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Calcul d’Itô étendu

Résumé : Nos différents résultats consistent principalement à établir des exten-
sions du calcul stochastique classique. Pour (Xt)t≥0 processus de Markov, il s’agis-
sait à l’origine de donner dans les quatre cas suivants, la décomposition explicite
de F (Xt, t) en tant que processus de Dirichlet, sous des conditions minimum sur
F fonction déterministe à valeurs réelles.
Dans le premier cas, X est un processus de Lévy réel avec composante brownienne.
Dans le deuxième cas X est un processus de Lévy symétrique sans composante
brownienne mais admettant des temps locaux en tant que processus de Markov.
Dans le troisième cas, X est un processus de Markov symétrique général sans
condition d’existence de temps locaux mais F (x, t) ne dépend pas de t. Dans le
quatrième cas, nous supprimons l’hypothèse de symétrie du troisième cas.
Dans chacun des trois premiers cas, on obtient une formule d’Itô à la seule condi-
tion que la fonction F admette des dérivées de Radon-Nikodym d’ordre 1 locale-
ment bornées. On rappelle que dans l’hypothèse où X est une semi-martingale, la
formule d’Itô classique nécessite que F soit C2. C’est l’hypothèse que nous devons
prendre dans le quatrième cas.
Le premier cas excepté, chacune des formules d’Itô obtenues s’appuie sur la con-
struction de nouvelles intégrales stochastiques par rapport à des processus aléatoires
qui ne sont pas des semi-martingales.

Extended Itô calculus

Abstract : Our main results are extensions of the classical stochastic calculus.
For a Markov process (Xt)t≥0, the problem is to give the explicit decomposition
as a Dirichlet process of F (Xt, t) under minimal conditions on F , real-valued
deterministic function. We consider the four following cases.
In the first case X is a real-valued Lévy process with a Brownian component. In
the second case, X is a symmetric Lévy process without Brownian component,
but admitting a local time process as a Markov process. In the third case, X is a
general symmetric Markov process without condition of existence of local times,
but F (x, t) does not depend on t. In the fourth case, we suppress the assumption
of symmetry of the third case.
In each of the first three cases, we obtain an Itô formula under the only condition
that the function F admits locally bounded first order Radon-Nicodym deriva-
tives. Note that under the assumption that X is a general semimartingale, the
classical Itô formula requires C2 functions. This is what we have to assume in the
fourth case.
First case excepted, each of the obtained Itô formulas requires the construction
of a new stochastic integral with respect to random processes which are not semi-
martingales.
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Chapitre 1

Introduction

La formule d’Itô est un outil fondamental de la théorie des probabilités. En par-
ticulier, pour (Xt)t≥0 semimartingale et F fonction déterministe de C2,1(R2), elle
fournit le développement explicite du processus (F (Xt, t))t≥0 mais également sa
structure stochastique de semimartingale :

F (Xt, t) = F (X0, 0) +

∫ t

0

∂F

∂t
(Xs−, s)ds

+

∫ t

0

∂F

∂x
(Xs−, s)dXs +

1

2

∫ t

0

∂2F

∂x2
(Xs, s)d < Xc >s (1.0.1)

+
∑

0<s≤t

{F (Xs, s)− F (Xs−, s)−
∂F

∂x
(Xs−, s)∆Xs}.

De nombreux auteurs ont cherché à étendre cette formule, soit en allégeant les
conditions de régularité sur F soit en considérant d’autres processus X que des
semimartingales. Mais il survient toujours de nouveaux problèmes requérant l’u-
tilisation de la formule d’Itô sous des conditions encore plus générales. C’est ce qui
maintient ce sujet ouvert. A titre d’illustration, citons les articles de Peskir [39],
[40]. Pour prouver un résultat d’unicité pour le problème de l’option américaine
[40], il doit d’abord établir une formule d’Itô pour le mouvement brownien et des
fonctions F qui sont partout C2(R×R+) sauf sur un ensemble {(x, t) : x = b(t)}
avec b fonction continue.
Chacun des chapitres suivants de cette thèse va fournir un nouvel outil. Au
chapitre 2, il permet de s’affranchir de façon optimale des conditions restrictives
de la formule (1.0.1) pour les processus de Lévy avec composante brownienne.
Puis dans chacun des chapitres 3, 4, et 5, nous construisons un nouveau calcul
stochastique par rapport à des processus qui ne sont pas des semi-martingales. Il
donne lieu chaque fois à une extension de la formule (1.0.1) pour successivement
les processus de Lévy symétriques, les processus de Markov symétriques et les
processus de Markov non nécessairement symétriques. Les processus de Markov
considérés sont à valeurs dans un espace métrique. Ce qui permet d’envisager
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Introduction

des exemples tels que les superprocessus, les processus de branchements ou bien
encore l’historique d’un processus de Markov.

Supposons qu’une fonction F (x, t) possède des dérivées d’ordre 1 de Radon-
Nikodym ainsi que les propriétés minimum d’intégration pour que l’expression

F (Xt, t)− F (X0, 0)−
∫ t

0

∂F

∂t
(Xs−, s)ds−

∫ t

0

∂F

∂x
(Xs−, s)dXs

existe. Si l’on veut écrire une extension de (1.0.1) pour une telle fonction F , il
faut trouver une expression alternative à

1

2

∫ t

0

∂2F

∂x2
(Xs, s)d < Xc >s +

∑
0<s≤t

{F (Xs, s)− F (Xs−, s)−
∂F

∂x
(Xs−, s)∆Xs}

(1.0.2)
qui ne nécessiterait pas l’existence de dérivées d’ordre supérieur à 1. Plusieurs
auteurs ont résolu cette question en utilisant la notion de temps local. Meyer [34]
fut le premier à alléger les conditions sur F en introduisant une intégrale par
rapport aux temps locaux, suivi par Bouleau et Yor [6] , Azéma, Jeulin, Knight et
Yor [1], Eisenbaum [10], Ghomrasni et Peskir [22], Eisenbaum et Kyprianou [13].
Dans le cas où le processus X est discontinu, les expressions alternatives à (1.0.2)
proposées par ces auteurs nécessitent des conditions supplémentaires sur F ou sur
X du fait de la présence de l’expression :∑

0<s≤t

{F (Xs, s)− F (Xs−, s)−
∂F

∂x
(Xs−, s)∆Xs}

En ce sens, nous pouvons dire que ces formules ne sont pas optimales. Dans le cas
particulier du mouvement brownien, Eisenbaum [10] a montré que (1.0.2) coincide
avec

−1

2

∫ t

0

∫
R

∂F

∂x
(x, s)d`xs

où (`xt , x ∈ R, t ≥ 0) est le processus des temps locaux du mouvement brownien.
Cette intégrale ne nécessitant pas de conditions supplémentaires sur F , la formule
d’Itô ainsi obtenue peut donc être considérée comme optimale.

Au chapitre 2, nous présentons une formule d’Itô optimale pour les processus
de Lévy X possédant une composante brownienne (σBt, t ≥ 0). Cette formule
nécessite l’intégration de fonctions déterministes sur R× R+ par rapport au pro-
cessus (Lxt , x ∈ R, t ≥ 0) des temps locaux de X en tant que processus de Markov.
La condition σ 6= 0 nous permet d’exploiter directement la construction du calcul
stochastique par rapport à (`xt , x ∈ R, t ≥ 0) processus des temps locaux de X en
tant que semimartingale, établie dans [13]. En effet ces deux processus sont reliés
par

(Lxt , x ∈ R, t ≥ 0) = (
1

σ2
`xt , x ∈ R, t ≥ 0).

10



On obtient la décomposition explicite en tant que processus de Dirichlet de F (Xt, t)
sans condition supplémentaire sur F .

Au chapitre 3, nous traitons le cas où X est un processus de Lévy sans com-
posante brownienne (σ = 0). Le processus (`xt , x ∈ R, t ≥ 0) est alors iden-
tiquement nul. Nous devons supposer l’existence de (Lxt , x ∈ R, t ≥ 0) qui est
équivalente à la condition ∫

R

1

1 + ψ(ξ)
dξ <∞

où ψ est l’exposant caractéristique de X.
Nous supposons de plus que X est symétrique. Selon Fukushima [19], nous savons
déjà que pour toute fonction u élément de l’espace de Dirichlet de X, u(X) admet
la décomposition suivante :

u(Xt) = u(X0) +Mu +Nu (1.0.3)

où Mu est une martingale de carré intégrable et Nu est une fonctionnelle additive
continue d’énergie quadratique nulle. De plus, pour toute fonction Φ de classe C2,
Chen, Fitzsimmons, Kuwae et Zhang [7] ont donné une décomposition de Φ(u(X))
en fonction de Mu et de Nu.
Dans ce chapitre, nous écrivons une extension de (1.0.3) aux fonctions espace-
temps en donnant de plus l’expression précise de chacun des termes. Nous obtenons
ainsi la décomposition de F (Xt, t) en processus de Dirichlet sans condition
supplémentaire sur F . Cette formule d’Itô s’obtient grâce à la construction d’une
integration des fonctions déterministes de R×R+ par rapport à (Lxt , x ∈ R, t ≥ 0).
Pour cette construction, nous utilisons de nouveaux outils inspirés de la formule
de Tanaka de Salminen et Yor [42]. Cette construction nous permet également
de définir un temps local sur les courbes (b(t), t ≥ 0) pour X puis d’établir une
formule d’Itô pour les fonctions espace-temps partout C2,1 à l’extérieur d’un en-
semble {(x, t) : x = b(t)}.

Au chapitre 4, nous considérons un processus X = u(Z), où Z est un processus
de Hunt associé à une forme de Dirichlet symétrique régulière (E ,F) et u appar-
tient localement à F . Bien que X ne soit pas en général une semimartingale, Nakao
[35] et Chen, Fitzsimmons, Kuwae et Zhang [7] ont montré pour F (x, t) = F (x),
que (1.0.1) reste valide pour un tel processus X. Cela a été montré grâce à la con-
struction d’une intégrale stochastique par rapport à (Nt, t ≥ 0), la partie d’énergie
nulle de X dans sa décomposition de Fukushima. Cette intégrale vient remplacer
l’intégrale de Lebesgue-Stieljes par rapport à la partie à variations bornées dans
(1.0.1). De même que pour la formule d’Itô classique (1.0.1), cette formule d’Itô
nécessite l’utilisation de fonctions C2.
Le problème de l’allègement des conditions de régularité de F dans la formule
de Nakao et Chen, Fitzsimmons, Kuwae et Zhang, s’avère être plus complexe
que dans les deux cas précédents. En effet, l’intégrale

∫ t
0
F ′(u(Xs))dNs n’est bien
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Introduction

définie que lorsque F ′(u) est localement dans F . Par exemple, dans le cas où Z est
un mouvement brownien, cette dernière condition impose que la dérivée seconde
F ′′ existe au moins en tant que dérivée de Radon-Nikodym.
Nous avons contourné ce problème en construisant une intégration stochastique
des fonctions déterministes sur R par rapport à un processus (Γat (u), a ∈ R) à t
fixé, qui va jouer le rôle de temps local pour le processus u(X) (cette analogie
est exposée en section 4.5). Cette construction nous permet alors d’obtenir le
développement explicite de F (u(X)) pour F admettant une dérivée de Radon-
Nikodym localement bornée.

Au chapitre 5, nous considérons un processus de Hunt Z, associé à une forme de
Dirichlet régulière (E ,F). Elle n’est pas nécessairement symétrique. Les résultats
de Nakao [35] et Chen et al [7] nécessitants une hypothèse de symétrie, la ques-
tion d’un calcul stochastique pour Z est entière. Néanmoins, la décomposition
de Fukushima (1.0.3) reste valide dans le cas général : pour tout u élément de
l’espace de Dirichlet de Z, il existe une martingale de carré intégrable Mu et une
fonctionnelle additive continue d’énergie quadratique nulle Nu telles que

u(Zt) = u(Z0) +Mu
t +Nu

t , t ≥ 0. (1.0.4)

Désignons par Ẽ la partie symétrique de E . Pour construire une intégrale stochas-
tique par rapport à Nu, nous établissons une décomposition de Nu en somme
de trois processus Nu

1 , Nu
2 et Nu

3 . Les processus Nu
1 et Nu

2 sont respectivement
associés à la partie diffusion et à la partie saut de Ẽ . Le processus Nu

3 est à varia-
tions bornées. Après avoir successivement construit une intégrale stochastique par
rapport à Nu

1 et Nu
2 , nous disposons donc d’une notion d’intégrale par rapport à

u(Z). Elle nous permet d’établir un développement de F (u(Zt)) pour F fonction
réelle C2.
Dans le cas où Z est à valeurs dans Rd (d ≥ 1), nous optons pour une autre
démarche consistant à utiliser une décomposition de Beurling-Deny de E due à
Hu, Ma and Sun [23]. Elle nous permet d’obtenir une décomposition de Z du
type de la décomposition de Itô-Lévy pour les processus de Lévy. L’intégration
stochastique par rapport à Z en découle immédiatement. Nous pouvons ensuite
développer F (Zt) pour F fonction réelle C2.

Dans chacun des quatre cas traités, la formule d’Itô obtenue possède une version
multidimensionnelle.

Les chapitres 2, 3 et 4 ont chacun donné lieu à une publication (voir [14], [45], et
[46]).
Le chapitre 5 doit être soumis pour publication incessamment.
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Chapitre 2

An optimal Itô formula for Lévy
Processes

Abstract : Several Itô formulas have been already established for Lévy processes. We

explain according to which criteria they are not optimal and establish an extended Itô

formula that satisfies that criteria. The interest, in particular, of this formula, is to

obtain the explicit decomposition of F (Xt, t), for X Lévy process and F deterministic

function with locally bounded first order Radon-Nikodym derivatives, as a Dirichlet

process.

2.1 Introduction and main results

Let X be a general real-valued Lévy process with characteristic triplet (a, σ, ν),
i.e. its characteristic exponent is equal to

ψ(u) = iua− σ2u
2

2
+

∫
R
(eiuy − 1− iuy1{|y|≤1})ν(dy)

where a and σ are real numbers and ν is a Lévy measure. We will denote by
(σBt, t ≥ 0) the Brownian component of X. Let F be a C2,1 function from R×R+

to R. The classical Itô formula gives

F (Xt, t) = F (X0, 0) +

∫ t

0

∂F

∂t
(Xs−, s)ds

+

∫ t

0

∂F

∂x
(Xs−, s)dXs + σ2

∫ t

0

∂2F

∂x2
(Xs, s)ds (2.1.1)

+
∑

0<s≤t

{F (Xs, s)− F (Xs−, s)−
∂F

∂x
(Xs−, s)∆Xs}.

13



An optimal Itô formula for Lévy Processes

This formula can be rewritten under the following form (see [24]) : (F (Xt, t), t ≥ 0)
is a semimartingale admitting the decomposition

F (Xt, t) = F (X0, 0) +Mt + Vt (2.1.2)

where the local martingale M and the adapted with bounded variation process V
are given by

Mt = σ

∫ t

0

∂F

∂x
(Xs−, s)dBs +

∫ t

0

∫
{|y|<1}

F (Xs− + y, s)− F (Xs−, s)µ̃X(dy, ds)

(2.1.3)

Vt =
∑
0<st

{F (Xs, s)− F (Xs−, s)}1|∆Xs|≥1 +

∫ t

0

AF (Xs, s)ds (2.1.4)

where µ̃X(dy, ds) denotes the compensated Poisson measure associated to the
jumps of X, and A is the operator associated to X defined by

AG(x, t) =
∂G

∂t
(x, t) + a

∂G

∂x
(x, t) +

1

2
σ2∂

2G

∂x2
(x, t)

+

∫
R
{G(x+ y, t)−G(x, t)− y∂G

∂x
(x, t)}1(|y|<1)ν(dy)

for any function G defined on R×R+, such that ∂G
∂x

, ∂G
∂t

and ∂2G
∂x2 exist as Radon-

Nikodym derivatives with respect to the Lebesgue measure and the integral is well
defined. The later condition is satisfied when ∂2G

∂x2 is locally bounded.
Note that the existence of locally bounded first order Radon-Nikodym derivatives
alone guarantees the existence of

F (Xt, t)− F (X0, 0)−
∫ t

0

∂F

∂t
(Xs−, s)ds−

∫ t

0

∂F

∂x
(Xs−, s)dXs (2.1.5)

but then to say that this expression coincides with

σ2

∫ t

0

∂2F

∂x2
(Xs, s)ds+

∑
0<s≤t

{F (Xs, s)− F (Xs−, s)−
∂F

∂x
(Xs−, s)∆Xs}

we need to assume much more on F.
In that sense one might say that the classical Itô formula is not optimal. The
interest of an optimal formula is two-fold. It allows to expand F (Xt, t) under
minimal conditions on F but also to know explicitly the structure of the process
F (Xt, t). Such an optimal formula has been established in the particular case when
X is a Brownian motion [10]. Indeed in that case, under the minimal assumption
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on F for the existence of (2.1.5), namely that F admits locally bounded first order
Radon-Nikodym derivatives, we know that this expression coincides with

−1

2

∫ t

0

∫
R

∂F

∂x
(x, s)dLxs

where (Lxs , x ∈ R, s ≥ 0) is the local time process of X. Moreover the process{∫ t

0

∫
R

∂F

∂x
(x, s)dLxs , t ≥ 0

}
has a 0-quadratic energy.
In the general case, various extensions of (2.1.1) have been established. We will
quote here only the extensions exploiting the notion of local times, we send to
[11] for a more exhaustive bibliography. Meyer [34] has been the first to relax the
assumption on F by introducing an integral with respect to local time, followed
then by Bouleau and Yor [6], Azéma et al [1], Eisenbaum [10], [11], Ghomrasni
and Peskir [22], Eisenbaum and Kyprianou [13]. In the discontinuous case, none
of the obtained Itô formulas is optimal because of the presence of the expression∑

0<s≤t

{F (Xs, s)− F (Xs−, s)−
∂F

∂x
(Xs−, s)∆Xs}

The Itô formula for Lévy processes presented below in Theorem 2.1.1, is available
for X admitting a Brownian component. It lightens the condition on the jumps of
X required by [11], and it also lightens the condition on the first order derivatives
of F required by [13]. Besides it is optimal. To introduce it we need the operator
I defined on the set of locally bounded measurable functions G on R× R+ by

IG(x, t) =

∫ t

0

G(y, t)dy.

We will denote the Markov local time process of X by (Lxt , x ∈ R, t ≥ 0).

Theorem 2.1.1. Assume that σ 6= 0. Let F be a function from R×R+ to R such
that ∂F

∂x
and ∂F

∂t
exist as Radon-Nikodym derivatives with respect to the Lebesgue

measure and are locally bounded. Then the process (F (Xt, t), t ≥ 0) is a Dirichlet
process admitting the decomposition

F (Xt, t) = F (X0, 0) +Mt + Vt +Qt

with M the local martingale given by (2.1.3), V is the bounded variation process

Vt =
∑

0≤s≤t

{F (Xs, s)− F (Xs−, s)}1{|∆Xs|≥1}

and Q the following adapted process with 0-quadratic variation

Qt = −
∫ t

0

∫
R
AIF (x, s)dLxs .
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As a simple application of Theorem 2.1.1 consider the example of the function
F (x, s) = |x| in the case

∫ 1

0
yν(dy) = +∞. This function does not satisfy the

assumption of Theorem 3 of [13] nor X does satisfy the assumption of Theorem
2.2 in [11]. But, thanks to Theorem 1.1, we immediately obtain Tanaka’s formula.
The proofs are presented in Section 2.

2.2 Proofs

We first remind the meaning of integration with respect to the semimartingale
local time process of X denoted (`xs , x ∈ R, s ≥ 0). Theorem 1.1 is expressed in
terms of the Markov local time process (Lxs , x ∈ R, s ≥ 0). The two processes are
connected by :

{Lxs , x ∈ R, s ≥ 0} =
{
σ−2`xs , x ∈ R, s ≥ 0

}
Let σB be the Brownian component of X. Defined the norm ||.|| of a measurable
function f from R× R+ to R by

||f || = 2E

(∫ 1

0

f 2(Xs, s)ds

)1/2

+ E

(∫ 1

0

|f(Xs, s)|
|Bs|
s
ds

)
In [13], integration with respect to ` of locally bounded mesurable function f has
been defined by∫ t

0

∫
R
f(x, s)d`xs = σ

∫ t

0

f(Xs−, s)dBs+σ

∫ t

0

f(X̂s−, 1−s)dB̂s, 0 ≤ t ≤ 1 (2.2.1)

where B̂ and X̂ are the time reversal at 1 of B and X.
We have the following properties :

(i) E

[∫ t

0

∫
R
f(x, s)d`xs

]
≤ |σ| ||f ||.

(ii) If f admits a locally bounded Radon-Nikodym derivative with respect to x,
then : ∫ t

0

∫
R
f(x, s)d`xs = −σ2

∫ t

0

∂f

∂x
(Xs, s)ds

(iii) The process

{∫ t

0

∫
R
f(x, s)d`xs , 0 ≤ t ≤ 1

}
has 0-quadratic variation.

Proof of Theorem 2.1.1 : We start by assuming that F and ∂F
∂x

are bounded.
We set

Fn(x, t) =

∫ ∫
R2

F (x− y/n, t− s/n)f(y)h(s)dyds
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where f and h are nonnegative C∞ functions with compact supports such that :∫
R f(x)dx =

∫
R h(x)dx = 1. Thanks to the usual Itô formula we have :

Fn(Xt, t) = Fn(0, 0) + σ

∫ t

0

∂Fn
∂x

(Xs−, s)dBs +

∫ t

0

∂Fn
∂t

(Xs, s)ds

+ a

∫ t

0

∂Fn
∂x

(Xs, s)ds+
∑

0≤s≤t

{Fn(Xs, s)− Fn(Xs−, s)}1{|∆Xs|≥1}

+

∫ t

0

∫
R
{Fn(Xs− + y, s)− Fn(Xs−, s)}1{|y|<1}µ̃(ds, dy)

+
σ2

2

∫ t

0

∂2Fn
∂x2

(Xs, s)ds (2.2.2)

+

∫ t

0

∫ 1

−1

{Fn(Xs + y, s)− Fn(Xs, s)−
∂Fn
∂x

(Xs, s)y}ν(dy)ds

With the same arguments as in the proof of Theorem 2.2 of [11], we see that as
n tends to ∞, Fn(Xt, t) and each of the first five terms of the RHS of (2.2.2)
converges at least in probability to the corresponding expression with F replacing
Fn. Besides we note that

∫ t

0

∂F

∂t
(Xs, s)ds = − 1

σ2

∫ t

0

∫
R

(∫ x

0

∂F

∂t
(y, s)dy

)
d`xs

= −
∫ t

0

∫
R

(
∂

∂t

∫ x

0

F (y, s)dy

)
dLxs

since ∂F
∂t

is locally bounded. Hence we have :∫ t

0

∂F

∂t
(Xs, s)ds = −

∫ t

0

∫
R

∂(IF )

∂t
(x, s)dLxs . (2.2.3)

Since : F (x, s) = ∂(IF )
∂x

(x, s), we immediately obtain :

a

∫ t

0

∂F

∂x
(Xs, s)ds = −

∫ t

0

∫
R
a
∂(IF )

∂x
(x, s)dLxs (2.2.4)

The convergence in L2 of the sixth term of the RHS of (2.2.2) is obtained with
the same proof as in [13]. The limit is equal to∫ t

0

∫
R
{F (Xs− + y, s)− F (Xs−, s)}1{|y|<1}µ̃(ds, dy) (2.2.5)

For the seventh term of the RHS of (2.2.2), we note that :
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σ2

∫ t

0

∂2Fn
∂x2

(X, s)ds = −1

2

∫ t

0

∫
R

∂Fn
∂x

(x, s)d`xs

Thanks to the properties (i) and (ii) of the integration with respect to the local
times, this expression converges in L1 to

−1

2

∫ t

0

∫
R

∂F

∂x
(x, s)(x, s)d`xs

We can obviously write :

−1

2

∫ t

0

∫
R

∂F

∂x
(x, s)d`xs = −σ

2

2

∫ t

0

∫
R

∂2(IF )

∂x2
(x, s)dLxs (2.2.6)

We now study the convergence of the last term of the RHS of (2.2.2). We have :∫ t

0

∫ 1

−1

{Fn(Xs + y, s)− Fn(Xs, s)−
∂Fn
∂x

(Xs, s)y}ν(dy)ds

= −
∫ t

0

∫
R
Hn(x, s)dLxs (2.2.7)

where : Hn(x, s) =

∫ x

0

∫ 1

−1

{Fn(z+y, s)−Fn(z, s)− ∂Fn
∂x

(z, s)y}ν(dy)dz. We have :

|Fn(z + y, s) − Fn(z, s)− ∂Fn
∂x

(z, s)y|1{|y|<1}

=

∣∣∣∣∫ z+y

z

(
∂Fn
∂x

(v, t)− ∂Fn
∂x

(z, t))dv

∣∣∣∣ 1{|y|<1}

≤ y2 sup |∂
2Fn
∂x2
|1{|y|<1}.

Noting that :
∂2Fn
∂x2

= n2

∫ ∫
R2

F (x− y/n, t− s/n)f ′′(y)h(s)dyds, we obtain

|Fn(z + y, s)− Fn(z, s)− ∂Fn
∂x

(z, s)y|1{|y|<1} ≤ cste n2y21{|y|<1}sup|F |

Consequently :

Hn(x, s) =

∫ 1

−1

∫ x

0

{
Fn(z + y, s)dz − Fn(z, s)− ∂Fn

∂x
(z, s)y

}
dzν(dy)

=

∫ 1

−1

{∫ x+y

0

Fn(z, s)dz −
∫ y

0

Fn(z, s)dz

−
∫ x

0

Fn(z, s)− yFn(x, s) + yFn(0, s)

}
ν(dy)

= Gn(x, s) +

∫ 1

−1

(yFn(0, s)−
∫ y

0

Fn(z, s)dz)ν(dy)
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where Gn(x, s) =

∫ 1

−1

(IFn(x+y, s)−IFn(x, s)−yFn(x, s))ν(dy) .Thanks to Corol-

lary 8 of [13], we know that∫ t

0

∫
R
Hn(x, s)dLxs =

∫ t

0

∫
R
Gn(x, s)dLxs (2.2.8)

By dominated convergence, we have as n tends to ∞ for every (x, s)

IFn(x+ y, s)− IFn(x, s)− yFn(x, s)→ IF (x+ y, s)− IF (x, s)− yF (x, s).

Besides, for every n :

|IFn(x+ y, s)− IFn(x, s)− yFn(x, s)| ≤ y21{|y| < 1} sup |∂F
∂x
|,

hence for every (x, s) : Gn(x, s) tends to G(x, s), where

G(x, s) =

∫
R
(IF (x+ y, s)− IF (x, s)− yF (x, s))1{|y|<1}ν(dy).

By dominated convergence, (Gn)n>0 converges for the norm ||.|| to G. Conse-
quently the limit of the last term of the RHS of (2.2.2) is equal by (2.2.7) and
(2.2.8) to

−
∫ t

0

∫
R

∫
R
(IF (x+ y, s)− IF (x, s)− yF (x, s))1{|y|<1}ν(dy)dLxs . (2.2.9)

Summing all the limits (2.2.3), (2.2.4), (2.2.5), (2.2.6) and (2.2.9), we finally obtain

F (Xt, t) = F (X0, 0) + σ

∫ t

0

∂F

∂x
(Xs−, s)dBs (2.2.10)

+

∫ t

0

∫
R
{F (Xs− + y, s)− F (Xs−, s)}1{|y|<1|}µ̃(ds, dy)

+
∑

0<s≤t

{F (Xs, s)− F (Xs−, s)}1{|∆Xs|≥1}

−
∫ t

0

∫
R

{
∂(IF )

∂t
(x, s) + a

∂(IF )

∂x
(x, s) +

σ2

2

∂2(IF )

∂x2
(x, s)

}
dLxs

−
∫ t

0

∫
R

{∫
R
(IF (x+ y, s)− IF (x, s)− yF (x, s))1{|y|<1}ν(dy)

}
dLxs .

which summarizes in
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F (Xt, t) = F (X0, 0) + σ

∫ t

0

∂F

∂x
(Xs−, s)dBs

+

∫ t

0

∫
R
{F (Xs− + y, s)− F (Xs−, s)}1{|y|<1}µ̃(ds, dy)

+
∑

0<s≤t

{F (Xs, s)− F (Xs−, s)}1{|∆Xs|≥1} −
∫ t

0

∫
R
AIF (x, s)dLxs .

In the general case, we set :

F̃n(x, s) = F (x, s)1[an,bn](x) + F (an, s)1(−∞,an)(x) + F (bn, s)1(bn,∞)(x)

where (−an)n∈N and (bn)n∈N are two positive real sequences increasing to ∞. We
write (2.2.10) for F̃n and stop the process (F̃n(Xs, s), 0 ≤ s ≤ 1) at

Tm = 1 ∧ inf{s ≥ 0 : |Xs| > m}

We let n tend to ∞ and then m tend to ∞. The behavior of two terms deserves
specific explanations, the other terms converging respectively to the expected
expressions.
The first one is :∫ t∧Tm

0

∫
R

{∫
R
(IF̃n(x+ y, s)− IF̃n(x, s)− yF̃n(x, s))1{|y|<1}ν(dy)

}
dLxs

Thanks to the definition of the integral with respect to local time (2.2.1), it is
equal to

1

σ

∫ t∧Tm

0

H̃n(Xs, s)dBs +
1

σ

∫ 1

1−(t∧Tm)

H̃n(X̂s−, s)dB̂s (2.2.11)

where H̃n(x, s) =

∫
{IF̃n(x+ y, s)− IF̃n(x, s)− yF̃n(x, s)}1{|y|<1}ν(dy).

We set : H(x, s) =

∫
{IF (x + y, s) − IF (x, s) − yF (x, s)}1{|y|<1}ν(dy). We can

choose n big enough to have |an| and bn bigger than m+1. Hence (2.2.11) is equal
to

1

σ

∫ t∧Tm

0

H(Xs, s)dBs +
1

σ

∫ 1

1−(t∧Tm)

H(X̂s−, s)dB̂s.

For every ε > 0

P

(
sup

0≤t≤1
|
∫ 1

1−(t∧Tm)

H(X̂s−, s)dB̂s −
∫ 1

1−t
H(X̂s−, s)dB̂s| ≥ ε

)
≤ P(Tm < 1)

= P( sup
0≤t≤1

|Xt| > m)
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which shows that as m tends to ∞,
∫ 1

1−(t∧Tm)
H(X̂s−, s)dB̂s converges in proba-

bility uniformly on [0, 1] to
∫ 1

1−(t∧t) H(X̂s−, s)dB̂s. Similarly
∫ t∧Tm

0
H(Xs−, s)dBs

converges in probability to
∫ t∧T

0
H(Xs−, s)dBs . Consequently as m tends to ∞,

(2.2.11) converges to∫ t

0

∫
R

{∫
{IF (x+ y, s)− IF (x, s)− yF (x, s)}1{|y|<1}ν(dy)

}
dLxs .

The second term is :∫ t

0

∫
R
{F̃n(Xs− + y, s)− F̃n(Xs−, s)}1{s<Tm}1{|y|<1|}µ̃(ds, dy)

For n big enough such that |an|, bn > m, this term is equal to∫ t

0

∫
R
{F (Xs− + y, s)− F (Xs−, s)}1{s<Tm}1{|y| < 1|}µ̃(ds, dy)

As Ikeda and Watanabe [24], we then denote by{∫ t

0

∫
R
{F (Xs− + y, s)− F (Xs−, s)}1{|y|<1|}µ̃(ds, dy), 0 ≤ t ≤ 1

}
the local martingale (Yt, 0 ≤ t ≤ 1) defined by :

Yt∧Tm =

∫ t

0

∫
R
{F (Xs− + y, s)− F (Xs−, s)}1{s<Tm}1{|y|<1|}µ̃(ds, dy).

�
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Chapitre 3

Local time-space calculus for
symmetric Lévy Processes

Abstract : We construct a stochastic calculus with respect to the local time process

of a symmetric Lévy process X without Brownian component. The required assump-

tions on the Lévy process are satisfied by the symmetric stable processes with index in

(1, 2). Based on this construction, the explicit decomposition of F (Xt, t) is obtained for

F continuous function admitting a Radon-Nikodym derivative ∂F
∂t and satisfying some

integrability condition. This Itô formula provides, in particular, the precise expression

of the martingale and the continuous additive functional present in Fukushima’s decom-

position.

3.1 Introduction and main results

For a given semimartingale (Xt)t≥0 and any C2,1-function F on R×R+, Itô formula
provides both an explicit expansion of (F (Xt, t))t≥0 and its stochastic structure.
Consider the case when X is a Lévy process with characteristic triplet (a, σ, ν)
which means that for any t in R+ and ξ in R : E[eiξXt ] = e−tψ(ξ),

where : ψ(ξ) = −iaξ +
σ2

2
ξ2 +

∫
R
(1 − eiξx + iξx1|x|≤1)ν(dx), a ∈ R, σ ∈ R+ and

ν is a measure in R such that : ν({0}) = 0 and
∫
R

x2

1+x2ν(dx) < ∞. The function
ψ is called the characteristic component of X and ν the Lévy measure of X (see
Bertoin [3]). Denote by σB the Brownian component of X, then Itô formula can
be rewritten under the following form (see e.g., Ikeda and Watanabe [24]) :

F (Xt, t) = F (X0, 0) +Mt + At, (3.1.1)

where M is a local martingale and A is an adapted process of bounded variation
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given by

Mt = σ

∫ t

0

∂F

∂x
(Xs−, s)dBs +

∫ t

0

∫
{|y|≤1}

{F (Xs− + y, s)− F (Xs−, s)}µ̃X(dy, ds)

At =
∑

0<s≤t

{F (Xs, s)− F (Xs−, s)}1{|∆Xs|>1} +

∫ t

0

AF (Xs, s)ds

where µ̃X(dy, ds) denotes the compensated Poisson measure associated to the
jumps of X, and A is the operator associated to X defined by

AG(x, t) =
∂G

∂t
(x, t) + a

∂G

∂x
(x, s) +

1

2
σ2∂

2G

∂x2
(x, t)

+

∫
R
{G(x+ y, t)−G(x, t)− y∂G

∂x
(x, t)}1(|y|<1)ν(dy) (3.1.2)

for any function G defined on R×R+, such that ∂G
∂x

, ∂G
∂t

and ∂2G
∂x2 exist as Radon-

Nikodym derivatives with respect to the Lebesgue measure and the integral is well
defined.
Many authors have succeeded in relaxing the conditions on F to write extended
versions of (3.1.1) (see for example Errami et al.[15], Eisenbaum [11], Eisenbaum
and Kyprianou[13]). Under the assumption that X has a Brownian component
(i.e. σ 6= 0), we have established in [14] an extended version of (3.1.1) that can be
considered as optimal in the sense that it requires the sole condition of existence
of locally bounded first order Radon-Nikodym derivatives ∂F

∂x
, ∂F

∂t
. Under that

condition, this version gives the explicit decomposition of F (Xt, t) as the sum of
a Dirichlet process and a bounded variation process.

Here we treat the case σ = 0. If we assume additionally that X is symmetric (i.e.
a = 0 and ν is symmetric), then according Fukushima [21], we already know that
for every continuous function u in W , the Dirichlet space of X, i.e.

W = {u ∈ L2(R) :

∫
R2

(u(x+ y)− u(x))2dxν(dy) <∞},

u(X) admits the following decomposition

u(Xt) = u(X0) +Mu
t +Nu

t (3.1.3)

where Mu is a square-integrable martingale and Nu is a continuous additive func-
tional with zero quadratic energy. Besides, for Φ in C2(R), Chen et al. [7] give a
decomposition of Φ(u(X)) in terms of Mu and Nu.
In this paper we write an extension of (3.1.3) to space-time functions and give the
explicit expression of the corresponding terms. In particular, the explicit expres-
sion of the processes Mu and Nu involved in (3.1.3) are obtained.
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These results, precisely presented below, require two additional assumptions on X.
The first one is the existence of local times for X considered as a Markov process,
i.e., a jointly measurable family {(Lxt )t≥0, x ∈ R} of positive additive functionals
such that for each x, the measure dLxt is supported by the set {t ≥ 0 : Xt = x}
and satisfying for every Borel-measurable function f : R → R+ the occupation
time formula ∫ t

0

f(Xs)ds =

∫ ∞
−∞

f(x)Lxt dx.

Noting that ψ is a symmetric nonnegative function, the existence of local times is
equivalent to (see Bertoin [3])

(H1) ∫ ∞
−∞

1

1 + ψ(ξ)
dξ <∞.

Define the function β from (0, 1] to R+ by

β(t) =

{∫ ∞
0

e−2tψ(ξ)ψ(ξ)dξ

}1/2

. (3.1.4)

the second assumption is :

(H2) ∫ 1

0

β(t)dt <∞.

