
HAL Id: tel-00631443
https://theses.hal.science/tel-00631443v1

Submitted on 12 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource allocation in hard real-time avionic systems.
Scheduling and routing problems

Ahmad Al Sheikh

To cite this version:
Ahmad Al Sheikh. Resource allocation in hard real-time avionic systems. Scheduling and routing
problems. Automatique / Robotique. INSA de Toulouse, 2011. Français. �NNT : �. �tel-00631443�

https://theses.hal.science/tel-00631443v1
https://hal.archives-ouvertes.fr

 M :

Institut National des Sciences Appliquées de Toulouse (INSA Toulouse)

Systèmes (EDSYS)

Resource allocation in hard real-time avionic systems
-

Scheduling and routing problems

28 Septembre 2011

Ahmad AL SHEIKH

Systèmes Informatiques et Systèmes Embarqués

Sanjoy BARUAH (University of North Carolina)
Yves SOREL (INRIA)

Olivier BRUN (LAAS-CNRS)
Pierre-Emmanuel HLADIK (LAAS-CNRS)

LAAS-CNRS

Frédéric BONIOL (ONERA)
Joël GOOSSENS (Université Libre de Bruxelles)

ii

Acknowledgements

First and foremost, my appreciation goes to my doctoral advisors, Dr. Olivier Brun and Dr. Pierre-
Emmanuel Hladik for their support throughout my PhD. They have successfully provided me with a
fulfilling and motivating work environment in which I have conducted my research. I thank them for
this unique experience for which I am deeply grateful.

I would also like to offer my appreciation to Dr. Balakrishna Prabhu for his support and contribution
in many occasions. His intervention had a great impact on the direction this thesis has took.

I would like to thank the Jury for having accepted to participate in my PhD defense. Beginning with
Professor Sanjoy Baruah and Professor Yves Sorel who have consecrated much of their time to review
my dissertation and give detailed feedback on my work, to Professor Frédéric Boniol and Professor Joël
Goossens who participated in examining my work and providing valuable insights to the improvement
of the quality of this thesis.

I would like to acknowledge all the participants in the research project SATRIMMAP for the sup-
port they have given me throughout the 3 years of the PhD. This support was of utmost importance and
was essential to the accomplishment of the objectives set before us.

I am extremely grateful for the mates I got to know and share offices with in the Laboratory of Ar-
chitecture and Analysis of Systems. Among them, I would like to mention Rémi Sharrock, Jean-Marie
Codol and Aurélien Gonzalez, for whom I offer my fondest regards for all of the time we have passed
together. I hope our friendship continues on.

I wish to thank my friends outside work and whom I get to call my second family: Alaa Allouch,
Houssam Arbess, Yahya Salma, Nadim Nasreddine and several others. You were there next to me when
I was in need. Without your company, life wouldn’t have been the same abroad.

Finally, I would like to dedicate this thesis to my parents, Mustafa and Mervat, who have raised,
taught, supported and guided me throughout my life.

iii

iv

Abstract

The last couple of years have seen a profound evolution in embedded architectures with the introduction
of Integrated Modular Avionics (IMA). By offering to embedded applications a standardized execution
and communication support, these architectures have allowed the consequent reduction of physical
weight and complexity. This low level reduction of complexity is opposed by an increased difficulty
in application conception and integration, as managing resource sharing is through numerous configu-
ration parameters. This thesis is devoted to two resource allocation problems that arise in conception
phases of IMA-based architectures.

The multiprocessor scheduling problem is first addressed for strictly periodic tasks, or in other
words tasks that execute indefinitely in equidistant time intervals. The objective is supposed to be
the maximization of the minimal idle time between two tasks while avoiding overlap in temporal ex-
ecutions. This allows guaranteeing a minimal evolution margin for the task executions. An integer
linear programming based formulation is first proposed for this NP-hard problem, integrating all asso-
ciated temporal and resource constraints. To extend scalability, a heuristic inspired from Game Theory
is equally introduced. In this heuristic, each task adopts a scheduling that maximizes its proper util-
ity function (related to the evolution margin of tasks). The convergence of this algorithm towards an
equilibrium point, where no task has an interest in modifying its strategy, is shown in addition to the
presence of a globally optimal equilibrium. The obtained numerical results show that this algorithm is
much faster than the exact method and gives a good approximation. To further ameliorate the quality of
obtained solutions, multi-start methods can be applied to this algorithm to supply probabilistic guaran-
tees on the optimality of attained equilibria.

In the second part of the thesis, the message routing problem between avionic functions in the
AFDX network is considered. This network allows the transmission of Ethernet frames in what is called
virtual links (VL). Each VL can be seen as a multicast tree allowing data transmission from one point of
the network to several others. An exact node-link linear formulation is first introduced. This is followed
by the proposition of a two-level heuristic that compromises between the fair load distribution and delay
minimization in the network. The obtained results show that solutions obtained by the heuristic can be
very close to those of the exact method while significantly ameliorating communication delays.

v

vi

CONTENTS

Résumé étendu 1

Introduction 23

1 Resource allocation in avionic systems 27
1.1 Evolution of avionic systems . 27
1.2 The Integrated Modular Avionics architecture . 28

1.2.1 Architecture components . 30
1.2.2 The avionics AFDX network . 30
1.2.3 Partition segregation . 31

1.3 Overview on the software development process design in avionics 35
1.3.1 Requirements analysis phase . 35
1.3.2 System design phase . 35
1.3.3 Architecture design phase . 36
1.3.4 Detailed design phase . 37
1.3.5 Coding phase . 37
1.3.6 Unit testing phase . 37
1.3.7 Integration testing phase . 37
1.3.8 System testing phase . 37
1.3.9 Acceptance testing phase . 37

1.4 The research project SATRIMMAP . 38
1.5 Objectives of the study . 38

1.5.1 Scheduling objectives . 39
1.5.2 Virtual Link routing objectives . 40

1.6 Conclusion . 41

2 State of the art 43
2.1 Introduction to real-time systems . 43

vii

viii CONTENTS

2.1.1 Hard real-time systems . 45
2.1.2 Soft real-time systems . 45

2.2 Generalities on real-time scheduling . 45
2.2.1 Real-time tasks . 46
2.2.2 Latency . 48
2.2.3 Classes of scheduling problems . 48
2.2.4 Non-preemption in scheduling problems . 49
2.2.5 Schedulability analysis . 49

2.3 Embedded systems . 51
2.3.1 Memory management . 51
2.3.2 Distributed systems . 52
2.3.3 Energy consumption . 52
2.3.4 Fault-tolerance . 53
2.3.5 Other considerations . 53

2.4 Complexity of scheduling problems . 53
2.5 Real-time scheduling algorithms . 54

2.5.1 Uniprocessor scheduling . 55
2.5.2 Multiprocessor scheduling . 57
2.5.3 Non-preemptive and strictly periodic multiprocessor scheduling 59

2.6 Theoretic concepts for the thesis . 60
2.6.1 Particularities of the study . 60
2.6.2 Some known solution strategies . 61
2.6.3 Game theory . 64

2.7 Conclusion . 65

3 MILP formulation of the scheduling problem 67
3.1 Problem definitions and modeling . 67

3.1.1 Module model . 68
3.1.2 Partition model . 69
3.1.3 Communication model . 69

3.2 Problem formulation . 70
3.2.1 Temporal scheduling constraints . 70
3.2.2 Resource constraints . 74
3.2.3 Communication delay or latency constraints 75
3.2.4 Formulation as a mixed integer linear program 77

3.3 Pre-treatment using graph theory . 79
3.4 Results . 81
3.5 Conclusion . 83

4 A best-response scheduling algorithm 85
4.1 Uniprocessor or single module scheduling . 86

4.1.1 Uniprocessor best-response . 87
4.1.2 Properties of the best-response algorithm . 88
4.1.3 Computing the best-response . 93

CONTENTS ix

4.1.4 Computing the intersection points . 95
4.2 Multiprocessor Scheduling . 97

4.2.1 Initial allocation in the multiprocessor setting 101
4.3 Multi-start with bayesian stopping rules . 101

4.3.1 Stopping rules . 103
4.4 Results . 104

4.4.1 Large scale and industrial applications . 107
4.4.2 Multi-start results . 109
4.4.3 Processor minimization context . 111

4.5 Conclusion . 112

5 Virtual Link routing 115
5.1 Virtual Links . 115
5.2 Problem description and related work . 116
5.3 Formal definition of the problem . 117
5.4 An exact node-link formulation . 118
5.5 Two-level VL routing algorithm . 119

5.5.1 Steiner tree problem . 120
5.5.2 Iterative Loading of Steiner Trees (ILST) . 122
5.5.3 Virtual Link Routing Optimization (VLRO) 124

5.6 Results . 124
5.7 Conclusion . 126

Conclusion 129

A Maximal independent set and maximum clique problems 133

B List of publications 135

Bibliography 137

x CONTENTS

LIST OF FIGURES

1.1 Example on resource allocation in federated and modular avionic architectures. 29
1.2 Composition of an Avionics system . 31
1.3 A simple AFDX network with three Virtual Links. 32
1.4 Memory segregation between partitions. 33
1.5 Partition execution in a MAF. 34
1.6 A representation of the integration process view from IMA with the V-Model approach. 36
1.7 Resource allocation and evaluation tool-set. 39
1.8 Position of the proposed tools in the development process. 40

2.1 A typical real-time system components. 44
2.2 Graphical representation of a real-time model. 47
2.3 Periodicity types in a real-time system. 47
2.4 Architectures for distributed systems with local memories. 52

3.1 Processing chain consisting of 3 partitions. 68
3.2 A processing chain λc aimed at responding to a screen zoom request. 69
3.3 Representation of the distance between two partitions. 72
3.4 Delay components for partition couple communication. 76
3.5 Scheduling can be carried out in different manners. A solution which provides better

evolution potential for partition temporal executions is chosen. 77
3.6 Impact of the evolution coefficient α on the scheduling. 78
3.7 Graph representation for a set of partitions. 80
3.8 Computation time depends on system characteristics. 83

4.1 Strategy of player 1, given the fixed strategies of players 2 and 3. Each choice of an
offset x gives rise to a certain response α1(x) . 88

4.2 Flowchart for the best-response algorithm. 90

xi

xii LIST OF FIGURES

4.3 Partition i changes its offset in the presence of two other partitions j and k. The best-
response for maximizing the evolution factors for partitions i and j is on the intersec-
tions between the lines on which these factors evolve. 94

4.4 Relative error on α for uniprocessor examples. 105
4.5 Evolution margin per partition for an example with 15 partitions. 106
4.6 Evolution of the discovered and estimated number of equilibria for a uniprocessor in-

stance. 110
4.7 The application of multi-start methods on multiprocessor examples. 111
4.8 Evolution of the discovered and estimated number of equilibria for multiprocessor in-

stances. 112

5.1 A virtual link originating at one End System and sending data to 3 others. 116
5.2 A VL can send frames with a maximum size ofMFS bytes every BAG ms. 116
5.3 Links to and from node n. 118
5.4 Steiner trees and Steiner points (green). 121
5.5 An example on obtaining a Steiner tree. 123
5.6 Topology considered for experimentations. Set of 7 AFDX switches and 6 End Systems. 125
5.7 Average delays for instances with 1000 VLs. 127

A.1 A graph G and its complementary G′. 134

LIST OF TABLES

2.1 Complexity of some scheduling problems. 55

3.1 Time required for solving the mixed integer linear program 82
3.2 The impact of pretreatment phase . 83
3.3 Two phase heuristic . 84

4.1 A uniprocessor example with 20 partitions of general non-harmonic periods. LCM
between periods is 756000 . 106

4.2 Relative error on optimality for the multiprocessor best response algorithm. xMyP
designates instances with x modules and y partitions. 107

4.3 Three scheduling problems with sizes similar to those in avionic partition scheduling
problems . 108

4.4 Three scheduling problems supplied as a benchmark 108
4.5 Comparison between MBR, BF and KS. 112

5.1 Computation times for NL and 2LH. 126
5.2 Mean average delays arising in the network. 126

xiii

xiv LIST OF TABLES

Résumé étendu

Dans le domaine avionique, les architectures embarquées connaissent depuis une dizaine d’années
une mutation profonde avec l’apparition des architectures modulaires intégrées (IMA). En offrant aux
applications embarquées un support d’exécution et de communication standard et mutualisé, ces ar-
chitectures ont permis une réduction du poids et de la complexité de l’architecture physique. Cette
réduction de la complexité au niveau bas s’est cependant traduite par une difficulté accrue de concep-
tion et d’intégration des applications car il faut gérer le partage des ressources au moyen de nombreux
paramètres de configuration. Cette thèse est consacrée à deux problèmes d’allocation de ressources qui
se posent dans le processus de conception d’une architecture IMA.

Nous étudions tout d’abord le problème de l’ordonnancement multiprocesseur de tâches strictement
périodiques, c’est-à-dire des tâches qui s’exécutent à intervalles de temps constants sur un horizon de
temps infini. L’objectif est de maximiser la durée minimale d’inactivité entre deux exécutions de tâches
tout en garantisant que les intervalles pendant lesquels elles s’exécutent ne se chevauchent pas. Ceci
garantit une marge d’évolution minimale des budgets de temps alloués aux tâches. Nous proposons en
premier une formulation exacte sous la forme d’un programme linéaire en nombres entiers intégrant de
nombreuses contraintes temporelles et de ressource.

Pour permettre le passage à l’échelle, une heuristique inspirée de la théorie des jeux a été développée
dans laquelle chaque tâche adapte à son tour son ordonnancement pour maximiser sa propre fonction
d’utilité (qui est liée aux marges d’évolution des tâches). Nous montrons la convergence de cet al-
gorithme vers un point d’équilibre dans lequel aucune tâche n’a intérêt à modifier unilatéralement sa
stratégie et établissons qu’il existe au moins un équilibre qui est globalement optimal. Les résultats
numériques obtenus montrent que cet algorithme est beaucoup plus rapide que la méthode exacte
et fournit une bonne approximation. Pour améliorer encore la qualité des solutions, nous utilisons
cette heuristique dans un algorithme multi-start qui offre des garanties probabilistes sur l’optimalité des
équilibres atteints.

Dans une seconde partie, nous considérons le problème du routage des messages échangés entre
les fonctions avioniques. Le réseau utilisé permet la transmission de trames Ethernet dans des liens

1

2 RÉSUMÉ ÉTENDU

virtuels (VL) qui se partagent les ressources du réseau de transmission. Chaque VL peut être vu comme
un arbre multicast permettant la transmission de données depuis un point du réseau vers un ou plusieurs
autres. Nous proposons tout d’abord une formulation exacte du problème de routage des VL sous la
forme d’un programme linéaire en nombres entiers de type noeuds-liens. Nous étudions ensuite une
heuristique à deux niveaux qui permet de trouver un compromis entre une distribution équitable de la
charge dans le réseau et la minimisation du délai de communication. Les résultats obtenus avec cette
heuristique montrent qu’elle permet d’avoir des solutions très proches de la méthode exacte tout en
améliorant significativement les délais de communication.

1 Présentation de la plate-forme IMA
Un système avionique est composé d’un ensemble de logiciels, d’unités de traitement, de bus de com-
munication, de senseurs et d’actuateurs qui doivent réaliser diverses fonctionnalités soumises à des
contraintes critiques de type temps réel. La conception de tels systèmes nécessite de nombreux efforts
en particulier pour réduire son poids et sa consommation. À cela s’ajoute une demande constante de
prise en charge de nouvelles fonctionnalités pour en améliorer la qualité. Cela a conduit à la standardi-
sation de leurs différents éléments, mais aussi à une augmentation de leur complexité.

A la fin des années 1990, une nouvelle architecture pour les plate-formes avioniques, baptisée In-
tegrated Modular Avionics (IMA), a été définie. La nouveauté introduite avec ces plate-formes con-
siste principalement à mutualiser les ressources d’exécution et de communication entre différents sous-
systèmes. Ces derniers doivent alors être soumis à des mécanismes de ségrégation assurant leur intégrité
et leur isolation. La mise en commun des ressources permet ainsi de réduire leur nombre et de stan-
dardiser les supports d’exécution et de communication.

Cependant le partage des ressources induit aussi de nouvelles difficultés dans la conception des
systèmes, en particulier en ce qui concerne le partage du temps, de l’espace mémoire et du réseau entre
les différents sous-systèmes.

1.1 Composants de la plate-forme IMA

L’IMA est spécifiée par l’ARINC 651 [3]. Les ressources sont désignées d’une manière générique en
tant que Line Replaceable Unit (LRU). Elles sont principalement de trois types : Core Processing Mod-
ules (CPM) qui sont les modules responsables de l’exécution des applications ; Input/Output Modules
(IOM) qui assurent les communication avec les éléments qui ne sont pas IMA, comme le Remote Data
Concentrator (RDC) qui convertit les messages entre le système et les senseurs et actuateurs ; commu-
tateurs et passerelles qui assurent le support physique de la communication.

Les CPM sont regroupés dans des cabinets qui sont des unités avec une alimentation propre. L’architecture
logicielle est basée sur le standard APEX [8] (APplication EXecutive). Celui-ci offre une interface
générique aux applications pour accéder aux services du système d’exploitation.

RÉSUMÉ ÉTENDU 3

Les application avioniques sont responsables de plusieurs fonctionnalités dans un avion. Elles sont
décomposées en un ensemble de fonctions qui ont leur propre flux d’exécution et de données. Ces
fonctions résident sur les modules d’exécution et sont partitionnées. Dans la suite, nous ne parlerons
plus que de partition pour désigner un sous-ensemble cohérent de fonctions associées à des contraintes
de temps et de ressource.

1.1.1 Ségrégation des partitions

Pour éviter la propagation de faute, deux mécanismes principaux sont mis en œuvre dans l’IMA : la
ségrégation spatiale et la ségrégation temporelle. La première consiste à allouer de manière statique
les ressources d’exécution (mémoire, nombre de port de communication, etc.) en assurant une inter-
section nulle. Quant à la ségrégation temporelle, elle consiste à allouer des tranches de temps sans
recouvrement pour que les partitions s’exécutent. Ces tranches sont fixes et déterminées en fonction
des périodes, durées et échéances des partitions.

En avionique, l’ordonnancement des partitions est donc pré-défini de manière à respecter les différents
aspects temps réel du systèmes et assure que l’exécution de chaque fonction est possible dans une durée
impartie. Dans le cadre de ce travail, nous verrons que les partitions sont caractérisées par un budget
temporel et une période qui impose une stricte répétition des tranches de temps allouées à une partition.
De plus, la séquence d’ordonnancement sur un module est définie sur une Major Frame (MAF) qui
a une durée fixe égale au plus petit commun multiple des périodes des partitions. La MAF contient
l’ensemble des dates auxquels les partitions s’exécutent et est jouée périodiquement par le système
d’exploitation.

1.1.2 Réseau de communication

La communication entre les modules est spécifiée par l’ARINC 659 [4] et s’appuie sur un réseau com-
muté Ethernet redondant et fiabilisé, nommé AFDX (“Avionics Full DupleX switched Ethernet”). Le
routage à travers les commutateurs du réseau est basé sur les adresses MAC et aussi sur la notion de
Virtual Link (VL). Un VL est un chemin logique unidirectionnel à travers le réseau qui a une unique
source et peut avoir de multiple récepteurs [14]. Ces liens sont définis par des tables statiques dans
chaque commutateur.

Pour assurer un comportement prédictible, chaque VL a une bande passante limitée et deux car-
actéristiques : le Maximum Frame Size (MFS) qui fixe la taille maximale d’une trame qui peut être
transportée à travers le VL et le Bandwidth Allocation Gap (BAG) qui impose une durée minimale en-
tre deux envois successifs de trames.

Les messages produits par une partition qui ont le même chemin dans le réseau AFDX peuvent être
regroupés dans une même message afin de minimiser le nombre de bits transférés.

4 RÉSUMÉ ÉTENDU

1.2 Allocation de ressources dans les systèmes avioniques

Le travail mené dans cette thèse est réalisé dans le cadre du projet de recherche “Safety and Time Criti-
cal Middle-ware for future Modular Avionics Platform” (SATRIMMAP) financé par l’Agence National
de la Recherche (ANR). Le consortium du projet est composé de six partenaires : Airbus, CEA LIST,
IRIT, LAAS-CNRS, ONERA et QoS Design.

Le principal objectif de SATRIMMAP est d’apporter des solutions pour réduire les difficultés liées
aux phases d’intégration et de configuration des avions. Pendant ces phases, des tables de configuration
des ressources (entrée-sortie, mémoire, ordonnancement, etc.) sont définies. La principale difficulté est
d’en garantir la cohérence, en particulier lors des changements du système ou suite à l’ajout de nou-
veaux éléments, comme l’ajout de nouvelle fonctions.

Le projet a pour ambition de fournir de nouveaux outils pour aider à la configuration et respecter
les contraintes du système. Pour cela trois points ont été abordés:

• la configuration des architectures IMA,

• la formalisation d’un modèle de configuration pour les applications embarquées,

• la définition et réalisation d’outils pour aider à la configuration.

La figure 1 décrit les différents outils dédiés à l’allocation des ressources qui ont été réalisés pen-
dant le projet. L’outil d’analyse de latence ne concerne pas le travail présenté dans cette thèse et a été
développé par un autre partenaire. Il a pour but d’évaluer les délais dans le réseau et de produire un
retour qui précise si la configuration est valide ou non.

La présente thèse se focalise autour de deux autres problèmes liés aux outils de configuration :

• La distribution des partitions sur les modules d’exécution et leur ordonnancement temporel sous
contraintes.

• Le routage des messages, sous la forme de VL, sur le réseau AFDX.

2 Etat de l’art
L’allocation des ressources sur une plate-forme avionique s’inscrit dans le contexte des systèmes temps
réel dont nous retiendrons la définition donnée par J.-P. Elloy dans [57] :

“est qualifié de temps réel le comportement d’un système informatique lorsqu’il est as-
sujetti à l’évolution dynamique d’un procédé qui lui est connecté, et qu’il doit piloter ou
suivre en “réagissant” à tous ses changements d’état.” La terminologie “temps réel” cache
donc la notion d’un temps de réaction relatif aux dynamiques du procédé à contrôler : le
système de contrôle doit réagir en temps contraint aux évolutions du procédé sachant que la
valeur de ces temps de réaction peut être à la fois conditionnée par les dynamiques internes
du procédé et le respect d’une cadence de production.”

RÉSUMÉ ÉTENDU 5

Allocation
des partitions

routage des
Virtual Links

analyse de
latence

re
to

ur

Outils d'allocation et d'évaluation des
ressources

Simulateur

Cadre de la thèse

Figure 1: Outillage pour l’allocation de resource.

Ainsi une application temps réel ne doit pas simplement répondre à des exigences fonctionnelles,
c’est-à-dire produire des valeurs correctes, mais aussi à des contraintes temporelles, c’est-à-dire pro-
duire des résultats “à temps”.

De tels systèmes sont couramment déployés dans des domaines aussi variés que l’avionique, les
télécommunications, l’automobile, le spatial mais aussi le contrôle de chanes de production, de pro-
cessus chimiques, etc. D’une manière générale, ces systèmes sont constitués d’un ensemble de calcu-
lateurs spécialisés qui reçoivent des données de capteurs, puis les traitent et calculent des commandes
adéquates, qu’ils envoient vers des actionneurs. Outre les aspects fonctionnels et temporels, d’autres
problèmes se posent pour les systèmes temps réel, spécialement dans le domaine des systèmes em-
barqués: optimisation du volume et du poids du matériel, réduction de la consommation électrique
pour accrotre l’autonomie, limitation des ressources requises en fonction des capacités du matériel
disponible, par exemple, taille de la mémoire, puissance du calculateur, etc.

Les principales caractéristiques de la plate-forme IMA présentées dans la partie précédente perme-
ttent de la classer parmi les systèmes temps réel – nous utiliserons dans cette partie le terme de tâche
pour désigner les entités logicielles d’exécution – :

• A contraintes temporelles dures : le système ne doit jamais violer les contraintes temporelles.

• A contraintes périodiques strictes : la durée séparant deux débuts d’exécution d’une tâche doit
être strictement égale à sa période.

• Non-préemptif : lorsqu’une tâche commence son exécution elle ne peut être interrompue.

6 RÉSUMÉ ÉTENDU

• Partitionnés : les tâches sont allouées de manière statique sur les supports d’exécution et sont
toujours exécutées au même endroit.

• Distribués et à latence contrainte : les tâches sont réparties sur différents processeurs et les durées
des échanges de données entre les tâches doivent être matrisées.

• Hors-lignes : l’ordonnancement est pré-calculé avant l’exécution du système.

De plus, le problème d’allocation considéré s’inscrit dans le cadre des systèmes distribués contraint
pour lesquels :

• Les différentes ressources de calcul sont asynchrones : les modules ne disposent pas d’une hor-
loge commune.

• Les capacités des ressources sont cumulatives : la consommation d’une ressource est représentée
par la somme des besoins des tâches allouées à cette ressource, par exemple les besoins mémoire.

• Les tâches sont sujettes à des contraintes de localisation : l’allocation des tâches peut être con-
traint à un sous-ensemble de modules ou bien par la nécessité de la localiser avec une autre tâche.

Trouver un ordonnancement qui respecte l’ensemble de ces contraintes est un problème NP-difficile
[24]. Remarquons que ce type d’ordonnancement ne nécessite pas d’être vérifié a posteriori puisqu’il
est correct par construction.

2.1 Littérature sur l’ordonnancement non-préemptif et strictement périodique

Le problème d’ordonnancement multiprocesseur partitionné, non-préemptif, strictement périodique n’a
pas beaucoup été abordé dans la littérature avant ces dernières années. La combinaison des aspects
non-préemptif et strictement périodique rend le problème particulièrement complexe. Dans la majorité
des travaux, seule une périodicité relative, c.-à-d. que les activations sont périodiques mais pas les dates
de début d’exécution, est considérée introduisant ainsi des gigues entre les exécutions successives des
tâches périodiques [93].

Parmi les premiers travaux autour de la périodicité stricte, ceux de Korst [91] ont été conduits sur
des systèmes de traitement vidéo temps réel. Le problème abordé est celui de l’ordonnancement non-
préemptif strictement périodique dans le but de minimiser le nombre de ressources d’exécution. Pour
cela, Korst propose diverses heuristiques gloutonnes. Il établit aussi une condition nécessaire et suff-
isante d’ordonnançabilité pour deux tâches strictement périodiques. Dans [92], Korst et al. montrent
que le problème est NP-complet au sens fort, même dans le cas d’un unique processeur, mais qu’il est
résoluble en un temps polynomial si les périodes et les temps d’exécution sont divisibles. Ils proposent
aussi une heuristiques basée sur l’allocation successive de tâches sur les processeurs suivant des règles
de priorité.

Kermia et Sorel [88] ont aussi travaillé sur une heuristique pour l’ordonnancement de tâches non-
préemptives strictement périodiques sur une architecture multiprocesseur. Leur objectif est de min-
imiser le temps de cycle de l’ordonnancement tout en respectant les latences et les contraintes de

RÉSUMÉ ÉTENDU 7

précédence. Leur heuristique est constituée de plusieurs algorithmes, dont l’un alloue les tâches sur
les processeurs pour ensuite construire l’ordonnancement. L’allocation est faite de manière à favoriser
les tâches qui ont des périodes égales ou multiples sur le même processeur. La comparaison avec un
algorithme de branch and cut exact montre l’efficacité de cette approche. Meumeu et Sorel [116] puis
Marouf et Sorel [114] proposent différentes conditions d’ordonnançabilité dans un contexte similaire.

Dans [55], Eisenbrand et al. considèrent les problème des tâches strictement périodiques pour min-
imiser le nombre de processeurs. Ils montrent que si les périodes sont harmoniques, c’es-à-dire toutes
divisibles entre elles, il existe une 2-approximation pour le problème de minimisation. Dans [56], les
auteurs abordent le même problème avec des contraintes supplémentaires du domaine avionique. Sup-
posant les périodes harmoniques, ils proposent une formulation en programmation linéaire en nombres
entiers et une heuristique qui permettent de résoudre le problème sur des instances de taille industrielle.

2.2 Cadre théorique de la thèse

La recherche d’une solution pour un problème d’ordonnancement strictement périodique constitue le
cœur de cette thèse. Le but est de trouver des algorithmes capables de produire une solution dans
le contexte avionique en tenant compte des multiples contraintes du système. Bien que les périodes
des tâches soient généralement harmoniques dans les systèmes industriels, ce travail propose une solu-
tion plus générale. Pour cela, différents algorithmes ont été développés sans faire d’hypothèse sur les
périodes des tâches.

Le problème d’ordonnancement n’a pas simplement à satisfaire les contraintes de temps du système,
mais doit aussi prendre en considération les contraintes non-fonctionnelles telles que la localisation et
l’utilisation des ressources. De plus, nous verrons que le critère d’optimisation n’est pas classique et
cherche à augmenter la marge d’évolution des budget de temps de chaque partition.

La présence de ces contraintes rend difficile à résoudre ce problème [68]. C’est pourquoi les
différentes méthodes employées dans ce travail puisent dans plusieurs cadres théoriques, en particulier
l’optimisation linéaire [59], la recherche locale et la théorie des jeux non-coopératifs [120].

3 Ordonnancement multi-processeur de tâches strictement périodiques
Le problème que nous abordons dans cette partie concerne l’ordonnancement des fonctions avioniques
indépendantes, et sans contraintes de précédence, sur les unités de traitement. La particularité de ce
problème est qu’il porte sur l’ordonnancement de tâches strictement périodiques, c’est-à-dire des tâches
qui s’exécutent de façon non-préemptive à intervalles de temps constants sur un horizon infini. De plus,
la fonction objectif maximise la durée minimale d’inactivité entre deux exécutions de tâches différentes
tout en garantisant que les intervalles pendant lesquels elles s’exécutent ne se chevauchent pas. Ceci
permet de garantir une marge d’évolution minimale des budgets de temps alloués aux tâches.

Nous proposons tout d’abord une formulation sous la forme d’un programme linéaire en nombres
entiers intégrant de nombreuses contraintes temporelles et de ressource de ce problème [10]. Pour per-
mettre le passage à l’échelle, nous proposons également une heuristique inspirée de la théorie des jeux

8 RÉSUMÉ ÉTENDU

dans laquelle chaque tâche adapte à son tour son ordonnancement pour maximiser sa propre fonction
d’utilité (qui est liée aux marges d’évolution des tâches) [12]. Nous montrons la convergence de cet
algorithme vers un point d’équilibre dans lequel aucune tâche n’a intérêt à modifier unilatéralement sa
stratégie et établissons qu’il existe au moins un équilibre qui est globalement optimal. Les résultats
numériques obtenus montrent que cet algorithme est beaucoup plus rapide que la méthode exacte
et fournit une bonne approximation. Pour améliorer encore la qualité des solutions, nous utilisons
cette heuristique dans un algorithme multi-start qui permet d’obtenir des garanties probabilistes sur
l’optimalité des équilibres atteints.

3.1 Ordonnancement uniprocesseur

Etant donné un ensemble Π = {1, . . . , N} de N tâches strictement périodiques, nous cherchons un
ordonnancement non-préemptif de ces tâches permettant de garantir qu’il n’y a aucun recouvrement
temporel dans leurs exécutions. Chaque tâche i ∈ Π est caractérisée par sa période Ti et par son
budget de temps bi, qui représente la durée d’exécution maximale d’une instance (WCET). Posons
Ti = {0, 1, 2, . . . , Ti − 1}. Nous notons ti ∈ Ti la date de première exécution de la tâche i, aussi
appelée offset. Nous définissons t = [t1, . . . , tN] comme le vecteur des offsets, et T = ×N

i=1Ti comme
l’ensemble des vecteurs d’offsets possibles.

Le problème que nous considérons consiste à affecter une date de première exécution à chaque
tâche de telle manière qu’il n’y ait aucun recouvrement dans le temps de leurs exécutions. Les tâches
étant strictement périodiques, pour un vecteur d’offsets t donné, l’instance k de la tâche i (ou kème
exécution) s’exécute dans l’intervalle

Ik(ti) = [ti + k Ti, ti + k Ti + bi] . (1)

Les exécutions des tâches i et j ne se recouvrent pas si et seulement si Ik(ti)∩ Il(tj) = ∅ pour tout
k, l ∈ ZZ, d’où la définition suivante.

Définition 1 Un vecteur d’offsets t ∈ T est dit admissible si et seulement si

Ik(ti) ∩ Il(tj) = ∅, ∀k, l ∈ ZZ, (2)

pour toutes tâches i, j ∈ Π, i '= j.

Puisque nous voulons garantir qu’il n’y a pas de recouvrement entre deux exécutions, il est naturel
de s’intéresser à la distance minimale entre deux débuts d’exécution. En effet, il n’y aura pas de recou-
vrement si cette distance est supérieure à la durée de la tâche qui s’exécute en premier. Considérons
l’instance k de la tâche i et l’instance l de la tâche j. En utilisant le théorème de Bachet-Bezou, on
montre aisément que si la tâche i s’exécute en premier, i.e. ti + kTi ≤ tj + lTj , alors la durée minimale
entre les deux débuts d’exécution est (tj − ti)%gi,j , où gi,j est le plus grand commun diviseur de Ti

et Tj et où le symbole % est utilisé comme notation abrégée de l’opérateur modulo, i.e. a%b doit être
lu comme a mod b. De même, si la tâche j s’exécute en premier, i.e. ti + kTi ≥ tj + lTj , alors la
durée minimale entre les deux débuts d’exécution est (ti − tj)%gi,j . On en déduit ainsi une condition
nécessaire d’admissibilité d’un vecteur d’offsets, qui est présentée formellement dans le Lemme 1.

RÉSUMÉ ÉTENDU 9

Lemme 1
min
k,l∈ZZ

|(tj + lTj)− (ti + kTi)| = min [(tj − ti)%gi,j , (ti − tj)%gi,j] (3)

Nous déduisons de ce résultat une condition nécessaire et suffisante pour l’ordonnançabilité de deux
tâches qui est décrite dans le théorème suivant.

Théorème 2 Les exécutions de deux tâches i et j ne se recouvrent pas si et seulement si

bi ≤ (tj − ti)%gi,j et bj ≤ (ti − tj)%gi,j , (4)

ou, de façon équivalente, si et seulement si

bi ≤ (tj − ti)%gi,j ≤ gi,j − bj . (5)

Le terme (tj−ti)%gi,j

bi
représente le facteur maximal par lequel la durée d’exécution bi de la tâche i

peut être multipliée sans interférer avec les exécutions de la tâche j. On peut voir ce terme comme la
marge d’évolution sur la durée bi par rapport à la tâche j. Si ce terme est supérieur ou égal à 1 pour
toutes tâches i, j '= i, cela signifie que le vecteur d’offsets t est admissible. Une condition suffisante
pour que l’ordonnancement t soit admissible est donc que mini$=j

(tj−ti)%gi,j

bi
≥ 1. Pour déterminer un

ordonnancement admissible, il apparaı̂t donc naturel de chercher à maximiser ce minimum. Ainsi, en
introduisant

dij(t) = min

(

(tj − ti)%gi,j

bi
,
(ti − tj)%gi,j

bj

)

, (6)

le problème d’ordonnancement peut être formulé de la façon suivante :

maximiser min
i,j $=i

dij(t), (OPT)

sous la contrainte t ∈ T .

Remarquons de plus que si la valeur optimale de ce problème est strictement supérieure à 1, cela
permet de garantir une marge d’évolution minimale sur les budgets de temps alloués aux tâches qui
peut être utile à l’avenir si les traitements effectués par ces tâches évoluent. Il est possible d’écrire ce
problème d’ordonnancement uniprocesseur sous la forme d’un programme linéaire en nombres entiers
(cf. [10] pour plus de détails):

maximiser α
sous les contraintes

t ∈ T ,
(tj − ti)− qj,i gi,j ≥ α bi, ∀(i, j) ∈ Π2,
(tj − ti)− qj,i gi,j ≤ gi,j − α bj, ∀(i, j) ∈ Π2,
ti ∈ [0, Ti), ∀i ∈ Π,

10 RÉSUMÉ ÉTENDU

où la variable qj,i représente en fait le quotient entier
⌊

tj−ti
gi,j

⌋

. Bien que ce programme linéaire en
nombres entiers puisse être résolu numériquement, il n’est possible de résoudre que des exemples de
tailles modestes en un temps raisonnable – rappelons en effet que le problème est NP complet au sens
fort. Dans les paragraphes suivants, nous présentons un algorithme d’approximation relativement rapide
pour générer des vecteurs d’offsets qui sont optimaux sous certaines conditions. Comme le montrent
les résultats numériques, le principal avantage de cet algorithme est qu’il est beaucoup plus rapide que
les méthodes exactes basées sur la formulation linéaire en nombres entiers proposées ci-dessus tout en
fournissant en même temps des solutions de bonne qualité.

