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Résumé

"OBJECTIF de cette thése est de développer une théorie de types pour le A-calcul linéaire-algébrique,
une extension du A-calcul motivé par 'informatique quantique. Cette extension algébrique comprend
tous les termes du A-calcul plus leurs combinaisons linéaires, donc si t et r sont des termes, a.t+.r

est aussi un terme, avec « et 8 des scalaires pris dans un anneau. L’idée principale et le défi de cette
these était d’introduire un systéme de types ot les types, de la méme fagon que les termes, constituent un
espace vectoriel, permettant la mise en évidence de la structure de la forme normale d’un terme. Cette
thése présente le systéme Lineal, ainsi que trois systémes intermédiaires, également intéressants en eux-
méme : Scalar, Additive et A4, chacun avec leurs preuves de préservation de type et de normalisation

forte.

Abstract

HE objective of this thesis is to develop a type theory for the linear-algebraic A-calculus, an extension
of A-calculus motivated by quantum computing. This algebraic extension encompasses all the terms
of A-calculus together with their linear combinations, so if t and r are two terms, so is a.t + §.r, with

« and (3 being scalars from a given ring. The key idea and challenge of this thesis was to introduce a type
system where the types, in the same way as the terms, form a vectorial space, providing the information
about the structure of the normal form of the terms. This thesis presents the system Lineal, and also
three intermediate systems, however interesting by themselves: Scalar, Additive and A4, all of them

with their subject reduction and strong normalisation proofs.
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Chapter 1

Introduction

___ Résumé du Chapitre

Ce chapitre est a la fois une préface décrivant les motivations de cette thése, et un résumé de
notions préliminaires de base, y compris quelques notions d’informatique quantique avec une
prewve du théoréme de non-clonage [Wootters and Zurek, 1982]. Est également présenté ici
le lambda-calcul linéaire algébrique non-typé, Ay [Arrighi and Dowek, 2008], et des exemples

d’encodage de linformatique quantique dans ce calcul. [

HE A-calculus [Church, 1936] is a model for the definition of function. It can be seen as the most
simple and universal programming language: it includes only a definition of variable and a variable
substitution rule. The concept of computability itself can be defined in terms of A-calculus: a

function is computable if and only if there exists a way to write it in A-calculus.

A way to characterise programs without executing them is to type them [Church, 1940]: a type
system will statically classify the programs in types, thereby yielding certain information about the
kind of output that the program will produce. Moreover, the Curry-Howard correspondence (see for
example [Sgrensen and Urzyczyn, 2006]) establishes a direct relation between the type of a program and
a proof in constructive mathematics. This way, a typed program becomes a proof of a given logical
formulae.

Two algebraic extensions of the A-calculus arise independently in distinct contexts: the algebraic A-
calculus (Aaig) [Vaux, 2007, 2009] and the linear-algebraic A-calculus (Ain) [Arrighi and Dowek, 2008].
The former has been introduced in the context of linear logic as a fragment of the differential -
calculus [Ehrhard and Regnier, 2003]: the algebraic structure allows to gather in a non deterministic
manner different terms, i.e. each term represents one possible execution. The latter has been introduced
as a candidate A-calculus for quantum computation: in Ay, a linear combination of terms reflects the
phenomenon of superposition, i.e. the capacity for a quantum system to be in two or more states at the
same time.

These two languages are rather similar: they both merge higher-order computation, be it terminating
or not, in its simplest and most general form (namely the untyped A-calculus) together with linear algebra
in its simplest and most general form also (the axioms of vector spaces). In fact they can simulate each
other (¢f. Chapter 2). Our starting point will be the second one: because its confluence proof allows

arbitrary scalars and because we are interested in the possible applications to quantum computing.
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The two languages are also reminiscent of other works in the literature: The functional style of
programming is based on the A-calculus together with a number of extensions, so as to make everyday
programming more accessible. Hence since the birth of functional programming there has been several
theoretical studies of extensions of the A-calculus in order to account for basic algebra (see for example
Dougherty’s algebraic extension [Dougherty, 1992] for normalising terms of the A-calculus) and other basic
programming constructs such as pattern-matching, together with the sometimes non-trivial associated
type theories (see for example Petit’s A-calculus extension and type system [Petit, 2009] with pattern
matching). Whilst this was not the original motivation behind the algebraic A-calculi, these languages
could still be viewed as just an extension of the A-calculus in order to handle operations over vector
spaces, and make everyday programming more accessible upon them. The main difference in approach
is that here the A-calculus is not seen as a control structure which sits on top of the vector space data
structure, controlling which operations to apply and when. Rather, the A-calculus terms themselves can
be summed and weighted, hence they actually are the basis of the vector space... upon which they can

also act.

The above intertwining of concepts is essential if seeking to represent parallel or probabilistic compu-
tation as it is the computation itself which must be endowed with a vector space structure. The ability
to superpose A-terms in that sense takes us back to Bouldol’s parallel A-calculus [Boudol, 1994], and may
also be viewed as taking part of a wave of probabilistic extensions of calculi, e.g. [Bournez and Hoyrup,
2003, Herescu and Palamidessi, 2000, Di Pierro, Hankin, and Wiklicky, 2005].

Hence algebraic A-calculi can be seen as a platform for various applications, ranging from algebraic

computation, probabilistic computation, quantum computation and resource-aware computation.

In the same way that the theory of vector spaces has many applications, but also many theoretical
refinements that deserve to be studied in their own right, we take the view that the theory of vector spaces
plus A-calculus has got theoretical refinements that need to be studied in their own right. Moreover, these
theoretical refinements are often necessary in order to address the applications, as is notoriously the case
as instance with the notion of norm. For example if we want to be able to interpret a linear combination
of terms Y «;.t; as a probability distribution, we will need to make sure that it has norm one. The same
is true if we want to interpret Y a;.t; as quantum superposition, but with a different norm®. Yet the
very definition of a norm is difficult in our context: deciding whether a term terminates is undecidable;
but these terms produce infinities, hence convergence of the norm is undecidable. Related to this precise
topic, Vaux has studied simply typed algebraic A-calculus, ensuring convergence of the norm [Vaux, 2009).
Quite recently Tasson has studied some model-theoretic properties of the barycentric (> a; = 1) subset
of this simply typed calculus [Tasson, 2009], whereas Ehrhard has proven the convergence of a Taylor
series expansion of algebraic A-calculus terms, via a System F' typing system [Ehrhard, 2010].

Therefore, it can be said that standard type systems provide part of the solution: they ensure the
convergence of (the existence of) the norm of a term. And indeed it is not so hard to define a simple
extension of System F' that fits A, — just by providing the needed rules to type additions, scalar products
and the null vector in some trivial manner (see Definition 3.3.1). However notice that the solution of a

straightforward extension of a standard type system could be both, too restrictive in one sense and too

IWhereas it is clear already that Ay, is a quantum A-calculus, in the sense that any quantum algorithm can be expressed
in this language (cf. Section 1.2), the converse, alas, is not true, in the sense that some programs in Ay, express evolutions
which are not valid quantum algorithms. This is precisely because Aj, does not restrict its vectors to be normalised

S ]ey]? =1 and its applications to be isometries.
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permissive in another: for example to type a sum we can rely on a typing rule like

I'+t:T I'tr:T
I'Ft+r:T

which can be thought of as too restrictive: a sum will have type only when both terms have the same

type. On the other hand, the rule for scaling terms could be

I'Ht:T
I'tat:T

which does not provide any way to control the scalar we are multiplying by, making hard to impose any
kind of restriction such as a barycentric relation or a quantum normalisation.

Instead, having a theory where sums and scalar multiplications are reflected in the types, can give the
answer: the term a.t + S.r would have the type «.T + 5.R, which provides the details on the vectorial
structure of the term.

In addition, since we provide full-blown proofs of strong normalisation from all the type systems
presented in this thesis, a byproduct of this result is that we are able to remove several conditions that
were limiting the reduction rules of A\, , because their purpose was to keep indefinite form from reducing

(such as t —t, with t not normal and hence potentially infinite). This makes Ay, into a simpler language.

Basic definitions and notation

The usual notation regarding rewrite systems is used: given a rewrite system R, R* is its reflezive and
transitive closure. That is, tR*r is valid if r = t or if there exists a rewrite sequence t Rt1 R --- Rt, Rr
linking t and r. R, is the symmetric closure of R, that is, the relation that satisfies t R, r if and only
iftRrorrRt.

In some examples, we may use the notation t — r as a shorthand for t + (—1).r, however there will
not be any ambiguity, since — is not a binary operation in any of the calculi developed in this thesis.

A rewrite system R is locally confluent if whenever t Rr and tRs there is t’ such that rR*t’ and sR*t’.
In comparison, a rewrite system R is confluent if whenever tR*r and tR*s there is ¢ such that rR*t’ and

sR*t’. Notice that confluence implies local confluence whereas the inverse is not true.

1.1 A brief and fast introduction to the quantum notation

This section does not pretend to introduce a full description of quantum computing, the interested reader
can find actual introductions to this area in many textbooks, e.g. [Nielsen and Chuang, 2000, Jaeger,
2007]. This section only pretends to introduce the basic notations and concepts used in the rest of this

thesis.

In quantum computation, data is encoded on normalised vectors in Hilbert spaces. For our purpose,
this means that the vector spaces are defined over complex numbers and come with a norm and a notion
of orthogonality. The smallest space usually considered is the space of qubits. This space is the two-
dimensional vector space C?, and it comes with a chosen orthonormal basis denoted by {|0),]1)}. A
general quantum bit (or qubit) is a normalised vector a|0) + B|1), where |a|? + |32 = 1. To denote an
unknown qubit ¢ it is common to write |¢). A two-qubits vector is a normalised vector in C? @ C?, that

is, a normalised vector generated by the orthonormal basis {|00),|01),|10),|11)}, where |zy) stands for

3
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|7) ® |y). In the same way, a n-qubits vector is a normalised vector in (C?)" (or CV with N = 2").
Also common is the notation (1| for the transposed, conjugate of |), e.g. if |¢) = [a1, g, ..., an]T, then
(W] = [af, a5, ..., ar] where for any a € C, a* denotes its conjugated.

The operators on qubits that are considered in this thesis are the quantum gates, that is, isometric
operators. A isometric operator is a linear function preserving the norm and the orthogonality of vectors.
The adjoint of a given operator U is denoted by Ut, and the isometric condition imposes that UTU = Id.
These functions are linear, and so it is enough to describe their action on the base vectors. Another way
to describe these functions would be by matrices, and then the adjoint is just its conjugate transpose. A

set of universal quantum gates is the set cnot, Rz and had, which can be defined as follows:

The cnot gate. The controlled-not, or cnot, is a two-qubits gate which only changes the second qubit if

the first one is |1):
cnot|0z) = |0x) ; cnot|lz) = |1) ® not|z)
where not|0) = |1) and not|1) = |0).
The Rz gate. The Rx gate is a single-qubit gate that modifies the phase of the qubit:

Reloy=[0)  :  Rgl1)=ed|1)

where 7 is the phase shift.

The had gate. The Hadamard gate, or had, is a single-qubit gate which produces a basis change:

had|0) = 5[0) + 5]1) ; had|1) = —50)

— 2
To make these gates act in higher-dimension qubits, they can be put together with the bilinear symbol
®. For example, to make the Hadamard gate act only in the first qubit of a two-qubits register, it can

be taken to had ® Id, and to apply a Hadamard gate to both qubits, just had ® had.

An important restriction, which has to be taken into account if a calculus pretends to encode quantum

computing, is the so called no-cloning theorem [Wootters and Zurek, 1982]:

Theorem 1.1.1 (No cloning). There is no linear operator such that, given any qubit |¢) € CV, it can
clone it. That is, it does not exists any isometric operator U and fized [vp) € CN such that U|y¢) = |p).

Proof. Assume there exists such an operator U, so given any |¢), |¢) one has Ulp) = |¢pp) and also

Ul¢) = |¢¢). Then
(Uep|Uvg) = {ppl¢p) (1.1)
where (Uy1)| is the conjugate transpose of U|yg). However, notice that the left side of equation 1.1 can
be rewritten as (pd|UTU[0¢) = (pd) = (o]9).
On the other hand, the right side of equation 1.1 can be rewritten as (p|¢)(p|¢) = (p|¢)>.
So (p|¢) = (¢|$)?, which implies either (p|¢) = 0 or (p|¢) = 1, none of which can be true in the

general case, since |p) and |¢) were picked as random qubits. O

The implication of this theorem in the design choices of a calculus is that it must be forbidden to
allow functions duplicating arbitrary arguments. However notice that this does not forbids cloning some
specific qubit states. Indeed for example the |0) and |1) qubits can be cloned without much effort by
using the cnot gate: cnot|00) = |00) and cnot|10) = [11). In this sense, the imposed restriction is not a
‘resources aware’ restriction ¢ la linear logic [Girard, 1987]. Tt is a restriction that forbids us to create a

‘universal cloning machine’, but still allows us to clone any given known term.
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1.2 The linear-algebraic A-calculus (\;,)

In this section we present the untyped linear-algebraic A-calculus (A, ) [Arrighi and Dowek, 2008]. As a
language of terms, Ay, is just A-calculus together with the possibility to make arbitrary linear combina-
tions of terms (a.t 4+ B.r). In terms of operational semantics, \j;, merges higher-order computation, be
it terminating or not, in its simplest and most general form (the S-reduction of the untyped A-calculus)
together with linear algebra in its simplest and most general form also (the oriented axioms of vector
spaces). However it is not a straightforward step to merge these two families of reduction rules.

To illustrate the kind of decisions that has to be taken, consider the term (Az.(z) z) (a.t + S.u)
which may be thought of as reducing to (a.t + S.u) (a.t + f.u) if it is chosen to S-reduce it first, or
to a.((t) t) + B.((u) u) if it chosen to first distribute the application and then do the S-reduction. The
first option is a call-by-name strategy while the second can be seen as call-by-base, defining the variables
and abstractions to be the base terms. Notice that the call-by-base strategy is compatible with the
view that application should be bilinear (cf. Application rules, below). Leaving both options open would
break confluence, the second option was chosen, which entails restricting the S-reduction to terms not
containing sums or scalars in head position (cf. Beta reduction rule, below).

The call-by-base strategy is also compatible with the no-cloning theorem (¢f. Theorem 1.1.1): assume
that t and u are two “base terms” encoding |0) and |1) respectivelly, and let C' = Az.(z) x be a valid
abstraction (depending on the encoding of |0)/]|1) we will need different encoding for this abstraction,
but for the sake of the example, assume this is an abstraction that just concatenates twice its argument).
Then with a call-by-name strategy, the term (C) (a.t + f.u) =* (a.t + f.u)(a.t + S.u) which is clearly
a cloning of the argument. Instead, in a call-by-base setting the same term leads to a.(t) t + 5.(u) u,
which is not forbidden by Theorem 1.1.1.

Instead of introducing vector spaces via an oriented version of their axioms (e.g. c.u+g.u — (a+4).u),
one could have decided to perform the [S-reduction ‘modulo equality in the theory of vector spaces’
(e.g. aou+ f.u = (a+ B).u). But there is also a good reason not to do that: it is possible to define fixed
point operators

Y = My.(Az.(y + () 2)) M.(y + (z) z)

and a term b such that (Y) b reduces to b+ (Y) b and so on. Modulo equality over vector spaces, the
theory would be inconsistent, as the term (Y) b— (Y) b would then be equal to 0, but would also reduce
to b+ (Y) b— (Y) b and hence also be equal to b. Instead, this problem can be fixed by restricting
rules such as a.u+ f.u — (a+ f).u to terms that cannot reduce forever (c¢f. Factorisation rules, below),
matching the old intuition that indefinite forms ‘co — 0o’ must be left alone. Moreover, oriented axioms of
vector spaces define vector spaces, and no more than vector spaces, just as well as the original axioms do,
as was shown in [Arrighi and Dowek, 2008]. Plus the orientation serves a purpose: it presents the vector
in its canonical form. A more in-depth discussion about these decisions: call-by-name vs. call-by-base
and reduction vs. equalities, is delayed to Chapter 2, where the four possibilities are analysed and the

simulations between them are proved.

The untyped Ay, calculus, as defined in [Arrighi and Dowek, 2008], is presented in Fig. 1.1. Terms
contain a subclass of base terms, that are the only ones that can be substituted for a variable in a (-
reduction step. Terms are considered modulo associativity and commutativity of operator + (that is an
AC-rewrite system [Jouannaud and Kirchner, 1986]; ¢f. Chapter 2 for a full discussion about it). Scalars

(notation: «, 8,7, ...) are members of a commutative ring (S, +, x). The confluence of this calculus has
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been formally proven in [Arrighi and Dowek, 2008]. The proof relies on the restrictions on the reduction
rules. However since these restrictions are not longer needed when working with the stronger normalising
subset of the calculus, they will not remain in any of the typed versions (cf. the confluence proofs in any
of the typed versions in the following chapters). So this confluence proof is not developed here and is
rather delayed to the typed versions.

The set of free variables of a term (notation: FV (t)) is defined as expected. The operation of substi-
tution on terms (notation: t[b/z]) is defined as usual (i.e. taking care of renaming bound variables when
needed in order to prevent variable capture), with («.t + f.u)[b/z] = a.(t[b/x]) + B.(u[b/x]). Also, the

notation (t) ¥ = (((t) r1)...) ry is used when needed.

Terms: t,rrusz= b|({t)r|0]|at|t+r

Base terms: b= x|zt
Elementary rules: Factorisation rules: Application rules:
t+0—t, at+ Bt — (a+p).t (%), (t+r)u— (t) ut(r) u (*),
0.t — 0, at+t— (a+1)t (%), (u) (t+1) = (u) t+ (u) r (**),
1t —t, t+t— (1+1).t (*). (at) r — a.(t) v (%),

*
a.0 — 0, Beta reduction: (r) (a.t) = a.(r) t (),
a.(B.t) = (a x B).t, (Az.t) b — t[b/z] (F5). (0) t — 0,
a.(t+r) = at+ar. (t) 0 — 0.
Contextual rules: If t — r, then for any term u, scalar a and variable =z,

(t) u— (r) u, t+u—r+u, a.t — a.r and
(u) t — (u) r, u+t—u-+r, Az.t — Az.r.

where + is an associative-commutative (AC) symbol, o, 8 € S, with (S, +, X) a commutative ring and
(*) these rules apply only if t is a closed normal term.

(**) these rules apply only if t + r is a closed normal term.

(***) the rule apply only when b is a base term.

Restriction (***) is the one that limits the S-reduction, whereas restrictions (*) and (**) are those that

avoid confluence problems related to infinities and indefinite forms, as discussed above.

Figure 1.1: Syntax and reduction rules of Ay,

1.2.1 Some technical remarks about \j,

In this section we provide some technical details that will be needed further. They are introduced here
since we are introducing Ay, even though they do not form part of the introductory discourse to the

thesis.

A call-by-base calculus. In the classical A-calculus the call-by-value strategy can be defined by: Only
the outermost redexes are reduced: a redex is reduced only when its right hand side has reduced to a
value (variable or lambda abstraction). Notice that in Ay, the set of variables and lambda abstractions

is exactly the set of base terms, in fact values are naturally extended to be base terms and their linear

6
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combinations. So, it is not precise to say that this calculus is call-by-value, instead it can be called

call-by-base.

The ring of scalars. In the original definition of Ay, the ring of scalars was defined using a term
grammar and a rewrite system [Arrighi and Dowek, 2008, Section III — Definition 1]. For the purpose of

this thesis it is sufficient to think of them as members of a ring.

Form of closed normal forms. As first stated in [Arrighi and Dowek, 2008, Proposition 2|, closed
normal forms are linear combinations of A-abstractions. We reproduce the propositions and their proofs

here for completeness. The first one is an auxiliary lemma [Arrighi and Dowek, 2008, Proposition 1]:

Lemma 1.2.1. A closed normal form that is neither a sum, nor a product by scalar, or the term 0, is

an abstraction.

Proof. By induction over term structure. Let t be a closed normal term that is not a sum, a product by a
scalar, or the term 0. The term t is not a variable because it is closed, hence it is either an abstraction in
which case we are done, or an application. In this case it has the form (((u) r1)...) r, where u,rq,...1,
are normal and closed and n is different from 0. Neither u nor r; is a sum, a product by a scalar, or the
term O since the term being normal we then could apply application rules. Thus by induction hypothesis

both terms are abstractions. Hence the term is not normal because of the S-reduction. (I

Now the proposition states as follows:

Proposition 1.2.2 (Form of closed normal forms [Arrighi and Dowek, 2008]). A closed normal form in
Alin 18 either the null vector or of the form 3 . o .ty + ), Ax.u;.

Proof. If the term is not the term 0, it can be written as a sum of terms that are neither 0 nor sums. We
partition these terms in order to group those which are weighted by a scalar and those which are not.
Hence we obtain a term of the form ) . ;.t; + >, u} where the terms uj are neither 0, nor sums, nor
weighted by a scalar. Hence by Lemma 1.2.1 they are abstractions. Because the whole term is normal the
terms t} are themselves neither 0, nor sums, nor weighted by a scalar since we could apply the Elementary

rules. Hence 1.2.1 also applies. ([

From this proposition, we can define an infinite vectorial space of normal terms, over the ring of

scalars, as the span of the base formed by all the variables and abstractions in normal form.

1.2.2 Encoding quantum computation in )\,

In this section it is shown how to encode the qubits and the set of universal quantum gates (cf. Section 1.1).
Since Ay, allows linear combinations of terms, it suffices to encode the basis of the vector space of qubits.
For a single-qubit it will be used the terms false and true for |0) and |1) respectively, with its usual
encoding in A-calculus: true = Ax.\y.x and false = Az.\y.y. A classical example of use of this encoding

is the following;:

not = Az.((z) false) true

Notice that this term globally expresses a isometric operator, even if some subterms are non isometries.

7
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To encode the Hadamard gate, the first naive choice would be

1 1 1 1
hadpgive = Az.((x) (—=.false — — .true)) (—=.false + — .true)

V2 V2 V2 V2

However notice that this does not work. Indeed

1 1
— .false + —

V2 V2

1 1
(hadpqive) false —* ((false) (—=.false — —.true)) (

V2 V2

.true)

1 1 1 1
—* 5.((false) false) false + 5.((false) false) true — 5.((false) true) false — 5.((false) true) true

—>*1f1 +1t 1fl 1t —*0
2.ase 2 rue 2.ase 2 rue

where —* represents zero or more reductions by the relation —.

The problem is that the linearity of Ay, makes not possible to use the classical if-then-else construction
of A-calculus, that is the true and false encoding. Instead, the linearity must be prevented in the cases
when true and false are used as deciders. To this end, their arguments can be enclosed under a lambda
to make it act actually as an argument in this call-by-base strategy, and then released by applying it to
any base term when needed: for example, instead of having (Az.\y.x) (a.true + S.false) it can be done
Az Ay.(z) z) Aw.(a.true + f.false) which will avoid the linearity. Since the names of the variables z
and w are not important (they are never used), the following notation is introduced: [t] = Aw.t, called
the ‘canon’ of t, and {t} = (t) z, called the ‘cocanon’ of t, where w and z are fresh variables.

So the Hadamard gate is encoded as:

1 1 1 1
had = Az {((z) [—=.false — —=.true|) [—=.false + —.true
{((2) [ 7 7 DI 7 7 I}
Then (had) false —* \/iﬁ.false + %.true and (had) true —* %.false - \%.true, as expected.
Analogously, the Ry gate can be encoded as Ry = Az.{((x) [¢".true]) [false]}. Notice that the canon

in the false branch is also needed to match the outer cocanon.

Two-qubits encoding. Since A\, application is bilinear, the usual encoding for tuples can serve as an

encoding for the bilinear operation ®:

® = Az Ay Af((f) @) y

To put gates together it can be used @ = Af.Ag.Az.((®) ((f) ((true) z))) ((g) ((false) z)). To make
the terms more readable it is used the infix notation: ((®) t) r =t®r and ((Q)) had) had = had ) had.

With this definitions, the cnot gate can be encoded as follows:
cnot = Az.((true) z) @ ((((true) z) ((not) ((false) x))) ((false) x))

This way to encode quantum computing in Ay, suggest that it can be used for quantum computing,
since any quantum algorithm can be expressed on it. However notice that fixing this encoding, not every
term in the calculus will represent a quantum program. Just by restricting the calculus it would be

allowed to consider it as a quantum A-calculus. Hence our motivations to study the norm of lineal terms.

8
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1.3 Plan of the thesis

Chapter 2: In this chapter the design choices of \j;, are fully studied and compared with those of the
algebraic A-calculus (Aqy) [Vaux, 2009], a fragment and extension of the realms of differential A-
calculus [Ehrhard and Regnier, 2003]. Both calculi are algebraic: they have an additive structure
and a scalar multiplication, and their set of term is closed under linear combinations. However,
they have been constructed using different approaches: 44 is a call-by-name language while Ay,

is call-by-base; the first considers algebraic equalities while the second considers rewriting rules.

We study how these different approaches relate to each another. To this end, we propose four
canonical languages, each based on one of the options: the call-by-name versus call-by basis, equality

versus algebraic rewriting. We show that these different languages simulate each other.

This chapter had led to the following papers: [Diaz-Caro, Perdrix, Tasson, and Valiron, 2010, 2011].

Chapter 3: Here we introduce Scalar, an extension of System F which allows to keep track of the scalars
in the terms. If t and u have type T, then a.t 4+ 5.u has type (o + 8).T. The type system has some
direct applications, such as the ability to determine when a given term will reduce to a barycentric
(>, a; = 1) distribution of terms. We show that this type system has both the subject reduction
and the strong normalisation properties, which are the main technical results of this chapter. The
strong normalisation entails a significant simplification of Ay, , removing the need for the restrictions

in the reduction rules, as discussed in Section 1.2.

This chapter had led to the following papers: [Arrighi and Diaz-Caro, 2011a,b].

Chapter 4: In this chapter X49 is defined: the confluent, additive fragment of \j,, typed with the
Additive type system, which includes sums of types as a reflection of those in the terms. After
proving subject reduction for this system, we study the role of sums within the calculus by inter-
preting X494 into System F with pairs. It is shown that this calculus can be interpreted as System
F with an associative and commutative pair constructor, which is distributive under application.
This translation leads to the strong normalisation proof for this system, which will set the base for

proving this property in the system of Chapter 6.
This chapter had led to the following paper: [Diaz-Caro and Petit, 2010].

Chapter 5: In this chapter the first fully Vectorial type system is defined. We combine the approaches
of Chapters 3 and 4 with the aim of statically describe the linear combinations of terms resulting
from the reduction of terms. This gives rise to an original type theory where types, in the same way
as terms, can be superposed into linear combinations. Some applications to quantum computing are
shown and we discuss the strengths and weaknesses of it. In particular, we show that only a weak
version of the subject reduction property can be proved in this Curry style version, suggesting that
we ought to move to Church style in order to have the full property, which we do in the following
chapters. We also provide an original proof of strong normalisation, which will serve as a base to

prove this property for the system of Chapter 7.
This chapter had led to the following paper: [Arrighi, Diaz-Caro, and Valiron, 2011b].

Chapter 6: In this chapter

Before moving to a Church version of Vectorial, as suggested in Chapter 5, we explore an alternative,

simpler path: an extension of Additive for the full calculus. This extension has the advantage of

9
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having sums in the types but no scalars, which allows, as shown in Chapter 4, an encoding in
System F with pairs. The system defined is called A4, and is an explicitly typed version of Ay,
which deals with the interaction between scalars and additions by approximating the scalars to
natural numbers. This system is similar to Vectorial. The main differences are, first that this is in
Church style, avoiding the problems mentioned in Chapter 5, and second that despite the fact that
this provides strong normalisation, and so is a good alternative to have a simplified language, its
types only provide an approximation of the vectors. Instead of any ring it takes the semi-ring of

non-negative real numbers.

This chapter had led to the following paper: [Buiras, Diaz-Caro, and Jaskelioff, 2011].

Chapter 7: We define Lineal, an explicitly typed algebraic A-calculus based on Ay, and Vectorial, with

the subject reduction and strong normalisation properties. This language allows arbitrary linear
combination of terms. The type system is a static analysis tool to describe the vectorial shape of
the normal form of the terms. It keeps track of the “amplitude of a term”, i.e. if t and r are term
of the same type T, a.t + B.r have type (o + 3).T. Also, it keep track of the “direction of a term”,
i.e. if t and r have types T and R respectively, a.t 4 S.r has type a.T' 4 3. R. This calculus is able to
encode matrices and vectors, just as Vectorial, but with the advantage of having subject reduction:

all the problems described in Chapter 5 are solved by using explicit types, and a subtyping system.

A paper based on this chapter is under preparation.

Chapter 8: In this chapter we briefly summarise the achievements and show some clues for future work.

10



Chapter 2

Call-by-name, call-by-base and the
reduction /equality duality

_ Résumé du Chapitre

Nous examinons la relation entre le A\-calcul algébrique, un fragment du \-calcul différentiel,
et \in . Les deux calculs sont algébriques : chacun est équipé d’une structure additive et d’une
structure de multiplication par un scalaire, et leur ensemble de termes est clos par combi-
naisons linéaires. Toutefois, les deux langages ont été construits en utilisant des approches
différentes : le premier est un langage en appel-par-nom tandis que le second est en appel-
par-base; le premier considere des égalités algébriques alors que le second considére des régles

de réécriture.

Nous étudions comment les différentes approches se rapportent l'une de Uautre. A cette fin,
nous proposons quatre langages canoniques chacun basés sur un des choix possibles : ’appel
par nom par rapport a l’appel par base, ’égalité algébrique versus réécriture. Nous montrons

que les différentes langages se simulent entre euz. [

E ANALYSE the different decision choices that make Ay, (¢f. Section 1.2) different from the
algebraic A-calculus, Mgy [Vaux, 2009]. The latter is another algebraic extension to the A-
calculus introduced independently in the context of linear logic as a fragment of the differential
A-calculus [Ehrhard and Regnier, 2003]: the algebraic structure allows to gather in a non deterministic
manner different terms, i.e. each term represent one possible execution.
This chapter is devoted to analysing how these different approaches relate one to the other. To this
end, we propose four canonical languages based on each of the possible choices: call-by-name versus
call-by-base, algebraic equality versus algebraic rewriting. We show that the various languages simulate

one another.

Four languages with different behaviours. In both languages, functions which are linear combina-
tions of terms are interpreted pointwise: (.t + f.r) @ = a.(t)  + B.(r) =, where “.” denotes the scalar
multiplication. The two languages differ on the treatment of the arguments. In \j,, the evolution is

call-by-base (cf. Section 1.2.1) and in order to deal with the algebraic structure, any function is considered

11
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as a linear map: (t) (a.z + B.y) =* a.(t) = + S.(t) y, reflecting the fact that any quantum evolution is
a linear map. In the opposite, A4y has a call-by-name evolution: (Az.t) r — t[r/z], without any restric-
tion on r. As a consequence, the evolutions are different as illustrated by the following example. In Ay,
(Az.(z) z) (y+6.2) =* a.(y) y+B.(z) z while in Agy, (A (2) 2) (y+8.2) = (y+8.2) (ay+8.2) =
A.(y) y+ (ax B).(y) 2+ (B x a).(2) y+ B2(2) =

Because they were designed for different purposes, another difference appears between the two lan-
guages: the way the algebraic part of the calculus is treated. In Ay, the algebraic structure is captured
with a rewrite system, whereas in Ay, terms are considered up to algebraic equivalence.

The two choices — call-by-base versus call-by-name, algebraic equality versus algebraic reduction —
allow one to construct four possible calculi. We name them in Figure 2.1, where they are presented
according to their evolution policy and the way they take care of the algebraic part of the language.

Besides, we slightly modify the operational semantics. The unique modification to Aqyq4 consists in
avoiding reduction under A, so that for any t, A\z.t is in normal form. As a consequence, the A-abstraction
is not linear anymore: Az.(a.t + f.r) # e z.t + S z.r. In Ay, we change the original restrictions,
which where there for confluence reasons, to make it more coherent with a call-by-base evaluation. The
restriction in Mgy is a common restriction: reducing under A could be considered as “optimising the
program. Concerning Ay, waving the restrictions make sense when confluence can be ensured by other

means, as will be the case in the following chapters.

Contribution of this chapter: relation between the four languages through simulation. Al-
though these languages behave differently, we show in this chapter that they simulate each other. This
result reveals strong connections between two distinct research areas and unifies the works done in Ay,
with those done in Ay, e.g. [Vaux, 2007, Ehrhard and Regnier, 2003, Ehrhard, 2003, 2005, Tasson, 2009,
Pagani and Tranquilli, 2009, Ehrhard, 2010, Pagani and Rocca, 2010].

We show that call-by-name algebraic A-calculi simulate call-by-base ones and vice-versa by extending
the continuation passing style (CPS) [Plotkin, 1975] to the algebraic case. We also provide simulations
between algebraic equality and algebraic reduction in both directions. The simulations proved are summed
up in Figure 2.2. The solid arrows stand for theorems that do not require confluence in their hypothesis

whereas the dashed arrows stand for theorems that do.

Consistency. Without restrictions on the set of terms, both algebraic reductions and algebraic equal-
ities cause problems of consistency, albeit differently.

Taking up again the example of Section 1.2, let Yy = (Az.(b + (z) z)) Az.(b + (2) ). In a system
with algebraic reduction, the term Yy — Y3, reduces to 0, but also reduces to b + Y, — Y}, and hence to
b, breaking confluence. To solve this issue, several distinct techniques can be used to make an algebraic
calculus confluent. The original technique in [Arrighi and Dowek, 2008], as presented in Section 1.2, were
the restrictions (*) and (**) depicted in Figure 1.1. In the following chapters, type systems are set up
which forbid diverging terms such as Y}, and so there is no need for these restrictions.

In a system with algebraic equalities, for any term c, any term b reduces to b+ Y. _p, — Y._p, therefore
to c. In Mgy a restriction to positive scalars, thus a semi-ring without additive inverse instead of a ring,
is proposed to solve the problem. However such a solution does not work in a system with algebraic
reduction (cf. Section 2.2).

In this chapter we do not make a choice a priori; instead we show that the simulations between the
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four calculi are correct, providing a general enough methodology to work in a large variety of restrictions
on the language. Therefore, we do not force one specific method to make the calculi consistent, leaving

the choice to the user.

Plan of the chapter. In Section 2.1, we define the set of terms and the rewrite systems we consider
in this chapter. In Section 2.2, we discuss the confluence of the algebraic rewrite systems. Section 2.3 is
concerned with the actual simulations. In Section 2.3.1 we consider the correspondence between algebraic
reduction and algebraic equality whereas in Section 2.3.2 and 2.3.3 we consider the distinction call-by-
name versus call-by-base. In Section 2.3.4, we show how the simulations can compose to obtain the
correspondence between any two of the four languages. In Section 2.4 we conclude by providing some

paths of open problems for future work.

Th.2.3.6
call-by-name | call-by-base e ™
A A
alg lin
. ¥ 7y
algebraic . . -._\Th. 2.3.21
alg lin Th.2.3.4 Th.2.3.3
reduction Th <1 Th.2.3.2
S _Th.2.3.8 :
algebraic _ _ - \=
;lg )‘En alg lin
equality h. 2.3.22

“ H M 99
¢f. Definition 2.1.1 A — B means “A is simulated by B

Figure 2.1: The four algebraic A-calculi Figure 2.2: Relations between the languages

2.1 Algebraic A-calculi

The languages Ay, and Agyy share the same syntax, defined as follows:

t,r,s = b|(t)r|at|t+r (terms), where a ranges over a ring
wv,w == O0|b|av]|v+w (values), (8,4, %), called the ring
b = x|zt (base terms). of scalars.

We provide a complete formalisation of the rewrite rules and show how they relate to each other. We
summarise in Figure 2.3 all the rewrite rules that are being used. They are grouped with respect to their
intuitive meaning?.

The languages Ay, and Agy have two distinct opinions on the nature of the addition and scalar
multiplication of lambda-terms. In Ay, the terms are purely syntactic and have no other meaning than
the one given by the rewrite system (with the exception of the associativity and commutativity). In
particular, @.(t +r) and a.t + a.r do not represent the same term: the former rewrites to the latter but
this is not reversible, indicating that it is preferred in a more canonical presentation. In A4, the lambda-

terms are considered as being part of a mathematical vector space; therefore addition is the actual addition

'In [Arrighi and Dowek, 2008], the rule a.(8.t) — (a x B).t is included in the Elementary group (cf. Figure 1.1).
Here it is placed in the factorisation group since it is required to close the critical pair a.t + a.t — (1 + 1).(a.t) and
at+at = (a+ a).t.
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2. Call-by-name, call-by-base and the reduction/equality duality [

SPECIFIC RULES FOR Agg

Call-by-name (5,,) LINEARITY OF THE APPLICATION (A)
(Axt)r —  t[r/z] (t+r)s — (t)s+(r)s
(at) r — oa.(t)r
0t — 0

SPECIFIC RULES FOR Ajp

Call-by-base (0p) CONTEXT RULE (&, )
t—t

(v)t = (v) t
LINEARITY OF THE APPLICATION

(Ax.t) b —  t[b/x]

Left linearity (A4;) Right linearity (A,)
(t+r)v — () v+(r)v (b) (t+r) — (b)t+(Dd)r
(at) v — a(t)v (b) (at) — a.(b)t
0O)v —» 0 (b)o —» O

COMMON RULES

RING RULES (L = AssoU Com U F U S)
Associativity (Asso) Commutativity (Com)
t+(r+s) — (t+r)+s t+r — r+t

(t+r)+s — t+(r+s)

Factorization (F) Simplification (.5)
at+pt — (a+p)t a.(t+r) — at+ar
at+t — (a+1)t 1t — t
t+t — (1+1)t 0t — 0
a.(ft) — (axp)t a0 — 0
0+t — t

CONTEXT RULES (&)

t—t t—t r—r t—t

t)r—-t)r t+r—t' +r t+r—=t+r at—at

Figure 2.3: Rewrite rules of A7, and )\;l)g
in the space and terms are considered up to the equality in the vector space. For example, «.(t +r) and
a.t 4+ a.r are two representations of the same term.

In this chapter, no assumptions are made and the distinction call-by-name/call-by-base and the dis-

tinction equality /reduction are separately considered. Therefore four languages are developed: a call-

14



] 2. Call-by-name, call-by-base and the reduction/equality duality

by-base language A7, with algebraic equality, a call-by-base language A}, with algebraic reduction, a
call-by-name language )\jlg with algebraic equality and a call-by-name language )\Zg with algebraic re-
duction.

These four languages are summarised in Figure 2.1 and formalised in Definition 2.1.1. Informally, we
use the notation —, for the algebraic reductions in Ay, —, for the algebraic reductions in Ay, and — g3,

and —g, to the B-reduction in A4y and Ay, respectively. It is also formalised in the Definition 2.1.1.

Definition 2.1.1. The following notations for the rewrite systems obtained by combining the rules de-

scribed in Figure 2.3 are used:

—a = AULUE —y = AZUATULUfo)\lm —g, = ﬁbUEUE,\lm

—g (_>11)<—> —¢ (_M)(—) Bn Bn U §

The four languages of Figure 2.1, and their associated rewrite systems, are defined as follows:

Language | Corresponding Rewrite System
lin —evp = (=) U (—p,)
Alin —ip = (20U (=s,)
Nalg —atp = (7a) U(=5,)
alg “arp = (2a)U(=s,)

2.2 Discussion on consistency and confluence

2.2.1 Local confluence

—

In this section we show that the four languages A}, Aalg

Alin» and AT, are locally confluent. We first
concentrate on the algebraic rules. For each of these calculi, we use the reductions describing the algebraic
structure: —, and —, correspond to an oriented rewriting description whereas —; and —7 correspond

to a description by equalities (since every rewrite rule can be reversed, cf. Definition 2.1.1).
Lemma 2.2.1. The rewrite systems —,, —¢, —+, and —7 are locally confluent.

Proof. For —; and —,, we give a semi-automatised proof in the theorem prover Coq [Coq Dev. Team,
2009]. The interested reader can find the proof in [Valiron, 2011a] which is sketched in Appendix A.9.
Since for any rewrite system R, its symmetric closure R, is trivially locally confluent, both —7 and —7

are locally confluent. (I

The rewrites systems considered in this chapter are also locally confluent in the presence of the

[-rewrite rules.
Lemma 2.2.2 (Local confluence). The four languages in Figure 2.1 are locally confluent.

Proof (Sketch). The local confluence of the algebraic fragment is proven in Lemma 2.2.1. The beta-
reduction is confluent using a straightforward extension of the confluence of lambda calculus. Finally,
the beta-reduction and the algebraic fragments commute, making each rewrite system locally confluent.

The full proof is developed in Appendix A.1. O
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2. Call-by-name, call-by-base and the reduction/equality duality [

2.2.2 Simulations and the confluence issue

In this section, we show that the algebraic fragments are confluent modulo associativity and commuta-
tivity. Concerning the full languages, we show that they are either not confluent or trivially confluent (in
the sense that any term is reducing to any other). As a consequence, we introduce a generic notion of
language fragment to describe confluent and consistent sub-languages. In particular, fragments are used

in simulations theorems in section 2.3 for abstractly representing confluent sub-languages.

The algebraic fragment. It is clear that neither —, nor —, is strongly normalising: with both
systems one can go back and forth between t + r and r + t. They are however strongly normalising
modulo associativity and commutativity in the sense that any rewrite sequence consists eventually of
terms that are equal modulo associativity and commutativity. On the contrary, the rewrite systems —7
and —7 are not.

In order to formalise this, AC denotes the system generated by AC' = AssoU Com and R the rewrite
system obtained by taking off the rules Asso and Com where R stands for —, or —,. Hence, =, stands
for the system generated by AUS U F U¢ and =7 for the system generated by 4;UA, USUFUEUEy,, -

Definition 2.2.3. Let R be either —; or —, and t1 Rta R ... be a reduction sequence (finite or not)
characterised by the family of terms {t; }, and the family of rules { R; }, used to go from t; to ti11,
where R; stands for a fized rule in R. We say that the reduction is AC-finite if { R; }, N R is finite.
The AC-length of the rewrite sequence is the cardinal of the set { R; }, N R. The rewrite system R is
AC-strongly-normalising (AC-SN) if for any term t, there exists a number n such that the AC-length of
any rewrite sequence starting at t is less than n, in other words, the rewrite system R is AC-SN if every
rewrite sequence is AC-finite. A term M is AC-normal with respect to a rewrite system R if any rewrite

sequence starting with M consists only of rules AC.
Theorem 2.2.4. The systems —, and —; are AC-SN.

Proof. We use the technique described in [Arrighi and Dowek, 2008]. An auxiliary measure is defined on
terms by |(t) r| = (3]t] +2)(3|r|+2), |a.t| = 14+ 2|t], |t +r| =2+ |t|+ ]|, |0] =0, [A\x.t| =1 and |z| = 1.

This measure is preserved by rules AC and strictly decreasing on the other algebraic rules. (|

Local confluence plus strong normalisation implies confluence (¢f. for example [TeReSe, 2003]).

Corollary 2.2.5. The rewrite systems —4 and —¢ are confluent, modulo AC. O

The four calculi. Although we have proved that the four languages under consideration are locally

N
lin

where Y5, = (Az.(b + (z) z)) Az.(b + (2) ).

confluent, neither A\’ nor )\;l)g is confluent: In each one, the term Y}, — Y3, rewrites both to 0 and b,

Remark 2.2.6. Regarding A\, and A\~

Yin alg’ without restriction both are trivially confluent since for all terms

t and r, t reduces tor: t -~ t+Y,. Y.t —* r. Hence, with the algebraic equality, both languages can

simulate any rewrite system.

For getting back consistency, it is of course possible to modify the rewrite systems as it has been done
in [Arrighi and Dowek, 2008] but it would break the correspondence between call-by-base and call-by-

name. In this chapter we propose instead to restrict the set of terms. There are two known methods:
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[Vaux, 2009] considers positive scalars (a semi-ring without additive inverse) on a language with
algebraic equality. The restriction on scalars is enough for getting uniqueness of normal forms. Although
this solves the consistency problem for the languages with algebraic equality, it does not give confluence
for the languages with algebraic reduction. Indeed, consider the critical pair Yy + Y —¢ 2.Y;, Yi +
Yi—p, Yy +t + Yy —¢ 2.Y; +t. The term 2.Y; can only produce an even number of t’s: we cannot close
the pair.

In the following chapters we use type systems for retrieving strong normalisation. This could be
adapted to this chapter’s setting, for example with a simple type system. We can get strong normalisation
for well-typed terms and, since both A, and Ajj satisfy local confluence, retrieve the existence and
unicity of normal forms for these languages. As the languages Aj;, and )\jlg have the same equational
theory, this guarantees that they are well-behaved with respect to the type system.

The simulation theorems that we develop in this chapter are correct in an untyped setting (and in fact
trivially true when we simulate a language with algebraic reduction with a language with algebraic equality
as remarked above) but also true in any typed setting, provided that it satisfies subject reduction. Thus,
we do not restrict the calculi a priori: instead, we propose a notion of language fragments to parametrise
the simulation results. The definition of fragment is general enough to capture many settings: various
typed systems, but also restrictions to a given set of terms such as the set of AC-SN terms.

We define formally a fragment in the following way:

Definition 2.2.7. A fragment S of \;J, (resp. A\, ) is a language defined on a subset of terms closed

lin alg

—

under — o4 g-reduction (resp. —qyg-reduction). The rewrite system of S is inherited from the one of A7,

(resp. )\;;g)‘

The definition of a fragment in the presence of algebraic equalities should be treated carefully. Indeed,
note that the algebraic equalities are defined as t —= r if and only if t — r or r — t. As a consequence,
for any subset S of terms closed under —=-reduction, if t is in S then for any r (in S or not), t+r—r € S
since t -+~ t +r — r. We therefore need to define the algebraic equality with respect to the particular

subset of terms under consideration.

Definition 2.2.8. A fragment S of Xy, (resp. Ay, ) is a fragment of A, (resp. A, ) together with an
algebraic equality defined as t—7r (resp. t—;r) if and only if t,r € S and r—t or t—r (resp. r—,t

or t—,r). The B-reduction is not modified.

Remark 2.2.9. When referring to a fragment of A, (resp. Aty

), we use the abuse of notation —7

(resp. —7 ) for the restricted rewrite system, when the fragment under consideration is clear.

2.3 Simulations

This section is concerned with the mutual simulations of the four languages.

The first class of problems relates algebraic reduction with algebraic equality. If simulating a language
with algebraic reduction with a language with algebraic equality is not specially difficult, going in the
opposite direction is not possible in general. Indeed, if 0 =¢ Y, — Yp—3,Ys + b — Y, =¢ b is possible in
Ains (where Yy, = (Az.(b + () 2)) Az.(b + (z) x)) it is difficult to see how one could make 0 go to b in
A, Without further hypotheses. In this section, we show that a fragment of a language with algebraic
equality can be simulated by the corresponding fragment with algebraic reduction provided that the latter
is confluent (Theorems 2.3.3 and 2.3.4).
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The second class of problems is concerned with call-by-base and call-by-name. In this chapter, the
simulations of call-by-name by call-by-base and its reverse are treated using continuation passing style
(CPS), extending the simulation techniques described in [Fischer, 1972, Plotkin, 1975] to the algebraic
case (Theorems 2.3.6, 2.3.8, 2.3.21 and 2.3.22).

The results are summarised in Figure 2.2. Solid arrows correspond to results where no particular

hypothesis on the language is made. Dashed arrows correspond to results where confluence is required.

2.3.1 Algebraic reduction versus algebraic equality

As the relation —4 5 is contained in —, 5 and the relation —,45 is contained in —7, 5, the first

simulation theorems are trivial.
Theorem 2.3.1. For any term t if t— 441, then t—_, sr. O
Theorem 2.3.2. For any term t if t—¢qpr, then t— r. (I

The simulations going in the other direction are only valid in the presence of confluence. In the follow-
ing two theorems, the algebraic equality is defined with respect to the considered fragment (c¢f. Definition
2.2.8).

Theorem 2.3.3. For any term t in a confluent fragment of N, , if t—=7,"5v, then t—>z+ﬁv', with v—7*v'.

Proof. First note that a value can only reduce to another value. This follows from direct inspection of

the rewriting rules. We proceed by induction on the length of the reduction.
e If t—7,";t, then choose v/ =t and note that t—7, 5t.

e Assume the result true for t—7 %;v: there is a value v such that t—7, sv' and v—7*v'. Let

rﬁaﬁt. Case distinction:

— r—p,t, then r—g,t—7, ;v which implies r—7, 5v'.

— r—5t, then either r—,t, and then this case is analogous to the previous one, or t—,r. Due
to the confluence of the subset, there exists a term s such that r—7, 58 and v'—7}s, implying

that s is a value, thus v'—7*s. Then we have v'—7*s and v—;*v’, so s—;*v, closing the

case.
O

Theorem 2.3.4. For any term t in a confluent fragment of )\;l)g, if t—=7"5v, then t%j;_wv’, with

vV

Proof. Similar to the previous theorem. O

2.3.2 Call-by-name simulates call-by-base

The simulation of Ay, with Ay4. To prove the simulation of Ay, with A,y we introduce an algebraic
extension of the continuation passing style encoding used to prove that call-by-name simulates call-by-

value in the regular A-calculus [Plotkin, 1975].
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Let [-]: Aiin = Aaig be the following encoding where f, g and h are fresh variables.

[[] = A.() @, o] = o
Dat] = A Aell I® 1] = ALED) (D) Mu((9) B) .
lat] = Malth £, [t+11 = MID+ED f

Let ¥ be the encoding for values defined by ¥(z) = z, ¥(0) = 0, ¥(Az.t) = Az.[t], T(a.v) = a.T(v),
U(v+w)=T(v) + ¥(w). Note that this encoding is compatible with substitution:

Lemma 2.3.5. [t[b/z]] = [t][¥(b)/xz] with b a base term.
Proof. Induction on t. c¢f. Appendix A.2. O

Using this encoding, we can simulate A, with A7}

alg: as formalised in the following theorem. The proof

is developed in the second part of this section.
Theorem 2.3.6 (Simulation). For any term t, if t—}, ;v where v is a value, then ([t]) Az.x—7, ;¥(v).

Example 2.3.7. For any terms t and r, let (t,r) := A\y.((y) t) r. Let copy be the term Ax.{x,z), and
let u = Av.r1 and v = A\x.ry be two values. Then (copy) (u+ v)—=;, s(u,u) + (v,v) and (copy) (u +

v)—ag(utv,u+v). We consider the simulation A, to Aalg-

[(copy) (u+v)[ = Af. ([[COpy]]) Ag-([u+v]) An((g) h) f

[copy] = AF.-(f) Az.[(z, 2)]

[(€,x)] = Af.(f) U({t,r))
[u+v]=Af([u] +[vD) £

(9) ¥(u)

We now rewrite t = ([(copy) (u+V)[) Az.z in Ag,

[u] = Ag.

t —ats  ([copy]) Ag-([u+v]) Ah.((g) h) Az.z
= (AS(f) Az [(z, 2)]) A ([[U+V]]) Ah.((g) h) Az.z
—ats  (Ag-([u+v]) An.((9) h) Az.2) Ax.[{z, z)]
—ats  ([u+v]) A((Az.[(z, 2)]) k) Az.2
—ats  ([u] + [V]) Mr((Az.[(z,2)]) h) Az.2
—ats  ([u]) Ar((Az.[(z, 2)]) h) Az.z + ([V]) Ah-((Az.[(z,2)]) h) Az.z
“ars  Ab((Az.[{z,2)]) h) Az.2) ¥(u) + (Ab((Az.[(z,2)]) k) Az.2) U(v)  (x)
—ars  (QAz{z,2)]) Y(u)) Az.z + ((Az.[{z,2)]) U(v)) Az.2
—ars [z, 2)][Y(a)/2]) Az.z + ([(z,2)][Y(v)/2]) Az.2

(Lemma 2.3.5) —nis ([(a, w)]) Az.z + ([{v,V)]) Az.z

—oip (Az.z) T((u,u)) + (A\z.2) U((v,V)) (%)
“atrs Y((uu) +V(({v,v))
= ((u,u) + (v, v))

Similarly, one can relate fragments of A7, to fragments of Aj;, as follows.

Theorem 2.3.8 (Simulation). For any two fragments Sy of \i. and S, of A7, such that Vt € Sy,

([t]) Az.x € Sa, and for any term t in Sy, if t—7,73v where v is a value, then ([t]) Av.z—7 3V (v).

lin alg

Again, the proof is developed later in the section.
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Remark 2.3.9. As we already noted several times, without restricting the languages, Theorem 2.3.8
would be trivial. Any term reducing to any other one, the desired reduction would be of course valid
without restriction. This theorem shows that if the calculi are restricted to fragments, the result is still
true.

Note that the fragments of algebraic \-calculi usually considered in the literature satisfy the property
that if t is in a fragment of A, then ([t]) Ax.x is in the corresponding fragment of Nayg- This is for
instance the case of the fragments obtained by considering non-negative scalars like in [Vauz, 2009], this

1s also true for the various typing systems developed in the following chapters.

Once a term is encoded it can be reduced either by —7, 5 or by —7, 5 (respectively —aip OF %Z*ﬁ)

without distinction, and still obtain the same result. We state this fact as a corollary:
Corollary 2.3.10 (Indifference).
e For any term t, if t—7, v where v is a value, then ([t]) A\z.x—7, 5¥(v);

e For any fragment S of Ay, such that ¥Vt € S, ([t]) \z.x € S, and for any term t in S, if t—7,5v
where v is a value, then ([t]) Av.a—7 5P (v).

Proof. It suffices to check the proofs of Theorems 2.3.6 and 2.3.8 to verify that all the reductions =7 5

are done by rules common in both languages. (I

Example 2.3.11. Note that in Example 2.5.7 one could have as well rewrite with —,1 g which illustrates
the indifference property (Corollary 2.3.10).

Now we proceed to prove Theorems 2.3.6 and 2.3.8 by extending the proof in [Plotkin, 1975] to the

algebraic case.

An administrative operation. We define a convenient infix operation (:) capturing the behaviour
of translated terms. For example, if b is a base term, i.e. a variable or an abstraction, then its trans-
lation into Ag;, is [b] = Af.(f) ¥(b). If we apply this translated term to a certain b’, we obtain
(Af-(f) (b)) b'—44s(b") T(b). We define b : b’ = (b’) ¥(b) and get that ([b]) b’—4+gb : b’. This
fact will be generalised to ([t]) b—44 st : b in Lemma 2.3.13.

Definition 2.3.12. Let (:) : Ay, x Ax,, — Ay, be the infix binary operation defined by:

(0O)t:b =0
0:b =0 b)t:b = t:AL((T(D)) )b
b’ :b = (b) U(b) (B)6:b = €: 41
(at)r:b = a(t)r:b
at:b = a(t:b) b o= (( R
t4rib = t:bir:p L Hsb = ({505
((t)r)s:b = (t) r: Ag.([s]) Ah.((g) h) b

Lemma 2.3.13. If b is a base term, then for any t, ([t]) b—} st : b.

Proof. Structural induction on t. We give the case t = (t’) r, as an example (¢f. Appendix A.3 for the
tull proof). First an intermediate result is needed: for any t, t : Ag.([r]) Ahr.((¢9) h) b—q4s(t) r: b. This
can be proved by structural induction on t.

Then ([(t") r]) b = AL AIE']) Ag-([r]) Ab-((g) h) f) b—=ass([t']) Ag-([r]) Ar.((g) k) b. Note that
Ag.([r]) Ah.((g) h) b is a base term, so by the induction hypothesis the above term reduces to t’ :
Ag.([r]) Ah.((9) k) b which by the previous intermediate result, — 44 g-reduces to (t’') r : b. O
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The following lemmas and its corollary state that the (:) operation preserves reduction.
Lemma 2.3.14. If t—,r then Vb base term, t : b=} r : b.

Proof. Induction on the possible rule applied from t—,r. We give one simple case as an example (cf. Ap-
pendix A.4 for the full proof). Let a.(t +r) 2pa.t + a.r. Then a.(t +r):b=ca.(t :b+r:b) =, a.(t:
b)+a.(r:b)=at+ar:b. O

Lemma 2.3.15. If t—4r then Vb base term, t : b—7, sr : b.

Proof. If t—,r, then use Lemma 2.3.14. If t—g,r, then we can prove it by induction on the possible rule
applied (either By, £y, or one of £). We give the case of the Sy-reduction as an example (¢f. Appendix A.5
for the full proof): (Az.t) b’ : b =Db' : Af.((T(Ax.t)) f) b = (Af.((T(Az.t)) f) b) U(b') and this S,-
reduces to ((¥(Az.t)) U(b")) b = ((Az.[t]) ¥(b’)) b which also S,-reduces to [t][¥(b’)/x] b which by
Lemma 2.3.5 is equal to [t[b’/z]] b, which by Lemma 2.3.13, —7, s-reduces to t[b’/z] : b. O

Corollary 2.3.16. If t—= 50 then Vb base terms, t : b%air*ﬁr : b.

Proof. By case distinction. If t—4gr, then by Lemma 2.3.15, t : b—7 , sr : b, which implies t : b—, "1 :
b. If r—t, then by Lemma 2.3.14, r : b—;t : b, which also implies t : b—_ "sr : b. O

Finally, the (:) operation also captures the translation of values in the following way:

Lemma 2.3.17. For any value v, v : Ax.x—*

a+ﬂqj(v)

Proof. We proceed by structural induction on v.
e Let v be a base term. Then v : Az.x = (Az.z) ¥U(V)—=q48P (V).

e Let v=vi+vy. Then v: A r.x = vy : Ax.x+ vy : Ax.x, which by the induction hypothesis, reduces
to U(vy) + U(ve) = T(v).

o Let v = a.v.

a. U (v') =T(v).

Then v : Az.x = a.(v' : Az.z), which by the induction hypothesis, reduces to

e Let v=0. Then v: \z.x = 0= U(v).
g

Example 2.3.18. We discuss Example 2.3.7 in the light of these results. The term (x) is equal to
the terms (copy) (u + v) : Az.z and ((copy) u+ (copy) v) : Az.z. The term (xx) is equal to the term
((u,u) 4+ (v, Vv)) : Az.z which reduces to ¥({u,u) + (v,v)). We do indeed have the rewrites requested by
Lemmas 2.3.13, 2.3.15 and 2.53.17.

Now the proofs of Theorems 2.3.6 and 2.3.8 go as follows.

Proof of Theorem 2.5.6. From Lemma 2.3.13, ([t]) Az.z—}, st : Az.2 and from Lemma 2.3.15, it —7 5-

reduces to v : Az.z. From Lemma 2.3.17, v : Az.x—7, 3 V(v). O
Proof of Theorem 2.3.8. From Lemma 2.3.13, ([t]) Az.z—, st : Az.z, which implies that ([t]) Az.x
—oipreduces to t : Az.z. From Corollary 2.3.16, this latter term —7 *;-reduces to v : Az.z. From
Lemma 2.3.17, v : Az.x—7 , ;¥(v), which implies that v : Az.z—7,"3 ¥ (v). Note that since ([t]) Az.x €

Sa, t : Ax.x is also in Sy due to the closeness under —7 of S,. The same applies to t : Az.x, thus also to
v : Az.z and finally to ¥(v). O
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2.3.3 Call-by-base simulates call-by-name

The simulation of A\ with \;7 . To state that \;7 simulates A~

alg lin® lin alg» W€ use an algebraic extension of

the continuation passing style encoding following again [Plotkin, 1975].

Let {}: Az, = A

1, De the following encoding where f, g and h are fresh variables.

ot = =, {of} = Af.(0) f,
{Aztf = AF(f) Az {t], {) rf = Af(th) Ag-((9) {r}) f
{o-t] Af-(ee{tlh) £, {t+rf = A7{th +{r}) £

This encoding satisfies two useful properties (the first is a trivial result and the second follows by induction
on t (¢f. Appendix A.6)).

Lemma 2.3.19. For all terms t, the term {tf} is a base term. O
Lemma 2.3.20. {t[r/z]} = {t}[{r]/z]. O

Let @ be the encoding for values defined by ®(x) = () Ay.y, ®(0) = 0, P(Ax.t) = Az {t}, P(a.v) =
a.®(v), P(v+w) =(v) + O(w).

Simulation theorems, similar to Theorems 2.3.6 and 2.3.22, can be stated as follows.

Theorem 2.3.21 (Simulation). For any program t (i.e. closed term) if t— . 5V where v is a value, then
({th) Av.z—7, 52(v).

Theorem 2.3.22 (Simulation). For any two fragments S, of Ay, and S¢ of A\, such that Vt € S,,
({th) Az.x € S¢, and for any program t in S,, if t—; *sv where v is a value, then ({t}) \z.o—7 3 (v).

A result similar to Corollary 2.3.10 can also be formulated. It is proven in a similar manner.
Corollary 2.3.23 (Indifference).
e For any program t, if t—7, ;v where v is a value, then ({t}) Av.x—, ;@(v);

e For any fragment S of Ay, such that Vt € S, (t}) Ax.x € S, and for any program t in S, if
t—2,"5v where v is a value, then ({t}}) Av.x—7 5 ®(v). O

Before moving to the description of the proof of Theorems 2.3.21 and 2.3.22, let us consider an

example.

Example 2.3.24. We illustrate Theorem 2.3.21 using the term (copy) (u+ v) of Example 2.3.7 which

reduces to (u,u) + (v, v) in A, and to (u+v,u+v) in A,

{(copy) (u+ V)= Af.({copy}t) Ag-((9) {u+v]) f
{copt= Af.(f) Av{(z, )}
{(t, 0)f= Mf.(f) @((t, 1))
{u+vi=Af.({u} +{v}) f

{ul= Ag.(9) @(u)
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We now rewrite r = ({{(copy) (u+v)}) Az.z in gy,

({lcoprt) Ag-((9) {u+vl}) Az.z

L) Az (z, 2)}) Ag-((9) {u+ V) Az

—erp (Ag((9) {u+ ) Az.2) Az {(z, 2)

—erp (O (e, 2)}) {utvl) Az.z (%)
(
(
(

r —u4p

(Lemma 2.3.19) —erp  ({{z, 2)F[{u+ v[/z]) Az.2
(Lemma 2.3.20) = {u+v,u+v)}) Az.z
=g (Az.2) D((u+v,u+v)) (xx%)
e Dt viutv)

Proof of the simulation theorems. In Section 2.3.2, the proofs of the simulations theorems were

“ 7

performed using an administrative operation and three intermediate results, as follows. The term b

is taken as a base term.
1. Prove that ([t]) b—,, 5t : b;
2. prove that if t—¢4sr then t : b—7, 5r: b;
3. prove that if v is a value, v : Az.x—7 5 ¥(v).

For the simulation theorems of the present section, we use a similar procedure.

An administrative operation. We keep the same notation for the administrative, infix operation

defined for the purpose of the proof.

