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Abstract
In this thesis, we design new authentication mechanisms based on user identity. There-

fore, we bring improvements in access control for different classes of networks such as Home
Network, Governmental Network and Cellular Network. The identity can be biometric
public features, simple strings (email addresses, login...), etc. The goal of our work is to
design innovative solutions that secure and personalize authentication mechanisms. We
have three main solutions in the thesis depending on the deployed identity.

The first solution concerns the use of biometric in Home Network’ authentication
mechanisms. In the Home Network (HN) case study, we aim at personalizing the access
of each user in the HN and preventing illegitimate users (passing by the HG) to have any
access. Our approach of personalized access also permits each user to use any device in
the HN, while being able to access his/her appropriate profile. We propose a new bio-
metric authentication method, while keeping in mind the constraint of the non storage
of the users’ Biometric Template BT in the Home Gateway (HG). To satisfy this con-
straint, we propose using the fuzzy vault method to hide a secret that should be used for
authentication. The HG has the role of generating a secret for each user session, which
are hidden by the BT. The user needs to recover the secret in order to be authenticated.
The personalized users’ access in the proposed solution, allows controlling the access for
each broadband access line depending on the user that is being connected.

The second solution proposes e-Passport authentication mechanisms. The crypto-
graphic parameters are generated using the biometric templates and hence, personal-
ized for the user. In travel document case study, we present our proposal which intro-
duces a new e-Passport authentication mechanisms based on the Elliptic Curve Diffie-
Hellman (ECDH) Key Agreement protocol. This protocol is needed to generate a session
key used to authenticate the traveler and the Inspection System (IS) to exchange secure
data. We designed two protocols. In the first one, the elliptic curve, used in the biomet-
ric cryptosystem, are generated from the minutiae data (fingerprint) of the e-Passport
holder. In the second one, we use iris code to generate the elliptic curve. We analyzed
the security of our solution with respect to the goals that we defined. We found that our
solution fulfills its goals and prevents the system from the attacks. The use of biometric in
the cryptographic solution is a very important issue as this biometric data is stored in the
e-Passport Chip without a direct link to the security. This solution is validated by using
iris biometrics. We performed tests on the NIST-ICE database of iris images to compute
the False Rejection Rate and the False Acceptance Rate. The results obtained (e.g., FRR
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of 0.2% and FAR of 3.6%) are satisfying and the use of iris biometrics is encouraging for
the deploying of this solution.

In the third solution, we worked on the Cellular Network and we used a simple string,
like email addresses, as identifier to access to services. We choose the IP Multimedia Sub-
system (IMS) which is an overlay architecture for the provision of multimedia services.
We design a new service authentication mechanism relying on Identity Based Cryptogra-
phy (IBC) for the IMS architecture. The goal was to authenticate the users using their
public and private identifiers to overcome known weaknesses in the Authentication and
Key Agreement (AKA) protocol. Security is assured using a symmetric protocol with
a shared key (ks) between the User Equipement (UE) and the Home Subscriber Sys-
tem (HSS), an asymmetric protocol for signature, and Diffie-Hellman for key agreement.
We focused on the eavesdropping and impersonation attacks that can take place in clas-
sical IMS scenario and we showed how our proposed solution can prevent against these
attacks. We, then, proposed to add a Batch Verification on the Bootstrapping Server
Function (BSF) to decrease signature verification delay and the authentication response
time. To validate the performance of our proposed solution, we implemented the crypto-
graphic operation in our proposed solution including the IBC procedures. We observed
that the use of asymmetric cryptographic procedures leads to longer running time than
symmetric procedures. However, the Batch Verification helps the BSF to verify the User
Equipments (UEs) signature in a reasonable time.

Key words : Authentication, Biometrics, Identity Based Cryptography (IBC), IP
Multimedia Subsystem (IMS), Home Network (HN)
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Chapter 1

Introduction

1.1 Network Security

Network security was and will stay a major catalyst for research in computer science.
It begins with user authentication, commonly with a username and a password.

Security Management depends on the network classes. A small home or an agency
needs only basic security, however, large businesses such as cellular operator networks
require high network security management, more powerful software and hardware to avoid
malicious attacks.

In this dissertation, we use different kind of identities to improve access control in such
different networks, like Home Network (HN) scenario, e-Passport scenario and in final,
the IP Multimedia Subsystem (IMS) scenario.

In this section, we first explore the concepts of identity, authentication, and authoriza-
tion to clarify the differences between them. Then, we highlight the problem statement
and our contribution. In the end, we present the organization of the thesis.

1.1.1 Identity

To access a system, users declare their identities to the system. This is the first
response by the users to the system query “Who are you”. Some familiar examples of
identity are user IDs, digital certificates (which contain public keys) and credit cards. An
important characteristic of identity is that it is public, and it is defined by: identity is the
affirmation that you are the legitimate owner of it and you defend this statement by using
something accessible to everyone.

1



CHAPTER 1. INTRODUCTION

1.1.2 Authentication

This is the answer of the system’s query “Fine, but how can you prove it?”. Generally,
people consider password as the only mean for authentication. Although the passwords are
the most common authenticators but there are in fact other authentication mechanisms.
These mechanisms rely on the verification of one or more of the following:

– Something you know : This refers to the password authentication mechanism. As
password are something that we know, we can forget it as well.

– Something you have: This is the answer to the forgetting problem. Users need to
have something with them like smart card, Radio Frequency Identification (RFID)
card, etc... But, these cards can be stolen.

– Something you are: In this case, the mechanism is called biometric authentication
scheme. This scheme uses techniques such as fingerprints, retina scans, voice print
analysis, etc... In computer science, biometrics is used as a form of identity access
management and access control.

In a multiuser system or network, without password, anyone could log as a legitimate
user and access to his/her confidential information. A system needs to provide different
mechanisms for identity and authentication. For more precisions, many solutions for
identification and authentication are detailed in chapter 10 of [Menezes 97].

After a successful authentication, the system constrains user’s access only to the al-
lowed resources. In general, a token or ticket is used for this purpose. Thus, the user
ability to roam freely throughout the system is limited. This procedure is called autho-
rization.

1.2 Problem Statement and Contribution

The identity is used in different types of networks as in Home Network, Cellular
Network, etc... but this identity is used in the majority of the cases as a login to access to
the system and not as a principal parameter in the cryptographic protocol i.e; the identity
is not used by the system to generate the authentication keys.

The utilization of the identity depends on the type of networks, their managers and
their security policies. We describe in the list below the major security risks in three
different networks:

– In Home Network Scenario, the user at his/her home has to: protect the confiden-
tiality of his/her files, protect the system against intruders via the Internet, prevent

2
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hard disk failures, etc... The most important issue is the protection of user privacy.
– In Cellular Operators Scenario, the subscribers needs to be authenticated and autho-

rized to access to the services. The authentication of the users avoids the repudiation
of involvement in a communication. For the Cellular Operator, the protection of
their financial benefits and the privacy of their subscribers are the most important
security goals.

– In Government Network Scenario, there are many agencies specialized in different
security fields like police, army, border controls, secret services, etc... Each one of
them has different security requirements in order to preserve the security of the
citizens. We consider in this dissertation the border control scenario. Since many
travelers enter and leave the country each day, the governments need to protect
themselves from ID hackers and black listed criminals. The use of the electronic
passport (e-Passport) aims to enhance the tracking of these outlaws. The major
security problems related to the use of e-Passports are the protection of traveler’s
privacy, identity theft and identity fraud.

In these three cases, the identity is exploited in the authentication mechanisms only
to identify the users. In our contributions, we aim to enhance and personalize those
mechanisms by generating cryptographic keys depending on the user identity. Hence, we
consider in this work two types of identity: the biometrics and any public string as email
addresses.

In the first place, we combined biometrics with cryptography since biometrics are
not sufficient alone to authenticate the user. We used biometrics to personalize and
enhance the authentication mechanisms in personal Home Network scenario and in e-
Passport authentication protocol. In the e-passport case, we used fingerprint or iris code
to authenticate the traveler. In the latter contribution, we generated the cryptosystem
parameters using the biometrical data.

In the second place, we used email addresses of the subscriber in the service authenti-
cation phase of the IP Multimedia Subsystem (IMS) to generate public/private key pair.
This is done by choosing Identity Based Cryptography (IBC) in spite of the Authentica-
tion and Key Agreement (AKA) protocol. In the end, we focused on the performance of
the signature verification and how to reduce it using the Batch Verification Scheme.
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1.3 Organization of this Thesis

The aim of this dissertation is not to produce finalized protocol suites but to investi-
gate how authentication protocols that use different available types of identity could be
designed. This dissertation is composed by seven chapters. For the sake of readability,
there are a two states of the art, one about cryptography(chapter 2) and the other one
about the biometrics (chapter 3). Chapter 4 describes a solution to realize personalized
access in the Home Network (HN). And chapter 5 concerns the use of biometrics in the
third generation e-Passport. We have designed a new version of protocol using either
fingerprint or iris code. Chapter 6 contains a rapid state of the art concerning the IMS
and its authentication methods. The solution presented here uses Identity Based Cryp-
tography (IBC) in the service authentication in the IMS. The solution is called IMS-IBC.
In the end, we conclude this dissertation and we give some perspectives of future work in
chapter 7.
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Chapter 2

Cryptography

2.1 Introduction

Cryptography is specified as the science of information security. Modern cryptography
has the following main four objectives:

1. Confidentiality : the information is protected against unauthorized disclosure

2. Integrity : the information, that was sent, has not been changed when it was stored
or exchanged between sender and legitimate receiver

3. Non-repudiation: one of the entities involved in a communication cannot deny ha-
ving participated in all or part of the communication

4. Authentication: the sender and the receiver can be convinced about each other’s
identity and the origin/destination of the information

To fulfill some or all of the above criteria, we need procedures and protocols that
are known as cryptosystems. Cryptosystems can refer to mathematical procedures and
computer programs. But, they also involve the measures taken by the cryptographer, like:

– preferring hard-to-guess passwords
– turning off systems that are no longer used
– not talking about sensitive procedures with strangers or outsiders to the system

In the following sections of this chapter, we introduce some basic concepts of security
and cryptography. We choose Alice as the sender of the message and Bob as its receiver.

5
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2.2 Algebraic Notations

A group is a set G together with an operation “*” that combines any two elements a
and b to form another element of G denoted a * b. G contains an identity element e such
e * a = a * e = a and for each a ∈ G, there exists an element b ∈ G such that a * b =
b * a = e.

A cyclic group G is a group that can be generated by a single element a (the group
generator). Zn is a cyclic group of finite group order n and its generator a satisfies an =
e. If b is an element of Zn, then b can be written ak, ∀ 0 <= k <= n-1.

A field F is a commutative group as for two compatible operations, addition and
multiplication.

A finite field has a finite number of elements. The number of these elements is called
the order of the field. As an example, the finite field Z/pZ has p elements, usually labeled
0, 1, 2, ..., p-1, where operations are done modulo p.

2.3 Symmetric Cryptography

Symmetric cryptography uses the same private key to encrypt and decrypt data. Ev-
eryone who has the private key, can use the cryptosystem. Generally, symmetric key
ciphers are known as block ciphers.

Symmetric cryptography algorithms are fast and adequate to process large streams of
data.

The disadvantage of symmetric cryptography is the assumption to have two parties
which have agreed on a key and to exchange that key in a secure manner prior to com-
munication. Therefore, symmetric algorithms are often mixed with public-key algorithms
in order to have secure and faster cryptosystem.

In figure 2.1, Alice and Bob must share an identical secret key for encryption and
decryption. Alice encrypts a message M. The ciphertext C is sent to Bob. The latter
decrypts C using the shared secret key to retrieve M. The fact to share the same key
preserves the confidentiality of messages.

Some of the well known symmetric protocols are Data Encryption Standard (DES),
Advanced Encryption Standard (AES) [stallings 03] to achieve confidentiality. Alice and
Bob may also use a Message Authentication Code (MAC) algorithm such as Hash-based
MAC (HMAC) [Bellare 96] to achieve data integrity and data origin authentication.

6
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Figure 2.1: Symmetric System

2.4 Asymmetric or Public-key Cryptography

Public-key cryptography is also called asymmetric cryptography. It uses a couple of
key, one private that must be hidden from unauthorized users and a public key available
to anyone. The private key depends on the public key through a mathematical equation.
The ciphered data using the public key can be deciphered only by the private key, and
the signed data using the private key can only be checked with the public key.

The public key can be published to anyone. In a communication session, Both keys
are unique.

The Public-key cryptography has two main branches:

– Public key encryption: Alice sends an encrypted message with Bob’s public key.
Upon receipt, Bob decrypts it with its private key. Figure 2.2 describes a scenario
of encryption.

7
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Figure 2.2: Asymmetric System

– Authentication: Alice sends a message encrypted with her private key, Bob decrypts
it with Alice’s public key. This scenario is well know as Digital signature that we
detail in Section 2.5. Figure 2.3 presents a scenario of authentication.

Figure 2.3: Authentication

The Asymmetric Cryptography is used also with digital certificates which contain
the public key of the certificate owner. The private key is stored in a safe place by
the owner. An application of such certificates is the implementation of a Public Key
Infrastructure (PKI) to manage the authentication and digital signature of the owner.

The Asymmetric cryptographic protocols are based on two problems:

8
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2.4.1 The Discrete Logarithm Problem (DLP)

The Discrete Logarithm Problem (DLP) is used in various public key infrastructure
algorithms, such as Diffie-Hellman and ElGamal [stallings 03]. This problem has been
studied for many years and cryptography based on it was strong against many forms of
attacks.

The following applies to finite fields. We suppose that we have a prime number P (a
number that is not divisible except by 1 and itself, P). This P is a large prime number
with length not less than 300 digits. We have also two other integers, a and b used to
compute N as follow:

N = ab mod P, where 0 <= N <= (P - 1)

This is equation is called discrete exponentiation and it is easy to compute. However,
if we are given P, a, and N to find b, then we face a very hard problem.

2.4.2 The Integer Factorization Problem (IFP)

The Integer Factorization Problem (IFP) is one of the most fundamental of all math-
ematical concepts. We have two large prime numbers, P and Q. We multiply P and Q
to get N. The problem is described as, being given N, how to retrieve the original P and
Q? The Rivest-Shamir-Adleman RSA [stallings 03] encryption protocol is based on this
problem. In such system, the public key is N and the the private is the couple P and Q
numbers. We remember at the end, that the IFP has been studied intensely for the past
20 years and no solution that can factor it in a polynomial time is found yet.

2.5 Digital Signature

Sometimes, we send a message with a signature to verify the integrity of the message.
The idea is to send a message digest obtained when hashing a message using a hash
function to the message (eg, Secure Hash Algorithm (SHA)). Hash algorithms are one-way
mathematical algorithms that have an arbitrary length input and produce a fixed length
output string. A hash value is a unique and a compressed numerical representation of a
piece of data. For example, MD5 produces 128-bit hash value for instance. It is unlikely
to have collusion and find two distinct inputs that have the same hash value. The process
steps are shown in Figure 2.4.
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Figure 2.4: Digital Signature

This digest C1 is encrypted with the Alice’s private key to create a signature S. The
message M and the signature S are encrypted by Bob’s public key. Upon receipt, Bob
decrypts the received message using its private key. He can extract the digest C1 after
decrypting the signature S using Alice’s public key. He calculates a new digest C2 from
the received message M and he compares the two digests. If they are equal, then the
message M was not modified.

In 2005, a widely-used cryptography algorithm, known as SHA-1, has been broken by
three researchers at Shandong University in China [Wang 05b], [Wang 05a]. The actual
attack called “ collusion attack” reduced the complexity of breaking the SHA-1 standard
to 269 from 280. The complexity is a measure of the number of calculations that have to
be performed to find a collision defined by two documents or files that produce the same
hash. The attack is still at theoretical phase. In practice, the attack would be performed
thousands of years on a most performant personal machine, and would still be slow even
if we use a Grid Network.

10
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2.6 Elliptic Curve Cryptography (ECC)

Cryptography mechanisms based on elliptic curves depend on arithmetic using the
points of the elliptic curve. There exit two types of elliptic curves, one defined over a
finite field Fp, where p is a prime number and the other type is defined of F2m which is
generated with the irreducible polynomial of degree m.

2.6.1 Elliptic Curve over Fp

We assume first that Fp has characteristic greater than 3, where p is a prime number.
An elliptic curve E over a finite field Fp, is the set of all points (x, y) ∈ Fp * Fp that verify
the equation

y2 = x3 + Ax+B, (2.1)

where A, B ∈ Fp satisfy 4A3 + 27B2 6= 0 mod p. There is another point O in this set
called the point at infinity. This curve is denoted by E(Fp) or shortly by E. A point P of
prime order in E(Fp) has the form P (xP , yP ) where xP and yP in Fp [Hankerson 04].

In [Menezes 93], it is reported: “The well-known theorem of Hasse states that

card(E(Fp)) = p+ 1− t, where |t| <= 2
√
p.

If the characteristic of Fp is 2 or 3, then a curve over Fp is supersingular if and only if
it has j-invariant equal to 0.

An example of elliptic curve is presented in Figure 2.5.
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P

Q

R

y

x

R = P + Q

Figure 2.5: Elliptic Curve

The sum of two points in E(Fp) is also a point in E(Fp). Given two points P = (xP , yP )

and Q = (xQ, yQ) on the curve E:
– If P = (xP ,yP ) ∈ E, then -P = (xP , −yP )
– If Q = -P, then P + Q = O
– If xP 6= xQ, then R = P + Q = (xR, yR), where

xR = s2 − xP − xQ,
yR = s(xP − xR)− yP ,

and
s = yQ−yP

xQ−xP
– If P = Q and yP = yQ 6= 0, then R = P + P = 2P = (xR, yR) where

xR = s2 − 2xP ,
yR = s(xP − xR)− yP ,

and
s =3x2P−A

2yP

Hence, the multiplication of a point P by a digit x gives a point Q = x.P belonging to
E. The multiplication by x times is translated into x additions i.e; Q = P + P + ....+ P︸ ︷︷ ︸

xtimes

.

To obtain x.P , the multiplier x is binary bit represented and then the techniques of
double and add is used as follows: We choose as example x=(9)10=(1001)2=(b3b2b1b0)2

where b0=1, b1=0, b2=0, and b3=1
This means that: 9 P = 23 P + 20 P = 8 P + P

12
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Thus we obtain 2 P = P + P, then we obtain 4 P = 2 P + 2 P, and finally we obtain
8 P = 4 P + 4 P. To obtain 9 P, we add P + 8 P.

2.6.2 Elliptic Curve over F2m

In this case, the equation of the elliptic curve is defined on a binary field F2m by

y2 + xy = x3 + Ax2 +B, (2.2)

where B 6= 0. The elements of the finite field are at most m-bit integers. These numbers
represent a binary polynomial of degree m− 1 since the coefficients of the binary polyno-
mial can only be 0 or 1. To have a secure cryptosystem, the parameter m is chosen to have
a finite large number of points on the elliptic curve. Operations on binary polynomials
are modulo irreducible polynomial of degree m. The latter generates the field F2m .

2.6.3 Use in Cryptography

The elliptic curves have been well known mathematical concepts for centuries, but
their application in cryptography was only from few decades. The Elliptic Curves Cryp-
tography (ECC) was first suggested by V. Miller [Miller 85] and N. Koblitz [Koblitz 87].
They believed that the Discrete Logarithm Problem (DLP) was harder for elliptic curves
than for finite fields. The Elliptic Curve Discrete Logarithm Problem (ECDLP) is de-
scribed as follows: “P is a point on the curve, if Q = x.P , where x is a digit, try to find
x ”. It is hard for an attacker to retrieve x. The last record for ECDLP was set in 2009,
a 112-bit prime ECDLP was solved by the Laboratory for Cryptologic Algorithms at the
Ecole Polytechnique Federale de Lausanne (EPFL) (http://lacal.epfl.ch/page81774.html).
They run their experiments for almost 6 month on a cluster of more than 200 PlayStation
3 (PS3) game consoles.

ECC requires the computation of the cardinality of the curves. Schoof [Schoof 95]
gave fast solutions and described several practical improvements implemented by Atkin
and Elkies. The Schoof Elkies Atkin algorithm (SEA) is the algorithm used in elliptic
curve over a finite field.

The Elliptic curve key length is shorter than Rivest Shamir Adleman (RSA) key length.
If the key for ECC is 256-bit long, then for RSA, it is 3072-bit long. In Table 2.1 (depli-
cated from [X9.62 99]), more key size values are given by the NIST guidelines. Further-
more, it was proven that ECC outperforms RSA Algorithm [Gura 04], [Qingxian 05].

13



CHAPTER 2. CRYPTOGRAPHY

ECC Key size (bits) RSA Key size (bits) Key size ratio AES Key size (bits)

163 1024 1 : 6
256 3072 1 : 12 128
384 7680 1 : 20 192
512 15360 1 : 30 256

Table 2.1: Equivalent key sizes for ECC, RSA and AES (NIST)

In this thesis, we chosen elliptic curves over Fp. We describe in the following three
ECC protocols.

2.6.3.1 Elliptic Curve Diffie-Hellman ECDH Key Agreement Protocol

This protocol is a new variant of the Diffie-Hellman protocol using Elliptic Curve
Cryptography ECC. It is described in the Certicom Research report [Research 00]. This
is how the algorithm is performed:

– Alice and Bob select an elliptic curve E defined over Fp. The number of points in
E(Fp) should be divisible by a large prime n.

– They select a point P ∈ E(Fp) of order n.
– Alice selects a statistically unique and unpredictable integer a in the interval [1, n-1].

Bob chooses the integer b in [1, n-1].
– Alice computes point C = a.P and sends it to Bob.
– Bob computes point D = b.P and sends it to Alice.
– Alice and Bob can now computes a common point K ∈ E(Fp):
K = a.D = a.(b.P ) = (a.b).P = b.(a.P ) = b.C

Durlanik et al. [Durlanik 05] made some experimental tests to compare ECDH and
DH. They reported that “Besides of key sizes it can be said that ECDH is faster than DH
by means of execution times and memory usage statistics according to the comparisons”.
For example, the time needed to generate the Elliptic Curve Domain parameters with
256-bit prime is much lower that the one needed for DH Domain parameters with 512
bits (0.0676 seconds for ECDH-256 and 0.5783 seconds for DH-512).

There is another authenticated protocol for key agreement based on the DiffieŰHell-
man scheme. It is called Elliptic Curve Menezes–Qu–Vanstone (ECMQV). More infor-
mations about this protocol can be read in [Hankerson 04].
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2.6.3.2 Menezes-Vanstone Protocol

Menezes and Vanstone [Menezes 93] designed a public key cryptosystem based on
Elliptic Curves. This protocol is the version of the ElGamal encryption [ElGamal 85]
using elliptic curves. It needs some initialization steps like:

– Alice and Bob choose an elliptic curve E defined over Fp where p is prime and p >
3

– Alice chooses a point P ∈ E and s a positif integer. She computes the point Q =
s.P

– Alice publishes the curve E and the points P and Q as her publics parameters. The
number s is her private key.

– the plaintext x = (y,z) ∈ Fp ∗Fp is a couple of integer modulo p. The plaintext x is
not necessarily a point of E.

To encrypt the message x, Bob

– generates a random number k (k is fresh for each session)
– computes:
u = k.P

(c,d) = k.Q (c and d are the coordinates of the points k.Q of E )

v ≡ c.y mod p

w ≡ d.z mod p

– sends the ciphertext (u, v, w) to Alice.

To decrypt the ciphertext (u, v, w), Alice computes:

s.u = s.(k.P ) = k.(s.P ) = k.Q = (c, d)

c−1.v = c−1.c.y ≡ y mod p

d−1.w = d−1.d.z ≡ z mod p

In [Rahouma 09], the author provides a new modified variant of Menezes and Vanstone
elliptic curve cryptosystem. This new variant uses many different curves, thus, there are
separate cryptosystem related to each curve.
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2.6.3.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) was developed by the the
American National Standards Institute (ANSI) by the Accredited Standards Committee
on Financial Services, X9 [X9.62 99]. Moreover, the ECDSA uses the Elliptic Curve
Discrete Logarithm Problem (ECDLP). The latter is analog to the Discrete Logarithm
Problem described in Section 2.4. The ECDLP is described as: Given P ∈ E(Fp) and
Q = aP , find a (1<= a <= n).

An elliptic curve E defined over Fp with large group E(Fp) of order n and a point P
of larger order are chosen by Alice and made public to all users. There are three different
primitives:

– ECDSA Key Generation - Alice follows these steps:

1. First, she chooses a random integer d ∈ [2;n− 2].

2. Then , she calculates Q = d.P .

3. In the end, she publishes her public parameters (E; P; n; Q) and she keeps
safe her private key d.

– ECDSA Signature Generation - Alice signs a message m following these steps:

1. She selects a random integer k ∈ [2;n− 2].

2. She calculates k.P = (x1; y1) and r = x1 mod n. If r = 0 then she return to
select a new k.

3. She computes k−1 mod n.

4. She computes s = k−1.(H(m) + d.r) mod n. H is the secure hash algo-
rithm (SHA-1). If s = 0, Alice needs to start from the begining.

5. the pair of integers (r; s) are the signature for the message m.

– ECDSA Signature Verification - Bob verifies Alice’s signature (r; s) on the message
m by performing the following steps:

1. He calculates c = s−1 mod n and H(m).

2. He computes u1 = H(m).c mod n and u2 = r.c mod n.

3. he computes u1.P + u2.Q = (x0; y0) and v = x0 mod n.

4. Bob approves the signature if v = r.

Johnson et al. [Johnson 98] provide a comparison between ECDSA and DSA. They
concluded that ECDSA has significant advantages over DSA like:
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– The ECDSA prevents the weakness found in DSA which allows the selective forgery
of one message if the adversary can choose the system parameters.

– In ECDSA, it is mandatory to check, during the signature genration, if the digital
signature (r,s) is non-zero. Or, in DSA, it is optional.

– It is harder to recover a private key from a public key in case of Elliptic Curve Dis-
crete Logarithm Problem (ECDLP) than using Discrete Logarithm Problem (DLP).
As an example, for 163-bit prime number p (ECDLP), the attacker needs 9.6 * 1011

Millions Instructions Per Seconds (MIPS) years and for 512-bit key (DLP), the
attacker needs 3 * 104 MIPS years.

2.7 Identity Based Cryptography (IBC)

The Identity Based cryptography (IBC) has emerged as a long-term evolution or sub-
stitution to Public Key Infrastructure (PKI). It is a cryptosystem in which the public key
is generated using the identity of the entity (user) and the private key is the public key
multiplied by the secret key of the server. The latter is responsible of the user’s private
key distribution and is called the Private Key Generator (PKG).

The IBC concept is old and was first proposed by Shamir in 1984 [Shamir 84]. Shamir’s
original motivation for identity-based encryption was to simplify the certificate manage-
ment in e-mail systems. Then, the first fully practical and secure identity-based public
key encryption scheme was presented by D. Boneh and M. Franklin in [Boneh 01], us-
ing the fundamental operations of Elliptic Curve Cryptography (ECC) and the bilinear
pairing. Since then, the development of Identity based cryptosystem intensifies rapidly.
As an example, D. Boneh co-founded in 2002 Voltage Security [Boneh 02]. In the next
paragraphs, we present the bilinair pairing, the Identity Based Encryption and two others
protocols based on IBC.

2.7.1 Bilinear pairing

Let (G1; +) and (G2; .) be two cyclic groups of prime order q. G1 is an additive group
and G2 a multiplicative group. The bilinear pairing is given as e: G1 ∗ G1 → G2, which
satisfies the following properties:

1. Bilinearity: For all P; Q; R ∈ G1;

e(P +Q,R) = e(P,R).e(Q,R) and e(P,Q+R) = e(P,Q).e(P,R);
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2. Non-degeneracy: If P is a generator of G1, then, e(P, P ) is a generator of G2 (Cyclic
Group).

3. Computability: It is easy to compute e(P, Q) ∀P ;Q ∈ G1.

A bilinear map satisfying the three properties above can be considered as an admissible
bilinear map [Boneh 01].

2.7.2 Identity Based Encryption (IBE)

The Identity-Based Encryption (IBE) is an important primitive of IBC. It is a kind of
public-key encryption in which the public key of a user is generated using the identity of
the user (e.g. a user’s email address). The following functional routines are illustrated in
Figure 2.6.

