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AVANT-PROPOS

Le dossier qui suit résume 26 années d'une carriere qui fut souvent solitaire, lorsque la
matiere traitée ne se prétait guére a une réflexion collective, mais ou j'ai aussi eu l'occasion de
partager de bonnes questions (et de bonnes réponses) avec quelques-uns de mes pairs. J'ai
méme eu le privilége, trop rare sans doute, de guider les premiers pas dans la recherche de
quelques étudiants trés motivés. Initialement expérimentateur en psychologie cognitive, je
suis entré¢ au CNRS fin 1984 avec ce profil, aprés avoir soutenu une thése de troisiéme cycle
sur la reconnaissance visuelle des mots. Puis, la vague connexionniste de la décennie 80 et le
développement des sciences cognitives aidant, il a ét¢ recommandé aux chercheurs de devenir
interdisciplinaires, et je me suis aussitot lancé avec enthousiasme dans la modélisation
neurocomputationnelle. De fil en aiguille, je me suis rapproché¢ de plus en plus des
mathématiques appliquées, ou se trouve la solution de bien des problémes liés au
développement des modeles, au calcul de leurs parameétres, et méme a leur validation, ce qui
nous ramene finalement a I'expérimentation humaine, mais avec une vision un peu différente
de celle de I'expérimentaliste, encore que les faits s'avérent toujours aussi "té€tus". On peut
considérer qu'il s'agit, en fait, d'une approche de psychologie mathématique, mais avec une
dimension interdisciplinaire que la psychologie mathématique ne revendique pas
habituellement. De fait, je pense que mes publications ont plus souvent intéressé des
collegues travaillant dans des domaines de sciences pour l'ingénieur plutdt qu'en psychologie.
Ceci n'est pas forcément définitif, et je tente, depuis un certain temps, un retour a des supports
de publication plus familiers aux psychologues.

Ma démarche de modélisation s'inspire du constat, de prime abord un peu pessimiste,
de P. Valéry: "tout ce qui est simple est faux, tout ce qui est compliqué est inutilisable". Ceci
est vrai pour la psychologie cognitive, comme pour toute science, sans doute. Le rdle de la
modélisation mathématique est précisément de rendre simple une complexité naturelle qui,
sans cela, serait inabordable. Il s'agit, suivant le mot de J. Perrin, de "remplacer du visible
compliqué par de l'invisible simple". En ce qui concerne la cognition humaine, c'est 1a un pari
qui est encore bien loin d'étre gagné, mais je ne doute pas que ce soit le seul objectif
raisonnable a terme.

Ce document se subdivise en deux parties principales de natures différentes. La
premicre partie "Activités Scientifiques" récapitule les informations que l'impétrant est
réglementairement tenu de fournir: curriculum vitae, études suivies, liste des publications,
activités scientifiques et de formation a la recherche, attestation de thése de 3°™ cycle. La
seconde partie "Dossier de Travaux" présente une sélection de douze textes publiés dans des
revues scientifiques internationales a comité de lecture. La présentation est organisée en six
sections thématiques, chacune incluant de un a trois textes représentatifs, aprés une breve
introduction. Toutes mes publications n'apparaissent pas dans cette présentation, et j'ai
privilégié ceux de mes thémes de recherche qui sont toujours en développement. Cette
seconde partie se termine par un résumé de travaux en cours et quelques perspectives
destinées a convaincre le lecteur que cette Habilitation a Diriger des Recherches n'est
nullement un aboutissement, mais devrait au contraire se prolonger dans des investigations
dont les précédentes ne sont que les prémices.
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PREMIERE PARTIE

Activités Scientifiques

CURRICULUM VITAE

COURRIELU, Pierre

Chargé de Recherche de Premiere Classe (CR1)
Centre National de la Recherche Scientifique (CNRS)
Institut des Sciences Biologiques (INSB)

Section 27 du Comité National: Comportement, Cognition, Cerveau

Affectation actuelle:

Laboratoire de Psychologie Cognitive (LPC), UMR CNRS-UP N° 6146, Péle 3C, Université
de Provence, Centre Saint-Charles, 3, place Victor Hugo, 13331 Marseille Cedex 3

Directeur de I’Unité: J. Grainger

Equipe: Perception & Attention (responsable F. Vitu-Thibault)

Contact:
Tel.: (33/0)442228777,(33/0)4 135509 89, Fax: (33/0)4 13550998

E-mail: pierre.courrieu@univ-provence.fr

Etat civil: Né le 17 Mai 1954 a Sokodé (Togo), marié, 1 enfant, nationalité francaise.
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Etudes Universitaires

1972: Diplome de Bachelier de I'Enseignement du Second Degré

Etudes supérieures de psychologie a I’Université de Provence (1974-1983):

1974-1976: Diplome d'Etudes Universitaires Générales

1977: License de Psychologie

1978: Maitrise de Psychologie, directeur G. Noizet.

1980: DEA de Psychologie, directeur G. Noizet.

1983: Doctorat de troisitme cycle en Psychologie, directeur C. Bastien. These:
“L’identification des mots au cours de la lecture”, soutenue le 22/12/1983, mention “Tres
Bien” a I'unanimité du jury (C. Bastien, C. Bolusset, A. Lévy-Schoen, G. Noizet, & J. Pynte).

Activités professionnelles

1980-1983: Allocataire de Recherche DGRST, Laboratoire de Psychologie Cognitive (L.A.
CNRS N° 182), Université de Provence.

1980-1981: Chargé de Cours a I’Université de Provence, UER de Psychologie (enseignement
de la méthodologie et de I’informatique).

198 1(novembre)-1983(mars): Chargé d’Etudes et Conseiller Scientifique, Centre National
d’Etudes des Télécommunications (CNET-LAA-TSS-SEF), Rte de Tregastel, 22301 Lannion.

1984: Attaché de Recherche au CNRS, Centre de Recherche en Psychologie Cognitive (URA
CNRS 182), Université de Provence.

1986: Chargé de Recherche de 2eme classe au CNRS, CREPCO (URA 182), Université de
Provence.

1989: Chargé de Recherche de lere classe au CNRS, CREPCO (URA 182) devenu LPC
(UMR 6146), Université de Provence.

