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Résuḿe

Soit un langage composée par tous les mots d’une longueur donnéen. Un cycle

de de Bruijn d’ordren est un mot cyclic tels que tous les mots dans le langage

apparâıt exactement une fois comme facteurs de cet cycle. Un de l’algorithme pour

construire le cycle de de Bruijn lexicographiquement minimal est dû à Fredricksen

et à Maiorana, lequel utilise les mots deLyndon dans le language.

Cette th̀eseétudie comment ǵeńeraliser le concept de cycles de de Bruijn pour

un language composée par un sous-ensemble de mots de longueurn, particularment

les languages de tous les mots de longueurn sans facteurs dans une liste defacteurs

interdits.

Premìerement, nouśetudie le cas des mots sans le facteur 11. Nous fournissons

de nouvelles preuves de l’algorithme de Fredricksen et de Maiorana qui nous en

permet de prolonger ce résultat au cas des mots sans facteur 1i pour n’importe

quellei.

Nous caract́erisons pour quelles langues des mots de longueurn existe un cy-

cle de de Bruijn, et nouśetudionségalement quelques propriét́es de la dynamique

symbolique de ces languages, particularment des languages définies par des fac-

teurs interdits. Pour ces genres de languages, nous présentons un algorithme pour

produire un cycle de de Bruijn, en utilisant les mots de Lyndon du language. Ces

resultat utilice la notion du graphe de de Bruijn et réduit le probl̀eme a construire

un cycle Eulerian dans ce graphe.

Nous étudions le probl̀eme de la construction du cycle minimal dans un lan-

guage avec des facteurs interdits employant le graphe de de Bruijn. Nousétudions

deux algorithmes, un algorithme avide simple et efficace qui fonctionne avec quelques

ensembles de langues, et un algorithme plus complexe qui résout ce problème pour

n’importe quel graphe Eulerian.
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Abstract

Let be a language composed by all words of a given lengthn. A de Bruijn

sequence of spann is a cyclic string such that all words in the language appears

exactly once as factors of this sequence. One of the algorithms to construct the

lexicographically minimal de Bruijn sequence is due to Fredricksen and Maiorana

and it use theLyndon wordsin the language.

This thesis studies how to generalize the concept of de Bruijn sequence for a

language composed by a subset of words of lengthn, particularly the languages of

all words of lengthn without factors in a list offorbidden factors.

Firstly, we study the case of words without the factor 11. We give a new proof

of the algorithm of Fredricksen and Maiorana which allows us to extend this result

to the case of words without the factor 1i for any i.

We characterize for which languages of words of lengthn exists a de Bruijn se-

quence, and we also study some symbolic dynamical properties of these languages,

particularly of the languages defined by forbidden factors. For these kinds of lan-

guages, we present an algorithm to produce a de Bruijn sequence, using the Lyndon

words of the language. These results use the notion of de Bruijn graph and reduce

the problem to construct an Eulerian cycle in this graph.

We study the problem of construct the lexicographically minimal de Bruijn se-

quence in a language with forbidden factors using the de Bruijn graph. We study

two algorithms, a simple and efficient greedy algorithm which works with some

sets of languages, and a more complex algorithm which solves this problem for any

Eulerian labelled graph.
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I NTRODUCTION

Combinatorics on wordshas grown enormously this last decade. It has now its own section in

the lastest classification of Mathematical Reviews (68R15), under the chapter of discrete

mathematics related to computer science. Main results in the area have been compiled in the

Lothaire’s series of books [Lot97, Lot02, Lotar] and also since 10 years ago there exists a

bi-annual international conference (WORDS) devoted entirely to this subject. To read more

about the story and open problems in this subject, see [BK03].

Words appears in almost every area of computer sciences, specially in automata theory,

computational complexity and algorithms. One of this area is devoted to the efficient

generation of words of a given length. In spite of its specificity, this subject is the title of a

whole section of the last volume of Knuth’s book “The art of computer programming” [Knuar].

Different ways to generate these words have been used. Among the most studied areGray

codes[Gra58] andde Bruijn sequences. A survey about Gray codes can be found in [Sav97].

In this thesis we focus on the generation of words by usingde Bruijn sequences. Its first known

description appears as a Sanskrit wordyaḿatárájabh́anasalaǵamwhich was a memory aid for

Indian drummers, where the accented/unaccented syllables represent long/shorts beats, so all

possible triplets of short and long beats are included in the word. De Bruijn sequences are also

known as “shift register sequences” and were originally defined by N. G. De Bruijn for the

binary alphabet [dB46]. These sequences have many different applications, such as memory

wheels in computers and other technological devices, network models, DNA algorithms,

pseudo-random number generation, modern public-key cryptographic schemes, to mention a

few [Gol67, Ste61, BDE97, CDG92]. The literature about the generation of de Bruijn

sequence is extensive [Tul01, HM96, MEP96, Ral81, Etz86]. A good survey in this topic

appears in [Fre82].

One of the most interesting and efficient algorithm to construct a de Bruijn sequence is known
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Figure 1.1: De Bruijn sequence of span 5 over the binary alphabet

as theFredricksen and Maiorana’s Theorem(sic.) [FM78]. It consists simply in to concatenate

in lexicographical order theLyndon wordsof length dividingn. The de Bruijn sequence

obtained by this algorithm has another interesting property: it is the lexicographically minimal

de Bruijn sequence. This algorithm was proved to be efficient in [RSW92]. An slightly

different version of this algorithm was obtained by Duval [Duv83] and proved efficient in

[BP94].

In this thesis we study the generation of all words in a setD of words of lengthn by using

cyclic words. We start in Chapter 2 withD being the words in{0,1}n not containing the factor

00. In this case we prove that a de Bruijn sequence forD exists, that is, a cyclic sequence such

that its set of factors of lengthn is the set of words without 00 as factor. Among the

exponentially many de Bruijn sequences forD we also found the lexicographically minimal

one. Moreover, in this case the minimal sequence can be constructed efficiently by

concatenating Lyndon words of length dividingn without 00 as factor.

The main combinatorial tool used in the study of de Bruijn sequences arede Bruijn graphs.

Besides its use in the context of de Bruijn sequences, they are also used as models for

transportation networks, DNA Algorithms and computer networks to mention a few. The main

literature about properties of de Bruijn graphs can be founded in [BLS97, LXZ00, BF91].
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References on generalizations are in [BDE97, Fre92, PSW01, DH88]. In Chapter 3 we study

the existence of de Bruijn sequences for an arbitrary subsetD of words of lengthn over an

alphabetA. In this case, de Bruijn sequence forD is a cyclic sequence such that its set of

factors of lengthn is exactlyD. We first extend the notion of de Bruijn graphs to arbitrary sets

D ⊆ An. This generalization retains the main properties of de Bruijn graphs, in particular, the

existence of de Bruijn sequences forD is related to the existence of Eulerian trails in the de

Bruijn graph forD. Using this representation of de Bruijn sequences, we obtain a

characterization of subsetsD admitting a de Bruijn sequence forD together with an algorithm

to construct one of them.

Secondly, by using techniques of symbolic dynamics, we obtain bound for the cardinality of de

Bruijn sequences. It is done by enumerating the Eulerian trails over the corresponding de

Bruijn graph.

The Fredricksen and Maiorana’s algorithm can be seen as a greedy algorithm to find the

minimal label among the labels of all Eulerian trails over de Bruijn graphs of spann. In

Chapter 4 we start by considering this strategy in de Bruijn graphs for arbitrary setsD and we

obtain a characterization of those setsD where this strategy produce a minimal de Bruijn

sequence. Unfortunately this efficient strategy does not always work.

In the last section of Chapter 4, we consider labelled Eulerian digraphs and the labels of its

Eulerian trails. These concepts generalize de Bruijn graphs and de Bruijn sequences,

respectively. We present an algorithm to find for a labelled Eulerian digraph the minimal label

among all labels of its Eulerian trails.

In spite of the fact that the number of Eulerian trails is exponential with respect to the number

of arcs, our algorithm finds the Eulerian trail of minimal label linearly in terms of the number

of arcs.
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Publications and Structure of the Thesis

The results of each chapter are published or submitted to internatinal journals and conferences.

The results of Chapter 2 appears in ADVANCES IN APPLIED MATHEMATICS, published by

Elsevier Science. An article with the results of Chapter 3 is in revision process in

INFORMATION PROCESSINGLETTERS(published by Elsevier Science) and a preliminary

version of this article has been presented in 4TH INTERNATIONAL CONFERENCE ON

COMBINATORICS ON WORDSand published by TUCS General Publications. The results of

Chapter 4 appears in two articles, the first one has been presented at the conference WG 2004,

GRAPH-THEORETICCONCEPTS INCOMPUTERSCIENCE and published by SPRINGER

LECTURENOTES IN COMPUTERSCIENCE; the second article has been published as a

technical report by CENTER OFMATHEMATICAL MODELING, SANTIAGO , CHILE and is

actually submitted to a conference.

Due to copyright restrictions, each chapter includes the full text of each publication, preceded

by an introductory section. Exceptionally, in Chapter 3 we append at the end of the chapter

some unpublished results presenting some properties about the cardinalities of the

combinatorial objects discussed in the chapter. We finish with conclusions and the

bibliography of the thesis.
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ON FREDRICKSEN AND M AIORANA ’ S

THEOREM

2.1 Introductory notes

There are many algorithms to construct a De Bruijn sequencen. The first known was given by

Martin in [Mar34], but the most simple and interesting of this algorithms is the theorem of

Fredricksen and Maiorana [FM78]. This theorem proves that the concatenation of theLyndon

wordsof length dividingn in lexicographical order, is a de Bruijn sequence of spann.

Moreover, this sequence is minimal lexicographically between all de Bruijn sequences of span

n. This algorithm is efficient because Lyndon words can be generated efficiently [RSW92].

In our interest to generalize the concept of de Bruijn sequence to a particular set of words, we

found a particularity of this algorithm. For a givenn, if we concatenate in lexicographical

order the subset of Lyndon words not containing two consecutive 0, we obtain a sequence such

that the set of factors of lengthn is the set of cyclic words inAn not containing two consecutive

0. However, for the symmetrical case (forbidding two consecutive 1) we do not obtain this

property.

