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Introduction

Le Modèle Standard est une théorie quantique des champs qui décrit les
plus petits constituants de la matière ainsi que leurs interactions. Ce mod-
èle a passé avec succès de nombreux tests expérimentaux au cours des 50
dernières années. Cependant, le modèle ne répond pas à certaines ques-
tions fondamentales telles que l’origine de la masse des particules et la dif-
férence de comportement entre les particules et anti-particules. Ces points,
entre autres, laissent la porte ouverte à des processus au delà du Modèle
Standard habituellement appelé la “Nouvelle Physique”.

Les recherches directes de la Nouvelle Physique sont effectuées en ten-
tant de créer de nouvelles particules à la frontière de l’énergie. La chasse
du boson de Higgs est une exemple célèbre de ce type de recherche. Les
recherches indirectes de la Nouvelle Physique exploitent la frontière de la
luminosité. Les mesures des observables de la violation de la symmetrie
CP appartiennent à ce second type de recherche.

L’expérience LHCb est situé à Genève auprès de l’accélérateur LHC et
exploite l’approche indirecte. Elle est dédiée à la recherche de nouveaux
phénomènes à travers des études de la violation de la symmetrie CP et des
désintégrations rares dans les secteurs de la beauté et du charme.

Les désintégrations des mésons neutres B0
d et B0

s fournissent un en-
semble d’observables de violaants CP dont les valeurs sont précisément
prédites par le Modèle Standard. Dans le canal B0

s → J/ψφ, l’interférence
entre un B0

s se désintègrant dans l’état final, soit directement ou via l’oscill-
ation B0

s-B
0
s donne lieu à une phase appelée φs. Elle est l’une des observ-

ables violant CP où le Modèle Standard fait la prédiction la plus précise.
De plus, la Nouvelle Physique peut modifier sensiblement cette prédic-
tion, si des nouvelles particules entrent dans le diagramme en boucles de-
crivant l’oscillation B0

s-B
0
s.

Les étapes expérimentales de la mesure de φs en LHCb sont: le dé-
clenchement et la sélection des événements B0

s → J/ψφ, le calcul de leurs
temps de vie propre et des variables angulaires, l’étiquetage de la saveur
initiale du meson B0

s et, enfin, effectuer l’ajustement du taux de désinté-
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grations différentielles aux données pour en extraire la phase φs. Des con-
traints sur φs ont été obtenus par CDF [1] et D0 [2]. Bien qu’en accords
avec le Modèle Standard, la taille des incertitudes laisse beacoup de place
à de potentielles contributions de Nouvelle Physique.

Avec l’arrivée de la première collision proton-proton au LHC en 2009,
une nouvelle ère de la physique des particules a commencé. L’année 2010
a apporté les premières collisions à 7 TeV, et consacré le LHC comme le
collisionneur hadronique le plus puissant dans le monde. La collaboration
LHCb à prèsente sa première détermination de la phase φs en Avril 2010.

Après l’introduction des aspects théoriques du canal B0
s → J/ψφ dans

le chapitre 1, le détecteur LHCb et ses performances sont décrites dans
le chapitre 2. Dans le chapitre 3, nous présentons la sélection des événe-
ments B0

s → J/ψφ. Cette sélection est conçue pour éviter les déformations
de la distribution de temps propre au détriment de l’incertitude statis-
tique. Nous décrivons les coupures de sélection et effectuons une étude
détaillée des propriétés du signal et des bruits du fond avec une simula-
tion Mont-Carlo. Les résultats de la sélection avec les données le 2010 sont
donnés à la fin de ce chapitre. Nous développons également une sélection
alternative qui vise à accroître la sensibilité statistique sur φs en autorisant
des coupures qui biaise la distribution en temps propre.

Dans le chapitre 4, nous présentons la procédure d’étiquetage des saveu-
rs dans LHCb et nous détaillons deux de nos contributions: la portabil-
ité du taux de mauvais étiquetage à partir des canaux de contrôle B+ →
J/ψK+ et B0

d → J/ψK∗0 au canal B0
s → J/ψφ, et l’étude des performances

d’étiquetage avec un taux élevés d’empilement proton-proton.
Le chapitre 5 contient nos études sur la sensibilité du détecteur LHCb

à la phase φs en utilisant les sélections développées dans le chapitre 3. Les
tests de notre programme d’ajustement sont effectues à l’aide des simula-
tions Monte-Carle rapide et complète. Le comportement de l’ajustement
en fonction de la luminosité intégrée est exploré. La première détermina-
tion de la phase φs effectuées sur la données de 2010 prèsenté ainsi qu’une
discussion sur les sources d’incertitudes systématiques. Enfin, nous don-
nons les perspectives de la mesure de φs dans LHCb dans les années à
venir.



Introduction

The Standard Model is a quantum field theory that describes the small-
est constituents of the matter and the interactions amongst them. This
model successfully passed many experimental tests to which it was sub-
jected during the last 50 years. However, the model does not answer
some fundamental questions such as the origin of the mass of the parti-
cles and the different behavior between particles and anti-particles. These
points, among others, leave the door open to processes beyond the Stan-
dard Model usually called New Physics.

Direct search for New Physics is performed by looking for new parti-
cles at the energy frontier. The Higgs particle is a famous example of this
search. Indirect searches for New Physics exploits the luminosity frontier,
typically CP violation and rare decays measurements belong to this type.
The LHCb experiment is located in Geneva at the LHC accelerator and
exploits the indirect approach. It is dedicated to the search of new phe-
nomena in CP violation and rare decays in the beauty and charm sectors.

B0
d and B0

s neutral mesons decays provide a set of CP violation observ-
ables whose values are precisely predicted in the Standard Model. In the
B0
s → J/ψφ channel, the interference between B0

s decays to the final states
either directly or via B0

s-B
0
s oscillation gives rise to a CP violating phase

called φs. It is one of the CP observables where the Standard Model makes
the most precise prediction. In addition, New Physics can significantly
modify this prediction if new particles enter the B0

s-B
0
s loop diagram.

Experimental steps of the φs analysis at LHCb are: triggering and selec-
tion of B0

s → J/ψφ events, calculation of proper time decay and the angular
variables, tagging the initial flavor of the B0

s meson, and finally perform-
ing the fit of the theoretical decay rate to the data to extract the phase φs.
Constrints on φs have been obtained by CDF [1] and D0 [2]. They do not
exibit any disagreement with the Standard Model.

With the advent of the first proton-proton collision at the LHC in 2009,
a new era of the particle physics begins. The year 2010 brought the first
collisions at 7 TeV, earning the new LHC collider the distinction of being
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the most powerful hadron collider in the world. The LHCb collaboration
provided the first determination of the φs phase at LHCb.

After the introduction of the theoretical aspects of the the B0
s → J/ψφ

channel in Chapter 1, the LHCb detector and its performance are described
in Chapter 2. In Chapter 3 we present the selection of B0

s → J/ψφ events.
Which is designed to avoid sculpting of the proper time distributions at
the expense of statistical uncertainty. We describe the selection cuts and
perform a detailed study of the signal and background properties using
the most recent Monte Carlo samples. Results of the selection with 2010
data are given at the end of this chapter. We also develop an alternative
selection that focuses on increasing the statistical sensitivity in φs while
allowing cuts which bias proper time distribution.

In Chapter 4, We present the flavour tagging procedure in LHCb and
detail two of our contributions: the portability of the mistag rate from the
control channels B+ → J/ψK+ and B0

d → J/ψK∗0 to the B0
s → J/ψφ channel,

and the tagging performance study with high proton-proton pile-up.
Chapter 5 contains our studies about the sensitivity of the LHCb detec-

tor to the φs phase using the selections developed in Chapter 3. Tests of our
fitter program are provided using fast and full Monte Carlo simulations.
The behavior of the likelihood fit as a function of integrated luminosity is
explored. The first determination of the φs phase performed on the 2010
data is given, with a discussion on sources of systematic uncertainties. We
close this work with a review of the prospects of the φs measurement at
LHCb in the coming years.



Chapter 1

Theory

This Chapter presents the theoretical framework of this thesis.It introduces
CP violation in the Standard Model, the formalism of the B0

s − B0
s mixing

and decay, as well as a detailed description of the B0
s → J/ψφ differen-

tial decay rates. The Standard Model describes the elementary particles
and their interactions. Its predictions were found to be compatible with
experimental data. However, the model leaves essential questions unan-
swered, one of which is the origin of the matter-antimatter imbalance in
the univers. CP violation plays an important role in the latter puzzle.

CP violation phenomena arises from in the electro-weak sector of the
Standard Model. Decays of B mesons provide a set of clean measurements
sensitive to CP violation. Studying these decays puts the Standard Model
predictions to the test and could reveal evidence of indirect New Physics
contributions.

In Section 1.1 we define the C, P and CP symmetries in quantum me-
chanics, and explain on the historical advent of the discovery of CP vio-
lation. Section 1.2 presents CP violation within the Standard Model. The
B0
s − B0

s mixing formalism is described in Section 1.3. The rates governing
the decay of the neutral B0

s are developed in Section 1.4 where we also de-
velop an equation for the asymmetry arising from different types of CP.
Section 1.5 is divided into two subsections. In Subsection 1.5.1, we de-
scribe the phenomenology of the B0

s → J/ψφ and its phase φs in Standard
Model and New Physics Models. In Subsection 1.5.2, we write in detail
the differential decay rates for the B0

s → J/ψφ channel using the angular
analysis method. In Section 1.6 we show the experimental state of the art
of the φs measurement at CDF an D0. Finally in Section 1.7 we outline the
of strategy adopted at LHCb to perform the φs measurement in the B0

s →
J/ψφ channel.

5



6 CHAPTER 1. THEORY

CP violation subject is treated in many books. We use [3] and [4] as
main references for this Chapter. We use the LHCb notations and conven-
tions [5] throughout the thesis.

1.1 Symmetries and CP violation

Charge symmetry is related to the invariance of physical laws under the
charge conjugation operator C. The C operator conjugates all internal
quantum numbers (for example it reverses the electromagnetic charge)
leaving quantities like energy momentum and the spin intact. The mathe-
matical definition of this operator is:

C|ψ(~p, h)〉 = ηC |ψ(~p, h)〉, (1.1)

where |ψ(~p, h)〉 is the quantum state of a given system with momentum ~p
and helicity h, ηC is the eigenvalue of the C operator.

Parity symmetry is related to an invariance of physics laws under a
transformation that changes the sign of the space coordinates x, y and z.
Mathematically it is defined as:

P|ψ(~p, h)〉 = ηP |ψ(−~p,−h)〉, (1.2)

where ηP is the eigenvalue of the P operator. Under parity transforma-
tion, the spatial coordinates of the particles are reversed.

The product of the operators C and P transforms the quantum state as
follows:

CP|ψ(~p, h)〉 = ηCP |ψ(−~p,−h)〉, (1.3)

where ηCP is the eigenvalue of the operator CP . Under CP transforma-
tion, a left-handed electron e−L is transformed under CP into right-handed
positron e+R . CP symmetry postulates that particle and its antiparticles ex-
periance the same law of physics, meaning that nature does not discrim-
inate between the two components. CP violation means that the laws of
physics are seen differently by particles and their own anti-particles, i.e.,
nature can distinguish a particles from ite antiparticles. CP violation is of
great importance for our understanding of the universe. It was believed
first that C, P, and CP were exact symmetries, but in 1957 Wu [7] showed
that the weak interaction violates the P symmetry, by observing that the β
decay for the 60CO nuclei produced electrons preferentially aligned to the
direction of nuclear spin. Later on 1964, it was found [8] that the CP sym-
metry is violated in the neutral kaon system. Kobayashi and Maskawa,
in 1973, proposed a mechanism [9] which could accounts for CP violation
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within the Standard Model. This mechanism extends the Cabbibo [10]
and GIM [11] rotating quark matrix to include a new quark generation,
and postulate that this matrix have a complex element that accommodates
the CP violation. In 2000 The BaBar [13] and Belle [14] experiments ob-
served the CP violation in the weak decays of B0

d neutral mesons. In 2008
Kobayashi and Maskawa received Nobel prize for their work. Since the
CKM proposition, experimental efforts in the CP violation sector focuses
on testing the self-consistency of the CKM matrix, in addition to measur-
ing its elements or quantities related to them. In the following section,
we will present how the CP violation arises in the Standard Model and
discuss the CKM matrix.

1.2 CP violation in Standard Model

The Standard Model of particles is a quantum field theory. It describes
the fundamental interactions of elementary particles (quarks and leptons)
via intermediates called gauge bosons (γ, Z, W± and g). Those inter-
actions are the electromagnetic, strong and the weak interactions. The
interactions are governed by local gauge invariance, with gauge group
SU(3)× SU(2)L ×U(1)Y.

One term of the Standard Model Langrangian is relevant for CP viola-
tion; it is called Yukawa Langrangian. It describes the interaction between
fermions and a scalar field called Higgs. The Yukawa couplings between
this field and the fermions give these particles their masses. Due to the fact
that this Higgs field has a non-zero vacuum expectation value, Yukawa
couplings g give rise to 3× 3 mass matrix: Mi = vgi/

√
2. Where i = u(d)

for up(down) -type quarks. The Lagrangian density of the electroweak
interaction is based on the gauge symmetry group SU(2)L ×U(1)Y. The
term describing the interaction between the gauge boson and the fermion
can be written:

LEM + LNC + LCC (1.4)

The three terms are respectively designated the electromagnetic interac-
tion, interaction by neutral current and the interaction mediated by the
W± boson, called the charged current interaction. The electroweak interac-
tion is based on the gauge group SUL(2). Consequently, only left handed
particles couple to W±. To move from the mass basis to the electroweak
basis, also called flavor basis, one should diagonalize the mass matrix Mi.
The latter process only affect the non-leptonic charged-current interaction
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Lagrangian:

LW±
int = − g√

2
(uL, cL, tL)γµVCKM





dL

sL
bL



W+ + h.c (1.5)

where g is the gauge coupling, W+ is the scalar field corresponds to the
intermediate W boson, L is the suffix of Left-handed quarks, VCKM is the
Cabbibo-Kobayashi-Maskawa rotation matrix:





d
s
b





flavour

=





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d
s
b





mass

(1.6)

where the elements Vij of this matrix are proportional to coupling strength
in transition between the quarks i, j. The condition for the CKM matrix to
have a non-zero CP violation is formulated as:

J ≡ Im(ViαVjβV
∗
jαV

∗
iβ) 6= 0 , (1.7)

where J is the Jarlskog invariant [15, 16]. The J represents the strength
of the CP violation in the Standard Model. The value of J is small [17]:
O(10−5). This implies that CP violating effects in the Standard Model are
small.

The CKM matrix is unitary V†
CKMVCKM = 1; its elements are complex

numbers. The orthogonality of columns (or rows) of the unitary CKM
matrix imply:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.8)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 (1.9)

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0

We can represent the first six equations as triangles in the complex plane,
for example, b−s triangles is presented in Figure 1.2

A useful parameterization of the CKMmatrixwas suggested byWolfen-
stein [18]. Four real parameters A, λ, ρ and η are used in the parameter-
ization, the expansion parameter is λ = sin(θc), where θc is the Cabbibo
angle [10]:

VCKM =





1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



+O(λ4). (1.10)
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Figure 1.1: The b−s unitarity triangle, corresponding to the relation 1.9.
where λ is the sine of the Cabbibo angle.

This parameterization reflects the fact that the off-diagonal transitions (e.g.
t → d) are suppressed compared to the diagonal ones (e.g. c → s). Unitar-
ity of this parameterization is assured to the O(λ4). One can define the
angle βs to be the (positive) smallest angle of the b−s unitarity triangle,
corresponding to:

βs = arg
(

−VtsV
∗
tb

VcsV∗cb

)

. (1.11)

This phase is a physical quantity. UsingWolfenstien parameterization, the
angle βs can as:

βs = ηλ2 +O(λ4) (1.12)

The fit of the CKMparameters on experimental data provide the following
value [17] for this parameter:

βs = 0.01818+0.00087
−0.00083 rad.

The precision on this prediction is at the level of ∼ 5%. This makes βs
one of the best known CP observables. In addition, this phase appears
in b → ccs transition in the B0

s decays where loop process is involved.
For those two reasons this phase is considered a powerful probe for New
Physics in the CP violating sector.

CKM matrix elements are related to physical obsrvables. Those can
be measured in various experiments. A global fit to the experimental
measurements of CKM elements provide a valuable test for the Standard
Model predictions.

The current status of CKM fit of the StandardModel is presented in the
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ρ̄− η̄ plane in Figure 1.2., where:

ρ̄ = ρ

(

1− 1
2

λ2
)

(1.13)

η̄ = η

(

1− 1
2

λ2
)

(1.14)

The parameters ρ̄ and η̄ are determined using the measurements of sides

γ

γ

α

α

dm∆

Kε

Kε

sm∆ & dm∆

SLubV

ν τubV

βsin 2

(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

e
xclu

d
e
d
 a

t C
L
 >

 0
.9

5

α

βγ

ρ

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

ICHEP 10

CKM
f i t t e r

Figure 1.2: Constrains on the CKM (ρ̄, η̄) coordinates from global Standard
Model CKM-fit [22]. Regions outside colored areas have CL> 95.45%. For
the combined fit the yellow area represents points with CL< 95.45%, the
shaded areas represent points with CL< 68.3%

and the angles of the unitarity triangle 1.8. The left side of the triangle is
determined by the oscillation frequencies ∆md and ∆ms, the right side is
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determined by the measurement of |Vub/Vuc| which is limited by the the-
oretical extraction of Vub from inclusive and exclusive semi-leptonic chan-
nels. As for the angles: α is extracted from the modes B0

d → π+π− or

B0
d → ρπ and B0

d → ρρ. The angle β is extracted from time-dependent CP

asymmetry the b→ ccs transitions of the B0 meson. Finally the angle γ is
measured in B→Dπ and B→D K decays.

An overall agreement is observed between the Standard Model fit pre-
diction of the parameters and their experimental values. However, a 2.9σ
deviation of the measurement of the B(B → τν) from its prediction in
the Standard Model fit is spotted. This could be a sign of New Physics in
sin 2β or/and B(B → τν) [22].

1.3 Neutral B0
s mesons mixing

In this Section, we introduce the oscillation phenomenon between B0
s and

B0
s along with its formalism within quantum mechanics. In the Standard

Model, B0
s mesons oscillate, at the lowest order, through box diagrams rep-

resented in Figure 1.3. Our convention is the following: Flavour eigen-
states |B0

s〉 and |B0
s〉 are associated with the particles B0

s ∼ bs and B0
s ∼ bs.

B0
s mesons are created by the hadronization of the b quark. The elec-

troweak interaction does not conserve the beauty quantum number. This
causes the B meson to decay through a phenomena where a transition be-
tween the |B0

s〉(|B0
s〉) into |B0

s〉(|B0
s〉) can take place; this phenomena is called

“the mixing”. The flavour states |B0
s〉 and |B0

s〉 are related when introduc-
 ✁

✂

 ✁

✄

 ✄

✂

☎ ✆✄ ✄

☎ ✆

☎ ✝

☎ ✝

 ✂

✁ ✁

 ✂

Figure 1.3: Feynman diagrams responsible for B0
s–B

0
s mixing, within the Stan-

dard Model.

ing the CP transformation:

CP|B0
s〉 = e−iξcp |B0

s〉, CP|B0
s〉 = e−iξcp |B0

s〉 (1.15)
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where ξcp is an arbitrary phase. In the framework of quantum mechan-
ics, the B0

s-B
0
s system is described by a linear combination of its flavour

eigenstates:
a|B0

s〉+ b|B0
s〉, (1.16)

this combination has a time evolution described by an effective Schrödinger
equation:

i
∂

∂t

(

a(t)
b(t)

)

= H
(

a(t)
b(t)

)

, (1.17)

where H is the effective Hamiltonian describing the system. Using the
Wissekopf-Wigner [19] approximation, this Hamiltonian can be written as
the sum of two matrices:

H = M− i
Γ

2
=

(

M11 M12
M∗

21 M22

)

− i

2

(

Γ11 Γ12
Γ∗21 Γ22

)

, (1.18)

where M and Γ are 2× 2 Hermitian matrices. The sum of the two matri-
ces is not Hermitian, otherwise the two-meson system would not decay.
Diagonal element of M and Γ are associated with flavor conserving tran-
sitions: B0

s → B0
s, off diagonal elements of M and Γ are associated with

flavor changing transitions: B0
s → B0

s. Hermiticity of the M and Γ ma-
trices implies that their off-diagonal elements are related: M∗

21 = M12,
Γ∗21 = Γ12. Due to the CPT theorem [20], their diagonal elements are equal:
M11 = M22 = Ms and Γ11 = Γ22 = Γs, this represents the fact that both B0

s

and B0
s have the same lifetime and mass. The eigenstates of the Hamilto-

nian are:

|BL〉 = p|B0
s〉+ q|B0

s〉, (1.19)

|BH〉 = p|B0
s〉 − q|B0

s〉. (1.20)

those are called the mass eigenstate. They are designated by “heavy” (H)
and “light” (L), The complex coefficients p and q obey the normalization
condition:

|p|2 + |q|2 = 1. (1.21)

The corresponding eigenvalues are:

λL,H = (Ms −
i

2
Γs)±

q

p
(M12 −

i

2
Γ12) (1.22)

with:
(

p

q

)2

=
M∗

21 − Γ∗21
M21 − Γ21

. (1.23)
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The general solutions that describes pure B0
s or pure B0

s flavour-oscillation
at time t:

|B0
s〉(t) = g+(t)|B0

s〉+
q

p
g−(t)|B0

s〉, (1.24)

|B0
s〉(t) = g+(t)|B0

s〉+
q

p
g−(t)|B0

s〉, (1.25)

with
g±(t) =

1
2

(

e−iλL ± e−iλH

)

, (1.26)

|g±(t)|2 =
1
2
e−Γst

(

cosh(
∆Γst

2
)± cos(∆mst)

)

. (1.27)

The off diagonal elements M12 and Γ12 are the dispersive and the absorp-
tive parts of the transition amplitude of B0

s → B0
s. The mass difference,

∆ms and the width difference, ∆Γs, between the mass eigenstates BL and
BH are defined by:

∆ms = MH −ML , ∆Γs = ΓL − ΓH, (1.28)

MB0
s

=
MH + ML

2
, Γs =

ΓL + ΓH

2
. (1.29)

where the MH, ML and ΓH, ΓL are the mass and decay width for the |BL〉
and |BH〉respectively. By solving the eigenvalues Equation 1.22, we get:

(∆ms)
2 − 1

4
(∆Γs)

2 = 4|M12|2 − |Γ12|2, ∆ms∆Γs = 4Re(M∗
12Γ∗12) (1.30)

The calculation of the absorptive part [21] of the B0
s − B0

s mixing diagram,
Figure 1.3, gives the following constraint:

Γ12

M12
∼ O(

m2
b

m2
t

) << 1. (1.31)

then we can write:

∆ms = 2|M12|, ∆Γs = 2|Γ12| cos(φM/Γ), φM/Γ = arg(−Ms
12

Γs
12

). (1.32)

φM/Γ is the phase difference between M12 and Γ12. In the Standard Model,
φM/Γ
s ,SM = (7.4+0.8

−3.2)× 10−3 rad [22]. ∆ms, ∆Γs and φM/Γ are the mixing pa-
rameters. These are related to the CP asymmetry in flavour-specific decays
a f s:

a f s = Im
Γ12

M12
=

∆Γs

∆ms
tan φM/Γ. (1.33)
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The semi-leptonic decays are ideal to extract this quantity. Within the
Standard Model the CP violation in the B0

s mixing system is expected to be
small: a f s = (1.9± 0.3)10−5.

1.4 Neutral B0
s mesons decays

In this section we tackle the question of B0
s-B

0
s system decaying into a fi-

nal state f , we extract the general equations for these decay rates. The
amplitudes of the instantaneous B0

s-B
0
s decay to a final state f are defined

as:

A f = 〈 f |H|B0
s〉, A f = 〈 f |H|B0

s〉, (1.34)

A f = 〈 f |H|B0
s〉, A f = 〈 f |H|B0

s〉. (1.35)

The decay rates of B0
s or B0

s to a final state f or its CP conjugate f , as a
function of its proper time t, can be written:

Γ(B0
s(t) → f ) = |A f |2

[

|g+(t)|2 + |λ f |2|g−(t)|2 + 2Re{λ f g
∗
−(t)g−(t)}

]

, (1.36)

Γ(B0
s(t) → f ) = |A f |2

∣

∣

∣

q

p

∣

∣

∣

2[
|g−(t)|2 +

∣

∣

∣

1
λ f

∣

∣

∣

2
|g+(t)|2 + Re[

1
λ f

g+(t)g∗−(t)]
]

, (1.37)

Γ(B0
s(t) → f ) = |A f |2

∣

∣

∣

p

q

∣

∣

∣

2[
|g−(t)|2 + |λ f |2|g+(t)|2 + 2Re{λ f g+(t)g∗−(t)}

]

,(1.38)

Γ(B0
s(t) → f ) = |A f |2

[

|g+(t)|2 +
∣

∣

∣

1
λ f

∣

∣

∣

2
|g−(t)|2 + Re{ 1

λ f

g∗+(t)g−(t)}
]

. (1.39)
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Using the set of Equations 1.28 and the constraint 1.31, the decay rates are
then expressed as:

Γ(B0
s(t) → f ) = |A f |2e−Γst

[1 + |λ f |2
2

cosh(
∆Γst

2
) +

1− |λ f |2
2

cos(∆mst)

−Re(λ f ) sinh(
∆Γst

2
)− Im(λ f ) sin(∆mst)

]

, (1.40)

Γ(B0
s(t) → f ) = |A f |2

∣

∣

∣

q

p

∣

∣

∣

2[1 + 1/|λ f |2
2

cosh(
∆Γst

2
)−

1− 1/|λ f |2
2

cos(∆mst)

−Re(
1

λ f
) sinh(

∆Γst

2
) + Im(

1
λ f

) sin(∆mst)
]

, (1.41)

Γ(B0
s(t) → f ) = |A f |2

∣

∣

∣

p

q

∣

∣

∣

2[1 + |λ f |2
2

cosh(
∆Γst

2
)−

1− |λ f |2
2

cos(∆mst)

−Re(λ f ) sinh(
∆Γst

2
) + Im(λ f ) sin(∆mst)

]

, (1.42)

Γ(B0
s(t) → f ) = |A f |2

[1 + 1/|λ f |2
2

cosh(
∆Γst

2
) +

1− 1/|λ f |2
2

cos(∆mst)

−Re(
1

λ f
) sinh(

∆Γst

2
)− Im(

1
λ f

) sin(∆mst)
]

. (1.43)

where we have defined the complex quantities:

λ f =
q

p

A f

A f
and λ f =

p

q

A f

A f

. (1.44)

In the special case where the B0
s-B

0
s decays into final state f which is a CP

eigenstate, we have:

CP| f 〉 = ±| f 〉 , λ f = λ f (1.45)

From the three complex quantities: A f , A f , q/p, one can construct the phase-
convention independent quantities, three real amplitude:

|A f | , |A f | , |q/p| (1.46)

and one complex phase:

λ f =
q

p

A f

A f
and (1.47)

All CP violation observables can be expressed by phase-convention inde-
pendent If CP is a good symmetry then it there exist some phases ξCP and
ξ where the Lagrangian is invariant under 1.15. From this condition we
distinguish three forms of CP violation
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• CP violation in the decay: this type occurs when the B0
s → f and

B0
s → f̄ decay amplitudes are different:

∣

∣

∣

A f

A f

∣

∣ 6= 1. (1.48)

• CP violation in the mixing: This type occurs when BL and BH mass
eigenstates can not be chose to be the CP eigenstates:

| q
p
| 6= 1; (1.49)

• CP violation in the interference between a decay without mixing
M0 → f and a decay with mixing M0 → M̄0 → f . This type oc-
curs decays into a final that are common to B0

s and B0
s:

ℑ(λ f ) 6= 0 and λ f =
q

p

A f

A f
6= 1. (1.50)

The time-dependent CP asymmetry into CP eigenstates is defined as:

ACP =
Γ[B0

s(t) → f ]− Γ[B0
s(t) → f ]

Γ[B0
s(t) → f ] + Γ[B0

s(t) → f ]
(1.51)

Using the decay rates in Equations 1.40-1.43, the time-dependent CP asym-
metry is written as:

ACP = −
(1− |λ f |2) cos(∆mst)− 2Imλ f sin(∆mst)

(1 + |λ f |2) cosh(∆Γst/2)− 2Reλ f sinh(∆Γst/2)
+O(a f s).

