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Modèles déterministes et aléatoires d’agrégation limitée et
phénomène de gélification

Résumé

Dans cette thèse, nous étudions des modèles d’agrégation limitée, qui modélisent la coa-
lescence de particules ayant des “bras”, c’est-à-dire un nombre fixé de liens potentiels.
Une particule ne peut donc créer plus de liens que son nombre de bras. On s’intéresse en
particulier à une variante de l’équation de Smoluchowski introduite par Jean Bertoin.

Ce document comprend, outre l’introduction, trois chapitres. Le premier est dévolu à
l’étude d’un modèle sexué de coagulation, où les particules ont des bras mâles et femelles
et seuls des bras de sexes opposés peuvent se joindre. Ce modèle généralise et unifie ceux
de Bertoin, dont on peut en particulier retrouver les résultats.

Le second chapitre comprend un travail en collaboration avec Lorenzo Zambotti. On
s’y intéresse à l’unicité des solutions d’équations de coagulation après gélification, en par-
ticulier l’équation de Smoluchowski avec noyau multiplicatif et l’équation d’agrégation
limitée. En particulier, on donne des preuves rigoureuses de certaines heuristiques de la
littérature physique, par exemple en calculant précisément le temps de gélification. Dans
le cas d’agrégation limitée, on obtient aussi des formules particulièrement simples pour les
concentrations limites.

Pour expliquer celles-ci, on étudie dans le dernier chapitre un modèle microscopique
pour l’équation de Smoluchowski d’agrégation limitée. Ceci est un travail commun avec
Mathieu Merle. On parvient à décrire précisément l’état microscopique du système à tout
temps et ainsi à retrouver les formules du second chapitre. Une caractéristique frappante
de ce modèle est qu’il possède une propriété de criticalité auto-organisée.

Mots-clefs

Équation de Smoluchowski, Modèles d’agrégation limitée, Gélification, Systèmes infinis
d’équations différentielles, EDP non linéaires, Graphes aléatoires, Modèle de configuration,
Criticalité auto-organisée
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Deterministic and random models of limited aggregation
and gelation phenomenon

Abstract

In this PhD thesis, we study limited aggregation models, modeling coalescence of particles
with “arms”, i.e. a fixed number of potential links. Hence, a particle cannot create more
links than its number of arms. We are particularly interested in a variant of Smoluchowski’s
equation introduced by Jean Bertoin.

This document contains, after the introduction, three chapters. The first is devoted to
the study of a sexed model of coagulation, where particles have male and female arms, and
only arms with opposite genders can bind. This model generalizes and unifies Bertoin’s
model and we can in particular recover his results.

The second chapter contains a joint work with Lorenzo Zambotti. We deal with the
uniqueness to various coagulation equations after gelation, in particular Smoluchowski’s
equation with a multiplicative kernel and the equation with limited aggregations. We
provide in particular rigorous proofs to several heuristics of the Physics literature, e.g.
by computing precisely the gelation time. In the case of limited aggregations, we obtain
particularly simple formulas for the limiting concentrations.

To explain them, we study in the last chapter a microscopic model for Smoluchowski’s
equation of limited aggregation, what is a joint work with Mathieu Merle. We manage to
describe precisely the microscopic state of our system at any time, and thus recover the
formulas from the previous chapter. A striking feature of this model is that it exhibits a
phenomenon of self-organized criticality.

Keywords

Smoluchowski’s equation, Limited aggregation models, Gelation, Infinite systems of ODEs,
Non-linear PDEs, Random graphs, Configuration model, Self-organized criticality
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1 Content of the thesis

This PhD thesis focuses on the pre- and post-gelation behavior of Smoluchowski’s equation
for limited aggregation introduced by Bertoin [3], meant to model pairwise coalescence of
particles with a certain number of potential links, called arms in the text. We shall focus
on the continuous deterministic model as well as on a microscopic model. The latter is
related to random graph theory, more precisely to the configuration model.
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The main material of this text consists in three articles, each accounting for a chapter
of the thesis.

• The first [43] studies an alternate (continuous) model for limited aggregation, where
the particles are given two types of arms, called female and male, and where only
male and female arms can bind. This is quite natural when we think of ionic bonds.
The results we prove are similar to those obtained for Smoluchowski’s equation, with
or without limited aggregations, and in fact allow to recover the results proved by
Bertoin [3].

• The second is a joint work [44] with Lorenzo Zambotti. We prove therein the unique-
ness of the solutions to Smoluchowski’s equation (with or without limited aggrega-
tions) and provide representation formulas which allow to compute general relevant
quantities. The strikingly simple expressions obtained for the final state of that
model calls for a probabilistic interpretation, given in the last part of this work.

• The last chapter contains a joint work [41] with Mathieu Merle to be submitted soon.
It deals with a microscopic model for Smoluchowski’s equation with limited aggre-
gations, aiming at giving a probabilistic interpretation for some formulas obtained
in the previous chapter. This is achieved by describing precisely at any time the
shape of the “small” clusters in that model and observing a striking feature called
post-gelation self-organized criticality.

The goal of this introduction is threefold. We first provide a presentation of the one-
century-old Smoluchowski equation, which has been extensively studied but has also raised
many interesting and unanswered questions. Though we will mainly consider other models
(of limited aggregation), the intuition and ideas gained from earlier (mathematical or not)
works on Smoluchowski’s equation is at the very heart of many of our results and proofs.
Moreover many properties of Smoluchowski’s equation still hold for other models, up to
some quite obvious modifications.

One of these properties, and a most difficult one to handle, is the gelation phenomenon,
which heuristically corresponds to the appearance of giant clusters of particles. Oddly, it
turns out that this phenomenon is quite well understood heuristically (in what Aldous [1]
calls “scientific modeling literature”), but that few rigorous results have been obtained.
The third and fourth part of this thesis are actually devoted to studying rigorously this
phenomenon.

The second goal of this introduction is to present our main interest, namely Smolu-
chowski’s equation for limited aggregations, as introduced in 2009 by Bertoin [3]. It is
closely related, on the one hand to Smoluchowski’s equation, on the other hand to a ran-
dom graph model called the configuration model which we shall explain. The paper [3] is
actually the very starting point of this thesis, which gave rise to most of the questions we
tried to answer, and we shall thus state and explain the results it contains.

The last part of this introduction is devoted to the precise statements and descriptions
of the results of the three chapters. As already said, many results or models are easy to
understand when we know the results or heuristics concerning Smoluchowski’s equation,
and could with a little luck be guessed down to the last comma1. We hope however that
some of them are more unexpected.

1But hopefully, not the proofs!
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2 A short history of Smoluchowski’s equation

2.1 Presentation

2.1.1 A first motivation

Coagulation phenomena arise in many areas of science, such as chemistry (formation of
polymers from monomers), meteorology (creation of water droplets), biology (coagulation
of algae), astronomy (formation of planets) or, in mathematics, genealogy or random
graph theory. Aldous’ review [1] is a good introduction to the subject. Depending on
the phenomenon which is to be modeled, many mathematical formulations, random or
deterministic, can be given. Among the deterministic tools, one of the most usual is
Smoluchowski’s equation introduced in [57], which is meant to model pairwise coalescence
of particles (or clusters of particles) in a mean-field setting.

2.1.2 A matter of vocabulary

Let us be careful about the terminology we will use. Except in a part of the third chapter
of this thesis, the masses will always be discrete, integer-valued to be specific. We may
thus assume that the elementary entities of our system are particles of mass 1. When
particles bind together, they create a cluster, which has a mass m ∈ N∗ being the number
of particles it contains.

The coagulations are seen as the creation of a link between particles. This also creates
a link between the clusters to which these particles belong. Hence, depending on the point
of view we wish to adopt, we will speak of coagulation of particles or of clusters, though
this is obviously the same.

2.1.3 The equation

To understand Smoluchowski’s equation, imagine that clusters of different masses move
through space. Two of them, of mass, say, m and m′, may, if sufficiently close, merge into
a cluster of mass m+m′. Obviously, taking into account all parameters (mass, position,
velocity, shape, . . . ) is rather complicated. In a mean-field model, the whole dynamic
is thus subsumed into a symmetric kernel κ(m,m′), modeling the “rate” at which two
clusters of mass m and m′ coalesce. This is to be understood in the following sense: call
ct(m) the concentration of clusters of mass m at time t, i.e. the number of such clusters
per unit volume. Then, the average number of coagulations

{m,m′} → m+m′

in a time interval [t, t+ dt] is given by

1
2κ(m,m′)ct(m)ct(m′) dt.

The evolution of ct(m) as time passes thus obeys Smoluchowski’s equation, actually
an infinite system of nonlinear ODEs,

d
dtct(m) = 1

2

m−1∑
m′=1

κ(m,m′) ct(m′) ct(m−m′)−
∑
m′≥1

κ(m,m′)ct(m)ct(m′), (1.1)

for m ∈ N∗. The first term of the RHS accounts for creation of clusters of mass m, by
coagulation of clusters of mass m′ and m−m′. The second accounts for the disappearance
of such clusters by coagulation with another cluster.
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2.2 What is obvious?

From a physical point of view, at least two facts should be intuitively obvious. Here and
below, for nonnegative functions c and f on N, we write

〈c, f〉 = 〈c, f(m)〉 =
∑
m≥1

c(m)f(m).

• First, the ct’s, supposed to model concentrations, should be nonnegative. Obviously,
we will only consider nonnegative initial conditions, and it is then easy to see that
any solution to (1.1) or any of its variants remains nonnegative. We give a proof of
this fact in the second chapter, but we will anyway take it for granted in the whole
text.

• Secondly, the mass
〈ct,m〉 =

∑
m≥1

mct(m)

should remain constant, since none is lost when a coagulation occurs. This is in fact
quite a tricky question and a major breakpoint in the theory, as we shall now see.

2.3 Multiplicative kernel and gelation

The behavior of Equation (1.1) depends heavily on the kernel κ, which itself depends on
the process we wish to model (see [1] for some examples). However, three kernels are of
particular interests, namely the constant κ(m,m′) = 1, additive κ(m,m′) = m + m′ and
multiplicative κ(m,m′) = mm′ kernels. For the first two kernels, the system is quite easy
to solve, for instance by considering a PDE involving the generating function of (ct(m)).
The constant case has actually been solved by Smoluchowski himself [57], the additive
case by Golovin in [20].

The multiplicative kernel has a much more interesting behavior, first pointed out by
McLeod [39].

Theorem 2.1 (McLeod, 1962). For initial conditions c0(m) = 1{m=1}, Smoluchowski’s
equation (1.1) with a multiplicative kernel has a unique solution for t ∈ [0, 1]. This solution
enjoys the following properties.

• For all t < 1,
sup
s∈[0,t]

〈cs,m2〉 < +∞,

and
lim
t→1−

〈ct,m2〉 = +∞.

• This solution is mass-conservative, that is, for all t ∈ [0, 1],

〈ct,m〉 = 〈c0,m〉 = 1.

Moreover, there is no mass-conservative solution defined on a greater interval [0, T ] for
T > 1.

Hence, if there is actually a solution on a larger time-interval, then the mass changes
after 1, and it easy to see that it can only decrease then. This is a phenomenon called
gelation. Though it seems physically rather counterintuitive, it may be interpreted as the
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appearance of a giant cluster with infinite mass but zero concentration, accounting for a
positive fraction of the total mass of the system2.

We may think of this phenomenon from a chemical point of view, where our clusters
experience a chemical reaction in a solution, which eventually leads to the formation of
huge clusters which precipitate. They then fall to the bottom of the solution where they
become inert. Hence, the mass in solution decreases. We will call these large clusters by
the generic name of gel. Throughout this text, we shall adopt this heuristic point of view,
using related vocabulary and metaphors.

Now, obviously, these questions only make sense if we know that a solution does exist
on a larger interval than [0, 1]. It can actually be proved that this holds, by using either
deterministic [34] or random [45] techniques. In the first case, this is done by considering
a truncated system taking into account only a finite number of masses. In the second
case, by exhibiting a discrete random model, which is shown to be tight, and such that
any converging subsequence solves Smoluchowski’s equation (1.1). Now is thus probably
the right time to introduce these models.

2.4 Microscopic model and Flory’s equation

2.4.1 Marcus-Lushnikov model

Let us now deal with a microscopic model underlying Smoluchowski’s equation (1.1).
To keep the model as simple as possible, we shall only deal with monodisperse initial
conditions c0(m) = 1{m=1}. The most natural model is to consider a pure-jump Markov
process t 7→ X(N)

t = (X(N)
t (m))m∈N∗ , with values in NN∗ . For m ∈ N∗, the variable

X(N)
t (m) should be thought of as the number of clusters with mass m at time t. In

particular, we start from initial condition X(N)
0 (1) = N and X(N)

0 (m) = 0 for m ≥ 2.
Define

∆m,m′(i) = 1{i=m+m′} − 1{i=m} − 1{i=m′}, i ∈ N∗.

Then, the transition
X(N) → X(N) + ∆m,m′

occurs at rate κ(m,m′). In other words, two clusters of mass m and m′ coalesce at rate
κ(m,m′). This is called a Marcus-Lushnikov process, as it was introduced and studied by
Marcus [38] and Lushnikov [37].

One would thus expect that, after proper space- and time-rescaling, this would converge
to a solution of Smoluchowski’s equation. To be precise, let n(N)

t = X
(N)
t/N /N . We wish

to study its possible limit c in the Skorokhod space D(R+, `1(N∗)) of càdlàg process with
values in `1(N∗), expecting c to be a solution to (1.1). This is actually only partly true.

In the case of a sublinear kernel (i.e. such that κ(m,m′)/m → 0 as m → +∞ for all
m′), it has been first proved by Jeon [27] that this indeed holds. However, sublinear kernels
do not exhibit gelation. Norris [45] considered this model for kernels which may exhibit
gelation, such as the multiplicative one. He shows that the convergence to Smoluchowski’s
equation holds only before the gelation time.

2.4.2 What is the gelation time?

Let us take advantage of this last result to insist on a slight issue regarding the definition of
the gelation time. For the continuous model (1.1), the most natural definition is the time

2Actually, there may just as well be several giant clusters, though we talk of “the” giant cluster by
abuse of language.
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when the mass starts to decrease. For instance, it is 1 in the context of McLeod’s result. It
turns out that this is also the moment when the second moment 〈ct,m2〉 explodes, though
this may be purely coincidental.

There is actually an easy implication: as long as the second moment remains finite,
the mass remains constant (this is just dominated convergence). The converse is not so
obvious, but it is commonly admitted to be the case. We shall prove in the third chapter
of this text that this is actually true for the multiplicative kernel.

In most cases where this relation is still unknown, as in Norris’ result mentioned above,
the gelation time is defined as the first time when the second moment explodes, mainly
because this is a stronger definition.

We may also want to define gelation times for microscopic models. Several definitions
exist in that case, which may yield different times. We refer to Jeon [27] for more details.
Concerning the present text, we will define in the last chapter a gelation time for our
microscopic model, and prove that it converges to the gelation time for the corresponding
continuous model.

2.4.3 Flory’s equation

In addition to Norris’ result mentioned above, Fournier and Giet [17] have shown the
following: when k(m,m′)/m′ converges to some l(m) as m′ → +∞ (as is the case of the
multiplicative kernel), then, on the whole of R+, a limit point c of (n(N)) solves Flory’s
equation:

d
dtct(m) = 1

2

m−1∑
m′=1

κ(m,m′) ct(m′) ct(m−m′)−
∑
m′≥1

κ(m,m′)ct(m)ct(m′)

− l(m)ct(m)
∑
m′≥1

m′(c0(m′)− ct(m′)).
(1.2)

This is Smoluchowski’s equation with an extra term added, modeling an interaction
between the gel and the clusters in solution. Note indeed that l(m) may be interpreted as
the rate of coagulation of clusters of mass m with clusters of infinite mass, and that∑

m′≥1
m′(c0(m′)− ct(m′))

is precisely the missing mass of the system, or, in other words, the mass in the gel.
The convergence of the discrete model to Flory’s rather than to Smoluchowski’s equa-

tion actually makes perfect sense. Indeed, in the discrete model, any cluster can interact
with any other, whatever their sizes are, whereas Smoluchowski’s equation does not al-
low any interaction with the gel. Hence, a decent microscopic model for the latter would
prevent the “big” clusters to interact with the others. This idea has been formalized by
Fournier and Laurençot in [19]. In that paper, they allow only the clusters of size less
than α(N) to coagulate, where 1� α(N)� N , and show that the process converges (up
to a subsequence) to a solution of Smoluchowski’s equation. That is the idea we will take
over to build our microscopic model in the last chapter.

2.4.4 Other microscopic models

The model we consider above is quite simple and probably does not really convey the
physical idea of coagulation. We may rather want to identify the clusters and actually
“see” them grow bigger as time passes.
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• On the one hand, we can forget about the space and study the combinatorial struc-
ture of our clusters. To be more precise, say that they are formed of elementary
particles. A coagulation is seen as the creation of an edge between particles, and the
clusters are the connected components of the graph which is formed this way. We
can then study the typical structure of such a graph and how it evolves. Probably
the best known model of that type is Erdős-Rényi’s [10, 11], where two vertices are
bound after an exponential time. The evolution of the size of the connected compo-
nents is closely related to Smoluchowski’s equation (1.1) with a multiplicative kernel
[2]. Another classical model, called the configuration model, is related to Smolu-
chowski’s equation for limited aggregation. We will see the relation between the two
in the next section.

• On the other hand, we may only keep track of the mass (or size) of the clusters,
assume that they move through space and may coalesce when sufficiently close.
When the motion of the clusters is a Brownian motion, it has been shown [32, 22, 23]
under various assumptions that, after proper rescaling, the cluster-size distribution
converges to a solution of Smoluchowski’s equation (1.1), with a kernel depending
on the model. This is probably the most striking evidence that this equation is a
good continuous model of coalescence.

3 Smoluchowski’s equation of limited aggregations

3.1 Bertoin’s model

3.1.1 The equation

Except in the third chapter, this thesis will mainly focus on a variant of Smoluchowski’s
equation introduced by Jean Bertoin [3], which we will call the modified Smoluchowski
equation. In contrast, Equation (1.1) will be called the standard Smoluchowski equation.

Two main ideas underlie the introduction of this equation. One is its link with the
configuration model, which we shall explain later. Another is the following important
issue concerning the standard Smoluchowski equation: an elementary particle can (and
eventually will if the kernel is positive) be bound to infinitely many other particles. How-
ever, physically, one may want to think of coagulations as covalent bonds, whose number
is limited. A way around this problem is to initially give each particle a certain number of
arms. These arms are used to create the bonds, in that two arms are used to create a link
and cannot be used again. Then, a cluster is characterized by its mass m and its number
of (free) arms a, i.e. the total number of non-used arms of the particles it consists in.
This model has first been considered by Bertoin in [3], and the evolution of concentrations
ct(a,m) of (a,m)-clusters, i.e. clusters with a arms and mass m, is given by

d
dtct(a,m) = 1

2

a+1∑
a′=1

m−1∑
m′=1

a′(a+ 2− a′)ct(a′,m′)ct(a+ 2− a′,m−m′)

−
∑
a′≥1

∑
m′≥1

aa′ct(a,m)ct(a′,m′).
(1.3)

As for (1.1), the first term of the RHS accounts for the creation of (a,m)-clusters by
coagulation of (a′,m′) and (a+ 2− a′,m−m′)-clusters. The second term accounts for the
disappearance of such clusters, by coagulation with other clusters.

Note also that here as well, the kernel is multiplicative. The reason for that choice
is the relation with the configuration model explained in Section 3.3. We may anyhow
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ask natural questions regarding this equation, in particular wonder if there is a unique
solution, and if we may observe the same phenomenon of gelation as for Smoluchowski’s
equation with a multiplicative kernel. Intuitively, this depends on the number of arms on
each particle. For instance, nothing happens if particles have no arm. If they all have one
arm, clusters of two particles only are created as time goes by. On the other hand, if all
particles have a huge number of arms, big clusters may very well appear.

3.1.2 Normalization

It is important to insist here on the normalization considered for the initial conditions.
Here and below, we denote, for c, f : N× N∗ → R+,

〈c, f〉 =
∑

(a,m)∈N×N∗
c(a,m)f(a,m)

writing a for the function (a,m) 7→ a, m for (a,m) 7→ m and so on.
In the text, we will consider two types of initial conditions:

• Either monodisperse initial conditions c0(a,m) = µ(a)1{m=1}. They have two main
advantages: the first is that they allow to obtain quite simple expressions for ct(a,m).
The second is that, when we consider a corresponding microscopic model, the initial
state is just constituted of a set of elementary particles, with no links created between
them.

• Or polydisperse initial conditions, where there can be particles of any mass at time
0. Obviously, the interest is to obtain more general results. It is however harder to
study a corresponding microscopic model, and we shall not use this approach.

We may also adopt two conventions for the normalization, namely either have initial
conditions c0 with unit mean, i.e. 〈c0, a〉 = 1, or c0 with unit concentration, i.e. 〈c0, 1〉 = 1.
It really does not matter if 〈c0, a〉 < +∞, since this only leads to a linear time-change in
the models.

• When considering the continuous model given by Smoluchowski’s equation (1.3) (as
in the second and third chapter), we will mainly choose the first normalization,
since it makes computations easier. For monodisperse initial conditions c0(a,m) =
µ(a)1{m=1}, this means, from a microscopic point of view, that we consider

– a large number N of particles,
– with i.i.d. number of arms given by µ/〈µ, 1〉,
– in a volume 〈µ, 1〉.

• When considering a microscopic model (as in the fourth chapter), we will only con-
sider monodisperse initial conditions c0(a,m) = µ(a)1{m=1} with the second nor-
malization, i.e. such that µ is a probability. It means that we consider

– a large number N of particles,
– with i.i.d. number of arms given by µ,
– in a volume 1.

However, for the most part of the third chapter, no particular normalization is chosen,
so as to give the most general results.
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3.1.3 Result

In his paper [3], Bertoin considers initial conditions c0(a,m) = µ(a)1{m=1} for a measure
µ with unit mean and finite second moment. He then answers the standard questions on
Smoluchowski’s equation. Denote in the sequel K = 〈µ, a(a− 1)〉 and

Tgel =

 +∞ if K ≤ 1
1

K − 1 if K > 1. (1.4)

Theorem 3.1. For initial conditions c0(a,m) = µ(a)1{m=1}, Equation (1.3) has a unique
solution defined on [0, Tgel). This solution has the property that, for all T < Tgel,

sup
t∈[0,T ]

〈ct, a2〉 < +∞

and, if Tgel < +∞,
lim
t→T−gel

〈ct, a2〉 = +∞.

Moreover, for t < Tgel, these solutions are given by explicit formulas.
By analogy with the result of Mc Leod (Theorem 2.1), the time Tgel is interpreted as

the gelation time. When Tgel = +∞, the explicit formulas allow to compute the limiting
concentrations. To this end, we define a probability measure ν by ν(k) = (k+ 1)µ(k+ 1),
k ∈ N, and assume that ν 6= δ1. Its m-th convolution product is written ν∗m.

Corollary 3.2. When Tgel = +∞, the following convergence holds:

lim
t→+∞

ct(a,m) = c∞(m)1{a=0}

where, for m ≥ 2,
c∞(m) = 1

m(m− 1)ν
∗m(m− 2). (1.5)

Those limiting concentrations can be interpreted in terms of the total progeny of some
Galton-Watson process. A rigorous explanation of this relation is given in the paper [4],
and we shall give an intuitive presentation of the result. This is achieved thanks to the
configuration model, which deserves an introduction of its own.

3.2 Configuration model

3.2.1 Definition

The configuration model is a random graph model aiming at producing a graph with pre-
scribed degrees. The simplest definition is to consider a set of N particles with a1, . . . , aN
arms (or half-edges, or stubs), and then to take a uniform pairing of these arms, i.e. a
partition of the set of arms in pairs. If the total number of arms is odd, we leave an arm
unpaired. We then link the two arms in each pair to produce an edge, so, as a result, we
get a random graph. Note that the number of pairings is finite so that this variable is
well-defined. Note also that we may actually obtain a multiple graph. In the standard
definition of the configuration model (see e.g. [54]), one conditions on the graph being
simple, but this is not relevant in our case.

There are multiple ways of constructing a configuration model, other than naively (and
algorithmically extremely costly) picking a pairing uniformly at random.
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• A first way is to choose a random uniform ordering of the arms, and to bind together
the first and the second arm, the third and fourth, and so on. To do so, one may for
instance set i.i.d. exponential clocks on the arms, which induce a natural ordering
of them.

• Another way is to first remove an arm uniformly at random if the number of arms
is odd. Then, pick a particle arbitrarily. Choose one of its arms, and bind it
with another one uniformly chosen among all other arms. Then, take any available
(i.e. not yet paired) arm of this newly-formed cluster, and bind it to another arm
uniformly chosen among all the other available ones. Go on until no more arms are
available in the cluster, then start over with any other particle. It is important to
note that, at each step, the choice of the first vertex or arm really is arbitrary, in
that we may choose them according to any random or deterministic rule.

To get a microscopic model for (1.3), an intuitive idea is to consider a dynamical version
of this algorithm. Obviously, the same issues as for microscopic models for Smoluchowski’s
equation arise. When no gelation occurs, this should however provide a good model, as
we shall see.

3.2.2 Giant component

A classical question about random graphs is the existence of a giant component, i.e. a
connected component with size CN such that CN = Θ(N). This problem is entirely solved
in the case of the configuration model. The main assumption is that the empirical measure

1
N

N∑
i=1

δai

converges to a probability µ with a second moment, and that so do its two first moments.
An important notion which we will use throughout the text is the size-biased shifted-

by-one probability π̂ deduced from a probability π. It is defined, whenever π 6= δ0 (in
which case we let π̂ = δ0) and π has a finite mean, by

π̂(k) = (k + 1)π(k + 1)∑
i≥1 iπ(i) , k ≥ 0.

Its interests lies in the following remark. Consider N particles with empirical distribution
of arms π (i.e., there are π(k)N particles with k arms). When one picks a particle uniformly
at random, its number of arms has law π. Now, pick an arm uniformly at random, and
consider the outer number of arms of the particle to which it is attached, i.e. its number
of arms but the one picked. Then this number has law π̂. Notice that the size-bias stems
from the fact that we pick an arm, not a particle, uniformly at random; the shift from the
fact that we consider the outer number of arms.

The main result about the configuration model [42, 26, 54] is that a giant component
exists with probability tending to 1 as N → +∞ if and only if 〈µ̂, k〉 > 1, and else no
giant component exists with probability tending to 1.

This condition is in fact closely related to the occurrence of gelation in Smoluchowski’s
equation. To be precise, consider initial conditions c0(a,m) = µ(a)1{m=1}, thus con-
sidering a different normalization from that of Theorem 3.1. This only induces a linear
time-change, and obviously does not matter to whether Tgel < +∞ or Tgel = +∞. Then,
Tgel < +∞ ⇔ 〈µ̂, k〉 > 1, i.e. there is gelation if and only if a giant component appears
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in the corresponding configuration model. This is natural if we think of the configura-
tion model as a microscopic model for Smoluchowski’s equation (1.3), and gelation as the
appearance of a giant cluster.

3.3 Microscopic model

3.3.1 Definition

A nice microscopic model for Smoluchowski’s equation with limited aggregation (1.3)
should be obtained as a dynamical version of the configuration model. To this end, proceed
as follows. Consider first a large number N of particles with i.i.d. number of arms with
law µi := µ/〈µ, 1〉. Then, set i.i.d. exponential clocks on each pair of arms, and bind the
two arms whose clock rings first. Then, wait for the next clock to ring on a couple of arms
{a, b}. If a or b has already been paired, do nothing, and else, pair them. Go on until all
arms (except possibly one) are paired.

This construction provides a process such that two clusters with a and a′ available arms
coalesce at rate close to aa′. This is not the exact rate since there is a positive probability
that the two arms we bind belong to the same cluster, in which case no coagulation occurs.
However, this event has very small probability when N is large, and so this does not play
any role in the limit. This is the reason for the rate aa′ in Equation (1.3), and why it is
interesting to study this one amongst all.

Now, the same result as for Smoluchowski’s equation, as explained in Section 2.4,
holds. To be precise, after space- and time-rescaling, the concentrations converge to the
solution to Smoluchowski’s equation (1.3) if there is no gelation. Else they converge to a
solution to Flory’s equation for limited aggregations, which will be introduced in Chapter
3.

3.3.2 Limiting concentrations

Now, the final state of this construction should explain the limiting concentrations (1.5).
But this final state is just a uniform pairing of the arms, or, in other words, a configuration
model. Hence, a typical cluster may be built thanks to the second algorithm of Section
3.2.1.

Recall from Section 3.2.2 the following facts.

• The law of the number of arms of a particle picked uniformly at random is µi.

• When one picks an arm uniformly at random, the number of outer arms of the
particle to which it is attached is ν = µ̂i.

• Moreover, when few particles have been picked, these laws do not vary much.

Now, let us wonder what a typical cluster looks like, that is, consider a particle uni-
formly at random, call it 1, and let us build its cluster. Since N is large, it is very unlikely
that two of its arms bind together, or grab the same particle. The law of the number of
particles to which it is bound is thus approximately µi.

Then, take an arm b. By construction, b chooses an arm uniformly at random, attached
to a particle j, and hence, from the above remarks, the law of the number of outer arms
of j is very close to ν. We can go on and see that the number of outer arms of any
particle but 1 is approximately ν. When few particles are paired, there is only a very
small probability that cycles, loops or double-edges occur and thus, the cluster of 1 is
approximately a Galton-Watson tree GWµi,ν , whose ancestor has reproduction law µi and
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the other individuals have reproduction law ν. We may check a posteriori that ν has mean
less than 1 (since we assumed Tgel = +∞), so these trees indeed are finite.

To recover the limiting concentrations from this remark, consider p(m), the probability
that a particle, picked uniformly at random, is in a cluster of size m in the final state. On
the one hand,

p(m) = mc∞(m)
〈c∞,m〉

= mc∞(m)
〈µ, 1〉

by definition. On the other hand, we just saw that this is (approximately) the probability
that the size T (µ, ν) of a GWµ,ν-tree is m, so that we get

c∞(m) = 1
m
〈µ, 1〉P(T (µi, ν) = m).

But, by Dwass’ formula [9],

P(T (µi, ν) = m) = 1
〈µ, 1〉

1
m− 1ν

∗m(m− 2),

hence verifying the result. This argument is made rigorous in the work [4] by Bertoin and
Sidoravicius subsequent to [3].

4 A two-type limited aggregation model

4.1 Model

The second chapter (following this one) of this thesis deals with a two-type limited aggre-
gation model. The material of this chapter is taken from an article [43] published in the
Journal of Statistical Physics and entitled “A model for coagulation with mating”.

The title is explained by the “sexed” model we consider. We indeed assume that we
are given particles with two types of arms, namely the male and female arms. Only male
and female arms can bind, and these arms are used to perform the coagulations: two
clusters coalesce when a male arm of one binds with a female one of the other. There are
two main motivations to this work. The first is the idea of ionic bonds, which is natural
when considering a medium filled with ions, which bind to create polymers. The second
motivation is to bring together the two models considered by Bertoin in [3]. We shall
however only discuss the relation with the symmetric model (in the terminology of [3])
(1.3) described above. The relation with the other model is explained in Chapter 2.

As coagulations occur in the sexed model, clusters of particles are created. These
clusters are characterized by a triplet (a, b,m), where a ∈ N is its number of available (i.e.
not yet linked) male arms, b ∈ N its number of available female arms and m ∈ N∗ its mass,
i.e. the number of particles it consists in.

Two clusters may coagulate when one has an (available) female arm and the other has
an (available) male arm, and when a coagulation occurs, the used arms merge and create
an edge. Hence, we may only observe the transition

{(a, b,m), (a′, b′,m′)} → (a+ a′ − 1, b+ b′ − 1,m+m′).

We will assume that this transition occurs with a rate given by the number of pairs formed
of a female arm and of a male arm, that is a′b+ ab′.

Mathematically, define ct(a, b,m) the concentration of clusters with a male arms, b
female arms and mass m. Then these concentration abide by the sexed Smoluchowski
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equation given by

d
dtct(a, b,m) = 1

2

m−1∑
m′=1

a+1∑
a′=0

b+1∑
b′=0

(a′(b+ 1− b′) + b′(a+ 1− a′))×

ct(a′, b′,m′)ct(a+ 1− a′, b+ 1− b′,m−m′)
−
∑
m′≥1

∑
a′≥0

∑
b′≥0

(ab′ + a′b)ct(a, b,m)ct(a′, b′,m′).

(1.6)

As for (1.1) and (1.3), the first term of the RHS accounts for the creation of (a, b,m)-
clusters by coagulation of (a′, b′,m′) and (a + 1 − a′, b + 1 − b′,m − m′)-clusters. The
second term accounts for the disappearance of such clusters, by coagulation with other
clusters.

Our goal is to study this equation as done in [3] for (1.3). More precisely, we want
to know about the existence and uniqueness to a solution, and whether we may observe
similar phenomena as for (1.3), namely whether gelation occurs, whether we can give
explicit solutions and compute the limiting concentrations.

4.2 Results

4.2.1 Well-posedness

Our main result is existence and uniqueness of a solution to (1.6) up to a critical time.
Let S = N× N× N∗. For two nonnegative functions c, f : S → R+, define

〈c, f〉 =
∑
p∈S

c(p)f(p).

We also write a for the function f(a, b,m) = a, b for f(a, b,m) = b, and so on.
In all the statements and proofs, we are given nonnegative initial concentrations c0

such that 〈c0, 1〉 < +∞, 〈c0, a〉 = 〈c0, b〉 = 1 and 〈c0, a
2 + b2〉 < +∞. We may then define

M = 〈c0, ab〉+
√
〈c0, a2 − a〉〈c0, b2 − b〉

and

Tgel =
{

+∞ if M ≤ 1
1

M−1 if M > 1.
(1.7)

We thus obtain the following result.

Theorem 4.1. (i) Smoluchowski’s equation (1.6) with initial conditions c0 has a unique
solution (ct) defined on [0, Tgel).

(ii) For t ∈ [0, Tgel), sups∈[0,t]〈cs, a2 + b2〉 < +∞, and 〈ct, a2 + b2〉 → +∞ when t→ Tgel.

(iii) The total mass 〈ct,m〉 is constant on [0, Tgel).

It is obviously very similar to Theorem 3.1, so carrying out the same discussion is
probably not worth it. Let us rather insist on its consequences.
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4.2.2 Explicit solutions

In [3], Bertoin obtained explicit solutions for (1.3) starting from monodisperse initial
conditions c0(a,m) = µ(a)1{m=1}. However, this cannot be achieved in our case for any
initial conditions c0(a, b,m) = µ(a, b)1{m=1}, but only in some special cases. Probably the
most interesting case is the one which allows to recover Bertoin’s results for (1.3).

To do so, a natural idea is to give, at time 0, i.i.d. numbers of arms to each particle and
then give each of these arms independently a gender with probability 1/2. The knowledge
of the genders should then be irrelevant, and forgetting about them should allow to recover
Equation (1.3). So consider

µ(a, b) = µ1(a+ b)
(
a+ b

b

)
1

2a+b ,

where µ1 is a measure with mean 2, so that 〈c0, a〉 = 〈c0, b〉 = 1. In other words, this
means that the particle have i.i.d. number of arms given by µ1/2, and that each arm is
independently with probability 1/2 male or female.

Denote ct(k,m) the solution to (1.3) with monodisperse initial conditions c0(k,m) =
(µ1/2)(k)1{m=1}. Then, we can see that∑

a+b=k
ct(a, b,m) = 2ct(k,m)

and

ct(a, b,m) = 1
2

(
a+ b

b

)
1

2a+b ct(a+ b,m).

Hence, at any given time, the distribution of the number of male (or female) arms is
still binomial. So, if at some time we choose to reassign to each arm a gender uniformly
and independently, and let the system evolve on from this state, no difference would be
observed. Or we could forget about the genders at some time t and observe the state at
time t of Bertoin’s model (1.3). Or, finally, we could watch a system evolve like (1.3)
starting from an arm distribution µ1/2, and then at some time give the arms a gender
uniformly at random and independently. The evolution afterwards will be the evolution
of the sexed model with initial arm distribution µ.

Note also that the factor 2 in these equations is irrelevant, since it comes only from the
normalization: in our model, the total concentration of arms in the medium is 2, while it
is 1 in Bertoin’s model. Finally, it is worth noticing that the gelation time for this model
is the same as in the symmetric model with initial distribution µ1/2.

4.2.3 Limiting concentrations

As in Bertoin’s result, we may want to compute the limiting concentrations whenever
the gelation time Tgel is infinite. So let us start from monodisperse initial conditions
c0(a, b,m) = µ(a, b)1{m=1} with 〈c0, a〉 = 〈c0, b〉 = 1. We may then define the probabil-
ity measures µm(a, b) = (b + 1)µ(a, b + 1), µf (a, b) = (a + 1)µ(a + 1, b) and µi(a, b) =
µ(a, b)/〈µ, 1〉.

Let T (µi, µm, µf ) be the size of a two-type Galton-Watson tree GWµi,µm,µf , whose
ancestor has reproduction law µi, and the other individuals have reproduction law µm
for the males, µf for the females. The assumption that Tgel = +∞ ensures that it is a
subcritical Galton-Watson tree. When it is not degenerate (i.e. has a positive probability
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of being infinite even though it is subcritical, see [24]), we may show that we have the
convergence

ct(a, b,m)→ c∞(m)1{a=b=0}

where
c∞(m) = 1

m
〈µ, 1〉P(T (µi, µm, µf ) = m).

In this formula, the factor 〈µ, 1〉 stems from the normalization and is irrelevant. Having
said that, this formula may be interpreted as in Bertoin’s case with only one type of arm
(see Section 3.3.2). Note indeed that µi is the law of the number of (male and female)
arms of a particle picked uniformly at random, and that, when a male (resp. female) arm
is picked uniformly at random, µm (resp. µf ) is the law of the outer number of arms of
the particle to which this arm is attached. In other words, a typical cluster in solution
should be a GWµi,µm,µf -tree.

4.3 A microscopic model

The last section of this first work is devoted to providing a microscopic model to (1.6),
so as to give a more proper justification to this equation. As pointed out earlier, the
convergence of this kind of models has been first established by Jeon [27] and Norris
[45]. The framework here is slightly different because we consider particles with arms.
Moreover, we only study a multiplicative kernel, and the proof is made quite simpler by
using PDE techniques developed earlier in the paper.

Let us define the model a bit informally (in particular, the jump rates are not exactly
those below). Define, for p = (a, b,m), p′ = (a′, b′,m′), p◦p′ = (a+a′−1, b+b′−1,m+m′)
and

∆p,p′(q) = 1{q=p◦p′} − 1{q=p} − 1{q=p′}, q ∈ S.

Then, we define a pure-jump Markov process (X(N)
t (p), p ∈ S)t≥0, where the jumps

X(N)
t → X(N)

t + ∆p,p′

occur at rate ab′+a′b. Rescale the process by letting c(N)
t = 1

NX
(N)
t/N , and assume that the

initial conditions are non-random and verify

• for every p ∈ S, c(N)
0 (p)→ c0(p) for some c0(p) ≥ 0,

• 〈c(N)
0 , a〉 → 〈c0, a〉 = 1, 〈c(N)

0 , b〉 → 〈c0, b〉 = 1,

• 〈c0, a
2 + b2〉 < +∞.

In particular, c(N) belongs to

E =

C ∈ [0, 1]S ,
∑

(a,b,m)∈S
(a+ b+m)C(a, b,m) ≤M


for some large enough M , where E, endowed with the `1 distance, is a Polish space. If we
define Tgel as in (1.7), then we have the following convergence result.

Theorem 4.2. The process (c(N)
t )t∈[0,Tgel) converges in the Skorokhod space D([0, Tgel), E)

to the unique solution of Smoluchowski’s equation (1.6) on [0, Tgel).

This gives a rigorous justification for the equation (1.6) we consider. It is also worth
noticing that the convergence takes place only before the gelation time, as was to be
expected upon knowing the results on the standard Smoluchowski equation (1.1).
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5 Post-gelation uniqueness of coagulation equations

The second part of this thesis is mainly constituted of a joint work [44] with Lorenzo
Zambotti. We prove therein that there is a unique solution on the whole of R+ to Smolu-
chowski’s equation (1.1) or (1.3), in particular when gelation occurs. As far as we know,
this is the first rigorous uniqueness result proved in that case, except for Kokholm’s result
[29] on (1.1) for monodisperse initial conditions.

5.1 Post-gelation behavior for the standard Smoluchowski equation

5.1.1 Statement

Let us give here our precise result concerning Equation (1.1). The actual result of [44]
deals with a version of the equation with continuous masses, but we only give here the
statement for discrete masses which is easier to understand. We start from nonzero initial
conditions c0 such that 〈c0, 1〉 < +∞, and we define

Tgel = 1
〈c0,m2〉

∈ [0,+∞).

Theorem 5.1. Smoluchowski’s equation (1.1) with the multiplicative kernel has a unique
solution (ct) on R+. It has the following properties.

1. The total mass Mt = 〈ct,m〉 is continuous on R+. It is constant on [0, Tgel] and
strictly decreasing on [Tgel,+∞). It is analytic on R+\{Tgel}.

2. Let m0 = inf{m ≥ 1, c0(m) 6= 0} ∈ N∗. Then, when t→ +∞,

Mt ∼
1
m0t

.

3. The second moment 〈ct,m2〉 is finite for t ∈ [0, Tgel) and infinite for t ∈ [Tgel,+∞).

5.1.2 Remarks

This result really explains rigorously the heuristics given at the beginning of this introduc-
tion and in several papers from the Physics literature [13, 12, 36, 53, 59]. In particular,
the time Tgel at which the second moment 〈ct,m2〉 explodes is precisely the gelation time,
as we already discussed in Section 2.4.2. This is obviously also reminiscent of Mc Leod’s
result (Theorem 2.1).

A most interesting feature is the continuity of the mass. This is a priori not obvious,
since at the gelation time, we may think that a positive fraction of the mass would fall
into the gel. Proving this fact is actually at the very heart of the proof, the other results
being quite easily deduced from this one.

Finally, let us note that the mass behaves asymptotically like 1/t, a phenomenon
which was already observed in the monodisperse case [29]. The factor of 1/t depends on
the smallest masses in the system at time 0 (and thus at any time). It is however quite
intriguing that a tiny fraction of particles of unit mass at time 0 is enough to ensure a
factor of 1. There is in particular no continuity in that respect. In the case of continuous
masses, the mass may decrease slower than 1/t if there exists dust, i.e. particles with
arbitrarily small mass (see Chapter 3 for some details).
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5.1.3 Comparison with Flory’s equation

Without stating the result, let us end with a few remarks on Flory’s equation. In that
case, we also obtain the existence and uniqueness of a solution, result already obtained
by Norris [46] in a much more general setting. We can also show that, starting from
the same initial conditions, the mass is, after gelation, strictly smaller in Flory’s than in
Smoluchowski’s case. The mass even actually decreases exponentially fast, to be compared
with the decrease in 1/t above.

This may at first sight seem natural, since in Flory’s model, the gel attracts the clusters,
so the rate at which clusters fall into the gel should be higher. However, it turns out3

that the clusters not in the gel are larger in Smoluchowski’s than in Flory’s model. Hence,
in the second case, fewer clusters fall into the gel because they coagulate and reach a
giant size. But they do fall because of interactions with the gel, which do not exist in
Smoluchowski’s model. A priori, it is not obvious which effect should prevail.

5.2 Post-gelation behavior for the model with limited aggregations

Let us now describe the results concerning (1.3) since they are the motivation for the
study undertaken in the last part of this thesis. We start with initial concentrations
(c0(a,m), a ∈ N,m ∈ N∗) such that 〈c0, 1〉 < +∞, A := 〈c0, a〉 ∈ (0,+∞] and K :=
〈c0, a(a− 1)〉 ∈ [0,+∞]. Then K = +∞ whenever A = +∞. We may then let

Tgel =


1

K−A if A < K < +∞
0 if K = +∞
+∞ if K ≤ A < +∞.

(1.8)

Theorem 5.2. Equation (1.3) has a unique solution (ct) defined on R+. When Tgel < +∞,
it enjoys the following properties.

• The mass Mt := 〈ct,m〉 is continuous, constant on [0, Tgel), strictly decreasing on
[Tgel,+∞), and analytic on R+\{Tgel}.

• The mean number of arms At := 〈ct, a〉 is continuous and strictly decreasing on R+,
and analytic on R+\{Tgel}.

• The second moment 〈ct, a2〉 is finite on [0, Tgel), infinite on [Tgel,+∞).

Moreover, representation formulas for the generating function of ct are given. They
are however significantly more cumbersome than the explicit formulas of [3].

There are obvious parallels to be made with the result above, on which we shall not
dwell. The only difference lies in the decrease of At, which is actually quite similar to
that of the mass. Indeed, the “normal” (if no gelation were to occur) behavior of the
mass is to be constant. The gelation time is precisely the time when this stops holding.
Similarly, the normal behavior of At is to be equal to A0/(1 + tA0), which corresponds to
the continuous limit of the pure-death process obtained by killing a couple of arms when
its clock rings, as explained in Section 3.3. The gelation time is once again precisely the
time when this normal behavior is altered.

3But this will be clear only after the study of a microscopic model for Smoluchowski’s equation under-
taken in the last part of this thesis. See however Section 6.3 for more explanations.
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5.3 Limiting concentrations

The representation formula which are obtained during the proof of the result above allows
to compute basically any quantity of interest. The expressions are particularly simple
when starting from monodisperse initial conditions c0(a,m) = µ(a)1{m=1}, where µ has a
second moment, and having t→ +∞. Define ν(k) = (k + 1)µ(k + 1). We assume that

• there are particles with one arm, or, in symbols, that µ(1) > 0, since otherwise it is
easy to see that nothing but the initial particles with no arm remains in solution in
the final state,

• and that Tgel < +∞, i.e. that 〈µ, a〉 < 〈ν, a〉.

