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Résumé de la thèse en français

Introduction aux S.H.I.

Des plans métalliques sont fréquemment utilisés comme plan de masse pour une antenne. Ce
plan fonctionne comme un réflecteur qui puisse diriger les ondes émises vers l’autre côté. Par
conséquent, on isole la partie qu’on ne désire pas soumettre au rayonnement en ayant un gain
de puissance d’environ 3 dB de l’autre côté. Cependant, si la distance à laquelle on place ce
plan par rapport à l’antenne est très petite, la phase de l’onde à la réflection sera inversée par
rapport à l’onde incidente. Tout cela va annuler l’onde émise par l’antenne ou tout au moins
entraîner un rayonnement anormal ou inefficace. La solution classique consiste à mettre le plan
métallique à une distance de l’antenne égale au quart de la longueur d’onde. Figure 1 montre
que les ondes réfléchies interfèrent alors constructivement avec les ondes émises par l’antenne
dans la direction désirée.

λ/4

onde 1

onde 2π/2

π/2

déphasage de π

Conducteur
Parfait

Interférence
constructive

Antenne

Figure 1 – Antenne avec conducteur parfait comme plan de masse

Un problème avec cette technique est qu’elle ne permet pas de faire des antennes compactes.
Ce n’est pas son seul inconvénient. On sait que, dans l’environnement électromagnétique, les
courants de fuite se propagent à la surface du conducteur et vont générer du rayonnement

2



3

lorsqu’ils arrivent à un bord ou un coin. De ce fait, des interférences non souhaitables vont être
générées à l’extrémité des plans du conducteur. Les structures de Surface à Haute Impédance
(SHI) ont été proposées pour remédier à ces défauts.

La structure de « Surface à haute impédance » peut être considérée comme un assemblage
d’éléments périodiques et présente une impédance très élevée dans une ou plusieurs bandes de
fréquences déterminées. La structure général consiste en une surface sélective en fréquence en
haut, un substrat au milieu et un plan métallisé en bas. Une géométrie de structure SHI en
champignon a été montrée en Fig. 2 et en Fig. 3. Cette structure peut être modélisée comme un
réseau équivalent avec les éléments de capacitance et d’inductance en parallèle. La capacitance
est due à l’étroitesse de l’espace entre les deux motifs métalliques sur la surface en haut et
l’inductance résulte du cylindre métallique (appelé « via ») qui relie la surface du haut au plan
de masse en bas.

Figure 2 – Géometrie de structure SHI en
champignons, vue de dessus

Figure 3 – Géometrie de structure SHI en
champignons, vue de côté

Dans la gamme de fréquences où l’impédance de surface est extrêmement élevée, le champ
magnétique tangentiel sur la surface est presque nul. Une telle structure peut donc être appelée
Conducteur Magnétique Parfait (CMP). Si un dipôle simple est adjacent à un plan de masse fait
d’un CMP, le courant image va générer une interférence constructive plutôt qu’une interférence
destructive. Donc, théoriquement, la surface CMP est un matériau idéal pour fabriquer le plan
de masse d’une antenne. Malheureusement, ce type de matériaux n’existe pas dans la nature.

Dans [31], l’auteur a effectué des simulations numériques avec une antenne de dipôle placée
très près des trois types de plan de masse : le plan totalement métallique (autrement dit le plan
en Conducteur Electrique Parfait, CEP), le plan en CMP et le plan en SHI. Nous avons refait ces
mêmes simulations à l’aide du logiciel CST microwave studio. La perte d’adaptation de chaque
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cas a été testée et les résultats ont été présentés en Fig. 4. Ils montrent que le rayonnement de
l’antenne dans le cas du plan CEP est totalement perturbé. Le plan CMP ne donne plus un
bon résultat en raison d’un mauvaise adaptation à l’impédance d’entrée. Parmi les trois cas, la
meilleure solution est donnée par le plan en SHI qui se comporte comme un plan CMP dans
une bande de fréquences autour de sa résonance, sans aucun problème de découplage.
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Figure 4 – Perte d’adaptation simulé avec une dipôle placée près d’un plan de masse de trois
types

En résumé, au sein d’une certaine bande de fréquences, les SHI peuvent améliorer le gain
d’une antenne et réaliser un meilleur couplage de circuits, tout en supprimant les ondes de
surface non désirées. Un autre avantage de l’utilisation de cette structure est que le champ
électrique réfléchi est en phase avec le champ incident plutôt qu’en opposition de phase (phase
180°) d’où une réduction d’épaisseur (voir Fig. 5). Grâce à ces propriétés, les structures de SHI
se sont révélées de bons candidats pour améliorer leurs performances ou réduire les dimensions
des antennes.

Depuis l’introduction des SHI par D.F. Sievenpiper en 1999 [22], diverses géométries sont été
proposées et examinées. Dans notre travail, la structure SHI en champignons avec patchs carrés
est étudiée d’abord, car elle est simple et flexible en même temps qu’elle bénéficie d’une bande
passante relativement large. Un inconvénient de cette structure est que son impédance de surface
est sensible à l’angle d’incidence, vu que la surface du haut de la structure SHI est largement
couverte par du métal et qu’il n’est donc pas facile pour l’onde de pénétrer à l’intérieur du
substrat. Afin d’avoir un résultat plus stable par rapport à la variation de l’angle d’incidence,
une structure de SHI avec croix de Jérusalem dessus, dont la surface est moins métallique, est
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Figure 5 – Antenne avec SHI comme plan de masse

étudiée ensuite. Après avoir examiné les deux premières structures, qui sont symétriques par
rapport à la diagonale du motif de surface, on continue la recherche sur quelques structures
asymétriques, par exemple, celle en forme de fourchette, celle en forme de la lettre F, etc.

Loin d’être un sujet d’étude académique, les structure de SHI ont déjà ouvert la porte
à beaucoup d’applications : renforcer la directivité de l’antenne [47], supprimer les bruits de
commutation [49, 50], réduire le couplage mutuel entre éléments adjacents [51], etc. Elles sont
donc vraiment intéressantes à étudier.

Modélisation Analytique des S.H.I.

Dans la littérature, différents modèles analytiques ont déjà été proposés et appliqués aux struc-
tures SHI. De tels modèles analytiques permettent de donner une prédiction rapide des caracté-
ristiques de structures SHI simples et de comprendre certains comportements liés à la géométrie
de la structure.

Premièrement, on étudie un modèle à éléments localisés, proposé par Sievenpiper [22] et
applicable à la structure de SHI en champignons carrés (voir Fig. 6). Le circuit équivalent de
cette structure est modélisé comme une combinaison de capacitance et inductance en parallèle
(voir Fig. 7). L’impédance équivalente de cette structure est définie comme :

Zs(ω) =
jωL

1 − ω2LC
, (1)

où, l’inductance L et la capacité C sont déterminées par la géométrie de structure de SHI, avec :
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Figure 6 – Géométrie d’une cellule de structure SHI en champignion

Figure 7 – Circuit équivalent pour une cellule de structure SHI en champighion

C = (D − g) (ε1 + ε2)
π

cosh−1
(

D

g

)
, (2)

où D est la période d’une cellule élémentaire, g est l’espace entre deux patchs, ε1 = ε0 et
ε2 = ε0εr est la permittivité des deux milieux à côte du patch ;

L = μh, (3)

où μ et h est la perméabilité et la hauteur du substrat.
Deuxièmement, un modèle d’une ligne de transmission en régime quasi statique a été proposé

par Simovski [79]. Figure 8 représente le principe de ce modèle en utilisant un exemple de
structure en champignon. L’impédance surfacique Zs de la structure de SHI est considérée
comme la mise en parallèle d’une impédance de substrat Zd et d’une impédance de grille Zg :

Zs (input) =
(
Z−1

g + Z−1
d

)−1
. (4)

Ce modèle d’une ligne de transmission, basé sur la théorie de l’homogénéisation, est valable
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Figure 8: Modèle d’une ligne de transmission appliqué à la structure SHI en champignions
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Figure 9: Géométrie d’une cellule de structure SHI en croix de Jérusalem

quand la longueur de l’onde effective est très supérieure à la dimension de chaque cellule de la
structure de SHI. Selon la polarisation de l’onde d’excitation, les expressions de Zd et Zg sont
comme ci-dessous :

ZT E
d = jη0√

εr − sin2θ
tan(kzdh), ZT M

d = jη0√
εr

tan(kzdh), (5)

ZT E
g =

1
jωCg cos2 θ

, ZT M
g =

1
jωCg

. (6)

En effet, le modèle d’une ligne de transmission peut aussi être appliqué à la structure de
SHI en croix de Jérusalem (voir Fig. 9). Pour cette structure, l’impédance de substrat peut être
traitée comme dans le cas de la structure en champignons, l’impédance de grille étant définie
comme :

ZT E
g = (jωLJC

g +
1

jωCJC
g

), ZT M
g = cos2θ((jωLJC

g +
1

jωCJC
g

). (7)

En troisième lieu, on examine également deux autres modèles analytiques. L’un est proposé
par Olli [102], qui combine la conception d’une ligne de transmission, le principe de Babinet
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et la théorie de l’homogénéisation, et surtout améliore la précision du calcul de l’impédance
surfacique dans le cas d’une onde incidente oblique. Un autre est proposé par Hosseini [81], qui
considère l’influence de plan de masse sur l’impédance du substrat.
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Figure 10 – Comparaison d’impédance surfa-
cique des différents méthodes analytiques avec
la structure en champignon (D = 10mm, g =
5mm, h = 2mm, εr = 4.4)
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Figure 11 – Comparaison d’impédance sur-
facique des différents méthodes analytiques
avec la structure en croix de Jérusalem (D =
2.4mm, g = 0.4mm, d = 1.4mm, w = 0.2mm,
h = 3mm, εr = 4.4)

Enfin, on effectue une étude sur les paramètres de géométrie et on compare les résultats
calculés par différentes méthodes. Figure 10 montre une comparaison de résultats de trois mo-
dèles analytiques différents concernant la structure en champignons carrés. Figure 11 montre
un exemple relatif à la structure en croix de Jérusalem.

En règle générale, les modèles analytiques ne sont pas très rigoureux, en raison de l’ignorance
sur le comportement des capacité et des inductances à haute fréquence. La précision de modèle
s’améliore lorsqu’on diminue la taille de la cellule de base, puisqu’on s’approche de la zone de
validité de l’homogénéisation.

Modélisation Numérique des S.H.I.

Modèle Numérique

Si les modèles analytiques donnent bien les caractéristiques de certaines structures de SHI, ils
ne peuvent le faire pour des structures à géométrie complexe. C’est pourquoi plusieurs types de
méthodes numériques sont proposés et adaptés aux structures de SHI.
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Dans notre travail, la méthode des éléments finis avec éléments d’arête a été choisie comme
méthode numérique. On prendra un exemple de structure SHI en champignons et on expliquera
les détails de la construction du modèle numérique (voir Fig. 12). Grace à la symétrie de la
cellule de base, l’analyse de l’ensemble d’une structures SHI peut être réduite à celle d’une
cellule élémentaire.

Figure 12 – Modélisation numérique d’une cellule de structure SHI

1) Le plan xoy est le plan de base du domaine d’étude et aussi représente le plan de masse
de la structure. Dans la modélisation numérique, la condition à la limite CEP va être appliquée
à cette surface.

2) La région intermédiaire (0 < z < h) représente le substrat, avec une certaine perméabilité
et une certaine permittivité. Les deux peuvent être complexes, et dépendre de la fréquence, mais
sont des valeurs constantes dans notre travail.

3) La surface du haut de la structure SHI se trouve à z = h. Si la structure possède une fine
colonne liant le plan de masse à la surface du haut en traversant le substrat, on peut ajouter
un cylindre fin entre z = 0 et z = h. La condition à la limite CEP va être appliquée à tous les
éléments métalliques.

4) La région z > h correspond à l’espace libre.
5) L’excitation est un champ électromagnétique alternatif, produit par un champ éléctrique

homogène à la surface en haut du domaine d’étude. Cette surface va être traitée numériquement
comme portant une condition de Dirichlet.
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6) Si la structure de SHI est symétrique et l’incidence d’onde est normal, deux types de condi-
tions aux limites peuvent être utilisées aux quatre murs autour du domaine d’étude. 1) appliquer
directement deux groupes de conditions périodiques ; 2) appliquer des conditions CEP à deux
surfaces opposées et des conditions CMP aux deux autres surfaces, en respectant l’orientation
de l’excitation. Un exemple de ces deux propositions est donné dans la Figure 13.

Figure 13 – Deux shémas de condition aux limites appliqués à la structure de SHI symétrique.
(L’excitation de champ électrique est parallèle à l’axe x.)

Figure 14 – Deux schémas de modèle pour calculer l’impédance surfacique de structure SHI

Au début de la modélisation, on a essayé de calculer l’impédance surfacique selon deux
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schémas (voir Fig. 14). Dans le Schéma 1, Zs s’obtient par un calcul mi-analytique et mi-
numérique :

Zs(schéma 1) =
Zg(numerical) · Zd(analytical)
Zg(numerical) + Zd(analytical)

, (8)

avec Zg , obtenu par un calcul numérique et défini comme :

〈Zg〉 = 〈Et+〉
〈Ht+〉 − 〈Ht−〉 , (9)

où t+ representes les valeurs tangential sur un plan d’observation au-dessus de la surface du
haut de la SHI ; t− represente les valeurs tangentielles sur un plan d’observation au-dessous de
la surface du haut de la SHI ; < X > dénote la moyenne de la quantité X et Zd, est calculé par
la méthode analytique de l’équation 5.

Dans le Schéma 2, on suppose que l’information électromagnétique sur la surface d’observa-
tion au dessus de la structure SHI peut bien représenter la réaction du bas. Donc, la définition
de Zs dépend des calculs du champ électromagnétique tangentiel sur la surface d’observation :

Zs(schéma 2) =
〈Et+〉
〈Ht+〉 . (10)

Le Zs calculé avec le Schéma 2 ne contient que le calcul numérique. Les valeurs de champ
sont toutes des valeurs moyennes obtenues sur la surface.

Pour une structure SHI générale, Zs est un opérateur en deux dimensions. Néanmoins, si
la géométrie de la surface supérieure est symétrique par rapport à la diagonale de la cellule de
base, le calcul de Zs peut être simplifié comme suit :

Zs =

⎡
⎣ Z11 Z12

Z21 Z22

⎤
⎦ =⇒ Zs =

⎡
⎣ Zs 0

0 Zs

⎤
⎦ . (11)

Ainsi, un résultat 1D est suffisant pour reconstituer la matrice en 2D. Figure 15 compare
les méthodes numériques et les méthodes analytiques appliquées au cas d’une structure SHI
en champignons et Figure 16 donne la même comparaison pour une structure SHI en croix
de Jérusalem. La tendance des résultats est la même, mais il existe des différences entre les
méthodes analytiques et les méthodes numériques. Après une série de tests, il s’avère que la
méthode numérique avec Schéma 1 est moins performante que les autres. En conséquence, ce
schéma 1 a été éliminé dans les simulations suivantes.

La méthode numérique est validée, mais il est difficile de juger quelle méthode fonctionne le
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Figure 15 – Comparaison d’impédance sur-
facique entre les résultats analytiques et nu-
mériques (structure en champgninons)
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Figure 16 – Comparaison d’impédance sur-
facique entre les résultats analytiques et nu-
mériques (structure en croix de Jérusalem)

mieux sans référence à un résultat expérimental.

Deux nouvelles méthodes numériques en calculant l’impédance sur-
facique de structure SHI

Si la structure de SHI n’est pas symétrique, le calcul de l’impédance surfacique en 1D n’est pas
suffisant pour récupérer toutes les caractéristiques de la structure SHI. On a donc proposé deux
nouvelles méthodes numériques pour calculer l’impédance surfacique de structure SHI en 2D :
la méthode du flux Poynting et la méthode dite « <E>/<H> ».

Dans ces deux cas, le problème du calcul de l’impédance surfacique revient à déterminer une
condition d’impédance. Figure 12 présente notre problème dans un domaine d’étude cubique,
qui ressemble à un guide d’onde. Ce domaine a été coupé en deux parties par une surface
d’observation So : la partie du bas, comprenant les structures SHI, est considérée comme une
boîte noire, et caractérisée par l’impédance surfacique sur So ; la partie du haut est un espace
libre. Cette condition d’impédance est définie par le rapport entre les valeurs moyennes du
champ magnétique tangentiel et du champ électrique tangentiel sur So :

n× < HS > +Y < ES >= 0, (12)

où Y représente une relation linéaire entre deux vecteurs complexes et s’interprète physiquement
comme l’admittance de la surface. Quant à la matrice d’impédance surfacique, on s’obtient
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facilement par inversion de Y en 2D.
Supposant la surface d’observation contenue dans le plan x−y, le champ électrique tangentiel

sur cette surface est défini par ses deux composantes : Esx, Esy. En considérant deux excitations
différentes, on note les champs correspondant à ces deux cas E1, H1 et E2, H2. .

Dans la méthode du flux de Poynting, l’impédance surfacique s’obtient à partir du flux
qui traverse la surface d’observation. Ce flux est une fonction quadratique de E tangentiel,
et l’admittance surfacique est la matrice Y0 associée à cette forme. Dans ce cas, le système
s’exprime par :

ˆ
D

(iωεEi · Ej + iωμHjHi) +
ˆ

S

(Y0 · EiS) · EjS = 0. (i, j = 1, 2) (13)

Les quatre équations ci-dessus suffisent à obtenir les quatre entrées inconnues de la matrice Y0.
Comparé avec la méthode du flux de Poynting, le calcul par la méthode dite <E>/<H> est

un peu moins lourd, car il n’utilise que les champs électromagnétiques tangentiels sur la surface
d’observation. Mais l’effort effectué dans le pré-calcul de la circulation du champ électrique sur
les arêtes dans tout le domaine est le même. Dans ce cas, la matrice Y peut être obtenue par
l’équation suivante :

⎡
⎣ −H1sy −H2sy

H1sx H2sx

⎤
⎦ = −

⎡
⎣ Yxx Yxy

Yyx Yyy

⎤
⎦ ·

⎡
⎣ E1sx

E1sy

E2sx

E2sy

⎤
⎦ . (14)

Comparaisons entre les résultats analytiques, numériques et expéri-
mentaux

Afin de s’assurer de la précision de nos méthodes numériques, quelques échantillons ont été
fabriqués et mesurés. Dans le tableau 1 suivant, on prend la structure de champignons comme
exemple et on compare les résultats obtenus par différentes méthodes. Avec le résultat expéri-
mental comme référence, nos deux méthodes numériques fonctionnent correctement et mieux
que les autres méthodes analytiques.

De plus, on teste non seulement les structures symétriques, mais aussi les structures asymé-
triques. La structure asymétrique ne se comporte pas de la même façon pour différentes orien-
tations de l’excitation. Fig. 17 et Fig. 18 montrent les résultats correspondant à la structure
SHI en champignons rectangulaires pour une excitation horizontale et une excitation verticale.

Fig. 19 et Fig. 20 montrent les résultats correspondant à la structure SHI en champignons
carrés avec une fente rectangulaire sur le côté, également pour les deux orientations de l’excita-
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Méthode Résonance (GHz) Bande passante (GHz)
Mesure 11.74 10.33 - 12.77

méthode analytique de Sievenpiper 11.2 9.3 - 13.6
méthode analytique de Olli 13 10.5 - 16

méthode analytique de Simovski 14.6 11.5 - 18.2
méthode numérique dite <E>/<H> 11.74 10.3 - 12.7

méthode numérique du flux de Poynting 11.5 10.2 - 12.4
Simulation CST 11.02 9.85 - 11.9

Table 1 – Comparaison de résoance et bande passante parmi différents méthodes avec structure
SHI en champignons (Dimension de l’échantillon : D = 10 mm, g = 5 mm, h = 1.6 mm, εr =
4.4.)

tion.
Les courbes confirment que nos méthodes numériques sont capables de détecter les différentes

résonances de structures asymétriques répondant aux différentes orientations d’excitation.

Discussions

Il est généralement admis que la longueur d’onde du signal doit être au moins 10 fois supérieure à
la dimension de la cellule SHI lorsqu’on recourt à l’homogénéisation. Mais ceci n’a rien d’absolu,
et au vu des résultats obtenus, le modèle numérique est encore valable quand le rapport est voisin
de 7. Toutefois, les résultats autour de la résonance sont moins fiables, en raison du mauvais
conditionnement de la matrice du système linéaire dans ce cas.

Dans la modélisation numérique, deux schémas différents, correspondant à différentes com-
binaisons de conditions aux limites, sont appliqués à la structure SHI symétrique. Le schéma
combinant les conditions CEP et CMP a d’abord été choisi pour deux raisons : 1) Il est plus
facile à programmer ; 2) Il demande moins de temps de calcul. Mais il a aussi deux inconvé-
nients : 1) Exiger un maillage parfaitement symétrique par rapport au plan de symétrie médian,
sinon on a un mauvais résultat ; 2) Ne pas s’adapter aux structures SHI asymétriques. Comme
ses désavantages sont plus importants que ses avantages, ce schéma n’est pas à recommander,
même pour des structures symétriques.

La finesse du maillage doit être considérée au début de simulation. Une série de simulations
avec des maillages de finesses différentes a été faite pour trouver celui qui donne un résultat
acceptable en un temps de calcul raisonnable. La finesse de maillage est donc déterminée par
deux facteurs : la qualité des résultats et le temps de calcul.

La hauteur de la surface d’observation est importante dans la modélisation numérique. On
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Figure 17 – Comparaison des résultats nu-
mériques avec la mesure (Polarisation verti-
cale, échantillon réctangulaire : Dx = 4 mm,
Dy = 6 mm, W = 7 mm, L = 9mm, h = 1.6
mm, εr = 4.2.)
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Figure 18 – Comparaison des résultats nu-
mériques avec la mesure (Polarisation horizon-
tale, échantillon réctangulaire : Dx = 4 mm,
Dy = 6 mm, W = 7 mm, L = 9mm, h = 1.6
mm, εr = 4.2.)
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Figure 19 – Comparaison des résultats nu-
mériques avec la mesure (Polarisation horizon-
tale, échantillon avec une fênte à côté du carré
métal)
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Figure 20 – Comparaison des résultats nu-
mériques avec la mesure (Polarisation verti-
cale, échantillon avec une fênte à côté du carré
métal)

sait que l’excitation au niveau de la surface du haut est uniforme, mais la présence de structures
SHI va perturber le champ électromagnétique dans le domaine. En particulier, le champ élec-
trique autour de cette structure est inhomogène. Théoriquement, plus la surface d’observation
est haute, plus notre modèle numérique est valable. Cela semble indiquer que la hauteur devrait
être aussi grande que possible. Mais par ailleurs, l’objectif de la modélisation des structures
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SHI est de s’appliquer à un outil de simulation de l’antenne, et pour cela, la hauteur de la sur-
face d’observation doit être inférieure à celle où se situe l’antenne. Par conséquent, on cherche
une solution de compromis pour la hauteur de la surface d’observation en tenant compte des
différentes conditions.

En outre, on trouve que la méthode du flux de Poynting fonctionne mieux si le maillage de la
surface d’observation est un sous-maillage de du maillage tridimensionnel. On dira dans ce cas
que la surface d’observation est "prédéfinie". Par contre, le fait de prédéfinir ainsi une surface
d’observation peut dégrader le résultat avec la méthode <E>/<H>.

Un Modèle Equivalent pour les S.H.I.

Principe

Du fait de la complexité et de la diversité des structures SHI, des éléments minuscules exigent
un raffinement du maillage dans les simulations numériques, ce qui entraîne une grosse dépense
à la fois en mémoire et en temps de calcul.

Figure 21 – Concept de modèle équivalent

L’idée de principe d’un modèle équivalent est représentés dans la Fig. 21. Le modèle avec
tous les motifs SHI détaillés s’appelle « modèle direct » et le modèle avec la couche homogène,
qui remplace tous les structures hétérogènes, s’appelle « modèle équivalent ». Pour construire
ce modèle équivalent, on a besoin de trois étapes : 1) Choisir une surface d’observation dans
le modèle direct à la hauteur l (On note que l doit être supérieur à la hauteur de structure
SHI, et inférieur à la position de l’antenne da.) ; 2) Calculer l’impédance surfacique à la surface
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d’observation dans le modèle direct et couper le modèle direct en deux parties avec la surface
d’observation ; 3) Construire le modèle équivalent en gardant la même taille pour la partie haute
du modèle direct, dont la surface en bas sera équipée de la condition d’impédance.

Simulation

Afin de vérifier l’efficacité du modèle équivalent, on compare le champ électrique dans le modèle
direct et dans le modèle équivalent en prenant un exemple de structure en champignon sans
via (D = 10 mm, g = 4 mm, h = 1.6 mm, εr = 4.3). Dans le modèle direct, deux lignes
d’observation ont été choisies : la ligne 1, qui traverse le patch métallique, et la ligne 2, qui se
trouve dans l’intervalle entre le patch et la frontière du domaine d’étude (voir Fig. 22). Dans le
modèle équivalent, les résultats sur n’importe quelle ligne verticale sont les mêmes. Donc, deux
lignes d’observation sont aléatoirement sélectionnées (vue dans la Fig. 23).

Figure 22: Lignes d’observation dans le mod-
èle direct

Figure 23: Lignes d’observation dans le mod-
èle équivalent

Dans la dernière partie, on a presenté deux méthodes numériques pour calculer l’impédance
surfacique de structure SHI. Ici, on va constuire le modèle équivalent à partir des résultats
d’impédance surfacique obtenus par ces deux méthodes.