Remark that if there exists q in (0, 1) such that
∫∞
−∞

1
(1+ψ(ξ))q

dξ < ∞, then X

satisfies the two assumptions (H1) and (H2). In particular, the symmetric stable
Lévy processes with index in (1, 2) satisfy the two assumptions. This is also realized
when there exists α in (1, 2) such that ψ(ξ)−1 = O(|ξ|−α) as |ξ| tends to ∞.
To introduce the space-time version of (3.1.3), we need the operator I defined on
the set of locally bounded measurable functions F on R× R+ by

IF (x, s) =

∫ x

0

F (y, s)dy. (3.1.5)

Set : Zt = Xt −
∑

s≤t ∆Xs1{|∆Xs|>1}. We define the norm ‖.‖Z in the space of

measurable functions from R× [0, 1] to R by ‖f‖2
Z =

∫ 1

0
E(f(Zt, t))

2dt. We denote
by (P̄t)0≤t≤1 the semigroup of the Markov process (Zt, t)0≤t≤1 i.e.

P̄tf(x, s) = E[f(Zt + x, s+ t)1{s+t≤1}].

We associate to (Zt, t)0≤t≤1 the operator D as follows. A real valued measurable
function f on R× [0, 1] belongs to the domain of D if ‖f‖Z <∞ and there exists
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g such that ‖g‖Z <∞ and

lim
t→0

∥∥∥∥ P̄tf − ft
− g
∥∥∥∥
Z

= 0,

in this case, Df = g.

Theorem 3.1.1. Let F be a continuous function from R × [0, 1] to R admitting
a derivative with respect to the Lebesgue measure ∂F

∂t
such that ∂F

∂t
belongs to

L2(R× [0, 1]) and∫ 1

0

β(t)

∫
R2

(F (x+ y, t)− F (x, t))2dxν(dy)dt <∞. (3.1.6)

Then (F (Xt, t), 0 ≤ t ≤ 1) is a Dirichlet process admitting the following decom-
position

F (Xt, t) = F (X0, 0) +MF
t +NF

t , (3.1.7)

where MF is a square-integrable martingale and NF is a continuous process with
0-quadratic energy respectively defined by

MF
t =

∫ t

0

∫
R
(F (Xs− + y, s)− F (Xs−, s))µ̃X(dy, ds)

NF
t = −

∫ t

0

∫
R
DIF (x, s)dLxs +

∫ t

0

∫
{|y|>1}

(F (Xs + y, s)− F (Xs−, s))ν(dy)ds.

Theorem 3.1.1 is based on the construction of the stochastic integration of de-
terministic functions on R × [0, 1] with respect to (Lxt , x ∈ R, 0 ≤ t ≤ 1). This
construction is done in Section 3. Unlike the cases for which this notion has been
already defined (for example Brownian motion [10], Lévy process with a Brownian
component [14], or elliptic diffusion [2]) the considered local time process is not a
semimartingale local time but a Markov local time. The classical Tanaka’s formula
is not available for this local time. Instead we use an alternative formulation of an
identity of Salminen and Yor [42] for X. One preliminary issue, solved in Section
2, is to obtain an analogue of Tanaka’s formula for the reversed process X̂ defined
by

X̂t =

{
X(1−t)− if 0 ≤ t < 1

0 if t = 1
(3.1.8)

The Itô formula of Theorem 3.1.1 is established in Section 4. It appears as a
consequence of the arguments developed to establish the following localized version
of Theorem 3.1.1.
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Tanaka’s Formula

Theorem 3.1.2. Let F be a continuous function from R× [0, 1] to R admitting a
Radon-Nikodym derivative with respect to the Lebesgue measure ∂F

∂t
and such that

for all k > 0∫ 1

0

β(t)

∫ k

−k

[(
∂F (x, t)

∂t

)2

+

∫ 1

−1

(F (x+ y, t)− F (x, t))2ν̄(dy)

]
dxdt <∞

(3.1.9)
where ν̄ is the Levy measure defined by

ν̄(dx) =
ν((|x|, 1])

|x|
1{|x|≤1}dx.

Then the process (F (Xt, t), 0 ≤ t ≤ 1) admits the following decomposition

F (Xt, t) = F (0, 0) +Mt + Vt +Qt, (3.1.10)

where M is a local martingale, V a bounded variation process and Q a continuous
process with 0-quadratic energy, respectively defined by

Mt =

∫ t

0

∫
{|y|≤1}

{F (Xs− + y, s)− F (Xs−, s)}µ̃X(dy, ds)

Vt =
∑

0<s≤t

{F (Xs, s)− F (Xs−, s)}1{|∆Xs|>1}

Qt = −
∫ t

0

∫
R
AIF (x, s)dLxs ,

with A the operator defined by (3.1.2).

We mention that similarly to [11], Theorems 3.1.1 and 3.1.2 both admit multi-
dimensional extensions to processes (X1, X2, ..., Xd) such that the X i’s are in-
dependent Lévy processes each component X i being either symmetric without
Brownian component, either with a nontrivial Brownian component.

As an application of the construction of integration with respect to local time, we
introduce, in Section 3.5, local times on curves for the process X. This definition
is then used to establish an Itô formula for space-time functions C2,1 everywhere
except on a set {(x, t) ∈ R × [0, 1] : x = b(t)} where (b(t))0≤t≤1 is a continuous
curve.

3.2 Tanaka’s Formula

It is well known that X̂ is a semimartingale (see [26], Proposition (1.3)). It has
no continuous local martingale component, hence its semimartingale local time is
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Local time-space calculus for symmetric Lévy Processes

identically equal to zero. It is not a Markov process with respect to the definition
used in Blumenthal and Getoor [4] (See page 20 in [4]), but one can associate a
local time process to X̂ by setting

L̂xt = Lx1 − Lx1−t. (3.2.1)

Indeed, we have the occupation time formula∫ t

0

f(X̂s)ds =

∫
R
f(x)L̂xt dx.

We use the following notation. The filtration, satisfying the usual conditions,
generated by X is denoted by F = {Ft; 0 ≤ t ≤ 1}. Similarly the filtration
generated by X̂ is denoted by F̂ = {F̂t; 0 ≤ t ≤ 1}. Let µX̂ be the Poisson

random measure associated to the jumps of X̂, then ρ = (ρ(ω, dy, dt), ω ∈ Ω) is
the F̂ -compensator of µX̂ , i.e., a predictable measure with respect to F̂ such that

E

[∫
[0,t)×R

W (w, s, y)µX̂(w, dy, ds)

]
= E

[∫
[0,t)×R

W (w, s, y)ρ(w, dy, ds)

]
,

for every nonnegative P̂⊗B(R)-measurable function W , where P̂ is the predictable
σ-field of X̂, the σ-field generated by all càg F̂ -adapted process. (See [27] chapter
II).
Without possible confusion, we denote the measure ν(dx)ds on R × [0, 1] by
ν(dx, ds). Here is a preliminary lemma. We denote by φ(t, .) the continuous density
function of Xt with respect to the Lebesgue measure :

φ(t, x) =
1

2π

∫ ∞
−∞

e−tψ(ξ) cos(xξ)dξ.

Lemma 3.2.1. The F̂-compensator of µX̂ is given by :

ρ(ω, dy, dt) =
φ(1− t,X1−t + y)

φ(1− t,X1−t)
ν(dy, dt).

As a symmetric Lévy process, X benefits from the following Tanaka’s formula
established by Salminen and Yor [42]

Lat = v(Xt − a) − v(a)−
∫ t

0

∫
R
[v(Xs− − a+ y)− v(Xs− − a)]µ̃(dy, ds), (3.2.2)

where v(x) =
1

π

∫ ∞
0

1− cos(ξx)

ψ(ξ)
dξ. Unfortunately, this identity is not convenient

for our purpose. The following proposition presents an alternative formulation of
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Tanaka’s Formula

(3.2.2) and an analogue Tanaka’s formula for X̂. The characteristic exponent of
the Lévy Process, (Xt −

∑
s≤t ∆Xs1{|∆Xs|>1})t≥0 is denoted by ψ∗. Note that

ψ∗(ξ) = 2

∫ 1

0

(1− cos(xξ))ν(dx), (3.2.3)

and that ψ∗ satisfies also the condition (H1). Besides, we set

w(x) =
1

π

∫ ∞
0

1− cos(xξ)

ψ∗(ξ)
dξ.

Proposition 3.2.2. For any real number a, we have :
(i)

Lat = w(Xt − a)− w(a)−Na
t −

∑
s≤t

(w(Xs − a)− w(Xs− − a))1{|∆Xs|>1},

where Na is the local F-martingale defined by

Na
t =

∫ t

0

∫
{|y|≤1}

[w(Xs− − a+ y)− w(Xs− − a)]µ̃(dy, ds).

(ii)

L̂at = w(X1−t − a)− w(X1 − a)− N̂a
t− − Ŵ a

t

+
∑

1−t<s≤1

(w(Xs − a)− w(Xs− − a))1{|∆Xs|>1},

where N̂a is a local F̂-martingale and Ŵ a is a bounded variation process, respec-
tively defined by

N̂a
t =

∫ t

0

∫
{|y|≤1}

[w(X1−s − a+ y)− w(X1−s − a)](µX̂ − ρ)(dy, ds)

Ŵ a
t =

∫ t

0

∫
{|y|≤1}

[w(X1−s − a+ y)− w(X1−s − a)](ρ− ν)(dy, ds).

The proof of Proposition 3.2.2, inspired from Yamada’s work [47], relies on Lemma
3.2.1 and the following technical lemma. We denote by B the operator defined by

Bf(x) =

∫
{|y|≤1}

[f(x+ y)− f(x)− f ′(x)y]ν(dy),

for any function such that the integral is well defined.
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Lemma 3.2.3. Let g be an infinitely differentiable function with compact support
and set

G(x) =

∫ ∞
−∞

g(z)w(x− z)dz.

Then we have :

BG(x) = g(x).

We need the following notation. For f in L1(R × [0, 1]), f̂ denotes its x-variable
Fourier transform , i.e :

f̂(ξ, t) =

∫ ∞
−∞

eixξf(x, t)dx. (3.2.4)

Remark 3.2.4. If f belongs to L1(R×[0, 1])∩L2(R×[0, 1]), thanks to Plancherel’s

Theorem we have
∫ 1

0

∫∞
−∞(f(x, t))2dxdt = 1

2π

∫ 1

0

∫∞
−∞ |f̂(ξ, t)|2dξdt. One can hence

extend the above transform from L1(R× [0, 1]) to L2(R× [0, 1]).

We now successively establish Lemma 3.2.1, Lemma 3.2.3 and finally Proposition
3.2.2.

Proof of Lemma 3.2.1 : Let X̃ be the process defined by X̃t = X̂t−X1, 0 ≤ t ≤ 1.
From the symmetry of X, X̃ is a Lévy process with same law as X. Obviously :
X̂ = X̃ − X̃1. Let F̃ = {F̃t; 0 ≤ t ≤ 1} be the filtration satisfying the usual
conditions generated by X̃, then F̂ is the filtration obtained from F̃ by an initial
enlargement with the variable X̃1, i.e. :

F̂t =
⋂
s>t

(F̃s ∨ σ(X̃1)).

For (x, t, ω) in [0, 1) × R × Ω, set qxt (ω) = φ(1 − t, x − X̃t(ω)), then qxt (ω)dx is
a regular version of the conditional law of X̃1 with respect to F̃t. According [43]
we know that for every t > 0 the set of zeros of φ(t, .) is either empty or a half
line. Since the second possibility is not possible because X is symmetric, we have
qxt > 0 for every (x, t) in R× [0, 1). We establish now the following identity :

qxt = qx0 +

∫ t

0

∫
R
qxs−U

x(s, y)(µX̂ − ν)(dy, ds), (3.2.5)

where U is defined by :

Ux(s, y) =
φ(1− s, x− X̃s− − y)

φ(1− s, x− X̃s−)
− 1.
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From (H1) and the inequality : e−txx ≤ 4 et−2

t2(1+x)
, x ≥ 0, we deduce that ∂φ

∂t
exists

and is continuous on (0, 1]× R. For g element of C∞c (R) (the set of infinitely dif-
ferentiable functions with compact support) such that

∫
g(x)dx = 1, the function

φn defined by : φn(t, x) =

∫ ∞
−∞

φ(t, x+ z/n)g(z)dz, belongs to C1,∞((0, 1]× R).

Set Φn(s, x) =

∫
R

(
φn(s, x+ y)− φn(s, x)− ∂φn

∂x
(x)y1{|y|≤1}

)
ν(dy). Using Itô

formula (3.1.1) we have for every t in [0, 1) :

φn(1− t, x− X̃t)− φn(1, x)

= −
∫ t

0

∂φn
∂t

(1− s, x− X̃s)ds+

∫ t

0

Φn(1− s, x− X̃s)ds

+

∫ t

0

∫
R
φn(1− s, x− X̃s− − y)− φn(1− s, x− X̃s−))(µX̂ − ν)(dy, ds)

=

∫ t

0

∫
R
(φn(1− s, x− X̃s− − y)− φn(1− s, x− X̃s−))(µX̂ − ν)(dy, ds),

(3.2.6)

since φn(1− t, x− X̃t) = E[ng(n(X1 − x))|Ft] is a martingale.
Thanks to the continuity of φ, we have

φn(1− t, x− X̃t)− φn(1, x) −→
n→∞

φ(1− t, x− X̃t)− φ(1, x).

We show now that the martingale in (3.2.6) converges in L2 when n tends to ∞
to the martingale :∫ t

0

∫
R
(φ(1− s, x− X̃s− − y)− φ(1− s, x− X̃s−))(µX̂ − ν)(dy, ds), 0 ≤ t < 1.

Define α on (0, 1] by α(t) = supx φ(t, x), i.e. :

α(t) =
1

π

∫ ∞
0

e−tψ(ξ)dξ. (3.2.7)

We have

E

[∫ 1

0

∫
R

(
φn(1− s, x− X̃s + y)− φn(1− s, x− X̃s)

−φ(1− s, x− X̃s + y) + φ(1− s, x− X̃s)
)2

ν(dy)ds

]
≤
∫ 1

0

α(s)

∫
R2

(φn(1− s, z + y)

−φn(1− s, z)− φ(1− s, z + y) + φ(1− s, z))2dzν(dy)ds.
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Thanks to Plancherel’s Theorem, this last term is equal to

2π

∫ 1

0

α(s)

∫
R2

|(e−iyξ − 1)(φ̂n(1− s, ξ)− φ̂(1− s, ξ))|2dξν(dy)ds,

and hence to

4π

∫ 1

0

α(s)

∫
R
ψ(ξ)e−2(1−s)ψ(ξ)(ĝ(−ξ/n)− 1)2dξds,

which converges to 0 by dominated convergence, since :∫ 1

0

α(s)ds =

∫
R
(ψ(ξ))−1(1− e−ψ(ξ))dξ <∞,

Hence we finally obtain (3.2.5). This allows, thanks to the result of Jacod (Theo-

rem 4.1 in [25]), to claim that (1 +U X̃1(t, y))dtν(dy) is the F̂ -compensator of µX̂ .
�

Proof of Lemma 3.2.3 For p > 0, set u(p)(x) = π−1
∫∞

0
cos(xξ)(p + ψ∗(ξ))

−1dξ

and Gp(x) =
∫
R g(z)(u(p)(0)−u(p)(x−z))dz. For p > 0, {u(p)(z−x), (z, x) ∈ R2} is

a continuous version of the kernel of the p-potential of the Lévy process Z defined
by Zt = Xt −

∑
s≤t ∆Xs1{|∆Xs|>1} i.e.,

U (p)f(z) = Ez

(∫ ∞
0

e−ptf(Zt)dt

)
=

∫
R
u(p)(z − x)f(x)dx,

where Ez represent the mean with respect to the law of the process (Zt + z)t∈[0,1].
Hence we have :

Gp(x) = u(p)(0)

∫
R
g(z)dz − Upg(x).

On the Schwartz space of infinitely differentiable and rapidly decreasing functions,
the operator pId−B (where Id is the identity operator) is a one to one operator and
its inverse is Up (See Bertoin [3], p. 23), hence BGp(x) = −pUpg(x) + g(x). From
(26) of Salminen and Yor [42] we have limp→0 pu

(p)(0) = 0, hence limp→0 pU
pg(x) =

0 and we obtain :

lim
p→0

BGp(x) = g(x),

But by dominated convergence, we also have limp→0BGp(x) = BG(x). Indeed for
any real x

|Gp(x+ y)−Gp(x)−G′p(x)y| ≤ y2 sup
z∈[x−1,x+1]

|G′′p(z)|

≤ y2 sup
z∈[x−1,x+1]

∫
|g′′(z − λ)|w(λ)dλ.(3.2.8)
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�

Proof of Proposition 3.2.2 : We only establish (ii). One establishes (i) with
similar arguments. First we will show that the processes N̂a and Ŵ a are well
defined. We set :

w1(x) = π−1

∫ 1

0

1

ψ∗(ξ)
(1− cos(xξ))dξ and w0(x) = π−1

∫ ∞
1

1

ψ∗(ξ)
(1− cos(xξ))dξ.

On one hand w1 is an infinitely differentiable function, hence for any n ∈ N,

∫ n

−n

∫
{|y|≤1}

(w1(x+y)−w1(x))2ν(dy)dx ≤ 2n sup
z∈[n−1,n+1]

|w′1(z)|2
∫
{|y|≤1}

y2ν(dy) <∞.

(3.2.9)
On the other hand, thanks to Plancherel’s Theorem we have :

∫
R

∫
{|y|≤1}

(w0(x+ y)− w0(x))2ν(dy)dx = π−1

∫ ∞
1

1

ψ∗(ξ)
dξ <∞. (3.2.10)

From (3.2.10) and (3.2.9), we obtain for every n ∈ N,∫ n

−n

∫
{|y|≤1}

(w(x+ y)− w(x))2ν(dy)dx <∞. (3.2.11)

For n in N, set T̂n = inf{s ≥ 0 : |X̂s| > n} ∧ t. We have for any n > |a| :

E

∫ T̂n

0

∫
{|y|≤1}

(w(X̂s − a+ y)− w(X̂s − a))2ρ(dy, ds)

≤ E

∫ 1

0

∫
{|y|≤1}

(w(Xs − a+ y)− w(Xs − a))21{|Xs|≤n}
φ(s,Xs + y)

φ(s,Xs)
ν(dy)ds

=

∫ n

−n

∫ 1

0

∫
{|y|≤1}

(w(x− a+ y)− w(x− a))2φ(s, x+ y)ν(dy)dsdx

≤
∫ 1

0

α(s)ds

∫ 2n

−2n

∫
{|y|≤1}

(w(x+ y)− w(x))2ν(dy)dx, (3.2.12)

which is finite thanks to (3.2.11) (α is defined in (3.2.7)). It follows that the
process {N̂a

s∧T̂n
; 0 ≤ s ≤ 1} is a F̂ -martingale, consequently N̂a is a well-defined

local F̂ -martingale.
Now, for every real x, set

N̂x
t (ε) =

∫ t

0

∫
{ε<|y|≤1}

(w(X1−s − x+ y)− w(X1−s − x))(µX̂ − ρ)(dy, ds).
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Similarly to (3.2.12), we have that for |x| ≤ n,

E[|N̂x
T̂n
− N̂x

T̂n
(ε)|2] ≤ cste

∫ 2n

−2n

∫
{|y|<ε}

(w(z + y)− w(z))2ν(dy)dz,

which converges to 0 as ε tends to zero. Hence, if g belongs to C∞c (R),
∫
R g(x)N̂x

t (ε)dx

converges in probability to
∫
R g(x)N̂x

t dx. For any ε > 0,∫
R
g(x)N̂x

t (ε)dx =

∫
{ε<|y|≤1}

[G(X1−s + y)−G(X1−s)](µX̂ − ρ)(dy, ds),

(where G is defined in Lemma 3.2.3 by G(x) =
∫
R g(z)w(x − z)dz). But the

right-hand side converges in probability to∫
{|y|≤1}

[G(X1−s + y)−G(X1−s)](µX̂ − ρ)(dy, ds).

This leads to P-a.s,

∫
R
g(x)N̂x

t dx =

∫ t

0

∫
{|y|≤1}

[G(X̂s− + y)−G(X̂s−)](µX̂ − ρ)(dy, ds), (3.2.13)

As (3.2.12) has been show, we obtain the following inequality :

E

[∫ T̂n

0

∫
{|y|≤1}
|w(X̂s−a+y)− w(X̂s − a)| |φ(1− s, X̂s + y)− φ(1− s, X̂s)|

φ(1− s, X̂s)
ν(dy)ds

]

≤ (2π)−1/2

∫ 1

0

β(s)ds

{∫ 2n

−2n

∫
{|y|≤1}

(w(x+ y)− w(x))2ν(dy)dx

}1/2

,

which is finite thanks to condition (H2) and (3.2.11), then Ŵ a is a continuous
bounded variation process and by Fubini’s Theorem we have :∫

R
g(x)Ŵ x

t dx =

∫ t

0

∫
{|y|≤1}

(G(X̂s− + y)−G(X̂s−))(ρ− ν)(dy, ds). (3.2.14)

For any real x and any t in [0, 1], we define Λx
t by

Λx
t = w(X1−t−x)−w(X1−x)−N̂x

t−−Ŵ x
t +

∑
1−t≤s≤1

(w(Xs−x)−w(Xs−−x))1{|∆Xs|>1}.

We prove now that Λ satisfies the time occupation time formula for X̂, i.e :
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∫ 1

0

g(X̂s)ds =

∫
R
g(x)Λx

t dx. (3.2.15)

Λx is a continuous function in t, thus we can rewrite it as follows

Λx
t = w(X̂t−x)−w(X1−x)− N̂x

t −Ŵ x
t −

∑
s≤t

(w(X̂s−x)−w(X̂s−−x))1{|∆X̂s|>1}.

Thanks to (3.2.13) and (3.2.14) we have∫
R
g(x)Λx

t dx

= G(X̂t)−G(X1)−
∫ t

0

∫
{|y|≤1}

(G(X̂s− + y)−G(X̂s−))(µX̂ − ρ)(dy, ds)

−
∫ t

0

∫
{|y|≤1}

(G(X̂s− + y)−G(X̂s−))(ρ− ν)(dy, ds)

−
∑
s≤t

(G(X̂s)−G(X̂s−))1{|∆X̂s|>1}.

By Itô formula, we know that the right-hand side of the above equality is equal
to
∫ t

0
BG(X̂s)ds, where the operator B is defined in Lemma 3.2.3. Then Lemma

3.2.3 gives (3.2.15).
Consequently, we obtain

∫
R g(x)Λx

t dx =
∫
R g(x)L̂xt dx P-a.s. A priori, the set of

probability 1, on which the previous identity holds, depends of the function g.
But we can suppress this dependency since the set of continuous function with
compact support with the metric of convergence uniform is a separable topological
space. We obtain P-a.s. :∫

R
g(x)Λx

t dx =

∫
R
g(x)L̂xt dx, ∀g ∈ C∞c (R).

Hence we have for any x outside of a set of Lebesgue measure zero : Λx
t = L̂xt

P-a.s. In order to guarantee that this holds for any given a it is sufficient to show
that

lim
x→a

Λx
t = Λa

t in probability and (3.2.16)

lim
x→a

L̂xt = L̂at in probability. (3.2.17)

For n such that |a| < n, similarly to (3.2.12), we have for any x :

E[|N̂x
T̂n
− N̂a

T̂n
|2] ≤

cste

∫
{|y|≤1}

∫ 2n

2n

(w(z + y)− w(z)− w(z + y + a− x) + w(z + a− x))2dzν(dy).
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When |x−a| < 1, the above integral is smaller than 4
∫ 2n+1

−2n−1
(w(z+y)−w(z))2dz.

Hence by dominated convergence, thanks to the continuity of w, we conclude that
E[|N̂x

T̂n
− N̂a

T̂n
|2] converges to 0 as x tends to a, thus (N̂x

t − N̂a
t ) converges to 0 in

probability as x tends to a. Similarly, (Ŵ x
t − Ŵ a

t ) also converges in probability to
0 as x tends to a. These convergences and the continuity of w lead to (3.2.16).
Defining the martingale (Mx

t )0≤t≤1 by

Mx
t =

∫ t

0

∫
{|y|≤1}

(v(Xs− − x+ y)− v(Xs− − x))µ̃(dy, ds),

we obtain as above that Mx
t −Ma

t converge to 0 in probability as x tends to a.
According to Corollary 14 in Bertoin [3] p.147, one defines a distance d on R by
setting :
d(x, y) = v(x − y) ∀x, y ∈ R. Consequently : |v(x) − v(y)| ≤ v(x − y) for all
x, y ∈ R. Defining for any real x, Ox

t by :

Ox
t =

∫ t

0

∫
{|y|>1}

(v(Xs − x+ y)− v(Xs − x))ν(dy)ds,

we obtain that : |Ox
t − Oa

t | ≤ 2ν({|y| > 1})v(x − a), which converges to zero as
x tends to a. Now, note that Salminen and Yor’s formula for L (3.2.2) can be
written as follows

Lat = v(Xt − a)− v(a)−Ma
t −

∑
s≤t

(v(Xs − a)− v(Xs− − a))1{|∆Xs|>1} −Oa
t ,

which shows that Lxt converges in probability to Lat as x tends to a, and (3.2.17)
follows. �

3.3 Integration with respect to local time

We start by defining the stochastic integration of elementary functions from R×
[0, 1] to R with respect to (Lxt , x ∈ R, 0 ≤ t ≤ 1). Let f∆ be an elementary function
i.e. there exists a finite sequence (xi)1≤i≤n of real numbers, a subdivision of [0, 1]
(sj)1≤j≤m and a family of real numbers {fij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} such that

f∆(x, s) =
∑

1≤i≤n,1≤j≤m

fij1(xi,xi+1]1(sj ,sj+1].

For such a function integration with respect to L is defined by∫ t

0

∫
R
f∆(x, s)dLxs =

∑
1≤i≤n,1≤j≤m

fij(L
xi+1

sj+1∧t − L
xi
sj+1∧t − L

xi+1

sj∧t + Lxisj∧t). (3.3.1)
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Integration with respect to local time

The problem is to find the space of deterministic functions to which this integration
could be extended. The answer is given by the following theorem. To introduce it,
we define the norm ‖ ‖ by

‖f‖2 =

∫ 1

0

β(t)

∫
R

(
1 +

ξ2

ψ∗(ξ)

)
|f̂(ξ, t)|2dξdt.

where β, ψ∗ and f̂ are respectively defined by (3.1.4), (3.2.3) and Remark 3.2.4.
We set

Υ = {f ∈ L2(R× [0, 1]) : ‖f‖ <∞}. (3.3.2)

Theorem 3.3.1. Integration with respect to L can be extended from the elemen-
tary functions to Υ. This extension satisfies :
(i) There exist a constant κ such that for every element f of Υ

E

(
sup

0≤t≤1

∣∣∣∣∫ t

0

∫
R
f(x, s)dLxs

∣∣∣∣) ≤ κ‖f‖.

(ii) For f ∈ Υ, the process (
∫ t

0

∫
R f(x, s)dLxs , 0 ≤ t ≤ 1) has 0-quadratic variation.

After proving Theorem 3.3.1, we will show that integration with respect to local
time can be extended from Υ to Υloc the set of measurable functions f : R ×
[0, 1] → R such that ∀k > 0 there exists a function fk ∈ Υ which satisfies :
f(x, s) = fk(x, s) if |x| ≤ k.

The proof of Theorem 3.3.1 is based on the two analogues of Tanaka’s formula
established in Section 2 and on the following lemma. For a complex valued function
h on R× [0, 1], element of L2(R× [0, 1]), we set

ȟ(x, s) =
1

2π
ĥ(−x, s),

i.e., ȟ is the inverse Fourier transform in the variable x of h.

Lemma 3.3.2. (i) Let f be an element of Υ. For every y in R, set

gy(ξ, s) = f̂(ξ, s)
ξ

ψ∗(ξ)
[sin(yξ) + i(cos(yξ)− 1)],

then gy belongs to L2(R× [0, 1]).

(ii) Let f be an element of Υ. Set ϕ(x, y, s) = ǧy(x, s), then the three following
processes H(f), I(f) and K(f), are well defined on [0, 1]

Ht(f) =
1

2

∫ t

0

∫
{|y|≤1}

ϕ(Xs−, y, s)µ̃X(dy, ds),

It(f) =
1

2

∫
[1−t,1]

∫
{|y|≤1}

ϕ(X1−s, y, 1− s)(µX̂ − ρ)(dy, ds) and

Kt(f) =
1

2

∫ t

0

∫
{|y|≤1}

ϕ(Xs, y, s)

(
φ(s,Xs + y)− φ(s,Xs)

φ(s,Xs)

)
ν(dy)ds.
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Local time-space calculus for symmetric Lévy Processes

(iii) For f in Υ, set J(f) = (Ht(f) + It(f) +Kt(f))0≤t≤1. There exists a constant
κ such that for every f in Υ

E( sup
0≤t≤1

|Jt(f)|) ≤ κ‖f‖.

We immediately use Lemma 3.3.2 to prove Theorem 3.3.1. Lemma 3.3.2 is estab-
lished after.

Proof of Theorem 3.3.1 For a, b real numbers such that b < a, the function ϕ,
defined in Lemma 3.3.2, corresponding to f = 1(b,a], is given by

ϕ(x, y, s) = w(x− b+ y)− w(x− b)− w(x− a+ y) + w(x− a). (3.3.3)

Indeed, let hy(x) be the right-hand side of the above equation. For p > 0, set

u(p)(x) = π−1

∫ ∞
0

cos(xξ)

p+ ψ∗(ξ)
dξ. (3.3.4)

We know that (See Lemma 1 of Salminen and Yor [42]) u(p)(0)−u(p)(x) converges
to w(x) as p tends to 0. Define : hy,p(x) = −u(p)(x− b+ y) +u(p)(x− b) +u(p)(x−
a+ y)− u(p)(x− a) and note that (p+ ψ∗(ξ))

−1 is the Fourier’s transform of u(p),
hence

ĥy,p(ξ) =
eiaξ − eibξ

iξ

ξ

p+ ψ∗(ξ)
[sin(yξ) + i(cos(yξ)− 1)],

which converges pointwise to gy(ξ, s) as p tends to 0.

For every p > 0, |ĥy,p|2 ≤ 2|eiaξ − eibξ|2(ψ∗(ξ))
−2[1− cos(yξ)]. Thus by dominated

convergence, ĥy,p converges in L2 to gy. It follows, thanks to Plancherel’s Theorem,
that hy,p converges in L2 to ϕ(., y, .). But obviously hy,p converges pointwise to hy
as p tends to 0. Consequently ϕ(x, y, s) = hy(x).

From the definition of L̂ (3.2.1) we have for any real x

Lxt = L̂x1 − L̂x1−t

and hence, thanks to Proposition 3.2.2.(ii) :

Lxt = w(x)− w(Xt − x) − (N̂x
1 − N̂x

(1−t)−)− (Ŵ x
1 − Ŵ x

1−t),

+
∑
s≤t

(w(Xs − x)− w(Xs− − x))1{|∆Xs|>1},

which, comparing with Proposition 3.2.2.(i) leads to :
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Integration with respect to local time

2Lxt = −Nx
t − (N̂x

1 − N̂x
(1−t)−)− (Ŵ x

1 − Ŵ x
1−t). (3.3.5)

We have obtained with the notation of Lemma 3.3.2 : Lat − Lbt = Jt(f). By linear
combination, thanks to the definition of integration with respect to L (3.3.1), this
identity immediately extends to elementary functions :∫ t

0

∫
R
f∆(x, s)dLxs = Jt(f∆), (3.3.6)

which leads to :

E

(
sup
t∈[0,1]

∣∣∣∣∫ t

0

∫
R
f∆(x, s)dLxs

∣∣∣∣
)
≤ κ‖f∆‖,

where κ is the constant introduced in Lemma 3.3.2.(iii). Thus, in order to extend
the integration with respect to L to the normed space (Υ, ‖ ‖) we must show that
the set of elementary functions is dense in Υ for the topology generated by ‖ ‖.
The obtained extension will then obviously satisfy (i).
To this end, we will show the followings assertions :

(a1) The set of elementary functions is dense in C1,0
c (R× [0, 1]), the set of contin-

uous functions with compact support such that ∂f
∂x

exists and is continuous.

(a2) C1,0
c (R × [0, 1]) is dense in the set Υ̃ of functions f such that, ∂f

∂x
exists as

Radon-Nikodym derivative and ‖f‖β + ‖∂f
∂x
‖β <∞, where ‖ ‖β is the norm

defined by ‖g‖2
β =

∫ 1

0
β(t)

∫
R g(x, t)2dxdt, for g measurable function from

R× [0, 1] to R
(a3) Υ̃ is dense in Υ.

(a1) : For f element of C1,0
c (R× [0, 1]) and a, b real numbers such that the support

of f is contained in [a, b]× [0, 1], we take a family of subdivisions of [a, b]× [0, 1],
{(x(i, n), s(j, n)), 0 ≤ i ≤ kn, 0 ≤ j ≤ mn} such that x(0, n) = a, x(kn, n) = b,
s(0, n) = 0, s(mn, n) = 1 and

max
0≤i≤kn−1

|x(i+ 1, n)− x(i, n)| ∨ max
0≤j≤mn−1

|s(j + 1, n)− s(j, n)| −→
n→∞

0.

fn =
kn−1∑
i=0

mn−1∑
j=0

f(x(i, n), s(j, n))1(x(i,n),x(i+1,n)]1(s(j,n),s(j+1,n)].

By dominated convergence, we have :

lim
n→∞

∫ 1

0

β(s)

∫
R
|fn(ξ, s)− f(ξ, s)|2dξds = 0,
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Local time-space calculus for symmetric Lévy Processes

and equivalently :

lim
n→∞

∫ 1

0

β(s)

∫
R
|f̂n(ξ, s)− f̂(ξ, s)|2dξds = 0. (3.3.7)

Note that for every δ > 0,
∫ δ

0
x2ν(dx) > 0. Indeed, if

∫ δ
0
x2ν(dx) = 0 then

ν((0, δ]) = 0 and it follows that for every ξ > 0, ψ∗(ξ) = 2
∫ 1

δ
(1− cos(xξ))ν(dx) ≤

4ν(δ, 1], which contradicts limξ→∞ ψ∗(ξ) = ∞ (see Lemma 4.2.2 of [33]). Set
k = infx∈[−1,1](1− cos(x))x−2, then :

ψ∗(ξ) ≥ 2

∫ ξ−1∧1

0

(1− cos(xξ))ν(dx) ≥ 2kξ2

∫ ξ−1∧1

0

x2ν(dx) > 0,

which gives sup
ξ∈[−N,N ]

ξ2

ψ∗(ξ)
<∞, ∀N > 0. Thanks to (3.3.7) we hence obtain :

lim
n→∞

∫ 1

0

β(s)

∫ N

−N

(
1 +

ξ2

ψ∗(ξ)

)
|f̂n(ξ, s)− f̂(ξ, s)|2dξds = 0, ∀N > 0, (3.3.8)

Besides, a simple computation gives

f̂n(ξ, s) =
1

iξ

kn−1∑
i=0

mn−1∑
j=0

f(x(i, n), s(j, n))(eiξx(i+1,n) − eiξx(i,n))1(s(j,n),s(j+1,n)]

=
1

iξ

kn∑
i=1

mn−1∑
j=0

eiξx(i,n)[f(x(i− 1, n), s(j, n))

−f(x(i, n), s(j, n))]1(s(j,n),s(j+1,n)],

which leads to : |f̂n(ξ, s)| ≤ 1

|ξ|
sup
x

∣∣∣∣∂f∂x
∣∣∣∣ (b− a) and hence to

lim
N→∞

sup
n

∫ 1

0

β(s)

∫
|ξ|≥N

(
1 +

ξ2

ψ∗(ξ)

)
|f̂n(ξ, s)|2dξds

≤ sup
x

∣∣∣∣∂f∂x
∣∣∣∣ (b− a) lim

N→∞

∫ 1

0

β(s)

∫
|ξ|≥N

(
1

ξ2
+

1

ψ∗(ξ)

)
dξds

= 0,

which, together with (3.3.8) gives (a1).

(a2) : For f element of Υ̃ set f̃(x, s) = β1/2(s)f(x, s). We take (hn)n∈N a sequence
of infinitely differentiable functions with compact support such that :

‖f̃ − hn‖L2(R×[0,1]) +

∥∥∥∥∥∂f̃∂x − ∂hn
∂x

∥∥∥∥∥
L2(R×[0,1])

−→
n→∞

0.
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Integration with respect to local time

We define fn by fn(x, s) = hn(x, s)β−1/2(s). Since β−1/2 is a continuous function
fn belongs to C1,0

c (R × [0, 1]). Indeed one shows the continuity of β on (0, 1] by
dominated convergence and then check the continuity at t = 0 as follows. From
Fatou’s Lemma we have :

lim inf
t→0

β2(t) ≥
∫ ∞

0

ψ(ξ) =∞,

hence limt→0 β
−1/2(t) = 0.

For g measurable function from R× [0, 1] into R such that ∂g/∂x exists as Radon-

Nikodym derivative, one easily shows with the identity ∂̂g
∂x

(ξ, t) = −iξĝ(ξ, t) that

‖g‖ ≤ c(‖g‖β + ‖∂g/∂x‖β),

where c2 = 2π[sup0≤ξ≤1(1 + ξ2ψ∗(ξ)
−1) ∨ supξ≥1(ξ−2 + ψ∗(ξ)

−1)]. Hence we have

lim sup
n→∞

‖f − fn‖ ≤ lim
n→∞

c

[
‖f − fn‖β +

∥∥∥∥∂f∂x − ∂fn
∂x

∥∥∥∥
β

]
= 0,

which proves (a2).

