HÉTÉRogénéité De la Terre et Rareté Économique

Jean-Sauveur Ay
INRA UMR 1041 CESAER

Soutenance de Thèse
Directeur: Jean Cavailhès à Dijon, le Mercredi 6 juillet 2011.

Contexte (1/2)

Consensus sur une croissance de la demande en biens et services issus de l'usage de la terre.

Contexte (1/2)

Consensus sur une croissance de la demande en biens et services issus de l'usage de la terre. Il faut de la terre pour ...

- des usages agricoles:

Alimentation, matériaux bruts, énergie, etc.

Contexte (1/2)

Consensus sur une croissance de la demande en biens et services issus de l'usage de la terre. Il faut de la terre pour ...

- des usages agricoles:

Alimentation, matériaux bruts, énergie, etc.

- des usages urbains:

Logement, industrie, infrastructures, etc.

CONTEXTE $(1 / 2)$

Consensus sur une croissance de la demande en biens et services issus de l'usage de la terre. Il faut de la terre pour ...

- des usages agricoles:

Alimentation, matériaux bruts, énergie, etc.

- des usages urbains:

Logement, industrie, infrastructures, etc.

- des usages naturels:

Biodiversité, séquestration du carbone, etc.

CONTEXTE $(1 / 2)$

Consensus sur une croissance de la demande en biens et services issus de l'usage de la terre. Il faut de la terre pour ...

- des usages agricoles:

Alimentation, matériaux bruts, énergie, etc.

- des usages urbains :

Logement, industrie, infrastructures, etc.

- des usages naturels:

Biodiversité, séquestration du carbone, etc.
Raisons : démographie, revenus, préférences, etc. Problème :

CONTEXTE $(1 / 2)$

Consensus sur une croissance de la demande en biens et services issus de l'usage de la terre. Il faut de la terre pour ...

- des usages agricoles:

Alimentation, matériaux bruts, énergie, etc.

- des usages urbains :

Logement, industrie, infrastructures, etc.

- des usages naturels:

Biodiversité, séquestration du carbone, etc.
Raisons : démographie, revenus, préférences, etc.
Problème : la quantité de terre disponible est fixe.

Demande en productions agricoles, Tweeten et Thompson 2008

Demande en productions agricoles, Tweeten et Thompson 2008

Grandes villes du monde en 1950 (http: / /nordpil.com)

Grandes villes du monde en 2050 (http: / /nordpil.com)

FIGURE 2.7 | Trends in terrestrial surface under protected areas

Area in million square kilometres

Source: UNEP World Conservation Monitoring Centre,
World Database on Protected Areas ${ }^{7}$

Contexte (2/2)

Face à une question souvent abordée en termes quantitatifs,

Contexte (2/2)

Face à une question souvent abordée en termes quantitatifs, cette thèse traite du volet qualitatif de la rareté de la terre.

Principe simple :

CONTEXTE (2/2)

Face à une question souvent abordée en termes quantitatifs, cette thèse traite du volet qualitatif de la rareté de la terre.

Principe simple :

hausse demande + quantité fixe = substitution d'usages
la réponse dépend des attributs de la terre (hétérogénéité)

Contexte (2/2)

Face à une question souvent abordée en termes quantitatifs, cette thèse traite du volet qualitatif de la rareté de la terre.

Principe simple:

hausse demande + quantité fixe = substitution d'usages
la réponse dépend des attributs de la terre (hétérogénéité)

La recherche aborde les relations entre hétérogénéité et rareté, en particulier le caractère multidimensionnel de l'hétérogénéité.