Dans la Fig. 24, on trouve quatre résultats différents, dont deux corrrespondent aux calculs
dans le modèle direct et deux autres à ceux avec modèle équivalent. La courbe noire correspond
à la ligne d’observation dans le modèle direct, traversant le patch. Une atténuation du champ
électrique est manifeste à la hauteur de ce patch vers z = 1.6 mm. La courbe verte correspond
à la ligne qui ne touche pas le patch. Donc, il n’y a pas d’atténuation du champ électrique au
niveau du patch. Les résultats obtenus par le modèle équivalent ressemblent tous à celui du
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Figure 24: Comparaison de champ électrique entre le modèle direct et le modèle équivalent

modèle direct, avec toutefois quelques différences. Ce phénomène est normal, puisque le modèle
équivalent ne peut pas se comporter assez finement que le modèle direct, surtout autour de la
région où le patch produit une réaction forte. Même si le modèle offre seulement un résultat
approché, la réduction du temps du calcul peut compenser ce défaut.

Discussion

Quand on construit le modèle équivalent, la finesse de maillage doit être bien considérée. Comme
mentionné plus haut, on compare le temps de calcul et la qualité du résultat afin de décider de la
finesse. De plus, on trouve que le modèle équivalent se comporte moins bien quand la fréquence
d’opération est proche de la résonance. Cela est également dû à un mauvais conditionement de
la matrice du système linéaire au viosinage de la résonance. La Méthode de déflation peut être
utilisé pour améliorer la précision des résultats autout de la résonance.

Le modèle équivalent se forme par une couche homogène, caractérisée par l’impédance sur-
facique de la structure de SHI. Cette valeur peut être obtenue par deux méthodes : la méthode
du flux de Poynting et la méthode dite « <E>/<H> ». Après une série de tests, on trouve
que l’influence de la hauteur de surface d’observation sur la première méthode est faible. Par
contre, les résultats de la deuxième méthode sont sensibles à la variation de la hauteur d’obser-
vation. On trouve également que la différence est plus évidente losque la fréquence d’opération
s’approche de la résonance.
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Figure 25 – Comparaison entre la mé-
thode du flux Poynting et la méthode dite
<E>/<H> avec la structure de champignions
à 8 GHz.
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Figure 26 – Comparaison entre la mé-
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Deux résultats de simulations sont montrés dans la Fig. 25 et la Fig. 26. Ils montrent que
la méthode dite « <E>/<H> » marche toujours mieux que la méthode du flux Poynting. De
plus, la surface d’observation prédéfinie dans le maillage n’améliore pas forcément le résultat de
la méthode du flux de Poynting. Pour le moment, on n’a pas réponse claire à ce problème.

Organisation de la thèse

Au cours de la dernière décennie, les métamatériaux (MTM) ou plus particulièrement les Sur-
faces à Haute Impédance (SHI) ont suscité un grand intérêt dans le monde. Ces structures ont
déjà été largement étudiées pour améliorer toutes sortes de performances des antennes, comme
le gain, le facteur de qualité, les formes et dimensions.

Une question a été posée : Comment intégrer de telles structures dans le système de l’antenne
afin de répondre aux différents besoins ? En conséquence, l’objectif de cette thèse est de modéliser
les structures de SHI et de caractériser leurs performances en vue de futures applications aux
antennes.

Ce mémoire commence par une brève introduction aux métamatériaux, vu que les structures
SHI appartiennent à cette famille de matériaux. L’essentiel du premier chapitre est consacré à
une introduction aux SHI, y compris leur histoire, leurs performances, leurs diverses géométries
et leurs applications. Dans ce chapitre, on présente aussi, brièvement, la méthode des éléments
finis. Tous les concepts et formalisation présentés ont un lien avec notre modèle numérique des
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structures de SHI. Par ailleurs, on évoque aussi les techniques de programmation correspondant
au problème.

Dans le Chapitre 2, nous étudions quelques modèles analytiques fréquemment traités dans
la littérature. Cela nous aide à mieux comprendre les propriétés des SHI et nous donne une
référence pour l’étude numérique plus tard. Deux structures parmi celles les plus souvent étudiées
(la structure en champignons et la structure en croix de Jérusalem) sont choisies et l’effort
principal est mis sur la façon de calculer l’impédance de surface. Une étude de paramétrage a
également effectué afin de mieux comprendre les structures SHI.

Dans le Chapitre 3, nous proposons des modèles numériques basés sur la méthode des élément
finis (MEF) en considérant différents schémas et différents choix de conditions aux limite. On
reprend les mêmes structures de SHI introduites dans le deuxième chapitre et on valide le modèle
numérique par des comparaisons entre les différents résultats analytiques et numériques. En
outre, de nombreuses analyses ont été effectuées pour vérifier l’efficacité de ce modèle. Ensuite,
deux nouvelles méthodes numériques sont proposées pour calculer l’impédance de surface d’une
structure SHI : la méthode du flux de Poynting et la méthode dite « <E>/<H> ». Ces deux
méthodes sont validées sur des structures symétriques, puis mises en oeuvre sur des structures
asymétriques.

Dans le Chapitre 4, quelques échantillons ont été fabriqués et testés. Ces mesures expéri-
mentales sont effectuées afin de vérifier la précision des nouvelles méthodes numériques.

Dans le Chapitre 5, nous présentons un modèle équivalent basé sur l’idée de remplacer
les structures hétérogènes de SHI par une surface homogène, caractérisée par son impédance
surfacique. Ce modèle nous permet d’avoir une prédiction avec un temps de calcul et une
qualité de mémoire PC largement réduits. Un tel modèle pourrait être intégré dans un outil de
simulation afin d’offrir une prédiction rapide des caractéristiques des antennes au stade de la
conception de celles-ci.

En conclusion, nous évoquerons les perspectives possibles de cette étude concernant l’amélioration
du modèle.
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Abstract

High impedance surfaces (HIS), as one kind of metamaterials, have proved to be good candidates
for antenna miniaturization or improving antennas performance. Within a certain frequency
band, they can enhance the gain of an antenna while simultaneously suppressing the unwanted
surface waves. Thanks to these two properties, a better coupling to the surrounding circuits
and more desirable antenna’s radiation patterns can be achieved.

In this thesis, the performances of different HIS structures have been investigated. The focus
of our work is on numerical modeling of these structures by using the finite element method
(FEM) based on edge elements.

One of our contributions is that we put forward two new numerical methods (the Poynting
flux method and <E>/<H> method) to calculate the surface impedance not only for HIS
structures with symmetric geometries, but also for those with asymmetric geometries. These two
numerical methods have been validated through the comparison among analytical, numerical
and experimental results, so we believe they can be used to characterize HIS structures.

Another significant contribution of the thesis is that we introduce an equivalent model,
based on the idea of replacing the heterogeneous HIS structures by an homogeneous surface,
characterized by its surface impedance. In comparison with the normal model, adopting this
equivalent model can save computing time and memory space. The preliminary results indicate
that such kind of model could be integrated into some emulation package so as to give some
initial insights on the antenna design.

A short summary and a future outlook about optimization of our numerical method are
given at the end of this dissertation.

keywords: High Impedance Surface (HIS), Homogenization, Finite Element Method (FEM),
Surface Impedance.
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Chapter 1

Introduction

1.1 Metamaterials

The word “meta”, in Greek language, means beyond. It implies that the electromagnetic re-
sponse of metamaterials (MTMs) is unachievable or unavailable in conventional materials.

Many efforts have been done to search for an adequate definition for MTMs. In 2002, J.B.
Pendry wrote in a conference paper: “meta-materials, materials whose permeability and permit-
tivity derive from their structure”. Later, in 2006, C. Caloz and T. Itoh wrote: “Electromagnetic
metamaterials are broadly defined as artificial effectively homogeneous electromagnetic struc-
tures with unusual properties not readily available in nature” [1]. Perhaps, a serious obstacle
on the road to a universal definition for the term MTMs is the fact that researchers working
with these objects do not commonly agree on their most essential characteristics. In [2] and
[3], some of the problematic aspects of the non-naturality definition were raised, like the diffi-
culty in separating classical composites from the new class of metamaterials. Another argument
against the “not found in nature” property is that it unnecessary excludes impressive examples
of natural media that could be called metamaterials par excellence, such as structural colors [4].

MTMs cover an extremely large scientific domain which ranges from optics to nanoscience
and from material science to antenna engineering. In this thesis, we focus primarily on the
subject of MTMs in the electromagnetic field. Personally, I prefer the definition given by D.R.
Smith: Electromagnetic metamaterials are artificially structured materials that are designed to
interact with and control electromagnetic waves [5]. The term “artificial” refers to the fact that
the electromagnetic response of these materials is dominated by scattering from periodically or
amorphously placed inclusions (e.g., metallic or dielectric spheres, wires, and loops) [6].

In the family of MTMs, “left-handed” (LH) media drew an enormous amount of interest.

24
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This concept was first put forward by a Russian physicist, Victor Veselago, in 1968, for whom
the medium is characterized by a simultaneously negative electric permittivity and negative
magnetic permeability [7]. Veselago argued that such media are allowed by Maxwell’s equations
and that electromagnetic plane waves can propagate inside them, but the phase velocity of such
a plane wave is in the opposite direction of the Poynting vector. Hence, some researchers use
the term “backward wave media” (BWM) to describe these LH materials [8]. When such media
are interfaced with conventional dielectrics, Snell’s Law is reversed, leading to the negative
refraction of an incident plane wave as shown in Fig. 1.1. Nevertheless, Veselago’s conjecture
was essentially ignored for thirty years due to the absence of naturally occurring materials or
compounds that possess simultaneously negative permittivity and permeability.

RH, nRH LH, nLH

Figure 1.1: A negative reflection

In 2000, a metamaterial, based on conducting wires [9] and split-ring resonators (SRRs)
[10], was demonstrated to have a negative refractive index over a certain range of microwave
frequencies [11]. Wires, either continuous or with periodic breaks, can provide a positive or a
negative effective permittivity. Planar SRRs or wound coils (also known as Swiss Rolls) can
provide a positive or a negative effective permeability. One geometry of the conducting wires
and SRRs is shown in Fig. 1.2 (a), and a photo of the real fabricated sample is shown in Fig.
1.2 (b). Since the birth of this structure, the conduction wire and SRR inclusions with their
variations have been widely used as the fundamental building blocks in artificial materials to
provide tailored artificial electric and magnetic responses [12]. Harnessing the phenomenon of
negative refraction, these metamaterials offer a good potential for all kinds of applications, such
as “perfect” lens [13], imaging [14], resonators [15], and cloaking [16].

Metamaterials possessing these properties are also frequently named “Negative Refractive
Index (NRI)” and “Double Negative (DNG) material”. In addition to the materials with simulta-
neously negative permittivity and negative permeability, the single negative metamaterials have
also drawn a great interest. Applications are found for these materials either with a negative
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Figure 1.2: (a) Array of thin metallic wires mimicking microwave plasma with negative permit-
tivity for electric fields and splitring resonator (SRR) particle yielding negative permeability for
magnetic fields as shown (b) Photo of a real wire and SRRs sample

permittivity “Epsilon Negative (ENG)” [17] or a negative permeability “Mu Negative (MNG)”
[18]. Besides, materials with the properties of “Epsilon Near Zero (ENZ)” [19] and “Mu Near
Zero (MNZ)”, known as “nihility” materials have also been studied. A simple synopsis of these
metamaterials can be found in Fig. 1.3, where the angular frequencies ωpe and ωpm represent
respectively the electric and magnetic plasma frequency [20].

Up to now, we talked about metamaterials who exhibit their great performances by arti-
ficially tailoring the permittivity or permeability. Besides, the term “metamaterial” has also
been used by some authors to describe other periodic structures such as electromagnetic bandgap
(EBG) structures or photonic crystals, when the period is much smaller in physical size than
the wavelength of the impinging electromagnetic wave. The electromagnetic response of such
structures is dominated by Bragg-type scattering and involves higher order spatial harmonics
(Bloch-Floquet modes) [6]. In this thesis, we focus on such a kind of metamaterial, the so-called
“high impedance surface” (HIS).

1.2 High Impedance Surfaces

Background

Electrically conductive surfaces are usually used to act as ground planes for antenna, aiming
at gaining a significant front-to-back radiation ratio. The conducting ground plane can redi-
rect part of the radiation into the opposite direction and partially shield the electromagnetic
propagation on the other side of the ground plane. However, if an antenna is placed parallel to
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Figure 1.3: Permittivity, permeability and refractive index diagram.

the ground plane in close proximity, the radiated field coming from the antenna current will be
cancelled by the radiated field from the image of the antenna current and hence the working
efficiency of the antenna will be greatly reduced.

Usually, a quarter wavelength space is included between the antenna and the metal ground
plane. This distance can create a 90° phase shift in transmitting wave and a round trip of such
distance results in a 180° phase shift, which can compensate the opposite phase influence caused
by the ground plane. As illustrated in Fig. 1.4, wave 2 emitted from the antenna to the ground
plane surface and reflected to the antenna is in phase with wave 1, which is directly emitted by
the antenna on the other side.

One disadvantage of such an antenna system is its huge dimension, since it needs to be
around one quarter working wavelength; another disadvantage is the fact that it supports the
propagation of surface waves.

A “surface wave” is a wave that travels along the interface between two different media. It
is also called “surface plasmon” in optics [21]. In microwaves or radio communication, this wave
can be described by surface current. An infinite perfect electric conductor does not support any
surface wave. In reality, the conducting ground plane is not an ideally perfect conductor and
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Figure 1.4: Antenna with metallic ground plane

Figure 1.5: An antenna with a traditional ground plane, which supports surface waves

has finite size, so surface currents will be induced and will propagate until they reach an edge
or a corner, which will bring about ripples and influence the radiation patterns (as seen in Fig.
1.5). Moreover, if multiple antennas share the same ground plane, surface currents can cause
unwanted mutual coupling among them.

A “high impedance surface” is an artificial material/structure formed by periodic metal-
lic arrays printed on a metal-backed substrate [22], which exhibits extremely high impedance
(ZHIS � Zfree space) in one or several frequency ranges. This man-made material can play the
same role as a conducting ground plane in the antenna system, while simultaneously avoiding
the propagation of the surface waves and reducing the thickness of the whole system.

The study of such artificial surfaces dates back from the early 1950s [23, 24]. At first,
research in America purported to minimize the visibility of aircraft by radar systems. In order
to absorb the electromagnetic radiation, some structures, involving arrays of conducting metal
(which acted like resistive, capacitive or inductive circuit components), were designed. Before
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the existence of HIS structures, corrugated surfaces have been intensively studied in a variety
of forms. P. S. Kildal [25] identified a one-dimensional corrugated sheet as a soft surface, by
analogy with acoustic boundary conditions. S. Lee and W. Jones [26] analyzed a two-dimensional
corrugated surface resembling a lattice of rectangular metal pipes, and derived the surface wave
dispersion relation for such a structure. The drawback of such structures is that they are heavy
and not easy to fabricate.

In 1978, E. Yablonovitch published a pioneering work on photonic crystals [27]. He found
that the spontaneous emission by atoms can be inhibited in a microwave cavity by an electron-
hole radiative recombination. Furthermore, he also suggested that a three-dimensional spatial
periodic structure can result in a forbidden gap in the electromagnetic spectrum, just as the
electronic spectrum has a band gap in crystals. Inspired by this idea, a nearly flat conductor
covered with a two-dimensional lattice of small bumps is evolved from a flat sheet [28, 29].

Figure 1.6: A bumpy metal sheet with a narrow surface wave band gap

When the wavelength is much longer than the period of the two-dimensional lattice, the
surface waves hardly notice the small bumps. But when the wavelength is comparable to the
period, the effects of the surface texture cannot be neglected. When one-half wavelength fits the
distance between the two adjacent rows of bumps, this corresponds to the case with a Brillouin
zone boundary [30] on a two-dimensional lattice. At this wavelength, a standing wave on the
surface may have two possible positions: with the wave crests centered on the bumps, or with
the nulls centered on the bumps, as shown in Fig. 1.6. These two modes have slightly different
frequencies, separated by a small band gap within which surface waves cannot propagate.

Small bumps only provide a narrow bandwidth because they contribute only a small per-
turbation to the flat metal surface. If the bumps are enlarged, the bandwidth of the gaps will
increase. When the bumps were stretched toward each other, like mushrooms or thumbtacks
standing up on the surface, the electric field would be localized to the narrow separation between
them, and the first “High Impedance Surface” structure was born. This structure was proposed
by D. Sievenpiper in 1999 [22], its properties are similar to those of the corrugated slab, but it
is low-cost and easily fabricated.

Generally, HIS is composed of metal plates arranged in a two-dimensional periodic structure
backed with a continuous metal sheet. These planar metal plates may connect to the continuous
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Figure 1.7: Geometry of a mushroom HIS
structure (top view)

Figure 1.8: Geometry of a mushroom HIS
structure (cross view)

lower conductor by vertical posts. For instance, Fig. 1.7 and Fig. 1.8 depicts a top and a cross
view of one kind of HIS structure. The square metal patches are raised above the surface, and
the dots in the center are vertical connecting posts.

Performance

HIS structures can be viewed as a printed two-dimensional array of resonant elements on a
metallic ground plane separated by a dielectric substrate layer. The properties of the whole
structure can be explained using an equivalent LC resonant model (shown in Fig. 1.9), where the
proximity of the neighboring metal elements provides the capacitance, and the long conducting
path between the metal surface and the ground plane provides the inductance.

Figure 1.9: LC equivalent circuit

Around the LC resonance, the HIS structures can effectively prevent the propagation of
surface waves and reflect external electromagnetic waves without the phase reversal that occurs
on a traditional conductor. As a result, the antenna can radiate without deterioration of its
performance as well as retain an in-phase reflection while reducing the overall thickness of the
radiating element. Figure 1.10 depicts a dipole antenna lying against a HIS ground plane, which
exhibits the merits of using HIS structures.
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Figure 1.10: Antena with HIS plane

In the frequency range where the surface impedance is extremely high and the tangential
magnetic field on the surface is almost null, such a structure can be called a “perfect magnetic
conductor”. If a simple dipole is located adjacent to a ground plane made of a perfect magnetic
conductor, then the direction of image currents will result in a constructive interference rather
than a destructive interference. Theoretically, the PMC plane is an ideal material for antenna
ground planes.

In [31], the PEC, PMC and HIS/EBG surfaces are each used as the ground plane for the
design of low profile antenna. The authors compared the return loss of a dipole antenna over
these three ground planes by a numerical simulation. Their results are presented in Fig. 1.11.

As mentioned before, the PEC ground plane can cause a reversed image current which
impedes the efficiency of the dipole’s radiation, leading to a poor return loss. For the PMC
ground plane, although the reflection on the plane is in phase, a strong mutual coupling occurs
between the image current and the dipole, due to their close proximity. Thus, the antenna
cannot directly match well to a normal 50 ohm transmission line. Under this circumstance,
a good return loss can be acquired by using an appropriate impedance transformer, but the
design technique is certainly complicated.

Among these three cases, the best return loss is achieved by the case with a HIS ground plane.
Over a certain frequency range, the HIS structure behaves like a perfect magnetic conductor
with a good impedance match to a normal input. That’s why the high impedance structures
are also known as “Artificial Magnetic Conductors (AMC)”.
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Figure 1.11: FDTD simulated return loss results of a dipole antenna over the PEC, PMC and
EBG ground planes

Parameters

HIS structures exhibit a high impedance value around the resonance, so their surface impedance
is an appropriate parameter to show their feature. The surface impedance of HIS structures
can be obtained analytically or numerically, as will be detailed in later chapters. Here, we
give out a general definition for the surface impedance of HIS structures using the equivalent
circuit presented in Fig. 1.9. Since the equivalent circuit is a parallel combination of L and C

components, the surface impedance can be formulated as:

ZHIS =
jωL

1 − ω2LC
, (1.1)

where L and C are respectively the effective inductance and the effective capacitance of the HIS
structure.

Fig. 1.12 displays the general behavior of the surface impedance in terms of the operating
frequency for a given HIS structure. Only the first main resonance of the structure is presented
(other resonances appear at higher frequencies). It may be observed that, as compared with
the impedance of free space, the surface impedance is extremely high in a narrow region near
the resonance. Below the resonance, the surface impedance shows an inductive behavior, which
supports the propagation of TE waves; above the resonance, it shows a capacitive behavior,
which supports the propagation of TM waves.
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Figure 1.12: An example of the surface impedance curve for a mushroom HIS structure

The resonant frequency of HIS structures can be read from the surface impedance curve, and
it serves to engineer the structure’s dimensions in the design phase. However, a problem arises:
the surface impedance cannot be directly measured in experiments. Therefore, we choose an
alternative observation parameter: the reflection coefficient, which will be frequently discussed
in future investigation.

The reflection coefficient can be determined for an arbitrary impedance surface by consid-
ering the standing wave formed by a forward running wave impinging on the HIS surface and a
backward running wave reflected from it. It can also be obtained by considering a transmission
line model, as shown in Fig. 1.13, and calculated from the following equations:

Γ = ZL − ZP

ZL + ZP
, (1.2)

where ZP is the same as the intrinsic impedance of free space (Z0 = 377 ohm) and ZL is the
input impedance seen at a distance from the top surface of HIS structures:

ZL = Z0 ×
(

Zs + Z0j tan(βd)
Z0 + Zsj tan(βd)

)
, (1.3)

where Zs is the surface impedance of the HIS structure, d the distance between the excitation
port and the surface of the HIS structure and β the propagation constant in free space.

If the incident wave vector is perpendicular to the HIS surface and the observation surface is
located on the HIS top surface, then the coefficient of reflection of equation 1.2 can be simplified



CHAPTER 1. INTRODUCTION 34

Figure 1.13: Model for calculating the reflection phase

as:
ΓHIS =

Zs − Z0

Zs + Z0
. (1.4)

The phase θHIS can be formulated as

θHIS = tan−1
(

Zs − Z0

Zs + Z0

)
. (1.5)

Figure 1.14: An example of the reflection coefficient phase curve for a mushroom HIS structure

Figure 1.14 displays a phase curve for a mushroom HIS structure. Around the resonance, it
happens that Zs is much larger than Z0 so that the value of Z0 can be neglected. This means
that the wave reflected by the HIS structures, in comparison with the incident wave, may have
ΓHIS ≈ 1 and θHIS ≈ 0° in a certain range.
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A structure with a zero-degree reflection phase is an ideal candidate for the ground plane
of antenna. However, when the reflection phase is lower than 90°, the antenna can still work
efficiently. Generally, the useful bandwidth for a HIS structure is defined as from +90° to −90°.
Nevertheless, when identifying the effective frequency band from a reflection phase curve, each
application of HIS structures should be individually dealt with. For instance, in [31], it was
revealed that the frequency region where the HIS surface has a reflection phase in the range
90° ± 45° is very close to the input-match frequency band. This is not the frequency region
where the HIS structure behaves like a PMC surface, but it is a good interval allowing a low
profile wire antenna to reach a good return loss.

If the incident wave vector is oblique, the influence of the incidence angle should be taken into
account. Moreover, two different polarizations: the TE-incidence and the TM-incidence should
be considered. In general, in the case of the TE-incidence, the resonant frequency deviation
of HIS structures, Δf/f0, is relatively small. For the TM-case, the deviation is small only
when the incidence angle is close to 0°. For some types of HIS structures, the variation of the
incidence angle may cause a dramatic shift on the resonant frequency, which will lead to a very
narrow bandwidth in full-wave simulations.

Geometry Configurations

In this section, we introduce various geometry configurations for HIS structures used in the
literature, which may offer the readers some helpful ideas in future design.

The periodic square mushroom-like structure can be considered as the classical HIS struc-
tures, which has been first and widely studied. This is mainly because of its simplicity, flexibility
and a relatively wider bandwidth [32] compared with other simple geometries. As mentioned,
the operating mechanism of HIS structures can be explained by an equivalent LC network.
The resonance of the structure can be regulated by modifying the effective capacitance and the
effective inductance, which depend on geometry parameters. In order to get a lower resonance,
a HIS structure with hexagonal patches on the top is proposed in [22], as seen in Fig. 1.15. For
the same purpose, more structures, such as fork-like HIS structures and F-like HIS structures
(as seen in Fig. 1.16) [36] have been studied.

For a mushroom structure, a lower resonance can be acquired by the configuration of large
patches with extremely tiny space between neighboring patches. This is because a long, thin
space between the neighboring patches yields a higher capacitance than the short, wide space.
However, this kind of HIS structures are not in a good immunity to the variation of the incidence
angle. Since the top surface of this structure is almost covered with metal material, the incident
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Figure 1.15: Geometry of a hexagonal mushroom-like structure

Figure 1.16: Top view of fork-like (left) and F-like structures (right)

wave cannot easily penetrate into the substrate through the slim slots on the top. Hence, a
small variation of the angle may cause a big shift in the results.

In order to get a more stable resonance with respect to the incidence angle, self-resonant
grid structures have been proposed as substitues for the grid of square patches and thin metal
strips, such as “meander-line based high impedance surface” [33]. Several types of self-resonant
grid structures are exhibited in Fig. 1.17. Structures of this kind are less metallized on the
top surface and appear to be more “transparent” to incidence wave, in comparison with the
mushroom structures.

Like the meander line, the Hilbert curve is also a self-resonant grid structure. This curve was
imagined by Hilbert in 1891 and is a member of the family of what is known in the mathematics
literature as “space-filling curves” [34]. The Hilbert curve has some attractive properties. For
instance, the structure of this shape can be made of an electrically long metallic wire compacted
within a very small footprint. In [35], this structure is well studied as a compact planar surface
for HIS structures. It is proved that the resonance of the Hilbert curve HIS structures is
primarily related to the order N of the Hilbert curve. It is also known that the resonance and
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Figure 1.17: Top view of several self resonant grid structures

the bandwidth of this structure are more affected by the height of the surface above the ground
rather than the distance between adjacent elements within the array. A family of Hilbert curve
HIS structures with order from N = 1 to N = 4 is presented in Fig. 1.18.