This remark turned our attention to this theorem. The original proof of this theorem is a greedy

algorithm obtaining a de Bruijn sequence. In Section 2.2 we present an alternative proof of the

theorem of Fredricksen and Maiorana. In this alternative proof we show how to find the exact

position of each factor of lengthn in this de Bruijn sequence. This improvement in the proof

also allow us to study the factors of a section of the de Bruijn sequence, which explains the

existence of a de Bruijn sequence when we forbid 00 or 11.

For more information about generating de Bruijn sequences and words, see [SR03, CRS+00,
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RS99, Saw01, Saw03, Shi81, Tul01, HM96, MEP96, Ste61, dBE48, CDG92, BP94, FK77].
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2.2 Full paper:

On the Theorem of Fredricksen and Maiorana about de

Bruijn Sequences

In: Advances in Applied Mathematics

c© 2004 Elsevier B.V.

Volume 33, Number 2, Pages 413–415

doi:10.1016/j.aam.2003.10.002

9



Abstract

This work gives an alternative proof for the theorem of Fredricksen and Maio-

rana (Discrete Mathematics, 23 (1978), 207-210) about constructing a de Bruijn

sequence by concatenation of the Lyndon words in lexicographic order. This proof

gives the exact position of all the words in the sequence, and allows us to extend this

result to the concatenation of any number of the last Lyndon words in increasing

order.

2.2.1 Introduction

Let A be a finite set with a linear order<. A wordon the alphabetA is a finite sequence of

elements ofA. The length of a wordw∈ A∗ is denoted by|w|. A word p is said to be aprefixof

a wordw if there exists a wordu such thatw = pu. The prefixp is proper ifp 6= w. The

definition for asuffixis symmetrical.

The setA∗ of all the words on the alphabetA is linearly ordered by the lexicographic order

induced by<. By definition,x < y if eitherx is a prefix ofy or if x = uav, y = ubwwith

u,v,w∈ A∗, a,b∈ A anda < b. A basic property of the lexicographic order is the following: if

x < y and ifx is not a prefix ofy, thenxu< yv for all wordsu,v.

Two wordsx,y areconjugatedif there exist wordsu,v in A∗ such thatx = uvandy = vu.

Conjugacy is an equivalence relation inA∗. A word is said to beminimal if it is the smallest in

its conjugacy class. A word isprimitive if it is not a proper power, i.e., if it is not of the formun

for u∈ A∗ andn≥ 2. A Lyndon wordis a word that is both primitive and minimal.

A de Bruijn sequence of spann is a stringBn of length|A|n such that all the words of lengthn

are present as substrings ofBn exactly once. A very important question about de Bruijn

sequence is how to generate them efficiently (see [Fre82] for a survey in this subject). One of

the most efficient and elegant solutions to this problem is given in [FM78], and it is achieved

10



by the concatenation in lexicographic order of the Lyndon words whose lengths dividen.

In this work, we give an alternative proof of this theorem giving the exact position of all words

in the sequence, and presenting some conditions for the existence of a de Bruijn sequence by

concatenation of Lyndon words. These conditions allow us to conclude on the construction of

a de Bruijn sequence by concatenating any number of the last Lyndon words in the

lexicographic order.

2.2.2 The theorem of Fredricksen and Maiorana

Theorem 2.2.1.For a given n, the lexicographic concatenation of Lyndon words of length

dividing n generates a de Bruijn sequence of span n.

Proof. Let a andz be the minimal and the maximal letters in the alphabetA, let σ be the usual

shift operator and letBn be the de Bruijn sequence of spann.

We will prove that for any minimal wordw of lengthn, all its conjugated wordsσi(w), i =

0. . .n−1, are substrings ofBn.

Let w = w1 . . .w jzn− j be a minimal word, withw j < z. First, we will show that the lastn− j

conjugated words are substrings ofBn. Note that these words have the formziw1 . . .w jzn− j−i ,

for i = 1. . .n− j.

Let v be the minimal Lyndon word with prefixw1 . . .w jzn− j−i . Then, the previous minimal

word in the lexicographic order has the formu = u1 . . .un−izi with u1 . . .un−i < w1 . . .w jzn− j−i .

Hence, the Lyndon word beforev has suffixzi , and thenziw1 . . .w jzn− j−i is a substring ofBn.

Now we will prove this for the firstj−1 rotations. Ifw is not a Lyndon word (is not primitive),

let w̄ be the primitive root ofw and letl be its length. Note that ¯w has the form ¯w1 . . . w̄ j ′zl− j ′

with l − j ′ = n− j. If w̄ 6= z then the next Lyndon word in lexicographic orderx has the form

x = w̄
n
l −1w1 . . .w j ′−1(w j ′ + 1)b j ′+1 . . .bl , soσi(w) is a substring of ¯wx for i = 0. . . j −1. The

11



case ¯w = z is trivial.

If w is primitive, letx be the next minimal word in lexicographic order (not necessarily primi-

tive). Thereforex has the formx1 . . .x j−1(x j +1)b j+1 . . .bn and in this caseσi(w) is a substring

of wx for i = 0. . . j−1. If x is primitive, thenwx is a substring ofBn and we are done, otherwise,

by the previous argument,x is a prefix ofx̄y wherey is the next Lyndon word in lexicographic

order, hencewx is a substring ofwx̄yand therefore it is a substring ofBn.

Given a set{Li}i∈I of Lyndon words whose lengths dividen, we can naturally associate a

language to this set composed by words of lengthsn corresponding to all conjugated words of

Li , if |Li |= n, and all conjugated words of(Li)r , if |Li |= n/r. A de Bruijn sequence generating

this language will be called a “partial”-de Bruijn sequence.

Those languages are interesting because given a setF of forbidden blocks, the language of

circular words not having a substring inF is exactly the language associated to Lyndon

circular words not having a substring inF . This kind of language is know assubshift of finite

typeand is the fundamental concept of the symbolic dynamic.

Corollary 2.2.2. Let L1, . . . ,Lm be the Lyndon words of An of length dividing n ordered in

lexicographic order, then for any s< m, LsLs+1 · · ·Lm is a “partial”-de Bruijn sequence.

Proof. We will prove that all rotations of a minimal wordw are substrings of the sequence.

If w is not a Lyndon word (i.e. if it is a power of a Lyndon wordLk with |Lk| < n) then by the

previous proof we know that all rotations ofw are contained inLk−1LkLk+1. Hence, we only

have to check the casei = s, but in this case, form> 2 we have thatzn is a suffix of the sequence,

and then we have enoughz letters to obtain all the rotations ofw beginning withz.

Let w = w1 . . .w jzn− j be a Lyndon wordLk with w j < z. Again by the previous proof, we know

that the firstj−1 rotations ofw are contained inLkLk+1 . . .Lm and so we only need to check the

lastn− j conjugated words, which have the formziw1 . . .w jzn− j−i for i = 1. . .n− j.

12



By the previous proof, if the minimal Lyndon word having prefixw1 . . .w j is included in the

sequence, then we know that all the rotations ofw are substrings of the sequence, on the contrary

we would havew1 . . .w j < Ls≤ w1 . . .w jzn− j , which means that the first Lyndon word in the

sequences has the formLs = w1 . . .w jb j+1 . . .bn and thereforezn− j−iw1 . . .w j is a substring of

the sequence.

It remains to check the rotations of the formziw1 . . .w jzn− j−i for i = 1. . .n− j − 1. If the

minimal Lyndon word having prefixw1 . . .w jz is included in the sequence then we are done.

If not, w1 . . .w jz< Ls≤ w1. . .w jzn− j , in which caseLs = w1 . . .w jzbj+2 . . .bn. Therefore we

conclude thatzn− j−1w1 . . .w jz is a substring of the sequence.

We can repeat this argument until have a minimal Lyndon word with prefixw1 . . .w jzt , in which

case all the remaining rotationziw1 . . .w jzn− j−i for i = 1. . .n− j − t will be substrings of the

sequence. We know that such at exists becauseLS≤ w1 . . .w jzn− j .

13



GENERALIZATION OF DE BRUIJN

SEQUENCES AND DE BRUIJN GRAPHS

3.1 Introductory notes

In the Chapter 2 we construct the de Bruijn sequence generating all words of a fixed length

without the factor 00. This fact motivates us to generalize the definition of de Bruijn sequence

in order to generate a particular set of wordsD of a fixed length.

As in the example of Chapter 2, we are interested especially in setsD of words defined as the

set of words without a (one or more)Forbidden Factor. These sets of words are known as the

languages ofsubshifts of finite typeand is the basic object in the area of symbolic dynamics.

In this chapter we present a generalization of de Bruijn sequence in order to study these cases.

It is not difficult to see that only some setsD have a de Bruijn sequence. Hence we

characterize the setsD with a de Bruijn sequence.

In the case of subshifts of finite type, we characterize the sets of forbidden words such that the

language obtained has a de Bruijn sequence, and we give an algorithm to produce a de Bruijn

sequence producing the periodical words in the language of a subshift of finite type.

All this results use a graph-theoretic interpretation of de Bruijn sequence, based in thede

Bruijn graph, which appeared first implicitly in [FSM94] and explicitly in [dB46, Goo46]

independently. Among its many applications, the principal one is as a model for transportation

networks. That is because de Bruijn graph has an interesting property: the shortest route from

one vertex to another is completely defined by the labels of the vertices. This property is used

all along the paper associated to this chapter and is one of the main ingredient in order to prove

14



our results.

For more information about the properties of de Bruijn graphs, see

[BLS97, BDE97, LXZ00, BF91, Fre92, Myk72]
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3.2 Full paper:

De Bruijn Sequences and De Bruijn Graphs for a

General Language

In revision: Information Processing Letters

c© 2005 Elsevier
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Abstract

A de Bruijn sequence of spann is a cyclic string such that all words of lengthn

appear exactly once as factors of this sequence. We extend this definition to a subset

of words of lengthn, characterizing for which subsets exist a de Bruijn sequence.

We also study some symbolic dynamical properties of these subsets extending the

definition to a language defined by forbidden factors. For these kinds of languages

we present an algorithm to produce a de Bruijn sequence. In this work we use

graph-theoretic and combinatorial concepts to prove these results.

