] ont donné une décomposition de ®(u(X))
en fonction de M" et de N*“.

Dans ce chapitre, nous écrivons une extension de (1.0.3) aux fonctions espace-
temps en donnant de plus I'expression précise de chacun des termes. Nous obtenons
ainsi la décomposition de F'(X;,t) en processus de Dirichlet sans condition
supplémentaire sur F'. Cette formule d’Ito s’obtient grace a la construction d’une
integration des fonctions déterministes de R x R™ par rapport a (LY, z € R, ¢ > 0).
Pour cette construction, nous utilisons de nouveaux outils inspirés de la formule
de Tanaka de Salminen et Yor [42]. Cette construction nous permet également
de définir un temps local sur les courbes (b(t),¢ > 0) pour X puis d’établir une
formule d’Ito pour les fonctions espace-temps partout C*! & 'extérieur d’un en-
semble {(z,t) : x = b(t)}.

Au chapitre 4, nous considérons un processus X = u(Z), ou Z est un processus
de Hunt associé a une forme de Dirichlet symétrique réguliere (£, F) et u appar-
tient localement a F. Bien que X ne soit pas en général une semimartingale, Nakao
[35] et Chen, Fitzsimmons, Kuwae et Zhang [7] ont montré pour F(z,t) = F(x),
que (1.0.1) reste valide pour un tel processus X. Cela a été montré grace a la con-
struction d’une intégrale stochastique par rapport a (Ny, t > 0), la partie d’énergie
nulle de X dans sa décomposition de Fukushima. Cette intégrale vient remplacer
I'intégrale de Lebesgue-Stieljes par rapport a la partie a variations bornées dans
(1.0.1). De méme que pour la formule d’It6 classique (1.0.1), cette formule d’It6
nécessite 1'utilisation de fonctions C2.

Le probleme de l'allegement des conditions de régularité de F' dans la formule
de Nakao et Chen, Fitzsimmons, Kuwae et Zhang, s’avere étre plus complexe
que dans les deux cas précédents. En effet, I'intégrale fot F'(u(Xs))dNg n’est bien
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Introduction

définie que lorsque F’(u) est localement dans F. Par exemple, dans le cas ou Z est
un mouvement brownien, cette derniere condition impose que la dérivée seconde
F" existe au moins en tant que dérivée de Radon-Nikodym.

Nous avons contourné ce probleme en construisant une intégration stochastique
des fonctions déterministes sur R par rapport a un processus (I'¢(u),a € R) a ¢
fixé, qui va jouer le role de temps local pour le processus u(X) (cette analogie
est exposée en section 4.5). Cette construction nous permet alors d’obtenir le
développement explicite de F(u(X)) pour F' admettant une dérivée de Radon-
Nikodym localement bornée.

Au chapitre 5, nous considérons un processus de Hunt Z, associé a une forme de
Dirichlet réguliere (€, F). Elle n’est pas nécessairement symétrique. Les résultats
de Nakao [35] et Chen et al [7] nécessitants une hypothese de symétrie, la ques-
tion d’un calcul stochastique pour Z est entiere. Néanmoins, la décomposition
de Fukushima (1.0.3) reste valide dans le cas général : pour tout u élément de
I’espace de Dirichlet de Z, il existe une martingale de carré intégrable M™ et une
fonctionnelle additive continue d’énergie quadratique nulle N* telles que

w(Zy) = u(Zo) + My' + N/, t > 0. (1.0.4)

Désignons par € la partie symétrique de €. Pour construire une intégrale stochas-
tique par rapport a N, nous établissons une décomposition de N* en somme
de trois processus Ny*, Ny et Ng'. Les processus N{* et N§ sont respectivement
associés a la partie diffusion et & la partie saut de €. Le processus N3 est a varia-
tions bornées. Apres avoir successivement construit une intégrale stochastique par
rapport a N{* et N3, nous disposons donc d’une notion d’intégrale par rapport a
u(Z). Elle nous permet d’établir un développement de F'(u(Z;)) pour F' fonction
réelle C2.

Dans le cas olt Z est & valeurs dans R? (d > 1), nous optons pour une autre
démarche consistant a utiliser une décomposition de Beurling-Deny de £ due a
Hu, Ma and Sun [23]. Elle nous permet d’obtenir une décomposition de Z du
type de la décomposition de Ito-Lévy pour les processus de Lévy. L’intégration
stochastique par rapport a Z en découle immédiatement. Nous pouvons ensuite
développer F(Z;) pour F fonction réelle C2.

Dans chacun des quatre cas traités, la formule d’It6 obtenue possede une version
multidimensionnelle.

Les chapitres 2, 3 et 4 ont chacun donné lieu a une publication (voir [14], [45], et

46]).
Le chapitre 5 doit étre soumis pour publication incessamment.
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Chapitre 2

An optimal It6 formula for Lévy
Processes

Abstract : Several It formulas have been already established for Lévy processes. We
explain according to which criteria they are not optimal and establish an extended It6
formula that satisfies that criteria. The interest, in particular, of this formula, is to
obtain the explicit decomposition of F(Xy,t), for X Lévy process and F deterministic
function with locally bounded first order Radon-Nikodym derivatives, as a Dirichlet
process.

2.1 Introduction and main results

Let X be a general real-valued Lévy process with characteristic triplet (a,o,v),
i.e. its characteristic exponent is equal to

U2

Y(u) = iua — 02? + /(ei“y — 1 —iuylyy<ny)v(dy)
R

where a and o are real numbers and v is a Lévy measure. We will denote by
(0B;,t > 0) the Brownian component of X. Let F be a C*! function from R x R
to R. The classical Ito6 formula gives

¢
F(X;,t) = F(X0,0)+/ %—};(XS_,S)dS
0
2

LOF LoPF
—(X,_,s)dX 2 (X 2.1.1
+ /08:5( s, 8)dX,+ 0 /0 8;1:2( s, 8)ds ( )
oF
F(X — F(X,_ — — (X, s)AX,}.
+ 0<Zs<t{ ( 873) (X, 8) 8:6( s ’5) s}

13



An optimal Ito formula for Lévy Processes

This formula can be rewritten under the following form (see [24]) : (F'(Xy,t),t > 0)
is a semimartingale admitting the decomposition

F(X,,t) = F(Xo,0) + M, + V, (2.1.2)

where the local martingale M and the adapted with bounded variation process V'
are given by

t t
M,=0o a—F(XS_, s)dBs +/ / F(Xs- +vy,s) — F(Xs—, s)ix(dy,ds)
0o 0% {lyl<1}
(2.1.3)
t
Vi = {F(X,s) = F(Xoo, ) Hiax, =1 +/ AF(X,, s)ds (2.1.4)
0<st 0

where fix(dy,ds) denotes the compensated Poisson measure associated to the
jumps of X, and A is the operator associated to X defined by

2
AG(z,t) = aG( ) —f—agG(x 0+ ;0 %(ag 0

/ {Gla+9.1) ~ Gl 1)~y ()} L gyrv(dy)

for any function G defined on R x R*, such that ‘95, aa(f and a 5.5 exist as Radon-
Nikodym derivatives with respect to the Lebesgue measure and the integral is well
defined. The later condition is satisfied when 2 o 9°C 5 locally bounded.

Note that the existence of locally bounded first order Radon-Nikodym derivatives

alone guarantees the existence of
LOF LOF

(Xs_,s)ds —

F(X,t) — F(X,0)— | = o
(Xe,t) = F(X0,0) o Of o Ox

but then to say that this expression coincides with

2

i — (X, 9)ds + Y {F(X.,s) = F(X,_,s) — a—F(XS,,S)AXS}

0 Oz 0<s<t Oz

we need to assume much more on F.

In that sense one might say that the classical 1t6 formula is not optimal. The
interest of an optimal formula is two-fold. It allows to expand F(X;,t) under
minimal conditions on F' but also to know explicitly the structure of the process
F(X4,t). Such an optimal formula has been established in the particular case when
X is a Brownian motion [10]. Indeed in that case, under the minimal assumption

14



Introduction and main results

on F for the existence of (2.1.5), namely that F' admits locally bounded first order
Radon-Nikodym derivatives, we know that this expression coincides with

__// (v, $)dL?

where (L%, 2 € R,s > 0) is the local time process of X. Moreover the process

{ / / (x,8)dLEt > O}
has a 0-quadratic energy.

In the general case, various extensions of (2.1.1) have been established. We will
quote here only the extensions exploiting the notion of local times, we send to
[11] for a more exhaustive bibliography. Meyer [34] has been the first to relax the
assumption on F by introducing an integral with respect to local time, followed
then by Bouleau and Yor [6], Azéma et al [1], Eisenbaum [10], [11], Ghomrasni
and Peskir [22], Eisenbaum and Kyprianou [13]. In the discontinuous case, none
of the obtained Ito formulas is optimal because of the presence of the expression

S {F(X0s) — F(Xeoos) — 00 (X, 9)AX,)

The It6 formula for Lévy processes presented below in Theorem 2.1.1, is available
for X admitting a Brownian component. It lightens the condition on the jumps of
X required by [11], and it also lightens the condition on the first order derivatives
of F required by [13]. Besides it is optimal. To introduce it we need the operator
I defined on the set of locally bounded measurable functions G on R x R* by

IG(z,t) = /OtG(y,t)dy.

We will denote the Markov local time process of X by (L}, z € R,t > 0).
Theorem 2.1.1. Assume that o # 0. Let F be a function from R x RT to R such

that g—i and %—f exist as Radon-Nikodym derivatives with respect to the Lebesgue

measure and are locally bounded. Then the process (F(Xy,t),t > 0) is a Dirichlet
process admitting the decomposition

F(Xtv) F(X0a0>+Mt+V;f+Qt
with M the local martingale given by (2.1.3), V is the bounded variation process

Vi= Y {F(Xss) = F(Xo )} ax. 21

0<s<t

and Q the following adapted process with 0-quadratic variation

Q= —/Ot/RAIF(x,s)dLg.

15



An optimal Ito formula for Lévy Processes

As a simple application of Theorem 2.1.1 consider the example of the function
F(z,s) = |z| in the case fol yv(dy) = +oo. This function does not satisfy the
assumption of Theorem 3 of [13] nor X does satisfy the assumption of Theorem
2.2 in [11]. But, thanks to Theorem 1.1, we immediately obtain Tanaka’s formula.
The proofs are presented in Section 2.

2.2 Proofs

We first remind the meaning of integration with respect to the semimartingale
local time process of X denoted (¢Z,x € R, s > 0). Theorem 1.1 is expressed in
terms of the Markov local time process (L?,z € R, s > 0). The two processes are
connected by :

{L,z €R,s >0} ={o % xR, s> 0}

Let 0B be the Brownian component of X. Defined the norm |[|.|| of a measurable
function f from R x R, to R by

1 1/2 )
Il =26 ([ o) ve ([ 2e)

In [13], integration with respect to ¢ of locally bounded mesurable function f has
been defined by

/t/f(x,s)d€§ = J/tf(XS,s)dBS+a/tf(Xs, 1—s)dB,, 0<t <1 (2.2.1)
o Jr 0 0

where B and X are the time reversal at 1 of B and X.
We have the following properties :

WE[[ [ 1) <ol

(ii) If f admits a locally bounded Radon-Nikodym derivative with respect to z,

then : . .
of
flx,s d€§:—02/ — (X, s)ds
| [ s

¢
(iii) The process {/ /f(:v, s)de,0 <t < 1} has 0-quadratic variation.
o Jr

Proof of Theorem 2.1.1 : We start by assuming that F' and g—i are bounded.
We set

F.(x,t) = //R2 F(z —y/n,t —s/n)f(y)h(s)dyds

16



Proofs

where f and h are nonnegative C*> functions with compact supports such that :
Jg f(@)dx = [; h(x)dx = 1. Thanks to the usual It6 formula we have :

t
Fo(X,. 1) = pmam+a/é§ﬂxsﬁu&+ %PM;Qd
o 0T 0
tOF,
+ a/ a—(XS,S)dS—{- Z {Fn(Xs>S)_Fn(Xs—ys)}l{\AXs\zl}
0o o 0<s<t
t
+ / /{Fn(Xs +Y, S) - Fn(Xsf7 S)}l{\y|<1}ﬂ(dsa dy)
0 IR
62
+ = e " (X, s)ds (2.2.2)

. / / (Xt 0.5) — FulXors) — 0 (X, s)yho(dy)ds

With the same arguments as in the proof of Theorem 2.2 of [11], we see that as
n tends to oo, F,(X},t) and each of the first five terms of the RHS of (2.2.2)
converges at least in probability to the corresponding expression with F' replacing
F,,. Besides we note that

tOF 1 v OF )
0 ot (Xsas)d = _p 0 A(/{; _t(yas)dy) des

since 2& is locally bounded. Hence we have :

ot
t@F ]F
s)dL”. 2.92.
[ G sito == [1 [ 250 (223

Since : F(z,s) = B(IF) (x,s), we immediately obtain :

/ (';F (X5, 8)ds = —

s)dL? (2.2.4)

The convergence in L? of the sixth term of the RHS of (2.2.2) is obtained with
the same proof as in [13]. The limit is equal to

t
| [0+ e8) = PO 5 g capitds. d) (2.2.5)
0o JR
For the seventh term of the RHS of (2.2.2), we note that :

17



An optimal Ito formula for Lévy Processes

t 2
aQXsds———// xsd@z
0

Thanks to the properties (i) and (ii) of the integration with respect to the local
times, this expression converges in L' to

—— / / (x,s)dls
We can obviously write :

oF . -
——/ o (@ 9)dl; / 81:2 s)dL? (2.2.6)

We now study the convergence of the last term of the RHS of (2.2.2). We have :

[ [ s = R - S0 supntinas

_/ /Hn(x, s)dL? (2.2.7)

where : H,( //{F z+y,8)—Fu(z,8)— %(z,s)y}y(dy)dz. We have :
T

0F,
|Fo(z+y,s) — Fu(z,s)— %(27 5)y|1{\y|<1}

TV 9F, oF,
= |G = G e
0?F,

< ysup|— 52 1 {jy<1)-

Noting that :

=n //R (x — y/n,t — s/n) " (y)h(s)dyds, we obtain

OF,
[Fo(z +y,8) = Fulz,s) — 8_(Z )y 1{y<1y < esten®y* 1y caysup| F|

Consequently :

Hy(z,s) = /0 { (2 +y, s)dz Fn(z,s)—aain(z,s)y}dzy(dy)

/,
1 x+y Yy
= / / Fo.(z,8)dz — [ F,(z,s)dz
-1 Wo

0

- /Or F.(z,s) —yF,(z,s) + yF,(0, s)} v(dy)
= Gplx,s) +/_ (yFn(0,5) — /Oy F,(z,s)dz)v(dy)

1

18



Proofs

1

where G,,(x, s) = / (IF,(x+y,s)—IF,(z,s)—yF,(z,s))v(dy) .Thanks to Corol-
-1

lary 8 of [13], we know that

/Ot/RH”(x’S)de:/Ot/RGn(%S)dL? (22.8)

By dominated convergence, we have as n tends to oo for every (z, s)
IF,(x+vy,s) — [F,(z,s) —yF,(z,s) = [F(x +vy,s) — [F(x,s) — yF(x,s).

Besides, for every n :
9 oF
(2 +y.5) = IFu(x,8) = yFu(z, s)] < yL{]y| < 1} sup | 7],

hence for every (z,s) : G,(x,s) tends to G(z, s), where

G(z,s) = /R(IF(x +y,5) — IF(x,5) — yF(z,5)) 1y <yv(dy).

By dominated convergence, (Gj,)n>o converges for the norm ||.|| to G. Conse-
quently the limit of the last term of the RHS of (2.2.2) is equal by (2.2.7) and
(2.2.8) to

_/0 /R/R([F(:v +y,8) = IF(x,5) — yF(x,s))1{y<1yv(dy)dL;. (2.2.9)

Summing all the limits (2.2.3), (2.2.4), (2.2.5), (2.2.6) and (2.2.9), we finally obtain

t
F
F(X,,t) = F(X0,0)+0/0 g—x(Xs_,s)st (2.2.10)

N /0 /]R (F(Xo_ +y.5) — F(Xo_, ) iy capiilds, dy)

+ ) {F(X,,s) = F(Xo_,8)Hyax. 1)

0<s<t

[ 2 220

-/ t / { [Py~ 1P - yF(x,s>>1{y|<1w<dy>} L.

which summarizes in
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An optimal Ito formula for Lévy Processes

LOF
F(X,,t) = F(X0,0)+a/ 5 (Xom. 8)dB,
0

+/0 /R{F(Xs +y,8) — F(Xo,8) <1y it(ds, dy)

+ Z {F(Xs,8) = F(Xs—,8) Hlax,>1y — /0 /RA[F(x, s)dL?.

0<s<t

In the general case, we set :

Fo(x,s) = F(x,5)14,,(2) + F(an, 8)1(—00,0,) (%) + F(bn, $)1(p,,00) ()

where (—a,)neny and (b,)nen are two positive real sequences increasing to co. We

write (2.2.10) for F), and stop the process (F,(X;,s),0 <s<1) at
T =1Ainf{s > 0:|X| >m}

We let n tend to oo and then m tend to co. The behavior of two terms deserves
specific explanations, the other terms converging respectively to the expected
expressions.

The first one is :

/Omm /R { /R (IF,(x+1vy,s) — IF,(x,s) — yF,(x, 8))1{|y|<1}y(dy)} dL?

Thanks to the definition of the integral with respect to local time (2.2.1), it is
equal to

1 tATm B 1 1 B . .
—/ H,(X,,5)dB, + —/ (X, s)dB, (2.2.11)
0 1

o 9 J1—(tAT)
where H,(z,s) = /{Iﬁ’n(x +y,8) — IF,(x,5) — yF(z, s)} y<nyv(dy).

We set : H(x,s) = /{[F(JJ +y,8) = 1F(x,s) — yF(z,s)}y<yv(dy). We can

choose n big enough to have |a,| and b, bigger than m+ 1. Hence (2.2.11) is equal
to

A~

1 tAT 1 1 N
—/ H(X,,s)dB, + —/ H(X,_, 5)dB,.
0 1—(tATm)

o o

For every ¢ > 0

1 1
P (Sup | H(X,_,s)dB, — / H(X,_,s)dB,| > 5)
1-t

0<t<1 J1-(tAT))
< P(T,<1)
— P(sup |X| > m)

0<t<1
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which shows that as m tends to oo, fllf( )H (Xs,, s)st converges in proba-

tATm,

5 5 AT,
At) H(X,_,s)dBs. Similarly fo/\ H(X;_,s)dBs
H(X,_,s)dBs . Consequently as m tends to oo,

bility uniformly on [0, 1] to fll_(

converges in probability to JAT

(2.2.11) converges to

/Ot /R {/{IF(J;' +y,s) — IF(z,s) — yF(x, S)}1{|y<1}y(dy>} dL?.

The second term is :

t
/ /{Fn(Xs— + Y, S) - Fn(Xs—a S)}1{5<Tm}1{\y|<1|},a(dsa dy)
0 R

For n big enough such that |a,|, b, > m, this term is equal to

| PG4 99 = PO )P M < 1), d)

As Tkeda and Watanabe [24], we then denote by

{/ot/R{F(XS‘ +y,8) = F(Xoos 8) Ly ids, dy), 0 < < 1}

the local martingale (Y;,0 < ¢ < 1) defined by :

t
Yirr, = / /{F(Xs— +y,s) — F(Xso, 8) Hysenn Liy<ipii(ds, dy).
0 R
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Chapitre 3

Local time-space calculus for
symmetric Lévy Processes

Abstract : We construct a stochastic calculus with respect to the local time process
of a symmetric Lévy process X without Brownian component. The required assump-
tions on the Lévy process are satisfied by the symmetric stable processes with index in
(1,2). Based on this construction, the explicit decomposition of F'(Xy,t) is obtained for
F' continuous function admitting a Radon-Nikodym derivative %—? and satisfying some
integrability condition. This It6 formula provides, in particular, the precise expression
of the martingale and the continuous additive functional present in Fukushima’s decom-

position.

3.1 Introduction and main results

For a given semimartingale (X;);>o and any C*!-function F on R x RT, It6 formula
provides both an explicit expansion of (F(X¢,t)):>0 and its stochastic structure.
Consider the case when X is a Lévy process with characteristic triplet (a, o, )
which means that for any ¢ in Ry and € in R : E[e®Xt] = ¢ (&),

2
where : ¥(§) = —ial + %52 + /(1 — e +ixl<1)v(de), a € R, 0 € Ry and
R

v is a measure in R such that : #({0}) = 0 and [, %u(dx) < 00. The function
¥ is called the characteristic component of X and v the Lévy measure of X (see
Bertoin [3]). Denote by ¢B the Brownian component of X, then It6 formula can
be rewritten under the following form (see e.g., Ikeda and Watanabe [24]) :

F(X;,t) = F(Xo,0) + M, + Ay, (3.1.1)

where M is a local martingale and A is an adapted process of bounded variation
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Local time-space calculus for symmetric Lévy Processes

given by

taF t
My=0 | —(X,_,s)dBs+ / / {F( X, +y,s) — F(Xs_,s) tax(dy,ds)
Oz <1}

0

= Z {F (X5, 8) — F(Xs—, 8) Hyax, 13 +/0 AF (X, s)ds

0<s<t

where fix(dy,ds) denotes the compensated Poisson measure associated to the
jumps of X, and A is the operator associated to X defined by

2
AG(x,t) = aG( ,1) +agG(x s) + 10 Z—C;(:ﬁ t)

/ (Gl +9,0) = Gl 1)~y ()} gy v (dy) (312

for any function G defined on R x R™, such that %G, %? and 8 5.5 exist as Radon-

Nikodym derivatives with respect to the Lebesgue measure and the integral is well
defined.

Many authors have succeeded in relaxing the conditions on F' to write extended
versions of (3.1.1) (see for example Errami et al.[15], Eisenbaum [11], Eisenbaum
and Kyprianou[13]). Under the assumption that X has a Brownian component
(i.e. o # 0), we have established in [14] an extended version of (3.1.1) that can be
considered as optimal in the sense that it requires the sole condition of existence
of locally bounded first order Radon-Nikodym derivatives ?95 , %—I; Under that
condition, this version gives the explicit decomposition of F'(Xy,t) as the sum of

a Dirichlet process and a bounded variation process.
Here we treat the case o = 0. If we assume additionally that X is symmetric (i.e.

a = 0 and v is symmetric), then according Fukushima [21], we already know that
for every continuous function u in W, the Dirichlet space of X, i.e.

W= {ue L*R): /R2(u(x +y) — u(z))*dzr(dy) < oo},

u(X) admits the following decomposition
uw(Xy) = u(Xo) + M + Ny (3.1.3)

where M™ is a square-integrable martingale and N* is a continuous additive func-
tional with zero quadratic energy. Besides, for @ in C*(R), Chen et al. [7] give a
decomposition of ®(u(X)) in terms of M* and N*.

In this paper we write an extension of (3.1.3) to space-time functions and give the
explicit expression of the corresponding terms. In particular, the explicit expres-
sion of the processes M* and N* involved in (3.1.3) are obtained.

24



Introduction and main results

These results, precisely presented below, require two additional assumptions on X.
The first one is the existence of local times for X considered as a Markov process,
i.e., a jointly measurable family {(L?);>0, z € R} of positive additive functionals
such that for each x, the measure dL} is supported by the set {t > 0: X; = =}
and satisfying for every Borel-measurable function f : R — R, the occupation
time formula

/ F(X)ds = / Z f(2) Lida.

Noting that 1 is a symmetric nonnegative function, the existence of local times is
equivalent to (see Bertoin [3])

(H1)
> 1
/_m I Rl

Define the function 5 from (0, 1] to R* by

B(t) = { / ) e2w<£>w<£>df}l/2. (3.1.4)

the second assumption is :
(H2)

/01 B(t)dt < oo.

Remark that if there exists ¢ in (0,1) such that [ mdf < 00, then X

satisfies the two assumptions (H1) and (H2). In particular, the symmetric stable
Lévy processes with index in (1, 2) satisfy the two assumptions. This is also realized
when there exists « in (1,2) such that ¥(£)™! = O(|¢|7) as |¢| tends to co.

To introduce the space-time version of (3.1.3), we need the operator Z defined on
the set of locally bounded measurable functions F on R x R* by

IF(z,s) = /Ox F(y, s)dy. (3.1.5)

Set : Z; = Xy — >, AXsljjax,>1}- We define the norm ||.||z in the space of

measurable functions from R x [0, 1] to R by || f[|3 = fol E(f(Z;,t))*dt. We denote
by (P;)o<t<1 the semigroup of the Markov process (Z;,t)o<i<1 i.e.

Pf(z,s) = E[f(Zi + x,s + )L {s10<1y)-

We associate to (Z,t)o<i<1 the operator D as follows. A real valued measurable
function f on R x [0, 1] belongs to the domain of D if || f||z < oo and there exists
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g such that ||g||z < oo and

Bf—f
t

lim
t—0

:07
Z

in this case, Df = g.

Theorem 3.1.1. Let F be a continuous function from R x [0,1] to R admitting

a derivative with respect to the Lebesque measure %—f such that %—f belongs to
L*(R x [0,1]) and
1
/ B(t) / (F(z+ ) — Pz, £))*dav(dy)dt < oo, (3.1.6)
0 R2

Then (F(X¢,t),0 <t < 1) is a Dirichlet process admitting the following decom-
position
F(X;,t) = F(Xo,0) + MF + N}, (3.1.7)

where M* is a square-integrable martingale and N¥ is a continuous process with
0-quadratic energy respectively defined by

ME = [ [0 )~ PO ) (s

NP = - /Ot /R’DIF(Z', s)dL? + /Ot /{|y|>1}(F(XS +1,8) — F(Xs_,s))v(dy)ds.

Theorem 3.1.1 is based on the construction of the stochastic integration of de-
terministic functions on R x [0, 1] with respect to (Lf,z € R,0 < ¢t < 1). This
construction is done in Section 3. Unlike the cases for which this notion has been
already defined (for example Brownian motion [10], Lévy process with a Brownian
component [14], or elliptic diffusion [2]) the considered local time process is not a
semimartingale local time but a Markov local time. The classical Tanaka’s formula
is not available for this local time. Instead we use an alternative formulation of an
identity of Salminen and Yor [42] for X. One preliminary issue, solved in Section
2, is to obtain an analogue of Tanaka’s formula for the reversed process X defined

by

(3.1.8)

o> X(l—t)— if 0<t<1
Xt_{ 0 it t=1

The Ito formula of Theorem 3.1.1 is established in Section 4. It appears as a
consequence of the arguments developed to establish the following localized version
of Theorem 3.1.1.
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Tanaka’s Formula

Theorem 3.1.2. Let F' be a continuous function from R x [0, 1] to R admitting a
Radon-Nikodym derivative with respect to the Lebesgue measure 8 E and such that

¢
for all k>0

/Olﬁ(t)/_’;

where U is the Levy measure defined by

(%ﬁy”) _|_/_1(F(;c—|-y,t)—F(a:,t))2ﬂ(dy) dadt < 0o
(3.1.9)

ey — V21D

1 zl<1 dz.
7] {l=|<1}

Then the process (F(Xy,t),0 <t < 1) admits the following decomposition
F(X;,t) = F(0,0) + My + Vi + Qy, (3.1.10)

where M 1is a local martingale, V' a bounded variation process and () a continuous
process with 0-quadratic energy, respectively defined by

M, = F(X,_ ,s) — F(Xs_,s)ux(dy,ds
/0/{|y<1}{< L y,s) — F(Xe.s)}ix(dy, ds)

Vo = Y {F(Xys) = F(Xo ) Hax.>1)

0<s<t
//AIFxde“f,

with A the operator defined by (3.1.2).

We mention that similarly to [11], Theorems 3.1.1 and 3.1.2 both admit multi-
dimensional extensions to processes (X!, X2 ..., X?) such that the X%s are in-
dependent Lévy processes each component X* being either symmetric without
Brownian component, either with a nontrivial Brownian component.

As an application of the construction of integration with respect to local time, we
introduce, in Section 3.5, local times on curves for the process X. This definition
is then used to establish an It6 formula for space-time functions C%! everywhere
except on a set {(x,t) € R x [0,1] : x = b(t)} where (b(t))o<i<1 is a continuous
curve.

3.2 Tanaka’s Formula

It is well known that X is a semimartingale (see [26], Proposition (1.3)). It has
no continuous local martingale component, hence its semimartingale local time is
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Local time-space calculus for symmetric Lévy Processes

identically equal to zero. It is not a Markov process with respect to the definition
used in Blumenthal and Getoor [4] (See page 20 in [4]), but one can associate a
local time process to X by setting

LP =L —L[% (3.2.1)

Indeed, we have the occupation time formula

[ s = [ i

We use the following notation. The filtration, satisfying the usual conditions,
generated by X is denoted by F = {]—"t,O < t < 1}. Similarly the filtration
generated by X is denoted by F = {}},O < t < 1}. Let pug be the Poisson
random measure associated to the jumps of X, then p = (p(w,dy,dt),w € Q) is
the F-c compensator of 15, i.e., a predictable measure with respect to F such that

EU W(w,s,ym)g(w,dy,ds)]—E[/ W (w, 5, 9)p(w, dy, ds) |
[0,6) [0,6) xR

for every nonnegative PRB(R)-measurable function W, where P is the predictable
o-field of X, the o-field generated by all cag F-adapted process. (See [27] chapter
I).

