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Abstract

This thesis is accomplished in the context of the industrial simulation domain that
addresses the problems of modelling of human behavior in military training and civil
security simulations.

The aim of this work is to solve large stochastic and sequential decision making problems
in the Markov Decision Process (MDP) framework using Reinforcement Learning
methods for learning and planning under uncertainty.

The Factored Markov Decision Process (FMDP) framework is a standard representation
for sequential decision problems under uncertainty where the state is represented as a
collection of random variables. Factored Reinforcement Learning (FRL) is an Model-
based Reinforcement Learning approach to FMDPs where the transition and reward
functions of the problem are learned under a factored form. As a first contribution of
this thesis, we show how to model in a theoretically well-founded way the problems
where some combinations of state variable values may not occur, giving rise to what
we call impossible states. Furthermore, we propose a new heuristics that considers as
impossible the states that have not been seen so far. We derive an algorithm whose
improvement in performance with respect to the standard approach is illustrated through
benchmark experiments on MAZE6 and BLOCKS WORLD problems.

Besides, following the example of FMDPs, a Hierarchical MDP (HMDP) is based on the
idea of factorization, but brings that idea on a new level. From state factorization of
FMDPs, HMDP can make profit of task factorization, where a set of similar situations
(defined by their goals) are represented by a partially defined set of independent subtasks.
In other words, it is possible to simplify a problem by splitting it into smaller problems
that are easier to solve individually, but also reuse the subtasks in order to speed up the
global search of a solution. This kind of architecture can be eficiently represented using
the options framework by including temporally extended courses of actions.

The second contribution of this thesis introduces TeXDYNA, an algorithm designed
to solve large MDPs with unknown structure by integrating hierarchical abstraction
techniques of Hierarchical Reinforcement Learning (HRL) and factorization techniques
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of FRL. TeXDYNA performs incremental hierarchical decomposition of the FMDP,
based on the automatic discovery of subtasks directly from the internal structure of the
problem.

We evaluate TeXDYNA on two benchmark problems, namely TAXI and LIGHT BOX,
and we show that combining contextual information abstraction through the FMDP

framework and hierarchy building through the HMDP framework results in very
efficient compaction of the structures to be learned, faster computation and improved
convergence speed. Furthermore, we appraise the potential and limitations of TeXDYNA

on a toy application more representative of the industrial simulation domain.

Keywords: factored markov decision processes, reinforcement learning, options,
hierarchical decomposition, structured dynamic programming, impossible states
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Chapter 1

Introduction

This thesis was founded by CIFRE convention 1032/2006 with THALES company.
The thesis was accomplished in THALES Simulation department and conjointly in the
Synthetic Environments & Simulation team in ThereSIS lab (Thales European Research
center for E-Gov & Secured Information Systems). These departments are working
on simulation of human behavior in military training and civil security simulations,
proposing software solutions for project testing, training and control.

The main challenges of such applications are building realistic and adaptable artificial
entities, on the one hand, and providing high-level behavior and structured representation
of the solution understandable by a human operator, on the other hand.

Consequently, the applicative goal of this work is to test the methods that can be
efficiently used for modeling human behavior in such simulations.
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1.1 The industrial simulation domain

The industrial Simulation domain, particularly Synthetic Environments also called
“Serious Games” are used to simulate training or testing environments, that are
cheaper and easier to realize on artificial support including software simulation than
in real conditions. The simulation techniques are used to deal with a large scope
of problems involving planning and learning in stochastic environments, such as:
simulating adaptive agents behaving in a dynamic environment, solving optimization
problems or even discovering the internal structure of an unknown environment. For
instance, manufacturing systems that optimize scheduled task sequences or simulating
the behavior of NPCs (non-player characters) in computer games evolving in a stochastic
environment are examples of simulation where solving these problems is mandatory.
Among other things, the success of the “Serious Games” approach comes from the
fact that using existing software development infrastructure, the developers can create
simulations at a fraction of the cost of traditional expenses. Used for training,
advertising, forecasting, or education, the Synthetic Environments domain is in full
expansion. Besides, while traditional simulators usually cost millions of dollars not
only to develop, but also to deploy, and generally require specialized hardware, the cost
of support for “Serious Games” is much lower.

Basically, the Synthetic Environment & Simulation staff in THALES develops new types
of realistic simulators for civil and military applications such as Computed Generated
Forces or Operation Control Center. That is simulation of the physical and behavioral
environment that represents real life tasks that can be tested or learned by the users of
the system. In particular, such systems can compute complex and adaptive behaviors
as well as low level navigation and environment interactions. With such an engine, it
is possible to populate complex critical infrastructure, for instance a subway station, an
airport or a whole city, with a crowd of persons exhibiting context specific decisions
and optimizing their own motivations according to their roles as passengers, policemen,
firemen, soldiers or terrorists. Each agent in such simulation is guided by a decision
mechanism more or less complicated according to the complexity of the expected
behavior.

Modeling human agents behavior

In this work, we are focusing on the simulation of the behavior of human agents. By
behavior, in this case, we mean a sequence of actions that have an influence on the
environment or the internal state of the agent.

Modeling human agents behavior raises some constraints. First, this behavior must seem
natural and realistic to the user. Thus, the resulting behavior (or policy) and parameters
must have some legibility to be usable by an uninformed user. For instance, when
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solving tasks that have critical issues that need to be checked by a human, providing
a clear solution in a context of user friendly systems is an advantage. Then, it requires
a high computation performance, since many simulations are real time systems that run
a large number of agents simultaneously. Finally, such behavior can be hard coded,
derived from a rule base or learned from scratch. When a learning method is used,
there are two strategies: online or offline learning. While in offline learning the entire
sequence of inputs, representing the trajectory of the agent in the environment, is given in
advance and the behavior sequence is computed once and for all, the online algorithms
must process each input in turn, without detailed knowledge of future inputs. Online
learning methods improve their response to the environment along their interaction with
it giving rise to an additional behavior validation problem. Thus, the choice of the
method depends on the application context. For instance, the behavior of the agents
that represent soldiers, who follow a strict military doctrine, would be better predefined,
hard coded in the program or learned offline and validated before their actual use in
a simulation. By contrast, the behavior of the agents representing civilians, militias,
terrorists may have learned components in order to be less predictable and adaptable to
the changing situation. In this thesis we propose techniques that can potentially be used
in both contexts, but our target is rather the offline use since human validation may play
an important role in the simulation domain.

In this perspective, the behavior of such agents is modeled as an action selection
mechanism (ASM), that is a computational mechanism that implements the process of
choosing, at each moment in time, the most appropriate action with respect to the current
and sometimes expected, situation of the environment given as inputs. This system
should implement the following requirements adapted from [Tyrrell, 1993] :

• Adaptability: the need to be able to adapt the behavior to changing situation,
that is, learning new responses to the evolving dynamic environment, or in other
words, creating adaptable agents by opposition to the deterministic ones in static
environments;

• Compromise: the need to be able to choose actions that, while not the best choice
for any one sub-problem alone, are best when all sub-problems are considered
simultaneously;

• Persistence: the need to have a tendency to persist with an action overtime in
order to avoid dithering among activities and, to continue the current sequence
once started, rather than beginning a new sequence for a different goal;

• Opportunism: the need to incorporate information about availability. This should
allow the agent to interrupt other activities to take advantage of infrequently-
available opportunities if they should suddenly arise;
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• Interaction: the need to take into account the behavior of other agents, that is
exhibit realist crowd movements but also respond to stress and aggressiveness;

• Quick response time: the need to compute the output of the ASM in real time.

Several efficient approaches to such kind of simulations were developed over last
decades. On the one hand, there are systems like Cathexis [Velásquez, 1998],
OCC [Ortony et al., 1988], Sloman Architecture [Sloman, 2001] or Emile
[Gratch and Marsella, 2001] that do not learn behavior, but implement an emotional
representation of the situation of the entities and then use it for action selection. On
the other hand, learning can be implemented by using some rules systems like SOAR

[Laird et al., 1987] in MRE (Mission Rehearsal Exercise) [Traum et al., 2004]. Some
of these techniques were tested in the previous work [Kozlova, 2006] on the example
of SOAR architecture. Our aim in the current work is to study non-emotional learning
strategies. In fact, our goal is to provide the mechanisms of action selection that
can address three of the requirements presented here above, namely: adaptability,
compromise and persistence in the context of complex simulation problems.

1.2 Reinforcement Learning

In a way, learning consists in acquiring knowledge about what is coming next. The
ability to learn is possessed by (some?) PhD students, (some?) humans, animals
and some machines. More generally, a learning subject gets new knowledge, skills or
behaviors, preferences or values. Learning is a process where a learning agent interacts
with a dynamic (i.e. evolving in time) environment.

In AI Machine Learning field [Russell and Norvig, 2003] addresses the problem of
automated knowledge acquisition in its own way. Here, learning means automatically
recognizing complex patterns and making intelligent decisions based on some data.
Unlike humans, who have to make complex decisions based on incomplete, muddled
and often very sparse data, machines mostly deal with well defined and somehow
organized data. Basically, these data are provided by the internal status of the learning
system and the dynamic environment of the learning agent. These data can contain
variables representing some characteristics of the system or of the environment and also
an outcome that qualifies the interaction between the learning agent and its environment.

The application field that delimits this work is concerned by the simulation of adaptive
agents behaving in a dynamic environment. The representation of such problems can
be modeled as a discrete (a sequences of separate time steps) and online (the solution
is computed while exploring the environment) process that involves a set of actions and
states. Each state represents some situation at a given moment in time. The agent moves
from one state to another by taking actions in its environment and receives rewards for
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its accomplishments. In this case, the problem to solve is to find a sequence of actions
representing a trajectory through a solution space that optimizes the expected outcome.
The major difficulties of such problems are the following points:

• The size of the environment - that is the expression the well known “curse of
dimensionality” problem where the space of the solution grows exponentially in
relation to the size of the problem; the definition of states, actions and rewards
play an important role.

• The complexity of the final solution - that is, on the one hand, providing
the solution that can be understood by the user and, on the other hand, the
adequateness of the solutions to the complexity of the problem.

One of the most popular solutions to such problems of modeling the behavior of
the agents in the complex simulated environments is the Reinforcement Learning
(RL) approach [Sigaud, 2004]. RL methods, based on the animal learning theories
[Thorndike, 1911], and further developed in [Sutton and Barto, 1998], are trial and error
methods to compute optimal solutions for stochastic sequential decision problems. Then,
such problems can be modeled as a Markov Decision Process (MDP) [Puterman, 1994], a
standard mathematical framework for learning and planning under uncertainty. Although
there are solutions proved to be sound and efficient, the difficulties arise when the
problem is large and/or has a complex structure (e.g. contradictory goals).

In order to address the difficulty with the size of the problem, Factored-MDPs (FMDPs)
[Boutilier et al., 1995] allow the representation of large-scale problems by exploiting
their structure. These solutions factorize (by aggregating similar states and representing
sets of states) the state space in order to reduce it. But, in practice, a perfect knowledge of
the state transitions in the problem is rarely available. This case is addressed by Factored
Reinforcement Learning (FRL), an approach to FMDPs where the transition and reward
functions of the problem are learned using Supervised Learning methods.

Another approach to the large problems difficulty is scaling over the problem size using
divide and conquer methods such as Hierarchical Reinforcement Learning (HRL), based
on Hierarchical-MDPs (HMDPs). HMDPs simplify the problem by decomposing the
overall task into a hierarchal set of sub-tasks that are easier to solve individually. In
some cases, one can use hierarchical decompositions designed by a human operator.
But in many situations such as large, complex or unusual problems, providing the
correct decomposition is difficult if not impossible. Therefore, automatically finding
a hierarchical decomposition is one the most challenging problems in the domain of
HRL.
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1.3 Contributions

The contributions of this thesis can be considered in two dimensions: theoretical and
applicative. From the theoretical point of view, this thesis proposes a new algorithm to
solve hierarchical and factored RL problems when the structure is unknown. As to the
practical applications, the goal of this work is to test how HRL and FMDP methods can
be efficiently combined to address the long standing goal of modeling human behavior
in Synthetic Environment simulations.

In brief, in this thesis we study the solutions to large and complex stochastic sequential
decision problems. Our main contributions are the following:

Dealing with impossible states. Basically, an FMDP a is a standard representation
for large sequential decision problems under uncertainty. In this framework, the
variable are considered independent from one another. However, in some cases,
dependencies between state variables at a given time step can appear giving rise to
more complex solution algorithms. We address a particular case of this problem where
some combinations of state variable values may not occur, giving rise to what we
call impossible states. We propose a new class of algorithms (IMPSVI and its FRL

version, IMPSPITI) that adapts existing FRL algorithms in a theoretically well-founded
way in order to address a wider class of problems that contains such kind of additional
constraints.

Hierarchical decomposition in FRL. We propose the TeXDYNA framework that
automatically discovers the hierarchical decomposition of a sequential decision problem
by combining the abstraction techniques of HMDPs with an FRL method. The first
contribution comes from the fact that the hierarchical decomposition is derived directly
from the trees representing the transition function of the problem, taking advantage of
the internal structure of the task. To the best of our knowledge, at this moment in time,
there is no hierarchical FRL (HFRL) system that implements sub-task discovery based on
the decision trees structure. Hence, the central contribution of this thesis comes from the
fact that the discovery of the hierarchical decomposition and the learning of the model
of the FMDP are simultaneous and performed online.

Application to the simulation domain. To satisfy the industrial requirements of
this work, all solutions proposed in this thesis are based on a framework that returns
transition and reward functions of the problem as well as a solution policy in a
decision tree form which is understandable even by an uninformed user. We show on
a simplified simulation problem the kind of application where HRL and FRL techniques
like TeXDYNA are useful. We also show the limitation of our approach when facing more
realistic simulation problems and indicate possible directions for addressing industrial
applications in the future.
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1.4 Outline

The remainder of this thesis is organized as follows:

In Part I (Chapters 2, 3, 4 and 5) we give a brief review of the MDPs, FMDPs, HMDPs
and RL approach, as well as the state of the art of the related algorithms.

In Part II (Chapters 6, 7 and 8) we present new algorithms proposed in this thesis and
their applications. More precisely:

In Chapter 6 we present IMPSVI and IMPSPITI, new FRL algorithms that deal with
impossible states.

In Chapter 7 we introduce the TeXDYNA framework that performs automated discovery
of options in FRL.

In Chapter 8 we give an example of practical application of this work to a simplistic
instance of the industrial simulation domain and discuss future directions of the
applicative effort.

Finally, Chapter 9 summarizes the main contributions of this thesis and discusses future
work and open problems.

To end-up this overview, remembering Umberto Eco’s “Anti-library”, we have to
mention the “non-contributions” or the subjects that are interesting or related to the topic,
but not treated in this thesis. For instance: we do not study partially observable MDPs,
do not use emotional or motivational learning strategies, do not look at the continuous
variables and actions possibilities, do not check the multiagent applications either, and,
certainly, so many more not less interesting directions.
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Chapter 2

Markov Decision Processes

A. A. Markov

Markov Decision Processes (MDPs), named after Andrei
Andreyevich Markov (1856 - 1922), is an extension of Markov
chains with the addition of actions and rewards. An MDP is a
mathematical model for the random evolution of a memoryless
system. Such a system respects the Markov property, that
is a given future state depends only on the present state and
where knowing more about the past does not bring any further
information.

An MDP, as a discrete time stochastic control process, provides
a mathematical framework for modeling decision making in
situations where the outcome is partially controlled by the
agent. One of the first solutions methods for MDPs, Dynamic Programming (DP)
algorithms - simplifies a complicated problem by breaking it down into simpler
subproblems in a recursive manner. These algorithms were proposed in the
1950s by [Bellman, 1957] and further improved and detailed by [Howard, 1971],
[Puterman, 1994] and [Bertsekas, 1995].
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2.1 Definitions

Formally an MDP is defined by a tuple 〈S,A,R, P 〉, where

• S is a finite set of states;

• A is a finite set of actions;

• R : S ×A→ R is the immediate reward function R(s, a);

• P : S ×A× S → [0, 1] is the transition probability function P (s′|s, a).

Figure 2.1: Markov Decision Process.

An MDP is called finite if its state and action spaces are both finite. A state s is called
terminal (or absorbing) if the process never leaves it once entered. An MDP is called
episodic if it is finite-horizon, that is time step t ∈ N, has terminal states and the process
restarts from the beginning once a terminal state was reached [Szepesvári, 2009].

Generally, an MDP (Figure 2.1) represents an agent which, during its evolution through
the environment, takes an action a ∈ A in state s ∈ S and proceeds to the state s′ ∈ S
with probability P (s′|s, a) receiving a reward R(s, a). A policy π : S × A → [0, 1]

defines the probability π(s, a) that the agent takes the action a in state s.

The goal of planning or learning is to find a policy π that maximizes the outcome, i.e.
cumulative reward of the agent. Since there is a reward given for every state/action pair,
it is possible to associate a value to each state that represents the expected value of the
next cumulative reward derived from the value of the next state. In other words, it is
possible to define Vπ(s) as a value obtained in a state s equal to the cumulative expected
reward received in the state s following the policy π. That is

Vπ(s) = E[

∞∑
t=0

γtR(st, π(st))] (2.1)

Therefore, given a policy π, the value of the state s is defined by the Bellman equation:
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Vπ(s) = Rπ(s) + γ
∑
s′∈S

Pπ(s′|s, a)Vπ(s′) (2.2)

with Rπ(s) = R(st, π(st)) and γ ∈]0, 1] the discount factor.

A policy π is optimal if, ∀s ∈ S : Vπ(s) > Vπ′(s). Since there may be more than one
optimal policy, all the optimal policies are noted π∗. The value function of any optimal
policy is called the optimal value function and is noted V

∗
. In other words, the optimal

value function maximizes the value of all states s ∈ S with respect to the policy π and
defines the solution of the Bellman optimality equation:

V
∗
(s) = max

π
[Vπ(s)] (2.3)

The action-value function Qπ(s, a) is the expected return starting in a state s, taking
action a and following the policy π and is defined by the Bellman equation:

QVπ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)Vπ(s′) (2.4)

The optimal action-value function Q
∗
(s, a) is defined by:

Q
∗
(s, a) = max

π
[Qπ(s, a)] (2.5)

or in terms of optimal value function V
∗
:

Q
∗
(s, a) = R(s, a) + γ

∑
s′∈S

P (s′|s, a)V
∗
(s′) (2.6)

Hence, the optimal value function is defined by:

V
∗
(s) = max

a
[Q
∗
(s, a)] (2.7)

and the optimal policy as:

π∗(s) = argmax
a

[Q
∗
(s, a)] (2.8)

If the value function of the problem is known, it is possible to define a greedy policy of
Equation 2.8 using Algorithm 2.1.
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Algorithm 2.1: Greedy
input : V (s)
output: π(s)

1 forall the a ∈ A do
2 Q(s, a)← R(s, a) + γ

∑
s′∈S P (s′|s, a)V (s′)

3 π(s) = argmaxaQ(s, a)
4 return π(s)

2.2 Algorithms

The standard DP algorithms are methods to compute the optimal policy of the finite-
horizon MDP where the transition and reward functions are known.

2.2.1 Policy Iteration

The Policy Iteration algorithm is given in Algorithm 2.2 [Howard, 1971]. It starts with
an initial policy that is evaluated by a policy evaluation process. The policy evaluation
process is performed by solving a system of linear equations where the reward R(s, a)

and transition probability P (s′|s, a) are given and the value function Vπ(s) is unknown.
That evaluation can also be done by an iterative computation of the value function for that
policy, where the value function of a policy is the expected infinite discounted reward
that will be gained, at each state, by executing that policy. Then, when the value of each
state under the current policy is known, the algorithm improves the current policy by
choosing greedily an action in each state with the best value Vπ(s′).

Algorithm 2.2: Policy Iteration
input : ∅
output: V

∗
(s), π∗(s)

1 Initialize Vπ(s) and π(s) arbitrarily

2 Policy Evaluation
3 Compute the value function V (s) of policy π by solving the linear equations
4 Vπ(s) = R(s, a) + γ

∑
s′ P (s′|s, a)Vπ(s′)

5 Policy Improvement
6 policy-stable← true
7 forall the s ∈ S do
8 b← π(s)
9 π(s)← Greedy(s)

10 if b 6= π(s) then policy-stable← false

11 if policy-stable then stop else go to step 2
12 return Vπ(s) and π(s)
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This step is guaranteed to strictly improve the performance of the policy. When no more
improvements are possible, then the policy is optimal. The iterations of the algorithm
produce a sequence of monotonically improving policies and value functions as shown
in Figure 2.2.

Figure 2.2: Policy Evaluation/Improvement

Since there is a finite number of distinct policies, and the sequence of policies improves
at each step, this algorithm terminates in at most an exponential number of iterations.
Depending of the problem size, the algorithm can result in an important computational
cost of the algorithm. Indeed, at each iteration, the algorithm has to run through the
entire states space S as many time as necessary until the convergence of the Vπ(s) and
then improve the policy π(s) for each state s ∈ S.

2.2.2 Value Iteration

The Value Iteration algorithm, given in Algorithm 2.3 [Bellman, 1957] does not maintain
a set of policies to evaluate. Instead, the value of π(s) is calculated once it is needed
usually in the end when V (s) has converged. In fact, Value Iteration is obtained simply
by turning the value function optimality equation (Equation 2.7) into an update rule.

Algorithm 2.3: Value Iteration
input : ∅
output: V

∗
(s), π∗(s)

1 Initialize V (s) arbitrarily
2 repeat
3 v ← V (s)
4 forall the s ∈ S do
5 forall the a ∈ A do
6 Q(s, a)← R(s, a) + γ

∑
s′ P (s′|s, a)V (s′)

7 V (s)← maxaQ(s, a)

8 until |v − V (s)| < ε
9 π(s)← Greedy(s)

10 return V (s) and π(s)

In a same way as Policy Iteration, Value Iteration algorithm requires complete sweeps
over the state space at each computation cycle.
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2.3 Discussion & Summary

MDPs provide a mathematical framework for modeling decision-making and are useful
for studying a wide range of optimization problems solved via Dynamic Programming
(DP) and Reinforcement Learning (RL).

However, the algorithms presented in this chapter are subject to the “curse of
dimensionality” [Bellman, 1961] that refers to the problem caused by the exponential
increase in volume associated with adding extra dimensions to a state space. For
instance, a problem represented by 10 binary variables has a 210 possible states, the
problem with 11 binary variables has a 211 possible states, etc. Each time an additional
dimension is introduced, the size of the problem increases by an order of magnitude.
That is the reason why exact algorithms that consider the entire state-action space of the
problem cannot address large scale problems.



Chapter 3

Reinforcement Learning

Inspired by the related psychological theory [Thorndike, 1911], Reinforcement Learning
(RL) is a trial-and-error learning process driven by interacting with an environment. The
RL agent does not have any prior knowledge about the environment and learns from the
consequences of its actions by receiving a reinforcement signal. In this case, the optimal
value function and/or the optimal policy have to be learned by an adaptive process. The
goal of the RL algorithms is to select actions that maximize the expected cumulative
reward of the agent.

3.1 Algorithms

Basically, the algorithms can be split in two classes: model-free and model-based
algorithms [Kaelbling et al., 1996]. The model-free algorithms attempt to learn a policy
without learning a model of the environment. Temporal Difference Learning (TD -
LEARNING) like Q-LEARNING or SARSA and ACTOR-CRITIC are the examples of
model-free algorithms.
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In contrast with model-free algorithms, model-based algorithms build an estimated
model of the transition function P (s′|s, a), which describes the transition probability of
going from state s to s′ when performing action a and of the reward function r(s, a) i.e.
receiving the reward r in a state s after executing the action a. The model-based set of
algorithms are improved represented by DYNA-like methods [Sutton, 1991], Prioritized
Sweeping (PS) [Moore and Atkeson, 1993] and Real Time Dynamic Programming
(RTDP) [Barto et al., 1993].

3.1.1 TD - LEARNING

Algorithm 3.1: TD - LEARNING

initialization: ∀s ∈ S define V (s) arbitrarily,
π the policy to be evaluated,
learning rate α

1 foreach episode do
2 s← initial state
3 while s is not terminal do
4 foreach time step in episode do
5 choose action a given by π for s
6 take action a, observe next state s′ and reward r
7 V (s)← V (s) + α[r + γV (s′)− V (s)]
8 s← s′

TD - LEARNING [Sutton and Barto, 1998] is a combination of Monte Carlo ideas
(repeated random sampling) and DP ideas. The goal of the TD approach is to learn
to predict the value of a given state based on what happens in the next state by
bootstrapping, that is updating values based on the learned values, without waiting for
a final outcome. While TD(0) is one-step backup algorithm (see Algorithm 3.1, it is
possible to perform the averaging of the n-step backups by applying TD(λ), where the
λ parameter defines the importance of the rewards from the distant states, with λ = 1

producing parallel learning to Monte Carlo RL algorithms. Algorithm 3.1 gives the TD(0)
procedure.

3.1.2 Q-LEARNING & SARSA

Q-LEARNING [Watkins and Dayan, 1992] (Algorithm 3.2) is a unifying TD control al-
gorithm which simultaneously optimze the value function and the policy. Q-LEARNING

is often used in an off-policy manner, learning about the greedy policy while the data is
generated by a different policy that ensures exploration.
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Algorithm 3.2: Q-LEARNING

initialization: ∀s ∈ S, ∀a ∈ A define Q(s, a) arbitrarily,
learning rate α
s← initial state

1 foreach time step do
2 choose action a using exploration policy derived from Q
3 execute action a, observe next state s′ and reward r
4 Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
5 s← s′

SARSA (State-Action-Reward-State-Action) is an on-policy TD algorithm that learns the
action-value function. The name reflects the fact that the main function for updating the
Q-value depends on the current state of the agent s, the action the agent chooses a, the
reward r the agent gets for choosing this action, the state s′ where the agent will be in
after taking that action, and finally the next action a′ the agent will choose in its new
state, hence (s, a, r, s′, a′). As in all on-policy methods, the Q-function are continually
estimated for the behavior policy using Equation (3.1), and the current policy is updated
greedily.

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (3.1)

see line 4 in Algorithm 3.2.

3.1.3 Actor-Critic

ACTOR-CRITIC methods [Barto et al., 1983] are TD methods that have a separate
memory structure to explicitly represent the policy independent of the value function.
The policy structure is known as the actor, because it is used to select actions, and the
estimated value function is known as the critic, because it criticizes the actions made by
the actor. Learning is always on-policy: the critic must learn about and critique whatever
policy is currently being followed by the actor. The critique takes the form of a TD error.

