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Resune

Soit un langage compés par tous les mots d’'une longueur deen. Un cycle
de de Bruijn d’ordren est un mot cyclic tels que tous les mots dans le langage
appar#@ exactement une fois comme facteurs de cet cycle. Un de I'algorithme pour
construire le cycle de de Bruijn lexicographiquement minimal ést Bredricksen
eta Maiorana, lequel utilise les mots tegndon dans le language.

Cette theseétudie commentgréraliser le concept de cycles de de Bruijn pour
un language compés par un sous-ensemble de mots de longnguarticularment
les languages de tous les mots de longuesans facteurs dans une listefdeteurs
interdits

Premerement, noustudie le cas des mots sans le facteur 11. Nous fournissons
de nouvelles preuves de I'algorithme de Fredricksen et de Maiorana qui nous en
permet de prolonger ceesultat au cas des mots sans factdupdur n'importe
quellei.

Nous caradrisons pour quelles langues des mots de longnexiste un cy-
cle de de Bruijn, et noustudionsegalement quelques proggs de la dynamique
symbolique de ces languages, particularment des langué&fjesed par des fac-
teurs interdits. Pour ces genres de languages, n@semions un algorithme pour
produire un cycle de de Bruijn, en utilisant les mots de Lyndon du language. Ces
resultat utilice la notion du graphe de de Bruijn @tluit le probéme a construire
un cycle Eulerian dans ce graphe.

Nous étudions le proldme de la construction du cycle minimal dans un lan-
guage avec des facteurs interdits employant le graphe de de Bruijn.&ialisns
deux algorithmes, un algorithme avide simple et efficace qui fonctionne avec quelques
ensembles de langues, et un algorithme plus complexé&sgout ce prot@me pour

n'importe quel graphe Eulerian.



Abstract

Let be a language composed by all words of a given lemgti\ de Bruijn
sequence of spamis a cyclic string such that all words in the language appears
exactly once as factors of this sequence. One of the algorithms to construct the
lexicographically minimal de Bruijn sequence is due to Fredricksen and Maiorana
and it use thé&yyndon wordsn the language.

This thesis studies how to generalize the concept of de Bruijn sequence for a
language composed by a subset of words of lengpharticularly the languages of
all words of lengtm without factors in a list oforbidden factors

Firstly, we study the case of words without the factor 11. We give a new proof
of the algorithm of Fredricksen and Maiorana which allows us to extend this result
to the case of words without the factdrfar anyi.

We characterize for which languages of words of lengéxists a de Bruijn se-
guence, and we also study some symbolic dynamical properties of these languages,
particularly of the languages defined by forbidden factors. For these kinds of lan-
guages, we present an algorithm to produce a de Bruijn sequence, using the Lyndon
words of the language. These results use the notion of de Bruijn graph and reduce
the problem to construct an Eulerian cycle in this graph.

We study the problem of construct the lexicographically minimal de Bruijn se-
guence in a language with forbidden factors using the de Bruijn graph. We study
two algorithms, a simple and efficient greedy algorithm which works with some
sets of languages, and a more complex algorithm which solves this problem for any

Eulerian labelled graph.



INTRODUCTION

Combinatorics on wordbas grown enormously this last decade. It has now its own section in
the lastest classification of Mathematical Reviews (68R15), under the chapter of discrete
mathematics related to computer science. Main results in the area have been compiled in the
Lothaire’s series of books [Lot97, Lot02, Lotar] and also since 10 years ago there exists a
bi-annual international conference (WORDS) devoted entirely to this subject. To read more

about the story and open problems in this subject,/see [BK03].

Words appears in almost every area of computer sciences, specially in automata theory,
computational complexity and algorithms. One of this area is devoted to the efficient
generation of words of a given length. In spite of its specificity, this subject is the title of a
whole section of the last volume of Knuth’s book “The art of computer programming” [Knuar].
Different ways to generate these words have been used. Among the most studiedyare

codediGrab8] andde Bruijn sequence® survey about Gray codes can be found.in [Sav97].

In this thesis we focus on the generation of words by udm@ruijn sequencedts first known
description appears as a Sanskrit wpadratarajabhranasalagmwhich was a memory aid for
Indian drummers, where the accented/unaccented syllables represent long/shorts beats, so all
possible triplets of short and long beats are included in the word. De Bruijn sequences are also
known as “shift register sequences” and were originally defined by N. G. De Bruijn for the
binary alphabet [dB46]. These sequences have many different applications, such as memory
wheels in computers and other technological devices, network models, DNA algorithms,
pseudo-random number generation, modern public-key cryptographic schemes, to mention a
few [Gol67,Ste6l, BDE97, CDG92]. The literature about the generation of de Bruijn
sequence is extensive [Tul01, HM96, MEP96, Ral81, Etz86]. A good survey in this topic

appears in [Fre82].

One of the most interesting and efficient algorithm to construct a de Bruijn sequence is known


http://www.ams.org/msc
http://www-igm.univ-mlv.fr/~berstel/Lothaire/index.html
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Figure 1.1: De Bruijn sequence of span 5 over the binary alphabet

as theFredricksen and Maiorana’s Theorefsic.) [EM78]. It consists simply in to concatenate
in lexicographical order theyndon wordof length dividingn. The de Bruijn sequence
obtained by this algorithm has another interesting property: it is the lexicographically minimal
de Bruijn sequence. This algorithm was proved to be efficient in [RSW92]. An slightly
different version of this algorithm was obtained by Duval [Duv83] and proved efficient in

[BP94].

In this thesis we study the generation of all words in aBetf words of lengtm by using
cyclic words. We start in Chaptﬂ 2 with being the words i{0, 1}" not containing the factor
00. In this case we prove that a de Bruijn sequencé&f@xists, that is, a cyclic sequence such

that its set of factors of lengthis the set of words without 00 as factor. Among the
exponentially many de Bruijn sequences fmwe also found the lexicographically minimal
one. Moreover, in this case the minimal sequence can be constructed efficiently by

concatenating Lyndon words of length dividingvithout 00 as factor.

The main combinatorial tool used in the study of de Bruijn sequencedeaBeuijn graphs
Besides its use in the context of de Bruijn sequences, they are also used as models for
transportation networks, DNA Algorithms and computer networks to mention a few. The main

literature about properties of de Bruijn graphs can be founded in [BLLS97, LXZ00, BF91].



References on generalizations are in [BDE97, Fre92, PSWO01, DH88]. In Chppter 3 we study
the existence of de Bruijn sequences for an arbitrary subs#twords of lengtin over an
alphabetA. In this case, de Bruijn sequence fDris a cyclic sequence such that its set of

factors of lengtm is exactlyD. We first extend the notion of de Bruijn graphs to arbitrary sets
D C A". This generalization retains the main properties of de Bruijn graphs, in particular, the

existence of de Bruijn sequences fbris related to the existence of Eulerian trails in the de

Bruijn graph for?D. Using this representation of de Bruijn sequences, we obtain a

characterization of subsef3 admitting a de Bruijn sequence fa@r together with an algorithm

to construct one of them.

Secondly, by using techniques of symbolic dynamics, we obtain bound for the cardinality of de
Bruijn sequences. It is done by enumerating the Eulerian trails over the corresponding de

Bruijn graph.

The Fredricksen and Maiorana’s algorithm can be seen as a greedy algorithm to find the
minimal label among the labels of all Eulerian trails over de Bruijn graphs of spbm
Chaptef % we start by considering this strategy in de Bruijn graphs for arbitrarpsats we
obtain a characterization of those s&tsvhere this strategy produce a minimal de Bruijn

sequence. Unfortunately this efficient strategy does not always work.

In the last section of Chaptef 4, we consider labelled Eulerian digraphs and the labels of its
Eulerian trails. These concepts generalize de Bruijn graphs and de Bruijn sequences,
respectively. We present an algorithm to find for a labelled Eulerian digraph the minimal label

among all labels of its Eulerian trails.

In spite of the fact that the number of Eulerian trails is exponential with respect to the number
of arcs, our algorithm finds the Eulerian trail of minimal label linearly in terms of the number

of arcs.



Publications and Structure of the Thesis

The results of each chapter are published or submitted to internatinal journals and conferences.
The results of Chaptélf 2 appears iD¥ANCES IN APPLIED MATHEMATICS, published by
Elsevier Science. An article with the results of Chapier 3 is in revision process in
INFORMATION PROCESSINGLETTERS(published by Elsevier Science) and a preliminary
version of this article has been presented T 4NTERNATIONAL CONFERENCE ON
CoMBINATORICS ONWORDsand published by TUCS General Publications. The results of
Chaptef # appears in two articles, the first one has been presented at the conference WG 2004,
GRAPH-THEORETICCONCEPTS INCOMPUTER SCIENCE and published by SRINGER
LECTURENOTES INCOMPUTER SCIENCE; the second article has been published as a
technical report by ENTER OFMATHEMATICAL MODELING, SANTIAGO, CHILE and is

actually submitted to a conference.

Due to copyright restrictions, each chapter includes the full text of each publication, preceded
by an introductory section. Exceptionally, in Chagter 3 we append at the end of the chapter
some unpublished results presenting some properties about the cardinalities of the
combinatorial objects discussed in the chapter. We finish with conclusions and the

bibliography of the thesis.