3.3 Introduction

Given a setD of words of lengthn, a de Bruijn sequence of spann is a periodic sequence such

that every word inD (and no othern-tuple) occurs exactly once. Its first known description

appears as a Sanskrit wordyaḿatárájabh́anasalaǵamwhich was a memory aid for Indian

drummers, where the accented/unaccented syllables represent long/shorts beats, so all possible

triplets of short and long beats are included in the word. De Bruijn sequences are also known

as “shift register sequences” and were originally studied by N. G. De Bruijn forD = {0,1}n

[dB46]. These sequences have many different applications, such as memory wheels in

computers and other technological devices, network models, DNA algorithms, pseudo-random

number generation, modern public-key cryptographic schemes, to mention a few (see

[Ste61, BDE97, CDG92]). Typically, de Bruijn sequences have been studied over an arbitrary

alphabetA considering the set of all then-tuples, that is,An. There is an exponential number of

de Bruijn sequences in this case, but only a few can be generated efficiently.

In this work we generalize the definition of de Bruijn sequence for any setD, characterizing

those setsD for which a de Bruijn sequence exists. In section 3.5 we study some symbolic

dynamical properties of these sets, extending our results to languages defined by forbidding
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some factors. Finally in section 3.6 we present an algorithm to produce a de Bruijn sequence

for these kinds of languages.

3.4 Definitions and generalizations

Let A be a finite set. Aword won the alphabetA is a finite sequence of elements ofA. For a

wordw, its length is denoted by|w|.

A word p is said to be afactorof a wordw if there exist wordsu,v∈ A∗ such thatw = upv. If

u is the empty word (denoted byε), thenp is called aprefixof w, and ifv is empty then is

called asuffixof w.

Let D be a set of words of lengthn+1. We call this set adictionary. A de Bruijn sequence of

span n+1 for D is a cyclic wordBD of length|D| such that all the words inD are factors of

BD . In other words,

{(BD)i . . .(BD)i+n mod|D||i = 0, . . . , |D|−1}= D

De Bruijn sequences are closely related to de Bruijn graphs. Thede Bruijn graph of span n for

D, denoted byGD , is the directed graph with vertex set

V(GD) = {u∈ An|u is a prefix or a suffix of a word inD}

and arc set

E(GD) = {(αv,vβ)|α,β ∈ A,αvβ ∈D}

This graph was first defined implicitly in 1894 by Flye [FSM94] and it was explicitly detailed

in 1946 by de Bruijn [dB46] and Good [Goo46] independently. In both cases the dictionary
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studied wasD = An+1. The first use of this graph for a subset ofAn+1 was given in [Rau83].

From this definition, we can do a bijection between the arcs ofGD and the words inD: to an

arc going fromαv to vβ we associate the wordαvβ. Using this bijection we can interpret the

graphGD as the union of non-trivial components of the original de Bruijn graph forAn+1 after

removing the arcs corresponding to words not inD (see Figure 3.1).

We label the graphGD using the following functionl : if e= (αv,vβ) thenl(e) = β. This

labeling has an interesting property:

Remark3.4.1. Let P = e0 . . .em be a walk overGD of lengthm≥ n. ThenP finishes in a vertex

u if and only if u is a suffix ofl(P) = l(e0) . . . l(em).

This property is essential to understand de Bruijn graphs and will be used in all the proofs in

this work. Therefore we mention a few important consequences of this property:

Corollary 3.4.2. All the walks of length n+1 finishing at vertex u have labelαu for someα∈A.

Corollary 3.4.3. If u and v are vertices of a cycle C, then u and v are factors of the infinite word

l(C)∞.

These consequences and the bijection between arcs and words inD explain the relation

between de Bruijn graphs and de Bruijn sequences:

Lemma 3.4.4. There exists a de Bruijn sequence BD if and only if GD is an Eulerian graph.

Moreover, the labels of Eulerian cycles over GD are the de Bruijn sequences forD.

Proof. Let C be an Eulerian cycle ofGD . As we explained before, any wordw ∈ D has a

corresponding arce in GD . By Remark 3.4.1 any sub-walk of lengthn+1 of C finishing with

the arce has labelw, therefore any word inD is a factor ofl(C). As the length ofC is the

number of words inD we conclude thatl(C) is a de Bruijn sequence forD.

Conversely, letB be a de Bruijn sequence forD. Any factor of lengthn+ 1 is a word ofD

so there is a corresponding arc inGD . Moreover, two consecutive factorsαv andvβ have two
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corresponding arcs such that the head of the first is the tail of the second one. ThereforeB has

a corresponding closed walk overGD with labelB. Since every factor is different, every arc in

the walk is different, and since every word ofD is a factor ofB, every arc ofGD is in the walk.

We conclude that the closed walk overGD is an Eulerian cycle of labelB

By previous lemma, given a dictionaryD, the existence of a de Bruijn sequence of spann+1

is characterized by the existence of an Eulerian cycle overGD . A graph has an Eulerian cycle

if and only if it is strongly connected and at each vertex the in-degree and the out-degree are

equal. Therefore we can write these conditions as restrictions overD, characterizing the

dictionaries with a de Bruijn sequence.

Corollary 3.4.5. A dictionaryD ⊆ An+1 has a de Bruijn sequence of span n+1 if and only if

1. For any u,v∈D there exists a word w∈ A∗ such that u is a prefix of w, v is a suffix of w

and any factor of length n+1 of w is inD.

2. For any word x∈ An there exists a bijection between words inD having x as a suffix, and

words inD having x as a prefix.

Proof. By the bijection between arcs and words inD, the first condition assures the existence

of a walk (of labelw) between any two arcs. HenceGD is strongly connected. For any word

x, a word inD havingx as suffix (prefix) has a corresponding arc terminating (starting) atx.

Therefore, the second condition assures that the in-degree and the out-degree at any vertex are

equal

3.5 Symbolic dynamics

Symbolic dynamics gives a natural framework to study the setsD with a de Bruijn sequence.
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A first class of dictionaries with a de Bruijn sequence are the set of factors of lengthn+1 in a

bi-infinite sequenceu over an alphabetA. We denoted this set byLn+1(u).

A factorv of lengthn in u is right extensible(resp. left extensible) ifvα (resp.αv) is in

Ln+1(u) for someα ∈ A. These concepts have an important relation with the complexity of the

sequence (see [Cas97]).

For any sequenceu, is easy to see that the dictionaryD = Ln+1(u) satisfies the first condition

of Corollary 3.4.5. Also, the second condition is satisfied if and only if the number of left and

right extensions of any factor of lengthn are equal. Therefore, we obtain the next theorem.

Theorem 3.5.1.Let u be a bi-infinite sequence. For any n, the dictionaryD = Ln+1(u) has

a de Bruijn sequence if and only if any factor of length n has equal number of left and right

extensions.

Another class of dictionaries with a de Bruijn sequence is given by the language of subshifts.

Given an alphabetA, a full shift AZ is the set of all bi-infinite sequences of symbols fromA.

Let F be a collection of (finite) words, we call these words “forbidden words”. A shiftX = XF

is the subset of sequences ofAZ which do not contain any factor fromF . If F is finite, we say

thatX is a subshift of finite type.

Let Ln(X) be the set of factors of sequences inX of lengthn. The language of a shiftX is the

setL of the factors of any finite length of sequences inX.

L(X) =
∞[

n=0

Ln(X)

A shift X is irreducible if for every pair of wordsu,v∈ L(X), there is aw∈ L(X) such that

uwv∈ L(X).

Given a labeled graphG, let XG be the set of labels of all bi-infinite walks overG. It is known

thatXG is a (sofic) shift [LM95], however in the case of de Bruijn graphs, we show thatXGD is

a subshift of finite type.
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Figure 3.1: Examples in a binary alphabet: De Bruijn sequence of span 2,GD for D =
{000,001,010,100,110} and its essential subgraph.

Lemma 3.5.2.Let D ⊆ An+1 be a dictionary. Then XGD is a subshift of finite type. Moreover,

XGD = XF with F = An+1\D

Proof. SinceLn+1(XGD )⊆D we have thatXGD ⊆XF . Let x∈XF , any factor of lengthn+1 of

x is in D so each factor has a corresponding arc inGD . Moreover, two consecutive factorsαv

andvβ of lengthn+1 have two corresponding arcs inGD such thatv is the head of the first and

the tail of the second one. Therefore there exists a walk overGD with labelx, soXF ⊆ XGD

Corollary 3.5.3. Let F be a set of forbidden words of length at most n+ 1. Then forD =

Ln+1(XF ) we have that XF = XGD .

Proof. We can extendF to a subsetF ′ ⊆ An+1 such thatXF = XF ′. SinceD = An+1\F ′ we

conclude

A vertexv is strandedif either no arc starts atv or no arc terminates atv. A subgraph is

essentialif no vertex of the graph is stranded (see Figure 3.1). Obviously a bi-infinite walk

does not use stranded vertices, so for any graphG there exists an essential subgraphG′ such

thatXG = XG′. Therefore in the rest of this work we only consider setsD such thatGD is

essential.

Note that ifGD is essential then for any wordw∈D there exists a walk overGD with labelw.

In order to obtain setsD with a de Bruijn sequence,GD needs to be an Eulerian graph, in
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particular it needs to be strongly connected. This property has an interpretation in symbolic

dynamics:

Lemma 3.5.4.LetD be a dictionary. XGD is irreducible if and only if GD is strongly connected.

Proof. SinceGD is essential, the strongly connected components have size at least 2. LetXGD

be an irreducible subshift of finite type. For any two arcse, f of GD there are two corresponding

wordswe,wf in D. SinceXGD is irreducible, there exists a word ˆw such thatweŵwf is a factor

of XGD . In other words, there exists a walk overGD with labelweŵwf . Therefore there exists a

walk with labelŵwf connectinge to f , soGD is strongly connected.

Conversely, ifXGD is not irreducible, there exist factorsw1,w2 such that∀z∈ A∗, w1zw2 is not a

factor ofXGD . But w1 is the label of a walk overGD finishing at a vertexv1 andw2 is the label

of a walk starting at a vertexv2, therefore there is no walk overGD connectingv1 to v2, hence

GD is not strongly connected

Let XF be an irreducible subshift of finite type. IfD = Ln+1(XF ) then the corresponding

graphGD is not necessarily an Eulerian graph.