3.2 Algorithme de la meilleure réponse dans le cas uniprocesseur

L’algorithme de la meilleure réponse que nous proposons pour résoudre le problème d’optimisation
(OPT) est inspiré d’un algorithme du même nom en théorie des jeux [63]. Dans cet algorithme, nous
identifions les tâches à des joueurs jouant un jeu séquentiel. Dans ce jeu, chaque tâche adapte à son tour
sa stratégie (i.e. son offset) en fonction des offsets des autres tâches. Le jeu se poursuit jusqu’à ce que le
vecteur d’offsets converge vers un point d’équilibre, appelé équilibre de Nash, dans lequel plus aucune
tâche n’a intérêt à changer sa stratégie. Notons tnj la stratégie de la tâche j au début de l’itération n et
supposons qu’à cette itération c’est au tour de la tâche i de jouer. Cette tâche va calculer son offset de
manière à maximiser sa distance relative par rapport aux autres tâches en résolvant le problème suivant
:

maximiser min
j $=i

di,j(x, tn
−i) (SCHD-i)

sous la contrainte x ∈ Ti,

où, suivant la notation habituelle en théorie des jeux, t−i = [t1, t2, . . . , ti−1, ti+1, . . . , tN] est le vecteur
d’offsets de tous les joueurs autres que i. Le joueur i va alors fixer tn+1

i à la valeur x donnant la solution
optimale du problème SCHD-i, c’est-à-dire sa meilleure réponse. Si cette dernière n’est pas unique,
nous supposons que la tâche va retenir le plus petit offset parmi ceux donnant la meilleure réponse. On
notera que le joueur i résoud en fait le même problème que le problème global (OPT), sauf qu’il ne
prend en compte que les termes affectés par son offset.

Dans la suite, définissons

αn
i = min

j $=i
di,j(t

n) (7)

Si(t
n
−i) = argmax

x∈Ti

min
j $=i

di,j(x, tn
−i), (8)

où αn
i est l’utilité du joueur i après l’itération n, c’est-à-dire la marge d’évolution relatif à ce joueur, et

Si(t−i) est l’ensemble des meilleures réponses de ce joueur. Nous supposons de plus que si le joueur i
ne peut améliorer son utilité αn

i , il ne change pas sa stratégie, i.e. t
n+1
i = tni . Cette hypothèse, bien que

non restrictive, est utile pour démontrer la convergence de l’algorithme. Le pseudo-code de l’algorithme
de la meilleure réponse est décrit dans l’Algorithme 1. A l’étape 4 de l’algorithme, n%N + 1 donne
l’index du joueur dont c’est le tour d’adapter sa stratégie à l’itération n.

RÉSUMÉ ÉTENDU 11

Algorithm 1Meilleure Réponse Uniprocesseur
Require: t0

1: n← 0
2: while tn '= tn−N do
3: for i = 1 to N do
4: if i = n%N + 1 and maxx minj $=i di,j(x, tn

−i) > αn
i then

5: tn+1
i ← min argmax (SCHD-i)

6: else
7: tn+1

i ← tni
8: end if
9: end for
10: n← n + 1
11: end while
12: Return tn

Deux propriétés importantes de cet algorithme sont formulées dans les théorèmes suivants.

Théorème 3 L’algorithme de la meilleure réponse converge vers un point d’équilibre.

Théorème 4 Il existe au moins un point d’équilibre qui est aussi une solution optimale du problème.

En conséquence des résultats précédents, nous déduisons que si le point de départ est choisi de
manière appropriée, l’algorithme de la meilleure réponse convergera vers une solution globalement
optimale. La proposition suivante fournit de plus une borne supérieure sur le nombre d’itérations.

Proposition 5 Soit αmax = maxi minj $=i
gi,j

bi+bj
et∆ = minj,k

1
ppcm(bj ,bk) . L’algorithme de la meilleure

réponse converge en au plus
(

N+K
K

)

N itérations, où K = +αmax∆−1,.

Cette borne supérieure sur le nombre d’itérations est une estimation pessimiste qui est exponen-
tielle en le nombre de tâches. En pratique, pour toutes les expérimentations effectuées, l’algorithme a
toujours convergé en quelques dizaines d’itérations au pire.

Un point critique de cet algorithme concerne le calcul de la meilleure réponse d’un joueur. La
meilleure réponse de la tâche i peut bien sûr être calculée en effectuant une recherche linéaire, ce qui
nécessite O(Ti) opérations. On peut en fait déterminer la meilleure réponse de façon beaucoup plus
efficace en faisant l’hypothèse suivante.

Conjecture 6 Les offsets peuvent prendre des valeurs réelles, i.e. Ti = [0, Ti).

Sous cette hypothèse, introduisons pour la tâche i l’ensemble

Ii(t−i) = ∪
(j,k)∈(Π\{i})2

{

x :
(x− tj)%gi,j

bj
=

(tk − x)%gi,k

bk

}

des points d’intersection où deux tâches interférent. On a alors le résultat suivant.

12 RÉSUMÉ ÉTENDU

Théorème 7 Si(t−i) ⊂ Ii(t−i) ⊂ Ti.

Ainsi, la solution de (SCHD-i) peut être obtenue en restreignant la recherche aux points de l’ensemble
Ii(t−i). Dans la mesure où le problème original n’est défini que pour des offsets entiers, l’heuristique
décrite dans l’Algorithme 1 va chercher la meilleure réponse de la tâche i dans les entiers directement
inférieurs et supérieurs aux points de l’ensemble Ii(t−i), plutôt que d’examiner tous les Ti points pos-
sibles.

Il est de plus possible de générer très efficacement les points de Ii(t−i) grâce à la méthode décrite
dans l’Algorithme 2. Le lecteur intéressé se reportera à [12] pour plus de détails sur cet algorithme.

Algorithm 2 Calcul des points d’intersection
1: REQUIRE : t−i

2: Ii(t−i) = ∅
3: for all j '= i do
4: for all k '= i do

5: for l =

⌊

tj−tk−min
“

gi,j
bi

,
gi,k
bk

”

(bi+bk)

gi,j,k

⌋

+ 1 to
⌊

tj−tk
gi,j,k

⌋

do

6: τ(l) = (tj − lm̂gi,j −
tj−tk−lgi,j,k

1+
bk
bi

)%ci,j,k

7: for r = 0 to
⌊

Ti−τ(l)
ci,j,k

⌋

do
8: Ii(t−i)← Ii(t−i) ∪ (τ(l) + rci,j,k)
9: end for
10: end for
11: end for
12: end for

Signalons enfin que l’on peut obtenir la borne suivante sur la cardinalité de Ii(t−i)

|Ii(t−i)| ≤
∑

j $=i

∑

k $=i

min
(

gi,j

bi
,

gi,k

bk

)

(bi + bk)Ti

gi,jgi,k

d’où l’on peut déduire que si les tâches sont au moins ordonnançables deux à deux, i.e. (bi + bj) ≤
gi,j , ∀i, j '= i, alors une condition suffisante pour que l’algorithme ci-dessus soit plus efficace qu’une
recherche linéaire est que bi > N2.

3.3 Ordonnancement multiprocesseur

Nous montrons dans ce paragraphe comment l’algorithme de la meilleure réponse pour l’ordonnancement
uniprocesseur s’étend naturellement au cas multiprocesseur. Soit P = {1, . . . , P} un ensemble de P
processeurs, le processeur k étant caractérisé par sa capacité mémoireMk et par le nombre maximalHk

de tâches qu’il peut accueillir. Un ordonnancement n’est plus seulement décrit par la donnée du vecteur
d’offsets t, mais également par l’affectation d’un processeur à chacune des tâches. Cette affectation peut
être représentée par un vecteur de variables binaires a = (ai,k)i∈Π,k∈P telles que ai,k = 1 si la tâche i

RÉSUMÉ ÉTENDU 13

est affectée au processeur k, et ai,k = 0 sinon. On peut alors formuler le problème d’ordonnancement
multiprocesseur comme un programme linéaire en nombres entiers de la façon suivante (certaines con-
traintes spécifiques à l’application avionique sont omises ici, cf [10]):

maximisera,tα (9)
s.t.

∑

pk∈P

ai,k = 1 ,∀i ∈ Π, (10)

∑

i∈Π

ai,k mi ≤Mk ,∀k ∈ P, (11)

∑

i∈Π

ai,k ≤ Hk ,∀k ∈ P, (12)

(tj − ti)− qj,i gi,j ≥ α bi

− (2− ai,k − aj,k)Z ,∀k,∀(i, j), (13)
(tj − ti)− qj,i gi,j ≤ gi,j − α bj

+ (2− ai,k − aj,k)Z ,∀k,∀(i, j), (14)
ai,k ∈ {0, 1} ,∀k,∀i, (15)
ti ∈ [0, Ti) ,∀i ∈ Π, (16)
qj,i ∈ Z ,∀(i, j), (17)

Comme dans le cas uniprocesseur, la fonction objectif (9) représente le minimum des marges
d’évolution des tâches. Les contraintes (10) imposent le choix d’un seul processeur par tâche, tan-
dis que les contraintes (11) et (12) sont celles associées aux capacités mémoire et en nombre de tâches
des processeurs. Les contraintes (13) et (14) expriment la condition d’ordonnançabilité (4) pour les
couples de tâches affectées au même processeur (Z est une grande constante qui permet de garantir que
ces contraintes ne sont actives que si ai,k = aj,k = 1). Les contraintes (15), (16) et (17) décrivent le
domaine des variables. Cette formulation linéaire n’est évidemment utilisable que pour des problèmes
de tailles modestes.

3.4 Algorithme de la meilleure réponse dans le cas multiprocesseur

L’algorithme de la meilleure réponse pour l’ordonnancement uniprocesseur s’étend au cas multipro-
cesseur de la façon suivante. A son tour, une tâche i va calculer sa meilleure réponse sur chacun des
processeurs, les uns après les autres. Puis, elle va sélectionner le processeur lui permettant de maximiser
son utilité qui est définie de la façon suivante

αn
i = min

{j:j $=i,an
i,k

=an
j,k

∀k}
di,j(t

n), (18)

et qui représente la marge d’évolution de la tâche i par rapport aux tâches ordonnancées sur le même
processeur qu’elle et pour des vecteurs d’offsets tn et d’allocation an donnés. Exactement comme dans

14 RÉSUMÉ ÉTENDU

le cas uniprocesseur, nous supposons que la tâche i ne change pas sa stratégie (processeur et offset) si
elle ne peut pas améliorer son utilité. Le pseudocode pour l’heuristique de meilleure réponse multipro-
cesseur est décrit dans l’Algorithme 3, où an

i =
(

an
i,k

)

k∈P
est le vecteur des variables d’affectation de

la tâche i à l’itération n.

Algorithm 3 Algorithme de la meilleure réponse multiprocesseur
1: REQUIRE t0,a0

2: n← 0
3: while tn '= tn−N and an '= an−N . do
4: for i = 1 to N do
5: if i = n % N + 1 then
6: a

n+1
i ← 0

7: for k = 1 toM do
8: z ← maxx min{j:j $=i,aj,k=1} di,j(x, tn

−i)
9: if z > αn

i then
10: αn

i ← z
11: c← k
12: tn+1

i ← min argmax min{j:j $=i,aj,k=1} di,j(x, tn
−i)

13: end if
14: end for
15: an+1

i,c = 1
16: else
17: tn+1

i ← tni
18: a

n+1
i ← an

i

19: end if
20: end for
21: n← n + 1
22: end while
23: RETURN tn

Comme dans le cas uniprocesseur, on peut montrer que cet algorithme converge vers un point
d’équilibre et qu’il existe au moins un point d’équilibre qui est globalement optimal.

3.5 Un exemple de résultat

Pour illustrer les résultats obtenus, considérons le problème d’ordonnancement uniprocesseur avec 20
tâches non harmoniques dont les caractéristiques temporelles sont indiquées dans le tableau 1. Pour cet
exemple, l’algorithme de la meilleure réponse fournit une marge d’évolution minimale égale à α = 1.41
en 2.83 secondes, tandis que la résolution avec CPLEX [81] de la formulation linéaire en nombres en-
tiers ne permet d’obtenir qu’une marge de α = 1.11 au bout d’une heure de calcul. De manière générale,
l’ensemble des expérimentations effectuées ont montré que l’algorithme de la meilleure réponse per-
met d’obtenir des solutions de bonne qualité, et généralement admissibles, en des temps calculs très
inférieurs à une résolution exacte basée sur la programmation linéaire en nombres entiers.

RÉSUMÉ ÉTENDU 15

Table 1: Exemple uniprocesseur avec 20 tâches non harmoniques (hyperpériode de 756000).
Tâche 1 2 3 4 5 6

Budget de temps 10 30 30 10 10 10
Période 1200 1200 3600 1200 1200 1500

7 8 9 10 11 12 13
10 10 30 10 10 45 40
4200 1000 2000 4000 1200 2400 2000

14 15 16 17 18 19 20
40 60 80 30 10 60 40
4000 3000 3000 2700 200 1800 1800

3.6 Algorithme multi-start

La qualité des solutions obtenues avec l’algorithme de la meilleure réponse peut encore être améliorée
en utilisant une méthode multi-start [115]. En effet, l’espace des solutions du problème d’ordonnancement
est divisé en région d’attraction, l’algorithme de la meilleure réponse conduisant vers le même équilibre
pour tous les points initiaux appartenant à la même région. Une méthode multi-start va permettre
de générer aléatoirement des points de départ de l’heuristique appartenant à des régions d’attraction
différentes. Des régles d’arrêt Bayesiennes [30] sont utilisées pour arrêter l’exploration aléatoire de
l’espace des solutions lorsque des garanties probabilistes suffisantes sont obtenues sur l’optimalité de
la meilleure solution trouvée.

En pratique, le nombre de points d’équilibre k (associé à la v.a. K) ainsi que le volume re-
latif φi de chaque région i = 1, . . . , k (associé à la v.a. Φi) sont inconnus. Les points de départ
générés par la méthode du multi-start étant uniformément distribués sur l’espace des solutions, le
ième point d’équilibre a une probabilité φi d’être découvert. On suppose que la distribution a pri-
ori du nombre d’équilibres est uniforme sur [1,∞) et que les volumes relatifs des régions d’attraction
ont également une distribution uniforme. Cela conduit à une densité de probabilités a priori donnée
par p(k,φ1, . . . ,φk) ∝ (k − 1)!. Etant donné la nombre s d’échantillons générés (points de départ
de l’heuristique), le nombre w d’équilibres observés et le nombre si d’occurences du ième point
d’équilibre, on peut déterminer les quantités suivantes [30] :

• Espérance a posteriori du nombre d’équilibres : E(K|{s1, . . . , sw}) = w(s−1)
s−w−2 (s ≥ w + 3).

• Espérance a posteriori du volume relatif de la jème région :

E(Φsj
|{s1, . . . , sw}) =

(sj + 1)(s + w)

s(s− 1)
(s ≥ w + 2).

16 RÉSUMÉ ÉTENDU

• Espérance a posteriori du volume relatif total des régions observées (v.a. Ω):

E(Ω|{s1, . . . , sw}) =
(s− w − 1)(s + w)

s(s− 1)
(s ≥ w + 2).

Deux régles d’arrêt pertinentes consistent soit à terminer la recherche quand le nombre d’équilibres
observés est suffisamment proche du nombre d’équilibres estimé, soit à la terminer quand le volume
relatif total des régions observées dépasse un certain pourcentage. Une autre approche, que nous avons
utilisée dans nos travaux, consiste à utiliser le concept de perte de terminaison qui associe un cot à
l’écart entre une quantité inconnue estimée et sa vraie valeur. Ainsi, la perte de terminaison peut être
prise proportionnelle au volume relatif total des régions non observées comme suggéré dans [30].

Dans le cas uniprocesseur, la méthode multi-start s’exécute en quelques minutes. Elle nous a permis
de réduire l’écart relatif moyen à l’optimum de 7.8% avec l’heuristique à 0.25% pour les exemples
harmoniques, et de 4.2% à 0% pour les exemples non harmoniques. Dans le cas multiprocesseur, nous
avons obtenu un temps de calcul moyen de 16 minutes. L’écart à l’optimum est passé de 14.17% à
3.84% pour les instances harmoniques, et de 18.5% à 9.6% pour les instances non harmoniques. Nous
avons observé que dans le cas multiprocesseur les points d’équilibre optimaux peuvent se trouver dans
de petites régions d’attraction, ce qui peut nécessiter un critère d’arrêt plus strict que celui que nous
avons utilisé.

4 Routage des Liens Virtuels
Après l’ordonnancement des partitions, il est nécessaire de router les flux de messages échangés entre
les partitions dans le réseau AFDX. Ces messages sont groupés dans un ou plusieurs liens virtuels, ou
VL (pour Virtual Link). Le routage d’un VL correspond en fait à un arbre multicast (cf. Figure 2) entre
le module de traitement où est située la partition émettrice et les modules où sont situés les partitions
réceptrices. Chaque VL est caractérisé par deux quantités (cf. Figure 3) : le BAG (Bandwidth Allocation
Gap), qui définit l’intervalle de temps minimal séparant l’émission de deux trames consécutives, et la
taille maximale des trames Ethernet envoyées, notée MFS (pour Maximum Frame Size). La bande-
passante d’un VL, en tenant compte d’une entête de 67 octets, est donc

bw =
(67 + MFS)

BAG
, (19)

4.1 Description du problème

Une fois les partitions ordonnancées sur les modules, le concepteur doit définir les VL nécessaires ainsi
que toutes leurs caractéristiques, puis spécifier leur routage dans le réseau de commutation AFDX en
remplissant des tables de configuration. Ce processus de routage doit évidemment prendre en compte
les ressources réseaux disponibles.

Le problème revient à déterminer un arbre multicast par VL. Dans le cas où il y a un seul VL, ce
problème est équivalent à celui de l’arbre de Steiner [69, 79] qui est bien connu pour être NP difficile.

RÉSUMÉ ÉTENDU 17

Figure 2: Lien virtuel issu d’un module et acheminant des données vers 3 autres.

Figure 3: Un VL envoie des trames de taille maximaleMFS octets toutes les BAG ms.

Un autre cas particulier est celui où chaque VL a une seule destination, ce qui conduit à un problème de
monoroutage qui est également NP difficile [127]. Dans le cas général, le problème a été relativement
peu traité, les travaux les plus proches concernant la détermination d’un arbre de routage multicast dans
un réseau déjà chargé [136].

Nous avons proposé deux méthodes permettant l’automatisation du routage des VL. Ces méthodes
sont décrites ci-dessous.

4.2 Définition formelle

Nous représentons le réseau AFDX par un graphe (N , E) ayant un ensemble N = {1, . . . , N} de
noeuds (modules de traitement inclus), et un ensemble E de liens. On note ce la capacité du lien e ∈ E .
Ce réseau doit acheminer un ensemble V = {1, . . . , V } de VL, chaque VL v étant caractérisé par

• un noeud source (module de traitement) src(v) ∈ N ,

• un ensemble de noeuds destination (modules de traitement) dest(v) ⊆ N \ {src(v)},

• et une bande-passante bv, définie conformément à l’équation (19).

L’objectif est de minimiser le taux d’utilisation maximal des liens du réseau, c’est-à-dire,

Minimiser
[

ρ = max
e∈E

(

ye

ce

)]

,

18 RÉSUMÉ ÉTENDU

où ye représente le trafic total sur le lien e. Ce critère d’optimisation a été choisi en accord avec nos
partenaires du projet SATRIMMAP suite à des études ayant montré que le délai réseau n’intervient
que pour une faible part dans le délai de transmission au pire d’un message, le choix du BAG et les
périodes des partitions réceptrices étant les paramètres dominants [100]. Ce critère a de plus l’avantage
de garantir une certaine marge d’évolution sur les ressources du réseau, qui peut être nécessaire si de
nouveaux VL doivent être déployés.

4.3 Formulation noeud-lien

Notons Γ+(n) et Γ−(n) l’ensemble des liens entrants et sortants du noeud n respectivement, comme
illustré sur la Figure 4.

Figure 4: Liens entrants et sortants du noeud n.

En adoptant une formulation noeud-lien, le problème peut être écrit comme un programme linéaire
en nombres entiers :

min ρ

s.t.
∑

e∈Γ+(n)

xe
v −

∑

e∈Γ−(n)

xe
v = hn,v ,∀n, v, (20)

ye
v M ≥ xe

v ,∀v, e, (21)
ye

v ≤ xe
v ,∀v, e, (22)

∑

e∈Γ+(n)

ye
v ≤ 1 ,∀n, v, (23)

ye =
∑

v∈V

ye
v bv ,∀e, (24)

ye ≤ ce ρ ,∀e, (25)
ye

v ∈ {0, 1} ,∀v, e, (26)
xe

v ∈ {0, . . . ,Kv} ,∀v, e, (27)

RÉSUMÉ ÉTENDU 19

Dans cette formulation, la variable entière xe
v correspond au nombre de destinations du VL v qui

seront jointes en passant par le lien e. Les constantes hn,v intervenant dans les contraintes de conserva-
tion (20) sont données par

hn,v =

−Kv si i = src(v),
1 si i ∈ dst(v),
0 sinon.

où Kv est le nombre de destinations du VL v. La variable binaire ye
v est calculée à partir de xe

v grâce
aux contraintes (21) et (22). Elle indique si le lien e est utilisé par le VL v. Les contraintes (23)
imposent un routage en arbre pour les VL. La variable ye dont la valeur est définie par la contrainte (24)
correspond au trafic sur le lien e. Elle est utilisée pour calculer la charge maximale ρ des liens dans la
contrainte (25). Cette formulation permet de résoudre de manière exacte des problèmes de tailles assez
conséquentes dans des temps raisonnables. Elle n’apporte toutefois aucune garantie sur la longueur des
arbres multicast générés.

4.4 Heuristique à deux niveaux

On peut reformuler le problème en utilisant une formulation lien-chemin de la façon suivante :

min ρ (OPT-VL)
s.t.

∑

T∈T v

xT = 1 ,∀v ∈ V, (28)

ye =
∑

v∈V

∑

T∈T v

δT
e xT bv ,∀e ∈ E , (29)

ye ≤ ce ρ ,∀e ∈ E , (30)
xT ∈ {0, 1} ,∀T ∈ T v,∀v ∈ V, (31)

où T v est l’ensemble des arbres de routage possibles pour le VL v. La variable de décision binaire xT

indique si l’arbre T est choisi pour router le VL v. La constante booléenne δT
e indique si l’arbre T passe

par le lien e et est utilisée pour calculer la charge ye de ce lien.

L’inconvénient de cette formulation est qu’il n’est en général pas possible d’énumérer tous les
arbres de routage de T v. Notre idée est alors de décomposer la résolution en deux phases. Dans une
première phase, nous déterminons pour chaque VL un ensemble d’arbres multicast candidats au routage
de ce VL. Ces arbres candidats doivent être choisis de manière à ne pas compromettre l’optimalité de
la solution obtenue et donc en tenant compte de la charge des liens. D’autre part, on souhaite retenir
des arbres candidats dont la longueur n’est pas trop grande pour minimiser le délai de transmission des
messages. Pour cela on suit une approche de type ”mille-feuille” en dupliquant chaque VL v en R
copies ayant chacune une demande en bande-passante égale à bv/R. Puis à chaque itération on route un
VL, la copie i = 1, . . . , R du VL v étant routée à l’itération k = (i− 1)V + v suivant l’arbre T ∈ T v

minimisant

∑

e∈E

De(ye + δT
e

bv

R
)−

∑

e∈E

De(ye) (32)

20 RÉSUMÉ ÉTENDU

où De(ye) représente le cot du lien e en fonction du trafic sur ce lien1. Dans la mesure où elle est
additive, la fonction cot (32) permet de prendre en compte la longueur des arbres choisis, et en même
temps elle permet de prendre en compte la charge des liens à travers les cotsDe(ye). Déterminer l’arbre
T minimisant la fonction objectif (32) revient en fait à résoudre un problème de Steiner dans lequel le
lien e à un cot∆e = De(ye+bv/R)−De(ye). Pour cela nous utilisons une heuristique inspirée de [94].

Après avoir routé chaque copie de chaque VL, on dispose d’au plus R arbres de routage candidats
par VL. La seconde phase consiste alors à résoudre le problème (OPT-VL) à l’aide d’un solveur linéaire
en nombres entiers en restreignant T v aux arbres de routage séléctionnés dans la première phase pour
chaque VL v.

Dans toutes les expérimentations effectuées, nous avons observé que cette heuristique a toujours
fourni une solution optimale, tout en permettant une réduction significative de la longueur des arbres.
Toutefois, l’heuristique en 2 phases a des temps de calcul supérieurs à l’approche exacte basée sur la
formulation noeud-lien, même si ceux-ci restent très raisonnables (environ 20 secondes pour 1000 VL
sur la topologie considérée). De plus, sur un benchmark constitué de 4894 VL, nous avons observé
que le nombre importants de variables et de contraintes de la formulation noeud-lien n’a pas permis de
résoudre le problème par manque de mémoire de la machine utilisée, alors que sur la même machine
l’heuristique en 2 phases a fourni une solution en environ une demi-heure. Cette dernière approche a de
plus l’avantage de permettre l’intégration d’autres contraintes dans la phase de sélection des chemins,
par exemple pour interdire certains liens à certains VL.

5 Conclusion
Cette thèse aborde deux problèmes fondamentaux pour l’allocation de ressources dans les systèmes
avioniques. L’un concerne l’ordonnancement et le placement des applications avioniques sous con-
traintes de ressource et l’autre aborde le routage des messages à travers le réseau avionique.

Dans un premier temps, le travail sur l’ordonnancement a été formulé sous la forme d’un problème
linéaire en nombres entiers. Le critère d’optimisation est original et cherche à maximiser la marge
d’évolution temporelle pour les différentes partitions. Ainsi, une solution optimale est caractérisée par
un facteur multiplicatif sur les budgets de temps des partitions tel que l’ordonnancement soit faisable
pour cette valeur. Une valeur plus grande que 1 implique la faisabilité du problème d’ordonnancement,
mais donne aussi une estimation de la marge d’évolution temporelle du système. La formulation exacte,
bien qu’assurant l’optimalité, est montrée inefficace pour des grands problèmes.

En plus de cette formulation linéaire, une heuristique basée sur la théorie des jeux a été proposée.
Suivant le principe de l’algorithme de la meilleure réponse, elle a été repensée spécifiquement pour
le problème d’ordonnancement strictement périodique. Le principe consiste à ce que chaque partition
essaie à tour de rôle de faire évoluer son offset et son allocation afin d’accrotre la marge d’évolution
globale. Les résultats expérimentaux obtenus montrent de bonnes performances en temps et en qualité.
Les comparaisons avec la méthode exacte sur de petites instances ont montré une faible erreur par rap-

1Nous avons utiliséDe(ye) = 1

ce−ye

, i.e. le délai moyen d’une file M/M/1 [89].

RÉSUMÉ ÉTENDU 21

port à l’optimum. L’heuristique a aussi permis de résoudre des problèmes de grande taille, là où la
solution exacte était incapable d’apporter une réponse.

La qualité de l’algorithme de la meilleure réponse est très sensible à son initialisation. Pour pal-
lier ce problème, une méthode de type multi-start avec un critère d’arrêt bayésien a permis de réduire
grandement cette sensibilité et de réduire fortement l’erreur relative des solutions produites.

La dernière partie de cette thèse est consacrée au problème du routage des messages échangés entre
les fonctions avioniques. Une formulation exacte du problème sous la forme d’un programme linéaire
en nombres entiers de type noeuds-liens a été proposée, ainsi qu’une heuristique à deux niveaux qui
permet de faire un compromis entre une distribution équitable de la charge dans le réseau et la min-
imisation du délai de communication. Les résultats expérimentaux montrent que l’heuristique permet
d’obtenir des solutions très proches de la méthode exacte tout en améliorant significativement les délais
de communication.

5.1 Perspectives

Le problème d’allocation traité dans cette thèse n’aborde pas celui de la reconfiguration. Cela sera en-
visageable, par exemple, en proposant des ordonnancements qui garantissent la robustesse du système
en cas de panne d’un module tout en assurant la réallocation des partitions. Ce travail devrait passer
par la définition des scénarii de pannes et par l’expression d’un critère d’optimisation prenant en con-
sidération la robustesse. L’algorithme de la meilleure réponse semble une base solide pour explorer
cette voix.

En ce qui concerne le problème de routage des liens virtuels, des futurs travaux pourraient ex-
plorer des moyens pour obtenir une meilleure sélection des arbres candidats. Cela consisterait à en-
visager d’autres approches que le problème d’arbre de Steiner en considérant plusieurs objectifs qui
soient des compromis entre la charge des liens et les délais de bout-en-bout. De plus, l’hypothèse d’un
modèle de file M/M/1, qui est un moyen efficace pour mesurer la performance, pourrait être relaxée en
implémentant directement les aspects spécifiques du réseau AFDX.

Une autre piste envisageable serait de considérer le problème de dimensionnement des liens virtuels.
Ce serait alors une phase intermédiaire entre le routage et l’ordonnancement. Le problème consisterait
à trouver un regroupement des messages dans un ou plusieurs liens virtuels et à calculer leur valeur de
BAG et de MFS tout en respectant les délais de bout-en-bout et en minimisant la bande passante.

Les propriétés de l’algorithme de la meilleure réponse pourrait être aussi le sujet d’une étude plus
approfondie. Bien qu’il soit prouvé qu’il converge et que la solution optimale peut être obtenue,
l’analyse du temps de convergence pourrait être affinée ainsi que la connaissance de l’erreur induite.
Pour ce dernier point, le but serait de dériver une borne supérieure sur le prix de l’anarchie [95], c’est-
à-dire le ratio entre la pire solution que l’on peut obtenir et l’optimum.

Enfin, d’une manière plus générale, l’algorithme de la meilleure réponse pourrait être généralisé
pour des problèmes d’optimisation de type maxmin. Pour cela, son comportement devrait être mieux

22 RÉSUMÉ ÉTENDU

analysé en fonction des conditions d’utilisation et de nouvelles contraintes, par exemple de précédence,
pourraient y être ajoutées.

Introduction

Resource allocation in IMA-based avionic systems
The last couple of years have seen a great standardisation effort in the avionic domain, in the aim of
supplying applications a modular execution and communication support. Such architectures are called
Integrated Modular Avionics (IMA) [152] architectures and are aimed at reinforcing the resource shar-
ing concept between embedded applications. IMA architectures employ a high-integrity, partitioned
environment that hosts multiple avionic functions of different criticalities on a shared computing and
communication platform. They also provide benefits of flexibility and scalability, and allow for weight
and power savings.

Avionic applications, such as those responsible for temperature and pressure conditioning, are em-
bedded into available processing modules, thus providing some services. These applications share
resources which are allocated to them and execute under the ARINC 653 [8] specifications. Configura-
tion tables are explicitly completed, indicating all the parameters required for the proper functioning of
the system. These configuration tables define the resource allocations in the system and the subsequent
application executions. In the case of any modification or the introduction of new components, such as
a new application or hardware, system experts have to go through another cumbersome modification of
the configuration tables. All this renders the integration or reconfiguration processes uneasy to manage,
as any conflict between the applications’ parameters or even with the real-time requirements of the sys-
tem, may lead to hazardous situations.

Contributions
This thesis is devoted to the proposition of decision aiding tools, which are capable of facilitating
the choices to be made by system experts. More specifically, it aims at reducing the complexity of
configuration phases where resource allocation has to be realized. These resource allocation problems
are constituted of:

23

24 INTRODUCTION

• The allocation of applications to available processing modules. This includes their respective
temporal scheduling on the modules, in a manner respecting all system constraints and require-
ments.

• The definition of a message flow scheme in the avionic network, between the various commu-
nicating applications. This is carried out after successfully achieving the previously mentioned
application distribution upon the modules.

The major part of this thesis addresses the allocation and scheduling problem for the avionic appli-
cations, which is characterized by the strict periodicity and system specific constraints. A first approach
consists of an exact Linear Programming formulation [9, 10, 11] which, given a specified optimiza-
tion criterion, solves the scheduling problem to optimality. The proposed optimization is not classical,
but aimed at provisioning a temporal flexibility for the avionic applications’ executions, so that spare
processing power can be allocated to meet the resource demand growth with minimal configuration
modification.

As will be shown, the proposed exact formulation has its limitations. This necessitates regarding
alternate methods, which are able to solve the problem efficiently within bearable time limits. For this
reason, an efficient heuristic inspired from Game Theory, is introduced [12, 13]. Avionic applications
are specified as players who, each at his turn, try to change their strategies (allocation/scheduling) to
enhance the temporal evolution capability of the system, in a manner obtaining an optimization equiv-
alent to that discussed earlier. This method proves its convenience under several circumstances.

For what concerns the second part of this thesis, it focuses on the communication aspect of the
IMA architecture. Data and message transmission between applications belonging to different modules
is achieved via the avionic AFDX network, which is based on the well-known full duplex Ethernet.
Messages are grouped into what is called Virtual Links (VL). These virtual links can be thought of as
multicast flows where one and only one source application addresses one or several destinations. Data
in a VL is divided into frames, which are limited in size, and are then transmitted in the AFDX network
following a predefined transmission rate.

The final configuration of the VLs consists of specifying the routes and links traversed by each
one. This is also a decision making phase where, based on the affected allocation of applications to
modules, system experts have to route several VLs at the same time while respecting some constraints,
such as transmission delay constraints or even load minimization in the network. The thesis proposes
two methods for solving this problem. The first method is an exact node-link formulation based on
Linear Programming. The second is a two level heuristic based on a link-path formulation. In a first
step it filters out undesirable multicast trees for the VLs, and then uses the reduced set of trees to assign
routes for each of the VLs.

INTRODUCTION 25

Organization
The rest of this thesis is organized as follows:

• Chapter 1 discusses the technical context of this thesis, from the introduction of modular avionics
to the identification of the various resource allocation problems in IMA-based avionic systems.

• Chapter 2 represents the state of the art on real-time and embedded systems. This chapter focuses
mainly on advances in scheduling theory, along with the classification of the scheduling problem
associated with resource allocation in avionics.

• Chapter 3 gives an exact Mixed Integer Linear Programming formulation for the thesis’ schedul-
ing problem. In this chapter the limitation of such methods is pointed out.

• Chapter 4 identifies the necessity to develop efficient heuristics for the scheduling problem, and
hence the proposition of an algorithm inspired from Game Theory.

• Chapter 5 addresses the routing problem in the avionic network. It discusses some state of the art
on the subject and proposes methods for solving this problem.

• The Conclusion concludes the thesis and draws some perspectives.

26 INTRODUCTION

CHAPTER 1

Resource allocation in avionic systems

This thesis is mainly concerned with resource allocation problems in avionic platforms. These prob-
lems are considered critical for system designers during the various conception and integration phases
of these platforms. This chapter hence discusses currently supported architectures, their evolution, ad-
vantages and drawbacks. The various software development and design phases are also introduced in
order to better shed light on the level at which this thesis intervenes.

One major resource allocation concern is closely related to the periodic scheduling problem in dis-
tributed systems. This periodic scheduling consists of scheduling tasks, or functional operations, that
have to be periodically executed at a constant rate over time. Another concern is the network resource
allocation for communication and data transmission. In this problem, routing tables for independent
transmission tunnels have to be filled out.

As indicated above, this chapter presents the context of this thesis from a technical point of view.
For this purpose, the evolution of avionic systems and the introduction of modular avionics are first dis-
cussed in Sections 1.1 and 1.2 respectively. In addition, the latter section identifies an important aspect
concerning the partitioning of avionic applications. An overview on software development phases are
then discussed in Section 1.3. Section 1.4 introduces the research project “SATRIMMAP” under which
this thesis was supported. Section 1.5 clearly describes the main problems and objectives considered in
this thesis and the contributions brought forward. This chapter is finally concluded in section 1.6.

1.1 Evolution of avionic systems
An avionic system [141, 142] is a set of software, processing units, buses, sensors and actuators, achiev-
ing some avionic functions. Such a system should respect real-time and criticality constraints [16, 132],
and is responsible for:

• processing information originating from various sensors,

27

28 1. RESOURCE ALLOCATION IN AVIONIC SYSTEMS

• presenting coherent and adapted information to pilots,

• calculating control orders based on defined rules,

• realizing other functions related to aerial traffic control, passenger comfort, on-board power gen-
eration and distribution, etc.

Great effort has always been made to reduce the weight and power consumption in civil aviation air-
crafts [152]. Most of which related to the huge volume of wiring. In addition, an increasing demand for
installing new on-board functionalities, constitutes a major motive for further advancements in avionics.
This leads to an ever-growing complexity, where the evolution of the avionic embedded systems and the
amplification of the integrated functions number imply a huge increase in the exchanged data quantity,
and thus, in the number of connections between functions.

The overgrowing complexity of embedded equipments limits evolution possibilities. Generally, like
Moore’s law on processor power, it was shown that the complexity of avionic systems double every five
years [37]. Meanwhile, the evolution of the aviation market has led to greater pressure for the reduction
of costs, especially those related to specific communication electronics. Thereby, the modular avionics
concept was introduced, and aims to share processing and communication resources. Its main objectives
are:

• data transmission with strong temporal constraints,

• reliability in information exchange following the client/server model,

• cost reduction by reusing commercial off-the-shelf (COTS) products, but with certification con-
straints.