IBC Key Server (PKG)

Email address: alice@a.com

Master Secret

Bob sends his 
Identity 

(authenticates 
himself)

PKG sends
Bob’s Private Key

Public 
Parameters

Alice receive PKG’s Public 
Parameters and encrypts 

message M

1 System setup

2 Encryption

3 Key Extraction

4 Decryption

Email address: bob@b.com

Bob receives PKG’s Public 
Parameters and his private 

key

Figure 2.6: IBE’s phases

1. System Setup: IBE systems rely on the Private Key Generator (PKG) which is a
trusted central authority managing the system’s parameters. The PKG generates its
parameters, including a master secret S involving in user’s private keys generation.
The system parameters called “params” are: the prime number p, the order q, the
generator point P, PKG’s public point Ppub= S.P and the MapToPoint which is the

18



2.7. IDENTITY BASED CRYPTOGRAPHY (IBC)

hash function used by the PKG to convert a string into a point in the elliptic curve
E ).

2. Encryption: When a user (Alice) wishes to send an encrypted message to another
user (Bob), she first generates Bob’s public keyKpubBob. Then, she encrypts a plain-
text message M with KpubBob to obtain cipher message C. In the end, she sends C
to Bob.

3. Key Extraction: When Bob receives the message, he needs to decrypt it. He au-
thenticates himself to the PKG in order to obtain the secret keyKprivBob= S.KpubBob.
The latter is needed by Bob to decrypt the cipher message C.

4. Decryption: When Bob receives KprivBob, he decrypts the cipher message C to
obtain the plaintext message M.

2.7.3 Identity-Based Signature Scheme

The Identity-Based Signature Scheme is an another primitive of IBC. It is a signature
scheme in which the private key is generated by the PKG using the user’s identity. The
following functional routines are illustrated in Figure 2.7.

IBC Key Server (PKG)

Email address: alice@a.com

Master Secret

Bob sends his 
Identity 

(authenticates 
himself)

PKG sends
Bob’s Private Key

Public 
Parameters

Alice receive PKG’s Public 
Parameters and verifies 

Bob’s signature

1 System setup

4 Verification

2 Key Extraction

3 Signature

Email address: bob@b.com

Bob receives PKG’s Public 
Parameters and his Private 

Key

Bob signs message M

M + Signature

Figure 2.7: Identity-Based Signature Scheme

1. System Setup: same as described in sec:IdentityBasedEncryptionIBE.
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2. Key Extraction: Bob authenticates himself to the PKG in order to obtain the
secret key KprivBob= S.KpubBob. The latter is needed by Bob to decrypt the cipher
message C.

3. Signature: Bob signs a message M using his private key KprivBob (he hashes M
and encrypt the hash value H1 with its private key). Then, he sends the message
M and its signature Sig to Alice.

4. Verification: When Alice receives the message M and the signature Sig, she hashes
the message M and gets H2. She then decrypts the signature Sig using Bob’s public
key that she computed using Bob’s Identity and the PKG’s public parameters. She
gets the hash value H1. Finally, she compare the two hashes and if they rae equal,
then the signature is verified.

2.7.4 Certificateless Public Key Cryptography CL-PKC

CL-PKC was presented by Al-Riyami and Paterson in [Al-Riyami 03]. In CL-PKC
cryptosystem, an entity called Key Generation Center (KGC) is responsible for generating
a Partial Key to the user which has one and unique identity in the system.

The certificatless encryption runs five steps algorithm which are defined as follows:
– Setup: In this step, the Key Generation Center (KGC) generates its privatemaster-
key, the public parameters params and its public key using a security parameter k.

– Partial Secret Key Extract: The KGC generates Alice’s partial secret DA ∈ G∗1
using its master-key, params and Alice’s identity IDA ∈ {1,0}∗ as inputs.

– User key generation: Alice generates first of all a secret value XA, using params
and her identity IDA. Then, she takes her partial secret DA, the params and her
secret value XA as input to generate the private key SA ∈ G∗1. In the end, she takes
the params and her secret value XA as input to generate the public key PA ∈ G∗1.

– Encrypt: Bob wants to send the message M ciphered with Alice’s public key PA.
He ciphers the plaintext M using the params, Alice’s IDA and her public key PA
into the ciphertext C or ⊥ (meaning encryption failure).

– Decrypt: After receiving the ciphertext C, Alice uses the params and her private
key SA to retrieve the plaintext M or ⊥ (meaning decryption failure).

Although, CL-PKC has interesting advantages like the certificate implicitly, the Denial
of Decryption (DoD) attack is still a relevant problem [Ahmad 09]. An attacker can
change the legitimate user’s public key by a fake public key. Although the attacker can
not decrypt the received message, he/she does not let the legitimate receiver decrypt the
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message.

2.7.5 TIBC: Trade-off between Identity-Based and Certificateless

Cryptography

In [Ahmad 09], the authors merged Identity Based Cryptography (IBC) and Cer-
tificateless Public Key Cryptography (CL-PKC) systems to solve the problem of user
impersonation by providing an implicit certificate depending on two separate processes.
They called their system Trade-off between Identity-Based and Certificateless Cryptog-
raphy (TIBC). Three entities are involved in TIBC: a Key Generation Center (KGC), a
publisher and his/her own Public Key generator (PKG). Based on the bilinear pairing,
the TIBC is performed at two levels of interaction: (1) between KGC and the publisher,
and (2) between PKG and the publisher.

– Level-1: After choosing an admissible bilinear map, the KGC generates params and
it fellows these steps:

1. KGC_MasterKeyGeneration: The KGC generates its private master-key
and public key using the params and 1y where y ∈ N is a security parameter.

2. PartialKeyGeneration: The KGC generates Alice’s partial key PartialKeyA
using its master key and Alice’s identity IDA ∈ {1,0}∗.

3. UserKeyGeneration: Alice generates her private key SA ∈ G∗1 and her public
key PA ∈ G∗1 using a secret XA, params, PartialKeyA and her identity IDA.

– Level-2: In this level, Alice chooses a secret prime value n, and calculates the point
F = n.SA ∈ G∗1 (hard Discrete Logarithm Problem) and sends F= (XF , YF ) to her
PKG. Then, four steps are performed:

1. PKGSetUp: After receiving the point F, the PKG chooses an admissible
bilinear map, a point P’ ∈ G∗1 , the abscissa XF of the point F as its master
secret key and then generates a Master Public Key P ′′pub = XF .P

′.

2. ExtractUserPublicKey: the PKG computes the point QIDA
= H1(IDA)

which is Alice’s final public key. H1 is a MapToPoint Function.

3. ExtractUserPrivateKey: The PKG computes Alice’s final private key UA =

XF .QIDA

4. Encryption/Decrytion: These operations are the same defined for the IBC.

The most important advantages of TIBC is the “self-generated” certificate since the
user’s private key depends on a secret value given by the user himself.
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2.8 Conclusion

In this chapter, a comprehensive review of cryptographic protocols is presented. We
remind that we need to be conform to the Cryptographic Key length Recommenda-
tion [BlueKrypt 10] Since the cryptanalist are working hard to improve their capability for
attacking systems. We started this state of the art by describing the symmetric and asym-
metric systems. The basic cryptographic procedures are: the encryption, the decryption
and the signature. The Discrete Logarithm Problem (DLP) make these systems efficient
against prime factorization. Then, we introduced the Elliptic Curve Cryptography (ECC)
which aims to enhance the performance of cryptographic systems and make them hardly
breakable. This is due to the Elliptic Curve Discrete Logarithm Problem (ECDLP). We
described only three cryptographic protocols based on ECC which are: Elliptic Curve
Diffie-Hellman (ECDH) Key Agreement Protocol, Menezes-Vanstone Protocol and Ellip-
tic Curve Digital Signature Algorithm (ECDSA). After that, we introduced the Identity
Based Cryptography (IBC) which is a type of asymmetric cryptographic system. The IBC
uses a publicly known string belonging to an individual or organization as a public key.
The public string could be an email address, a domain name, or a physical IP address. We
presented different variant of solution using IBC, like Identity Based Encryption (IBE),
Identity-Based Signature Scheme, Certificateless Public Key Cryptography (CL-PKC)
and TIBC: Trade-off between Identity-Based and Certificateless Cryptography. The IBC
is primordial in our work since it is used in the proposed solutions.
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Chapter 3

State of the Art of Biometrics

3.1 Introduction

The biometry or biometrics aims to improve human ability to identify a person. Dif-
ferent biometrical techniques are at present under research, including fingerprints, facial,
palm prints, retinal and iris scans, hand geometry, signature capture and vocal charac-
teristics. However, its use raises issues that affect the people’s privacy. One innovative
idea is to combine biometry with cryptography in order to generate more secure secret
key dependent of the human body.

In this chapter, we present a state of the art in biometrical technologies and biometric
cryptosystems.

3.2 Biometrics

Biometrics identify a person using its own identifiable and verifiable data. It answers
the question: “what one is?” (fingerprints, hand, face ...). In Table 3.1(replicated from
[Itakura 05], page 291), the authors present an overview of the most used biometrical
technologies.

Biometrical authentication is the verification of human identity using measurement of
biological characteristics. Biometrical authentication has become internationally recog-
nized as a mean for people to authenticate themselves to computing systems. There are
two performance thresholds of biometrical authentication mechanisms:

– False Acceptance Rate (FAR) is the percentage of false acceptances among the
identification attempts.
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– False Rejection Rate (FRR) is the percentage of false rejections among the identi-
fication attempts.

We shall add another parameter: the Equal Error Rate (EER) which is the point where the
probability of false acceptance and that of false rejection become equal. In the literature,
The Genuine Acceptance Rate (GAR) is used instead of FRR. we just have to know that
GAR = 1 - FRR.

Biological Fingerprint Iris Face Voice print Signature DNA
information

Identifying minutiae iris patterns facial features vocal sounds Difference in short
principle handwritten tandem repeats

letters
pressure, timing

FAR 2.10−6 or less 8, 3.10−7 or less 10−2 or less 3.10−2 or less 10−2 or less 10−15 or less
FRR 0.05% or less 0.1% or less 1% or less 3% or less 1% or less Less than

measuring error
Sensor Image sensor Camera Camera Microphone Pressure sensor DNA analyzer

Data size of
templates 250 to 500 250 1000 1000 1000 20
in bytes
features Small size, Small Small Small High precision High precision,

economic psychological psychological psychological in dynamic uniqueness, and
and high stress and high stress stress signature high stability
precision precision with time

Problem Degradation of Change due to Voice Change Ease of Long analyzing
fingerprint – aging,camera in puberty Imitation time, high price,
due to angle, hat, or due to and privacy

dried skin or eye glass thirsty throat concerns
Risk of Fingerprint Eye captured Face captured Voice recorded handwriting stolen hair

unauthorized marked by camcorder by camcorder by microphone imitated with root
use

Table 3.1: Summary about Biometrical Algorithm Characteristics

In [Cavoukian 07], authors gave some performance values related to FAR and FRR:
“For most biometric systems, FRR ranges from 0.1% to 20%, meaning that a legitimate
user is rejected from one out of 1000 times to one out of five times on average. FAR
ranges from one in 100 (low security applications) to one in 10,000,000 (very high security
applications)”.

Research works are still underway to stabilize the biometrical data. To perform au-
thentication, it is better to couple it with a smart card or a secure token (small storage
element with high resistance to attacks, even physical). In the enrollment phase, the sys-
tem stores the biometric template in a smart or Radio Frequency Identification (RFID)
card. In the verification phase, the user provides a Personal Identification Number (PIN)
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code to unlock the access to the biometric data. He/She enrolls his/her fingerprint which
is compared to the one stored in the card. This system is well used in sensitive nuclear sta-
tions or in airports. We describe in the next sections others methods to deploy biometric
data in cryptographic system.

The biometrical authentication systems consist of two steps, which are the enrollment
and the authentication. In the enrollment phase, the biometrical data are captured from
a user, where the biometrical features are extracted and eventually stored in a database.
As for the authentication phase, we need to distinguish two alternative methods:

– Verification: the user, wishing to be recognized by the system as the holder of
an identifier, presents some form of identifier (like used ID, Automatic Teller Ma-
chine (ATM) card) and a biometrical characteristic. The new biometrical feature
is compared with the stored ones, associated with the provided identifier (1-to-1
matching);

– Identification: In the case where the user does not provide an identifier, the system
needs to find the user’s identifier. The extracted biometrical feature is compared to
the entire database for matches (1-to-N matching).

The difference between a password and a biometric template is relative to the replay
attack, a password is supposed to be secret, while biometric templates are not. Some
systems incorrectly assume that biometric measurements are secret and grant access when
matching biometrical features are presented. To solve such a problem, one of the best way
is to biometry with cryptography.

A classical biometric system is shown in Figure 3.1 presenting the enrollment and the
verification phases. In such systems, pertinent biometrical features are extracted from
the user’s biometrical data (e.g., minutia from the fingerprint, iris code, etc...). These
features need to be stored in form of templates in a central database or on personal
possessions (such as e-Passport) for future comparison. The user verification is carried
out by comparing the stored template with the newly provided biometrical data by the
user.
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Figure 3.1: Classical Biometrical System

There are some problems associated with such classical biometric verification systems:

– The biometrical characteristic is permanently associated with the user. Hence, it is
not possible to issue different templates for different applications for the same user.
The biometric data stolen from one biometric system can be used to attack another
system based on the same biometrics.

– Moreover, even if the compromise is detected, that data cannot be replaced and
becomes unusable by the system. This is called non-revocability of biometrics.

– Another problem is that the classical biometric comparison results only in one-bit
information - success or failure. Such system can be attacked by a Trojan horse
which can replace the biometric verification module and induce the desired result
bit in the system.

– The storage of biometrical data in databases by non governmental authorities meets
opposition from the French Data Protection Authority Commission Nationale de
l’Informatique et des Libertés (CNIL) [CNIL 07] and others organizations world-
wide.

In the following, we present three solutions to enhance biometrics results. The first
one is the use of multimodality in biometrics, the second one is the cancelable biometric
and the third one is the combination of cryptography and biometry.
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3.3 Multimodal Biometrics

Systems that use a single biometric face a variety of problems such as: fuzzy data,
the intra-class variations, degrees of freedom restricted, non-universality, identity theft,
and an unacceptable error rate. Some of these limitations can be avoided by choosing
multimodal biometric systems. Theses latter are based on using multiple biometrics at the
same time. The multimodal biometrics requires a merging mechanism between different
modalities.

Arun Ross and Anil K. Jain [Ross 04], provided a general statement on already ex-
isting multi-biometric solutions. They described the system’s deficiencies using a single
modality. Then, they presented three merging levels for the multimodality presented in
Figure 3.2.

Feature Extraction 

Module
Matching Module Decision Module

FU FU FUMM DM DM

Fingerprint Template

Face Templates

Feature Extraction 

Module
Matching Module Decision Module

Templates

A/R A/R A/R

A/R

A/R

FU: Fusion Module

MM: Matching Module

DM: Decision Module

A/R: Accept/Reject

Figure 3.2: Multimodal System

There are three possible fusion levels:
– Fusion at the Data or Feature Level
– Fusion at the Match Score Level
– Fusion at the Decision Level
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3.3.1 Fusion at the Data or Feature Level

The templates are put in the same form to be merged directly after the enrollment
phase. At this fusion level, there are 2 problems. The first is that all biometric sensors
may not be compatible (eg facial Eigenfaces and fingerprint minutiae). The second is
that most commercial biometric systems do not allow access to their used process (or raw
data).

3.3.2 Fusion at the Match Score Level

At this level, each module provides a comparison score. This is provided after a
normalization and fusion score phases. This method is the most used since it is easy to
calculate a final score for the decision.

In [Snelick 03] and [Snelick 05], standardization and fusion methods are presented.
The output of biometric sensors is S and the normalized score isN. In Table 3.2 (from [Snelick 03]
page 69) , the authors present the standard normalization methods.

Min−Max(MM) N = (S −min)/(max−min)
Z − score(ZS) N = (S −moyenne/variance)

Tanh N = 1/2[tanh(0.01(S −moyenne)/variance) + 1]

Table 3.2: Summary of Normalization Techniques

In the following, Ni are the normalized scores and P (genuine/Ni) is the probabil-
ity that score is provided by a legitimate person and not by an impostor. The fusion
techniques are showed in Table 3.3 (replicated from [Snelick 03] page 70).

Afterwards, the authors compare the final scores obtained from single biometrical
modal and from the association of normalization methods and different fusions. The
use of the latter techniques enhances the performance significantly over the single-modal
face or fingerprint minutiae. For example, with a False Acceptance Rate (FAR) fixed at
0.1%, the simple sum fusion with the min-max normalization has a Genuine Acceptance
Rate (GAR) equals 94.9%, which surpasses that of face, 75.3%, and fingerprint, 83.0%.
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Simple Sum
∑N

i=1Ni

Minimum Score Min(N1, N2, ...., Nn)

Maximum Score Max(N1, N2, ...., Nn)

Sum of Probabilities
∑N

i=1 P (genuine/Ni)

Product of Probabilities
∏N

i=1 P (genuine/Ni)

Table 3.3: Summary of Fusion Techniques

3.3.3 Fusion at the Decision Level

At this level, there is a vote among the decisions to accept or reject the candidate.
This method is difficult to realize since there are not enough data.

3.4 Cancelable Biometrics

To generate strong cryptographic keys from biometrical data, we need to find a map-
ping technique. Biometrical techniques face a major problem which is their complex
reinitialization. When a credit card number is stolen, the bank assigns a new credit
card number to its client. When biometric features are stolen, no substitution is possible
because the new enrolled features are the same as the stolen ones.

The concept of “cancelable biometrics” was suggested to avoid this problem and, by
the way, offers biometric template protection. Figure 3.3 shows both the enrollment and
the identification phases when cancelable biometrics are used.

Cancelable biometrics rely on a repeatable distortion of the biometric features. This
action protects the sensitive user’s biometrical data. If a cancelable feature is lost or
misused by an attacker, it is easy to change the distortion characteristics. In this case,
the same biometrical data are used to generate a new cancelable biometrics. In general,
the transformation used for the distortion are non-invertible (i.e; if an attacker succeeds
in stoling the cancelable biometrics, he/she cannot recover the real biometrical data).
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Figure 3.3: Cancelable Biometrics

The concrete idea of cancelable biometrics was suggested by Bolle et al. [Bolle 02].
The BioHashing method was firstly presented by Jin et al. [Jin 04]. The basic idea of
BioHashing is based on the generation if an orth-normal matrix using a hash key. The
biometrical feature vector is projected onto the matrix to create a BioHadh. Lumini et
al. [Lumini 07] improved this method by adding some permutations and normalizations.

A realization of non-invertible transformation was reported by Ratha et al. [Ratha 07]
where fingerprint data is transformed by a sequence of three non-invertible transformation
functions which are based on cartesian, polar and surface folding transformation of the
minutiae positions.

The best results were obtained using surface folding transformation where both the
position and the orientation of the minutiae are modified. the Figure 3.4 (replicated
from [Ratha 07] page 567) presents a cancelable fingerprint obtained using this method.

30



3.5. BIOMETRIC CRYPTOSYSTEMS

Figure 3.4: Cancelable Fingerprint

In Table 3.4, we present a summary of the solutions described above.

Techniques Experiments Results
bolle [Bolle 02] theoretical –

BioHashing [Jin 04] Fingerprint, FVC 2002 (Set A) ERR ≈ 0
Faces (ORL and Yale-B Databases) ERR >= 2.4

BioHashing [Lumini 07] Signatures (SUBCORPUS-100) ERR ≈ 0
Fingerprint (Fingerprint, FVC 2002) ERR >= 0.4

non-invertible 188 fingerprint pairs FRR: 5% / FAR: 0.1%
transformation [Ratha 07] (IBM-99 Database)

Table 3.4: Cancelable Solutions

In the next section, we present the biometric cryptosystems’ state of the arts.

3.5 Biometric Cryptosystems

A biometric cryptosystem uses biometrical data to reinforce existing key or to partic-
ipate in the cryptographic key’s generation. The first and easiest solution was to encrypt
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the biometric template and to send it in a communication session. In this section, we
do not address this kind of solution but the solutions involving directly the biometrical
data with cryptography. We organize the solutions found in our readings following three
criteria:

1. Locking the cryptographic key using a biometric template;

2. Using Error Correcting Codes;

3. Using biometric template as part of the key.

We define A as the biometric template on the enrollment phase and B as the template
during the verification phase. In all these solutions, the key is independent of the biometric
template which means that it is chosen from the beginning and it won’t be changed with
time.

3.5.1 Locking the Key using Biometric Template

This section describes some solutions aiming to reduce the fuzziness of biometrical
features (the fuzziness is caused by some uncertainties and errors in the enrollment phase).

3.5.1.1 Soutar et al.’s Solution

Soutar and his colleagues [Soutar 99] proposed a Biometric Encryption algorithm
which links a biometrical data (such as fingerprint) with a conventional cryptographic
key. This algorithm can retrieve the key using a new enrolled biometrical data. This
algorithm combines a cryptographic key (typically 128 bits) with the user fingerprint im-
age. The key is successfully recovered only by using filters based authentication (using
correlation functions). They assume that the multiple enrolled fingerprints are lined up
in advance. Figure 3.5 shows the enrollment phase and Figure 3.6, the verification phase.
These two figures where replicated from [Soutar 99] page 15 and 16.

The enrollment phase has three steps:
E-1 Image Processing : The processor merges a list of input fingerprint images with a

random array to outputs two arrays: Hstored(u) and C0(X).
E-2 Key linking : It links a cryptographic key, k0, to the value, c0(x), using the link

algorithm.
E-3 Identification code creation: It derives from the key, k0 an identification code, id0.
At the end, a secure data block called Bioscrypt is created, it contains; Hstored(u), a

look up table and id0.
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Figure 3.5: Enrollment Phase

Figure 3.6: Verification Phase

V-1 Image Processing : The processor merges Hstored(u), from the Bioscrypt, with a
new list of input fingerprint images to create an output pattern, C1(X).
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V-2 Key Retrieval : It gives c1(x) and the look up table as input to the retrieval
algorithm to retrieve a key, k1.

V-3 Key Validation: It generates a new identification code, id1 and compares it with
id0 to validate k1.

3.5.1.2 Fuzzy Vault

The early contribution using this method was done by Juels and Wattenberg [Juels 99].
In this work, they proposed a fuzzy commitment scheme. Then, Juels and Sudan [Juels 02]
worked on "fuzzy vault construct". In their theoretical contribution, the sender can place
a secret S in a vault and locks (secures) it using an unordered set A (fingerprint minutiae
was chosen in the solution). The receiver, using an unordered set B, can unlock the vault
(access to S ) only if B substantially overlaps with A. A and B are fuzzy templates.

Then, Uludag et al. [Uludag 06], based on the Juels and Sudan work, introduced a
helper data by using template alignment to decrease the fuzziness criteria. They used
polynomial interpolation to recover the secret key. In their experiment, the Genuine
Acceptance Rate (GAR) was about 84,5% and False Acceptance Rate (FAR) equaled 0%.

The procedure to build the fuzzy vault (see Figure 3.7 replicated from [Uludag 06]
page 165 ) is described as follows:

– Initially, Alice chooses a polynomial P of degree N which encodes S (S is generated
as a 128-bit random bit stream, like an AES symmetric key. S is used as input
parameter to construct P).

– Then, Alice calculates the polynomial projection, P(A), where A is the reference
minutiae points. (If (x, y) is an element of A, then u=x||y is used to calculate the
value P(u)). “||” is the concatenation operator.

– Alice adds some points generated randomly (chaff points) whose images does not
belong to P, to create the set of points R.
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Figure 3.7: Fuzzy Vault Encoding

The Figure 3.8 ( [Uludag 06] page 165) shows the decoding phase.

Figure 3.8: Fuzzy Vault Decoding

When Alice tries to recover S (by finding the coefficients of P), she uses her new
enrolled minutiae points B. To decode the fuzzy vault, she needs to retrieve the same
polynomial to extract the secret.

If B equalizes or differs a little from A, Alice is able to locate some abscissa u, which
are used to interpolate P (their number must be equal to or higher than N + 1).
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The algorithm decodes many candidate secret keys. Then, it finds which one of these
candidates is the actual secret using Cyclic Redundancy Check (CRC).

The Fuzzy Vault concept using helper data was improved in [Nandakumar 07], and
a new Palmprint Based Fuzzy Vault was developed by Kumar et al. [Kumar 09]. The
performance of these systems is better than the old solutions and this is a proof of the
fuzzy vault concept’s usability to lock a key and share it between users.

3.5.1.3 Linnartz and Tuyls’s Solution

Linnartz and Tuyls [Linnartz 03] assumed that there is always a perfect biometric
template A (without noise) that is available in the enrollment phase. Those biometric
features are aligned and the noise in each dimension is relatively small compared to
quantification. Figure 3.9 shows the authentication system scheme.

Figure 3.9: Authentication scheme

– In the subscription phase, Alice generates a secret S and a helper data W from a
template A. She uses a hash function F to encrypt the secret S. F(S) and W are
stored in a database. If the procedure is done offline, the verifier can obtain F(S)
and W with a certificate.

– In the authentication phase, Alice enrolls a fuzzy template B. After recovering W
from the database, the verifier creates V using B and W. He/She creates then F(V).
If F(S) = F(V), the authentication is successful.
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3.5.1.4 Dodis et al.’s Solution

Dodis et al. [Dodis 04] tried to turn the biometrical data into keys used in any cryp-
tographic application. They proposed two functions:

– The first function is a fuzzy extractor that extracts nearly uniform randomness R
from its biometric input; the extraction is error-tolerant since R is indifferent to
small alterations in the input data. Thus, R can be defined as key for cryptographic
use.

– The second function is a secure sketch which produces public information about its
biometric input w that does not reveal w, but these information are a helper data
to recover w even if the new enrolled value is close to w.

They also proposed some modification to the solution of Juels and Sudan [Juels 02]
(fuzzy vault construction). Instead of adding chaff points with the point projection in the
polynomial P, they proposed to employ a polynomial P’ (of degree higher than P), which
has common points with the points belonging to P. Thus, the new polynomial P’ replaces
the final set of points R.

3.5.1.5 Sahai and Waters’s solution

The Fuzzy Identity-Based Encryption presented by Sahai and Waters [Sahai 05] used
the Identity Based Encryption (IBE) scheme (described in the Section 2.7.2) with the
biometric template as a source to generate public key. The error tolerance of a Fuzzy
IBE scheme encourages the use of biometrical identities. Figure 3.10 shows a Fuzzy IBE
scenario using iris as a biometrical data (this figure is replicated from the Sahai et al.
presentation, page 19, available on line at:
userweb.cs.utexas.edu/~bwaters/presentations/files/Fuzzy-IBE.ppt).
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Figure 3.10: Fuzzy IBE

The system has a reference image A with well-defined characteristics. The authors
choose a polynomial Q of order N and the secret is Q(0). For each feature, they assign
a coefficient of the polynomial Q. In the verification phase, they try to find at least N +
1 features from B to interpolate the polynomial Q and thereby recover the secret.

In this solution, there is no relationship between biometrical data and the crypto-
graphic key parameters. Each time there is the same iris characteristics in the first
enrolled iris and the test iris, the coefficient of the polynomial at this position is used
to retrieve Q(0). We just remind that one of the goal of our work is to generate the
cryptosystem parameters using the biometrical data which is not done in this solution.

3.5.1.6 Discussion

We present in Table 3.5 the list of the above discussed solution. We compare them by
presenting the different methods, type of experiments and results in Table 3.5.
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Techniques Experiments Results
Correlation Functions [Soutar 99] theoretical
Fuzzy Commitment [Juels 99] theoretical

Fuzzy Vault [Juels 02] theoretical
Helper Data [Linnartz 03] theoretical
Fuzzy Extractors [Dodis 04] theoretical

Fuzzy Identity Based theoretical
Encryption [Sahai 05]
Fuzzy Vault & helper DB2 database of FVC 2002 FRR=15.5%/ FAR=0%

data [Uludag 06]
Fuzzy Vault & helper DB2 database of FVC 2002 FRR=3%/ FAR=0.24%
data [Nandakumar 07]
Fuzzy Vault [Kumar 09] 85 palmprints FRR=0%/ FAR=0.4%

Table 3.5: Locking Key Solutions

We conclude that most of the discussed solutions are theoretical and that experimental
performance values degrades comparing with the performances values given in Table 3.1.

3.5.2 Error Correcting Codes

With these solutions, researchers have tried to correct the characteristics of fuzzy
biometrical data using Error Correcting Codes. The latter is an algorithm which detects
and corrects any errors under some limitations, based on the remaining numbers in a
set of symbols. The study of Error Correcting Codes and the associated mathematics is
known as the coding theory.