For example, forA = {0,1} andF = {11} a vertex 0w1 has two in-going arcs (corresponding

to words 00w1 and 10w1) but only one out-going arc (corresponding to the word 0w10).

Therefore we will study the subset ofperiodicwords inLn+1(XF ) because for this set we

obtain an Eulerian de Bruijn graph.

Let w∈ A∗ be a word, we say thatw is aperiodicword ofXF if and only if the bi-infinite

sequencew∞, obtained by infinite concatenations ofw, is in XF . The set of periodic words of

lengthn is denoted byPn(XF ).

Theorem 3.5.5.Let F be a set of forbidden words of length at most n+1 andD = Pn+1(XF ).

If XGD is irreducible then there exists a de Bruijn sequence for the dictionaryD.

Proof. By Lemma 3.5.4,GD is strongly connected. Letu ∈ An be a vertex ofGD . Any arc
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leavingu with labelα corresponds to a worduα ∈ D. Sinceuα is a periodic word,αu is also

in D. Therefore there exists an arc going intou corresponding to the wordαu, which implies

that the in-degree ofu is greater or equal to out-degree ofu. The same argument proves that

the out-degree ofu is greater or equal to the in-degree ofu, concluding thatGD is an Eulerian

graph

Note that not all irreducible subshifts of finite have a de Bruijn sequence forD = Pn+1(XF ).

For example, forA = {0,1} andF = {010} the subshift of finite typeXF is irreducible but

XGD is not irreducible, becauseGD has two strongly connected components.

3.6 Constructing a de Bruijn sequence for subshifts.

Let XF be an subshift of finite type andD = Pn+1(XF ) such thatXGD is irreducible. In this

section we study an efficient generation of a de Bruijn sequence forD.

Even in the unrestricted case (whereF = /0) this is an interesting problem (see [Fre82] for a

survey on this subject). One of the most elegant and efficient solutions in the unrestricted case

is given in [FM78] and usesLyndon words.

Let < be a linear order over alphabetA. The setA∗ of all words on the alphabetA is linearly

ordered by the lexicographical order induced by the order< onA. A word w is a Lyndon word

if and only if ∀u,v such thatw = uv, thenw < vu.

The algorithm of Fredricksen and Maiorana consist of to concatenate in increasing

lexicographical order the Lyndon words of length dividingn. This is a linear time algorithm

because the Lyndon words can be generated efficiently (see [RSW92]).

We always can construct the graphGD and apply one of the known results about constructing

an Eulerian cycle to obtain a de Bruijn sequence, however the construction ofGD is not

efficient. Therefore in this section we study the structure ofGD in order to obtain an algorithm
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to construct a de Bruijn sequence only using the words inD.

The set of arcs of an Eulerian graph can be partitioned in cycles. In the particular case ofGD

these cycles have a given length.

Theorem 3.6.1.Let F be a set of forbidden words of length at most n+1 andD = Pn+1(XF )

such that GD is the de Bruijn graph of span n forD. Then the cycles of length dividing n+ 1

partition the set of arcs of GD .

Proof. We prove that any arc of the graph is in one and only one cycle of length dividingn.

Let ebe an arc from the vertexau to the vertexubwith a,b∈A (then,l(e) = b). By construction

of the graph, there is a walk of lengthn from vertexub to vertexau with labelau. Therefore,

the union of this walk with the arce produces a closed walk of lengthn+1 with labelaubcor-

responding to one or more repetitions of a cycle of length dividingn+1, proving the existence

of one cycle.

Let us suppose now that there are two cyclesC andC′ of lengths dividingn+1 using the arce.

Let f be an arc ofC andg an arc ofC′ with tail at the same vertexu and different heads. Since

e is in both cycles, by Corollary 3.4.2 the walks of lengthn from the head ofe to the tail ofe

using only the arcs ofC andC′ must have the same label. Therefore the label ofl( f ) = l(g) but

in this case the head off and the head ofg are the same vertex, producing a contradiction. This

proves the uniqueness of the cycles

Corollary 3.6.2. The set of Lyndon words of length dividing n+1 in L(XF ) corresponds to a

partition of the set of arcs of GD .

Proof. Let C be a cycle of lengthd with d dividing n+ 1 and letw be its label in such a way

that∀u,v such thatw = uv, we have that eitherw = vuor w < vu. We only have to prove thatw

is not a repetition of a smaller wordu.

Let us assume thatw = ui for an integeri ≥ 2 and letx andy be two vertices ofC at distance|u|
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overC such that the walk ofC from x to y has labelu. Since both vertices are inC, x andy are

factors of lengthn of the wordw(n+1)/d. Since the walk fromx to y has labelu, u is a suffix ofy.

Moreover, sincew(n+1)/d = ui(n+1)/d, uu is a suffix ofy thenu is also a suffix ofx, concluding

thatx = y.

Therefore, every cycle in the partition has a different label which is a Lyndon word of length

dividing n+1.

It remains to prove that to each Lyndon word, one can associate a cycle. But this can be proved

using cardinality considerations. Indeed, a periodic word of lengthn+1 has either least period

n+1 or least periodd with d dividing n+1. Therefore,

|Pn+1(XF )|= ∑
d|n+1

|{words with least periodd}|

Now, a word with least periodd is a Lyndon word or one of thed−1 rotations of a Lyndon

word of lengthd. Hence,

∑
d|n+1

|{words with least periodd}|= ∑
d|n+1

d · |{Lyndon words of lengthd}|

Since|E(GD)|= |Pn+1(XF )| we conclude.

Now we are prepared to construct an algorithm producing a de Bruijn sequence for

D = Pn+1(XF ).

Given a partition in cycles of an Eulerian graph, the following strategy produces an Eulerian

cycle: we can start from an arc and follow the corresponding cycle in the partition, until we

reach an intersection with another cycle in the partition. At this point we follow the other cycle

and when we return to the intersection we continue with the original cycle. Using this

procedure recursively we construct an Eulerian cycle.

By Corollary 3.6.2, we can reproduce this strategy in terms of the Lyndon words of length
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diving n+1 in L(XF ) obtaining Algorithm 3.6.1 producing a de Bruijn sequence for

D = Pn+1(XF ) without constructing the graphGD .

Algorithm 3.6.1 Produce a de Bruijn sequence using the Lyndon words of the language.

INPUT : L = {L1, . . . ,Lk} Lyndon words inL(XF ) of length dividingn+1.
(1) Size← ∑ |Li |
(2) u← Li for anyLi ∈ L such that|Li |= n+1
(3) L← L\u
(4) B← uu
(5) while L 6= /0
(6) for α = 1 to |A|−1
(7) w← B j−n−1 . . .B jB j+1

α

(8) w′← LYNDON(w)
(9) if w′ ∈ L then
(10) B← B1 . . .B jwnw1 . . .w|w′|−1B j+1 . . .
(11) L← L\w′

(12) end if
(13) end for
(14) end for
(15) B← B1 . . .BSize

whereaα = a+α mod|A| and LYNDON(w) return the Lyndon wordz such thatz∞ = w∞.

The function LYNDON() in the algorithm can be implemented with an on-line automata

accepting when a suffix ofB is a factor of lengthn of rotations of the words inL, allowing to

do this step in a constant time (see [CHL01]). Hence, steps(7−12) in the algorithm have

complexityO(n) and these steps are repeated at most|A| · |L| times. Therefore, the complexity

of the algorithm isO(|A| · |L| ·n). SinceSize= ∑L |Li | is the size of the input (and also the size

of the output) andSizeis at mostn· |L|, we conclude that our procedure is a linear time

algorithm. Note that the input of the algorithm can also be constructed in an efficient way (see

[RS00]).
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Example3.6.3. Example of the algorithm for the Golden Mean system (F = {11}) with length

n = 6 and Lyndon wordsL = {0,000001,000101,001,01}. In the figure we can see the parti-

tion in cycles of the de Bruijn graph corresponding to the Lyndon words inL. The graphical

representation of the algorithm starts at vertex 00001.
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000001 We start with the first word inL.

↓ 000001 In this case 000011 is not inL.

0 ↓ 00001 here 000101 is inL, we include (100010)

0(100010)00001

01↓ 0001000001 here 001011 is not inL

010↓ 001000001 here 010101 is inL, we include(10)

0(10(10)0010)00001

0101↓ 0001000001 101011 is not inL

01010↓ 001000001 010101 was already included

010100↓ 01000001 101001 is not inL

0101000↓ 1000001 010000 was already included

01010001↓ 000001 100011 is not inL

010100010↓ 00001 000101 was already included

0101000100↓ 0001 001001 is not included, we include(100)

0(10(10)0010)0(100)0001

01010001001↓ 000001 010011 is not inL

010100010010↓ 00001 100101 is not inL

0101000100100↓ 0001 001001 was already included

01010001001000↓ 001 010001 was already included

010100010010000↓ 01 100001 is not inL

0101000100100000↓ 1 000000 is not included, we include(0)

0(10(10)0010)0(100)000(0)1

01010001001000000↓ 1 000000 was already included

010100010010000001↓ end.

010100010010000001 is a de Bruijn sequence
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3.7 Some cardinality results

In this section we present some cardinalities results obtained using known results in subshift of

finite type.

Let F be a finite set of forbidden factors. Over the subshift of finite typeXF , let WF
k (n) be set

of periodic factors of lengthn simply called “words”, letLF
k (n) be the set of Lyndon words of

lengthn and letNF
k (n) be the set of bi-infinite sequence of periodn simply called “necklaces”.

Note that the set of necklaces is the set of circular words of lengthn. We denote the

cardinalities of these sets byWF
k (n), LF

k (n) andNF
k (n) respectively.

The number of words in the language can be obtained using thezeta functionof a subshift of

finite type, this function is defined by

ζ(z) = exp

(
∑
i≥1

WF
k (i)
i

zi

)

For a subshift of finite type this function can be easily calculated using the adjacency matrixM

of its corresponding graph

ζ(z) =
1

det(Id−zM)

and then we can use the Taylor’s formula for obtain the number of words of lengthn in the

language:

WF
k (n) =

1
(n−1)!

dn

dzn logζ(z)
∣∣∣∣
z=0

(3.1)

We can also study the convergence of this number whenn go to infinity, which gives the
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0 1

Figure 3.2: Graphical representation of the “Golden Mean” subshift.

entropy of the system. The next equality is true for an irreducible subshift of finite type

limsup
n→∞

1
n

logWF
k (n) = h(X)

whereh(X) is the entropy of the subshift of finite type, which is equal in our case to the

logarithm of the largest eigenvalueλ of the adjacency matrix. This eigenvalue is called the

Perron eigenvalue of the system.