(1.52)
where the latter asymmetry contains all CP violation sources. If any of CP
violation types occurs, the asymmetry is non-zero.

1.5 B0
s → J/ψφ channel

1.5.1 Phenomenology

In the following we are interested in the b → ccs transitions for the B0
s

mesons, which is an example of CP violation in the interference. This tran-
sition provides a direct way to measure the βs parameter in which we are
interested in this thesis. Two important considerations should be noted:



1.5. B0
s → J/ψφ CHANNEL 17

• the decays amplitudes of the transitions in hand are dominated by
one CKM phase, meaning that the CP violation in the decay is small;

• for the B0
s system, the CP violation in the mixing is very small in the

Standard Model.

If we neglect the CP violation in the mixing and in the decay for our study,
the asymmetry Equation 1.5.1 becomes:

ACP =
Imλ f sin(∆mst)

cosh(∆Γst/2)−Reλ f sinh(∆Γst/2)
. (1.53)

The CP violation is dominated by the interference between decays with
and without the mixing, giving these modes a source of clean theoretical
interpretation. One of the most promising examples of b→ ccs transitions
is the B0

s → J/ψφ channel. This channel has relatively large branching ra-
tio: (1.4± 0.5)× 10−3. Within the Standard Model, the decay B0

s → J/ψφ is
dominated by tree level transitions, while the penguin transitions are sup-
pressed, these are represented in Figure 1.4. The weak phase of the decay

Figure 1.4: Feynman diagrams contributing to the decay B0
s → J/ψφ, within the

Standard Model. Left: tree; right: penguins.

B0
s → J/ψφ channel is related to the CP-violating phase βs. The relation

though is not trivial due to problem of penguin pollution. The decay can
be mediated via two distinct quark-level transitions with different CKM
structure. The b→ ccs decay amplitude can be expressed as a combina-
tion of tree (AT), electroweak and QCD penguin amplitudes [23]:

A(b→ ccs) = VcsV
∗
cb(AT + Pc) + VusV

∗
ubPu + VtsV

∗
tbPt

= VcsV
∗
cb(AT + Pc − Pt) + VusV

∗
ub(Pu − Pt), (1.54)
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because VtsV
∗
tb = −VusV

∗
ub −VcsV

∗
cb, with three generations. Pi denotes

the penguin amplitude with internal i-quark, i ∈ {u, c, t}. Since:

VcsV
∗
cb ∼ Aλ2(1− λ2/2), (1.55)

and:
VusV

∗
ub ∼ Aλ4(ρ + iη), (1.56)

The contribution of (Pu − Pt) is suppressed by a factor ∼ λ2 ≃ 0.05 with
respect to (AT + Pc− Pt). The B0

s → J/ψφ decay amplitudes are dominated
by a single weak phase:

ΦD = arg(VcsV
∗
cb), (1.57)

The phase ΦM dominates themixing box diagram is sometimes called “the
B0
s mixing phase”, and is equal to 2 arg(VtsV

∗
tb). The phase difference be-

tween decay with and without oscillation is then:

φB0
s→J/ψφ ≡ − arg(η f λ f ) = ΦM − 2ΦD + δ

peng,SM
s . (1.58)

Where the δ
peng,SM
s is the phase of the penguin contribution within the

Standard Model. The estimation on the penguin pollution ranges from
0.1− 10−4 [25, 26]. This contribution though can be controlled experimen-
tally via the transition b̄ → d̄cc̄ decay (e.g. B0

s → J/ψ ¯K∗0) where the pen-
guin diagram is not suppressed with respect to the tree diagram. This
channel has first been observed at CDF [27] and confirmed by LHCb [28].
The phase φB0

s→J/ψφ is the observable phase we will measure in the ex-
periment. In the rest of the document, we simply call it φs to simplify
the equations and because there is no ambiguity with other decay modes.
Noting that:

ℑλ f = −η f sin φs and ℜλ f = η f cos φs, (1.59)

we can re-write the decay rates (1.4):

Γ(B0
s → f ) = |A f |2e−Γst

[

cosh
(

∆Γst

2

)

− η f cos φs sinh
(

∆Γst

2

)

+η f sin φs sin(∆mst)
]

, (1.60)

Γ(B0
s → f ) = |A f |2e−Γst

[

cosh
(

∆Γst

2

)

− η f cos φs sinh
(

∆Γst

2

)

−η f sin φs sin(∆mst)
]

. (1.61)
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New Physics If we consider that New Physics affects M12 and Γ12, its
contribution to ∆B = 2 transitions can be parameterized in a model inde-
pendent manner by introducing the complex parameters ∆s, ∆̃s [29]:

Mtot
12 = MSM

12 ∆s = MSM
12 |∆s|eiφ

∆
s , (1.62)

Γtot
12 = ΓSM

12 ∆̃s = ΓSM
12 |∆̃s|eiφ

∆̃
s . (1.63)

The phase φs can then be expressed as a function of its Standard Model
value and the phase φ∆

s of the New Physics parameters ∆s, ∆̃s and the
penguin pollution from both Standard Model and New Physics:

φs = −2βs + φ∆
s + φ∆̃

s + δ
peng,SM
s + δ

peng,NP
s , (1.64)

It is important to note that the sameNew Physics phase, φ∆
s , is expected

to modify other independent quantities like a f s. A relation between the
mixing parameters φs and a f s is written as follows:

afs =
∣

∣

∣

ΓSM
12

MSM
12

∣

∣

∣ sin(φM/Γ
s ,SM + φ∆

s ), (1.65)

afs = − ∆Γs

∆ms

SJ/ψφ
√

1− S2
J/ψφ

δ. (1.66)

with:

δ =
tan(φM/Γ

s ,SM + φ∆
s )

tan(−2βs + φ∆
s + φ∆̃

s + δ
peng,SM
s + δ

peng,NP
s )

, (1.67)

SJ/ψφ = sin(−2βs + φ∆
s + φ∆̃

s + δ
peng,SM
s + δ

peng,NP
s ). (1.68)

This relation can be used to extract the New Physics φ∆
s and the penguin

contributions.
The New Physics contribution from the Γ12 term is expected to be small

due to different strong constraints from well measured observables, in ad-
dition the penguin contributions in this decay is highly suppressed and
could be neglected. Finally the Standard Model prediction for βs is small.
So only in the case where these contributions vanishes, one can write:

φs ∼ φ∆
s . (1.69)

and:
∆Γs = 2|ΓSM

12 | cos(φM/Γ
s ,SM + φ∆

s ), (1.70)



20 CHAPTER 1. THEORY

This is can be reflected on a f s as:

afs =
|ΓSM

12 |
|MSM

12 |
sin(φM/Γ

s ,SM + φ∆
s )

|∆s|
. (1.71)

In the above equations, afs is the flavour specific asymmetry [30]. The
latest measurement of the like-sign dimuon charge asymmetry Ab

sl by D0
collaboration [31] implies a significant deviation of a f s from the Standard
Model expectation. If this is true, one expect that the φs is also affected
without excluding, however, the possibility of sizable penguin contribu-
tions.

1.5.2 B0
s → J/ψφ differential decay rates

The decay B0
s → J/ψφ is a pseudo-scalar (B0

s) decaying into a final states
composed of two vectors: J/ψ and φ. This type of decay is called P → VV
decay. The B0

s particle has a spin of 0 while the spin of J/ψ and φ vectors
is equal to 1. Total spin conservation in quantum mechanics infer three
possible values of the relative angular momentum of the vector particles
(l = 0, 1 and 2). Each one of these values has a unique decay amplitude.
The CP eigenvalue (η f ) of the final state is given by:

CP|J/ψφ〉ℓ = η f |J/ψφ〉ℓ
= (−1)ℓ|J/ψφ〉ℓ . (1.72)

The final state is then an admixture of CP-even (l = 0, 2) and CP-odd
(l = 1) states. To disentangle statistically these states, an angular analysis
for the decay product is required. The final state has four particle, so the
direction of the momentum of each one of them can define the polariza-
tion angles. The three decay angles are: θ, ψ and φ, these are shown in
Figure 1.5 in the transversity basis. Where in the coordinate system of the
J/ψ rest frame (where the φ and B0

s meson move in the x direction, the z

axis is perpendicular to the decay plane of φ → K+K−, and py(K+) ≥ 0),
the transversity polar and azimuthal angles (θ, ϕ) describe the direction of
the µ+. In the rest frame of the φ meson, the angle ψ is the angle between
~p(K+) and −~p(J/ψ). In this basis [37], the amplitudes at t = 0, A0(0)
and A‖(0) the amplitude of the transition to the CP-even final state with
l = 0, 2, while A⊥(0) is the amplitude to a transition to the CP-odd final
state with l = 1. δ0, δ|| and δ⊥ are the corresponding argument for the
amplitudes. The K+K− meson at the final state of the decay is an orbital
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Figure 1.5: Angle definition: θ is the angle formed by the positive lepton (ℓ+)
and the z axis, in the J/ψ rest frame. The angle ϕ is the azimuthal angle of ℓ+ in
the same frame. In the φ meson rest frame, ψ is the angle between ~p(K+) and
−~p(J/ψ). The definition is the same whether a B0

s or a B0
s decays.

P-wave amplitude. But in the range of the φ mass, other partial waves
both resonant f0(980) and non-resonant contribute to the K+K− system.

For the amplitude of the P-wave contributions we can write :

|A⊥(0)|2 + |A0(0)|2 + |A‖(0)|2 = A2
P, (1.73)

where A2
P is the total P-wave strength.

The S-wave has an CP eigenstate of −1, and its angular distribution
is different from the three P-wave components. The S-wave fraction of
the amplitudes is RS = A2

S/(A2
P + |AS|2) and the corresponding strong

phase for this contribution is δS. We put δ0 = 0 where only the differences
between the strong phases are observables. It was estimated in [38] that
this contribution could be as large as 10% under the φ mass peak. This is
for decay modes arises from a ss̄ quark pair.

The CP-even and CP-odd states are now separated not only by their
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k hk(t) h̄k(t) fk(θ,ψ, ϕ)

1 |A0(t)|2 |Ā0(t)|2 2 cos2 ψ(1− sin2 θ cos2 ϕ)

2 |A||(t)|2 |Ā||(t)|2 sin2 ψ(1− sin2 θ sin2 ϕ)

3 |A⊥(t)|2 |Ā⊥(t)|2 sin2 ψ sin2 θ

4 ℑ{A∗||(t)A⊥(t)} ℑ{Ā∗||(t)Ā⊥(t)} − sin2 ψ sin 2θ sin ϕ

5 ℜ{A∗0(t)A||(t)} ℜ{Ā∗0(t)Ā||(t)} 1√
2
sin 2ψ sin2 θ sin 2ϕ

6 ℑ{A∗0(t)A⊥(t)} ℑ{Ā∗0(t)Ā⊥(t)} 1√
2
sin 2ψ sin 2θ cos ϕ

7 |AS(t)|2 |AS(t)|2 2(1− sin2 θ cos2 ϕ)

8 ℜ{A∗S(t)A||(t)} ℜ{A∗S(t)A||(t)}
√
6 sinψ sin2 θ sin 2ϕ

9 ℑ{A∗S(t)A⊥(t)} ℑ{Ā∗S(t)Ā⊥(t)}
√
6 sinψ sin 2θ cos ϕ

10 ℜ{A∗S(t)A0(t)} ℜ{Ā∗S(t)Ā0(t)} 4
√
3 cos ψ(1− sin2 θ cos2 ϕ)

Table 1.1: Definition of the functions hk(t), h̄k(t) and fk(θ,ψ, ϕ) of Eq. 1.74
and 1.75.

different lifetimes, but by their decay angles too. The differential decay
rates for B0

s and B0
s decays are given by the following general expressions:

d4Γ(B0
s → J/ψφ)

dtd cos θdϕd cosψ
≡ d4Γ

dtdΩ
∝

10

∑
k=1

hk(t) fk(Ω), (1.74)

and:

d4Γ(B0
s → J/ψφ)

dtd cos θdϕd cosψ
≡ d4Γ

dtdΩ
∝

10

∑
k=1

h̄k(t) fk(Ω). (1.75)

Where k is 1,2,...10, wherewe have three terms for purely P-wave contribu-
tions, one for purely the S-wave contribution an six terms of interference
among these four contributions. The functions hk(t), , h̄k(t) and fk(Ω) are
defined in Table 1.1. The detailed formulas for the time-dependent func-
tions hk(t), , h̄k(t) are:
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|A0(t)|2 = |A0(0)|2e−Γst
[

cosh
(

∆Γst

2

)

− cos φs sinh
(

∆Γst

2

)

+ sin φs sin(∆mst)
]

, (1.76)

|A‖(t)|2 = |A‖(0)|2e−Γst
[

cosh
(

∆Γst

2

)

− cos φs sinh
(

∆Γst

2

)

+ sin φs sin(∆mst)
]

, (1.77)

|A⊥(t)|2 = |A⊥(0)|2e−Γst
[

cosh
(

∆Γst

2

)

+ cos φs sinh
(

∆Γst

2

)

− sin φs sin(∆mst)
]

, (1.78)

ℑ{A∗‖(t)A⊥(t)} = |A‖(0)||A⊥(0)|e−Γst
[

− cos(δ⊥ − δ‖) sin φs sinh
(

∆Γst

2

)

+ sin(δ⊥ − δ‖) cos(∆mst) − cos(δ⊥ − δ‖) cos φs sin(∆mst)
]

, (1.79)

ℜ{A∗0(t)A‖(t)} = |A0(0)||A‖(0)|e−Γst cos δ‖
[

cosh
(

∆Γst

2

)

− cos φs sinh
(

∆Γst

2

)

+ sin φs sin(∆mst)
]

, (1.80)

ℑ{A∗0(t)A⊥(t)} = |A0(0)||A⊥(0)|e−Γst
[

− cos δ⊥ sin φs sinh
(

∆Γst

2

)

+ sin δ⊥ cos(∆mst) − cos δ⊥ cos φs sin(∆mst)
]

, (1.81)

|AS(t)|2 = |AS(0)|2e−Γst
[

cosh
(

∆Γst

2

)

+ cos φs sinh
(

∆Γst

2

)

− sin φs sin(∆mst)
]

, (1.82)

ℜ{A∗S(t)A‖(t)} = |AS(0)||A‖(0)|e−Γst
[

− sin(δ|| − δs) sin(φs) sinh
(

∆Γst

2

)

+ cos(δ|| − δs) cos(∆mst)− sin(δ|| − δs) cos φs sin(∆mst)
]

, (1.83)

ℑ{A∗S(t)A⊥(t)} = |AS(0)||A⊥(0)|e−Γst sin(δ⊥ − δS)
[

cosh
(

∆Γst

2

)

+

+ cos φs sinh
(

∆Γst

2

)

− sin φs sin(∆mst)
]

,

ℜ{A∗S(t)A0(t)} = |AS(0)||A0(0)|e−Γst
[

− sin(δ0 − δs) sin(φs) sinh
(

∆Γst

2

)

+ cos(δ0 − δs) cos(∆mst)− sin(δ0 − δs) cos φs sin(∆mst)
]

. (1.84)
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we highlighted the sign change in the time-dependent functions for the B0
s

events:

|Ā0(t)|2 = |Ā0(0)|2e−Γst
[

cosh
(

∆Γst

2

)

− cos φs sinh
(

∆Γst

2

)

− sin φs sin(∆mst)
]

, (1.85)

|Ā‖(t)|2 = |Ā‖(0)|2e−Γst
[

cosh
(

∆Γst

2

)

− cos φs sinh
(

∆Γst

2

)

− sin φs sin(∆mst)
]

, (1.86)

|Ā⊥(t)|2 = |Ā⊥(0)|2e−Γst
[

cosh
(

∆Γst

2

)

+ cos φs sinh
(

∆Γst

2

)

+ sin φs sin(∆mst)
]

, (1.87)

ℑ{Ā∗‖(t)Ā⊥(t)} = |Ā‖(0)||Ā⊥(0)|e−Γst
[

− cos(δ⊥ − δ‖) sin φs sinh
(

∆Γst

2

)

− sin(δ⊥ − δ‖) cos(∆mst) + cos(δ⊥ − δ‖) cos φs sin(∆mst)
]

, (1.88)

ℜ{Ā∗0(t)Ā‖(t)} = |Ā0(0)||Ā‖(0)|e−Γst cos δ‖
[

cosh
(

∆Γst

2

)

− cos φs sinh
(

∆Γst

2

)

− sin φs sin(∆mst)
]

, (1.89)

ℑ{Ā∗0(t)Ā⊥(t)} = |Ā0(0)||Ā⊥(0)|e−Γst
[

− cos δ⊥ sin φs sinh
(

∆Γst

2

)

− sin δ⊥ cos(∆mst) + cos δ⊥ cos φs sin(∆mst)
]

, (1.90)

|AS(t)|2 = |AS(0)|2e−Γst
[

cosh
(

∆Γst

2

)

+ cos φs sinh
(

∆Γst

2

)

+ sin φs sin(∆mst)
]

, (1.91)

ℜ{A∗S(t)A‖(t)} = |AS(0)||A‖(0)|e−Γst
[

+ sin(δ|| − δs) sin(φs) sinh
(

∆Γst

2

)

+ cos(δ|| − δs) cos(∆mst)− sin(δ|| − δs) cos φs sin(∆mst)
]

, (1.92)

ℑ{A∗S(t)A⊥(t)} = |AS(0)||A⊥(0)|e−Γst sin(δ⊥ − δS)
[

cosh
(

∆Γst

2

)

+

+ cos φs sinh
(

∆Γst

2

)

+ sin φs sin(∆mst)
]

, (1.93)
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ℜ{A∗S(t)A0(t)} = |AS(0)||A0(0)|e−Γst
[

+ sin(δ0 − δs) sin(φs) sinh
(

∆Γst

2

)

+ cos(δ0 − δs) cos(∆mst)− sin(δ0 − δs) cos φs sin(∆mst)
]

. (1.94)

In the case where we only take into account the P-wave in the decay rates,
an exact symmetry emerges under the simultaneous transformation:

φs ←→ π − φs ,
∆Γs ←→ −∆Γs ,

δ‖ ←→ −δ‖ ,
δ⊥ ←→ π − δ⊥ . (1.95)

Amore complete stuy of the symmetries including the S-wave is presented
in [43]. If the interference between the S-wave and P-wave amplitudes is
significant, we can resolve the ambiguity on the sign of φs [41].

φs can be extracted from several time-dependent functions, neverthe-
less for the small value predicted by the Standard,the sensitivity of the
terms containing cos(φs) is negligible. In this case, sensitivity comes from
terms containing sin(φs). This means that the sensitivity on φs comes from
the observation of the amplitude of the sinusoid in the time distribution
sin(∆mst). These terms have opposite sign between B0

s and B0
s, so if the

events are not tagged a cancellation of the sin(φs) will occur. This shows
the importance of the flavour tagging. The untagged decay rates actually
provides a small information about φs through the terms in cos(φs).

1.6 Experimental status of the φs measurement

On the contrary of B-factories, TeVatron energy reach enables its experi-
ments CDF and D0 to perform the measurement of φs phase in the B0

s →
J/ψφ channel. Latest update on the measurement from both experiments
is published in [2] [1]. CDF experiment collected about 6 500 events using
Neural Net approach for the selection with 5.2 fb−1, whereas D0 uses a cut
based analysis and finds about 3 400 with 6.1 fb−1. In Figure 1.6 we quote
the likelihood contours for CDF (left) and D0 (right), the two experiments

have different definitions for the CP violating parameter: φ
B0
s→J/ψφ

s (D0)
= −2βs (CDF).

CDF quotes βs ∈ [0.02, 0.52] ∪ [1.08, 1.55] rad at 68%CL with p-value

of 44% (∼ 1σ). D0 reported φ
B0
s→J/ψφ

s = −0.76+0.38
−0.36(stat) ± 0.02(syst).

The 2D contours from both experiments are compatible with the Standard
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Figure 1.6: Left: Likelihood contours in the βs − ∆Γs plane from CDF [1]

using 5.2 fb−1. Right: Likelihood contours in the φ
B0
s→J/ψφ

s − ∆Γs plane
from D0 [2] using 6.1 fb−1.

Model point. Furthermore, the two experiments reported an uncertainty
of 0.4, 0.5 rad without external constraints on ∆Γs. Other measurements
related to the CP violation in the mixing are performed at D0, those are:

• the extraction of the flavour-specific asymmetry in the B0
s semi-leptonic

decays as
sl, this parameter is extracted from the charge asymmetry

Ab
sl measurement [44] in both B0

s and B0
d system. The extraction yields:

as
sl = −0.01± 0.0059;

• the branching ratio of B0
s → D(∗)+D(∗)− performed in [45], it is also

related to the CP violation in the mixing: B(B0
s → D(∗)+D(∗)−) =

0.035± 0.015.

The combination between these two measurements and that of φ
B0
s→J/ψφ

s at
D0 in [2], are combined in [46]. Figure 1.6 shows the confidence contour

φ
B0
s→J/ψφ

s −∆Γs with the above constraints applied, the p-value at the Stan-
dard Model point decrease to 6%. At LHCb, the measurement of φs with
the first data 2010 will be presented in this work. Prospects to measure
the flavour-specific asymmetry in the B0

s system a f s at LHCb are explained
in [30], [47] and [48].
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D   , Preliminary 

2.8 - 6.1 fb
68% CL

95% CL
-1

Figure 1.7: Confidence contour in the φ
B0
s→J/ψφ

s − ∆Γs plane from D0 pre-
liminary results using 6.1 fb−1 of data, with strong phases constrained af-
ter combining with measurements: as

sl and B(B0
s → D(∗)+D(∗)−). The

black square is the best-fit value, and the Standard Model expectation and
uncertainty is indicated by the blue point with an error bar. The region
allowed in new physics models given by ∆Γs = 2|Γ12| cos(φΓ,M) is also
shown (yellow band). Only one new physics phase affecting M12 in the B0

s
system is assumed.

1.7 φs analysis strategy

The phase φs is measured by fitting the differential decay rates in the B0
s →

J/ψφ channel. To perform such procedure, we need to:

• trigger and select the B0
s → J/ψφ candidates;

• measure their proper time;

• measure their transversity (or helicity) angles of their decay prod-
ucts;

• tag their initial flavour;

• fit φs alongwith other physical parameters present in the decay rates;

The information on φs is obtained from the amplitude of the sinusoid term:
sin(∆mst) in the time-dependent distributions. When φs is large the term:
cos(∆mst) becomes important as well. For this reason a careful treatment is
advised when dealing with experimental terms that affects the oscillation
amplitude. Such factors are the proper time resolution σt, flavour tagging
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power ǫtag, proper time acceptance and background pollution. The ingre-
dients for large sensitivity on the φs phase is summarized in the following
equation is

σ(φs) ∝
1

√

Nsigǫeff
× exp(−0.5× (σt × ∆ms)

2), (1.96)

where large signal yield Nsig and tagging power are necessary to reduce
statistical error, good proper time resolution is important to resolve the
fast B0

s oscillation.
To reduce the systematic error one should control of the proper time

and angular acceptances. Wrong evaluation of these acceptances can lead
to systematic biases. To control the angular acceptances. The P → VV

mode B0
d → J/ψK∗0 is used to validate and study the angular acceptances

in B0
s → J/ψφ. Its kinematics are similar to those of B0

s → J/ψφ channel and
the its amplitudes are well known [49, 50]. The flavour tagging perfor-
mance is controlled using specific-flavour control channels B0

d → J/ψK∗0

and B+ → J/ψK+. They are selected in the same way as the signal so
the b-hadrons share the same phase space, hence they have comparable
tagging performances. The validation of the complex analysis of φs and
its dependence on other channels require the measurements of the ∆md,
which was performed at LHCb [51], the measurement of sin(2β) in the
B0

d → J/ψK0
S (see [52] decay and the measurement of B0

s oscillation ∆ms
(see [53]). These measurements are considered as a test to the flavour tag-
ging and the proper time resolution performances at LHCb. Furthermore,
the contribution of S-wave from the B0

s → J/ψf0(980) decay under the
mass peak of the φ particle is studied in [54], this is helps asses the size of
such contribution in the decay rates of the B0

s → J/ψφ channel.

1.8 Summary

In this Chapter we presented the theoretical aspects uponwhich this thesis
is based. The chapter covers CP violation in the b→ ccs transition. Within
the Standard Model we saw that the CKMmatrix is the main source of CP
violation. A global fit to the experimental measurements of CKM elements
provide a valuable test for the Standard Model predictions. Although the
experimental data are in agreement with StandardModel picture, tensions
among couple ofmeasurements does exist making a room forNewPhysics
contributions.
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B0
s system is an important area where the New Physics is expected. In-

deed themixing takes place via a box diagram, where the New Physics can
to intervene. The decay of these systems via b→ ccs transition provide an
important test of the Standard Model prediction. One of these transitions
is the B0

s → J/ψφ decay, where an interference between the decay with and
without the mixing occurs. This gives rise to a phase called φs, which is
one of the well-predicted parameters in Standard Model. New Physics
contribution is expected to alter this prediction via loop processes. We
have show that full understanding of possible New Physics effects need a
non trivial studies of both mixing and penguin contributions.