Definition 2.3.25. Let (:) : Ay, x Ay, — Ay, be the infix binary operation defined by:

0O)r:b =0
0:b =0 b)rib = (@(b) fr})
b :b = (b) d(b)) (B r:
(at)r:b = a.(t)r:b
at:b = a(t:b) b= ((t b
t+r:b =t:b+r:b (t+1)s: = () s+(x)s)
(t)r)s:b = (t) r: AL((f) {s}) b

The three lemmas needed for the proof of the simulation theorems now read as follow.
Lemma 2.3.26. If b is a base term, then for any closed term t, ({t}}) b—7 st : b.

Proof. The proof is done by structural induction on t. We follow the sketch of the proof of Lemma 2.3.13,
and give the case t = (t/) r, as an example (¢f. Appendix A.7 for the full proof). First we prove by
induction on t that t : Ag.((g9) {rt) b—7,5(t) r : b. Then ({(t) r}t) b = (Af.({t'}) Ag.((9) {r}) f) b
—roqp-reduces to ({t'}}) Ag.((g) {r}) b. Note that Ag.((g) {r[}) b is a base term, so by the induction
hypothesis the above term reduces to t' : Ag.((g) {r}) b which by the previous intermediate result,
—¢4p-reduces to (t') r: b. O

Lemma 2.3.27. If t—qpr then Vb base term, t : b—j, sr : b.

Proof. Case by case on the rules of A7 . We give the case of the §,-reduction as an example (¢f. Ap-

alg*

pendix A.8 for the full proof): (Az.t) r : b = ((2(Azx.t)) {r}) b = ((Az.{t}) {r}) b which by
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Lemma 2.3.19, —¢4g-reduces to ({t}}[{r}/x]) b. This, by Lemma 2.3.20, is equal to ({t[r/z]}) b and
this, by Lemma 2.3.26, —7, s-reduces to t[r/z] : b.
Note that in the previous derivation, the reduction (A\x.{t}) {r}—e4g{t]}[{r] /=] is valid since for any

term r, {rf} is a base term. O

Lemma 2.3.28. If v is a value and b is a base term, v : A\x.x—7, s®(v). O

Example 2.3.29. We discuss Ezample 2.5.24 in the light of these results. The term (xxx) is equal to
the terms (copy) (w+v) : Az.z. The term (xxxx) is equal to the term (u+ v,u+v) : Az.z which reduces

to ®((u+ v,u+v)). Again, we have the rewrites requested by Lemmas 2.53.26, 2.3.27 and 2.5.28.

We are now ready to prove the simulation theorems. As advertised, these proofs reflect the exact

same structures of the proofs of Theorems 2.3.6 and 2.3.8.

Proof of Theorem 2.3.21. From Lemma 2.3.26, ({t}}) A\z.2—7, 4t : Av.z and from Lemma 2.3.27 it =7, 5-
reduces to v : Az.z. From Lemma 2.3.28, v : Az.xz—7, 3@(v). O

Proof of Theorem 2.3.22. From Lemma 2.3.26, ({t}) Az.z—7, 4t : Az.z, which implies that ({t}) A\z.x
%a"‘ﬁ—reduces to t : Az.z. A result equivalent to Corollary 2.3.16 can be shown as easily: if t—r then for
all base terms b,t : b—7"r : b. This entails that t : Az.z —7";-reduces to v : Az.z. From Lemma 2.3.28,
Vi Az.w—7, 3®(v), which implies that v : Az.x—7,5®(v). Note that since ({t}) A\z.x € Sp, t : Av.z s
also in Sy due to the closeness under —7 of S;. The same applies to t : Azx.z, thus also to v : Az.z and
finally to ®(v). O

2.3.4 The remaining simulations

In Figure 2.2, some arrows are missing. We are now showing that the already existing arrows “compose”

well. The first two simulations are )\;l*g — A5, and A, — )\jlg and do not require confluence.

Theorem 2.3.30. For any program t, if t—, 5v (respectively tﬁzﬂgv) where v is a value, then

([tD) Az.x—2 750 (v) (resp. ({t}) Az.o—775P(v)).

Proof. Given that t—7, 5v, by Theorem 2.3.6, ([t]) Az.z—7, ;¥ (v), which by Theorem 2.3.1 implies
(ItD) Az.x—7 75 ¥(v).

Analogously, given that t—7  ;v, by Theorem 2.3.21, ({t}) Az.z—7, ;®(v), which by Theorem 2.3.2
implies ({t}) \z.2—75®(v). O

The other two simulations are A7, — A;j}, and A\, — A}, and they do require confluence.

Theorem 2.3.31. For any program t in a confluent fragment of A, (resp. )\jlg), ift—= v (respectively
t—=275v) then ([t]) Az.x—7, sU (V') with v—2*v' (respectively ({t}}) A\z.x—7, s @(V') with v—7*v').

Proof. Given that t—7,%v, by Theorem 2.3.6, ([t]) Az.z—7"3¥(v), which by Theorem 2.3.4, which
requires confluence, implies ([t]) Az.z—}, ;¥(v). The other result is similar using Theorem 2.3.21.

Notice that that the theorems with arrows are trivially valid when we take a fragment. (I
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2.4 Conclusion and open questions

In this chapter we described four canonical algebraic lambda-calculi with vectorial structures, recapitu-
lating the few existing means of writing such a language. We has shown how each language can simulate
the other, by taking care of marking where confluence is used or not.

As already shown by Plotkin [Plotkin, 1975], if the simulation of call-by-value by call-by-name is sound,
it fails to be complete for general (possibly non-terminating) programs. A known solution to this prob-
lem is developed by Sabry and Wadler [1997]. A recent work [Assaf and Perdrix, 2011] shown that the
technique can be adapted to the algebraic case to retrieve completeness. The work by Sabry and Wadler
[1997] develop a Galois connection between call-by-name and call-by-value. A direction for study is to
build on this work to also get a Galois connection in the algebraic case.

Concerning semantics, the algebraic A-calculus admits finiteness spaces as a model [Ehrhard, 2005,
2010]. What is the structure of the model of the linear algebraic A-calculus induced by the continuation-
passing style translation in finiteness spaces? The algebraic lambda-calculus can be equipped with a

differential operator. What is the corresponding operator in call-by-base through the translation?
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Chapter 3

A type system accounting for scalars

___ Résumé du Chapitre

Dans ce chapitre, nous introduisons Scalar; un systéeme de types similaire au Systéme F pour
le lambda-calcul linéaire algébrique. Nous démontrons que le systéme de types Scalar vérifie
a la fois la propriété de préservation du type par réduction et la propriété de normalisation
forte, ce qui constitue nos principaux résultats techniques de ce chapitre. La normalisation
forte offre un simplification significative de Ay, lui-méme, en enlevant la nécessité de certaines
restrictions dans ses régles de réduction. Mais le point le plus important et le plus original de
ce systeme de type, est le fait qu’il garde la trace de «la quantité d’un type » présente dans
un terme. A titre d’exemple de son utilisation, nous montrons qu’il peut servir comme une
garantie que la forme normale d’un terme est barycentrique, c’est a dire que ses scalaires

somment a un. [ ]

N this chapter we provide a fine-grained, System F'-like type system for the linear-algebraic lambda-
calculus, Ay, (cf. Section 1.2). We show that this “scalar” type system enjoys both the subject-
reduction property and the strong-normalisation property, our main technical results. The latter
yields a significant simplification of the linear-algebraic lambda-calculus itself, by removing the need for
most of the restrictions in its reduction rules. But the more important, original feature of this scalar type
system is that it keeps track of ‘the amount of a type’ that is present in each term. As an example of its
use, we shown that it can serve as a guarantee that the normal form of a term is barycentric, i.e. that

its scalars are summing to one.

Plan of the chapter. Section 3.1 presents the Scalar type system with its grammar, equivalences
and inference rules. Section 3.2 shows the subject reduction property giving consistency to the system.
Section 3.3 shows the strong normalisation property for this system, allowing us to lift the above discussed
restrictions in the reduction rules. In section 3.4 we formalise the type system B for barycentric calculi.

Section 3.5 concludes.

3.1 The Scalar Type System

The grammar of types, cf. Figure 3.1, defines the set of types (notation: 7)) and its syntactic subclass

(notation: ) of what we call unit types. Notice that the grammar for U does not allow for scalars except
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3. A type system accounting for scalars [

to the right of an arrow. More generally, notice the novelty of having scalars weighting the amount of a
type.

Type variables are denoted by X, Y, etc. and can only ever be substituted by a unit type. Contexts are
denoted by T', A, etc. and are defined as sets {z: U, ...}, where x is a term variable appearing only once in
the set, and U € U. We usually omit the brackets of the set. The substitution of X by V in U is defined as
usual, and is written U[V/X]. We sometimes use the vectorial notation U[V /X] for U[Vi/X1]- - - [Vi/Xy]
if X = Xi,...,X, and V= Vi,...,V,. We also may abuse notation and say X ¢ S meaning that none
of the X; from X are in the set S. We write I[U//X] to the substitution of X by U in each type of I'. Also
we write (a.T)[U/X] for . T[U/X]. FV(T) designates the set of free variables of the type T', defined
in the usual manner, and FV(T") is the union of the sets of free variables of each type in I'. Scalars are
denoted by «, 3,7v... and are members of the same commutative ring (S, +, x) as those of terms.

We also define an equivalence relation upon types as follows:

Definition 3.1.1. For any a,f € S and T € T. We define the type equivalence = to be the least

congruence such that

ea.0=0 ¢« 0.T=0 o 1. T=T e a.(B.T)=(axB).T e VX.aT =aVX.T

Types: T,R,S := U|VXT|aT]|O
Unit types: UV,W:= X|U—->T|VXU
P-t:7 T=S F'Ft:a.(U—T) I'kr:pU
Ie:Uka:U TEt:S - Ik (t) r:(axp).T r
Do UFt:T PEevxr THt:T X ¢FV(D)
— ——— O]
DFaet:U—T T Ft:T[U/X] T Ft:vVX.T !
I'Ht:aT I'kr:65.T I't:T
P ] +1 — ]
['0:0 PEt+r:(a+p).T T'kat:aT

Figure 3.1: Types and typing rules of Scalar

The complete set of typing rules of Scalar is shown in Figure 3.1. Let us justify this type system.
Splitting the grammar into general types and unit types is a necessary consequence of the fact that we
want scalars in the types to reflect scalars in the terms (e.g. a.\z.t should have a type «.U). Indeed if we
did not have the restriction on the left side of an arrow being a unit type, i.e. U — T, then we would have
types like («.X) — X, which a priori do not make sense, because abstractions receive only base terms
as arguments. This could be fixed by adding the equivalence (a.4) — B = a.(A — B), making sure that
« is non-zero. But still we would need to keep the — g rule restricted to having a unit type on the left
hand side of the arrow, otherwise we would break the required correspondence between scalars-in-types

and scalars-in-terms, e.g. :

Falex: (aT)—>T Ft:aT
Fadzx) t:T

but (a.\z.x) t —* a.t which should be of type a?.T
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] 3. A type system accounting for scalars

Again, we want the scalars in the types to represent those in the terms, hence the rule s;. Rule +;
takes care of sums of terms, and term 0 gets the special type 0 by an axiom.

Finally, let us go back to the application. The standard rule — g from System F' needs to be consistent
with the extra rules for application that we have on top of S-reduction in Ay, ; namely the Application

rules:

. t+r)u—(t)u+(r)u 3. (at) r = a.(t) r 5. (0)t—0

2. (u)(t+r)—= () t+(u)r 4. (r) (at) = au(r) t 6. (t) 0—0

Notice that the terms t and r in rules (1) and (2) must now have the same type (up to a scalar)
according to rule +;, so the type of t 4+ r is analogous to the type of .t in rules (3) and (4). Also, the
type for 0 in rules (5) and (6) is the same as that of 0.t if we take o = 0 in rules (3) and (4). Thus we
can focus our discussion on rules (3) and (4).

By rule (3), we must have:
'Ft:a.(U—-T) F'tr:U

') r:aT

By rule (4), we must have:
'ct:U—>T I'kFr:BU

Tk (t)r: T

By combining these two we obtain the — g rule presented in Figure 3.1.

Remark 3.1.2. A good insight into the type system is that, due to equivalences, scalars occur only
at top-level and the level of arrows. This fits very well with the idea that in Ay, all constructs are
linear, except for abstraction. With this in mind, the syntaz of arrow types could have been restricted to
U — a.V, or even written as U —,, V instead. In other words, we could get rid of the type equivalences
(cf. Definition 3.1.1) and represent each type equivalence class by just its canonical member. Such a

design choice would spare us some lemmas (cf. Section 3.2), but comes at a price:

o FEquivalences between 0.1 and 0.R or 1.T and T would still need to be enforced through an equivalence

relation or some inelegant case distinctions, at least if we want to maintain them;

e More generally our aim is to reflect some of the vectorial structure of the terms of Ayn up at the
level of types. In that sense the explicit type equivalences we have given provide a good indication

that types have the desired structure.

3.2 Subject reduction

The following theorem ensures that typing is preserved by reduction, making our type system consistent.

Having such a property is part of the basic requirements for a type system.

Theorem 3.2.1 (Subject Reduction). For any termst, t', any context T' and any type T, if t — t’, then
'kt:T=TFt:T.

The proof of this theorem is quite long and non-trivial. This is one of the main technical contributions

of the chapter.
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3.2.1 Preliminary lemmas

In order to prove this theorem, we need several auxiliary lemmas standing for general properties of our
system. We have tried to provide an intuition of every lemma so as to make it easier to follow. Also, we

divided them in four groups, reflecting the nature of their statement.

Lemmas about types

The lemmas in this section are statements about the properties of the types themselves, i.e. their equiv-

alences.

It is not so hard to see that every type is equivalent to a scalar multiplied by a unit type (i.e. a type

in U). A type in U can of course always be multiplied by 1 (proof in Appendix B.1).
Lemma 3.2.2 (o unit). VI' € 7, 3U € U,a € S such that T = a.U. O

This first lemma should not be misinterpreted however: this does not mean to say that any scalar
appearing within a type can be factored out of the type. For example, even a simple unit type X — a.X
is not equivalent to a.(X — X).

The following just says that when two types are equivalent, then the outer left scalars are the same:

Lemma 3.2.3 (Unit does not add scalars). YU, U’ € U, Vo, € S, if .U = .U’ then o =  and, if
a#0, then U=U".

Proof. Following U grammar, neither U nor U’ could contain scalars in this head form but only in the
right side of a type U — T. However, no equivalence rule lets it come out from the right of the arrow
and get to the head-form, so if o.U = 8.U’ that means a = 8 =0or U = U’ and a = §. O

Several of the following lemmas will be proved by induction on the size of the derivation tree, so, we
need to formally define what we mean by this size. In our definition we count the depth of the tree, but
ignoring any application of an equivalence rule:

We define the size of a derivation tree inductively as follows

R moom R
size s’ =0 size S’ = max{size(m ), size(m)} + 1

S S

where 71, 7o are derivation trees, S is a sequent, R and R’ are type inference rules. We denote by S,, a

sequent that can be derived with a proof of size n.

Without actually making a subtyping theory, we define a pre-order (<) between types following
[Barendregt, 1992]:

Definition 3.2.4. For any types T, R, S and any type variable X,
1. write T < R if either R=VX.T or T =VX.S and R = S[U/X] for some U € U.
2. < is the reflexive (in terms of =) and transitive closure of <.

Notice that scalars do not interfere with the order, as stated by the following lemma.

Lemma 3.2.5 (Scalars keep order). For any types T, R and for any scalar o, if T < R then a.T < a.R.
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Proof. Let T < R, then assume T'= Ry < -+ < R,, = R. Then Vi one has R; < R;+1. So, the possible
cases are:

° Ri—i—l =VX.R;, then a.R; < VX.a.R; = aVX.R; = Oé.RH_l.

e R, =VX.S and R;; = S[U/X], then a.R; = a.VX.S =VX.a.5 < (a.9)[U/X] = «.(S[U/X]) =

a.Ri+1.

O

The following lemma states that if two arrow types are ordered, then they are equivalent up to some

substitution. (proof in Appendix B.2).

Lemma 3.2.6 (Arrows comparison). For any types U,V € U and T, R € T, if V- R <U — T, then
W, X /U—T= (V- R[W/X]. 0

Classic lemmas
The lemmas in this section are the classic ones, which appear in most subject reduction proofs.

As a pruned version of a subtyping system, we can prove the subtyping rule:

Lemma 3.2.7 (=Z-subsumption). For any term t, for any types T, R and any context T' such that
FV(T)YNFV(@) =0, i T <R, then

I'Ht:T

I'Ht:R

where renaming of type variables may occur.
Proof. 1t suffices to show the property for T < R. Cases
e R=VX.T. Cases.

— X ¢ FV(I'), by rule Vy, T - t:VX.T.

— X € FV(T), then X ¢ FV(T), so take a fresh variable Y, which is not in FV(T'), and then
by rule Vy, I' - t:VY.T. Notice that VX.T = VY.T since neither X nor Y appears in T'.

e T =VX.S and R = S[U/X], then by rule Vg, I' - t: S[U/X].
O

Proving subject reduction means proving that each reduction rule preserves the type. The way to do
this is to go in the opposite direction to the reduction rule, i.e. to study the reduct so as to understand
where it may come from, thereby decomposing the redex in its basic constituents. Generation lemmas
accomplish that purpose.

We will need five generation lemmas: the two classical ones, one for applications (Lemma 3.2.8) and
one for abstractions (Lemma 3.2.9); and three new ones for the algebraic rules, one for products by scalars
different to 0 (Lemma 3.2.10) other for product by 0 (Lemma 3.2.11) and one for sums (Lemma 3.2.12).
Their proofs follows by induction on the typing derivation and can be found in Appendices B.3 to B.7.

Lemma 3.2.8 (Generation lemma (app)). For any terms t,r, any type T, any scalar vy, any context T
and any number n € N, if S,, =' b (t) r:~.T, then o, € S, r,s € N with max(r,s) <n, U € U and
R X T such that S, =I' Fr:a.U and Ss =I' - t: B.U — R with a X 8 = 7. O
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Lemma 3.2.9 (Generation lemma (abs)). For any term t, any type T, any context T' and any number
n €N, if Sp=I' - \xt:T then U € U, R € T and m < n such that Sy, =I';z:U + t: R and
U—-RXT. O

Lemma 3.2.10 (Generation lemma (sc)). For any scalar o # 0, any context T', any term t, any type T
and any number n € N, if S,, =I' + a.t: a.T, then Am < n such that S, =L'+t:T. O

Lemma 3.2.11 (Generation lemma (sc-0)). For any context T, any term t, any type T and any number
n€eN, if S, =I'F0.t:T, then AR and m < n such that S;, =+ t: R. O

Lemma 3.2.12 (Generation lemma (sum)). For any terms t, r, any scalar «, any type U € U, any
context T and any number n € N, if S, =T+t + r: .U, then 35,7 € S and r, s € N with max(r,s) < n
such that S, =I'Ft:6.U and Ss =I' - r: .U with 0 +v = «a. O

The following lemma is quite standard in proofs of subject reduction for System F-like systems, and
can be found in [Barendregt, 1992, Krivine, 1990]. It ensures that when substituting type variables for
types, or term variables for terms, in an adequate manner, then the type derived remains valid. Its proof

is fully depicted in Appendix B.8.

Lemma 3.2.13 (Substitution). For any term t, any base terms b, any types T € T, UeUr and any

context T,

1. THt:T=T[U/X]Ft:T[U/X)].

2{T,z:UFt:T andTFb:U } =Tk tlb/z]:T. O
The following corollary allows the arrow to be split without needing to consider the order relation:

Corollary 3.2.14 (of Lemma 3.2.9). For any term t, any types T € T, U € U and any context T', if
F'FXet:U—T, thenT,2:UFt:T.

Proof. Let ' - Ax.t:U — T. By Lemma 3.2.9, 3V, R such that V. -+ R X U — T and I';z:V F
t: R, then by Lemma 3.2.6, 3W, X such that U — T = (V — R)[W/X] and so by Lemma 3.2.13,
W /X],2: VIW/X] F t: RW/X], i.e. T[W/X],z:U - t:T.

Notice that if F[V_V/)?] =T, then we have finished. In the other case, X appears free on I'. Since
V- R2U—->Tand T F Az.t:V — R, according to Lemma 3.2.7, U — T can be obtained from
V — R as a type for Az.t; then we would need to use the rule Vr; thus X cannot appear free in I', which
constitutes a contradiction. So, I';z: U F t:T. O

Lemmas about the scalars

This section contains the lemmas which make statements about the relative behaviour of the scalars
within terms and within types. For example, scalars appearing in the terms are reflected within the
types also. This is formalised in the following lemma and proved by induction on the typing derivation

in Appendix B.9.

Lemma 3.2.15 (Scaling unit). For any term t, scalar o, type T and context T, if T+ a.t: T then there
exists U e U and v € S such that T = a.y.U. (]

A base term can always be given a unit type (proof by induction on the typing derivation in Ap-
pendix B.10).
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Lemma 3.2.16 (Base terms in unit). For any base term b, context ' and type T, T + b:T = U €
U such that T = U. [l

By axyg, it is easy to see that 0 has type 0, but also by using equivalences between types we have that
VX.0 is equivalent to 0 and any 7" such that 0 < T, will also be equivalent to 0. Then we can state the
following lemma (proof by induction in Appendix B.11).

Lemma 3.2.17 (Type for 0). For any context I and type T, T+ 0:T = T = 0. ([

The following theorem is an important one. It says that our Scalar type system is polymorphic only
in the unit types but not in the general types in the sense that even if it is possible to derive two types
for the same term, the outer left scalar (i.e. scalar in the head position) must remain the same. Its proof

is not trivial, as it uses several of the previously defined lemmas.

Theorem 3.2.18 (Uniqueness of scalars). For any term t, any context T', any scalars « and 8 and any
unit types U and V, if T t:a.U and ' - t: 5.V, then a = .

Proof. Structural induction over t.
1. t =0. Then by Lemma 3.2.17, o = 5 = 0.
2. t =z or t = Az.t’. Then by Lemma 3.2.16, « = 3 = 1.

3. t = v.t/. Then by Lemma 3.2.15, 30,0, U’, V', such that .U = ~v.0.U’ and 8.V = ~.6.V'. If v =0,
then v x ¢ = v x 6 = 0 and then by Lemma 3.2.3, « = = 0. If v # 0, then by Lemma 3.2.10,
T'Ft':0.U and T'Ft':6.V’, so by the induction hypothesis ¢ = 4. Notice that, by Lemma 3.2.3,
a=vXxocand f=vXxd,s0a=7Xoc=7x6=p.

4. t = t1+t2. Then by Lemma 3.2.12, 3v1, v such that I' - t1:v1.U and I' - to: v2.U with v1 4+ = o
and also by the same Lemma, 361, 2 such that I' F t1:6;.V and T' F to:62.V with ;1 + d2 = 5.
Then by the induction hypothesis v1 = d; and 79 = 2, SO a =1 + 72 = 01 + §2 = .

5.t = (t1) ta. Then by Lemma 3.2.8, 3v1,79, W and T < U such that ' F t1:91.W — T and
T'F to:v. W with 71 X 72 = «a; and also by the same Lemma, 3d1,d2, W’ and R < V such that
I'Ft1:01. W — Rand I' - t2:52.W’ with §; x 3 = 8. Then by the induction hypothesis v; = §;
and 9 = 02, SO @ =71 X Y2 = 01 X da = .

O

From this theorem, the uniqueness of 0 comes out, in the sense that no term can have type 0 and some

other type T which is not equivalent to 0.
Corollary 3.2.19 (Uniqueness of 0). For any term t and any context T, T +t:0 = VT £ 0, I/ t:T.

Proof. Assume I' F t: T, then by Lemma 3.2.2, T = o.U. Since I' - t:0 = 0.U, then by Theorem 3.2.18,
a=0. (I

Since 0 has type 0 which is equivalent to 0.U for any U, 0 can still act as argument for an abstraction,

or even be applied to another term. In either case the result will be a term of type O:

Lemma 3.2.20 (Linearity of 0). For any term t, any context I' and any type T,
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L. THO) t:T=T=0. 2.TH(t)0:T=T=0.

Proof.

1. Let T (0) t: 7. By Lemma 3.2.2, T = ~.U. Moreover, by Lemma 3.2.8, 3o, 8,U’ and R < U such
that T+ 0:8.U" — Rand I - t: .U’ with v = a x 3. Hence, by Corollary 3.2.19, 8.U’ — R =
0=0.U, so by Lemma 3.2.3, 3=0,theny=a x0=0,s0 T =~.U =0.

2. Analogous to 1.

Subject reduction cases

The following three lemmas are in fact cases of subject reduction, however, they will also be necessary as

lemmas in subsequent proofs.

Lemma 3.2.21 (Product). For any term t, any scalars o and 8 and any context T', T F a.(8.): T =
F'H(axp)t:T.

Proof. By Lemma 3.2.15, 3U € U,~ € S such that T'= a.y.U. Cases:

a#0 and § # 0: By Lemma 3.2.10, I’ F 8.t:v.U. Moreover, by Lemma 3.2.15 again, 3U’' e U,y € S
such that v.U = B.~'.U’. So, by Lemma 3.2.10, T - t:~'.U’, from which, using rule s; one can
derive I' - (a0 x B).t: (a x B).7/.U’. Notice that (a x 8)~'.U' =a.pA U =ayU=T.

a = 0: By Lemma 3.2.11, 3R such that I' - 5.t: R. Then by Lemma 3.2.10 or 3.2.11, depending if 5 =0
or not, 35 such that I'  t: .S, from which, using rule sy, one can derive I' - 0.t:0.S. Notice that
0.S=0=0.7.U =T. Also notice that 0.t = (0 x 3).t.

O

Lemma 3.2.22 (Distributivity). For any terms t and r, any scalar «, any context T' and any type T,
'Fa(t+r):T=TFat+ar:T.

Proof. Let T F a.(t + r): T. By Lemma 3.2.15, 3o, R such that T'= «.R. Cases

a # 0: By Lemma 3.2.10, T’ F t+r: R. Since R =1.R, by Lemma 3.2.12, T F t:§.R and " - r:~.R with
0+~ =1. Then by rules s; and =, T F a.t: (o x §).R and ' - a.r: (a x ¥).R, from which using
rule +; one can derive I' - ae.t + a.r: (o X d + a X 7). R. Notice that (a x d+axvy).R=a.R=T.

a=0: Then T = 0.R =0 and by Lemma 3.2.11, 35 such that I' - t+r: S. In addition, by Lemma 3.2.2,
39, V such that S = §.V. Then by Lemma 3.2.12, 3o, ¢ such that ' - t: 0.V and I' - r: ¢.V. By rules
srand =, '+ 0.t:0.V and I' F 0.r: 0.V, from which using rule +; one can derive I' - 0.t +0.r: 0.V.
Notice that 0.V =0=T.

O

Lemma 3.2.23 (Factorisation). For any term t, scalars e and 3, type T and contextT, T+ at+8.t: T =
'k (a+pB)t:T.

Proof. Let ' - a.t + 5.t:T. By Lemma 3.2.12, 36,7 € S such that I' - a.t: 0.7 and I' F B.t:~.T with
0 +v = 1. In addition, by Lemma 3.2.2, 3U € U and o € S such that T'= o.U. Then I' I a.t:0.0.U
and I' F B.t:v.0.U. Then by Lemma 3.2.15, 3¢, € S and U’',U” € U such that 6.0.U = a.¢.U’ and
~v.0.U = B.p.U". So, by Lemma 3.2.3, § X 0 =a x ¢ and v X 0 = 8 x . Cases

34



] 3. A type system accounting for scalars

o0 =0: Then T =0, and so one can derive I' - a..t: .0. Thus by Lemma 3.2.10, I' - t: 0. Using rules s;
and =, one can derive I' F (o + 3).t: 0.

0#0,0=0: Then since 6 +v =1, vy = 1, and so T - B.t:T = B.0.U", then by Lemma 3.2.10,
'k t:p.U"”. Using rules sy and =, one can derive I' - (a + ).t: ((a + 8) x ¢).U". Since § = 0,

the possible cases are:

a=0: Then (o +B) x p).U" = (B xp)U" " =cU=T.
a # 0: Then, since I' - a.t:0 = .0, by Lemma 3.2.10, I' - t:0. In addition, as I - 8.t: 8.¢.U",
by Lemma 3.2.10, I' - t: ©.U”, then by Corollary 3.2.19, 0.U” =0, so ¢ = 0, and then v = 0,

so § = 1, which is a contradiction.

o # 0, v = 0: Analogous to previous case.

a,B,¢,p # 0: Then by Lemma 3.2.3, U = U' = U”. Then ' F a.t: a.¢.U and T' + B.t: 8.0.U. Hence

by Lemma 3.2.10, ' F t: .U and I' - t: p.U. Then by Theorem 3.2.18, ¢ = ¢ and then by rule

s1, one can derive I' F (o + f).t: (a + 5).¢.U. Notice that (a + 5).¢.U = ((a + B) x ¢).U =
(axop+B8xp)U=((xoc+yx0)U=((0+7v)x0)U=(1x0)U=0U=T.

O

3.2.2 Subject reduction proof

Now we are able to prove the subject reduction property (Theorem 3.2.1).

Proof. We proceed by checking that every reduction rule preserves the type. We give two cases as

example, the full proof can be find in Appendix B.12.

rule (t+r)u— (t) u+(r) ust Let '+ (t+r) u:T =1.7. Then, by Lemma 3.2.8, o, 5, U and T' X T
suchthat ' Fu: .U and '+ t+r: B.U — T' = 1.8.U — T’ with ax 8 = 1. Then by Lemma 3.2.12,
36 and v such that THt:0.8.U =T/ = (0 x 8).U 5T and Tk r:4..U =T = (yx 8).U - T’
with § + v = 1. Then by rule g, T'F (t) u: (0 x 8 X @). 7" and T F (r) u: (y x g x «).T".
Notice that (§ x 8 x «).T' = (6 x 1).T7" = 61" and (y x 8 x «).T7" = (y x 1).T" = 4.7'. Then
by Lemmas 3.2.5 and 3.2.7 '+ (t) u: 6.7 and T' - (r) u:~.T, from which, using rule +;, one can
derive Tk (t) u+ (r) u: (0 +v).T=T.

rule (Az.t) b —» t[b/z]: Let ' + (Az.t) b:T. By rule =, T + (A\z.t) b: 1.7, so by Lemma 3.2.8,
Jo, B, U, T" X T such that T - Az.t: .U — T/ and T' - b: .U with @ x 8 = 1. Since b is a
base term, by Lemma 3.2.16, « = 1 and so 8 = 1. Then by Corollary 3.2.14, I', z: U + t: T’. Thus,
by Lemma 3.2.13, T' F t[b/z]: T, from which, by Lemma 3.2.7, one obtains I" - t[b/x]: T.

O

3.3 Strong normalisation, simplified reduction rules and conflu-

ence

The Scalar type system will now be proved to have the strong normalisation property, i.e. every typable

term is strongly normalising, it cannot reduce forever. In order to show this we first set up another
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type system, which simply ‘forgets’ the scalars. Hence this simpler type system is just a straightforward
extension of System F to Ay, which we call A\2!% (definition 3.3.1). In the literature surrounding not
Alin, but its cousin, the algebraic A-calculus, one finds such a System F' in [Ehrhard, 2010], which extends
the simply typed algebraic A-calculus of [Vaux, 2007, 2009] — our \2!® is very similar. Secondly we prove
strong normalisation for it (Theorem 3.3.8). Thirdly we show that every term which has a type in Scalar
has a type in A\2'* (Lemma 3.3.10), which entails strong normalisation in Scalar (Theorem 3.3.11).

This strong normalisation proof constitutes the second main technical contribution of the chapter.

The confluence of a simplified version of Ay, is proven as a corollary.

In this section we use the following notation: T(\2!?) is the set of types of A2!%. A is the set of terms
of Ajin. I'IF t:T says that it is possible to derive the type T € 'H‘()\Ql“) for the term t € A in the context
I" under the typing rules of \2!*. We just use - for Scalar. In addition, we use Name? to distinguish the

names of the typing rules in A\2!® from those of Scalar.
Definition 3.3.1. The type grammar of A2 is the following:
AB,C=X|A— B|VX.A

The typing rules of A\2'% are those of System F plus the following rules:

azd TIFt:A T'lFr:A . T'IFt: A
- ax + — §
I'-0:A TlFt+r:A ! Tl oat: A

<
I

In order to prove strong normalisation we extend the proof for A2. The standard method was invented
by Tait [Tait, 1967] for simply typed A-calculus and generalised to System F' by Girard [Girard, 1972].
Our presentation follows [Barendregt, 1992, Section 4.3]. The following definitions are taken from this
reference — with slight modifications to handle the extra A2!¢ rules.

The strong normalisation property entails that every term is strongly normalising, so first we define

the set of strongly normalising terms.
Definition 3.3.2. SN = {t € A | t is strongly normalising}.

The notion of closure is often captured by the notion of saturated set. We use the notation t =
t1,...,t, with n > 0. Also (r) t = (((r) t1)...) t, where if n = 0 it is just r.

Definition 3.3.3.
1. A subset X C SN is called saturated if

(a) 0 € X;
(b) Vx,t € SN, (z) t € X;
(c) (t[b/z]) F€ X = ((\xt) b) Fe X;
(d) (Viel, (t;) TeX)= (> t)reX;
(¢) (Vi € I,((u) t;) F€ X) = ((0) Y, t) T X;
(f) Vae S, te X & ate X;
(9) a.((((t1) t2) ...) tp) € X < ((((1) t2)...) aty)...) t, € X (1 <k <n);

(h) ¥t € SN, (0) t € X;
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(i) vt,i € SN, ((t) 0) i € X.
2. SAT = {X C A | X is saturated}

The basic idea is to prove that types correspond to saturated sets. In order to achieve this, we define
a valuation from types to SAT (in fact, from type variables to SAT and then, we define a set in SAT

by using such a valuation).

Definition 3.3.4.
1. A valuation in SAT is a map £:V — SAT, where V is the set of type variables.
2. For any A,B C A, we define A— B={teA|VreA (t)recB}.

3. Given a valuation & in SAT, we define for every T € T(A\2'%) a set [T]e C A as follows:

[X]e = &(X), where X €V
[A— B]e = [A]¢ — [Ble
vx.Ale = [ [Alex=y)
YESAT
Lemma 3.3.5.
1. SN € SAT,

2. A,Be SAT = A — B € SAT,

3. Let {A;}icr be a collection of members of SAT, (..; A € SAT,

iel
4. Given a valuation & in SAT and a A in T(\2!?), then [A]¢ € SAT.

Proof. cf. Appendix B.13. O

Just like in definition 3.3.4, we define another valuation, this time from term variables to base terms.
We use it to check what happens when we change every free variable of a term for any other base term.
The basic idea is the following: we define p,£ E t: A to be the property of changing every free term
variable in t for another term with the help of the valuation p (a base term, since term variables only
run over base terms) and still having the resulting term in the set [A]¢. So, we define I' F t: A to be the
same property, when the property holds for every pair in I' and for every valuations p and &.

This is formalised in the following definition (definition 3.3.6) and with this definition, we prove that
if a term has a type in a valid context, then the property above holds (Theorem 3.3.7), which will yield
the strong normalisation theorem (Theorem 3.3.8) via the concept of saturated set (because saturated
sets are subsets of SN).

Definition 3.3.6.

e A valuation in A is a map p:V — Ay, where V is the set of term wvariables and Ay = {b €
A | b is a base term}.

e Let p be a valuation in A. Then [t], =tz := p(x1),..., 2, = p(x,)], where T = x1,..., 2, is the

set of free variables in t.
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o Let p be a valuation in A and & a valuation in SAT. Then

— p, & satisfies t: A, notation p,§ Ft: A < [t], € [A]e.
—p,lET S pEEx:Aforallx:AinT
TRt AV ¢ [peET = p ekt Al

Theorem 3.3.7 (Soundness). I'lFt: A=TF t: A.

Proof. We proceed by induction on the derivation of I' I- t: 7. We show one case as example. The full

proof is in Appendix B.14.
By the induction hypothesis, ' Ft: A — B and I' Fr: A. Assume

-t:A— B FikFr:A . p,& ET in order to show p,& E (t) r: B. Then p,§ Et: A — B,
4)
Tk (t) r:B E e [t], € [A = Ble = [A]e — [Ble and [r], € [A]e. Then
[(t) r], = [t], [r], € [Ble, so p,{ F (t) r: B.

([l
Theorem 3.3.8 (Strong normalisation for A\2!%). T'IF t: A = t is strongly normalising.

Proof. Let T' IF t: A. Then by Theorem 3.3.7, T' E t: A. Define po(z) = z for all x and let & be a
valuation in SAT. Then pg,£ F T (i.e. for all (z: B) € T, po,& E z: B since x € [B]¢ holds because [B]¢
is saturated). Therefore po, & F t: A, hence t = [t],, € [A]¢ € SN. O

It is possible to map every type from Scalar to a type in A\2!* as follows.
Definition 3.3.9. Let (1)?: T — T(\2'%) be the following mapping:

e XP=X o (VXD =VXT' o (U—TY=U>T" o @D)f=T" o0=A
with A € T(\2'?).

We also use the following abuse of notation I'¥ = {(z:T%) | (z:T) € T}.
The following lemma ensures that if it is possible to give a type to a term in Scalar then it is possible

to give to the term the mapped type in A2%.
Lemma 3.3.10 (Correspondence with \2!%). T't:T = I'% - t: 7%,

Proof. We proceed by induction on the derivation of I' - t:T. We show one case as example. The full
proof is in Appendix B.15.
I't-t:al tr:pT By the induction hypothesis T'% IF t: 7% and T'% IF r: T%, so by rule
Thttr(at BT +5 T t+r: T8 = ((a+ 8).T).

O

Strong normalisation arises as a consequence of strong normalisation for A2'* and the above lemma.
Theorem 3.3.11 (Strong normalisation). I'F t:T = t is strongly normalising.

Proof. By Lemma 3.3.10, I'? I t: 7%, then by Theorem 3.3.8, t is strong normalising. O

Taking up again the example of Section 1.2, diverging terms like Y are simply not allowed in this
typed setting, since Theorem 3.3.11 will ensure that all the typable terms have a normal form. So we do
not have infinities, and hence the intuitive reasons for having restrictions (%) on the Factorisation rules
of the Linear-algebraic calculus (¢f. the reduction rules in Section 1.2) have now vanished. If we drop

them, the example becomes as follows.
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Example 3.3.12. Consider some arbitrary typable, and hence normalising term t. Then a.t — a.t can
be reduced by a factorisation rule into (o — «v).t. This reduces in one step to 0, without the need to reduce
t.

It turns out that, in general, for typable terms we can indeed drop the restrictions (*) and (**) without
breaking the confluence of A;,. These restrictions were there only due to the impossibility of checking
for the normalisation property in the untyped setting. In fact the confluence becomes a corollary of the

strong normalisation theorem.

Corollary 3.3.13 (Confluence). Let t be a term of Ajin, as it appears in Figure 1.1, but without restric-
tions (*) and (**). If t is typable in Scalar, and t —* u and t —* r, then there exists a term t' such

that u —* t' andr —* t’.

Proof. First let us introduce some notation. Let —3 be a S-reduction and —, any reduction from
Figure 1.1 but the S-reduction, without restrictions (*) and (**).

The proof follows in several steps.

1. First we prove local confluence for the algebraic fragment, i.e. if t —, u and t —, r, then there

exists a term t’ such that u =} t' and r —} t'.

2. Then we prove local confluence for the S-reduction, i.e. if t =3 u and t —3 r, then there exists a

term t’ such that u HE t' and r %z; t.

3. Finally, we prove that algebraic rules and S-reduction commutes, i.e. if t —, u and t —3 r, then
there exists a term t’ such that u —* t’ and r —* t’, where —* is a reduction sequence of zero or

more steps involving any rules.

This proves the local confluence of the system. Local confluence plus strong normalisation implies con-
fluence (cf. for example [TeReSe, 2003]).
Let proceed with the proofs.

1. Valiron did a semi-automatised proof in the interactive theorem prover Coq [Coq Dev. Team, 2009].
The interested reader can find the proof in [Valiron, 2011b)].

2. The confluence of the -reduction is a trivial extension of the confluence of lambda-calculus.

3. This proof goes by structural induction. ¢f. Appendix B.16.
O

Notice that the proofs of subject reduction (Theorem 3.2.1) and strong normalisation (Theorem 3.3.11)
have been done in the general case, without consider restrictions (*) and (**), so they are still valid for
the simplified calculus.

Having dropped restrictions (*) and (**) is an important simplification of the linear-algebraic -
calculus, which becomes really just an oriented version of the axioms of vector spaces [Arrighi and Dowek,
2004] together with a linear extension of the S-reduction (i.e. restriction (***) remains of course, which
makes this calculus to be call-by-base and all functions remain linear in their arguments, in the sense of

linear-algebra).
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3.4 Barycentric A-calculus

By slightly modifying our system, the Scalar type system may be used in order to specialise Ay, into
a higher-order barycentric calculus. In order to illustrate this point, let us consider the following type

judgement, which can be obtained from scalar:
1 1 3
f =2z (((x) (5.(true + false))) (Z.true + Z.false)) :B — B;

where B stands for VX.X — X — X. Notice that the type B has true, false, and linear combinations of
them with scalars summing to one, as members. In this example the type system provides a guarantee
that the function is barycentric, and that if it receives a barycentric argument, it preserves this property.

For example, if we apply such a function to %.(true + false) we obtain:

1 3 5
(f) (5-(131'116 + false)) —* g.true + g.false.

Although this seems feasible, we will not develop a full-blown barycentric higher-order A-calculus and
associated properties in this thesis. We will just show that the scalar type system accomplishes part
of the job by checking for the barycentric property, i.e. checking that the normal form of a term has
amplitudes summing to one. A barycentric A-calculus fragment of the algebraic A-calculus has already
been studied for its own sake [Tasson, 2009], however in this work the calculus was endowed with a simple
type system, not one that would recognise barycentric terms amongst other terms.

To this end let us define a type system with the rules and grammar of Scalar, but where the valid
types are the classic ones (i.e. types exempt of any scalar, which we have referred to as T(A2!¢) in

Definition 3.3.1), whilst all the other types are just intermediate types:

Definition 3.4.1. We define the type system B for the barycentric calculus to be the Scalar type system

with the following restrictions:
e S=R,
e Contexts are sets of tuples (x: A), with A € T(\2!?),
o Type variables run over T(A\2!?) instead of unit types, i.e. the rule Vg accepts only A € T(\2!),

e The final sequent have to be well-formed in the following sense: YA € T(\2!%), any derivable sequent

T'Ft: A is well-formed, even if the derivation has scalars appearing at intermediate stages.

In order to show that this type system does the job, let us define the weight function which checks for
the barycentric property:

Definition 3.4.2. Let w: A — R be a function defined inductively by:
w(0)=0; w)=1; w(t;+t2) =w(t:)+w(t); w((t1) ta) =w(t1) xw(tz); w(at)=axw(t)
where b is a base term.

We can enunciate the following theorem which shows that every term with a well-formed typing in

the type system B reduces to a term with weight 1:

Theorem 3.4.3 (Normal-form of terms in B have weight 1). LetT' - t: A be well-formed, then w(tl) = 1.
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Proof. Instead, we prove the more general case: T' +t:a.A = w(t]) = «, by structural induction on t.
We take I' - t | : . A, which is true by Theorem 3.2.1. We show one case as example. The full proof is in
Appendix B.17.

Take the case t |= ~v.t/. Then w(t |) = vyw(t'). By Lemma 3.2.15, 3U € U,é € S such that
a.A = ~.6.U. Notice that T(A\2'*) C U, so by Lemma 3.2.3, a = v x §. We consider two cases:

a = 0: Then either v = 0, and so w(y.t') =0 x w(t’) =0, or v # 0 but § = 0, and so by Lemma 3.2.10,
T t':0.U =0.4, so by the induction hypothesis w(t’) = 0, and then w(y.t") =~ x 0 =0.

a#0: Then A = U, so by Lemma 3.2.10, I F t’:0.A. Then by the induction hypothesis w(t’) = 4.
Notice that w(tl) =y x w(t’) =7 x § = a.
(I

Remark 3.4.4.

e By Proposition 1.2.2, closed normal terms have form

n m
Z OZZ)\SCtZ + Z /\ZL'.u]'
i=1 j=1

Thus the Theorem 3.4.3 entails that Y | a; +m = 1. Hence the type system B, an easy variation
of the Scalar type system, checks for the barycentric property, i.e. it checks that a given term will

reduce to a barycentric distribution of terms.

e [t is easy to prove that ) )
z:Aw: Ak ((2./\z./\y.1.:c+ Zy) z) w: A.

But notice thatw(((2.)\x.)\y%.x+i.y) z) w) = 2, even when ((Q.Az./\y.i.eri.y) z) w —* %.er%.w,
whose weight is equal to one. So, a priori this w function cannot tell us that this term will yield
a barycentric term. However the fact that has type A in T(A\2'?), according to the Theorem 8.4.3,

anticipates this result.

o One might think that unit types U are just as good as barycentric types B for the sake of obtain-
ing Theorem 8.4.3, via a combination of Subject-reduction and the uniqueness of scalars property
(cf. Theorem 8.2.18). This is only morally true, here is a counter-example:

x:U—=2U,y:Uk (x) %.y:U but w((x) %y):%

But the more significant difference between U and B is one of composability: the application of a

term of unit type to another is not necessarily of unit type; whereas barycentric types, on the other

hand, are preserved under application. Thus terms in B are not only barycentric; they can also be

viewed as barycentric-preserving functions.

3.5 Conclusion and open questions

In summary, we have defined a System F-like type system for an extension of Ay, , a A-calculus which
allows making arbitrary linear combinations of A-calculus terms a.t + 8.u. This Scalar type system is
fine-grained in that it keeps track of the ‘amount of a type’; i.e. the type of terms contain a scalar which
is the sum of the amplitudes of the terms which contribute to the type.

Our main technical contributions were:
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e A proof of the subject reduction property of this Scalar type system (Theorem 3.2.1). This came

out after having proven a set of lemmas related to the equivalence relation intrinsic to the types,
and another set of lemmas explaining how the scalars within the types are related to the scalars
within the terms. Once all of the important properties were known, we were able to use them to
decompose and recompose any term before and after applying a reduction rule, so as to show that

every reduction rule preserves the types.

A proof of the strong normalisation property of this Scalar type system (Theorem 3.3.11). The
technique used to prove the strong normalisation property was by proving that such property would

hold for a simpler system, and then to show the correspondence between the two systems.

A proof that under strong normalisation, most of the conditions upon the Ay, reduction rules can
be lifted (e.g. allowing the factorisation not only of closed normal terms but of any term) without

jeopardising confluence, thereby simplifying the A;, language.

A proof that the Scalar type system can be used to check that a term has the barycentric property,

i.e. that the amplitudes of its normal form are summing to one.

Arguably a denotational semantics approach might have led to less syntactic proofs of the properties of

the type system, sustained by the guiding intuition about an underlying mathematical space. On the

other hand, the complexity of the proofs in this chapter is largely due to the large number of rules (16

rules plus associativity and commutativity of +). Moreover the issue of models of (Linear-)Algebraic

A-calculus is a challenging, active topic of current research. We know of the categorical model of simply

typed Ayy, [Valiron, 2010], and the finiteness space model of simply typed Algebraic A-calculus [Ehrhard,

2005, Tasson, 2009]. Moreover, even if both calculi simulate each other (c¢f. Chapter 2), it is not clear

whether the translation applies at the level of models. Hence known models are intricate and tend not to

cover the set of terms under consideration in this chapter. Notice also that since the models of untyped

A-calculus are uncountable, the models of (Linear-)Algebraic A-calculus are likely to be vector space of

uncountable dimension. These are fascinating, open questions.
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Chapter 4

Introducing sums of types

___ Résumé du Chapitre

Nous définissons le fragment additif de A\j,. Nous définissons également un systéme de types
qui inclut les sommes de types comme un reflet de celles présentes dans les termes. Apreés avoir
prouvé la propriété de préservation du type par réduction, nous étudions le role des sommes
dans le calcul via interprétation de notre systéme dans le Systéme F avec des paires. Nous
montrons que ce calcul peut étre interprété comme le Systéme F' avec un constructeur de paires
associatives et commutatives, et distributives par rapport auz applications. La normalisation

forte de notre systéme dérive de cette interpretation. ]

variant of the algebraic A-calculi consists on adding sums to the pure A-calculus. This amounts

to an algebraic A-calculus where coefficients are natural number. The only difference is that some

reductions may happen ‘faster’ with coefficients: e.g. if t — t/, then 2.t — 2.t', but t +t — t’ +

t — t'+1t’. Notice that this contrasts with the purely non-deterministic setting [de’Liguoro and Piperno,
1995] and its ‘choice’ operator, where 1+ 1 is equal to 1.

Most presentations of calculi associated with differential linear logic, e.g. [Ehrhard and Regnier,
2003, Pagani and Rocca, 2010, Pagani and Tranquilli, 2009], are carried out in the Boolean setting or
without coefficients (or with the possibility of introducing coefficients only mentioned as an aside).
Other examples, with slight differences, are Bouldol’s parallel A-calculus [Boudol, 1994|, and other
probabilistic extensions of calculi [Bournez and Hoyrup, 2003, Di Pierro, Hankin, and Wiklicky, 2005,
Herescu and Palamidessi, 2000].

Therefore the A-calculus with sums, but without scalars, becomes the most basic object of study.
Hence it was natural to try to understand the behaviour of sums in the context of A;,. To this end we
have isolated a fragment of \j;,, with sums only (without scalars). We call it xedd We have endowed it
with an intuitive type system, Additive, and proved its subject reduction.

The first attempt was to interpret Additive in a fragment of the multiplicative exponential linear logic,
however it appeared that the target fragment was not linear, in the sense of linear logic (exponentials
appeared all over the types in the translation). In fact the linearity of Ay, that allows distributing
application over sums, does not seem to be the same linearity found in linear logic.

Consequently, we adapted the translation in order to interpret Additive in System F' with pairs. The

key idea is that the distribution of application over sums is performed during the translation, and then
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4. Introducing sums of types [

B-reduction is made within the usual A-calculus with pairs. The translation says that whenever a term
has a type in Additive, its translation has a type in System F' with pairs. It is also true that it is possible
to translate back the translated terms, and obtain the same we started with. We relate the reductions
in Additive with those in System F with pairs in order to use the strong normalisation of System F

)\add

to ensure the same property in Additive. The confluence of the typed is a corollary of the local

confluence and the strong normalisation.

Plan of the chapter. Section 4.1 defines X9, the additive fragment of Ay, and its type system
Additive. Section 4.2 proves the subject reduction property in this setting. Section 4.3 is the core
of this chapter. First, Section 4.3.1 introduces Addg;,nct, a simplification of Additive, which does not
consider AC-equivalences nor neutrality of 0 within types. It is shown to be nevertheless equivalent to
Additive. Then, in Section 4.3.2 the System F with pairs is presented and in Sections 4.3.3 and 4.3.4,
an interpretation of Additive in it is set up, using Addssryct as an intermediate step. Section 4.3.5 proves
the strong normalisation and confluence of our system by taking advantage of its relation with System F

with pairs. Section 4.4 concludes.

4.1 The Additive Type System for \add

The X944 calculus, cf Figure 4.1, is a purely additive fragment of A, cf Figure 1.1. The scalars have
been removed from the grammar and the rewriting rules involving have been removed also. In addition
to S-reduction, there remain five rules, specifying the behaviour of +: application distributes over it, and

0 is absorbing with respect to application and neutral with respect of sums.

Terms: t,rrusz= b|(t)r|0|t+r
Basis terms: b= x|zt
Distributivity rules: Zero rules: B-reduction:
(u+t)r>(uW)r+(t)r 0)t—0 (Az.t) b = t[b/z]
(r) (u+t) = (r)u+(r)t (t)0—0
t+0—t

Figure 4.1: Syntax and reduction rules of X4

The grammar of types, c¢f. Figure 4.2, is analogous to the grammar of Scalar cf. Figure 3.1. We
slightly simplify this scheme and do not allow VX.T for general T but only for unit types. Notice that in
Scalar it is morally the case, since there is the equivalence VX.o.T = a.VX.T. The analogous equivalence
in Additive would be VX .(T 4+ R) = VX.T 4+ VX.R which would be unusual, since it would allow each VX

to be replaced by different types. Instead we choose to restrict the universal quantifier to unit types.

We define an equivalence relation = on types as follows

Definition 4.1.1. For any types T', R and S, we define the type equivalence = to be the least congruence
such that:
e T+R=R~+T e T+(R+S)=(T+R)+S e I'+0=T
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[ 4. Introducing sums of types

Within this equivalence, it makes sense to use the following notation:

0 1
ZTzﬁ ;
i=1 i=1

[e3 oa—

Ti:ZTiJrTa ifa>1

i=1

Notice that it could be also possible to use the notation Zf‘zl T = «o.T, when all the types T are the
same, however it may induce some confusion with Scalar, so we chose to avoid such a notation in this

Chapter.

Remark 4.1.2. Notice that every type is equivalent to a sum of unit types.

Types: T,R,S:= U|T+R|0
Unit types: UV,W:u:= X|U—=T|VX.U
f{llﬂ —_a:I,'6 @ B
Tx:UkFz:U I'+~0:0 FFt:Z(U%Ti) FFI‘:ZU
=1 =1
T,a:UFt:T DEevXU — g
- ——— Vg
THX\et:U T Ikt U[V/X] TH®)r:) > T
i=1 j=1
I'Ft:7 TrFr:R TFt:T T=R PEeU  X¢FVD)
+1 =
THt+r:T+R THt:R T+ t:vX.U !

Figure 4.2: Types and typing rules of Additive

Typing rules are also given in Figure 4.2. Rules for the universal quantifier, axiom and introduction
of arrow are the usual ones. Any sum of typable terms can be typed using rule +;. Notice that there is
no elimination rule for 4. An arrow elimination in this setting may seen complex: a direct analogous to

the arrow elimination from Scalar, cf. Figure 3.1, would be of the form

@ B
FFt:ZU%T FFr:ZU
i=1 j=1

T
1

TH(t)r: >

a B
=1 j=
where the scalars a and 3 in the — g rule of Scalar have been replaced by > ¢ | and Z?:y However,
notice that this restricts the calculus, since all the U — T that are summed have to be the same, and
the same happens with the U, so the term (t1 4+ t2) (r1 + r2) would be forced to have t; and t2 with the
same type, and also r; and ro with the same type.

One way to gradually relax this restriction is to allow having different 7”’s, obtaining to the rule

o B
F}—t:ZU—>Ti FI—r:ZU
j=1

i=1

—E

a B
TH@t)r: > > T
i=1 j=1
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Continuing the example, this allows t; and to to have different types, provided that they are arrows

starting with the same type U.

Example 4.1.3. LetI'Fby: U, I'Fbo: U, T Xxt:U - T and ' \y.r:U — R. Then

FEXxxt+Ayxr:(U—=T)+ (U —R) Thkbi+b:U+U
FF()\ZL"S‘F)\’IJI‘) (b1+b2):T+T+R+R

—E

Notice that (Az.t + Ay.r) (b1 + ba) =* (Az.t) by + (Az.t) ba+ (Ay.r) by + (A\y.r) be
—_— Y Y Y

T T R R

On the contrary, allowing different U’s is not so straightforward. On account of the distributivity
rules it is required that all the arrows in the first addend start by a type which has to be the type of all
the addends in the second term. For example, if the given term is (t +r) (by + bz), the terms t and r
have to be able to receive the both b; and by as arguments. This could be done by taking advantage
of the polymorphism, however the arrow-elimination rule would become much more complex since it will
have to do both, an arrow-elimination and a forall-elimination at the same time. Instead, we delay this
(needed) choice to the Vectorial type system in Chapter 5, and here we just conserve this restricted

version, which is enough for the aims of the present Chapter.

4.2 Subject reduction

The Additive type system is consistent, in the sense that typing is preserved by reduction. In this section,
we prove the subject reduction property. We adapt the proof of Theorem 3.2.1, the subject reduction of

Scalar.

Theorem 4.2.1 (Subject Reduction). For any terms t,t', any context T and any type T, if t — t’ then
Ft:T=THFt:T.

Analogously to what has been done in Section 3.2, this result requires some definitions and lemmas.

We just enunciate them, all the omitted proofs can be found in Appendix C.

Definition 4.2.2 (Relation =< on types). For any unit types Uy, U,V and any type variable X,
o write Uy < Us if either Uy =VX.Uy, or Uy =VX.V and Uy = V[W/X] for some type W.
o = is the reflexive (in terms of the type equivalence) and transitive closure of <.

Lemma 4.2.3 (Arrows comparison). For any types T, R and any unit types UV, if V.- R<U = T,
then there exist W, X such that U — T = (V — R)[W/X]. O

As a pruned version of a subtyping system, we can prove the subsumption rule:

Lemma 4.2.4 (=<-subsumption). For any context T, any term t and any unit types U, V such that
U XV and no free type variable in U occurs in T, if T t:U then ' Ft:V. O

Proving subject reduction means proving that each reduction rule preserves the type. Thus three
generation lemmas are required: two classical ones, for applications (Lemma 4.2.5) and for abstractions

(Lemma 4.2.6 and its Corollary 4.2.9) and a new one for the sums (Lemma 4.2.7).
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Lemma 4.2.5 (Generation lemma (app)). For any T',T,t and u, if T F (t) u: T is derivable, then there
are o, B € No, and some types U (inU), T1,..., Ty such that THt: > " (U —T;) and T F u: 25:1 U
with E;l:1 25:1 T; < T and each derivation of the typing judgement for t and u smaller than the one
for (t) u. O

Lemma 4.2.6 (Generation lemma (abs)). For any T, t and T, if T+ Ax.t: T is derivable, then there
exist a unit type U and a type R such that T, x: U+ t: R andU — R T. [l

Lemma 4.2.7 (Generation lemma (sum)). For any T, T, r and u, if T Fr +u: T, then there are some
types R, S such that'Fr: R and ' - u: S with R+S =T and the typing derivations for r and u smaller
than the one for r + u. O

The standard substitution lemma can also be stated in this context.
Lemma 4.2.8 (Substitution). For any T, T, U, b and t,

1. THt:T=T[U/X]Ft:T[U/X)].

2{Tl,z:UFt:T andTFb:U } =Tk tlb/z]:T. O
Corollary 4.2.9 (of Lemma 4.2.6). For any T, U, T and t, if T+ et:U — T thenT,z: U Ft:T.

Proof. Analogous to the proof of Corollary 3.2.14: Let I' - Ax.t: U — T. By Lemma 4.2.6, 3V, R such that
V R=U-—TandT,z:V I t: R, then by Lemma 4.2.3, 3W, X such that U — T = (V — R)[W/X]
and so by Lemma 4.2.8, T[W/X],z: VW /X] F t: RIW /X], i.e. U[W/X],2:U - t:T.

Notice that if C[W/X] = T, then we have finished. In the other case, X appears free in I'. Since
V- R2U—->Tand ' F Az.t:V — R, according to Lemma 4.2.4, U — T can be obtained from
V — R as a type for Az.t; then we would need to use the rule Vr; thus X cannot appear free in I', which
constitutes a contradiction. So, I',z: U Ft:T. O

Using axg it is easy to see that 0 has type 0, and there is no way to change its type except by rule =

(notice that V-rules only apply on unit types).
Lemma 4.2.10 (Typing 0). For any T, if T = 0:T then T = 0.

Proof. Trivial: there is only one way to derive a type for 0, and it is using the rule axg, so the only

possible type for 0 is 0. O

A base term can always be given a unit type.

Lemma 4.2.11 (Base terms in Unit). Let b be a base term, that is a variable or an abstraction.
Then for any I and T, ' +=b:T implies T =U € U.

Proof. Notice that V-rules only produce unit types. So if b is a variable, it has either a type given in the
context, which must be unit, or it gets its type through V-rules. If b is an abstraction, it has either a

type given by — rule, which is unit, or it gets its type through V-rules. (I

The proof of subject reduction is done by induction on the derivation of t — t’, similarly to the proof

for Scalar given in Chapter 3. We omit this proof here and place it directly in Appendix C.7.
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4.3 Logical Interpretation

In this section, we interpret the Additive type system into System F with pairs (System Fp). Superposi-
tion will be interpreted as pairs. Since this product is neither associative nor commutative in System Fp,
we consider at first that the sum operator in Additive also does not have these properties. This involves
a slightly modified type system, that we call Addstryuce- We then prove that this modified type system is
equivalent to the original one (Proposition 4.3.7), and then translate every term of Addstrqyct into a term
of System Fp. Finally, we show that this translation is correct with respect to typing (Theorem 4.3.19)
and reduction (Theorem 4.3.21), from where we can prove the strong normalisation property for Additive
(Corollary 4.3.22).

4.3.1 Structured additive type system

The system Addssryet is defined with the same grammar of types as Additive, and the same rules azx,
arg, =1, +1, V1 and Vg. There is no type equivalence, and thereby no commutativity nor associativity
for sums, (also 0 is not neutral for sums). Hence rule — , has to be precised. To specify what an n-ary

sum is, we introduce a structure of trees for types.

Definition 4.3.1. A tree is given by the following grammar:
T,T:=¢]2Z|8(T,T)

Intuitively, a label £ represents a unit type, Z stands for 0, and S for the sum. A leaf is given by a finite
word over {1,r} (that describes the path from the root to the leaf, with left or right steps). We call
labelling a function from leaves to unit types. Given a tree T and a labelling s, the type T[s] is defined
inductively by:

{[s] = s(e) (e denotes the empty word)
Z[s] =0
S(T, T[s] = Tlw — s(Qw)] + T'[w — s(rw)]

where w +— s(1w) is the function that maps the word w to the result of s evaluated in lw.

This definition is naturally extended to functions s from leaves to types.

Graphical representation. We may use the usual graphical representation of trees:
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Example 4.3.2. Within this representation, the tree on the right is
T =5(5S( s(z,¢) ),¢).

The third leaf (at the end of the bold path) corresponds to lrr. Writing s to the labelling

{11 Uy, lrr — Us,xr — Us}, we get ¢
_ l
T[s] = (U1 + (0 + Uz)) + Us.
Z 14
By extending the graphical notation, this type might be represented by
Us the labelled tree on the left.
Uy
0 U2

Conversely, for any type T, there exists a tree Tr and a unique labelling sp such that T'= Tp[sr].

Tree composition is defined as follows:

loT =T
ZoT =12
ToZ=12

S(T1,T2)oT =8(T10T,T20T) (if T#2)

Intuitively, composing Twith T’ consists of “branching” T’ to each leaf of T, and when this leaf is 0, it

absorbs the tree.