Moreover, if the subshift of finite type is irreducible and the lengths of periodical words are

relatively prime (gcd{i : WF
k (i) > 0}= 1) then the system ismixing, and then we can

approximateWF
k (n) by

WF
k (n) = (1+ρi(n))λn

whereρi(n)→ 0 asn→ ∞.

If the greatest common divisor of the number of words is not 1, there exists a similar but more

complicated formula. Nevertheless, in both cases we can estimate the number of words in the

language by

WF
k (n) = Θ(λn)

Example3.7.1. The Golden Mean is the subshift of finite type defined by a binary alphabet

A = {0,1} forbidding F = {11}. It has a graphical representation of two states 0 and 1, and

arcs from 0→ 0, 0→ 1 and 1→ 0 (see Figure 3.2), so its adjacency matrix is
[

1 1
1 0

]
. Hence the
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entropy of the subshift of finite type is

h(X) = log

(
1+
√

5
2

)

and its zeta function is

ζ(z) =
1

1−z−z2

Therefore, the number of words of lengthn is given by

WF
k (n) =

−1
(n−1)!

dn−1

dzn−1

(
2z+1

z2 +z−1

)∣∣∣∣
z=0

=
(

2

−1+
√

5

)n

+
(

2

−1−
√

5

)n

=
(1+
√

5)n +(1−
√

(5))n

2n

and its asymptotic behavior is given by

WF
k (n) = Θ

(
1+
√

5
2

)n

The words of lengthn are either rotations of Lyndon words of lengthn or powers of rotations

of Lyndon words of lengthd with d|n, so

WF
k (n) = ∑

d|n
d ·LF

k (d)

applying the M̈obius inversion formula we can obtain the number of Lyndon words

LF
k (n) =

1
n∑

d|n
µ(n/d)WF

k (d) (3.2)

whereµ is the Möbius function.
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The asymptotic behavior of this number is also given by the entropy of the system

limsup
n→∞

1
n

log
(

n·LF
k (n)

)
= h(X)

Also, using the fact thatLF
k (n)≤ 1/n∑n

d=1WF
k (d) we conclude thatLF

k (n) = O(λn/n), and as

LF
k (n)≥WF

k (n)/n we can estimate the number of Lyndon words in the language by

LF
k (n) = Θ

(
1
n

λn
)

For the number of necklaces of lengthn, we can use the Burnside Lemma for calculate it using

the periodicity of the words

NF
k (n) = 1/n

n−1

∑
i=0

pi

wherepi is the number of words of lengthn with periodi. Any word of lengthn has periodn,

so it is easy to see thatpi = pgcd(i,n). Also, if i|n the words of lengthn with periodi are the

powers of the words in the language of lengthi, sopi = pWF
k (i) and we obtain the following

formula:

NF
k (n) =

1
n

n−1

∑
i=0

WF
k (gcd(i,n))

Reordering the indices of the sum, we can group all indicesi with gcd(i,n) = d, which are

exactlyφ(n/d) whereφ is the Euler function. Hence, we obtain a formula for the number of

necklaces very similar to the number of Lyndon words.

NF
k (n) =

1
n∑

d|n
φ(n/d)WF

k (d) (3.3)

For the asymptotic behavior, asLF
k (n)≤ NF

k (n) = ∑d|nLF
k (d), we can use the same arguments
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as before to prove that

NF
k (n) = Θ

(
1
n

λn
)

Example3.7.2. For the Golden Mean, we obtain the following values

n 1 2 3 4 5 6 7 8 9 10 11

WF
k (n) 1 3 4 7 11 18 29 47 76 123 199

LF
k (n) 1 1 1 1 2 2 4 5 8 11 18

NF
k (n) 1 2 2 3 3 5 5 8 10 15 19

Note that even forn = 11 these values are very close to
(

1+
√

5
2

)n
, 1

n

(
1+
√

5
2

)n
and 1

n

(
1+
√

5
2

)n

respectively.
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M INIMAL DE BRUIJN SEQUENCE

4.1 Introductory Notes

The BEST (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte) Theorem (see page 42)

allows us to compute the number of Eulerian cycles inGD . Hence, we can compute the

number of de Bruijn sequence for a dictionaryD.

This number is exponential, in fact we prove that the number of de Bruijn sequence for

D = Pn(XF ) is

Ω
(
bλ−1c!λn−1

)

whereλ is the entropy ofXF .

Therefore, to find the minimal (lexicographically) de Bruijn sequence forD is a difficult

problem.

In the caseD = An, the minimal de Bruijn sequence of spann is given by the theorem of

Fredricksen and Maiorana. This sequence can also be obtained has a walk over the de Bruijn

graph in the following way: we start from the vertex with maximum label and we follow the

unvisited arc of minimum label. By the BEST theorem we will finish with an Eulerian cycle,

and by construction there is not another Eulerian cycle with a smaller label.

Based on this strategy, in Section 4.2 we study for which setsD the previous strategy over the

graphGD finishes with an Eulerian cycle (and therefore, with the minimal de Bruijn

sequence). From this analisys we remark that there are setsD for which there exists a de

Bruijn sequence but it can not be obtained using the previous strategy. For example, in Figure

4.1 we see an example where exists a de Bruijn sequence but previous strategy does not finish
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Figure 4.1: Example of de Bruijn graph forn = 3 andF = {0111}

with the minimal de Bruijn sequence because the arcs in grays are not visited.

In Section 4.3 we present an algorithm in order to find the Eulerian cycle of minimal

lexicographical label in a graph. This algorithm solve completely the problem of finding the

minimal de Bruijn sequence. Moreover, this algorithm apply not only for de Bruijn graphs, but

also for any Eulerian labeled digraph.
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Abstract

Let be the following strategy to construct a walk in a labeled digraph: at each

vertex, we follow the unvisited arc of minimum label. In this work we study for

which languages, applying the previous strategy over the corresponding de Bruijn

graph, we finish with an Eulerian cycle, in order to obtain the minimal de Bruijn

sequence of the language.

4.2.1 Introduction

Given a language, a de Bruijn sequence of spann is a periodic sequence such that everyn-tuple

in the language (and no othern-tuple) occurs exactly once. Its first known description appears

as a Sanskrit wordyaḿatárájabh́anasalaǵamwhich was a memory aid for Indian drummers,

where the accented/unaccented syllables represent long/shorts beats, so all possible triplets of

short and long beats are included in the word. De Bruijn sequences are also known as “shift

register sequences” and was originally studied by N. G. De Bruijn for the binary alphabet

[dB46]. These sequences have many different applications, such as memory wheels in

computers and other technological device, network models, DNA algorithms, pseudo-random

number generation, modern public-key cryptographic schemes, to mention a few (see

[Ste61, BDE97, CDG92]). Historically, de Bruijn sequence was studied in an arbitrary

alphabet considering the language of all then-tuples. There is a large number of de Bruijn

sequence in this case, but only a few can be generated efficiently, see [Fre82] for a survey

about this subject. In 1978, Fredricksen and Maiorana [FM78] give an algorithm to generate a

de Bruijn sequence of spann based in the Lyndon words of the language, which resulted to be

the minimal one in the lexicographic order, and this algorithm was proved to be efficient

[RSW92]. Recently, the study of these concepts was extended to languages with forbidden

substrings: in [RS00] it was given efficient algorithms to generate all the words in a language

with one forbidden substring, in [Mor03] the concept of de Bruijn sequences was generalized
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to restricted languages with a finite set of forbidden substrings and it was proved the existence

of these sequences and presented an algorithm to generate one of them, however, to find the

minimal sequence is a non-trivial problem in this more general case. This problem is closely

related to the “shortest common super-string problem” which is a important problem in the

areas of DNA sequencing and data compression.

In this work we study the de Bruijn sequence of minimal lexicographical label. In subsection

4.2.2 we present some definitions and previous results on de Bruijn sequences and the BEST

Theorem, necessary to understand the main problem, and we prove a result related with the

BEST Theorem which will be useful in the following subsections. In subsection 4.2.3 we study

the main problem, giving some results on the structure of the de Bruijn graph. Finally, in

subsection 4 we present some remarks and extensions of this work.

4.2.2 De Bruijn sequence of restricted languages

Definitions

Let A be a finite set with a linear order<. A wordon the alphabetA is a finite sequence of

elements ofA, whose length is denoted by|w|.

A word p is said to be afactorof a wordw if there exist wordsu,v∈ A∗ such thatw = upv. If

u is the empty wordε thenp is called aprefixof w, and ifv is empty then is called asuffixof w.

If p 6= w thenp is aproper factor, proper prefixor proper suffix, respectively.

The setA∗ of all the words on the alphabetA is linearly ordered by the alphabetic order

induced by the order< onA. By definition,x < y either ifx is a prefix ofy or if x = uav,

y = ubwwith u,v,w∈ A∗, a,b∈ A anda < b. A basic property of the alphabetic order is the

following: if x < y and ifx is not a prefix ofy, then for any pair of wordsu,v, xu< yv.

Given an alphabetA, a full shift AZ is the collection of all bi-infinite sequences of symbols
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from A. Let F be a set of words overA∗. A subshift of finite type(SFT) is the subset of

sequences inAZ which does not contain any factor inF . We will refer toF as the set of

forbidden blocksor forbidden factors.

Given a setF of forbidden blocks, in this work we will say that a wordw is in the language if

the periodical wordw∞, composed by infinite repetitions ofw, is in the language of the SFT

defined byF . The set of all the words of lengthn in the language defined byF will be

denoted byW F (n).

A SFT is irreducible if for every ordered pair of blocksu,v in the language there is a blockw

in the language so thatuwv is a block of the language.