Figure 1.18: Top view of Hilbert curves with various iteration order N

Not only analytical methods and empirical experiences are used in searching for an appro-
priate HIS geometry configurations. Some numerical algorithms are applied as well. In order
to get the most suitable configuration. For instance, a genetic algorithm synthesis methodology
was introduced in [37] to evolve optimal multiband fractal HIS structures (Fig. 1.19).

Figure 1.19: Top view of fractal HIS structures

While some efforts are made in designing the top planar surface configuration for HIS struc-
tures, the design of vias has also been explored. In [38], the author suggested an array of
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densely packed metallic wires properly distributed in a periodic lattice and embedded in a low
epsilon dielectric, as shown in Fig. 1.20. This design offers a more compact textured HIS surface
and helps making the equivalent surface impedance independent of the angle of incidence. The
disadvantage of this structure is that there does not exist a significant electromagnetic band
gap for surface waves. It may not be particularly appealing for printed antenna applications,
whereas it has the potential of confining or guiding energy with mode sizes below the diffraction
limit.

Figure 1.20: Cross view of a HIS structure with densely patched metallic wires

In [39], a mushroom-based structure with slanted vias has been studied. It showed that a
further size reduction can be achieved by using slanted vias for a given frequency than with
vertical vias. Meanwhile, this structure offers a dual operational frequency band instead of the
single band, obtained forthe structures with vertical vias.

In addition, the configuration with vias in different sizes in the same substrate has also
been examined in [40], the geometry of which is shown in Fig. 1.21. It is found that this
non-homogeneous HIS structure may offer a wider stop band and enhance the performance of
restraining surface waves, in comparison with ordinary homogeneous HIS structures.

Figure 1.21: Top view of a HIS structure with vias of different sizes

Relatively speaking, the geometry modifications on the top planar surface of the HIS struc-
tures weigh more than the changes on the vias. Nevertheless, a subtle change is sometimes very
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useful in the optimization of design.
Another helpful technique in geometry configuration is the multi-layer design, one example

is seen in [41]. The problem is that more layers may improve some parameters, but at the price
of which a thicker structure. Hence, the overall height of the system should be fully considered
before using this technique.

Applications

It is known that HIS structures can restrain the propagation of surface currents, while simul-
taneously behaving as magnetic walls near their resonances. Because of these two noteworthy
characteristics, HIS structures are accordingly applied in all kinds of antennas, such as GPS
antennas in telecommunication systems [42], in aeronautics [43], and so on. Especially, they
have been highly used as ground planes in designing low-profile antennas [44, 45, 46]. Recently,
the authors of [48] proposed that the HIS structure itself can perform as an antenna.

In addition, in Electromagnetic Compatibility (EMC), they may serve to suppress the switch-
ing noise [49, 50], reduce the mutual coupling between adjacent elements [51], or improve the
specific absorption rate for wireless antenna [52].

Apart from the above applications, their potentials have also been discovered for absorbers
[53], resonant cavities [54], waveguides and other devices.

1.3 Finite Element Method

In this section, we first review the fundamental theory of electromagnetism in a concise fashion.
Then, the FEM is briefly introduced with emphasis on the subjects directly applicable to our
work.

1.3.1 Fundamental Electromagnetic Theory

Maxwell’s Equations

The classical macroscopic electromagnetic field is described by four vector functions of position
and time, denoted as E, B, H , D. The fundamental field vectors E and H are called the electric
and magnetic field strengths respectively (we shall refer to them as the electric field and the
magnetic field). The vector functions D, B which later will be eliminated from the description of
the electromagnetic field via suitable constitutive relations, are called the displacement current
and magnetic induction, respectively [55].
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In modern notation due to Heinrich Hertz and Oliver Heaviside, Maxwell’s equations are
written as the following set of partial differential equations [56, 57]:

∇ × E = −∂B

∂t
, (1.6)

∇ × H = J + ∂D

∂t
, (1.7)

∇ · D = ρ, (1.8)

∇ · B = 0. (1.9)

Equation 1.6 is based on Faraday’s experiment (1825) and gives the effect of a changing
magnetic field on the electric field. Equation 1.7 is Ampère’s law which is based on Biot-Savart
experiment (1826) and Maxwell’s great contribution — displacement current (1861). Equations
1.8 and 1.9 are Gauss’s laws accounting for Coulomb’s type experiments (1785). The former
gives the effect of the charge density on the electric displacement and the latter expresses the
fact that the magnetic induction B is solenoidal. In terms of electric and magnetic fields, the
above four field equations are the complete Maxwell’s equations [58].

The empirical law of the conservation of electric charge

∇ · J = − ∂

∂t
ρ (1.10)

may be obtained by taking divergence of Eq. 1.7 and substituting Eq. 1.8 into it. This law
governs the electric current density J and the electric charge density ρ. Here, J is regarded as
the sum of the induced current density Ji and the exciting current density Je,

J = Ji + Je. (1.11)

Constitutive Relations

In order to uniquely determine fields in particular cases, the Maxwell equations should be com-
pleted with constitutive equations [59]. The constitutive relations reflect medium polarizations
that are related to the case under study, which is an important topic in solid-state physics [60].
Once the responses of bound currents and charges are related to the fields, Maxwell’s equations
can be fully formulated in terms of the E- and H-fields alone, with only the free charges and
currents appearing explicitly in the equations.
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The constitutive relations are usually written as:

D = εE, (1.12)

B = μH, (1.13)

Js = σE. (1.14)

where ε is the electric permittivity, μ the magnetic permeability and σ the electric conductivity.
They are independent of Maxwell’s equations. In general, ε and μ are not simple constants,
but rather tensors. However, in our work, we consider only the linear and isotropic materials,
characterized by the scalar triplet: ε, μ and σ.

In free space, void of any matter, it is known that

μ = μ0 = 4π × 10−7 H/m, (1.15)

ε = ε0 � 8.85 × 10−12 F/m. (1.16)

The materials with σ = 0 are considered to be dielectric lossless.

Electromagnetic Wave Equation

According to Maxwell’s equations, an oscillating electric field generates an oscillating magnetic
field, the magnetic field in turn generates an oscillating electric field, and so on. These oscillating
fields together form an electromagnetic wave.

The wave equation can easily be derived by taking the curl of Eq. 1.6 and substituting Eq.
1.7 with the help of the constitutive relation:

∇ × 1
μ

∇ × E + ε
∂2E

∂t2 + ∂J

∂t
= 0. (1.17)

We find by using the vector identity ∇ × (∇ × E) = ∇(∇ · E) − ∇2E and Eq. 1.8, that Eq.
1.17 can be written as:

∇2E − με
∂2E

∂t2 = μ
∂J

∂t
+ ∇(

ρ

ε
). (1.18)

Equation 1.18 is the wave equation for a homogeneous medium. The wave equation can also be
expressed by eliminating E, rather than H .

In the case of free space, there are no charges or currents, so the E-based wave equation can
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be simplified as:

∇2E − με
∂2E

∂t2 = 0 (1.19)

with the dispersion relation k2 = ω2με.
In the case of a lossy medium, the conduction current cannot be neglected and the permit-

tivity is no more a real constant value but a complex value, defined as:

εσ = ε − j
σ

ω
. (1.20)

The permittivity doesn’t vary a lot at low frequency, but may vary a lot more at high
frequencies. In our simulation, we assume that the permittivity is always constant within a
certain frequency band.

Interface Between Two General Media

The Maxwell equations are not a complete classical description of the electromagnetic field
inside the solution region, they should be supplemented with boundary conditions and initial
conditions when solving a practical problem.

For a stationary interface separating regions 1 and 2, we let the surface normal n point from
region 2 to region 1, as shown in Fig. 1.22.

n ε1, μ1, σ1

ε2, μ2, σ2
In
te
rfa

ce

Figure 1.22: Interface between two different media

The boundary conditions between two general media can be derived from the Maxwell
equations as follows:

n × (E1 − E2) = 0, (1.21)

n × (H1 − H2) = Jes, (1.22)

n · (D1 − D2) = ρes, (1.23)
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n · (B1 − B2) = 0, (1.24)

where subscripts 1 and 2 denote fields in regions 1 and 2, respectively. Essentially, the boundary
conditions state that the tangential components of E and the normal components of B are
continuous across the boundary; the discontinuity of the tangential components of H is equal
to the surface current density Jes (if Jes is imposed there) and the discontinuity of the normal
components of D is equal to the surface charge density ρes (if ρes is imposed there) [57].

Perfect Electric Conductor

The perfect electric conductor (PEC) is an idealization of a good conductor such as some highly
conducting metal or dielectric of very high permittivity [61]. From Ohm’s law (Eq. 1.14), we see
that if the conductivity σ is infinite and if the current density is to remain bounded, then the E-
fields inside this medium vanish. If region 2 in Fig. 1.22 represents a perfect electric conductor,
then the necessary and sufficient boundary conditions at the interface between region 1 and
region 2 are:

n × E = 0, (1.25)

n · B = 0. (1.26)

while there is no condition on the other two vectors H and D.

Perfect Magnetic Conductor

The perfect magnetic conductor (PMC) is a medium which has no simple physical counterpart.
If region 2 in Fig. 1.22 represents a perfect magnetic conductor, at the surface of a PMC body,
the boundary conditions are:

n × H = 0, (1.27)

n · D = 0. (1.28)

while there is no directly imposed condition on the other two vectors B and E.

Impedance Boundary Condition

If the material on one side of the boundary is not a perfect conductor, but allows the field to
penetrate only a small distance, a more appropriate boundary condition is the impedance or
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imperfectly conducting boundary condition. Suppose again that the good conductor is in region
2 and that the normal n points from region 2 into region 1, this boundary condition becomes:

n × H2 − λ(n × E2) × n = 0, (1.29)

where the impedance λ is a function of position on the surface of the material.

1.3.2 FEM Theory

The evolution of the Finite Element Method (FEM) [62] has intimately been linked to devel-
opments in engineering and computer sciences. The FEM is a good choice for solving problems
with complicated domains and it is applied not only in aeronautics, transportation industries,
nuclear, but in electromagnetic domain as well.

The FEM is a numerical technique appropriate for a partial differential equation and a set
of boundary conditions. The main idea behind the method is the representation of the domain
with smaller subdomains called “elements”. The distribution of the primary unknown quantity
inside an element is interpolated based on, most often, the values at the nodes.

In our work, however, we have to deal with vector-valued elements, hence the unknown
quantities are localized at edges. The study domain associated with our problem, here described
in a 3D cubic box, is subdivided into N tetrahedral elements, as seen in Fig. 1.23. These
elements, constituted the finite element mesh, do not have to be of the same dimensions. Each
element has six edges and each edge has two nodes, as seen in Fig. 1.24. An element is allowed
to have arbitrary length to provide the ability to generate a denser mesh near regions where
the solution is expected to have rapid spatial variations. In addition, the discretization of the
domain gives generality and versatility to specify material properties and sources.

Figure 1.23: A study domain meshed with tetrahedral elements



CHAPTER 1. INTRODUCTION 45

Figure 1.24: Tetrahedral element

The numerical solution yields the values of the primary unknown quantity at the edges of the
discretized domain. This solution is obtained by solving a system of linear equations. To form
such a linear system of equations, the governing differential equation and associated boundary
conditions must first be converted to a weak formulation either by minimizing a functional or
using a weighted residual method.

Weak formulations, sometimes referred as variational formulations, are an important tool
for the analysis of mathematical equations that permit the transfer of concepts of linear algebra
to solve problems in other fields such as partial differential equations. Weak formulations allow
us to get the approximation of the solutions easier. The weak formulation can be obtained by
multiplying the partial differential equation by an arbitrary test function of (in most cases) the
spatial variables, then integrating the result over the domain. One then requires that the result
is zero for all choices of such functions. Note that any numerical scheme for approximating
Maxwell’s equations in the presence of material discontinuities must take into account that
tangential components of the field are continuous, while allowing normal components to jump
across a material boundary [55].

In our work, we may use the electromagnetic wave equation (1.17) to formulate our real
problem. Suppose a domain D, enclosed by the boundary S = dD, we must find a field E

belonging to the functional space:

E = L2
rot = {E : E ∈ L2(D), ∇ × E ∈ L2(D)}, (1.30)

satisfying

∇ × ( 1
μ

∇ × E) + ε · ∂2E

∂t2 = −∂J

∂t
. (1.31)
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Let us develop the weak formulation corresponding to our real problem by multiplying Eq.
1.31 with a test function v.

ˆ
D

[
∇ × (

1
μ

∇ × E) · v + ε
∂2E

∂t2 · v

]
= −
ˆ

D

∂(Je + Ji)
∂t

· v ∀v ∈ E. (1.32)

After applying the first Green identity and Eq. 1.11, the weak formulation can be rewritten
as:
ˆ

D

[
1
μ

(∇ × E) · (∇ × v) + σ
∂E

∂t
· v + ε

∂2E

∂t2 · v

]
+
ˆ

S

(n×∇×E)·v = −
ˆ

D

∂Je

∂t
·v∀v ∈ E (1.33)

where n is the outward normal vector on the boundary S of D.
The approximate solution of the problem over the discretized domain is represented inside

an element by a set of interpolation functions also known as shape functions. In our study
domain, the approximate E-field vector can be expressed in terms of the values associated with
the edges of the elements:

E =
N∑

i=1

eiWi, (1.34)

where N is the number of edges of the mesh, Wi is the function associated with the edge i and
ei represents the E-field circulation along the edge i: ei =

´
edge i

E · dl. These circulations are
the unknowns, called “degrees of freedom” (DOF).

The accuracy of the solution depends, among other factors, on the order of the polynomials
of interpolation function, which may be linear, quadratic, or higher order. In our case, we deal
with the vector fields in electromagnetism and Whitney forms are chosen as interpolants.

Refer to the tetrahedron from Fig. 1.24. The oriented edge i has two nodes: a and b. The
Whitney function [66] is expressed by:

Wi = λa∇λb − λb∇λa, (1.35)

where λa and λb are the barycentric coordinates associated with nodes a and b.
Here, a subscript index is used for the vector basis functions. For instance, for the edge 1,

we have W1. Since λ1 vanishes on the facet defined by nodes 2, 3, 4 and ∇λ1 is perpendicular
to that facet, W1 has no tangential component on this facet. Analogously it can be stated
that W1 has no tangential component along the edges different from the edge 1 and its normal
components is discontinuous. Hence, we have the following relation:
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ˆ
edge i

Wj =

⎧⎨
⎩ 0 if i �= j

1 if i = j
(1.36)

The finite element equations are derived by first constructing the weighted residual of the
governing differential equation as applied to a single element. Applying Eq. 1.34 into Eq. 1.33,
we obtain

ˆ
D

⎡
⎢⎢⎣1

μ
(∇ ×

N∑
i=1

eiWi) (∇ × v) + σ
∂

N

(∑
i=1

eiWi)

∂t
· v + ε

∂2(
N∑

i=1
eiWi)

∂t2 · v

⎤
⎥⎥⎦ =

−
ˆ

S

(n × ∇ ×
N∑

i=1

eiWi) · v −
ˆ

D

∂Je

∂t
· v ∀v ∈ E (1.37)

To be able to solve for the unknowns, it is important to have as many independent test
functions as unknowns. In our work, we choose the Galerkin method, which is a particular
form of the weighted residuals method. Its particular formulation is simple and practical to
implement and moreover, normally provides precise and accurate results. With the Galerkin
approach, the test functions v coincide with the shape functions W . Replacing v by Wi in Eq.
1.33, we obtain:

N∑
i=1

ei

ˆ
D

1
μ

(∇ × Wi) · (∇ × Wj) +
N∑

i=1

dei

dt

ˆ
D

σWi · Wj +
N∑

i=1

d2ei

dt2

ˆ
εWi · Wj =

−
ˆ

D

∂Je

∂t
· Wj −

ˆ
S

(·)dS. (∀j, j = 1, . . . , N ). (1.38)

Eq. 1.38 can be written in matrix form:

[S]e + [T1]
de

dt
+ [T2]

d2e

dt2 = [f ] , (1.39)

where e is the unknown vector of edge circulation: e = [ e1, e2, · · · , eN ]t; the f is a
combination of all kinds of boundary conditions.

Matrices [S], [T1]and[T2] are independent of time:

[S]ij =
ˆ

Ω

1
μ

(∇ × Wi) · (∇ × Wj)dΩ, (1.40)
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[T1]ij =
ˆ

Ω
σWi · Wj , (1.41)

[T2]ij =
ˆ

Ω
εWi · Wj , (1.42)

and [F ] is computed by

[F ]i = −
ˆ

∂Je

∂t
· Wi. (1.43)

Either by using the Fourier transform in time or because we wish to analyze electromagnetic
propagation at a single frequency, the time-dependent problem can be reduced to the time-
harmonic Maxwell system. So, equation 1.39 can be written in frequency domain as

[S]e + jω[T1]e + (jω)2[T2]e = [F ], (1.44)

where Fi = −jω
´

Je · Wi.
The numerical solution yields the values of the primary unknown quantity at the edges of the

discretized domain. The assembly of all elements results in a global matrix system representing
the entire domain [64]. The weak formulation results in a system of N linear equations with N

unknowns. The resulting matrix system of linear equations is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 K12 K13 · · · K1N

K21 K22 K23 · · · K2N

K31 K32 K33 · · · K3N

... ... ... ... ...
KN1 KN2 KN3 · · · KNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3
...

eN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3
...

FN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.45)

where the matrix [e] corresponds to the unknown quantities of electric circulations along every
edge in the finite element mesh, the matrix [K] is the system matrix equal to [S]+jω [T1]−ω2 [T2]
and the matrix [F ] is the source.

1.3.3 Boundary Conditions in FEM

This subsection outlines the procedure used to impose boundary conditions on the set of linear
equations obtained from the weak formulation of the governing differential equation. A non-
singular matrix system (except in case of resonance) is obtained after imposing the boundary
conditions associated with a given boundary value problem.
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Dirichlet Conditions

In the case of Dirichlet conditions, the E-field circulations on some edges are known in advance.
Let’s index the edges in such a manner that DOF ei (i = 1, . . . , M , with M < N) are the
unknowns, while

ei = eg
i (∀i = M + 1, . . . , N ), (1.46)

where the eg
i are the given edge values for all edges on the excited part of the boundary.

Eq. 1.45 can be rewritten as:

M∑
j=1

Kijej +
N∑

j=M+1

Kije
g
j = Fi (∀i = 1, . . . , N ). (1.47)

Combine Eq. 1.45 with Eq. 1.46, we obtain:

M∑
j=1

Kijej = Fi −
N∑

j=M+1

Kije
g
j , (1.48)

which is an M × M linear system.
From Eq. 1.48, it is seen that after imposing the Dirichlet boundary condition on the edges:

M + 1, . . . , N , only M unknowns will be left to be determined.
In case eg

i = 0, the Dirichlet boundary condition is precisly called “homogeneous Dirichlet
condition”. In programming, this case can be easily realized by several linear operations of
elimination.

In the case of eg
i �= 0, the Dirichlet boundary condition is called “non-homogeneous Dirichlet

condition”. This case may be computed by using a “penalty method” [67]. Suppose the edge n

is associated with the “non-homogeneous Dirichlet condition”, imposing this condition on edge
i can be realised by adding a large value α to the term Knn and replacing Fn with Fn + αeg

i in
1.45:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 · · · K1i · · · K1N

... ... ...
Kn1 · · · Knn + α · · · KnN

... ... ...
KN1 · · · KNi · · · KNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
...
ei

...
eN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1
...

Fn + αeg
n

...
FN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.49)
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The equation corresponding to the n-th line is:
(

N∑
j=1

Knjej

)
+ αei = Fn + αeg

n. (1.50)

In programming, we choose α = 107 · max(Kij). If the matrix [K] is ill-conditioned or some
components of [e] are extremely large, this method will be less effective.

Neumann Boundary Condition

The Neumann boundary condition, also called “natural boundary condition”, is a special case of
mixed boundary condition. When the primary unknown is the electric field, as here, Neumann
conditions correspond to perfect magnetic conducting surfaces

Periodic Boundary Condition

The periodic boundary condition (PBC) is widely employed in simulating arrays of periodically
repeated structures, such as three-dimensional lattice structures for crystals, artificial dielectrics
consisting of periodically placed conducting pieces, etc. If the solution is itself, as will be the case
here, spatially periodic, this can largely simplify the computation of what would be otherwise
a large system by working on a single cell.

Figure 1.25: A cubic domain with periodic boundary conditions on two opposite faces

We suppose that the study domain is a cubic box, discretized by tetrahedra elements, and
that the periodic boundary conditions are assigned to its two opposite surfaces Sp and Ss, which
are discretized by edge elements (as seen in Fig. 1.25). If l is an edge of the mesh on the left
wall (Sp), its translate k should be an edge of the mesh on the right wall (Ss). To solve an
electromagnetic problem by FEM, we calculate the E-field circulations on every edge element.
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When applying the PBC on two faces, the E-field circulations on such a couple of edges should
be same. Therefore, taking the circulations along edges l and k, we have

el = ek, (1.51)

Eq.1.51 is enforced by imposing the PBC constraint to one couple of edges. For all the
DOFs, it is possible to build a rectangular matrix B expressing all such PBC relations in one
stroke as:

Be = 0. (1.52)

Suppose for a moment that matrix [K] is positive definite. If there were no constraints on
e such as those of type (1.51), one would solve the linear system

[K][e] = [F ], (1.53)

which is equivalent to

e = arg inf{(Ke′, e′) − 2(F, e′) : e′ ∈ space of all possible vectors}, (1.54)

where (X, Y ) means ∑
XiYi and arg inf{f(x) : x ∈ X} means the value (or the set of values)

of variable x in X such that f(x) <= f(y) for all y in X. In presence of the constraints (1.52),
we must instead solve

e = arg inf{(Ke′, e′) − 2(F, e′) : with Be′ = 0}. (1.55)

Since our problem is associated with the Maxwell equations, which do not correspond to a
minimization problem, [K] is not positive-definite, so instead of (1.55), the correct formulation
is

E = arg stat{(Ke′, e′) − 2(F, e′) : with Be′ = 0}. (1.56)

where stat{f(x) : x ∈ X} means the stationary value of the function f(x) for all x in X.
There are two ways to deal with such constrained linear systems:
1) Use Lagrange multipliers λ, which increases the number of unknowns, but gives an un-

constrained system formulated as:



CHAPTER 1. INTRODUCTION 52

⎡
⎣ K Bt

B 0

⎤
⎦
⎡
⎣ e′

λ

⎤
⎦ =

⎡
⎣ F

0

⎤
⎦ . (1.57)

2) Express the DOF in terms of an independent subset of them, which decreases the number
of unknowns, but requires to find matrix C that maps a subvector X ′ of the vector of degrees
of freedom e′ to a full vector e′ of degrees of freedom, and such that (1) the kernel of C reduces
to 0, (2) the range of C coincides with the kernel of B. In that case,

e′ = CX ′ (1.58)

will automatically satisfy Be′ = 0 for all possible values of the vector X ′. Therefore, (1.56)
becomes

X ′ = arg stat{(KCX ′, CX ′) − 2(F, CX ′)}. (1.59)

A natural choice for X ′ in our case, where (1.52) expresses periodic boundary conditions,
is the subvector of DOFs associated with all edges inside the box plus those on the “master”
surface Sp. Then C must be built so as to yield appropriate values (satisfying Eq. 1.51) on the
“slave” surface Ss. A convenient choice for B and C is then

B = [
i=1

0, · · · , 0,

i=l

1, 0, · · · , 0,

i=k

−1, 0, · · · ,

i=N

0 ]
.

(1.60)
With same hypothesis for edge l and edge k, the matrix C can be chosen as:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j=l j=k j=N−1

1 0 · · · · · · · · · · · · · · · · · · 0

0 . . . ...

i=l

... 1 ...

... . . . ...

... 1 ...

i=k

... 1 0 ...

... 1 ...

... . . . 0
i=N 0 · · · · · · · · · · · · · · · · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×(N−1)

, (1.61)
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which is a matrix with diagonal values equal to 1, an exception happens at k-th row, where
Ckl = 1 and Ckk = 0.

The algorithm that builds the reduced stiffness matrix of the final unconstrained system
from the original stiffness matrix of the constrained system in Eq. 1.56 is explained as follows:

1) add l -th line to k-th line in matrix [K], delete the l -th line and move downside lines one
position up;

2) add l -th row to k-th row in matrix [K], delete the l -th row and move rightside rows one
position left;

3) delete the l -th line term in matrix [e] and move downside terms with one line up;
4) add l -th line term on k-th line term in matrix [F ], delete the l -th line term and move

downside terms one-line up.
These linear operations can easily be implemented in Matlab.

1.4 Motivation and Organization of the Thesis

In the past decade, the artificial structures called “High Impedance Surface (HIS)” have drawn
intensive interest. Such structures have been widely investigated for the improvements of an-
tenna performances, which are featured by numerous parameters such as gain, quality factor,
shapes and dimensions. To fulfill the requirements in antenna applications, we need a technique
to contrive the appropriate dimensions and geometries of HIS structures. Thus, the objective
of this thesis is to model these structures and to characterize their performances in the design
of antennas.

The thesis is organized as follows:
In Chapter 1, we give a general knowledge of metamaterials and particularly introduce the

background, performances, geometry configurations and applications of HIS structures. We
also briefly review the electromagnetic fundamental theory and the finite element method. All
the formalizations presented in this part are relevant to our real problem. In addition, the
programming techniques relevant to the numerical method are also addressed. This chapter
lays the foundation for the numerical modeling of HIS structures in later chapters.

In Chapter 2, we present several analytical modelings for HIS structures, as available in the
literature. Concerning the geometry, two most-widely investigated structures (the Mushroom
structure and the Jerusalem structure) are considered. Furthermore, several parametric studies
are performed to understand the HIS properties from a physical perspective.