3.1.4 DYNA-Q

The model-free approaches, presented so far, do not exploit the knowledge about the
environment gathered during exploration. [Sutton, 1991] proposed a DYNA architecture
that exploits that experience to learn the model of the transition and reward functions
and then use it to directly improve the value function and policy using one of the
TD - LEARNING algorithms. In this approach, the planning is achieved by applying
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Reinforcement Learning methods to the simulated experiences just as if they really
happened. The relationships between experience, model, values, and policy are
summarized in Figure 3.1.

Figure 3.1: The DYNA process.

Algorithm 3.3: DYNA-Q

initialization: ∀s ∈ S,∀a ∈ A define Q(s, a) arbitrarily,
Model(s, a) world model

1 foreach time step do
2 Decision:
3 s← current state
4 choose action a using the exploration policy derived from Q
5 execute action a, observe next state s′ and reward r
6 Learning:
7 Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
8 update Model(s, a) from the observation 〈s′, a, r〉
9 Planning:

10 for N times do
11 s← a randomly chosen observed state
12 a← a randomly chosen action already executed in a state s
13 predict s′ and r using Model(s, a)
14 Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]

Algorithm 3.3 presents the version of DYNA using Q-LEARNING for policy learning
called DYNA-Q. DYNA-Q follows the process shown in Figure 3.1: acting, model-
learning, planning and direct RL. The model-learning method is table-based and assumes
the world is deterministic. After each transition, the model records in its table the entry
for the prediction that will follow. The planning method is the random-sample one-step
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tabular Q-LEARNING method where the sample size depends on the parameter N , that
is a number of planning steps usually fixed between N = 0 for a nonplanning agent and
N = 50. Finally the direct RL method is one-step tabular Q-LEARNING.

The DYNA algorithm can be generalized to the stochastic case by modifying the Q-
function update [Peng and Williams, 1993]. In this case, Q-functions must be weighted
by the probability of the corresponding transition model P (s′|s, a), that is:

Q(s, a)← Q(s, a) + α× P (s′|s, a)[r + γmax
a′

Q(s′, a′)−Q(s, a)]

3.1.5 Prioritized sweeping

Algorithms like DYNA suffer from being relatively undirected, since they update states
chosen randomly in a set of visited states. It is particularly true when the goal has just
been reached or when the agent is stuck in a dead–end continuing to update random
state-action pairs, rather than concentrating on the “interesting” parts of the state space.
The prioritized sweeping method [Moore and Atkeson, 1993] and a similar Queue-Dyna
method [Peng and Williams, 1993] deal with these problems.

Algorithm 3.4: Prioritized sweeping

initialization: ∀s ∈ S, ∀a ∈ A define Q(s, a), Model(s, a) and PQueue = ∅
1 foreach time step do
2 s← current state
3 choose action a using exploration policy derived from Q
4 execute action a, observe next state s′ and reward r
5 Model(s, a)← s′, r
6 p← |r + γmaxa′Q(s′, a′)−Q(s, a)|
7 if p > θ then insert s, a into PQueue with priority p
8 for N times, while PQueue 6= ∅ do
9 s, a← first(PQueue)

10 s′, r ←Model(s, a)
11 Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
12 foreach s̄, ā predicted to lead to s do
13 r̄ ← predicted reward
14 p← |r̄ + γmaxa′Q(s, a)−Q(s̄, ā)|
15 if p > θ then insert s̄, ā into PQueue with priority p

The Prioritized sweeping algorithm, given in Algorithm 3.4, is similar to DYNA, except
for the fact that the updates are no longer chosen at random but relatively to the states
with the largest Bellman error (computed in line 14 of the Algorithm 3.4), that is the
states that bring more information about the changes in the environment. Therefore, the
algorithm stores additional information about the states remembering the predecessors,
i.e. the states from which there is a non-zero probability to reach the given state.
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3.2 Discussion & Summary

In this chapter, we presented the basics on RL as well as the major RL algorithms namely
TD - LEARNING, Q-LEARNING, SARSA, DYNA and Prioritized sweeping.

According to R. Sutton, Reinforcement Learning theory is based on four key ideas:

1. Time/life/interaction - it involves an interaction with an external world over and in
time, that is the interaction with the environment during a period of time separated
in atomic steps;

2. Reward/value/verification - a formulation of short and long-term goals that enables
the agent to tell for itself when it is right or wrong;

3. Sampling - that is trial-and-error learning as a solution to the “curse of
dimensionality” where just a part of the entire state-action space is used to build
an approximate solution;

4. Bootstrapping - that is solving problems using recursive solutions involving the
methods of Bellman equation solution, temporal-difference learning and other
approximate solutions.

The major challenges of RL domain are the “curse of dimensionality”, temporal
credit assignment problem, state-action space tiling, non-stationary environments and
exploration-exploitation dilemma.



Chapter 4

Factored Reinforcement
Learning

In this chapter we first present Factored Markov Decision Process (FMDP) and then
Factored Reinforcement Learning (FRL) approach. The idea of factorization comes from
the necessity to represent large-scale problems that cannot be solved with the standard
MDP representations. FMDPs [Boutilier et al., 1995] exploit the structure of the problem
to represent large MDPs compactly when the state of the problem can be decomposed
into a set of random variables. In the remainder, we present the definition of FMDPs and
compact representation techniques, as well as the FRL algorithms used in this framework.

4.1 FMDPs

In the FMDP framework, the state space of the problem is represented as a collection
of random variables X = {X1, . . . , Xn}. A state is then defined by a vector
x = (x1, . . . , xn) with ∀i, xi ∈ Dom(Xi). Then for each action a, the model
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of transitions is defined by a separate Dynamic Bayesian Network (DBN) model
[Dean and Kanazawa, 1989].

Figure 4.1: Transition function representation within the FMDP framework. (A)
Dynamic Bayesian Network representing the dependencies between the variables. (B)
Tabular representation of the Conditional Probability Distribution. (C) Decision Tree
representation of the Conditional Probability Distribution.

The DBN model for each action, noted Ga is a two-layer directed acyclic graph whose
nodes are {X1, . . . , Xn, X

′
1, . . . , X

′
n} with Xi a variable at state s and X ′i the same

variable at the next state s′. The parents of X ′i are noted Parents(X ′i). The model of
transitions is quantified by Conditional Probability Distributions (CPDs), noted ∀a ∈ A,
P (X ′i|Parents(X ′i), a), associated to each node X ′i ∈ Ga. The CPD can be represented in
a tabular, decision tree or rules form.

Figure 4.1 shows the representation of a transition function with the CPD expressed in
a tabular and corresponding decision tree form and Figure 4.2 shows the representation
of a reward function. A tree representing P (X ′i|Parents(X ′i), a) has three functional
elements:

• nodes - the test on the variable Xi;

• branches - the set of nodes i.e. set of tested variables with their values representing
a state s ∈ S or a set of states Si having the same value;

• leaves - the distribution of probabilities P (X ′i|Si, a) over the set of states Si
represented by the branch leading to this leaf.

As exemplified in Figures 4.1 and 4.2, the tree representation is more compact than
the tabular one since the states that have the same values are aggregated in the same leaf



4.2. STRUCTURED DYNAMIC PROGRAMMING 45

Figure 4.2: Reward function representation within the FMDP framework. (A) Dynamic
Bayesian Network representing the dependencies of the reward from the variables. (B)
Tabular representation of the reward values. (C) Decision Tree representation of the
reward values.

while the tests on variables are simplified. For instance, the probability P (x2 = 1) of the
future value of the variable X2 in the state s′ given the current state {x1 = 0, x2 = 1}
is equal to the same probability given the state {x1 = 1, x2 = 1}. Hence, it needs one
leaf to be represented instead of two table entries, and the node testing the variableX1 is
simplified since its values are irrelevant. The same example holds for the reward function
representation where the states given by {x1 = 0, x2 = 0} and {x1 = 0, x2 = 1} have
the same reward value.

4.2 Structured Dynamic Programming

FMDPs can be solved by Structured Dynamic Programming (SDP) algorithms
[Boutilier et al., 1995, Boutilier et al., 2000] or Linear Programming algorithms
[Guestrin et al., 2002, Guestrin et al., 2003]. Here we focus on SDP algorithms.

Standard SDP algorithms such as Structured Value Iteration (SVI) and Structured Policy
Iteration (SPI) use decision trees as factored representation. Thus, SVI and SPI can be
seen as an efficient way to perform the Bellman-backup operation (Equation 4.1) on
trees, expressed as follows:

QV (s, a) = R(s, a) + γ
∑
s′
P (s′|s, a)V (s′) (4.1)

↓

Tree[QVa ] = Tree[Ra] + γTree[P Va V ] (4.2)
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Therefore, the value and policy functions are represented in a decision tree form noted
Tree[V ] and Tree[π].

4.2.1 Tree manipulations

In order to be able to compute Tree[QVa ] according to Equation (4.2), SVI and SPI use
the following standard operations on decision trees:

• Tree Simplification: the process of removing any redundant or incompatible
interior nodes in a tree (i.e., meaningless splits) as illustrated in Figure 4.3.

Figure 4.3: A tree simplified by removal of incompatible test V (x1x2x̄1) = 9 and
redundant nodes V (x̄x2) = V (x̄x̄2) = 6.

• Appending Trees: the process of extending a tree with the structure of another
tree, where the new leaves are labeled using one of the three possible combination
operations: sum, maximization or union. It is possible to append a tree to a
particular leaf of to the entire tree, that is appending a tree to each leaf of the
initial tree followed by simplification process. Figure 4.4 gives an example of the
appending trees operation, where the values of the leaves are appended using a
maximization operator.

Figure 4.4: Appending trees using maximization as combination operator.
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• Merging Trees: the process of producing a single tree from the set of trees. This
can be accomplished by repeated appending of trees to the merge of the earlier
trees. Figure 4.5 gives an example of the merging trees operation, where the values
of the leaves are appended using a maximization operator and redundant nodes are
simplified. The policy tree where Tree[π] is a result of merging Tree[QVa ] using
maximization operator over the distribution of values over actions contained in
leaves of Tree[QVa ]. The leaves of Tree[π] are label with the actions that have
the maximum value.

Figure 4.5: Merging trees Tree[QVa ] to obtain Tree[π] using maximization as
combination operator and simplification of incompatible and redundant nodes.

4.2.2 Decision-Theoretic Regression

SVI and SPI [Boutilier et al., 2000] are structured version of Value and Policy Iteration
algorithms given in Section 2.2.2 and 2.2.1. They need to redefine the computation
operators on values to manipulate decision trees. This process is called Decision-
Theoretic Regression as a generalization of goal regression - a standard process of
backpropagation of the goal state values.
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Thus, the Bellman-backup operator given in Equation 4.2 is performed by the
Regress(Tree[V ], a) operation detailed in Algorithm 4.2. InsideRegress, PRegress,
given in Algorithm 4.1, computes Tree[P Va ] using the structure of Tree[P ] and
Tree[V ].

Algorithm 4.1: PRegress
input : Tree[V ], action a
output: Tree[PVa ]

1 if Tree[V ] contains a single leaf then
return an empty tree PTree(QVa )

2 X ← the variable labeling the root of Tree[V ]

Tree[PVa ]← Tree[Pa](X ′|x)) transition function of the variable X for action a (with
leaves labeled by distributions over val(X))

3 foreach xi ∈ val(X) do
(a) Let Tree[Vxi

] be the subtree in Tree[V ] attached to the root X by arc xi
(b) Tree[P

Vxi
a ]← PRegress(Tree[Vxi ], a)

4 foreach leaf l ∈ Tree[PVa ], labeled with the probability P l do
(a) Treel = Merge({Tree[PVxi

a ] : ∀xi, P l(xi) > 0}), using union as combination
operator)
(b) Append Treel to the leaf l, using union as combination operator

5 return Tree[PVa ]

Consider the toy example whose reward and transition functions for an unique action a0

are given in Figure 4.6.

(a) (b) (c)
Reward P (x′1|X1, X2, a0) P (x′2|X1, X2, a0)

Figure 4.6: A toy example: the tree representation of a reward function and of the
transition functions of binary variables X1 and X2 given an unique action a0. Notations
are similar to the ones in [Boutilier et al., 2000], but in the boolean case we note xi for
Xi = true and x̄i for Xi = false.

From the transition trees, PRegress first computes the Tree[Pa0 ](X ′|x) shown in
Figure 4.7. This tree represents the individual probabilities of each variable value at
t + 1 given the variable values at t. For instance, the rightmost branch of the tree reads
as follows: if X1 and X2 were false, the probability that X ′1 and X ′2 are true are 80%
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and 0% respectively. Note that the probability of one of the values can be omitted in the
representation and inferred from the other probabilities. Furthermore, PRegress only
computes the combinations of values that are necessary to perform regression from the
current value function.

Figure 4.7: P (X ′|X, a0) computed by the PRegress operator from the example of
Figure 4.6.

P (X ′|X, a0) x′1x
′
2 x′1x̄2

′ x̄1
′x′2 x̄1

′x̄2
′

x1x2 100% 0% 0% 0%
x1x̄2 30% 30% 20% 20%
x̄1x2 80% 0% 20% 0%
x̄1x̄2 0% 80% 0% 20%

Table 4.1: Probabilities for joint variables, resulting from Figure 4.7.

Figure 4.8: Regression with structured representations using the values computed in
Table 4.1. We consider the first iteration where Tree[V ] = Tree[R]. Notice that
transitions to x̄1x2 and x̄1x̄2 are summed to x̄1.

Given the tree represented in Figure 4.7 and considering that the variables at t + 1 are
independent conditionally to those at t, PRegress computes the joint probabilities as
a product, as shown in Table 4.1. Note that the table representation is not computed
explicitly in the algorithm: in the more general case with any number of variables and
enumerated values, this calculation is implemented by expanding a tree of all variable
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values combinations and computing probabilities at the leaves as a product on individual
probabilities.

The last step of PRegress computes the union of Tree[P
Vxi
a ] for each leaf with

P (X ′ = xi) > 0 using the structure shown in Figure 4.8 and returns the transition
probability tree Tree[P Va ].

Algorithm 4.2: Regress
input : Tree[V ], action a
output: Tree[QVa ]

1 Tree[PVa ]← PRegress(Tree[V ], a)

2 Construct FV Tree[QVa ] as follows.
foreach branch b ∈ Tree[PVa ] (with leaf lb) do

(a) Let P b be the joint distribution obtained from the product of the individual
variable distributions labeling lb
(b) Compute vb =

∑
b∈Tree[V ] P

b(b′)V (b′) where:
b′ are branches in Tree[V ],
P b is the probability of the conditions labeling that branch as given by the
distribution P b,
V (b′) is the value labeling the leaf l′b in Tree[V ]
(c) re-label leaf lb with vb

3 Tree[QVa ]← γ · Tree[QVa ], (multiply each leaf label by the discount factor γ)
4 Tree[QVa ]← Append(Tree[Ra], T ree[QVa ]), using addition as combination operator
5 return Tree[QVa ]

Then Regress computes Tree[QVa ] according to Equation (4.2) by performing the
product with γ and the sum with Tree[Ra].

Algorithm 4.3: Structured Value Iteration (SVI)
input : Tree[R]
output: Tree[V

∗
] and Tree[π∗]

1 Tree[V
0

]← Tree[R]
2 repeat

foreach action a do
(a) Tree[QV

k

a ]← Regress(Tree[V ], a)

(b) Tree[V
k+1

]←Merge(Tree[QV
k

a ]), using maximization as a combination
operator

until termination criterion
3 Tree[π′]← Greedy(Tree[Vπ])

4 return Tree[V
∗
] and Tree[π∗]

On top of Regress, SVI (Algorithm 4.3) and SPI (Algorithm 4.6) behave differently.
In SVI, the value function Tree[V ] is computed by merging the set of action-value
functions Tree[QVa ] using maximization as combination function. It is shown in
[Boutilier et al., 2000] that, given a perfect knowledge of the transition and reward
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functions and starting with Tree[V0] = Tree[R], Tree[V ] converges in a finite number
of time steps to the optimal value function Tree[V ∗]. Then one can extract Tree[π∗]
from Tree[V ∗] using a tree-based greedy operator given in Algorithm 4.4.

Algorithm 4.4: Greedy
input : Tree[V ]
output: Tree[π]

1 foreach action a do
2 Tree[QVa ]← Regress(Tree[V ], a)

3

4 Tree[π]←Merge(Tree[QVa ])
5 return Tree[π]

Algorithm 4.5: Structured Successive Approximation (SSA)
input : Tree[R], T ree[π])
output: Tree[Vπ]

1 Tree[V
0

π ]← Tree[R]
2 repeat
3 Tree[V

k+1

π ]← Regress(Tree[V
k

π ], a)
4 until termination
5

6 return Tree[Vπ]← Tree[V
n

π ]

In SPI, the process is slightly more complex. Policies Tree[π] and value functions
Tree[V π] are computed iteratively until convergence using the SSA operation given in
Algorithm 4.5, making profit of the structure of Tree[π] to optimize the computation of
Tree[V π].

Algorithm 4.6: Structured Policy iteration (SPI)
input : Tree[R]
output: Tree[V

∗
] and Tree[π∗]

1 Tree[π′]← Tree[π]
2 repeat

(a) Tree[π′]← Tree[π]
(b) Tree[Vπ]← SSA(π)
(c) Tree[π′]← Greedy(Tree[Vπ])

until π′ = π

3 Tree[π∗]← Tree[π], Tree[V
∗
]← Tree[Vπ]

4 return Tree[V
∗
] and Tree[π∗]
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4.2.3 SPUDD

SPUDD [Hoey et al., 1999] stands for Stochastic Planning Using Decision Diagrams.
It uses the Algebraic Decision Diagrams (ADDs) instead of decision tree to represent
the transition function of FMDPs. This results in a more compact representation and
consequently it accelerates the computations. Then, in the same way as SVI, SPUDD

is based on the Value Iteration algorithm, adapting it to ADDs where all the states
variables are binary. The algorithm was improved and simplified in the further work
of [St-Aubin et al., 2000].

4.3 Factored Reinforcement Learning algorithms

The algorithms presented until here require the perfect knowledge of the reward and
transition functions. But in practice, this knowledge is rarely available. In this section
we present algorithms that address this issue.

Factored Reinforcement Learning (FRL) is a Model-based Reinforcement Learning
approach to FMDPs where the transition and reward functions of the problem are learned.
First, it uses the methods of Supervised Learning to construct the factored representation
of the environment. In parallel, planning algorithms can use this representation to build
the policy.

4.3.1 SDYNA and SPITI

An implementation of FRL is expressed in the SDYNA framework [Degris et al., 2006a,
Degris et al., 2006b] as a structured version of the DYNA architecture [Sutton, 1991]
(presented in Section 3.1). SDYNA integrates incremental planning algorithms based
on FMDPs with supervised learning techniques building structured representations of the
problem. The inner loop of SDYNA is decomposed into three phases:

• Acting: choosing an action according to the current policy, including some
exploration;

• Learning: updating the model of the transition and reward functions of the FMDP

from 〈X, a,X ′, R〉 observations;

• Planning: updating the value function Tree[V ] and policy Tree[π] using one
sweep of SDP algorithms.

SPITI (Figure 4.9) is a particular instance of SDYNA using ε-greedy as exploration
method, the Incremental Tree Induction (ITI) algorithm [Utgoff et al., 1997] to learn
the model of transitions and reward functions as a collection of decision trees, and
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Figure 4.9: SPITI algorithm.

the inner loop of SVI as planning method. An algorithmic description is given in
[Degris et al., 2006b]. We give a detailed account of the learning and planning steps
hereafter.

4.3.2 Learning Factored Model

During the learning phase of the SPITI algorithm, the decision trees are built from the
flow of examples, extracted from the current state of the environment. Each tree Tree[P ]

quantifying the probabilities of transitions for a given variableX is built directly without
building the corresponding DBN for each action. Thus it is possible to build one tree
per variable and per action Tree[P (X′|X, a)] or one tree per variable Tree[P (X′|X)]

where actions are represented as variables in decision nodes.

Algorithm 4.7: UpdateFMDP
input: FMDP F = {∀Xi ∈ X : Tree[P (Xi

′|s)]}, ∀Ri ∈ R : Tree[Ri]

1 foreach Xi ∈ X do
2 example e = 〈class ς = s′[Xi], attribute α = {s, a}〉
3 LearnTree(Tree[P (Xi

′|s)], e)
4 foreach Ri ∈ R do
5 example e = 〈class ς = r[Ri], attribute α = {s, a}〉
6 LearnTree(Tree[Ri], e)

The incremental learning procedure is given in Algorithm 4.7. It uses a classification
algorithm to learn a function from a set of examples 〈A, σ‖withA a set of attributes and
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σ the class of the example. Consequently, from the observation of the agent 〈s, a, s′, r〉
with s = (x1, ..., xn) and s′ = (x1′, ..., xn′), the algorithm forms the examples 〈σ =

r,A = (x1, ..., xn, a)〉 to learn the reward function and 〈σ = xi′,A = (x1, ..., xn, a)〉 to
learn the transition function. The examples, formed at each time step, compose a stream
that enables incremental learning.

Algorithm 4.8: LearnTree
input: information measure X 2, example e = 〈ς, α〉

1 Let k be the current node
2 ξk the examples in node k
3 add 〈ς, α〉 to ξk
4 if k is Pure then
5 return
6 if IsDiffSig(X 2, ∀v ∈ Dom(Vk), ξk) is False then
7 transform k in a leaf
8 else
9 attribute v = BestTest(X 2,∀v ∈ V )

10 if v is null then
11 return
12 else if k do not test v then
13 transform k in a decision node testing v
14 foreach 〈ςj , αj〉 ∈ ξk do
15 LearnTree(〈ςj , αj〉, kαj [v]), with kαj [v] the child node of k

corresponding to a branch αj [v]

16 else
17 LearnTree(〈ς, α〉, kα[v]), with kα[v] the child node of k corresponding to a

branch a[v])

The UpdateFMDP algorithm calls the LearnTree algorithm built upon the ITI

algorithm. The procedure is detailed in Algorithm 4.8. The examples are classified
in tree nodes corresponding to the attributes and class values. To determine the best test
to install at a decision node, the algorithm uses an information-theoric metric, namely
χ2 as suggested by [Quinlan, 1986]. In addition, in SDYNA it is possible to use other
classification algorithms, such as ID3 and ID4 [Quinlan, 1986] , C4.5 [Quinlan, 1993]
or regression trees [Breiman et al., 1984].

4.3.3 Incremental Planning

The planning algorithm in SPITI is a modified incremental version of the SVI algorithm.
In fact, using SVI without modifications in SPITI is not practical because it is not relevant
to wait until convergence before building the policy, while the model is incomplete.
That is why, at each time step, the IncSVI algorithm (Algorithm 4.9) performs only one
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iteration of SVI and updates the corresponding ε − greedy policy used in the acting
phase.

Algorithm 4.9: Incremental SVI (IncSVI)
input : Tree[R], Tree[P ]
output: Tree[V

∗
] and Tree[π∗]

1 if Tree[R] changed during the last learning step then Tree[V
0

]← Tree[R]
2 foreach action a do

(a) Tree[QV
k

a ]← Regress(Tree[V ], a)

(b) Tree[V
k+1

]←Merge(Tree[QV
k

a ]), using maximization as a combination
operator

3 Tree[π′]← Greedy(Tree[Vπ])

4 return Tree[V
∗
] and Tree[π∗]

As highlighted in [Degris et al., 2006b], Tree[V ] converges in a finite number of time
steps to the optimal value function Tre[V

∗
] if the transition model and the reward

function learned by the agent are stationary. However, as long as the model of the
environment is incomplete, Tree[V

∗
] may significantly differ from the optimal value

function of the problem to solve.

4.4 Discussion & Summary

In this section we presented the Factored Markov Decision Processes (FMDP) and the
solutions that can be used to solve this kind of RL problems. Structured Dynamic
Programming algorithms such as Structured Value Iteration (SVI) and Structured
Policy Iteration (SPI) use decision trees as factored representation. In the second
part of the chapter, we presented Factored Reinforcement Learning (FRL) algorithms
and particularly SDYNA where the transition and reward functions are learned from
experience and then used in the incremental planning algorithm.

FMDPs address the “curse of dimensionality” problem by exploiting the similarities in
the state space regions and internal dependencies between variables and the reward.
This way, the irrelevant variables are ruled out while states are aggregated into sets
or partitions. However, this approach does not scale well on some problems where the
state space is very diversified i.e. it is difficult to aggregate states into sets using some
similarities; or the inter-variable dependencies are very dense i.e. each state has to be
represented by the entire scope of the variables.

In the next chapter, we present another approach to solving the “curse of dimensionality”
based on the hierarchical decomposition of MDPs.





Chapter 5

Hierarchical Reinforcement
Learning

At first glance, the idea of using hierarchies in artificial decision making seems obvious
since humans naturally use hierarchical representations to act in the world. Besides,
as mentioned in the previous chapter, many problems cannot be directly addressed by
standard MDP and FMDP approaches because of large state space or weak factorization
rate problem. Hence, it seems natural to try to use a hierarchical approach to decompose
the problem into smaller pieces that are easier to solve individually. Indeed, many
problems have a hierarchical structure where some subroutines can be reused in various
conditions and/or some tasks have to be accomplished before the others. Therefore,
automatically finding a hierarchical decomposition as a human would do, would be very
helpful. In some cases, one can use hierarchical decompositions designed by a human
operator. But in many situations such as large, complex or unusual problems, providing
the correct decomposition is difficult if not impossible. That is why the automatic
hierarchical task decomposition is one of the most challenging problems in the domain
of RL.
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In this section, we will first give some basic definitions for Hierarchical Learning in
MDPs, followed by the state of the art algorithms.

5.1 HMDPs

Following the example of FMDPs, an HMDP is based on the idea of factorization, but
brings that idea on a new level. From state factorization of the FMDPs, HMDP can
look for task factorization, where a set of similar situations (defined by their goals)
are represented by a partially defined set of independent sub-tasks. In other words, it
is possible to simplify a problem by splitting it into smaller problems that are easier to
solve individually, but also reuse the sub-tasks in order to speed up the global solution.

Figure 5.1: Hierarchical MDP.

In this respect, an HMDP M is defined by a set of states, a set of actions and some
reward and transition functions 〈S,A,R, P 〉 exactly like an MDP, but it can additionally
be decomposed into sub-MDPs M1 and M2, that is M = {M1,M2} with M1 =

〈S1, A1, R1, P1〉 where S1 ∈ S, A1 ∈ A and R1, P1 reward and transition functions
local toM1. Similarly, M1 can be decomposed into sub-MDPsM1 = {M1a,M1b}
and so on. Figure 5.1 schematically represents the hierarchical decomposition. Note that
this partition into sub-tasks is rarely as strict as shown in the figure, but may constitute
several overlapping sub-spaces.