Avionic systems are also subject to very strict constraints to guarantee their proper operation since
a single failure in a critical equipment can lead to catastrophic consequences. Avionic systems are very
demanding in terms of strict real-time constraints, limited complexity, size, volume and reduced weight.
They furthermore have to support delicate operation conditions (temperature, pressure, vibration, elec-
tromagnetic environment, etc.).

In the following section, the Integrated Modular Avionics (IMA) architecture which constitutes the
workspace of this thesis is introduced.

1.2 The Integrated Modular Avionics architecture
The Integrated Modular Avionics (IMA) concept is, as was the case before, based on the presence of
several sub-systems, such as flight control, landing gear and others [142]. However, such IMA architec-
tures employ a high-integrity, partitioned environment that hosts multiple avionic functions of different
criticalities on a shared computing platform [152].

1.2. THE INTEGRATED MODULAR AVIONICS ARCHITECTURE 29

(a) Federated architectures. (b) IMA architectures.

Figure 1.1: Example on resource allocation in federated and modular avionic architectures.

In classic avionics, equipments are distributed all over the aircraft in proximity of the sub-systems
they command. This so-called federated architecture had rather limited resource sharing and depen-
dencies between systems were well understood [133]. All these equipments are interconnected and are
associated to the cockpit from which they receive orders. Identifiable inconveniences of this architec-
ture include the weight imposed by the large volume of wiring, and the high equipment cost.

The approach to managing resources, such as computing, communication and I/O can be identified
as the fundamental architectural difference between federated and IMA systems [152]. In contrast to
federated avionic architectures, which implement independent collection of dedicated computing re-
sources for each avionic function, those based on IMA provide a shared computing, communications
and I/O pool that is partitioned for use by multiple avionic functions. Figure 1.1 for example shows how
a set of four computing processors in a federated architecture can be replaced by one in an IMA-based
one.

Since IMA makes use of shared computing resources, the total number of computing processors
and associated circuitry is reduced. So is the associated infrastructure, such as power, cooling, and
redundancy mechanisms. In addition, dedicated communication channels are replaced with a common
one, and hence less wiring and dedicated I/O interfaces. All this translates into better power and weight
savings for the overall aircraft.

The IMA architecture was introduced to solve problems arising from the evolution of previous
architectures. It is based on an architecture of type “systems”, physically distributed in the aircraft [43].
A main originality resides in the hardware platform standardization, where developers of an avionic
function no longer need to waste time on developing computing resources. This standardization of

30 1. RESOURCE ALLOCATION IN AVIONIC SYSTEMS

resources makes it easier for developers to focus on their software, and eases certification efforts. This
leads to reduced development expenses and design cycle times [152].

1.2.1 Architecture components

The IMA physical architecture is defined by the ARINC 651 [3] specification. Resources are regrouped
in generic modules called Line Replaceable Units (LRU), that are in turn grouped into cabinets. Intra-
cabinet communication is realized via specific buses, generally defined by ARINC 659 [4]. Inter-
cabinet communication is achieved using a network based on full-duplex switched Ethernet [78], as
Airbus has chosen for its A380. The aforementioned modules can be of three types:

• Core Processing Modules (CPM), which are modules responsible for application execution.

• Input/Output Modules (IOM), enabling communication with non-IMA compliant elements. An
example is the Remote Data Concentrator (RDC) that converts message formats between on-
board sensors and actuators, and core modules.

• Switches and gateways, representing the communication backbone.

The software architecture is described by the APEX (APplication EXecutive) standard that offers
to applications a generic interface towards the operating system [8].

1.2.2 The avionics AFDX network

The Avionics Full Duplex Ethernet (AFDX) constitutes one of the major technological breakthroughs
in the avionics of the A380 [6]. In effect, and for the first time for such aircraft category, the avionic
system is based on a redundant and reliable Ethernet network.

With the introduction of the first AFDX specifications (around 1999), the best candidates were a
combination between Ethernet and TCP/IP amongst technologies arising from computer networks [50,
58], in opposition to ATM amongst technologies in the telecommunication domain. Key criteria for
the final choice were avionic specific constraints (security, temporal problems), the arrival of Ethernet
switching and the size of the computer market as opposed to that of telecommunication equipments.
The choice has therefore landed on the switched Ethernet (full-duplex mode) [61].

The AFDX standard defines the electrical and protocol specifications [7] for the exchange of data
between Avionics Subsystems. One thousand times faster than its predecessor, the ARINC 429 [5], it
built upon the original AFDX concepts introduced by Airbus.

As shown in Figure 1.2, an AFDX network comprises the following components:

• Avionics Subsystem: It represents the traditional systems on board an aircraft, such as the flight
control computer, global positioning system, the pressure monitoring system, etc. A processing
unit, or an Avionics Computer System, provides a computational environment for the Avionics
Subsystems. Each Avionics Computer System contains an embedded End System that connects
the Avionics Subsystem to an AFDX Interconnect.

1.2. THE INTEGRATED MODULAR AVIONICS ARCHITECTURE 31

Figure 1.2: Composition of an Avionics system

• AFDX End System: It provides an “interface” between the Avionics Subsystems and the AFDX
Interconnect. This interface exports an application program interface (API) to the various Avion-
ics Subsystems, enabling them to communicate with each other through a simple message inter-
face.

• AFDX Interconnect: It is a full-duplex, switched Ethernet interconnect. It generally consists of a
network of switches that forward Ethernet frames to their appropriate destinations. This switched
Ethernet technology is a departure from the traditional ARINC 429 unidirectional, point-to-point
technology and the MIL-STD-1553 bus technology [103].

It should be noted that, in addition to the AFDX network, some non-AFDX compliant equipment
(utilizing CAN [82] buses, ARINC 429, etc.) can be found on board the aircraft. Therefore communi-
cation between different interfaces is done via the Input/Output modules such as the RDC.

For what concerns the AFDX switches, they route based on not only MAC addresses, but also
on what is known as Virtual Links (VL) which are unidirectional logic paths sourced by only one
transmitting End System but can have multiple receivers [14]. These links are defined in a table inside
each switch. Refer to Figure 1.3 for an example. In this figure, ports simply indicate on what links data
is received and sent.

1.2.3 Partition segregation

Applications in avionics are software responsible for one or several functionalities in an airplane. An
example is the position measurement application which is responsible for the acquisition and display of
the altitude, longitude, orientation, etc. of the plane. Functions are code blocks of an application that
carry out a part of its functionality. Hence, an application consists of a set of functions that all together
lead to its proper execution, each of which may have a certain input and output.

Functions resident on a processing module are partitioned with respect to space (memory parti-
tioning) and time (temporal partitioning). A partition is therefore a program unit of the application

32 1. RESOURCE ALLOCATION IN AVIONIC SYSTEMS

Figure 1.3: A simple AFDX network with three Virtual Links.

(including a set of functions) designed to satisfy these partitioning constraints. This partitioning is cru-
cial as to prevent faults from propagating throughout the system. Functions become in this manner
totally independent, where faulty ones can be isolated without affecting much of the system integrity.

1.2.3.1 Partition spatial constraints

Each partition is allocated a set of spatial resources (memory, non-volatile memory (NVM), etc.) in
a static manner, that is to say that the module integrator has the task of assigning maximum allowed
spatial resources to each partition while respecting space segregation between them.

Consequently, the role of the operating system (OS) here is to provide protection for partition data
against any modification from the other partitions. The OS also has to monitor application activity as
compared to allowed resources which are statically allocated through configuration tables. Figure 1.4
demonstrates memory segregation between two partitions.

1.2.3.2 Partition temporal constraints

A module may host several partitions running with different periods following a certain scheduling
scheme. All information concerning period, duration and deadline of partitions are defined statically.

This scheduling must lead to a temporal allocation for each partition allowing the proper execution
of all functions defined in this partition.

In avionics, scheduling of partitions is predefined in a manner respecting the real-time aspect of the
system, that is ensuring proper execution of all functions before their respective deadlines. The OS has
to make sure that this scheduling is carried out flawlessly and monitor irregularities.

Define the following characteristics:

• Partitions have no priority.

1.2. THE INTEGRATED MODULAR AVIONICS ARCHITECTURE 33

Figure 1.4: Memory segregation between partitions.

• Partition scheduling is predetermined and repetitive with a strict periodicity.

• Core module level OS exclusively ensures the temporal allocation for the partitions.

Each partition is allocated a window for execution. At the end of this window the partition is sus-
pended and execution is given to another partition. These windows are defined in a manner ensuring
the efficient performance of the system while respecting real-time aspects.

The Major Frame (MAF) as can be seen in Figure 1.5 is a fixed duration which is periodically
repeated throughout the module’s runtime operation (it represents the periodicity of the scheduling).
This schedule periodicity can be defined as the least common multiple (LCM) of the module’s partition
periods; given that all partitions are released together for the first time, and provides a sufficient time-
horizon for ensuring a correct temporal scheduling [34].

It should be also noted that a granularity of 100µsec is defined. All partition periods, and the MAF,
should be a multiple of this granularity.

Major partition attributes are:

• Duration: Each function requires a certain amount of time to fully execute, hence a partition
duration can be defined from the duration of its functions.

• Deadline: After the activation of a partition, the execution should be completed before a prede-
fined hard deadline.

• Period: The period defines the periodicity of partitions. This periodicity is strict (i.e. partition
executions should be exactly one period apart).

34 1. RESOURCE ALLOCATION IN AVIONIC SYSTEMS

Figure 1.5: Partition execution in a MAF.

• Allocated resources: Represents the global resources allocated to each partition, such as mem-
ory.

1.2.3.3 Partition communication

Communication between partitions is essential for the exchange of data, given that spatial partitioning
prohibits sharing of resources and data areas. This exchange can only be done via inter-partition com-
munication.

Inter-partition communication is based on the sending and receiving of API messages, which are,
in the case the communicating partitions are located on different Core Processing Modules, placed into
AFDX frames and sent over the AFDX network. However, if the two communicating partitions are
located on the same module, then communication can be achieved using for example buffers or black-
boards. Otherwise, in the case of data exchange between partitions and other non-AFDX compliant
equipments, such as sensors, messages are converted to the appropriate formats in the RDC, based on
the type of interfaces the destinations are using.

Messages having the same path in the AFDX network may be grouped into one message to minimize
number of transferred bits and hence ensure faster delivery.

1.2.3.4 Partition redundancy

An important aspect of the IMA architecture is redundancy, where applications are re-placed as mirrors
on other modules connected to different switches to ensure the safety of the system. The following are
three types of redundancy that may exist:

• Standby: The redundant application is idle, it does not receive or send any data or messages.

1.3. OVERVIEW ON THE SOFTWARE DEVELOPMENT PROCESS DESIGN IN AVIONICS 35

• Cold: The redundant application has the same input as the master one, computes the data but
does not send any messages or data.

• Warm: The redundant application has the same input as the master one, computes and sends data
and messages, and hence, the user receives redundant information.

1.3 Overview on the software development process design in avionics
To properly indicate the contributions of this thesis, the software (avionic applications) development
process for the IMA architecture is hereafter described. For the sake of simplicity, this process is
reformulated through the V-Model [129] which is a generic software development process. The refor-
mulation aims at apprehending the implicated design process.

The V-Model demonstrates the relationships between each phase of the development life cycle and
its associated phase of testing. It deploys a well-structured method in which each phase can be imple-
mented by the detailed documentation of the previous phase.

The V-Model consistes of a number of phases presented in Figure 1.6. The verification phases are
on the left hand side of the V, the coding phase is at the bottom and the validation phases are on the
right hand side.

1.3.1 Requirements analysis phase

In the requirements analysis phase, the requirements of the proposed system are collected by analyzing
the needs exerted on it. This phase concerns establishing what the ideal system has to perform. How-
ever it does not determine how the software will be designed or built. Usually, a document called the
system requirements document is generated.

The system requirements document will typically describe the system’s functional, physical, inter-
face, performance, data, security requirements, etc. as expected by the user and defined by the system
designer. It is one which the analysts use to communicate their understanding of the system. The doc-
ument is carefully reviewed as it would serve as the guideline for the system designers in the system
design phase. The acceptance tests are designed in this phase.

1.3.2 System design phase

System design is the phase where system engineers analyse and understand the business of the proposed
system by studying the system requirements document. They will then design and define the system
structure which will be compliant with the system and platform constraints. If any of the requirements
are not feasible, the issue is directly highlighted.

In addition, the system designer will generate the detailed functional document which details a spe-
cific functional need or more particularly the implementation and the expected characteristics from the
software (avionic applications).

36 1. RESOURCE ALLOCATION IN AVIONIC SYSTEMS

Figure 1.6: A representation of the integration process view from IMA with the V-Model approach.

1.3.3 Architecture design phase

This can also be related to as high-level design phase. The baseline in selecting the architecture is that
it should realize all which typically consists of the list of modules, brief functionality of each module,
interface relationships, dependencies, etc.

In this phase, and after the definition of various elements of the architecture (processing modules,
memory, etc.), resource allocations are realized. Upon coordination with the function supplier, the mod-
ule integrator intervenes in defining an initial, high level resource allocation on the modules, and in the
network. That is to say he fulfills the role of distributing and scheduling functions upon the processing
modules and, based on this allocation, specifies message transmission routes in the AFDX network.

1.3. OVERVIEW ON THE SOFTWARE DEVELOPMENT PROCESS DESIGN IN AVIONICS 37

1.3.4 Detailed design phase

This can also be referred to as low-level design phase and realized by the function supplier. The de-
signed system is broken up into smaller units and each of them is explained so that the programmer can
start coding directly. Upon the reception of the requirements and functional documents from the system
designer, the function supplier will refine them into the software requirement document.

According to the complexity of the function, the function supplier will produce the software de-
scription document that will enable him to trace the requirements on its implementation choices. The
functions, and subsequently partitions, are broken up into functional threads, called processes. These
processes should verify proper executions in the schedules defined in the preceding phase.

1.3.5 Coding phase

In this phase, and after the definition of the partitions’ processes, the code is written by the function
supplier for the application that he is responsible of.

1.3.6 Unit testing phase

Unit testing implies the first stage of dynamic testing process. It involves analysis of the written code
with the intention of eliminating errors. It also verifies that the codes are efficient and adheres to the
adopted coding standards. This may be carried out by software developers, or in other words function
suppliers.

1.3.7 Integration testing phase

In this phase the separate modules will be tested together by the module integrator to expose faults in
the interfaces and in the interaction between integrated components. Testing is usually a black box as
the code is not directly checked for errors.

1.3.8 System testing phase

System testing will compare the system specifications against the actual system. The system test design
is derived from the system design documents and is used in this phase. Sometimes system testing is
automated using testing tools. Once all the modules are integrated several errors may arise. Testing
done at this stage is called system testing and is carried out by the module integrator. It also includes
verification that the actual resource distribution is as it would be expected, or that the resources utilized
by a function is within the resources provided by the configuration.

1.3.9 Acceptance testing phase

Acceptance testing is the phase of testing used to determine whether a system satisfies the requirements
specified in the requirements analysis phase. The acceptance test design is derived from the require-
ments document. The acceptance test phase is the phase used by the customer (e.g. Airbus) to determine
whether to accept the system or not.

38 1. RESOURCE ALLOCATION IN AVIONIC SYSTEMS

1.4 The research project SATRIMMAP
This thesis is supported by the French National Agency for Research (ANR) and was conducted under
the research project SATRIMMAP [134] which stands for Safety and Time Critical Middle-ware for
future Modular Avionics Platforms. This project’s consortium consists of six partners: Airbus, CEA
LIST, IRIT, LAAS-CNRS, ONERA and QoS Design.

The main objective of “SATRIMMAP” is to raise the difficulties associated to integration or recon-
figuration phases, where resource allocation tables and parameters have to be released, or even rede-
fined, each time the system changes or a new element is introduced (e.g. introduction of a new function).
This is to be achieved through the study and the definition of tool-sets. The ambition is also to ensure
a maximum transparency between applications and the architecture support. The aforementioned tool-
sets must ensure the criticality constraints of avionic systems, and in particular the determinism, the
reliability and the predictability of the various components. For this purpose, the project concentrates
on three points:

• the formalisation of a proper model for avionic applications,

• the configuration and reconfiguration of IMA architectures, and

• the definition of suitable tool-sets for facilitated configuration purposes.

These steps include the study of techniques and methods aimed at the performance evaluation for
an IMA architecture.

Amongst the several tool-sets to be conceived in this project, this thesis is concerned with the re-
source allocation one shown in Figure 1.7. The latency checker, which is the responsibility of another
project partner, thoroughly evaluates the delays in the network [101, 100]. Message transmissions be-
tween the various partitions are checked for any requirement violation, after which feedback is supplied
specifying whether the proposed configuration (resource allocation) is viable or not. The complete
system is afterwards simulated and checked for any irregularities.

1.5 Objectives of the study
As mentioned in the preceding section, the drawbacks of the IMA architecture necessitates its enhance-
ment. In order to achieve this, many aspects of the architecture have to be tackled. This thesis concerns
the decision support aspect in system configuration phases.

The several development phases represented in Section 1.3 through the V-Model include the efforts
of the system designer, the module integrator and the function supplier. In summary, the system designer
presents system requirements and specifications to be followed. After element definition, the module
integrator allocates the partitions on the different resources upon negotiation with the function supplier,
gives them a proper scheduling and then configures routing tables for ensuring a suitable message trans-
mission in the network. The function supplier moves on to define the processes and to do the necessary
software coding. Once done, several testing phases follow to ensure the good functioning of the system.

1.5. OBJECTIVES OF THE STUDY 39

Figure 1.7: Resource allocation and evaluation tool-set.

Currently, the module integrator is faced with an important challenge, the resource allocation prob-
lem which represents a critical phase in the conception of IMA-based systems. Continuous advance-
ments in avionics will give rise to significantly more complex systems in which the volume of con-
straints and requirements pose serious integration and configuration difficulties. System experts will
inevitably require aiding or even decision-making tools for resource allocations. This thesis is devoted
to the proposition of such tools which are capable of facilitating the choices to be made by the sys-
tem experts. The two distinguishable aspects of the resource allocation problem for which this thesis
contributes are:

1. The distribution of partitions on the core processing modules (CPM) and their respective temporal
scheduling, in a manner respecting all system constraints and requirements.

2. The routing of message flows, in the form of Virtual Links (cf. Section 1.2.2), between partitions.
This is carried out after successfully scheduling partitions on the modules, where based on this
choice, the VLs are to be routed in the AFDX network.

Figure 1.8 shows the place of the proposed tools in the development phases already discussed.

1.5.1 Scheduling objectives

The scheduling objectives include the introduction of functional aspects that may aid the module in-
tegrator in allocating resources for the partitions. That is partition mapping and scheduling on the
modules.

40 1. RESOURCE ALLOCATION IN AVIONIC SYSTEMS

Figure 1.8: Position of the proposed tools in the development process.

Starting from a set of well defined avionic partitions, their distribution onto the resources of the IMA
architecture, including several distributed processing modules, has to be achieved. This distribution
should ensure a viable resource mapping and temporal scheduling (proper execution of all partitions).

The instances of partition deployment model are under IMA Integrator responsibility and must ver-
ify all partition stand-alone qualifications. The scheduling tool has to compute the better sharing of
the resources between the partitions. This sharing must take into account application needs in terms of
strict periodicity, time duration, memory capacity and also in terms of segregation (or redundancy) of
partitions, co-localization of different partitions in the same module or not, and in the same cabinet or
not.

To optimize solution for configuration, the mapping tool follows a major need to maximize the
spare area for a partition, so, if an application is modified and a new budget should be allocated, this
application must be modified or re-localized without re-qualifying all applications sharing the module.

1.5.2 Virtual Link routing objectives

Once partitions are successfully placed on the various modules, routing tables need to be completed.
The Virtual Links, implicated in this process, are defined from the message exchange requirements be-
tween partitions. After their definition, source and destination End Systems can be interpreted for each

1.6. CONCLUSION 41

VL from the partition allocations on modules.

Routing in the AFDX network should respect not only network constraints, such as link capaci-
ties, but also transmission delay requirements for each VL. This routing should optimize the residual
bandwidth so as to ensure future evolution possibilities, such as the introduction of a new VL, or the
modification of an existing one.

1.6 Conclusion
In this chapter, key attributes of an avionic platform were briefly discussed to then introduce the main
aspects of the IMA architecture, which constitutes the framework for this thesis. The different compo-
nents of IMA were presented, from the AFDX network to the various system and software development
phases.

The emphasis was on the need for design aiding tools that support system designers in filling out
configuration tables, more specifically those related to resource allocation. Be it related to partition
distribution and scheduling on modules, or even subsequent routing of Virtual Links. It should be noted
however that the main contribution of this thesis concerns the former partition scheduling problem,
which is considered as the primary objective. The latter Virtual Link routing follows as a secondary one
where assertion on transmission delay requirements for VLs is performed by other project partners (cf.
Latency checker in Figure 1.7). Their feedback will allow the interpretation of the global feasibility of
the solutions supplied by the tools.

42 1. RESOURCE ALLOCATION IN AVIONIC SYSTEMS

CHAPTER 2

State of the art

As indicated in the previous chapter, resource allocation in avionic platforms constitutes the main in-
terest of this thesis. Real-time embedded systems are clearly implicated as they constitute a major
classification for avionic systems. It is hence indispensable to define such systems and specify the as-
pects that apply in avionics. Among the resource allocation problems, this thesis is principally focused
on the real-time scheduling aspect, and hence, the state of the art on this issue is hereafter presented.
This shall lead to the proper identification of this thesis’ main problematic amid all that already exists,
including the associated theoretical concepts. In addition, methods to be implemented in later chapters
are also to be discussed.

Section 2.1 introduces real-time systems in addition to their classification. Section 2.2 details
scheduling problems including some generalities and variations. An overview on embedded systems
is then included in Section 2.3. After a brief discussion on the complexity of scheduling problems in
Section 2.4, some known algorithms for uniprocessor and multiprocessor scheduling are introduced
in Section 2.5. Particularities of the scheduling problem, concerned with this thesis’ resource alloca-
tion problem, is clearly indicated in Section 2.6, along with methods that may be implemented for its
resolution. Section 2.7 finally concludes this chapter.

2.1 Introduction to real-time systems
Real-time systems are digital computing systems that allow the establishment of applications where
timing constraints are to be satisfied. These real-time systems are reactive, due to there continuous
reaction to stimuli coming from the system’s environment. For such systems to correctly function, they
have to respond to every stimulus they receive. The response to input stimuli not only depends on
their nature, but also on the system state at the time of stimuli arrival. A real-time system (cf. Figure
2.1) is usually constituted of a control system that controls a certain physical system in its environment.
The bidirectional interaction between these two systems is achieved via two peripheral subsystems: an
actuation system that allows a certain modification of the physical system (motors, pumps, etc.), and a

43

44 2. STATE OF THE ART

sensory system that supplies the control system with information related to the physical system, through
the use of sensing devices (barometers, cameras, etc.).

Figure 2.1: A typical real-time system components.

The correctness of a real-time system not only depends on its logical results, related to the imple-
mentation of a certain algorithm, but also on the temporal availability of the results. Thus, a real-time
system must satisfy two important constraints:

• Logical accuracy: calculate correct system outputs as a function of inputs.

• Temporal accuracy: the results are affected at the appropriate moment. That is to say, a delay on
result output is considered as an error that can cause serious consequences. A real-time system
must hence respect real-time constraints, such as the time limit for giving a result.

Data processing is becoming more noticeable in domains where the interaction with the environ-
ment represents the essential mainspring of the system. Resorting to computers in this genre of systems
is of interest due to the affordability of offered functionalities, in terms of development time, fabrication
time and cost, congestion or weight, as compared to purely electronic or mechanic solutions. In addi-
tion, processors offer a great flexibility via programming, the possibility to add new functionalities, the
ability to apply updates, or product customizations that are often found to be a set of less demanding
tasks.

Currently, real-time computer systems can be found in many domains such as avionics, aerospace,
automotive, robotics, public transportation, telecommunication, industrial processes and many others.
For many of these domains, one of the important characteristics is that the computer system is given
a great responsibility in terms of human lives, environmental and economical consequences. Critical
systems are henceforth spoken of, that are subject to reliability constraints.

2.2. GENERALITIES ON REAL-TIME SCHEDULING 45

Depending on the criticality of temporal constraints, that may lead to different consequences in
case of a failure, distinguish two essential types of real-time systems: hard real-time systems and soft
real-time systems.

2.1.1 Hard real-time systems

The majority of critical real-time systems are exclusively constituted of treatments that are subject to
strict temporal constraints. This means that the indispensable condition for system operation is that all
system treatments have to respect all of their temporal constraints. Hard, or strict, real-time treatments
are hence addressed. The concern here, and instead of ensuring fast computation, is more related to
what is called the predictability [144], i.e. the ability to predict, a priori, whether the system can meet
all hard (critical) timing requirements. This includes the ability to define nominal operation conditions
in terms of environmental assumptions with which the system interacts.

2.1.2 Soft real-time systems

Another class of systems is less demanding when it comes to respecting the temporal constraints. Sys-
tems of this class, called soft real-time systems, can suffer an acceptable rate of temporal faults without
causing catastrophic consequences. This class contains, amongst others, systems where the quality is
appreciated as a service with a human aspect (susceptible to mistakes): as in the case of multimedia
systems and applications (telephony, video, etc.). The measure of constraint satisfaction takes the form
of probabilistic data: quality of service relative to a particular service (e.g. number of images or number
of sonar samples per second), relative to system comportments as a whole (e.g. number of treatments
that were able to be carried out), or the combination of the two. A problematic to this class of systems
is to evaluate the quality of service that the system offers or can offer during operation, as a function of
the system’s environment characteristics [80].

In this thesis, the main interest is in hard real-time systems which characterizes the avionic system
introduced in Chapter 1.

2.2 Generalities on real-time scheduling
The real-time scheduling problem amounts to finding a sequence for executing tasks on every processor
in a given architecture. Tasks in a real-time system are subject to temporal and other types of constraints.
The goal is hence to foresee, with the maximum possible exactitude, the temporal behavior of the
system. In literature, different terms to describe the act of associating a set of tasks to a group of
processors can be found. In this thesis the terms “mapping” and “allocation” are used to express the
idea of associating tasks to processors. The term “scheduling” however, is more precise where it not
only specifies the association of tasks to the processors, but also their temporal behavior on them.
Whenever indicated, the term “temporal scheduling” is used to describe the temporal behavior of a set
of tasks on a given processor.

46 2. STATE OF THE ART

2.2.1 Real-time tasks

The main part of a real-time system consists of tasks, i.e. of computer processes. A task is a computation
that is executed by the processor in a sequential fashion: it is a sequential execution of code that does not
suspend itself during execution. The characterization of a task i can vary from one scheduling model to
another. Among the many parameters that can be found in literature on recurrent tasks (require repeated
execution), consider the following (cf. Figure 2.2):

• The ready time or release time ri represents the date after which task i can proceed its execution
for the first time, it is also called activation date. In the case of periodic tasks, with period Ti, an
instance k ∈ IN of a task i is released at rk

i = rk−1
i + Ti, with r0

i = ri.

• The deadline di represents the duration before which the task should terminate its execution.
Exceeding this limit can cause a temporal violation. Two kinds of deadlines can be differentiated:

– Hard: meeting a task deadline is critical for the system functionality. Missing a hard dead-
line is considered a definite failure, and leads to catastrophic consequences.

– Soft: it is desirable to meet a task deadline, but occasionally missing it can be tolerated. A
task with a soft deadline is expected to be completed either before the deadline or as early
as possible after it.

• The start time ti and end time ei are respectively the date at which task i executes for the first
time on the associated processor and the date at which it finishes its execution (for the first time).
If the task requires execution with a period Ti, then tki and ek

i represent the start and end times for
instance k of task i.

• The execution time bi represents the duration of execution for task i. This parameter is con-
sidered in the majority of works on hard real-time scheduling as the worst-case execution time
(WCET) [28] on the processor on which it is going to execute. The WCET represents an upper
bound for the execution time of a task. In other words, although a task can finish earlier, the
WCET represents an estimation on the maximum possible duration this task needs to execute.
In order for this parameter to be valid, its value should not be overestimated. And after this
estimation, the task’s execution time must never exceed the estimated value.

• The laxity li corresponds to the maximum duration a task i can delay its execution without sur-
passing its deadline. As a function of time, li(t) represents the same indicated duration while
considering only the remaining execution bi(t) at time t, that is li(t) = di − t− bi(t).

If release times are included for a task system (first activation dates for tasks are known a priori),
such a system is called a concrete task system. Otherwise, the task system is a non-concrete one. Note
that given an incomplete task system (release times are not specified), an infinite number of complete
task systems can be obtained by simply specifying the release time for each task. In the special case for
which the release times for all tasks are equal zero, the complete task system is called a synchronous
task system.

For what concerns task periodicities, a task can either execute periodically at regular intervals, or
randomly with no specified period (non-periodic tasks).

2.2. GENERALITIES ON REAL-TIME SCHEDULING 47

Figure 2.2: Graphical representation of a real-time model.

(a) Classic periodicity. (b) Strict periodicity.

Figure 2.3: Periodicity types in a real-time system.

2.2.1.1 Periodic tasks

A task i is referred to as periodic of period Ti if the activation of this task is produced at regular time
intervals Ti. The service provided by this periodic task is hence made indefinitely. For this reason, each
of these executions is called an instance of task i. Figures 2.3a and 2.3b represent two types of periodic
task periods:

• Classic period: It is the most used in real-time applications. Each instance k of task i is allowed
to execute after its respective activation date rk

i . Although no constraints are imposed on the
distance between the start times of two successive instances k and k + 1, these instances should
respect deadline constraints such as the hard deadline one (ek

i ≤ rk
i + di).

• Strict period: As compared to the classic period, execution start dates tki for the instances of a
periodic task imust be exactly Ti apart. Consequently, given task i offset (first execution date) ti,
instance k start date should satisfy: tki = ti + k Ti. In this case, it suffices to verify the deadline
constraint for only the first instance of a task’s execution. It can be also easily seen that the strict
period forms a special case of the classic one.

Task periodicities can be also classified as harmonic or non-harmonic. Harmonic periods imply that
every period divides every other one of greater value (Ti|Tj or Tj |Ti for all i, j), e.g. the set {2, 6, 12}.
Non-harmonic periods are however not constrained, periods may be primary, multiples or of no relation
between each other, e.g. the set {2, 6, 8}.

Due to the strict periodicity aspect discussed in Section 1.2.3.2, tasks considered in this thesis are
characterized by a strict period and not a classic one. In addition, no hypothesises on the harmonic
and non-harmonic classifications of periods are considered.

48 2. STATE OF THE ART

2.2.1.2 Non-periodic tasks

A task is specified as non-periodic if its successive activations arrive at an irregular basis, that is to say
that the task does not abide by a predefined period. There exists two types of non-periodic tasks:

• Aperiodic: activation dates are random and cannot be anticipated. Task execution is the product
of internal or external events that can trigger at any instant. In [143], different procedures for
scheduling the execution of aperiodic tasks in real-time systems are exposed.

• Sporadic: a special case of aperiodic tasks where a lower bound on the time duration that sepa-
rates two successive activations is known. These type of tasks are frequently specified as periodic
tasks [104], where the aforementioned lower bound is considered as the task period, in order to
apply existing results on periodic tasks.

These two types of non-periodic tasks are not considered in this thesis.

2.2.2 Latency

Latency L(i, j) between two tasks i and j is equivalent to the time between the date at which i starts
execution and the date at which j terminates. Imposing a latency constraint Lmax(i, j) signifies limiting
this latency to a predefined maximum value, i.e. L(i, j) ≤ Lmax(i, j).

The interest in limiting the time between these two tasks’ executions is to guarantee that system
performance remains satisfactory and stable [90]. Consider as an example an aircraft pilot hitting the
brakes on the taxiway, the system must in this case guarantee, through the intervention of several inter-
nal tasks, a response whose time does not exceed certain limits, to avoid undesirable collisions.

In this thesis, imposing latency constraints between tasks is discussed in Chapter 3.

2.2.3 Classes of scheduling problems

• Uniprocessor/Multiprocessor: if the architecture has only one processor, the scheduling problem
is said to be uniprocessor. If several processors are available then the problem is a multiprocessor
one.

• Off-line/on-line: a scheduling is classified off-line if it is carried out on the entire task execution
sequence before actual task activation. The schedule generated is subsequently stored in config-
uration tables and later executed by a dispatcher. The task set has to be fixed and known a priori,
so that all task activations can be calculated off-line. The main advantage of this approach is that
the run-time overhead is low and does not depend on the complexity of the scheduling algorithm
used to build the schedule. However, the system is quite inflexible to environmental changes [42].
On-line scheduling however, is used if scheduling decisions are taken at run-time every time a
new task enters the system or when a running task terminates. With on-line scheduling, each
task is assigned a priority, according a predefined rule. These priorities can be either fixed, based
on fixed parameters and assigned to tasks before their activation, or dynamic, based on dynamic
parameters that may change during system evolution.

2.2. GENERALITIES ON REAL-TIME SCHEDULING 49

• Preemptive/non-preemptive: if task executions can be interrupted by others then the problem
is preemptive. Preemption indicates that a task execution can be suspended temporally so that
another one can execute due to higher priority for example. With non-preemptive scheduling, a
task execution, once started, is proceeded until its completion without being interrupted.

• Idling/non-idling: in general, a processor executes a task once it is ready to execute and cannot
retard this execution if it has no other tasks to serve. It is said, in this case, that the scheduling is
non-idling, meaning there is no insertion of idle times (work-conserving). Nevertheless, in some
cases a system may not be schedulable unless kept idle for a certain time. It is hence said that the
scheduling is idling (idle time insertion).

• Optimal/non-optimal: a scheduling algorithm is said to be optimal [154] for a given problem if,
for any set of tasks, it always produces a schedule which satisfies the constraints of the tasks
whenever any other algorithm can do so. If the optimal algorithm does not find a solution then
no other algorithm can do so. Otherwise, a non-optimal scheduling algorithm aims to finding
approximate solutions (by ignoring part of the constraints for example).

This thesis is concerned with the off-line scheduling of non-preemptive tasks in a work-conserving
system. For this matter, optimal and approximation algorithms are going to be studied.

2.2.4 Non-preemption in scheduling problems

In avionics, preemptive scheduling of tasks is prohibited. This choice was made to ease the certification
and the predictability of the system. In addition, and as was indicated in Section 1.2.3, avionic tasks
have no priority between each other and are assigned independent sets of resources. This guarantees
a certain level of segregation between tasks. The non-preemptive aspect of the scheduling reinforces
further this independence between tasks as it eliminates any influence that might arise between them.

In general, much of the prior research on the scheduling of periodic task systems has focused upon
preemptive scheduling, with the non-preemptive one receiving considerably less attention [23]. Even
though most of the scheduling algorithms are preemptive, there exists situations where non-preemptive
scheduling is preferable [87]. For example, the overhead generated by preemption is not always neg-
ligible with respect to task execution durations and inter-processor communication. Non-preemptive
scheduling on a uniprocessor guarantees exclusive access to shared resources and data, thus eliminating
the need for synchronization and associated overhead [114].

This thesis will only consider the non-preemptive scheduling of tasks for the reasons indicated in
the beginning of this section.

2.2.5 Schedulability analysis

As was indicated in Section 2.1.1, an important concern in a critical real-time system is the predictabil-
ity, that is if the system can meet all hard timing requirements. To ensure this predictability, schedula-
bility analysis is performed.

For this study, the two kinds of schedules (in hard real-time systems) should be distinguished:

50 2. STATE OF THE ART

• Feasible schedule: it is a schedule where all system constraints are satisfied. That is to say, task
executions are terminated before their respective deadlines, no overlap in execution time occurs,
and all other schedulability constraints, such as memory requirements, are verified.

• Infeasible schedule: Contrary to the preceding definition, a schedule is referred to as infeasible
if a system constraint is violated, such as missing a deadline in a hard real-time system.

Schedulability analysis for a real-time system consists of validating the presence of feasible sched-
ules for a given real-time system, and/or verifying if a defined scheduling algorithm succeeds in provid-
ing such feasible schedules. Principal approaches that can be employed for this analysis are: analytical
approach, simulation and model-checking.

2.2.5.1 Analytical approach

This approach for analysis consists of identifying the worst-case response times for tasks in a given
system, and producing an analytical expression, a schedulability condition, permitting the evaluation
of system characteristics. These conditions, generally polynomial or pseudo-polynomial time, can be
sufficient conditions or sufficient and necessary ones depending on task parameters [126]. MAST [75]
is an example tool implementing this approach.

2.2.5.2 Simulation

Simulation is widely used for performance analysis, dimensioning or development of real-time systems
and schedulability analysis. It consists of modelling the system components with the aid of an adequate
formalization, and then the execution using a simulation tool on predefined scenarios. The resulting
information can represent simple execution traces of the system or even evaluation of certain system
components. One of the main inconveniences of simulation is that it can be optimistic [150]. Although
the simulation can show that the system is not schedulable by showing a non-feasible scenario, re-
alising an exhaustive study of all possible scenarios, to prove the schedulability of a system, can be
difficult [87].

Several simulation tools exist and are used in industry for simulation purposes, such as Ched-
dar [139].