Without possible confusion, we denote the measure v(dz)ds on R x [0,1] by
v(dz,ds). Here is a preliminary lemma. We denote by ¢(¢, .) the continuous density
function of X; with respect to the Lebesgue measure :

1

o(t,x) = P /OO et cos(z£)dE.

Lemma 3.2.1. The ﬁ-compensator of g 1s given by :

¢(1 —t, X1+ y)

p(wa dya dt) = ¢(1 —t let)

v(dy, dt).

As a symmetric Lévy process, X benefits from the following Tanaka’s formula
established by Salminen and Yor [42]

LY = v(X; —a) —v(a / / Xso —a+y) —v(Xs- —a)li(dy,ds), (3.2.2)

1 %1 —cos({x)
where v(x) = 7T/0 R

for our purpose. The following proposition presents an alternative formulation of

d¢. Unfortunately, this identity is not convenient
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Tanaka’s Formula

(3.2.2) and an analogue Tanaka’s formula for X. The characteristic exponent of
the Lévy Process, (X; — ngt AX 1{ax,|>1})e=0 is denoted by 1),. Note that

1
() =2 [ (1 cos(a) (), (3.23)
0
and that 1, satisfies also the condition (H1). Besides, we set

1 71— cos(xf)
wo =2 | S

Proposition 3.2.2. For any real number a, we have :

(1)

LY =w(X; —a) —w(a) — N} — Z(w<Xs —a) —w(X,- —a))lyax,>1},

s<t

where N® s the local F-martingale defined by
t
Ne= [ e ag) - w(Xe o))y, ds).
0 J{lyl<1}

(ii)
Lf = w(Xi_—a)—w(X; —a)— Nt — W2
+ Z (w(Xs —a) —w(Xs- —a))lgax,>1}

1-t<s<1

where N is a local F -martingale and W< is a bounded variation PTOCESS, TESPEC-
tively defined by

Ng = le_S—CL _le_S_a P d,dS
/0 /{|yg1}[ ( +) ( ) (1 p)(dy,ds)

M/ta — le_S—a _le—s_a — v d,dS,
Jﬁ ~/;y§1}[ ( )~ )(p = v)(dy,ds)

The proof of Proposition 3.2.2; inspired from Yamada’s work [47], relies on Lemma
3.2.1 and the following technical lemma. We denote by B the operator defined by

Bf(z) = / @t y) — f@) — f@)ylv(dy),
{lyI<1}

for any function such that the integral is well defined.
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Lemma 3.2.3. Let g be an infinitely differentiable function with compact support
and set

Then we have :

We need the following notation. For f in L'(R x [0,1]), f denotes its z-variable
Fourier transform , i.e :

flet) = / e f(z, t)dz. (3.2.4)
Remark 3.2.4. If f belongs to L' (R x |0, 1])ﬂL2(R>< [O 1)), thanks to Plancherel’s
Theorem we have fol ffooo(f( t))*dzdt = fo f_ |f &, t)*dédt. One can hence
extend the above transform from L'(R x [0 1]) to L*(R x [0, 1]).

We now successively establish Lemma 3.2.1, Lemma 3.2.3 and finally Proposition
3.2.2.

Proof of Lemma 3.2.1 : Let X be the process defined by Xt Xt X,0<t<1.
From the symmetry of X, X is a Lévy process with same law as X. Obviously :
X =X - X, Let F = {.7-",570 < t < 1} be the filtration satisfying the usual
conditions generated by X, then F is the filtration obtained from F by an initial
enlargement with the Varlable X, ie. :

s>t

For (z,t,w) in [0,1) x R x Q, set ¢f(w) = ¢(1 — t,z — X;(w)), then ¢¥(w)dz is
a regular version of the conditional law of X, with respect to JF;. According [43]
we know that for every ¢t > 0 the set of zeros of ¢(t,.) is either empty or a half
line. Since the second possibility is not possible because X is symmetric, we have
qf > 0 for every (x,t) in R x [0,1). We establish now the following identity :

t
d=ai+ [ [ U~ ) ds), (325)
0o Jr
where U is defined by :

qb(l—s,x—f(s,—y)

- —1.
o(1—s,0— Xs_)

U (s,y) =
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Tanaka’s Formula

From (H1) and the inequality : e "2 < 4t2(1Jr 7, & > 0, we deduce that % exists
and is continuous on (0, 1] x R. For g element of C°(R) (the set of infinitely dif-
ferentiable functions with compact support) such that [ g(z)dz = 1, the function

¢n, defined by : ¢, (t,z) = / o(t,r + z/n)g(2)dz, belongs to C1>((0,1] x R).

0oy, . R
Set ®,(s,x) = /R (gbn(s,x +y) — ou(s,z) — a;i(a:)yl{wq}) v(dy). Using Ito

formula (3.1.1) we have for every ¢ in [0,1) :

(1 —t,x—X;) — ¢n(1 )
t&(bn -
= — (1—3;5 X;)ds + @nl—s,x—Xs)ds
0

/ / bull — 5,2 — Xy =) — (1 — 5,2 — X, ))(jig — v)(dy, ds)

= /0 /R(Qﬁn(l —8,% — Xs, —y) — (1l —s,2 — XS,))(NX —v)(dy, ds),
(3.2.6)

since ¢ (1 — t,x — X;) = Blng(n(X, — z))|F] is a martingale.
Thanks to the continuity of ¢, we have

On(1—t,x — Xt) —on(l,z) — (1 —t,x — Xt) —o(1, z).

n—oo

We show now that the martingale in (3.2.6) converges in L? when n tends to co
to the martingale :

/Ot/Rwsu Csr— K =)= 61— 50— Ko )ig —)(dy.ds), 0t <L,

Define a on (0, 1] by a(t) = sup, ¢(t, x), i.e.

_1 / e~ (3.2.7)
™ Jo
We have

E{/OI/IR(qzﬁn(l—S,:v—Xery)—¢n(1—57$—Xs)

—p(l—s,2— X, +y) + (1 — s,z — 5(3))2 V(dy>d8}

< [a) [ oatt = s.240)

—n(1—8,2) —d(1 — 8,2 +y) + ¢(1 — s, 2))*dzv(dy)ds.
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Thanks to Plancherel’s Theorem, this last term is equal to

2 /0 a(s) | e = 1D(Ga(l = 5,6) = §(1 = 5, ) Pdér(dy)ds

and hence to

ir [ ats) [ vl glg/m) — 1)dsds.

which converges to 0 by dominated convergence, since :

/0 o(s)ds = / (€)1 - e ¥ O)de < oo,

Hence we finally obtain (3.2.5). This allows, thanks to the result of Jacod (Theo-

rem 4.1 in [25]), to claim that (1+UX(¢,y))dtr(dy) is the F-compensator of e
0

Proof of Lemma 3 2 3 For p >0, set ulP)(z) = 7 [ cos(x)(p + ¥.(€))7'dE
and Gp(z) = [ 9(2) )—uP(z—2))dz. For p > 0, {u®(z—2), (z,2) € R?} is
a contmuous version of the kernel of the p-potential of the Lévy process Z defined
by Zy = Xy = 30y AX1qjax, 1y i€,

U®f(z) = B ( I e—ptf<zt>dt) — [ - )@

where E, represent the mean with respect to the law of the process (Z; + 2)icp0,1]-
Hence we have :

Gyla) = u"(0) [ g(2)dz = V(o)

On the Schwartz space of infinitely differentiable and rapidly decreasing functions,
the operator pI;— B (where I, is the identity operator) is a one to one operator and
its inverse is U? (See Bertoin [3], p. 23), hence BG,(x) = —pUPg(z) + g(x). From
(26) of Salminen and Yor [42] we have lim,_,o pu'® (0) = 0, hence lim,, o pUPg(x) =
0 and we obtain :

lim BG,(z) = g(x),
p—0

But by dominated convergence, we also have lim, .o BG,(x) = BG(z). Indeed for
any real x

|Gz +y) = Gylz) = G(x)yl < v sup  |Gy(2)]

p
z€[z—1,z+1]

< sup / lg" (= (A)dA(3.2.8)

zek 1,z+1]
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Tanaka’s Formula

O

Proof of Proposition 3.2.2 : We only establish (ii). One establishes (i) with
similar arguments. First we will show that the processes N* and W are well
defined. We set :

wy (z / IiE 1 —cos(z€))d¢ and wo(x / UiE 1 —cos(z€))d&.

On one hand w; is an mﬁmtely differentiable function, hence for any n € N,

L/”/ (wn(24y) —wi (2))*(dy)dz < 2n sup |wﬁ@ﬁ/“ yu(dy) < oo,
—nJ{yi<1) {lyl<1)

z€n—1,n+1]
(3.2.9)
On the other hand, thanks to Plancherel’s Theorem we have :

[ttt ) - ) uidys / Sl (3210
R J{yl<1} (€
From (3.2.10) and (3.2.9), we obtain for every n € N,

/n /| Kl}(w(m +y) —w(z)2v(dy)de < . (3.2.11)

For n in N, set T, = inf{s > 0 : | X,| > n} A t. We have for any n > |a| :

E ' w(X, —a+y) —w(X, —a))?p(dy,ds
/ /{y|<1}( ( y) ( ))"p(dy, ds)
o(s, Xs +y)

< / /{y|<1} —a+y) —w(Xs — ))21{‘XS|<n}WV(dy)d5

< / ds/ /{y|<1} (z +y) — w(z))*v(dy)d, (3.2.12)

which is finite thanks to (3.2.11) (a is defined in (3.2.7)). It follows that the
process {N:/\T ;0 < s <1} is a F-martingale, consequently N® is a well-defined

local ]:"—martingale.
Now, for every real x, set

= / /{<| ‘<1}<w(les —z+y) —w(Xi_s —x))(ug — p)(dy,ds).
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Similarly to (3.2.12), we have that for |z| < n,

E[|N”” N’” ] < cste/ / w(z +y) —w(z))*v(dy)dz,
{lyl<e}

which converges to 0 as € tends to zero. Hence, if g belongs to C2°(R), [, g(2)NZ(e)
converges in probability to [g g(z)N#dz. For any € > 0,

/R 9(2) N7 (e)de = / G(X1+3) — GX1_)](ug — p)(dy, ds),

{e<]y|<1}

(where G is defined in Lemma 3.2.3 by G(z) = [, g(z)w(z — z)dz). But the
right-hand side converges in probability to

/{| |<1}[G(X1_5 + y) - G(X1 s)](,u )(dy’ dS)

This leads to P-a.s,

[ oar = [ /{ G ) = G — (), (3219

As (3.2.12) has been show, we obtain the following inequality :

. |0(1 =5, X, +y) — ¢(1 — 5, X,)|
—a —w(X,—a - v(dy)ds
/o Zy|<l} +9) ( ) o(1 — 5, X5) ) ]

< (n) / B(s { / /|y|<1} (z+9) - <>>2v<dy>daa}1/2,

which is finite thanks to condition (H2) and (3.2.11), then W is a continuous
bounded variation process and by Fubini’s Theorem we have :

[ otenizas = | /| (GO £~ G- )dnds). (321

For any real = and any ¢ in [0, 1], we define A¥ by

dx

Af:w(Xl,t—QZ)—w(Xl—SU)—fo—th—l— Z (w(XS—:L‘)—w(XS,—x))1{|AXS|>1}.

1-t<s<1
We prove now that A satisfies the time occupation time formula for X , l.e:
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Tanaka’s Formula

/Olg(f(s)ds = /Rg(x)Afdx. (3.2.15)

A" is a continuous function in ¢, thus we can rewrite it as follows

A = w(X,— ) —w(X; —2) = Ny =W =) (w(X,—2) —w(Xe —2))Ljax, -

s<t

Thanks to (3.2.13) and (3.2.14) we have

/R g(zx)A%dx

- 6t -6t - [ /| (@4 = G~ 9
/ /, < G(Xs- +y) — G(Xs2))(p— v)(dy, ds)

(%) — GIR ) g oy
s<t

By Ito formula, we know that the right-hand side of the above equality is equal
to fot BG(XS)ds, where the operator B is defined in Lemma 3.2.3. Then Lemma
3.2.3 gives (3.2.15).

Consequently, we obtain fR z)Afdr = fR L‘Td.ilﬁ P-a.s. A priori, the set of
probability 1, on which the previous identity holds depends of the function g.
But we can suppress this dependency since the set of continuous function with
compact support with the metric of convergence uniform is a separable topological
space. We obtain P-a.s. :

[ @iz = [ go)iide, vy e cx()
R R

Hence we have for any z outside of a set of Lebesgue measure zero : A¥ = L¥
P-a.s. In order to guarantee that this holds for any given a it is sufficient to show
that

lim Ay = A} in probability and (3.2.16)
r—a
lim L? = L¢ in probability. (3.2.17)
r—a

For n such that |a| < n, similarly to (3.2.12), we have for any x :
E[|N; — N )] <
2n
cste/ / (w(z+y) —wz) —wz+y+a—2)+wz+a—x))dzr(dy).
{lyl<1}
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When |z —a| < 1, the above integral is smaller than 4 ff;::l(w(z +y) —w(z))*dz.
Hence by dominated convergence, thanks to the continuity of w, we conclude that
E[|N — N¢ |?] converges to 0 as x tends to a, thus (N — Nf) converges to 0 in

probability as  tends to a. Similarly, (W7 — W) also converges in probability to
0 as z tends to a. These convergences and the continuity of w lead to (3.2.16).
Defining the martingale (M;")o<;<1 by

= [ e~y — X~ )iy ds),
0 J{lyl<1}

we obtain as above that M — M converge to 0 in probability as x tends to a.
According to Corollary 14 in Bertoin [3] p.147, one defines a distance d on R by
setting :

d(z,y) = v(x —y) Vz,y € R. Consequently : |v(z) — v(y)| < v(x —y) for all
x,y € R. Defining for any real z, Of by :

0= [ [ a4 =X, - n)lanas,
0 J{ly|>1}

we obtain that : |OF — Of| < 2v({|y| > 1})v(z — a), which converges to zero as
x tends to a. Now, note that Salminen and Yor’s formula for L (3.2.2) can be
written as follows

Lg = v(X, — a) — v(a) = M — 3 (v(X, — a) — o(Xom — a))Igax, s — OF.

s<t

which shows that L} converges in probability to L{ as x tends to a, and (3.2.17)
follows. O

3.3 Integration with respect to local time

We start by defining the stochastic integration of elementary functions from R x
0, 1] to R with respect to (L, z € R,0 <t < 1). Let fa be an elementary function
i.e. there exists a finite sequence (z;)1<;<, of real numbers, a subdivision of [0, 1]
(sj)1<j<m and a family of real numbers {f;; : 1 <i <n,1 < j <m} such that

fa(z,s) = Z fijl(xmxwl]l(%ﬁﬁﬂ‘

ST >

For such a function integration with respect to L is defined by

t
/ / falo, AT = S0 f(IE = L — D L), (33.1)
0

Sl ) >
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Integration with respect to local time

The problem is to find the space of deterministic functions to which this integration
could be extended. The answer is given by the following theorem. To introduce it,
we define the norm || || by

= [ o [ (1 o) 7t opaca

where 3, 1, and f are respectively defined by (3.1.4), (3.2.3) and Remark 3.2.4.
We set
T={fecL*Rx[0,1]): ||f]| < oo}. (3.3.2)

Theorem 3.3.1. Integration with respect to L can be extended from the elemen-
tary functions to Y. This extension satisfies :
(1) There exist a constant k such that for every element f of T

B (s | [ [ sasz)) <

(ii) For f € T, the process fo Jg f(z,8)dL%,0 <t < 1) has 0-quadratic variation.

After proving Theorem 3.3.1, we will show that integration with respect to local
time can be extended from T to T,,. the set of measurable functions f : R x
[0,1] — R such that V& > 0 there exists a function f; € T which satisfies :

f(z,s) = fe(z,s) if |z| < k.

The proof of Theorem 3.3.1 is based on the two analogues of Tanaka’s formula
established in Section 2 and on the following lemma. For a complex valued function
h on R x [0, 1], element of L*(R x [0, 1]), we set

1 -
h(l’,S) = %h<—$,8),

i.e., h is the inverse Fourier transform in the variable x of h.

Lemma 3.3.2. (i) Let f be an element of Y. For every y in R, set

N

gu(&,5) = f(&,9)

then g, belongs to L*(R x [0,1]).
(ii) Let f be an element of Y. Set p(z,y,s) = §,(z,s), then the three following
processes H(f), I(f) and K(f), are well defined on [0, 1]

Ht(f) = //y|<1} S Y, S )MX(d:%dS)
L(f) = 5/1 . /{y|<1}90(X1s,y,l—S)(uX—p)(dy,dS) and

K(f) = %/Ot /{y|§1}9_0(X57y,8) (¢(S’Xs ;37));;b(8’X8)) v(dy)ds.

[sin(y§) +i(cos(y§) — 1)],

¢
¥e(§)
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Local time-space calculus for symmetric Lévy Processes

(iii) For fin Y, set J(f) = (He(f) + L(f) + Ki(f))o<i<1. There ezists a constant
k such that for every f in Y
B sup (7)) < sl

0<t<

We immediately use Lemma 3.3.2 to prove Theorem 3.3.1. Lemma 3.3.2 is estab-
lished after.

Proof of Theorem 3.3.1 For a, b real numbers such that b < a, the function ¢,
defined in Lemma 3.3.2, corresponding to f = 14, is given by

oz, y,s) =w(x—b+y) —w(x—>0) —w(lx—a+y)+wlx—a). (3.3.3)

Indeed, let h,(x) be the right-hand side of the above equation. For p > 0, set

A () = -1 * cos(x€)
(2) AﬁTE@%' (3.3.4)

We know that (See Lemma 1 of Salminen and Yor [42]) u®(0) — u?) (x) converges
to w(z) as p tends to 0. Define : hy ,(z) = —uP) (x — b+ y) + u® (z — b) + u® (z —
a+y) —u®(z —a) and note that (p+1.(£))~! is the Fourier’s transform of u®,
hence

iaE _ b€ ¢

i€ p+(§)
which converges pointwise to g, (&, s) as p tends to 0.
For every p > 0, |hy,|? < 2[e€ — e®€]2(1),(€))72[1 — cos(y€)]. Thus by dominated
convergence, ﬁ%p converges in L? to g,. It follows, thanks to Plancherel’s Theorem,
that h,, converges in L? to ¢(.,y,.). But obviously h,, converges pointwise to h,

as p tends to 0. Consequently p(z,y, s) = hy(z).
From the definition of L (3.2.1) we have for any real x

hyp(€) = [sin(y€) + i(cos(y€) — 1)),

L = [A’glc - [A’glc—t
and hence, thanks to Proposition 3.2.2.(ii) :
L = w(@) —w(X,—x) — (Ny =Ny ) — (Wy = W),
+ Z(w(Xs — ) —w(Xs- — 2))1gax, 13,

s<t

which, comparing with Proposition 3.2.2.(i) leads to :
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2Ly = =N — (Ny = N{y_py_) — (Wy = W). (3.3.5)

We have obtained with the notation of Lemma 3.3.2 : L¢ — L? = J,(f). By linear
combination, thanks to the definition of integration with respect to L (3.3.1), this
identity immediately extends to elementary functions :

/ot/Rfo’s)dL? = Jilfa); (3.3.6)

(tz%% [ [rstes d“) = sl

where x is the constant introduced in Lemma 3.3.2.(iii). Thus, in order to extend
the integration with respect to L to the normed space (T, || ||) we must show that
the set of elementary functions is dense in T for the topology generated by || ||.
The obtained extension will then obviously satisfy (i).

To this end, we will show the followings assertions :

which leads to :

(al) The set of elementary functions is dense in C}°(R x [0, 1]), the set of contin-
uous functions with compact support such that 6f exists and is continuous.

(a2) CYO(R x [0,1]) is dense in the set T of functions f such that, 9L exists as
Radon-Nikodym derivative and || f||s + [|2 |5 < oo, where | ||5 is the norm
defined by [|g||7 = fo t) Jg 9(x, t)*dadt, for g measurable function from
R x [0,1] to R

(a3) T is dense in Y.

(al) : For f element of C1°(R x [0, 1]) and a, b real numbers such that the support

of f is contained in [a,b] x [0, 1], we take a family of subdivisions of [a, b] x [0, 1],

{(z(i,n),s(4,n)),0 < i < k,,0 <j < m,} such that x(0,n) = a, x(k,,n) = b,

s(0,n) =0, s(my,,n) =1 and

ogfzg%nx—l lz(i +1,n) — z(i,n)| V oggngl%—l |s(+1,n) —s(j,n)| T:O 0.

kn—1mn,—1
- Z Z f<x(27n)7 S(]’ n))l(l‘(hn)vx(l'i_lvn)}1(5(]777/)75(]"'_17")}
i=0 j=0

By dominated convergence, we have :

gggo / Fal€.5) — F(&,5)Pdeds = 0,
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and equivalently :

lim /\ﬁg, $)[2déds = 0. (3.3.7)

Note that for every § > 0, fo z?v(dz) > 0. Indeed, if foé r?v(dz) = 0 then
v((0,4]) = 0 and it follows that for every & > 0, ¢, (€) = 2 [ (1 — cos(x€))v(dz
4v(0,1], which contradicts limg o 1.(§) = oo (see Lemma 4.2.2 of [33]).
k =inf,e;_11)(1 — cos(x))z™?, then :

) <
Set

£-1A1 &AL
(&) > 2/0 (1 — cos(z€))v(dx) > 2k§2/0 2?v(dz) > 0,

2

which gives sup < 00, VN > 0. Thanks to (3.3.7) we hence obtain :

£€[—N,N] w*@)

1 N §2 R R
lim 5@)/ (1+———)UM&ﬁ—f@ﬁMﬂ@Sz&VN>O, (3.3.8)
0 - (8

n—o0 N * (5 )

Besides, a simple computation gives

kn 1mp—1
fn(ga 8) = 6 Z Z f Z TL ]a ))(eZSI(H_Ln) - ezgx(%n))1(s(j,n),s(j+1,n)}
=0 75=0
1 kn mnp—1
= LSS Nl L) o)
i=1 j=0

_f('r(z7 n)’ S(], n))] 1(5(]7n)75(j+17n)]7

which leads to : \fn(ﬁ, s)| <

(9f' (b — a) and hence to

1 2 R
Jim sup /0 B(s) /lg . (1+ wf@)) €, 5)Pdeds

|y a) tm [ 1, 1
895’(6 2 J\LOO 0 Als) /|§2N <f2 +¢*(5)>d€ds

which, together with (3.3.8) gives (al).

(a2) : For f element of T set f(z,s) = BY/2(s) f(x,s). We take (hy)nen a sequence
of infinitely differentiable functions with compact support such that :

IN

sup
x

= 0,

of  Oh,

— 0.
ox

n—00
L2(Rx[0,1])

I1f = hall2@xpa) +

40



Integration with respect to local time

We define f,, by fu(r,s) = ha(x,5)371/%(s). Since 472 is a continuous function
fn belongs to CHO(R x [0,1]). Indeed one shows the continuity of 3 on (0, 1] by
dominated convergence and then check the continuity at ¢ = 0 as follows. From
Fatou’s Lemma we have :

t—0

lim inf 5%(t) / (€

hence lim;_,o 8~/2(¢) = 0.
For g measurable function from R x [0, 1] into R such that it dg /Ox exists as Radon-

Nikodym derivative, one easily shows with the 1dent1ty (& 1) = —ig(€,t) that

lgll < cCllglls + 18g/xls),

where ¢ = 2m[supgcec; (14 €29, (§) ™) V supes1 (72 + 14 (§) )], Hence we have

|-

(a3) : Let h be an inﬁnitely differentiable function with compact support from R
into R such that [, h(z)dz = 1. For f such that || f|| < oo, set

0 ofy
MMWJWQM+VhMHi“L

n—oo

which proves (a2).

fM%$=néf@—%$MwMy

From fu(6,5) = F(€,)h(€/n) and T2 (€ 5) = nf(&, 5)(E/n), we obtain that f,
belongs to T and by dominated convergence, lim ||f, — f|| = 0, which gives (a3).
n—oo

To finish the proof of Theorem, it remains to show the point (ii). For f element
of T, we must prove that [J(f)]; = 0, where for a stochastic process Y we denote
[Y]; its quadratic variation in [0,1]. For every € > 0 there exists an elementary
function f. such that ||f — f.||* < €/(4k). It is obvious from the definition of
the integral with respect to L for elementary functions and the relation 3.3.6 that
J(fe) is a continuous bounded variation process. It hence has a 0-quadratic energy.
We have, with the notation of Lemma 3.3.2

E(J(N) = EJ() = J(f)h)
E(H(f) + 1(F) = H(f:) = I(f-)h)

< 2E([H(f) — H(f)h) + 2B([I(f) — I(f)]h)
< drllf = fell?
< g
and (ii) follows. O
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Proof of Lemma 3.3.2 : In the proof of Lemma 3.2.1 we have defined the
function « by «a(t) = sup, ¢(t, x) (see (3.2.7)) and we have seen that a belongs to
L'[0,1]. Actually there exists a constant ¢ such that

a(t) < cp(t) vt e (0,1]. (3.3.9)
Indeed,

IN

ra(t) < 1+/ e~ de
1

([ emoen) (] )
c ([emson) ([ o) ([ ghge) o

1

([ oswioe) "= ([ 5ige) o

[

IN

i) According to Lemma 4.2.2 of [33], for every real y, sup =28 <« 5o hence
¥ (8)
(& 9 =2[f(& ) & ( 3 f(&s)P &
,8)|° =2 , S 1 — cos < cste ,S) | =,

and it follows immediately that g, belongs to L*(R x [0,1]) when f € T.
(ii) We show that the process (Hy(f))o<i<1 is a well-defined martingale. To this
end, it is sufficient to show that

E/ /|y<1}(g0(Xs,y, s))?v(dy)ds < oo, (3.3.10)

We have :

B/ [ etpapvanas < [ gl (ol dsv(an)as

< / / PO RILLE

— 2
= e [ e oPaanas

thanks to Plancherel’s Theorem. Now, from the definition of g, and Fubini’s The-
orem we have :

E/O1 /{M}(so(Xs,y, 5))*v(dy)ds < = / /,f £ 5)
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which leads to (3.3.10). Note that thanks to Doob’s inequality and (3.3.9) we have

B(sup [H(NP) < dert [ 500) [ 1€ 0P Fogdsds @3

0<t<1 X

A similar argument shows that the process

T(f) = {L(f / /{Iym} (X1oays1 — 8) (g — p)(dy.ds), ¢ € [0, 1]},

is a well-defined square-integrable f—martingale and

E(sup |L(f)) < den / ) [ 17€)

0<t<1

Thus, the process I,(f) = Ii(f) — I_y_(f) is well defined and

E(sup |L(f)*) < 2E(IL()P) +2E(sup |L(f)*)

0<t<1 0<t<1

e ; ) &
< 16¢m /Oﬁ(s)/R|f(§,s)\ w*@)dfds. (3.3.12)

Finally, we will show that the process K(f) is a well-defined bounded variation
process. We have :

6(s, X, +9) — 65, X,)]
E / /|y<1} (Xo1,5)| o v(dy)ds

< [ wtmoramian] { [ oot - ssaram} o
= L 1seoriac s

< Yooy { [ o0 [ 1760 et

where the equality is obtained thanks to Plancherel’s Theorem and the last in-
equality follows from Cauchy-Schwarz inequality. Hence K (f) is a variation bounded
process and we have :

E( sup [Ky(f)]) (3.3.13)

: {/ st { [ oo [ vt 1
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(ili) We derive immediately from (3.3.11), (3.3.12) and (3.3.13) the existence of a
constant x such that
}1/2

In the proof of Theorem 3.3.1, we have defined the norm |||/ as follows

E[ sup [Ji(f)]]

0<t<1 D= {/ / ‘f &)

< KISl

A

A

HgHQB:/O B(t)/Rg(x,s)deds, (3.3.14)

for g measurable function from R x [0, 1] into R and we have seen that there exists
a positive constant ¢ such that for any g admitting a Radom-Nikodym derivative
9g .
or *

lgll < c(llglls + 09/ 0]l 5)- (3.3.15)

Lemma 3.3.3. Let f be a measurable function from R x [0,1] into R such that
Of /0x exists as Radon-Nikodym derivative and Hng +||0f/0x||s < oo, then the
processes {fo Jg flx,s)dLZ;0 < t < 1} and {— fo 9 (X,,s)ds;0 < t < 1} are
indistinguishable.

Proof of Lemma 3.3.3 Suppose that f does not depend on ¢, has a compact
support and a continuous first derivative with respect to x (denoted f’). Then with
the arguments used to show (3.3.3) one shows that the corresponding function ¢
defined in Lemma 3.3.2 is given by

wuwwa/fQNMx—z+m—w@—zmu

Thanks to (3.2.13) in Proposition 3.2.2 we have :

/f wm—/ﬁw}xumw — )(dy, ds),

thus, with the notation of Lemma 3.3.2 we have It =3 fR f(x NE” p_)dz
and similarly (see (3.2.14)), Ki(f) = 3 [, f'(z — I/V1 9 )dx and Hy(f) =
5 fR f'(x)Nfdx. It follows from (3. 3 5) that Ji(f) = — fR f’ L””dx which proves

Lemma 3 3.3 in this special case thanks to the tlme occupatlon formula
Suppose that f belongs to C1(R x [0, 1]). Take a sequence of subdivisions (A,,),>0
of [0,1] such that the mesh of A, tends to 0 as n tends to co. Define f,(x,s) =

ZSieA"f(x, $i)L(ss,s000)- For any n > 0, Ji(fn) = —fg(@fn/ﬁﬁ)(Xs,s)ds. The
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Integration with respect to local time

right-hand side of the precedent equation converges to f(f (0f/0z)(Xs, s)ds al-

most surely and || f — f,|| converge to 0, hence J(f,) converges in L' to J(f) and

Lemma 3.3.3 is proved in this case.