(a3) : Let h be an infinitely differentiable function with compact support from R
into R such that

∫
R h(x)dx = 1. For f such that ‖f‖ <∞, set

fn(x, s) = n

∫
R
f(x− y, s)h(ny)dy.

From f̂n(ξ, s) = f̂(ξ, s)ĥ(ξ/n) and ∂̂fn
∂x

(ξ, s) = nf̂(ξ, s)ĥ′(ξ/n), we obtain that fn
belongs to Υ̃ and by dominated convergence, lim

n→∞
‖fn−f‖ = 0, which gives (a3).

To finish the proof of Theorem, it remains to show the point (ii). For f element
of Υ, we must prove that [J(f)]1 = 0, where for a stochastic process Y we denote
[Y ]1 its quadratic variation in [0, 1]. For every ε > 0 there exists an elementary
function fε such that ‖f − fε‖2 < ε/(4κ). It is obvious from the definition of
the integral with respect to L for elementary functions and the relation 3.3.6 that
J(fε) is a continuous bounded variation process. It hence has a 0-quadratic energy.
We have, with the notation of Lemma 3.3.2

E([J(f)]1) = E([J(f)− J(fε)]1)

= E([H(f) + I(F )−H(fε)− I(fε)]1)

≤ 2E([H(f)−H(fε)]1) + 2E([I(f)− I(fε)]1)

≤ 4κ‖f − fε‖2

≤ ε,

and (ii) follows. �
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Proof of Lemma 3.3.2 : In the proof of Lemma 3.2.1 we have defined the
function α by α(t) = supx φ(t, x) (see (3.2.7)) and we have seen that α belongs to
L1[0, 1]. Actually there exists a constant c such that

α(t) ≤ cβ(t) ∀t ∈ (0, 1]. (3.3.9)

Indeed,

πα(t) ≤ 1 +

∫ ∞
1

e−tψ(ξ)dξ ≤ 1 +

(∫ ∞
1

e−2tψ(ξ)ψ(ξ)dξ

) 1
2
(∫ ∞

1

1

ψ(ξ)
dξ

) 1
2

≤
(∫ 1

0

e−2ψ(ξ)ψ(ξ)dξ

)− 1
2
(∫ 1

0

e−2tψ(ξ)ψ(ξ)dξ

) 1
2

+

(∫ ∞
1

1

ψ(ξ)
dξ

) 1
2

β(t)

≤

[(∫ 1

0

e−2ψ(ξ)ψ(ξ)dξ

)− 1
2

+

(∫ ∞
1

1

ψ(ξ)
dξ

) 1
2

]
β(t).

(i) According to Lemma 4.2.2 of [33], for every real y, sup 1−cos(yξ)
ψ∗(ξ)

<∞, hence

|gy(ξ, s)|2 = 2|f̂(ξ, s)|2 ξ2

ψ∗(ξ)2
(1− cos(yξ)) ≤ cste|f̂(ξ, s)|2 ξ2

ψ∗(ξ)
,

and it follows immediately that gy belongs to L2(R× [0, 1]) when f ∈ Υ.
(ii) We show that the process (Ht(f))0≤t≤1 is a well-defined martingale. To this
end, it is sufficient to show that

E

∫ 1

0

∫
{|y|≤1}

(ϕ(Xs, y, s))
2ν(dy)ds <∞, (3.3.10)

We have :

E

∫ 1

0

∫
{|y|≤1}

(ϕ(Xs, y, s))
2ν(dy)ds =

∫ 1

0

∫
R×[−1,1]

(ϕ(z, y, s))2φ(s, z)dzν(dy)ds

≤
∫ 1

0

α(s)

∫
R×[−1,1]

(ϕ(z, y, s))2dzν(dy)ds

=
1

2π

∫ 1

0

α(s)

∫
R×[−1,1]

|gy(ξ, s)|2dξν(dy)ds,

thanks to Plancherel’s Theorem. Now, from the definition of gy and Fubini’s The-
orem we have :

E

∫ 1

0

∫
{|y|≤1}

(ϕ(Xs, y, s))
2ν(dy)ds ≤ 1

π

∫ 1

0

α(s)

∫
R
|f̂(ξ, s)|2 ξ2

ψ∗(ξ)
dξds <∞,
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Integration with respect to local time

which leads to (3.3.10). Note that thanks to Doob’s inequality and (3.3.9) we have

E( sup
0≤t≤1

|Ht(f)|2) ≤ 4cπ−1

∫ 1

0

β(s)

∫
R
|f̂(ξ, s)|2 ξ2

ψ∗(ξ)
dξds. (3.3.11)

A similar argument shows that the process

Ĩ(f) = {Ĩt(f) =
1

2

∫ t

0

∫
{|y|≤1}

ϕ(X1−s, y, 1− s)(µX̃ − ρ)(dy, ds), t ∈ [0, 1]},

is a well-defined square-integrable F̂ -martingale and

E( sup
0≤t≤1

|Ĩt(f)|2) ≤ 4cπ−1

∫ 1

0

β(s)

∫
R
|f̂(ξ, s)|2 ξ2

ψ∗(ξ)
dξds.

Thus, the process It(f) = Ĩ1(f)− Ĩ(1−t)−(f) is well defined and

E( sup
0≤t≤1

|It(f)|2) ≤ 2E(|Ĩ1(f)|2) + 2E( sup
0≤t≤1

|Ĩt(f)|2)

≤ 16cπ−1

∫ 1

0

β(s)

∫
R
|f̂(ξ, s)|2 ξ2

ψ∗(ξ)
dξds. (3.3.12)

Finally, we will show that the process K(f) is a well-defined bounded variation
process. We have :

E

∫ 1

0

∫
{|y|≤1}

|ϕ(Xs, y, s)|
|φ(s,Xs + y)− φ(s,Xs)|

φ(s,Xs)
ν(dy)ds

≤
∫ 1

0

{∫
R×[−1,1]

(ϕ(x, y, s))2dxν(dy)

}1/2{∫
R2

(φ(s, x+ y)− φ(s, x))2dxν(dy)

}1/2

ds

=
1

π

∫ 1

0

{∫
R
|f̂(ξ, s)|2 ξ2

ψ∗(ξ)
dξ

}1/2

β(s)ds

≤ 1

π

{∫ 1

0

β(s)ds

}1/2{∫ 1

0

β(s)

∫
R
|f̂(ξ, s)|2 ξ2

ψ∗(ξ)
dξds

}1/2

,

where the equality is obtained thanks to Plancherel’s Theorem and the last in-
equality follows from Cauchy-Schwarz inequality. HenceK(f) is a variation bounded
process and we have :

E( sup
0≤t≤1

|Kt(f)|) (3.3.13)

≤ 1

π

{∫ 1

0

β(s)ds

}1/2{∫ 1

0

β(s)

∫
R
|f̂(ξ, s)|2 ξ2

ψ∗(ξ)
dξds

}1/2

.
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(iii) We derive immediately from (3.3.11), (3.3.12) and (3.3.13) the existence of a
constant κ such that

E[ sup
0≤t≤1

|Jt(f)|] ≤ κ

{∫ 1

0

β(s)

∫
R
|f̂(ξ, s)|2 ξ2

ψ∗(ξ)
dξds

}1/2

.

≤ k‖f‖

�
In the proof of Theorem 3.3.1, we have defined the norm ‖‖β as follows

‖g‖2
β =

∫ 1

0

β(t)

∫
R
g(x, s)2dxds, (3.3.14)

for g measurable function from R× [0, 1] into R and we have seen that there exists
a positive constant c such that for any g admitting a Radom-Nikodym derivative
∂g
∂x

:

‖g‖ ≤ c(‖g‖β + ‖∂g/∂x‖β). (3.3.15)

Lemma 3.3.3. Let f be a measurable function from R × [0, 1] into R such that
∂f/∂x exists as Radon-Nikodym derivative and ‖f‖β + ‖∂f/∂x‖β <∞, then the

processes {
∫ t

0

∫
R f(x, s)dLxs ; 0 ≤ t ≤ 1} and {−

∫ t
0
∂f
∂x

(Xs, s)ds; 0 ≤ t ≤ 1} are
indistinguishable.

Proof of Lemma 3.3.3 Suppose that f does not depend on t, has a compact
support and a continuous first derivative with respect to x (denoted f ′). Then with
the arguments used to show (3.3.3) one shows that the corresponding function ϕ
defined in Lemma 3.3.2 is given by

ϕ(x, y) =

∫
R
f ′(z)(w(x− z + y)− w(x− z))dz.

Thanks to (3.2.13) in Proposition 3.2.2 we have :∫
R
f ′(x)N̂x

t dx =

∫ t

0

∫
{|y|≤1}

ϕ(X1−s, y)(µX̂ − ρ)(dy, ds),

thus, with the notation of Lemma 3.3.2 we have It(f) = 1
2

∫
R f
′(x)(N̂x

1−N̂x
(1−t)−)dx

and similarly (see (3.2.14)), Kt(f) = 1
2

∫
R f
′(x)(Ŵ x

1 − Ŵ x
(1−t))dx and Ht(f) =

1
2

∫
R f
′(x)Nx

t dx. It follows from (3.3.5) that Jt(f) = −
∫
R f
′(x)Lxt dx which proves

Lemma 3.3.3 in this special case thanks to the time occupation formula.
Suppose that f belongs to C1,0

c (R×[0, 1]). Take a sequence of subdivisions (∆n)n≥0

of [0, 1] such that the mesh of ∆n tends to 0 as n tends to ∞. Define fn(x, s) =∑
si∈∆n

f(x, si)1(si,si+1]. For any n > 0, Jt(fn) = −
∫ t

0
(∂fn/∂x)(Xs, s)ds. The
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right-hand side of the precedent equation converges to
∫ t

0
(∂f/∂x)(Xs, s)ds al-

most surely and ‖f − fn‖ converge to 0, hence J(fn) converges in L1 to J(f) and
Lemma 3.3.3 is proved in this case.
For the general case, thanks to (3.3.15), f ∈ Υ. Moreover, a.s, ∀t ∈ [0, 1] Yt =∫ t

0
∂f
∂x

(Xs, s)ds is well defined as Lebesgue integral and

E[ sup
0≤t≤1

|Yt|2] ≤ E

∫ 1

0

∫
R

∂f

∂z

2

(x, s)φ(x, s)dxds ≤ c‖∂f/∂x‖2
β,

where c is the constant involved in (3.3.9)). Let (fn)n≥0 be a sequence of C1,0
c such

that ‖f −fn‖β +‖∂f/∂x−∂fn/∂x‖β → 0 as n→∞. Thanks to (3.3.15) ‖f −fn‖
also converges to 0. Then :

∫ t

0

∫
R
f(x, s)dLxs = lim

n→∞

∫ t

0

∫
R
fn(x, s)dLxs

= − lim
n→∞

∫ t

0

∂fn
∂x

(Xs, s)ds

= −
∫ t

0

∂f

∂x
(Xs, s)ds,

where the first limit is in L1 and the second one in L2. �

We defined Υloc as the set of measurable functions from R× [0, 1] into R such that
for any positive k there exists fk ∈ Υ such that fk = f in [−k, k] × [0, 1]. In the
rest of this section, with a localization argument, we will construct a stochastic
integral with respect to local time for the elements of Υloc. Example 3.3.8 provides
a characterization of Υloc in the case when X is stable symmetric.

For n integer, set Tn = inf{t : |Xt| > n} ∧ 1.

Definition 3.3.4. Let f be an element of Υloc. For every integer n let fn be a
function of Υ such that f(x, s) = fn(x, s) on {|x| ≤ n+ 1}. We define the process

(Jnt (f))0≤t≤1 by Jnt (f) =
∫ t∧Tn

0

∫
R fn(x, s)dLxs .

The following lemma shows that this definition makes sense and does not depend
of the choice of the function fn.

Lemma 3.3.5. For f, g in Υ such that f(x, s) = g(x, s) on {|x| ≤ n + 1},
the processes (

∫ t∧Tn
0

∫
R f(x, s)dLxs)0≤t≤1 and (

∫ t∧Tn
0

∫
R g(x, s)dLxs)0≤t≤1 are indis-

tinguishable.

Proof of Lemma 3.3.5 Thanks to the continuity of the processes, it suffices
to show that the first process is a modification of second one. Let h be an in-
finitely differentiable function with compact support included in [0, 1] and such
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that
∫
R h(x)dx = 1. We define the sequence (fm)m∈N by fm(x, s) =

∫
R f(x −

y/m, s)h(y)dy and gm(x, s) =
∫
R g(x − y/m, s)h(y)dy. As for ( a3), in the proof

of Theorem 3.3.1, ‖fm − f‖ and ‖gm − g‖ both converge to 0 as m tends to ∞.
This gives as m tends to ∞∫ t∧Tn

0

∫
R
fm(x, s)dLxs

L1(P)−→
∫ t∧Tn

0

∫
R
f(x, s)dLxs

and ∫ t∧Tn

0

∫
R
gm(x, s)dLxs

L1(P)−→
∫ t∧Tn

0

∫
R
g(x, s)dLxs .

We show now that for every m :∫ t∧Tn

0

∫
R
fm(x, s)dLxs =

∫ t∧Tn

0

∫
R
gm(x, s)dLxs a.s.

For every m, fm(x, s) = gm(x, s) on {|x| ≤ n}. Hence, thanks to Lemma 3.3.3 we
have :

∫ t∧Tn

0

∫
R
fm(x, s)dLxs = −

∫ t∧Tn

0

∂fm
∂x

(Xs, s)ds

= −
∫ t∧Tn

0

∂gm
∂x

(Xs, s)ds

=

∫ t∧Tn

0

∫
R
gm(x, s)dLxs .

This finishes the proof. �

Definition 3.3.6. For f element of Υloc, we define the process (Jt(f)0≤t≤1 by :

Jt(f) = Jnt (f) en {0 ≤ t ≤ Tn}.

Thanks to Lemma 3.3.5 if m ≤ n, Jnt (f) = Jmt (f) a.s on {0 ≤ t ≤ Tn}, which
shows that this definition is consistent.

Lemma 3.3.7. (i) For every f in Υloc, the process Jn(f) converges uniformly in
probability as n tends to ∞ to the process J(f).

(ii) For f measurable function on R× [0, 1] such that ∂f
∂x

exists as Radon-Nikodym

derivative,
∫ 1

0
β(s)

∫ K
−K(∂f

∂x
(x, s))2dxds <∞ ∀K > 0 and∫ 1

0
β(s)(f(x0, s))

2ds <∞ ∃x0 ∈ R, then f belongs to Υloc and the processes

J(f) and {−
∫ t

0
∂f
∂x

(Xs, s)ds; 0 ≤ t ≤ 1} are indistinguishable.

(iii) For every f in Υloc, J(f) is a 0-quadratic energy process.
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Proof (i) ∀ε > 0 :

P( sup
0≤t≤1

|Jt(f)− Jnt (f)| > ε) ≤ P(1 > Tn) = P( sup
0≤s≤1

|Xs| > n)→ 0

as n→∞ because sup{|Xs| : 0 ≤ s ≤ 1} <∞ a.s.
(ii) With these assumptions on f , one easily shows that∫ 1

0

β(s)

∫ k

−k
(f(x, s))2dxds <∞.

Let (gn)n∈N be a sequence of infinitely differentiable functions with compact sup-
port such that gn(x) = 1 if |x| < n+ 1, then for every n

‖fgn‖β + ‖∂(fgn)

∂x
‖β <∞.

Thanks to Lemma 3.3.3, fgn belongs to Υ and thus f belongs to Υloc. Moreover :

Jnt (f) =

∫ t∧Tn

0

∫
R
f(x, s)gn(x)dLxs

= −
∫ t∧Tn

0

∂(gnf)

∂x
(Xs, s)ds

= −
∫ t∧Tn

0

∂f

∂x
(Xs, s)ds.

Consequently we obtain (ii) from (i) by letting n tend to ∞.
(iii) For every n, the quadratic variation of Jn(f) is a.s. zero, hence a.s on
0 ≤ t ≤ Tn, J(f) is a 0-quadratic energy process, consequently it is so on [0, 1].�

We can now extend the stochastic integration with respect to local times from Υ
to Υloc as follows. For f element of Υloc, we define the stochastic integral with
respect to L by ∫ t

0

∫
R
f(x, s)dLxs = Jt(f).

Example 3.3.8. When X is a α-stable process, we have the following character-
ization of set Υloc : a measurable function f from R × [0, 1] to R belongs to Υloc

if and only if for every positive k

∫ 1

0

β(t)

∫ k

−k
[f 2(x, s) +

∫ 1

−1

(f(x+ y, s)− f(x, s))2$(dy)]dx <∞, (3.3.16)

where $ is the Lévy measure of a (2− α)-stable and symmetric Lévy process.
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Local time-space calculus for symmetric Lévy Processes

Indeed, set τ(ξ) =
∫ 1

−1
(1−cos(xξ))$(dx), then there exists a constant c such that

c(1 + |ξ|2−α) ≤ 1 + τ(ξ) ≤ (1 + |ξ|2−α) ∀ξ ∈ R. Hence we have :

f ∈ Υ ⇔
∫ t

0

β(t)

∫
R
(1 + τ(ξ))|f̂(ξ, t)|2dξdt <∞

⇔
∫ 1

0

β(t)

∫
R
[f 2(x, s) +

∫ 1

−1

(f(x+ y, s)− f(x, s))2$(dy)dxdt <∞

thanks to Plancherel’s Theorem. With this fact, one obtains the “only if” part.
Conversely assume that (3.3.16) holds. Let g be an element of C∞c (R) with support
in [−K,K], for K > 0, then

∫ 1

0

β(t)

∫
R
[(fg)2(x, s) +

∫ 1

−1

((fg)(x+ y, s)− (fg)(x, s))2$(dy)]dxdt

≤ (‖g‖2
∞ + 2 sup

x

∫ 1

−1

(g(x+ y)− g(x))2$(dy))

∫ 1

0

β(t)

∫ K+1

K−1

f 2(x, s)dxdt

+2‖g‖2
∞

∫ 1

0

β(t)

∫ K+1

K−1

∫ 1

−1

(f(x+ y, s)− f(x, s))2$(dy)dxdt

< ∞,

consequently

fg ∈ Υ for any g ∈ C∞c (3.3.17)

and the “only” part follows.
Actually, this characterization of Υloc is also available when the Lévy process is
such that φ(ξ) ∼ ξα as ξ →∞ for some 1 < α < 2.

3.4 Extension of the Itô formula

Before proving Theorem 3.1.2, we establish some results. They show that each of
the terms of (3.1.10) is well defined and they will ease their approximations. We
need the following notation. The operator B is defined by

BF (x, s) =

∫
{|y|≤1}

{F (x+ y, s)− F (x, s)− y∂F
∂x

(x, s)}ν(dy), (3.4.1)

for any function F on R× [0, 1] such that the above integral is well defined.
To the Lévy measure ν̄(dx) = 1

|x|ν((|x|, 1])1{|x|≤1}dx, we associate the correspond-

ing characteristic exponent ψ̄

ψ̄(ξ) = 2

∫ 1

0

(1− cos(xξ))ν̄(dx)
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Extension of the Itô formula

and the norm ‖.‖∗ defined on L2(R× [0, 1]) by

‖F‖2
∗ =

∫ 1

0

β(s)

∫
R
(1 + ψ̄(ξ))|F̂ (ξ, s)|2dξds.

Lemma 3.4.1. Let F ∈ L2(R × [0, 1]) such that ‖F‖∗ < ∞, then BIF is a.e.
well defined and belongs to Υ. Moreover there exists a constant C independent of
F such that ‖BIF‖ ≤ C‖F‖∗.

Proof of Lemma 3.4.1 For F in L2(R × [0, 1]) such that ‖F‖∗ < ∞. We first
show that BIF is well defined. Thanks to Plancherel’s Theorem, the norm ‖.‖∗
can be written as :

‖F‖2
∗ = π

∫ 1

0

β(s)

∫
R

{
2(F (x, s))2 +

∫ 1

−1

[F (x+ y, s)− F (x, s)]2ν̄(dy)

}
dxds.

Applying Fubini’s Theorem and Cauchy-Schwarz inequality, we have∫
{|y|≤1}

|IF (x+ y, s)− IF (x, s)− yF (x, s)|ν(dy)

≤
∫
{|y|≤1}

∫ y+

−y−
|F (x+ z, s)− F (x, s)|dzν(dy)

=

∫
{|z|≤1}

|F (x+ z, s)− F (x, s)|ν((|z|, 1])dz

≤
{∫
{|z|≤1}

|F (x+ z, s)− F (x, s)|2ν((|z|, 1])

|z|
dz

}1/2{∫
{|z|≤1}

|z|ν((|z|, 1])dz

}1/2

= k

{∫
{|z|≤1}

|F (x+ z, s)− F (x, s)|2ν̄(dz)

}1/2

, (3.4.2)

where k = (
∫
z2ν̄(dz))1/2 <∞. Hence BIF is well defined and satisfies :

‖BIF‖L2(R×[0,1]) ≤
k2

β(1)
‖F‖2

∗ <∞. (3.4.3)

Similarly to what has been done in the proof of Theorem 3.3.1, we can show that
there exists a sequence (Fn)n∈N in C∞,0c such that ‖F − Fn‖∗ → 0 as n → ∞
then BIFn →L2(R×[0,1]) BIF or equivalently B̂IFn →L2(R×[0,1]) B̂IF . It follows, by

taking a subsequence if necessary, that B̂IF n converges dξds-a.s. to B̂IF . Thanks
to Fatou’s Lemma we have : ‖BIF‖ ≤ limn→∞ ‖BIFn‖, so we must only show
that there exists a constant C which satisfies ‖BIG‖ ≤ C‖G‖∗ for any function
G ∈ C∞,0c .
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Local time-space calculus for symmetric Lévy Processes

For G in C∞,0c and g in C∞c (R), the equalities :

BIG(x, s) = IBG(x, s) + BIG(0, s) and B̂g = −ψ∗ĝ,

(see e.g., Bertoin [3] p.24 for the second one) imply that :

B̂IG(ξ, s) =
i

ξ
B̂G(ξ, s) = −iψ∗(ξ)

ξ
Ĝ(ξ, s), (3.4.4)

where the operator I is defined by (3.1.5) and consequently

‖BIG‖2 =

∫ 1

0

β(s)

∫
R

(
1 +

ξ2

ψ∗(ξ)

)
ψ2
∗(ξ)

ξ2
|Ĝ(ξ, s)|2dξds. (3.4.5)

From Lemma 4.2.2 of [33], the function ψ∗(ξ)ξ
−2 is bounded, thus there exists a

constant C̃ such that (1 + ξ2

ψ∗(ξ)
)ψ∗(ξ)

2

ξ2 ≤ C̃(1 + ψ∗(ξ)) for every ξ and we obtain

‖BIG‖2 ≤ C̃

∫ 1

0

β(s)

∫
R
(1 + ψ∗(ξ))|Ĝ(ξ, s)|2dξds. (3.4.6)

Besides there exists a constant k such that for every x : 1 − cosx ≤ k
∫ x

0
(1 −

cosλ)λ−1dλ, hence∫ 1

0

(1− cos(xξ))ν(dx) ≤ k

∫ 1

0

∫ xξ

0

(1− cosλ)λ−1dλν(dx).

By Fubini’s Theorem, the right-hand side of the above inequality is equal to kψ̄(ξ).
One obtains

2ψ∗(ξ) ≤ kψ̄(ξ), (3.4.7)

which together with (3.4.6) gives the desired result. �

Corollary 3.4.2. Let F be a measurable function from R× [0, 1] to R such that
for every positive k,∫ 1

0

β(t)

∫ k

−k
[(F (x, t))2 +

∫ 1

−1

(F (x+ y, t)− F (x, t))2ν̄(dy)]dxdt <∞, (3.4.8)

then BIF is a.e. well defined and belongs to Υloc.

Proof of Corollary 3.4.2 BIF is a.e. well defined thanks to (3.4.2). For g
element of C∞c (R) such that g(x) = 1 when |x| ≤ n+ 1, we show, as for (3.3.17),
that ‖Fg‖∗ < ∞. Thanks to Lemma 3.4.1, BI(Fg) is hence well defined and
belongs to Υ. Moreover BI(Fg)(x, s) = BIF (x, s) ∀|x| ≤ n, hence BIF belongs
to Υloc. �
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Remark 3.4.3. Thanks to (3.4.4), for any F in C∞,0c (R× [0, 1]), and any real y,
the function gy, defined in Lemma 3.3.2, corresponding to BIF , is given by :

gy(ξ, s) = (e−iyξ − 1)F̂ (ξ, s).

Thus the corresponding function ϕ (also defined in Lemma 3.3.2) is given by :

ϕ(x, y, s) = F (x+ y, s)− F (x, s).

Consequently the stochastic integral of the function BIF satisfies :∫ t

0

∫
R
BIF (x, s)dLxs =

1

2

∫ t

0

∫
{|y|≤1}

(F (Xs− + y, s)− F (Xs−, s))µ̃(dy, ds) (3.4.9)

+
1

2

∫
[1−t,1]

∫ t

0

∫
{|y|≤1}

(F (X1−s + y, 1− s)− F (X1−s, 1− s))(µX̂ − ρ)(dy, ds)

+
1

2

∫ t

0

∫
{|y|≤1}

(F (Xs− + y, s)− F (Xs−, s))

(
φ(s,Xs + y)− φ(s,Xs)

φ(x,Xs)

)
ν(dy)ds.

For F element of L2(R × [0, 1]) such that ‖F‖2
∗ < ∞, there exists a sequence

of elements of C∞,0c (R × [0, 1]), converging to F with respect to the norm ‖ ‖∗.
This is sufficient to show that (3.4.9) holds for such a function F . Finally, with
a stopping time argument, we can show that (3.4.9) holds for any measurable
function F : R× [0, 1]→ R such that every positive k∫ 1

0

β(t)

∫ k

−k

{
(F (x, t))2 +

∫ 1

−1

[F (x+ y, t)− F (x, t)]2ν̄(dy)

}
dxdt <∞.

With the arguments used in the proof of Lemma 3.3.2, we can show the existence
of a constant k1 such that for every F in L2(R× [0, 1]) :

E

∫ 1

0

∫
{|y|≤1}

(F (Xs + y, s)−F (Xs, s))
2ν(dy) ≤ k1

∫ 1

0

β(s)

∫
R
ψ∗(ξ)|F̂ (ξ, s)|2dξds.

We have shown (3.4.7) that for every real ξ there exists a constant k2 such that
ψ∗(ξ) ≤ k2ψ̄(ξ). Together with the previous inequality this leads to

E

∫ 1

0

∫
{|y|≤1}

(F (Xs + y, s)− F (Xs, s))
2ν(dy) ≤ k1k2

∫ 1

0

β(s)

∫
R
ψ̄(ξ)|F̂ (ξ, s)|2dξds.

This remark leads to the following lemma.
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Lemma 3.4.4. Let F be a measurable function form R × [0, 1] to R such that
‖F‖∗ <∞ (resp. (3.4.8) holds), then the process (Mt(F ))0≤t≤1 defined by

Mt(F ) =

∫ t

0

∫
{|y|≤1}

(F (Xs− + y, s)− F (Xs−, s))µ̃X(dy, ds),

is a well-defined square-integrable martingale (resp. local martingale). Moreover
there exists a constant C independent of F such that E[sup0≤s≤1 |Ms(F )|2] ≤
C‖F‖2

∗.

Proof of Theorem 3.1.2 : With a stopping time argument , it is sufficient to
show that the result holds for a function F such that ‖F‖∗ + ‖∂F

∂t
‖β <∞, where

the norm ‖.‖β is defined by (3.3.14). We already have shown that all the processes
involved in (3.1.10) are well defined and they are right continuous. It is hence
sufficient to prove the result for a fixed t in [0, 1].
Let h and g be two positive functions elements of C∞c (R) such that

∫
R g(τ)dτ =∫

R h(z)dz = 1. We assume that supp[g] ⊆ R+. For every n,m, we defined Fn,m
and Fn by :

Fn,m(x, s) =

∫
R2

F (x+ z/n, s+ τ/m)h(z)g(τ)dzdτ

Fn(x, s) =

∫
R
F (x+ z/n, s)h(z)dz,

for every (x, s) in R× [0, 1]. We set F (x, s) = F (x, 1) when s > 1.
First, we establish for any integer n, the following decomposition :

Fn(Xt, t) = Fn(0, 0) + Ant +Mn
t + V n

t +Bn
t a.s. (3.4.10)

where :

Ant =

∫ t

0

∂Fn
∂t

(Xs, s)ds

Mn
t =

∫ t

0

∫
R

1{|y|≤1}(Fn(Xs− + y, s)− Fn(Xs−, s))µ̃(dy, ds)

V n
t =

∑
s≤t

(Fn(Xs, s)− Fn(Xs−, s))1{|∆Xs|>1}

Bn
t =

∫ t

0

BFn(Xs, s)ds.

Similarly to An,Mn, V n and Bn, we define the processes An,m,Mn,m, V n,m and
Bn,m with Fn,m replacing Fn. Then applying Itô formula (3.1.1), we have :

Fn,m(Xt, t) = Fn,m(0, 0) + An,mt +Mn,m
t + V n,m

t +Bn,m
t .
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For fixed n, we let m tend to∞ in the above equation. Since V n,m
t is a finite sum,

(Fn,m(Xt, t) − Fn,m(0, 0) − V n,m
t ) converges a.s. to (Fn(Xt, t) − Fn(0, 0) − V n

t ) as
n→∞. We will show now that :

lim
m→∞

E[(Mn,m
t −Mn

t )2] = 0 (3.4.11)

lim
m→∞

E[(Bn,m
t −Bn

t )2] = 0 (3.4.12)

lim
m→∞

E[|An,mt − Ant |] = 0. (3.4.13)

Thanks to Lemma 3.4.4, in order to obtain (3.4.11) it suffices to show for every
n :

lim
m→∞

‖Fn,m − Fn‖∗ = 0.

From F̂n(ξ, s) = ĥ(−ξ/n)F̂ (ξ, s) and F̂n,m(ξ, s) = ĥ(−ξ/n)
∫∞

0
F̂ (ξ, s+τ/m)g(τ)dτ ,

we obtain :

‖Fn,m − Fn‖2
∗ ≤ ‖g‖L1

∫ 1

0

β(s)

∫
R
(1 + ψ̄(ξ))|ĥ(−ξ/n)|2 ×∫ ∞

0

|F̂ (ξ, s+ τ/m)− F̂ (ξ, s)|2g(τ)dτdξds

≤ k(n)

∫ 1

0

β(s)

∫
R

∫ ∞
0

|F̂ (ξ, s+ τ/m)− F̂ (ξ, s)|2g(τ)dτdξds,

where k(n) = ‖g‖L1 supξ(1 + ψ̄(ξ))|ĥ(−ξ/n)|2 <∞. Then, we have :

‖Fn,m − Fn‖2
∗

≤ 2πk(n)

∫ 1

0

β(s)

∫
R

∫ ∞
0

(F (x, s+ τ/m)− F (x, s))2g(τ)dτdxds

≤ 2πk(n)

∫ 1

0

β(s)

∫
R

∫ ∞
0

∫ 1

0

|∂F
∂t

(x, θ)|2dθ
τ

m
g(τ)dτdxds

=
1

m
2πk(n)

∫ 1

0

β(s)ds

∫ ∞
0

τg(τ)dτ

∫
R

∫ 1

0

|∂F
∂t

(x, θ)|2dθdx.

which leads to (3.4.11) since the last term converges to 0 as m tends to ∞.
From (3.4.2) and (3.4.3) we know that there exists a constant k such that :

E

∫ t

0

(BFn,m(Xs, s)− BFn(Xs, s))
2ds ≤ k

∥∥∥∥∂Fn,m∂x
− ∂Fn

∂x

∥∥∥∥2

∗
.
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The arguments used to establish (3.4.11), are then used for the function −nh′
instead of the function h.and lead to (3.4.12).
To show (3.4.13), we note that

lim sup
m→∞

{E(|An,mt − Ant |)}2

≤ lim sup
m→∞

{E
∫ 1

0

|∂Fn,m
∂t

(Xs, s)−
∂Fn
∂t

(Xs, s)|ds}2

≤ lim sup
m→∞

∫ 1

0

∫
R
φ2(x, s)dxds

∫ 1

0

∫
R
(
∂Fn,m
∂t

(x, s)− ∂Fn
∂t

(x, s))2dxds.

Since :
∫ 1

0

∫
R φ

2(x, s)dxds = 1
2π

∫ 1

0

∫
R e
−2sψ(ξ)dξds < ∞, then the last term in the

above inequality is smaller than

cste lim
m→∞

∫ 1

0

∫
R

∫
R

(
∂Fn
∂t

(x, s+ τ/m)− ∂Fn
∂t

(x, s)

)2

g(τ)dτdxds,

which is equal to

cste

∫
R

lim
m→∞

∫ 1

0

∫
R

(
∂Fn
∂t

(x, s+ τ/m)− ∂Fn
∂t

(x, s)

)2

dxdsg(τ)dτ

and this last limit is equal to 0.
Now we let n tend to∞ in the equation (3.4.10). We have : (Fn(Xt, t)−Fn(0, 0)−
V n
t ) converges a.s. to (F (Xt, t)− F (0, 0)− Vt). To finish the proof we show now :

Ant
L1

−→ −
∫ t

0

∫
R

∂(IF )

∂t
(x, s)dLxs (3.4.14)

Bn
t

L1

−→ −
∫ t

0

∫
R
BIF (x, s)dLxs (3.4.15)

Mn
t

L1

−→ Mt. (3.4.16)

With the arguments used to show (3.4.13) we can show that lim
n→∞

E|Ant −At| = 0,

where At =

∫ t

0

∂F

∂t
(Xs, s)ds. Thanks to Lemma 3.3.7 and the identity : I(∂F

∂t
) =

∂(IF )
∂t

, we have :

At = −
∫ t

0

∫
R
I(
∂F

∂t
(x, s))dLxs = −

∫ t

0

∫
R

∂(IF )

∂t
(x, s)dLxs ,

which gives (3.4.14).
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From F̂n(ξ, s) = ĥ(−ξ/n)F̂ (ξ, s) and ∂̂Fn
∂x

(ξ, s) = −nĥ′(−ξ/n)F̂ (ξ, s) it follows
that ‖Fn‖∗+

∥∥∂Fn
∂x

∥∥
∗ <∞. By the Lemma 3.4.1, BIFn and BFn are hence well de-

fined and belong to Υ. Moreover we have : IBFn(x, s)+BIFn(0, s) = BIFn(x, s),
hence thanks to Lemma 3.3.3 we obtain

Bn
t = −

∫ 1

0

∫
R
BIFn(x, s)dLxs .

But we have : ‖F−Fn‖2
∗ =

∫ 1

0
β(s)

∫
R(1+ψ̄(ξ))|1−ĥ(−ξ/n)|2|F̂ (ξ, s)|2dξds, which

gives by dominated convergence :

lim
n→∞

‖Fn − F‖2
∗ = 0, (3.4.17)

which leads to (3.4.15).
Finally, we obtain (3.4.16) thanks to (3.4.17) and Lemma 3.4.4 �

Proof of Theorem 3.1.1 We define the norm ‖.‖+ by

‖f‖2
+ =

∫ 1

0

β(s)

∫
R
(1 + ψ(ξ))|f̂(ξ, s)|2ds,

for f measurable function from R× [0, 1].
Note that the condition (3.1.6) holds if and only if, ‖F‖2

+ < ∞. From (3.4.6),
we can extend the operator BI from C∞,0c (R × [0, 1]) to the set of functions
f such that ‖f‖+ < ∞. We denote this extension by H. Moreover we obtain
from (3.4.6) that if ‖F‖+ < ∞, then ‖HF‖ < ∞. Using similar arguments
as the arguments of the proof of Lemma 3.4.4, we show that MF is a well-
defined square-integrable martingale and E[(MF

t )2] ≤ cste‖F‖2
+. With the argu-

ments used to prove Theorem 3.1.2, we establish the decomposition (3.1.7) with
NF
t = −

∫ t
0

∫
R(HF (x, s) + ∂IF

∂t
(x, s))dLxs . It remains to show that :

HF + ∂IF/∂t = DIF. (3.4.18)

Making use of the approximations Fn,m and Fn used in the proof of Theorem 3.1.2,
one establishes the following formula for any (x, τ) in R× [0, 1] and 0 ≤ t ≤ 1−τ :

IF (Zt + x, τ + t)

= IF (x, τ) +

∫ t

0

∂IF
∂t

(Zs + x, s+ τ)ds+

∫ t

0

HF (Zs + x, s+ τ)ds

+

∫ t

0

∫
{|y|≤1}

(IF (Zs− + x+ y, s+ τ)− IF (Zs− + x, s+ τ))µ̃Z(dy, ds),

where µ̃Z is the compensated Poisson measure associated to the jumps of Z. Thus
we have for any positive t such that t+ τ ≤ 1 :
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P̄t(IF )(x, τ)− IF (x, τ)

=

∫ t

0

E[HF (Zs + x, s+ τ)]ds+

∫ t

0

E

[
∂IF
∂t

(Zs + x, s+ τ)

]
ds.

Dividing each member of the above equation by t, we obtain (3.4.18) by letting t
to 0 and using the following assertion that one can easily checks :
If h is such that ‖h‖Z < ∞ then t−1

∫ t
0

E[h(Zs + x, s + τ)]ds1(t+τ≤1) converges
with respect to ‖.‖Z to f(x, τ) as t tends to 0.