3.5.2.1 Davida et al.’s Solution

Davida et al. [Davida 99] proposed an algorithm based on the iris code. They use
multiple codes to achieve a canonical representation, which is associated with Error Cor-
recting Code. They assume that multiple acquisitions of the iris are aligned.

In the initialization phase, the server puts in a smart card the following information:
– NAME: client name,
– ATTR: public attributes email address, ...,
– ~C: Check digits for verification,
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– Signature Sig(Hash(NAME,ATTR, ~T ||~C)) where Sig() is the signature of the au-
thorized Server and Hash() is a hash function. ~T is the vector of K bits obtained
upon enrollment. F

In the verification phase , a vector ~T ′ is obtained from the new enrolled biometrical
data and the signature Sig(NAME, ATTR, ~T ′) is verified.

3.5.2.2 Hao et al. Solution

Hao et al. [Hao 06] proposed a new idea which aims at locking a 256-byte biometric
key with iris code, after coding the secret. A well-known difficulty appeared which is
resumed in 10 to 20% of error bits within the iris code. There are mainly two types
of errors in iris codes: random errors caused by camera noise, iris distortion, etc., and
burst errors generally resulting from eye-lids, eye-lashes, specular reflections, etc. This
scheme uses Reed-Solomon codes [Reed 60] to cope with burst errors and Hadamard
codes [Yarlagadda 96] for random errors. Intrinsically, the error correction capability of
Hadamard codes is limited to up to 25%. But there are situations where iris codes can
hold more than 25% variabilities.

To solve this problem, Hao et al. carefully studied the error patterns within iris codes.
They used a two-layer error correction technique that combines both Hadamard and
Reed-Solomon codes. They generated a key from a subject’s iris image with the help of
auxiliary error-correction data, which do not reveal the secret. The key can be saved in a
tamper-resistant token such as a smart card. In their implementation, the corresponding
False Rejection Rate (FRR) is only 0.47%.

A key K (random number) is generated. It is then coded using both Reed-Solomon
and Hadamard codes to obtain a pseudo-iris code θps. A reference θref is chosen to encode
the pseudo-code iris code and to get θlock = θps ⊕ θref . The result, to be put in token T,
is < K, θref >⇒ T : {θlock, H(K)}. To retrieve the key, another sample of iris code is
provided θsam so that < θsam, T >⇒ K̂. The key is correct if and only if H(K̂) = H(K).
The generated key is 140-bit long and the False Rejection Rate FRR is 0.47%. Figure 3.11
(replicated from [Hao 06] page 1083) shows the encoding and decoding of the secret key.
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Figure 3.11: Iris Biometric Integration into Cryptographic Applications

3.5.2.3 Obtaining Stable Bit-String from Iris

It is well known that two biometric measurements are not completely identical as they
contain some variability. Hence, it is not straightforward to use biometrics directly. A
stable bit-string can be extracted from biometrics by using the cryptographic key regen-
eration system of Kanade et al. [Kanade 08] (which is based on the Hao et al. [Hao 06]
scheme). It combines a randomly generated key with the iris data. This random key
can later be extracted from the combined data by providing another genuine biometric
sample. The regenerated secret can act as a cryptographic key. The key regeneration
system is shown in Figure 3.12 (replicated from [Kanade 08] page 61).

Kanade et al. [Kanade 08] proposed a zero insertion scheme to reduce the error density
in the iris codes thereby decreasing the number of errors per block. This increases the
error correction capacity. The iris codes are shuffled using user specific shuffling keys
to make them revocable. The shuffling also increase the separation between genuine
and impostor Hamming distance distributions so that the verification performance of
the system improves. The Reed-Solomon code can be used with various error correction
capacity (ts) settings. If this capacity is set to be high, amount of errors being corrected
increases thereby decreasing the False Rejection Rate (FRR) and increasing the False
Acceptance Rate (FAR). If the value of ts is low, the FAR decreases but the FRR increases.
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Figure 3.12: Cryptographic key regeneration using iris

Kanade et al. made their tests on the NIST-ICE database and they got better results
than the Baseline biometric system (OSIRISv1) as shown in Table 3.6.

Techniques Baseline biometric Cancelable biometric system
system (OSIRISv1) (i.e., with shuffling)

EER 1.71% (on ICE-Exp1) 0.23% (on ICE-Exp1)

Table 3.6: Results on NIST-ICE database

3.5.2.4 Discussion

In Table 3.7, we present the different discussed techniques and their experiment re-
sults. Since these solutions use the iris code, they are considered as the best biometric
cryptosystems and they have a good performance results.
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Techniques Experiments Results
Error Correction [Davida 99] theoretical

Reed-Solomon and 700 iris FRR=0.47%/ FAR=0%
Hadamard codes [Hao 06] (private database)
Shuffling key and error NIST-ICE FRR=1.04%/ FAR=0.055%

correcting codes [Kanade 08] database [NIST ]
Reed-Muller and NIST-ICE FRR=10−5%/ FAR=5.62%

product codes [Bringer 07] database

Table 3.7: Error Correcting Codes Solutions

3.5.3 Using Biometric Template as part of the Key

In this section, the biometric data is a part of the cryptographic key.

3.5.3.1 Monrose et al.’s Solution

Monrose et al. [Monrose 99], [Monrose 01] proposed a method to enhance security
passwords using the keystroke dynamics and voice. In [Monrose 99], the goal was to
utilize keystroke timings in the generation of a strong cryptographic key from a password.
In [Monrose 01], a password is spoken by to generate his/her derived key, which would be
the seed to a pseudorandom process to generate his/her private key. The latter would be
used to decrypt incoming voice.

Their technique was inspired by password salting, where a random number named salt
is added at the beginning of a password to make it hard to break. The keystroke dynamics
and voices were used to produce the salts. The solution generates 60-bit cryptographic
secrets.

3.5.3.2 Zero Knowledge Proof (ZKP)

Itakura and Tsujii [Itakura 05] use Zero Knowledge Proof (ZKP) to enhance the bio-
metric cryptosystem. ZKP is an adaptation of the Schnorr identification and has the
following steps:
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P: Prover
V: Verifier
P’s public key: v = α−s mod p, α an element of order q in Z/pZ*
P’s private key: s ∈ Z/qZ
- P chooses a random digit r ∈ Z/qZ and transmits x = αr mod p to V.
- V sends a challenge e ∈ [0, 2k[ to P.
- P sends y = r + e.s mod q to V.
- V checks that x = (αyve) mod p.

The solution defined in [Itakura 05] proposes a multifactor biometric authentication
method based on cryptosystem keys containing biometric signatures. These keys contain
two kinds of data: personal biometrical data and a confidential random secret key. These
keys are then the public keys in a Public Key infrastructure (PKI). Figure 3.13(replicated
from [Itakura 05] page 291) shows the steps of the public key generation .

Raw Biological Information 

(fingerprint, iris, …)

Extracts feature point 

Generates templates

Selects representative 

template 

S1 = H(    )Generates random

Secret Key S1Secret key S2

Creates public key v

Registers public key v

α

δ

δ

Receives public key certificate

pggv
SS

mod21

21

−−
=

Figure 3.13: Public key generation
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This is a description of the steps of Itakura and Tsujii solution:
P: Prover
V: Verifier
P’s public key: v = g−S1

1 g−S2
2 mod p, g1 et g2 an element of order q in Z/pZ*

g2 = gα1 mod p, ( α is randomly chosen)
P’s private key: S1 (160-bit secret key based on biometrics)
and S2 a traditional secret key with length between 160 bits and 1024 bits).
The 2 keys ∈ Z/qZ.
- P chooses 2 random digits r1 and r2 ∈ Z/qZ
and transmits x = gr11 g

r2
2 mod p to V.

- V sends the challenge e ∈ [0, 2k[ to P.
- P sends y1 = r1 + e.S1 mod q and y2 = r2 + e.S2 mod q to V.
- V checks that x = gy11 g

y2
2 v

e mod p.

3.5.3.3 Burnett et al.’s Solution

Burnett et al. [Burnett 07] integrated the biometric template into an Identity Based
Signature Scheme. The biometric template is embedded into a point on the elliptic curve.
Then, it is used as part of the key pair generation for the signature scheme. The system
was called Biometric Identity Based Signature Scheme. They used the solution given
in [Dodis 04] to generate key data from Biometrics.

3.5.3.4 Discussion

In Table 3.8, we present a summary of the discussed solutions. Most of the works are
theoretical and the solutions proposed by Monrose et al. need to be improved.

Techniques Experiments Results
Salting procedure [Monrose 99] keystroke dynamics (13 persons) FRR=48.4%

[Monrose 01] voice recording FRR=6%
Zero Knowledge Proof [Itakura 05] theoretical

Identity Based Signature theoretical
Scheme [Burnett 07] theoretical

Table 3.8: Biometric Template as part of the Key
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3.5.4 Authentication, Authorization, Accounting (AAA) and Bio-

metry

In this section, we describe the combination of Biometry with Authentication, Au-
thorization, and Accounting (AAA) protocol. The latter performs three functions: au-
thentication, authorization and traceability. Extensible Authentication Protocol (EAP)
[Aboba 04] is an authentication mechanism, frequently used in wireless networks and
connections Point-to-Point Protocol (PPP). It is generally used with AAA protocols like
RADIUS [Rigney 00] or DIAMETER [Calhoun 03].

One idea was to use the biometric template as an identifier of the person in EAP mes-
sages exchange. SentriNET [Bersani 04] is designed to expand access to distance through
a Network Access Server (NAS). Its basic operation involves sending a username to the
server. The latter verifies the type of biometrical data and returns relevant information
to the user’s sensor . The client captures the template and returns it to the server for
verification.

Someone may say that the biometric data plays the role of a cryptographic key but
in reality, there is a private key that is associated with each user. So there is no EAP
solution directly using a key-dependent biometric template. Hence, the biometrical data
are used to identify the client and not to authenticate him/her.

There is another solution to use the biometry in an Extensible Authentication Proto-
col (EAP) authentication mechanism. This solution was proposed by Lee et al. [Lee 06],
and it was applied to Home Network (HN). This approach is illustrated in Figure 3.14(rep-
licated from [Lee 06] page 3). A new message is added to EAP Authentication Re-
sponse, so the mechanism is similar to Tunneled TLS “Transport Layer Security” (EAP-
TTLS) [Funk 06].

The required steps of this solution are as follows (The server is a Home Gateway (HG)
in this scenario): In the initialization phase, user’s Biometric Templates (BTs) are enrolled
at the Home Gateway (HG) (stored in a database).

In the authentication phase:

1. User’s device (i.e; user’s authentication client module) authenticates the HG by
verifying its certificate.

2. The user and the HG then share the same key and cipher suites through using TLS
protocol.

3. The user’s Biometric Template encrypted by the shared key is transferred to the
HG.
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4. The user’s authentication result is transferred to the user device in an encrypted
form, where legitimate users get authenticated.

Home Gateway 

EAP-Request Identity

EAP-Response Identity

EAP-Response/EEAP-X9.84(ClientHello)

EAP-Request/EEAP-X9.84 (ServerHello, ServerCertificate, 

ServerKeyExchange, ServerHelloDone)

EAP-Response/EEAP-X9.84(BioData) 

EAP-Success

EAP-Response /EEAP-X9.84 (ClientKeyExchange, ChangeCipherSpec, 

Finished)

EAP-Request/EEAP-X9.84(Start)

EAP-Response /EEAP-X9.84 (ChangeCipherSpec, Finished)

User

Figure 3.14: EAP method using Biometrical Data as Identity

3.6 Conclusion

The biometrics deployment continues to spread in many fields. Despite that, biomet-
rics still faces fraud and identity theft. Cryptography, with its conventional methods, is
a good way to make biometrics more trusted within international organizations.

We presented in this chapter the biometric cryptosystems which aim to combine biom-
etry and cryptography to strengthen the biometrical identification procedures. We clas-
sified these cryptosystems into 3 types: locking the key using biometric template, using
Error Correcting Codes and using Biometric Template as part of the key. We described
some contributions for each types and we noted that in general, the proposals are theoret-
ical and few experimental tests are done. We presented also the Authentication, Autho-
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rization, Accounting (AAA) and Biometry combination as a new method to authenticate
a user.

The future solutions must allow the use of personal biometrical data while leaving
information in the human body. Also, the use of elliptic curve Cryptography is one of the
best choice to improve existing solutions. In Chapter 4, we propose a solution that uses
cancealable biometric, locking key method and the AAA mechanisms. In chapter 5, we
propose two solution based on Elliptic Key Cyptography and Error Correcting Code.
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Chapter 4

Home Network (HN) Case Study

4.1 Introduction

As more homes are outfitted with computers and personal devices (for example, Per-
sonal Digital Assistants (PDA)s, cellular phones, MP3 players, game consoles), it is nat-
ural to think of interconnecting devices for data and access sharing peripherals (such as
printers). As a consequence, users are willing to explore the possibility of connecting the
Home Network (HN) to the Internet. In this chapter, we focus on the authentication of
each user within the HN, based on his/her biometrical data to access the local services
and the Internet. This was a preliminary work to study the usability of biometrical data
to strengthen authentication mechanisms in the Home Network (HN).

As defined in [Lee 06], a HN is composed of personal devices, at home, connected to
a local gateway, also known as the Home Gateway (HG) or the Home Server. In fact,
the HG plays the role of a communication-gateway between the indoor and the outdoor
world (i.e; between home and the Internet). In the context of our work, HG also plays
the role of an authentication server, while users’ devices (such as PDAs, laptops, PCs...)
are considered as authenticated clients.

In [Ellison 02], Ellison defines many kinds of HNs based on home users. These are as
follows:

i) Single-Person homes,

ii) Couple with Small Children,

iii) Families with Teenagers, and

iv) Adult Guests and Roommates.

In our study, we consider the last two types, since they need more constraints in
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the security policy especially concerning the access to the Internet and to the possible
services in one hand, and they present an important market to telecom operators and
service providers on the other hand. In fact, Biometric authentication is promising in the
HN scenario.

The rest of this chapter is organized as follows: Section 4.2 discusses some related
works on Home Network Access; Section 4.3 presents the new proposed solution; Section
4.4 presents an analysis of the proposed solution. Finally, the chapter concludes in Section
4.5, highlighting some future work.

4.2 Related Works

This section presents some existing solutions for users’ authentication in HNs. We
consider that most devices in HNs can use wireless connection (IEEE 802.11) with a
Home Gateway (HG).

The first solution [Borisov 01] was based on Passwords. Since HNs’ users do not always
have very strong knowledge on Network Security, they usually choose weak secrets or they
forget to change it in a periodic manner, ignoring the necessity to do this. Another solution
consists in using certificate authentication methods [Kim 09], which is more secure but
has the problem of certificate distribution and revocation.

Lee et al. [Lee 06] also proposed the solution described in Section 3.5.4. Biometric
authentication is applied there. However, some limitations exist. We noticed in this
solution that the Biometric Template (BT) is just encrypted and then sent in the network
which makes the personal data exposed to attacks. This solution is called Encrypted
Extensible Authentication Protocol (EEAP). Thus, the solution is less compatible with
existing Extensible Authentication Protocol (EAP) protocols and hence is difficult to be
deployed at a commercial level. Moreover, it is not clear how the same key is exchanged
between the client and the server to encrypt the BT. Also, conforming to the CNIL
recommendation on the storage of BT by non governmental authorities, the proposed
solution assures a local storage of the acquired fingerprints.

A new solution is provided by “Windows 7”, known as the Windows Biometric Frame-
work (WBF) [Microsoft 10] that permits users to login to their windows account using
their biometrical data (WBF supports only fingerprint biometric devices). In Windows
7, there is a common management platform for different fingerprint biometric devices.
Therefore, WBF is a generic and common platform for different vendors. WBF is used in

50



4.3. OUR PROPOSAL: PERSONALIZED USER’S ACCESS IN HNS

two primary end-to-end scenarios:

– Logon: Users use their fingerprint to log on to a local machine or to a domain.
– User Account Control (UAC): A system administrator can elevate applications using

a fingerprint.

We noticed that the above discussed solutions, except Lee et al. and Windows Bio-
metric Framework (WBF), mainly aim at authenticating the Home Network (HN) itself
regardless which user is being connected (i.e; the network operator/service provider only
identifies the HN owner “subscriber”). But at a finer granularity level, each user is a
separate entity having his/her profile, thus separately authenticated using personalized
security parameters. At the same time, the privacy of each user should be guaranteed.
In this context, biometric authentication is a promising solution allowing identification
of each user according to his/her BT and thus authenticating him/her in a distinguished
manner and personalizing his/her access.

In this chapter, a modified biometric authentication mechanism is presented where BT
is not transmitted through the air. The proposed solution is detailed in the next section
and analyzed in Section 4.4.

4.3 Our proposal: Personalized User’s Access in HNs

This section presents a new solution, in which another level of security is added through
fine granularity authentication. It aims at personalizing the access of each user in the HN
using their biometrical data and preventing illegitimate users (passing by the HG) to have
access to any devices. Also, we need a local storage of biometrical data conforming to the
CNIL recommendation on the storage of Biometric Template (BT) by non governmental
authorities.

Our approach of personalized access allows each user to use any device in the HN, while
being able to access his/her appropriate profile. We propose a new biometric authenti-
cation method, while keeping in mind that the HG does not store any users’ Biometric
Template (BT). To satisfy this constraint, we propose using the Fuzzy vault method (see
Section 3.5.1.2) to hide a secret that should be used for authentication. The HG has the
role of generating a secret for each user for each session which is hidden by the BT. The
user needs to recover the secret in order to be authenticated.
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4.3.1 Hypothesis

We are concerned with several questions about the feasibility of the solution and we
consider different hypothesis like:

– Hypothesis 1 : The fingerprint acquisition of each user is carried out using the HN
equipments, which are supposed to have integrated biometric sensors. We think
that these hypothesis is feasible since many equipments are equipped with finger-
print sensors (like laptop, PDA,...). This solution is one of many proposed to the
HN’s users, if they are suspicious about using this technology, the basic solution of
password is still available.

– Hypothesis 2 : Each user should enroll his/her fingerprint using the fingerprint sensor
embedded in the equipment. Then, a Biometric IDentifier (BioID) is generated and
stored in the equipment and the Home Gateway (HG). This procedure is done
manually because there is no secure wireless session in the configuration phase.
There is a problem related to the guests which are temporary users of the system.
One solution is to let them enroll their fingerprint to start a new session. But, we
think that this solution is infeasible since it is an embarrassing method for them.
The best solution is to create a default guest account without biometric recognition.

– Hypothesis 3 : The BioIDs for each member of the family are stored in the equip-
ments. This means that each member need to have an account in these equipments.
This is a preventive method to prohibit the use of some equipments or to access
forbidden services (like for children).

– Hypothesis 4 : The BioID’s generation is based on Cancelable Biometrics described
in Section 3.4. This measure can prevent the loss of biometric data when the equip-
ments or the Home Gateway (HG) are stolen or lost. Using this method helps to
overcome the non-revocability of biometrics.

4.3.2 Description of the Solution

We consider a Home Network (HN) scenario in which users connect to a Home Gate-
way (HG) for broadband Internet access, using any equipment in the HN. Figure 4.1
illustrates the context of the proposed solution.

Each user should enroll his/her biometric template (BT) to be authenticated. The
objective is to allow each user in the HN to have a personalized access and to access
his/her proper personal context. From an operator point of view, the proposed solution
respects the operational constraints as well as the constraints posed by the CNIL (French
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Data protection Authority) [CNIL 07] concerning the biometry’s use. The operational
requirements concern the compatibility of the proposed solution with the Authentication,
Authorization and Accounting (AAA) architecture at the operator’s network, where there
is no need to use new authentication protocols or modify existing ones. While, the CNIL’s
requirements concern the illegal storage of BT as well as its non revealment.

Assume that a Biometric Identifier (BioID) is created using user’s BTs, and stored
locally in the HN (limited to the HG and the HN equipments). This identifier is not
transferred in the network. One should also notice that the size of the storage space is
not huge (limited to the number of family members at home).

Operator
Access 
Network

Operator
Access 
Network

Home Gateway HG

Home Network HN
Mail

VoIP

1

2

3

4

Figure 4.1: Access Personalization in Home Networks HN

4.3.3 Required Conceptual Phases

The proposed solution requires three phases, which mainly concern the equipments
configuration, the Biometric Template (BT) treatment and storage.
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4.3.3.1 Configuration Phase

In this phase, each user should present his/her BT (fingerprint template) to be ma-
nipulated and stored in the database of the HG.

The digital fingerprint is enrolled using a biometric sensor at the HN equipment.
Then, a software, generates the BioID using the functional transformation described in
Ratha et al.’s paper [Ratha 07]. The Figure 3.4 presents the output which is a modified
set of minutia points. The latter can not be used to revoke the original fingerprint. A
predefined number of these minutiae is then selected to create the BioID. For example,
one can choose to use 24 minutiae points to create a 384-bit BioID.

Users’ BioIDs are then stored in a table form (this could be a special file) together
with the logins that correspond to their owners. Figure 4.2 shows the storage form of
users’ BioID in the HN equipment and in the HG.

Home Gateway HG

IdentNLoginN

….….

….….

Ident2Login2

Ident1login1

Biometric IdentifierUser login

Equipment

IdentNLoginN

….….

….….

Ident2Login2

Ident1login1

Biometric IdentifierUser login

Figure 4.2: BioID Storage in the Home Network HN

4.3.3.2 Users’ Connection to the Home Gateway

Each time the user wishes to connect to the HG, he/she does a new acquisition for
his/her fingerprint in order to identify him/herself, without any need to type a login or
a password. In this case, the fingerprint acquisition is done through the HN equipment
that is being used, and they are treated (as explained in the previous phase) to generate
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the user identifier BioID. The generated identifier is then compared with the one stored
in the equipment for the same user. If the same identifier exists, the corresponding login
is sent to the HG and the process of user’s authentication starts. Figure 4.3 presents the
procedure to connect a user to the Home Network (HN).

B
ioID

Equipment’s 

BioID List

Verification 

Procedure

Connection 

accepted or 

denied

Fingerprint Enrollment

Figure 4.3: User’s Connection Procedure

4.3.3.3 Users’ Biometric Authentication

When the HG receives the user’s login, it searches in its database for the corresponding
BioID to this user. Then, it starts authenticating the user based on this identifier in order
to allow him/her to have personalized access. The authentication process is mainly based
on a challenge-request/challenge-response approach. The mechanism is a modified version
of the Extensible Authentication Protocol (EAP) and it focuses only on the exchange
between the user and the HG. There is no contact with the operator’s server. In fact, only
the vault and the challenge need to be piggybacked in the EAP-request. This highlights
that this solution is open for any EAP method.
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De-blocking the vault and 
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Figure 4.4: Messages Exchange for Authorizing the Personalized Access

Figure 4.4 illustrates the corresponding messages’ exchange:

– A secret key is generated by the HG. The latter chooses a challenge for the user
that wishes to connect.

– The Fuzzy Vault [Uludag 06] method is applied in order to construct a vault that
hide the secret key. The BioID is used to create the vault following the method
described in Section 3.5.1.2.

– The resulting vault and the challenge are transmitted to the user. The HG adds a
nonce to prevent any replay attack.

– The user unlocks the vault using his/her BioID (resulting from the current finger-
print enrollment) in order to retrieve the secret key.

– Once the secret key is found, the user transmits the encrypted challenge with the
recovered secret key to the HG. He/She adds the nonce to the message.

– The HG decrypts the challenge using the secret key and compares it with the one
initially sent. If they match, the user is authenticated and he/she gets a personalized
access.

The message’s details are given in Appendix B.
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4.4 Solution Analysis

This section presents practical considerations for the deployment of our solution and
it’s security analysis.

4.4.1 Practical Considerations for the Solution Deployment

The proposed solution has many advantages from the user point of view. First, it
allows an easy way to access services (each user simply presents his/her fingerprint).
Then, it ensures personalized users’ access in spite of the equipment/terminal that is
being used. Also, conforming to the CNIL recommendation on the storage of BT by
non governmental authorities, the proposed solution ensures a local storage of acquired
fingerprints. Additionally, the fingerprints are treated before being used or stored. This
allows decreasing the risk of their theft in case the HG is compromised by an intruder for
instance.

Moreover, from the network operator/service provider point of view, the proposed so-
lution is compatible with the existing Authentication Authorization Accounting (AAA)
infrastructure. Only the vault and the challenge in one EAP-request need to be piggy-
backed. In the end, this solution is promising in opening new business opportunities,
thanks to the biometric authentication method that allows for a personalized users’ ac-
cess and hence a better access control in HNs. For instance, it makes it easier to monitor
and control the children’s access to the Internet, even when their parents are away. The
personalized users’ access in the proposed solution allows controlling the access for each
broadband access line depending on the user that is being connected. However, in clas-
sical broadband access control, the connection itself is authenticated. This is considered
as a part of the configuration phase. The authentication takes place each time the Home
Gateway (HG) is granted an IP connectivity (and hence the Internet connection for a
user).

4.4.2 Security Consideration

The proposed solution prevents the storage of users’ Biometric Templates (BTs) in
operator’s databases. Only some random fake minutiae should be stored, which represent
the Biometric IDentifier (BioID). The latter should be enough to identify the fingerprint’s
owner but insufficient to recover the whole fingerprint. These fake minutiae are generated
using the functional transformation described in Ratha et al.’s paper [Ratha 07]. Chang-
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ing the secret key each time the user connects should avoid attackers from retrieving the
BioID.

4.4.2.1 Attacks on the Home Gateway (HG)

During the communication with the HG, we assume that the HG uses its certificate
(previously obtained by a Certificate Authority (CA)). Therefore an attacker (an illegit-
imate user) could not decrypt the communication between the HN’s users and the HG,
since he/she needs the HG’s private key to decrypt the message encrypted with the HG’s
public key. On the other hand, if an attacker wants to impersonate the HG, he/she could
not generate a valid vault, since he/she does not have the BioID.

4.4.2.2 Impersonating Users

We found in the literature that the fuzzy vault mechanism with helper data [Uludag 06]
has False Rejection Rate (FRR) equals 14.5% and False Acceptance Rate (FAR) equals
0%. In the [Nandakumar 07] experiments, the FRR equals 3% and the FAR equals
0.24%. As we mentioned in Table 3.5, these performance values are the result of ex-
periments on DB2 database of FVC 2002. The database can be downloded from the
website of the Second International Competition for Fingerprint Verification Algorithms
(http://bias.csr.unibo.it/fvc2002/). These results demonstrate the good choice of the
fuzzy valut mechanism in our solution. When a malicious user wishes to impersonate the
legitimate user using his/her own fingerprint (i.e; different BioID), he/she is neither able
to decode the vault nor able to encrypt the challenge with the secret key.

4.5 Conclusion

Home Networks (HNs) security is an emerging research field, attracting both the
research community and the industry. An important trend is to separate user’s authenti-
cation from the used devices, allowing for fine granularity authentication and users’ per-
sonalized access in spite of the devices’ authentication in the HN. Our solution answers
CNIL’s requirements about local storage of biometrical data and reinforced protection of
this sensitive data.

Applying biometric authentication is promising in allowing users’ authentication in
a distinguished manner as well as personalized users’ access. However, this technology
should be carefully used in order to protect users’ privacy and prevent the disclosure of
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their Biometric Template (BT). Our proposed solution allows the protection of private
BT thanks to applying the fuzzy vault mechanism. We do not only propose an algorithm
but also all the procedures that go along to provide a simple but still very robust solution.

In chapter 5, we consider another environment which is the Government Network. We
continue to enhance the authentication mechanisms by deploying biometrics.
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Chapter 5

Government Network Case Study

5.1 Introduction

Since 2004, many countries all over the world, have released electronic Passports (e-
Passports) containing biometric data. The evolution of cryptographic protocols for e-
Passports has led to their widespread deployment [Nithyanand 09]. These e-Passports
have an embedded Radio Frequency Identification (RFID) chip which is capable of cryp-
tographic functionality like Elliptic Curve Cryptography (ECC) [Batina 06].

The introduction of biometrics and the implementation of RFID technologies in the
e-Passports aim to strengthen border control by reducing falsification and establishing
reliable identification of the document’s bearer.

After the adaptation of the International Civil Aviation Organization (ICAO) stan-
dard [ICAO 06] in many countries such as the USA, there was evidence of inadequate data
protection and weaknesses in the privacy protection [Juels 05]. To improve the e-passport
security, the European Union (EU) has released a new specification which includes a set of
protocols called Extended Access Control (EAC) [EU 06]. The new protocol solves some
of the previously cited problems. The EAC protocol performs a mutual authentication
between the RFID chip embedded in the e-Passport and the RFID reader.