Theémes de recherche abordés
Perception visuelle des formes et des lettres, apprentissage perceptif, code orthographique,

modeles de codage de données, modeles de codage d'images, modeles d'approximation de
fonctions, méthodes de calcul des parametres de modeles, méthodes de validation de modéles.
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LISTE DES PUBLICATIONS

Articles dans des revues et ouvrages a comité de lecture

Courrieu, P. (1985). Des lettres sans position dans la perception des mots. L’Année
Psychologique, 85, 9-25. doi : 10.3406/psy.1985.29064
(URL: http://www.persee.fr/web/revues/home/prescript/article/psy 0003-5033 1985 num 85 1 29064)

Courrieu, P. (1986). Analyse-t-on le mot de gauche a droite ? Bulletin de Psychologie (N°
spécial “Hommage a Georges Noizet”), T.XXXIX, N° 375, 425-427.

Courrieu, P. (1986). Serial analysis in the perceptual discrimination of words. Cahiers de
Psychologie Cognitive, 6(3), 329-336.

Courrieu, P. (1988). Paradigmes temps réel interactifs. In J.P. Caverni, C. Bastien, P.
Mendelsohn, & G. Tiberghien, Psychologie Cognitive: Modéles et Méthodes. Grenoble:
P.U.G., pp.365-373.

Courrieu, P. (1988). Stratégies d’abbréviation de mots francais. L’Année Psychologique, 88,
47-63. doi : 10.3406/psy.1988.29250
(URL: http://www.persee.fr/web/revues/home/prescript/article/psy 0003-5033 1988 num 88 1 29250)

Courrieu, P. (1993a). A convergent generator of neural networks. Neural Networks, 6, 835-
844.

Courrieu, P. (1993b). A distributed search algorithm for global optimization on numerical
spaces. RAIRO: Recherche Opérationnelle / Operations Research, 27, 281-292.

Courrieu, P. (1994a). Three algorithms for estimating the domain of validity of feedforward
neural networks. Neural Networks, 7, 169-174.

Courrieu, P. (1994b). Connexionnisme et fonctions symboliques. /n J.P. Caverni, C. George,

& G. Politzer, Raisonnements: Conjoncture et Prospective. Psychologie Francaise (numéro
spécial), 39-2, 231-236.

Courrieu, P. (1997). The Hyperbell algorithm for global optimization: a random walk using
Cauchy densities. Journal of Global Optimization, 10, 37-55.

Courrieu, P. (2001). Two methods for encoding clusters. Neural Networks, 14, 175-183.

Courrieu, P. (2002). Straight monotonic embedding of data sets in Euclidean spaces. Neural
Networks, 15, 1185-1196.

Courrieu, P. (2004). Solving time of least square systems in Sigma-Pi unit networks. Neural
Information Processing - Letters and Reviews, 4(3), 39-45.
(PDF:_http://bsrc.kaist.ac.kr/nip-Ir/V04N03/V04N03P2-39-45.pdf)

Courrieu, P. (2005a). Function approximation on non-Euclidean spaces. Neural Networks, 18,
91-102.
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Courrieu, P. (2005b). Fast computation of Moore-Penrose inverse matrices. Neural
Information Processing - Letters and Reviews, 8(2), 25-29.
(PDF: hitp://bsrc.kaist.ac.kr/nip-Ir/VO8N02/VO8N02P2-25-29.pdf)

Courrieu, P. (2006). Density codes and shape spaces. Neural Networks, 19, 429-445.

Courrieu, P. (2007). Fast density codes for image data. Neural Information Processing -
Letters and Reviews, 11(12), 247-255.
(PDF: http://bsrc.kaist.ac.kr/nip-Ir/V11N12/V11N12P1-247-255.pdf)

Courrieu, P. (2009). Fast solving of Weighted Pairing Least-Squares systems. Journal of
Computational and Applied Mathematics, 231, 39-48.

Courrieu, P., Brand-D'Abrescia, M., Peereman, R., Spieler, D., Rey, A. (2011). Validated
intraclass correlation statistics to test item performance models. Behavior Research Methods.
doi: 10.1007/s13428-010-0002-7

Courrieu, P., De Falco, S. (1989). Segmental vs. dynamic analysis of letter shape by preschool
children. CPC: European Bulletin of Cognitive Psychology, 9, 189-198.

Courrieu, P., D6, P. (1987). Perceptual analysis of words in Arabic. In J.K. O’Regan and A.
Lévy-Schoen (Eds), Eye Movements: From Physiology to Cognition. Amsterdam: North
Holland, pp. 451-458.

Courrieu, P., Farioli, F., Grainger, J (2004). Inverse discrimination time as a perceptual
distance for alphabetic characters. Visual Cognition, 11(7), 901-919.

Pynte, J., Courrieu, P., Frenck, C. (1989). Retrieval from verbal memory and motor
programming during writing by hand. In P. Boscolo (Ed.), Writing: Trends in European
Research. Padova: Upsel Editore, 205-212.

Pynte, J., Courrieu, P., Frenck, C. (1991). Evidence of repeated access to immediate verbal
memory during handwriting. European Journal of Psychology of Education, 6(2), 121-125.

Pynte, J., Courrieu, P., Kennedy, A., Murray, W.S. (1987). On the role of spatialisation in
reading ambiguous sentences. In G. Liier & U. Lass, Fourth European Conference on Eye
Movements. Volume 1: Proceedings. Gottingen, C.J. Hogrefe, pp. 31-33.

Pynte, J., Kennedy, A., Murray, W.S., Courrieu, P. (1988). The effects of spatialisation on the
processing of ambiguous pronominal reference. In G. Liier, U. Lass, & J. Shallo-Hoffmann
(Eds.), Eye Movement Research: Physiological and Psychological Aspects. Géttingen, C.J.
Hogrefe, pp. 214-225.