�

3.5 Local times on curves

For a semimartingale Y , the natural definition of the local time on a bounded
variation curve b is the local time at 0 of the semimartingale (Y − b). In the
present case of a Lévy process without Brownian component, this local time is
identically equal to zero. The construction done in Section 3 allows to define
(L

b(.)
t )0≤t≤1, the local time of X along any measurable curve (b(t))0≤t≤1 by setting

L
b(.)
t =

∫ t

0

∫
R

1(−∞,b(s))(x)dLxs . (3.5.1)

To show that the definition (3.5.1) makes sense, we check the two following points.
(i) The function F defined by F (x, s) = 1(−∞,b(s))(x) belongs to the space Υloc .
(ii) For every k > 0, set Tk = inf{t : |Xt| > k} ∧ 1, then

lim
ε→0

1

2ε

∫ t∧Tk

0

1{|Xs−b(s)|<ε}ds =

∫ t∧Tk

0

∫
R

1(−∞,b(s))(x)dLxs = L
b(.)
t∧Tk in L1(P).

(i) For k > 0, set bk(s) = (−k)∨ (b(s)∧ k) and Fk(x, s) = 1(−k,bk(s))(x). We have :

Fk(x, s) = F (x, s) if |x| < k. Note that F̂k(ξ, s) = (iξ)−1(eibk(s)ξ−e−ikξ), and hence
that |F̂k(ξ, s)|2 = 2ξ−2{1 − cos[(bk(s) + k)ξ]}. According to Lemma 4.2.2 of [33]
we have :

‖Fk‖2 ≤ cste

∫ 1

0

β(s)

∫
R

1− cos[(bk(s) + k)ξ]

ξ2
dξds

= cste

∫ 1

0

β(s)|bk(s) + k|ds = cste k

∫ 1

0

β(s)ds <∞,

consequently Fk ∈ Υ and (i) is checked.
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(ii) For k, ε > 0, set

Fε,k(x, s) =
1

2ε

∫ x

−∞
(1(−k−ε,−k+ε)(y)− 1(bk(s)−ε,bk(s)+ε)(y))dy.

We have :

F̂ε,k(ξ, s) =
eibk(s)ξ − e−ikξ

iξ
.
eiεξ − e−iεξ

2iξε
,

hence by dominated convergence limε→0 ‖Fε,k − Fk‖ = 0 and consequently

lim
ε→0

E sup
t∈[0,1]

∣∣∣∣∫ t

0

∫
R
Fε,k(x, s)dL

x
s −

∫ t

0

∫
R
Fk(x, s)dL

x
s

∣∣∣∣ = 0.

On the other hand, thanks to Lemma 3.3.3, we have∫ t

0

∫
R
Fε,k(x, s)dL

x
s = − 1

2ε

∫ t

0

(1(−k−ε,−k+ε)(Xs)− 1(bk(s)−ε,bk(s)+ε)(Xs))ds. (3.5.2)

Note that for ε < 1/2 and t ∈ [0, Tk−1] (where Tk−1 = inf{t : |Xt| > k−1}∧1) the
integral on the right-hand side of (3.5.2) agree with 1

2ε

∫ t
0

1{|Xs−b(s)|<ε}ds. Besides
by definition of integration with respect to local time for the functions in Υloc,∫ t∧Tk−1

0

∫
R
Fk(x, s)dL

x
s =

∫ t∧Tk−1

0

∫
R
F (x, s)dLxs .

Consequently (ii) is checked since

lim
ε→0

1

2ε

∫ t∧Tk−1

0

1{|Xs−b(s)|<ε}ds =

∫ t∧Tk−1

0

∫
R

1(−∞,b(s))(x)dLxs = L
b(.)
t∧Tk−1

in L1(P).

Remark that Lb(.) is an increasing continuous functional that increases only at
times when X and b take the same value. The local time process of X along
curves extends the definition of local time at points which represent local times
along constant curves.

Lemma 3.5.1. Let b be a continuous function from [0, 1] to R. Let f be a continu-
ous function on R× [0, 1] admitting a continuous derivative ∂f

∂x
. Then the function

(x, s)→ f(x, s)1(x<b(s)) belongs to Υloc and we have∫ t

0

∫
R
f(x, s)1(x<b(s))dL

x
s =

∫ t

0

f(b(s), s)dsL
b(.)
s −

∫ t

0

∂f

∂x
(Xs, s)1(Xs<b(s))ds.

(3.5.3)
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Proof of Lemma 3.5.1 First, we assume that f has a compact support. In this
case the function g defined by g(x, s) = f(x, s)1(x<b(s)), belongs to Υ. Indeed, by
the integration by parts formula, there exist a constant C, depending of f , such
that |ĝ(ξ, s)| ≤ C(1{|ξ|≤1} + |ξ|−11{|ξ|>1}), thus ‖g‖ < ∞. The identity (3.5.3) is
then obtained with the same arguments as the one used in the proof of Lemma
3.1 of [11].
For the general case, for any k > 0 let hk be an element of C∞c (R) such that
hk(x) = 1 if |x| < k. Set gk = ghk. Then gk belongs to Υ and g = gk on
[−k.k]× [0, 1], thus g belongs to Υloc. Furthermore if k > sups∈[0,1] |b(s)|, we have

∫ t∧Tk

0

∫
R
f(x, s)1(x<b(s))dL

x
s =

∫ t∧Tk

0

∫
R
hk+1(x)f(x, s)1(x<b(s))dL

x
s

=

∫ t∧Tk

0

f(b(s), s)dsL
b
s

−
∫ t∧Tk

0

∂f

∂x
(Xs, s)1(Xs<b(s))ds,

which leads to (3.5.3). �

Remark 3.5.2. With the assumptions of Lemma 3.5.1 we similarly have :∫ t

0

∫
R
f(x, s)1(x>b(s))dL

x
s = −

∫ t

0

f(b(s), s)dsL
b(.)
s −

∫ t

0

∂f

∂x
(Xs, s)1(Xs>b(s))ds.

Besides thanks to Theorem 3.3.1.(i) note that∫ t

0

∫
R
f(x, s)1(x=b(s))dL

x
s = 0.

We present now an Itô formula inspired from Peskir’s formula written for contin-
uous semimartingales [39] . This formula concerns the continuous functions F on
R × [0, 1] for which there exists a continuous curve (b(t))0≤t≤1 such that setting
C = {(x, s) ∈ R× [0, 1] : x < b(s)} and D = {(x, s) ∈ R× [0, 1] : x > b(s)}, F is
C2,1 on C̄ and D̄. Define F1(x, s) = F (x ∧ b(s), s), F2(x, s) = F (x ∨ b(s), s). For
such a function F we have the following formula.

Theorem 3.5.3. The process (F (Xt, t))0≤t≤1 is a semimartingale admitting the
following decomposition

F (Xt, t) = F (0, 0) +Mt + Vt +

∫ t

0

(BIF2(b(s), s)− BIF1(b(s), s))dsL
b(.)
s

+

∫ t

0

AF1(Xs, s)1(Xs<b(s))ds+

∫ t

0

AF2(Xs, s)1(Xs>b(s))ds,
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where M and V are the local martingale and the bounded variation process defined
in Theorem 3.1.2 and A, B and I are the operators respectively defined by (3.1.2),
(3.4.1) and (3.1.5).

Proof of Theorem 3.5.3 By the usual stopping time argument, we can assume
that F has a support compact. Let K be such that supp[F ] ⊂ [−K,K]× [0, 1]. For
any m,n ∈ N, we define the function Fn,m as in the proof of Theorem 3.1.2 and
note that, the convergences involving ∂F

∂t
excepted, all the convergences established

there as m, and then n, tends to ∞, are still available here. Indeed the present
assumption on F does not guarantee the existence of this derivative.
Nevertheless (3.4.12) and (3.4.13) hold because limm→∞ ‖Fn,m−Fn‖∗ = 0. Indeed,
we have seen in the proof of Theorem 3.1.2 that for any n there exists a constant
k(n) such that

‖Fn,m − Fn‖∗ ≤ k(n)

∫ 1

0

β(s)

∫
R

∫ ∞
0

(F (x, s+ τ/m)− F (x, s))2g(τ)dτdxds.

(3.5.4)
Since F is a continuous function with compact support, we see by dominated
convergence, that the right-hand side of (3.5.4) converges to 0.
Besides, for each s, the law of Xs has a density with respect to the Lebesgue

measure, hence for any n,m,

∫ t

0

∂Fn,m
∂t

(Xs, s)1(Xs=b(s))ds = 0. Consequently we

have, similarly as (3.4.13) :

∫ t

0

∂Fn,m
∂t

(Xs, s)ds −→L
1

∫ t

0

∂F

∂t
(Xs, s)1(Xs<b(s))ds+

∫ t

0

∂F

∂t
(Xs, s)1(Xs>b(s))ds,

as m→∞, n→∞. Regrouping all the obtained convergences, we obtain

F (Xt, t) = F (0, 0) +

∫ t

0

∂F

∂t
(Xs, s)1(Xs<b(s))ds+

∫ t

0

∂F

∂t
(Xs, s)1(Xs>b(s))ds

+Mt + Vt −
∫ t

0

∫
R
BIF (x, s)dLxs .

For i = 1, 2, Fi belongs to C2,1, hence BIFi admits a continuous derivative with
respect to x equal to BFi. Thanks to Lemma 3.5.1, Remark 3.5.2 and the identity
F1(x, s) + F2(x, s) = F (x, s) + F (b(s), s), we have :
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∫ t

0

∫
R
BIF (x, s)dLxs

=

∫ t

0

∫
R
BIF1(x, s)dLxs +

∫ t

0

∫
R
BIF2(x, s)dLxs

=

∫ t

0

BIF1(b(s), s)dsL
b
s −

∫ t

0

BF1(Xs, s)1(Xs<b(s))ds

−
∫ t

0

BIF2(b(s), s)dsL
b
s −

∫ t

0

BF2(Xs, s)1(Xs>b(s))ds,

which leads to Theorem 3.5.3. �
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Chapitre 4

Extended Itô calculus for
symmetric Markov Processes

Abstract : Chen, Fitzsimmons, Kuwae and Zhang [7] have established an Itô formula
consisting in the development of F (u(X)) for a symmetric Markov process X, a function
u in the Dirichlet space of X and any C2-function F . We give here an extension of this
formula for u locally in the Dirichlet space of X and F admitting a locally bounded
Radon-Nicodym derivative. This formula has some analogies with various extended Itô
formulas for semimartingales using the local time stochastic calculus. But here the part
of the local time is played by a process (Γat , a ∈ R, t ≥ 0) defined thanks to Nakao’s
operator [35].

4.1 Introduction and main results

For any real-valued semimartingale Y = (Y0 +Mt +Nt)t≥0 (M martingale and N
bounded variation process) and any function F in C2(R), the classical Itô formula

F (Yt) = F (Y0) +

∫ t

0

F ′(Ys)dMs +

∫ t

0

F ′(Ys)dNs +
1

2

∫ t

0

F ′′(Ys)d〈M c〉s

+
∑
s≤t

{F (Ys)− F (Ys−)− F ′(Ys−)∆Ys} (4.1.1)

provides both an explicit expansion of (F (Yt))t≥0 and its stochastic structure of
semimartingale.
Let now E be a locally compact separable metric space , m a positive Radon
measure on E, and X a m-symmetric Hunt process. Under the assumption that
the associated Dirichlet space (E ,F) of X is regular, Fukushima has showed that
for any function u in F , the additive functional (abbreviated as AF) (u(Xt) −
u(X0))t≥0 admits the following unique decomposition :

u(Xt) = u(X0) +Mu
t +Nu

t Px − a.e for quasi-every x inE, (4.1.2)
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where Mu is a martingale AF of finite energy and Nu is a continuous AF of zero
energy.
Although u(X) is not in general a semimartingale, Nakao [35] and Chen et al. [7]
have proved that (4.1.1) is still valid with u(X), Mu and Nu replacing respectively
Y , M and N . This is done thanks to the construction of a new stochastic integral
with respect to Nu, which takes the place of the well defined Lebesgue-Stieltjes
integral for the bounded variation processes. As the classical Itô formula (4.1.1),
this Itô formula for symmetric Markov processes requires the use of C2-functions.
For the semimartingale case, there exist extended versions of (4.1.1) relaxing this
regularity condition. This extensions are based on the replacement of the fourth
and fifth terms of the right-hand-side of (4.1.1) by an alternative expression re-
quiring only the existence of F ′ and some integrability condition on F ′ (see for
example [12], [13], [14]). The integrability condition insures also the existence of
the other terms of (4.1.1).
The question of relaxing the regularity condition on F in the formula of Nakao
and Chen et al. is a more complex question. Indeed the integral

∫ t
0
F ′(u(Xs))dN

u
s

is well defined only when F ′(u) belongs to Floc, the set of functions locally in F .
As in [7], u ∈ Floc means that there exists a nest of finely open Borel sets {Gk}k∈N
and a sequence {uk}k∈N ⊂ F such that f = fk q.e on Gk. As an example, in the
case X is a Brownian motion, this condition implies that the second derivative F ′′

exists at least as a weak derivative. Nevertheless, in the general case, we know that
for any function F element of C1(R) with bounded derivative, F (u) belongs to F
and the process F (u(X)) hence admits a Fukushima decomposition. We can thus
hope to obtain an Itô formula for C1-functions F that would express each element
of the decomposition of F (u(X)) in terms of F , u, Nu and Mu. Our purpose here
is to establish such a formula. The obtained formula is actually established for
the functions F with locally bounded Radon Nikodym derivative and u element
of Floc.
Before introducing this extended Itô formula for symmetric Markov processes,
remark that one can easily obtain an extended Itô formula in case u(X) is a
semimartingale. Indeed, under the assumption that X has an infinite life time, we
note (see (3.4) in [7]) that u(X) is then a reversible semimartingale and that one
can hence make use of [12] or [15] to develop F (u(X)). But in general, u(X) is
not a semimartingale.

The extended Itô formula for symmetric Markov processes presented here is based
on the construction for a fixed t > 0, of a stochastic integral of deterministic
functions with respect to the process (Γat (u))a∈R, defined as follows.
For u in F , let Mu,c be the continuous part of Mu. For any real a and t ≥ 0, we
set

Za
t (u) =

∫ t

0

1{u(Xs)≤a}dM
u,c
s
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and define Γa by

Γa(u) = (Γat (u))t≥0 = (Γ(Za(u))t)t≥0 = Γ(Za(u))

where Γ is the operator on the space of martingale AF with finite energy con-
structed by Nakao [35] (its definition is recalled in Section 4.2). The process
(Γat (u))t≥0 is hence an additive functional with zero energy.
In Section 2, we will see that the definition of Γa(u) can be extended to functions
u in Floc. In that case, the process Mu,c is a continuous martingale AF on [[0, ζ[[
locally of finite energy and the process (Γat (u))t≥0 is an Af on [[0, ζ[[ locally with
zero energy.
As shown by the Tanaka formula (4.1.4) below, the doubly-indexed process
(Γat (u), a ∈ R, t ≥ 0) plays almost the part of a local time process for u(X). In
Section 5, this analogy with local time will be fully clarified under some stronger
assumption on u.

To introduce the obtained Itô formula, we need the objects presented by the
following lemma. We denote by (N(x, dy), H) a Lévy system for X (See Definition
A.3.7 of [21]), by νH the Revuz’s measure of H and by ζ the life time of X.

Lemma 4.1.1. Let u ∈ F (resp. u ∈ Floc).There exists a sequence (εn)n∈N of pos-
itive real numbers converging to 0 and such that for any locally absolutely contin-
uous function F from R into R with a locally bounded Radon-Nikodym derivative,
the following two processes are well defined.

Md
t (F, u) = lim

n→∞

{∑
s≤t

{F (u(Xs))− F (u(Xs−))}1{εn<|u(Xs)−u(Xs−)|<1}1{s<ζ}

−
∫ t

0

∫
{εn<|u(y)−u(Xs)|<1}

{F (u(y))− F (u(Xs))}N(Xs, dy)dHs

}
At(F, u) = lim

n→∞

∫ t

0

∫
{εn<|u(y)−u(Xs)|<1}

{F (u(y))− F (u(Xs))}N(Xs, dy)dHs

The above limits are uniform on any compact of [0,∞) (resp. [0, ζ)) Px-a.e for
q.e x ∈ E. Moreover (Md

t (F, u))t≥0 is a local martingale AF (resp. AF on [[0, ζ[[)
with locally finite energy and (At(F, u))t≥0 is a continuous AF (resp. AF on [[0, ζ[[)
locally with 0 energy.

With the notation of Lemma 4.1.1, we have the following Itô formula.

Theorem 4.1.2. Let u ∈ F (resp. u ∈ Floc). For any locally absolutely continuous
function F from R into R with a locally bounded Radon-Nikodym derivative F ′

such that F (0) = 0, the process (F (u(Xt), t ∈ [0,∞)) (resp. t ∈ [0, ζ)) admits the
following decomposition Px-a.e for q.e x ∈ E
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F (u(Xt)) = F (u(X0)) +Mt(F, u) +Qt(F, u) + Vt(F, u) (4.1.3)

where M(F, u) is a local martingale AF (resp. AF on [[0, ζ[[) locally of finite energy,
Q(F, u) is an AF (resp. AF on [[0, ζ[[) locally of zero energy, and V (F, u) is a
bounded variation process respectively given by :

Mt(F, u) = Md
t (F, u) +

∫ t

0

F ′(u(Xs))dM
u,c
s

Qt(F, u) =

∫
R
F ′(z)dzΓ

z
t (u) + At(F, u)

Vt(F, u) =
∑
s≤t

{F (u(Xs))− F (u(Xs−))}1{|u(Xs)−u(Xs−)|≥1}1{s<ξ}

−F (u(Xξ−))1{t≥ξ}

Note that for u element of F and F in C2(R), (4.1.3) provides the Itô formula of
Chen et al. [7] together with the identity connecting integration with respect to
(Nu

t )t≥0 and integration with respect to (Γat (u))a∈R for smooth enough functions.

As a consequence of Theorem 4.1.2, we obtain the following Tanaka formula for
Γat :

Γat (u) = (u(X0)− a)− − (u(Xt)− a)− +

∫ t

0

1{u(Xs−)≤a}dM
u,c
s (4.1.4)

+ lim
n→∞

∑
s≤t

{(u(Xs)− a)− − (u(Xs−)− a)−}1{|u(Xs)−u(Xs−)|>εn}

where (εn)n∈N is the sequence of Lemma 4.1.1 and the limit is uniform on any
compact Px-a.e for q.e x ∈ E. Using Tanaka’s formula for semimartingales (see
[41]), we obtain that when u(X) is a martingale, −2Γa(u) is the local time process
of u(X) at level a. This is the case when u(x) = x and X is a symmetric Lévy
process.
Formula (4.1.3) is hence reminiscent of various extensions of Itô formula involving
stochastic integrals with respect to local time, as for example the extensions given
in [6] for some martingales, [10] for the Brownian Motion, [11] and [14] for Lévy
processes with Brownian component and [45] for Lévy processes without Brownian
component. Note that in case the martingale part of u(X) has no continuous
component, the process Γa(u) is identically equal to 0. But (4.1.3) still represents
an improvement of Fukushima’s decomposition since (4.1.3) requires only u in Floc
and F with a locally bounded Radon-Nikodym derivative.

Integration with respect to (Γat (u))a∈R is constructed in Section 3 and the Itô
formula (4.1.3) is established in Section 4.
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In Section 4.5, we will show that, when Γ(Mu,c) is of bounded variation, u(X) ad-
mits a local time process (Lat , a ∈ R, t < ζ) satisfying an occupation time formula
of the same type as the occupation time formula for the semimartingales and in
this case, the process of locally zero energy Q(F, u) can be rewritten as :

Qt(F, u) = −1

2

∫
R
F ′(z)dzL

z
t +

∫ t

0

F ′(u(Xs))dΓ(Mu,c)s + At(F, u), t < ζ

Finally in Section 4.6 we give a multidimensional version of Theorem 4.1.2.

4.2 Preliminaries on m-symmetric

Hunt processes

Let E be a locally compact separable metric space, m a positive Radon measure
on E such that Supp[m] = E, ∆ be a point outside E and E∆ = E ∪ ∆. Let
X = {Ω,F∞,Ft, Xt, θt, ζ,Px, x ∈ E∆, t ≥ 0} be a m-symmetric Hunt Processes
such that its associated Dirichlet space (E ,F) is regular on L2(E;m). We may
take as Ω the space D([0,∞[→ E∆) of càdlàg functions from [0,∞[ to E∆, for
which ∆ is a cemetery (i.e. if ω(t) = ∆, then ω(s) = ∆ for any s > t) and denote
by θt the operator ω(s)→ θtω(s) := ω(t+s). Every element u of F admits a quasi-
continuous m-version. In the sequel, the functions in F are always represented by
their quasi-continuous m-versions. We use the term “quasi everywhere” or “q.e”
to mean “except on an exceptional set”.
We say that a subset Ξ of Ω is a defining set of a process A = (At)t≥0 with values
in [−∞,∞], if for any ω ∈ Ξ, t, s ≥ 0 : θtΞ ⊂ Ξ, A0(ω) = 0, A.(ω) is càdlàg and
finite on [0, ζ[,

At+s(ω) = At(ω) + As(θt(ω))

and At(ω∆) = 0, where ω∆ is the constant path equal to ∆. A (Ft)-adapted process
is an additive functional if it has a defining set Ξ ∈ F∞ admitting an exceptional
set, i.e : Px(Ξ) = 1 for q.e x ∈ E.
An (Ft)-adapted process is an additive functional on [[0, ζ[[ or a local additive
functional if it satisfies all the conditions to be an additive functional except that
the additive property At+s(ω) = At(ω)+As(θt(ω)) is required only for t+s < ζ(ω).
Let Fm∞ (resp. Fmt ) be the Pm-completion of σ{Xs, 0 ≤ s <∞} (resp. σ{Xs, 0 ≤
s ≤ t}). An (Ft)-adapted process is an additive functional admitting m-null set if
it has a defining set Ξ ∈ Fm∞ such that Px(Ξ) = 1 for m-a.e x ∈ E.
The abbreviations AF, PAF, CAF, PCAF and MAF stand respectively for “addi-
tive functional”, “positive additive functional”, “continuous additive functional”,
“positive continuous additive functional” and “martingale additive functional”,
respectively. LetM◦ and Nc denote, respectively, the space of MAF’s of finite en-
ergy and the space of continuous additive functionals of zero energy N such that
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Ex(|Nt|) <∞ q.e. for each t > 0. Moreover M◦ c denotes the subset of continuous
elements of M◦ and M◦ d denotes the subset of purely discontinuous elements of
M◦ .
For u ∈ F , the elements Mu and Nu of the Fukushima’s decomposition (4.1.2) are
elements of respectively M◦ and Nc. We denote by Mu,c, Mu,j and Mu,κ respec-
tively the continuous part, the jump part and the killing part of Mu (see Section
5.3 of [21]). This three martingales are elements of M◦ .

Let Γ the linear operator fromM◦ to Nc constructed by Nakao [35] in the following
way. It is shown in [35] that for every Z ∈M◦ , there is a unique w ∈ F such that

E(w, v) + (w, v)m =
1

2
µ〈Mv+Mv,κ,Z〉(E) for every v ∈ F ,

where (w, v)m =
∫
E
w(x)v(x)m(dx) and µ〈Mv+Mv,κ,Z〉 is the smooth signed mea-

sure corresponding to 〈M v +M v,κ, Z〉 by the Revuz correspondence. The process
Γ(Z) is then defined by :

Γt(Z) = Nw
t −

∫ t

0

w(Xs)ds

This operator satisfies : Γ(Mu) = Nu for u ∈ F . Thus Nu admits the decomposi-
tion :

Nu = cNu + jNu + κNu, (4.2.1)

where for p ∈ {c, j, κ} : pNu = Γ(Mu,p).
For a Borel subset B of E ∪ {∆}, it is known that τB = inf{t > 0 : Xt /∈ B} and
σB = inf{t > 0 : Xt ∈ B} are (Ft)-stopping times.
An increasing sequence of Borel sets {Gk} in E is called a nest if

Px

(
lim
k→∞

τGk = ζ
)

= 1 for q.e x ∈ E

Let D be a class of AF’s. We say that an AF (resp. AF on [[0, ζ[[) is locally in D
and write A ∈ Dloc (resp. A ∈ Df-loc) if there exists a sequence {An} in D and
an increasing sequence of stopping times Tn with Tn → ∞ (resp. a nest {Gn} of
finely open Borel sets) such that Px-a.e for q.e x ∈ E, At = Ant for t < Tn (resp.
t < τGn).

Let {An} be a sequence in D such that for k > n, Px-a.e for q.e x ∈ E, Akt = Ant
for t < τGn , then it is clear that the process

At :=

{
Ant for t < τGn
0 for t ≥ ζ

is a well-defined element of Df-loc. A Borel function f from E into R is said to be
locally in F (and denoted as f ∈ Floc), if there is a nest of finely open Borel sets
{Gk} and a sequence {fk}k∈N ⊂ F such that f = fk q.e on Gk. This is equivalent
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to (see Lemma 3.1.(ii) in [7]) there is a nest of closed sets {Dk} and a sequence
{fk}k∈N ⊂ Fb such that f = fk q.e on Dk. For a such f ,

M f,c
t :=

{
M fk,c

t for t < σE\Gk
0 for t ≥ limk→∞ σE\Gk

is well defined and belongs toM◦ f-loc because, for n > k, M fn,c
t = M fk,c

t ∀t ≤ σE\Gk
Px-a.e for q.e x ∈ E. Indeed, the last property is shown in Lemma 5.3.1 in [21]
for τGk instead of σE\Gk , we conclude with the following observation :
For a CAF A, and a Borel set G ⊂ E, Px-a.e for q.e x ∈ E :

At = 0 for t < τG ⇔ At = 0 for t < σE\G (4.2.2)

Every f ∈ Floc admits a quasi-continuous m-version, so we may assume that all
f ∈ Floc are quasi-continuous and we set f(∆) = 0.
We use the following notation for a locally bounded measurable function f and a
(Ft)t≥0-semimartingale M :

(f ∗M)t =

∫ t

0

f(Xs−)dMs

We will use repeatedly the following fact (see Theorem 5.6.2 in [21]) :
For any F in C1(Rd) (d is a positive integer) and u1, ..., ud in Fb, the composite
function Fu = F (u1, ..., ud) belongs to Floc and

MFu,c =
d∑
i=1

Fxi(u) ∗Mui,c (4.2.3)

Chen et al. [7] have extended Nakao’s definition of the operator Γ to the set
of locally square-integrable MAF. We keep using the letter Γ for this extension
without possible confusion since thanks to Theorem 3.6 of [7] on the setM◦ , both
definitions given in [7] and [35] agree Pm-a.e. on [[0, ζ[[. For a continuous locally
square-integrable MAF M , Γ(M) is defined to be the following CAF admitting
m-null set on [[0, ζ[[ :

Γt(M) = −1

2
(Mt +Mt ◦ rt) for t ∈ [0, ζ[ (4.2.4)

where the operator rt is defined by

rt(ω)(s) = ω((t− s)−)1{0≤s≤t} + ω(0)1{s>t} for a path ω ∈ {t < ζ}

and rt(ω) := ω∆ for a path ω ∈ {t ≥ ζ}.
The continuity of Γ(M) Pm-a.e on [0, ζ[ is a consequence of Theorem 2.18 in [7].

For f a bounded element of F and M in M◦ , Nakao has defined the stochastic
integral of f(X) with respect to Γ(M). We use here the extension of this definition
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set by Chen et al. [7] for f in Floc and M continuous locally square-integrable MAF
as follows :

f ∗ Γ(M)t =

∫ t

0

f(Xs−)dΓs(M) := Γt(f ∗M)− 1

2
〈M f,c,M〉t (4.2.5)

It is a CAF admitting m-null set on [[0, ζ[[.
When M ∈M◦ and f ∈ Floc the integral f ∗Γ(M)t can be well defined Px-a.e. for
q.e. x ∈ E. In particular the process (f ∗ Γ(M)t)t≥0 is a local CAF of X (Lemma
4.6 of [7]).
The argument developed by Chen et al. to write ”q.e x ∈ E” instead of ”m-a.e
x ∈ E” in the proof of their Lemma 4.6 in [7], is sufficient to establish Lemma
4.2.1 below.

Lemma 4.2.1. Let A be an AF of X (resp. AF on [[0, ζ[[). Let G be a measurable
subset of E∆ (resp. G ⊂ E) and Ξ := {ω ∈ Ω : At ≥ 0,∀t < τG}, then Px(Ξ) = 1
for m-a.e. x ∈ E if and only if Px(Ξ) = 1 for q.e x ∈ E.

Lemma 4.2.2. Let {Dn} be a nest of closed sets and σ := limn→∞ σE\Dn. Let
(Mn)n∈N be a sequence ofM◦ c such that for n < k, Px-a.e for q.e x ∈ E, Mn

t = Mk
t

if t < σE\Dn. Define a continuous locally square-integrable MAF M by :

Mt =

{
Mn

t on t < σE\Dn
0 on t ≥ σ

Then Γt(M) can be well defined for all t in [0,∞) Px-a.e. for q.e. x ∈ E, by
setting

Γt(M) =

{
Γt(M

n) on t < σE\Dn
0 on t ≥ σ

(4.2.6)

Moreover Γ(M) belongs to Nc,f-loc.

For f element of Floc, (4.2.5) shows then that f ∗ Γ(M) is a well-defined CAF on
[[0, ζ[[.

Proof of Lemma 4.2.2. A consequence of the m-symmetry assumption on X is
that the measure Pm, when restricted to {t < ζ} is invariant under rt, so we have
Pm-a.e on t < ζ :
Mt◦rt = Mn

t ◦rt if t ≤ τDn ◦rt, but since Dn is closed, for any ω ∈ Ω and t < ζ(ω) :
t ≤ τDn(ω)⇔ t ≤ τDn(rtω). Hence it follows from (4.2.4) that (4.2.6) hold Pm-a.e
on [[0, τDn [[. This show also, with Lemma 4.2.1 that if l > n, Px-a.e for q.e x ∈ E :
Γt(M

n) = Γt(M
l) for t ≤ τDn (and consequently for t ≤ σE\Dn by (4.2.2)). Hence,

the right-hand side of (4.2.6) is well defined as a CAF belongs to Nc,f-loc.

Remark 4.2.3. Lemma 4.2.2 shows that for any u ∈ Floc, cNu := Γ(Mu,c) is an
element of Nc,f-loc.
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The above Lemma 4.2.1 and Theorem 4.1 of [7] lead to the following lemma.

Lemma 4.2.4. Let M be an element ofM◦ such that Γ(M) is of bounded variation
on each compact interval of [0, ζ[. Then for every element f of Floc, Px-a.e. q.e
for x ∈ E, on t < ζ,

∫ t
0
f(Xs)dΓs(M) coincides with the Lebesgue-Stieljes integral

of f(X) with respect to Γ(M).

For the reader’s convenience, we recall the following result which is Theorem 5.2.1
of [21] and Theorem 3.2 of [35], the last statement can be seen directly from their
proofs. By e(M) we denote the energy of M .

Theorem 4.2.5. Let {Mn : n ∈ N} be a e-Cauchy sequence of M◦ . There exists a
unique element M ofM◦ such that e(Mn−M) converges to zero. The subsequence
nk such that there exists C ∈ R+ such that for every k in N : e(M−Mnk) < C2−4k,
satisfies : Px-a.e for q.e x ∈ E, Mnk

t and Γt(M
nk) converge uniformly on any finite

interval of t to Mt and Γt(M) respectively.

4.3 Integration with respect to Γz

We fix a function u of Floc. Let {Dk}k∈N be a nest of closed sets and (uk)k∈N be
a sequence of bounded elements of F associated to u such that u = uk q.e on Dk.
Let σ := limn→∞ σE\Dn . For any real number a, define Za = Za(u) by

Za
t =

{ ∫ t
0

1{uk(Xs−)≤a}dM
uk,c
s for t ≤ σE\Dk

0 for t ≥ σ

Za is a MAF on [[0, ζ[[ locally of finite energy. In particular, when u belongs to F ,
Za is in M◦ c for any real a . By Lemma 4.2.2, Γ(Za) is well defined and belongs
to Nc,f-loc.

Remark 4.3.1. For u element of F , we can choose Dk such that

σ = lim
k→∞

σE\Dk =∞ Px-a.e for q.e. x ∈ E (4.3.1)

Indeed, in this case, take uk := (−k) ∨ u ∧ k and Gk := {x : |u(x)| < k}, then
it follows from the strict continuity of u that limk→∞ σE\Gk = ∞ Px-a.e. for q.e.
x ∈ E. Therefore, the nest of closed sets {Fk}k∈N built in the proof of Lemma
3.1.(ii) in [7] satisfies the property (4.3.1) and u = uk q.e. on Fk. Choose then,
{Dk} = {Fk}

Definition 4.3.2. The process (Γat , a ∈ R, t ≥ 0) is defined by Γat = Γat (u) =
Γt(Z

a).
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Extended Itô calculus for symmetric Markov Processes

Consider an elementary function f , i.e. there exists two finite sequences (zi)0≤i≤n
and (fi)0≤i≤n−1 of real numbers such that :

f(z) =
n−1∑
i=0

fi1(zi,zi+1](z)

For such a function integration with respect to Γt = {Γzt ; z ∈ R} is defined to be
the following CAF on [[0, ζ[[ :∫

R
f(z)dzΓ

z
t =

n−1∑
i=0

fi(Γ
zi+1

t − Γzit ) (4.3.2)

Thanks to the linearity property of the operator Γ we have for any elementary
function f : ∫

R
f(z)dzΓ

z
t = Γt

(∫ .

0

f(u(Xs))dM
u,c
s

)
For any k ∈ N we define the norm ‖.‖k on the set of measurable functions f from
R into R by

‖f‖k =

(∫
E

f 2(uk(x))µ〈Muk,c〉(dx)

)1/2

(4.3.3)

Let Ik be the set of measurable functions from R into R such that ‖f‖k <∞.
On I =

⋂
k∈N Ik, we define a distance d by setting :

d(f, g) = [f − g]

where

[f ] =
∞∑
k=1

2−k(1 ∧ ‖f‖k). (4.3.4)

Note that I contains the measurable locally bounded functions and that the set
of elementary functions is dense in (I, d). Indeed, by a monotone class argument,
we can show that if f is bounded, for any n ∈ N, there exists fn elementary such
that supk≤n ‖f − fn‖k ≤ 2−n. Hence

∞∑
n=1

[f − fn] ≤
∞∑
n=1

(
n∑
k=1

2−k(1 ∧ ‖f − fn‖k) + 2−n

)
< 2.

Consequently it is sufficient to show that the set of bounded functions is dense in
I. By dominated convergence, limn→∞[f − (−n) ∨ f ∧ n] = 0 for any f ∈ I.

Let f be an element of I. The MAF W k defined by : W k
t =

∫ t
0
f(uk(Xs))dM

uk,c
s ,

has finite energy since : e(W k) = 1
2
‖f‖2

k. Hence :

fu ∗Mu,c
s :=

{
fuk ∗Muk,c

s for t < σE\Dk
0 for t ≥ σ
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belongs to M◦ cf-loc (M◦ cloc if u ∈ F) and by Lemma 4.2.2, Γ(fu ∗ Mu,c) is well
defined and is an element of Nc,f-loc (Nc,loc if u ∈ F).

Theorem 4.3.3. The application defined by (4.3.2) on the set of elementary func-
tions can be extended to the set I. This extension, denoted by

∫
f(z)dzΓ

z, for f
in I, satisfies :

(i)
∫
f(z)dzΓ

z
t = Γt(fu ∗Mu,c) ∀t ≥ 0, Px-a.e for q.e x ∈ E.

(ii) Let (fn)n∈N be a sequence I. Assume that : [fn − f ] → 0. Then there exists
a subsequence (fnk)k∈N such that (

∫
fnk(z)dzΓ

z
t )k∈N converges uniformly on

any compact of [0, ζ) ([0,∞) if u ∈ F) to
∫
f(z)dzΓ

z
t Px-a.e for q.e x ∈ E

Proof. Elementary functions are dense in I and (i) holds for elementary functions.
It is sufficient to prove that that if [fn − f ] converge to zero, there exists a sub-
sequence nk such that for any p ∈ N, Γ(fnku ∗Mu,c) converges to Γ(fu ∗Mu,c)
uniformly on any compact of [0, σE\Dp [. Let nk be such that [fnk − f ] < 2−4k and
p ∈ N, hence ‖f − fnk‖p ≤ 2p2−4k for any k > p/4 and it follows from Theorem
4.2.5 that Γ(fnkup ∗Mup,c) converges uniformly on any compact to Γ(fup ∗Mup,c)
Px-a.e for q.e x ∈ E. But thanks to (4.2.6), Γ(fnkup ∗Mup,c) and Γ(fup ∗Mup,c)
agrees on t < σE\Dp with Γ(fnku ∗Mu,c) and Γ(fu ∗Mu,c) respectively Px-a.e for
q.e x ∈ E.

We finish this section with a characterization of the set I when u belongs to F .
Let E (c) be the local part in the Beurling-Deny decomposition for E (See Theorem
3.2.1 of [21].). E (c) has the local property, hence with the same argument used to
proof Theorems 5.2.1 and 5.2.3 of [5], there exists a function U in L1(R, dx) such
that for any function F in C1 with bounded derivative f :

E (c)(F (u), F (u)) =
1

2

∫
R
f 2(x)U(x)dx.