Example 4.3.3. Let T= and T’= /\ . Then ToT'=

14 / Z

An immediate induction (¢f. Appendix C.8) ensures that
Lemma 4.3.4. Tjw— T'[s]] =T o T'[wv > s(v)] where w denotes a £-leaf of T, and v a l-leaf of T. O
Now we can give the rule for the arrow elimination in Addgt,yet:
FEt:Tww— (U— Ty)] Fku:Tve Ul
TE(t) u: ToT [wv— Ty

— B

Where wv is a word whose prefix w represents a leaf of T.
Example 4.3.5. The following derivation is correct:
PEt:(U—-Ty)+U—1T2)+0 Tku:U+0
LE()u: ((Ty+0)+ (T2 +0)) +0
Graphically, we can represent this rule as follows:

if t has type and u has type /\ , then (t) u has type

—E/

|

U 0

ol

U—=T, U—=T>

T T>

ol
(=]

49



4. Introducing sums of types [

Remark 4.3.6. The following informal remark can be made in anticipation of definition 4.5.8: we could
also use labellings that map leaves to base terms, and represent any (closed normal) term by a labelled
tree. Then we could type a term Tlw; — b;| with T{w; — U;] if every b; has type U;. For example,
F (b1 4+ 0) + by : (U1 + 0) + Uy would be represented as

by . Us
b1 0 Ul 6

Conversely, if a term has type T[w; — U], it intuitively means that it will reduce on a term T{w; — by],
with every b, of type U;. Concerning application, we actually have: if t —* Tw; — t;] and u —* T[v; —
u,], then (t) u =* T o T [wv; — (t;) u;]. As instance, using the same terms as in Ezample 4.3.5, we
can see that t —* (t1 +t2) + 0 (with t; of type U — T;) and u —* by + by (with b; of type U) imply

(t) u=*((t1) (b1 +b2) + (t2) (b1 +ba)) + (0) (by +by)
—>*(((t1) b1 + (t1) b2) + ((t2) by + (t2) bz)) + 0

with (t;) u; of type T;. In terms of trees, they remain the same as in Example 4.8.5:

if t reduces on andu on /\ , then (t) u reduces on

0 b bo 0
t1 to
(t1)b{t1)bdtz)b{tz)bs
The Additive type system can be seen to be the same as the Addsse¢ type system up to associativity
and commutativity and neutrality of 0 in the sense of the Proposition 4.3.7.

Proposition 4.3.7 (Additive equivalent to Addgtryct)-

1. If T+ t:T is derivable in Additive, then there is a type T' = T such that '+ t: T is derivable in
Addstruct-

2. If T Ft:T is derivable in Addstryct, then it is also derivable in Additive.
Proof.
1. We proceed by induction on the depth of the derivation of I' - t: T in Additive.

o If the last rule that is applied is ax, axg, =71, +1, V7 or Vg, then we can derive the same

judgement in Adds¢ryer using the induction hypothesis and the rule with the same name.

o If the last rule that is used is =, then we conclude directly using the induction hypothesis and
transitivity of =.
PHt:Y0,(U—=T) Thu:Y7 U
LE(t)u: Z;l:l Z?:l T;
By induction hypothesis, there exist 7= Y (U — T;) and R = Zle U such that I' - t:T
and I' F u: R are both derivable in Addsiryet. So we have T = T[w; — (U — T;)] (where
each w; is the path to some ¢-leaf of T) and R = T'[v — U] for some trees T, T’. Then we can

e Assume the typing derivation ends with —E.

derive in Addgiruct
PEt:Tlw; — (U —T;)] F'cu:T v U]
T (t) u:ToT |ww T

—E
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By Lemma 4.3.4, ToT'[w;v — T3] = T[w; +— T'[v — T;]]. Then ToT' [wv — T3] =3 0 T'v —
T =3 Z?:l T;.

2. This side is immediate since every derivation rule of Addg et can be seen as a derivation rule of
Additive, except — g+ that is equivalent to the rules —g and =.
O

4.3.2 System F' with pairs

We recall the definition of System Fp [Di Cosmo, 1995] (Figure 4.3). It will be used to interpret Addsiryct-
This system satisfies both the subject reduction and the strong normalisation properties [Di Cosmo, 1995].

We write Ap for the set of terms of System Fp, and we use the notation m;, ; (¢) for m;, (7, (... 7, (¢))).

Terms : tu:= x| et |tu| * | {Eu) | 7 (t) | ma(t)
Types : AB:= X|A=B|VX.A|1]| AxB
Reduction rules : Az.t)u — t{u/z ; mi({t1,t2)) =

7 — equivalence : Aete =5t if a¢FV(t) ; (m1(p), m2(p)) =y p

Typing rules :

Azx:AFpt: B Arpt: A= B Atlbpu:A
Ax 1 =1 =F
Ax:Abpx: A AFp*x:1 ArpXdxt: A= B Abrptu:B
A}_FfZA A"F’U,B A}_FfZAXB Al_FtAXB
xI — X Ey ———————XxE,
Atbp (t,u): AXB Abpm(t): A Abpm(t): B
Arpt: A X ¢ FV(A) Arpt:VX.A
VI VE
AFpt:VX.A Abpt: A[B/X]

Figure 4.3: System F with pairs

System Fp and trees. We have seen in the previous subsection that a tree can be labelled with unit
types to form a type of Addssryct- It can also be labelled by terms or types of System Fp to form a new

term in Ap or a new type of System Fp.

Definition 4.3.8. We call term-labelling a function from leaves to Ap. Given T, a term-labelling, and T,

a tree, T[7] is the term of System Fp defined inductively by:

tr] = 7(e)
Z[t] = *
S(T, T)[r] = (Tw+— 7(1w)], T'[w +— 7(zxw)])

If t = T[r] and w is a ¢-leaf of T, then 7(w) is a subterm of ¢ that can be obtained by reducing m(t),

where w is the mirror of word w where 1 is replaced by 1 and r by 2 (i.e. €=¢; lw=w1 ; Tw = W2).
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Example 4.3.9. Let t = ({(uy, (ug,us)),*). Then t = T[11 — uy, Irl — ug, Irr — ug]

(where Tis the tree on the right) and us reduces from a1 (t). ,

I

Definition 4.3.10. We call F-labelling a function from leaves to types of System Fp. Given ¢, a F-
labelling, and T, a tree, the type T[@]| of System Fp is defined as expected:

1¢] = 6(e)
2] = 1
S(T, T)[6] = Tlw = 6(1w)]x T'w = d(ruw)]

There is a trivial relation between the term-labelling of a tree, and its F-labelling, that we give in the

following lemma.
Lemma 4.3.11. Let T be a tree.
1. If T bty : Ay for each of its £-leaves w, then T kg Tlw > ty,] : Tlw — Ay
2. IfTkpt: Tlwr— Ay, then for each £-leaf w of T, T bp mw(t) : Ay
Proof. We prove both items by induction over T. Item 1 is immediate, we detail Item 2.
e If T=2, it has no ¢-leaf. If T = ¢, its only ¢-leaf is e, and T[e — A.] = A, and 7=(t) = ¢.

o If T=28(Ty,Ta), then each £-leaf of T is either 1w’ with w’ a ¢-leaf of T, or rw’ with w’ a ¢-leaf
of To. Moreover, Tlw — A,] = Ti[w' — A1, xTa[w’ — Ap], and by the induction hypothesis
Phpt:Tiw — Ayy] implies T' Fp g (t) : A1y (and same for To). If w = 1w’ is a ¢-leaf of T,
then my(t) = m1(t) = g (m1(t)). So T bFp t: Tjw — A, implies T' Fp m1(t) : T1[w — A1w],
that implies ' g 7 (t) : Ayp. Symmetrically, if w = rw’ is a ¢-leaf of T, we can also show that
Phpt:Tlw— A,] implies T Fp m(t) © Apyr.

[l

4.3.3 Translation from Add,,.... to System Fp

The translation we propose here from Addgs,c¢ to System Fp consists of two steps:
e Every type T is interpreted by a formula |T|.

e Every term t, typable by a typing derivation D, is interpreted by a term [t]p € Ap (which formally
depends on D).

Notice that only typable terms are translated into System Fp. Indeed, the translation of an applica-

tion (t) u depends on the sum structure of t and u, that is indicated by their types.

Notation. We may use D to denote typing derivations, however we may also abuse of this notation and
identify a derivation only by its last sequent, so D = I' F t:T is just a notation for a typing derivation
named D which ends with the sequent I' - t: 7.
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[ 4. Introducing sums of types

Interpretation of types. Types are translated in the intuitive way, given that sums are interpreted

with Cartesian products:
|1 X|=X 0] =1 U —=T|=|U|=|T| |T + R| = |T|x|R| VX.U| =VX.|U|

We naturally extend this translation to contexts: |{z1 : Ui,...,zx : Up}| = {x1 : |[U1] ...,z : |Uk|}.
It can be immediately checked that the tree structure of a type is preserved by translation, as expressed

in the following lemma (the proof proceeds by induction on T', ¢f. Appendix C.9).

Lemma 4.3.12. If T = T[w — U,] is a type of Addstruct, then |T| = T[w — |Uy]. O

Interpretation of typable terms. The interpretation of a typable term is defined in Figure 4.4,
following the last step of its typing derivation.

axr axy
IfD:F,x:TF:E:T’ IfD:FFO:ﬁ’
then [z]p =z then [0]p = *
+r : : I :
UD=pr¢. 7 Tkr:R BD= F o Urt:T >
I'HFt4+r:T+R I'FAXet:U—T
then [t + r]p = ([t]p,, [r]D,) then [M\x.t]p = Az.[t]p
where D; and D5 denote the derivations / < :
) . where D’ denotes Tz UFt. T
in the premises.
—E/
ED=prt. Tw (U - T,)] Thu: T U]
TE(@{)u:ToT |[wv— Ty
then [(t) ulp = T o T [wv — 7w ([t]p, ) 75([u]p,)]
where Dy and D5 denote the derivations in the premises.
Vi : Ve
UD=rr¢.v  x¢rvry D= rrg.vxu >
THt:YX.U THt:U[V/X]
then [t]p = [t]p then [t]p = [t]pr
here D' = 1 S
S where D= m VXD

Figure 4.4: Translation from Addgt,ye: to System Fp

This interpretation is in fact a direct translation of sums with pairs at each step of derivation, except
for the arrow elimination that is translated by a more complex construction (Remark 4.3.6 may help to
understand this).

93



4. Introducing sums of types [

Example 4.3.13. Let
Tt (U=>T)+(U—>T)+0 Tru:U+(0+0)
O TE® u: (T + 0+ 7))+ (Ta+ 0+ T2)) +0

—E/

with t = [t]p, and u = [u]p,. Write t1 = m11(t), ta = m21(t), u1 = m1(u), we = ma2(u) and uz = w1 (u).
Then

[(t) ulp = ( ({trua, (x, taua)) , (taur, (x, t2us)) ) , %)
Intuitively, this translation of application consists of first distributing the application over sums and

collapsing zeros, before translating subterms: [((t1 + t2) + 0) (u1 + (0 + u3))]p is the translation of

(((62) w4 (1) m3) ) + ((t2) wr + (04 (t2) ua) )) + O

Theorem 4.3.14 (Encoding of Addstryer in System Fp). If '+ t : T is derivable in Addstryet with
deriwation D, then || Fp [t]p : |T| is derivable in System Fp.

Proof. We proceed by induction on the depth of the derivation D. If it consists of rule az or azg, we use
rule Az or 1 respectively in System Fp. If the last rule of D is +; or — we can conclude by induction. If
the last rule is V7, we just need to note that X ¢ FV(I') implies X ¢ FV(|T'|). If it is the rule Vg, we just
have to note that |[U[V/X]| = |U|[|V]/X] to conclude with induction hypothesis. The only interesting
case is when D ends with rule —gr:
FEt:Tlw— (U= Ty)) F'Fu: T U]
P= T'E () u:ToT [wv— Ty
By induction hypothesis, |T'| kg [tlp, : [T[w — (U — Ty)]| and |I'| Fp [u]p, : |T'[v — U]|. By
Lemma 4.3.12, it means that |T'| Fr [t]p, : Tlw — |U| = |Twl|] and |T'| Fr [u]p, : T'[v — |U]|]. By
Lemma 4.3.11.2, for every f-leaf w of T, and every f-leaf v of T’, we can derive
Ul Fr ma((tlp,) : Ul = [Tw] [T Fr mo((u]p,) : U]
Ul +r ma([t]p,)mo([u]p,) + T
Since [(t) u]lp =T o T'[wv — 7w ([t]p,) m5([u]p,)], by Lemma 4.3.11.1 we can conclude |I'| Fg [(t) u]p :
T o T'[wv — |Ty|], and then conclude using Lemma 4.3.12 again. O

—E/

E

Notice that this theorem is not enough: a trivial translation that sends every type in Adds¢yyet to 1
and every term to « will also allow to prove such a theorem. To show that our translation is meaningful
and not trivial, we can provide a partial encoding from System Fp to a sequent of Addgst,ye:. Then we

prove that one can go from Addgtryct to System Fp and back, and obtain the same original sequent.

Definition 4.3.15 (Partial translation from System Fp to Addgtruet). Let us define the following type

grammar:
T,R,S:=X|T—R|VXT|T+R|0

The types of Addsiruer are included in such a grammar in the following sense: every type in Addstryet
can be produced by this grammar, whereas the inverse is not true.

The translation from System Fp to Addgstruer will have this grammar as target, and then we will ensure
to use only those types that are also types of Addstruct (notice that, for example, (T + R) — S is in this
grammar but it not a valid type in Addsiruct ). This translation is done in the intuitive way, given that

Cartesian products are interpreted with sums:
(X)=X (1) =0 (A= B)=(A) — (B) (A x B) = (A) + (B) (VX.A) =VX.(A)
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[ 4. Introducing sums of types

We naturally extend this translation to contexts: |{z1: A1,..., x5 Ap}| = {z1: (A1) ..., 2% : (Ax)}-
The terms are translated accordingly, however notice that this is a partial translation: no every term
in System Fp has an image through it. Let t and u not of the form m;(t') for any t'. Then the partial

translation is unambiguously defined by
(z) =z ; (Mwth = Az(th 5 (tuh = ((t)) qu) 5 () =05 ((tw)h = (t) + (u)
(Twv = 7z ()7 (w)]) = ((t)) (u) with T#Z and T # 4

Using this partial translation we can prove that the encoding from Addgsyqyct into System Fp is not

trivial in the following way.

Theorem 4.3.16. If '+ t:T is derivable in Addsiryer with derivation D, then (|T|) F {[t]o): (|T]) s

syntactically the same sequent.

Proof. A straightforward structural induction shows that for any type T in Addstruct, T = (|T|]). This
also extends to contexts, since for any variable z and derivation D, {[z]p) = (z) = z. So if t = {[t]p),
one has (ITJ) - {[tlo): (ITI).

We need to prove that for any term t and derivation D =T F t: T, t = (|t|). We proceed by induction
on the depth of the derivation D. We may abuse of the notation of D by taking only its last sequent.

1. D:F,x:Ul—x:Uax Then {[z]p) = (z) = .

— — ary = =
2. D_I‘FO:O 0 Then {[0]p) = (x) = 0.
By the induction hypothesis one has t = {[t]p, ) and
D . where r = {[r]p,]). Since [t]p, has a translation by (-}, it
3. p=—— 72 4+ D1=TFt:T is not of the form m;(¢') for any ¢’. The same hap-
'Ft+r:T+R .
Dy=TFr:R  pens with [r]p,. Then ([t +r|p) = ({[t]p,,[t]D,)) =
([t]p, ) + (lr]p, ) =t +r.
LD D' where By the induction hypothesis t = {[t]p/ ), then
. = —
TExet:U—>T ' D=T2:UFt:T Azt = Az {[t]p ) = Az [t]p ) = ({[Az.t]p).
D’ h
5. D=— v, where By the induction hypothesis t = {[t]p/) = {[t]p)-
I-t:vx.Uu D =IkFt:U
24 where
6. D=——— By the induction hypothesis t = ([t]p/) = ([t|p).
THt:U[V/X] ~ D =TFt:VX.U ([tlorb = {ltlo)
where
D1 Do
7. D= =g D1 =Ttt:Tw— (U—Ty,)]

' (t) u:ToT |[wuws Ty Dy =Tk u:T[ors U]

By the induction hypothesis t = ([t]p,]) and u = ([u]p,), then (t) u = ({[t]p,])) ([u]p,) =
(T o Two = mu((tlp, )mw([u]p,)]) = {[(t) u]p).
O
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4.3.4 Type equivalence

In this section we explain in which sense the type equivalence of Additive is provable in System Fp.

Definition 4.3.17 (equivalence in System Fp). In System Fp, we say that two formulae A and B
are equivalent (notation A < B) if there are two terms €ap and g a such that Fp eap : A = B,
Frepa: B = A and for any term t such that Frp t : A, ep a(ea,p(t)) =" t, analogously, if Frp t : B,
then ea,p(ep,a(t)) =™ t.

We define such terms for some specific types:

EAA = AT.x
A Ax1 = Ax.(T,%)
€ax1,4 = Ax.mi(x)
€axB,BxA = Az.(ma(x),m1 (7))
Eax(BxC),(AxB)xCc = Ar.{(m1(x), m1(m2(7))), m2(T2(7)))
E(AxB)xC,Ax(Bx0) = Ax(m1(m1(2)), (m2(m1(2)), m2(2)))
if By < Bo, €A=B;,A=B, = MfAr. e, B,(f)
if By < By, €AxBi,AxB, = AP-(m1(p),€B,,B,y(m2(p)))

Lemma 4.3.18. For any types T,T', if T =T’ then |T| + |T"|

Proof. Direct from the terms given in definition 4.3.17. O

This was the last step to prove the logical correctness of Additive type system.

Theorem 4.3.19. If ' - t:T is derivable in Additive, then there is a type T = T and a derivation D
in Addgtruer such that || =g ejpi [t « |T.

Proof. Assume I' F t:T is derivable in Additive. By Lemma 4.3.7, there is a type T’ equivalent to T
such that T' - t: 7" is derivable in Addstet- Calling D this derivation, this ensures that |T'| Fg [t]p : |T7]
(Theorem 4.3.14). Moreover, since T' = T", by Lemma 4.3.18, |T'| <+ [T, so |T'| b &jpr | : [T'| = |T.

Then using rule =g one can conclude |I'| = €77 [t]p : [T O

Remark 4.3.20. As noticed in the proof of the previous Theorem, if I' - t:T, then there exists a type
T =T such that T' & t:T" is derivable in Addsiryct- Then by Theorem 4.3.16, (|T'|) &= ([t]o): (|T7]]-
Notice that (|T'|) =T =T, so by rule =, (|T|) F {[t]p): T, which makes this translation non-trivial.

4.3.5 Interpretation of reduction, strong normalisation and confluence

To some extent, the translation from Addgsyct to System Fp is also correct with respect to reduction, as

expressed in Theorem 4.3.21 (the proof is given in Appendix C.10).

Theorem 4.3.21. Let '+t : T be derivable (by D) in Addstruct, and t — r. If the reduction is not due
to rule t + 0 — t, then there is D’ deriving ' -1 : T, and [t]p — [r]p/. O
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[ 4. Introducing sums of types

Notice that the type equivalences, i.e. associativity and commutativity of types, have their analogous
in the term equivalences, namely the associativity and commutativity properties of +. However, the
equivalence T+ 0 = T has its analogous with a reduction rule, t + 0 — t. Since Addgstruer has no
equivalences, this reduction rule is not correct in the translation. However, if I' - t 40 : 740 is derivable
by D in Addgtryct, then there is some D’ = T'F t : T such that

€m0y, [t + 0l =" [t]pr.

In the remaining of this section we write t — 4 r to a one-step algebraic reduction, that is a reduction

by any rule except the S-reduction. We write t — 5 r to a one-step [S-reduction.

Corollary 4.3.22 (Strong normalisation). If I' - t:T is derivable in Additive, then t is strongly nor-

malising.

Proof. First notice that if I' - t: T is derivable in Additive, then by Proposition 4.3.7, 3T’ = T such that
'k t:T" is derivable in Addgtryct. Let us call this derivation D. Then by Theorem 4.3.14, |T'| b [t]p : |T7]
is derivable in System Fp.

Assume t is not strongly normalising, say t — t; — to — ---. For a first approximation, consider
that none of these reductions happens by rule t +0 — t. Then by Theorem 4.3.21 there exists derivations
D1,Dy, ..., such that [t]p —* [t1]p, =* [t2]D, = ---. However, due to the strong normalisation of F),,
there exists a natural number n such that, Vi > n, [ti]p, = [tit1]p,,,-
We proceed in two steps:

1. We prove that, if t; — t;11 and [t;]p, = [ti+1]p,,,, then the reduction is an algebraic rule, (i.e. not

a beta-reduction).

2. Then we show that algebraic rules are strictly decreasing with respect to the following mea-
sure [Arrighi and Dowek, 2008|, which is always positive: 0| = 0, |z| = 1, |Az.t] = |t|, [t + | =

2+ [t| + |r|, [(t) r| = (3]t] +2)(3|r| + 2).
By item 1 only algebraic rules happen, which are strictly decreasing in the positive measure of item 2.
Since t + 0 — t is also strictly decreasing, then t has to be strongly normalising. The proofs of items
1 and 2 can be found in Appendix C.11. Item 1 proceeds by structural induction on t; to show that if

ti —p tiy1, then [t;]p, # [tit1]p,,,. Item 2 follows from a case analysis on the possible reductions. [

The strong normalisation can be used to prove the confluence of the typed system.
Corollary 4.3.23 (Confluence). The typed language \**? is confluent.
Proof. The proof proceeds as follows:

1. First we prove the local confluence of the algebraic system. This has been done by modifying
(simplifying) the Coq proof given to prove the local confluence of the algebraic fragment of Ay,
in Corollary 3.3.13. The modified Coq files, including the proper version of the library, can be
downloaded from http://membres-liglab.imag.fr/diazcaro/Additive.tar.bz2.

2. Then prove the (local) commutation between algebraic rules and S-reduction. This proofs follows

exactly as in the proof given in Corollary 3.3.13, taking only the valid cases.

3. The two previous steps plus the confluence of the S-reduction given in Corollary 3.3.13, give us the

local confluence of Ydd,

Local confluence plus strong normalisation implies confluence [TeReSe, 2003]. O
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4.4 Conclusions and open questions

We have treated the problem of interpreting (the role of) additions within algebraic calculi. Our main
concept has been to make explicit the associativity and commutativity properties of sums and the neutral
property of zero by defining a structured type system with sums. Moreover we have shown how to
simulate sums by pairs by distributing the application while doing the translation, and collapsing all the
zero applications.

In an earlier version of this research we attempted to translate Additive directly into the multiplicative
exponential fragment of linear logic; however the choice of the multiplicative fragment, instead of the
additive one, seemed arbitrary. That is to say, the target fragment did not deal with linearity, in the
sense of linear logic. Thereby, the translation of X9 in linear logic we got, can be decomposed into a
first translation from X494 into System F with pairs, as we have presented in this chapter, and then the
standard translation from System F' to exponential linear logic [Girard, 1987, Chapter 5|. This suggest
that the linearity of X*d9 is not directly related to the one of linear logic.

There still lacks an interpretation of the fragment with scalars of Ay,. A first attempt was presented
in Chapter 3; however there is no translation into a well-known theory. One interesting idea is to set
up a type system for the whole calculus which reflects the scalars by sums in the types by taking its
floor (considering only positive real numbers as scalars). This idea is presented latter in this thesis,
cf. Chapter 6.
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Chapter 5

A vectorial type system

___ Résumé du Chapitre

Ce chapitre fusionne les approches des chapitres 3 et 4, avec pour but précis celui de la car-
actérisation des vecteurs dans [’espace vectoriel des termes. Nous fournissons une version
faible de la preuve de préservation de type et de la normalisation forte du langage typé. Nous
montrons que, dans ce cadre du typage vectoriel a la Curry, la préservation du type n’est pas

compléte, ce qui justifie de passer a un typage a la Church dans les chapitres suivants. ]

HE goal of this Chapter is to precisely explicit what is a vector in the space of terms of A\;,. We
want a characterisation of terms independent from the term reduction, highlighting the vectorial
structure of terms. To that end, we propose a static analysis tool in the form of a type system.

In Chapter 3 we presented Scalar. If v is a scalar and I' - t:7 is a sequent, a.t is of type a.T. The
developed language actually provides a static analysis tool for certain applications such as barycentric
computation. It however fails to address a more general issue: let B =VX.X — X — X, true = \z.\y.x
and false = Az.A\y.y. Without sums but with negative numbers, the term true — false is typed with
0.B, a type which fails to exhibits the fact that we have a superposition of terms: true and false are
two base terms, i.e. they should be considered orthogonal since they both belongs to the same basis, and
they are different. So better types for true and false, in the sense that they can be distinguished from
each other, would be T=VXVY.X - Y - X and F =VX.VY.X - Y — Y respectively. However in
this case, true — false would no have a type in Scalar. Chapter 4 is concerned with the addition of sums
to a regular type system. The language considered, X4d takes into account only the additive fragment
of A\jn, it leaves scalars out of the picture. In this case, if ' - s:.5 and I' - t: T are two valid sequents,
s+t is of type S + T. In addition it has another flaw: as already noticed in Section 4.1, (t) (u; + us)
requires u; and us to have the same type.

This Chapter builds on these two approaches for the precise goal of characterising vectors in complex
vector spaces. Because of the possible negative or complex coefficients, this requires to keep track of the
‘direction’ as well as the ‘amplitude’ of a term. We propose a type system with both sums and scalars,
reflecting the vectorial structure of Ay,. Interestingly enough, combining the two separate features of
the type systems presented in Chapter 3 and 4 raises subtle novel issues. In the end we achieve a type
system which is such that if t has type >, ;.U;, then it must reduce to a t’ of the form ), o;.b;, where

the b;’s are basis terms.
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We provide a proof of strong normalisation, entailing the confluence of the calculus, and a weak
subject-reduction property. We show that in this vectorial setting in Curry style, this property is not

complete, justifying moving to Church style in the following chapters.

Plan of the chapter. In Section 5.1 we show )\, again and how quantum computing and other
vectorial computation can be encoded on it. In Section 5.2, we expose the type system and the problem
arising from the possibility of having linear combinations of types. Section 5.3 is devoted to subject
reduction. We first say why the usual result is not valid, then we provide a solution and a candidate
subject reduction theorem; the rest of the section is concerned with the proof of the result. In Section 5.4,
we prove confluence and strong normalisation for this setting. Finally we close the paper with some

examples in Section 5.5 and conclusions in Section 5.6.

5.1 Non-restricted )\,

Figure 5.1 shows the language Ay, first presented in Figure 1.1 with the following changes: restrictions
(*) and (**) has been lifted, since it has been shown in Chapter 3 that if one considers a typed language
enforcing strong normalisation, one can wave them and consider a more canonical set of rewrite rules.
Working with a type system enforcing strong normalisation (as shown in Section 5.4), we follow this

approach. The second change is in rule t + 0 — t, which is placed in the Factorisation group of rules.

Terms: t,r,bus= b|({t)r|0]|at|t+r
Base terms: b= x|zt
Elementary rules: Factorisation rules: Application rules:
0.t — 0, at+p.t — (a+ P).t, (t+r)u—(t) ut (r) u,
1.t — t, at+t— (a+1).t, (u) (t+r)— (u) t+ (u) r,
a.0 — 0, t+t— (1+1).t, (t) r — a.(t) r,
a.(f.t) = (a x B).t, t+0—t. (r) (at) = au(r) t,
a.(t+r) = at+ ar. Beta reduction: (0) t — 0,
(Az.t) b — t[b/x]. ()00
Contextual rules: If t — r, then for any term u, scalar a and variable =z,
(t) u— (r) u, t+u—r+u, a.t — a.r and
(u) t — (u) r, u+t—u-+r, Az.t — Az.r.

Figure 5.1: Syntax and reduction rules of \j,, without restrictions

Encoding booleans

We claimed in Section 1.2.2 that this language was a candidate language for quantum computation. In
this paragraph we backup again this claim, and show how quantum gates and matrices can be encoded.

We slightly modify the encoding presented in Section 1.2.2 to better fit the current setting.
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First, both in Ay, and in quantum computation one can interpret the notion of booleans. In the
former we can consider the usual booleans Ax.\y.xz and Azx.\y.y whereas in the latter we consider the
regular quantum bits |0) and |1).

In Ajn, a representation of if r then u else t needs to take into account the special relation between
sums and applications. We cannot directly encode this test as the usual ((r) u) t. Indeed, if r, u
and t were respectively the terms true, u; + uz and t; + to, the term ((r) u) t would reduce to
((true) uy) t1 + ((true) uy) to + ((true) uz) t1 + ((true) ug) ta, then to 2.u; + 2.uz instead of u; + us.
We need to “freeze” the computations in each branch of the test so that the sum does not distribute
over the application. For that purpose we use the well-known notion of thunks: we encode the test
as {((r) [u]) [t]}, where [—] is the term Af.— with f a fresh, unused term variable and where {—} is
the term (—)Az.x. The former “freezes” the computation while the latter “releases” it. Then the term
if true then (u; 4+ uz) else (t1 + t2) reduces to the term u; + us as one could expect. Note that this
test is linear, in the sense that the term if («.true + 5.false) then u else t reduces to a.u + S.t.

This has a striking similarity with the quantum test that can be found in Section 1.2.2 but also in
[van Tonder, 2004, Altenkirch and Grattage, 2005, Arrighi and Dowek, 2008]. For example, consider the
Hadamard gate had sending |0) to §(|O>+ [1)) and |1) to ‘/T§(|O> —|1)) (cf. Section 1.1). If = is a quantum
bit, the value (had)z can be represented as the quantum test if = then ‘/T§(|O) + (1)) else §(|0) —|1)).
As hinted in Section 1.2.2, one can simulate this operation in Ay, using the test construction we just
described: {(had) z} = {((x) [@.true + @.false]) [‘/Tﬁ.true - @.false]}. Note that the thunks
are necessary: the term ((x) (%.true + g.false)) (@.true - g.false) would reduce to the term
1(((z) true) true + ((z) true) false + ((z) false) true + ((z) false) false), which is fundamentally
different from the term had we are trying to emulate.

Of course, with this procedure we can “encode” any matrix. If the space is of some general dimension
n, instead of the basis elements true and false we can choose the terms Azq.--- Az,.x;’sfori =1ton

to encode the basis of the space.

5.2 The Vectorial Type System

Let us justify each constructor in the proposed type system. Since we are considering a lambda-calculus,
we need at least an arrow type A — B. The terms true and false can therefore be typed in the usual
way with B =X — (X — X), for a fixed type X. Since the sum g.true + %.false is a superposition
of terms of type B, one could decide to also type it with the type B; in general, a linear combination of
terms of type A would be of type A. But then the terms Az.(1.z) and Az.(2.2) would both be of the
same type A — A, failing to address the fact that the former respect the norm whereas the latter does
not.

To address this problem, we incorporate the notion of scalars in the type system: if A is a valid type,
the construction «.A is also a valid type and if the terms s and t are of type A, the term «.s + .t is of
type (a+ B3).A. This was achieved in Chapter 3 and it allows us to distinguish between the two functions
Az.(1.z) and Az.(2.z): the former is of type A — A whereas the latter is of type A — (2.4).

Let us now consider the term g.(true — false). Using the above extension to the type system, this
term should be of type 0.B, which is odd in the light of the use we want to make of it. Indeed, applying
the Hadamard gate to this term produces the term false of type B: the “amplitude” of the type (the sum

of the squares of the absolute values of the scalars) jumps from 0 to 1.
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This time, the problem comes from the fact that the type system does not keep track of the “direction”
of a term. We therefore propose to go one step further, and to allow sums in types, as presented in
Chapter 4. Provided that T=X — (Y - X) and F = X — (Y — Y) (with Y another fixed type), we
can type the term ‘/75.(true — false) with @(T —IF), which has “amplitude” 1, in the same way that the
type of false has “amplitude” 1.

This type system is also able to type the term had = Az.((x) [@.true + @.false]) [g.true —
V2 false], with (I — *2.(T +F)) = (I = ¥2(T — F)) — T) — T provided that I is an identity type of
the form Z — Z, and for T and Z any fixed types.

Let us try to type the term {(had) true}. This is possible provided that the fixed type T is equal to
I— @(T + F). If we now want to type the term {(had) false}, the fixed type T needs to be equal to
I— @(T —TF): we cannot type the term {(had) (%ﬁ.true + @.false)} since there is no possibility to
conciliate the two constraints on 7.

To solve this last problem, we introduce the forall construction in the type system. The term had
can now be typed with VT.((I — @(T +F) - (I— @(T —TF)) = T) — T and the types T and F are
updated to be respectively VXY.X — (Y — X) and VXY.X — (Y — Y). The terms {(had) true} and

{(had) false} can both be well-typed with respective types @(T +TF) and @(T —T), as expected.

Let us try to type the term 0. Analogously to what was done for terms, a natural possibility is to
add a special type 0 to type it. This is a reasonable solution that has been used in Chapters 3 and 4. In
this naive interpretation, we would have 0.7 equivalent to 0 and 0 would be the unit for the addition on
types.

However, consider the following example. Let Az.xz be of type U — U and let r be of type R. The
term Az.x +r —r is of type (U — U) 4 0.R, that is, (U — U). Now choose b of type U: we are allowed
to say that (Az.x +r —r) b is of type U. This term reduces to b + (r) b — (r) b. If the type system is
reasonable enough, we should at least be able to type (r) b. However, since there is no constraints on
the type R, this is difficult to enforce.

The problem comes from the fact that along the typing of r —r, the type of r is lost in the equivalence
0 = 0.R. The only solution is to distinguish 0 from 0.R. We can also remove 0 altogether, and this is the
choice we make for Vectorial: without type 0, we do not equate T+ 0.R and 7.

The term O can be typed with any type 0.7, so long as T is inhabited (i.e. 0 can come from a reduction

of r — r for some term r of type T).

5.2.1 Types

The grammar of types is defined in Figure 5.2. As in the previous chapters, types come in two flavours:
unit types and general types, that is, linear combinations of types. Unit types include all types of System F
and intuitively they are used to type basis terms. The arrow type admits only a unit type in its domain.
Same as before, this is due to the fact that the argument of a A-abstraction can only be substituted by
a basis term. For the same reason, type variables, denoted by X, Y, etc. can only be substituted by unit
types.

We also define an equivalence relation upon types as follows:

Definition 5.2.1. For any scalar o, B and types T, R, S, we define the type equivalence = to be the least
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congruence such that

1.7 = T, aTlT+aR =
a.(B.T) = (axp).T, aT+ BT =

a.(T+ R),
(a+ B).T,

T+R
T+(R+S) =

R+T,
(T+R)+S.

This makes the types into a weak module over the scalars: they almost form a module apart from
the fact that there is no neutral element for the addition. Note that although we do not have any special
type 0 (as discussed at the beginning of the section), we do have 0.T’; however 0.7 is not the neutral
element of the addition on types.

We may use the summation (D) notation without ambiguity, due to the associativity and commuta-

tivity equivalences of +.

Types: T,R,S:= U|aT|T+R
Unit types: UV,W:u:= X|U—=T|VX.U
ax I'Ht:T 0 Fz:UFt:T
. . — -
Ia:UFz:U rF0:07 ' TFact:U—T

THt:Y 0 VX.(U = T))

=1

THe:Y 8.V, VV,3W,,UW,/X] =V,
Jj=1

L) r: > > ai x B;.1[W;/X]
i=1 j=1
Tty aU; X ¢ FV(T) Tt VXU
1=1 - VI ;:1 VE
THt: Y VXU, Tt o Ui[V/X]
1=1 =1
Ckt:T PHt:T TFr:R '-t:T T=R
S =
I'kat:aT ! I'Ft4+r:T+R 't R

Figure 5.2: Types and typing rules of Vectorial

The following lemmas give some properties of the equivalence relation. Types are linear combinations

of unit types (Lemma 5.2.2). Finally, the equivalence is well-behaved with respect to type constructs

(Lemma 5.2.3).

Lemma 5.2.2 (Types characterisation). For any type T, there exist n € N, ag, ..

types Un, ..., U, such that T = 3" | o;.U;.

L an €8 and unit

Proof. Structural induction over 7. If T is a unit type, take « = n =1 and so T = 2;21 1.U =1.U.

If T = T, then by the induction hypothesis 77 = >

n o — [ A—
iz @i Ui, so T = o1 =

. Z?:l OZZUZ =

Yoimi(ax @)U, f T'= R+ S, then by the induction hypothesis R =3_" | o;.U; and S =377, 8;.V},

soT=R+S=3_a.Ui+ 300 B3V

O
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Lemma 5.2.3 (Equivalence forall-introduction).
LY U= YT BV & Y0 an VXU = Y B VXLV
2 Y VXU = Y000, BV = WV, AW,V = VXL
3. T=R=T[U/X]=R[U/X].

Proof. Straightforward case analysis over the equivalence rules. (I

5.2.2 Typing Rules

The typing rules are described in Figure 5.2. The axiom (az) and the arrow introduction rule (—) are
the usual ones. The rule to type the term 0 (0;) takes into account the discussion at the beginning of
Section 5.2. This rule also ensures that the type of 0 is inhabited, discarding problematic types like
0.VvX.X. Any sum of typed terms can be typed using rule +;. Similarly, any scaled typed term can be
typed with s;. These two rules are inherited from Additive and Scalar respectively. The rule = ensures
that equivalent types can be used to type the same terms. Finally, the particular form of the arrow-
elimination rule (—g) is due to the rewrite rules in the Application rules that distribute sums and scalars
over application. This has been already discussed in Section 4.1. The need and use of this complicated

arrow elimination can be illustrated by three examples.

Example 5.2.4. The rule —g is easier to read for trivial linear combinations. It states that provided
that T r:VX.U — R and T'F t:V, if there exists some type W such that V = U[W/X], then since the
sequent '+ r:V — R[W/X] is valid, we also have T (r) t : R[W/X].

Example 5.2.5. Consider the terms by and be, of respective types Uy and Uy. The term by 4+ bs is of
type Uy + Us. We would reasonably expect the term (Ax.x) (b1 + ba) to be also of type Uy + Us. This is
the case thanks to rule —g. Indeed, type the term Ax.x with the type VX.X — X and we can now apply

the rule.

Example 5.2.6. A slightly more developed example is the projection of a pair of elements. It is possible
to encode in System F the notion of pairs and projections: (b1,b2) = Az.((z) by) b, (bj, b)) =
Az.((x) bY) bhy, m1 = Ax.(z) (AyAzy) and w3 = Ax.(z) (M\y.Az.z). Provided that by, b}, bs and b
have respective types U,U’, V and V', the type of (b1,ba) is VX.(U =V — X) — X and the type of
(b},bh) is VX.(U — V' = X) = X. The term m and mo can be typed respectively with VXY Z.((X —
Y—-X)>2)>Z andVXYZ(X =Y =>Y)—=2Z)— Z.

The term (m1 + m2) ({(b1,ba) + (b}, bl)) is then typable of type U+ U’ +V + V', thanks to rule —g.

Note that this is consistent with the rewrite system, since it reduces to by + by + b} + bj.

5.3 Subject Reduction

Since the terms of Ay, are not explicitly typed, we are bound to have sequents such as I' - t: 7} and
I' - t: 15 for the same term t. Using rules +; and sy we get the valid typing judgement I' F a.t+8.t: .77+
B.Tz. Given that a.t+ .t reduces to (a+ ).t a regular subject reduction would ask for the valid sequent
'k (a+ B).t:a.Ty + B. 1. Since in general we do not have a.Th + .75 = (a + 8). 11 = (a + 5).T3, we

need to find a way around this.
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A first natural solution could be by using the notion of principal types. However, since our type
system can be seen as an extension of System F', the usual examples for the absence of principal types
apply to our settings: we cannot rely on that.

A second potentially natural solution could be to ask for the sequent I' F (o + 8).t: a.Th + 8.1 to be
valid. If we force this typing rule into the system, it seems to solve the problem but then the type of a
term becomes pretty much arbitrary: with typing context I', the term («+ ).t could be typed with any
combination .77 + §.T5, when o + 5 = v + 0.

The approach we favour in this Chapter is by using a notion of order on types. The order, denoted
with C, will be chosen so that the factorisation rules make the types of terms smaller according to the
order. We will ask in particular that (« + 8).71 C a.Th 4+ 8.7 and (a + (). 12 C a.Ty + 8.T> whenever
T7 and T, are types for the same term.

In particular this approach solves a pitfall coming the rule t+0 — t. Indeed, although z : X - 240 :
X 4+ 0.7 is well-typed for any inhabited T', the sequent z : X - x : X 4+ 0.7 is not valid in general. Hence
the ordering is extended to state that X T X + 0.7

5.3.1 An Ordering Relation on Types

We start with another relation < inspired from [Barendregt, 1992], which has also been defined for Scalar
and Additive (Definitions 3.2.4 and 4.2.2). This relation can be deduced from the rules V; and Vg as

follows:

Definition 5.3.1 (Relation < on types). Write T < R if either T =" ; a;.U; and R=Y." | 0;.VX.U;
orT =" a;VXU; and R = Y1 | 0;.U;[V/X]. We denote the reflexive (with respect to =) and

transitive closure of < with <.
The relation < admits a subsumption lemma (proof in Appendix D.1).

Lemma 5.3.2 (=Z-subsumption). For any context T', any term t and any types T, R such that T < R
and no free type variable in T occurs in I'. Then I' - t:T implies T' - t: R. O

We can now define the ordering relation C on types discussed above.

Definition 5.3.3 (Relation C on types). Let C be the smallest reflexive transitive relation satisfying the

rules:
o (a+pB).TCaT+pBT, il t suchthatTFHat:aT and T+ B.t:8.T".
e T'C T+ 0.R for any type R.
o IfT X R, thenT C R.
e fTCRandULCV, thenT+SCR+S,aTCaR,U—-TCU—RandVX.ULCVX.V.

Note that the fact that I' F t: T and I" + t:7” does not imply that 8.7 T B.1’. Indeed, although
B.T C 0.T + 8.1, we do not have 0.T + 8.7/ = B.T’. Note also that this ordering is not a subtyping
relation. Indeed, although (o + 8). Az y.z : (a+ B).VX.X — (X — X) is valid and (« + 8).VX.X —
(X —=>X)CaVX.X = (X - X)+8VXY.X - (Y = Y), the sequent - (o + 3). z. y.z : a.VX.X —
(X = X)+ BYXY.X — (Y = Y) is not valid.
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5.3.2 Weak Subject Reduction

Let R be any reduction rule from Figure 5.1. We denote —p a one-step reduction by rule R. A weak

version of the subject reduction theorem can be stated as follows.

Theorem 5.3.4 (Weak subject reduction). For any termst, t', any contextT' and any type T, if t = t’
and I'=t:T, then

e If R ¢ Factorisation rules, then T - t':T.
e If R € Factorisation rules, then 3S C T such that T+ t':S and T Ft:S.

How weak is this weak subject reduction? First, note that the usual subject reduction result holds for
most of the rules. Second, Theorem 5.3.4 ensures that a term t of a given type, when reduced, can be

typed with a type that is also valid for the term t. Third, we can characterise the order relation as

follows.

Lemma 5.3.5 (Order characterisation). For any type R, unit types Vi,..., Vi, and scalars By, ..., Bm,
ifRC Z;nzl B;.V;, then there exist a scalar §, a natural number k, a set N C {1,...,m} and a unit type
W 2 Vi such that R=06.W + 3, B;.V; and 27:1 Bi =06+ jen B O

How informative is the type judgement? The following three lemmas express formal relations between

the types and their terms.

Lemma 5.3.6 (Scalars). For any context T, term t, type T and scalar o, if T b a.t: T, then there exists
a type R such that T = a.R and if a # 0, ' - t: R. Moreover, if I' - at: . T, then T Ht:T. (I

Lemma 5.3.6 is a precursor of the generation lemma for scalars (Lemma 5.3.15). However it is more
specific since it assumes a specific type and therefore more accurate in the sense that it gives a specific type
for the inverted rule which is not possible in the actual generation lemma (its proof is in Appendix D.3).

Lemma 5.3.6 excludes the case of scaling by 0. It is covered by the following (proof in Appendix D.4).

Lemma 5.3.7 (Zeros). For any context T', term t, unit types Uy,...,U, and scalars aq,...,an, if
I'-0.t: Z?:l «;.U;, then Vi, «; = 0 and there are scalars 61,...,0, such that ' t: 2?21 0;.U;. O

The same invariant that has started in Scalar and continued in Additive is probable in Vectorial: a

basis term can always be given a unit type (proof in Appendix D.5).

Lemma 5.3.8 (Basis terms). For any context T', type T and basis term b, if T F b:T then there exists
a unit type U such that T =U. O

In the remainder of this section we provide a few definitions and lemmas that are required in order
to prove Theorem 5.3.4.
In the same way that we can change a type in a sequent by an equivalent one using rule =, we can

prove that this can also be done in the context.

Lemma 5.3.9 (Context equivalence). For any term t, any context T' = (x;:U;); and any type T, if
PHt:T and TV = (x;: V;); where U; = V;, then T" F t:T.

Proof. We use the notation (I',2:U) =17, z: U’ withU = U’. If we have ', z: U - 2: U as a consequence

of an ax rule, we can use ax followed by = rules to prove IV, z: U’ - z:U. If wehave ' - Az.t: U — T as a
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consequence of an —; rule, by the induction hypothesis IV, z: U’ F t: T, so by rule —;, I - Az.t: U' — T.
Since U/ - T =U — T, we end with rule =. All the other cases are straightforward using the induction

hypothesis. (I

The following lemma ensures that by substituting type variables for types or term variables for terms

in an adequate manner, the derived type is still valid. Its proof is in Appendix D.6.

Lemma 5.3.10 (Substitution lemma). For any term t, basis term b, term variable x, context T', types
T, U, W and type variables )?,

1. if Tt T, then T[U/X] - t: T[U/X];
2. if T,z:UF t:T, D+ b:UW/X] and X ¢ FV(I), then T+ t[b/a]: T[W/X]. 0

Three generation lemmas are required: two classical ones, for applications (Lemma 5.3.11) and for ab-
stractions (Lemma 5.3.12, and Corollary 5.3.14,) and one for linear combinations: sums, scalars and zero

(Lemma 5.3.15). The missing proofs are in Appendices D.7 to D.11.

Lemma 5.3.11 (Generation lemma (app)). For any terms t, r, any context T' and any type T, if
L'k (t) r: T, then there exist natural numbers n, m, unit types U, V1,..., Vy, types T1, ..., T, and scalars
Qty...,ap and B, ..., Bm, such that T Ft: Y0 | o VX.(U—T), TFr: 27:1 B;.V;, where for all V;,
there exists Wj such that UW;/X] = V; and 37, 3770 o X B, Ti[W;/X]<T. O

Lemma 5.3.12 (Generation lemma (abs)). For any term variable x, term t, context T' and type T, if
I'F Ax.t: R, there exist types U and T such thatU — T < R and I',x: U Ft:T. (|

The following lemma is needed for the proof of Corollary 5.3.14.

Lemma 5.3.13 (Arrows comparison). For any types T, R and any unit types UV, if V. - R<U = T,
then, there exist W, X such that U — T = (V — R)[W/X]. O

Corollary 5.3.14 (of Lemma 5.3.12). For any context T', term variable x, term t, type variables X and
types U and T, if I' - Ax.t:VX.(U — T) then the typing judgement T',z: U F t: T is valid. O

Proof. By Lemma 5.3.12, 3V, R,V — R = V)Z.(U — T) and T',2: V + t: R. Note that V — R =<
VX.(U - T) < U — T, so by Lemma 5.3.13, 3W,Y such that U — T = (V — R)[W /Y] = VW /Y] —
RIW /Y] so U =V[W/Y]and T = R[W/Y]. Also by Lemma 5.3.10, T[W /Y], z: V[W /Y]  t: RIW /Y].
By Lemma 5.3.9 and rule =, T[W/Y],z:U + t:T. If [[W/Y] = T, then we are finished. In the other
case, Y appears free in I'. Since V—+ R XU — T and I' - Az.t: V — R, according to Lemma 5.3.2,
U — T can be obtained from V — R as a type for Az.t; then we would need to use the rule V;; thus Y

cannot appear free in I', which constitutes a contradiction. So, I',z: U - t:T. O

Lemma 5.3.15 (Generation lemma (linear combinations)). For any context I', scalar o, terms t and r

and types S and T':
1. if Tt +r:S then there exist types R and R’ such thatTHt: R, TFr:R and R+ R < S;
2. if T'F a.t:T, then there exists a type R such that «.R <T and '+ a.t:a.R;

3. if ' 0:T, then there exists a type R such that T = 0.R. (I
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5.3.3 Proof of Theorem 5.3.4
We are now ready to prove Theorem 5.3.4.

Proof. Let t gt and ' - t:T. We proceed by induction. We only give two interesting cases (the full
proof can be found in Appendix D.12).

R=at+pt— (a+p)t. Let T - a.t + S.t:T. Then by Lemma 5.3.15, 3R, S such that I' - a.t: R
and I' - B8.t: S with R+ S < T. Then by Lemma 5.3.15, 3R’,a.R’ < Rand I' + a.t:a.R/, also
357,8.8 < Sand ' - 5.t:8.5".

e If @ # 0 (or analogously § # 0), then by Lemma 5.3.6, ' - t: R’ and so by s; we conclude
'k (a+pB).t: (a+B).R'. Notice that (o4 5).R' C a.R' + .5 T R+ S C T. Also using rules
+; and = we conclude '+ .t + B.t: (o + 8).R'.

e If a = 8 =0, then notice that ' - 0.t:0.R’ and 0.R' T 0.R' + 0.8’ C R+ S C T. Also, using
rules +; and =, we conclude I' - 0.t + 0.t: 0.R’.

R = (Az.t) b = t[b/z]. Let I' - (Az.t) b:T. Then by Lemma 5.3.11, there exist numbers n, m, scalars
Q1y.veyQny By, Bm, a unit type U, and general types 11, ..., T, such that the it can be derived:
Azt Y0 0 VX (U = Th) and Tk b: 307 85V, with SO0 327« x B Ti[W; /X < T,
where VV;, W; is such that U[W;/X] = V.

By Lemma 5.3.8, Y| ;. ¥X.(U — T;) = VX .(U — T;) and Vi, k, T; = Ty, analogously 7", 8;.V;
is equivalent to V; where Vj,h, V; = V4. So >.i"  a; = 1 and 2721 B; = 1. Then by rule =,
Tk Aet:VX.(U = T;), and T F b: V.

Thus, by Corollary 5.3.14, I',z: U F t:T}. Notice that V; = U[W;/X], then, by Lemma 5.3.10, we
have I' - t[b/x]: T[W;/X]. Since T;[W;/X] = (1x1).T;[W;/X] = (X1, oa) x (12 B;).Ti[W; / X]
which is equal to (i, Z;":l o X Bj).ﬂ[Wj/)?], and as all the T; are equivalents between them,
this type is equivalent to 7" | 377" | oy X B;.Ti{W;/X] < T. By Lemma 5.3.2, T+ t[b/x]: T.

(I

5.4 Confluence and Strong Normalisation

The language has the usual properties for a typed lambda-calculus: the reduction is locally confluent,
as has been proved in the proof of Corollary 3.3.13, and the type system enforces strong normalisation.
From these two results, we infer the confluence of the rewrite system.

For proving strong normalisation of well-typed terms, we use reducibility candidates, a well-known
method described for example in [Girard, Lafont, and Taylor, 1989, Chapter 14] The technique is adapted
to linear combinations of terms.

A neutral term is a term that is not a lambda-abstraction and that is not in normal form (i.e. it does
reduce). The set of closed neutral terms is denoted with A. We write Ag for the set of closed terms and
SN for the set of closed, strongly normalising terms. If t is any term, Red(t) is the set of all terms t’
such that t — t/. It is naturally extended to sets of terms.

We say that a set S of closed terms is a reducibility candidate, denoted with S € RC if the following

conditions are verified:

RC; Strong normalisation: S C SN.

68



[ 5. A vectorial type system

RC, Stability under reduction: t € S implies Red(t) C S.
RC;3 Stability under neutral expansion: if t € N and Red(t) C S then t € S.
RC,; The common inhabit: 0 € S.
We define the following operations on reducibility candidates. Let A and B be in RC.
e A — B is the closure of {t € Ag|Vb € A, (t)b € B} under RC3 and RCy, where b is a base term.

o If {A;}; is a family of reducibility candidates, >, A; is the closure of {3, a;.t; |t; € A;} under
RC; and RC;3. If there is only one A in the sum, we write 1.4 instead.

These operation also define reducibility candidates, as stated by the following lemma (¢f. Appendix D.13
for its proof).

Lemma 5.4.1. If A, B and all the A;’s are in RC, then so are A — B, >, A; and N; A;. O

Reducibility model

A single type valuation is a partial function from type variables to reducibility candidates, that we define

as a sequence of comma-separated mappings, with () denoting the empty valuation:
p=0|p,X+— A

Type variables are interpreted using pairs of single type valuations, that we simply call valuations,

with common domain:
p=(p+,p-)  with  [p|=|p-]

Given a valuation p = (p4,p—), the complementary valuation p is the pair (p_,ps). We write
(X4, X_) — (A4, A_) for the valuation (X4 — A, X_ — A_). A valuation is called valid if for all X,
p—(X) C p4+(X).

To define the interpretation of a type T, we use the following result: the decomposition of a type
can be made in a sum of unit types such that they appears only once in the decomposition (proof in
Appendix D.14).

Corollary 5.4.2 (of Lemma 5.2.2). Any type T' has a unique canonical decomposition T =Y | a;.U;
such that Vj,k, U; # Uy.

The interpretation |T7] p of a type T in a valuation p = (p4,p—) defined for each free type variable
of T is given by:

|]X|]p = p+(X),
I]U—>T|]p - I]Ul]ﬁ_> I]Tl]p’
|]VX.U|]p = N4cBerc I]Ul]p,(X+,X—)’_>(A76)’

iftT = Z ;.U; is the canonical decomposition of T" then [T, Z Uil

7 [

From Lemma 5.4.1, the interpretation of any type is a reducibility candidate.
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Reducibility candidates deal with closed terms, whereas proving the adequacy lemma by induction
requires the use of open terms with some assumptions on their free variables, that will be guaranteed by

a context. Therefore we use substitutions o to close terms:
o:=0|(z+ b;o), s0 tg=t and trobie = t[b/2],.

Given a context I', we say that a substitution o satisfies I' for the valuation p (notation: o € [I'],)
when (z : U) € I implies z, € [U]; (Note the change in polarity). Let T' = i, @;.U;, such that
Vi, j, U; # Uj, which always exists by Corollary 5.4.2.

A typing judgement T' F t: T, is said to be wvalid (notation I" = t:T) if for every valuation p, and
set of valuations {p;},, where p; acts on F'V(U;) \ FV(I'), and for every substitution o € [I'] ,, we have
to €30, ;. JUil, .-
Lemma 5.4.3 (Adequacy Lemma). Every derivable typing judgement is valid: for every valid sequent
F'kt:T, we have' =t :T.

Proof. The proof is made by induction on the derivation of judgement I' - t: 7. We look at the last typing
rule that is used, and show in each case that T' = t: T, i.e. if T = 2?21 «;.U; in the sense of Corollary 5.4.2,
then to’ € @?:1 O[i'l]Uil]p,pi o
(i.e. substitution o such that (z : V) € I'implies z; € [V ;). The full proofis depicted in Appendix D.150]

for every valuation p, set of valuations {p;},, and substitution o € |T']

Theorem 5.4.4 (Strong normalisation). Assume that T b t : T is a valid sequent, then t is strongly

normalising.

Proof. If T is the list (z; : U;);, the sequent - Aay ...zt : Uy — (- — (U, = T)--) is valid. Using
Lemma 5.4.3, we deduce that for any valuation p and any substitution o € [0] ,, we have o(t) € [T'],.
By construction, o does nothing on t: o(t) = t. Since |]T[|p is a reducibility candidate, Az ...x,.t is
strongly normalising. Now suppose that t were not strongly normalising. There would be an infinite
rewrite sequence of terms (t;); starting with t. But then (A\Z.t;); would then be an infinite rewrite
sequence of terms starting with a strongly normalising term: contradiction. Therefore, t is strongly

normalising. 0
The confluence of the system is a corollary of this result.

Corollary 5.4.5 (Confluence). If T'F s:S is a valid typing judgement and if s =* r and s —* t, then

there exists s’ such thatr —* s’ and t —* s'.

Proof. A rewrite system that is both locally confluent and strongly normalising is confluent [TeReSe,
2003]. O

5.5 Expressing Matrices and Vectors

In this section we come back to the motivating example introducing the type system and we show how
Alin handles the Hadamard gate, and how to encode matrices and vectors.

With an empty typing context, the booleans
true = \z. \y.x and false = \z. \y.y
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can be respectively typed with the types
T=VXYY = (Y = X) and F=VXY.X > (Y =Y).
The superposition has the following type
F a.true + p.false: a.T + 5.F.

Note that it can also be typed with (a+ 3).VX.X —» X — X.
With an empty typing context, the linear map U sending true to a.true + b.false and false to

c.true + d.false is written as
U = A\z.((z)[a.true + b.false])[c.true + d.false].
The following sequent is valid:
FU:VX.(I—= (aT+bF) = ({1 — (¢T+dF)) - X)—> X.

This is consistent with the discussion in the introduction: the Hadamard gate is the case a = b=c = g
and d = f‘f. One can check that with an empty typing context, {(U) true} is well typed of type
a.T + b.FF, as expected since it reduces to a.true + b.false.

The term {(had) @.(true + false)} is well-typed of type T + 0.F. Since the term reduces to true,

this is still consistent with the subject reduction: we indeed have T C T + 0.F.

5.6 Conclusions and open questions

In this Chapter we defined a typed, algebraic A-calculus satisfying a weak subject reduction. The language
allows making arbitrary linear combinations of A-terms a.t + S.u. Its Vectorial type system is a fine-
grained analysis tool describing the “vectorial” properties of typed terms: first, it keeps track of the
‘amplitude of a term’, i.e. if t and u both have the same type U, then «.t + S.u has type (a+ 3).U. Then
it keeps track of the ‘direction of a term’; i.e. if t and u have types U and V respectively, then a.t + S.u
has type a.U + 8.V. This type system is expressive enough to be able to type the encoding of matrices
and vectors.

The resulting type system has the property that if T - t: )", a;.U; then there exists t’ such that
t —*t’' and t' = ), o;.b;, where each b; is a basis term of type U;. Such a t’ is obtained by normalising
t under all rules but the factorisation rules. Within such a t’ there may be subterms of the form a;.b+as.b
of type a1.V1 + «s.Va, which are redexes for the factorisation rules. Under our type system, the reduct
(a1 + a2).b can be given both the types (a1 + a2).V7 and (aq + @2).Va.

The next step is to consider a Church style Vectorial, which would solve the factorisation problem
and give back a full subject reduction property: t 4+t — 2.t only of both t are the same, which in Church
style means that they have the same type.
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Chapter 6

Extending sums of types to the

complete calculus via lower bounds

___ Résumé du Chapitre

Avant de passer a un systéeme de type Vectorial & la Church, comme nous avons suggéré dans
le dernier chapitre, nous explorons un chemin alternatif et plus classique : une extension
d’Additive au calcul complet. Cette extension a l'avantage d’avoir des sommes, mais pas de
scalaire, dans les types, permettant comme démontré au Chapitre 4, d’étre encodé dans le
Systéme F' avec paires. En conséquence, la question qui se pose ici est comment caractériser
les scalaires dans les types, en n’utilisant que des sommes. Nous proposons une modification de
Alin, 0U les valeurs scalaires sont uniquement des nombres réels non-négatifs, le type consiste
alors & prendre la partie entiére des scalaires afin de les représenter au travers des sommes.
Cela permet de considérer X% comme une interprétation abstraite de Ny, et donc aussi du
Systéme F avec paires. Cette extension est une approche alternative a Vectorial, mais qui ne

donne qu’une information approrimative sur les superpositions positives. ]

EFORE moving to a Church-style Vectorial type system, as suggested in the last chapter, we will
explore an alternative and more classic path: an extension of Additive (cf. Chapter 4) to the full
calculus. This have the advantage of having only sums —and not scalars— in the types, which

as has been shown, is possible to encode in System F with pairs (System Fp). Extending Additive to
the full calculus gives rise to the question of how to characterise the scalars in types by using only sums.
We propose a modification of A\, where the scalars are only positive real numbers, and then the types
will approximate the scalars by taking their floor in order to represent them through sums. This allows
us to consider Y49 as an abstract interpretation of Ay, and hence also System Fp. This extension is an
alternative path to Vectorial which gives us some approximate information of positive superpositions, and
provides strong normalisation to the calculus, and hence its confluence, in a simpler way than Vectorial.

Since this is just an study of feasibility, we will prefer a — g rule a la Additive, which although simpler
than the one from Vectorial, is incomplete since it can only type applications where the arguments are
sums of terms with the same type (up to the scalar). On the contrary, we work in Church-style, since
it has been shown in in the previous chapter that factorisation rules with sums fail to have a complete

subject reduction.
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Plan of the chapter. In section 6.1 the typed version of A\j,, called A“4, is presented. Section 6.2
is devoted to proving that the system features some basic properties, namely a subject reduction result
and the strong normalisation property, which entails the confluence of the calculus. Section 6.4 shows an

abstract interpretation of A“4 into X944, Finally, section 6.5 concludes.

6.1 The calculus N\

We introduce the calculus A4, which extends explicit System F' [Reynolds, 1974] with linear combinations
of M\-terms. Figure 6.1 shows the abstract syntax of types and terms of the calculus, where the terms are
based on those of Ay,. Scalars, written «, 3,7, ..., range over non-negative real numbers. Remark that
this is a semi-ring, and no a ring as in the previous systems. In fact, it can be shown that a semi-ring is
enough for most of the systems presented in this thesis.

Notice that there are no scalars at the type level, however, we introduce the following notation: for
any natural number n > 0, we write n.T for the type T+ T + --- + T (n times). Also, 0.7 = 0. We may
also use the summation symbol Y 7" | T;, with the convention that 2?21 T =0.

The reduction rules, based on Ay, are also given in Figure 6.1. As usual, all reductions are performed
modulo associativity and commutativity of the operator 4. It is essentially the rewrite system of A,

with the extra type-application rule.

Types: Terms:

T,R,S:=U|T+R|0 t,r,bun=b | (8)r [tQU [0 at [ t+1 | AX ¢
UV,W: =X |U—->T|VXU bu=2z:U|X:Ut | AX.b

Elementary rules: Factorisation rules: Application rules:

0.t — 0, at+ Bt — (a+ f).t, (t+r)u—(t) u+(r) u,

1.t — t, at+t— (a+1).t, (u) (t+71) = (u) t+ (u) r,

a.0 = 0, t+t— (1+1).t. (at) r = a.(t) r,

a.(B.t) = (a x B).t, Beta reductions: (r) (a.t) = a.(r) t,

a.(t+r) = at+ar, (Az:U.t) b — t[b/a], (0) t — 0,

t+0—t. (t) 0 — 0,

(AX.t)QU — t[U/X].