While this representation is visually similar to the Hierarchical Task Network (HTN)
[Tate, 1977], where the planning problem is represented as a network of sub-tasks, the
HMDP formalism is used to deal with the “curse of dimensionality” problem in the
sequential decision problems that includes learning approaches.

The approaches to Hierarchical Learning imply the introduction of abstraction and
hierarchical structure in the learning algorithms. That can be done in two ways:
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• State/goal abstraction: that is ignoring differences between states based on the
context by decomposing the state space into subsets and splitting the overall task
into a set of sub-tasks;

• Temporal abstraction: that is grouping sequences or sets of actions together
to form temporally extended actions with partial policies as with well-defined
termination conditions.

If we take an example of a young lady who lives in Riga and wants to go to college
in Paris, her project would be a complex sequence of actions. In order to succeed, she
can first use state/goal abstraction to decompose her project into sub-tasks like “travel
from Riga to Paris”, “register at university”, “convince parents” etc. Second, she can
use temporal abstraction in order to simplify complex action sequences. For instance
the travel from Riga to Paris is composed of the number of atomic actions like buying
tickets, taking the bus to the airport, walking to the bus, packing luggage etc. All these
actions can be represented by one macro-action “Go to Paris”. This way, the task can be
structured and sub-tasks organized in a way that optimize the efforts and the expenses.

5.1.1 SMDPs & the Options framework

The notion of abstraction first was introduced with the Semi-MDP (SMDP) formalism
[Korf, 1985a, Puterman, 1994]. The SMDP framework is a generalization over MDPs to
the case where the number of time steps between one decision and the next is a random
variable. SMDPs can be considered as the formal basis for Hierarchical Reinforcement
Learning (HRL) algorithms. Several HRL approaches have been developed based on
SMDPs.

• [Korf, 1985b] and [Laird et al., 1986] introduce macro-operators as a sequence of
operators or actions that can be invoked by their name as if it were a primitive
operator or action.

• Hierarchical abstract machines (HAM) [Parr and Russell, 1998] and pro-
grammable HAM [Andre and Russell, 2002] explores Hierarchical Learning with
partially specified policies represented as a set of finite state machines defined by
some constraints over the actions.

• MAXQ [Dietterich, 1998, Dietterich, 2000] is a standard framework for solving
SMDPs when the transition and reward functions are known. MAXQ uses
the MAXQ-Q algorithm based on HSMQ, that implements value function
decomposition and state abstraction, given a handcrafted task hierarchy.

The one we focus on is the options framework [Sutton et al., 1999], [Precup, 2000].
The notion of an option can be introduced as a generalization of primitive actions
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including temporally extended courses of actions. Even if options are added to the
primitive actions set, resulting in a bigger core MDP representation, options provide a
decomposition of the original task into subtasks, leading to a simplification of the global
problem. Options can also facilitate the transfer of learned local policies to related tasks.
As exemplified in a previous section, the temporal abstraction paradigm can be used to
“shrink” a complex sequence of actions to one option “Go to Paris”, that can be reused
independently of the person who goes to Paris, of the airline company and of the season.

An option o is a tuple 〈I, π, β〉, where I ⊆ S is an initiation set, that is a subset of states
in which it is possible to execute o, π : S × O → [0, 1] is a policy executed in o, and
β : S → [0, 1] is a termination condition function, that is the probability of terminating
the option in each state. A primitive action a ∈ A of the original MDP is also an option,
called one-step option, with I = ∅ and β(s) = 1. If the option is executed, then sub-
options are selected according to π until the option terminates in state s′ with probability
β(s′). When the option terminates, the agent can select another option. Therefore the
SMDP model is represented by a hierarchy of options, in which options on one level
select their actions among options on a lower level.

In this perspective, an option o can be viewed as a subtask given by the option SMDP

Mo = 〈So, Oo,Ψ, To, Ro〉 where So ∈ S is the option state set, Oo is the set of sub-
options that o selects from, Ψ is the set of admissible state-option pairs, i.e. a set of
pairs including states determined by the initiation sets of options in Oo, To is a transition
probability function and Ro is the option reward function [Ravindran, 2004].

5.1.2 Hierarchical Reinforcement Learning algorithms

Over the last two decades, some major progress have been made in the Hierarchical
Reinforcement Learning (HRL) domain, allowing the adaptation of the classical RL

algorithms and creating new efficient approaches to solve hierarchical tasks. A non-
exhaustive list of methods that can be found in literature is given below. First, we give
the basic Q-LEARNING algorithms for the hierarchical approach, followed by a brief
state of the art on the Hierarchical Learning algorithms, ending with a more detailed
description of the methods that are directly linked to this thesis.

Q-LEARNING is one of the first RL algorithms adapted to hierarchical problems
[Bradtke and Duff, 1995, Mahadevan et al., 1997]. The Hierarchical Semi-Markov
Q-LEARNING (HSMQ), in its more or less modified form, is used by the such well known
HRL methods like MAXQ or VISA presented here below. The pseudo-code of HSMQ is
given in Algorithm 5.1. HSMQ introduces the idea of recursive policy amelioration by
going down from the more abstract subroutines down to the primitive actions.

Another Q-LEARNING adaptation is developed by [Dayan and Hinton, 1993] as a feudal
Q-LEARNING by recursively partitioning the state space and the time scale from one
level to the next. In a similar spirit, indirect approaches like DYNA have been adapted
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Algorithm 5.1: Hierarchical Semi-Markov Q-LEARNING (HSMQ)
Function: HSMQ
input : state s, subtask p
Init : total reward=0

11 while p is not terminated do
22 Choose action a = πx(s) according to the current policy πx
33 Execute a
44 if a is primitive then
55 Observe one-step reward r

66 else
7 r=HSMQ (s, a), which invokes subroutine a and returns the total reward received

while a executed

88 total reward = total reward+r
99 Observe resulting state s′

1010 Update Q(p, s, a) = (1− α)Q(p, s, a) + α[r +maxa′Q(p, s′, a′)]
return : total reward

as hierarchical-DYNA in [Singh, 1993]. Finally, [Ghavamzadeh, 2005] extends HRL

methods to the multi-agent RL framework with Cooperative HRL- a hierarchical multi-
agent RL algorithm.

5.1.3 Discovering the hierarchy

Among methods that perform autonomous hierarchical decomposition, some look for
bottleneck states, the states that connect two or more strongly-connected regions.
[McGovern and Barto, 2001] propose to discover such states by applying diverse
density to successful trajectories, [Simsek et al., 2005] propose to discover the relative
novelty metric that is based on visitation frequencies, while [Ravindran, 2004]
and [Wolfe and Barto, 2006] develop state abstraction methods based on MDP

homomorphisms. [Konidaris and Barto, 2009] introduce skill chaining, a skill discovery
method for continuous domains that produces chains of skills leading to a salient event.
Finally, [Zang et al., 2009] proposes another automated task decomposition method that
uses a set of near-optimal trajectories to discover options and incorporates them into the
learning process.

5.2 Combining HRL and FRL

FMDP and HMDP methods can be combined in order to decompose automatically the
overall task into a hierarchy of factored subtasks. Autonomous subgoal discovery or
“learning the hierarchy” in FMDPs consists in identifying subgoal states, generating
temporally extended actions that take the agent to these states, and discovering
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the hierarchical ranking between these temporally extended actions. The following
algorithms are designed to discover the hierarchical structure of FMDPs.

5.2.1 HEXQ

HEXQ [Hengst, 2002] performs hierarchical decomposition by discovering subgoals
corresponding to exit conditions in the state space. More generally, it is a hierarchical
and model-free RL algorithm which automatically attempts to decompose and solve an
FMDP. HEXQ discovers state abstractions and temporal abstractions by finding and
exploiting repeatable substructures in the environment. To perform the hierarchical
decomposition of an FMDP, HEXQ determines an ordering on the state variables based on
the frequency with which the value of each variable changes. The state variable whose
value changes the most frequently becomes the lowest variable in the ordering. For each
state variable in the ordering, HEXQ identifies “exits”, that are state-action pairs 〈se, a〉
meaning that taking action a from state se causes an unpredictable transition where the
action a: (i) causes the value of the next state variable in the ordering to change or
(ii) causes the task termination. These exits identify the boundaries between Markov
regions representing subtasks of the overall MDP. HEXQ defines a sub-MDP over each
region with an exit as a transition to an absorbing state. The solution to this sub-MDP

is a policy over the region that drives the agent out of an exit starting from any entry.
Sub-MDP policies in HEXQ are learned on-line and the exit policies just learned become
abstract actions at the next level. As the abstract actions can take varying primitive time
durations to get executed, the task is represented as an SMDP that has less variables than
the original MDP and only uses abstract actions.

5.2.2 VISA

Variable Influence Structure Analysis (VISA), is another algorithm that dynamically
performs hierarchical decomposition of FMDPs [Jonsson and Barto, 2006]. In contrast
with HEXQ, VISA determines causal relationships between state variables by building the
state-variable graph of influence using a given model of an FMDP. This graph contains
one node per state variable plus one node corresponding to the reward. A directed edge
between two state variables or one variable and the reward node indicates that there
is a relationship between them, i.e., that there is an edge between these nodes in the
corresponding DBN for at least one action. To introduce options, VISA uses a formalism
similar to the one used in the HEXQ algorithm but instead of frequency ordering, VISA

is based on the state variable graph of influence, to represent variable relationships. To
learn the policy of options, VISA uses model-free RL algorithms which do not require
an explicit knowledge of the transition probabilities. A sketch of the VISA algorithm is
given in Algorithm 5.2.
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Algorithm 5.2: VISA

input: DBN model of the FMDP with set of state variables S
1 construct the causal graph of the task
2 compute the strongly connected components of the causal graph
3 perform a topological sort of the strongly connected components
4 foreach strongly connected component SC ∈ S in topological order do
5 identify exits that cause the values of state variables in SC to change
6 while the number of exits exceeds a threshold do
7 merge SC with a parent strongly connected component
8 label the new strongly connected component SC and recompute the exits

9 foreach exit 〈c; a〉 of the strongly connected component SC do
10 perform any possible exit transformations
11 compute the set Z of influencing state variables
12 construct an initiation set I
13 construct a termination function β using the context c
14 construct a policy tree by merging transition graphs of parent components
15 let So be the leaves of the policy tree
16 let Oo be the set of options that changes values of state variables in Z
17 let Ψ be defined by the initiation sets of options in O0

18 let To be undefined
19 define Ro as −1 everywhere except when the context c is unreachable
20 construct the option SMDPMo = 〈So, Oo,Ψ, To, Ro〉
21 construct an exit option o = 〈I;π;β〉, where π = optimal policy ofMo

22 construct the transition graph of the strongly connected component SC

23 construct a task option corresponding to the original task
24 use reinforcement learning techniques to learn the policy of each option

5.2.3 Incremental-VISA

In parallel with the work presented here, Incremental-VISA [Vigorito and Barto, 2008a,
Vigorito and Barto, 2008b] adapts VISA to the case where the factored structure of the
problem is not known in advance. The approach implements an agent that can learn
incrementally and autonomously both the causal structure of the environment and useful
skills that exploit this structure. First, it uses DBN structure learning techniques to learn
the environment structure and then, SDP algorithms like SVI to build hierarchical policies
online. The authors propose an active learning scheme to improve the efficiency with
which this structure is acquired that bootstraps on existing structural and procedural
knowledge. At this moment in time, this approach is limited to the deterministic case.
Despite the fact that the incrementality property is the major benefit of this algorithm,
it needs to rebuild the complete variable influence graph each time one of the DBNs
changes and consequently to re-check the soundness of each option. In order to avoid
introducing irrelevant or incomplete options into the planning procedure, Incremental-
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VISA maintains a set of controllable variables, defining the reachability of each value of
this variable. In this manner, an option is introduced only if the corresponding variable
is completely reachable. As a result, this approach is not convenient for problems with a
lot of variables having a lot of values. A more detailed discussion of Incremental-VISA

is presented in Section 7.6.1.

5.3 Discussion & Summary

In this chapter, we presented hierarchical methods to solve MDPs and FMDPs. In this
respect, an HMDP is a generalization over MDPs based on introduction of a hierarchical
structure. The HMDP framework relies on the theory of SMDPs and can then exploit
HRL methods to compute a policy. In brief, the HMDP theory addresses the “curse
of dimensionality” problem through the hierarchical structure of complex decision
problems. First, it gives the possibility to simplify the problem by decomposing
the overall task into smaller sub-problems (e.g. options), that can be then reused in
various conditions. Consequently, it can provide an important speed up of learning and
planning. Some algorithms use handcrafted hierarchical decomposition while others
perform autonomous subgoal discovery of the problem represented as an FMDP. Since
transition functions and hierarchical decomposition are rarely available for the complex,
large and real world problems, one of the most challenging research directions is
the autonomous hierarchical decomposition of problems with an unknown structure.
Another challenging research direction is to combine the advantages of the FMDP and of
the HMDP formalisms into an HFMDP representation, that is hierarchically ordered set of
imbricated sub-FMDPs.
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Chapter 6

Dealing with Impossible States:
IMPSPITI

In Chapter 4 we explained how the FMDPs can be used to solve large discrete problems
if their states can be represented by a set of independent variables. FMDPs exploit the
internal structure of the problem in order to represent it compactly. In this representation
the combinatorial of all the independent variables with all their values represents the
maximal imaginable size of the problem. The efficiency of this approach comes from
the fact that a large part of this information does not appear directly in the representation
of the problem. It is hidden in the compact representation or simply does not exist.

Nevertheless, this second observation can generate a new problem called the problem
of impossible states. In fact, when a combination of variables does not exist in
the problem, nothing prevents its representation. These impossible states involve
unnecessary computations and additional memory occupation. We can imagine several
solutions to deal with this problem. First, do not use the FMDPs. But this approach
does not solve the problem; it avoids it and the question of solving large problems using
structured versions of RL methods is left opened. Second, it is always conceivable to use
other Markov models, such as POMDPs , but, depending of the problem to solve, giving
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rise to more complex and memory expensive algorithms. Third, we can use the existing
FRL methods and just ignore those impossible combinations or remove them from the
policy and value functions after the calculations are done. These methods are still sound
but not efficient in problems with a lot of impossible states because they need to perform
unnecessary computations and demand an extensive memory use. In return, our fourth
idea is that we can deal with these impossible states by modifying FRL algorithms
in order to prevent the appearance of the impossible combinations and consequently,
improve the efficiency of the algorithm when facing problems that contains impossible
states.

In this chapter, we present a new FRL algorithm that addresses a wider sub-class of FMDP

problems where particular combinations of values of variables may not occur, giving rise
to impossible states. We argue that this situation often happens in practice and we show
through benchmark experiments that modifying standard algorithms to deal with such
impossible states is more efficient than just ignoring this phenomenon.

More precisely, we show how the presence of impossible states can be modeled and how
the SDP algorithms must be modified as a consequence. Then, we present the IMPSPITI

algorithm adapted to the case where the structure and parameters of the FMDP are learned
from experience. Finally, we examine through benchmark experiments the benefits that
can result from our method when impossible states are present, and we conclude with a
discussion on the benefits of our approach depending on the rate of impossible states, the
limitations and the possibility to extend this work in different directions. In particular,
we show that considering as impossible a state that has never been seen so far is an
efficient heuristic to learn quickly in FMDPs.

This chapter corresponds to the following publications: [Sigaud et al., 2009] and
[Kozlova et al., 2009b].

6.1 Impossible states in FMDPs

On the one hand, the authors of [Boutilier et al., 2000] propose to model the case where
the variables are not independent by adding synchronic arcs between variables at t+ 1,
that is dependencies between post action variables. An example of synchronic arcs is
given in Figure 6.1.

In this case, the solution requires the recording of the joint probabilities of all groups of
variables that are connected by such synchronic arcs. These joint probabilities are then
used to extend the resulting trees with these correlations. This results in more complex,
slower and more memory-intensive algorithms, but that can deal with a much wider class
of problems. A more detailed study of that case is presented in [Boutilier, 1997].

On the other hand, while using an FMDP representation of the problem, if no precaution
is taken and, nothing forbids the representations of the corresponding impossible states



6.2. THE BLOCKS WORLD PROBLEM 69

Figure 6.1: Example of synchronic arcs

if impossible combinations of variables values exist. In this chapter, we address the
class of problems that is intermediate between the “no synchronic arcs” and the “any
synchronic arcs” classes. It corresponds to problems where the variables at t+ 1 behave
as if they were independent, but some combinations of values for some variables do not
occur in practice, which contradicts the independence assumption. We show how such
a situation can be modeled without using the general class of problems with synchronic
arcs in the DBNs.

6.2 The BLOCKS WORLD problem

We use the BLOCKS WORLD problem as an illustration throughout this chapter. In the
version of BLOCKS WORLD, introduced in [Butz et al., 2002] (see Figure 6.2), b blocks
are distributed over a given number s of stacks. At the beginning of each episode, the
blocks are distributed randomly among “legal” locations, i.e. put on the table or on
another block. The agent can manipulate the stacks by the means of a gripper that can
either grip or release a block on a certain stack. Additionally, the problem contains a
goal state, which consists in putting a particular number y ≤ b of blocks on the left
handside stack. The stacks are not limited in height. Figure 6.2(d) shows the goal in the
problem with b = 4, s = 3, y = 3.

The complexity of BLOCKS WORLD highly depends on the representation chosen to
encode the states. We developed three such representations.

The first is the one used in [Butz et al., 2002]. We call it Binary representation. The
agent perceives the current blocks distribution coding each stack with b binary variables.
One additional variable indicates if the gripper is currently holding a block. In this
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(a) (b) (c) (d)

Figure 6.2: A BLOCKS WORLD scenario, from a random initial position (a) to the goal
position (d).

(A) (B) (C) (D)

BINARY

0000,0000,1110,1 1000,0000,1110,0 1000,0000,1100,1 1110,0000,0000,1

STACKS

STACK1=0 STACK1=1 STACK1=1 STACK1=3
STACK2=0 STACK2=0 STACK2=0 STACK2=0
STACK3=3 STACK3=3 STACK3=2 STACK3=0
G =TRUE G =FALSE G =TRUE G =TRUE

BLOCKS

BLOCK1=S3 BLOCK1=S3 BLOCK1=S3 BLOCK1=G
BLOCK2=S3 BLOCK2=S3 BLOCK2=S3 BLOCK2=S1
BLOCK3=S3 BLOCK3=S3 BLOCK3=G BLOCK3=S1
BLOCK4=G BLOCK4=S1 BLOCK4=S1 BLOCK4=S1

Table 6.1: BLOCKS WORLD representations of the situation given in Figure 6.2
(G stands for gripper).

representation, many arbitrary combinations of variable values correspond to states that
do not occur in practice. Indeed, all states where a block is lying neither on top of another
block nor on the table are impossible. The more empty cells in the problem, the more
such impossible states.

In the second representation (called Stacks), there is one variable per stack giving the
number of blocks it contains, and one additional variable indicating if the gripper is
holding a block. The impossible states are the states where the total number of blocks is
not b. Thus, in that case, an ad hoc way to decide if a state is possible consists in simply
summing the represented blocks and comparing to b.
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Finally, in the third representation (called Blocks), there are b variables whose values are
given by the gripper or stack where the corresponding block is currently placed. The
only impossible states are the ones where several blocks are in the gripper, which gives
a straightforward ad hoc rule to decide if a state is possible. The major drawback of
this representation is that, blocks being identical, there are many ways to represent the
same state of the problem. For instance, {block1=s1, block2=s2, . . .} and {block1=s2,
block2=s1, . . .} represent the same configuration and there are 12 different ways to
represent Figure 6.2(c). This results in a greater number of possible states than necessary,
thus in larger value and policy trees.

BINARY STACKS BLOCKS

0010,0000,0010,0

STACK1=0 BLOCK1=S3

STACK2=2 BLOCK2=S3

STACK3=3 BLOCK3=G
G = TRUE BLOCK4=G

Figure 6.3: Variable combinations giving rise to impossible states in the BLOCKS

WORLD problem.

Table 6.1 shows an example of these three representations with b = 4, s = 3, y = 3 and
Figure 6.3 illustrates the impossibles states that can be represented in BLOCKS WORLD

problem such as the irrelevant number of blocks or incorrect position of blocks.

6.3 Modeling impossible states

The class of problems we want to address can be modeled with the kind of DBNs shown
in Figure 6.4, given that there is one such DBN for each action.

In this representation, there are no synchronic arcs between variables at t+ 1, but there
are some constraintsK on whether some combinations of variable values are possible or
not. K (resp. K ′) stands for the knowledge of impossible states x (resp. x′). The values
of K and K ′ are either true or false depending on the possibility of the corresponding
states.
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Figure 6.4: DBN representation for problems with independent variables and impossible
states. K and K ′ stand for constraints stating if a particular combination of values is
possible. Variables in gray are observed. K ′ and relevant Xj are used to predict X ′i for
all i. K ′ does not necessarily depend on all X ′i.

As we illustrate in Section 6.5.3, without using such constraints, the Tree[V ] and
Tree[QVa ] structures may represent many states that do not occur in practice. Dealing
with the constraints explicitly is a way to avoid the computational and memory overhead
resulting from this useless information by filtering out all impossible states in the data
structures.

We show below that this filtering can be performed safely just by discarding the
impossible states and normalizing again the probabilities when it is necessary.

6.3.1 Impact on regression

Let us show that the values computed by Regress taking the constraints into account,
i.e. Σx′P (X ′|x, a, k′).V (x′), are equal to the values one would obtain without taking
these constraints into account, just leaving the impossible states away and normalizing
again the probabilities.

First, with the representation above, the probability distribution of X ′ for a particular
action a can be computed given the values of the variables xi and the value k′ of the
common constraint K ′. This probability distribution of X ′ knowing the value of x
and k′ is proportional to the product of the probability distribution of k′ knowing the
distribution of X ′ and values of x and the probability distribution of X ′ knowing x.
Indeed, the distribution of X ′ can be expressed as

P (X ′|x, k′) ∝ P (k′|X ′, x)P (X ′|x).
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Furthermore we have P (K ′|X ′, X) = P (K ′|X ′), since K ′⊥⊥X|X ′.

Thus, we have:

P (X ′|x, k′) ∝ P (k′|X ′)P (X ′|x) (6.1)

and P (k′|X ′) = 0 or 1 depending on the constraint.

If the variables are independent, we have

P (X ′|x, a, k′) =
∏
i

P (X ′i|x, a) =
∏
i

P (X ′i|parent(X ′i), a)

thus we are in the standard context where the proof of convergence given in
[Boutilier et al., 2000] applies.

Now, if we consider impossible states, from (6.1) we have∑
x′

P (X ′|x, a, k′) =
∑
x′

Nx,aP (k′|X ′)P (X ′|X, a) (6.2)

where Nx,a is a normalization factor such that

∀x,∀a,
∑
x′

Nx,aP (k′|X ′)P (X ′|X, a) = 1.

Then,

∑
x′

P (X ′|x, a, k′) =
∑
x′

Nx,a[P (k′|X ′)
∏
i

P (X ′i|parent(X ′i), a)]

and P (k′|X ′) = 1, thus∑
x′

P (X ′|x, a, k′) =
∑
x′

Nx,a

∏
i

P (X ′i|parent(X ′i), a).

In equation (6.2), there are two categories of terms. If X ′ corresponds to impossible
states, we have P (k′|X ′) = 0 and the corresponding term is removed. Otherwise, the
state variables in X ′ are independent thus

P (X ′|x, a, k′) =
∏
i

P (X ′i|parent(X ′i), a) (6.3)

and P (k′|X ′) = 1.

Thus (6.2) can be simplified as∑
x′

Nx,aP (k′|X ′)
∏
i

P (X ′i|parent(X ′i), a))



74 CHAPTER 6. DEALING WITH IMPOSSIBLE STATES: IMPSPITI

where only the existing states remain. We are back to the situation where
we consider only possible states with independent variables and the proof from
[Boutilier et al., 2000] applies again.

From the result above, it turns out that, if we take the constraints into account, the values
can be computed in PRegress as in the case without dependencies, just discarding
the impossible states and normalizing again so that the sum of probabilities over all
remaining states is 1.

⋃ _

P (x′1|X1, X2, a0) P (x′2|X1, X2, a0) P (X ′|X, a0)

Figure 6.5: Removing impossible state x̄1x2 probabilities in P (X ′|X, a0) computed by
the PRegress operator.

Note that this way to remove impossible states in the computation of PRegress is the
only one which results in the possibility to renormalize. Otherwise, if, for instance,
we remove the leaves corresponding to impossible states in Tree[QVa ] or Tree[V ], we
cannot perform the normalization anymore since the probability information is lost in
these trees. Furthermore, in addition to being theoretically well-founded, this way of
filtering out impossible states at the heart of the PRegress operator is much more
efficient than filtering later on, since this other solution would result in expanding the
number of leaves in the value tree before reducing it, which is exactly what we want to
prevent.

P (X ′|X, a0) x′1x
′
2 x′1x̄2

′ x̄1
′x′2 x̄1

′x̄2
′

x1x2 100% 0% 0% 0%
x1x̄2 30% 30% 20% 20%
x̄1x2 80% 0% 20% 0%
x̄1x̄2 0% 80% 0% 20%

Table 6.2: Probabilities for joint variables, resulting from Figure 6.5.
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To illustrate our approach, let us consider again the example given in the previous
section. Now, assume that we have some information that the state x̄1x2 is impossible
(see boxed leaves in Figure 6.5). As a consequence, P (x̄1

′x′2) is null and the probability
of any state at t + 1 given x̄1x2 is pointless. Thus, the corresponding probabilities in
Table 6.2 must be filtered out and the remaining values must be renormalized as shown in
Table 6.3. Here again, Table 6.3 is not computed explicitly, it is represented as a tree as in
the standard case, adding in the algorithm the filtering out of the branches corresponding
to impossible states and finally normalizing again the values at the leaves.

P (X ′|X, a0, k
′) x′1x

′
2 x′1x̄2

′ x̄1
′x̄2
′

x1x2 100% 0% 0%
x1x̄2 37.5% 37.5% 25%
x̄1x̄2 0% 80% 20%

Table 6.3: Transition probabilities for joint variables resulting from Figure 6.5, given
that x̄1

′x′2 is impossible.

6.3.2 Impact on other tree operations

After modifying PRegress as presented above, the trees corresponding to Equation
(6.2) are free from impossible states for all actions.

Figure 6.6: Combining two trees can generate leaves about impossible states (here, x̄1x2

is impossible).