Then thanks to (4.2.3) and Lemma 3.2.3 of [21],∫
E

f 2(u(x))µ〈Mu,c〉(dx) =

∫
R
f 2(x)U(x)dx.

hence it follows by a monotone class argument that for any measurable positive
function f we have :∫

E

f(u(x))µ〈Mu,c〉(dx) =

∫
R
f(x)U(x)dx. (4.3.5)

Lemma 4.3.4. For u element of F , the set I coincides with the set L1
loc(R, U(x)dx),

where the function U is defined by (4.3.5).
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Proof. For k integer, the function uk is defined be (−k) ∨ u ∧ k. Associate Uk
to uk as U is associated to u. We have then : ‖f‖2

k =
∫
R f

2(x)Uk(x)dx for any
measurable function f . In order to proof Lemma 4.3.4, it is sufficient to prove
that : Uk(x) = 1[−k,k]U(x) for a.e. x in R.
Let f be a continuous function with support in [−k, k] and set F (x) :=

∫ x
0
f(z)dz.

We have hence : F (u(x)) = F (uk(x)) for any x in E and therefore f(uk)∗Muk,c =
f(u) ∗ Mu,c, indeed thanks to (4.2.3) both martingales coincides with MFuk,c

(= MFu,c).
We have therefore :

∫
E
f 2(uk(x))µ〈Muk,c〉(dx) =

∫
E
f 2(u(x))µ〈Mu,c〉(dx). This shows

that ∫
R
f 2(x)Uk(x)dx =

∫
R
f 2(x)U(x)dx

for any function f continuous with compact support in [−k.k], hence Uk(x) = U(x)
for a.e. x in [−k, k].
Now if g is a continuous positive function with support in R \ [−k, k] then :∫

R
g(x)Uk(x)dx =

∫
E

g(uk(x))µ〈Muk,c〉(dx) = 0

therefore Uk(x) = 0 for a.e. x in R \ [−k, k]. This finishes the proof.

4.4 Itô Formula

In this section, we first prove Lemma 4.1.1 and then Theorem 4.1.2.

Proof of Lemma 4.1.1. Let u be an element of Floc, thanks to the proof of
Lemme 3.1 of [7], there exists a nest of finely open Borel sets {Gk}k∈N and a
sequence {uk}k∈N in F such that u(x) = uk(x) for q.e. x ∈ Gk and ‖uk‖∞ < k.
Let φ ∈ L1(E;m) such that 0 < φ ≤ 1 and for any k let

hk(x) := Ex

(∫ σE\Gk

0

e−tφ(Xt)dt

)

Gk := {x ∈ E : hk(x) > k−1} and gk(x) := 1 ∧ (khk(x)). For any k, Gk ⊂ Gk,
thus u(x) = uk(x) for q.e. x ∈ Gk. Moreover, by the proof of Lemme 3.8 of [30],
{Gk}k∈N is a nest and we have : 0 ≤ gk ≤ 1, gk(x) = 1 q.e. on Gk, gk(x) = 0 on
E\Gk. Since hk is quasi-continuous we can suppose that each Gk is finely open
(Theorem 4.6.1 of [21]). For any k ∈ N we have :
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∫
Gk

∫
{|u(x)−u(y)|<1}

|u(x)− u(y)|2N(x, dy)νH(dx)

=

∫
Gk

|gk(x)|2
∫
{|u(x)−u(y)|<1}

|u(x)− u(y)|2N(x, dy)νH(dx)

≤ 2

∫
Gk

∫
{|u(x)−u(y)|<1}

|gk(x)− gk(y)|2|u(x)− u(y)|2N(x, dy)νH(dx)

+2

∫
Gk×Gk∩{|u(x)−u(y)|<1}

|gk(y)|2|u(x)− u(y)|2N(x, dy)νH(dx)

≤ 2

∫
E×E
|gk(x)− gk(y)|2N(x, dy)νH(dx)

+2

∫
E×E
|uk(x)− uk(y)|2N(x, dy)νH(dx)

≤ 4E(gk, gk) + 4E(uk, uk) <∞

Therefore, if for any ε > 0, we set :

Sε =
∞∑
k=1

2−k
(

1 ∧
∫
Gk

∫
{|u(x)−u(y)|<ε}

|u(x)− u(y)|2N(x, dy)νH(dx)

)
We have then limε→0 Sε = 0. We choose a sequence (εn)n∈N such that Sεn < 2−4n.
Let F be a locally absolutely continuous function with a locally bounded Radon-
Nikodym derivative f . For k in N, define (Fk) by

Fk(x) = F (x)1[−k−1,k+1](x) + F (k + 1)1[k+1,∞)(x) + F (−k − 1)1(−∞,−k−1](x).

Note that Fk has a bounded Radon-Nikodym derivative : fk = f1[−k−1,k+1].

For a function β : E2 → R, define :

At(β, n) :=

∫ t

0

∫
{εn<|u(y)−u(Xs)|<1}

β(y,Xs)N(Xs, dy)dHs and

Md(β, n) =
∑
s≤t

β(Xs, Xs−)1{εn<|u(Xs−)−u(Xs)|<1}1{s<ξ} − At(β, n)

Denote by Md(F, u, n) (resp Md(F, u, n, k)) the process Md(β, n) for
β(y, x) = F (u(y)) − F (u(x)) (resp. β(y, x) = [F (u(y)) − F (u(x))]1Gk(x) ). Simi-
larly, define Ad(F, u, n) and A(F, u, n, k).
We just have to prove that Px-a.e for q.e x ∈ E, the limits limn→∞M

d(F, u, n)
and limn→∞A(F, u, n) exist uniformly on any compact of [0, σE\Gk [. We have :
Md

t (F, u, n) = Md
t (Fk, u, n, k) and At(F, u, n) = At(Fk, u, n, k) on [0, σE\Gk [.
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For every k, the process Md(Fk, u, n, k) belongs to M◦ and for 4n > k, we have

e(Md(Fk, u, n+ 1, k)−Md(Fk, u, n, k)) ≤ ck2
k2−4n

where ck = ‖fk‖∞. Indeed, from the definition of εn :

e(Md(Fk, u, n+ 1, k)−Md(Fk, u, n, k))

=
1

2

∫
Gk×E

(Fk(u(x))− Fk(u(y)))21{εn+1≤|u(x)−u(y)|<εn}N(x, dy)νH(dx)

≤ ck

∫
Gk×E

|u(x)− u(y)|21{|u(x)−u(y)|<εn}N(x, dy)νH(dx)

≤ ck2
k2−4n

thus, the convergence of Md(F, u, n) follows from Theorem 4.2.5. Still thanks to
Theorem 4.2.5, the convergence of A(F, u, n) can be seen as a consequence of :

Γ(Md
t (Fk, u, n, k)) = At(Fk, u, n, k) Px − a.e for q.ex ∈ E (4.4.1)

To prove (4.4.1), we note that (At(Fk, u, n, k))t≥0 is of bounded variation, so
At(Fk, u, n, k) ◦ rt = At(Fk, u, n, k) Pm-a.e on t < ζ (Theorem 2.1 of [16]). Hence
making use of the operator Λ defined in [7], instead of Γ, we first obtain :

Λ(Md
t (Fk, u, n, k)) = At(Fk, u, n, k) Pm − a.e for q.ex ∈ E on [[0, ζ[[

Finally by Theorem 3.6 in [7] and Lemma 4.2.1, (4.4.1) holds, Px-a.e for q.e x ∈ E
on [[0, ζ[[, and therefore on [[0,∞[[ thanks to the continuity of Γ(Md

t (Fk, u, n, k))
and At(Fk, u, n, k).
It is clear that Md(F, u) ∈M◦ f-loc and A(F, u) ∈ Nc,f-loc. Moreover for u element
of F , we can take Gn = {x : |u(x)| < n} for any n. In this case, from the
strict continuity of u we have, Px(limn→∞ σE\Gn = ∞) = 1 for q.e. x ∈ E, thus
the convergence of Md(F, u, n) and A(F, u, n) are uniformly on any compact of
[0,∞). Thus we obtain : Md(F, u) ∈M◦ loc and A(F, u) ∈ Nc,loc.

Remark 4.4.1. (i) If u ∈ F and f is bounded, then Md(F, u) ∈ M◦ and
Γ(Md(F, u)) = A(F, u).
(ii) With the notation of the proof of Lemma 4.1.1, it holds that if uk = u q.e. on
Gk, Px-a.e for q.e x ∈ E :

Md
t (F, u) + At(F, u) = Md

t (Fk, uk) + At(Fk, uk) for t ∈ [0, σE\Gk [
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Proof of Theorem 4.1.2. We use the notation of the proof of Lemma 4.1.1.
Thus, if u ∈ F , we take Gn := {x : |u(x)| < n}, n ∈ N. Let F be a locally abso-
lutely continuous function F with a locally bounded Radon-Nikodym derivative
f .
Let It be the difference of the left-hand side and the right-hand side of (4.1.3). For
any k, we define Ikt as It with uk and fk replacing u and f respectively. Hence :
It = Ikt for t < σE\Gk , Px-a.e for q.e x ∈ E. Since σE\Gn ∧ ζ converges to ζ if
u ∈ Floc and σE\Gn converges to ∞ if u ∈ F , it is sufficient to prove (4.1.3) on
[0, σE\Gk [ for any k ∈ N. Consequently we can assume (and we do) that u is an
element of Fb and f is bounded.
If f is continuous, thanks to (4.2.3), F (u) ∈ F and MFu,c = fu ∗Mu,c and we
have the Fukushima decomposition :

F (u(Xt)) = F (u(X0)) + fu ∗Mu,c
t + Γ(fu ∗Mu,c)t +Mu,d

t + Γ(Mu,d)t

We obtain (4.1.3) from Lemma 4.3.3 (i) and Remark 4.4.1 (i).
If f is not necessarily continuous, let g be in L1(R) be a strictly positive function
on R such that g and 1/g are locally bounded . Define the norms ‖.‖ and ‖.‖∗ on
the Borel measurable functions as follows :

‖h‖∗ =

(∫
E

h2(u(x))µ〈Mu,c〉(dx)

)1/2

‖h‖ = ‖h‖∗ +

∫
|h(x)|g(x)dx

+

(∫
E×E−δ

|u(x)− u(y)|
∫ u(x)∨u(y)

u(x)∧u(y)

h(z)2dzN(x, dy)νH(dx)

) 1
2

Since u is in F , we have : ‖f‖ < ∞. By a monotone class argument, one shows
that there exists a sequence of bounded continuous functions (fn)n∈N with compact
support such that ‖fn− f‖ converges to 0 as n tends to infinity. We set : Fn(x) =∫ x

0
fn(z)dz.

In order to show (4.1.3), we will show that there exists a subsequence nk such that
the terms in the expansion (4.1.3) for Fnk converge as k →∞ to the corresponding
expression with f replacing fnk . The convergence of Fn(u(Xt)) − Fn(u(X0)) −
Vt(Fn, u) to F (u(Xt)) − F (u(X0)) − Vt(F, u) is a consequence of the pointwise
convergence of Fn to F , indeed, for any x ∈ R,

|Fn(x)−F (x)| ≤
∫ x+

−x−
|fn(z)−f(z)|dz ≤ sup

|λ|≤|x|

1

g(λ)

∫ ∞
−∞
|fn(z)−f(z)|g(z)dz → 0
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Extended Itô calculus for symmetric Markov Processes

The existence of a subsequence {nk} such that
∫ t

0
fnk(u(Xs))dM

u,c
s and∫

R fnk(z)dzΓ
z
t (u) converge to

∫ t
0
f(u(Xs))dM

u,c
s and

∫
R f(z)dzΓ

z
t (u) respectively is

a consequence of the fact that e(fu ∗Mu,c − fnu ∗Mu,c) = 1
2
‖f − fn‖∗ → 0 as

n→∞, and Theorem 4.2.5. Thanks to Theorem 4.2.5 and Remark 4.4.1 (i), it is
then sufficient to show that e(M(Fn, u)−M(F, u)) converges to zero as n→∞.
But

e(M −Mn) ≤ 1

2

∫
E×E−δ

(F (u(x))− Fn(u(x))− F (u(y))

+Fn(u(y)))2N(x, dy)νH(dx)

≤ 1

2
‖f − fn‖2

∗ → 0 as n→∞.

As an example, for F (z) = z and u in Floc, one obtains a Fukushima decomposition
for the process u(X). This case can be seen as a refinement of Lemma 2.2 in [9].

4.5 Local Time

We fix an element u of Floc. The associated process cNu has been defined in
(4.2.1) by cNu = Γ(Mu,c). By Remark 4.2.3, cNu is a CAF locally of zero energy
or merely a CAF of zero energy when u belongs to F . We suppose that u satisfies
the additional assumption that cNu is of bounded variation on [0, ζ), i.e. there
exists two PCAF’s A(1) and A(2) such that Px-a.e for q.e x ∈ E :

cNu
t = A

(1)
t − A

(2)
t , ∀t ∈ [0, ζ) (4.5.1)

We remind that a measure ν on E is a smooth signed measure on E if there exists
a nest {Fk} such that for each k, 1Fk .ν is a finite signed Borel measure charging
no set of zero capacity. Such nest is said to be associated to ν. For a closed set
F ⊂ E we set :

Fb,F = {u ∈ Fb : u = 0 q.e. on E \ F}.
We also need the following definition :

E1(u, v) = E(u, v) + (u, v)m.

Lemma 4.5.1. The process cNu is of bounded variation if and only if there exists
a smooth signed measure ν on E with associated nest {Fk} such that

E (c)(u, v) =< v, ν >, ∀v ∈
∞⋃
k=1

Fb,Fk .
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Proof. From theorem 5.2.4 of [21], cNu is the only AF of zero energy such that
for any h ∈ F ,

lim
t↓0

1

t
Eh.m[cNu

t ] = −e(Mu,c,Mh,c) = −E (c)(u, h)

On the other hand, since : |E (c)(u, h)| ≤ (E (c)(u, u))1/2(E1(h, h))1/2, there exists a
unique w ∈ F such that

E (c)(u, h) = E1(w, h) for any h ∈ F .
Hence : limt↓0

1
t
Eh.m[Nw

t −
∫ t

0
w(Xs)ds] = −E (c)(u, h) for all h ∈ F . This implies

that the AF Nw −
∫ .

0
w(Xs)ds is equivalent to cNu. Consequently cNu is of

bounded variation if and only if Nw is of bounded variation. But thanks to The-
orem 5.4.2 of [21], this last condition is equivalent to the existence of a smooth
signed measure ν with an associated nest {Fk} such that

E1(w, v) =< v, ν >, ∀v ∈
∞⋃
k=1

Fb,Fk .

4.5.1 Definition of local time

Definition 4.5.2. The local time at a of u(X), denoted by Lat = Lat (u) is the
following CAF on [[0, ζ[[ :

1

2
Lat = −Γ(Za)t +

∫ t

0

1{u(Xs−)≤a}d
cNu

s for t ∈ [0, ζ)

The name “local time” is justified by Proposition 4.5.3 and Corollary 4.5.4 below.

Proposition 4.5.3. There exists a B(R) ⊗ B(R+) ⊗ Fm∞-measurable version of
the local time process {L̃at ; a ∈ R, t ≥ 0} such that Pm-a.e we have the occupation
time density formula :

∫
R
f(x)L̃xt dx =

∫ t

0

f(u(Xs))d〈Mu,c〉s for any f Borel bounded and t < ζ

Proof. We start with the case when u is a bounded element of F . From (4.2.4)
we have : Pm-a.e. on [[0, ζ[[ : Lat = Za

t + Za
t ◦ rt + 2

∫ t
0

1{u(Xs−)≤a}dN
u,c
s . Moreover,

thanks to Theorem 63 chapter IV of [41], there exists a function Z̃(a, t, ω) in
B(R) ⊗ B(R+) ⊗ Fm∞, such that for each a ∈ R, Z̃(a, t, w) is a continuous (Fmt )-
adapted version of the stochastic integral Za, and thanks to Lemma 2.10 and
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Theorem 2.18 of [7], Z̃(a, t, w)◦rt(ω) ∈ B(R)⊗B(R+)⊗Fm∞ is a continuous (Fmt )-
adapted version of Za

t ◦ rt for each a ∈ R. Besides we can take
∫ t

0
1{u(Xs−)≤a}dN

u,c
s

jointly continuous in t and right continuous in a, Pm-a.e on [[0, ζ[[×R. Thus, we
have constructed a version {L̃at , a ∈ R, t ∈ [0, ζ[} of {Lat , a ∈ R, t ∈ [0, ζ)} which
is B(R)⊗ B(R+)⊗Fm∞-measurable.
Let f be a continuous positive element of L1(R). Using the proof presented in [41]
of Fubini’s Theorem for stochastic integrals (Theorem 64, Chapter IV of [41]), we
know that

∫
R Z̃(z, t, ω)f(z)dz is a well-defined Lebesgue integral since Pm-a.e :∫

R
|Z̃(z, t, ω)|f(z)dz <∞ for all t.

Moreover still thanks to this theorem,
∫
R Z̃(z, t, ω)f(z)dz is a continuous Pm-

version of
∫ t

0
F (u(Xs))dM

u,c
s , where F (z) =

∫∞
z
f(λ)dλ. Consequently, for t > 0,

Pm-a.e on {t < ζ},
∫
R |Z̃(z, t, rt(ω))|f(z)dz < ∞ and

∫
R Z̃(z, t, rt(ω))f(z)dz is a

continuous Pm-version of
∫ t

0
F (u(Xs))dM

u,c
s ◦ rt.

Since (
∫ t

0
1{u(Xs−)≤a}dN

u,c
s )a∈R is of bounded variation on {t < ζ}, we obtain Pm-

a.e on {t < ζ} :
∫
R f(z)|L̃zt |dz <∞ and∫

R
f(z)L̃ztdz =

∫ t

0

F (u(Xs))dM
u,c
s +

∫ t

0

F (u(Xs))dM
u,c
s ◦rt+2

∫ t

0

F (u(Xs))dN
u,c
s

which leads to∫
R
f(z)L̃ztdz = −2Γ(Fu ∗Mu,c)t + 2

∫ t

0

F (u(Xs))dN
u,c
s . (4.5.2)

Now thanks to (4.2.3), Fu belongs to Floc and MFu,c
t = −

∫ t
0
f(u(Xs))dM

u,c
s .

Thus

〈MFu,c,Mu,c〉t = −
∫ t

0

f(u(Xs))d〈Mu,c〉s.

Thanks to Lemma 4.2.4 we have Pm-a.e on {t < ζ} :∫ t

0

F (u(Xs))d
cNu

s =

∫ t

0

F (u(Xs))dΓ(Mu,c)s.

On the other hand the definition of the integral with respect to Γ(Mu,c) (Chen et
al. [7]) gives :∫ t

0

F (u(Xs))dΓ(Mu,c)s = Γ(Fu ∗Mu,c)t +
1

2

∫ t

0

f(u(Xs))d〈Mu,c〉s

which together with (4.5.2) lead to
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∫
R
f(z)L̃ztdz =

∫ t

0

f(u(Xs))d〈Mu,c〉s Pm -a.e on {t < ζ} (4.5.3)

Actually, the set of null Pm-measure on which (4.5.3) could fail can be chosen
independently of f . Indeed, the set of continuous functions with compact support,
is a separable topological space for the metric of uniform convergence.
We show now that the set of null Pm-measure on which (4.5.3) could fail does not
depend on t either. We have thanks to (4.5.3)

Pm-a.e on {t < ζ}, L̃zt ≥ 0 for dz-a.e z (4.5.4)

hence by a monotone class argument, (4.5.3) holds Pm-a.e on {t < ζ} for any f
Borel bounded. It remains to show that (4.5.3) holds Pm-a.e on [[0, ζ[[. To do so
it is sufficient to show that the left-hand side of (4.5.3) is continuous in t.
It follows from Theorem 2.18 in [7] that for any z, Z̃(z, t, rt(ω)) is continuous and
has the additivity property Pm-a.e for on [[0, ζ[[. Hence thanks to (4.5.4) for dz-a.e
z, L̃zt is increasing. One shows then by monotone convergence that for any positive
Borel function f , t→

∫
R f(z)L̃ztdz is continuous Pm-a.e on [[0, ζ[[.

For a function u in Floc, take an nest of closed sets {Dk} and a sequence (uk)n∈N
of bounded elements of F such that u = uk for q.e x ∈ E. For any k ∈ N,
let L̃zt (uk) be the version B(R)⊗ B(R+)⊗ Fm∞-measurable of local time obtained
above. Then L̃zt := L̃zt (uk) on t < τDk is a B(R)⊗B(R+)⊗Fm∞-measurable version
of Lzt and satisfies the occupation time density formula on [0, τDk [, for any k ∈ N,
so it satisfies it on [0, ζ[.

Corollary 4.5.4. For any real a, La is a PCAF and Px -a.e. for q.e x ∈ E, the
measure in t, dtL

a
t is carried by the set {s : u(Xs−) = u(Xs) = a}.

Proof. We use uk and {Dk} defined as in the end of the proof of Proposition
4.5.3. Since we need to show the assertion of Cororally 4.5.3 only on [0, τDk [, we
can assume that u is a bounded element of F . It follows from the occupation time
density formula and the B(R)⊗B(R+)⊗Fm

∞-measurability of L̃, that there exists
a subset R of R of Lebesgue’s measure zero, such that for any a outside of R : Pm-
a.e L̃at ≥ 0 on [[0, ζ[[. Consequently La has the same property. This property holds
for any a ∈ R. Indeed for any real a, take a sequence (an)n∈N ⊂ R \ R such that
an ↓ a. We have : e(Zan−Za) =

∫
1{a<u(x)≤an}µ〈Mu,c〉(dx), which converges to 0 as

n tends to ∞ by dominated convergence. Thus, thanks to Theorem 4.2.5 (taking
a subsequence if necessary) Γ(Zan) converges to Γ(Za) uniformly on any finite
interval of t, Pm-a.e. On the other hand, for Pm-a.e w ∈ Ω,

∫ t
0

1{u(Xs)≤an}dN
u,c
s (ω)

converges to
∫ t

0
1{u(Xs)≤a}dN

u,c
s (ω) for any t < ζ(ω). Conssequently, we obtain for

Pm-a.e ω ∈ Ω, Lat (ω) ≥ 0 for any t < ζ(ω).
It follows from Lemma 4.2.1 that for any real a, La is a PCAF on [[0, ζ[[. By
Remark 2.2 in [7], it can be extended to a PCAF.
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Now defining : f(x) = (x− a)4 and h(x) = (x− a)41{x≤a}, it follows from (4.2.3)
that fu and hu belong to Floc. Moreover we have :

M fu,c
t = 4

∫ t

0

(u(Xs)− a)3dMu,c
s and Mhu,c

t = 4

∫ t

0

(u(Xs)− a)31{u(Xs)≤a}dM
u,c
s

thus, 〈M fu,c, Za〉 = 〈Mhu,c,Mu,c〉, and from the definition of the stochastic integral
(4.2.5) we have that Pm-a.e on {t < ζ}∫ t

0

(u(Xs)− a)4dΓ(Za)s =

∫ t

0

(u(Xs)− a)41{u(Xs)≤a}dΓ(Mu,c)s.

By Lemmas 4.2.1 and 4.2.4, we finally obtain :
∫ t

0
(u(Xs)− a)4dLas = 0 Px-a.e for

q.e x ∈ E.

4.5.2 Integration with respect to local time

We fix u an element of F satisfying (4.5.1) and set : lat =
∫ t

0
1{u(Xs−)≤a}dN

u,c
s .

Hence the local time at a of u(X) satisfies :

La = −2Γa + 2la.

For any ω ∈ Ω and t < ζ(ω), the function z → lzt (ω) is of bounded variation. The
application defined for the elementary functions by

f →
n−1∑
i=0

fi(l
zi+1

t − lzit ), t < ζ

can hence be extended to the set of locally bounded Borel measurable functions
f from R into R as a Lebesgue-Stieljes integral and we have :∫

R
f(z)dzl

z
t =

∫ t

0

f(u(Xs))dN
u,c
s t < ζ.

Using the stochastic integral with respect to Γ, the application defined for the
elementary functions by

f →
n−1∑
i=0

fi(L
zi+1

t − Lzit ), t < ζ

can hence be extended to the set of locally bounded Borel measurable functions
f from R into R and we have :

−1

2

∫
R
f(z)dzL

z
t =

∫
R
f(z)dzΓ

z
t −

∫ t

0

f(u(Xs))dN
u,c
s , t < ζ.

80



Multidimensional case

4.6 Multidimensional case

In this section we need the following notation. For d ∈ N, x = (x1, ..., xd), y =
(y1, ..., yd) ∈ Rd, we set x ≤ y (resp. x < y) if and only of xi ≤ yi (resp. xi < yi)
for each i = 1, ..., d and ]x, y] = {z ∈ Rd : x < z ≤ y}. The vector x̂ is obtained

from x by elimination of its coordinate xd, i.e. x̂ = (x1, ..., xd−1), ]̂x, y] = {z ∈
Rd−1 : x̂ < z ≤ ŷ}.
Let ϕ be a measurable function from Rd into R. We define integration of simple
functions with respect to ϕ as follows. For f a simple function, i.e. there exists
x, y ∈ Rd such that f(z) = 1]x,y](z) for all z ∈ Rd :

if d = 1 :

∫
R
f(z)dϕ(z) = ϕ(y)− ϕ(x)

if d > 1 :

∫
Rd
f(z)dϕ(z) =

∫
Rd−1

1
]̂x,y]

(z)dϕ(z, yd)−
∫
Rd−1

1
]̂x,y]

(z)dϕ(z, xd)

As an example, if there exist functions hi, 1 ≤ i ≤ d such that ϕ(z) =
∏d

i=1 h(zi),

then
∫
Rd f(z)dϕ(z) =

∏d
i=1(hi(y

i)− hi(xi)).
We extend this integration to the elementary functions f : Rd → R (i.e. f(z) =∑n

i=1 aifi(z) where fi , 1 ≤ i ≤ n are simple functions and ai 1 ≤ i ≤ n are real
numbers) by setting ∫

Rd
f(z)dϕ(z) =

d∑
i=1

ai

∫
Rd
fi(z)dϕ(z).

A elementary function has many representations as linear combination of simple
functions, but as in the Riemann integration theory, the integral does not depend
on the choice of its representation.

Let u be in Fdloc where Fdloc = {(u1, u2, ..., ud) : ui ∈ Floc, 1 ≤ i ≤ d}. Let
{Dk}k∈N be a nest of closed set, σ := limk→∞ σE\Dk and (uk)k∈N a sequence of
bounded elements of Fd such that u = uk q.e. on Dk.
For any a in Rd and i in {1, 2, ..., d}, we define Za(ui) and Γa(ui) respectively in
M◦ cf-loc and Nc,f-loc by

Za
t (ui) =

{ ∫ t
0

1{uk(Xs−)≤a}dM
uik,c
s for t ≤ σE\Dk

0 for t ≥ σ

Γa(ui) = Γ(Za(ui))

Thanks to the linearity property of Γ, we have for any elementary function f :∫
Rd
f(z)dzΓ

z
t (u

i) = Γt

(∫ t

0

f(u(Xs))dM
ui,c
s

)
.
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We extend (4.3.3) of Section 4.3 from d = 1 to d ≥ 1, by defining for k ∈ N, the
norm ‖.‖k on the set of measurable functions f : Rd → R

‖f‖k :=
d∑
i=1

(∫
E

f 2(uk(x))µ
〈Mui

k
,c〉

(dx)

)1/2

.

and we define the set I with the metric [., .] as in (4.3.4) of Section 4.3. The set of
elementary functions is dense in I. We have the following version of Lemma 4.3.3.

Lemma 4.6.1. The applications f →
∫
Rd f(z)dzΓ

z
t (u

i) (1 ≤ i ≤ d) defined on the
set of elementary functions, can be extended to the set I. This extensions, denoted
by
∫
Rd dzΓ

z(ui), satisfy :

(i)
∫
Rd f(z)dzΓ

z
t (u

i) = Γ(fu ∗Mui,c)t ∀t ≥ 0, Px-a.e for q.e x ∈ E.

(ii) For (fn)n∈N sequence of I such that [fn − f ]→ 0, there exists a subsequence
(fnk)k∈N such that

∫
fnk(z)dzΓ

z
t (u

i) converges uniformly on any compact of
[0, ζ) ([0,∞) if u ∈ Fd) to

∫
f(z)dzΓ

z
t (u

i) for every 1 ≤ i ≤ d Px-a.e for
q.e x ∈ E

With can prove a multidimensional version of Lemma 4.1.1 with the same argu-
ments used in its proof. We have the following multidimensional Itô Formula.

Proposition 4.6.2. Let u be an element of Fd (resp. Fdloc) and F : Rd → R
a continuous function admitting locally bounded Radon-Nikodym derivatives fi =
∂F/∂xi, 1 ≤ i ≤ d, satisfying the following condition for any 1 ≤ i ≤ d and k ∈ N

lim
h→0

∫
E

{fi(uk(x) + h)− fi(uk(x))}2µ
〈Mui

k
,c〉

(dx) = 0. (4.6.1)

Then, Px-a.e for q.e x ∈ E, the process F (u(Xt)), t ∈ [0,∞) (resp. [0, ζ)) admits
the decomposition

F (u(Xt)) = F (u(X0)) +Mt(F, u) +Qt(F, u) + Vt(F, u) (4.6.2)

where M(F, u) ∈M◦ loc, (resp.M◦ f-loc) Q(F, u) ∈ Nc,loc (resp. Nc,f-loc) and V (F, u)
is a bounded variation process given by :

Mt(F, u) = Md
t (F, u) +

d∑
i=1

∫ t

0

fi(u(Xs))dM
ui,c
s

Qt(F, u) =
d∑
i=1

∫
R
fi(z)dzΓ

z
t (ui) + At(F, u)

Vt(F, u) =
∑
s≤t

{F (u(Xs))− F (u(Xs−))}1{|u(Xs)−u(Xs−)|≥1}1{s<ξ}

−F (u(Xξ−))1{t≥ξ}
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Proof. As in the proof of Theorem 4.1.2, we can assume that u is a bounded
element of F and each fi is bounded. For φ : Rd → R an infinitely differentiable
function with compact support, the function Fn defined by Fn(z) :=

∫
Rd F (z +

y/n)φ(y)dy converges pointwise to F (z). Setting : fn,i = ∂Fn/∂xi we obtain thanks
to (4.6.1) :

lim
n→∞

∫
E

[fn,i(u(x))− fi(u(x))]2µ〈Mui,c〉(dx) = 0

The rest of the proof follows step by step the proof of Theorem 4.1.2.

In the case where E = Rd and E (c) is given by

E (c) =
d∑

i,j=1

∫
Rd

∂u

∂xi

∂v

∂xj
aij(x)dx

where for every (i, j), aij is a bounded measurable function. The coordinates func-
tions πi(x) = xi, 1 ≤ i ≤ d, belong to Floc and M = (Mπ1,c, ...,Mπd,c) is a mar-
tingale additive functional with quadratic co-variation 〈M i,M j〉s =

∫ t
0
aij(Xs)ds,

hence :
µ〈M i,c〉(dx) = aii(x)dx, and the condition (4.6.1) holds for any locally bounded
measurable function.
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Chapitre 5

Stochastic calculus for non
necessarily symmetric Markov
processes

Abstract : We consider a Markov process X associated to a non-necessarily symmetric

Dirichlet form E and establish a representation theorem for the class of its local additive

functionals locally of zero energy. We define a stochastic integral with respect to the

elements of this class and can then obtain an Itô formula for the process u(X), when u

is in the domain of E . In case the state space is Rd, we establish a decomposition of X

similar to the Lévy-Itô decomposition for Lévy process and obtain an Itô formula for

X.

5.1 Introduction

The semimartingale theory has produced a fundamental tool based on stochastic
integration and Itô’s formula : the stochastic calculus. Since Markov processes
are not in general semimartingales, Fukushima [20] developed another stochastic
calculus in the framework of symmetric Dirichlet spaces. For a symmetric Markov
process X with a regular Dirichlet form E , and for any element u of the domain
F of E , the process (u(Xt)− u(X0), t ≥ 0) admits the decomposition

u(Xt)− u(X0) = Mu
t +Nu

t (5.1.1)

where Mu is a martingale additive functional of finite energy and Nu is a contin-
uous additive functional of zero energy. This decomposition is called Fukushima’s
decomposition and it can be seen as a substitute of the Doob-Meyer decomposi-
tion of super-martingales and Itô’s formula for semimartingales. The part of the
class of bounded variation processes in the semimartingale theory is played by N ,
the class of additive functionals of zero energy. In general an additive functional
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is not of bounded variation and therefore the Lebesgue-Stieltjes integrals can not
be defined. Nevertheless, Nakao [35] introduced a stochastic integral

∫ t
0
f(Xs)dNs

for f bounded function element of F and N element of the following subclass of
N :

Ñc = {Nu
. −

∫ .
0
u(Xs)ds : u ∈ F}.

In his Itô formula expending u(X) [35], this integral replaces the Lebesgue-Stieltjes
integral in the Itô formula for semimartingales. Besides, this integral is used by
Fitzsimmons and Kuwae [17], to study the lower order perturbation of diffusion
processes.
The conditions of existence of Nakao’s integral being too restrictive, this notion
could not be used to study the lower order perturbation of symmetric Markov
processes that are not diffusions. Therefore Chen et al. [7] have extended Nakao’s
integral to a larger class of integrators as well as integrands. Using time reversal
they have defined an integral

∫ t
0
f(Xs)dCs for f locally in F and C in a class of

processes containing Ñc. The process C is not in general of zero energy but of
zero quadratic variation and the integral is not an additive functional or a local
additive functional but a local additive functional admitting null set. Kuwae [31]
gives a refinement of Chen et al. work, redefining the stochastic integral without
using time reversal but restricting the class of integrands.

Our aim in this paper, is to construct an integral
∫ t

0
f(Xs)dCs for a Markov

process X associated to a non necessarily symmetric regular Dirichlet form (E ,F),
f locally in F and C local continuous additive functional with zero quadratic
variation. To do so, one can not extend the construction of Chen et al. neither
Kuwae’s construction because they both heavily rely on the symmetry of the
Markov process.
On one hand, it is legitimate to solve this question since many results for sym-
metric Dirichlet forms hold for non-symmetric Dirichlet forms, see e.g., [28], [29],
[30], [32] and [37]. In particular, Fukushima’s decomposition (5.1.1) holds for non-
symmetric regular Dirichlet forms, but also the correspondence between Markov
processes and (non-necessarily symmetric) Dirichlet forms, Revuz correspondence
and other relations between probabilistic notions for a Markov process X and
analytic notions for E .
On the other hand, the interest of constructing such an integral is that it leads to
an Itô formula for u(X) when u is element of F . Moreover when the state space
of X is Rd, we obtain an Itô formula for X. With this paper we would like to offer
new tools to study Markov processes.

The paper, based on Fukushima’s decomposition (5.1.1) for X non necessarely
symmetric, is organized as follows. In Section 2, we present some preliminaries.
For u element of F , we give in Section 3, a necessary and sufficient condition for
Nu to be of bounded variations. In Section 4, we show that a continuous additive
functional with zero quadratic variation is locally in Ñc. Then in Section 5, we
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construct a stochastic integration with respect to Nu. To do so we first establish
in Section 5.1, a decomposition of Nu as the sum of three processes Nu

1 , Nu
2 and

Nu
3 such that Nu

1 and Nu
2 are respectively associated to the diffusion part and

the jumping part of the symmetric part of E , and Nu
3 is of bounded variations. In

Sections 5.2 and 5.3, we present respectively stochastic integration with respect
to Nu

1 and Nu
2 . These results lead to an integral with respect to Nu which is

used in Section 5.4 to establish an Itô formula for the process u(X), u in F , in
which this new integral takes the place of the Lebesgue-Stieltjes integral in the
classical Itô formula for semimartingales. Still in Section 5.4, we show, thanks to
Section 3, that when Nu is of bounded variations the obtained stochastic integral
coincides with the Lebesgue-Stieljes integral with respect to Nu. We also show
that when the Dirichlet form is symmetric, the obtained stochastic integral with
respect to Nu coincides with the integral defined by Chen et al [7]. In Section
5.6, we work with Markov processes in Rd. We establish, using a Berling-Deny
formula for E shown by Hu et al. [23], a decomposition of the coordinate process
X i for i = 1, . . . , d, similar to the Lévy-Itô decomposition for Lévy processes.
The drift part process is replaced by a local continuous additive functional. Under
the assumption of symmetry, similar decompositions have been established in the
previous chapter (Chapter 4 - Theorem 4.1.2) and in Chen et al. [9]. Thanks to
this decomposition, we establish an Itô formula for the process X.