Plan de la Présentation

Plan de la Présentation

1 - L’hétérogénéité par le marché (empirique)
Ch. 3 : Prix hédoniques des attributs naturels des terres agricoles en Côte d'Or

Plan de la Présentation

1 - L’hétérogénéité par le marché (empirique)
Ch. 3 : Prix hédoniques des attributs naturels des terres agricoles en Côte d'Or
2 - La régulation publique (théorique)
Ch. 2 : Intervention sur le foncier agricole pour contribuer à la gestion de l'eau

Plan de la Présentation

1 - L’hétérogénéité par le marché (empirique)
Ch. 3 : Prix hédoniques des attributs naturels des terres agricoles en Côte d'Or
2 - La régulation publique (théorique)
Ch. 2 : Intervention sur le foncier agricole pour contribuer à la gestion de l'eau
3 - Conservation et équité (simulation)
Ch. 5 : Land conservation \& relative scarcity : Equity issues from policy scale
4 - Principales conclusions et perspectives

1 - Empirique

Empirique (1/2)

La terre est une ressource hétérogène car elle admet des variations en ...

Empirique (1/2)

La terre est une ressource hétérogène car elle admet des variations en ...

- attributs naturels intrinsèques : texture, profondeur, etc.
- attributs naturels extrinsèques : topographie, climat, etc.
- attributs produits : drainage, réseaux de transport, etc.

Empirique (1/2)

La terre est une ressource hétérogène car elle admet des variations en ...

- attributs naturels intrinsèques : texture, profondeur, etc.
- attributs naturels extrinsèques : topographie, climat, etc.
- attributs produits : drainage, réseaux de transport, etc.

Chapitre 3 : l'hétérogénéité et le prix de la terre en Côte d'Or.

- Un modèle hédonique (statistique) pour estimer l'effet des attributs sur la valeur agricole de la terre
- Variables : RU, hydromorphie, textures, altitude, pente, distance à Dijon, faire valoir, nature cadastrale, etc.

Empirique (2/2)

Résultats :

Effets complexes : relations non-linéaires

EMPIRIQUE (2/2)

Résultats :

Effets complexes : relations non-linéaires et non-additives

EMPIRIQUE (2/2)

Résultats:

Effets complexes : relations non-linéaires et non-additives

La topographie plus significative que la pédologie, question de l'interaction avec les autres facteurs de production (chapitre 4)

Les attributs naturels présentent des effets importants une fois agrégés (35-60\%), confirme leur statut de capital économique

Variations issues des attributs naturels (\% de la médiane)

2 - Théorie

RÉGULATION PUBLIQUE (1/2)

Chapitre 2 : Un régulateur considère l'achat de terre agricole pour améliorer la qualité de l'eau (Grenelle de l'environnement)

RÉGULATION PUBLIQUE (1/2)

Chapitre 2 : Un régulateur considère l'achat de terre agricole pour améliorer la qualité de l'eau (Grenelle de l'environnement)

- Modèle stylisé :

Dotations en terre avec, pour chaque unité, un coût agricole et un bénéfice hydrologique évalués en numéraire

RÉGULATION PUBLIQUE (1/2)

Chapitre 2 : Un régulateur considère l'achat de terre agricole pour améliorer la qualité de l'eau (Grenelle de l'environnement)

- Modèle stylisé :

Dotations en terre avec, pour chaque unité, un coût agricole et un bénéfice hydrologique évalués en numéraire

- Deux questions :

1 - Quelles unités de terre sélectionner? (information)
Trois règles : moindres-coûts, max-bénéfices et moindres-coûts/bénéfices

RÉGULATION PUBLIQUE (1/2)

Chapitre 2 : Un régulateur considère l'achat de terre agricole pour améliorer la qualité de l'eau (Grenelle de l'environnement)

- Modèle stylisé :

Dotations en terre avec, pour chaque unité, un coût agricole et un bénéfice hydrologique évalués en numéraire

- Deux questions :

1 - Quelles unités de terre sélectionner? (information)
Trois règles : moindres-coûts, max-bénéfices et moindres-coûts/bénéfices
2 - Quel est l'importance des dotations? (σ_{c}, σ_{b} et ρ)
Les gains de la régulation dépendent de la région d'application

RÉGULATION PUBLIQUE (2/2)

Résultats log-normaux (preuves analytiques dans la thèse) :

RÉGULATION PUBLIQUE (2/2)

Résultats log-normaux (preuves analytiques dans la thèse) :