For the general case, thanks to (3.3.15), f € Y. Moreover, a.s, Vt € [0,1] Y; =
(f %(XS, s)ds is well defined as Lebesgue integral and

E[sup |Y;|*] <E/ / f (z, s)¢(z, s)dzds < c||0f /0x||3,

0<t<1

where c is the constant involved in (3.3.9)). Let (f,)n>0 be a sequence of C}* such
that || f — fullg+110f/0x — 0 f,/0z||s — 0 as n — oo. Thanks to (3.3.15) || f — full
also converges to 0. Then :

/Ot/Rf(a:,s)dLi = T}Lnolo/ /fnxde“"”

= gi( 5)ds,

where the first limit is in L' and the second one in L2 0

We defined T, as the set of measurable functions from R x [0, 1] into R such that
for any positive k there exists fr € T such that f, = f in [—k, k] x [0, 1]. In the
rest of this section, with a localization argument, we will construct a stochastic
integral with respect to local time for the elements of T;,.. Example 3.3.8 provides
a characterization of Y1, in the case when X is stable symmetric.

For n integer, set T, = inf{t : | X;| > n} A L.
Definition 3.3.4. Let f be an element of Yi... For every integer n let f, be a
function of T such that f(a: s) = falz,s) on {|z| < n+1}. We define the process
(r(Mosesr by T (F) = Ji™™ fo fulw, 5)dLE.

The following lemma shows that this definition makes sense and does not depend
of the choice of the function f,.

Lemma 3.3.5. For 1, g in Y such that f(z,s) = g( ) on {\3:] < n+ 1},

the processes (fo " e fz,8)dLE)o<i<1 and ( MT" Jp9(x To<t<1 are indis-
tinguishable.

Proof of Lemma 3.3.5 Thanks to the continuity of the processes, it suffices
to show that the first process is a modification of second one. Let h be an in-
finitely differentiable function with compact support included in [0,1] and such
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that [, h(z)dz = 1. We define the sequence (fn)men by fm(z,s) = [ f(

y/m, s)h(y)dy and gm(z,5) = [z 9(x —y/m,s)h(y)dy. As for ( a3) in the proof
of Theorem 3.3.1, ||, — f]| and ||gm — g|| both converge to 0 as m tends to oo.
This gives as m tends to oo

AT, 1 INTy
/ /fm(x,s)dej Lg) / /f(:c,s)dL;”
0 R 0 R

AT, L tAT,
[ [omtwoaz: =% [ [ gesar
0 R 0 R

We show now that for every m :

tA\Ty tA\Ty
/ /fm(:z:,s)de :/ /gm(:c,s)de a.s.
0 R 0 R

For every m, fn.(x,s) = gm(z,s) on {|z| <n}. Hence, thanks to Lemma 3.3.3 we

and

have :
tATy, tATy,
/ /fm(x,s)de = —/ aaﬁ(Xs,s)ds
0 R 0 T
tAT, ag
= m(XS,S)d
-
tAT,
= / / gm(x,s)dL2.
This finishes the proof. 0

Definition 3.3.6. For f element of Y.., we define the process (Ji(f)o<t<1 by :
J(f) = JP(f) en {0 <t < T}

Thanks to Lemma 3.3.5 if m < n, J*(f) = J"(f) a.s on {0 < ¢ < T,}, which
shows that this definition is consistent.

Lemma 3.3.7. (i) For every f in Vi, the process J"(f) converges uniformly in
probability as n tends to co to the process J(f).
(ii) For f measurable function on R x [0, 1] such that % exists as Radon-Nikodym

derivative, fol B(s) f_KK(%(x, s))*dzds < oo VK > 0 and
fol f(xg,5))%ds < oo dxg € R, then f belongs to Y, and the processes

and {— ft 91(X,, s)ds;0 < t < 1} are indistinguishable.
(iii) FOT every f in Tloc, J(f) 1s a 0-quadratic energy process.
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Integration with respect to local time

Proof (i) Ve > 0 :

P(sup |i(f) = Ji(f)] > €) <P(1>T,) =P(sup [Xs[>n) =0

0<t<1 0<s<1

as n — 0o because sup{|X;| : 0 < s <1} < oo a.s.
(ii) With these assumptions on f, one easily shows that

[ 66 [ (sppans <o

Let (gn)nen be a sequence of infinitely differentiable functions with compact sup-
port such that g,(x) =1 if |x| <n + 1, then for every n

(fgn)
ox

Thanks to Lemma 3.3.3, fg, belongs to T and thus f belongs to Y;,.. Moreover :

1 gnlls + I ls < 00

w = | [ stz

B tATy a(gnf)
= —/0 p (X, 8)ds

AT,
= —/ g(Xs,s)ds.
0

ox

Consequently we obtain (ii) from (i) by letting n tend to oc.
(iii) For every n, the quadratic variation of J™(f) is a.s. zero, hence a.s on
0<t<T,, J(f) is a 0-quadratic energy process, consequently it is so on [0, 1].0J

We can now extend the stochastic integration with respect to local times from YT
to Yo as follows. For f element of T1,., we define the stochastic integral with

respect to L by
t
| [ sz =)
0o Jr

Example 3.3.8. When X is a a-stable process, we have the following character-
ization of set T,. : a measurable function f from R x [0, 1] to R belongs to Ti,.
if and only if for every positive k

/0 B(t) / 2 as) + / (f(z+y.5) — flz.9) @(dy)lde < 0o, (3.3.16)

k -1

where w is the Lévy measure of a (2 — «)-stable and symmetric Lévy process.

47



Local time-space calculus for symmetric Lévy Processes

Indeed, set 7(§) = fjl(l — cos(x))w(dz), then there exists a constant ¢ such that
c(1+ €2 <1+7(8) < (1+ [£*>%) V€ € R. Hence we have :

fET o / B(t) /R (1+ 7)) (€. t)Pdedt < oo

1
& [ 80 [(P@o)+ [ (et v.s) - Flas) oot < oo
0 R -1
thanks to Plancherel’s Theorem. With this fact, one obtains the “only if” part.
Conversely assume that (3.3.16) holds. Let g be an element of C2°(R) with support
in [-K, K], for K > 0, then

a0 [1ar s+ [ o)+ v.5) = (oo o)yt
(oo +) —gta)P(n) [ 50) [ Flas)an

K-1

< (llgll2. + 2sup /

-1

1 K+1 g1
2ol [ 50 [ [ ()~ o) P(dy)dad
0 K-1 J-1
< o0,
consequently
fg €Y for any g € C*° (3.3.17)

and the “only” part follows.
Actually, this characterization of Y. is also available when the Lévy process is
such that ¢(&) ~ £* as £ — oo for some 1 < o < 2.

3.4 Extension of the Ito formula

Before proving Theorem 3.1.2, we establish some results. They show that each of
the terms of (3.1.10) is well defined and they will ease their approximations. We
need the following notation. The operator B is defined by

BF(z,s) = / {F(z+y,s) — F(z,s) — ya—F(x, s)v(dy), (3.4.1)
{l<1) Oz

for any function F' on R x [0, 1] such that the above integral is well defined.
To the Lévy measure v(dz) = ﬁy((\xl, 1])1{jz<1ydz, we associate the correspond-

ing characteristic exponent v

9O =2 [ (1= costa)r(d)
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Extension of the Ito formula

and the norm ||.||, defined on L?(R x [0, 1]) by

|FJ2 = / B(s) / (1+ D) B (€. 5)|2deds.

Lemma 3.4.1. Let F € L*(R x [0,1]) such that ||F|l. < oo, then BIF is a.e.
well defined and belongs to Y. Moreover there exists a constant C' independent of
F such that ||BZF|| < C||F|..

Proof of Lemma 3.4.1 For F' in L*(R x [0, 1]) such that ||F||. < co. We first
show that BZF is well defined. Thanks to Plancherel’s Theorem, the norm ||.||.
can be written as :

7= 3(s) [REGEEIEY| [Pty - Fla.s)Poldy) | dods,

1

Applying Fubini’s Theorem and Cauchy-Schwarz inequality, we have

/ L TF )~ TP )~y vl

/| <1}/ x+2z,8) — F(x,s)|dzv(dy)
_ / F(z + 2,5) — F(z, 8)[v((|2], 1])d=
{lz<1}

{/{;31} o+ 28 = Fla, 8)‘2%(12}1/2 {/{zm} |2 ((|2], 1])dz}1/2

= k {/{Z|<1} |F(z+ z,s) — F(z, s)]2l/(dz)}1/2, (3.4.2)

IN

IN

where k = ([ 2?p(dz))"/? < co. Hence BZF is well defined and satisfies :

k2
|BZF || 2mxo)) < B(1)

Similarly to what has been done in the proof of Theorem 3.3.1, we can show that

there exists a sequence (F),)neny in C°0 such that ||F — F,|l, — 0 as n — oo

then BZF,, —12®rx(0,1)) BLF or equivalently BTF, — r2rx[o,1)) BZF'. It follows, by

taking a subsequence if necessary, that BIF » converges déds-a.s. to BTF. Thanks
to Fatou’s Lemma we have : [|[BZF|| < lim, . ||[BZF,]||, so we must only show
that there exists a constant C' which satisfies |[BZG|| < C||G||. for any function
G € C0.

|1F]|? < oo. (3.4.3)

49



Local time-space calculus for symmetric Lévy Processes

For G in C2*° and g in C°(R), the equalities :
BIG(z,s) =IBG(x,s)+ BZG(0,s) and By = —1.4,

(see e.g., Bertoin [3] p.24 for the second one) imply that :

BIG(¢.5) = BG(E.») =~ die. ), (3.4.4)
where the operator Z is defined by (3.1.5) and consequently
' ¢ ) Y6 -
BIG|® = G(&, s)*d¢ds. 4.
sz = [ o) [ (1455 ) PG opacs. as)

From Lemma 4.2.2 of [33], the function v,(£)¢7? is bounded, thus there exists a

constant C' such that (1 + wf—zg))w*g)Q < C(1+1,()) for every € and we obtain
1
IBZGIP <€ [ 66s) [+ ve)lGlesPeds.  (340)
0 R

Besides there exists a constant k such that for every z : 1 —cosa < k [;(1 —
cos A)A~1dA, hence

/01<1 — cos(z€))v(dz) < k’/ol /0%(1 —cos AT dAw(de).

By Fubini’s Theorem, the right-hand side of the above inequality is equal to k) (€).
One obtains

2¢.(€) < kY (8), (3.4.7)
which together with (3.4.6) gives the desired result. O

Corollary 3.4.2. Let F' be a measurable function from R x [0,1] to R such that
for every positive k,

1 k 1
/0 B(1) / (F(z,8))? + / (Flz+y,4) — F(z, £)%7(dy)|dzdt < 0o,  (3.4.8)

k -1
then BZF is a.e. well defined and belongs to Y.

Proof of Corollary 3.4.2 BZF is a.e. well defined thanks to (3.4.2). For ¢
element of C'°(R) such that g(x) =1 when |z| < n + 1, we show, as for (3.3.17),
that ||Fg|ls < oo. Thanks to Lemma 3.4.1, BZ(Fg) is hence well defined and
belongs to Y. Moreover BZ(Fg)(z,s) = BZF(x,s) V|z| < n, hence BZF belongs
to Tloc‘ O
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Extension of the Ito formula

Remark 3.4.3. Thanks to (3.4.4), for any F in C>*°(R x [0,1]), and any real y,
the function g,, defined in Lemma 3.3.2, corresponding to BZF, is given by :

gy(’fa 8) = (eiiyg - 1>F<£7 S)'
Thus the corresponding function ¢ (also defined in Lemma 3.3.2) is given by :
gD(.Q?,y,S) = F($ _'_yaS) - F(JZ‘,S).

Consequently the stochastic integral of the function BZF satisfies :

t
/ /BIF(x,s)def:
o Jr

1 t
wo [ P =) = P 1= ) s - )
[1=t,1] JO J{|y[<1}

1 [ o(s, Xs +y) — o(s, Xs)
+ 5/0 /{|y|<1}(F(Xs_ +y,s) — F(Xs_,5s)) ( o, X)) ) v(dy)ds.

For F element of L*(R x [0,1]) such that ||F]|> < oo, there exists a sequence
of elements of C>°(R x [0,1]), converging to F' with respect to the norm || ||..
This is sufficient to show that (3.4.9) holds for such a function F. Finally, with
a stopping time argument, we can show that (3.4.9) holds for any measurable
function F': R x [0,1] — R such that every positive k

/Olﬁ(t) /_k {(F(x,t))2 + /_1 [F(z +y,t) — F(x,t)]zﬂ(dy)} dedt < oo.

k 1

With the arguments used in the proof of Lemma 3.3.2, we can show the existence
of a constant k; such that for every F in L*(R x [0,1]) :

E/ /{MSF(XS”’ s) = FI(Xs, ) w(dy) < b / B(s) / Lo ()| (€, )|Pdéds.

We have shown (3.4.7) that for every real § there exists a constant k; such that
(&) < kotp(€). Together with the previous inequality this leads to

1 1

B[ (PO - PO ldy) < b [ 3() [ G(OIF(9)Pdgds,
0 JHlyl<1} 0 R

This remark leads to the following lemma.
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Lemma 3.4.4. Let F be a measurable function form R x [0,1] to R such that
| F||« < oo (resp. (3.4.8) holds), then the process (Mi(F))o<i<1 defined by

_ / /| |<1}(F(XS_ +y,8) — F(X,_, s))jix(dy,ds),

is a well-defined square-integrable martingale (resp. local martingale). Moreover
there exists a constant C independent of F such that Elsupgc,<; |[M(F)|?] <
CIFf3-

Proof of Theorem 3.1.2 : With a stopping time argument , it is sufficient to
show that the result holds for a function F such that ||F||, + [|25 |5 < oo, where
the norm ||.|| is defined by (3.3.14). We already have shown that all the processes
involved in (3.1.10) are well defined and they are right continuous. It is hence
sufficient to prove the result for a fixed ¢ in [0, 1].

Let h and g be two positive functions elements of C°(R) such that [, g(7)dr =
Jg h(2)dz = 1. We assume that supplg] € R*. For every n,m, we deﬁned Fom
and F by :

Fom(z,8) = /R2 F(z+z/n,s+7/m)h(2)g(T)dzdr
Fo(z,s) = /RF(x—i-z/n,s)h(z)dz,

for every (z,s) in R x [0,1]. We set F(z,s) = F(x,1) when s > 1.
First, we establish for any integer n, the following decomposition :

F. (X, t) = F,(0,0) + A} + M + V" + B} as. (3.4.10)

where :

t
A = 8F (X s)ds

0
My = / / L (Fa(Xoe 4 9,5) = Fu(Xi, 9))ji(dy, ds)

Vo= Fo(Xs, s) — Fo(Xs—, 8))1gax. )1}

s<t

t
By = /BFn(Xs,s)ds.
0

Similarly to A", M", V™ and B", we define the processes A™™, M™™ V™™ and
B™™ with F, ,, replacing F,,. Then applying It6 formula (3.1.1), we have :

Fom (X, t) = Fum(0,0) + AP™ + M™ + V"™ + B"™.
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For fixed n, we let m tend to oo in the above equation. Since V™ is a finite sum,
(Frm(Xe,t) — Fnm(0,0) — V™) converges a.s. to (F,(Xy,t) — F,(0,0) — V") as

n — 00. We will show now that :

lim E[(M"™ — M")?*] =0 (3.4.11)
m—r0o0
lim E[(B}"™" — B")? =0 (3.4.12)
m—0o0
lim E[|A}™ — A}[] = 0. (3.4.13)

Thanks to Lemma 3.4.4, in order to obtain (3.4.11) it suffices to show for every
n:

lim || Fyp — Fpll. = 0.

m— 00

From F, (€, 5) = h(—&/n)F (€, s) and F}, (€, 5) = h(—€/n) [° F(€, s+7/m)g(T)dr,

we obtain :

Fum = B2 < lalls [ 866) [ 145 lh(-€/n)f
| 1€ s+ rpm) = Pleo)Pgtryardsas
< kn / 9 [ |1+ rm) - P& o) Patraracas,

where k(n) = ||g][z1 sup,(1 + (€))|h(—€/n)|? < oo. Then, we have :

[ Fm — Fall?
27k(n / / / (z,s+7/m) — F(z,s))?g(r)drdzds

27k (n / // /|—:U9 2d¢9 g( )drdzds
= %2%/{;(71)/0 ﬁ(s)ds/o Tg(T)dT/R/O |E(x,0)|2d€dx.

which leads to (3.4.11) since the last term converges to 0 as m tends to co.
From (3.4.2) and (3.4.3) we know that there exists a constant k& such that :

IA

IN

OF, . OF,|
ox ox

t
E / (BE, (X, 5) — BEy(Xs, 8))2ds < k H
0

*

53
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The arguments used to establish (3.4.11), are then used for the function —nh’
instead of the function h.and lead to (3.4.12).
To show (3.4.13), we note that

lim sup{B(|A}"™ — A}[)}*

m—00
an Fn
< limsup{E / |a Xs,s)——aa (X.,5)|ds}?
m—roQ

F F
< limsup/ /qzﬁ x,s dxds/ / 0 —" (z, s aat"(x, s))2dxds.
m—ro0

Since : fol Jp #*(, s)dads = &= fol Jp e #¥®déds < oo, then the last term in the
above inequality is smaller than

. OF, Y
cste lim / // —"(z,s+71/m) — W(w,s) g(7)drdzds,

which is equal to

. OF, i
cste/ lim / / (x,s+71/m) — T —(x,s) | daxdsg(r)dr
Rm—>00

and this last limit is equal to 0.
Now we let n tend to oo in the equation (3.4.10). We have : (F, (X, t) — F,,(0,0) —
V") converges a.s. to (F(X¢,t) — F(0,0) — V). To finish the proof we show now :

/ / IF s)dL? (3.4.14)

B! — / /BIF x,s)dL: (3.4.15)

M (3.4.16)

A

=+ 3

With the arguments used to show (3.4.13) we can show that lim E\A? — Al =0,
LOF
o Ot

we have :

——(X,, s)ds. Thanks to Lemma 3.3.7 and the identity : Z(%) =

[ = [ [ 22 g

which gives (3.4.14).

where A, =

A(IF)
ot
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From F,(£,s) = h(—£/n)F(£,s) and i,i}(g,s) = —nl'(—¢/n)F(E, ) it follows

that ||F, [+ ||%22||, < oc. By the Lemma 3.4.1, BZF,, and BF, are hence well de-

fined and belong to Y. Moreover we have : ZBF, (z, s) + BZF,(0,s) = BZF,(z, s),
hence thanks to Lemma 3.3.3 we obtain

1
Bf:—/ /BIFn(:U,s)dL;”.
0o Jr

But we have : ||[F—F, |2 = [ 8(s) [o(14+95(€))[1—h(—&/n) 2| F(€, 5)|*dEds, which
gives by dominated convergence :

lim ||F, — F||> =0, (3.4.17)
n—o0

which leads to (3.4.15).

Finally, we obtain (3.4.16) thanks to (3.4.17) and Lemma 3.4.4 O

Proof of Theorem 3.1.1 We define the norm ||.||+ by

172 = / B(s) / (1+ O)IF(E, 5)Pds,

for f measurable function from R x [0, 1].

Note that the condition (3.1.6) holds if and only if, |F||3 < oo. From (3.4.6),
we can extend the operator BZ from C*°(R x [0,1]) to the set of functions
f such that ||f|l+ < oco. We denote this extension by #H. Moreover we obtain
from (3.4.6) that if ||F||+ < oo, then |HF| < oo. Using similar arguments
as the arguments of the proof of Lemma 3.4.4, we show that M is a well-
defined square-integrable martingale and E[(M/)?] < cste|| F||%. With the argu-
ments used to prove Theorem 3.1.2, we establish the decomposition (3.1.7) with
NP = — fg Je(HF(z,s) + 2ZE (2, 5))dL?. It remains to show that :

HF + OLF/0t = DIF. (3.4.18)

Making use of the approximations F,, ,, and F,, used in the proof of Theorem 3.1.2,
one establishes the following formula for any (z,7) in Rx[0,1] and 0 <t <1—7:

IF(Zy+x,7+1)
"OIF !
= IF(x,7)+ W(ZS +x,s+71)ds+ [ HF(Z;+x,s+ 7)ds
0 0

t
+/ / (ZF (Zs-+x+y,s+71)—IZF(Zs- +x,5+ 7)) fiz(dy,ds),
0 J{lyl<1}

where iz is the compensated Poisson measure associated to the jumps of Z. Thus
we have for any positive ¢ such that t +7 <1 :

%)



Local time-space calculus for symmetric Lévy Processes

P(ZF)(x,7) —IF(z,T)
OLF

t t
= /E[HF(ZS+$,S+T)]dS+/ E[W(kax,s—l—ﬂ ds.
0 0

Dividing each member of the above equation by ¢, we obtain (3.4.18) by letting ¢
to 0 and using the following assertion that one can easily checks :
If h is such that ||h]|z < oo then ¢! fot E[h(Zs + x,5 + 7)]dslr<1) converges
with respect to ||.||z to f(z,7) as t tends to 0.

O

3.5 Local times on curves

For a semimartingale Y, the natural definition of the local time on a bounded
variation curve b is the local time at 0 of the semimartingale (Y — b). In the
present case of a Lévy process without Brownian component, this local time is
identically equal to zero. The construction done in Section 3 allows to define
(Lf('))ogtg, the local time of X along any measurable curve (b(t))o<:<1 by setting

t
L?('):/ /1(_0071)(5))(13)(1[/?. (351)
0 JR

To show that the definition (3.5.1) makes sense, we check the two following points.
(i) The function F' defined by F(x,s) = 1(_c(s))(x) belongs to the space Ti, .
(ii) For every k > 0, set T}, = inf{¢ : |X| > k} A 1, then

e—0 26

tATy, tATy b()
lim —/ 1{\Xsfb(s)\<e}d5 = / / 1(foo,b(s))($)dL§ = Lt/\.Tk in Lt (P)
0 0 R

(i) For k > 0, set bi(s) = (=k) V (b(s) A k) and Fj(z,s) = 1(_pp,(s))(x). We have :
Fi(x,s) = F(x,s) if |z| < k. Note that Fi(&,s) = (i€) (e ()¢ —e~*¢) "and hence
that |Fi(&, )| = 2672{1 — cos[(bx(s) + k)€]}. According to Lemma 4.2.2 of [33]
we have :

IEl? < este /0 B(s) /R 1_COS[<b§2<S)+’“)§]d§ds

1 1
= cste/ B(s)|bi(s) + k|ds = cstek/ B(s)ds < oo,
0 0
consequently F € T and (i) is checked.
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(ii) For k,e > 0, set

1 X
Fop(x,s) = Z/ (Lche—kte) (U) = Lipp(s)—ebi(s)+e) (¥))dy.

—0o0

We have :
. eibk(s)§ _ efikf eief _ efief
Fe,k<€7 S) - . . X
1€ 2i€e
hence by dominated convergence lim,_,q || Ft x — Fi|| = 0 and consequently
t t
limE sup / / F.p(x,s)dLs — / / Fi(z,s)dLE| = 0.
=0 4epo,111Jo JRr 0o JR

On the other hand, thanks to Lemma 3.3.3, we have

/ / k(T s) = ——/ (—h—e—kte) (Xs) = Lipg(s)—epn(s)+e) (Xs))ds. (3.5.2)

Note that for e < 1/2 and t € [0, Ty—1] (where Ty = inf{t : | X;| > k—1} A1) the
integral on the right-hand side of (3.5.2) agree with i fot 1 x,—b(s)|<eyds. Besides
by definition of integration with respect to local time for the functions in Y,,.,

tAT—1 AT 1
/ /Fkxdem / / (x,s)dLs.

Consequently (ii) is checked since

tATy 1 AT
. 1 x b() : 1
lim — Lix,—b(s)|<epds = —oobs)) (X)dLE = = Ly, in L (P).

e—0 2¢

Remark that L) is an increasing continuous functional that increases only at
times when X and b take the same value. The local time process of X along
curves extends the definition of local time at points which represent local times
along constant curves.

Lemma 3.5.1. Let b be a continuous function from [0, 1] to R. Let f be a continu-

ous function on R x [0, 1] admitting a continuous derivative %. Then the function
(x,8) = f(x,5)L(a<p(s)) belongs to Yioe and we have

t
0
//f:x S 1(I<b5) dL; —/ f(b Lb( /Oa—i(X573)1(Xs<b(s))dS'

(3.5.3)
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Proof of Lemma 3.5.1 First, we assume that f has a compact support. In this
case the function g defined by g(x,s) = f(z, s)1(z<n(s)), belongs to Y. Indeed, by
the integration by parts formula, there exist a constant C', depending of f, such
that [§(¢, )] < C(Lgg<1y + €] 1gje>13), thus [g]| < co. The identity (3.5.3) is
then obtained with the same arguments as the one used in the proof of Lemma
3.1 of [11].

For the general case, for any k& > 0 let hy be an element of C°(R) such that
hi(z) = 1 1if |z| < k. Set g = ghy. Then g, belongs to T and ¢ = g on
[—k.k] x [0, 1], thus g belongs to T,.. Furthermore if k > sup,¢(o 1 [0(s)], we have

tATy, tATy
/ / f(@, ) @ansndLly = / / i1 (@) f (2, )L (p<b(s) ALy
0 R 0 R

tAT)
_ /0 F(b(s), )d, L

tATy a
—/0 8_£(Xs’ $)1(x, <b(s))ds,

which leads to (3.5.3). O

Remark 3.5.2. With the assumptions of Lemma 3.5.1 we similarly have :

t
to
//f(xvs)l(x>b /f s)d, L2V af(XsaS)l(Xs>b(s))dS-
0o JR x

Besides thanks to Theorem 3.3.1.(i) note that

//fm o7 = 0.

We present now an It6 formula inspired from Peskir’s formula written for contin-
uous semimartingales [39] . This formula concerns the continuous functions F' on
R x [0, 1] for which there exists a continuous curve (b(t))o<i<1 such that setting
C=A{(x,s) e Rx[0,1]:x <b(s)} and D = {(z,s) € R x [0,1] : > b(s)}, F' is
C?>! on C and D. Define Fy(x,s) = F(x Ab(s),s), Fy(z,s) = F(z V b(s),s). For

such a function F' we have the following formula.

Theorem 3.5.3. The process (F(Xt,t))o<t<1 is a semimartingale admitting the
following decomposition

t
F(X;,t) = F(0,0)4+ M, +V, + / (BZFy(b(s),s) — BLF(b(s), s))d L0
0
t t
+/ .AFl(XS,S)l(XS<b(S))dS+/ AFQ(XS,S>1(XS>b(S))dS,
0 0
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where M and V' are the local martingale and the bounded variation process defined
in Theorem 3.1.2 and A, B and T are the operators respectively defined by (3.1.2),
(3.4.1) and (3.1.5).

Proof of Theorem 3.5.3 By the usual stopping time argument, we can assume
that F has a support compact. Let K be such that supp[F| C [- K, K] x[0,1]. For
any m,n € N, we define the function an as in the proof of Theorem 3.1.2 and
note that, the convergences 1nvolv1ng excepted all the convergences established
there as m, and then n, tends to oo, are still available here. Indeed the present
assumption on F does not guarantee the existence of this derivative.
Nevertheless (3.4.12) and (3.4.13) hold because lim,,,_,oo || £y m — Fr |« = 0. Indeed,
we have seen in the proof of Theorem 3.1.2 that for any n there exists a constant
k(n) such that

| Frn — Fulls < k(n / / / (z,s+7/m) — F(z,s))?g(r)drdads.

(3.5.4)
Since F' is a continuous function with compact support, we see by dominated
convergence, that the right-hand side of (3.5.4) converges to 0.