5.2 Preliminaries

This section presents mostly notation and vocabulary from the book of Fukushima
et al. [21] still available in the non necessarily symmetric case. It contains also
some immediate consequences of existing results that will be useful for the other
sections.
Throughout this paper, we assume that E is a locally compact separable metric
space and m is a σ-finite Borel measure on E such that Supp[m] = E. L2(E;m)
denotes the real L2-space with inner product

(f, g)m :=

∫
E

f(x)g(x)m(dx), for any f, g ∈ L2(E;m)

We adjoin to E a point ∆ and endow E∆ := E ∪ {∆} with the topology of one
point compactification. If E is already compact, ∆ is an isolated point. A real
function f on E is extended to a function on E∆ by setting f(∆) = 0.
We fix a (non necessarily symmetric) regular Dirichlet form E on L2(E;m) with
domain F . Many examples of Dirichlet forms on L2(E;m) with E distinct from
Rd are given in the book of Ma and Röckner as well as examples with E = Rd

(see [32], chapter 2).
We set E1(u, v) := E(u, v) + (u, v)m, Ê(u, v) := E(v, u),
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Ẽ(u, v) := 1/2{E(u, v) + Ê(u, v)}, Ẽ1(u, v) := Ẽ(u, v) + (u, v)m and
Ě(u, v) := 1/2{E(u, v)− Ê(u, v)} for any u, v ∈ F .
For any Borel set B let FB := {u ∈ F : u = 0 m-a.e on E\B}. An increasing
sequence of closed sets {Fk} is called a nest if and only if ∪n≥1FFn is Ẽ1-dense in
F . A subset N ⊂ E is called exceptional if N ⊂ ∩k≥1(E\Fk) for some nest {Fk}.
We say that a property of points in E holds quasi-everywhere (abbreviated q.e), if
the property holds outside some exceptional set. An q.e. defined function f on E
is called quasi-continuous if there exists an nest {Fk} such that f|Fk is continuous
on Fk for any k.
Let {Tt}t≥0 and {Gα}α>0 (resp. {T̂t}t≥0 and {Ĝα}α>0) be respectively the semi-

group and the resolvent associated to (E ,F) (resp. (Ê ,F)).
By Chapter V, section 2 of [32], every element u of F admits a quasi-continuous
m-version. Moreover, there exists a Hunt processes

M = (Ω, {Ft}t≥0, {Xt}t≥0, {Pz}z∈E∆
)

with space E and life time ζ which is properly associated to (E ,F) i.e., for any
t, α > 0 and f ∈ L2(E,m), ptf and Rαf are respectively quasi-continuous m-
versions of Ttf and Gαf , where for any x ∈ E :

ptf(x) = Ex[f(Xt)] and Rαf(x) =

∫ ∞
0

e−αtptf(x)dt

Therefore for u ∈ L2(E;m) we have

u ∈ F ⇔ sup
α>0

α(u−Rαu, u)m <∞ and in this case :

E(u, v) = lim
α→∞

α(u− αRαu, v)m, for all v ∈ F (5.2.1)

Recall that a subset B of E is said to be nearly Borel measurable if for any
probability measure µ in E∆ there exist Borel sets B1, B2(⊂ E∆) such that B1 ⊂
B ⊂ B2 and Pµ(∃t ≥ 0, Xt ∈ B2 − B1) = 0. Here for any A ⊂ F we set
Pµ(A) =

∫
E∆

Px(A)µ(dx). We denote by Bn the set of nearly Borel measurable
subsets of E.
For a nearly Borel set B(⊂ E∆), σB and τB represent the first hitting time to B
and the first exit time from B respectively, i.e :

σB := inf{t > 0 : Xt ∈ B}
τB := inf{t > 0 : Xt /∈ B}

It is well known that for a nearly Borel set B, σB and τB are (Ft)−stopping times.
A set N ⊂ E is said M-exceptional if there exists Ñ ∈ B(E) such that N ⊂ Ñ and
Pm(σÑ < ∞) = 0. We say that a set N ⊂ E is properly exceptional if N ∈ Bn,
m(N) = 0 and for any x ∈ E \N , Px(Xt ∈ E∆ \N,Xt− ∈ E∆ \N, ∀t ≥ 0) = 1.
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For any set N ⊂ E, N is exceptional if and only if N is M-exceptional. Moreover
any properly exceptional set is exceptional and for any exceptional set N , there
exists a properly Borel exceptional set B containing N . (see [30], Lemma 4.5.(ii)
and Lemma 4.6.(iii)).
By proposition V.2.28 of [32], we have that a function u is quasi-continuous if and
only if is finely continuous q.e. i.e., if and only if there exists a properly exceptional
set N such that u is nearly Borel measurable on E\N and for x /∈ N :

Px(t→ u(Xt) is right continuous) = 1

If additionally u ∈ F , the above property is equivalent to :

Px(u(Xt) is right continuous and lim
s↑t

u(Xs) = u(Xt−) ∀t ≥ 0) = 1 (5.2.2)

For a nearly Borel set B, define FE\B := {u ∈ F : u = 0 q.e. on B}. This is a

closed subspace of (F , Ẽ1). It follows from Corollary 2.1 in [30] that for any u in
F there exists a unique v in FE\B such that E1(u − v, w) = 0 for all w ∈ FE\B.
This unique v is called the 1-projection of u on FE\B and denoted by Π1

FBc (u).
For any f Borel measurable function such that Ex[e

−σB |f(XσB)|] is finite q.e. we
define :

H1
Bf(x) := Ex[e

−σBf(XσB)] (5.2.3)

Then for any u ∈ F , H1
B|u|(x) is finite q.e. and we can show with the same argu-

ments used in the proof of Theorem 4.3.1 of [21] that H1
Bu is a quasi-continuous

m-version of u− Π1
FBcu.

A subset G of E is said to be quasi-open if there exists a nest {Fk} of closed
sets such that G∩Fk is open with respect to the relative topology on Fk for each
k ∈ N. In the same way one defines quasi-closed subsets.
For two subsets A,B of E we say that A ⊂ B q.e. if A\B is exceptional and we
say that A is q.e. equivalent to B and write A = B q.e. if the symmetric difference
A∆B is exceptional. A set G is called q.e. finely open if it is q.e. equivalent to a
nearly Borel finely open set. In the same way one defines a q.e. finely closed set.
A function f is quasi-continuous if and only if f−1(I) is quasi-open for any I open
set of R. (see [21] pp. 68). It follows from Proposition 4.1.(ii) in [30] that a subset
of E is quasi-open if and only if is q.e. finely open.
Set : O := {G ⊂ E : G is nearly Borel and finely open} and for a subset A of E,
set : OA := {G ∈ O : G ⊂ A}. For G ∈ O define :

ΞG :=

{
{Gn} ⊂ OG : Gn ⊂ Gn+1 ∀n and G =

∞⋃
n=1

Gn q.e.

}
We denote ΞE by Ξ.
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Remark 5.2.1. For B ⊂ E, denote by Br the set of regular points for B. Let
{Fn} be an increasing sequence of closed sets and for any n ∈ N, let Gn be the
fine interior of Fn. Then {Fn} is a nest if and only if {Gn} ∈ Ξ. Indeed, note that
Gn = Fn\(E\Fn)r, thus it is nearly Borel measurable (see Theorem A.2.5 of [21]
and Proposition 10.6 in [44]). Moreover, by Lemma 3.3 of [29], {Fn} is a nest if
and only if

⋃∞
n=1 Gn = E q.e.

Let (R̂α)α>0 be the resolvent associated to Ê . Define :

K(E) := {g ∈ L1(E,m) : 0 < g(x) ≤ 1 ∀x ∈ E}.

We fix an element ϕ ∈ K(E) and let h = R1ϕ and g = R̂1ϕ. Define the capacity
Cap as the capacity Caph,g defined in [32], Defintion III.2.4. Then a sequence
{Fn}n∈N of closed sets is an nest if and only if Cap(E \ Fn) converges to zero as
n tends to infty.

The above lemma is actually Lemma 4.6. in [30] that we recall for the reader’s
convenience. We add point (iv). Indeed the equivalence (i)⇔(iv) is shown in the
proof of Lemma 3.6. in [30].

Lemma 5.2.2. For an element G in O and an increasing sequence {Gn} of nearly
Borel finely open subsets of G, the following are then equivalent :

(i) {Gn} ∈ ΞG.

(ii) Px(limn→∞ τGn = τG) = 1 for m-a.e. x ∈ E
(iii) Px (limn→∞ τGn = τG) = 1 for q.e. x ∈ E
(iv) limn→∞Cap(G\Gn) = 0

Lemma 5.2.2 is used to establish the following lemma.

Lemma 5.2.3. Let {Gn}n∈N be an element of Ξ and for each n, let {Gn,k}k,∈N
be in ΞGn. Then there exists {Gn}n∈N ∈ Ξ such that for each n ∈ N, there exists
j, k ∈ N such that Gn ⊂ Gj,k.

Proof. Let ϕ be inK(E). For anyG element ofO, set :RG
1 ϕ(x) = Ex[

∫ τG
0
e−sϕ(Xs)ds].

For any n ∈ N let Hn := {x ∈ E : RGn
1 ϕ > n−1} and H̄n := {x ∈ E : RGn

1 ϕ ≥
n−1}. It is known that : E \ H̄n ∈ O. From the proof of Lemma 3.8. in [30] :
{Hn} ∈ Ξ, Hn ⊂ Gn q.e. and Hn ⊂ H̄n ⊂ Hn+1 q.e.
For each n, we apply the above procedure to {Gn,k ∩Hn}k∈N which is in ΞHn , in
order to get {Hn,k}k∈N in ΞHn such that : Hn,k ⊂ Gn,k q.e., Hn,k ⊂ H̄n,k ⊂ Hn,k+1

q.e. and E \ H̄n,k ∈ O, for each k. In view of Lemma 5.2.2 we assume, by taking
subsequences if necessary, that Cap(E \Hn) ∨Cap(Hn \Hn,n) < 2−n. Set : Ḡn :=⋂
k≥n H̄k,k, then Cap(E \ Ḡn) < 2−n.

Since each Ḡn is quasi closed, there exists a common nest of closed sets {Fk}
such that Fk ∩ Ḡn is closed for any k, n. Then we have : Cap(E \ (Fn ∩ Ḡn)) ≤
2−n + Cap(E \Fn), which converges to 0 as n tends to infinity. Let Gn be the fine
interior of Ḡn ∩ Fn. Then Gn ⊂ Gn,n+1 and {Gn} ∈ Ξ (see Remark 5.2.1).
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Definition 5.2.4. Floc is the set of the real-valued measurable functions u on E
such that there exists {Gk} in Ξ and a sequence {uk} of F such that for any k,
u(x) = uk(x) for q.e. x ∈ Gk.

Evidently any u in Floc admits a quasi-continuous m-version. From now on, we
always assume that functions in Floc are represented by their quasi-continuous
m-versions. For u, {Gk} and {uk} connected as in the above definition, setHk :=
Gk∩{x : |u(x)| < k}. Then each Hk is q.e. equivalent to a nearly Borel finely open
set H̃k. Hence {H̃k} belongs to Ξ and : u(x) = (−k)∨uk∧k q.e. on H̃k. Therefore
in Definition 5.2.4 one can always assume that each uk satisfies ‖uk‖∞ ≤ k.

An (Ft)-adapted process A is an additive functional (AF in abbreviation) if there
exists Λ in F∞ and a properly exceptional set N such that : Px(Λ) = 1 for
x ∈ E \ N , θtΛ ⊂ Λ for all t ≥ 0 and for all ω ∈ Λ : t → At(ω) is finite càdlàg
on [0, ζ(ω)), A0(ω) = 0, At(ω) = Aζ(ω) for t ≥ ζ(ω) and A(ω) has the additive
property : At+s(ω) = At(ω) + As(θtω), s, t ≥ 0.

A local AF or AF on [[0, ζ[[ is a process that satisfies all requirements to be an AF
except that the additive property is required only for t, s ≥ 0 with t+ s < ζ(ω).
In the sequel, we say that Λ is a defining set for A or a defining set admitting a
properly exceptional set N or that N is a properly exceptional set for A.
An AF A is said to be continuous (resp. càdlàg, resp. finite ) if it has a defining set
Λ such that A.(ω) is continuous (resp. càdlàg, resp. finite) in [0,∞) for any ω ∈ Λ.
The abbreviations CAF and PCAF stand for, “continuous additive functional”
and “positive continuous additive functional” respectively.
We say that a local AF A is continuous or a local CAF if there exists a defining
set Λ such that A.(ω) is continuous in [0, ζ(ω)[ for any ω ∈ Λ.
We denote by A+

c the set of PCAF. A Borel measure µ on E is called smooth
if it does not charge exceptional sets and there exists a nest {Fn} such that
µ(Fn) < ∞ for all n. We denote by S the family of all smooth measures. There
exists a correspondence between the elements of S and A+

c called the Revuz
correspondence characterized as follows (see e.g. [32]) : µ in S is the Revuz measure
of A if for any Borel measurable positive f

µ(f) = lim
t↓0

1

t
Em

(∫ t

0

f(Xs)dAs

)
= sup

t>0

1

t
Em

(∫ t

0

f(Xs)dAs

)
Definition 5.2.5. For any A in A+

c we denote its Revuz measure by µA. A se-
quence {Gn} element of Ξ is said to be associated to µ in S if µ(Gn) < ∞ for
each n. {Gn} is said to be associated to A ∈ A+

c if it is associated to µA.

Let µ be a measure charging no exceptional set of E. In view of Remark 5.2.1, µ
has an associated nest {Gn} ∈ Ξ iff µ ∈ S. Indeed the direct way is a consequence
of Remark 2.1, and the converse can be established exactly as in Lemma 2.2 in
[31].
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A positive Radon measure µ on E is said to be of finite energy integral (relatively
to E1) if there exists C > 0 such that :∫

E

|v(x)|µ(dx) ≤ C
√
E1(v, v), v ∈ F ∩ C0(E).

In this case, F ⊂ L1(E, µ) and the above equation holds for any h ∈ F (see
Theorem 2.2.2 on [21]). We denote by S0 the set of finite energy integral measures.
A measure µ belongs to S0 if and only if there exists an unique element in F
denoted U1µ such that E1(U1µ, h) =

∫
E
h(x)µ(dx) for all h ∈ F or equivalently if

there exists Û1µ ∈ F such that E1(h, Û1µ) =
∫
E
h(x)µ(dx) for all h ∈ F . Moreover

S0 ⊂ S and a set N ⊂ E is exceptional if and only if µ(N) = 0 for all µ ∈ S0 if
and only if µ(N) = 0 for all µ ∈ Ŝ00 := {µ ∈ S0 : µ(E) = 1, ‖Û1µ‖∞ < ∞} (see
[37], section 2.3).
According to Lemma 4.3 of [28], for any A ∈ A+

c , ν ∈ Ŝ00,

Eν [At] ≤ et‖Û1ν‖∞µA(E) (5.2.4)

Lemma 5.2.6. Let An be a sequence of A+
c . Suppose that µAn(E) converges to

zero as n→∞. Then there exists a subsequence (n′) satisfying the condition that
for q.e. x ∈ E,

Px

(
An
′

t converges to zero uniformly on any compact
)

= 1 (5.2.5)

This can be proved using (5.2.4) and the arguments used in the proof of Lemma
5.1.2 of [21].

To simplify the formulation of the results, we define the energy of an AF A by

e(A) := lim sup
α→∞

α2

2
Em

[∫ ∞
0

e−αtA2
tdt

]
For two AF A,B, their mutual energy is defined by

e(A,B) :=
1

2
[e(A+B)− e(A)− e(B)]

An AF M is called a martingale additive functional (abbreviated as MAF) if it
is finite, càdlàg and for q.e x in E : Ex[M

2
t ] < ∞ and Ex[Mt] = 0 for any t ≥ 0.

Denote by M the set of MAF, by M◦ the set of MAF’s of finite energy and

Nc :=

{
N :

N is a finite continuous AF, e(A) = 0,
Ex(|Nt|) <∞ q.e for each t > 0

}
.

Lemma 5.2.7. Let M be an AF admitting a properly exceptional set N such that
for x ∈ E \N and t ≥ 0, Ex[M

2
t ] <∞ and Ex[Mt] = 0. Then M is a MAF.
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Proof. The only point that we have to show is that there exists a defining set
on which M is finitely càdlàg. Evidently M is finite. Let Λ be a defining set of
M admitting a properly exceptional set N such that M.(ω) is finite on [0,∞) for
any ω ∈ Λ. For any x ∈ E\N , M is a (Px, (Ft))-martingale. Thus for x ∈ E\N ,
M has a Px-modification càdlàg denoted by Mx. For ω ∈ Ω such that ζ(ω) > 0
define :

M s
ζ (ω) = inf

s<ζ,s∈Q
sup{Mr(ω) : s ≤ r < ζ(ω), r ∈ Q}

M i
ζ(ω) = sup

s<ζ,s∈Q
inf{Mr(ω) : s ≤ r < ζ(ω), r ∈ Q}

and M s
ζ (ω) = M i

ζ(ω) = 0 if ζ(ω) = 0. Define :

Λ̃ = {ω ∈ Λ : 0 < ζ(ω) <∞ and M s
ζ (ω) = M i

ζ(ω)}∪{ω ∈ Λ : ζ(ω) ∈ {0,∞}} ∈ F∞

The fact that for ω ∈ Λ, M(ω) is càdlàg on [0, ζ(ω)), leads to
M s

ζ (ω) = lim supt↑ζ(ω) Mt(ω) and M i
ζ(ω) = lim inft↑ζ(ω) Mt(ω). Therefore, M(ω) is

finite càdlàg on [0,∞) for ω ∈ Λ̃.
We shall prove that Λ̃ is a defining set for M . We can check easily that θtΛ̃ ⊂ Λ̃
for all t ≥ 0. We must prove that Px(Λ̃) = 1 for all x ∈ E\N . For x in E\N , set
Λx := Λ ∩ {w ∈ Ω : Mx

. is càdlàg} ∩ {w ∈ Ω : Mt(ω) = Mx
t (ω)∀t ∈ Q+}. We have

then : Px(Λ
x) = 1. For ω ∈ Λx such that 0 < ζ(ω) < ∞, one obtains : M s

ζ (ω) =

lim supt↑ζ(ω) M
x
t (ω) = lim inft↑ζ(ω) M

x
t (ω) = M i

ζ(ω). Consequently : Λx ⊂ Λ̃ and

Px(Λ̃) = 1.

For any u ∈ F , Mu and Nu denote the elements of M◦ and Nc respectively, that
are present in Fukushima decomposition of u(Xt)− u(X0), t ≥ 0, i.e. :

u(Xt)− u(X0) = Mu
t +Nu

t for t ≥ 0, Px-a.e for q.e x ∈ E.

The following lemma can be proved in the same way as Lemma 5.1.2 and Corollary
5.2.1 of [21].

Lemma 5.2.8. Let (un) be a sequence of quasi continuous functions in F and Ẽ1-
convergent to u. Then there exists a subsequence {unk} such that for q.e x ∈ E,

Px(unk(Xt) converges uniformly to u(Xt) on each compact interval of [0,∞)) = 1

and the same holds for Nunk and Nu, and for Munk and Mu, replacing unk(X)
and u(X) respectively.

We close this section by mentioning that in the literature the integral of H with
respect to K is denoted by

∫
HsdKs or by H ∗K.
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5.3 CAF of bounded variation

In this section we adopt the following convention : ∞ − ∞ = 0. Thus for two
PCAFs of X, B and A, the process A− B := {At − Bt : t ≥ 0} is always a local
CAF. Set :

Ac := {A−B : A,B ∈ A+
c }

We recall the following definition given in [21] : µ is called a smooth signed measure
if there exists a nest {Fk} of closed sets such that each 1Fk .µ is the difference of
two finite smooth measures, thus µ = µ(1) − µ(2) for some smooth measures µ(1)

and µ(2) finite on {Fk}.
By the Revuz correspondence between S and A+

c , there is a bijection between
smooth signed measures and Ac. In the sequel we refer to this bijection also as
the Revuz correspondence. For any A ∈ Ac, we denote by µA its Revuz signed
measure. it is clear that for A ∈ Ac, |µA| is the smooth measure associated to V ,
where Vt represents the total variation of A on [0, t].

Definition 5.3.1. We denote by S-S the set of smooth signed measures. We say
that a smooth signed measure µ belongs to S0-S0 if and only if is the difference of
two measures in S0.

It is clear that a smooth measure signed µ belongs to S0-S0 if and only if µ(1), µ(2)

belongs to S0, where µ = µ(1) − µ(2) denote its Jordan decomposition, and in this
case there exists a unique element of F denoted by U1µ such that,

h ∈ L1(E; |µ|) and E1(U1µ, h) =

∫
E

h(x)µ(dx), for any h ∈ F

Definition 5.3.2. For µ in S-S and G in O, {Gk} element of ΞG is said to be
associated to µ if for each n, 1Gn .µ is the difference of two finite measures. We
say that a nest is associated to A ∈ Ac if it is associated to µA.

It is clear from Remark 5.2.1 that for any smooth signed measure µ ∈ S-S and
G ∈ O, there is a {Gn} ∈ ΞG associated to µ.
For G ⊂ E we have defined FG as the set {u ∈ F : u(x) = 0 for q.e. x /∈ G}. Set
Fb,G := FG ∩Fb, and denote Fb,E by Fb (Fb is the set of bounded elements of F).

The following Theorem is an extension of Theorem 5.4.2 of [21] to the non sym-
metric case. We omit its proof which consists in the replacement of Theorem 5.2.4.
and Lemmas 5.4.1, 5.4.2 and 5.4.3 of [21] by respectively Lemmas 5.3.6, 5.3.7, 5.3.8
and 5.3.9.
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Theorem 5.3.3. For u ∈ F and G ∈ O, Nu is of bounded variation on [0, τG)
Px-a.e. for q.e. x ∈ E if and only if there exists µ ∈ S-S such that

E(u, v) =< µ, v >, ∀v ∈
∞⋃
n=1

Fb,Gn

where {Gn} ∈ ΞG associated with µ. In this case,

Px(N
u
t = −At for t < τG) = 1 for q.e x ∈ E (5.3.1)

where A is an element of Ac with Revuz signed measure µ.

Definition 5.3.4. We define N 0
c as the set of local CAF’s C such that, there

exists u in F and A in Ac satisfying :

Fb ⊂ L1(E, |µA|)

and
Px(Ct = Nu

t + At for t < ζ) = 1 for q.e x ∈ E

In this case, we define the linear functional Θ(C) on Fb by

< Θ(C), h >:= −E(u, h)+ < µA, h >, h ∈ Fb

It follows from Theorem 5.3.3 that the definition of Θ(C) for C ∈ N 0
c is consistent

in the sense that it does not depend of the elements which represent C.
The following Lemma is an immediate consequence of Theorem 5.3.3 :

Lemma 5.3.5. Let C(1) and C(2) be elements of N 0
c and G in O. Then C(1) = C(2)

on t < τG Px-a.e for q.e x ∈ E if and only if

< Θ(C(1)), h >=< Θ(C(2)), h > for all h ∈ Fb,G.

Lemmas 5.3.6, 5.3.7, 5.3.8 and 5.3.9 below are versions for the non-symmetric
case of Theorem 5.2.4. and Lemmas 5.4.1, 5.4.2 and 5.4.3 in [21] respectively. This
results are proved in [21] using the approximation of E , E (t)(u, v) := 1

t
(u−ptu, v)m

for u, v ∈ F , available for symmetric Dirichlet forms. The proof for the non-
symmetric case can be done following the same arguments but using instead the
approximation of E given by (5.2.1). We omit their proof.

Lemma 5.3.6. Let an AF A be an AF element of Nc and u a function in F .
Then : A = Nu if and only if :

lim
α→∞

α2Ev.m

[∫ ∞
0

e−αtAtdt

]
= −E(u, v) ∀v ∈ F (5.3.2)
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For an AF A, set : g(t) := {Em[A2
t ]}1/2. Then we have : g(t+ s) ≤ g(t) + g(s) for

all t, s ≥ 0, thus limt→∞ g(t)/t exists in R. Now suppose that a := limt→0
1
t
Em[A2

t ]
exists also in R, then there exists a constant p > 0 such that 1

t
Em[A2

t ] ≤ p(1 + t)
for all t, therefore by dominated convergence, limα→∞ α

∫∞
0
e−tEm[A2

t/α]dt = a,

thus e(A) = a. This is the case when At =
∫ t

0
g(Xs)ds for g ∈ L2(E,m) and also

when A in Ac is such that µA belongs to S0-S0. (see pp. 201 of [21]). The following
lemma is then an immediate consequence of Lemma 5.3.6.

Lemma 5.3.7. Let µ ∈ S0-S0, w := (U1µ) and A ∈ Ac the CAF of bounded
variation associated to µ, then ;

At = −Nw
t +

∫ t

0

w(Xs)ds t ≥ 0 Px-a.e for q.e x ∈ X

For u ∈ F and G ∈ O, H1
E\Gu was defined in (5.2.3), this is a quasi-continuous

m-version of u− Π1
FGu.

Lemma 5.3.8. Let G ∈ O, then for any u ∈ F ,

Px

(
N
H1
E\Gu

t =

∫ t

0

H1
E\Gu(Xs)ds, ∀t < σE\G

)
= 1 q.e x ∈ E

For G ∈ O, let EG be the restriction of E to FG × FG, and for u, v ∈ FG,
ÊG(u, v) = EG(v, u). EG and ÊG are Dirichlet forms in L2(G,m). We denote by
RG
α and R̂G

α the resolvent associated to EG and ÊG respectively.

Lemma 5.3.9. For any N ∈ Nc and relatively compact set G ∈ O :

lim
α→∞

α2Eh.m

[∫ ∞
τG

e−αtNtdt

]
= 0

for h = R̂G
1 f with f a bounded Borel function.

5.4 A representation for local CAF’s of zero

quadratic variation

Let D be a class of local AF’s. Following [7], we say that a (Ft)-adapted process A
is locally in D, and write : A ∈ Df-loc, if there exists a sequence An in D and {Gn}
in Ξ such that At = Ant for t < τGn Px-a.e. for q.e. x ∈ E. In view of Lemma 5.2.2,
A is hence a local AF. Thanks to Lemma 5.2.3, note that : (Df-loc)f-loc = Df-loc.

Definition 5.4.1. We denote by E and N the set of AF’s of finite energy and
the set of AF’s of zero energy respectively.

Recall that K(E) := {g ∈ L1(E,m) : 0 < g(x) ≤ 1 ∀x ∈ E}.
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Definition 5.4.2. We say that a process (Vt, t ≥ 0) is of zero quadratic variation
(on [[0, ζ[[) if for any T > 0, for all η positive, some (and hence for all) g in K(E),
Pg.m(Qn

T > η, T < ζ) converges to zero as n tends to ∞ where

Qn
T :=

n−1∑
i=0

∫ T

0

(Vt(i+1)/n − Vti/n)2dt.

The main result of this section is the following representation theorem for additive
functionals of zero quadratic variation. It will be proved at the end of this section.

Theorem 5.4.3. Let A be a local CAF element of Ef-loc such that A is of zero
quadratic variation. Then there exists {Gn} ∈ Ξ and (un) ∈ F such that Px-a.e.for
q.e. x ∈ E :

At = Nun
t −

∫ t

0

un(Xs)ds for all t < τGn (5.4.1)

Remark 5.4.4. Every element N of N is of zero quadratic variation. Indeed, for
any T ≥ 0 :

Em[Qn
T ] =

K−1∑
i=0

∫ T

0

Em[N2
t/K ◦ θti/K ]dt

≤ K

∫ T

0

Em[N2
t/K ]dt

≤ eTK2

∫ ∞
0

e−tKEm[N2
t ]dt→ 0 as K →∞

In view of Lemma 5.2.2, any N in Nf-loc is also of zero quadratic variation and
evidently if N is of zero quadratic variation then also (Nt∧τ , t ≥ 0) for any (Ft)-
stopping time τ .

Hence a local CAF of locally finite energy is of zero quadratic variation if and
only if it belongs to N 0

c f-loc (Definition 5.3.4). This set plays an important part
in the construction of Nakao’s stochastic integral [35]. Before giving the proof of
Theorem 5.4.3, we will establish a series of lemmas and remarks that will help us
in the demonstration.

Lemma 5.4.5. Let V be a (Ft)-predictable process, finite Pm-a.e. and of zero
quadratic variation and W be a (Ft,Pg.m)-semimartingale, where g is a element

of K(E). Define Y by Yt = WtVt−
∫ t

0
VsdWs, t ≥ 0, then Y is also of zero quadratic

variation.
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Proof.

K−1∑
i=0

(Yt(i+1)/K − Yti/K)2

=
K−1∑
i=0

{(WV )t(i+1)/K − (WV )ti/K}2

+
K−1∑
i=0

(∫ t(i+1)/K

ti/k

VsdWs

)2

−2
K−1∑
i=0

(∫ t(i+1)/K

ti/k

VsdWs

)
{(WV )t(i+1)/K − (WV )ti/K}

=: SK,1(t) + SK,2(t)− 2SK,2(t)

it is not hard to show that for i = 1, 2, 3,
∫ T

0
SK,i(t)dt converges in Pg.m(., T < ζ)-

measure to
∫ T

0

∫ t
0
N2
s d[W ]sdt, where [W ] denotes the quadratic variation of W .

The following result is a little modification of II.4.14 of [4] and wil be used to
build sequences of Ξ.

Lemma 5.4.6. Let Y be F∞-measurable and N be a properly exceptional set such
that for any x ∈ E\N , Y ◦ θt → Y as t → 0 Px-a.e and there exists δ > 0 such
that

sup
x∈E\N

Ex[sup
t<δ
|Y ◦ θt|] <∞ (5.4.2)

Then for any open set I ⊂ R : {x : Ex[Y ] ∈ I}\N ∈ O .

Proof. We have : E\N ∈ O, and Px(σN = ∞) = 1 for all x ∈ E\N . The
function f(x) := Ex[Y ] is universally measurable (see theorem I.5.8 in [4]) hence
1E\N(x)f(x) is nearly measurable, indeed :

1E\N(x)f(x) = lim
α→∞

1E\N(x)αRαf(x)

where in the last equality we have use (5.4.2) and the fact that Y ◦ θt → Y as
t→ 0 Px-a.e. For a real a, set : A := {x : Ex[Y ] < a}\N , then A is nearly Borel.
We shall prove that A is finely open. For x in A and ε > 0 such that Ex[Y ] < a−ε,
set B(x) = Bε(x) ∪N where Bε(x) := {y : Ey[Y ] ≥ a− ε/2}. Then : B(x) ∈ Bn,
and E\A ⊂ B(x). On the other hand :
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Px(σB(x) = 0) ≤ Px(lim sup
t→0

EXt [Y ] ≥ a− ε/2)

= Px(lim sup
t→0

Ex[Y ◦ θt|Ft] ≥ a− ε/2)

≤ Px(lim sup
t→0

Ex[|Y ◦ θt − Y ||Ft] ≥ ε/2)

≤ lim
t→0

Px(sup
s≤t

Ex[sup
r≤t
|Y ◦ θr − Y ||Fs] ≥ ε/2)

≤ 2

ε
lim
t→0

Ex[sup
r≤t
|Y ◦ θr − Y |]

=
2

ε
Ex[lim sup

t→0
|Y ◦ θt − Y |] = 0 (5.4.3)

This shows that A belongs to O. With the same arguments we can show that for
any a ∈ R, {x : Ex[Y ] > a}\N ∈ O .

The following fact will be used in the proof of the next lemma :

F∞ = Fζ := {A ∈ F∞ : A ∩ {ζ ≤ t} ∈ Ft ∀t ≥ 0}.

Indeed, obviously Fζ ⊂ F∞. For any s ≥ 0 and A ∈ B(E), {Xs ∈ A} = {Xs ∈ A}∩
{s < ζ} ∈ Fζ , thus F0

∞ ⊂ Fζ . Therefore, F∞ =
⋂
µ∈P(E)F0,µ

∞ ⊂
⋂
µ∈P(E)F

µ
ζ = Fζ

(see (6.20) in [44]).

Lemma 5.4.7. Let A be a local AF with defining set Λ. Then A can be extended
to an AF Ã with defining set Λ such that for ω ∈ Λ satisfying ζ(ω) < ∞, the
function t→ Āt(ω) is continuous at t = ζ(ω), where Āt = sups≤t |Ãs| (≤ ∞).

Proof. We will use te same argument as in [7], Remark 2.2. For w ∈ Ω and s < t
let A∗s,t(ω) := sup{Ar(ω) : s ≤ r < t, r ∈ Q} and A∗ζ(ω) := inf{A∗s,ζ(ω)(ω) : s <

ζ(ω), s ∈ Q} if 0 < ζ(ω) and A∗ζ(ω) = 0 if ζ(ω) = 0. For any t ≥ 0, set :

Ãt(ω) :=

{
At(ω) if t < ζ(ω)
A∗ζ(ω) if t ≥ ζ(ω)

(5.4.4)

First, we shall prove the (Ft)-adaptedness of Ã. Let I ⊂ B(R) and t ≥ 0. It is
clear that A∗ζ ∈ F∞ = Fζ then {Ãt ∈ I} ∩ {ζ ≤ t} = {A∗ζ ∈ I} ∩ {ζ ≤ t} ∈ Ft.
Since {Ãt ∈ I}∩{t < ζ} = {At ∈ I}∩{t < ζ} ∈ Ft we obtain that {Ãt ∈ I} ∈ Ft
which gives the (Ft)-adaptedness of Ã.
Now we shall proof the additivity of Ã(ω) for ω in Λ. We will prove only the case,
t < ζ(ω) ≤ t+ s, for the other cases, the additivity is evident.Thanks to the right
continuity of As(ω) for s < ζ(ω) we have that A∗ζ(ω) = lim sups↑ζ(ω) As(ω). Since

ζ(θtω) = ζ(ω) − t > 0, Ãζ(θtω) = lim sups↑(ζ(t)−t) As(θtω) = lim sups↑ζ As(ω) −
At(ω) = Ãζ(ω) − Ãt(ω). Finally, Ãt+s(ω) = Ãζ(ω) = Ãt(ω) + Ãζ(θtω) = Ãt(ω) +
Ãs(θtω).
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From now on, for any local AF A, Ā denotes the process defined in Lemma 5.4.7.
For any G ∈ O we define XG by :

XG
t =

{
Xt if t < τG
∆ if t ≥ τG

Remark 5.4.8. Let A be an AF admitting a properly exceptional set N and G be
an element of O. Suppose that N contains (E\G)\(E\G)r. With the arguments
used in the proof of Lemma 2.1. in [38], we show that (As∧τG , s ≥ 0) is an AF of
XG admitting N as properly exceptional set.

Lemma 5.4.9. Let A be a local CAF. There exists {Gn} in Ξ such that for any
t ≥ 0, p ≥ 1 and n ∈ N, supx∈Gn Ex[Ā

p
t∧τn ] <∞, where τn := τGn.

Proof. For n ∈ N set Gn := {x ∈ E : Px(n
−1 < ζ) > 0}, then {Gn} is in Ξ. Indeed,

if fn(x) := Px(n
−1 < ζ), then ptfn(x) = Px(n

−1 + t < ζ) ↑ fn(x) as t ↓ 0, i.e.,
fn is 0-excessive. Consequently fn is nearly Borel and finely continuous, then Gn
belongs to O.
For n in N, set ψn(x) := Ex[exp(−Ān−1)]. Let N be a properly exceptional set for
A, then by Lemma 5.4.6, for any n ∈ N, Gn := {x ∈ Gn \N : ψn(x) > n−1} ∈ O.
it is clear that for any n, Gn ⊂ Gn+1. Moreover, if x ∈ E \N , there exists k, n ∈ N
such that fn(x) > 0 and ψn(x) > k−1, then x ∈ Gk∨n. Hence {Gn} belongs to Ξ.
In order to finish the proof we have to prove that

sup
x∈Gn

Ex[Ā
p
t∧τn ] <∞ ∀t ≥ 0 (5.4.5)

The following argument is used in the proof of Theorem 5.5.6 of [21]. Set t := n−1

and take λ > 0 such that β := 1 − t + e−λ < 1. For any x in Gn, we have :
t < ψn(x) ≤ 1 − Px(Āt ≥ λ) + e−λ, thus Px(Āt ≥ λ) ≤ β. Set ηk := inf{s > 0 :
Ās = kλ}. it is clear that ηk+1 ≥ ηk + η1 ◦ θηk when ηk <∞. We have :

Px(Āt∧τn ≥ (k + 1)λ) = Px(ηk+1 ≤ t ∧ τn)

≤ Px(η1 ◦ θηk ≤ t, ηk ≤ t ∧ τn)

= Ex(PXηk
(Āt ≥ λ), ηk ≤ t ∧ τn)

≤ βPx(ηk ≤ t ∧ τn) ≤ βk+1

which leads, for every p ≥ 1, to

Ex(Ā
p
t∧τn) ≤

∞∑
k=0

{λ(k + 1)}pβk <∞.

We assume that N contains (E\Gn)\(E\Gn)r for all n ∈ N (if it is not the case
one can always expand N). Hence (As∧τn , s ≥ 0) is a AF of XGn admitting N as
a properly exceptional set (see remark 5.4.8).
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We show now by induction that supx∈G Ex[Ā
p
(kt)∧τn ] < ∞ for any k ∈ N. For

bounded f , set pGs f(x) = Ex[f(Xt)1{t<τ}],

sup
x∈G

Ex[Ā
p
[(k+1)t]∧τ ] = sup

x∈G
Ex[Ā

p
(kt)∧τ ∨ sup

s≤t
|A(s+kt)∧τ |p]

≤ (1 + 2p) sup
x∈G

Ex[Ā
p
(kt)∧τ ] + 2p sup

x∈G
pGkt(E(.)[Ā

p
t∧τ ])(x)

≤ (1 + 2p) sup
x∈G

Ex[Ā
p
(kt)∧τ ] + 2p sup

x∈G
Ex[Ā

p
t∧τ ]

(5.4.6)

which is finite if supx∈G Ex[Ā
p
(kt)∧τ ] <∞. This finishes the proof of the lemma.