But then, performing a Bellman-backup according to Equation (4.2) and the other
operations required to run SVI or SPI implies some operations over the resulting trees.
As exemplified in Figure 6.6, despite the filtering performed in PRegress, simple
operations on several value-related trees (Tree[R], Tree[V ], Tree[QVa ]) can generate
leaves representing impossible states if these trees do not share the same structure.
Indeed, whereas generalization over identical values can “hide” the expression of
impossible states in the source trees, the operations can make these states appear in
the resulting trees. As a result, we must filter impossible states out in such operations.
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6.3.3 IMPSVI

So far, we have described modifications that apply to SDP algorithms. To evaluate their
impact, we modify SVI and develop a new algorithm called IMPSVI, that incorporates
the following changes:

• in PRegress, when computing the joint probabilities over variable values, the
branches in the tree corresponding to impossible states are discarded and the
probabilities are normalized again;

• in the sum Tree[Ra] + γTree[P Va V ] and the maximization Tree[V ] =

argmaxa Tree[Q
V
a ], the branches of the resulting trees corresponding to

impossible states are discarded;

Algorithm 6.1 schematically describes IMPSVI.

Algorithm 6.1: IMPSVI

input : FMDP F{Tree[Pa](x′|x))}, Tree[Vt]
output: Tree[V

∗
] and Tree[π∗]

1 Tree[V0]← Tree[R]
2 repeat

foreach action a do
(a) Tree[QVt

a ]← addTrees[Tree[Ra], γ.PRegress[Tree[Vt], a,Nx,a]]
discarding impossible states in addTrees()
(b) Tree[Vt+1]←Mergea(Tree[QVt

a ]), using maximization as a combination
operator and discarding impossible states

until termination criterion
3 Tree[π′]← Greedy(Tree[Vπ])

4 return Tree[V
∗
] and Tree[π∗]

6.4 IMPSPITI

To evaluate the impact of these modifications in the context of FRL, we design a new
system inspired from SPITI, called IMPSPITI (Figure 6.7), that incorporates IMPSVI in
its Planning phase. The model of transition and reward functions being learned from
experience, they cannot contain impossible states, thus the Learning phase does not
need to be modified.

However, we need a function to decide that a state is impossible. Since this function is
called at three places in each step of the central iteration, it may result in a significant
time overhead. In the experimental section, we will compare two approaches. One
consists in using problem specific expert rules. The second is more general, it consists
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Figure 6.7: A global view of the IMPSPITI algorithm.

in building a tree where the states already visited by the agent are stored as possible
as shown in Figure 6.8. This function can call upon a rule or a list of visited or non-
visited states. In the worst case, this representation would boil down to the complete
enumeration of states, but this is also true for the trees manipulated in standard SDP

algorithms (see [Boutilier et al., 2000] for a discussion). In most cases of interest,
however, this representation will benefit from factorization over states.

Figure 6.8: Visited states representation in a tree form. Here, states x1x2, x1x̄2 and x̄1x̄2

have been visited.
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This function gives the list of the states that have been visited, by contrast with the list of
states that may be constructed by the combinatorial combination of state variables. We
use the heuristic of considering all states that have not been visited yet as impossible.
In this case, the exploration rate is maintained by the ε-greedy exploration policy and
unknown states are not included in the value and policy functions.

6.5 Experimental study

To illustrate the benefits of our approach, we perform experiments on two benchmarks:
MAZE6 and BLOCKS WORLD problems.

The results presented here below are averaged over 20 runs of 100 episodes where each
episode is limited to 50 steps. The curves are smoothed by computing the moving
average weighted over ten neighboring values. The algorithms use the following
parameters: N = 300 in DYNA-Q and ε = 0.1 in ε-greedy. The ITI algorithm uses
χ2 = 30 in the stochastic problems and χ2 = 0 in deterministic ones. The algorithms
are coded in C# and run on Intel Core2Duo 1.80GHz processor with 2Go RAM.

We start by evaluating the performance and convergence speed of the algorithms
followed by the comparison with tabular algorithms.

6.5.1 The MAZE6 problem

MAZE6 environments are standard benchmark problems in the Learning Clas-
sifier Systems (LCSs) literature, LCSs being a heuristic approach to FRL (see
[Sigaud and Wilson, 2007]). The maze environments are also among the worst cases for
FMDP algorithms given their poor structure. We choose it in order to test the robustness
of our algorithms. Mazes are represented by a two-dimensional grid. Each cell can be
occupied by an obstacle, denoted as variable value by a ‘1’, a reward, denoted by a
‘R’, or can be empty, denoted by a ‘0’. The agent perceives the eight adjacent cells
starting with the cell to the north and coding clockwise. Figure 6.9 shows MAZE6, one
of such mazes, designed so that Markov property holds.

For example, an agent located in the cell below the reward perceives ‘R1110011’
whereas an agent located as shown in Figure 6.9 perceives ‘00110101’. Although
there are only 37 actual states within the problem, the combinatorial representation
results in 38 = 6561 states. The agent can perform eight actions, the movements to
adjacent cells. If a movement leads to a cell containing an obstacle, the action has no
effect and there is no penalty. In the stochastic case, the chosen action may result in
a move corresponding to an immediately adjacent action, with probability 10%. Once
the reward position is reached, the environment provides a reward of 10 and the episode
ends. In that case, the agent starts again in a randomly chosen empty cell.



6.5. EXPERIMENTAL STUDY 79

Figure 6.9: The MAZE6 problem.

6.5.2 Performance and convergence speed of IMPSVI

First, we evaluate the performance of IMPSVI, that is computing policy when the
transition function is given. In all problems listed below, the policy obtained after
convergence performs similarly with SVI and IMPSVI.

Table 6.4 recaps the performance on MAZE6 of SVI and IMPSVI respectively. IMPSVI

clearly outperforms SVI: it converges faster in time and in number of iterations, but also
requires less memory to represent value and policy functions.

STEPS UNTIL VALUE POLICY TIME (SEC)
CONVERGENCE SIZE SIZE PER STEP

SVI 95.1 ± 1.2 242 240 1.9 ± 0.04
IMPSVI 14.4 ± 1.2 37 37 1.07 ± 0.09

Table 6.4: MAZE6 performance.

To evaluate IMPSVI in the BLOCKS WORLD benchmark, we tried five different sizes
with the three representations described above. In Table 6.5, STEPS is the number of
steps required to converge, using the span semi-norm with ε = 0.1 as stopping criterion
(see [Boutilier et al., 2000]). TIME(SEC) is the time required to perform one sweep of
value propagation using trees to represent impossible states (the time with the ad hoc
rules described in Section 6.2 is indicated between parentheses). The number between
parentheses in the VALUE SIZE lines gives the total number of states considered in the
problem, the rate of impossible states can be derived from a comparison of that number
for SVI and for IMPSVI.

Table 6.5 shows that, with the Binary representation, the number of steps varies little
with SVI and IMPSVI, but the computation time increases dramatically with the size of
the problem in SVI, not in IMPSVI. Thus IMPSVI can deal with much larger problems.
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BINARY STACKS BLOCKS

B-S-Y SVI IMPSVI SVI IMPSVI SVI IMPSVI

3-3-3
STEPS 71.6 ± 1.4 9.7 ± 1.75 15.4 ± 1.8 10.26 ± 1.5 10.1 ± 0.6 10.1 ± 1.5
VALUE SIZE 254(1024) 16(16) 67(128) 15(16) 64(64) 54(54)
POLICY SIZE 281 16 45 15 40 40
TIME (SEC) 0.4 ±0 0.01 0.1 ± 0.02 0.05 0.055 0.08 0.11 ± 0.05

(0.05) (0.08)

4-3-4
STEPS 72.7 ± 1.3 14.2 ± 1.4 71.6 ± 1.8 12.9 ± 1.7 14.2 ± 1.6 13.7 ± 1.8
VALUE SIZE 1138(8192) 25(25) 101(250) 25(25) 255(256) 189(189)
POLICY SIZE 1541 25 141 25 177 120
TIME (SEC) 4.3 ± 0.3 0.17 ± 0.02 0.08 0.07 0.38 ± 0.06 0.5 ± 0.06

(0.07) (0.27 ± 0.05)

4-4-3
STEPS 74 ± 2 10.8 ± 1.4 71 ± 1.2 10.3 ± 1.5 51.4 ± 1.3 52.5 ± 2
VALUE SIZE 18427(217) 55(55) 120(1250) 53(55) 619(625) 505(512)
POLICY SIZE 20004 55 416 53 475 383
TIME (SEC) 3030 ± 20 1.5 ± 0.2 0.2 ± 0.06 0.2 ± 0.03 5.2 ± 0.2 10.6 ± 0.3

(0.18 ± 0.03) (4.4 ± 0.3)

5-4-4
STEPS - 13 ± 2.2 78.8 ± 1.8 13.5 ± 1.9 69.8 ± 2.2 73.3 ± 1.8
VALUE SIZE - (221) 90(90) 274(2592) 87(90) 3119(3125) 2255(2304)
POLICY SIZE - 90 964 86 2438 1373
TIME (SEC) - 5.4 ± 1 0.42 ± 0.02 0.4 ± 0.07 1253 ± 98 254 ± 30

(0.3 ± 0.02) (91 ± 13)

6-5-5
STEPS - 21 ± 1.8 74.7 ± 3 17.9 ± 1.1 - -
VALUE SIZE - (231) 334(334) 1175(33614)331(334) - (46656) - (34375)
POLICY SIZE - 334 12425 330 - -
TIME (SEC) - 367 ± 29 38.8 ± 2 7.06 ± 0.8 - -

(0.8 ± 0.05)

Table 6.5: The BLOCKS WORLD problem: rate of impossible states and time to perform
one step (in seconds). A “-” indicates that the value could not be obtained after three
days of computation. IMPSVI uses trees to represent impossible states (the time with the
ad hoc rules is indicated between parentheses).

With the Stacks representation, both the size of the problem and the rate of impossible
states grow slower, thus the time difference between SVI and IMPSVI keeps small.
Finally, the rate of impossible states is much smaller in the Blocks representation, making
it possible to analyze the time overhead of our approach more precisely.

6.5.3 Performance and convergence speed of IMPSPITI

Second, we test the online performance in FRL context, when the transition model is
learned simultaneously to the policy optimization.

Table 6.6 shows the performance of SPITI and IMPSPITI on deterministic and stochastic
versions of the MAZE6 problem. In stochastic MAZE6, the agent chooses a random
action in 10% of the decisions.
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Value size Policy size Time/step(sec)

SPITI det 214 ± 10 241 ± 4 1.7 ± 0.8
SPITI stoc 252 ± 14 240 ± 12 3.7 ± 1.2
IMPSPITI det 35 ± 2 35 ± 2 0.1 ± 0.08
IMPSPITI stoc 35 ± 2 35 ± 2 0.3 ± 0.1

Table 6.6: MAZE6 performance (cost in memory and time).

Figure 6.10: Convergence on the MAZE6 problem in number of steps needed to perform
an episode as a function of the number of episodes.

As shown in Figure 6.10 and Table 6.6, IMPSPITI clearly outperforms SPITI both in the
deterministic and in the stochastic case: it converges faster in time and in number of
learning episodes, but it also requires less memory to represent the value and policy
functions. More precisely, IMPSPITI only considers the 37 states that are actually
possible (the variance in value and policy size comes from cases where the run ended
before all states were explored).

Figure 6.11 shows the value function size on different BLOCKS WORLD problems,
computed as the number of leaves in Tree[V ] after 50 episodes.

Table 6.7 gives the rate of impossible states derived from the number of states shown in
labels in Figure 6.11 and the time required to perform one learning step by SPITI and
IMPSPITI respectively.

Figure 6.12 shows the convergence speed in number of episodes for the BLOCKS

WORLD of size 4-3-4, that is a representative middle size problem. IMPSPITI takes less
episodes than SPITI to reach the optimal policy with all representations. This result is
explained by the fact that IMPSPITI uses smaller trees with a simpler structure, therefore
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(A) BINARY

(B) STACKS

(C) BLOCKS

Figure 6.11: BLOCKS WORLD problem: value function size as a function of the size of
the problem. Labels on points indicate this value / the total number of states considered.
Note the log scale for Binary.
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(A) BINARY

(B) STACKS

(C) BLOCKS

Figure 6.12: BLOCKS WORLD problem (size 4-3-4): performance along episodes. We
run 70 episodes with Blocks to wait for convergence.
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BINARY STACKS BLOCKS

B-S-Y SPITI IMPSPITI SPITI IMPSPITI SPITI IMPSPITI

3-3-3 % IMP. 98.5% 87.5% 15.6%
TIME 0.28 ± 0.03 0.04 ± 0.01 0.05 ± 0.02 0.01 0.04 0.03

(0.01) (0.03)

4-3-4 % IMP. 99.7% 90% 26.1%
TIME 2.9 ± 0.4 0.08 ± 0.01 0.06 ± 0.02 0.01 0.17 ± 0.02 0.18 ± 0.01

(0.01) (0.13 ± 0.01)

4-4-3 % IMP. >99.99% 95.6% 18%
TIME 34 ± 7 1.2 ± 0.2 0.13 ± 0.06 0.02 0.34 ± 0.2 0.9 ± 0.07

(0.02) (0.5 ± 0.03)

5-4-4 % IMP. >99.99% 96.5% 26.3%
TIME - 2.6 ± 0.3 0.2 ± 0.09 0.05 2.6 ± 0.3 6.5 ± 0.9

(0.04) (3.1 ± 0.2)

Table 6.7: The BLOCKS WORLD problem: rate of impossible states and time to perform
one step (in seconds). A “-” indicates that the value could not be obtained after three
days of computation. IMPSPITI uses trees to represent impossible states (the time with
the ad hoc rules is indicated between parentheses).

it takes less steps to propagate values over the trees. But, as expected, the difference
is smaller when the rate of impossible states is smaller. Furthermore, even when there
are very few impossible states as is the case with the Blocks representation, the policy
improves faster with IMPSPITI.

Now, comparing the performance in time on a single step from Table 6.7, with
the Binary representation, where the rate of impossible states grows very fast,
IMPSPITI unquestionably outperforms SPITI in time and memory use. With the Stacks
representation, both the size of the problem and the rate of impossible states grows
slower, thus the time difference between SPITI and IMPSPITI keeps small. Finally, the
rate of impossible states is much smaller in the Blocks representation, therefore both
algorithms perform similarly for small BLOCKS WORLDs and SPITI takes less time per
step than IMPSPITI as the problem size grows, due to the time overhead required to check
for the existence of states. This is also true using ad hoc rules to detect impossible states,
even if the overhead is smaller in that case.

6.5.4 Comparison with tabular algorithms

The maze environments are known to be one of the worst cases for the FMDP approach.
Moreover, tabular algorithms perform well on such problems with a few possible states
as they do not need to deal with impossible states. Thus, we want to compare the
performance of both approaches.
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Figure 6.13: The D-MAZE problem.

With this aim in mind, we create a version of the MAZE6 problem that has a negative
sub-goal (D-MAZE). If the agent moves to the specified “death” cell (represented by
a A), it receives a negative reward and has to restart from the random position. The
zone surrounding the “death” cell is considered “dangerous” and also conveys a negative
reward. The D-MAZE problem has the same number of states as MAZE6 (37 actual states,
38 = 6561 states - with the combinatorial representation). In the “death” cell the agent
receives a reward of−10 in the surrounding zone−5 and a reward of 10 in the goal cell.
The experiments are performed on stochastic versions of MAZE6 and D-MAZE, that is
agent chooses random action in 10% of the decisions.

We compare the performance of a tabular model based RL algorithm DYNA-Q (given in
section 3.1.4) and IMPSPITI on MAZE6 and its modified version D-MAZE.

Figure 6.14: Convergence over episodes on MAZE6 with DYNA-Q and IMPSPITI.
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Figure 6.15: Convergence over episodes on D-MAZE with DYNA-Q and IMPSPITI.

Policy size Time/step(sec)

MAZE6 DYNA-Q 160 ± 20 0.02
IMPSPITI 35 ± 1 0.3 ± 0.1

D-MAZEA
DYNA-Q 160 ± 20 0.02
IMPSPITI 35 ± 1 0.7 ± 0.2

Table 6.8: MAZE6 and D-MAZE performance (cost in memory and time) with DYNA-Q
(in number of Q-functions) and IMPSPITI (in number of leaves in policy tree).

Figures 6.14 and 6.15 show the convergence in number of steps to complete each episode
in MAZE6 and D-MAZE. Table 6.8 recaps the performance in policy size and execution
time.

Unsurprisingly, on small problems like MAZE6 and D-MAZE, DYNA-Q outperforms
IMPSPITI in time cost. As mentioned in Section 6.3, tree operations and functions
discarding impossible states may result in a significant time overhead. Nevertheless,
as the number of states in the problem grows, the algorithms based on tabular
representations such as DYNA-Q cannot deal with explicit representation of all possible
states, while the factored methods use compact representations, hence perform better in
memory cost.

In order to compare the convergence speed in number of episodes as fairly as possible,
DYNA-Q updates all state-action pairs. Doing so, the value update is propagated to all
known states in both algorithms. IMPSPITI seems to perform better on the D-MAZE

problem. This is because, in SPI and SVI, the value function is reinitialized every time
the reward function changes. Thus, all the values are recomputed and reordered with
the last reward function structure. This feature provides IMPSPITI algorithm with faster
value propagation than DYNA-Q.
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6.6 Discussion

The first message of this chapter is that, although using a factored representation in
Reinforcement Learning results in the possibility to address larger problems, designing
a factored representation so that it does not artificially increase the number of considered
states may be very difficult. Consider the MAZE6 problem, where there are only 37
states, but a somewhat standard factored representation may result in 6561 potential
states. This problem is an idealization of a standard robot navigation problem where,
given usual robot sensors, one could not say in advance which sensory values cannot
occur simultaneously. Similarly, if we take the BLOCKS WORLD problem, it proved
difficult to design a representation that would fit the number of actual states. The Blocks
representation results in fewer impossible states, but at the price of some redundancy that
makes it very inefficient for larger problems (for instance, with a size 6-5-5 problem,
we have 34375 possible states represented whereas there are only 334 actual states).
We have shown that IMPSPITI is able to stick to the number of possible states of the
problem given a representation, resulting in the possibility to address a much wider class
of FMDPs than standard SDP methods.

Our second message is about the time overhead resulting from the necessity to check
whether a state is possible. Considering the computation time per step and the number
of steps required to converge, IMPSPITI always performs faster if there are enough
impossible states. More precisely, as illustrated with the Blocks representation, the larger
the problem, the larger the necessary rate of impossible states, since the tree of possible
states will grow larger, resulting in a large overhead. However, using domain specific
rules to detect impossible states generally results in a further gain in speed, but does so
at the price of generality.

Finally, the fact that the policy improves faster with IMPSPITI than with SPITI even when
there are very few impossible states, as is the case with the Blocks representation, tends to
indicate that considering states as impossible until they are seen is an efficient heuristics
even in the absence of actually impossible states. This heuristics itself deserves further
analyses. In particular, it would be of much interest to study the potential interactions
between this heuristics and using efficient optimistic exploration strategies such as
“Optimism in the Face of Uncertainty” [Szita and Lörincz, 2008] that drives the agent
towards unseen states. At first glance, these heuristics are contradictory, since in the
former we do not want to represent impossible states which we do not distinguish
from unseen states, whereas in the latter we want to attribute a large value to unseen
states, thus we need to represent them. One of the possibilities to combine the IMPSPITI

approach with “optimistic” approaches can be achieved by giving positive values to non-
explored state-actions pairs instead of states.
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6.6.1 Limitations

As to the limitations, first the complexity of the algorithm depends on the representation
of the impossible/possible states. In the best case, the problem relies on ad hoc rules
to determine if one state is possible, the rate of impossible states is high as well as the
factorization rate. In the worst case, the visited states must be registered, the rate of
impossible states is low and the factorization rate is weak, that is each state is important
and has a different value. Therefore, the impossible states representation has to be
appropriate to the problem.

Second, considering unseen states as impossible results in a completely random
exploration policy. That is the exploitation/exploration rate in fixed by the ε value of
the ε-greedy exploration policy. In this way the unknown partitions of the state space
are explored randomly, without taking into account the eventual importance of some
directions. Since the policy is learned simultaneously, it would be interesting to adapt
some active learning techniques like those proposed in [Strehl et al., 2007].

6.6.2 Extensions: Structured Prioritized Sweeping

Prioritized Sweeping (described in section 3.1.5) locally updates a subset of states
previous to the state that causes the value function to change. Applied to SDP algorithms
Prioritized Sweeping would be able to increase the speed of learning. [Dearden, 2000]
proposed a structured version of Prioritized Sweeping (SPS), based on Generalized
Prioritized Sweeping [Andre et al., 1997], that modifies the SPI algorithm to perform
local decision-theoretic regression on a smaller part of the state space. In the new
algorithm, the PRegress function takes an additional parameter φ that is a partial
assignment of values to variables which define the set of previous states i.e. the parts
of the tree that should be updated. For instance, a set φX is built adding the values that
correspond to the possible ways of making X = x by performing ai. This is done by
traversing the Tree(P (x′|x)) ∀ai ∈ A and for each leaf in which X = x with non-zero
probability, adding the corresponding values.

For example, in Figure 6.16 presented in [Dearden, 2001], if the value function has
changed at the leaf X̄3X̄2, then φX2 = {X1X̄2, X̄1X̄2} and φX3 = {X2X̄3, X̄2X̄3},
and the cross product is {X1X̄2X̄3, X̄1X̄2X̄3}.

But if the generalized expression X̄3X̄2 “hides” an impossible combination X̄1X̄2X̄3

or if there is no transition between X1X̄2X̄3 and X̄1X̄2X̄3, the method does not apply.
Besides, the main point of prioritized sweeping is to update values of states that lead to
the state bringing important change to the value function, but nothing guarantees that
the sets of previous states, constructed by the method presented here above, actually
corresponds exactly to all previous states. In fact, since the FMDP theory is built on
the assumption of the independence of the variables and consequently uses compact
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Figure 6.16: Action DBN, Conditional Probability Trees, Value and Reward function
example.

representations of the set of states instead of individual states, it is impossible to reverse
the representation to get individual previous states from the trees.

DEFINITION (A) (B) (C)

Figure 6.17: Binary 2-2-2 BLOCKS WORLD problem: example of possible states.

We modified SVI and IMPSVI algorithms as suggested in [Dearden, 2001] inside SPITI

and IMPSPITI to perform tests on MAZE6 and BLOCKS WORLD problems and could not
obtain any convergence. To illustrate this point, we take a small 2× 2 BLOCKS WORLD

example with 2 cubes. The variable definition and some states examples are given in
Figure 6.17, where 00 means that there is a block in the 00 cell while 0̄0 means the cell
is empty.

Figure 6.18 shows the value tree and the transitions trees that are relevant for our
example. If the value function has changed at the leaf {00, 10, 1̄1} = 309 (that
corresponds to the state (A) of Figure 6.17), then φ00 = {00, 1̄1}, φ10 = {0̄0, 10}
and φ1̄1 = {00, 1̄1}, and the cross product is {00, 1̄1}. The combination {00, 1̄1}
corresponds to the states (B) and (C) of Figure 6.17, but the state (C) is not previous
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Value tree Tree(P (00′|00)) Tree(P (10′|10)) Tree(P (11′|11))
a=Release0 a=Grip1 a=Release1

Figure 6.18: Binary 2-2-2 BLOCKS WORLD problem: value tree and transition trees.

to the state (A). There is no transition linking directly these two states. Thus, updating
state (C) is not only irrelevant but also theoretically unsound, because this results in
uncontrolled changes to the partition of the value function.

As shown in the example, in case of the presence of impossible states as well as in
case of simultaneous structure and policy learning, the convergence of the algorithm
is not guaranteed because of irrelevant updates in the value function that distort value
propagation. Nevertheless, we believe that prioritized sweeping methods can improve
the learning speed as soon as the correct way to update the relevant value function
partitions is found. Thus we consider that as an open question for future work.

6.7 Conclusion

We have shown that there exists a practically relevant class of FMDPs between the “no
synchronic arcs” and the “any synchronic arcs” classes that corresponds to problems
where some combinations of state variable values do not occur. Though standard
SDP algorithms such as SVI and their derivatives such as SPITI can be applied to this
class of problems, we have shown that modifying the algorithm to take the presence
of impossible states into account can result in significant performance improvements.
Moreover, we have shown that, in the context where an agent has to explore its
environment to learn its structure, considering as impossible the states that have not
yet been encountered is also beneficial to the performance.

Note that the approach described in Section 6.3 can be applied to other standard SDP

algorithms. Here, we focused on one particular FRL method, namely SPITI, but the
impact on other instances of SDYNA using SPUDD or Guestrin’s linear programming
approach [Guestrin et al., 2003] remains to be studied. Furthermore, it would be
interesting to compare IMPSPITI with XACS [Butz et al., 2002], an Anticipatory
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Learning Classifier System endowed with most FRL systems properties, but which uses
genetic algorithm heuristics instead of SDP and incremental tree induction methods.
A previous comparison between XACS and SPITI [Sigaud et al., 2009] has shown that
XACS can deal efficiently with impossible states, but a closer comparison between the
mechanisms of IMPSPITI presented here and those of XACS remains to be performed.
Finally, the combination with “optimistic” approaches seems to be an interesting
direction to explore in future work.





Chapter 7

TeXDYNA : hierarchical
decomposition in FRL

In previous chapters we presented the FRL, HMDP and SMDP formalisms and exemplified
their utility to solve large stochastic and sequential decision making problems. First, we
introduced the FMDP approach and showed how one can take advantage of the structure
of the problem to solve large problems. Then, we introduced the HMDP approach
that allows using hierarchical structure of the problem in order to address large and
complex problems. Among various approaches to the hierarchical learning we singled
out the options framework as one of the most efficient and elegant methods to introduce
hierarchies into the learning and planning processes.

Several Planning methods use hierarchical representations, such as Hierarchical Task
Networks or STRIPS. Besides, there are some hierarchical learning methods that identify

93
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sub-goals or discover trajectory patterns. One of the challenging questions of the
HRL domain consists in addressing both problems simultaneously. The goal is the
automated discovery of the hierarchy that can be used directly in the planning phase.
Such algorithms would be capable of online learning and consequently applicable to
the problems with unknown structure. In order to address this question, we propose
in this chapter to use existing FRL methods to solve large problems with unknown
structure augmented with the hierarchical decomposition of the problem based on the
options framework. The differences of this new approach with the existing ones will be
highlighted in the Discussion section.

More precisely, we introduce TeXDYNA1, a framework that combines the abstraction
techniques of HMDPs to perform the automatic hierarchical decomposition of problems
with an FRL method.

The combination of Hierarchical and Factored MDP formalisms corresponds to an
HFMDP, that is hierarchically ordered set of imbricated sub-FMDPs.