Besides, for each s, the law of X, has a density with respect to the Lebesgue
aFn m

measure, hence for any n,m, / (X5, 8)1(x,=p(s))ds = 0. Consequently we

have, similarly as (3.4.13) :

' OF, / tOF
n,m XS,S 1 Xs<b(s d8+/ (XS,S)l Xs>b(s dS,
/0 8t ( < 0 at ( > ( ))

as m — 0o,n — 0o0. Regrouping all the obtained convergences, we obtain

LOF

8 (XS, 8)1(X5>b(5))d8
0

LOF
F(Xy,t) = F(0,0) +/ E(XS’ $)1(x,<p(s)ds +
0
t
+M, +V; —/ /BIF(x,s)dLi.
0o Jr
For i = 1,2, F; belongs to C*!, hence BZF; admits a continuous derivative with

respect to x equal to BF;. Thanks to Lemma 3.5.1, Remark 3.5.2 and the identity
Fi(z,s) + Fy(x,s) = F(z,s) + F(b(s), s), we have :
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/ /BIF x, s)dLE
://BIledex //BIFQ:Udex

_ /BIFl(b( ),s)d, L’ — /BFl(Xs,s)hx <b(s))ds
0 0
t t
— / BIF,(b(s),s)d L’ — / BFy(Xs, 5)1(x.>b(s))ds,
0 0

which leads to Theorem 3.5.3. O
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Chapitre 4

Extended Ito calculus for
symmetric Markov Processes

Abstract : Chen, Fitzsimmons, Kuwae and Zhang [7] have established an 1t6 formula
consisting in the development of F'(u(X)) for a symmetric Markov process X, a function
w in the Dirichlet space of X and any C2-function F. We give here an extension of this
formula for u locally in the Dirichlet space of X and F' admitting a locally bounded
Radon-Nicodym derivative. This formula has some analogies with various extended It6
formulas for semimartingales using the local time stochastic calculus. But here the part
of the local time is played by a process (I'!,a € R,t > 0) defined thanks to Nakao’s
operator [35].

4.1 Introduction and main results

For any real-valued semimartingale Y = (Yo + M; + Ny)i>o (M martingale and NV
bounded variation process) and any function F in C*(R), the classical Itd formula

F(Y,) = F(Yo)+/tF'(Ys)dMs+/tF’(lé)st+%/tF”(md(M%

+Y {F(Y,) = F(Y.o) = F/(Y.)AY.} (4.1.1)
s<t

provides both an explicit expansion of (F(Y;)):>o and its stochastic structure of
semimartingale.
Let now E be a locally compact separable metric space , m a positive Radon
measure on F, and X a m-symmetric Hunt process. Under the assumption that
the associated Dirichlet space (£, F) of X is regular, Fukushima has showed that
for any function w in F, the additive functional (abbreviated as AF) (u(X;) —
u(Xo))i>0 admits the following unique decomposition :

w(Xy) = uw(Xo) + M + N P, — a.e for quasi-every z in E, (4.1.2)
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where M* is a martingale AF of finite energy and N* is a continuous AF of zero
energy.

Although u(X) is not in general a semimartingale, Nakao [35] and Chen et al. [7]
have proved that (4.1.1) is still valid with «(X), M* and N* replacing respectively
Y, M and N. This is done thanks to the construction of a new stochastic integral
with respect to N*, which takes the place of the well defined Lebesgue-Stieltjes
integral for the bounded variation processes. As the classical It6 formula (4.1.1),
this Ito6 formula for symmetric Markov processes requires the use of C2-functions.
For the semimartingale case, there exist extended versions of (4.1.1) relaxing this
regularity condition. This extensions are based on the replacement of the fourth
and fifth terms of the right-hand-side of (4.1.1) by an alternative expression re-
quiring only the existence of F’ and some integrability condition on F’ (see for
example [12], [13], [14]). The integrability condition insures also the existence of
the other terms of (4.1.1).

The question of relaxing the regularity condition on F' in the formula of Nakao
and Chen et al. is a more complex question. Indeed the integral fg F'(u(Xs))dNY
is well defined only when F”(u) belongs to Fi,., the set of functions locally in F.
Asin [7], u € Fo means that there exists a nest of finely open Borel sets {Gy }ren
and a sequence {uy}rey C F such that f = fx q.e on Gj. As an example, in the
case X is a Brownian motion, this condition implies that the second derivative F”
exists at least as a weak derivative. Nevertheless, in the general case, we know that
for any function F element of C'(R) with bounded derivative, F'(u) belongs to F
and the process F'(u(X)) hence admits a Fukushima decomposition. We can thus
hope to obtain an It6 formula for C*-functions F' that would express each element
of the decomposition of F(u(X)) in terms of ', u, N* and M". Our purpose here
is to establish such a formula. The obtained formula is actually established for
the functions F' with locally bounded Radon Nikodym derivative and u element
of Foe.

Before introducing this extended It6 formula for symmetric Markov processes,
remark that one can easily obtain an extended It6 formula in case u(X) is a
semimartingale. Indeed, under the assumption that X has an infinite life time, we
note (see (3.4) in [7]) that u(X) is then a reversible semimartingale and that one
can hence make use of [12] or [15] to develop F(u(X)). But in general, u(X) is
not a semimartingale.

The extended Ito formula for symmetric Markov processes presented here is based
on the construction for a fixed ¢ > 0, of a stochastic integral of deterministic
functions with respect to the process (I'{(u))qcr, defined as follows.

For uw in F, let M** be the continuous part of M*. For any real a and ¢ > 0, we
set

t
Zta(’LL) = A ]-{u(XS)Sa}dMsu’c
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and define I'* by

[(u) = (T (u))iz0 = (F(Z°(w))i)iz0 = T'(Z2(u))

where I' is the operator on the space of martingale AF with finite energy con-
structed by Nakao [35] (its definition is recalled in Section 4.2). The process
(I'¢(w))>0 is hence an additive functional with zero energy.

In Section 2, we will see that the definition of I'*(u) can be extended to functions
u in Fpee. In that case, the process M™° is a continuous martingale AF on [0, ([
locally of finite energy and the process (I'f(u)):>o is an Af on [0, ([ locally with
Z€ro energy.

As shown by the Tanaka formula (4.1.4) below, the doubly-indexed process
(I'¢(u),a € R,t > 0) plays almost the part of a local time process for u(X). In
Section 5, this analogy with local time will be fully clarified under some stronger
assumption on u.

To introduce the obtained It6 formula, we need the objects presented by the
following lemma. We denote by (N (z,dy), H) a Lévy system for X (See Definition
A.3.7 of [21]), by vy the Revuz’s measure of H and by (¢ the life time of X.

Lemma 4.1.1. Let u € F (resp. u € Fioc). There ezists a sequence (,)nen 0f pos-
itiwe real numbers converging to 0 and such that for any locally absolutely contin-
uwous function F' from R into R with a locally bounded Radon-Nikodym derivative,
the following two processes are well defined.

M{(Fu) = JL@O{Z{F(U(XS))—F(U(Xs—))}l{en<u(Xs)—u(Xs)|<1}1{s<<}

s<t

_/ / {F(uly) - F (U(Xs))}N(Xs,dy)st}
0 J{en<luly)—u(Xs)|<1}

Ay(F,u) = lim F(u — F(u(X,))}N(X,, dy)dH,
(F.) L )~ XN dy)

n—o0

The above limits are uniform on any compact of [0,00) (resp. [0,()) Py -a.e for
q.e x € E. Moreover (MZ(F,u))i>o is a local martingale AF (resp. AF on [[0,([)
with locally finite energy and (Ai(F,w))i>o is a continuous AF (resp. AF on [0, ([)
locally with 0 energy.

With the notation of Lemma 4.1.1, we have the following It6 formula.

Theorem 4.1.2. Letu € F (resp. u € Fio.). For any locally absolutely continuous
function F' from R into R with a locally bounded Radon-Nikodym derivative F”
such that F(0) = 0, the process (F(u(X:),t € [0,00)) (resp. t € [0,()) admits the
following decomposition P,-a.e for g.e x € B
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F(u(Xy)) = F(u(Xo)) + My(F,u) + Qu(F,u) + Vi(F,u) (4.1.3)

where M (F,u) is a local martingale AF (resp. AF on [[0,([[) locally of finite energy,
Q(F,u) is an AF (resp. AF on [[0,([]) locally of zero energy, and V(F,u) is a
bounded variation process respectively given by :

M,(Fu) = MNFu)+ / tF’(u(Xs))dM;"c

Q(F.u) — /R F/(2)A.TE (u) + Ay(F )

Vi(Fou) = ) {F(u(X.) = Fu(Xe) M uxn)—u(x. =1y s<e}

s<t

—F(u(Xe-)) ey

Note that for u element of F and F in C*(R), (4.1.3) provides the It6 formula of
Chen et al. [7] together with the identity connecting integration with respect to
(N/)i>0 and integration with respect to (I'f (u)).er for smooth enough functions.

As a consequence of Theorem 4.1.2, we obtain the following Tanaka formula for
re:

M) = (X0 =0) = @X) =0+ [ Taomd2 (@1
+ lim » {(u(Xe) —a)” = ((Xe-) = @) Fguee)-ux, lsen}

where (£,)nen is the sequence of Lemma 4.1.1 and the limit is uniform on any
compact P, -a.e for q.e x € E. Using Tanaka’s formula for semimartingales (see
[41]), we obtain that when u(X) is a martingale, —2I'*(u) is the local time process
of u(X) at level a. This is the case when u(x) = x and X is a symmetric Lévy
process.

Formula (4.1.3) is hence reminiscent of various extensions of It6 formula involving
stochastic integrals with respect to local time, as for example the extensions given
in [6] for some martingales, [10] for the Brownian Motion, [11] and [14] for Lévy
processes with Brownian component and [45] for Lévy processes without Brownian
component. Note that in case the martingale part of u(X) has no continuous
component, the process ['*(u) is identically equal to 0. But (4.1.3) still represents
an improvement of Fukushima’s decomposition since (4.1.3) requires only u in Fj,.
and F' with a locally bounded Radon-Nikodym derivative.

Integration with respect to (I'¢(u))ser is constructed in Section 3 and the Ito
formula (4.1.3) is established in Section 4.
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In Section 4.5, we will show that, when I'(AM*°) is of bounded variation, u(X) ad-
mits a local time process (L?, a € R, t < () satisfying an occupation time formula
of the same type as the occupation time formula for the semimartingales and in
this case, the process of locally zero energy Q(F,u) can be rewritten as :

Qi(F,u) = —% / F'(z)d,L; +/0 F'(u(X5))dD (M) + Ay(Fu),t < ¢

R

Finally in Section 4.6 we give a multidimensional version of Theorem 4.1.2.

4.2 Preliminaries on m-symmetric
Hunt processes

Let E be a locally compact separable metric space, m a positive Radon measure
on E such that Suppm| = E, A be a point outside £ and Ex = E U A. Let
X ={Q, Foo, Ft, X4,0:,(, Py, € En,t > 0} be a m-symmetric Hunt Processes
such that its associated Dirichlet space (€, F) is regular on L*(E;m). We may
take as €2 the space D([0,00[— FEa) of cadlag functions from [0, 00[ to Ea, for
which A is a cemetery (i.e. if w(t) = A, then w(s) = A for any s > t) and denote
by 6 the operator w(s) — Oww(s) := w(t+s). Every element u of F admits a quasi-
continuous m-version. In the sequel, the functions in F are always represented by
their quasi-continuous m-versions. We use the term “quasi everywhere” or “q.e”
to mean “except on an exceptional set”.

We say that a subset = of  is a defining set of a process A = (A;)¢>0 with values
in [—o0,00], if for any w € E,¢,s > 0: 6,2 C 2, Ap(w) = 0, A (w) is cadlag and
finite on [0, (],

Apps(w) = Ar(w) + As(0¢(w))

and Ai(wa) = 0, where wp is the constant path equal to A. A (F;)-adapted process
is an additive functional if it has a defining set = € F,, admitting an exceptional
set, i.e : P,(2) =1forqex € E.

An (F;)-adapted process is an additive functional on [0, ([ or a local additive
functional if it satisfies all the conditions to be an additive functional except that
the additive property A;is(w) = Ay(w)+As(0,(w)) is required only for t+s < ((w).
Let FZ' (resp. F;") be the P,,-completion of c{X,,0 < s < oo} (resp. o{X;,0 <
s < t}). An (F;)-adapted process is an additive functional admitting m-null set if
it has a defining set = € F2 such that P,(Z) =1 for m-a.e x € E.

The abbreviations AF, PAF, CAF, PCAF and MAF stand respectively for “addi-
tive functional”, “positive additive functional”, “continuous additive functional”,
“positive continuous additive functional” and “martingale additive functional”,
respectively. Let M and N, denote, respectively, the space of MAF’s of finite en-
ergy and the space of continuous additive functionals of zero energy N such that
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E.(|Vt]) < oo g.e. for each ¢t > 0. Moreover M¢ denotes the subset of continuous
elements of M and M9 denotes the subset of purely discontinuous elements of
M.

For u € F, the elements M™ and N* of the Fukushima’s decomposition (4.1.2) are
elements of respectively M and N,. We denote by M™“¢, M*“J and M*“* respec-
tively the continuous part, the jump part and the killing part of M" (see Section
5.3 of [21]). This three martingales are elements of M.

Let T the linear operator from M to N, constructed by Nakao [35] in the following
way. It is shown in [35] that for every Z € M, there is a unique w € F such that

1
E(w,v) + (w,v), = §M<MU+Mv,nﬁz>(E) for everyv € F,

where (w,v)m, = [, w(z)v(x)m(dz) and papiaes zy is the smooth signed mea-
sure corresponding to (M"Y + M""* Z) by the Revuz correspondence. The process
['(Z) is then defined by :

I'v(Z) =N} — /tw(XS)ds

This operator satisfies : I'(M") = N* for u € F. Thus N* admits the decomposi-
tion :

N* = °N" + 'N" + “N*, (4.2.1)
where for p € {c,j,k} : PN* = T'(M™"P).
For a Borel subset B of EU{A}, it is known that 75 = inf{t > 0: X; ¢ B} and
op = inf{t > 0: X; € B} are (F;)-stopping times.
An increasing sequence of Borel sets {G} in E is called a nest if

P, (hm TG :§> =1forqex e FE
k—o0

Let D be a class of AF’s. We say that an AF (resp. AF on [0, ([]) is locally in D
and write A € Dj,. (resp. A € Dyy,.) if there exists a sequence {A"} in D and
an increasing sequence of stopping times 7,, with 7,, — oo (resp. a nest {G,} of
finely open Borel sets) such that P,-a.e for qe x € E, A, = A} for t < T,, (resp.
t < TGn)-

Let {A"} be a sequence in D such that for k > n, P,-a.e for qe x € E, AF = AP
for t < 7¢,,, then it is clear that the process

A Ay fort < 71g,
t 0 for t > ¢

is a well-defined element of Dy-j,.. A Borel function f from F into R is said to be
locally in F (and denoted as f € Fi,.), if there is a nest of finely open Borel sets
{G}} and a sequence { fi }ren C F such that f = fi q.e on Gj. This is equivalent
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to (see Lemma 3.1.(ii) in [7]) there is a nest of closed sets {Dy} and a sequence
{fx}ren C Fp such that f = f;, q.e on Dy. For a such f,

¢ 0 for > limy o 0\,

is well defined and belongs to M -, because, for n > k, Mtfc = Mtf’f’c Vt < opa,
P.-a.e for q.e x € E. Indeed, the last property is shown in Lemma 5.3.1 in [21]
for 7¢, instead of o\, , we conclude with the following observation :

For a CAF A, and a Borel set G C E, P,-a.e forqexz € F :

Ay=0fort <715 Ay =0fort <opg (4.2.2)

Every f € Fj,. admits a quasi-continuous m-version, so we may assume that all
f € Fioe are quasi-continuous and we set f(A) = 0.

We use the following notation for a locally bounded measurable function f and a
(Ft)e>o-semimartingale M :

(f % M), = /O F(X)dM,

We will use repeatedly the following fact (see Theorem 5.6.2 in [21]) :
For any F in CY(R?) (d is a positive integer) and uy, ..., uq in JF, the composite
function Fu = F(uy, ..., ug) belongs to Fi,. and

d
MPve =N " F, (u) % M (4.2.3)
=1

Chen et al. [7] have extended Nakao’s definition of the operator I' to the set
of locally square-integrable MAF. We keep using the letter I' for this extension
without possible confusion since thanks to Theorem 3.6 of [7] on the set M, both
definitions given in [7] and [35] agree P,,-a.e. on [[0,([. For a continuous locally
square-integrable MAF M, I'(M) is defined to be the following CAF admitting
m-null set on [0, ([ :
1

Ft(M) = _§(Mt —+ Mt o Tt) fOr t e [0, C[ (424)

where the operator r, is defined by

ri()(s) = w((t = 5)=)L{ozscs) + @(0)1sny for a path w € {t < ¢}

and ry(w) := wa for a path w € {t > (}.

The continuity of I'(M) P,,-a.e on [0, (] is a consequence of Theorem 2.18 in [7].
For f a bounded element of F and M in M, Nakao has defined the stochastic
integral of f(X') with respect to I'(M). We use here the extension of this definition
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set by Chen et al. [7] for f in Fj,. and M continuous locally square-integrable MAF
as follows :

Ferne = [N = DM = s, (125)

It is a CAF admitting m-null set on [0, (.

When M € M and f € F, the integral f«I'(M), can be well defined P-a.e. for
q.e. x € E. In particular the process (f *I'(M);)t>0 is a local CAF of X (Lemma
4.6 of [7]).

The argument developed by Chen et al. to write "q.e x € E” instead of "m-a.e
x € E” in the proof of their Lemma 4.6 in [7], is sufficient to establish Lemma
4.2.1 below.

Lemma 4.2.1. Let A be an AF of X (resp. AF on [[0,([). Let G be a measurable
subset of Ex (resp. G C E) and Z:={w € Q: Ay > 0,Vt < 7}, then P,(Z) =1
for m-a.e. © € E if and only if P,(Z) =1 for qe x € E.

Lemma 4.2.2. Let {D,} be a nest of closed sets and o := limy, oo 0p\p, . Let
(M,)nen be a sequence of M€ such that forn < k, P,-a.e for g.ex € E, M = M}
if t < op\p,. Define a continuous locally square-integrable MAF M by :

MY on t<opp
M: t \n
t { 0 on t>o

Then T'y(M) can be well defined for all t in [0,00) P-a.e. for g.e. x € E, by
setting

[ Ty(M™) on t<opp,
T:(M) = { 0 on t>o

Moreover T'(M) belongs to Ne. f-ioc-

(4.2.6)

For f element of Fy,., (4.2.5) shows then that f*I'(M) is a well-defined CAF on
[0, ¢T.

Proof of Lemma 4.2.2. A consequence of the m-symmetry assumption on X is
that the measure P,,, when restricted to {¢t < (} is invariant under r;, so we have
P,-aeont<(:

Myory = M*or, if t < 7p,_ or, but since D, is closed, for any w € Q and t < ((w) :
t <7p,(w) <t <7p,(rw). Hence it follows from (4.2.4) that (4.2.6) hold P,,-a.e
on [0, 7p, [[. This show also, with Lemma 4.2.1 that if | > n, P,-a.e forqex € E :
Ly(M™) =Ty(M") for t < 7p,, (and consequently for ¢ < op\ p, by (4.2.2)). Hence,
the right-hand side of (4.2.6) is well defined as a CAF belongs to N. f-oc- O

Remark 4.2.3. Lemma 4.2.2 shows that for any u € F,., N* := T'(M*) is an
element of NV, f-ioc.
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The above Lemma 4.2.1 and Theorem 4.1 of [7] lead to the following lemma.

Lemma 4.2.4. Let M be an element of M such that I'(M) is of bounded variation
on each compact interval of [0,([. Then for every element f of Fioe, Pi-a.c. q.e
forx e E, ont <(, fot f(Xs)dDs(M) coincides with the Lebesque-Stieljes integral
of f(X) with respect to T'(M).

For the reader’s convenience, we recall the following result which is Theorem 5.2.1
of [21] and Theorem 3.2 of [35], the last statement can be seen directly from their
proofs. By e(M) we denote the energy of M.

Theorem 4.2.5. Let {M™ : n € N} be a e-Cauchy sequence of M. There exists a
unique element M of M such that e(M™— M) converges to zero. The subsequence
ny such that there exists C € Ry such that for every k in N : e(M —M™) < C274,
satisfies : Py-a.e for e x € E, M and T(M™) converge uniformly on any finite
interval of t to My and T'y(M) respectively.

4.3 Integration with respect to [*

We fix a function u of Fj,.. Let {Dy}ren be a nest of closed sets and (ug)ren be
a sequence of bounded elements of F associated to u such that v = uy q.e on Dj.
Let 0 := lim, o 0g\p,. For any real number a, define Z* = Z%(u) by

Z0 — Jo Lun(xy<apdMie for ¢ < opp,
! 0 for t>o

Z*is a MAF on [0, [ locally of finite energy. In particular, when u belongs to F,
Z%is in M for any real a . By Lemma 4.2.2) T'(Z) is well defined and belongs
to Nc,f—loc-

Remark 4.3.1. For u element of F, we can choose Dy, such that

o= klim 0p\p, = 00 P,-a.e for ge. v € E (4.3.1)
—00

Indeed, in this case, take u; := (—k) Vu A k and Gy, := {x : |u(z)| < k}, then
it follows from the strict continuity of u that limy_,o op\¢, = 00 P,-a.e. for q.e.
x € E. Therefore, the nest of closed sets {Fj}ren built in the proof of Lemma
3.1.(ii) in [7] satisfies the property (4.3.1) and v = uy q.e. on Fj. Choose then,

{Dx} = {F}

Definition 4.3.2. The process (I'f,a € R;t > 0) is defined by I'Y = I'{(u) =
T,(Z%).
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Consider an elementary function f, i.e. there exists two finite sequences (z;)o<i<n
and (f;)o<i<n—1 of real numbers such that :

n—1
- Z fil(zi7zi+1] (Z>
1=0

For such a function integration with respect to Iy = {I'{; z € R} is defined to be
the following CAF on [0, ([ :

n—1
/R fR)dT; = ) fI7 —T7) (4.3.2)
=0

Thanks to the linearity property of the operator I' we have for any elementary

function f :
fronsion({ sy

For any k € N we define the norm ||.||; on the set of measurable functions f from

R into R by y
I£h= ([ Platpamo) (13.3)

Let Z be the set of measurable functions from R into R such that || f]|x < oo.
On 7 = ey Zk, we define a distance d by setting :

d(f,g9) =11 -4
where

Zz (LAflR) (4.3.4)

Note that Z contains the measurable locally bounded functions and that the set
of elementary functions is dense in (Z, d). Indeed, by a monotone class argument,
we can show that if f is bounded, for any n € N, there exists f, elementary such
that supyc, || f — fullx < 27" Hence

Zf fn<2(22 AANS = falle) + ><2.

Consequently it is sufficient to show that the set of bounded functions is dense in
7. By dominated convergence, lim,, ,o.[f — (—n) V f An] =0 for any fez.

Let f be an element of Z. The MAF W* defined by : WF = fo ))dMute,
has finite energy since : e(W*) = 1| f[|Z. Hence :

we . ) fupx Mgee for t <opp,
fux M, '_{ 0 for t>0o
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belongs to M¢_,. (Mj,. if v € F) and by Lemma 4.2.2, T'(fu * M™°) is well
defined and is an element of N. f-joe (Nejoe if © € F).

Theorem 4.3.3. The application defined by (4.3.2) on the set of elementary func-
tions can be extended to the set I. This extension, denoted by [ f(z)d.I'%, for f
in L, satisfies :

(1) [ f(2)d.T;7 =Ti(fux M™“) ¥Vt >0, Py-a.e for gex € E.

(i) Let (fn)nen be a sequence Z. Assume that : [f, — f] — 0. Then there exists
a subsequence (fn, Jken such that ([ fn, (2)d.T7)ken converges uniformly on
any compact of [0,¢) ([0,00) if u € F) to [ f(2)d.I; P,-a.e for gex € E

Proof. Elementary functions are dense in Z and (i) holds for elementary functions.
It is sufficient to prove that that if [f,, — f] converge to zero, there exists a sub-
sequence ny such that for any p € N, I'(f,,, u * M™°) converges to I'(fu * M™°)
uniformly on any compact of [0, 0g\ p,[. Let ny, be such that [f,, — f] <27 and
p € N, hence || f — fu,|l, < 2P27% for any k > p/4 and it follows from Theorem
4.2.5 that I'(f,, u, * M"°) converges uniformly on any compact to I'( fuy, * M"»°)
P,-a.e for q.e x € E. But thanks to (4.2.6), I'(f,,u, * M"»°) and I'(fu, * M"»°)
agrees on t < op\p, With I'(fp, u+ M*°) and I'( fu x M"°) respectively P,-a.e for
qgexr e k. O

We finish this section with a characterization of the set Z when u belongs to F.
Let £() be the local part in the Beurling-Deny decomposition for £ (See Theorem
3.2.1 of [21].). £ has the local property, hence with the same argument used to
proof Theorems 5.2.1 and 5.2.3 of [5], there exists a function U in L'(R, dz) such
that for any function F in C' with bounded derivative f :

£OF (), Fu) = 5 [ F

Then thanks to (4.2.3) and Lemma 3.2.3 of [21],

| Fu@nons @) = [ @U@

hence it follows by a monotone class argument that for any measurable positive
function f we have :

| Hars ) = [ @U@ (4.3.5)

Lemma 4.3.4. Foru element of F, the set I coincides with the set L} (R, U(x)dx),

loc
where the function U is defined by (4.3.5).
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Proof. For k integer, the function wy is defined be (—k) V u A k. Associate Uy
to uy as U is associated to u. We have then : || f||Z = [ f*(2)Ux(x)dz for any
measurable function f. In order to proof Lemma 4.3.4, it is sufficient to prove
that : Up(x) = 1j_p yU(x) for a.e. z in R.

Let f be a continuous function with support in [—k, k] and set F(z) := [ f(z)dz.
We have hence : F(u(z)) = F(ug(z)) for any = in E and therefore f(uy)+ M"“° =
f(u) * M*, indeed thanks to (4.2.3) both martingales coincides with M
(: MFu,c)‘

We have therefore : [, f?(ug(2))paroney(da) = [, f2(w(@))parmey(da). This shows
that

Af%ww@Mx:Ag%mUqu

for any function f continuous with compact support in [—k.k|, hence Uy(x) = U(x)
for a.e. x in [k, k].
Now if g is a continuous positive function with support in R\ [k, k| then :

[ st = [ gtuntauarnea) = o

E

therefore Uy (z) = 0 for a.e. x in R\ [—k, k]. This finishes the proof. O

4.4 1to Formula

In this section, we first prove Lemma 4.1.1 and then Theorem 4.1.2.

Proof of Lemma 4.1.1. Let u be an element of F,., thanks to the proof of
Lemme 3.1 of [7], there exists a nest of finely open Borel sets {G}ren and a
sequence {ugtren in F such that u(x) = ug(z) for q.e. © € Gy and ||ui|lo < k.
Let ¢ € L'(E;m) such that 0 < ¢ < 1 and for any k let

hi(z) = E, < /O e e%(Xt)dt)

Gy :={z € E: ly(r) > k'} and gx(x) := 1 A (khy(x)). For any k, G, C Gy,
thus u(x) = ug(z) for q.e. © € Gy. Moreover, by the proof of Lemme 3.8 of [30],
{Gk}ren is a nest and we have : 0 < g, < 1, gp(z) = 1 q.e. on Gy, gr(z) = 0 on
E\Gg. Since hy, is quasi-continuous we can suppose that each Gy is finely open
(Theorem 4.6.1 of [21]). For any k € N we have :
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/ / () — u(y) PN (z, dy)vi (dz)
G J{lu(z)—u(y)|<1}

= ] lole ) lu(z) — u(y)]*N (z, dy)vp(dz)
{lue)-u(y) <1}

< / J o 10— ) o) — ) PN e )
s [ 9u(0) Plu(a) = () 2Nz, dy)via(da)
Gk xGeN{|u(z)—u(y)|<1}

<2 lale) = PN dyn(do)

2 / (o) = ()N, dyn (o)

< AE(gr, gr) + 4E (up, up) < 00

Therefore, if for any € > 0, we set :

- iQ"“ (1 A /Gk /{u(m)_u lu(x) — u(y)|*N(z, dy)z/H(da:))

k=1 (y)|<e}

We have then lim._,o S. = 0. We choose a sequence (&, )nen such that S. < 274",

Let F be a locally absolutely continuous function with a locally bounded Radon-
Nikodym derivative f. For k in N, define (F}) by

Fk(fL‘) = F(x)l[_k_17k+1] (ZE) —+ F(k? —+ 1)1[k+1700) (ZL“) —+ F(—k’ — 1)1(—00,—k—1] (JZ)

Note that F} has a bounded Radon-Nikodym derivative : fi = fl_p—1r41]-
For a function 8 : E? — R, define :

¢
:// By, Xs)N (X, dy)dH, and
{en<|u Xs)|<1}

Md(ﬁan) = Z/B(XS7XS—)1{6n<|u(Xs—)*u(Xs)|<1}1{S<£} - At(ﬁﬂl)
s<t
Denote by M4(F,u,n) (resp M4(F,u,n,k)) the process M?(3,n) for
By, 7) = Flu(y)) — Fu(z)) (resp. By, z) = [F(u(y)) — F(u(x))]1g, (z) ). Simi-
larly, define A4(F,u,n) and A(F,u,n,k).
We just have to prove that P,-a.e for q.e z € E, the limits lim,,_,o. M%(F,u,n)

and lim,_,. A(F,u,n) exist uniformly on any compact of [0,0pm¢,[. We have :
M} (F,u,n) = M (Fy,u,n, k) and A (F,u,n) = Ay(Fy,u,n, k) on [0, 0p\c,|.