Finally, the B0
s → J/ψφ is a P → VV decays where the final state is a

mixture of CP states. An angular analysis is needed to provide a statistical
separation between the final states. The interference between the domi-
nated P-wave component and small S-wave component alters the differ-
ential decay rates.

CDF and D0 obtained first constrains on φs, their results are compati-
ble with the Standard Model prediction and not sufficient to exclude New
Physics contributions. Disagreement with StandardModel arises from lat-
est measurement of the dimuonic asymmetry performed at D0. It rises the
attention about possible New Physics in the φs since both measurements
are related. At LHCb, a simple analysis strategy is adopted for the first
data. A good proper time resolution is important to resolve the B0

s me-
son fast oscillation, flavour tagging of the initial B0

s meson is essential for
φs sensitivity. The good performance of these parameters depend on the
LHCb detector design and performances. This is discussed in the next
chapter.
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Chapter 2

Detector

In this Chapter, we introduce the Large Hadron Collider Beauty experi-
ment (LHCb). This detector is specially designed for the search for New
Physics in the beauty and charm decay sector. We review its detection ca-
pabilities along with its main sub-detectors. This experiment is one of four
main experiments which is located along on the ring of the large hadron
collider (LHC). In Section 2.1, we introduce general aspects about the LHC
machine. In Section 2.2, we introduce general aspects of the LHCb de-
tector followed by a brief description of 2010 data taking conditions. In
Sections 2.3 we summarize the performance of the tracking system and its
subdetectors involved. In Section 2.4 we summarize the particle identifi-
cation system and its performance. Finally in Section 2.5 we explain the
trigger architecture in LHCb and review the trigger lines used for event
selection in the 2010 φs analysis.

2.1 LHC machine

The Large Hadron Collider experiment is a particle accelerator which col-
lides protons and heavy ions at high energies. Figure 2.1 shows a general
view of the collider with its main components and experiments. Its main
objective is to deliver the world’s highest energy collision at a high rate.
This is done by exploring high energy and luminosity frontiers. This high
energy scale should allow to discover the Higgs particle and the search
for new particles predicted by New Physics models (e.g. supersymmetry).
The luminosity accumulating now in LHCwill enable high-precisionmea-
surements in the CP violation and rare decays sectors. The accelerator is
installed within a circular tunnel 27 km in circumference. In March 2010,
the LHC started colliding two proton beams at four interaction points at

31
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Figure 2.1: LHC accelerator complex, Linac2 protons are accelerated then
inject them in the PS, SPS and finally in the LHC main ring.

center-of-mass energy
√

s = 7 TeV1. This is the highest energy achieved
in particle colliders around the world. Beams moving in the LHC ring are
maintained on course by means of super-conducting magnets. The beams
are stored at high energy for long periods (hours) during which the pro-
tons collide in the four experiments. LHC also delivers lead ion collisions
to study the quark-gluon plasma soup and nuclear matter under extreme
conditions similar to those of the beginning of the universe. The main
experiments installed on the LHC ring are:

• ATLAS and CMS: general purpose experiments with full angular
coverage. One of their main objectives is the search for the Higgs
boson and super-symmetric particles;

• ALICE: a heavy ions detector, its physics program focuses on the
study of nuclear matter;

• LHCb.

The four experiments have different coverages in pseudorapidity corre-
sponding to there different physics programs. At LHCb, a unique rapidity
range ( 1.9 < η < 4.9) to take advantage of the forward bb̄ production. The

1this energy is expected to become 14TeV at the next phase of running in 2014.
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Figure 2.2: Probability of having N = 0, 1, 2, 4, or 4 inelastic interaction
versus luminosity.

LHCb experiment has a unique luminosity settings. Beam conditions with
low number of pp interactions per bunch are preferred, this reduces the
detector occupancy and radiation damage level and simplify the physics
analysis. Figure 2.2 shows the design luminosity, In order to reduce the
LHC nominal luminosity to achieve such luminosity, beams are being lo-
cally displaced at LHCb in the vertical direction. The LHCb luminosity is
2× 1032 cm−2s−1cm−2s−1 whereas the average luminosity of ATLAS and
CMS is > 1033 cm−2s−1 and the β∗ is higher. We will see later in this chap-
ter that this choice was modified during the 2010 run due to constraints
related to LHC machine running conditions.

2.2 LHCb detector

The LHCb experiment is a single-arm spectrometer with forward angular
coverage 12 − 300 mrad in the horizontal plane x, z and 10 − 250 mrad
in the vertical plane y, z; this defines the geometrical acceptance of LHCb
detector. Figure 2.4 presents a side view of the experiment, where the z
axis is along the beam, and the y axis lies along the vertical. The b quarks
production mechanism at LHCb is dominated by the flavour excitation
and gluon splitting processes [56].

b quarks are generally produced in pairs. All B-mesons and B-baryons
are created at LHCb: Bd, Bu, Bs and Bc, Λb and Ξb. Figure 2.3 shows the
correlation between the polar angles of the two b quarks. The angular dis-
tribution peaks at very low values meaning that the bb pair is produced in
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either backward or forward direction, this inspired the LHCb unique ge-
ometry. The LHCb detector consists of the following main sub-detectors :

Figure 2.3: The angular correlation between the polar angles of the two b
quark produced at LHCb.

• The VELO detector: surroundings the interaction region, it recon-
structs the primary and secondary vertexes;

• the tracking system: based on large dipole magnet, with a trigger
tracker station and three tracking stations;

• two RICH detectors: identifies the particles with different momen-
tum ranges, separating pions from kaons;

• calorimeter system: identifies electrons, hadrons and neutrals;

• muon detector: uses five stations of detectors for detecting muons.

2010 Luminosity & run conditions The LHC started data taking at a
center-of-mass energy 900GeV late 2009. On 30 march 2010, the first pro-
ton proton collision at 7 TeV signaled the arrival of the LHC as the largest
hadron collider in the world. The integrated luminosity accumulated at
LHCb during 2010 was 37.66 pb−1 with an overall efficiency of ∼ 90%.
Figure 2.5 (left) presents the delivered and recorded integrated luminosity
per fill at LHCb.

In 2010, the configuration of the LHC machine was set to maximize
the luminosity, the number of bunches in the machine increased to 344 but
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Figure 2.4: Side view of LHCb spectrometer, the beam pipe pass through
the detector

with 1.1× 1011 proton per bunch and β∗ = 3.5m. This setting increased the
instantaneous luminosity at LHCb to 1.6× 1032 cm−2s−1cm−2s−1. On the
other hand, the number of visible pp interactions per bunch (µ) increased.
As a consequence the number of tracks and vertices per event increased,
creating a challenging environment for the trigger and reconstruction sys-
tems. Indeed the rate of “pile-up” events sometimes reached six times the
LHCb design value. Figure 2.5 (right) shows the distribution of µ per fill.

New Physics is expected in a wide range of measurements in CP and
rare decays sectors. LHCb takes interest in a set of key measurements for
which the detector is designed; those measurements are:

• Measurement of the mixing-induced CP violation in the B0
s → J/ψφ

channel;

• The tree-level determination of the angle γ;

• Charmless charged two-body B decays;

• Analysis of the decay B0
s → µ+µ−;

• Analysis of the decay B0
d → K∗0µ+µ−;
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Figure 2.5: Left : The delivered (blue) and recorded (red) integrated lu-
minosity at LHCb per fill, with the data taking inefficiency breakdown.
Right : the number of visible interaction per bunch per fill.

• Analysis of radiative decays (e.g B0
s → φγ).

New Physics is most expected in those measurement as they involve
loop processwhere newparticles can contribute or highly CKM suppressed
modes within the StandardModel. b-hadron reconstruction is essential for
these searches, this requires:

• particle identification allows the separation of kaons from pions and
electrons from muons;

• tracking and vertexing to measure accurately momentum, energy
and achieve an excellent proper time resolution;

• reliable trigger system to cope with the fast data taking rates.

In the following, we describe the LHCb sub-detectors and review their
performance.

2.3 Tracking

The study of the boosted B and D mesons in the LHCb requires the mea-
surement of their proper time with good resolution. In the B0

s → J/ψφ

channel, the B0
s mesons oscillate with high frequency; an excellent proper

time resolution is necessary to resolve this fast oscillation. The tracking
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system in LHCb consists of the vertex locator (VELO), magnet, four track-
ing stations, one tracking station (TT)2 before the magnet, and three track-
ing stations (T1, T2, T3) after the magnet.

2.3.1 VELO

The VErtex LOcator [57], is the closest detector to the beam at LHC (∼
8mm), the velo provides a precisemeasurement of track parameters which
are used then to reconstruct the primary and secondary vertices [58]. The
VELO consists of 21 silicon modules along the beam axis. Each module is
made of two silicon half disks. These modules measure the radial r and az-
imuthal φ coordinates. Figure 2.6 shows an overview of the VELOwith its
main parts. The construction of the VELO followed a number of require-

Figure 2.6: Over view of the VELO vacuum vessel.

ments and constraints, these comes from the angular acceptance of the
downstream detectors, extreme radiation environment, strongly nonuni-
form fluences and integration into the LHCmachine. The VELO should be
as close as possible to the beam with least material in the detector accep-
tance.The two halves of the VELO move away from the beam axis during
the ramping and injection phases and moves close to the beam axis when
stable beam conditions are obtained.

2Tracker Turicensis.
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2.3.2 Magnet

Measuring the momentum of charged particles is performed using the
dipole magnet [59]. The integrated field of the magnet is ∼ 4Tm; this field
is able to bend the tracks of charged particles to measure their momenta
with resolution of δp/p ∼ 0.4%. Figure 2.7, shows an overview of the
magnet which is oriented on the y axis. LHCb magnet is a warm dipole
magnet, the polarization of the magnet can be inverted. This is particu-
larly important to study right-left asymmetry detection in the magnet and
the related systematic error for some CP violation related analysis [47].

Figure 2.7: Perspective view of the LHCb dipole magnet with its current
and water connections (units in mm). The interaction point lies behind the
magnet.

2.3.3 Silicon Tracker

The silicon tracker comprises two sub trackers :

• tracker turicensis (TT) [60] is placed between the RICH1 system and
the magnet. It consists of four detection layers-see Figure 2.8 (left)-
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each one consists of half modules that covers half of the LHCb accep-
tance; each half consists of a row of seven silicon sensors organized
into either two or three readout sectors;

• inner tracker (IT) [61] : placed in the center of T stations after the
magnet, it consists of four individual detector boxes that are arranged
around the beampipe as seen in Figure 2.8 (right).

Figure 2.8: Left : Layout of the third TT detection layer. Different readout
sectors are indicated by different shadings. Right : Layout of an x detection
layer in the second IT station.

The inner tracker used to reconstruct the trajectories of charged particles.
The TT main objective is to determine momentum of tracks with high im-
pact parameters.

2.3.4 Outer Tracker

The outer tracker is a drift-time detector [62] that coveres the rest area of
the T stations outside the IT. It is used for the tracking and momentum
determination of charged particles over large area acceptance. It consists
of an array straw tubes modules arranged in three stations (Figure 2.9).
Each module contains two layers of drift-tubes. To ensure a fast drift time
below the time of two successive bunch crossing at LHC < 50 ns, a gas
composition of Argon, CF4 and CO2 is used.

2.3.5 Performance

The track reconstruction algorithm at LHCb searches for track candidates [64,
65, 66] in the VELO region and the T stations. Their trajectories are refitted
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Figure 2.9: Arrangement of the OT modules in layers and stations

using a Kalman filter [67]. The χ2 of the fit and the pull distribution of the
track parameters are calculated to estimate the quality of the fit. Tracks are
classified following their trajectories at LHCb (see Figure 2.10):

• Long tracks pass through the whole tracking system from the VELO
to the T stations. Their momentum are the most precise;

• Upstream tracks pass only the VELO and TT stations. They are used
to understand the RICH particle identification algorithm andmay be
used in the flavour tagging;

• Downstream tracks traverse only the TT and T stations;

• VELO tracks are measured only in the VELO, those are used in the
primary vertex reconstruction;

• T tracks only measured in the T stations they are produced in the
secondary interaction. They may be used for RICH2 studies.

The reconstruction performance is estimated using

• tracking efficiency, defined as the fraction of reconstructible tracks3

that are successfully reconstructed 4;

3tracks which have the minimum number of hits in the relevant subdetector.
4track having at least 70% of its associated hits originating from a single Monte Carlo

particle.
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Figure 2.10: long, upstream, downstream, VELO and T tracks visual def-
inition. For reference the main B-field component is plotted above as a
function of the z coordinate.

• ghost rates, defined as the fraction of reconstructed tracks that are
not matched to a true Monte Carlo particle.

Tracking performance with 2010 data:
The tracking efficiency for long tracks is plotted in Figure 2.11 (left).

This plot is obtained using KS → ππ decays from 2010 data. We observe
an efficiency > 95% for track momentum higher than 200MeV/c. In ad-
dition the agreement between the Monte Carlo and 2010 data is apparent
in the plot. The impact parameter resolution is plotted in the Figure 2.11
(right) as a function of track pT. The behavior in the Figure shows a slight
disagreement between 2010 data andMonte Carlo, this is under investiga-
tion. But the resolution achieved with data produces an excellent proper
time resolution in the B0

s → J/ψφ channel ∼ 50 fs.

2.4 Particle identification

Particle identification is fundamental component for the study of CP vi-
olation and rare decays in the B decays. For the selection of B0

s → J/ψφ
channel, it is essential to separate kaons from pions and muons from pi-
ons to reduce the background contamination. The kaon identification is
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Figure 2.11: Left: The tracking efficiency for long tracks, KS → ππ candi-
dates are used. (data in blue and Monte Carlo in red). Right: resolution of
impact parameter of a track as a function of its inverse momentum (2010
data in black and Monte Carlo in red) [68].

important for the flavour tagging performance. The particle identification
system consist of :

• Two RICH systems

• The calorimeter system

• The muon system

In the following, we describe briefly these systems.

2.4.1 RICH system

RICH technology relies onmeasuring the Čerenkov angle [69]. The Čerenkov
angle of amoving charged particle a dielectric medium. If the charged par-
ticle’s velocity exceeds the speed of light in the medium, it emits a cone of
electromagnetic radiation at an angle θc to the particle’s velocity.

cos θc =
1
nβ

(2.1)

where n is the refractive index of the medium. The particle’s speed β is
calculated by measuring angle θc. By measuring the momentum one can
calculate the mass of the particle and hence identify it.
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At large polar angles the particle momentum is softer than the momen-
tum at small angles, two RICH [70] systems are used to cover a large mo-
mentum range 1− 100GeV needed for the LHCb physics program. Both
RICH detectors use an set of spherical and flat mirrors to project the light
cones out of the acceptance. Hybrid Photon Detectors are used to detect
Čerenkov photons in the rings of projected light. The radius of the ring
measures the corresponding Čerenkov angle θc.
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Figure 2.12: Side view of the RICH1 system (left), and RICH2 system
(right)

The RICH system, seen in Figure 2.12, is composed of RICH1 located
before the magnet and after the VELO; it identifies the low momentum
(1− 60GeV/c) particles and covers the LHCb geometrical acceptance. The
RICH1 contains aerogel and Fluorobutane gas (C4F10). The second RICH
system (RICH2) is located between the last tracking station and the first
muon station. It contains a CF4 gas, and covers a reduced polar angle
acceptance of ±120mrad on the horizontal plane and ±100mrad in the
vertical plane.

2.4.2 Calorimeter system

Calorimeters in LHCb [71] are designed to identify electron and photon
candidates for the trigger (L0). They provide a measurement of the energy
and position of hadrons and photons and permit reconstruction of π0. The
calorimeter subdetector consists of :
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Figure 2.13: Left: Outer, middle and inner type ECALmodules. Right: Ex-
ploded view of scintillator-absorber layers illustrates the elementary peri-
odic structure of a HCAL module.

• The Scintillating Pad Detector (SPD) consists of scintillating tiles. Its
objective is to select charged particles, in order to improve the re-
jection of π0 background with high ET. The SPD is essential for the
trigger Level-0 where it is used to reject events with high detector
occupancy;

• The preshower detector (PS) consists of a 15 mm lead wall sand-
wiched between two scintillator pads. It helps detect electrons and
hadrons. This is useful to reject background of charged pions;

• The electromagnetic calorimeter (ECAL) uses a sampling scintillator-
lead structure, its designed resolution is σE/E = 10%/

√
E⊕ 1% (E

is in GeV). The ECAL detects electron and photons via the electro-
magnetic shower, Figure 2.13 (left) shows one of the HCALmodules.

• The hadronic calorimeter (HCAL) located after the (ECAL), it is made
from iron and scintillating tiles as absorber and active material. The
HCAL purpose is to detect hadrons interacting with tile material.

The energy resolution of the HCAL is σE/E = (69± 5)%/
√

E⊕ (9±
2)% (E is in GeV). Figure 2.13 (left) shows one of the ECALmodules.

2.4.3 Muon system

Muon identification is crucial for LHCb physics. Indeed, several key mea-
surements at LHCb contain muons in its final state, such as the B0

s →
J/ψ(→ µ+µ−)φ(→ K+K−), B0

s → µ+µ−. In addition muons coming from
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semi-leptonic b decays are used for the flavor tagging process. Finally
muons object are essential for the L0 online trigger where high pT muons
are used. The muon system at LHCb [72] is composed of five stations, see

Figure 2.14: Side view of the muon system.

Figure 2.14, Four of them after the calorimeter (M2-M5) and one (M1) is lo-
cated before the SPD. Each muon station is divided into four regions with
different granularity. The minimum momentum required from a muon
to cross the five station is ∼ 6GeV. Multi-wire proportional chambers
(MWPCs) are used for all regions except the inner region of M1, where a
gaseous electron multiplier detectors (triple-GEM detectors) are used.

2.4.4 Performance

Information from the two RICH systems, calorimeters, and muon stations
are combined to achieve the best charged and neutral particles identifica-
tion. The φs analysis requires the identification of kaons andmuons objects
in the detector.

The particle identification algorithm for hadrons is based on the log-
likelihood method. The method matches the hit pattern in the RICH to the
expected behavior of the tracks under a given hypothesis [73]. The like-
lihood is maximized by varying the particle hypotheses (electron, muon,
pion, kaon and proton) of the tracks in the event. This variation for the
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kaon hypothesis is lnLK− lnLπ = ∆ lnLKπ. The result is then the best hy-
pothesis for each track and the likelihood decreases when changing from
this solution to another hypothesis.

Muons with p > 3GeV/c are reconstructed in the muon stations. Hits
left by muons within a field of interest (FOI) around the extrapolation
point of the track in each muon station are considered. The track in ques-
tion is identified as muon when it leaves hits in a minimum number of
muon stations 5. For each track the difference in log-likelihood between
the muon and pion hypothesis is determined and summed with the val-
ues of the RICH and calorimeter. This reduces the pion misidentification
rate.

PID performance with 2010 data:
The Figure 2.15 presents the muons identification efficiency for both

data and Monte Carlo as a function of their momentum. We observe a
compatibility between the two efficiencies within the available statistics.
The identification plot is made with muons from J/ψ. The performance

p (MeV/c)
0 10000 20000 30000 40000 50000 60000 70000

e
ff

ic
ie

n
c
y
 (

%
)

80

85

90

95

100

105
Data

MC

 = 7 TeVs

Preliminary
LHCb

Figure 2.15: Left: J/ψ → µ+µ− mass distribution, the resolution obtained
is ∼ 13MeV/c2. Right: comparison of the muon identification between
data (in red) and Monte Carlo (in blue) [68]

of the PID on kaons is measured on data using tag and probe methode.
D∗ → D(Kπ)π sample are obtained by applying a cut on the mass differ-
ence: mD∗ −mD→Kπ. To measure the kaon mis-identification rate on data,
the decay KS → ππ is used where kinematic cuts are applied to construct
the signal. When the cut ∆ lnLKπ > 0 is applied to the sample, we observe
a mis-identification Kaon-pion rate of 18%. A cut ∆ lnLKπ > 5 reduces the
mis-identification rate to ∼ 7%.

5number of stations depend on the track momentum.
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Figure 2.16: probability to identifies K+ in red (left K+,π+ right K−,π−)
and the probability to mis-identify a pion as a kaon in black [68].

2.5 Trigger

LHCbwas initially designed to operate at a luminosity of 2× 1032cm−2s−1

at 14 TeV center-of-mass energy, where the number of interaction per bunch
crossing is dominated by a single interaction. This choice of running scheme
is to facilitate analysis and reduce the radiation damage. In 2010 the beam
configuration was changed progressively, as a result, increasing the num-
ber of interaction per crossing achieved higher values of µ than those of
the LHCb design. Figure 2.17 shows the architecture of the trigger sys-
tem [74]; it is composed of two main levels:

• level-0 trigger is implemented in the hardware;

• High Level Trigger consists of two sub levels Hlt1 and Hlt2, both are
implemented in the software.

In the following, we will describe each one of these components and its
performance. At the design luminosity and energy. The bunch crossing

with visible interactions are expected to contain a rate of 100 kHz of bb
pairs; 15% of them include include a B decay chain contained completely
inside the detector geometrical acceptance. Less than 1% of all inelastic
events contain b quarks. This imposes a serious challenge on the trigger
to select the interesting events for the LHCb physics program.

2.5.1 Level-0 trigger

The trigger is optimized to achieve the highest signal efficiency while re-
jecting at the same time background events. The purpose of the L0 trigger
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Figure 2.17: Scheme of the LHCb trigger system.

is to reduce the LHC beam crossing rate of 40MHz to the rate of 1MHz.
The L0 trigger is divided into three components: the pile-up system, the
L0 calorimeter trigger and the L0 muon trigger. Each one of these is con-
nected to the corresponding sub-detector and to the L0 decision unit (DU).
The latter collects all information calculated by the trigger systems to eval-
uate the final decision. The pile-up system distinguishes between cross-

VELO MUONSPD/PS 

ECAL+HCAL

2048 2592019420

Figure 2.18: Overview of the L0 trigger.

ings with single and multiple visible interactions. It provides the position
of the primary vertex candidates and ameasurement of the total backward
charged track multiplicity. The Calorimeter Trigger system looks for high
ET particles: electrons, γ, π0 or hadrons, where all the SPD, PS, ECAL
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and HCAL Calorimeter are implicated in identifying the particles. The ET

of all HCAL cells is summed to reject crossings without visible interac-
tions. The muon chambers allow stand-alone muon reconstruction with a
pT resolution of ∼ 20%. The L0 muon trigger selects the two muons with
the highest pT for each quadrant of the muon detector. Track finding, at
this trigger level, is performed by processing elements which combine the
strip and pad data from the five muon stations to form towers which are
pointing towards the interaction region. The L0 DU combines all signa-
tures into one decision per crossing which is transmitted to the front-end
electronics. Data selected by a specific L0 and HLT configuration is stored
in a trigger configuration key “TCK”, and every event contains an identi-
fier to give the lines responsible of triggering it.

2.5.2 High level trigger

A software trigger runs on the CPU of the event filter farm, it executes se-
lection algorithms on the data coming from the L0 level. The Hlt is divided
into two phases: Hlt1, Hlt2. We present briefly these two stages.
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Figure 2.19: Flow-diagram of the different trigger sequences.

Hlt1 Hlt1 is designed to reconstruct particles in VELO and T-stations
corresponding to L0 objects, or to confirm L0 γ and π0 by the absence of
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charged particles. Due to time and CPU limitations, a partial reconstruc-
tion of the event takes place at this level. Hlt1 uses alleys that address
one of L0 trigger types. The alleys use sequence of algorithms involving
information about the L0 object from VELO and/or tracking stations to
confirm L0 findings. Basic information about tracks and primary vertex is
calculated and then used to reduce the rate to ∼ 30kHz.

Hlt2 Hlt2 is a set of selection algorithms which uses information from
off-line track reconstruction. One distinguishes between inclusive selec-
tions where the B candidate is partially reconstructed and exclusive selec-
tions where the B candidate is reconstructed as in the offline analysis. At
this level, tracks are selectedwith loose cuts on their impact parameter and
momentum. Those tracks are then used to form composite particles (e.g. φ
and J/ψ). Finally those particles are used to for all selections. Hlt2 cuts on
the invariant mass of the B or on the variables of pointing angle. The final
trigger decision is a logical OR of the inclusive and exclusive selections.
The trigger rate is reduced after Hlt2 to ∼ 2kHz.

For the B0
s → J/ψφ analysis, the analysis strategy is to avoid biases on

the proper time distribution. This approache requires a dedicated trigger
selections (lines) that do not apply any proper time biasing cuts at Hlt1
and Hlt2.

2.5.3 Trigger settings in 2010

In 2010 the trigger system underwent a challenging running condition. In-
deed, the number of high pile-up events was increased. To cope with these
conditions, A Global Event Cut on the hit multiplicities of the SPD (< 900)
was introduced to reject these events. About 1kHz of trigger bandwidth
was dedicated to muon trigger lines.

We describe here the muonic trigger lines relevant to our analysis in
2010 data. The final state of the B0

s → J/ψφ decay involves muons so we
use the muon trigger lines for our analysis. There are two muon trigger
lines designed for channels with µ in the final state:

• single-muon L0 (L0Muon) looks for one muon candidate requires its
pT to be greater than 1.4GeV/c;

• dimuon L0 line (L0DiMuon) looks for the twomuons candidates and
requires the first to have pT1 > 0.46GeV/c and pT2 > 0.56GeV/c;

Events that passed these two lines are processed then by the Hlt1 and Hlt2
that includes two different set of lines. The first set is Hlt1 and Hlt2 lines,



2.5. TRIGGER 51

Hlt1SingleMuonNoIP Hlt1DiMuonNoIPL0 Hlt2UnbiasedJPsi

L0 L0-Muon L0-DiMuon -
pT > 1.8GeV/c - > 500MeV/c
p > 10GeV/c > 10GeV/c -

Track χ2/ndof < 10 < 10 -
χ2 of muon hits < 16 < 16 -

Sum pT of dimuon - > 1GeV/c -
Dimuon DOCA - < 0.5mm -

Dimuon mass - > 2.5GeV/c2
> 2977MeV/c2

< 3211MeV/c2

Dimuon vertex χ2 - - < 25

Table 2.1: Trigger cuts for the lifetime unbiased trigger lines used in trigger
configuration key (TCK) 0x002e002a.

which do not bias the proper time. The “unbiased”Hlt1 lines use the mo-
mentum p and pT cuts to reduce the rates, as follows:

• lines using the L0Muon candidates, the seeds matching the muon
candidate are used to reconstruct the VELO tracks. In addition, an
cut on the pT is applied;

• lines using L0DiMuon candidates, seeds are used in the same as the
previous line. In addition, a cut on the sum of two muons pT is ap-
plied.