ON FREDRICKSEN AND M AIORANA'’S

THEOREM

2.1 Introductory notes

There are many algorithms to construct a De Bruijn sequangée first known was given by
Martin in [Mar34], but the most simple and interesting of this algorithms is the theorem of
Fredricksen and Maiorana [FM78]. This theorem proves that the concatenationLgfithen
wordsof length dividingn in lexicographical order, is a de Bruijn sequence of span
Moreover, this sequence is minimal lexicographically between all de Bruijn sequences of span

n. This algorithm is efficient because Lyndon words can be generated efficiently [RSW92].

In our interest to generalize the concept of de Bruijn sequence to a particular set of words, we
found a particularity of this algorithm. For a givenif we concatenate in lexicographical
order the subset of Lyndon words not containing two consecutive 0, we obtain a sequence such
that the set of factors of lengthis the set of cyclic words iA" not containing two consecutive
0. However, for the symmetrical case (forbidding two consecutive 1) we do not obtain this

property.

This remark turned our attention to this theorem. The original proof of this theorem is a greedy

algorithm obtaining a de Bruijn sequence. In Secfiof 2.2 we present an alternative proof of the

theorem of Fredricksen and Maiorana. In this alternative proof we show how to find the exact
position of each factor of lengthin this de Bruijn sequence. This improvement in the proof
also allow us to study the factors of a section of the de Bruijn sequence, which explains the

existence of a de Bruijn sequence when we forbid 00 or 11.

For more information about generating de Bruijn sequences and words, see¢[SRODIRS

7



RS99/ Saw01, SawD3, Shi81, Tul01, HM96, MER96, Stk

JE48, CDG92| BP94, FK77].



2.2 Full paper:

On the Theorem of Fredricksen and Maiorana about de
Bruijn Sequences

In: Advances in Applied Mathematics
(© 2004 Elsevier B.\V.
Volume 33, Number 2, Pages 413-415
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Abstract

This work gives an alternative proof for the theorem of Fredricksen and Maio-
rana (Discrete Mathematics, 23 (1978), 207-210) about constructing a de Bruijn
sequence by concatenation of the Lyndon words in lexicographic order. This proof
gives the exact position of all the words in the sequence, and allows us to extend this
result to the concatenation of any number of the last Lyndon words in increasing

order.

2.2.1 Introduction

Let A be a finite set with a linear order. A word on the alphabeA is a finite sequence of
elements ofA. The length of a wordv € A* is denoted byw|. A word p is said to be grefixof
a wordw if there exists a wordi such thatv = pu. The prefixp is proper ifp # w. The

definition for asuffixis symmetrical.

The setA* of all the words on the alphabaétis linearly ordered by the lexicographic order
induced by<. By definition,x < y if eitherx is a prefix ofy or if x= uayv, y = ubwwith
u,v,w e A*, a,b € Aanda < b. A basic property of the lexicographic order is the following: if

x < yand ifxis not a prefix ofy, thenxu < yvfor all wordsu, v.

Two wordsx, y areconjugatedf there exist wordss, vin A* such thak = uvandy = vu.
Conjugacy is an equivalence relationAh. A word is said to beninimalif it is the smallest in
its conjugacy class. A word jgrimitiveif it is not a proper power, i.e., if it is not of the forof

forue A* andn > 2. A Lyndon words a word that is both primitive and minimal.

A de Bruijn sequence of spamnis a stringB" of length|A|" such that all the words of length
are present as substringsBSfexactly once. A very important question about de Bruijn
sequence is how to generate them efficiently (see [[Fre82] for a survey in this subject). One of

the most efficient and elegant solutions to this problem is given in [FM78], and it is achieved

10



by the concatenation in lexicographic order of the Lyndon words whose lengths divide

In this work, we give an alternative proof of this theorem giving the exact position of all words
in the sequence, and presenting some conditions for the existence of a de Bruijn sequence by
concatenation of Lyndon words. These conditions allow us to conclude on the construction of
a de Bruijn sequence by concatenating any number of the last Lyndon words in the

lexicographic order.

2.2.2 The theorem of Fredricksen and Maiorana

Theorem 2.2.1.For a given n, the lexicographic concatenation of Lyndon words of length

dividing n generates a de Bruijn sequence of span n.

Proof. Let a andz be the minimal and the maximal letters in the alphakdet o be the usual

shift operator and IeB" be the de Bruijn sequence of span

We will prove that for any minimal wordv of lengthn, all its conjugated words'(w), i =

0...n—1, are substrings @".

Letw=wj...w;z"~] be a minimal word, wittwj < z First, we will show that the lagt— |
conjugated words are substringsB¥. Note that these words have the fOZi'W]_...Wj i

fori=1...n—]j.

Let v be the minimal Lyndon word with prefiwl...wjz”_j_i. Then, the previous minimal
word in the lexicographic order has the fotm= uy ... Uy_iZ with uy ... Uq_j < wy ... w21,

Hence, the Lyndon word beforehas suffixz, and therg'w; ...w;z"~1~" is a substring oB".

Now we will prove this for the firs§ — 1 rotations. Ifw is not a Lyndon word (is not primitive),
let w be the primitive root ofv and letl be its length. Note that has the formw; .. .ij/z'_J"
with | — j’ = n—j. If w# zthen the next Lyndon word in lexicographic ordehas the form

X =W twy...wjr_1(Wj +1)bjyq...by, soc'(w) is a substring ofvxfor i = 0...j —1. The

11



casew = zis trivial.

If wis primitive, letx be the next minimal word in lexicographic order (not necessarily primi-
tive). Thereforex has the form; ... xj_1(Xj +1)bj1...b, and in this case' (w) is a substring

of wxfori=0...j—1. If xis primitive, thenwxis a substring oB" and we are done, otherwise,
by the previous argument,is a prefix ofxy wherey is the next Lyndon word in lexicographic

order, hencevxis a substring ofvxy and therefore it is a substring Bf.. m

Given a sefL; }ic| of Lyndon words whose lengths divige we can naturally associate a
language to this set composed by words of lengtbsrresponding to all conjugated words of
L, if |Li| = n, and all conjugated words @E;)", if |L;| = n/r. A de Bruijn sequence generating

this language will be called a “partial’-de Bruijn sequence.

Those languages are interesting because given‘a séforbidden blocks, the language of
circular words not having a substring $his exactly the language associated to Lyndon
circular words not having a substring $h. This kind of language is know asibshift of finite

typeand is the fundamental concept of the symbolic dynamic.

Corollary 2.2.2. Let Ly,...,Lm be the Lyndon words of"Aof length dividing n ordered in

lexicographic order, then for any<s m, LsLs,1--- Ly IS @ “partial”-de Bruijn sequence.

Proof. We will prove that all rotations of a minimal wond are substrings of the sequence.

If wis not a Lyndon word (i.e. if it is a power of a Lyndon wokg with |Lx| < n) then by the
previous proof we know that all rotations wfare contained iy _1LklLy 1. Hence, we only
have to check the case- s, but in this case, fom > 2 we have that" is a suffix of the sequence,

and then we have enoughetters to obtain all the rotations @fbeginning withz.

Letw =w;...w;z"~1 be a Lyndon word.x with w; < z. Again by the previous proof, we know
that the firstj — 1 rotations ofw are contained iyLy, 1 ...Lm and so we only need to check the

lastn— j conjugated words, which have the fodw; ...w;z"~ 1= fori=1...n—j.

12



By the previous proof, if the minimal Lyndon word having prefix...w; is included in the
sequence, then we know that all the rotationeafe substrings of the sequence, on the contrary
we would havew;...wj < Ls <wjy.. .w,-z”—i, which means that the first Lyndon word in the
sequences has the folg = w; ... wjbj;1...by and therefore™ - wj .. .Wj is a substring of

the sequence.

It remains to check the rotations of the fowv;...w;z" 1= fori=1...n—j—1. If the
minimal Lyndon word having prefixv;...w;jz is included in the sequence then we are done.
If not, wy...wjz< Ls<wl.. .wjz”*j, in which casd.s = wy...wjzbj>...b,. Therefore we

conclude thag"™ 1 —1w; .. .Wwjzis a substring of the sequence.

We can repeat this argument until have a minimal Lyndon word with pvefix. w;Z, in which
case all the remaining rotatiaw ...w;z" =)= for i = 1...n— j —t will be substrings of the

sequence. We know that such exists becauskes < wy ... W; 2, O

13



GENERALIZATION OF DE BRUIJN

SEQUENCES AND DE BRUIJN GRAPHS

3.1 Introductory notes

In the Chaptefr|2 we construct the de Bruijn sequence generating all words of a fixed length
without the factor 00. This fact motivates us to generalize the definition of de Bruijn sequence

in order to generate a particular set of wol®f a fixed length.

As in the example of Chaptgf 2, we are interested especially in/sefsvords defined as the
set of words without a (one or moreprbidden Factor These sets of words are known as the

languages o$ubshifts of finite typand is the basic object in the area of symbolic dynamics.

In this chapter we present a generalization of de Bruijn sequence in order to study these cases.
It is not difficult to see that only some sefshave a de Bruijn sequence. Hence we

characterize the sef8 with a de Bruijn sequence.

In the case of subshifts of finite type, we characterize the sets of forbidden words such that the
language obtained has a de Bruijn sequence, and we give an algorithm to produce a de Bruijn

sequence producing the periodical words in the language of a subshift of finite type.

All this results use a graph-theoretic interpretation of de Bruijn sequence, basedim the

Bruijn graph, which appeared first implicitly in [FSM94] and explicitly in [dB46, Go046]
independently. Among its many applications, the principal one is as a model for transportation
networks. That is because de Bruijn graph has an interesting property: the shortest route from
one vertex to another is completely defined by the labels of the vertices. This property is used

all along the paper associated to this chapter and is one of the main ingredient in order to prove

14



our results.