In Chapter 3, numerical models are developed to characterize HIS structures, in which dif-
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ferent modeling schemes and different boundary condition schemes are investigated. In order
to validate these models, we compare the results of surface impedance calculated by analytical
methods and numerical simulations with rotationally symmetric HIS structures. Then two new
numerical methods are proposed in calculating the 2D surface impedance for general HIS struc-
tures, which include both the symmetric structures and the asymmetric structures. These two
methods are validated through comparing the analytical, numerical and experimental results.
The limitations and the trade-offs of these two methods are also discussed.

In Chapter 4, we concentrate on experimental measurements. Many samples have been
fabricated and characterized to fully verify the validity of our numerical methods.

In Chapter 5, we propose an equivalent model, in which all the heterogeneous HIS elements
are represented by a homogeneous surface, characterized by its surface impedance. It is demon-
strated that by adopting this equivalent model, the computing time and the core memory can
be saved to a high extent. Models of this kind could be integrated into emulation packages so
as to provide initial insights in the process of the antenna design.

The last chapter develops conclusions and sketches perspectives for future work.



Chapter 2

Analytical Modeling

2.1 Mushroom Structures

2.1.1 Resonant LC Circuit Model by Sievenpiper

The mushroom-like HIS structure (simplified as “mushroom structure” here) is composed of a
thin surface with periodic metal patches on the top, a dielectric substrate and a ground plane.
Figure 2.1 depicts the geometry of a unit cell of a square mushroom structure, in which a via
connects the middle of the patch to the ground plane.

D
top view

g/2

Rvia

D

h

ε1
ε2 g/2

cross view

Figure 2.1: Geometry of a unit cell for a mushroom structure

When this HIS structure was first proposed by Sievenpiper, an effective circuit model was
used to describe it. When the protrusions of the HIS elements are small in comparison to the
wavelength, their electromagnetic properties can be described using lumped circuit elements –
capacitors and inductors [22]. As far as the surface impedance is concerned, this structure has
an equivalent LC circuit (see Fig. 2.2), represented with impedance:

55
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Figure 2.2: Equivalent model of one unit cell for the mushroom structure

Zs(ω) = jωL

1 − ω2LC
, (2.1)

where the ω is the angular frequency of operation.
With the help of Eq. 2.1, the resonant frequency of the mushroom structure can be defined

as:

fresonant =
1

2π
√

LC
. (2.2)

The capacitance C comes from the fringing electric field between adjacent metal plates. It
can be derived by using the technique of conformal mapping for a pair of semi-infinite plates
separated by a gap [22] and expressed as:

C = (D − g) (ε1 + ε2)
π

cosh−1
(

D

g

)
, (2.3)

where D is the spatial period of the array (i.e, the width of the unit cell); g is the distance
between the neighboring patches; ε1 and ε2 represent the permittivity of media on two sides of
the patch, as seen in Fig. 2.1. Usually, ε1 is the permittivity of free space (ε1 = ε0) and ε2 is
the permittivity of the substrate (ε2 = ε0εr).

The inductance L results from the current flowing around a path through via and the bottom
plate. In the case of a square patch, where the length and the width of the patch are same, the
inductance only depends on the thickness of the structure h and the permeability of substrate
μ:

L = μh. (2.4)

Adopting the LC equivalent model given by Sievenpiper, we perform parametric studies to
investigate the relationship between the geometrical dimensions and the surface impedance of
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the mushroom structures. The analytical calculations may not only help us to understand the
physical mechanism of this kind of structures, but also get some guidelines in designing an
antenna system combined with these structures.

Note that in this chapter, we consider only the cases with a non-lossy substrate, so the real
part of the surface impedance is always zero and will not be observed here.
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g = 0.005 mm
g = 0.010 mm
g = 0.015 mm
g = 0.020 mm
g = 0.025 mm
g = 0.030 mm

Figure 2.3: Mushroom structures: D = 2.4
mm, h = 1.6 mm, εr = 4.4, g varies from 0.005
mm to 0.3 mm.
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Figure 2.4: Mushroom structures: D = 2.4
mm, g = 0.2 mm, εr = 4.4, h varies from 0.4
mm to 2.4 mm.

5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4

frequency (GHz)

re
ac

ta
nc

e 
of

 th
e 

su
rf

ac
e 

im
pe

da
nc

e 
(O

hm
)

 

 

D = 2.0 mm
D = 2.4 mm
D = 2.8 mm
D = 3.2 mm
D = 3.6 mm
D = 4.0 mm

Figure 2.5: Mushroom structures: h = 1.6
mm, g = 0.2 mm, εr = 4.4, D varies from
2.0 mm to 4.0 mm.
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Figure 2.6: Mushroom Structures: D = 2.4
mm, g = 0.2 mm, h = 1.6, εr varies from 1.0
to 12.0.

Figure 2.3 and Figure 2.4 reveal that a smaller gap g and a thicker substrate h yield a lower
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resonant frequency. Figure 2.5 and Figure 2.6 reveal that an increase in the period D or in the
permittivity of the substrate εr also cause a lower resonant frequency.

This parallel resonant LC model is not very rigorous, because the formula above cannot
accurately describe the behavior of the capacitance and the inductance at high frequencies. In
addition, another drawback of the model is that the influence of the incidence angle is neglected.

2.1.2 Transmission-line Model by Simovski

Generally, HIS structures can be divided into two layers: a grounded substrate with periodic
vias and a top surface with periodic metal elements. These two layers have been separately
investigated for a long time and their history goes back to the end of the nineteenth century.

The first quantitative study on wire grids was done by Lamb in 1898 [88]. In 1946, Mac
Farlane [74] solved the scattering problem of a parallel wire grid by using a simple Transmission-
line (TL) model. Then several TL models for the case of wire grids in homogeneous media were
developed by MacFarlane, Wait [75], and Trentini [76]. Afterward, many contributions have
been made in improving the models with various new conditions.

In 1982, Lee et al. [77] obtained an expression for the grid impedance of a surface with
inductive or capacitive grid mesh, in a homogeneous medium and at normal incidence, by
matching its analytical calculations to numerical data [102].

All the previous work paved the way for investigating the HIS structures by using a TL
model. In short, the first layer of HIS structures, such a substrate with periodic vias can be
understood by the wire grid model; the second layer, the surface with periodic metal elements
can be described by an artificial homogeneous impedance surface behaving like a a capacitive
or an inductive grid in certain frequency bands.

Figure 2.7: Equivalent transmission-line model for the mushroom structure

The TL model is based on the homogenization theory in a quasi-static or low-frequency
environment, which suggests that the dimensions of a unit cell of HIS structures should be
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much smaller than the wavelength at the operating frequency. In terms of the TL model, the
surface impedance Zs of the mushroom structure can be considered as a parallel connection of
the averaged grid impedance (Zg) and the impedance of the grounded substrate, as seen from
the plane of mushroom structure (Zd) [83]. The description of the TL model for a mushroom
structure is illustrated in Fig. 2.7, where the surface impedance of the whole HIS structures can
be expressed as an input surface impedance at the top plane of HIS:

Zs (input) =
(
Z−1

g + Z−1
d

)−1
. (2.5)

The surface impedance is concerned with the angle of incidence, thus the cases with TE and
TM-polarization wave are respectively considered. Suppose the patch surfaces are parallel to
the x − y plane and the vias are set along the direction of the z-axis, a side view of mushroom
structure is presented together with different polarized waves in Fig. 2.8.

Figure 2.8: TE and TM polarization incident wave

In the case of a TE incident wave, the electric field is always orthogonal to the via, so that
no current will be induced on the via and Zd is not affected. In this case, Zd is simply regarded
as the surface impedance of the dielectric substrate backed with a grounded plane [82]:

ZT E
d =

jη0√
εr − sin2θ

tan(kzdh), (2.6)

where kzd = ω
√

ε0μ0(εr − cos2 θ) is the vertical component of the wave vector in the refracted
wave, εr and h is the relative permittivity and the thickness of the substrate, and η0 is the
impedance of free space.

In the case of a TM incident wave, the influence of the vias cannot be neglected and Zd is
regarded as the surface impedance of a wire grid substrate. At low frequency, this layer exhibits
like a TEM transmission-line with energy propagating strictly along z [79] and shortened by a
ground plane. In this case, Zd is independent of the incidence angle [82]:
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ZT M
d =

jη0√
εr

tan(kzdh), (2.7)

Based on the Babinet’s principle, the impedance Zg is obtained by using an equivalent circuit
model for a capacitive screen derived from its complementary structure, an inductive screen [84].
With respect to the TE and TM-incidence, Zg can be written as:

ZT E
g = 1

jωCg cos2 θ
, (2.8)

ZT M
g =

1
jωCg

, (2.9)

where Cg = (ε1+ε2)D
π

log(2D
πg

).
The TL model presented here is of the first order, and the accuracy can be increased by

considering higher orders and dynamic correction [85].

2.1.3 Transmission-line Model by Olli

In comparison with the LC-circuit model given by Sievenpiper, the advantage of the TL model
given by Simovski is that the influence of the incidence angle is taken into consideration. How-
ever, Olli argued that the accuracy of the analytical models in [79, 86] was not high enough at
oblique incidences because the periodicity in one of the tangential directions was not properly
taken into account.

Based on the equivalent TL approach, averaged boundary conditions, and the approximate
Babinet principle, Olli proposed an advanced TL model and demonstrated the excellent accuracy
in [87]. We reproduce his analytical solutions for Zs of a mushroom structure as follows:

ZT E
S =

jωμ tan(βh)
β

1 − 2keffα tan(βh)
β

(
1 − 1

εr+1 sin2 θ
) (2.10)

ZT M
S =

jωμ tan(βh)
β

cos2 θ2

1 − 2keffα tan(βh)
β

cos2 θ2
(2.11)

where β = ω
√

ε0μ0(εr − sin2 θ), θ is the incidence angle, θ2 = arcsin
(
sin θ/

√
εr

)
and α =

0.51kD
(

D−g
D

)3
/(1 − 0.367(D−g

D
)3) (k is the wave number of the incident wave vector in the

effective host medium).
In Fig. 2.9, we compare the two TL models by a parametric study of the incidence angle θ.
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Simovski’s model θ = 0°

Ollis’s model θ = 0°

Simovski’s model θ = 30°

Ollis’s model θ = 30°

Simovski’s model θ = 45°

Ollis’s model θ = 45°

Simovski’s model θ = 60°

Ollis’s model θ = 60°

Simovski’s model θ = 75°

Ollis’s model θ = 75°

Figure 2.9: Mushroom structure: D = 2.4 mm, g = 0.2 mm, h = 1.6 mm, εr = 4.4, θ varies
from 0° to 75°, TE case.

The results reveal that the two models are almost in perfect accordance at a normal incidence.
When the angle θ increases, the difference between the models becomes more evident. When
θ varies from 0° to 45°, the Simovski model detects a resonance shift of about 4 GHz (36.3%
of the resonant frequency) and the Olli model detects a resonance shift of about 1 GHz (9% of
the resonant frequency). According to [87], a variation of θ won’t cause such a big shift of the
resonance as predicted by the TL model given by Simovski.

2.2 Jerusalem-Cross Structures

The resonance of the mushroom structures strongly depends on the incidence angle θ. When θ

varies from 0° to 60°, the resonance may shift ouside than the resonant band of the structure
itself, which will surely affect the performance of HIS structures. This gave birth to the concept
of the self-resonant grid HIS structures, whose elements are made from thin metal strips. In
comparison with the mushroom structures, these structures may effectively reduce the deviation
of the resonance [73].

A well-known example of such a structure is the grid of Jerusalem crosses (JC). Instead of
square patches as in mushroom structures, its top surface is composed of Jerusalem crosses.
The geometry of a unit cell of such HIS structures is presented in Fig. 2.10.

The analytical models based on the transmission-line theory have been developed [78] and
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Figure 2.10: Geometry of a unit cell for a Jerusalem-cross structure

applied to investigate the JC structures [79, 80].

2.2.1 Transmission-line Model by Simovski

In terms of the TL model, the JC structures are considered as a parallel connection of a grounded
dielectric layer with vias, characterized by Zd, and a self-resonant grid surface, characterized by
Zg, on the top. Its surface impedance can be expressed exactly the same way as in Eq. 2.5.

The grounded substrate of JC structures has the same grounded substrate as the mushroom
structures. So, the impedance Zd can be formulated just as in Eq. 2.6 and in Eq. 2.7.

The grid impedance Zg of JC structures is determined by an effective capacitance CJC
g and

an inductance LJC
g . The capacitance is caused by the capacitive coupling of adjacent crosses and

the inductance is due to the straight arms of the crosses. The grid of metal Jerusalem crosses
was first studied as a modified version of a wire mesh model (for the case of the normal incidence
only) [89]. Then, the authors of [79] apply it to describe a grid surface for JC structures.

The formula for CJC
g is [89]:

CJC
g = 2

π
εrε0d

[
log csc( πg

2D
) + F

]
, (2.12)

with F = Qu2

1+Q(1−u) +
(

du(3u−2)
4λ′

)2
, Q =

√
1 −

(
d
λ′

)2
, u = cos2

(
πg
2d

)
, λ′ = 2π

k′ . These formulas are
valid when h < d.
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The effective inductance LJC
g is [79]:

LJC
g = η′

2ω
· k′D

π
log 2D

πω
, (2.13)

with η′ = η0/
√

εr , η0 is the wave impedance of free space.
With respect to different polarizations, the impedance Zg of JC structures is written as:

ZT E
g = (jωLJC

g +
1

jωCJC
g

), (2.14)

ZT M
g = cos2θ((jωLJC

g + 1
jωCJC

g

). (2.15)

We carry out parametric studies to investigate the relationship between the geometrical
dimensions and the surface impedance of the JC structures. The study on the parameters of h,
g, D are not repeated, because the influence of these geometrical parameters can be referred to
the cases with a mushroom structure.
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d = 0.6 mm
d = 0.8 mm
d = 1.0 mm
d = 1.2 mm
d = 1.4 mm

Figure 2.11: JC structures: D = 2.4 mm, g =
0.4 mm, h = 3 mm, w = 0.2, εr = 4, d varies
from 0.6 mm to 1.4 mm.
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w = 0.1 mm
w = 0.2 mm
w = 0.3 mm
w = 0.4 mm
w = 0.5 mm

Figure 2.12: JC structures: D = 2.4 mm, g =
0.4 mm, h = 3 mm, d = 1.0, εr = 4, w varies
from 0.1 mm to 0.5 mm.

Figure 2.11 and Figure 2.12 reveal that the resonance of a JC structure is strongly affected
by the variation of the metal strip length d, but less affected by the variation of the metal strip
width w, when the array period D is fixed.

In addition to the geometrical parameter, we also check the shift of the resonant frequency
versus the incidence angle, as seen in Fig. 2.13. When θ varies from 0° to 75°, the resonance of
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θ = 0°
θ = 30°
θ = 45°
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θ = 75°

Figure 2.13: JC structure: D = 2.4 mm, g = 0.4 mm, h = 1.6 mm, d = 1.4, εr = 4.4, θ varies
from 0° to 75°.

the JC structure shifts around 0.2 GHz (2% of the resonant frequency). As compared with the
mushroom structures, the JC structures exhibit a good stabilization of resonance with respect
to θ.

2.2.2 Transmission-line Model by Hosseini

In [81], Hosseini proposed a similar TL model for JC structures which took the effect of the
ground plane spacing on Zg into account. This model combines the theory of the coupled
microstrip lines with the theory of the transmission lines and its equivalent circuit model is
illustrated in Fig. 2.14 (from [81]).

Figure 2.14: JC structue and the circuit model)

Similar to the TL model proposed by Simovski, the grid impedance Zg of JC structures has
the effective inductance LJC′

g and the effective capacitance CJC′
g like this:
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ZJC′
g = jωLJC′

g +
1

jωCJC′
g

. (2.16)

In the TL model given by Hosseini, LJC′
g is assimilated a T-line section:

LJC′
g =

2Z0 tan(kl
2 )

ω
, (2.17)

and CJC′
g includes the effect of the substrate’s thickness, this way:

CJC′
g = 2W

π
ε0εreff cosh

(
a

g

)
, (2.18)

where k = ω
√

μ0ε0εr, and Z0 is the characteristic impedance, expressed as:

Z0 = η0√
εreff

·
⎧⎪⎨
⎪⎩

1
2π

ln(8h
w

+ w
4h

) when w
h

≤ 1[
w
h

+ 2.42 − 0.44 h
w

+ (1 − h
w

)6
]−1

when w
h

> 1
, (2.19)

with εreff = εr+1
2 + (εr−1)

2
√

1+10 h
W

.
The work of Hosseini pointed out that the model is valid when the ratio (d/h) of strip width

over substrate thickness is less than two.
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h = 1.0 mm
h = 1.5 mm
h = 2.0 mm
h = 2.5 mm
h = 3.0 mm

Figure 2.15: JC structures: D = 2.4 mm, g = 0.4 mm, d = 1.4 mm, w = 0.2, εr = 4, h varies
from 1.0 mm to 3.0 mm.

In Fig. 2.15, we present a parametric study in terms of the substrate thickness using the TL
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model given by Hosseini. It is observed that a small variation of the substrate thickness may
cause a dramatic shift of the resonance. In comparison with the TL model given by Simovski,
this one is more sensitive to the thickness of the substrate.

2.3 Conclusion

In the foregoing sections, we introduced three analytical models for mushroom structures (the
LC circuit model proposed by Sievenpiper, the TL model proposed by Simovski and the TL
model proposed by Olli) and two analytical models for Jerusalem-cross structures (one is pro-
posed by Simovski and the other one is proposed by Hosseini). Then we did a paramettic study
on these two types of HIS structures. This study helped us to understand the relationship
between the geometry and the physical mechanism. Some results may also offer some guidelines
in HIS-geometry design.
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Figure 2.16: Influence of the angle of incident wave on the resonance for two types of HIS
structures

Meanwhile, from the tests, we also verified that if the dimension of the unit cells are compa-
rable, the Mushroom structures are less immune to the variation of the angle of incident wave
than the Jerusalem-cross structures. Here, we reprocess the data obtained in Fig. 2.9 and in
Fig. 2.13 and plot their results on the same figure (Fig. 2.16). From this figure, we observe that
the variation of the resonance for the mushroom structures is around 1.3 GHz and the resonance
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for the Jerusalem-cross structure is rather stable when varying the incidence angle from 0° to
75°.
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Figure 2.17: Comparison of surface impedances as calculated by different analytical methods
for a Mushroom structure (D = 10 mm, g = 5 mm, h = 2 mm, εr = 4.4)
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Figure 2.18: Comparison of surface impedances as calculated by different analytical methods
for a Mushroom structure (D = 2.4 mm, g = 0.015 mm, h = 1.6 mm, εr = 4.4)

Furthermore, we also make a comparison of the surface impedance graphs (over the fre-
quency) produced by different analytical models for different types of structures. A series of
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tests have been made and here we first present two representative cases (Case 1 and Case 2)
with two mushroom structures of different dimensions.

In Case 1, the resonances predicted by these three models are different from each other, as
seen in Fig. 2.17. There are 2 GHz difference between them. In Case 2, the Simovski’s model
coincides with the Olli’s model, while the resonance achieved by Sievenpiper’s model is a little
different from the others, as seen in Fig. 2.18. Compared with Case 1, the dimension of the
unit cell in Case 2 is much smaller (the wavelength is around 15 times larger than the period
of the unit cell), which is closer to the requirements of theory of homogenization. Thus, it is
understandable that the analytical results from different models are closer to each other in Case
2.
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Figure 2.19: Comparison of surface impedances calculated by different analytical methods for
a Jerusalem-cross structure (D = 4.8 mm, g = 1 mm, d = 2 mm, w = 0.9 mm, h = 1.6 mm, εr

= 4.4)

After the comparison on mushroom structures, we also present two representative cases
(Case 3 and Case 4) with two Jerusalem-cross structures of different dimensions. In Case
3, the two methods are in good agreement, as seen in Fig. 2.19. In Case 4, the resonance
obtained by Hosseini’s model is around 4 GHz higher than the one obtained by Simovski’s
model, as seen in Fig. 2.20. This time, the extent of difference among different methods mainly
depend on the chosen geometry dimensions, which can not be easily interpreted by the theory
of homogenization.

Generally speaking, the analytical models are not rigorous and each model has its own con-
straints associated with its geometrical parameters. Without a reference, such as a measurement
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Figure 2.20: Comparison of surface impedances calculated by different analytical methods for
a Jerusalem-cross structure (D = 2.4 mm, g = 0.4 mm, d = 1.4 mm, w = 0.2 mm, h = 3 mm,
εr = 4.4)

result, these analytical calculations are only useful as heuristic approaches.



Chapter 3

Numerical Modeling

In the previous chapter, we presented several analytical models for HIS structures. These models
provide us with an idea of the properties of HIS structures, but, in face of the complex HIS
geometries, they are rather limited and weak. The fact is that it is not easy to find empirical
formulas to describe the behavior of such structures appropriately. In some cases, it’s impossible
to find analytical solutions for a complicated problem.

Nevertheless, with the development of computing capabilities and numerical algorithms,
handling the HIS structures with complicated geometries becomes easy. Several numerical
methods have been proposed in resolving electromagnetic problems [90], such as the finite-
difference time domain method (FDTD) [91], the Method of Moments (MoM)[92], etc. These
numerical methods have also been applied to compute the characteristics of HIS structures [31].

Among all kinds of numerical methods, the “3D Finite Element Method (FEM)” using edge
elements [93, 94, 95] is chosen in this work. One advantage of this method is that it allows a
characterization of arbitrary shaped structures without having parasitic solutions [97, 96].

In this chapter, we’ll present the numerical modeling of HIS structures, validate their results
and discuss their limitations.

3.1 Symmetric HIS Structures

3.1.1 Introduction to Numerical Modeling

In Chapter 2, two rotationally symmetric HIS structures: the mushroom structure and the
Jerusalem-Cross (JC) structure were investigated using analytical models. In this section, we’ll
begin our work by numerically modeling the same structures. One advantage of using them is

70
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that the numerical model can be validated by comparing their analytical results and numerical
results. Another advantage is that the calculations for symmetric structures can be simplified,
as compared with those for the asymmetric ones.

Let us take the mushroom structure as an example to explain how to build the numerical
model. The mushroom structure is spatially periodic in two dimensions, so it suffices to model
one unit cell instead of the whole HIS structures, by applying appropriate boundary conditions.
Figure 3.1 depicts a cubic study domain composed of one unit cell of the mushroom structure.

Figure 3.1: Numerical modelling of a HIS unit cell with the mushroom structure

1) The plane xoy is the base plane (and the bottom surface, z = 0) of the study domain.
This plane will be modeled as a ground plane by using the perfect electrical conductor (PEC)
condition .

2) The unit cell of mushroom structure includes the region 0 � z � h. The intermediate
region (0 < z < h) represents the substrate, which supports the metal patch of the HIS structure.
It has permeability μ and permittivity ε, both possibly complex and frequency-dependent. The
metal patch on the top surface of HIS structures is supposed to be contained in the plane z = h.
The via is represented by a thin wire in the region 0 < z < h, which connects the ground plane
to the top HIS surface. Metallic elements of HIS structures are all modeled to a PEC condition.

3) The region z > h is considered as free space.
4) The study domain is illuminated by an electromagnetic wave on the top surface, so this

surface will be numerically treated by imposing a Dirichlet condition.
5) The boundary conditions on the lateral walls depend on the mode of excitation and on

the geometry of the HIS structures.
Assuming the excitation is a constant electric field along the x-axis, this excitation is sym-

metric with respect to all planes that are parallel to the x − z plane and antisymmetric with
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respect to all planes that are parallel to the y − z plane. Since the components of the HIS
structure are symmetric with respect to the plane y = D/2 and to the plane x = D/2, the
E-field in the study domain will have the same symmetry properties as the excitation, in accord
with the Curie principle: the symmetry elements of the causes must be found in their effects
[98]. In this case, the two opposite side walls parallel to the x-axis are modeled by a perfect
magnetic conductor (PMC) condition. The other two opposite side walls parallel to the y-axis
are assigned with a PEC condition. This way, the symmetry of E-field in the study domain is
not disturbed by the choice of these boundary conditions on the side walls.

3.1.2 Numerical Calculations

After an introduction to the numerical model for HIS structures, we will adopt this model to
calculate the grid impedance, the surface impedance and the phase of the reflection coefficient
in a numerical way.

Grid Impedance

When the dimension of the unit cell is relatively small compared to the wavelength in the
medium, the tangential component of the average electric field on the grid surface is proportional
to the average current induced in the grid. The grid impedance can be defined as the ratio of this
averaged E-field over the averaged current, as seen in eq. 3.1. The average current is equal to
the jump of the tangential component of the average magnetic field across this grid surface. In
the numerical model, we calculate the average tangential magnetic field on two surfaces located
at two sides of the grid surface, a very small distance δh apart. The average current is defined
as the difference of the two average magnetic fields, 〈Ht+〉 − 〈Ht−〉.

Figure 3.2: Description of the grid impedance

The grid impedance Zg is thus defined as:

〈Zg〉 = 〈Et+〉
〈Ht+〉 − 〈Ht−〉 , (3.1)
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where: t+ means the tangential values at the surface just above the HIS planar surface, z =
h + δh and t− means the tangential values at the surface just below the HIS planar surface,
z = h − δh. The symbol 〈〉 denotes the average values.

The average tangential E-field is also calculated on the surface z = h + δh , instead of z = h

, because of the dramatic irregularities of the tangential E-field there.
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Figure 3.3: Grid impedance for the mushroom structure
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Figure 3.4: Grid impedance for the Jerusalem structure
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We calculate the grid impedance respectively for a mushroom structure (as seen in Fig. 3.3)
and for a JC structure (as seen in Fig. 3.4) by using this numerical definitions and compare
them with the analytical calculations presented in the previous chapter. Both of these figures
show that the numerical results and the analytical results are in good accordance, which means
that our numerical definition is workable.