TeXDYNA hierarchically decomposes an FMDP into an HFMDP by automatically splitting
it into a set of options. Meanwhile, the local policy of each option is incrementally
improved by a DYNA-like approach adapted to FMDPs [Degris, 2007] in the SDYNA

architecture. The central contribution comes from the fact that the discovery of
options and the construction of the model of the FMDP, as well as policy computation,
are simultaneous. To achieve simultaneous SMDP structure learning, FMDP structure
learning, local and global policy computation, TeXDYNA is built on top of SPITI

[Degris et al., 2006b]. First, we make profit of the learning method used in SDYNA

to learn only a local model for each option. As a result, the models are smaller and,
therefore, easier to learn. Second, introducing options in the planning phase results in
the possibility to plan over smaller partitions of the state-action space.

In the first place, the framework is designed to solve large problems using divide and
conquer methods. Particularly, we take advantage of the HMDP techniques to decompose
the overall task into smaller pieces easier to learn and plan individually using the
internal structure of the problem. As presented in Chapter 5, hierarchical decomposition
exploits the task structure by introducing stand-alone policies (activities, macro-actions,
temporally-extended actions, options, or skills) that can take multiple time steps to
execute. Particularly, the options framework, used here, introduces temporal abstraction
methods into the problem representation that corresponds to “taking a short cut” in the
path to goal. Furthermore, hierarchical decomposition methods are closely related to
state abstraction provided by the FMDP framework, as it is, ignoring part of the available
information to reduce the effective size of the state space.

From the other standpoint, while the FMDP representation technique reduces the size of
the representation of state-action space of large problems by decomposing states into a

1for Temporally Extended SDYNA
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set of random variables, the HMDP representation decomposes the overall state-action
space into a set of smaller state-action spaces each of which can be factored. While
computing the policy with high level options, we obtain a factored structure of sub-
spaces each of which is factored at its level. This “double factorization” with state-action
space reduction techniques coming from FMDPs and HMDPs frameworks and represented
by an HFMDP, provides a basis for solving more complex and larger problems.

First, in Section 7.2, we give a brief survey of the TeXDYNA algorithm. Then, in Section
7.3, we introduce the method for discovering options from the internal structure of
the problem. Finally, in Section 7.4, we show how to take options into structured RL

algorithms.

7.1 The LIGHT BOX problem

The examples to illustrate the algorithms presented in this chapter will be given on the
LIGHT BOX problem.

Light Depends on

“9” 0 3 6
“10” 1 4 7
“11” 2 5 8
“12” 6 7 8
“13” 3 4 5
“14” 0 1 2
“15” 9 10
“16” 10 11
“17” 12 13
“18” 13 14
“19” 16 17

(a) (b)

Figure 7.1: (a) The LIGHT BOX problem: number and color of “lights” with their
dependencies. (b) Internal dependencies of the LIGHT BOX problem.

The LIGHT BOX domain proposed in [Vigorito and Barto, 2008b], presented in
Figure 7.1 consists of a set of twenty “lights”, each of which is a binary variable
corresponding to ON and OFF, named “0”, “1”, “2”, etc. Each light has a corresponding
action that toggles the light ON or OFF. Thus there are twenty actions, 220 ≈ 1 million
states, thus approximately 20 million state-action pairs. The nine white lights are simple
toggle lights that can be turned ON or OFF by executing their corresponding action.
The green lights are toggled similarly, but only if certain configurations of white lights
are ON, with each green light having a different set of dependencies. Similarly, the
blue lights depend on certain configurations of green lights being ON, and the red light
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depends on configurations of the blue lights. The goal is to turn the red light on, in which
case the agent receives the reward of 20. The dependencies between lights, that we used
in the experimentations, are given in Figure 7.1(b).

7.2 TeXDYNA: global view

Algorithm 7.1: TeXDYNA

input : FMDP F , options hierarchy E
output: option to execute o

1 Learning:
1.a update global transition model
F ←UpdateFMDP()

1.b discover options hierarchy
E ←UpdateOptions(F)

2 Planning:
2.a update hierarchical policy
2.b choose option to execute

o← SPITI WithOptions(F , E)

In order to decompose hierarchically the overall FMDP into sub-FMDPs represented by
options, TeXDYNA (Algorithm 7.1) builds a global transition function that represents the
structure of the problem and uses this function to build an options hierarchy. For each
option, TeXDYNA computes a local transition function and a local policy. This way, each
option represents a part in the overall hierarchical decomposition, or else a sub-FMDP.
Finally, the algorithm makes recursive calls like HSMQ down to the options hierarchy
where each recursive loop follows 3 steps of SPITI (Figure 7.2).

Therefore, the TeXDYNA approach can be decomposed into two simultaneous processes:

1. Learning options: learning the transition function of the overall FMDP (updating
the FMDP model with (s,a,s′,r)) and updating options (Algorithms 7.2 and 7.3);

2. Planning with options: using a modified version of the SPITI algorithm for model
learning, planning and acting with options, i.e. updating hierarchical policy π =

〈πo0 , πo1 , ...πon , 〉 (Algorithm 7.4).

7.3 Learning: Discovering options

During this phase of the TeXDYNA algorithm, the overall task transition function is
learned in a decision tree form. The FMDP model provides the structure that will be used
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Figure 7.2: TeXDYNA global view.

for the options discovery process, as this structure represents the dependencies between
variables and constraints under which those variables change their values.

Since the purpose of our approach is to decompose the overall FMDP into smaller
subtasks or stand-alone policies that are mutually independent, we are interested in
a representation that takes advantage of the FMDP structure introducing the temporal
abstraction techniques. Among various SMDP formalisms, we use the options framework
[Sutton et al., 1999]. As introduced in Section 5.1.1, options are a generalization of
primitive actions including temporally extended courses of actions. Furthermore, we
use specific options representation inspired from the goal-oriented exit options of VISA

[Jonsson, 2006] and HEXQ [Hengst, 2002], where options are defined by their exit states
that can be seen as sub-goals of the task.

Finally, each option represents a sub-MDP with its own structure and local policy.
Particularly, a global model of transitions is used to discover options, then each
option contains only a reduced model of transitions that is the local structure of the
corresponding sub-MDP. In the next section, we explain how we introduce options into
the learning and planning processes.
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7.3.1 Introducing options

In order to highlight the exit oriented structure of options, we use a refined definition
of an option o: o = 〈I, π, e〉 where I ⊆ S is an initiation set, π is a policy executed
in o and e is the related exit. Note that we do not use the termination function β (see
Section 5.1.1) in the option definition since it is defined by the exit and computed at each
time step during the option execution.

An exit corresponds to the changes of values of the variables linked to the reward
function. We use an exit definition similar to the one used in HEXQ. However, unlike
HEXQ, where exits are state-action pairs, we define exits as a tuple 〈v, a, vch, c〉, where:

• v is the variable whose value is changed by this exit,

• a is the exit action that makes the value of v change at the next state s′,

• vch is a variable change, i.e. a pair of values 〈x, x′〉 where x is the value before a
is executed and x′ the value after a is executed. In the stochastic case, the variable
change is a probability distribution over vch and the highest probability is kept in
the exit definition.

• c = {x1, ..., xn} is the context, that is the set of constraints (i.e. assignment of
values to a subset of state variables) that makes this exit available.

In this representation, the primitive actions have an empty context. Thus, to each action
corresponds at least one option. Consequently there is at most one exit per action and
per variable change and, consequently, each option corresponds to one unique exit.

The exit discovery procedure is slightly modified depending on the chosen
transition trees representation (Tree[P (x′|x)]) - one tree per action per variable or
Tree[Pa(x

′|x)]) - one tree per variable, the action being an attribute). Below we give an
example of exit discovery process for each representation.

Figure 7.3 shows the transition trees (one tree per variable) for the LIGHT

BOX problem for variables representing the lights “16” and “11”. Note that
according to the standard FMDP notation of the CPDs as P [X ′i|Parents(X ′i), a], the
transitions trees of Figure 7.3 should be noted as Tree[P (“16”′|“16”, “10”, “11”)]

and Tree[P (“11”′|“11”, “2”, “8”, “15”)] but we keep the reduced notation in order to
simplify the writing. For each transition tree, the algorithm iterates through its leaves
and looks for the action attribute in the branch that changes the variable value. In this
example the action toggle16 is changing the value of the variable “16” from “OFF” (0)
to “ON” (1) under the conditions represented by the nodes of the branch. Therefore, we
introduce the exit
e = 〈“16”, toggle16, 0→ 1, {“10” = 1; “11” = 1}〉 where
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(a) Tree[P (“16”′|“16”, “10”, “11”)] (b) Tree[P (“11”′|“11”, “2”, “8”, “5”)]

Figure 7.3: Transition trees for the variables “16” and “11” in the LIGHT BOX problem.

• v = “16”;

• a = toggle16;

• vch = 〈0, 1〉;

• c = {“10” = 1; “11” = 1}.

Similarly we define e = 〈“11”, toggle11, 0→ 1, {“2” = 1; “8” = 1; “5” = 1}〉;

Figure 7.4 shows the transition trees (one tree per variable and per action) for a variable
representing the light “16” and actions toggle16 and toggle2. In this representation, the
change in the variable values appears only in the Tree[P (“16”′|“16”, toggle16)]. Thus
we introduce the same exit e = 〈“16”, toggle16, 0→ 1, {“10” = 1; “11” = 1}〉.

Finally, we introduce an option for each exit. An option is introduced using the following
procedure:

1. Create (or update) an option o for each exit;

2. Initialize the local policy πo;

3. Add sub-options;

4. Compute the option rank, that is the place of the option in the hierarchy;
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(a) Tree[Ptoggle16(“16”′|“16”, “10”, “11”)] (b) Tree[Ptoggle2(“16”′|“16”)]

Figure 7.4: Transition trees for the variable “16” and actions toggle16 and toggle2 in the
LIGHT BOX problem.

Algorithm 7.2: Update options (model of transitions: one tree per variable)
init : options set E = ∅
input: FMDP F = {∀xi ∈ X : Tree[P (x′|x)]}

11 forall the transition tree Tree[P (x′|s)] ∈ F do
22 forall the leaf l of the Tree[P (x′|s)] do
33 if branch contains an action a & a modifies the value of the variable x in leaf l

then
44 if E does not contain a definition of option o with the exit corresponding to

variable x and action a then
55 introduce new option o defined by exit e : 〈v, a, vch, c〉 with :
66 • variable v ← x
77 • action a← current action a
88 • variable change vch ← 〈value in the branch, value in the leaf〉
99 • context c← variables of the branch that leads to the leaf l

1010 else if E contains a partial definition of o then
1111 update o with new information

5. Compute the Initialization set Io.

Algorithms 7.2 and 7.3 describe the procedures for discovering options within the two
representations of the model of transitions. Note the difference in line 3 where the exit
action a is either defined by the transition tree or taken from the branch nodes. To ensure
the relevance of discovered options, they are updated every time the model of transitions
changes. Despite the fact that most of the options would be discovered earlier than the
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Algorithm 7.3: Update options (model of transitions: one tree per variable per
action)

init : options set E = ∅
input: FMDP F = {∀xi ∈ X,∀aj ∈ A : Tree[P (x′|x, a)]}

11 forall the transition tree Tree[Pa(x′|s)] ∈ F do
22 forall the leaf l of the Tree[Pa(x′|s)] do
33 if action a modifies the value of the variable x in leaf l then
44 if E does not contain a definition of option o with the exit corresponding to

variable x and action a then
55 introduce new option o defined by exit e : 〈v, a, vch, c〉 with :
66 • variable v ← x
77 • action a← current action a
88 • variable change vch ← 〈value in the branch, value in the leaf〉
99 • context c← variables of the branch that leads to the leaf l

1010 else if E contains a partial definition of o then
1111 update o with new information

complete structure of the problem, some options might be incomplete or incorrect. The
update procedure that handles this issue is discussed in Section 7.3.3.

7.3.2 Building the hierarchy of options

The set of discovered options E is organized into a hierarchy according to the internal
structure of the options that defines the dependencies between options. This internal
structure is represented by the set of sub-options and the initiation set. Following the
dependencies between options and sub-options, it is possible to represent the overall
hierarchy of the task. Finally, the set of sub-options and the initiation set for each option
define its corresponding sub-FMDP and consequently the structure of the global HFMDP.
In this section we give the definition of sub-options and initiation set. Then we explain
how these notions are used to build the hierarchy of options and how they impact the
internal structure of options.

Sub-options

The sub-options are the options available in the sub-FMDP represented by the
corresponding parent option. The sub-options are added in the following way: for each
variable in the context of the option, if the set of options E contains an option that
modifies the value of this variable, this option is added to the set of sub-options. Note
that, when computing the context of an exit, the exit variables are excluded from the
context to avoid cross-dependencies between options. For example, the option defined
by the exit e = 〈“16”, toggle16, 0 → 1, {“10” = 1; “11” = 1}〉 will have two
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sub-options toggle10 and toggle11. In turn, the option toggle11 defined by the exit
e = 〈“11”, toggle11, 0 → 1, {“2” = 1; “5” = 1; “8” = 1}〉 will have the following
sub-options: toggle2, toggle5 and toggle8 as the actions that change the values of the
variables “2”, “5” and “8” respectively.

Since each primitive action is defined as an option (with an empty context), therefore
there are only options in the problem definition. Then, when the definitions of these
options are modified with new information we keep the same names in order to keep it
simple.

This procedure supposes that there is one option per variable change and that each option
changes at most one variable value. For instance, if some options change more than one
variable, then one variable can be changed by more than one option and consequently
these options would be sub-options of one another creating cycles in the hierarchy.
Nevertheless this constrain can be relaxed by reorganizing the hierarchy once the options
have been added. The procedure is the following: if a cross-dependency is detected
between two options, the hierarchical link between them is removed and both options
are attributed the lowest rank of the two. This way, it is possible to have more than one
option that have the same exit variable.

Initiation set

The initiation set Io of option o defines the state space where this option can be executed.
On the one hand, it determines if the resources necessary for the successful execution of
the option are available, and, on the other hand, it specifies the state space from where
the exit of the option is reachable.

In practice, it is the union of its own exit context, the variable changes and exit contexts
of its sub-options. If a sub-option is a primitive action, its exit variable is added to Io
with all possible values. Otherwise, the exit variable of the sub-option is added with its
value change. By convention, a sub-option with an empty initiation set is admissible
everywhere. This is particularly true for primitive actions. Therefore, all the values
of the corresponding exit variables of these options are accepted. Thus, Io contains
all the states from which the exit of the option is reachable. This property of direct
reachability is ensured by the fact that the exit context copies the constraints of the
corresponding branch in the transition tree. In other words, the nodes of the branch
represent the variables of the context. When those variables can be changed by a sub-
option, the exit of the parent option becomes reachable from all the states where its
sub-options are accessible. For instance, the Initiation set for the option defined by the
exit e = 〈“16”, toggle16, 0 → 1, {“10” = 1; “11” = 1}〉 is I = 〈“16” = {0}; “10” =

{0, 1}; “11” = {0, 1}〉.
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Hierarchical structure

The hierarchical structure of the set of options is determined by the variables
interdependencies expressed in the structure of the transition function. However, for
the purpose of soundness of planning algorithms, a rank is assigned to each option. In
this way, the planning algorithm chooses an option to execute at each abstraction level
in the hierarchy by going down from the most abstract options to primitive actions. The
rank of the option is computed as the incremented highest rank of its sub-options.

Figure 7.5: Example of the options discovered in the LIGHT BOX problem.

Since the learning process is online, both transition model learning and options discovery
are simultaneous. Thus the options discovered first represent the transitions learned first
and consequently have less constraints as they represent the most accessible sub-goals. If
the problem has an hierarchical structure, this gives a bottom-up direction to the options
discovery. First the options with the lowest abstraction level are discovered, then their
execution gives access to more complex (i.e. having more constraints) options.

An example of options hierarchy obtained on the LIGHT BOX problem is given in
Figure 7.5. The dependency of the variable “16” over the variables “10” and “11”

is directly transposed from the transition trees shown in Figure 7.3.

The HFMDP structure of the options

Defined in this manner, each option represents a sub-FMDP Mo = 〈So, Oo,Ψ, To, Ro〉
containing a reduced partition of the initial state-action space, where So is a set of context
variables,Oo is a set of sub-options, Ψ is a set of admissible state-option pairs defined by
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the initiation set, To is the local transition function and Ro is the local reward function.
In this respect, when an option is created, we initialize its local FMDP tree structure
composed of the transition trees for its context variables, as well as a local instance
of planning algorithm. Thus, when learning the internal FMDP structure of the option,
the states injected in the learning algorithm are reduced to contain only variables xi
such that ∀i, xi ∈ Xo. For instance, the complete state representation in the LIGHT

BOX problem is given by 20 variables corresponding to 20 lights, but the states used to
update the internal structure of the FMDP corresponding to the option toggle16 contains
only 2 variables “10” and “11”. As a consequence, the sub-FMDP has 2 variables × 2
sub-options instead of 20 variables × 20 actions. Finally, the set of all the sub-FMDPs
corresponding to all available options represents the global HFMDP. If we consider the
state-action space of the global HFMDP as a sum of the sizes of its sub-spaces (that is total
memory occupation), it would be smaller than the non-hierarchical one, as illustrated by
the results presented in Section 7.5.2.

7.3.3 Incremental update

The options are defined over the model of the problem while this model is learned. Thus
some are incomplete or erroneous especially in the first stages of the learning process.
To handle this issue, the algorithm checks if the set of the options E already contains an
option defined by the same action and variable, but with a different context definition. If
so, it updates it (line 10 in Algorithms 7.2 and 7.3).

For instance, the tree shown in Figure 7.6 gives rise to the option defined by the exit
e = 〈“11”, toggle11, 0 → 1, {“2” = 1; “7” = 1}〉, while the correct combination
of lights to turn on the light “11” is “2”, “5” and “8”. That means that this option
contains an irrelevant sub-option toggle7, its internal transition function contains a tree
for variable “7”, its initiation set contains the irrelevant variable “7” and it lacks the
information about variables “8” and “5”.

With respect to this observation, the update of the option is performed using the
following procedure:

1. Update the exit context c of the option;

2. Update the local model of transitions Fo by adding missing transition trees and
discarding irrelevant ones;

3. Update the sub-options list by adding missing sub-options and discarding
irrelevant ones;

4. Re-compute the rank k of the option;

5. Re-compute the Initialization set Io.
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Figure 7.6: Example of incomplete transition tree with erroneous dependencies
(irrelevant variable “7”, missing variables “8” and “5”).

This procedure introduces an option each time there is an action that can change one
variable value. In fact, there are exactly as many options as there are possible variable
value changes. Thus there is no need to remove incorrect options given that as soon as
their context is correct, they become accurate.

In other respects, inaccurate options can influence planning and exploration by building
an erroneous policy. We will discuss these questions in the next section.

7.4 Planning: FRL over options

The planning phase builds a hierarchical policy over options by incrementally improving
and modifying it during the simultaneously with the learning process. The planning
algorithm, built upon the ideas coming from HSMQ-like algorithms (Section 5.1.2) and
FRL methods based on DYNA-like architecture, is given in Algorithm 7.4. To operate
with options and take into account the hierarchical structure of the policy, we use a
modified instance of SPITI of the SDYNA framework (Section 4.3.1) for model learning,
planning and acting with options. The algorithm executes options recursively by going
down the options hierarchy up to primitive actions that can be executed by the agent
in its environment, then performs the updates with the returning information on the
environment by going up in the hierarchy. This upward update guarantees that the model
of transitions includes the changes that occur during the incremental learning process.
Thus, local planning is performed for each option with respect to the current structure of
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its local model of transitions. To sum up, the planning algorithm implements hierarchical
FRL (HFRL) to efficiently learn in hierarchical and factored environment.

7.4.1 SPITI with options

The inner loop of SPITI is decomposed into three phases (Figure 7.2):

• Acting: choosing an action according to the current policy using ε-greedy as
exploration method;

• Learning: updating the model of the transition and reward functions of the local
FMDP from 〈X, a,X ′, R〉 observations using the ITI algorithm;

• Planning: updating the value function Tree[V ] and policy Tree[π] using one
sweep of the SVI algorithm.

Each phase of the algorithm is adapted to use the options representation instead of
primitive actions. Action phase with options is described in the next section.

Then, in the learning phase, the ITI algorithm is modified to work with options
by replacing primitive actions definitions by options in trees and allowing online
modifications in the set of transition trees, that is removing or adding new trees while
learning. Moreover, ITI uses reduced states representations containing only variables
present in the context of the option, so that the local model is updated with the
observations of the form 〈So, a, So′, R〉 where So is a set of context variables.

Finally, in the planning phase, the adaptation of SDP algorithms like SVI and IncSVI

used to the options framework is straightforward. First of all, the primitive actions
available in the environment are all initialized as options with empty exit context and
initiation set. As a result, the algorithm deals only with options and does not have
to make distinction between options and primitive actions. Since the action space is
restricted by the number of sub-options available on a given hierarchical level, the
algorithm has an additional argument that specifies the list of options to iterate through.
As to incrementality, [Degris, 2007] proposes to re-initialize the value function each time
the reward function changes, mainly because the structure of the value function results
from the reward function. In the incremental options learning case, the value function
tree is reset each time the reward function changes in order to take into account every
modification that changes the structure of the policy. The SPITI with options algorithm
is given in Algorithm 7.4.

7.4.2 Acting: choosing options

As mentioned in Section 7.3.3 on the incremental update of the option, in the first
iterations of the learning process, the options hierarchy and often options themselves
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Algorithm 7.4: SPITI with options
input : FMDP F , options hierarchy E
for each time step t

1 if no option is running then
option o←ChooseOption(s, Tree[π], E)

2 if terminal condition of o is satisfied then
2.1 execute exit action a; observe next state s′ and immediate reward r

2.2.a update local FMDP Fo with (s,a,s′,r)
2.2.b update parent FMDP Fparent(o) with (s,o,s′,r)
2.3.a update local policy πo with Fo
2.3.b update parent policy πparent(o) with Fparent(o)

3 else
sub-option i←ChooseOption(s, Tree[πo], E)
if sub-option i is primitive action then

3.1 execute i; observe s′ and r
3.2 update local FMDP Fo with (s,i,s′,r)
3.3 update local policy πo with Fo
3.4 return: i

4 else
call SPITI over sub-option i : i→SPITI (Fi, E)

are inaccurate or irrelevant. This is why the procedure to choose options must take
inaccuracies into account and use a strategy that:

• favors exploration at the beginning,

• prevents options from being stuck and going round in circles within erroneous
policies,

• chooses the options at the right level of the hierarchy.

Algorithm 7.5 shows the procedure to choose options.

Algorithm 7.5: Choose Option
input: current state s, policy Tree[π], options hierarchy E , level k

1 Get option o from the current policy, o = maxo[leaf(Tree[π]|s)]
2 if o is null then

choose option o from E accessible in the current state s with current rank k

3 while o is null do
choose option o from E accessible in the current state s with rank k − 1
(if k = 0 choose random primitive action)

return o
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The root node of the option hierarchy represents the overall FMDP. The first option
o is chosen according to the root policy while its initiation set contains the current
state s. The sub-options are selected according to the internal policy πo of the option
o augmented with an ε-greedy exploration policy. If the policy is incomplete and does
not contain any information about options available in a current state, then an option
is chosen randomly from the options set E on the current rank level with respect to its
initialization set. If no option is available with a given rank, the algorithm chooses from
options with a lower rank and so forth. Thus, in the first stages of learning, only the
options with rank 0 are available, that is primitive actions chosen randomly and in the
end the preference always goes to the options with the higher level of abstraction. This
provides a high level of exploration at the beginning and then for unexplored parts of the
state space, therefore this speeds up the overall learning process (see Section 7.5.5 for
empirical evaluation).

In order to avoid an option from being stuck within an erroneous policy that fails to
achieve its exit, we introduce the notion of selection penalty that forbids one option
for a given number of time steps. In practical terms, when an option reaches its exit
state but fails to change the corresponding variable value, that means that its structure
is inaccurate. In this case we forbid this option selection for (max time steps per episode)

10

time steps in order to let the model of transitions of its parent option be improved.

Furthermore, in practice, high level options often form a partition of the state space, thus
the option selection procedure generally returns the only admissible option.

7.4.3 Hierarchical policy

The methods described in this section build the hierarchical policy π =

〈πo0 , πo1 , ...πon , 〉 where a global policy is a set of lower level policies. Each option
follows the policy of its FMDP, its sub-options follow their respective policies and so
on. Figure 7.7 gives an example of a subset of the hierarchical policy built in the LIGHT

BOX problem. Since there is no possibility to toggle the light “16” OFF, the algorithm
choses a sub-option randomly.

Moreover, to propagate the external rewards to the local policies of options, when a
high level option is discovered, an additional reward, named “internal reward” ro (by
contrast with the external reward received from the environment) is assigned to its exit
action. We set ro = Ro

2 , where Ro is the maximal internal reward of the parent option.
For the options on the higher level of the hierarchy, Ro is the maximal immediate
external reward that the agent can get. This heuristics is inspired by the “salient event”
heuristics introduced in [Singh et al., 2005]. With respect to this heuristics, the internal
reward function of the options in the LIGHT BOX problem is the following: successfully
toggling light “19” results in receiving 20; lights “15, 16, 17, 18” results in receiving 10;
lights “9, 10, 11, 12, 13, 14” results in receiving 5.
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Figure 7.7: Local policy of the options toggle16 and toggle11

The last point concerns the local structure used in planning on each hierarchical level.
As mentioned in Section 7.3.2, each option builds its own representation of the model
of transitions, then uses it to compute the policy function. This is why, at each level,
the model of the underlying FMDP is smaller hence easier to learn and consequently the
policy computation is simpler and faster.

7.5 Experimental study

We have chosen to use the following benchmarks when performing the experimentations
on the Hierarchical Learning approaches: the TAXI and LIGHT BOX problems. The
LIGHT BOX problem [Vigorito and Barto, 2008b], presented in the beginning of this
chapter, is a good benchmark for testing the hierarchical decomposition since it has a
strict hierarchical structure.

First, we present the TAXI problem, then the results on the overall performance of our
algorithms while solving the TAXI and LIGHT BOX problems. Then we take a closer
look at the impact of the localization of the transition function on policy learning as
well as the transition function representation and its impact on the options learning and
planning.

The results presented here below are averaged over 20 runs of 150 episodes where
each episode is limited to 300 steps. The curves are smoothed by computing the
moving average weighted over ten neighboring values. The algorithms use the following
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parameters: N = 300 in DYNA-Q and ε = 0.1 in ε-greedy. The ITI algorithm uses
χ2 = 30 in stochastic problems and χ2 = 0 in deterministic ones. The algorithms are
coded in C# and run on Intel Core2Duo 1.80GHz processor with 2Go RAM.

7.5.1 The TAXI problem

The TAXI problem, first proposed in [Dietterich, 1998] has since become a classical
benchmark to test Hierarchical Learning algorithms.

Figure 7.8: The TAXI problem.