Only one line is used for the unbiased analysis of φs; This is the unbiased
J/ψ line (Hlt2DiMuonUnbiasedJpsi). Once an event passed Hlt1, tracks
are fitted and then identified as muons using the offline algorithms. Muon
candidates are then selected by applying a cut on their invariant mass and
the χ2 of the vertex they form. Table 2.1 presents the cuts used for the
unbiased lines at the Hlt1 and Hlt2.

In the φs analysis, two Hlt1 and Hlt2 lines which biases the proper time
distribution of the B are used:

• Hlt1TrackAllL0 search for a single track starting from L0Muon or
L0DiMuon candidate and uses isMuon criterion;

• Hlt1TrackMuon searches single track from candidates passed through-
out L0 physics line.

These lines uses cuts on the impact parameter IP, the significance of the
impact parameter IPS, pT and P of the L0 muon track and the number of
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hits in the VELO. Table 2.2 presents the cuts values for the two biased lines.
Those lines represent 30% of the sample and they add to the φs sensitivity.

Hlt1TrackAllL0 Hlt1TrackMuon

L0 L0-Physics L0-Muon OR L0-DiMuon
IP > 0.11mm > 0.11mm

# Velo hits > 9 > 9
# Missed Velo hits < 3 < 3

pT > 1.85GeV/c > 0.8GeV/c
p > 13.3GeV/c > 8GeV/c

IPχ2 > 34 > 25
IsMuon - True

Table 2.2: Trigger cuts for the lifetime biased trigger lines used in trigger
configuration key (TCK) 0x002e002a.

Events are categorized as Trigger On Signal (TOS) on lifetime unbiased
lines, where the signal tracks are those which responsible of firing the trig-
ger lines, more details are given in Chapter 3. We restrict ourselves in the
φs analysis to the use of only the TOS events.

2.6 Summary

In this Chapter we described the LHCb experiment physics motivation
along with the detector main components. We also presented a review of
the event reconstruction and particle identification performances on 2010
data.

The LHCb detector was designed to fulfill the physics program of the
experiment. The φs analysis exploits the LHCb excellent performance with
the 2010 data to deliver the first determination of the CP violating phase φs

at LHCb. The excellent proper time resolution calculated with the tracking
system is sufficient to resolve the B0

s-B
0
s fast oscillation. High momentum

resolution provides a very good B0
s mass resolution and enables the calcu-

lation of the angular variables with high precision. Particle identification
systems provides an excellent K− π separation. This is employed in both
tagging and signal selection. In addition, the LHCb trigger architecture
efficiently reduces the pp retention rates. Offline analysis is then applied
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to the samples provided by the trigger lines. In the next Chapter, we will
provide a detailed study about the offline selection process.
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Chapter 3

Selection

In this chapter, two different selections for the B0
s → J/ψφ channel are pre-

sented. We first discuss the pivotal B0
s proper time unbiased selection. It

is the one applied on first data taken in 2010. It is based on a collection
of criteria, chosen to optimize the φs determination with preliminary data.
These criteria are:

• to maximize the signal yield and reduce the background levels;

• to minimize the biases on the B0
s proper time and the angular distri-

butions. This simplifies the analysis at early stage and reduces the
induced systematic errors on the physical parameters.

The selection, designed for the B0
s → J/ψφ channel, is applied with mini-

mal changes on two control channels1; B0
d → J/ψK∗0 and B+ → J/ψK+. In-

deed selecting the B mesons, in those three channels, in the same way will
assure similarity among their opposite-side tagging properties. In 2010,
LHC machine was taking data at

√
s = 7 TeV. We present a summary on

B0
s effective lifetime 2 determination performed in the B0

s → J/ψφ channel
using data taken during the 2010 run.

In the second part of this chapter, we present an alternative selection,
wherewe remove all unbiased constraints. Notablywe allow cuts that bias
the proper time and angular distributions, hence we call it the “biased”
selection.

1channels who are statistically abundant and kenimatically signal-like.
2In this chapter, we call the τ

single
Bs

the quantitymeasured by fitting a single exponential

to the B0
s proper time distribution defined in Equation 3.11. This is not the B0

s lifetime
defined by 1/Γs which is determined by the full angular analysis presented in Chapter 5.

55
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Compared to the unbiased selection, the proper time biased selection
enhances the signal yield by removing the tight kinematic cuts. In ad-
dition, the biased cuts reduces the prompt background considerably. On
the other hand, it creates a non-trivial proper time distortion. We present a
method to determine this distortion, avoiding any reliance onMonte Carlo
information.

In Section 3.1, we describe the Monte Carlo samples used in the devel-
opment of the unbiased selection. In Section 3.2, we present the preselec-
tion cuts applied. Section 3.3 is divided into three parts. The first present
the details of the unbiased selection optimization process. The second part
shows the signal and background properties using the unbiased selection
cuts on theMonte Carlo samples. Yields aswell as distributions and accep-
tance functions for the proper time and angular variables are studied. The
third and final part treats the impact of high pile-up on the selection per-
formance. In Section 3.4, the unbiased selection results obtained with the
2010 data are reviewed along with the first measurement of the B0

s effec-

tive lifetime using a single exponential in the B0
s → J/ψφ channel. Finally,

in Section 3.5 we develop a biased selection cuts based on Monte Carlo
samples. We then present a data driven method to extract the proper time
acceptance emerging from the biased cuts of this selection.

3.1 Monte Carlo simulation used

The selection is studied using “MC2010” [75] samples3, a Monte Carlo
simulation produced at 7 TeV with ν = 1 where ν is the average num-
ber of pp interactions per bunch crossing, including elastic and diffrac-
tive processes. Tables 3.1, 3.2 and 3.3 summarize the relevant parame-
ters in the production of these samples. The detector response available
in the Gaudi framework is generated by several external simulation pro-
grams: the Pythia program generates events from a pp collision, the Evt-
Gen program simulates the B-hadron decays. Both programs are steered
by a Gaudi application named Gauss.

Background samples used to perform this study are:

• minimum bias: contains all expected physics generated from pp col-
lisions;

• inclusive bb: contains bb pair produced within the LHCb geometri-
cal acceptance (i.e. 10 < θ < 400mrad). Events in this sample are

3MC/2010/Beam3500GeV-VeloClosed-MagDown-Nu1/2010-Sim01Reco01-
withTruth/
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Channel Eff. generator (%) Stat. Lint( fb
−1)

Signal

B0
s → J/ψφ 16.46± 0.31 955 072 0.38

Background samples

bb inclusive 43.22± 0.31 20 422 580 5.2× 10−6

J/ψ(µµ) inclusive 20.78± 0.12 8 001 713 5.6× 10−6

B0
s → J/ψ(µµ)X 18.78± 0.14 1 600 000 0.012

B+ → J/ψ(µµ)X 18.94± 0.15 6 400 000 0.033

B0
d → J/ψ(µµ)X 18.55± 0.15 6 400 000 0.031

Minimum bias 100 77 593 772 8.5× 10−7

Table 3.1: MC2010 samples used in this analysis with their generator level
cut efficiency (The fraction of all generated events which in the LHCb ac-
ceptance region), number of events used in the analysis and corresponding
integrated luminosity.

often called “long-lived”, this is due to the fact that b-hadrons fly for
long period before they decay;

• inclusive J/ψ: contains J/ψ→ µµ events, where the two muons are
forced in the geometrical acceptance of the detector. This sample
could be split into two categories:

– prompt J/ψ: J/ψ→ µµ coming directly form the pp collision ( ∼
93%). They do not contain any b quarks;

– non-prompt J/ψ: J/ψ→ µµ coming from the decay chain: pp →
b⇒ J/ψ. Those are a long-lived decays.

• Bu,d,s → J/ψX: contains modes involving a B meson decaying into
J/ψ and something else. All decay products are forced in the LHCb
geometrical acceptance. Those are a long-lived events.

The L0 trigger is applied to the minimum bias sample in order to reduce
the CPU time required to analyze the sample, as well as reduce its size
on disk. All samples are fully reconstructed using the reconstruction al-
gorithm [63], where all tracks as well as primary and secondary vertexes,
in event, are reconstructed. After passing the full reconstruction, the data
sample is filtered in order to reduce its size and facilitate the data access.
This filtering stage is called “Stripping”. It contains a collection of streams
where each stream contains output of selection algorithms that are spe-
cially designed for each analysis in LHCb. Using Monte Carlo informa-
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Cross section value (µb−1)
σpp 91.05
σbb 0.457

σpp⇒J/ψX 0.115

σpp→b⇒J/ψX 0.013

σpp→b⇒J/ψpromptX 0.102

Table 3.2: MC2010 production cross sections at 7 TeV predicated by
PYTHIA[56] and EvtGen[77].

tion, it is easy to separate the true signal candidates from false ones in the
signal sample. In this study we make use of the “Background Category
Tool” [76] in order to achieve this. This tool is designed to classify the
composition of a sample using the Monte Carlo truth. Using this tool we:

• select only the true signal candidate in signal sample;

• remove any signal candidate that might exist in background sam-
ples;

• we have combined contributions from prompt component and long-
lived ones in the same Monte Carlo sample. The tool categorizes
background events according to their origin, hence facilitating the
study. In the following section, we describe the preselction cuts ap-
plied to the Monte Carlo samples involved in the selection optimiza-
tion.

3.2 Preselection

At this level, we apply loose cuts to reduce Ntuple sizes. The cuts used
in the preselections are listed in Table 3.4 Typical event in LHCb contains
many tracks, on average∼ 100 tracks at ν = 0.4. Many tracks in each event
fulfill the preselection cuts criterion as those cuts are loose, so it happens
that more than one B0

s → J/ψφ candidate per event passes the selection
creating what we call a “multiple-candidates” event. We choose to keep
the candidate with the smallest χ2/nDoF of the B0

s vertex
4. This criterion

is applied at the final stage of the analysis where all offline cuts are ap-
plied. In the J/ψ preselection, we select two long tracks [80] identified as

4several other possibilities are discussed in [79].
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Branching fraction PDG [78] MC 2010

BR(J/ψ → µµ) (5.93± 0.06)× 10−2 5.933× 10−2

BR(B0
s → J/ψφ) (1.3± 0.4)× 10−4 1.35× 10−4

BRvis(B
0
s → J/ψφ) (3.77± 1.16)× 10−5 3.93× 10−5

BR(B0
s → J/ψ(µµ)X) – 0.8× 10−4

BR(B+ → J/ψ(µµ)X) – 2.8× 10−4

BR(B0
d → J/ψ(µµ)X) – 3.0× 10−4

fu(%) 40± 1. 41
fd(%) 40± 1. 41
fs(%) 11.1± 1.2 10.5

Table 3.3: Branching fraction for different channels used in this analysis.
first column holds the PDG values, the second stands for MC2010 Monte
Carlo simulation ones. Where fu, fd and fs are the weakly decaying B+, B0

d

and B0
s fractions.

Decay mode Cut

J/ψ → µ+µ− VeryLooseMuons
muons χ2

track/nDoF < 15
χ2
vtx/nDoF(J/ψ) < 25

|M(µµ)−M(J/ψ)| < ±80MeV/c2

φ → K+K− NoPIDsKaons
kaons χ2

track/nDoF < 10
χ2
vtx/nDoF(φ) < 25

|M(K+K−)−M(φ)| < ±50MeV/c2

B0
s → J/ψφ |M(B0

s)−M(J/ψφ)| < ±300MeV/c2

Table 3.4: B0
s → J/ψφ preselection cuts, those are applied to all samples

used in this study.
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muons using the so-called “VeryLooseMuons” criterion [81]. It requires
at least one hit in number of muon stations depending on the track mo-
mentum. The two tracks are then combined into a vertex. This is the pro-
cesses where the position of the decay point is determined along with the
momentum and the mass of the resulting particle. Loose constraints are
then applied on the invariant µ+µ− and on the χ2

vtx/nDoF of the J/ψ parti-
cle. The φ preselection starts with two long tracks, with loose χ2

track/nDoF
cuts. The surviving candidates are combined into a loose vertex, their in-
variant mass is required to be within 50MeV/c2 of the nominal mass of the
φ particle. To reconstruct the B0

s particle, we combine J/ψ and φ, into one
vertex. We apply a loose constraint on the µ+µ−K+K− invariant mass. Ta-
ble 3.4 prsent the value of the cuts applied for the preselection. The overall
efficiency of the reconstruction and preselection step is: (41.89± 0.05)%.

3.3 Offline unbiased selection

The selection is based on the analysis presented in [82] and [83], where
a cut-based selection was developed using an old version of simulation
“DC06” and the minimum bias sample was used as reference for back-
ground.

In this work, we optimize the cuts using the Monte Carlo simulation
MC2010, generated with mean number of generated pile-up interaction of
ν = 1 at 7 TeV. The criterion used for the selection is to maximize:

S√
S + B

(3.1)

where S stands for the signal yield, B is yield of the background. We ad-
ditionally imposes a constraint on the signal efficiency loss per cut, where

it does not exceed 10%. In this study we use the bb sample as a reference
for the background instead of minimum bias. Indeed this type of back-
ground has an exponential proper time distribution, which makes it more
dangerous than prompt background when fitting for the phase φs [5]. Al-

though inclusive bb is the targeted background in the optimization proce-
dure, other sources of background are shown and the impact of the cuts
are calculated on them for more information. For this analysis, we avoid
any proper time biasing cuts such as impact parameter, vetex separation
etc.... Obviously the contribution of the prompt background component is
expected to be high. The cuts are applied consecutively during the opti-
mization.
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Figure 3.1: Left: minimum of ∆ lnLµπ distribution for the muons, B0
s →

J/ψφ signal candidates (green), bb inclusive candidates (blue), Bu,d,s →
J/ψX candidates (black), and prompt inclusive J/ψ candidates(red). Right:
signal efficiency and individual background rejection rates per cut.

3.3.1 J/ψ selection

Some hadrons are misidentified as muons due to random combinations
of false hits in the Muon Chambers. Discrimination between muons and
those hadrons is best achieved by using the global ∆ lnLµπ. In Figure 3.1
we show the minimum ∆ lnLµπ distribution for signal and background
samples, the best cut lies around −1 with ∼ 50% bb background rejection.

The ∆ lnLµπ is not efficient against decays in flight, where some hadrons
decay to µ before themuon station, consequently those particles aremisiden-
tified as muons by the muon stations. To reject those decays we make use
of their χ2

track/nDoF (track quality), Figure 3.2, because this quantity is ex-
pected to be much worse in case of decays in flight. This cut also helps
reduce the ghost 5 rate in the signal sample [84].

Figure 3.2 shows the distributions of this cut for different background

samples. The bb background has a significant portion of those decays.
The cut chosen by the optimization is rather tight χ2

track/nDoF > 3.2, as
we expect worse performance with real data, a more conservative cut on 5
is adopted.

Figure 3.3 shows the distribution of minimum pT of the two muons.

The cut on this quantity at 350MeV/c reduces bb background by 9%. This

5tracks reconstructed with no Monte Carlo-truth due to random hits combinations
during pattern recognition step in the reconstruction process.
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Figure 3.2: Left: maximum of muons’ χ2
track/nDoF distribution for B0

s →
J/ψφ signal candidates (green), bb inclusive candidates (blue), Bu,d,s →
J/ψX candidates (black), and prompt inclusive J/ψ candidates . Right: sig-
nal efficiency and individual background rejection ratios per cut.

cut does not discriminate between signal and background sources involv-
ing J/ψ. Careful usage of daughters pT is advised, those cuts are known to
create additional distortion on the angular variables [85].

Muons which passed the cuts are then vertex-ed. Cuts on the vertex

quality (χ2/nDoF) of the J/ψ particle are applied at 11 rejecting 18% of bb
background with high signal efficiency as shown in Figure 3.4.

Figure 3.5 shows the mass distribution for signal and background sam-
ples (left) as well as the J/ψ mass distribution in the signal sample fitted
with two Gaussians. The mass cut, |M(µµ) − M(J/ψ)|/σmJ/ψ

< 1.4 × 3,
takes in consideration the fact that J/ψ mass resolution changes with its
momentum. More details are given in [86]. The overall efficiency of J/ψ
selection cuts is : εsel = (94.7± 0.06)%, where the input number of events
is those passing the preselection cuts.
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Figure 3.3: Left: minimum of muons’ pT distribution for B0
s → J/ψφ signal

candidates (green), bb inclusive candidates (blue), Bu,d,s → J/ψX candi-
dates (black), and prompt inclusive J/ψ candidates. Right: signal efficiency
and individual background rejection ratios per cut.
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Figure 3.4: Left:J/ψ vertex χ2/nDoF distribution for B0
s → J/ψφ signal

candidates (green), bb inclusive candidates (blue), Bu,d,s → J/ψX candi-
dates (black), and prompt inclusive J/ψ candidates. Right: signal efficiency
and individual background rejection ratios per cut. the best cut chosen is,
χ2
vertex/nDoF < 11.
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Figure 3.5: Left: J/ψ mass distribution for B0
s → J/ψφ signal events (green),

bb inclusive candidates (blue), Bu,d,s → J/ψX candidates (black). Right:
mass distribution for signal events fitted with two Gaussian.
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Figure 3.6: Left: minimum of kaons ∆ lnLKπ distribution for B0
s → J/ψφ

signal candidates (green), bb inclusive candidates (blue), Bu,d,s → J/ψX
candidates (black), and prompt inclusive J/ψ candidates. Right: signal
efficiency and individual background rejection ratios per cut (peak at zero
is due to the particle momentum being below the RICH threshold).

3.3.2 φ selection

Reconstruction of φ candidates is carried out using two kaons tracks, for
events passing the J/ψ selection.To select the kaons, we use the global
∆ lnLKπ using the RICH information. LHCb has an excellent kaon-pion

separation. Using this nice advantage, the bb background is reduced by
75% with 3% signal loss at ∆ lnLµπ > 0, see Figure 3.6.

The χ2
track/nDoF distribution is shown in Figure 3.7. The cut chosen by

the selection criterion is too tight χ2
track/nDoF > 1.6. We choose a looser

one χ2
track/nDoF > 4, since lower performance is expected with first data.

We observe that this cut is efficient against the ghost rate in signal sample.
The ghost reduction for this cut alone is (43.6± 0.6)%.

After passing these cuts, the kaons are being vertexed to form the φ
particle. A cut on the φ vertex quality is applied requring it to be less
than 11, as shown in Figure 3.9. The cut on its transverse momentum,

pT > 1GeV/c2, is most powerful against the bb background, as shown in
the Figure 3.8. This removes the contribution from low pT background
coming from primary vertex.

The invariant mass of the two kaons should be within 3σ of the nomi-
nal φ mass. This mass is shown in Figure 3.10 (right), fitted with a Voigtian
distribution (a Breit-Wigner convoluted with a Gaussian) which takes into
account the theoretical mass width and the detector resolution of a reso-
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Figure 3.7: maximum of Kaons’ tracks’ χ2
track/nDoF distribution for B0

s →
J/ψφ signal candidates (green), bb inclusive candidates (blue), Bu,d,s →
J/ψX candidates (black), and prompt inclusive J/ψ candidates. Right: sig-
nal efficiency and individual background rejection ratios per cut.
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s → J/ψφ signal candidates (green),

bb inclusive candidates (blue), Bu,d,s → J/ψX candidates (black), and
prompt inclusive J/ψ candidates. Right: signal efficiency and individual
background rejection ratios per cut.
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Figure 3.9: Left: φ vertex χ2/nDoF distribution for B0
s → J/ψφ signal can-

didates (green), bb inclusive candidates (blue), Bu,d,s → J/ψX candidates
(black), and prompt inclusive J/ψ candidates. Right: signal efficiency and
individual background rejection ratios per cut.
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Figure 3.10: Left: φ mass distribution for signal sample (green), bb in-
clusive candidates (blue), Bu,d,s → J/ψX candidates (black), and prompt
inclusive J/ψ candidates. Right: φ mass distribution in the signal sample
fitted with a Voigitian.
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nance:
1

(m−Mφ)2 + 1
4Γ2

⊗Gauss(m, σ, Mφ). (3.2)

in this equation Γ is the resonance width, σ the detector resolution, Mφ

is the mass of the resonance. The resolution used for the cut is the effec-
tive resolution of the Gaussian and the naturral particle width which is
∼ 4MeV/c2.

The efficiency of the φ cuts combined, defined as the ratio of the events
passing all cuts to those passing the preselection cuts, is : εsel = (69.1±
0.1)%. where the input number of events is those passing the preselection
cuts and the J/ψ selection.

3.3.3 B0
s selection

The J/ψ and φ candidates, which pass the previous sets of cuts, are being
vertexed creating the B0

s particle. χ2
vtx/nDoF < 5, the cut is applied on B0

s

vertex reducing by 12.3% the remaining bb background. Figure 3.11 shows
the B0

s vertex χ2/nDoF distributions for signal and background samples.

In the absence of pT cuts, background with lowmomentum tracks with
large multiple-scattering angle is present in the sample. This background
can be removed using the criterion on the significance of minimal impact
parameter of the B0

s particle with respect to the primary vertex. Figure 3.3.3
shows the distributions of this cut for signal and background samples. The
efficiency of the B0

s cuts combined, defined as the ratio of events passing all

cuts to those passing the preselection cuts, is: εsel = (97.1± 0.05)%, where
the input number of events is those passing the preselection, J/ψ selection
and φ selection.

It is worth mentioning that, before applying these two primary ver-
texes related cuts, the primary vertex position is recalculated in a process
called primary vertex re-fitting [87], where the primary vertex is refitted
after removing selected signal tracks (muons and kaons). This procedure
is important for the analysis, because the primary vertex position would
lean toward the secondary vertex if such re-fitting is not applied. This
would create a bias on the proper time distribution. The B0

s invariant mass

cut is within 3σav from the PDG value of the B0
s mass, where σav is the

average mass resolution for the B0
s particle. In Figure 3.13 the B0

s mass
distribution is fitted with two Gaussains. When a J/ψ mass constraint is
applied in the kinematic fit of the decay, the average mass resolution is
14.2MeV/c2.
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Figure 3.11: Left: B0
s vertex χ2/nDoF distribution for B0

s → J/ψφ signal can-

didates (green), bb inclusive candidates (blue), Bu,d,s → J/ψX candidates
(black), and prompt inclusive J/ψ candidates. Right: signal efficiency and
individual background rejection ratios per cut.
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Figure 3.12: B0
s min IP χ2 wrt primary vertex distribution for B0

s → J/ψφ

signal candidates (green), bb inclusive candidates (blue), Bu,d,s → J/ψX
candidates (black), and prompt inclusive J/ψ candidates. Right: signal
efficiency and individual background rejection ratios per cut. the best cut
chosen is, min IP χ2 wrt primary vertex > 12.
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Figure 3.13: Left: mass distribution for B0
s → J/ψφ signal candidates

(green), bb inclusive candidates (blue), Bu,d,s → J/ψX candidates (black),
and prompt inclusive J/ψ candidates. Right: mass resolution for signal
events after, the average resolution is ∼ 15MeV/c2, no constraint on the
J/ψ mass was applied for this plot

Some events have more than one selected candidate. In such events,
the candidate with the smallest χ2

vtx/nDoF(B0
s) is kept. Figure 3.14 shows

the distribution of the number of candidates per event. The average is 1.1
which is 10 times smaller than the number before any selection (same Fig-
ure left). Table 3.5 summarizes all the cuts applied to the B0

s → J/ψφ chan-
nel. The detailed performance of this set of cuts is studied in the following
section. This concludes the first part of this Chapter, the optimization
procedure using the Monte Carlo samples.

3.3.4 Signal studies

In this section, the signal yield, proper time and angular resolutionmodels
and acceptance functions are reviewed using the sets of cuts shown in the
Table 3.5. The Monte Carlo sample passes a trigger and stripping scenario
applied to the data during the real data taking in 2010. This is to assure
a minimal discrepancies between data and Monte Carlo samples, and to
facilitate the comparison between the two.

Yield
The equation used to calculate the yield is:

Y = Lint × σbb × 2× fs × BRvis × εtot , (3.3)
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Figure 3.14: Left: number of candidates per event in the signal sample,
after the preselection cuts (left) and event after applying offline selection cuts
(right).

Decay mode Cuts

J/ψ → µ+µ− ∆ lnLµπ > 0
muons χ2

track/nDoF < 4
pT(µ+) and pT(µ−) > 350MeV/c

χ2
vtx/nDoF(J/ψ) < 11

|M(µµ)−M(J/ψ)|/σmJ/ψ
< 1.4× 3

φ → K+K− ∆ lnLKπ > 0
kaons χ2

track/nDoF < 4
χ2
vtx/nDoF(φ) < 9
pT(φ) 1GeV/c

|M(K+K−)−M(φ)| < ±12MeV/c2

B0
s → J/ψφ χ2

vtx/nDoF < 5

B0
s min IP χ2 wrt primary vertex < 20

|M(B0
s)−M(J/ψφ)| < ±50MeV/c2

Table 3.5: Summary of the cuts developed in the unbiased analysis, ap-
plied to the B0

s → J/ψφ channel.
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where Lint is the integrated luminosity, σbb is the cross section of pp →
bbX, fs is the fragmentatio fraction to B0

s, BRvis the visible branching ratio

of the B0
s → J/ψφ channel, and εtot the total selection efficiency. The latter

is given by:
εtot = εgen × εreco+presel × εsel × εtrig . (3.4)

where εgen, εreco+presel, εsel are generator level efficiency, reconstruction and
preselction combined efficiency and offline efficiency. εtrig is the trigger
efficiency and is composed of sub-efficiencies itself due to the trigger ar-
chitecture explained in Chapter 2. As stated there, the set of proper time
unbiased triggers applied on 2010 data are:

• Hlt1SingleMuonNoIP confirmed by L0Muon, andHlt1DiMuonNoIP
confirmed by L0DiMuon;

• Hlt2UnbiasedJPsi.