Rey, A., & Courrieu, P. (2010). Accounting for item variance in large-scale databases.
Frontiers in Psychology 1:200. doi:10.3389/fpsyg.2010.00200
(URL: http://www.frontiersin.org/language sciences/10.3389/fpsyg.2010.00200/full)

Rey, A., Courrieu, P., Schmidt-Weigand, F., Jacobs, A.M. (2009). Item performance in visual
word recognition. Psychonomic Bulletin & Review, 16(3), 600-608
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Ripoll, H., Baratgin, J., Laurent, E., Courrieu, P., & Ripoll, T. (2001). Mechanisms
underlying the activation of knowledge basis in identification of basketball play
configurations by expert and non-expert players. In A. Papaioannou, M. Goudas, & Y.
Theodorakis (Eds.), In the Dawn of the New Millennium: Proceedings of the 10th World
Congress of Sport Psychology, Skiathos, Greece, 28th May - 2nd June, Vol. 2, pp. 283-285.
Thessaloniki: Christodoulidi Publications.

Archives et publications sans comité de lecture

Baratgin, J., Courrieu, P., Ripoll, T., Laurent, L., & Ripoll, H. (2002). Similarity Judgements
of Basketball Game Configurations by Experts and Novices: A Model and Some Experimental
Tests. Unpublished manuscript (2002): http://www.ergos-perf.com/Docs/Model PSE.pdf,
54 p.

Courrieu, P., & Lequeux, M. (2009). Anagram Effects in Visual Word Recognition.
Unpublished manuscript (1988): http://hal.archives-ouvertes.fr/hal-00429184/fr/, 40 p.

Courrieu, P., Ripoll, T., & Sabancioglu, F. (2009). Affinely Invariant Features in Visual
Perception of Letters and Words. Unpublished manuscript (2002): http://hal.archives-
ouvertes.fr/hal-00429562/fr/, 14 p.

Manuscrits actuellement soumis pour publication (Novembre 2010)

Courrieu, P. (submitted-1). Quick Approximation of Bivariate Functions.

Courrieu, P., & Rey, A. (submitted-2). Missing Data Imputation and Corrected Statistics for
Large-Scale Behavioral Databases.

Communications

Bolusset, C., Devauchelle, P., Courrieu, P. (1982). Communication homme-terminal : aspects
psychophysiologiques de la lecture sur écran. /18éme Congrés de la Société d’Ergonomie de

Langue Francaise. Paris, 13-15 Octobre.

Courrieu, P. (1980). La lecture des mots en contexte restreint. Journées d’étude de I’Ecole
Pratique des Hautes Etudes “Codage Phonétique et Codage Phonologique”. Paris, Octobre.

Courrieu, P. (1982). Intégration perceptive des chaines de caractéres et acces au lexique.
Journées d’étude de I’Ecole Pratique des Hautes Etudes “Acces au Lexique”. Paris, 30
Septembre-1er Octobre.

Courrieu, P. (1984). Analyse-t-on le mot de gauche a droite ? Colloque “Hommage a Georges
Noizet”. Aix-en-Provence, 18-19 Octobre.
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Courrieu, P. (1986). Paradigmes temps réel interactifs. Colloque Société Francaise de
Psychologie “Activités cognitives: modeéles de processus et niveaux d’observation”. Aix-en-
Provence, 13-14 Mars.

Courrieu, P. (1989). Anagram effects in word recognition. Workshop on Language
Comprehension. Aix-en-Provence, September 15-16.

Courrieu, P. (1991). A convergent generator of neural networks. Second Workshop on
Language Comprehension. Aix-en-Provence, April 26-27.

Courrieu, P. (1993). Raisonnements et connexionnisme: réponse a Alain Grumbach. Congres
de la Société Frangaise de Psychologie. Poitiers, 13-15 Mai.

Courrieu, P. (1998). Réalisme cognitif dans les modeles de lecture: une breéve confrontation
du modele de Fukushima avec quelques données empiriques. Journée Thématique “Lecture”
du GRCE. Paris, ENST, 26 Novembre.

Courrieu, P., D6, P. (1985). Perceptual analysis of words in Arabic. Third European
Conference on Eye Movements. Dourdan, September 24-27.

Pynte, J., Besson, M., Courrieu, P. (1991). Etude comportementale et électrophysiologique de
la compréhension du langage. Assises Régionales des Sciences de la Cognition “Cognisud”.
Marseille, 24-26 Janvier.

Pynte, J., Courrieu, P., Frenck, C. (1988). Psycholinguistic management in immediate
memory and the motor programming of handwriting. International Workshop on Writing.
Padova, December 1988.

Pynte, J., Courrieu, P., Kennedy, A., Murray, W.S. (1987). On the role of spatialisation in
reading ambiguous sentences. Fourth European Conference on Eye Movements. Gottingen,
September 21-24.

Rey, A., Brand-d'Abrescia, M., Peereman, R., Spieler, D., & Courrieu, P. (2010). The
nanopsycholinguistic approach: Item performance in disyllabic word naming. Oral
communication presented at the 51st Annual Meeting of the Psychonomic Society, St Louis,
USA, November 18-21.

Ripoll H., Baratgin J., Laurent E., Courrieu P. & Ripoll T. (2001). Mechanisms underlying
the activation of knowledge basis in identification of basketball play configurations by experts

and non-experts players. 10th World Congress of Sport Psychology. Skiathos Island (Greece),
May 28-June 2.

AUTRES ACTIVITES
Participation a des contrats de recherche
Besson, M., Courrieu, P., Frenck-Mestre, C., Jacobs, A., Pynte, J. (1992). Approche

électrophysiologique et simulation de la compréhension du langage. M.R.T.-Sciences de la
Cognition 1992.

10
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Ducrot, S., Lété, B., Nguyen, N., Pynte, J., Habib, M., Rey, V., Asmussen, C., Bastien, C.,
Bastien-Toniazzo, M., Courrieu, P., Colé, P., Rey, A. (2002-2004). Le developpement des
capacités perceptives visuo-attentionnelles au cours de I’acquisition de la lecture (normale et
pathologique). Projet co-financé par Conseil Général des Bouches-du-Rhoéne, Conseil
Régional PACA, CNRS-Université de Provence.

Gonzalez, M., Courrieu, P., Pélissier, A. (1988-1992). Etudes d’une expertise humaine en
détection sous-marine. Convention DCAN-CNRS C 87 48 813 517, tranches I, II, III.

Pynte, J., Courrieu, P., Frenck, C., Vion, M., Cavé, C., Di Cristo, A., Hirst, D., Roméas, P.,
Besson, M., Jacobs, A., Nazir, T., Ide, N., Véronis, J., Harie, S., Habib, M., Colé, P., Hamon,
J.-F., Léonard, F., Magnan, A., Mendoza, J.-L. J. (1992). Les unités de traitement dans la
perception de la parole et la lecture. Réseau Cognisciences “Cognisud”, N°18.