Surface Impedance

HIS structures can be characterized by their surface impedance Zs, which is generally presented
in the form of a 2 × 2 matrix:

Zs =

⎡
⎣ Z11 Z12

Z21 Z22

⎤
⎦ . (3.2)

If the mushroom structures and the JC structures are rotated by 90° (The Zs matrix com-

mutes with matrix

⎡
⎣ 0 −1

1 0

⎤
⎦, which represents a 90° rotation), their geometries stay the same.

Hence, the surface impedance of such structures can be simplified as follows:

Zs =

⎡
⎣ Z11 Z12

Z21 Z22

⎤
⎦ =⇒ Zs =

⎡
⎣ Zs 0

0 Zs

⎤
⎦ . (3.3)

Because of the rotational symmetry, the calculation of a matrix with four unknown entries
turns into a calculation of a matrix with only one unknown entry. In the former case, comput-
ing the surface impedance requires two different oriented excitations. In the latter case, one
excitation suffices.

In modeling the surface impedance Zs, two different approaches (here referred to as “scheme
1” and “scheme 2”) are investigated, as seen in Fig. 3.5.

In scheme 1, the surface impedance Zs(scheme 1) is considered as a parallel combination of
the grid impedance Zg and the dielectric impedance Zd:

Zs(scheme 1) = Zg(numerical) · Zd(analytical)
Zg(numerical) + Zd(analytical)

, (3.4)

where Zg is numerically calculated as in eq. 3.1, but Zd is obtained through the analytical
model of the previous chapter. This scheme can be regarded as a transition from the analytical
model to the numerical model.

In scheme 2, the surface impedance Zs is globally defined as the ratio of the average tangential
E-field over the average tangential H-field on some observation surface. It is assumed that such
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Figure 3.5: Two schemes for calculating the surface impedance in numerical model

an impedance reflects all the characteristics of HIS structures that lie below this observation
surface. In theory, we could select z = h (the top surface of the mushroom structures) as
observation surface. But, in order to avoid the bad effect of the large variation of the tangential
E-field on the grid surface, the observation surface is chosen at z = h + δh instead. After
calculating the average tangential electric field and the average tangential magnetic field on the
observation plane, the surface impedance Zs(Scheme 2) is defined as:

Zs(scheme 2) =
〈Et+〉
〈Ht+〉 . (3.5)

As mentioned before, all the structures are 90° rotationally symmetric, so the calculation
does not require two different excitations. In our simulation, only one excitation of the E-field
with non zero component either along the x-axis or along the y-axis is needed.

Figure 3.6 exhibits four results about the surface impedance for a Mushroom structure, two
of which are obtained by analytical methods [22, 79]; the other two are calculated by the two
schemes proposed in this section. The dimension of the Mushroom structure is taken from [70],
whose experimental results show that the model with scheme 2 is more effective than the one
with scheme 1.

Figure 3.7 exhibits also four results about the surface impedance, but for a JC structure.
Two analytical results are obtained by using the model proposed by Simovski [79] and the model
proposed by Hosseini [81]; the two numerical results are obtained by using our two different
schemes. It is observed that the numerical model with scheme 2 agrees with Simovski’s analytical
model. Among the four results, the numerical model with scheme 1 predicts the lowest resonant
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Figure 3.6: Analytical and numerical results of the surface impedance for a Mushroom structure
(D = 2.4 mm, g = 0.015 mm, h = 1.6 mm, εr = 2.2)

12 13 14 15 16 17 18
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

frequency(GHz)

re
ac

ta
nc

e 
of

 th
e 

su
rf

ac
e 

im
pe

da
nc

e 
(o

hm
)

 

 

Analytical model given by Simovski
Analytical model given by Hosseini
Numerical model with scheme 1
Numerical model with scheme 2

Figure 3.7: Analytical and numerical results of the surface impedance for a JC structure (D =
2.4 mm, g = 0.4 mm, h = 1.6 mm, d = 1.4, εr = 2.2)

frequency at about 14.2 GHz and Hosseini’s model predicts the highest resonance, which lies
beyond the range of this figure, and is at about 18.2 GHz. The effectiveness of these models
will be checked by a numerical calculation with the CST in the next subsection.

In addition, we investigate our model with two cases: with or without a via in the HIS
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Figure 3.8: The influence of the via for the
mushroom structure

12 13 14 15 16 17
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

frequency(GHz)

R
ea

ct
an

ce
 o

f t
he

 s
ur

fa
ce

 im
pe

da
nc

e 
(o

hm
)

 

 
Scheme 1 (no via)
Scheme 2 (no via)
Scheme 1 (with via)
Scheme 2 (with via)

Figure 3.9: The influence of the via for the
Jerusalem structure

structure at normal incidence. In our simulations, the E-field of the excitation is always parallel
to the top planar surface of the HIS structures, so no electric field will propagate across the
vertical vias. At low frequency, the existence of the thin vias can be totally neglected. However,
at high frequency, there may exist a small difference between the two cases.

Two simulations are carried out as shown in Fig. 3.8 and Fig. 3.9. The former figure cor-
responds to a Mushroom structure and the latter represents a JC structure, which both show
that the presence of the via may create a resonance shift to a higher frequency.

Phase of the Reflection Coefficient

Compared with the surface impedance Zs, the phase of the reflection coefficient φ is a more
readable parameter. This is because the range of φ is bounded between 180° and −180°, so no
extremely high values will appear on the figure, contrary to what happens with Zs.

If the HIS structure is designed as a ground plane for an antenna system, the effective
frequency band of the HIS structure should cover the working band of the antenna. Following
the reference [70], we shall set the effective frequency band of HIS structures as −90° ≤ φ ≤ 90°.

Figure 3.10 presents the phase of reflection coefficient for a mushroom structure and the
numerical results show that the analytical model proposed by Simovski, the numerical model
with scheme 2 are in good agreement with the numerical results from the CST below 13 GHz.
At higher frequency, the numerical model with scheme 2 are a bit different from the others and
predict a narrower bandwidth.

Figure 3.11 presents the phase of reflection coefficient for a JC structure. In this case, the
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Figure 3.10: Analytical and numerical results for the phase of reflection coefficient for a Mush-
room structure (D = 2.4 mm, g = 0.015 mm, h = 1.6 mm, εr = 2.2)
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Figure 3.11: Analytical and numerical results for the phase of reflection coefficient for a JC
structure (D = 2.4 mm, g = 0.4 mm, h = 1.6 mm, d = 1.4, εr = 2.2)

results obtained by Hosseini’s analytical model match the ones got from the CST. The results
calculated by the numerical model with scheme 2 is close to those obtained by Simovski’s model,
but a little different from the others.

Both figures show that scheme 1 is less effective than the other models, especially at high
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frequency. As a matter of fact, this model is a combination of a semi-numerical computation
and a semi-analytical computation. At high frequency, the analytical methods are less effective,
which results in a less accurate prediction. Thus, we shall not use this scheme any longer in
this work.

Scheme 2 is now validated through the calculations of symmetric HIS structures. Its effec-
tiveness will be further checked against experimental measurements.

3.1.3 Different Combinations of Boundary Conditions

In building numerical models, boundary conditions should be appropriately chosen and dis-
cretized. For a fourfold rotationally symmetric HIS structure, the four lateral boundary surfaces
of the study domain may be equipped with two different combinations of boundary conditions.
In this subsection, we will discuss and analyze these two possible combinations in the example
case of the Mushroom structure.

Combination 1: Two pairs of periodic boundary conditions (PBC)

According to Curie’s principle (that symmetries of effects reflect the symmetries of causes), if
the excitation is uniform and the structures are periodic, the resulting E-fields will be periodic.
Therefore, one possible combination of boundary conditions is: equip the four lateral boundary
surfaces of the study domain with two pairs of PBC, one for each pair of walls facing each other.

PBC

PBCP1 P2

P3

P4

x

y

Unit cell of a Mushroom structure

Figure 3.12: Two pairs of periodic boundary conditions applying on a unit cell of Mushroom
structure

Assume that the top planar surface of the Mushroom structure is contained in a plane
parallel to the x−y plane, and that the whole structure is periodic in the direction of the x-axis
and of the y-axis. One pair of PBC is applied to the two boundary surfaces parallel to the
plane, marked as P1 and P2 in Fig. 3.12. Another pair of PBC is applied to the two boundary
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surfaces parallel to the x − z plane, marked as P3 and P4 in Fig. 3.12. It is to be noted that
the two faces concerned by a PBC should be meshed identically: each edge on one surface must
find its translate counterpart on the opposite surface.

Combination 2: One group of PEC conditions + one group of PMC Conditions

Before discussing the second combination of boundary conditions, we should explain the concept
of “even” field and “odd” field with respect to a “mirror plane”, that is to say, a plane with
respect to which the whole structure has reflection symmetry. The mirror image of a point x

(with respect to the plane π) we shall denote sx. The mirror image of a vector v, which one can
conceive as joining point x to point y, is by definition the vector joining point sx to sy, and we
denote this vector by sv.

Now, suppose the E-field is equal to E(x) at a given point x, and to E(sx) at the mirror
image sx of point x. For a general field, the vector E(sx) has no relation with the mirror image
s(E(x)) of the vector E(x). By definition, odd fields E, also called antisymmetric fields (with
respect to plane π), are those for which E(sx) = −s(E(x)), as illustrated by Fig. 3.14. Even
fields, also called symmetric fields, are those for which E(sx) = s(E(x)), as seen on Fig. 3.13.
For shortness, we shall say that π is an odd mirror, or an even mirror relative to the field E.

π

s
E(s)

sx

E(sx)

Figure 3.13: Odd E-field mirror plane

π
s

E(s)

sx

E(sx)

Figure 3.14: Even E-field mirror plane

We may now describe the behavior of the curl operator with respect to mirror symmetries
as follows: If a field E is even with respect to a plane, its ∇ × E will be odd, and if E is odd,
∇ × E will be even. From the Maxwell’s equations, it results that if E is even with respect to
π, then B is odd, and hence (when permeability is a scalar), H is odd too. We shall say, again
for shortness, that π is an electric mirror when E is odd and H even, and a magnetic mirror
when E is even and H odd. By letting x and its mirror image sx coincide on Fig. 3.13, we see
that n × E = 0, as if the plane was coated with a perfect electric conductor, in the case of an
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electic mirror. For a magnetic mirror, n × H = 0, as if the plane was coated with a “perfect
magnetic conductor”, that is to say, a body with infinte permeability.

It may happen that the electromagnetic fields are symmetric or antisymmetric with respect
to a particular plane. Because of the Curie principle, it happens for a mirror-plane of the whole
structure when the source of the field (a given current density, or a given excitation field) is
itself odd or even with respect to this same plane. In that case, the resulting field has the same
mirror symmetries as the excitation field, so the computation can be reduced to one half-space,
above or below the mirror plane.

This is done as follows. Suppose we know that, for some reason, π is an electric mirror (odd
E, even H). We shall be able to solve the Maxwell equations on one side of π only, instead of in
the whole space, by imposing to the field E the artificial boundary condition n × E = 0 on π .
This is called a "perfect electric boundary condition" (PEC for short). If π is a magnetic mirror
(even E, odd H), the boundary condition n × H = 0 on π will achieve the same reduction to a
half-space. This one is called a "perfect magnetic boundary condition" (PMC for short).

In HIS structures, there can be many possible mirror planes. Suppose such a structure is
periodic both in the direction of the x-axis and in the direction of the y-axis. Moreover, this
structure is geometrically symmetric with respect to some reference plane πr, which is parallel
to the x-axis and to the z-axis. Instead of modeling the whole structure by a unit cell equipped
with two pairs of PBC on its four lateral boundary surfaces, we may assign a PMC condition
to the two boundary surfaces parallel to the x-axis, provided the excitation E-field (a uniform
field, in our studies) is along the x-axis (as seen in Fig. 3.15). This is because such an excitation
field is even with respect to πr, so the two opposite boundary surfaces parallel to the plane πr,
behave like magnetic mirrors. When the excitation E-field is along the y-axis, and thus odd
with respect to πr, one may use a pair of PBC on the faces parallel to the y-axis together with
PEC conditions on the faces parallel to the x-axis (as seen in Fig. 3.16).

The Mushroom structure is simultaneously symmetric on the direction of the x-axis and
of the y-axis. So another possible combination of boundary conditions is, when the excitation
E-field is along the x-axis (see in Fig. 3.17 ): PEC conditions on the two boundary faces parallel
to the x-axis and PMC conditions on the two boundary faces parallel to the y-axis. The setup
of these two groups of boundary conditions will be exchanged when the excitation E-field is
along the y-axis (seen in Fig. 3.18).

To conclude: for a doubly symmetric HIS structure, such as the Mushroom structure, the
two combinations of boundary conditions are equivalent and workable.
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PMC

PMC

E

PBC

x

y

πr

Figure 3.15: A certain structure equipped
with PBC and PMC condtions for a x-axis
oriented E-field excitation

PEC

PEC

E

PBC

x

y

πr

Figure 3.16: A certain structure equipped
with PBC and PEC condtions for a y-axis ori-
ented E-field excitation

PEC PEC

PMC

PMC

x

y

E

Mushroom structure
(unit cell)

Figure 3.17: PEC-PMC conditions applying
on a unit cell of Mushroom structure, with
excitation of E-field along the x-axis

PMC PMC

PEC

PEC

x

y
E

Mushroom structure
(unit cell)

Figure 3.18: PEC-PMC conditions applying
on a unit cell of Mushroom structure, with
excitation of E-field along the y-axis

Verification

The equivalence of these two combinations of different boundary conditions has already been
theoretically proved. Now we will check it from numerical calculations.

Suppose we have an empty cubic study box with a ground plane on the bottom surface and
illuminated by an E-field excitation on the top surface. We compare the E-field in the study
domain by using these two combinations of boundary conditions. Analytical results will be
calculated and be taken as references to judge them. Since the excitation is a constant E-field
oriented along the y-axis, we observe only the y-axis component of the E-field.

We carried out two simulations at respectively 10 GHz (as seen in Fig. 3.19) and 20 GHz
(as seen in Fig. 3.20) and we compare the E-field along an observation line, orthogonal to the
bottom surface. It is observed that the results with the PEC/PMC conditions coincide with
the ones with the PBC.
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Figure 3.19: frequency = 10GHz
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Figure 3.20: frequency = 20GHz

Analysis

In the previous part, we demonstrated that these two boundary combinations are valid and
equivalent when modeling symmetric HIS structures. But discretization introduces a finite-
element mesh that should also respect the same symmetries. Otherwise, this equivalence might
be broken.

Reconsider the empty box model again, and mesh the domain in two ways: symmetric and
asymmetric with respect to two middle planes, (Fig. 3.21).

Figure 3.21: The reference planes for symmetric meshing

Just as before, we calculate the E-field on an observation line orthogonal to the bottom
surface by using two different combinations of boundary conditions. The results obtained with
a symmetric mesh are shown in Fig. 3.22 and the ones with a non-symmetric mesh are shown
in Fig. 3.23. The analytical results are still taken as reference and it is observed that the lack
of symmetry does have an impact on the accuracy in case of using PEC/PMC conditions.
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Figure 3.22: Comparison of E-fields with sym-
metric meshing
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Figure 3.23: Comparison of E-field with asym-
metric meshing

We also carried out another numerical simulation by adding a big patch into the study
domain, which is closer to the modeling with a real HIS structures. Since we choose tetrahedral
elements, it is more difficult to get a totally symmetric mesh in presence of a patch. This time
the study domain is meshed in two ways: one almost symmetric and the other one asymmetric.
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Figure 3.24: One model of a box with big
patch inside and an almost symmetric mesh-
ing
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Figure 3.25: One model of a box with big
patch inside and a meshing less symmetric

In the case of a symmetric mesh, the model with PEC/PMC conditions predicts a resonance
a little bit higher than the one obtained from the model with PBC. This phenomenon of a small
resonance shift can be understood through a theoretical analysis, as follows.



CHAPTER 3. NUMERICAL MODELING 85

The PEC condition imposes all edge circulations of the tangential electrical field on the
boundary surface to be zero, which is not necessarily the case for a PBC. This means the PEC
condition imposes more constraints on the discrete solution than PBC. The PMC condition,
regarded as a “Neumann” condition, is naturally satisfied, which means the PBC condition
imposes more constraints on the boundary surface than the PMC condition. In our simulations,
the E-field excitation always has a non-zero component parallel to the PMC surface, and a
zero component parallel to the PEC surface. Thus, the influence of the PMC condition can be
neglected and we may only compare the PBC and the PEC condition.

When applying the PEC condition to the model, its lowest nonzero eigenvalue λP EC (that
is to say, the square of the first resonance frequency), is given by the Rayleigh quotient:

λP EC = min
{

Ax · x

|x|2 , x ∈ XP EC x �= 0
}

, (3.6)

where A is the system’s stiffness matrix and XP EC the set of all possible DOF arrays satisfying
the discrete form of the PEC condition.

When applying the PBC to the model, its eigenvalues λP BC are:

λP BC = min
{

Ax · x

|x|2 , x ∈ XP BC x �= 0
}

. (3.7)

where XP BC is the set of all possible DOF arrays satisfying the discrete form of the PBC
condition.

Fewer constraints means a wider choice for the eigenvalues,

XP EC ⊂ XP BC , (3.8)

hence a smaller eigenvalue will be obtained:

λP EC > λP BC . (3.9)

In our modeling, we calculate the first principal resonance corresponding to the HIS struc-
tures and we just see that the eigenvalue calculated with PEC conditions should be higher than
the one with PBC. So, it is normal to observe a higher resonance with PEC-PMC combination
than the one with PBC in Fig. 3.24.

In the condition with an asymmetric meshing, the results obtained from the model with
PEC-PMC conditions are totally different from the model with PBC conditions, as seen in Fig.
3.25. Thus, the impact of the asymmetric meshing is so big that the difference cannot be totally
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explained by what precedes.
To conclude: For a symmetric HIS structure, one can apply the PEC-PMC conditions with

the benefit of a simpler coding and a reduced computing time. However, this choice of boundary
conditions is not recommended unless a totally symmetric mesh can be guaranteed.

3.2 Asymmetric HIS structures

The general aim of our study is to use HIS as ground planes for antennas. They should act as
good reflectors, hence the search for a high impedance. When looking for the radiation pattern
of such a device, we need the surface admittance to set up an impedance boundary condition
on the ground plane. This calculation can be performed by solving the Maxwell equations in
the basic box, with suitable boundary conditions, with a uniform horizontal E-field applied at
the top.

Let’s first define admittance with enough generality for our purpose. Let D be a domain of
space enclosed by a surface S and suppose all sources for the field lie outside D. We define the
admittance of the surface S (or more rigorously, the “admittance of region D as seen from its
surface S”) as the boundary operator YS such that

n × H |S= YSES, (3.10)

where ES and HS are the tangential components of E and H on S. One may find YS by solving
Maxwell’s equations inside D, with ES given on S.

Then, knowing YS allows one to solve Maxwell’s equation outside D by using the so-called
impedance boundary condition:

(n × H)S + YSES = 0 on S. (3.11)

The change of sign is due to the convention about the direction of the normal, always outwards
with respect to the computational domain, which is D in (3.10) and the complement of D in
(3.11).

When the components of HIS stuctures are much smaller than the wavelength of the oper-
ating frequency, the E-field on the surface S is considered as quasi-uniform. Under this circum-
stance, one can take as admittance of the observation surface an average value YS defined by
the relation between the average E-field and the average H-field on the surface. Then YS takes
the form of a 2 × 2 matrix. The impedance ZS is then the inverse of YS, easily calculated.
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Figure 3.26: Illustration of the study domain for the Poynting flux method

In previous section, we computed the surface impedance ZS for rotationally symmetric HIS
structures. For these particular structures, the surface impedance matrix is diagonal and its two
diagonal entries are identical. Because of this symmetry, the calculation of a matrix with four
unknown entries is reduced to one with a single unknown matrix entry. This unknown value
can be obtained by resolving one equation with one excitation. However, for an asymmetric
HIS structure, the surface impedance matrix is no longer symmetric. The characteristics of HIS
structures should be retrieved from all the four unknown matrix entries, which means more
equations are required and more excitations are needed.

In this section, we will first introduce two new numerical methods to calculate the 2D surface
impedance ZS for HIS structures. Then, these two methods will be validated by two symmetric
HIS structures. Finally, these methods will be applied to those asymmetric HIS structures as
well.

3.2.1 Numerical Methods for 2D Surface Impedances

Poynting Flux Method

The study domain is a cubic box, composed of one unit cell of the HIS structure, as shown in
Fig. 3.26. What we call here the “Poynting Flux method” is a post data-processing method
based on FEM using edge elements. The first step when putting this method into use consists
in calculating the circulations of the E-field on all mesh edges of the study domain, in presence
of an excitation E-field imposed on the top surface.

We aim at calculating the surface impedance on the observation surface at ho(flux), which
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is higher than the height hHIS of the HIS elements. When using the Poynting Flux Method,
the real study domain is reduced to the domain below the observation surface. Since there is
no source in this domain, it is considered as a passive domain, denoted as Dp. Now, S denotes
the whole boundary of Dp, composed of six sub-surfaces, as shown in Fig. 3.27. The S in can
be symbolically written as S = S1 + · · · + S6.

Figure 3.27: Subsurfaces covering the passive domain

After several standard mathematical manipulations of the Maxwell equations, and by using
the divergence theorem, one finds that the following equation holds in domain Dp:

ˆ
Dp

(iωεE · E + iωμH · H) =
ˆ

S

(n × HS) · ES. (3.12)

Since the bottom surface S2 bears a PEC condition, the surface integral on S2 in Eq. 3.12 is
null. Next, no matter which combination of boundary conditions we choose (the PBC combina-
tion or the PEC-PMC combination), the surface integral in Eq. 3.12 on the set-union of surface
3 to 6 will be null too. Therefore, S1 is the only effective part of surface S. In what follows, S
will stand for S1.

Substituting the impedance boundary condition (Eq. 3.11) into the surface integral of Eq.
3.12, we obtain:

iω

ˆ
Dp

(εE · E + μH · H) =
ˆ

S

(YSES) · ES, (3.13)

where YS is a general operator representing the surface admittance at ho(flux).
The surface admittance YS is a 2 × 2 matrix with four unknown entries, which requires

four different equations to be determined. Let us consider two different excitation vectors, E1
ex

(parallel to the x-axis) and E2
ex (parallel to the y-axis). In each case, we get the corresponding

fields E1, H1 and E2, H2 in the whole domain. Then, a combination of these two cases allows
us to derive the equation 3.13 in four different cases as:
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iω

ˆ
Dp

(εEi · Ej + μHjH i) +
ˆ

S

(Y0E
i
S) · Ei

S = 0 (i, j = 1, 2). (3.14)

The first term of 3.14 has the physical dimension of a power in the study domain, and the second
term interpreted as a flux of energy out of the covering surface. Calculating surface impedance
this way amounts to computing the flux travelling through the observation surface, and that’s
why it is called the Poynting flux method.

Resolving Eq. 3.14 is the crucial issue for this method and we get a further look at this
equation. Under the hypothesis that the fields E and H on the surface at ho(flux) are approx-
imately uniform, YS and ES can be expressed as matrices with average values. For this case,
the equation 3.14 can be written as

ˆ
D

(iωεEi · Ej + iωμHj · H i) = Area(S)
〈
Ej

S

〉t
Yij

〈
Ei

S

〉
(i, j = 1, 2). (3.15)

The symbol 〈〉 means the average values and the symbol t denotes the transpose of a matrix.
We denote the left-hand side of the equation 3.15 as Pij and rewrite 3.15 as

P11 =
ˆ

D

(iωεE1 · E1 + iωμH1 · H1) = −Area(S)
〈
E1

S

〉t
Y

〈
E1

S

〉
. (3.16)

P12 =
ˆ

D

(iωεE1 · E2 + iωμH2 · H1) = −Area(S)
〈
E2

S

〉t
Y

〈
E1

S

〉
. (3.17)

P21 =
ˆ

D

(iωεE2 · E1 + iωμH1 · H2) = −Area(S)
〈
E1

S

〉t
Y

〈
E2

S

〉
. (3.18)

P22 =
ˆ

D

(iωεE2 · E2 + iωμH2 · H2) = −Area(S)
〈
E2

S

〉t
Y

〈
E2

S

〉
. (3.19)

Now, let us look at the right hand side of equation 3.15. In our case, the E-field is represented
by a column vector with two complex components, one for the x-coordinate and one for the
y-coordinate, so this can be written as follows in the case of i, j = 1:

〈
E1

S

〉t
Y

〈
E1

S

〉
=

[
E1

Sx E1
sy

] ⎡⎣ Y11 Y12

Y21 Y22

⎤
⎦
⎡
⎣ E1

Sx

E1
sy

⎤
⎦ . (3.20)

Expanding the right-hand side of 3.20 and proceeding the same way with the other three
cases, we have 3.15 in matrix form as:
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− 1
Area(S)

⎡
⎢⎢⎢⎢⎢⎢⎣

P11

P12

P21

P22

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(E1
Sx · E1

Sx) (E1
Sy · E1

Sx) (E1
Sx · E1

Sy) (E1
Sy · E1

Sy)
(E2

Sx · E1
Sx) (E2

Sy · E1
Sx) (E2

Sx · E1
Sy) (E2

Sy · E1
Sy)

(E1
Sx · E2

Sx) (E1
Sy · E2

Sx) (E1
Sx · E2

Sy) (E1
Sy · E2

Sy)
(E2

Sx · E2
Sx) (E2

Sy · E2
Sx) (E2

Sx · E2
Sy) (E2

Sy · E2
Sy)

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

Y11

Y12

Y21

Y22

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.21)

Once the admittance matrix Y is obtained, the desired surface impedance matrix ZS comes
easily by inverting Y .

〈E〉 / 〈H〉 method

Different from the Poynting flux method, this method requires results about the average tan-
gential electromagnetic fields on the observation surface only, hence we call it the <E>/<H>
method.