2.2.5.3 Model checking

Model checking is an automatic technique for verifying finite-state reactive systems [39]. In other
words, it is a method that allows an exhaustive exploration of the system state space. These methods
allow verifying several system properties other than scheduling [74]. The system is modelled as a state
transition graph or a Petri-Net graph. An efficient search algorithm is then used to determine whether
or not the graphs satisfy system specifications. The major drawback, is that the state space that model-
checking methods must take into account may be of exponential size. Consequently, this limits the size
of analysable models.

2.3. EMBEDDED SYSTEMS 51

In this thesis, instead of performing schedulability analysis, optimization algorithms are imple-
mented to supply schedules that respect design constraints by construction. The optimization problem
will be clearly defined in Chapter 3.

2.3 Embedded systems
An Embedded System is a processor based system that is embedded as a subsystem in a larger system
(which may or may not be a computer system). It is designed to do some dedicated functions, often
with real-time computing constraints.

Embedded systems necessitate more and more processors, which may be of different types, for
their proper functioning. Some classifications for embedded architectures according to the nature of
processors are:

• Homogenous: the processors are interchangeable and have the same processing capacity.

• Heterogenous: the processors are either not destined to execute the same tasks, or capable of
doing so but with different processing capacities.

Constraints in multiprocessor systems, and more specifically embedded ones, are a direct conse-
quence of resource restriction. These systems have a processing power and memory capacities, which
are limited due to reasons related to weight, volume, energy consumption (autonomous vehicles) or
even price (applications aimed for the public). Between these different constraints, memory manage-
ment and energy consumption are the most studied in literature.

The IMA architecture introduced in Chapter 1 represents an embedded system where a set of homo-
geneous processing units are interconnected.

2.3.1 Memory management

With processors becoming more and more fast, memory performance advances are struggling to keep
up the pace. Memory available for executing applications in embedded systems was hence always a
precious resource. In fact, although lower prices and increased memory capacities are becoming com-
mon, memory requirements of applications continue to augment largely [137] as they become more
and more complex. Wise management of memory becomes a delicate issue where rational allocation of
memory to tasks should be always thought of.

Based on the memory distribution, some classifications for embedded multiprocessor systems are:

• Parallel: the set of processors communicate through a shared memory area.

• Distributed: the set of processors have memory distributed among them, and communicate only
through message transmission.

In this thesis, the IMA’s processing units are assigned independent memory resources. Hence, IMA
architectures are clearly classified as distributed systems where the memory capacities of processors
have to be respected.

52 2. STATE OF THE ART

2.3.2 Distributed systems

A distributed system is a collection of processors interconnected by a communication network in which
they coordinate only by passing messages [43]. In addition, loosely coupled distributed systems, are
those in which the processors do not share memory. Each processor has its own local memory.

One advantage of distributed systems is the independent failures concept [53]. If a processor in
a distributed system fails, it is not immediately made known to the other components in the system.
Faults in this processor isolate it from the system, but the system does not stop running. Furthermore,
each component in the network can fail independently, still leaving others running successfully.

The architecture of the interconnection network can follow one of the two commonly used:

• Bus based: In this type of architecture there is a single network and a bus cable that connects all
components (processors). Figure 2.4a is an example of such architectures for a distributed system
of processors, where each processor has its own local memory.

• Switch based: In the switch based architecture, components such as processors are interconnected
through a set of switches. Communication between any two processors can be achieved following
one or several possible routes. Figure 2.4b represents an example of such architectures. Another
example is that of IMA architectures (cf. Figure 1.1b).

(a) Bus based. (b) Switch based.

Figure 2.4: Architectures for distributed systems with local memories.

In addition to the above mentioned architectures, the complete topology, where each processor pair
are interconnected through a separate medium (bus cable), is also known. An example of such a topol-
ogy is the federated architecture in avionics (cf. Figure 1.1a).

2.3.3 Energy consumption

Controlling energy consumption is a largely tackled problem in the embedded systems domain. With
time it has become an essential factor for their design due to the complexity that gives rise to more

2.4. COMPLEXITY OF SCHEDULING PROBLEMS 53

elevated energy consumption. Hence, energy consumption is an important parameter to take into con-
sideration for developing embedded applications. There exists several approaches to relieve this prob-
lem which is not cited here for the sole reason that this aspect of embedded systems is not taken into
consideration in this thesis.

2.3.4 Fault-tolerance

Fault-tolerance is the ability of a system to maintain its functionality, even in the presence of faults.
It has been extensively studied in the literature [17, 99, 128, 67, 131, 45, 83]. Not all faults lead to
immediate failure of the system, faults may be latent (activated but not apparent at the service level),
and later becomes effective. Fault-tolerant systems attempt to detect and correct latent errors before
they become effective. The means for fault-tolerance are either:

• error processing: to remove errors from the system’s state, which can be carried out either with
recovery (rolling back to a previous correct state) or with compensation (masking errors using
the internal redundancy of the system);

• fault treatment: to prevent faults from being activated again, which is carried out in two steps, di-
agnostic (determining the cause, location and nature of the error) and then passivation (preventing
the fault from being activated again).

These means use redundancy in order to treat errors, of which three forms exist: hardware redun-
dancy (e.g. using a spare processor), software redundancy (e.g. using two implementations of the same
application), and time redundancy (e.g. re-executing an application later).

Task and processor redundancies are considered to be predefined and included in the input for this
thesis.

2.3.5 Other considerations

In addition to the above mentioned constraints, and temporal ones, there exists other types of constraints
such as those related to resource accessing or even locality [51]. If the resource (processor, memory,
etc.) is shared, then it is necessary to add constraints on tasks to avoid the use of a critical resource by
several tasks at the same time. Elsewhere, it is possible to impose a locality constraint, signifying that a
task must exclusively execute on a given processor, e.g. to execute on a processor that offers a resource
not present on others. There also exists anti-locality constraints that precise that two given tasks must
not execute on the same processor, as in the case of software redundancy, where the two redundant tasks
must execute on different processors.

In this section, the most important constraints considered in later chapters are the locality and
anti-locality of tasks on processors.

2.4 Complexity of scheduling problems
The purpose of complexity theory is the classification of computational problems according to their
inherent difficulty. In an optimization theory context, each problem can be formulated as a decision

54 2. STATE OF THE ART

problem. A decision problem is a special type of computational problems whose answer is either yes or
no, i.e. it is a selection process where one of two or more possible solutions is chosen to reach a desired
goal in a given problem.

The O (big-O) notion is used to bound the complexity of an algorithm. For example, the algorithm
to search an element in a list of size n has a complexity O(n), which signifies that for finding this
element, the number of elementary instructions (comparing two elements) to execute never exceeds n
instructions.

The most known complexity classes for decision making problems are:

• The P class: it represents the class of problems that can be solved in polynomial time. In other
words, there exists an algorithm of computational complexity O(nk) for a certain k. This class is
called that of easy problems.

• The NP class: it is the abbreviation for “Non Deterministic Polynomial Time”. This class contains
all the problems for which a potential solution set (of exponential cardinality, at worst) can be
associated, such that it can verified in polynomial time if a potential solution satisfies the posed
question.

In addition, a problem is said to be NP-complete if it belongs to the NP class, and every other prob-
lem in the NP class can be converted (reduced) to it in polynomial time. Problems qualified as NP-hard
are at least as hard as the hardest problems in NP but do not have to be in it.

From a computational complexity point of view, the scheduling problem can be addressed in differ-
ent manners: the complexity of evaluating the validity (feasibility) of a given schedule towards system
constraints; the complexity associated with the schedulability analysis of a system, i.e. if there exists
feasible solutions to the problem; or even the complexity of evaluating the optimality of a scheduling
policy can be differentiated.

These three problems are closely related. Consider the following example: Given an algorithm that
allows deciding in polynomial time if a schedule is feasible, and in addition, given a scheduling policy
A that is proved to be optimal for a class of systems B. A system of B can be hence proved schedulable
in polynomial time by interpreting the validity of this system’s scheduling by A, since the schedule
provided by A is optimal and hence no better solution exists.

The complexity is not only related to the type of problems involved, but also to the considered
systems and scheduling policies. Each of these classes implies the specificity of complexity estimation,
which is a delicate process. Table 2.1 shows the complexities for some scheduling problems whose
objective is to minimize the total completion time of tasks (

∑

i ei).

2.5 Real-time scheduling algorithms
Among the various scheduling algorithms proposed for the scheduling of real-time tasks, distinguish
the following approaches [71]:

2.5. REAL-TIME SCHEDULING ALGORITHMS 55

Table 2.1: Complexity of some scheduling problems.
Environment Characteristics Complexity
Single machine non-synchronous/preemptive polynomial [19]
Single machine precedence NP-hard [102]

2 parallel machines non-synchronous/unit-time/precedence polynomial [21]
Parallel machines non-synchronous/preemptive NP-hard [32]

Unrelated parallel machines preemptive NP-hard [140]

• Cyclic executive: The scheduling algorithm prepares beforehand a table (this table is known as
the cyclic schedule [20]) which determines when tasks are scheduled. The cyclic executive ap-
proach needs to store a table before the execution of the system; the size of this table is generally
proportional to the least common multiple of all periods (of periodic tasks).

• Static: The scheduling algorithm computes the priorities of the tasks beforehand, based on the
task characteristics (e.g., the worst case execution time, the deadline, the period, etc.). The prior-
ities are then assigned to each task before the activation of all tasks. During the execution of the
system, the system selects the highest priority task that is ready for execution.

• Dynamic: The scheduling algorithm computes the priorities during the execution of the system.
The priority of each active execution is based on the system state such as the current time . In
addition to the request characteristics, such as the remaining execution time of each request, or
the time available before reaching the deadline.

The following sections shed light on the two major classes of scheduling algorithms, concerned
with the uniprocessor and multiprocessor scheduling problems respectively.

2.5.1 Uniprocessor scheduling

One of the most important works on uniprocessor scheduling was that of Liu and Layland [110] in 1973,
after which several solid results have been established. The literature in this domain is enriched and
consists of optimal scheduling algorithms as well as performance analysis of schedules. The following
sections discuss some well-known uniprocessor scheduling algorithms.

2.5.1.1 Rate Monotonic (RM)

Introduced by Liu and Layland in 1973 [110], the rate monotonic algorithm represents one of the most
popular static priority rules. The rate monotonic scheduling is a preemptive scheduling with static
priority that is applied to independent periodic task sets. It was defined for a sub-class of periodic task
sets:

• Periodic tasks in a synchronous system, that is, all tasks are started at the same time (r1 = r2 =
. . . = rn), and

• systems with late deadline, where the deadline coincides with the period (di = Ti).

56 2. STATE OF THE ART

The priorities are allocated to the different tasks in the following manner: the shorter the task pe-
riod, the more priority it is allocated. The principal contribution of this algorithm is that it is optimal
for the model proposed by Liu and Layland [110] (the tasks are preemptive, periodic and independent)
from a scheduling point of view (if a feasible solution exists then the algorithm can find it).

The sufficient condition for schedulibility using the RM algorithm when applied to a system of n
tasks is [110]:

n
∑

i=1

bi

Ti
≤ n (2

1
n − 1),

where the left-hand side of the inequality represents the processor utilisation, and the right-hand side
represents the utilisation bound.

Later on, a necessary and sufficient condition was introduced in [85]. The authors show that if a
set of periodic tasks (classic periods), sorted by decreasing priority, can be scheduled by RM and the
response time Ri = (ei − ti) of task i is upper bounded by the solution of:

Ri =

i−1
∑

j=1

⌈

Ri

Tj

⌉

bj

+ bi,

where +x, is the superior integer part of x, then the scheduling of this task set is feasible if and only if:
Ri ≤ Ti, ∀i = 1 . . . n.

In the non-preemptive context, RM becomes non-optimal.

2.5.1.2 Deadline Monotonic (DM)

The deadline monotonic scheduler is an extension of the rate monotonic scheduler, and hence follows
a static priority rule. It was introduced by Leung and Whitehead in 1982 [105] where the algorithm
relaxes late deadline condition into the general deadline; namely it allows the deadline of a task to be
less than the period (di ≤ T i). Hence, the deadline monotonic rule is defined for a larger sub-class of
periodic task sets.

The smaller the deadline di, the more task i has priority. DM is optimal for Liu’s and Layland’s
model [110] from a scheduling point of view.

The sufficient condition for scheduling n periodic tasks (sorted by decreasing priority) {1, . . . , i, . . . , n}
using DM is:

bi +
i−1
∑

j=1

⌈

di

Tj

⌉

bj ≤ di, ∀i = 1 . . . n.

As is the case for RM, there exists a necessary and sufficient condition for the DM algorithm. If a
set of periodic tasks, sorted by decreasing priority, is scheduled by DM such that the response time Ri

2.5. REAL-TIME SCHEDULING ALGORITHMS 57

of task i is upper bounded by the solution of the equation:

Ri =

i−1
∑

j=1

⌈

Ri

Ti

⌉

bj

+ bi,

then the scheduling of this set is feasible if and only if: Ri ≤ di, ∀i = 1 . . . n.

DM becomes non-optimal in the non-preemptive case, except for the following case: bi ≤ bj , di ≤
dj , ∀(i, j).

2.5.1.3 Earliest Deadline First (EDF)

This popular algorithm was also introduced by Liu and Layland in 1973 [110]. It is a scheduling that
can be preemptive or non-preemptive with dynamic priority, applied to periodic independent tasks with
di = Ti. The idea for allocating priorities in this algorithm is that the task whose absolute deadline
is the earliest to arrive has the highest priority. The priorities are re-evaluated, if necessary, over time.
This re-evaluation is effected when, for example, a new task arrives and its deadline is the nearest as
compared to other ready tasks. EDF is optimal for preemptive uniprocessor scheduling with dynamic
priority for independent periodic tasks whose deadlines are equivalent to their periods. It was later
shown that this algorithm remains optimal if the tasks are non-periodic.

The necessary and sufficient condition for schedulability in the preemptive case (if di = Ti, ∀i) is:
n
∑

i=0

bi

Ti
≤ 1.

2.5.1.4 Least-Laxity First (LLF)

This algorithm is based on the laxity of tasks. LLF was first introduced by Mok and Dertouzos [119,
118]. At each invocation, LLF elects the task whose laxity is the smallest. [41] shows that the conditions
for schedulability for the LLF algorithm are the same as those for EDF, this means that the necessary
and sufficient condition in the preemptive case (with di = Ti, ∀i) is:

n
∑

i=0

bi

Ti
≤ 1.

The LLF algorithm becomes inconvenient when several tasks have the same laxity, in which case a
large number of changes is generated. This explains why it is rarely used in the uniprocessor case.

2.5.2 Multiprocessor scheduling

The multiprocessor scheduling problem was formulated for the first time by Liu in 1969 [109]. Most
problems related to hard real-time scheduling on multiprocessor systems under non-trivial assumptions
have been proven to be NP-complete [65, 66, 145, 151].

58 2. STATE OF THE ART

When dealing with multiprocessor scheduling, first results that can be obtained are the absence of
optimal scheduling algorithms having a polynomial complexity, and that solutions to multiprocessor
scheduling problems are certainly not trivial extensions to mono-processor ones [87].

Traditionally, there have been two major approaches for the multiprocessor task scheduling [35]:
partitioning and global scheduling.

2.5.2.1 Partitioning

In this approach, each task is assigned to a single processor where all of its instances are executed, with-
out migration possibilities. In other words, the n task set is partitioned into m subsets, with m being
the number of processors. Each of these subsets is then scheduled on one processor. The advantage
of this approach is that it transforms the multiprocessor scheduling problem into a set of uniprocessor
ones [35]. The main drawback is that finding an optimal assignment to processors is similar to a bin-
packing problem, which is NP-hard in the strong sense [66].

In spite of this, partitioning is widely used and appears in two variations [18]: Minimizing the num-
ber of processors needed to guarantee the feasibility of the task set, or alternatively, given a fixed mul-
tiprocessor platform, finding sufficient schedulability bounds, such as utilization. Due to intractability,
many heuristics for partitioning have been proposed, most of which are bin-packing-based algorithms
and can be applied in polynomial times using sufficient schedulability tests [15].

2.5.2.2 Global scheduling

In global scheduling, a task is allowed to execute on any processor, even when resuming after having
been preempted, and thus unlike partitioning, migration is allowed.

Producing a conventional global scheduler suitable for real-time systems has proved to be a daunting
task [77], mainly because of the following limitations:

• No efficient schedulability tests currently exist for this approach [15].

• The use of optimal uniprocessor scheduling algorithms are not optimal in this the multiprocessor
context. The RM algorithm for example leads to low processor utilization [35].

The primary advantage of global scheduling is that optimal scheduling is possible since migration
is permitted [77].

Nevertheless, proportionate fair (or Pfair) scheduling [25] is a global-scheduling approach pro-
posed as a means for optimally scheduling periodic tasks on a multiprocessor when each task’s deadline
equals its period. It is capable of optimally scheduling recurrent and rate-based tasks on a multipro-
cessor [77]. It is also the only known optimal multiprocessor scheduling algorithm with polynomial
complexity.

2.5. REAL-TIME SCHEDULING ALGORITHMS 59

2.5.2.3 Some advances in periodic multiprocessor scheduling

Apart from the methods indicated above, interest in periodic multiprocessor scheduling has become
more profound in past years. Several uniprocessor algorithms were extended to their multiprocessor
counterparts [47, 111, 112]. Other, superior ones, were also proposed, such as in the work of Goossens
et al. [72] who have proposed a new priority-driven scheduling algorithm for periodic tasks in multipro-
cessor systems, and that appeared to be superior to EDF in the sense that it schedules all tasks that can
be scheduled by EDF, in addition to some of those that cannot. Feasibility analysis and schedulability
conditions where proposed for the non-preemptive EDF (multiprocessor) by Baruah [23], and later on
for EDF with migrating general task models by Ficher and Baruah [60].

In this thesis, the multiprocessor partitioning problem is considered.

2.5.3 Non-preemptive and strictly periodic multiprocessor scheduling

A more specific multiprocessor scheduling problem is the one with non-preemptive task sets of strict
periodicity. Such a problem was not much tackled in literature until the last couple of years, where con-
tributions began to arise. Not only does the non-preemption aspect add computational complexity [24]
on the problem, but also the strict periodicity makes its even harder. In most of the studies, loose peri-
odicity was considered, where some slack time is allowed between successive executions of a periodic
task [93]. One of the early works on strictly periodic scheduling is that of Korst [91] who was moti-
vated by real-time video signal processing. He considers the problem of non-preemptively scheduling
periodic tasks on a minimum number of processors, assuming that the tasks have to be executed strictly
periodically, and proposes a greedy heuristic to solve this problem. Korst also establishes a necessary
and sufficient condition for the schedulability of two periodic tasks. Korst et al. show that the problem
is NP-complete in the strong sense, even in the case of a single processor, but that it is solvable in poly-
nomial time if the periods and execution times are divisible [92]. They also propose an approximation
algorithm, which is based on successively assigning tasks to processors according to some priority rule.

Kermia and Sorel [88] propose a heuristic for scheduling non-preemptive and independent task sets
with strict periodicity upon multiprocessors. Their objective is to minimize the schedules’ cycle times
while respecting latency and precedence conditions. Their heuristic is composed of several algorithms,
the first being the assignment of tasks to processors, and after which the scheduling is carried out. Their
assignment favours placing tasks whose periods are equal or multiples on the same processor. Compari-
son with an exact branch-and-cut algorithm shows the effectiveness of the proposed heuristic. Meumeu
and Sorel [116] and later Marouf and Sorel [114] present schedulablity conditions in a similar context.

In [55], Eisenbrand et al. consider the problem of scheduling strictly periodic tasks on a minimum
number of processors. They show that if the periods are harmonic, then there exists a 2-approximation
for this minimization problem and that this result is tight. In [56], the authors handle the same problem
with additional constraints in an avionic context. Assuming harmonic periods, they propose an Integer
Linear Programming (ILP) formulation and primal heuristics that together solve real-world instances to
optimality.

60 2. STATE OF THE ART

Task periodicity being set aside, it should be noted that commonly found scheduling problems have
the objective of minimizing the makespan [108]. On one processor, this makespan represents the time
difference between the start time of the first executing task and the end time of the last executing task.
This problem was largely treated in literature [97].

As can be seen above, not many works exist for the mentioned scheduling problem. Several useful
methods were lately proposed and were shown to be highly efficient. However, they consider only
harmonic periods or even favour grouping harmonic ones on the same processor. This thesis aims
at raising this difficulty by proposing algorithms adapted to all kinds of periods, harmonic and non-
harmonic alike.

2.6 Theoretic concepts for the thesis
After a brief introduction on various real-time scheduling problems, the discussion in this section is
limited to the non-preemptive multiprocessor scheduling problem with strictly periodic task sets. This
particular problem constitutes the main subject of this thesis. The goal is to find an algorithm able to
solve this problem in an avionics context where several system constraints are imposed (cf. Chapter 1).
Indeed, task periodicities in major industrial applications have harmonic periods, or even a limited set
of non-harmonic ones. In spite of this fact, this thesis seeks surpassing this limitation for which several
algorithms where proposed (cf. Section 2.5.2.3). The goal is hence the conception of an effective
algorithm for general period task systems.

2.6.1 Particularities of the study

The scheduling problem to be considered has to not only satisfy the runtime support constraints of the
system, e.g. respecting temporal requirements, but also architectural constraints derived from several
functional requirements such as the locality of tasks on processors, where one task may be prohibited
from executing on certain processors.

A particularity of this study, and as will be discussed in Chapter 3, is that the optimization objective
to be considered is not classic, e.g. minimize number of processors or makespan, but an ambitious one
aimed at providing an augmented evolution margin for task execution durations.

As was mentioned in Section 2.5.2.3, this type of scheduling problems are not much studied in
literature [88] where few contributions actually exist. Main reasons for so are the following:

• The multitude of the associated constraints in the system poses a significant complexity on the
scheduling problem.

• The strict periodicity is a particular case of the classic periodicity constraint that can be found in
literature. Recall that a period is classified strict if for a task i of period Ti, tk+1

i − tki = Ti, ∀k ∈
IN, where tk+1

i and tki are the execution times of two consecutive instances (invocations) of task
i. The presence of this constraint in the system restrains its schedulability chances [116] and
renders it NP-hard in the strong sense [46].

2.6. THEORETIC CONCEPTS FOR THE THESIS 61

It should be noted that the problem, even in a uniprocessor setting, remains a complicated one to
solve [68].

Theoretic methods, implemented in following chapters for the development of adapted solution
strategies, are hereafter discussed for the aforementioned scheduling problem.

2.6.2 Some known solution strategies

Existing algorithms are categorized into:

• Exact/Optimal: In optimization problems, these algorithms supply the best possible solutions. If
no solution can be supplied by these algorithms, then none exist. Techniques that allow avoiding
zones that do not contain adequate solutions exist and help reducing computation times.

• Approximation/Sub-optimal: These algorithms are used to give approximate solutions in poly-
nomial times, especially in NP-hard problems where exact methods can be restrictive and have
exponential complexities [153].

The problem addressed is, as many of scheduling problems with imposed constraints, NP-hard in
the strong sense [87]. This is why these algorithms are constantly ameliorated in order to solve problems
larger than preceding ones. Each algorithm is distinguished by the manner it explores the solution space.

2.6.2.1 Linear programming

A linear programming problem [59] can be defined as the problem of maximizing or minimizing a lin-
ear objective function subject to linear constraints. The constraints may be equalities or inequalities. It
was introduced by Kantorovich [86] who started working on the subject in 1939, important resolution
methods are the well known Simplex method for solving linear programs which was introduced by
Dantzig [48], and the duality theorem [117]. Given a polytope and a real-valued affine function defined
on this polytope, a linear programming method will find a point on the polytope where this function has
the smallest or largest value if such point exists, by searching through the polytope vertices. Further-
more, linear programming algorithms are known to be exact.

Linear programs are problems that can be expressed in canonical form:

Maximize: c
T

x (2.1)
subject to: Ax ≤ b, (2.2)

x ∈ X , (2.3)

where x represents a vector ofm unknown variables specified by the domain X , c and b are vectors of
known coefficients and A is a known matrix of coefficients. The expression (2.1) represents the objec-
tive function to be optimized, and constraints (2.2) and (2.3) specify the convex polytope over which
the objective function is to be optimized.

If the unknown variables are all real, i.e. X = IRm, then the problem can be solved using the
Simplex method.

62 2. STATE OF THE ART

If the unknown variables are all required to be integers, i.e. X = ZZ
m, the linear programming

problem is called an integer linear programming one (ILP), if they are required to be binaries, the ter-
minology becomes binary integer programming (BIP) (which is a special case of the integer one). In
addition, if the unknown variables are a mixture of real, integer and even binary variables, then the
problem is called a mixed integer programming (MIP) or a mixed integer linear programming (MILP)
one. Algorithms for solving these problems include methods such as branch-and-bound [98], branch-
and-cut [125, 76], branch-and-price [135, 22] and cutting-plane [70, 113].

Davidovic et al. [49] present a MILP formulation for non-periodic task scheduling (with dependen-
cies) in a homogeneous multiprocessor environment with latency conditions. For reducing the number
of constraints, they use a problem reformulation with the aid of a constraint reduction procedure. They
solved several small-sized problems using the linear program solver CPLEX [81]. Thanikesavan et
al. [147, 148, 149] present a MILP formulation to solve a multiprocessor periodic task scheduling prob-
lem, but with no emphasis on strict periodicity and considering task instances (on a time horizon equiv-
alent to the LCM of all partition periods). Eisenbrand et al. [56] propose an efficient ILP formulation
for scheduling large problems with harmonic periodic task sets.

2.6.2.2 Greedy algorithms

Greedy algorithms are heuristics that are simple and straightforward. They are short-sighted in their ap-
proach in the sense that they take decisions on the basis of information at hand without worrying about
the effect these decisions may have in the future. Their main idea is incremental solution construction
where a new element is added at each step. In a multiprocessor task assignment for example, tasks may
be ordered in a certain manner, then assigned to processors one by one such that each task performs a
greedy choice in which it chooses the assignment that best suites it.

If this short-sighted approach, where no back-tracking is allowed, always gives optimal solutions,
then it is called an exact greedy algorithm, else it is called a greedy heuristic. Kruskal’s algorithm [96]
for finding minimum spanning trees in graphs is an example of exact greedy algorithms.

To ensure that a greedy algorithm gives an optimal solution for a problem, the following properties
have to be shown:

• The greedy choice property: a globally optimal solution can be found by performing locally
optimal choices (greedy choices).

• The optimal sub-structure property: after performing a greedy step (choice), the resulting sub-
problem (remaining steps) represents a reduced form of the initial problem. In other words, if the
first choice is eliminated from an optimal solution of the initial problem, an optimal solution is
obtained for the reduced problem.

The First-Fit (based on bin-packing) approximation algorithm presented in [55], represents a greedy
algorithm for scheduling strictly periodic harmonic tasks on a minimum number of processors. Tasks
are ordered based on their periods and then placed, following their order, on processors with appro-
priate bins. Bins on a processor are defined from the smallest task period resident on this processor.

2.6. THEORETIC CONCEPTS FOR THE THESIS 63

This algorithm is classified as a heuristic as it gives in most cases an upper bound on the number of
processors.

2.6.2.3 Local Search heuristics

Local Search algorithms represent a very old heuristic class. They are approximation techniques mostly
used for solving hard combinatorial optimization problems. A local search heuristic is an iterative pro-
cess based on two essential elements: a neighbourhood structure N and a neighbourhood exploration
procedure. The main idea is to iteratively ameliorate the current solution xi at iteration i by exploring
its neighbourhood N (xi) for a less costly one. Neighbourhood solutions are generally obtained by ap-
plying an elementary transformation on the current solution.

Local searches are hence achieved by iteratively replacing present solutions with better ones, until
no more better solutions can be found. There are several manners for picking a neighbouring solution.
The first descent technique chooses the first ameliorating solution it encounters. Whereas the steepest
descent explores all neighbouring solutions and picks the best one. This latter technique appears to
be more costly in the sense of neighbourhood exploration, but nevertheless provides a better quality
for the algorithm. Algorithm 4 describes the steepest-descent local search for a cost minimization
problem. F (x) represents the utility function for solution (configuration) x, that is it represents the cost
associated to this solution and allows defining a criterion for choosing neighbours. As long as the best
found neighbour z of x is ameliorating, the local search continues with additional iterations. If not, it
stops and a local minimum is attained (local maximum in maximization problems).

Algorithm 4 Steepest-descent local search algorithm
1: procedure Local Search
2: choose initial point x← x0

3: repeat
4: z ← x
5: for y ∈ N (x) do
6: if F (y) < F (z) then
7: z ← y
8: end if
9: end for
10: until z = x

The principal advantage of this method is that, based on the size of the neighbourhood and the
neighbour evaluation cost, it is rather simple and rapid in most cases. However, produced solutions are
not guaranteed to be near optimal. This can be remedied by performing multi-start where several local
search runs are performed with different initial points x0, that are picked randomly. In this manner
several local points can be detected. Another possibility is to accept neighbours with the same cost if no
better can be found. Other techniques such as the variable neighbourhood search [107] seek escaping
from local minima (or maxima).

64 2. STATE OF THE ART

2.6.3 Game theory

Game theory [120, 63, 123] can be defined as the study of mathematical models of conflict and coop-
eration between intelligent rational decision-makers. It provides mathematical techniques for analysing
situations in which two or more individuals make decisions that will influence one another’s welfare.
In other words, it uses mathematics to help understanding observed phenomena when decision-makers
interact. A decision-maker is called rational if he makes decisions consistently in pursuit of his own
objectives, that is to say he is aware of his alternatives, forms expectations about any unknowns, has
clear preferences, and chooses his action deliberately after some process of optimization. Game theory
is vast, and hence this section is limited to aspects and particularities interesting for this thesis.

2.6.3.1 Non-cooperative games

In the language of game theory, a game is a description of strategic interaction between two or more in-
dividuals. Individuals are often referred to as players. This game includes the constraints on the actions
players can take in addition to the players’ interest.

One main branch of game theory is the non-cooperative game in which players make decisions inde-
pendently according to their own objectives. In such type of games, consider a finite setN = {1, . . . , n}
of players, and a set of possible actions Ai for each player i ∈ N . A pure strategy for player i is an
action from Ai. A mixed strategy corresponds to a probability function which prescribes a randomized
rule for selecting an action from Ai. Si denotes the set of strategies available for player i.

A strategy profile s = (s1, . . . , sn) assigns a strategy si ∈ Si to each player i. A payoff function
Fi(s) is also associated to each player. It specifies the payoff received by player i if the strategy profile
s is adopted by the players. Denote by s−i the profile for the set of players N \ {i}.

A strategy s∗i is said to be a best response for player i against the profile s−i if

s∗i ∈ argmax
si∈Si

Fi(si, s−i).

2.6.3.2 Nash equilibrium

The most commonly used solution concept in game theory is that of Nash equilibrium [121]. A Nash
equilibrium is a state in which no player has an incentive to unilaterally change his strategy. Briefly, no
player can profitably deviate, given the actions of the other players [123].

Formally speaking, a strategy profile se is an equilibrium profile if for every i ∈ N , se
i is a best-

response for player i against se
−i, that is to say,

se
i ∈ argmax

si∈Si

Fi(si, s
e
−i), i ∈ N.

The application of game theoretic approaches with the aforementioned principles can be found in
machine scheduling contexts such as [38] and [54]. In [1], the authors use similar game theoretic
approaches for a multi-objective task mapping/scheduling problem, where parallel tasks are distributed
upon a multi-core architecture for makespan and power consumption minimization.

2.7. CONCLUSION 65

2.7 Conclusion
In this chapter several definitions and classifications of scheduling problems were discussed. As was al-
ready indicated, the work in this thesis is closely related to the non-preemptive multiprocessor schedul-
ing for strictly periodic tasks. Among all of the contributions on scheduling, relatively few works have
addressed this type of problems. Despite of the various efforts, it remains not well resolved. In this
thesis, methods for solving such problems are investigated, in a general setting where no constraints are
imposed on the type of strict periods (harmonic or non-harmonic). In Chapter 3, an exact MILP based
formulation is proposed and tested. A game theoretic approach is then investigated in Chapter 4. In
addition, although not much was discussed concerning flow routing in networks, Chapter 5 focuses on
the Virtual Link routing problem in AFDX networks.

66 2. STATE OF THE ART

CHAPTER 3

MILP formulation of the scheduling problem

In this chapter, an exact linear programming algorithm is investigated for the scheduling problem intro-
duced in Chapter 1. Several system constraints are taken into account such as strict periodicity and re-
source capacities, in addition to domain specific conditions (such as locality constraints). In the avionic
context, few works have tackled automation in decision making for what concerns partition scheduling
on the avionic platform [62]. Models for allocating partitions to modules were studied in [133, 29] based
on directives derived from safety and operational reliability requirements, however, temporal schedul-
ing of partitions on each module was not addressed. Recently, the authors in [56] tackled the scheduling
problem and effectively solved the processor minimization to optimality, using similar methods (ILP),
but for harmonic period cases. In this Chapter, a mixed integer linear programming formalization (cf.
Section 2.6.2.1) is presented for the multiprocessor scheduling with strict periodicities. Additionally, a
new optimization objective, different from those found in literature (such as minimizing the number of
processors), is proposed.

Definitions and models to the problem are given in Section 3.1. A mathematical formulation based
on mixed integer linear programming is then proposed in Section 3.2, where the optimization objective
is clearly indicated. In Section 3.3, a pretreatment method based on graph theory, to reduce the solution
space, is introduced. Section 3.4 demonstrates some results on the proposed model. Section 3.5 finally
concludes on this chapter’s methodology.

3.1 Problem definitions and modeling
It was seen in Chapter 2 the notion of tasks and their respective scheduling in a multiprocessor system.
From this point on, in the context discussed in Chapter 1, the task and processor notions are replaced
by partition and module respectively. The functional attributes between tasks and partitions remain
equivalent, as a partition represents a set of instructions to achieve a certain functionality. The equiv-
alence also applies between processors and modules, as a module is a processing unit, with attributed

67

68 3. MILP FORMULATION OF THE SCHEDULING PROBLEM

resources, destined to executing the system partitions.

In airborne systems, communication occurs in the framework of processing chains through which
some kind of data is treated sequentially by a certain number of partitions. Data usually originates from
a sensor or user input, and after processing by one or more partitions, a command is send to an actuator
or screen (e.g. displaying altitude after analysing altimeter readings). For ease of presentation, it shall
be assumed that a processing chain starts at the first partition of the chain and ends at the last one.
Figure 3.1 shows a simple example of a chain where partition 1 sends some kind of data to partition 2
which itself manipulates and transmits it back to partition 1. This partition finally sends a command or
result to partition 3, the final consumer in the chain.

Figure 3.1: Processing chain consisting of 3 partitions.

The partition scheduling problem consists of a set Π = {1, . . . , N} of N partitions that have to be
mapped and scheduled (temporally) on a set P = {1, . . . , P} of P processing modules (distributed pro-
cessor architecture). In sections 3.1.1, 3.1.2 and 3.1.3, mathematical models for the partitions, modules
and communication chains are supplied.

3.1.1 Module model

Each module k ∈ P is characterized by the available memory capacity Mk, and the maximum number
of partitions Hk the module can host. Inter-module communication is characterized by the delay matrix
∆ = δk,l, ∀(k, l) ∈ P2, where δk,l represents the maximum communication delay between modules k
and l for k '= l. It is assumed that δk,k = 0. This inter-module transmission delay is considered to be
precomputed (estimated) from network analysis phases.

3.1. PROBLEM DEFINITIONS AND MODELING 69

For safety requirements, the modules are arranged into cabinets, C = {1, . . . , C}, representing
groups of modules sharing communication means.

3.1.2 Partition model

A partition i ∈ Π has the following attributes:

• Ti ∈ IN, the partition period (strict),

• bi, the time budget of the partition, i.e. the duration of partition execution (WCET in most cases),

• mi, the memory budget of the partition, i.e. required memory capacity.

Let Ti = {0, 1, . . . , Ti − 1} denote the possible offsets for ti. Due to strict periodicity, the kth

invocation (instance) of the partition is executed at time tki = ti + kTi. It should be noted that in this
thesis partition deadlines are equivalent to their periods. Hence, ensuring a strictly periodic schedule
for partitions, and given the preceding limitations of the partition offsets (ti ∈ Ti), will suffice for guar-
anteeing the deadline constraints.

Two given partitions may be in exclusion for security reasons, i.e. they cannot be hosted by the
same module. Let E denote the set of couples (i, j) ∈ Π2 such that partitions i and j must be executed
on two different modules. Similarly, two partitions can be in exclusion on cabinet level, meaning that
they cannot co-exist in the same cabinet, and let Ec denote the set of couples (i, j) ∈ Π2 such that
partitions i and j must be executed on two modules from different cabinets.

3.1.3 Communication model

To achieve a certain functionality, certain data may be exchanged between several partitions. This
exchange is carried out linearly, in the form of a processing chain, from one partition to the other. Based
on the criticality of this data manipulation, a delay constraint may be imposed, and thus limiting the
latency to a predefined limit. Figure 3.2 represents an example where the pilot issues a zoom request
on one of the displays. In this example, the response time for the operation should not exceed 100
milliseconds.