Ripoll, H., Baratgin, J., Laurent, E., Kehlhoffner, E., Cauzinille, E., Courrieu, P., Pélissier, A.,
Ripoll, T., Drogoul, A., Landau, S., Munoz, A., Zucker, J.-D., Bredeche, N. (1999-2002). Les
déterminants cognitifs de |’organisation spatiale du footballeur: application a I’homme et au
robot. A.C.1. Cognitique (theme 1: Cognition Spatiale), N° 90.

Touratier, C., Courrieu, P., Piolat, A., Pynte, J., Véronis, J. (1987). Convergence des modeles
linguistiques et psychologiques de [’orthographe dans la production écrite. A.T.P. CNRS
“Nouvelles Recherches sur le Langage”, N° 1099.

Expertises d'articles soumis aux revues suivantes:

. L'Année Psychologique

. CPC: European Bulletin of Cognitive Psychology

. IEEE Transactions on Neural Networks

. Journal of Computational & Applied Mathematics

. Computers and Mathematics with Applications

. Applied Numerical Mathematics

. Bulletin of the Malaysian Mathematical Sciences Society
. Computing

Participation a I’organisation de colloques scientifiques
Workshop on “Language Perception and Comprehension: Multidisciplinary Approaches”,

Marseille, July 14-18th 1992. Organisé par M. Besson, P. Courrieu, C. Frenck-Mestre, A.
Jacobs, & J. Pynte.

Enseignement
1984-1988: enseignement de 1’informatique (programmation Basic et Pascal) en second cycle
de psychologie (37h1/2 / an), interventions en DESS d’Ergonomie Cognitive (3h / an),

Université de Provence.

1991-2006: enseignements sur les réseaux de neurones artificiels et la reconnaissance des
formes en 2eéme 3eme cycles de psychologie (6h / an), Université de Provence.

11
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Encadrement de mémoires de recherche

Aicart-De Falco, S. (1987). Apprentissage et reconnaissance de caracteres minuscules scripts
chez des enfants d’école maternelle. Mémoire de Maitrise de Psychologie, Université de
Provence.

Lequeux, M. (1986). Des roles des lettres sans position et des anagrammes dans la
perception des mots. Mémoire de Maitrise de Psychologie, Université de Provence (codir. C.
Bastien).

Lequeux, M. (1988). Effet du nombre d’anagrammes lexicales en fonction de leurs fréquences
d’usage dans la perception des mots. Mémoire de D.E.A. de Psychologie, Université de
Provence (codir. C. Bastien).

Sabancioglu, F. (2002). A la recherche des invariants dans la perception visuelle des lettres et
des mots: les transformations par changement d’échelle et par double symétrie. Mémoire de
Maitrise de Psychologie, Université de Provence (codir. T. Ripoll).
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SECONDE PARTIE

Dossier de travaux

Une grande partie des travaux que j'ai réalisés au début de ma carricre, dans la suite de
ma thése de troisiéme cycle, consistait en des études expérimentales du codage
orthographique des mots chez le lecteur adulte. Je n'ai pas complétement abandonné cette
thématique, mais si je dois y revenir, ce sera dans une perspective assez différente, plus
¢troitement liée a la modélisation numérique. J'ai donc choisi de ne pas présenter ici ces
travaux anciens, et le lecteur intéressé pourra se reporter aux références apparaissant sur ce
sujet dans la liste de mes publications. En particulier, trois de ces références comportent des
liens vers des documents librement accessibles (Courrieu, 1985; Courrieu, 1988; Courrieu &
Lequeux, 2009). La derni¢re de ces références est en fait un manuscrit non publié que j'ai
récemment mis en ligne, et dont la rédaction initiale remonte a 1988 (révisée en 2004).
L'échantillon de travaux présenté dans ce qui suit couvre essentiellement la période 2001-
2010, a l'exception de deux références antérieures a cette période qui m'ont paru avoir quand

méme leur place ici.

I1.A Perception des lettres

Les lettres de l'alphabet sont des formes visuelles a part entiére, assez simples a
premicre vue, mais aussi trés variables dans leurs réalisations. Les lettres peuvent apparaitre
au sein de formes plus complexes telles que des mots, et les lecteurs adultes sont experts dans
leur reconnaissance. Sur quoi se fonde cette habileté extréme a reconnaitre les lettres, et
comment est-elle acquise? Ayant constaté le relatif dédain dans lequel 1'Intelligence
Artificielle tenait la reconnaissance de formes simples comme les lettres (ce qui contrastait
singuliérement avec la réelle complexité de cette performance), Douglas Hofstadter (1995) n'a
pas hésité a déclarer que "the toughest challenge facing Al workers is to answer the question:
What are the letters 'A' and 'T'?".

D'assez nombreux modeles de reconnaissance des caractéres ont été proposés dans le
domaine de la Reconnaissance des Formes (Pattern Recognition), mais finalement, assez peu
de principes ont été retenus par la psychologie de la perception. Reconnaissance globale et
"template matching" ne semblent plus avoir beaucoup d'adeptes, bien que les outils de

modé¢lisation utiles dans ces approches aient fortement progressé ces dernieres années (j'y
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reviendrai dans la section II.C). L'idée qui résiste le mieux aux critiques et aux mises a
'épreuve expérimentales est celle d'une organisation hiérarchique de la perception visuelle,
partant de la détection de traits (segments) simples qui sont ensuite combinés en des éléments
plus complexes au niveau supérieur, et ainsi de suite jusqu'a atteindre le niveau d'éléments
reconnaissables comme des caractéres, des combinaisons de lettres, ou des mots. Cette théorie
hiérarchique est directement inspirée des observations neurophysiologiques (Hubel & Wiesel,
1970), et est assez largement adoptée en psychologie cognitive (Dehaene, 2007).