The trigger in LHCb could be fired by signal-related elements (tracks, com-
posite particles), this is called TOS (Trigger On Signal). Alternately, the
trigger could be fired by elements which are not signal-related that passed
the trigger lines cut (some track from primary vertex, a muon from the
other B in the event, etc ...). For the unbiased analysis, we limit ourselves
to the unbiased TOS triggers, that will guarantee that the signal tracks
are selected in lifetime-unbiased way. Combining these information all
together gives a trigger efficiency of:

εtrigger = εHLT1 × εHLT2 = (57.3± 0.1)% . (3.5)

With Lint = 2 fb−1, σbb = (284± 20± 49)µb−1 measured in LHCb at 7 TeV

[88], and replacing the rest by their values from Tables 3.1, 3.2, 3.3 in the
yield:

Y ≃ 60 000 events . (3.6)

Scaled to 36 pb−1, one finds: Y ≃ 1 100 events6, In Section 3.4, we will
see that this yield is compatible with that measured in 2010 data. The
uncertainty on the yield is large (∼ 4× 104). This is due to the large uncer-

tainty on the cross section of the bb quarks.

Mass, proper time resolution and proper time acceptance distributions
The distribution of the B0

s mass is given in Figure 3.15 (bottom). It is fit

6which is the luminosity collected in 2010.
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Figure 3.15: Left: reconstructed B0
s proper time acceptance. Right: B0

s

proper time resolution calculated using the truth information (trec− ttrue).
Bottom: B0

s mass resolution after constraining the J/ψ mass to its PDG
value (MC10).
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using two Gaussian. The average mass resolution is calculated using the
equation:

〈σm〉 =
√

fm,1 × σ2
m,1 + (1− fm,1)× σ2

m,2

where Gi = 1√
2πσm,i

exp

(

−1
2

(

m−µm,i

σm,i

)2
)

i = 1, 2
(3.7)

When applying the J/ψ mass constraint [89], the B0
s mass resolution

decrease to 6.5MeV/c2, improving it by a factor 2. In the following we will
consider the J/ψ mass constraint in all plots that we show, if not stated
otherwise.

The B0
s reconstructed proper time treco is obtained from a kinematic fit,

using Lagrange multipliers to apply the constraint that the B0
s momentum

originates from the re-fitted primary vertex [90]. The proper time reso-
lution is defined as the average width of the Gaussians fitted to the dis-
tribution 〈σm〉 = treco − ttrue shown in Figure 3.15 (centre), where ttrue is
the true proper time. The average proper time resolution, calculated using
Equation 3.7 is 39 fs.

The proper time acceptance is shown in the Figure 3.15 (left). It is cal-
culated by dividing the reconstructed proper time distribution by the the-
oretical expectation. The acceptance is almost flat conforming with the
absence of biased cuts in the selection. However, we observe a slight de-
crease of efficiency at high values of proper time. One possible explana-
tion [91] is related to the VELO acceptance, where reconstruction efficiency
decreases with the decay length. Some events with higher decay length
would likely be missed. We checked this hypothesis and found it to be
partially true when asking the four decay product to be within the VELO
acceptance. Work is still in progress to check this hypothesis.

Angular variables resolution and acceptance In Figures 3.16 we show
the distributions of the three angles in the transversity basis for selected
signal events. On the same plot, we show the projections of the theoretical
decay rate onto each one of the angular variables. The angles are calcu-
lated using the equations in Chapter 1.

In Figures 3.17, we show the acceptances obtained by dividing the true
angular distributions by the theoretical expectation. The distortions ob-
served are mostly due to the unique geometrical acceptance of the detec-
tor and partly to the reconstruction and our selection cuts. The individual
effect of each of these elements are described here [85]. The distortions
are found to be less than 10%. The effect of these distortions on the
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Figure 3.16: Distribution of angular variables, from left to right cos(θ), φ
and cos(ψ). The red line is the projection of the theoretical differential
decay rate, where the data points are the reconstructed angular variables
(MC10).

)θcos(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

A
c
c
e
p
ta

n
c
e
(A

.U
)

0.315

0.32

0.325

0.33

0.335

0.34

0.345

 (rad)ϕ
-3 -2 -1 0 1 2 3

A
c
c
e
p
ta

n
c
e
(A

.U
)

0.1

0.102

0.104

0.106

0.108

0.11

0.112

)ψcos(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

A
c
c
e
p
ta

n
c
e
(A

.U
)

0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345

0.35

Figure 3.17: 1 D projection of acceptance of the angular variables, from left
to right cos(θ), φ and cos(ψ). The projection of the theoretical differential
decay rate onto variable plane where used (MC10).



76 CHAPTER 3. SELECTION

))θ(cos(σ
-0.1 -0.05 0 0.05 0.1

E
v
e
n
ts

 /
 (

 0
.0

0
4
 )

0

5000

10000

15000

20000

25000
 0.00003± =  0.00001 

1
mean

 0.00008± = -0.000051 
2

mean

 0.0004± =  0.0003 
3

mean

 0.00006± =  0.00427 
)θcos(

1σ

 0.0002± =  0.0156 
)θcos(

2σ

 0.0005± =  0.0505 
)θcos(

3σ

 0.006± =  0.352 
1

gaussf

 0.005± =  0.508 
2

gaussf

))θ(cos(σ
-0.1 -0.05 0 0.05 0.1

E
v
e
n
ts

 /
 (

 0
.0

0
4
 )

0

5000

10000

15000

20000

25000

) [rad]φ(σ
-0.1 -0.05 0 0.05 0.1

E
v
e
n
ts

 /
 (

 0
.0

0
4
 )

0

5000

10000

15000

20000

25000
 0.0001± = -0.00002 

1
mean

 0.00003± =  0.00002 
2

mean

 0.0006± = -0.00043 
3

mean

 0.0002± =  0.0186 
φ

1σ

 0.00004± =  0.00533 
φ

2σ

 0.0007± =  0.0744 
φ

3σ

 0.004± =  0.356 
1

gaussf

 0.005± =  0.516 
2

gaussf

) [rad]φ(σ
-0.1 -0.05 0 0.05 0.1

E
v
e
n
ts

 /
 (

 0
.0

0
4
 )

0

5000

10000

15000

20000

25000

))ψ(cos(σ
-0.06 -0.04 -0.02 0 0.02 0.04

E
v
e
n
ts

 /
 (

 0
.0

0
4
 )

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

 0.00005± =  0.00005 
1

mean

 0.00006± = -0.000094 
2

mean

 0.0008± =  0.0005 
3

mean

 0.0001± =  0.0060 
)ψcos(

1σ

 0.0001± =  0.0144 
)ψcos(

2σ

 0.0009± =  0.0421 
)ψcos(

3σ

 0.01± =  0.39 
1

gaussf

 0.01± =  0.58 
2

gaussf

))ψ(cos(σ
-0.06 -0.04 -0.02 0 0.02 0.04

E
v
e
n
ts

 /
 (

 0
.0

0
4
 )

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

Figure 3.18: Distributions of angular variables resolution, Left:distribution
of cos(θ) resolution where 〈σcos(θ)〉 = 0.022. Center:distribution of φ res-

olution, where 〈σφ〉 = 0.029 rad. Right:distribution of cos(ψ) resolution
where 〈σcos(ψ)〉 = 0.014 (MC10).

fitted physical parameters is not negligible if not properly taken into ac-
count [5]. These distortions could be evaluated from the simulation, and
cross checked in the B0

d → J/ψK∗0 control sample. The angular resolu-

tions fitted by the the sum of three Gaussian are shown in Figure 3.18.
Table 3.6 shows a summary of the angular variables average resolution

Angular variable Resolution mrad Acceptance distortion %
cos θ 22.4± 0.1 8± 1
φ rad 29.2± 0.1 7± 1
cosψ 14.5± 0.1 9± 1

Table 3.6: Summary of the angular resolution (column 2) and the accep-
tance distortions(column 3) for the angular variables cos(θ), cos(φ) and
cos(ψ).

and their acceptance distortions which are defined as: (xmax− xmin)/xmax,
here xmax(min) are the maximum (minimum) bin the acceptance distribu-
tion of the angular variable x.

3.3.5 Background studies

In this section we identify the main sources of the background with the
help of Monte Carlo samples. Understanding the shapes of their proper
time and angular distributions is a crucial point for the analysis, as φs is
extracted from a fit of the tagged time-dependent angular distributions.

We distinguish two main types of background component:
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• a prompt component of events having zero true proper time. We use
the inclusive J/ψ sample to study this component. This is done by
explicitly removing pp → b ⇒ J/ψ from this sample along with the
signal events;

• a long-lived component of events having a non-zero true proper time,
due to a true b-particle. We use two samples to account for this back-
ground. The first is Bu,d,s → J/ψX to study the angular and proper
time distributions. Those samples are more abundant, after applying
offline cuts, and most dangerous because of their signal-like proper-

ties. The second is inclusive bb. This background is more general
since more b-decays are included. Therefore it is more suitable for
the calculation of the background to signal ratio. However, the sam-
ple surviving the offline cuts is not statistically sufficient to study its
proper time and angular properties.

In the following, we detail both types using the simulation samples men-
tioned in Table 3.1.

Prompt background
This is the first type of background and the least dangerous, because

of its proper time distribution is expected to be Gaussian-like centered
around zero. Indeed the Figure 3.19 (right) shows the proper time dis-
tribution for the prompt events fitted with one Gaussian with σ = 34 fs.
Because prompt events have zero lifetime, the σ represents the pure de-
tector resolution. This is a useful information to extract the proper time
resolution for our signal events.

The mass distribution, shown in Figure 3.19 (right), is fitted with a sum
of decreasing exponential (background) and a Gaussian (signal). No mass
peak is observed for this background.

Figure 3.20, shows the angular distribution for the prompt background.
Because of its combinatorial nature, no unique pattern is found for this
type of background (within the available statistics).

The calculation of background-to-signal ratio uses the following equa-
tion:

BPr

S
=

σPr × BR(J/ψ → µµ)× εPr × fMW

2× σbb × fs ×Bvis × εtot
= 2.6± 0.6 , (3.8)

where σPr is the cross-section pp → J/ψX given in Table 3.2, εPr is the
selection efficiency for the prompt component in the ±300MeV/c2 mass
window, fMW is a scale factor needed to pass from ±300MeV/c2 to the
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Figure 3.19: Mass distribution for prompt inclusive J/ψ (left), and its
proper time distribution (right) (MC10).
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Figure 3.20: Angular distributions for prompt inclusive J/ψ background
(MC10).

±50MeV/c2 mass window7 and εtot is the total efficiency for the signal.
The fs is the weakly decaying fraction for b → Bs, Bvis is the visible
branching fraction for the signal channel (given in Table 3.3).

Naturally B/S for the prompt background is high due to the nature of
selection, where cuts on vertex, impact parameter are not used.

Long-lived background
This is the most dangerous background, since its decays have a true b

content, making the proper time distribution more signal-like. This can
compromise the separation power when fitting for physical signal param-
eters. The distribution of this background’s proper time is shown in Figure
3.21 (right). This distribution is fitted with two exponentials convoluted

7assuming linear mass distribution.
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Figure 3.21: Mass distribution (left) for prompt inclusive J/ψ , and its
proper time distribution (right) (MC10).
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Figure 3.22: Angular distributions for Bu,d,s → J/ψX background (MC10).

with a single Gaussian with σLL
t = 71 fs, the proper time distribution for

this type of background is dominated by a short-decay exponential with
τLL
1 = 0.15 ps, while the remaining component is a long-decay exponential

with τLL
2 = 1.2 ps.

Figure 3.21 (left) shows also the mass distribution for selected events in
this samples, where a decreasing exponential accounts for the background
mass.

The angular distribution for the long-lived background events is shown
in Figure 3.22. While cos(θ) and φs distributions are flat, it is clear that
there is some structure, specially in the case of cos(ψ) distribution, where
the data points were fitted with second degree polynomial. This structure
is due to the signal-like phenomenology of this type of background.

Background-to-signal rate is calculated using the following equation:

BLL/S =
εsel,bb

2× fs ×Bvis × εtot
= 0.28± 0.14 , (3.9)
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where εsel,bb is the selection efficiency in the bb sample after removing the
signal events.

In the following, we summarize all our results in Table 3.7. This sum-
mary table will be the baseline for our toy Monte Carlo studies presented
in Chapter 5. The tagging parameters are discussed in Chapter 4.



Parameter Signal Prompt background (Pr) Long-lived background (LL)

Events in B0
s mass window

±24MeV/c2 60 k 156 k 16.8 k
(fractions, B/S) (25.7%) (66.9%, BPr/S = 2.6) (7.3%, BLL/S = 0.3 )

Mass m (MeV/c2) 2 Gauss; Exp(−αPr
m m); Exp(−αLL

m m);
f sm,1 = 0.82; σs

m,1 = 5.2; σs
m,2 = 10.7 αPr

m = 0.0001 αLL
m = 0.0009

Proper time t (fs) Signal PDF ⊗ 2 Gauss; δ(t)⊗ 1 Gauss; 2 Exponentials ⊗ 1 Gauss;
f st,1 = 0.27; µs

t,1 = 0; σs
t,1 = 58.2; µPr

t = 0; σPr
t = 34 f LLτ1

= 0.3; τLL
1 = 1187, τLL

t,2 = 149;

µs
t,2 = 0; σs

t,2 = 28.4 µLL
t = 0; σLL

t = 71

Angles no acceptance no acceptance no acceptance
flat background flat background flat background

Flavour tagging εtag = 0.332; ω = 0.306 εPrtag = 0.20 εLLtag = 0.42

Table 3.7: Summary of baseline detector input parameters for sensitivity studies with the unbiased cuts, extracted
from full Monte Carlo. Flavour tagging performances are discussed in Chapter 4.
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3.3.6 High pile-up impact on selection

In 2010 data taking, attempts to increase luminosity led to a specific con-
figuration of the LHC machine, where the number of pp interactions per
colliding bunch (ν) reached six times the LHCb design value creating a
high“pile-up” environment. A Monte Carlo sample is generated with
ν = 3 and used for this study8.
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Figure 3.23: Top left: distribution of the number of reconstructed primary
vertex per event. Top right: distribution of number of best tracks per
event. Bottom left: distribution of best tracks number for events with one
(green), two (red), three (blue), and more than three (black) primary ver-
texes per event. Bottom right: 2-D plot for number of best tracks versus
number of reconstructed vertexes per event (MC2010).

Higher pile-up creates a difficult environment for the analysis, where
the number of tracks and primary vertexes in the event increases. More

8/MC/2010/Beam3500GeV-VeloClosed-MagDown-Nu3/2010-Sim03Reco03-
withTruth
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events take longer to process during trigger and reconstruction. Moreover
some tracks are matched with the wrong primary vertex.

In this section we study the effects of the high track multiplicity9 on
the proper time resolution, selection efficiency. Tagging properties are dis-
cussed in the tagging Chapter 4.

Plots in the Figure 3.23 (bottom) present the distribution of the number
of tracks per primary vertex and the correlation between the primary ver-
tex and their number of tracks. The number of tracks per event increases
with the number of primary vertices reconstructed. The correlation be-
tween the two quantities implies that the best strategy to reduce the num-
ber of high occupancy events is to cut on track multiplicity rather than
cutting on the number of reconstructed primary vertexes.

In second part of the study, we divide the sample into bins of track
multiplicity and study the performancewithin those bins. We aim to study
the trend when track multiplicity increases.

We show the distributions of the discriminating variables used during
the selection in two bins of track multiplicity (first with < 150 and sec-
ond bin with > 250). From the Figure 3.24 we see that muons and kaons
tracks χ2/nDoF depend on trackmultiplicity per events. The performance
of this variable worsens for high track multiplicity events. This is due
to reconstruction effects originating from increasing number of hits mis-
matched [93] to tracks resulting in worse track reconstruction. For the PID,
better separation between muons and pions on one hand, and kaons and
pions on the other hand are achieved for low track multiplicity. Increasing
the number of tracks per events would result in higher pion background
to muons and kaons tracks, making it more difficult to assign them with
correct PID.

The discriminating variables of the J/ψ and φ particles show less de-
pendence on track multiplicity than the muons and kaons, some degrada-
tion in B0

s vertex χ2/nDoF distribution is observed as seen in Figure 3.25.

The degradations shown above lead to the fact that in higher trackmul-
tiplicity one should expect a drop in signal efficiency. Indeed, when we
calculate the signal efficiency in bins of track multiplicity (> 150, 150 −
250,> 250) we observe a clear drop with the increase of track multiplicity,
see Figure 3.26 (left).

Concerning the proper time resolution, the Figure 3.26 shows a small
degradation with the increase of track multiplicity in the event.

We can conclude then that: a clear drop of signal efficiency is observed

9track multiplicity refers here to the number of best tracks per event, where best tracks
are all tracks in the event who passed the clone killer algorithm [92].
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Figure 3.24: Maximum of χ2
track/nDoF distribution (left). Minimum of

muons ∆ lnLµπ distribution (right). The top row is for muons and the
bottom for kaon. High multiplicity variable distributions in red, low mul-
tiplicity distribution in blue (MC2010).

with the increase of number of tracks per event, this due to the degrada-
tion of PID and χ2 variables , the proper time resolution is not affected by
the increase of number of tracks per events.
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Figure 3.25: Left: distribution of B0
s min IP χ2 wrt primary vertex for high

track multiplicity (red), low track multiplicity (blue). Right: B0
s vertex

χ2/nDoF distribution for high track multiplicity (red), low track multi-
plicity (blue) (MC2010).
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Figure 3.26: Left: graph shows signal efficiency versus track multiplicity
per event. Right: a graph shows the proper time resolution versus track
multiplicity per event (MC2010).
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3.4 Selection performance with 2010 real data

In 2010 at LHC, data were taken at a center-of-mass energy
√

s = 7 TeV.
This was the first time a proton-proton collider achieved such energy. The
corresponding integrated luminosity for this data is ∼ 36 pb−1 with high
pile-up environment.

The list of triggers applied to the data are presented in the Chapter 2.
The unbiased trigger lines used for this analysis are Hlt1SingleMuonNoIP
confirmed by L0Muon, and Hlt1DiMuonNoIP confirmed by L0DiMuon.
The main feature of those lines is that they are fired mainly by muon ob-
jects and do not bias the proper time of the B0

s. Events passing those lines
are required to pass Hlt2UnbiasedJPsi line at the HLT2 level.

The sample surviving the trigger is then reconstructed with the recon-
struction program BRUNEL v37r8p4 [63] and stripped with analysis soft-
ware DaVinci v26r3 (Reco08-Stripping12) [94].

The data are then sent to dedicated trigger lines in the DiMuon strip-
ping stream, where B candidates are further refined by applying final cuts.
The cuts applied to select and refine the B0

s in B0
s → J/ψφ channel are those

developed in this chapter and summarized in Table 3.5 with some minor
changes explained below. Two additional cuts aremotivated by the behav-
ior of the background in data; details are found in [86]. A long negative
tail is observed in the proper time distribution. For events with more than
one primary vertex, the B0

s is sometimes being associated to the wrong pri-
mary vertex. As the primary vertex association is made according to a cut
on the IP χ2, a cut on the impact parameter χ2 calculated to the next best
primary vertex (χ2 of next best primary vertex <50) is added to remove
this tail. As mentioned before, a kinematic fit is performed using the De-
cayTreeFitter in order to calculate the proper time of the B0

s particle, and

cutting on the χ2 of this fit helps to obtain a high quality on B0
s candidates.

This calculation of the proper time is madewithout the J/ψ mass constraint
in order to reduce correlation between the proper time and the mass of the
B0
s. This facilitates the study of the proper time of the background in the

mass sidebands ofthe B0
s.

Concerning the values of the cuts, an optimization study [95] was car-
ried out on the 2010 data. This study confirmed the validity of our cuts
with only minor changes to the selection, where the χ2

vtx/nDoF of the φ
and the B0

s are loosened.

The reconstructed mass and proper time projections for the candidates
passing unbiased offline B0

s → J/ψφ, is shown in Figure 3.27, along with
the proper time distribution for these candidates. A two-dimensional un-
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Figure 3.27: B0
s mass (left) and proper time (right) projections of the two-

dimensional fit to B0
s → J/ψφ candidates. The total fit is represented by the

blue solid line, the signal contribution by the green dashed line and the
background contribution by the red dashed line. The mass range for the
fit is [5.20, 5.55]GeV/c2 [86].

binned maximum likelihood fit to the mass and the proper time distribu-
tions is performed in order to extract the B0

s effective lifetime.

Psig = Acc(ttrue)×
1

τ
exp(

−ttrue
τ

)× Pdfmass. (3.10)

The time part of this fit is a function shown in Equation 3.10, where an
simplified single-sided exponential, describing the true proper time distri-
bution for B0

s signal candidates, is corrected with an acceptance function.

This is to take into account effects seen in Figure 3.15. τ
single

B0
s

is the effective

lifetime of B0
s and is given by:

τ
single

B0
s

=
Aτ2

H + Bτ2
L

AτH + BτL
(3.11)

with:

A =

(

(1− cos φs)
|A0(0)|2

2
+ (1− cos φs)

|A‖(0)|2
2

+ (1 + cos φs)
|A⊥(0)|2

2

)

,

B =

(

(1 + cos φs)
|A0(0)|2

2
+ (1 + cos φs)

|A‖(0)|2
2

+ (1− cos φs)
|A⊥(0)|2

2

)

.(3.12)
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Figure 3.28: B0
s mass (left) and proper time (right) projections of the two-

dimensional fit to B0
s → J/ψφ candidates with t > 0.3 ps. The total fit

is represented by the blue solid line, the signal contribution by the green
dashed line and the background contribution by the red dashed line. The
mass range for the fit is [5.20, 5.55]GeV/c2 [86].

|A0(0)|, |A‖(0)|, |A⊥(0)| and φs are respectively the angular amplitudes
and the CP-violating phase in B0

s → J/ψφ.
The resulting function is then convoluted with three Gaussians with

different widths, which describe the detector resolution function. For the
background, two exponentials are used to describe the long-lived back-
ground candidates, and the prompt component is described by three Gaus-
sians as the resolution function.

For the mass part Pdfmass, one Gaussian is used to model the signal,
and a linear function for the background. The mass of the B0

s candidates
is calculated with the J/ψ mass constraint applied. It is observed that the
description of the resolutionmodel is not perfect and affected by the candi-
dates with negative proper time. The fit was also performedwith t> 0.3 ps
(projections are shown in Figure 3.28). In this case, no prompt background
survives, this simplify the fit and make it faster without loosing any sensi-
tivity on physical parameters.

The long-lived background parameters are left floating in the fit, while
those of the resolution are fixed from the fit performed at wider time range,
see Figure 3.27. The number of signal candidates found by the fit is Nsig =

570± 24, and the mass resolution is ∼ 7MeV/c2.
As it is explained in the introduction of this Chapter, the proper time
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distribution is fitted with a single exponential, this B0
s effective lifetime is

denoted τ
single

B0
s

and is found to be:

τ
single

B0
s

(B0
s → J/ψφ) = 1.447± 0.064(stat)± 0.056(sys)ps ,

Using a single exponential to model the proper time distribution im-
plies ignoring the non-zero width difference of the B0

s system. τ
single

B0
s

equa-

tions are given in Equation 3.11
Our measurement of τ

single

B0
s

at LHCb is compatible with the CDF and

D0 average for the τ
single

B0
s

[96].

Systematic uncertanity sources are studied in detail in [97]. It is found
that the systematic uncertanity is dominated by the proper time accep-
tance mismodeling (= 0.04 ps). The proper time acceptance function is
extracted from the Monte Carlo. The systematic error of this source is esti-
mated as the difference between the results obtained with and without the
acceptance correction.

Non-perfect modeling of signal and background is also considered in
this analysis and estimated by running the fits with alternative parametriza-
tion. It is expected to drop when more statistics are available. In addi-
tion the errors related to the momentum scale and the decay length scale
are expected to improve with better understanding of the alignment and
tracking detectors.
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3.5 Alternative selection proposal

In this section we propose a new selection for the advanced phase of data
taking at LHCb. In this new approach, we free the selection optimiza-
tion from constraints on proper time. The motivation behind this study is
based on following points:

• the unbiased lines saturate the trigger bandwidth with prompt back-
ground candidates. Using proper time cuts will remove the prompt
background component, enabling a better use of the bandwidth;

• Adding lifetime biasing cuts allows to relax the tight kinematic cuts,
resulting in a gain in the signal yield.

The new selection is a part of strategy where:

• the lifetime biased selection is the main line and provides the fit with
B0
s → J/ψφ events;

• a dedicated lifetime unbiased selection is designed to extract the
proper time acceptance and the resolution model.

The unbiased line in the case of biased strategy should be prescaled. This
reduces the number of the unbiased signal event by a prescaling factor.
This makes those event contribute only marginally in the phis fit.

In the following we present the set of cuts chosen for this selection
using MC2010 Monte Carlo samples. The cuts optimization is addressed
against the prompt background.

Selection cuts proposal
Cuts on kinematics and PID informationof the B0

s → J/ψφ decay prod-
ucts are loosened and will be summarized in Table 3.8. We show the plots
of cuts that are unique for the biased selection. Themain principle to select
muons and kaons remains unchanged; we apply PID cuts to distinguish
those from pions. In addition, cuts on their tracks χ2/nDoF are loosened.
The cut on the pT of the muons is removed (although no real gain can be
assigned to this, because different trigger levels already cut on this quan-
tity). All cuts are loosened when building the J/ψ vertex, mass range is
larger (50MeV/c2) and the J/ψ vertex χ2/nDoF is looser.

The first cut added to the biased selection is a cut on the distribution of
minimum of the pT of the two kaons. The Figure 3.29, shows the distribu-
tion for this quantity for the signal and different background sources. We



3.5. ALTERNATIVE SELECTION PROPOSAL 91

Signal
Entries  204554

Mean  0.001641±  1.115 

RMS  0.00116± 0.7417 

]2 pT)[GeV/c
-

 pT,K
+

min(K
0 1 2 3 4 5 6

E
v
e
n
ts

-410

-310

-210

-110

Signal
Entries  204554

Mean  0.001641±  1.115 

RMS  0.00116± 0.7417 

prompt

Entries  235896

Mean  0.0002881± 0.2974 

RMS  0.0002037± 0.1399 

prompt

Entries  235896

Mean  0.0002881± 0.2974 

RMS  0.0002037± 0.1399 

bb
Entries  1318

Mean  0.004336± 0.3103 

RMS  0.003066± 0.1574 

bb
Entries  1318

Mean  0.004336± 0.3103 

RMS  0.003066± 0.1574 

B2JpsiX
Entries  257064

Mean  0.0003236± 0.3794 

RMS  0.0002288± 0.1641 

B2JpsiX
Entries  257064

Mean  0.0003236± 0.3794 

RMS  0.0002288± 0.1641 

Signal
Entries  204554

Mean  0.001641±  1.115 

RMS  0.00116± 0.7417 

prompt

Entries  235896

Mean  0.0002881± 0.2974 

RMS  0.0002037± 0.1399 

bb
Entries  1318

Mean  0.004336± 0.3103 

RMS  0.003066± 0.1574 

B2JpsiX
Entries  257064

Mean  0.0003236± 0.3794 

RMS  0.0002288± 0.1641 

]2 pT)[GeV/c
-

 pT,K
+

min(K
0 1 2 3 4 5 6

E
ff
e
c
in

c
y
 p

e
r 

c
u
t

0

0.2

0.4

0.6

0.8

1

signal Efficiency

prompt Rejection

bb Rejection

B2JpsiX Rejection

signal Efficiency

prompt Rejection

bb Rejection

B2JpsiX Rejection

2
  : 0.33 GeV/c

chosen
cut

 : 95.3 %ζSignal

) : 62.6 %ζprompt (1-

) : 62.4 %ζbb (1-

) : 35.6 %ζB2JpsiX (1-

Figure 3.29: Left: distribution of the minimum kaons’ pT for B0
s → J/ψφ

signal candidates (green), bb inclusive candidates (blue), Bu,d,s → J/ψX
candidates (black), and prompt inclusive J/ψ candidates. Right: signal
efficiency and individual background rejection rates per cut.

then remove the cut on the pT of the φ, and release the cut on its mass to
20MeV/c2 around the nominal mass of the φ.