73



Extended It6 calculus for symmetric Markov Processes

For every k, the process M%(F},, u,n, k) belongs to M and for 4n > k, we have
e(MY(Fy,u,n 4+ 1,k) — M (Fy,u,n, k)) < ¢p2~271"

where ¢ = || fx|loo. Indeed, from the definition of &, :

6<Md(Fka u,n+1, k) - Md(Fknua n, k))

1
= 5 [ (Fu(e) = el Loty NV o ()
GkXE
< Ck/ () = w(y) P fu@) -] <en} N (2, dy) v (dz)
G xXE
S Ck;2k2_4n

thus, the convergence of M%(F,u,n) follows from Theorem 4.2.5. Still thanks to
Theorem 4.2.5, the convergence of A(F,u,n) can be seen as a consequence of :

D(M(Fy,u,n, k) = Af(Fy,u,n, k) P, —a.e for qex € E (4.4.1)

To prove (4.4.1), we note that (A;(Fy,u,n,k))i>o is of bounded variation, so
Ay(Fy,u,n, k) ory = Ag(Fy,u,n, k) Pp-a.e on t < ¢ (Theorem 2.1 of [16]). Hence
making use of the operator A defined in [7], instead of T', we first obtain :

A(MI(Fy,u,n, k) = Ay(Fy,u,n, k) P,, — a.e for q.ex € E on [[0,(]

Finally by Theorem 3.6 in [7] and Lemma 4.2.1, (4.4.1) holds, P,-a.e forqex € F
on [[0, ([, and therefore on [[0, oo thanks to the continuity of ['(MZ(F},u,n,k))
and A;(Fi,u,n, k).
It is clear that M (F,u) € M i, and A(F,u) € N, j-10c. Moreover for u element
of F, we can take G,, = {z : |u(x)] < n} for any n. In this case, from the
strict continuity of u we have, P,(lim,_,o 0p\q, = 00) = 1 for g.e. € E, thus
the convergence of M%(F,u,n) and A(F,u,n) are uniformly on any compact of
0, 00). Thus we obtain : M(F,u) € M, and A(F,u) € N .

L]

Remark 4.4.1. (i) If v € F and f is bounded, then M%(F,u) € M and
L(MYF,u) = A(F,u).

(ii) With the notation of the proof of Lemma 4.1.1, it holds that if uy = u q.e. on
Gy, Pyaeforqe x € E :

Mtd(F7 u) + At(F7 U,) = Mtd(Fk?uk) + At(Fkauk) fort € [O7UE\Gk[
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Proof of Theorem 4.1.2. We use the notation of the proof of Lemma 4.1.1.
Thus, if u € F, we take G,, := {z : |u(z)| < n}, n € N. Let F be a locally abso-
lutely continuous function F' with a locally bounded Radon-Nikodym derivative
f.

Let I; be the difference of the left-hand side and the right-hand side of (4.1.3). For
any k, we define I¥ as I, with u; and f; replacing u and f respectively. Hence :
I, = If for t < op\q,, Ps-a.e for q.e z € E. Since op\q, A ¢ converges to ¢ if
u € Fioc and op\q, converges to oo if u € F, it is sufficient to prove (4.1.3) on
0, 0p\q, | for any k& € N. Consequently we can assume (and we do) that u is an
element of F, and f is bounded.

If f is continuous, thanks to (4.2.3), F(u) € F and M¥“¢ = fu x M™“¢ and we
have the Fukushima decomposition :

F(u(X1)) = F(u(Xo)) + fux My™* +T(fux M)+ M + T(M"),

We obtain (4.1.3) from Lemma 4.3.3 (i) and Remark 4.4.1 (i).

If f is not necessarily continuous, let g be in L'(R) be a strictly positive function
on R such that g and 1/g are locally bounded . Define the norms ||.|| and .||« on
the Borel measurable functions as follows :

ol = ([ h2<u<x>>mw,a><dx>)”2

Il = .+ [ n@)lg(a)ds

u(z)Vu(y)
u(zr) —u h(2)?dzN (z, dy)vy (d
+</M5\ @) =) [Nt >>

Since u is in F, we have : || f|| < co. By a monotone class argument, one shows
that there exists a sequence of bounded continuous functions ( f,,),eny with compact
support such that || f,, — f|| converges to 0 as n tends to infinity. We set : F,(z) =
Jy fa(z)dz.

In order to show (4.1.3), we will show that there exists a subsequence ny, such that
the terms in the expansion (4.1.3) for F},, converge as k — oo to the corresponding
expression with f replacing f,,. The convergence of F,,(u(X;)) — Fy(u(Xo)) —
Vi(Fn,u) to F(u(X;)) — F(u(Xo)) — Vi(F,u) is a consequence of the pointwise
convergence of F,, to F', indeed, for any = € R,

N[

+

Fu@) - F@I< [ 160 =52 < sp i [ 11() -z 0

1)
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The existence of a subsequence {n,} such that fot fy, (u(Xs))dM ¢ and

i for (2)d.T2 (u) converge to [ f(u(X,))dM® and [, f(2)d.T;(u) respectively is
a consequence of the fact that e(fu * M™® — fyux M™) = 2||f — fulls = 0 as
n — 0o, and Theorem 4.2.5. Thanks to Theorem 4.2.5 and Remark 4.4.1 (i), it is

then sufficient to show that e(M (F,,u) — M(F,u)) converges to zero as n — oo.
But

cOr=2m) < 5 [ (Flu@) = Flule) - Flu(w)

2
+Fu(u(y))* N (z, dy)vy (do)

1
§||f—fn||f—>0asn—>oo.

IN

O

As an example, for F'(z) = z and u in Fj,., one obtains a Fukushima decomposition
for the process u(X). This case can be seen as a refinement of Lemma 2.2 in [9].

4.5 Local Time

We fix an element u of Fj,.. The associated process *N" has been defined in
(4.2.1) by °N* =T'(M*"°). By Remark 4.2.3, *N* is a CAF locally of zero energy
or merely a CAF of zero energy when u belongs to F. We suppose that u satisfies
the additional assumption that °N* is of bounded variation on [0, (), i.e. there
exists two PCAF’s AM and A® such that P -a.e for q.e z € E :

‘Nt =AY — AP v e, (4.5.1)
We remind that a measure v on E is a smooth signed measure on FE if there exists
a nest {Fj} such that for each k, 1, .v is a finite signed Borel measure charging
no set of zero capacity. Such nest is said to be associated to v. For a closed set
F C E we set :

For={ueFy:u=0q.e on E\ F}.
We also need the following definition :
51(U, ’U) = g(ua U) + (U, U)m-

Lemma 4.5.1. The process “N" is of bounded variation if and only if there exists
a smooth signed measure v on E with associated nest {Fy} such that

S(C)(u,v) =<wv,v>, YveE U Fo.r,-

k=1
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Proof. From theorem 5.2.4 of [21], *N“ is the only AF of zero energy such that
for any h € F,

1
lim By ['NY] = (M, M) =~ (u, )

On the other hand, since : |£(©) (u, h)| < (£©) (u,u))/?(&1(h, h))"/?, there exists a
unique w € F such that

£ (u,h) = & (w, h) for any h € F.

Hence : limyyg 1 Epm[ N — f(fw(XS)ds] = —E©(u, h) for all h € F. This implies
that the AF N* — [rw(X,)ds is equivalent to “N*“. Consequently ‘N is of
bounded variation if and only if N* is of bounded variation. But thanks to The-
orem 5.4.2 of [21], this last condition is equivalent to the existence of a smooth
signed measure v with an associated nest {F;} such that

E(w,v) =<v,v> Yo e U Fo. -

k=1

4.5.1 Definition of local time

Definition 4.5.2. The local time at a of uw(X), denoted by L = L§(u) is the
following CAF on [[0,(] :

1 t
§L? = -TI'(Z"): +/ Liu(x, )<ayd“Ny fort €]0,()
0

The name “local time” is justified by Proposition 4.5.3 and Corollary 4.5.4 below.

Proposition 4.5.3. There exists a B(R) ® B(Ry) ® FJl-measurable version of
the local time process {L%;a € R,t > 0} such that P,,-a.e we have the occupation
time density formula :

/Rf(a:)ifdx = /Ot fu(Xs))d(M™)s for any f Borel bounded and t <

Proof. We start with the case when u is a bounded element of F. From (4.2.4)
we have : Py-a.e. on [0,¢[[: L¢ =20+ Zfory + 2f0t Liu(x,_)<a}dN“¢. Moreover,
thanks to Theorem 63 chapter IV of [41], there exists a function Z(a,t,w) in
B(R) ® B(R,) ® F, such that for each a € R, Z(a,t,w) is a continuous (F;™)-
adapted version of the stochastic integral Z¢, and thanks to Lemma 2.10 and
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Theorem 2.18 of [7], Z(a,t,w)or,(w) € B(R)@B(R,)® F7 is a continuous (F™)-
adapted version of Z or, for each a € R. Besides we can take fot Liu(x,_)<ayd V€
jointly continuous in ¢ and right continuous in a, P,,-a.e on [0, ([xR. Thus, we
have constructed a version {L¢, a € R,t € [0,¢[} of {L¢ a € R,t € [0,¢)} which
is B(R) ® B(R,) ® FZ-measurable.

Let f be a continuous positive element of L!(R). Using the proof presented in [41]
of Fubini’s Theorem for stochastic integrals (Theorem 64, Chapter IV of [41]), we
know that [, Z(z,t,w)f(2)dz is a well-defined Lebesgue integral since P,,-a.e :

/ |Z(2,t,w)|f(2)dz < oo for all t.
R

Moreover still thanks to this theorem, fR Z(z,t,w)f(2)dz is a continuous P,,-
version of fg F(u(X,))dM® ¢, where F(z) = [ f(A)dA. Consequently, for ¢ > 0,
P,-acon {t < (}, [ Z(zt,r(w ))|f( )dz < 00 and Jo Z(z,t, 1 (w)) f(2)dz is a
continuous P,,-version of [J F(u(X,))dM® ¢ or.

Since fot Lu(x,— <a}dN “)aer is of bounded variation on {t < (}, we obtain P,,-
a.con {t <(}: [, f(2)|L¢|dz < oo and

/f dez—/ F(u(X,))dMS + /OtF(u(Xs))dMngort+2/()tF(u(XS))ng,c

which leads to

¢
/ f(2)L3dz = =20 (Fu % M™°), + 2/ F(u(Xs))dNg&e. (4.5.2)
R 0
Now thanks to (4.2.3), Fu belongs to F,. and .MtF“’C = —fO ))dM e,
Thus
<MFuc Muc / f Mu,c>s.

Thanks to Lemma 4.2.4 we have P,,-a.e on {t < (} :

| PNy = [P,

On the other hand the definition of the integral with respect to I'(M**) (Chen et
al. [7]) gives :

¢
/ F(u(X,))dD(M™) g = T'(Fu x M™°), / f(u d(M™°)
0
which together with (4.5.2) lead to
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/f deZ—/ f(u d(M*)¢ Py, -a.e on{t < (} (4.5.3)

Actually, the set of null P,,-measure on which (4.5.3) could fail can be chosen
independently of f. Indeed, the set of continuous functions with compact support,
is a separable topological space for the metric of uniform convergence.

We show now that the set of null P,,-measure on which (4.5.3) could fail does not
depend on ¢ either. We have thanks to (4.5.3)

P,-a.e on {t < ¢}, L7 > 0 for dz-a.e z (4.5.4)

hence by a monotone class argument, (4.5.3) holds P,,-a.e on {t < (} for any f
Borel bounded. It remains to show that (4.5.3) holds P,,-a.e on [0, [. To do so
it is sufficient to show that the left-hand side of (4.5.3) is continuous in t.

It follows from Theorem 2.18 in [7] that for any z, Z(z,t,r(w)) is continuous and
has the additivity property P,,-a.e for on [0, ([[. Hence thanks to (4.5.4) for dz-a.e
z, Z?Z is increasing. One Shows then by monotone convergence that for any positive
Borel function f, t — [ f( z)Lzdz is continuous P,,-a.e on [0, [.

For a function u in Fy,., take an nest of closed sets { Dy} and a sequence (uy)nen
of bounded elements of F such that v = wu; for qe x € E. For any k£ € N,
let L7 (ug) be the version B(R) ® B(R,) ® F'-measurable of local time obtained
above. Then L7 := L?(uz) on t < 7p, is a B(R) @ B(R, ) ® F-measurable version
of L7 and satisfies the occupation time density formula on [0, 7p, [, for any k € N,
so it satisfies it on [0, ([. O

Corollary 4.5.4. For any real a, L* is a PCAF and P, -a.e. for q.e x € E, the
measure in t, d L is carried by the set {s: u(X,-) = u(Xs) = a}.

Proof. We use u;, and {Dy} defined as in the end of the proof of Proposition
4.5.3. Since we need to show the assertion of Cororally 4.5.3 only on [0, 7p, [, we
can assume that v is a bounded element of F. It follows from the occupation time
density formula and the B(R) ® B(R,) ® F"-measurability of L, that there exists
a subset R of R of Lebesgue’s measure zero, such that for any a outside of R : P,,-
a.e L¥ > 0 on [0, [. Consequently L® has the same property. This property holds
for any a € R. Indeed for any real a, take a sequence (a,)neny C R\ R such that
an 4 a. We have : e(Z — Z%) = [ Liacu(@)<an}i(arwey (dz), which converges to 0 as
n tends to oo by dominated convergence. Thus, thanks to Theorem 4.2.5 (taking
a subsequence if necessary) I'(Z%) converges to I'(Z*) uniformly on any finite
interval of t, P,,-a.e. On the other hand, for P,,-a.e w € €, fg Liu(xy)<an}dNEC(w)
converges to fot Liu(x,)<a}d N ¢(w) for any ¢ < ((w). Conssequently, we obtain for
P -a.ew e Q, L (w) > 0 for any t < ((w).

It follows from Lemma 4.2.1 that for any real a, L* is a PCAF on [[0,([. By
Remark 2.2 in [7], it can be extended to a PCAF.
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Now defining : f(z) = (z — a)* and h(z) = (x — a)*1{;<q}, it follows from (4.2.3)
that fu and hu belong to Fj,.. Moreover we have :

¢ t
M = [ () - aPadre and M =1 [ (W(X,) - 0L cad M
0 0

thus, (M4, Z¢) = (Mhwe M*“¢), and from the definition of the stochastic integral
(4.2.5) we have that P,,-a.e on {t < (}

/0 (U(XS) B a)4dF(Za)S = /0 (u(XS) - a)41{u(Xs)§a}dF(MU7c)s.

By Lemmas 4.2.1 and 4.2.4, we finally obtain : fo —a)*dL® = 0 P-a.e for
qgex e k. ]

4.5.2 Integration with respect to local time

We fix u an element of F satisfying (4.5.1) and set : fo Liu(x, y<aydN2C.
Hence the local time at a of u(X) satisfies :

L% = =21 4+ 2[°.
For any w € Q and t < ((w), the function z — [7(w) is of bounded variation. The
application defined for the elementary functions by

n—1

F=Y R =07, t <

=0

can hence be extended to the set of locally bounded Borel measurable functions
f from R into R as a Lebesgue-Stieljes integral and we have :

/f dlZ_/f DAN® ¢ < .

Using the stochastic integral with respect to I', the application defined for the
elementary functions by

n—1
=) fLi = L), t <

can hence be extended to the set of locally bounded Borel measurable functions
f from R into R and we have :

——/f )d.Lj = /f )d.T; — /f ANt < (.

80



Multidimensional case

4.6 Multidimensional case

In this section we need the following notation. For d € N, z = (z!,...,2%),y =

(yh, ..., yY) € RY, we set < y (resp. # < y) if and only of 2! < ¢ (resp. x* < yf)
for each i = 1,...,d and |z,y] = {z € R?: 2 < z < y}. The vector 2 is obtained
from x by elimination of its coordinate 2%, i.e. & = (x!,...,297 1), Ja,y] = {2z €
R <2< g}

Let ¢ be a measurable function from R? into R. We define integration of simple

functions with respect to ¢ as follows. For f a simple function, i.e. there exists
z,y € R? such that f(z) = 1j,,(z) for all z € R? :

fa=1: [ f:)e:) = ol) = olo)
ta> 1 [ e = [ gt - [ 1)

As an example, if there exist functions h;, 1 <i < d such that ¢(z) = H;j:l h(z),

then fpa f(2)dip(2) = T (ha(y) — ha(a)).

We extend this integration to the elementary functions f : R? — R (i.e. f(2) =
Yo aifi(z) where f; , 1 <1i < n are simple functions and a; 1 < i < n are real
numbers) by setting

:i@@m&wa

A elementary function has many representations as linear combination of simple
functions, but as in the Riemann integration theory, the integral does not depend
on the choice of its representation.

Let u be in F, where F2, = {(u',u?, ...;u?) : u’ € Fioe, 1 <i < d}. Let

{Di}ren be a nest of closed set, o := limy_,o0 0p\p, and (ug)ren a sequence of
bounded elements of F¢ such that u = w, q.e. on Dy.

For any a in R? and 7 in {1,2,...,d}, we define Z%(u’) and I'*(u’) respectively in
M?—loc and -/V’c,f—loc by

t ut ,C
Zo(u) = { JoHutxoysadMs™ for t<opp,
0 for t>o

M) = T(Z2%(u)

Thanks to the linearity property of I', we have for any elementary function f :
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We extend (4.3.3) of Section 4.3 from d = 1 to d > 1, by defining for k € N, the
norm ||.||x on the set of measurable functions f : R? — R

HMngxﬁJ%Mﬁmwmw@y@

and we define the set Z with the metric [.,.] as in (4.3.4) of Section 4.3. The set of
elementary functions is dense in Z. We have the following version of Lemma 4.3.3.

Lemma 4.6.1. The applications [ — [, f(2)d.T';(u") (1 <i < d) defined on the
set of elementary functions, can be extended to the set . This extensions, denoted
by [ d-T*(u"), satisfy :

(i) Jea f(2)d.T(u') = T(fus M*“<), ¥t >0, Py-a.e for e x € E.

(i) For (fn)nen sequence of T such that [f, — f] — 0, there exists a subsequence
([ wen such that [ f,, (2)d.T;(u") converges uniformly on any compact of
0,¢) (10,00) if u € F?) to [ f(2)d.Ti(u’) for every 1 < i < d P,-a.e for
gex el

With can prove a multidimensional version of Lemma 4.1.1 with the same argu-
ments used in its proof. We have the following multidimensional It6 Formula.

Proposition 4.6.2. Let u be an element of F® (resp. F2.) and F : R — R
a continuous function admitting locally bounded Radon-Nikodym derivatives f; =
OF/0x;, 1 <i < d, satisfying the following condition for any 1 <i < d and k € N

tim [ (o) + 1) = @) P (d2) =0 (@6.1)

Then, P,-a.e for q.e x € E, the process F(u(X;)),t € [0,00) (resp. [0,()) admits
the decomposition

F(u(X,) = F(u(Xo) + M(F.u) + Qu(F,u) + Vi(Fu)  (46.2)

where M (F,u) € Mo, (resp. Ms-1oc) Q(F,u) € Nejoe (resp. N f-toc) and V (F, u)
15 a bounded variation process given by :

My(F,u) = MZF,u) +Z/ Fiu(X,))dMY e

QFu) = 2;4ma¢mwo+mwm>
Vi(Fou) = Y {F(u(X,)) = Fu(X)) M fuixy) —utx. 1) Ls<ey

—F(u(Xe-))1lpse
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Proof. As in the proof of Theorem 4.1.2, we can assume that u is a bounded
element of F and each f; is bounded. For ¢ : R? — R an inﬁnitely differentiable
function with compact support, the function F), defined by F,(z) := f]Rd
y/n)¢(y)dy converges pointwise to F'(z). Setting : f,,; = 0F,/ 83:1 we obtaln thanks
0(4.6.1) :

limn [ [Foiu(@)) = o)) P (dr) = 0

The rest of the proof follows step by step the proof of Theorem 4.1.2.

In the case where E = R? and £ is given by

ou 0
z I
Rd 3:152 axj
where for every (i, j), a;; is a bounded measurable function. The coordinates func-
tions m;(z) = z;,1 < i < d, belong to Fj,c and M = (M7r1 <, M C) is a rnar—
tingale additive functional with quadratic co-variation (M* M J fo a;; (X
hence :

pariey(dz) = ag(z)dr, and the condition (4.6.1) holds for any locally bounded
measurable function.
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Chapitre 5

Stochastic calculus for non
necessarily symmetric Markov
processes

Abstract : We consider a Markov process X associated to a non-necessarily symmetric
Dirichlet form &£ and establish a representation theorem for the class of its local additive
functionals locally of zero energy. We define a stochastic integral with respect to the
elements of this class and can then obtain an It6 formula for the process u(X), when u
is in the domain of £. In case the state space is R¢, we establish a decomposition of X
similar to the Lévy-It6 decomposition for Lévy process and obtain an Itd formula for
X.

5.1 Introduction

The semimartingale theory has produced a fundamental tool based on stochastic
integration and It6’s formula : the stochastic calculus. Since Markov processes
are not in general semimartingales, Fukushima [20] developed another stochastic
calculus in the framework of symmetric Dirichlet spaces. For a symmetric Markov
process X with a regular Dirichlet form £, and for any element u of the domain
F of &, the process (u(X;) —u(Xo),t > 0) admits the decomposition

u(Xy) — u(Xo) = M* + N* (5.1.1)

where M™ is a martingale additive functional of finite energy and N is a contin-
uous additive functional of zero energy. This decomposition is called Fukushima’s
decomposition and it can be seen as a substitute of the Doob-Meyer decomposi-
tion of super-martingales and It6’s formula for semimartingales. The part of the
class of bounded variation processes in the semimartingale theory is played by N/,
the class of additive functionals of zero energy. In general an additive functional
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is not of bounded variation and therefore the Lebesgue-Stieltjes integrals can not
be defined. Nevertheless, Nakao [35] introduced a stochastic integral fg F(Xs)dN;
for f bounded function element of F and N element of the following subclass of
N

No = {N"— [ru(Xs)ds :u € F}.

In his It6 formula expending u(X') [35], this integral replaces the Lebesgue-Stieltjes
integral in the Ito formula for semimartingales. Besides, this integral is used by
Fitzsimmons and Kuwae [17], to study the lower order perturbation of diffusion
processes.

The conditions of existence of Nakao’s integral being too restrictive, this notion
could not be used to study the lower order perturbation of symmetric Markov
processes that are not diffusions. Therefore Chen et al. [7] have extended Nakao’s
integral to a larger class of integrators as well as integrands. Using time reversal
they have defined an integral fg f(Xs)dCs for f locally in F and C in a class of
processes containing N,. The process C' is not in general of zero energy but of
zero quadratic variation and the integral is not an additive functional or a local
additive functional but a local additive functional admitting null set. Kuwae [31]
gives a refinement of Chen et al. work, redefining the stochastic integral without
using time reversal but restricting the class of integrands.

Our aim in this paper, is to construct an integral fot f(X5)dCy for a Markov
process X associated to a non necessarily symmetric regular Dirichlet form (€, F),
f locally in F and C' local continuous additive functional with zero quadratic
variation. To do so, one can not extend the construction of Chen et al. neither
Kuwae’s construction because they both heavily rely on the symmetry of the
Markov process.

On one hand, it is legitimate to solve this question since many results for sym-
metric Dirichlet forms hold for non-symmetric Dirichlet forms, see e.g., [28], [29],
[30], [32] and [37]. In particular, Fukushima’s decomposition (5.1.1) holds for non-
symmetric regular Dirichlet forms, but also the correspondence between Markov
processes and (non-necessarily symmetric) Dirichlet forms, Revuz correspondence
and other relations between probabilistic notions for a Markov process X and
analytic notions for &£.

On the other hand, the interest of constructing such an integral is that it leads to
an Ito6 formula for u(X) when w is element of F. Moreover when the state space
of X is R¢, we obtain an It6 formula for X. With this paper we would like to offer
new tools to study Markov processes.

The paper, based on Fukushima’s decomposition (5.1.1) for X non necessarely
symmetric, is organized as follows. In Section 2, we present some preliminaries.
For u element of F, we give in Section 3, a necessary and sufficient condition for
N" to be of bounded variations. In Section 4, we show that a continuous additive
functional with zero quadratic variation is locally in N.. Then in Section 5, we
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construct a stochastic integration with respect to N*. To do so we first establish
in Section 5.1, a decomposition of N* as the sum of three processes N{', N3 and
N3 such that N{* and N3 are respectively associated to the diffusion part and
the jumping part of the symmetric part of £, and N§' is of bounded variations. In
Sections 5.2 and 5.3, we present respectively stochastic integration with respect
to N{* and Nj'. These results lead to an integral with respect to N* which is
used in Section 5.4 to establish an It6 formula for the process u(X), u in F, in
which this new integral takes the place of the Lebesgue-Stieltjes integral in the
classical It6 formula for semimartingales. Still in Section 5.4, we show, thanks to
Section 3, that when N* is of bounded variations the obtained stochastic integral
coincides with the Lebesgue-Stieljes integral with respect to N*. We also show
that when the Dirichlet form is symmetric, the obtained stochastic integral with
respect to N* coincides with the integral defined by Chen et al [7]. In Section
5.6, we work with Markov processes in R?. We establish, using a Berling-Deny
formula for £ shown by Hu et al. [23], a decomposition of the coordinate process
X for i = 1,...,d, similar to the Lévy-Ito decomposition for Lévy processes.
The drift part process is replaced by a local continuous additive functional. Under
the assumption of symmetry, similar decompositions have been established in the
previous chapter (Chapter 4 - Theorem 4.1.2) and in Chen et al. [9]. Thanks to
this decomposition, we establish an It6 formula for the process X.

5.2 Preliminaries

This section presents mostly notation and vocabulary from the book of Fukushima
et al. [21] still available in the non necessarily symmetric case. It contains also
some immediate consequences of existing results that will be useful for the other
sections.

Throughout this paper, we assume that F is a locally compact separable metric
space and m is a o-finite Borel measure on E such that Supp[m| = E. L?*(E;m)
denotes the real L2-space with inner product

(. ) = / f(2)g(x)m(dz), for any f,g € L*(E;m)

We adjoin to £ a point A and endow Ex := E U {A} with the topology of one
point compactification. If E is already compact, A is an isolated point. A real
function f on E is extended to a function on Ea by setting f(A) = 0.

We fix a (non necessarily symmetric) regular Dirichlet form & on L?(E;m) with
domain F. Many examples of Dirichlet forms on L?*(E;m) with E distinct from
R? are given in the book of Ma and Rockner as well as examples with £ = R?
(see [32], chapter 2).

We set & (u,v) = E(u,v) + (U, 0)m, E(u,v) = E(v,u),
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E(u,v) = 1/2{E(u,v) + E(u,v)}, & (u,v) = E(u,v) + (u,v),, and

E(u,v) = 1/2{&(u,v) — E(u,v)} for any u,v € F.

For any Borel set B let Fp := {u € F : u = 0 m-a.e on E\B}. An increasing
sequence of closed sets {F}} is called a nest if and only if U,,>1 FF, is & -dense in
F. A subset N C FE is called exceptional if N C Ny>1(E\Fj) for some nest {F}}.
We say that a property of points in E holds quasi-everywhere (abbreviated q.e), if
the property holds outside some exceptional set. An q.e. defined function f on F
is called quasi-continuous if there exists an nest {F}} such that fp is continuous
on Fy, for any k.

Let {T;}1>0 and {Gy}aso (resp. {Tt}tzo and {@a}a>0) be respectively the semi-
group and the resolvent associated to (£, F) (resp. (€, F)).

By Chapter V, section 2 of [32], every element u of F admits a quasi-continuous
m-version. Moreover, there exists a Hunt processes

M = (Q7 {th}tZ()v {Xt}t207 {Pz}zEEA)

with space E and life time ¢ which is properly associated to (£, F) i.e., for any
t,a > 0 and f € L*(E,m), p;f and R,f are respectively quasi-continuous m-
versions of T; f and G, f, where for any x € E :

mﬂ@_aﬂummmmﬂ@_Aew%ﬂmﬁ
Therefore for u € L*(E;m) we have

u€eF & supa(u— Ryu,u), < oo and in this case :
a>0

E(u,v) = alggo a(u — aRyu,v)y,, forallv e F (5.2.1)
Recall that a subset B of E is said to be nearly Borel measurable if for any
probability measure p in Ea there exist Borel sets By, Bo(C Ea) such that By C
B C By and P,(3t > 0,X;, € By — By) = 0. Here for any A C F we set
P,(A) = [ g, Pa(A)p(dz). We denote by B" the set of nearly Borel measurable
subsets of E.
For a nearly Borel set B(C Ea), op and 75 represent the first hitting time to B
and the first exit time from B respectively, i.e :

op = inf{t >0: X, € B}

g = inf{t>0:X, ¢ B}
It is well known that for a nearly Borel set B, op and 75 are (F;)—stopping times.
A set N C E is said M-exceptional if there exists N € B(E) such that N C N and

P,.(o5 < 00) = 0. We say that a set N C E is properly exceptional if N € B",
m(N) =0 and for any x € E\ N, P, (X; € EA\ N, X;_ € EA\N,Vt >0) = 1.
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For any set N C E, N is exceptional if and only if N is M-exceptional. Moreover
any properly exceptional set is exceptional and for any exceptional set N, there
exists a properly Borel exceptional set B containing N. (see [30], Lemma 4.5.(ii)
and Lemma 4.6.(iii)).