In particular, this readily implies that the equation

Gν(η) = ηG′ν(η) (1.9)

has a unique solution, where Gν denotes the generating function of ν.

Corollary 5.3. When t→ +∞,

ct(a,m)→ c∞(m)1{a=0}

in `1(N× N∗), where

c∞(m) = 1
m(m− 1)β

m−1ν∗m(m− 2) (1.10)

and β is given by

β = η

Gν(η) = 1
G′ν(η) . (1.11)

Moreover, the mass at infinity is given by

〈c∞,m〉 = Gµ(η). (1.12)

The link with the result without gelation is once again really clear, the only difference
lying in the appearance of the factor β in the expression of c∞(m). However, at this
point, it is not clear where it stems from, and giving a probabilistic interpretation for that
constant is actually the incentive for the last part of this thesis.

6 A microscopic model for Smoluchowski’s equation

The last chapter is dedicated to the study of a microscopic model for Smoluchowski’s
equation, whose stated goal is to explain Formula (1.10), as was done in [4] in the case
gelation does not occur. The methods used are however quite different and rely heavily on
random graphs considerations. This part is extracted from a joint work [41] with Mathieu
Merle.
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6.1 Model

The model is similar to those already mentioned in Sections 2.4 and 3.3. We start from
N particles with empirical distribution of arms µ(N) (i.e., for each k, there are Nµ(N)(k)
particles with k arms). We then set i.i.d. exponential clocks on each arm. When a
clock rings, the corresponding arm is activated, so an arm will be said to be active if the
corresponding clock has rung, and available if it has not.

At each time, the model provides a multigraph Ct. We say that a particle or arm is in
solution if its cluster (i.e. connected component) has size less or equal than some α(N),
and is in the gel otherwise. We then join pair of arms of particles whose respective clocks
ring consecutively when they are both in solution and when they are not already paired.
To be more precise, when an arm b is activated:

• if b is in the gel at that time, or if it is still in solution and there is no other unpaired
and active arm in solution, nothing happens.

• If on the other hand, b is in solution and there is another unpaired an active arm in
solution, say b′, then the arms b and b′ are bound together, i.e. a new edge in the
graph is created.

We also proceed in such a way that the process is càdlàg.
We obviously need some assumptions on α(N) and µ(N). For µ(N), classical results

on random graphs, as explained in Section 3.2.2, require that there exists a probability
µ such that the sequence (µ(N)) converges to µ weakly and 〈µ(N), k2〉 → 〈µ, k2〉 < +∞.
This is also the assumption we will make. For technical reasons, we also require that µ
has a third moment, i.e.

〈µ, k3〉 < +∞,

though we believe that a finite second moment should be enough.
Concerning α(N), it is clear from Fournier and Laurençot’s work [19] that we should

take 1� α(N)� N . Actually, for technical reasons, we need

α(N)
N

−→
N→∞

0 and α(N)
N1/3 −→N→∞

+∞,

though we also believe that having α(N)→ +∞ should be enough.

6.2 Post-gelation result

At any time t ≥ 0, this model provides a good microscopic model for (1.3), in that the
techniques of [19] can be adapted to show that the concentration of clusters with a available
arms and mass m converge to a solution of a time-changed Smoluchowski’s equation (1.3).
This time-change comes from the fact that the model is slightly different from the one
explained in Section 3.3, where clocks are set on couples of arms, whereas here, clocks are
set on arms. However, this time-change is explicit and is a diffeomorphism of R+, so it
hardly makes any difference. In particular, the limiting quantities as t → +∞ are the
same.

Now, our main interest is to study two relevant quantities, namely

• the proportion of particles in solution at time t, denoted n(N)
t ,

• the empirical distribution π(N)
t of activated arms of the particles in solution (that is,

for each k, π(N)
t (k) is the proportion of particles in solution with k activated arms).
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Our main result is the convergence of these two quantities in the space D(R+,R+×M1)
of càdlàg processes with values in R+ ×M1, where M1 is the space of probabilities on N.

Theorem 6.1. The sequence (n(N), π(N)) converges in D(R+,R+ ×M1) as N → +∞ to
some continuous deterministic (n, π). Moreover, for t ≥ Tgel, πt is critical, in the sense
that 〈π̂t, k〉 = 1.

We can also provide explicit formulas for nt and for the generating function of πt, so
we can compute basically any quantity we wish.

6.3 Remarks

This result actually describes precisely the state in solution at any time t. Indeed, we will
see in Chapter 4 that, at time t, the state in solution is approximately a configuration
model CM(ntN, πt). Hence, the same description of a typical cluster in solution as in
Section 3.3.2 can be carried out. In particular, it means that a particle picked uniformly
at random in solution is the root of a GWπt,π̂t-tree.

Probably the most interesting part of this result is the post-gelation Self-Organized-
Criticality (SOC), i.e. in symbols 〈π̂t, k〉 = 1 for t ≥ Tgel. The fact that we let all the
big clusters fall into the gel indeed allows for the model to remain at criticality, after it
has reached it at time Tgel. In comparison, this is not the case for Flory’s model, which
is subcritical before Tgel, critical at Tgel and becomes subcritical again just afterwards.
Informally, the criticality is achieved because the two phenomena of activation of arms
and falls into the gel compete to reach an equilibrium. This SOC phenomenon is well-
known in the Physics literature, but quite seldom proved mathematically. It is however
worth mentioning Ráth and Tóth beautiful paper [47], where it is proved, under similar
heuristics (growth of trees vs. forest fires), that SOC occurs.

In our case, the post-gelation SOC means that the typical clusters in solution are
critical Galton-Watson tree, which are thus a.s. finite but quite large, whereas in Flory’s
model, the typical clusters in solution are subcritical trees, and so are significantly smaller.

6.4 Final state

Let us conclude this introduction and come full circle by explaining Formula (1.5). So
consider the final state of the system. Recall that η is defined as the unique solution to
Equation (1.9).

Corollary 6.2. The mass converges to a limit

n∞ = Gµ(η) (1.13)

and πt converges to a critical probability π∞ with generating function

Gπ∞(x) = Gµ(ηx)
Gµ(η) , x ∈ [0, 1]. (1.14)

The first obvious remark is that Formulas (1.12) and (1.13) agree. Now, as already
noted above, a typical particle in solution is the root of a GWπ∞,π̂∞-tree. As in Section
3.3.2, we may then say that c∞(m), the concentration, in a unit volume, of clusters of
mass m and with no arms in the final state, can be written as

c∞(m) = 1
m
P(T (π∞, π̂∞) = m).
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But Dwass’ formula [9] yields

P(T (π∞, π̂∞) = m) = (m− 1)−1βm−1ν∗m(m− 2)

and we have therefore recovered (1.5).





Chapter 2

A model for coagulation with
mating

The material of this chapter is taken from an article [43] published in the Journal of
Statistical Physics.
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1 Introduction

1.1 Model

In this chapter, we study a “sexed” model of coagulation of clusters, generalizing the
original model (1.1) of Smoluchowski [57], and Bertoin’s model (1.3) introduced in [3].
The model is sexed in that we consider particles which are initially given a certain number
of male and female arms. These arms are used to perform the coagulations: two clusters
coagulate when a male arm of one and a female arm of another bind. Introducing this
kind of model is natural when we think of Chemistry. For instance, consider male particles
(which have only male arms), and female particles. Then a coagulation between a male
and a female particle can be thought of as an ionic bond between a cation and a anion.
This kind of models has also been investigated in the Physics literature. For instance, in
[48, 49], the authors study coalescing monomers with two types, A and B, with bonding
only allowed between A and B, hence forming alternating linear polymers. In this work,
this corresponds to giving to each particle exactly one male arm and one female arm.

When (elementary) particles coalesce, clusters are created. In our model, a cluster
is characterized by a triple (a, b,m), a ∈ N being its number of male arms, b ∈ N its
number of female arms, and m ∈ N∗ its mass. Two clusters may coagulate when one has a
female arm and the other has a male arm, and when a coagulation occurs, the used arms
merge and create an edge, so they cannot be used again. Hence, we may only observe the
transition

{(a, b,m), (a′, b′,m′)} → (a+ a′ − 1, b+ b′ − 1,m+m′).

We will assume that this transition occurs with a rate given by the number of pairs formed
of a female arm and of a male arm, that is a′b+ab′. We wish to study how the concentration
of each type of cluster evolves when time passes. The precise mathematical formulation
of this problem is given in Section 2.

1.2 Bertoin’s models

Our model can be seen as a variation of the two models of Bertoin introduced in [3]. In this
work, he considers coalescing clusters characterized by a number a of arms and a mass m,
and studies two models. We already discussed in the introduction the “symmetric” model
(1.3) (in the terminology of [3]), where each pair of arms is activated independently. The
concentration ct(a,m) of (a,m)-clusters is then governed by the equation

d
dtct(a,m) = 1

2

a+1∑
a′=1

m−1∑
m′=1

a′(a+ 2− a′)ct(a′,m′)ct(a+ 2− a′,m−m′)

−
∑
a′≥1

∑
m′≥1

aa′ct(a,m)ct(a′,m′).
(2.1)

In that case, there is a critical time such that there is a unique solution up to this time.
Moreover, for monodisperse initial conditions, explicit solutions are given, which can be
related to Galton-Watson processes at the limit, whenever the critical time is infinite.
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The second model (actually the first in [3]) is an “oriented” model, where each arm
is activated independently, and then chooses to bind to another cluster chosen uniformly
at random. Hence, only one arm is consumed when a coagulation occurs, and we only
observe the transitions

{(a,m), (a′,m′)} → (a+ a′ − 1,m+m′).

The evolution of the concentrations is then given by the equation

d
dtct(a,m) = 1

2

a+1∑
a′=0

m−1∑
m′=1

(a+ 1)ct(a′,m′)ct(a+ 1− a′,m−m′)

−
∑
a′≥0

∑
m′≥1

(a+ a′)ct(a,m)ct(a′,m′).
(2.2)

The main result of [3] in that case is that there is a unique solution on R+, for which
explicit formulas are given.

We will see that our sexed model contains Bertoin’s: the oriented model corresponds
indeed to ours if each particle is given precisely one female arm, and the symmetric model
corresponds to the sexed one if the arms are given a gender uniformly at random.

1.3 Results and plan of the paper

This paper is divided in two parts. In the first one (Sections 2 to 6), we shall study
the sexed Smoluchowski’s equation. We first (Section 2) introduce the problem and state
our main result, viz. the well-posedness of the sexed Smoluchowski equation up to some
critical time. In Section 3, we provide some preliminary results and prove some physically
intuitive facts. Then (Section 4), we prove our main result. The tools used are analogous
to those in [3], but since we are dealing with a two-dimensional problem, several technical
issues need to be addressed. The outline of the proof is as follows. First, we transform the
system into a PDE by considering the generating functions of the concentrations. This
PDE is not quasilinear, but it may however be solved by the method of characteristics.
This method requires the inversion of a two-dimensional mapping, and this can be done
precisely up to the critical time.

Unfortunately, even for monodisperse initial conditions, the inversion is not explicit
(one could use the two-variable Lagrange inversion formula, but in general, the expres-
sion it provides is too cumbersome). Nonetheless, in some specific cases (Section 5), the
Lagrange Inversion Formula yields explicit results. In particular, we recover the solu-
tions obtained in [3]. Finally, we show (Section 6) that there exist limiting concentrations
when t→ +∞, and that they are related to the distribution of the total progeny of some
two-type Galton-Watson process.

In the second part (Section 7), we study a microscopic model. Given a finite number
of particles, we let them coagulate and observe the evolution of the concentrations of
the different types of clusters. This is a Marcus-Lushnikov process, and we show that
it converges, before the critical time, to a process solving Smoluchowski’s equation (2.3).
As pointed out in the introduction, this kind of convergence had already been proved by
Norris ([45], see as well [27]). The difference here is that we consider a model with male
or female arms. Moreover, the proof is made much easier by the fact that the rate of
coagulation is explicit. In particular, we will appeal to the PDE obtained in the first part.
This discrete model provides a justification to the sexed Smoluchowski’s equation (2.3).

Finally, note that our construction can also provide a model for random oriented
graphs, since a coagulation can be seen as the creation of an oriented edge between two
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vertices in a graph, whose orientation is given e.g. from the male arm to the female arm.
Hence, we can consider a large number n of particles and let them coagulate. When all
the coagulations are performed, we obtain a set of oriented graphs. When n → +∞, we
may wonder what the distribution of their sizes is, what a typical graph looks like, etc. A
heuristic answer, motivated by the works [4, 5], and by the results obtained in this paper
(Section 6), is that a typical graph would be a two-type Galton-Watson tree, provided
there are few arms (in the notations of this chapter, this means that Tgel = +∞ and µ is
not degenerate).

2 Setting and results

2.1 Notations

Let us first introduce some notations as well as the sexed Smoluchowski equation, and
state our main result.

• N = {0, 1, 2, . . .} and N∗ = {1, 2, . . .}.

• S = N× N× N∗ is the set of the different types of clusters. A generic element of S
will be denoted by p, and if p = (a, b,m), we will call a p-cluster a cluster with a
male arms, b female arms, and mass m.

• For p = (a, b,m) ∈ S and p′ = (a′, b′,m′) ∈ S, we will denote

p.p′ = a′b+ ab′

the rate of coagulation and

p ◦ p′ = (a+ a′ − 1, b+ b′ − 1,m+m′)

the type of the cluster resulting from such a coagulation. We say that p′ � p if
a′ ≤ a+ 1, b′ ≤ b+ 1 and m′ ≤ m− 1. When p′ � p, we write

p\p′ = (a+ 1− a′, b+ 1− b′,m−m′)

the type of cluster such that p′ ◦ (p\p′) = p.

• For two functions c, f : S → R, we will denote, when the series converge absolutely,

〈c, f〉 :=
∑
p∈S

c(p)f(p).

When using this notation, we will write, with a slight abuse of notation, a for the
function (a, b,m) 7→ a, b for (a, b,m)→ b, etc.

Let us recall our goal. We are interested in a system of coagulating clusters with male
and female arms. We assume that each couple formed of a p-cluster and of a p′-cluster
coagulates at rate p.p′, to form a p◦p′-cluster. This means that if we denote ct(p) the con-
centration of p-clusters, then (ct(p), p ∈ S) solves the following infinite system of nonlinear
differential equations

d
dtct(p) = 1

2
∑
p′�p

p′.(p\p′)ct(p′)ct(p\p′)−
∑
p′∈S

p.p′ct(p)ct(p′). (2.3)
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The first term accounts for the creation of p-clusters by coagulation of p′- and p\p′-clusters
(the factor 1/2 stems from an obvious symmetry). The second accounts for the disappear-
ance of p-clusters by coagulation with other clusters.

To see the resemblance with Bertoin’s equations (2.1) and (2.2), let us once write down
this formula in full: for all (a, b,m) ∈ S, the concentration of (a, b,m)-clusters verifies

d
dtct(a, b,m) = 1

2

m−1∑
m′=1

a+1∑
a′=0

b+1∑
b′=0

(a′(b+ 1− b′) + b′(a+ 1− a′))×

ct(a′, b′,m′)ct(a+ 1− a′, b+ 1− b′,m−m′)
−
∑
m′≥1

∑
a′≥0

∑
b′≥0

(ab′ + a′b)ct(a, b,m)ct(a′, b′,m′).

Let us now define what we call a solution to the sexed Smoluchowski equation.

Definition 2.1. We call a family (ct(p), p ∈ S, t ∈ [0, T )) of differentiable functions a so-
lution of Smoluchowski’s equation (2.3), if

1. for every t ∈ [0, T ), 〈|ct|, a+ b〉 < +∞,

2. the family (ct(p)) solves the system (2.3) for t ∈ [0, T ).

Remark 2.2. • We will always assume that at time 0, 〈c0, a+ b+ 1〉 < +∞, and that
the mean number of male arms 〈c0, a〉 and the mean number of female arms 〈c0, b〉
are equal. Physically, it is then obvious that they will remain equal as time passes.
This shall be proven later on, in Lemma 3.5.

• It is easy to see that if (ct)t∈[0,T ) is a solution to (2.3) with initial conditions c0, and
λ > 0, then (λct/λ2)t∈[0,T ) is a solution to (2.3) with initial conditions λc0. Hence,
it is enough to assume that 〈c0, a〉 = 〈c0, b〉 = 1, what will always be the case from
now on.

2.2 Main result

Our main result is existence and uniqueness of a solution to (2.3) up to a critical time. In
all the statements and proofs, we are given nonnegative initial concentrations c0 such that
〈c0, 1〉 < +∞, 〈c0, a〉 = 〈c0, b〉 = 1 and 〈c0, a

2 + b2〉 < +∞. We can then define the critical
time Tgel.

Definition 2.3. Let

M = 〈c0, ab〉+
√
〈c0, a(a− 1)〉〈c0, b(b− 1)〉

and define the gelation time as

Tgel =
{

+∞ if M ≤ 1
1

M−1 if M > 1.
(2.4)

Remark 2.4. As explained in the introduction of this thesis, this gelation time is a priori
just a technical device: after this time, the equations become much harder to solve, since,
as the following theorem will show, this is actually the time when the second moment
〈ct, a2 + b2〉 explodes. However, we will not give a proof that a solution to (2.3) defined
on a larger interval than [0, Tgel) sees its mass decrease, which would show that Tgel really
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is the gelation time. That being said, we firmly believe this to be true, since this holds
for Bertoin’s equation (2.1) as we will show in the next chapter. The techniques of that
chapter could probably be applied to the present case, though doing so would surely be
really tedious.

We will also constantly use the generating function of (c0)

g0(x, y, z) := 〈c0, x
aybzm〉 =

∑
(a,b,m)∈S

c0(a, b,m)xaybzm.

Since 〈c0, 1〉 < +∞, g0 is well-defined on [0, 1]3. Thanks to the assumption 〈c0, a + b〉 <
+∞, its partial derivatives with respect to x and y are well-defined and continuous on
[0, 1]3 and they remain in [0, 1]. We may now state our main result.

Theorem 2.5. (i) Smoluchowski’s equation (2.3) with initial conditions c0 has a unique
solution (ct) defined on [0, Tgel).

(ii) For t ∈ [0, Tgel), 〈ct, a2 + b2〉 < +∞, and 〈ct, a2 + b2〉 → +∞ when t→ Tgel.

(iii) The total mass 〈ct,m〉 is constant on [0, Tgel).

(iv) For t ∈ [0, Tgel) and z ∈ [0, 1], the mapping φt(., ., z), given for (x, y) ∈ [0, 1]2 by

φt(x, y, z) =
(

(1 + t)x− t∂g0
∂y

(x, y, z), (1 + t)y − t∂g0
∂x

(x, y, z)
)
,

has a right-inverse ht = (h(1)
t , h

(2)
t ) which is well-defined and analytic on (0, 1)2.

Then the generating function gt of (ct) is given by

gt(x, y, z) = 1
1 + t

(
H̃

(2)
t (x, y, z) + H̃

(1)
t (0, y, z)

)
+Gt(z) (2.5)

where, for t > 0,

h̃
(1)
t = 1 + t

t
h

(1)
t (x, y, z)− x

t
, h̃

(2)
t := 1 + t

t
h

(2)
t (x, y, z)− y

t
(2.6)

and

• H̃(1)
t is the antiderivative of h̃(1)

t with respect to y, vanishing at y = 0,

• H̃(2)
t is the antiderivative of h̃(2)

t with respect to x, vanishing at x = 0,
• Gt(z) is the antiderivative of

∂g0
∂z

(
h

(1)
t (0, 0, z), h(2)

t (0, 0, z), z
)

(2.7)

with respect to z, vanishing at 0.

The relation with Bertoin’s Theorem 3.1 is obvious. The two differences are the conser-
vation of the mass, which is implicit in [3], and the representation formula, which is given
for monodisperse or polydisperse initial conditions. Bertoin gives explicit formulas in the
monodisperse case, what we cannot do here, except in some special cases (see Section 5).
This representation formula is however at the heart of the proof, and allows to prove the
properties of the solution given in the statement.
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3 Preliminary results

In this section, we give some physically intuitive results, and deduce the “weak” form of
the equation.

3.1 Nonnegativeness of the solutions

Let us start with the following lemma. Recall that ct(p) is meant to model a concentration,
and that c0(p) ≥ 0 for any p ∈ S.

Lemma 3.1. Any solution to the sexed Smoluchowski equation remains nonnegative, that
is, if (ct)t∈[0,T ) is a solution to (2.3) with initial conditions (c0), then, for all t ∈ [0, T )
and p ∈ S, ct(p) ≥ 0.

Proof. Take some t ∈ [0, T ). System (2.3) gives
d
dtct(a, b, 1) = −ct(a, b, 1)

∑
m′≥1

∑
a′≥0

∑
b′≥0

(ab′ + a′b)ct(a′, b′,m′) := −γ(t)ct(a, b, 1).

Let G(t) =
∫ t

0 γ(s) ds. Then ct(a, b, 1) = c0(a, b, 1)e−G(t), so it remains nonnegative. Let
now m ≥ 1, and suppose that the ct(a, b,m′) are nonnegative for a, b ≥ 0 and 1 ≤ m′ ≤ m.
For some p = (a, b,m+ 1), we have

d
dtct(p) =1

2
∑
p′�p

p′.(p\p′)ct(p′)ct(p\p′)− ct(p)
∑
p′∈S

p.p′ct(p′)

=β(t)− ct(p)γ(t).

So we may write
ct(p) =

(
c0(p) +

∫ t

0
β(s)eG(s) ds

)
e−G(t).

But β(t) ≥ 0 since it is a linear combination with nonnegative coefficients of the ct(a, b,m′)
for a, b ≥ 0 and 1 ≤ m′ ≤ m. So ct(a, b,m + 1) is nonnegative, what gives the result by
induction.

3.2 Weak form of the equation

The following result is a straightforward generalization of Lemma 1 in [3]. Note however
that the monotone convergence used in the proof requires that the coefficients (ct) be
nonnegative.

Lemma 3.2. (i) If (ct) is a solution to Smoluchowski’s equation (2.3), then t 7→ 〈ct, 1〉,
t 7→ 〈ct, a〉 and t 7→ 〈ct, b〉 are decreasing.

(ii) A family (ct) is a solution to (2.3) if and only if it solves
d
dt〈ct, f〉 = 1

2
∑
p,p′∈S

p.p′ct(p)ct(p′)(f(p ◦ p′)− f(p)− f(p′)) (2.8)

for every bounded f : S → R.

Remark 3.3. • The derivative in this lemma has to be understood in the weak sense,
i.e. the formula actually holds in the integral form. But if f(a, b,m) → 0 when
(a, b,m) → ∞, then it is easy to check that the formula holds in the strong sense.
The distinction is implicit in the proofs (i.e. we only write derivatives) and should
not stop the reader.
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• Consider in particular, the generating function of ct, gt(x, y, z) = 〈ct, xaybzm〉. Then
g is regular, in the sense of Definition 3.4 below.

Definition 3.4. We say that a function (t, x, y) 7→ gt(x, y) defined on [0, T ) × (0, 1)2 is
regular if

• t 7→ gt(x, y) is C1 and (x, y) 7→ ∂gt
∂t

(x, y) are C1,

• (x, y) 7→ gt(x, y) is C2, t 7→ ∂gt
∂x

(x, y) and t 7→ ∂gt
∂y

(x, y) are C1.

3.3 Number of arms

This result is also a generalization of Lemma 2 in [3], and stems directly from the weak
form of the equation.

Lemma 3.5. Let (ct) be a solution to Smoluchowski’s equation (2.3), and let

Γr = inf{t ≥ 0, 〈ct, a2 + b2〉 > r}, Γ∞ = sup
r>0

Γr.

Consider the mean numbers of male and female arms At = 〈ct, a〉 and Bt = 〈ct, b〉, and
assume A0 = B0 = 1. Then

At = Bt = 1
1 + t

(2.9)

for all t ∈ [0, T ∧ Γ∞).

3.4 Boundedness of the second moment

Recall that 〈c0, a
2 + b2〉 < +∞. The next result ensures that actually 〈ct, a2 + b2〉 remains

bounded on a small time-interval after 0. This ensures that Γ∞, as defined above, is
positive, so that, informally, we will be able to write the PDE at least on that interval.
This fact was actually taken into account in the definition of a solution in [43], as well as
in [44], but, as we shall now see, this turns out to be an unnecessary assumption.

Lemma 3.6. Let (ct) be a solution to Smoluchowski’s equation (2.3) with initial conditions
(c0) such that 〈c0, a

2 + b2〉 < +∞. Then 〈ct, a2 + b2〉 is bounded in a neighborhood of 0.

Proof. Take fa,M (a, b) = (a ∧ M)21{b≤M} and f b,M (a, b) = (b ∧ M)21{a≤M} for some
M ≥ 1. Then it is easy to see that, for p = (a, b,m) and p′ = (a′, b′,m′),

fa,M (p ◦ p′)− fa,M (p)− fa,M (p′) ≤ 2aa′1{a,b≤M}1{a′,b′≤M}.

From (2.8) and Cauchy-Schwarz inequality, we then get

d
dt〈ct, f

a,M 〉 ≤ 1
2

∑
(a,b,m),(a′,b′,m′)∈S

2aa′(ab′ + a′b)ct(a, b,m)ct(a′, b′,m′)1{a,b≤M}1{a′,b′≤M}

≤ 2
(
〈ct, fa,M 〉

)3/2 (
〈ct, f b,M 〉

)1/2
.

Taking now f = f b,M in (2.8) also shows that

d
dt〈ct, f

b,M 〉 ≤ 2
(
〈ct, fa,M 〉

)1/2 (
〈ct, f b,M 〉

)3/2
.
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Recalling that these two quantities are nonnegative, we then get

d
dt(〈ct, f

a,M 〉〈ct, f b,M 〉) ≤ 2
(
〈ct, fa,M 〉〈ct, f b,M 〉

)3/2

which readily shows that

〈ct, fa,M 〉〈ct, f b,M 〉 ≤

 1√
〈c0, fa,M 〉〈c0, f b,M 〉

− 2t

−2

as long as the RHS remains bounded. HavingM → +∞ and using monotone convergence,
we thus get that

〈ct, a2〉〈ct, b2〉 ≤
(

1√
〈c0, a2〉〈c0, b2〉

− 2t
)−2

as long as the RHS is bounded, what shows the result.

This gives an a priori lower bound on Γ∞, and thus, as we shall see, of the time of
existence and uniqueness of a solution to (2.3). However, this bound is not interesting for
us since we will be able to easily get a better one.

4 Proof of the theorem

4.1 Overview of the method

In this section, we give a sketch of the proof which contains all the important ideas. The
rigorous proof however requires some care, and it is given in detail afterwards. So, consider
a solution (ct)t∈[0,T ) to Smoluchowski’s equation (2.3), and

gt(x, y, z) = 〈ct, xaybzm〉 =
∑
a≥0

∑
b≥0

∑
m≥1

ct(a, b,m)xaybzm.

Using (2.8) and Lemma 3.5, it is easy to see that gt solves the following PDE

∂gt
∂t

= ∂gt
∂x

∂gt
∂y
− 1

1 + t

(
x
∂gt
∂x

+ y
∂gt
∂y

)
. (2.10)

Now, we can solve this PDE using the method of characteristics: we want to find a
trajectory (x(t), y(t)) starting from some (x, y) ∈ [0, 1]2 such that gt(x(t), y(t), z) is easy
to compute. So let

(p1(t), p2(t)) =
(
∂gt
∂x

(x(t), y(t), z), ∂gt
∂y

(x(t), y(t), z)
)
.

An easy calculation shows that

ṗ1(t) = ∂2gt
∂x2

(
ẋ(t) + p2(t)− x(t)

1 + t

)
+ ∂2gt
∂x∂y

(
ẏ(t) + p1(t)− y(t)

1 + t

)
− p1(t)

1 + t
, (2.11)

and a similar formula for ṗ2. Now, if we require

ẋ(t) + p2(t)− x(t)
1 + t

= ẏ(t) + p1(t)− y(t)
1 + t

= 0,
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then
ṗi(t) = − pi(t)1 + t

, i = 1, 2.

These ODE’s are readily solved, with p1(0) = ∂g0
∂x

(x, y) and p2(0) = ∂g0
∂y

(x, y), and we
obtain

pi(t) = pi(0)
1 + t

(2.12)

and
x(t) = x+ (x− p2(0))t ; y(t) = y + (y − p1(0))t.

Using the PDE, we now see that

d
dtgt(x(t), y(t), z) = −p1(0)p2(0)

(1 + t)2 , (2.13)

so by integrating

gt(x(t), y(t), z) = gt(φt(x, y, z), z) = g0(x, y, z)− t

1 + t

∂g0
∂x

(x, y, z)∂g0
∂y

(x, y, z). (2.14)

To obtain gt, it only remains to invert φt, for, if φt(ht) = Id, then

gt(x, y, z) = g0(ht(x, y, z), z)−
t

1 + t

∂g0
∂x

(ht(x, y, z), z)
∂g0
∂y

(ht(x, y, z), z).

We may now start a rigorous proof, which consists mainly of 3 steps: study the map
φt, then solve the PDE (2.17), and show that the generating function of a family (ct)
solves (2.17) if and only if (ct) solves Smoluchowski’s equation (2.3). The conclusion is
then easy to obtain.

4.2 Inversion of the mapping

In this section, we study the map φt, which is useful both for solving theorically the PDE,
and for obtaining explicit solutions. We will need two preliminary lemmas.

Lemma 4.1. Let α > 0, β, γ ≥ 0 and K = [0, α]× [0, β]× [0, γ]. For (r, s, t) ∈ K, denote

A(r, s, t) :=
(
r s
t r

)
.

Then for every ε > 0, there is a norm ‖.‖ on R2 such that

max
(r,s,t)∈K

‖A(r, s, t)‖ ≤ α+
√
βγ + ε,

where we also denote by ‖.‖ the induced norm on the 2× 2 matrices.

Remark 4.2. This is a uniform version of the well-known result (see e.g. [51]) which states
that

• for every (square) matrix A and norm ‖.‖, one has ‖A‖ ≥ ρ(A), where ρ(A) is the
spectral radius of A;

• for every matrix A and ε > 0, there is a norm ‖.‖ such that ‖A‖ ≤ ρ(A) + ε.



4. Proof of the theorem 41

Note indeed that α+
√
βγ is the spectral radius of A(α, β, γ).

Proof. 1. First assume that β and γ are positive. We can diagonalize A := A(α, β, γ).
If we let a := α, b :=

√
β and c := √γ then

A = P

(
a+ bc 0

0 a− bc

)
P−1,

where
P =

(
b −b
c c

)
, P−1 = 1

2bc

(
c b
−c b

)
.

Now, consider the following norm: for x ∈ R2, let ‖x‖ = ‖P−1x‖∞, where ‖ · ‖∞ is
the sup norm: ‖(x1, x2)‖∞ = max(|x1|, |x2|). Then for any 2× 2 matrix M ,

‖M‖ = max
x 6=0

‖Mx‖
‖x‖

= max
x 6=0

‖P−1Mx‖∞
‖P−1x‖∞

= max
y 6=0

‖P−1MPy‖∞
‖y‖∞

= ‖P−1MP‖∞.

An easy computation shows that for (r, s, t) ∈ K,

P−1A(r, s, t)P =
(
r + bt

2c + cs
2b − bt

2c + cs
2b

bt
2c −

cs
2b r − bt

2c −
cs
2b

)
.

Recall that for a matrix M ,

‖M‖∞ = max
i

∑
j

|Mi,j |,

so that, since r ≥ 0,

‖P−1A(r, s, t)P‖∞ = r + bt

2c + cs

2b +
∣∣∣∣ bt2c − cs

2b

∣∣∣∣ := F (r, s, t).

It remains to find the maximum of F on K. First, note that for (r, s, t) ∈ K,

0 ≤ F (r, s, t) ≤ F (α, s, t).

Then, for every (s, t) ∈ [0, β]× [0, γ], we can write t = ps, p ≥ 0. If p ≤ c2/b2, then
cs/(2b) ≥ bt/(2c), so that F (α, s, t) = α+ cs/b. But s ≤ b2, so F (α, s, t) ≤ α+ bc =
α +
√
βγ. And if p > c2/b2, then cs/(2b) ≤ bt/(2c), so that F (α, s, t) = α + bt/c.

But t ≤ c2, so F (α, s, t) ≤ α+ bc = α+
√
βγ. Finally, the maximum of F on K, i.e.

the maximum of ‖A(r, s, t)‖ on K, is α+
√
βγ.

2. Assume now that β or γ is zero, say e.g. γ = 0. Take ε > 0, and M > 0 such that
β/M < ε. Consider the norm ‖x‖ = ‖Px‖∞, where P is a diagonal matrix with
diagonal (1,M). For (r, s, 0) ∈ K, we have as before

‖A(r, s, 0)‖ = ‖PA(r, s, 0)P−1‖∞ =
∥∥∥∥∥
(
r s/M
0 r

)∥∥∥∥∥
∞
.

Since s ≤ β, this shows that ‖A(r, s, 0)‖ ≤ α+ ε.

We will deal often with real-analytic functions in the remaining of the proofs. For the
definitions and results on this topic, we refer to [31]. We will show the following result.
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Proposition 4.3. For t ∈ [0, Tgel) and z ∈ [0, 1], define φt(., ., z) : [0, 1]2 → R2 by

φt(x, y, z) =
(

(1 + t)x− t∂g0
∂y

(x, y, z), (1 + t)y − t∂g0
∂x

(x, y, z)
)
, (2.15)

and let Kt(z) be the closed subset of [0, 1]2: Kt(z) = φt(., ., z)−1([0, 1]2). Then

(i) φt(., ., z) : Kt(z)→ [0, 1]2 is a homeomorphism. Denote ht(., ., z) its inverse and write
ht(., ., z) = (h(1)

t (., ., z), h(2)
t (., ., z)).

(ii) For i = 1, 2, (x, y, z, t) 7→ h
(i)
t (x, y, z) is an analytic function on (0, 1)3 × (0, Tgel).

Proof. (i) Fix some z ∈ [0, 1] and some t ∈ (0, Tgel), and keep the notations of the
statement. For notational simplicity, we omit the parameter z. Let 0 ≤ t < Tgel. We
first want to show that φt : Kt → [0, 1]2 is one-to-one and onto. Fix (u, v) ∈ [0, 1]2
and let us check that there is a unique couple (x, y) ∈ [0, 1]2 such that φt(x, y) =
(u, v). This requirement is equivalent to finding a unique fixed point to

Ft(x, y) =
(

u

1 + t
+ t

1 + t

∂g0
∂y

(x, y, z), v

1 + t
+ t

1 + t

∂g0
∂x

(x, y, z)
)
.

Because of the remark above, Ft is a mapping from [0, 1]2 to [0, 1]2. It remains to
check that it is contracting. Its differential is

DFt(x, y) = t

1 + t


∂2g0
∂x∂y

∂2g0
∂y2

∂2g0
∂x2

∂2g0
∂x∂y

 := t

1 + t

(
α(x, y, z) β(x, y, z)
γ(x, y, z) α(x, y, z)

)
. (2.16)

Let α = α(1, 1, 1) = 〈c0, ab〉, β = β(1, 1, 1) = 〈c0, b(b − 1)〉 and γ = γ(1, 1, 1) =
〈c0, a(a − 1)〉. Since t < Tgel, then

t

1 + t
(α +

√
βγ + ε) < 1 for some small enough

ε > 0. Hence, by Lemma 4.1, there is a norm ‖.‖ such that

max
(x,y)∈[0,1]2

‖DFt(x, y)‖ ≤ t

1 + t
(α+

√
βγ + ε) < 1,

so that Ft is contracting. Hence it has a unique fixed point. As a consequence,
there is a unique couple (x, y) ∈ [0, 1]2 such that φt(x, y) = (u, v). Moreover, since
Ft is continuous with respect to (u, v) and uniformly contracting in (u, v), then the
mapping (u, v) 7→ (x, y) is continuous, that is ht : [0, 1]2 → Kt is a homeomorphism.

(ii) For t0 ∈ (0, Tgel), z0 ∈ (0, 1) and (x0, y0) ∈ Ut0 , the matrix Dφt0(x0, y0, z0) is in-
vertible. Then Theorem 2.5.3 in [31] shows that the inverse mapping of φt has
real-analytic coefficients, i.e. h(i)

t are real-analytic functions on (0, 1)3 × (0, Tgel).

4.3 Study of the PDE

The following (non-quasilinear) PDE is a central feature of our discussion

∂gt
∂t

= ∂gt
∂x

∂gt
∂y
− 1

1 + t

(
x
∂gt
∂x

+ y
∂gt
∂y

)
. (2.17)

A preliminary result to the proof is the following. Its proof is exactly the same as the one
of Lemma 3.1.
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Lemma 4.4. Let (ct)t∈[0,T ) be a solution to the system

d
dtct(p) = 1

2
∑
p′�p

p′.(p\p′)ct(p′)ct(p\p′)−
a+ b

1 + t
ct(p) (2.18)

for p = (a, b,m) ∈ S, with nonnegative initial conditions. Then for all t ∈ [0, T ) and
p ∈ S, ct(p) ≥ 0.

Recall also that the regularity of a mapping is to be understood in the sense of Defi-
nition 3.4.

Proposition 4.5. (i) For every z ∈ [0, 1], the PDE (2.17) with initial conditions g0 =
g0(., ., z) has a unique regular solution (t, x, y) 7→ gt(x, y, z) defined on [0, Tgel) ×
(0, 1)2.

(ii) The solution of the PDE is given by

gt(x, y, z) = g0(ht(x, y, z), z)−
t

1 + t

∂g0
∂x

(ht(x, y, z), z)
∂g0
∂y

(ht(x, y, z), z), (2.19)

where ht is defined in Proposition 4.3.

(iii) We have the alternative expression

gt(x, y, z) = 1
1 + t

(
H̃

(2)
t (x, y, z) + H̃

(1)
t (0, y, z)

)
+Gt(z) (2.20)

in the notations of Theorem 2.5.

(iv) For every t ∈ [0, Tgel), gt has an analytic expansion

gt(x, y, z) =
∑

(a,b,m)∈S
ct(a, b,m)xaybzm (2.21)

for (x, y, z) ∈ [0, 1)3, where ct(a, b,m) ≥ 0.

Remark 4.6. Formula (2.20) will be useful to compute explicit solutions, since with it, it
is enough to have the analytic expansion of ht around 0 to obtain the one of gt (whose
coefficients are precisely the solution to (2.3)). Note however that Gt may be tedious to
compute in general, but since it is a function of z only, it is relevant only when we wish to
compute the concentrations of clusters with no arms. Rather than computing Gt, a better
way to obtain those concentrations is to use Equation (2.3), since

d
dtct(0, 0,m) =

m−1∑
m=1

ct(1, 0,m′)ct(0, 1,m−m′). (2.22)

Proof. We will prove the statement in four steps. Fist we will show that a solution has to
be written as in (2.19). Next that this formula does provide a solution. Proving formula
(2.20) is then an easy matter. In all the proof, some z ∈ [0, 1] is fixed.

1. Let Ut = φt(., ., z)−1((0, 1)2), and consider gt a regular solution of (2.17) on [0, T )×
(0, 1)2. Fix t0 ∈ (0, T ) and (x, y) ∈ Ut0 , and let

(p1(t), p2(t)) :=
(
∂gt
∂x

(φt(x, y, z), z),
∂gt
∂y

(φt(x, y, z), z)
)
.
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It is easy to see that Ut decreases with t, so for t ≤ t0, this definition makes sense
and we can differentiate pi. The regularity assumptions on gt are just those needed
to allow the use of Schwarz’s theorem, and an easy computation shows that, on
[0, t0], (p1, p2) solves a linear differential system with continuous coefficients, whose
solution is given by (2.12). Hence
∂gt
∂x

(φt(x, y, z), z) = ∂g0
∂x

(x, y, z)/(1 + t), ∂gt
∂y

(φt(x, y, z), z) = ∂g0
∂y

(x, y, z)/(1 + t)
(2.23)

for all (x, y) ∈ Ut. Then, it is easy to check that for all (x, y) ∈ Ut, (2.13) and (2.14)
hold. Replacing (x, y) by ht(x, y, z) (recall ht : (0, 1)2 → Ut is the right-inverse of
φt), we finally obtain (2.19). This shows that the PDE has at most one solution.

2. The existence of a solution is now straightforward. Let gt be defined as in (2.19).
Because of the regularity of ht and of g0, g has the required regularity properties. It
then suffices to show that it is actually a solution. To this end, let us first compute

(p1(t), p2(t)) :=
(
∂gt
∂x

(φt),
∂gt
∂y

(φt)
)

for some fixed t ∈ [0, Tgel) and (x, y) ∈ Ut. By differentiating gt(φt) with respect
to x and y, it is easy to see that it solves a linear system, which has, before Tgel, a
unique solution, given by equation (2.23). To conclude, we may differentiate gt(φt)
in two different ways: one using (2.19) and (2.23). The other with the chain rule.
Compounding by ht in the obtained equality readily shows that gt solves the PDE
(2.17) for t ∈ [0, Tgel), (x, y) ∈ (0, 1)2.

3. The formula (2.20) is easy to obtain, by differentiating g0(ht(x, y, z), z) with respect
to x, y and z, and using the fact that

∂g0
∂x

(ht, z) = h̃
(2)
t ,

∂g0
∂y

(ht, z) = h̃
(1)
t .

in the notations of Theorem 2.5.

4. To prove the last point, consider t0 ∈ [0, Tgel). φt is well-defined and analytic (in
(t, x, y, z)) in a neighborhood of (t0, 0, 0, 0), and Dφt0(0, 0, 0) is invertible. So, by
theorem 2.5. in [31], ht is analytic near (t0, 0, 0, 0), hence so is gt = g0(ht). So we
may write

gt(x) =
∑

(a,b,m)∈S
ct(a, b,m)xaybzm (2.24)

for (t, x, y, z) in a neighborhood of (t0, 0, 0, 0) and analytic ct. By analytic continu-
ation, the ct are uniquely defined, so we can let

E = {t ∈ [0, Tgel), ∀p ∈ S ct(p) ≥ 0}.

By continuity, E is a closed set containing 0. On the other hand, (2.24) holds for
(t, x, y, z) in a neighbourhood of (t0, 0, 0, 0), so for t0 ∈ E, there is a ε > 0 such
that (2.24) holds for t ∈ (t0 − ε, t0 + ε) and (x, y, z) ∈ (−ε, ε)3. In particular, since
gt solves the PDE (2.17), it is easy to see, using a Cauchy product and identifying
the coefficients, that ct solves (2.18) for t ∈ (t0 − ε, t0 + ε). So by Lemma (4.4),
(t0 − ε, t0 + ε) ⊂ E. So E is open and E = [0, Tgel). Finally, recall from Proposition
4.3 that ht, and so gt, are analytic on [0, 1)3. But we have just shown that gt has an
analytic expansion around 0 with nonnegative coefficients. So (see e.g. the proof of
Berstein’s theorem in [31]), this expression actually holds on [0, 1)3.
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4.4 Equivalence between the system and the PDE

Smoluchowski’s equation (2.3) is solved thanks to PDE (2.17).

Proposition 4.7. (i) Let (ct)t∈[0,T ) be a solution to Smoluchowski’s equation (2.3), and
let gt be its generating function, defined by gt(x, y, z) := 〈ct, xaybzm〉. Then for all
z ∈ [0, 1], (t, x, y) 7→ gt(x, y, z) is a regular solution to the PDE (2.17) on [0, T ∧
Γ∞)× (0, 1)2, with initial conditions g0(., ., z).

(ii) Conversely, let (ct(p))p∈S, t ∈ [0, T ), be a family of differentiable functions. Let
gt(x, y, z) be its generating function and assume it is defined for t ∈ [0, T ), (x, y) ∈
(0, 1)2 and z ∈ [0, 1]. Assume that for every z ∈ [0, 1], gt(., ., z) is a regular solution
to the PDE (2.17) with initial conditions g0(., ., z). Then

• for all p ∈ S and t ∈ [0, T ), ct(p) ≥ 0;
• (ct) is a solution to Smoluchowski’s equation (2.3) for t ∈ [T ∧Tgel), with initial
conditions c0.

Remark 4.8. An important feature of this result is that the PDE (2.17) and the system
(2.3) are equivalent only before the critical time (Tgel or Γ∞). This fact is crucial when we
study the microscopic model. We indeed obtain a family of coefficients whose generating
function solves the PDE (on R+), but we cannot ensure that they solve Smoluchowski’s
equation (2.3) after Tgel. Actually, there is every chance that they do not, as we already
discussed in Section 2.4 of the introduction of this thesis.

Proof of Proposition 4.7. (i) First note that g is regular according to Remark 3.3. If one
takes f(a, b,m) = xaybzm in (2.8), for some fixed (x, y, z) ∈ (0, 1)2 × [0, 1], then one
gets

d
dtgt(x, y, z) = ∂gt

∂x

∂gt
∂y
−Aty

∂gt
∂y
−Btx

∂gt
∂x

.

Recall from Lemma 3.5 that when t < Γ∞, At = Bt = 1/(1 + t). Replacing in the
equation above shows that gt solves (2.17) for (x, y) ∈ (0, 1)2 and 0 ≤ t < T ∧ Γ∞.