After the introduction of EAC, some researchers tried to improve theses solutions
by solving the problems such as the certificate revocation and the use of a session key
with insufficient entropy. They proposed an Online Secure e-Passport Protocol (OSEP)
[Pasupathinathan 08b]. This protocol is based on the existing ICAO PKI implementation
(first generation e-Passports) but eliminates the cross certification, between participating
countries, needed in the EU-EAC (second generation e-Passports).
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In this chapter, we present and analyze the previous security protocols in e-Passport.
We, then, present our proposal which applies Elliptic Curve Diffie-Hellman (ECDH) Key
Agreement to generate a session key. The elliptic curve’s parameters used in the biometric
cryptosystem are generated by using the minutiae data (fingerprint) of the e-Passport’s
bearer.

Then, we present an iris based authentication mechanism for e-Passport. It is a
modified version of the first scheme and it uses iris code instead of fingerprint. Kanade
et al. [Kanade 08] scheme is employed to obtain a key from iris biometrics and this key is
used to generate the security parameters.

This chapter is structured as follows. Section 5.2 discusses the technical features of
the e-Passports. Section 5.3 presents the ICAO, the EAP and the OSEP solutions. Sec-
tion 5.4 presents our first solution which uses fingerprint as biometrical data to reinforce
security in e-Passport protocol. Section 5.5 presents the modified solution which uses iris
code. Section 5.6 discusses a security analysis of our solution, and Section 5.7 present
the implementation and the performance evaluation of the new mechanism. Section 5.8
concludes this chapter.

5.2 Technical Features of e-Passport

In this section, we present the technicals features of the e-passport.

5.2.1 Structure of Machine Readable Zone (MRZ)

The ICAO developed standards for Machine Readable Travel Documents (MRTDs)
[ICAO 03], including passports and visas, with the intention of speeding up the passport’s
control procedure at border crossings. Every MRTD possesses a special Machine Read-
able Zone (MRZ). The MRZ is composed of two lines and each line has 44 characters.
The following information is provided in the passport’s MRZ: name, sex, date of birth,
nationality, passport number, date of expiry and check digits. They passport’s number,
date of birth and date of expiry are essential elements for the e-Passport security.

In the IBM report research [Kc 05], the authors presented the next generation of MRZ
which is 2-D barcodes. The latter encode approximately 8192 bytes of information and
are currently applied in many passports, visas, and driving licenses”.
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5.2.2 Data Structure of the e-Passport

As already mentioned, an RFID chip is embedded in each electronic passport (e-
Passport). A file system for the chip is defined as Logical Data Structure (LDS) which is
specified in a technical report [ICAO 06]. The LDS initially consists of 16 data groups.
In the future, there will be three additional data groups such as visa of the destination
country or travel record details. The default mandatory biometrical data to be stored is
the traveler’s headshot. The fingerprints and iris images are optional. In Table 5.1, we
present the data embedded in the contactless chip conforming to the ICAO guidelines.

Data Group Data Element

DG 1 Document Details
DG 2 Encoded Headshot
DG 3 Encoded Fingerprint
DG 4 Encoded Iris
DG 5 Displayed Portrait
DG 6 Reserved for Future Use
DG 7 Signature
DG 8 - 10 Data Features
DG 11 -13 Additional Details
DG 14 CA Public Key
DG 15 AA Public Key
DG 16 Persons to Notify
SOD Security Data Element (SDE)

Table 5.1: E-Passport Logical Data Structure

DG: Data Group, SOD: Document Security Object

5.2.3 The e-Passport Public Key Infrastructure

A Public Key Infrastructure (PKI) is needed to perform the process of public key dis-
tribution and authentication. The entities interacting within the e-Passport PKI are the
Country Verifying Certificate Authorities (CVCA) also known as Country Signing Certifi-
cate Authorities (CSCA), the Document Verifiers (DV), and the Inspection Systems (IS).

The Public Key Infrastructure usually has a hierarchical structure. The CVCA is in
the top level in each country. It generates and stores a public/private key pair (PKCV CA,
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PrKCV CA). The private key of the CVCA (PrKCV CA). Each Document Verifier (DV)’s
certificate is signed using the CVCA’s private key (PrKCV CA). The DVs can be of the
same country or from other countries. Usually in each country, there are many Document
Verifiers. Each of these Document Verifiers generates and stores a public/private key
pair (PKDV , PrKDV ). Each Inspection System (IS)’s certificate is signed using the DV’s
private key (PrKDV ). Also, The DV signs the Security Data Element (SDE) of the
e-Passports it delivers.

The DVs’ certificates, of all countries, need to be shared. Therefore, the ICAO provides
a Public Key Directory (PKD). The PKD only stores the certificates of all registered DVs.
This list of certificates is public and used by all countries. All certificates have a limited
validity period. The PKD can store different Certificate Revocation Lists (CRL). Every
country is responsible for updating its own storage of public certificates and CRL’s. After
downloading them from the PKD, each country spreads the newly downloaded information
to every Document Verifier (DV) and Inspection System (IS) in its authority.

5.3 Security Protocol in e-Passport

It is important to note that e-Passport makes travelers confused [Vaudenay 07]; they
ask if it is secure to leave their biometric templates (face, iris, and fingerprint) in chips
which are exposed to clandestine scanning.

In the e-Passport, the biometric templates stored in the chip are the face figure,
the fingerprint minutiae and the encoded eye (iris). We note that the US-VISIT pro-
gram [US-VISIT 04] requires fingerprint biometrics from visitors. Since January 2003,
border control officers have been recording facial images and index fingerprint images for
visa carrying passengers upon arrival at a US border control posts.

Since the biometrical data are sensitive and they are stored in a contacless chip, we
need to focus on the vulnerability of such technology. Implanting a contactless chip in
the e-Passport offers several advantages comparing to contact smart chips:

– no wear and tear due to frequent usage
– data transmission rates is faster
– no need to change the e-Passport’s cover by adding contact chip.

Nevertheless, contactless chips have two major drawbacks. In the first place, as the
transmission is done in wireless manner, the surrounding readers (not the legitimate
receiver) may collect information. In the second place, a reader finds difficulties to sort
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the transmission coming from a particular chip (if there is many contactless chips very
close in reader’s entourage).

The following sections present the different solutions found in the literature to over-
come these weaknesses.

5.3.1 ICAO First Generation e-Passport Specifications

The International Civil Aviation Organization (ICAO) specifies some cryptographic
measures to ensure authenticity and privacy of biometric data [Juels 05]. The New Tech-
nologies Working Group (NTWG) works on the specification of smart card based biometric
passports.

In 2002, the U.S. Congress passed the Enhanced Border Security and Visa Entry
Reform Act. 27 US Visa Waiver Program (VWP) nations projected to issue e-Passports
that are resistant to tampering. The e-Passports would incorporate biometrical data and
document authentication identifiers like described in the ICAO’s standard. Mid-2005 was
the deadline given by the USA to the countries to produce, procure and implement the
e-Passport in practice.

There are three cryptographic protocols described in the first generation ICAO’s spec-
ification to ensure data correctness and privacy. They are: Passive Authentication (PA),
Basic Access Control (BAC), and Active Authentication (AA).

5.3.2 Passive Authentication (PA)

Passive Authentication (PA) is the only mandatory cryptographic protocol in the
ICAO first generation specification. Its primary goal is to allow the Inspection System (IS)
to check if the e-Passport’s data is authentic and the data’s integrity is preserved. But,
it does not confirm the authenticity of the chip itself (it can not detect cloning). The IS
obtains the issuing Document Verifier (DV)’s certificate. It needs the DV’s public key
to verify the digital signature of the data in the LDS. After the signature’s validation,
the Inspection System (IS) hashes each one of the Data Group (DG) and compares the
hashes with the values stored in the SOD. If there is a match, the data on the chip is not
falsified.
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5.3.2.1 Active Authentication (AA)

Active Authentication (AA) is an optional protocol in the ICAO’s specifications. Us-
ing a simple challenge/response mechanism, the algorithm detects if a Chip has been
substituted or cloned. If Active Authentication (AA) is supported, the Data Group 15 is
the AA public key and its hash value is stored in the SOD. The corresponding private key
is stored in the secure section of Chip memory. To prove its authenticity to the Inspection
System (IS), the chip must convince the IS that it possesses this private key.

5.3.2.2 Basic Access Control (BAC)

Basic Access Control (BAC) is an optional protocol that ensure that only the Inspec-
tion System (IS) can read the e-Passport Chip’s data. The IS starts a challenge/response
protocol to prove to the passport that it has read optically the contents of the machine
readable zone (MRZ). This data is used to generate the key seed Kseed. The key seed
Kseed is derived from the following MRZ’s data: The e-Passport Number (PN), Date of
Birth of the Passport’s bearer (DOB), Date of Expiry (DOE), 3 Check Digits (C).

Kseed = 128msb(SHA− 1(PN ||DOB||DOE||C))

(where 128msb : 128 most significant bits and SHA-1: hash function)
UsingKseed, the IS and the chip compute a key for Message Authentication Code (MAC)

and a session key to provide confidentiality and integrity for any communication between
them. A 32-bit sequence counter is included to prevent messages replay. The keys are
fresh for each session. Hence, The Basic Access Control (BAC) prevents hostile reading
problem (called skimming) of passports. We notice that BAC does not authenticate the
Inspection System (IS): anyone who optically read the MRZ can successfully complete
BAC and access the chip’s storage memory.

5.3.2.3 Weaknesses

In 2005, Ari Juels et al. [Juels 05] described the privacy and security issues of the
ICAO specifications and then, gave some solutions to some of the existing weaknesses. In
2008, Pasupathinathan et al. [Pasupathinathan 08a] provided a formal security analysis
for ICAO e-Passport implementation (in fact, Australian one). They concluded that
ICAO e-Passport guideline had some weaknesses that are listed in below:
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– The e-Passport’s protocols do not assure data origin authentication as it do not
prevent replay and grandmaster chess attacks (the latter is to have a fake e-Passport
between the IS’reader and the legitimate chip).

– Data confidentiality is not satisfied because an attacker, after reading the data in
Machine Readable Zone (MRZ) is able to obtain encryption and MAC keys stored in
the e-Passport’s chip. Thus, the security goals for Active Authentication protocol,
like mutual authentication, key freshness and key integrity can be affected .

– As e-Passport protocols are dependent on PKI, they may be vulnerable to certificate
manipulation and Denial Of Service (DOS) attacks.

– The e-Passport is vulnerable to identity theft since it contains the face shot, the
name, and the birthday that help criminal to forge it.

5.3.3 Extended Access Control (EAC)

In 2006, aware about the mentioned weaknesses, the European Union (EU) has is-
sued an e-Passport specification [EU 06], [Kc 05] for Extended Access Control (EAC). To
achieve mutual authentication, the EAC proposal introduced two new protocols called
Chip Authentication (CA) and Terminal Authentication (TA). These latter are used to
improve the capability the Passive Authentication (PA) protocol, the Basic Access Con-
trol (BAC) protocol and possibly the Active Authentication (AA) protocol described in
the ICAO First generation e-Passport specifications.

The e-Passport’s chip can be a contactless smart card containing a Java Card applet
(TL ICAO LDS) [Logic 09]. The latter provides the e-Passport services. TL ICAO LDS
implements the Basic Access Control (BAC) and the Extended Access Control (EAC)
mechanisms which can be both performed based on RSA or ECC algorithm and on the
Active Authentication (AA) protocol.

This the order of the four protocols in EAC:
– Basic Access Control (BAC) protocol (mandatory)
– Chip Authentication (CA) protocol (mandatory)
– Passive Authentication (PA) protocol (mandatory)
– Terminal authentication (TA) protocol (optional to access sensitive data)

5.3.3.1 Chip Authentication (CA)

The Chip Authentication (CA) protocol is a mandatory protocol in the EAC specifi-
cations. It substitutes Active Authentication (AA) protocol as a mechanism to discover
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forged e-Passports. The Chip Authentication (CA) protocol generates a new pair of en-
cryption and MAC keys to replace BAC’s derived ones and enable secure messaging. The
keys’ generation is done using Diffie-Hellman key agreement protocol. In the ICAO’s
specification, the e-Passport’s chip already has a Chip Authentication (CA) public key
(in Data Group 14) and a private key (in secure memory place). When the chip proves
that it knows the session key, it is then authenticated by the Inspection System (IS).

5.3.3.2 Terminal Authentication (TA)

The Terminal Authentication (TA) protocol is executed only if the access to secondary
biometrical data (such as fingerprint and iris code) is requested. It is a challenge/response
mechanism performed by the chip to validate the authenticity of the Inspection Sys-
tem (IS) involved in the Chip Authentication (CA) protocol. Using digital certificates,
the IS proves that it is authorized by the home and visiting nations to read e-Passport
Chips (more details in Section 5.2.3).

5.3.3.3 Weaknesses

These schemes reinforce the extremely minimal security features offered by the ICAO
standards. But, they still have certain shortcomings [Hoepman 06] which are listed in
below:

– It is practically impossible to revoke a certificate (There is no time management
done by the chip).

– The certificate’s hierarchy causes the problem of cross certification among countries.
– There is no information about the way the chip controls the Write Access. The

latter is the fact to write an information in the chip and save it, like time of last
border crossing...

– Grandmaster Chess Attack has not been addressed.
– Sending identification details during the Chip Authentication (CA) phase leads to

Privacy and traceability problems.

In conclusion, the EU approach was designed to allow authentication in offline case
for mobile terminals (mobile border inspection units) [Hoepman 06]. In general, the
terminals are connected to the network. Therefore, some researchers have proposed an
Online terminal authentication.
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5.3.4 OSEP Protocol

In 2008, Pasupathinathan et al. [Pasupathinathan 08b] introduced a new solution
called On-Line Secure e-Passport Protocol (OSEP). They proposed a mutual authenti-
cation between the RFID chip and the Inspection System (IS) [Burmester 09]. Their
solution addressed the drawbacks in the current EU’s EAC protocol.

The OSEP defined by Pasupathinathan et al. [Pasupathinathan 08b] uses an active
monitoring system. The Inspection System (IS) and/or the Document Verifier (DV) could
verify if the traveler is in a black list of criminals. They considered the following security
features:

– An e-Passport reveals its stored information on the chip only after verification of
Inspection System (IS)’s authenticity.

– The OSEP validates the freshness and the authenticity of exchanged messages be-
tween participating entities.

– The OSEP preserves ICAO’s PKI implementation (first generation e-Passports) and
removes cross certification among participating countries as required by EU’s EAC
(second generation e-Passports).

– It expects the IS to prove public key parameters’s correctness to the e-Passport’s
chip.

Figure 5.1 shows all the entities participating in the solution.

E-Passport

Inspection 

System (IS)

Root Certificate 

Issuing Country C

Document Verifier (DV)

Certificate Country C

Mutual 

Authentication

Figure 5.1: Entities Involved in the Mutual Authentication
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5.3.4.1 Description of On-Line Secure e-Passport Protocol (OSEP)

The OSEP has 3 phases; Initial Setup, IS Authentication and e-Passport Authentica-
tion.

In the Initial Setup (phase 1), all the entities involved in the protocol share the public
parameters p, q and g:

– p: 1024-bit prime number,
– q : 160-bit prime number such that q/(p− 1),
– g : generator of order q such that ∀i < q, gi = 1 mod p.
– The IS, the DV and the chip C have respectively a public/private key pair: (PKIS,
SKIS), (PKDV , SKDV ) and (PKC , SKC) where for example PKIS = gSKIS mod p
(same for the DV and the chip C).

The parameters p, q, g and the public keys PKIS, PKDV and PKC are signed by the
Country Verifying Certificate Authorities (CVCA). They are used by the Diffie-Hellman
key Agreement protocol.

In the IS Authentication (phase 2), the chip C and the Inspection System (IS) compute
a session key KCIS following these steps.

Step 1: A traveler presents his/her e-Passport to the Inspection System (IS). The IS
reads the MRZ information and sends GET CHALLENGE command to the chip C.

Step 2: The chip C generates a secret random number c (1 <= c <= q − 1) and
calculates KC = gc. Then, it answers to the GET CHALLENGE command by sending
KC and the public parameters p, q, g to the IS.

Step 3: After receiving the chip C’s replay, the IS chooses a random number is (1 <=
is <= q − 1) and computes KIS = gis. The IS creates SIS by signing the message
containing MRZ value and KC .

SIS = SIGNSKIS(MRZ||KC)

The Inspection System (IS) then communicates with the traveler’s DV in its proximity
and obtains the DV’s public key PKDV . The IS encrypts SIS, MRZ information and KC

using PKDV . The message then contains the data encrypted with the IS’s certificate
signed by CVCA.

Step 4: The DV decrypts the IS’s message and verifies CERTCV CA(PKIS, IS) and the
signature SIS. If the verification is successful, the DV concludes about the IS’s genuineness
and produces a new signature SDV to prove IS’s authenticity to the chip C.

SDV = SIGNSKDV (MRZ||KC ||PKIS)
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The DV encrypts SDV using public key PKIS and transfers it to the IS. The DV can
send in option the chip’s public key PKC .

Step 5: The Inspection System (IS), after decrypting the received message, computes
the key KCIS = Kc

IS. The IS encrypts the signature, MRZ information and KC using
KCIS. It also signs its key KIS and the chip’s public parameters using its secret key SKIS.
The IS sends its key KIS, the signature and the encrypted value to the chip C.

Step 6: The chip C computes the session key KCIS = Kis
C . The chip C decrypts

the received message using KCIS, retrieve the signature SDV and verifies the signature
SIGNSKIS(KIS, p, q, g). The chip C is convinced of the IS’s genuineness after a successful
verification. All the next communication are encrypted with the session key KCIS.

Figure 5.2 illustrates the IS Authentication.

GET-CHALLENGE

Kc, p, q, g ENCPKDV<SIS, MRZ, KC>, 
CERTCVCA<PKIS, IS>

ENCPKIS<SDV, [PKC]>, 
CERTCVCA<PKDV, DV>KIS, SIGNSKIS<KIS, MRZ>, 

ENCKcis<SDV, MRZ, KC>

Chip C IS DV

KCIS
KCIS

SDV = SIGNSKDV<MRZ, KC, PKIS>

SIS = SIGNSKIS<Kc, MRZ>

Figure 5.2: IS Authentication

In the e-Passport Authentication (phase 3), the IS verifies:

– the certificate of p, q and g,
– the certificate of the chip’s public key PKC ,
– the signature of the MRZ data and KCIS.

After the three phases, the IS is convinced that the e-Passport is genuine and authentic.

Figure 5.3 illustrates the e-Passport Authentication.
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Figure 5.3: e-Passport Authentication

5.3.4.2 Security Analysis of the OSEP

We have found some weaknesses in the On-line Secure e-Passport Protocol (OSEP).
The first threat the authors wanted to replace is the use of the key defined in Basic
Access Control (BAC). these keys hava insufficient entropy as they are derived from the
e-Passport number, the date of birth, the date of e-Passport’s expiration date and three
digits. The International Civil Aviation Organization (ICAO) wanted a personalized key
based on information related to the e-Passport’s bearer. But, in OSEP, the authors uses
Diffie-Hellamn protocol which generates random parameters independent of the traveler’s
information. We think that if there is no direct relationship between the public parameters
used to generate the session key, and the e-Passport bearer’s parameters, many e-Passports
with the same encryption key can be found. A birthday attack can be done to retrieve
these parameters in case of BAC and OSEP.

The second threat happens when OSEP checks only if the e-Passport is genuine and
not its bearer. One malicious traveler can use a stolen e-Passport and presents it to the
Inspection System (IS). How to make sure the e-Passport’s bearer is the genuine bearer
as OSEP only checks if the e-Passport is genuine but not its bearer. Moreover, e-Passport
parameters do not depends neither on the traveler’s data nor on his/her biometric data.

5.4 Our proposed Method using fingerprint

In our solution, we aim at adding the identity verification to the e-Passport’s bearer,
and we want to use public parameters which are generated using the Biometric Tem-
plates (BT). We suppose in our work, that at least one fingerprint is enrolled for each
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e-Passport holder and its digital value is stored in the Data Group (DG) 3. In [Jain 97],
authors insisted on the fact that the quality of acquisition fingerprint images is not good
because of distorting and polluted fingerprint.

For each Biometric Template (BT), some minutiae points are extracted from the fin-
gerprint, and we use them to generate an elliptic curve. Assume that each minutiae point
is of the form of point M(x, y) with abscissa x and ordinate y in [0, 255]. They are coded
on 8 bits. Also assume that these points are ordered in the same way in the enrollment
and verification phase.

Our solution has three phases:
– The first phase is called the Initialization phase. We need to construct an elliptic

curve using minutiae’s coordinates. This phase is done in a secure way by the e-
Passport issuing office which is called the Document Verifier (DV). The latter can
be in the native country or an embassy. By doing this phase, we avoid the first
threat.

– The second phase is theInspection System (IS) Authentication. We define the session
key that is used to secure the communication between the e-Passport’s chip and the
IS in the visiting country.

– The third phase is the e-Passport’s Bearer Authentication. The IS checks that e-
Passport’s bearer is genuine and not a malicious traveler. This eliminates the second
threat.

5.4.1 Initialization Phase

In the initialization phase, the e-Passport’s issuing office (the Document Verifier (DV))
issues a new e-Passport to the traveler. The latter enrolls his/her fingerprint template
which is used to generate elliptic curve domain parameters over Fp. The DV chooses a
256-bit prime number p. Then, it generates an elliptic curve E. The DV chooses also a
point P ∈ E which is the public point for the chip C. The DV stores in the user database
the following parameters:

1. ID : identifier;

2. p: 256-bit prime number (modulus);

3. q : 156-bit prime number (order);

4. P : the first public point;

5. A and B : 128-bit numbers, the coefficients of E
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The DV also adds the conventional parameters for the e-Passport like name, country,
age, gender... Since the MRZ contains 44 characters, we propose to use the 2-D bar-
codes. They can contains 8192 bytes. This is more than sufficient to store the public
cryptographic parameters. These parameters are put in the MRZ:

1. ID : identifier;

2. p: 256-bit prime number(modulus);

3. q : 156-bit prime number (order);

4. P : the second public point.

5. A and B : 128-bit numbers, the coefficients of E

The parameters A, B, p, q and P are certified by the DV. All the procedure is illus-
trated in the figure 5.4.

User

Enrolls initial 

fingerprint template
Chooses prime number p

Saves into user’s 

database: ID, p, q, 

public parameters 

E (A, B) , P

Passport contains :

ID, p, q, public parameters E (A, B) , P

Document 

Verifier DV

Figure 5.4: Initialization Phase

To choose the elliptic curve E(y2 = x3+Ax+B) defined over Fp, we need to follow the
steps in figure 5.5. At the end, an ideal elliptic curve for cryptographic use is obtained.
This elliptic curve is used between the chip C and the IS to define session key. After the
fingerprint’s enrollment, the following steps are done:

In step 1, the Document Verifier (DV) calculates the minutiae points and chooses 32
points of them. For example, if there are 70 minutiae points, it chooses 32 points in
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ordered manner. Each point Pi(Xi, Yi) has an abscissa xi and an ordinate yi coded on 8
bits. Finally, P0(X0, Y0) is obtained by concatenating all xi to get X0 = x1||x2||..........||x32
and all yi to get Y0 = y1||y2||...........||y32. X0 et Y0 are coded on 256 bits.

In step 2, the DV chooses the coefficient A ∈ Fp. Then, it sets B = Y 2
0 −X3

0 − AX0,
and check that 4A3 + 27B2 6= 0 mod p. (It repeats step 2, if 4A3 + 27B2 = 0 mod p).

In step 3, the DV computes N = Card(E) where q is the cardinality (number of the
points) of the elliptic curve. If N is not prime, It goes back to step 2; if N is prime, it
generates a certificate of primality.

In step 4, the DV checks if pj 6= 1 mod N, ∀1 <= j <= log2p (It goes back to step 2,
if p has order <= log2p mod N ).

After generating the elliptic curve domain parameters over Fp, the DV chooses a point
P from the curve E. Then, the e-Passport is ready to be delivered to the traveler.

Figure 5.5: Elliptic Key Parameters Generation

The convergence of this loop procedure is limited to two kind of results, either an
elliptic curve E is generated or a false error output to declare that no curve (with prime
number of point) can be generated. In practice, we can choose a threshold for the number
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of loop back, so we can change the initial parameters A and B in a reasonable time.

5.4.2 Inspection System (IS) Authentication

IS Authentication is used to verify e-Passport’s authenticity. It has the same step
as the OSEP’ IS authentication defined in Section 5.3.4.1. We propose to change the
Diffie-Hellman key agreement protocol by the Elliptic Curve Diffie Hellman (ECDH) Key
Agreement defined in the Section 2.6.3.1. The e-Passport’s chip C and the IS use the
generated elliptic curve parameters to agree on a session key K. Then, the IS starts the
e-Passport’s bearer authentication. The step of this phase are described in Appendix C.

5.4.3 E-Passport’s Bearer Authentication

We want in this phase to verify the identity of the e-Passport’s bearer. The latter
enrolls his/her fingerprint in the Inspection System (IS) fingerprint sensor. The IS retrieve
the 32 minutiae points and calculates the elliptic curve domain parameters using A and
p.

First, the IS computes the point P0(X0, Y0) as described in section 5.4.1. It can find
a point near to it (minimum Hamming Distance) if the input data is fuzzy. It, then,
calculates the coefficient B = Y 2

0 −X3
0 − AX0. If the IS finds the same B, it means that

the e-Passport’s bearer is genuine.
At final, the IS and the chip C agree about a session key extracted from K. The chip

C can release its data to the IS in a secure way.

5.5 The Proposed Iris Based Authentication Mecha-

nism for e-Passport

This section presents an iris based authentication mechanism for e-Passport. Kanade
et al. [Kanade 08] scheme is employed to obtain a key from iris biometrics and this key is
used to generate the security parameters. The iris has been described as the best biomet-
ric template for biometric comparisons because it has a fine texture that is set randomly
during the gestation period. Notwithstanding, monozygotic twins have completely inde-
pendent iris textures. One of the famous commercially deployed iris recognition algorithm
is the John Daugman’s IrisCode [Daugman 94].
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In the section 5.4, the generation of the elliptic curve domain parameters was based on
the enrolled fingerprint data. We present in this section, a modified version based on iris
biometrics. We use the stable bit-string extracted from iris code (using the cryptographic
key regeneration system of Kanade et al. [Kanade 08]) to generate the elliptic curve pa-
rameters. This solution is the result of a collaboration with colleagues from “Electronic
and Physic” EPH department of Institut Telecom SudParis [Abid 10]. In the performance
phase, we realized the elliptic curve generation and they realized the iris code extraction
and key generation. Combining these two work leads to a new elliptic curve generator
based on iris code. This work is pioneering in the field as we used intensive tests to verify
the algorithms.

5.5.1 Iris Based e-Passport Protocol

The solution has three phases. It begins with the initialization phase where an elliptic
curve over Fp is generated, with p being a prime number. The parameters needed to
the Elliptic Curve Diffie-Hellman (ECDH) algorithm are saved in the chip. This phase is
physically done in the office of the e-Passport’s issuing authority.

The second phase is the Inspection System (IS) authentication. It is already defined
in Section 5.4.2.

The third phase is the e-Passport’s bearer authentication, where the IS checks that
e-Passport’s bearer is genuine and not a malicious one.

More details of the three phases are presented below.

5.5.1.1 Initialization Phase

In the initialization phase, the issuing authority (in particular, the Document Veri-
fier (DV)) issues an e-Passport to the traveler. Figure 5.7 presents all the entities partic-
ipating in this phase.

The traveler who needs a new e-Passport enrolls his/her iris biometrics. To generate
the elliptic curve domain parameters, the system takes, as input, the enrolled iris.

The generated elliptic curve E (y2 = x3 +Ax+B mod p) needs to be an ideal elliptic
curve for cryptographic use. This elliptic curve is used by the chip and the Inspection
System (IS) to define a session key using the Elliptic Curve Diffie-Hellman (ECDH) key
agreement protocol.

As shown in Figure 3.12, the security parameters are the key K and the shuffling key.
The latter is given as input in the verification phase to retrieve the K ’s value. The locked
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code is generated from the key K and the shuffling key.

The elliptic curve generation procedure is shown in Figure 5.6.

The key K is hashed with Secure Hash Algorithm (SHA-256) to create the hash value
h2(K). The latter is used with a prime number p coded on 128 bits and a big number A
coded on 128 bits to choose the suitable elliptic curve E.

First of all, a P0(X0, Y0) is generated from the hash value h2(K). Since h2(K) has 256
bits length, it is cut into two parts, X0 and Y0 which are coded on 128 bits.