A de Bruijn sequence of spann in a restricted language is a circular stringBD of length∣∣W F (n)
∣∣ such that all the words in the language of lengthn are factors ofBD . In other words,

{(BD)i . . .(BD)i+n−1 modn|i = 0. . .n−1}= W F (n)

These concepts are studied in [Mor03], extending the known results on subshifts of finite type

to this context. In particular two results are relevant in this work, the first one is a bound in the

number of words of lengthn in the language:

∣∣∣W F (n)
∣∣∣= Θ(λn)

where log(λ) is theentropyof the system (see [LM95]). The second result proves the existence

of a de Bruijn sequence:

Theorem 4.2.1.For any set of forbidden substringsF defining an irreducible subshift of finite

type, there exists a de Bruijn sequence of span n.

This last theorem is a direct consequence of the fact that the de Bruijn graph of spann is an

Eulerian graph. Thede Bruijn graphof spann, denoted byGD
n , is the largest strongly
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Figure 4.2: De Bruijn digraph of span 5 for the Golden Mean (F = {11})

connected component of the directed graph with|A|n vertices, labeled by the words inAn, and

the set of arcs

E =
{

(as,sb)|a,b∈ A,s∈ An−1,asb∈W F (n+1)
}

where the label of the arce= (as,sb) is l(e) = b. Note that if the SFT is irreducible, this graph

has only one strongly connected component of size greater than 1, so there is no ambiguity in

the definition.

There are not two vertices with the same label, hence from now we identify a vertex by its

label. IfW = e1 . . .ek is a walk overGD
n , we denote the label ofW by l(W) = l(e1) . . . l(ek),

and byl(W) j the concatenation of ofj timesl(W).

There exists a bijection between the arcs ofGD
n and the words inW F (n+1), because to each

arc with labela∈ A with tail atw′ ∈ An we can associate the wordw′a which is, by definition,

a word inW F (n+1). Equally if w′a is a word ofW F (n+1), with a∈ A, then there exists a

vertexw′ and an arc with tail at this vertex with labela.
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Furthermore, if a wordw is a label of a walk fromu to v thenv is a suffix of lengthn of uw. In

the same way, ifw∈W F (n+1) then there is a cycleC in GD
n with label l(C) such that

l(C)
n+1
|C| = w.

With all these properties it is easy to see that a de Bruijn sequence of spann+1 is exactly the

label of an Eulerian cycle overGD
n .

The BEST theorem

BEST is an acronym of N. G. de Bruijn, T. van Aardenne-Ehrenfest, C. A. B. Smith and W. T.

Tutte, the BEST Theorem (see [Tut84]) gives a correspondence between Eulerian cycles in a

digraph and its rooted trees converging to the root vertex.

Let r be a vertex of an Eulerian digraphG = (V,E), a spanning tree converging to the rootr is

a spanning tree such that there exists a directed path from each vertex to the root.

Given an Eulerian cycle starting at the root of an Eulerian digraph, if for every vertex ofG we

take the last arc with tail at this vertex in the cycle then we obtain a spanning tree converging to

the root. Conversely, given a spanning tree converging to the root, a walk overG starting at the

root and using the arc in the tree only if all the arcs with tail at this vertex has been used, is an

Eulerian cycle. A walk over the graph of this kind will be called a walk “avoiding the tree”.

The BEST Theorem proves that for every different spanning tree we have a different Eulerian

cycle. Therefore it also allows us to calculate the exact number of Eulerian cycles on a digraph,

which is given by

CF = MT ·
|V|

∏
i=1

(d+(vi)−1)!

whereMT is the number of rooted spanning trees converging to a given vertex. We bound the

second term by((d̄+−1)!)|V| whered̄+ is the mean of the outgoing degrees over all the
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vertices, so we have a lower bound to the number of de Bruijn sequences

CF = Ω
(
bλ−1c!λn−1

)

in particular, for a system withλ≥ 3 the number of the Bruijn sequences of spann is

exponential in the number of words in the language of lengthn−1. In the systems with

3 > λ > 1 this bound is generally also true, because the underestimated termMT is generally

exponential, for example, in the system without restrictions of alphabet{0,1}, this term is

equal to 22
n−1

.

Now, we define formally a walk “avoiding a subgraph”. Letr be any vertex. For each vertex

v 6= r in GD
n let ev be any arc starting atv. Let H be the spanning subgraph ofGD

n with arc set

{ev : v∈V(GD
n )\{r}}.

Is easy to see thatH is composed by cycles, subtrees converging to a cycle, and one subtree

converging tor. For a vertex not in a cycle ofH, we defineHv as the directed subtree

converging tov in H.

We define recursively a walk inGD
n whichavoid H. It starts at the root vertexr. Let v0e0 · · ·vi

be the current walk. If there is an unvisited arcei = (vi ,vi+1) not inH we extend the walk by

eivi+1. Otherwise we use the arcevi in H.

We say that a walk over the graphexhaustsa vertex if the walk use all the arc having the vertex

as head or tail.

The next lemma studies in which order the vertices are exhausted in a walk avoidingH

Lemma 4.2.2. Let W be a walk starting at vertex r avoiding H, let v be a vertex and let Wv

the subpath of W starting at vertex r and finishing when it exhausts the vertex v. Then for each

vertex u in Hv, u is exhausted in Wv.

Proof. By induction in the depth of the subtree with rootv. If v is a leaf ofH thenHv = {v}.
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If v is not a leaf andWv exhaustv, thenWv visit all arc (v,w) ∈ E, and therefore all the arcs

(u,v) ∈ E, applying induction hypothesis to all verticesu such that(u,v) ∈ E we prove the

result.

4.2.3 Minimal de Bruijn sequence

Let m= m1 . . .mn be the vertex ofGD
n of maximum label in lexicographic order. We are

interested in to obtain the Eulerian cycle of minimum label starting atm. In order to obtain this

cycle, we define the following walk: Starting atm, at each vertex we continue by the arc with

the lowest label between the unvisited arcs with tail at this vertex. A walk constructed by this

way will be called aminimal walk. By definition, there is no walk with a lexicographically

lower label, except its subwalks. In this subsection we characterize when a minimal walk

starting atm is an Eulerian cycle, obtaining the minimal de Bruijn sequence.

For each vertexv let e(v) be the arc with tail at the vertexv and with maximum label. LetT be

the spanning subgraph ofGD
n composed by the set of arcse(v), for v∈V(GD

n ), v 6= m. The

label ofe(v) will be denoted byγ(v).

Is easy to see that a minimal walk is a walk avoidingT, hence we can study a minimal walk by

analyzing the structure ofT.

Theorem 4.2.3.A minimal walk is an Eulerian cycle if and only if T is a tree.

Proof. A minimal walkW exhaustm, if T is a tree then by Lemma 4.2.2 all vertices ofT are

exhausted byW, henceW is an Eulerian cycle. Conversely, ifW is an Eulerian cycle, by the

BEST Theorem the subgraph composed by the last arc visited at each vertex is a tree, but this

subgraph isT, concluding thatT is a tree.

In the unrestricted case (whenW F (n) = An), the subgraphT is a regular tree of depthn where

each non-leaf vertex has|A| sons, therefore the minimal walk is an Eulerian cycle.
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In the restricted case, we do not obtain necessarily an Eulerian cycle, becauseT is not

necessarily a spanning tree converging to the root due to the existence of cycles (see Figure

4.3).

We will study the structure of the graphGD
n and the subgraphT, specially the cycles inT. The

main theorem of this subsection characterizes the label of cycles inT, allowing us to

characterize the languages where the minimal walk is an Eulerian cycle.

First of all, we will prove some properties of the de Bruijn graph to understand the structure of

the arcs and cycles inT.

Lemma 4.2.4.Let k≥ n+2. Let W= v0e0v1e1 · · ·ek−1vk be a walk in T . Then l(e0)≤ l(en+1).

Proof. Sincevn = l(e0) · · · l(en−1) we have thatl(e1) · · · l(en−1)l(en)l(e0) ∈W F (n+1). Hence

there exists an arc(vn+1,u) with label l(e0), wherevn+1 = l(e1) · · · l(en−1)l(en). By the defini-

tion of T, l(e0)≤ γ(vn+1) = l(en+1).

Corollary 4.2.5. Let C be a cycle in T . Then|C| divides n+1. Moreover for every vertex u in

C, uγ(u) = l(C)
n+1
|C| .

Proof. Let consider the walkW = v0e0 · · ·e|C|−1v|C| = v0e0 · · ·e(n+1)|C|−1v0e0v1 asn+1 repeti-

tions of the cycleC. From Lemma 4.2.4 we havel(e0) ≤ l(en+1) ≤ l(e2(n+1)) ≤ l(e(n+1)|C|) =

l(e0). Since we can start the cycle in any vertex we conclude thatl(ei) = l(e(n+1)+i) for every

i = 0, . . . , |C|−1. Hence|C| dividesn+1. The second conclusion comes from the fact that the

label of any walk of length at mostn ending in a vertexu is a suffix ofu.

Let u 6= m be a vertex. Among all the words which are prefix ofm and suffix ofu, let g(u) be

the longest one (notice thatg(u) could be the empty wordε and|g(u)|< n). Let

α(u) = m|g(u)|+1 be the letter following the end ofg(u) in m.

Notice that in the unrestricted case,|g(u)| is the distance over the graph from the vertexu to m.

This function will be essential in the study ofT. The next lemma give us a bound over the
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label of the arcs in terms of the functiong(·).

Lemma 4.2.6.For all pairs of adjacent vertices u and v, l(uv)≤α(u). Moreover, if l(uv) < α(u)

then g(v) = ε and if l(uv) = α(u) then g(v) = g(u)l(uv).

Proof. g(u) is a suffix ofu, andul(uv) ∈W F (n+ 1), so g(u)l(uv) is a prefix of a word in

W F (n+1). Sincem is the maximal word andg(u) is a prefix ofm we getl(uv)≤ α(u).

If l(uv) = α(u) theng(u)l(uv) is a prefix ofm and a suffix ofv. Henceg(u)l(uv) is a suffix

of g(v). Since by removing the last letter of a suffix ofv we obtain a suffix ofu we conclude

g(v) = g(u)l(uv).

We show that ifg(v) 6= ε thenα(u) ≥ l(uv). Let g(v) = g′(v)l(uv), theng′(v) is a suffix ofu

and a prefix ofm. Henceg′(v) is a suffix ofg(u). Thereforeg′(v)α(u) is a factor ofm. By

the definition ofg(v) and the maximality ofm g(v) is greater or equal (lexicographically) than

g′(v)α(u). We conclude thatα(u)≥ l(uv).