By proposition V.2.28 of [32], we have that a function u is quasi-continuous if and
only if is finely continuous qg.e. i.e., if and only if there exists a properly exceptional
set NV such that u is nearly Borel measurable on E\N and for = ¢ N :

P.(t — u(X}) is right continuous) = 1

If additionally u € F, the above property is equivalent to :

P, (u(X}) is right continuous and limu(X,) =u(X,-) Vt>0)=1  (5.2.2)

sTt

For a nearly Borel set B, define Fp\p := {u € F : v = 0 g.e. on B}. This is a
closed subspace of (F,&;). Tt follows from Corollary 2.1 in [30] that for any u in
F there exists a unique v in Fg\p such that & (v —v,w) = 0 for all w € Fg\p.
This unique v is called the 1-projection of u on Fpg\p and denoted by Hlch (u).
For any f Borel measurable function such that E, [e”75|f(X,,)|] is finite q.e. we
define :

Hyf(z) = E.le " f(X,,)] (5.2.3)

Then for any u € F, Hplu|(x) is finite q.e. and we can show with the same argu-
ments used in the proof of Theorem 4.3.1 of [21] that Hzu is a quasi-continuous
m-version of u — H}chu-

A subset G of E is said to be quasi-open if there exists a nest {Fj} of closed
sets such that G N F}, is open with respect to the relative topology on F} for each
k € N. In the same way one defines quasi-closed subsets.

For two subsets A, B of E we say that A C B q.e. if A\B is exceptional and we
say that A is q.e. equivalent to B and write A = B q.e. if the symmetric difference
AAB is exceptional. A set GG is called q.e. finely open if it is q.e. equivalent to a
nearly Borel finely open set. In the same way one defines a q.e. finely closed set.
A function f is quasi-continuous if and only if f~!(I) is quasi-open for any I open
set of R. (see [21] pp. 68). It follows from Proposition 4.1.(ii) in [30] that a subset
of E' is quasi-open if and only if is g.e. finely open.

Set : O :={G C E: @ is nearly Borel and finely open} and for a subset A of F,
set : Oq:={G € O:G C A}. For G € O define :

g = {{Gn} COg:G,CGryy Ynand G = U G, q.e.}

n=1

We denote Zp by =.
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Remark 5.2.1. For B C FE, denote by B" the set of regular points for B. Let
{F,} be an increasing sequence of closed sets and for any n € N, let G,, be the
fine interior of F,,. Then {F,} is a nest if and only if {G,} € Z. Indeed, note that
G, = F,\(E\F,)", thus it is nearly Borel measurable (see Theorem A.2.5 of [21]
and Proposition 10.6 in [{4]). Moreover, by Lemma 3.3 of [29], {F,} is a nest if
and only if J,—, G, = E q.e.

Let (Ra)a>0 be the resolvent associated to £. Define :
K(E):={gec L' (E,m):0<g(z)<1Vrc E}.

We fix an element ¢ € K(E) and let h = Ryp and g = Ry¢. Define the capacity
Cap as the capacity Cap,,, defined in [32], Defintion II1.2.4. Then a sequence
{F,}nen of closed sets is an nest if and only if Cap(E \ F,,) converges to zero as
n tends to infty.

The above lemma is actually Lemma 4.6. in [30] that we recall for the reader’s
convenience. We add point (iv). Indeed the equivalence (i)<(iv) is shown in the
proof of Lemma 3.6. in [30].

Lemma 5.2.2. For an element G in O and an increasing sequence {G,} of nearly
Borel finely open subsets of G, the following are then equivalent :

(i) {G.} € =g

(ii)) P,(lim, o 76, = 7¢) = 1 for m-a.e. x € E

(iii) P, (lim, 0 7g, =7¢) =1 for ge. v € E

(iv) lim, o Cap(G\G,) =0

Lemma 5.2.2 is used to establish the following lemma.

Lemma 5.2.3. Let {G}nen be an element of = and for each n, let {Gk}r.en
be in =g, . Then there exists {G,}nen € Z such that for each n € N, there erists
J,k € N such that G,, C Gj.

Proof. Let ¢ bein K(E). For any G element of O, set : R p(z) = E,[[[¢ e *p(X,)ds].
For any n € Nlet H, := {z € E: RS"¢p >n"'} and H, := {x € E: R{"p >
n~'}. Tt is known that : E\ H, € O. From the proof of Lemma 3.8. in [30] :
{H,} €2, H,CG,qe and H, C H, C H,1 q.e.

For each n, we apply the above procedure to {G, x N Hy,}ren which is in =g, , in
order to get {H,x}ren in Zg, such that : H,;, C Gy, q.e., Hyx C Hyp C Hypin
q.e. and E\ H,, € O, for each k. In view of Lemma 5.2.2 we assume, by taking
subsequences if necessary, that Cap(E \ H,)V Cap(H, \ H,,) <27 Set : G, :=
MNisy Hek, then Cap(E\ G,) < 27

Since each G, is quasi closed, there exists a common nest of closed sets {F}}
such that Fy, N G, is closed for any k,n. Then we have : Cap(E \ (F, N G,)) <
27" + Cap(E \ F,,), which converges to 0 as n tends to infinity. Let G,, be the fine
interior of G, N F,,. Then G, C G,.,11 and {G,} € = (see Remark 5.2.1). O
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Definition 5.2.4. F,. is the set of the real-valued measurable functions u on E
such that there exists {Gy} in = and a sequence {uy} of F such that for any k,
u(x) = ug(x) for g.e. x € Gy.

Evidently any u in Fj,. admits a quasi-continuous m-version. From now on, we
always assume that functions in Fj,. are represented by their quasi-continuous
m-versions. For u, {G}} and {u;} connected as in the above definition, set Hy :=
GrN{z : |u(x)| < k}. Then each Hy is q.e. equivalent to a nearly Borel finely open
set Hy. Hence {H}} belongs to Z and : u(z) = (—k) Vug Ak q.e. on Hy. Therefore
in Definition 5.2.4 one can always assume that each uy satisfies ||ug|/c < k.

An (F;)-adapted process A is an additive functional (AF in abbreviation) if there
exists A in F., and a properly exceptional set N such that : P,(A) = 1 for
x€ E\N,OA CAforalt>0andforallwe A:t— Aw) is finite cadlag
on [0,((w)), Ao(w) = 0, Ay(w) = A¢(w) for t > ((w) and A(w) has the additive
property : Ay s(w) = Ay(w) + As(Ow), s, t > 0.

A local AF or AF on [0, ([[ is a process that satisfies all requirements to be an AF
except that the additive property is required only for ¢, s > 0 with ¢t + s < ((w).

In the sequel, we say that A is a defining set for A or a defining set admitting a
properly exceptional set N or that N is a properly exceptional set for A.

An AF A is said to be continuous (resp. cadlag, resp. finite ) if it has a defining set
A such that A (w) is continuous (resp. cadlag, resp. finite) in [0, 00) for any w € A.
The abbreviations CAF and PCAF stand for, “continuous additive functional”
and “positive continuous additive functional” respectively.

We say that a local AF A is continuous or a local CAF if there exists a defining
set A such that A (w) is continuous in [0, (w)[ for any w € A.

We denote by A} the set of PCAF. A Borel measure p on E is called smooth
if it does not charge exceptional sets and there exists a nest {F,} such that
w(F,) < oo for all n. We denote by S the family of all smooth measures. There
exists a correspondence between the elements of S and AT called the Revuz
correspondence characterized as follows (see e.g. [32]) : pin S is the Revuz measure
of A if for any Borel measurable positive f

u(f) =lim - g, </f dA)_st%) “E, (/f dA)

Definition 5.2.5. For any A in A} we denote its Revuz measure by pia. A se-
quence {G,} element of Z is said to be associated to p in S if u(G,) < oo for
each n. {G,} is said to be associated to A € AT if it is associated to ju.

Let p be a measure charging no exceptional set of E. In view of Remark 5.2.1, p
has an associated nest {G,,} € Ziff u € S. Indeed the direct way is a consequence
of Remark 2.1, and the converse can be established exactly as in Lemma 2.2 in
[31].
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A positive Radon measure 1 on E is said to be of finite energy integral (relatively
to &) if there exists C' > 0 such that :

/E‘U(xﬂﬂ(dl‘) < CVé&(v,v), ve FNCy(E).

In this case, F C L'(E,u) and the above equation holds for any h € F (see
Theorem 2.2.2 on [21]). We denote by Sy the set of finite energy integral measures.
A measure p belongs to Sy if and only if there exists an unique element in F
denoted Uy such that & (Uyp, b f 5 p(dx) for all h € F or equivalently if
there exists UW € F such that 51 h, Ul,u fE p(dz) for all h € F. Moreover
So C S and a set N C F is exceptional if and only 1f N(N) =0 for all u € Sy if
and only if u(N) = 0 for all g € Sgo := {p € So : w(E) = 1, ||U1t]|cc < 00} (see
[37], section 2.3).

According to Lemma 4.3 of [28], for any A € A}, v € Sy,

E,[A)] < e[| U1 loopia(E) (5.2.4)

Lemma 5.2.6. Let A" be a sequence of AF. Suppose that pa,(E) converges to
zero as n — oo. Then there exists a subsequence (n') satisfying the condition that
for qe. x € F,

P, (A?, converges to zero uniformly on any compact> =1 (5.2.5)

This can be proved using (5.2.4) and the arguments used in the proof of Lemma
5.1.2 of [21].

To simplify the formulation of the results, we define the energy of an AF A by

2 00
e(A) := limsup %Em {/0 eatAtht]

a—0o0
For two AF A, B, their mutual energy is defined by

1

Sle(A+ B) —e(A) — e(B)]
An AF M is called a martingale additive functional (abbreviated as MAF) if it
is finite, cadlag and for q.e z in E : E,[M?] < oo and E,[M;] = 0 for any ¢ > 0.
Denote by M the set of MAF, by M the set of MAF’s of finite energy and

e(A, B) ==

N, = {N : N is a finite continuous AF, e(A) = 0, } '

E.(|Vt]) < oo q.e for each t > 0

Lemma 5.2.7. Let M be an AF admitting a properly exceptional set N such that
forz € E\ N andt >0, E,[M? < oo and E,[M;] = 0. Then Mis a MAF.
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Proof. The only point that we have to show is that there exists a defining set
on which M is finitely cadlag. Evidently M is finite. Let A be a defining set of
M admitting a properly exceptional set N such that M (w) is finite on [0, 00) for
any w € A. For any x € E\N, M is a (P,, (F;))-martingale. Thus for z € E\N,
M has a P,-modification cadlag denoted by M?®. For w € 2 such that ((w) > 0
define :

Mi(w) = <i€nf€Q sup{ M, (w) : s <r < ((w),r € Q}
M{(w) = sup inf{M,(w):s<r<((w),reQ}
5§<¢,s€Q

and M¢(w) = M{(w) = 0 if {(w) = 0. Define :
A={weA:0<((w) < ooand M (w) = Mi(w)}U{w € A : ((w) € {0,00}} € Fue

The fact that for w € A, M(w) is cadlag on [0, ((w)), leads to
Mg (w) = lim supyye () Mi(w) anfi M¢(w) = liminfye(,) Mi(w). Therefore, M (w) is
finite cadlag on [0, 00) for w € A.

We shall prove that A is a defining set for M. We can check easily that 6,A C A

for all t > 0. We must prove that P,(A) =1 for all z € E\N. For z in E\N, set
A" = An{w e Q: M? is cadlag} N {w € Q : My(w) = M (w)Vt € QT}. We have
then : P,(A®) = 1. For w € A® such that 0 < ((w) < oo, one obtains : M (w) =
lim supye ) Mif(w) = liminfueq) M (w) = M{(w). Consequently : A* C A and
P.(A) =1 O

For any v € F, M* and N“ denote the elements of M and N, respectively, that
are present in Fukushima decomposition of u(X;) — u(Xy),t > 0, i.e. :

w(Xy) —u(Xo) = M+ N/ for t > 0, P,-a.e for q.e x € E.

The following lemma can be proved in the same way as Lemma 5.1.2 and Corollary
5.2.1 of [21].

Lemma 5.2.8. Let (uy,) be a sequence of quasi continuous functions in F and &, -
convergent to u. Then there exists a subsequence {uy,, } such that for q.e x € E,

P, (un, (X¢) converges uniformly to u(X;) on each compact interval of [0,00)) = 1

and the same holds for N* and N", and for M"" and M", replacing un, (X)
and u(X) respectively.

We close this section by mentioning that in the literature the integral of H with
respect to K is denoted by [ H,dK, or by H % K.
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5.3 CAF of bounded variation

In this section we adopt the following convention : co — oo = 0. Thus for two
PCAFs of X, B and A, the process A — B :={A; — B, : t > 0} is always a local
CAF. Set :

A, ={A-B:ABeA}}

We recall the following definition given in [21] : p is called a smooth signed measure
if there exists a nest {F)} of closed sets such that each 1p, . is the difference of

two finite smooth measures, thus p = u — 4 for some smooth measures ;")
and p® finite on {F}}.

By the Revuz correspondence between S and A}, there is a bijection between
smooth signed measures and A.. In the sequel we refer to this bijection also as
the Revuz correspondence. For any A € A., we denote by 4 its Revuz signed
measure. it is clear that for A € A, || is the smooth measure associated to V,
where V; represents the total variation of A on [0, ¢].

Definition 5.3.1. We denote by S-S the set of smooth signed measures. We say
that a smooth signed measure p belongs to Sy-Sy if and only if is the difference of
two measures in Sp.

It is clear that a smooth measure signed z belongs to S-Sy if and only if ™), 12
belongs to Sy, where j = ") — p(?) denote its Jordan decomposition, and in this
case there exists a unique element of F denoted by U;u such that,

h € L'(E;|u|) and & (Uyp, h) = / h(z)p(dz), for any h € F
E

Definition 5.3.2. For p in S-S and G in O, {Gy} element of Z¢ is said to be
associated to p if for each n, 1g,.pu 1s the difference of two finite measures. We
say that a nest is associated to A € A, if it is associated to pua.

It is clear from Remark 5.2.1 that for any smooth signed measure pu € S-S and
G € O, there is a {G, } € Z¢ associated to p.

For G C E we have defined F as the set {u € F : u(z) =0 for q.e. x ¢ G}. Set
Foc = FaNFy, and denote Fy, g by Fy, (Fp is the set of bounded elements of F).

The following Theorem is an extension of Theorem 5.4.2 of [21] to the non sym-
metric case. We omit its proof which consists in the replacement of Theorem 5.2.4.
and Lemmas 5.4.1, 5.4.2 and 5.4.3 of [21] by respectively Lemmas 5.3.6, 5.3.7, 5.3.8
and 5.3.9.
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Theorem 5.3.3. For w € F and G € O, N" is of bounded variation on [0, 7¢)
P,-a.e. for g.e. x € E if and only if there exists p € S-S such that

E(u,v) =< p,v >, Yo € U Fo.c

n=1
where {G,} € Eg associated with w. In this case,
P.(N}=—A; fort <7g)=1 forgqex e E (5.3.1)
where A is an element of A. with Revuz signed measure .

Definition 5.3.4. We define N? as the set of local CAF’s C such that, there
exists u in F and A in A, satisfying :

Fy C LY(E, |pal)
and
P.(C, =N+ A fort<()=1forqex e FE
In this case, we define the linear functional ©(C) on Fy by

<O(C),h>=—=E(u,h)+ < pa,h >, he F

It follows from Theorem 5.3.3 that the definition of ©(C') for C € N? is consistent
in the sense that it does not depend of the elements which represent C'.
The following Lemma is an immediate consequence of Theorem 5.3.3 :

Lemma 5.3.5. Let CV and C® be elements of NO and G in O. Then CV) = C?
ont <1 Py-a.e for e x € E if and only if

< O(CM), h >=<0(CH),h> foralhec Fyg.

Lemmas 5.3.6, 5.3.7, 5.3.8 and 5.3.9 below are versions for the non-symmetric
case of Theorem 5.2.4. and Lemmas 5.4.1, 5.4.2 and 5.4.3 in [21] respectively. This
results are proved in [21] using the approximation of &, £ (u, v) := L (u—pu, v)m
for u,v € F, available for symmetric Dirichlet forms. The proof for the non-
symmetric case can be done following the same arguments but using instead the
approximation of £ given by (5.2.1). We omit their proof.

Lemma 5.3.6. Let an AF A be an AF element of N, and u a function in F.
Then : A= N" if and only if :

a—0o0

lim o’E, ., {/ eatAtdt} =—E(u,v) Yo e F (5.3.2)
0
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For an AF A, set : g(t) := {E,,[A%]}/2. Then we have : g(t + s) < g(t) + g(s) for
all t,s > 0, thus lim;_,,, g(t)/t exists in R. Now suppose that a := lim,_,¢ %Em [AZ]
exists also in R, then there exists a constant p > 0 such that 1E,,[A7] < p(1+1)
for all t, therefore by dominated convergence, lim,_,. fooo e_tEm[Af/a]dt = a,

thus e(A) = a. This is the case when A; = f;g(Xs)ds for g € L*(E, m) and also
when A in A, is such that p4 belongs to Sp-Sp. (see pp. 201 of [21]). The following
lemma is then an immediate consequence of Lemma 5.3.6.

Lemma 5.3.7. Let p € Sg-So, w := (Uyp) and A € A, the CAF of bounded
variation associated to p, then;

t
Ay =—NY —i—/ w(Xs)ds t >0 Py-a.e for gex € X
0
For u € F and G € O, H}J\Gu was defined in (5.2.3), this is a quasi-continuous
m-version of u — H}Gu.

Lemma 5.3.8. Let G € O, then for any u € F,

1
HE\Gu

t
P, (Nt = / H;J\Gu(XS)ds, Vit < O'E\G) =lgexek
0

For G € O, let EY be the restriction of & to Fg X Fg, and for u,v € Fg,
E%(u,v) = £%v,u). £ and €Y are Dirichlet forms in L*(G,m). We denote by
RS and RS the resolvent associated to £¢ and Y respectively.

Lemma 5.3.9. For any N € N, and relatively compact set G € O :

lim o?Ey,,, {/ e_o‘tNtdt} =0
TG

a—r 00

for h = Rff with f a bounded Borel function.

5.4 A representation for local CAF’s of zero
quadratic variation

Let D be a class of local AF’s. Following [7], we say that a (F;)-adapted process A
is locally in D, and write : A € Dy, if there exists a sequence A™ in D and {G,, }
in = such that A, = A} for t < 7, P,-a.e. for q.e. x € E. In view of Lemma 5.2.2,
A is hence a local AF. Thanks to Lemma 5.2.3, note that : (D-ioc) f-toc = Df-loc-

Definition 5.4.1. We denote by € and N the set of AF’s of finite energy and
the set of AF’s of zero energy respectively.

Recall that K(E) :={g € L'(E,m):0 < g(z) < 1Vx € E}.
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Definition 5.4.2. We say that a process (Vi,t > 0) is of zero quadratic variation
(on [0,C[) if for any T > 0, for all n positive, some (and hence for all) g in K(E),
P, .. (QF >n,T < () converges to zero as n tends to oo where

QT - Z/ V;E(H-l ‘/tz/n) dt.

The main result of this section is the following representation theorem for additive
functionals of zero quadratic variation. It will be proved at the end of this section.

Theorem 5.4.3. Let A be a local CAF element of €40 such that A is of zero
quadratic variation. Then there exists {G,} € = and (u,) € F such that P,-a.e.for
ge. rekl :

t
Ay = N/ — / un(Xs)ds for allt < 7¢, (5.4.1)
0

Remark 5.4.4. Every element N of N is of zero quadratic variation. Indeed, for
any T >0 :

Em[Q%] = Z/ t/Kogtz/K]dt

< K/ N ld

< 'K? / e "B, [N}]dt — 0 as K — oo
0

In view of Lemma 5.2.2, any N in Ny is also of zero quadratic variation and
evidently if N is of zero quadratic variation then also (Ninr,t > 0) for any (Fy)-
stopping time T.

Hence a local CAF of locally finite energy is of zero quadratic variation if and
only if it belongs to N? s, (Definition 5.3.4). This set plays an important part
in the construction of Nakao’s stochastic integral [35]. Before giving the proof of
Theorem 5.4.3, we will establish a series of lemmas and remarks that will help us
in the demonstration.

Lemma 5.4.5. Let V' be a (F;)-predictable process, finite P,,-a.e. and of zero
quadratic variation and W be a (Fi, Py.,)-semimartingale, where g is a element

of K(E). DefineY by Y, = Wt‘/}—fg VidW,,t > 0, then Y is also of zero quadratic

variation.
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Proof.

K-1
> Vs — Yaiyx)?
1=0
K-1

I
M

{ WV )iy x — WV )ik}

-1 (i+1)/K 2
/ V,dW,
i ti/k
t(i+1)/K
/ VedW | {WV )1y 6 — WV )ik}
t

—1
-2
= i/k

=: SKJ t) + S}gz(i) — QSK,QQ)

ND

+

(]

=1

o

~—

it is not hard to show that for : = 1,2, 3, fOT Sk i(t)dt converges in Py, (.,T < ()-
measure to fOT fot NZ2d[W],dt, where [W] denotes the quadratic variation of W. [

The following result is a little modification of 11.4.14 of [4] and wil be used to
build sequences of =.

Lemma 5.4.6. Let Y be F.-measurable and N be a properly exceptional set such
that for any x € E\N,Y 00, =Y ast — 0 P,-a.e and there exists 6 > 0 such
that

sup E,[sup|Y 0 8;]] < o0 (5.4.2)
x€E\N t<d

Then for any open set I CR : {z :E,[Y] € I]\NN € O .

Proof. We have : E\N € O, and P,(oy = o) = 1 for all x € E\N. The
function f(z) := E.[Y] is universally measurable (see theorem 1.5.8 in [4]) hence
Ip\w(x)f(x) is nearly measurable, indeed :

Low()f(2) = I 1px()aRa f(2)

where in the last equality we have use (5.4.2) and the fact that Y o 6, — Y as
t — 0 P,-a.e. For areal a, set : A:= {z: E,[Y] <a}\N, then A is nearly Borel.
We shall prove that A is finely open. For z in A and € > 0 such that E,[Y] < a—e,
set B(z) = B.(x) UN where B.(z) := {y : E,[Y]| > a — ¢/2}. Then : B(z) € B",
and E\A C B(z). On the other hand :
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P.(0p@m) =0) < Pw(lir?_i}lp Ex,[Y] >a—¢€/2)
= P,(limsupE,[Y 00| F] > a—¢€/2)
t—0
S P:v(hmsup ELEHY © Ht - Y||]:t] Z 6/2)
< lmP (supE [sup |Y 00, — Y||Fs] > €/2)
s<t r<t
2
< —hmE [sup [Y 06, — Y]]
—0 r<t
2
= —E [limsup |[Y o6, — Y| =0 (5.4.3)
t—0

This shows that A belongs to @. With the same arguments we can show that for
any a € R, {z : E,[Y] >a}\N € O. O

The following fact will be used in the proof of the next lemma :
Fo=Fc={AeFu: AN{( <t} € F, Vt > 0}.

Indeed, obviously F C Fi. Forany s > 0and A € B(E), {X € A} ={X; € AIn
{s < ¢} € F, thus F C Fe. Therefore, Fo, = ﬂuep(E) " CNuern) Fi=F
(see (6.20) in [44]).

Lemma 5.4.7. Let A be a local AF with defining set A. Then A can be extended
to an AF A with defining set A such that for w € A satisfying ((w) < oo, the
function t — Ay(w) is continuous at t = ((w), where Ay = sup,,; |As| (< 00).

Proof. We will use te same argument as in [7], Remark 2.2. For w € Q and s < ¢
let A7,(w) == sup{A,(w) : s <7 < t,r € Q} and Af(w) = inf{A] , (w) : s <
((w),s € Q}if 0 < ((w) and A7 (w) = 0 if ((w) = 0. For any t > 0, set :

Ajw) =14 1 . 5.4.4
'w) { Af(w) ift > ((w) ( )
First, we shall prove the (F;)-adaptedness of A. Let I € B(R) and t > 0. It is
clear that A7 € Foo = Fe then {A; € I} N{¢ <t} = {Af € ]}ﬂ{{ﬁ t} € Fi.
Since {A4; € I} N{t <} ={A4; € [} N{t < (} € F; we obtain that {A; € [} € F
which gives the (F;)-adaptedness of A.

Now we shall proof the additivity of A(w) for w in A. We will prove only the case,
t < ((w) < t+ s, for the other cases, the additivity is evident. Thanks to the right
continuity of A,(w) for s < ((w) we have that Af(w) = limsup(,, As(w). Since
C(w) = C(w) —t > 0, Ac(hw) = lim SUD g1(¢ (1)~ pn As(fw) = hmsupsTCA (w) —

Ay(w) = A¢(w) — Ay(w). Finally, A;14(w) = Ac(w) = Ay(w) + Ac(Ow) = Ay(w) +
A (Ow). O
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From now on, for any local AF A, A denotes the process defined in Lemma 5.4.7.
For any G € O we define X by :

XG: Xt if t<7—G
t A if tZTG

Remark 5.4.8. Let A be an AF admitting a properly exceptional set N and G be
an element of O. Suppose that N contains (E\G)\(E\G)". With the arguments
used in the proof of Lemma 2.1. in [38], we show that (Aspry,s > 0) is an AF of
X% admitting N as properly exceptional set.

Lemma 5.4.9. Let A be a local CAF. There exists {G,} in = such that for any

t>0,p>1andn €N, sup,c E,[A},, ] < oo, where 7, == 7¢,.

Proof. Forn € Nset G, :={x € E: P (n~! < () > 0}, then {G,} is in Z. Indeed,
if fo(x) :=Py(n~' <), then p f(z) = Po(n™' +t <) 1 fu(x) as t | 0, ie.,
fn is O-excessive. Consequently f,, is nearly Borel and finely continuous, then G,
belongs to O.

For n in N, set ¥, (x) := E,[exp(—A,-1)]. Let N be a properly exceptional set for
A, then by Lemma 5.4.6, for any n € N, G,, :=={z € G, \ N : ¥,(z) >n"'} € O.
it is clear that for any n, G,, C G,11. Moreover, if x € E'\ N, there exists k,n € N
such that f,(z) > 0 and v, (z) > k™!, then x € Gyy,. Hence {G,,} belongs to Z.
In order to finish the proof we have to prove that

sup B [A},, ] <ocoVt>0 (5.4.5)

Z‘EGn

The following argument is used in the proof of Theorem 5.5.6 of [21]. Set ¢ := n ™!

and take A > 0 such that Bi=1—t+e? < 1. For any = in G, we have :
t<thy(x) <1-Pi(A >N+ e, thus P,(A; > \) < 8. Set 7, := inf{s > 0 :
Ay = kA}. it is clear that 41 > ny + 11 0 6,, when 7, < co. We have :

P.(Aipr, > (k+ 1) = Po(mesr <tAT,)

P,(mob, <tn <tAT,)
E.(Px, (A > \),m <t A7)
< FPu(mk <tAT,) < B

IN

which leads, for every p > 1, to

Ex(Ag/\m) < Z{/\<k + 1)} < oo,
k=0
We assume that N contains (E\G,)\(F\G,)" for all n € N (if it is not the case
one can always expand N). Hence (Agnr,,s > 0) is a AF of X% admitting N as
a properly exceptional set (see remark 5.4.8).
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We show now by induction that sup,cq Ez[Af,,
bounded f, set p% f(z) = E,[f(Xi)1lgen],

ar) < oo for any k € N. For

sup Eo[AY 0] = supEo[AL, Vsup [Agiknarl”]
zelG zeG s<t
< L+ 2)sup Ea[Afy,, ] +27sup P (B [Af5]) (2)
< (1427 sup E[Afy,) ] + 2" sup E,[A], ]
zeG zeG

(5.4.6)

which is finite if sup, . E, [A‘?kt) < 00. This finishes the proof of the lemma. [

ar)

We define M€ as the set of CAF in M and M its orthogonal complement, i.e.
the set of purely discontinuous MAF of finite energy. We set :

M = (M e M Pgae forqe zcE: My = M,_ if ( < oo}
ME = (M e M e(M,L)=0VLec M}

The set M7 is a closed linear subspace of M?. This is a consequence of the fact
that if (M™) converges to M in (M, e), then there exists a subsequence (ny) such
that (M™) converges uniformly on any compact of [0, 00), P -a.e. for q.e. z € E.
Hence M admits the following decomposition :

M= Mp Mg M.

For M € M we denote by MP the part of M in MP, with p = ¢, j, k. For a MAF
M, [M]; denotes its quadratic variation on [0, ], i.e.,

(M) = (Mo + Y (AML)?
s<t
Lemma 5.4.10. We have :
(i) If M € M*, there exists A in A, such that M; = A; fort < ¢ Py-a.e. for g.e.
x € E. Moreover, ua belongs to Sy-Sy.

(ii) For M € M, M € M* if and only if for all t, [M]; = 0 P,,-a.e. on {t < (}.

Proof. (i). Note that {f «+ M“*: f,u € F} is dense in M*. Indeed, if L € M* is
orthogonal to f * M%* for any u, f € F, then 0 = e(L, f * M%F) = e(L, f + M"),
thus L = 0 (see Lemma 5.6.3 in [21]).