(ii) As in the fourth part of the proof of Proposition 4.5, we see that the (ct(p)) solve
(2.18), and hence that they are nonnegative. By uniqueness of a solution to the PDE
(2.17), for t ∈ [0, T ∧ Tgel), these coefficients are those obtained in (2.21). Now, let
t < Tgel ∧ T , Ut = φ−1

t (., ., 1)((0, 1)2), Kt = Kt(1) = φ−1
t (., ., 1)([0, 1]2), and recall

from (2.23) that since g is a regular solution to (2.17), then for all (x, y) ∈ Ut
∂gt
∂x

(φt(x, y, 1), 1) = ∂g0
∂x

(x, y, 1) 1
1 + t

,

what we can write∑
(a,b,m)∈S

act(a, b,m)φ(1)
t (x, y, 1)aφ(2)

t (x, y, 1)b =
∑

(a,b,m)∈S
ac0(a, b,m)xayb × 1

1 + t
.

(2.25)
Note now that since t < Tgel, then φt(., ., 1) : Kt → [0, 1]2 is a homeomorphism, so
Ut = Kt. Since (1, 1) ∈ Kt, we can pass to the limit in the equality above when
(x, y)→ (1, 1). Using monotone convergence and the continuity of φt, we obtain

〈ct, a〉 = 〈c0, a〉 ×
1

1 + t
= 1

1 + t
.
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The same reasoning shows that 〈ct, b〉 = 1/(1 + t) for t < Tgel. Hence, we may
re-write (2.18) before Tgel by substituting

a

1 + t
= a〈ct, b〉,

b

1 + t
= b〈ct, a〉,

which shows that (ct) solves Smoluchowski’s equation (2.3) before Tgel.

4.5 Existence and uniqueness of a solution

With these results, proving Theorem 2.5 is now an easy matter.

Proof of theorem 2.5. 1. Let us first prove that 〈ct, a2 + b2〉 is finite before Tgel and
tends to +∞ when t → Tgel. So take (ct(a, b,m))t∈[0,T ) a solution to the system
(2.3), and gt its generating function. Since 〈ct, a2 + b2〉 < +∞ in a neighborhood of
0 by Lemma 3.6, we have

∂2gt
∂x2 (1, 1, 1) = 〈ct, a2 − a〉,

as long as 〈ct, a2 + b2〉 < +∞. Note that by Lemma 3.5 〈ct, a〉 is bounded by 1,

so 〈ct, a2〉 explodes if and only if ∂
2gt
∂x2 (1, 1, 1) explodes. Let us compute the latter.

Differentiating (2.23) with respect to x and y and having (x, y) tend to (1, 1), we
obtain that (

1 + t− tα −tγ
−tβ 1 + t− tα

)(
δ
η

)
= 1

1 + t

(
γ
α

)
,

where

α = ∂2g0
∂x∂y

= 〈c0, ab〉, β = ∂2g0
∂y2 = 〈c0, b

2 − b〉, γ = ∂2g0
∂x2 = 〈c0, a

2 − a〉.

and
δ = ∂2gt

∂x2 (1, 1, 1), η = ∂2gt
∂x∂y

(1, 1, 1).

Hence
δ = ∂2gt

∂x2 (1, 1, 1) = 〈ct, a(a− 1)〉 = γ

(1 + t− tα)2 − t2γβ
.

This expression is valid as long as t < Tgel, since the determinant of the matrix is
then nonzero. In the same way, we also have

η = ∂2gt
∂y2 (1, 1, 1) = 〈ct, b(b− 1)〉 = β

(1 + t− tα)2 − t2γβ
.

If γ or β is nonzero, then 〈ct, a2 + b2〉 → +∞ when t → Tgel. If γ = β = 0, then
〈ct, a2 + b2〉 remains finite, but this condition also imposes that M = 1, and so
Tgel = +∞.

2. Uniqueness is now easy to obtain: assume (c(1)
t ) and (c(2)

t ) solve the system 2.3
on [0, T ), T ≤ Tgel, with initial conditions c0. Let g(1)

t and g(2)
t be their generating

functions. Since Γ∞ = Tgel and T ≤ Tgel, then by Proposition 4.7, for every z ∈ [0, 1],
they are regular solutions to the PDE (2.17) on [0, T )×(0, 1)2, with initial conditions
g0(., ., z). But by Proposition 4.5 there is a unique regular solution to the PDE on
[0, Tgel), so g(1)

t = g
(2)
t on [0, T ), so that (c(1)

t ) = (c(2)
t ).
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3. The existence is given by point (iv) of Proposition 4.5, and point (ii) of Proposition
4.7.

4. Let us finally prove that the total mass is conserved. Let ψt(x, y, z) = (φt(x, y, z), z)
and consider U ′t = ψ−1

t ((0, 1)3) and K ′t = ψ−1
t ([0, 1]3). For (x, y, z) ∈ U ′t , we can

differentiate gt(ψt(x, y, z)) with respect to z, and using (2.23), we obtain

∂gt
∂z

(ψt(x, y, z)) = ∂g0
∂z

(ψt(x, y, z)).

Now, ψt is a homeomorphism from K ′t to [0, 1]3, so U ′t = Kt. But (1, 1, 1) ∈ K ′t, so
we may pass to the limit when (x, y, z)→ (1, 1, 1) in the equality above, to obtain

∂gt
∂z

(1, 1, 1) = ∂g0
∂z

(1, 1, 1),

what precisely means 〈ct,m〉 = 〈c0,m〉.

5 Explicit formulas

We give in this section some explicit solutions to Equation (2.3). We will consider only
monodisperse initial conditions, i.e. assume that at time 0, there are only particles of size
1 in the medium. So given a (finite) measure µ on N× N, we assume

c0(a, b,m) = µ(a, b)1{m=1}

and as usual 〈c0, a〉 = 〈c0, b〉 = 1. To obtain the solutions, we need to invert φt, what
can be done using the (two-variable) Lagrange inversion formula (a statement is given
by Good [21]). But it is much more involved than the one-dimensional formula, and the
expressions it would provide can hardly be called explicit. Let us however study three
easy cases. Only the last one requires the two-variable formula.

5.1 Particles with one female arm

The first case is when each particle has exactly one female arm, and a number of male
arms distributed according to a measure µ1. So take

µ(a, b) =
{

0 if b 6= 1
µ1(a) if b = 1

and we will assume that A0 = B0 = 1, i.e. µ1 is a probability measure with unit mean. In
this case, we obtain, for every a, b ≥ 0 and m ≥ 1,

ct(a, b,m) =


0 if b 6= 1

tm−1

(1 + t)m+a
1
m

(
m+ a− 1

a

)
µ∗m1 (m+ a− 1) if b = 1.

In particular there exists only clusters with one female arm, what is physically obvious.
Moreover, the concentration ct(a, 1,m) is exactly the concentration of clusters with a arms
and mass m obtained in the “oriented model” (2.2) of [3], with initial distribution µ1. This
is also natural, since in this case, (a, 1,m)- and (a′, 1,m′)-clusters coagulate at rate a+a′,
which is the rate of the oriented model. Note also that Tgel = +∞, as in the oriented
model.
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5.2 Arms with uniform random genders

In this model, the total number of arms of a particle is chosen according to a measure µ1,
then each arm is given a gender independently, with probability 1/2. That is, we let

µ(a, b) = µ1(a+ b)
(
a+ b

b

)
1

2a+b .

We will assume that µ1 has mean 2, so that A0 = B0 = 1. Let ν1(j) = (j + 1)µ(j + 1).
Then we obtain, for (a, b) 6= (0, 0),

ct(a, b,m) = 1
2

tm−1

(1 + t)a+b+m−1
(m+ a+ b− 2)!

m!a!b!

(
ν1
2

)∗m
(m+ a+ b− 2)

and

ct(0, 0,m) = 1
2

1
m(m− 1)

1
(1 + 1/t)m−1

(
ν1
2

)∗m
(m− 2)

provided ν1(0) > 0. If Tgel = +∞, this condition means that ν1 6= δ1. In particular, one
easily checks that ∑

a+b=k
ct(a, b,m) = 2csymt (k,m)

where csymt (k,m) is the concentration of clusters with k arms and massm in the symmetric
model (2.2) of [3], with initial arm distribution µ1/2. The factor is irrelevant since it 2
comes from the normalization: in our model, the total concentration of arms in the medium
is 2, when it is 1 in the symmetric model.

It is also worth stressing the stronger fact that for a, b ≥ 0, we have

ct(a, b,m) = 1
2

(
a+ b

b

)
1

2a+b ct(a+ b,m).

Hence, at any given time, the distribution of the number of male (or female) arms is
still binomial. So, if at some time we chose to reassign to each arm a gender uniformly
and independently, and let the system evolve on from this state, no difference would be
observed. Or we could forget about the genders at some time t and observe the state
at time t of Bertoin’s model (2.2). Or, finally, we could watch a system evolve like the
symmetric model (2.2) starting from an arm distribution µ1/2, and then at some time give
the arms a gender uniformly at random and independently. The evolution afterwards will
be the evolution of the sexed model with initial arm distribution µ. Note as before that
the critical time is the same than in the symmetric model with initial distribution µ1/2.

More generally, consider initial concentrations such that for all a, b ≥ 0 µ(a, b) =
µ(b, a), and the solution (ct)t∈[0,Tgel) to Smoluchowski’s equation (2.3). Then it is easy to
check (by uniqueness) that, for all t ∈ [0, Tgel), ct(a, b,m) = ct(b, a,m), and that, if we
denote

kt(l,m) :=
∑
a+b=l

ct(a, b,m),

then (kt) is governed (up to a factor 1/2) by the symmetric Smoluchowski equation of [3].
Hence, in this case too, kt(l,m) = 2csymt (l,m).
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5.3 Particles with one gender

Let us finally consider the more intricate case where at time 0, the arms of each particle
have all the same gender. This is motivated by the idea of ionic bonds: a particle with
only male (resp. female) arms can be considered as a cation (resp. an anion), and cations
can only bond with anions. Hence, consider, for i = 1, 2, µi two measures with mean 1
such that µ1(0) = µ2(0), and take

µ(a, b) =


µ1(a) if b = 0
µ2(b) if a = 0
0 else

and νi(j) = (j + 1)µi(j + 1). The two-variable Lagrange inversion formula gives, for
(a, b) 6= (0, 0),

ct(a, b,m) = tm−1

(1 + t)m+a+b−1

m∑
k=0

(m− k + b− 1)!(k + a− 1)!
(m− k)!k!a!b! ν

∗(m−k)
1 (k+a−1)ν∗k2 (m−k−1+b).

If we also let

ν1 � ν2(m) = (m− 1)
m−1∑
k=1

1
k
ν
∗(m−k)
1 (k − 1) 1

m− k
ν∗k2 (m− k − 1)

then, for m ≥ 2,
ct(0, 0,m) = 1

m− 1
1

(1 + 1/t)m−1 ν1 � ν2(m),

provided ν1(0)ν2(0) > 0 (which means, if Tgel = +∞, that ν1 and ν2 are not δ1). In
particular, we see that if Tgel = +∞ and ν1, ν2 6= δ1, then for m ≥ 2,

ct(a, b,m)→

 0 if (a, b) 6= (0, 0)
1

m− 1ν1 � ν2(m) if a = b = 0.

Hence all the arms are used to coagulate. Chemically, this means that there are no more
ions in the medium. The limiting distribution of the sizes is given by (m− 1)−1ν1 � ν2(m).
We will generalize this fact in the following section, and give a probabilistic interpretation
of the measure ν1 � ν2. Also, if Mi is the mean of νi, then, in the notations of Definition
2.3, M =

√
M1M2 and Tgel = 1/(M − 1), or +∞ if M ≤ 1. If µ1 = µ2 = µ, then the

critical time is the same as in the symmetric model with initial distribution µ.

6 Limiting concentrations and Galton-Watson processes

6.1 Convergence of the concentrations

In this section, we will study the limiting concentrations. Similarly to what happens in the
oriented and symmetric model of [3], we expect the concentrations to converge when the
time tends to +∞, whenever gelation does not occur. Physically, this would mean that
the system converges to a terminal state where all arms have been used (otherwise, further
coagulations “should” occur). This is actually true, and this is an easy consequence of the
preceding results.

Corollary 6.1. Assume Tgel = +∞, and let (ct)t≥0 be the solution to Smoluchowski’s
equation (2.3).
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(i) When t→ +∞, there exists limiting concentrations c∞(m) such that

ct(a, b,m)→ c∞(m)1{a=b=0}

in `1(S).

(ii) For z ∈ [0, 1), the generating function g∞(z) of (c∞(m))m≥1 is the antiderivative
vanishing at 0 of

∂g0
∂z

(
h(1)
∞ (z), h(2)

∞ (z), z
)
, (2.26)

where (h(1)
∞ , h

(2)
∞ ) is characterized by

h
(1)
∞ (z) = ∂g0

∂y

(
h

(1)
∞ (z), h(2)

∞ (z), z
)

h
(2)
∞ (z) = ∂g0

∂x

(
h

(1)
∞ (z), h(2)

∞ (z), z
)
.

(2.27)

Proof. (i) Since Γ∞ = Tgel = +∞, then (2.9) holds for all t ≥ 0, so∑
(a,b)6=(0,0)

ct(a, b,m) −→
t→+∞

0.

Then, using (2.22), we get, for all t ≥ 0,

ct(0, 0,m) = c0(0, 0,m) +
m−1∑
m′=1

∫ t

0
cs(1, 0,m′)cs(0, 1,m−m′) ds.

But the integrand is bounded by AsBs = 1/(1 + s)2. Hence the integral has a finite
limit when t→ +∞, and so does ct(0, 0,m). Finally, 〈ct,m〉 is bounded by Theorem
2.5, and 〈c∞,m〉 < +∞ by Fatou’s lemma, so Cauchy-Schwarz inequality shows that∑

m≥1
|ct(0, 0,m)− c∞(m)| −→

t→+∞
0

and the result follows.

(ii) By `1-convergence, we have

g∞(z) = lim
t→+∞

gt(0, 0, z),

so, using (2.5) and the fact that H̃(1)
t and H̃(2)

t are bounded by 1,

g∞(z) = lim
t→+∞

Gt(z).

It just remains to check that h(1)
t (0, 0, z) and h(2)

t (0, 0, z) do have a limit when t →
+∞. From their definition (2.6), they have the same limit (if any) as k(1)

t (z) :=
h̃

(1)
t (0, 0, z) and k(2)

t (z) := h̃
(2)
t (0, 0, z). Now fix Z ∈ [0, 1), and consider k(1)

t and k(2)
t

as (continuous) maps on [0, Z]. But ht is the right-inverse of φt, so

∂g0
∂x

(k(1)
t (z), k(2)

t (z), z) = k
(2)
t (z), ∂g0

∂y
(k(1)
t (z), k(2)

t (z), z) = k
(1)
t (z) (2.28)
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and, since 〈c0, a
2+b2〉 < +∞, then ∂g0

∂x
(x, y, z) has a bounded differential on [0, 1]2×

[0, Z]. Hence k(2)
t , and for the same reason k(1)

t , are Lipschitz-continuous on [0, Z],
with a constant independent of t. Ascoli’s theorem thus shows that the families
(k(1)
t ) and (k(2)

t ), t ≥ 0, lie in a compact set (for the uniform topology on [0, Z]). So
the family (k(1)

t , k
(2)
t ) lies in a compact set, and passing to the limit in (2.28) shows

that any of its limit points solves (2.27). But since Tgel = +∞, the application

(x, y) 7→
(
∂g0
∂y

(x, y, z), ∂g0
∂x

(x, y, z)
)

is contracting for every z ∈ [0, Z]. So there is a unique solution to (2.27), and
(k(1)
t , k

(2)
t ) converges to this solution.

6.2 Connection with two-type Galton-Watson processes

In [3], Bertoin shows that for monodisperse initial conditions and when gelation does not
occur, the limiting concentrations can be described in terms of Galton-Watson processes.
The same kind of analogy is observed in our case. Precisely, we start from initial conditions

c0(a, b,m) = µ(a, b)1{m=1}

for a measure µ on N × N with 〈µ, a〉 = 〈µ, b〉 = 1. We may then define the probability
measures

• µi(a, b) = µ(a, b)/〈µ, 1〉, with generating function φi(x, y) := g0(x, y, 1)/g0(1, 1, 1).

• µm(a, b) = (b+ 1)µ(a, b+ 1), with generating function φm(x, y) := ∂g0
∂y

(x, y, 1),

• µf (a, b) = (a+ 1)µ(a+ 1, b), with generating function φf (x, y) := ∂g0
∂x

(x, y, 1).

Now, consider a Galton-Watson tree with two genders, constructed as follows. We
start from an ancestor, who gives birth to a number a of male children, and a number b of
female children, where (a, b) is distributed according to µi. Then each child gives birth to
a certain number of children, distributed according to µm for the males, and to µf for the
females, and so on. Consider T (µi, µm, µf ) the total population of such a Galton-Watson
process and let, for r ∈ [0, 1),

gi(r) = E(rT (µi,µm,µf )), gm(r) = E(rT (µm,µm,µf )), gf (r) = E(rT (µf ,µm,µf )).

It is classical (see e.g. [24]) that they solve the following system:
gi(r) = rφi(gm(r), gf (r))
gm(r) = rφm(gm(r), gf (r))
gf (r) = rφf (gm(r), gf (r)).

(2.29)

In particular, Equation (2.27) shows that (gm, gf ) and (h(1)
∞ , h

(2)
∞ ) solve the same equa-

tion, which has a unique solution by Corollary 6.1, so h(1)
∞ = gm, h(2)

∞ = gf . If we define
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[zm]h(z) the coefficient of zm in the expansion around 0 of an analytic function h, we may
then compute

[zm]g∞(z) = 1
m

[zm−1]g0(h(1)
∞ (z), h(2)

∞ (z), 1) = 1
m
g0(1, 1, 1)[zm−1]φi(gm(z), gf (z))

= 1
m
〈µ, 1〉[zm]gi(z) = 1

m
〈µ, 1〉P(T (µi, µm, µf ) = m).

Finally, let us call a measure µ on N×N degenerate if µ = δ(1,1) or µ = 1
2(δ(2,0) +δ(0,2)), or

µ(a, b) = 0 for a 6= 1, or µ(a, b) = 0 for b 6= 1. We let the reader check (using e.g. Theorem
10.1 in [24]) that under the assumptions Tgel = +∞, and ruling out the degenerate cases,
T (µi, µm, µf ) is finite a.s. We have thus proved the following.

Corollary 6.2. The limiting concentrations verify for m ≥ 2

c∞(m) = 1
m
〈µ, 1〉P(T (µi, µm, µf ) = m).

Moreover, if µ is not degenerate, then T (µi, µm, µf ) < +∞ a.s.

As is explained in Section 4.2.3 of the introduction, and similarly to Bertoin’s case
[3, 4], we may interpret this formula by saying that a typical cluster in solution is a
Galton-Watson GWµi,µm,µf .

This also provides an interpretation for the law � of Section 5.3. This shows indeed
that ν1 �ν2 is the law of the total population of a two-type Galton Watson process started
from one male and one female ancestors, where the males give birth to females according
to the law ν2, and the females give birth to males according to the law ν1. In particular,
if ν1 = ν2 = ν, then ν � ν is the distribution of the size of a Galton-Watson tree with
reproduction law ν and starting from two ancestors and we get (what is not obvious from
the formula for �), that for m ≥ 2

ν � ν(m) = 2
m
ν∗m(m− 2).

6.3 Mass at infinity

This corollary answers another question about gelation. By Theorem 2.5, the total mass
〈ct,m〉 is conserved as time passes, so gelation does not occur before Tgel. But, if Tgel =
+∞, it may occur at infinity: some mass may be lost then. For monodisperse initial
conditions, Corollary 6.2 proves that this cannot happen, except in the degenerate cases.
Whenever µ is not degenerated, Corollary 6.2 indeed shows that

〈c∞,m〉 = 〈µ, 1〉P(T (µi, µm, µf ) < +∞) = 〈µ, 1〉 = 〈c0, 1〉 = 〈c0,m〉

In the degenerate cases, it is easy to get explicit expressions for the concentrations, and
they show that the mass at infinity is 0.

7 Microscopic model

7.1 Notations and preliminary results

The goal of this section is to construct a sequence of random processes modeling the
coagulation of clusters with male and female arms. We will start with n particles (and
then let n→ +∞). Let us first set some notations.
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• Recall that S = N× N× N∗.

• J0, nK = {0, . . . , n}.

• M > 0 is a fixed real number. The number of arms and the total mass are assumed
to grow at most like Mn (see the definition of En).

• The sequence of the number of p-clusters is an element of

En =
{

N ∈ J0, nKS , 〈N, a+ b+m〉 ≤Mn
}

which is a finite set.

• 1
n
En is a subset of

E =
{
C ∈ [0, 1]S , 〈C, a+ b+m〉 ≤M

}
.

An element of E represents the sequence of concentrations of p-clusters. E is a
metric space endowed with the `1 distance

d(C(1), C(2)) =
∑
p∈S

∣∣∣C(1)(p)− C(2)(p)
∣∣∣ .

• We will call C-convergence the compact convergence (i.e. uniform convergence on
every compact set) for functions from R+ to E.

• D(R+, H) is the space of càdlàg functions from R+ to a metric space (H, d), endowed
with the Skorokhod distance. We will call S-convergence the convergence for Sko-
rokhod’s distance. For the basic facts about Skorokhod distance for functions with
value in a (complete separable) metric space, see [16].

So as to use standard theorems, the following easy result will be useful.

Lemma 7.1. (E, d) is a compact metric space. In particular, it is a Polish space.

7.2 Model

Let us now introduce the model. Informally, we consider a finite number n of particles
with integer mass, and assume that at time 0, the total mass of the system plus the total
number of arms is less than Mn. Then, each pair formed of a p-cluster and of a p′-cluster
may coagulate at rate 1

2p.p
′, independently of the other pairs, to form a p◦p′-cluster, that

is, the time one has to wait to see them coagulate is exponential with parameter 1
2p.p

′.
In other words, assume that the system in in the state η at a given time, that is η ∈ En

and η(p) is the number of p-clusters. There are η(p)η(p′) (or η(p)(η(p)−1) if p = p′) pairs
formed of a p-cluster and of a p′-cluster. Let

λη(p, p′) =
{1

2p.p
′η(p)η(p′) if p 6= p′

1
2p.pη(p)(η(p)− 1) if p = p′.

We set independently on each couple (p, p′) an exponential clock with parameter λη(p, p′)
(an exponential random variable with parameter 0 is assumed to be a.s. infinite). There
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is a.s. one and only clock which rings first. If it is the clock on the couple (p, p′), then the
system jumps to the state η + ∆p,p′ where{

∆p,p′(p) = ∆p,p′(p′) = −1 if p 6= p′

∆p,p′(p) = −2 if p = p′
, ∆p,p′(p ◦ p′) = +1

and ∆p,p′ = 0 otherwise. Then restart the construction afresh from the new state. Note
that only finitely many η(p) are nonzero, so the first jump occurs after an exponential
time with parameter

λη =
∑
p,p′∈S

λη(p, p′) < +∞.

We will consider the Markov chain constructed according to this rule. That is, we fix the
following, for every n ≥ 1.

• An element X(n)
0 of En, which is the initial number of particles.

• A pure-jump Markov process X(n) on En, defined on a probability space (Ωn,An,Pn),
starting from X(n)

0 , and with generator

Gf(η) =
∑

(p,p′)∈S2

(f(η + ∆p,p′)− f(η))λη(p, p′)

for every bounded function f : En → R and η ∈ En. The construction of such a
process is obvious since En is finite.

• The rescaled and time-changed process

C
(n)
t = 1

n
X(n)
t/n.

Note that C(n) is a pure-jump Markov process on 1
nEn ⊂ E, starting from C

(n)
0 = X(n)

0 /n,
and with generator

G(n)f(η) =
∑

(p,p′)∈S2

(
f

(
η + 1

n
∆p,p′

)
− f(η)

)
λ(n)
η (p, p′)

where
λ(n)
η (p, p′) = 1

n
λnη(p, p′).

We shall prove the following result.

Theorem 7.2. Assume that for every p ∈ S, C(n)
0 (p)→ c0(p) for some c0(p) ≥ 0, that

〈C(n)
0 , a〉 → 〈c0, a〉 = 1, 〈C(n)

0 , b〉 → 〈c0, b〉 = 1
and that

〈c0, a
2 + b2〉 < +∞.

Let Tgel be defined as in Definition 2.4. Then (C(n)
t )t∈[0,Tgel) converges (in distribution) to

the unique solution of Smoluchowski’s equation (2.3) with initial conditions (c0).
Remark 7.3. Obviously, convergence has to be understood with respect to Skorokhod’s
topology on [0, Tgel) (which is the trace topology of Skorokhod’s topology on [0,+∞)).

Note that the law Pn of the process C(n) is a probability measure on D(R+, E). To
prove Theorem 7.2, we will show that the sequence (Pn) is tight, and that for every limit
point P , and almost every process (Ct) with law P , (Ct) solves some system, which is
Smoluchowski’s equation (2.3) before the critical time. Because of the uniqueness of such
a solution, this will show that (Pn) itself converges to the solution of Smoluchowski’s
equation (2.3) before the critical time.
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7.3 Tightness

The proof of tightness is analogous to the one in [27], up to some slight modifications.

Lemma 7.4. The sequence (Pn)n≥0 is tight.

Proof. We will use the classical tightness criterion stated in [28, p. 34] or in [16, Th 7.2].
For t ≥ 0, let P (n)

t be the law of C(n)
t , which is a probability measure on E. Since E is

compact by Lemma 7.1, the tightness of the sequence (P (n)
t )n≥0 is obvious.

Now, C(n) is a pure-jump process on 1
nEn ⊂ E, with generator G(n). Hence, when the

process is in the state η, then the time before the next jump is exponential with parameter

λ(n)
η :=

∑
p,p′∈S

λ(n)
η (p, p′) = 1

2

 ∑
p,p′∈S

np.p′η(p)η(p′)−
∑
p∈S

p.pη(p)


and, since η ∈ E, λ(n)

η ≤ M2n := cn. Now take N > 0, β > 0, ε > 0, and let δ > 0 such
that N = δl for some l ∈ N∗, and 3cδe/β < 1. Define now

wN (Y, δ) := inf
π∈Πδ

max
ti∈π

sup
ti≤s<t<ti+1

d(Yt, Ys),

Πδ being the set of all subdivisions 0 = t0 < t1 < · · · < tn = N of [0, N ] such that
ti+1 − ti ≥ δ for all i. Consider the partition t0 = 0 < t1 = δ < · · · < tl = λ = N of [0, N ].
Let Zi := sup

ti≤s<t<ti+1

d(C(n)
s , C

(n)
t ) for 0 ≤ i ≤ l − 1. Then

Pn(wN (C(n), δ) > β) ≤ Pn
(

max
0≤i≤l−1

Zi > β

)
≤ l max

0≤i≤l−1
Pn(Zi > β).

But the size of a jump, that is d(C(n)
t− , C

(n)
t ), is 3/n. Hence, if Zi > β, then the process has

jumped more than k := dβn/3e := dc′ne times between ti and ti+1 (where dxe is the first
integer strictly greater than x). If Sk if the time of the k-th jump, the Markov property
tell us that

Pn(Zi > β) ≤ Pn(Sk ≤ δ).
But Sk is the sum of k independent exponential random variables, with parameter smaller
than cn. So, if S′k is the sum of k independent exponential random variables with parameter
cn (on a probability space (Ω,A,P)), then Sk is stochastically dominated by S′k, that is

Pn(Sk ≤ δ) ≤ P(S′k ≤ δ).

To conclude, note that the last term is the probability that a Poisson process with param-
eter cn jumps more than k times on [0, δ], and Stirling’s formula shows that this tends to
zero for (cδe/c′) < 1.

7.4 Convergence

In this section, we prove the convergence of C(n) to a process solving the system (2.18),
and deduce that it solves Smoluchowski’s equation (2.3) before Tgel.

Proposition 7.5. Assume that for every p ∈ S, C(n)
0 (p)→ c0(p) for some c0(p) ≥ 0 and

that
〈C(n)

0 , a〉 → 〈c0, a〉 = 1, 〈C(n)
0 , b〉 → 〈c0, b〉 = 1.

Let P be a limit point of (Pn), and let (ct) be a process with law P . Then a.s. (ct) solves
Equation (2.18), with initial conditions (c0).
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In the following proofs, we take a subsequence of (C(n)) which converges in law to some
possibly random c ∈ D(R+, E). For notational simplicity, we will assume that (C(n)) itself
tends to c. Since E is compact, it is separable, and hence, so is D(R+, E). Skorokhod’s
representation theorem (cf e.g. [16]) now allows us to assume that the C(n) are defined on
the same probability space (Ω,F,P), that C(n) → c a.s. (that is, for almost every ω ∈ Ω,
the function C(n)(ω) tends to c(ω) for Skorokhod’s distance), and that in the statement,
there is a.s. convergence. We will also constantly use the fact that for every bounded
Borel function f : E → R, the processes

f(C(n)
t )− f(C(n)

0 )−
∫ t

0
G(n)f(C(n)

s ) ds := M
(n)
t (2.30)

and (
M

(n)
t

)2
−
∫ t

0

(
G(n)(f2)(C(n)

s )− 2f(C(n)
s )G(n)f(C(n)

s )
)

ds (2.31)

are martingales. Note also that if f : E → R is linear, then, for all η ∈ E,

G(n)f(η) = 1
2
∑
p,p′∈S

f
(
∆p,p′

)
p.p′η(p)η(p′)− 1

2n
∑
p∈S

f (∆p,p) η(p) (2.32)

and

(
G(n)(f2)− 2fG(n)f

)
(η) = 1

2n

 ∑
p,p′∈S

f
(
∆p,p′

)2
η(p)η(p′)p.p′ − 1

n

∑
p∈S

f (∆p,p)2 η(p)p.p


(2.33)

We will also need the following convergence result.

Lemma 7.6. Let
A(n)
s = 〈C(n)

s , a〉, B(n)
s = 〈C(n)

s , b〉.

Then (A(n)) and (B(n)) C-converge a.s. to t 7→ 1/(1 + t).

Proof. Obviously, we cannot pass to the limit immediately in these expressions. So con-
sider the maps from E to R: C 7→ 〈a,C〉 and C 7→ 〈b, C〉, which are measurable and
bounded (by M). By (2.30) and (2.32), there are martingales MA,(n) and MB,(n) such
that

A
(n)
t = A

(n)
0 −

∫ t

0
A(n)
s B(n)

s ds+εn+M
A,(n)
t , B

(n)
t = B

(n)
0 −

∫ t

0
A(n)
s B(n)

s ds+εn+M
B,(n)
t

(2.34)
where εn ≤ M/n. Now, (2.31) and (2.33) show that the quadratic variation of MA,(n)

verifies 〈
MA,(n)

〉
t
≤ 1
n

∫ t

0
AsBs ds ≤ M2t

n
.

By Doob’s inequality,

E

( sup
0≤t≤T

M
A,(n)
t

)2
→ 0

for all T > 0. Hence there is a subsequence of (MA,(n)) which C-converges a.s. to 0. In
particular, it S-converges. For notational simplicity, we will assume that (MA,(n)) itself
converges. For the same reason, we may assume that (MB,(n)) also S-converges a.s. to 0.
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Now, note that the proof of Lemma 7.4 still works for (A(n)), since the size of its jumps
is bounded by 1/n. So (A(n)) is tight, and by Prokhorov’s theorem1, this means that for
almost every ω ∈ Ω, (A(n)(ω))n≥0 lies in a compact of D(R+, E). The same works for
(B(n)), so we can find Ω′ ⊂ Ω with P(Ω′) = 1, such that for every ω ∈ Ω′, Cn(ω)→ c(ω) (for
Skorokhod’s distance), MA,(n)(ω)→ 0 and MB,(n)(ω)→ 0 (compactly), and (A(n)(ω))n≥0
and (B(n)(ω))n≥0 lie in a compact.

Next, fix ω ∈ Ω′, and let us find the limit of (A(n)(ω), B(n)(ω)) (for the product topology
— which is not Skorokhod’s topology on D(R+, E2)). Since it lies in a compact set, it is
enough to show that it has only one limit point. So assume (A(n)(ω), B(n)(ω)) converges
to some (A,B). Then (A(n)

t (ω)) converges to At for every t ∈ K, the set of continuity
points of A. But A is càdlàg, so it has only countably many points of discontinuity, and
hence Kc has Lebesgue-measure 0. Hence (A(n)(ω)) converges to A Lebesgue-a.s., and
ditto for (B(n)(ω)). Also, (A(n)(ω)) and (B(n)(ω)) are bounded by M , so using dominated
convergence in (2.34) and recalling that A(n)

0 (ω) and B
(n)
0 (ω) → 1 by assumption, we

obtain
At = 1−

∫ t

0
AsBs ds, Bt = 1−

∫ t

0
AsBs ds.

Hence
At = Bt = 1

1 + t
.

Finally there is only one limit point to (A(n)(ω), B(n)(ω)). So (A(n)(ω)) and (B(n)(ω)) both
S-converge to t 7→ 1/(1 + t), and, since this function is continuous, they C-converge.

Remark 7.7. As pointed out in the proof, the convergence of A(n) and B(n) to the actual
number of arms

At = 〈ct, a〉, Bt = 〈ct, b〉

is not obvious. There is no such problem for a strictly sublinear coagulation rate (as in
Jeon’s proof [27]). In our (linear) case, we prove below that this convergence holds before
the critical time (we also refer to Norris [45] for general sublinear rates in a model with
no arms). In fact, if there is a solution (ct) to (2.3) defined after Tgel, we believe, for the
reasons explained in Section 2.4 of the introduction, that A(n)

t and B(n)
t do not converge

to At and Bt after Tgel (and that this number of arms is then strictly lesser than 1/(1+t)).

Proof of Proposition 7.5. 1. Take some p0 = (a0, b0,m0) ∈ S, and define, for C ∈
D(R+, E), f(C) = C(p0). According to (2.30),

C
(n)
t (p0)− C(n)

0 (p0)−
∫ t

0
G(n)f(C(n)

s ) ds := M
p0,(n)
t (2.35)

is a martingale. Note also that for p, p′ ∈ S, f(∆p,p′) is 0, except if p or p′ or p ◦ p′
is p0. Hence, it is easy to check using (2.30) that

G(n)f(C(n)
s ) =−

∑
p∈S

C(n)
s (p)C(n)

s (p0)p0.p+ 1
2
∑
p�p0

p.(p0\p)C(n)
s (p)C(n)

s (p0\p)

− 1
n

∑
p∈S

f (∆p,p)C(n)
s (p).

(2.36)
1Actually, we do not need this implication of Prokhorov’s theorem: this is just a consequence of the

proof of Lemma 7.4
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The last term is due to the difference between λη(p, p′) when p 6= p′ and when p = p′.
In any case, it tends to 0 uniformly on R+ and uniformly in p0.

2. Let us now study the martingale term. By Doob’s inequality, we have for every
T > 0

E

( sup
0≤t≤T

M
p0,(n)
t

)2
 ≤ 4E

((
M

p0,(n)
T

)2
)

and by (2.31), this last term is

E
(∫ T

0
(G(n)f2 − 2fG(n)f)(C(n)

s ) ds
)
.

But by (2.33), and since f
(
∆p,p′

)
≤M for all p, p′ ∈ S, then

(G(n)f2 − 2fG(n)f)(C(n)
s ) ≤M4/n,

so that

E

( sup
0≤t≤T

M
p0,(n)
t

)2
→ 0.

Hence, there is a subsequence of (Mp0,(n)) which a.s. converges to 0 uniformly on
R+. For notational simplicity, we will now assume that (Mp0,(n)) itself C-converges
to 0. Using the diagonal method, we may as well assume that (Mp0,(n)) C-converges
to 0 for every p0 ∈ S.

3. We have already seen in the proof of Lemma 7.4 that d(C(n)
t , C

(n)
t− ) ≤ 3/n a.s. By

continuity of X 7→ sups∈[0,t] d(Xs− , Xs) (cf [16]), this ensures that c is almost surely
continuous , so C(n) actually C-converges to c. From the definition of d, it is also
obvious that C(n)(p) C-converges to c(p) for every p ∈ S.

4. With these results, we may now pass to the limit in (2.35) and (2.36). Write (2.36)
in the form

G(n)f(C(n)
s ) = −αn(s) + 1

2βn(s) + εn(s).

Equation (2.35) shows that

C
(n)
t (p0) = C

(n)
0 (p0)−

∫ t

0
αn(s) ds+ 1

2

∫ t

0
βn(s) ds+

∫ t

0
εn(s) ds+M

(n)
t . (2.37)

By Point 3, C(n)
t (p0) C-converges a.s. to c(p0). C(n)

0 (p0) tends to c0(p0) by assump-
tion. βn(t) is a finite sum, so

βn(t)→
∑
p�p0

p.(p0\p)C(n)
s (p)C(n)

s (p0\p)

compactly. Finally, note that

αn(s) = C(n)
s (p0)

(
a0〈C(n)

s , b〉+ b0〈C(n)
s , a〉

)
= C(n)

s (p0)(a0B
(n)
s + b0A

(n)
s ).
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By Lemma 7.6, A(n)
t and B(n)

t converge compactly to t 7→ 1/(1 + t), so

lim
n→+∞

αn(s) = a+ b

1 + t
cs(p0) a.s.

compactly. Since these are all compact convergences, we can pass to the limit in
(2.37), for all p0 ∈ S. This readily shows that (c(p)) solves (2.18), with initial
conditions (c0).

7.5 End of the proof

We can now end the proof of Theorem 7.2. Hence, we assume now that 〈c0, a
2 +b2〉 < +∞.

Let Qn be the law of (C(n)
t )t∈[0,Tgel). The sequence (Qn) is obviously tight. Let Q one of

its limit points, and let c a process with law Q. By Proposition 7.5 above, c solves a.s.
the system (2.18), with initial conditions (c0).

Now, let gt(x, y, z) the (a priori random) generating function of c. It is easy to see
that g is well defined for (t, x, y, z) ∈ [0, Tgel)× (0, 1)2 × [0, 1], and that gt(., ., z) is regular
for every z ∈ [0, 1]. Moreover, we see as in the proof of Proposition 4.7 that for every
z ∈ [0, 1], gt(., ., z) solves the PDE (2.17) with initial conditions (x, y) 7→ g0(x, y, z) =∑
c0(a, b,m)xaybzm. Hence by Proposition 4.7, (ct) solves Smoluchowski’s equation 2.3

until Tgel. But by Theorem 2.5, there is a unique solution to this equation on [0, Tgel).
Hence there is a unique limit point to (Qn), so the sequence itself converges to the solution
of Smoluchowski’s equation (2.3) on [0, Tgel).
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Uniqueness of post-gelation
solutions of coagulation equations

This chapter is taken from a joint work [44] with Lorenzo Zambotti, published in the
Annales de l’Institut Henri Poincaré, Analyse non-linéaire.
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1 Introduction

1.1 Coagulation models

In this chapter, we deal with the problem of uniqueness of post-gelation solutions of several
models of coagulations, namely Smoluchowski’s and Flory’s classical models, Bertoin’s
models with limited aggregations and the corresponding Flory equation. Let us recall
that Smoluchowski’s equation concerns the evolution of the concentration of ct(m) of
clusters of mass m ∈ N∗ and reads

d
dtct(m) = 1

2

m−1∑
m′=1

κ(m,m′) ct(m′) ct(m−m′)−
∑
m′≥1

κ(m,m′)ct(m)ct(m′) (3.1)

withm ∈ N∗, for a symmetric kernel κ(m,m′), and that Bertoin’s coagulation with limited
aggregations deals with the evolution of the concentration ct(a,m) of clusters with a arms
and mass m, and is given by

d
dtct(a,m) = 1

2

a+1∑
a′=1

m−1∑
m′=1

a′(a+ 2− a′)ct(a′,m′)ct(a+ 2− a′,m−m′)

−
∑
a′≥1

∑
m′≥1

aa′ct(a,m)ct(a′,m′)
(3.2)

for (a,m) ∈ N× N∗.
As we already discussed in the introduction of this thesis, in general, when solving these

equations, a critical time, known as the gelation time, appears. In [46], Norris considers
far more general models of cluster coagulation, where the rate of coalescence does not
depend only on the mass of the clusters but also on other parameters. In that case again,
most results (existence, uniqueness) are obtained before some critical time.

1.2 The gelation phase transition

The reason why Bertoin’s equation (3.2) can be solved, is that it can be transformed
(see [3]) into a solvable PDE involving the generating function of (ct). For the standard
Smoluchowski equation (3.1), this transformation is also possible for several particular
choices of the kernel κ(m,m′), namely when κ is constant, additive or multiplicative: see
e.g. [7]. However, the mass is a parameter of this PDE, so it is easy to solve only when the
mass is known. But if large clusters can coagulate sufficiently fast, then one may observe
in finite time the gelation phenomenon, which is interpreted as the formation of clusters
of infinite mass, the gel. From the gelation time, the mass starts to decrease.

Existence and uniqueness of solutions of (3.1) are thus easy up to gelation, since in
this regime the total mass

Mt :=
∑
m≥1

mct(m),

which appears in (3.1) and in the associated PDE, is constant.
It is well-known that the occurrence of gelation depends heavily on the choice of the

coagulation rate κ(m,m′), and that in the multiplicative case, gelation always occurs
[14, 18, 35]. After gelation, the mass is not known, so Mt itself becomes an unknown of
the equation, and well-posedness of the equation is then much less trivial.

The multiplicative kernel is therefore particularly interesting, since it exhibits a non-
trivial behavior but can also be studied in detail by means of explicit computations.
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For (3.2), before gelation the mean number of arms At is explicitly known and equal
to

At :=
∑
a,m≥1

act(a,m) = A0
1 + tA0

.

As we saw, the same phenomenon of gelation occurs in (3.2) for a class of initial concen-
trations c0. After that time, At is lesser than A0/(1 + tA0), and the equation becomes
much harder to solve.

1.3 Main result

The main results of this chapter are the well-posedness of the standard (3.1) Smoluchowski
equation with a multiplicative kernel, and of the modified (3.2) Smoluchowski equation,
for general initial conditions.

We start off in Section 2 by considering existence, uniqueness and representation formu-
lae for global solutions of the version of (3.1) with continuous masses and a multiplicative
kernel, introducing and exploiting all main techniques which are needed afterwards to
tackle the same issues in the case of Bertoin’s equation (3.2). We prove that for the most
general initial conditions µ0(dm), a positive measure on (0,+∞), Smoluchowski’s equation
with a multiplicative kernel has a unique solution before and after gelation. We can in
particular consider initial concentrations with infinite total mass, i.e. such that

M0 :=
∫

(0,+∞)
m µ0(dm) = +∞.

This can be applied for instance to initial conditions of Gamma type

mc0(dm) = Cpm
p−2e−m

with p ∈ (0, 1].
We also show existence and uniqueness for the modified version of Smoluchowski’s

model, namely Flory’s equation (1.2), in Section 3. This was already proved by Norris
[46] for much more general models, but the techniques in that particular case are much
simpler and allow to compute many interesting quantities.

A probably more interesting case is Bertoin’s model with limited aggregations (3.2)
and we prove analogous results as for (3.1) in Section 4. We can in particular consider
initial conditions (c0(a,m), a ∈ N,m ∈ N∗) with an initial infinite number of arms, that is
such that

A0 :=
∑
a,m≥1

ac0(a,m)

is infinite, and show that there is a unique solution “coming down from infinity sufficiently
fast”, i.e. such that, for positive t, ∫ t

0
A2
s ds < +∞.

Note however that this is no technical condition, but a mere assumption to ensure that the
equation is well-defined. The same techniques as for the standard Smoluchowski equation
of Section 2 are used, so we shall not give all the details in that case. We can also consider
the corresponding Flory model with limited aggregations, which is dealt with in Section
5.

A most striking feature of the result about (3.2) is the expression for the limiting
concentrations which we compute in Section 6, which are not trivial, in comparison with
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the standard Smoluchowski and Flory cases (for which they are always zero). In Flory’s
case with limited aggregations, the formula obtained extends to all possible initial con-
centrations the computations done in [3] when there is no gelation. In Smoluchowski’s
model with limited aggregations, a slight modification appears, which calls for a proba-
bilistic interpretation which is the motivation for the study of a microscopic model for
(3.2) undertaken in the fourth chapter.

The technique used, as in [3], is to transform the equation into a PDE. However, since
the mass (in the case of (3.1)) or the mean number of arms (in the case (3.2)) is not a
priori known, this PDE is non local, unlike the one obtained in the regime before gelation,
and this is the main difficulty we have to deal with. We may though use a modification
of the classical characteristics method to show the uniqueness of a solution to this PDE,
and hence to (3.2).

This seems to be the first case of a cluster coagulation model for which global well-
posedness in presence of gelation can be proven. Another setting to which these techniques
could be applied is the coagulation model with mating [43] introduced in the second chapter
of this thesis.

1.4 Bibliographical comments

Smoluchowski’s equation (3.1) has been extensively studied; we refer to the reviews [1, 33,
45]. There are conditions about the kernel κ to know if gelation occurs or not, but this
requires a precise definition of gelation (see e.g. [15], or [27] in a probabilistic setting).
Essentially, before gelation, Smoluchowski’s solution has a unique solution [45, 8, 18, 33].
However, in the multiplicative case, gelation always occurs [14, 18, 35]. For monodisperse
initial conditions c0(m) = 1{m=1}, the first proof of existence and uniqueness to (3.1)
before gelation is given in [39], and a proof of the global existence and uniqueness in [29],
essentially because in this case, explicit solutions can be obtained. The case of general
nonzero initial conditions has been considered by several papers in the Physics literature
[12, 13, 36, 53, 59], and by at least one mathematical paper [55], which however treats in
full details only the regime before gelation (see Remark 2.9 below). The same authors also
provide in [56] an exact formula for the post-gelation mass of (3.1), but with no rigorous
proof. Thus, a clear statement about well-posedness of (3.1) for the most general initial
conditions still seems to be missing.

The use of generating functions (or Laplace transforms) is classical [7, 3], and it makes
the proof of uniqueness before gelation for a multiplicative kernel quite easy, see [40].