In the unrestricted case, whereT is a tree of depthn, all the arcs not inT go to a leaf. In the

general case we can define an analog to the leaves.

We say that a vertexu is afloor vertex ifg(u) = ε. Notice that in the unrestricted case the

leaves ofT are the floor vertices. We say that a vertexu is arestrictedvertex if γ(u) < α(u).

Corollary 4.2.7. If a cycle in T contains l restricted vertices, then it has exactly l floor vertices.

Proof. From Lemma 4.2.6 we know that if a vertexu is restricted then for every arc(u,v) the

vertexv is a floor vertex. To conclude it is enough to see that inT an arc(u,v) with u unrestricted

has labelα(u). Thenv is not a floor vertex.

Corollary 4.2.8. Let P be a path in T starting in a floor vertex, ending in a vertex v and with

unrestricted inner vertices. Then l(P) = g(v).
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Proof. We apply induction on the length ofP. The case where the length ofP is zero is direct

sincev is a floor vertex. Let us consider the case whereP has length at least 1. Sincev is not a

restricted vertex, from Lemma 4.2.6 we know thatg(v) = g(u)l(uv), whereu is its neighbor in

P. By the induction assumptiong(u) = l(P′) whereP′ is the path obtained fromP removing the

arc(u,v). Henceg(v) = l(P′)l(uv) = l(P).

We will use these results to characterize the label of cycles inT, specially we will characterize

the restricted vertices of a cycle.

Theorem 4.2.9.Let C be a cycle in T , let u0, . . . ,uk−1 be the restricted vertices in C ordered

according to the order of C. Then ui = g(ui+1)γ(ui+1) · · ·γ(ui−1)g(ui) for i = 0, . . . ,k−1, where

i +1, . . . , i−1 are computed modk.

Proof. From Corollary 4.2.8 the label ofC is g(u0)γ(u0) · · · g(uk−1) γ(uk−1), and by definition

of GD
n , ui is the label of any walk overGD

n of lengthn finishing inui , so by Corollary 4.2.5 we

can take the walkCk composed byk = (n+1)/|C| repetitions ofC finishing inui , concluding

thatui = g(ui+1)γ(ui+1) · · ·γ(ul ) l(Ck−1)g(u1) · · · γ(ui−1) g(ui).

1110

0111

0011 1011

0001 1001 0101 1101

0000 1000 0100 1100 0010 1010 0110

Figure 4.3: Example of the subgraphT for n = 4 andF = {01111} in a binary alphabet.

Now we are able to give a characterization of the languages where a minimal walk produces an

Eulerian cycle.

47



Let H be the subset ofW F (n+1) wherew∈H if and only if w can be decomposed by

w = h0β1 . . .hk−1βk−1 where eachhi ∈ A∗ andβi ∈ A satisfy the following conditions:

1. hi = m1 . . .m|hi | (a prefix ofm)

2. βi < m|hi |+1

3. ∀β′ > βi , hi+1βi+1 . . .βi−1hiβ′ /∈W F (n+1)

Now, we are able to characterize the languages where a minimal walk is an Eulerian cycle.

Theorem 4.2.10.A minimal walk is an Eulerian cycle if and only ifH = /0.

Proof. From Theorem 4.2.3, we have to prove thatT is a tree if and only ifH = /0.

If T is not a tree thenT has a cycleC. Let u0 . . .uk−1 be the restricted vertices of the cycle. By

Theorem 4.2.9l(C) = g(u0)γ(u0) . . .g(uk−1)γ(uk−1) and by Corollary 4.2.5|C| dividesn+ 1.

Therefore there exists a wordw in W F (n+ 1) composed by(n+ 1)/|C| repetitions ofC. By

definition ofH we conclude thatw∈H .

Conversely, let us assume thatT has no cycles andH 6= /0. Let w be a word inH . By definition

of GD
n , there is a cycleC in GD

n of length dividingn+ 1 such thatC (or repetitions ofC) has

labelw. We shall prove thatC is also a cycle inT.

Let v be a vertex ofC, with v = . . .βi−1(hi)1 . . .(hi) j where j = 0. . . |hi |. If 0 < j < |hi |, then

m1 . . .mj is a suffix ofv, soα(v) = mj+1 = (hi) j+1 hence the arc ofC with tail at v is in T. If

j = 0 thenγ(v) = m1 therefore the arc inC is in T. Finally, let consider the casej = |hi |.If (v,v′)

is the arc inC thenl(vv′) = βi . Sincew∈H , no arc inGD
n with tail atv has a label greater than

βi . Then(v,v′) ∈ T. We conclude thatC is a cycle inT which leads to a contradiction.
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4.2.4 Some remarks

The previous analysis considers only the minimal walk starting at the root vertex. This case

does not necessarily produce the minimal label over all Eulerian cycles, because there can be

Eulerian cycles starting at a non root vertex with a lexicographically lower label.

It is also possible to construct an algorithm which modifiesT in order to destroy cycles inT,

and obtain the minimal de Bruijn sequence for any irreducible subshift of finite type. However

further research in this subject allow us to construct an algorithm to obtain the minimal

Eulerian cycle for any edge-labeled digraph (see [MM04]). This algorithm is presented in the

next section.
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Abstract

Let G be an Eulerian directed graph with an arc-labeling such that arcs going out

from the same vertex have different labels. In this work, we present an algorithm

to construct the Eulerian trail starting at an arbitrary vertexv of minimum lexico-

graphical label among labels of all Eulerian trails starting at this vertex.

We also show an application of this algorithm to construct the minimal de Bruijn

sequence of a language.

4.4 Introduction

Eulerian graphs are an important concept in the beginning of the graph theory. The

“K önigsberg bridge problem” and its solution given by Euler in 1736 are considered the first

paper of what is nowadays calledgraph theory.

In this work, we consider graphs with an arc-labeling with the following property: Arcs going

out from the same vertex have different labels. These graphs are commonly utilized in the

automata theory: a labeled digraph represents deterministic automata where vertices are the

states of the automata, and arcs represent the transition from one state to another, depending on

the label of the arc. Eulerian trails over these graphs are related with synchronization of

automata (see [Kar03]).

Eulerian graphs with this kind of labeling are also used in the study of DNA. By DNA

sequencing we can obtain fragments of DNA which need to be assembled in the correct way.

To solve this problem, we can simply construct aDNA graphs(see [BHKdW99]) and find an

Eulerian trail over this graph. This strategy is already implemented and it is now one of the

more promising algorithms for DNA sequencing (see [Pev89, PTW01]).

To find the Eulerian trail of minimal label is also an interesting problem to find optimal
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encoding for DRAM address bus. In this model, an address space of size 22n is represented as

labels of edges in a complete graph with 2n vertices. An Eulerian trail over this graph produce

an optimal multiplexed code (see [CP00]), if we want to give priority to some address in

particular, the Eulerian cycle of minimal label give us this code.

Another interesting application of these graphs is to findde Bruijn sequencesof a language.

De Bruijn sequences are also known as “shift register sequences” and were originally studied

in [dB46] by N. G. De Bruijn for the binary alphabet. These sequences have many different

applications, such as memory wheels in computers and other technological device, network

models, DNA algorithms, pseudo-random number generation, modern public-key

cryptographic schemes, to mention a few (see [Ste61, BDE97, CDG92]). More details about

this application will be discussed in section 3.

By the BEST theorem (see [Tut84]), we can compute the number of Eulerian trails in a graph.

This number is usually exponential in the number of vertices of the graph (at least((γ−1)!)|V|

whereV is the set of vertices andγ is the minimum degree of vertices inV ). Therefore, to find

the Eulerian trail of lexicographically minimum label can be a costly problem.

In this work, we give an algorithm to construct the Eulerian trail of minimum label starting at a

given vertex. The complexity of the algorithm is linear in the number of arcs of the graph. In

section 2 we give some definitions to understand the problem and we prove the main theorem.

Finally, in Section 3 we give an application of this algorithm to construct the minimal de

Bruijn sequence of a language.

4.5 Main Theorem

Let G be a digraph and letl : A(G)→ N be a labeling of the arcs ofG over an alphabetN such

that arcs going out from the same vertex have different labels.

A trail is an alternating sequenceW = v1a1v2a2 . . .vk−1ak−1vk of verticesvi and arcsa j such
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that the tail ofai is vi and the head ofai is vi+1 for everyi = 1,2, . . . ,k−1 and all arcs are

distinct. If v1 = vk thenW is a closed trail. A closed trail is an Eulerian trail if the arcs ofW are

the arcs ofG. An Eulerian graph is a graph with an Eulerian trail. The label ofW is the word

l(a1) . . . l(ak−1).

We will show how to find in a strongly connected Eulerian digraph the Eulerian trail starting at

a particular vertexr with the minimal lexicographical label.

Let U be a subset of vertices inG. A cut is the set of arcs with one end inU and the other in

V \U , and is denoted byδG(U). A vertexv will be exhaustedby a trailW if δG\A(W)(v) = /0.

The set of vertices exhausted byW will be denoted byS(W).

Lemma 4.5.1.Let U be a subset of vertices and let T be the trail of minimum label exhausting

U. Let B⊇U be a set of vertices contained in the set of vertices exhausted by T . Then T is the

trail of minimum label exhausting B.

Proof. Let T ′ be a trail exhaustingB with a smaller label thanT. SinceU ⊆ B thenT ′ exhaust

U . Hence, the label ofT is not minimal.

A trail W can visit a vertexv many times. We will decompose a trailW in the sub-trailsWv

andvW, whereWv is the sub-trail ofW finishing in thelast visit of v, andvW is the sub-trail of

W starting from thelast visit of v. We denote
◦
vW the trailvW without the first vertexv.

Lemma 4.5.2.Let v be the last vertex in S(T) visited by a closed trail T and let w be the next

vertex in T . Then

δG\A(Tv)(
◦
vT) = {vw}

Proof. Letxybe an arc ofδG(
◦
vT). Since all vertices of

◦
vT are exhausted byT, xy∈A(T). Hence

eitherxy∈ A(Tv) or xy∈ A(vT). Thereforexy∈ δG\A(Tv)(
◦
vT) if and only if xy= vw.