Now for M in M, there exists (f,)nen and (u,),fn sequences in F such that
e( fox MUk — M) converges to 0. Denote by (N, H) a Lévy system for X and k the
killing measure of £, i.e. k(dz) = N(x, A)ugy(dz). For n,m € N, [ (fo(2)un(z) —
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Fon (@)U (2))2k(dz) = e(f, ¥ MUk — f, % M%) converges to zero as n, m tend
to co. Hence there exists g € L*(FE, k) such that f,u, converges to g in L*(E, k).
For any h € F, it follows from Beurling-Deny formula (Theorem 2.15 in [28]) that

/h(x)lg(x)Vf(dI) < (&(h, h))1/2(/ g*(x)k(dx))"/?

E E

which implies that : g.k € Sp-Sy. Let A be the element of A, associated to g.k by
the Revuz correspondance. Similarly, note that : g,.k € Sp-Sp, where g, := f,u,
and

E(U(g-k) — Us (g0 ), Us (9.) — Ur(gu.k) < /E (9(x) — gn(2))*k(dz) — 0.

Let A™ be the element of A, associated to g,.k : A} = fot gn(Xs)N (X, A)dH,.
By Lemmas 5.2.8 and 5.3.7, P -a.e. for q.e. x € E and by taking a subsequence
if necessary, A" converges uniformly on any compact to A. But : A? = f,,  MunF
on t < (. This shows that M; = A, for t < { P,-a.e. for q.e. vz € F.

(ii). The necessacity is a consequence of (i). For the sufficiency, suppose that for
any t, [M]; = 0 P,,-a.e. on t < (, then P,,-a.e., [M] = 0 on [[0,([. Then [M’] =0
on [[0,¢[ Py-a.e. but : A[MY], = (AM2)2 = 0, hence : [M’] = 0 on [0, co[. P,,-
a.e., thus e(M?) = 0 and therefore, M7 = (. In the same way we can show that
M =0. O

Let G be an element of @ and denote by £ the restriction of £ to Fg x Fe.
Then £ is also a Dirichlet form and the process X& is properly associated to
EY (see Theorem 4.3 in [30]). When G is not open, £ is not necessarily regular,
nevertheless, all results of regular Dirichlet forms used in this paper are valid
for £, in fact, thanks to a regularization method, these results hold for any
quasi-regular Dirichlet form, see chapter V' of [32] for more details. When we
introduce a class of AF’s associated to £, we add the symbol (£¢) in order to
differentiate it from the same class associated with £. For example for u element
of Fg, N*(£Y) denotes the CAF of zero energy associated to X obtained from
Fukushima decomposition for u(X&) — u(X§). M(EY) denotes for example the
set of MAF’s of X¢ of finite energy.

Lemma 5.4.11. Let G be a element of O and u in Fg. Then :

Nu

tATG

= NMEY) fort >0 Py-a.e for gex € E

Proof. First we shall prove the lemma for u = R{'f with f € L?(G,m). In this
case, NMEY) = JATG(u(Xs) — f(Xs))ds. On the other hand, for any w € Fg,
E(u,w) = E%u,w) = (f — u,w),. Then it follows by Theorem 5.3.3 that for
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P -a.e for qex € F,
tATG
Niwy = [ () = (X)s = NE)

For the general case, let u € F¢ and (f,) C L*(G,m) such that u, = R{f,
converges to u with respect to cS'G and hence, with respect to .. Then P,-a.e. for
q.ex € E, N/"(£9) and N} converge uniformly on any compact to N*(£Y) and
N} respectively. ]

The following lemma can be found in Nakao [36] under the assumption that £ is
symmetric. We relax this assumption.

Lemma 5.4.12. Let (¢;)i=0 be a function such that for every t > 0, ¢; belongs to
L*(E,m) and
Ciys = Ct+ DiCs, 1,8 >0

and limy_o ||c¢|| = 0. Then there exists a unique u in L*(E,m) such that
¢t = pu — u — Sy where Sy = fot psds.

Proof. Since : ||ciis|| < Jle]| + |lesll, then : limy oo |||/t exists in Ry Set :
U= — fooo e“te,dt and C = fooo e °tc,dt, a > 0. Then u and C, are in L2(E,m).
Straightforward computations show that for any a > 0 :

aCy = (a—1)Ryu —u (5.4.7)

One also has : o [; e (pu — u — Su)dt = (o — 1)Ryu — u. Hence by the
right continuity of (ct) and (pyu — u — Syu) and the uniqueness of the Laplace
transform we have that : ¢, = pyu — u — Syu. Let v be another function satisfying :
¢; = ppv—v—=Syu. Thanks to (5.4.7) we have for any o > 0: u—v = (a—1) Ry (u—0).
In particular, for a = 1 we obtain : u — v = 0. O

Proof of Theorem 5.4.3. In view of the commentary following the proof of Lemma
5.4.10, when G belongs to O, we can apply to £ all the results so far used and
established for the form &.

Let (A"),en be a sequence of € and {G,} in = such that : A = A" on [0, 7,]
P,-a.e for q.e. x € E, where 7, := 7¢,. Thanks to Lemma 5.4.9 we can assume
that for any ¢t > 0,p > 1, sup,.. E. [AMTJ < 00.

For any local AF B of X, set B{" := Bix,,. By Remark 5.4.8, B¢ is an AF of
XGn,

Let v, be the following element of L*(G,,,m) :

By Lemma 5.4.12 :
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¢
E,[A%"] = pCru,(x) — vp(z) — / pSru(x)ds, m-a.e. for v € E,t >0
0

where for any f € L*(G,,m), p" f(x) = E.[f(XE")].

Since A" satisfies the condition of Lemma 5.4.6 (with 0sp,, instead of 6;), the
function h,, defined by hy,(z) := E,[AP"] is quasi continuous. We can hence assume
that v, is quasi continuous and therefore, for q.e. € E : (Proposition IV.5.30 in
[32])

P, (t — v,(X;) be cadlag on [0,¢)) =

i.e., vy is q.e. finely continuous. Thanks to Lemma 4.1.6 in [21], we can also assume
that v, is Borel measurable. For n € N, define C™ the following local CAF of X% :

t
cr o= Afn+/ U (XEm)dr, t > 0
0

and M™ the following element of M (ES") :
M = Un(Xth) - Un<X(?n) - C't”,t >0

(use the fact that v, is bounded and Lemma 5.2.7).

Set : OF 1= v, (X)) — vn(XE™) — M, then obviously C" = C™ on [0, {[[ P,-a.e.
for q.e. x € E, hence C™ is (F;)-predictable and of zero quadratic variation.

For n € N and i > n, let p,; be the Revuz measure of (M%), For any n € N
there exists a E%-nest (I}, ;)jen of compact sets of G, such that p, ;(F, ;) < oo
for any j,i € N, ¢ > n. (see e.g. Lemma 3.2 of [29]). For any n,j € N let H,
be the fine-interior of F), ;. It belongs to O and U H,; = G, q.e. (see remark

5.2.1). Thus, if for any j € N we define H; = Unzl Hn,], then : {H;} € =. Indeed :

QH GQH GG :QGn:Eq.e

Evidently H,, C G,, q.e. and p, x(H,) < oo for any n < k. Hence for any n < k :
Ly, * M*F € M(EC).

For ¢ in L'(E,m) such that 0 < ¢ < 1 and for any n € N, set h,(z) = Ri™p(z)
and G, = {zx € G : h, > n~'}. We can see from the proof of Lemma 3.8 of [30]
that (Gk)nen is an E-nest of quasi open sets and for any n, G, C H,, q.e.

For any n € Nset £,, := {w € Fp, : w > 1q.eon G,}. L, is not empty because
it contains nh,,. There exists g, in £, such that EfI” (gn,w — gn) > 0 for any
w € Ly. (see e.g. Corollary 2.1 of [30]). For all w € Fp, such that w > 0,
Er (g, w) = EF (gn,w + gn — gn) > 0. Hence g, is £Hn-1-excessive. Since g, A 1
element of £, is also £r-1-excessive, by Proposition II1.1.5 of [32] we have :
gn = gn AN 1 q.e. Tt follows that g, =1 q.e on G,, and g, = 0 q.e on E\H,
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On the other hand, since g, is £7"-1-excessive, by Proposition VI.2.1 of [32],
there exists a signed measure v, € Sy-Sy such that £77(g,,w) = fwdun for
any w € Fp,. Let D™ be the PCAF of X associated to v, by the Revuz

correspondence. By Lemma 5.3.7 we have :
Nén(gHn) = —Dr +/ Gu(XHYdr,r >0 (5.4.8)
0
Thus we have :

(g.(X}™),t > 0) is a P,-semimartingale for q.e v € E. (5.4.9)

For any integer n, set Wy := gnvp. For a strictly positive function f in L'(H,,m)
such that [, f(z)m(dz) =1, Py -a.e. we have for t < 7y, :

wi(X{™) — wa(Xg™)

t t
= / gn(XI)dM + / U (X Im)d Mg (€ (5.4.10)
0 0
t

t
+ [etmanz (g + g (x| Crag, (xi)
0 0

Indeed, the above equation can be proved by elementary arguments after perform-
ing the following integration by parts

t
(XHn)MZ;\TH _/0 (XHn dMsn/\‘rH / s/\TH 7dgn XH“)

Now we shall prove that w,, belongs to F.

a(w, — AR Wy, W) m = %Em [/000 e (wn(Xs) — wn(Xo))3ds
—|—%/Ew,21(x)(1 — aR,1(z))m(dz)
= I,+J,

Note that : Mg, (Xs) = [1g, * M| g.(Xs),s > 0 for q.e x € E, therefore :
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I < |loalPoa’En [ / e-%(gn(Xs)—gn(Xo))?ds}
0
+20°E,, [ / e‘“S(Mf)Qgi(Xs)ds]
0

+20°E,, {/ e_as(ég)Zgi(Xs)ds]
0

IN

lonlZ.0Enn [ | e tonx - gn<Xo>>2ds]
0
+20°E,, {/ e *(1g, * MS")2d5]
0
+20°E,, [/ e (AL + [ vn(XT)dr)zds}
0

Consequently :

limsup I, < ||v]|%, {25(gn,gn) — / gi(w)/%(dx)} +de(ly, % M™) + de(A™) < 0o
E

a—00

On the other hand :

~ 1 ~
Jo < HviHoo%/ gn()(1 = aRL(x))m(dz) = [[valloes < gn, k> as a — o0
E
We finally obtain : sup,.qa(w, — aR.wy,, wy), < oo, which implies that w,
belongs to F.

Since : g, = 0 on q.e F\ H,, then w, belongs to Fy,. Fukushima’s decomposition
gives :

wn(XH) = wy (XAi) = M (£H0) + N~ (1) (5.4.11)
Comparing (5.4.10) with (5.4.11), one obtains :

Wi =V"t <7y, Prn-ae.
where W™ and V" are given by :

t t
Wy = / gu(X ) AM, + / v (X Im)d Mg (ER) — M (EH)
0 0
t
Vo= Npm(Ef) - / Un(XI)ANE (EH) — g (X[)CL
0
t
+ / Ol dga(X 1)
0
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Since W™ is a Py,,-martingale, for any 7" > 0, fOT Zfi_ol(wt%ﬂ)/z( — Wt’}/K)th
converges to fOT[W”]sds in P ,,,-probability.

Besides, since (fg U (XHn)ANI» (EHn) ¢t > 0) is a continuous process of bounded
variation, it is of zero quadratic variation. It follows from Lemma 5.4.5 and Re-
mark 5.4.4 that 1irr, fOT Zili_ola/;?i-i-l)/l( - Vt?/K)th converges to 0 in Py ,-
probability. We conclude that for any ¢ : [W"], = 0 P ,-a.e. on {t < 7y, }. Note
that W™ belongs to M (EH"), hence thanks to Lemma 5.4.10 W™ is in M*(En)
and there exists a CAF B"™ of X of bounded variation on [0, 7g,) such that
W, = B" on [0,7g,) P,-a.e. for q.e. x € E. Moreover the Revuz smooth signed
measure jign of B belongs to Sp-Sy. Consequently, thanks to Lemma 5.3.7,

t
W = N (S + / (X ds, £ < 71
0

where v, denotes the 1-potential of jp» (with respect to £n).
Since g, = 1 q.e on G,,, it follows by (5.4.8) that P,,-a.e. on [0, 7g, [ :

t t t
Ay = N (&) — /wn(Xs)ds + /vn(Xs)dD? — /vn(Xs)ds
0 0 0
t

+ N (EH) — /%L(Xf”)ds (5.4.12)
0

The Revuz signed measure associated to fot U (Xs)d(D? — ) is v,.(v,, —m) which
belongs to Sp-Sy since v, is a bounded element of L*(E,m). Let 4, be the 1-
potential of v,.(v, — m) with respect to £, Set u, := w, + v, — 0,. Note that
u, belongs to Fy, . It follows by Lemma 5.3.7 that :

t
A, = N (E8m) — / u,(XH)ds, for t < 7g, Pp-a.e
0

Thanks to Lemma 5.4.11, we hence have P -a.e. for m-a.e x :

¢
Ay = N/ — / un(Xs)ds, fort <7g,,n €N (5.4.13)
0

In order to show (5.4.13) for q.e * € E we use an argument presented in the
proof of Lemma 4.6 of [7]. Let Zy be an defining set admitting an exceptional
set for all the CAF taking part in (5.4.13). Set : = = {w € Q : (5.4.13) holds}.
Then P,(Z°) = 0 for m-a.e. x € E. For any k € N, set : Z;, = 6,(Z). Then
P.(Z5) = pr—1(P(E9))(z) = 0 for q.e. € E. Finally set A = (\,—,Zk. Then
P.(A°) =0 for q.e. x € E. We shall prove that (5.4.13) holds for any w € A. For
win A, n € Nand t < 7g,(w), take k such that : t+l€ ! < Tg (w ) One has :
t < 71g,(0p-1w), and hence : A;(p-1w) = N (0-1w) fo Wy (X p-1(w))ds. One
let then £ tend to oo to obtain (5.4.13). O
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5.5 Stochastic integration

Consider an element u of F and a finite smooth signed measure g such that
E(u,h) =< p, h > for any element h of Fy. Thanks to Theorem 5.3.3, we know
that N" is of bounded variation. The integral (f « N"), := fot f(Xs)dNY is hence
well defined as a Lebesgue-Stieltjes integral, moreover, if f belongs to F, f *x N
belongs to N? (see Definition 5.3.4) and for any & in JF, we have :

<O(f*xN"),h >=< O(N"), fh > (5.5.1)

Thanks to Lemma 5.3.5, the above equation characterizes the local CAF f x N*.
In order to define the integral of f with respect to a process N" which is not
necessarily of bounded variation, it is hence natural to construct a local CAF
still denoted by f x N* satisfying the equation (5.5.1). This has been done by
Nakao [35] for the symmetric case and the aim of this section is to do it for the
non-necessarily symmetric case.

The construction of f*/N" is based on a decomposition of N* in three components
(see Lemma 5.5.10 below). The first component is associated to the diffusion
part of &, the symmetric component of £. The second one is associated to the
jump part of £ and the third one is a local CAF of bounded variation. Once
this decomposition done, the construction of f x N" will be close to Nakao’s
construction in the symmetric case.

Thanks to a localization argument, we will construct the integral f x C' for any
f € Fioe and C € ./\7@ #-1oc- We always consider F to be equipped with the norm
E1. We will use repeatedly the following facts :

(1) If a PCAF A satisfy pa(E) < oo then A is finite continuous. Indeed, it is
consequence of (5.2.4). This is the case when A = (M) for M € M. If for an
element A € A, pa is the difference of two finite smooth measures, then A is a
CAF of bounded variation in [0, c0). This is the case when A = (M, L) with M
and L in M.

(2) For two CAF, A, B and G € O we have for q.e. z € E, P,(A=B on [0,7¢]) =
1 if and only if for q.e. x € £, P,(A= B on [0,0p¢[) = 1.

(3) If J : F — R is a continuous linear functional, there exists a unique w € F
such that J(h) = & (w, h) for any h € F. (See Theorem 1.2.6. in [32]).

5.5.1 A decomposition of N“

Denote by £© the diffusion part of £. For u in F, the application h — £ (u, h)
is continuous. This leads to the following lemma.

Lemma 5.5.1. For u in F, there exists a unique w in F such that
Ei(w,h) = EC(u,h) for any h € F.
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Definition 5.5.2. For any u € F, set : fo s)ds, where w is the
element of F given by Lemma 5.5.1.

It is clear that °N* belongs to N and

< O(N"), h >= —-E£©(u,h) for all h € F,. (5.5.2)

Lemma 5.5.3. (i) For u,v in F, G in O such that £ (u,h) = £ (v,h) for
every h € Fg, we have

P,(“N"=°N" on [0,0p¢[) =1 for gex € E (5.5.3)

In particular, if u(x) = v(x) for g.e x € G, (5.5.3) holds.

(ii) If (u,) converges to u, there exists a subsequence (ny) such that for q.e z € E :
PI(CN Unk converges to °N* uniformly on any compact) = 1

Proof. (i) The first assertion is consequence of (5.5.2) and Lemma 5.3.5. The
second assertion is consequence of local property of £, indeed if u = v q.e on G,
E©(u, h) = E©) (v, h) for any h € Fq.

(ii) One can assume that u = 0. Let w,, the function associated to u,, by Lemma
5.5.1. it is clear that & (w,,w,) < & (u,,u,), hence (w,) converges to 0. We
conclude thanks to Lemma 5.2.8. O

Definition 5.5.4. For u element of Fi,., one extends Definition 5.5.2 as follows.
Let {Gilren € 2, 0 = lim, o0 0p\g, and {uy} be a sequence of F such that
ug(z) = u(x) for g.e x € Gy. Then :

N CN;”“ for t< O B\Gy
o 0 for t>o

Remark 5.5.5. By Lemma 5.5.8 and (iii) of Lemma 5.2.2, for any u in F,
cN* s well defined and it is a local CAF of X. Moreover, the definition of ¢N*
does not depend of the choice of {Gy} nor {ux}.

Denote by (N, H) the Lévy system of X. Let X be the Markov process associated
to the Dirichlet form & and (N, Hg %) its Lévy system. Let v be the smooth
measure associated to H¢ and H be the PCAF of X associated to vy by the
Revuz correspondence. Let J, J and J denote respectively the jumping measure
of £, € and &, that is, J(dy, dz) = N (z,dy)v(dz), J(dy, dz) = %N(m, dy)vg(dz)
and j(da:, dy) = %[J(dx, dy) + j(dx, dy)]. It is known that j(dy, dz) = J(dz,dy).
We will use the following notations :

N(dy,ds) := N(X,,dy)dH,
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~ A~ ~

N(dy,ds) := N(X,,dy)dH,
. 1 .
From now on, we fix a metric p on F compatible with the given topology. We set

§:={(x,z) :x € E}. &7 denote the jumping part of &, that is, for any u, h € F :

EV)(u, h) = /EXE\é(u(:z:) —u(y))(h(x) — h(y))J(dz, dy) (5.5.4)

Lemma 5.5.6. For any u € F, r > 0 we have P,-a.e. for ge. x € E :
t ~

/ / lu(z) — u(X)|[N(dz, ds) < 00 Vi < C. (5.5.5)

0 J{p(z,Xs)>r}
Let D* be the local CAF defined by

~ t ~

D ;:/ / (u(z) — u(X,))N(dz, ds), £ < ¢

0 {p(z,Xs)>r}

and D¥ := 0 fort > . Then there exists w in F such that D = N —fg w(X;)ds
for allt < ¢, Py-a.e. for g.e. x € E. Moreover : & (w,w) < & (u,u).

Proof. Let £07)(u, h) be the right-hand-side of (5.5.4) with E x E\§ replaced by
{(z,y) € EXE :r < p(z,y)}. It is clear that h — £U7)(u, h) is continuous, hence
there exists w € F such that 07 (u, h) = & (w,h) for all h € F. In particular,
if we take h = w we obtain : & (w,w) < £U") (u,u) < & (u,u). Let {Gy} be in =
such that each G, is relatively compact. For any k& € N let hy be in Co(E) N F,
positive such that hg(z) =1 for @ € Gy. Set Dy, := Supp|hi]. We have,

[ hewlul) - u@) e, dy)
{r<p(zy)}

hie ()| (uly) = u(z))[J (dz, dy)

/DkxEﬂ{Kp(w,y)}
< [ Ahnl) = hae)(uty) ~ (@) (dr,dy) (5.5.6)
ExE\é

T / (@) (uly) — u(2))|F(de, dy)
DpxDpn{r<p(z,y)}

(8 (T 1)) (E (1, )2

koo €, 0)) 2 [F(D x D1 {r < ol )})

< o0

VAN

1/2
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consequently : [ Jirepexy (@) — u(X,)|N(dz,ds) < oo for all t < 7¢,
P,-a.e. for q.e. v € E. Thus (5.5.5) follows from Lemma 5.2.2.(iii).
Now let p be the Revuz signed measure of D". For any h € J;—, Fb.c;»

[E W)y = 2 /{ o Bu) )] )

- - /{<< @) = R fue) = )T d) - (55.)
= —51<w,h)

which leads, thanks to Theorem 5.3.3 to : D;‘ = fo s)ds, t < (, Pgae.
forqe.z € FE n

Lemma 5.5.7. For every u in F, there exists a unique w in F such that for any
sequence (€,)nen converging to 0, there exists a subsequence (ny) satisfying :

k—o0 0

lim /t /{enk<p - [u(z) — u(X,)|N(dz,ds) = N¥ — /Otw(Xs)ds (5.5.8)

uniformly on compacts of [0,() Py-a.e for e x € E.

Proof. Since h — £U)(u, h) is continuous, there exists w in F such that £ (u, h) =
E1(w, h) for any h € F. Let {€, }nen be a sequence converging to 0. For any n € N,
let w,, be the element of F given by Lemma 5.5.6 for r = ¢,.

Then we have for any h € F :

(& (wn —w, h)? = [ED(u, h) — EV) (u, h)]?
- ([ u<x>><h<y>—h(sc))l{p@,y)gm(dx,dy>)
ExE\6
< / (uly) — (@) Lp(ag) <y I (da, dy)Ei (b, h)
EXFE\é

In particular choosing : h = w,, — w, we obtain :

E(wy, —w,w, —w) < / (u(y) — u(®))*Lipay) <enyJ (dz, dy)
ExE\é

which converges to 0 as n tends to oco. It follows from Lemma 5.2.8 that there
exists a subsequence (ny) such that

t t
lim (Ntw"’c —/ wnk(XS)ds) =N/ —/ w(Xy)ds
k—ro0 0 0

uniformly on compacts P, -a.e for q.e xz € F.
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Definition 5.5.8. For every u in F, define : IN}* := fo s)ds, where w
is the element of F given by Lemma 5.5.7.

Note that 7 N* belongs to N and that for every h in F,
< O(NY), h >= —ED(u,h). (5.5.9)

With the same argument as the one used to prove Lemma 5.5.3.(ii), one proves
the following lemma.

Lemma 5.5.9. Let (u,) be &1 -converging sequence to u, there exists a subsequence
(ng) such that for q.e x € E :

Px(jN”"k converges to ? N* uniformly on any compact) = 1

For w in F, the application h — &;(u, h) is continuous. Hence there exists a unique
u* in F such that 3
Sl(u, h) = Sl(u*,h),h e F. (5510)

Moreover we have :

E(u,ut) < K28 (u,u) (5.5.11)

where K is a continuity constant of £, which means that £ satisfies the sector
condition :

&1 (v, w)] < K(E(v,v))Y2(E (w, w))? for all v,w € F

Lemma 5.5.10. For u in F, let u* be given by (5.5.10). Denote by k the killing
measure of € and by H the PCAF associated to k(dx) by the Revuz correspondence.
Then we have P, -a.e for e x € E for anyt >0

t t
Nt = °N¥ 4IN¥ — / u*(X,)dH, + / (u—u*)(Xs)ds  (5.5.12)
0 0
Proof. From the Beurling-Deny decomposition of €, we have that for any h € F,
[ Ihta) @)li(de) < Eath b e )

thus A € A}, where A denote the third element in the right-hand side of (5.5.12).
Therefore the right-hand side of (5.5.12) belongs to Z. Denote this element by C.
The killing part £*) of & satisfies

EW(u*,h) =< pa,h > for any h € F
It follows from (5.5.2) and (5.5.9) that for all h € F :

<O(C),h> = —EW h)+ (u—u* h)m
= —&(u,h)
Then (5.5.12) follows from Lemma 5.3.5. O
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5.5.2 Stochastic integration with respect to ‘N

Lemma 5.5.11. For every u in F and f in Fy, there exists a unique w in F,
such that :

e(f* M»e, M") = & (w,h), Vh € F.

Proof. For h € F, [e(f  M®c, M™M)]? < e(f * M““)e(M"¢) < e(f « M“)E (h, h).
Since e(f * M*¢) < oo, the functional h — e(f x M™, M") is continuous. O

Definition 5.5.12. For every u in F and f in Fy, the stochastic integral of f
with respect to “N* denoted by [, f(X)d°NY or by f« N" is defined by :
t _ t 1
[ reaaess = Ny = [w(ds - SO0t > 0
0 0
where w is the element of F associated to (u, f) by Lemma 5.5.11.

For any u,v € F, let uZ, . be the Revuz measure associated to (M™c, M¥c). We
have : L4, o (E) = £©)(u,v). For f hin F, we have (Lemma 3.2.5 of [21]) :

AdpZynps = FAdpZyps + hdpz, o (5.5.13)
Lemma 5.5.13. (i) For u in F and f in F,, we have
f*°N" ¢ N
and

In particular the integral is well defined in the following sense :

Ifu,v € F are such that “N* = ¢N*, then for any f € Fp, f+N* = f%°N".
(i) For (un), (fn)two sequences of F converging to u and f respectively, and such

that sup,, || fullee < 00, there exists a subsequence (ng) such that for q.e

rekl:

P.(f, * N converges to f x °N* uniformly on any compact) =1

Proof. (i) f *“N* € N? because |1y 4= | (E) < oo. Besides for any h € J,
- 1
<O(f*°N“),h> = —e(f* M M")— 5/ h(x)dp s,
E

1 1
= =5 [ @~ 5 [ e
E E
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Then (5.5.14) is consequence of (5.5.13). For the second statement note that if
°N* = °N" then by (5.5.2), £©(u, hf) = £ (v, hf) for any h € F,. We conclude
thanks to (5.5.14) and Lemma 5.3.5.

(i) First we shall prove the following statements (a), (b) and (c).

(a) If (u,) and (f,) converge to 0 and sup, || f,|| < oo, there exists a subsequence
(ng) such that for q.e x € £ :

P.(f, * °NU% converges to 0 uniformly on any compact) = 1

(b) If (u,) converges to 0 and f € F;, there exists a subsequence (ny) such that
forqex e E :

P.(f x °NU% converges to 0 uniformly on any compact) = 1

(c) If u € F, (f,) converges to 0 and sup,, || fa|| < 00, there exists a subsequence
(ng) such that for q.e x € E :

P.(f, * “N" converges to 0 uniformly on any compact) = 1

Proof of (a) : For each n, let w,, be the function associated to (f,,u,) by Lemma
5.5.11. Then for any h € F we have : & (wp, h)* < ||f3]|cc1(h, R)EL (Un, uy). In
particular, choosing h = w,,, one obtains :

E1(wn, wy,) < ||f3||0051(un,un) —0asn— oo

It follows from Lemma 5.2.8 that there exists a subsequence (n') such that P,-a.e
for qex € E, N, — fot wy (Xs)ds converges to 0 uniformly on compacts.

Besides : u%,, - (E)+ps, o (E) = E© Uy, up) +E(f,, fn), which converges to 0.
Hence by Lemma 5.2.6 there exists a subsequence (n) such that

‘(MUﬁ,C7Mfﬁ7C>’ S <Muﬁ,c>1/2<Mfﬁ,c>l/2

which converges to 0 on compacts P -a.e for q.e x € E.
One proves (b) simillarly as (a).
(c) For each n, let w,, be the function associated to (f,,, ) by Lemma 5.5.11. Since

(fn) converges to zero, there exists a subsequence (f,,) converging q.e. to 0 and
therefore converging to 0 du<,,.-a.e. Thus by dominated convergence, [ 5 3k dp s

converges to 0. For any h € F, |Ei(wa, h)[> < Ei(h, ) [, f2dus,.. In particular
choosing h = w,, we obtain for any £ :

gl(wnk7wnk) < /Efikd'uiu> — 0
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and one finishes then the proof is as in (a).

Now (iii) is consequence of (a), (b) and (c) below because

f*cNu_fn*cNun :(fn_f>*cNu7un_i_(f_fn)*cNu_i_f*cNufun

5.5.3 Stochastic integration with respect to /N*

Lemma 5.5.14. Let u € F and f € F,, there exists a unique w in F such that
for any sequence (€n)nen converging to 0, there exists a subsequence (ny) which
satisfies :

lim / /{enk<p(m X,)[u(z) — u(X)N(dz, ds) (5.5.15)

k—o0

= NY / ds——/ / X)[u(z) — u(X,)N(dz, ds)

uniformly on compacts of [0,() P-a.e for g.e v € E. Moreover, we have :

€ (w, h) = /E W) = o) — ) ) e, ) (5.5.16)

Proof. Let u € F, f € F, and {€, }nen a sequence converging to 0. For any h € F
define A(h) = A, s(h) as the right-hand side of (5.5.16) and A, (h) as A(h) with
{en < p(z,y)} instead of E x E\0. Using the fact that f is bounded, one proves
with the arguments used in the proof of Lemma 5.5.7, that there exists (w;,)nen
and w in F such that for any n € N, A\, (h) = & (w,, h) and A(h) = & (w, h) for
any h € F, and P,-aeforqez € F:

¢ ¢
lim (Ntw" —/ wn(Xs)ds) =N} —/ w(X;)ds
k—o0 0 0

uniformly on compacts.