For more information about the properties of de Bruijn graphs, see

[BLS97,[BDE97| LXZ00| BFI1, Fre92, Myk72]

15



3.2 Full paper:

De Bruijn Sequences and De Bruijn Graphs for a
General Language

In revision: Information Processing Letters

(© 2005 Elsevier

16




Abstract

A de Bruijn sequence of spamis a cyclic string such that all words of length
appear exactly once as factors of this sequence. We extend this definition to a subset
of words of lengthn, characterizing for which subsets exist a de Bruijn sequence.
We also study some symbolic dynamical properties of these subsets extending the
definition to a language defined by forbidden factors. For these kinds of languages
we present an algorithm to produce a de Bruijn sequence. In this work we use

graph-theoretic and combinatorial concepts to prove these results.

3.3 Introduction

Given a setD of words of lengtn, a de Bruijn sequence of sparis a periodic sequence such
that every word in® (and no othen-tuple) occurs exactly once. Its first known description
appears as a Sanskrit woydmatarajabhanasalagmwhich was a memory aid for Indian
drummers, where the accented/unaccented syllables represent long/shorts beats, so all possible
triplets of short and long beats are included in the word. De Bruijn sequences are also known
as “shift register sequences” and were originally studied by N. G. De Bruiji®fer{0,1}"

[dB46]. These sequences have many different applications, such as memory wheels in
computers and other technological devices, network models, DNA algorithms, pseudo-random
number generation, modern public-key cryptographic schemes, to mention a few (see
[Ste6l ] BDE9Y7, CDG92]). Typically, de Bruijn sequences have been studied over an arbitrary

alphabefA considering the set of all thetuples, that isA". There is an exponential number of

de Bruijn sequences in this case, but only a few can be generated efficiently.

In this work we generalize the definition of de Bruijn sequence for anyseharacterizing
those set® for which a de Bruijn sequence exists. In secfior} 3.5 we study some symbolic

dynamical properties of these sets, extending our results to languages defined by forbidding

17



some factors. Finally in secti¢n 3.6 we present an algorithm to produce a de Bruijn sequence

for these kinds of languages.

3.4 Definitions and generalizations

Let A be a finite set. Avord won the alphabeA is a finite sequence of elementsAfFor a

wordw, its length is denoted bjyv|.

A word pis said to be dactor of a wordw if there exist wordsi, v € A* such thatv = upv. If
uis the empty word (denoted k&), thenp is called aprefixof w, and ifv is empty then is

called asuffixof w.

Let D be a set of words of length+ 1. We call this set dictionary. A de Bruijn sequence of
span n+- 1 for D is a cyclic wordB? of length|D| such that all the words it are factors of

B?. In other words,

{(BD)in-(B@)Hn mod|Q)\‘i = 0,...,|Q?| _1} =D

De Bruijn sequences are closely related to de Bruijn graphsde&hgruijn graph of span n for

D, denoted byG?, is the directed graph with vertex set
V(G?) = {ue A"uis a prefix or a suffix of a word irD}
and arc set

E(G?) = {(av,vB)|a,B € A, avB € D}

This graph was first defined implicitly in 1894 by Flye [FSM94] and it was explicitly detailed
in 1946 by de Bruijn[[dB46] and Good [Go046] independently. In both cases the dictionary

18



studied wagD = A™1, The first use of this graph for a subset®¥f ! was given in[[Raug3].

From this definition, we can do a bijection between the ar¢s’find the words irD: to an
arc going fromav to vp3 we associate the womlv/f3. Using this bijection we can interpret the
graphG? as the union of non-trivial components of the original de Bruijn grapiifor after

removing the arcs corresponding to words nofirgsee Figuré 3]1).

We label the grapig? using the following function: if e = (av,vp) thenl(e) = B. This

labeling has an interesting property:

Remark3.4.1 LetP = &... ey, be a walk oveG? of lengthm > n. ThenP finishes in a vertex

uif and only if u is a suffix ofl (P) =1 (ep) ...l (em).

This property is essential to understand de Bruijn graphs and will be used in all the proofs in

this work. Therefore we mention a few important consequences of this property:
Corollary 3.4.2. All the walks of length s 1 finishing at vertex u have label for somex € A.

Corollary 3.4.3. If uand v are vertices of a cycle C, then u and v are factors of the infinite word

1(C)®.

These consequences and the bijection between arcs and wapdsqplain the relation

between de Bruijn graphs and de Bruijn sequences:

Lemma 3.4.4. There exists a de Bruijn sequenc& B and only if G” is an Eulerian graph.

Moreover, the labels of Eulerian cycles ove? @re the de Bruijn sequences fér.

Proof. Let C be an Eulerian cycle o6”. As we explained before, any wow € D has a
corresponding arein G?. By Remarl any sub-walk of length+ 1 of C finishing with
the arce has label, therefore any word irD is a factor ofl (C). As the length ofC is the

number of words inD we conclude thalt(C) is a de Bruijn sequence fab.

Conversely, leB be a de Bruijn sequence fap. Any factor of lengthn+ 1 is a word of D

so there is a corresponding arc@¥. Moreover, two consecutive factors andvp have two
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corresponding arcs such that the head of the first is the tail of the second one. ThBriedsre
a corresponding closed walk ov@&f with labelB. Since every factor is different, every arc in
the walk is different, and since every word dfis a factor ofB, every arc oiG” is in the walk.

We conclude that the closed walk ov@? is an Eulerian cycle of labd O

By previous lemma, given a dictionafy, the existence of a de Bruijn sequence of spail

is characterized by the existence of an Eulerian cycle G¢trA graph has an Eulerian cycle

if and only if it is strongly connected and at each vertex the in-degree and the out-degree are
equal. Therefore we can write these conditions as restrictionsfoyvenaracterizing the

dictionaries with a de Bruijn sequence.

Corollary 3.4.5. A dictionaryD C A" has a de Bruijn sequence of span-i if and only if

1. For any uv € D there exists a word w A* such that u is a prefix of w, v is a suffix of w

and any factor of length # 1 of w is in D.

2. For any word xe A" there exists a bijection between words/irhaving x as a suffix, and

words inD having x as a prefix.

Proof. By the bijection between arcs and wordsZn the first condition assures the existence
of a walk (of labelw) between any two arcs. Hen&? is strongly connected. For any word
X, a word inD havingx as suffix (prefix) has a corresponding arc terminating (starting) at

Therefore, the second condition assures that the in-degree and the out-degree at any vertex are

equal O

3.5 Symbolic dynamics

Symbolic dynamics gives a natural framework to study the ®etdth a de Bruijn sequence.
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A first class of dictionaries with a de Bruijn sequence are the set of factors of lergthn a

bi-infinite sequence over an alphabeh. We denoted this set b&,1(u).

A factorv of lengthn in u is right extensiblgresp. left extensible) Wa (resp.av) is in
Ln+1(u) for somea € A. These concepts have an important relation with the complexity of the

sequence (see [Cas97]).

For any sequenaeg, is easy to see that the dictionaby= L,,1(u) satisfies the first condition
of Corollary[3.4.5. Also, the second condition is satisfied if and only if the number of left and

right extensions of any factor of lengthare equal. Therefore, we obtain the next theorem.

Theorem 3.5.1.Letu be a bi-infinite sequence. For any n, the diction&y= £, 1(u) has

a de Bruijn sequence if and only if any factor of length n has equal number of left and right

extensions.

Another class of dictionaries with a de Bruijn sequence is given by the language of subshifts.
Given an alphabed, a full shift AZ is the set of all bi-infinite sequences of symbols frAm

Let F be a collection of (finite) words, we call these words “forbidden words”. A st Xy

is the subset of sequencesAdf which do not contain any factor from. If F is finite, we say

thatX is a subshift of finite type.

Let £n(X) be the set of factors of sequencesinf lengthn. The language of a shiX is the

setL of the factors of any finite length of sequenceXin

A shift X is irreducible if for every pair of words,v € L(X), there is av € L(X) such that

uwve L(X).

Given a labeled grapB, let Xg be the set of labels of all bi-infinite walks ovér It is known
thatXg is a (sofic) shift[LM95], however in the case of de Bruijn graphs, we showXhatis

a subshift of finite type.
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Figure 3.1: Examples in a binary alphabet: De Bruijn sequence of sp&t 2or D =
{000,001,010,100,110} and its essential subgraph.

Lemma 3.5.2.Let » C A1 be a dictionary. Then & is a subshift of finite type. Moreover,
Xgo = Xg with F = AT 1\ D

Proof. SinceLn1(Xgo) € D we have thaK;» C X. Letx € X, any factor of lengtim+ 1 of
X is in D so each factor has a corresponding ar6f. Moreover, two consecutive factons
andvp of lengthn+ 1 have two corresponding arcs@? such thaw is the head of the first and

the tail of the second one. Therefore there exists a walk@fewith labelx, soXs C Xgo O

Corollary 3.5.3. Let # be a set of forbidden words of length at most . Then for?D =

Lnr1(Xg) we have that % = Xgo.

Proof. We can extendF to a subsetf’ C A1 such thaiXy = Xg:. SinceD = AL\ F we

conclude O

A vertexv is strandedif either no arc starts ator no arc terminates at A subgraph is
essentialf no vertex of the graph is stranded (see Figure 3.1). Obviously a bi-infinite walk
does not use stranded vertices, so for any g@afiere exists an essential subgraghsuch

thatXg = X . Therefore in the rest of this work we only consider gBtsuch thaG? is

essential.
Note that ifG? is essential then for any wowml € D there exists a walk ove®? with labelw.