We define M◦ c as the set of CAF in M◦ and M◦ d its orthogonal complement, i.e.
the set of purely discontinuous MAF of finite energy. We set :

M◦ j := {M ∈M◦ d : Px-a.e. for q.e. x ∈ E : Mζ = Mζ− if ζ <∞}
M◦ k := {M ∈M◦ d : e(M,L) = 0 ∀L ∈M◦ j}

The set M◦ j is a closed linear subspace of M◦ d. This is a consequence of the fact
that if (Mn) converges to M in (M◦ , e), then there exists a subsequence (nk) such
that (Mnk) converges uniformly on any compact of [0,∞), Px-a.e. for q.e. x ∈ E.
Hence M◦ admits the following decomposition :

M◦ =M◦ c ⊕M◦ j ⊕M◦ k.

For M ∈M◦ we denote by Mp the part of M in M◦ p, with p = c, j, k. For a MAF
M , [M ]t denotes its quadratic variation on [0, t], i.e.,

[M ]t = 〈M c〉t +
∑
s≤t

(∆Ms)
2

Lemma 5.4.10. We have :

(i) If M ∈M◦ k, there exists A in Ac such that Mt = At for t < ζ Px-a.e. for q.e.
x ∈ E. Moreover, µA belongs to S0-S0.

(ii) For M ∈M◦ , M ∈M◦ k if and only if for all t, [M ]t = 0 Pm-a.e. on {t < ζ}.

Proof. (i). Note that {f ∗Mu,k : f, u ∈ F} is dense in M◦ k. Indeed, if L ∈ M◦ k is
orthogonal to f ∗Mu,k for any u, f ∈ F , then 0 = e(L, f ∗Mu,k) = e(L, f ∗Mu),
thus L = 0 (see Lemma 5.6.3 in [21]).
Now for M in M◦ k, there exists (fn)n∈N and (un)nñN sequences in F such that
e(fn∗Mun,k−M) converges to 0. Denote by (N,H) a Lévy system for X and k the
killing measure of E , i.e. k(dx) = N(x,∆)µH(dx). For n,m ∈ N,

∫
E

(fn(x)un(x)−
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fm(x)um(x))2k(dx) = e(fn ∗Mun,k − fm ∗Mum,k) converges to zero as n,m tend
to ∞. Hence there exists g ∈ L2(E, k) such that fnun converges to g in L2(E, k).
For any h ∈ F , it follows from Beurling-Deny formula (Theorem 2.15 in [28]) that∫

E

h(x)|g(x)|k(dx) ≤ (E(h, h))1/2(

∫
E

g2(x)k(dx))1/2

which implies that : g.k ∈ S0-S0. Let A be the element of Ac associated to g.k by
the Revuz correspondance. Similarly, note that : gn.k ∈ S0-S0, where gn := fnun
and

E1(U1(g.k)− U1(gn.k), U1(g.k)− U1(gn.k)) ≤
∫
E

(g(x)− gn(x))2k(dx)→ 0.

Let An be the element of Ac associated to gn.k : Ant =
∫ t

0
gn(Xs)N(Xs,∆)dHs.

By Lemmas 5.2.8 and 5.3.7, Px-a.e. for q.e. x ∈ E and by taking a subsequence
if necessary, An converges uniformly on any compact to A. But : Ant = fn ∗Mun,k

on t < ζ. This shows that Mt = At for t < ζ Px-a.e. for q.e. x ∈ E.
(ii). The necessacity is a consequence of (i). For the sufficiency, suppose that for
any t, [M ]t = 0 Pm-a.e. on t < ζ, then Pm-a.e., [M ] = 0 on [[0, ζ[[. Then [M j] = 0
on [[0, ζ[[ Pm-a.e. but : ∆[M j]ζ = (∆M j

ζ )2 = 0, hence : [M j] = 0 on [[0,∞[[. Pm-

a.e., thus e(M j) = 0 and therefore, M j = 0. In the same way we can show that
M c = 0.

Let G be an element of O and denote by EG the restriction of E to FG × FG.
Then EG is also a Dirichlet form and the process XG

t is properly associated to
EG (see Theorem 4.3 in [30]). When G is not open, EG is not necessarily regular,
nevertheless, all results of regular Dirichlet forms used in this paper are valid
for EG, in fact, thanks to a regularization method, these results hold for any
quasi-regular Dirichlet form, see chapter V of [32] for more details. When we
introduce a class of AF’s associated to EG, we add the symbol (EG) in order to
differentiate it from the same class associated with E . For example for u element
of FG, Nu(EG) denotes the CAF of zero energy associated to XG obtained from
Fukushima decomposition for u(XG

t ) − u(XG
0 ). M◦ (EG) denotes for example the

set of MAF’s of XG of finite energy.

Lemma 5.4.11. Let G be a element of O and u in FG. Then :

Nu
t∧τG = Nu

t (EG) for t ≥ 0 Px-a.e for q.e x ∈ E

Proof. First we shall prove the lemma for u = RG
1 f with f ∈ L2(G,m). In this

case, Nu
t (EG) =

∫ t∧τG
0

(u(Xs) − f(Xs))ds. On the other hand, for any w ∈ FG,
E(u,w) = EG(u,w) = (f − u,w)m. Then it follows by Theorem 5.3.3 that for
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Px-a.e for q.e x ∈ E,

Nu
t∧τG =

∫ t∧τG

0

(u(Xs)− f(Xs))ds = Nu
t (EG)

For the general case, let u ∈ FG and (fn) ⊂ L2(G,m) such that un := RG
1 fn

converges to u with respect to ẼG1 and hence, with respect to Ẽ1. Then Px-a.e. for
q.e x ∈ E, Nun

t (EG) and Nun
t converge uniformly on any compact to Nu

t (EG) and
Nu
t respectively.

The following lemma can be found in Nakao [36] under the assumption that E is
symmetric. We relax this assumption.

Lemma 5.4.12. Let (ct)t>0 be a function such that for every t > 0, ct belongs to
L2(E,m) and

ct+s = ct + ptcs, t, s > 0

and limt→0 ‖ct‖ = 0. Then there exists a unique u in L2(E,m) such that
ct = ptu− u− Stu where St =

∫ t
0
psds.

Proof. Since : ‖ct+s‖ ≤ ‖ct‖+ ‖cs‖, then : limt→∞ ‖ct‖/t exists in R+. Set :
u = −

∫∞
0
e−tctdt and Cα =

∫∞
0
e−αtctdt, α > 0. Then u and Cα are in L2(E,m).

Straightforward computations show that for any α > 0 :

αCα = (α− 1)Rαu− u (5.4.7)

One also has : α
∫∞

0
e−αt(ptu − u − Stu)dt = (α − 1)Rαu − u. Hence by the

right continuity of (ct) and (ptu − u − Stu) and the uniqueness of the Laplace
transform we have that : ct = ptu−u−Stu. Let v be another function satisfying :
ct = ptv−v−Stu. Thanks to (5.4.7) we have for any α > 0 : u−v = (α−1)Rα(u−v).
In particular, for α = 1 we obtain : u− v = 0.

Proof of Theorem 5.4.3. In view of the commentary following the proof of Lemma
5.4.10, when G belongs to O, we can apply to EG all the results so far used and
established for the form E .
Let (An)n∈N be a sequence of E and {Gn} in Ξ such that : A = An on [[0, τn[[
Px-a.e for q.e. x ∈ E, where τn := τGn . Thanks to Lemma 5.4.9 we can assume
that for any t ≥ 0, p ≥ 1, supx∈Gn Ex[Ā

p
t∧τn ] <∞.

For any local AF B of X, set BGn
t := Bt∧τn . By Remark 5.4.8, BGn is an AF of

XGn .
Let vn be the following element of L2(Gn,m) :

vn(x) = −
∫ ∞

0

e−tEx[A
Gn
t ]dt.

By Lemma 5.4.12 :
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Ex[A
Gn
t ] = pGnt vn(x)− vn(x)−

∫ t

0

pGns v(x)ds, m-a.e. for x ∈ E, t ≥ 0

where for any f ∈ L2(Gn,m), pGns f(x) = Ex[f(XGn
s )].

Since AGnt satisfies the condition of Lemma 5.4.6 (with θs∧τn instead of θs), the
function hn defined by hn(x) := Ex[A

Gn
t ] is quasi continuous. We can hence assume

that vn is quasi continuous and therefore, for q.e. x ∈ E : (Proposition IV.5.30 in
[32])

Px(t→ vn(Xt) be càdlàg on [0, ζ)) = 1

i.e., vn is q.e. finely continuous. Thanks to Lemma 4.1.6 in [21], we can also assume
that vn is Borel measurable. For n ∈ N, define C̃n the following local CAF of XGn :

C̃n
t := AGnt +

∫ t

0

vn(XGn
r )dr, t ≥ 0

and Mn the following element of M(EGn) :

Mn
t = vn(XGn

t )− vn(XGn
0 )− C̃n

t , t ≥ 0

(use the fact that vn is bounded and Lemma 5.2.7).
Set : Cn

t := vn(XGn
t− )− vn(XGn

0 )−Mn
t−, then obviously Cn = C̃n on [[0, ζ[[ Px-a.e.

for q.e. x ∈ E, hence Cn is (Ft)-predictable and of zero quadratic variation.
For n ∈ N and i ≥ n, let µn,i be the Revuz measure of 〈M i〉Gn . For any n ∈ N
there exists a EGn-nest (Fn,j)j∈N of compact sets of Gn such that µn,i(Fn,j) < ∞
for any j, i ∈ N, i ≥ n. (see e.g. Lemma 3.2 of [29]). For any n, j ∈ N let H̃n,j

be the fine-interior of Fn,j. It belongs to O and
⋃∞
j=1 H̃n,j = Gn q.e. (see remark

5.2.1). Thus, if for any j ∈ N we define Hj =
⋃j
n=1 H̃n,j, then : {Hj} ∈ Ξ. Indeed :

∞⋃
j=1

Hj =
∞⋃
j=1

j⋃
n=1

H̃n,j =
∞⋃
n=1

∞⋃
j=n

H̃n,j =
∞⋃
n=1

Gn = E q.e

Evidently Hn ⊂ Gn q.e. and µn,k(Hn) <∞ for any n ≤ k. Hence for any n ≤ k :
1Hn ∗Mk ∈M◦ (EGk).
For ϕ in L1(E,m) such that 0 < ϕ ≤ 1 and for any n ∈ N, set hn(x) = RHn

1 ϕ(x)
and Gn = {x ∈ G : hn > n−1}. We can see from the proof of Lemma 3.8 of [30]
that (Gk)n∈N is an E-nest of quasi open sets and for any n, Gn ⊂ Hn q.e.
For any n ∈ N set Ln := {w ∈ FHn : w ≥ 1 q.e on Gn}. Ln is not empty because
it contains nhn. There exists gn in Ln such that EHn1 (gn, w − gn) ≥ 0 for any
w ∈ Ln. (see e.g. Corollary 2.1 of [30]). For all w ∈ FHn such that w ≥ 0,
EHn1 (gn, w) = EHn1 (gn, w + gn − gn) ≥ 0. Hence gn is EHn-1-excessive. Since gn ∧ 1
element of Ln, is also EHn-1-excessive, by Proposition III.1.5 of [32] we have :
gn = gn ∧ 1 q.e. It follows that gn = 1 q.e on Gn and gn = 0 q.e on E\Hn
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On the other hand, since gn is EHn-1-excessive, by Proposition VI.2.1 of [32],
there exists a signed measure νn ∈ S0-S0 such that EHn(gn, w) =

∫
wdνn for

any w ∈ FHn . Let Dn be the PCAF of XHn associated to νn by the Revuz
correspondence. By Lemma 5.3.7 we have :

N gn
s (EHn) = −Dn

s +

∫ s

0

gn(XHn
r )dr, r ≥ 0 (5.4.8)

Thus we have :

(gn(XHn
t ), t ≥ 0) is a Px-semimartingale for q.e x ∈ E. (5.4.9)

For any integer n, set wn := gnvn. For a strictly positive function f in L1(Hn,m)
such that

∫
Hn
f(x)m(dx) = 1, Pf.m-a.e. we have for t < τHn :

wn(XHn
t )− wn(XHn

0 )

=

∫ t

0

gn(XHn
s− )dMn

s +

∫ t

0

vn(XHn
s− )dM gn

s (EHn) (5.4.10)

+

∫ t

0

vn(XHn
s )dN gn

s (EHn) + gn(XHn
t )Cn

t −
∫ t

0

Cn
s dgn(XHn

s )

Indeed, the above equation can be proved by elementary arguments after perform-
ing the following integration by parts

gn(XHn
t )Mn

t∧τHn =

∫ t

0

gn(XHn
s− )dMn

s∧τHn +

∫ t

0

Mn
s∧τHn−dgn(XHn

s ).

Now we shall prove that wn belongs to F .

α(wn − αRαwn, wn)m =
α2

2
Em

[∫ ∞
0

e−αs(wn(Xs)− wn(X0))2ds

]
+
α

2

∫
E

w2
n(x)(1− αR̂α1(x))m(dx)

= Iα + Jα

Note that : Mn
s gn(Xs) = [1Hn ∗Mn

s ]gn(Xs), s ≥ 0 for q.e x ∈ E, therefore :
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Iα ≤ ‖vn‖2
∞α

2Em

[∫ ∞
0

e−αs(gn(Xs)− gn(X0))2ds

]
+2α2Em

[∫ ∞
0

e−αs(Mn
s )2g2

n(Xs)ds

]
+2α2Em

[∫ ∞
0

e−αs(C̃n
s )2g2

n(Xs)ds

]
≤ ‖vn‖2

∞α
2Em

[∫ ∞
0

e−αs(gn(Xs)− gn(X0))2ds

]
+2α2Em

[∫ ∞
0

e−αs(1Hn ∗Mn
s )2ds

]
+2α2Em

[∫ ∞
0

e−αs(Ans +
∫ s

0
vn(Xr)dr)

2ds

]
Consequently :

lim sup
α→∞

Iα ≤ ‖v‖2
∞

{
2E(gn, gn)−

∫
E

g2
n(x)k̂(dx)

}
+ 4e(1Hn ∗Mn) + 4e(An) <∞

On the other hand :

Jα ≤ ‖v2
n‖∞

α

2

∫
E

g2
n(x)(1− αR̂1(x))m(dx)→ ‖vn‖2

∞
1

2
< g2

n, k̂ > as α→∞

We finally obtain : supα>0 α(wn − αRαwn, wn)m < ∞, which implies that wn
belongs to F .
Since : gn = 0 on q.e E\Hn, then wn belongs to FHn . Fukushima’s decomposition
gives :

wn(XHn
t )− wn(XHn

0 ) = Mwn
t (EHn) +Nwn

t (EHn) (5.4.11)

Comparing (5.4.10) with (5.4.11), one obtains :

W n
t = V n

t , t < τHn Pf.m-a.e.

where W n and V n are given by :

W n
t =

∫ t

0

gn(XHn
s− )dMn

s∧τHn +

∫ t

0

vn(XHn
s− )dM gn

s (EHn)−Mwn
t (EHn)

V n
t = Nwn

t (EHn)−
∫ t

0

vn(XHn
s )dN gn

s (EHn)− gn(XHn
t )Cn

t∧τHn

+

∫ t

0

Cn
s∧τHndgn(XHn

s )
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Since W n is a Pf.m-martingale, for any T ≥ 0,
∫ T

0

∑K−1
i=0 (W n

t(i+1)/K −W n
ti/K)2dt

converges to
∫ T

0
[W n]sds in Pf.m-probability.

Besides, since (
∫ t

0
vn(XHn

s )dN gn
s (EHn), t ≥ 0) is a continuous process of bounded

variation, it is of zero quadratic variation. It follows from Lemma 5.4.5 and Re-
mark 5.4.4 that 1{T<τHn}

∫ T
0

∑K−1
i=0 (V n

t(i+1)/K − V n
ti/K)2dt converges to 0 in Pf.m-

probability. We conclude that for any t : [W n]t = 0 Pf.m-a.e. on {t < τHn}. Note
that W n belongs to M◦ (EHn), hence thanks to Lemma 5.4.10 W n is in M◦ k(EHn)
and there exists a CAF Bn of XHn of bounded variation on [0, τHn) such that
Wn = Bn on [0, τHn) Px-a.e. for q.e. x ∈ E. Moreover the Revuz smooth signed
measure µBn of Bn belongs to S0-S0. Consequently, thanks to Lemma 5.3.7,

W n
t = −Nγn

t (EHn) +

∫ t

0

γn(XHn
s )ds, t < τHn

where γn denotes the 1-potential of µBn (with respect to EHn).
Since gn = 1 q.e on Gn, it follows by (5.4.8) that Pm-a.e. on [[0, τGn [[ :

At = Nwn
t (EHn)−

∫ t

0

wn(Xs)ds+

∫ t

0

vn(Xs)dD
n
s −

∫ t

0

vn(Xs)ds

+Nγn
t (EHn)−

∫ t

0

γn(XHn
s )ds (5.4.12)

The Revuz signed measure associated to
∫ t

0
vn(Xs)d(Dn

s − s) is vn.(νn−m) which
belongs to S0-S0 since vn is a bounded element of L2(E,m). Let δn be the 1-
potential of vn.(νn −m) with respect to EHn . Set un := wn + γn − δn. Note that
un belongs to FHn . It follows by Lemma 5.3.7 that :

At = Nun
t (EHn)−

∫ t

0

un(XHn
s )ds, for t < τGn Pm-a.e

Thanks to Lemma 5.4.11, we hence have Px-a.e. for m-a.e x :

At = Nun
t −

∫ t

0

un(Xs)ds, for t < τGn , n ∈ N (5.4.13)

In order to show (5.4.13) for q.e x ∈ E we use an argument presented in the
proof of Lemma 4.6 of [7]. Let Ξ0 be an defining set admitting an exceptional
set for all the CAF taking part in (5.4.13). Set : Ξ = {ω ∈ Ω : (5.4.13) holds}.
Then Px(Ξ

c) = 0 for m-a.e. x ∈ E. For any k ∈ N, set : Ξk = θ−1
k−1(Ξ). Then

Px(Ξ
c
k) = pk−1(P.(Ξ

c))(x) = 0 for q.e. x ∈ E. Finally set Λ =
⋂∞
k=0 Ξk. Then

Px(Λ
c) = 0 for q.e. x ∈ E. We shall prove that (5.4.13) holds for any ω ∈ Λ. For

ω in Λ, n ∈ N and t < τGn(ω), take k such that : t + k−1 < τGn(ω). One has :
t < τGn(θk−1ω), and hence : At(θk−1ω) = Nwn

t (θk−1ω) −
∫ t

0
wn(Xs+k−1(ω))ds. One

let then k tend to ∞ to obtain (5.4.13).
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5.5 Stochastic integration

Consider an element u of F and a finite smooth signed measure µ such that
E(u, h) =< µ, h > for any element h of Fb. Thanks to Theorem 5.3.3, we know
that Nu is of bounded variation. The integral (f ∗Nu)t :=

∫ t
0
f(Xs)dN

u
s is hence

well defined as a Lebesgue-Stieltjes integral, moreover, if f belongs to Fb, f ∗Nu

belongs to N 0
c (see Definition 5.3.4) and for any h in Fb we have :

< Θ(f ∗Nu), h >=< Θ(Nu), fh > (5.5.1)

Thanks to Lemma 5.3.5, the above equation characterizes the local CAF f ∗Nu.
In order to define the integral of f with respect to a process Nu which is not
necessarily of bounded variation, it is hence natural to construct a local CAF
still denoted by f ∗ Nu satisfying the equation (5.5.1). This has been done by
Nakao [35] for the symmetric case and the aim of this section is to do it for the
non-necessarily symmetric case.
The construction of f ∗Nu is based on a decomposition of Nu in three components
(see Lemma 5.5.10 below). The first component is associated to the diffusion
part of Ẽ , the symmetric component of E . The second one is associated to the
jump part of Ẽ and the third one is a local CAF of bounded variation. Once
this decomposition done, the construction of f ∗ Nu will be close to Nakao’s
construction in the symmetric case.
Thanks to a localization argument, we will construct the integral f ∗ C for any
f ∈ Floc and C ∈ Ñc,f-loc. We always consider F to be equipped with the norm
Ẽ1. We will use repeatedly the following facts :

(1) If a PCAF A satisfy µA(E) < ∞ then A is finite continuous. Indeed, it is
consequence of (5.2.4). This is the case when A = 〈M〉 for M ∈ M◦ . If for an
element A ∈ Ac, µA is the difference of two finite smooth measures, then A is a
CAF of bounded variation in [0,∞). This is the case when A = 〈M,L〉 with M
and L in M◦ .
(2) For two CAF, A,B and G ∈ O we have for q.e. x ∈ E, Px(A=B on [[0, τG[[) =
1 if and only if for q.e. x ∈ E, Px(A = B on [[0, σE\G[[) = 1.
(3) If J : F → R is a continuous linear functional, there exists a unique w ∈ F
such that J(h) = E1(w, h) for any h ∈ F . (See Theorem I.2.6. in [32]).

5.5.1 A decomposition of Nu

Denote by Ẽ (c) the diffusion part of Ẽ . For u in F , the application h→ Ẽ (c)(u, h)
is continuous. This leads to the following lemma.

Lemma 5.5.1. For u in F , there exists a unique w in F such that
E1(w, h) = Ẽ (c)(u, h) for any h ∈ F .

108



Stochastic integration

Definition 5.5.2. For any u ∈ F , set : cÑu
t := Nw

t −
∫ t

0
w(Xs)ds, where w is the

element of F given by Lemma 5.5.1.

It is clear that cÑu belongs to N 0
c and

< Θ(cÑu), h >= −Ẽ (c)(u, h) for all h ∈ Fb. (5.5.2)

Lemma 5.5.3. (i) For u, v in F , G in O such that Ẽ (c)(u, h) = Ẽ (c)(v, h) for
every h ∈ FG, we have

Px(
cÑu = cÑ v on [[0, σE\G[[) = 1 for q.e x ∈ E (5.5.3)

In particular, if u(x) = v(x) for q.e x ∈ G, (5.5.3) holds.

(ii) If (un) converges to u, there exists a subsequence (nk) such that for q.e x ∈ E :

Px(
cÑunk converges to cÑu uniformly on any compact) = 1

Proof. (i) The first assertion is consequence of (5.5.2) and Lemma 5.3.5. The
second assertion is consequence of local property of Ẽ (c), indeed if u = v q.e on G,
Ẽ (c)(u, h) = Ẽ (c)(v, h) for any h ∈ FG.
(ii) One can assume that u = 0. Let wn the function associated to un by Lemma
5.5.1. it is clear that E1(wn, wu) ≤ E1(un, un), hence (wn) converges to 0. We
conclude thanks to Lemma 5.2.8.

Definition 5.5.4. For u element of Floc, one extends Definition 5.5.2 as follows.
Let {Gk}k∈N ∈ Ξ, σ = limn→∞ σE\Gk and {uk} be a sequence of F such that
uk(x) = u(x) for q.e x ∈ Gk. Then :

cÑu
t :=

{
cÑuk

t for t < σE\Gk
0 for t ≥ σ

Remark 5.5.5. By Lemma 5.5.3 and (iii) of Lemma 5.2.2, for any u in Floc,
cÑu is well defined and it is a local CAF of X. Moreover, the definition of cÑu

does not depend of the choice of {Gk} nor {uk}.

Denote by (N,H) the Lévy system of X. Let X̂ be the Markov process associated
to the Dirichlet form Ê and (N̂ ,HX̂) its Lévy system. Let νĤ be the smooth

measure associated to HX̂ and Ĥ be the PCAF of X associated to νĤ by the

Revuz correspondence. Let J , Ĵ and J̃ denote respectively the jumping measure
of E , Ê and Ẽ , that is, J(dy, dx) = 1

2
N(x, dy)ν(dx), Ĵ(dy, dx) = 1

2
N̂(x, dy)νĤ(dx)

and J̃(dx, dy) = 1
2
[J(dx, dy) + Ĵ(dx, dy)]. It is known that Ĵ(dy, dx) = J(dx, dy).

We will use the following notations :

N(dy, ds) := N(Xs, dy)dHs
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N̂(dy, ds) := N̂(Xs, dy)dĤs

Ñ(dy, ds) :=
1

2
(N(dy, ds) + N̂(dy, ds))

From now on, we fix a metric ρ on E compatible with the given topology. We set
δ := {(x, x) : x ∈ E}. Ẽ j denote the jumping part of Ẽ , that is, for any u, h ∈ F :

Ẽ (j)(u, h) =

∫
E×E\δ

(u(x)− u(y))(h(x)− h(y))J(dx, dy) (5.5.4)

Lemma 5.5.6. For any u ∈ F , r > 0 we have Px-a.e. for q.e. x ∈ E :∫ t

0

∫
{ρ(x,Xs)>r}

|u(x)− u(Xs)|Ñ(dx, ds) <∞ ∀t < ζ. (5.5.5)

Let D̃u be the local CAF defined by

D̃u
t :=

∫ t

0

∫
{ρ(x,Xs)>r}

(u(x)− u(Xs))Ñ(dx, ds), t < ζ

and D̃u
t := 0 for t ≥ ζ. Then there exists w in F such that D̃u

t = Nw
t −

∫ t
0
w(Xs)ds

for all t < ζ, Px-a.e. for q.e. x ∈ E. Moreover : E1(w,w) ≤ E1(u, u).

Proof. Let Ẽ (j,r)(u, h) be the right-hand-side of (5.5.4) with E ×E\δ replaced by
{(x, y) ∈ E×E : r < ρ(x, y)}. It is clear that h→ Ẽ (j,r)(u, h) is continuous, hence
there exists w ∈ F such that Ẽ (j,r)(u, h) = E1(w, h) for all h ∈ F . In particular,
if we take h = w we obtain : E1(w,w) ≤ Ẽ (j,r)(u, u) ≤ E1(u, u). Let {Gk} be in Ξ
such that each Gk is relatively compact. For any k ∈ N let hk be in C0(E) ∩ F ,
positive such that hk(x) = 1 for x ∈ Gk. Set Dk := Supp[hk]. We have,

∫
{r<ρ(x,y)}

hk(y)|(u(y)− u(x))|J̃(dx, dy)

=

∫
Dk×E∩{r<ρ(x,y)}

hk(y)|(u(y)− u(x))|J̃(dx, dy)

≤
∫
E×E\δ

|(hk(y)− hk(x))(u(y)− u(x))|J̃(dx, dy) (5.5.6)

+

∫
Dk×Dk∩{r<ρ(x,y)}

hk(x)|(u(y)− u(x))|J̃(dx, dy)

≤ (E(hk, hk))
1/2(E(u, u))1/2

+‖hk‖∞(E(u, u))1/2
[
J̃(Dk ×Dk ∩ {r < ρ(x, y)})

]1/2

< ∞
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consequently :
∫ t

0

∫
{r<ρ(x,Xs)} |u(x)− u(Xs)|Ñ(dx, ds) <∞ for all t < τGk

Px-a.e. for q.e. x ∈ E. Thus (5.5.5) follows from Lemma 5.2.2.(iii).
Now let µ be the Revuz signed measure of D̃u. For any h ∈

⋃∞
k=1Fb,Gk ,∫

E

h(x)dµ = 2

∫
{r<ρ(x,y)}

h(y)[u(x)− u(y)]J̃(dx, dy)

= −
∫
{r<ρ(x,y)}

[h(x)− h(y)][u(x)− u(y)]J̃(dx, dy) (5.5.7)

= −E1(w, h)

which leads, thanks to Theorem 5.3.3 to : D̃u
t = Nw

t −
∫ t

0
w(Xs)ds, t < ζ, Px-a.e.

for q.e. x ∈ E
Lemma 5.5.7. For every u in F , there exists a unique w in F such that for any
sequence (εn)n∈N converging to 0, there exists a subsequence (nk) satisfying :

lim
k→∞

∫ t

0

∫
{εnk<ρ(x,Xs)}

[u(x)− u(Xs)]Ñ(dx, ds) = Nw
t −

∫ t

0

w(Xs)ds (5.5.8)

uniformly on compacts of [0, ζ) Px-a.e for q.e x ∈ E.

Proof. Since h→ Ẽ (j)(u, h) is continuous, there exists w in F such that Ẽ (j)(u, h) =
E1(w, h) for any h ∈ F . Let {εn}n∈N be a sequence converging to 0. For any n ∈ N,
let wn be the element of F given by Lemma 5.5.6 for r = εn.
Then we have for any h ∈ F :

(E1(wn − w, h))2 = [Ẽ (j)(u, h)− Ẽ (j,εn)(u, h)]2

=

(∫
E×E\δ

(u(y)− u(x))(h(y)− h(x))1{ρ(x,y)≤εn}J(dx, dy)

)2

≤
∫
E×E\δ

(u(y)− u(x))21{ρ(x,y)≤εn}J(dx, dy)Ẽ1(h, h)

In particular choosing : h = wn − w, we obtain :

E1(wn − w,wn − w) ≤
∫
E×E\δ

(u(y)− u(x))21{ρ(x,y)≤εn}J(dx, dy)

which converges to 0 as n tends to ∞. It follows from Lemma 5.2.8 that there
exists a subsequence (nk) such that

lim
k→∞

(
N
wnk
t −

∫ t

0

wnk(Xs)ds

)
= Nw

t −
∫ t

0

w(Xs)ds

uniformly on compacts Px-a.e for q.e x ∈ E.
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Definition 5.5.8. For every u in F , define : jÑu
t := Nw

t −
∫ t

0
w(Xs)ds, where w

is the element of F given by Lemma 5.5.7.

Note that jÑu belongs to N 0
c and that for every h in Fb

< Θ(jÑu), h >= −Ẽ (j)(u, h). (5.5.9)

With the same argument as the one used to prove Lemma 5.5.3.(ii), one proves
the following lemma.

Lemma 5.5.9. Let (un) be Ẽ1-converging sequence to u, there exists a subsequence
(nk) such that for q.e x ∈ E :

Px(
jÑunk converges to jÑu uniformly on any compact) = 1

For u in F , the application h→ E1(u, h) is continuous. Hence there exists a unique
u∗ in F such that

E1(u, h) = Ẽ1(u∗, h), h ∈ F . (5.5.10)

Moreover we have :

E1(u∗, u∗) ≤ K2E1(u, u) (5.5.11)

where K is a continuity constant of E , which means that E satisfies the sector
condition :

|E1(v, w)| ≤ K(E1(v, v))1/2(E1(w,w))1/2 for all v, w ∈ F

Lemma 5.5.10. For u in F , let u∗ be given by (5.5.10). Denote by k̃ the killing
measure of Ẽ and by H̃ the PCAF associated to k̃(dx) by the Revuz correspondence.
Then we have Px-a.e for q.e x ∈ E for any t > 0

Nu
t = cÑu∗ + jÑu∗ −

∫ t

0

u∗(Xs)dH̃s +

∫ t

0

(u− u∗)(Xs)ds (5.5.12)

Proof. From the Beurling-Deny decomposition of Ẽ , we have that for any h ∈ F ,∫
E

|h(x)u∗(x)|k̃(dx) ≤ [E1(h, h)]1/2[E1(u∗, u∗)]1/2

thus A ∈ A∗c , where A denote the third element in the right-hand side of (5.5.12).
Therefore the right-hand side of (5.5.12) belongs to I. Denote this element by C.
The killing part Ẽ (k) of Ẽ satisfies

Ẽ (k)(u∗, h) =< µA, h > for any h ∈ F

It follows from (5.5.2) and (5.5.9) that for all h ∈ F :

< Θ(C), h > = −Ẽ(u∗, h) + (u− u∗, h)m

= −E(u, h)

Then (5.5.12) follows from Lemma 5.3.5.

112



Stochastic integration

5.5.2 Stochastic integration with respect to cÑu

Lemma 5.5.11. For every u in F and f in Fb, there exists a unique w in F ,
such that :

e(f ∗Mu,c,Mh) = E1(w, h), ∀h ∈ F .

Proof. For h ∈ F , [e(f ∗Mu,c,Mh)]2 ≤ e(f ∗Mu,c)e(Mh,c) ≤ e(f ∗Mu,c)Ẽ1(h, h).
Since e(f ∗Mu,c) <∞, the functional h→ e(f ∗Mu,c,Mh) is continuous.

Definition 5.5.12. For every u in F and f in Fb, the stochastic integral of f
with respect to cÑu denoted by

∫ .
0
f(Xs)d

cÑu
s or by f ∗ cÑu is defined by :∫ t

0

f(Xs)d
cÑu

s := Nw
t −

∫ t

0

w(Xs)ds−
1

2
〈M f,c,Mu,c〉t, t ≥ 0

where w is the element of F associated to (u, f) by Lemma 5.5.11.

For any u, v ∈ F , let µc<u,v> be the Revuz measure associated to 〈Mu,c,M v,c〉. We

have : 1
2
µc<u,v>(E) = Ẽ (c)(u, v). For f, h in Fb we have (Lemma 3.2.5 of [21]) :

dµc<u,hf> = fdµc<u,h> + hdµc<u,f> (5.5.13)

Lemma 5.5.13. (i) For u in F and f in Fb, we have

f ∗ cÑu ∈ N 0
c

and

< Θ(f ∗ cÑu), h >= −Ẽ (c)(u, hf) for all h ∈ Fb (5.5.14)

In particular the integral is well defined in the following sense :

If u, v ∈ F are such that cÑu = cÑ v, then for any f ∈ Fb, f ∗ cÑu = f ∗ cÑ v.

(ii) For (un), (fn)two sequences of F converging to u and f respectively, and such
that supn ‖fn‖∞ < ∞, there exists a subsequence (nk) such that for q.e
x ∈ E :

Px(fn ∗ cÑun converges to f ∗ cÑu uniformly on any compact) = 1

Proof. (i) f ∗ cÑu ∈ N 0
c because |µc<u,f>|(E) <∞. Besides for any h ∈ Fb,

< Θ(f ∗ cÑu), h > = −e(f ∗Mu,c,Mh)− 1

2

∫
E

h(x)dµc<f,u>

= −1

2

∫
E

f(x)dµc<h,u> −
1

2

∫
E

h(x)dµc<f,u>
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Then (5.5.14) is consequence of (5.5.13). For the second statement note that if
cÑu = cÑ v then by (5.5.2), Ẽ (c)(u, hf) = Ẽ (c)(v, hf) for any h ∈ Fb. We conclude
thanks to (5.5.14) and Lemma 5.3.5.

(ii) First we shall prove the following statements (a), (b) and (c).

(a) If (un) and (fn) converge to 0 and supn ‖fn‖ <∞, there exists a subsequence
(nk) such that for q.e x ∈ E :

Px(fn ∗ cÑunk converges to 0 uniformly on any compact) = 1

(b) If (un) converges to 0 and f ∈ Fb, there exists a subsequence (nk) such that
for q.e x ∈ E :

Px(f ∗ cÑunk converges to 0 uniformly on any compact) = 1

(c) If u ∈ F , (fn) converges to 0 and supn ‖fn‖ < ∞, there exists a subsequence
(nk) such that for q.e x ∈ E :

Px(fn ∗ cÑu converges to 0 uniformly on any compact) = 1

Proof of (a) : For each n, let wn be the function associated to (fn, un) by Lemma
5.5.11. Then for any h ∈ F we have : E1(wn, h)2 ≤ ‖f 2

n‖∞E1(h, h)E1(un, un). In
particular, choosing h = wn, one obtains :

E1(wn, wn) ≤ ‖f 2
n‖∞E1(un, un)→ 0 as n→∞

It follows from Lemma 5.2.8 that there exists a subsequence (n′) such that Px-a.e
for q.e x ∈ E, N

wn′
t −

∫ t
0
wn′(Xs)ds converges to 0 uniformly on compacts.

Besides : µc<un>(E) +µc<fn>(E) = Ẽ (c)(un, un) + Ẽ (c)(fn, fn), which converges to 0.
Hence by Lemma 5.2.6 there exists a subsequence (n̄) such that

|〈Mun̄,c,M fn̄,c〉| ≤ 〈Mun̄,c〉1/2〈M fn̄,c〉1/2

which converges to 0 on compacts Px-a.e for q.e x ∈ E.

One proves (b) simillarly as (a).

(c) For each n, let wn be the function associated to (fn, u) by Lemma 5.5.11. Since
(fn) converges to zero, there exists a subsequence (fnk) converging q.e. to 0 and
therefore converging to 0 dµc<u>-a.e. Thus by dominated convergence,

∫
E
f 2
nk

dµc<u>
converges to 0. For any h ∈ F , |Ẽ1(wn, h)|2 ≤ E1(h, h)

∫
E
f 2
ndµc<u>. In particular

choosing h = wnk we obtain for any k :

E1(wnk , wnk) ≤
∫
E

f 2
nk

dµc<u> → 0
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and one finishes then the proof is as in (a).