Then, the DV chooses the coefficient A ∈ Fp. It sets B = Y 2
0 −X3

0 − AX0, and check
that 4A3 +27B2 6= 0. If this condition is satisfied, N = Card(E) is computed, where N is
the cardinality of the curve. If N is prime, a certificate of primality is generated.

Afterward, the DV checks if pj 6≡ 1modN for 1 <= j <= log2p. In negative case, the
DV starts again the procedure by choosing a new coefficient A.

At the end, the DV obtains an elliptic curve E suitable for cryptographic use. It
chooses a point P ∈ E which is used as the public point of the chip. Then, the e-Passport
is ready to be delivered to the traveler.

Figure 5.6: Elliptic Curve Generation
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The parameters, stored in the user database and the e-Passport chip, are:

– ID : identifier;
– the locked code;
– the shuffling key ;
– h1(K): the hash value;
– p: 128-bit prime number (modulus);
– q : 80-bit prime number (order);
– the parameters generated using biometric iris:

– P : the public point;
– A and B : the coefficients of the elliptic curve E.

The Document Verifier (DV) also adds the conventional parameters for the e-Passport
like name, country, age, gender, ...

The parameters A, B, p, q and P are certified by the DV. At the end, the e-Passport is
delivered to the traveler. When the validity time of the e-Passport is finished, the bearer
can ask for a new one and the system generates a new elliptic curve different from the
previous one.

We highlight that the Iris template is not stored in the e-Passport in our proposed
solution. The information is stored in protected form (locked code).

User

User enrollment

iris data

e-Passport contains :

ID, 

Locked code,

Shuffling key,

Hash value H1(K),

the elliptic curve parameters: 

p, q, A, B , P.

The Document Verifier (DV) generates 

the elliptic curve E and saves into user’s 

database: ID, locked code, shuffling key, 

H1(K) and the elliptic curve parameters:  

p, q, A, B , P.

Figure 5.7: Initialization Phase: Delivering an e-Passport at the Issuing Authority

78



5.5. THE PROPOSED IRIS BASED AUTHENTICATION MECHANISM FOR E-PASSPORT

5.5.1.2 E-Passport’s Bearer Authentication

When e-Passport’s bearer travels, he/she is asked to prove his/her identity at the bor-
der control. The procedure of e-Passport’s bearer authentication is showed in Figure 5.8.
The traveler provides fresh iris biometrics data. The chip C sends the data needed by
the Inspection System (IS) to retrieve the elliptic curve for the authentication of the
bearer. These data are, the locked code, the shuffling key, the hash value h1(K) and the
parameters of the elliptic curve p, A and B.

First, the IS generate K’ using the fresh iris biometric data, the shuffling key and the
locked code. The IS can check if h1(K ′) is equal to h1(K).

Then, the IS hashes K’ using SHA-256 to get hash value h2(K ′). A point P ′0(X ′0, Y ′0)
is created using h2(K ′). The point P ′0, p and A are used to generate the elliptic curve
E’ (y2 = x3 + Ax + B′ mod p). If the value B’ is equal to B, the e-passport’s bearer is
genuine.

In the end, the IS and the chip C agree about a session key extracted from K. The
chip C can release its data to the IS in a secure way.

Locked code, Shuffling Key, 

H1(K) and p, A, B

Chip Inspection System (IS)

Request
Newly acquired iris image, 

Shuffling Key, Locked code

H2(K’) = sha_256(K’), 

p, A

E(p, A, B’)

Check if H1(B’) equals H1(B)

K’

check if H1(K’) equals H1(K)

Phase 2
Session 

Key

Session 

Key

Figure 5.8: Procedure of e-Passport’s Bearer Authentication at the border control using
fresh iris data
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5.6 Security Analysis of the Proposed Method

In this section, we analyze the security of our proposed protocol. As our solution
is a modification of the Pasupathinathan et al.’s contribution [Pasupathinathan 08b],
we solve the same problems. Our improvement depends on the use of the e-Passport’s
biometrical data in the cryptographic mechanisms. Therefore, we focus in this section on
the advantages gained using this method.

From a technical point of view, this solution uses existing ICAO’s PKI implementa-
tions (first generation e-Passports). The performance of this solution should be better
than the On-Line Secure e-Passport Protocol (OSEP) because it uses Elliptic Curve Cryp-
tography (ECC). Thus, the keys are shorter and it is an advantage for the use of RFID
Chip which has less memory. The entropy of the keys is better than the one for ICAO.
Another benefit is that we avoid storing user database of biometric templates in the Doc-
ument Verifier (DV)’s server. Since the attack of biometric database is one of the most
relevant attacks that we need to prevent.

Our solution strengthen the Data Confidentiality since the Elliptic Curve Diffie-Hellman
(ECDH) Key Agreement is more secure that the conventional Diffie-Hellman protocol. It
is difficult to retrieve the session key because of the discrete logarithm criterion of Elliptic
curve.

To prevent Grandmaster Chess Attack, we presented the e-Passport’s Bearer Authen-
tication. When an attacker uses a Biometric Template (BT) different from the one stored
in the e-Passport’s Data Structure, the IS defines a curve E’ 6= E and rejects the traveler.
To ensure a mutual authentication, the e-passport’s chip C relay the authentication of
the IS to the DV by checking the certificates signed by the CVCA.

As an e-Passport has an expiration date, a new elliptic curve and public parameters
can be generated. This leads to a fresher key and avoids replay attacks after the expiration
date. Let X0 and Y0, coded on 256 bits, be the coordinates coded on 256 bits of point
Q. The session key, generated from Q is longer than the session key generated after the
Basic Access Control (BAC) which is 56-bit long with an entropy equal to 52 bits.

The e-Passport’s Bearer Authentication is good in case of False Acceptance but in
the case of False Rejection, the presence of human assistance to the IS is a plus. The
fuzziness of BT can lead to false rejection of genuine travelers. Working with face can
lead to the same problems if the traveler changes his/her look by having a beard, a long
hair or glasses.
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5.7 Implementation and Performance Evaluation

This section focuses on the evaluation of phase 1 and 3 especially to compute the False
Rejection Rate (FRR) and the False Acceptance Rate (FAR).

We implemented the process to generate the elliptic curve using the iris code (phase
1) and the process to verify the identity of the e-passport’s bearer (phase 3).

5.7.1 Implementation of the Elliptic Curve Generator

In order to evaluate the performance of our solution, we implemented the crypto-
graphic algorithms using C/C++ language including Multiprecision Integer and Rational
Arithmetic C/C++ Library (MIRACL) [MIRACL ]. This library offers some crypto-
graphic routines like SHA-256 and Advanced Encryption Standard (AES). It offers also
elliptic curve routines. We used the Schoof-Elkies-Atkin (SEA) Algorithm [Schoof 95]
already implemented in MIRACL. It is used to count points on Fp for elliptic curve E
(y2 = x3 +Ax+B mod p). A prerequisite for the Elliptic Curve Cryptography (ECC) is
that the order of the elliptic curve should be prime.

The iris based key regeneration scheme was implemented in MATLAB. The code uses
an iris code as input, a key K and the shuffling key. The output is the locked code.

With an Intel Xeon CPU E5430 @ 2,66 GHz, it takes at most 3 minutes to generate
the elliptic curve in phase 1 and about 6 to 7 seconds to retrieve the curve from the
e-Passport’s Bearer Authentication (phase 3).

5.7.2 Performance Evaluation

There is a free Implementation of Machine Readable Travel Documents [JMRTD 06],
but we are not interested in evaluating the protocol itself. Instead, we want to have a
biometric evaluation of the solution. This means: is it feasible to use the biometric data
for such a cryptographic protocol and with the smaller possible FRR and FAR ?

The performance of the system is evaluated using the publicly available National
Institute of Standards and Technology-Iris Challenge Evaluation (NIST-ICE) database
[NIST ]. This database contains 2,953 images from 244 different eyes. The experimental
protocol given with the NIST-ICE’s database [NIST ] has two different experiments for
right and left eye images. This protocol results in more than one million comparisons
for each of these experiments. Considering the high amount of time required for each
comparison with the proposed system, it is not feasible to carry out all these comparisons.
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Hence, a subset of the database was selected such that there are strictly five images per
eye. Using this criterion, we created the dataset with 875 iris images coming from 175
different eyes.

In order to carry out genuine user comparisons, we compared each image of an eye
with every other images of that eye. This results in ten genuine comparisons per eye,
totaling 1,750 genuine comparisons. We show an example of genuine test. Figure 5.9
presents the reference key and the regenerated key. The latter is used to generate the
elliptic curve parameters of a genuine user with ts = 10.

Figure 5.9: Reference and Regenerated Keys

Figure 5.10 presents the phase where X0 and Y0 are computed. In the enrollment
phase, the system chooses a prime number p and a coefficient A and then, calculates
B = Y 2

0 − X3
0 − AX0. In the verification phase (phase 3), p and A are the input of the

program and only B is computed. Also, image 2 of the same genuine user is chosen as
input.
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Figure 5.10: Generation of Elliptic Curve Parameters

Figure 5.11 presents the end of the elliptic curve generator program. In this case, the
same curve is retrieved.

Figure 5.11: Same Elliptic Curve Regenerated

Figure 5.12 presents the output file where there are the parameters of the reference
curve and the regenerated one. In this case, the same curve is obtained in the verification
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phase.

Figure 5.12: The Output File in Genuine Verification

For impostor comparisons, we carried out every possible combination of image pairs
coming from two different eyes. This comes out to be 308,625 comparisons. Figure 5.13
presents the reference key and the regenerated key. The latter is used to generate the
elliptic curve parameters of an impostor user with ts = 10.

Figure 5.13: Reference and Regenerated Keys for impostor case

Figure 5.14 presents the end of the elliptic curve generator program. In this case, a
different curve is retrieved.
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Figure 5.14: Different Elliptic Curve Regenerated

Figure 5.15 presents the output file where there are the parameters of the reference
curve and the regenerated one. In this case, a different elliptic curve is obtained in the
verification phase. There is also a remark concerning the computation of B, where the
first choice of p and A was not successful. This leaded to new choice of these values and
hence a new B is obtained.

Figure 5.15: The Output File in Impostor Verification

We carried out the experiments for two setting of the error correction capacity ts of
Hadamard code (more details are given in [Kanade 08]). The length of the key K for ts
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= 10 is 247 bits while for ts = 15, it is 186 bits. The results for Key regeneration system
of Kanade et al. and Iris based e-Passport authentication scheme are shown in Table 5.2.

ts Key regeneration system Iris based e-Passport
of Kanade et al. authentication scheme

10 FAR=0.0005% and FRR=2.46% FAR=0.01% and FRR=5.26%
15 FAR=0.21% and FRR=0.86% FAR=0.20% and FRR=3.60%

Table 5.2: Results on NIST-ICE database : subset of the database ; 175 eyes, 5 images
each

It can be seen from Table 5.2 that the value of FAR rises with the increase in the
error correction capacity ts. On the other hand, with higher values of ts, low FRR can
be obtained. This is consistent with the fact that ts acts as a threshold for the biometric
data variability. The more the value of ts, the more errors are allowed in the biometrical
data. Thus, when high security is required, lower values of ts shall be selected.

In our case, we make experiments in order to study the feasibility of our solution and
to compare our work with other biometric systems from a performance point of view. If
we compare our results with the result of the Key regeneration system of Kanade et al.,
we see that their work is better because it doesn’t include the elliptic curve generator
which add more error rate in the system. But, Our performance values are in the average
range of the experimental results presented in Section 3.5. Thus, we consider our results
as satisfying for the e-Passport scenario.

5.8 Conclusion

Many solutions were proposed to secure the e-Passport protocols. The International
Civil Aviation Organization (ICAO) provided the standard security measures which are
implemented in many countries like USA and Australia. The first purpose was to enhance
security at border controls and, secondly, to perform these security checks in automatic
manner. However, many parts of the standard may be subject to attacks that aim at
recovering information from the e-Passport’s bearer. The European Union (EU) provided
an enhancement to the e-Passport protocol by defining Extended Access Control (EAC).
This scheme has an important problem related to cross certification among countries.
In 2008, Pasupathinathan et al. [Pasupathinathan 08b] designed a new solution called
On-Line Secure e-Passport Protocol (OSEP). They proposed a mutual authentication
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between the e-Passport’s chip and the Inspection System (IS). Their solution addressed
the drawbacks in the EU’s EAC protocol.

Our new method was based on the OSEP protocol and we used the Elliptic curve
Diffie-Hellman (ECDH) Key Agreement protocol to define the session key. We used the
fingerprint and the iris code to generate the elliptic curve domain parameters.

We analyzed the security of our solution. We found that our solution fulfills its goals
and prevents the system from the attacks. The use of biometric in the cryptographic
solution is, in our point of view, a very important issue as this biometrical data is stored
in the e-passport’s chip without a direct link to the security.

This solution is validated by using iris biometrics. We performed tests on the National
Institute of Standards and Technology-Iris Challenge Evaluation (NIST-ICE) database of
iris images. We computed the False Rejection Rate (FRR) and the False Acceptance
Rate (FAR). The results obtained (e.g., FRR of 0.2% and FAR of 3.6%) are satisfying
and the use of iris biometrics is encouraging for the deploying of this solution.

In the end of this chapter, we remind that the combination of cryptography and
biometry is a prominent research field and many works have to be done in the near future.
In the next chapter, we consider a new type of identity which is any simple string like
e-mail address. We focus on using this identity to enhance the authentication mechanisms
in the Next generation network (NGN).
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Chapter 6

A new service Authentication
Mechanisms for IP Multimedia
Subsystem (IMS)

6.1 Introduction

The authentication is the process that helps to decide if a user is who he/she claims to
be. Authentication is achieved using something the user knows (e.g. password), something
the user has (e.g. security token) or something the user is (e.g. biometrical data).

The authentication process prevents many threats especially identity fraud. The sys-
tems with high threat level require different forms of authentication to confirm the users’
digital identity. For systems with low threat level, the confirmation of the digital identity
is not as important from a risk point of view.

Authentication mechanisms rely on the identity verification and the registration pro-
cesses. The identity registration process usually involves a user with the operator or
company authentication mechanisms. The identity can be an identifier ID and a pass-
word, a security token, a digital certificate and/or some of the user’s biometrical data.

In the chapters 4 and 5, we focused on the use of the biometrics in the authentication
mechanisms. In this chapter, we are interested in the Next Generation Network (NGN)
framework. The IP Multimedia Subsystem (IMS) [Tirado 08] is a standardized NGN
architecture defined by the European Telecommunications Standards Institute (ETSI)
and the 3rd Generation Partnership Project (3GPP) [Camarillo 04].

The IMS is an overlay architecture which is built on top of the IP network. It is
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designed to provide multimedia services (such as Voice over IP (VoIP), video confer-
encing, press-to-transmit, etc...) on top of all IP networks as well as Next Generation
Networks (NGN). We can read in [Poikselka 09] that “The IMS is thus promising in the
future technology for the convergence of data, speech and mobile networks, thanks to
providing easy and efficient ways to integrate different value added services and seamless
integration of legacy services”.

In the IMS, the user’s identity is usually used in the authentication procedure as an
identifier (login) and not a part of the password or the cryptographic key. Each user or
subscriber uses an IMS-Subscriber Identity Module (ISIM) card with a stored secret key
to be authenticated to the IMS network and to be able to access the IMS services.

Indeed, the IMS’s authentication proved to have some security limitations such as
server spoofing and off-line password guessing attacks [Niemi 02]. Another requirement
provided in the IMS, is the tight attachment of the user’s authentication to the user
equipment (UE) since the ISIM card is used as a substrate (the element communicating
with the network) and also authentication is restricted to one algorithm: Authentication
and key Agreement (AKA) [Tirado 08]. This fact limits the personalized access and
hence the service personalization, since each user should have access through his/her
own devices (having his/her own ISIM card) in order to be correctly identified. As a
consequence, IMS authentication don’t realize authentication in a personalized manner,
which is an important prerequisite in new services such as social Internet ones. The strong
dependency on the ISIM card also limits the security performance [Priselac 08] and stands
as an obstacle towards compatibility and evolution (considering that many operators do
not support the smart card).

On the other hand, using the Authentication and key Agreement (AKA) protocol in
IMS proved to have some weakness, like short key for cryptographic purposes [Priselac 08],
[S.R0086-B 05]. Many solutions are proposed to strengthen IMS’s security like in [Wu 09]
where the authors define a new AKA based on Elliptic Curve Cryptography (ECC) and
in [Huang 07] where the authors define a new AKA called one pass AKA for the Universal
Mobile Telecommunications System (UMTS). Furthermore, Ring et al. [Ring 06] tried
to design a new AKA mechanism for Session Initiation Protocol (SIP) using Identity
Based Cryptography (IBC) [Boneh 01]. However, these works focus on the subscriber’s
authentication with nothing special on service authentication. In this chapter, we want
to modify the IMS’s service authentication mechanism by involving the Identity Based
Cryptography (IBC), presented in Section 2.7. The goal is to personalize the service
authentication mechanism.
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The remainder of this chapter is organized as follows, Section 6.2, describes the IMS
authentication process. In Section 6.3, we present our novel solution, and in Sections 6.4
and 6.5, we present a security analysis and performance evaluation respectively for our
proposed solution. Finally, we conclude the chapter in Section 6.7 and highlight some
points for future work.

6.2 Overview on IP Multimedia Subsystem (IMS)

The IP Multimedia Subsystem (IMS) is an overlay architecture which is built on top
of all IP networks as well as Next Generation Networks (NGN). It enables various types of
multimedia services to end-users using common Internet-based protocols [Camarillo 04].
It was originally designed by the wireless standards body 3rd Generation Partnership
Project (3GPP) [3GPP ] and was later extended by the Telecoms & Internet converged
Services & Protocols for Advanced Networks (TISPAN) as a subsystem of NGN [TISPAN ].
The IMS supports IP Multimedia applications such as video, audio and multimedia con-
ferences. The Session Initiation Protocol (SIP) was chosen as the signaling protocol for
starting and ending multimedia sessions. The security of IMS services, authentication,
authorization protocols and encryption/decryption procedures, have been defined and
implemented [33.102 09], [33.203 09], [33.210 09].

Figure 6.1 illustrates the main entities constituting the IMS core.

Figure 6.1: IMS Architecture
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Since IMS uses Session Initiation Protocol (SIP) for the control and signaling of ses-
sions, its main architectural elements are SIP proxies, known as Call Service Control
Functions (CSCF). The CSCFs handle all the SIP session signaling and are divided into
P(proxies)-CSCF, I(interrogating)-CSCF and S(serving)-CSCF.

1. the P-CSCF is used as IMS contact points for end users within IMS.

2. the I-CSCF is the contact point within the operator’s network and forwards con-
nections to the appropriate destination.

3. the S-CSCF is considered as the focal entity of the IMS since it is responsible for
users’ authentication, registration and authorization, and also for managing the
application servers (AS).

The Home Subscriber System (HSS) is another important entity in IMS which is a
database for all subscribers and service-related data of the IMS. The main data stored in
the HSS includes user identities, registration information, etc.

The next sections present respectively the Subscriber Identification, the Subscriber
Authentication and the Service Authentication in IMS.

6.2.1 Subscriber Identification in IMS

In IMS, each user/subscriber has two types of identities:

1. An IP Multimedia Private Identity (IMPI), where every IMS’s user shall have one
or more Private User Identities, but there is only one private user identity stored in
each ISIM card. The home network operator assigns the private identity for being
used in registration, authentication, authorization, administration, and accounting
purposes. The private user identity has the form of a Network Access Identifier
(NAI).

2. An IP Multimedia Public Identity (IMPU), where every IMS’s user shall have one
or more Public User Identities and each ISIM card stores at least one public user
identity. The Public User Identities are used by any user for requesting communi-
cations to other users and to services access. The Public User Identity takes the
form of a Session Initiation Protocol (SIP) Uniform Resource Identifier (URI) or
the "tel:"-URI format.

Figure 6.2 [33.228 09] shows the relationship between the IMPI, the IMPU and the
services.
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Figure 6.2: Relationship between IMS Identities

In this figure, the Service Profile is a collection of services and the user’s data are stored
in the HSS. Each IMPU is associated with one and only one service profile; however each
service profile can be associated with one or more IMPU. Different IMPIs can share the
same IMPU within the same IMS subscription. Hence, an IMPU can be simultaneously
registered from multiple UEs that use different IMPIs and different contact addresses.

6.2.2 Subscriber Authentication in IMS

Authentication and key Agreement in the IMS is called IMS AKA, which is based on
a secret shared key sk, shared between the user (ISIM card) and the Home Subscriber
Server (HSS) in the Homework. The secret key (K ) and AKA’s parameters are stored in IP
Multimedia Services Identity Module (ISIM) which is normally embedded on the Universal
Integrated Circuit Card (UICC) like a smart card based device. This authentication in
IMS is directly coupled to the SIP registration process. As the HSS can not communicate
directly with the User Equipment (UE), it is the S-CSCF that performs the authentication
process.

Figure 6.3 shows the subscriber’s authentication within the IMS core network.
In order to be authenticated, the UE sends the IMPU stored in the ISIM card in the

initial REGISTER request (message 1).
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Upon the reception of the REGISTER request, the P-CSCF examines the “home
domain name” to discover the I-CSCF (message 2).

Then, this latter sends an information query to the HSS to find the appropriate S-
CSCF, and then forwards the REGISTER request to the S-CSCF (messages 3-5).

When receiving this REGISTER request, the S-CSCF downloads an array of n (n>=1)
Authentication Vectors (AVs) from the HSS (messages 6-7). The AVs are ordered based on
sequence numbers (SQN) and each AV includes a random challenge (RAND), the expected
result (XRES), the network authentication token (AUTN), the Integrity Key (IK) and
the Ciphering Key (CK).

In order to authenticate the UE, the S-CSCF sends an authentication request within
a “401 (Unauthorized) response”, which includes: the RAND, the AUTN, the IK and the
CK (messages 8-9).

The P-CSCF, when receiving the “401 Unauthorized Response”, removes the IK and
the CK from the response before relaying it to the UE (message 10).

After receiving the response, the UE first retrieves the SQN from the received RAND
and computes the eXpected Message Authentication Code (XMAC). Then, the UE com-
pares the XMAC with the Message Authentication Code (MAC) which is included in
AUTN. If they are identical and if the SQN is in correct range, the network is authenti-
cated by the UE. Then the UE calculates the challenge responses RES and sends it to the
S-CSCF (messages 11-13). The UE also calculates the resulting IK which is then shared
between the P-CSCF and the UE. When the S-CSCF receives the response, it compares
the RES and XRES that were received in the AV from the HSS. The UE’s authentication
process ends up as successful with either a “SIP OK” message or a “SIP unauthorized
message”, both messages are sent by the S-CSCF (messages 14-16).
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Figure 6.3: Subscriber Authentication within the IMS Core Network

6.2.3 Service Authentication in IMS

Parallel to SIP traffic, numerous services might be accessed over the Hypertext Trans-
fer Protocol (HTTP). In order to allow the access to services over HTTP in a secure man-
ner, the IMS uses the Generic Bootstrapping Architecture (GBA) [33.220 09], [Sher 06]
and [Sher 07]. There are four entities participating in the process:

– the User Equipment (UE)
– the Network Application Function (NAF)
– the Bootstrapping Server Function (BSF)
– the Home Subscriber Server (HSS)

Figure 6.4 shows the network model of the entities involved in the bootstrapping
approach, and the reference points used between the entities.
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Figure 6.4: Generic Bootstrapping Architecture (GBA)

6.2.3.1 Network Elements

The GBA consists of four entities:

6.2.3.1.1 User Equipment (UE)

An UE is a Universal Integrated Circuit Card (UICC) containing an Universal Sub-
scriber Identity Module (USIM) or an IMS-Subscriber Identity Module (ISIM) related
information. The UE shall:

– execute the HTTP Digest AKA protocol;
– use the USIM and the ISIM in bootstrapping;
– choose the USIM or the ISIM when both of them are present;
– derive a new key material to be used over Ua interface from the shared keys IK and

CK;
– support the NAF-specific application protocols.

6.2.3.1.2 Network Application Function (NAF)

The NAF needs to fulfill these requirements:
– the UE and the NAF do not have a previous association before the GBA starting;
– the NAF shall determine the BSF’s location and communicate securely with it;
– the NAF shall obtains the shared key materiel defined between the UE and the the

BSF during the protocol exchanges;
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– the NAF shall get the User Security Settings (USS) from the HSS via the BSF.

6.2.3.1.3 Bootstrapping Server Function (BSF)

The generic Bootstrapping Server Function (BSF) is a central entity in the GBA. Its
functionalities consist of:

– the mutual authentication between it and the UE using the AKA protocol;
– the agreement on session keys that are afterwards applied between the UE and the

NAF;
– the restriction of the key material’s use only to a specific NAF by performing the

key derivation procedure. The latter may be used with multiple NAFs in the same
session

– the acquirement of the GBA user security settings (GUSS) from the HSS;
– the maintaining of a NAFs’ list which is used to make correspondence between the

GUSS and the NAF capabilities.

6.2.3.1.4 Home Subscriber System (HSS)

The set of all GBA user security settings (GUSS), is stored in the HSS. The sub-
scriber can have multiple subscriptions. In this case, the HSS may contain one or more
GUSSs that can be mapped to one or more private identities (IMPI). The latter shall
only have zero or one GUSS mapped to it. The Authentication, Authorization and Ac-
counting (AAA) protcol(already presented in Section 3.5.4) in the IMS is the DIAMATER
protocol [Calhoun 03] and it is implemented in the Home Subscriber Server (HSS).

The GUSS shall be composed by some parameters useful for the BSF like:
– the type of the UICC in the UE;
– the subscriber’s key lifetime;
– optionally, the timestamp to mark when the GUSS has been last modified by the

HSS.

6.2.3.2 Reference Points

We describe in this paragraph the four reference points in the system.

6.2.3.2.1 Reference point Ub

96



6.2. OVERVIEW ON IP MULTIMEDIA SUBSYSTEM (IMS)

The reference point Ub offers mutual authentication between the UE and the BSF. The
BSF sends a bootstrapping transaction identifier (B-TID) to the UE. The AKA protocol
is used on the reference point Ub to establish shared keys.

6.2.3.2.2 Reference point Ua

The application protocol,which is secured using the keys material agreed between the
UE and the BSF, is carried by the reference point Ua. This key material was generated
using the HTTP Digest AKA over reference point Ub. The UE and the NAF shall be
able to secure the reference point Ua using the GBA-based shared secret;

6.2.3.2.3 Reference point Zh

The reference point Zh is between the BSF and the HSS. The Zh security requirements
are the mutual authentication, the confidentiality and the integrity. Theses requirements
may be fulfilled by security measures chosen by the Network operator since the BSF and
the HSS are its entities. The DIAMETER Protocol is chosen to secure the management of
the clients on the HSS’s database and by the way, secure the communication on the refer-
ence point Zh. The reference point Zh is needed to carry the Authentication Vector (AV)
and the GBA User Security Setting (GUSS) from the HSS to the BSF.

6.2.3.2.4 Reference point Zn

The reference point Zn is between the BSF and the NAF. The latter requests the key
material from the BSF. The request contains NAF’s public hostname used by the UE’s
corresponding request. The BSF verifies the NAF’s authorization to use this hostname,
(checks the Fully Qualified Domain Name (FQDN)provided by the UE). The, the BSF
sends the key material and the GUSS over the reference point Zn to the NAF.

6.2.3.3 The GBA Authentication Protocol

The Generic Bootstrapping Architecture (GBA) performs authentication between the
BSF and the UE, which is also based on AKA. Figure 6.5 shows the GBA authentication
for services access in IMS.

In message 1, to grant service access to UE, the latter communicates over Ua with the
NAF whithout sending GBA’s parameters.
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In message 2, if GBA authentication is needed and if there are no available bootstrap-
ping parameters in the UE, the NAF sends a Bootstrapping initiation request.

In message 3, the UE contacts the BSF by sending an HTTP request including the
private user identity.

In message 4 and 5, the BSF contacts the HSS to get the GBA User Security Set-
ting (GUSS) and the Authentication Vector (AV) which includes RAND, AUTN, CK, IK
and XRES.

In message 6 and 7, in order to authenticate the UE, the BSF sends the RAND and
AUTN to the UE in a "401 (Unauthorized) message" without delivering CK, IK and
XRES. The UE then verifies AUTN (following the same procedure described in IMS
authentication) to conclude if the request is from an authorized network; and calculates
CK, IK and RES. Thus, the session keys IK and CK are shared by the BSF and the UE.
The latter generates key material Ks by concatenating CK and IK and sends the Digest
AKA response which is calculated using RES in a new HTTTP request to the BSF.