In order to obtain set® with a de Bruijn sequenc&? needs to be an Eulerian graph, in
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particular it needs to be strongly connected. This property has an interpretation in symbolic

dynamics:

Lemma 3.5.4.LetD be a dictionary. X% is irreducible if and only if & is strongly connected.

Proof. SinceG? is essential, the strongly connected components have size at least@;sLet
be an irreducible subshift of finite type. For any two agckof G? there are two corresponding
wordswe, Ws in D. SinceXgo is irreducible, there exists a wowdsuch thateWwws is a factor

of Xgo. In other words, there exists a walk ov@? with labelwaWww;i. Therefore there exists a

walk with labelww; connectingeto f, soG? is strongly connected.

Conversely, ifX5» is not irreducible, there exist factong , w» such that’ze A*, wyzw; is not a
factor of X5». Butwy is the label of a walk ove®? finishing at a vertex; andws is the label
of a walk starting at a vertew, therefore there is no walk ov&? connectingv; to v», hence

G? is not strongly connected m

Let X4 be an irreducible subshift of finite type. 1 = £,11(X4#) then the corresponding

graphG? is not necessarily an Eulerian graph.

For example, foA = {0,1} and¥ = {11} a vertex @v1 has two in-going arcs (corresponding
to words O@vl and 10v1) but only one out-going arc (corresponding to the word Q).
Therefore we will study the subset périodicwords in £, 1(Xs) because for this set we

obtain an Eulerian de Bruijn graph.

Letw e A" be a word, we say that is aperiodicword of X« if and only if the bi-infinite
sequence&v”, obtained by infinite concatenationswfis in X+. The set of periodic words of

lengthn is denoted by?,(Xg).
Theorem 3.5.5.Let 7 be a set of forbidden words of length at most hand D = P11 (X#).

If Xgo is irreducible then there exists a de Bruijn sequence for the dictiodary

Proof. By Lemma[3.5.4G? is strongly connected. Latc A" be a vertex ofG”. Any arc
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leavingu with labela corresponds to a wondo € 9. Sinceua is a periodic wordpu is also
in D. Therefore there exists an arc going intcorresponding to the wordu, which implies
that the in-degree afi is greater or equal to out-degreewf The same argument proves that

the out-degree dfi is greater or equal to the in-degreewfconcluding thaG? is an Eulerian
O

graph
Note that not all irreducible subshifts of finite have a de Bruijn sequenc® fer®, 1(Xg).
For example, foA = {0,1} and ¥ = {010} the subshift of finite typ&« is irreducible but

Xgo is not irreducible, becaugg? has two strongly connected components.

3.6 Constructing a de Bruijn sequence for subshifts.

Let X# be an subshift of finite type an® = %y, 1(X¢) such thalXy is irreducible. In this

section we study an efficient generation of a de Bruijn sequenc® for

Even in the unrestricted case (whefe= 0) this is an interesting problem (see [Fre82] for a
survey on this subject). One of the most elegant and efficient solutions in the unrestricted case

is given in [FM78] and usekyndon words

Let < be alinear order over alphab&t The setA* of all words on the alphabétis linearly
ordered by the lexicographical order induced by the orkden A. A wordw is a Lyndon word

if and only if Yu, v such thaw = uv, thenw < vu.

The algorithm of Fredricksen and Maiorana consist of to concatenate in increasing
lexicographical order the Lyndon words of length dividimgThis is a linear time algorithm

because the Lyndon words can be generated efficiently/(see [RSW92])).

We always can construct the grap® and apply one of the known results about constructing
an Eulerian cycle to obtain a de Bruijn sequence, however the construct@H isfnot

efficient. Therefore in this section we study the structur&8fin order to obtain an algorithm
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to construct a de Bruijn sequence only using the wordB.in

The set of arcs of an Eulerian graph can be partitioned in cycles. In the particular ¢8e of

these cycles have a given length.

Theorem 3.6.1.Let F be a set of forbidden words of length at most hand D = P, 1(Xy)
such that @& is the de Bruijn graph of span n fab. Then the cycles of length dividingHl

partition the set of arcs of &.

Proof. We prove that any arc of the graph is in one and only one cycle of length dividing

Letebe an arc from the verteauto the vertexubwith a,b € A (then,| (e) = b). By construction
of the graph, there is a walk of lengthfrom vertexub to vertexau with labelau. Therefore,
the union of this walk with the are produces a closed walk of lengtht+ 1 with labelaubcor-
responding to one or more repetitions of a cycle of length dividirgl, proving the existence

of one cycle.

Let us suppose now that there are two cy@emndC’ of lengths dividingh+ 1 using the are.

Let f be an arc o€ andg an arc ofC’ with tail at the same vertexand different heads. Since
eis in both cycles, by Corollary 3.4.2 the walks of lengtfrom the head o€ to the tail ofe
using only the arcs o€ andC’ must have the same label. Therefore the lab&{ bf = 1(g) but

in this case the head dfand the head aj are the same vertex, producing a contradiction. This

proves the uniqueness of the cycles ]
Corollary 3.6.2. The set of Lyndon words of length dividing-i in L(X#) corresponds to a

partition of the set of arcs of &

Proof. Let C be a cycle of lengtld with d dividing n+ 1 and letw be its label in such a way
thatVu,v such thaiv = uv, we have that eithew = vu or w < vu. We only have to prove that

IS not a repetition of a smaller word
Let us assume that = u' for an integeli > 2 and letx andy be two vertices of at distanceu|
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overC such that the walk of from x to y has label. Since both vertices are @, x andy are
factors of lengtm of the wordw("+1)/4. Since the walk fronx to y has labely, uis a suffix ofy.
Moreover, sincav(™1/d — (i("1)/d yyis a suffix ofy thenu is also a suffix ok, concluding

thatx=y.

Therefore, every cycle in the partition has a different label which is a Lyndon word of length

dividingn+ 1.

It remains to prove that to each Lyndon word, one can associate a cycle. But this can be proved
using cardinality considerations. Indeed, a periodic word of lengtil has either least period

n+ 1 or least periodl with d dividing n+ 1. Therefore,

|Prr1(Xg)| = Z |{words with least period }|
din+1

Now, a word with least period is a Lyndon word or one of thd — 1 rotations of a Lyndon

word of lengthd. Hence,

Z |{words with least period}| = Z d-|{Lyndon words of lengtld} |
din+1 din+1

Since|E(G?)| = | Ph+1(Xg)| we conclude. O
Now we are prepared to construct an algorithm producing a de Bruijn sequence for
Q) - fpn_‘_]_(x’r}')

Given a partition in cycles of an Eulerian graph, the following strategy produces an Eulerian
cycle: we can start from an arc and follow the corresponding cycle in the partition, until we
reach an intersection with another cycle in the partition. At this point we follow the other cycle
and when we return to the intersection we continue with the original cycle. Using this

procedure recursively we construct an Eulerian cycle.

By Corollary[3.6.2, we can reproduce this strategy in terms of the Lyndon words of length
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diving n+ 1 in £(Xy) obtaining Algorithn{ 3.6.1 producing a de Bruijn sequence for
D = Pn. 1(Xy) without constructing the grapB”.

Algorithm 3.6.1 Produce a de Bruijn sequence using the Lyndon words of the language.
INPUT: L = {L!,...,LX} Lyndon words inZ(X¢) of length dividingn+ 1.
Size— y ||
u« L' foranyL' € L suchthatL'|=n+1
L—L\u
B+« uu
while L #£ 0
fora=1to |A|—1
W< Bj_n-1...Bj Bj+1a
W < LYNDON (W)
if W €L then
B—Bj... BJ‘WnW;L .. .W‘W|_1Bj+1 e
L«— L\V\/
end if
end for
end for
B« Bi1...Bgjze

(
(
(
(
(
(
(
(
(
(
(
(
(
(

—_— —— ~— ~— ~— ~—

wherea® = a+a mod|A| and LYyNDON(w) return the Lyndon word such thatz® = w”.

The function LyNDON() in the algorithm can be implemented with an on-line automata
accepting when a suffix @ is a factor of lengthn of rotations of the words ik, allowing to
do this step in a constant time (see [CHL01]). Hence, stépsl12) in the algorithm have

complexity O(n) and these steps are repeated at mstL| times. Therefore, the complexity

of the algorithm isO(|A| - |L| - n). SinceSize= 5 |L'| is the size of the input (and also the size

of the output) andizeis at mosin- |L|, we conclude that our procedure is a linear time

algorithm. Note that the input of the algorithm can also be constructed in an efficient way (see

[RSO0)).
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Example3.6.3 Example of the algorithm for the Golden Mean systefn=t {11}) with length
n =6 and Lyndon word& = {0,000001000101001 01}. In the figure we can see the parti-
tion in cycles of the de Bruijn graph corresponding to the Lyndon words ifihe graphical

representation of the algorithm starts at vertex 00001.

0

VY
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000001
1000001
000001
0(10001000001
01 0001000001
010 001000001
0(10(10)001000001
0101] 0001000001
01010] 001000001
010100} 01000001
0101000/ 1000001
01010001 000001
010100010 00001
0101000100 0001
0(10(10)00100(100)0001
01010001007 000001
010100010010 00001
0101000100100 0001
01010001001000 001
010100010010000 01
01010001001000001
0(10(10)00100(100)000(0)1
0101000100100000p1
01010001001000000]1

We start with the first word in
In this case 000011 is not In
here 000101 is i, we include (100010

here 001011 is not ih

here 010101 is i, we include(10)

101011 is notin.