Une autre idée a été proposée par Courrieu et De Falco (1989, article ci-joint), se
fondant sur le double constat suivant. Il est, d'une part, relativement facile de reconnaitre
automatiquement des caractéres lorsque ceux-ci sont représentés sous la forme de courbes
paramétriques (position (x, y) fonction du temps (t)), c'est-a-dire sous la forme d'une
représentation abstraite du geste d'écriture. C'est ce qu'on appelle la reconnaissance "online"
de caractéres (Connell & Jain, 2001). D'autre part, il est aisé pour un lecteur adulte de
reconstituer a posteriori une approximation du geste d'écriture a partir d'une trace écrite,
laquelle est une image en deux dimensions (niveau de gris (g) fonction de la position (x, y)).
Il existe de plus des méthodes de suivi automatique de tracé dans une image (Baruch, 1988;
Chouinard & Plamondon, 1992), ce qui confirme la faisabilité de la chose. La question était
donc posée: est-ce qu'apprendre a tracer des lettres facilite leur reconnaissance en lecture?
Pour tenter de répondre a cette question, Courrieu et De Falco (1989) ont appris a des enfants
pré-scolaires a reconnaitre des lettres avec différentes méthodes d'apprentissage, permettant
de privilégier soit une reconnaissance globale, soit une analyse des lettres en segments
simples, soit une représentation dynamique du geste d'écriture. Les résultats ont fait
clairement apparaitre l'efficacité¢ de I'analyse des lettres en segments simples, mais il n'y avait
pas d'effet détectable de I'apprentissage du geste d'écriture sur la reconnaissance. Cependant,
d'autres auteurs ont récemment repris cette idée, et ont observé que l'apprentissage du geste
d'écriture facilite la reconnaissance des caractéres chez des enfants un peu plus agés
(Longcamp, Zerbato-Poudou, & Velay, 2005), ainsi que chez des adultes (Longcamp,
Boucard, Gilhodes, Anton, Roth, Nazarian, & Velay, 2008). L'idée n'était donc pas si
mauvaise, et il semble bien que la construction de représentations a partir du geste d'écriture
puisse contribuer a la reconnaissance des lettres, mais seulement a partir d'un certain niveau
de maturation du systéme cognitif. Certains auteurs ont baptisé "signature proprioceptive" le
pattern d'activation motrice caractéristique de chaque symbole graphique reconnaissable
(Roll, Albert, Ribot-Ciscar, & Bergenheim, 2004; Vinter & Chartrel, 2008), mais il s'agit 1a

d'une forme plus "incarnée" (donc moins abstraite) de I'hypothese initiale de représentations

18



Pierre Courrieu — dossier HDR 11.A.3

en courbes paramétriques. Par ailleurs, comme les représentations en segments simples sont
également efficaces (Courrieu & De Falco, 1989), et méme plus précocement, on peut
supposer que la reconnaissance des lettres s'appuie en fait sur différentes ressources, et qu'a
priori, rien de ce qui peut étre utile a la perception n'est a exclure.

Une autre facon d'aborder la question des représentations a 1'oeuvre dans la perception
des lettres consiste a analyser des données de similitude perceptive des différentes lettres, de
facon a en extraire un ensemble de facteurs déterminants. C'est ce qu'ont fait Courrieu,
Farioli, & Grainger (2004, article ci-joint) en mesurant et analysant des temps de
discrimination perceptive des 26 lettres de l'alphabet latin, plus le caractére d'espacement. La
méthodologie employée consistait a appliquer a la matrice des temps de discrimination
inverses une technique de "plongement monotone euclidien" (Courrieu, 2002, voir section
I.B), qui est une technique particuliére de "multidimensional scaling" permettant d'attribuer a
chaque caractére une position dans un espace euclidien, puis & compléter par une analyse
factorielle. Nous avons ainsi obtenu un ensemble de 25 facteurs, d'importances inégales,
interprétables comme des descripteurs perceptifs ("features"). Certains de ces descripteurs
correspondaient a la présence d'une forme de lettre entiére, comme par exemple "n" dans "n"

Hi” nnoonen nen ne n

ou "h", "i" dans ou"j", "v" dans "v" ou "y". D'autres descripteurs correspondaient a des
patterns particuliers tels que "4 coins et une diagonale d'un carré" comme dans "x" et "z"
(mais aussi dans "%"), ou a des segments simples comme "l'arc de cercle supérieur gauche"
commun a "c" et "r". Ces descripteurs sont compatibles avec la théorie hiérarchique évoquée
plus haut. Cependant, d'autres descripteurs, plus abstraits, sont difficilement interprétables
dans ce cadre. Certains descripteurs correspondaient a une caractéristique assez générale
comme "petite forme curvilinéaire" dans "a, c, e, o, s", ou a une caractéristique plus
spécifique comme "forme sigmoide" dans "s" et "z". D'autres descripteurs correspondaient a
une certaine combinaison de segments simples, mais indépendamment de leur disposition
comme "petit cercle et grande barre verticale" dans "b, d, p, q", ce qui suggere des invariances
par symétrie ou rotation. Les invariances par rotation ont par ailleurs été confirmées dans une
expérience de priming masqué de lettres (Courrieu, Ripoll, & Sabancioglu, 2009). On voit
donc que la théorie hiérarchique, dans sa formulation courante, ne peut sans doute pas rendre
compte a elle seule de I'ensemble des descripteurs utilisés par la perception.

Une étude ultérieure de Pelli, Burns, Farell, & Moore-Page (2006) estime que le
nombre de descripteurs visuels dont la détection permet d'identifier un caractére serait de
l'ordre de 7 (£2), mais aucun descripteur n'est spécifié, et les auteurs semblent avoir

totalement ignor¢ le travail de Courrieu et al. (2004). Une autre étude de Fiset, Blais, Ethier-
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Majcher, Arguin, Bub, & Gosselin (2008) propose un ensemble de 10 descripteurs visuels
obtenus grace une technique dite "de bulles", mais 1'étude de Courrieu et al. (2004) ne semble
pas non plus avoir attiré l'attention de ces auteurs. La cause de l'étrange "transparence" de
cette publication est peut-étre a rechercher dans le fait que l'article a bizarrement disparu de
certaines bases documentaires électroniques trés utilisées, et que de multiples courriers
adressés a des responsables potentiels, pour tenter de corriger cette anomalie, sont restés sans
réponse et sans effet. Une autre explication possible est qu'avec les mots clés "alphabetic
character perception", Google Scholar retourne bien la référence de 'article dans les premiers
rangs, mais avec les mots clés "letter perception", il n'en est rien! Comme il n'est pas dans
mes compétences d'enseigner la notion de synonymie & Google Scholar, je veillerai une

prochaine fois a choisir plus stratégiquement le titre de mes articles...
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Abstract