Contextual Tules: If t — r, then for any term u, scalar a, variable x, unit type U and type variable X,

(t) u— (r) u, t+u—r+u, a.t — a.r and
(u) t = (u) r, u+t—ou+r, Azt — Az.r
Ar:Ut = z:Ur AXt— AXr

Figure 6.1: Syntax and reduction rules of A¢4

Notice that the grammar of types is the same as the one of Additive, presented in Chapter 4 (cf. Fig-
ure 4.2). Also, the same equivalences apply, namely T+0 =T, T+R = R+T and T+(R+S) = (T+R)+S
(cf. Definition 4.1.1).

The premise of the type system, as has been announced in the introduction, is that if t has type T,
then a.t has type |«].T. For example, g.t would have type T'+ T'. The intuitive interpretation is that
the type 2.7 gives a lower bound of the “amount” of t : T" in the term.
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The typing rules are given in Figure 6.2. It is very similar to Additive (cf. Figure 4.2), updated to

explicit typed terms, and with the extra rule mentioned in the above paragraph (sy).

Remark 6.1.1. Recall the discussion about the type O for the Vectorial type system (cf. Section 5.2):
if T+0 =T, then the term (A\x.t +r — 1) b may have a type, but its reduct (Ax.t) b+ (r) b— (r) b
may have not. Notice that this issue comes from the negative numbers, however, something similar could
happen in our setting: (Ax:U.t + %r) b may have a type as soon as b has type U, since the type of %.r

is |1].R = 0. However in this case (3.r) b will also have a type: precisely the type 0.

TzUFaU g "
BV ' 0:0 THe:Y (U =T) TrrmU
La:UkFt:T PRtV = - —p
— E
THAe:Ut:U—T | DEtav:UV/X] T (t)r: Ym0
i=1
'-t:T TFr:R 'ct:T T=R r-t:U X ¢FV() ret¢:.T
+7 = —— 51
Trt+r:T+R THt:R TFAXG:VXU | Trat:[a)]T
Figure 6.2: Typing rules of \¢4

Going back to the discussion of Section 4.1, allowing the arguments to have different types in rule
— g, would lead to a more interesting calculus, but with a more complex rule. It has been done in the
Vectorial type system (cf. Chapter 5), however since the intention of this Chapter is to relate the system
we are presenting, with Additive, we will keep it simpler and relax this restriction.

The main novelty of the calculus is its treatment of scalars (rule sI). In order to avoid having scalars
at the type-level, when typing a.t we take the floor of the term-level scalar o and assign the type |«|.T
to the term, which is a sum of 7’s. Hence the type n.T represents a lower bound of the “amount” of

atoms t : 7" within the term.

6.2 Subject Reduction with lower-bound

In A¢“ the types are imprecise about the “amount” of each type in a term. For example, let ' -t : 7 and
consider the term s = %.t + %.t. It can be checked that I' - s:T. However, s —* 2.t, and ' - 2.t:2.7. In
this example a term with type T reduces to a term with type T4 T', proving that strict subject reduction
does not hold for A“4. Nevertheless, we prove a similar property: as reduction progresses, types are
either preserved or strengthened, i.e. they become more precise according to the relation between types

defined as follows.

Definition 6.2.1. Let < be the smallest reflexive (in terms of =) and transitive relation satisfying the

rules:
o Ifa <, then a.T < B.T.
o IfTh T and S1 X S2, then Ty + 51 < Ta + S>.
o IfUy x Uy and Ty X Ty, then Uy — T < Uy — Ts.
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o IfT < R, then VX.T < VX.R.

This entails that the derived type for a term is a lower-bound (with respect to <) for the actual type of
the reduced term. We can state the property in other terms: subject reduction is granted in the sense
that the types involved in a term describe some of the types involved in its normal form. However the

“amount” of those types will be just a lower-bound. It is formalised in Theorem 6.2.2.

Theorem 6.2.2 (Subject Reduction up to ). For any terms t and t', context ' and type T, if t — t’
and T'Ft:T then there exists some type R such that T'Ht':R and T < R.

Intuitively, T < R (R is at least as precise as T') means that there are more addends of the same type
in R than in T, e.g. A < A+ A for a fixed type A. Notice that the order relation is not the trivial one:
although T T + R for any R (because T =T 4+ 0.R T+ 1.R =T + R), the type T will stay or get

increased, but never decrease.

The remain of this section is devoted to the proof of Theorem 6.2.2. Let us give some preliminary

lemmas.
Lemma 6.2.3 (Uniqueness of type). Let T'Ht:T and T Ft: R, then T = R.

Proof. Let I' - t:T. Induction on the depth of the derivation. For each item there are two ways to obtain

its type: the trivial one, and by rule =, which proves the lemma. (|

Lemma 6.2.4 (Generation lemmas). Let T be a type and T a typing context.

1. For arbitrary terms u and v, if '+ (u) r: T, then there exist natural numbers n and m, a unit
type U, and general types Th,..., T, such that T = u: > (U — T3) and T' + r:m.U with
Y omI=T.

2. For any term t and unit type U, if U+ Ax: U.r: T, then there exists a type R such thatT,x: U Fr: R
andU - R=T.

8. For any terms w and v, if ' - u+r:T, then there exist types R and S such that T - u: R and
I'kFr:S, withR+S=T.

4. For any term u and non-negative real number o, if I' = a.u: T, then there exists a type R such that
F'u:Rand || R=T.

5. For any term t, if U AX.r: T, then there exists a type R such that T Fr: R and VX.R =T with
X ¢ FV(I).

6. For any term t and unit type U, if U F rQU : T, then there exists a type V such that I' - r:VX.V
and VIU/X])=T.

Proof. All the proofs are by induction on the length of the derivation. There are only two cases for each
item: the trivial case and having = as the final rule, which is also trivial using the induction hypothesis

and rule =. O

Corollary 6.2.5. For any context T, types U and T and term t, if T Ax:Ut:U — T then I',x:U F
t:T.
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Proof. By Lemma 6.2.4, item 2, there exists R such that I''z: U - t: R and U — R = U — T, which
implies T' = R, hence we finish by rule =. O

Lemma 6.2.6 (Substitution lemma). For any term t, base term b, context T' and types U and T,
1. IfTEt:T, then T[U/X] F t[U/X]: TU/X].
2. IfTz: Uk t:T andT+Db:U, then T - tlb/z]:T.

Proof. Similarly as the proof of Lemma 4.2.8 (¢f. Appendix C.6): for each item there is one more case,

corresponding to rule s;. Let I' - .t |«|.T as a consequence of I' - t: T and rule sy, then:

1. by the induction hypothesis, T[U/X] F t[U/X]: T[U/X]. Therefore, using rule sy, we have I'[U/X]| F
at[U/X]: o). T[U/X]. Notice that a.t[U/X] = (a.t)[U/X] and |a|.T[U/X] = (la].T)[U/X].

2. by the induction hypothesis I' - u[b/x|:T. Therefore, using rule s;, we have I' b aeu[b/z]: |«].T.
Notice that a.u[b/z] = (a.u)[b/z].
(]

Apart from the classic lemmas given above, we need some extra lemmas. Notice that some of them are

direct reduction cases, which are needed in other cases.
Remark 6.2.7. Notice that T' - 0:T implies T = 0, since the only rules typing 0 are arg and =.
We can extend the previous remark to applications.

Lemma 6.2.8 (Linearity of 0). For any context T', type T and term t, if T+ (0) t:T or T+ (t) 0: T,
then T = 0.

Proof. Let '+ (0) t:T. By Lemma 6.2.4(1), there exist natural numbers n and m and types U, T1, ..., T,
such that I' = 0: 3" | U — T;, where >_* ; m.T; = T. Then by Remark 6.2.7, we have n = 0 and so
T=5",mT=0.

Analogously, let T' F (t) 0, using the same Lemma 6.2.4(1), there exist natural numbers n,m and
types U, T4, ...,T, such that I' - 0: m.U and 2?21 m.I; = T. Then, by Remark 6.2.7, we have m = 0
andso T =>",0.7; =0. O

Lemma 6.2.9 (Product). If T+ «.(f.u): T then Tk (a x §).u: R with T < R.

Proof. Let T+ «.(8.u): T. By Lemma 6.2.4(4), there exists Ry such that I' - S.u: Ry where |«|.Ry =T.
Then again by Lemma 6.2.4(4), there exists Ry such that I' F u: Ry where |3].Ry = R;. So, using
rule sy, one can derive I' - (a x 8).u: |a x 8].Ra. Since o, 8 > 0, (la] x |B]).R2 < |a X B].Rz, so
T=l|a|l.R = (la] x |B])-R2 < |ax B].Ra. O

Lemma 6.2.10 (Distributivity). If T a.(u+r):T then T F au+ a.x:T.

Proof. Let T'F a.(u+1r):T. By Lemma 6.2.4(4), there exists R such that I' - u + r: R where [a|.R=T.
Then by Lemma 6.2.4(3), there exist S; and Ss such that I' - u:S; and T' - r: S, with S; + 52 = R.
So, using rules s; and 4, we can derive I' F c.u + ae.r: |«].S1 + |].S2. Notice that |«].S1 + |«].S2 =
la].(S1 4+ S2) = |a|.R=T. O

Lemma 6.2.11 (Factorisation). IfT'F a.t+ 8.t:T then T F (a+ 8).t: R and T < R.
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Proof. Let T' F a.t + 8.t: T. By Lemma 6.2.4(3), there exist 71 and 75 such that I' - a.t: 7y and T
B.t: Ty, where Ty +T5 = T. Then by Lemma 6.2.4(4), there exist Ry and Rg such that T'Ht: Ry and T' +
t: R, with |«].Ry =T and |B].Re = T». Using sy on the former, we obtain I' - (o + ).t : |a+ 5] .Ry.
Since R; and Rp are both types for t, we have Ry = Ry, s0 T = Ty + Ty = |a|.R1 + |f].R2 =
la.Ry + [B].Ry = (o] + [B]).Ry < (la+ B]).Ra. O

Lemma 6.2.12 (Base terms in unit). For any base term b, context T and type T, if ' - b: T, then there
exists a unit type U such that T+ b:U.

Proof. If b is a variable, it must have a type given by its context, which must be a unit type. If b is
an abstraction, it must have a type given by the — rule or the V; rule. In either case, these are unit

types. (I

With these lemmas, we can prove the Theorem 6.2.2. Some of the lemmas given are direct cases of

subject reduction. The remaining cases can be found in Appendix E.1.

6.3 Confluence and Strong Normalisation

In order to prove the confluence of the language, we first prove strong normalisation, which in a locally
confluent setting entails confluence. The strong normalisation proof goes as follows: first we show how
to translate the terms of A4 into terms of Ay, i.e. terms without type annotations. Then we show that
typability in A4 implies typability in Vectorial, and so the strong normalisation of the translated term.
This allows us to prove the strong normalisation of A“4 terms.

We use the following notation: I' -, t: 7T means that the type T' can be derived for the term t in the
context I' using the Vectorial type system. Reductions in Vectorial are denoted by —,, and — denotes
its reflexivity closure: i.e. t = r means that either t —, r or t = r. In the following, we call type beta
rule to rule (AX.t)QU — t[U/X].

Let | - | be the following translation from terms in A4 to terms in Ay,
2] = =z [AX.t] = |t [tQU| = |t lat] = a.t]
Az :Ut] = Azt [(t)r] = (t]) |r| 0] = 0 [t+r] = |t|+|r]

Lemma 6.3.1. Ift — r, then |t| =5 |r|, where the equality only happens if t — v by a type beta rule.

Proof. Notice that the translation only removes the type notations. So for each reduction rule in A“4, we
can use the analogous rule in Vectorial in the translated term and obtain the translation of the reduct.
The only case when this is no possible is in the type beta rule: notice that (AX.t)QU — t[U/X], and
[(AX.t)QU| = [t| = [t[U/X]]. O

Lemma 6.3.2. IfT +t:T, then A, R such that Ak, |t]: R.

Proof. First we define a translation from a subset of types in Vectorial to types in A““. Consider the
subset of types of Vectorial, where scalars range over non-negative real numbers. Then the translation

has this subset as domain:
X=X [U—T|=|U|—|T] VX.U| =VX.|U| |a.T| = |a].|T] T+ R|=|T|+ |R|

where n.T = I | T with the convention that 0.7 = 0. We also extend this definition to contexts:
IT|={x:|U| | UeT}.
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Then we prove by induction on the length of the type derivation of T' - t: T that |T'| F, |t|: R with
|R| = T. The full proof can be found in Appendix E.2. O

Lemma 6.3.3. There is no infinite sequence reduction consisting only of type beta rules.

Proof. Consider the following function from terms to natural numbers:

o(z:U)=1 o(AXt)=1+o0(t) o(tQU) =o(t) olat)=o(t)
oAz : Ut)=o0(t) o((t) r)=0o(t) o(r) o(0)=1 o(t+r)=0(t) + o(r)

Then we prove by structural induction on t that o((AX.t)QU) > o(t[U/X]). Since it is a positive strictly
decreasing function on the type beta reduction, the sequence cannot be infinite. The full induction can
be found in Appendix E.3. (|

Theorem 6.3.4 (Strong Normalisation). If ' t:T in A“A, then t is strongly normalising.

Proof. Let T' t: T, then by Lemma 6.3.2, exists A and R such that A, |t|: R. Thus by Theorem 5.4.4,
[t| is strongly normalising. Assume that t is not strongly normalising, then t — t; — to — ---. By
Lemma 6.3.1, [t| —5 |[ti| =5 [t2] —5 -, since |t| is strongly normalising, there exists n such that
Vi > n, |t;| = |ti+1], and by Lemma 6.3.1, it happens only when t; — t;; by the type beta rule.
Then t must be strongly normalising, since by Lemma 6.3.3, there cannot be an infinite sequence of type
beta-rules. O

Confluence
Now confluence follows as a corollary of the strong normalisation theorem.

Corollary 6.3.5 (Confluence). The typed language \““ is confluent: for any term t, if t —* r and
t —* u, then there exists a term t’ such thatr —* t’ and u —* t’.

Proof. The proof of the local confluence of the system, i.e. the property saying that t — r and t — u
imply that there exists a term t’ such that r —* t' and u —* t/, is an extension of the one presented
for the untyped calculus in Chapter 5, where the set of algebraic rules (i.e. all rules but the beta reduc-
tions) have been proved to be locally confluent using the proof assistant Coq. Then, a straightforward
induction entails the (local) commutation between the algebraic rules and the S-reductions. Finally, the
confluence of the [-reductions is a trivial extension of the proof for A-calculus. Local confluence plus

strong normalisation (¢f. Theorem 6.3.4) imply confluence [TeReSe, 2003]. O

6.4 Abstract Interpretation

)\CA

The type system of approximates the more precise types that are obtained under reduction. The

)\add )\CA:

approximation suggests that could be seen as an abstract interpretation of its terms can

ACA . Scalars can be approximated to their floor, and hence be represented by

approximate the terms of
sums, just as the types in A4 do. This intuition is formalised in this section, using X4 and the Additive
type system presented in Chapter 4. This calculus is a typed version of the additive fragment of the Ay,
(¢f. Section 1.2), which in turn is the untyped version of A\“4.

The X9 calculus is shown in Figure 6.4. The types and equivalences coincide with those from \¢4.
We write the types explicitly in the terms to match the presentation of A4, We use 4 to distinguish

the judgements in A4 (F) from the judgements in X*49. Also, we write the reductions in X9 as —,.
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Terms: t,r,si= b|(t)r|tQU |0 |t+r
Basis terms: bu= z:U | x:Ut|AXt
Distributivity rules: Zero rules: B-reduction:
(ut+t)r—, (Wr+(t)r 0)t—, 0 (Az.t) b —, t[b/z]
(r) (u+t)—, (r)u+(r)t (t)0—, 0 (AX 4)QU —, t[U/X]
t+0—,t
#a:p ——arg n
Uk z:U ['F 0:0 Thait: Y (U—=T) ThirimU
T2:Ukyt:T Do VXU — —g
— E
Thhe:Ut:U =T T by tQV: U[V/X] Tk (t ZmT
'k t:T I'tar:R 't T T=R 'k t:U X¢FV(F)V
+r =
Thit+r:T+R Thit:R T AXEYXU

Figure 6.3: The X9 calculus with the Additive type system, in Church-style

We define |, to be the function that takes a term and returns its normal form in X*d4. The normal form
always exists and is unique due to strong normalisation and confluence of the calculus (Corollaries 4.3.22
and 4.3.23 respectively). We write | to the analogous function for A4, We will not prove strong
normalisation for it, however we conjecture that it is the case. We use post-fix notation for these functions,
so J(t) is written tJ.

Let T, be the set of terms in the calculus ¢. Consider the following abstraction function o : Thea —

Tyeaa from terms in A4 to terms in Nedd:

o(x:U) = z:U o(tQU) = o(t)QU
o(Az:Ut) = Ax:U.o(t) o(0) =0

o(AX.t) = AX.o(t) olat) = S a(t)

o((t) t') = (a(t)) o(t') o(t+t) = o(t)+o(t))

where for any term t, Z?:l t=0.

We can also define a concretisation function ~ : Theaa — Tyca, which is the obvious embedding of
terms: y(t) = t.

Let C C Thaaa X Thaaa be the least relation satisfying:

alf = Z?ﬂtEZf:lt

tCt = Ae:UtC Az: Ut/ tCt ArCr = (t)rC(t)r
tCt = AXtCAXY tCt/ ArCr = t+rCt 41
tCt = tQU C t'QU tCr ArCs = tCs

and let < be the relation defined by t1 < te < t1], C tal,.

The relation C is a partial order. Also, < is a partial order if we quotient terms by the relation
~, defined by t ~ r if and only if t{= r| . We formalise this in the following lemma (its proof is in
Appendix E4).
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] 6. Extending sums of types to the complete calculus via lower bounds

Lemma 6.4.1 (Poset).

1.

M

is a partial order relation

2. < is a partial order relation in Tyada/ .. ]

~

)\add

The following theorem states that the terms in A4 can be seen as a refinement of those in , 1.e. we

)\add

can consider as an abstract interpretation of A¢4. It follows by a non trivial structural induction on

t € T\ca, ¢f. Appendix E.5.

Theorem 6.4.2 (Abstract interpretation). The function | is a valid concretisation of |,: Vt € Thea,
o(6)L S o(tl). O

The following lemma states that the abstraction preserves the typing (proof in Appendix E.6).

Lemma 6.4.3 (Typing preservation). For arbitrary context T, term t and type T, if T' b t:T then
F'kyo(t):T. O

Taking X944 as an abstract interpretation of A“4 entails the extension of the interpretation of X*44 into

System F' with pairs, F}, (cf. Section 4.3) as an abstract interpretation of AC4 | as depicted in Figure 6.4.

\CA [ Jadd [1o E
1 Ia I
()
)\CA )\add Fp
7 [lp

Figure 6.4: Abstract interpretation of A4 into System Fp

6.5 Conclusions and open questions

The first typed version of A\;;, was presented in Chapter 3. This type system, an extension of System F,
deals with scalars in the terms by reflecting them in the types. However, this introduces an undesirable
restriction in the calculus: it can only sum terms of the same type, up to the scalar weighing it. With
ACA | which is also based on System F, we have shown how to design a typed algebraic calculus that
combines polymorphism and sums of different types, thereby lifting this restriction. Sums of types can
be encoded as pairs, as shown in Chapter 4, thus these constructions are quite standard.

A4 is a confluent, typed, strongly normalising, algebraic A-calculus, based on Ay, which has an
algebraic rewrite system without restrictions, in contrast with A4y, which is presented as an equational
theory instead of a rewrite system; and Ay, , where restrictions are introduced to make the calculus to
make it confluent.

In this chapter, scalars are approximated by natural numbers. This approximation yields a subject
reduction property which is exact about the types involved in a term, but only approximate in their
“amount” or “weight”. In addition, the approximation is a lower bound: if a term has a type that is a sum
of some amount of different types, then after reducing it these amounts can be incremented but never

decremented.
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6. Extending sums of types to the complete calculus via lower bounds [

One of the original motivations for this system was to extend the translation of \;, to a standard
calculus. The translation of the additive fragment of A, (A*44) into System F with pairs (F},) was first
presented in Chapter 4. We have shown that terms in X4 can be seen as an abstract interpretation of
terms in A4, and then that F, can also be used as an abstract interpretation of terms in A4 by using
the translation from X9 into F,.

In our calculus, we have chosen to take the floor of the scalars to approximate types. However, this
decision is arbitrary, and we could have chosen to approximate types using the ceiling instead. Therefore,
an obvious extension of this system is to take both floor and ceiling of scalars to produce type intervals,
thus obtaining more accurate approximations.

It is still an open question how to obtain a similar result for a calculus where scalars belong to an

arbitrary ring.
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Chapter 7

Lineal: a vectorial type system in
Church style

___ Résumé du Chapitre

Nous définissons un lambda-calcul algébrique explicitement typé, fondé sur Ay, et Vectorial,
qui a la propriété de préservation du type et est fortement normalisable. Le langage permet
de faire des combinaisons linéaires arbitraires de termes. Le systéme de type est un outil
d’analyse décrivant les propriétés vectorielles des termes : il garde la trace de '« amplitude
d’un terme», c-a-d que si t et u sont tous deuxr du méme type U alors a.t + p.u est de
type (o + B).U. En outre, il garde la trace de la « direction d’un terme», c-a-d que si t et
u sont de type U et V respectivement alors a.t + f.u est de type o.U + B.V. Ce calcul est
capable d’encoder des matrices et des vecteurs comme Vectorial, mais il a 'avantage d’avoir
la propriété de préservation du type : les problémes décrits dans le Chapitre 5 sont résolus ici

a laide de types explicites dans les termes, ainsi qu’un systéme de sous-typage. [

HIS chapter presents Lineal, a type system that solves the drawbacks of the previous type systems
presented in this thesis. Recall that a straightforward extension of System F (cf. Definition 3.3.1)
would have two problems. On the one hand, it is too restrictive because of rule +7, which allows

adding only terms with the exact same type. And, on the other hand, it does not provide any information
about the scalars, as it follows from rule s¥; i.e. any typed term can be weighted and preserves the same
type.

The Scalar type system presented in Chapter 3 is a novel approach to solve the second problem: by
allowing scalars to weight types, the scalars in the terms are tracked in the types. However, it still does
not solve the restriction of adding only terms of the same type (up to the scalar).

The Additive type system in Chapter 4 solves this problem, but it comes at the price of reintroducing
a restriction: it types only the additive fragment of A\;,. It has however the advantage of being more
classic, in the sense that it can be interpreted in System F' via a parallel between additions and pairs
(cf. Section 4.3).

Finally, the Vectorial type system in Chapter 5 solves the previous two problems by combining the
two approaches: types can be weighted and added, revealing the vectorial shape of the term. It has

been shown however that the factorisation reduction rules prevent this system from preserving the types
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7. Lineal: a vectorial type system in Church style [

during the reduction: just a weak version of the subject reduction property can be proven (cf. Section 5.3).
We have suggested that a Church style presentation would solve this problem. This Chapter develops
precisely this idea: a Church style Vectorial type system for the Ay, with both strong normalisation and
subject reduction. We call this explicitly typed calculus Lineal.

ACA a typed calculus where terms can be

In Chapter 6 we had presented an alternative approach:
weighted and summed up without restrictions. It does not have scalars in the types, only sums (which
have been proved to be interpretable with pairs). It has been developed in Church style, so it does not
have the factorisation rules problem. Despite the fact that this is a simpler approach, it does only serve
a purpose: that of providing the system with strong normalisation, and this without restrictions on the
calculus other than taking scalars over positive real numbers. Notwithstanding, the information about
scalars given by the type system itself is only a lower bound approximation. In addition, it adds a new

restriction: scalars can only range over non-negative real numbers, in comparison to A;,, where any

commutative ring is allowed.

Plan of the Chapter. Section 7.1 presents the typed calculus and discusses some design choices. The
next two sections, 7.2 and 7.3, are devoted to the correctness of this calculus by showing subject reduction
and strong normalisation, respectively. In Section 7.4, we show how to encode the Hadamard gate in this

setting. Finally, Section 7.5 concludes.

7.1 The calculus Lineal

We introduce the calculus Lineal, an explicitly typed algebraic A-calculus based on Ay, and Vectorial.
First, we will need a specific notation for arrays. Notice that what was written as VXZ in Vectorial will
not be enough in this calculus. In order to eliminate V’s we now need to know how many X'’s are in 7

Hence we introduce the following vectorial notation.

The vectorial notation. As usual we write 2?21 T; for T1 + --- + T,,. Also, since the terms are
explicitly typed, we may write b" to for term b when it has type V. Finally, we write tQU; as a
shorthand for t@(3"1_, U;).

The wvectorial notation (-)_ is defined as follows:

n

(VX), 6t =VXy.... VXp t (t) (b), = (-+(t) b1)--- by
A :U), t =Axy :Uj..... Az Ut (t) <bv>k = (- (t) bYI) T bl‘g/k
(AX), t = AXy.... AXpt t([U;/ X)), = t[U;, / Xa] - [Uj,. / X

n

60 U, = (- (8(Y U B0,

i=1

o, -T=U1—-—=>U,—>T

<FFt:T>k:F1Ft1:T1 Fkktk:Tk
Where

e The index k may be 0, in which case the term/type can be removed, e.g. (VX),.TQ(U/X]), =T.
o We use (YU, for S Uy, L SR,

e We use it also to enumerate elements: (e) = ey,...,e,, where e may be a term, a type, a scalar,

or any other element.
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] 7. Lineal: a vectorial type system in Church style

Figure 7.1 shows the abstract syntax of types and terms and their reduction rules. It includes all the
rules from A4 (the only explicitly typed system presented so far), plus three new rules grouped in two
categories: the Type-linearity rules and the Type-distributivity rule. In order to understand why they are
needed, notice the differences in the syntax between what is presented here and A4 (cf. Figure 6.1).
The terms are the same, except for the type application, where it can be read t@(Z?:l U;) instead of
t@QU. This sum of unit types acts as a choice operator: in tQU the type U is the argument for a lambda
abstraction of types, in t@(}_" , U;) we are saying that one of the U; will be the argument, without
saying a priort which one.

This change comes from the fact that the type system is based on Vectorial, where the arrow elimina-
tion —g (cf. Figure 5.2) is more versatile than the one in A4: the arguments passed to an abstraction
can be a sum of any terms, as soon as the abstraction is able to take any of these terms by means of
polymorphism. As a consequence of this extension, the rule becomes a mix between an arrow elimina-
tion and a forall elimination. However, a forall elimination in a system with explicit types needs a type
application. Then, roughly speaking, the sum of U;’s represents all the types that will be applied to the
type application in order to specialise it to each of its arguments.

Having said this, let us analyse one by one the reduction rules concerning types. The beta-reduction
is standard: when the given type is just one unit type, and the term is an abstraction of type, a type
substitution occurs. The type-distributivity rule, despite its complicated aspect, is simply taking into
account the above discussion: if the term is a type application, it has to take into account the arguments
in order to choose the correct type, and hence we must have a condition saying that the arguments can
be transformed into the types expected by the abstractions. The type of the arguments has been written
as superscripts V;, since they are known because they are provided by the terms. Notice the vectorial

notation, which is used to allow more than one type-applications.
Example 7.1.1. The type-distributivity rule: let Uy, Us, Us, such that U;[Wh, / X1][Ws,/X2] = Vi, then
((AX1 AXo A2y = Uy das : Usdag : Us t)Q(Wy, + Wa, ))@(Wy, + Wa, 4+ Ws,)) b)*) by?) by?

reduces to
((()\,%1 . ‘/1)\.%‘2 : ‘/2)\.%'3 . V},.t[Wh/Xl][Wg,Q/XQ]) bl) b2) b3

which, using the vectorial notation, can be written as
(AX),.Qa: U) )@Y Wi),) (BY), = (A : V), 8([W;/X]),) (b),
i=1
where m1 =2, my =3, j1 =1 and jo = 3.

The type-linearity rules are needed to allow for the type application to be linear with respect to sums

)\CA

and scalars. Notice however that they were not needed in . This change comes from the difference

between the forall typing rules in Vectorial and in A4,
As usual, we define type equivalences, which are the same as in Vectorial, with one extra equivalence

for the type application.
1.7 = T, aT+aR = a(T+R), T+R = R+T,

a.(BT) = (axp).T, al +p.T (a+p).T, T+(R+S) = (T+R)+S,
VX.U)QV = UV/X],

Similarly to Vectorial, every type is a linear combination of unit types.
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7. Lineal: a vectorial type system in Church style [

Types: Terms:
T,R,S :=U |aT|T+R t,rrus=b | (t)r|tQ>U;)|0]|at|t+r]|AXt
i=1
UV,W::=X|U->T|VX.U|UQ> V) bu=z:U| X :Ut | AXD
i=1
Contexts

Contexts are defined as sets of pairs = : C, where C is taken from the following grammar
C:=X|C—->T|VX.C

Reduction rules

Elementary rules: Factorisation rules: Application rules:
0.t — 0, at+ Bt = (a+P).t, (t+r)u— (t) u+(r) u,
1t —=t, at+t— (a+1).t, (u) (t+r)— (u) t+ (u)r,
a.0 — 0, t+t— (1+1).t. (at) r = a.(t) r,
a.(B.t) = (a x B).t, (r) (a.t) = a.(r) t,
a.(t+r) = attoa.r, (0) t — 0,
t+0 —t. Beta reductions: (t)0—0
(M :U.t) b — t[b/x],
(AX.t)QU — t[U/X]. Type-linearity rules:
(a.t)@(i1 U;) — a.t@(il ),
(tﬂ«)@(."1 U) — t@(."1 Ui)+r@(f:1 U,).
Type-distributivity rule:
Ifvh=1,...,n, U([W;/X]), = Vh, then
((AX), Az U), £)@(5E, Wi),) (bY), — ((Ax V), 4([W;/X]),) (b),
Contextual Tules: If t — r, then for any term u, scalar a and variable =z,
(t) u— (r) u, t+u—r+u, a.t — a.r,
(u) t = (u) r, ut+t—ou+r, Azt — Az.r,
AXt— AXr, tQ(>", U;) = r@(3>°, Us).

Figure 7.1: Syntax and reduction rules of Lineal

Lemma 7.1.2 (Type characterisation). For any type T, I(U)

)

(), such that T =" | o;.U;.

Proof. Structural induction on T'. If T' is a unit type, then take n =1 and a; = 1. If T is .T’, then by
the induction hypothesis 77 = Y7 | 8;.U;, so T’ = a. Y i Bi.U; = D0 (a x B;).U;. T =R+ S,
then it follows directly by the induction hypothesis. (I

Figure 7.2 presents a subtyping relation and the typing rules. The subtyping relation takes care of
the problem with 0’s in the types (cf. discussion in Section 5.2): T < T + 0.R for any R (cf. rule Azx).
The rest of the rules are the reflexivity, transitivity and contextual closure of the relation. Notice that,
roughly speaking, the subtyping relation only adds types weighted with 0, but it does not change the

structure of the type, in the sense of the following lemma.

86



] 7. Lineal: a vectorial type system in Church style

Lemma 7.1.3 (Shapes comparison).

Y0, @l < S B.(VX),.Vy, then Wi, 3U! | Uy = (vX),.U!

Y0 el 2 M BV @(S0_ Wi, then Vi, UL | Uy = ULG(YP_, Wi, .
YT 0l <X BV = Ty, then Vi, 3T) | Uy =V — T).

Proof. Notice that in all the equivalences, the types on the left hand side of the equivalence appear also
on the right hand side. This is the case also in the rule Az, hence it is always the case that all the U; are
in the type on the right hand side. Since all the types on the right hand side have the same form, then

U; has to have this form too. O

All the typing rules are the explicitly typed analogues of those in Vectorial, with only one change:
the Vg is replaced by a @, which is more general since it allows introducing a sum of unit types for
replacement. The forall elimination rule is a special case, when m = 1, which follows from the extra

equivalence rule mentioned above.

Tt iai.vx.m = Qy
=L Ve = IHtaQU: Y a.(VX.U;)@V
'+ tQU: Z ;.U [V/X] = =
=t I+ tQU: Zaz S[V/X]
=1

In spite of being written differently, the arrow elimination (—g) is in fact completely analogous to
the one in Vectorial. We just changed the notation V? for the vectorial notation, and added the type
application @ to instantiate the X’s.

Example 7.1.4. We show how to type the term from Example 7.1.1 (we use superscripts to denote several
application of the same rule):
U1,£L'2 UQ,:L'g Ug Ft:T
Fx:U),t:(U), =T

F(AX),. (0 : Uy t: (VX), . (U), 5T o
I
(AX),.(\x : U), Z W;), b (U), = T)Q> W), by Va
— 1=1 —E
F(((AX),. 00z - U), )@Y Wa),) byt Va — Vs — T([W;/ X)), Fby:Va Fbs:Vs
=1 _>E2
F(((AX),. (A - U>3-t)@<z Wi),) (b), - T{(W;/X]),

Notice that ((AX),.(\x : U), £)Q(3"1" W;),) (bBY), —* ¢((W;/X]),([b/z]), And since z1 : Ui,z :
Us, 3 : Us b t:T, by the Substitution Lemma (cf. Lemma 7.2.5 in Section 7.2),

x1: Vi, zo s Vo, s 1 Va B t((W;/X1), : T((W; /X)),
Finally, using the Substitution Lemma again (three times), we get
= (W /X)), (b/x]), - T(W;/ X]),
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Subtyping relation

R P TERR TR RjST T<R V=U c
€ —— A X
T=T+0.R T=<R T=<58 UsT=<V >R
U=V
T=<R c U=V c ~ ~ Cza T=<R c
— (Cxy, ————Cx Ts
T+S=<R+S  wxu=vxv  vadwy)=vald w) a.T < a.R

i=1 =1

Typing rules

'Ht:T Fax:UkFt:T
TaUFal U I
T L I'+0:0T I'FXe:Ut:U—T
n m—+9d m YV 3]1 ]k/
Tt Y a.(vVX),.(U = T;)@ W; Ckr: Y B.V; IR
D (VX ( ey wi), PILAY W, X]) =V,
=1 J=1 J=1 J k J
Tk (t)r: > > o x BT [W; /X)),
i=1 j=1
Tt Y aiU; X ¢ FV(T) Tt VXU
= n vl m ’il:l m @I
THEAXG: Y 0 VXU I'Et@(> V) > i (VX.U)A() V)
i=1 j=1 i=1 j=1
I'Ht:T I'kt:T I'Fr:R I'kt:T T<R
S +1 =
I'Fat:aT I'Ht+r: T+ R I'HFt:R

Figure 7.2: Typing rules of Lineal

7.2 Subject reduction

The Church style presentation plus the subtyping relation provides this calculus with an exact subject

reduction theorem, in contrast with what happened in Vectorial (cf. Section 5.3) and A““ (cf. Section 6.2).

Theorem 7.2.1 (Subject reduction). For any terms t, t', any context T' and any type T , if t — t’ then
'kt:T=TkHt:T.

In order to prove this Theorem, we need some previous results. The Generation Lemmas, which are

straightforward in a Church style setting, can be stated as follows:

Lemma 7.2.2 (Generation lemmas). Let T be a type, U a unit type, a a scalar, T' a typing context and

t and r terms.
1. If Tk a: T, then there exists a type U and context A such that T = AU{xz:U}, and U < T.
2. IfT'F0:T, then there exists a type R and a term t such that U'+-t: R and 0.R <X T.
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3. IfT F (t) r:T, then 3In, m, k, (6),, (X)., (@), B, U, (T), (Vs (W), 50, where VVj,
g1, gk [ U(W;/X]), = V;, and such that T+ t: 7" | ;. ((VX), . (U — Tﬂ)@(Z?:E& Wi,
r F T: Z;n:l ﬂ]‘/] and Z?:l E;nzl a; X ﬂJTK[W]/XDk j T.

4. If U Ax:Ut: T, then there exists a type R such that U,z:UFt:R and U — R <T.
5. IfT'Ht +r:T, then there exist types R and S such that TFt: R, 'r:S and R+ S <XT.
6. IfT'F a.t:T, then there exists a type R such thatT'Ft: R and a.R <X T.

7. If T B AXt:T, then X ¢ FV(I') and there exists types (U)
t: Y r o Upand Y o VXU < T.

and scalars {a), such that T' +

n n

8 IfI' + t@(zg’;lvj);T, then there exists types (U),,

a variable X and scalars {c), such that

Proof. All the proofs follow by induction on the length of the derivation. There are only two cases for each
item: the trivial case and having =< as the final rule, which is also trivial using the induction hypothesis
and rule <. O

As usual, base terms have unit types, or any type bigger than a unit type, i.e. a unit type with extra

0’s. (proof in Appendix F.1).
Corollary 7.2.3 (Base terms). IfT'Fb:T, then exists V such thatTFb:V and V < T. O

Since the types are explicitly written in the terms, there are two ways of obtaining a type for a term:
by construction, which gives the type written in the term, and by subtyping. This fact allows us to

consider one type as principal (namely the one written in the term).

Lemma 7.2.4 (Principal types). Let ' - t: T and T’ + t: R, then 35S such that T+ t:5, S < T and
S =< R.

Proof. Induction on the depth of the derivation of I' - t:T. For each item there are two ways to obtain

its type: the trivial one, and by rule <, which proves the lemma. (I

The substitution lemma is analogous to that in all the previous systems.

Lemma 7.2.5 (Substitution Lemma). For any term t, base term b, context T’ and types U and T,
1. IfTEt:T, then T[U/X| - t[U/X]: TU/X].
2. IfTx: Uk t:T and T F b:U, then T Ft[b/x]: T.

Proof. We reuse the proof of Lemma 5.3.10 (¢f. Appendix D.6) with minimum changes. O

Finally, using the above lemmas we can prove Subject reduction. The proof follows from a rule by

rule analysis and is rather long and technical, so we give it to Appendix F.2.
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7.3 Strong normalisation

We prove this result by translating typed terms to typed terms in Vectorial. To avoid any ambiguity
we use —, to refer to reductions in Vectorial and F, for its type derivations. We also write —7 for the

reflexivity closure of —,, i.e. t =7 r, if either t -, ror t =r.

Let ||-|| be the following translation from terms in Lineal to terms in Vectorial:
Jz:U| = = Ita( i, Ul = [t
Ut = Axlt] joj = o
[AX-t] =[] lect]] = o]t
1) el = (el (el [t+xl = [lt]+ ]

We also define a translation from types in Lineal to types in Vectorial as follows:

X|| = X n
I lvad vl = Ul IfU#£VXWorn>1
U= = Ul 7] =
VXU = VX.|U| leT] = a7
|vx)ev| = [Uy/X])| 1T+ &l =TI+ 2]

Finally, we extend this definition to contexts as ||T'|| = {z: ||U|||z:U € T'}.

Notice that the translation of UQV when U # VX.W is not defined, however this type has not inhabits
since it cannot be introduced by the context (it is not in the definition of contexts), nor by a typing rule.

This translation is stable under equivalence (Lemma 7.3.1), under substitution (Lemma 7.3.2), and

neutral with respect to type substitution in terms (Lemma 7.3.3):
Lemma 7.3.1. If T = R, then |T| = | R

Proof. Case by case analysis. c¢f. Appendix F.3. O

Lemma 7.3.2.

1 [t[b/z]|l = (Il /]

2. \[TW/X]|| = ITIIWI/X], if T £ UQV with U # VX.W.
Proof. Structural induction over t for the first case and over T for the second. c¢f. Appendix F.4. O
Lemma 7.3.3. ||t[U/X]|| = ||t

Proof. Trivial since the translation removes all the types from the terms. (I

The following lemma says that this translation preserves the reducibility, and the reductions are done
in the same amount of steps before and after the translation, except in one case where both terms translate

to the same. The proof is done by rule by rule analysis and can be found in Appendix F.5.

Lemma 7.3.4 (Reducibility preservation). If t — r, then ||t|| = ||r||. Moreover, if the reduction t — r

18 not the type application beta-reduction, the type-distributivity rule nor the type linearity rules, then
[t]] —o [|z]]- O

90



] 7. Lineal: a vectorial type system in Church style

Another important lemma is the typability preservation: the translation of a typed term has a type
which entails that the translation will be strongly normalising. The proof is done by induction on the

last rule applied to derive the type. ¢f. Appendix F.6

Lemma 7.3.5 (Typability preservation). If 'k t:T, then IR <X T such that ||T|| b, ||t]]: || R]|- O
Then, using the two previous lemmas we can state the strong normalisation of Lineal.

Theorem 7.3.6 (Strong normalisation). IfT' b t: T is derivable in Lineal, then t is strongly normalising.

Proof. Let I' - t: T, then by Lemma 7.3.5, 3R < T such that ||T'|| F, ||t]|: |||, and so by Theorem 5.4.4,

It]] is strongly normalising. Assume t is not strongly normalising, say t — t; — t2---. Then by
Lemma 7.3.4, |[t|| =5 [It1]] =5 [lt2]] =5 ---. Since ||t|| is strongly normalising, there exists n such that
Vi > n, ||t;|| = ||tit1]|. By Lemma 7.3.4 it means that Vi > n, the reduction t; — t;+1 can be only one of

the type application beta-reduction, the type-distributivity rule or the type linearity rules. We define a
positive measure on terms and show that these rules are strictly decreasing with respect to the measure,
so t has to be strongly normalising.

Consider the following measure:

lz:U|=10]=|\:Ut|] = 1 [t+r] = 2+t +|r]
((®) r[ = [t] + ] AXt] = [t]
wtl = 1+l e, ) = 1420

We proceed by checking case by case to show that the mentioned rules are strictly decreasing on this
measure (c¢f. Appendix F.7). O

7.4 Example: the Hadamard gate

The Hadamard gate (cf. Section 1.1 for its formal definition), can be encoded in this setting as follows.
First, we name some specific terms and types which will allow to express the Hadamard gate in a more
friendly way.

The identity type will be written as I = VX.X — X and the term I = AX. Az : X.x. We use the idea
of cannon and co-cannon first presented in Section 1.2.2: [t] = Az : I.t, with z : T a fresh variable, and
{t} = (t) I. So {[t]} — t. Analogously, we write a cannon for types as [T]| =1 — T, so I' I t: T implies
T+ [t]:[T].

We also give the following encoding for booleans. First, we name the following types: T = VX.VY.X —
Y - X and F = VXVY.X - Y — Y. Then, using the standard encoding for booleans, true =
AXAY Az : Xy :Y.x and false = AX.AY \x : XAy : Y.y, we get I true: T and + false:F. Also, we
can encode combinations of them, e.g. |[4+) = %.(truequalse), and |—) = %.(trueffalse); sok |+):H
and + |+):H; where B = %(T +TF) and H = %(T —T).

Finally, we encode the Hadamard gate, and call it H, as follows:
had = Az : ] — [B] = Z.(((z) [[+)) [[-)])

H = AZ.had

To simplify notation, we define two more terms: T = Az : [B].Ay : [H].x and F = Az : [H].\y : [H].y.
So, (true@[H))@[H] — T, (falseQ[H))QH] — F, - F:[H] — [B] — [B] and - T: [B] — [H] — [H].
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Now, the application of the Hadamard gate to the qubit |+) is encoded as follows:

{H)Q(H] + [B) (- eE)eE[}

=" {Z-(EQ([E] + [E]) (trueQ[B))Q[E] + (H)Q([EB] + [E]) (falseQ[H])Q[H])}

= {Z(Ea([E + [B) T+ @)a(H +[5]) F)}

= {Z(Oa 8 = [B] = [B.((2) [H)]) [-)) T+ A : [B] = [B] = B].(((2) [5)]) [1-)]) F)}
= {5 (M) (DD 19D+ (F) [0 -}

= {5&-UHI+1-D}

= () + 1)

—* true

We show that this term has type T, as expected. Let I' = {« : [H] — [B] — Z}

Tre @B =2 Tr[+):[H
Lk (z) [|[H)]:B]— 2~ r'=1[-)]:[8]

Also,
F|+):H

A

1 1 -
Fl+): —=VXVYY.X -Y - X + —2.VX.VY.X —-Y =Y

V2 V2 v
1 1

- +)Q[]: E.vy.[aa] —Y — B8] + E.vy.[aa] SY oY .
1

FW@%%%EH%H%H+%H%H%H

Now we prove - {(HQ([H] + [H])) (|+)QE)QH]}:T.

FHQ(H +B):(VZ.(8H) — B8] = 2) —>1Z)@([EE] + =)
F(+Hem)alE:-.m - 8 - @+ —=.[8 — B — 3]

V2 V2 .,
- (HO([@] + [=]) <|+>@[aa1>@[a1:%.[aa] 4 LQ E FTT
- {HEa(®] + [8) (+H)aE)aE])}: % m +L2,5
=
- {(Ha(E] + [B) (+)a@)a[E]}: T

7.5 Conclusion

In this chapter, we have defined Lineal: an explicitly typed algebraic A-calculus, based on Ay, and

Vectorial, with subject reduction and strong normalisation. The language allows making arbitrary linear

combination of A\-terms a.t+ 3.r. The type system is a fine-grained analysis tool describing the “vectorial”

properties of the terms: it keeps track of the ‘amplitude of a term’, i.e. if t and u both have the same

type U, then a.t + S.u has type (a + 3).U. Also, it keeps track of the ‘direction of a term’, i.e. if t

and u have types U and V respectively, then a.t + S.u has type a.U + .V. This calculus is able to
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encode matrices and vectors just as Vectorial does, but unlike Vectorial, its type system has the subject

reduction property.

The problems depicted in Chapter 5 were solved here by using explicit types in the terms, and a
subtyping system.

The resulting system has the property that if a term t has type >, ;.U;, then there exists t' =
>; @;.b; such that t —* t’, where each b; is a base term of type Uj;.
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Chapter 8

Conclusions and future work

_ Résumé du Chapitre

Dans ce chapitre, nous résumons les contributions de cette thése, et nous proposons quelques

pistes pour de futurs travauz. ]

N this thesis we had developed a confluent, strongly normalising, typed algebraic A-calculus, called

Lineal. The calculus is an extension of explicitly-typed System F' with arbitrary linear combination

of terms: if t and u are two terms, a.t + S.u is also a term, where a and 3 belongs to a commutative
ring and “.” denotes the scalar multiplication. If we consider the normal form of the terms forming a base
of an infinite vectorial space of normalised terms, then linear combinations of these terms in the base, the
“base terms”, give us the vectors of the space. Since the calculus is strongly normalising (Theorem 7.3.6),
any term in the calculus will reduce to a vector in this space. The type system gives us the shape of
this vector: a term «.t + S.r, will have type a.T + 5.R (or something “smaller”, according to an ordering
which morally just adds zeros), as stated by the following Lemma:

Lemma 7.2.2 (Generation lemmas). Let S be a type, « a scalar, I' a typing context and t and r terms.
5. IfT'Ft+r:S, then there exist types T'and Rsuch that 'Ft: 7T, 'Fr: Rand T+ R < 5.
6. If I'+ «a.t: R, then there exists a type T such that I'+t:7 and o.T < R.

Another feature of Lineal is that the types are preserved by reduction:

Theorem 7.2.1 (Subject Reduction). For any terms t, t’, any context I" and any type T, if t — t’ then
'kt:T=TkFt:T.

Thus, we can state that:
If a term t has normal form 2?21 «;.b;, then its type is E?:l «;.U;, where U; 1is the type of b;.

(where the type is padded with some 0s).

Analogously, a trivial induction give us the inverse:

If a term t has type 2?21 a;.U;, where the U; are not type abstractions or applications, then t reduces

to Y., a;.b;, where b; has type U;.
This time, padding the term with some 0’s.
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8.1 Summary

While seeking the correct definition of Lineal, we have developed several type systems, tackling one
challenge at a time. Although these type systems were meant as intermediate steps, each is interesting

in itself.

The Scalar type system. This system may have interesting applications for barycentric or probabilistic
computing, i.e. when the amplitudes of the normal forms are required to sum to one. Indeed by doing
small modifications to the system, obtaining the system B, we were able to prove the following Theorem.

Theorem 3.4.3. Let I' - t: A be well-formed, then t| has the barycentric property.

The Additive type system. This system serves one purpose: to show the connection between the
additive fragment of the algebraic A-calculus Ay, and System F'. This connection helped proving strong
normalisation for Additive itself, and for the A4 calculus which followed. Since several presentations
of calculi associated with the differential lambda calculus [Ehrhard and Regnier, 2003] are carried out
with sums but without scalars, this connection becomes an interesting piece of analysis for this strand of
algebraic calculi. We have set up a translation where sum types translate into pairs, and the translation
shows how the commutative and associative properties of addition can be simulated with pairs, by making

them explicit.

The Vectorial type system. This system showed the need to move to explicit types. With implicit
types, the factorisation reduction rules (e.g. a.t+ 3.t — (a+0).t) are the cause of a fundamental problem:
since this is an extension of System F', there is no principal type, and so t can have two unrelated types,
T and T", which cannot be “unified”. Thus, (a4 ).t would have to have type a.T + 5.7”, which fails to
reveal the structure of the vector. In order to avoid this problem we have set up a type system without
subject reduction: a.t + .t has type a.T + 8.7, but (o + §).t has both (a + 8).7 and (a + 8).17"
as types. We thus defined an order relation, which roughly states that if T' and T” are types for the
same term, then (o + 3).T = a.T 4+ 8.7’. We then obtained a weak subject reduction where the types
are preserved up to this relation. This system is a proof-of-concept, serving to reveal this surprising
absence of a one-to-one correspondence between the implicitly-typed and explicitly-typed calculus in
this algebraic setting. Another interesting contribution which arose from this setting was a novel proof
of strong normalisation: The proof of strong normalisation of Scalar is based on the proof of strong
normalisation of A\2!%, which is a straightforward extension of System F. Once this extension was proven
strongly normalising, only a translation from typed terms in Scalar to typed terms in A2'preserving
reducibility, had to be defined. The same is true for Additive: the translation to System F' was also used
to prove that it is strongly normalising. For Vectorial, however, there was no easy way to translate the
terms to a strongly normalising system, and thus a new proof was developed. This proof is a non trivial
extension of the classical proof using reducibility candidates. This have set up the basis for the proofs in
the subsequent systems, by showing that they can be translated to Vectorial in a reducibility-preserving

manner.

The \¢4 calculus. The Lineal calculus not only gives us a fine-grained type system revealing the
structure of terms, but also gives us confluence in a simplified algebraic A-calculus. The original Ay, had

several restrictions to prevent non-terminating terms from causing a loss of confluence in this algebraic
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setting, however, if we are interested only in this restriction, the full Lineal calculus may seen somewhat
an overkill. Still, none of the previous systems achieve this: Scalar does not have a vector space of
normalised terms, terms being added have to have the same type up to the scalars. Additive is for just
a fragment of the calculus, and Vectorial is again as complex as Lineal. Therefore there enters the A¢4
calculus, an alternative type system giving us strong normalisation, and hence a simplified set of rules,
with a reasonably simple setting. The type system also gives us some information of terms, which, while

not being as accurate as Lineal, provides lower bounds of their scalars.

8.2 Future directions

The next paragraphs will unravel directions for future work. As such, they contain several unproven
intuitions, i.e. tentative connections. However we strongly believe that some of them can be formalised,
and so listing them is a element of judgement of the potential outcomes of this thesis, as well as an aid

for future researchers embracing the topic of vectorial types.

8.2.1 Semantics and Differentiation

In Chapter 2 we have formalised connections between Ay, and Aqqy. These connections suggest some
work that can be done: Aj, and Lineal still lack a full formal denotational semantics. A first step has
been made in [Valiron, 2010], however this is preliminary in comparison with the many more results on
the denotational semantics of A4y and related systems, e.g. [Ehrhard, 2005, Tasson, 2009]. A study of
the invariability of those semantics by the call-by-name/call-by-value simulation proposed in Chapter 2
could therefore lead to a denotational semantics for Lineal.

Another possible way to exploit this connection is in order to relate Ay, to the differential A-calculus
[Ehrhard and Regnier, 2003], a calculus that introduces a differential operator which induces a Taylor
expansion for terms [Ehrhard, 2010], among other interesting results. It was from this differential -
calculus that the addition in Mgy came about. Indeed, A4y can be seen as the differential A-calculus
without a differential operator. Thus the question of whether is possible to program an analogous operator

in Ay, arises.

8.2.2 A quantum calculus

The Lineal calculus can be seen as a first step towards a quantum calculus, but while in Lineal any vector
is allowed, in quantum computing we must restrict these vectors to be of norm one: a.b; + £.by is a
valid vector only if o and 3 are complex numbers such that |a|? + |3|?> = 1. Notice that this is the case
only when by # bo; indeed if by = bg, the restriction would be |« + 6|2 = 1. Notice that b; and by are
members of the base of the vectorial space, and two different basis vectors are orthogonal by definition.
But in general, for non-basis vectors, the condition that needs to be checked is orthogonality.

Given an orthogonality definition, we would need to change rule +; in order to account for the
restriction to vectors of norm one:

I'Ft:T TFr:R |of*+|82=1 tLu FFt:T TFr:R |a+B*=1 t|u

+1 +
T'rFat+pu:aT+6.R 'rat+pu:aT+5.R

A natural way to define orthogonality is to define first an inner product between terms.
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Definition 8.2.1 (Inner product between closed terms). Let by and bs be either closed, reduced base

terms, or the term 0.

B B 0 ifby # by

(b1[b2) = (ba[by) = { 1 ifby =by
(.t +Bslr) = ax(t|r)+ [ x (s|r)
<t|S> = <s|t> = <ti,|Si,>

For example, we have (A\z : U.z) vU|[vY) = 1 and (true|false) = 0. It also works for more elaborated

examples:

1 1
(—=.true + — .false|true) =

1 1 1
V2 V2 V2 V2 V2

Then we can of course define t L s < (t|s) = 0, and some similar definition for parallelism. However,

X (true|true) + x (false|true) =

our challenge is a harder one still: we must check this properties using types. Indeed, the definition of inner
product needs to reduce the term (remember that the vectorial space is defined only over normal forms
terms), and typing is useless if it requires prior reduction. Thus assume we have an analogous definition of
orthogonality between types; we want it to have the property: if Ft:T and - r: R, thent L r < T 1L R.
Alas it cannot be that simple, for example true and false have both type X — X — X. However, an
encouraging point is that since Lineal is explicitly typed, we can expect to have T' 1L R =t L r.

Once the norm one terms are properly characterised, one could expect to be able to add a measurement
operator a la [Diaz-Caro, 2007, Arrighi, Diaz-Caro, Gadella, and Grattage, 2011a].

8.2.3 Logics

The type systems presented in this thesis could also lead to different algebraic logics: the barycentric
restriction to Scalar could lead to a barycentric or probabilistic logic. Vectorial and Lineal could induce
a vectorial logic, where logic formulae form a vectorial space. The quantum calculus suggested above
could also lead to a novel formulation of a quantum logic formally connected with quantum computing.
These logics would then need to be compared with linear logic, in particular with respect to the different
kinds of linearity involved. Indeed, linear logic introduces a linearity which is based on resources, whereas
algebraic calculi uses the classic concept of algebraic linearity. The question is whether these linearities
are the same, or if they can be compared in some way.

For the sake of exemplifying, we take Scalar (c¢f. Chapter 3) which is one of the simplest systems
developed in this thesis. Consider the “logic” defined from Scalar: the logical propositions are the types;
the sequents are the contexts plus the types; the logical rules are obtained simply by erasing the terms
from the typing rules; the proofs are obtained simply by erasing the terms from the type derivation trees
— or equivalently by applying the logical rules upon the logical propositions. We call it Scalar logic, and
denote SL. We now show that proofs in SL enjoy a no-cloning property.

First we need to define what we mean by proof method. For this, consider R be a SL rule, where
some information is added to make it deterministic: for example, we write s;[a] for sy, when the scalar
introduced is «, and so on. That is, for any sequents Q;, @}, with i = 1,...,n, such that Vi, Q; = Q}, we

make sure that

{le"'inR A Qll,
S S

Hence if IT is a tree with nodes labelled by deterministic names of SL logical rules, then one may think

/
;’Q"R}éSS'

of Il as a function from sequents to proofs, i.e. a proof method:
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Definition 8.2.2. We define recursively the concept of proof method of order n to be the set of functions
II,, which take the following form:

IMy(S) =S

Hn(S) _ anl(S) R or Hk(S) Th R or Tk Hh(S)
where S is a seq{jent, T 18 a constant proof of size n, max{k,h} =n—1, R is a logical rule, and P is a

sequent such that the resulting proof is well-formed.
We denote by C(IL,(S)) the conclusion (root) of the proof I1,,(S).

A no-cloning theorem (c¢f. Theorem 1.1.1) can be defined in terms of proof methods, and the way
they treat scalars, i.e. there is no generic proof method able to take a sequent with a scalar in its type
as argument, and return a sequent where such a scalar appears more than once in the type (proof in
Appendix G.1).

Theorem 8.2.3 (No-cloning of scalars). I, such that Yo, C(IL,(T' - a.U)) = A (§ x a® + ).V with
d # 0 and ~y constants in S, s € N> and U,V unit formulas.
Notice that o is a member of a Ting and s is a natural number, so o is just the multiplication of a

by itself s times.

We can reformulate this theorem to look more like a no-cloning theorem in the following way. Let

T ® T stand for the usual encoding of tuples’.
Corollary 8.2.4 (No-cloning Theorem). PI1,, such that VT, 11, (T F T) is a witness of [ =T = A+ T®T.

Proof. By Lemma 3.2.2, 3a, U such that T = .U, 50 TR T = a.U®@a.U = 2. (UeU) = (1 x (1 x a?+
0)).(U ® U). Then by Theorem 8.2.3 the corollary holds. O

Hence our no-cloning allows the existence of a proof method II such that II(T' - T") has conclusion
T = AFT®T,but it does not allow the same proof method II to accomplish this for any proposition
T. Informally, this property states that SL£ has no fixed proof method for duplicating a proposition.

Clearly SL, unlike linear logic (L£L£) [Girard, 1987], does not refrain us from duplicating resources.
Yet we have been able to prove a no-cloning theorem for S£. How can we make sense of this apparent
contradiction? Consider the copying machine - Arz.x ® £:VX.X — X ® X, and let A = .U, then this

machine allows:

Faldrz@zraVX.X - (XQX) Ve
Falrz®z:aU —-URU Ft:aU=A
Fladazor)t:ad®.(UU)=A® A
This proof tree yields A ® A from a single proof of A, which needs be plugged as the right branch of the

—E

tree. However the symbol A appears also in the right branch of the tree; hence the proof method that
duplicates A crucially depends on A. It is on this basis that our no-cloning theorem is formulated; our no-
cloning allows the existence of a proof method II such that II(T" - T') has conclusionI' FT' = A - T®T,
but it does not allow the same proof method II to work for any type. This way of phrasing no-cloning
must probably hold in ££ as well, but it is not usually contemplated. S£ emphasises this property, which

seems more in line with quantum theory than the straightforward non-duplication of resources of LL.

1 Formally, to allow such an encoding for general types, we need to add the following equivalence (a.U) = T = a.(U — T).
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Indeed, quantum theory states that it is not possible to have a universal cloning machine, but does allow

cloning machines of specific vectors.

Notice that, because the differentiation between general types and unit types, the correspondence
between hypothesis in a derivation tree and direct implication by arrow introduction, is broken. Indeed,
take a derivation tree starting with a formula T corresponding to a general type as hypothesis, and
concluding with another formula R. In many classical logics one could derive T = R, however it is not
the case in any of the logics induced by the type systems presented in this thesis. 7" = R is valid only
when T is a unit type. So, we have two kinds of implications, the one coming from arrow types, and the
general one obtained from lifting a hypothesis.

In fact, technically speaking what we are saying is that if we assume an unknown formula as hypothesis,
we cannot derive an implication from it. Nevertheless, some modifications could be introduced to Lineal
in order to allow this kind of implications. In particular, we could introduce a new kind of non-base type
AT and see the consequences. The first point is that, as discussed in Section 3.1, we cannot allow any
type at the left hand side of an arrow without breaking the correspondence between scalar in the term and
scalar in the type. This is unless the type A™ is used only once in the function. Arrow introduction could
therefore be relaxed to allow this exception. This proposed change seems to relate the AT types with
the linear resources in linear logic. Formalising this ideas could provide a link between Lineal and linear
logic, which would connect the concept of resources in LL to the concept of unknown linear combinations
in Lineal. This could provide a new algebraic interpretation of linear logic, in an alternative setting to

the model approach, i.e. within an algebraic logic.
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Appendix A

Proofs from Chapter 2

A.1 Proof of Lemma 2.2.2

Lemma 2.2.2 (Local confluence). The four languages in Figure 2.1 are locally confluent.
Proof.
e If t —» r and t — r’, using only algebraic rules, then this has been already proven in Lemma 2.2.1.

e Ift - r and t — r’, using only beta-reduction, this is a trivial extension of the confluence of lambda

calculus.

e If t — r by an algebraic rule and t — r’ by beta reduction, then in A, a term of the form (Az.t’) b
has to be a subterm of t, since t beta-reduces. Note that t’ cannot reduce since it is under a lambda
and b cannot reduce since it is a base term. Then the beta-reduction and the algebraic-reduction
are independent in Ay, and so this result is trivial. In Agy a term of the form (Az.t’) r has to be a
subterm of t. Note that t’ cannot reduce since it is under a lambda and r cannot reduce since it is
an argument. Then again the beta-reduction and the algebraic-reduction are independent in Ay,
and so this result is trivial.

O

A.2 Proof of Lemma 2.3.5
Lemma 2.3.5. [t[b/z]] = [t][¥(b)/z] with b a base term.
Proof. Structural induction on t.

o t =x. Cases:

— b =y. Then t[b/z] =y, so [t[b/z]] = Af.(f) y = Af.(f) zly/z] = [t][¥(b)/z].
— b= 2Ayr. Then [t[b/z]] = Af.(f) Ay.[r] = Af-(f) 2[Ay.[r]/=] = [t][¥(b)/z].
o t =1y. Then [t[b/z]] = [t][¥(b)/z] = [t].
e t = 0. Analogous to previous case.