Figure 3.2: A processing chain λc aimed at responding to a screen zoom request.

Let Λ = {λ1, . . . ,λo} be the set of all processing chains in the system. These chains are inde-
pendent, meaning that there is no communication between any two chains. Each processing chain λc

is a sequence of partitions through which data is transferred, and λc(k) represents the kth partition to

70 3. MILP FORMULATION OF THE SCHEDULING PROBLEM

handle the data in the chain. A processing chain is characterized by the maximum tolerated end-to-end
delay Lmax

λc
after which critical (or even hazardous) situations may be encountered.

3.2 Problem formulation
This section gives a mathematical formulation for the scheduling problem defined above.

The allocation problem amounts to finding a function that associates a module to each partition,
such that all imposed constraints are verified for all modules. Based on a given allocation, all instances
of a partition must execute on the same module. An allocation can be represented as a vector of binary
variables a = (ai,k) such that:

ai,k =

{

1 if partition i is assigned to module k,
0 otherwise.

Since partitions execute strictly periodically, a schedule is entirely defined by first partition execu-
tion dates which is represented by the offset vector t = (t1, . . . , tN).

As indicated above, a first allocation constraint concerns mapping each partition i ∈ Π onto one
and only one module, hence:

∑

k∈P

ai,k = 1 , ∀i ∈ Π. (3.1)

3.2.1 Temporal scheduling constraints

Note that themth instance of partition i is executed in the time interval

Im(ti) = [ti + mTi, ti + mTi + bi) .

To avoid overlap in execution times between two partitions i and j allocated to the same module, any
two invocations m and n of these partitions must not overlap in time. This can be expressed as follows:

∀(i, j) ∈ Π2,∀m,n ∈ IN∗,∀k ∈ P

aik = ajk = 1⇒ Im(ti) ∩ In(tj) = ∅.

Korst proposed in [91] (p.65) a necessary and sufficient condition to ensure that two partitions do
not overlap in time. This condition is represented in Section 3.2.1.1.

3.2.1.1 Schedulability condition for strictly periodic partitions

The theory behind the sufficient and necessary schedulability condition proposed in [91] is hereafter
presented.

3.2. PROBLEM FORMULATION 71

Theorem 1 (Bachet-Bézout identity) The Bachet-Bézout identity [84] proves that if a and b are two
non-zero integers (a, b ∈ Z), then there exists integers x and y such that

ax + by = gcd(a, b)

where gcd(a, b) is the Greatest Common Divisor of a and b.

Definition 3.1 The floor function of a decimal value x ∈ IR is defined as 3x4 ∈ ZZ such that,

x− 1 < 3x4 ≤ x.

Definition 3.2 Given two numbers, a (the dividend) and b (the divisor), a modulo b (abbreviated as a
mod b) is the remainder r, on division of a by b. As will be seen later, given that the divisor b will always
be positive, the several definitions on the modulo operation [31] (depending on type of division used,
such as Euclidean) yield the same results on the remainder, in other words:

a mod b = a− b
⌊a

b

⌋

= r (3.2)

with r following the positive sign of b and satisfying 0 ≤ r < |b|.

In the rest of this thesis, the symbol % is used as a shorthand notation for the modulo operator, i.e.
a%b is to be read a mod b.

Denote by gi,j the greatest common divisor of Ti and Tj , the periods of partitions i and j respec-
tively (Remark that gi,j = gj,i). Consequently, Ti = ni gi,j and Tj = nj gi,j .

Using the definition of modulo (3.2):

(tj − ti)%gi,j = (tj − ti)− qj,igi,j,

where ti and tj are the start times for partitions i and j respectively. The quotient in the division between
(tj − ti) and gi,j is represented by qj,i, that is,

qj,i =

⌊

tj − ti
gi,j

⌋

.

Lemma 2 For any two partitions i and j executing on the same module,

min
k,l∈ZZ

|(tj + lTj)− (ti + kTi)| = min [(tj − ti)%gi,j , (ti − tj)%gi,j] (3.3)

where k, l ∈ ZZ represent execution instances for the two partitions.

Proof. Assume that tj + lTj ≥ ti + kTi. The distance between the two executions is then

(tj + lTj)− (ti + kTi) = (tj − ti)%gi,j + qj,igi,j + lTj − kTi

= (tj − ti)%gi,j + [qj,i + lnj − kni] gi,j .

72 3. MILP FORMULATION OF THE SCHEDULING PROBLEM

Since 0 ≤ (tj − ti)%gi,j < gi,j , the condition tj + lTj ≥ ti + kTi implies that qj,i + lnj − kni ≥ 0
and thus that

(tj + lTj)− (ti + kTi) ≥ (tj − ti)%gi,j. (3.4)

According to Theorem 1, there exist k, l ∈ ZZ such that qj,igi,j = kTi − lTj and thus the above
inequality can be satisfied as an equality. The proof in the case tj + lTj < ti + kTi is symmetric.

In fact, Lemma 2 indicates that the minimal distance between the executions of partitions i and j is
min[(tj − ti)%gi,j , (ti − tj)%gi,j]. The term (tj − ti)%gi,j represents the time duration partition i is
allowed to execute without interfering with partition j’s execution. Similarly, (ti − tj)%gi,j represents
the execution time partition j is allowed to occupy without interfering with partition i’s execution. This
is showed in Figure 3.3 for a two partition example (i and j) with Tj = 2Ti.

Figure 3.3: Representation of the distance between two partitions.

Theorem 3 For two partitions i and j, the intersection between intervals [ti + kTi, ti + kTi + bi) and
[tj + lTj , tj + lTj + bj) is empty, ∀(k, l) ∈ Z2, or in other words the two partition executions never
overlap in time on the same module, if and only if

bi ≤ (tj − ti)%gi,j ≤ gi,j − bj . (3.5)

That is, bi ≤ (tj − ti)%gi,j and bj ≤ (ti − tj)%gi,j .

Proof. Let k, l ∈ ZZ such that tj + lTj ≥ ti + kTi. From (3.4), it can be concluded that a necessary
and sufficient condition for Ik(ti) ∩ Il(tj) = ∅,∀k, l is (tj − ti)%gi,j ≥ bi.

Similarly, if tj + lTj ≤ ti + kTi, a necessary and sufficient condition for Ii
k(ti) ∩ Ij

l (tj) = ∅,∀k, l
is (ti − tj)%gi,j ≥ bj > 0. This condition can be transformed to (tj − ti)%gi,j ≤ gi,j − bj using the
following,

(−a)%b = b− a%b for a%b > 0. (3.6)

3.2. PROBLEM FORMULATION 73

Condition (3.5) is obtained and the proof is concluded.

Corollary 4 Ordering between i and j has no effect in equation (3.5). Hence,

bi ≤ (tj − ti)%gi,j ≤ gi,j − bj ⇔ bj ≤ (ti − tj)%gi,j ≤ gi,j − bi

Proof. Again following (3.6),
bi ≤ (tj − ti)%gi,j ≤ gi,j − bj ⇔ bi ≤ (−(ti − tj))%gi,j ≤ gi,j − bj

⇔ bi ≤ gi,j − (ti − tj)%gi,j ≤ gi,j − bj

⇔ bj ≤ (ti − tj)%gi,j ≤ gi,j − bi.

Theorem 3 assists in validating a schedule, i.e. there is no overlapping in execution times between
partitions on modules, if and only if each couple of partitions (on a module) verify condition (3.5). This
condition between partitions i and j can be equivalently written as the following linear constraints:

∀(i, j) ∈ Π2,∀k ∈ P,

bi − (2− ai,k − aj,k)Z ≤ (tj − ti)− qj,i gi,j ≤ gi,j − bj + (2− ai,k − aj,k)Z, (3.7)

where qj,i is as indicated earlier the integer variable representing the quotient from the modulo opera-
tion in (3.5) (i.e. qj,i =

⌊

tj−ti
gi,j

⌋

) and Z is a large constant that ensures that the constraint is not active
unless ai,k = aj,k = 1. That is to say that the schedulability constraint is not important unless the
two partitions execute on the same module. The introduction of Z to obtain conditional constraints was
inspired from [130].

To properly linearise the problem, the quotient qj,i must verify the following constraint for every
partition couple allocated the same module,

0 < (tj − ti)− qj,i gi,j < gi,j. (3.8)
Clearly, given that bi and bj are positive, verifying constraints (3.7) imply the validity of (3.8).

Hence, (3.8) represent redundant constraints.

From Definition 3.1
tj − ti
gi,j

− 1 <

⌊

tj − ti
gi,j

⌋

≤
tj − ti
gi,j

,

and hence a bound for qj,i can be supplied, which is:

−Ti + bi

gi,j
− 1 < qj,i ≤

Tj − bj

gi,j
. (3.9)

Additionally, as indicated in Section 3.1.2 (ti ∈ Ti), a schedule t must satisfy the following:

0 ≤ ti < Ti ,∀i ∈ Π. (3.10)
In the following, let ζ(a,b) denote the set of all feasible schedules t satisfying (3.7) and (3.10),

where b = (bi) is the vector representing partition time budgets, and a is the vector representing
partition allocation to modules.

74 3. MILP FORMULATION OF THE SCHEDULING PROBLEM

3.2.2 Resource constraints

Memory consumed by hosted partitions must respect the modules’ memory capacities, that is,
∑

i∈Π

ai,k mi ≤Mk,∀ k ∈ P. (3.11)

Modules can host a maximum number of partitions, and hence,
∑

i∈Π

ai,k ≤ Hk, ∀k ∈ P. (3.12)

If two partitions i and j are in exclusion at module level, i.e. (i, j) ∈ E , they must be allocated to two
different modules, or in other words,

ai,k ≤ 1− aj,k, ∀k ∈ P,∀(i, j) ∈ E . (3.13)

Whereas if these two partitions are in exclusion at cabinet level, i.e. (i, j) ∈ Ec, then they must be
allocated to modules from two different cabinets, that is,

ai,k ≤ 1−
∑

p∈c

aj,p, ∀k ∈ c,∀c ∈ C,∀(i, j) ∈ Ec. (3.14)

Furthermore, it is possible to enrich the model by a new type of constraints to facilitate problem
solving. These constraints are a result of a simple corollary of Theorem 3.

Corollary 5 Two partitions i and j can be allocated the same module if and only if

gi,j ≥ bi + bj (3.15)

is verified.

Proof. The necessary and sufficient condition (3.5) implies (3.15). If this latter condition is not
verified then (3.5) will also be violated, and hence, the implicated partitions can never be executed on
the same module as they will always overlap in time. Condition (3.15) becomes only a necessary one
in the presence of several partitions [91].

It is consequently easy to add exclusion constraints similar to those of (3.13) between partitions that
do not verify Corollary 5. Let Ea be the set of partition couples (i, j) ∈ Π2 such that bi + bj > gi,j , and
add the following constraints:

ai,k ≤ 1− aj,k, ∀k ∈ P,∀(i, j) ∈ Ea. (3.16)

Denote by A the set of vectors a satisfying (3.1), (3.11)-(3.16). It represents the set of all possible
allocations satisfying the resource constraints.

3.2. PROBLEM FORMULATION 75

3.2.3 Communication delay or latency constraints

The partitions of each processing chain λc ∈ Λ must be allocated in such a manner that the resulting
latency (end-to-end delay) Lλc does not exceed the predefined limit Lmax

λc
. This can be expressed as:

Lλc =

|λc|−1
∑

i=1

Lλc(i),λc(i+1) + bλc(|λc|) ≤ Lmax
λc

,∀λc ∈ Λ, (3.17)

where Lλc(i),λc(i+1) represents the partition-to-partition communication delay, that is the delay to pro-
cess data and send it between the consecutive partitions λc(i) and λc(i+1), and bλc(|λc|) is the execution
time for the last partition in the chain. (3.17) indicates that the end-to-end communication delay is the
sum of consecutive partition-to-partition communication delays in the chain, i.e. each partition in the
sequence sends data to the following one.

Partition-to-partition communication delay, between partitions i and j for instance, represents the
time needed to process data by i and send the result to j, either through the AFDX network, or locally
through API ports. Li,j can hence be written under the following form:

Li,j = bi + Tj +
∑

k∈P

∑

l∈P

ai,kaj,lδk,l, (i, j) ∈ Π2 (3.18)

The component
∑

k∈P

∑

l∈P ai,kaj,lδk,l adds the inter-module transmission delay between module
k and l, where partitions i and j are respectively located, due to using the AFDX network. It should be
noted that, if the two partitions are located on the same module, then this component will be zero; given
that δk,k = 0. The period Tj is also added to equation (3.18) indicating, with messages being read at
the beginning of partition execution, either

1. the worst-case for data acquisition after reception by the destination module when the two parti-
tions are on different modules, or

2. an upper bound on data reception when the two partitions are on the same module.

Figure 3.4 represents the three delay components appearing in equation (3.18).

The product ai,kaj,l poses a problem on the linearity of the model (equation (3.18) is not linear
because of the aforementioned product). In order to utilize the MILP formulation, a reformulation has
to be done [49]. Equation (3.18) becomes:

Li,j = bi + Tj +
∑

k∈P

∑

l∈P

zi,j,k,lδk,l , (i, j) ∈ Π2 (3.19)

where the continuous variable zi,j,k,l ∈ [0, 1] replaces the bilinear term ai,kaj,l and has to satisfy the
following linearization constraints,

zi,j,k,l ≤ ai,k, (3.20)
zi,j,k,l ≤ aj,l, (3.21)
zi,j,k,l ≥ −1 + ai,k + aj,l, (3.22)

76 3. MILP FORMULATION OF THE SCHEDULING PROBLEM

Figure 3.4: Delay components for partition couple communication.

∀(i, j) ∈ Π2,∀(k, l) ∈ P2, which guarantee that zi,j,k,l = ai,kaj,l. The following constraints (3.23)-
(3.24) represent some observations,

zi,j,k,l = zj,i,l,k, (3.23)
zi,i,k,k = ai,k. (3.24)

The rather large number of linearization constraints (3.20)-(3.22) (3n2m2 constraints) can slow
down the solution process considerably. For this reason, reduction constraints [106] are generated by
multiplying the allocation constraints (3.1) by aj,l to obtain the following,

∑

k∈P

zi,j,k,l = aj,l ,∀(i, j) ∈ Π2,∀l ∈ P. (3.25)

Proposition 6 If the constraints (3.1) and (3.25) hold, provided (3.23), then zi,j,k,l = ai,kak,l and in
particular zi,j,k,l ∈ {0, 1}. Therefore constraints (3.1), (3.23), (3.25) imply the linearization constraints
(3.20)-(3.22), as was shown in [106].

Denote by Θ the set of vectors a (and consequently z = (zi,j,k,l)) satisfying (3.17), (3.23), (3.25)
and zi,j,k,l ∈ {0, 1}. This set represents all possible allocations where the communication delay con-
straints are respected. For sake of simplicity, the representation (a, z) ∈ Θ is replaced by a ∈ Θ.

3.2. PROBLEM FORMULATION 77

3.2.4 Formulation as a mixed integer linear program

A feasible solution to the scheduling problem is a couple (a, t), where a is an allocation and t is a
schedule, satisfying constraints (3.1), (3.7), (3.10), (3.11)-(3.14), (3.16), (3.17), (3.23) and (3.25). In
other words,

a ∈ A ∩Θ,

t ∈ ζ(a,b).

For what concerns the optimization criterion considered in this thesis, it is desirable to choose a so-
lution which ensures better evolution capacity for partitions, e.g. to permit adding new functionalities,
without the need to reconsider all decisions (allocation and scheduling) already taken. Figure 3.5, for
example, represents two possible solutions (S1) and (S2) for an allocation/scheduling problem with two
modules and four partitions. It is obvious that the second solution (S2) offers more idle time in front of
every partition execution, thus enabling to augment partition execution times if necessary. In the first
solution, however, it is impossible to evolve available partitions on the first module, for what concerns
time budgets.

Figure 3.5: Scheduling can be carried out in different manners. A solution which provides better
evolution potential for partition temporal executions is chosen.

For this reason, the problem is expressed as an optimization problem. The objective is to find a
solution that maximizes the idle times between the task executions while ensuring that they do not
overlap in time. In other words, maximizing a coefficient α by which all initial partition time budgets
can be multiplied is sought, whilst respecting all system constraints and without interfering with other

78 3. MILP FORMULATION OF THE SCHEDULING PROBLEM

partitions’ executions.

Figure 3.6 shows the impact of α on a schedule constituted of two partitions on a given module.
Hashed rectangles represent initial time budgets, whereas the larger filled ones represent the maximum
allocable time budgets. Evidently, values of α < 1 imply schedules with diminished time budgets and
hence can be considered infeasible. In other words, values of α ≥ 1 indicate the feasibility of a given
problem. In addition, increased values of α ensure overcoming errors arising from the underestimation
of partition time budgets (cf. WCET in Section 2.2.1), if any.

Figure 3.6: Impact of the evolution coefficient α on the scheduling.

The allocation and scheduling problem can now be formulated as follows,

Maxa,tα

s.t.
a ∈ A ∩Θ,

t ∈ ζ(a,αb).

In more detail, the complete formulation is:

3.3. PRE-TREATMENT USING GRAPH THEORY 79

Maximizeα (3.26)
s.t.

∑

k∈P

ai,k = 1, ∀i ∈ Π, (3.27)

∑

i∈Π

ai,k mi ≤Mk, ∀k ∈ P, (3.28)

∑

i∈Π

ai,k ≤ Hk, ∀k ∈ P, (3.29)

ai,k ≤ 1− aj,k, ∀k ∈ P,∀(i, j) ∈ E , (3.30)

ai,k ≤ 1−
∑

p∈c

aj,p, ∀k ∈ c,∀c ∈ C,∀(i, j) ∈ Ec, (3.31)

ai,k ≤ 1− aj,k, ∀k ∈ P,∀(i, j) ∈ Ea, (3.32)
(tj − ti)− qj,i gi,j ≤ gi,j − α bj + (2− ai,k − aj,k)Z, ∀k ∈ P,∀(i, j) ∈ Π2, (3.33)
(tj − ti)− qj,i gi,j ≥ α bi − (2− ai,k − aj,k)Z, ∀k ∈ P,∀(i, j) ∈ Π2, (3.34)
|λc|−1
∑

i=1

(

bλc(i) + Tλc(i+1) +
∑

k∈P

∑

l∈P

zi,i+1,k,lδk,l

)

+ bλc(|λc|) ≤ Lmax
λc

, ∀λc ∈ Λ, (3.35)

∑

k∈P

zi,j,k,l = aj,l, ∀(i, j) ∈ Π2,∀l ∈ P, (3.36)

zi,j,k,l = zj,i,l,k, ∀(i, j) ∈ Π2,∀(k, l) ∈ P, (3.37)
−Ti + bi

gi,j
− 1 < qj,i ≤

Tj − bj

gi,j
, ∀(i, j) ∈ Π2, (3.38)

ai,k ∈ {0, 1}, ∀k ∈ P,∀i ∈ Π, (3.39)
ti ∈ Ti, ∀i ∈ Π, (3.40)
zi,j,k,l ∈ [0, 1], ∀(i, j) ∈ Π2,∀(k, l) ∈ P2. (3.41)

The above formulation seeks maximizing the minimum evolution potential of the partitions in the
system (temporal execution-wise). It will be possible to find partitions capable of evolving with a po-
tential corresponding to this minimum value, and others capable with a more greater one.

The originality of this objective is that most of the work presented in literature focused on min-
imizing the number of used processors, or even the makespan. This thesis, on the contrary, aims at
provisioning an augmented temporal flexibility for the partitions’ executions, so that spare processing
power could be allocated to meet the resource demand growth with minimal configuration modification.

3.3 Pre-treatment using graph theory
In this section, reducing the number of problem variables is searched, which may reduce the time re-
quired for solving the MILP presented in Section 3.2.4. For this, a pretreatment phase based on graph

80 3. MILP FORMULATION OF THE SCHEDULING PROBLEM

theory is proposed. This pretreatment must guarantee that the optimal solution remains accessible. The
method illustrated hereafter was inspired from the work carried out by Korst in [91] and is applied when
all modules are identical, which is the case in reality. In the case where the modules are heterogeneous,
the method no longer remains applicable.

A graph G, in which each node is associated to a partition, is constructed. An arc connecting two
nodes is established if the two corresponding partitions are not involved in an exclusion, e.g. condition
(3.15) is not verified. If two nodes are not connected, it is impossible to map the two corresponding
partitions on the same module.

The connected components of G represent partition sets that must be mapped onto different mod-
ules. The search for a Maximal Independent Set (MIS) in G [138], allows obtaining a set of totally
independent partitions, that must consequently be allocated different modules. Algorithms for finding
connected components and maximal independent sets can be found in Appendix A and are based on
graph theory basics and some of the algorithms developed in [2] and [138].

For every connected component of G, partitions corresponding to nodes in the MIS are placed on
distinct modules–since partitions of this set cannot be placed on the same module–, this allows to min-
imize the number of problem allocation variables and accelerate the solution process.

Figure 3.7 represents the graph representation for a set of six partitions. Each node couple is con-
nected by an arc if no exclusion exists between the corresponding partitions, according to previously
defined exclusion constraints (cf. Section 3.2.2). For example, partitions 1 and 2 are likely to be placed
on the same module, while partitions 1 and 3 surely do not co-exist on the same one. Nodes 1, 3 and 6
are found to represent an MIS, hence, by fixing the allocations for partitions 1, 3 and 6 on three different
modules, the problem’s allocation variables can be in effect minimized from six to three.

Figure 3.7: Graph representation for a set of partitions.

3.4. RESULTS 81

3.4 Results
In this section, some experimentation on the optimization problem (cf. Section 3.2.4) alongside the
pretreatment proposed in Section 3.3 are presented. The MILPs where solved using the linear program
solver CPLEX [81] from IBM ILOG. The machine used is based on a quad-core Intel R© XeonTMrated
at 3.2GHz with 8MB of cache and 32GB system memory.

A chosen set of twenty-three problems, in which the number of modules and partitions varied from
1 to 4 and 6 to 80 respectively, are demonstrated in Table 3.1. Partition periods were taken in time inter-
vals as shown in the same table. Partition time budgets were considered of small order as compared to
the periods so as to obtain schedulable systems. Partition periods were generated in a manner limiting
the LCM between them based on a method similar to that indicated in [73], and hence, obtaining a not
so large MAF on each module. In addition, these periods were considered general (non-harmonic) as
the MILP formulation should be suitable for all period types, harmonic and non-harmonic alike, never-
theless this period scheme was considered so as not to limit the study to harmonic instances, which may
be the case in most applications. Communication was considered so that 40 to 60 percent of partitions
were involved in some kind of processing chain (acquisition and transmission of data). Partition exclu-
sions were generated such that 40 percent of partitions at maximum were involved. Memory capacity
and partition count on modules were generated to impose some constraints on the problems. Memory
requirements for partitions, for instance, were generated such that their sum equals the total memory
capacities of modules multiplied by a certain utilisation factor (taken as 50%).

The problems were solved by considering offsets (ti ,∀i ∈ Π) as integer and continuous variables
respectively, though mainly interest is in the former. Theoretically, solving for ti continuous should
give some relaxation to the problem, and consequently, one should expect faster computation times
(CpuTime).

Table 3.1 is divided into two parts, experiments 1 to 11 where periods ranged up to couple of
hundreds, and experiments 12 to 23 where periods ranged up to couple of thousands. Values of α
demonstrate the optimization carried out, where for example in experiments 4 and 16, partition time
budgets can be increased by half (α = 151%) without affecting the proposed allocation and schedule.

Computation times for experiments 1 to 7 and 13 to 17 were insignificant, whereas for the rest, and
depending on the complexity of the problem, became more important. Experiments 10, 11, 22 and 23
were stopped after 24 hours of execution. Experiments 10 and 22 found feasible solutions but could not
prove optimality in the indicated time. Experiments 11 and 23 were so complex that no solution was
even found for the same amount of time. This brings us to the point that real complex systems and even
future ones, where number of modules and partitions may be of importance, may pose a problem for
the MILP formulation.

The difference in computation times between experiments 12 and 17, with the latter being presum-
ably harder, is a clear indication that the complexity of a problem arises not only from the number of
components (modules and partitions) but also from any of the component attributes (such as partition
periods). To further emphasize on this, Figure 3.8 demonstrates 9 examples with the same number of

82 3. MILP FORMULATION OF THE SCHEDULING PROBLEM

Table 3.1: Time required for solving the mixed integer linear program

Experiment Module Partition Partition CpuTime CpuTime α α
number number period range ti : int ti : real ti : int ti : real

1 3 6 [50,150] 0.04s. 0.01s. 100% 111,1%
2 3 6 [60,300] 0.05s. 0.01s. 135.93% 136.36%
3 3 6 [40,350] 0.03s. 0.01s. 134.61% 137.93%
4 3 6 [120,400] 0.03s. 0.01s. 151.61% 151.89%
5 4 10 [30,360] 0.1s. 0.07s. 145% 145.16%
6 4 10 [90,400] 0.3s. 0.08s. 114.28% 115.38%
7 4 10 [80,400] 0.22s. 0.05s. 108% 108.10%
8 4 20 [20,360] 2hr. 1s. 115.38% 115.38%
9 4 20 [10,270] 5.57hr. 6.5s. 110% 125%
10 4 30 [10,720] 24hr.+ 24hr.+ (200%) (200%)
11 4 80 [20,450] 24hr.+ 24hr.+ - -
12 1 10 [600,2400] 14.53mn. 3.14mn. 136% 136.36%
13 3 6 [500,1500] 0.02s. 0.01s. 126.12% 126.12%
14 3 6 [600,3000] 0.2s. 0.01s. 136.25% 136.36%
15 3 6 [400,3500] 0.21s. 0.01s. 137.69% 137.93%
16 3 6 [1200,4000] 0.62s. 0.01s. 151.87% 151.89%
17 4 10 [300,3600] 0.09s. 0.07s. 145.11% 145.16%
18 4 10 [900,4000] 1.22s. 0.08s. 115.35% 115.38%
19 4 10 [800,4000] 0.38s. 0.05s. 108% 108.10%
20 4 20 [200,3600] 12.07s. 2.36s. 115.38% 115.38%
21 4 20 [100,2700] 6hr. 15.7mn. 123.33% 125%
22 4 30 [100,7200] 24hr.+ 24hr.+ (200%) (200%)
23 4 80 [200,4500] 24hr.+ 24hr.+ - -

components, 4 modules and 40 partitions, and where the computation time varied from about 5 to 50
minutes.

It should be also noted that, though not presented in Table 3.1, the proposed pretreatment phase (cf.
Section 3.3) had a great impact on reducing the computation times as can be clearly seen in Table 3.2,
representing a set of five separate problems.

What seems to be interesting from Table 3.1, is that solving for continuous values of time budgets
improves computation times (e.g. from about 5 and a half hours to 6.5 seconds in experiment 9) while
obtaining α values that are close to those from solving the original problem (without relaxation of time
budgets), especially for greater order of periods. This leads to a first heuristic that is based on solving
the problem for ti ∈ IR,∀i ∈ Π, then by guarding the computed allocations, sub-MILP problems based
on finding an optimal scheduling on each module are solved, but this time for ti ∈ IN. It is admitted that
this two phase heuristic may be inefficient in some cases where solving with relaxation, as was shown
in Table 3.1, may require a colossal amount of time for computation. Nevertheless it seemed interesting

3.5. CONCLUSION 83

Figure 3.8: Computation time depends on system characteristics.

Table 3.2: The impact of pretreatment phase

Experiment Module Partition CpuTime CpuTime
count count (no pretreatment) (pretreatment)

a 3 6 0.31s. 0.01s.
b 4 8 0.78s. 0.25s.
c 4 8 3.87s. 0.77s.
d 8 16 1.9hr. 29s.
e 8 16 5days 11mn.

to investigate this method and test it on a simple set of experiments as shown in Table 3.3.

In this latter table, computation times were reduced significantly without degrading much the qual-
ity of the solution. For instance, Experiment 8 computation time was reduced from 2 hours to ap-
proximately 10 seconds, with about 1% relative error on the optimization coefficient α. However, as
indicated earlier this reduction in computation time is not always guaranteed.

3.5 Conclusion
In this chapter, an exact MILP formulation model for the scheduling problem has been proposed. The
particularity resides in the strict periodicity of partition executions and the diversity of system con-
straints, in addition to the proposed optimization objective. The experimentations have shown the inef-
ficiency of the proposed approach for fairly large examples, although a pretreatment phase can facilitate

84 3. MILP FORMULATION OF THE SCHEDULING PROBLEM

Table 3.3: Two phase heuristic

Experiment CpuTime CpuTime α α
original two phase original two phase

7 0.22s. 0.05s. 108 % 108 %
8 2hr. 10.37s. 115.38 % 114.28 %
9 5.57hr. 26.68mn. 110 % 100 %
15 0.21s. 0.01s. 137.69 % 136.66 %
16 0.62s. 0.01s. 151.87 % 151.87 %
18 1.22s. 0.8s. 115.35 % 115.35 %
21 6hr. 16mn. 123.33 % 123.33 %

the problem. The major inconvenience is the computation time where, for quite complex architectures
with a significant number of components, it can become somewhat colossal.

The following chapter focuses on developing a less complex adapted heuristic and whose perfor-
mance can be assessed with the aid of the aforementioned exact method. Therefore, this exact formula-
tion has the utmost utility in assessing the quality of proposed approximations or heuristics.

CHAPTER 4

A best-response scheduling algorithm

In Chapter 3, an exact algorithm was suggested for the non-preemptive and strictly periodic scheduling
problem. In this chapter, a heuristic inspired from Game Theory (cf. Section 2.6.3) is introduced. It is
first implemented in a uniprocessor setting, to then be extended to the multiprocessor one, the complete
architecture. Partitions are allowed to independently select their strategies, or in other words their off-
sets (and module allocations in the multiprocessor setting), to maximize their own utility function. A
utility function is simply another notion to represent the payoff function from Section 2.6.3. A detailed
analysis of this algorithm and an efficient scheme to compute the best-response strategy of a partition
are provided. The convergence of the algorithm to an equilibrium point where no partition has any
incentive to unilaterally deviate is also shown.

As will be shown numerically, the main merit of this algorithm is that it is several orders of magni-
tude quicker than the exact MILP formulation proposed in Chapter 3, while at the same time it generates
periodic schedules with modest relative errors with respect to optimal solutions. In particular, it is re-
markable that this best-response algorithm was able to find feasible solutions to aircraft sized problems
provided by one of the industrial partners in a few minutes. Furthermore, in order to increase the
chances of obtaining an optimal or near optimal solutions, multi-start methods can be implemented.
These methods explore randomly the solution space and give some estimations on the optimality of the
generated equilibria.

In Section 4.1, the best-response algorithm is introduced for uniprocessor scheduling, to then ex-
tend it to the multiprocessor one in Section 4.2. In Section 4.3, multi-start methods and the application
of Bayesian stopping rules are discussed. Some results and performances of the algorithm are demon-
strated in Section 4.4 to finally conclude in Section 4.5.

85

86 4. A BEST-RESPONSE SCHEDULING ALGORITHM

4.1 Uniprocessor or single module scheduling
Before addressing the multiprocessor scheduling problem, light is shed on the uniprocessor one. A set
Π ofN partitions are considered resident on a given processing module. A schedule, or an offset vector
t is sought so that no overlapping in time occurs between partition executions. In this setting, each
partition i ∈ Π is characterized by,

• its strict period Ti, and

• its time budget bi.

As was indicated in the previous chapter, let Ti = {0, . . . , T −i−1} be the set of offset possibilities
for partition i, and let T = ×N

i=1Ti be the set of all possible offset vectors.

As was already shown in Theorem 3 from Chapter 3, a sufficient and necessary condition for the
scheduling of two partitions i and j on the same module is

bi ≤ (tj − ti)%gi,j ≤ gi,j − bj .

The term (tj−ti)%gi,j

bi
can be interpreted as the maximum factor by which bi can be multiplied

without interfering with the executions of partition j. It can be thought of as the evolution margin
for partition i with respect to partition j. This interpretation easily follows from Lemma 2 in Section
3.2.1.1.

As was indicated in Section 3.2.4, the interest is in a maximized factor, denoted α, by which all
partition durations can be multiplied while still guaranteeing the existence of a feasible schedule. This
will allow an evolution margin for partition budget times, should it be required for future expansion of
partitions. The MILP formulation is, in the uniprocessor case, and assuming that all resource constraints
are satisfied, written as,

maximize α
subject to

(tj − ti)− qj,i gi,j ≥ α bi, ∀(i, j) ∈ Π2,
(tj − ti)− qj,i gi,j ≤ gi,j − α bj, ∀(i, j) ∈ Π2,
qj,i ∈ ZZ, ∀(i, j) ∈ Π2,
t ∈ T .

Let
dij(t) = min

(

(tj − ti)%gi,j

bi
,
(ti − tj)%gi,j

bj

)

, (4.1)

which represents the minimum evolution between partitions i and j. In other words, it represents the
factor by which both partition durations can be multiplied without violating the temporal feasibility of
the schedule. Consequently, the scheduling problem can be stated as follows

maximize min
i,j $=i

dij(t), (OPT-1)

subject to t ∈ T .

4.1. UNIPROCESSOR OR SINGLE MODULE SCHEDULING 87

In the following section, a fast algorithm for generating offset vectors is discussed. As will be
shown numerically, the main merit of this algorithm is that it is much quicker than the exact method for
solving the MILP proposed in Chapter 3 while at the same time it generates offset vectors with modest
relative errors.

4.1.1 Uniprocessor best-response

The best-response algorithm is inspired from an algorithm of the same name in Non-cooperative Game
Theory (cf. Section 2.6.3.1). In a game, the best-response of a player is defined as its optimal strategy
conditioned on the strategies of the other players. It is, as the name suggests, the best response that the
player can give for a given strategy of the others. The best-response algorithm then consists of players
taking turns to adapt their strategy based on the most recent known strategy of the others.

The proposed best-response algorithm converts the optimization problem (OPT-1) into the follow-
ing game. Think of partitions as players. The game is assumed to be played sequentially with players
taking turns in some fixed order until the strategies (offsets) of the players converge. An emphasis
should be made out on the fact that, in each turn, exactly one player computes its best-response while
the others keep their strategies unchanged.

Let tni denote the strategy of player i at the beginning of the nth iteration. Given that it is the turn
of player i in this iteration, it computes its offset so as to maximize its relative distances with the other
partitions, that is, player i solves the following problem :

maximize αi(x) = min
j $=i

di,j(x, tn
−i) (SCHD-i)

subject to x ∈ Ti,

where in standard Game Theory notation, tn
−i = (tn1 , tn2 , . . . , tni−1, t

n
i+1, . . . , t

n
N) is the vector of offsets

of players other than player i. The player i then sets tn+1
i to that value of x that gives the solution. In

case the best-response is not unique, then it retains the smallest offset from the set of best-responses.
Note that player i solves the same problem as (OPT-1) except that it takes into account only the terms
that are affected by its offset. Figure 4.1 demonstrates the response α1 of player 1 based on its strategy
x. Player 1 chooses the offset x which gives a best-response (maximum). The example of Figure 4.1
has players with unitary time budgets (bi = 1,∀i), this leads to a simpler representation of di,j , that is

di,j = min ((tj − ti)%gi,j, (ti − tj)%gi,j)

Remark 7 In a usual non-cooperative game each player seeks to maximize its own objective function.
In that setting the natural objective of a partition would be to determine the offset that maximizes the
factor by which it can increase its own duration, which would amount to solving the problem

maximize min
j $=i

(

(tj − x)%gi,j

bi

)

subject to x ∈ Ti.

88 4. A BEST-RESPONSE SCHEDULING ALGORITHM

Figure 4.1: Strategy of player 1, given the fixed strategies of players 2 and 3. Each choice of an offset
x gives rise to a certain response α1(x)

The objective function in (SCHD-i) is not defined as such, but it takes into consideration other
partitions’ interest whenever a given one changes its strategy.

In the following, define

αn
i = min

j $=i
di,j(t

n) (4.2)

Si(t
n
−i) = argmax

x∈Ti

min
j $=i

di,j(x, tn
−i), (4.3)

where αn
i is the utility (payoff) of player i after the nth iteration, and Si(tn

−i) is the set of all the best-
responses of player i.

It shall be assumed that if the best-response of a player i does not improve its current utility αn
i ,

then the player does not change its strategy, i.e. tn+1
i = tni . This assumption although not restrictive

will allow to prove the convergence of the algorithm.

The pseudocode and flowchart for the best-response algorithm are given in Algorithm 5 and Figure
4.2 respectively. In step 4 of the algorithm, n%N + 1 gives the index of the player whose turn it is in
the nth iteration.

4.1.2 Properties of the best-response algorithm

Two important properties of the best-response algorithm are proven in this section. The first property
states that the algorithm converges. Indeed, for recursive algorithms like the best-response, convergence
of the algorithm is a desired property. There however need not be a unique equilibrium point. The sec-
ond property states that one or more of the equilibrium points correspond to the solutions of (OPT-1).
Consequently, if the initial point is chosen appropriately, the best-response algorithm will converge to

4.1. UNIPROCESSOR OR SINGLE MODULE SCHEDULING 89

Algorithm 5 Uniprocessor best-response
Require: t0

1: n← 0
2: repeat
3: for i = 1 to N do
4: if i = n%N + 1 andmaxx minj $=i di,j(x, tn

−i) > αn
i then

5: tn+1
i ← min argmax (SCHD-i)

6: else
7: tn+1

i ← tni
8: end if
9: end for
10: n← n + 1
11: until tn = tn−N .
12: return tn

an optimal solution.