The taxi problem is presented in Figure 7.8. A taxi is in a 5-by-5 grid world. There are
four special locations, named R, G, Y and B. The taxi problem is episodic, there are
500 possible states. In each episode, the taxi starts in a randomly-chosen state. There is
a passenger at one of the four special locations (chosen randomly), and that passenger
wishes to be transported to one of the three other locations (also chosen randomly). The
taxi must go to the passenger’s location, pick her up, go to the destination location, and
drop her off there. The episode ends when the passenger is at her destination location
or when a predefined number of steps has been reached. At each time step, the taxi
can execute one possible action out of six: Move the taxi one square North, South,
East, or West, PickUp or PutDown the passenger. In a stochastic version, instead
of moving in the selected direction, a Move action moves in a random direction with
probability 0.2. There is a penalty of −1 for each action and an additional reward of 20

for successfully dropping off the passenger. There is a penalty of−10 if the taxi attempts
to execute the PutDown or PickUp actions illegally. The state variables domains are
given in Table 7.1 and action constraints in Table 7.2.
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Variable Domain

Taxi location (X,Y) [0, 1, ..., 5][0, 1, ..., 5]
Passenger location [R, G, Y , B]
Passenger destination [R, G, Y , B]
Passenger in the taxi [Yes, No]

Table 7.1: State variables of the TAXI problem.

Action Constraints

MoveNorth -
MoveSouth -
MoveEast -
MoveWest -
PickUp Taxi location = Passenger location
PutDown Taxi location = Passenger destination.

Table 7.2: Actions of the TAXI problem.

7.5.2 Performance and convergence speed

The TAXI problem

The results, presented in this section, are published in [Kozlova et al., 2008] and
[Kozlova et al., 2009a]. In this work, in order to compare our results to those found
in the literature, we use a version of the TAXI problem that contains 800 states. In this
version, the options are differentiated by their contexts rather than by variable changes.
Thus, the algorithm for discovering options starts by discovering the tree of exits and
then builds the tree of the corresponding options.

Figure 7.9 shows an example of options discovered on the TAXI problem after 10
episodes.

Figure 7.10 shows the performance in number of time steps required to complete one
episode of the stochastic version of the TAXI problem. The results below are given for
SPITI, for a simplified version of TeXDYNA where options are given and for TeXDYNA

where options are learned. Table 7.3 recaps the average time in seconds per step within
three experimental contexts.

TeXDYNA clearly outperforms SPITI in computation time and in number of learning
episodes needed to converge but also in memory requirements. It needs about 40
episodes to converge when options are given, almost 100 episodes with primitives
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Figure 7.9: Example of options discovered in the TAXI problem. The option PickUp
changes the value of variable Passenger from No (not in the taxi) to Yes (in the taxi).
Its exit context contains 2 variables: Taxi Location and Passenger Location. It has 4
sub-options.

Figure 7.10: Convergence over episodes on the stochastic TAXI problem.

actions only and 60 episodes when options are learned. As expected, this result is
intermediate between the one with given options and the one without options.

As to the size on the value function, SPITI builds the complete tree representing the 800
states of the problem, whereas TeXDYNA operates with 8 options (see Table 7.4) each of
which only considers 25 states. Thus TeXDYNA requires less time to perform one step
since it works on a smaller representation. Even considering the options representing
the primitives actions, the hierarchy of options provides a simplification of the global
structure. Moreover, simultaneously discovering and refining options while learning the
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Time/step(sec)

SPITI 1.1 ± 0.4
given options TeXDYNA 0.09 ± 0.03
learned options TeXDYNA 0.24 ± 0.08

Table 7.3: Performance on the stochastic TAXI problem.

FMDP structure speeds up the global process since it builds most of the partial policies
before the model of transitions is completely learned.

Option Exit (variable, action, change, context)

PickUpRed 〈P, P ickUp,No→ Y es, {TL = (0; 4), PL = Red}〉
PickUpYellow 〈P, P ickUp,No→ Y es, {TL = (0; 0), PL = Y ellow}〉
PickUpBlue 〈P, P ickUp,No→ Y es, {TL = (3; 0), PL = Blue}〉
PickUpGreen 〈P, P ickUp,No→ Y es, {TL = (4; 4), PL = Green}〉
PutDownRed 〈P, PutDown, Y es→ No, {TL = (0; 4), PD = Red}〉
PutDownYellow 〈P, PutDown, Y es→ No, {TL = (0; 0), PD = Y ellow}〉
PutDownBlue 〈P, PutDown, Y es→ No, {TL = (3; 0), PD = Blue}〉
PutDownGreen 〈P, PutDown, Y es→ No, {TL = (4; 4), PD = Green}〉

Table 7.4: Options of the TAXI problem (P - Passenger, TL - Taxi Location, PL -
Passenger Location, PD - Passenger Destination).

With respect to results found in the literature, our model performs better than HEXQ,
which needs about 160 episodes to converge and than MAXQ-Q [Dietterich, 1998],
which needs about 115 episodes. Furthermore, both MAXQ-Q and HEXQ converge
slower than SPITI. That can be explained by the fact that the former does not explicitly
use the factored structure of the problem and the latter spends a significant number of
episodes evaluating the order of the variables before building the hierarchy.

In the TAXI problem, the option hierarchy is limited to two levels. In order to experiment
on multilevel hierarchies discovery, we apply TeXDYNA to the LIGHT BOX problem that
has a four levels hierarchy.

The LIGHT BOX problem

The results, presented in this section, are published in [Kozlova et al., 2010]. Figure 7.11
shows the performance in number of time steps required to complete one episode of
the LIGHT BOX problem within three experimental contexts: random policy, TeXDYNA

and DYNA-Q applied to the stochastic and deterministic versions of the LIGHT BOX

problem.
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Figure 7.11: Convergence over episodes on the LIGHT BOX problem.

We could not obtain the curves for SPITI and IMPSPITI because SPITI attempts to build
the complete value tree representing all possible combinations that is 1 million leaves.
IMPSPITI (see Chapter 6) performs better but is still a magnitude of 4 behind TeXDYNA

in terms of performance insofar as we could not perform enough runs to compute an
average convergence curve in number of steps. This assertion is explained by the results
presented in Table 7.5 that recaps the average time in seconds per step and the size of
the functions within the stochastic experimental context. In the same way as in the TAXI

problem, TeXDYNA requires less time to perform one step since it works on a smaller
representation. It starts by discovering the options of the second hierarchical level that
allows to switch the green lights on. At this level, each option has 23 states and 3 sub-
options, the solution being trivial. Learning those policies provides a quick access to the
higher level policies of blue and red lights. While SPITI and IMPSPITI are struggling to
check if the red light is dependent on the white light, the policy built by TeXDYNA goes
straight to the goal state by achieving sub-goals one by one at each level.

TeXDYNA SPITI IMPSPITI DYNA-Q

Transition function size 780 ± 14 790 ± 25 790 ± 25 –
Value function size 240 ± 20 > 15000 754 ± 54 > 10000
Policy function size 180 ± 8 > 15000 920 ± 62 > 10000
Time/step(sec) 0.04 > 100 > 100 > 2

Table 7.5: Performance on the LIGHT BOX problem (Policy and value function size in
total number of nodes in decision trees).

Finally we perform the experimentation on a stochastic version of the LIGHT BOX

problem where the agent performs random actions with a 10% probability. As shown
in Table 7.5, the algorithm finds the same structure in the stochastic case as in the
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deterministic one. One can notice that it takes more time to the algorithm to learn a
stochastic transition function, but in the end it discovers the same options hierarchy and
the same policy and value functions. Similarly, stochastic DYNA-Q needs more episodes
than its deterministic counterpoint DYNA-Q, to converge.

In order to explain the lesser performance of SPITI and IMPSPITI compared to TeXDYNA,
we perform the following test. We record the policy function size for SPITI and
TeXDYNA algorithms, visited states tree size for IMPSPITI and number of state-action
pairs in DYNA, at the end of each episode. Figure 7.12 shows this evolution of the
corresponding functions size over episodes. TeXDYNA quickly reaches a plateau on its
optimal policy size, while the policy discovered by DYNA continues to grow up until
representing all possible states. Therefore, the DYNA results given in Figure 7.11 are
biased by the fact that even if it discovered a kind of sub-optimal policy in a reasonable
time, the algorithm is unable to perform the complete policy computation. As to SPITI,
the system fails to achieve convergence because of a too strong memory requirement.
Indeed, as soon as one tree size exceeds 15000 nodes, the system runs out of memory. In
the case of IMPSPITI, the same problem concerns the tree that represents visited states.
Even if the policy and value functions represent only relevant variables combinations,
the maintenance of the visited states record becomes impossible. In fact, if we take
the results presented in [Degris, 2007] as basis, SPITI performs well on trees that do
not exceed 6000 nodes, while SPUDD can deal with ADDs containing over 20000 nodes
mostly because of good engineering optimization solutions.

Figure 7.12: Policy size on the LIGHT BOX problem (IMPSPITI refers to the record of
visited states).

Further code optimization can improve those performances, but the main point is that
TeXDYNA scales much better, thanks to exponential task structure simplification.
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7.5.3 Transition function representation

In this section, we study the impact of the use of the two possible transition function
structures on the process of learning options and the overall performance throughout the
task. The experiments are performed on the deterministic 500 states TAXI problem and
deterministic LIGHT BOX problem.

Figure 7.13: Convergence over episodes on the TAXI problem using a transition function
representation with one tree per variable per action - Tree[Pa(x′|s)] or one tree per
variable where the actions are attributes - Tree[P (x′|s)].

Figure 7.14: Convergence over episodes on the LIGHT BOX problem using transition
function representation with one tree per variable per action - Tree[Pa(x′|s)] or one tree
per variable where the actions are attributes - Tree[P (x′|s)].
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Tree[Pa(x
′|s)] Tree[P (x′|s)]

Transition function size 333 ± 2 320 ± 5
Value function size 196 ± 3 196 ± 4
Policy function size 195 ± 3 196 ± 3
Time/step(sec) 0.047 ± 0.009 0.046 ± 0.007

Table 7.6: Performance on the TAXI problem with 2 transition function representations.

As shown in Figures 7.13 and 7.14, there is no impact of the speed of convergence in
number of steps required to achieve one episode. The results on both problem are quasi
identical. As to the transition function size, the Tree[Pa(x′|s)] representation is a little
bigger but this is not significant. Considering the policy and value function size, as well
as the execution time, there is no significant difference.

Tree[Pa(x
′|s)] Tree[P (x′|s)]

Transition function size 780 ± 14 574 ± 7
Value function size 62 ± 8 78 ± 8
Policy function size 58 ±7 78 ± 9
Time/step(sec) 0.03 ± 0.001 0.026 ± 0.003

Table 7.7: Performance on the LIGHT BOX problem with 2 transition function
representations.

These results confirm the robustness of the algorithm showing that it is independent of
the transition function representation. Therefore it leads the way to using the TeXDYNA

framework with other factored representations, such as rules, ADDs, DBNs or linear
functions. Indeed, any representation compatible with the explicit notation of the
variable values as consequence of actions can be adapted to the present framework. We
come back to this assertion in the final discussion.

7.5.4 Localization of the transition function

We compare the impact of the localization of the transition function on the deterministic
TAXI problem with 500 states. In the first place, only the global transition function is
learned and each option uses the trees of this function during SVI sweeps. In the second
trial, each option has its own local transition function that it learns while executing this
option.
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Figure 7.15 shows the convergence within both experimental contexts, and Table 7.8
shows the average time per step in seconds and the size of the value and policy function
as a sum of all local functions.

Figure 7.15: Convergence over episodes on the TAXI problem using local or global
transition functions.

Local Global

Transition function size 333 ± 2 334 ± 2
Value function size 196 ± 3 2195 ± 408
Policy function size 195 ± 3 2076 ± 325
Time/step(sec) 0.047 0.43 ± 0.2

Table 7.8: Performance on the TAXI problem using local or global transition function.

Although the difference between the both curves is not significant in convergence
speed in number of episodes (Mann-Whitney test with p = 6.2E−4) since both
representations lead to a convergence in approximately 50 episodes, the use of the
global transition function representation makes the convergence in number of steps a
bit faster (Figure 7.15), that is ignoring the fact that it is an order of magnitude slower
considering execution time per step (Table 7.8). That is explained by the fact that
with a local representation, each option, when first initiated, must “re-learn” its internal
transition function, while with a global representation, it uses a shared representation
completed before a given option has been discovered. In this case, each option has
access to all the decision trees representing the transition function of the overall problem.
But, as exemplified in Table 7.8, this global representation results in bigger value and
policy functions over options, and thus takes more time for computation. In fact, the
value functions of options using the global transition function representation contains
additional dependencies irrelevant to these options but introduced in their structure
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within SVI. On the other hand, local models combined with state reduction to the
set of context variables ignoring anything else provides a significant state-action space
reduction within the structure of options.

7.5.5 State space exploration

As mentioned in Section 7.4.2, the option selection mechanism provides a higher level of
exploration in the beginning, when the options hierarchy is not accurate. We performed
state space exploration test on the TAXI problem with TeXDYNA, SPITI and DYNA-Q
algorithms.

Figure 7.16: Number of visited states over episodes in the TAXI problem.

Figure 7.17: Convergence over episodes on the TAXI problem.

Figure 7.16 shows the number of states visited by each algorithm: TeXDYNA, SPITI

and DYNA-Q over episodes, compared to the convergence speed in number of steps to
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complete each episode shown in Figure 7.17. One can see that TeXDYNA visits more
states than SPITI and DYNA-Q and converges faster. In fact, whereas all three algorithms
use random exploration, SPITI and DYNA-Q choose between 6 actions available within
500 states while in TeXDYNA each option chooses between 4 sub-options (primitive
“Move” actions) within a space of 25 states. Consequently, in TeXDYNA, each action
has a bigger probability to be chosen. Furthermore, each time an inaccurate option is
detected (when an option fails to achieve its exit), it is forbidden for 30 steps, giving rise
to other available options exploration.

7.6 Discussion

We have presented a framework for Reinforcement Learning in hierarchically structured
worlds. TeXDYNA ideas are first inspired by Sutton’s Dyna architecture [Sutton, 1991],
enriched and adapted to FMDPs by [Degris, 2007]. Second, as to the exit oriented
options representation, some ideas come from the HEXQ [Hengst, 2002] and VISA

[Jonsson, 2006] frameworks, where the exit definition proposed in HEXQ is extended to
include variable change and context in order to address more complex structures. Finally,
this work is parallel to the Incremental-VISA approach [Vigorito and Barto, 2008b,
Vigorito and Barto, 2008a] (see Section 5.2), in a sense of discovering options in FMDPs
with unknown structure.

We showed on the TAXI and LIGHT BOX examples that the method leads to efficient and
fast options discovery simultaneously with building the hierarchical policy. Although
we have shown that our approach performs better than reference algorithms, there
are still many opportunities for improvement. Indeed, through the whole chapter,
we used a basic ε-greedy exploration/exploitation balance. Introducing optimistic
exploration strategies such as the one proposed in [Szita and Lörincz, 2009] would bring
an important advantage.

We mentioned briefly in Section 7.5.3 the possibility of instantiate TeXDYNA with other
model representations such as rules, ADDs or linear functions. We show that TeXDYNA

performs similarly well with two variants of transition function representations in a
decision tree form and extrapolate the possibility to extend its use to other models.
Those developments are to be done but it is an advantage to have this possibility that
leaves freedom to the designer to choose the adapted transition function representation
dependent of the task and its utility. Finally, we used the SPITI instance of SDYNA.
The application of these concepts to SPI rather than SVI is straightforward. But, it is
also possible to adapt other planning techniques like linear programming as proposed by
[Guestrin et al., 2003] or SPUDD [Hoey et al., 1999].

Yet another improvement possibility lays in the transition function localization. As
exemplified in Section 7.5.4, the model with local function has to learn from scratch its
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transition function. To overcome this flaw, one can transpose global function knowledge
already acquired into the newly initiated local functions. The application is quite
straightforward and would be interesting for problems with options that have large
similar structures.

7.6.1 Related work: Incremental-VISA

The global hierarchy built by TeXDYNA appears similar to a Task option of the VISA

framework [Jonsson and Barto, 2006]. However TeXDYNA builds an options hierarchy
online and directly from the transition trees taking advantage of their structure, whereas
VISA builds a variable influence graph from the given DBNs and then builds transition
graphs and reachability trees to determine the initiation sets of the options. Furthermore,
it only discovers options linked to the variables directly connected to reward, while
TeXDYNA performs a backpropagation of the reward among sub-goals.

In this respect, it is interesting to compare the TeXDYNA approach to the work that
extends VISA to the incremental learning case proposed by [Vigorito and Barto, 2008a,
Vigorito and Barto, 2008b] (see Section 5.2). Like TeXDYNA, this work attempts to
simultaneously learn the hierarchical (options discovery) and factored (DBN learning)
structure of the MDP. The major differences between TeXDYNA and the above mentioned
approach is, for the moment, that the latter is limited to the deterministic case, whereas
TeXDYNA is adapted to stochastic problems. The second difference lies in the way
of introducing options into planning: the incremental-VISA approach waits the option
to be “mature enough” before introducing it in the hierarchy by using a measure of
entropy on the transition functions whereas TeXDYNA inserts options directly in the
hierarchy in order to accelerate its completion. In the same way as VISA, Incremental-
VISA uses the DBNs to discover dependencies between state variables. Therefore, it
needs to build intermediate graphs and trees to catch the internal hierarchical structure,
while TeXDYNA operates on decision trees and discovers the structural link directly.
Unfortunately, we were not able to compare the computation performance mainly
because of the absence on common metrics. Indeed, the experimental results published
in [Vigorito and Barto, 2008a, Vigorito and Barto, 2008b] are based on the number of
value changes and the time to compute the policy without giving the corresponding
metrics criteria.

7.6.2 Limitations

At this point in time, the algorithm presents some limitations. Firstly, as to the problem
representation, our option-specific state abstraction is strongly goal-oriented, that is
reaching a unique exit context. That can result in the creation of excessive number of
options in problems where an action can change more than one variable at the same time.
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This problem is also related to the choice of structure learning algorithm. Thorough this
work we use ITI, which is not able to take into account the variables that independent
of the agent’s actions. In fact, these variables can appear in transition trees with some
arbitrary dependencies, and consequently giving rise to options with irrelevant variables
in their context. That is why, this version of TeXDYNA cannot be directly applied
in industrial simulation problems where some events are independent of the agent’s
behavior. Further development is needed to replace ITI with the algorithms adapted
to such environments.

Furthermore, instead of using “internal reward” to propagate the external reward to local
policies so that all options have fixed interest, the options discovery algorithm could
be combined with task-specific knowledge to identify useful, salient or challenging
subroutines.

Secondly, we consider that there is at most one option per variable value change. This
assumption simplifies computations within the algorithms, but can be relaxed.

Thirdly, the options hierarchy is strictly ordered, that means that we cannot address
problems where the FMDP structure includes synchronic arcs or post-action variable
dependencies, because it would introduce cross-dependencies between options and
cycles in the options hierarchy.

7.7 Conclusion

We have presented the TeXDYNA approach that implements the HFRL methods
combining incremental hierarchical decomposition with the FRL framework. On the
one hand, the algorithm performs state/goal abstraction by decomposing the overall task
into sub-tasks. On the other hand, it introduces temporal abstraction by using options,
that are discovered automatically.

Our framework is built on three main ideas:

• the use of the transition function structure represented as decision trees to discover
options,

• the localization of the model of transitions hence the reduction of the state-action
space,

• the use of the just discovered options immediately in the planning process.

The method proposed in this chapter is simple and its application to FMDP planning is
straightforward. In the case where the model of transitions is given, the options hierarchy
emerges directly from the structure of the decision trees and the options discovery
algorithm can be applied without modification. Two sweeps are necessary to build a
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sound hierarchy: first - to discover all the options, second - to reorder the hierarchical
structure by computing the rank of the options with the complete knowledge of the
dependencies underlying the sub-options.

Furthermore, the performance is improved by the so called “localization of transition
function”. In fact, instead of taking transition trees from the global structure where the
trees may contain the dependencies irrelevant on the given level, the model of transitions
is learned locally for each options represented as an FMDP and containing a restricted
state-action space. This results in an important acceleration of the solution process.

However, in our presentation, we payed a particular attention to the incremental case
where the learning and planning phases are intermixed. An option is inserted in the
decision cycle as soon as it is discovered. Even if an option is not perfect, its use in the
planning phase speeds up the learning of its internal structure and of its parent option
structure.





Chapter 8

Applications

In this thesis we proposed a solution for discrete stochastic sequential decision problems.
We showed that factored and hierarchical approaches can be used efficiently to solve
large and complex problems. As mentioned in Introduction, we are interested in testing
RL methods, studied in this thesis, in human behavior simulation. Two constrains
are to be taken into account. From the one hand, to look realistic to the user, this
simulated behavior must follow some requirements such as adaptability to changes in
the environment, compromise between actions and persistence of the behavior just to
mention the most important ones. From the other hand, the algorithm must be able to
use the correspondent problem representation.

As to this second constraint, TeXDYNA takes as input discrete states and atomic
actions, and during the learning procedure determines the effect of the actions on the
environment. When used in a real application such as industrial simulation of crowd
behavior in the crisis situation, TeXDYNA meets some difficulties relied to the points
mentioned here above. In fact, many of the variables used to define states of such
simulations have continuous values, actions are not atomic and their effect is neither
precise nor well defined in time, without mentioning the fact that the variables are not
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always independent. An engineering solution must be undertaken in order to filter the
problem representation into its algorithmic form. In the meantime, we propose to test
the first constraint concerning the realistic appearance of the behavior on an ad hoc
simulation problem.

In this Chapter, we present a toy simulation problem that illustrates the potential of
TeXDYNA to solve this type of problems. First, we define a simulation scenario, then we
explain how we implement TeXDYNA to fit the problem niceties. Then, we perform the
experiments and discuss the results as to the transition function and options hierarchy
discovery, overall performance, adaptation properties and problem scaling followed by
the conclusion remarks.

8.1 Application problem definition

Considering the requirements listed here above, we choose an application problem that
exhibits some of these questions in order to show how TeXDYNA can be used to solve
them.

In order to facilitate the development and further analyses, we do not implement real
world physical constraints. We define a simulation problem that illustrates the capacities
of scaling the problem size in number of states, task reuse and generalization of
TeXDYNA within a civil security environment. It is possible to define various scenarios.
Here we present the “Terrorist vs. Guard” scenario (Figure 8.1).

Figure 8.1: Terrorist vs. Guard scenario.
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The scenario is the following. Three human agents are placed in the environment
composed of several connected halls (e.g. the metro station). In each hall, there is a
fire extinguisher and a gun placed in a predefined locations. There is a passenger who
has no influence on the environment, the terrorist who sets fire in the hall where he is and
the guard who has to extinguish the fire and kill the terrorist. If the guard extinguishes
the fire but the terrorist is still alive, the terrorist will set fire again. Therefore, the guard
has to figure out that he has to get the extinguisher, get the gun and kill the terrorist
before extinguishing the fire. The guard receives reward of 20 if he extinguishes the fire
successfully. There is a negative reward of −1 for each action. Importantly, there is no
direct reward for killing the terrorist.

Variable Domain

Hall 1 [0,1]
Hall 2 [0,1]
Hall 3 [0,1]
Hall 4 [0,1]
Agent location (X,Y) [0, 1, ..., 5][0, 1, ..., 5]
Gun [true, false]
Extinguisher (Ext.) [true, false]
Terrorist [hall nb, dead]
Passenger [hall nb]
Fire [hall nb, no]

Table 8.1: State variables of Terrorist vs. Guard scenario with 4 halls.

Action Constraints

Move North -
Move South -
Move East -
Move West -
Take Gun Agent loc. = Gun loc.
Take Ext. Agent loc. = Extinguisher loc.
Shoot Agent loc. hall = Terrorist loc. hall
Extinguish Extinguisher = true,

Agent loc. hall = Fire loc. hall

Table 8.2: Actions of Terrorist vs. Guard scenario.

The state variables and the actions of the problem are given in the Tables 8.1 and 8.2. The
problem with 2 halls has 14 400 states, with 4 halls – 640 000 states, 6 halls – 11 289 600
states. This problem can be extended to any number of halls, since the options (policies)
learned for one hall can be reused in others.
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This representation gives rise to impossible states because only one variable among
variables representing the halls can be equal to 1. Additionally the terrorist can set
fire only in the Hall where he is, so all the states where Terrorist and Fire locations are
different are impossible. Therefore, all the combinations like {Hall1 = 1, Hall2 =

1, Hall3 = 0, Hall4 = 0, Ext = true, etc.}, {Hall1 = 0, Hall2 = 0, Hall3 =

0, Hall4 = 0, Ext = true, etc.} or {Hall1 = 1, ...,Hall4 = 0, T errorist =

Hall2, F ire = Hall3, etc.} are impossible. Finally, there are 120 000 impossible states
in 4 halls problem (that is 18%) and 940 800 in the 6 halls problem (8%).

8.2 TeXDYNA and IMPTeXDYNA implementation

In order to use TeXDYNA to solve the “Terrorist vs. Guard” problem, we represent the
problem in a schematic way as shown in the Figure 8.2. There is a terrorist in one hall
chosen randomly. Each hall contains a gun and an extinguisher positioned in a specified
place and all the halls are identical, e.g. the extinguisher and the gun have the same
location in each hall, so the agent can reuse a skill learned in one hall in another. The
position of the agent is defined by the set of halls values and a position inside the hall.

Figure 8.2: Terrorist(T) vs. Guard(G) scenario. Schematic representation.

Since the problem contains impossible variable combinations (or impossible states) we
also can use the version of TeXDYNA (IMPTeXDYNA) with IMPSVI instead of SVI in its
planning phase. In this case, we use ad hoc rules to determine if one state is possible or
not by computing the number of Hall variables set to 1. If the result is different from 1,
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the corresponding variable combination is impossible. Similarly, if the Terrorist and the
Fire locations are different, the state is considered impossible.

The basic procedure of sub-options discovery presented in Section 7.3.2 operates on
case where each option changes at most one variable value, but this constraint does not
always hold. For instance, in the “Terrorist vs. Guard” problem, the position of the
agent is defined by the set of binary variables representing the halls and the location
inside the hall. Thus, in some locations, the Move actions displace the agent to move
from one hall to another and consequently change the value of three variables at the
same time: agent location, hall justed leaved and hall just entered. An example of the
variables changes if the agent is in hall 2 and moves to hall 4 taking action Move West
is given in Table 8.3. In a case, if no precaution is taken, cycles may appear in the
options hierarchy because options of the same hierarchical level became sub-options
of each other changing the same variables. For instance option “Move to Hall 1 from
Hall 2” have sub-option “Move to Hall 2 from Hall 1” and vice versa. In this case we
use modified options discovery procedure presented in Section 7.3.2 where the cross-
dependencies are removed and the corresponding options are given the lowest rank of
the two.