- Moindres-coûts/bénéfices est toujours optimale
- Acquérir de l'information est d'autant plus efficace que l'hétérogénéité de la terre est prononcée
- La corrélation augmente le coût de la préservation
- La corrélation écarte les différentes règles de sélection
- L'information n'a pas toujours une valeur positive

Région $\mathrm{n}^{\circ} 1: \rho<0$ et $\sigma_{c}<\sigma_{b}$

Région $n^{\circ} 1: \rho<0$ et $\sigma_{c}<\sigma_{b}$

Région nº 1 : Sélection aléatoire

Préservation moindres-coûts telle que : In coût <0

Préservation moindres-coûts telle que : In coût <2

Préservation totale par moindres-coûts

Préservation max-bénéfices: In bénéf. > 2

Préservation totale par max-bénéfices

Moindres-coûts/bénéfices : In coût/benef <-1.5

Moindres-coûts/bénéfices : In coût/benef <1

Région $\mathrm{n}^{0} 1: \rho<0$ et $\sigma_{c}<\sigma_{b}$

Région $\mathrm{n}^{\circ} 2: \rho>0$ et $\sigma_{c}<\sigma_{b}$

Région $\mathrm{n}^{\circ} 3: \rho>0$ et $\rho>\sigma_{c} / \sigma_{b}$

3 - Simulation

Conservation et ÉQuité (1/2)

Chapitre 5 : Application sur la biodiversité en PACA

Conservation et ÉQuité (1/2)

Chapitre 5 : Application sur la biodiversité en PACA

- Sélection de terre agricole pour augmenter le nombre d'espèces remarquables observées dans la région
- Bénéfices: Espèces remarquables à l'hectare (ZNIEFF)
- Coûts : Emploi agricole annuel à l'hectare (RA 2000)

Relations entre échelle des objectifs et équité

Rareté de la terre à l'échelle régionale

Objectif régional de 2400 observations

	AHP	HA	AM	BDR	VAR	VAUC	
	(04)	(05)	(06)	(13)	(83)	(84)	REGION
Regional Objective							
COST	64	82	18	60	539	298	1060
	6.0%	7.7%	1.7%	5.7%	50.8%	28.1%	100%
GAIN	181	221	63	213	1084	637	2399
	7.5%	9.2%	2.6%	8.9%	45.2%	26.6%	100%
Local Objectives							
COST	$\mathbf{2 7 2}$	$\mathbf{2 2 7}$	$\mathbf{2 1 2 5}$	187	160	178	3,149
	8.6%	7.2%	67.5%	6.0%	5.1%	5.7%	100%
GAIN	400	400	400	400	398	399	2,397
	16.7%	16.7%	16.7%	16.7%	16.7%	16.7%	100%

Ventilations départementales de l'objectif

Ventilations départementales des coûts

Indices de Gini entre départements

Indices de Gini entre départements

Conservation et ÉQuité (2/2)

Résultats:

- L'inégalité est minimale lorsque 160 espèces (40\%) sont obligatoires et le reste (1440, 60\%) selon les dotations
- Le coût de l'équité n'est pas trop élevé (env. 15\%) et évite les solutions de coin peu acceptables politiquement

Cependant ...

- Ces simulations ne sont pas des outils d'aide à la décision
- On montre qu'un objectif intermédiaire peut être trouvé

Conclusions et perspectives

Conclusions (1/2)

- L’hétérogénéité (naturelle) de la terre compte encore pour l'agriculture, question du niveau et de la forme
- Face à la croissance de la demande, la rareté peut être localisée (immobilité) : une faible rareté globale de la terre peut coexister avec une forte rareté locale
- L'allocation de la terre au centre de nombreuses préoccupations actuelles : les espaces artificiels ou naturels seront d'autant plus défendables qu'ils seront efficaces et équitables

Perspectives (2/2)

- Marges importantes pour le réalisme des modèles théoriques : effets de seuil, multifonctionnalité, rétroactions de prix, etc.
- Les besoins en connaissances sur l'hétérogénéité de la terre sont croissants avec la demande, ils vont déterminer le passage vers l'aide à la décision (pluridisciplinarité)

Merci pour votre attention!