Lemma 8 Assume that at iteration n, player i updates its strategy. If αn+1
i > αn

i , then for all j '= i

αn
j < αn

i ⇒ αn+1
j = αn

j (4.4)

αn
j = αn

i ⇒ αn+1
j ≥ αn

j (4.5)

αn
j > αn

i ⇒ αn+1
j > αn

i (4.6)

Proof. To be more concise, dn
ji is used instead of dji(tn). Observe that at iteration n only player

i = n%N + 1 updates its strategy, and thus tn+1
−i = tn

−i. Assume that α
n+1
i > αn

i . Consider a partition
j '= i such that αn

j < αn
i . Since tn+1

k = tnk for all k '= i,

αn+1
j = min

(

min
k $=i,j

dn+1
jk , dn+1

ji

)

= min

(

min
k $=i,j

dn
jk, d

n+1
ji

)

= αn
j ,

where the last equality is obtained thanks to the following inequalities:

min
k $=i,j

dn
jk = αn

j < αn
i < αn+1

i ≤ dn+1
ji .

Consider now a partition j '= i such that αn
j = αn

i . Observe that d
n+1
ij ≥ αn+1

i > αn
i = αn

j . In
addition

min
k $=i,j

dn+1
jk = min

k $=i,j
dn

jk ≥ αn
j . (4.7)

It thus can be concluded that

αn+1
j = min(min

k $=i,j
dn+1

jk , dn+1
ij) ≥ αn

j .

90 4. A BEST-RESPONSE SCHEDULING ALGORITHM

Figure 4.2: Flowchart for the best-response algorithm.

Finally, consider a partition j '= i such that αn
j > αn

i . Again dn+1
ij ≥ αn+1

i > αn
i . Furthermore

equation (4.7) holds and implies that mink $=i,j dn+1
jk > αn

i . Thus αn+1
j > αn

i .

For each vector α = (α1, . . . ,αN), let α̂ denote the vector obtained from α by sorting the values
in the increasing order. Define α 6 β as α̂ greater than β̂ in the lexicographic order, i.e.

∃k ≤ N α̂i = β̂i ∀i < k and α̂k > β̂k. (4.8)

In order to show that the best-response algorithm converges, it is first shown that the vector αn =
(αn

1 , . . . ,αn
N) at iteration n increases in the lexicographical sense, and that this vector is bounded for

all n. These two properties are sufficient for the convergence of a given sequence.

The following is a demonstration that the vector α increases in the lexicographic sense when a
player updates its strategy.

Proposition 9
αn+1

i > αn
i ⇒ αn+1 6 αn (4.9)

4.1. UNIPROCESSOR OR SINGLE MODULE SCHEDULING 91

Proof. Note that since αn+1
j = αn

j for all j such that αn
j < αn

i , the vectors α̂
n and α̂n+1 have a common

prefix (maybe of length 0). Consider the multiplicity of the value αn
i in the vector α̂n. According to

Lemma 8, the multiplicity of this value decreases by at least one when partition i changes its strategy.
Since αn+1

i > αn
i and αn+1

j > αn
i for all j such that αn

j > αn
i , it concludes the proof.

Next, in order to show that the vector αn is bounded from above, it is sufficient to show that αn
i is

bounded from above.

Lemma 10 For all i ∈ Π and n ≥ 1,

αn
i ≤ min

j $=i

gi,j

bi + bj
.

Proof. From (4.2), ∀j '= i,

αn
i ≤ di,j(t

n),

≤ min

(

(ti − tj)%gi,j

bj
,
(tj − ti)%gi,j

bi

)

≤ min

(

(ti − tj)%gi,j

bj
,
gi,j − (ti − tj)%gi,j

bi

)

,

which yields αn
i bj < (ti− tj)%gi,j and αn

i bi < gi,j − (ti− tj)%gi,j . Consequently, αn
i (bi + bj) < gi,j .

Theorem 11 The best-response algorithm converges.

Proof. The sequence αn is increasing in the lexicographic order. Since it is bounded from above, the
conclusion is that it converges.

It is now shown that the best-response algorithm converges in a finite number of iterations.

Lemma 12 Let ∆ = minj,k
1

lcm(bj ,bk)
. Given that partition i changes its strategy, the value of the

minimum step by which partition i can increase αn
i is ∆.

Proof. Note that αn
i is of the form

mn

bj
for some integer mn and some partition j which could be the

same as partition i. Thus,

αn+1
i − αn

i =
mn+1

bj
−

mn

bk
=

mn+1bk −mnbj

bjbk

=
l · gcd(bj, bk)

bjbk
=

l

lcm(bj , bk)
,

for some integer l.

Given that partition i changes its strategy, αn+1
i − αn

i > 0, l is strictly positive. Therefore, αn+1
i −

αn
i ≥

1
lcm(bj ,bk)

≥ ∆.

92 4. A BEST-RESPONSE SCHEDULING ALGORITHM

Define
αmax = max

i
min
j $=i

gi,j

bi + bj
.

Lemma 13 For two integers N,K ∈ IN, the number of vectors v = (v1, v2, . . . , vN) such that vj ≤
vj+1, j = 1, . . . , N − 1, and vj ∈ {1, . . . ,K},∀j = 1, . . . , N , is

(

N+K
K

)

.

Proof. Let F (i,N), with i < K, denote the number of vectors v = (v1, v2, . . . , vN) with vj ∈
{K − i,K − i + 1, . . . ,K} and vj ≤ vj+1,∀j. Clearly v1 ≥ K − i, and hence, F (i,N) can be
interpreted from v1 ≥ K − i + 1 and v1 = K − i, or in other words as the number of

• vectors v′ = (v′1, v
′
2, . . . , v

′
N) such that v′j ∈ {K − i + 1, . . . ,K} and v′j ≤ v′j+1,∀j, and

• vectors v′′ = (v′′1 , v′′2 , . . . , v′′N−1) such that v′′j ∈ {K − i, . . . ,K} and v′′j ≤ v′′j+1,∀j.

In other words,
F (i,N) = F (i− 1, N) + F (i,N − 1).

Setting F (i,N) =
(

N+i
i

)

can be verified from the following,

F (i− 1, N) + F (i,N − 1) =

(

N + i− 1

i− 1

)

+

(

N − 1 + i

i

)

=
(N + i− 1)!

N ! (i− 1)!
+

(N + i− 1)!

(N − 1)! i!

=
(N + i− 1)!

(N − 1)! (i − 1)!

(

1

N
+

1

i

)

=
(N + i)!

N ! i!

= F (i,N)

and hence the proof is concluded.

Proposition 14 The best-response algorithm converges in at most
(

N+K
K

)

N iterations where K =
+αmax∆−1,.

Proof. The sequence αn is lexicographically ordered and is bounded from above by the vector

αmax = (αmax,αmax, . . . ,αmax).

Additionally, from Lemma 12, the minimum step size of αn
i is∆. Hence, the maximum number of

possible vectors αn is the same as the number of vectors v ∈ ZN such that (K,K, . . . ,K) 8 v 8 0

and vj ≤ vj+1,∀j. According to Lemma 13, the number of such vectors is
(

N+K
K

)

.

The worst-case scenario for the convergence of the algorithm occurs when in N consecutive it-
erations exactly one player changes its strategy so that exactly one of the

(

N+K
K

)

possible vectors is
traversed in these iterations.

Thus, the maximum number of iterations is upper bounded by
(

N+K
K

)

N .

Remark 15 The upper bound obtained is a conservative estimate which is exponential in the number
of partitions. However, in the numerical experiments presented in Section 4.4, the algorithm always
converged in a few tens of iterations.

4.1. UNIPROCESSOR OR SINGLE MODULE SCHEDULING 93

It should be noted that there can be multiple equilibrium points. In Game Theory, an equilibrium
point is also known as a Nash Equilibrium Point after John Nash who made major contributions to the
theory of Non-Cooperative Games.

Theorem 16 There exists at least one equilibrium point that is also a solution of (OPT-1).

Proof. Let t0 be a solution of (OPT-1). From Proposition 9, α̂n is non-decreasing lexicographically,
that is αn

1 ≥ α0
1. Since t0 has been assumed to be an optimal offset vector, α0

1 is maximal. Thus,
αn

1 = α0
1, and consequently, tn is also an optimal offset vector for all n. From Theorem 11, the

sequence tn converges. Hence, it can be concluded that there is at least one equilibrium point that is
also a solution of (OPT-1).

4.1.3 Computing the best-response

The best-response of partition i can be computed using linear search (at least when the offsets are
restricted to integers) which requires O(Ti) computations. In the following, a method to reduce the
computational complexity of the best-response is proposed.

In the rest of this section the following assumption is considered.

Assumption 1 The offsets can take on non-integral values, i.e. Ti = [0, Ti).

Let
Ii(t−i) = ∪

(j,k)∈(Π\{i})2

{

x :
(x− tj)%gi,j

bj
=

(tk − x)%gi,k

bi

}

To better interpret this set, consider Figure 4.3 where partition i’s turn is up and it is the one chang-
ing its strategy. Considering two other fixed partitions j and k as shown in the same figure, the strategy
of i affects the evolution coefficient between these partitions (i, j and k). In this example, the evo-
lution coefficient is the minimum between (tk−x)%gi,k

bi
and (x−tj)%gi,j

bj
whose evolutions as a function

of i’s offset x are represented by the solid red and dashed blue lines respectively. Evidently the best-
response is going to lie on an intersection point where every other value of x yields a lower value
of min(

(tk−x)%gi,k

bi
, (x−tj)%gi,j

bj
). For the overall best-response, considering only intersection points

∀(j, k) ∈ (Π \ {i})2 should suffice, this is demonstrated in Theorem 17.

Theorem 17 Si(t−i) ⊂ Ii(t−i) ⊂ Ti. In other words, instead of using linear search, it suffices to
consider points in Ii(t−i) when computing the best-response of player i.

Proof. Assume on the contrary that

(tj − t∗i)%gi,j

bi
'=

(t∗i − tk)%gi,k

bk
, ∀j, k '= i, (4.10)

where t∗i denotes one of the best-responses of partition i.

Denote by αi(x, t−i) = mink $=i dik(x, t−i) the response of partition i with its offset set to x.

94 4. A BEST-RESPONSE SCHEDULING ALGORITHM

Figure 4.3: Partition i changes its offset in the presence of two other partitions j and k. The best-
response for maximizing the evolution factors for partitions i and j is on the intersections between the
lines on which these factors evolve.

Let j '= i be such that αi(t∗i , t−i) = dij(t∗i , t−i). By assumption,
(tj−t∗i)%gi,j

bi
'=

(t∗i −tj)%gi,j

bj
. Now

assume that (t∗i −tj)%gi,j

bj
is the smaller of the two terms. Thus for all k '= i

(t∗i − tj)%gi,j

bj
≤

(t∗i − tk)%gi,k

bk
, (4.11)

(t∗i − tj)%gi,j

bj
<

(tk − t∗i)%gi,k

bi
. (4.12)

Equation (4.11) comes from the definition of j as the partition achieving the minimum in (4.2). The
strict inequality in (4.12) is obtained using (4.10).

With k = j in (4.12), (t∗i − tj)%gi,j/bj < (tj − t∗i)%gi,j/bi, which implies that (tj − t∗i)%gi,j > 0.
With (4.11), it implies that (t∗i − tk)%gi,k > 0 for all k '= i and thus that there exists qik ∈ ZZ such that
t∗i ∈ (tk + qikgi,k, tk + (qik + 1)gi,k).

Let z = mink $=i tk + (qik + 1)gi,k. The function x → mink $=i(x − tk)%gi,k/bk is continuous and
strictly increasing on the interval (t∗i , z). Therefore

4.1. UNIPROCESSOR OR SINGLE MODULE SCHEDULING 95

min
k $=i

(x− tk)%gi,k

bk
>

(t∗i − tj)%gi,j

bj
∀x ∈ (t∗i , z). (4.13)

In addition, the function x→ mink $=i(tk − x)%gi,k/bi is continuous and strictly decreasing on the
interval (t∗i , z). Thus, (4.12) implies that there exists ε > 0 such that

min
k $=i

(tk − x)%gi,k

bi
>

(t∗i − tj)%gi,j

bj
∀x ∈ (t∗i , t

∗
i + ε). (4.14)

From (4.13) and (4.14), αi(x, t−i) > αi(t∗i , t−i) can be concluded for all x ∈ (t∗i , t
∗
i + ε), which is

clearly a contradiction.

The proof in the case (tj − t∗i)%gi,j/bi < (t∗i − tj)%gi,j/bj is symmetric.

Thus, the solution of (SCHD-i) can be obtained by restricting the search over the set Ii(t−i). Since,
the original problem is defined only for integer values of the offsets, the best-response algorithm de-
scribed in Algorithm 5 will search for best-response only on floor and ceiling integers of points in
Ii(t−i) instead of searching all the Ti points.

4.1.4 Computing the intersection points

An algorithm to compute the elements of Ii(t−i) is given, and if possible, its cardinality.

An offset x ∈ Ii(t−i) satisfies

tj − x = mgi,j + (tj − x)%gi,j , (4.15)
x− tk = ngi,k + (x− tk)%gi,k, (4.16)

(tj − x)%gi,j

bi
=

(x− tk)%gi,k

bk
, (4.17)

for somem and n in Z. From which the following can be concluded

tj − tk − ((tj − x)%gi,j)

(

1 +
bk

bi

)

= lgi,j,k, (4.18)

where gi,j,k = gcd(gi,j , gi,k), and for some l in Z.

Since (tj − x)%gi,j ∈ [0, gi,j), (x− tk)%gi,k ∈ [0, gi,k) and the equality (4.17) is true,

(tj − x)%gi,j ∈

[

0,min

(

gi,j, gi,k
bi

bk

))

,

that is,

tj − tk − ((tj − x)%gi,j)

(

1 +
bi

bk

)

∈ (tj − tk − µj,k, tj − tk] . (4.19)

96 4. A BEST-RESPONSE SCHEDULING ALGORITHM

where µj,k = min
(

gi,,j

bi
,

gi,k

bk

)

(bi + bk). From (4.18) and (4.19), tj − tk −
(

(tj − x)%gi,j)
(

1 + bi

bk

))

can potentially be any integer multiple of gi,j,k in the interval (tj − tk − µj,k, tj − tk].
Let L(j, k) be the number of multiples of gi,j,k in the interval (tj − tk − µj,k, tj − tk], that is,

L(j, k) =

⌊

tj − tk
gi,j,k

⌋

−

⌊

tj − tk − µj,k

gi,j,k

⌋

. (4.20)

From (4.18) and (4.20),

(tj − x)%gi,j =
tj − tk − lgi,j,k

1 + bk
bi

, for l =

⌊

tj − tk
gi,j,k

⌋

, . . . ,

⌊

tj − tk − µj,k

gi,j,k

⌋

+ 1,

that is,
(tj − x)%gi,j =

(tj − tk)%gi,j,k + lgi,j,k

1 + bk
bi

, for l = 0, . . . , L(j, k) − 1. (4.21)

Note that (tj − x)%gi,j < min
(

gi,j , gi,k
bi
bk

)

as is necessary for (4.17) to be satisfied.

Finally, in order to determine x, the computation of m is needed. For this purpose, let m̂ and n̂ be
the Bézout coefficients of the pair gi,j and gi,k, that is

m̂gi,j + n̂gi,k = gi,j,k.

These coefficients can be determined using the extended Euclid algorithm [40]. Then,

lm̂gi,j + ln̂gi,k = lgi,j,k.

Let ci,j,k be the least common multiple of gi,j and gi,k. From the Bachet-Bézout theorem m =
lm̂ + q

ci,j,k

gi,j
, for some q ∈ Z. Thus, for a given l, q is needed in order to compute x.

Let
q(l) = max{q : tj − lm̂− qci,j,k − (tj − x)%gi,j > 0}.

That is, q(l) is that value of q that results in the smallest non-negative x that satisfies (4.15) and
(4.16). This smallest value of t will be denoted by τ(l). Thus,

τ(l) = (tj − lm̂gi,j − (tj − x)%gi,j)%ci,j,k.

If τ(l) is an intersection point, then so is τ(l) + rci,j,k. Thus, for each l, there are 3Ti−τ(l)
ci,j,k

4+ 1 values
of r for which τ(l) + rci,j,k ∈ Ti which give the same intersection heights.

Algorithm 6 provides a summary on the above steps for computing the elements of the set Ii.

4.2. MULTIPROCESSOR SCHEDULING 97

Algorithm 6 Computing the set of intersection points
Require: : t−i

Ii(t−i) = ∅
for all j '= i do
for all k '= i do

for l =

⌊

tj−tk−min
“

gi,j
bi

,
gi,k
bk

”

(bi+bk)

gi,j,k

⌋

+ 1 to
⌊

tj−tk
gi,j,k

⌋

do

τ(l) = (tj − lm̂gi,j −
tj−tk−lgi,j,k

1+
bk
bi

)%ci,j,k

for r = 0 to
⌊

Ti−τ(l)
ci,j,k

⌋

do
Ii(t−i)← Ii(t−i) ∪ (τ(l) + rci,j,k)

end for
end for

end for
end for

An upper bound on the cardinality of Ii(t−i) can be computed as

|Ii(t−i)| ≤
∑

j $=i

∑

k $=i

min
(

gi,j

bi
,

gi,k

bk

)

(bi + bk)

gi,j,k

Ti

ci,j,k

=
∑

j $=i

∑

k $=i

min
(

gi,j

bi
,

gi,k

bk

)

(bi + bk)Ti

gi,jgi,k

If it is assumed that the partitions are at least schedulable in pairs, that is (bi + bj) ≤ gi,j , ∀i, j, then
a sufficient condition for this algorithm to check fewer points than linear search is bi > N2, where N
is the total number of partitions.

Remark 18 When the offsets are restricted to integers, several intersection points between two integers
could potentially be computed. And, for all these intersection points the best-response algorithm shall
check for only the two integers closest to them. Although, theoretically, there could be instances where
there could be more intersection points than the period of the partition, in practice, this will not have
much impact on the efficiency of the best-response algorithm.

4.2 Multiprocessor Scheduling
In this section, the best response algorithm is further extended to the multiprocessor scheduling prob-
lem. The schedule is now not only represented by the temporal scheduling of partitions t, but also by
the processing module allocation for each of the partitions, represented by the binary vector a. The
associated MILP formulation for the problem can be found in Section 3.2.4.

98 4. A BEST-RESPONSE SCHEDULING ALGORITHM

Again the main merit here of the best-response algorithm is, as was the case in the uniprocessor set-
ting, the ability to solve quite large instances for reasonable amounts of time and reduced relative errors
with respect to optimal solutions. Furthermore, as was already noted, the algorithm is not restricted to
harmonic periods, and hence allow further flexibility with partition period definition.

In the multiprocessor setting, at its turn a partition sequentially computes its best response on each
of the processors. It then selects the processor which improves its current evolution margin the most.
Evidently, a partition’s strategy is now closely related to not only its offset, but also its allocation to a
module. Just as in the uniprocessor case, it shall be assumed that a partition does not switch its module
and change its offset unless it can strictly improve its evolution margin (or, its utility).

Following the definition (4.2), for the multiprocessor setting define

αn
i = min

{j $=i,an
i,k

=an
j,k

∀k}
di,j(t

n), (4.22)

which is the evolution margin of the partition i with respect to those that are scheduled on the same
module as itself for a given offset vector tn and allocation vector an. Also, define an

i to be the alloca-
tion vector of partition i after the nth iteration.

The pseudocode for the multiprocessor best-response algorithm is given in Algorithm 7. The con-
dition in step 7 verifies if it possible to introduce partition i on module k (if previously an

i,k = 0), that
is to say that the system resource constraints are satisfied (A and Θ from Section 3.2).

Lemma 19 The results demonstrated in Lemma 8 are still applicable in the multiprocessor case. In
other words, assuming at iteration n player i updates its strategy, the following are still valid ∀j '= i,
and whatever the allocation.

αn
j < αn

i ⇒ αn+1
j = αn

j (4.23)

αn
j = αn

i ⇒ αn+1
j ≥ αn

j (4.24)

αn
j > αn

i ⇒ αn+1
j > αn

i (4.25)

Proof. For the sake of simplicity, di,j can not be written unless i and j occupy the same module. Let
En denote the event that players i and j occupy the same module at the end of iteration n. Subsequently,
E

n denotes the event of i and j being on different modules. Assuming i changes its strategy (αn+1
i >

αn
i and tn+1

j = tnj ∀j '= i), the following events are possible ∀j '= i,

1. En ∩ En+1: in this case the proof is similar to that of the uniprocessor setting.

2. En ∩ E
n+1: player i was on the same module as j but then changed its allocation. In this case,

αn+1
j = min

k $=i,j
dn+1

jk = min
k $=i,j

dn
jk ≥ min

(

min
k $=i,j

dn
jk, d

n
ij

)

= αn
j .

If αn
j < αn

i , then since dn
ij ≥ αn

i > αn
j = min

(

mink $=i,j dn
jk, d

n
ij

)

, then αn
j = mink $=i,j dn

jk =

αn+1
j .

4.2. MULTIPROCESSOR SCHEDULING 99

Algorithm 7Multiprocessor best-response
Require: t0,a0

1: n← 0
2: repeat
3: for i = 1 to N do
4: if i = n % N + 1 then
5: a

n+1
i ← 0

6: for k = 1 toM do
7: if an+1

i ∪ a
n+1
−i ∈ A ∩Θ for an+1

i,k = 1 then
8: z ← maxx min{j:j $=i,aj,k=1} di,j(x, tn

−i)
9: if z > αn

i then
10: αn

i ← z
11: c← k
12: tn+1

i ← min argmax min{j:j $=i,aj,k=1} di,j(x, tn
−i)

13: end if
14: end if
15: end for
16: an+1

i,c = 1
17: else
18: tn+1

i ← tni
19: a

n+1
i ← an

i

20: end if
21: end for
22: n← n + 1
23: until tn = tn−N and an = an−N .
24: return tn

100 4. A BEST-RESPONSE SCHEDULING ALGORITHM

If αn
j = αn

i , then as defined above αn+1
j ≥ αn

j .

Finally, if αn
j > αn

i , then αn+1
j ≥ αn

j > αn
i .

3. E
n and E

n+1: the module on which j is found is not modified, and hence systematically the
equality is satisfied in (4.23) and (4.24). If however αn

j > αn
i , then αn+1

j > αn
i , since the utility

of j has not changed.

4. E
n and En+1: at the end of the (n + 1)th iteration, i entered j’s module on which it was not

before. If αn
j < αn

i , then αn+1
j = αn

j due to the following

dn+1
ij ≥ αn+1

i > αn
i > αn

j = min
k $=i,j

dn
jk,

leading to αn+1
j = mink $=i,j dn

jk.

If αn
j = αn

i , then the equality in (4.24) (α
n+1
j ≥ αn

j) is satisfied since

dn+1
ij ≥ αn+1

i > αn
i = αn

j = min
k $=i,j

dn
jk,

and hence αn+1
j = min

(

mink $=i,j dn
ij , d

n+1
ij

)

= mink $=i,j dn
kj = αn

j .

Finally, if αn
j > αn

i , then from dn+1
ij ≥ αn+1

i > αn
i and mink $=i,j dn+1

jk = mink $=i,j dn
jk = αn

j >
αn

i then

αn+1
j = min

(

min
k $=i,j

dn+1
jk , dn+1

ij

)

> αn
i .

Subsequent results can be demonstrated, though not presented hereafter, as was done in the unipro-
cessor case. The following theorem states two important properties of the best-response algorithm that
are also valid in the multiprocessor case.

Theorem 20

1. The multiprocessor best-response algorithm converges.

2. There exists at least one equilibrium point that is optimal.

Proof. The proofs of the two properties are similar to those of the uniprocessor case.

It should be also stated that the upper bound on the number of required iterations remains valid.

4.3. MULTI-START WITH BAYESIAN STOPPING RULES 101

4.2.1 Initial allocation in the multiprocessor setting

In the uniprocessor scheduling, an initial schedule can be obtained easily, e.g. randomly fixing partition
offsets. In the multiprocessor case however, randomly choosing an offset and allocation vectors does
not guarantee respecting resource constraints.

A manner to obtain an initial schedule (t0 and a0) is using a greedy algorithm (cf. Section 2.6.2.2).
In an implementation of this greedy algorithm, partitions are ordered, e.g. in the decreasing order of
bi

Ti
, and then one by one, each partition is introduced and allocated the module on which it has its

best-response. In this manner, partition are only placed on modules where the resource constraints are
respected.

This greedy algorithm gives a fairly good starting point when resource constraints are somehow
flexible. In case these constraints are tight, this algorithm might fail. A solution for this problem is
the utilization of linear formulations for obtaining a feasible allocation, that is the computation of an
allocation vector a0. The offset vector t0 can then be chosen at random. The formulation is as follows,

maximize
∑

i∈Π,k∈P

ai,k (4.26)

subject to
∑

k∈P

ai,k ≤ 1, ∀i ∈ Π, (4.27)

∑

i∈Π

ai,k ≤ Hk, ∀k ∈ P, (4.28)

∑

i∈Π

ai,k mi ≤Mk, ∀k ∈ P. (4.29)

The objective in (4.26) along with constraints (4.27) maximizes the number of partition allocations
to modules. If the objective is not equivalent to the total number of partitions, then no feasible schedule,
including all partitions, exists. Constraints (4.28) and (4.29) prevent exceeding the memory and parti-
tion capacities of modules.

The communication constraints are not included so as to keep the presentation clear and simple.
Their addition however should not be of great concern, as the constraints of Section 3.2.3 can be easily
incorporated. Furthermore, in the best-response algorithm, a partition is prohibited from changing its
strategy if delay constraints for the processing chains are violated.

4.3 Multi-start with bayesian stopping rules
In both the uniprocessor and multiprocessor settings, the quality of the algorithm’s solution greatly
depends on the starting point (initial schedule), from which partitions change strategies till an equi-
librium is reached. In order to augment the probabilities of finding an optimal solution, multi-start
methods [115] can be performed. The aim of multi-start is the discovery, up to a certain extent, of the
majority of equilibrium points or regions of attraction in the system by departing from several starting

102 4. A BEST-RESPONSE SCHEDULING ALGORITHM

points. A region of attraction is defined as the set of states that, when applied as starting points for an
optimization algorithm, lead to a unique local optimum (equilibrium in the best-response algorithm).
This allows enhancing the proposed best-response algorithm and give some statistical information on
the obtained results. Bayesian stopping rules [30] are used to stop the multi-start procedure where sev-
eral runs are made, one after the other. It should be noted that important results from [30] are hereafter
presented without going into much details and proofs.

Let the function f denote the best-response algorithm which, starting from an initial sample (offset
and allocation vectors t0 and a0) leads to an equilibrium characterized by t∗ and a∗. The local minima
concept in [30] is hence replaced by the notion of equilibrium points. The methods represented in
this section do not guarantee finding the optimal solution, but assuring a probability for this event that
approaches 1 as the sample size goes to infinity (given that the real number of equilibria is not known).
Stopping rules are applied to give a trade-off between reliability and computational effort. In other
words, additional samples (starting points) are considered as long as a given stopping criterion is not
satisfied. In this section consider the following notations:

• K: a random variable representing the real number of equilibria k.

• W : a random variable representing the observed number of equilibria w.

• S: a random variable representing the number of considered samples s.

• Si: a random variable representing the occurrence of the i-th equilibrium.

• Ω: a random variable representing the total relative volume of the observed regions of attraction.

• Φi: a random variable representing the relative volume φi(i = 1, . . . , k) for the i-th region of
attraction.

• S: the set of samples, i.e. all possible starting points.

In practice, k,φ1, . . . ,φk are always unknown. The sampled equilibria, however, clearly provide
information about the values of these parameters. Since the starting points of Multi-start are uniformly
distributed over S , the i-th equilibrium point at each trial has a fixed probability of being found that is
equal to the relative volume φi of its region of attraction. In order to apply Bayesian stopping rules, it is
first assumed that the number of equilibriaK is a priori equiprobable on [1,∞). GivenK = k, it is also
assumed that the relative sizes of the regions of attraction Φ1, . . . ,ΦK follow a uniform distribution on
the (k − 1)-dimensional unit simplex

Ik−1 =

{

(φ1, . . . ,φk)|φi ≥ 0(i = 1, . . . , k),
k
∑

i=1

φi = 1

}

.

Hence the joint prior probability density function is given by

p(k,φ1, . . . ,φk) ∝ (k − 1)!.

The following are some consequent results arising from Theorem 1 in [30],

4.3. MULTI-START WITH BAYESIAN STOPPING RULES 103

• Posterior expected value of the number of equilibria:

E(K|{s1, . . . , sw}) =
w(s − 1)

s− w − 2
(s ≥ w + 3). (4.30)

• Posterior expected value of the relative volume of a region of attraction of an equilibrium
point which has been found sj times:

E(Φsj
|{s1, . . . , sw}) =

(sj + 1)(s + w)

s(s− 1)
(s ≥ w + 2). (4.31)

• Posterior expected value of the total volume of the observed regions of attraction:

E(Ω|{s1, . . . , sw}) =
(s− w − 1)(s + w)

s(s− 1)
(s ≥ w + 2). (4.32)

4.3.1 Stopping rules

The stopping rules indicate when to stop considering additional samples to perform more runs. A simple
rule might be as follows,

E(K|{s1, . . . , sw})−
1

2
≤ w,

i.e. to stop if the optimal integer Bayesian estimate of the unknown number of equilibria is equal to the
number of distinct equilibria observed. If one is not willing to continue the search for all equilibria, an
appropriate stopping criterion may be to terminate the algorithm if the total relative volume of observed
regions of attractions exceeds a prescribed value t (0 < t < 1), that is,

E(Ω|{s1, . . . , sw}) ≥ t.

It is preferable, however, to apply sequential stopping rules which also take into account the cost of
the sampling. To do so, one has to impute a termination loss which attaches costs to the deviation of an
estimated unknown quantity from its true value, as well as an execution loss corresponding to the cost
of further experiments.

Consider hereafter two loss structures presented in [30] in order to minimize the expected posterior
loss [52].

1. The termination loss is equal to a fixed constant c1 if sampling is stopped before all minima have
been discovered and 0 otherwise:

L1 =

{

s + c1 ifK > W ,
s ifK = W .

Given {s1, . . . , sw} the posterior loss is equal to

E(L1|{s1, . . . , sw}) = c1

(

1−
w
∏

i=1

s− 1− i

s− 1 + i

)

+ s. (4.33)

This termination loss can only decrease if ultimately all equilibria are found.

104 4. A BEST-RESPONSE SCHEDULING ALGORITHM

2. The termination loss is proportional to the total relative volume of the unobserved regions of
attraction:

L2 = c2(1− Ω) + s,

where c2 is a predefined constant.

The posterior loss is equal to

E(L2|{s1, . . . , sw}) = c2
w(w + 1)

s(s− 1)
+ s. (4.34)

This termination loss reflects that case where one is less interested in finding local minima with
exremely small regions of attraction.

In the following {s1, . . . , sw} is replaced by (s,w).

Given a sample size s, the posterior loss after s′ > s observations is a random variableE(Lj |(s′,W)).
The purpose, then, is to find for each loss function the stopping rule that minimizes the expected se-
quence of posterior losses {E(Lj |(s′,W))}∞s′=s+1. Given a current pair (s,w) only two relevant out-
comes can occur as a result of an additional local search: (s,w)→ (s+1, w+1) or (s,w)→ (s+1, w).
The posterior probability that the next search will not result in the discovery of an unobserved equilib-
rium is equal to the posterior expected volume of the observed regions of attraction. Hence the sequence
of posterior losses satisfies the recurrence relation [30]:

E(E(Lj |(s + 1,W))|(s,w)) =E(Ω|(s,w))E(Lj |(s + 1, w))

+ (1− E(Ω|(s,w)))E(Lj |(s + 1, w + 1))

=
(s− w − 1)(s + w)

s(s− 1)
E(Lj |(s + 1, w))

+
w(w + 1)

s(s− 1)
E(Lj |(s + 1, w + 1)). (4.35)

Therefore an appealing one-step stopping rule is to terminate if this conditional expected posterior
loss of s + 1 observations is greater than the current posterior loss E(Lj |(s,w)). This decision is based
on the assumption that the search is immediately stopped once the next observation would have been
performed.

4.4 Results
In this section some experimentations to evaluate the performance of the best-response algorithms are
demonstrated. Again, the exact MILP formulations for both the uniprocessor and multiprocessor prob-
lems are solved using the linear program solver CPLEX [81]. The machine used is based on an Intel R©
CoreTM2 Quad CPU Q6700 @ 2.66GHz with 4MB of cache and 4GB of system memory.

For example generation, unlike the earlier chapter, harmonic (H) periods were chosen uniformly
from the set {1500, 3000, 6000, 12000, 24000}, whereas for non-harmonic (NH) periods partitions were

4.4. RESULTS 105

uniformly allocated one of five periods chosen from the set {2x 3y 50 : x ∈ [0, 4], y ∈ [0, 3]}, as was
inspired from [56]. For partition time budgets, it was generated following an exponential distribution
and averaging at about 20% of the partition’s period. Memory and partition capacities for modules and
memory requirements for partitions were generated so as not to greatly constrain the problem, in other
words, they were generated to limit the modules with a twenty partition limit. The influence of memory
resources on the scheduling problem is investigated in the benchmark of Section 4.4.1. Finally, among
the architectural constraints (for multiprocessor problems), only partition exclusions were considered
for the generated examples, i.e. couples of partitions that cannot execute on the same processor. In
this case, 40% of partitions were chosen uniformly to be implicated in an exclusion constraint. Unless
indicated otherwise, each experiment is run once starting from an initial solution supplied by the greedy
algorithm discussed in Section 4.2.1.

The algorithm’s performance is first evaluated for the uniprocessor setting (single run for each
instance). Twenty uniprocessor examples, with fifteen partitions each, were generated with harmonic
and non-harmonic periods respectively. As can be seen in Figure 4.4, the relative error on the optimized
evolution coefficient α averaged at about 7.8% for the harmonic case and 4.2% for the non-harmonic
one. This is interesting given that the average execution time for the best response algorithm was around
2.7 seconds versus more than 20 minutes for the exact method. The relatively high relative error for
instance 13 in Figure 4.4b arises from the considered starting point (using greedy algorithm), as will be
seen in Section 4.4.2.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
el

at
iv

e
er

ro
r o

n
ev

ol
ut

io
n

co
ef

fic
ie

nt
 [%

]

Experiment

Uniprocessor best response
Mean

(a) Harmonic periods.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
el

at
iv

e
er

ro
r o

n
ev

ol
ut

io
n

co
ef

fic
ie

nt
 [%

]

Experiment

Uniprocessor best response
Mean

(b) Non-harmonic periods.

Figure 4.4: Relative error on α for uniprocessor examples.

A particular situation arises when the problem becomes more complex and the exact method fails
to prove optimality in an adequate amount of time. Consider for instance a non-harmonic example
constituted of 20 partitions whose temporal attributes are indicated in Table 4.1–these are not generated
as mentioned earlier but randomly with 12 different periods–, partition time budgets remain small com-
pared to their periods.

For this example the best response algorithm gave α = 1.41 in 2.83 seconds where the exact method
failed to supply a value superior to α = 1.11 within a one hour limit. In this case, the benefit of the

106 4. A BEST-RESPONSE SCHEDULING ALGORITHM

Table 4.1: A uniprocessor example with 20 partitions of general non-harmonic periods. LCM between
periods is 756000

Partition 1 2 3 4 5 6 7 8 9
Time budget 10 30 30 10 10 10 10 10 30
Period 1200 1200 3600 1200 1200 1500 4200 1000 2000

10 11 12 13 14 15 16 17 18 19 20
10 10 45 40 40 60 80 30 10 60 40
4000 1200 2400 2000 4000 3000 3000 2700 200 1800 1800

proposed algorithm can be noticed. It is true that the final optimal solution may be greater than the
obtained value but one has to take into account the time cost required to do so.

Another advantage of the best-response algorithm is the ability to obtain better mean evolution per
partition, where unlike the exact method, the best-response algorithm does not stop until all partition
strategies are unchanged. To illustrate this consider a uniprocessor example where the solution was α =
1.57 (minimum corresponding to partition 12) for both methods. Figure 4.5 represents the evolution
coefficient for each of the 15 partitions, as a result of both methods. The average evolution per partition
is at 1.98 for the exact method versus 2.58 for the proposed algorithm.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 ti
m

e
bu

dg
et

 e
vo

lu
tio

n
[%

]

Partition

Exact
Best-response

Figure 4.5: Evolution margin per partition for an example with 15 partitions.