Variables State s State s′

Hall 1 0 → 0
Hall 2 1 → 0
Hall 3 0 → 0
Hall 4 0 → 1
Agent location (X,Y) [4,2] → [0,2]
Gun true → true
Extinguisher true → true
Terrorist Hall 4 → Hall 4
Passenger Hall 3 → Hall 3
Fire Hall 4 → Hall 4

Table 8.3: State variable value changes for the action Move West of Terrorist vs. Guard
scenario with 4 halls.

8.3 Experimental results

We performed the experiment on two sizes of the Terrorist vs. Guard scenario: with 4
halls and with 6 halls. The results presented here below are averaged over 20 runs of
400 episodes where each episode is limited to 300 steps. The curves are smoothed by
computing the moving average weighted over ten neighboring values. The algorithms
use the following parameters: N = 500 in DYNA-Q and ε = 0.1 in ε-greedy. The
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algorithms are coded in C# and run on Intel Core2Duo 1.80GHz processor with 2Go
RAM.

8.3.1 Transition function

First, we examine the transition structure built by our algorithms. As mentioned earlier,
we are interested in the transition and policy functions representation that can be read by
an uninformed user.

Figure 8.3: Terrorist vs. Guard scenario. Transition function for variable “FIRE”.

With this purpose in mind, we choose to use transition trees in a form of one tree per
variable (with the actions as attributes). Figure 8.3 shows an example of the transition
tree built by TeXDYNA algorithm for the variable “FIRE”. One can see that if there is a
fire in Hall 3, and the Guard is in Hall 3, and he has the extinguisher and he performs the
action “Extinguish”, the value of the variable will switch to NO. This simple example
shows how TeXDYNA learns the internal dependencies between variables building it in
the same way as a human operator would do.

As to the reward function, the trees in Figures 8.4 and 8.5 are following the same logic,
showing the inter variable dependencies and corresponding expected reward for related
subspaces. For example, the system captures the dependency of the “FIRE” variable on
the state of Terrorist, because if he is not dead, the fire will be started again.
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Figure 8.4: Terrorist vs. Guard scenario. Reward function example fore extinguishing
fire related subspace.

Figure 8.5: Terrorist vs. Guard scenario. Reward function example fore taking a gun
related subspace.

8.3.2 Hierarchical policy

Figure 8.6 gives the hierarchy of options discovered in the problem. Basically, the
algorithm discovers that the main purpose is to extinguish the fire in a given room and it
builds the corresponding options. At the same time, the actions that change the values of
the variables Terrorist, Gun, Extinguisher and Hall give rise the sub-options, introduced
in the options hierarchy according to their internal dependencies.

Figure 8.7 shows the local policy of the options “Extinguish Hall 4” and one of its sub-
options “Shoot Terrorist in Hall 4”. In the policy trees, the primitive actions are given
by their names and the options are given with their corresponding exit. Practically, that
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Figure 8.6: Terrorist vs. Guard scenario. Hierarchy of options.

(A) “EXTINGUISH FIRE IN HALL 4”

(B) “SHOOT TERRORIST IN HALL 4”

Figure 8.7: Examples of the policies of the options.
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means that the agent starts by choosing the appropriate “Extinguish” options and then
executes the subroutines, i.e. sub-options of the local policy. The sub-options then
call upon their local policies to choose sub-options, their (sub-)sub-options call upon
their own local policies and so on. For instance, as shown in Figure 8.7, the option
“Extinguish fire in Hall 4”, if the Terrorist is not dead, chooses sub-option “Shoot
Terrorist in Hall 4”. In turn, the sub-option “Shoot Terrorist in Hall 4” uses its local
policy to choose a sub-options or a primitive action to execute. This example describes
the case when all the options are correctly discovered. On the other hand, during the
learning process some options may not be discovered yet or have an incomplete or
incorrect definition. The example of the evolution of the option “Shoot Terrorist in Hall
4” is given in Table 8.4 and of the option “Extinguish fire in Hall 4” in Table 8.5. When
an option is incomplete or incorrect, its exit condition does non result in the expected
variable value change. In this case, the option is forbidden for some number of time
steps to let the model of transitions of its parent option be improved (see Section 7.4.2).

Episode Option definition

20 –
50 Shoot 〈 Terrorist change: 4→dead { Room4 1, Gun True} 〉
80 Shoot 〈 Terrorist change: 4→dead { Room4 1, Gun True, Terrorist 4 } 〉
110 Shoot 〈 Terrorist change: 4→dead { Position X=4,Y=1, Room4 1, Terrorist 4 } 〉
130 Shoot 〈 Terrorist change: 4→dead { Position X=2,Y=3, Room4 1, Terrorist 4 } 〉
160 Shoot 〈 Terrorist change: 4→dead { Room4 1, Gun True, Terrorist 4 } 〉
190 Shoot 〈 Terrorist change: 4→dead { Room4 1, Gun True, Terrorist 4 } 〉
220 Shoot 〈 Terrorist change: 4→dead { Room4 1, Gun True, Terrorist 4 } 〉
250 Shoot 〈 Terrorist change: 4→dead { Room4 1, Gun True, Terrorist 4 } 〉

Table 8.4: Evolution of the option “Shoot Terrorist in Hall 4” during the discovery
process.

Episode Option definition

20 –
50 Extinguish 〈 Fire change: 4→no { Terrorist dead, Fire 4 } 〉
80 Extinguish 〈 Fire change: 4→no { Position X=1,Y=2, Room4 1, Fire 4 } 〉 } 〉
110 Extinguish 〈 Fire change: 4→no { Position X=4,Y=1, Room4 1, Fire 4 } 〉
130 Extinguish 〈 Fire change: 4→no { Extinguisher True, Room4 1, Terrorist dead, Fire 4 } 〉
160 Extinguish 〈 Fire change: 4→no { Extinguisher True, Room4 1, Terrorist dead, Fire 4 } 〉
190 Extinguish 〈 Fire change: 4→no { Extinguisher True, Room4 1, Terrorist dead, Fire 4 } 〉
220 Extinguish 〈 Fire change: 4→no { Extinguisher True, Room4 1, Terrorist dead, Fire 4 } 〉
250 Extinguish 〈 Fire change: 4→no { Extinguisher True, Room4 1, Terrorist dead, Fire 4 } 〉

Table 8.5: Evolution of the option “Extinguish fire in Hall 4” during the discovery
process.
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Note that those policies are built with IMPTeXDYNA in order to avoid showing
impossible (irrelevant) variable combinations in the final policy trees.

8.3.3 Performance

We evaluate the performance of the TeXDYNA and IMPTeXDYNA algorithms in
comparison with DYNA-Q (that uses tabular representations).

(A.1) 4 HALLS PROBLEM CONVERGENCE (A.2) 4 HALLS PROBLEM MEAN ERROR

(B.1) 6 HALLS PROBLEM CONVERGENCE (B.2) 6 HALLS PROBLEM MEAN ERROR

Figure 8.8: Performance in 4 and 6 halls problems.

Figure 8.8 shows the convergence over episodes in number of steps to perform each
episode as well as the comparative error to the mean. TeXDYNA and IMPTeXDYNA

(curve (IMP)TeXDYNA) perform similarly (Mann-Whitney test with p = 8.3E−4 for 4
hall problem and p = 6.8E−4 for 6 halls version) in both problem sizes while clearly
outperforming DYNA-Q. This performance is explained by the fact that (IMP)TeXDYNA

uses structured representations and hierarchical decomposition simultaneously. This
way it can take advantage of the compact representation and decomposition into sub-
problems. Besides, similar performance of TeXDYNA and IMPTeXDYNA in convergence
speed in time and in number of episodes is due to the fact that, on the one hand, we use
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ad hoc rules in IMPTeXDYNA and, on the other hand, the rate of impossible states in
the problem is not very high (about 18% in the 4 halls problem, 8% in the 6 halls and
diminishing so on). But using IMPTeXDYNA can be interesting to avoid the occurrence
of impossible combinations in the resulting trees.

8.3.4 Adaptation to changing environment

As mentioned in Section 1.1, the property of adaptability, when the environment or the
goals of the agent changes, is one of the most important requirements for the industrial
simulation domain. In order to illustrate the possibilities of adaptation of the learned
policy to the changing conditions, we redefine our “Terrorist vs. Guard scenario” in the
following way:

• For the first 250 episodes, the goal of the agent is to kill the terrorist and to
extinguish the fire. There is a reward of +20 for extinguishing fire and then the
internal reward of the options representing the sub-goals is computed as maxk/2
where maxk is the maximum reward that can be received by the options of level
k.

• Then, the reward definition is changed. The agent has to kill the terrorist and does
not try to deal with the fire. Therefore, we define the reward distribution as -10 for
trying to extinguish the fire and +20 for killing the terrorist.

• Finally, after the episode 600, the goal is inverted. This time the goal of the agent
is just to extinguish the fire and avoid killing people, terrorist or not. In this case,
there is a reward of +20 for extinguishing the fire and -10 for killing the terrorist.

Figure 8.9: Terrorist vs. Guard scenario. Convergence in number of steps when the
reward function is modified at episodes 250 and 600.
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The results, averaged over 800 episodes, are shown in Figure 8.9. First, it shows
that the policy takes into account the changes in the reward definitions and adapts its
structure consequently. In fact, one can see a slight augmentation of the number of steps
needed to accomplish one episode just after the changes in the reward structure. Second,
besides structured representations and scaling properties described in previous sections,
TeXDYNA takes advantage of the options structure and reuses the sub-options already
discovered while the options that must be changed are relearned. While, unsurprisingly
TeXDYNA performs better than DYNA-Q, some points must be clarified. For instance,
the curve representing the performance of DYNA-Q in Figure 8.9 drops faster than the
one that represents TeXDYNA. First, one can see that when the problem has 2 goals: kill
the terrorist and extinguish the fire (until the episode 250), TeXDYNA converges faster.
In fact, because of the model-based structure of TeXDYNA, it deals more efficiently
with multiple goals problems than DYNA-Q. Then, when the reward function changes,
it has only one goal and, after a short period of relearning, the performance of DYNA-Q
improves very fast, while those of TeXDYNA have the same speed of adaptation each
time the reward function changes. Finally, this adaptability is a inherent property of the
RL algorithms. That is why both TeXDYNA, and DYNA-Q deal relatively easily with this
kind of difficulty.

8.3.5 Problem size scaling

Figure 8.10 shows the policy size in number of nodes in trees for (IMP)TeXDYNA

and (IMP)SPITI, and in number of state-action pairs for DYNA-Q. In the case of the
4 halls problem, TeXDYNA and IMPTeXDYNA reach the optimal number of states in the
representation to find a policy rather quickly, while the number of state-action pairs in
DYNA-Q continues to grow up to the total number of state-action pairs. As to SPITI

and IMPSPITI, we are witnessing the combinatorial explosion from the very beginning
because the number of possible states, even factored, is still too big to be represented
entirely in one overall policy tree.

We could not obtain the results for SPITI and IMPSPITI for the 6 halls problem because of
the combinatorial explosion. At the same time, TeXDYNA and IMPTeXDYNA exploit the
hierarchical structure giving access to the options that can be reused in various situations.

4 Halls 6 Halls

DYNA 0.42 (170 ± 24) 0.836 (500 ± 56)
TeXDYNA 0.08 (20 ± 3) 0.105 (31 ± 6)
IMPTeXDYNA 0.076 (20 ± 3) 0.101 (31 ± 5)

Table 8.6: Terrorist vs. Guard scenario. Performance in time (sec/step). The global time
is given in parenthesis.
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(A) 4 HALLS PROBLEM (B) 6 HALLS PROBLEM

Figure 8.10: Policy size on 4 and 6 halls problem.

Table 8.6 shows the performance in computation time in seconds per step. Once again
these results illustrate the advantage of the hierarchical decomposition into options.
While the execution time of DYNA-Q doubles from one problem size to another, the
(IMP)TeXDYNA time raises much slower.

8.4 Discussion

In this chapter, we have presented the training simulation domain and given an example
of scenario that can be learned with the TeXDYNA approach. As mentioned in
Section 1.1, the main challenges for such applications concern the legibility of the results
and commutation performance on the one hand, and the adaptability, compromise and
persistence of the behavior of the artificial agents on the other hand.

8.4.1 Contributions

First, we show that the transition function structure represented in a tree form gives
the kind of legibility to make it accessible to the uninformed user. This way it is easy
to check the correctness of the model and, in future applications, to include external
knowledge to improve or correct more complex models.

Second, we are building options directly linked to one of the variable values. The use of
options results in building hierarchical policy representing the behavioral strategy of the
agents.

Third, as to the adaptability of the behavior to changing situations, we show on
the example of changing reward function that model-based RL algorithms exhibit the
property of adaptation that allows the agent to adjust its behavior when the goal changes.
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Moreover, we show that TeXDYNA can adapt the options that are needed to, while
reusing the others as they stand.

8.4.2 Limitations

With the application presented in this chapter, TeXDYNA suffers from the same
limitations as revealed in the previous chapter (see Section 7.6.2).

First, the system is using ad hoc “internal rewards”, but in more realistic simulations
it would be interesting to use task-specific knowledge to identify useful subroutines.
Second, the hierarchy of options is strictly ordered, forbidding the construction of
subroutines sharing the same resources.

Finally, the policy learned for each separate task exhibits a sort of compromise between
options by choosing the one with the bigger outcome. Moreover, it would be interesting
to build options of the type “Shoot terrorist in Hall x” where x=Terrorist location. But
such constraints type requires first order logic representations. This challenging issue
is subject of the ongoing research in the Relational Reinforcement Learning community
[Croonenborghs et al., 2008].

8.5 Conclusion

In this chapter we have shown on an example the kind of application where HRL

and FRL techniques like TeXDYNA are useful. We have shown that TeXDYNA can
be used as an action selector for simulation problems that require such properties as
adaptability, compromise and persistence of the behavior. In other respects, TeXDYNA

translates the internal structured representation of states transitions into the hierarchy
of subgoals. This feature is interesting for discovering internal dependencies between
state-action sub-spaces in the environment but also provides some kind of legibility of
the resulting policies. In brief, we think that the problems that require near-optimal
solutions, combining repeatable skills learning and hierarchical scaling are a good
“playing field” for TeXDYNA. On the other hand, we point out that TeXDYNA computes
near optimal solutions that maximize one or a set of goals, that may seem simplistic as to
the spontaneous human reactions. That is why we insist that human behavior simulation
needs further research to be fully exploitable in the industrial training simulation domain.



Chapter 9

Discussion & Conclusion

This thesis explored Reinforcement Learning in factored and hierarchical domains. We
have proposed a new approach to stochastic sequential decision problems that combines
HRL and FRL techniques. Throughout this thesis, we demonstrated how HRL and FRL

methods can be put together in order to address complex large-scale problems in online
learning systems. This chapter discusses and sums up the contributions of this work
followed by a look at perspectives.

From the very beginning, this work is meant to tackle some well known problems in the
stochastic sequential decision making domain. The main ones that stand out above all the
rest are large problems, complex structure and real world applications. The contributions
of this thesis bring a piece of response to some of these questions. At this point, a popular
wisdom comes to mind : In theory, there is no difference between theory and practice.
But, in practice, there is.

In fact, as to the first point, we can efficiently solve large problems like LIGHT BOX

that has 1 million states. At the same time, if we imagine a very large maze with
a single goal, the combination of HRL and FRL would not bring any improvement.
Further, as to the structural complexity, the problems that have multiple, sequential or
contradictory goals can be effectively addressed by such kind of approaches, as shown on
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the TAXI problem, the LIGHT BOX problem and Terrorist vs. Guard application scenario
examples. On the other hand, as soon as state variables values are continuous, actions are
continuous, the actions influence many variables at the same time or else the environment
is not markovian, these solutions would not be adequate. Finally, when thinking about
applicative validation of the theoretical approaches, such common observations come to
mind like very smart and very complicated algorithms applied to toy problems or big
complex problems solved only by ad hoc algorithms and heuristics that are impossible
to generalize. This “generic vs. specialized algorithms dilemma” is one of the most
challenging dilemmas in Computer Science and its solution is not straightforward.

To materialize these ideas, recall that all the methods studied in this thesis require
some strong assumptions as to the characteristics of the problem, for instance, discrete
time, discrete variable values, atomic primitive actions, state or action dependent reward
function, clear goal definition, episodic runs, etc. Once these restrictions are taken into
account, we propose the solutions that are, on the one hand, based on FRL methods,
and on the other hand, the HMDPs, where the problem is decomposed in different
levels of abstraction: state factorization, action factorization and in a certain sense
MDP factorization by building the hierarchy of sub-tasks. In what follows, we give
some comments and future directions on the main contributions of this work starting
by factored structure learning, then the work on impossible states, TeXDYNA and its
application to simulation domain.

9.1 Learning the problem structure

Throughout this work, we used the incremental tree induction algorithm proposed
in [Degris et al., 2006b] along with χ2 information measure criteria. This algorithm
is based on ITI algorithms from [Utgoff et al., 1997] that uses Supervised Learning
methods to build decision trees directly from the stream of examples extracted from
the observations, without searching to construct the corresponding DBNs. The algorithm
is straightforward and provides the kind of legibility and simplicity of the results that are
required for building user friendly systems in an industrial context.

On the other hand, these algorithms are subject to the Post hoc ergo propter hoc bias,
that is taking one event following the other as its consequence. In other words, the
variables that change their value independently of the agent’s actions can appear in
transition trees with some arbitrary dependencies since the goal of these algorithms
is to discover dependencies, randomness not being considered. For instance, in the
example of application presented in Chapter 8, if the passenger moves randomly across
the halls, the transition tree of the variable “Passenger” would have decision nodes for
other changing variables like the position of the agent. Such issues are solved using
methods of post and pre-pruning, as well as statistical significance criteria. Only the right
choice of the appropriate method requires some prior knowledge about the environment
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dynamics and structure, that enters in contradiction with the primary idea of learning
from scratch.

Another calling into question is induced by the factorization property of the problem,
that is if a given task can be factorized efficiently or not. This property depends on
the choice of relevant features to represent states, as well as on the internal structure
of the problem. Whereas factored representations are used as a solution to the “curse
of dimensionality” because they allow compact representation by grouping similar
states, some feature combinations can lead to the introduction of impossible states or
in additional dependency constraints.

9.2 IMPSVI, IMPSPITI & Impossible states

In Chapter 6, we studied the case where SDP algorithms create the combinations of state
variables that never occur in the problem to be solved. In such circumstances, resulting
trees include these impossible combinations, and consequently, the computations are
more complicated in time and memory space and the final solutions is less legible.
We proposed a new algorithm based on SPITI [Degris et al., 2006b] that modifies the
standard SDP algorithms like SVI in order to get rid of the impossible states in a
theoretically sound way.

We have shown in Section 6.5.4 and the following Discussion that even if the questioning
on the relevance of such representations is legitimate for standard benchmark problems,
it is still one of the most efficient solutions to the “curse of dimensionality” problem.
For instance, in some cases, non-factored approaches, like tabular representations, can
be more efficient but as soon as the problem has more than one final goal, SDP algorithms
perform faster. Therefore, if the problem can generate a lot of impossible states, it can
be judicious to use the versions of the SDP algorithms that take such combinations into
account. Another question concerns the generalization property offered by the standard
SDP approach, that is not respected by IMPSVI, since it excludes all non-visited states.
Therefore, the question of relevance of these approaches is still open since other learning
algorithms, that do not use factored representations, and therefore do not introduce
impossible combinations, can be used to solve such problems.

Finally, as exemplified in Chapter 8, when FRL algorithms are used in the domains where
the resulting policy trees have to be accessible to an uninformed user, the use of IMPSVI

and IMPSPITI is justified by the concern for having only relevant (visited by the agent)
situations represented in the final solution.
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9.3 TeXDYNA

In Chapter 7, we proposed the TeXDYNA approach that combines HRL and FRL methods
(HFRL). TeXDYNA performs incremental hierarchical decomposition of the FMDP, that
is identifying subgoal states and generate temporally extended actions (options) that
take the agent to these states. The method is based on the automatic discovery of
options directly from transition function structure represented as decision trees. Then
each option represents a sub-FMDP and computes its own local policy from its own local
transition function. Furthermore, these algorithms are online, that is options are learned
during the exploration and inserted in the decision cycle as soon as they are discovered.
We have shown on benchmark problems the advantages of these methods in memory
occupation, computation burden and convergence speed.

At the same time, we point out the directions to be explored in order to improve these
properties. First, it would be interesting to generalize the transfer of the relevant parts
of the accumulated knowledge to the options, taking inspiration from Transfer Learning
techniques [Taylor and Stone, 2009]. Second, reorganizing options hierarchy along with
the policy computation and taking into account this hierarchy when building a policy is
an interesting point to explore.

In other respects, further comparisons to other automated options discovery methods,
and particularly Incremental-VISA, would bring more clarity as to the place of these
algorithms in the overall pool of hierarchical approaches.

9.4 Application to the industrial simulation domain

Finally, we also performed experiments on a problem that exemplifies the contribution
that such methods can make in a human behavior simulation domain (Chapter 8).
Obviously, it would be more interesting to test TeXDYNA “in the field” directly in
the simulators, but we did not have the possibility to apply TeXDYNA in the software
developed by THALES. The application example we proposed has demonstrated the
properties of adaptability, persistence and compromise between contradictory actions
achieved by using hierarchical and factored approaches to RL. As mentioned in the
beginning of the Discussion, the algorithms we study in this thesis assume some
characteristics of the environment, like atomic primitive actions and discrete state
definitions that are not always respected in real life simulations. Further research is
necessary to integrate these learning methods to field simulations.

At last, as to the demonstration of the learning techniques in the simulation domain, we
have presented an example of problem where learning is useful. The main challenge
comes from the fact that such techniques are meant to search for the optimal policy, but
the main concern in human behavior simulation is not about optimality, but about realism
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and autonomy of the artificial agents. From this point of view, optimization techniques
such as the ones investigated in this thesis do not provide exactly the expected result.
Nevertheless, using motivational exploration techniques, introducing emotions in the
variable set and using external knowledge seems to be the right directions to explore in
the future to improve the realism of the behavior of the agents.

Finally, we have to mention that industrial applications are often based on ah hoc
empirical solutions, to the detriment of genericness. The problems like the one used in
this chapter can be efficiently solved by handcrafted navigation rules without implication
of learning algorithms. Nevertheless, we argue that these learning techniques can bring
new competences to the simulation software such as adaptability, new engineering
solutions, faster developments, etc.

9.5 Perspectives

Apart from the perspectives already mentioned here above, we consider the following
open problems as the most valuable directions for future research.

First, emotional and motivational learning approaches seem relevant especially in the
human behavior simulation problems. In the same context, more inspiration can be taken
from the psychological study on human decision making (biases and heuristics). In this
thesis we focused on the case where the solution must be learned entirely from scratch,
but humans and animals use previous knowledge such as “rules of thumb”, educated
guesses and intuitive judgments to find the solution [Gigerenzer, 2007]. Therefore,
introducing such techniques would be a valuable direction for future research.

Second, when considering real life simulations and robotic applications, it is important
to be able to learn in continuous spaces with non-atomic actions. In this perspective,
further investigation of the SMDP techniques is necessary.

Then, more detailed study of the exploration/exploitation dilemma should be foreseen.
In fact, we used basic ε-greedy exploration strategy, but we expect that more
sophisticated techniques like active learning would give better results.

And finally, the experiments should be undertaken on more complex real life applications
problems. Once the limitations such as learning decision trees with independent
exogenous events and dealing with continuous spaces would be successfully addressed,
it would become realistic to foresee the application of TeXDYNA in industrial real life
simulators.
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Résumé en français

Résumé du Résumé

Cette thèse a été réalisée dans un contexte de simulation industrielle qui s’intéresse
aux problèmes de la modélisation du comportement humain dans les simulateurs
d’entraînement militaire ou de sécurité civile.

Nous avons abordé cette problématique sous l’angle de l’apprentissage et de la
planification dans l’incertain, en modélisant les problèmes que nous traitons comme
des problèmes stochastiques de grande taille dans le cadre des Processus de Décision
Markoviens (MDP).

Les MDP factorisés (FMDP) sont un cadre standard de représentation des problèmes
séquentiels dans l’incertain, où l’état du système est décomposé en un ensemble de
variables aléatoires. L’apprentissage par renforcement factorisé (FRL) est une approche
d’apprentissage indirecte dans les FMDP où les fonctions de transition et de récompense
sont inconnues a priori et doivent être apprises sous une forme factorisée. Par
ailleurs, dans les problèmes où certaines combinaisons de variables n’existent pas, la
représentation factorisée n’empêche pas la représentation de ces états que nous appelons
impossibles.

Dans la première contribution de cette thèse, nous montrons comment modéliser ce
type de problèmes de manière théoriquement bien fondée. De plus, nous proposons
une heuristique qui considère chaque état comme impossible tant qu’il n’a pas été
visité. Nous en dérivons un algorithme dont les performances sont démontrées sur
des problèmes jouet classiques dans la littérature, MAZE6 et BLOCKS WORLD, en
comparaison avec l’approche standard.

Pour traiter les MDP de grande taille, les MDP hiérarchiques (HMDP) sont aussi basés
sur l’idée de la factorisation mais portent cette idée à un niveau supérieur. D’une
factorisation d’état des FMDP, les HMDP passent à une factorisation de tâche, où un
ensemble de situations similaires (définies par leurs buts) est représenté par un ensemble
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de sous-tâches partiellement définies. Autrement dit, il est possible de simplifier le
problème en le décomposant en sous-problèmes plus petits et donc plus faciles à résoudre
individuellement, mais aussi de réutiliser les sous-tâches afin d’accélérer la recherche de
la solution globale. Le formalisme des options qui inclut des actions abstraites à durée
étendue, permet de modéliser efficacement ce type d’architecture.

La deuxième contribution de cette thèse est la proposition de TeXDYNA, un algorithme
pour la résolution de MDP de grande taille dont la structure est inconnue. TeXDYNA

combine les techniques d’abstraction hiérarchique de l’apprentissage par renforcement
hiérarchique (HRL) et les techniques de factorisation de FRL pour décomposer
hiérarchiquement le FMDP sur la base de la découverte automatique des sous-tâches
directement à partir de la structure du problème qui est elle même apprise en interaction
avec l’environnement.

Nous évaluons TeXDYNA sur deux benchmarks, à savoir les problèmes TAXI et LIGHT

BOX, et nous montrons que combiner l’abstraction d’information contextuelle dans le
cadre des FMDP et la construction d’une hiérarchie dans le cadre des HMDP permet
une compression très efficace des structures à apprendre, des calculs plus rapides et
une meilleure vitesse de convergence. Finalement, nous estimons le potentiel et les
limitations de TeXDYNA sur un problème jouet plus représentatif du domaine de la
simulation industrielle.