Set F(OC y) = s(u@) —u@)(f(@) = f(y) and Tu(z,y) = L{e,<pwpnl(@,y).
Set : = [ [T(z, Xy) ~(d:c ds), B} = [ [Tu(z,X,)N(dz,ds) and Cf =
fJf!F (X)X (e, o).

nen(E) < 2 / [u(z) — u()][f(x) — F()]](dz, dy)

{p(z,y)<en}

which converges to zero as n tends to co. It follows from Lemma 5.2.6 that there
exists a subsequence (ny) such that P,-a.e for q.e z € E, B/ converges to B;
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uniformly on any compacts. In order to prove (5.5.15), we must prove that for any
n?

/ X)) — w(X)IN(dz, ds)
{en<p(z,Xs)}

o — tw s—1 t T) — w(x) —u N (dz, ds
= N fugas =g [ ) - 0] XN b

which can be proved with the arguments used to prove (5.5.7). ]

Definition 5.5.15. For every u in F and [ in Fy, the stochastic integral of f with
respect to 7 N“ denoted by fo F(X)AINY or by f*7N" is defined as the right-hand
side of (5.5.15).

Lemma 5.5.16. (i) Foru in F and f in Fy, f+?N* belongs to N° and for every

<O(fxIN"), h >
= = [, ) = ) fluta) = )] (. 8) (5517

In particular the integral is well defined in the following sense :

Ifu,v in F are such that?’N* =N, then for any f in Fy : f+IN* = fxIN".
(ii) If (un) and (f,) are converging to u and f respectively and sup,, || fulls < 00,

there exists a subsequence (ng) such that for e x € E :

P, (f, % "N converges to f 7 N" uniformly on any compact) = 1

Proof. The proof of (ii) is similar to the proof of (ii) of Lemma 5.5.13. We prove
(i). Set
A= [ [ (@) = X)) ute) = (X)) N(de.
Since : [1al(E) < [,y 1(/@) = F()(ulz) — u(y))|T(da, ds)
< (E(f, INV2(E(u,u)V?, fIN* belongs to N? and by (5.5.16), for any h € F :
<O(f*'N" h) >
= —/E E\é[f(y){h(l") = h(y)} +h){f (@) = fy)N[u(z) - u(y)]J(dz, dy)

Using the symmetry of J and the fact that J(dz,dy) + J(dy,dz) = 2J(dz, dy),
one proves that the right-hand side of the above equation coincides with the right-
hand side of (5.5.17). The second statement can be shown in the same way that

its analogous in Lemma 5.5.13.(1).
[
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5.5.4 Stochastic integration with respect to N

To introduce integration with respect to N, one still needs some preliminary
results and remarks.

In Section 5.5 we have pointed that a local CAF A in A., such that u, is the
difference of two finite measures, is a CAF of bounded variation on [0, c0). This
is true also when p 4 € Sp-Sp. Indeed, let 1 be a smooth measure in Sy, associated
to a PCAF A by the Revuz correspondence. Then x — Egc[fooc> e tdA;] is a quasi-
continuous m-version of the 1-potential Uy pi. In particular E,[4;] < e'Uyp(z) < oo
for q.e. x € E, therefore P,(A; < 0co,Vt > 0) =1 for q.e. z € E.

We denote by A% the set of CAF A of bounded variation on [0, 00) such that g4
belongs to Syp-Sp. For a Borel function f and a CAF A in A, f x A denotes the
Lebesgue-Stieltjes integral of f(X) with respect to A if the integral is well defined
and 0 if not i.e., If V' denotes the total variation of A on [0,%) then :

A= { JEF(XAA, i fEIFCX)IAV, < oo

0 otherwise

Thanks to (5.2.2), for any f € F and A € A%, f* A is a CAF element of A’.

Lemma 5.5.17. Let u,v € F and A € A such that
P,(°N“+/N'4+A=0on[0,00]) =1 for gex € E (5.5.18)
then for any f € Fp :
P,(f* N+ f«IN"+ fxA=0 on[[0,00]) =1 for qex € E

Proof. Set : C = °N*+IN"+ A and Cf = f«°N"+ f+I NV + fx A. It follows from
Lemmas 5.5.13.(i) and 5.5.16.(i) that C,C/ € NP. On the other hand, thanks to
(5.5.2), (5.5.14), (5.5.9) and (5.5.17) :

<O(C)),h >=<0(C), fh > for all h € F, (5.5.19)

But by (5.5.18) and Lemma 5.3.5, < ©(C),h >= 0 for any h € Fy, thus we have
that < ©(CY),h >= 0 for any h € F,. We conclude thanks to Lemma 5.3.5. [

Definition 5.5.18. Denote by I the set of CAF C of X such that there exists
u,v € F and A € A such that :

P.(C, =°N"4+IN"+ A on [0,00]) =1 for gex € E

In this case for any f € F,, the stochastic integral of f with respect to C' denoted
by fot F(X)ACy or by (f x C),; is defined by

FreN“+ f+IN"+ fx A on [0, 00].
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It follows from Lemma 5.5.17, that for C' € Z, the stochastic integral f  C; is well
defined in the sense that it is not depending of the elements which represent C.
In view of the definitions of *N* IN* for u € F, (5.5.12) and Lemma 5.3.7 we
have the following identity :

7= {N.“ . / w(X,)ds : u € f} (5.5.20)

0

For u,vin F and A, Bin A%, set : C\V := Ni+ A, t > 0and CP := N'+B,,t > 0.
Suppose that for some G in O, Ct(l) = Ct(Q) for t < op\g, Py-a.e. for qe. v € E.
Then thanks to Lemma 5.3.5 for any h € Fg, < O(CW) h >=< 6(C?), h >,
thus if f, g € F; coincide q.e. on G then thanks to (5.5.19) we have for any h € Fg :

<O(fxC) h> = <o), fh>
<O(gxCP) h>

Finally thanks to Lemma 5.3.5, we have : Px(f*Ct(l) = g*Ct(Q), fort <opq) =1,
P,-a.e. for q.e. x € E. We can now define the stochastic integral of f € Fj,. with
respect to C' € Lo as follows.

Definition 5.5.19. Let C € T; 4, and f € Fipe. Let {G,} € =, {C™} C T
and {f.} C Fp such that P,(Cy, = Ct(n) fort < omge,) =1 for ge. x € E and
fo(x) = f(x) for g.e. v € Gy, and n € N. Then if 0 := lim, o 0p\c,, we define
the stochastic integral of f with respect to C' and denoted by f + Cy,t > 0 or by
fot f(X5)dCs, t > 0 as the following local CAF :

| fux Ct(") for t<opa, 91
f*xC = { 0 for >0 (5.5.21)

Note that the above definition does not depend of the sequences C™, (f,) nor
G,,. It follows from Theorem 5.4.3 that the stochastic integral f x C for f € Fj,e
and C a local CAF locally of zero energy is well defined. Moreover, if C' € Zf_4.
and f € Fio then f * C belongs to Ty 4.

Consequently, thanks to Lemma 5.5.10 and (5.5.20), we have the following lemma.

Lemma 5.5.20. For any u in F, N" belongs to I thus the stochastic integral
fg f(X)ANY is well defined for any f € Fioe-

Remark 5.5.21. If ¢ : R — R is a function admitting a continuous derivative,
we know that o(u) belongs to Fioe, then the integral fot o(u(Xs))dNY is well defined
and it is a local CAF. In fact using the arguments in Remark 4.3.1 we can show
that fot o(u(X;))dNY is defined in [0,00) and is in fact a CAF.

We will use the following result in the proof of the It6 formula for X.
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Lemma 5.5.22. For (u,) a sequence of F and u element of F, (f.) a sequence of
Fy and f an element of F, such that (u,) and (f,) converge to u and f respectively
with respect to £ . Moreover suppose that sup,, || fallse < 00. Then there exists a
subsequence (n') such that for e x € E :

P.(fu * N“' converge to fx N“ uniformly on any compact) = 1

Proof. Let H the PCAF defined in Lemma (5.5.10). Then :

|foul s Hy — fu* « Hy| < |(fo — f)us « Hy| + | f(u —u*) « H| (5.5.22)

Thanks to (5.5.11) and Lemma 5.2.8 there exists a subsequence 7 such that P-a.e.
for q.e. x € E, uz(X) and f,/(X) converge uniformly on any compact to u*(X)
and f(X). By dominated convergence, the first term in the right-hand side of
(5.5.22) converges uniformly on compacts to 0, with n replacing n. Let w,, and w
be respectively the 1-potential of f(x)u* (x)k(dz) and f(z)u*(x)k(dz). One shows
that {E(w —wy, w —w,) 12 < || flleo{&1 (uf —u*, u —u*) }1/2, which converges to
0. Thanks to Lemmas 5.2.8 and 5.3.7, there exists a subsequence (n”) such that
the second term in the right-hand side of (5.5.22) (with n” replacing n) converges
uniformly on any compact to zero, P -a.e. for q.e. x € E. We conclude thanks to
(5.5.12) and Lemmas 5.2.8, 5.5.13.(ii) and 5.5.16.(ii) . O

Theorem 5.5.23. For every ® in C3(R?) and every u = (uy, ..., uq) in F¢, for q.e
x € E, Py-a.e for all t € [0,00) we have :

O(u(X )) ®(u(Xo))

acp
)N

o Z/ axlaxj X)) A(M¥ <, M™%, (5.5.23)

+Y (@(u()@)) — ®(u(X,)) - Z 2;1)( (X)) (ua(Xs) — m-(XS)))

Proof. Let I; be the difference of the left-hand side and the right-hand side of
(5.5.23). First suppose that

n:= sup ||uk||C>o < 00
k=
therefore we can suppose that ® is of compact support. Forany ¢ =1,....,d, n € N
set up,; = nRyu; and u, 1= (Up1, ..., Upq). Define I;(n) as I; with w, replacing w.

We fix a smooth measure v such that v(E) = 1. First we prove :
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I;(uy,) in P,-probability to I;(u) (%)

The statement (%) will be an immediate consequence of the following statements
(i), (ii), (iii), (iv) and (v). All convergences are in the sense of convergence in
P, -probability if not specified.

(1) ®(un(Xy)) — P(u,(Xo)) converges to (u(Xy)) — ®(u(Xo)).
(i)For i = 1,...,d, M(i) == [ 92 (u,(X,_))dM™" converges to

0 dz;
M,(i) = Otg—@(u(x ))dM“l.
(iii) For i =1, ...,d, ft 9% (11, (Xs_))dNs™ converges to Otg—@(u(Xs_))dN“i.
(iv) For 4,5 € {1 d} and g = 8525;, = fo V(M Mnge)
converges to A; = fo d(M¥e) MY C>S.

(v) Let V; be the last term in the right-hand side of (5.5.23) and V;* defined
similarly but with w, replacing u. Then V" converges to V;.

Proof :

(i) Indeed, this is consequence of Lemma 5.2.8 and the continuity of ®.

(i) In order to prove this, it is sufficient to show that e(M™(i) — M (i)) converges
to 0. But

e(M"™(i) — M(i)) < 25up‘ M“’”_ul)

+/E (g—z(un(x)) - gi (u(m))>2dN<M“i>

it is known that the first term in the right-hand side of the above equation con-
verges to 0. By taking a subsequence if necessary, u,; converges q.e to u;, and
therefore, dp<psui~-a.e. Thus by dominated convergence, e(M™(i) — M (7)) — 0.
(iii) follows from Lemma 5.5.22.

(iv) Indeed, straightforward computations using a Kunita-Watanabe inequality
show that

Ay — AF| < sup |9(un(Xs)) — g(u(Xy))] x

1
ZL (<Mun,i+un,j,c>t 4 <Mun,i*un,j,c>t)

U 5,c\ 1/2 Uy s —uj,c\ 1/2

| g3 [loo (M Umioey /2 Mpma = ey
wj,c\1/2 uni—ui,012

|G loo (MU5€Y 2 (Memi vy

thus |A; — A}| converges to 0 by Lemmas 5.2.8 and 5.2.6.
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(v)Indeed, set a := sup, ; [|0P/02;07;|«, and h, = u — u,

V' =V < az [P (Xs) — hn(Xs—)‘Q =: aS{

s<t

Set B} := f(f [ [ha(@) = hyy (X)) |PN(d, ds) and L} := S — Bp. L™ is a MAF and
e(L") = [p p_glhn(@) — ha(y)|*J(dz,dy) < 16..d.E(hyy, hy,), which converges to
0. Hence L} converges to zero. Since pupgn(E) < E(hy, hy,), it follows by Lemma
5.2.6 that B}’ converges to zero. Therefore, Sj' = L} + B}’ converges to 0.

This finishes the proof of (x). Since for each n, u,(X) is a P,-semimartingale, by
the classical It6 formula, P, (I;(n) = 0) = 1, thus P,(I; = 0) = 1. Therefore it
follows from Theorem 2.2.3 of [21] that P,(/; = 0) = 1 for q.e x € E and we
conclude (5.5.23) because a.e. all its terms are right continuous in [0, 00).

Now suppose that u is not bounded. For each n, let G,, := {z € F : |u;(x)| <
nVi < d}, u} == (—n) V u; An and u, = (uf,...u})). Since each wu; is quasi-
continuous we assume that {G,,} € =. Let I}* be defined as I; with u" instead of
u. Then I} = 0 for all ¢, P,-a-e. for q.e. v € E. But I; = I for t < op\g, and
thanks to (5.2.2), lim, o 0p\g, = 00 Py-a.e. for q.e. x € E. This finishes the
proof of Theorem 5.5.23 O]

Define F° as the set of functions f such that the process (f(X;),t > 0) is a
semimartingale on [[0, ([, i.e. if N/ is of bounded variation on [0, ([ P,-a.e. for
qge x € FE.

Lemma 5.5.24. Let C' be an element of L jo.. Then the two following conver-
gences exist in the sense that a sequence of processes (A™) converges to a process
A if for any T > 0, fOT | A} — Ay|dt converges to 0 in measure with respect to Py,
on {T < C} for every g € L*(E;m) with 0 < g < 1 m-a.e.

(1) For f in fS; we have : (f * C)t = hmn—>oo Zz;é f(th/n)(Ct(kJrl)/n - Ctk/n)-

(ii) Let (fn) be a sequence of F, converging with respect to the Ei-norm to f such
that sup,, || fulleo < 00. Then, we have : (f % C)y = limy, o0 (fr ¥ C);.

Proof. In view of (5.5.20) and Lemma 5.2.2.(ii) we can assume that : C' = N* —
J; w(X,)ds, for some u € F. Since (i) and (ii) are obvious when C' = [ u(X,)ds,
one has just to show (i) and (ii) in the case C'= N* for some u € F. In this case
(ii) is aconsequence of Lemma 5.5.22. We shall prove (i).
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For f in F°, we have :

n—1
k=0
n—1
= f(X)u(Xy) — f(Xo)u(Xo) — U(th/n)(f(Xt(k+1)/n) - f(th/n))
k=0

- Z f th/n k+1)/n Mtk/n)

- Z f(Xeeryn) = fF(Xeryn)) (@(Xerry/m) — u(Xiryn))

which converges to fot f(Xs)dNY, thanks to Theorem 5.5.23 and Remark 5.4.4. [

Example 5.5.25. In this exemple we show that the stochastic integral con-
structed by Chen et al. [7] for symmetric Dirichlet forms can be defined in the sense
of Definition 5.5.19. Moreover both definitions coincide P,,-a.e. for q.e. x € E. We
use the notations and definitions of [7], thus A is a linear operator that maps some
class of local MAF’s on [0, ([ into even CAF’s on [0, {[ admitting m-null set. Let
M be a locally square-integrable MAF on [0, {[ that belongs to the domain of A.
We see from the proof of [[7], Theorem 3.7 and Lemma 3.2] that there exists a
nest {F;} of closed sets such that P,,-a.e. on [0, 75 [ :

A(M) = A(M*) + AF 4 LF (5.5.24)

where M* € M, A¥ ¢ A, and LF € (M)l With a refinement argument
used in the proof of [[7], Lemma 4.6, one checks that A(M) is a local CAF of
X. Recall that & denotes the set of CAF of X of finite energy. In view of [[7],
Proposition 2.8] the right-hand side of (5.5.24) belongs to €., hence A(M)
belongs to (€s-joc) f-toc = € f-toc-

By [[7], Theorem 3.7], A(M) is of zero quadratic variation on the sets of Definition
5.4.2. Therefore thanks to Theorem 5.4.3, A(M) belongs to s, and the integral
f* A(M) is well defined for any f € Fi,.

Thanks to [[7], Theorem 4.4] and the way that the stochastic integral was defined
in 7], it satisfies (i) and (ii) of Lemma 5.5.24 where the convergence is in measure
with respect to Py, on {t < (} for every ¢ € L*(E,m) with 0 < g < 1 m-
a.e. Consequently the integrals f * A(M) given by [7] and Definition 5.5.19 both
coincide P,,-a.e. on [0, ([ for any f € F, and therefore for any f € F,..
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5.6 Markov Processes on R?

Throughout this section we assume that E = R?, for d positive integer and (€, F)
is a regular non necessarily symmetric Dirichlet form on L?(R%; m) satisfying :
Cs°(R?) C F. Denote by X = (X!, ..., X?) its properly associated Hunt process.
Note that in this case, if uy, ..., ug belong to C§°(R) then for any F in CZ(RY),
F(uy,...,uq) belongs to F . Therefore : C}(R?) C F.

For a class D of additive functionals, the set Dy, that has been defined at the
beginning of section 5.4. We will also make use of the random measures, N(dy, ds),
N(dy, ds) and N(dy, ds) introduced at the beginning of section 5.5.3. We define :

- 1 ~
N(dy, ds) := 5 (N(dy, ds) — N(dy, ds))
The aim of this section is to prove the following two theorems :

Theorem 5.6.1. For u in C?(R?), the process uw(X) admits the following decom-
position Py-a.e for q.e v € R? :

w(Xy) =u(Xo) + VIE+WE+CF, t<(C (5.6.1)

where W* € M oe, C* € Nioe and V* is the AF of bounded variation given
by :
V=) (X)) = a(Xeo) L -utxeo>1) (5.6.2)

s<t
Moreover, the jumps of W" are bounded by 1.
In particular, if we take u the coordinate function m; : * — x;, ¢ = 1,...,d, the

above result can be seen as a generalization of the It6-Lévy decomposition for
Lévy processes.

Set : Vi=V™ W= W7 and C" = C™ and define the stochastic integral of f
element of Fj,. with respect to X* by :

/f )dX = /f )W+ /f )dCt + /f )avs

where the third term in the right-hand side is given by Definition 5.5.19. We shall
prove the following It6 formula.

Theorem 5.6.2. For ® in C}(RY), for ge x € RY, Py-a.e for all t € [0,() we
have :

d(X,) = D(Xp) +Z/ &cl )dXE+ Z/ o 833] YA(Wie, Wie),
+> ((I)(XS) Z ax, X;’_)) (5.6.3)

s<t
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The proof of Theorem 5.6.1 will be based on the decomposition of £ given in
(5.6.4) below which is just another way to write the decomposition given by Hu
et al., Theorem 4.8 of [23]. Moreover we can see directly from its proof that the
hypothesis u,v € C°(R?) can be replace by u € C3(R?) and v € Co(R?) N F.

Lemma 5.6.3. Let (£, F) be a reqular Dirichlet form on R? satisfying C§°(R?) C
F. Then for u in CZ2(R?) and v in Co(RY) N F, E(u,v) has the following decom-
position :

Eu,v) = E9(u,v) + & (u,v)
* /Rded [uly) = u(@))(vly) = v(@)ga—yi<1y J(de, dy) (5.6.4)

d

9 /]Rded d{U(x) —u(y) — Z(Ii — yi)g—;i(y)}v(y)1{|$_y|§1}J(dx, dy)

_9 /Rd Rd_d(U(x) — u(y)v(Y) 1 {jamy>13J (d, dy) + /Rd w(z)v(z)k(dz)

where v — £ (u,v) is a linear functional that equals 0 when Supp[u]NSupp[v] = 0.

Before proving Theorem 5.6.1 and 5.6.2, we are going to built some local CAF
locally of zero energy and some local MAF of locally finite energy, that will take
part in the decomposition of X.
Lemma 5.6.4. (i) For u in C*(RY), the process

d

Br=tuea | [ (u(w)—u<xs>—2< X’>§IZ<XS>> 1,y N(dz, ds)

i=1

is well defined on [0, 00). Moreover B is a local CAF element of A, and for
any relatively compact G C R?, |upz.|(G) < oo .

(ii) For u in F, the process

= 1{t<§}/ / X)) 1x,—2)>13N(dz, ds)

is well defined on [0,00). Moreover D" is a local CAF element of A, and
for any relatively compact G C RY, |pupu|(G) < oo. The same holds for D*
defined as D" with N replacing N.

Proof. (i) Let I'(x,y) := (u(a:) —uly) — 8 (= yz)axl (y)) L{jy—z|<1} and G be
a relatively compact set.

| e IP)] T, dy)

{lz—y|<1}

< Q) [ o=yl (e, dy) (5.6.5)
G xRd
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d

where ¢(G) = sup { Z Ou(2)

= 0,0z,
The right-hand side (;f (5.6.5) is finite thanks to Lemma 4.1 of [23], hence
f(f 16(Xs) [ga T(z, X )N(dz,ds) is well defined on [0,00). We can prove in the
same way that [j 16(X,) [ I'(z, X,)N(dz, ds) is well defined on [0, 00), and hence
B* is well defined on [0, oga\;) for any relatively compact G and therefore well
defined on [0, (). Since by definition B}* equals 0 for t > ¢, B is well defined on
[0, oo We have shown also that |u|(G) < oc.

:|z—y|§15|y€G}<oo

(ii) This can be proved as (5.5.6). O

For u in C3(R?), thanks to Lemma 5.6.4 for any relatively compact open set G
and h € Fg, we have :

< Piu, h >+ < ppu,h >

= /Rd i Qh(y) <<U(l’) - U(Z/) - Z(SL’@ - yl-)g—Z(y)lﬂy_mg}) j(dl’, dy)

=1

where J(dz, dy) := ${J(dz,dy) — J(dy,dz)}. But from Lemma 4.5 of [23] (which
is also valid for u € C3(R)), there exists z € F such that the right-hand side of
the above equation is equal to : £ (u, h) — & (2, h), Vh € Co(R?) N F. By defining
w such that & (w, h) = & (2, h) =, Yh € F, we obtain the following lemma.

Lemma 5.6.5. For u in C2(RY), there exists w in F such that
Er(w,h) = E(u,h)— < pgu, h > — < pipu, h >

for all h € F N Co(RY).

Definition 5.6.6. For u in C2(RY), define :

t
CNY = NY — / w(X,)ds — B* — D!
0

where w is the element of F given by Lemma 5.6.5.

Definition 5.6.7. Let O, be the set of relatively compact open sets of R%. For G
in O., we define NSG as the set of local CAF’s C' such that, there exists u inF
and A in A. satisfying :

Foe C LR, |pal)

and
P.(C; = N+ A, fort <() =1 for gex € R?

For C element of/\/'g(;, we define the linear functional O(C,G) on Fpq by
<O(C,G),h >=—=E(u,h)+ < pa,h >, h € Foq
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It follows from Theorem 5.3.3 that the definition of ©(C,G) for C' € N is
consistent in the sense that it does not depend of the elements which represents
C.

The following lemma is an immediate consequence of Theorem 5.3.3 :

Lemma 5.6.8. For G in O., CY and C® elements of N2y, we have :
CH =C® ont <1 Py-ae for ge x € R if and only if

<0(CW @), h >=<0(C? G, h> foralhc Fyg.
Let u € F and G € O, since |pp.|(G) + |pp.|(G) < oo by Lemma 5.6.4, N
belongs to N and :
< O(°N",G), h >= —E(u,h) for any h € F,q N Cy(RY) (5.6.6)

Lemma 5.6.9. For u,v in Ca and G in O, such that u = v on G, we have :
N =NV on [0, 7¢[ Ps-a.e for g.e v € RY.

Proof. Since Supplu —v] C R\G, £ (u—wv,h) = 0 for any h € Fg. We conclude
thanks to (5.6.6) and Lemma 5.6.8. O

Thanks to Lemma 5.6.9 we can extend the definition of N to every u in C?(R?).
Definition 5.6.10. For u in C?(R%), define N as follows. For any G € O,,

e CN;’ for t<r1g
bt 0 for t>(C

where v is any element of C32(RY) such that : u=1v on G.

Note that “N* belongs to N, for any G in O..
For r > 0, set B, := {x € R : |z[ < r}. For u in F, define : IN* = iN* — D,
where /N* is given by Definition 5.5.8 and

D — /O /|xs-x|>1}(u(x> —u(X))N(dz, ds), < ¢

which is well defined thanks to Lemma 5.5.6.

From (5.5.8) we see that for u,v in C}(R?) such that u = v on 3,,,, we have :
P.(N*" =IN"" ont < 13,) =1 for q.e z € R?

Therefore the following definition makes sense.

Definition 5.6.11. For u in C'(R%), define N* as follows. For any r > 0,

jNu L ]Ntv f07“ t < T8,
L 0 for t>(

where v is any element of C}(RY) such that : uw=v on B,1.
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Thanks to Lemma 5.5.6,  N** belongs to N2,
We also need the following process.

Definition 5.6.12. For u in C*(R), *N* is the local CAF of bounded variation
defined by :

t
N = 1{t<<}/ w(X ) fu(xai<y N (X, {A})dH
0

Now we are going to define the elements of M ;.. that will be in the decomposition
of X. It is known that for u,v in F and G in O such that u = v q.e. on G, then
M = M on [0,7¢), P,-a.e for q.e. z € R%. Therefore it follows from (iii) of
Lemma 5.2.2 that for v in Fj.e, {Gx} in = and {ux} C F are such that u = uy
q.e. on GGy, then by setting

Up,C
Mtu,c — { Mt i for t< en

0 for t>( 7

one defines an AF element of M ;..
For u in F and € > 0, define the MAF M%“%¢ on M by :

u,be |
M=y (X)) = u(Xe ) Heau(xXa) (X )l<1)

s<t

—/ / (u(z) — u(Xs))N(dz,ds)  (5.6.7)
0 Je<|u(@)—u(Xs-)<1}

+/ w(Xo) Lecpurxi<p NV (X, {A})dH,
0

If (€n)nen converges to zero, (M“?) is a Cauchy sequence in the real Banach
space (M, e). Hence there exists an element of M denoted by M*® and a subse-
quence (€,,) such that P,-a.e for q.e z € RY (M“"x) converges uniformly on
compacts to M®P,

The following Lemma is a immediate consequence of (5.6.7) and the definition of
M™? for u in F.

Lemma 5.6.13. (i) For u,v in F such that u=v q.e on B,41, r > 0, we have :
P.(M"" = M for all t < 75,) = 1 for q.e. z € R
(ii) Foru in F, Py-a.e for g.e x € R? we have for any t >0 :
t
M = M — V' + D' — / u(Xo)Hueeo N (Xs, {ANdH, - (5.6.8)
0
where M%® denotes the discontinuous part of M* and V* is given by (5.6.2).
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It follows from Lemma 5.6.13 that the following definition makes sense.

Definition 5.6.14. For u in C1(R?), define M*“® as follows. For r > 0,
v,b
Mtu’b _ M, for t<Tg,
0 for t>(
where v is any element of C}(RY) such that : u = v on B.1.
It is clear that : Mt € M 100, Vu € CHRY)

Proof of Theorem 5.6.1. First we shall prove that for u in C2(R?), P,-a.e for q.e
r € RY, ) ) )
N" =°N"4+°N*4+IN*P 4 B* + D" — P" (5.6.9)

where P := [ u(X,)N(X,, {A})dH,.

Denote by C* the right-hand of (5.6.9). From the definition of all the terms of
this sum, we can see that C* belongs to N for any F' in O.. Moreover thanks
to (5.6.4), for any h € Cy N Fg :

< O(N*,G),h >=<O(C",G),h > .

Thanks to the regularity of £, the above identity can be extended to any h € Fg.
One obtains then (5.6.9) thanks to Theorem 5.3.3.
From (5.6.8) and (5.6.9) we get (5.6.1) with

W = M"+ M"" and
Cu:cNu+cNu+jNu,b+Bu_ kNu

Now for u in C?*(R?), define C* and W* as above. For any k € N let u; € CZ(R?)
be such that v = u; on Biy1, then

w(Xy) —u(Xo) — W — CF = up(Xy) — ug(Xo) — W — Cy* =0 for t < 75,

P,-a.e for q.e. z € R% We finally obtain (5.6.1) thanks to (iii) of Lemma 5.2.2.
Note that W* € M. and C* € N-joe. This finishes the proof. O

Proof of Theorem 5.6.2. This theorem can be proved with the arguments used in
the proof of Theorem 5.6.1, but using the Ito formula of Theorem 5.5.23 instead
of the Fukushima decomposition. ]
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