103



Appendix A. Proofs from Chapter 2

e t = \y.r. Then

[(Ayx)b/a]l = [Ay.(x[b/2])]
= M) M frlb/al]
by the induction hypothesis
= M) Ay [r][¥(b) /2]
— (ML) A [ED)w(b)/a]
= [t][w(b)/x]

e t =(r1) ro. Then

[t(b/z]] = [((r1) r2)[b/z]]
= [(r1[b/2]) ra[b/a]]
= AM[r1[b/z]]) Ag-([r2[b/2]]) A-((9) h) [
by the induction hypothesis
= AL ([ra][¥(b)/x]) Ag.([r2][¥(b)/2]) Ah.((g) h) f
= Af([r1]) Ag-([r2]) An-((9) ) f1E(b)/x]
= [(r1) r2][¥(b)/2]
= [t][¥(b)/a]

e t = a.r. Then

[tb/2]] = [(eer)[b/a]]
= [a.(r[b/z])]
= Af(a[r[b/a]] f)
by the induction hypothesis
= Af(e[r][¥(b)/z] f)
= (AMfafr] £))[¥(b)/x]
= [or][¥(b)/z]
= [t][¥(b)/2]
e t =r) +ry. Then
[t(b/z]] = [(r1+r2)[b/z]]
= [ri[b/a] + ra[b/z]]
= Af(([er[b/2]] + [ra[b/2]]) f)
by the induction hypothesis
= A (([rd][¥(b) /2] + [r2][¥(b)/2]) £)
= AL(([ea] + [r2]) £))[¥(b) /]
= [r1+r2f[¥(b)/x]
= [t][w(b)/x]
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A.3 Proof of Lemma 2.3.13

Lemma 2.3.13. If b is a base term, then for any t, ([t]) b—7, st : b.

Proof. Structural induction on t.

t =z. Then ([z]) b= (Af.(f) z) b—=eip(b) z=2:b.
t = Az.r. Then ([Az.r]) b= (Af.(f) Az.[r]) b= (Af. (f) T(Az.r)) b—=gt5(b) T(Azr) = Az.r: b,
t = 0. Then ([0]) b = (0) b—,+30=0:b.

t =t +r. Then ([t' +r]) b = (\f.([t']+[r]) f) b=ats([t']+[r]) b—=0e+s([t']) b+ ([r]) b which
—ra+p-reduces by the induction hypothesis tot’ :b+r:b=t"+r:b.

t = a.r. Then (Jeer]) b = (Af.(a.[r]) f) b—=ats(a.[r]) b—=atpa.([r]) b) which —,4s-reduces by
the induction hypothesis to a.(r : b) = a.r : b.

t = (t') r. Then ([(t') r]) b= (AL.([t']) Ag-([x]) A.((9) h) f) b=ass([t']) Ag-([x]) An-((g) h) b.
Note that Ag.([r]) Ah.((g) h) b is a value, so by the induction hypothesis the above term re-
duces to t' : Ag.([r]) Ah.((g) h) b. We do a second induction, over t’, to prove that t’ :

Ag-([F]) M-((g) h) b—as(¥) x: b.

— If t' = (t1) to, then t’' : Ag.([r]) M.((g) h) b= ((t1) t2) r:b=(t')r:b.

— If t/ is a base term, then t' : Ag.([r]) M.((g) k) b= (Ag.([r]) Ah.((g) h) b) (') which —445-
reduces to ([r]) Ah.((¥(t")) h) b which —,,s-reduces by the main induction hypothesis to
r: M ((TE) R)b=(t')r:b.

—If t' = a.ty, then t' : Ag.([r]) MAr.((g) h) b = a.ty : Ag.([r]) Mr.((g) R) b = a.(t; :
Ag.([r]) Ah.((g) h) b) which —44-reduces by the second induction hypothesis to a.((t1) r :
b)=(at;)r:b=(t')r:b.

— If t/ = t1 + ta, then t' : Ag.([r]) Mr.((g) R) b = t1 + t2 : Ag.([r]) Ah.((g) h) b = t1 :
Ag.([r]) Ah.((g) ) b+t2: Ag.([r]) Ah.((g) k) b which —,4g-reduces by the second induction
hypothesis to (t1) r:b+ (t2) r:b=(t; +t2) r:b=(t') r: b.

— If t/ = 0 then t : Ag.([r]) Mr.((g) h) b=0:Ag.([r]) Mr.((9) ) b=0=(0)r:b=(t")r:b

(]

A.4 Proof of Lemma 2.3.14

Lemma 2.3.14. If t—,r then Vb base term, t : b—"r : b.

Proof. Case by case on the rules —y.

Rules A,

e (b') (t +1r)=¢(b") t+ (b') r, with b’ being a base term. Then (b’) (t+r) : b =t+7r:

AL((TB)) £y b=1t: AL(TD)) f)b+r: A(TD) flb=®)t:b+(d)r:b=
(b') t+ (b') r: b.
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e (b') at—ya.(b’) t, with b’ base term. Then (b’) a.t : b = a.t : Af.(T(b)) f) b = a.(t:
AL((T(D)) ) b)=a.((b') t:b) =a.(b’) t:b.

e (b’) 0—,0, with b’ a base term. Then (b’) 0:b=0: Af.((¥(b’)) /) b=0=0:b.
Rules A4,
o (t+r) v—y(t) v+ (r) v, with v being a value. Then (t+r) v:b=(t) v+ (r) v:b.
o (a.t) v—ya.(t) v), with v being a value. Then (a.t) v:b = a.(t) v: b.
e (0) v—,0, with v a value. Then (0) v:b=0=0:b.
Rules F' and S
o a.(t+r)—sa.t+a.r. Thena.(t+r) : b= a.(t : b+r:b)—,a.(t : b)+a.(r : b) = a.t+a.r: b.

o at+p.t—s(a+5).t. Thena.t+5.t:b=ca.(t:b)+8.(t:b)=.(a+).(t : b) = (a+5).t:b.

at+t—=(a+1)t. Thenat+t:b=at:b+t:b=a(t:b)+t:b—=,(a+1).(t:b)=
(a+1)t:b.

t+t—p(1+1)t. Thent+t:b=t:b+t:bog(1+1).(t:b)=(1+1).t:b.

O0+t—pt. ThenO+t:b=(0:b)+(t:b) =0+ (t:b)—,t:b.

o a.(B.t)—=¢(a x B).t. Then a.(8.t) : b = a.(8.t : b) = a.(B.(t : b))=4(a x §).(t : b) =
(a x B).t: b.
o 1.t—yt. Then 1.t : b=1.(t: b)—,t : b.

0.t—¢0. Then 0.t : b=0.(t : b)—,0=0:Db.
e a.0—¢0. Then «.0 : b=.(0:b) =a.0—,0=0:Db.
Rules Asso and Com
e t+ (r+s)=(t+r)+s. Thent+(r+s):b=t:b+(r+s:b)=t:b+(r:b+s:b)—,(t:
b+r:b)+s:b=t+r:b+s:b=(t+r)+s:b.
et+r—yr+t. Thent4+r:b=t:b+r:b—o,r:b+t:b=r+t:b.
Rules ¢ and &), Assume M —,t’, and assume that for all b base term, t : b—3t’ : b. We show that
the result also holds for each contextual rule.
et+r—t'+r. Thent+r:b=t:b+r:b=>it':b+r:b=t'4+r:b.
e r + t—r + t/, analogous to previous case.
o a.t—a.t’. Then at : b =a.(t : b)—ia.(t' : b) = a.t' : b.
o (v) t—¢(v) t’. Case by case:

— v =0>b" Then (b') t : b =t : Af.((¥(b')) f) b which —,-reduces by the induction
hypothesis to t’ : Af.((T(b)) f) b= (b') t': b.

—v=0.Then (0)t:b=0=(0) t':b.

— v =oaw. Then (aaw) t : b = a.(w) t : b = a.((w) t : b) which —,-reduces by the
induction hypothesis to a.((w) t' : b) = a.(w) t' : b= (a.w) t' : b.
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—v=vy+va Then (vi+va)t:b=(vi)t+(va)t:b=(vy) t:b+(v2)t:b which
—q-reduces by the induction hypothesis to (vi) t' : b+ (v2) t' : b = (v1) t' 4+ (vo2) t' :
b= (vi+vy)t':b.

e (t) r—y(t') r Case by case:

— t = b’. Absurd since a base term cannot reduce.

— t = a.t;. Case by case on the possible —-reductions of t:

* t' = a.t] with t;—,t). Then (a.t1) r: b =a.(t1) r: b = a.((t1) r : b) which by the

induction hypothesis —,-reduces to a.((tj) r: b) = a.(t}) r: b= (a.t]) r : b.

* t = a.(fB.t3) and t' = (a x B).t3. Then (a.(B.t3)) r: b = a.(8.((t3) r : b))—=4(a X
B).((t3) r:b) = ((aw x B).t3) r: b.
t =a.(s; +s2) and t’' = a.s; + a.s2. Then (a.(s1+sz2))r:b=a.((s1)r:b+(s2)r
b)—sa.((s1) r: b))+ a.((s2) r: b) = (a.s1 + a.s2) r: b.
* a=1and t' =t;. Then (1.t;) r: b=1.((t1) r: b)—4(t1) r : b.
* a«=0and t' =0. Then (0.t;) r: b=0.((t;) r: b)—,0=(0) r: b.
* t1 =0 and t' = 0. Then (0.0) r: b=c.((0) r:b) =a.0—,0=(0) r:b.

*

— t = t1 + t5. Case by case on the possible —-reductions of t:
* t/ =t} + to with t;—,t]. Then (t; +t2) r: b = (t1) r: b+ (t2) r : b which by the
induction hypothesis —4-reduces to (t]) r: b+ (t2) r: b= (t] +t2) r: b.
* t/ = t1 + t, with to—,t,. Analogous to previous case.
to =s1+sg and t' = (t1 + 1) +82. Then (t1 +(s1+s2))r:b=(t1)r:b+((s1) r
b+ (s2)r:b)=,((t;1) r:b+(s1)r:b)+(s2) r:b=((t; +s1)+s2) r:b.
t1 =s1 +s3 and t' = s1 + (s2 + t2). Analogous to previous case.
x t' =ty +t;. Then (1 +t2) r:b=(t1)r: b+ (t2) r: b—y(t2) r:b+(t1) r: b=
(ta+t1) r:b.
*x t1 = autz, to2 = f.t3 and t' = (o + B).t3. Then (a.ts + S.t3) r: b = a.((t3) r :
b) + 5.((t3) r : b)—=4(a+ B).((ts) r: b) = ((a+ B).t3) r: b.

* t1 = a.ts, to = t3 and t’ = (o + 1).t3. Analogous to previous case.

*

*

* t;1 =t2 and t' = (1 + 1).t1. Analogous to previous case.

— t = 0. Absurd since 0 does not reduce.

— t = (t1) to. Then ((t1) t2) r: b = (t1) t2: Ag.([r]) Ah.((g) h) b, which by the induction
hypothesis —,-reduces to t’' : Ag. ([[r]]) Ah. (( ) b. We do a second induction, over t/, to
prove that t' : Ag.([r]) Ah.((g) h) b—=4(t') r

x If t' = (t]) t}, then t : )\g.([[r]]) Ah.((g) h) b=((t))ty) r:b=(t')r:b.

* t’ cannot be a base term since from (t1) to it is not possible to arrive to a base term
using only —y.

x If t' = a.t], then t' : Ag.([r]) Mr.((9) h) b = a.t] : Ag.([r]) M.((g) h) b = a.(t] :
Ag.([r]) Ah.((g) h) b) which —4-reduces by the induction hypothesis to a.((t}) r
b)=(ati)r:b=(t')r:b.

x If t' = t]+t}, then the term t' : Ag.([r]) Ah.((g) h) b =t} +t} : Ag.([r]) Ar.((g) h) b =
t] : Ag.([r]) Ah.((g) k) b+t : Ag.([r]) Ahr.((g) h) b which —,-reduces by the induction
hypothesis to (t}) r: b+ (t)) r:b=(t]+ty) r:b=(t")r:b.
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x If t' = 0 then t' : Ag.([r]) Mr.((g) ) b=0:Ag.([r]) Mr.((9) h) b=0=(0)r:b =
(t)r:b
(I

A.5 Proof of Lemma 2.3.15

Lemma 2.3.15. If t—;sr then Vb base term, t : b—;, sr: b.

Proof. Case by case on the rules of Ay, .

Rule 3,

Mzt) b :b = b AL(T(xt) f) b
(Af((¥(Ax-t)) f) b) W(b')
=g, (T(\z.t)) ¥ (b)) b
(A\z.[t]) w(b")) b
=g, [t][¥(b)/z] b
(Lemma 2.35) =  [t[b/z]] b
(Lemma 2.3.13) —7,, t[b/a]: b

Algebraic rules If t—r, then by Lemma 2.3.14 t : b—7r : b which implies that t : b—7} sr: b.

Rules ¢ and &, If t—,t’, then we use Lemma 2.3.14 to close the case. Assume t—g,t’, and assume
that for all b base term, t : b—7 Bt’ : b. We show that the result also holds for each contextual

rule.

e t+rogt +r. Thent+r:b=t:b+r:b=} st':b+r:b=t+r:b.
e r +t—g,r+t', analogous to previous case.
o at—pat’. Thenat:b=a.(t:b)=}, sa.(t':b)=at :b.
o (v) t—p,(v) t'. Case by case:
— v =">b". Then (b') t : b =t : Af.((¥(b')) f) b which —,g-reduces by the induction
hypothesis to t' : Af.(¥(b’)) f) b= (b’) t' : b.
—v=0.Then (0)t:b=0=(0)t' :b.
— v =aw. Then (aaw) t :b=a.(w) t:b=a. (( ) t : b) which —>a+5—reduces by the
induction hypothesis to a.((w) t' : b) = a.(w) t' : b = ( w) t/
— v =vy+ vy Then (vi + v3) t : b = (vq) t+(vQ) = (v ) t: b+ (v2) t : b which
—rq+p-reduces by the induction hypothesis to (v1) t' : b+ (va) t' : b = (v1) t' + (vo) t':
b= (V1 +V2) t’' : b.
o (t) r—p, (t") r Case by case:
— t =Db’. Absurd since a base term cannot reduce.

— t = a.ty. The only possible —g,-reduction from t is t’ = «.t| with t;—s,t}). Then
(at1) r: b = a.(t;) r : b = a.((t;) r : b) which by the induction hypothesis —443-
reduces to a.((t})) r: b) =a.(t]) r: b= (a.t)) r:b.
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— t =t; + t2. Case by case on the possible —g,-reductions of t:

% t' =t} + to with t;1—g,t}. Then (t;1 +t2) r: b= (t1) r: b+ (t2) r: b which by the
induction hypothesis —4g-reduces to (t{) r : b+ (t2) r: b = (t{ +t2) r: b.

% t' = t; 4+t with to—g,t5. Analogous to previous case.

— t = 0. Absurd since 0 does not reduce.

— t = (t1) t2. Then ((t1) t2) r: b = (t1) t2 : Ag.([r]) Ah.((g) h) b, which by the induction
hypothesis — 44 g-reduces to t' : Ag.([r]) Ah. (( ) h) b. We do a second induction, over t’,
to prove that t' : Ag.([r]) Ar.((g) h) b—esp(t") r:b.

« If t/ = (t]) th, then t' : Ag.([r]) Mr.((g) h) b= ((t}) ty) r:b=(t') r: b.

x If t' is a base term, then t' : Ag.([r]) M.((g) h) b = (Ag.([r]) Ah.((g) k) b) ¥(t)
which — 44 g-reduces to ([r]) Ar.((¥(t’)) k) b which, by Lemma 2.3.13, —, g-reduces
r: M ((P(t) h) b= (t')r:b.

« If t/ = a.t], then t' : Ag.([r]) Mr.((g) h) b = a.t] : Ag.([r]) Ar.((g) h) b = a.(t] :
Ag.([r]) Ah.((g) h) b) which —44g-reduces by the induction hypothesis to a.((t}) r
b)=(at))r:b=(t")r:b.

x If t/ =t} + t}, then t' : Ag.([r]) Ar.((g) h) b =t} +t5 : Ag.([r]) Mr.((9) h) b=t} :
Ag-([r]) Ah.((g) h) b+th : Ag. ([[r]]) Ah.((g) h) b which — 44 g-reduces by the induction

¢
1

hypothesis to (t}) r: b+ (t5) r: b= (t] + t’) r:b=(t')r:b.
x If t/ = 0 then t' : Ag.([r]) Ah.((g) h) b=0: Ag.([r]) M.((g) ) b=0=(0)r:b =
(t)r:b
(I

A.6 Proof of Lemma 2.3.20
Lemma 2.3.20. {t[r/z]} = {t}[{r]}/x].

Proof. Structural induction on t.
e t == Then {afr/x]} = {r} = o[{r}/z] = {o} {r} /2]
o t=y. Then {y[c/al} =y = {u}[{r} /2]
e t = 0. Analogous to previous case.

e t = \y.t’. Then

{10y t)r/2lk = .t [r/2])]
= M) MyAt[r/2]}
by the induction hypothesis
= M) Ay At H{r} /2]
= (L) A/l
= {th{r} /=]
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e t =(ry) ra. Then

{t[r/al} = {((x1) ro)lr/z]}
— {(xsfr/a]) rale/alp
— L (rl/alh) Ag-((9) Jeslr/all) £
by the induction hypothesis
= Af({rib el /2]) Ag-((9) {r2l{rl/2]) f
= (AL ({ril) Ag-((9) {ral) £)[{rlt/=]
= {(r1) rof [{r} /2]
= {t}{r} /2]

o t = a.t’. Then

{tlr/2]} = {(at)[r/z]}
= Aa.(t'[r/2D}
= MA(aAt'[r/z])}) f

by the induction hypothesis

= M(aAtH{rl/2]) f
= Af(e{t'}) fHrl/2]
= At} {r} /2]
= {th{r} /=]

e t=r;+ry. Then

{t[r/«lt = {(rs +ro)[r/al}
= Arilr/2] + rofr/]}
= Af({rafr/a]} +{rafe/a}) f
by the induction hypothesis
= AM(eb{rl /o] + {rof [{x} /2]) f
= MA{ral + {ra) f[{rlt/=]
= {1+ o} [{rl/2]
= {th{rl/=]

A.7 Proof of Lemma 2.3.26
Lemma 2.3.26. If b is a base term, then for any closed term t, ({t}}) b—7, 5t : b.

Proof. Structural induction on t.
o t = Azx.r. Then ({Azx.x}) b = (Af. (f) Ax{r}) b= (Af.(f) ®(Az.r)) b—r15(b) P(Az.r) = Az.r: b.
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t = 0. Then ({O}) b= (Af.(0) f) b—¢4+5(0) b—¢430=0:b.

o t=t'+r. Then ({t' +r}) b= \f.({t'} +{r}) f) b=exs({t'} + {r[}) b which —,4-reduces by
the induction hypothesistot’ :b+r:b=t'+r:b.

o t =a.r. Then ({ar}) b= (Af.(a{r}) f) b=eis(a{r}) b—eisa.({r}) b) which —,4s-reduces
by the induction hypothesis to a.(r : b) = a.r : b.

6= (¢/) . Then ({(¥)) t}) b= (AL Ag-((9) feb) ) bers({¥}) Ag-((g) {r}) b. Note that
Ag.((g) {r]}) b is a value, so by the induction hypothesis the above term reduces to t’ : Ag.((g) {r}) b
We do a second induction, over t', to prove that t': Ag.((g) {r}}) b—7, 5(t') r: b.

— Ift/ = (t1) to, then t' : Ag.((¢9) {r}) b= ((t1) t2) r: b= (t') r: b.

— If t/ is a base term, then t' : Ag.((g) {r}}) b = (Ag.((g) {x}}) b) ®(t") 1 5((B(t")) {r}) b =
(t)r: b.

— If t' = a.ty, then a.ts : Ag.((9) {r}) b = a.(t1 : Ag.((¢) {rt) b) which —7, s-reduces by the
induction hypothesis to a.((t;) r: b) = (a.ty) r: b= (t') r: b.

— If t/ = t1 + to, then t' : Ag.((g) {r}}) b=1t1 +t2: Ag.((9) {r}) b=1t1 : Ag.((9) {r]}) b+ t2:
Ag-((g) {r}) b which %Hﬁ—reduces by the induction hypothesis to (t1) r: b+ (t2) r: b =
(tl +t2) r:b= (tl) r:b.

— Ift' = 0 then t' : Ag.((g) {r}) b=0:Xg.((g) {r}) b=0=(0)r:b=(t")r:b

A.8 Proof of Lemma 2.3.27

Lemma 2.3.27. If t—,gr then Vb base term, t : b—7, sr : b.

Proof. Case by case on the rules of Ag4.

Rule 3,
(Azt)r:b = ((P(Az.t)) {r}) b
= (O fth) {r}) b
(since {r| is a base term) —¢yp {t}[{r}/z] b
(Lemma 2.3.20) = {t[r/z]} b
(Lemma 2.3.26) —7,5 t[r/z]:b
Rules A

o Let (t471) s—q4p(t)s+(r)s. (t+r)s:b=((t) s+ (r)s):b.
o Let (a.t) r—gipa.(t) r. (at) r:b=oa.(t) r:b.
o Let (0) r—q450. (0)r:b=0=0:b

Rules F and S

o a.(t +r)—44pat+ar. Then a.(t+r):b=a(t:b+r:b)=pga(t:b)+a(r:b)=
at+ar:b.
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at + Bt—gpp(a+ B).t. Then at+ .t :b = a.(t:b)+ S.(t: b)—=ipla+ 0).(t : b) =
(a+ B).t:b.

at+t—,ig(a+1)t. Thenat+t:b=at:b+t:b=ca(t:b)+t:b—rigla+1).(t
b) =(a+1).t:b.

o t+t—gip(l+1)t. Thent+t:b=t:b+t:b—pg(l1+1).(t:b)=(1+1).t:b.

0+t—gipt. ThenO+t:b=(0:b)+(t:b) =0+ (t:b)—¢st:b.

a.(B.t)—=arp(a x B).t. Then a.(B.t) : b = a.(f.t : b) = a.(B.(t : b))—rrp(a x [).(t : b) =
(a x B).t: b.

lt—g4sM. Then 1.t : b= 1.(t : b)—4 st : b.

0.t—4450. Then 0.t : b = 0.(t: b)—,4+30=0:b.
o a.0—,:30. Then .0 : b= 0.(0:b) = a.0—,130=0:Db.

Rules Asso and Com

e t+(r+s)—4pt+r)+s. Thent+(r+s):b=t:b+(r+s:b)=t:b+(r:b+s:
b)—s(t:b+r:b)+s:b=t+r:b+s:b=(t+r)+s:b.

oet+r—,pr+t. Thent+r:b=t:b+r:b—=ygr:b+t:b=r+t:b.

Rules ¢ Assume t—,15t’, and assume that for all b base term, t : b—>2§+5t’ : b. We show that the

result also holds for each contextual rule.

o t+r—,pt' +r. Thent+r:b=t:b+r:b=j st' :b+r:b=t+r:b.
o r +t—, a1+ t', analogous to previous case.
e at—,ipat'. Then at:b=a.(t:b)=; za.(t':b)=at':b.
o (t) r—q45(t") r Case by case:
— t =Db’. Absurd since a base term cannot reduce.
— t = a.t;. Case by case on the possible —,4 g-reductions of t:
* t' = a.t] with t1—41t]. Then (a.t1) r: b =a.(t;) r: b = a.((t1) r : b) which by
the induction hypothesis —/4g-reduces to a.((t}) r: b) = a.(t}) r : b = (a.t})
* t = a.(B.t3) and t' = (a x 8).t3. Then (a.(B.t3)) r: b =a.(8.((t3) r: b))*)prﬁ(
B).((t3) r: b) = ((aw x B).t3) r : b.
t = a.(s; +s2) and t’' = a.s1 + a.s2. Then (a.(s1+sz2))r:b=a.((s1)r:b+(s2)r
b)—=rpa.((s1) r:b)+a.((s2) r:b) = (a.s; +a.s3) r:b.
* o« =1and t' =t;. Then (1.t1) r: b =1.((t1) r: b)—¢45(t1) r: b.
* o« =0and t' =0. Then (0.t1) r: b =0.((t1) r: b)—=¢+50=(0) r : b.
* t; =0 and t' = 0. Then (a.0) r:b=0.((0) r: b) = a.0—¢430=(0) r: b.

*

— t =t; + t2. Case by case on the possible —,g-reductions of t:
* t' =t} + to with t1—,44t]. Then (t; +t2) r: b = (t1) r: b+ (t2) r : b which by
the induction hypothesis — ;4 g-reduces to (t}) r: b+ (t2) r: b= (t] +t2) r: b.
% t' =ty 4+ t}, with to—,4st5. Analogous to previous case.
% to =s1+syand t' = (t; +s81)+s2. Then (t1+(s1+s2))r:b=(t;)r:b+((s1) r
b+ (s2) r:b)—=pp((ti1) r:b+(s;)r:b)+(s2) r:b=((t; +s1)+s2)r:b.
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*

t1 =s1 + s and t' = s1 + (s2 + t2). Analogous to previous case.

% t' =ta+t;. Then (t; +t2) r:b=(t1)r:b+ (t2) r: b—pi5(ts) r:b+(t1) r: b=
(t2+t1) r:b.

t; = a.ts, to = Stz and t' = (o + §).t5. Then (a.ts + B.t3) r: b = a.((t3) r :
b) + B.((ts) r : b)—=pig(a+ 8).((t3) r: b) = ((a + §).t3) r : b.

* t1 = a.ts, t2 = t3 and t' = (a + 1).t3. Analogous to previous case.

*

* t1 =ty and t' = (1 4 1).t;. Analogous to previous case.

— t = 0. Absurd since 0 does not reduce.

—t = (t1) ta. Then ((t1) t2) r : b = (t1) t2 : Ag.((9) {r}) b, which by the induction
hypothesis —¢4g-reduces to t' : Ag.((g) {r}) b. We do a second induction, over t’, to
prove that t' : Ag.((g) {r}}) b—7, 5(t') r: b.

x If t/ = (t]) th, then t' : Ag.((g) {r}) b=((t}) th) r:b=(t') r: b.

x If t' is a base term, then t' : Ag.((9) {r}) b = (Ag.((9) {r}) b) ®(t') which —4s-
reduces to ((®(t)) {r}) b=(t') r:b.

* If t' = a.tf, then a.t] : Ag.((9) {r}) b = a.(t] : Ag.((9) {r]}) b) which —7, s-reduces
by the induction hypothesis to a.((t}) r: b) = (at)) r: b= (t') r: b,

« If t/ =t} +t5, then t’ : Ag.((¢9) {r[}) b =t]+t5 : Ag.((9) {r[}) b=t} : Xg.((g) {r}) b+
t5 : Ag.((9) {r}) b which —7, s-reduces by the induction hypothesis to (t}) r : b +
) r:b=(t1+th) r:b=(t)r:b.

« If t' =0 then t': A\g.((¢9) {r}) b=0:Xg.((9) {r}) b=0=0)r:b=(t)r:b

A.9 COQ proof of Lemma 2.2.1

The proof of the local confluence of the algebraic fragments of A and A7

lin alg are sufficiently monotonous

so that one can ask a proof assistant to do them. For this purpose we use the library LocConf setting up

some convenient tactics. The interested reader can find the whole set of files in [Valiron, 2011al:
e RW.v, ListTac.v and LocConfTac.v are the files containing the library;
e Llin.v and Lalg.v respectively contain the proofs for A and A}

lin alg*

To compile the files, you will need COQ v.8.2pll. and the Ssreflect extension v.1.2. Proceed with a

flavour of:

$ coqc RW.v ListTac.v LocConfTac.v
$ coqc Llin.v
$ coqc Lalg.v

To check that no particular assumption were made, you can use

$ coqchk -o Llin
$ coqchk -o Lalg
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A.9.1 Summary of the proof.

We summarise the content of L1in.v and Lalg.v. First we define the set of scalars.

Variable scalar : Set.

Variable Sadd : scalar -> scalar -> scalar.
Variable Smul : scalar -> scalar -> scalar.
Variable SO : scalar.

Variable S1 : scalar.

Notation "A + B" (Sadd A B) : scalar_scope.

Notation "A * B"

(Smul A B) : scalar_scope.

Open Scope scalar_scope.

Hypothesis S_0_1_dec : © S1 = S0.
Hypothesis S_O_lunit : forall a, SO + a

a.
Hypothesis S_0O_lelim : forall a, SO * a = SO.

Hypothesis S_1_lunit : forall a, S1 * a = a.

Hypothesis S_rdistrib : forall a b c, a*(b+c) = (axb)+(axc).
Hypothesis S_ldistrib : forall a b c, (atb)*c = (axc)+(bx*c).
Hypothesis S_add_assoc : forall a b c, (atb)+c = a+(b+c).
Hypothesis S_mul_assoc : forall a b c, (axb)*c = ax(bxc).
Hypothesis S_add_commut : forall a b, a+tb = b+a.

Hypothesis S_mul_commut : forall a b, a*b = bx*a.

Close Scope scalar_scope.
We then define the set of terms. Values and bases are properties on terms defined by induction.

Inductive term : Set :=

| TO : term

| Tadd : term -> term -> term

| Tmul : scalar -> term -> term
| Tvar : nat -> term

| Tlambda : term -> term

| Tapply : term -> term -> term.

Notation "A +s B" (Sadd A B) (at level 50) : term_scope.

Notation "A *s B" (Smul A B) (at level 40) : term_scope.

Notation "A + B" := (Tadd A B) : term_scope.
Notation "A ’#*x’> B" := (Tmul A B) (at level 35) : term_scope.
Notation "@ A" := (Tvar A) (at level 10) : term_scope.
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Notation "A ; B" := (Tapply A B) (at level 30) : term_scope.
Notation "\ A" := (Tlambda A) (at level 40) : term_scope.

Open Scope term_scope.

Inductive is_value : term -> Prop :=

| valTO : is_value TO

| valTlambda : forall s, is_value (Tlambda s)

| valTvar : forall n, is_value (Tvar n)

| valTmulbase : forall a s, is_value s -> is_value (a ** s)

| valTadd : forall s t, is_value s -> is_value t -> is_value (s + t).

Inductive is_base : term -> Prop :=
| baseTlambda : forall s, is_base (Tlambda s)

| baseTvar : forall n, is_base (Tvar n).
The definition of local confluence is given in the file RW.v of the library:

Section RW.

(¥** The relation is on some terms *)

Variable term : Set.

(** It is a binary proposition *)

Variable R : term -> term -> Prop.

(** Transitivity closure of the relation *)
Inductive Rstar : term -> term -> Prop :=
| Rzero : forall r, Rstar r r

| Rcons : forall r t s, (Rr s) -> (Rstar s t) -> (Rstar r t).

Definition local_confluent :=

forallr st, Rr s ->R r t -> exists u, Rstar s u /\ Rstar t u.

End RW.

A9.2 )\,

lin

—

We can now set up the rewrite system of A;;,. We use the notion of base for the right-linearity of the

application.

Section Term.

Hypothesis R : term -> term -> Prop.
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(** Elementary rules *)
:= forall t, R (t + TO) t.

Definition
Definition
Definition
Definition
Definition

Definition

R_TO_runit

R_SO_anni :
R_S1_unit :
R_TO_anni :
R_mul_abs :

R_ma_dist :

(x* Factorization *)

R_add_fact
R_add_fact1l
R_add_facti1l

Definition
Definition

Definition

(** Assoc.
Definition R_add_com
Definition R_add_rassoc
Definition R_add_lassoc
(** Congruence *)

Definition R_cong_mul

Definition R_cong_ladd :

Definition R_cong_radd :

Definition R_cong_lapp :

Definition R_cong_rapp :

(** Linearity of applicati
Definition
Definition
Definition
Definition
Definition

Definition

End Term.

Inductive R : term -> term

| ax1 :R_TO_runit R
| ax2 :R_SO_anni R
| ax3 :R_S1_unit R
| ax4 :R_TO_anni R
| ax5 :R_mul_abs R
| ax6 :R_ma_dist R
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R_add_app_ldist :
R_mul_app_ldist :
R_TO_app_1ldist :
R_add_app_rdist :
R_mul_app_rdist :
R_TO_app_rdist :

and commut. of addition *)

:= forall s t, R (s + t) (t + s).

forall u s
forall u s
forall u s

forall u s

on *)
forall
forall

forall
forall

-> Prop :

= forall t, R (S0 **x t) TO.
= forall t, R (S1 **x t) t.
= forall a, R (a **x TO) TO.
= forall a b t, R (a ** (b ** t)) ((a *s b) *x t).
= forall a s t, R (a ** (s +t)) (a ** s + a *x t).

:= forall abt, R (a*kxt +bx*xkxt) ((a+s b) *xx t).
:= forall a t, R (a **x t + t) ((a +s S1) ** t).
:= forall t, R (t + t) ((S1 +s S1) ** t).

:=forallr st, R ((r+s8) +t) (r + (s +1t)).
:=forallrst, R(r+ (s+1t)) ((r+s)+t).

:= forall a s t, Rs t -> R (axxs) (a*x*t).

t, Rs t -> R (s+u) (t+u).
t, Rs t ->R (u+ s) (u+t).
t, Rst ->R (s;u) (t;u).

t, is_value u -> R s t -> R (u;s) (u;t).

rst, is_value t -> R ((r + s);t) (r;t + s;t).

ar s, is_value s -> R ((a*x*r);s) (a*x*(r;s)).

forall s, is_value s -> R (TO;s) TO.

rst, is_base t -> R (t;(r + s)) (t;r + t;s).

ars, is_base s -> R (s;(axxr)) (a**(s;r)).

forall s, is_base s -> R (s;T0) TO.
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| ax7 :R_add_fact R
| ax8 :R_add_factl R
| ax9 :R_add_factil R

| ax10 :R_add_com R
| ax11 :R_add_rassoc R

| ax12 :R_add_lassoc R

ax13 :R_cong_mul R
ax1l4 :R_cong_ladd R

|
|
| ax15 :R_cong_radd R
| ax16 :R_cong_lapp R
|

ax17 :R_cong_rapp R

ax18 :R_add_app_ldist R
ax19 :R_mul_app_ldist R
ax20 :R_TO_app_ldist R
ax21 :R_add_app_rdist R
ax22 :R_mul_app_rdist R
ax23 :R_TO_app_rdist R.

The theorem stating the local confluence of R reads as follows:

Theorem R_local_confluence : forall r s t:term,

(Rrs) -> (Rr t) -> exists u:term, (Rstar R s u) /\ (Rstar R t u).

A93 X\

alg

—

alg 18 simpler, since it does not consider values.

The rewrite system of A

Section Term.
Hypothesis R : term -> term -> Prop.

(** Elementary rules *)

Definition R_TO_runit := forall t, R (t + TO) t.

Definition R_SO_anni := forall t, R (SO ** t) TO.

forall t, R (S1 **x t) t.

Definition R_TO_anni := forall a, R (a ** TO) TO.

Definition R_mul_abs := forall a b t, R (a **x (b ** t)) ((a *s b) **x t).

Definition R_S1_unit :

forall a s t, R (a ** (s + t)) (a ** s + a *x t).

Definition R_ma_dist :
(** Factorization *)
Definition R_add_fact := forall a b t, R (a #* t + b *x t) ((a +s b) ** t).
Definition R_add_factl := forall a t, R (a **x t + t) ((a +s S1) *x t).
Definition R_add_factll := forall t, R (t + t) ((81 +s S1) ** t).
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(** Assoc. and commut. of addition *)

Definition R_add_com := f

Definition R_add_rassoc

Definition R_add_lassoc :

(** Congruence *)

Definition R_cong _mul :=

Definition R_cong_ladd :=

Definition R_cong_radd :=

Definition R_cong_lapp :=

orall s t, R (s + t) (t + s).

:=forallr st, R ((r+s) +1t) (r+ (s +1t)).

forallr s t, R (r+ (s +1t)) ((r +8) +t).

forall a s t, R s t -> R (axxs) (a**t).
forall u s t, Rs t ->R (s+u) (t+u).
forall ust, Rst ->R (ut+ s) (u+t).
forallust, Rst ->R (s;u) (t;u.

(** Linearity of application *)

Definition R_add_app_ldist :

forall r s t, R ((r + s);t) (r;t + s;t).

Definition R_mul_app_ldist := forall a r s, R ((a*x*r);s) (a*xx(r;s)).

Definition R_TO_app_ldist

End Term.

Inductive R :

| ax1
| ax2
| ax3
| ax4
| ax5

| ax6

| ax7
| ax8

| ax9

| ax10
| ax11
| ax12

| ax13
| ax14
| ax15
| ax16

| ax18
| ax19
| ax20

:R_TO_runit R
:R_SO_anni R
:R_S1_unit R
:R_TO_anni R
:R_mul_abs R
:R_ma_dist R

:R_add_fact R
:R_add_factl R
:R_add_factl1l R

:R_add_com R
:R_add_rassoc R
:R_add_lassoc R

:R_cong_mul R
:R_cong_ladd R
:R_cong_radd R
:R_cong_lapp R

:R_add_app_ldist R
:R_mul_app_ldist R
:R_TO_app_ldist R.

:= forall s, R (TO;s) TO.

term -> term -> Prop :=

The statement of local confluence for R is the same as in the previous section:

Theorem R_local_confluence : forall r s t:term,
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(Rrs) > (Rrt) -> exists u:term, (Rstar R s u) /\ (Rstar R t u).
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Appendix B

Proofs from Chapter 3

B.1 Proof of Lemma 3.2.2

Lemma 3.2.2 (o unit). VI' € 7, 3U € U, € S such that T = a.U.

Proof. Let u(-): T — N be a map defined inductively by

u(X) = 0 p(VX.T) = 1+ p(
pU—T) = 0 plaT) = 14 u(
Then we proceed by induction over u(T).

Basic cases Let (T") = 0. Then
1. T=X,thenT el and T =1.T.

2.T=U— A thenT el and T=1.T.
3. T=0,then VU €U, T =0.U.

Inductive cases Let pu(7') = n and assume the lemma is valid for all A with u(A) < n. Then, the

possible cases are

1. T = VX.A, then u(A) = n — 1, and so by the induction hypothesis U € U s;t, A

A=aU,then T=VX.U el or T=VX.a.U = a.VX.U.

2. T = «a.A, then u(A) = n — 1, and so by the induction hypothesis U € U s;t, A

A=pU,thenT=aUor T =a.p.U=(axp).U.

B.2 Proof of Lemma 3.2.6

=U or

U or

Lemma 3.2.6 (Arrows comparison). For any types U,V € Y and T,Re€ T,if V- R<U — T, then

IW,.X /U—T=(V — R[W/X].

Proof. A map (-)°: T — T is defined by

X=X (UsT°=U=T FXT)°=T°" (aT)°=aT°

We need two intermediate results.
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1. For any types T € T,U € U, exists V € U such that (T[U/X])° = T°[V/X].
2. For any types T, R, if T < R then 3U, X / R° = T°[U/X].

Proofs
1. Structural induction on T’

T =X then (X[U/X])° = U°® = X[U°/X] = X°[U°/X].
T =Y then (Y[U/X])° =Y =Y°[U/X].

T=V = R then (V — R[U/X])° = (V[U/X] — R[U/X]))° = VIU/X] = R[U/X] = (V —
R)[U/X] = (V = R)°[U/X].

T =VY.R then ((VY.R)[U/X])° = (VY.R[U/X])° = (R[U/X])°, which, by the induction hypothe-
sis, is equivalent to R°[V/X]| = (VY.R)°[V/X].

T =0 analogousto T =Y.

T = a.R then (a.R[U/X])° = a.(R[U/X])°, which, by the induction hypothesis, is equivalent to
a.(RO)[V/X] = (a.R)°[V/X].

2. It suffices to show this for T' < R.

Case 1] R=VX.T. Then R° =T°.

Case 2 T =VX.S and R = S[U/X] then by the intermediate result 1 one has R° = S°[U/X]
T°[U/X].

Proof of the lemma. U — T = (U — T)°, by the intermediate result 2, this is equivalent to (V —
R)°[U/X] = (V — R)[U/X].

O

B.3 Proof of Lemma 3.2.8

Lemma 3.2.8 (Generation lemma (app)). For any terms t,r, any type T, any scalar v, any context T’
and any number n € N, if S,, =I' F (t) r:~.7T, then o, 8 € S, r, s € N with max(r,s) <n, U € U and
R <X T such that S, =['Fr:a.U and Ss =I' - t: .U — R with a x 8 = ~.

Proof. Induction on n.

[ PreBU—T)  Trral

—E This is the trivial case.
k() r:(axp).T

Since VX.v.T = ~+.VX.T, by the induction hypothesis Ja, 5,7, s, U

Ik (t) r:VX~A.T and T/ > VX.T such that S, =T'Ft:8.U - 1T, Sy =T Fr:a.U,
> 'k (t) r:y.TU/X] e a x =+ and max(r,s) < n—1. Since T X VX.T < T[U/X] then
by transitivity 77 < T'[U/X].
LE () riy.T By the induction hypothesis Ja, 8,7,5,U and T’ > T such that S, =
3.TH((t) r:vXA.T _I F+t:8U —>T,5 =TFr:aU, a x =+vand max(r,s) <n—1. By
Tk (t) riqYX.T definition T' < VX.T, so by transitivity 7" < VX.T.
(I
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B.4 Proof of Lemma 3.2.9

Lemma 3.2.9 (Generation lemma (abs)). For any term t, any type T, any context I' and any number
n €N if S, =I'F Ax.t: T then 3U € U, R € T and m < nsuch that S,, =[',z:UFt: RandU — R<T.

Proof. Induction on n.

ax:UkFt:T
. —7 This is the trivial case.
I'tXet:U—>T
I'EAzt:VX.T By the induction hypothesis 3U, R such that I',2: U Ft: R and U — R =<

2. v
T aet:TV/X] ©  YX.T < T[V/X].
I'HAxet: T By the induction hypothesis U, R such that I';z: U F t: R and U — R =

Ty
TF et VX.T T <VX.T. .

B.5 Proof of Lemma 3.2.10

Lemma 3.2.10 (Generation lemma (sc)). For any scalar a # 0, any context I, any term t, any type T'
and any number n € N, if S, =I' F a.t: a.T, then 3m < n such that S,, =I'+t:T.

Proof. Induction on n.

Since VX.a.T = a.VX.T, by the induction hypothesis 3m < n — 1 such
Ve  that S, =T F t:VX.T, then by using Vg rule, I' - t: T[U/X] and notice
that m<n—-1=m+1<n.

I'kFoat:vX.a.T
1.
I'kat:aT[U/X]

I'Fat:aT
2.TFat:VX.a.T
I'Fat:aVX.T
T'Ht:T
S — s
I'Fat:aT

V; By the induction hypothesis 3m < n — 1 such that S,, = ' - t: T, then by
= using V7 rule, I' - t: VX.T and notice that m<n—1=m+ 1 < n.

I This is the trivial case.

B.6 Proof of Lemma 3.2.11

Lemma 3.2.11 (Generation lemma (sc-0)). For any context I', any term t, any type T and any number
neN,if S, =I'+ 0.t: T, then 3R and m < n such that S,, =I' - t: R.

Proof. Induction on n.

) F'E0.t:vX.0T Since VX.0.T = 0.VYX.T, by the induction hypothesis IR and m < n—1
"THO04:0.T[U/X] =~ suchthat Sy, = t: R.
I'+0t:a.T v
2. TF0.t:¥VX.0.T ! By the induction hypothesis 3R and m < n— 1 such that S,,, =T F t: R.
THO0t:0¥XT
't T o o
S — 51 This is the trivial case.
I'-0.t:0.T
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B.7 Proof of Lemma 3.2.12

Lemma 3.2.12 (Generation lemma (sum)). For any terms t, r, any scalar «, any type U € U, any
context T" and any number n € N, if S;, ='Ft 4+ r: a.U, then 36,y € S and r, s € N with max(r,s) <n
such that S, =I' - t:6.U and S5 =I' F r:~.U with § + v = «a.

Proof. Induction on n.

1.1"}—t:6.T FI—r:(a—&).T_H Then take y =a -4, S, =T Ft:0.7, Sy =Tk r:(a—9).T

TFt+r:aT and notice that max(r,s) <n and § + o« — 6 = a.

Since VX.a.T = a.VX.T, by the induction hypothesis 34,7, and s
such that S = T' F t:0.VX.T, S, =T Fr:yVX.T, 0 +v = « and
max(r,s) < n — 1. Then by using Vg rule, I' - t:0.7[U/X] and T F
r:v.T[U/X]. So, Sy11 =T Ft:0.T[U/X], Ssy1 =T Fr:~.T[U/X] and
max(r + 1,s + 1) = max(r,s) + 1 < n.

I'Ft+r:VX.a.T
2. VE
PFt4r:aT[U/X]

Ihttral By the induction hypothesis 30,v,r and s such that S, = I' + t:0.7T,

Vr
3. THFt+r:VX.aT B
TFt+r:aVvVX.T

Ss=TFr:4.T, 0+~ =« and max(r,s) <n — 1. Then, by using V; rule,
F'Ft:VXST =6VXT and I' F r:VX AT = ~vVX.T. So, Spy1 =T F
t:0.VX.T, Sy1 =T Fr:4.VX.T and max(r+1,s+1) = max(r,s)+1 < n.

O

B.8 Proof of Lemma 3.2.13

Lemma 3.2.13 (Substitution). For any term t, any base terms b, any types T € T, U € U™ and any

context I,
1. DHt:T = [U/X] Ft:T[U/X).
2. {T,2:UFt:Tand ' Fb:U } = T'Ft[b/2]:T.

Proof of item 1. Let S, =T'+t:T. Induction on n.

L ax Notice th?t _’(F,x: V)[_[?/{f] = T[U/X),z: V[U/X], then by az rule,
Lz:VEz:V (T, z:V)[U/X] F 2: V[T /X].
2. T 0.5 Notice that 0 = 0[U /X], then by axg, T[U/X]F 0:0[U/X].

By the induction hypothesis T[U/X] + t:(a.(V —
Tht:a(V —T) TFr BV ™U/X] = a;V[_l{/X] — T[U/_'X]ﬁalso by t}ie 1i1duct10n
3. —E  hypothesis, I'[U/X] F r: (8.V)[U/X] = B.V[U/X]. Then
'E(®)r:(axp).T S )
by rule =g, T[U/X] F (t) r: (ax 8).T[U/X] and this type
is equal to ((a x 8).T)[U/X].

By the induction hypothesis (', z: V)[U/X] + t: T[U/X]. Notice that
I (T,z:V)[U/X] = I'[U/X],2: V[U/X], then using rule —, one has
L[U/X]F Aet: V[T /X] — X

ax:ViEt:T
H
I'EXet:V—->T

—

T[U/X] = (V = T)[U/X].
By the induction hypothesis D[U/X] b t: (VY.T)[U/X] where Y ¢ X and

5 LEt:vY.T v Y & FV(U). Then (VY.T)[U/X] = VY.T[U/X], and so by using Vg rule,
TRGTV/Y] T T0/X] F o (T[O/RDIW/Y). As Y ¢ FV(T), then (T[0/X))W/Y] =
T[U)X,W/Y]. Take W = V[U/X], then T[U/X,W/Y] = (T[V/Y])[U/X].
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Let Z be a fresh variable. By the induction hypothesis I'[Z/Y]| F t: T[Z/Y], but
since Y ¢ FV(T'), we can just write I' - t: T[Z/Y]. By the induction hypothesis

. ”—tT again T[U/X] F t:(T[2/Y])[U/X]. Since Z is fresh, it does not appears in
Thevwr T[i7/X]. Then by using ¥; rule, T[07/X] - t:VZ.(T[2/Y])[T/X]). Notice that
VZ.(T[Z)YD[U /X)) = (v2.T[2/Y))[U/X] = (VY.T)[U/X].
Fet:T By the induction hypothesis T'[U/X]:t: T[U/X], then by rule s;, one has
Tratar ' TF/X):at:aT[0/X] = (@.T)T/X).

By the induction hypothesis T[U/X] F t: (. T)[U/X] = o.T[U/X]

| I'-t:aT TrFr:BT L, andalso L[U/X] + v: (B.T)[U/X] = B.T[U/X]. So, by rule +7,

FFt+r:(a+p).T I[U/X]F t+r: (a+B).T[U/X] and notice that (a+ 8).T[U/X] =
((a+ B)D)T/X).

O
Proof of item 2. Let S,, =T',z:U + t:T. Induction on n.

L vvrsvu Notice that z[b/z] =b,so ' - b:U.

2. Ty Vo UbyV ar Notice that y[b/z] =y, so I',y: V F y[b/z]: V by rule az.
3. m aTy Notice that 0[b/z] = 0, so I' - 0[b/z]: 0 by rule azg.
By the induction hypothesis T' F t[b/x]: .V —
. Fz:Ukt:aV—-T T,o:Ubkr:pV L T and also I' + r[b/z]: 8.V, so by rule —g,
Loxz:UF(t) r:(axB).T I' b (t[b/z]) r[b/x]: (« x B).T. Notice that
(t[b/z]) r[b/x] is equal to ((t) r)[b/z].
. Ly:Vie:UkFt:T N By the induction hypothesis T',y: V F t[b/x]: T, then by rule —,
Dz: Uk Ayt:V > T I'F Ay.(t[b/z]): V — T. Notice that Ay.(t[b/x]) = (Ay.t)[b/z].
N Fz:UkFt:VX.T . By the induction hypothesis one has T' F t[b/x]: VX.T, then by rule
Ta:UFt:T[V/X] Ve, T Ftlb/2]: T[V/X].
- Lz:URt:T v By the induction hypothesis one has T'  t[b/z]: T, then by rule Vy,
D,2:U Ft:YX.T 'k t[b/a]: VX.T.
g Lz:URt:T . By the induction hypothesis I' + t[b/x]: T, then by rule s;, T' F
Dxz:Ut at:aT a.(t[b/z]): a.T. Notice that a.(t[b/z]) = (a.t)[b/x].
By the induction hypothesis one has ' F t[b/z]|: a.T
N Nae:UkFt:aT Tiz:UFr:BT . and T' F r[b/z]: 8.7, so by rule 4+, it can be deduced
Nz:UFt+r:(a+B).T '+ t[b/z] + r[b/z]: (a« + B).T. Notice that t[b/x] +

r[b/x] = (t + r)[b/z].
O

B.9 Proof of Lemma 3.2.15

Lemma 3.2.15 (Scaling unit). For any term t, scalar «, type T and context T, if I' - a.t: T' then there
exists U € Y and v € S such that T' = a.7.U.

Proof. Let S,, =T F a.t:T. Induction on n.
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'=¢:T
S — 57 By Lemma 3.2.2, 3U € U,y € S such that T'=~.U. Then a.T = a.vy.U.
I'Fat:aT
By Lemma 3.2.2, 3U € U,§ € S such that T = .U, then T[V/X]| =
[Eat:VX.T 0.U[V/X] and also VX.T = VX.6.U = 6.YX.U. In addition, by the in-

Vg duction hypothesis U’ € U,y € S such that VX.T = «a.y.U’. Sum-
marising: «.v.U' = 6VX.U. Then, by Lemma 3.2.3, 6 = a X v, so
TV/X] = ary.UV/X].

> Ikat:T[V/X]

I'at:T By the induction hypothesis 3U € U,y € S such that T = a.y.U, then

¥
rEat:yxX7T ©  YXT=VX.ar.U=ayVX.U.
O

B.10 Proof of Lemma 3.2.16

Lemma 3.2.16 (Base terms in unit). For any base term b, context I' and type T, I' - b: T = 3U €
U such that T = U.

Proof. Let S,, =T F b:T. Induction on n

X

1 Trivial case.

—a
"Dz Uka:U

x:UFt:T

. —7 Trivial case.
'FXet:U—T

I'kb:VX.T
3. ——— Vg By the induction hypothesis VX.T' € U, so T € U and then T[U/X] € U.
'Fb:T[U/X]
'kt T
S— VY By the induction hypothesis T € U, so VX.T € U.
'Ft:VX.T
O
B.11 Proof of Lemma 3.2.17
Lemma 3.2.17 (Type for 0). For any context I' and type T, T' = 0:T = T = 0.
Proof. Let S,, =T'F 0:T. Induction on n.
— ar- .
1. r'ko.0 '0 Trivial case
'FOo:vX.T _ _ _
2. —————————— Vg By the induction hypothesis VX.T' =0, so T'= 0 and also T[U/X] = 0.
I'+0:T[U/X]
'co:T ) ) ) _ _
— Y By the induction hypothesis T = 0, so VX.T = 0.
'ko:vX.T -
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B.12 Proof of Theorem 3.2.1

Theorem 3.2.1 (Subject Reduction). For any terms t, t’, any context I and any type T, if t — t/, then
'Ft:T=TFt:T.

Proof. We proceed by checking that every reduction rule preserves the type. Let t - rand I'+t:7. To
show that I' F r: T, we proceed by induction on the derivation of the typing judgement.

FElementary rules

rule t+0—t Let 't +0:7. By Lemma 3.2.12,3a, 5 € S such thatl' - t: .7 and '+ 0: 8.T
with & + 8 = 1. Then, by Lemma 3.2.17, 8.7 = 0, so either 3 =0, and then a =1 or T = 0,
and then a.T =0 =T.

rule 0.t - 0 Let I' - 0.t:7. By Lemma 3.2.15, 3R such that 7 = 0.R = 0, and by rule azg,
I'+0:0.

rule 1.t -t Let ' 1.t: 7T =1.7T. By Lemma 3.2.10, ' - t: T
rule .0 - 0 Let I' - @.0:T. By Lemma 3.2.15, 3R such that 7' = «.R. Cases

a # 0 By Lemma 3.2.10, I' - 0: R. Thus, by Lemma 3.2.17, R=0and so T = a.R = 0.
a =0 By Lemma 3.2.11, 3S such that I' - 0: S and by Lemma 3.2.17, S = 0.

rule a.(8.t) = (a x ).t True by Lemma 3.2.21.

rule a.(t + r) — a.t + a.r True by Lemma 3.2.22.
Factorisation rules

rule a.t + 8.t — (a+ ).t True by Lemma 3.2.23.

rule a.t +t — (a+1).t Let ' F a.t + t: 7. Using rule sy one can derive I' - 1.(a.t + t): 1.7
Then by Lemma 3.2.22, T' - 1.a.t + 1.t: 1.T. Moreover, by Lemma 3.2.12, I' - 1.a.t : 4. T and
' 1.t:6.T with v+ 6 = 1. So, by Lemma 3.2.21, I' + a.t:v.T. Then using rule +; one can
derive I' - .t + 1.t: 1.7. We conclude, by Lemma 3.2.23, with '+ (e + 1).t: 1.T =T.

rulet+t— (14+1).t Let I' -t +t: 7. Then by rule sy, ' - 1.(t + t): 1.7. By Lemma 3.2.22,
'F1t+41.t:1.7 and by Lemma 3.2.23, T+ (1+1).t:1.T=T.

Application rules

rule (t+r)u— (t) u+(r) u Let T - (t +r) u: T = 1.7. Then, by Lemma 3.2.8, 3o, 5,U and
T' < T such that T F w:a.U and T F t +1: .U — T' = 1..U — T’ with a x § = 1.
Then by Lemma 3.2.12, 36 and ~ such that ' - t:6.86.U — T’ = (6 x 8).U — T’ and
FkFr:y.p.U =T =(yxB).U = T with §+~ = 1. Then by rule »g, ' F (t) u: (6 x Bx ). T’
and T F (r) u: (yxBxa).T’. Notice that (§ x Sxa). T = (6x1).T" = 6T and (yxfxa). T =
(v x 1).T" = ~.T". Then by Lemmas 3.2.5 and 3.2.7 T F (t) u: 0.7 and T' - (r) u:~.7, from
which, using rule 4, one can derive I' - (t) u+ (r) u: (6 +~).T=T.

rule (u) (t +r) — (u) t+ (u) r Analogous to the previous case.
rule (a.t) r > a.(t) r Let T F (awt) r: T = 1.T. Then by Lemma 3.2.8, 3v,3,U and 7" < T
such that ' F r:v.U and I'  a.t: B.U — T" with v x 8 = 1. Moreover, by Lemma 3.2.15,
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B.U — T = ..U’ then by Lemma 3.2.3, U — T = U’ and 8 = « x § (notice that 5 # 0
because v x 8 = 1). So by Lemma 3.2.10, T' - t:6.(U — T”). By using rule — g one can derive
['F (t) r:0.4.T" from which, using rule s; one can deduce I' F «.(t) r: a.d.7.T’". Notice that
ady T =(axdxy)T' =B xv).T =1T=T', soby Lemma 3.2.7, T F a.(t) r: 1.7

rule (r) (a.t) = «@.(r) t Analogous to the previous case.
rule (0) t — 0 True by Lemma 3.2.20, and rule axj.

rule (t) 0 — 0 True by Lemma 3.2.20, and rule axg.
Beta reduction

rule (Az.t) b = t[b/z] Let I' - (Ax.t) b:T. By rule =, ' - (A\z.t) b:1.T, so by Lemma 3.2.8,
Ja, B, U, T < Tsuchthat '+ Az.t: B.U — T" and '  b: .U with ax 3 = 1. Since b is a base
term, by Lemma 3.2.16, « = 1 and so 8 = 1. Then by Corollary 3.2.14, ', x: U - t: T’. Thus,
by Lemma 3.2.13, I' F t[b/z]: T”, from which, by Lemma 3.2.7, one obtain I" - t[b/x]: T

AC equivalences

Commutativity Let I' - t + r: 7. Then, by Lemma 3.2.12, 3§ and ~ such that I' - t:6.7 and
'k r:~.T with § + v = 1. Then using rules +; and =, one can derive ' Fr +t: 7.

Associativity Let I' - (t +r) + u: 7. Then, by Lemma 3.2.12, 3§ and ~ such that '+t 4+ r:0.7
and I' - u:~.T with § +~ = 1. Then, by Lemma 3.2.12 again, 39’ and +' such that T - t:¢".T
and I' F r:+".T with § + 4" = §. Then with rule +; one can deduce I' - r +u: (' +v).T
and with the same rule, ' F t + (r + u): (8’ + v +v).T = T. The inverse is analogous: if
F't+(r4+u):Tthen T (t+r)+u:T.

Contextual rules Let t — r and assume as induction hypothesis that for any context I and type T, if
I't:TthenT'Fr:T.

(t) u—(r)u Let T F (t) u:7. By Lemma 3.2.7, I' F (t) u:1.7. Then by Lemma 3.2.8, T -
t:aU - Rand I' - u: .U with R X T and a x § = 1. By the induction hypothesis
I'tr:a.U — R, from which, using rule — g, one can deduce I' - (r) u: a x 8.R. Notice that
axpB.R=1.R=R=T,soby Lemma 3.2.7, T+ (r) u:T.

(u) t = (u) r Analogous to previous case.

t+u—-sr+uletl' Ft+uT. By Lemma 3.22, T = .U, so by rule =, I' - t + u: a.U.
Then by Lemma 3.2.12, I' F t:6.U and I' F u:~.U with § + v = a. By the induction
hypothesis T - r:6.U, so using rule 4+; one can deduce I' F r 4+ u: (6 + v).U. Notice that
0+ U=aU=T.

u+t — u+r Analogous to previous case.
at — ar Let I' - a.t:T. By Lemma 3.2.15, 3y and U such that T' = a.7.U. Cases

a # 0 By Lemma 3.2.10, I' - t:~.U. Moreover, by the induction hypothesis I' - r:~.U, and

using the rule s; one can derive I' F a.r: a.y.U =T.

a =0 By Lemma 3.2.11, 3R such that I - t: R. Moreover, by the induction hypothesis

I'Fr: R, and using the rule sy one can derive ' - ar:a.R=0=1T.
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Ax.t = Az.r LetT'H Az.t: T. By Lemma 3.2.9, 3U and Rsuchthat ', x: U - t: RwithU — R <T.
Then by the induction hypothesis I';z: U + r: R, and using the rule —; one can derive
'FXzxxr:U — R. By Lemma 3.2.7, ' F Az.r: T.

O

B.13 Proof of Lemma 3.3.5
Lemma 3.3.5.

1. SN € SAT,

2. A,B € SAT = A — B € SAT,

3. Let {A;}icr be a collection of members of SAT, (.., 4; € SAT,

il
4. Given a valuation ¢ in SAT and a A in T(\2!¢), then [A]¢ € SAT.

Proof.
1. Obviously SN C SN. We need to prove it satisfies each point of the definition of saturation.

(a) 0 € SN.
(b) Va,t,(z) t € SN.

(c) Assume (t[b/z]) ¥ € SN, then the term
(Az.t) b) T (B.1)

must terminate because t,b and r terminate since they are SN by assumption (t[b/z] is a
sub-term of a term in SN, hence itself is SN; but then t is also SN), After finitely many steps
reducing terms in B.1 we obtain ((Az.t') b’) ¥/ with t —* t/, b — b’ and Vi,r; — r/. Then

the contraction of ((Az.t') b’) r gives
(t'[b'/a]) (B.2)

This is a reduct of (t[b/z]) r and since this is SN, also B.2 and ((Az.t) b) ¥ are SN.

(d) First notice that if t,u € SN, then t + u € SN. Now, assume Vi € I, (t;) ¥ € SN, which

implies that t; and r are SN. Also, notice that (3, ;t;) ¥ —* > .., (t;) ¥ which is the sum

iel ti) T

is also SN. We proceed by induction on I. To simplify the notation, we take I = {1,...,n}
with n > 1.

of SN terms, so is SN. We need to prove that any other reduction starting from (>

e If I = {1}, then we are done, since Vi € I, (t;) ¥ € SN.
e Assume it is true for I = {1,...,n}, that is (3., t;) ¥ € SN.
e Let I ={1,...,n+ 1}, then we must prove that (3>_1" ; t; + t,4+1) F € SN. Case by case

on its possible reductions. Notice that any reduction in t or ¥ is finite since these terms

are in SN, so the amount of addends is the same.

Elementary rules
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— One t;y = 0 and rule t + 0 — t applies. Then the induction hypothesis closes the

case.

— One t = a.(tg, +tg,) and reduces to a.ty, + a.ty,, it still can be considered as one
addend since ty is in SN.

— In other case, it is just a reduction in one t; or one of T.
Factorisation rules Induction hypothesis.
Application rules

— Again, reductions on any t; are no considered since these cases are trivial by the
strong normalisation of ty.

- Xl ti+typ1) T — (O, t;) T+ (tpg1) T, then since by induction hypothesis
(>, t;) T €SN and by hypothesm also (tp4+1) ¥ € SN, its sum is in SN.

— C ot +tu1) T — C ) T+ "t 4.) F the induction hypothesis applies
1_1 + 1_1 1= k+1
to both addends.

— Any other case does not involves a sum, so they are either included in the case of

reduction of one t; or one from T, or in the basic case of the induction.
Beta reduction This is either the basic case or a reduction in one t; or one of r.
(e) Vie I, ((u) t;) ¥ € SN. Notice that ((u) > ;c;t:)) ¥ —=* > ,c;((u) t;) ¥ which is the sum of

SN terms. This case is analogous to 1d.
(f) t € SN, then Va € §,a.t € SN and wvice versa.
(2) o.(((t1) t2)...) tn) € SN then Vk, ((((t1)...) o.tg)...) t, must terminate because t ter-

minate since these terms are SN by assumption, so after infinitely many reduction steps
reducing ((((t1)...) a.tg)...) t, we obtain a.u, with ((t1)...) t, —=* u. So c.u is a reduct
of a.(((t1)...) t,) and since this term is SN, V&, ((((t1)...) a.ty)...) t, are SN.