010101 was already included
101001 is not in

010000 was already included
100011 is not ih

000101 was already included
001001 is not included, we inclu¢®00)

010011 is not ih

100101 is not ik

001001 was already included
010001 was already included
100001 is not irL

000000 is not included, we includ®)

000000 was already included

end.

0101000100100000Q1 is a de Bruijn sequence
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3.7 Some cardinality results

In this section we present some cardinalities results obtained using known results in subshift of

finite type.

Let # be a finite set of forbidden factors. Over the subshift of finite t¥pelet ka(n) be set

of periodic factors of length simply called “words”, Ieﬁka(n) be the set of Lyndon words of

lengthn and IetNkf(n) be the set of bi-infinite sequence of periodimply called “necklaces”.
Note that the set of necklaces is the set of circular words of lemgite denote the

cardinalities of these sets W} (n), L{ (n) andN/ (n) respectively.

The number of words in the language can be obtained usinzgtiafunctiorof a subshift of

finite type, this function is defined by

:7.' .
2(2) = exp (sz>

For a subshift of finite type this function can be easily calculated using the adjacency khatrix

of its corresponding graph

1

2= det(ld — zM)

and then we can use the Taylor’s formula for obtain the number of words of lengtine

language:
Foy 1 dv
Wk (n) - (n_ 1)| d2 |09Z(Z) 0 (31)

We can also study the convergence of this number whgmto infinity, which gives the
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Figure 3.2: Graphical representation of the “Golden Mean” subshift.

entropy of the system. The next equality is true for an irreducible subshift of finite type

lim sup% logW (n) = h(X)

n—oo

whereh(X) is the entropy of the subshift of finite type, which is equal in our case to the
logarithm of the largest eigenvalaeof the adjacency matrix. This eigenvalue is called the

Perron eigenvalue of the system.

Moreover, if the subshift of finite type is irreducible and the lengths of periodical words are
relatively prime (gcd :W{(i) > 0} = 1) then the system isixing, and then we can

approximaten; (n) by
W (n) = (1+pi(n) A"

wherep;(n) — 0 ash — oo.

If the greatest common divisor of the number of words is not 1, there exists a similar but more
complicated formula. Nevertheless, in both cases we can estimate the number of words in the

language by
W (n) = (")

Example3.7.1 The Golden Mean is the subshift of finite type defined by a binary alphabet
A ={0,1} forbidding # = {11}. It has a graphical representation of two states 0 and 1, and
arcs from 0— 0, 0— 1 and 1— 0 (see Figurg 3]2), so its adjacency matriXisi]. Hence the
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entropy of the subshift of finite type is

h(X) =log (1 +2\/§>

and its zeta function is
1
1-z—2

(2 =

Therefore, the number of words of lengtlis given by

—1 dvt /2241
F _
m&<m__m—1ﬂd2‘1(£+z—l>zo

%ﬁ;)”(ﬁ)"
_ (V" + (- /(H)"

and its asymptotic behavior is given by

wﬂm:e<“;@>

The words of lengtm are either rotations of Lyndon words of lengtlor powers of rotations

of Lyndon words of lengthd with d|n, so

=%d-t£’<d>

applying the Mbbius inversion formula we can obtain the number of Lyndon words

:%2pmdw( (3.2)
din

wherep is the Mobius function.
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The asymptotic behavior of this number is also given by the entropy of the system

Iimsup% log (n- L{(n)) =h(X)

Nn—oo

Also, using the fact that] (n) < 1/ny1_, W/ (d) we conclude that] (n) = O(A"/n), and as

ka(n) > ka(n)/n we can estimate the number of Lyndon words in the language by
L/ (n)=0 (%)\“)

For the number of necklaces of lengtjwe can use the Burnside Lemma for calculate it using

the periodicity of the words

n-1
N (n) = 1/0.; b

wherep; is the number of words of lengthwith periodi. Any word of lengthn has period,
so itis easy to see th@t = pycqin)- Also, if ijn the words of lengtm with periodi are the
powers of the words in the language of lengthop; = p\/ka(i) and we obtain the following

formula:

n-1
N ()= 3 W (gedtian)

Reordering the indices of the sum, we can group all indieeith gcd(i,n) = d, which are
exactlyp(n/d) where@is the Euler function. Hence, we obtain a formula for the number of

necklaces very similar to the number of Lyndon words.

NS () = L dw’ (d 3.3
i (n) n%cp(n/) c (d) (3.3)

For the asymptotic behavior, ag(n) < Nkf(n) = zdmLk?(d), we can use the same arguments
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as before to prove that
N/ (n)=0 (%)\“)

Example3.7.2 For the Golden Mean, we obtain the following values

n |1 2345 6 7 8 9 10 11
Wn|1 3 4 7 11 18 29 47 76 123 199
L1 111 2 2 4 5 8 11 18
Nm|1 223 3 5 5 8 10 15 19

Note that even fon = 11 these values are very cIose(té’Lz—

5
N—
. >
Sl
VN
[EEY
N5y
(6)]
N—
>

QD

>
o
Sl
/N
=
ol
(6)]
N—
>

respectively.

34



M INIMAL DE BRUIIJN SEQUENCE

4.1 Introductory Notes

The BEST (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte) Theorem (sefe page 42)
allows us to compute the number of Eulerian cycle&fh Hence, we can compute the

number of de Bruijn sequence for a dictionapy
This number is exponential, in fact we prove that the number of de Bruijn sequence for

Q(p\—lm“*l)

whereA is the entropy oK.

Therefore, to find the minimal (lexicographically) de Bruijn sequenceZfes a difficult

problem.

In the caseD = A", the minimal de Bruijn sequence of spais given by the theorem of

Fredricksen and Maiorana. This sequence can also be obtained has a walk over the de Bruijn

graph in the following way: we start from the vertex with maximum label and we follow the
unvisited arc of minimum label. By the BEST theorem we will finish with an Eulerian cycle,

and by construction there is not another Eulerian cycle with a smaller label.

Based on this strategy, in Sectjon|4.2 we study for which ®etise previous strategy over the
graphG? finishes with an Eulerian cycle (and therefore, with the minimal de Bruijn

sequence). From this analisys we remark that there aresttswhich there exists a de

Bruijn sequence but it can not be obtained using the previous strategy. For example, in Figure

[4.7 we see an example where exists a de Bruijn sequence but previous strategy does not finish
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Figure 4.1: Example of de Bruijn graph for=3 and¥ = {0111}

with the minimal de Bruijn sequence because the arcs in grays are not visited.

In Sectiorf 4.B we present an algorithm in order to find the Eulerian cycle of minimal
lexicographical label in a graph. This algorithm solve completely the problem of finding the
minimal de Bruijn sequence. Moreover, this algorithm apply not only for de Bruijn graphs, but

also for any Eulerian labeled digraph.
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4.2 Full paper:

Minimal de Bruijn Sequence in a Language with
Forbidden Substrings

In: Lecture Notes in Computer Science

“Proceedings of the 30th International Workshop on

Graph-Theoretic Concepts in Computer Science”
(© 2004 Springer-Verlag
Volume 3353, Pages 168-176

DOI: 10.1007/b104584
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Abstract

Let be the following strategy to construct a walk in a labeled digraph: at each
vertex, we follow the unvisited arc of minimum label. In this work we study for
which languages, applying the previous strategy over the corresponding de Bruijn
graph, we finish with an Eulerian cycle, in order to obtain the minimal de Bruijn

sequence of the language.

4.2.1 Introduction

Given a language, a de Bruijn sequence of gpama periodic sequence such that evedtyiple
in the language (and no othestuple) occurs exactly once. Its first known description appears
as a Sanskrit worgamatarajabhanasalagmwhich was a memory aid for Indian drummers,
where the accented/unaccented syllables represent long/shorts beats, so all possible triplets of
short and long beats are included in the word. De Bruijn sequences are also known as “shift
register sequences” and was originally studied by N. G. De Bruijn for the binary alphabet
[dB46]. These sequences have many different applications, such as memory wheels in
computers and other technological device, network models, DNA algorithms, pseudo-random
number generation, modern public-key cryptographic schemes, to mention a few (see
[Ste61/ BDE9V, CDG92]). Historically, de Bruijn sequence was studied in an arbitrary
alphabet considering the language of all theiples. There is a large number of de Bruijn
sequence in this case, but only a few can be generated efficiently, se€ [Fre82] for a survey
about this subject. In 1978, Fredricksen and Maiorana [FM78] give an algorithm to generate a
de Bruijn sequence of sparbased in the Lyndon words of the language, which resulted to be
the minimal one in the lexicographic order, and this algorithm was proved to be efficient
[RSW92]. Recently, the study of these concepts was extended to languages with forbidden
substrings: in[[RSQ0] it was given efficient algorithms to generate all the words in a language

with one forbidden substring, in [Mor03] the concept of de Bruijn sequences was generalized
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to restricted languages with a finite set of forbidden substrings and it was proved the existence
of these sequences and presented an algorithm to generate one of them, however, to find the
minimal sequence is a non-trivial problem in this more general case. This problem is closely
related to the “shortest common super-string problem” which is a important problem in the

areas of DNA sequencing and data compression.