4.4. RESULTS 107

For the multiprocessor scheduling problem, 4 experiment sets, each consisting of 100 instances,
were generated. Instances of the first and second sets are constituted of 4 modules and 20 partitions with
harmonic and non-harmonic periods respectively. Instances of the third and fourth sets are composed of
4 modules and 40 partitions with harmonic and non-harmonic periods respectively. The attributes were
generated as indicated in the beginning of this section.

When solving the multiprocessor problem to optimality using the exact MILP formulation, a time
limit of thirty minutes was defined for instances of the first and second sets. As for the third and fourth
sets, this limit was increased to one hour and partition offsets were considered continuous (ti ∈ IR).
This decreases execution times significantly (cf. Table 3.1). To limit the minor difference in the optimal
solution, all temporal attributes were divided by 100. For what concerns the proposed best-response
algorithm, the instances were not modified and no time limit was imposed.

Table 4.2 demonstrates the relative error on the evolution coefficient α for the multiprocessor best-
response algorithm with respect to the exact method. Execution times for the exact method are not
included as it was already shown that exceeding certain limits, they may be inconvenient. In fact, most
of the runs exceeded the time limit and hence were stopped. The solutions were nevertheless used
for comparison. It is obvious that execution times as well as the quality of obtained solutions for the
best-response algorithm are quite interesting. For all of the considered examples, harmonic and non-
harmonic, mean relative error on the evolution coefficient α, as compared to the exact solution, remains
below 20%. For the third set ‘4M40P-H’, the relative error averages at about 8%, the reason why this
average is lower than that of ‘4M20P-H’ is that the exact method often required more than one hour
to reach or even prove optimality, and hence, within this time limit, α obtained by the best response
algorithm was superior to that of the exact method. The same analysis applies to ‘4M40P-NH’.

Table 4.2: Relative error on optimality for the multiprocessor best response algorithm. xMyP designates
instances with x modules and y partitions.

Experiment set Nature of periods
Mean relative Mean
error on α CpuTime

4M20P-H harmonic 14.35% 0.65s.
4M20P-NH non-harmonic 18.13% 1.04s.
4M40P-H harmonic 7.91% 6.64s.
4M40P-NH non-harmonic 10.58% 12.14s.

4.4.1 Large scale and industrial applications

The best-response algorithm is hereafter tested on examples depicting real world scenarios. In avionics,
three types of partitions and modules actually exist, without discussing the nomenclature and side loca-
tions (modules are distributed between two sides), this leads to the definition of three distinct scheduling
problems, one per type. Therefore, three sets of problems depicting those on an air-plane were gener-
ated. A set composed of 6 modules and 36 partitions ‘6M36P’, another of 6 modules and 79 partitions

108 4. A BEST-RESPONSE SCHEDULING ALGORITHM

‘6M79P’ and a last one composed of 24 modules and 419 partitions ‘24M419P’. All periods were con-
sidered harmonic and temporal attributes were generated as before. Exclusions between partitions were
neglected for these three sets. Table 4.3 demonstrates the results obtained.

Table 4.3: Three scheduling problems with sizes similar to those in avionic partition scheduling prob-
lems

Problem Evolution coefficient α CpuTime
6M36P 3.15 1.18s.
6M79P 1.48 37.48s.
24M419P 1.17 34.485mn.

Unfortunately, comparison with the exact formulation was not possible due to its limitations. The
quality of an obtained solution has to be assessed based on its utility, a value of α ≥ 1 implies in essence
a feasible schedule. Any greater value gives more flexibility when increasing time budgets. Execution
times are nevertheless convenient, the largest problem with 419 partitions taking about one half of an
hour.

The utility of the algorithm with a benchmark supplied by one of the industrial partners of the
project is further investigated. An example architecture constituted of three sub-problems were sup-
plied, the first of 12 modules and 36 partitions ‘12M36P’, the second of 12 modules and 112 partitions
‘12M112P’ and the last one of 48 modules and 636 partitions ‘48M636P’. Partition periods belong to
the set {60000, 120000, 240000} (in µseconds). Module segregation constraints (exclusions) were also
supplied, totalling 176 constraints (implicating partitions of the architecture). Additional resource at-
tributes were also supplied (e.g. RAM, NVM, etc.). Table 4.4 demonstrates the obtained results.

Table 4.4: Three scheduling problems supplied as a benchmark
Problem Evolution coefficient α CpuTime
12M36P 10 0.06s.
12M112P 3.12 4.53s.
48M636P 1.56 16.83mn.

The results appear to be, as before, convenient. A difference in execution times between ‘48M636P’
at 16 minutes and the previous one ‘24M419P’ (Table 4.3) at 34 minutes can be noticed. One reason
can be related to the fact that in ‘48M636P’ the number of partitions per module averages at about 13
whereas in ‘24M419P’ this average is 17, and thus less computation per module in ‘48M636P’. The
decreased number of distinct periods and simpler temporal attributes is another factor that may have
played a role in decreasing the number of iterations required for the algorithm to converge.

4.4. RESULTS 109

Another experimentation carried out was the division of temporal attributes (periods and time bud-
gets) by 1000, as usually a precision in the order of milliseconds should suffice. Surprisingly the
algorithm converged for ‘48M636P’ in about 3 minutes. This is caused from reducing the precision on
the time horizon and hence reducing several computations throughout the algorithm.

For what concerns the effect of resources on the initial solution (starting point), a similar benchmark
was also supplied but with more strict resources. The greedy algorithm failed to supply an initial
allocation, and hence, in this case the exact formulation proposed in Section 4.2.1 is applied. The
proposition of an initial allocation took less than one second, after which the algorithm continues as
before.

4.4.2 Multi-start results

The multi-start method discussed in Section 4.3 is investigated for some of the experimentations. The
Bayesian stopping rule in which the termination loss is related to total relative volume of the unobserved
regions of attraction was used. This rule was shown to be the fastest in [30].

In the uniprocessor setting, partition offsets were generated uniformly (ti ∈ Ti) to form sample
solutions. For each sample point the algorithm was run to obtain an equilibrium specified by the sys-
tem evolution margin α. Interestingly applying the above indicated Bayesian stopping rule lead to a
0.25% and 0% average relative error on α for the examples of Figures 4.4a and 4.4b respectively, along
with a mean execution time of 3 minutes which remains faster than the exact method. This means that
the multi-start method succeeded in finding an optimal equilibrium in most of the cases. As indicated
earlier, the elevated relative error for instance 13 in Figure 4.4b was due to the consideration of a bad
starting point.

To demonstrate the difference between both termination losses, Figure 4.6 represents, for a given
instance of the uniprocessor examples, the number of discovered and estimated number of equilibria as
more runs are performed. The stopping rule related to the regions of attractions stopped the procedure
after 37 runs (5 major equilibria in 96 seconds), whereas the one related to finding all equilibrium
points stopped the procedure after 289 runs (12 equilibria in 743 seconds). Both found an optimal
equilibrium point, with the difference that the former stopped at 5 equilibrium points with a 97.74%
estimated total relative volume for the regions of attraction. This means that in case there are a colossal
number of equilibria, stopping after the discovery of a sufficient total region of attraction might be more
appropriate.

In the multiprocessor setting, partition offsets and module allocations were initialised uniformly in
a manner respecting the various resource constraints (e.g. memory). Fifty instances of 4M20P-H and
4M20P-NH from Table 4.2 were considered. The single runs for these two sets of instances gave a mean
relative error of 16.28% and 17.64% respectively, as compared to the exact method. The application of
the aforementioned multi-start method reduced this relative error to 0.58% and 0.09% respectively in
about 15 minutes. The relative error distributions are represented in Figure 4.7. For some instances the
Bayesian stopping rule guaranteed discovering almost all of the regions of attraction, such as instance
20 of Figure 4.7b where a 99.8% total volume for the regions of attraction was estimated. Plotting the

110 4. A BEST-RESPONSE SCHEDULING ALGORITHM

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

N
um

be
r o

f e
qu

ilib
ria

Runs

Discovered
Estimated

Figure 4.6: Evolution of the discovered and estimated number of equilibria for a uniprocessor instance.

evolution of the estimated and discovered number of equilibria showed that almost all of equilibrium
points were discovered (cf. Figure 4.8a). However, for instance 16 of Figure 4.7b, the runs where
stopped after a 97% total estimated volume for the regions of attraction while providing a solution at
about 6% relative error. As can be seen in Figure 4.8b, this is due to the fact that, although a relatively
high probability for the discovered regions of attraction was estimated, several equilibrium points lying
in small regions remain to be discovered. This can be overcome by continuing the runs until the esti-
mated and discovered number of equilibria converge.

Finally, for the benchmark presented in Table 4.4, the application of the multi-start method on
‘48M636P’ yielded an ameliorated solution at α = 2.0833 instead of α = 1.56. This solution was dis-
covered in early runs but the method terminated after about 3 days with a total estimated volume of the
regions of attraction that was greater than 99%. It should be noted that the lower bound on the number
of required modules is 19 as inferred from

∑

i∈Π
bi

Ti
. Hence dividing the number of actual modules with

this lower bound gives an upper bound on the evolution coefficient, that is α = 2.564. In other words,
if all time budgets are multiplied by this coefficient, the best-case scenario is to to have a schedule with
100% loads on the 48 modules.

As a conclusion on the application of multi-start methods, and although a single run of the best-
response algorithm yields interesting results in most of the cases, the solution quality can be amelio-
rated through further exploration of the solution space. As was noticed, optimal solutions are not always
guaranteed to be found. Nevertheless, some probabilistic measures on the optimality of discovered solu-
tions can be supplied, such as an estimation on the number of equilibria that remain undiscovered. In all,
the application of multi-start methods appeared extremely beneficial given the associated computation
times.

4.4. RESULTS 111

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
er

ro
r o

n
ev

ol
ut

io
n

co
ef

fic
ie

nt
 [%

]

Instance

Single run

(a) Single runs for 50 instances of 4M20P-H.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
er

ro
r o

n
ev

ol
ut

io
n

co
ef

fic
ie

nt
 [%

]

Instance

Multi-start

(b) Multi-start on the 50 instances of 4M20P-H.

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
er

ro
r o

n
ev

ol
ut

io
n

co
ef

fic
ie

nt
 [%

]

Instance

Single run

(c) Single runs for 50 instances of 4M20P-NH.

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
er

ro
r o

n
ev

ol
ut

io
n

co
ef

fic
ie

nt
 [%

]

Instance

Multi-start

(d) Multi-start on the 50 instances of 4M20P-NH.

Figure 4.7: The application of multi-start methods on multiprocessor examples.

4.4.3 Processor minimization context

The adaptability of the best-response algorithm, in a module minimization context, is superficially
demonstrated. Instead of seeking a maximum evolution coefficient on predefined modules, the problem
is transformed into minimizing the number of required modules for scheduling the partitions, i.e. de-
termine minimum P such that α ≥ 1. Without indulging into much detail, the modified best-response
algorithm (MBR) starts with one module and tries to obtain α ≥ 1. If it fails, an extra module is
activated and the procedure is redone. The algorithm terminates with P modules and an evolution co-
efficient α ≥ 1. The algorithm is compared to a fast ILP-based Bin-Formulation [56] (BF), and the
approximation algorithm proposed in [91] for constrained processor scheduling (KS). Since BF is lim-
ited to harmonic periods, the comparison is only demonstrated for harmonic examples.

Three experiment sets, each consisting of 100 instances, where generated. Instances of the 3 sets
are constituted of 20, 40 and 60 partitions respectively with harmonic periods and with no exclusion
constraints defined. The various attributes were generated as indicated previously.

112 4. A BEST-RESPONSE SCHEDULING ALGORITHM

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500

N
um

be
r o

f e
qu

ilib
ria

Runs

Discovered
Estimated

(a) An instance where almost all equilibrium points were
discovered.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

N
um

be
r o

f e
qu

ilib
ria

Runs

Discovered
Estimated

(b) An instance where several equilibrium points remain to
be discovered.

Figure 4.8: Evolution of the discovered and estimated number of equilibria for multiprocessor instances.

Table 4.5 represents the optimality of the three methods, in addition to their respective computation
times. Since BF is an exact formulation, a solution supplied within a 30 minutes time limit is specified
as optimal. For the other two methods, their optimality is determined from BF whenever it is considered
optimal (does not exceed time limit).

Table 4.5: Comparison between MBR, BF and KS.

Experiment set
Optimality Average CpuTime

BF MBR KS BF MBR KS
20P 100% 67% 42% 0.08s. 2.38s. 0.04s.
40P 97% 16% 13% 0.97s. 6.22s. 0.35.
60P 93% 11% 12% 3.4s. 33s. 1.51s.

As can be seen in this table, the best-response algorithm, although not representing the best results
with its simple implementation, can be also adapted to processor minimization problems. Throughout
all of the experimentations carried out the obtained number of modules was in worst cases 2OPT, where
OPT denotes the optimal number of processors.

4.5 Conclusion
In this chapter a best-response algorithm for the non-preemptive and strictly periodic multiprocessor
scheduling problem has been proposed. This game theoretic approach appeared to be extremely effi-
cient in solving the scheduling problem, especially when the exact method fails. The quality of the
supplied solutions appeared promising and execution times were highly convenient given the complex-
ities dealt with.

4.5. CONCLUSION 113

Numerical experiments have shown that the solution space is separated into a certain number of
regions of attraction. Started in any point of such a region, the best-response algorithm will converge
to the associated equilibrium. In order to ensure a better solution quality, multi-start methods with
Bayesian stopping rules can be implemented. This enhanced greatly the quality of the algorithm, where
the chances of finding an optimum increases. In addition, statistical information, such as an estimation
on total volume of the regions of attraction, can be supplied.

114 4. A BEST-RESPONSE SCHEDULING ALGORITHM

CHAPTER 5

Virtual Link routing

After the allocation of resources to partitions, which was handled in previous chapters, routing tables
for data and message transmission need to be completed, as was indicated in Section 1.5.2. For this
purpose, the Virtual Link (VL) routing problem is addressed. In other words, approaches for routing
the VLs through AFDX switches are investigated. These approaches should take into consideration the
congestion in the AFDX network and the end-to-end transmission delays of the VLs.

Some characteristics of Virtual Links are first discussed in Section 5.1 to then indicate the problem-
atic and related work in Section 5.2. A formal definition for the problem is indicated in Section 5.3. In
Section5.4, an exact method is discussed. A two-level heuristic is then proposed in Section 5.5. Some
experimentations are presented in Section 5.6 whereas Section 5.7 concludes this chapter.

5.1 Virtual Links
In AFDX networks, Virtual Links, which can be thought of as multicast trees [146], have the interest of
routing isolated packets of data from a unique End System (interfacing a source Avionic Subsystem) to
a predetermined set of other End Systems (destined Avionic Subsystems). In other words, the AFDX
switches are configured to direct frames with the same Virtual Link ID through a predefined tunnel in
the network. This data tunneling requires a reserved amount of bandwidth, which is defined by system
integrators, on each link it traverses. Figure 5.1 demonstrates a Virtual Link originating at End System
1 and delivering data to destination End Systems 2, 3 and 4.

As multiple VLs share the physical links’ bandwidth, preventing the traffic of one VL from interfer-
ing with traffic of other VLs on the same physical link is essential. This is done by limiting the rate at
which Ethernet frames can be transmitted and their respective frame sizes on a virtual link. Each virtual
link is thus assigned two parameters (cf. Figure 5.2):

• Bandwidth Allocation Gap (BAG): it defines the minimum time interval between the starting bits
of two successive AFDX frames, assuming zero jitter. BAG values range from 1 ms to 128 ms

115

116 5. VIRTUAL LINK ROUTING

Figure 5.1: A virtual link originating at one End System and sending data to 3 others.

(values that are a power of 2). In other words, the BAG defines the maximum frequency at which
frames are sent in a VL.

• Maximum Frame Size (MFS): it describes the maximum size, in bytes, of the transmitted Ethernet
frames. MFS values can range from 64 bytes to a maximum of 1518 bytes.

The Virtual Link bandwidth can be hence calculated from the following equation,

bw =
(67 + MFS)

BAG
, (5.1)

where 67 bytes are added to the MFS to represent the frame header.

Figure 5.2: A VL can send frames with a maximum size ofMFS bytes every BAG ms.

5.2 Problem description and related work
Virtual Link definition and routing are highly related to partition scheduling on the processing modules.
Communication requirements are defined by system designers from specification phases. VLs, how-

5.3. FORMAL DEFINITION OF THE PROBLEM 117

ever, cannot be routed before scheduling the partitions and deducing implicated End Systems. Once the
partition mapping is fixed, it becomes more obvious what VLs need to be defined and routed. System
designers proceed by configuring routing tables in the AFDX switches. In other words, paths or mul-
ticast trees are determined in a manner respecting system resources and quality requirements, such as
fair load balancing.

As was done in previous chapters, the automation of VL routing in the network is proposed. In this
chapter, the partition allocation and scheduling decisions are considered to be already made, and hence
the VLs and their characteristics are known.

The problem considered amounts to finding one and only one multicast tree for each VL. In the
special case where only one VL exists, the problem becomes related to the computation of a minimum
cost tree, known as a Steiner tree [69, 79]. This Steiner tree problem is NP-complete [136]. Another
special case is obtained when each VL has a single destination, yielding a single-path routing problem.
This problem is also known to be NP-complete [127] (cf. the same reference for node-link and link-path
formulations of this problem).

Not much propositions can be found for routing several multicast demands at once under resource
constraints. The problem was handled in a different context, that is minimizing a single multicast tree
cost under certain constraints, if any. The authors in [136] look into finding multicast trees for multicast
traffic requests that arrive one-by-one, while minimizing the maximum link utilization. Many others
also propose multi-objective multicast routing algorithms for a single multicast traffic request in an al-
ready loaded network [44, 155].

In the avionic domain, VL routing can be thought of as an offline multicast tree allocation problem.
The proposed methodology is closely related to that in [64] and [33], where the authors propose a 3-
level optimization approach for single path routing. Their work formed an inspiration for the heuristic
proposed in Section 5.5, with the main difference being the multicast aspect of the demands.

5.3 Formal definition of the problem
Let N = {1, . . . , N} be a set of N nodes representing the AFDX network (n ∈ N may correspond to
an AFDX switch or End System). Denote by E the set of directed edges (links) between nodes such that
no edge exists between two End System nodes, that is to say, End Systems are interconnected through
AFDX switches only. The set C = {ce ∈ IR : e ∈ E} represents link capacities.

Consider a set V = {1, . . . , V } of V Virtual Links to be deployed in the AFDX network. Each VL
v ∈ V is characterized by the following:

• a source node (End System) src(v) ∈ N ,

• a set of destination nodes (End Systems) dest(v) ⊆ N \{src(v)}, and the corresponding number
of destinations Kv = |dst(v)|,

• and a bandwidth bv, according to equation (5.1).

118 5. VIRTUAL LINK ROUTING

The VL routing problem amounts to finding one and only one tree for each VL.

In this thesis, the optimization associated to the Virtual Link routing problem is considered to be
the minimization of the maximum link load in the network (links actually represent switch interfaces),
that is,

Minimize
[

ρ = max
e∈E

(

ye

ce

)]

,

where ye represents the total load on edge (link) e. It should be noted that this choice was considered
for the following reasons:

1. The network topology is fixed and hence equipment reduction, such as number of switches, can
not be performed.

2. The load reduction was preferred, and not the end-to-end delay, as the delay arising in the net-
work, and based on the analysis of a project partner [100], can be neglected against the partition
periods and execution durations. Hence this delay is of insignificant effect in the inter-partition
transmission delay discussed in Section 3.2.3.

3. This optimization was appealing for the project partners, among which, one in the avionic do-
main.

Additional or alternate optimization criteria is left for future work, though some delay related con-
straints can be exploited in the heuristic proposed in Section 5.5.

5.4 An exact node-link formulation
In this section an exact node-link formulation [2] based on Mixed Integer Linear Programming (MILP)
is presented.

For every node n ∈ N , let Γ+(n) ⊆ E denote the set of incoming links to n and Γ−(n) ⊆ E the set
of outgoing links from n as can be seen in Figure 5.3.

Figure 5.3: Links to and from node n.

5.5. TWO-LEVEL VL ROUTING ALGORITHM 119

The exact node-link formulation is as follows,

min ρ

s.t.
∑

e∈Γ+(n)

xe
v −

∑

e∈Γ−(n)

xe
v = hn,v ,∀n, v, (5.2)

ye
v M ≥ xe

v ,∀v, e, (5.3)
ye

v ≤ xe
v ,∀v, e, (5.4)

∑

e∈Γ+(n)

ye
v ≤ 1 ,∀n, v, (5.5)

ye =
∑

v∈V

ye
v bv ,∀e, (5.6)

ye ≤ ce ρ ,∀e, (5.7)
ye

v ∈ {0, 1} ,∀v, e, (5.8)
xe

v ∈ {0, . . . ,Kv} ,∀v, e, (5.9)

where xe
v can be thought of as the number of destinations VL v is addressing via link e. The equality in

constraint (5.2) indicates that the difference in the number of addressed destinations by VL v between
before and after entering a node n should be equivalent to hn,v, which is given by

hn,v =

−Kv if i = src(v),
1 if i ∈ dst(v),
0 otherwise.

Evidently the source node (End System) should address all of the destinations. An intermediate
node (switch) should transfer whatever is addressed by the VLs from its input links to its output links.
Finally a destination node (End System) should be the last in the chain as it cannot re-route information,
and only receives what is addressed to it from VL v and hence the value of hn,v = 1.

The constant value M in (5.3) is considered as a large number. Consequently, the boolean ye
v indi-

cates whether link e is traversed by VL v or not, i.e. if xe
v > 0 then ye

v = 1 indicating the passage of v
in this link, otherwise it can be either 0 or 1 but will be set to 0 due to constraint (5.4). Constraint (5.5)
ensures that each VL is routed along a tree where no node is visited more than once. Constraints (5.6)
and (5.7) define the link loads and the maximum utilization rate of the links, respectively. Constraints
(5.8) and (5.9) represent the domains for the decision variables ye

v and xe
v, respectively.

As a result of the preceding node-link formulation, trees for the various VLs can be assigned based
on the decision variables ye

v. The length of such trees is, however, not guaranteed and can hence take
unnecessary routes in the network.

5.5 Two-level VL routing algorithm
Another well known formulation for single-path routing is the link-path formulation. Instead of inves-
tigating network nodes and demands passing through them, all path possibilities for joining sources

120 5. VIRTUAL LINK ROUTING

and destinations are considered. As a final solution, one path is assigned to each demand in a manner
satisfying a certain criterion. A modified formulation for the VL tree allocation problem is as follows,

min ρ (OPT-VL)
s.t.

∑

T∈T v

xT = 1 ,∀v ∈ V, (5.10)

ye =
∑

v∈V

∑

T∈T v

δT
e xT bv ,∀e ∈ E , (5.11)

ye ≤ ce ρ ,∀e ∈ E , (5.12)
xT ∈ {0, 1} ,∀T ∈ T v,∀v ∈ V, (5.13)

where T v represents the set of all possible trees for VL v ∈ V . The variable xT is a boolean decision
variable on whether a tree T ∈ T v is chosen for VL v. And the boolean variable δT

e indicates whether
a given tree T traverses edge e ∈ E , that is,

δT
e =

{

1 if T traverses e,
0 else.

Constraint (5.10) indicates that only one tree should be assigned for each VL. Equation (5.11) indi-
cates the loads consumed on each link given the trees that pass through it. Constraint (5.12) is similar
to Constraint (5.7) from the node-link formulation in Section 5.4.

Clearly, determining all tree possibilities for the VLs requires an exhaustive search. A turn-around
may be to compute a predetermined set of candidate trees for each VL. This can be done based on a
certain cost for trees, where amongst all possible trees, those of minimal cost are preferred. In what
follows, a tree cost is equivalent to the sum of delays on the links it traverses. Delay on a link e ∈ E ,
based on the M/M/1 queueing model [89], is,

D(ye, ce) =
1

ce − ye
. (5.14)

Although the hypothesis of the M/M/1 queueing model is typically violated in real networks, this
delay function (5.14) represents a useful measure of performance in practice, principally because it
expresses qualitatively that congestion sets in when a flow (traffic) ye approaches the corresponding
link capacity ce. Nevertheless, it should be emphasized that the proposed optimization approach is not
restricted to this delay function, yet it helps in selecting minimal length trees and balancing the switch
loads.

The minimization of a tree cost is referred to as the Steiner tree problem.

5.5.1 Steiner tree problem

The Steiner problem amounts to finding a subtree spanning a set of vertices in a graph and having a
minimal length, i.e. the sum of all link weights in this subtree is minimal. Steiner trees are superficially

5.5. TWO-LEVEL VL ROUTING ALGORITHM 121

similar to Minimum Spanning Trees (MST) with the difference being that, in contrary to an MST, a
Steiner tree only interconnects a predefined set of nodes (called Steiner points) and not all. Figure 5.4b
demonstrates a Steiner tree interconnecting a predefined set of Steiner points in a graph represented by
Figure 5.4a.

(a) The complete graph. (b) Tree interconnecting Steiner points.

Figure 5.4: Steiner trees and Steiner points (green).

The interest in this chapter is in the Steiner problem for directed graphs [122]. Several proposals
can be found for this subject such as [26].

In a directed graph with a set of nodes N and a set of edges E with edge costs D = (∆e), let S
be a set of Steiner points with s being the source Steiner point and dst(s) the set of destination Steiner
points. The Steiner problem can be formulated as follows:

min
∑

e∈E

δe ∆e (5.15)

s.t. (5.16)
∑

e∈Γ+(s)

δe = 0, (5.17)

∑

e∈Γ−(s)

δe > 0, (5.18)

∑

e∈Γ+(i)

δe > 0, ∀i ∈ dst(s), (5.19)

∑

e∈Γ−(j)

δe = 0, ∀j ∈ dst(s), (5.20)

∑

e∈Γ+(i)

δe −
∑

e∈Γ−(i)

δe = 0, ∀i ∈ N \ dst(s), (5.21)

where δe is a boolean variable indicating if the Steiner tree traverses edge e ∈ E .

As was indicated in Section 5.2, the Steiner tree problem is NP-complete. Approximation algo-
rithms or heuristics are then preferred in this case. The algorithm used to solve the Steiner problem
in this chapter is a modified version of the one discussed in [94], changes were made so that it would

122 5. VIRTUAL LINK ROUTING

be applied to directed graphs. It has a worst case time complexity of O(|S| |N |2). The heuristic is
summarized as follows (refer to Figure 5.5 for an example):

1. Starting with the initial graph G = (N , E) (cf. Figure 5.5a) representing the topology (modules
+ switches), construct the directed graph G1 = (N1, E1) (cf. Figure 5.5b) in which N1 = S and
E1 represents edges between Steiner points with the exception that the source Steiner point s has
only outgoing edges, i.e. E1 = {e : e ∈ Γ+(i),∀i ∈ S\{s}}. The associated edge costs represent
shortest paths between the Steiner points in the graph G (the Dijkstra algorithm is used).

2. Find the directed minimal spanning tree T1 of G1 (cf. Figure 5.5c) of source s and as roots nodes
in dst(s). If several trees are found, choose an arbitrary one.

3. Replace every edge in T1 with its corresponding shortest path from graphG. GraphGS is formed.

4. Find once more the minimal spanning tree TS of graph Gs (cf. Figure 5.5d). Again, if several
trees are found, choose an arbitrary one.

5. The consequent Steiner tree TH is formed by removing edges from TS so that all leaves are
Steiner points.

In this thesis, the cost∆e associated to link e ∈ E , arising from routing additional demand b through
this link, is taken to be the variation in the delay defined by (5.14), that is,

∆e(b) = D(ye + b, ce)−D(ye, ce). (5.22)

It is hereafter discussed in Sections 5.5.2 and 5.5.3 a two-level optimization approach: ILST (It-
erative Loading of Steiner Trees) for computing tree candidate sets, and VLRO (Virtual Link Routing
Optimization) which is basically (OPT-VL) applied on the predetermined candidate sets.

5.5.2 Iterative Loading of Steiner Trees (ILST)

As was indicated earlier, each VL v ∈ V requires a tree to be configured for it to traverse the network.
Possibilities for such a tree, and depending on the network topology, may be numerous. The efficiency
of a VL routing algorithm may be reduced significantly by this great number. Candidate sets of trees
have to be then computed for each VL before proceeding with load optimization, i.e. find candidate tree
sets that lead to link load optimization without an exhaustive discovery.

Let T v now be the set of tree candidates for VL v ∈ V . Hence,

T v = {T v
1 , . . . , T v

p(v)},

where T v
i is tree candidate i for VL v out of p(v) candidates.

The general idea of the tree selection algorithm, is to progressively load the network with fractions
of demands (VL bandwidth requirements) in R iterations (e.g. R = 5). At each iteration j, a candidate
Steiner tree T v

j is found for each VL v ∈ V , given that 1/R of the demand (bv/R) is to be routed. At
the beginning of each iteration j, Vj = V . During iteration j, the following steps are repeated V times
(V = |V|):

5.5. TWO-LEVEL VL ROUTING ALGORITHM 123

(a) Original graph G. Green hashed nodes are Steiner points, in which node 1 is source. All
edges are bidirectional.

(b) GraphG1 with Steiner points as nodes.
Edge costs are equivalent to shortest paths
between nodes from graph G.

(c) Minimal spanning tree T1 of G1.

(d) Edges in T1 are replaced with shortest paths from G. No need to eliminate edges as final
Steiner tree is obtained.

Figure 5.5: An example on obtaining a Steiner tree.

124 5. VIRTUAL LINK ROUTING

1. Select a VL v ∈ Vj according to a uniform distribution.

2. Compute the minimum Steiner tree T v
j required to route bv/R of v’s bandwidth in the graph de-

fined by the network nodes, and add it to the set T v.

The associated cost for edge e ∈ E is defined by (5.22), that is∆e

(

bv

R

)

.

3. Do T v = T v ∪ {T v
j } and Vj = Vj − v.

4. Update link loads ye by propagating demand bv/R along edges traversed by tree T v
j .

This tree selection algorithm allows to greatly reduce the number of trees since it yields at most R
Steiner trees per VL (the same tree can be obtained several times).

5.5.3 Virtual Link Routing Optimization (VLRO)

Now that a reduced set of candidate trees is computed for each VL, the optimization (OPT-VL) can be
carried out to minimize the maximum link load in the network.

In this manner, tree possibilities that may be delay-wise costly are filtered out. It might be possible,
however, that a solution characterized by the optimality in maximum link load is eliminated. Never-
theless, it will be shown in Section 5.6 that, under certain circumstances, the supplied solution has an
objective similar to the one supplied by the node-link formulation. In other cases, and depending on the
topology, the approach helps in reducing execution times while obtaining an acceptable result.

5.6 Results
In this section, some experimentations to evaluate the performance of the proposed methods are pre-
sented. The MILP formulations in Sections 5.4 and 5.5 are solved using CPLEX [81]. The machine
used is similar to the one from Section 4.4 in Chapter 4.

As can be seen in Figure 5.6, the considered topology consists of 7 AFDX switches and 6 End Sys-
tems. The aim is to depict as much as possible the AFDX topology found on board aircrafts, though the
final number of End Systems may be much larger. This simple example however allows a preliminary
analysis of the quality of the algorithm proposed in Section 5.5.

All links are full duplex at 100Mbps. Given nbV L virtual links, all End Systems are evenly at-
tributed a number of VLs in which they act as a source (e.g. if nbV L = 12 then each End System
in the considered topology acts as source for 2 VLs). For each VL, the destinations are chosen so
that 1 to 5 End Systems (other than the source) are uniformly selected. Bandwidth requirements are
chosen based on an exponential distribution with an average of 125Kbps (so that for large examples
link capacities is not exceeded). In addition, the bandwidth for each VL is limited to the interval
[1/nbsrc, 100/nbsrc]Mbps, where nbsrc is the average number of VLs per source. Several examples are
generated with nbV L = {100, 300, 500, 700, 1000}.

5.6. RESULTS 125

Figure 5.6: Topology considered for experimentations. Set of 7 AFDX switches and 6 End Systems.

For each case of nbV L, 100 instances were generated and solved with both, the exact node-link
formulation (NL) and the two-level heuristic (2LH). Table 5.1 shows the execution times taken to solve
the problems. In addition, the percentage of instances whose objective was computed to optimality via
2LH is also indicated.

As can be seen from Table 5.1, 2LH always gave an optimal solution which means that, for the
considered topology at least, no optimal solutions were filtered out during the algorithm’s initial phase
(ILST). Execution times were however in favour for the exact NL. It should be noted that the heuristic
may supply solutions that are not optimal for what concerns the maximum link utilization. This was
not the case in the experimentations due to the small size and symmetry of the considered topology.

Table 5.2 presents the average delay arising in the network from the choices made (tree allocations).
This delay Davg is computed using Little’s law and the M/M/1 queueing model,

Davg =
1

∑

v bv

∑

e

ye

ce − ye

It is obvious that the heuristic 2LH gave optimal solutions along with tree allocations yielding sig-
nificantly lower delays in the network than those in NL. Figure 5.7 represents the average delay in the
network for the instances with 1000 VLs. For instance 51, as an example, 2LH gave an optimal solution

126 5. VIRTUAL LINK ROUTING

Table 5.1: Computation times for NL and 2LH.

nbVL
CpuTime Percentage optimal

NL 2LH instances (2LH)
100 1.52s. 2.45s. 100%
300 2.34s. 6.66s. 100%
500 3.85s. 11.01s. 100%
700 5.77s. 15.75s. 100%
1000 8.92s. 22.08s. 100%

with an average network delay that is about 8% better than that from NL (difference of about 14ms).
Similar graphs can be drawn for the other instances (different nbV Ls).

Table 5.2: Mean average delays arising in the network.

nbVL
Mean average delay [ms/Mb]
NL 2LH

100 94.82 90.64
300 100.23 94.89
500 110.91 104.15
700 128.03 119.99
1000 162.75 150.87

For further comparison, a benchmark with 4894 VLs was tested (corresponds to the benchmark of
Section 4.4.1). The topology consisted of 72 End Systems, 7 switches and 176 links. The node-link
formulation (NL) rapidly consumed the machine’s memory resources and thus failed to solve the prob-
lem due the huge number of variables and constraints. The 2-level heuristic (2LH), however, managed
to solve the problem within 34 minutes.

5.7 Conclusion
In this Chapter, the problem of VL routing in an AFDX network has been considered. The problem
is NP-complete and has not been much treated. Two methods for the off-line allocation of multicast
trees to VLs have been proposed. The first is based on a node-link formulation that is able to efficiently
solve realistic problems to optimality, for what concerns minimizing maximum link utilization. This
formulation, for relatively huge problems, may fail due to the resource depletion by the great number of
variables and constraints generated. The other approach is based on a formulation similar to that of the
link-path one in single-path routing problems, along with the pre-computation of a predetermined set

5.7. CONCLUSION 127

 130

 140

 150

 160

 170

 180

 190

 0 10 20 30 40 50 60 70 80 90 100

Av
er

ag
e

de
la

y
[m

s/
M

b]

Instance

NL
2LH

Figure 5.7: Average delays for instances with 1000 VLs.

of candidate trees. These candidate sets of trees help reduce the search space and hence ameliorate run
times. This two-level heuristic, though may not always lead to an optimal minimization in maximum
link utilization, allows integrating some criteria for choosing the candidate multicast trees. Criteria such
as end-to-end delay may be implemented to filter out undesirable solutions.

128 5. VIRTUAL LINK ROUTING

Conclusion

The main motivation behind this thesis was the resource allocation in IMA-based avionic systems. Two
key issues were identified and tackled: the scheduling of avionic applications (represented by partitions)
on available resources and the routing of message flows (virtual links) in the avionic AFDX network.
Indeed, these two matters represent system designers’ major concerns in integration and configuration
phases. This arises from the need to fill out configuration tables and parameters in a manner guaran-
teeing the proper functioning of the system, which may become cumbersome given the multitude of
requirements and considerations. Additionally, the introduction of new components, be it hardware or
software, may necessitate a re-verification of the entire configuration. Therefore, the work presented in
previous chapters amount to automating such decision making processes.

The scheduling problem was first addressed, for harmonic and non-harmonic periods alike. A first
approach was based on an exact Mixed Integer Linear Programming formulation which incorporates
the system’s various constraints. These constraints are either related to resource capacities such as the
processing modules’ memory, or to safety requirements such as prohibiting an application from execut-
ing on some of the modules. The decision problem, regarding the existence of a feasible schedule and
allocation of available resources to the partitions, was transformed into an optimization one to provide
partitions with extra temporal execution potentials. The optimal solution was characterized by a coeffi-
cient by which all partition execution times can be multiplied without rendering the schedule infeasible.
A value greater than 1 for this coefficient not only implies the feasibility of the scheduling problem, but
also gives an idea on the evolution margin for partition temporal executions, whenever required. The
exact formulation, though ensures optimality, was shown to be inefficient for large instances. It even
fails to converge in a sufficient amount of time for fairly limited problems, such as those with 4 modules
and 40 partitions. Yet it may be used to assess the optimality of proposed algorithms on fairly limited
instances.