Consider again the cubic study domain corresponding to a unit cell of HIS structures, as seen
in Fig. 3.28. Before calculating the surface impedance by the 〈E〉 / 〈H〉 method, the circulations
of the E-field along all edges of the mesh should be calculated and stored.

Figure 3.28: Illustration of the study domain with the <E>/<H> method

The surface impedance ZS is directly defined as the ratio of the average tangential electric
field over the tangential magnetic field on the observation surface:

ZS = 〈Et〉
〈Ht〉 , (3.22)

where the symbol t means the tangential component on the observation surface at z = ho(EH),
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superior to hHIS. In order to calculate these average values, we’ll first calculate the E-field and
H-field at N × N grid points on the observation surface (as seen in Fig. 3.28) and then get the
average value of them all.

Suppose the observation surface is contained in the x − y plane, the general admittance
matrix of this surface can be written as:

YS =

⎡
⎣ Yxx Yxy

Yyx Yyy

⎤
⎦ , (3.23)

where x and y refer to the coordinates and all the entries of the matrix are average values. For
instance, we have YSxx = 〈n×H〉|x

〈Ex〉 .
The impedance boundary condition of this observation surface can be presented in matrix

form as: ⎡
⎣ 〈n × H〉 |x

〈n × H〉 |y

⎤
⎦ +

⎡
⎣ Yxx Yxy

Yyx Yyy

⎤
⎦
⎡
⎣ 〈Ex〉

〈Ey〉

⎤
⎦ = 0. (3.24)

We have the precondition that the field on the observation surface is quasi-uniform. Same as
before, two orthogonal incident fields are respectively taken as excitation fields, so as to resolve
a 2 × 2 matrix. After obtaining the average tangential electromagnetic fields on the surfaces,
the surface admittance matrix can be obtained by:

⎡
⎣ −H1

y −H2
y

H1
x H2

x

⎤
⎦ = −

⎡
⎣ Yxx Yxy

Yyx Yyy

⎤
⎦ ·

⎡
⎣ E1

x E2
x

E1
y E2

y

⎤
⎦ . (3.25)

3.2.2 Simulations

In Section 3.1, we proposed a numerical model to calculate the surface impedance of two sym-
metric HIS structures: the Mushroom structure and the Jerusalem-cross structure. Because of
their rotational symmetry (in addition to their spatial periodicity), the calculation of the 2 × 2
surface impedance matrix Z for these structures reduces to the calculation of a single term of
Z, namely, Z11. We shall refer to this approach as “the 1D calculation”.

In this subsection, we begin by calculating the surface impedance matrix for the symmetric
structures by using the two newly proposed numerical methods (the Poynting flux method
and the 〈E〉 / 〈H〉 method). We refer to these as “the 2D calculations”, because they directly
calculate the impedance matrix in two dimensions. The recalculation of the same symmetric
structures will help us validate these methods by comparing the 2D results with the 1D results.
Later, we will apply these methods to the calculation of the surface impedance for asymmetric
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HIS structures.

Mushroom Structures

8 9 10 11 12 13 14 15
−8000

−6000

−4000

−2000

0

2000

4000

frequency (GHz)

re
ac

ta
nc

e 
of

 th
e 

su
rf

ac
e 

im
pe

da
nc

e 
(O

hm
)

 

 
Z11 (<E>/<H> method)
Z11 (Poynting flux method)
Z22 (<E>/<H> method)
Z22 (Poynting flux method)

Figure 3.29: 2D calculations of Z11 and Z22 for
a mushroom structure
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Figure 3.30: 2D calculations of Z12 and Z21 for
a mushroom structure

The Mushroom structure is a fourfold rotationally invariant structure, so the four entries
of its surface impedance matrix are: Z11 = Z22 and Z12 = Z21 = 0. Besides that, when the
substrate is lossless, the real part of the surface impedance is null. Hence, we only analyze the
imaginary part of the surface impedance.

Figure 3.29 presents the 2D calculations of Z11 and Z22. It is observed that Z11 is almost
equal to Z22 for both numerical methods. In the vicinity of the resonance, the results are in less
good accordance. Figure 3.30 presents the calculations of Z12 and Z21. It can be observed that
Z12 and Z21 are null, except around the resonance.

In comparison to the theoretical prediction, the numerical values are less effective around
the region of the resonance. One may blame this on the poor condition number of the system
matrix near the resonance, and this will be addressed in detail in the next section. Additionally,
it is found that the Poynting flux method predicts a resonant frequency a little lower than the
one predicted by the 〈E〉 / 〈H〉 method.

In previous work, the 1D calculations for the Mushroom structure have already been vali-
dated, here we recalculate the surface impedance of the same structure by using the two pro-
posed numerical methods. Figure 3.31 presents a comparison of Z11 among one 1D calculation
and two 2D calculations. It is shown that the 2D calculations are in good agreement with the
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Figure 3.31: Comparison of Z11 between the 1D calculations and the 2D calculations

1D calculations, which demonstrates that both of the new proposed numerical methods are
workable.

Jerusalem-cross Structures

Jerusalem-cross structure is another symmetric structure intensively investigated in this thesis.
We also operate simulations to calculate the surface impedance of this structure.

Figure 3.32 represents the results for Z11 and Z22 for a JC structure and Figure 3.33 repre-
sents the ones for Z12 and Z21. These results verify the announced properties for rotationally
symmetric HIS structures: Z11 = Z22 and Z12 = Z21 = 0, which confirm again the effectiveness
of our two numerical methods.

In all cases above, the substrates are lossless. Next, we consider the case with a JC structure
and a lossy substrate (εr = 2.2 − j0.001). Figure 3.34 and Figure 3.35 present the comparison
of the surface impedance for a JC structure with and without a lossy substrate. Figure 3.34
clearly shows that the real part of Z11 is no more null when the substrate is lossy. Additionally,
it is observed that the lossy substrate displaces a little the resonance to higher frequencies,
compared to the lossless substrate.

Up to now, we tested our two numerical methods on the Mushroom structure and the JC
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Figure 3.32: 2D calculations of Z11 and Z22 for
a JC structure
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Figure 3.33: 2D calculations of Z12 and Z21 for
a JC structure
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Figure 3.34: real part of Z11 for JC structure
with or without a lossy substrate
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Figure 3.35: imaginary part of Z11 for JC struc-
ture with or without a lossy substrate

structure. The results show that both methods are able to calculate the surface impedance
for symmetric HIS structures. In the following part, we will apply them to asymmetric HIS
structures.

Rectangle HIS Structure

For the fourfold rotationally symmetric HIS structures, the surface impedance is independent of
the polarization of the incident wave. (Horizontal polarization means that the E-field excitation
is oriented along the x-axis; vertical polarization means that it is oriented along the y-axis.) Take
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the Mushroom structure as an example and suppose its geometry has a symmetric expansion
along the x-axis and along the y-axis. The term Z11 of the surface impedance, which corresponds
to the impedance reaction of the HIS structure along the x-axis, should be equal to the term
Z22, which corresponds to the impedance reaction along the y-axis. For such symmetric HIS
structures, we won’t care about the polarization of the excitation, since in both cases, they offer
the same results. But if this symmetry doesn’t hold, the polarization of the excitation should
be specified.

L

W

Dx

Dy

x

y

Figure 3.36: unit cell of rectangle HIS structure (top view)

The first asymmetric HIS structure to be investigated is similar to the mushroom structure,
but with a rectangle patch on its top surface. Figure 3.36 illustrates the geometry of a unit cell
of the rectangular HIS structures with a top view. Its period along the x-axis and the one along
the y-axis are respectively denoted as W and L. The patch has a length Dx along the x-axis
and a length Dy along the y-axis.

The geometric dimensions of this structure in the simulation are taken as: Dx = 4 mm, Dy

= 6 mm, W = 7 mm, L = 9mm, h = 1.6 mm. Results calculated by the CST software are
also added on these two figures, to serve as references. Figure 3.37 and Figure 3.38 plot the
phase of the reflection coefficient corresponding respectively to an horizontally-polarized E-field
excitation and a vertically-polarized E-field excitation.

When the incident plane wave is horizontally polarized, the patch length Dx has a dominant
effect. In this case, one observes a resonant frequency at about 12 GHz. When the incident
plane wave is vertically polarized, the patch width Dy plays an important role. The resonant
frequency for such an excitation is observed at about 10 GHz. This resonance shift to a lower
frequency results from the wider width. So the rectangle HIS structure can work at two different
operating frequencies, corresponding to two differently polarized plane waves. Because of this
property, a potential application of this kind of HIS structures is to be applied in an antenna
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Figure 3.37: Phase of the reflection coeffi-
cient for the rectangle HIS structure with a
horizonally-polarized
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Figure 3.38: Phase of the reflection coeffi-
cient for the rectangle HIS structure with a
vertically-polarized

system with two different polarization.

Fork-like HIS Structure

In [36], the authors proposed a fork-like HIS structure, the top view of which is illustrated in
detail in Fig. 3.39. In the same paper, the authors carried out a comparison between the fork-
like structure and the conventional mushroom-like structure. Both simulations and experimental
results have verified that an about 40% size reduction could be achieved by using the former
structures rather than the latter one, for a similar frequency bandgap. Here, we examine this
structure by using our numerical methods so as to investigate the effectiveness of these methods.

W

S

Lp

Ls

D

x

y

Figure 3.39: Unit cell of fork-like HIS structure (top view)
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The geometric dimensions of this structure in the following simulation are taken as: W = 4
mm, S = 1 mm, D = 1 mm, LP = 3 mm, LS = 3 mm, g = 0.5 mm, h = 1.6 mm. The structure
is build on a 1.6-mm-thick substrate with εr = 2.7.
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Figure 3.40: Reflection phase of 1-fork HIS
structure with a horizonally-polarized
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Figure 3.41: Reflection phase of 1-fork HIS
structure with a vertically-polarized

Figure 3.40 plots the reflection phase when the incident wave is horizontally polarized. In
our simulation, results for this case are calculated by using Z11 of the surface matrix. Figure
3.41 plots the reflection phase when the incident wave is vertically polarized. These results are
calculated from Z22 of the surface matrix.

The measurement results in [36] showed that the resonant frequency is detected at around
4.8 GHz with respect to both polarized excitations. In our simulations, the resonant frequency
is identified around 5 GHz with the Poynting flux method and around 6 GHz with the 〈E〉 / 〈H〉
method and their frequency band is detcted around 1 GHz. The discrepancy between our nu-
merical results and the experimental results may be related to the presence in the measurement
of a microstrip which is not accounted for in the simulations.

4F-like HIS Structure

In [36], the authors also proposed an F-like HIS structure, the top view of which is illustrated in
details, as shown in Fig. 3.42. With this structure, an additional capacitance forms between the
neighboring edges of the slot and the stretched strip from an adjacent patch. It has been found
that the design with this HIS structures could achieve a high size reduction in comparison to the
conventional mushroom-like structure, while obtaining a similar frequency bandgap. Moreover,
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another interesting observation of this F-like structures was that a second frequency bandgap
was noted without tuning the stretched strip length.

W S
Lp

Ls

D

x

y

Figure 3.42: Unit cell of F-like HIS structure (top view)

In order to reduce the asymmetric effects, a more isotropic configuration with four F-like
structures have been designed. In our simulations, we take the same dimension of the structure
as mentioned in this article: W = 4 mm, S = 1 mm, D = 1 mm, LP = 3 mm, LS = 3 mm, g

= 0.5 mm. The four F-like metal array is build on a 2-mm-thick substrate with εr = 4.6.
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Figure 3.43: Reflection phase of 4F HIS struc-
ture
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Figure 3.44: Reflection phase of 4F HIS struc-
ture

Figure 3.43 and Figure 3.44 plot the reflection coefficient calculated by our numerical meth-
ods. One sees that only one resonant frequency is identified, at about 4 GHz, when using the
Poynting flux method; two resonant frequencies are identified respectively at around 4.8 GHz
and 12.5 GHz. Numerical results presented in [36] showed a first resonance around 3.5 GHz
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and a second one around 6.7 GHz, for higher modes. They use the method of moments and we
use the finite element method. We find it is difficult to explain these large discrepancies, even
though the numerical methods are different.

Spiral-Arm HIS Structure

The results above show that our numerical methods are able to characterize HIS structures, be
they symmetrical (by mirror reflection or by rotation) or not. Here, we will apply these methods
to one type of HIS structure, based on the inclusion of Hilbert-curve shaped elements. This
aims at making the high impedance surface more compact. Hilbert curves are characterized
by the “number of iterations” parameter. As this number increases, the equivalent inductance
increases, resulting in a lower resonant frequency. Spiral arm HIS structures are designed with
this property in mind.

Figure 3.45: HIS planar sur-
face using one spiral arm HIS
structure (top view)

Figure 3.46: HIS planar sur-
face using two spiral arms
HIS structure (top view)

Figure 3.47: HIS planar sur-
face using four spiral arms
HIS structure (top view)

We begin the work by a one-single spiral arm HIS, as shown in Fig. 3.45. We calculate
the reflection coefficient phases corresponding respectively to a horizontally polarized excitation
(as seen in Fig. 3.48) and a vertically polarized excitation (as seen in Fig. 3.49). These two
figures show that the design with one spiral-arm structure behaves differently with respect to
the horizontal polarization and the vertical polarization. Instead of a big enough bandgap,
many narrow bandgaps are found.

The book [110] asserts that if the one-arm spiral HIS structure is too asymmetric, this
structure may generate a high level of cross-polarization. From the point of view of an antenna,
a cross-polarization means that the radiation is orthogonal to the desired polarization. On
the contrary, a co-polarization represents the polarization in which the antenna is intended
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Figure 3.48: Reflection phase of one single spi-
ral arm HIS structure
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Figure 3.49: Reflection phase of one single spi-
ral arm HIS structure

to radiate. When the antenna is aligned, the goal is to achieve minimum cross-polarization
and maximum co-polarization. Using one-arm spiral HIS structures, the horizontal signals will
interfere with the vertical signals. Thus, this structure is less recommended for an antenna
design.

The same book mentions that the influence of the cross polarization may be reduced by
designing a more symmetrical structure. So, we also investigated the performance of a double
spiral-arm structure (as seen in Fig. 3.46).
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Figure 3.50: Reflection phase of two spiral-
arm HIS structure

0 5 10 15 20
−200

−150

−100

−50

0

50

100

150

200

Frequency GHz

P
ha

se
 o

f c
oe

ffi
ci

en
t o

f r
ef

le
ct

io
n 

°

 

 
Z22 (poynting flux method)
Z22 (<E>/<H> method)

Figure 3.51: Reflection phase of two spiral-
arm HIS structure

The phases of the reflection coefficient corresponding to this structure are reported in Fig.
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3.50 and Fig. 3.51. It is observed that with a more symmetric structure, the phase of the
reflection coefficient still varies dramatically and the influence of the cross-polarization largely
exists. In addition, the identified bandgaps are not large enough for an antenna application.

A more symmetric structure can further reduce the cross polarization, so a four-spiral-arm
structure is also simulated (seen in Fig. 3.47).
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Figure 3.52: Reflection phase of four spiral-
arm HIS structure
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Figure 3.53: Reflection phase of four spiral-
arm HIS structure

Since the structure is invariant with respect to a 90° rotation, the values of Z11 and Z22

should theoretically be the same. Then, it’s not astonishing to see that the results in Fig. 3.52
resemble those in Fig. 3.53. From both figures, the first main resonance is identified around 10
GHz, with a bandwidth of about 1 GHz. Another resonance is observed near 17 GHz, with a
narrower bandwidth. Moreover, the phase corresponding to the case of a horizontally polarized
excitation has the same tendency as the one for a vertically polarized excitation. It seems the
bad influence of the cross-polarization has been eliminated. Compared with the one spiral-arm
structure and the two spiral-arm structure, this four spiral-arm structure is more promising in
antenna designing.

In this part, we carried out a series of simulations studying the spiral-arm HIS structures.
The results showed that a more symmetric design, such as four spiral-arm structure, might
effectively reduce the bad effects caused by the cross-polarization. We also operated the sim-
ulations by adding more spiral arms into the structures. The simulation results show that the
structure with more spiral arms may generate more resonances. However, the second, third or
higher bandgap were generally narrow, unsuitable for a real application.
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3.3 Limitations and trade-offs

Each numerical method has its limits. In this subsection, we examine the limitations and trade-
offs of our numerical methods. Some limitations will be related to the properties of FEM itself
and the others are associated with the properties of our two methods.

Condition Number

A system of equations is considered to be well-conditioned if a small change in the coefficient
matrix or a small change in the right hand side results in a small change of the solution vector.
On the contrary, a system of equations is considered to be ill-conditioned if a small change in
the coefficient matrix or a small change in the right hand side can result in a large change of
the solution vector.

In our HIS studies, the numerical modeling is handled by resolving a linear equation of the
form:

[A] [E] = [b] , (3.26)

where the matrix [A] represents the stiffness matrix of the whole system, [E] represents the
electrical field to be calculated and the column matrix [b] represents the source terms. The
condition number associated with this equation gives a bound on how inaccurate the solution
[E] can be, in addition to inaccuracies inherent in the discretization. Note that conditioning is
a property of the matrix, not of the algorithm or floating point accuracy of the computer used
to solve the corresponding system [99].

To simplify the discussion, suppose the values of [b] are exact. The unknown errors in matrix
[A] will cause an error in [E]. Let δA and δE be the error in [A] and [E]. Considering the
existing error, the equation 3.26 is modified as:

[A + δA] [E + δE] = [b] . (3.27)

Expanding the equation 3.27,

A · E + δA · E + A · δE + δA · δE = b. (3.28)

Applying the property of norms, that the norm of a product of matrices is bounded by the
product of their norms, we have
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δA · δE is negligible and with the help of equation 3.28, we have

A · δE + δA(E + δE) � 0. (3.29)

δE � −A−1 · δA · (E + δE). (3.30)

Applying the property of norms, that the norm of a product of matrices is bounded by the
product of their norms, we have

‖δE‖ ≤
∥∥∥A−1

∥∥∥ ‖δA‖ ‖E + δE‖ . (3.31)

Multiplying both sides by ‖A‖, we obtain

‖A‖ ‖δE‖ ≤ ‖A‖
∥∥∥A−1

∥∥∥ ‖δA‖ ‖E + δE‖ . (3.32)

‖δE‖
‖E + δE‖ ≤ ‖A‖

∥∥∥A−1
∥∥∥ ‖δA‖

‖A‖ . (3.33)

This number is named “condition number” of a matrix, where λmax(A) and λmin(A) are the
maximal and minimal eigenvalues of A respectively. The maximum value (for nonzero A and
E) is easily seen to be the product of the two operator norms:

κ(A) = ‖A‖
∥∥∥A−1

∥∥∥ =
∣∣∣∣∣λmax(A)
λmin(A)

∣∣∣∣∣ . (3.34)

Our model is designed under the time-harmonic assumption. From the wave equation, we
can find a relation between the eigenvalues of A and the operating angular frequency as:

λ = μ − ω2. (3.35)

where, μ represents the eigenvalue for the real solution. When the operating frequency ap-
proaches the eigenvalue, a very small � yields an extremely large condition number. Thus, the
ill-conditioning of the matrix will largely influence the accuracy in the region near the resonance.

Preconditioned consists in, instead of solving a system of the form Ax = b, solving a system
of the form M−1Ax = M−1b, where M is the preconditioner. When using an iterative method
to solve a linear system of equations, a good choice of preconditioner can have dramatic impact
on run-time and robustness. One of the properties of a good preconditioner is that M−1Ax have
a small condition number. Therefore, as it is widely recognized, “preconditioning” [100] is a
critical ingredient in the development of efficient solvers for challenging problems in computation
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science. This method can be used to improve our numerical method too.

Influence of the Mesh

Our simulations are done with the Finite Element Method, with tetrahedral elements. The
accuracy of the results depends on the quality and the fineness of the mesh.

These tetrahedra can have very different shapes and dimensions: The region with small
variations of the field is meshed with a relatively coarse mesh; the region with stronger variations
demands a finer mesh. Some shapes of tetrahedra (too flat ones for instance [103]) may result in
a low accuracy and a slow calculation speed. So, these low-quality elements should be avoided
when constructing the mesh.

To some extent, the fineness may increase the accuracy of the results. However, pursuing a
high accuracy with an extremely fine mesh is not always effective. Therefore, before applying
the numerical methods to resolve a real problem, a series of preliminary simulations should be
done to decide the mesh type and find a good compromise between accuracy and computing
time.
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Figure 3.54: Phase of the reflection coefficient for different mesh fitness

Here, we’ll give an example of the Mushroom structure to explain the study on mesh fineness.
The mesh fineness of the study domain is varied from a relatively coarse case to a relatively fine
case as: coarser (4377 elements), coarse (8219 elements), normal (17570 elements), fine (29133)
and finer (59617). Their results are shown in Fig. 3.54, in which it can be seen that the finer
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the mesh, the higher the resonance will be. The result of a “normal” mesh is close to the one
of a “fine” mesh and of a “finer” mesh, which shows a convergence tendency. Hence we adopt
this relatively coarse mesh type as “normal”, with respect to computing time and accuracy, for
later calculation . It is pointed out that several discontinuous points are observed on the figure,
which is related to the meshing and the position of observation surface. These abnormal points
can be avoided by an appropriate modification of the observation surface.

Influence of other parameters

Operating Frequency

Our numerical method is based on the quasi-static theory where the HIS unit cell’s period D

should be far smaller than the effective wavelength λeff . Generally, it is considered that λeff

should be at least 10 times larger than D. However, there is no clear criteria to define the
boundary of this ratio. In view of the results, the numerical calculations can be effective even
when λeff /D ≈ 7.

The two new methods proposed for asymmetric HIS structures are based on the same nu-
merical model for symmetric HIS structures. In the numerical simulations for symmetric HIS
structures, it was found that the surface impedance values were less effective when the operating
frequency was close to the resonance. Here, the two new methods both have this trade-off too,
which is mainly due to the poor condition number near the resonance.

Height of Observation Surface

We talked about the calculation of the average surface impedance on an observation surface.
We can read the information of the resonance from this impedance value, which largely depends
on the height of the observation surface and less depends on the height of the homogeneous
E-field excitation.

Both methods proposed in this chapter are based on the premise that the electromagnetic
field on the observation surface is quasi-uniform. Generally speaking, the less homogeneous
these fields, the less effective the methods will be. This quasi static situation will be broken in
two cases: 1) At high frequency, when the dimension of the HIS structures cannot be ignored.
This point has already been addressed in the “operating frequency” part. 2) The height of
observation surface has not appropriately been chosen. In other words, the effectiveness of this
premise depends on the observation’s height.

In simulations, the excitation is a constant E-field on the top surface of the study domain,
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so on this surface the electric field is totally uniform. At the lower region in the study domain,
the electromagnetic fields are no longer uniform, because of the presence of HIS structures.
Therefore, if the observation surface is not far away from the source, the electromagnetic fields
are quasi-uniform. On the contrary, if the observation surface lies near the HIS structure and
far from the source, the hypotheses of “uniform fields” will be less effective. This is not only
caused by the attenuation of the distance, but also by the strong near-field reaction from the
HIS components.

The height of the observation depends on the purpose of the calculation. Our objective is to
create an equivalent model with an homogeneous surface characterized by the surface impedance
in an antenna system. The equivalent surface is positioned at the same height as the observation
surface ho. So, the observation surface height ho cannot be positioned higher than the antenna.
Meanwhile, we intend to integrate the HIS structure into a low-profile antenna system. If the
equivalent surface is too high, it won’t be any help for a compact antenna’s design. Therefore,
the height of observation surface should be set simultaneously as high as possible to allow the
recourse to homogenization theory and as low as possible to be useful as equivalent model for
an antenna system.

Moreover, it should be noted that: the higher the observation’s height, the more computing
time will be sacrificed for the post processing while using the Poynting flux method.

Comparing the Two Methods

In Section 3.2, we introduced two numerical methods to calculate the surface impedance for
symmetric or asymmetric HIS structures. Both methods consist in a post-processing of the
same data, those provided by the computation of the electric degrees of freedom. Yet, they
are not equivalent in terms of computational effort, because the Poynting flux method involves
two integrations (one in the volume and one on the surface), whereas the <E>/<H> method
requires only one average calculation on the grid of the observation surface.

Which method works better is always a debatable issue in our work. We made a lot of efforts
to compare the accuracy of these two methods through different simulations. In what follows, we
will explain the accuracy of the two methods associated with a “predfined” observation surface.

In our work, the study domain is meshed in tetrahedra elements via the meshing tool,
COMSOL [101]. In this software, when the observation surface is geometrically created in the
study domain, the subdomains on two sides of this surface may be separately meshed, but with
a common trianglar mesh on this surface. Such a surface we shall call “predefined observation
surface” (as shown in Fig. 3.55) in what follows. The alternative would consist in meshing
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the whole box without this geometrically defined observation surface. In this case, we have an
observation surface cutting through the tetrahedral of the mesh, and we call it as an “artifical
observation surface” (as shown in Fig. 3.56).

Figure 3.55: A predefined observation surface Figure 3.56: An artificial observation surface

When using the Poynting flux method, it is found that a pre-defined observation surface
may increase the accuracy of the method. To create this observation surface, the whole study
domain is decomposed into two subdomains sharing a common boundary, which is the predefined
observation surface. While using the Poynting flux method to calculate the surface impedance
for the HIS structures, it concerns a volume integration beneath the observation surface and a
surface integration on the observation surface. The former integration requires a precise count
of every tetrahedra elements beneath this surface. With the predefined observation surface, the
tetrahedra elements belonging to the downside subdomain can be perfectly separated from the
ones of the upside subdomain in a numerical processing. The latter integration is associated
with the edge elements on the observation surfafce. The predefined observation surface is useful
in counting the contribution of all the edge elements on the surface.