Using a technique appropriate to preschool children, a confusion matrix of Roman
letters written in printed script was generated for the purpose of determining what
classes of letters are likely to be confused by preschoolers. An experiment in learning
to visually perceive the 'difficult" letters was then conducted using a different
sampling of children from the same population. All participants took a letter-
discrimination test before and after the learning period. In some cases, the learning
phase involved analysis of letters into simple segments, and in others it involved
dynamic tracing of each letter in imitation of the writing gesture. The results show
that analysis into simple segments has a significant beneficial effect on learning to
perceive letters, while dynamic representation is ineffective. These findings support
the hypothesis that perception processes are analytic, and do not rely on the
parametric representation of the written trace.

Key words: Letter recognition, learning to read.
Mots clés : Reconnaissance des lettres, apprentissage de la lecture.
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The problem

) It is well known today that the perception of written words by adult readers
is done by extraction of all or part of the letters in the words being read
(Johnson & McClelland, 1980; McClelland & Rumelhart, 1981; Rumelhart &
McClelland, 1982; Paap, Newsome, McDonald, & Schvaneveldt, 1982). The
above authors also unanimously agree that letters themselves are detected by
the integration of simpler units, such as line segments and curves, the so-called
"primitives" that are extracted from the stimulus image (see also Rumelhart,
McClelland, and the PDP Research Group, 1986). Although this hypothesis
seems likely in light some of the well-known findings in neurophysiology (Hubel
& Wiesel, 1963, 1968), no decisive experimental proof exists as to its adequacy
in accounting for the perceptual processes involved in reading (see however
Oden, 1979, 1984). Another idea is suggested by research in the field of auto-
matic writing recognition, where two main types of models have been proposed:
the so-called "on-line" systems (Berthod & Ahyan, 1980) where the signal is
detected on-line from a digitizing tablet and data is created in the form of points
on a plane that are strictly ordered in time, and the so-called "off-line" systems
(Srihari & Bozinovic, 1987) where the signal is simply an image, i.e. a dis-
tribution of points on a plane that vary in luminosity and are not ordered in any
particular way. When "on-line" data is available, we can parametrically represent
the curve defined as a letter is being written (the writer’s gesture), making for
relatively easy processing and efficient recognition. "Off-line" data is much more
difficult to process, however, and no satisfactory methods are yet available, even
though the "off-line" situation is the one that a priori corresponds to the ordinary
reading situation of human beings. The following observation might neverthe-
less be made: human beings can usually infer a good approximation of a dynam-
ic process solely from a (static) curve, even when the object represented is
unknown. For example, it is very easy to take a pen and trace over the strokes
made by a writer, or even by a "scribbler", unless the trace is unreasonably
complex. The question naturally raised then is: Could this obvious ability to
produce the "on-line" from an "off-line" image be used by readers to transform
the two-dimensional images of letter shapes into a parametric representation
that would be more "efficiently” recognized? Note that this hypothesis does not
imply equivalency of perceptual representations and motor representations. It is
simply based on the assumption that there exists an amodal representation that
is abstract enough to serve as a common reference for various different modal
representations.
One way to approach this problem would be to experimentally vary the type
of representation readers store of the objects to be recognized (letters), and
then to test the effectiveness of the induced representations on recognition
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performance. In the case of-letters, such experimental variation can only be
done on novice populations such as illiterates or preschoolers. The latter was
chosen here because of the potential pedagogical value of such a study, in
addition to the fact that the question of whether learning to write script is an aid
in learning to read has already in fact been raised by teachers.

Preschoolers were first tested for their ability to perceptually discriminate
Roman letters written in printed script so as to determine which letters they
needed to learn, i.e. which letters were the most likely to be confused. The
following pre-experiment was conducted for that purpose. '

Pre-experiment

1. Subjects: 52 children between the ages of 3;1 and 6;2 participated in the
experiment. All had normal eyesight and were enrolled in a preschool.

2. Material: Each child was given a series of 26 worksheets containing 78
characters from the Roman alphabet carefully written in lowercase printed
script, and one reference character enlarged to twice the normal size, located in
a priming area at the top of the worksheet. There was one worksheet for each
reference letter. The 78 characters on the lower part of the worksheet consisted
of three occurrences of the complete Roman alphabet in random order. The
reference letter thus occurred three additional times on each worksheet.

3. Task: The children were asked to search among the "little letters" to find
the ones identical to the "big letter" (i.e. the reference letter) and to circle them
with a pencil. Erasing and correcting was allowed.

4. Procedure: The data was gathered across four 20-minute sessions spread
over one week. The worksheet presentation order was varied using the latin
squares "rank-neighborhood" method with two subjects for each of the 26 orders
in the latin square thus defined.

5. Results: The results are given in table 1 in a form analogous to a letter
confusion matrix, with a maximum total per cell of 156 (3 occurrences x 52
subjects).

If we exclude the rarely-made errors, we can see that the confusion matrix is
quite empty and basically symmetrical, which makes it easy to interpret and
eliminates the necessity of complex matrix computations. The main confusion
classes are ((b,d), (p,q)), (f;t), and (n,u), where the inner parentheses delimit
subclasses with a higher probability of confusion than those within the outer
parentheses. Notice that the high confusion frequencies systematically pertain
to letters that differ only by affine transformations, such as symmetries. This
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TABLE 1. Confusion matrix of the 26 lowercase letters in the Roman alphabet written in printed script for
preschool children (maximum per cell: 156). The row entries are the reference characters and the columns are
the responses.

s b ¢ d

L J
-
o
¥
-
—
=
-~
3
>
o
.o
£
k]
3
-
(=4
<
x
®
~
~

-
»N

0 00 00 =000 =0 8& 00000 00O0CO0cOoOoO 0w
8w

3w
O 00 0000000000000 O0O0OO0O0COoONMNO WOO

0O 0 0 OO0 OO0 0000 OO0 O0O0COO0O0CO WO WOoOW
w
~N
~n

O
O - O

QOO NO 00
-
~N

—
w

P

nN

v o o000
~n
L
n

.—
purs

00 O OO WO OO~ 0O0NO - 000 ~NOOCOOOOO
Qo OO0 OOOQ

OO0 O0OO0OO0COoOOMNOW
0O 000 00O ooo
OO0 000 COoO o0 oo
[- B - - - = I -~ S - 2 - I =]