(h) (0) t —* (0) t/ and since t is SN, assume t/ is in normal form, so (0) t' can only reduce to 0,
then (0) t € SN.

(i) ((t) 0) @ —* ((t') 0) W', since t and 1 are in SN, assume t/,u’ are in normal form, then

((t) 0) u’ can only reduce to (0) W’ which can only reduce to 0, so it is in SN.

2. Let A,B € SAT, then & € A by definition of saturated sets. Vt € A — B, (t) © € B. Since
B € SAT, then B C SN, so (t) x € SN and so t is strongly normalising. Therefore A — B C SN.

Now we need to show A — B is saturated by showing each point at the definition of saturated sets.

(a) By saturation of B, Vu € A, (0) u € B, then 0 € A — B.

-,

(b) Let t € SN, we need to show that (z) t € A — B, i.e. Yu € A, ((z) t) u € B, which is true
since A € SAT implies that u € SN, so B € SAT implies that ((x) t) u € B.

(c) Let (tb/z]) ¥ € A — B, then YVu € A, ((t[b/z]) ¥) u € B and since B is saturated,
((Az.t) b) ¥) ue B, so (Az.t) b) T € A — B.

(d) LetVie I, (t;) T € A — B, then Vu € A and Vi € I, ((t;) ¥) u € B, then by the saturation of
B, (X e ti)F)ue B,so (3 ,c,t) T€e A= B.

(e) Let Vi € I, ((u) t;) ¥ € A — B, then Vt' € A, (((u) t;) ) t' € B, then by saturation of B,
(((w) Yjerti) ©) t' € Byso ((u) D,c,t) TEA— B.
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(f) Let t € A — B then Vu € A, (t) u € B, then by the saturation of B, Va € S, a.(t) u € B,
then also by the saturation of B, (a.t) u € B, so a.t € A — B.
Let ot € A — B, then Vu € A, (a.t) u € B, so by the saturation of B, a.(t) u € B, and
again, by the saturation of B, (t) u€ B,sot € A — B.

(g) Let a.(((t1)...) t,) € A — B, then Yu € A, (a.(((t1)...) ty,)) u € B, then by the satu-
ration of B, a.((((t1)...) t,) u) € B, and so, again by the saturation of B, one also has
VE, (((((t1)...) aty)...) t,) u € B, then V&, ((((t1)...) aety)...) t, € A — B.

The inverse follows analogously: let ((((t1)...) aty) ...) t, € A — B, then Yu € A,
(((((t1)...) autg) ...) ty) u € B, so by the saturation of B, a.((((t1)...) t,) u) € B and
then, also by the saturation of B, one has (a.((t1)...) t,) u € B, then a.((t1)...) t, € A — B.

(h) Yu € A, u € SN and then, by the saturation of B, ¥t € SN, ((0) t) u € B. Then (0) t €
A— B.

(i) Vr € A, r € SN and then, by the saturation of B, Vt,d € SN, (((t) 0) U) r € B. Then
(t)0)die A— B.

3. Let {A;}ier be a collection of members of SAT', then Vi € I, A; € SN, so (,c; A; € SN. We have

to show that [, ; A; is saturated.

el
e Conditions (a), (b), (h) and (i) follows trivially: all these conditions have the form “t € X”.
Since by the saturation of A;, Vi € I,t € A;, then t € [;; A;.

e Counditions (c), (d), (e), (f) and (g) are also straightforward: all these conditions have the form
“If t in X, then r in X”. Let t € (.., A;, then Vi € I,t € A; and so, by the saturation of A,

r € A;, from where one can deduce r € ﬂiel A;.

el

4. By structural induction on A.

A:= X: Then [A] = {(X) € SAT.

A := B — C: Then [A]¢ = [B]¢ — [C]e. by the induction hypothesis [B]¢ and [C]e € SAT, then
by Lemma 3.3.5(2), [B]e — [C]e € SAT.

A:=VX.A": Then [A]s = NycgarlAlecx:=v). By the induction hypothesis one has that VY in
SAT, [A']¢(x:=y) is also in SAT, then by Lemma 3.3.5(3), Ny cgar[Ale(x:=y) € SAT.
[l

B.14 Proof of Theorem 3.3.7

Theorem 3.3.7 (Soundness). I'lFt: A=TFt: A.

Proof. We proceed by induction on the derivation of T' - t:T.

1 s Notice that if p,& E T, z: A, then by definition p, & F z: A.

—
"D,z:AlFz: A

) az Then V¢, p, by the saturation of [A]¢, 0 € [A]¢. Since [0], = 0, then p,{ F 0: A,
rrFo:A and so VI, ' = 0: A.
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By the induction hypothesis, ' Et:A — Band I' E r: A.

bt A— B Cibr: A Assume p,& F T in order to show p,& E (t) r: B. Then

3. =% p,E Ft:A— B, ie [t], € [A — B]e = [A]¢ — [B]¢ and
TI-(t)r:B
[r], € [A]e. Then [(t) r], = [t], [r], € [Ble, so p,§ F
(t) r: B.
Assume p, £ E T in order to show p,£ F Az.t: A — B. That is, we must
C oAt B show ([Az.t],) u € [B]¢ for all u € [A]¢. Assume u € [A]¢, then p(x :=
4. T : -7 u) F T, 2: A and hence by the induction hypothesis [t],;.—u) € B. Since
T'FXxt:A— B R . _ _
(IM2-t],) u= ((Azt)[§ == p(H)]) u =5 t[f = p(¥), x := u] = [t]y(z:=u);
it follows from the saturation of [B]¢ that ([Az.t],) u € [B]e.
Tl t:YX.A Assume p, & E T in order to show p,& F t: A[B/X]. By the induction
5, ———————— V¢ hypothesis [t], € [VX.A]s and this set is equal to A =y,
T t: A[B/X] E [t], [ e ﬂYeSAT[[ ]]é(X Y)
hence [[t]]p S [[A]]E(X::[[Bﬂg) = [[A[B/X]]]g
Assume p,& F T in order to show p,& F t:VX.A. Since X ¢
6 TlFt:A X ¢ FV(I) . FV(T), one also has VY € SAT that p,&(X :=Y) E T, therefore
' TIFt:VX.A Vi VY € SAT, [t], € [A]¢(x.—v), then by the induction hypothesis
[t], € [VX.Ae, i.e. p,& F t:VX.A.
Assume p, & E T in order to show p,& E t + r: A. By the induction
hypothesis one has I' F t: A and I F r: A, so [t], € [A]s and
TlFt:A TlFr:A P , “redoso e, € Al
7. AP +7 [r], € [A]e. Since [t +r], = (t +r)[Z := p(Z)] = t[Z := p(Z)] +
tr r[Z := p(Z)| = [t], + [r],, it follows from the saturation of [A]¢ that
[[t + I‘]]p S [[A]]E
Tl t:A Suppose p,& E T in order to show p,& F a.t: A. By the induction hypothesis
8. — 7 T Ft:A, then [t], € [A]¢. Since [a.t], = (a.t)[T := p(D)] = a.(t[7 := p(7)]) =
[lFat:A a.[t],, it follows from the saturation of [A]¢ that [a.t], € [A]e.
Il
B.15 Proof of Lemma 3.3.10
Lemma 3.3.10 (Correspondence with A\2!%). T't:T = TI'% |- t: 7%,
Proof. We proceed by induction on the derivation of I' - t: 7.
1. ToUFaU azx (T,z:U)! =T% 2:U"Y, so by az?, (T,z:U)? I z: U
2. = ATy By az¢?, TP I 0: A for any A € T(\2'), so take A = 0.
I'0:0
5 'ctiaU =T FFI‘Zﬁ-U% By the induction hypothesis T'? IF t: U% — T% and T'? IF r: U¥,
TR ri(axp)T P sobyrule 53, T IF () r: T% = ((a x B).T)".
: Fz:UFt:T By the induction hypothesis one has I'%, z: U? I+ t: 7%, so by rule -7,
. —
Tt U—T DXt U — T8 = (U — T)E
5 FEt:vX.T v By the induction hypothesis one has T'? I t: (VX.T)h = VX.T?, so by rule
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I'+t:T
. — ¥, By the induction hypothesis T'% I t: 7%, so by rule V¥, I'% IF t: VX.T% = (VX.T)".
I'Ht:vX.T
. FEt:aT ThEr:8T N By the induction hypothesis ' I+ t: 7% and T IF r: 7%, so by
Thttr:(atf) T  rule+3 Tt +r: T8 = ((a+ §).T)
THt:T . , _
R By the induction hypothesis T'% IF t: 7%, so by rule s§, T% IF a.t: T% = (a.T)".
I'Fat:aT

O

B.16 Proof of Corollary 3.3.13(3)

Corollary 3.3.13 (Item 3 in the proof: Commutation). Algebraic rules and S-reduction commutes,
i.e. if t =, uand t —4 r, then there exists a term t’ such that u —* t’ and r —* t/, where —* is a

reduction sequence of zero or more steps involving any rules.

Proof. Let t =, u and t —3 r. We proceed by structural induction on t.
1. t cannot be a variable or 0, since it reduces.

2. t = Az.ty. Then u = Az.u; and r = Az.ry with t; =, u; and t; =g r1. Then by the induction
hypothesis 3t} such that uy —5 t}] and ry —, t}. Take t' = Az.t'.

3. t = (t1) to. Cases

o r = (r;) ty where t; —g r;. Cases
— u = (uy) t2 where t; =, uy. Then by the induction hypothesis, 3t} such that r; —, t}
and u; —g t}. Take t' = (t}) to.
— u= (t1) up where to —, us. Take t’' = (r1) us.
e r = (t1) r2. Analogous to previous case.
e r = rq[ta/x] where t; = Az.r; and t9 is a base term. Cases

— u = (Az.uy) tg where r1 —, u;. Then notice that u —g uyfte/x]. We proceed by
structural induction over ry to prove that r1 —, uy implies ri[ta/x] =, uy[t2/z] for any
t2 base term.

* 11 cannot be 0 or a variable, since it reduces.
* r1 = A\y.rj. Then u; = Ay.u)] where r{ —, u}j. Then by the induction hypothesis
ri[ta/xz] =4 u][ta/x] which implies that Ay.r)[te/x] —4-reduces to (Ay.u))[t2/z].
* r1 = (r}) r{. Cases
- uy = (u}) r{ with r{ —, u}, then by the induction hypothesis | [t2/z] —, u][t2/x]
which implies that ((r}) rf)[t2/2z] —a ((0}) rf)[t2/x].
- ug = (r)) uf with r{ —, uf. Analogous to previous case.
* r1 =r) +r]. Cases
- u; = uj +rf with rj —, u}, then by the induction hypothesis r [t2/z] —, u][t2/x]
which implies that (r] + rf)[t2/2z] =4 (0] + rf)[t2/x].

- u; =1} +uf with r{ —, uf. Analogous to previous case.

133



Appendix B. Proofs from Chapter 3 [

-u; = (a+ B).r! where v} = ar{ and r{ = p.r{”. Then notice that (a.r{’ +

B [ba/2] = €[t /3] + B [62/2] —va (& + B)Yb2/2] = (o + B)2")[ta ]
= (a+1).r{" where ri = a.r{’ and r{ = r{’. Analogous to previous case.
- u; = (14 1).r] where rj =r/. Analogous to previous case.
- u; =1} and r{ = 0. Then (r} 4+ 0)[tz/z] = r|[ta/x] + 0 —, r][ta/x].
% r1 = a.rj. Cases

- u; = uj with r{ —, u]. Then by the induction hypothesis one has r|[ta/x] —,
uf [te/z], so (a.r))[tz/z] =4 (a.u])[te/z].

- u; = (axf).rf withr] = g.r]. Then (a.(8.r}))[t2/x] is equal to a.(B.r] [t2/2]) —
(@ x f)x{[te/z] = ((a x B).x])[t2/z].

-u = ar! +ar! and v} = r{ + . Then (a.(r{ + r{")[t2/2] = a.(r][t2/z] +
r!'[te/x]) =4 axyte/z] + ar)[tz/z] = (a.r] + ax))[t2/z].

-u=r} and @ = 1. Then (1.r})[t2/x] = 1.v][t2/2] —4 r[t2/].

-u=0and o =0. Then (0.r})[t2/z] = 0.r}[t2/x] =, 0 = O[ta/x].

-u=0and rj =0. Then («.0)[t2/x] = @.0t2/2] = .0 —, 0 = O[t2/x].

— u = (Az.r1) uy where tz —, us. Then u — g r1[uz/z]. We proceed by structural induction
over ry to show that if to —, us, then ry[te/x] =% ri[us/z].

* r1 = x, then zfta/z] = to =4 us = z[us/x].

* 11 =y, then y[to/z] = y = y[us/x].

* r1 = 0, analogous to previous case.

% 11 = Ay.r}, then (Ay.r})[t2/z] = Ay.r|[t2/z]. By the induction hypothesis r} [t2/x] —
ri[us/z], so Ay.ri[te/x] =% Ay.r)[us/x].

x r1 = (r]) rf. Then ((r}]) r{)[te/x] = (r|[ta/z]) r{[t2/z]. By induction hypothesis
ri[ta/a] =7 rifug/z] and ri[uy/z], so (rifta/z]) vi[ta/a] = (vi[us/z]) rifus/a] =
((r7) r{)[us/z].

x r1 =1y +rf. Then (r] + r{)[t2/z] = r|[te/z] + r{[t2/z]. By induction hypothesis

*

ri[te/x] =% ri[us/z] and r{[uz/z], so one has r|[ta/z] + r{[ta/z] =% rilug/x] +

ryfug/x] = (v} + rf)[ug/z].
* r1 = a.r]. Then (a.r})[ta/z] = a.r|[te/z]. By the induction hypothesis rf[t2/z] —

a

ri[us/x], so a.r)[ta/z] =k a.ri[uy/z] = (a.r])[uy/x].
4. t =t + tg. Cases

e u=(a+f).u with t; = a.u’ and t2 = S.u’. Cases
—r = ar + p.u with u' =g r’. Then notice that u = (o + 8).u’ =3 (o + f8).r' and
ar +pu =g ar’ +pr =, (a+5).r
— r=o.u + f.r' with u’ -3 r’. Analogous to previous case.
e u=(a+1).u with t; = a.u’ and t; = u’. Analogous to previous case.
e u=(1+1).u’ with t; = t2. Analogous to previous case.

e u = t; with t = 0. Then the only possibility for r is to be r’ + 0 where t; — r’. Then

r' +0 —, r’, which closes the case.
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5. t = a.ty. The only possibility for r is to be a.r’ where t; —g r’. Cases

e u= (o x f).u; with t; = f.uy, then r' = .r” with u; = r”. Then (a x §).u; = (a x §).x”
and a.(8.r") =4 (a x B).x".

e u=a.u; +auy with t; = a.(u; + uz). Cases

—r’ =r; +u with uy =3 ri, then a.(r; + w2) =, ar; + auy and au; + auy —g
@.r] + a.us.

—r' =u; +ry with uy —r g T2, analogous to previous case.

u = t; with a = 1. Notice that 1.r' —, r’.
e u = 0 with a = 0. Notice that a.r’ —, 0.

e u =0 with t; = 0. Absurd since t; —g r’.

B.17 Proof of Theorem 3.4.3

Theorem 3.4.3 (Normal-form of terms in 5 have weight 1). Let I' - t: A be well-formed, then w(t]) = 1.

We

need two preliminary lemmas:

Lemma B.17.1. If (t1) to is in normal form, then t; = (x) T.

Proof. Structural induction on t.

1

2.

. t1 = z. Done.

t; = Az.r, then (t1) to — r[ta/z], which is a contradiction.

. t1 =0, then (t1) to — 0, which is a contradiction.

. t1 = a.r, then (t1) t2 — a.(r) t2, which is a contradiction.

. t1 =r 4+ u, then t; to — (r) t2 + (u) to, which is a contradiction.

. t1 = (u1) ug, then by the induction hypothesis u; = (x) ¥, so (u1) us = (z) ¥, where ' = ¥, us.
O

Lemma B.17.2. T'F (z) ¥: T and (x) ¥ is in normal form, then 3A € T(A\2!%), o € S such that T = a. A.

Proof. Induction on the derivation of I' - (x) r: 7.

1

S rE (z) T: T[A/X]

"‘T,2:Tkz:T ax Then T € T(A\2'%), because in B contexts have only classic types.
Pk(x) f:a.(U—=T) +t:5.U0 Then by the induction hypothesis, U — T €
%
T+ ((z) ©) t: (a x B).T o T(X2!9), so T € T(A2!).

Then by the induction hypothesis 3B € T(\2!*),a € S such that
Ve VX.T = a.B, so 3C € T(A\2'*) such that T' = «a.C, then T[A/X] =
(a.0)[A/X] = a.C[A/X]. Notice that C[A/X] € T(\2'?).

'k (z) ©:VX.T
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Ik (z) :T Then by the induction hypothesis 34 € T(A2!%),a € S such that
r:

4. v
TF(z) £:VX.T T =a.A so¥X.T =VX.0.A = a.VX.A.

O

Now we can prove the theorem. However, instead, we prove the most general case: T' - t: . A =

wtl)=a
Proof. Structural induction on t]. We take I' - t]: a. A, which is true by Theorem 3.2.1.

1. t{=0. Then w(t|) = 0. In addition, by Lemma 3.2.17, o = 0.
2. tl=2z or t|= Az.t’. Then w(t]) = 1. In addition, by Lemma 3.2.16, a = 1.

3. tl=~.t'. Then w(t]) =~.w(t’). By Lemma 3.2.15, 3U € U,§ € S such that a.A = ~.6.U, and by

Lemma 3.2.3, a = v x §. Cases:

a =0 Cases:
~ =0 Then w(y.t') =0 x w(t') =0, or
v # 0,6 =0 Then by Lemma 3.2.10, '+ t':0.U = 0.4, so by the induction hypothesis w(t’) =
0, and then w(y.t') =y x 0=0.
a #0 Then A=U, so by Lemma 3.2.10, T' - t': §.A. Then by the induction hypothesis w(t’) = 4.
Notice that w(t)) =y x w(t’') =y x d = a.

4. t]=t; +t2. Then w(t]) = w(t;) + w(tz). By Lemma 3.2.12, J0,¢ € S such that ' - t;:0.4
and T' - t3: ¢.A with 0 + ¢ = . Then by the induction hypothesis w(t1) = ¢ and w(t2) = ¢, so
w(t) +w(te) =0+ ¢ = a.

5. t}= (t1) t2. Then w(t]) = w(t1) x w(t2). By Lemma 3.2.8, 3U € U,T € T,3,6 € S such that
F't:8U - Tand T+ te:0.U with T < A and 8 x § = a. Since A € T(\2!¢), T € T(\2?)
and since (t1) te2 is in normal form, by Lemma B.17.1, t; is a variable applied to something else,
so by Lemma B.17.2, U — T € T()\2!%), which implies that U € T(A2'*). Then by the induction
hypothesis, w(t;) = 5 and w(tz) =, so w(tl) =w(t1) X w(te) =B X6 = a.

]
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Proofs from Chapter 4

C.1 Proof of Lemma 4.2.3

Lemma 4.2.3 (Arrows comparison). For any types T, R and any unit types U,V,if V - R<U — T,
then IW, X such that U — T = (V — R)[W/X].

Proof. The proof is analogous to the proof of Lemma 3.2.6 (¢f. Appendix B.2), however simpler, since
the order in Additive is given only between unit types.
A map (+)° : Ay — Ay is defined by

X°=X U->T)Y=U=>T (VX.U)° =U°
We need two intermediate results.
1. For any types U, V, 3W such that (U[V/X])° = U°[W/X].
2. For any types U, V, if U <V then IW, X / V° = U°[W/X].
Proofs
1. Structural induction on U
U =X then (X[V/X])°=V°=X[V°/X]|=X°[V°/X].
U=Y then (Y[V/X]))°=Y =Y°[V/X].
U=W — T then (W — T)[V/X])° = (W[V/X] = T[V/X])° = W[V/X] - T[V/X] = (W —
NV/X] =W — T)°[V/X].

U =VY.U' then ((VY.U')|V/X])° = (VWY.U'[V/X])° = (U'[V/X])°, which is, by the induction hy-
pothesis, equivalent to U°[W/X]| = (VY.U')°[W/X].

2. It suffices to show this for U < V.

Case 1 V=VX.U. Then V° =U°.

Case 2 U =VX.U' and V = U’'[W/X] then by the intermediate result 1 one has V° = U°[W/X] =
U°w/XJ.

Proof of the lemma. U — T = (U — T)°, by the intermediate result 2, this is equivalent to (V —
R)°[W/X] = (V — R)[W/X]. O
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C.2 Proof of Lemma 4.2.4

Lemma 4.2.4 (x-subsumption). For any context I', any term t and any unit types U, V such that
U < V and no free type variable in U occurs in I', if ' t:U then '+ t: V.

Proof. Analogous to proof of Lemma 3.2.13, by replacing all the occurrences of general types for unit

types. Il

C.3 Proof of Lemma 4.2.5

Lemma 4.2.5 (Generation lemma (app)). For any I', T, t and u, if I' F (t) u: T is derivable, then there
are «, 8 € Ng, and some types U (in U), T4,...,T, such that ' - t: >0 (U — T;) and I' - u: 25:1 U
with >0, Z?Zl T; < T and each derivation of typing judgement for t and u smaller than the one
for (t) u.

Proof. Let S,, =T I (t) u:T. Induction on n.

p 8

PEt:Y U—=T; Thu:d U
=1 =1

1. ! —E Trivial case.

a B
Tt u:d > T
i=1 j=1

By the induction hypothesis 3r,s,a,8 € NW e U, Ty,...,T, € T

such that S, = T F t: 30 (W — T,) and S; = I F u: 37 W

TF(t) VXU Wizh Z%l Zle T, = VX.U and where max(r,s) < Z— 1,6 Since

2. TF (¢ U/ X Ve > i1 Zj:l T; = VX.U < U[V/X] then by transitivity ) . ; ijl T, <
(£) w:UlV/X] U[V/X]. Remark that there is no conflict with the order defined only

for unit types, it just means that > ¢ | Z?Zl T; is equivalent to a unit

type.
By the induction hypothesis Ir,s, o, € N,V € U, Ty,...,T, € T such
Tk (t) u:U that S, = T F t: 20, (V = T) and S, = I' F u: Y7V with

ST (t) u:VX.U oy >27_1 Ty = U and where max(r,s) < n — 1. Since 3200, Y20 Ti =
e . « B
U < VX.U then by transitivity > ;" >°0, T; S VX.U.
(]

C.4 Proof of Lemma 4.2.6

Lemma 4.2.6 (Generation lemma (abs)). For any I', t and T, if I' - Az.t: T is derivable, then there
exist a unit type U and a type R such that ' z:UFt: Rand U - R<T.

Proof. Let S,, =T F Az.t:T. Induction on n.

Fz:UFt:T
. — 7 This is the trivial case.
I'FXt:U—>T
'k Azt:VX.U By the induction hypothesis IW € U,R € T such that I'x:V F t: R

2.
T Aet:UV/X] ©  andV — R=<VX.U < UV/X].
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T'FAxt:U By the induction hypothesis AV € U, R € T such that I';z: V F t: R and

Ty
TFAt:VXU = V= R=U<VYXU. .

C.5 Proof of Lemma 4.2.7

Lemma 4.2.7 (Generation lemma (sum)). For any I', T, r and u, if I' - r + u: 7T, then there are some
types R, S such that ' r: R and I' - u: § with R+ S =T and typing derivations for r and u smaller

than the one for r + u.

Proof. Let I' - r 4+ u:T. Induction on n.

Then by the induction hypothesis Ir,s € N, R, S € T such that S, =
Vg Trkr:Rand S;=TFu:S with R+S5 =VX.U < U[V/X] and where

max(r,s) <n — 1.

. I'Fr4+uvVX.U
"Thr+4u:U[V/X]

I'Fr+u:U
S — VY Analogous to previous case.
I'Fr+u:VX.U
5 I'kFr:R I'ku:S Then take S, = I' F r: R and S = I' F u:S and notice that

+r1
'Fr+u:R+S max(r,s) =n—1<n. -

C.6 Proof of Lemma 4.2.8

Lemma 4.2.8 (Substitution). For any I', T, U, b and t,
L. DHt:T = [U/X] Ft:T[0/X).
9. {D,z:UFt:TandTFb:U } = Tk t[b/z]: T.

Proof of item 1. We re-use the proof of Lemma 3.2.13 (¢f. Appendix B.8)
e Cases 1, 2 and 4 remain the same.

Case 3: replace all the occurrences of a by > i, and 8 by Zle.

Cases 5 and 6: take T as unit type.

e Remove cases 7 and 8

Add the following case:
By the induction hypothesis I'[U/X] - t: T[U/X] and also T[U /X] +
+1  r:R[U/X], so by rule +7, D[U/X] F t +r:T[U/X] 4+ R[U/X]. Notice
that T[U/X] + R[U/X] = (T + R)[U/X).

I'Ht:T I'Fr:R
'tt+r:T+ R

O
Proof of item 2. We re-use the proof of Lemma 3.2.13 (¢f. Appendix B.8)
e Cases 1, 2, 3 and 5 remain the same.
e Case 4: replace all the occurrences of a by Y -, and 8 by Zle.
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e Cases 6 and 7: take T as unit type.
e Remove cases 8 and 9

e Add the following case:
By the induction hypothesis T' - t[b/z]: T and also I" -
+1  r[b/z]:R,sobyrule +;, T'F t[b/z]+r[b/z]: T+ R. Notice
that t[b/z] + r[b/z] = (t +r)[b/x].

Tz:UFt:T 'Hz:Ur:R
Nx:UFt+r:T+R

O

C.7 Proof of Theorem 4.2.1

Theorem 4.2.1 (Subject reduction). For any terms t,t’, any context I" and any type T, if t — t’ then
'kt:T=TkHt:T.

Proof. We treat separately every rule which can be applied in t — t.

Rule (u+t)r — (u) r+ (t) r: Let 'F (u+t) r: T. Then by Lemma 4.2.5, there exist o, € N, U € U
and Ti,...,T, such that T Fu+t: X0 (U = T,), T Fr: Y7, U and Y0, Y7 Ti<T. By
Lemma 4.2.7, there are some types R, S such that T u: R, T'Ft:Sand R+ S=5 5 (U —T;).
In addition, by remark 4.1.2, R = 25:1 V; and S = Z}:&H V; for some Vi,...,Vs,...,V, in U
or equal to 0 (with 0 < § < v). So Zj.:le + 351V = 2 U = Ti. Thus v = a and
(possibly after re-labelling the T}’s), ijl V; = ijl U—Tjand 35 5, V; =30 5,0 =T
Then, by rule =, T F u: ijlU — Tpand T t: 300 5
kE (u) r: Zle ZleTi and T F (t) r: >0 5. Z?Zl Ty and then, using +j, one gets T'

() v+ (t) r: D5, Zle T;. Since Y i, Zle T;<T, we can conclude with Lemma 4.2.4 that
FF(u)r+(t)r:T.

U — Tj;. So using —g we derive

Rule (r) (u+1t) — (r) u+ (r) t. This is analogous to the previous case.

Rule (0) t — 0. Let I' - (0) t: 7. Then by Lemma 4.2.5 3o, 3, U, T1, ..., T, such that T'F 0: > (U —
T;) and " - t: Zle U with >0, Zle T;<T. Then by Lemma 4.2.10, « = 0, and so Then
py Zle T; = 0. Thus 0 = >, Zle T;<T. Notice that by axz, I' + 0:0. Then by
Lemma 4.2.4, T+ 0:7T.

Rules (t) 0 — 0. This is analogous to the previous case.

Rulest+0—t. Let ' Ft 4+ 0:7T. By Lemma 4.2.7, there are some types R and S such that ' t: R
and ' 0:5, with R4+ S =T. Then by Lemma 4.2.10, S=0and so T = R+ S = R. By rule =,
I'Ht:T.

Rule (Az.t) b — t[b/z]. Let I' - (Az.t) b:T. Then by Lemma 4.2.5, 3a, 5, U, T1,...,T, such that
Tk Azt: 30 (U= T)andTFb: Y7 Uwith Y0 Y7 T,<T. By Lemmad.2.11,a = 8 =1,
sol' F Ax.t:U — T3, and I' = b:U. Then by Corollary 4.2.9, I';z: U F t:T} and hence by
Lemma 4.2.8, T' - t[b/z]: T;. In addition, since T4 T, by Lemma 4.2.4, T' - t[b/x]: T

Rulet+r—r+t. Lete ' Ft+r:7T. Then by Lemma 4.2.7, 3R, S such that T t: Rand ' - r: .S
with R+S =T. Then by rule +;, ' Fr+t: S+ R and since S+ R= R+ S =T, by rule =,
I'Fr+t:T.
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Rule (t+r)+u—t+(r+u). Let T F (t +1r) + u:T. Then by Lemma 4.2.7, 3R;, Ry such that
I'Ft+r:Ry and I' - u: Ry with Ry + Ro = T. Then by Lemma 4.2.7 again, 3571, S5 such that
I'Ft:5 and I' F r: Sy with S; + S2 = R;. So using rule +; twice in the correct order, we can
derive ' Ft+ (r +u): 51+ (S2+ R2). Since S; + (S2+ R2) = (514 52) + Ro = R1+ Re =T, then
using rule =, 't + (r+u): 7.

Rule t +r — t' +r as a consequence of t -+ t'. Let ' - t +r:7T, then by Lemma 4.2.7, 3S,R € T
such that T' Ft:S and T' F r: R with R + S<T. Then by the induction hypothesis, I' - t’: .5, so
using rule +; one can derive I' =t/ +r: R + S. Notice that by Lemma 4.2.4T -t/ +r:T.

Ruler +t — r +t’ as a consequence of t — t’. Analogous to previous case.

Rule (r) t — (r) t’ as a consequence of t = t'. Let I' F (r) t: 7, then by Lemma 4.2.5, 3,8 €
NU€EUT,....Ta €T /T Fr: 0 (U—T)and T Ft: 327 U with 2.0, 7 | Ti<T. By
the induction hypothesis, I' - t': 2?21 U, so using rule —g, one has I' - (r) t': >0 2?21 T;.
Notice that by Lemma 4.2.4, T F (r) t': 7.

Rule (t) r — (t') r as a consequence of t — t’. Analogous to previous case.

Rule A\z.t — \z.t’ as a consequence of t — t’. Let I' - Az.t: T, then by Lemma 4.2.6, 3U € U, R €
T such that U — R<T and T',z:U F t: R. Then by the induction hypothesis, I',z: U  t': R, so
using rule —;, one obtain I' = Az.t’: U — R. Notice that by Lemma 4.2.4, ' - Az.t': T.

O

C.8 Proof of Lemma 4.3.4

Lemma 4.3.4. Tjw+— T'[s]] = T o T'[wv — s(v)] where w denotes a ¢-leaf of T, and v a f-leaf of T.
Proof. Induction on T.

T = Z. Then Z[w +— T'[s]] =0 and Z o T'[wv > s(v)] = Z[wv > s(v)] = 0.

T = ¢. Then £[w +— T'[s]] = T'[s] and £ o T'[wv > s(v)] = T'[wv — s(v)] = T'[s].

T =98(T1,T2). Then S(Ty, Ta)[w — T'[s]] = T1[lw — T’[s]] + Ta[rw — T’[s]] which by the induction
hypothesis is equal to T1 o T'[1wv — s(v)]+ T2 o T'[rwv — s(v)] = S(T1o T, Tao T )[wv — s(v)] =
S(T1, Ta) o T'[ww +— s(v)].

]

C.9 Proof of Lemma 4.3.12

Lemma 4.3.12. If T = T[w — U,] is a type of Addstryct, then |T| = Tlw — |Uy|].
Proof. Induction on T.

1. T=U. Then T = ¢ and so T[w — U, is just U.. Since U = {[e — U], one has |U| = |{[c —
Ue]l = [Ue| = £[e = |UC].

2. T=0. Then T = Z and so Z[w — U,] =0 and |T| = |Z[w — U,]| = |0] = * = Z[w — |Uy]].
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3. T=R+S. Then T = 8(Ty,T2) where R = T1[w — Uyy] and S = Ta[w — Uyy]. Then by the
induction hypothesis |R| = T1[w — |Urw|] and |S| = Ta[w > |Urwl]- So, |T| = |R+ S| = |R| X |S| =
Ti[w = |Urw]] X To[w = [Upyw|] = S(T1, To)[w — [Uyl] = Tlw — |Uyl]-

C.10 Proof of Theorem 4.3.21

First we need the following intermediate result.

Lemma C.10.1. Let Dy = T,2:U F t:T and Dy = T' + b:U, then 3D3 such that [t]p,[[b]p,/x] =
[t[b/z]lp,-

Proof. We call D] to the last derivation from where to obtain Dy, using rule R. If there are two sequents
in the last step, we call them D] and Df. If R =V, then by the induction hypothesis, 3D3 such that
[t]p;[[b]p,/z] = [t[b/z]]p;. Notice that [t]p, [[b]p,/x] = [t]p;[[b]p,/x]. The case R = Vg is similar.

For any other case, we proceed by structural induction on t.

1. t = 2. Then [z]p, = x and so [z]p, [[b]p,/z] = [b]p, = [z[b/z]]p,. Take D5 = Ds.
2. t =y. Then [y]p, =y and so [y]p, [[b]p,/z] =y = [y[b/z]]p,. Take D3 = D;.

3. t = 0. Then [0]p, = * and so [0]p, [[b]p,/z] = * = [0[b/x]]p,. Take D3 = D;.

4. t = \y.r. Then R =— . By the induction hypothesis, 3D3 such that [r]p/[[b]p,/z] = [r[b/z]]p,.

Then [t]p, [[b]p, /2] = (Ay.[r]py)[[blp, /2] = Ay.([r]p; [[blp,/2]) = Ay.[r[b/z]|]p, = [t[b/z]|p,, for
some D% which is either obtained by applying —; from Dj, if y is in the context of the last sequent
of Dj, or by adding it to the context of each sequent in Dj.

5. t = t1 + ta2. By the induction hypothesis 3D3 and Dj such that [t1]p;[[b]p,/z] = [t1[b/z]]p, and
[tolpy [[blp, /2] = [ta[b/z]]p;. Then

[t1 + to]p, [[blp, /2] = ([ti]p;, [t1]p))[[blD, /]
([t1lp; [[b]p, /], [t1]p; [[blD, /1)
([t1[b/2]]ps, [t2[b/2])py)

[t1[b/a] + ta[b/a]Ipy

where Dj is obtained from D3 and Dj by rule +;. Notice that t1[b/z] + t2[b/z] = (t1 + t2)[b/z].

6. t = (t1) t2. By the induction hypothesis 3D3 and Dj such that [ti]p/[[b]p,/z] = [t1[b/z]]p, and
[ta]py[[blp, /2] = [t2[b/2]]p,. Then

[(t1) to]p, [[blp, /2]

ToT |[wv — 7w

([t2]py ) ([t2] Dy ) [[blD, /2]

= ToT[wv— mu([ti]p; [blp,/2])ms([t2] oy [[b]D, /2])]
([t1[b/2]py)m([t2b/2]]p, )]

= [(t1[b/2]) t2[b/2]|py

= ToT|wvr 7y

where DY is obtained from D3 and D} by rule — p. Notice that (t1[b/x]) t2[b/xz] = ((t1) t2)[b/z].
O

142



[ Appendix C. Proofs from Chapter 4

Now we can prove the theorem.
Theorem 4.3.21. Let I'F t : T be derivable (by D) in Addstryct, and t — r. If the reduction is not due
to rule t + 0 — t, then there is D’ deriving I' - r : T, and [t]p —* [r]pr.

Proof. Induction over D.

1. D = ax or axg. Impossible since nor x nor 0 can reduce.
> FEt:Twe (U—T,)] THuwT|v— U]

TF(t) u: ToT [wv — Ty
Then [(t) ulp = ToT [wv — 7y ([t]p, )7z ([u]p,)]-

— B

Consider (t) u —r.

e If r = (t') u with t — t’, then by the induction hypothesis there is D3 =T Ft' : T[w — (U —
Ty)] such that [t]p, —* [t'|p,. Then take
Tt :Tw— (U — Ty)) F'Fu:T'v— U]
B T (t") u: ToT [wy — T

D4 —E/

Notice that [(t) u]p =ToT [wv — g ([t]p, )75 ([u]p,)] =* ToT [wv = 7y ([t')p, )75 ([u]p,)] =
[(t") up,.

o If r = (t) u’ with u — u’, this is analogous to the previous case.

o If r = (t1) u+ (t2) u with t = t1 + to, then by Lemma 4.2.7, 377,75 such that I' - t1: T}
and T' F to: Ty with Ty + To = T[w — (U — Ty,)]. Notice that this lemma has been proved
for Additive, not for Addgt,ct, however to prove the equivalent result is trivial and we use
it without distinction. Let Th = Ti[u1] and Ty = Tafug]. Then Ty + To = S(Tq, T2)[lw —
ur(w), rw — ug(w)] = Tlw — (U — Ty,)]. Also notice that

ToT'[u] = S(T10T/, TooT")[u] = T10T [u] + T2oT'[u] (C.1)

Take u = wv — 75 ([t1 + ta]p, )75 ([u]p,)-
On the other hand, for any D', [(t1) u+ (t2) ulp: = [(t1) u]p; + [(t2) u]p,. Since we know

the type for t; and the type for to, we can derive
Tt Ti[wy = (U—Ty,)] ThwT'[ve U]

Tk (t1) u: TioT [wiv — Ty,

—E

Thkto: To[we = (U—Ty,)] ThwT|v— U]
and —E/
'k (tg) u: TQOT/[’LUQU — TwQ]

So, using those derivation trees as D] and D) the following translation follows:
[(t1) u]p; = TioT'[wrv = ma([t1]p;, )7e([ulp,)] and

[(61) ]y = T1oT fusv o mn([talg, o ([, ).

So,

[(t1) u+ (t2) ulp = T1oT [wiv = ma ([ta]p;, )mo([ulp, )] + TroT [wav = ma ([t2]py, )ms ([u]p, )]

(C.2)
Notice that wv = 74 ([t1 + t2]p, )7 ([u]p,) is equal to lwiv = 74 ([t1]p; )ms([u]p,), Twav +—
7w ([t2)py, )7s([u]p,) making (C.1)=(C.2).
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o If r = (t) uy + (t) uz with u = u; + uo, this is analogous to the previous case.

e If r = 0 with t = 0, then by Lemma 4.2.10, Tjw — (U — T,)] = 0 = Z[w — (U — Ty,)].
Then [(0) u]p = ZoT [wv — 75([0)p, )75([u]lp,)] = Z[wv — 75([0]p, )75 ([u]p,)] = *. Take
D/

— — axy , =
rEo.o Fo,s0 [0]pr = *.

e If r = 0 with u = 0, this is analogous to the previous case.

If r = t'[b/z] with t = Az.t’ and u = b, then by Lemma 4.2.11 T =T = ¢, so
tolfwv = g ([Aet']p, ) ([b]p, )] = Llwv — ma((Ae.t')p, )5 ([b]p, )] = [Ao-t']p, [b]p,

In the case where the last rule in D; is V; or Vg, take D’ as the same derivation until the
previous sequent (before the use of this last rule). Repeat the process until you obtain a D’
such that the last derivation is done by rule —;. Then [Az.t'|p,[blp, = [Az.t'|p/[b]lp, =
Az [t']pr[blp, — [t']p~[[b]p,/x]. By Lemma C.10.1, 3D5 such that this last expression is
equal to [t[b/z]]p,.

Fax:UkFt:T

3. D=—\ _,
I'FAxt:T

Then [Az.t]p = A\x.[t]p,. Notice that the only possible reduction for Az.t is when t — t’, then by
the induction hypothesis 3D = T',z: U F t': T such that [t]pr —* [t']p,. Let Dy be obtained from
D; by rule —, then [Ax.t]p = A\a.[t]pr =* \a.[t']p, = [Mz.t']p,.
I'Ft:vX.U
D=———Vg
T-t:U[V/X]
Then [t]p = [t]ps. By the induction hypothesis, 3D, =T F t':VX.U such that [t]pr —* [t']p,.

5. D =V;. This is analogous to the previous case.

. I'+t:T I'Fu:R
 IFt4+w:T+R

Then [t + u]p = ([t]p,, [u]p,). Cases

et/ = r+u with t - r. Then by the induction hypothesis, 3D’ = I' + r:T such that
[t]p, = [r]ps. Let D3 be obtained from D’ and Dy by rule +;. So [t+u]p = ([t]p,, [u]p,) —*
([rlpr; [alp,) = [r + ulp,.

e t' =t +r with u — r. This is analogous to the previous case.

C.11 Proof of Corollary 4.3.22

Corollary 4.3.22 (Strong normalisation). If I' F t: T is derivable in Additive, then t is strongly normal-

ising.

Proof. First notice that if I' - t: T is derivable in Additive, then by Proposition 4.3.7, 3T’ = T such that
'k t:T" is derivable in Addgtryct. Let us call this derivation D. Then by Theorem 4.3.14, |T'| b [t]p : |T7]

is derivable in System Fp.
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Assume t is not strongly normalising, say t — t; — to — ---. For a first approximation, consider

that none of these reductions happens by rule t +0 — t. Then by Theorem 4.3.21 there exists derivations

D1, D1, ..., such that [t]p —* [ti]p, = [t2]p, —=* ---. However, due to the strong normalisation of F,

there exists a natural number n such that, Vi > n, [t;]p, = [tit1]D

i1t

We proceed in two steps:

1.

We prove that, if t; — t;41 and [t;]p, = [tiy1]D,,,, then the reduction is an algebraic rule, (i.e. not

a beta-reduction).

. Then we show that algebraic rules are strictly decreasing with respect to the following measure,

which is always positive: 0] =0, |z| = 1, |Az.t| = [t], [t+r| = 24+ |t]|+]r|, |(t) r| = (3|t|+2)(3|r|+2).

By item 1 only algebraic rules happen, which are strictly decreasing in the positive measure of item 2.

Since t + 0 — t is also strictly decreasing, then t has to be strongly normalising.

We proceed with the proofs:

1.

We show that if t; —B ti+1, then [ti]Di 75 [ti+1]D

that we do not consider the cases of D; ending with V; or Vg, since these rules do not change the

.11~ Induction on the structure of t;. Notice

translations.

(Az.r) b —g r[b/x]: We can assume that D; ends with —g, so [(Az.r) blp, = T o T'[wv —
7w ([A\x.x]p,, )75([b]p,, )], where D;; ends with the sequent assigning a type with the struc-
ture of T to the term Az.r and D;s ends with the sequent assigning a type with the structure
of T' to b. Notice that by Lemma 4.2.11, T = T’ = ¢, so [(Az.r) b]p, = T o T'[wv —
Tw([Az.r]p,, )75 ([blp,, )] = ((Az.x]p,,) [blD) = (A2.[r]p/ ) [b]D,,, Where Dy is the derivation
from where D;; is obtained with —;. We can trivially ensure that this term cannot be equal

to [r[b/x]]p,.,, for any Djy;.

ri +rg — r} +ro with ry —g rj: We can assume that D; ends with +;. Then [r; + ro]p, =
([r1]pii, [r2] D,y ), Where [rj]p,; is the derivation of the type for r;. Analogously, [r} +r2]p,,, =
<[r/1]Di+1,l’ [rQ]Di+1,2>' By the induction hypOtheSisa [rl]Dil 7£ [r/l]Di+l,17 50 <[r1]Di1a [rQ]Di2> 7é
<[r/1]Di+1,1’ [1‘2]7)1#172).

ri +re — r; +rh with ro —8 ry: Analogous to previous case.

Az.r — Az.r’ with r —g r’: We can assume that D, ends with —, so there is a derivation D; for
r, where x is in the context and [Az.r]p, = Az.[r]p;, which by induction hypothesis is not
equal to AJ:.[r’]D;+1 = [Az.x']p,,,.

(r1) ro — (r}) r2 with r; —g rj: We can assume that D; ends with —g. Then [(r1) r2]p,

ToT [wv — mw([r1]p,, ) 75([r2]D,, )], Wwhere D;1 ends with the sequent assigning a type with the

structure of T to the term ry and D;s ends with the sequent assigning a type with the structure

of T’ to ro. By the induction hypothesis, there is no D;;1,1 such that [ri]p,, = [ri]p,., ., so
there is no D; 41 such that [(ry) r2]p, = [(r}) r2]p,.,-

(r1) ro — (r1) v with ry =4 rh: Analogous to previous case.

. Rule by rule analysis.

Rule (u+t)r— (u) r+(t) r: [(u+t) r| = (44 3Ju| +3[t)Br| +2) +2+6(2r|+1) > 4+
3lu| 4+ 3[t))(3|r| +2) + 2 = |(u) r + (t) r|.
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Rule (r) (u+t) — (r) u+(r) t: |(r) (u+t) = BJr| +2)(4 + 3Ju| + 3Jt]) + 2+ 6(2|r| + 1) >
(3[r] +2)(4 + 3|u + 3[t]) +2 = |(r) u+ (r) t].

Rule (0) t — 0: |(0) t| =6|t| +4>0=10|.
Rule (t) 0 — 0: |(0) t| = 6|t| +4 > 0=10|.

Rule t+0 — t: [t +0| =2+ |t| > |t].
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Appendix D

Proofs from Chapter 5

D.1 Proof of Lemma 5.3.2

Lemma 5.3.2 (=X-subsumption). For any context I'; any term t and any types T, R such that T < R
and no free type variable in T occurs in I'. Then I' - t: 7T implies I' - t: R.

Proof. One can assume 351,...,S, /T =51 < Sy <--- < S, = R (if not, there must be an equivalence

n

instead, so the lemma would hold due to the =-rule). So Vi one has S; = ijl ozj.U;f, then I' -
t: >0, ;. Uj and using Vg or Vy, we get T Ht:: 370, aj.UJHl. Since >0, aj.UJHl = S;;1 we finally

get I't:5;41, and so
'tt:T T=5

'k t: Sl
'Ht:S5, S =R B
IHt:R -
O
D.2 Proof of Lemma 5.3.5
Lemma 5.3.5 (Order characterisation). For any type R, unit types Vi,..., V;, and scalars (1, ..., B,

if RC Z;"Zl B;.V;, then there exist a scalar d, a natural number k, a set N C {1,...,m} and a unit type
W < Vj, such that R=0.W + 3.y 8;.V; and 3270, Bj =6+ >,y B
Proof. Structural induction on R.

e R=U. Then by definition of C, 3k / U < Vi and 37", 8; = 1.

e R=a.T. Then 337" | §;.V; = a. 37" | 7;.Vj, s0 by the induction hypothesis T = 6.W +3_, .y 7;.V;
with N C {1,...,m} and W <V} for some k. So R = a.T = a.0.W+a. iy ;. Vi = (ax§). W+
> jen B5-Vi. Notice that (o x 0) + 37 ,cn B = (0 + 2 jen Vi) = @ 250, v = 2 iy By

¢ R=T+5. Then 3m’ < m such that 7" B;.V; = 207, 8,V + S with T C 327, 5,.V;, so by
the induction hypothesis T' = 5.W+Zj€N B;.V; with N C{1,...,m'} and W <V}, for some k. So
R=T+S= 6.W+/Zj€Nﬁj.Vj +S=0W+3 ey BV with N = NU{m'+1,...,m}. Notice
that D370 85 =300 Bi+ 21 Bi = 0+ 2 jen B+ 21 B = 0+ X jen By

(Il
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D.3 Proof of Lemma 5.3.6

Lemma 5.3.6 (Scalars). For any context I', term t, type T" and scalar «, if T' - a.t: T, then there exists
a type R such that T = a.R and if « # 0, I' - t: R. Moreover, if ' - a.t: . T, then ' F t: T.

Proof. Induction on the typing derivation to prove the first part of the Lemma.

e Let ' F a.t: . T as a consequence of I' - t:7T and rule s;. Trivial.

o Let ' aut: Y | ;. VX.U; with X ¢ FV(T') as a consequence of I' - awt: Y. | «;.U; and rule
V;. By the induction hypothesis, 3R such that > ; @;.U; = a.R and if & # 0, I' - t: R. Then by
Lemma 5.2.2, R= 377" $;.V;. So, 31, a;.U; = 377" ax 3;.Vj, then by Lemma 5.2.3[1], we have
i VXU =30 ax B VXV = a3 B VXLV Also, if a # 0, since R =370, 8;.V;,
by rule =, we get T' - t: 37", 3;.V}, so using rule V7, we conclude with T'-t: 377" | ;. VX.Vj.

e Let I' F aet: D" | ;.U;[V/X] as a consequence of I' F awt: > 1 | ;.VX.U; and rule Vg. Then
by the induction hypothesis, 3R such that 2?21 a;.VX.U; = a.R and if @« % 0, ' - t: R. Then
by Lemma 5.2.2, R =377, 8;.V;. So, 311, oy VX.U; = 3770, a x 3;.Vj, then by Lemma 5.2.3,
Vj,V; = VX.W; and by Lemma 5.2.3[1], Y31, a;.U; = 37% o x ;. W;. So by Lemma 5.2.3,
Y UV/IX = (30, o0 Uy) [V/X] = (Z;nzl a x /Bj.Wj) [V/X]=a. 370, B;.W;[V/X]. Also,
if @ # 0, and since R = Z;nzl B; VX.W;, by rule =, we get I' - t: 27:1 B; VX .W;, so using rule
Vp, we conclude with I' = t: 357, 8;.W;[V/X].

e Let I' - a.t: S as a consequence of I' F a.t: T with T = S and rule =. Then by the induction
hypothesis, T'= «.R and if o # 0, I' - t: R. By transitivity of the equivalence, S = a.R.

The second part of the Lemma, I'  a.t:a.T = I' F t:T follows as corollary. If I' F «a.t: a.T, we
have just proved that there exists R such that .7 = a.R and I'  t: R. It is easy to check that
aTlT=a.R=T=R,sousing rule =, I'+t:T. (|

D.4 Proof of Lemma 5.3.7

Lemma 5.3.7 (Zeros). For any context I, term t, unit types Ui,...,U, and scalars ai,...ay,, if
LHO0.t: >0 ;.U then THt: Y | 6;.U; and Vi, oy = 0.

Proof. Induction on the typing derivation.

e Let I' F 0.u: 0.7 as a consequence of I' - u:7T and rule s;. Notice that T = Z?:l 6;.U;, so
0.7 = Y"1, 0.U; which proves the case.

e Let I' F Ou: .1 | o;.U;[V/X] as a consequence of I' F 0.u: > | ;.VX.U; and rule Vg. Then
by the induction hypothesis I' - u: Y1, 6;.VX.U; and Vi,a; = 0, so by rule Vg we conclude

e Let I' F O.u: Y1 | 0;.VX.U; as a consequence of I' F O.u: Y1 | ;.U; and rule V;. Then by
the induction hypothesis I' F u: Z?:l 0;.U; and Vi,a; = 0, so by rule V; we conclude I"
O.u: Y7, 6, XU

O

148



[ Appendix D. Proofs from Chapter 5

D.5 Proof of Lemma 5.3.8

Lemma 5.3.8 (Basis terms). For any context I', type T' and basis term b, if I' - b: T then there exists
a unit type U such that T'=U.

Proof. Induction on the typing derivation.

o Let I'xz: U F x: U as a consequence of rule ax. Trivial.

o Let ' - b: Y | ;. VX.U; as a consequence of I' = b: >" | ;.U; and rule V;. Then by the
induction hypothesis 3V such that > . a;.U; =V = Z;:l 1.V, and then by Lemma 5.2.3[1],
S VXU =3 LYXV = VXLV,

e Let TFb: > " | «;.U;[V/X] as a consequence of I' - b: > | «;.VX.U; and rule V;. Then by the
induction hypothesis AW such that 2?21 o VXU, =W = 2;21 1.W, then by Lemma 5.2.3,
S LW = Y0 LVX.W’. Then by Lemma 523[1], Y0 0;.U; = Y, LW'. Thus by

Lemma 5.2.3, 1" | o;.U;[V/X] is equivalent to SLWV/X] = WV/X].

j=1
e Let I' H b: R as a consequence of I' = b:T with T = R and rule =. Then by the induction

hypothesis U such that T=U. So R=T =U.
d

D.6 Proof of Lemma 5.3.10

Lemma 5.3.10 (Substitution lemma). For any term t, basis term b, term variable x, context I', types
T,U, W and type variables )?,

1. if Dk t: 7, then D[U/X] - t: T[U/X];

2. ifD,z:UFt:T,TFb:U[W/X] and X ¢ FV(I), then T F t[b/z]: T[W/X].
Proof.

1. Induction on the typing derivation.

o Let I',x: V F x:V as a consequence of rule ax. By rule ax, one has T'[U/X],z:V[U/X] I
z:V[U/X].

e Let I' F 0:0.7 as a consequence of I' - t: T and rule 0;. Then by the induction hypoth-
esis I'[U/X] F t: T[U/X], so by rule 07, T'[U/X] F 0:0.T[U/X]. Notice that 0.T[U/X] =
(0.1)[U/X].

o Let T'F (t) r: 2?2,1 Doty aq X 8,.T;[W;/X] as a consequence of I' - t: 2?2,1 Y .(V = Ty),
[t r: 3300 B W, where VWj,ﬂljJ{ such that V[U’;/Y] = W, and rule —g. Then by the
induction hypothesis T[U/X] F t: (321, 0w, WY .(V = T))[U/X] = 2, 0w VY (VIU/X] —
Ti[U/X]) and T[U/X] & r: (327, 8. W5)[U/X] = Y278, 8;.W;[U/X] Notice that, up to vari-
able renaming, W;[U/X] = (V[U';/Y)U/X] = (V[U/X])[U’;/Y] Then using rule —g,
IU/X]) F (¢) r: Z?;l Doy i X B,.(Ti[U/X))[U";/Y]. Notice that, up to variable renam-
ing, we can conclude the case by realising that ;" 377" oy x 3;.(T; [U/X)[U";/Y] is equal
to (10 Sy i x B0 /YU X,
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Let ' F Ax.t:V — T as a consequence of I, z: V F t:T and rule —;. Then by the induction
hypothesis I'[U/X],z: V[U/X] F t:T[U/X]. So using rule —, I'[U/X] F Az.t: V[U/X] —
T[U/X]. Notice that V[U/X| - T[U/X] = (V — T)[U/X].

Let I+ t: >0 ;. V;[W/Y] as a consequence of I' F t: 3" | «;.VY.V; and rule Vg. Then
by the induction hypothesis one has that T'[U/X] F t: (31, ;. VY.V;)[U/X]. Notice that
(>, i VY. V)[U/X] is equal to Y i ;. VY.V;[U/X]. So by rule Vg, we can derive the
following sequent I'[U/ X t: (3°1 ; a;.V;[U/X])[W/Y]. Notice that, up to variable renaming
(S0 AU/ XD/ Y] = (S0, s VilW/Y]) U/ X).

Let I F t: Y1 | ;.VY.V; as a consequence of I' - t: >°" | «;.V; and rule V;. Then by the
induction hypothesis D[U/X] F t: Y1 | «;.V;[U/X]. So by rule V;, we can derive the sequent
T[U/X]F t: ", a; VY.Vi[U/X] Notice that, S, ;. ¥Y.Vi[U/X] = (30, 0w VY. Vi) U/ X].

Let ' Ft+r:T 4+ R as a consequence of I' F t: T and " F r: R with rule +;. Then by
the induction hypothesis T'[U/X] F t: T[U/X] and T[U/X] + r: R[U/X]. So by rule +y,
INU/X|Ft+1r:T[U/X]+ R[U/X]. Notice that T[U/X] + R[U/X] = (T + R)[U/X].

Let I' F a.t: a.T as a consequence of I' - t: T and rule s;. The by the induction hypothesis
INU/X] F t:TU/X]. So by rule s;, T'[U/X] F a.t:a.T[U/X]. Notice that «.T[U/X] =
(a.T)[U/X].

Let I' - t: R as a consequence of I' - t: T with T' = R, and rule =. Then by the induction
hypothesis T[U/X] F t:T[U/X]. By Lemma 5.2.3 T = R = T[U/X] = R[U/X]. So by rule
= TU/X]Ft:RU/X]

2. Induction on the typing derivation of I'x: U F t:T.
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e Let T',2: U F 2: U as a consequence of rule ax. Trivial since z[b/z] = b.

o Let I'z:U F 0:0.7T as a consequence of I';z:U + t:T and rule 0;. Then by the induction

hypothesis T' - t[b/x]: T[W/X]. Then by rule 07, I' - 0:0.7[W/X]. Notice that 0 = 0[b/z]
and 0.T[W/X] = (0.T)[W /X].

Let I',z: U + (t) r: 27:,1 doimy aq X B;.Ti[W;/Y] as a consequence of I', z: U - r: > BV
and T, z:U + t: 27;1 a; Y .(V = T;) where vV, Iw; ) VW, /Y] = V/ by rule —g. Then

’

by the induction hypothesis T’ + t[b/z]: (31, o VY .(V — T;))[W/X] which is equal to

Z;il o VY .(VIW/X] — T,[W/X]). Also we can derive I' rlb/z|: (3071, BJVJ’)[W/)?] =
> BV [W/X]. Notice also that, up to variable renaming, (V[W/X])[W;/Y] is equal to
(VWY)W /X] = V/[W/X]. Then by rule —pg, T  (t[b/z]) r[b/a]: z;;’lz;;ai X
BJ(Tl[W/X])[WJ'/Y] Notice that (t[b/z]) r[b/x] is equal to ((t) r)[b/z] and, up to variable
renaming, 212, 27 o x B (LW /X)W /¥ = (S 5Ly e x 65 LW/ V)W /X).

Let T,x:U F Ay.t: V — T as a consequence of I';z:U,y:V F t:T and rule —;. Then by
item 1, D[W/X],z: UW/X],y: VW /X] + t: T[W/X]. Since X ¢ FV(I'), we do not need
to replace anything on I" and then this sequent is the same to I', x: U[W/)?],y: V[W/)z] F
t: T[W/X]. Notice that y ¢ T, so T',y: V[W/X] + b: U[W/X]. Let Z be set of fresh vari-
ables. Then U[W /X] = (U[W/X])[W/Z]. So, by the induction hypothesis T',y: V[W/X] +
t[b/z]: (TW /X)W /Z] = TIW/X]. So by rule =, T' F M\y.t[b/z]: VW /X] — T[W/X].
Notice that Ay.t[b/z] is equal to (Ay.t)[b/z] and V[W /X] — T[W/X] is just (V — T)[W/X].
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o LetD,z: Uk t: Y 1" ;. V;[W'/Y] as aconsequence of I',z: U - t: Y. | ;.VY.V; and rule V.
Then by the induction hypothesis I' - t[b/x]: (X0, a;. VY. Vi) [W/X] = S0, ;. VY. Vi[W/X].
So by rule Vg, T' t[b/z]: (31, ;. V;[W/X])[W’/Y]. Notice that, up to renaming of vari-
ables, the type (1, o Vi[W/X])[W'/Y] is equal to (31—, o . Vi[W' /Y)W /X].

o Let I'z:U F t: >, ;.VY.V; as a consequence of I',z: U + t: >, «;.V; and rule V.

tb/z]: S0, ;. Vi[W/X]. So by rule Vi,
we can conclude I' F t[b/z]: 7 ;. VY.V;[W/X]. Notice that Y7, ;. VY.V;[W/X] =

(Xr, @i VY. Vi) [W/X).

Then by the induction hypothesis we have I'

o let I'z:UFt+r:T+ R as a consequence of ', z: U - t:T and I',z: U F r: R by rule +;.
Then by the induction hypothesis T t[b/xz]: T[W/X] and T - r[b/z]: RIW /X]. So by rule
+1, T t[b/z] + r[b/z]: T[W/X] + R[W /X]. Notice that t[b/z] + r[b/z] = (t +r)[b/z] and
T[W/X] + RW/X] = (T + R)[W/X].

o Let I'z: U F a.t:a.T as a consequence of I';z: U F t:T and rule s;. Then by the induc-
tion hypothesis I' F t[b/z]: T[W/X]. So by rule s;, T' F a.t[b/z]: «.T[W/X]. Notice that
at[b/z] = (a.t)[b/z] and a.T[W/X] = (a.T)[W/X].

o Let I'z: U F t: R as a consequence of I';z: U + t:T where T = R, and rule =. Then by
the induction hypothesis I' - t[b/z]: T[W/X]. By 5.2.3, T[W/X] = R[W /X]. So by rule =,
L'+ t[b/z]: RW /X].

O

D.7 Proof of Lemma 5.3.11

Lemma 5.3.11 (Generation lemma (app)). For any terms t, r, any context I' and any type T, if
I' b (t) r: T, then there exist natural numbers n,m, unit types U, V1,..., Vi, types Ti,...,T, and
scalars a1, ...,a, and Bq,..., B, such that T t: 37" | o VX.(U =T, TFr: > i1 Bj.Vj, where for
all Vj, there exists W such that U[W;/X] = Vj and 371 | 377" a; x B, T [W;/X] < T.

Proof. Induction on the typing derivation.

o Let TH () r: 300, 3700y X B;.T:[W;/X] as a consequence of I' - t: Y7 o, ¥X.(U — T;) and
I'kr: " B;.V;, where ¥V, 3W; such that U[W;/X] = V; by rule — . Trivial.

e Let I' - (t) r: S as a consequence of I'  (t) r: R where R = S and rule =. The by the induction
hypothesis T - t: Z?:l ai.V)?.(U —T;), T Fr: Z;nzl B;.Vj, VVj, EWJ- such that U[WJ/X] =V;
and ;0 300 @i X B, Ti[W;/X] < R=S.

e Let'H (t)r: > 1, .U;[V/X] as a consequence of I' - (t) r: Y7 | «;.VX.U; and rule V. Then by
the induction hypothesis ' t: Y20 0p. VX (U = T3), T b r: 3200, 8;.V;, WV, 3W; / UW,/X] =
Viand Y1) SO aq x B LW /X] 2 3 g VXU < Y il Us[V/ X,

o Let TH (t) r: 1" | ;.VX.U; as a consequence of I' - (t) r: >_"" | «;.U; and rule V;. Then by the
induction hypothesis ' t: 321 ; VX .(U = T;), Db x: 3200 8;.V;, WV, 3W; / UIW,/X] =V,
and Z?:l E;n:l o; X ﬂJTz[WJ/X] = Z?:l o;.U; < Z?:l a; VX.U;.

(I
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D.8 Proof of Lemma 5.3.12

Lemma 5.3.12 (Generation lemma (abs)). For any term variable z, term t, context I" and type T, if
I'F Az.t: R, there exist types U and T such that U - T < Rand I',x: U - t:T.