While using the 〈E〉 / 〈H〉 method to calculate the surface impedance, we firstly calculate
the E-field at the observation points, grilled distributed on the observation surface. Then we
calculate the H-field from the E-field and get the tangential E- or H-field by their projection on
the observation surface. With this method, the observation points should be better chosen at
the positions cutting the tetradedra elements. This is because when the observation point lies
on the face or an edge of a tetrahedron, only the tangential part of the E-field at this point may
be well calculated and the accuracy of the tangential H-field may be influenced. Therefore, the
artifical observation surface is preferred in using this method.
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Figure 3.57: With a predefined observation
surface
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Figure 3.58: With an artificial observation
surface

In the following part, we will carry out several simulations to see the influence of the prede-
fined surface. Consider an empty box with dimension of 2 mm x 2 mm x 10 mm, illuminated
by a unifrom E-field on the top surface and covered by a perfect electric conductor conductor
on the bottom surface.

The surface impedance is calculated at a fixed frequency on the observation surface at h = 2
mm by using two different numerical methods and under two different cases: with a predefined
observation surface and with an artificial observation surface. Analytical results are also added
on the figures as references to judge their accuracies.

In Fig. 3.57, it is observed that the Poynting flux method works better than the 〈E〉 / 〈H〉
method. In Fig. 3.58, it is observed that the 〈E〉 / 〈H〉 method works better than the Poynting
flux method. The results of these simulations confirm that the Poynting flux method requires
a geometrically predefined surface and the 〈E〉 / 〈H〉 method needs an artifical observation
surface.



Chapter 4

Experimental Measurements

In the previous chapter, our two proposed numerical models for calculating the surface impedance
of HIS structures have been validated in principle. In this chapter, we check the effectiveness
of these models against measurements. Different samples have been fabricated, measured, and
these measurements have been compared with numerical results.

4.1 Introduction

Characterization Method

There are different methods to characterize materials, such as the waveguide probe method [104],
the resonant cavity method , the coaxial probe method [106]. Since these methods have limits
in sample’s dimension or in frequency bandwidth, we prefer to use a free space measurement
method which is more flexible than those mentioned above.

The working bench is composed of two horn antennas and the sample is placed between
them at equal distance, as shown in Fig. 4.1. The dimension of the device is comparable to the
wavelength. In free space, the horn antenna emits spherical waves (as seen in Fig. 4.2) and the
diffraction is not negligible. More precisely speaking, the emitted beam from the horn antenna
is a beam of electromagnetic radiation whose transverse electric field and intensity distributions
are well approximated by Gaussian functions, known as Gaussian beams [107].

In order to get a precise characterization using a free space measurement, the amplitude of
the wavefront impinging on the sample surface should be uniform. The E-field amplitude of
the wavefront at a long distance from the emitted antenna is quasi planar. Unfortunately, the
incident power on the sample will be weaker than the one of the parasite signal. To eliminate

109
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Figure 4.1: Measurement Setup

the perturbed reflected signals, this measurement can be performed in an anechoic chamber, to
let the surrounded walls in the chamber absorb parasite signals. An alternative method consist
in pasting a lens in front of each horn antennas. These two lenses are added to focus the wave
beam and to ensure that a plane wave will impinge on the sample’s surface. To reduce financial
expenses and measurement space, we selected a focused beam system instead of an operation in
an anechoic chamber to characterize our samples. However, this method has the disadvantage
that a parasite resonance will appear when the sample’s thickness equals half the wavelength.

Experimental Setup

The complete experimental setup consists of a Vectorial Network Analyzer (Agilent, PNA
E8364C, 10 MHz - 50 GHz) and two transmit/receive horn antennas (ITT/EDO Corp., AS
48461-01) on the working bench. The two horn antennas operated between 2 GHz and 18 GHz,
where the maximum cross polarization is less than -20 dB. The antennas are connected to VNA
with flexible and in-phase cables, the connectors of which are APC7 at one side and ADM at
another side.

In experiments, the vertically polarized wave is emitted by the horn antenna and the incident
electric field is perpendicular to the FSS layer. Figure 4.3 exhibits two photos of our samples:
a mushroom sample with vias on the left, a mushroom sample without vias on the right.

During the measurement, the two horn antennas should be precisely aligned and tuned,
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Figure 4.2: Description of the Gaussien beam emitted from a horn antenna

Figure 4.3: Two samples (Left: mushroom structure with vias; Right: mushroom structure
without vias)

so the bench is equipped with a micrometer and is piloted via a Labview program. We can
not only control the amplitude of the movements, but also set their velocity and acceleration.
The bench is solid enough to be rotated, so the antenna’s position can be tuned to achieve an
oblique incidence. Since the weight of the bench becomes important, the plomb counterweights
are added in the device.

Figure 4.4 illustrates the positions of the antenna and the lens and here we give a short
introduction on how to choose a suitable lens for our system.

The place where the spot size of the propagating beam has a minimum value is known as
the beam waist. The Rayleigh range (from d2 − π w2

λ
to d2 + π w2

λ
) is a region around this waist,

in which the wavefront can be considered as planar. To choose such a lens, its beam waist at
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Figure 4.4: Description of the focus of a Gaussien beam by adding a lens

position d2 is required to be relatively stable in a certain frequency range. Then, during the
process of the characterization, there is no need to frequently change the lens. The diameter Dl

of the lens’s surface should be large enough to cover the aperture of the horn antenna and the
width e of the length should be much less than Dl. The radius (R = Dl/2) and the thickness e

of the lens depend on its focal f and its index n, as follows:

R = f(n − 1), (4.1)

e = R −
√

R2 − (d

2
)2. (4.2)

In our case, the lens is made of a Rexolite material (n = 2.45), which is a low-loss material.
The distance di between the lens and the antenna is considered to be null. This choice may
reduce the loss created by the diffraction and the radius of the lens. At the same time, this
choice also requires a lens of smaller size. This is because the Gaussian beam will be enlarged
after leaving the horn and a larger distance di asks for a larger lens. More constraint conditions
have been considered in choosing the lens, such as the position of the waist, the operational
frequency bandwidth and they are more detailed in [108].

Finally, we opt for a lens with a focus f = 15cm and a thickness e = 3.5cm. This lens allows
us to place the sample between 3 cm and 13 cm away from the horn antenna, in which region
the incident wave impinging on the sample can be considered as plane in the whole measuring
band.
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Calibration with TRL Technique

The electromagnetic response of a material is analyzed by measuring its scattering parame-
ters (S-parameters). The two most widely-tested parameters in S-parameter measurements are
S11(the reflection coefficient) and S21(the transmission coefficient). In measuring all the HIS
samples, we are interested in S11, especially in its phase. This reflection phase curve allows us
to identify the resonance and the effective working bandwidth of each HIS structure.

The Network Analyzer measures the two-port scattering parameters of a device under test
(DUT). This is specifically done by measuring the ratio of the reflected and outward waves of
ports one and two, respectively, to the incident wave. However, the response of DUT mea-
surement will be affected by the cables, connectors, measurement errors and port mismatches.
To correct the measured results from such bad influences, different calibration procedures or
standards have been proposed. One robust technique is the TRL calibration technique, where
TRL stands for Thru, Reflect, Line. It allows for calibrating the instrument to take into ac-
count discontinuities associated with the cable and on-board connectors. After the calibration
procedure, parasitic reflections are removed by a time domain analysis.

Thru

e e

Reflect

metal

e e

Line

Figure 4.5: Calibration with the Thru, Reflect and Line method

The TRL technique requires three experiments, illustrated in Fig. 4.5.
1) The first measurement is performed in free space without anything between the two
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horn antennas, which corresponds to the case “Through”. In this case, S11 = S22 = 0 and
S12 = S21 = 1.

2) During the second measurement, a totally metallic card having the sample’s width is put
in middle position of the two antennas. In this process, one antenna will be moved backwards
to a distance equal to the sample’s width e. This represents the case “Reflection” and the
S-parameters become: S11 = S22 = −1 and S12 = S21 = 0.

3) In the third measurement, the two antennas keep the same positions as in the second
measurement. We measure an air sample having the same width as the sample. In the case of
“Line”: we have S11 = S22 = 0 and S12 = S21 = ejβe (the superscript e represents the sample’s
width, β = 2π

λ
).

Temporal filter

In experiments, one may choose to measure the results either in temporal domain or in frequency
domain. The results can be turned from one to the other by Fourier transform. At a given
frequency, the frequency result of S parameter accounts for the transmission and the reflection
signals in the whole system, while the temporal result of this same parameter will show the mix
reaction of the system at a given moment. At the initial moment, the signal is emitted from
Port 1 and then it is possible to trace the reflected signal in the temporal domain and view
its interaction with various constituents on the workbench (like lens, antennas, samples, lens
support, etc.) till its return to Port 1. The response of the sample can be identified and isolated
(as seen in Fig. 4.6) from the noise signal by using a filter.

In our test, the S-parameters are measured in the frequency domain. After the calibration, a
digital filter in the temporal domain is used in data-processing. Filtering is done by multiplying
the inverse Fourier transform of the signal by a window function. This window function (also
known as the apodization function) can eliminate the parasite transmission or reflection signals
and keep only the useful points relevant to the sample’s response. There are many possible
forms for the window function (as seen in Fig. 4.7), such as the rectangle window, the Hanning
window and so on. After using the filter, we can use Fourier transform to restore the results in
frequency domain.
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Figure 4.6: Identify the interreflection para-
site signal from a temporal response of the re-
flection parameter Figure 4.7: Filters with different windows

4.2 Experimental Results

4.2.1 Symmetric HIS Structures

Mushroom Structures

The first sample to be characterized is a mushroom structure without vias, whose dimensions
are 150mm×150mm, with 15×15 square patches on one side (machined by photo-lithography)
of the substrate and a metal plane on the other side. (The dimensions of a unit cell of Sample
M1 are: D= 10 mm, g= 5 mm, h= 1.6 mm.) The relative permittivity of the substrate is
considered as a constant value, 4.4.

In Fig. 4.8, we compare the measurement results with analytical results for a Mushroom
structure. All the analytical methods have been introduced in detail in Chapter 2. From
the figure, the resonant frequency read off from Sievenpiper’s effective model [22] is close to
the measurement result, whereas the other two analytical methods predict a higher resonant
frequency. The transmission-line model proposed by Olli [102] is an improved version of the
TL model proposed by Simovski [79] and it really showed a more accurate prediction of the
resonance here. However, these two TL analytical models are not suitable for structures in
which the unit cell’s size is much greater than the height of the HIS structure.

Figure 4.9 shows a comparison between numerical and measurement results. A numerical
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Figure 4.8: Analytical and experimental re-
sults of reflection coefficient for a Mushroom
structure without via (Sample M1)
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Figure 4.9: Numerical and experimental re-
sults of reflection coefficient for a Mushroom
structure without via (Sample M1)

simulation performed with the commercial software CST Microwave Studio is also added. Re-
sults of our own numerical calculations are close to the CST ones. Below 14GHz, they show a
very good agreement between numerical and measurement results. The range of the bandwidth
is defined as the phase between −90° and 90°. Within this range, our numerical simulations
and the CST simulation all show satisfying results, which further validate our two proposed
numerical methods.

Method Resonance Bandwidth
Measurement 11.74 10.33 - 12.77

Analytical method: Sievenpiper 11.2 9.3 - 13.6
Analytical method: Ollis 13 10.5 - 16

Analytical method: Simovski 14.6 11.5 - 18.2
Numerical method: <E>/<H> method 11.74 10.3 - 12.7

Numerical method: Poynting flux method 11.5 10.2 - 12.4
Numerical method: CST 11.02 9.85 - 11.9

Table 4.1: Comparison of resonance and bandwidth with different methods for Sample M1

A summary of the results obtained from different methods is listed in Table 4.1, which offers
a clearer view, allowing to see the difference and to compare the methods for accuracy.

Since one measurement cannot suffice, more mushroom samples (dimensions seen in Ta-
ble 4.2) have been fabricated and tested. Some structures have vias and some without. In
fabrication, the vias are the metalized cylinder holes in the middle of each patch.
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Sample No. D (mm) g (mm) h (mm) εr Rvia (mm)
M1 10 5 1.6 4.4 no
M2 10 4 1.6 4.4 no
M3 7 2 1.6 4.4 no
M4 6 2 1.6 4.4 no
M5 10 4 2.4 4.2 no
M6 10 6 2.4 4.2 no
M7 10 4 2.4 4.2 0.5
M8 10 6 2.4 4.2 0.5

Table 4.2: Dimensions of the samples for the mushroom structure

In the previous test, the substrate had a relative permittivity of 4.4 and a thickness of 1.6
mm. In the following tests, we keep the same substrate, but vary the patch’s dimension and the
interval between two patches. Instead of making an inventory of all the results in figures, we
have summarized the results of in Table 4.3 and Table 4.4. This table shows that the numerical
simulations are in good agreement with measurements. Results obtained by the <E>/<H>
method are a little bit closer to measurements than those of the Poynting flux method.

Samples
Resonance (GHz) Sample M1 Sample M2 Sample M3 Sample M4
Measurement 11.74 10.35 9.99 10.84
<E>/<H> method 11.74 9.9 10.3 11.9
Poynting flux method 11.5 9.4 10.8 12
CST 11.23 9.54 10.09 11.82

Table 4.3: Bandwidths for different mushroom structures

Samples
Bandwidth (GHz) Sample M1 Sample M2 Sample M3 Sample M4
Measurement 10.33 - 12.77 9.3 - 11.37 8 - 11.25 7.06 - 12.34
<E>/<H> method 10.3 - 12.7 8.8 - 10.8 8.9 - 11.7 10.25 - 13.75
Poynting flux method 10.2 - 12.4 8.3 - 10.3 9.3 - 12.2 10.6 - 13.75
CST 10.00 - 12.17 8.56 - 10.42 8.70 - 11.42 9.97 - 13.76

Table 4.4: Bandwidths for different mushroom structures

In our measurement, the excitation is a TE wave with normal incidence on the samples.
Under this circumstance, the presence or the absence of vias will not largely influence the
resonance, because there is no electric field traveling across the metal vias. In our numerical
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simulations, the presence of the via is seen to cause a slight shift of the resonance to a lower
frequency.

In all previous cases, the samples had no vias. In order to further investigate their influence,
some samples with vias have been fabricated and measured. Because fabricating vias is a
complex process, only two samples are available at present. Figure 4.10 and Figure 4.11 present
the numerical and measurement results correspondent to different samples. As a rule, the
numerical results agree with measurements.
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Figure 4.10: Numerical and experimental re-
sults for Sample 5
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Figure 4.11: Numerical and experimental re-
sults for Sample 6
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Figure 4.12: Experimental results for Sample
5 and Sample 7
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Figure 4.13: Experimental results for Sample
6 and Sample 8

Figure 4.12 and Figure 4.13 present the measurement results for the samples with and
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without vias. From the figure, one sees that the influence of the via is more evident than the
numerical predictions. This may be attributed to two reasons: 1) The experimental environment
is not ideal and the substrate is lossy. The presence of the vias will enforce the lossy part of the
effective permittivity, compared to the sample without vias. This will lead to a clearer difference
between the samples. 2) During the process of the measurement, the samples are fixed by hand,
so the unstable movement may also result in a variance.

Jerusalem-cross Structures

The second type of HIS sample to be examined is the Jerusalem-cross structures. Two JC
structure samples (dimensions seen in Table 4.5) without vias are fabricated and measured.

Sample No. D (mm) g (mm) d (mm) w (mm) h (mm) εr

J1 2.4 0.4 1.2 0.2 1.6 4.2
J2 10 6 2 1 2.4 4.2

Table 4.5: Sample dimension of mushroom structure

In the following figures, we will compare respectively the analytical calculations and our
numerical calculations against the measurements.
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Figure 4.14: Analytical and experimental re-
sults for Sample J1
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Figure 4.15: Numerical and experimental re-
sults for Sample J1

Figure 4.14 presents a comparison between analytical and measurement results for the first
JC sample, in which Hosseini’s analytical model [81] shows a very good accordance in the
frequency range between 10 GHz and 15 GHz. Simovski’s analytical model [79] is less effective
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Figure 4.16: Analytical and experimental re-
sults for Sample J2
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Figure 4.17: Numerical and experimental re-
sults for Sample J2

in this case. Figure 4.15 presents a comparison between results for the first JC sample, in which
the difference between our numerical results and measurements are acceptable.

Figure 4.16 presents a comparison between analytical and measurement results for the second
JC sample, in which Simovski’s numerical model shows a better agreement than Hosseni’s one
with measurements. Figure 4.17 presents a comparison between numerical and measurement
results for the second JC sample, in which the results given by the <E>/<H> method are
closer to measurements than those obtained with the Poynting flux method.

These figures show that our numerical methods are in satisfying accordance with measure-
ments. As for the analytical models, their effectiveness largely depends on the HIS dimensions.

4.2.2 Asymmetric HIS Structures

Our proposed numerical methods are able to calculate the surface impedance not only for
symmetric HIS structures, but for asymmetric HIS structures as well. Same as before, when the
E-field excitation is parallel to the x-axis, we say the incident wave is horizontally polarized;
when the E-field excitation is parallel to the y-axis, we say the incident wave is vertically
polarized. For symmetric structures, the measurements are the same with respect to both
polarizations. However, for asymmetric structures, the orientation of the E-field excitation
should be taken into account.

In the following part, we’ll measure some samples of asymmetric HIS structures and all the
samples will be measured twice: 1) with an horizontally polarized incident wave; 2) with a
vertically polarized incident wave.
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Rectangle HIS Structures

The first asymmetric structure to be characterized is the rectangle HIS structure, which has
already been numerically investigated in the previous section. Here, we focus on the comparison
between our numerical results and the experimental results. The sample of rectangle HIS
structure (Rec1) has the dimension as: Dx = 4 mm, Dy = 6 mm, W = 7 mm, L = 9mm, h =
1.6 mm, εr = 4.2.
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Figure 4.18: Numerical and experimental re-
sults for Sample Rec1 with horizontal E-field
polarized excitation
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Figure 4.19: Numerical and experimental re-
sults for Sample Rec1 with vertical E-field po-
larized excitation

Figure 4.18 corresponds to the case with a vertically polarized incident wave and Figure
4.19 corresponds to the case with a horizontally polarized incident wave. These two figures
confirm that our numerical methods are able to predict the resonances with respect to different
polarizations.

Square HIS Structure with Slot Cut

In the previous section, we have already investigated some asymmetric HIS structures, such as
fork-like structures, one spiral-arm structures, etc. From results for these structures, one sees
that a complicated asymmetric geometry may cause many resonances with narrow bandwidth,
leading to an uninterpretable figure. Therefore, we study several asymmetric HIS structures
with relatively simple geometries here. In the following part, we will calculate the reflection
phase of these structures by our numerical methods and check their effectiveness against the
experimental results about some samples.
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The Mushroom structure (without via) is a grounded substrate with periodic square patches
on its top surface. Based on this structure, we design three asymmetric HIS structures by adding
slot cuts on the square patches. The first structure (CutI) has an additional rectangle slot inside
the square patch, and the geometry of its unit cell is shown in Fig. 4.20. The second structure
(CutA) has an additional rectangle slot on the side of the square patch, and the geometry of its
unit cell is shown in Fig. 4.21. The third structure (CutL) has an additional L-shape slot inside
the square patch and the geometry of its unit cell can be seen in Fig. 4.22.

Figure 4.20: Unit cell of
structure CutI (top view)

Figure 4.21: Unit cell of
structure CutA (top view)

Figure 4.22: Unit cell of
structure CutL (top view)

Figure 4.23 and Figure 4.24 present the results for the first structure (with a rectangle slot
cut inside the square patch) with respect to two different polarizations. It is observed that the
resonances corresponding to two different polarizations are not much different from each other:
the resonance corresponding to the horizontally polarized excitation is a little higher than 10
GHz; the resonance corresponding to the vertically polarized excitation is a little lower than 10
GHz. This is because the outline dimension of the structure dominates the principal resonance.
The slot cut inside the square patch does do impact on the resonance, but slightly.

Figure 4.25 and Figure 4.26 present the results for the second structure (with a rectangle
slot cut aside the square patch) with respect to two different polarizations. It is observed that
the resonance with respect to the vertically polarized excitation will be higher than the one
with respect to the horizontally polarized excitation. This is mainly due to the fact that the
cut aside is so long that it changes the continuity of the metal in one direction and a smaller
width yields a higher resonance.

In comparison with the first structure, which has a cut inside, the difference between the
numerical and the experimental results for the second structure with a cut aside is more evident.
In this case, the outline plays an important role of defining the resonance.
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Figure 4.23: Numerical and experimental re-
sults for structure CutI with horizontally po-
larized excitation
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Figure 4.24: Numerical and experimental re-
sults for structure CutI with vertically polar-
ized excitation

Figure 4.27 and Figure 4.28 present the results for the third structure (with a L-shaped
slot cut aside the square patch) with respect to two different polarizations. This structure is
asymmetric with respect to the horizontal line in the middle of the patch, but it is fourfold
rotationally symmetric. So, the reflection phase curves for both polarizations almost coincide.
As the outline of the square patch doesn’t change, the main resonance is still found at around
10 GHz. It is observed that the L-shape cut does have an impact on the results. The numerical
results show parasitic resonance around 15 GHz. The measurement results show that the
bandwith is a little broadened.

Both the numerical methods and the measurements address the average values of the electro-
magnetic field on the observation surface. When the geometry inside the patch is complicated,
the numerical results and the experimental results are in less accordance.

It is observed that the main resonance of the structure depends on its global dimension.
An additional cut may shift the resonance (eg. structure 2), or create one or several parasitic
resonances (eg. structure 3). These figures show our numerical results in agreement with the
measurements, as a rule. This further confirms that our numerical methods are workable.

In addition, the study on different cuts for a Mushroom structure may give some guidelines
in designing HIS geometries.
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Figure 4.25: Numerical and experimental re-
sults for structure CutA with horizontally po-
larized excitation
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Figure 4.26: Numerical and experimental re-
sults for structure CutA with vertically polar-
ized excitation

4.3 Discussions

Effective bandwidth

After the calibration, a digital filter in the temporal domain is used in data-processing. However,
the transformation of the filter will cause a distortion on the signal. It is found that the Gibbs
phenomenon [109] will occur and introduce big oscillations at the beginning or at the end of the
bandwidth. Therefore, the effective band should take the middle part of the band.

Let us take an example to show the impact of the Gibbs phenomenon on our measurement
results. Fig. 4.29 and Fig. 4.30 correspond the S-parameters after applying a digital filter with
a rectangle window, with two different window widths ( including respectively 5 samples and 15
samples). In these two figures, the dashed curves correspond to the theoretical S-parameter and
the solid curves correspond to the measured S-parameters. The Gibbs phenomenon is clearly
shown at two ends of the working band. The working band with of the horn antenna is from
2 GHz to 18 GHz. However, it is observed that the reliable results are rather between 8 GHz
and 16 GHz.

Dielectric properties of the substrate

The dielectric permittivity is a complex value in reality. At low frequency (less than 1 GHz),
it is relatively stable, but at high frequency (around 10 GHz) it varies a lot. In our numerical
simulations, a small variation on the permittivity may cause a large resonance shift. In some
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Figure 4.27: Numerical and experimental re-
sults for structure CutL with horizontally po-
larized excitation
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Figure 4.28: Numerical and experimental re-
sults for structure CutL with vertically polar-
ized excitation

cases, the shift may reach 0.5 GHz or even more.
The experimental results are mainly used to verify the effectiveness of our numerical models.

In our numerical simulations, the relative permittivity is set as a constant value. In order to
reduce the difference between the numerical results and the experimental results, it’s better to
measure the permittivity of the substrate before proceeding with the numerical simulation.

For example, we design a sample with a resonance at around 10 GHz. We will measure
the relative permittivity of the sample and verify the value around 10 GHz. As shown in Fig.
4.31, the measured value is between 4.3 and 4.4. Then we may set 4.3 or 4.4 as the relative
permittivity of the substrate in the numerical simulations.

Position of the sample

The metal supports can not be used to fix the samples and the non-metallic supports are not
available at the moment. In our measurements, some cards are hand-held, which potentially
causes more or less unstable results. A small shake may bring about an error, especially for the
samples largely covered with metal elements. This is because these samples are more sensitive
to the angle of incidence. With a non-metallic support, the accuracy of measurements may be
improved.
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Figure 4.29: Measured and theoretical S-
parameters after applying a rectangle window
with width = 5 samples
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Figure 4.30: Measured and theoretical S-
parameters after applying a rectangle window
with width = 15 samples
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Figure 4.31: Measurements of the relative permittivity



Chapter 5

Equivalent Model

5.1 Concept

Various kinds of HIS structures have been proposed and investigated. Due to the complexity
and the diversity of these structures, the presence in them of tiny features requires a fine mesh
in numerical simulations, resulting in a big expense of both memory and computing time.
This motivates our attempt to find an equivalent model based on the idea of replacing the
heterogeneous assembly of patches and vias by a single homogeneous surface. It takes a lot of
time to calculate the equivalent impedance surface and build the equivalent model in the first
place. However, applying this equivalent model into an antenna system with HIS structures,
the computing time of the numerical simulations can be largely reduced, since a more uniform
study domain permits the use of a coarser mesh, hence a shortened calculation.

Fig. 5.1 displays the concept of constructing an equivalent model for an antenna system.
The model with all the original HIS structures is called “Direct Model”, as shown in the left
of the figure. The first step is choosing an observation surface located at l in the direct model.
The second step is calculating the surface impedance of this chosen surface in the direct model.
The third step is cutting the direct model into two parts, one on each side of the observation
surface and keeping only the upper part of the model. The last step is applying the surface
impedance condition to the bottom surface of the remaining part. Here comes the equivalent
model as seen in the right of the figure. The objective of the equivalent model is to serve as a
simulation tool for the antenna design. It is to be noted that the observation surface should be
higher than the HIS top structures, but lower than the position of the antenna.