In this work we study the de Bruijn sequence of minimal lexicographical label. In subsection
[4.2.2 we present some definitions and previous results on de Bruijn sequences and the BEST
Theorem, necessary to understand the main problem, and we prove a result related with the
BEST Theorem which will be useful in the following subsections. In subsefction 4.2.3 we study
the main problem, giving some results on the structure of the de Bruijn graph. Finally, in

subsection 4 we present some remarks and extensions of this work.

4.2.2 De Bruijn sequence of restricted languages

Definitions

Let A be a finite set with a linear order. A word on the alphabeA is a finite sequence of

elements ofA, whose length is denoted /.

A word pis said to be dactor of a wordw if there exist wordsi, v € A* such thatv = upv. If
uis the empty wora thenp is called aprefixof w, and ifvis empty then is called suffixof w.

If p# wthenp is aproper factor proper prefixor proper suffix respectively.

The setA* of all the words on the alphabaAitis linearly ordered by the alphabetic order
induced by the ordet. on A. By definition,x < y either ifx is a prefix ofy or if x= uay,
y = ubwwith u,v,w € A*, a,b € Aanda < b. A basic property of the alphabetic order is the

following: if x <y and ifxis not a prefix ofy, then for any pair of words, v, Xu < yv.

Given an alphabeh, a full shift AZ is the collection of all bi-infinite sequences of symbols
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from A. Let ¥ be a set of words oveX*. A subshift of finite typ€SFT) is the subset of
sequences iA” which does not contain any factor ji. We will refer to  as the set of

forbidden block®r forbidden factors

Given a setf of forbidden blocks, in this work we will say that a wondis in the language if
the periodical wordv”, composed by infinite repetitions of is in the language of the SFT
defined by¥. The set of all the words of lengthin the language defined by will be
denoted byw” (n).

A SFT isirreducibleif for every ordered pair of blocks, v in the language there is a blook

in the language so thatvvis a block of the language.
A de Bruijn sequence of spamin a restricted language is a circular strig§ of length

| W7 (n)| such that all the words in the language of lengtire factors oB8”. In other words,

{B?)i...(B®)isn-1 modnli =0...n—1} = W (n)

These concepts are studiedlin [Mor03], extending the known results on subshifts of finite type
to this context. In particular two results are relevant in this work, the first one is a bound in the

number of words of length in the language:
‘%ﬂmﬂ:e@%
where lodA) is theentropyof the system (seé [LM95]). The second result proves the existence
of a de Bruijn sequence:
Theorem 4.2.1.For any set of forbidden substrings defining an irreducible subshift of finite
type, there exists a de Bruijn sequence of span n.
This last theorem is a direct consequence of the fact that the de Bruijn graph of ispeam

Eulerian graph. Thde Bruijn graphof spann, denoted byG?, is the largest strongly
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Figure 4.2: De Bruijn digraph of span 5 for the Golden Megn {11})

connected component of the directed graph WAtR vertices, labeled by the words A¥, and

the set of arcs
E— {(assb)|a,b e Ase AL asbe W (n+ 1)}

where the label of the ae= (as sb) is|(e) = b. Note that if the SFT is irreducible, this graph
has only one strongly connected component of size greater than 1, so there is no ambiguity in

the definition.

There are not two vertices with the same label, hence from now we identify a vertex by its
label. IfW = e, ... g is a walk overG?, we denote the label & by | (W) = I(eq1)...1(&),

and byl (W)! the concatenation of gftimes! (W).

There exists a bijection between the arc&df and the words ir#/7 (n4- 1), because to each
arc with labela € A with tail atw € A" we can associate the wonda which is, by definition,
aword inW7 (n41). Equally ifwais a word of 7% (n+ 1), with a € A, then there exists a

vertexw and an arc with tail at this vertex with labal
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Furthermore, if a wordv is a label of a walk fronu to v thenv is a suffix of lengthn of uw. In

the same way, itv € %7 (n+ 1) then there is a cycl€ in G2 with labell (C) such that

n+1

[(C) T =w.

With all these properties it is easy to see that a de Bruijn sequence ohspais exactly the

label of an Eulerian cycle oves?.

The BEST theorem

BEST is an acronym of N. G. de Bruijn, T. van Aardenne-Ehrenfest, C. A. B. Smith and W. T.
Tutte, the BEST Theorem (see [Tut84]) gives a correspondence between Eulerian cycles in a

digraph and its rooted trees converging to the root vertex.

Letr be a vertex of an Eulerian digragh= (V, E), a spanning tree converging to the rods

a spanning tree such that there exists a directed path from each vertex to the root.

Given an Eulerian cycle starting at the root of an Eulerian digraph, if for every ver@xaf

take the last arc with tail at this vertex in the cycle then we obtain a spanning tree converging to
the root. Conversely, given a spanning tree converging to the root, a walksastarting at the

root and using the arc in the tree only if all the arcs with tail at this vertex has been used, is an

Eulerian cycle. A walk over the graph of this kind will be called a walk “avoiding the tree”.

The BEST Theorem proves that for every different spanning tree we have a different Eulerian
cycle. Therefore it also allows us to calculate the exact number of Eulerian cycles on a digraph,

which is given by
V]
Cqy =My -_r!(d+(vi) —1)!

whereMr is the number of rooted spanning trees converging to a given vertex. We bound the

second term by(d™ — 1))V whered™ is the mean of the outgoing degrees over all the
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vertices, so we have a lower bound to the number of de Bruijn sequences

Cy =@ (A -

in particular, for a system witk > 3 the number of the Bruijn sequences of spas
exponential in the number of words in the language of lemgthlL. In the systems with
3> A > 1 this bound is generally also true, because the underestimatetfitersigenerally
exponential, for example, in the system without restrictions of alph@hég, this term is

equalto 2",

Now, we define formally a walk “avoiding a subgraph”. ltdde any vertex. For each vertex

v#rin G? lete, be any arc starting at LetH be the spanning subgraph®§ with arc set
{e,:veV(GY)\{r}}.

Is easy to see th&t is composed by cycles, subtrees converging to a cycle, and one subtree
converging ta. For a vertex not in a cycle ¢, we defineH, as the directed subtree

converging tovin H.

We define recursively a walk iG?,’ which avoid H. It starts at the root vertax Letvgey---V;
be the current walk. If there is an unvisited a&re= (vi,Vvi+1) notinH we extend the walk by

gVi+1. Otherwise we use the aeg in H.

We say that a walk over the grapiRhausts vertex if the walk use all the arc having the vertex

as head or tail.
The next lemma studies in which order the vertices are exhausted in a walk avdiding

Lemma 4.2.2.Let W be a walk starting at vertex r avoiding H, let v be a vertex and let Wv

the subpath of W starting at vertex r and finishing when it exhausts the vertex v. Then for each

vertex uin K, u is exhausted in Wv.

Proof. By induction in the depth of the subtree with rootlf v is a leaf ofH thenH, = {v}.
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If vis not a leaf andVv exhaustv, thenW v visit all arc (v,w) € E, and therefore all the arcs
(u,v) € E, applying induction hypothesis to all verticassuch that(u,v) € E we prove the

result. O]

4.2.3 Minimal de Bruijn sequence

Letm=my...m, be the vertex oG? of maximum label in lexicographic order. We are
interested in to obtain the Eulerian cycle of minimum label starting.dh order to obtain this
cycle, we define the following walk: Starting it at each vertex we continue by the arc with
the lowest label between the unvisited arcs with tail at this vertex. A walk constructed by this
way will be called aninimal walk By definition, there is no walk with a lexicographically
lower label, except its subwalks. In this subsection we characterize when a minimal walk

starting atmis an Eulerian cycle, obtaining the minimal de Bruijn sequence.

For each vertex let e(v) be the arc with tail at the vertexand with maximum label. LeT be
the spanning subgraph G2 composed by the set of aredy), forve V(G?), v#m. The
label ofe(v) will be denoted byy(v).

Is easy to see that a minimal walk is a walk avoidinghence we can study a minimal walk by

analyzing the structure df.
Theorem 4.2.3.A minimal walk is an Eulerian cycle if and only if T is a tree.
Proof. A minimal walk W exhausim, if T is a tree then by Lemnja 4.2.2 all verticesToare
exhausted by, henceW is an Eulerian cycle. Conversely,W is an Eulerian cycle, by the

BEST Theorem the subgraph composed by the last arc visited at each vertex is a tree, but this

subgraph id, concluding thaf is a tree. H

In the unrestricted case (whew'” (n) = A"), the subgrap is a regular tree of depthwhere

each non-leaf vertex had| sons, therefore the minimal walk is an Eulerian cycle.

44



In the restricted case, we do not obtain necessarily an Eulerian cycle, b@cesuset

necessarily a spanning tree converging to the root due to the existence of cycles (see Figure

[4.3).

We will study the structure of the gragf’ and the subgraph, specially the cycles iif. The
main theorem of this subsection characterizes the label of cyclesahowing us to

characterize the languages where the minimal walk is an Eulerian cycle.

First of all, we will prove some properties of the de Bruijn graph to understand the structure of

the arcs and cycles ih.

Lemma4.2.4.Letk>n+2. LetW=vpepvi€e1---ex_1Vk be awalk in T. Then(ky) <l (ent1)-

Proof. Sincev, =1(ep)---1(en_1) we have thak(e;) ---1(en_1)l (en)l (€0) € W7 (n+1). Hence
there exists an arg/,1,u) with labell (ey), wherevp 1 =1(e1)---1(en—1)l(en). By the defini-

tion of T, 1(ep) < Y(Vnt1) =l(En+1). O

Corollary 4.2.5. Let C be a cycle in T. The|g| divides n+ 1. Moreover for every vertex u in
n+1l

C, w(u)=I1(C) .