In message 8, the BSF verifies the Digest AKA response to authenticate the UE and
generates key material Ks by concatenating CK and IK. The BSF also generates the
Bootstrapping Transaction Identifier (B-TID) and sends it in a "200 OK message" to the
UE to indicate the authentication success.

The procedure to derive key material Ks_NAF is described in [33.220 09] as “Ks_NAF
is computed as Ks_NAF = KDF (Ks, "gba-me", RAND, IMPI, NAF_Id), where KDF
is the Key Derivation Function, and the key derivation parameters consist of the user’s
IMPI, the NAF_Id and RAND. The NAF_Id is constructed as follows:

NAF_Id = FQDN of the NAF || Ua security protocol identifier

(FQDN is the Fully Qualified Domain Name)”. Ks_NAF shall be used for securing
the reference point Ua.

In message 9, the UE contacts the NAF and provides the B-TID and a digest calculated
using Ks_NAF.

In message 10 and 11, the NAF requests the corresponding Ks_NAF and GUSS
from the BSF by sending B-TID over Zn. After receiving the BSF response (contain-
ing Ks_NAF, GUSS and the PKG parameters), the NAF calculates the digest values
using Ks_NAF and compares the calculated values with the received one to be able to
authenticate the UE.

At the end, the NAF sends the message 12 including an “OK message” to end the
GBA authentication.
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Figure 6.5: GBA Authentication for Services Access in IMS

6.3 IMS-IBC Service Authentication

This section presents our proposed solution which employs IBC in the IMS GBA
authentication. This solution was designed in a collaboration work with a team of Orange
Labs Issy-les-Moulinaux [Abid 09]. We were more concentrating on security and the use of
the Identity Based Cryptography (IBC). Also, the security analysis and the formal analysis
using the Automatic Validation of Internet Protocols and Application (AVISPA) was done
in our department. Our objective is to personalize the IMS service authentication process
through using an identity that is not attached to the ISIM card and that presents each
user in an individual manner.

In our work, we assume that the UE has the shared key sk with HSS. The HSS is
located in the same server with the HSS. The PKG’s public parameters (the elliptic curve
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E, prime number p, order q, point P, point Ppub and MapToPoint: Hash function) stored
in the ISIM card. The PKG has a secret private key S.

6.3.1 Solution Description

The novel IMS-IBC Service Authentication is illustrated in Figure 6.6.

Figure 6.6: IMS-IBC Service Authentication

We explain all the IMS-IBC interactions in the following:
In messages 1 and 2, the UE starts communication with the NAF without GBA

parameters. If the NAF requires the use of shared keys obtained by means of the GBA,
it replies with a bootstrapping initiation message.

In messages 3, 4 and 5, the UE sends a HTTP request to the BSF including the IMS
private user identity (IMPI) and public user identity (IMPU). The BSF then retrieves
from the HSS:
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1. the complete set of GBA user security settings (GUSS),

2. an Authentication Vector (AV) containing the RAND and PKG parameters,

3. the UE’s public key Kpub = MapToPoint(IMPU) where MapToPoint is the hash
function used by the PKG to convert a string into a point in the elliptic curve E,

4. the encrypted UE’s private key Kpriv using the shared key sk. We note that Kpriv =

S.Kpub.

In message 6, the BSF forwards the AV (RAND and PKG parameters) and the en-
crypted Kpriv to the UE in the "401 (Unauthorized) message". We add also the public
key Kpub. We choose to send PKG parameters to the UE as HSS periodically change its
parameters.

In message 7, the UE extracts its private key Kpriv using the shared key sk (stored
in the ISIM card). Then, it generates a signature of the RAND value (message m =
RAND in this work) using Elliptic Curve Digital Signature Algorithm (ECDSA) (see
Section 2.6.3.3). The inputs of the ECDSA are:

– PKG parameters (E(A, B), p, q)
– UE’s public/private key pair (Kpub, Kpriv)
– n: large prime which divide the number of points in the elliptic curve
– d = Kpriv mod (n-2)
– Q = d. Kpub

After the execution of the ECDSA Signature Generation phase, the signature for the
value RAND is the pair of integers (r, s).

Then, we apply Elliptic Curve Diffie-Hellman (ECDH) Protocol (presented in Section
2.6.3.1). This key agreement protocol is used to generate the Ks_NAF key. The UE
chooses a random value ’a’ to generate ’a.Kpub’. It sends Sig(RAND) = (r, s); n; Q and
’a.Kpub’ to the BSF in an HTTP request in order to authenticate itself.

To verify the UE’s signature (r, s) for RAND, the BSF should follow the step of
ECDSA Signature Verification phase. If the verification phase is successful, then, the
user is authenticated.

In message 8, after the successful verification, the BSF generates Bootstrapping Trans-
action IDentifier (B-TID) and stores it with the IMPU and GUSS. The BSF generates a
random value ’b’ and sends ’b.Kpub’ to the UE . After receiving the message, the UE and
the BSF share the same Ks_NAF = a.b.Kpub. The BSF then sends to the UE a "200 OK
message" including the B-TID and ’b.Kpub’ encrypted with UE’s public key Kpub using
the Meneze-vanstone protocol(see Section 2.6.3.2). After receiving the message, the UE

101



CHAPTER 6. A NEW SERVICE AUTHENTICATION MECHANISMS FOR IP MULTIMEDIA SUBSYSTEM (IMS)

retrieves the B-TID using Kpriv.
In message 9, the UE provides IMPU, B-TID, a signature of B-TID and n, Q to the

NAF to allow it to retrieve the corresponding keys from the BSF.
In message 10, the NAF sends IMPU, NAF-ID, the signature value and n, Q to the

BSF to request for Ks_NAF, GUSS and PKG parameters. NAF-ID is used by the BSF
to verify that the NAF is authorized to use that hostname.

In message 11, the BSF verifies the signature using Kpub. Then, it sends the GUSS,
KS_NAF, IMPU and PKG parameters to the NAF.

In message 12, the NAF checks the authentication and the authorization of the IMPU
to the services according to the received GUSS. Once the execution of the protocol is
completed, the UE and the NAF communicate in a secure way.

6.3.2 Advantages of the proposed solution

The advantages of our proposed solution are as follows:

1. Using the AKA protocol only in the IMS authentication phase while using the
Identity Based asymmetric encryption for the service authentication. Thus, we
can have personalized services authentication, which could not be provided by the
AKA approach only. This is so important for promoting new services involving an
authentication to a third party that is neither a provider nor a subscriber and that
could not be easily extended with the legacy solution.

2. The session key Ks_NAF is only shared by the UE and the NAF, where the BSF
only had the role to authenticate the UE. As a result, our solution is more scalable
(especially when considering scenarios having several NAFs) through reducing the
overhead of the key request from BSF by the NAF in the classical case.

3. Our proposed solution provides more simplicity since it is based on Elliptic Curve
Cryptography (ECC), so it is more efficient and preferable in the applications that
require low memory and rapid transaction. Furthermore, for elliptic-curve-based
protocols, it is assumed that finding the discrete logarithm of an elliptic curve el-
ement is infeasible. The size of the elliptic curve determines the difficulty of the
problem.

4. Our proposed solution is compatible with the IMS standard architecture which
facilitates its deployment.

5. The work is based on asymmetric cryptography, where the shared key ks between
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the UE and the HSS is used to encrypt the UE’s Kpriv. and the BSF cannot retrieve
this key and has to encrypt B-TID using UE’sKpub. Then, even if there is no mutual
authentication between the UE and the BSF as in the classical IMS case, security
is always guaranteed.

6.4 Security Analysis

We explain, first, how our solution enhances the security of the classical IMS authen-
tication through overcoming two possible attack scenarios. Then, we present the result
of the formal security analysis using the Automatic Validation of Internet Protocols and
Application (AVISPA).

6.4.1 Preliminary Discussion

Our solution prevents the illegitimate use of IMS services with stolen credentials is a
result of UE based frauds.

6.4.1.1 Eavesdropping Attack

Through the authentication phase (messages 3 to 8), a malicious user can act as a Man
in the Middle (MITM), listens to the communication and retrieves the GUSS related to
the IMPI and IMPU of the legitimate user. The malicious user then tries to connect to
the system using his/her ISIM card (containing IMPI’ and IMPU). The HSS rejects the
request because the couple (IMPI’, IMPU) is not in its database.

Even, if the malicious user would play the role of a BSF, he cannot retrieve Kpriv,
because it is encrypted using sk shared between the UE and the HSS.

6.4.1.2 Impersonating UE

A malicious UE could impersonate the legitimate UE to have access to its services.
When a malicious UE knows IMPI and IMPU, he/she can create a fake ISIM card con-
taining IMPI and IMPU. When the malicious UE receives message 6, he/she only extracts
Kpub and AV, however he/she can not recover the Kpriv value because he/she does not
know the shared key ks. Then, when he/she needs to sign RAND, the result will be a
non valid signature.
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6.4.2 AVISPA Automatic Validation Tool

In order to analyze the security of the proposed solution, we used the Automatic
Validation of Internet Protocols and Application (AVISPA) tool, a comprehensive secu-
rity protocol analyzer [AVISPA 03]. AVISPA uses the High Level Protocol Specification
Language (HLPSL) [Chevalier 04] to describe security protocols and specify which secu-
rity goals are achieved by a given protocol. System behavior in HLPSL is modeled as a
state. The HLPSL has states which have variables responsible for the state transitions; if
variables change, a state takes a new form. The communicating entities are called roles.
The role’s variables can be local or global. The roles are the initiators, the receivers, the
environment and the session of protocol execution. Roles can have one agent or more.
All communications are synchronous between roles and the intruder. These communi-
cation are carried by communication channels depending of the environment. Different
intruder models of various attack capabilities can be tested using the different security
properties of each communication channel. In HLPSL, the most employed intruder model
is Dolev-Yao [Dolev 83] in which the following assumptions hold:

– The intruder is able to impersonate any user.
– The intruder is able to read, suppress and modify all messages exchanged between

the legitimate participants in the network.
– The intruder is able to generate new messages at any time, send them to all the

agents and also play the role of any legitimate principal, taking a part of the session
or even multiple sessions of the protocol execution.

In our study, we choose the Dolev-Yao intruder model.

After the protocol is written, it is first compiled by the HLPSL translator into In-
termediate Format (IF). The IF is a low-level language that is understood by the four
back end analysis tools of AVISPA. The execution of a protocol written in IF is done in
a finite number of iterations, or entirely in case of no loop is involved. The result can be
either an attack is found, or the protocol is safe over the given number of sessions. We
have used On-the-fly-Model-Checker (OFMC) [Basin 03] tool since it provides support for
specific algebraic properties, in our case the exponential operator used for Diffie-Hellman
construct (we used exponential operator to simulate the multiplication operator in the
elliptic curve field.)
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6.4.3 Validation Results

We defined the security goals as an input to the automatic formal proof of the IMS-IBC
Service Authentication Protocol:

– Secrecy of the session key ks between the UE and the HSS.
– Secrecy of the TLS session in the reference point Ub.
– Secrecy of the DIAMETER connection in the reference point Zh.
– Secrecy of the material key Ks_NAF.
– Authentication of UE by the BSF.
– Even if an intruder impersonate the UE to the BSF, this should not allow him to

get the Ks_NAF and access to the services.
The output shows that the protocol is safe (no attacks were found) and that the

security goals of our formal validation are attained. The output of OFMC is shown in
figure 6.7. And, the HLPSL code is given in Appendix D.

Figure 6.7: The OFCM Output

We add some details about our validation. The out-of-band channel was modeled
using a secret, shared between the UE and the HSS, and unknown to the intruder. As
AVISPA do not have any elliptic curve algebraic functions, we simulated the multiplication
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function in the Fp by the exponential function in R. In fact, they are analogous in
their functionalities. Also the ECDSA signature is simulated by the hash_func defined
in AVISPA. We correctly compiled HLPSL model and validated the IMS-IBC Service
Authentication Protocol.

6.5 Performance Evaluation

Our goal is to have a first evaluation on the feasibility of the proposed solution before
integrating it in an IMS platform. We separated performance evaluations for the proposed
authentication approach and measured the speed of IBE’s operations “the generation of
PKG parameters and private and public keys” using ordinary terminals (that are expected
to be used in the daily life by any user). We believe that IBE performance is the most
critical point that can judge the feasibility of deploying our solution but the measures
that we got are encouraging.

More precisely, the most important parameter influencing the performance is the
speed of cryptographic operations (such as private/public key pair generation, encryp-
tion/decryption, and signature/verification time). In the performance analysis in this
section, we mainly measure the speed of cryptographic operations, without consider-
ing the underlying network architecture at this phase. We notice the existence of IMS
platforms [OIC ]. However, without any implementation of the GBA authentication for
services access.

Mkwawa et al. [Mkwawa 08] made some simulations on IMS and found that the S-
CSCF is the bottleneck in the IMS core network because this latter processes large number
of SIP messages. Analogically, we estimate that the BSF is the bottleneck of the service
authentication process since it processes many HTTP messages.

We implemented the architecture presented in Figure 6.8. We have implemented
four processes playing the role of the User Equipment (UE), the Network Application
Function (NAF), the Bootstrapping Server Function (BSF) and the Home Subscriber
Server (HSS). We added a Private Key Generator (PKG) in the HSS.
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Figure 6.8: Testing Architecture

In order to evaluate the performance of our solution, we used the IBE demo provided
within the MIRACL library [MIRACL ], to determine the processing time to generate the
private/public key pair and encryption/decryption. We use the elliptic curve y2 = x3 + 1

mod p where p is 256-bit prime number.

We observed the execution time for an UE who wants to be authenticated for the first
time. The result we obtain is around 250 ms using a computer machine with this config-
uration: Intel Centrino Duo P8700 2.53GHz, memory 2G in Linux Fedora12. Moreover,
we observed the execution time of some sub-functions, like:

1. Time needed to generate the PKG parameters (160-bit q, 256-bit p, 512-bit point P,
512-bit Point Ppub, 160-bit secret S and 512-bit cube root of unity in F 2

p ), (ibe_ext)
for a client is around 26.3 ms.

2. Time needed to generate and verify a digital signature (functions ecsign and escver)
are nearly 9.3 ms and 10.4 ms.

3. Time needed to encrypt and decrypt the private key (functions aes_enc and aes_dec)
are around 5 ms and 5.1 ms.
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4. Time needed to encrypt and decrypt the B-TID (functionsmenezes_enc andmenezes_dec)
are around 8.1 ms and 8.2 ms.

5. Time to calculate the product of a random number and a given point (function
multi_a) is nearly 4.8 ms.

6. Time to calculate the product of a given number and a given point (function
multi_b) is nearly 5.8 ms.

7. Converting the message between text and html needs nearly 2.7 ms.

From the performance point of view, the time needed to finish the asymmetric system
operations is not harmful to our work. Furthermore, from the security point of view, the
identity Based Cryptography IBC is more secure (using 160 key instead of 128 key for
AKA).

6.6 Use of Batch Verification Scheme

In Section 6.5, we validated our proposal for one user. Since the Operator has a large
number of subscribers (in some cases, millions of them), we focus in this section on the the
case of multi-authentication at the same time. We think that the bottleneck of the IMS’s
service authentication is the Bootstrapping Server Function (BSF) because it has the role
to verify the signature of each User Equipement (UE). One solution to this problem is
the Batch Verification scheme which is used by Zhang et al. [Zhang 08]. Their solution is
called Identity-based Batch Verification (IBV) scheme and it is applied to Vehicular Net-
work. The IBV has four phases: Key Generation and Pre-distribution, Pseudo Identity
Generation, Message Signing and Batch Verification. The authors define the Batch Ver-
ification scheme as “the verification of all the signatures received in a time window with
rather short time compared to verifying each signature one after the other”. They indi-
cated that the batch cryptography based on RSA was firstly proposed by Fiat [Fiat 89]
in 1989. Some other batch signature schemes were suggested later like [Camenisch 07].

Zhang et al. [Zhang 08] used 3 pairing operations to verify a single signature. To verify
n signatures, they needed 3 pairing operations instead of 3n pairing operations. In other
words, the verification time of the dominant operation (i.e; pairing) is independent of the
number of signatures to verify. As a result, the time spent on verifying a large number of
signatures is decreased. We use their scheme in the IMS architecture.

We present the third and fourth steps of Zhang et al.’s solution and we present the
method to reutilize them in the IMS’s service mechanism in Appendix E.
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To validate the performance of this signature method, we implemented the crypto-
graphic operation in our proposed solution including the IBC procedures. We observe
that the use of asymmetric cryptographic procedures leads to longer running time than
symmetric procedures. However, the Batch Verification helps the BSF to verify the UEs
signature in a reasonable time.

We made some performance evaluations and we considered the same implementation
described in Section 6.5. In the following, all the measures are real measures from the
implementation realized using an Intel(R) Core 2 CPU T5470 @ 1,60GHZ. We observed
that the time needed to generate PKG parameters (160-bit q, 256-bit p, 512-bit point P,
512-bit Point Ppub1, 160-bit secret S and 512-bit cube root of unity in F 2

p ) is around 14
ms. To generate Kpub1 and Kpub2, we use a MapToPoint function, which has the role
of finding a point in the curve E corresponding to the Hash of the IMPU. We found that
the time needed for MapToPoint Tmtp is in the order of 4,4 ms. To generate Kpriv1 and
Kpriv2, the PKG needs almost 7,5ms. The time needed for bilinear pairing Tbp is about
9,3 ms and the time for multiplication Tmul is about 1,5 ms.

We define the time needed for the signature verification based on the definition given
[Zhang 08]. For the verification of Sig1 or Sig2, we need 3 bilinear pairings, 1 MapToPoint
and 1 multiplication, so for 1 person Tv = 3.Tbp + Tmtp + Tmul = 33,8 ms. The BSF has a
maximum capacity, we note as N. If we have more than N UEs simultaneously requesting
authentication, the system rejects or delay the answer. With the Batch Verification,
this can be avoided since the verification for n signature costs three bilinear pairings, n
MapToPoint and n multiplication (Tv = 3.Tbp + n.Tmtp + n.Tmul). Table 6.1 shows the
time needed that we deduced for different number of UEs (we choose N >=1000 UEs).

From the performance point of view, the asymmetric system seems to need more
time to finish all operations than symmetric one but this is not harmful to our work.
Furthermore, from the security point of view, the identity Based Cryptography IBC is
more secure (using 160 key instead of 128 key for AKA) and we calculated that we need
about 4 min to authenticate 50000 UEs, and it seams to be an encouraging result.
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``````````````````
UEs Number

Scenario
without Batch Scheme with Batch Scheme

1000 33,8 s ∼ 5,9 s
5000 169 s ∼ 29,5 s
10000 338 s ∼ 59 s
50000 1690 s ∼ 295 s

Table 6.1: Sinature Verification Time

6.7 Conclusion

IP Multimedia Subsystem (IMS) is promising in future services convergence and per-
vasive multimedia applications. Although IMS enhances user’s interactivity and although
security is a critical aspect, IMS authentication falls short to be realized in a personal-
ized manner, which is an important prerequisite in new services such as social Internet
ones. In this chapter, we proposed a new IMS Service Authentication scheme through
employing the Identity Based Cryptography (IBC). IBC was chosen since our objective is
to allow IMS services’ personalization through authenticating users in a personal manner
during services access. Our proposed solution also employs Elliptic Curve Cryptography
(ECC), so it is more efficient and preferable in the applications that require low memory
and rapid transaction. Security is assured thanks to using a symmetric protocol with a
shared key (ks) between the UE and the HSS, an asymmetric protocol for signature, and
Diffie-Hellman for key agreement. We focused on the eavesdropping and impersonation
attacks that can take place in classical IMS scenario and we showed how our proposed
solution can prevent against these attacks.

Regarding the performance of our proposed solution, we focused on the performance
of the cryptographic functions in order to verify the validity of our approach. We observed
that the use of asymmetric cryptographic procedures leaded to longer execution time than
symmetric procedures. And, on the other hand, we have the advantage of resolving the
AKA security weakness in classical IMS case.
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Chapter 7

Conclusion

In this dissertation, we described new authentication protocols in different network
types like Home, Governmental and Cellular Network. In this final chapter, we summarize
our research contributions and briefly describe some areas that can merit future research.

7.1 Research Summary

We present three solutions , depending on the identity used in the authentication
mechanisms. In chapter 4 and chapter 5, the biometric identity is used in two scenarios,
one for Home Network, and the other for Governmental Network (travel document).

For the home network, we applied a biometric authentication since it allows users’
authentication in a distinguished manner as well as personalized users’ access. The mech-
anism is a modified version of the Extensible Authentication Protocol (EAP). We proposed
a solution that protects private biometric template (BT) thanks to cancealable biometrics
concept. To share a secret key, the entity use the fuzzy vault mechanism. This technology
should be carefully used in order to protect users’ privacy and prevent the disclosure of
their BT.

For the the travel document case study, we proposed a new authentication protocol
for e-Passport based on fingerprint. A multi-bit information string is extracted from
biometrics and that string is used to generate the security parameters of the cryptographic
protocol. One requirement of this system is that the minutiae points are ordered in
the same way in the enrollment and verification phase, which is not easy to obtain in
real circumstances. The solution has three phases where the second one is the same as
defined in the Pasupathinathan et al. [Pasupathinathan 08b] except that we used Elliptic
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Curve Diffie-Hellman (ECDH) Key Agreement protocol. Then, we presented an iris based
authentication mechanism for e-Passport. It is a modified version of the first scheme. We
obtained a key using the iris code and this key is used to generate the security parameters.
We presented a security analysis and a biometric performance evaluation. We performed
tests on the NIST-ICE database of iris images to compute the False Rejection Rate and
the False Acceptance Rate. The results obtained (e.g., FRR of 0.2% and FAR of 3.6%) are
satisfying and the use of iris biometrics is encouraging for the deployment of this solution.

In chapter 6, we used a simple strings (exp: email address,...) as an identity. The
latter is used in the Identity Based Cryptography (IBC). We defined a new service authen-
tication protocol in IP Multimedia Subsystem (IMS). The IMS is an overlay architecture
for the provision of multimedia services (such as Voice over IP (VoIP), video conferencing,
presence, push-to-talk, etc..) on top of all IP networks as well as Next Generation Net-
works (NGN). This new IMS Service Authentication scheme employs the Identity Based
Cryptography (IBC). IBC was chosen since our objective is to allow IMS services’ per-
sonalization through authenticating users in a personal manner during services access.
Security is assured thanks to using a symmetric protocol with a shared key (ks) between
the UE and the HSS, an asymmetric protocol for signature, and Diffie-Hellman for key
agreement. We focused on the eavesdropping and impersonation attacks that can take
place in classical IMS scenario and we showed how our proposed solution can prevent
against these attacks. We, then, proposed to add a Batch Verification on the Bootstrap-
ping Server Function (BSF) to decrease signature verification delay and the authentication
response time. To validate the performance of our proposed solution, we implemented
the cryptographic operation in our proposed solution including the IBC procedures. We
observed that the use of asymmetric cryptographic procedures leads to longer running
time than symmetric procedures. However, the Batch Verification helps the BSF to verify
the User Equipments (UEs) signature in a reasonable time.

7.2 Future Work

The authentication protocols are vital to access services in the Network. We present
here three possible future works:

1. A problem related to user privacy will rise which consists on the way to protect
the privacy of the user. Sometimes the identity can be biometric data which is
sensitive to attack and forgery. In other cases, the users of the network want to be
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anonymous. So we need to develop a trust model so the users can trust the providers
and the privacy will be preserved. A privacy-based enhanced access control should
be more explored and extended to support privacy preferences.

2. Another issue will be related to biometrics, in our work, we focused on a single
biometric data like fingerprint or iris code. As future work, we want to derive
algorithm for multimodal biometric templates (see Section 3.3) since the e-Passport
can contain different types of biometrics such as fingerprint, face, iris, etc.

3. Another future work can be a contribution in the electronic Visa (e-Visa) security
protocol. In order to protect their borders and enforce immigration policies, Europe
and in particular the Schengen countries, plan to implement a secured visa. The
chosen option is a microprocessor-based solution, e-Visa, and pilots are taking place
to test the technology and its implementation. What kind of Biometric Data should
be stored within E-visa? How will be the interaction between e-visa and the Inspec-
tion System (IS)? Another interesting field is the e-traveler’s check [Chang 09], to
make shopping when traveling, easier and more secure.
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Appendix A

Acronyms

3GPP Third Generation Partnership Project
AA Active Authentication
AAA Authentication Authorization Accounting Protocol
AES Advanced Encryption Standard
AKA Authentication and key Agreement
ANSI American National Standards Institute
AS Application Server
ATM Automatic Teller Machine
AUTN Authentication Token
AV Authentication Vector
AVISPA Automatic Validation of Internet Protocols and Application
BAC Basic Access Control
BioID Biometric IDentifier
BSF Bootstrapping Server Function
BT Biometric Template
B-TID Bootstrapping Transaction IDentifier
CA Certificate Authority
CA Chip Authentication
CK Ciphering Key
CL-PKC Certificateless Public Key Cryptography
CNIL Commission Nationale de l’Informatique et des Libertés
CRC Cyclic Redundancy Check
CRL Certificate Revocation List
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CSCA Country Signing Certificate Authorities
CSCF Call Service Control Functions
CVCA Country Verifying Certificate Authorities
DES Data Encryption Standard
DH Diffie-Hellman
DLP Discrete Logarithm Problem
DoD Denial of Decryption
DOS Denial Of Service
DV Document Verifier
EAC Extended Access Control
EAP Extensible Authentication Protocol
EAP-TLS EAP-Transport Layer Security
EAP-TTLS EAP Tunneled TLS
EEAP Encrypted Extensible Authentication Protocol
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellman
ECDLP Elliptic Curve Discrete Logarithm Problem
ECDSA Elliptic Curve Digital Signature Algorithm
EER Equal Error Rate
e-Passport electronic Passport
ETSI European Telecommunications Standards Institute
e-Visa electronic Visa
FAR False Acceptance Rate
FRR False Rejection Rate
FQDN Fully Qualified Domain Name
GAR Genuine Acceptance Rate
GBA Generic Bootstrapping Architecture
GUSS GBA User Security Setting
HG Home Gateway
HLPSL High Level Protocol Specification Language
HMAC Hash-based Message Authentication Code
HN Home Network
HSS Home Subscriber System
HTTP Hypertext Transfer Protocol
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I-CSCF Interrogating-CSCF
IBC Identity Based Cryptography
IBE Identity Based Encryption
IBV Identity-based Batch Verification
ICAO International Civil Aviation Organization
IEEE Institute of Electrical and Electronic Engineers
IF Intermediate Format
IFP Integer Factorization Problem
IMPI IP Multimedia Private Identity
IMPU IP Multimedia Public Identity
IMS IP Multimedia Subsystem
IK Integrity key
IP Internet Protocol
IS Inspection System
ISIM IMS-Subscriber Identity Module
KDF Key Derivation Function
KGC Key Generation Center
Ks_NAF Key material of NAF
LDS Logical Data Structure
MAC Message Authentication Code
MIPS Million Instructions Per Second
MIRACL Multiprecision Integer and Rational

Arithmetic C/C++ Library
MRTD Machine-Readable Travel Documents
MRZ Machine Readable Zone
NAF Network Application Function
NAF-ID Network Application Function-IDentity
NIST-ICE National Institute of Standards and Technology-

Iris Challenge Evaluation
NGN New generation Network
NTWG New Technologies Working Group
OFMC On-the-fly-Model-Checker
OSEP On-Line Secure E-passport Protocol
OTP One Time Password
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P-CSCF Proxies-CSCF
PA Passive Authentication
PDA Personal Digital Assistant
PIN Personal Identification Number
PKD Public Key Directory
PKG Private Key Generator
PKI Public Key Infrastructure
PPP Point-to-Point Protocol
RFID Radio Frequency Identification
RSA Rivest-Shamir-Adleman
S-CSCF S(serving)-CSCF
SDE Security Data Element
SEA Schoof-Elkies-Atkin algorithm
SHA Secure Hash Algorithm
SIM Subscriber Identity Module
SIP Session Initiation Protocol
SOD Document Security Object
SQN Sequence Numbers
TA Terminal Authentication
TISPAN Telecoms & Internet converged Services &

Protocols for Advanced Networks
TLS Transport Layer Security
TTLS Tunneled TLS
UE User Equipment
UICC Universal Integrated Circuit Card
UMTS Universal Mobile Telecommunications System
URI Uniform Resource Identifier
USIM Universal Subscriber Identity Module
VoIP Voice over IP
WBF Windows Biometric Framework
WEP Wired Equivalent Privacy
XMAC eXpected Message Authentication Code
XRES eXpected RESult
ZKP Zero Knowledge Proof
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Appendix B

Using Fuzzy Vault in the Extensible
Authentication protocol (EAP)

The Extensible Authentication Protocol (EAP), (as defined in Section 2 of the RFC
3748 [Aboba 04]) is a list of exchanged messages between an authenticator and a peer. The
Request/Response packet format is presented in Figure B.1 (replicated from [Aboba 04]
page 22):

Figure B.1: EAP Request Paquet Format

Each packet has these elements:
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– Code:


1 Request

2 Response

3 Success

4 Failure
– Identifier: one octet
– Length: two octets, is the length, in octets, of the EAP packet (i.e, the length of

the fields: Code, Identifier, Length, Type and Data-type).