Mots-clés : processus de décision markovien factorisé, apprentissage par renforcement,
options, decomposition hiérarchique, programmation dynamique structurée, états
impossibles
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Ce résumé de la thèse est organisé de la façon suivante. Nous commençons l’introduction
par la présentation du contexte industriel de ce travail. Puis, nous posons brièvement,
les bases théoriques de l’apprentissage par renforcement. Dans la Section 9.5, nous
présentons l’essentiel des contributions de cette thèse, dont nous discutons les
implications dans la Section 2.b.

Introduction

Cette thèse a été financée par la convention CIFRE en partenariat avec l’entreprise
THALES et réalisée au sein du département Simulation conjointement avec l’équipe
Synthetic Environments & Simulation à ThereSIS (Thales European Research center for
E-Gov & Secured Information Systems). Ces départements proposent les solutions de
test, d’entraînement ou de contrôle pour la simulation du comportement humain dans
des simulateurs d’entraînement militaire ou de sécurité civile.

Le principal défi qui se pose devant les applications de ce type est de modéliser le
comportement des entités artificielles autonomes de façon réaliste, tout en gardant les
structures de la solution accessible à un opérateur humain.

Par conséquent, le but applicatif de ce travail de thèse est de tester les méthodes
d’apprentissage à des fins de modélisation du comportement humain dans ce type de
simulation.

Simulation industrielle

Au sein du domaine de la simulation industrielle, les Environnements Synthétiques sont
utilisés pour simuler les environnements de test ou d’entraînement, plus faciles à réaliser
sur support artificiel que dans des conditions réelles. Les techniques de simulation
permettent de traiter une variété de problèmes de planification et d’apprentissage
dans les environnements stochastiques, tels que : la simulation du comportement des
agents adaptatifs dans des environnements dynamiques, la résolution de problèmes
d’optimisation ou encore la découverte de la structure interne d’un environnement
inconnu.

La simulation du comportement humain présente quelques contraintes particulières.
Tout d’abord, le comportement doit apparaître réaliste à l’utilisateur. Par la suite,
le comportement obtenu doit être compréhensible pour un utilisateur non-averti. Par
exemple, lors du traitement des tâches critiques où l’intervention humaine s’avère
nécessaire, il est primordial de fournir une solution claire et rapidement identifiable.
C’est pour cette raison que nous avons choisi les représentations structurées et,
notamment, les arbres de décision. De plus, les simulateurs sont souvent des systèmes en
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temps réel, donc requièrent des performances de calcul élevées pour pouvoir modéliser
plusieurs entités simultanément.

Dans cette optique, le comportement des agents est modélisé sous forme d’un
mécanisme de sélection d’action (ASM). Un ASM implémente le processus de choix
d’action la plus appropriée par rapport à la situation dans l’environnement de l’agent à
chaque pas de temps. Ces systèmes doivent répondre à un certain nombre d’exigences,
notamment :

• adaptabilité à des environnements dynamiques par apprentissage de réponses
nouvelles,

• compromis entre les actions en choisissant l’action la plus adaptée à long terme,

• persistance des actions qui permettent d’atteindre le but choisi par opposition à
l’hésitation entre plusieurs activités,

pour ne citer que ceux que nous traitons dans cette thèse. Notre but ici est de proposer
un ASM qui implémente ces exigences dans le contexte des problèmes complexes de
simulation.

Apprentissage par Renforcement

L’apprentissage par renforcement (RL) [Sutton and Barto, 1998] est un mécanisme
d’apprentissage par essai-et-erreur en interaction avec l’environnement. L’agent ne
possède pas de connaissance a priori sur son environnement et apprend à partir des
conséquences de ses actions en percevant un signal de récompense ou de punition. Le but
de ces algorithmes est de choisir des actions qui maximisent la récompense accumulée
par l’agent. Ce type de problèmes est habituellement modélisé sous forme de Processus
de Décision Markovien (MDP) [Puterman, 1994], où le problème est représenté par un
ensemble d’états et d’actions. Chaque état représente la situation de l’agent dans son
environnement à un instant donné. L’agent passe d’un état à un autre en entreprenant des
actions pour lesquelles il reçoit des récompenses ou des punitions. Les transitions entre
les états sont formalisées par la fonction de transition et les valeurs accordées aux états
par la fonction de récompense.

Malgré l’efficacité démontrée des algorithmes RL standards, les difficultés apparaissent
dès que la taille du problème augmente et/ou la structure interne du problème se
complexifie.

Afin de surmonter ces difficultés, les MDP factorisés (FMDP) [Boutilier et al., 1995]
exploitent la structure interne du problème. Les transitions entre les états sont
représentées par un réseau bayésien dynamique (DBN) [Dean and Kanazawa, 1989]
qui modélise les dépendances entre des variables. Ainsi les états sont factorisés par
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rapport aux variables, et plus précisément les valeurs des variables qui permettent de
prédire les transitions entre ces états. Les états similaires sont regroupés pour réduire
la taille de l’espace d’état global. Par contre, en pratique, la connaissance exacte
des transitions entre les états n’est que rarement accessible. Ce cas est traité par
apprentissage par renforcement factorisé (FRL), une approche des FMDP où les fonctions
de transition et de récompense sont appris en utilisant les méthodes d’apprentissage
supervisé [Degris et al., 2006b]. Une des représentations factorisées est basée sur la
structuration sous forme d’arbres de décision qui permettent de représenter la fonction
de transition de façon plus compacte que les représentations tabulaires classiques. C’est
cette représentation que nous utilisons au cours de ce travail, principalement parce
qu’elle permet l’apprentissage aisé des structures et parce que nos algorithmes de
référence sont basés sur cette même représentation.

Une autre approche pour résoudre les problèmes de grande taille, mais aussi des
problèmes dont la structure est complexe, provient des méthodes d’apprentissage par
renforcement hiérarchique (HRL). HRL est basé sur les MDP hiérarchiques (HMDP) d’un
côté et le cadre des options [Sutton et al., 1999], [Precup, 2000] de l’autre. Les HMDP

permettent de simplifier le problème par la décomposition en un ensemble de sous-
problèmes plus faciles à résoudre individuellement, tandis que le cadre des options
permet de représenter ces sous-problèmes par une généralisation des actions primitives
pour inclure des actions abstraites à durée étendue. Souvent, cette décomposition
hiérarchique est faite par un opérateur humain mais, dans beaucoup de problèmes
complexes ou de grande taille, cette hiérarchie est difficile, voir impossible, à fournir. Par
conséquent, la construction automatique des hiérarchies est un des problèmes importants
dans le domaine de HRL. Des algorithmes comme HEXQ [Hengst, 2002], VISA

[Jonsson and Barto, 2006] ou Incremental-VISA [Vigorito and Barto, 2008b] visent à
résoudre ce problème. HEXQ et VISA construisent une hiérarchie des options à
partir d’une structure du problème donnée sous forme de DBN. Incremental-VISA,
parallèlement au travail présenté ici, augmente l’algorithme VISA d’un apprentissage
incrémental de la structure du problème.

Dans la suite, nous présentons les contributions de ce travail sur la base des formalismes
qui viennent d’être cités.

Contributions

Les contributions de cette thèse peuvent être appréhendées sur deux plans : théorique et
applicatif. D’un point de vue théorique, nous proposons un nouvel algorithme pour la
résolution des problèmes d’apprentissage par renforcement factorisés et hiérarchiques
quand leur structure est inconnue. Les contributions principales dans ce domaine
concernent la gestion des états impossibles et la décomposition hiérarchique dans
le cadre FRL. Par ailleurs, en ce qui concerne l’application pratique, le but de ce
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travail est de vérifier si les méthodes de HRL et FMDP peuvent être combinées pour
traiter les problèmes de simulation du comportement humain dans des environnements
synthétiques d’une manière efficace.

IMPSVI, IMPSPITI & Gestion des états impossibles

Nous appelons états impossibles des combinaisons des variables qui n’existent pas
dans le problème mais qui peuvent apparaître dans sa représentation factorisée.
Nous montrons sur l’exemple du problème de BLOCKS WORLD comment ces états
apparaissent et comment les modéliser en vue d’optimiser la recherche de solution.
Le problème BLOCKS WORLD est défini par b blocs distribués sur s piles. Le but
étant de poser y blocs sur la première pile. La représentation factorisée de ce problème
peut se baser soit sur la notation binaire de chaque cellule de chaque pile, soit sur le
nombre de blocs par pile ou encore la place de chaque bloc. Dans tous les cas, certaines
combinaisons de variables n’apparaissent pas dans le problème, ce qui est illustré sur la
Figure 6.3.

BINARY STACKS BLOCKS

0010,0000,0010,0

STACK1=0 BLOCK1=S3
STACK2=2 BLOCK1=S3
STACK3=3 BLOCK1=G
G = TRUE BLOCK1=G

FIGURE 1: Quelques combinaisons de variables qui représentent les états impossibles
dans le problème BLOCKS WORLD.

Nous proposons donc une nouvelle classe d’algorithmes (IMPSVI et sa version FRL-
IMPSPITI) qui adaptent les algorithmes FRL existants pour traiter les problèmes en
prenant en compte ce type de contraintes. Basés sur les algorithmes de Programmation
Dynamique Structurée (SDP) et plus précisément sur SVI (Itération de Valeur
Structurée) [Boutilier et al., 2000], ces algorithmes permettent d’intégrer l’information
sur l’existence des états pour ensuite exclure les états impossibles lors des premières
phases de calcul afin de simplifier et d’accélérer la recherche de la solution.

Par ailleurs, nous montrons que considérer comme impossibles les états que l’on a pas
encore visités est une heuristique efficace. Nous argumentons la pertinence de notre
approche par le fait que cette situation arrive souvent en pratique et que modifier ainsi les
algorithmes standards permet une résolution plus efficace que d’ignorer le phénomène.
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Nous avons conduit une série d’expériences portant sur la performance générale et
la vitesse de convergence de nos algorithmes (IMPSVI et IMPSPITI), pour ensuite les
comparer avec les algorithmes tabulaires standards. Les expériences ont été menées sur
les problèmes MAZE6 et BLOCKS WORLD. Ici nous présentons rapidement les résultats
principaux sur le problème BLOCKS WORLD.

(A) BINARY (B) STACKS (C) BLOCKS

FIGURE 2: Problème BLOCKS WORLD (taille 4-3-4) : performance sur épisodes.

BINARY STACKS BLOCKS

B-S-Y SPITI IMPSPITI SPITI IMPSPITI SPITI IMPSPITI

3-3-3 % IMP. 98.5% 87.5% 15.6%
TIME 0.28 ± 0.03 0.04 ± 0.01 0.05 ± 0.02 0.01 0.04 0.03

(0.01) (0.03)

4-3-4 % IMP. 99.7% 90% 26.1%
TIME 2.9 ± 0.4 0.08 ± 0.01 0.06 ± 0.02 0.01 0.17 ± 0.02 0.18 ± 0.01

(0.01) (0.13 ± 0.01)

4-4-3 % IMP. >99.99% 95.6% 18%
TIME 34 ± 7 1.2 ± 0.2 0.13 ± 0.06 0.02 0.34 ± 0.2 0.9 ± 0.07

(0.02) (0.5 ± 0.03)

5-4-4 % IMP. >99.99% 96.5% 26.3%
TIME - 2.6 ± 0.3 0.2 ± 0.09 0.05 2.6 ± 0.3 6.5 ± 0.9

(0.04) (3.1 ± 0.2)

TABLE 1: Le problème de BLOCKS WORLD : le taux d’états impossibles et le temps
nécessaire pour accomplir chaque pas (en secondes). “-” signifie que nous n’étions pas
en mesure d’obtenir les résultats après trois jours de calcul. IMPSPITI utilise les arbres
pour représenter les états impossibles. Les résultats sont donnés pour le cas où les états
visités sont enregistrés dans un arbre de décision (le temps entre parenthèses représente
les résultats avec les règles ad hoc pour définir les états impossibles).

La Figure 2 représente la vitesse de convergence de BLOCKS WORLD de taille 4-3-4
(i.e. 4 blocs, 3 piles avec le but de poser 4 blocs sur la première pile), représentative
d’un problème de taille moyenne. Il y a 217 états avec la représentation binaire (dont
55 possibles), 1250 avec la représentation par pile (dont 55 possibles) et 625 avec la
représentation par bloc (dont 512 possibles). IMPSPITI nécessite moins d’épisodes que
SPITI pour converger vers une politique optimale. Ce résultat s’explique par le fait que
IMPSPITI utilise des arbres de transitions plus petits avec une structure plus simple ce qui
permet une propagation de valeurs plus rapide à travers les arbres. Mais, comme prévu,
la différence est d’autant moins importante que le taux d’états impossibles est plus petit.
Néanmoins, même dans le cas de la représentation par bloc où il n’y a pas beaucoup
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d’états impossibles (Figure 2 (c) Blocks), la politique s’améliore plus rapidement avec
IMPSPITI. La correspondance entre le temps en seconde mis pour exécuter chaque pas
en corrélation avec le taux d’états impossibles est représentée dans le Tableau 1.

La limitation principale de cette approche réside dans la représentation des états
impossibles, le meilleur cas étant évidemment la possibilité d’utiliser les règles pour
définir si un état existe ou pas. Par contre, si les états doivent être enregistrés, dans les
problèmes avec un nombre important des deux types d’états, cela peut ralentir les calculs.

Pour finir, nous rappelons que, bien que les représentations factorisées permettent de
traiter des problème plus grands, la présence d’états impossibles est difficile à éviter
et dans ce cas les algorithmes qui permettent de gérer ce problème apportent une
amélioration significative en ce qui concerne la vitesse de convergence, l’occupation
d’espace mémoire et/ou le temps de calcul.

Ces travaux ont fait l’objet des publications suivantes : [Sigaud et al., 2009],
[Kozlova et al., 2009b].

TeXDYNA : Décomposition hiérarchique dans FRL.

TeXDYNA est un algorithme qui découvre automatiquement la décomposition
hiérarchique des problèmes de décision séquentielle en combinant les techniques
d’abstraction de HMDP avec les méthodes FRL. TeXDYNA utilise le cadre des
options [Sutton et al., 1999], [Precup, 2000] pour représenter les sous-tâches organisée
hiérarchiquement. La notion d’option désigne une généralisation des actions primitives
pour inclure des actions dont la durée dans le temps est variable. Ainsi, les options
introduisent dans la représentation du problème l’abstraction temporelle qui correspond
à des “raccourcis” à travers l’espace des états menant directement vers un but.

Algorithm .1: TeXDYNA

entrée: FMDP F , hiérarchie des options E
sortie : option à exécuter o

1 Apprentissage :
1.a mettre à jour le modèle de transitions global
F ←UpdateFMDP()

1.b découvrir la hiérarchie des options
E ←UpdateOptions(F)

2 Planification :
2.a mettre à jour la politique hiérarchique et
2.b choisir une option à exécuter

o← SPITI AvecOptions(F , E)

TeXDYNA décompose hiérarchiquement un FMDP en un ensemble d’options, tandis que
la politique locale de chaque option est améliorée d’une façon incrémentale par SPITI-
une version d’un algorithme FRL, SDYNA proposé dans [Degris, 2007]. La hiérarchie est



8 155

construite à partir de la structure interne du problème représentée sous forme d’arbres
de décision. Ainsi, TeXDYNA peut être décomposé en deux processus simultanés :
apprentissage et planification (Algorithme .1).

FIGURE 3: Le problème de LIGHT BOX : numéros et couleurs des “lumières” avec leurs
dépendances.

Nous avons étudié les performances de TeXDYNA par rapport à sa vitesse de
convergence, la forme des arbres de décision, la représentation de la fonction de
transition (locale à chaque option ou globale pour toutes) et l’exploration d’espace
d’états sur les problèmes de TAXI et de LIGHT BOX. Dans ce résumé nous ne
mentionnons que les résultats sur la performance globale et la vitesse de convergence.

Dans le problème LIGHT BOX (Figure 3), le but de l’agent est d’allumer la lumière rouge
numéro 19, sachant qu’elle ne peut être allumée que si une combinaison des lumières
bleues est allumée, qui à leur tour ne peuvent être allumées une par une que si une
combinaison des lumières jaunes propre à chacune est allumée et ainsi de suite. Avec
20 variables et 20 actions, il y a 220 ≈ 1 million d’états, et donc 20 millions de paires
état-action. TeXDYNA découvre une hiérarchie des options représentée sur la Figure 4.

FIGURE 4: Exemple des options découverts dans le problème de LIGHT BOX.

La Figure 5 présente la performance en nombre de pas nécessaires pour terminer un
épisode dans trois contextes expérimentaux : une politique aléatoire, TeXDYNA et DYNA-
Q (un algorithme d’apprentissage par renforcement indirect basé sur des représentations
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tabulaires [Sutton, 1991]) appliqué dans les versions stochastiques et déterministes du
problème LIGHT BOX.

FIGURE 5: Convergence en nombre d’épisodes dans le problème LIGHT BOX.

Effectivement, TeXDYNA converge plus vite. Ce résultat est expliqué pas les
informations données dans le Tableau 2 qui représentent le temps moyen par pas
de temps et les tailles des fonctions de politique, valeur et transition dans le cas
stochastique. En effet, TeXDYNA opère sur des représentations plus petites et donc plus
rapides à construire. L’algorithme commence par la découverte des options du deuxième
niveau de la hiérarchie qui permettent d’allumer les lumières vertes. Dans ce niveau il y
a 23 états et 3 sous-options, la solution étant triviale. L’apprentissage de ces politiques
fournit un accès rapide à des politiques du niveau plus abstrait, celles qui permettent
d’allumer les lumières bleues et la lumière rouge. Ainsi TeXDYNA trouve le but final
plus rapidement en complétant les sous-buts. Ces résultats illustrent le cas où TeXDYNA

permet d’obtenir une compression efficace des structures à apprendre, d’accélérer les
calculs et d’augmenter la vitesse de convergence.

TeXDYNA SPITI IMPSPITI DYNA-Q

fonction de transition 780 ± 14 790 ± 25 790 ± 25 –
fonction de valeur 240 ± 20 > 15000 754 ± 54 > 10000
fonction de la politique 180 ± 8 > 15000 920 ± 62 > 10000
Temps/pas(sec) 0.04 > 100 > 100 > 2

TABLE 2: Performance sur le problème LIGHT BOX (la taille des fonctions de politique
et de valeur en nombre total des nœuds dans les arbres de transition).

Pour résumer, notre approche est basée sur trois idées principales :

• l’utilisation de la fonction de transition sous forme d’arbres de décision pour
découvrir les options,

• la localisation du modèle des transitions par rapport à chaque option d’où la
réduction de l’espace d’états-actions,
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• l’utilisation des options dans le processus de planification immédiatement après
leur découverte.

Ces trois principes appliqués à la décomposition hiérarchique permettent d’associer un
sous-FMDP à chaque option et ainsi d’attribuer à cette dernière une politique locale et la
fonction de transition locale. En bref, TeXDYNA effectue une abstraction d’information
contextuelle par la décomposition du problèmes en sous-problèmes d’un côté, et, de
l’autre côté, introduit l’abstraction temporelle par l’utilisation des options découvertes
automatiquement.

Ces travaux ont fait l’objet des publications suivantes : [Kozlova et al., 2008],
[Kozlova et al., 2009a], [Kozlova et al., 2010].

Application au domaine de simulation

Comme cela a été mentionné dans l’introduction, pour répondre aux attentes industrielles
de ce travail, toutes les solutions proposées sont basées sur des représentations
structurées où les fonctions de transition, de valeur et de politique sont représentées sous
forme d’arbres de décision pour être accessible à un utilisateur non-averti. Pour tester les
techniques de HRL et FRL dans le domaine de simulation, nous proposons un problème
jouet qui représente d’une façon simplifiée les contraintes de ce type d’application. Nous
proposons un scénario qui symbolise un agent qui doit trouver un terroriste et éteindre
le feu dans une station de métro. L’environnement est déterminé par la position de
l’agent, la présence d’un terroriste, d’un passager et de feu dans un hall, une arme et un
extincteur. L’agent peut effectuer les actions suivantes : tirer un coup de feu, se déplacer,
aller chercher le pistolet ou l’extincteur et éteindre le feu. L’agent est récompensé s’il
parvient à éteindre le feu.

FIGURE 6: Scénario Terrorist vs. Guard. Hiérarchie des options.

Nous avons conduit les expériences sur la performance générale, l’adaptation à un
environnement changeant et la sensibilité à la taille du problème. La hiérarchie apprise
par TeXDYNA est présentée dans la Figure 6.

La Figure 7 montre les performances de TeXDYNA et DYNA-Q dans le cas où la fonction
de récompense change. A partir de l’épisode 250, l’agent est récompensé pour tuer
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FIGURE 7: Scénario Terrorist vs. Guard. Convergence en nombre de pas de temps quand
la fonction de récompense est modifiée à l’épisode 250 et 600.

le terroriste (et puni pour éteindre le feu) et à partir de l’épisode 600, la situation
est inversée. En effet, l’utilisation des représentations structurées et la réutilisation des
options déjà apprises permet à TeXDYNA d’adapter très vite la politique.

Ainsi, sur un scénario-type, nous montrons les capacités de TeXDYNA à construire une
hiérarchie des tâches et à adapter la solution à un environnement dynamique. Nous
évoquons aussi les limitations de notre approche quant aux simulations plus réalistes
et indiquons les futures directions possibles pour pouvoir traiter des problèmes de
simulation dans le cadre d’une application industrielle.

Discussion & Conclusion

Cette thèse explore le domaine de l’Apprentissage par Renforcement Factorisé et
Hiérarchique. Nous avons proposé une nouvelle approche pour résoudre les problèmes
de prise de décision dans les environnements stochastiques qui combine les techniques
de HRL et de FRL. A travers cette thèse, nous avons démontré comment les méthodes HRL

et FRL peuvent être utilisées conjointement pour résoudre les problèmes de grande taille
dont la structure est complexe. Néanmoins, ces méthodes se basent sur les hypothèses
telles que le temps discret, les valeurs de variables discrètes, les actions primitives
atomiques, la définition claire des buts, l’exécution épisodique, etc., qui restreignent
fortement la représentation du problème. Dans ce qui suit, nous indiquons les directions
de recherche futures et commentons les contributions principales de ce travail.

IMPSVI, IMPSPITI & Etats impossibles

Dans cette partie, nous avons étudié le cas d’application des algorithmes de SDP

dans des problèmes où certains états, pourtant représentés, n’apparaissent jamais. Dans
ces circonstances, les arbres résultants incluent les combinaisons impossibles et, par
conséquent, les calculs sont plus compliqués, demandent plus d’espace mémoire et la
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solution finale est moins lisible. Les nouveaux algorithmes proposés dans cette thèse
permettent une gestion efficace de ces états impossibles ce qui accélère les calculs tout
en optimisant l’utilisation de la mémoire. Par ailleurs, la solution rendue par IMPSVI et
IMPSPITI est plus lisible pour l’utilisateur puisqu’elle ne comporte pas d’état qui n’ont
pas été rencontré dans le problème.

D’un autre point de vue, la question de pertinence de la représentation explicite des
états impossibles reste ouverte. En effet, les algorithmes non-factorisés permettent de
résoudre efficacement ce type de problèmes quand le nombre d’états global n’est pas
important. Il est clair que le choix de la représentation du problème est primordial et
le choix d’algorithme approprié en dépend. Une autre question vient des propriétés
de généralisation des algorithmes SDP, où une branche de l’arbre de la fonction de
valeur représente un ensemble d’états y compris les états non encore visités auxquels les
valeurs d’états sont attribuées. Cette propriété n’est pas respectée par IMPSVI puisque
tous les états non-visités sont exclus. Enfin, il reste des recherches à mener concernant
l’exploration de l’espace d’états. En effet, tout au long de ce travail, nous avons utilisé
une exploration ε-greedy qui est une approche aléatoire. Il serait intéressant d’y intégrer
les techniques d’exploration “optimistes”.

TeXDYNA

L’approche TeXDYNA combine les méthodes HRL et FRL pour accomplir une
décomposition hiérarchique du FMDP simultanément à l’apprentissage de sa structure.
La décomposition hiérarchique équivaut à l’identification des états sous-buts et la
génération des options correspondantes. L’algorithme est basé sur la découverte
automatique des options directement à partir de la structure de la fonction de transition
représentée sous forme d’arbres de décision. Ainsi chaque option représente un sous-
FMDP et calcule sa propre politique locale et sa propre fonction de transition locale. Nous
avons démontré sur les problèmes benchmarks les avantages de ce type d’approche en
matière d’occupation mémoire, de charge de calculs et de vitesse de convergence.

Toutefois, l’algorithme est dépendant du choix de la méthode d’apprentissage de la
structure puisque c’est cette structure qui détermine la forme et la hiérarchie des options
et leur nombre. De plus, comme la hiérarchie des options est strictement ordonnée,
TeXDYNA ne peut pas être utilisé dans des problèmes où existent les dépendances entre
les variables qui ne sont pas liées à des actions. Dans ce cas, les cycles peuvent apparaître
dans la hiérarchie, ce qui empêchera la construction d’une politique valide. Par ailleurs,
comme dans la contribution précédente, adapter des méthodes d’exploration “optimiste”
pourrait apporter un avantage considérable dans les performances de TeXDYNA. De plus,
ces propriétés peuvent être améliorées par une réorganisation de la hiérarchie lors de la
construction de la politique, ainsi que la réutilisation par le transfert entre les options des
parties pertinentes des connaissances accumulées.
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Application dans le domaine de simulation

En dernier lieu, nous n’avons pas pu tester TeXDYNA sur un simulateur industriel, mais
nous avons appliqué TeXDYNA à un problème jouet qui représente certaines contraintes
des simulations du comportement humain. Cette application a exhibé les propriétés
d’adaptation, de compromis et de pertinence demandées, mais les applications actuelles
de TeXDYNA sont limitées à des environnements discrets et leur adaptation dans le cas
continu s’avère nécessaire pour une utilisation dans les simulateurs réels.

En outre, l’intégration de nos techniques au sein d’une architecture motivationnelle et
émotionnelle semble nécessaire pour simuler de façon convaincante le comportement
humain, qui ne se contente pas d’optimiser une mesure de performance à tout instant.

Perspectives

En dehors des perspectives déjà évoquées, nous pensons que les directions suivantes
présentent un intérêt pour des travaux futurs. Tout d’abord, en vue d’une application à
des problèmes de robotique ou simulation de la vie réelle, il est impératif de pouvoir
apprendre dans des environnement continus. De plus, une étude plus approfondie du
dilemme exploration/exploitation doit être menée.
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