Proof. Let consider the walkV = Voep - - - €c|—1V|c| = V€0 * - €n+-1)c|—1Vo€oV1 asn+ 1 repeti-

tions of the cycleC. From Lemma 4.2]4 we havéep) < |(ent1) < l(€xny1)) < (€ni1)c) =
|(€0). Since we can start the cycle in any vertex we concludeltiegt= (1)) for every
i =0,...,|C| —1. HenceC| dividesn+ 1. The second conclusion comes from the fact that the

label of any walk of length at mostending in a vertexi is a suffix ofu. O

Letu# mbe a vertex. Among all the words which are prefixnoénd suffix ofu, letg(u) be
the longest one (notice thgfu) could be the empty wordand|g(u)| < n). Let

a(U) = mMg)+1 be the letter following the end @f(u) in m.

Notice that in the unrestricted casg(u)| is the distance over the graph from the ventier m.

This function will be essential in the study ©f The next lemma give us a bound over the
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label of the arcs in terms of the functign-).

Lemma 4.2.6.For all pairs of adjacent vertices u and \(Uv) < a(u). Moreover, if (uv) < a(u)

then dv) = € and if [(uv) = a(u) then dv) = g(u)l (uv).

Proof. g(u) is a suffix ofu, andul(uv) € W% (n+ 1), sog(u)l(uv) is a prefix of a word in

W7 (n+1). Sincemis the maximal word and(u) is a prefix ofmwe getl (uv) < a(u).

If 1(uv) = a(u) theng(u)l(uv) is a prefix ofm and a suffix ofv. Henceg(u)l(uv) is a suffix

of g(v). Since by removing the last letter of a suffix\ofve obtain a suffix ot we conclude

g(v) = g(u)l (uv).

We show that ifg(v) # € thena(u) > I(uv). Letg(v) = d (v)l(uv), thend/(v) is a suffix ofu
and a prefix ofm. Henced'(v) is a suffix ofg(u). Thereforeg'(v)a(u) is a factor ofm. By
the definition ofg(v) and the maximality om g(v) is greater or equal (lexicographically) than

d(v)a(u). We conclude that (u) > I (uv). O
In the unrestricted case, whefes a tree of deptim, all the arcs not ifT go to a leaf. In the
general case we can define an analog to the leaves.

We say that a vertex is afloor vertex ifg(u) = €. Notice that in the unrestricted case the

leaves ofT are the floor vertices. We say that a verteis arestrictedvertex ify(u) < a(u).
Corollary 4.2.7. If acycle in T contains | restricted vertices, then it has exactly | floor vertices.
Proof. From Lemmd 4.2]6 we know that if a vertexs restricted then for every afw,v) the

vertexv s a floor vertex. To conclude it is enough to see that an arc(u, v) with u unrestricted

has labebi(u). Thenvis not a floor vertex. O

Corollary 4.2.8. Let P be a path in T starting in a floor vertex, ending in a vertex v and with

unrestricted inner vertices. The(H) = g(v).
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Proof. We apply induction on the length & The case where the length Bfis zero is direct
sincev is a floor vertex. Let us consider the case wHeltes length at least 1. Singas not a
restricted vertex, from Lemnja 4.2.6 we know tigét) = g(u)l (uv), whereu is its neighbor in
P. By the induction assumptiag(u) = | (P") whereP’ is the path obtained frof removing the

arc(u,v). Henceg(v) = I (Pl (uv) = I (P). O

We will use these results to characterize the label of cycl@s specially we will characterize

the restricted vertices of a cycle.

Theorem 4.2.9.Let C be a cycle in T, letd...,uk" 1 be the restricted vertices in C ordered
according to the order of C. Ther & g(u1)y(u+1)...y(u~Hg(u') fori =0,... k—1, where

i4+1,...,i—1are computed modk.

Proof. From Corollan{ 4.2.8 the label & is g(u?)y(0) - -- g(uk~1) y(u*1), and by definition
of G?, u' is the label of any walk oveB? of lengthn finishing inu', so by Corollary 4.2)5 we

can take the wallck composed bk = (n+ 1)/|C| repetitions ofC finishing inu', concluding

thatu' = g(u)y(u*)---y(u') 1(C* Hg(ug) --- y(u' 1) g(u). O

1110

/01[11
001 1011

N

/OO % /10 \ 7 | / i
0000 1000 0100 BOO 0010 1010 0110

Figure 4.3: Example of the subgraphfor n=4 and¥ = {01111 in a binary alphabet.

Now we are able to give a characterization of the languages where a minimal walk produces an

Eulerian cycle.
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Let # be the subset o/ (n+ 1) wherew € # if and only if w can be decomposed by

w = hOB...h1B,_; where eacl € A* andp; € A satisfy the following conditions:

1. h'=my...my (a prefix ofm)
2. Bi <Mpyjjpg

3. VB > Bi, N Bija...Biah'B' & WF (n+1)

Now, we are able to characterize the languages where a minimal walk is an Eulerian cycle.

Theorem 4.2.10.A minimal walk is an Eulerian cycle if and only4f = 0.

Proof. From Theorer 4.2]3, we have to prove tfids a tree if and only if# = 0.

If T is not a tree thefl has a cycleC. Letw0...u*"1 be the restricted vertices of the cycle. By
Theoren] 4.2]9(C) = g(uWO)y(L0)...g(uk " H)y(u1) and by Corollary 4.2]5C| dividesn+ 1.
Therefore there exists a wowdin %7 (n+ 1) composed byn -+ 1)/|C| repetitions ofC. By

definition of # we conclude thatv € #.

Conversely, let us assume tflahas no cycles anflf + 0. Letw be a word in#. By definition
of GP, there is a cycl€ in G? of length dividingn -+ 1 such thaC (or repetitions ofC) has

labelw. We shall prove tha€ is also a cycle ifT.

Let v be a vertex ofC, with v=...Bi_1(h)1...(h")j wherej = 0...|h'|. If 0 < j < ||, then
my ... mj is a suffix ofv, soa(v) = mj;1 = (h)j;1 hence the arc of with tail atvisin T. If
j = 0 theny(v) = my therefore the arc it is in T. Finally, let consider the cage= |h'|.If (v,V/)
is the arc inC thenl (v) = B;. Sincew € #, no arc inG? with tail atv has a label greater than

Bi. Then(v,V)) € T. We conclude th&t is a cycle inT which leads to a contradiction. [
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4.2.4 Some remarks

The previous analysis considers only the minimal walk starting at the root vertex. This case
does not necessarily produce the minimal label over all Eulerian cycles, because there can be

Eulerian cycles starting at a non root vertex with a lexicographically lower label.

It is also possible to construct an algorithm which modifieés order to destroy cycles im,
and obtain the minimal de Bruijn sequence for any irreducible subshift of finite type. However
further research in this subject allow us to construct an algorithm to obtain the minimal
Eulerian cycle for any edge-labeled digraph (see [MMO04]). This algorithm is presented in the

next section.
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4.3 Full paper:

Minimal Eulerian cycle in a labeled digraph

Submitted
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Abstract

Let G be an Eulerian directed graph with an arc-labeling such that arcs going out
from the same vertex have different labels. In this work, we present an algorithm
to construct the Eulerian trail starting at an arbitrary vekt@t minimum lexico-

graphical label among labels of all Eulerian trails starting at this vertex.

We also show an application of this algorithm to construct the minimal de Bruijn

sequence of a language.

4.4 |Introduction

Eulerian graphs are an important concept in the beginning of the graph theory. The
“K onigsberg bridge problem” and its solution given by Euler in 1736 are considered the first

paper of what is nowadays callgdaph theory

In this work, we consider graphs with an arc-labeling with the following property: Arcs going
out from the same vertex have different labels. These graphs are commonly utilized in the
automata theory: a labeled digraph represents deterministic automata where vertices are the
states of the automata, and arcs represent the transition from one state to another, depending on
the label of the arc. Eulerian trails over these graphs are related with synchronization of

automata (see [Kar03]).

Eulerian graphs with this kind of labeling are also used in the study of DNA. By DNA
sequencing we can obtain fragments of DNA which need to be assembled in the correct way.
To solve this problem, we can simply constru@BA graphs(see [BHKdW99]) and find an

Eulerian trail over this graph. This strategy is already implemented and it is now one of the

more promising algorithms for DNA sequencing (see [Pev89, PTWO01]).
To find the Eulerian trail of minimal label is also an interesting problem to find optimal
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encoding for DRAM address bus. In this model, an address space of8izer@presented as

labels of edges in a complete graph withv2rtices. An Eulerian trail over this graph produce
an optimal multiplexed code (see [CP0Q]), if we want to give priority to some address in

particular, the Eulerian cycle of minimal label give us this code.

Another interesting application of these graphs is to edBruijn sequencesf a language.
De Bruijn sequences are also known as “shift register sequences” and were originally studied
in [dB46] by N. G. De Bruijn for the binary alphabet. These sequences have many different
applications, such as memory wheels in computers and other technological device, network
models, DNA algorithms, pseudo-random number generation, modern public-key
cryptographic schemes, to mention a few (see [Ste61, BDE97, CDG92]). More details about

this application will be discussed in section 3.