– Type:



1 Identity

2 Notification

3 Nak(Responseonly)

4 MD5− Challenge
5 OneT imePassword(OTP )

6 GenericTokenCard(GTC)

254 ExpandedTypes

255 Experimentaluse

– Type-data: (a message containing at most UTF-8 encoded ISO 10646 characters)
In this request, it is empty.

In our scheme, the authenticator is the Home Gateway (HG) and the peer is the User’s
equipement. We describe the message illustraed in the Figure 4.4.

1. The Home Gateway (HG) sends an EAP Identity Request Req1 to authenticate
the user.

Req1:



Code 1

Identifier xxx

Length −−−
Type 1

Type− data emptyfield

2. The user sends an EAP Response Identity Resp1 containing :

Resp1:



Code 2

Identifier xxx

Length −−−
Type 1

Type− data login

3. The Home Gateway (HG) retrive the User’s BioID using the login value. Then,
it chooses a secret key and generates the vault. In the end, the HG sends a new EAP
Request packet Req2 to the User. Since, we are dealing with a new secret key for each
connection, our system is similar to One-Time Password (OTP) [Haller 98].
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Req2 :



Code 1

Identifier xxx+ 1

Length −−−
Type 5for“OTP ′′

Type− data vault, challengeandnonce
4. The User de-blocks the vault, retreive the secret key, and encrypts the received

challenge. Then, he/she sends an EAP Response packet Resp2 to the Home Gateway.

Resp2:



Code 2

Identifier xxx+ 1

Length −−−
Type 5for“OTP ′′

Type− data encryptedchallengeandnonce
5. The HG continues decrypts the encrypted challenge. If it is false, it sends a EAP

Failure (Code 4). In the other case it transmitsuntil an EAP Success (Code 3).
For the Vault generation and deblocking, we use the same method proposed by Uludag

et al. [Uludag 06].
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Appendix C

Our Proposol’s Second Phase for
e-Passport Authentication Mechanism

The authentication protocol is run between the chip C, the Inspection System (IS)
and the Document Verifier (DV). The chip C, the IS and the DV have public/private key
pair certified by the Country Verifying Certificate Authorities (CVCA).

Step 1: A traveler presents his/her e-Passport to the Inspection System (IS). The IS
reads the MRZ information and sends GET CHALLENGE command to the chip C.

Step 2: The chip C generates a secret random number NC (1 <= NC <= q) and
calculates QC = NC .P . Then, it answers to the GET CHALLENGE command by sending
QC and the public parameters A, B, p, q and P to the IS.

Step 3: After receiving the chip C’s replay, the IS chooses a random number NIS

(1 <= NC <= q) and computes QIS = NIS ∗ P . The IS creates SIS by signing the
message containing MRZ value and QC .

SIS = SIGNSKIS(MRZ|QC)

The Inspection System (IS) then communicates with the traveler’s DV in its proximity
and obtains the DV’s public key PKDV . The IS encrypts SIS, MRZ information and QC

using PKDV . The message contains the data encrypted with the IS’s certificate signed
by CVCA.

Step 4: The DV decrypts the IS’s message and verifies CERTCV CA(PKIS, IS) and the
signature SIS. If the verification is successful, the DV concludes about the IS’s genuineness
and produces a new signature SDV to prove IS’s authenticity to the chip C.

SDV = SIGNSKDV (MRZ|QC |PKIS)
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The DV encrypts SDV the public key PKIS and transfers it to the IS. The DV can
send in option the chip’s public key PKC .

Step 5: The Inspection System (IS), after decrypting the received message, computes
the point Q = NIS ∗QC . As Q = (X,Y), the session key can be the element X or Y. We
choose K = X. (X has 256 bits). The IS encrypts the signature, MRZ information and
QC using K. It also signs its point QIS and the chip’s public parameters.

Step 6: The chip C computes the point Q = NC ∗QIS. It chooses session key K like
the IS did before. The chip C decrypts the received message using the session key K,
retrieve the signature SDV and verifies the signature SIGNSKIS(QIS, A,B, p, q, P ). The
chip C is convinced about the IS’s genuineness after a successful verification.

In figure C.1, we can see a resume of the interaction between the 3 entities.

GET-CHALLENGE

QC, A, B, p, q, P ENCPKDV<SIS, MRZ, QC>, 
CERTCVCA<PKIS, IS>

ENCPKIS<SDV, [PKC]>, 
CERTCVCA<PKDV, DV>QIS, SIGNSKIS<QIS, A, B, p, q, P>, 

ENCK<SDV, MRZ, QC>

Chip C IS DV

SIS = SIGNSKIS<MRZ, QC>

SDV = SIGNSKDV<MRZ, QC, PKIS>
QQ

Figure C.1: IS Authentication
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AVISPA

%%%%%%%%%%%%%%%%%%%%%% UE %%%%%%%%%%%%%%%%%

role ue (

U,N,B,H : agent,

Ksnaf : symmetric_key, % ksnaf

Kuh : symmetric_key, %sk

Kpub_u : public_key,

Sign : hash_func,

Request,

Initiation_Required,Success : text,

SND_UN, RCV_UN, SND_UB, RCV_UB : channel(dy))

played_by U def=

local State , N1, A1, B1 : nat,

IMPI, IMPU, RAND, B_TID : text,

Key_U, Key_B : message,

Pkg_param, Q : nat set

const sec_u_kuh : protocol_id,

sec_u_ksnaf : protocol_id,

auth_R : protocol_id,

auth_B : protocol_id

x



init State := 0

transition

1. State = 0 /\ RCV_UN(start) =|>

State’:= 1 /\ SND_UN(Request)

2. State = 1 /\ RCV_UN(Initiation_Required) =|>

State’:= 2 /\ IMPI’:= new()

/\ IMPU’:= new()

/\ SND_UB(IMPI’.IMPU’)

3. State = 2 /\ RCV_UB(Kpub_u’.

{inv(Kpub_u)}_Kuh.RAND’.Pkg_param’) =|>

State’:= 3 /\ N1’:=new()

/\ Q’ :=new()

/\ A1’ :=new()

/\ SND_UB(Sign(RAND’,N1’,Q’).N1’.Q’.exp(A1’,Kpub_u’))

/\ secret(Kuh,sec_u_kuh,{U,H})

/\ witness(U,B,auth_R,Sign(RAND’,N1’,Q’))

/\ request(U,B,auth_R,Sign(RAND’,N1’,Q’))

4. State = 3 /\ RCV_UB({B_TID’.Key_B’}_Kpub_u) =|>

State’:= 4 /\ Ksnaf’ := exp(A1, Key_B’)

/\ N1’:=new()

/\ Q’ :=new()

/\ SND_UN(B_TID’.Sign(B_TID’,N1’,Q’).N1’.Q’.IMPU)

/\ witness(U,B,auth_B,Sign(B_TID’,N1’,Q’))

/\ request(U,B,auth_B,Sign(B_TID’,N1’,Q’))

/\ secret(Ksnaf’,sec_u_ksnaf,{U,B})

5. State = 4 /\ RCV_UN(Success) =|>

State’:= 5

end role
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%%%%%%%%%%%%%%%%%%%%%% NAF %%%%%%%%%%%%%%%%%

role naf (

U,N,B : agent,

Ksnaf : symmetric_key,

Request,

Initiation_Required,

Success : text,

SND_NU, RCV_NU, SND_NB, RCV_NB : channel(dy))

played_by N def=

local State, N1 : nat,

Knb : symmetric_key,

IMPI, IMPU,RAND,B_TID, NAF_ID, GUSS : text,

Pkg_param, Q : nat set,

X : text

const sec_n_knb : protocol_id,

sec_n_ksnaf : protocol_id,

auth_R : protocol_id,

auth_B : protocol_id

init State := 11

transition

1. State = 11 /\ RCV_NU(Request) =|>

State’:= 12 /\ SND_NU(Initiation_Required)

2. State = 12 /\ RCV_NU(B_TID’.X’.N1’.Q’.IMPU’) =|>

State’:= 13 /\ NAF_ID’:=new()

/\ SND_NB({IMPU’.NAF_ID’.X’.N1’.Q’}_Knb)

/\ secret(Knb,sec_n_knb,{B,N})
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3. State = 13 /\ RCV_NB({IMPU’.Ksnaf’.GUSS’.Pkg_param’}_Knb)

=|>

State’:= 14 /\ SND_NU(Success)

/\ secret(Ksnaf’,sec_n_ksnaf,{B,N})

/\ secret(Knb,sec_n_knb,{B,N})

end role

%%%%%%%%%%%%%%%%%%%%%% BSF %%%%%%%%%%%%%%%%%

role bsf (

U,N,B,H : agent,

Ksnaf : symmetric_key,

Kpub_u : public_key,

Sign : hash_func,

SND_BU, RCV_BU , SND_BN, RCV_BN, SND_BH, RCV_BH : channel(dy))

played_by B def=

local State, N1, A1, B1 : nat,

Knb, Kbh : symmetric_key,

IMPI, IMPU,RAND,B_TID, NAF_ID, GUSS : text,

Pkg_param, Q : nat set,

Key_U, Key_B : message,

X1 : {inv(public_key)}_symmetric_key

const sec_b_knb : protocol_id,

sec_b_kbh : protocol_id,

sec_b_ksnaf : protocol_id,

auth_R : protocol_id,

auth_B : protocol_id

init State := 21

transition

xiii



APPENDIX D. AVISPA

1. State = 21 /\ RCV_BU(IMPI’.IMPU’) =|>

State’:= 22 /\ SND_BH({IMPI’.IMPU’}_Kbh)

/\ secret(Kbh,sec_b_kbh,{B,H})

2. State = 22 /\ RCV_BH(Kpub_u’.{X1’.RAND’.Pkg_param’

.GUSS’}_Kbh) =|>

State’:= 23 /\ SND_BU(Kpub_u’.X1’.RAND’.Pkg_param’)

/\ secret(Kbh,sec_b_kbh,{B,H})

3. State = 23 /\ RCV_BU(Sign(RAND’,N1’,Q’).N1’.Q’.Key_U’)

=|>

State’:= 24 /\ B1’ :=new()

/\ Ksnaf’ := exp(B1’, Key_U’)

/\ B_TID’:=new()

/\ SND_BU({B_TID’.exp(B1’, Kpub_u)}_Kpub_u)

/\ witness(B,U,auth_R,Sign(RAND’,N1’,Q’))

/\ request(B,U,auth_R,Sign(RAND’,N1’,Q’))

/\ secret(Ksnaf’,sec_b_ksnaf,{U,B})

4. State = 24 /\ RCV_BN({IMPU’.NAF_ID’.Sign(B_TID’,N1’,Q’)

.N1’.Q’}_Knb) =|>

State’:= 25 /\ SND_BN({IMPU’.Ksnaf.GUSS.Pkg_param}_Knb)

/\ witness(B,U,auth_B,Sign(B_TID’,N1’,Q’))

/\ request(B,U,auth_B,Sign(B_TID’,N1’,Q’))

/\ secret(Knb,sec_b_knb,{N,B})

/\ secret(Ksnaf,sec_b_ksnaf,{N,B})

end role

%%%%%%%%%%%%%%%%%%%%%% HSS %%%%%%%%%%%%%%%%%

role hss (

U,B,H : agent,

Kuh : symmetric_key, %sk
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Kpub_u : public_key,

SND_HB, RCV_HB : channel(dy))

played_by H def=

local State : nat,

Kbh : symmetric_key,

IMPI, IMPU, RAND, GUSS : text,

Pkg_param, Q : nat set

const sec_h_kuh : protocol_id,

sec_h_kbh : protocol_id

init State := 31

transition

1. State = 31 /\ RCV_HB({IMPI’.IMPU’}_Kbh) =|>

State’:= 32 /\ RAND’:=new()

/\ Pkg_param’:=new()

/\ GUSS’:=new()

/\ SND_HB({Kpub_u.{inv(Kpub_u)}_Kuh.RAND’

.Pkg_param’.GUSS’}_Kbh)

/\ secret(Kuh,sec_h_kuh,{U,H})

/\ secret(Kbh,sec_h_kbh,{B,H})

end role

%%%%%%%%%%%%%%%%%%%% Session %%%%%%%%%%%%%%%%%%%%%%%%%%%%

role session (

U,N,B,H : agent,

Ksnaf : symmetric_key,

Kuh : symmetric_key, %sk

Kpub_u : public_key,

Sign : hash_func,
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Request,

Initiation_Required,

Success : text

)

def=

local

SUN, SUB, SNU, SNB, SBU, SBN, SBH, SHB : channel (dy),

RUN, RUB, RNU, RNB, RBU, RBN, RBH, RHB: channel (dy)

composition

ue(U,N,B,H,Ksnaf,Kuh,Kpub_u,Sign,Request,Initiation_Required,

Success,SUN,RUN,SUB,RUB)

/\ naf(U,N,B,Ksnaf,Request,Initiation_Required,

Success,SNU,RNU,SNB,RNB)

/\ bsf(U,N,B,H,Ksnaf,Kpub_u,Sign,SBU,RBU,SBN,RBN,SBH,RBH)

/\ hss(U,B,H,Kuh,Kpub_u,SHB,RHB)

end role

%%%%%%%%%%%%%%%%%%%%%% Environment %%%%%%%%%%%%%%%%%

role environment()

def=

const

u1,n1,b1,h1 : agent,

ksnafk,kisnafk,kuh,kih : symmetric_key,

kpub_u :public_key,

sign : hash_func,

req,initiation,succ : text

intruder_knowledge = {u1,n1,b1,h1,kpub_u,sign,req,initiation,succ}
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composition

session(u1,n1,b1,h1,ksnafk,kuh,kpub_u,sign,req,initiation,succ)

/\ session(i,n1,b1,h1,kisnafk,kih,kpub_u,sign,req,initiation,succ)

end role

goal

secrecy_of sec_u_kuh, sec_u_ksnaf, sec_n_knb, sec_n_ksnaf,

sec_b_ksnaf, sec_b_knb, sec_b_kbh, sec_h_kuh, sec_h_kbh

authentication_on auth_R

authentication_on auth_B

end goal

environment()
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Appendix E

IMS-IBC with Batch Verification
Scheme

In this Appendix, we present the Message Signing and Batch Verification phases of the
solution proposed by Zhang et al. [Zhang 08]. Then, we present how we can use the same
scheme to decrease the signature’s verification time in the proposed IMS-IBC solution.

E.1 Identity-based Batch Verification (IBV)

Zhang et al. [Zhang 08] proposed a solution called Identity-based Batch Verifica-
tion (IBV) scheme and it is applied to Vehicular Network. The IBV has four phases:
Key Generation and Pre-distribution, Pseudo Identity Generation, Message Signing and
Batch Verification. We present in this Appendix the Message Signing and Batch Verifi-
cation phases.

We do not present the first two phases in this Appendix (to have more information
about the scheme, please read their paper [Zhang 08]).

First of all, we present the present the parameters of their system in Table E.1.
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Notation Description

V i The ith vehicle
RSU A roadside unit
TA A trust authority
G A cyclic additive group
GT A cyclic multiplicative group
P The generator of the cyclic additive group G
e A bilinear map: G ∗G→ GT

q The order of the group G
r A random nonce
s1, s2 The private master keys of the TA.

They are stored in the vehicle’s tamper-proof device
Ppub1, Ppub2 The public keys of the TA, Ppub1 = s1.P , Ppub2 = s2.P

H (.) A MapToPoint hash [Boneh 01] function such as H : {0, 1}∗ → G
RID The real Identity of the vehicle
PWD a password used to activate the tamper proof device
IDi A pseudo identity of the vehicle V i

IDi
j A part of IDi since IDi = (IDi

1, IDi
2)

SKi A private key of the vehicle V i

SKi
1, SKi

2 parts of the SKi, SKi
1 = s1.ID

i
1 and SKi

2 = s2.H(IDi
1||IDi

2)
Mi a message sent by the vehicle V i

h(.) A one-way hash function such that SHA-1
H (.) A MapToPoint function, H (.): {0, 1}∗ → G
|| Message concatenation operation

Table E.1: System’s Parameters

E.1.1 Message Signing

In the proposed IBV scheme, the message signing phase has these steps:

1) A vehicle Vi generates a message Mi.

2) Vi chooses a pseudo identity IDi = (IDi
1, IDi

2) and the tamper-proof device gen-
erates the corresponding private key SKi = (SKi

1, SKi
2).
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3) Vi computes the signature σi of the message Mi , where

σi = SKi
1 + h(Mi).SK

i
2 (E.1)

4) Then, Vi sends the final message (IDi, Mi, σi) to the nearest RSU.

5) These steps are iteratived every 100-300 ms.

E.1.2 Batch Verification

When an RSU receives a traffic related message from a vehicle, it has to verify the
message’s signature to conclude that this vehicle is not impersonating any other legitimate
vehicle.

To make understanding easier, The authors first introduces the single signature veri-
fication process. Then, they presented the batch verification of multiple signatures (the
latter are signed by different vehicles on various messages).

Single signature verification: The system’s public parameters are {G, GT , q, P, Ppub1,
Ppub2} generated by the TA and the message (IDi, Mi, σi) sent by the vehicle Vi, the
signature σi is valid if

e(σi, P ) = e(IDi
1, Ppub1).e(h(Mi).H(IDi

1||IDi
2), Ppub2) (E.2)

This equation is verified because:

e(σi, P ) = e(SKi
1 + h(Mi).SK

i
2, P )

= e(SKi
1, P ).e(h(Mi).SK

i
2, P )

= e(s1.ID
i
1, P ).e(h(Mi).s2.H(IDi

1||IDi
2), P )

= e(IDi
1, s1.P ).e(h(Mi).H(IDi

1||IDi
2), s2.P )

= e(IDi
1, Ppub1).e(h(Mi).H(IDi

1||IDi
2), Ppub2)

Batch verification: If we have n distinct messages defined as (ID1, M1, σ1), (ID2, M2,
σ2), ..., (IDn, Mn, σn), respectively, which are received by RSU from n distinct vehicles
V1, V2, ..., Vn. The signatures are σ1, σ2, ..., σn. They are valid if
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e(
n∑
i=1

σi, P ) = e(
n∑
i=1

IDi
1, Ppub1).e(

n∑
i=1

h(Mi).H(IDi
1||IDi

2), Ppub2) (E.3)

This batch verification equation is valid since

e(
n∑
i=1

σi, P ) = e(
n∑
i=1

(SKi
1 + h(Mi).SK

i
2, P )

= e(
n∑
i=1

SKi
1, P ).e(

n∑
i=1

h(Mi).SK
i
2, P )

= e(
n∑
i=1

s1.ID
i
1, P ).e(

n∑
i=1

h(Mi).s2.H(IDi
1||IDi

2), P )

= e(
n∑
i=1

IDi
1, s1.P ).e(

n∑
i=1

h(Mi).H(IDi
1||IDi

2), s2.P )

= e(
n∑
i=1

IDi
1, Ppub1).e(

n∑
i=1

h(Mi).H(IDi
1||IDi

2), Ppub2)

E.2 IMS Service Authentication Based on IBC

In this solution, we are inspired by the Identity-based Batch Verification (IBV) pro-
posed by [Zhang 08].

We use our mechanism defined in Chapter 6, but we add the Batch Verification scheme
in the Bootstrapping Server Function (BSF).

The HSS has a PKG server which has the role to generate the private keys for the UE.
We use the parameters presented in Section 2.7.1 for the Bilinear pairing. We use bilinear
map e: G ∗G→ GT . The PKG randomly generates its two master keys s1, s2 ∈ Z∗q, and
computes its public keys Ppub1 = s1.P , Ppub2 = s2.P which are two points ∈ G.

In our work, we assume that the UE has the shared key sk with HSS and the PKG
parameters (order q, prime number p, P, Ppub1, Ppub2 and MapToPoint function) stored
in the ISIM card.

We present in Table E.2, all the notations are used in the solution (most of the math-
ematical notation are similar to the one presented in Table E.1).
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Notation Description

UEi The ith UE: User Equipment
G A cyclic additive group
GT A cyclic multiplicative group
P The generator of the cyclic additive group G
e A bilinear map: G ∗G→ GT

q The order of the group G
r A random nonce
s1, s2 The private master keys of the PKG
Ppub1, Ppub2 The public keys of the PKG, Ppub1 = s1.P , Ppub2 = s2.P

H (.) A MapToPoint hash [Boneh 01] function such as H : {0, 1}∗ → G
UEIDi UEIDi = H (IMPIi)
Kpubi1, Kpub

i
2 The public keys of the UEi

SKi
1, SKi

2 The private keys of UEi, SKi
1 = s1.Kpub

i
1 and SKi

2 = s2.Kpub
i
2

RANDi Random value to authenticate UEi

H (.) A MapToPoint function, H (.): {0, 1}∗ → G
h(.) A one-way hash function such that SHA-1
|| Message concatenation operation, which appends several

messages together in a special format

Table E.2: Notations

The modified solution is explained in the following steps.

E.2.1 Solution’s Steps

Step 1. (messages 1 and 2) UEi starts communication with the NAF without GBA
parameters. If the NAF requires the use of shared keys obtained by means of the GBA,
but the request from the UE does not include GBA-related parameters, the NAF replies
with a bootstrapping initiation message.

Step 2. (messages 3, 4 and 5) UEi sends a HTTP request to the BSF (Bootstrapping
Server Function) including its IMS private user identity (IMPIi) and public user identity
(IMPUi). The BSF then retrieves from the HSS:

1. the public keys Kpubi1 and Kpubi2 (generated using IMPUi) from the PKG.

Kpubi1 = r.P (E.4)
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and

Kpubi2 = UEIDi ⊕H(r.Ppub1) (E.5)

where r is a random number, XOR operation and UEIDi = H (IMPUi)

2. the complete set of GBA user security settings (GUSSi),

3. an Authentication Vector (AVi) containing the RANDi and PKG parameters,

4. the private keys Kprivi1 and Kprivi2 encrypted with shared key sk where

Kprivi1 = s1.Kpub
i
1 (E.6)

and

Kprivi2 = s2.H(Kpubi1||Kpubi2) (E.7)

Step 3. (message 6) In order to demand the UEi to authenticate itself, the BSF
forwards Kpubi1, Kpub

i
2, [Kpriv

i
1]sk and [Kprivi2]sk and AVi, which contains RANDi and

PKG parameters, to it in the “401 (Unauthorized) message”.
Step 4. (message 7) The UEi extracts its private keys Kprivi1 and Kprivi2 using the

shared key sk which is stored in the ISIM card. Then, the UEi hashes the RANDi and
computes the signature Sigi1 where:

Sigi1 = Kprivi1 + h(RANDi).Kpriv
i
2 (E.8)

The UEi and the BSF perform the Elliptic Curve Diffie-Hellman (ECDH) Protocol.
This key agreement protocol is used to generate the Ks_NAF key. The UEi and the BSF
first have to agree whether to use the shared keys obtained by means of the GBA. The
UEi chooses a random value ’a’ to generate ’a.Kpubi1’. The UEi sends IMPUi, RANDi,
Sigi1 and ’a.Kpubi1’ to the BSF in an HTTP request. To verify the UEi’s signature, the
BSF has already the PKG parameters and Kpubi1 and Kpubi2 corresponding to IMPUi.
Sigi1 is valid if

e(Sigi1, P ) = e(Kpubi1, Ppub1).e(h(RANDi).H(Kpubi1||Kpubi2), Ppub2) (E.9)

If the verification phase is successful, then, the user is authenticated. This verification
method is similar to the one made by Zhang et al. for equation E.2.
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Step 5. (message 8) After the successful verification, the BSF generates B-TIDi (Boot-
strapping ID) and stores it with the IMPUi and GUSSi. The BSF generates a random
value ’b’ and computes the value ’b.Kpubi1’. Then, the BSF sends to the UEi a "200 OK
message" including the B-TIDi and ’b.Kpubi1’ encrypted with UEi’s public key Kpubi1
(BSF can use any asymmetric elliptic curve algorithm). After receiving the message, the
UEi retrieves the B-TIDi using Kprivi1. Also, the UEi and the NAF share the same
Ks_NAF = a.b.Kpubi1.

In our solution, there is no key material Ks stored in the UEi and the BSF. Our system
is based on asymmetric cryptography. The shared key sk between the UEi and the HSS is
used to encrypt the UEi’s Kprivi1 and Kprivi2. The BSF cannot retrieve these keys and
has to encrypt B-TIDi using UEi’s Kpubi1.

Step 6. (message 9) In this step, the UEi provides the IMPUi, B-TIDi and a signature
of B-TIDi to the NAF to allow it to retrieve the corresponding keys from the BSF. The
Signature of B-TIDi is:

Sigi2 = Kprivi1 + h(B − TIDi).Kprivi2 (E.10)

Step 7. (message 10) The NAF sends to the BSF the NAF-ID, the IMPUi, B-TIDi

and Sigi2 to request for GUSSi and PKG parameters. NAF-ID is used by the BSF to
verify that the NAF is authorized to use that hostname.

Step 8. (message 11) First of all, the BSF verifies the signature using Kpubi1 and
Kpubi2 (same verification as in step 4, equation E.9). Then, it retrieves the GUSSi and
PKG parameters using B-TIDi and IMPUi. Finally, it supplies to the NAF the IMPUi,
Ks_NAF, GUSSi, and the PKG parameters.

Step 9. (message 12) The NAF checks the authentication and the authorization of the
UEi to the services according to the received GUSSi. Once the execution of the protocol
is completed, the UEi and the NAF communicates in a secure way and UEi is granted
the services.

In Figure E.1, we illustrate all the messages exchanged to authenticate the ith UE
(UEi).

xxiv



E.2. IMS SERVICE AUTHENTICATION BASED ON IBC

11. Answer (IMPUi, Ks_NAFi, GUSSi, PKG 

parameters)

10. Request (NAF-ID, IMPUi, B-TIDi, Sigi
2)

9. Request (IMPUi, B-TIDi, Sigi
2)

5   Kpubi
1, Kpubi

2, [Kprivi
1] sk, 

[Kprivi
2] sk,  AVi, GUSSi

4 Request (IMPIi, IMPUi)

2 Initiation required

HSS

7. IMPUi, RANDi, Sigi
1, a.Kpubi

1

3. Request ( IMPIi , IMPUi)

1. Request

UEi BSF PKG

6    Kpubi
1, Kpubi

2, [Kprivi
1] sk, [Kprivi

2] sk, AVi

8. OK, (B-TIDi)kpubi
1, (b.Kpubi

1)Kpubi
1

NAF

12.OK 

Ks_NAFi = a.b.Kpubi
1

Generate B-TIDi

Choose b

Ks_NAFi = b.a.Kpubi
1

AVi= (RANDi + 

PKG parameters)

PKG parameters:

q, p, P, Ppub1, Ppub2

and H(.) 

Figure E.1: IMS Service Authentication for the ith UE

E.2.2 Batch Verification in our Modified Solution

To verify Sigi1 and Sigi2, the BSF needs one MapToPoint hash (H), one multiplication,
and three pairing operations. In [Zhang 08], they estimate that the computation cost of a
pairing operation is much higher than the cost of a MapToPoint hash and a multiplication
operation.

We suppose that we have n UEs which belong to the same HSS and communicate
through the same BSF. The latter receives (IMPU1, RAND1, Sig1j), (IMPU2, RAND2,
Sig2j), ..., (IMPUn, RANDn, Signj ), respectively, which are sent by n distinct UEs: UE1,
UE2, ..., UEn and j = 1 or 2.

We just focus in this work on j = 1 because it is respectively the same for j = 2. Same
as in [Zhang 08], all the signatures, denoted Sig11, Sig21, ..., Sign1 , are valid if
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e(
n∑
i=1

Sigi1, P ) = e(
n∑
i=1

Kpubi1, Ppub1).e(
n∑
i=1

h(RANDi).H(Kpubi1||Kpubi2), Ppub2)

(E.11)

We verify this equation like Zhang et al. did for E.3.
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Appendix F

Résumé

Dans ce chapitre, nous présentons un résumé des contributions de cette thèse.