Py
~n

COWMOOOOOO0O0O0O0000O0 000000000 OoO
-
[3d

00 0 00000000000 OOoOOCTCPOO0OOOoCOoO
O - 0 0000000000

QOO0 O0OO0OONOONOAN

—
-
~

VOO0 0000 = uUWO O -0
-0 0 000000000 Co oo

o000 00000 CcoOoNG

N ™
O 0O 06000000 ONOO O OO
N -
—
~n
0O 00 C0COMNOOOOCQC OO
-
prs
"M O OO0 O0CO0O MO OoO0O0O0000OQCQOO0OCO0 OO O0OoOOoO

o~
0000 0OHOWWOOO0OO0OO0O0O OO0 OoOOO

~N
OO0 ON S OOODODOONO OO

[y
pury

—
n
OO0 DO WVMOOOO0OO0OO0O0O0CCOCO0O

—
W

O OO WOOOOD OO O OO NO
0 00 0O WVMOO0CO0OO00OO0O0O0O0OO0C0OOCOO0 OO0

Py
~ N .
WO 24 000000000 O0OCQOoO

s
>

-~
coooocooNowoooocooooooolooooo
~nN
COONMNMFOOOODOONOONOO & OO OO OO

oOomwOoO o000 oo

N XL CCA@IN0TY G I F -~ X nTA %0 Q0T 0

CO0OO0OO0OO0O0COO0OO0POO0OO0O0OO0O0m®O+»0O0+ o

0000000000000 ~NOOGUWOOOOOOOCO

CO0OO0O0O0OONGO-=0000DILrO ~>ONMNHNOOOOO

OO O FroONOCCOOOODNMOO0OO0O0O0O0OO0OO0OO
N -

-
b3
—-OOOOQOOO&NOOOOQQOONOQ

OO0 OO0 00O OO0

Py
~n
0 o

TABLEAU 1. Matrice de confusion des 26 lettres minuscules script de Palphabet latin chez des enfants d’age

pré-scolaire (maximum par case : 156). Les entrées lignes correspondent aux étalons et les entrées colonnes
aux réponses,

suggests that children simply apply the same rules to letters as they do to
ordinary objects in their environment, which can be viewed at different angles
and do not lose their identity by affine transformations. There are two facts
here that do not fit into this interpretation, however. First, letters such as (b,d)
and (p,q) that are symmetrical with respect to the vertical axis were confused
much more often than horizontally symmetrical letters like (b,p) and (d,q).
Second, if we look at the confusions generally made by adult subjects (i.e. sub-
jects who know the alphabetic code), we find a similar phenomenon. Moreover,
except for the broader class (b,d,p,q), which no doubt can be interpreted as
stated above, all the main confusion classes for these children are subclasses of
the confusions made by adults. It suffices to compare these results to those
obtained by Bouma (1971), who defined seven main confusion classes: (a,s,z,x),
(e,0,¢), (n,m,u), (r,v,w), (d,h,k,b), (t,iLf), (g,p.j,y,q). It thus seems likely that per-
ceptual determinants other than the simple lack of knowledge of the alphabetic
code are factors of letter confusion in both children and adults.
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Experiment

1. Subjects: 52 children between the ages of 3;4 and 6,3 participated in the
experiment. All had normal eyesight and were enrolled in a preschool.

2. Experimental setup: The experiment consisted of seven sessions held over
a two-week period. The first and last sessions were devoted to a perceptual
discrimination test of the eight printed script letters used in the experiment
(b,d,p,q.f,t,n,u). The second session was used to familiarize the children with the
training they would be given in sessions 3, 4, 5, and 6. The letters used as
examples in session 2 (s,x) were not in the test letter set. Two letters were
taught per session. The pairs, chosen so as not to oppose any two letters likely
to be confused, were as follows: (d,u) for session 3, (b,t) for session 4, (p,n) for
session 5, and (q,f) for session 6.

3. Perceptual letter-discrimination test: The pre-test and post-test were
similar, and consisted of presenting eight worksheets (in a variable, random
order). Each worksheet had one of the reference letters printed in double size
in the middle of the priming area at the top of the worksheet. On the lower part
of the worksheet, 5 occurrences of each of the test letters (40 characters in all)
were shown in random order (except for the fact that the same letter never
occurred twice in a row). The subject’s task was to find and circle the "little
letters" like the "big letter" at the top of the worksheet (erasing was allowed).
Each session took twenty minutes.

The index used to assess a given subject’s performance on a given work-
sheet (reference letter) was the ratio of the number of correctly circled char-
acters to the total number of characters circled per worksheet. This index, which
varied between 0 and 1, seemed to correctly indicate how well subjects could
perceptually discriminate letters while eliminating certain strategy effects, such
as the tendency of some children to circle many letters and others to circle only
a few. The Signal Detection Theory index, d’, which has analogous characteris-
tics, could not be used since the distribution of "noise" was absolutely not
Gaussian due to the fact that each reference letter had distractors that were
systematically strong or weak.

4. Letter learning conditions: ¢

- Non-segmental, non-dynamic learning. Each child was given one worksheet per

letter with a priming area at the top containing a model of the letter, a concrete

word starting with that letter, and a drawing illustrating the word. The child also

had four paper cutouts of the letter. Below the priming area, the illustration

word was written four times with its first letter replaced by a small arrow. The

child’s task was to correctly position the cutout letters over the arrows. The
27
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experimenter only allowed the child to stick a letter in place if it was correctly
positioned. After three unsuccessful trials by the child, the experimenter put the
letter in the correct position. In this condition the children were thus led to
manipulate each letter globally.