By the BEST theorem (see [Tut84]), we can compute the number of Eulerian trails in a graph.
This number is usually exponential in the number of vertices of the graph (af (gast)!)V!
whereV is the set of vertices angis the minimum degree of verticesVh). Therefore, to find

the Eulerian trail of lexicographically minimum label can be a costly problem.

In this work, we give an algorithm to construct the Eulerian trail of minimum label starting at a
given vertex. The complexity of the algorithm is linear in the number of arcs of the graph. In
section 2 we give some definitions to understand the problem and we prove the main theorem

Finally, in Section 3 we give an application of this algorithm to construct the minimal de

Bruijn sequence of a language.

4.5 Main Theorem
Let G be a digraph and lét: A(G) — N be a labeling of the arcs @ over an alphabe\¥l such
that arcs going out from the same vertex have different labels.

A trail is an alternating sequené = via;voa; . . . Vk—18k—1Vk Of verticesy; and arcsaj such
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that the tail ofg; is v; and the head od; isv;.; for everyi=1,2,....k—1 and all arcs are
distinct. If vi = v thenW is a closed trail. A closed trail is an Eulerian trail if the arc§\bare

the arcs ofG. An Eulerian graph is a graph with an Eulerian trail. The lab&Mat the word

@)l (@ 1)-

We will show how to find in a strongly connected Eulerian digraph the Eulerian trail starting at

a particular vertex with the minimal lexicographical label.

LetU be a subset of vertices @. A cutis the set of arcs with one endlihand the other in
V\U, and is denoted by(U). A vertexv will be exhaustedy a trailW if dg\aw) (V) = 0.
The set of vertices exhausted Wywill be denoted bys(W).

Lemma 4.5.1.Let U be a subset of vertices and let T be the trail of minimum label exhausting
U. Let BD U be a set of vertices contained in the set of vertices exhausted by T. Then T is the

trail of minimum label exhausting B.

Proof. Let T’ be a trail exhaustin® with a smaller label thait. SinceU C B thenT’ exhaust

U. Hence, the label of is not minimal. O]

A trail W can visit a vertex many times. We will decompose a tr&d in the sub-traildVv
andvW, whereWvis the sub-trail oWV finishing in thelast visit of v, andvW is the sub-trail of

W starting from thdast visit of v. We denote/W the trailvW without the first verte.

Lemma 4.5.2. Let v be the last vertex in($) visited by a closed trail T and let w be the next

vertex in T. Then

Se\aTy (VT) = {vw}

Proof. Letxybe an arc obg(VT). Since all vertices o T are exhausted by, xye A(T). Hence

eitherxy € A(Tv) orxy € A(VT). Thereforexy € dg\a(Tv) (VT) if and only if xy = vw. O

We define the following strategy to construct a trail: Starting at a given veytedow the

unvisited arc (if exists) of minimal label. This strategy finishes with a closed trail, and this trail
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exhausts the vertex A trail constructed following this strategy will be called alphabetic
trail starting atv and will be denoted bW(G, v). By definition, an alphabetic trail starting\at

is the trail of minimal label among all trails starting\waéind exhausting.

Letv be a vertex and lel be the closed trail of minimal label exhausting all verticegTn We
search the trail of minimal label exhausting all verticesTn If v e E(T) then by Lemma
the trailT is the solution to this problem. if¢ E(T) then the next lemma give us the
solution: we need to splif and insert the alphabetic trail over\ A(T) starting atv.

Repeating this process we will finish with the Eulerian trail of minimal label.

Lemma 4.5.3.Let T be a closed trail exhausting r such that if v is the last vertex \r&{T)

visited by T then T is the closed trail of minimum label exhausfﬂhg
Let Z be the closed trail of minimum label in exhausting vT and letW(G\ A(T),v). Then

Z=(Tv)W(VT).

Proof. By supposition.T is the closed trail of minimum label exhaustiu@ andvT c E(Z),
hence by Lemmia4.5.1(Z) > 1(T). In particular) (Z) > 1(Tv). AlsoZ and(Tv)W(vT) exhaust
vT. Hencel (Z) <I((Tv)W(vT)), concluding thaZ = (Tv)Z'.

By Lemm the only way to visit vertices ¥ is using the arw, andvT is the trail of
minimum label exhausting (VT) in G\ (A(TV)). SinceZ is a closed trail of minimum label,

Z=(TvZ"(vT).

Finally, Z" is a closed trail of minimum label iG\ A(T) exhaustings, thereforez” =W. [
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Algorithm 4.5.1 Compute the minimal Eulerian trail startingrat
T—0
v—NOEX(T) {v=r}
while v NULL do
W —W(G\A(T),v).overG\ A(T).
T — (TVW(VT)
vV« NOEX(T).
end while

Where NDEX(T) returns the last non-exhausted vertex visited lyr NULL if this vertex does
not exist.

Theorem 4.5.4.Algorithm[4.5.1 finishes with an Eulerian trail starting at r and its label is the

minimal one among all Eulerian trails starting atr.

Proof. At each repetition of the “while”, the trall exhausts at least one vertex non-exhausted

in the previous step, so the algorithm will finish in a finite number of steps.

Hence, we define inductivel@' = G\ A(T'1), v =NOEX(T;), W' = W(G',V') and alsoT' =
(TN -hHwi(V—1T1-1), with Ty = 0.

We prove by induction that! is the closed trail of minimal label exhaustiﬁlg'i. Fori=1,
T =W(G,r) is by definition the closed trail of minimal label exhaustmand by Lemma 4.5]1

ol : . -
it is the trail of minimal label exhausting T*. Let T'~1 be the closed trail of minimum label

ol—1_. . ; - .
exhausting/I T'-1. Applying Lemmd 4.5.3 td'—1, we conclude that' is the closed trail of

minimal label exhausting ~1T' and by Lemma& 4.5]1 it is the minimal closed trail exhausting

VT

Therefore the algorithm will finish with a closed trdil exhausting all its vertice¥ (T ), but
G has only one strongly connected componenty$d) = V(G). We conclude thaT is an

Eulerian trail of minimal label. O

We can use the following structure to represent the graph, a list of\8izepresenting vertices
where each elementin the list has a stack with the head of each arc startingrabrder.

Knowing this structure of a graph, the algorithm can easily construct the\tvails),
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removing the visited nodes from the stack and keeping track of exhausted vertices. Since this
algorithm use each arc at most twice, it can be implement&{ilA(G)|), which is best

possible.

Remark that while the initial verteixcan be arbitrarily chosen, different initial vertices can
produce different trails, even if we consider the label as a circular string. For example, in the
graph of Figuré 4]4, the minimal de Bruijn sequence startingi001122 but starting atis

100122.

Figure 4.4:

4.6 An application: minimal de Bruijn sequence

Given a setD of words of lengtin, a de Bruijn sequence of spans a periodic sequence such
that every word inD (and no othen-tuple) occurs exactly once. Historically, de Bruijn
sequence was studied in an arbitrary alphabet considering the language ohalliihes. In
[Mor03] the concept of de Bruijn sequences was generalized to restricted languages with a
finite set of forbidden substrings and it was proved the existence of these sequences and
presented an algorithm to generate one of them. Nevertheless, it remained to find the minimal

de Bruijn sequence in this general case.

In [MMO04] (see Section 4]2) was studied some particular cases where it is possible to obtain
efficiently the minimal de Bruijn sequence. Using our previous algorithm we can solve this

problem for all cases and efficiently.

A word pis said to be dactor of a wordw if there exist wordsi, v € N* such thaiv = upv. If

uis the empty word (denoted &y, thenp is called gprefixof w, and ifv is empty then is
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called asuffixof w.

Let D be a set of words of length+ 1. We will call this set alictionary. A de Bruijn
sequence of spanal for D is a (circular) wordB?>"+1 of length|D| such that all the words

in D are factors oB?-"t1, In other words,

{(B@’m'l)i .. (B@’m—l)i-m mod(n-i-l)li =0... n} =D

De Bruijn sequences are closely related to de Bruijn graphsd&hgruijn graph of spann

denoted byG?", is the directed graph with vertex set
V(GPM) = {ue N"|uis a prefix or a suffix of a word iD}
and arc set

AG”") = {(av,vB)|a,B € N,avB € D}

Note that the original definitions of de Bruijn sequences and de Bruijn graph given in![dB46]

are the particular case @ = N,

We label the grapie? " using the following function: if e= (au,up) thenl(e) = B. This
labeling has an interesting property: IRt €. .. em be a trail oveiG?" of lengthm > n.
ThenP finishes in a vertex if and only if u is a suffix ofl (P) = I(ep)...l(em). This property
explains the relation between de Bruijn graphs and de Bruijn sequBfcE:! is the label of

an Eulerian trail of”". Therefore, given a dictionarg, the existence of a de Bruijn

sequence of spam+ 1 is characterized by the existence of an Eulerian trail G/2F.

Let D be a dictionary such th&”" is an Eulerian graph. Lé#l be the vertex of minimum
label among all vertices. Clearly, the minimal de Bruijn sequencdvhas prefix. Hence, the

minimal Eulerian trail oveG?" start at an (unknown) vertex and aftesteps it arrives td/.

57



Therefore if we start our Algorithin 4.5.1 in the vertekwe obtain the Eulerian trail of
minimal label starting avl which have labeB = B'- M. HenceM - B’ is the minimal de Bruijn

sequence of spam+ 1 for D.
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Example4.6.1 Example of the algorithm for the Golden Mean systefn=t {11}) with length

n=~6.
0
0100000
L@
> B T T <>
01000 00 1 1o
oo >—— o>
0o o> o
<y
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