We will not be interested in the existence of solutions, since it has been obtained in a
much more general setting by analytic [34, 35, 46] or probabilistic [19, 27] means. However,
the case of an infinite initial mass seems to have been considered only in [34] in the discrete
case, so we refer to Section 2.6 below for a proof.

2 Smoluchowski’s equation

2.1 Notation and results

In this section we develop our method in the case of the continuous version of the standard
Smoluchowski equation (3.1), proving existence, uniqueness and representation formulae
for global solutions. Let us first fix some notations.

• M+
f is the set of all non-negative finite measures on (0,+∞).

• M+
c is the set of all non-negative Radon measures on (0,+∞).
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• For µ ∈M+
c and f ∈ L1(µ) or f ≥ 0,

〈µ, f〉 =
∫

(0,+∞)
f(m) µ(dm).

We will write m for the function m 7→ m, m2 for m 7→ m2, etc.

• For φ : (0,+∞)→ R and m,m′ > 0, ∆φ(m,m′) = φ(m+m′)− φ(m)− φ(m′).

• Cc(R+) is the space of continuous functions on (0,+∞) with compact support.

• For a function (t, x) 7→ φt(x), φ′t(x) is the partial derivative of φ with respect to x.

• ∂+

∂t
or d+

dt denotes the right partial derivative with respect to t.

Let us now define our equation and we call a solution. Note that the first requirement
in the following definition is only present for the equation to make sense.

Definition 2.1. Let µ0 ∈M+
c . We say that a family (µt)t≥0 ⊂M+

c solves Smoluchowski’s
equation if

• for every t > 0,
∫ t

0〈µs(dm),m〉2 ds < +∞,

• for all φ ∈ Cc(R+) and t > 0

〈µt, φ〉 = 〈µ0, φ〉+ 1
2

∫ t

0
〈µs(dm)µs(dm′),mm′∆φ(m,m′)〉 ds. (3.3)

The global behavior of this equation has been studied first for monodisperse initial
conditions (i.e. µ0 = δ1), in which case it can be proven that there is a unique solution
(µt)t≥0 on R+, which is also explicit, see [39, 29]. This solution clearly exhibits the gelation
phase transition. Up to the gelation time Tgel = 1, the total mass 〈µt,m〉 is constant and
equal to 1, and then it decreases: 〈µt,m〉 = 1/t for t ≥ 1. Moreover, the second moment
〈µt,m2〉 is finite before time 1, and then infinite on [1,+∞). It is also known in the
literature that for any nonzero initial conditions, there is a gelation time 0 < Tgel < +∞,
such that there is a unique solution to (3.3) on [0, Tgel), and 〈µt,m2〉 → +∞ when t→ T−gel:
see e.g. [18].

Our initial condition will be a non-null measure µ0 ∈M+
c such that

〈µ0,m ∧ 1〉 =
∫

(0,+∞)
(m ∧ 1)µ0(dm) < +∞. (3.4)

We can then define the generating function

g0(x) := 〈µ0,mx
m〉 =

∫
(0,+∞)

mxm µ0(dm), x ∈ [0, 1], (3.5)

as well as the gelation time.

Definition 2.2. For

M0 := 〈µ0,m〉 ∈ (0,+∞], K := 〈µ0,m
2〉 ∈ (0,+∞],

the gelation time is defined as

Tgel := 1/K ∈ [0,+∞). (3.6)
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Our main result on (3.3) is then the following.

Theorem 2.3. Smoluchowski’s equation (3.3) has a unique solution on R+. It has the
following properties.

1. The total mass Mt = 〈µt,m〉 is given by Mt = g0(`t), where `1 = 1 for t ≤ Tgel and,
for t > Tgel, `t is uniquely defined by

`tg
′
0(`t) = 1

t
.

Therefore, t 7→Mt is continuous on [0,+∞), constant on [0, Tgel], strictly decreasing
on [Tgel,+∞) and analytic on R+\{Tgel}.

2. The function

φt(x) = x exp
(∫ t

0
g0(`s) ds

)
e−tg0(x), x ∈ [0, 1], t > 0,

has a right-inverse ht : [0, 1] → [0, `t]. The generating function gt(x) := 〈µt,mxm〉
is given for t ≥ 0 by

gt(x) = g0(ht(x)).

3. If the following limit exists

ν := − lim
x→1−

(g′0(x))3

g′0(x) + xg′′0(x) ∈ [−∞, 0],

then the right derivative ṀTgel of M at t = Tgel is equal to ν.

4. Let m0 = inf supp µ0 ∈ [0,+∞). When t→ +∞,

1
tMt

→ m0.

5. The second moment 〈µt,m2〉 is finite for t ∈ [0, Tgel) and infinite for t ∈ [Tgel,+∞).

Remark 2.4. • This result allows to recover the pre- and post-gelation formulas ob-
tained with no rigorous proof in some earlier papers [13, 12, 29, 36, 55, 56, 53]. The
decrease of the mass in 1/t when m0 > 0 was also observed in these papers. Also,
some upper bounds in 1/t for the mass were proven in [15, 35].

• If there exists dust, in the classical terminology [2] of coagulation-fragmentation, i.e.
if m0 = 0, the mass tends to 0 more slowly than 1/t: small clusters need to coagulate
before any big cluster can appear, and they coagulate really slowly. For instance,
a straightforward computation shows that if µ0(dm) = e−mdm, then Mt ∼ t−2/3.
More generally, the explicit formula in Proposition (2.8) allows to compute Mt for
any initial conditions.

• With this formula, it is easy to check that ṀTgel+ can be anything from −∞ to 0.
For instance, ṀTgel+ = 0 for g0(x) = (1 − x) log(1 − x) + x, Ṁ0 = −∞ for g0(x) =√

1− x log(1− x) + x, and for 0 < α < +∞, Ṁ0 = −α for g0(x) = 1−
√

1− x2α. In
particular, M need not be convex on [Tgel,+∞).
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2.2 Preliminaries

Let µ0 be defined as in the previous statement. We shall prove that, starting from µ0, there
is a unique solution to (3.3) on R+, and give a representation formula for this solution.
This allows to study the behavior of the moments. Let us start with some easy lemmas.
So take a solution (µt)t≥0 to (3.3) and set

Mt = 〈µt,m〉. (3.7)

The two following lemmas are easy to prove, using monotone and dominated convergence.

Lemma 2.5. (Mt)t≥0 is monotone non-increasing and right-continuous. Moreover, Mt <
+∞ for all t > 0.

Proof. Take φK(m) = m for m ∈ [0,K], φK(m) = 2K−m for m ∈ [K, 2K], and φK(m) =
0 for m ≥ 2K, so that φK ∈ Cc. Plugging φK in Smoluchowski’s equation (3.3), letting
K → +∞ and using Fatou’s lemma readily shows that (Mt)t≥0 is monotone non-increasing.
Note also that t 7→ Mt = supK〈µt, φK〉 is the supremum of a sequence of continuous
functions and so is lower semi-continuous, which implies, for a monotone non-increasing
function, right-continuity. Finiteness of Mt is now obvious since s 7→ M2

s , and hence
s 7→Ms, are integrable by Definition 2.1.

Lemma 2.6. Assume that 〈µ0,m
2〉 < +∞. Then t 7→ 〈µt,m2〉 is bounded in a neighbor-

hood [0, T0], T0 > 0, of 0. Moreover Mt = M0 for t ∈ [0, T0].

Proof. The first part of the statement is analogous to Lemma 3.6 of Chapter 2. More
precisely, first note that (3.3) can be extended to any bounded φ : (0,+∞) → R+ by a
standard approximation procedure, so we may take take, for M ∈ N,

φ(m) = φM (m) := (m ∧M)2.

It is easy to check that ∆φ(m,m′) ≤ 2(m∧M)(m′ ∧M), so plugging this in (3.3), we get

〈µt, φM 〉 ≤ 〈µ0, φ
M 〉+

∫ t

0
〈µs(dm)µs(dm′), (m ∧M)2(m′ ∧M)2〉 ds =

∫ t

0
(〈µs, φM 〉)2 ds.

This readily shows that 〈µt, φM 〉 ≤ (1/〈µ0, φ
M 〉 − t)−1 as long as the RHS remains finite,

so by monotone convergence, having M → +∞, we get

〈µt,m2〉 ≤ 1
1/〈µ0,m2〉 − t

for t < 1/〈µ0,m
2〉, whence the result follows. The second part is classical and is just

obtained by dominated convergence.

Remark 2.7. The first part of this result was actually absent from the original paper [44],
what led to an awkward definition of a solution where we required the second moment to
be bounded in a neighborhood of 0. As we just saw, this is an unnecessary assumption.
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2.3 PDE

By Lemma 2.5, 〈µt,m〉 < +∞ for t > 0, so that we can define

gt(x) = 〈µt,mxm〉 =
∫

(0,+∞)
mxm µt(dm), x ∈ [0, 1], t > 0, (3.8)

which is the generating function of mµt(dm). Then, using a standard approximation
procedure, it is easy to see that g satisfies gt(x) = g0(x) +

∫ t

0
x(gs(x)−Ms)

∂+gs
∂x

(x) ds, t ≥ 0, x ∈ (0, 1)

gt(1) = Mt, t ≥ 0.
(3.9)

It is well-known, and will be proven again below, that Mt = M0 for all t ≤ Tgel,
since then, the PDE (3.29) can be solved by the method of characteristics: the function
φt(·) : [0, 1]→ [0, 1] such that

φt(x) = xet(M0−g0(x)), x ∈ [0, 1], t ≤ Tgel

is one-to-one and onto, has an inverse ht : [0, 1]→ [0, 1] and we find

gt(x) = g0(ht(x)), x ∈ [0, 1], t ≤ Tgel.

However Mt is not necessary constant for t > Tgel and the form of φt has to be modified.
We thus define

φt(x) = xαte
−tg0(x), x ∈ [0, 1], t > 0 (3.10)

where
αt := exp

(∫ t

0
Ms ds

)
, t ≥ 0. (3.11)

For t > Tgel, Mt is possibly less than M0 and φt, which depends explicitly on (Ms)s∈[0,t],
is possibly neither injective nor surjective. We shall prove that it is indeed possible to find
`t ∈ (0, 1) such that φt(x) : [0, 1] 7→ [0, `t] is one-to-one and `t is uniquely determined by
g0.

2.4 Uniqueness of solutions

Using an adaptation of the method of characteristics, we are going to prove the following
result. Note that in [55], this properties are claimed to be true but a proof seems to lack.
We will use the same techniques in the proof of Theorem 4.3 for the model with limited
aggregations, but they are easier to understand in the present case.

Proposition 2.8. Let (µt)t≥0 be a solution of Smoluchowski’s equation (3.3).

1. For all t ∈ [0, Tgel], Mt = M0 = g0(`t), where `t := 1. For all t > Tgel, Mt = g0(`t)
where `t ∈ (0, 1) is uniquely defined by

`t g
′
0(`t) = 1

t
. (3.12)

Moreover `t and φt(·) satisfy

φ′t(`t) = 0, φt(`t) = 1 > φt(x), ∀x ∈ (0, 1). (3.13)
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2. For all t > 0, the function φt(·) defined in (3.10) has a right inverse

ht : [0, 1] 7→ [0, `t], φt(ht(x)) = x, x ∈ [0, 1], (3.14)

and
gt(x) = g0(ht(x)), t > 0, x ∈ [0, 1]. (3.15)

3. The functions (`t)t≥0 and (Mt)t≥0 are continuous.

4. (µt) is uniquely defined by µ0.

Figure 3.1: φt before and after gelation. The dotted lines represent what φt may look like.
The solid one is the actual φt.

Remark 2.9. • For all t ≤ Tgel, Mt = M0, `t = 1 and φt : [0, 1] 7→ [0, 1] is one-to-one
and onto. The first thing one needs to prove is that for all t > Tgel, `t < 1, i.e. there
is indeed x ∈ [0, 1] such that φt(x) = 1, see Lemma 2.11; the second one, is that
`t = mt, i.e. φt(·) has an absolute maximum at `t, see Lemma 2.12. In other words,
one has to exclude the dotted lines as possible profiles of φt(·) in Figure 2.4. These
properties are not obvious, since φt depends on (Ms)s∈[0,t] which is, at this point,
unknown. All other properties are derived from these two.

• In [55, Section 6] one finds a discussion of post-gelation solutions, in particular of
the results of our Proposition 2.8. However this discussion falls short of a complete
proof, since the two above-mentioned properties are not proven. In particular, no
precise statement about what initial conditions can be considered is given.

The following lemma is a list of obvious but useful properties satisfied by g and φ.

Lemma 2.10. The function g defined in (3.8) satisfies the following properties.

(a1) (t, x) 7→ gt(x) is finite and continuous on [0,+∞)× [0, 1);

(a2) For all x ∈ [0, 1), t 7→ gt(x) is right differentiable on (0,+∞);

(a3) For all t ≥ 0, x 7→ gt(x) is analytic on (0, 1) and monotone non-decreasing;

(a4) For all t > 0, x 7→ gt(x) ∈ [0,+∞] is continuous on [0, 1].

The function φ defined in (3.10) satisfies the following properties.

(b1) φt is continuous on [0, 1] and analytic on (0, 1);
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(b2) φt(0) = 0, φt(1) = e−
∫ t

0 (M0−Ms) ds ∈ [0, 1];

(b3) φ′t(x) = αte
−tg0(x)(1− txg′0(x)) for x ∈ (0, 1);

(b4) For t ≤ Tgel, φt is increasing. For t > Tgel, x 7→ xg′0(x) is increasing, φ′t(0) > 0 and
φ′t(1) < 0. In particular, for t > Tgel, there is precisely one point mt ∈ (0, 1) such
that

φ′t(mt) = 0. (3.16)

(b5) For t > Tgel, φt is increasing on [0,mt] and decreasing on [mt, 1].

Moreover,

(c1) The map (t, x) 7→ φt(x) is continuous on R+ × [0, 1);

(c2) The map (t, x) 7→ φ′t(x) is continuous on R+ × (0, 1);

(c3) For every x ∈ [0, 1), t 7→ φt(x) is right differentiable and

∂+φt(x)
∂t

= φt(x)(Mt − g0(x)) x ∈ [0, 1), t ≥ 0. (3.17)

Property (b5) implies that there are at most two points in (0, 1) where φt equals 1.
Take `t to be the smallest, if any, i.e.

`t = inf{x ≥ 0 : φt(x) = 1} (inf ∅ := 1). (3.18)

Lemma 2.11. 1. For every t ≥ 0 and every x ∈ [0, `t]

gt(φt(x)) = g0(x). (3.19)

2. For all t ∈ [0, Tgel], `t = 1, and for t > Tgel, 0 < `t < 1. In particular, for all t > 0,
φt(`t) = 1 and

g0(`t) = gt(1) = Mt. (3.20)

3. Finally, t 7→ `t is monotone non-increasing and continuous on R+.

Proof. 1. Let us first prove that there exists τ > 0 such that (3.19) holds for t ∈ [0, τ).
Fix 0 < a < b < 1. Since 0 < min[a,b] φ0 < max[a,b] φ0 < 1, then by property (c1)
there is τ > 0 such that

0 < min
[a,b]

φt < max
[a,b]

φt < 1, ∀ t ∈ [0, τ).

So, for a fixed x ∈ [a, b], the function

ut := gt(φt(x))− g0(x)

is well-defined and using (3.29) and (3.17), we see that

ut =
∫ t

0

(
∂+gs
∂s

(φs(x)) + ∂gs
∂x

(φs(x))∂
+φs
∂s

(x)
)

ds =
∫ t

0
γs us ds

where
γt := ∂gt

∂x
(φt(x))φt(x), t > 0.

Since x ∈ [0, 1), supt∈[0,τ) |γt| < +∞ and therefore ut ≡ 0. Hence (3.19) holds for
x ∈ [a, b] and t ∈ [0, τ [. Since both terms of (3.19) are analytic functions of x on
(0, `t), by analytic continuation, (3.19) actually holds on (0, `t), and hence on [0, `t]
by continuity.
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2. Let us now extend this formula to t ∈ R+. Let

T = sup{t > 0 : ∀ s ∈ [0, t], ∀x ∈ [0, `s], gs(φs(x)) = g0(x)} ≥ τ > 0,

assume T < +∞, and denote by ` the left limit of (`t)t≥0 at T . First, ` cannot be
0, since otherwise we would get, when s→ T−,

1 = φs(`s) = `sαse
−sg0(`s) → 0.

For every t < T , 0 < ` ≤ `t, so for every x ∈ (0, `), gt(φt(x)) = g0(x) and φt(x) < 1.
Using the continuity property (c1) and passing to the limit when t → T− in this
equality, we get

gT (φT (x)) = g0(x), ∀x ∈ (0, `).

By the same reasoning as in point (i), we obtain a T ′ > T such that gt(φt(x)) = g0(x)
for all t ∈ [T, T ′) and x in a non-empty open subset of (0, `). By analyticity and
continuity, the formula gt(φt(x)) = g0(x) holds for every t ∈ [T, T ′) and x ∈ [0, `t].
This contradicts the definition of T , and so T = +∞. This concludes the proof of
point (1) of the lemma.

3. For the statement (2) of the lemma, let us show first that 〈µt,m2〉 is bounded on
[0, T0), for every T0 ∈ [0, Tgel). Let T ′, the smallest time when this fails (provided of
course that Tgel > 0). By Lemma 2.6, T ′ > 0. Differentiating (3.19) with respect to
x and having x tend to `t = 1 gives, for t < T ′,

g′t(1) = 〈µt,m2〉 = 1
1− tK .

This quantity explodes only when t = Tgel = 1/K, so T ′ = Tgel.

4. The boundedness of (〈µt,m2〉)t∈[0,T0) just proved for all T0 ∈ [0, Tgel) and Lemma 2.6
imply that for t ∈ [0, Tgel), Mt = M0. By the definition (3.10) of φt, it follows that
φt(1) = 1 for t ∈ [0, Tgel). But φt is increasing, so `t = 1 for t ∈ [0, Tgel). Assume
now that for some t > Tgel, `t = 1. Then (3.19) holds on [0, 1], and this is impossible
since the right term is an increasing function of x, whereas the left one decreases
in a left neighborhood of 1 since φ′t(1) < 0. The fact that φt(`t) = 1 follows then
directly from the definition of `t and the continuity of φt(·). Finally, the inequality
`t > 0 is obvious since φt(0) = 0, and computing (3.19) at x = `t gives (3.20). This
concludes the proof of (2).

5. We know that `t = 1 and Mt = M0 for all t < Tgel. Now, g0 is strictly increasing
and continuous. Since (Mt)t≥0 is monotone non-increasing and right-continuous
by Lemma 2.5, so is (`t)t≥0 by (3.20). To get left-continuity of (`t)t>Tgel , consider
t > Tgel, and let ` be the left limit of `s at t. We have ` ≤ `t+(t−Tgel)/2 < 1, so by
the continuity property (c1) above,

1 = φs(`s) →
s→t−

φt(`).

Hence φt(`) = 1. Assume ` > `t (that is, ` is the second point where φt reaches 1).
Take x ∈ (`t, `). By property (b5), φt(x) > 1. But on the other hand, x < ` ≤ `s
for s < t, so φs(x) ≤ 1, and so φt(x) ≤ 1, and this is a contradiction. So ` = `t and
(`t)t≥0 is indeed continuous. This concludes the proof of (3) and of the Lemma.
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Finally, we will see that for t > Tgel, `t = mt, so that φt increases from 0 to 1,
which is its maximum, and then decreases. To this end, recall that (`t)t≥0 is monotone
non-increasing and that (`t)t≥0 and (φt)t≥0 are continuous, so the chain rule for Stieltjes
integrals and (3.17) give

1 = φt(`t) = φ0(`0) +
∫ t

0
φ′s(`s) d`s +

∫ t

0

∂+φs
∂s

(`s) ds

= 1 +
∫ t

0
φ′s(`s) d`s +

∫ t

0
φs(`s)(Ms − g0(`s)) ds

that is, with (3.20),
φ′t(`t) d`t = 0. (3.21)

Hence, d`t-a.e φ′t(`t) = 0, i.e. `t = mt. This is actually true for all t > Tgel, as we shall
now prove. This result also has its counterpart in the model with limited aggregations,
namely Part 3 of the proof of Theorem 4.3.

Lemma 2.12. For every t > Tgel, φ′t(`t) = 0, i.e. `t = mt, the point where φt attains its
maximum. In particular,

`t g
′
0(`t) = 1

t
, ∀ t > Tgel. (3.22)

Proof. First, recall that φt is increasing on [0, `t], so that φ′t(`t) ≥ 0, that is

`tg
′
0(`t) ≤

1
t
. (3.23)

Assume now that there is a t > Tgel such that φ′t(`t) > 0, and consider

s = sup{r ∈ (Tgel, t) : φ′r(`r) = 0}.

As noted before, t 7→ `t is strictly decreasing for t > Tgel for any t > Tgel, so d`t([Tgel, Tgel+
ε[) > 0 for all ε > 0. Hence there are points r < t where φ′r(`r) = 0, and thus the definition
of s does make sense.

Take now (rn) a sequence of points such that T < rn < t, φ′r(`r) = 0 and (rn) converges
to s. Since 0 < `s < 1, by property (c2) above, we get

0 = φ′rn(`rn)→ φ′s(`s)

so that φ′s(`s) = 0. This shows that s < t, and that for r ∈ (s, t), φ′r(`r) > 0. Hence, by
continuity of (`r)r≥0 and by (3.21), (`r)r∈[s,t] is constant. This gives

1
s

= `s g
′
0(`s) = `t g

′
0(`t) ≤

1
t

which is a contradiction since s < t. In particular, φ′t(`t) = 0 implies (3.22).

We can now end the proof of Proposition 2.8. By Lemma 2.12, necessarily Mt = M0
on [0, Tgel] and for t > Tgel, Mt := gt(1) = g0(`t), where

`tg
′
0(`t) = 1

t
. (3.24)

Since x 7→ xg′0(x) is strictly increasing from [0, 1] to [0,K], where K = 〈µ0,m
2〉 = 1/Tgel,

this equation has a unique solution for t > Tgel. Hence Mt is uniquely defined. Therefore
αt and φt are uniquely determined by g0, so we can define φt as in (3.10), and Lemma
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2.11 shows that gt(φt(x)) = g0(x) for x ∈ [0, `t], and that φt is a bijection from [0, `t] to
[0, 1]. So it has a right inverse ht, and compounding by ht in the previous formula gives

gt(x) = g0(ht(x)) (3.25)

for all x ∈ [0, 1], t ≥ 0. Thus gt can be expressed by a formula involving only g0 and in
particular, (µt) depends only on µ0. This shows the uniqueness of a solution to Smolu-
chowski’s equation (3.3).

2.5 Behavior of the moments

In this paragraph, we will study the behavior of the first and second moment of (µt)t≥0
as time passes, showing how to prove rigorously and recover the results of [13]. For more
general coagulation rates, one can obtain upper bounds of the same nature, see [35].

First consider the mass Mt = 〈µt,m〉. We will always assume that Tgel < +∞. Let us
start with the following lemma.

Lemma 2.13. Let ν ∈M+
c be a measure which integrates x 7→ yx for small enough y > 0.

Let m0 be the infimum of its support. Then

lim
y→0+

〈ν, xyx〉
〈ν, yx〉

= m0.

Proof. First, note that xyx ≥ m0y
x ν-a.e. so

lim inf
y→0

〈ν, xyx〉
〈ν, yx〉

≥ m0.

Let us prove now that
lim sup
y→0

〈ν, xyx〉
〈ν, yx〉

≤ m0.

Assume this is not true. Then, up to extraction of a subsequence, we may assume that
there exists α > 0 such that for arbitrary small y ∈ (0, 1), 〈ν, xyx〉 ≥ (m0 + α)〈ν, yx〉.
Hence 〈ν, (x−m0 − α)yx〉 ≥ 0, so

〈ν, (x−m0 − α)yx1{{x>m0+α}}〉 ≥ 〈ν, (m0 + α− x)yx1{{m0≤x≤m0+α}}〉. (3.26)

But

〈ν, (m0 + α− x)yx1{{m0≤x≤m0+α}}〉
≥ 〈ν, (m0 + α− x)yx1{{m0≤x≤m0+α/2}}〉

≥ 〈ν, (m0 + α− x)1{{m0≤x≤m0+α/2}}〉ym0+α/2

and
〈ν, (x−m0 − α)yx1{{x>m0+α}}〉 ≤ 〈ν, (x−m0 − α)1{{x>m0+α}}〉ym0+α.

With (3.26), this shows that

〈ν, (x−m0 − α)1{{x>m0+α}}〉yα/2 ≥ 〈ν, (m0 + α− x)1{{m0≤x≤m0+α/2}}〉

and having y tend to zero gives

0 ≥ 〈ν, (m0 + α− x)1{{m0≤x≤m0+α/2}}〉

which is a contradiction since ν([m0,m0 + α/2]) > 0.
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Corollary 2.14. The mass of the sytem is continuous and positive. It is strictly decreasing
on [Tgel,+∞). Moreover, denote m0 = inf supp µ0. Then

lim
t→+∞

1
tMt

= m0.

Proof. Recall that Mt = g0(`t) so the first properties follow from Lemma 2.11. Denote
now ν(dm) = mµ0(dm). For t > Tgel, `tg′0(`t) = 1/t, so

1
tMt

= 〈ν, x`
x
t 〉

〈ν, `xt 〉

and since `t → 0 when t→ +∞, this tends to m0 by Lemma 2.13.

We can also study the behavior of the mass for small times. Recall that before gelation,
the mass is constant at 1. We have seen that it is continuous at the gelation time. We
may then wonder if its derivative is continuous, that is if ṀTgel+ is zero or not.

Lemma 2.15. The right derivative of M at Tgel is given by

ṀTgel+ = − lim
x→1−

g′0(x)3

g′0(x) + xg′′0(x) ∈ [−∞, 0]

provided the limit exists.

Proof of Lemma 2.15. For t > Tgel, f(`t) = 1/t with f(x) = xg′0(x), and 0 < `t < 1. But
f ′(`t) 6= 0, so by the inverse mapping theorem, (`t)t≥0 is differentiable and

˙̀
t = − 1

t2f ′(`t)
.

Using the fact that Mt = g0(`t), it is then easy to see that

Ṁt = −`2t
g′0(`t)3

g′0(`t) + `tg′′0(`t)
.

Since (`t)t≥0 is continuous at Tgel and `Tgel = 1, the result follows.

Recall that the gelation time is precisely the first time when the second moment
〈µt,m2〉 of (µt)t≥0 becomes infinite. It actually remains infinite afterwards.

Corollary 2.16. For all t ≥ Tgel, 〈µt,m2〉 = +∞.

Proof. Note that
〈µt,m2〉 = g′t(1),

this formula being understood as a monotone limit. By (3.19), for x < `t

φ′t(x)g′t(φt(x)) = g′0(x).

When x→ `−t , φ′t(x)→ 0 by Lemma 2.12, and g′0(x)→ g′0(`t) 6= 0 since `t > 0. So

g′t(φt(`t)) = g′t(1) = +∞.
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2.6 Existence of solutions

Existence of solutions of (3.3) is a well-known topic, see e.g. [19]. However, the case
M0 = +∞ is apparently new, so that we give a short proof for the general case based on
previous papers, mainly [55].

Let now µ0 ∈M+
f be as in the statement of Theorem 2.3 and let us set g0 as in (3.5),

`t and Mt as in point (1) of Proposition 2.8, αt and φt as in (3.11) and (3.10). Then it is
easy to see that φt admits a right inverse ht satisfying (3.14), and we can thus define

gt(x) := g0(ht(x)), t ≥ 0, x ∈ [0, 1].

It is an easy but tedious task to check that gt satisfies (3.29) and all properties (a1)-(a4)
above. In particular, if g0(1) = +∞ then ht(1) < 1 and therefore gt(1) < +∞ for all t > 0.
Following [55], we can now prove the following.

Proposition 2.17. For all t > 0 there exists µt ∈M+
f such that

gt(x) = 〈µt,mxm〉 =
∫

(0,+∞)
mxm µt(dm), x ∈ [0, 1].

Proof. Let t > 0 be fixed. We set for all y ≥ 0

Φ(y) := g0(e−y), Γ(y) := tg0(e−y), G(y) := Γ(y) + y − logαt = − log φt(e−y).

We recall that f : [0,+∞) 7→ [0,+∞) is completely monotone if f is continuous on
[0,+∞), infinitely many times differentiable on (0,+∞) and

(−1)k d
kf

dyk
(y) ≥ 0, ∀ k ≥ 0, y ∈ (0,+∞).

It is easy to see that Φ and Γ are completely monotone. Moreover, G has a right inverse

G−1 : [0,+∞) 7→ [log(1/`t),+∞), G−1(y) = − log ht(e−y), y ≥ 0,

and therefore by the definitions

g0(ht(e−y)) = Φ(G−1(y)), y ≥ 0.

By [55, Thm. 3.2], Φ◦G−1 is completely monotone and therefore, by Bernstein’s Theorem,
there exists a unique νt ∈M+

f such that

gt(e−y) = g0(ht(e−y)) = Φ(G−1(y)) =
∫

(0,+∞)
e−ym νt(dm), y ≥ 0.

Since gt(1) < +∞ for all t > 0, we obtain that 〈νt,m〉 < +∞, so that we can set
µt(dm) := mνt(dm), and we have found that there is a unique µt ∈M+

f such that

gt(x) = g0(ht(x)) =
∫

(0,+∞)
xmmµt(dm), x ∈ (0, 1].

In order to show that (µt)t≥0 is a solution of Smoluchowski’s equation in the sense of
Definition 2.1, we have to check that

∫ ε
0 M

2
t dt < +∞ for all ε > 0. This is the content of

the next result.
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Lemma 2.18. If (µt)t≥0 is the family constructed in Proposition 2.17, then for all ε > 0,∫ ε
0 〈µs,m〉2 ds < +∞.

Proof. If M0 < +∞ then there is nothing to prove, since (Mt)t≥0 is monotone non-
increasing, so let us consider the case M0 = +∞ and thus Tgel = 0. Since Mt = g0(`t) is
bounded and continuous for t ∈ [δ, ε] for all δ ∈ (0, ε), we have, by (3.12) and (3.5),∫ ε

δ
M2
t dt =

∫ ε

δ
g2

0(`t) dt = εg2
0(`ε)− δg2

0(`δ)−
∫ ε

δ
2tg0(`t)g′0(`t) d`t

≤ εg2
0(`ε)−

∫ ε

δ
2 g0(`t)

d`t
`t

= εg0(`ε) + 2
∫ `δ

`ε
g0(y) dy

y

≤ εg0(`ε) + 2
`ε
〈µ0,

m

1 +m
〉 ≤ εg0(`ε) + 2

`ε
〈µ0,m ∧ 1〉.

Letting δ ↓ 0, by (3.4) we obtain the desired result.

We now finish the proof of existence of a solution by showing that (µt)t≥0 indeed
solves (3.3). By choosing x = e−y, y ≥ 0, in (3.29), we find an equality between Laplace
transforms. Since the Laplace transform is one-to-one, then we obtain (3.3).
Remark 2.19. In the proof of uniqueness, we may only require that 〈µ0,my

m〉 < +∞ for
every y ∈ [0, 1). However, the same kind of computation as in Lemma 2.18 shows that if
this the case, but 〈µ0,m ∧ 1〉 = +∞, then

∫ t
0 M

2
s ds = +∞ for all t > 0, in contradiction

with Definition 2.1 of a solution.

3 Flory’s equation

3.1 Introduction and results

We will now consider the modified version of Smoluchowski’s equation, also known as
Flory’s equation, with a multiplicative kernel.

Definition 3.1. Let µ0 ∈M+
c . We say that a family (µt)t≥0 ⊂M+

c solves Flory’s equation
(3.3) if

• for every t > 0,
∫ t

0〈µs(dm),m〉2 ds < +∞,

• for all φ ∈ Cc(R+) and t > 0

〈µt, φ〉 = 〈µ0, φ〉+ 1
2

∫ t

0
〈µs(dm)µs(dm′),mm′∆φ(m,m′)〉 ds

−
∫ t

0
〈µs, φ〉〈µ0(dm)− µs(dm),m〉 ds.

(3.27)

In equation (3.27), the mass that vanishes in the gel interacts with the other clusters.
It is a modified Smoluchowski’s equation, where a term has been added, representing the
interaction of the clusters of mass m with the gel, whose mass is

〈µ0 − µs,m〉

i.e. precisely the missing mass of the system. Notice that in this case the equation makes
sense only if 〈µ0,m〉 < +∞.

The mass is expected to decrease faster in this case than for (3.3). This is actually
true, as we can see in the following result. We take here as initial condition a non-null
measure µ0 ∈M+

c such that 〈µ0,m〉 < +∞, and define Tgel ∈ [0,+∞) as in Definition 2.2.
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Theorem 3.2. Flory’s equation (3.27) has a unique solution (µt) on R+. It has the
following properties.

1. The mass is given by Mt = g0(lt), where lt = 1 for t ≤ Tgel and, for t > Tgel, lt is
uniquely defined by

lt = e−t(M0−g0(lt)), lt ∈ [0, 1).

In particular, t 7→ Mt is continuous on [0,+∞), constant on [0, Tgel], strictly de-
creasing on [Tgel,+∞) and analytic on R+\{Tgel}.

2. The function φt(x) = xet(M0−g0(x)) has a right inverse ht : [0, 1] → [0, lt]. The
generating function gt(x) = 〈µt,mxm〉 is given for t ≥ 0 by

gt(x) = g0(ht(x)). (3.28)

3. Let m0 = inf supp µ0 ≥ 0. Then, when t→ +∞,

Mte
m0t → m0µ0({m0})

and for every ε > 0
Mte

(m0+ε)t → +∞.

4. The second moment 〈µt,m2〉 is finite on R+\{Tgel} and infinite at Tgel.

Remark 3.3. • Norris [46, Thm 2.8] has a proof of global uniqueness of Flory’s equation
(3.27) for slightly less general initial conditions (µ0 such that 〈µ0, 1 + m〉 < +∞),
but for a much more general model.

• When m0 > 0, it was already observed (Proposition 5.3 in [14]) that the mass decays
(at least) exponentially fast (see also [12, 53, 59]).

• The mass in Flory’s equation may decrease slower if inf supp µ0 = 0. For instance,
if µ0(dm) = e−mdm, then Mt ∼ t−2.

Corollary 3.4. Let µ0 ∈ M+
c such that 〈µ0,m〉 < +∞ and let (µSt )t≥0 and (µFt )t≥0 the

solutions of (3.3), respectively, (3.27). Then

• µSt ≡ µFt for all t ≤ Tgel := 1/〈µ0,m
2〉;

• 〈µFt ,m〉 < 〈µSt ,m〉 for all t > Tgel.

As anticipated, the mass decreases faster in Flory’s case than for Smoluchowski’s
equation. In particular, in Flory’s case 〈µt,m2〉 becomes finite immediately after gela-
tion, the mass remaining however continuous (we can think that the big clusters, which
have the biggest influence on this second moment, disappear into the gel). Moreover, if
inf supp µ0 > 0 then the mass decays exponentially fast, which is to be compared with
the slower decrease in 1/t in Smoluchowski’s equation.

3.2 Proof of Theorem 3.2

The proof is very similar to (and actually easier than) that of Theorem 2.3.

1. Arguing as in the proof of Lemma 2.5, we obtain easily that (Mt)t≥0 is monotone
non-increasing and right-continuous. As in Lemma 2.6, if 〈µ0,m

2〉 < +∞, then
t 7→ 〈µt,m2〉 is bounded on some interval [0, T0] and Mt = M0 for t ∈ [0, T0].
Therefore (µt) is a solution of Smoluchowski’s equation (3.3) on [0, T0].
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2. Consider initial concentrations µ0 as in the statement, a solution (µt)t≥0 to Flory’s
equation and gt(x), x ∈ [0, 1], generating function of mµt(dm). Then gt solves the
PDE

∂gt
∂t

= x(gt −M0)∂gt
∂x

, ∀ t > 0, x ∈ [0, 1], (3.29)

the same as the one obtained for Smoluchowski’s equation before gelation. It may
be solved using the method of characteristics. Indeed, the mapping

φt(x) = xet(M0−g0(x)) = x+
∫ t

0
(M0 − g0(x))φs(x) ds, (3.30)

has the following properties.

(d1) φt(0) = 0, φt(1) = 1.
(d2) For all t ≥ 0, φ′t(x) = et(M0−g0(x))(1− txg′0(x)).
(d3) For t ≤ Tgel, φt(·) is increasing; therefore, φt(x) ∈ [0, 1] for all x ∈ [0, 1] and

φt(x) = 1 if and only if x = 1.
(d4) For t > Tgel, φt(·) is increasing on [0,mt] and decreasing on [mt, 1], where mt

is the unique x ∈ (0, 1) such that φ′t(x) = 0, i.e. such that txg′0(x) = 1.
(d5) For t > Tgel, φt(mt) > 1, since φt(1) = 1 and φ′t(1) < 0. Therefore there is a

unique lt ∈ (0,mt) such that φt(lt) = 1.
(d6) For t > Tgel, φ′t(lt) 6= 0, since lt < mt.

Figure 3.2: φt before and after gelation.

Setting lt := 1 for t ≤ Tgel, φt is thus a continuous bijection from [0, lt] to [0, 1],
with continuous inverse function ht : [0, 1] 7→ [0, lt]. By using (3.29) and (3.30)
and arguing as in part (i) and (ii) of the proof of Lemma 2.11, we can see that the
function ut(x) := gt(φt(x)) − g0(x) satisfies ut(x) = u0(x) = 0 for all t ≥ 0 and
x ∈ [0, lt]. Therefore the only solution of the PDE (3.29) is given by

gt(x) = g0(ht(x)), t ≥ 0, x ∈ [0, 1]. (3.31)

Flory’s equation has thus a unique solution on R+, and its generating function is gt.

3. We have seen in (d5) above that, for t > Tgel, there is a unique lt ∈ [0, 1) such that
φt(lt) = 1. The relation φt(lt) = 1 with lt ∈ [0, 1) is equivalent to lt = e−t(M0−g0(lt))
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with lt ∈ [0, 1). This relation implies that t 7→ lt is analytic for t > Tgel. A
differentiation shows that

dlt
dt

= −(M0 − g0(lt))lt
1− tg′0(lt)lt

< 0, t > Tgel,

since g′0(lt)lt < g′0(mt)mt = 1/t and g0(lt) < g0(1) = M0. Let ` be the limit of lt as
t ↓ Tgel: then we obtain ` = e−Tgel(M0−g0(`)), i.e. φTgel(`) = 1. By (d3) above, this is
equivalent to ` = 1.

4. Since Mt = gt(1) = g0(ht(1)) = g0(lt), the properties of t 7→Mt = g0(lt) follow from
those of t 7→ lt. Recall now that φt(lt) = 1, that is

log(lt) = t(g0(lt)− 1). (3.32)

If the limit l of lt as t→ +∞ were nonzero, then passing to the limit in this equality
would give log(l) = −∞. So l = 0 and

log lt ∼ −t. (3.33)

• Assume m > 0. Now, obviously g0(x) ≤ xm, so

log(tg0(lt)) = log lt + log g0(lt) ≤ log t+m log lt → −∞.

Hence tg0(lt)→ 0 and (3.32) yields log lt + t→ 0. Hence lmt ∼ e−mt. Finally

lim
t→+∞

Mte
mt = lim

t→+∞

g0(lt)
lmt

= mµ0({m})

since by dominated convergence, g0(x)x−m → mµ0({m}) when x → 0. Now,
by monotone convergence, if m′ > m, then g0(x)x−m′ → +∞ when x tends to
0, whence

lim
t→+∞

Mte
m′t = lim

t→+∞

g0(lt)
lm
′

t

= +∞.

• Assume now m = 0 and let ε > 0. By monotone convergence g0(x)x−ε → +∞
as x ↓ 0, so using (3.33) we see that g(lt)e−εt → +∞ as t ↑ +∞, which is the
desired result.

5. Finally, (3.31) gives for x < 1 and t > Tgel

g′t(x) = g′0(ht(x))h′t(x) = g′0(ht(x))
φ′t(ht(x)) .

When x ↑ 1, ht(x) ↑ lt < 1, and φ′t(ht(x))→ φ′t(lt) 6= 0 by (d6) above. So 〈µt,m2〉 =
g′t(1) < +∞.

6. Existence of a solution of (3.27) follows arguing as in Section 2.6.
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3.3 Proof of Corollary 3.4

For all t ≤ Tgel, 〈µFt ,m〉 = 〈µF0 ,m〉 and therefore µFt solves (3.3), so that by uniqueness of
Smoluchowski’s equation we have that µSt = µFt . For t > Tgel we have that 〈µFt ,m〉 = g0(lt)
while 〈µSt ,m〉 = g0(`t), where lt and `t are defined respectively by

lt = e−t(M0−g0(lt)), lt ∈ [0, 1)

and
`tg
′
0(`t) = 1

t
.

In points (d4) and (d5) of the proof of Theorem 3.2, we have shown that lt < mt where
tmtg

′
0(mt) = 1, so that mt = `t < lt. Hence 〈µFt ,m〉 = g0(`t) < g0(lt) = 〈µSt ,m〉.

4 The model with limited aggregations

We now turn to our main interest, namely Equation (3.2). We apply the same techniques
as above in a slightly more complicated setting. After giving all details in Smoluchowski’s
case, we will give a shorter proof and focus on the differences with the proof of Theorem
2.3. As above, we can transform the system (3.2) into a non-local PDE problem, which
we are able to solve, thus obtaining existence and uniqueness to (3.2). More precisely, we
consider the following system.

Definition 4.1. Let c0(a,m) ≥ 0, a ∈ N, m ∈ N∗. We say that a family (ct(a,m)), t ≥ 0,
a ∈ N, m ∈ N∗, is a solution of Smoluchowski’s equation (3.34) if

• for every t > 0,
∫ t

0〈cs, a〉2 ds < +∞,

• for all a ∈ N, m ∈ N∗ and t > 0,

ct(a,m) = c0(a,m)+

+
∫ t

0

1
2

a+1∑
a′=1

m−1∑
m′=1

a′(a+ 2− a′)cs(a′,m′)cs(a+ 2− a′,m−m′) ds

−
∫ t

0

∑
a′≥1

∑
m′≥1

aa′cs(a,m)cs(a′,m′) ds.

(3.34)

Because of the interpretation of a as a variable counting the number of arms a cluster
possesses, it is more natural to state (3.34) in the discrete setting, as in [3]. In particular,
since at each coagulation two arms are removed from the system, a non-integer initial
number of arms would lead to an ill-defined dynamics. One could however with no difficulty
consider an initial distribution of masses on (0,+∞).

As usual, we define for c, f : N× N∗ → R+,

〈c, f〉 =
∑

(a,m)∈N×N∗
c(a,m)f(a,m)

writing a for the function (a,m) 7→ a, m for (a,m) 7→ m and so on.
It is easy to see that (ct) is a solution to this equation if and only if the function

kt(x, y) := 〈ct, axa−1ym〉 =
+∞∑
a=1

+∞∑
m=1

a ct(a,m)xa−1 ym, (3.35)
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defined for t ≥ 0, y ∈ [0, 1] and x ∈ [0, 1), satisfies kt(x, y) = k0(x, y) +
∫ t

0

[
(ks(x, y)− xAs)

∂ks
∂x

(x, y)−Asks(x, y)
]

ds,
At := kt(1, 1) = 〈ct, a〉.

(3.36)

We may solve this PDE with the same techniques as above and obtain the following
result. We consider below initial concentrations c0(a,m) ≥ 0, a ∈ N, m ∈ N∗ such that
〈c0, 1〉 < +∞, and we may define a similar but slightly more general gelation time as in
[3].

Definition 4.2. Let A0 := 〈c0, a〉 ∈ (0,+∞] and K := 〈c0, a(a − 1)〉 ∈ [0,+∞]. Then
K = +∞ whenever A0 = +∞, and we may let

Tgel =


1

K−A0
if A0 < K < +∞

0 if K = +∞
+∞ if K ≤ A0 < +∞.

(3.37)

We can then state our main result.

Theorem 4.3. Equation (3.34) has a unique solution (ct) defined on R+. When Tgel <
+∞, this solution enjoys the following properties.

1. The number of arms At := 〈ct, a〉 is continuous, strictly decreasing, and, for all
t > 0,

At ≤
A0

1 + tA0
if A0 < +∞, At ≤

1
t

if A0 = +∞. (3.38)

If we set
αt = exp

(∫ t

0
As ds

)
,

then αt is given by
αt = 1 +A0t for t < Tgel

and, for t ≥ Tgel,

αt =
{

Γ−1(1 +A0 Tgel + t− Tgel) if A0 < +∞
Γ−1(1 + t) if A0 = +∞

(3.39)

where

Γ(x) = 1 +A0Tgel +
∫ x

1+A0 Tgel

dr

k0(H(1/r), 1) , x ≥ 1 +A0 Tgel,

and H : [G(0), G(1))→ [0, 1) is the right-inverse of the increasing function

G(x) := x− k0(x, 1)
k′0(x, 1) , x ∈ [0, 1). (3.40)

2. Let
βt =

∫ t

0

1
α2
s

ds

and consider

φt(x, y) := αt(x− βtk0(x, y)), t ≥ 0, x, y ∈ [0, 1].

Then
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• φt(·, 1) attains its maximum at a point `t such that φt(`t, 1) = 1. For t ≤ Tgel,
`t = 1, and for t > Tgel, 0 < `t < 1 and `t is given by

`t = H

( 1
αt

)
. (3.41)

• For every y ∈ [0, 1], φt(·, y) has a right inverse ht(·, y) : [0, 1] 7→ [0, 1].

3. The generating function kt(x, y) = 〈c0, ax
a−1ym〉 is given by

kt(x, y) = 1
αt
k0(ht(x, y), y) (3.42)

for y ∈ [0, 1], x ∈ [0, 1].