We define the following strategy to construct a trail: Starting at a given vertexv, follow the

unvisited arc (if exists) of minimal label. This strategy finishes with a closed trail, and this trail
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exhausts the vertexv. A trail constructed following this strategy will be called analphabetic

trail starting atv and will be denoted byW(G,v). By definition, an alphabetic trail starting atv

is the trail of minimal label among all trails starting atv and exhaustingv.

Let v be a vertex and letT be the closed trail of minimal label exhausting all vertices in
◦
vT. We

search the trail of minimal label exhausting all vertices invT. If v∈ E(T) then by Lemma

4.5.1 the trailT is the solution to this problem. Ifv /∈ E(T) then the next lemma give us the

solution: we need to splitT and insert the alphabetic trail overG\A(T) starting atv.

Repeating this process we will finish with the Eulerian trail of minimal label.

Lemma 4.5.3.Let T be a closed trail exhausting r such that if v is the last vertex in V\S(T)

visited by T then T is the closed trail of minimum label exhausting
◦
vT .

Let Z be the closed trail of minimum label in exhausting vT and let W= W(G\A(T),v). Then

Z = (Tv)W(vT).

Proof. By supposition,T is the closed trail of minimum label exhausting
◦
vT and

◦
vT ⊂ E(Z),

hence by Lemma 4.5.1,l(Z)≥ l(T). In particular,l(Z)≥ l(Tv). AlsoZ and(Tv)W(vT) exhaust

vT. Hencel(Z)≤ l((Tv)W(vT)), concluding thatZ = (Tv)Z′.

By Lemma 4.5.2 the only way to visit vertices in
◦
vT is using the arcvw, and

◦
vT is the trail of

minimum label exhaustingV(
◦
vT) in G\ (A(Tv)). SinceZ is a closed trail of minimum label,

Z = (Tv)Z′′(vT).

Finally, Z′′ is a closed trail of minimum label inG\A(T) exhaustingv, thereforeZ′′ = W.
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Algorithm 4.5.1 Compute the minimal Eulerian trail starting atr
T← /0
v←NOEX(T) {v = r}
while v 6= NULL do

W←W(G\A(T),v).overG\A(T).
T← (Tv)W(vT)
v← NOEX(T).

end while
Where NOEX(T) returns the last non-exhausted vertex visited byT or NULL if this vertex does
not exist.

Theorem 4.5.4.Algorithm 4.5.1 finishes with an Eulerian trail starting at r and its label is the

minimal one among all Eulerian trails starting at r.

Proof. At each repetition of the “while”, the trailT exhausts at least one vertex non-exhausted

in the previous step, so the algorithm will finish in a finite number of steps.

Hence, we define inductivelyGi = G\A(T i−1), vi =NOEX(Ti), Wi = W(Gi ,vi) and alsoT i =

(T i−1vi−1)Wi(vi−1T i−1), with T0 = /0.

We prove by induction thatT i is the closed trail of minimal label exhausting
◦
v

i
T i . For i = 1,

T1 =W(G, r) is by definition the closed trail of minimal label exhaustingr, and by Lemma 4.5.1

it is the trail of minimal label exhausting
◦
v

1
T1. Let T i−1 be the closed trail of minimum label

exhausting
◦
v

i−1
T i−1. Applying Lemma 4.5.3 toT i−1, we conclude thatT i is the closed trail of

minimal label exhaustingvi−1T i and by Lemma 4.5.1 it is the minimal closed trail exhausting
◦
v

i
T i .

Therefore the algorithm will finish with a closed trailT exhausting all its verticesV(T), but

G has only one strongly connected component, soV(T) = V(G). We conclude thatT is an

Eulerian trail of minimal label.

We can use the following structure to represent the graph, a list of size|V| representing vertices

where each elementv in the list has a stack with the head of each arc starting atv in order.

Knowing this structure of a graph, the algorithm can easily construct the trailsW(·, ·),
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removing the visited nodes from the stack and keeping track of exhausted vertices. Since this

algorithm use each arc at most twice, it can be implemented inO(|A(G)|), which is best

possible.

Remark that while the initial vertexr can be arbitrarily chosen, different initial vertices can

produce different trails, even if we consider the label as a circular string. For example, in the

graph of Figure 4.4, the minimal de Bruijn sequence starting atu is 001122 but starting atv is

100122.

0

1

u v2
0

2

1

Figure 4.4:

4.6 An application: minimal de Bruijn sequence

Given a setD of words of lengthn, a de Bruijn sequence of spann is a periodic sequence such

that every word inD (and no othern-tuple) occurs exactly once. Historically, de Bruijn

sequence was studied in an arbitrary alphabet considering the language of all then-tuples. In

[Mor03] the concept of de Bruijn sequences was generalized to restricted languages with a

finite set of forbidden substrings and it was proved the existence of these sequences and

presented an algorithm to generate one of them. Nevertheless, it remained to find the minimal

de Bruijn sequence in this general case.

In [MM04] (see Section 4.2) was studied some particular cases where it is possible to obtain

efficiently the minimal de Bruijn sequence. Using our previous algorithm we can solve this

problem for all cases and efficiently.

A word p is said to be afactorof a wordw if there exist wordsu,v∈ N∗ such thatw = upv. If

u is the empty word (denoted byε), thenp is called aprefixof w, and ifv is empty then is
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called asuffixof w.

Let D be a set of words of lengthn+1. We will call this set adictionary. A de Bruijn

sequence of span n+1 for D is a (circular) wordBD,n+1 of length|D| such that all the words

in D are factors ofBD,n+1. In other words,

{(BD,n+1)i . . .(BD,n+1)i+n mod(n+1)|i = 0. . .n}= D

De Bruijn sequences are closely related to de Bruijn graphs. Thede Bruijn graph of span n,

denoted byGD,n, is the directed graph with vertex set

V(GD,n) = {u∈ Nn|u is a prefix or a suffix of a word inD}

and arc set

A(GD,n) = {(αv,vβ)|α,β ∈ N,αvβ ∈D}

Note that the original definitions of de Bruijn sequences and de Bruijn graph given in [dB46]

are the particular case ofD = Nn+1.

We label the graphGD,n using the following functionl : if e= (αu,uβ) thenl(e) = β. This

labeling has an interesting property: LetP = e0 . . .em be a trail overGD,n of lengthm≥ n.

ThenP finishes in a vertexu if and only if u is a suffix ofl(P) = l(e0) . . . l(em). This property

explains the relation between de Bruijn graphs and de Bruijn sequence:BD,n+1 is the label of

an Eulerian trail ofGD,n. Therefore, given a dictionaryD, the existence of a de Bruijn

sequence of spann+1 is characterized by the existence of an Eulerian trail overGD,n.

Let D be a dictionary such thatGD,n is an Eulerian graph. LetM be the vertex of minimum

label among all vertices. Clearly, the minimal de Bruijn sequence hasM as prefix. Hence, the

minimal Eulerian trail overGD,n start at an (unknown) vertex and aftern steps it arrives toM.
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Therefore if we start our Algorithm 4.5.1 in the vertexM we obtain the Eulerian trail of

minimal label starting atM which have labelB = B′ ·M. HenceM ·B′ is the minimal de Bruijn

sequence of spann+1 for D.
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Example4.6.1. Example of the algorithm for the Golden Mean system (F = {11}) with length

n = 6.
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1997. 3.5

[CDG92] Fan Chung, Persi Diaconis, et Ron Graham. Universal cycles for combinatorial

structures.Discrete Math., 110(1-3) :43–59, 1992. 1, 2.1, 3.3, 4.2.1, 4.4

62



[CRS+00] Kevin Cattell, Frank Ruskey, Joe Sawada, Micaela Serra, et C. Robert Miers.

Fast algorithms to generate necklaces, unlabeled necklaces, and irreducible poly-

nomials over GF(2). J. Algorithms, 37(2) :267–282, 2000. 2.1

[dB46] N. G. de Bruijn. A combinatorial problem.Nederl. Akad. Wetensch., Proc.,

49 :758–764, 1946. 1, 3.1, 3.3, 3.4, 4.2.1, 4.4, 4.6

[dBE48] N. G. de Bruijn et P. Erd̈os. On a combinatorial problem.Nederl. Akad. We-

tensch., Proc., 51 :1277–1279, 1948. Also : Indagationes Math.10, 421–423

(1948). 2.1

[DH88] D. Z. Du et F. K. Hwang. Generalized de Bruijn digraphs.Networks, 18(1) :27–

38, 1988. 1

[Duv83] Jean-Pierre Duval. Factorizing words over an ordered alphabet.J. Algorithms,

4 :363–381, 1983. 1

[Etz86] T. Etzion. An algorithm for generating shift-register cycles.Theoret. Comput.

Sci., 44(2) :209–224, 1986. 1

[FK77] Harold Fredricksen et Irving Kessler. Lexicographic compositions and deBruijn

sequences.J. Combinatorial Theory Ser. A, 22(1) :17–30, 1977. 2.1

[FM78] Harold Fredricksen et James Maiorana. Necklaces of beads ink colors andk-ary

de Bruijn sequences.Discrete Math., 23 :207–210, 1978. 1, 2.1, 2.2.1, 3.6, 4.2.1

[Fre82] Harold Fredricksen. A survey of full length nonlinear shift register cycle algo-

rithms. SIAM Rev., 24(2) :195–221, 1982. 1, 2.2.1, 3.6, 4.2.1

[Fre92] Harold Fredricksen. A new look at the de Bruijn graph.Discrete Appl. Math.,

37/38 :193–203, 1992. 1, 3.1

[FSM94] C. Flye Sainte-Marie. Question 48.L’Intermédiaire Math., 1 :107–110, 1894.

3.1, 3.4

[Goo46] I. J. Good. Normal recurring decimals.J. London Math. Soc., 21 :167–169, 1946.

3.1, 3.4

63



[HM96] Erik R. Hauge et Johannes Mykkeltveit. On the classification of de Bruijn se-

quences.Discrete Math., 148(1-3) :65–83, 1996. 1, 2.1

[Kar03] Jarkko Kari. Synchronizing finite automata on Eulerian digraphs.Theoret.

Comput. Sci., 295(1-3) :223–232, 2003. Mathematical foundations of computer
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