Combining the two particles into one vertex yields the B0
s particle. We

release the cut on the vertex quality to be χ2
vertex/nDoF < 12.

The biasing cuts, used to get rid of the prompt background, are: the
direction angle cut, and the vetex separation χ2. We show the definitions
of those variables in Figure 3.30. Firstly, we cut on the direction angle cut,
which is the cosine of the angle between the reconstructed momentum of
the B0

s and the direction of the vetex separation originating from a primary
vertex.

Secondly, we cut on the χ2 of the vetex separation, where the vetex
separation is the distance between the decay vertex of the B0

s particle and
its reconstructed primary vertex. The distribution is correlated with the
direction angle variable.

The background-to-signal ratios, for the prompt and long-lived back-
ground, can be calculated using the same conventions and equations as
before (see Section 3.3.5 Equations 3.8 and 3.9). The results are gathered in
the Table 3.9, those results are obtained without applying any trigger cuts.

The trigger strategy for this analysis is in development. Any trigger
lines for this analysis should take in consideration the fact that one need
a control sample where the biasing cut are not applied, in order to calcu-
late the proper time distortions caused by these cuts, and the proper time
resolution function.
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Figure 3.30: Geometrical variable definitions, vetex separation (FD), im-
pact parameter (IP), direction angle (θp,F).
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Figure 3.31: Left: distribution of the B0
s direction angle for B0

s → J/ψφ

signal candidates (green), bb inclusive candidates (blue), Bu,d,s → J/ψX
candidates (black), and prompt inclusive J/ψ candidates. Right: signal
efficiency and individual background rejection rates per cut.
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Figure 3.32: Left: distribution of the B0
s vetex separation χ2 for B0

s → J/ψφ

signal candidates (green), bb inclusive candidates (blue), Bu,d,s → J/ψX
candidates (black), and prompt inclusive J/ψ candidates. Right: signal
efficiency and individual background rejection rates per cut.

Decay mode Cuts
J/ψ → µ+µ− ∆ lnLµπ > −5

muons χ2
track/nDoF < 5

χ2
vtx/nDoF(J/ψ) < 15

|M(µµ)−M(J/ψ)| < ±50MeV/c2

φ → K+K− ∆ lnLKπ > 0
min(K+pT, K−pT) > 350MeV/c2

kaons χ2
track/nDoF < 5

χ2
vtx/nDoF(φ) < 15

|M(K+K−)−M(φ)| < ±20MeV/c2

B0
s → J/ψφ χ2

vtx/nDoF < 12
cos(θp,F) > 0.999

FD χ2 > 6
|M(B0

s)−M(J/ψφ)| < ±50MeV/c2

Table 3.8: Table summarizes the cuts developed for the biased analysis,
applied to the B0

s → J/ψφ channel.
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Biased selection factor w.r.t unbiased analysis
Y 160. k 1.52

Bprompt/S 0.19± 0.10 13
Bbb/S 0.15± 0.08 1.33

Table 3.9: Table summarizes the yield and B/S rates for biased analysis,
along with the gain obtained comparing to the same quantities in the un-
biased selection (MC2010).

A clear gain in terms of yield is obtained, indeed releasing the kine-
matic cuts on the φ particle in addition to loosening the quality cuts spe-
cially on the B0

s vertex pays off in terms of signal efficiency. The signal
yield in Table 3.9 is obtained before any trigger and it is compared to the
yield expected from the unbiased selection before any trigger as well10.

For biased analysis, we expect a better trigger efficiency since the bi-
ased selection can benefit from both biased and unbiased trigger lines 11.
Detailed studies about the biased trigger lines and strategy were carried
out here [99]. We performed full study of the biased selection on the back-
ground using Monte Carlo sample in [98]. Here, we update the signal
yield and the B/S ratios, we use the same tagging performance measured
in the unbiased selection. We summarize the results of this study in the
Table 3.10.

10unbiased yield before any trigger is 60 000/57% = 105k events.
11the biased trigger efficiency can be as high as 80% for some scenarios [98].



Parameter Signal Prompt background (Pr) Long-lived background (LL)

Events in B0
s mass window

±50MeV/c2 100 k 19 k 15 k
(fractions, B/S) (74.6%) (14.2%, BPr/S = 0.19) (11.2%, BLL/S = 0.15 )

Mass m (MeV/c2) 2 Gauss; Exp(−αPr
m m); Exp(−αLL

m m);
f sm,1 = 0.67; σs

m,1 = 4.9; σs
m,2 = 9.14 αPr

m = −0.0015 αLL
m = 0.0016

Proper time t (fs) Signal PDF ⊗ 2 Gauss; δ(t)⊗ 1 Gauss; 2 Exponentials ⊗ 1 Gauss;
f st,1 = 0.63; µs

t,1 = 0; σs
t,1 = 27.9; µPr

t = 0; σPr
t = 40 (one-side) f LLτ1

= 0.50; τLL
1 = 758, τLL

t,2 = 252;

µs
t,2 = 0; σs

t,2 = 53.2 µLL
t = 0; σLL

t = 60

Angles no acceptance no acceptance no acceptance
flat background flat background flat background

Flavour tagging εtag = 0.564; ω = 0.334 εPrtag = 0.30 εLLtag = 0.62

Table 3.10: Summary of baseline detector input parameters for sensitivity studies with the biased cuts, extracted
from full Monte Carlo.



96 CHAPTER 3. SELECTION

Proper time acceptance extraction:
The benefits of the biased selection comes with a cost, that is the bias

created on the proper time distribution. Such bias results in a non-trivial
proper time acceptance function.

We discuss here a method to extract this acceptance directly from real
data, without relying on Monte Carlo. The method is based on a “smart”
background subtraction called the “sPlot” technique [100]. If a data sam-
ple consists of multiple types of events (e.g. signal and backgrounds),
sPlot reconstructs variables which are unknown for each type, by using
information from a known “discriminate” variables available in the sam-
ple (e.g. mass).

With this tool, we can extract the biased proper time distribution, for
the signal, from the data sample. The next step is to repeat the same pro-
cess using an unbiased data sample, where the biasing cuts are not ap-
plied. This provides the unbiased proper time distribution for the signal
events. Dividing the two distributions gives the desired proper time ac-
ceptance function.

We make use of a Monte Carlo data sample that is similar to real data
in order to test this method. Our choice is the Bu,d,s → J/ψX, as it is rich in
both signal and background.
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Figure 3.33: Left: mass distribution for events passing the biased selec-
tion cuts, in the Bu,d,s → J/ψX Monte Carlo sample, it is fitted with a sin-
gle Gaussian for the signal model and an exponential to model the back-
ground. Right: biased proper time distribution for the signal obtained us-
ing sPlos technique

We apply the biased selection on the sample Table 3.8. Figure 3.33
shows the proper time distribution obtained with sPlot technique. By re-
moving the biasing cuts (i.e. cos(θp,F) > 0.999 and FDχ2 > 6), we repeat
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the same procedure using sPlot, extracting the unbiased proper time dis-
tribution for the signal, as shown in Figure 3.34.
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Figure 3.34: Left: mass distribution for all event passing the unbiased se-
lection cuts, in the Bu,d,s → J/ψX Monte Carlo sample, this is fitted with
a Gaussian for the signal and an exponential to model the background.
Right: unbiased proper time distribution for the signal obtained using
sPlot technique (MC2010).

At last, the ratio of the biased proper time distribution to the unbiased
one is the acceptance function, shown in Figure 3.35 (right). To check the
validity of this method, we compute the “true” proper time acceptance, as
it is explained in Section 3.3.4, where we rely on Monte Carlo information
to pick the true signal in the Bu,d,s → J/ψX sample. Figure 3.35 (left),
shows the “true” proper time acceptance for the signal events. We fit both
acceptance function with this empirical function:

Accfit =
(s× treco)3

1 + (s× treco)3
. (3.13)

where s represents the slope of at low proper times, treco is the recon-
structed proper time.

The s values are given in Table 3.5. We find the two slopes coming from
the true and the sPlot acceptance function to be compatible within ∼ 0.8σ.

This method gave an accurate estimation to the proper time acceptance
function, without relying on Monte Carlo. It requires, nonetheless, a ded-
icated unbiased line in order to extract the unbiased proper time distri-
bution for the signal. This study is an important result of this analysis.
Systematics induced by this method are studied in chapter 5
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Figure 3.35: Left: proper time acceptance using Monte Carlo information
calculated in the Bu,d,s → J/ψX sample. Right: proper time acceptance
calculated using sPlot distributions in the same sample.

“True” acceptance sPlot acceptance
Slope 10.05± 0.16 10.34± 0.31

Table 3.11: The slope values extracted from “true” acceptance (column 2)
and from acceptance function fitted to sPlot acceptance function (column
3).

3.6 Summary

In this chapter, we described the proper time unbiased selection optimiza-
tion and performance using extensive studies on Monte Carlo samples.
This is the core of first data analysis strategy at LHCb. A unified selection

for the B0
s → J/ψφ, B0

d → J/ψK∗0 and B+ → J/ψK+ channels is adopted to

reduce systematic uncertainties when measuring the φs parameter.
The selection tightens the kinematic cuts (pT, mass) and avoids any cut

that biases the proper time and angular variables. Background is com-
posed of two components: the highest background is the prompt, the sec-
ond is the long-lived. A detailed study for both signal and background
properties is shown with the help of Monte Carlo.

The 2010 configuration of the LHC machine creates a high pile-up en-
vironment. Its effects on the signal selection efficiency and proper time
resolution is studied.

An unbiased selection is applied to the first data taken in 2010. We
presented briefly the effective lifetime measurement for the B0

s → J/ψφ
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performed on ∼ 36 pb−1 of integrated luminosity. The effective B0
s life-

time is determined with this data sample: τ
single

B0
s

= 1.447± 0.064(stat)±
0.056(sys).

We presented an alternative strategy, developed for the next phase of
data taking, where prompt occupancy of band width will not be tolerated.
This new selection removes all constraints from the unbiased one, and
uses proper time biasing cuts. Using this selection, clear gains in terms
of yield and prompt background reduction are observed with respect to
the unbiased selection.

One of the disadvantages of the biased selection is the proper time
distortion. We proposed a method relying on sPlot technique in order
to extract this distortion from real data without relying on Monte Carlo
information. This method requires an unbiased sample provided by an
unbiased trigger line.
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Chapter 4

Tagging studies

The determination of the flavour of the B0
s meson is a crucial step when

performaing many of the CP measurments. This process is called flavour
tagging. In this Chapter, the performance of the flavour tagging with both
Monte Carlo and 2010 data samples are presented. These results are ob-
tained using the unbiased selection applied on B0

s → J/ψφ channel and its

control channels B0
d → J/ψK∗0 and B+ → J/ψK+ [101]. This chapter deals

with the “opposite-side” tagging properties. Effects of high pile-up on re-
construction and selection were studied in the previous chapter. Here we
show that those changes affect the tagging performance of the B0

s → J/ψφ
channel.

In Section 4.1, we summarize the flavor tagging procedure in LHCb.
High pile-up effects on tagging performance are studied in Section 4.3.
Finally in Section 4.4 we describe the tagging performance forMonte Carlo
samples and 2010 data respectively in the three channels B+ → J/ψK+,

B0
d → J/ψK∗0 and B0

s → J/ψφ.

4.1 Flavor tagging algorithm

Tagging the initial flavor of the B0
s at production is an indispensable elem-

net of φs analysis. Although the untagged decay rates do carry informa-
tion on φs, the sensitivity of the tagged rates is much higher, particularly
in the case that φs is small [5].

Many CP asymmetry measurements depend on the knowledge of the
b-meson initial flavor. The process of the determining whether a b-meson

contains a b or b quark at production is called “flavor tagging”. This pro-
cess is performed at LHCb using different tagging algorithms described

101
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in [101, 102, 103] and illustrated in Figure 4.1.
At LHC, b-hadrons are generally produced in pairs. We designate the

studied b-meson and its final state particles as “signal side” (also called
“same side”) and the other b-meson as the “opposite side”. Two types of
taggers are used to identify the initial b-meson flavor:

• Opposite-side (OS) taggers use the charge of leptons from semilep-
tonic b-hadron decays and kaons from the b to c to s decay chain.
They can also use the charge of the inclusive secondary vertex re-
constructed from the b decay products. Opposite-side taggers can be
used to tag all b-hadrons;

• Same-side (SS) taggers are based on the correlation between the charge
of the B and the charge of nearby mesons from fragmentation chain
or from the decay of existed B0

s. Kaons are used to tag B0
s, while pions

are used to tag B0
d and B+.

The tagging algorithm is characterized by:

• mistag rate: ω = W/(W + R);

• tagging efficiency: ǫtag = (W + R)/(W + R + U);

• effective tagging efficiency (or tagging power): ǫeff = ǫtag(1− 2ω)2.

where W,R and U are, respectively, the number of candidates wrongly
tagged, correctly tagged and untagged.

To select a tagging particle, cuts on track quality, PID information and
momentum are applied. The charge of the tagging particle is used to de-
fine the tagging decision d, denoted −1 if the b-hadron contains b quark,

+1 if it contains b quark and 0 if no tag decision is given.
The cuts have been optimized to maximize the effective tagging ef-

ficiency using 2010 data. This optimization was first performed on the
B0
d → D∗−µ+νµ and the B+ → J/ψK+ self-tagging channels, since these

channels have the largest number of event. The performance obtained

from the optimized cuts are then measured with the B0
d → J/ψK∗0 chan-

nel.
For each tagger i a probability (1 − ωi) of the tagging decision to be

correct is assigned. It is estimated using several kinematic and geometrical
properties of the tagger. This is done by the means of a neural net. The
mistag rate can be measured on data using flavor-specific decay channels.
For charged mesons the mistag is obtained by comparing the flavor of the
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Figure 4.1: Schematic representation of the different sources of informa-
tion available to tag the b-meson flavor, here B0

s → J/ψφ.

reconstructed flavor with the tagging decision. For neutrals it is done by
fitting the flavor oscillation as a function of proper time.

These probabilities are calibrated on data using B+ → J/ψK+ chan-
nel.The mistag probabilities of different taggers can be combined in differ-
ent ways:

• combining the tagging decisions and probabilities for the opposite-
side taggers only, this is a universal combination for all b-mesons;

• combining all taggers (including the same-side tagger (SS kaon or SS
pion), this combination is different for B0

s and B0
d, B

+ ones.

Those combined mistag probabilities can be then used in three ways:

• to form one average mistag for the full sample. This is the simplest
solution but the one giving the least sensitivity to the physical pa-
rameters;

• to split events into categories of similar effective tagging efficiencies,
and then to calculate an average mistag for the whole sample using
those categories;

• to estimate the mistag probability on event-per-event basis.
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The event by event mistag probability is calibrated in the B+ → J/ψK+

channel, where a linear dependence between the measured and the calcu-
lated mistag is observed:

ω = p0 + p1(̇η − 〈η〉), (4.1)

where p0 and p1 are free parameters and 〈η〉 is the mean calculatedmistag
probability. To extract the calibration parameters, an unbinned likelihood
fit to the mass, tagging decision and η observables is performed1. In the
following, we will present the tagging performance with the unbiased se-
lection using Monte Carlo samples.

4.2 Tagging propertieswithMonte Carlo samples

The cuts developed in Chapter 3 for B0
s → J/ψφ are applied when possible

in the control channels. This is done to ensure that B0
s candidates in the

signal channel will have similar kinematics to the B candidates in the two
control channels. This allows, the opposite-side tagging properties to be
exported from control to signal channels without corrections.

The flavor tagging performance are measured by comparing the true
initial B flavor as determined by the Monte Carlo truth information to the
decision given by the tagging algorithm.

The total effective tagging efficiency is given after sorting all the events
into five exclusive samples of increasing tagging purity, this allows the
increase of the total effective efficiency. A detailed description of the com-
bination is found in [102].

Trigger lines and selection cuts, used for the 2010 data, are applied on
the Monte Carlo samples used in this study. Tables 4.1, 4.2 and 4.3 show
the individual mistag, tagging efficiency and effective efficiency for the in-
dividual taggers and for tagging categories, and present the combination
of tagging parameters for opposite-side taggers. The combined opposite-
side effective efficiency ǫeff(B

0
s → J/ψφ) = (2.64 ± 0.08)%, ǫeff(B

+ →
J/ψK+) = (2.77± 0.07)%, ǫeff(B

0
d → J/ψK∗0) = (2.64± 0.10)% are compat-

ible for the three channels, as a result of applying a unified event selection
for the three channels.

1The pdf fo η, involved in the fit, is extracted from data for signal and background
separately.
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B+ → J/ψK+

εtag(%) ω(%) εeff(%)

Individual taggers
µ 4.93±0.03 30.37±0.33 0.76±0.03
e 2.46±0.02 33.16±0.48 0.28±0.02
K 11.43±0.05 33.20±0.22 1.29±0.03

SSπ 16.71±0.06 39.83±0.19 0.69±0.03
Qvtx 22.09±0.07 40.31±0.17 0.83±0.03

Combination of taggers: OS
Average 23.92±0.07 34.43±0.16 2.32±0.05

combined 23.92±0.07 33.00±0.16 2.77±0.07

Combination of taggers: SSπ+OS
Average 31.24±0.07 34.56±0.14 2.98±0.05

combined 31.24±0.07 33.14±0.14 3.55±0.08

Table 4.1: Flavour tagging performance for the individual taggers and the
combinations of taggers with B+ → J/ψK+ signal Monte Carlo events
passing the selection and the trigger cuts. Uncertainties are statistical.

B0
d → J/ψK∗0

εtag(%) ω(%) εeff(%)

Individual taggers
µ 4.94±0.05 31.45±0.48 0.68±0.04
e 2.49±0.04 32.67±0.69 0.30±0.02
K 11.40±0.07 33.96±0.32 1.17±0.05

SSπ 17.76±0.09 40.15±0.27 0.69±0.04
Qvtx 22.17±0.10 40.30±0.24 0.83±0.04

Combination of taggers: OS
Average 23.95±0.10 34.96±0.23 2.17±0.07

combined 23.95±0.10 33.41±0.23 2.64±0.10

Combination of taggers: SSπ+OS
Average 32.35±0.11 35.23±0.19 2.82±0.07

combined 32.35±0.11 33.69±0.19 3.44±0.11

Table 4.2: Flavour tagging performance for the individual taggers and the

combinations of taggers with B0
d → J/ψK∗0 signal Monte Carlo events.

Uncertainties are statistical.
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B0
s → J/ψφ

εtag(%) ω(%) εeff(%)

Individual taggers
µ 4.62± 0.06 30.28± 0.60 0.72± 0.04
e 2.41± 0.04 32.02± 0.85 0.28± 0.03
K 11.55± 0.09 33.74± 0.39 1.22± 0.06

SS K 14.48± 0.10 31.88± 0.34 1.90± 0.07
Qvtx 21.41± 0.12 40.2± 0.30 0.82± 0.05

Combination of taggers: OS
Average 23.94± 0.13 34.82± 0.25 2.21± 0.06

combined 23.94± 0.12 33.38± 0.27 2.64± 0.08

Combination of taggers: SSK+OS
Average 33.21± 0.13 32.64± 0.20 4.00± 0.07

combined 33.21± 0.13 30.60± 0.23 5.00± 0.11

Table 4.3: Flavor tagging performance the individual taggers and the com-
binations of taggers with B0

s → J/ψφ signalMonte Carlo events. Uncertain-
ties are statistical.
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4.3 High pile-up impact on tagging

In this sectionwe continue the study started in Chapter 3, wherewe present
the effect of the high pile-up scheme adopted by the LHC machine for the
2010 run. This scheme has a high number of proton-proton collisions (ν)
per bunch which creates an environment where the number of tracks and
vertices per event increases2.

A Monte Carlo sample are generated to simulate this environment. We
study the effect of such phenomena in terms of the number of tracks per
event, dividing the Monte Carlo sample into bins of track multiplicity3 (<
150, 150− 250, > 250) andmeasuring the tagging performance in each bin.

Figure 4.2 shows the mistag rate for individual taggers (left) and the
combined mistag rate (right). A clear increase in mistag rate is observed
as the number of tracks per event increases. In Figure 4.3, the tagging
efficiency increase with the track multiplicity for most of the taggers. As
the background increases in such an environment (e.g. more pion tracks),
selecting the right taggers in the event will become harder, resulting in a
higher mistag rate.

The resulting effective tagging efficiency, which is the parameter of in-
terest for the φs sensitivity, suffers a drop for all taggers, where the excess
in tagging efficiency can not compensate the mistag loss. This drop will
have negative impact on the φs sensitivity. Figure 4.4 shows the degrada-
tion of effective tagging efficiency per tagger (left) and the combined one
(right)

The impact of tagging performance degradation and other effects stud-
ied in Chapter 3 on the φs sensitivity is summarized in Figure 4.5, where
the following formula is used:

σ(φs) ∝
1

√

Nsigǫtag
× exp(0.5× (σt × ∆ms)

2). (4.2)

Figure 4.5 indicates that the φs sensitivity decreases when more tracks
are present in the event. A new strategy for the tagger selection can help
reduce the loss in effective tagging efficiency and consequently gain back
some of the φs sensitivity. A new approach that includes developments in
trigger, reconstruction and tagging algorithms has been performed to face
the high pile-up challenge. The new optimization performed on the 2010
data was able to recover most of the loss.

2LHCb was designed for ν = 0.4, in 2010 LHCb this value surpassed ν = 2.5 in some
runs.

3number of best tracks per event is defined in Chapter 3 .
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Figure 4.2: Left: individual mistag rate for each tagger in range of track
multiplicity. Right: combined mistag rate in range of track multiplicity.
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Figure 4.3: Left: individual tagging efficiency for each tagger in range of
track multiplicity. Right: combined tagging efficiency in range of track mul-
tiplicity per event.
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p0 p1 〈η〉 ρ(p0, p1)
0.338± 0.012± 0.004 1.01± 0.12± 0.01 0.339 −0.05

Table 4.4: Calibration parameters, average mistag and correlation between
the calibrations parameters, extracted from the B0

s → J/ψφ control chan-
nel [101]. The first error is statistical and the second systematic.

4.4 Opposite side tagger in 2010 real data

Themeasuredmistag in the calibration channels can be used in the φs final
fit performed in the B0

s → J/ψφ channel. This is done with the restriction
that selection, trigger, pT spectrum and running conditions are similar if
not identical. In the final determination of the φs with 2010 data, the event-
by-event misatg is used.

As explained earlier the calibration of the event-by-event mistag is
done in the self-tagged B+ → J/ψK+ channel. The calibration parameters
of the Equation 4.1 are fitted and given in Table 4.4, the p0 and p1 values
are compatible with 〈η〉 and 1 respectively, indicating that the calculated
mistag is correct.

To check the calibrated mistag, a time dependent asymmetry fit is per-

formed in the B0
d → J/ψK∗0 control channel with floating calibration pa-

rameters, the results: p0 = 0.333± 0.025± 0.003, p1 = 0.71± 0.26± 0.24
and 〈η〉 = 0.35 are compatible with what is found in B+ → J/ψK+ channel.

We summarize in the Table 4.5, the opposite-side mistag, tagging effi-
ciency and effective tagging efficiency for the two control channels after
the optimization of the tagger selection and the calibration of the mistag
using the 2010 data. The measured mistag rate in the two channels agree
within the available statistics. The complete study can be found in [101].

To validate the use of the above mistag rates in B0
s → J/ψφ channel, we

compare the signal distribution of the pT and the opposite-side combina-
tion of the mistag for those channels in 2010 data. This is done by using
the sPlots technique [100] previously introduced in Chapter 3.

Figures 4.6, 4.7 and 4.8 shows the pT and opposite-side mistag distri-
butions for the control and signal channels. These plots are made with
the unbiased selection cuts, applying proper time cut t > 0.3 ps and for
events that are opposite-side tagged only. We observe a high degree of

similarity among those distributions. For the B0
d → J/ψK∗0 pT distribu-

tion, the pT average is higher than the other modes. This is simply due to

the pT > 2GeV cut applied in the stripping phase to reduce the high K∗0
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Figure 4.6: Left: Calibrated opposite-side mistag probability distribution
for B+ → J/ψK+. Right: pT distribution for B+ → J/ψK+.
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Figure 4.7: Left: Calibrated opposite-side mistag probability distribution
for B0

d → J/ψK∗0. Right: pT distribution for B0
d → J/ψK∗0.
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εtag(%) ω(%) εeff(%)
B+ → J/ψK+

average OS 15.4±0.4 33.3±1.2 1.71±0.29
combined OS 15.4±0.3 32.2±1.2 1.97±0.31

B0
d → J/ψK∗0

average OS 15.7± 0.6 33.1± 3.0 1.79± 0.71
combined OS 15.8± 0.7 30.0± 6.6 2.52± 0.82

Table 4.5: The flavor tagging performance is given for the OS and SSπ+OS
separately, both averaged over the sample and combined after splitting in

categories, for B+ → J/ψK+ (top) and B0
d → J/ψK∗0 (bottom), after the

calibration. The quoted uncertainties are statistical only.
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Figure 4.8: Left: Calibrated opposite-side mistag probability distribution
for B0

s → J/ψφ. Right: pT distribution for B0
s → J/ψφ.

background, keeping an acceptable retention.
From the B0

s → J/ψφ ω plot 4.9 (right), we calculate the tagging effi-

ciency to be 98/575 = (17.04± 1.56)% which is compatible with what is
found Table 4.5. We estimate the tagging dilution:

〈Dtag〉eff =

√

1

N

n

∑
i=1

(1− 2ωi) = 0.35± 0.03, (4.3)

where the error on the dilution is dominated by the number of event in
the calibration channel. The effective tagging efficiency for the B0

s → J/ψφ

channel is: ǫtag〈Dtag〉eff = (2.2± 0.4)%
Another interesting check is the correlation between mistag rate and
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Figure 4.9: distributions of the mean calibrated opposite-side mistag prob-
ability as a function of the pT of signal B for B+ → J/ψK+ (left), B0

d →
J/ψK∗0 (centre), B0

s → J/ψφ (right).

pT. In Figure 4.9, we show the plots of mistag versus pT for the control
and signal channels. The plots shows a flat tendency, which agrees with
the expectation from Monte Carlo.
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4.5 Summary

In this chapter, we reviewed the flavor tagging procedure in LHCb and
give the tagging performance on the B0

s → J/ψφ on Monte Carlo samples.
A dedicated description of the tagging performance with the 2010 data
was presented.