4. In particular, for t > 0

At = k0(`t, 1)
1 +

∫ t
0 k0(`s, 1) ds

, αt = 1 +
∫ t

0
k0(`s, 1) ds. (3.43)

5. The second moment 〈ct, a2〉 is finite on [0, Tgel), infinite on [Tgel,+∞).

6. The mass 〈ct,m〉 is continuous. It is constant on [0, Tgel) and strictly decreasing on
[Tgel,+∞).

4.1 Proof

The only major difference with respect to the proof of Theorem 2.3 is the additional
variable y in the generating function kt(x, y). However, the variable y plays the role of a
parameter in the PDE (3.36), and this allows to adapt all above techniques.

Proof of Theorem 4.3. The case K ≤ A0 < +∞, for which Tgel = +∞ has already been
treated in [3, Thm. 2], so that we can restrict here to the cases where Tgel < +∞. When
Tgel > 0, Thm. 2 in [3] also shows that αt = 1+A0t on [0, Tgel) (this however also requires
that 〈ct, a2〉 be bounded in a neighborhood of 0: see point 3 of the proof of Lemma 2.11).

1. First, by setting ut(x, y) := αtkt(φt(x, y), y) − k0(x, y), we can see, arguing as in
points (i)-(ii) of the proof of Lemma 2.11, that for all y ∈ (0, 1] and t > 0 there
exists `0t (y) < `t(y) ∈ (0, 1] such that

αtkt(φt(x, y), y) = k0(x, y), ∀ t ≥ 0, y ∈ (0, 1], x ∈ [`0t (y), `t(y)] (3.44)

and φt(·, y) : [`0t (y), `t(y)] 7→ [0, 1] is a continuous bijection and has a continuous
right-inverse ht(·, y) : [0, 1] 7→ [`0t (y), `t(y)].

2. We denote for simplicity

kt(x) := kt(x, 1), φt(x) := φt(x, 1), t ≥ 0, x ∈ [0, 1].

For y = 1, we set `t(1) = `t, i.e.

1 = φt(`t) = αt(`t − βtk0(`t)), t ≥ 0.
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Figure 3.3: φt(·, 1) before and after gelation. The dotted lines represent what φt may look
like. The solid one is the actual φt.

Arguing as in points (iv)-(v) of the proof of Lemma 2.11, we can see that `t = 1 for
all t ≤ Tgel and `t < 1 for all t > Tgel. Moreover, t 7→ `t is continuous and monotone
non-increasing. Since φt is increasing on [0, `t], φ′t(`t) ≥ 0, i.e.

βt ≤
1

k′0(`t)
,

so that
1 = αt(`t − βtk0(`t)) ≥ αtG(`t), (3.45)

where we set G(x) := x− k0(x)
k′0(x) , x ∈ [0, 1). Notice that

G′(x) = 1− (k′0(x))2 − k0(x)k′′0(x)
(k′0(x))2 = k0(x)k′′0(x)

(k′0(x))2 > 0,

since k0 is strictly convex (there is no gelation whenever k′′0 ≡ 0). Moreover G(0) ≤ 0
and

G(1) = 1− A0
K

if A0 < +∞, G(1) = 1 if A0 = +∞.

Indeed, k′0(1) = K = 〈c0, a(a− 1)〉 and, if k0(1) = A0 = +∞, then

lim
x↑1

k0(x)
k′0(x) = 0

since, if lim infx↑1 k0(x)
k′0(x) > ε > 0, then k0(1) ≤ k0(1 − δ)eδ/ε < +∞, for some δ > 0,

contradicting k0(1) = +∞. In any case, G has an inverse H, and H(1/x) is defined
for x ∈ [1 +A0Tgel,+∞).

3. Computing (3.44) at (x, y) = (`t, 1) we obtain

k0(`t) = αtkt(1) = αtAt = d+αt
dt . (3.46)

Let us notice that

φt(x) = x+
∫ t

0

(
Asφs(x)− k0(x)

αs

)
ds.
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Then by (3.46), analogously to (3.21) above,

0 = dφt(`t) =
(
Atφt(`t)−

k0(`t)
αt

)
dt+ φ′t(`t) d`t = φ′t(`t) d`t.

In particular, for d`t-a.e. t, φ′t(`t) = 0, i.e. βt = 1/k′0(`t), and therefore

1 = αt(`t − βtk0(`t)) = αtG(`t), d`t − a.e. t.

Then, by (3.45), we can write (note that H is well-defined on the considered interval)

`t ≤ H
( 1
αt

)
, ∀ t > Tgel, `t = H

( 1
αt

)
, d`t − a.e. t.

Now, by (3.46), setting Λ : ]1 +A0Tgel,+∞[→ ]0, 1[, Λ(z) := k0
(
H
(

1
z

))
,

d+αt
dt ≤ Λ(αt), ∀ t > Tgel,

d+αt
dt = Λ(αt), d`t − a.e. t.

Since αt > 1 + A0Tgel for any t > Tgel, we obtain that k0(`t) ≤ Λ(αt) < 1 for all
t > Tgel. In particular, d`t is not identically equal to 0. Suppose that for some
t > Tgel we have φ′t(`t) > 0. We set

s := sup{r < t : φ′r(`r) = 0} = max{r < t : φ′r(`r) = 0}.

Then for all r ∈ ]s, t[ we must have φ′r(`r) > 0. Then for all r ∈ ]s, t[ we have `r = `s.
But, by definition of β,

βr > βs = 1
k′0(`s)

= 1
k′0(`r)

and this is a contradiction. Then
∂φt
∂x

(`t, 1) = 0 (3.47)

and for all t > Tgel, we have α̇t = Λ(αt) for all t > Tgel and the only solution of this
equation with αTgel = 1 +A0Tgel is given by (3.39).

4. In order to prove (3.43), let us note that by the preceding results

dαt
dt = αtAt = αtkt(1, 1) = k0(`t, 1),

and
At = d

dt logαt = d
dt log

(
1 +

∫ t

0
k0(`s, 1) ds

)
= k0(`t, 1)

1 +
∫ t

0 k0(`s, 1) ds
.

The rest of the proof follows the same line as that of Theorem 2.3.

4.2 Convergence of the concentrations

We can now see what happens for the concentrations when time tends to infinity. Let us
start by defining, for all t ≥ 0, x, y ∈ [0, 1], the generating function of ct,

gt(x, y) =
+∞∑
a=0

+∞∑
m=1

ct(a,m)xa ym, gt(y) := gt(0, y) =
+∞∑
m′=1

ct(0,m)ym. (3.48)

In particular, kt = ∂gt
∂x

, with kt defined in (3.35). Note also that kt does not involve
ct(0,m), while gt does.
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Proposition 4.4. When t→ +∞, there exists limiting concentrations c∞(m) such that

ct(a,m)→ c∞(m)1{a=0}

in `1(N×N∗). Moreover, the generating function g∞(y) of (c∞(m)) is given, for y ∈ [0, 1),
by

g∞(y) = lim
t→+∞

gt(y) =
∫ y

0

∂g0
∂y

(h∞(0, y′), y′) dy′ (3.49)

where
k0(h∞(y), y) = 1

β∞
h∞(y), β∞ = 1

k′0(H(0)) ∈ (0,+∞],

and H is defined in Theorem 4.3.

Proof. Obviously, by (3.38), At → 0 as t → +∞, so that the first claim follows. For the
same reason, the formula

ct(0,m) = c0(0,m) + 1
2

∫ t

0

m−1∑
m′=1

cs(1,m′)cs(1,m−m′) ds

readily shows that ct(0,m) converges in `1(N∗) to some c∞(0,m). In particular

gt(y) =
+∞∑
m′=1

ct(0,m)ym →
+∞∑
m′=1

c∞(0,m)ym := g∞(y) (3.50)

for y ∈ [0, 1]. By differentiating gt(φt(x, y)) with respect to x, and using (3.42), we now
see that

gt(y) =
∫ y

0

∂g0
∂y

(ht(0, y′), y′) dy′. (3.51)

Since ht(·, y) is the right-inverse of φt(·, y), then ht(y) := ht(0, y) solves

k0(ht(y), y) = 1
βt
ht(y). (3.52)

Note that by definition, ht(y) ≤ `t(y), and since φt is a decreasing function of y, then
`t(y) ≤ `t, so

ht(y) ≤ `t. (3.53)
Let us show that βt has a limit when t→ +∞. First (3.39) shows that αt → +∞, hence,
by (3.41), `t → `∞ = H(0). Now, (3.47) gives βt = 1/k′0(`t), so βt tends to

β∞ = 1
k′0(H(0)) = H(0)

k0(H(0)) . (3.54)

Fix y ∈ [0, 1), and let us find the limit of ht(y). Equations (3.52) and (3.53) show that
every limit point h∞(y) of ht(y) solves the equation

k0(h∞(y), y) = 1
β∞

h∞(y) (3.55)

with h∞(y) ≤ `∞. But since `∞ = H(0) = k0(`∞)/k′0(`∞), then

k0(`∞, y) < k0(`∞) = `∞k
′
0(`∞) = 1

β∞
`∞.

Since k0(·, y) is convex, then this readily shows that Equation (3.55) has at most one
solution in [0, `∞). Hence ht(y) is bounded and has a unique limit point, so it converges
to the unique h∞(y) such that (3.55) holds.
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5 The modified version

Let us finally consider Flory’s version of the limited aggregations model. As in the case
of Flory’s equation (3.27), we can consider only initial concentrations c0 such that A0 =
〈c0, a〉 < +∞. Then, the equation we are interested in is

d
dtct(a,m) = 1

2

a+1∑
a′=1

m−1∑
m′=1

a′(a+ 2− a′)ct(a′,m′)ct(a+ 2− a′,m−m′)

−
∑
a′≥1

∑
m′≥1

aa′ct(a,m)ct(a′,m′)

−

 A0
1 + tA0

−
∑

a′,m′≥1
a′ct(a′,m′)

 act(a,m).

(3.56)

This is Flory’s version of Bertoin’s equation with limited aggregations. Indeed, as for the
standard Flory equation (3.27), an extra term is added to (3.34) accounting for interactions
between the gel and the clusters in solution. Note indeed that

A0
1 + tA0

−
∑

a′,m′≥1
a′ct(a′,m′)

is the “missing” number of arms in solution, in that if no clusters fall into the gel, then
At = A0/(1 + tA0).

We consider here initial concentrations c0(a,m) ≥ 0, a ∈ N, m ∈ N∗ such that 〈c0, a〉 ∈
(0,+∞), and define the gelation time Tgel as in Definition 3.37. With the same techniques
as above, we can prove the following result.

Theorem 5.1. Equation (3.56) has a unique solution (ct) defined on R+. When Tgel <
+∞, this solution enjoys the following properties.

1. The number of arms At = 〈ct, a〉 is given for t ≥ 0 by

At = 1
1 + tA0

k0(lt) (3.57)

where lt = 1 for t ≤ Tgel and, for t > Tgel, lt is uniquely defined by

lt = t

1 + tA0
k0(lt), lt ∈ [0, 1).

Therefore t 7→ At is continuous and strictly decreasing on [0,+∞) and analytic on
R+\{Tgel}.

2. The function φt(x, y)) = (1 + tA0)x − tk0(x, y) has, for every y ∈ [0, 1], a right-
inverse ht(·, y) : [0, 1] → [0, lt]. The generating function kt(x, y) = 〈ct, axa−1ym〉
defined in (3.35) is given for t ≥ 0 by

kt(x, y) = 1
1 + tA0

k0(ht(x, y), y). (3.58)

3. The second moment 〈ct, a2〉 is finite on R+\{Tgel} and infinite at Tgel.

4. The mass 〈ct,m〉 is continuous. It is constant on [0, Tgel] and strictly decreasing on
[Tgel,+∞).
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Proof. The proof follows the same line of reasoning as the one of Theorem 3.2. First, for
every y ∈ [0, 1], φt(·, y), as defined in the statement, has the following properties:
(i) φt(0, y) ≤ 0, φt(1, y) ≥ φt(1, 1) = 1.

(ii) For t ≤ Tgel, φt(·, y) is increasing, and in particular, there are unique 0 ≤ l0t (y) <
lt(y) ≤ 1 such that φt(l0t (y), y) = 0 and φt(lt(y), y) = 1.

(iii) For t > Tgel, φt(·, y) is increasing then decreasing, and in particular, there are unique
0 ≤ l0t (y) < lt(y) < 1 such that φt(l0t (y), y) = 0 and φt(lt(y), y) = 1.

Figure 3.4: φt(·, 1) before and after gelation.

In any case, it is easy to check that for x ∈ [l0t (y), lt(y)],

exp
(∫ t

0
As ds

)
kt(φt(x, y), y) = k0(x, y)

where At is defined by (3.57). Then, the properties above show that φt(·, y) has a right
inverse ht defined on [0, 1], and compounding by ht in the previous equation shows that
(3.58) holds. The other properties then follow easily.

6 Limiting concentrations

We compute here some explicit formulas for the concentrations and their limit for the two
models above. In the standard Smoluchowski and Flory cases, clusters keep coagulating,
and they all eventually disappear into the gel: ct(m) → 0 for every m ≥ 1. When the
aggregations are limited, there may remain some clusters in the system, since whenever
a cluster with no arms is created, it becomes inert, and so it will remain in the medium
forever. In the following, we consider monodisperse initial conditions, i.e. c0(a,m) =
µ(a)1{m=1} for a measure µ on N. We also denote

ν(m) = (m+ 1)µ(m+ 1).

In [3], it is assumed that ν is a probability measure, what we do not require. The results
of [3] can hence be recovered by taking A0 = 1 below. Now, note the two following facts.
• Equations (3.38) and (3.57) readily show that

c∞(a,m) := lim
t→+∞

ct(a,m) = 0, a ≥ 1, (3.59)

that is, only clusters with no arms remain in the medium (else, a coagulation “should”
occur).



88 Chapter 3. Post-gelation uniqueness of coagulation equations

• There is an arbitrary concentration of particles with no arms at time 0, and they
are the only clusters with no arms and mass 1 which will still be in the medium in
the final state. Hence, the limit concentrations c∞(0, 1) = c0(0, 1) have no physical
meaning. We will thus only consider c∞(0,m) for m ≥ 2.

Note now that if at time 0, each particle has zero or more than two arms, then obviously,
this property still holds for any positive time. Rigorously, this is easy to check with the
representation formula (3.42) or (3.58). Then, because of (3.59),

c∞(m) = 0

for each m ≥ 2. We thus rule out this trivial case by assuming that

µ(1) > 0. (3.60)

This is actually a technical assumption which is needed to apply Lagrange’s inversion
formula in the proof of the following corollaries.

6.1 Modified model

Corollary 6.1. Let ct(a,m) be the solution to Flory’s equation with limited aggregations
(3.56) and with initial conditions c0(a,m) = µ(a)1{m=1} with µ(1) > 0.

• For all t ≥ 0, m ≥ 2, a ≥ 0,

ct(a,m) = (a+m− 2)!
a!m!

tm−1

(1 + tA0)a+m−1 ν
∗m(a+m− 2).

• In particular, there are limiting concentrations c∞(a,m) = c∞(m)1{a=0} with

c∞(m) = 1
m(m− 1)ν

∗m(m− 2). (3.61)

Proof. With the notation of Theorem 5.1, we have

(1 + tA0)ht(x, y)− tyk0(ht(x, y)) = x, kt(x, y) = 1
1 + tA0

yk0(ht(x, y)).

Up to some obvious changes (just replace 1+t by 1+tA0), these are precisely the equations
solved in Section 3.2 of [3] under the assumption that µ(1) > 0. Theorem 2 and Corollary
2 therein hence give the desired result (with only 1 + t replaced by 1 + tA0).

If A0 = 1, what we may always assume up to a time-change, then

c∞(0,m) = 1
m
〈mu, 1〉P(T (µ0, ν) = m),

where µ0 = µ/〈µ, 1〉, and T (µ0, ν) is the size of a Galton-Watson GWµ0,ν starting from an
ancestor with reproduction law µ0, and such that every other individual has reproduction
law ν. This Galton-Watson process is (sub)critical when K ≤ 1 (i.e. there is no gelation),
and supercritical when K > 1. Similarly to the explication given in Section 3.3.2, this
may be interpreted by saying that a typical finite cluster in solution is a Galton-Watson
tree GWµ0,ν .
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Denote now by pν its extinction probability, i.e. the smallest root of k0(x) = x, so
pν = 1 when K ≤ 1 and pν < 1 when K > 1. Let us compute the mass at infinity, as in
[3], by writing

M∞ :=
∑
m≥1

mc∞(m) = c∞(1) +
∑
m≥2

1
m− 1ν

∗m(m− 2)

= c∞(1) +
∑
a≥0

ν(a)
∑

m≥a+2

1
m− 1ν

∗m−1(m− 2− a)

= c∞(1) +
∑
a≥0

ν(a)
∑

n≥a+1

1
n
ν∗n(n− 1− a).

Now, the Lagrange inversion formula [58] shows that

a+ 1
n

ν∗n(n− 1− a)

is precisely the coefficient of xn in the analytic expansion of φ(x) around 0, where φ is the
unique solution to φ(x) = xk(φ(x)). Hence∑

n≥a+1

1
n
ν∗n(n− 1− a) = pν ,

where pν is defined above. Note also that c∞(1) = µ(0), so finally

M∞ = c∞(1) +
∑
a≥0

ν(a) 1
a+ 1 p

a+1
ν =

∑
a≥0

µ(a) paν . (3.62)

The mass at time 0 is M0 =
∑
µ(a), so when there is no gelation, pν = 1 and no mass is

lost in the gel. When there is gelation, pν < 1 and the mass M0 −M∞ > 0 is lost in the
gel.

6.2 Non-modified model

Corollary 6.2. Let ct(a,m) be the solution to Smoluchowski’s equation with arms (3.34)
and with initial conditions c0(a,m) = µ(a)1{m=1} with µ(1) > 0.

• For all t ≥ 0, m ≥ 2, a ≥ 0,

ct(a,m) = (a+m− 2)!
a!m!

βm−1
t

αat
ν∗m(a+m− 2)

where αt and βt are defined in Theorem 4.3.

• In particular, there are limiting concentrations c∞(a,m) = c∞(m)1{a=0} with

c∞(m) = 1
m(m− 1)β

m−1
∞ ν∗m(m− 2) (3.63)

where β∞ is defined by
β∞ = 1

k′0(η) = η

k0(η)
and η is the unique solution to

k′0(η) = k0(η)/η.

Moreover, β∞ = 1 when there is no gelation, and β∞ > 1 otherwise.
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Proof. As for Corollary 6.1, the proof of the formula for ct(a,m) is the same as in [3,
Section 3.2], just replacing 1 + tA0 by αt and t by αtβt. So we just have to find the limit
of βt. First (3.39) shows that αt → +∞, hence, by (3.41), `t → `∞ = H(0). Now, (3.47)
gives βt = 1/k′0(`t), so βt tends to

β∞ = 1
k′0(H(0))

where by definition η := H(0) is the unique solution to k′0(η) = k0(η)/η. Finally, when
there is gelation, αt < 1 + t after gelation because of (3.39), so by definition of βt, β∞ >
1.

By a similar computation as above, we may also compute the mass at infinity in this
case and get

M∞ =
∑
a≥0

µ(a) ηa

where η is defined in the corollary. Note that η is the slope of the straight line passing by
0 and tangent to the graph of k, so η > pν . In particular, less mass is lost than in Flory’s
case.

A final remark is that despite the striking resemblance between Formulas (3.63) and
(3.61), the meaning of the factor β∞ is unclear. A probabilistic interpretation explaining
its appearance is given in the next chapter.
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Self-organized criticality in a
microscopic model for
Smoluchowski’s equation

The material of this chapter is a joint work [41] with Mathieu Merle to be submitted soon.
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1 Introduction

1.1 Smoluchowski’s equation

The goal of this chapter is to study a discrete model for Smoluchowski’s equation with
limited aggregations (1.3). Let us, to begin with, recall some facts from the introduction
of this thesis and from the previous chapter.

The standard Smoluchowski equation was introduced in 1916 in [57], to model pairwise
coalescing particles. As time passes, clusters of particles are created. We assume that each
particle has unit mass, so a cluster has mass m, the number of particles it contains. The
coagulation phenomenon is characterized by a symmetric kernel κ(m,m′), modeling the
“rate” at which two clusters of mass m and m′ coalesce. When they do, a cluster of mass
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m+m′ is formed. For the multiplicative kernel, the evolution of the concentration ct(m)
of clusters of mass m at time t is given by Smoluchowski’s equation

d
dtct(m) = 1

2

m−1∑
m′=1

mm′ ct(m′) ct(m−m′)−
∑
m′≥1

mm′ct(m)ct(m′), (4.1)

for m ∈ N∗.
For that the multiplicative kernel, two facts have been known for a long time [39],

when we start from monodisperse initial conditions ct(m) = 1{m=1}. First, there is a
unique solution on [0, 1], and it is mass-conservative, in that

∑
mct(m) remains constant.

Secondly, if there is actually a solution on a larger interval, then the mass has to decrease
after time 1. This phenomenon is called gelation. Physically, it is interpreted as the
appearance of a giant cluster, containing a positive fraction of the particles. Actually,
there may just as well be several giant clusters, though we talk about “the” giant cluster
by abuse of language. In general, this giant particle is called the gel, and the particles not
in the gel are in solution.

A proof of existence and uniqueness to Smoluchowski’s equation with a multiplicative
kernel and general initial conditions is given in the previous chapter. We will provide more
details below for the model with limited aggregations we are interested in.

1.2 The model with limited aggregations

To avoid that a particle bonds to infinitely many other particles, one may initially give
each particle a certain number of arms. These arms are used to create the bonds, in
that two arms are used to create a link and cannot be reused again. Then, a cluster is
characterized by its mass m and its number of available arms a, i.e. the total number of
non-used arms of the particles it is formed of. This model has first been considered by
Bertoin in [3], and the evolution of concentration ct(a,m) of (a,m)-clusters, i.e. clusters
with a (available) arms and mass m is given by

d
dtct(a,m) = 1

2

a+1∑
a′=1

m−1∑
m′=1

a′(a+ 2− a′)ct(a′,m′)ct(a+ 2− a′,m−m′)

−
∑
a′≥1

∑
m′≥1

aa′ct(a,m)ct(a′,m′).
(4.2)

The first term on the RHS accounts for the appearance of (a,m)-clusters, by coagulation
of (a′,m′)-clusters with (a+2−a′,m−m′)-clusters. The second term on the RHS accounts
for the disappearance of such clusters, by coagulation with any other cluster.

In [3], Bertoin considers initial conditions c0(a,m) = µ(a)1{m=1} for a probability
µ with a second moment (beware of a slight change of notations with [3] and the first
chapters, more adapted to our case). We define ν the size-biased shifted-by-one, probability
deduced from µ, or just size-bias of µ, given for k ∈ N by

ν(k) = (k + 1)µ(k + 1)∑
i≥1 iµ(i) .

Let also A =
∑
k≥1 kµ(k), K =

∑
k≥1 k(k − 1)µ(k) and define

T 0
gel =

+∞ if K ≤ A
1

K −A
if K > A.

(4.3)
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Bertoin then shows that (4.2) has a unique solution up to time T 0
gel, interpreted as the

gelation time. Moreover, when T 0
gel = +∞, or equivalently when ν has mean at most 1,

there are limiting concentrations c∞(a,m) = 1{a=0}c∞(m), where

c∞(m) = 1
m(m− 1)ν

∗m(m− 2)

and which can be interpreted in terms of the total progeny of some Galton-Watson process.
A rigorous explanation of this relation is given in the subsequent paper [4]. We refer to
Section 3.3.2 of the introduction for an intuitive presentation of the result.

In the previous chapter, we showed that actually, for general initial conditions, Equa-
tion (4.2) has a unique solution on the whole of R+. For monodisperse initial conditions
c0(a,m) = µ(a)1{m=1}, the limiting concentrations can be computed. Assume to this end
that ν has mean greater than 1, i.e. that T 0

gel < +∞. Then, the equation

ηG′ν(η) = Gν(η), (4.4)

where Gν is the generating function of ν, has a unique solution.
Moreover, when t→ +∞,

ct(a,m)→ c∞(m)1{a=0}

in `1(N× N∗), where

c∞(m) = 1
m(m− 1)β

m−1ν∗m(m− 2), (4.5)

β is given by
β = η

Gν(η) = 1
G′ν(η) . (4.6)

The mass at infinity can also be computed and is provided by the formula

M∞ = Gµ(η). (4.7)

1.3 Microscopic model

This last result is actually the initial motivation for the present work. As in [4], we
wish to give a probabilistic interpretation for these concentrations. However, preliminary
precautions are to be taken. Let us indeed recall the issues raised when one studies
microscopic models for Smoluchowski’s equation (4.1) with the multiplicative kernel.

Informally, consider N particles, and let two clusters of mass m and m′ coagulate at
rate mm′. Then, it is well-known [27, 45] that, as N → +∞, there is a limiting process
which is deterministic and solves Smoluchowski’s equation, but only before the gelation
time. On R+, the Equation which is solved is actually Flory’s equation (see [17]), which
is quite natural since, in the discrete model, any cluster can interact with any other,
whatever their sizes are.

On the other hand, Smoluchowski’s equation only takes into account coagulation of
particles of finite size (informally, only finite values of m appear in the equation), or,
in other words, there is no interaction with the gel. An appropriate microscopic model
would then prevent “big” particles from interacting with the others. This idea has been
formalized by Fournier and Laurençot in [19]. In this paper, they allow only the particles
of size less than α(N) to coagulate, where 1 � α(N) � N , and show that the process
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converges (up to a subsequence) to a solution of Smoluchowski’s equation. That is the
idea we take over to build our microscopic model, see Section 2.1.

When particles have arms, we can as well consider microscopic evolutions with or
without interactions with the gel. The second will be called Smoluchowski’s evolution,
and that is the one we are interested in; the first will be called Flory’s evolution, which is
easier to study. It will be sometimes useful to compare the two models.

1.4 Brief description of results

In the present work, we aim at recovering Bertoin’s equation of coagulation with limited
aggregations in the supercritical regime, when particles in solution do not interact with
those in the gel, while keeping as much as possible track of the random graph structure.
This allows us to express limiting equations for the evolution of concentrations of particle
with a given number of already linked arms, to solve these equations and recover the
formula (4.5) for limiting distributions of [44]. We are also able to express the total
concentration of particles in solution at any time after gelation and in particular recover
(4.7).

The fact that we are able to track the evolution of the concentrations is due to a
remarkable (though not very surprising) feature of the asymptotics of our discrete model:
it exhibits self-organized criticality (SOC) after gelation. More precisely, the limiting
distribution of already linked arms at any time t past gelation has a size-bias law with
mean 1.

It is worth noticing that the SOC here is really a microscopic phenomenon, in that it
concerns the law of the number of arms of the particles. In particular, it could not have
been deduced from the result of [44], since the distribution of already linked arms cannot
be recovered from the variables ct(a,m) of (4.2).

The phenomenon of SOC is well-known in the Physics literature, but is seldom proved
mathematically. It has however been observed in the beautiful paper [47] by Tóth and
Ráth. In this article, they study a model of fire on trees, where two phenomena compete
(growth of trees vs. fires) to reach criticality. The criticality is lost when one of the two
phenomena has a far bigger influence than the other: informally, either all trees burn, or
none. In our case, we also observe that criticality is attained because the connections of
arms compete with the falls into the gel.

1.5 Plan of the paper

In this paper, we shall first provide a rigorous presentation of the model we consider, as
well as the statement of the results. We also discuss them, explain the phenomenon of
post-gelation self-organized criticality (SOC), and show how our results relate to those
obtained in [44]. In particular, we provide an explanation of the limiting concentrations
in terms of Galton-Watson processes. The remaining sections are devoted to the proof
of these results. We first provide some preliminary lemmas and present useful techniques
we will use throughout the text, before turning to the core results of the paper: first, the
subcriticality, which enables us to show the tightness of various relevant quantities. It is
then an easy matter to show the actual SOC. The last difficult proposition we prove is
a result of asymptotic independence, stating that two subclusters connected to a particle
have essentially independent behaviors. All this allows us to write an equation for the
evolution of some relevant quantities, which, in the limit, turns out to be an easy PDE.
Solving it allows us to deduce an expression for various interesting quantities, and in
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particular, we obtain the uniqueness of the limit points, what ends our proof. Finally, so
as not to weigh down the proofs, several technical issues are deferred to the appendices.

2 Presentation of the model and of the results

2.1 Construction of the model

2.1.1 Assumptions

Let us, to begin with, introduce the assumptions we shall make. We start with N par-
ticles, denoted [N ] = {1, . . . , N}, respectively having a1 = a′σ(1), ..., an = a′σ(N) arms,
where a′1, ..., a′N are fixed (and depend on N) and σ is a uniformly chosen permutation
of {1, ..., N}, independent from the dynamic. We introduce σ only to make the particles
exchangeable; doing otherwise would make some results quite cumbersome to state1. We
write

µ(N) := 1
N

N∑
i=1

δa′i

the empirical measure of the number of arms. The ai arms of the i-th particle are denoted
(i, 1), . . . , (i, ai).

We also fix a probability measure µ 6= δ0 on N with a finite second moment. Here are
our two main assumptions on µ(N) and µ.

Assumption 2.1. The sequence (µ(N))N≥1 converges sharply to µ, i.e. (µ(N)) converges
weakly to µ and the second moment of µ(N) converges to the second moment of µ.

Assumption 2.2. The measure µ has three moments, i.e.

〈µ, k3〉 <∞.

We also fix a sequence α(N) ≥ 1, and our last assumption, is the following.

Assumption 2.3. The sequence α(N) has the property that

α(N)
N

−→
N→∞

0 and α(N)
N1/3 −→N→∞

+∞.

It is a stronger assumption than that of Fournier and Laurençot [19], viz. 1� α(N)�
N , and the reason for that choice will appear clearly when introducing Janson’s result,
Theorem 2.6.

2.1.2 Model

We may now introduce our model. It is defined by only two quantities, namely a family
{e(i,j), i, j ∈ N} of i.i.d. exponential random variables with parameter 1, and a sequence
(α(N))N≥1. The clock e(i,j) should be interpreted as the time when the j-th arm of the
i-th particle (if it exists) is activated, and α(N) as a threshold: clusters of size greater than
α(N) fall into the gel. Let us note that the exponential variables may or may not depend
on N , but this does not really matter since we are only interested in convergence in law.
Moreover, a coupling ensuring a stronger convergence seems quite hard to formulate.

1However, we will not reuse σ in the text. One should just remember that the particles are exchangeable
at time 0.
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At each time t ≥ 0, our model provides a configuration (i.e. a multigraph) Ct. We
say that a particle is in solution if its connected component has size less (or equal) than
α(N), else we say that it is in the gel. An arm is in solution or in the gel if the particle to
which it is attached is in solution or in the gel.

Now, when it exists, the jth arm of the ith particle is activated at time e(i,j). Hence,
at any time t, an arm will be said to be active if the corresponding clock has rung, and
available if it has not. Finally, an arm is said to be free if it is not bound.

We join pair of free arms of particles whose respective clocks ring consecutively when
they are both in solution. To be more precise, when it exists, the j-th arm of the i-th
particle is activated at time e(i,j).

• If i is in the gel at that time, or if i is still in solution and there is no other free
active arm in solution, nothing happens.

• If on the other hand, i is in solution and there is another free active in solution, say
(k, l), then the arms (i, j) and (k, l) get bound together. In the latter case, if the
newly formed cluster contains more than α(N) particles, it falls instantaneously into
the gel and will remain there forever. Otherwise it stays in solution.

Note also that we proceed in such a way that the process is càdlàg.
The graph structure is obvious: particles stand for vertices, and bounds between par-

ticles for edges. Hence, at a given time t > 0, two particles i, j are neighbors at time t if
at least one arm of i was paired with an arm of j before time t.

The major difficulty in dealing with this model is gelation: any cluster reaching size
greater than α(N) instantaneously falls into the gel2 and stops interacting with the other
clusters.
Remark 2.4. It is important to note that this model is only given by exponential clocks,
and that the state at a time t depends only on

• the activated arms;

• the order of these activations.

Moreover, conditionally on the activated arms, this order is uniform.
Thanks to this remark, we may present equivalent constructions of the model at a

fixed time t. First, activate each arm independently with probability 1 − e−t. We then
need to bind these arms, and to this end, we may

• either choose independently a uniform ordering of these arms, and bind them as in
the algorithm described above (the first and second in solution, the third and fourth
in solution, and so on);

• or choose a couple of free active arms in solution uniformly among all such couples
and bind them, then choose another couple of free active arms in solution uniformly,
and so on;

• or choose a free active arm uniformly in solution, another free active arm uniformly
in solution, and bind them; then choose a free active arm in solution and another
free active arm in solution, and so on.

In any case, we stop when all the active arms, except possibly the last one, are paired.
2This is just a physical metaphor: nothing actually happens to these clusters!
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2.2 Notation

2.2.1 General notations

The following notations and definitions will be used a lot throughout the text.

• The probabilities considered are always probabilities on N = {0, 1, 2, . . .}.

• For a probability π with positive and finite mean, its size-biased shifted-by-one
counterpart (or simply “its size-bias”) is denoted π̂, i.e., for every k ≥ 0,

π̂(k) = (k + 1)π(k + 1)∑
i≥1 iπ(i) ,

which is also a probability measure. If π = δ0, we let π̂ = δ0.

• For a nonnegative function f on N, we write

〈π, f〉 :=
∑
k≥0

π(k)f(k).

We will write k for the function k 7→ k, k2 for k 7→ k2, and so on; for instance 〈π, k〉
is the mean of π.

• We say that π is subcritical, critical or supercritical when 〈π̂, k〉 < 1, 〈π̂, k〉 = 1 or
〈π̂, k〉 > 1.

• A sequence of events (EN ) is said to hold with high probability, written w.h.p., if

lim
N→+∞

P(EN ) = 1.

• A configurationG is a multigraph, and for a vertex i, G(i) is its connected component,
or cluster, and |G(i)| its cardinality, or size.

• Recall also that we fixed a probability measure µ 6= δ0 on N with a finite second
moment, and let ν = µ̂. The mean of ν is denoted ζ := 〈ν, k〉 and we define the
gelation time as

Tgel = − log
(

1− 1
ζ

)
if ζ > 1, and +∞ else.

The following notations are less important and will be recalled when necessary. We
give them here anyhow so the reader can refer to this section if necessary.

• For ξ a probability on N× N, we let

ξ̂(k, l) = (k + 1)ξ(k + 1, l)∑
i,j≥1 iξ(i, j)

,

and ξ = δ(0,0) if ξ(i, j) = 0 for i ≥ 1.

• For a nonnegative function f on N2, we write

〈ξ, f〉 :=
∑
i,j≥0

ξ(i, j)f(i, j).

We will write i for the function (i, j) 7→ i, j for (i, j) 7→ j and so on; for instance
〈ξ, i〉 is the mean of the first marginal of ξ.



2. Presentation of the model and of the results 99

• The generating function of a probability π is denoted Gπ : x 7→ 〈π, xk〉.

• Finally, for p ∈ [0, 1], Bin(π, p) is the mixing of a binomial law and of π, in that

Bin(π, p)(k) =
∑
i≥k

(
i

k

)
π(i)pk(1− p)i−k, k ∈ N.

This law is obtained by taking a variable X with law π, and then by picking, condi-
tionally on X, a variable with law Bin(X, p). In our context, this can be interpreted as
follows: a particle has a number of arms given (asymptotically) by a law µ. At a time t,
each is activated independently with probability 1 − e−t. Then the number of activated
arms of this particle has law Bin(µ, 1− e−t).

2.2.2 Notions of convergence

In the whole text, convergences are understood as convergences in law.

• We denote M1 the space of probability measures on N, and it is endowed with the
weak topology3.

• We say that a sequence (π(N))N≥1 of probabilities on N converges sharply to a
probability π if π(N) converges to π weakly, and 〈π(N), k2〉 → 〈π, k2〉 < +∞.

• Similarly, a sequence (ξ(N)) of probabilities on N2 is said to converge sharply to
a probability ξ if ξ(N) converges to ξ weakly and 〈π(N), f〉 → 〈π, f〉 < +∞ for
f(i, j) = i2 and j2.

We will in the sequel consider random probability measures π, so for instance 〈π, k〉 is
a real random variable. In that case, we have similar definitions.

• We say that a sequence (π(N)) of random probabilities on N converges sharply to
a (random) probability π if π(N) converges to π in law in M1, and 〈π(N), k2〉 →
〈π, k2〉 < +∞ in law in R.

• The space of càdlàg mappings from R+ = [0,+∞) to a Polish space E is denoted
D(R+, E), and it is endowed with the Skorokhod topology.

• We say that a càdlàg M1-valued process (π(N)
t , t ≥ 0)N∈N converges sharply to

(πt, t ≥ 0) if (π(N)) converges in law to π in D(R+,M1) and 〈π(N), k2〉 → 〈π, k2〉 <
+∞ in law in D(R+,R+).

Finally, we will say that a sequence of probabilities, random probabilities or probability-
valued processes is sharply tight if it is tight and that the convergence of a subsequence
implies its sharp convergence.

3which is the topology of convergence in law. However, we shall speak of convergence in law only when
we refer to convergence of random elements.
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2.2.3 Characteristics of the model

Let us now introduce some quantities related to the model. Obviously, all quantities
depend on N (which we write as an exponent (N) or an index N), but we will omit it in
some notations.

As for the already defined notations, some will be used a lot in the text and we give
them here, others are more seldom used and will be recalled, though we give them here as
a memorandum.

• Recall that Ct is the configuration at time t, Ct(i) is the cluster of i and |Ct(i)| its
cardinality, or size.

• We write i t↔ j if i and j are linked at time t.

• We say that a cluster is giant if it is in the gel, i.e. if it has size greater than α(N).

• We let IS(t) denote the set of particles in solution at time t, IG(t) = [N ] \ IS(t) the
set of particles in the gel at time t.

The most important quantities are n(N)
t , π(N)

t and ρ(N)
t defined as follows.

• We denote Nt the cardinal of IS(t), that is the number of particles in solution, and

n
(N)
t = Nt/N

the concentration in solution.

• For t ≥ 0, i ∈ [N ], At(i) is the number of active arms of i and for k ∈ N, we let
Nt(k) = #{i ∈ IS(t), At(i) = k} denote the number of particles in solution which
have k activated arms at that time. Then the probability π

(N)
t is the empirical

distribution of already connected arms of particles in solution

π
(N)
t (k) := Nt(k)

Nt
.

• Its size-bias is denoted
ρ

(N)
t := π̂

(N)
t .

Let us now introduce less important quantities, though technically crucial.

• The N -th gelation time T (N)
gel is the first time at which a cluster falls into the gel:

T
(N)
gel = inf{t ≥ 0, ∃i ∈ [N ] |Ct(i)| > α(N)}.

• The number of available arms of i is denoted Bt(i) = ai −At(i).

• The empirical distribution of the activated and available arms of the particles at
time t is denoted ξ(N)

t , i.e.

ξ
(N)
t (k, l) = 1

Nt
#{i ∈ IS(t), At(i) = k,Bt(i) = l}.
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• For k ∈ N, the concentration of particles with k activated arms and in solution is
denoted

n(N)
t (k) = Nt(k)/N.

• In the same vein, we also introduce the concentration of particles with k active arms,
n in total, and in solution at time t:

p(N)
t (n, k) = 1

N
#{i ∈ IS(t), ai = n,At(i) = k}.

Note that the Greek lowercase letters denote probability measures, uppercase Latin
letters are integers, and bold letters are vectors (indexed by N or N × N), notations that
we try to maintain throughout the text.

The configuration of connected components of particles in solution at time t is closely
linked with configuration models having a total of vertices close to Nt and a distribu-
tion of degrees close to π(N)

t . Before stating our results, we recall a few facts about the
configuration model.

2.3 Configuration model with fixed sequence of degrees

We shall now recall some facts about the configuration model, which we already discussed
in the introduction of this thesis.

2.3.1 Definition

Let N ∈ N and DN := (d1, ..., dN ) ∈ NN be fixed. We also define

DN = 1
N

N∑
i=1

δdi

as the empirical measure of the degrees. To each vertex i we associate di half-edges (arms)
which we denote by (i, j), 1 ≤ j ≤ di. We define the configuration model with N vertices
and the fixed degrees DN as a uniformly chosen pairing amongst all possible pairings of
the {(i, j), 1 ≤ i ≤ N, 1 ≤ j ≤ di}, leaving possibly one edge unpaired when

∑N
i=1 di is

odd4.
For each half edge (i, j) paired with an half edge (k, l) we draw one edge between

vertex i and vertex k. The configuration which is obtained is a multigraph which we
denote CM(N,DN ) or also CM(N,DN ). Note that there may exist loops and multiple-
edges, and there is possibly one unpaired half-edge attached to one of the vertices, which
does not play any role in the cluster configuration. A good reference about random graphs
and the configuration model is van der Hofstad’s course [54].

2.3.2 Construction of the configuration model

There are multiple equivalent ways to construct a configuration model CM(N,DN ), and
it will be important in the sequel to understand them. Denote KN the total number of
arms.

4In the classical definitions of the configuration model, the choice is to either condition on
∑

di being
even, or to add an extra edge for the last vertex. Although these two alternate definitions may be nicer
when proving results on graphs, they are not well-suited for our model.
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• A first way is to choose a uniform random ordering of the arms, and to bind together
the (2i−1)-th and 2i-th arms, for all 1 ≤ i ≤ bKN/2c. To do so, one may for instance
set i.i.d. exponential clocks on the arms, what gives a natural ordering of them.

• Another way is to pick a vertex arbitrarily5. Then choose one of its arms, and bind
it with another one uniformly chosen among all available arms. Then, take any arm
of this newly-formed cluster, and bind it to another arm uniformly chosen among all
the available ones. Go on until no more arms are available in the cluster, then start
over with any other vertex. It is important to note that, at each step, the choice of
the first vertex or arm really is arbitrary, in that we may choose them according to
any random or deterministic rule.

2.3.3 Giant component

In this paragraph we suppose that the following (obviously very similar to Assumption
2.1) is in force.

Assumption 2.5. DN converges to µ sharply.

Under this assumption, the existence of a giant component (that is, a connected compo-
nent CN of size of order N , i.e. |CN | = Θ(N)) is, asymptotically as N →∞, equivalent to
ζ ′ = 〈µ̂, k〉 > 1 (see [42] or [26]). On the other hand, when ζ ′ < 1, Janson [25] established
a bound on the size of the largest connected component.

Theorem 2.6 (Janson [25]). Consider the random graph CM(N,DN ) with largest com-
ponent denoted by Cmax. Suppose that DN satisfies Assumption 2.5 and that

DN ([k,∞)) = O(k−γ),

uniformly in N and k ≥ 1, for some γ > 2. Then there exists a constant A such that,
w.h.p.,

|Cmax| ≤ AN1/γ .

As we will see further (Section 5.1), our assumption that µ possesses 3 moments ensures
that a limiting point πt of π(N)

t possesses as well 3 moments. The above result will thus
be very useful to ensure that while πt is subcritical, then asymptotically almost surely no
cluster falls into the gel, since we take α(N)� N1/3.

2.4 A modified Smoluchowski’s equation

We define here the modified Smoluchowski equation which will turn out to be the limit of
our model. Let us first introduce some notations. Define S = N×N∗. For p = (a,m), p′ =
(a′,m′) ∈ S, let p · p′ = aa′ and p ◦ p′ = (a+ a′ − 2,m+m′). We write p′ � p if a′ ≤ a+ 1
and m′ ≤ m− 1. If p � p′, we define p′\p = (a+ 2− a′,m−m′) ∈ S. We also define the
modified Smoluchowski equation,

ct(p) = c0(p)+
∫ t

0

1
〈cs, a〉

1
2
∑
p′�p

p′ · (p\p′)cs(p′)cs(p\p′)−
∑
p′∈S

p · p′cs(p)cs(p′)

 ds, (4.8)

5Actually, a slight issue arises when Kn is odd. For instance, say we always start with the particle
1. Then all of its arm will eventually be bound. However, a uniform pairing of the arms has a positive
probability to leave an arm of 1 unpaired. A way to solve this is to first remove an arm chosen uniformly at
random – which is the arm which would remain unpaired in a uniform pairing, and then start the process.
Obviously, when Kn is large, this issue becomes irrelevant, and we will ignore it most of the time.
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for p ∈ S. It obviously resembles Equation (4.2), and we will explicit the relation between
the two in Section 2.5.1. Let us now define what we call a solution to this equation.

Definition 2.7. We say that a family of nonnegative continuous functions (ct(p), p ∈ S)t≥0
is a solution to (4.8) if there is a time T ∈ [0,+∞] such that

• infs∈[0,t]〈cs, a〉 > 0 for all t < T and 〈ct, a〉 = 0 for t ≥ T ,

• sups∈[0,t]〈cs, a〉 < +∞ for all t > 0,

• (ct) verifies (4.8) on [0, T ).

The time T is just a technical device, and we will see below that either T = 0 and the
solution is trivial, or T = +∞.

The relation between these two equations is quite obvious when we think about mi-
croscopic models. The standard equation (4.2) is indeed obtained by setting exponential
clocks on pairs of arms, and this one is obtained, when, as in our model, we set exponential
clocks on arms. It should then be intuitively obvious that the solutions to these equations
are related only by a time-change, as Theorem 2.8 below shows.

2.5 Statement of results

2.5.1 Well-posedness of the modified Smoluchowski equation

Due to the similarity between Equations (4.2) and (4.8), using the techniques developed
in the previous chapter, there is no difficulty in checking that (4.8) has a unique solution
which is just a time-change of the solution to (4.2). Hence, we shall not prove this result.