127
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Figure 5.1: The concept of equivalent model in presence of a wire antenna

5.2 Theory

In [117], it is proposed that the incorporation of lumped resistors, inductors, and capacitors
is effected through the direct stamping of the state-space voltage-current relationship for these
elements in the matrices of the generated state-space form of the discrete model. Using edge
elements as basis functions in the Galerkin method, the weak formulation that corresponds to
an electromagnetic problem leads to a matrix equation of the following kind:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y11 · · · Y1n

... . . . ...

... Yee
...

... . . . ...
Yn1 · · · Ynn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

· · ·
ee

· · ·
en

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i1

· · ·
ie

· · ·
in

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.1)

where n is the number of degrees of freedom (DOF), [e] is the vector of edge emf’s (in volts),
[i] is the excitation current vector (in amperes) and [Y ] is an admittance matrix which governs
the interaction between edges. This admittance matrix is assembled from the volumic integrals
in the tetrahedral elements while the excitation current vectors results from the boundary
conditions of the EM problem.

In the language of circuit theory, one edge e can be assimilated with a port with its own
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distributed

part mesh

ie ic

ycee

Figure 5.2: A lumped element is connected to an edge element

voltage and current, respectively denoted by ee, ei, and one has:

ie =
n∑

k=1
Yekek. (5.2)

where n is the number of DOF. The matrix term Yee can be seen as the self admittance of the
edge e, while a matrix term Yek gives the mutual admittance between edge e and edge k.

If a lumped element component is connected to this kind of port (illustrated in Fig. 5.2),
the Kirchhoff laws can be written as:

N∑
k=1

Yek · ek = −yc · ee. (5.3)

where yc is the admittance of the lumped element.
In [116], it is shown that the insertion of a lumped element (a resistor R, a capacitor C, or

an inductor L) at an edge e modifies the self admittance of the edge e as follows :

Ye,e → Ye,e + 1
R

, (5.4)

Ye,e → Ye,e + jωC, (5.5)

Ye,e → Ye,e + 1
jωL

. (5.6)

If the lumped element is added at a known position, the problem can easily be resolved by
solving the equations above. However, in our case, the lumped elements will be added to a
2D surface, the yc above will now turn into a 2 × 2 matrix and the contribution of the lumped
elements on each edge should be considered in two dimensions too, as:
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⎡
⎣ Ye,e Ye,e′

Ye′,e Ye′,e′

⎤
⎦ →

⎡
⎣ Ye,e + yc11 Ye,e′ + yc12

Ye′,e + yc21 Ye′,e′ + yc22

⎤
⎦ . (5.7)

The modified matrix encodes not only the element’s self effects, but also the mutual effects
among them.

In the previous part, we considered the equivalent surface problem in a micro view. In the
following part, we will directly consider the problem of adding a lumped-element condition into
the whole system in a macro view and give the main steps of how to program this condition in
the FEM.

In Chapter 1, the weak formulation corresponding to our electromagnetic problem was writ-
ten as:

ˆ
D

[
1
μ

(∇ × E) · (∇ × v) + ε
∂2E

∂t2 · v

]
+
ˆ

S

(n × ∇ × E) · v = −
ˆ

D

∂Je

∂t
· v, (5.8)

where S is the boundary of the studied domain, n denotes the unit vector normal to S, ε is the
permittivity in Ω and μ is the permeability in Ω. This equation must be satisfied for all test
functions v.

Suppose that we apply a new boundary condition on the surface Sn (Sn ⊂ S), which means
adding a new term to the right-hand side of 5.8:´

D

[
1
μ
(∇ × E) · (∇ × v) + ε∂2E

∂t2 · v
]

+
´

D
∂Je

∂t
· v =

−
ˆ

S

(n × ∇ × E) · v +
ˆ

Sn

(n × ∇ × E) · v ∀v. (5.9)

Generally, the boundary condition is formulated as:

n × H = −Y · E. (5.10)

After applying the boundary condition 5.10 and Faraday’s law, we have:
ˆ

Sn

(n × ∇ × E) · v =
ˆ

Sn

n × (−μ
∂H

∂t
) · v =

d

dt

ˆ
Sn

μY · EB · v, (5.11)

where EB is the vector of electric field on surface Sn. Then, discretizing the domain and applying
the Galekin method, Eq. 5.11 becomes:

μ
dei

dt

NB∑
i=1

ˆ
Sn

Wj(2D)Y · Wi(2D), (5.12)
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where Wi,j(2D) is a two dimensional Whitney function.
Building the equivalent surface in the equivalent model amounts to adding such a new

impedance boundary condition into the system to be solved. The weak formulation comple-
mented with this new impedance boundary condition can now be presented in detail as:

N∑
i=1

1
μ
ei

´
D

(∇ × Wi) · (∇ × Wj) +
N∑

i=1
d2ei

´
D

εWi · Wj +
´

D
Wj · ∂Je

∂t

= −
ˆ

S

(·)d(∂Ω) + μ
dei

dt

NB∑
i=1

ˆ
Sn

Wj(2D)Y · Wi(2D). (∀j = 1, · · · , N). (5.13)

In programming, in order to add the new defined impedance boundary into the whole system,
we have the following tasks to perform:

Step 1: Search for the elements which contain one triangle surface on the equivalent surface
and save their element index;

Step 2: Verify all the faces of indexed elements, find the face contained on the equivalent
surface and save its index;

Step 3: Add the contribution of the impedance boundary condition to the indexed face of
each indexed element;

Step 4: Assemble the contribution of each element to the global stiffness matrix.

5.3 Simulations

The effectiveness of this equivalent model will be verified by comparing the E-field results
respectively calculated in the direct model and in the equivalent model. The following test is
based on a unit cell of mushroom structure without via.

The direct model displays a mushroom structure (D = 10 mm, g = 2 mm and h = 1.6 mm)
in a cubic study domain (10 mm x 10 mm x 10 mm). The relative permittivy of the substrate
is 3.4. In Chapter 3, the Poynting flux method and the <E>/<H> method are proposed to
calculate the surface impedance of a chosen surface. Since we haven’t sorted out which method
offers a more accurate result, both of them will be used in obtaining the surface impedance
value. In the direct model, the E-field will be calculated on two different lines parallel to the
z-axis: One is in the center of the domain which traverses the metal patch (marked “Line 1” in
Fig. 5.3); The other lies in the space between the patch and the boundary (marked “Line 2” in
Fig. 5.3).

The dimension of the equivalent model depends on the height of the observation surface in
the direct model. In this test, the observation surface is chosen at 2 mm from the bottom in
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Figure 5.3: Observation lines in the direct
model

Figure 5.4: Observation lines in the equivalent
model

the direct model, so the dimension of the equivalent model is designed as 10 mm x 10 mm x 8
mm. In the equivalent model, we choose two observation lines which have the same positions
respectively as “Line 1” and “Line 2” in the direct model, as shown in Fig. 5.4, but shorter
along the z-axis.

One should note that the results of E-field on any line parallel to z-axis are actually the
same. This is because the bottom surface of the equivalent model is homogeneous and the top
surface of the equivalent model is imposed a uniform E-field excitation. So, we only calculate
the E-field result on one observation line in following simulations.

Fig. 5.5 presents four results: Two results display the E-field on two different observation
lines in the direct model; The other two results display the E-field on two observation lines in
the equivalent model by using the surface impedance value obtained from the Poynting flux
method and the <E>/<H> method.

Let us first look at the two lines got from the direct model. The black line corresponds to the
observation line through the metal patch and an attenuation of the E-field is evidently reduced
around z = 1.6 mm, which reflects the existence of the patch. The blue line corresponds to the
observation line without touching the metal patch. So, the attenuation of the E-field doesn’t
occur on this curve.

Then, we observe the E-field results from the equivalent model. Be it with the Poynting flux
method or the <E>/<H> method, both lines show the same tendency as those in the direct
model. In the region far from the HIS structure, the results are in good agreement, but in the
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Figure 5.5: Simulations between the direct and the equivalent models

region near the HIS structures, their values differ more. This phenomenon is normal, because
the equivalent model,with a largely simplified surface, cannot exhibit all the details as finely as
the direct model. Especially, in the region near the HIS structures, the HIS structures have a
strong reaction.

It is true that the equivalent model merely offers an approximate result, but the highly
reduced computing time makes up for that.

5.4 Discussions

Fineness of the Mesh

Generally, a finer mesh yields a more detailed result. In previous chapters, the mesh with a
“normal” type has already achieved the convergence, so here we just compare two mesh types:
“normal” and “fine”.

Figure 5.6 and Figure 5.7 show the comparisons respectively in the direct model and in the
equivalent model. Since there is no big difference when changing the mesh type from “normal” to
“fine”, it is not necessary to mesh the study domain in a finer way by sacrificing more computing
time. Therefore, the following simulations in this chapter will all adopt the “normal” mesh type
for the direct model, as well as the equivalent model.
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Figure 5.6: E-field in direct model with differ-
ent mesh grains
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Figure 5.7: E-field in equivalent model with
different mesh grains

Observation Surface

In Chapter 3, we discussed the relation between the accuracy of the surface impedance value
and the height of the observation surface in the direct model. In order to get a higher accuracy,
the height of the observation surface should be set simultaneously as high as possible to allow
the recourse to homogenization theory and as low as possible to be useful as equivalent model
for an antenna system.

The height of the equivalent model depends on the height of the observation surface in the
direct model and the bottom surface of the equivalent model is characterized by the surface
impedance calculated on this surface in the direct model. Thus, we carry out different simu-
lations to study the impact of the observation surface height on the equivalent model. Let us
take the mushroom structure as an example and suppose that the top surface of the mushroom
structure is 1.6 mm. We will vary the height of observation surface ho from 1.8 mm to 2.4 mm
with a step of 0.2 mm and then compare the E-fields in equivalent models with the ones in
direct models.

Figure 5.8 displays five different E-field calculations on observation line “Line 1” at 8 GHz.
One calculation is obtained from the direct model and the other four are obtained from the
equivalent models, defined by different heights of observation surfaces. In this case, the surface
impedance values are all computed by the Poynting flux method. In this case, it is observed that
the results got from different equivalent models are similar to each other and it’s not easy to tell
which one offers the best result. Figure 5.9 displays the results of E-field on observation Line
“Line 1” at 8 GHz, while the surface impedance value are computed by the <E>/<H> method.
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Figure 5.8: Study on different observation sur-
face heights with the Poynting flux method, at
8 GHz, Line 1
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Figure 5.9: Study on different observation sur-
face heights with the <E>/<H> method, at
8 GHz, Line 1
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Figure 5.10: Study on different observa-
tion surface heights with the Poynting flux
method, at 8 GHz, Line 2
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Figure 5.11: Study on different observation
surface heights with the <E>/<H> method,
at 8 GHz, Line 2

Compared with the results obtained from the other equivalent models, the result at the case of
“ho = 2.2 mm” is a little far from the one got from the direct model. However, if we choose
the observation line at position “Line 2” (as shown in Fig. 5.3 and Fig. 5.4), it is observed from
Fig. 5.11 that the result at the case of “ho = 2.2 mm” becomes the best. From these results,
we cannot get a clear conclusion about the relation between the height of observation surface
and the accuracy of the equivalent model.

In Chapter 3, we also discussed another issue, the accuracy of the surface impedance value
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Figure 5.12: Study on the influence of the pre-
defined observation surface by using Poynting
flux method at 6 GHz
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Figure 5.13: Study on the influence of the pre-
defined observation surface by using Poynting
flux method at 8 GHz

may be related to the existence of a geometrically predefined observation surface in meshing
while using the Poynting flux method. Here, we also carry out several simulations to check the
influence of this predefined surface. Again, we consider the mushroom structure without vias (D
= 10 mm, g = 4 mm, h = 1.6 mm, εr = 4.3) in the direct model and build two corresponding
equivalent models. The bottom surface of the first equivalent model is characterized by ZS,
calculated in the direct model with a predefined surface. For the second equivalent model, the
model is characterized by ZS, calculated in the direct model without a predefined surface.

Fig. 5.12 presents the calculations at 6 GHz. At the same time, we also vary the observation
surface in the direct model and check their impact. In this case, it is observed that the results
of the equivalent models are slightly improved, if the surface impedance valules are calculated
in the direct model with a predefined observation surface.

Then, we do the same tests at a higher frequency, 8GHz. In this case, figure 5.13 shows that
the existence of the predefined observation surface doesn’t help improving the accuracy of the
equivalent model and do the contrary. It seems that around the resonance, the influence of the
poor condition number is much more important than the advantage brought by a predefined
observation surface.

The Operating Frequency

In the previous subsection, the operating frequency is high, but not close enough to the reso-
nance. The resonance corresponds to the observation surface at 2 mm is found around 12 GHz,
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thus we carry out more simulations respectively at 10 GHz, 11 GHz and 12 GHz.
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Figure 5.14: E-field in different models at 10
GHz. (The equivalent models are based on the
surface impedance obtained by the Poynting
flux method.)
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Figure 5.15: E-field in different models at
10 GHz. (The equivalent models are based
on the surface impedance obtained by the
<E>/<H> method.)
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Figure 5.16: E-field in different models at 11
GHz. (The equivalent models are based on the
surface impedance obtained by the Poynting
flux method.)
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Figure 5.17: E-field in different models at
11 GHz. (The equivalent models are based
on the surface impedance obtained by the
<E>/<H> method.)

The E-fields in the direct model and in the equivalent model are calculated with different
methods at different frequencies and their results are presented from Fig. 5.14 to Fig. 5.19.
Generally, the results show that the closer to the resonance, the less effective the equivalent
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Figure 5.18: E-field in different models at 12
GHz. (The equivalent models are based on the
surface impedance obtained by the Poynting
flux method.)

−140 −120 −100 −80 −60 −40 −20 0 20 40 60
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

E−field V/m

z 
m

 

 

direct model
Eq model, ho=1.8 mm
Eq model, ho=2.0 mm
Eq model, ho=2.2 mm
Eq model, ho=2.4 mm

Figure 5.19: E-field in different models at
12 GHz. (The equivalent models are based
on the surface impedance obtained by the
<E>/<H> method.)

model will be. This phenomenon can be blamed on the poor condition number of the system
matrix near the resonance, so it’s better to avoid calculations around the resonance in the
equivalent model.

When constructing the equivalent model, the surface impedance value can be obtained by
two methods. Among the six figures, three correspond to the Poynting flux method, and the
rest correspond to the <E>/<H> method. It is found that the variation of the observation
surface’s height has little influence when using the <E>/<H> method. On the other hand, the
height of the observation surface can bring about a dramatic change of the results when using
the Poynting flux method. The results show that the closer the observation surface to the HIS
structure, the better the results.

Asymmetrical Structures

In the previous chapters, we studied some mushroom HIS structures with simple slot cuts. The
structure with a rectangle slot inside or the one with a rectangle slot at the side are no longer
symmetric, so their electromagnetic reactions to differently polarized excitations will not be the
same.

In the case of the mushroom structure with a rectangle slot at the side, the resonance with
x-oriented excitation is found at around 10 GHz, and the resonance with y-oriented excitation is
at about 15GHz. Here, we will check the effectiveness of the equivalent models for asymmetric
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Figure 5.20: Comparison of E-field with an
x-oriented excitation, at 10 GHz
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Figure 5.21: Comparison of E-field with a y-
oriented excitation, at 10 GHz
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Figure 5.22: E-field in different models with
an x-oriented excitation, at 15 GHz
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Figure 5.23: E-field in different models with a
y-oriented excitation, at 15 GHz

structures.
The simulation results show that the equivalent model is effective a little away from the

resonance, but not as good near the resonance. For example, at 10 GHz, the E-field detected
in the equivalent model is far from the one in the direct model for an x-oriented excitation, as
seen in Fig. 5.20. At 15 GHz, the E-field calculated in the equivalent model is less effective for a
y-oriented excitation, as seen in Fig. 5.23. As one sees, the effectiveness of the equivalent model
is not only related to the resonance but also related to the orientation of the excitation.
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Accuracy Between Two Methods

During the construction of the equivalent model, the value of the surface impedance is obtained
from the Poynting flux method or the <E>/<H> method. In Fig. 5.24 and in Fig. 5.25, we
compare the E-field calculated in the direct model and in the equivalent model with these two
different methods at 7 GHz and at 10 GHz. From these results, it is observed that the equivalent
model is more effective when adopting the surface impedance value from the <E>/<H> method.
Up to now, we didn’t find a good explanation for this phenomenon.
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Figure 5.24: Comparison of the accuracy
between the Poynting flux method and the
<E>/<H> method. (An example with mush-
room structure at 7 GHz.)

−4 −3 −2 −1 0 1 2 3
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

E−field V/m

z 
m

 

 

Direct model
Eq model PFM, ho=1.8mm
Eq model EHM, ho=1.8mm
Eq model PFM, ho=2mm
Eq model EHM, ho=2mm
Eq model PFM, ho=2.2m
Eq model EHM, ho=2.2m
Eq model PFM, ho=2.4mm
Eq model EHM, ho=2.4mm

Figure 5.25: Comparison of the accuracy
between the Poynting flux method and the
<E>/<H> method. (An example with mush-
room structure at 10 GHz.)

Moreover, we also compare the equivalent models built with the surface impedance values
obtained at different observation surfaces. It is found that the <E>/<H> method is less
sensitive to the influence of the observation surface height.

Permittivity of the Substance

In order to further investigate the effectiveness of the equivalent model, we also consider the
case with a lossy HIS substrate. A relative permittivity εr = 2−j0.01 is chosen for a mushroom
structure. For a lossy structure, both the real part of the E-field and the imaginary part of the
E-field should be observed.

Figure 5.26 and Figure 5.27 show that the equivalent model works well with a lossy substrate.
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Figure 5.26: Comparison of the real part of
E-field for a lossy HIS substrate, at 10 GHz
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Figure 5.27: Comparison of the imaginary
part of E-field for a lossy HIS substrate, at
10 GHz

Nevertheless, the equivalent model designed by using the surface impedance value obtained from
the <E>/<H> method is less effective than the one obtained from the Poynting flux method.

Summary

In this chapter, we proposed an equivalent model for HIS structures: All the inhomogeneous
HIS structures are replaced by an equivalent surface, characterized by the sheet impedance of
the HIS structures. Before building the equivalent model, it takes some time to calculate the
surface impedance value at each operating frequency in the direct model. However, calculating
the electromagnetic fields in the equivalent model can save a lot of computing time and of core
memory, compared with the calculation with the direct model. For instance, if one replaces the
direct model for a one mushroom HIS structure by an equivalent model, the calculation of the
electromagnetic field is reduced by a factor 10.

This equivalent model can be part of a simulation tool for designing the antenna, which
would offer approximate results for the antenna’s radiation pattern in a very short time. The
mechanism of the design is that the frequency bandgap created by the HIS structures should
cover the expected bandwidth of the antenna. Notice that the equivalent model works less
effectively near the resonance of the HIS structures.



Chapter 6

Conclusions and Perspectives

Conclusions

In this thesis, several types of high impedance structures have been intensively studied. Empha-
sis has been on the numerical modeling of these structures by using the finite element method
with edge elements. We proposed two numerical methods of calculating the surface impedance
for HIS structures, which are applicable not only to symmetric structures, but to asymmetric
ones as well. These two methods have been validated through various comparisons among the
analytical, numerical and measurement results. Besides, the results obtained from these two
methods became the base stone for building an equivalent model for HIS structures, which can
reduce the complexity of the mesh in numerical modelling and thus save computing time. An
equivalent model like this has been successfully set up in some simplified cases.

In the following part, we will recall the main points and discoveries of our work in this thesis
in a concise way.

Our work began by a study on existing analytical modellings for several kinds of HIS struc-
tures. Analytical calculations can offer a quick view of HIS structure’s characteristics, even
though these predictions are less rigorous and more restricted to the structures with a simple
geometry.

Then, a numerical modeling for HIS structures was built by using the finite element method
based on edge elements and verified by two types of symmetric HIS structures: the mushroom
structure and the Jerusalem-cross structure. These two structures have already been studied in
analytical models and their analytical results are considered as references to check the validity
of our numerical model. By comparing the phase of the reflection coefficient obtained from the
analytical calculations and numerical calculations, our numerical model is proved to be effective.

142
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In this process, we tested two schemes of modellings: one is semi-numerical and semi-analytical;
another is totally numerical and based on the homogenization theory. The former scheme is
discarded because of its inferior effectiveness, especially at high frequencies.

After successfully constructing the numerical model, a series of simulations have been made
to analyze its performance. Results around the resonance were found less accurate, this being
mainly due to the poor condition number of the stiffness matrix near the resonance. When
handling the boundary conditions for the numerical model, two schemes were applied. The first
scheme is a combination of the Perfect Electric Conducting boundary condition and the Perfect
Magnetic Conducting boundary condition. This scheme has the advantage of easy programming
and quick calculation which helps us to accomplish the first numerical calculation. However,
this scheme is very sensitive to the asymmetric meshing and is not suitable for asymmetric HIS
structures. Hence, the first scheme is not to be recommended and was abandoned in our later
simulations. The second scheme applied two groups of periodic boundary conditions to the four
lateral walls around the HIS unit cell. When choosing this scheme, one important condition
should be satisfied: the meshing on the two corresponding faces must be totally identical. The
advantage of this scheme is that it is not limited to asymmetric HIS structures and less sensitive
to the asymmetry of the mesh.

For a symmetric HIS structure, the surface impedance’s calculation can be simplified into a
1D problem. Since 1D calculation of the surface impedance does not suffice to exhibit the char-
acteristics of an asymmetric HIS structures, new methods of calculating 2D surface impedance
are required. Accordingly, we proposed two new numerical methods to calculate the surface
impedance for HIS structures, expressed in the form of a 2 × 2 matrix. The Poynting flux
method and the <E>/<H> method both interpret the surface impedance of HIS structure
as an impedance boundary condition in a macro view. In simulations, symmetrical structures
(Mushroom structures and Jerusalem-cross structures) and asymmetric structures (the rectangle
structures, the spiral structures and the structures with slot-cut) were all tested. Furthermore,
several samples have been fabricated and measured to verify the effectiveness of these numerical
methods. Our numerical calculations are closer to the experimental results than the analytical
calculations.

Finally, an equivalent model based on the surface impedance value is put forward, with the
help of which the traditionally numerical model, composed of the whole detailed HIS struc-
tures, is simplified into an homogeneous impedance surface. As regards the direct model, this
equivalent model is capable of calculating the electromagnetic radiation with less computing
time and less core memory. Of course, the equivalent model offers only an approximate result,
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but it’s really attractive to see that the computing time can be largely reduced. For example,
by replacing the mushroom HIS structures with an equivalent surface under the case of one
unit cell, around 90% CPU time could be saved. Through the simulations, we also found that
under most circumstances, the surface impedance value calculated by the <E>/<H> method
is more effective than the one got by the Poynting flux method in building the equivalent model.
Another important thing should be pointed out: the equivalent model is less effective when the
operating frequency is close to the resonance. This phenomenon may also be blamed on the
poor condition number in this situation.

In general, this equivalent model is very promising to be a part of an antenna design tool,
which can give out a quick prediction of radiation patterns in a relatively short time.

Perspectives

In this thesis, the main contribution was to propose two numerical methods of calculating the
2D surface impedance of HIS structures. The numerical calculations have already been verified
by experimental measurements and been used to characterize the HIS features, but there is still
room for improvement. In this part, we will discuss a few ideas about how to improve on our
numerical models.

Excitation of the numerical model

In our numerical model, the excitation is a plane wave with normal incidence. So, the first effort
is going to consider an excitation with an oblique incidence. The second effort is to modify the
constant E-field excitation to a TE or TM mode E-field excitation. These two improvements
will make the numerical model a real full-wave simulation model and will contribute to get a
more precise prediction for HIS properties.

Our equivalent model is only tested under a simplified condition of plane wave. The next
effort can be to replace the E-field excitation by a real antenna, excited by an electrical current.
This situation is closer to a real case and the effectiveness of this equivalent model can be more
thoroughly checked. Under this case, the study domain should be enlarged with more HIS cells,
at least enough for the structure to be larger than the antenna.

Design of the homogeneous surface in the equivalent model

In our conceit and test of the equivalent model, we propose a uniform surface characterized
by the surface impedance on the basis of the hypothesis that the electromagnetic field on the



CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 145

surface is homogeneous. However, with extremely asymmetric structures, this hypothesis will
be less valid and may even fail to hold.

a certain HIS structure the corresponding equivalent structure

Figure 6.1: Geometry of one unit cell for the mushroom structure

The motivation for building this equivalent model is to save computing time and memory
by highly reducing the mesh complexity. Hence, the surface can be divided into two, four or
even more uniform sub-surfaces instead of a single uniform equivalent surface. The number and
shape of these sub-surfaces depend on the original inhomogeneous distribution. Do a simulation
with the original structures, observe the electromagnetic field distribution and decide how to
design the sub-surfaces. An example is given in Fig. 6.1 and in this case, the equivalent surface
is composed of four sub-surfaces. The surface impedance of each sub-surface can be separately
calculated.

Effectiveness at the resonance

It is found that the numerical model is less effective around the resonance, both in the direct
model and in the equivalent model. The deflation method may be used to improve the accuracy
of the results near the resonance. The first eigen value should be calculated, for example by
the iterated power method. Then the solution can be obtained by working in the subspace
orthogonal to the eigenmode.

Applications

At the beginning, the numerical model was designed to characterize HIS structures. Afterward,
we proposed the equivalent model, aiming at being a useful simulation tool for an antenna
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design.
In fact, this model can also be used to study the propagation properties of a waveguide. As

mentioned before, the HIS has already been used in designing the resonator and leaky wave
antenna. So, our numerical model can also be useful in describing and analyzing such models
with certain changes.

Besides, an accurate calculation for the surface impedance at an appropriate position can
also create more equivalent models for all kinds of applications.
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