We explored the effects of high pile-up environment on the tagging
properties and φs sensitivity. This is of particular importance as the run-
ning condition at LHCb in 2010 followed a scheme with high pile-up. The
study concludes that high pile-up could lead to losses in tagging perfor-
mance and consequently on φs sensitivity. A new strategy for the taggers
selection has been adopted in order to cope with the 2010 running condi-
tions.

In Monte Carlo and 2010 data, we found similar tagging performance

among the signal and the two control channels B0
d → J/ψK∗0 and B+ →

J/ψK+. This is an important validation of the purposes of the unbiased se-
lection strategy which requires the same tagging properties for the signal
and for the control channels..

The calibration performed in the B+ → J/ψK+ channel allows a cor-
rect estimation of the calculated event-by-event mistag, the calibration of
the mistag rate is one of the crucial parameters in the final step of this
analysis–the fit of the φs phase, which we will discuss in the Chapter 5.



Chapter 5

Fit

We describe in this chapter the fit of the φs phase in the B0
s → J/ψφ chan-

nel, which we developed before the data taking. We derive the probability
density function (pdf). It is composed of two main parts: signal and back-
ground, where the signal decay rates are described in Chapter 1 and the
backgrounds are described in Chapter 3. The pdf depends on the follow-
ing observables: B0

s mass, proper time, angular variables and tagging deci-
sion. Wemake use of a fast Monte Carlo simulation tool (toy MC), and full
Monte Carlo simulation in order to test and validate our fitter program.

In Section 5.1 we introduce the pdf describing the signal and back-
ground sources of the B0

s → J/ψφ channel. A fit to the full Monte Carlo
signal sample is presented in Section 5.2. In Section 5.3 we describe the
sensitivity to physics parameters in the B0

s → J/ψφ channel using the un-
biased and biased selections. In addition, we studied the effects of low
signal statistics on the fitter stability. We also study the systematic error
imposed by the proper time acceptance of the biased selection. Finally
the determination of φs in 2010 data is reviewed in Section 5.4. The full
φs measurement made with 36 pb−1 of integrated luminosity is published
in [104]. It uses the selection developed in this thesis, the small difference
between the fitter used by the collaboration and the one developed in this
thesis are given in the same section.

5.1 Fitter description

The determination of the physical parameters in B0
s → J/ψφ channel is

done by the means of an unbinned maximum-likelihood fit of the prob-
ability density function to the dataset. The pdf comprises two main com-
ponents:

115
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• signal pdf depends on the theoretical description of the B0
s → J/ψφ

events, and on the detector effects on this pdf;

• Background pdf is an empirical description of the different back-
ground sources.

The likelihood function for N events can be written as:

L =
N

∏
e

P(Xe;λphys,λdet) , (5.1)

where

• Xe are the measured event physics observables. These are proper
time t, decay angles Ω, B mass m and tagging decision of the initial
B flavor tag d;

• λphys = {Γs,∆Γs,R⊥,R0, δ⊥, δ‖,∆ms, φs} are discussed in Chapter 1;

• λdet are the detector parameters: mass resolution σm, proper time
resolution σt, mistag rate ω and the background parameters: prompt
Gaussian parameters σ and mean values and parameters of long-
lived background component τLL1

, τLL2
and long-lived resolution pa-

rameters, discussed in Chapter 3.

The pdf can be written then as:

P = fsigS + (1− fsig)B , (5.2)

where fsig is the expected overall signal fraction.

Signal pdf
The signal pdf is described by the equation:

S(Xe;λ) ∝ S1(t, q,Ω;λphys,λdet) S2(m;λphys,λdet) ǫ(t,Ω), (5.3)

where it comprises the following parts:

• S1, the differential decay rate for the B0
s → J/ψφ channel convoluted

with the proper time resolution model;

• S2, the mass pdf described by the two (or more) Gaussian distribu-
tions to account for the detector smearing on the B0

s mass;

• ǫ, the acceptance function which describes effects of the detector and
analysis cuts on the proper time and angular distributions.
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The theoretical pdf is divided into two main parts; time-dependent func-
tions and angular-dependent functions.

Flavor tagging effects appear in the time-dependent functions of the
differential decay rates of the B0

s → J/ψφ channel. Inserting the tagging
decision (q = −1, 0,+1) and the dilution term (D = 1− 2ω) in front of the
mixing terms accounts for tagging effects:

(1−ω)|A0(t)|2 + ω|Ā0(t)|2 = |A0(0)|2e−Γst ×
[

cosh

(

∆Γst

2

)

− cos φs sinh

(

∆Γst

2

)

+ (1− 2ω) sin φs sin(∆mst)
]

, (5.4)

(1−ω)|A‖(t)|2 + ω|Ā‖(t)|2 = |A‖(0)|2e−Γst ×
[

cosh

(

∆Γst

2

)

− cos φs sinh

(

∆Γst

2

)

+ (1− 2ω) sin φs sin(∆mst)
]

, (5.5)

(1−ω)|A⊥(t)|2 + ω|Ā⊥(t)|2 = |A⊥(0)|2e−Γst ×
[

cosh

(

∆Γst

2

)

+ cos φs sinh

(

∆Γst

2

)

− (1− 2ω) sin φs sin(∆mst)
]

,(5.6)

(1−ω)ℑ{A∗‖(t)A⊥(t)}+ ωℑ{Ā∗‖(t)Ā⊥(t)} = |A‖(0)||A⊥(0)| e−Γst
[

− cos(δ⊥ − δ‖) sin φs sinh

(

∆Γst

2

)

+ (1− 2ω)
{

sin(δ⊥ − δ‖) cos(∆mst)− cos(δ⊥ − δ‖) cos φs sin(∆mst)
}]

, (5.7)

(1−ω)ℜ{A∗0(t)A‖(t)}+ ωℜ{Ā∗0(t)Ā‖(t)} = |A0(0)||A‖(0)| e−Γst cos(δ‖)×
[

cosh

(

∆Γst

2

)

− cos φs sinh

(

∆Γst

2

)

+ (1− 2ω) sin φs sin(∆mst)
]

, (5.8)

(1−ω)ℑ{A∗0(t)A⊥(t)}+ ωℑ{Ā∗0(t)Ā⊥(t)} = |A0(0)||A⊥(0)| e−Γst
[

− cos δ⊥ sin φs sinh

(

∆Γst

2

)

+ (1− 2ω) {sin(δ⊥) cos(∆mst)− cos(δ⊥) cos φs sin(∆mst)}
]

, (5.9)

The B0
s pdf is obtained by swapping the sign of the terms involving

sin(∆mst). In the untagged pdf where d = 0, the dilution term in the
Equations 5.4 to 5.9 vanishes. This part is less sensitive to the φs parameter
than the tagged one. This is because mixing terms, dependent on sin(φs),
disappear when the tagging information is absent. Notice that the S-wave
contribution to the B0

s → J/ψφ channel is neglected.

To account for the finite detector resolution on proper time, the theo-
retical pdf is convoluted with Gaussian(s) function(s):

S ′1(t,Ω, q;λphys,λdet,R) =
∫ ∞

t′=0
dt′ S1(t,Ω, q;λphys)G(t′ − t;R)

≡ S1(t,Ω, q;λphys)⊗ G(t′ − t;R) , (5.10)
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where t′ denotes the true proper time. The parameters R = { f1, σt1, σt2}
describe the proper time resolution model and are defined in time units
( ps).

The angular resolution functions is studied in Chapter 3. In the study,
we neglect the angular resolution in the signal pdf. This is justified by the
small effect of such simplification in the φs determination [105].

Sculpting of proper time and angular variable distributions were dis-
cussed in Chapter 3. As explained there, proper time Sculpting comes
either from detector effects or due to analysis cuts. This is valid for the
sculpting of angular variable distributions, also called “acceptance func-
tions”. Those functions are calculated either from data or from Monte
Carlo. To take those into account we multiply the theoretical pdf by the
acceptance function(s) as shown in Equation 5.3.

Background pdf:
There are twomain background sources in the B0

s → J/ψφ channel: long-
lived and prompt. The background pdf is described by the following equa-
tion:

B(m;λdet) B(t;λdet) B(Ω), (5.11)

composed of three main parts:

• mass pdf;

• proper time pdf;

• angular pdf.

The mass distribution for both background types (prompt and long-lived)
follows an exponential distribution:

B(m;λdet) = Ndet e
−αdet , (5.12)

Modeling the proper time and angular distributions is done using a fit
of empirical functions on the mass distribution side bands. The descrip-
tion of the long-lived proper time distribution uses exponential function
convolutedwith a resolution function different from that of the signal. The
proper time distribution of prompt background is simulated with a mul-
ticomponent Gaussian function. The angular distributions are considered
flat in the fit (we neglect the unique shape of the cosψ in the Monte Carlo
simulation samples).
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No correlation is found between the angular and proper time distribu-
tions for both background sources. This leads to separate the proper time
and angular empirical pdfs. Chapter 3 contains a detailed description of
the angular and proper time descriptions in Monte Carlo.

5.2 φs fit in full simulation

To check the fitter program we test it first against the full Monte Carlo
simulation of B0

s → J/ψφ (version MC10).
To account for the geometrical effects of the detector on the angular

variables a 3D acceptance function is determined using the Monte Carlo
information. Many approaches are studied in LHCb to account for accep-
tance effects:

• multiply the signal pdf by a 3D histogram calculated from theMonte
Carlo signal sample. One can further use Legendre or Tchebytchev
polynomials (as in Ref. [106]) fitted to the 3D histogram to extract the
3D acceptance function as explained in Ref. [107];

• account for the acceptances using a normalizationweights calculated
from the 3D histogram in the likelihood function [105];

• use the pT spectrums and reconstruction efficiencies to extract the ac-
ceptance histograms fromdata. This approach is studied in Ref. [108].

In our fitter we account for the angular acceptance using the 3D his-
togram. In the published analysis with 2010 data the 3D histogram is fitted
with Legendre polynomial to smooth the binning effects. The acceptance
histogram consists of 20 bins in each angular variables meaning 8 000 bins
for the 3D histogram. The bin coordinates are the division of the true an-
gular variables by the theoretical expectations.

It is necessary to use a 3D histogram and not a simple acceptance pro-
jections onto angular variables plane, because they include the correla-
tion between the angular distortions. In case of proper time acceptance, a
proper time function should be also taken into account in the signal pdf.
In general, neglecting the angular acceptances in the fit procedure biases
R⊥,R0, δ⊥, δ‖ but would also bias Γs,∆Γs parameters as the proper time
and angular variables correlation is not trivial and depends on the ∆Γs

values [99].
Figure 5.1, shows the 3D angular acceptance and the proper time func-

tion in case of the unbiased selection, ∼ 500 000 events are fitted (218 000
untagged events, 254 000 tagged events).
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Figure 5.1: Proper time acceptance function (top left) and projection of the
determined 3D angular acceptance in the transversity basis and the proper
time acceptance used in the signal fit to the Monte Carlo data ‘(MC2010).
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In the fit, all detector and physical parameters are float; a simple Gaus-
sian for the resolution model is used. Fit results are shown in Table 5.1,
where all the physical parameters are correctly returned by the fitter with
less than 2σ deviation from the input values. Errors are correctly estimated
and the fit converges with no problems. Figure 5.2 shows the projection of
the signal pdf onto the angular variables and proper time planes.
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Figure 5.2: Left: the B0
s→ J/ψφ MC10 data and the projections of signal Pdf

including the angular and proper time effects, only B0
s events are shown.
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Parameter Fit result and error σ from input

τs 1.468 ± 0.003 ps −1.2
∆Γs 0.055 ± 0.005 ps−1 −1.1
|A⊥|2 0.159 ± 0.001 1.
|A0|2 0.601 ± 0.001 0.84

δ‖ 2.511 ± 0.015 rad 1.

δ⊥ -2.079 ± 0.043 rad 0.7
∆ms 17.78 ± 0.011 ps−1 1.8
φs -0.713 ± 0.021 rad −0.62

Table 5.1: Table showing the fit results and errors for the fitted parameters
(physical) with the standard deviation with respect to input values.
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5.3 Toy Monte-Carlo studies

In order to determine the sensitivity of the LHCb experiment to the φs

phase, a large number of simulations should be generated with different
seeds and fitted to the same pdf used to generate the events. The distribu-
tions of the values and pull are then checked for any anomaly (e.g. over-
estimation of the errors or a bias on the estimation of a given parameter).
The pull distribution for the parameter x is calculated as:

pull =
xfit − xinput

σx
, (5.13)

where the xfit is the value of the parameter given by the fit, xinput is the
true value of the parameter used in the generation of the toy, and σx is the
error estimated by the fit.

This task seems nearly impossible if one considers the production of
full Monte Carlo simulation. A toy Monte Carlo or fast Monte Carlo sim-
ulation are tools that enable us to generate rapidly a large number of ex-
periments using a physics pdf. Toy Monte Carlo is useful to study the
sensitivity of given parameters or study the effects on parameters.

The toy Monte Carlo is also useful to test the reliability of the statistical
estimator used in the fit. An example is given acceptin 5.3.2 where we
study the likelihood fit behavior with low number of signal events.

Finally, the toyMonte Carlo is used to study the systematic effects from
different parameters of the analysis. One can generate data with standard
value of the parameter under study, while varying its value in the pdf.
In 5.3.3, we explore the systematic of non-trivial proper time acceptance
function in the context of the biased selection.

Our toy Monte Carlo uses a collection of Root [109] and RooFit [110]
classes that helps generate events using the accept/reject method and fit
those events to B0

s → J/ψφ channel pdf using Minuit program [111].

5.3.1 Fitter validation and sensitivity studies

We define the sensitivity of our analysis to a parameter x as the Gaussian-
width of the fitted distribution obtained using the toy experiments. The
pull distribution of a given parameter provides two valuable informations:

• the first is the information about the bias on the estimation, since the
mean of the distribution should be compatible with zero;

• the second information is the standard deviation of the pull distri-
bution. When this parameter is found to be compatible with unity
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it means that the error given by the fitter is correctly estimated (> 1
implies to an underestimation of the error).

In order to get a unbiased fit the pull should be centered around zero
and its width should be compatible with 1. We explore first the sensitivity
on φs and other physical parameters of the unbiased selection scenario. We
fit the physical parameters: τs,∆Γs,R⊥,R0, δ⊥, δ‖, φs, while we fix1 ∆ms.
Parameters input values are found in Table 5.2a.
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Figure 5.3: Left: pdf projections (unbiased scenario) onto: proper time
(Top Left), cosθ (Top Right), φ (Bottom Left) and cosψ (Bottom Right), black
line is the signal component, green is for prompt component, red is for the
long-lived component.

The background parameters are fixed. In data we measure those pa-
rameters from the sidebands of the mass distribution and fix them in the

1this has a negligible effect on the fit as its correlation with other parameters is proved
to be small.
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signal mass window2.
Toys are generated with the unbiased configuration described in the

Table 3.7 (index) that summarizes the full simulation results detailed in
Chapter 3. We plot the distribution of proper time and angular variables
for the unbiased scenario using one toy Monte Carlo in Figure 5.3. Signal
and background events tagged as B0

s are plotted. Distributions of fitted
parameters and their pulls are shown in Figures 5.4, 5.5 and 5.8. The sen-
sitivity to φs using the unbiased configuration is σφs = 0.042± 0.002 rad at

2 fb−1 of integrated luminosity. The sensitivity of φs depends on the an-
nual yield, proper time resolution and effective tagging efficiency. The φs

sensitivity obtained is a function of tagging power, proper time resolution
and signal yield, a detailed study accounting for those elements is found
in [112] and in [5].

A similar study is done to explore the sensitivity on φs and physical
parameters for the biased scenario. toys are generated using the configu-
ration in Chapter 3, where we follow the same fitting scheme as explained
above. We plot the proper time and angular distribution for the biased
scenario using one toy Monte Carlo in Figure 5.7, events shown are those
of signal and background where the B meson is tagged as B0

s.
In Table 5.2c and 5.2b, we give all the mean the RMS values for the all

physical parameters for both biased and unbiased scenarios. Pull distribu-
tions are normal showing that the parameters are correctly calculated by
the fit. For the δ⊥ the estimation is bias, this is still under investagation.

The sensitivity obtained with the biased selection is 0.028± 0.001 rad
at 2 fb−1 at 7 TeV of integrated luminosity, much higher than that of the
unbiased one. This is simply explained by the higher signal yield in the
biased case. Note that the sensitivity in the biased case is obtained with no
trigger.

2range of the mass window is dependent on the mass resolution of the signal events.
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Figure 5.4: Distributions for fitted parameters (∆Γs, τs,R⊥,R0, δ⊥, δ‖) with
the unbiased configuration (∼ 500 toys).
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Figure 5.5: Pull distributions for fitted parameters (∆Γs, τs,R⊥,R0, δ⊥, δ‖)
with the unbiased configuration (∼ 500 toys).
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Figure 5.6: Left: distribution for φs parameter with the unbiased configu-
ration. Right: pull distribution for φs parameter with the unbiased config-
uration (∼ 500 Toy).
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Figure 5.7: Left: pdf projections (biased scenario) onto various planes:
proper time (Top Left), cosθ (Top Right), φ (Bottom Left) and cosψ (Bottom
Right), the black line is the signal component, the green is for the prompt
component, the red is for the long-lived component.
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Figure 5.8: Left: distribution for φs parameter with the unbiased configu-
ration. Right: pull distribution for φs parameter with the unbiased config-
uration (∼ 500 toys).
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Parameter Generator value

τs ps−1 1.47
∆Γs ps−1 0.049
|A⊥|2 0.233
|A0|2 0.56

δ‖ rad +2.91

δ⊥ rad +2.93
φs -0.0368

(a) Generation parameters

Sensitivity Pull mean Pull width

τs ps−1 0.0135± 0.0005 −0.08± 0.05 1.05± 0.03
∆Γs ps−1 0.0128± 0.0005 −0.03± 0.05 1.05± 0.03
|A⊥|2 0.0045± 0.0002 0.00± 0.04 0.95± 0.03
|A0|2 0.0034± 0.0001 −0.04± 0.05 1.02± 0.03

δ‖ rad 0.088± 0.0004 0.17± 0.05 0.99± 0.05

δ⊥ rad 0.119± 0.005 −0.07± 0.05 1.05± 0.03
φs rad 0.042± 0.002 −0.07± 0.05 0.95± 0.04

(b) Parameter sensitivity and pull mean andwidth (unbiased scenario)

Sensitivity Pull mean Pull width

τs ps−1 0.0081± 0.0002 0.03± 0.04 0.99± 0.03
∆Γs ps−1 0.0080± 0.0003 0.06± 0.04 0.99± 0.04
|A⊥|2 0.0021± 0.0001 −0.09± 0.04 0.96± 0.03
|A0|2 0.0021± 0.0000 0.02± 0.05 1.01± 0.04

δ‖ rad 0.086± 0.002 0.14± 0.04 1.08± 0.03

δ⊥ rad 0.075± 0.002 −0.02± 0.05 1.03± 0.03
φs rad 0.028± 0.001 0.00± 0.05 0.99± 0.04

(c) Parameter sensitivity and pull mean and width (biased scenario)

Table 5.2: Results from toy Monte Carlo study with ∼ 500 toys. Table 5.2a
shows the physics parameters used to produce the toy data. Table 5.2b
shows the sensitivity on the parameters and the pull mean and width us-
ing the unbiased configuration. Table 5.2c shows the sensitivity on the
parameters and the pull mean and width using the biased configuration.
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5.3.2 Low statistics studies

As seen in the previous section, our fit estimates the parameters and their
errors correctly at 2 fb−1 of integrated luminosity. The study, carried out in
this section, aims at testing the likelihood estimator for a low signal yield.
Scanning ranges of integrated luminosity will provide a threshold beyond
which likelihood estimator is proved biased.

We repeat this study for two values of φs: a small φs ∼ −0.0368 rad that
corresponded to Standard Model expectation and higher φs ∼ −0.6 rad
corresponding to a New Physics scenarios. The fit failure criterion is the
status of the error covariance matrix, where a the fit is considered success-
ful only when this matrix is calculated accurately by the fitter. The config-
uration of the Toy Monte carlo is the same as the one used in the previous
section, where the unbiased configuration is used in the generation.

Lint 100 pb−1 200 pb−1 400 pb−1 1 fb−1

Signal events 3000 6000 12 000 30 000
φs pull mean 0.03± 0.05 0.05± 0.06 0.01± 0.05 0.04± 0.06
φs pull width 1.00± 0.01 0.9± 0.04 0.92± 0.04 0.94± 0.04
Fit failure 2% 1% no failure no failure

Global correlation 0.29± 0.02 0.23± 0.01 0.23± 0.01 0.18± 0.01

Table 5.3: Summary of low statistics study in the case where φs =
−0.04 rad.

Lint 100 pb−1 200 pb−1 400 pb−1 1 fb−1

Signal event 3000 6000 12 000 30 000
φs pull mean 0.24± 0.07 0.14± 0.07 0.03± 0.05 0.08± 0.06
φs pull width 0.92± 0.01 0.95± 0.07 0.95± 0.04 0.94± 0.05
Fit failure 3% 1% no failure no failure

Global correlation 0.33± 0.01 0.32± 0.01 0.27± 0.01 0.20± 0.01

Table 5.4: Summary of low statistics study in the case where φs = −0.6 rad.

Tables 5.3 and 5.4 present the results of this study on φs parameter and
status of the fit with a range of luminosity for two different values of φs. It
should be noted here that the yields used in the toys Monte Carlo genera-
tion is scaled according to our findings in [5].

The outcome of the study points to the fact that the φs value is biased
when signal yield is lower than 6 000 events for high values of φs. This
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bias, though, is rather small. In addition, for both New Physics and Stan-
dard Model values of φs, we notice a failure rate of ∼ 2% under 6 000
events. For other parameters, we find that errors on strong phases are
found to be underestimated and the |A|||2 is biased for the same range of
luminosity.

The conclusion is that the likelihood estimator when fitted to less than
∼ 6000 events is not reliable. An interval estimate rather than a point
estimate should be used to determine the φs phase at low signal statistics.

5.3.3 Systematic studies

Sources of systematic uncertainties on the φs measurement are studied in
detail using Monte Carlo in [113], [107] and [105] and summarized in [5].

In this section, we present an ensemble of studies we carried out in the
context of the biased selection developed in Chapter 3 at

√
s = 7 TeV and

integrated luminosity of 2 fb−1. The proper time acceptance determina-
tion is based on either Monte Carlo simulation or on data itself. Wrong
determination of the proper time acceptance function is a potential source
for systematic error.

Here we consider three cases of systematic error:

• neglecting to correct for the proper time acceptance effect;

• miscalculation of the slope of the proper time acceptance;

• neglecting possible differences between B0
s proper time acceptance

and that of B0
s.

For all these three cases we use the biased selection configuration de-
scribed in Table 3.10.

At first we try to account for the absence of the acceptance function
in the pdf. In this study, we generate ∼ 500 toys with the proper time
acceptance function and we fit using a pdf that neglect this function. In
Table 5.5, we quote the results of this study. It is clear that systematic error
in the case we discard the acceptance function in the fit is small in the case
of tiny value of φs.

The second case of systematic study accounts for any ill-determination
of the slope of the proper time acceptance. In Chapter 3, we presented a
method to extract the proper time acceptance directly from the data. The
function used is:

Accfit =
(s× treco)3

1 + (s× treco)3
(5.14)
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φs generated (rad) φs fitted (rad) φs pull mean systematic error [rad]
−0.0368 −0.037± 0.001 −0.01± 0.05 −
−0.6 −0.607± 0.001 −0.17± 0.05 −0.007

Table 5.5: Table showing the values, pull and systematic error for φs pa-
rameter in the case of total discard of the proper time acceptance in the fit
(Standard Model and New Physics values of φs are considered).

The slope parameter in the function is crucial for describing the bias of
the proper time distribution. The slope is calculated using sPlot technique
under the hypothesis that background and signal behave the same in-
side and outside the mass window. Any discrepancies of the background
proper time behavior between events inside the signal mass window and
events in the mass side bands can cause a wrong calculation of the slope.

To study this effect we fit using a fixed slope that differs from the input
value by 10% off in the pdf, our results are given in Tables 5.6 .

φs generated (rad) φs fitted (rad) φs pull mean systematic error [rad]
−0.0368 −0.035± 0.001 −0.06± 0.06 −
−0.6 −0.602± 0.001 −0.10± 0.05 −0.002

Table 5.6: Table showing the values, pull and systematic error for φs pa-
rameter in the case of ill-determination (10%) of the slope of proper time
acceptance in the fit (Standard Model and New Physics values of φs are
considered).

We find no large systematic effect, where in theworst case (φs = −0.6 rad)
the systematic error is less than 10% of the statistical error.

The third and last case is where differences between B0
s and B0

s accep-

tance effects are neglected in the fit. To study this case, we generate the B0
s

events using a proper time acceptance that is different from the one used
in simulating the B0

s events (10% and 20% difference in the slope parame-
ter). The fit is performed using a proper time acceptance with an average
slope parameter. Tables 5.7 and 5.8 present our results for this case.

The systematic error, in case of different acceptance for B0
s and B0

s events,

is only dominant for StandardModel value of φs and the B0
s, B

0
s acceptance

slope difference is 20%.
the systematic error in the context of biased selection is only signifi-

cant in later case, which is an extreme one. This systematic effect can be
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φs generated (rad) φs fitted (rad) φs pull mean systematic error [rad]
−0.0368 −0.032± 0.001 0.13± 0.05 −0.005
−0.6 −0.601± 0.001 −0.03± 0.05 −

Table 5.7: Table showing the values, pull and systematic error for φs pa-
rameter in the case 10% different acceptance for B0

s and B0
s events while

using an average acceptance in the fit (Standard Model and New Physics
values for φs are considered).