Proof. Induction on the typing derivation.
o Let ' Ax.t:U — T as a consequence of I',x: U - t: T and rule —;. This is the trivial case.

e Let I' F Az.t: R as a consequence of I' - Ax.t: S S = R and rule =. Then by the induction
hypothesis U =T < S=Rand I';z: U+ t:T.

o Let ' Az.t: >0 | ;. U;[V/X] as a consequence of I' F Az.t: Y1 | ;.VX.U; and rule Vg. Then
by the induction hypothesis W — T < 3" | o, VX.U; < Y.7" ;. Ui[V/X] and T,z W t: T

o Let ' Azt: Y | ;.VX.U; as a consequence of I' - Az.t: 37" | o;.U; and rule V;. Then by the
induction hypothesis V.= T <> | ;.U; < >0 ;. VX.U; and T, 2: V I t:T.
O

D.9 Proof of Lemma 5.3.13

Lemma 5.3.13 (Arrows comparison). For any types T, R and any unit types UV, if V- RU = T,
then there exist W, X such that U — T = (V — R)[W/X].

Proof. The proof is analogous to the proof of Lemma 3.2.6 (¢f. Appendix B.2) and 4.2.3 (¢f. Ap-
pendix C.1).
A map (+)° from types to types is defined by

X=X (a.T)° =a.T° U->T)Y=U=>T (T+R)°=T°+R° (VX.U) =U°
We need two intermediate results.
1. For any type T and unit type U, there exists a unit type V such that (T[U/X])° = T°[V/X]
2. For any types T, R, if T < R then 3U, X / R° = T°[U/X]
Proofs
1. Structural induction on T'.
o If T'= X, then (X[U/X])° =U° = X[U°/X] = X°[U°/X].

o If T =Y, then (Y[U/X])° =Y = Y°[U/X].

o If T =V — R, then (V — R)[U/X])° = (V[U/X] — R[U/X))° = V[U/X] — R[U/X] =
(V = R)U/X] = (V = R)°[U/X].

o If T = VY.R, then ((VY.R)[U/X])° = (VY.R[U/X])° = (R[U/X])°, and by the induction
hypothesis (R[U/X])° = R°[V/X] = (VY.R)°[V/X].

o If T = a.R, then («.R[U/X])° = a.(R[U/X])°, which, by the induction hypothesis, is equiva-
lent to a.(R°)[V/X] = («.R)°[V/X].

152



[ Appendix D. Proofs from Chapter 5

e If T =R+ S, then ((R+ S)[U/X])° = (R[U/X] + S[U/X])° which is equal to (R[U/X])° +
(S[U/X])°, which, by the induction hypothesis, is equivalent to R°[U/X]+ S°[U/X]| = (R° +
SHU/X] = (R+ S)°[U/X].

2. It suffices to show this just for T" < R. Cases:
e Let T=5%" 0,Uand R=>", . VX.U;. Then T° = (3.1 ; ;.U;)° which is equal to
Z?:l Oéi.Uio = Z?:l Oéz(VXUZ)O = (Z?:l OZZ'.VX.UZ')O which is just R°.

e The other possible case is T=3"1 | a;VX.U; and R = 22:1 «;.U;[V/X], in such case R° =
Ok i Ui[V/X])° = Yo o (Us[V/X])°. This latter type, by item 2, is equivalent to
Yoy UP W/ X] = 3200 ca (VXU W/ X] = (31, VXU W/ X] = T [W/X].

Proof of the lemma: U — T = (U — T)° which by 2 is equivalent to (V — R)°[W/X] = (V —
R)[W/X].

O

D.10 Proof of Corollary 5.3.14

Corollary 5.3.14 (of Lemma 5.3.12). For any context I', term variable z, term t, type variables X and
types U and T, if I' F Az.t: VX .(U — T) then the typing judgement I', z: U - t: T is valid.

Proof. This result is proved in a completely analogous way to Corollaries 3.2.14 and 4.2.9. By Lemma
5.3.12,3V,R,V - R=<VX.(U »T) and I',z: V I t: R. Note that V — R<VX.(U 5 T) XU — T, so
by Lemma 5.3.13, 3W, Y such that U — T = (V — R)[W /Y] = V]W /Y] — RIW /Y] so U = V[W /Y]
and T = R[W/Y]. Also by Lemma 5.3.10, '[W /Y], 2z: V[W /Y] F t: RIW/Y]. By Lemma 5.3.9 and rule
=, T[W/Y],z:U + t:T. If [[W/Y] =T, then we are finished. In the other case, Y appears free in I.
Since V.- R=<U —Tand I' + \z.t:V — R, according to Lemma 5.3.2, U — T can be obtained from
V — R as a type for Az.t; then we would need to use the rule V;; thus Y cannot appear free in I', which
constitutes a contradiction. So, I';z: U - t:T. (|

D.11 Proof of Lemma 5.3.15

Lemma 5.3.15 (Generation lemma (linear combinations)). For any context I, scalar «, terms t and r

and types S and 1"
1. if Tt +r:S then there exist types R and R’ such that THt: R, TFr: R and R+ R' < S;
2. if '+ a.t: T, then there exists a type R such that «.R <X T and I' F a.t: a.R;
3. if ' 0:T, then there exists a type R such that T = 0.R.
Proof.
1. Induction on the typing derivation.

e LetI'Ft+r:T + R as a consequence of ' - t: T, I' - r: R and rule +;. Trivial case.

e Let ' Ft+r:S as a consequence of I' - t + r:S” where S’ = S, and rule =. Then by the
induction hypothesis 'Ht: T, ’'Fr:Rand T+ R<S' = S.
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Let T F t+1r: > «.UJV/X] as a consequence of I' - t +r: > | @;.¥X.U; and rule
Vg. Then by the induction hypothesis I' - t:7, ' Fr:Rand T+ R < Y1 | a;.VX.U; <
S e Ui[V/X].

Let P'Ft+r: > ;VX.U; as a consequence of I' -t +r: > " | ;.U; and rule V;. Then by
the induction hypothesis THt: T, PFr:Rand T+ R <Y " | . U; < >0 o VXU,

2. Induction on the typing derivation.

Let ' F a.t: . T as a consequence of I' F t: T and rule s;. Trivial case

Let I' F a.t: T as a consequence of I' F a.t: .S where S = T', and rule =. Then by the induction
hypothesis ' F a.t: a.R with a. R < S =T.

Let I aut: Y i | ;. U;[V/X] as a consequence of I' + a.t: > | ;.VX.U; and rule V. Then
by the induction hypothesis I' - a.t: a.R with a.R < Y1, oy VX.U; < D27 o, .U [V/X].

Let '+ a.t: 2?21 a;.VX.U; as a consequence of I' F a.t: 2?21 «;.U; and rule V7. The by the
induction hypothesis I' - a.t: . R with a.R < 3" | 0. U; < Y0 oy VX.U;.

3. Induction on the typing derivation.

e Let ' 0:0.7 as a consequence of I' - t: 7T and rule 07. Trivial case.

e Let ' F 0:T as a consequence of I' - 0:.5 where S = T, and rule =. Then by the induction
hypothesis 0.R=S=T.

e Let T'H0: X" | o.U;[V/X] as a consequence of I' - 0: " | @;.VX.U; and rule Vg. Then
by the induction hypothesis > 1", a;.VX.U; = 0.R. By Lemma 5.2.2, R = 27:1 B;.V; and so
0.R = Z;n:l 0.V;. Thus by Lemma 5.2.3, ¥V;,3W; / V; = VX.W;. Then by Lemma 5.2.3,
> ey iU =377 0.W; and by Lemma 5.2.3, 371, ;.U [V/X] = (3011, ;.U;)[V/X] which
is equivalent to (3°7", 0.W;)[V/X] = 0.37", W;[V/X].

e Let ' 0: Y7 | .VX.U; as a consequence of I' - 0: Y | ;.U; and rule V;. Then by the

induction hypothesis 3" | @;.U; = 0.R. By Lemma 5.22 R=3""", 3;.V;500.R= 3", 0.V;.
Then by Lemma 5.2.3, >_1" | ;.VX.U; = 0. ZT:l VX.W;.
O

D.12 Proof of Theorem 5.3.4

Theorem 5.3.4 (Weak subject reduction). For any terms t, t’, any context I" and any type T, if t —p t’
and ' t: 7T, then

o If R ¢ Factorisation rules, then I' - t': 7.
e If R € Factorisation rules, then 35S C T such that '+ t: S and T Ft:S.

Proof. Let t -z t’ and T' - t:T. We proceed by induction. We treat separately every rule R.

FElementary rules

rule 0.t = 0. Let T'F 0.t: 7. Then by Lemma 5.3.15, 3R / 0.R < T and T' I 0.t: 0.R, then by rule

07, T'F0:0.(0.R). Since 0.(0.R) =0.R < T, by Lemma 5.3.2, T 0: 7.
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rule 1.t = t. Let T' - 1.t: 7, then by Lemma 5.3.15, 3R / 1.R < T and I' F 1.t: 1.R. Then by
Lemma 5.3.6, ' - t: R and by =-rule, ' - t:1.R, so by Lemma 5.3.2 ' - t:T.

rule .0 — 0. Let '+ «.0: T, then by Lemma 5.3.15, 3R / «.R < T and T' F «.0: a.R. Cases:

e If @ # 0, then by Lemma 5.3.6, I' - 0: R, and, by Lemma 5.3.15, 35 / R = 0.S. Notice
that 0.5 = @ x 0.5 = @.(0.S) = «.R X T, so by Lemma 5.3.2, T - 0:T.

e If @ = 0, then by rule 0y, ' F 0:0.(0.R), and notice that 0.(0.R) = 0.R. Then by
Lemma 5.3.2, T+ 0:T.

rule a.(8.t) — (a x 8).t. Let I' - a.(8.t): T. Then by Lemma 5.3.15, 3R such that «.R < T and
'k a.(.t): a.R Cases:

e If o # 0, then by Lemma 5.3.6, I' - 5.t: R. Then by Lemma 5.3.15 again, 35 / 8.5 < R
andT'F B.t:8.5. If 3 =0, then (ax ).t = .t and 0.5 = («x0).S =a.(0.5) < a.R=<T
so by Lemma 5.3.2, ' - 5.t:T. If 5 # 0, then by Lemma 5.3.6, I' - t: .S, then by rule sy,
Tk (axf).t:(axp).S.

Note that (a x 8).S = a.(8.5) < a.R 2 T, so by Lemma 5.3.2, T'F (o x 8).t: T.
o If o = 0, first we prove that ' - 0.5.t:7 = I' - 0.t: T. We proceed by induction on the

typing derivation.

Let ' F 0.5.t:0.T as a consequence of I' - 8.t: T and rule s;. Then by Lemma 5.3.15,

there exists a type R such that 5.R < T and I' - 8.t: 5.R. Cases:

x If B # 0, then by Lemma 5.3.6 ' - t: R so by rule s; we get I' - 0.t: 0.R. Notice
that 0.R = (0 x 8).R=0.6.R < 0.T, so by Lemma 5.3.2, T 0.t: 0.7

x If 8 =0, then I F 0.t:0.R. Notice that 0.R = (0 x 0).R = 0.(0.R) = 0.7, so by
Lemma 5.3.2, ' - 0.t:0.7".

Let I' H0.5.t:T as a consequence of I' - 0.5.t: R where R =T and rule =. Then by

the induction hypothesis I' - 0.t: R, so by rule =, I' - 0.t: T

Let I' - 0.8.t: > ;.U;[V/X] as a consequence of I' - 0.8.t: > 1" | ;. VX.U; and

rule Vg. Then by the induction hypothesis I' - 0.t: 2?21 «;.YX.U;. So by rule Vg,

LE0t:Y"  a.U[V/X].

Let THO0.8.t: > | a;.VX.U; as a consequence of I' - 0.8.t: 7" | «;.U; and rule V.

Then by the induction hypothesis I' = 0.t:U. So by rule V;, I' - 0.t: Z?Zl a; VX.U;

With this result we can deduce that I' - 0.t:0.R. Notice that 0.t = (0 x ).t, so by
Lemma 5.3.2, T+ (0 x 8).t:T.

rule a.(t +r

) = a.t+ar. Let ' - a.(t +r): T. Then by Lemma 5.3.15, 3R such that a.R < T

and I' - a.(t +r):a.R. Cases:

o If o # 0, then by Lemma 5.3.6, ' - t + r: R. So by Lemma 5.3.15, 357,55 such that
I'Ht:5, 'Fr:Sand S1+52 < R. Then byrule s;, I' - a.t: .51 and I' - a.r: a.Ss, and
so by rule +7, ' F a.t+a.r: a.S;+a.S2. Notice that a.S1+a.S2 = a.(S14+52) R a.R T,
so by Lemma 5.3.2, '+ a.t + a.r:T.

e Ifa=0,then '+ 0.(t+r):0.R. We show by induction the most general case: I' - 0.(t+r)
implies S = ' 0.t + 0.r:.S. Then since 0.R < T, by Lemma 5.3.2, '+ 0.t + 0.r: T

Let T' + 0.(t + r): 0.R as a consequence of I' - t 4+ r: R and rule s;. Then by
Lemma 5.3.15, 37,5 such that I' - t:7, I' - r: S and T+ S < R. So by rule
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s;, 'F0.t:0.7 and ' F 0.r: 0.5 and so by rule +;, I' H 0.t + 0.r: 0.7 + 0.5. Notice
that 0.7+ 0.5 =0.(T + 5) < 0.R, so by Lemma 5.3.2, T 0.t + 0.r: 0.R.

— Let THO.(t +1r): S as a consequence of ' F0.(t +1): R R = S and rule =. Then
by the induction hypothesis I' - 0.t + 0.r: R. So by rule =, I' - 0.t +0.r: S.

— Let THO.(t+1): >, a;.U;[V/X] as a consequence of rule Vg and the sequent I'
0.(t +r): > | @;.VX.U;. By the induction hypothesis I' - 0.t + 0.r: >, ;.VX.U;.
So by rule Vg, I'F 0.t + 0.r: Y ;. U;[V/X].

—Let T'HO.(t+1r): Y ", ;.VX.U; as a consequence of I' F 0.(t + r): > I | o;.U; and
rule V7. Then by the induction hypothesis I' - 0.t + 0.r: Y. ; a;.U;. So by rule V7,
I'0.t+0.r: Z?:l o; VX.U;.

Factorisation rules

rule a.t + 5.t > (a+ B).t. Let T' - a.t + .t:T. Then by Lemma 5.3.15, 3R, S such that T -
at:R,THpBt:Sand R+S <X T. Then by Lemma 5.3.15, 3R’ / «.R' < Rand '+ a.t: a. R/,
also 38" / .8" < S and T'+ 3.t: 5.5, Cases:

e If @ # 0 (or analogously 5 # 0), then by Lemma 5.3.6, ' F t: R’ and so by s; we conclude
'k (a+B).t: (a«+ B).R'. Notice that (¢ +f).R' C a.R'+ 5.8 T R+ S C T. Also using

rules +; and = we conclude T'+ a.t + S.t: (o + 8).R'.
e If @ = 8 =0, then notice that I' F 0.t:0.R’ and 0.R' T 0.R'+ 0. T R+ S C T. Also,

using rules +; and =, we conclude I' - 0.t + 0.t: 0.R’.

rules a.t +t — (e +1).t and t +t — (1 + 1).t. This cases are analogous to the previous case.

rule t+0—t. LetI't+4+0:7. Then by Lemma 5.3.15, 3R, S such that ' t: R, '+ 0: S and
R+ S <XT. So, by Lemma 5.3.15, 35" / S = 0.5’. Notice that RC R+0.5 =R+ SCT.

Application rules
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rule (t+r) u— (t) u+ (r) u. Let ' - (t+r) u: 7. Then by Lemma 5.3.11, In, m, U, Ty,..., Ty,
ary 0, Bro By Vis o Vi such that T - t+r: Y0 0 VX.(U = 1), T u: Y7 85V,
YV;, 3W; / UW;/X] = V; and S0 S0 aq x 3;.1;[W;/X] < T. Then by Lemma 5.3.15,
3R, S such that I' - t: R, T' - r: S and R+ S which is < than > ", ai.V)Z.(U — T;). Then
ANy, Ny € {1,...,n} such that R X Y ,cn\ v, VX (U = T0) + Y n,aw, 0V X (U = T)),
S =< ZieNz\Nl ;. VX.(U—->T)+ ZieNmNg 7. VX.(U = T;) and Vi € Ny N Na, §; + v = ;.
Then by Lemma 5.3.21" = t: 30, v\, @-VX.(U = T5) + X ey qn, 0:-VX.(U — T;) and
It r: Zi€N2\N1 VX (U = T,) + ZieNmNQ vi.VX.(U — T;). Then by rule —»g, T' -
(6) we D2\, Do Qi X B, Ti[W; /X ) e NN, Dt 0i X 8,;.T;[W;/X], and analogously,
T () u Y ienan, oy @ X B TiWi /X 4 Yien,an Yorer Y X B3 Ti[W;/X]. So using
+r, T E (t)_’u +(r) w3 i N, UNp\ Ny AN Doy o X B TilW;/ X+ Die NNy 2ot (0i + i) X
B;.Ti[W;/X) = Yy S i x 3. T;[W;/X] < T. Then by Lemma 5.3.2, T' F (t) u+(r) u: 7.
rule (u) (t+r) — (u) t+ (u) r. Let I' - (u) (t +r): 7. By Lemma 5.3.11, 3n, m, U, T;, a;, B;
and Vj, withi =1,...,nand j = 1,...,n, such that T - u: 37 | ;. VX.(U — T3) is valid and
alsoT' - t+r: 3570 5;.V; is valid, and ¥V}, AW, such that U[W;/X] = V; and 3.1, Doy X
B;.T;[W;/X] < T. Then by Lemma 5.3.15, 3R, S such that ' F t: R, ' - r: S and R+ S <
S B;.Vi. Then, 3Ni,Na € {1,....,n} / R = Yoo, BiVi + Yjenon, 05-Vis S <
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ZjENz\Nl B;.Vi + ZjeNmNQ v;.V; and Vj € N1 N Ny, §; +v; = B;. So by Lemma 5.3.2, ' -
6D ieniws Bi Vit 2 jeninn, 0V and Dbre 50 v B3V + 2 jevinn, V5-Vs- Then by
rule *)E, we have r F (u) t 22?21 ZjENl\Ng a; X ﬂ]E[WJ/X] +Z?:1 ZNjENOéi X 5]TZ[WJ/X]
1MN2
and I'" - (u)r:Z?:l ZjeNz\l\/Hai X ﬂjE[W]/X] +Z?:1 ZN]'HENOZZ' X ")/jT’Z[WJ/X] So with
1 2

+1, I'F (u) t+ (u) r: Z?:l ZjeNluNQ\NlﬁNQ a; x B3 Ti[W;/ X] + Z?:l ZjeNlﬁNz a; % (65 +
v) TilW; /X = 3700, D000 i x 3. T;[W;/X] < T. Then by Lemma 5.3.2, T I (u) t+(u) r: 7.
rule (a.t) r — a.(t) r. Let I' - (a.t) r: T. Then by Lemma 5.3.11, 3n, m, U, T;,«;,0; and V; with
=1...nand j = 1...m such that ' - a.t: Z?:lai.VX.(U — T;)and T F r: Z;n:lﬁ]V]

with 30, D70 @i % B,.Ti[W;/X] = T where VV;, W; is such that U[W;/X] = V;. Cases:

1

e If & # 0, by Lemma 5.3.15, 3R such that a.R < 3", a;¥X.(U — T;) and T +
a.t:a.R, then by Lemma 5.3.6, T I t: R. Notice also that R < Y7 | §;VX.(U — T;)
where Vi, §; x a = a;. Then by Lemma 5.3.2, T F t: Y7 | 6 VX.(U = Ty), so us-
ing —p, we get I' = (t) r: 3500, D70, 0 % B,.T;[W;/X] and so with s; we conclude
Dk on(t) rron 3500, D000 0 % 8,;.T;[W;/X]. Notice that a. D ey 2oy 0i % B, Ti[W;/X]
is equivalent to Y31 Y70 ax & x By Ti[Wi/X] = 300 YT aq x B T[Wi /X < T
Then by Lemma 5.3.2, T' F a.(t) r: T.

o If @ = 0, then by Lemma 5.3.7 we have I - t: Y. | §,YX.(U — T;) and Vi, a; =
0, so with —p followed by sy we conclude I' = 0.(t) r: 0.3, Y77 &; x B, Ti[W;/ X]
Notice that 0.3, 370" | d; x B, W, /X =, Yoy x B T;[W;/X] < T, so by
Lemma 5.3.2, T+ 0.(t) r: T.

rule (t) a.r — a.(t) r. Let I' - (t) a.r: T. Then by Lemma 5.3.11, 3n, m, U, T;,«;,0; and V; with
i=1...nand j =1...m such that T F t: 37" | @;.¥X.(U — T;) and T I a.r: > BV
with 30, D70 @i % B,.Ti[W;/X] = T where VV;, W; is such that U[W;/X] = V;. Cases:

e If a # 0, then by Lemma 5.3.15, 3R / a.R =< 27:1 B;.V; and I' F a.r: . R, then by
Lemma 5.3.6, I' - r: R. Notice also that R =< Z;":l 0;.V; where Vj, §; x o = f;.
Then by Lemma 5.3.2, T' - r: Z;nzl 0;.Vj, so using rule —g, followed by s; we get I' -
a.(t) ria. 3T 3T g X 8;.T;[W;/X,. Notice that a. 37" Doy i X 6, Ti[W;/X] =
S S i x o x 8T [W /X = 0 S« x B Ti[W;/X] 2 T. By Lemma 5.3.2,
I'ka(t)r:T.

e If @« = 0, then by Lemma 5.3.7 we have I'  r: Z;nzl 0;.V; and Vj, B; = 0, so using
rule — 5 followed by rule s7, we conclude I' = 0.(t) r:0.3°%, Y700 oy x 8, T;[W; ) X).
Notice that 0.3 37" a; x 6;.T3[W,/X] = S0 S0 oy x B;.T3[W,;/X] < T. Then
by Lemma 5.3.2, I' - a.(t) r: T.

rule (0) t - 0. Let ' - (0) t: 7. Then by Lemma 5.3.11, In,m, U, T;,«; and §; with i =1...n
and j = 1...m such that T' + 0: Y 1" | o YX.(U = T;) and T + t: Z;n:l B;.V;, where
YV, 3W; [ UW;/X] = V; and Y0 37 a; x 3.1 [W;/X] < T. By Lemma 5.3.15,
IR / Y, ;. VX.(U — T,) = O.R, then it is equivalent to S27, 0.¥X.(U — T,) with
n’ < n, that is ANy,..., Ny C {1,...,n} disjoint sets, such that Vk, Vi,j € Ni, T; = T
and >3, .y @; = 0. Then by rule —p, I' - (0) t: 27;1 > 0% 8, T;[W;/X] and so by
Or, T F 0:0.50, 57,0 x ;. T,[W;/X]. Notice that 0.37, S 0 x ;. T,[W;/X] =
Sy S i x 3. T3 [W;/X] X T, then by Lemma 5.3.2, ' 0:T.
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rule (t) 0 - 0. Let I' - (t) 0:7. Then by Lemma 5.3.11, 3n,m, U, T;,«; and B; with i =

1...nand j = 1...m such that T - t: 37  o.¥X.(U — T;) and T - O: >oiey B;.Vy where
¥V;, IW; / UW;/X] = V; and Y0 S oy x B;.T;[W;/X] < T. By Lemma 5.3.15,
iR / Z;"Zl B;.V; = 0.R, so it is equivalent to Z;"Zl 0.V; with m’ < n, i.e. My, ..., My, C
{1,...,m} disjoint sets, such that Vk, Vi,j € My, V; = V; and ZjGMk B; = 0. Then using rule
—p weget T'F () 0: 3700, Y200 ai % 0.T;[W;/X] and by rule 07, T F0:0. 37 Z;";l a; X
0.T;[W;/X]. Notice that 0.37 > a; x 0.T3[W;/X] = S0, S i x 3. LW, /X] < T,
then by Lemma 5.3.2, ' 0:T.

Beta reduction

rule (Az.t) b — t[b/z]. Let I' - (Az.t) b:T. Then by Lemma 5.3.11, there exist numbers n,m,

scalars aq,...,ap, 51, .-, 0m, a unit type U, and general types T1,...,T;, such that the fol-
lowing sequents can be derived: I' F Az.t: Y " | o, ¥X.(U - T;) and T + b: Z;"Zl B;.V;
with 3700 3700 i x B, Ti[W;/X] < T, where ¥V;, W, is such that U[W,/X] = V;. By
Lemma 5.3.8, > 1, o VX.(U = T,) = VX.(U — T)) and Vi,k, T, = Ty, analogously
> ity B;.V; = Vj where Vi, h, V; = Vi So 37 oy =1 and 37" i = 1. Then by rule =,
F'FAzt:VX.(U = T;), and T+ b: V;. Thus, by Corollary 5.3.14, I',z: U F t: T;. Notice that
Vi = U[W;/X], then, by Lemma 5.3.10[2], we have ' - t[b/z]: T;[W;/X]. Since T;[W;/X] =
(1 x ).IW/X] = (D, i) x (72 8) W /X] = (Tin, Ximy ew x 8;). T/ X,
and as all the T; are equivalents between them, this type is equivalent to Z?:l ZTZl a; X
B;.T;[W;/X] < T. By Lemma 5.3.2, ' - t[b/x]: T.

AC equivalences

rulet+r=r+t. Let ' - t + r: 7. Then by Lemma 5.3.15 3R, S / R+ S < T, T F t: R and

'kr:S. Sousing +;, I'r+t:5+ R. Note that S+ R= R+ S <X T, then by Lemma 5.3.2
I'kFr+t:T.

rule (t+r)+u=t+(r+u). Let ' - (t +r) +u: 7. Then by Lemma 5.3.15 3R, S such that

't+r:R,T'Fu:Sand R+S < T. Then, by Lemma 5.3.15 again, 3R’, S" such that I' - t: R/,
IF'kr:S and R'+5’ < R. So using + in the correct order, we get I' F t+ (r+u): R +(S'+.5).
Note that R'+ (8" +5) = (R'+5')+S < R+ S < T, then by Lemma 5.3.2T - t+ (r+u): 7.

Contextual rules
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e Let a.s — a.t as a consequence of s — t. Let I' - a..s: T, then by Lemma 5.3.153R / «.R X T

and I' - a.s:a.R. Cases: If o # 0, then by Lemma 5.3.6, I' - s: R, so by the induction
hypothesis T' F t: R’ with R’ © R, then using sy, I' - a.t: a.R’. Notice that «.R' CT a.RC T.
If @« = 0, then notice that T = >, 3;,.U;, so by Lemma 5.3.7, T' + s: > | §,.U; and
Vi, B; = 0. Then by the induction hypothesis I' - t: R with R C >, §,.U;. So using s,
I'+0.t:0.R. Notice that 0.RC 0.>°" ,6,.U; =>.1" ,0.U; =T.

Let r+s — r+t as a consequence of s = t. Let ' - r 4+ s: 7, then by Lemma 5.3.15, 3R, S
such that 'Fr: R, 'Fs:S and R+ S < T. Then by the induction hypothesis ' - t: 5" C S,
so using +7 we can conclude ' mr +t: R+ S’. Notice that R+ S'C R+ S < T.
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e Let (r) s — (r) t asa consequence of s — t. Let I' F (r) s: T, Then by Lemma 5.3.11, In,n, 0 >
LUy, ..o, Toyaty ey, By oy By Vi oo, Vi such that T - r: 327 0, ¥X.(U — T))
and T' F s: ET:1 B;.V; where for all Vj, there exists Wj such that U[W]/)?] = V; and
S S o x B Ti[W;/X] < T Cases:

— If s — R t with R ¢ factorisation rules, then by the induction hypothesis T' - t: Z;n:l B;.V3,
so using rule —p we obtain I' = (r) t: 3700, D770 oy % 8,;.T;[W;/X]. By Lemma 5.3.2,
Lk (r)t:T.

— If s »p t with R € factorisation rules, then by the induction hypothesis I' - t: R
with R C Z;"Zl B;.V;. By Lemma 5.3.5, 30,k,N C {1...,m},W =< Vj such that
R=0W+ ZjeN B;.V;. Notice that since we have obtained t from s by applying one of the
factorisation rules, we can safely take W = Vj. Then notice that > | a; X 5TZ[W]/)_(»] +
S Y jen i X B LW /X T YT oy x BT [ W,/ X] < T

e Let (s) r — (t) r asa consequence of s — t. Let I' - (s) r: 7", Then by Lemma 5.3.11, In,n,0 >
LU, Ty, .., Toyans sy By ooy By Vi oo, Vi such that T - s: 7 a, VX (U — T))
and T' F r: 377, 8;.V; where for all Vj, there exists Wj such that U[W]/)?] = V, and
Sy S i x BT [W;/X] 2 T. Cases:

— If s -»p t with R not a factorisation rule, then by the induction hypothesis one has
Pt >, ai.V)z.(U — T5), so using rule =g, ' (t) r: Y0, 27:1 o; X ﬁ]Tl[WJ/X:]
Then by Lemma 5.3.2, T+ (t) r: 7.

— If s i t with R € factorisation rules, then by the induction hypothesis I' F t: R where
RC YY" , o¥YX.(U = T;). By Lemma 5.3.5, 36,k, N C {1,...,n},W < VX.(U — Tj)
such that R=0.W + >,y ;. VX.(U — T;). Notice that since we have obtained t from
s by applying one of the factorisation rules, we can safely take W = vX (U — T}). Then
using rule =g, T' - (t) r: Z;n:1 0 X ﬁj.Tk[Wj/X:]. Notice that 23"21 4 x BJT;C[WJ/)?] +
Sien Sy i X B LW /X T S o x BT [ W5/ X] < T

e Let \z.s — Azx.t as a consequence of s — t. Let I' - Az.s:T. By Lemma 5.3.12, 3U, R such that
U— R=<TandT',z:U I s: R. Then by the induction hypothesis I',z: U F t: .S, with S C R.
So using rule —;, I' - Ax.t: U — S. Notice that since SC R, then U - SCU — RC T.

O

D.13 Proof of Lemma 5.4.1

We need an intermediate result first, showing that the linear combination of strongly normalising terms,

is strong normalising.

Lemma D.13.1. If {t;}; are strongly normalising, then so is any linear combination of term made of
the tl

Proof. Let t =t1,...,t,. We define the algebraic context F(-) by the following grammar:

-,

F{) == t;|F(t)+F{)|a-F(t)]o0.

We claim that for all algebraic contexts F'(-) and all strongly normalising terms t; that are not linear

combinations (that is, of the form z, Az.r or (s) r), the term F(t) is also strongly normalising.
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The claim is proven by induction on s(t ) the sum over i of the sum of the lengths of all the possible

rewrite sequences starting with t;.

e If 5(t) = 0. Then none of the t; reduces. We define an algebraic measure a(-) inductively as follows:
a(ty) = 1, a(F(E) + F(t') = 24 a(FR)) + a(F{)), a(a - F(t)) = 1 + 2.a(F(t)), a(0) = 0. It is
now possible to show by induction on a(F(t)) that F(t) is SN.

— If a(F(t)) = 0, then F(t) = 0 which is SN.

— Suppose it is true for all F’ (E) of algebraic measure less or equal to m, and consider F' (E) such
that a(F(t)) = m + 1. Since the t; are not linear combinations and they are in normal form,
F(t) can only reduce with a rule from Group E or a rule from group F. We show that those
reductions are strictly decreasing on the algebraic measure, by a rule by rule analysis, and so,
we can conclude by induction hypothesis.

* 0.F(t) — 0. Note that a(0.F(t)) =1 > 0 = a(0).
1.F(t) — F(t). Note that a(1.F(t)) = 1 4+ 2.a(F(t)) > a(F(t)).
* .0 — 0. Note that a(a.0) =1 > 0 = a(0).

*

-,

o.(B.F(t)) — (a x B).F(t). Note that a(a.(8.F(t))) = 1+ 2.(1 + 2.a(F(t) > 1+

2.a(F(t)) = a((a x B).F(t)).
* a.(F(t) + F(t )) — a.F(t) + a.F(t"). Note that a(c.(F(t) + F(t'))) = 5 + 2.a(F(t)) +
2.0(F(t)) > 4+ 2.a(F(t)) +2 a(F(t’)):a(a-F( t) + o F ().
* a.F(t) + 8. () — (a+ B).F(t). Note that a(a.F(t) + B.F(t)) = 4 + 4.a(F(t)) >
1+ 2.a(F(t) = a((a + B).F(t)).
% a.F(t)+F(t) = (a+1).F(t). Note that a(a.F(t)+F(t)) = 3+3.a(F(t)) > 1+2.a(F(t)) =
a.((a+1).F(t)).
* F(t)+F(t) — (1+1).F(t). Note that a.(F(t) + F(t)) = 2+ 2.a(F(t)) > 1+ 2.a(F(t))
a.((141).F(t)).
% F(t) + 0 — F(t). Note that a.(F(t) +0) = 2 + a(F(t)) > a(F(t)).

e Suppose it is true for n, then consider t such that S(E) =n+ 1. Again, we show that F(E) is SN by
induction on a(F(t)).
— If a(F(t)) = 0, then F(t) = 0 which is SN.
— Suppose it is true for all F(t) of algebraic measure less or equal to m, and consider F(t) such
that a(F(t)) = m + 1. Since the t; are not linear combinations, F(t) can reduce in two ways:
* F(ty,...t;,...t5) = F(t1,...t},...tg) with t; — t,. Then write t; as H(ry,...r;) for
some algebraic context H, where the r;’s are not linear combinations. Note that

l

Zs ) < s(t]) < s(t;).

Jj=1

Define the context
G(t1,...,t;—1,ug,...u, 41, . tk) = F(t1, ..., ti-1, H(ug, ... w), tig1, - . - t).
The term F(t) then reduces to the term
G(t1,...,t;—1,r1,. .1, b1 .. tE),
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where

S(tl,. N P S TR I I tk) < S(t)

Using the top induction hypothesis, we can conclude that F(ty,...t},...tg) is SN.

x F(t) = G(t), with a(G(t)) < a(F(t)). Using the second induction hypothesis, we conclude
that G(t) is SN

All the possible reducts of F(t) are SN: so is F(t).

This closes the proof of the claim. Now, consider any SN terms {t;}; and any linear combination made
of them. It can be written as F(t). The hypotheses of the claim are satisfied: F(t) is SN. O

Now we can prove the Lemma.

Lemma 5.4.1. If A, B and all the A;’s are in RC, then so are A — B, >, A; and N;A;.

Proof.
A—B

RC;: Assume that t € A — B is not in SN. Then there is an infinite sequence of reduction (t,),
with to = t. So there is an infinite sequence of reduction ((t,) b), starting with (t)b, for all
base terms b. This contradicts the definition of A — B.

RC,: We must show that if t — t' and t € A — B, then t' € A — B. Let t such that Vb € A,
(t) b € B. Then by RCy in B, (t/) b € B, and so t' € A — B. If t is neutral and
Red(t) C A — B, then t' € A — B since t’ € Red(s). If t = 0, it does not reduce.

RC; and RCy: Trivially true by definition.

Zi A

RCq: Ift € {3, a;.t; | t; € A;}, the result is trivial by condition RCy on the A; and Lemma D.13.1.
If t is neutral and Red(t) C A+ B, then t is strongly normalising since all elements of Red(t)

are strongly normalising.
RC; and RCj: Trivially true by definition.

RC,: Since >, 0-t; € >, A, by RCs, 0 is also in the set.
N;A;

RC;: Trivial since Vi, A; C SN.
RCs: Let t € N;A;, then Vi, t € A); and so by RCs in A;, Red(t) C A;. Thus Red(t) C N;.A;.

RCj: Let t € A and Red(t) C N;A. Then V;, Red(t) C A;, and thus, by RC3 in A;, t € A;, which
implies t € N;A;.

RC4: By RCy, Vi, 0 € .Ai, then 0 € N;A;.
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D.14 Proof of Corollary 5.4.2

Corollary 5.4.2 (of Lemma 5.2.2). Any type T has a decomposition T' = Y7 | a;.U; such that
Vi, k, U; # Uy.

Proof. By Lemma 5.2.2, T = Y " o;.U;. Assume 3j,k such that U; = Uy, then notice that T =
(o + a).Uj + Z";z:l o;.U;.. Repeat the process until there is no j, k such that U; # Uj. O
i#jVk

D.15 Proof of Lemma 5.4.3

First we need a few auxiliary lemmas:

Lemma D.15.1. Given a (valid) valuation p = (p+,p-), for all types T' we have [T'],  |T],.

Proof. Structural induction on T'.

e T=X. Then |T[, = p_(X) C p1(X) = [T],.

e T'=U — R. Then [U— R|; = |U], — [R[,. By the induction hypothesis U], C [U], and

IR], € |R],- We must show that ¥t € [U — R[,, t € [U — R|,. Let t € [U— R[, = |U], —

p= P
[R[,. We proceed by induction on the definition of —.

— Let t € {r[Vb € [U],,(r) b € |R],}. Notice that forall b € [U[;, b € [U],, and so
(t) be [R], C[R[, Thuste [U[,—[R],=[U— R],

— Let Red(t) € [U — R], and t € N. By the induction hypothesis Red(t) € [U — R], and so,
by RC3, t € |U — R,

— Let t = 0. By RCy, 0 is in any reducibility candidate, in particular it is in U — R[|p.
e T'=VYX.S, where S is a unit type. Then |]VX.S|],3 = ﬁAg;eRcﬂSﬂﬁ (X1, X_ ) (A,B)" By the induction

hypothesis [S]; € [S],, then VA, B, [S[; x, x )sn S 150, x, x )oap- Thus we have

Nacserel S5 x, x yoam € NacserelSl, (x, x_)oan = VXS],
e T'is not a unit type and T' = 3, a; - U;. Then [T, = >_, [U;],. By the induction hypothesis
[Uil; € [Ui],,- We proceed by induction on the definition of ; [Us] ;.
— Let t € {3, o - ri |r; € [Us];}. Note that Vr € [U;],, r € [Us], and so the result holds.

— Let Red(t) € 3_, |Ui[, and t € V. By the induction hypothesis Red(t) € 3_, [Us], and so, by
RCs, t € 32, [Ui] -
— Let t = 0. By RCy, 0 is in any reducibility candidate.
O

Lemma D.15.2. Let p = (py,p-) and p' = (p',, p_) be two valuations such that VX, p’ (X) C p_(X)
and p+(X) C p/ (X). Then for any type T we have |T[, C [T, and [T, < |T],.
Proof. Structural induction on T'.

e T'= X. Then [X[, = p1(X) C g/, (X) = |X]
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e I'=U — R. Then |U — R|, = [U[, = |R], and |U — R[, = |U], — |R],. By the induction
hypothesis U], € |U], , [U], € [Ul,, [R], € [R], and [R], C [R],. We proceed by induction
on the definition of — to show that Vt € [U[, — [R[,, then t € [U],, — [R], = [U — R],,

— Let t e {r[Vb e U], (r) be|R],}. Vb€ [U],, b€ [U], and then (t) b € [R[, C |R]

7.

p P

— Let Red(t) € |[U — R[, and t € N. By the induction hypothesis Red(t) € [U — R],, and so,
by RCy, t € |U — R,

— Let t = 0. By RCy, 0 is in any reducibility candidate, in particular it is in [U — Rl]p,.
Analogously, vt € [U], — |R],, t € [U], = |R], = U — R],.

o I' =vX.S. Then [VX.S], = NacserclS], x, x )sap- By the induction hypothesis [S],

c
151, then VA, B, |51, x, x_yam) S 151, (xp x oy amy- Thus NucserelSly, x, xyman) S

NacserelS], (x, x yo(an = [VX.S[, . The case [VX.S]; C [VX.S[, is completely analogous.

P

N

e T'isnot a unit type and 7' = 3, a;-U;. Then |T'[, = 3, [Ui] ,- By the induction hypothesis |U;],
[Uil . We proceed by induction on the definition of 3=, U; to show that 3, [Us], € >, [Ui] -

— Let t € {37, -1i|r; € |Ui],}, Notice that vVr; € [|Uj]
2 v, =171,

— Let Red(t) € |[T[, and t € V. By the induction hypothesis Red(t) C |T[, and so, by RCs,
te|T],.

o Ti € [Ui], and so 3>, ar; €

— Let t = 0. By RCy, 0 is in any reducibility candidate, in particular it is in |T'] o

The case [T']; C |T[, is completely analogous.
O

Lemma D.15.3. For all reducibility candidates A, A C 1.A. Moreover, if b € 1.A is a base term, then
b e A

Proof. For all t € A, the term 1.t € 1- A. Since 1.t — t, we conclude using RCs.
Now, consider b € 1.A. We proceed by structural induction on 1.A.

e Base case: the sum is trivial: the term b is in A.

e Suppose that t is in 1.4 and that t — b, with b a base term. We prove that b is in A by induction

on the length of the longest reduction sequence starting from t.

e Suppose that t is neutral, yet a base term, and that Red(t) C 1.A. Then t would have to be a
lambda-abstraction, which it cannot since it is neutral: we do not consider this case.
O

Lemma D.15.4. For all reducibility candidates {A;1}iz1...ny, {Ai2}i=1.my, if 8 € Y1ty Aig and t €
Yoy Aig, thens +t € Doke1.2i=1ny Aik

Proof. By structural induction on > ', A; 1 and > .2, A; ».
e If s and t are respectively of the form )", o;.s; and Zj Bj.t;, it is trivial.
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The other cases are similar.

e If s is of that form but t is neutral such that Red(t) C >, A; 2, then using the induction hypothesis,
Red(s +t)isin ), _;, i=1...n;, Aik- We conclude with RC3.

Lemma D.15.5. Suppose thats € A — B and b € A, then (s)b € B.

Proof. Induction on the definition of A — B.

e Ifsisin {s|Vb e A, (s)b € B}, then it is trivial

e If sisin A — B because r is in A — B and r — s, then by the induction hypothesis b in A implies
(r)b in B, so by RCs, (s) b is in 5.

e If s in A — B because s is neutral and Red(s) C A — B, we do a case by case analysis on r in
Red((s) b) to show that (s) b is in B (and so is (s) b by RCs).

— r = (t) b, with t in Red(s), then by the induction hypothesis, for any t in Red(s), (t)b is in

B.

— r = (s)b’ with b — b’, then b’ is also a base term in .4, so the result holds.

— The case s = Az.t and r = t[b/z]| cannot occur because s has to be neutral by hypothesis.

O

Now we can prove the Adequacy Lemma:

Lemma 5.4.3 (Adequacy Lemma). Every derivable typing judgement is valid: for every valid sequent

FEt:T,wehave =t:T.

Proof. We proceed by induction on the size of the typing derivation of I' F t: 7. We look at the

n

last typing rule that is used, and show in each case that I' = t: T, de if T = > | o;.U; in the

sense of Corollary 5.4.2, then t, € Y., [U;]
substitution o € [I'] , (i.e. substitution o such that (z: V) € I implies z, € [V])).

1
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I'Ht:T

. 70[
I'F0:0.T

Fax:UFt:T
TRt U T

—ax
"z Uka:U

p.p. for every valuation p, set of valuations {pi}n, and

p

Then for any p, Vo € I]F,x:Uﬂp by definition we have z, € I]UI]MJ'
From Lemma D.15.1, we deduce that z, € [U],y, ie. 7, € [LU],, by
Lemma D.15.3.

Note that Vo, 0, = 0, and 0 is in any reducibility candidate by RCj.

—I

Let T = >, a;.U;. Then by the induction hypothesis, for any
p, set {pi}n not acting on FV(I'), and Vo € [Iz:U[,, we have
te € >, |Uil, ,,- Then by Lemma D.15.3 it is enough to prove

that Vo € [I'],, (Az.t)s € [U = T] or what is the same Az.t, €

psp’?

101, — 1T, ,, where p’ does not act on FV(I'). If we can show
that b € [U[, ; implies (Az.t;) b € [T], ,, then we are done. Take
b € I]Uﬂﬁ,ﬁ’ and write ¢/ = o;z — b. Then ¢’ € ﬂF,x:Uﬂpw,, thus

tor € >0 |]Ui|]p o 0> SO tor is strongly normalising, and we show by in-
duction that (\z.t,) b € [T, , = >, [Uil,, ¢ Since it is a neutral
term, we just need to prove that every one-step reduction of it is in |77] o
which by RCs closes the case.

Structural induction on the reduct of (Az.t,) b:
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(Az.t;) b — (Az.t;) b" with b — b’. Then b’ € [U]; , and we close by induction hypothesis.
(Az.t;) b — (Az.t') b with t, — t. Since t, € 3211, |Ui],

take Vi, p; = p, so to € [T[, , and so are its reducts, such as t’. We close by induction

for any {p;}» not acting on FV(T'),

hypothesis.
(Az.t;) b — t,[b/a] notice that t,[b/z] =to € [T, ..

Tty a;VX.(U—T)  Thro) gV, WV, 3W,, JUW,/X] =V,
j=1

i=1

—E

Z(Jéi X ﬂ]Tz[WJ/X]

1j=1

n
Tk (t) r:

=
Without loss of generality, assume each T; is different from each other, and the same for V;. By

the induction hypothesis, for any p, {pi ;}n,m not acting on FV(I'), and Vo € |]F|]p we have t, €
X1 NacperelU = Tl, . (%, % )iam) a0d vo € 350, [Vil, -

For all i, 7, let Tz[WJ/X] = Z};zl 52j.W,ij. We want to show that for any p, sets {p; ; ; }r, ; not
acting on FV(T') and Vo € |]1"|]p7 ((t) r), € Zi:ln-n,j:l---m,k:lmrij I]lejﬂpyp”k Since both t, and
r, are strongly normalising, we proceed by induction on the sum of the lengths of their rewrite

sequence. The set Red(((t) r),) contains:

e (t,) v’ or (t') r, when t, — t' or r, — r’. By RCy, the term t’ is in the reducibility candi-
date >0 N zcgerclU = Tl, . (. % )i and r'isin 3770, [Vil,,,,- We conclude by
induction hypothesis.

e A term coming from one of the rewrite rules of Group A. We conclude by noting that we
obtain a linear combination of terms smaller than the original one. We can conclude with the

induction hypothesis, Lemma 5.3.15 and the definition of the sum of reducibility candidates.

e The term t/ [r,/x], when t, = Az.t’ and r is a base term. Note that this term is of the form
t/, where ¢’ = o;2 — r. We are in the situation where the types of t and r are respectively
VX.(U — T) and V, and there is W such that U[W/X] =V, and so 3, ;. I]W]z]ﬂp,pijk =
> ket [Wk, . where we omit the index “11”. Note that (using Lemma D.15.3)

)\SCt;. S I]VX(U — T)I]p,p’ = mﬁgEERCI]U — Tﬂp,p’,()?+,)27)H(X,§)

for all possible p’ such that |p/| does not intersect FV(T'). Choose A and B equal to |]Vf/|]p,p,

and choose p’_ to send every X in its domain to Ngpr—(X) and p/, to send all the X in its
domain to Y, pr4(X). Then

)\.T.t:T S I]U — Tl]p7p/,)‘("_>v‘[‘/ = I]Vl]p,p’ — I]Tl]pw/,)-("_}ﬁ/.
The valuation X — W is a shortcut for (X, X_) (W1, W]

be1.]V] by Lemma D.15.3 they are in V]

p,p')- For all base terms

, and we have by Lemma D.15.5

= ZHW’VHP,/J"

k=1

pp" PP
(\z.to) b e T, 3w = ITW/X]],,, = NZ 5k.Wkﬂ
k=1 .0’

Now, from Lemma D.15.2, for all k we have [Wy[, , C [Wi], , . Therefore

pp

(Az.ty) b e Z Wil
k=1
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Since r € 1.]V], .,, we are done.

p.p
Since the set Red(((t) r)s) € > ;.0 PEET ﬂW,ij[]p pi WE can conclude by RCs.
3 s sPig

By the induction hypothesis, for any p, set {p;}, not acting
on FV(I), we have Vo € [T, t, € >i_, |Uil, . Since

THt: Y aU; X ¢ FV(T)
X ¢ FV(T'), we can take p; = pl, (X4, X_) — (A, B), then for

i=1
5. N
n ! any AC B, t, €Y., |U il p.pr (x4 x_)s(a,p)- Since it is valid
Lt Zl @i VX.Ui for any A C B, we can take the intersections, thus we have t, €
>iciNacserelUil, pr (x, x s am) = it VX Uil
" By the induction hypothesis, for any p and {p;},, we have Vo € |]F|]p,
Lkt Zo‘i'VX'Ui te € i VXU, , = XiiiNacserelUil, /1 x, x )48
6. =1 Ve  Since it is in the intersections, we can chose A = |]V[|7 ~and
Tkt: Zaz S[V/X] B =[V],,. and then t, will be in those particular sets, so tg €
Z?:l I]Ui[lp7p£7x>—>v = Z?:l ﬂUi[V/X]ﬂp,p;
rhtT Let T = Z?:l B8;.U;, so a.T = Z?:l a x B;.U;. By the induction hypothesis,
t:
. ——— oy forany p, we have Vo € [I'] , t, € 3°._ [Ui],, .- Note that (a.t), = a.t, €
=1 1"lp,p;
Let T = > ;U1 and R = Z;n:1 B;.Uj2. By the induction
. T'Et:T I'Fr:R hypothesis, for any p, {pi}n, {pj}m, we have Vo € [I'[,, t, €
Trt+rT+R I >ic1Uial, ,, and ro € 3507, I]Uj,Ql]p,p,j. Then by Lemma D.15.4,
(t+r)e =ts +1o €3, Uikl,,
9 'Ht:T T=R Let T'=Y"" | ;.U; in the sense of Corollary 5.4.2, then since T'= R, R
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Appendix E

Proofs from Chapter 6

E.1 Proof of Theorem 6.2.2

Theorem 6.2.2 (Subject Reduction). For any terms t and t’, context I" and type T, For any terms t
and t’, context I and type T, if t — t’ and I' F t: T then there exists some type R such that T'+t': R
and T < R.

Proof. We proceed by induction on t — t.
Elementary rules

Rule u+0 —u. Let ' F u+ 0:7. Then by Lemma 6.2.4(3), there exist types R, S such that
' -u:Rand ' - 0:8, with R+ S = T. By Remark 6.2.7, we have S = 0, therefore
R+0=R=T, and, by rule =, we conclude I' - u: T.

Rule 0.u — 0. Let I' - 0.u: 7, then by Lemma 6.2.4(4) we have T = 0. By rule azg we have
I'+0:0.

Rule 1.u = u. Let ' F 1.u: T, then by Lemma 6.2.4(4), there exists R such that I' F u: R and
R =T. Therefore, by rule = we have I' - u:T.

Rule .0 - 0. Let I' + «.0: 7, then by Lemma 6.2.4(4) we have I' - 0: R with |a|.R = T.
However, by Remark 6.2.7, we have R=0, so 0 = T. By rule = we conclude ' - 0:T.

Rule o.(f.u) = (a x £).u. True by Lemma 6.2.9.

Rule a.(u+t) —» a.u+ a.t. True by Lemma 6.2.10.
Factorisation rules

Rule a.u+ f.u — (o + f8).u. True by Lemma 6.2.11.

Rule cu+u— (a4 1)u. Let T' - awu+u: T, then by rule s;, T' + 1.(ccu+u):1.7. So, by
Lemma 6.2.10, T'F l.a.u + l.u: Ry with 1.7 < R;. By Lemma 6.2.4(3), there exist types R, S
such that I' F 1.a.u: R and I' F 1.u: S, with R+ S = R;. Then, by Lemma 6.2.9, we have
I'F a.u: R, so with rule +; we can conclude I' - c.u + 1.u: R+ S and then ' F ac.u + 1.u: Ry
by rule =. Finally, by Lemma 6.2.11, we conclude I' F (o + 1).u: Ra, with R; < Rs. Notice
that T=1.T < R, < Rs.

167



Appendix E. Proofs from Chapter 6 [

Ruleu+u— (1+1)u. Let'Fu+u:7T. By rule s;, ' - 1.(u+u):1.7. So by Lemma 6.2.10,
we have I' b l.u+ l.u: Ry with T < R;. Then by Lemma 6.2.11, T' (14 1).u: Ry with
R1 < Rs, hence T' X Rs.

Application rules

Rule (u+r) t — (u) t+(r) t. Let '+ (u+r) t:T. Then, by Lemma 6.2.4(1) there exist natural
numbers n and m and types U, Ty,..., T, such that TFu+r:> " (U —T;) and ' - t: m.U,
with > ;m.T; = T. Then by Lemma 6.2.4(3), there exist R and S such that I' - u: R
and I' - r: S, with R+ S = Y. (U — T;). Furthermore, by Remark 4.1.2, there exist
natural numbers k£ and p and types Vi,..., Vi, Wy,..., W, such that R = Zle Vi, § =
> h_ Wi, where these sums are minimal, i.e. W; # 0 and V; # 0 for all <. Due to the
shape of "' (U — T;), we have that for each j = 1,...,k, there is some i; such that
V; =U — T;,. Let A C {1,...,n} such that i; € A for all j. Analogously, for each
k=1,...,p, there is some ij such that Wy, = U — T;,. Therefore, R = 25:1 V; = Z;C:l U—
Ty, = ieaU — Tiand S = Z£:1Wk = Zle — Ty, = D peaU — Tk So by rule =,
we have 'Fu:) ", U = Tyand T'Fr:) ), 2 U — Ti. Hence, using rule — g we can derive
F'E()t:>,comT;and T'F (r) t:>°, . 5 m.Tk, from where, using +7, can be derived I' -
(w) t+ (r) t:>,cam.T; + > camTi. Note that Y-, ,m.T; + >, camTe =y mT; =
T. Then by rule = we have '+ (u) t 4 (r) t: 7T

J

Rulet (u+r) — (t) u+(t) r. Let 't (u+r):7T. Then by Lemma 6.2.4(1), there exist natural
numbers n and m and types U, T4, ..., T, such that T+ ¢: > (U = T;) and ' Fu+r:m.U,
with Y7 ,(m.T;) = T. Then by Lemma 6.2.4(3), there exist types R, S such that I' - u: R
and ' Fr: S, with R+ S = m.U = ZyilU. We know m = k + p, where R = k.U and
S = p.U. Then, by rule =, we have ' F u: k.U and I' - r: p.U. Therefore, by rules —g and
+1, we can derive I' - (t) u+(t) r: Y0 k154", p.T;. Note that > i | kT, +> . p.T; =
S (kT4 pT) =", m.T; =T. Hence by rule = we have I'F (t) u+ (t) r: 7.

Rule (0) u — 0. True by Lemma 6.2.8 and rule axzg.

Rule (u) 0 — 0. True by Lemma 6.2.8 and rule axzg.
Beta reduction

Rule (Az: U.t) b — t[b/z]. Let ' (Az:U.t) b:T. Then, by Lemma 6.2.4(1) there exist natural
numbers n,m and types Ti,...,T, such that I' - Az:U.t: 2?21 U—T;,and I' F b:m.U,
with 3.7, m.T; = T. In addition, by Lemma 6.2.12, we have I' - Az:U.t:U — T} and
I'F b:U. Then by Corollary 6.2.5, we have I' b [I',x : U]t:Ty. Therefore, by Lemma 6.2.6,
'+ t[b/x]:Ty. Finally, since T3 = T, by rule = we have I' F t[b/z]: T.

Rule (AX.t)QU — t[U/X]. Let I' + (AX.t)QU : T. Then, by Lemma 6.2.4(6) there exists a type
R such that I' - AX.t:VX.R and R[U/X] = T. Moreover, by Lemma 6.2.4(5) there exists
a type S such that I' F t: S, where X ¢ FV(I') and VX.S = VX.R. By Lemma 6.2.6,
INU/X]FtU/X]: S[U/X] and since X ¢ FV(T") we have I - t[U/X]: S[U/X]. Finally, since
S =Rand R[U/X] =T, we can use rule = to conclude I' - t[U/X]: T.

AC equivalences
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Commutativity of + . We must prove that u 4+ r and r + u have equivalent types. Let I'
u+r:7. Then, by Lemma 6.2.4(3) there exist R, S such that I' F u: R and T F r: S, with
R+ S =T. Then using +j, one gets ' Fr +u: S+ R. Note that S+ R= R+ S =T, then
by rule = we have ' Fr +u:T.

Associativity of + We must prove that (u+r) +t and u + (r + t) have equivalent types. Let
'k (u+r)+t:7. Then, by Lemma 6.2.4(3), there exist Ry, Ro such that ' u+r: R; and
'k t: Ry, with Ry + Ry = T. Then by Lemma 6.2.4(3) again, there exist S7, Sy such that
'tu:Sand I' Fr: S, with S; + Sy = Ry. Therefore, using +; twice, in the correct order,
we can derive ' u+ (r +t): 51 + (S2 + Rz2). Note that S; + (S2 + Rz) = (51 + 52) + R2 =
Ri+ R2=T,sobyrule =, wehave 'Fu+ (r+t):7.

Contextual rules The inductive cases are applications of the context rules, which trivially follows by
induction.

O

E.2 Proof of Lemma 6.3.2
Lemma 6.3.2. If T'F t: 7', then 3A, R such that A b, |t|: R.

Proof. First we define a translation from a subset of types in Vectorial to types in A“4. Consider the
subset of types of Vectorial, where scalars range over non-negative real numbers. Then the translation

has this subset as domain:
X=X U —T|=|U| = |T| VX.U| =VX.|U| | T = |a].IT] T+ R|=|T|+ |R|

where n.T = """ | T with the convention that 0.7 = 0. We also extend this definition to contexts:
| ={x:|U| | UeT}.

Then we prove by induction on the length of the type derivation of I' F t: T that |T'| b, |t|: R with
R =T.

1. Tz:Uka:U A% Then by rule az in Vectorial, ||, z:|U| t, x:|U|. Notice that |z| = .

Then take any type T and term t such that |T'| b, t: T, and so by rule 0y, |T'| -,

“Troo 0:0.7". Notice that |0| = 0 and 0.7 = 0.
Then by the induction hypothesis, IR, S such that |T'| I,
[t|: R and || b, [r|: S, with |R| = > U — T; and
|S| = m.U. Notice that the translation of types from
n Vectorial to types of A4 only acts on the scalars by
Mkt Z U—-1T, F'Erim.U converting them on sums. The rest of the structure of the
3. = - —p  type remains untouched. Then we can easily prove using
LCE(t) r: Z m.T; structural induction that R =3 ;.U — T} and S =

i=1

B.U" such that |8] = m, |U'| = U and Vi, |T]| = T;.

Then using rules = and — g in Vectorial, we can derive
IT[ Fo ([t]) [r[: 3552, B.T7. Notice that |(t) r| = ([t]) |r]
and | Y i, 8.1 =31, m.T;.
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Then by the induction hypothesis, exists R such that |R| = T and
IT|,z: |U| ky |t]: R. Then using rule —; in Vectorial, we can derive
Dz:UkFt:T IT| by Az.|t|: [U| — R. Notice that |Az : U.t| = Az.|t| and ||U| = R| =

4 THFMN :Ut:U—>T e [[U]| — |R|. Tt is easy to check that if we take a type in A4 and do
its translation using | - |, we obtain the same type. So ||U|| = |U| =U.

Then ||U|| = |R|=U - T.
Then by the induction hypothesis IR such that |T'| k-, |t|: R, with |R| =
. F'Et:vX.U Vi VX.U. Then R = a.VX.U" where |a] =1 and |U’| = U. So, using rules
I'-tQV:U[V/X] = and Vg in Vectorial, we can derive |T'| b, |t|: a.U’[V/X]. Notice that

[t@QV| = |t| and since |V| =V, |a.U'[V/X]| = U[V/X].
Then by the induction hypothesis IR such that |T'| F, |t|: R, with
|[R| = U, so R = .U’ with |a] = 1 and |U'| = U. Notice also
'Ft:U X ¢ FV(D) . ; i
6. v; that X ¢ FV(|T'|). Thus, using rules = and V; in Vectorial, we can
FEAX VXU derive [T| Fy [6]: @.¥X.U". Notice that [AX.t] = |t| and [@.VX.U’| =
VX.|U'| = VX.U.
Then by the induction hypothesis 377, R’ such that |T'| F, |t|: T’
. 'Ft:T" TFr:R and |T'| F, |r|: R’, where |T’| = T and |R’| = R. Then using rule
 Trt4+r:T+R i +7 in Vectorial, we can derive |I'| b, |t| + |r|: 7" + R’. Notice that
[t+r| =|t|+ |r] and |T"+ R'| =|T'|+ |R'| =T + R.
Cht.T Then by the induction hypothesis 3R such that |I'| F, [t|: R and |R| = T.
8. ———————s;  Then using rule s; in Vectorial, we can derive |T'| I, .|t|: o.R. Notice that
'kat:|al.T
la.t] = a.lt] and |o.R| = |a].|R| = |a].T.

r+t:T T'=R  Then by the induction hypothesis 35 such that [I'| -, [t]:S with |S|
I'-t:R ~ T=R

E.3 Proof of Lemma 6.3.3

Lemma 6.3.3. There is no an infinite sequence reduction consisting only of type beta rules.

Proof. Consider the following function from terms to natural numbers:

o(z:U)=1 o(AXt)=1+0(t) o(tQU) =0 (t) ola.t)=o(t)
oAz : Ut)=0(t) o((t) r)=0o(t) o(r) c(0)=1 ot+r)=0(t) +o(r)

Then we prove by structural induction on t that o((AX.t)QU) > o(t[U/X]). Since it is positive a strictly
decreasing function on the type beta reduction, the sequence cannot be infinite.
We proceed with the induction. Notice that o(t) = o(t[U/X]) since it does not depend on the types

in t.
o t=x:V, then o((AX.(z: V))QU) =2 > 1 = o(z: V[U/X]) = o((z : V)[U/X]).
o t =z : Vi, then o((AX.(A\z : Vir))QU) = 1+ o(x) > o(r) = o(x[U/X)).
o t = AYir, then o((AX.AY.r)QU) = 2+ o(r) > 1 + o(r) = o(AY.(r[U/X])) = o((AYx)[U/X]).
o t = (r) u, then o((AX.(r) W)QU) = 1 + o(r) + o(u) > o(r) + o(u) = o((r) u) = o(((r) W)[U/X]).

170



[ Appendix E. Proofs from Chapter 6

e t =rQV, then o((AX.(rQV))QU) =1+ o(r) > o(r) = o(rQV) = o((rQV)[U/X]).
e t =0, then o((AX.0)QU) =2 > 1=0(0) = o(0[U/X]).
o t =qa.r, then o((AX.a.r)QU) =1+ 0o(r) > o(r) = o(a.r) = o((ee.r)[U/X]).

o t =r+u, then o((AX.(r+u))QU) =1+o0(r)+o(u) > o(r)+o(u) =o(r+u) =o((r+u)[U/X]).
(]

E.4 Proof of Lemma 6.4.1
Lemma 6.4.1 (Poset).
1. C is a partial order relation

2. < is a partial order relation in ~.
Proof.