For initial conditions (c0(p), p ∈ S) with 〈c0, a〉 > 0, we let

ζ ′ = 〈c0, a(a− 1)〉
〈c0, a〉

and
T ′gel = − ln

(
1− 1

ζ ′

)
if ζ ′ > 1, and +∞ else. Note that T ′gel = Tgel for monodisperse initial conditions c0(a,m) =
µ(a)1{m=1}. Then, we have the following result.

Theorem 2.8. For any initial conditions (c0) with 〈c0, a
2〉 < +∞, the modified Smolu-

chowski equation (4.8) has a unique solution c on R+. It enjoys the following properties.

1. The mass 〈ct,m〉 is continuous on R+, constant before time T ′gel, decreasing after-
wards. In other words, there is gelation at time T ′gel.

2. The total number of arms At = 〈ct, a〉 is continuous on R+, analytic on R+\{T ′gel},
and remains positive for all t ≥ 0 if A0 > 0.

3. If A0 > 0, the ODE s′(t) = As(t), s(0) = 0, has a unique solution on R+. This solu-
tion is a diffeomorphism of R+ and cs(t) is the solution to Smoluchowski’s equation
(4.2) with initial conditions (c0).

4. For b a solution to (4.2) and Bt = 〈bt, a〉 with B0 > 0, the ODE s′(t) = 1/Bs(t),
s(0) = 0, has a unique solution on R+. This solution is a diffeomorphism of R+

and bs(t) is the solution to the modified Smoluchowski’s equation (4.8) with initial
conditions (c0).
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5. The limiting concentrations c∞(p) := limt→+∞ ct(p) exist and are the same as for
Smoluchowski’s equation (4.2).

This result means that a solution to (4.8) is obtained just through a change of time of
a solution to (4.2). This change of time is a diffeomorphism of R+, and in particular, the
final states of both equations coincide. Hence, even though we were initially interested in
giving a microscopic model for (4.2), we shall rather do so for (4.8).

Finally, we recall that a representation formula for the solutions to (4.2) is given in the
previous chapter (see Theorem 4.3), which allow to compute various quantities concerning
(4.8). However, using the formulas of [44] and applying the time-change described above
leads to painful calculations. To obtain formulas for (4.8), it would actually easier to
mimic the proof of Theorem 4.3 and compute them directly.

2.5.2 Convergence to Smoluchowski’s equation

Consider the concentration c
(N)
t (a,m) of clusters with a available arms and mass m at

time t, in symbols

c
(N)
t (a,m) = 1

mN
#{i ∈ [N ], |Ct(i)| = m,

∑
j∈Ct(i)

Bt(j) = a}.

Obviously, Assumption 2.1 ensures that, for large enough M , all the c(N)
t belong to

E = {η ∈ [0, 1]S ,
∑

(a,m)∈S
(a+m)η(a,m) ≤M}.

This space is endowed with the `1 norm.
For the sake of consistency, the first result to check is that these concentrations actually

solve, in the limit, Smoluchowski’s equation. This is essentially achieved by using classical
martingale techniques, as in [27, 45, 17], the delicate issue being the cut-off at threshold
α(N), which can be dealt with as in [19]. For that reason, in Section 3, we will only
compute the jump rates of c(N) and point out the differences with the case of [19], leaving
the very slight changes to the reader.

Theorem 2.9. The sequence (c(N)(p), p ∈ S)N≥1 converges in D(R+, E) to the unique
solution of the modified Smoluchowski equation (4.8), starting from monodisperse initial
conditions c0(a,m) = µ(a)1{m=1}.

2.5.3 Pre-gelation results

The following pre-gelation results are easy to prove, since before gelation, our model
essentially behaves like the well-known configuration model. We shall prove this result in
Section 4. Recall that, for a law λ and p ∈ [0, 1], the law Bin(λ, p) is obtained by picking
a variable X with law λ, and, conditionally on X, a binomial variable with parameters X
and p, and that T (N)

gel is the first time when a giant cluster appears in the system, viz.

T
(N)
gel = inf{t ≥ 0, ∃i ∈ [N ] |Ct(i)| > α(N)}.

Proposition 2.10. 1. For any t < T
(N)
gel , the configuration of particles has the law of a

configuration model with parameters N and Bin(µ(N), 1−e−t), conditioned on having
no giant cluster. Moreover,

Bin(µ(N), 1− e−t) −→
N→∞

Bin(µ, 1− e−t)
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sharply. Finally, as N → +∞, the conditioning becomes trivial, in that the proba-
bility that a giant cluster exists tends to 0.

2. When ζ ≤ 1, there is no event of gelation w.h.p. More precisely,

P(T (N)
gel =∞) −→

N→∞
1.

3. When ζ > 1,
T

(N)
gel −→

N→∞
Tgel

in probability.

In particular, this proves that Tgel really is the first time that a cluster falls into the
gel. One may however argue that a better definition for Tgel would be the first time that a
positive fraction of the particles falls into the gel, but, as Theorem 2.11 shows, these two
times actually coincide.

2.5.4 Post-gelation results

In the interesting case when ζ > 1, the analysis becomes much harder after the gelation
time. Our main result is the convergence of (n(N))N≥1 and (π(N))N≥1 to a deterministic
limit, for which we give an explicit expression. Recall that for a probability λ, Gλ denotes
its generating function, and ν = µ̂ is the size-bias of µ.

Theorem 2.11. 1. The sequence (n(N)) converges in D(R+,R+) as N → +∞ to some
continuous n, and the sequence (π(N)) converges in D(R+,M1) as N → +∞ to some
continuous π. Moreover, for t < Tgel,

πt = Bin(µ, 1− e−t),

and for t ≥ Tgel, πt is critical.

2. For t > Tgel, the equation

(σ(t)− e−t)G′ν(σ(t)) = Gν(σ(t)) (4.9)

has a unique solution. If we set σ(t) = 1 for t ≤ Tgel, then σ is continuous and
σ(t) < 1 for t > Tgel.

3. For all t ≥ 0, the mass in solution is given by

nt = Gµ(σ(t)) (4.10)

and πt has generating function

Gπt(x) = 1
nt
Gµ(σ(t)x+ e−t(1− x)), x ∈ [0, 1]. (4.11)

This is our main result, and its proof will take up the main part of this chapter. It
relies on several intermediary result, which are interesting on their own, and which we will
describe in Section 2.7. The relation between them, as well as the guideline of the proofs,
will be given in Section 2.8.

In particular, we may obtain the limiting quantities as t→ +∞. As will be explained in
Section 2.6.4, this provides a probabilistic interpretation for the expression of the limiting
concentrations (4.5) obtained in [44], thus achieving our initial goal. Recall from (4.4)
that η is the unique solution to

Gν(η) = ηG′ν(η).
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Corollary 2.12. As t→ +∞, σ(t)→ η. Hence, the mass converges to a limit

n∞ = Gµ(η) (4.12)

and the limiting distribution of arms in solution converges to a critical probability π∞ with
generating function

Gπ∞(x) = Gµ(ηx)
Gµ(η) , x ∈ [0, 1]. (4.13)

2.6 Discussion of the results

2.6.1 Before gelation

What happens at a time t < T
(N)
gel is rather easy to understand: if the particle i started

with ai arms, its distribution of active arms at time t is Bin(ai, 1 − e−t). As N → ∞,
the distribution of the number of arms of the particles has a limit Bin(µ, 1− e−t), whose
size-bias has mean

ζt = ζ(1− e−t),

where we recall that ζ = 〈ν, k〉. Moreover, the cluster configuration is a uniform random
pairing of these arms. By Janson’s result, and since we took α(N)� N1/γ , it will be easy
to see that, with probability going to one as N →∞, there exists no giant cluster as long
as ζt < 1, while we must already have seen a particle fall as soon as ζt > 1. A consequence
is that T (N)

gel has a deterministic limit as N →∞, which is precisely such that ζTgel = 1.

2.6.2 Relation to Smoluchowski’s equation

Let us discuss the link between the asymptotics of our model and the continuous model
given by Smoluchowski’s equation (4.8). As we saw, we prove, on the one hand, that the
concentrations c(N)

t (a,m) converge to a solution to Smoluchowski’s equation (4.8). On the
other hand, we obtain the convergence of some relevant quantities of our model, namely
n

(N)
t and π(N)

t . However, it is not mathematically obvious that, for instance, the mass

Mt :=
∑

a≥0,m≥1
mct(a,m)

in Smoluchowski’s equation should coincide with the asymptotic mass

nt = lim
N→+∞

n
(N)
t = lim

N→+∞

∑
a≥0,m≥1

mc
(N)
t (a,m).

We give in Theorem 2.11 a formula for nt, and, as noted after Theorem 2.8, a formula
for Mt can be computed, and it turns out that the two formulas coincide. Hence, we
have proved, as was obviously to be expected, that n(N) → M in D(R+,R+). However,
as we shall see, getting there is quite a long road. Moreover, we will have to use subtle
characteristics of the model (e.g. the graph structure), which are not encoded in the
knowledge of the jump rates of c(N)

t (a,m). Proving directly that n(N) → M (or even the
tightness of (n(N))) seems to be quite a challenging question.

Let us end with an intriguing remark on the formulas that can be obtained for (4.8).
In fact, though there is only an easy time-change between (4.8) and (4.2), the formulas
for the former are much nicer. For instance, we can obtain

At := 〈ct, a〉 = A0(σ′(t) + e−t)Gν(σ(t)),
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which is worth comparing to the dreadful expression given in Theorem 4.3 of Chapter 3
for (4.2). It is probably even more striking for the mass, but we let the courageous reader
compute it with the formulas of Chapter 3 and compare it to (4.10).

2.6.3 State after gelation and self-organized criticality

Knowing the mass and the law of the number of activated arms of the particles in solution,
we can draw a quite simple picture of the state in solution. As we will see below in Lemma
5.4, the configuration of particles in solution is a configuration model CM(n(N)

t N, π
(N)
t )

conditioned on having no giant cluster. Though this conditioning may not be trivial, we
will see (cf. in particular Lemma 5.6) that essentially, a typical cluster in solution can be
described as for the configuration model (see Section 3.3.2 in the introduction), that is, if
one picks a particle in solution uniformly at random, then it is the root of a Galton-Watson
GWπt,π̂t tree. After gelation, πt is critical, which is really showing that our model exhibits
a phenomenon of post-gelation self-organized criticality.

Let us add a few words on these trees in solution. If we allowed links between the
particles in the gel and in solution, we would be dealing at time t with a configuration
model with parameters N and µ(N)

t := Bin(µ(N), 1 − e−t), which is close, for large N , to
µt := Bin(µ, 1− e−t). Bertoin and Sidoravicius [4] have shown in that case that a typical
cluster in solution is a GWµt,µ̂t-tree conditioned on being finite6. Hence, except at the
gelation time when µt is critical, these finite trees are subcritical Galton-Watson trees –
recall that a supercritical Galton-Watson tree conditioned on being finite is subcritical.

In the present case, we show that a typical cluster in solution is a GWπt,π̂t tree, which
are thus critical Galton-Watson trees after gelation. In particular, after gelation, the
clusters in solution are much larger in Smoluchowski’s model than in Flory’s.

2.6.4 The limiting concentrations

Let us now consider the final state of our system. First, note that Formulas (4.7) and
(4.12) agree. Now, as already noted above, a typical particle in solution can be thought of
as the root of a GWπ∞,π̂∞-tree. So let us argue as in Section 3.3.2 of the introduction, by
defining p(m), the probability that a particle, picked uniformly at random, is in a cluster
of size m in the final state. On the one hand, p(m) = mc∞(m) by definition. On the
other hand, this is also the probability that a Galton-Watson tree GWπ∞,π̂∞ has size m.
Recalling from Corollary 2.12 that π∞ has generating function Gπ∞(x) = Gµ(ηx)/Gµ(η),
it is easy to use Dwass’ [9] formula to show that this probability is

1
m− 1β

m−1ν∗m(m− 2).

We have therefore recovered (4.5), thus achieving our initial goal.

2.6.5 The Poisson case

To further interpret the results it is useful to consider the simple case when one starts
with an initial distribution of arms that is Poisson. More precisely, let λ > 1 and

µ(k) = e−λλk/k!.
6Actually, this is proved only when µt is (sub)critical, but it is implicit in their work that it still holds

when µt is supercritical.
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The Poisson case is closely related to Erdős-Rényi’s random graph model, since Erdős-
Rényi’s model with connection probability λ/n is asymptotically the same as a configu-
ration model with Poisson(λ) distribution. In particular, assuming λ > 1 corresponds to
assuming that gelation will occur, what can be seen also by noticing that µ̂ = µ.

When λ > 1, gelation occurs at time

Tgel = log
(

λ

λ− 1

)
.

Not surprisingly, this goes to ∞ as λ→ 1 (in that case the total number of arms is barely
supercritical, therefore it takes almost all arms to be paired before gelation can occur).
On the other hand it goes to 0 when λ→∞ (a contrario, the mean number of total arms
for a particle is then very large, and it only takes a very small proportion of those arms
to be paired to one another to allow formation of large clusters).

The concentration nt of particles in solution is of course 1 before gelation occurs, while,
for t ≥ Tgel, it is

nt =
∑
n,k≥1

pt(n, k) = exp(λ(e−t + λ−1 − 1)).

We can also compute the solution given in Theorem 2.11 and obtain for t ≥ Tgel:

σ(t) = λ−1 + e−t,

We can then deduce, that for t < Tgel, πt is Poisson(λ(1 − e−t)), and for any t ≥ Tgel it
remains Poisson(1).

It is interesting to note that in that case, the final microscopic state is already reached
at Tgel. Of course, particles keep falling into the gel for t > Tgel, so that on the time
interval ]Tgel,+∞[, the proportion of particles in solution nt decreases from 1 to e1−λ.
However, microscopic quantities have reached their final state: the number of already
connected arms of a particle still in solution is Poisson(1), and a typical cluster in solution
is a Galton-Watson tree with offspring distribution Poisson(1). The SOC is thus probably
even more striking in this case.

2.7 Intermediate results

The proofs of the post-gelation results are quite lengthy, and take up the main part of this
paper. To make the reading easier, let us highlight the main steps of the proofs.

2.7.1 Results at a fixed time

A first combinatorial result is the exact law of the configuration in solution at any time
t ≥ 0.

Lemma 2.13. At any time t ≥ 0, conditionally on Nt and π(N)
t , the state in solution has

the same distribution as a configuration model CM(Nt, π
(N)
t ), conditioned on having no

giant cluster.

The conditioning in this result is not so easy to deal with. Actually, if π(N)
t is subcrit-

ical, the conditioning has, by Janson result, probability tending to one, and thus does not
play any significant role. When π(N)

t is supercritical, its probability tends to 0, so it really
matters. Finally, when π(N)

t is critical, it is not easy to tell, and it may depend a lot on
α(N) (see in particular Th. 2.4. in [26]). As already stated, this last case is actually the
one we are in.

At a fixed time, it is also easy to obtain the tightness of any relevant quantity.
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Lemma 2.14. • For any t ≥ 0, the sequences of variables (n(N)
t ), (π(N)

t ), (ρ(N)
t ) and

(ξ(N)
t ) are tight.

• The convergence (along some subsequence) of any of the above quantities implies its
sharp convergence.

2.7.2 Subcriticality

A first important result is the asymptotic subcriticality of the model, which is a first step
towards the tightness.

Proposition 2.15. For any t ≥ 0

lim sup
N→+∞

〈ρ(N)
t , k〉 ≤ 1, a.s.

This is essentially achieved by showing that the number of configurations which give
rise to a supercritical distribution of active arms in solution is much less than the number
of configurations which give rise to a subcritical distribution.

2.7.3 Tightness

The fact that at some time t the model is subcritical allows us to say, that for a small s,
it can be at most slightly supercritical at time t+ s. This ensures that only a proportion
of order s of the mass can disappear into the gel on that time-interval. In formulas, we
show the following.

Proposition 2.16. For every compact subset K of (0,+∞), there is a constant C, de-
pending only on this compact and µ, such that, for all t ∈ K and s ≤ 1,

lim sup
N→+∞

E

n(N)
t − n(N)

t+s

n
(N)
t

 ≤ Cs.
A similar result concerns the variance of the increments.

Proposition 2.17. For any t, s ≥ 0,

lim sup
N→+∞

V
(
n

(N)
t − n(N)

t+s

)
= 0.

These results allow us to estimate a modulus of continuity for (n(N)), thus implying its
tightness. Proposition 2.17 also shows that any limit point is deterministic, and Proposi-
tion 2.16 ensures that it is also Lipschitz-continuous. The tightness of any other quantity
is then easy to obtain.

Proposition 2.18. • The sequence (n(N)) is tight in D(R+,R+).

• The sequences (π(N)) and (ρ(N)) are tight in D(R+,M1). Moreover, the convergence
along a subsequence of any of these two quantities implies its sharp convergence.

• The sequence (n(N)(k), k ≥ 0) is tight in D(R+, `1(N)).

• The sequence (p(N)(n, k), n, k ∈ N2) is tight in D(R+, `1(N2)).

• Any limit point of (n(N)) or (n(N)(k)) is locally Lipschitz.

• Any limit point of (〈ρ(N), k〉) is continuous.
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2.7.4 Self-organized criticality

Our next step is to show that the model cannot be strictly subcritical after gelation, thus
showing the self-organized criticality. With the above results, the proof is quite simple.
The idea goes as follows. Take ρ a limit point of ρ(N) and let m(t) = 〈ρt, k〉. Assume
that for some t > Tgel, m(t) < 1. Then no more particles can fall into the gel on a small
time-interval, so because of new activations of arms, m has to increase on that interval.
Hence, whenever m is below 1, it increases. But m(Tgel) = 1, so, along with the continuity
of m of the previous proposition, this readily implies that m(t) = 1 after gelation.

Proposition 2.19. For t ≥ Tgel,

lim
N→+∞

〈ρ(N)
t , k〉 = 1.

2.7.5 Asymptotic independence

Before stating the next result, let us try to draw the heuristic picture of what occurs
between a given time t past gelation and a time t+ ε. At t we are essentially dealing with
a configuration model with a degree sequence that is close to critical. Typical clusters are
thus of finite size. Therefore, for any ε, a typical cluster which is going to be involved in a
gelation event in the time window [t, t+ ε] is also of finite size7 at time t, in particular, it
is typically a finite tree. This then allows us to show a form of asymptotic independence
between the evolution of the size of the different subcomponents attached to a given cluster
in solution at time t.

Denote now P̃(k)
t the probability knowing that particle 1 is in solution at time t and

has k activated arms. Obviously, 1 has no particular role, and could be replaced by any
i ∈ [N ]. Recall that i t↔ j means that i and j are neighbors at time t, and let, for i t↔ j,
C
\j
t (i) be the cluster of i when deleting the link(s) between i and j. Finally, let β(N) be

a sequence such that 1� β(N)� α(N).

Proposition 2.20. For any t ≥ Tgel, k ≥ 1,

lim
ε→0

1
ε

lim sup
N→+∞

P̃(k)
t

(
|Ct+ε(1)| > α(N), #{i : i t↔ 1, |C\1t+ε(i)| < α(N)− β(N)} 6= 1

)
= 0.

In words, this means that, if 1 falls into the gel on the time-interval [t, t+ ε], then that
is because one and only one of the subclusters to which it is attached has reached a large
size α(N)− β(N). Hence, we may write

P̃(k)
t (|Ct+ε(1)| ≥ α(N)) =

∑
i
t↔1

P̃(k)
t (|C\1(i)| ≥ α(N)− β(N)) + o(ε). (4.14)

This result is particularly important when we consider the instantaneous rate of gela-
tion. It is defined as the rate at which a particle with k activated arms falls into the gel
in a small time-interval, in symbols:

fk(t) := lim
ε→0

1
ε

lim
N→+∞

P̃(k)
t (|Ct+ε(1)| ≥ α(N)).

The limit in N has to be understood along a subsequence such that (n(N)) converges. This
is then easy to see that this quantity is well-defined a.e. thanks to the Lipschitz continuity
of a limit point n(k) of (n(N)(k)).

7In fact, when ε→ 0 it is typically of a size of order ε−2.
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Now, it is not hard to see that, when 1 is in solution at time t and i t↔ 1,

lim
ε→0

1
ε

lim
N→+∞

P̃(k)
t (|C\1(i)| ≥ α(N)− β(N)) = f1(t),

still along a subsequence. Hence, Formula (4.37) provides the following result.

Corollary 2.21. For all t ≥ 0, fk(t) = kf1(t).

Informally, this result ensures that the k clusters attached to a particle with k activated
arms behave independently, and thus such a particle has k times more chances to fall into
the gel than a particle with only one activated arm.

2.7.6 Asymptotic evolution of the system

All these results allow us to precisely describe the evolution of the relevant quantities of
the model. The first equation below is obtained as follows. We work up to convergent
subsequences. Denote f(t) := f1(t), and note that f may a priori be random. Consider a
particle in solution at time t, with k activated arms and n initially activable arms. On a
time interval [t, t+ dt], it may:

• fall into the gel with probability fk(t) dt = kf(t) dt;

• or activate one arm with probability (n− k)(1− e−dt) = (n− k) dt.

Such a particle may also appear if a particle with n initially activable arms and k − 1
available arms activates one arm. Any other event, such as two of the above occurring
at the same time, or a particle activating more than one arm, is very unlikely (of order
(dt)2).

Proposition 2.22. 1. Any limit point (pt(n, k), 0 ≤ k ≤ n)t≥0 of (p(N)) enjoys the
relation

d
dtpt(n, k) = (−kf(t)− (n− k))pt(n, k) + (n− k + 1)pt(n, k − 1).

2. In particular, the generating function

ht(x, y) =
∑
k,n≥0

pt(n, k)xkyn, x, y ∈ [0, 1),

solves the PDE
∂ht
∂t

= x(1− f(t)− x)∂ht
∂x

+ (x− 1)y∂ht
∂y

, (4.15)

with initial condition h0(x, y) = Gµ(y).

This PDE is easy to solve using the method of characteristics.

Proposition 2.23. The PDE (4.15) has a unique solution given, for x, y ∈ [0, 1), by

ht(x, y) = Gµ
(
ye−t(1 + xθ(t)/θ′(t))

)
, (4.16)

where
θ(t) =

∫ t

0
exp

(
−
∫ s

0
(1− f(r)) dr

)
ds.
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This would end our proof, if we were to actually know f(t). But a priori, it may
even be random. However, an elegant way to recover it is to see that it is only defined
by the criticality of our model. In other words, writing, for π a limit point of (π(N)),
〈π̂, k〉 = 1 provides an equation for f which has a unique solution. Recall that σ is defined
by Equation (4.9).

Corollary 2.24. For all t ≥ 0,

f(t) = σ′(t)
e−t − σ(t) . (4.17)

This is finally our last step. Note indeed that this determines f uniquely, and thus
shows that the PDE (4.15) has a unique (deterministic) solution. Since any relevant
quantity, say nt and πt, can be derived upon knowing its solution, and hence pt(n, k), we
see that there is a unique limit point to any quantity of interest, and so our proof is over.

2.8 Organization of the proofs

Let us now explain how the rest of this chapter is organized. The main part of this paper
is devoted to proving Theorem 2.11, and the following list can serve as a reference to find
one’s way in its proof.

• Let us recall that we shall not prove the well-posedness of the modified Smoluchowski
equation (4.8) (Theorem 2.8), for it can be tackled as in the previous chapter.

• The two next sections deals with two easy results: Section 3 sketches of proof of the
convergence to Smoluchowski’s equation stated in Theorem 2.9, whereas in Section
4, we prove Proposition 2.10 concerning the pre-gelation behavior of our system,
what is quite easy with Janson’s result Theorem 2.6.

• We then plunge into the core of this paper, namely the proof of the post-gelation
results, summarized in Theorem 2.11. We start in Section 5 by giving some important
but easy lemmas that we will use a lot throughout the text.

• The first important result, namely the subcriticality of the model (Proposition 2.15)
is proved in Section 6. This uses the construction of the exploration process of a
configuration model, which is detailed in Appendix A.

• The longest proof concerns the tightness of several processes, as is stated in Propo-
sition 2.18. It is dealt with in Section 7, though several technical issues are deferred
to Appendices B, C and D.

• With the help of these results, showing the actual post-gelation SOC (Proposition
2.19) is an easy matter which is taken care of in Section 8.

• The last important result is the asymptotic independence, which mainly consists in
proving Proposition 2.20, as is done in Section 9. To avoid more technical convolu-
tions, some elements of the proof are just hinted at.

• In the final Section 10, we gather up all these results to study the asymptotic evo-
lution in time of the system. It is given by a PDE which is easy to solve. We
thus show that any limit point of the tight sequences (n(N)) and (π(N)) are uniquely
determined, what ends the proof of Theorem 2.11. Proving Corollary 2.12 is then
straightforward.
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As will appear in the proofs, this order could hardly be changed. Indeed, subcriticality
is necessary to prove tightness, which we need to prove the SOC and the asymptotic
independence. The latter allows us to write down the PDE describing the evolution in
time of the system, and the former implies that this PDE has a unique deterministic
solution.

3 Convergence to Smoluchowski’s equation

The goal of this section is to give a sketch of proof of Theorem 2.9, which we now recall.

Theorem 3.1. The sequence (c(N)(p), p ∈ S)N≥1 converges in D(R+, E) to the unique
solution of the modified Smoluchowski equation (4.8), starting from monodisperse initial
conditions c0(a,m) = µ(a)1{m=1}.

Its proof is analogous to the one given in [19], where the authors prove the result for
the standard Smoluchowski’s equation (4.1). Hence, we will only introduce the main ideas,
referring to the aforementioned paper for some details.

Recall that c(N)
t (p) is the concentration of p = (a,m)-clusters in solution, i.e. clusters

with a (available) arms8 and mass m in solution. Let

NA
(N)
t =

α(n)∑
m=1

+∞∑
a=1

aNc
(N)
t (a,m)

be the total number of arms in solution. We always assume in the following computations
that there are at least two arms in solution, else nothing happens. Starting from a time
t, these concentrations evolve as follows. First, one has to wait an exponential time with
parameter A(N)

t to see an arm in solution activated. Then, another arm in solution is
activated after an independent exponential time with parameter A(N)

t − 1, and a link is
created. At this point, three cases are possible.

• A coagulation occurs between two different p- and p′-clusters, with probability

Np.c
(N)
t (p)

NA
(N)
t

× Np′.c
(N)
t (p′)

NA
(N)
t − 1

+ Np′.η(p′)
NA

(N)
t

× Np.c
(N)
t (p)

NA
(N)
t − 1

= 2p.p′c(N)
t (p)c(N)

t (p′)
A

(N)
t (A(N)

t − 1/N)
.

• A coagulation occurs between two distinct p = (a,m)-clusters with probability

Np.c
(N)
t (p)

NA
(N)
t

× Np.c
(N)
t (p)− a

NA
(N)
t − 1

= p.pc
(N)
t (p)2

A
(N)
t (A(N)

t − 1/N)
− 1
N

p.pc
(N)
t (p)

A
(N)
t (A(N)

t − 1/N)
,

• A link between two arms of the same p = (a,m)-clusters is created with probability

aNc
(N)
t (p)

NA
(N)
t

× a− 1
NA

(N)
t − 1

= a(a− 1)c(N)
t (p)

NA
(N)
t (A(N)

t − 1)
.

8In this section only, “arm” means “activable arm”.
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In the first two cases, the system jumps to a new state c(N)
t + 1

N∆p,p′ , where
∆p,p′(p) = ∆p,p′(p′) = −1 if p 6= p′

∆p,p′(p) = −2 if p = p′

∆p,p′(p ◦ p′) = +1.

In the third case, the system jumps to a new state c(N)
t + 1

N∆′p, where, for p = (a,m),{
∆′p(p) = −1
∆′p((a− 2,m)) = +1.

An important fact to note is that c(N) is not a Markov process since the time between
two jumps is not exponential, but it is however a semi-Markov process. This is actually no
big trouble, and we can proceed just as in the usual Markov case studied in [19]. First, the
tightness (in D(R+, E)) is easily obtained as in [19] or [43]. To see that a limit point has to
solve Smoluchowski’s equation (4.8), we can use the above remarks to write martingales
(even though the process is only semi-Markov, see e.g. [30]), and proceed just as in [19],
with some easy changes.

4 Pre-gelation results

In this section, we prove Proposition 2.10, which is quite an easy matter when using
Theorem 2.6. Let us recall the result.

Proposition 4.1. 1. For any t < T
(N)
gel , the configuration of particles has the law of a

configuration model with parameters N and Bin(µ(N), 1−e−t), conditioned on having
no giant cluster. Moreover,

Bin(µ(N), 1− e−t) −→
N→∞

Bin(µ, 1− e−t)

sharply. Finally, as N → +∞, the conditioning becomes trivial, in that the proba-
bility that a giant cluster exists tends to 0.

2. When ζ ≤ 1, there is no event of gelation w.h.p. More precisely,

P(T (N)
gel =∞) −→

N→∞
1.

3. When ζ > 1,
T

(N)
gel −→

N→∞
Tgel

in probability.

Proof. First, note that when t < T
(N)
gel we have kept all N particles in solution until time

t so the first part of the result follows from Lemma 5.4 below.
Let us now turn to the proof of the convergence of T (N)

gel . Consider the following
coupling.

• C(N)
1 (t) corresponds to the configuration following the evolution of our discrete model

until time t (where particles which fall into the gel do not interact anymore with
particles which stay in solution).
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• C(N)
2 (t) is such that it has the same number of initially activable arms, the exponen-

tial clocks are exactly the same, but we now allow for pairings of an arm of a particle
in solution with an arm of a particle in the gel. In other words, this is Flory’s model.

By the construction of a configuration model of Section 2.3, the configuration of C(N)
2 (t) is

exactly that of a configuration model with parameters N and Bin(µ(N), 1−e−t). Moreover,
both configurations C(N)

1 (t), C(N)
2 (t) exactly coincide at any time t < T

(N)
gel . Therefore,

P(T (N)
gel > t) = P((C(N)

2 (t))max < α(N)),

where (C(N)
2 (t))max is the largest component of C(N)

2 (t).
Let πt = Bin(µ, 1 − e−t). Then π(N)

t → πt strongly because of Assumption 2.1. Now,
note that 〈π̂t, k〉 = (1 − e−t)ζ, so 〈π̂t, k〉 ≤ 1 ⇔ t ≤ Tgel. Hence, according to Janson’s
theorem 2.6, if t < Tgel, C(N)

2 (t) has w.h.p. no cluster of size greater than α(N) (since
α(N) � N1/3). On the other hand, if t > Tgel, C(N)

2 (t) has w.h.p. a giant component,
which is in particular of size greater than α(N) for N large enough, since α(N) � N .
This readily yields the expected result.

5 Preliminary results

This section is devoted to providing some easy results which we will use throughout the
text. To avoid irrelevant distinctions, we will assume from now on that we are in the
interesting case when gelation occurs, i.e. ζ = 〈µ̂, 1〉 > 1, so in particular µ([3,+∞)) > 0.

5.1 Lower- and upper-bounds

The following results ensure that some quantities are bounded above or below, as long as
this is the case at time 0. Although they are easy to prove, they are a main ingredient
in many of our proofs. For instance, proving that, at any time, a positive fraction of the
particles remains in solution ensures that π(N)

t has as many moments as µ. Recall also that
ξ

(N)
t is the empirical distribution of active and available arms of the particles in solution
at time t.

Lemma 5.1. For any t > 0 and any compact K of (0,+∞), there exist positive constants
c0(t), c0(K), M(t) and M(K) such that w.h.p.

inf
s∈[0,t]

n(N)
s ≥ c0(t), inf

s∈K
〈ξ(N)
s (i, j), j〉 ≥ c0(t), inf

s∈K
〈π(N)
s , k〉 ≥ c0(K), (4.18)

and
sup
s∈[0,t]

〈π(N)
s , k3〉 ≤M(t), sup

s∈K
〈ρ(N)
s , k2〉 ≤M(K). (4.19)

In words, there is w.h.p., at any time t > 0, a positive concentration in solution, a
positive proportion of active arms and a positive proportion of available arms. Also, π(N)

t

has as many moments as µ and consequently ρ(N) has 2 moments.

Proof. First, note that Assumption 2.1 ensures that there is w.h.p. a positive fraction of
particles with, say, k arms for some k ≥ 0. At any time t, each of these particles also has
a positive probability to have activated no arm, and thus to remain in solution, whence
the bound on n(N) follows. Similar reasonings give the other lower bounds. The bound
on 〈π(N)

s , k3〉 stems from the bound on n(N), and implies the bound on 〈ρ(N)
s , k2〉.
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Remark 5.2. An important corollary to this result is that, at any time t, the measure
π

(N)
t verifies the assumptions of Janson’s Theorem 2.6, what will be really useful in some

proofs.

5.2 Tightness at a fixed time

Lemma 5.3. • For any t ≥ 0, the sequences of variables (n(N)
t ), (π(N)

t ), (ρ(N)
t ) and

(ξ(N)
t ) are tight.

• Convergence (along some subsequence) of any of the above quantities implies its
sharp convergence.

Proof. Obviously, n(N)
t ≤ 1 for all N , so the tightness of (n(N)

t ) is clear. To avoid convo-
lutions, let us verify the tightness of (π(N)

t ) (tightness of other quantities can be obtained
by a similar reasoning). This amounts to proving that for any ε, ε′ > 0, there is a compact
K ⊂ R such that, for large enough N ,

P(π(N)
t (K) > 1− ε) > 1− ε′.

Now, recall from (4.18) that, with probability greater than 1− ε′ say, n(N)
t > c0(t) > 0

for large enough N . Take α > 0 such that α/ε < c0(t) and a compact K such that
µ(N)(K) > 1− α for large enough N , what is possible by convergence of µ(N) to µ. Now,
one has, with probability greater than 1− ε′,

π
(N)
t (Kc) = 1

Nt

∑
k∈Kc

Nt(k) ≤ 1
c0(t)µ

(N)(Kc) ≤ 1
c0(t)α < ε

whence the result follows.
The second part of the statement readily follows from (4.19) and dominated conver-

gence.

5.3 Configuration at a fixed time

We shall first point out some features of our model. Recall that all the randomness is
given by a sequence of i.i.d. exponential random variables. At a time t, the state of the
system depends only on:

• the arms which are activated,

• the order of these activations.

Note that the precise times of activation of the arms are independent from these two
variables.

For a set B of arms, denote S(B) the set of orderings of B. Define At the set of
activated arms at time t, and, conditionally on At, σt ∈ S(At) is the ordering of these
arms. We then just stated that conditionally on At, σt is a uniform variable in S(At).

5.3.1 Configuration at the current time

Lemma 5.4. At any time t ≥ 0, conditionally on Nt and π(N)
t , the state in solution has

the same distribution as a configuration model CM(Nt, π
(N)
t ), conditioned on having no

giant cluster.
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Proof. Let us start by conditioning on the initial distribution of arms and on At. Fix S a
set of particles and a set B of activated arms of S. We write S1 for the set of orderings
of At which leave exactly S in solution. Then,

IS(t) = S ⇔ σt ∈ S1.

Hence, conditioning on IS(t) = S is conditioning on σt ∈ S1. But σt is uniform on S(At)
so σt|σt ∈ S1 is uniform on S1. It is obvious that a uniform ordering in S1 induces a
uniform pairing of the arms of B conditioned on having no giant cluster, so the result
readily follows.

A slightly more precise result, but with the same proof, takes into account the activable
arms. Recall that ξ(N)

t is the empirical measure of active and available arms at time t.

Lemma 5.5. At any time t ≥ 0, conditionally on Nt and ξ(N)
t , the state in solution has

the same distribution as a uniform pairing of the activated arms, conditioned on having
no giant cluster.

5.3.2 Configuration at an earlier time

As pointed out in the previous section, the conditioning of the previous results may have
a probability tending to 0 as N → +∞, and hence turn out to be quite tedious to deal
with. To circumvent this issue, we shall “go back in time”, by looking at the set IS(t) of
particles which are still in solution at time t, at a time s < t. These particles have an
empirical distribution of activated arms at time s denoted by

π
(N)
t,s = 1

Nt

∑
i∈IS(t)

δAs(i).

Lemma 5.6. Conditionally on IS(t) and π(N)
t,s , the configuration of the particles of IS(t)

at time s has the same distribution as a configuration model CM(Nt, π
(N)
t,s ) conditioned

on having no giant cluster. Moreover, the sequence (π(N)
t,s ) is sharply tight and there is an

ε > 0 such that, for any of its limit point πt,s,

〈π̂t,s, k〉 ≤ (1− ε) lim sup
N→+∞

〈π̂(N)
t , k〉.

Now, when we know that actually lim sup〈π̂(N)
t , k〉 ≤ 1, this will show that at time

s, the configuration of the particles of IS(t) is a subcritical configuration model condi-
tioned on having no giant cluster. But the subcriticality implies that this conditioning has
probability tending to 1, and hence there will be no harm in forgetting about it.

Proof. The fact that it is a conditioned configuration model is proved as in Lemma 5.4
above, and the tightness as in Lemma 5.3. Now, at time s, there is an asymptotically
positive proportion (depending only on µ and s) of particles with no active arm and
a positive number of available arms at time s. But there is also positive probability
(depending only on µ, s and t) for each of them, to, on the time-interval [s, t],

• activate exactly one arm,

• bind to exactly another particle.
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These clusters of size 2 will thus be in solution at time t (if α(N) ≥ 2). In other words,
there is a positive fraction (depending only on µ, s and t) of particles in solution at t, with
one active arm at t, none at s. The result easily follows.

Without further effort, we may also take into account the number of available arms.
So let

ξ
(N)
t,s = 1

Nt

∑
i∈IS(t)

δ(As(i),Bs(i))

the empirical distribution of the number of active arms and available arms of the particles
of IS(t) at time s.

Lemma 5.7. Conditionally on IS(t) and ξ(N)
t,s , the configuration of the particles of IS(t)

at time s has the same distribution as a uniform pairing of the active arms conditioned
on having no giant cluster. Moreover, the sequence (ξ(N)

t,s ) is sharply tight, and there is an
ε > 0 such that, for any of its limit point ξt,s,

〈ξ̂t,s, i〉 ≤ (1− ε) lim sup
N→+∞

〈ξ̂(N)
t , i〉.

6 Subcriticality

6.1 Introduction

Our goal in this paragraph is to establish that our model is subcritical, more precisely the
following result.

Proposition 6.1. For any t ≥ 0

lim sup
N→+∞

〈ρ(N)
t , k〉 ≤ 1, a.s. (4.20)

Now, fix t ≥ 0, and assume thanks to Lemma 5.3 that ρ(N)
t → ρt sharply along some

subsequence. We will also assume by tightness that n(N)
t converges to some nt, and we

recall from (4.18) that then, nt > c0(t) for some c0(t) > 0 depending only on µ and t.

6.2 A preliminary lemma

We shall prove that the following result, which is enough to show that (4.20) holds.

Lemma 6.2. For any δ > 0 and u ∈ [c0(t), 1], there exists εu > 0 such that

lim
N→+∞

P
(
〈ρ(N)
t , k〉 ≥ 1 + 2δ, n(N)

t ∈ (u− εu, u+ εu)
)

= 0.

Before proving the lemma, let us see how it implies the subcriticality of ρt. We have

P
(
〈ρ(N)
t , k〉 ≥ 1 + 2δ

)
≤ P

(
n

(N)
t ≤ c0(t)

)
+ P

〈ρ(N)
t , k〉 ≥ 1 + 2δ,

⋃
u∈[c0(t),1]

{n(N)
t ∈ (u− εu, u+ εu)}

 .
(4.21)
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By Borel characterization of compact sets, there exists a finite n and some u1, . . . , un ∈
[c0(t), 1] such that

⋃n
i=1(ui − εu, ui + εu) ⊃ [c0(t), 1]. Thus

P

〈ρ(N)
t , k〉 ≥ 1 + 2δ,

⋃
u∈[c0(t),1]

{n(N)
t ∈ (u− εu, u+ εu)}


≤

n∑
i=1

P
(
〈ρ(N)
t , k〉 ≥ 1 + 2δ, n(N)

t ∈ (ui − εui , ui + εui)
)
.

By Lemma 6.2, each term in the above (finite) sum goes to 0 as N → +∞, so the second
term of the sum in the RHS of (4.21) goes to 0 as N → +∞. So does the first since
n

(N)
t → nt > c0(t), and therefore,

lim
N→+∞

P
(
〈ρ(N)
t , k〉 ≥ 1 + 2δ

)
= 0.

Since 〈ρ(N)
t , k〉 → 〈ρt, k〉 by sharp convergence, this obviously implies

〈ρt, k〉 ≤ 1 + 2δ, a.s.

This holds for any δ > 0, so the result follows. Hence, it remains to establish the lemma.

6.3 Proof of Lemma 6.2

Recall that At(i) is the set of all active arms of i at time t, and define At = ∪i∈[N ]At(i)
the set of activated arms at time t.

Let us from now on condition on At. Recall from Section 2.1 that then, the configu-
ration of the system at time t is only given by a uniform ordering of the arms of At. We
thus take Ω the set of all these orderings, which is endowed with the uniform probability
P.

To a set S ⊂ [N ] of particles, we associate

π(S) = 1
#S

∑
i∈S

δAt(i)

the empirical measure of the degree of active arms of S, and ρ(S) = π̂(S).
Now, an ω ∈ Ω induces a configuration of the particles, so we can define IG(ω) the set

of all particles falling into the gel in the configuration induced by ω, IS(ω) = [N ]\IG(ω)
the set of all particles remaining in solution, π(ω) = π(IS(ω)) the empirical measure of
the degree of active arms of the particles in solution, ρ(ω) = ρ(IS(ω)) it size-bias, and
n(ω) = #IS(ω)/N the concentration in solution.

Consider now a set C1, . . . ,Cp of disjoint giant clusters. Define

ΩC1,...,Cp = {ω ∈ Ω, IG(ω) ⊃
p⋃
i=1

Ci},

the set of all ω which make C1, . . . ,Cp fall into the gel. It can be split into those events
for which only C1, . . . ,Cp fall into the gel

Ω0
C1,...,Cp :=

{
ω ∈ Ω, IG(ω) =

p⋃
i=1

Ci

}
,
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and those events for which there at least another cluster which falls into the gel:

Ω≥1
C1,...,Cp

:=
{
ω ∈ Ω, IG(ω) )

p⋃
i=1

Ci

}
.

Now, fix δ > 0 and u ∈ [c0(t), 1]. Since the sequence (〈µ(N), k2〉)N≥1 is bounded, we
may choose ε > 0, depending only on µ and δ, such that, for any set S of particles with
#S ≥ (u− ε)N , for any set S′ ⊂ S with #S′ ≤ 2εN , we have∣∣〈ρ(S\S′), k〉 − 〈ρ(S), k〉

∣∣ ≤ δ.
Finally, define

J = [N ]\
p⋃
i=1

Ci.

We shall first establish the following.

Lemma 6.3. Assume that

n(J) ∈ (u− ε, u+ ε), 〈ρ(J), k〉 ≥ 1 + δ.

Then, there exists κ > 0, which depends only on u, ε and δ, and such that, for large
enough N ,

P(Ω0
C1,...,Cp) ≤ exp(−κN)P(Ω≥1

C1,...,Cp
).

Proof. This result can be restated by saying that

P(Ω≥1
C1,...,Cp

|ΩC1,...,Cp) ≥ exp(κN)P(Ω0
C1,...,Cp |ΩC1,...,Cp).

But
P(Ω0

C1,...,Cp |ΩC1,...,Cp)

is the probability that there is no giant cluster among the particles of J, and we assumed
that

ρ(J) ≥ 1 + δ.

When C1, . . . ,Cp fall into the gel, the ordering of the arms of the particles of J is still
uniform, and thus the configuration of the particles of J is the same as taking a uniform
ordering of these arms, and then applying our algorithm (i.e. bind together the first and
second arm in solution, the third and fourth in solution, and so on).

In particular, the probability that a cluster falls into the gel is the same as the prob-
ability for the configuration model to have a cluster of size greater than α(N). Since we
assumed 〈ρ(J), k〉 ≥ 1 + δ, it is well-known (see Section 2.3) that J has a component of
size of order N w.h.p. However, we need a little more here to get the factor exp(−κN).

It is actually implicit in the literature (see e.g. the proofs in [26]) that such a model
has probability decreasing exponentially fast to have no cluster of order N , and that the
parameter of the exponential depends only on 〈ρ(J), k〉.

To be more precise, we refer to Appendix A for the definition and properties of the
exploration process of a typical component of a configuration model. Proposition A.3 then
ensures that the size of the connected component are bounded by below by the lengths
of the excursions between infima of a random walk V , as long as, in the notations of
Appendix A, less than f(N) steps of the exploration process have been taken.

From the construction of V , it is clear that for N large and f(N)� N , the steps of V
can be chosen in such a way that their mean is greater than 1+δ/2. Now, assume also that
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f(N)� α(N). It is then classical from the random walk theory (see e.g. [52]) that there
is a constant κ depending only on δ such that an excursion of size α(N) appears among
the f(N) first steps of the random walk, with probability bounded below by 1− e−κN . In
other words

P(Ω≥1
C1,...,Cp

|ΩC1,...,Cp) ≥ 1− e−κn

whence the result follows easily after noticing that

P(Ω0
C1,...,Cp |ΩC1,...,Cp) + P(Ω≥1

C1,...,Cp
|ΩC1,...,Cp) = 1.

When the distribution in solution is supercritical and C1, . . . ,Cp fall into the gel, Lemma
6.3 ensures that there is a high probability that other clusters than C1, . . . ,Cp also fall
into the gel. But when 2εN/α(N) additional clusters have fallen into the gel, then the
concentration has dropped by at least 2ε (since any cluster which falls into the gel has size
greater than α(N)). As a result, the concentration is in fact very likely to have already
dropped below u− ε. This is the content of the following lemma.