Now (iii) is consequence of (a), (b) and (c) below because

f ∗ cÑu − fn ∗ cÑun = (fn − f) ∗ cÑu−un + (f − fn) ∗ cÑu + f ∗ cÑu−un

5.5.3 Stochastic integration with respect to jÑu

Lemma 5.5.14. Let u ∈ F and f ∈ Fb, there exists a unique w in F such that
for any sequence (εn)n∈N converging to 0, there exists a subsequence (nk) which
satisfies :

lim
k→∞

∫ t

0

∫
{εnk<ρ(x,Xs)}

f(Xs)[u(x)− u(Xs)]Ñ(dx, ds) (5.5.15)

= Nw
t −

∫ t

0

w(Xs)ds−
1

2

∫ t

0

∫
E

[f(x)− f(Xs)][u(x)− u(Xs)]Ñ(dx, ds)

uniformly on compacts of [0, ζ) Px-a.e for q.e x ∈ E. Moreover, we have :

E1(w, h) =

∫
E×E\δ

[h(x)− h(y)][u(x)− u(y)]f(y)J̃(dx, dy) (5.5.16)

Proof. Let u ∈ F , f ∈ Fb and {εn}n∈N a sequence converging to 0. For any h ∈ F
define λ(h) = λu,f (h) as the right-hand side of (5.5.16) and λn(h) as λ(h) with
{εn < ρ(x, y)} instead of E × E\δ. Using the fact that f is bounded, one proves
with the arguments used in the proof of Lemma 5.5.7, that there exists (wn)n∈N
and w in F such that for any n ∈ N, λn(h) = E1(wn, h) and λ(h) = E1(w, h) for
any h ∈ F , and Px-a.e for q.e x ∈ E :

lim
k→∞

(
Nwn
t −

∫ t

0

wn(Xs)ds

)
= Nw

t −
∫ t

0

w(Xs)ds

uniformly on compacts.
Set Γ(x, y) = 1

2
(u(x) − u(y))(f(x) − f(y)) and Γn(x, y) = 1{εn<ρ(x,y)}Γ(x, y).

Set : Bt =
∫ t

0

∫
Γ(x,Xs)Ñ(dx, ds), Bn

t =
∫ t

0

∫
Γn(x,Xs)Ñ(dx, ds) and Cn

t =∫ t
0

∫
|Γ(x,Xs)− Γn(x,Xs)|Ñ(dx, ds).

µCn(E) ≤ 2

∫
{ρ(x,y)≤εn}

|[u(x)− u(y)][f(x)− f(y)]|J̃(dx, dy)

which converges to zero as n tends to ∞. It follows from Lemma 5.2.6 that there
exists a subsequence (nk) such that Px-a.e for q.e x ∈ E, Bnk

t converges to Bt
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uniformly on any compacts. In order to prove (5.5.15), we must prove that for any
n, ∫

{εn<ρ(x,Xs)}
f(Xs)[u(x)− u(Xs)]Ñ(dx, ds)

= Nwn
t −

∫ t

0

wn(Xs)ds−
1

2

∫ t

0

∫
{εn<(ρ(x,Xs)}

[f(x)− f(Xs)][u(x)− u(Xs)]Ñ(dx, ds)

which can be proved with the arguments used to prove (5.5.7).

Definition 5.5.15. For every u in F and f in Fb, the stochastic integral of f with
respect to jÑu denoted by

∫ .
0
f(Xs)d

jÑu
s or by f ∗ jÑu is defined as the right-hand

side of (5.5.15).

Lemma 5.5.16. (i) For u in F and f in Fb, f ∗ jÑu belongs to N 0
c and for every

h in Fb :

< Θ(f ∗ jÑu), h >

= −
∫
E×E\δ

[h(x)f(x)− h(y)f(y)][u(x)− u(y)]J(dx, dy) (5.5.17)

In particular the integral is well defined in the following sense :

If u, v in F are such that jÑu = jÑ v, then for any f in Fb : f∗jÑu = f∗jÑ v.

(ii) If (un) and (fn) are converging to u and f respectively and supn ‖fn‖∞ <∞,
there exists a subsequence (nk) such that for q.e x ∈ E :

Px(fn ∗ jÑun converges to f ∗ jÑu uniformly on any compact) = 1

Proof. The proof of (ii) is similar to the proof of (ii) of Lemma 5.5.13. We prove
(i). Set

At =
1

2

∫ t

0

∫
E

(f(x)− f(Xs))(u(x)− u(Xs))Ñ(dx, ds)

Since : |µA|(E) ≤
∫
E×E\δ |(f(x)− f(y))(u(x)− u(y))|J̃(dx, ds)

≤ (E(f, f))1/2(E(u, u))1/2, f ∗ jÑu belongs to N 0
c and by (5.5.16), for any h ∈ Fb :

< Θ(f ∗ jÑu, h) >

= −
∫
E×E\δ

[f(y){h(x)− h(y)}+ h(y){f(x)− f(y)}][u(x)− u(y)]J̃(dx, dy)

Using the symmetry of J̃ and the fact that J(dx, dy) + J(dy, dx) = 2J̃(dx, dy),
one proves that the right-hand side of the above equation coincides with the right-
hand side of (5.5.17). The second statement can be shown in the same way that
its analogous in Lemma 5.5.13.(i).
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5.5.4 Stochastic integration with respect to Nu

To introduce integration with respect to Nu, one still needs some preliminary
results and remarks.
In Section 5.5 we have pointed that a local CAF A in Ac, such that µA is the
difference of two finite measures, is a CAF of bounded variation on [0,∞). This
is true also when µA ∈ S0-S0. Indeed, let µ be a smooth measure in S0, associated
to a PCAF A by the Revuz correspondence. Then x→ Ex[

∫∞
0
e−tdAt] is a quasi-

continuous m-version of the 1-potential U1µ. In particular Ex[At] ≤ etU1µ(x) <∞
for q.e. x ∈ E, therefore Px(At <∞,∀t ≥ 0) = 1 for q.e. x ∈ E.
We denote by A∗c the set of CAF A of bounded variation on [0,∞) such that µA
belongs to S0-S0. For a Borel function f and a CAF A in A∗c , f ∗ A denotes the
Lebesgue-Stieltjes integral of f(X) with respect to A if the integral is well defined
and 0 if not i.e., If V denotes the total variation of A on [0, t) then :

f ∗ At :=

{ ∫ t
0
f(Xs)dAs if

∫ t
0
|f(Xs)|dVs <∞

0 otherwise

Thanks to (5.2.2), for any f ∈ F and A ∈ A∗c , f ∗ A is a CAF element of A∗c .

Lemma 5.5.17. Let u, v ∈ F and A ∈ A∗c such that

Px(
cÑu + jÑ v + A = 0 on [[0,∞[[) = 1 for q.e x ∈ E (5.5.18)

then for any f ∈ Fb :

Px(f ∗ cÑu + f ∗ jÑ v + f ∗ A = 0 on [[0,∞[[) = 1 for q.e x ∈ E

Proof. Set : C = cÑu+ jÑ v+A and Cf = f ∗ cÑu+f ∗ jÑ v+f ∗A. It follows from
Lemmas 5.5.13.(i) and 5.5.16.(i) that C,Cf ∈ N 0

c . On the other hand, thanks to
(5.5.2), (5.5.14), (5.5.9) and (5.5.17) :

< Θ(Cf ), h >=< Θ(C), fh > for all h ∈ Fb (5.5.19)

But by (5.5.18) and Lemma 5.3.5, < Θ(C), h >= 0 for any h ∈ Fb, thus we have
that < Θ(Cf ), h >= 0 for any h ∈ Fb. We conclude thanks to Lemma 5.3.5.

Definition 5.5.18. Denote by I the set of CAF C of X such that there exists
u, v ∈ F and A ∈ A∗c such that :

Px(Ct = cÑu + jÑ v + A on [[0,∞[[) = 1 for q.e x ∈ E

In this case for any f ∈ Fb, the stochastic integral of f with respect to C denoted
by
∫ t

0
f(Xs)dCs or by (f ∗ C)t is defined by

f ∗ cÑu + f ∗ jÑu + f ∗ A on [[0,∞[[.
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It follows from Lemma 5.5.17, that for C ∈ I, the stochastic integral f ∗Ct is well
defined in the sense that it is not depending of the elements which represent C.
In view of the definitions of cÑu, jÑu for u ∈ F , (5.5.12) and Lemma 5.3.7 we
have the following identity :

I =

{
Nu
. −

∫ .

0

u(Xs)ds : u ∈ F
}

(5.5.20)

For u, v in F and A,B in A∗c , set : C
(1)
t := Nu

t +At, t ≥ 0 and C
(2)
t := N v

t +Bt, t ≥ 0.

Suppose that for some G in O, C
(1)
t = C

(2)
t for t < σE\G, Px-a.e. for q.e. x ∈ E.

Then thanks to Lemma 5.3.5 for any h ∈ FG, < Θ(C(1)), h >=< Θ(C(2)), h >,
thus if f, g ∈ Fb coincide q.e. on G then thanks to (5.5.19) we have for any h ∈ FG :

< Θ(f ∗ C(1)), h > = < Θ(C(1)), fh >

= < Θ(g ∗ C(2)), h >

Finally thanks to Lemma 5.3.5, we have : Px(f ∗C(1)
t = g∗C(2)

t , for t < σE\G) = 1,
Px-a.e. for q.e. x ∈ E. We can now define the stochastic integral of f ∈ Floc with
respect to C ∈ If-loc as follows.

Definition 5.5.19. Let C ∈ If−loc and f ∈ Floc. Let {Gn} ∈ Ξ, {C(n)} ⊂ I
and {fn} ⊂ Fb such that Px(Ct = C

(n)
t for t < σE\Gn) = 1 for q.e. x ∈ E and

fn(x) = f(x) for q.e. x ∈ Gn and n ∈ N. Then if σ := limn→∞ σE\Gn, we define
the stochastic integral of f with respect to C and denoted by f ∗ Ct, t ≥ 0 or by∫ t

0
f(Xs)dCs, t ≥ 0 as the following local CAF :

f ∗ Ct :=

{
fn ∗ C(n)

t for t < σE\Gn
0 for t ≥ σ

(5.5.21)

Note that the above definition does not depend of the sequences C(n), (fn) nor
Gn. It follows from Theorem 5.4.3 that the stochastic integral f ∗ C for f ∈ Floc
and C a local CAF locally of zero energy is well defined. Moreover, if C ∈ If-loc
and f ∈ Floc then f ∗ C belongs to If-loc.
Consequently, thanks to Lemma 5.5.10 and (5.5.20), we have the following lemma.

Lemma 5.5.20. For any u in F , Nu belongs to I thus the stochastic integral∫ t
0
f(Xs)dN

u
s is well defined for any f ∈ Floc.

Remark 5.5.21. If ϕ : R → R is a function admitting a continuous derivative,
we know that ϕ(u) belongs to Floc, then the integral

∫ t
0
ϕ(u(Xs))dN

u
s is well defined

and it is a local CAF. In fact using the arguments in Remark 4.3.1 we can show
that

∫ t
0
ϕ(u(Xs))dN

u
s is defined in [0,∞) and is in fact a CAF.

We will use the following result in the proof of the Itô formula for X.
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Lemma 5.5.22. For (un) a sequence of F and u element of F , (fn) a sequence of
Fb and f an element of Fb such that (un) and (fn) converge to u and f respectively
with respect to Ẽ1. Moreover suppose that supn ‖fn‖∞ < ∞. Then there exists a
subsequence (n′) such that for q.e x ∈ E :

Px(fn′ ∗Nun′ converge to f ∗Nu uniformly on any compact) = 1

Proof. Let H̃ the PCAF defined in Lemma (5.5.10). Then :

|fnu∗n ∗ H̃t − fu∗ ∗ H̃t| ≤ |(fn − f)u∗n ∗ H̃t|+ |f(u∗n − u∗) ∗ H̃t| (5.5.22)

Thanks to (5.5.11) and Lemma 5.2.8 there exists a subsequence n̄ such that Px-a.e.
for q.e. x ∈ E, un̄(X) and fn′(X) converge uniformly on any compact to u∗(X)
and f(X). By dominated convergence, the first term in the right-hand side of
(5.5.22) converges uniformly on compacts to 0, with n̄ replacing n. Let wn and w
be respectively the 1-potential of f(x)u∗n(x)k̃(dx) and f(x)u∗(x)k̃(dx). One shows
that {E1(w−wn, w−wn)}1/2 ≤ ‖f‖∞{E1(u∗n−u∗, u∗n−u∗)}1/2, which converges to
0. Thanks to Lemmas 5.2.8 and 5.3.7, there exists a subsequence (n”) such that
the second term in the right-hand side of (5.5.22) (with n” replacing n) converges
uniformly on any compact to zero, Px-a.e. for q.e. x ∈ E. We conclude thanks to
(5.5.12) and Lemmas 5.2.8, 5.5.13.(ii) and 5.5.16.(ii) .

Theorem 5.5.23. For every Φ in C2(Rd) and every u = (u1, ..., ud) in Fd, for q.e
x ∈ E, Px-a.e for all t ∈ [0,∞) we have :

Φ(u(Xt))− Φ(u(X0))

=
d∑
i=1

∫ t

0

∂Φ

∂xi
(u(Xs−))dMui

s +
d∑
i=1

∫ t

0

∂Φ

∂xi
(u(Xs))dN

ui
s

+
1

2

d∑
i,j=1

∫ t

0

∂2Φ

∂xi∂xj
(u(Xs))d〈Mui,c,Muj ,c〉s (5.5.23)

+
∑
s≤t

(
Φ(u(Xs))− Φ(u(Xs−))−

d∑
i=1

∂Φ

∂xi
(u(Xs−))(ui(Xs)− ui(Xs−))

)

Proof. Let It be the difference of the left-hand side and the right-hand side of
(5.5.23). First suppose that

η := sup
k=1,...,d

‖uk‖∞ <∞

therefore we can suppose that Φ is of compact support. For any i = 1, ..., d, n ∈ N
set un,i := nRnui and un := (un,1, ..., un,d). Define It(n) as It with un replacing u.
We fix a smooth measure ν such that ν(E) = 1. First we prove :
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It(un) in Pν-probability to It(u) (?)

The statement (?) will be an immediate consequence of the following statements
(i), (ii), (iii), (iv) and (v). All convergences are in the sense of convergence in
Pν-probability if not specified.

(i) Φ(un(Xt))− Φ(un(X0)) converges to Φ(u(Xt))− Φ(u(X0)).

(ii)For i = 1, ..., d, Mn
t (i) :=

∫ t
0
∂Φ
∂xi

(un(Xs−))dM
un,i
s converges to

Mt(i) :=
∫ t

0
∂Φ
∂xi

(u(Xs−))dMui
s .

(iii) For i = 1, ..., d,
∫ t

0
∂Φ
∂xi

(un(Xs−))dN
un,i
s converges to

∫ t
0
∂Φ
∂xi

(u(Xs−))dNui
s .

(iv) For i, j ∈ {1, ..., d} and g = ∂2Φ
∂xi∂xj

, Ant =
∫ t

0
g(un(Xs))d〈Mun,i,c,Mun,j ,c〉s

converges to At =
∫ t

0
g(u(Xs))d〈Mui,c,Muj ,c〉s.

(v) Let Vt be the last term in the right-hand side of (5.5.23) and V n
t defined

similarly but with un replacing u. Then V n
t converges to Vt.

Proof :
(i) Indeed, this is consequence of Lemma 5.2.8 and the continuity of Φ.
(ii) In order to prove this, it is sufficient to show that e(Mn(i)−M(i)) converges
to 0. But

e(Mn(i)−M(i)) ≤ 2 sup

∥∥∥∥ ∂Φ

∂xi

∥∥∥∥2

∞
e(Mui,n−ui)

+

∫
E

(
∂Φ

∂xi
(un(x))− ∂Φ

∂xi
(u(x))

)2

dµ<Mui>

it is known that the first term in the right-hand side of the above equation con-
verges to 0. By taking a subsequence if necessary, un,i converges q.e to ui, and
therefore, dµ<Mui>-a.e. Thus by dominated convergence, e(Mn(i)−M(i))→ 0.
(iii) follows from Lemma 5.5.22.
(iv) Indeed, straightforward computations using a Kunita-Watanabe inequality
show that

|At − Ant | ≤ sup
s≤t
|g(un(Xs))− g(u(Xs))| ×

1

4

(
〈Mun,i+un,j ,c〉t + 〈Mun,i−un,j ,c〉t

)
+‖g2‖∞〈Mun,i,c〉1/2t 〈Mun,j−uj ,c〉1/2t

+‖g2‖∞〈Muj ,c〉1/2t 〈Mun,i−ui,c〉1/2t

thus |At − Ant | converges to 0 by Lemmas 5.2.8 and 5.2.6.
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(v)Indeed, set a := supi,j ‖∂Φ/∂xi∂xj‖∞, and hn = u− un

|V n
t − Vt| ≤ a

∑
s≤t

|hn(Xs)− hn(Xs−)|2 =: aSnt

Set Bn
t :=

∫ t
0

∫
E
|hn(x)−hn(Xs)|2N(dx, ds) and Lnt := Snt −Bn

t . Ln is a MAF and
e(Ln) =

∫
E×E−d |hn(x)− hn(y)|4J(dx, dy) ≤ 16.η.d.E(hn, hn), which converges to

0. Hence Lnt converges to zero. Since µBn(E) ≤ E(hn, hn), it follows by Lemma
5.2.6 that Bn

t converges to zero. Therefore, Snt = Lnt +Bn
t converges to 0.

This finishes the proof of (?). Since for each n, un(X) is a Pν-semimartingale, by
the classical Itô formula, Pν(It(n) = 0) = 1, thus Pν(It = 0) = 1. Therefore it
follows from Theorem 2.2.3 of [21] that Px(It = 0) = 1 for q.e x ∈ E and we
conclude (5.5.23) because a.e. all its terms are right continuous in [0,∞).
Now suppose that u is not bounded. For each n, let Gn := {x ∈ E : |ui(x)| <
n ∀i ≤ d}, uni := (−n) ∨ ui ∧ n and un := (un1 , . . . u

n
d). Since each ui is quasi-

continuous we assume that {Gn} ∈ Ξ. Let Int be defined as It with un instead of
u. Then Int = 0 for all t, Px-a-e. for q.e. x ∈ E. But It = Int for t < σE\Gn and
thanks to (5.2.2), limn→∞ σE\Gn = ∞ Px-a.e. for q.e. x ∈ E. This finishes the
proof of Theorem 5.5.23

Define FS as the set of functions f such that the process (f(Xt), t ≥ 0) is a
semimartingale on [[0, ζ[[, i.e. if N f is of bounded variation on [[0, ζ[[ Px-a.e. for
q.e. x ∈ E.

Lemma 5.5.24. Let C be an element of If-loc. Then the two following conver-
gences exist in the sense that a sequence of processes (An) converges to a process

A if for any T ≥ 0,
∫ T

0
|Ant −At|dt converges to 0 in measure with respect to Pg.m

on {T < ζ} for every g ∈ L1(E;m) with 0 < g ≤ 1 m-a.e.

(i) For f in FS , we have : (f ∗ C)t = limn→∞
∑n−1

k=0 f(Xtk/n)(Ct(k+1)/n − Ctk/n).

(ii) Let (fn) be a sequence of Fb converging with respect to the Ẽ1-norm to f such
that supn ‖fn‖∞ <∞. Then, we have : (f ∗ C)t = limn→∞(fn ∗ C)t.

Proof. In view of (5.5.20) and Lemma 5.2.2.(ii) we can assume that : C = Nu −∫ .
0
u(Xs)ds, for some u ∈ F . Since (i) and (ii) are obvious when C =

∫ .
0
u(Xs)ds,

one has just to show (i) and (ii) in the case C = Nu for some u ∈ F . In this case
(ii) is aconsequence of Lemma 5.5.22. We shall prove (i).
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For f in FS , we have :

n−1∑
k=0

f(Xtk/n)(Nu
t(k+1)/n −Nu

tk/n)

= f(Xt)u(Xt)− f(X0)u(X0)−
n−1∑
k=0

u(Xtk/n)(f(Xt(k+1)/n)− f(Xtk/n))

−
n−1∑
k=0

f(Xtk/n)(Mu
t(k+1)/n −Mtk/n)

−
n−1∑
k=0

(f(Xt(k+1)/n)− f(Xtk/n))(u(Xt(k+1)/n)− u(Xtk/n))

which converges to
∫ t

0
f(Xs)dN

u
s , thanks to Theorem 5.5.23 and Remark 5.4.4.

Example 5.5.25. In this exemple we show that the stochastic integral con-
structed by Chen et al. [7] for symmetric Dirichlet forms can be defined in the sense
of Definition 5.5.19. Moreover both definitions coincide Pm-a.e. for q.e. x ∈ E. We
use the notations and definitions of [7], thus Λ is a linear operator that maps some
class of local MAF’s on [[0, ζ[[ into even CAF’s on [[0, ζ[[ admitting m-null set. Let
M be a locally square-integrable MAF on [[0, ζ[[ that belongs to the domain of Λ.
We see from the proof of [[7], Theorem 3.7 and Lemma 3.2] that there exists a
nest {Fk} of closed sets such that Pm-a.e. on [[0, τFk [[ :

Λ(M) = Λ(Mk) + Akt + Lkt (5.5.24)

where Mk ∈ M◦ , Ak ∈ Ac and Lk ∈ (Mloc)
[[0,ζ[[. With a refinement argument

used in the proof of [[7], Lemma 4.6], one checks that Λ(M) is a local CAF of
X. Recall that E denotes the set of CAF of X of finite energy. In view of [[7],
Proposition 2.8] the right-hand side of (5.5.24) belongs to Ef-loc, hence Λ(M)
belongs to (Ef-loc)f-loc = Ef-loc.
By [[7], Theorem 3.7], Λ(M) is of zero quadratic variation on the sets of Definition
5.4.2. Therefore thanks to Theorem 5.4.3, Λ(M) belongs to If-loc and the integral
f ∗ Λ(M) is well defined for any f ∈ Floc.
Thanks to [[7], Theorem 4.4] and the way that the stochastic integral was defined
in [7], it satisfies (i) and (ii) of Lemma 5.5.24 where the convergence is in measure
with respect to Pgm on {t < ζ} for every g ∈ L1(E,m) with 0 < g ≤ 1 m-
a.e. Consequently the integrals f ∗ Λ(M) given by [7] and Definition 5.5.19 both
coincide Pm-a.e. on [[0, ζ[[ for any f ∈ Fb and therefore for any f ∈ Floc.
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5.6 Markov Processes on Rd

Throughout this section we assume that E = Rd, for d positive integer and (E ,F)
is a regular non necessarily symmetric Dirichlet form on L2(Rd;m) satisfying :
C∞0 (Rd) ⊂ F . Denote by X = (X1, ..., Xd) its properly associated Hunt process.
Note that in this case, if u1, ..., ud belong to C∞0 (R) then for any F in C1

0(Rd),
F (u1, ..., ud) belongs to F . Therefore : C1

0(Rd) ⊂ F .
For a class D of additive functionals, the set Df-loc that has been defined at the
beginning of section 5.4. We will also make use of the random measures, N(dy, ds),
N̂(dy, ds) and Ñ(dy, ds) introduced at the beginning of section 5.5.3. We define :

Ň(dy, ds) :=
1

2
(N(dy, ds)− N̂(dy, ds))

The aim of this section is to prove the following two theorems :

Theorem 5.6.1. For u in C2(Rd), the process u(X) admits the following decom-
position Px-a.e for q.e x ∈ Rd :

u(Xt) = u(X0) + V u
t +W u

t + Cu
t , t < ζ (5.6.1)

where W u ∈ M◦ f-loc, Cu ∈ Nf-loc and V u is the AF of bounded variation given
by :

V u
t =

∑
s≤t

(u(Xs)− u(Xs−))1{|u(Xs)−u(Xs−)|>1} (5.6.2)

Moreover, the jumps of W u are bounded by 1.

In particular, if we take u the coordinate function πi : x → xi, i = 1, ..., d, the
above result can be seen as a generalization of the Itô-Lêvy decomposition for
Lévy processes.

Set : V i = V πi , W i = W πi and Ci = Cπi and define the stochastic integral of f
element of Floc with respect to X i by :∫ t

0

f(Xs−)dX i
s :=

∫ t

0

f(Xs−)dW i
s +

∫ t

0

f(Xs)dC
i
s +

∫ t

0

f(Xs−)dV i
s

where the third term in the right-hand side is given by Definition 5.5.19. We shall
prove the following Itô formula.

Theorem 5.6.2. For Φ in C2(Rd), for q.e x ∈ Rd, Px-a.e for all t ∈ [0, ζ) we
have :

Φ(Xt) = Φ(X0) +
d∑
i=1

∫ t

0

∂Φ

∂xi
(Xs−)dX i

s +
1

2

d∑
i,j=1

∫ t

0

∂2Φ

∂xi∂xj
(Xs)d〈W i,c,W j,c〉s

+
∑
s≤t

(
Φ(Xs)− Φ(Xs−)−

d∑
i=1

∂Φ

∂xi
(Xs−)(X i

s −X i
s−)

)
(5.6.3)
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The proof of Theorem 5.6.1 will be based on the decomposition of E given in
(5.6.4) below which is just another way to write the decomposition given by Hu
et al., Theorem 4.8 of [23]. Moreover we can see directly from its proof that the
hypothesis u, v ∈ C∞0 (Rd) can be replace by u ∈ C2

0(Rd) and v ∈ C0(Rd) ∩ F .

Lemma 5.6.3. Let (E ,F) be a regular Dirichlet form on Rd satisfying C∞0 (Rd) ⊂
F . Then for u in C2

0(Rd) and v in C0(Rd) ∩ F , E(u, v) has the following decom-
position :

E(u, v) = Ẽ (c)(u, v) + Ěc′(u, v)

+

∫
Rd×Rd−d

(u(y)− u(x))(v(y)− v(x))1{|x−y|≤1}J(dx, dy) (5.6.4)

−2

∫
Rd×Rd−d

{u(x)− u(y)−
d∑
i=1

(xi − yi)
∂u

∂yi
(y)}v(y)1{|x−y|≤1}J̌(dx, dy)

−2

∫
Rd×Rd−d

(u(x)− u(y))v(y)1{|x−y|>1}J(dx, dy) +

∫
Rd
u(x)v(x)k(dx)

where v → Ěc′(u, v) is a linear functional that equals 0 when Supp[u]∩Supp[v] = ∅.
Before proving Theorem 5.6.1 and 5.6.2, we are going to built some local CAF
locally of zero energy and some local MAF of locally finite energy, that will take
part in the decomposition of X.

Lemma 5.6.4. (i) For u in C2(Rd), the process

B̌u
t := 1{t<ζ}

∫ t

0

∫
Rd

(
u(x)− u(Xs)−

d∑
i=1

(xi −X i
s)
∂u

∂xi
(Xs)

)
1{|Xs−x|≤1}Ň(dx, ds)

is well defined on [0,∞). Moreover B̌u is a local CAF element of Ac and for
any relatively compact G ⊂ Rd, |µB̌u|(G) <∞ .

(ii) For u in F , the process

Du
t := 1{t<ζ}

∫ t

0

∫
Rd

(u(x)− u(Xs)) 1{|Xs−x|>1}N(dx, ds)

is well defined on [0,∞). Moreover Du is a local CAF element of Ac and
for any relatively compact G ⊂ Rd, |µDu |(G) < ∞. The same holds for Ďu

defined as Du with Ň replacing N .

Proof. (i) Let Γ(x, y) :=
(
u(x)− u(y)−

∑d
i=1(xi − yi) ∂u∂xi (y)

)
1{|y−x|≤1} and G be

a relatively compact set.∫
{|x−y|≤1}

1G(y) |Γ(x, y)| J(dx, dy)

≤ c(G)

∫
G×Rd

|x− y|21{|x−y|≤1}J(dx, dy) (5.6.5)
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where c(G) = sup

{
d∑

i,j=1

∣∣∣∣ ∂2u(z)

∂xi∂xj

∣∣∣∣ : |z − y| ≤ 1∃y ∈ G

}
<∞

The right-hand side of (5.6.5) is finite thanks to Lemma 4.1 of [23], hence∫ t
0

1G(Xs)
∫
Rd Γ(x,Xs)N(dx, ds) is well defined on [0,∞). We can prove in the

same way that
∫ t

0
1G(Xs)

∫
Rd Γ(x,Xs)N̂(dx, ds) is well defined on [0,∞), and hence

B̌u is well defined on [0, σRd\G) for any relatively compact G and therefore well

defined on [0, ζ). Since by definition B̌u
t equals 0 for t ≥ ζ, B̌ is well defined on

[[0,∞[[ We have shown also that |µ|(G) <∞.

(ii) This can be proved as (5.5.6).

For u in C2
0(Rd), thanks to Lemma 5.6.4 for any relatively compact open set G

and h ∈ FG, we have :

< µB̌u , h > + < µĎu , h >

=

∫
Rd×Rd−d

2h(y)

(
(u(x)− u(y)−

d∑
i=1

(xi − yi)
∂u

∂xi
(y)1{|y−x|≤1}

)
J̌(dx, dy)

where J̌(dx, dy) := 1
2
{J(dx, dy)− J(dy, dx)}. But from Lemma 4.5 of [23] (which

is also valid for u ∈ C2
0(R)), there exists z ∈ F such that the right-hand side of

the above equation is equal to : Ěc′(u, h)− Ẽ1(z, h), ∀h ∈ C0(Rd)∩F . By defining
w such that E1(w, h) = Ẽ1(z, h) =, ∀h ∈ F , we obtain the following lemma.

Lemma 5.6.5. For u in C2
0(Rd), there exists w in F such that

E1(w, h) = Ěc′(u, h)− < µB̌u , h > − < µĎu , h >

for all h ∈ F ∩ C0(Rd).

Definition 5.6.6. For u in C2
0(Rd), define :

cŇu
t := Nw

t −
∫ t

0

w(Xs)ds− B̌u
t − Ďu

t

where w is the element of F given by Lemma 5.6.5.

Definition 5.6.7. Let Oc be the set of relatively compact open sets of Rd. For G
in Oc, we define N 0

c,G as the set of local CAF’s C such that, there exists u inF
and A in Ac satisfying :

Fb,G ⊂ L1(Rd, |µA|)
and

Px(Ct = Nu
t + At for t < ζ) = 1 for q.e x ∈ Rd

For C element of N 0
c,G, we define the linear functional Θ(C,G) on Fb,G by

< Θ(C,G), h >:= −E(u, h)+ < µA, h >, h ∈ Fb,G
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It follows from Theorem 5.3.3 that the definition of Θ(C,G) for C ∈ N 0
c,G is

consistent in the sense that it does not depend of the elements which represents
C.
The following lemma is an immediate consequence of Theorem 5.3.3 :

Lemma 5.6.8. For G in Oc, C(1) and C(2) elements of N 0
c,G, we have :

C(1) = C(2) on t < τG Px-a.e for q.e x ∈ Rd if and only if

< Θ(C(1), G), h >=< Θ(C(2), G), h > for all h ∈ Fb,G.

Let u ∈ F and G ∈ Oc, since |µB̌u |(G) + |µĎu|(G) < ∞ by Lemma 5.6.4, cŇu

belongs to N 0
c,G and :

< Θ(cŇu, G), h >= −Ěc′(u, h) for any h ∈ Fb,G ∩ C0(Rd) (5.6.6)

Lemma 5.6.9. For u, v in C2
0 and G in Oc such that u = v on G, we have :

cŇu = cŇ v on [[0, τG[[ Px-a.e for q.e x ∈ Rd.

Proof. Since Supp[u− v] ⊂ Rd\G, Ěc′(u− v, h) = 0 for any h ∈ FG. We conclude
thanks to (5.6.6) and Lemma 5.6.8.

Thanks to Lemma 5.6.9 we can extend the definition of cŇu to every u in C2(Rd).

Definition 5.6.10. For u in C2(Rd), define cŇu as follows. For any G ∈ Oc,

cŇu
t :=

{
cŇ v

t for t < τG
0 for t ≥ ζ

where v is any element of C2
0(Rd) such that : u = v on G.

Note that cŇu belongs to N 0
c,G for any G in Oc.

For r > 0, set βr := {x ∈ Rd : |x| < r}. For u in F , define : jÑu,b = jÑu − D̃u,
where jÑu is given by Definition 5.5.8 and

D̃u
t =

∫ t

0

∫
|Xs−x|>1}

(u(x)− u(Xs))Ñ(dx, ds), t < ζ

which is well defined thanks to Lemma 5.5.6.
From (5.5.8) we see that for u, v in C1

0(Rd) such that u = v on βr+1, we have :

Px(
jÑu,b

t = jÑ v,b
t on t < τβr) = 1 for q.e x ∈ Rd

Therefore the following definition makes sense.

Definition 5.6.11. For u in C1(Rd), define jÑu as follows. For any r > 0,

jÑu
t :=

{
jÑ v

t for t < τβr
0 for t ≥ ζ

where v is any element of C1
0(Rd) such that : u = v on βr+1.
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Thanks to Lemma 5.5.6, jÑu,b belongs to N 0
c .

We also need the following process.

Definition 5.6.12. For u in C1(R), kNu is the local CAF of bounded variation
defined by :

kNu
t := 1{t<ζ}

∫ t

0

u(Xs)1{|u(Xs)|≤1}N(Xs, {∆})dHs

Now we are going to define the elements ofM◦ f-loc that will be in the decomposition
of X. It is known that for u, v in F and G in O such that u = v q.e. on G, then
Mu,c

t = M v,c
t on [0, τG), Px-a.e for q.e. x ∈ Rd. Therefore it follows from (iii) of

Lemma 5.2.2 that for u in Floc, {Gk} in Ξ and {uk} ⊂ F are such that u = uk
q.e. on Gk, then by setting

Mu,c
t :=

{
Muk,c

t for t < τGk
0 for t ≥ ζ

,

one defines an AF element of M◦ f-loc.
For u in F and ε > 0, define the MAF Mu,b,ε on M◦ by :

Mu,b,ε
t :=

∑
s≤t

(u(Xs)− u(Xs−))1{ε<|u(Xs)−u(Xs−)|≤1}

−
∫ t

0

∫
{ε<|u(x)−u(Xs−)|≤1}

(u(x)− u(Xs))N(dx, ds) (5.6.7)

+

∫ t

0

u(Xs)1{ε<|u(Xs)|≤1}N(Xs, {∆})dHs

If (εn)n∈N converges to zero, (Mu,b,εn) is a Cauchy sequence in the real Banach
space (M◦ , e). Hence there exists an element of M◦ denoted by Mu,b and a subse-
quence (εnk) such that Px-a.e for q.e x ∈ Rd, (Mu,b,εnk ) converges uniformly on
compacts to Mu,b.
The following Lemma is a immediate consequence of (5.6.7) and the definition of
Mu,b for u in F .

Lemma 5.6.13. (i) For u, v in F such that u = v q.e on βr+1, r > 0, we have :

Px(M
u,b
t = M v,b

t for all t < τβr) = 1 for q.e. x ∈ Rd

(ii) For u in F , Px-a.e for q.e x ∈ Rd we have for any t ≥ 0 :

Mu,b
t = Mu,d

t − V u
t +Du

t −
∫ t

0

u(Xs)1{|u(Xs)|>1}N(Xs, {∆})dHs (5.6.8)

where Mu,d denotes the discontinuous part of Mu and V u is given by (5.6.2).
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It follows from Lemma 5.6.13 that the following definition makes sense.

Definition 5.6.14. For u in C1(Rd), define Mu,b as follows. For r > 0,

Mu,b
t :=

{
M v,b

t for t < τβr
0 for t ≥ ζ

where v is any element of C1
0(Rd) such that : u = v on βr+1.

It is clear that : Mu,b ∈M◦ f-loc,∀u ∈ C1(Rd)

Proof of Theorem 5.6.1. First we shall prove that for u in C2
0(Rd), Px-a.e for q.e

x ∈ Rd,
Nu = cÑu + cŇu + jÑu,b + B̃u +Du − P u (5.6.9)

where P u
t :=

∫ t
0
u(Xs)N(Xs, {∆})dHs.

Denote by Cu the right-hand of (5.6.9). From the definition of all the terms of
this sum, we can see that Cu belongs to N 0

c,G for any F in Oc. Moreover thanks
to (5.6.4), for any h ∈ C0 ∩ FG :

< Θ(Nu, G), h >=< Θ(Cu, G), h > .

Thanks to the regularity of E , the above identity can be extended to any h ∈ FG.
One obtains then (5.6.9) thanks to Theorem 5.3.3.
From (5.6.8) and (5.6.9) we get (5.6.1) with

W u = Mu,c +Mu,b and

Cu = cÑu + cŇu + jÑu,b + B̃u − kNu

Now for u in C2(Rd), define Cu and W u as above. For any k ∈ N let uk ∈ C2
0(Rd)

be such that u = uk on βk+1, then

u(Xt)− u(X0)−W u
t − Cu

t = uk(Xt)− uk(X0)−W uk
t − C

uk
t = 0 for t < τβk

Px-a.e for q.e. x ∈ Rd. We finally obtain (5.6.1) thanks to (iii) of Lemma 5.2.2.
Note that W u ∈M◦ f-loc and Cu ∈ Nf-loc. This finishes the proof.

Proof of Theorem 5.6.2. This theorem can be proved with the arguments used in
the proof of Theorem 5.6.1, but using the Itô formula of Theorem 5.5.23 instead
of the Fukushima decomposition.
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[2] Bardina, X., Rovira, C., 2007. On Itô’s formula for elliptic diffusion processes,
Bernoulli 13 , 3, pp. 820-830.
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one-dimensional Lévy processes. Electron. Commun. Probab. 13, pp. 198-209.

129



BIBLIOGRAPHIE

[14] Eisenbaum, N., Walsh, A., 2009. An optimal Itô formula for Lévy Processes.
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