After this exact resolution, an efficient heuristic was introduced. This heuristic, called best-response
algorithm, was inspired from Game Theory and was made tailored to the specific scheduling problem.
In this algorithm, partitions take turns in changing strategies (modules and offsets) to increase evolu-
tion potentials in which they are implicated. This successfully yielded convenient results in interesting

129

130 CONCLUSION

amounts of time. In comparison to the exact method, the algorithm was characterized by small rela-
tive errors on the optimization criterion considered in this thesis and almost always provided feasible
solutions. It even exceeded the limitations for large scale instances, with tens of modules and hundreds
of partitions, where the exact method failed to even supply any solution. As an example, a benchmark
supplied by a project partner was solved in under 3 minutes and, though can not be compared to the
optimal solution, the algorithm yielded a feasible solution respecting all imposed constraints. Another
advantage of this heuristic is the additional evolution potential supplied to the partitions. The exact
method converges after the minimum evolution potential in the system, which is usually related to one
or several partitions, is maximized. This exact resolution disregards any additional potential for the
other partitions. However, the best-response algorithm converges when partition strategies remain un-
changed, that is the algorithm continues beyond the aforementioned objective, assuming the optimum
is found, until no more evolution potential can be fairly supplied to the partitions.

The quality of the best-response algorithm was also shown to be ameliorated if a suitable starting
point/solution is considered. For this, the application of multi-start methods with Bayesian stopping
rules has greatly reduced the relative errors on the solutions. It was noticed that several equilibria, of
various volumes for their regions of attraction, may exist. Choosing a starting point in a bad region
of attraction may lead to a not so convenient solution. The statistical estimations associated with the
Bayesian stopping rules allows quantifying the confidence on the optimality of obtained solutions. A
98% estimated total relative volume for the regions of attraction, for example, indicates a high prob-
ability of having an optimal solution discovered. This however does not guarantee finding an optimal
solution all of the time. The obtained results were nevertheless satisfactory in most of the cases.

The last part of the thesis handles the routing problem in the AFDX network. This network is
based on routing Ethernet frames through isolated data tunnels referred to as virtual links. The virtual
links, which are represented by multicast routing trees, are deployed for exchanging data between the
avionic applications. Hence, their routing is carried out after allocating the partitions on the processing
modules. Again, the decision here has to follow a certain criterion which, given that in this thesis the
network topology can not be modified and the network delay will be relatively negligible as compared
to total the end-to-end transmission delay (partition execution durations and periods), was considered
the minimization of the maximum link load.

For this routing problem, two methods were proposed. The first is an exact node-link formulation,
and the second is a two level heuristic, which filters as a first step multicast trees that exceed a certain
length (delay-wise), and then solves a path-link formulation to solve the proposed optimization. To
demonstrate the performance of these algorithms, a topology similar to an avionic one is considered,
where the number of switches is limited. Several number of virtual links to be routed were considered.
The two algorithms successfully solved the problem to optimality in adequate run times. Though not
necessarily optimal, the heuristic can sometimes give sub-optimal solutions in case optimal routes are
filtered out. However, one advantage is that it might provide better average delays in the network.
Another advantage is that additional or alternate filtering rules can be implemented in the heuristic’s first
phase. For an industrial example, and as part of the benchmark considered for the partition scheduling
problem, an avionic topology with almost 5000 virtual links was considered. The exact formulation
failed in this example to give a solution as the colossal number of variables and constraints exceeded

CONCLUSION 131

the offered system memory of the machine used for the runs. The two-level heuristic, on the other
hand, solved the problem within half an hour. This last result sheds light on a limitation for the exact
node-link formulation.

Perspectives
The proposed best-response algorithm, though producing interesting results, can be further enhanced
beyond the scope of this thesis. Although it was proven that this algorithm converges and an optimal
solution can be obtained, future work should include the refined analysis of the convergence time as
well as the analysis of the error made by this heuristic. For the latter point, the goal is to derive an upper
bound on the so-called Price of Anarchy [95], i.e. the ratio between the global cost obtained by the worst
Nash equilibrium and a global optimal solution. This is needed to evaluate the quality of the algorithm
for large instances, where the exact method fails in supplying a solution. Also, started in any point, the
best-response algorithm will converge to an associated equilibrium. Although the application of multi-
start methods with Bayesian rules enables discovering more of the regions of attraction, it starts from
the assumption that the equilibria are equiprobable. This can be viable if no information is available on
the regions of attraction, which is the case here. However, it seems interesting to analyse the number
of the regions of attraction as well as their measures in order to devise a more precise prior probability
density function for the problem, and hence enhancing the performance of the stopping rules.

Getting down to specifics, the scheduling problem discussed in this thesis disregards reconfiguration
considerations. For such purposes, alternate schedules should be provisioned to guarantee the robust-
ness of the systems, e.g. a module failure may necessitate the reallocation of partitions. In addition,
the feedback discussed in Section 1.4, between the thesis’ resource allocation and the latency checker,
can be further reinforced. Methods, such as Benders’ decomposition [27], can be implemented to di-
vide the global resource allocation problem and gradually modify delay related parameters, such as the
inter-module delay introduced in Section 3.1.1, and which was considered predefined.

For what concerns the proposed virtual link routing algorithms, future work should involve further
amelioration of the algorithm used for computing candidate trees in the heuristic’s first phase. This
includes investigating other approaches for the Steiner tree problem which may be more efficient. Op-
timization wise, it may be of interest to consider multi-objective problems where a compromisation
between link loads and end-to-end delays is searched. Furthermore, although the hypothesis on the
M/M/1 queueing model provides a useful measure of performance, it may be more efficient to imple-
ment the deterministic aspects of the AFDX network.

Another research direction worth pursuing concerns the construction of the virtual links themselves.
This constitutes an intermediary decision making phase between the scheduling and routing ones. A
set of messages are to be deployed into one or separate virtual links. This includes the definition of key
attributes such as the BAG and the MFS. These attributes should lead to the transmission of rate fixed
frames in a manner respecting the delay limits between the production and consumption of messages.
This can be hence achieved while minimizing the bandwidth reserved for the virtual links, for example,

132 CONCLUSION

without violating any system imposed constraints.

In a more general setting, the best-response algorithm appears promising for minimization or max-
imization problems. Hence, its behaviour under the various circumstances should be analysed. The
addition of precedence between executing tasks is an example of additional constraints that are not
considered in this thesis, yet are substantial under different contexts.

APPENDIX A

Maximal independent set and maximum
clique problems

In this appendix, the Maximum Independent Set (MIS) and Maximum Clique (MC) problems are briefly
introduced. An algorithm for computing an MC, and from which an MIS can be deduced, is presented.

Given a graph G = (N,A), with N and A being the sets of nodes and arcs respectively. An inde-
pendent set is a set of nodes S ⊆ N such that if u, v ∈ S, then (u, v) /∈ A. A maximal independent
set is an independent set to which no more nodes can be added without violating the independence
property. As an example, Figure A.1a represents a graph G formed of 4 nodes in which green nodes
form a maximum independent set.

The complementary graph G′ = (N,A′) of G (such that ∀u, v ∈ N , (u, v) ∈ A′ iff (u, v) /∈ A)
allows the transformation of the maximal independent set problem into a maximum clique one.

For the graph G′, a clique is a subset C of nodes such that each pair of nodes in C is connected by
an edge. The MC problem is one of the first shown to be NP-hard. The MIS and the MC problems are
essentially equivalent and have been extensively studied in graph theory and combinatorial optimiza-
tion [138]. Figure A.1b demonstrates the complementary graph G′ of G where green nodes represent a
maximum clique, and which can be considered as an MIS in G.

Consequently, finding a maximum clique in G′ gives nodes that form a maximal independent set in
G. Algorithm 8 represents an old algorithm introduced by Carraghan and Pardalos [36] for solving the
maximum clique problem. The set of nodes adjacent to node v is denoted by N(v). The variable max,
which is global, gives the size of a maximum clique when the algorithm terminates.

It should be noted that newer and faster algorithms exist such as [124], but for sake of simplicity
the preceding one was presented.

133

134 A. MAXIMAL INDEPENDENT SET AND MAXIMUM CLIQUE PROBLEMS

(a) Graph G with an MIS. (b) Graph G′ with an MC.

Figure A.1: A graph G and its complementary G′.

Algorithm 8Maximum clique algorithm
1: max := 0;
2: clique(N ,0);
3:
4: procedure clique(U ,size);
5: if |U | = 0 then
6: if size > max then
7: max := size;
8: new record, save it;
9: end if
10: return;
11: end if
12: while |U | '= ∅ do
13: if size + |U | ≤ max then
14: return;
15: end if
16: i := min{j|vj ∈ U};
17: U := U − {vi};
18: clique(U ∩N(vj),size + 1);
19: end while
20: return;

APPENDIX B

List of publications

Related to the thesis:
• Strictly periodic scheduling on an IMA-based avionic platform.
A. AL SHEIKH, O. BRUN, P.E. HLADIK, B. PRABHU. In 15th Austrian-French-German con-
ference on Optimization (AFG’11), Toulouse, France, September 2011.

• A best-response algorithm for multiprocessor periodic scheduling.
A. AL SHEIKH, O. BRUN, P.E. HLADIK, B. PRABHU. In proceedings of the 23rd Euromicro
Conference on Real-Time Systems (ECRTS 2011), Porto, Portugal, July 2011.

• Ordonnancement de tâches sous contrainte de périodicité stricte.
A. AL SHEIKH, O. BRUN, P.E. HLADIK. In Congrès Annuel de la Société Française de Recherche
Opérationnelle et d’Aide à la Décision (ROADEF 2011), Vol. I, Saint-Étienne, France, March
2011.

• Partition scheduling on an IMA platform with strict periodicity and communication delays.
A. AL SHEIKH, O. BRUN, P.E. HLADIK. In proceedings of the 18th International Conference
on Real-Time and Network Systems (RTNS 2010), Toulouse, France, November 2010.

• Decision support for task mapping on IMA architecture.
A. AL SHEIKH,O. BRUN, P.E. HLADIK. In proceedings of the 3rd Junior Researcher Workshop
on Real-Time Computing (JRWRTC 2009), Paris, France, October 2009.

Other:
• Flow-level modelling of TCP traffic using GPS queueing networks.
O. BRUN, A. AL SHEIKH, J.M. GARCIA. In proceedings of the 21st International Teletraffic
Congress (ITC’21), Paris, France, September 2009.

135

136 B. LIST OF PUBLICATIONS

BIBLIOGRAPHY

[1] I. Ahmad, S. Ranka, and S. Khan. Using game theory for scheduling tasks on multi-core proces-
sors for simultaneous optimization of performance and energy. In IEEE International Symposium
on Parallel and Distributed Processing, 2008 (IPDPS 2008), pages 1–6, 2008.

[2] R. Ahuja, T. Magnanti, J. Orlin, and K. Weihe. Network flows: theory, algorithms, and applica-
tions. Prentice hall Englewood Cliffs, NJ, 1993.

[3] Airlines electronic engineering committee (AEEC). Design Guidance for Integrated Modular
Avionics. ARINC specification 651, 1991.

[4] Airlines electronic engineering committee (AEEC). Backplane Data Bus. ARINC specification
659, 1993.

[5] Airlines electronic engineering committee (AEEC). Mark 33 Digital Information Transfer Sys-
tem (DITS). ARINC specification 429, (parts 1, 2, 3), 2001.

[6] Airlines electronic engineering committee (AEEC). Aircraft data network, Part 1: Systems con-
cepts and overview. ARINC specification 664, 2002.

[7] Airlines electronic engineering committee (AEEC). Aircraft data network, Part 7: Avionics Full
Duplex Switched Ethernet (AFDX) Network. ARINC specification 664, 2005.

[8] Airlines electronic engineering committee (AEEC). Avionics application software standard in-
terface. ARINC specification 653, (part 1), 2006.

[9] A. Al-Sheikh, O. Brun, and P.-E. Hladik. Decision support for task mapping on IMA archi-
tecture. In Proceedings of the 3rd Junior Researcher Workshop on Real-Time Computing (JR-
WRTC2009), pages 31–34, 2009.

[10] A. Al-Sheikh, O. Brun, and P.-E. Hladik. Partition scheduling on an IMA platform with strict
periodicity and communication delays. In Proceedings of the 18th International Conference on
Real-Time and Network Systems (RTNS 2010), pages 179–188, 2010.

137

138 BIBLIOGRAPHY

[11] A. Al-Sheikh, O. Brun, and P.-E. Hladik. Ordonnacement de tâches sous contrainte de périodicité
stricte. In Congrès Annuel de la Société Française de Recherche Opérationnelle et d’Aide à la
Décision (ROADEF 2011), volume I, pages 55–56, 2011.

[12] A. Al-Sheikh, O. Brun, P.-E. Hladik, and B. J. Prabhu. A best-response algorithm for multi-
processor periodic scheduling. In Proceedings of the 23rd Euromicro Conference on Real-Time
Systems (ECRTS 2011), 2011.

[13] A. Al-Sheikh, O. Brun, P.-E. Hladik, and B. J. Prabhu. Strictly periodic scheduling on an IMA-
based avionic platform. In 15th Austrian-French-German conference on Optimization (AFG’11),
2011.

[14] R. Alena, J. Ossenfort, K. Laws, A. Goforth, and F. Figueroa. Communications for integrated
modular avionics. In 2007 IEEE Aerospace Conference, pages 1–18, 2007.

[15] B. Andersson and J. Jonsson. Fixed-priority preemptive multiprocessor scheduling: to partition
or not to partition. In RTCSA, page 337. Published by the IEEE Computer Society, 2000.

[16] F. Authority. 178B, Software considerations in airborne systems and equipment certification.
DO-178B/ED-12B, Radio Technical Commission for Aeronautics, 1992.

[17] A. Avižienis, J. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of de-
pendable and secure computing. IEEE transactions on dependable and secure computing, pages
11–33, 2004.

[18] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor real-time systems. In
International Parallel and Distributed Processing Symposium, page 9, 2003.

[19] K. Baker. Introduction to sequencing and scheduling. Wiley, New York, 1974.

[20] T. Baker and A. Shaw. The cyclic executive model and Ada. Real-Time Systems, 1(1):7–25,
1989.

[21] P. Baptiste and V. Timkovsky. Shortest path to nonpreemptive schedules of unit-time jobs on
two identical parallel machines with minimum total completion time. Mathematical Methods of
Operations Research, 60(1):145–153, 2004.

[22] C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance. Branch-and-price: Col-
umn generation for solving huge integer programs. Operations Research, 46(3):316–329, 1998.

[23] S. Baruah. The non-preemptive scheduling of periodic tasks upon multiprocessors. Real-Time
Systems, 32(1):9–20, 2006.

[24] S. Baruah and S. Chakraborty. Schedulability analysis of non-preemptive recurring real-time
tasks. In Proceedings 20th IEEE International Parallel & Distributed Processing Symposium,
page 149, 2006.

[25] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in
resource allocation. Algorithmica, 15(6):600–625, 1996.

BIBLIOGRAPHY 139

[26] J. Beasley. An algorithm for the Steiner problem in graphs. Networks, 14(1):147–159, 1984.

[27] J. Benders. Partitioning procedures for solving mixed-variables programming problems. Nu-
merische Mathematik, 4(1):238–252, 1962.

[28] G. Bernat, A. Colin, and S. Petters. WCET analysis of probabilistic hard real-time systems. In
23rd IEEE Real-Time Systems Symposium (RTSS 2002), pages 279–288, 2002.

[29] P. Bieber, J. Bodeveix, C. Castel, D. Doose, M. Filali, F. Minot, and C. Pralet. Constraint-
based Design of Avionics Platform–Preliminary Design Exploration. 4th European Congress on
Embedded Real Time Software (ERTS 2008), 2008.

[30] C. Boender and A. Rinnooy Kan. Bayesian stopping rules for multistart global optimization
methods. Mathematical Programming, 37(1):59–80, 1987.

[31] R. Boute. The Euclidean definition of the functions div and mod. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 14(2):144, 1992.

[32] P. Brucker and S. Kravchenko. Complexity of mean flow time scheduling problems with release
dates. PhD thesis, Universität Osnabrück, Fachbereich Mathematik/Informatik, 2004.

[33] O. Brun and J. Garcia. Ressource allocation in communication networks. In Proceedings of the
5th IEEE International Conference on High-Speed Networks and Multimedia Communications
(HSNMC’02), pages 229–233, 2002.

[34] A. M. Campbell and J. R. Hardin. Vehicle minimization for periodic deliveries. European
Journal of Operational Research, 165(3):668 – 684, 2005.

[35] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah. A categorization
of real-time multiprocessor scheduling problems and algorithms. In Handbook on Scheduling
Algorithms, Methods, and Models, 2004.

[36] R. Carraghan and P. Pardalos. An exact algorithm for the maximum clique problem. Operations
Research Letters, 9(6):375–382, 1990.

[37] P. Chanet and V. Cassigneul. How to control the increase in the complexity of civil aircraft on-
board systems. AGARD, Aerospace Software Engineering for Advanced Systems Architectures,
1993.

[38] W. Chang-Jun and X. Yu-Geng. Modeling and analysis of single machine scheduling based on
noncooperative game theory. Acta Automatica Sinica, 2005.

[39] E. Clarke. Model checking. In Foundations of Software Technology and Theoretical Computer
Science, pages 54–56. Springer, 1997.

[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2001.

[41] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Ordonnancement temps réel: cours et exer-
cices corrigés. Hermès science publications, 2000.

140 BIBLIOGRAPHY

[42] F. Cottet and Z. Mammeri. Scheduling in real-time systems. Wiley, 2002.

[43] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems: concepts and design. Addison-
Wesley Longman, 2005.

[44] J. Crichigno and B. Barán. A multicast routing algorithm using multiobjective optimization.
Telecommunications and Networking-ICT 2004, pages 63–74, 2004.

[45] F. Cristian. Understanding fault-tolerant distributed systems. Communication of the ACM,
34(2):56–78, 1993.

[46] Cucu, L. Ordonnancement non préemptif et condition d’ordonnançabilité pour systèmes em-
barqués à contraintes temps réel. PhD thesis, Universit de Paris Sud, Spcialit lectronique, 2004.

[47] K. Danne and M. Platzner. An EDF schedulability test for periodic tasks on reconfigurable
hardware devices. In Proceedings of the 2006 ACM SIGPLAN/SIGBED conference on Language,
compilers, and tool support for embedded systems, page 102, 2006.

[48] G. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations research,
8(1):101–111, 1960.

[49] T. Davidovic, L. Liberti, N. Maculan, and N. Mladenovic. Mathematical programming-based ap-
proach to scheduling of communicating tasks. Technical Report G-2004-99, Cahiers du GERAD,
2004.

[50] J. Decotignie. Ethernet-based real-time and industrial communications. Proceedings of the IEEE
(Special issue on industrial communication systems), 93(6):1102–1117, 2005.

[51] D. Decotigny. Une infrastructure de simulation modulaire pour l’évaluation de performances de
systèmes temps-réel. PhD thesis, Université de Rennes, 2003.

[52] M. DeGroot. Optimal statistical decisions. Wiley, 2004.

[53] N. Deshpande and S. K. Distributed Systems. Technical Publications, 2009.

[54] C. Dürr and K. Nguyen. Non-clairvoyant scheduling games. Algorithmic Game Theory, pages
135–146, 2009.

[55] F. Eisenbrand, N. Hähnle, M. Niemeier, M. Skutella, J. Verschae, and A. Wiese. Scheduling
periodic tasks in a hard real-time environment. Automata, Languages and Programming, pages
299–311, 2010.

[56] F. Eisenbrand, K. Kesavan, R. Mattikalli, M. Niemeier, A. Nordsieck, M. Skutella, J. Verschae,
and A. Wiese. Solving an avionics real-time scheduling problem by advanced IP-methods.
Algorithms–ESA 2010, pages 11–22, 2010.

[57] J.-P. Elloy. Editorial: Quelle informatique est donc nécessaire pour automatiser en temps réel.
Technique et Sciences Informatique, 7(5):395–396, 1988.

BIBLIOGRAPHY 141

[58] M. Felser. Real-time ethernet-industry prospective. Proceedings of the IEEE, 93(6):1118–1129,
2005.

[59] T. Ferguson. Linear programming: A concise introduction. Website. Available at
http://www.math.ucla.edu/˜tom/LP.pdf, 2011.

[60] N. Fisher and S. Baruah. The feasibility of general task systems with precedence constraints on
multiprocessor platforms. Real-Time Systems, 41(1):1–26, 2009.

[61] B. Forouzan and S. Fegan. Local area networks. McGraw-Hill, 2003.

[62] C. Fraboul and F. Martin. Modeling advanced modular avionics architectures for early real-time
performance analysis. In Euromicro Conference on Parallel, Distributed, and Network-Based
Processing, pages 181–188, 1999.

[63] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.

[64] J. Garcia, A. Rachdi, and O. Brun. Optimal LSP Placement with QoS Constraints in Diff-
Serv/MPLS Networks. Providing Quality of Service in Heterogeneous Environments, page 11,
2003.

[65] M. Garey and D. Johnson. Complexity results for multiprocessor scheduling under resource
constraints. SIAM Journal on Computing, 4:397, 1975.

[66] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. WH Freeman & Co. New York, 1979.

[67] F. Gärtner. Fundamentals of fault-tolerant distributed computing in asynchronous environments.
ACM Computing Surveys, 31(1):1–26, 1999.

[68] L. George, P. Muhlethaler, and N. Rivierre. Optimality and non-preemptive real-time scheduling
revisited. Technical report, Rapport de Recherche RR-2516, INRIA, 2006.

[69] E. Gilbert and H. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathematics, 16(1):1–
29, 1968.

[70] R. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the
American Mathematical Society, 64(5):275–278, 1958.

[71] J. Goossens. Scheduling of hard real-time periodic systems with various kinds of deadline and
offset constraints. PhD thesis, Université Libre De Bruxelles, Faculté des Sciences, 1999.

[72] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task systems on
multiprocessors. Real-Time Systems, 25(2):187–205, 2003.

[73] J. Goossens and C.Macq. Limitation of the hyper-period in real-time periodic task set generation.
In Proceedings of the RTS Embedded System (RTS’01), pages 133–148, 2001.

142 BIBLIOGRAPHY

[74] N. Guan, Z. Gu, Q. Deng, S. Gao, and G. Yu. Exact schedulability analysis for static-priority
global multiprocessor scheduling using model-checking. In Proceedings of the 5th IFIP WG 10.2
international conference on Software technologies for embedded and ubiquitous systems, pages
263–272, 2007.

[75] M. Harbour, J. Garcı́a, J. Gutiérrez, and J. Moyano. Mast: Modeling and analysis suite for real
time applications. In 13th Euromicro Conference on Real-Time Systems, pages 125–134, 2001.

[76] K. Hoffman and M. Padberg. LP-based combinatorial problem solving. Annals of Operations
Research, 4(1):145–194, 1985.

[77] P. Holman. On the implementation of Pfair-scheduled multiprocessor systems. PhD thesis, Uni-
versity of North Carolina, Chapel Hill, the Department of Computer Science, 2004.

[78] J. Huysseune and P. Palmer. NEVADA-PAMELA-VICTORIA: Towards the definition of new
aircraft electronic systems. Air & Space Europe, 3(3-4):180–183, 2001.

[79] F. Hwang and D. Richards. Steiner tree problems. Networks, 22(1):55–89, 1992.

[80] J. Hyman, A. Lazar, and G. Pacifici. Real-time scheduling with quality of service constraints.
IEEE Journal on Selected Areas in Communications, 9(7):1052–1063, 1991.

[81] ILOG CPLEX. http://www.ilog.com/products/cplex/, 2011.

[82] ISO, 1993. Road Vehicles–Interchange of Digital Information–Controller Area Network (CAN)
for High Speed Communication. ISO 11898:1993, 1993.

[83] P. Jalote. Fault-Tolerance in Distributed Systems. Prentice-Hall, 1994.

[84] G. Jones and J. Jones. Elementary number theory. Springer Verlag, 1998.

[85] M. Joseph and P. Pandya. Finding response times in a real-time system. The Computer Journal,
29(5):390, 1986.

[86] L. Kantorovich. Mathematical methods of organizing and planning production. Management
Science, 6(4):366–422, 1960.

[87] O. Kermia. Ordonnancement temps réel multiprocesseur de tâches non-préemptives avec con-
traintes de précédence, de périodicité stricte et de latence. PhD thesis, Université Paris XI, UFR
scientifique d’Orsay, 2009.

[88] O. Kermia and Y. Sorel. A rapid heuristic for scheduling non-preemptive dependent periodic
tasks onto multiprocessor. In Proceedings of ISCA 20th international conference on Parallel and
Distributed Computing Systems, PDCS, volume 7, 2007.

[89] L. Kleinrock. Queueing systems, volume I: theory. Wiley Interscience, 1975.

[90] Kocik, R. Sur l’optimisation des systèmes distribués temps réel embarqués: application au
prototypage rapide d’un véhicule électrique semi-autonome. PhD thesis, Université de Rouen,
Spécialité informatique industrielle, 2000.

http://www.ilog.com/products/cplex/

BIBLIOGRAPHY 143

[91] J. Korst. Periodic multiprocessor scheduling. PhD thesis, Eindhoven university of technology,
Eindhoven, the Netherlands, 1992.

[92] J. Korst, E. Aarts, Lenstra, and J. Karel. Scheduling periodic tasks. Informs Journal on Comput-
ing, 8:428–435, 1996.

[93] J. Korst, E. Aarts, and J. K. Lenstra. Scheduling periodic tasks with slack. Informs Journal on
Computing, 9:351–362, 1997.

[94] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta informatica,
15(2):141–145, 1981.

[95] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th annual
conference on Theoretical Aspects of Computer Science, pages 404–413, 1999.

[96] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. In
Proceedings of the American Mathematical society, pages 48–50, 1956.

[97] Y. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to mul-
tiprocessors. ACM Computing Surveys (CSUR), 31(4):406–471, 1999.

[98] A. Land and A. Doig. An automatic method for solving discrete programming problems. 50
Years of Integer Programming 1958-2008, pages 105–132, 2010.

[99] J.-C. Laprie. Sûreté de fonctionnement informatique: concepts de base et terminologie. Technical
report, LAAS-CNRS, Toulouse, France, 2004.

[100] M. Lauer, J. Ermont, F. Boniol, and C. Pagetti. Latency and freshness analysis on IMA systems.
In Proceedings of the 16th IEEE international conference on Emerging technologies & factory
automation (ETFA 2011), 2011.

[101] M. Lauer, J. Ermont, C. Pagetti, and F. Boniol. Analyzing end-to-end functional delays on an
IMA platform. In Proceedings of the 4th international conference on Leveraging applications of
formal methods, verification, and validation - Volume Part I, ISoLA’10, pages 243–257, 2010.

[102] E. Lawler. Sequencing jobs to minimize total weighted completion time subject to precedence
constraints. Algorithmic aspects of combinatorics, 2:75–90, 1978.

[103] E. Lee. MIL-STD-1553 Tutorial. Technical report, Technical Report 3.41, CONDOR Engineer-
ing, 2000.

[104] J. Leung and M. Merrill. A note on preemptive scheduling of periodic, real-time tasks. Informa-
tion processing letters, 11(3):115–118, 1980.

[105] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic, real-time
tasks. Performance Evaluation, 2(4):237–250, 1982.

[106] L. Liberti. Automatic reformulation of bilinear MINLPs. Technical Report 2004.24, DEI, Po-
litecnico di Milano, July 2004.

144 BIBLIOGRAPHY

[107] L. Liberti and M. Drazic. Variable neighbourhood search for the global optimization of con-
strained NLPs. In Proceedings of Global Optimization, pages 1–5, 2005.

[108] C. Lin and C. Liao. Makespan minimization for multiple uniform machines. Computers &
Industrial Engineering, 54(4):983–992, 2008.

[109] C. Liu. Scheduling algorithms for multiprocessors in a hard real-time environment. JPL Space
Programs Summary 37-60, 2:28–37, 1969.

[110] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time envi-
ronment. Journal of the ACM (JACM), 20(1):46–61, 1973.

[111] J. Lopez, J. Diaz, and D. Garcia. Minimum and maximum utilization bounds for multiproces-
sor RM scheduling. In Proceedings of the 13th Euromicro Conference on Real-Time Systems,
page 67, 2001.

[112] J. Lopez, M. Garcia, J. Diaz, and D. Garcia. Worst-case utilization bound for EDF scheduling on
real-time multiprocessor systems. Euromicro-RTS, page 25, 2000.

[113] T. Magnanti and R. Vachani. A strong cutting plane algorithm for production scheduling with
changeover costs. Operations Research, 38(3):456–473, 1990.

[114] M. Marouf and Y. Sorel. Schedulability conditions for non-preemptive hard real-time tasks with
strict period. In Proceedings of the 18th International Conference on Real-Time and Network
Systems (RTNS 2010), pp.50-58, 2010.

[115] R. Martı́. Multi-start methods. Handbook of metaheuristics, pages 355–368, 2003.

[116] P. Meumeu and Y. Sorel. Non-schedulability conditions for off-line scheduling of real-time
systems subject to precedence and strict periodicity constraints. In Proceedings of 11th IEEE
International Conference on Emerging technologies and Factory Automation (ETFA06), 2006.

[117] A. Mihaela, D. Teselios, R. Prundeanu, and I. Popa. Duality in linear programming. MPRA
Paper, 2010.

[118] A. Mok and M. Dertouzos. Multiprocessor scheduling in a hard real-time environment. In
Proceedings of the Seventh Texas Conference on Computing Systems, 1978.

[119] Mok, A.K.L. Fundamental design problems of distributed systems for the hard-real-time envi-
ronment. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1983.

[120] R. Myerson. Game theory: analysis of conflict. Harvard University Press, 1997.

[121] J. Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

[122] L. Nastansky, S. Selkow, and N. Stewart. Cost-minimal trees in directed acyclic graphs. Mathe-
matical Methods of Operations Research, 18(1):59–67, 1974.

[123] M. Osborne and A. Rubinstein. A course in game theory. The MIT press, 1994.

BIBLIOGRAPHY 145

[124] P. Ostergard. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics,
120(1-3):197–207, 2002.

[125] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale sym-
metric traveling salesman problems. SIAM review, 33(1):60–100, 1991.

[126] S. Pallier. Analyse hors ligne d’ordonnançabilitć d’applications temps réel comportant des
tâches conditionnelles et sporadiques. PhD thesis, École Nationale Supérieure de Mécanique
et d’Aérotechnique, Université de Poitiers, 2006.

[127] M. Pióro and D. Medhi. Routing, flow, and capacity design in communication and computer
networks. Morgan Kaufmann, 2004.

[128] D. Powell. Failure mode assumption and assumption coverage. In International Symposium on
Fault-Tolerant Computing (FTCS-22), pages 386–395, 1992.

[129] R. Pressman. Software engineering: a practitioner’s approach. McGraw Hill, 1992.

[130] W. Roux. Une approche coherente pour la planification et l’ordonnacement de systèmes de
production complexes. PhD thesis, Université Paul Sabatier, Toulouse, France, 1997.

[131] J. Rushby. Critical system properties: Survey and taxonomy. Reliability Engineering and Systems
Safety, 43(2):189–219, 1994.

[132] SAE ARP4754. Certification considerations for highly-integrated or complex aircraft systems.
Systems Integration Requirements Task Group AS-1C, Avionics Systems Division, Society of Au-
tomotive Engineers, Inc, 1995.

[133] L. Sagaspe and P. Bieber. Constraint-based design and allocation of shared avionics resources.
In 26th AIAA-IEEE Digital Avionics Systems Conference, 2007.

[134] SATRIMMAP. http://www.irit.fr/satrimmap/, 2011.

[135] M. Savelsbergh. A branch-and-price algorithm for the generalized assignment problem. Opera-
tions Research, 45(6):831–841, 1997.

[136] Y. Seok, Y. Lee, Y. Choi, and C. Kim. Explicit multicast routing algorithms for constrained traffic
engineering. IEEE 7th International Symposium on Computer and Communications, 2002.

[137] M. Serrano and H. Boehm. Understanding memory allocation of scheme programs. In Proceed-
ings of the fifth ACM SIGPLAN international conference on Functional programming, pages
245–256. ACM, 2000.

[138] A. Sharieh, W. Al Rawagepfeh, M. Mahafzah, and A. Al Dahamsheh. An Algorithm for Finding
Maximum Independent Set in a Graph. European Journal of Scientific Research, 23(4):586–596,
2008.

[139] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar: a flexible real time scheduling frame-
work. In Proceedings of the 2004 annual ACM SIGAda international conference on Ada, pages
1–8, 2004.

http://www.irit.fr/satrimmap/

146 BIBLIOGRAPHY

[140] R. Sitters. Two np-hardness results for preemptive minsum scheduling of unrelated parallel
machines. Integer Programming and Combinatorial Optimization, pages 396–405, 2001.

[141] C. Spitzer. Digital avionics systems. McGraw-Hill Inc., 1993.

[142] C. Spitzer. The avionics handbook. CRC Press, 2001.

[143] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-time systems. Real-
Time Systems, 1(1):27–60, 1989.

[144] J. Stankovic and K. Ramamritham. What is predictability for real-time systems? Real-Time
Systems, 2(4):247–254, 1990.

[145] J. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo. Implications of classical scheduling
results for real-time systems. Computer, 28(6):16–25, 1995.

[146] A. Tanenbaum. Computer Networks. Prentice Hall, 2003.

[147] S. Thanikesavan and U. Killat. Global scheduling of periodic tasks in a decentralized real-time
control system. In IEEE International Workshop on Factory Communication Systems, pages
307–310, 2004.

[148] S. Thanikesavan and U. Killat. Static scheduling of periodic tasks in a decentralized real-time
control system using an ilp. In Proceedings of the 11th International Conference on Parallel and
Distributed Systems - Workshops (ICPADS ’05), page 639, 2005.

[149] S. Thanikesavan and U. Killat. A satisficing momip framework for reliable real-time application
scheduling. In Proceedings of the 2nd IEEE International Symposium on Dependable, Autonomic
and Secure Computing (DASC ’06), pages 187–194, 2006.

[150] K. Tindell. Deadline monotonic analysis. Embedded Systems Programming, 13(6):20–38, 2000.

[151] J. Ullman. NP-complete scheduling problems*. Journal of Computer and System Sciences,
10(3):384–393, 1975.

[152] C. Watkins and R. Walter. Transitioning from federated avionics architectures to Integrated
Modular Avionics. In Proceedings of the IEEE/AIAA 26th Digital Avionics Systems Conference
(DASC’07), 2007.

[153] G. Woeginger. Exact algorithms for NP-hard problems: A survey. Combinatorial Optimization-
Eureka, pages 185–207, 2003.

[154] J. Zhu, T. Lewis, W. Jackson, and R. Wilson. Scheduling in hard real-time applications. IEEE
Software, 12(3):54–63, 1995.

[155] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case study and
the strength pareto approach. IEEE transactions on evolutionary computation, 3(4):257–271,
1999.

	Résumé étendu
	Introduction
	Resource allocation in avionic systems
	Evolution of avionic systems
	The Integrated Modular Avionics architecture
	Architecture components
	The avionics AFDX network
	Partition segregation

	Overview on the software development process design in avionics
	Requirements analysis phase
	System design phase
	Architecture design phase
	Detailed design phase
	Coding phase
	Unit testing phase
	Integration testing phase
	System testing phase
	Acceptance testing phase

	The research project SATRIMMAP
	Objectives of the study
	Scheduling objectives
	Virtual Link routing objectives

	Conclusion

	State of the art
	Introduction to real-time systems
	Hard real-time systems
	Soft real-time systems

	Generalities on real-time scheduling
	Real-time tasks
	Latency
	Classes of scheduling problems
	Non-preemption in scheduling problems
	Schedulability analysis

	Embedded systems
	Memory management
	Distributed systems
	Energy consumption
	Fault-tolerance
	Other considerations

	Complexity of scheduling problems
	Real-time scheduling algorithms
	Uniprocessor scheduling
	Multiprocessor scheduling
	Non-preemptive and strictly periodic multiprocessor scheduling

	Theoretic concepts for the thesis
	Particularities of the study
	Some known solution strategies
	Game theory

	Conclusion

	MILP formulation of the scheduling problem
	Problem definitions and modeling
	Module model
	Partition model
	Communication model

	Problem formulation
	Temporal scheduling constraints
	Resource constraints
	Communication delay or latency constraints
	Formulation as a mixed integer linear program

	Pre-treatment using graph theory
	Results
	Conclusion

	A best-response scheduling algorithm
	Uniprocessor or single module scheduling
	Uniprocessor best-response
	Properties of the best-response algorithm
	Computing the best-response
	Computing the intersection points

	Multiprocessor Scheduling
	Initial allocation in the multiprocessor setting

	Multi-start with bayesian stopping rules
	Stopping rules

	Results
	Large scale and industrial applications
	Multi-start results
	Processor minimization context

	Conclusion

	Virtual Link routing
	Virtual Links
	Problem description and related work
	Formal definition of the problem
	An exact node-link formulation
	Two-level VL routing algorithm
	Steiner tree problem
	Iterative Loading of Steiner Trees (ILST)
	Virtual Link Routing Optimization (VLRO)

	Results
	Conclusion

	Conclusion
	Maximal independent set and maximum clique problems
	List of publications
	Bibliography