F.1 Introduction Générale

Les mécanismes d’authentifications sont nécessaires pour sécuriser l’accès aux systèmes
informatiques et aux services. L’authentification fiable des entités ou personnes clientes
d’un service sert à vérifier leur identité. Les preuves de l’identité sont de trois types : ce
que l’on connait (mot de passe), que l’on possède (support physique, carte à puce) et que
l’on est ou que l’on sait faire (biométrie).

Nous nous intéressons, dans cette thèse, à trois problématiques applicatives émergentes
: la maison intelligente (authentification des utilisateurs des équipements électroniques
d’un réseau domestique) ; les documents électroniques (authentification du détenteur d’un
e-passeport) ; enfin, les services multimédias (authentification des utilisateurs d’un service
multimédia distant). Nous proposons, pour chacune de ces trois applications, un nouveau
mécanisme d’authentification basé sur l’identité des utilisateurs. L’identité peut être des
gabarits biométriques publics, des chaînes de caractères simples comme l’adresses e-mail,
l’identifiant (login), etc.

La première solution concerne l’utilisation des données biométriques dans les mé-
canismes d’authentification dans les réseaux domestiques “Home Network (HN)”. Nous
voulons personnaliser l’accès de chaque utilisateur dans le HN et prévenir les utilisateurs
illégitimes (en passant par la passerelle domestique “Home Gateway (HG)”) d’avoir accès
aux services. Nous proposons une nouvelle méthode d’authentification biométrique qui
respecte la contrainte de ne pas sauvegarder les données biométriques “Biometric Tem-
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plate (BT)” des utilisateurs dans l’HG. Pour satisfaire cette contrainte, nous proposons
d’utiliser la méthode de “Fuzzy Vault” pour cacher un secret utilisé pour l’authentification.
Un logiciel génère une identité biométrique révocable (BioID) en utilisant une transfor-
mation fonctionnelle. Ce BioID est utilisée par le mécanisme du fuzzy vault pour cacher
une clé de session secrète.

La deuxième solution propose des mécanismes d’authentification pour les passeports
biométriques (e-Passeports). Les paramètres de chiffrement sont générés en utilisant les
données biométriques et, ainsi, ils seront personnalisés pour l’utilisateur. Notre propo-
sition introduit un nouveau mécanisme d’authentification pour le passeport biométrique
utilisant le protocole Diffie-Hellman de partage de clé basé sur les courbes elliptiques
(ECDH). Ce protocole est nécessaire pour générer une clé de session utilisée pour authen-
tifier le voyageur et le Système d’Inspection (IS) et ainsi sécuriser l’échange des données
entre eux. Notre protocole peut utiliser les points minuties d’une empreinte digitale et le
code de l’iris du détenteur de l’e-Passport.

Dans la troisième solution, nous avons travaillé sur le réseau cellulaire et nous avons
utilisé une chaîne de caractères simple (l’adresse e-mail de l’utilisateur) comme identifiant
pour accéder aux services. Nous avons choisi l’IP Multimedia Subsystem (IMS) qui est une
architecture de recouvrement pour la fourniture de services multimédia, comme support.
Nous avons conçu un nouveau mécanisme d’authentification aux services en utilisant la
cryptographie basée sur l’identité (IBC). L’objectif était d’authentifier les utilisateurs en
utilisant leurs identifiants public et privé pour surmonter les faiblesses connues du pro-
tocole “Authentication and Key Agreement (AKA)”. Nous nous sommes concentrés sur
les tentatives d’écoute et d’usurpation d’identité qui peuvent avoir lieu dans le scénario
classique de l’IMS et nous avons montré comment la solution proposée peut prévenir ces
attaques. Nous avons ensuite proposé d’ajouter une vérification par lot (Batch Verifi-
cation) au niveau du Bootstrapping Server Function (BSF) pour diminuer le délai de
vérification des signatures et le temps de réponse de l’authentification.

F.2 Cas d’étude : La maison intelligente

Nous proposons que les équipements électroniques sensibles accessibles au sein d’un
réseau domestique soient tous munis d’un capteur d’empreintes digitales et qu’un proto-
cole soit implémenté entre ces équipements et le serveur passerelle (“home gateway”) afin
d’identifier et d’authentifier l’utilisateur d’un équipement. S’appuyant sur des travaux
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antérieurs de Ratha et al. et Uludag et al., nous proposons, de manière très judicieuse,
que les identifiants biométriques soient créés par application d’une fonction de transfor-
mation/perturbation non-inversible sur l’empreinte digitale de l’utilisateur : ainsi, en cas
de vol d’un identifiant, il est très simple de le révoquer et de recréer un nouvel identi-
fiant (utilisation d’une autre transformation). L’identifiant biométrique (BioID), connu
uniquement du serveur passerelle et de l’équipement client, sert alors à initier un protocole
d’authentification sécurisé classique fondé sur un challenge-réponse.

Nous considérons un réseau domestique (HN) où les utilisateurs se connectent à un
routeur domestique (HG) pour l’accès Internet à large bande, en utilisant n’importe quel
équipement dans le HN (voir figure 4.1).

Chaque utilisateur doit enregistrer sa modalité biométrique (BT) pour être authen-
tifié. L’objectif est de permettre à chaque utilisateur dans le HN d’avoir un accès per-
sonnalisé et l’accès à son contexte personnel. D’un point de vue opérateur, la solution
proposée respecte les contraintes opérationnelles ainsi que les contraintes imposées par
la CNIL (Commision Nationale de l’Informatique et des Libertés) [CNIL 07] concernant
l’utilisation de la biométrie.

Supposons qu’un identificateur biométrique (BioID) est créé en utilisant le BT de
l’utilisateur, et est stocké localement dans le réseau domestique (dans le HG et les
équipements). Cet identifiant n’est pas transféré dans le réseau. Il convient également
de remarquer que la taille de l’espace de stockage n’est pas énorme (limité au nombre de
membres de la famille à la maison).

La solution proposée nécessite trois phases, qui concernent principalement la configu-
ration des équipements, le traitement et le du BioID et finalement la phase d’authentification.

F.2.1 Phase de configuration

Dans cette phase, chaque utilisateur doit présenter sa BT (empreinte digitale) pour être
manipulé et stockées dans la base de données de l’HG. L’empreinte digitale est capturée à
l’aide du capteur biométrique de l’équipement de HN. Ensuite, un logiciel, génère le BioID
utilisant la transformation fonctionnelle décrite dans l’article de Ratha et al.[Ratha 07].
Le BioID ne peut pas être utilisé pour retrouver l’empreinte d’origine (c’est une nouvelle
disposition des points minuties). Par exemple, le BioID peut être de 384-bit (24 points
de minuties). Le stockage des BioIDs des utilisateurs se fera dans un fichier spécial mis
dans l’équipement et l’HG (voir figure 4.2).
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F.2.2 La connexion des utilisateurs à l’HG

Chaque fois que l’utilisateur souhaite se connecter à la HG, il/elle fait une nouvelle ac-
quisition de son empreinte digitale, afin de s’identifier, sans qu’il soit nécessaire de saisir un
login ou un mot de passe. Apres l’acquisition des empreintes digitales, elles sont traitées
(comme expliqué dans la phase précédente) pour générer l’identifiant de l’utilisateur
BioID. L’identifiant généré est ensuite comparé à ceux stockés dans l’équipement. Si
le même identifiant existe, le login correspondant est envoyé à l’HG et le processus
d’authentification peut commencer (voir figure 4.3).

F.2.3 L’authentification biométrique des utilisateurs

Lorsque l’HG reçoit le login de l’utilisateur, il recherche dans sa base de données le
BioID correspondant à cet utilisateur. Puis, il commence l’authentification de l’utilisateur
en fonction de cet identifiant pour lui fournir un accès personnalisé. Le processus d’authen-
tification est basé principalement sur un mécanisme Challenge-Request/ Challenge Re-
sponse. Le mécanisme est une version modifiée de l’Extensible Authentication Protocol
(EAP) et il se concentre uniquement sur l’échange entre l’utilisateur et l’HG. Il n’y a au-
cun contact avec le serveur de l’opérateur. En fait, seulement le “vault” et le défi doivent
être ajoutés au message EAP-demande. Cette solution est ouverte à toute méthode EAP.
Le mécanisme d’authentification est présenté dans la figure 4.4.

Les messages sont échangés comme suit :

– Un secret est généré par l’HG. Ce dernier choisit un défi pour l’utilisateur qui veut
se connecter.

– La méthode du Fuzzy Vault [Uludag 06] est appliquée dans le but de construire un
vault (coffre fort) pour cacher la clé secrète. Le BioID est utilisé pour créer la vault
en suivant la méthode décrite dans la section 3.5.1.2.

– Le vault résultant et le défi sont transmis à l’utilisateur. L’HG ajoute un nonce
pour prévenir toute attaque de répétition (replay attack).

– L’utilisateur débloque le vault en utilisant son BioID afin de récupérer la clé secrète.
– Une fois la clé secrète est trouvée, l’utilisateur transmet le défi chiffré avec la clé

secrète récupérée à l’HG. Il/Elle ajoute le nonce au message.
– L’HG décrypte le défi en utilisant la clé secrète et la compare avec celle envoyé. S’ils

correspondent, l’utilisateur est authentifié et il/elle reçoit un accès personnalisé.
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F.3 Cas d’étude : Réseau Gouvernemental

Nous étudions, de manière approfondie, une autre utilisation possible de la biométrie:
l’authentification biométrique des détenteurs d’un passeport biométrique (un e-Passeport).
Dans un premier temps, une analyse synthétique des caractéristiques des passeports élec-
troniques et des protocoles d’authentification préconisés par les organismes de normalisa-
tion ou proposés par des équipes de recherche est réalisée. L’une des limitations majeures
des protocoles existants relevée est la suivante : ces protocoles (ex : le protocole OSEP),
s’ils permettent de vérifier la validité d’un passeport électronique, ne garantissent pas que
la personne qui présente le passeport est bien propriétaire de celui-ci.

Pour répondre à cette problématique, nous proposons deux approches utilisant des
outils de cryptographie basée sur les courbes elliptiques et des informations biométriques
(empreinte digitale dans un cas ; iris de l’oeil, dans l’autre). L’idée de base de ces méthodes
consiste, à la génération des paramètres cryptographiques de l’e-Passeport, en utilisant
les informations biométriques de l’utilisateur.

L’identification réciproque du détenteur de l’e-Passport et du Système d’Inspection
est alors réalisé en remplaçant, dans le protocole OSEP, un échange de clefs basé sur le
protocole Diffie-Hellman classique par un échange de clefs de type Diffie-Hellman à base
de courbes elliptiques. Parallèlement, sont intégrés, au niveau du dispositif de vérification,
une lecture de l’empreinte digitale de l’utilisateur, un calcul des paramètres de la courbe
elliptique représentative et une comparaison de ces paramètres avec les paramètres trans-
mis par le e Passport à l’étape précédente, afin de vérifier que le détenteur du passeport
en est bien le propriétaire.

Dans le cas spécifique de l’utilisation de l’iris, nous proposons d’utiliser la méthode
de Kanade et al. [Kanade 08] pour dériver les informations d’identification à partir des
données d’acquisition de l’iris. La solution comprend trois phases.

La première phase est la phase d’initialisation où une courbe elliptique dans le corps
galois GF(p) est générée, avec p un nombre premier. Les paramètres nécessaires pour le
protocole Diffie-Hellman basé sur les courbes elliptiques (ECDH) sont enregistrés dans
la puce. Cette phase est réalisée dans le bureau de l’autorité qui délivre le passeport
biométrique.

La deuxième phase est l’authentification du Système d’Inspection (IS). Elle est déjà
définie à la section 5.4.2.

La troisième phase est l’authentification du détenteur de l’e-Passport, où l’IS vérifie
que le détenteur de l’e-Passport est authentique et non pas un fraudeur.
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F.3.1 Phase d’initialisation

Dans la phase d’initialisation, l’autorité d’émission (en particulier, le Document Veri-
fier (DV)) délivre un e-Passport pour le voyageur. La figure F.1 présente l’ensemble des
entités participantes dans cette phase.

Figure F.1: Les entités participantes au protocole

Les paramètres, stockées dans la base de données utilisateur et la puce de l’e-Passport
sont:

– ID: identifiant ;
– Le locked key ;
– Le shuffling key ;
– H1 (K): la valeur de hachage ;
– p : nombre premier de 128 bits (modulo) ;
– q : nombre premier de 80 bits (ordre) ;
– Les paramètres générés à l’aide de l’iris de loeil:

– A et B: les coefficients de la courbe elliptique E;
– P: le point public de la courbe E.

Le Document Verifier (DV) ajoute également les paramètres conventionnels pour l’e
Passport comme le nom, le pays, l’âge, le sexe, ... Les paramètres A, B, p, q et P sont
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certifiés par le DV. Enfin, l’e-Passport est remis au voyageur. Lorsque la validité de l’e-
Passport est terminée, le détenteur peut demander un nouveau et le système génère une
nouvelle courbe elliptique différente de la précédente.

Le voyageur qui a besoin d’un nouvel e-Passport enrôle son iris. Pour générer les
paramètres du domaine de la courbe elliptiques, le système prend en entrée les iris enrôlés.
La courbe elliptique E générée (y2 = x3 + Ax + B mod p) doit être un courbe elliptique
idéale pour l’utilisation en cryptographie. Cette courbe elliptique est utilisée par la puce
et le Système d’Inspection (IS) pour définir une clé de session en utilisant le protocole de
partage de clé Diffie-Hellman basé sur les courbes elliptiques (ECDH).

Comme le montre la figure 3.12 (voir le chapitre 3), les paramètres de sécurité sont la
clé K et la shuffling key. Celui-ci est un paramètre d’entrée dans la phase de vérification
pour récupérer la valeur de la K. Le locked code est généré à partir de la clé et la clé K
et le shuffling key. La procédure de génération de la courbe elliptique est présentée sur la
figure F.2.

La clé K est hachée avec le Secure Hash Algorithm (SHA-256) pour créer la valeur de
hachage H2(K). Cette valeur est utilisée avec un nombre premier p codé sur 128 bits et
un grand nombre A codé sur 128 bits pour choisir la courbe elliptique E. approprié.

Tout d’abord, un point P0(X0, Y0) est généré à partir de la valeur de hachage H2(K).
Comme H2(K) a 256 bits de longueur, il est coupé en deux parties, X0 et Y0 qui sont
codées sur 128 bits. Ensuite, le DV choisit le coefficient A dans GF(p). Il définit B =

Y 2
0 −X3

0 − aX0, et vérifie que 4A3 + 27B2 différent de 0. Si cette condition est vérifiée,
le DV calcule N = Card (E), où N est la nombre de point de la courbe. Si N est premier,
un certificat de primalité est généré. Par la suite, le DV vérifie si pj est différent de 1
mod N pour 1 <= j <= log2p. Dans le cas négatif, le DV recommence la procédure en
choisissant un nouveau coefficient A.

A la fin, le DV obtient une courbe elliptique E idéale pour les protocoles cryp-
tographiques. Le DV choisit un point P de E qui est utilisé comme le point public
de la puce. Puis, l’e-Passport est prêt à être livré au voyageur.
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Figure F.2: Génération des paramètres de la courbe elliptique

F.3.2 Authentification du Système d’Inspection IS

L’authentification est utilisée pour vérifier l’authenticité de l’e-Passport. Cette étape
est la même que l’authentification de l’IS définit dans OSEP (voir section 5.3.4.1). Nous
proposons de changer le protocole de partage de clé Diffie-Hellman par le protocole de
partage de clé Elliptic Curve Diffie Hellman (ECDH) Key définit dans la section 2.6.3.1.
La puce C de l’e-Passport et l’IS utilisent les paramètres de la courbe elliptique pour se
mettre d’accord sur une clé de session K. Puis, l’IS débute l’authentification du détenteur
de l’e Passeport.

F.3.3 Authentification du détenteur de l’E-Passport

Lorsque le détenteur de l’e-Passport voyage, il lui est demandé de prouver son identité
au contrôle de frontière. La procédure d’authentification est présentée dans la figure F.3.
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Figure F.3: L’authentification du détenteur de l’e-Passport

Le voyageur fournit une donnée iris fraiche. La puce C envoie les données nécessaires
au Système d’Inspection (IS) pour que ce dernier génère la courbe elliptique et ainsi
authentifier le détenteur de l’e-Passport. Ces données sont, le locked code, la shuffling
key, la valeur de hachage H1(K) et les paramètres de la courbe elliptique p, A et B.

Tout d’abord, l’IS génère la clé K’ en utilisant la donnée iris fraichement enrôlé, la
locked key et le shuffling key. L’IS vérifie si H1(K’) est égal à H1(K). Ensuite, l’IS hache K
’en utilisant SHA-256 pour obtenir la valeur de hachage h2(K’). Un point P0(X0;Y0) est
créé en utilisant h2(K’). Le point P0, p et A sont utilisés pour générer la courbe elliptique
E’(y2 = x3 + Ax + B mod p). Si la valeur B’ est égale à B, porteur de l’e-Passport est
authentique. En fin de compte, l’IS et la puce C se mettent d’accord sur une clé de session
extraite de K. Ainsi, la puce C peut envoyer ses données à l’IS de manière sécurisée.

Ce chapitre s’achève par une analyse de sécurité et une étude de performance (limitée
à l’approche à base de données d’iris (base NIST-ICE)). Les mesures effectuées dans cette
étude (temps de génération des données d’identification (3 mn). Les résultats obtenus :
FRR de 0,2% (taux de faux rejets) et FAR de 3,6% (taux de fauxsses acceptations) sont
satisfaisantes et l’utilisation de la biométrie de l’iris est encourageante pour le déploiement
de cette solution.
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F.4 Cas d’étude : Le Sous-système IP Multimédia

Dans ce cas d’étude, nous présentons un nouveau mécanisme d’authentification des
services pour le “IP Multimedia Subsystems (IMS)” qui étudie l’intégration de mécanismes
d’authentification et d’identification au sein de l’architecture IMS. L’objectif de cette ar-
chitecture, proposée par l’Institut Européen des Normes des Télécommunications (ETSI)
et le consortium de téléphonie mobile 3GPP (3rd Generation Partnership Project), est
de fournir des services multimédias génériques quelle que soit la technologie de télécom-
munications utilisée (mobile ou fixe). Nous décrivons tout d’abord l’architecture IMS
et le protocole d’authentification de services d’IMS (fondé sur la “Generic Bootstrapping
Architecture (GBA)”). Puis, nous décrivons la solution où nous proposons l’intégration
dans le protocole d’authentification de services d’IMS d’un mécanisme d’identification
fiable utilisant la cryptographie basée sur l’identité. Ainsi, nous pouvons personnaliser
le service multimédia sollicité par l’utilisateur. Nous utilisons la cryptographie basée sur
les courbes elliptiques, en particulier le protocole “Elliptic Curve Diffie-Hellman”. Nous
profitons du fait que l’équipement utilisateur (UE) et le serveur HSS (Home Subscriber
System) stockent l’ensemble des paramètres de sécurité (authentification) de l’utilisateur
et partagent une clé secrète. Le protocole proposé utilise aussi la cryptographie basée sur
l’identité (“Identity Based Encryption (IBC)”). Le HSS sera muni d’un générateur de clés
privées (“Public Key Generator (PKG)”) afin d’utiliser l’identité publique de l’utilisateur
(“IP Multimedia Identity (IMPU)”) pour l’identifier auprès du service cible (“Network
Application Function (NAF)”) et générer une clef de session personnalisée Ks_NAF. La
figure 6.6 décrit le nouveau protocole nommé Authentification IMS-IBC.

Dans les messages 1 et 2, l’UE entame la communication avec le NAF sans les paramètres
GBA. Si le NAF nécessite l’utilisation de clés partagées obtenus au moyen de GBA, il
répond avec un message “boostrapping intitiation”. Dans les messages 3, 4 et 5, l’UE
envoie une requête HTTP au BSF, contenant l’ “IMS private user identity (IMPI)” et l’
“IMS public user identity (IMPU)”. Le BSF récupère ensuite du HSS:

1. l’ensemble des paramètres de sécurité de l’utilisateur “GBA user security settings
(GUSS)”;

2. un vecteur d’authentification (AV) contenant une valeur aléatoire RAND et les
paramètres du PKG;

3. la clé publique de l’UE Kpub = MapToPoint(IMPU) où MapToPoint est une fonc-
tion de hachage utilisée par le PKG pour convertir une chaîne de caractère en un
point de la courbe elliptique E;
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4. la clé privée UE Kpriv chiffrée à l’aide de la clé partagée sk. Nous notons que Kpriv
= S.Kpub. avec S le secret du PKG.

Dans le message 6, le BSF transfère l’AV (RAND et les paramètres PKG), la clé publique
Kpub et la clé privée Kpriv chiffrée à l’UE dans un message http “401 (unauthorized)
message”. Nous avons choisi d’envoyer des paramètres du PKG à l’UE car le HSS change
périodiquement ses paramètres.

Dans le message 7, l’UE récupère sa clé privée Kpriv en déchiffrant avec la clé partagée
sk (stockée dans la carte ISIM). Ensuite, il génère une signature de la valeur RAND (le
message m = RAND dans ce travail) à l’aide de l’ “Elliptic Curve Digital Signature
Algorithm (ECDSA)” (voir Section 2.6.3.3). Les entrées d’ECDSA sont:

– les paramètres du PKG (E (A, B), p, q);
– la paire de clé publique et privée de l’UE (Kpub, Kpriv);
– n: un nombre premier large qui divise le nombre de points de la courbe elliptique

E;
– d = Kpriv mod (n-2);
– Q = d. Kpub

Après l’exécution de la phase de génération de signature utilisant ECDSA, la signature
de la valeur RAND est la paire d’entiers (r, s). Ensuite, nous appliquons le protocole de
partage de clé “Elliptic Curve Diffie-Hellman (ECDH)” (présentée dans la section 2.6.3.1).
Ce protocole de partage de clé est utilisé pour générer la clé Ks_NAF. L’UE choisit une
valeur aléatoire ’a’ pour générer ’a.Kpub’. Il envoie Sig(RAND) = (r, s); n; Q et ’a.Kpub’
au BSF dans une requête HTTP afin de s’authentifier.

Pour vérifier la signature de RAND (r, s) envoyée par l’UE, le BSF devrait suivre
l’étape de vérification de signature de l’ECDSA. Si la phase de vérification est réussie,
alors, l’utilisateur est authentifié. Dans le message 8, après le succès de la vérification, le
BSF génère le “Bootstrapping Transaction IDentifier (B-TID)” et le stocke avec l’IMPU
et le GUSS. Le BSF génère une valeur aléatoire ’b’ et envoie le point ’b.Kpub’ à l’UE.

Le BSF envoie ensuite à l’UE un message http “200 OK message” contenant le B-TID
et la point ’b.Kpub’ chiffrés avec la clé publique Kpub. L’UE déchiffre les valeurs avec
la clé privée Kpriv en utilisant le protocole de Meneze-Vanstone (voir la section 2.6.3.2).
Après avoir reçu le message, l’UE récupère le B-TID utilisant Kpriv et ainsi, l’UE et le
BSF partage la même clé “Ks_NAF = a.b.Kpub”.

Dans le message 9, l’UE fournit l’IMPU, le B-TID, la signature de B-TID et n, Q au
NAF pour lui permettre de récupérer la clé Ks_NAF, le GUSS et les paramètres du PKG
du BSF.
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Dans le message 10, le NAF envoie l’IMPU, le NAF-ID, le B-TID, la signature de B-
TID et n, Q au BSF. NAF-ID est utilisé par le BSF pour vérifier que la NAF est autorisé
à utiliser ce nom d’hôte.

Dans le message 11, le BSF vérifie la signature en utilisant Kpub. Puis, il envoie le
GUSS, la clé KS_NAF, l’IMPU et les paramètres du PKG au NAF.

Dans le message 12, le NAF vérifie l’authentification et l’autorisation de l’IMPU aux
services en fonction du GUSS reçu. Une fois l’exécution du protocole est achevée, l’UE et
le NAF peuvent communiquer de manière sécurisée.

Une analyse de sécurité (incluant une validation du protocole à l’aide du logiciel de
validation AVISPA (le code formel du protocole est disponible en annexe D)) et une étude
de performance complètent ce chapitre, validant la fiabilité et la faisabilité de l’approche
proposée. Une optimisation des performances est proposée via la mise en Ĳuvre, au
niveau de la BSF, d’une procédure de vérification de lots (“batch”) de signatures proposée
par Zhang et al. en 2008.

Ce chapitre qui, essentiellement, propose de remplacer la phase AKA du protocole
d’authentification d’IMS par une authentification à base de courbes elliptiques, démontre,
chez l’auteur, des compétences certaines en analyse et ingénierie des protocoles et confirme
sa bonne maîtrise des outils cryptographiques.

F.5 Conclusion

Nos travaux s’intéressent à un domaine de recherche en pleine actualité. Fondés
sur l’utilisation d’outils de cryptographie et de protocoles d’authentification utilisant
des courbes elliptiques et la cryptographie basée sur l’identité, ces protocoles apportent
une contribution pertinente à l’état de l’art. Nous avons travaillé dans trois domaines
différents: la maison intelligente, le réseau gouvernemental et les réseaux de nouvelles
générations.

Pour la maison intelligente, nous avons conçu un mécanisme qui permet l’authentification
des utilisateurs d’une manière distinguée ainsi que l’accès personnalisé des utilisateurs.
Le mécanisme est une version modifiée de l’Extensible Authentication Protocol (EAP).
Nous avons proposé de protéger les données biométriques en utilisant la biométrie can-
cellable. Pour partager une clé secrète, le système utilise le mécanisme de “fuzzy vault”.
Cette technologie devrait être utilisée avec prudence afin de protéger la vie privée des
utilisateurs et empêcher la divulgation de leur donnée biométrique.
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Pour le réseau gouvernemental, nous avons proposé un nouveau protocole d’authenti-
fication pour le passeport biométrique en utilisant les empreintes digitales et l’iris de
l’oeil. Une chaîne de bits d’information est extraite et elle est utilisée pour générer les
paramètres de sécurité du protocole cryptographique. La solution comprend trois phases
où la deuxième est la même que celle définie dans la solution de Pasupathinathan et
al. [Pasupathinathan 08b], sauf que nous avons utilisé le protocole d’échange de clé
“Elliptic Curve Diffie-Hellman (ECDH)”. Nous avons présenté une analyse de sécurité et
une évaluation de la performance biométrique. Nous avons effectué des tests sur la base
de données NIST-ICE d’images de l’iris pour calculer le taux de faux rejet et le taux
de fausse acceptation. Les résultats obtenus (par exemple, de 0,2% FRR et FAR de
3,6%) sont satisfaisantes et l’utilisation de la biométrie de l’iris est encourageante pour le
déploiement de cette solution.

Dans les réseaux de nouvelles générations NGN, nous avons utilisé la cryptographie
basée sur l’identité pour améliorer le protocole d’authentification aux services pour le IP
Multimedia Subsystem (IMS). Cette identité est une chaîne simple (exp: adresse e-mail
,...). L’IMS est une architecture qui fournit des services multimédias (tels que la Voix
sur IP (VoIP), la vidéoconférence, présence, push-to-talk, etc.) au-dessus de tous les
réseaux IP et les réseaux NGN. La sécurité est assurée grâce à un protocole symétrique
avec une clé partagée (ks) entre l’User Equipement (UE) et le Home Subscriber Server
(HSS), et le protocole de partage de clé Elliptic Curve Diffie-Hellman. Nous avons étudiés
les tentatives d’écoute et d’usurpation d’identité et nous avons montré comment la so-
lution proposée peut empêcher ces attaques. Nous avons ensuite proposé d’ajouter une
vérification de signature par lot (batch verification) au niveau du Bootsrapping Server
Function (BSF) pour diminuer le délai de vérification de signature et le temps de réponse
de l’authentification.

Comme travaux futures, il y a des pistes de recherches envisageables comme :

1. Un contrôle d’accès renforcé basé sur la vie privée qui devrait être étudié et plus
étendu pour supporter les préférences de confidentialité.

2. L’utilisation de la multibiométrie dans les passeports biométrique qui contiennent
déjà différents types de données biométriques telles que les empreintes digitales,
visage, iris, etc

3. Une contribution dans le secteur des visas électroniques (e-Visa)
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