Lemma 6.4. Assume that

n(J) ∈ (u− ε, u+ ε), 〈ρ(J), k〉 ≥ 1 + 2δ.

Then, for large enough N ,

P(ω ∈ ΩC1,...,Cp , n(ω) ∈ (u− ε, u+ ε)) ≤ N

α(N) exp(−κN)P(ΩC1,...,Cp).

Proof. Define, for i ≥ 1,
Ωi
C1,...,Cp

be the set of ω such that IG(ω) contains C1, . . . ,Cp, as well as precisely i other clusters.
For ω ∈ Ωi

C1,...,Cp
with i ≤ εN/α(N), one has 0 ≤ c(J) − c(ω) ≤ 2ε (since the clusters

which fall into the gel have mass at most 2α(N)), so,

{
ω ∈ ΩC1,...,Cp , c(ω) ∈ (u− ε, u+ ε)

}
⊂

εN/α(N)⋃
i=1

Ωi
C1,...,Cp , (4.22)

and, by the very choice of ε, ρ(ω) ≥ 1 + δ. By Lemma 6.3, we thus have

P(Ωi
C1,...,Cp) ≤ e

−κNP(Ω≥i+1
C1,...,Cp

). (4.23)

If we denote
pi = P(Ω≥iC1,...,Cp

)

then (4.23) reads
pi − pi+1 ≤ e−κNpi+1, i ≤ εN/α(N).

From this, it is easy to deduce that

pεN/α(N) ≤
N

α(N)e
−κNp0.

Finally, (4.22) and the above result yield

P(ω ∈ ΩC1,...,Cp , n(ω) ∈ (u− ε, u+ ε)) ≤ pεN/α(N)

≤ N

α(N)e
−κNp0 = N

α(N)e
−κNP(ΩC1,...,Cp)

and the proof is over.
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We can now finish the proof of Lemma 6.2. Note that the event

{〈ρ(ω), k〉 ≥ 1 + 2δ, n(ω) ∈ (u− ε, u+ ε)}

is included in the union of the events{
ω ∈ ΩC1,...,Cp , n(ω) ∈ (u− ε, u+ ε)

}
for all p and giant C1, . . . ,Cp such that, for J = [N ]\

⋃p
i=1 Ci, n(J) ∈ (u − ε, u + ε) and

ρ(J) ≥ 1 + 2δ.
By summing over all possibilities such that the ΩC1,...,Cp are disjoint, we thus get from

Lemma 6.4 that

P(〈ρ(ω), k〉 ≥ 1 + 2δ, n(ω) ∈ (u− ε, u+ ε)) ≤ N

α(N)e
−κN

and Lemma 6.2 follows, after integrating over At and using dominated convergence.

7 Tightness

7.1 Introduction

The goal of this section is to prove Proposition 2.18, which we recall now.

Proposition 7.1. • The sequence (n(N)) is tight in D(R+,R+).

• The sequences (π(N)) and (ρ(N)) are tight in D(R+,M1). Moreover, the convergence
along a subsequence of any of these two quantities implies its sharp convergence.

• The sequence (n(N)(k), k ≥ 0) is tight in D(R+, `1(N)).

• The sequence (p(N)(n, k), n, k ∈ N2) is tight in D(R+, `1(N2)).

• Any limit point of (n(N)) or (n(N)(k)) is locally Lipschitz.

• Any limit point of (〈ρ(N), k〉) is continuous.

We shall show in particular the tightness of the sequence (n(N)). The tightness of the
other sequences is then an easy matter, and the rest of the proposition is deduced from
4.19.

The proof relies mainly on the two following results, concerning the expectation and
variance of the increments of (n(N)), which allow to obtain a modulus of continuity for
(n(N)) and hence deduce its tightness.

Proposition 7.2. For every compact subset K of (0,+∞), there is a constant C, depend-
ing only on this compact and µ, such that, for all t ∈ K and s ≤ 1,

lim sup
N→+∞

E

n(N)
t − n(N)

t+s

n
(N)
t

 ≤ Cs.
Proposition 7.3. For any t, s ≥ 0,

lim sup
N→+∞

V
(
n

(N)
t − n(N)

t+s

)
= 0.

With the help of these results, the tightness is an easy but technical matter, which we
defer to Appendix B.
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7.2 Main steps of the proof of Proposition 7.2

The proof of Proposition 7.2 is long, and we will break it up in pieces so as not to exhaust
the reader. This first section provides the main ingredients and ideas of the proof. Section
7.3 is devoted to giving a bound on the quantity of gel in a two-type uniform pairing.
In some loose sense, this quantity bounds the quantity of gel that appears in our model
between time t and t + s. Finally, most technical matters are deferred to Appendices C
and D.

7.2.1 Idea of the proof

An issue that we already raised concerning the state at some time t is the conditioning in
Lemma 5.4, and to deal with it, we will “go back in time” as in Lemma 5.7. So fix t > 0,
1 > s > 0 and take (a small) h ∈ (0, t). We look at the particles of IS(t) at time t − h.
At that time, they have active arms, which we call old (O), and available arms, which we
call young (Y), and in the notations of Lemma 5.7 they have an empirical distribution of
O and Y arms ξ(N)

t,t−h. Moreover, we denote C
(N)
t,t−h their configuration at time t − h, and

C(N) = C
(N)
t,t−h+s their configuration at time t− h+ s.

Now, delete all the links, so we are in the presence of Nt particles with empirical
distribution of O and Y arms ξ(N)

t,t−h. To obtain the configuration of these particles at time
t− h+ s, we can proceed as follows.

1. Condition on IS(t) and ξ(N)
t,t−h.

2. Pick a uniform pairing of the O arms, conditioned on having no giant cluster. By
Lemma 5.7, this gives precisely the configuration C

(N)
t,t−h.

3. Activate each Y arm independently after an exponential time with parameter 1.
Bind the first two activated arms in solution, then the two next, and so on, without
forgetting that if a cluster of size greater than α(N) is created, then it falls into the
gel. Doing this is just looking at the process that we study. After a time s+ h, we
have thus obtained a configuration which has the same law as C(N).

Obviously, this model is quite hard to study as such. To make it easier, let us build a
graph G̃(N) as follows.

1. Condition on IS(t) and ξ(N)
t,t−h.

2. Pick a uniform pairing of the O arms, conditioned on having no giant cluster.

3. Activate each Y arm independently after an exponential time with parameter 1.
Bind the first two activated arms in solution or not, then the two next, and so on,
until time s+ h.

Let us finally build a graph G(N), which will be our main interest in the sequel.

1. Condition on IS(t) and ξ(N)
t,t−h.

2. Pick a uniform pairing of the O arms.

3. Activate each Y arm independently after an exponential time with parameter 1.
Bind the first two activated arms in solution or not, then the two next, and so on,
until time s+ h.
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This graph is much easier to study, because it is a two-type uniform pairing, in that it
can be constructed in the following way. First, condition on IS(t) and ξ(N)

t,t−h. Then activate
each Y arm independently with probability 1−e−(s+h) and finally choose a uniform pairing
of the O arms and independently a uniform pairing of the activated Y arms.
Remark 7.4. It is important to note that, in our constructions, there are two types of
randomness. The first is the choice of the number of particles and their number of arms,
given by IS(t) and ξ(N)

t,t−h. The second is the choice of a pairing of these arms.

7.2.2 Relation between the different models

We have thus defined three different graphs. From Lemma 5.7 and Proposition 6.1, the
law of the O arms in ξ(N)

t,t−h is subcritical, and Janson’s Theorem 2.6 ensures that it is very
unlikely to have a large cluster. In particular, the conditioning in the construction of G̃(N)

is asymptotically trivial, so G̃(N) and G(N) should be really close.
Let us now compare G̃(N) and C(N). Loosely speaking, the first corresponds to Flory’s

evolution, the second to Smoluchowski’s. In fact, more mass is lost in Flory’s evolution
than in Smoluchowski’s, as is stated below. For the continuous equations, this is in fact
well-known (see in particular [44, Cor. 3.4]). Denote below G̃

(N)
gel and C

(N)
gel the quantity of

gel (i.e. the number of particles in giant clusters) in G̃(N) and C(N).

Lemma 7.5. For every i ∈ IS(t), one has

P
(
|C(N)(i)| > α(N)|IS(t), ξ(N)

t,t−h

)
≤ P

(
|G̃(N)(i)| > α(N)|IS(t), ξ(N)

t,t−h

)
.

In particular
E
(
C

(N)
gel |IS(t), ξ(N)

t,t−h

)
≤ E

(
G̃

(N)
gel |IS(t), ξ(N)

t,t−h

)
and

E
( 1
Nt

C
(N)
gel

)
≤ E

( 1
Nt
G̃

(N)
gel

)
.

The proof of this result is quite long and uses particular techniques, so we shall rather
deal with it in Appendix C.

7.2.3 End of the proof

Thanks to these two remarks, we may only study an upper-bound for the quantity of gel in
G(N). For a (one-type) configuration model, this can be done by bounding the exploration
process of a typical component by a random walk — or equivalently, by the exploration
process of a Galton-Watson tree. Since G(N) is a two-type configuration model, it is then
natural to try to bound this quantity by the exploration process of a two-type Galton-
Watson tree. We will prove in Section 7.3 the following result.

Lemma 7.6. There is a constant C, uniform for t− h and t in the compacts of (0,+∞)
and depending only on µ, such that

E
( 1
Nt
G

(N)
gel

)
≤ C(s+ h).

Taking this for granted, we can gather up all the results and end the proof. We shall
first construct the graphs C(N), G̃(N) and G(N) defined at the beginning of this proof. To
this end, note that we may define, on a large enough probability space, for each N ≥ 1,
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• the random variables IS(t) and ξ(N)
t,t−h,

• conditionally on IS(t) and ξ(N)
t,t−h, a set of Nt = #IS(t) particles with O and Y arms,

whose empirical distribution of O and Y arms is ξ(N)
t,t−h.

This begin given, we can build a uniform pairing P(N) of the O arms, and conditionally
on P(N), a graph constructed by activating independently each Y arms with probability
1− e−(s+h), and then choosing a uniform pairing of the activated Y arms.

Note that this last graph is precisely (in law) the graph G(N) of Section 7.2.1. If we
define EN the event that P(N) has no giant cluster, then by construction,

G̃(N) (d)= G(N)|EN . (4.24)

Now, notice that
n

(N)
t − n(N)

t+s

n
(N)
t

= 1
Nt

C
(N)
gel (4.25)

According to Lemma 7.5,

E
( 1
Nt

C
(N)
gel

)
≤ E

( 1
Nt
G̃

(N)
gel

)
.

and so, by (4.24) and (4.25),

E

n(N)
t − n(N)

t+s

n
(N)
t

 ≤ E

G̃(N)
gel
Nt


= E

G
(N)
gel
Nt

∣∣∣∣∣∣EN


≤ 1
P(EN )E

G(N)
gel
Nt

 .
Now, recall that P(N) is a uniform pairing of the O arms, and that the distribution of the
O arms is subcritical. Indeed, by Lemma 5.7 and Proposition 6.1, there is a ε > 0 such
that

lim sup
N→+∞

〈ξ̂(N)
t,t−h, k〉 ≤ (1− ε) lim sup

N→+∞
〈ξ̂(N)
t , k〉

= (1− ε) lim sup
N→+∞

〈π̂(N)
t , k〉

≤ 1− ε, a.s.

Note that 〈ξ̂(N)
t,t−h, k〉 is precisely the mean of the size-bias of the distribution of O arms.

Since Nt → +∞, Janson’s Theorem 2.6 and Remark 5.2 ensures that w.h.p., P(N) has no
giant cluster, more precisely

P(EN |IS(t), ξ(N)
t,t−h)→ 1 a.s.

so by dominated convergence
P(EN )→ 1. (4.26)
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Finally,

E

n(N)
t − n(N)

t+s

n
(N)
t

 ≤ 1
P(EN )E

G(N)
gel
Nt


and so, with (4.26) and Lemma 7.6,

lim sup
N→+∞

E

n(N)
t − n(N)

t+s

n
(N)
t

 ≤ C(s+ h)

and having h→ 0 shows the result, after recalling that C only depends on µ and is uniform
as long as t−h remains in a compact of (0,+∞). Finally, all it remains to prove is Lemma
7.6.

7.3 Quantity of gel in a two-type pairing

The goal of this section is to prove Lemma 7.6, i.e. to bound the quantity of gel in G(N),
where G(N) is constructed by, taking, conditionally on IS(t) and ξ(N)

t,t−h, a uniform pairing of
the O arms, and a uniform pairing of the Y arms. This is essentially achieved by bounding
above the exploration process of a component of the graph G(N) by the exploration process
of a (slightly supercritical) two-type Galton-Watson process, for which it is easy to check
that it has little probability of growing too big.

7.3.1 Upper-bound for the exploration process

The proof is achieved by constructing at the same time a typical component of G(N) and
its exploration process. The construction is actually quite long and technical, and we shall
defer it to Appendix D.

Let us define, for random laws γ, γO and γY on N × N, the two-type Galton-Watson
tree GWγ,γO,γY , obtained by first picking the reproduction laws, and then constructing
the Galton-Watson tree with reproduction law γ for the ancestor, γO and γY for the O
and Y individuals. We also define T (γ, γO, γY ) to be its size.

In Appendix D we will obtain, for each N , random laws γN , γON and γYN . They enjoy
the following properties, where we denote, for a law λ on N × N, λ1 and λ2 its first and
second marginal.

• The laws γN , γON and γYN are deterministic functions of IS(t) and ξ(N)
t,t−h.

• The sequences (γN ), (γON ) and (γYN ) are sharply tight.

• If (X,Y ) has law γY , then Y has, conditionally on X a binomial law with parameters
X and 1− e−(s+h).

• There are constants a,M > 0, depending only on µ and uniform for t − h and t
in the compacts of (0,+∞), such that, for any limit points γ, γO and γY of these
sequences:

〈γ1, k〉 = 〈γ2, k〉 ≤M, 〈γ1
O, k〉 ≤ 1, 〈γ2

O, k〉 ≤M(s+ h), (4.27)

and
〈γ1
Y , k〉 ≤M, 〈γ2

Y , k〉 ≤M(s+ h). (4.28)

Moreover
2γO(2, 0) ≥ a. (4.29)
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Remark 7.7. These bounds are actually quite natural. The bounds in M essentially mean
that there is a positive fraction of O or Y arms on the particles of IS(t) at time t−h, whereas
the bounds in M(s + h) stem from the fact that each Y arm is activated independently
on the time-interval [t − h, t + s] with probability 1 − e−(s+h) ≤ s + h. In fact, we
only use one important result, namely the subcriticality (Proposition 6.1), which ensures
that 〈γ1

O, k〉 ≤ 1. Hence, the Galton-Watson process with these reproduction laws is
slightly supercritical (loosely, the mean number of children of an individual is less than
1 +M(s+ h)), so we will be able to bound its extinction probability quite easily.

Finally, denote V (N) the exploration process of G(N), T (N) the hitting time of −1 by
V (N), V (N) the exploration process of a GWγN ,γ

O
N ,γ

Y
N
-tree and T (γN , γON , γYN ) it size, i.e.

the hitting time of −1 by V (N). The result is the following.

Lemma 7.8. Conditionally on IS(t) and ξ
(N)
t,t−h, there is a coupling between V (N) and

V
(N) such that, for all k ≤ T (N) ∧ α(N),

V
(N)
k ≤ V (N)

k .

In particular, T (N) ∧ α(N) ≤ T (γN , γON , γYN ) ∧ α(N), and

1
Nt

E(G(N)
gel |IS(t), ξ(N)

t,t−h) ≤ P(T (γN , γON , γYN ) > α(N)|γN , γON , γYN ).

Hence
E
( 1
Nt
G

(N)
gel

)
≤ E

(
P(T (γN , γON , γYN ) > α(N)|γN , γON , γYN )

)
.

7.3.2 Summary

Our problem finally boils down to computing the probability for that Galton-Watson tree
to grow big. That being said, now is probably the right time to look back at our results.

1. We have constructed a random graph G(N) which contains, in mean and w.h.p.,
more gel than our initial model.

2. Conditionally on Nt and ξ(N)
t,t−h, this graph is a uniform pairing of the O arms and of

the Y arms.

3. The quantity of gel in G(N) can be bounded by the probability that a two-type
Galton-Watson process grows big.

4. The reproduction laws of this Galton-Watson process are deterministic functions of
Nt and ξ(N)

t,t−h.

Because of Lemma 7.8, our main interest is now to study the limit superior of

P(T (γN , γON , γYN ) > α(N)|γN , γON , γYN ).

Be careful to the definition of this object. We first pick laws γN , γON and γYN , and then we
construct a two-type Galton-Watson tree with these reproductions laws, and we compute
(conditionally on the reproduction laws) the probability that T (γN , γON , γYN ) > α(N). To
study this limit, we will first prove an easy lemma on Galton-Watson processes, then
study the limit of these measures, and finally compute the extinction probability of the
Galton-Watson process with these limit reproduction laws.
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7.3.3 A lemma about extinction probabilities

This section is devoted to proving a lemma about extinction probabilities of some two-type
Galton-Watson processes. We consider here non-random laws. So take laws λ, λO and λY
on N × N. A couple of laws (λO, λY ) such that λO(N × {0}) < 1, λO({0} × N) < 1, and
(λO, λY ) 6= (δ(0,1), δ(1,0)) will be called non-degenerate9.

Lemma 7.9. Consider λN , λON , λYN laws on N×N and assume that they converge weakly
to λ, λO and λY for a non-degenerate (λO, λY ). Then

P(T (λN , λON , λYN ) > α(N))→ P(T (λ, λO, λY ) = +∞).

Proof. We will use the following easy result. For a r.v. X on N ∪ {+∞}, denote φX(x) =
E(rX1{X<+∞}) its generating function. Consider (XN ) and X r.v. on N ∪ {+∞} and
denote φn = φXN and φ = φX . Then the following equivalences hold.

XN converges to X in total variation

⇔ P(Xn = k)→ P(X = k) for all k ∈ N ∪ {+∞}.

⇔
∑
k∈N |P(Xn = k)− P(X = k)| → 0

⇔
∑
k∈N∪{+∞} |P(Xn = k)− P(X = k)| → 0

⇔ φn converges to φ uniformly on [0, 1]

⇔ φn converges pointwise to φ on [0, 1].

Denote respectively gN , gON , gYN , the generating functions of the sizes of the Galton-
Watson trees T (λN , λO, λY ), T (λON , λON , λYN ) and T (λYN , λON , λYN ), and ditto for g, gO, gY .
Then, it is well-known that for r ∈ [0, 1]{

gON (r) = rφON (gON (r), gYN (r))
gYN (r) = rφYN (gON (r), gYN (r)) , gN (r) = φN (gON (r), gYN (r)).

For r ∈ [0, 1), the system has a unique solution. For r = 1 and in the non-degenerate
cases, it has the only solution (1, 1) in the (sub)critical case, and two solutions, (1, 1) and
another “smaller” one, in the supercritical case (see [24]).

Now, by uniform convergence of φON and φYN , for every r ∈ [0, 1), every limit point of
(gON (r), gYN (r)) (which is a bounded sequence) verifies{

gO(r) = rφO(gO(r), gY (r))
gY (r) = rφY (gO(r), gY (r)).

This system has a unique solution, so (gON (r), gYN (r)) converges to that unique solution.
For r = 1, (gON (1), gYN (1)) is the smallest solution to{

gON (1) = φON (gO(1), gY (1))
gYN (1) = φYN (gO(1), gY (1)). (4.30)

Hence, every limit point of (gON (1), gYN (1)) solves{
gO(1) = φO(gO(1), gY (1))
gY (1) = φY (gO(1), gY (1)).

9This is just the two-dimensional equivalent to the condition that the reproduction law is not δ1 for a
one-type Galton-Watson process, see [24].
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In the (sub)critical case, this system has a unique solution (1, 1), so (gON (1), gYN (1))→ (1, 1).
In the supercritical case, it has two solutions (see [24]), one of them being (1, 1). However,
it is easy to see, by uniform convergence of (φON , φYN ) to (φO, φY ), that for large enough
N , the smallest solution of (4.30) remains bounded away from (1, 1), so (gON (1), gYN (1))
actually converges to the solution of the system above which is not (1, 1).

Using the first result recalled, we have thus proven that (gON , gYN ) to (gO, gY ) uniformly
on [0, 1]. So gN (r) = φN (gON (r), gYN (r)) converges to g(r) = φ(gO(r), gY (r)) uniformly
on [0, 1]. Hence, T (λN , λON , λYN ) converges to T (λ, λO, λY ) in total variation, whence the
result follows.

7.3.4 Extinction probability

The goal of this section is to compute a lower-bound for P(T (γ, γO, γY ) < +∞), where γ,
γO and γY are defined in Appendix D. Having said that, we will only used the properties
of these measures given in Section 7.3.1. Proposition 7.2 will be then easily proved after
gathering the pieces.

Lemma 7.10. There is a constant C depending only on µ and uniform for t − h in the
compacts of (0,+∞) such that

P(T (γ, γO, γY ) = +∞|γ, γO, γY ) ≤ C(s+ h), a.s.

Proof. Let us first proceed with some remarks on the reproduction laws. We denote φ,
φO and φY the generating functions of γ, γO and γY . We may then reformulate (4.27),
(4.28) and (4.29) by saying that there are constants a,M > 0, depending only on µ and
uniform for t− h and t in the compacts of (0,+∞), such that a.s.:

∂φ

∂x
(1, 1) = ∂φ

∂y
(1, 1) ≤M,

∂φO
∂x

(1, 1) ≤ 1, ∂φO
∂y

(1, 1) ≤M(s+ h),

and
∂φY
∂x

(1, 1) ≤M,
∂φY
∂y

(1, 1) ≤M(s+ h)

and finally
∂2φO
∂x2 (0, 0) ≥ a.

Now, let us condition on γ, γO and γY . Let pO (resp. pY ) be the extinction probability
of a Galton-Watson process GWγO,γO,γY started from a O (resp. Y) ancestor, and let
q = P(T (γ, γO, γY ) = +∞). Then, it is well-known (see e.g. [24]) that


pO = φO(pO, pY )
pY = φY (pO, pY )
q = φ(pO, pY ).

Let us first compute an easy a priori bound on pY . Recall from Section 7.3.1 that, if
(X,Y ) has law γY , then Y has, conditionally on X, a binomial law with parameters X
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and 1− e−(s+h). Hence, we have

pY = φY (pO, pY )
≥
∑
j≥0

γY (j, 0)pjO

=
∑
j≥0

γ1
Y (j)(e−(s+h))jpjO

≥ 1 +
∑
j≥0

jγ1
Y (j)(e−(s+h)pO − 1) = 1 + 〈γ1

Y , k〉(e−(s+h)pO − 1),

the last inequality coming from the convexity of x 7→
∑
γ1
Y (j)xj . Hence,

1− pY ≤ 〈γ1
Y , k〉(s+ h) + 〈γ1

Y , k〉(1− pO) ≤M(s+ h) +M(1− pO).

Now, Taylor’s formula gives, for x, y ∈ [0, 1],

φO(x, y) = φO(1, 1) + (x− 1)∂φO
∂x

(1, 1) + (y − 1)∂φO
∂y

(1, 1)

+
∫ 1

0
(1− t)

(
∂2φO
∂x2 (1− t+ tx, 1− t+ ty)(x− 1)2

+ ∂2φO
∂y2 (1− t+ tx, 1− t+ ty)(y − 1)2

+ ∂2φO
∂x∂y

(1− t+ tx, 1− t+ ty)(x− 1)(y − 1)
)

dt

≥ 1− (1− x)− (1− y)M(s+ h) + a

2(x− 1)2

and hence

pO = φO(pO, pY ) ≥ pO−(1−pY )M(s+h)+a

2(pO−1)2 ≥ pO−M(s+h)2−M(1−pO)(s+h)+a

2(pO−1)2

so
−M2(s+ h)2 −M(s+ h)(1− pO) + a

2(pO − 1)2 ≤ 0,

whence it is easy to deduce that

1− pO ≤
M

a

(
1 +
√

1 + 2a
)

(s+ h).

Finally, by convexity, we may compute the following bound, for some constants C ′,
C ′′, C depending only on M and a, and thus depending only on µ and uniform when t−h
and t remain in the compacts of (0,+∞):

q = φ(pO, pY )

≥ φ(1, 1)− ∂φ

∂x
(1, 1)(1− pO)− ∂φ

∂y
(1, 1)(1− pY )

≥ 1− C ′s− C ′′s
≥ 1− Cs.
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7.3.5 End of the proof

Finally, it just remains to prove Lemma 7.6, which is now straightforward. Indeed, Lemma
7.8 gives

E
( 1
Nt
G

(N)
gel

)
≤ E

(
P(T (γN , γON , γYN ) > α(N)|γN , γON , γYN )

)
.

Then, Lemma 7.9 and dominated convergence yield

lim sup
N→+∞

E
( 1
Nt
G

(N)
gel

)
≤ E

(
P(T (γ, γO, γY ) = +∞|γ, γO, γY )

)
and the proof is completed by an appeal to Lemma 7.10.

7.4 Proof of Proposition 7.3

Let us now recall Proposition 7.3. We shall only sketch the proof, for the details are
actually quite similar to the proof of Proposition 7.2 we just made, and to the proof of
the asymptotic independence, Proposition 9.1, below.

Proposition 7.11. For any t, s ≥ 0,

lim sup
N→+∞

V
(
n

(N)
t − n(N)

t+s

)
= 0.

Proof. Fix t, s ≥ 0 and let us condition IS(t). First note that

n
(N)
t − n(N)

t+s = 1
N

∑
i∈IS(t)

1{i∈IG(t+s)}

so that V
(
n

(N)
t − n(N)

t+s | IS(t)
)
equals

1
N2

∑
i∈IS(t)

(
P(i ∈ IG(t+ s))− P(i ∈ IG(t+ s))2

)
+ 1
N2

∑
i,j∈IS(t), i 6=j

(P(i ∈ IG(t+ s) | j ∈ IG(t+ s))− P(i ∈ IG(t+ s)))× P(j ∈ IG(t+ s))

The first term is lesser than 1/N . Let us deal with the other. For i 6= j ∈ IS(t), we
need to compare the probability that i falls into the gel on the time interval [t, t+s] to the
probability that this happens knowing that j falls into the gel on that same time-interval.
But, on the one hand, there is probability tending to 0 that i and j find themselves in the
same cluster (this can be seen as for the proof of Proposition 9.1 below).

When this is not the case, and that j falls into the gel, i binds to arms outside the
cluster of j, and thus the event that it falls into the gel has the same probability as the
event that it falls into the gel in a model where the cluster of j has been removed. This
cluster has size α(N)� N , so removing it obviously barely changes the empirical measure
of the number of arms, and so the probability that i falls into the gel. Hence

P(i ∈ IG(t+ s)|j ∈ IG(t+ s))− P(i ∈ IG(t+ s))→ 0

whence the result follows easily.
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8 Self-organized criticality

We now turn to the proof of the actual criticality of ρt after gelation, i.e. of the following
result.

Proposition 8.1. For t ≥ Tgel,

lim
N→+∞

〈ρ(N)
t , k〉 = 1.

Proof. Let us assume that, up to some subsequence n(N) → n and ρ(N) → ρ sharply in
D(R+,R+) and D(R+,M1). Define m(t) = 〈ρt, k〉, and recall from Proposition 7.1 that
it is continuous. Assume now by contradiction that for some t0 > Tgel, on an event of
positive probability,

m(t0) < 1− 2ε.

We now work conditionally on that event.
Now obviously,

m(Tgel) = 1

so by continuity of m, there is a Tgel < t < t0 such that

1− 2ε > m(t) > m(t0).

Hence,
〈ρ(N)
t , k〉 < 1− ε

w.h.p.
This implies that the concentration remains constant on a small time-interval after

t. Note indeed that by Lemma 5.4, the state in solution is a configuration model condi-
tioned on having no giant cluster. Hence, we may carry out the exact same proof as for
Proposition 7.2, the only difference being that one has to replace

〈γ1
O, k〉 ≤ 1

by
〈γ1
O, k〉 ≤ 1− ε.

The subsequent calculations then easily show that, for small enough s, the extinction
probability of the (now strictly subcritical) Galton-Watson process therein is 0, and thus

lim supE

n(N)
t+s − n

(N)
t

n
(N)
t

 = 0

for small enough s. Hence, only a negligible proportion of the particles fall into the gel
in the time interval [t, t + s]. This readily implies that m cannot decrease on [t, t + s].
Repeating the argument, we have thus shown that when m is strictly below 1, then it has
to grow, thus yielding a contradiction.
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9 Asymptotic independence

9.1 Introduction and assumptions

The aim of this section is to prove Proposition 2.20 and Corollary 2.21.
Recall from Lemma 5.4 that at time t, the configuration of the particles in solution has,

conditionally onNt and π(N)
t , the same distribution as a configuration model CM(Nt, π

(N)
t )

conditioned on having no giant cluster. That being said, we will assume in all the proofs
that the state at time t is really a configuration model CM(Nt, π

(N)
t ) without conditioning.

This could be dealt with by “going back in time”, as is explained in Lemma 5.7: if we look
at the particles of IS(t) at a time t−h < t close to t, then their configuration is a subcritical
configuration model conditioned on having no giant cluster, and the subcriticality implies
that this conditioning is asymptotically trivial.

We already used in details that technique in the proof of Proposition 7.1. In the
present case10, this would only lead to technical contortions and cumbersome notation.
The interested reader could anyhow deal with that issue with ease, using in particular the
continuity properties of Proposition 7.1, as well as (4.19).

Besides, in all the proofs, we assume the convergence of all the tight quantities of
Proposition 7.1.

Finally, the constants in the proofs will only depend on µ and t. We will thus only
write a constant C which may change from line to line, but only depends on µ and t.

9.2 Proof of Proposition 2.20

9.2.1 Goal

Let us first recall Proposition 2.20. Denote P̃(k)
t the probability knowing that particle 1 is

in solution at time t and has k activated arms. Obviously, 1 has no particular rôle, and
could be replaced by any i ∈ [N ]. Recall that i t↔ j means that i and j are neighbors at
time t, and let, for i t↔ j, C\jt (i) be the cluster of i when deleting the link(s) between i
and j. Finally, let β(N) be a sequence such that 1� β(N)� α(N).

Proposition 9.1. For any t ≥ Tgel,

lim
ε→0

1
ε

lim sup
N→+∞

P̃(k)
t

(
|Ct+ε(1)| > α(N), #{i : i t↔ 1, |C\1t+ε(i)| < α(N)− β(N)} 6= 1

)
= 0.

In words, this means that, if 1 falls into the gel on the time-interval [t, t+ ε], then that
is because one and only one of the subclusters to which it is attached has reached a large
size α(N)− β(N).

9.2.2 Preliminary lemmas

The first part of the proof consists of several lemmas which are quite easy to prove upon
knowing that we are dealing at time t with a critical configuration model. We denote here
P̃t the probability knowing that 1 is in solution at time t (but once again, this could just
be any other particle).

Lemma 9.2. For any t ≥ 0, the following holds.
10And, if one looks closely, as was already the case in the proof of Proposition 7.1.
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1. One has
lim
N→∞

P̃t
(
∃i 6= j : i t↔ 1, j t↔ 1, j ∈ C

\1
t (i)

)
= 0. (4.31)

This limit also holds for any k ≥ 0 when replacing P̃t with P̃(k)
t .

2. For any δ > 0 there exists A large enough and depending only on δ, µ, t, k such that

lim sup
N→∞

P̃(k)
t (|Ct(1)| ≥ Aε−2) ≤ δε. (4.32)

3. For any k ≥ 2, there exists a constant C depending only on δ, µ, t, k such that for
any `i, `j,

lim sup
N→+∞

P̃(k)(|C\1t (i)| = `i, C
\1
t (j) = `j |i

t↔ 1, j t↔ 1) ≤ C`−3/2
i `

−3/2
j . (4.33)

Proof. Recall that we may assume, up to minor modifications, that the state in solution at
time t is, conditionally on Nt and π(N)

t , a configuration model CM(Nt, π
(N)
t ). The lemma

is thus only a result on the configuration model. Note however that the parameters of the
configuration model are random.

1. For the first result, note that, conditionally on Nt, π(N)
t and Ct(1) ≤ α(N) the event

{∃i 6= j : i t↔ 1, j t↔ 1, j ∈ C
\1
t (i)}

is included in the event that Ct(1) has at least one cycle. But Ct is a critical config-
uration model, and the law of the number of arms is not degenerate, i.e. equal to
δ2/2, because of (4.18). Hence, Bertoin and Sidoravicius’ result [4] ensures that in
that case a typical cluster is a tree, and thus has no cycle. In particular (and since
Nt → +∞), Ct(1) has no cycle w.h.p., i.e.

lim
N→+∞

P̃t
(
∃i 6= j : i t↔ 1, j t↔ 1, j ∈ C

\1
t (i)|Nt, π

(N)
t

)
= 0 a.s.

The result follows after taking expectations and using dominated convergence.

2. The second part of the lemma would be well-known if the parameters of the config-
uration model were deterministic: this is essentially stating that the law of the size
of a critical Galton-Watson has a tail which decreases in t−1/2.
We need to be a little more careful here. We first need to define precisely the
exploration process of a configuration model. This is explained in Appendix A., and
we shall employ the same notation.

Condition first on Nt and π(N)
t , and take n = Nt, 1 � f(n) � N . When working

under P̃(k)
t , we may slightly modify our coupling by further imposing V (1) = V (1) =

V (1) = k.
In the construction of the exploration process, we construct a family H such that

H lH.

To this list correspond a measure ρ, i.e., for U a uniform r.v. on [0, 1], ρ is the law
of φH(U).
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Recall that H is constructed by removing a small11 number f(Nt) to the size-biased
list of the number of arms of the Nt initial particles. Hence ρ is very close to ρ(N)

t .
It is not hard, though a bit long, to make this result more precise. The details are
already given in the case of the two-type uniform pairing of Appendix D, so we shall
not provide them here. We can actually show, thanks to the bounds of Lemma 5.1,
that there are constants c and M such that, for any η > 0 and w.h.p.

〈ρ, k〉 ≤ 1 + η, c ≤ 〈ρ, k2〉 ≤M, 〈ρ, k3〉 ≥ c.

Now, under P̃(k), 1 has k neighbors. Then, recall from Proposition A.3 that the size
of its connected component is bounded by the hitting time T of −1 by a random
walk V started from k − 1, whose law of the steps is ρ.

On the one hand, the probability that V never reaches −1 can be bounded by a
constant depending only on η and c. Since η can be chosen as small as we wish
independently of c, we can take it such that

P(T = +∞) ≤ ε.

Then, Berry-Esseen’s theorem ensures that we can find C, which depends only on
M and c, such that

P(T ≥ k, T < +∞) ≤ Ck−1/2.

Finally, we obtain

P̃(k)(|Ct(1)| ≥ Aε−2) ≤ P(T ≥ Aε−2)
≤ ε+ CA−1/2ε,

so (4.32) is verified for large enough A.

3. The last part of the lemma is a similar reasoning. All one has to do is to modify
slightly the coupling of Appendix A by imposing that the exploration process vis-
its 1, then the component of i, then the component of j, provided these two last
components are disjoint, which happens w.h.p. by the first part of the lemma.

9.2.3 An intermediary result

We will now prove the following result, which readily implies Proposition 9.1.

Lemma 9.3. For any t ≥ Tgel,

lim
ε→0

1
ε

lim sup
N→+∞

P̃t
(
∃i 6= j; i t↔ 1, j t↔ 1, |C\1t+ε(i)| ∧ |C

\1
t+ε(j)| ≥

√
β(N)

)
= 0.

Moreover, the same limit holds when replacing P̃t by P̃(k)
t .

11Because n = Nt is of order N and f(n)� N
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Proof. Take i t↔ 1 (if there is any), and consider its cluster disconnected from 1, C\1t (i).
Say it has size k. It is then easy to see (for instance as a variation of the proof of Lemma
7.6) that there is a constant C such that any of the k particles of C\1t (i) has, on the time
interval [t, t+ε], probability less than Cε2 to activate at least one arm and that the cluster
to which it connects falls into the gel (informally, these two events are independent and
each has probability of order ε to happen).

Then, using (4.33), we get

lim sup
N→+∞

P̃t
(
|C\1t (i)| = k, |C\1t+ε(i)| ≥

√
β(N) | i t↔ 1

)
≤ Ck−1/2ε2. (4.34)

On the other hand, suppose that 1 is in solution at t and both i 6= j are its direct
neighbors. Assume, what is true w.h.p. thanks to (4.31), that C

\1
t (i) and C

\1
t (j) are

disjoint. Then, knowing that C\1t (j) reaches size
√
β(N) on [t, t + ε] is independent from

the event that C\1t (i) activates one arm on [t, t+ ε]. The latter happens with probability
bounded by

C |C\1t (i)|ε ∧ 1 ≤ C(|C\1t (i)|ε ∧ 1)

taking C > 1 if necessary. This, with Equation 4.34 provides

lim sup
N→+∞

P̃t
(
|C\1t (i)| = k, |C\1t (j)| = k′, |C\1t+ε(i)| ≥

√
β(N), |C\1t+ε(j)| ≥

√
β(N)

)
≤ Ck−1/2ε2(k′)−3/2(k′ε ∧ 1).

(4.35)

Note that we broke the symmetry in this equation.
It remains to sum the different contributions. We can decompose the event

Et :=
{
|C\1t+ε(i)| ∧ |C

\1
t+ε(j)| ≥

√
β(N)

}
according to the size of these two components at time t. First, according to (4.35)

lim sup
N→+∞

P̃t
(
Et, |C\1t (i)| ≤ δε−1, |C\1t (j)| ≤ δε−1

)

≤Cε3
δε−1∑
k=1

δε−1∑
k′=1

k−1/2(k′)−1/2 ≤ C
√
δε−1
√
δε−1ε3 ≤ Cδε.

Still with (4.35),

lim sup
N→+∞

P̃t
(
Et, 1 ≤ |C\1t (i)| ≤ δε−1, δε−1 < |C\1t (j)| ≤ Aε−2

)

≤Cε2
δε−1∑
k=1

k−1/2
Aε−2∑

k′=δε−1+1
(k′)−3/2 ≤ Cε2

√
δε−1

∑
k′≥1

(k′)−3/2 ≤ Cδ1/2ε3/2.

The same inequality holds for the symmetric event, using the symmetric version of (4.35).
Finally,

lim sup
N→+∞

P̃t
(
Et, δε

−1 < |C\1t (i)| ≤ Aε−2, δε−1 < |C\1t (j)| ≤ Aε−2
)

≤Cε3
Aε−2∑

k=δε−1+1
k−1/2

Aε−2∑
k′=δε−1+1

(k′)−1/2 ≤ Cδε2.
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We may then conclude with (4.33) that

lim sup
N→+∞

P̃t (Et) ≤ P̃t
(
|C\1t (i)| ≥ Aε−2, |C\1t (j)| ≥ Aε−2

)
+ C(δε+ δ1/2ε3/2 + δε)

≤ δε+ C(δε+ δ1/2ε3/2 + δε),

so, since δ is arbitrary, the result follows.
The corresponding result for P̃(k)

t is readily obtained by using the fact that the law of
the number of arms of a particle in solution at t has finite variance, see (4.19).

9.2.4 Conclusion

From Lemma 9.3, Proposition 9.1 follows easily. Indeed, say that 1 has k neighbors at time
t. Then, Lemma 9.3 states that, if Ct(1) reaches size α(N) on the time-interval [t, t + ε],
then at most one of the subclusters of 1 has reached size

√
β(N). But if none does, then

Ct(1) has size less than k
√
β(N) + 1, thus less than α(N) for large N .

Consequently, if 1 falls into the gel on [t, t + ε], then exactly one of its subclusters
reaches size greater than

√
β(N). A fortiori, this cluster also reaches size α(N)−k

√
β(N)

which is greater than α(N)− β(N) for large enough N , whence Proposition 9.1 follows.

9.3 Proof of Corollary 9.4

9.3.1 Rates of gelation

Recall that we define

fk(t) := lim
ε→0

1
ε

lim
N→+∞

P̃(k)
t (|Ct+ε(1)| > α(N))

where the limit is along a subsequence where p(N) converges, to some p, say. Recall that
Np(N)(r, k) is the number of particles in solution at time t with k active arms and r arms
in total.

The first question concerns the definition of fk(t): it is a priori not-clear that it should
be well-defined. Rather than writing cumbersome formulas as we just did, we shall work a
bit informally, the details being easy but long to write, and quite similar to what we just
did. We hope that doing so will be more informative for the reader.

Let us rather start by considering

fr,k(t) := lim
ε→0

1
ε

lim
N→+∞

P̃(k)
t (|Ct+ε(1)| > α(N)|a1 = r)

where we recall that a1 is the total number of arms of 1. This conditioning has positive
probability as soon as µ(r) 6= 0, and we will implicitly only consider such r.

We just saw in Proposition 9.1 that if 1 falls into the gel, this is due (up to terms of
order o(ε)) to one (and only one) of its subclusters C\1(i) reaching size α(N)− β(N), and
this event has probability of order ε. The probability that, on top of that, 1 activates one
arm has thus order ε2. Hence, if fr,k is well-defined, then so is fk and fr,k = fk for all
r ≥ k.

Let us check that fr,k is well-defined. So assume that 1 is in solution at time t, has k
active arms at that time and r arms in total. On the time interval [t, t+ ε], it may:

• activate one arm: this happens with probability (r − k)(1− e−ε);

• fall into the gel: this happens with probability P̃(k)
t (|Ct+ε(1)| > α(N)|a1 = r);
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• activate one arm and fall into the gel;

• activate more than two arms.

We just saw that the probability of the third event is of order ε2, and the probability of
the fourth is obviously of order ε2.

As a consequence, up to terms of order ε2, p(N)(r, k) changes on the interval [t, t+ ε]
thanks to three phenomena.

• A particle in solution at time t with k active arms and r in total activates one arm:
for each of them, this happens with probability (r − k)(1− e−ε).

• Such a particle falls into the gel: this happens with probability P̃(k)
t (|Ct+ε(1)| >

α(N)|a1 = r).

• A particle in solution at time t with k − 1 active arms and r in total activates one
arm: for each of them, this happens with probability (r − k + 1)(1− e−ε).

Hence, we may write

pt+ε(r, k)− pt(r, k) = (r − k + 1)(1− eε)pt(r, k − 1)− (r − k)(1− eε)pt(r, k)

+ P̃(k)
t (|Ct+ε(1)| > α(N)|a1 = r) + o(ε).

(4.36)

According to Proposition 7.1, p(n, k) is Lipschitz-continuous, and thus is a.e. differen-
tiable. This equation thus implies that

P̃(k)
t (|Ct+ε(1)| > α(N)|a1 = r)

is a.e. differentiable, and thus fr,k, and then fk, are well-defined a.e.

9.3.2 Relation to the number of active arms

The proof of the following corollary is now easy.

Corollary 9.4. For all t ≥ 0, fk(t) = kf1(t).

Proof. Because of Proposition 9.1, we can write

P̃(k)
t (|Ct+ε(1)| ≥ α(N)) =

∑
i
t↔1

P̃(k)
t (|C\1t (i)| ≥ α(N)− β(N)) + o(ε). (4.37)

Let us define, for i t↔ 1,

g(t) = lim
ε→0

1
ε

lim
N→+∞

P̃(k)
t (|C\1t (i)| ≥ α(N)− β(N)).

This quantity is readily seen to be well-defined, and it does not depend on i, since the
state at time t is a configuration model, and thus all the subclusters attached at 1 have
the same law. In particular (4.37) gives

fk(t) = kg(t).

Hence g1(t) = f1(t) and the result follows.
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10 Evolution in time

We shall now end our proof. Since the tightness of the quantities we study, (n(N)) and
(π(N)), has been proved, and the evolution in time is essentially given in the previous
section, it just remains to prove the uniqueness of the limit point of these quantities,
which is a far easier matter.

10.1 Evolution of p(r, k)
The evolution of p(r, k) has been described in Section 9.3.1. From that, it is straightfor-
ward to deduce a PDE for its generating function.
Proposition 10.1. Any limit point p of (p(N)) enjoys the relation

dpt
dt (r, k) = −pt(r, k)(kf(t) + (r − k)) + (r − k + 1)pt(r, k − 1).

In particular, the generating function

ht(x, y) =
∑
r,k≥0

pt(r, k)xkyr, x, y ∈ [0, 1),

solves the PDE
∂ht
∂t

= x(1− f(t)− x)∂ht
∂x

+ (x− 1)y∂ht
∂y

, (4.38)

with initial condition h0(x, y) = Gµ(y).
Remark 10.2. In this statement, the derivatives have to be understood in the weak sense,
or, in other words, one should write the equation in the integral form. However, the
Lipschitz-continuity of p(r, k) ensures that it is the integral of its derivative, so there is
no harm in doing so and we rather write derivatives to have clearer notations.

10.2 Solution to the PDE

The solution to this PDE is easy to obtain with the method of characteristics.
Proposition 10.3. The PDE (4.38) has a unique solution given, for x, y ∈ [0, 1), by

ht(x, y) = Gµ
(
ye−t(1 + xθ(t)/θ′(t))

)
,

where
θ(t) =

∫ t

0
exp−

(∫ s

0
(1− f(r)) dr

)
ds.

Proof. It is easy to check that the given function is actually a solution to the PDE. To see
that it is the only one, take ht a solution to (4.38), and consider

ϕ
(1)
t (x, y) = xθ′(t)

1− xθ(t) , ϕ
(2)
t (x, y) = yet(1− xθ(t)).