1. For the purposes of the proof we use an equivalent definition of C and define it as the least relation

satisfying:
0Ct tCt tCt+t
tCt = M:UtC Ut tCt' ArCr = (t)rC(t)
tCt = AXtCAXY tCt ArCr = t4+rCt +1/
tCt = tQU Ct'QU tCr ArCu = tCu

where the first three rules replace the first rule in the definition of C in Section 6.4. The equivalence
can be shown by a simple inductive argument in one direction, and in the other direction by noting
that replacing (o, 8) by (0,1), (1,1), and (1,2) yields the new three rules.

Reflexivity and transitivity are trivial since they are part of the definition.

In order to prove antisymmetry, let us assume t = u and u C t. We proceed by induction on t C u.

e case 0 C t. Then t C 0 implies that t = 0.

e case t C t + t. This case is cannot happen, since then we would need t + t C t, which is not

part of the relation.

e In the rest of the cases the structure of the terms is preserved and no differences are introduced.

2. The relation < is a partial order on terms quotiented by ~ because C restricted to normal forms is

a partial order. More explicitly:

t<t & thCtl,
tSuAusu=tsu & (thCu, Au,Cu, = tl,Cul,)

t<uAu<st & t,Cul, Au,Ct), = t,=u, < t~u
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E.5 Proof of Theorem 6.4.2

We need some auxiliary lemmas in order to prove this theorem.
Lemma E.5.1. For any term t and base term b in A“4, o(t[b/z]) = o(t)[o(b)/z]
Proof. We proceed by structural induction over t € A¢4.
e t = 2. Then o(z[b/x]) = o(b) = z[o(b)/z] = o(x)[o(b)/x].
e t =y. Then o(y[b/z)) = a(y) = y = ylo(b)/z].
t = Ay : U.t'. Then o((\y : Ut')[b/z]) = o(Ay : Ut/[b/z]) and this is equal to Ay : U.o(t'[b/z])
which by the induction hypothesis is equal to Ay : U.o(t')[o(b)/z] = (Ay : U.o(t"))[o(b)/z] = o(Ay :
Ut')[o(b)/x].
e t =(r) u. Then o(((r) u)[b/z]) = o((r[b/z]) ulb/z]) = (o(r[b/z])) o(u[b/z]), which by the induc-
tion hypothesis is equal to (o(r)[o(b)/z]) o(w)o(b)/z] = ((o(r)) o(u))o(b)/z] = o((r) w)[o(b)/z].

e t = AX.r. Then o((AX.r)[b/z]) = c(AX.r[b/x]) = AX.o(r[b/x]) which by the induction hypoth-
esis is equal to AX.o(r)[o(b)/z] = (AX.o(r))[o(b)/z] and this equal to o (AX.r)[o(b)/x].

e t = rQU. Then o(rQU[b/z]) = o(r[b/x]QU) = o(r[b/z])QU which by the induction hypothesis
is equal to o(r)[o(b)/z]QU = o(r)QU]o(b)/z] = o(rQU)[o(b)/x].

e t = a.r. Then o((a.r)[b/z]) = o(a.r[b/z]) = Zijl o(r[b/z]), which by the induction hypothesis
is equal to 32,1 o(x)[o(b)/2] = (3% o (1)) [o(b)/#] = o(a-x)[o(b) /2],
e t =r+u. Then o((r+u)[b/z]) = o(r[b/z]+ulb/z]) = o(r[b/x])+o(u[b/z]) which by the induction
hypothesis is equal to o(r)[o(b)/z] + o(u)[o(b)/z] = (o(r) + o(u))[o(b)/x] = o(r + u)[o(b)/x].
O
Lemma E.5.2. For any terms t1, to in A%, (t; +t2)), < t1l, +t2l,-

Proof. Notice that the only case where these terms are different is when one of the addends reduces to

0, in such case, their normal forms coincides, making it possible to compare in this way. [l

Now we are ready to prove the theorem.
Theorem 6.4.2 (Abstract Interpretation). | is a valid concretization of |,, that is, Yt €EA®4, o(t)], <

o(t)).
Proof. We proceed by structural induction over t eA¢4,
l.t=zort=0. Then o(t)|,=t = o(tl).

2.t = Az : Ur. Then by the induction hypothesis o(r)],< o(rl)) and so o(Ax : Ur)],= Az :
Uol,S Az :Uo(r]) =o(Ax : Url).

3. t = AX.r. By the induction hypothesis o(r)|, <

So(rl), soc(AXr)],= AX.o(r), S AX.o(r)) =
o(AX.r)).

4. t = rQU. By the induction hypothesis o(r){,
o(rQU]).

S o(rd), so o(r@QU)|,= o(r)l, QU < o(r}])QU =
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5. t = a.r. Case by case on the possible one-step —-reductions starting from a.r.

(0.r)}) = 0(0) = 0= 0], = (3, 1), = o(0.1)],.

(1.r)}) = o(r)). By the induction hypothesis o(r)], < o(rl) and
()= o(11)),.

(@.0))) = 0(0) = 0 = (L1%] 0)],, = (o(a.0))L,.

(d) r = Buand a.fu — a x fu. Then o(a.fu)l,= (NP o), < (Sl o), =
o(a x f.u)l, which by the induction hypothesis is < than o(a x f.ul) = o((a.5.u)l).

(a) =0 and 0.r - 0. Then o

—~

(b) a=1and l.r — r. Then o
notice that o(r)],= (Z =1
(¢) r=0and .0 — 0. Then o

—~

Q

—~

(e) r =u; +uz and a.(u; +uz) = a.u; + a.uy. Then o(a.(u; + uz))l, = (ZLO‘J o(u; +ug))l,=
o) + 3 o(u)) 1,= o(auy + auy) |, which by the induction hypothesis is <
than o((a.u; + a.uz)l) and notice that this term is equal to o((a.(u; + uz))J).

(f) .t is in normal form. Then o((a.t)]) = o(a.t) = ZLO‘J o(t) and notice that o(a.t)|, =
(CEot)S i olt).

6. t =r+u. Then o(r + u)l,= (o(r) + o(u))], which by Lemma E.5.2 is < than o(r)l, +o(u)l,
which by the induction hypothesis is < than o(r)) + o(ul) = o(r) +ul). If r| +ul is in normal
form, then due to the confluence of A“4, it is equal to (r +u)/, and then we are done. In other

case, it means that r] +ul reduces. Cases:

(a) ul=0, then (r + u)l=rl. Then o(r}) + o(ul) =o(r)) + 0 < o(r)) = o((r + u)}).
(b) r}J= a.u and ul= B.u, then (r +u)l= (o + p).u. So o(rl) + o(ul) = o(a.u) + o(f.u) =
Sut Dhu= T g T u= o+ §)u) = o+ u)l).

(¢) The case where r|= a.u and u}= u and the case r)= u| are analogous to the previous one.

7. t = (r) u. Then o((r) u)l,= ((c(r)) o(u))l,. Case by case on the possible one-step —-reductions

starting from (r) u

(@) ((r) u)l= (rd) ul Then o(((r) u))) = (o(rl)) o(ul). On the other hand, due to the
confluence in X4, ((o(r)) o(u))l,= ((o(r)l,) o(u)l,)), and since this is the normal form of
(o)1) o)L, by definition, ((o(x)L,) o(w)l,)}r < (o(x),) o(w)l,, which by the induction
hypothesis is < to (o(r))) o(ul).

(b) r = r1 + 19, and (r) u — (r;) u+ (rz) u. Notice that o((r1 +1r2) u) ], is equal to
((o(r1) + o(r2)) o(u))l,= ((o(r1)) o(u) + (o(r2)) o(u))l, which by Lemma E.5.2 is < than
((o(r1)) o(w)d, +((o(r2)) o(u))d,= (a((r ) u))l, +(o((r2) u))l, which by the induction
hypothesis is < than o(((r1) u)l) + (((rg) W) =oc(((r1) u)l +((rz2) u)l). Cases:

i ((r1) w) +((r2) uld= ((r1) u+ (r2) u)l. Then the term o(((r1) u)l +((r2) u)}) is equal
to o((((r1) w) + ((r2) W)}) = (((Pl +12) u)l).
i. ((r1) u)y= 0. Then o(((r1) u)d +((r2) u)l) = 0+ o(((r2) u)l). Notice that the term
(0+a(((r2) W), is equal to o(((r2) wl) Ly, so 0+ a(((rz) W) < o(((rz) w)}) =
a((0+ (r2) u)}) = (((( 1) W) +(r2) u)l), which due to the confluence of A4 is equal
to o(((r1) u+ (r2) wll) = o(((r1 +r2) W)
iii. ((r1) uw)d= a.u and ((r2) u)l{= Bu. So o(((r1) u)} +((r2) u)l) = o(eu + fu) =
Sitio(w+ 3 o(w) = 352 o (w) which is < than 55777 o(w) = o((a+5)w) =
o(((r1) u+ (r2) wl) = o(((r1 +r2) w)i).
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iv. The cases where ((r1) u)l= a.u and ((r2) u)l=u or ((r;) u)l=u and ((r2) u)}=u are
analogous to the previous one.
(¢) u=u; +ug and (r) u— (r) u; + (r) uz. Analogous to the previous case.

(d) r = a.r’ and (r) u = a.(r') u. Then the term o((c.r’) u)l, is equal to ((o(a.r’)) o(u))l,
which is equal to (31 o(r')) o(u))l,= (1 o(r')) o(u))l, and this, by Lemma E.5.2, is
< than Y1 ((0(r)) o(w))],= X1 o((r') u)l, which by the induction hypothesis is < than

Sk a(() wl) = ofo() wl). Cases:
i () W= () wl. Then a(an((r') W) = o(((ar') wi) = of((ar’) w)l).
ii. a=0,s00(0.(r") W) =30 o(((r') u)l) =0 = o(0) = ((0.r') u)l.
i, o= 150 o(L(() W) = X, o((() wlh) = o((() wlh) = o (L") wp).
iv. ((r') u)l=0, so o(a.((r') u)}) = o(a.0) = ZLaJ 0, since its normal form in X494 is 0, it is
< than 0 = 0(0) = o(((c.x”) u)l).

v. ((¢) wl= B, so o(a.((t) u)l) = o(a.fou) = S S gu) = 21X 5 (w) which
1s<thaunX:L°‘XﬁJ o(u) = o(a )=0

Vi (1) w)l=u+t, s0 o(a.((r') wpl) = oa.(utt)) = L% o(u+t) = 14 (0(u)+0(t) =
Sl o) + S o (t) = o(au) + o(at) = o(au + at) = o((a.(r') w)}).

)

() u=a.u and (r) u — a.(r
(

f) r=0and (r) u— 0. o((0) u)l,= ((0) o(u))l,=0=0c(0) =c(((0) u)l).

u’. Analogous to the previous case.

g) u=0 and (r) u — 0. Analogous to the previous case.

)
)
()

(h) r = Az : U.r’, uis a base term and (r) u — r’[u/z]. Notice that o((Az : U.r’) u)l, is equal to
(Az:U.o(r)) o(a)),= (c(x')[o(u)/z])],, which by Lemma E.5.1 is equal to o(r'[u/z])J,. If
we prove that this term is < than o((r'[u/z])}) = o(((Az : U.r') u)l) then we are done. Let us
prove it by structural induction over r’, assuming o(r’'), < o(r')) and o(u)l, < o(ul), which

are true by the induction hypothesis.
L r' =, then o(z[u/z])],= o(u)], S o(ul) = o((2'[u/z])]).
iil. ¥ =y orr’ =0, then o(r'[u/z))],= o' )|, < o(r')) = o((r'[u/z])]).
iii. ¥ = Ay : Vir”. Then o((A\y : Vir")[u/z))],= Ay : Vio(r"[u/z]){, which by the induction
hypothesis is < than Ay : Vio(r”[u/z]]) = o(Ay : Vir’[u/z]))
iv. ' = AY.x”. Then o((AY.x")[u/z])},= AY.o(r"[u/z]){, which by the induction hypothesis
is < than AY.o(r"[u/z))) = o(AY.x"[u/z])).
v. ' = (t1) t2. Notice that o(((t1) t2)[u/z])],= ((o(t1[u/z])) o(tz[u/x]))),. Cases:
AL ((t1[u/2x]) ta[u/x])d= (t1[u/x]}) t2[u/z]|. Since the terms ((o(t1[u/z])) o(ta[u/x]))l,
and (o(t1[u/z]) ], o(t2lu/z])) ], have the same normal form, by definition of <,

one has ((o(t:[0/2])) o(bafu/z])1,S (o(ta[w/a])l, o(tafu/a]))l,, which by the in-
duction hypothesis is < than (o(t1[u/z]]))) o(t2[u/z]l)) = o(t1[u/z]] t2[u/z]l) =
o(((t1[u/z]) talu/z]))).

B. t1[u/a] = t1, + t1,, so ((t1[u/2]) to[u/a]) = ((t1,) t2[u/a] + (t1,) t2[u/z])|. This
case is analogous to case 7b.

C. ta[u/z] = ta, + ta,, so ((t1[u/z]) te[u/z])d= ((t1[u/z]) t2, + (t1[u/z]) t2,)d. Analo-

gous to previous case.
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D. ti[u/z] = a.t} or ta]u/z] = a.th, so ((t1[u/z]) ta[u/z])| is equal to (a.(t]) t2[u/z]).
This cases are analogous to case 7d.

E. t1[u/z] = 0 or ta[u/z] = 0, so ((t1[u/z]) to[u/z]){= 0. This cases are analogous to
case Tf.

F. ti[u/z] = Ay : Vit] and to[u/x] is a base term, let us call it b, then the term
((62[u/]) to[u/z]) = ti[b/y}l. Then o((Ay: V.t1) b)l,= ((Ay: V.a(t)) o(b))l,=
(o(t))[o(b)/y]){,, which by Lemma E.5.1 is equal to o(t}[b/y]){, which by the in-
duction hypothesis is < than o((t}[b/y]))) = o(((t1[u/z]) t2[u/x])}).

r' =r"QV. Then o(r"QV[u/z])|,= o(r"[u/z])|, @V which by the induction hypothesis

is < than o(r”[u/z]})QV = o(r"QV]u/z]]).

r’ = a.r”. Case by case on the possible one-step —-reductions starting from (o.r”)[u/z] =

a.r’[u/z].

A. a = 0, so 0.r'"[u/z] — 0. Notice that o((0.r"[u/z]))) = 0(0) = 0 = 0],=
(Cimr ' [u/a]) = o (0x" [u/a])l,.

B. a=1,s0 lL.r'"u/z] — r’[u/z]. Then o((1.r"[u/z])|) is equal to o(r"[u/z]]). On the
other hand, by the induction hypothesis o(r"[u/z])l, < o(r”[u/z]l) and notice that
(" [u/a))y= (i, o [u/a])] = o(L.r"[u/z])L,.

C. r"[u/z] = 0, so a.r’[u/z] — 0. Then o(a.r"[u/z]l) =c(0) =0 = (ZZL:{ a(0)),=
o(ar”[u/z])l,.

D. r’[u/z] = B.t1, so ar”’[u/z] = ax B.t1. Then o(a.r”[u/z])|, = (Z}ijlij o(t1), S
(ZlL:f’ﬁJ o(t1)),= o(a x B.t1)], which is < than o((o x 8.t1)}) by the induction
hypothesis. Notice that o((a x B.t1)}) = o((c.x”[u/z])]).

E. t"[u/z] = t1 + t2, so ar’[u/z] — a.t; + a.ty. Since u is a base term we can
assume ' = t} + t5, with t{[u/z] = t; and ti[u/x] = ts. Then o(a.r’[u/z])],=
(L oty + t2))l = (S o (61) + 31 o (t2))L, = o(a.ty + a.ta)], which is equal
to o((a.t] + a.th)[u/x])l,, and this, by the induction hypothesis is < than the term
o((@-t) + ath)[u/ll) = o((cr” [u/a])L).

F. ar”’[u/z] is in normal form. Then we have o((a.r”[u/z])]) = o(ar’[u/z]) =
Sl (e u/a]), and note that o(a.r’[u/a]) L= (X1 o(r”[u/z])) |, and this is
S than 3212 o(r"[u/a]).

r' = t1 + ta. Then o((t1 + t2)[u/x]) L,= (o(t1[u/z]) + o(tz2[u/z])) |, which is, by

Lemma E.5.2, < than o(ti[u/z])], +o(t2[u/z])], which by the induction hypothesis

is < than o(t1[u/z])) + o(te[u/z]]) = o(t1[u/z)} +t2u/z]}). If t1[u/z]] +t2[u/z]} is in

normal form, then due to the confluence of A4, it is equal to (t; + t2)[u/z]), and then
we are done. In other case, it means that ti[u/z]] +t2[u/z]] reduces. Cases:

A. to[u/z)l= 0, then (t1[u/z] + tz2[u/z])}= t1[u/z]}. Then o(t1[u/z)}) + o(teu/z]}) =
o(tifu/z[}) +0 S o(ti[u/zl)) = o((t1[u/a] + ta[u/z])}).

B. t1[u/z]l= a.t| and to[u/z]i= B.t}. Then (t1 + t2)[u/z|{= (o + B).t}. So o(ti[u/z]|
Jroltalu/all) = o(ath)+o(B)) = D& 6+ 6 = DT 6 S D ¢ =
o((a + B).t]) which is equal to o((t1 + t2)[u/z]l).

C. The case where t1[u/z]}= a.t] and tz[u/z]|= t] and the case t1[u/x]}= t2[u/z]| are

analogous to the previous one.
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E.6 Proof of Lemma 6.4.3

Lemma 6.4.3 (Typing preservation). For any context I', term t and type T, if T+t : T then T' k4 o(t) : T

Proof. We proceed by induction on the derivation of '+t : T'.

176
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D,z :UF a:U as a consequence of rule ax. Notice that o(z) = « and by rule az in we have

Dx:Ubkyx:U.

I' 0 : 0 as a consequence of rule azg. Notice that o(0) = 0 and by rule azg in X9 we have
I't4 0:0.

Ik (t)r: Y, (m.T;) as aconsequence of ' =t :>." (U — T;), 'k r: m.U and rule —g. Then
by the induction hypothesis I' t4 o (t) : i (U — T3), I' ba o(r) : m.U and so, by rule — g in X4
we have I' by (o(t)) o(r) : >oir, (m.T;). Notice that (o(t)) o(r) = o((t) r).

X :Ut:U — T as a consequence of I';z : U F t : T and rule —;. Then by the induction
hypothesis T', 2 : U k4 o(t) : T and so, by rule — in Xedd we have I' kg Az U.o(t): U — T. Notice
that Az : U.o(t) = o(A\x : U.t).

I' - tQV : U[V/X] as a consequence of I' - t : VX.U and rule Vg. Then by the induction
hypothesis I' k4 o(t) : VX.U and so, by rule Vg in X449 we have T' k4 o(t)QV : U[V/X]. Notice
that o(t)QV = o(tQV).

I' - AX.t : VX.U where X ¢ FV(T') as a consequence of I' - t : U and rule V;. Then by the
induction hypothesis I' k4 o(t) : U and so, by rule V; in X4 we have I' - AX.o(t) : VX.U. Notice
that AX.o(t) = o(AX.t).

I'Ft4+r: T+ R asaconsequence of ' -t : 7T, ' - r: R and rule —;. Then by the induction
hypothesis T' k4 o(t) : T and ' k4 o(r) : R and so, by rule + in X*44 we have I' by o(t)+0o(r) : T+R.
Notice that o(t) + o(r) = o(t + ).

I'F a.t: |a].T as a consequence of I' = t : T and rule sI. Then by the induction hypothesis
Ik o(t) : T. Cases:

If @ > 2, then by rule +; |a/-times, we have " k4 ZzLijl o(t) : T. Notice that Zijl o(t) =
o(a.t).

If 1 < o < 2, then notice that o(t) = 23:1 o(t) = o(a.t).

If o <1, then notice that o(a.t) = 0 and by rule azy, I'F4 0: 0.7



Appendix F

Proofs from Chapter 7

F.1 Proof of Corollary 7.2.3

Corollary 7.2.3 (Base terms). If ' F b: T, then exists V such that T Fb:V and V <X T.

Proof. Structural induction on b.

b = x: Then by 7.2.2(1), 3V and A such that V < T and I' = AU {z : V}. Then by rule az, I' - z: V.

b = Az : U.t: Then by 7.2.2(4), 3R such that I';z: U F t: R, with U — R < T. Then by rule —,
I'EXxe:Ut:U—>T.

b = AX.b’: Then by Lemma 7.2.2(7), X ¢ FV(T), and 3(U),, (a), such that '+ b’: > | o;.U; and
Yo, ;. VX.U < T. By the induction hypothesis 3V such that I' + b’:V and V < Y7 | «;.U;.
Then by rule V;, I' - AX.b’: VX.V. Notice that VX.V < 3" o, VX.U; < T.

[l

F.2 Proof of Theorem 7.2.1

Theorem 7.2.1 (Subject reduction). For any terms t, t’, any context I and any type T , if t — t’ then
F'kt:T=TkHt:T.

Proof. We proceed by checking that every reduction rule preserves the type. Let t = rand I'+t:7T. To

show that I' - r: T, we proceed by induction on the derivation of t — r.

FElementary rules

rule 0.t — 0: Let I' - 0.t: 7. Then by Lemma 7.2.2(6), 3R such that 0.R < T and I' - t: R. Then
by rule axg, I' - 0:0.R. We conclude using rule <.

rule 1.t — t: Let I' - 1.t: 7. Then by Lemma 7.2.2(6), 3R such that 1.R < T and I' - t: R. Since
R <X 1.R <X T, we conclude using rule <.

rule .0 — 0: Let I' - «.0: 7. Then by Lemma 7.2.2(6), 3R such that T+ 0: R and a.R < T. By
Lemma 7.2.2(2), 35 and t such that 0.S < Rand I' - t:S. Then 0.5 = (a x 0).5 < a.(0.5) <
a.R XT. So, by rule azg, I' -0:0.5, and by rule X, I' - 0:T".
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rule a.(8.t) = (a x B).t: Let T' F a.(8.t): T. Then by Lemma 7.2.2(6), 3R such that a.R X T
and I' - 5.t: R, and so, by Lemma 7.2.2(6) again, 35 such that 8.5 < R and I' - t:S. Using
rule sy we can derive I' F (o x 8).t: (o x 8).S. Notice that (a x 8).5 < a.(8.5) R a.R <X T,

so we conclude using rule <.

rule a.(t +r) > at + a.r: Let T+ a.(t +r): 7. Then by Lemma 7.2.2(6), 3R such that «.R X T
and I' -t +r: R. Then by Lemma 7.2.2(5), 357 and Ss such that S; +S2 < R, 'Ft:5; and
I'Fr:S;. Then using rule s7, one has I' - a.t: .57 and I' F a.r: .53, from where, using rule
+7, one can derive I' - a.t+a.r: @.S1+«.S3. Notice that a.S14+a.S2 < a.(S1+52) < a.R <X T,

so we conclude by rule <.

rule t + 0 — t: Let T'Ft 4+ 0:7. Then by Lemma 7.2.2(5), 3R; and Ry such that Ry + R2 < T,
' t:Ry and T F 0: Ro. By Lemma 7.2.2(2), 35 such that 0.5 < Ry. Notice that Ry =<
R1+ 0.5 =< R; 4+ Ry 2T, so we conclude using rule <.

Factorisation rules

rule a.t + 5.t = (a+ B).t: Let ' a.t + S.t:T. By Lemma 7.2.2(5), there exist 77 and T such
that T F a.t: Ty and '+ S.t: T, where Ty + T2 < T. Then by Lemma 7.2.2(6), there exist
R; and Ry such that T'Ft: Ry and I' - t: Ry, with a. Ry < T} and 3.Ry = T5. Since Ry and
Ry are both types for t, by Lemma 7.2.4 35 such that S < R;, S < Ry, and ' - t:.S. Using
sr, we obtain I' - (a + 8).t: (a + 5).S. Notice that (o + 8).5 < a.S + .5 2 a.Ry + .Ry <
T, +15 <X T. We conclude with rule <.

rules a.t +t — (v +1).t and rule t +t — (1 + 1).t: Analogous to previous case.
Application rules

rule (t+r) u— (t) u+ (r) u: Let T F (t +r) u: 7T, then by Lemma 7.2.2(3), In, m, J, k, (X),,
<O‘>na </8>m7 U, <T>n’ <V>m,7 <<W>m+5>ma where ija Fj1, .. Tk / U<[Wj/X]>k = Vja and such

that
n m-+90 m
Tht+r: Y 0 ((VX), (U= T)a(d_ W),  and  Thu:) .V,
i=1 j=1 j=1

i=1 j=1

Then by Lemma 7.2.2(5), 3R and S such that

I'-t:R and T'kr:S,

n m+5
with R+ 82> 0. ((VX), (U = T)@( > Wy),.
i=1 j=1
Then 3Ny, N2 C {1,...,n}, such that
m+4 m+d
R= Y an((vX) (U = T)a(Y Wy, + Y 7((vX),.(U = Ty wy),
i€N1\Na j=1 i€N1NN3 j=1
and
m+4 m+5
S Y a((VX).(U—=T))Q(Y Wy + D ¢i((VX).(U = T)Q(Y_ Wy,
i€Na\ N1 j=1 iEN1NN2 j=1
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where Vi € N1 N Na, v; + ¢ = .
First we give the bigger types to t and r, then we use — g to derive
TH()u: Y Zazxﬁj W/ XD+ Z%xﬁg [W;/X0),
i€N1\ N2 j=1 i€EN1NN2 j=1
and
Y Zazxﬂ] Wi/ XD+ Y ZQZXﬂJ ((W;/X1),.
1EN2\ N7 j=1 i€EN1NNy j=1

then we sum them up using rule +;, obtaining

() ut(r) u: 3 iaiXﬂj-m[Wj/XDﬁr > i%Xﬂj-M[Wj/XDﬁ

iENl\N2.7 zeNmNzJ
> Z a; X B Ti((W /XD + > Z @i x B Ti([W;/ X]),
i€EN3\ N1 j= 1€N1NN3 j=

Notice that this type is equivalent to Y., Z] 105 X B T([(W;/X]), <= T. We conclude by

rule <.

rule (u) (t +r) = (u) t + (u) r: Analogous to previous case.

rule (a.t) r — a.(t) r: Let I'F (a.t) r: T. Then by Lemma 7.2.2(3), 3n, m, ¢, k, (X),, (o)., (8),.,
U, (T),, (V)r (W), s50m> Where VV;, Jj1, ..., jr / U([W;/X]), =V}, and such that

n m-+90 m
That: Y a.((VX),.(U—T) ZW and  Thku:) BV,

i=1

i=1 j=1

Then by Lemma 7.2.2(6), 3R such that

n m+d
I'Ht:R with @R =D ((VX),.(U = T)a( Y wy),.
i=1 j=1

Then, 3(v),, such that R < > ~.(VX),.(U — T3))@ (Zm+5W )e» Where Vi, a X v; = a.
Taking the bigger type for t (by rule <), we can use —g to derive

v S B LW /X))

=1 j=1

m

And then, using sy,

Tk a.(t) t: QZZ%X@ (W; /X)),

=1 j=1

Notice that . ZZ 12 1% X B Ti((W;/ X)), = Zl 12 o x B T((W5 /X)), < T. We
conclude by rule <.

rule (r) (a.t) = a.(r) t: Analogous to previous case.

rule (0) t = 0: Let '+ (0) t: 7. Then by Lemma 7.2.2(3), 3n, m, 6, k, (X),, (&), (B),., U, (T),,

(Vs {W),i5)m> Where VV;, Jj1, ..o, i / U([W;/X]), =Vj, and such that
n m+5 m
TH0: > a;.((VX),.(U > To)) ZW and  Thu:) BV,

=1
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with ZZalxﬁj (W;/ X)), < T.

=1 j=1

By Lemma 7.2.2(2), 3R such that

m+d

jzn: (VX), (U = T3)) ZW

Then JA C {1,...,n} such that

n m+5 m+90
D ai(VX),. (U = T)@(Y_ Wy), =D 0.((vX),.(U = T)a( Y W),
i=1 j=1 i€A j=1
Then by rule =,
m+o
T'H0: ) 0.((VX),.(U = T)) ZW

i€A

and so by rule — g,

ZZOX& ((W;/ XD

i€A j=1
Then by rule azg, T'F 0:0.>7, 4 Z] 10 x B;.Ti([W;/X]),. Notice that 0.3, , Z;n:l() X
(W5 /XT), = 3000 D0 «a x B3 Ti([W;/X]), < T. We conclude by rule <.

rule (t) 0 — 0: Analogous to previous case.
Type-linearity rules
rule (at)Q(>" ", U;) = a.t@(3°" , U;): Let I' - (a.t)@(Y"1 , U;): T. Then by Lemma 7.2.2(8),

V)., X, (B), such that

n

DEat: Y B VXV and > B.(VXV)Q() Ui) = T.

j=1 j=1 i=1

Then by Lemma 7.2.2(6), 35 such that

T'Ft:S and a.SjZﬁj.VX.Vj.

Jj=1

By Lemma 7.1.2, S = Zgzl 00.VX.W,, so by rule <,

h
Lkt: Zao.wo.

o=1
Thus, by Lemma 7.1.3, Yo, 3W/ such that W, = VX.W/. So, using rule @;, we can derive

h n

I t@(zn: Ui): > 6o.(VX.WQ(> 1),

o=1 i=1
and using the rule sy on this sequent, we derive

n

I+ a.t@(zn: Ui): a. zh: So-(VX. WA Uy,

i=1 o=1 i=1
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Note that . ,
. S (YXW)QD Ui) =D a x 6. (VX.W)A(> Ui)
o=1 i=1 o=1 =1
and since Z?Zl a X 6, VX W, = .S =< ZT:1 B;.¥YX.V;, by subtyping rules Czy, Czs, Cza
and T'r,
h n m n
> axd.(VXW)Q U) =Y B.(VXV)a(> i) = T.
o=1 i=1 j=1 i=1

We conclude by rule <.

rule (t+r)Q(X ", U;) »tQ(X " U) +rQ(3"  U;): Let T F (t +r)@(>"", U;): T. Then by
Lemma 7.2.2(8), (V) , X, (B), such that

n

Pht+r: ) BYX.V; and > B.(vXV)a() Ui) = T.

j=1 j=1 i=1

Then by Lemma 7.2.2(5), 357, S such that

THt:5;, Tkr:S and  Si+S8 =Y VXV

j=1

By Lemma 7.1.2, S; = ZO L0 WY and Sy = Z

Yo, 3W!" such that W/ = VX.W/". Then, using rule @y,

52.W2. So, by Lemma 7.1.3, for i = 1,2,

o=1"0"

n ht n n h? n
Dt 0:): Y ab.(vxwHa>"vi) and Trra(d Ui): > 62 (X Ha(> Uy).
=1 o=1 =1 =1 o=1 =1
By rule +j,
n n ht n h? n
T Hta() U) +r@(> U): > ar.(vxwHa> vy + Y s2.(vxwiHay v,
=1 =1 o=1 =1 o=1 =1
Notice that, since
h' h?
STorvxw) + 32X W =5+ S, < Zﬂ] VXV,
o=1 o=1 j=1
using T'r and Cz subtyping rules,
ht n m
> 6. (vx.wha( ZU +252 (VX W)@ Z <> B.(vX.V))a ZU)
o=1 i=1 j=1 =1

We conclude by rule <.
Type-distributivity rule

rule (((AX),.(Az: U), £)@(3-%, Wi), ) (bY), — (= V), 6([W;/X]),) (b),:
Let I' = (((AX),.(\z : U), £)@(>"7", W;),) (bY), : T, where U([W;/X]), = V. Then, by
Lemma 7.2.2(3), 3p", m'™, k™, ("), (Y")ous (@)ns (8" U™ (T, (V') s

(W) v sn Dy s Where YV™ 301, o / U’"([Wcﬁn/Y”Dk,n = V", and such that
m pn m/n+6n
F((AX),.(\z: U), £)@> Wi a (VY (U = T > W,
i=1 j=1 o=1

181



Appendix F. Proofs from Chapter 7 [

m

Peby: S v and Zmz < BRI Y ST
j=1o=1

o=1

Using the same Lemma, we get for i = 2,...,n—1, 3p', m"", k", (@) s (Y0 (o/)pi, (B s

uto(Th (v L <<W’i>m,i+5i>m,i, where YV, 3o1,...,0p: / U ((WJ'/Y]) = V], and
such that

m pi ' . . . m/i+6i '

F(((AX),-(Az = U), £)@(>_Wi),) (b), s > ol (W) .(U" = T))a( > W) .,
i=1 j=1 o=1
Dby BV and
o=1

pi m/i ' . ' . 1+1 ' - - m/i+1+6i+l -
SN alxBLTHW, /YY), = Z oSFL (YT LT s T ya > Wt L
j=1o0=1 o=1

Then, one more time the same Lemma from i = 2, we end with 3p, m/, &', (9),,, (Y),,, (a),,
(B, U (T, (V) s (W) o) Where YV, For, ..o o/ U([WS/Y]),, = V,, and such

that
m D m'+8
FAX), (\a U>n.t)@(z Wi, : ‘ a;. (YY), (U = T)@( Y~ W),

T'tby: Y BV,  and

o=1

m/2+52

P m’ P
SNy x B T(WL /YD), =D ad((vYR) LU s TR)al Y W,
7j=1 o=1

j=10=1
By Lemma 7.2.2(4) k-times, and using rule < and Lemma 7.1.3, we have that 3(v) _, (Z), and
(U™, such that

F(AX), . (\z: U), Zyg (vz),.U! and

r m P m'+6
30 (V2), TS W), =35 (97),,- (U7 = T)a( Y W,

By Corollary 7.2.3, 3V" such that

F(AX),.(\z: U), t: V" and V" 2> 4,.(v2),.U,.
g=1
Then, by Lemma 7.1.3, 3V’ such that V" = (VZ), .V"'. Now, by Lemma 7.2.2(7), k-times,
and using rule < and Lemma 7.1.3, we have that 3(U"’) ,, (&) , such that (X), ¢ FV(I'), and

’

Oz :U), Z Uy and > o (vX),UY = (VZ), V",
f= f=1
By Corollary 7.2.3, 3U™ such that
' {\x:U), .t: U and U < Z o/f.U}”.
f=1
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By Lemma 7.2.2(4), n-times, 3R such that
D {x:U), Ft:R and (U), = R=U™.

By Lemma 7.2.4, there is a principal type for t in the context T', (x : U) . Chose R to be the
principal type (if it is not, just take R’ < R).

By rule =7, n-times and Lemma 7.2.5,
LW/ XD, = (A= U), (W5 / XD (W5 / XD), - ((U),, = R)([W;/X]),

However notice that since (X), ¢ FV(I'), I{[W;/X]), =T. In addition Yh, Up{(W;/X]), = V4,

so we can write this sequent as
DE Az V), (W, /XD),: (V), — R{W;/X]),.

By hypothesis of the reduction rule, Vh, I' - by, : V},. So, using rule — g, n-times,
IE (A= V), 4(W;/X]),) (b), : R{[W;/X]),.

We must show that R([W;/X]), =T.
Notice that using —, V; and @y it is possible to derive

I ((AX),.(\x U)n.t)@(z W), - (VX),.(U — R))@(Z Wi),.

Then, since Vh,I' F by, : V},, using — g,
L' F(((AX),-{ha = U), )@Y Wi),) (b), - R{W;/X]),.
j=1
Then by Lemma 7.2.4, 35 such that S < R([W;/X]), and also S < T. Notice that if we
show that the only possible S is R([W;/X]),, we are done since it would be R([W,/X]), < T.
Consider S is not R([W;/X]),, then R([W;/X]), cannot be the principal type of t([W;/X]),,

which is an absurd since we chose R to be the principal type.

k

Beta reduction

rule (A\z : U.t) b — t[b/z]: Let I' - (Az : U.t) b:T. Then by Lemma 7.2.2(3), In, m, J, k, (X),,
(@), (B> U (T (Vs (W), 50> where YV;, Jj1,... gk / U([W;/X]), =V}, and such

that
m-+o

I'FAx:Ut: iaz(<VX>k(Ul — Tl))@<z Wj>k’

i=1

TEb:> 8.V, and >3 ai x 8. T,(W;/X)), <T.
j=1

i=1 j=1

By Corollary 7.2.3, 3V’ such that

n m+d
PkXx:Ut: V' and V2> 0 ((VX), (U = T))a( > W),
i=1 j=1
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Then there exists a partition {N,} of {1,...,n} such that Vr, if r1,79 € N, T, = T,
and I’ / Vi € Ny, V! = ((¢X),.(U" = )OS W), Sien, 0 = 1 and ¥r # 17,
> ien, 1 = 0. Then for any i € N,/, by rule < one has

m+9
Tk Az Ut: (VX), (U — Tﬁ)@(i W),

Then by Lemma 7.2.2(4), 3R such that

m+d
Da:Ukt:R and U= R=X((VX),.(U' = T)Q( > W),
j=1
Then notice that Vi, m +d; = 1, and since T' = b: 337" | ;.V}, then m = 1 and ¢; =
So, by Corollary 7.2.3, AW’ such that W’ < $;.V4, and so $; = 1. Then using rule
we can derive I' = b: Vi. Notice that for any i € Ny, (3,on, i x 1).Tu([W1/X]), =
Dic1 2y @i X B3 T;{[(W;/ X]),. Thus, in order to simplify notation, we write W1, = W; and

Vi = V. Then, since } ;. n , a; x 1 =1, we have

AL =2

Vi € Ny, Ti{([W/X]), = T.

Also, we have

U— R=((VX), (U = T))QW), =V — Ty/([W/X]),.

Then notice that the only possibility is U =V and R < T;([W/X]),. Then, using =,
[z:UFt:T(W/X]), and Trb:U.

So by Lemma 7.2.5, T" - t[b/x]: T;{({W/X]),. We conclude by rule <.

rule (AX.t)QU — t[U/X]: Let I' F (AX.t)QU:T. Then by Lemma 7.2.2(8), 3(V),, Y and («a),
such that ' AX.t: > | ;. VY.V, and > i | «;.(VY.V;)@QU < T. Then by Lemma 7.2.2(7),
X ¢ FV(T) and 3(W),, and (), such that T t: 377, 8;.W; and 370, B;VX.W; =
Yo, ;. VY.V;. Then by Lemma 7.2.5, T[U/X] + t[U/X]: Z;nzl B; W;[U/X]. Since X ¢
FV(T), T[U/X] = T. In addition, notice that 7", 8;.W;[U/X] = >0, 8;.(VX.W;)aQU <
St . (YY.V;)QU < T. Then, by rule <, '+ t[U/X]: T.

AC equivalences

Commutativity: Let I' - t +r: 7. Then by Lemma 7.2.2(5), 3R, S such that THt: R, ' r: S
and R+ S <XT. Then by rule +;, ' Fr+t:S + R. Notice that S+ R=R+ S < T. We

conclude by rule <.

Associativity: Let I' - (t +r) +u:7T. Then by Lemma 7.2.2(5), 3R, S such that I' - t +r: R and
I'u:S, with R4+ S <T. Then by Lemma 7.2.2(5), 3Ry, Rz such that T+ t: Ry, T Fr: Ry
and Ry + Ry < R. So, by using rule +; twice, we get T'F t + (r +u): R1 + (R2 + .5). Notice
that Ry + (Re + S) = (R1 + R2) + S 2 R+ S < T. We conclude by rule <.

Contextual rules Let t — r and assume as induction hypothesis that for any context I' and type T, if
I'Ft:TthenT'kFr:T.
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(t) u—(r)u: Let T'  (t) u:T. Then by Lemma 7.2.2(3), In, m, §, k, (X),, ()., (B),.,
U, (I),, (V),, ((W),.ishm,» where ¥YV;, Jji,..., 5, / U([W;/X]), = Vj, and such that
Dt Y0 0 ((VX),.(U" = TS Wy),, Tk u: S0 B,V and 0, 527 oy x
B;.T;{([W;/X]), = T. Then by the induction hypothesis one has T'Fr: > 1" | o;.(VX),.(U" —
Tz))@<27té W;),, so using rules —g and <, we get I'F (r) u: 7.

m?

(u) t = (u) r: Analogous to previous case.

t+u—r+u Let 'Ft+u:T. Then by Lemma 7.2.2(5), 3R, S such that T'Ft: Rand '+ u: S,
with R+S < T. Then by the induction hypothesis I' F r: R, so using rule +;, ' - r+u: R+ S.
We conclude by rule <.

u+t — u+r: Analogous to previous case.

at — a.r: Let T F a.t:T. Then by Lemma 7.2.2(6), 3R such that I' - t: R and «.R < T. Then
by the induction hypothesis I' - r: R. So using rule s;, I' - a.r: a.R. We conclude by rule <.

Az.t — Az.r: Let '+ Az.t:T. Then by Lemma 7.2.2(4), I',2: U F t: R, with U — R < T. So, by
the induction hypothesis I';z: U F r: R. Using rule —;, I' - Az.r: U — R. We conclude by

rule <.

AX.t — AX.r: Let ' AX.t:T. Then by Lemma 7.2.2(7), P F t: 37" | o;.U; and > | 0 VX.U <
T. So, by the induction hypothesis T'Fr: > | o;.U;. By rule Vy, T'H AX.r: >0 | ;. VXU,
We conclude by rule <.

tQ(> ", U;) »r@(3"  Uy): Let I'Ht@Q(3°" , U;): T. By Lemma 7.2.2(8), 3(V),,,
that I Ft: 327 ;. VX.Vj and 3370 o, (VX.V;)Q(301 U;) < T. The by the induction hy-
pothesis I" F r: Z;nzl a; VX.V;. By rule @/, T Fr@(3"" | U;): z;nzl a;.(VX.V;)Q(>"r | Uy).
We conclude by rule <.

X (a),  such

m

O
F.3 Proof of Lemma 7.3.1
Lemma 7.3.1. If T = R, then | T = ||R|.
Proof. Case by case
o LT =T. |L.T|| = 1.|T| = ||T].
o a.(BT) = (axB)T. la.(BT)|| = a.(BT]) = ( x B).|IT|| = [[ (e x B).T].
o aT+aR=a.(T+R). |aT+aR|=a|T|+a|R| = a(T| + |RI) = llo.(T + R)|.
e aT+ 8T =(a+p)T. |aT+B.T||=ca|T|+ LTI = (a+8).IT| = (e + 8).T.
e T+R=R+T. |T+R|=|T|+[Rl=IR|+IT|=R+T].
e T+ (R+S5)=T+R)+S [T+R+S5) =TI+ R+ S = (Tl + [RI) + S]] =
(T + R) + S
o (VX.U)QV = U[V/X]. |(vX.U)aV]| = |U[V/X]]|.
O
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F.4 Proof of Lemma 7.3.2

Lemma 7.3.2.

L [t[b/z][| = [[t[|{I[b]]/«].

2. 7w/ X1 = NIT W/ X

Proof.

1. Structural induction on t.

t = :U, then |[(z : U)[b/z]|| = [[b] = «[||bl| /] = ||z : U[l[|[b]|/].

t=y: U, then [|(y : U)[b/zl|| = lly : Ul =y = yllbll/«] = ||y - Ul[I[bl|/=].

t = 0, analogous to previous case.

t = Ay : Ur, then ||(\y : Ur)[b/z]|| = |\y : Ur[b/z]|| = Ay.||lr[b/z]||, which by the induction
hypothesis is equal to Ay.||x||[||b]|/z] = || Ay : U.r||[||b]|/x].

t = AX.r, then ||(AX.r)[b/z]|| = |AX.r[b/z]|| = ||r[b/z]||, which by the induction hypothesis
is equal to ||r|[[|[bl|/] = [|AX.r[|[[|b]|/z].

t = (r) u, then [[((r) w)[b/z]|| = || (r[b/x]) u[b/z][| = (|[e[b/z]|]) [[u[b/x]||, which by the induc-
tion hypothesis is equal to (|[r[[[[[bll/z]) [[all[Ibll/«] = ((lx]l) [alDlll/«] = () al[b]|/x].
t = rQ(31L, Vi), then ||(r@(3CE, Uh))[b/a]|| = [[(r[b/])@(2L, Uil = [[(x[b/a])||, which
by the induction hypothesis is equal to ||r||[||b||/z] = |[r@(}>_;_, U)||[IIb]/=].

t = a.r, then ||(a.r)[b/z]|| = ||a.x[b/z]| = a.||r[b/z]||, which by the induction hypothesis is
equal to a.[[r[|[|[bll/z] = (ev|[e)[Ibll /=] = [[ax||[|[b]|/].

t = r+u, then ||(r + u)[b/z]|| = ||r[b/x] + ulb/z]|| = ||x[b/z]||+|u[b/z]||, which by the induc-
tion hypothesis is equal to [[e[|[|[|b[l/z] + [[u[[[[bll/z] = ([[r]| + [[al){[[bll/2] = |r + ul|{[ib]l/z].

2. Structural induction on T’

186

T =X, then [ X[W/X]|| = [W] = X[[W]/X] = [IX{[[W][/X].

T =Y, then [[Y[W/X][| = Y] =Y = Y[[[W]|/X] = [[Y[[IY]/X].

T =U = R, then [[(U = R)[W/X]|| = [UW/X] = RW/X]|| = [[UW/X]|| — [[RW/X]]
which by the induction hypothesis is equivalent to ||U||[|W]|/X] = I|IRI[IIWI|I/X] = (U] —
IRIDIWI/X] = U = RII[W][/X].

T = VY.U, then ||(VY.U)[W/X]| = VY. UW/X]| = VY.||UW/X]||, which by the induction
hypothesis is equivalent to VY.|U||[|W]|/X] = (YY) UIDIW ]/ X] = |IVY.U||[|W]/X].

T = (VX.U)QV, then by Lemma 7.3.1, || (VY.U)QWV)[W/X]| = |[U[V/Y][W/X]||, which by
the induction hypothesis is equivalent to |[U[V/Y]||[|W]/X] = |vX.UQV||[|W]/X].

T =U0Q(X",V;), with U # VX.W or n > 1, then |[UQ(Y" | V;)[W/X]|| is equal (after
doing the needed variable renaming) to [|[U[W/X]|Q(3_", V;[W/X])| = |U[W/X]||, which by
the induction hypothesis, is equivalent to ||U||[[|W|/X] = [|[UQ(> 1, V)IIIW]/X].

T = a.R, then ||[(a.R)[U/X]|| = ||«.R[U/X]|| = «.||R[U/X]||, which by the induction hypoth-
esis, is equivalent to a.|[R[[[[[W][/X] = (a-[[RDIW/X] = lla-RI[[[W]]/ X].
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T = R+ 5, then [[(R+9)[W/X]| = [RW/X]+SW/X]|| = [[RW/X]|| + [[SW/X]||,
which by the induction hypothesis is equivalent to ||R||[|W]|/X] + IISIIIW]/X] = (|R]| +
ISDUWI/X] = (1= + S|I{WIl/X].

O

F.5 Proof of Lemma 7.3.4

Lemma 7.3.4 (Reducibility preservation). If t — r, then ||t|| =3 [|r||. Moreover, if the reduction t — r
is not the type application beta-reduction, the type-distributivity rule nor the type linearity rules, then
[t = ]l

Proof. Rule by rule analysis.
Elementary rules

e Rule 0.t — 0. [|0.t]| = 0.]jt]| =, 0 = 0]
e Rule 1.t — t. ||1.t] = 1.||t]| — [It]].

Rule @.0 — 0. ||a.0]| = a.||0]| = .0 —, 0 = ||0].
Rule a.(8.t) = (a x B).t. [la.(B-t)[| = a.(B.[[t]]) o (a x B).[[t]] = [[(a x B).t]].
Rule a.(t +r) = a.t + a.r. ||a.(t + )| = a.(||t] + ||r]]) = a|It|| + a|x]| = ||a-t + c.r|.

e Rulet+0 —t. [t+ 0] = [|t]| +0 —, |[t].
Factorisation rules

e Rule a.t + f.t = (a+ f).t. |lat + S.t|| = .|t + B.||t] =» (@ + B).|It]| = ||(a + B)-t].

e Rulesat +t — (o +1).t and t +t — (1 + 1).t. Analogous to previous case.
Application rules

e Rule (t +r) u— (t) ut (r) w |(t+r)af = (] + [[l]) [lull = (t]) [[all + () ol =

1(t) u+ (r) ul.
e Rule (u) (t +r) — (u) t + (u) r. Analogous to previous case
e Rule (t) r = a.(t) r. [[(a-t) x| = (aft])) [[e]} = a-([[t]) [[v]] = fe.(t) x]l.
e Rule (r) (a.t) = a.(r) t. Analogous to previous case
* Rule (0) t — 0. [|(0) t|| = (0) [[t[| = 0 = [|O].
e Rule (t) 0 — 0. Analogous to previous case

Beta reductions

e Rule (Az : U.t) b — t[b/z]. ||(Az : U.t) b|| = (Az.||t]|) ||b]|]. Since base vectors are translated
into base vectors, ||b|| is a base vector, and so the previous term — -reduces to ||t||[||b]|/x].
By Lemma 7.3.2, this is equal to ||t[b/z]]|.

e Rule (AX.t)QU — t[U/X]. ||(AX.t)QU| = ||AX.t|| = ||t||, which by Lemma 7.3.3 is equal to
It[U/X1][-
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Type-linearity rules
n n

* Rule (04-‘6)@(_:Zn:1 Ui) = at@(3_ Ui). [[(at)@(3 Ui)|| = flat]] = afit] = Oé-Ht@(i:l Uil =

i=1 =1

.t ; ).

e Rule (t + r)@(i U;) - t@é Us) +1a(3 Uy). (¢ + r)@(é U = It + ]| = [[6]] + [[x]| =

= 1=

IIt@(Z Uil + III‘@(Z Uyl = ItQ(X U:) +r@( 3 Ui)|.
Type-distributivity rule

e Rule ((AX),.(Ax : U), . t)Q(3°, Wi),) (b), — ((Az: V), t((W;/X]),) (b),.
[((AX),.(Az = U), £)Q(30E, Wa),) (b) || = (I((AX),.(Az = U), . £)Q@(3TE, Wi ) (IIbll), =
((Az),.|It]]) (|Ib]]), and using Lemma 7.3.3, this is equal to (||(Az : V), .t{(W; /X 1) {|Ibl), =

1Az = V), 6([W;/XT),) (b, [I-

Contextual rules Let t — r and assume |t|| —7 ||r||. All the rules follow by translating and then
using the equivalent rule in Vectorial, analogously as the previous cases.

O

F.6 Proof of Lemma 7.3.5
Lemma 7.3.5 (Typability preservation). If I' - t: T, then 3R < T such that ||T'|| F, ||t]|: || R]-

Proof. Induction on the last rule applied to derive I' - t: 7.

Then, since unit types translate into unit types, by rule axz in Vectorial, we

L Lz:Ukz:U “ have ||T'||,z : ||U|| by @ : ||U||. Note that ||z : Ul|| = =.
CEt.T By the induction hypothesis 3R < T such that ||| F, |[t|: ||R]|, so by rule O;
.——— 07 in Vectorial, we have ||T'|| k-, 0:0.||R|| = ||0.R||. Notice that 0.R < 0.7. Also,
I'Fo0:0.T
0]l = 0.
By the induction hypothesis 3R < T such that |||,z : ||U]| o |It]]: || R]]
5 Dz:UFt:T S then by rule —; in Vectorial, |T'|| Fy Az.||t]|: ||U|| — ||R||. Notice that
TFXe:Ut:U—T 10l = IR = [U—=R||and R 2T = U - R XU - T. Alo,
Az : U.t]] = Az.||t]].
Fi—t:zn:ai.(NX) U—T)) miswj rkr;igj_vj YV, 31,k /
n i=1 — j=1 U(w;/X]). =V; .
vy Y x BT{([W; /X)),
i=1 j=1

Then by the induction hypothesis there exists R < Y1 | a;.((vVX),.(U — T3))@ (Zm+6 W;), and
S = Z _ 1 B;.V; such that ||T']| F, ||t]|: [|R|| and |T'|| ks ||r]]:||S]]. Using Lemmas 7.1.2 and 7.1.3,
we can con51der7 without lost of generality, R = > I, ;.((vVX),.(U — T;))@ (Zm+6W> and
S = 377%, B3.Vj. Then, using Lemma 7.3.1, [|R| = >7/L; ai.[|((VX), .(U — T}))@ (Zm+6W) II

Cases:
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o If Vi, m+6; =1, then §; = 0 and m = 1 and so |R|| = Y i_, ai. |V = | T:I{[|WA /X)),
and ||S|| = ||81.V1]], so using rule =g in Vectorial, we obtain ||| b, ([[t]]) [|x]l: Do, a5 x
BTl W]/ X]), -

e In other case, |R| = Y, ai.(vVX),.(JU|| = |T;])) and [|S]| = Z;n:lBJHVJH Since
VVi, 31,0k [ U(W; /X)), = Vi, ||IVil = ||U(W;/X]), ||, which by Lemma 7.3.2, is equal to
NUIIIW;1|/X]), - So, using rule — g in Vectorial, we obtain ||T'|| -, (|[t])) [lr]: >, Z;nzl o X
By IITll (W / X]),.-

(1) [lell = [1() xll and 3T, 5770 o x By Tl (W5 /X, = 130521 30520 e x By Tl (Wi / XD |-
By the induction hypothesis 3R < >~ | «;.U; such that ||T'|| F,

It]|: || R]]. Notice that since the translation does not intro-

LHt: Z%‘-Uz' X ¢ FV(T) duces any type variable, X ¢ FV(||T'|). By Lemma 7.1.2,

. = v R =371, B;.Vj, so by Lemma 7.3.1, [|R|| = [|X27L, 8;.Vjl| =

. i ™ Bi.||V;]l. Then, using rule V; in Vectorial, we obtain
TFAX$: Y VXU 21 B3IV - s !

P T o 6l 3252 8- VXL |[V;. - Note that [AX.t]] = |t],

||Z;n:1 ﬂj-VX-VjH = ZT:1 ﬂj-VX-HVJ’Ha and 2311 ﬂj-VX-Vj =
Z?:l alVXUl

I'kt: zn:ai.VX.Ui

6' m ;:1 m @I
P> V) > i (VX.U)Q() V)
j=1 i=1 j=1

By the induction hypothesis, 3R < > ", ;.VX.U; such that ||[T'|| +, |t|:||R|. Notice that
[t QT Vil = [It]l. If m > 1, we are dome, since |31 ;.(YX.U;)@Q(3TL, V;)]| is equal
to [|>°1; a;.VX.U;||. On the other hand, if m = 1, then ||>.7 ; a;.(VX.U;)@(V1)]| is equal to
S e lUsN[IVill/X]. By Lemmas 7.1.2 and 7.1.3, R = ZZ:1 Br.YX.Wy. Then by Lemma 7.3.1,
IR| = ZZ:l B VYX.||Wg|l. So, using rule Vg in Vectorial, we can derive the following sequent
T o 1l ey B Wl VA /XT = [y Br- (VX W)@VA . Since R < 37, @, VX.Uj, then
S B VX Wy 2 X" ;. VX.U;, and so we have 1, Br. (VX Wy)@QV; < Y27 . (VX.U;)QVS.

By the induction hypothesis, 3R < T such that ||T|| F, |[t]|: ||R||. Then by rule

'Et:T
7. — s; sy in Vectorial, ||T'|| by a.]|t]|: .|| R||. Notice that ||a.t| = a.||t]|, «.R < «.T and
I'Fat:aT
o R|| = o[ R|.
By the induction hypothesis, 37" < T and R’ =< R such that ||T|| F,
. r+t:T 'tr:R (It : 17|l and ||| ko [|x]|: || R'||- Then by rule 45 in Vectorial, ||T'|| k-
: I :
Ftt+r:T+R [+ lIell- 7)) + [[B'|. Notice that [t +r|[ = [|t]| + [[r[|, |T" + BR[| =

IT’|| + |R'|| and T’ + R’ < T + R.

T'kt:T T=<R - Then by the induction hypothesis 35 < T such that ||T'|| ., [[t]]:||S]-
I'Ft:R ~  Notice that S < T < R.

O

F.7 Proof of Theorem 7.3.6

Theorem 7.3.6 (Strong normalisation). If I' - t: T is derivable in Lineal, then t is strongly normalising.
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Proof. Let I' - t: T, then by Lemma 7.3.5, 3R < T such that ||T'|| F, ||t]|:||R], and so by Theorem 5.4.4,

It]] is strongly normalising. Assume t is not strongly normalising, say t — t; — t2---. Then by
Lemma 7.3.4, |[t|| =5 [t1]] =5 [It2]] =5 - -. Since ||t|| is strongly normalising, there exists n such that
Vi > n, ||t;|| = ||tit1]|. By Lemma 7.3.4 it means that Vi > n, the reduction t; — t;+1 can be only one of

the type application beta-reduction, the type-distributivity rule or the type linearity rules. We define a
positive measure on terms and show that these rules are strictly decreasing with respect to the measure,
so t has to be strongly normalising.

Consider the following measure:

lz:Ul=0=Xz:Ut] = 1 t+r] = 2+t +|r]
(6) x| = [t[+]r] AXt] = [t]
lact] = 1+t [t Ul = 1+2[t
Notice that [t[U/X]| = |t|, since the measure does not depend on the free variables. We proceed by

checking case by case to show that the mentioned rules are strictly decreasing on this measure.
1. [(AX4)QU| =1+ 2|AX.t| =1+ 2/t] > |t| = [t[U/X]].
2. ()@Y, Uy)| = 14+2]act] = 1+2(1+]t]) = 342[t] > 2+2[t] = 1+1+2]t| = 1+[tQ(3" , Uy)| =
|t@(3C, Ui

3 t+r@Xl U) =1+ 2t +r| =542t + 2] >4+ 2[t] +2r| =2+ 142/t + 1+ 2)r| =
2+ [fQC, Un)l + [P35, U] = RO, Ui) + 1@ (35, Uil

4. [((AX),.(Az - U), . 0)@3" Wy),) (b) | =1+2|(Mx:U), t|+n=1+24+n=3+n>1+n=
(A = V), (W5 / X+ n = [((Az V), 4([W;/ X]),) (b)

n|'

O
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Proofs from Chapter 8

G.1 Proof of Theorem 8.2.3

Theorem 8.2.3 (No-cloning of scalars). #II,, such that Yo, C(IL,(T' F a.U)) = A (§ x a® + ).V with
d # 0 and 7 constants in S, s € N>! and U,V constants in U.
Notice that « is a member of a ring and s is a natural number, so o’ is just the multiplication of «

by itself s times.

Proof. Induction over n.
Basic case. n = 0. Trivial, as IIy(T' + «.U) =T F «.U for all II.
Inductive cases.

I, (T'F aU)

—— R

P
Assume P = A+ (§ x a® +).V and let us do an analysis case by case on the possible rules R:

o II,(T'FaU) =

1. R =— I[W]. Because the denominator must be unit, Voo, § x a® + v = 1, which is a
contradiction.

2. R=VE[X :=W]. Then (§ x a® +~).V =T[X/W], and C(Il,,—1(I' - «.U)) =VX.T. By
Lemma 3.2.2, 37 € U, € S such that T = 5.7, so by Lemma 3.2.3, § x a® + v = f3,
then C(Il,,1(T'F a.U)) =VX.5.Z =VX.(§ x a® +7).Z = (§ x a® +v).VX.Z, which is a
contradiction by the induction hypothesis.

3. R=VI[X]. Then (0 x a® 4+ ).V =VX.T. Analogous to 2.

4. R=sI[8]. Then § x a®* +~.V = .T. By Lemma 3.2.2, T = ¢.W, then by Lemma 3.2.3,
0 X a® + = 8 x 0. Notice that § cannot depend on « as the rule is constant, so it must

be o depending on «®, which is a contradiction by the induction hypothesis.

(T F .U
o I,(I'Fall) = al i ) ™ p

Assume P = A+ (6 x a® +).V and let us do an analysis case by case on the possible rules R:
1. R=— E. Then C(my) = A F W and CIIx(T F a.U)) = A+ ¢.W — 0.V where

Va, B X ¢ x o =73 xa®+. B cannot depend on «, as 7, is constant, so:

— Assume ¢ depend on «, and o do not, then it depend linearly on « by the induction

hypothesis.
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— Assume o depend on «, then there are two possibilities:

(a) U is an arrow with the last term of the arrow being ¢.V, which is a contradiction
as o depend on « and U is fixed.

(b) The arrow is set up through the derivation, so at some point we must had to use

— I rule in the following way

0,ZFoV
—_— =1
O+Z —oV

so by the induction hypothesis ¢ depends linearly on «. Once we reach this point,
the only possibility to add something depending on « and multiplying the whole
type is with sI[«] as it cannot come from any other branch (all other branches are
constants). However, it is not possible either, as all the rules must to be constants.
2. R=+I. Then C(Il(T' + a.U)) = At 0.V and C(m,) = A F ¢.V where 0+¢ = §xa?+.

So, as ¢ is constant, o = § x a®+y—¢, which is a contradiction by the induction hypothesis.

Tk Hh(F = aU) R

P
Assume P = A+ (§ x a® +).V and let us do an analysis case by case on the possible rules R:

o II,(T'FaU) =

1. R=—E. Then C(7) = At ¢.W — 0.V and C(II(T' F «.U)) = B.W where B x ¢p X 0 =
0 X a® + 7.
Notice that nor ¢ nor ¢ can depend on «, so the only possibility is to 8 to depend on a*,

which is a contradiction by the induction hypothesis.

2. R = +1. Analogous 2 of the previous case.
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Résumé

’OBJECTIF de cette thése est de développer une théorie de types pour le A\-calcul linéaire-
algébrique, une extension du \-calcul motivé par ’informatique quantique. Cette exten-
sion algébrique comprend tous les termes du A-calcul plus leurs combinaisons linéaires,

donc si t et r sont des termes, a.t + S.r est aussi un terme, avec « et 3 des scalaires pris
dans un anneau. L’idée principale et le défi de cette thése était d’introduire un systéme
de types ou les types, de la méme fagon que les termes, constituent un espace vectoriel,
permettant la mise en évidence de la structure de la forme normale d’un terme. Cette thése
présente le systéme Lineal, ainsi que trois systémes intermédiaires, également intéressants
en eux-méme : Scalar, Additive et A4, chacun avec leurs preuves de préservation de type et

de normalisation forte.

Abstract

HE objective of this thesis is to develop a type theory for the linear-algebraic \-calculus,
an extension of A-calculus motivated by quantum computing. This algebraic extension
encompasses all the terms of A\-calculus together with their linear combinations, so if

t and r are two terms, so is a.t + S.r, with a and 5 being scalars from a given ring. The
key idea and challenge of this thesis was to introduce a type system where the types, in
the same way as the terms, form a vectorial space, providing the information about the
structure of the normal form of the terms. This thesis presents the system Lineal, and also
three intermediate systems, however interesting by themselves: Scalar, Additive and A4, all

of them with their subject reduction and strong normalisation proofs.
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