φs generated (rad) φs fitted (rad) φs pull mean systematic error [rad]
−0.0368 −0.027± 0.001 0.28± 0.05 −0.06
−0.6 −0.595± 0.002 0.12± 0.05 −0.005

Table 5.8: Table showing the values, pull and systematic error for φs pa-
rameter in the case 20% different acceptance for B0

s and B0
s events while

using an average acceptance in the fit (Standard Model and New Physics
values for φs are considered).

avoided by extracting the proper time acceptance function for B0
s and B0

s

events separately.
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5.4 φs measurement with 2010 data

In this section we present the determination of the φs parameter in the B0
s

→ J/ψφ channel using the data sample collected during 2010. The results
presented here are published in [104]. The main differences between our
fitter and the one used by the collaboration for the publication are:

• our fitter only uses a fixed average mistag rate whereas the fitter
used for the publication is equipped to take into account an event-
by-event mistag rate;

• our fitter uses a 3D histogram to account for the angular acceptances,
the fitter used for the publication one parametrize it using Legendre
polynomial.

Next we provide a review of the study performed using the LHCb fitter
with the 2010 data. This fit yielded the first determination of the φs at
LHCb.

The integrated luminosity of the data collected and fully reconstructed
and analyzed during 2010 is ∼ 36 pb−1 at

√
s = 7 TeV. The number of

events corresponding to this luminosity is shown in the Table 5.9. In the
sample we distinguish between the:

• unbiased sample of events passing the unbiased selection set of cuts
and the unbiased trigger lines;

• biased sample of events passing the unbiased selection set of cuts but
passed the biased trigger lines (see Chapter 2 for details).

The biased sample represents 30% of the tagged events. Enhancing the
statistical significance of the measurement requires considering this part
of the sample too. Therefore, the analysis comprises two different ap-
proaches (unbiased and biased) with two different proper time acceptance
functions.

The unbiased analysis is done with the cut on the proper time t >

0.3 ps, in order to reduce the prompt contribution in the data sample, sim-
plify the fit model. This cut reduces the yield as observed in Table 5.9, but
does not affect the φs sensitivity.

A per-event mistag probability is used. Only opposite-side taggers are
considered to get the mistag combination. The estimated per-event mistag
probability is calibrated using the B+ → J/ψK+ channel where a linear
dependence is assumed between the estimated mistag probability and the
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All (t > 0.3 ps) Signal yield Signal yield (t > 0.3)
unbiased-only 38 225 250 230± 53 161± 13
biased-only 653 345 208± 16 196± 15
both 1 123 521 398± 22 400± 20
total 40 001 1116 836± 60 757± 28

Table 5.9: Number of B0
s → J/ψφ selected events and fitted signal yields

for all events with invariant mass in [5200, 5550] GeV/c2 and proper time
in [−1, 14] ps. This is from a mass only fit, hence relatively large errors on
the yields for the full time range are obtained.

σ1 [fs] σ2 [fs] σ3 [fs] f2 f3
33.7± 1.0 64.6± 1.9 184± 14 0.46± 0.04 0.017± 0.004

Table 5.10: Resolution parameters extracted from the fit explained in the
text. The uncertainties are statistical only and highly correlated [86].

actual one. The parameterization of this dependence is presented in Chap-
ter 4. The tagging power calculated in this sample is (2.2± 0.4)%

The resolution model used in the 2010 data fit uses three Gaussian with
the same mean, the different resolutions are calculated when fitting the
prompt background (as explained in Chapter 3), the parameters of the
proper time resolution models are presented in Table 5.10. A dilution
factor between the prompt and the signal model exists. This leads to a
dilution on the oscillation amplitude Deff = 0.68± 0.04% corresponding
to an effective decay time resolution of 50 fs. No significant differences
exists between the resolution model for the signal and that of the back-
ground. This have been checked by comparing the per-event time error
for signal and prompt event using sPlots technique to separate signal and
background.

Two proper time acceptances are needed to simulate the different proper
time deformations caused by two different trigger. We distinguish be-
tween the proper time acceptance for events passing the unbiased trig-
ger lines, this acceptance function simulates the inefficiency experienced
at high proper time values and explained in Chapter 3. The decay time ac-
ceptances applied to the signal component are analogously applied to the
background decay time distributions. The second is a non trivial shape
of the proper time resolution of the signal events passing the biased trig-
ger lines. For these events, effects appears at low proper time values in
the proper time distribution due to cuts on the impact parameter used
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Figure 5.9: Left: proper time acceptance function for events passing the
unbiased trigger lines (extracted from Monte Carlo). Right: proper time
acceptance function for events passing the biased trigger line (extracted
form data using sPlots techniques).

in these trigger lines. The acceptance function accounting for this biased
lines is extracted from data using the overlap between the biased and the
unbiased triggers. Using sPlots technique the acceptance function is com-
puted by dividing the proper time distribution of the events passing the
biased triggers by those passing both biased and unbiased trigger lines,
Figure 5.9 shows the resulting acceptance function for events passing the
biased trigger. An empirical function is used in order to fit the acceptance
histogram:

ǫ(t; a, c) = n
(a · t)c

1 + (a · t)c , (5.15)

where t denotes proper time, a and c are shape parameters of the model,
and n represents an absolute scale which is only needed here for the nor-
malization purpose in themaximum likelihood fit described below. Angular
resolution functions is ignored (having a negligible effect on fitted param-
eters). The angular acceptance corrections are calculated using the Monte
Carlo simulation as explained in Chapter 3. The modeling of the 3-D ac-
ceptance corrections uses Legendre polynomial.

The background contribution to the 2010 data is small after applying
the proper time cut. No peaking background was found in the signal mass
region. Similar behavior of angular background distributions is observed
between the left side and the right side of the mass distribution. This val-
idate the extraction of the angular distributions of the background from
the mass side bands. The angular distributions of the background are de-
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scribed using the Legendre polynomial.



140 CHAPTER 5. FIT

Results
Due to the small size of the data sample, a point estimte is not used

to quote the φs value with standard error. Constraits in the φs in B0
s →

J/ψφ channel with only 757 events is performed through Feldman and
Cousins’s prescription [114].

The Figure 5.10 shows the projection of the pdf onto proper time and
angular variables on the biased and unbiased 2010 data. The Figure 5.11
shows the 68.3%, 90% and 95% confidence interval contour in the φs −
∆Γs plane. This corresponds to a fluctuation from the Standard Model
expectation of 21.5% (1.2σ). The symmetry in the plot is due to the two-
fold ambiguity explained in Chapter 1

When projecting the confidence level contours onto φs dimension:

φs ∈ [−2.7,−0.5] rad at 68% CL
φs ∈ [−3.5, 0.2] rad at 95% CL

The systematic errors on the φs − ∆Γs confidence is estimated by per-
forming log likelihood scanswith different fitting conditions (mass, proper
time and background models) and then compared to the contour obtained
with the nominal fitting condition. The main systematic sources are:

• Uncertainty in the tagging dilution: statistical and systematic uncer-
tainties in the tagging calibration from the B+ → J/ψK+ channel. The
error on the dilution is dominated by the statistical error and leads to
a relative 7% on φs. This systematic error is included in the fit as the
tagging calibration parameters are floated with Gaussian constraint
for their errors.

• Proper time resolution: the proper time resolution is increased by
10% and results are compared to the nominal fit, the relative system-
atic error is estimated to be 6%.

• Ignoring the S-wave contribution: The minimal fit does not include
the KK S-wave component in the signal pdf. Based on the work
in [41], the result of neglecting the 6.7% S-wave [42] is a bias of 11%
on φs value toward zero.

Other sources of systematics like: background description, angular ac-
ceptance and mass model are considered also in the study but are found
to have a small systematic effect on the fit result [115].

Systematic variations on the φs − ∆Γs confidence contours have a neg-
ligible effect. The 68% confidence level is practically not affected.
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Figure 5.10: Projections for the biased and unbiased data sample after the
tagged fit assuming φs = 0. The total fit result is represented by the
black line. The signal component is represented by the solid blue line;
the dashed and dotted blue lines show the CP-odd and CP-even signal
components respectively. The background component is given by the red
line [104].
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5.5 Summary

In this Chapter we presented a variety of studies of the fit of physics pa-
rameters in the B0

s → J/ψφ channel, mainly the φs phase. We developed a
fit program that handles the complexities in this channel. We validate this
program with full Monte Carlo simulation and toy Monte Carlo.

We determine the sensitivity of the LHCb experiment to the φs phase.
Using unbiased selection performance developed in Chapter 3, the ex-
pected statistical uncertainty on φs after 2 fb

−1 at 7 TeV is: σφs = (0.042±
0.002) rad with the unbiased selection configuration. The sensitivity with
biased selection is significantly higher and it could get up to σφs = (0.028±
0.002) rad. This result depends strongly on assumptions made in this
chapter in particular on the trigger efficiency.

In 2010, the integrated luminosity is∼ 36 pb−1 corresponding to 836 B0
s

→ J/ψφ events. Hence a low signal yield was accumulated. The reliabil-
ity of the likelihood estimator is studied at low signal yield. We find that,
under 6 000 signal events, interval confidence must be used for φs deter-
mination instead of the point estimate, a result obtained with the nominal
detector performance presented in Chapter 3.

Data accumulation will accelerate in the coming years. The long term
strategy for φs measurement should rely on a biased strategy, where the fit
input is taken from a biased selection line and the proper time acceptance
and resolution model are extracted from a dedicated unbiased line. We
developed a biased scenarios in Chapter 3. One of the extra complications
of such selection is the non trivial proper time acceptance. We studied in
this Chapter the systematic errors induced by wrong determination of this
function. After scanning different scenarios, we find it negligible in most
of the cases.

Finally we review the first published φs analysis [104]. It uses the un-
biased selection developed in this thesis and slightly modified fitting pro-
gram. Tagged and untagged events selected by both biased and unbiased
set of trigger lines are the input of the fit. Because of the small number
of signal events, the result is presented in a 2D confidence level in the
φs − ∆Γs plane. The probability of a fluctuation from the Standard Model
expectation to the observed result of φs and ∆Γs is 22%. Projected to one
dimension:

φs ∈ [−2.7,−0.5] rad at 68% CL

A thorough study for systematic errors found small systematic effect
on the confidence region.
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Data accumulation continues with great pace at LHCb. We expected to
give a results competitive to those of CDF and D0 very soon.



Chapter 6

Conclusion

LHCb experiment was dedicated to the search for New Physics in CP vi-
olation and rare decays in the beauty and charm sectors. The experiment
inaugurated end of 2009 and continue data accumulation during 2011.

The φs phase is a key measurement at LHCb. While the Standard
Model predicts an almost vanishing value of φs with high accuracy, many
New Physics models are expecting large values of this phase. The B0

s →
J/ψφ channel is considered by far the golden channel for this measure-
ment.

The φs measurement requires a good proper time resolution in order to
resolve the fast B0

s−B0
s oscillation, angular analysis to separate statistically

the mixed final CP states and a calibrated tagging of the initial B-meson
flavour. It is imperative that these challenges are confronted with a robust
strategy that provides a reliable measurement during the different data
taking phases of the LHC. The steps toward making this measurement
are:

• trigger and select the B0
s → J/ψφ candidates;

• measure the proper time of the candidates;

• measure the tranversity angles of the decay products of the candi-
dates;

• tag the initial flavor of the selected B0
s in the candidates ;

• fit the phase φs.

The main concern of our thesis was to contribute to the selection and fit
of B0

s → J/ψφ events. In addition, a modest contribution in the flavor tag-
ging was provided. The analysis published in this thesis was performed
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on data collected at LHCb during 2010 run at 7 TeV, corresponding to an
integrated luminosity of 36 pb−1.

The first part of this work is the development of the selection for the
B0
s → J/ψφ channel. To minimize the systematic error and simplifying the

analysis in its earliest stage, we avoided any bias on proper time distribu-
tion and unified the selection among the signal and the control channels.
Signal and background properties are studied thoroughly using Monte
Carlo full simulation.

With the 2010 data, 570 B0
s → J/ψφ candidates pass the proper time

“unbiased” selection. The average proper time resolution is 50 fs and the
mass resolution of B0

s is 7MeV/c2.
We developed an alternative selection which increases φs sensitivity

and reduces the bandwidth occupancy caused by prompt background com-
ponent. Those two objectives are indeed accomplished by using proper
time biasing cuts. The downside of this selection is the non-trivial de-
formation in the proper time distribution. We developed a data driven
method in order to determine this deformation and studied the systematic
induced by it.

The second part of the thesis tackles the flavor tagging. In particular,
the estimation of the tagging performance in the B0

s → J/ψφ channel on
bothMonte Carlo and real data. We obtain an opposite-side tagging power
ǫeff = (2.2± 0.4)% using the 2010 dataset. We also validate the portability
of the tagging properties from the control channels to the signal one on
2010 data.

In 2010, the LHC running conditions changed with respect to those
of the initial LHCb design. Higher pile-up rate increases the number of
tracks and vertexes per event. We observed that the tagging power and
signal efficiency tend to decrease with the increase of pile-up in the event,
affecting the φs statistical sensitivity.

The third part of the thesis deals the fit procedure. We construct and
test a fitter program to extract the physical parameter in the B0

s → J/ψφ
channel. Using fast Monte Carlo simulation we estimate the φs sensitiv-
ity with the unbiased and biased selection configuration. We study the
systematic error induced by the non-trivial proper time acceptance in the
context of the biased selection. All considered cases allude to a negligible
systematic error on φs with 2 fb−1. We studied the effect of low number of
signal events on the reliability of the likelihood estimator. We found that
the likelihood estimator is only reliable after the accumulation of ∼ 6 000
signal events.

We finally summarize the collective effort leading to the first determi-
nation of φs phase at LHCb [104]. The analysis is performed using 2010
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data corresponding to ∼ 836 signal events, which are selected by both bi-
ased and unbiased trigger lines. The tagged time-dependent angular anal-
ysis carried out on these samples provides a two-dimensional φs − ∆Γs

confidence level. The probability of the fluctuation from the Standard Mo-
dle to the observed values of φs and ∆Γs is 22% (1.2σ). The projection of
the φs − ∆Γs confidence level onto φs dimension gives:

φs ∈ [−2.7,−0.5] rad at 68% CL ,

Different sources of systematic error are considered: background, proper
time resolution, acceptance function mis-modeling. Within the available
statistics, systematic error sources are found to be negligible. The LHCb
result is not yet competitive with those of CDF and D0. CDF and D0 are
scheduled to shut down by the end of September 2011 with total inte-
grated luminosity of ∼ 10 fb−1 each. It is interesting to note that LHCb,
CDF and D0 all observe a preferred central value of φs 1σ away from the
Standard Model expectation, in the same direction. Furthermore, hints
of New Physics are found in the Asl parameter which is related to the φs

phase. A 3.9σ disagreement with respect to the Standard Model has been
reported by D0 [44].

At LHCb, the design instantaneous luminosity was surpassed in May
2011, more data will be accumulated. Flavour tagging performance will
soon improve by the inclusion of the same-side kaon tagger. Analysis
strategy in the following stage of data taking should move to biased strat-
egy which gives a better sensitivity to φs. A more refined analysis includes
the effects of CP violation in the decay and in the mixing. The fit can also
accommodates the production asymmetry between the B0

s and B0
s and the

different mistag rates between B0
s and B0

s tagged events. In addition, φs

sensitivity can be enhanced using other b → ccs related modes. These
aspects, among other developments in reconstruction and detector perfor-
mance, will increase the sensitivity on φs parameter. The exploration of the
New Physics horizon in the few coming years is closer than ever before.
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Epilogue

In 2011, LHCb used 337 pb−1 to publish the most precise estimation on φs
in the B0

s → J/ψφ channel.
The selection of the 2011 data stayed mainly unchanged with respect

to the one used in 2010. However, a cut was added to remove clone can-
didates. For the calculation of the angular acceptances, comparisons be-
tween the data and Monte Carlo showed a significant difference in the
Kaon momentum distributions. This difference leads to an effect on ∆Γs
and polarization amplitudes. A systematic error has been assigned to ac-
count for this effect. The proper time acceptance for the biased events is
determined in the fit while the proper time acceptance for the unbiased se-
lection is extracted fromMonte Carlo samples. The proper time resolution
is found to be 50 fs. The overall tagging performance for the opposite-side
taggers is similar to the 2010 one, it is found to be 2.1± 0.4%. The same-
side kaon tagger was not calibrated, therefore it was not used for the 2011
analysis. One of the novelties of the analysis is the addition of the S-wave
component to the likelihood formalism. This helps to remove the two-fold
ambiguity over the φs parameter.

Using 8276± 94 B0
s → J/ψφ events, the following results are obtained:

φs = 0.13± 0.18± 0.07 rad
Γs = 0.656± 0.0009± 0.008 ps−1

∆Γs = 0.13± 0.029± 0.011 ps−1

A dissimilarity test was performed to asses the overall agreement of
the probability density function used with the data. The p-value obtained
is 0.44. A comprehensive study for the systematic uncertainties shows that
systematic errors are inferior to the statistical ones.

LHCb provided a confidence level estimation for φs for comparison
with the results published by CDF and D0 experiments. Figure 6 shows a
superposition of the confidence levels in the φs − ∆Γs plane which are ob-
tained from LHCb, CDF and D0. The contour of LHCb favors two regions
corresponding to two mirror solutions.
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Figure 6.1: Feldman-Cousins confidence regions in the φs − ∆Γs plane at
LHCb (blue), CDF (green) and D0 (red).

The LHCb measurement is in agreement with the Standard Model ex-
pectation. Nonetheless, the shaded area of the LHCb contour implies that
there is still a room to account for New Physics effects.



Conclusion

LHCb est dédié à la recherche de la Nouvelle Physique dans la violation de
la symmetrie CP et de désintégrations rares dans les secteurs de la beauté
et du charme. La prise de données a debuté fin 2009.

La phase φs est une mesure clé dans LHCb. Le Modèle Standard prédit
une valeur quasi-nulle de φs avec une grande précision, alors que de nom-
breux modèles de Nouvelle Physique prèdise des valeurs beacoup plus
grandes. Le canal B0

s → J/ψφ est considéré comme la voie royalle pour
effectuer cette mesure.

La mesure de la phase φs nécessite une bonne résolution temporelle
en vue de résoudre l’oscillation B0

s B
0
s, une analyse angulaire pour séparer

statistiquement les états finaux de CP et un étiquetage calibré de la saveur
initiale du méson B0

s. Les étapes de cette mesure sont :

• déclencher et sélectionner les candidats B0
s → J/ψφ;

• mesure leur temps propre;

• measure leurs variables angulaires;

• étiqueter leur saveure initiale;

• ajuster la phase φs.

Dans cette thèse, nous avons développé la sélection et l’ajustement
des événements B0

s → J/ψφ. En outre, une modeste contribution dans
l’étiquetage des saveurs a été fournie. Nous avons utilisé les données re-
cueillies par LHCb à 7TeV au cours de l’année 2010, correspondant à une
luminosité intégrée de 36 pb−1.

La première partie de ce travail a consisté à développer la sélection
pour le canal B0

s → J/ψφ. Afin de minimiser l’erreur systématique et de
simplifier l’analyse dans son premier stade, nous avons évité tout biais
sur la distribution des temps propre et unifier la sélection entre le signal et

les deux canaux de contrôle B0
d → J/ψK∗0 et B+ → J/ψK+. Les propriétés
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du signal et le bruit du fond ont été étudiées a l’aide d’une simulation
Monte-Carlo complète.

Avec les données de 2010, 570 B0
s → J/ψφ passent la sélection non-

biasée. La résolution temporelle moyenne est de 50 fs et la résolution de
masse de B0

s est de 7MeV/c2.
Nous avons développé une sélection alternative qui augmente la sen-

sibilité sur φs et réduit le taux d’occupation de la bande passante causée
par le bruit du fond à temps de vie nul. Ces deux objectifs sont accompli
en utilisant des coupures qui déforme de façon non triviale de la distribu-
tion en temps propre. Nous avons développé une méthode utilisante les
données réelles afin de déterminer cette déformation et d’étudié les effets
systématiques.

La deuxième partie de la thèse aborde l’étiquetage de saveur. En par-
ticulier, l’estimation de la performance d’étiquetage dans le canal B0

s →
J/ψφ sur les données Monte-Carlo et les données réelles. Nous obtenons
une puissance d’étiquetage ǫeff = (2, 2± 0, 4)%. Nous avons également
validé la portabilité d’étiquetage des canaux de contrôle à celle du signal.

En 2010, les conditions de prise de donnée en LHC ont changé par
rapport à celles pévue au moment de la conception de LHCb. Le taux
supérieur d’empilement proton-proton augmente le nombre de vertexes
pimaires et de traces reconstruites par événement. Nous avons observé
que la puissance d’étiquetage du signal diminue avec l’augmentation du
taux d’empilement, affectant la sensibilité statistique de la phase φs.

La troisième partie de cette thèse traite de la procédure d’ajustement.
Nous construisons et testons un programme d’ajustement pour extraire
les paramètres physiques dans le canal B0

s → J/ψφ. A l’aide de simulation
Monte-Carlo rapides, nous estimons la sensibilité sur φs avec les config-
urations de la sélections non-biaisées et biaisées. Nous étudions l’erreur
systématique induite par l’acceptance non-triviale du temps dans le con-
texte de la sélection biaisée. Nous avons étudié l’effet du faible nom-
bre d’événements de signal sur la fiabilité de l’estimateur de vraisem-
blance. Nous avons constaté que l’estimateur est fiable seulement après
l’accumulation de ∼ 6 000 événements de signal.

Nous avons finalement résumé l’effort collectif menant à la première
détermination de la phase φs dans LHCb [104]. L’analyse est effectuée
en utilisant les données 2010, correspondant à ∼ 836 événements de sig-
nal, qui sont selectionnés par les deux lignes de déclenchement biaisée
et non-biaisée. L’analyse angulaire dependante du temps réalisée sur ces
échantillons fournit un niveau de confiance à deux dimensions dans le
plan φs − ∆Γ. La probabilité d’une fluctuation des valeurs de φs, ∆Γ du
Modèle Standard à celles observées dans les données est de 22%(1, 2σ),
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φs ∈ [−2.7,−0.5] rad 68% CL.

Des différentes sources d’erreurs systématiques considérées sont: le
bruit du fond, la résolution en temps propre, la modélisation de fonction
d’acceptance. Au vue de l’erreur statistique actuelle, les erreurs systéma-
tiques sont négligeables. Avec la statistiques de 2010, le résultat de LHCb
n’est pas encore concurrentiels avec celui du CDF et D0.

CDF et D0 arrêteront definitivement leur prise de données la fin de
Septembre 2011 avec une luminosité intégrée totale de ∼ 10 fb−1 pour
chacune des experiences. Il est intéressant de noter que LHCb, CDF et D0
observent tous une valeur central de φs à −1σ de la valeur attendue dans
le Modèle Standard, dans la même direction. Par ailleurs, D0 observe une
deviation de 3.9σ par rapport au Modèle Standard dans la mesure de Asl,
paramètre sensible à la même phase de Nouvelle Physique que φs.

À LHCb, la luminosité instantanée de conception a été dépassé en mai
2011 et la prise de données continue. La performances d’étiquetage des
saveurs seront bientôt améliorées par l’inclusion du kaon accomponiant
le signal. La future analyse de φs utilise de plus en plus la stratégie bi-
aisée. Une analyse plus fine pour comprende les effets de la violation de
CP dans la désintégration et dans le mélange se développe. L’ajustement
tiendra compte également de l’asymétrie de production entre les B0

s et B
0
s

et la fraction de mauvaise étiquetage différentes entre B0
s et B

0
s. De plus, la

sensibilité sur φs sera améliorée en utilisant d’autres mode de transistions
b → ccs. Ces aspects, parmi d’autres développements dans les perfor-
mances de reconstruction et du détecteur, augmenteront la sensibilité sur
le paramètre φs. L’exploration de la Nouvelle Physique dans les quelques
années à venir est plus proche que jamais.
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Recherche de nouvelle physique dans le canal B0
s→ J/ψφ auprès de l’expéri-

ence LHCb
Dans le Modèle Standard, la différence de phase apparaissant dans la désintégra-
tion B0

s → J/ψφ est prèdite avec une grande précision. Cette observable est une
sonde pour mettre en évidence de la Nouvelle Physique car l’oscillation B0

s-B
0
s

s’effectue via un diagramme en boucles sensible à la nouvelles particules. Nous
avons développé une sélection simplifiée pour les données de 2010. Elle évite
tous biais sur la distribution en temps propre afin de réduire l’incertitude systé-
matique. De plus, nous contrôlons les performances d’étiquetage pour les événe-
ments B0

s → J/ψφ en utilisant les canaux similaires B0
d → J/ψK∗0 et B+ → J/ψK+.

Avec les données de 2010, nous obtenons 570 événements de signal avec une
luminosité intégré de 36 pb−1, une puissance de d’étiquetage de (2, 2 ± 0, 4)%
et une résolution temporelle de 50 fs. Nous avons étudié une sélection alterna-
tive, qui maximise la sensibilité à la phase φs en utilisant des coupures biasant
le temp propre. Nous avons proposé une méthode pour corriger la déformation
de temps propre à partir des données. Nous avons développé un programme
d’ajustement pour déterminer la phase φs. Avec les données 2010, la valeur tou-
veé est φs ∈ [−2, 7,−0, 5] rad à 68% de confiance. Ce résultat est compatible avec
la prédiction du Modèle Standard.

Mots-clés: la violation de CP, le mélange B0
s-B

0
s, LHCb, le canal B0

s → J/ψφ, φs,
l’estimateur maximum de vraisemblance.

Search for New Physics in the B0
s → J/ψφ decay channel at LHCb

In the B0
s → J/ψφ channel, the phase φs is predicted to be significantly small in the

Standard Model. This observable is an excellent probe for New Physics because
the B0

s-B
0
s mixing takes place via a loop diagram where new particles is expected

to intervene. These two reasons makes the φs parameter an excellent probe for
New Physics processes. We developed a simplified selection for the 2010 data.
It avoids any bias on the proper time distribution in order to reduce systematic
uncertainty. In addition, we control the tagging performance for B0

s→ J/ψφ events
using the similar B0

d → J/ψK∗0 and B+ → J/ψK+ channels. With the 2010 data, we
obtain 570 signal events in 36 pb−1 of integrated luminosity, a tagging power of
(2.2± 0.4)% and a proper time resolution of 50 fs. We investigated an alternative
selection which maximizes the φs sensitivity using a proper time biasing cuts.
We proposed a data-driven method to correct the proper time acceptance. We
designed a fitting program to determine the φs phase. With the 2010 data, It is
found to be: φs ∈ [−2.7,−0.5] rad at 68% of confidance. This result is compatible
with the Standard Model prediction.

Keywords: CP violation, B0
s-B

0
s Mixing, LHCb, B0

s → J/ψφ, φs, Likelihood fit.