Then, one may readily check that ht(ϕ(1)
t (x, y), ϕ(2)

t (x, y)) is constant in t, and hence

ht(ϕ(1)
t (x, y), ϕ(2)

t (x, y)) = Gµ(y), t ≥ 0. (4.39)

Now, note that, for each t, (ϕ(1)
t , ϕ

(2)
t ) is a bijection from [0, 1)2 to [0, 1)2 with inverse

function
(x, y) 7→

(
x

θ′(t) + xθ(t) , ye
−t
(

1 + x
θ(t)
θ′(t)

))
.

Plugging this values in (4.39) shows that the only possible solution is the one given in the
statement.
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10.3 Consequences

This formula allows to compute many quantities related to pt(r, k), by extracting the
coefficients of the representation in power series of ht. Let us point out at the following,
where we denote

σ(t) = e−t
(

1 + θ(t)
θ′(t)

)
.

• To begin with, we get

pt(r, k) = µ(r)e−rt
(
r

k

)(
θ(t)
θ′(t)

)k
.

• The mass at time t is

nt =
∑
r,k≥0

pt(r, k) = ht(1, 1) = Gµ(σ(t)).

• The probability that a particle has k activated arms, knowing that it is in solution and
has r arms in total is (

r

k

)(
θ′(t)

θ(t) + θ′(t)

)r−k ( θ(t)
θ(t) + θ′(t)

)k
.

In particular, each arm of a particle in solution is activated independently with probability
θ(t)/(θ(t) + θ′(t)).

• The sequence (πt(k)) has generating function

Gπt(x) = 1
nt
Gµ(e−t(1 + xθ(t)/θ′(t))) = 1

nt
Gµ(σ(t)x+ e−t(1− x)).

10.4 Recovering the rate of gelation

In the previous statements, everything depends on f , which is, at this point, unknown.
However, we may recover it as follows. First, recall from Proposition 8.1 that, for t > Tgel,
πt is critical, i.e. 〈π̂t, k〉 = 1. Knowing Gπt , this implies that

(σ(t)− e−t)G′ν(σ(t)) = Gν(σ(t)). (4.40)

One can readily check that this equation uniquely determines σ(t), and so f(t) as well.
We may even obtain the following formula

f(t) = σ′(t)
e−t − σ(t) .

Hence f , and thus every quantity, is uniquely determined, and so this ends our proof of
Theorem 2.11.

10.5 Passing to the limit

Let us now see what happens when time tends to infinity. First, note that σ(t) lies in the
compact [0, 1] and, according to (4.40), any of its limit point η solves

ηG′ν(η) = Gν(η).

This equation has a unique solution, so σ(t) converges to this η (which is the same as in
Equation (4.4)). In particular, we obtain the results of Corollary 2.12. Let us remind that
they allow to recover the results of [44], which was our initial goal.
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A Exploration process of a configuration model

A.1 Definition

The exploration process (Vk, k ≥ 0) of the configuration model with a fixed degree sequence
is defined for example in Chapter 10 of [54]. We shall remind its construction since we
need the details in some proofs. We assume that we have n particles12, particle i begin
given di arms. Without loss of generality, we may assume that d1 ≤ · · · ≤ dn. Define
Dn = (d1, . . . , dn). Recall that the configuration model CM(n,Dn) is obtained by picking
a uniform pairing of the arms.

The vertices of the graph will be revealed through the exploration process. We will
thus consider two sets of vertices, namely the set E of already explored vertices, and the
set U of unexplored ones. We also define three sets of arms, namely the sleeping half edges
S, the awaken ones A and the dead ones K.

Step 0 Initially, U = {1, . . . , n}, S is the set of all arms, and V0 = 0.

Step 1 When there are no awaken arms (that is A = ∅, or equivalently (Vm) just reached
a new infimum), choose a vertex, say i, uniformly at random in U . Put i in E,
and awake all its half edges {(i, 1), . . . , (i, di)} (that is, put them in A). If we have
already recorded m steps of V , then we record the (m+ 1)-th by setting

Vm+1 = Vm + di − 1.

Step 2 When A 6= ∅, pick one arm uniformly at random in A (say ej,nj ), and pick another
arm uniformly at random in A∪S (say ek,nk). Kill those two arms. At this juncture,
there are two possibilities.

a) Either the second arm that we just picked was asleep (i.e. ek,nk ∈ A). Then
this means that we are connecting vertex j to vertex k which had not yet been
explored. This obviously does not create a cycle. We then put k in E, and
awake all its remaining arms. If we have already recorded m steps of V , then
we record the (m+ 1)-th by setting

Vm+1 = Vm + dk − 2,

and then go on with the exploration.
b) Or the second arm that we picked was already activated. Then this means that

we are connecting vertices j and k, which were already explored at previous
steps of the exploration. This also means we just found a cycle in the explored
component. We do not need in that case to awake any new arm. But more
importantly, we update our path and lower its value by 2. That is, if the last
recorded value of V was Vm = k we leave the first m− 1 steps of V unchanged,
but correct Vm to k − 2.

Remark A.1. The important feature of this algorithm is that the size of a connected
component corresponds to the number of recorded steps of V between reaching times of
new infima. More precisely, the size of the first explored component is the hitting time of
−1 by V , the size of the second is the hitting time of −2, and so on.

12n will not necessarily be N !
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A.2 Remarks

At any step of the exploration, let ∆(U) = (di)i∈U denote the #U -uplet of the degrees of
the unexplored vertices, so in particular ∆(U) is ordered.

• Any time we start the exploration of a new component (i.e. perform Step 2.a)),
the corresponding increment for V , shifted up by one, is that of a uniformly chosen
element in ∆(U).

• Now, recall that S = {(i, j) : i ∈ U} is the set of sleeping arms. If U = {i1, . . . , i#U},
we define

H(S) =


di1times︷ ︸︸ ︷
di1 , . . . , di1 , . . . ,

di#U times︷ ︸︸ ︷
di#U , . . . , di#U

 .
Note that this uplet is ordered.

Any step of the exploration process which does not start the exploration of a new
component corresponds to choosing uniformly at random a pair of distinct arms in
A×A ∪ S.

– If we choose the second arm in A we will record no new step for V , and update
its current final value by −2, an event of probability

#A− 1
#A− 1 + #S .

– If we choose the second arm in S, an event of probability

#S
#A− 1 + #S ,

we record a new step for V , and this step, shifted up by one, is that of a
uniformly chosen element of H(S).

The exact distribution of the steps of V is quite complicated, because the distribution
of the degrees of U evolves as we go along with the exploration. Note, however, that when
n is large, this distribution should not vary too much during the first f(n) steps of V ,
when f(n)/n is small. We exhibit in the next paragraph a natural coupling of V with a
path V , respectively V such that (Vi, i ≤ f(n)) will be bounded above by (V i, i ≤ f(n)),
respectively below by (V i, i ≤ f(n)).

A.3 Some notations

Let p ∈ N∗, Ap := (d1 ≤ · · · ≤ dp) a p-uplet of integers, and the natural stick-breaking of
[0, 1] in p parts,

I1 = [0, 1/p), I2 = [1/p, 2/p) . . . , Ip = [(p− 1)/p, 1].

For x ∈ [0, 1], let

φAp(x) =
p∑
i=1

di1{Ij}(x).
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Definition A.2. For p, q ∈ N∗, and Ap an ordered p-uplet, Bq and ordered q-uplet of
integers, we say Ap lBq if

∀x ∈ [0, 1] φAp(x) ≤ φBq(x).

Recall now that Dn : d1 ≤ · · · ≤ dn is the initial sequence of degrees, and fix f(n) < n.
From Dn, we may define other lists

Dn := df(n)+1 ≤ · · · ≤ dn, Dn := d1 ≤ · · · ≤ dn−f(n).

In that case, when less than f(n) steps of the exploration process have been performed,
we have

Dn l ∆(U) lDn.

In the same vein, we may define

Hn :=


df(n)+1times︷ ︸︸ ︷

df(n)+1, . . . , df(n)+1, . . . ,

dntimes︷ ︸︸ ︷
dn, . . . , dn


and

Hn :=


d1times︷ ︸︸ ︷
d1, . . . , d1, . . . ,

dn−f(n)times︷ ︸︸ ︷
dn−f(n), . . . , dn−f(n)


so that

Hn lH lHn

when less than f(n) steps of the exploration process have been taken.

A.4 Reformulation with uniform variables

We may reformulate our algorithm in terms of continuous independent uniform random
variables. More precisely, let (Ui,j , Ui,j,`, i ≥ 1, j ≥ 1, ` ≥ 1) be independent uniform
random variables on [0, 1], and proceed as follows.

a) V0 = 0.

b) If we have recorded k steps of V , and Vk is at its jth new infimum, then we choose the
next explored vertex in such a way that

Vk+1 − Vk = φ∆(U)(U1,j)− 1.

c) If

• we have recorded k steps of V ,
• V is not currently at a new infimum,
• we last recorded the ith step in the jth excursion of V above new infima, and

for some ` ≥ 0 we just recorded the `th correction of Vk,

then we choose the pair of arms in A×A ∪ S in such a way that{
Vk is corrected by − 2 if Ui,j,`+1 ≤ (#A− 1)/(#A− 1 + #S),
Vk+1 − Vk = φH(S)(Ui+1,j) if Ui,j,`+1 > #S/(#A− 1 + #S).
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It remains to observe that when less than f(n) vertices have been explored, we must
have

g(n) := 0 ≤ (#A− 1)/(#A− 1 + #S) ≤ g(n) :=
∑n
i=n−f(n)+1 di∑n−f(n)
i=1 di

.

A.5 Lower- and upper-bound

We are now able to define V and V .

a. Let V 0 = 0.

b. If we have recorded k steps of V (resp. V ), and Vk (resp. V ) is at its jth new infimum,
then we let

V k+1 − V k = φD(U1,j)− 1
(
resp.V k+1 − V k = φD(U1,j)− 1

)
.

c. If

• we have recorded k steps of V (resp. V ),

• it is not currently at a new infimum,

• we last recorded the ith step in the jth excursion of V (resp. V ) above new
infima, and then for some ` ≥ 0 we just recorded the `-th correction of V k

(resp. V k),

then{
V k is corrected to (V k − 2) ∨ (infm≤k V m − 1) with probability g(n)
V k+1 − V k = φH(Ui+1,j)− 1 with probability 1− g(n)

and respectively,
V k+1 − V k = φH(Ui+1,j)− 1.

Define now Tj = inf{k : Vk = −j}, T j = inf{k : V k = −j} and T j = inf{k : V k = −j}.
We then have the following result, which readily follows from our construction.

Proposition A.3. As long as less than f(n) steps of the exploration process have been
taken, we have:

V T j+k ≤ VTj+k ∀k ∈ {0, . . . , (T j+1 − T j) ∧ (f(n)− Tj)}, (4.41)

VTj+k ≤ V T j+k ∀k ∈ {0, . . . , (Tj+1 − Tj) ∧ (f(n)− Tj)}. (4.42)

This implies in particular that for j fixed, if the jth connected component of the
graph is fully explored once f(n) vertices have been explored, its size is bounded above
by T j+1 − T j (resp. it is bounded below by T j+1 − T j).

Also, the size of the component of a uniformly chosen vertex is bounded above by T 1,
and below by f(n) ∧ T 1.
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B Tightness

B.1 Reminder of the results

In this appendix, we prove Proposition 7.1. We start with the tightness of (n(N)), from
which the tightness of the other quantities follows easily. Our two main tools are Propo-
sitions 7.2 and 7.3 proved in Section 7, which we recall now.

Proposition B.1. For every compact subset K of (0,+∞), there is a constant C, de-
pending only on this compact and µ, such that, for all t ∈ K and s ≤ 1,

lim sup
N→+∞

E

n(N)
t − n(N)

t+s

n
(N)
t

 ≤ Cs.
Proposition B.2. For any t, s ≥ 0,

lim sup
N→+∞

V
(
n

(N)
t − n(N)

t+s

)
= 0.

These results are enough to prove the expected result, as we shall now see.

B.2 Proof of the tightness of (n(N))
Fix η > 0 and let 0 < δ < Tgel ∧ 1, 0 < T− < Tgel and T+ > Tgel + 1. Consider the
partition t0 = 0 < t1 = T− < t2 < · · · < tn = T+ of [0, T+], with ti+1 = ti + δ/2 for
1 ≤ i < n− 1 and δ/2 ≤ tn − tn−1 < δ. Define also

wN (u, v) = sup
t,s∈[u,v)

∣∣∣n(N)
t − n(N)

s

∣∣∣ .
Now, Propositions B.1 and B.2 ensure that we can find N0 such that, for N ≥ N0 and

1 ≤ i < n,

E
(
n

(N)
ti − n

(N)
ti+δ

)
≤ E

n(N)
ti − n

(N)
ti+δ

n
(N)
ti

 ≤ (K + 1)δ

and
V
(
n

(N)
ti − n

(N)
ti+δ

)
≤ δ2

and thus Chebyshev’s inequality yields, for C = (K + 2)/η2,

P
(
n

(N)
ti − n

(N)
ti+δ > η

)
≤ Cδ2.

Now, note that, when s, t ∈ [ti, ti+1] for some i and s < t, since n(N) is decreasing, the
inequality

n(N)
s − n(N)

t ≤ n(N)
ti − n

(N)
ti+1

holds. Note also that, by Proposition 4.1, since T− < Tgel,

lim sup
N→+∞

P(n(N)
0 − n(N)

T− > η) = 0,

and hence, for large enough N ,

P(n(N)
0 − n(N)

T− > η) ≤ δ
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We can finally deduce that, for large N ,

P
(

max
i=0...n−1

wN (ti, ti+1) > η

)
≤ Cδ2 × n+ δ ≤ (C + 1)δ

and thus
lim sup
N→+∞

P
(

max
i=0...n−1

wN (ti, ti+1) > η

)
≤ (C + 1)δ.

Having δ → 0 finally ensures that, along with the tightness at fixed t of Lemma 5.3, the
usual tightness criterion in D(R+,R+) (see [6]) is verified, whence the tightness follows.
Finally, Propositions B.1 and B.2 and dominated convergence readily ensure the regularity
of the trajectories.

B.3 Proof of the tightness of the other processes

Let us write Mw
1 for the space M1 endowed with the tight topology (of convergence in

law), and Mv
1 when it is endowed with the vague topology. Let us recall a useful result

of tightness in D(R+,Mw
1 ) (see [50]): a sequence (λ(N)) of M1-valued processes is tight in

D(R+,Mw
1 ) if and only if

(i) it is tight in D(R+,Mv
1), i.e. (λ(N)(k)) is tight in D(R+,R) for every k ∈ N,

(ii) for any vague limit point λ of λ(N) in D(R+,Mv
1), λ has mass 1.

Let us first introduce an easy result. Denote

Na
(N)
t =

N∑
i=1

At(i)

the total number of activated arms at time t. Recall that KN = N〈µ(N), k〉 is the total
number of arms at time 0, and thatKN/N → 〈µ, k〉 by Assumption 2.1. ThenKN−Na(N)

t

is a pure-death process with rate 1, so it is easy to check that (KN − a(N)
t )/N converges

in D(R+,R+) to 〈µ, k〉e−t, so

a
(N)
t

N
−→
N→∞

〈µ, k〉(1− e−t)

in D([0,+∞),R+).
We will now check item (i). Take α > 0 and recall that convergence to a continuous

limit for Skorokhod’s topology is equivalent to uniform convergence on every compact.
Fix a compact K ⊂ [0,+∞) and assume, with the above result and and the tightness of
(n(N)), that (up to some subsequence which we do not write) (n(N)) and (a(N)) converge.
Then, uniform convergence ensures that there is a ε > 0 such that, w.h.p.,

sup
t∈K

sup
s≤ε
|a(N)
t − a(N)

t+s | < α, sup
t∈K

sup
s≤ε
|n(N)
t − n(N)

t+s | < α

so it is easy to see, along with (4.18), that there is a constant C such that w.h.p.,

sup
t∈K

sup
s≤ε
|π(N)
t (k)− π(N)

t+s (k)| < Cα. (4.43)

From this inequality, tightness in D(R+,Mv
1) follows readily.

Item (ii) is readily deduced from (4.19), which finally shows the tightness of (π(N)) in
D(R+,Mw

1 ).
Finally, Hölder’s inequality and (4.19) ensure that similar inequalities as (4.43) can be

obtained for the other quantities, whence their tightness follows. The continuity of the
limit points also stems directly from these bounds.
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C Mass in Smoluchowski’s and Flory’s models

The goal of this appendix is to prove Lemma 7.5, which we remind now.

Lemma C.1. For every i ∈ IS(t), one has

P
(
|C(N)(i)| > α(N)|IS(t), ξ(N)

t,t−h

)
≤ P

(
|G̃(N)(i)| > α(N)|IS(t), ξ(N)

t,t−h

)
.

In particular
E
(
C

(N)
gel |IS(t), ξ(N)

t,t−h

)
≤ E

(
G̃

(N)
gel |IS(t), ξ(N)

t,t−h

)
and

E
( 1
Nt

C
(N)
gel

)
≤ E

( 1
Nt
G̃

(N)
gel

)
.

Recall it concerns two graphs C(N) and G̃(N) that are constructed as follows.

• Condition on IS(t) and ξ(N)
t,t−h.

• Pick a uniform pairing of the O arms, conditioned on having no giant cluster.

• To get C(N), activate each Y arm independently after an exponential time with
parameter 1. Bind the first two activated arms in solution, then the two next, and
so on (do not forget that clusters fall into the gel in the meantime), until time s+h.

• To get G̃(N), activate each Y arm independently after an exponential time with
parameter 1. Bind the first two activated arms in solution or not, then the two
next, and so on, until time s+ h.

Then Lemma C.1 informally states that a typical component of C(N) is larger than a
typical component of G̃(N), from which it is easy to deduce that there is more gel in C(N)

than in G̃(N). Indeed, we may write

C
(N)
gel =

∑
i∈IS(t)

1{|C(N)(i)>α(N)|}

and the second part of the lemma is obtained by taking conditional expectations, whereas
the last is deduced by taking expectations and noticing that Nt is IS(t)-measurable.

To keep things as simple as possible, notice that the only difference between the two
graphs C(N) and G̃(N) lies in the algorithm used to bind the Y arms. So we may condition
on IS(t), ξ(N)

t,t−h, the initial pairing of O arms and the activated Y arms on the time-interval
[0, s + h]. This being done, all the randomness is given by a uniform ordering of the Y
arms. We can thus consider the following problem.

• Start from a certain configuration of (not giant) clusters, each with a certain number
of available arms. Say there are K particles 1, . . . ,K in all.

• Choose a uniform ordering of these available arms.

• Bind the first two activated arms in solution, then the two next, and so on (again,
clusters of size α(N) fall into the gel in the meantime), to get a configuration D.

• Bind the first two activated arms in solution or not, then the two next, and so on,
to get a configuration D̃.
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In particular, we can construct D and D̃ by discrete-time algorithms. Now, all we have to
prove is the following.

Lemma C.2. For every p ∈ [K],

P (|D(p)| > α(N)) ≤ P
(
|D̃(p)| > α(N)

)
.

Proof. To make it easier to study, it is interesting to change the algorithm a little.

• For D, pick at each step an arm uniformly at random, and pair it to another one
chosen uniformly at random in the same substrate (i.e. in solution if the first arm
is in solution, or in the gel if the first arm is in the gel).

• For D̃, pick at each step an arm uniformly at random, and bind it to another one
chosen uniformly at random. Note that it is just a uniform pairing of the arms, or,
in other words, a configuration model.

It is obvious that the final states in solution (but we are bot interested in the configuration
of the gel) of these two constructions have the same law as D and D̃. We will call the first
algorithm Smoluchowski’s algorithm, the second Flory’s.

Now, fix an particle p ∈ [K]. To get the result, we shall couple these two processes so
as to provide two cluster configurations D0 and D̃0 enjoying the following properties.

1. The configuration D0 and D have the same law.

2. The cluster D̃0(p) has the law as D̃(p).

3. If |D0(p)| > α(N), then |D̃0(p)| > α(N).

This will prove that P(|D(p)| > α(N)) ≤ P(|D̃(p)| > α(N)), thus proving the result.
Let us now define this coupling. It will be clear from the construction that this can be

done on a large enough probability space. Recall that we say that an arm is free if it is
not linked. Let σ be a uniform ordering of the arms. Pick, say, σ = σ0, which is fixed in
all the steps of the two following algorithms. In the sequel, the phrase “the smallest arm”
will thus refer to the smallest for that ordering.

1. At step 0, all the arms are active.

2. At each step, consider the smallest active arm. If it is in solution, bind it to another
arm chosen uniformly in solution and deactivate the both. If it is in the gel, choose
another arm uniformly in the gel, and deactivate the both.

We thus get a cluster configuration D0, defined on {σ = σ0}.
Now, let us condition on the steps of this algorithm, and let us construct another

cluster configuration D̃0. At each step k of the first algorithm, we let Sk the set of active
arms in solution, Gk the set of active arms in the gel, sk and gk their cardinality. We will
construct the cluster of p as follows.

1. As long as |D̃0(p)| ≤ α(N), consider the smallest free arm b of D̃0(p). Since D̃0(p)
has size less than α(N), then b is deactivated at a step k in the above algorithm,
and it is in solution at that time13. Hence, b is linked to at arm b′ ∈ Sk. Then

13If b is deactivated at this step and is in the gel, then this gel has been created by earlier steps of the
first algorithm. Earlier steps of the current algorithm should hence also have created some gel.
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(i) with probability (sk − 1)/(sk + gk − 1), link b and b′;
(ii) with probability gk/(sk + gk − 1), link b to an arm chosen uniformly in Gk.

2. Proceed until no more arms are available (i.e. the whole cluster is formed) or D̃0(p) >
α(N). When, if ever, D̃0(p) reaches a size greater than α(N), proceed as for the
configuration model: chose at each step an arm of the cluster (say the smallest) and
pair it to another arm chosen uniformly among all free arms, until the whole cluster
is constructed.

Note first that this algorithm is well-defined. There is indeed no problem if we always
create the same configuration as in the first algorithm, i.e. we only perform step (i).
Now, say that we do perform step (ii), linking an arm b of D̃0(p), deactivated at step k
of the first algorithm, and an arm b′ ∈ Gk. An issue would arise if, when continuing the
algorithm, we had to link an arm to b′. But, as long as D̃0(p) has not reached size α(N),
the steps of the first algorithm that we consider are steps when b′ is not in the gel. Hence,
we can only bind either to a particle bound at a step before k of the first algorithm, and
which is thus not b′; or to a particle in the gel at a step before k, which is not b′ as we just
said. However, this stops holding when |D̃0(p)| > α(N), and that is why the algorithm is
modified should this occur.

It is easy to see that if |D0(p)| ≥ α(N), then |D̃0(p)| ≥ α(N). Note indeed that, when
constructing D̃0(p), then either we create the exact same cluster as D0(p) and so this is
obvious. Or, at some step, we pick an arm in the gel. Then, continuing the algorithm
with the particle to which this arm is attached, we see by recurrence that it can only grow
to a size greater than α(N).

Let us now prove that D̃0(p) has indeed the law of the cluster of p in a configuration
model. Note that, in our second algorithm, an arm which is deactivated at step k of the
first algorithm is bound to another arm chosen uniformly at random among all available
arms at that step. So take b the smallest arm of p. If b is the smallest arm of all, then it
is deactivated at step 1 of the first algorithm, and is thus bound to another arm chosen
uniformly among all. Now, say it is the second smallest arm of all, and the smallest is b1.
Then

• with probability 1/(2K − 1), b1 chooses b at step 1 of the first algorithm, so b is
bound to b1 with that probability. If b1 chooses another than b, then b will not bind
to b1. So b and b1 are bound with probability 1/(2K − 1).

• For b′ 6= b, b1, with probability (2K − 3)/(2K − 1), b1 chooses an arm different from
b and b′. Then, at step 2 of the first algorithm, b choses b′ (which is available) with
probability 1/(2K − 3). So the probability that b is linked to b′ is

2K − 3
2K − 1

1
2K − 3 = 1

2K − 1 .

It is easy to continue according to the order of b. Then, upon conditioning on this first
link, it is not difficult but a tad tedious to check that each other arm chooses another
arm uniformly at random among all available arms. This reasoning holds until D̃0(p)
reaches size α(N), after what each arm still chooses another one uniformly in solution by
construction.

We have thus shown that, on {σ = σ0}, if |D0(p)| > α(N) then |D̃0(p)| > α(N), and
that D̃0(p) has the same law as D̃(p). Obviously, this is still true after integrating over σ.
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Finally, upon integrating over σ, it is easy that the cluster D0(p) we get is a typical
cluster for Smoluchowski’s evolution, i.e. D0(p) (d)= D(p). Indeed, after integration, at
each step, an arm is chosen uniformly and bound to another arm chosen uniformly in the
same substrate. This is precisely Smoluchowski’s algorithm.

We have thus verified the three conditions we requires above, so this ends our proof.

D Exploration process of a two-type uniform pairing

D.1 Goal

Our aim in this appendix is to prove Lemma 7.8 and show the properties of the measures
γN , γON and γYN stated in Section 7.3.1. To this end, similarly to the construction of an
upper-bound for the exploration process of a configuration model described in Appendix
A, we provide here a construction of a process bounding the exploration process of a two-
type uniform pairing. It is actually the exploration process of a two-type Galton-Watson
tree.

We shall first condition on IS(t) and ξ(N)
t,t−h in the notations of Lemma 5.7. Then, we

will build a graph and its exploration process, as well as an upper-bound for it. The latter
depends only on measures γN , γON and γYN which are deterministic functions of #IS(t) and
ξ

(N)
t,t−h.

Hence, in the first part of our construction, we fix Z ∈ N∗ particles, whose empirical
distribution of O and Y arms is denoted ξ, i.e. there are ξ(i, j)Z particles with i O arms
and j Y arms. We construct a graph G by activating each Y arms independently with
probability 1− e−(s+h), and then picking independently a uniform pairing of the O arms
and a uniform pairing of the Y arms.

D.2 Construction of a typical component

Let us now explain how to build a typical component of G, that is, we chose a vertex i
uniformly at random and build a connected component which has the same law as the
connected component of i in G. We define in the same time the exploration process (Vk)
of that component. To avoid introducing irrelevant random variables, we also take an
arbitrary ordering of the arms, so in the following, “the smallest arm” corresponds to the
smallest arm for that order.

We may explore and construct a typical component of the graph G as follows. The
(O or Y) arms may be in three states : S(leeping), D(ead) or A(wake). At each step, we
denote

• SO and SY the sets of sleeping O and Y arms, S = SO ∪ SY is the set of sleeping
arms.

• AO and AY are the set of awaken O and Y arms, A = AO ∪AY is the set of awaken
arms.

• D is the set of dead arms.

• g is the generation (i.e. the graph-distance to i), and the index g means “at genera-
tion g”, so for instance Ag is the set of active arms at generation g.

Step 0 g = 0, k = 0, SO (resp. SY ) is the set of all the O (resp Y) arms, Ai = ∅ for all
i ≥ 0, D = ∅, and k = 0, Vk = V0 = 0.
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Step 1 Chose a vertex i uniformly in [Z]. We then perform the following steps of the
algorithm.

• With probability 1− e−(s+h), each arm of [i]Y goes independently into AY0 , say
there are p of them.

• AO0 ← [i]O, A0 ← AO0 ∪AY0 , A← A0.

• SO ← SO\[i]O, SY ← SY \[i]Y , S ← SO ∪ SY .

• g ← g + 1 = 1.

• k ← k + 1 = 1.

Then, we let
Vk = V1 = V0 + dOi + p− 1 = dOi + p− 1.

Step 2 As long as A 6= ∅, or equivalently, as long as V has not reached −1, we perform
the following steps.

• As long as AOg 6= ∅, consider b the smallest arm in AOg and perform the following.

1. Chose b′ uniformly in AO ∪ SO\{b}, link b and b′, and let D ← D ∪ {b, b′}.
2. If b′ ∈ AOg , we let AOg ← AOg \{b, b′}, Ag ← AOg ∪ AYg , A = ∪r≥0Ar, and

update Vk to Vk − 2.
3. If b′ ∈ AOg+1, we let AOg ← AOg \{b}, Ag = AOg ∪ AYg , AOg+1 ← AOg+1\{b′},
Ag+1 ← AOg+1 ∪AYg+1, A = ∪r≥0Ar, and update Vk to Vk − 2.

4. If b′ ∈ SO, we let j the vertex to which it is attached, and perform the
following.
– AOg+1 ← AOg+1 ∪ [j]O.
– With probability 1−e−(s+h), each arm of [j]Y goes into AYg+1, say there

are p of them.
– Ag+1 ← AOg+1 ∪AYg+1, A← ∪r≥1Ar.
– SO ← SO\[j]O, SY ← SY \[j]Y , S ← SO ∪ SY .
– We take another step of the exploration process

Vk+1 = Vk + dOj + p− 2.

– Finally, k ← k + 1.

• As long as AYg 6= ∅, proceed as above with obvious changes.

• If Ag = 0, we let g ← g + 1.

Step 3 When A = ∅, the algorithm stops.

Note that at each step, only Ag and Ag+1 for some g can be non-empty. Moreover, it
is easy to check that at the end of the algorithm, we have constructed a typical component
of G. More precisely, we have constructed it generation by generation : first, we take a
vertex uniformly at random. Then, we add the neighbors of that vertex (which form the
first generation), then their non yet explored neighbors (the second generation), and so
on.
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D.2.1 Construction using uniform variables

Let us first introduce some notations. We call an increasing list a matrix H with three
rows such that H2,i + H3,i is increasing in i.

Consider a set of arms B = {b1 = (i1, j1), . . . , bk = (ik, jk)}. We can associate to B an
increasing list

H(B) =

 b1 . . . bk
dOi1 . . . dOik
dYi1 . . . dYik

 ,
implicitly assuming that B is labeled in such a way that di1 ≤ · · · ≤ dik , i.e. such that the
list is increasing. For the sake of definiteness, if ties occur, we order the columns in the
order of arms.

Now, consider an increasing list H of length k, and let, for 1 ≤ r < k, Ir = [(r −
1)/r, i/r), and Ik = [(k − 1)/k, 1]. Then, we define

φ1
H(x) =

∑k
r=1 H1,r1Ir(x),

φ2
H(x) =

∑k
r=1(H2,r,H3,r)1Ir(x),

φ+
H(x) =

∑k
r=1(H2,r + H3,r)1Ir(x), x ∈ [0, 1].

We will simply write φ1
B for φ1

H(B), and so on.
For a set S = {i1, . . . , ik} of vertices, we also denote

H(S) =

 i1 . . . ik
dOi1 . . . dOik
dYi1 . . . dYik

 ,
implicitly assuming again that this list is ordered. We will also write e.g. φ1

S for φ1
H(S).

Remark D.1. The interest of these notations is that, when U is a uniform random variable
on [0, 1], φ1

B(U), is a uniformly chosen arm in B, say j, φOB(U) and φYB(U) are the number
of O and Y arms of j, and φ+

B(U) the total number of arms of j, whereas φ1
S(U) is a

uniformly chosen vertex in S.
Now, we will precise how we chose the arms or vertices at random, in order to bound

by above the exploration process (Vk). To this end, we take U0, Ug,r, U
O
g,r, U

Y
g,r, U

′
g,r,l with

g, r, l ≥ 1 independent uniform r.v. on [0, 1].

Step 0 We initialize the variables as before, and let r = 1 and l = 1.

Step 1 Choose i = φ1
[Z](U0). Call b1, . . . , bdYi the dYi Y ordered arms of i. Then, bp goes

in AY0 if and only if U1,p ≤ 1− e−(s+h). We then update the other variables as above
and let

V1 = dOi +
dYi∑
p=1

1{U1,p≤1−e−s} − 1.

Step 2 As long as A 6= ∅, or equivalently, as long as V has not reached −1, we perform
the following steps.

1. If AOg 6= ∅, we chose the smallest b ∈ AOg and proceed as follows.
• If U ′g,r,l ≤ (#AOg −1)/(#AO + #SO−1), then we take b′ = φAOg \{b}(U

O
g,r) ∈

AOg , update the variables accordingly and Vk to Vk − 2. Also l← l + 1.
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• If (#AOg − 1)/(#AOg + #SO − 1) < U ′g,r,l ≤ (#AO − 1)/(#AO + #SO − 1),
then we take b′ = φAOg+1

(UOg,r) ∈ AOg+1, update the variables accordingly
and Vk to Vk − 2. Also l← l + 1.
• Else, we take b′ = φSO(UOg,r) ∈ SO. Call j the vertex to which b′ is attached,

and denote b1, . . . , bdYj its ordered Y arms. Then, bp goes in AYg+1 if and
only if Ug+1,p ≤ 1 − e−(s+h). We then update the variables as above and
let

Vk+1 = Vk + dOj +
dYj∑
p=1

1{Ug+1,p≤1−e−(s+h)} − 2.

Also r ← r + 1, k ← k + 1.
• If now AOg = ∅, then we let r ← 1 and start over Step 2 again.

2. If AOg = ∅, AOg 6= ∅, we proceed as above with obvious changes.
3. If Ag = 0, we let g ← g + 1, r ← 1, l← 1.

Step 3 When A = ∅, the algorithm stops.

At a given generation g, the variables r and l account respectively for the number of
new vertices visited and the number of corrections we observe.

D.2.2 Upper-bound for the exploration process

We will now define an upper-bound (V ) for the exploration process. We assume here that
our set of Z particles is actually a subset of our initial N particles. This allows us to
control the total number of arms on the particles.

Construction of new lists Consider the initial number of arms on the N particles
a1, . . . , aN and let L be the list of the ai’s ranked in the increasing order (which is thus
constituted of NµN (0) times 0, NµN (1) times 1, and so on). Consider as well the size-
biased list L′ of size KN = N〈µ(N), k〉 created by writing a1 times a1, then a2 times a2,
etc., and reorder it in the increasing order.

• From the initial increasing list H([Z]), we may consider another list H created by
replacing its second and third rows by the Z last elements of L, to get a list called
H.

• From H(SO), we may construct another increasing list HO as follows.

– Replace the third row of H(SO) by the #SO last elements of L′;
– delete its α(N) first columns (if there are that many, else keep only the last

column);
– subtract 1 to each term of its second row.

• From H(SY ), we may construct another increasing list HY as follows.

– Replace the second and third rows of H(SY ) by the #SY last elements of L′;
– delete its α(N) first columns (if there are that many, else keep only the last

column);
– subtract 1 to each term of its third row.
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Remark D.2. The key in the construction of these lists is that, when U is a uniform
variable on [0, 1], (dO, dY ) = φ2

[Z](U) and (δO, δY ) = φ2
H(U) then dO ≤ δO and dY ≤ δY .

If now (dO, dY ) = φ2
SO

(U) and (δO, δY ) = φ2
HO(U), then dO − 1 ≤ δO and dY ≤ δY as

long as less than α(N) steps of the exploration process have been performed. If finally
(dO, dY ) = φ2

SY
(U) and (δO, δY ) = φ2

HY (U), then dO ≤ δO and dY − 1 ≤ δY as long as
less than α(N) steps of the exploration process have been performed. This allows us to
bound the exploration process defined above, and makes the proof of Lemma 7.8 below
quite obvious.

Construction of the upper-bound We now define our upper-bound exploration pro-
cess as follows.

Step 0 We first let V 0 = 0, g = 1, dOr = dYr = 0 for all r ≥ 1.

Step 1 We then chose (dO, dY0 ) = φ2
H(U0). We let dO1 ← dO,

dY ←
dY0∑
p=1

1{U1,p≤1−e−(s+h)},

dY1 ← dY1 + dY = dY , and
V 1 = dO + dY − 1.

Step 2 As long as V has not reached −1, or equivalently, as long as dOg + dYg 6= 0 just
after an update of g, we perform the following steps.

1. As long as dOg 6= 0, we let (dO, dY0 ) = φ2
HO(UOg,r), dOg+1 ← dOg+1 + dO,

dY ←
dY0∑
p=1

1{Ug+1,p≤1−e−(s+h)},

dYg+1 ← dYg+1 + dY , and

V k+1 = V k + dO + dY − 1

and r ← r + 1, k ← k + 1.
2. When dOg = 0, we let r ← 1, and as long as dOg 6= 0, we proceed as above with

obvious change.
3. When dYg = 0, we let g ← g + 1.

Step 3 When V k = −1, or equivalently, when dOg + dYg = 0 just after an update of g, the
algorithm stops.

Three measures and a Galton-Watson process For U a uniform r.v. on [0, 1], let
(dO, dY ) = φ2

HO(U) (resp. (dO, dY ) = φ2
HY (U)) and γO (resp. γY ) be the law ofdO, dY∑

p=1
1{U1,p≤1−e−(s+h)}

 .
For (dO, dY ) = φ2

H(U) let also γ be the law of (dO, dY ). Then, it is important to notice
that V is actually the walk associated to a two-type (O and Y) Galton-Watson tree
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• visited by breadth-first-search, where O individuals are visited, at each generation,
before Y individuals,

• with reproduction law γ for the ancestor,

• with reproduction laws γO and γY for the O and Y individuals.

In particular, this implies that the equivalence “Vk = −1 ⇔ dOg + dYg = 0 just after an
update of g” holds.

Now, denote T the hitting time of −1 by V and T the hitting time of −1 by V . Let
Ggel the number of particles in giant clusters in G. It is then easy to check the following.

Lemma D.3. For k ≤ T ∧ α(N), Vk ≤ V k. In particular, T ∧ α(N) ≤ T ∧ α(N), and

1
Z
E(Ggel) ≤ P(T > α(N)).

Proof. The comparison between V and V is easy but tedious. Using Remark D.2, we may
indeed check that, at each step of the algorithm, the increments we add are bigger for V
than for V (when less than α(N) steps have been taken), and that we take (at least) more
steps for V than for V .

This result obviously implies that T∧α(N) ≤ T∧α(N). Finally, note that T is precisely
the size of the connected component of the vertex chosen at Step 0 of the algorithm, so
T > α(N) if and only if this vertex is in the gel. Since this vertex is chosen uniformly at
random, then

E
( 1
Z
Ggel

)
= P(T > α(N))

whence the result follows.

This shows precisely Lemma 7.8. What it remains to do now is to check the properties
of the measures given in Section 7.3.1.

D.3 Convergence of the measures

We will now translate the previous result in the random setting we are interested in. Recall
that we have fixed t > 0, s > 0, a small h ∈ (0, t) and assume, by tightness, that n(N)

t and
ξ

(N)
t,t−h converge sharply to some nt and ξt,t−h, in the notations of Lemma 5.7. We are thus
dealing with

• a number Nt = n
(N)
t N of particles,

• with empirical distribution of O and Y arms given by ξ(N)
t,t−h,

• with empirical distribution of O arms given by π(N)
t,t−h(·) =

∑
j≥0 ξ

(N)
t,t−h(·, j) (which is

obviously the same as in Lemma 5.6).

Recall that KN = 〈µ(N), k〉N is the total number of arms at time 0, and define

• Ot,t−h = 〈ξ(N)
t,t−h, i〉Nt the number of O arms, o(N)

t,t−h = Ot,t−h/KN ,

• Yt,t−h = 〈ξ(N)
t,t−h, j〉Nt the number of Y arms, y(N)

t,t−h = Yt,t−h/KN .
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Conditionally on IS(t) and ξ(N)
t,t−h, the construction from the previous Section D.2.2 can

be carried out. More precisely, for each instance of IS(t) and ξ(N)
t,t−h, we obtain a random

graph G, and, as above, laws γ, γO and γY , which are deterministic functions of IS(t) (or
merely Nt = #IS(t)) and ξ(N)

t,t−s, and which we rather call γN , γON and γYN to insist on the
dependence on N . We will first study their limit.

Recall from Lemma 5.1 that, uniformly for t in the compact sets of (0,+∞), there is
a constant c > 0 such that, with high probability, n(N)

t > c and y(N)
t,t−h > c.

An easy reasoning, as in the proof of Lemma 5.6 ensures that the particles of IS(t)
have, at time t−h > 0, a number of active arms of order N , or, in other words, that there
is a constant, say c > 0 again (which can also be chosen to be uniform for t− h and t in
the compacts of (0,+∞)), such that o(N)

t,t−h > c w.h.p
Finally, the sharp convergence of ξ(N)

t,t−h ensures the convergence of the sequences o(N)
t,t−h

and y
(N)
t,t−h to some (random) ot,t−h ≥ c and yt,t−h ≥ c, and the convergence of π(N)

t,t−h to
some πt,t−h.

Convergence of γN To construct a random variable with law γN , we may proceed as
follows. First, consider MN the CDF of the law of the initial number of arms of a particle
picked uniformly at random in [N ] (i.e. MN is the CDF of µ(N)). Take U a uniform r.v.
on [0, 1] independent from all the variables and (ei). Then(

M−1
N (1− n(N)

t + n
(N)
t U),M−1

N (1− n(N)
t + n

(N)
t U)

)
has law γN , where M−1

N is the generalized right-inverse of MN .
Now,MN converges a.e. toM , the CDF of µ. Hence (see e.g. the proof of Skorokhod’s

theorem in [6, Th. 25.6, p. 333]), M−1
N → M−1 a.e. Then, it is easy to check, since U is

uniform and ct > 0, that

M−1
N (1− n(N)

t + n
(N)
t U)→M−1(1− nt + ntU), a.e.

so, if γ denotes the law of (M−1(1−nt +ntU),M−1(1−nt +ntU)), then γN → γ weakly.

Convergence of γO
N Now, take (ei) an independent family of exponential with param-

eter 1 random variables, independent from all the variables, and denote

B(k) =
k∑
i=1

1{ei≤s+h},

so B(k) has a binomial (k, 1 − e−(s+h)) distribution. Call RN the (random) CDF of the
law of π̂(N)

t,t−h. Let also QN be the CDF of a uniformly chosen element in L′, that is of
µ̂(N). Then, the variable(
R−1
N

(
α(N)
N

+
(

1− α(N)
N

)
U

)
, B

(
Q−1
N

(
1− o(N)

t,t−h + α(N)
KN

+
(
o

(N)
t,t−h −

α(N)
KN

)
U

)))
has the same law14 (as random probability) as γON . The reasoning above can be easily
adapted to take into account random measures, using e.g. Skorokhod’s representation
theorem, so γON converges to a measure γO which is the law of(

R−1(U), B
(
Q−1(1− ot,t−h + ot,t−hU)

))
,

14except in the cases where o(N)
t,t−h < α(N)/N , but since o(N)

t,t−h is of order N , this obviously does not
make any difference. To avoid cumbersome notations, we ignore this issue.
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where Q = limQN is the CDF of ν and R = limRN is the CDF of π̂t,t−h.

Convergence of γY
N By still the same reasoning, γYN converges to γY , the law of(

Q−1(1− yt,t−h + yt,t−hU), B
(
Q−1(1− yt,t−h + yt,t−hU)

))
.

This all shows the first properties of γN , γON and γYN of Section 7.3.1.

D.4 Bounds on the laws

To end the proof of the other properties of these measures, all it remains to do is to prove
the bounds on the means of γ, γO and γY . Note that the inequalities we write below are
a.s., though, for notational simplicity, this will remain implicit.

Now, recall from Section D.3 that there is a constant c > 0 (depending only on the
compact and µ) such that, with high probability n

(N)
t > c, o(N)

t,t−h > c and y
(N)
t,t−h > c.

Now, by another reasoning analogous to the proof of Lemma 5.6 and using the fact that
µ([3,+∞)) > 0 (because we assume that gelation occurs), there is a constant, say c > 0
again, such that π(N)

t,t−h(2) > c. Once again, c is uniform for t − h, t in the compacts of
(0,+∞).

The marginals of a law λ are denoted λ1 and λ2. We also take a constant M greater
than 〈µ, k〉/c and 〈ν, k〉/c.

• The mean ofM−1
N (1−n(N)

t +n(N)
t U) is less that 〈µ(N), k〉/n(N)

t , so, by Fatou’s lemma,

〈M−1(1− nt + ntU), k〉 ≤ 1
c
〈µ, k〉 ≤M

and thus
〈γ1, k〉 = 〈γ2, k〉 = ∂φ

∂x
(1, 1) = ∂φ

∂y
(1, 1) ≤M.

• The first marginal of γO is π̂t,t−h, so by Proposition 6.1 and Lemma 5.6,

〈γ1
O, k〉 = ∂φO

∂x
(1, 1) ≤ 1.

• By easy computations

〈γ2
O, k〉 = ∂φO

∂y
(1, 1) ≤ 〈ν, k〉

ot,t−h
(1− e−(s+h)) ≤M(s+ h).

• By the same reasoning

〈γ1
Y , k〉 = ∂φY

∂x
(1, 1) ≤ 〈ν, k〉

yt,t−h
≤M

and
〈γ2
Y , k〉 = ∂φY

∂y
(1, 1) ≤ 〈ν, k〉

yt,t−h
s ≤M(s+ h).
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• We also need a lower-bound on

∂2φO
∂x2 (0, 0) = 2γO(2, 0).

First, note that P(R−1(U) = 2) = π̂t,t−h(2) ≥ c > 0. Now, conditionally on
R−1(U) = 2, we have, by definition and using Jensen’s inequality, that

P(B(Q−1(1− ot,t−h + ot,t−hU)) = 0|γ1
O = 2)

= E
(
exp

(
−(s+ h)Q−1(1− ot,t−h + ot,t−hU)

)
|R−1(U) = 2

)
≥ exp−

(
(s+ h)E

(
Q−1(1− ot,t−h + ot,t−hU)|R−1(U) = 2

))
≥ exp−

(
(s+ h)E

(
Q−1(1− ot,t−h + ot,t−hU)

)
/P(R−1(U) = 2)

)
≥ exp− ((s+ h)〈ν, k〉/(ot,t−hc))

and hence, since s ≤ 1,

∂2φO
∂x2 (0, 0) ≥ π̂t,t−h(2) exp− (〈ν, k〉/(ot,t−hc)) ≥ c exp− (M/c)) := a.

We have thus proved all the properties of γN , γON and γYN given in Section 7.3.1.
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