- Segmental, non-dynamic learning. The worksheet given to the children in this
condition was similar to the above, with the following exceptions: in addition to
the normal model, the letter was also shown broken down into three simple seg-
ments. The segments were the straight and curved portions of the letter, shown
separated and in any order. The child was given two sets of these segments cut
out of paper. Below the priming area on the worksheet, a sample of the illustra-
tion word was written four times with the first letter incomplete. In the first
three samples, one of the segments was missing (a different one each time); in
the last sample, all three segments were missing, and the first letter was
replaced by two dotted lines indicating the upper and lower limits of the body of
the letter. In each case, the child was to correctly complete the word using the
cutout segments. The experimenter intervened at the same point as above.

- Non-segmental, dynamic learning. In this condition, instead of showing the
letter broken down into segments, the worksheet priming area contained a very
particular graphic representation of the letter. The letter was depicted by two
solid lines filled in with dots whose density was inversely proportional to the
distance (curvilinear abcissa) from the origin of the trace made by writing the
letter in the ordinary fashion. At the points where the trace crossed itself, the
density of the portion farthest away from the origin dominated. This seemed to
be the best way to indicate the dynamlcs of the writing gesture. The children
were informed of this rule during session 2 (devoted to familiarization). The
lower part of the worksheet contained four samples of the illustration word. In
the first three, the first letter was represented dynamically, and in the last,
dotted lines replaced the missing first letter as above. The child’s task was to
learn to draw the letter by placing the pen on the darkest part to start and then
moving it gradually towards the lightest part on the first three samples. Then he
or she was supposed to draw the letter without a graphic guide in the appro-
priate place on the fourth sample. After three unsuccessful attempts, the child
was given the necessary help.

- Dynamic, segmental learning. This learning condition is the combination of the

prececding two conditions. The priming area contained the standard items (a

normal letter, a word, and a drawing), plus a dynamic representation of the

letter and a segmental representation of the letter. The segmentation was done

in the same way as in the second condition, but the segments were ordered in

their natural order of occurrence in the letter. In addition, the segmented
28
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version had no overlapping portions since they were shown separately. The
lower part of the worksheet contained four samples of the illustration word. In
the first three samples, the first letter was represented dynamically with a new
segment missing each time; in the fourth example, the first letter was missing
altogether and its location was marked by two dotted lines as above. Again, the
child’s task was to learn to draw the letter by following the graphic guides, filling
in the missing segments along the way. He or she was then to draw the letter on
the fourth sample without a graphic guide, receiving the necessary assistance
after three consecutive failures.

5. Data analysis: The independent variable is the perceptual discrimination
index defined above for the pre-test and post-test. The data were processed in
an analysis of variance with the following design: S13 <G2 * D2> * R8 * T2
where the factors are defined as follows:

S: Subject (random).

G: (Segmental learning, non-segmental learning).
D: (Dynamic learning, non-dynamic learning).

R: Reference letter (b,d,p,q,u,n,ft).

T: (Pre-test, post-test).

The four letter-learning conditions described above were obtained by cros-
sing factors G and D. Note that the four groups of children used were balanced
as well as possible as to age, sex, and place of schooling. However, the effect of
these variables is simply incorporated into the random variance, since this study
was not aimed at analyzing developmental or differential variables. R is a
secondary factor, but it cannot be considered as random since its modalities
were chosen systematically.

6. Predictions: Our predictions can be easily deduced from the problem
statement.
- PI: If letter recognition is based on analysis into segments, then the letter
discrimination index will increase to a greater extent between the pre-test and
the post-test when the training is segmental than when it is not (G-by-T
interaction).
- P2: If letter recognition is based on a parametric representation of the writing
gesture, then the letter discrimination index will increase more between the pre-
test and the post-test when the training is dynamic than when it is not (D-by-T
interaction).

7. Results: Table 2 gives the mean values of the letter discrimination index
for the main experimental conditions, as well as its mean increase between the
pre- and post-tests. 59 :
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TABLE 2. Mean values of the letter discrimination index on the pre- and post-tests, and the mean increases
between them for each letter-teaching method proposed to the children.

Non-segmental Segmental

Pre. Post. Incr, Pre. Post. Incr. Pre. Post. Incr.
Non-Dynamic 612 728 116 .603 an .168 .607 .750 143
Dynamic .668 773 .108 550 786 236 .609 780 A7

640 751 an S77 778 .201 .608 765 157

TABLEAU 2, Valeurs moyennes de Vindice de discrimination des lettres au pré-test et au post-test, et
progressions moyennes de cet indice suivant le type d’apprentissage perceptif des lettres auquel a été soumis
Penfant.

The analysis of variance showed that there is a significant overall increase
in the letter discrimination index between the pre- and post-tests (F(1,48) =
81.31, p<.001), and thus that as a whole, the children did benefit from the
training. There is a significant interaction between the test and segmental/non-
segmental factors (F(1,48) = 6.87, p<.01) indicating more progress in the seg-

. mental learning conditions; this confirms prediction P1. On the other hand, the
interaction between the test and dynamic/non-dynamic factors is not significant
(F<1), nor is the second-order interaction between test, segmental/non-
segmental learning, and dynamic/non-dynamic learning (F(1,48) = 1.32, NS).
Thus, prediction P2 did not prove to be true, and the introduction of dynamic
gesture representation does not seem to systematically favor the perceptual

. learning of letters by children. Finally, the main factors do not interact

significantly with the reference-letter factor.

Discussion

Our results clearly show that breaking letters down into segments is a valid
approach, since a global representation is obviously less efficient than analytic
representation. This argues in favor of models that define perceptual analysis as
a hierarchical order involving infra-categorical levels, i.e. the letter may not be
the smallest perceptual unit extracted from the signal, but rather a composite
unit.

- On the other hand, the idea that letter traces are represented parametrical-
ly was not confirmed here; the child’s knowledge of the process by which letters
are generated (the writing gesture) does not seem to systematically influence
his/her perceptual performance. Of course, hasty generalizations should be
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avoided, and it still may be true that adults develop representations and proces-
sing procedures that are better adapted to handling very irregular signals, sych
as adult cursive script. These representations and procedures, however, shotld
be considered as a sort of expertise process that develops as experience with
increasingly difficult signals is acquired. If this is the case, children may
ordinarily not be able to read natural adult handwriting before having several
years of reading experience. In the meantime, the basic representations
involved in elementary learning do in fact appear to be analytical and not
parametric.

RESUME

On a déterminé une maltrice de confusion des lettres latines script a l'aide d’une
technique appropriée chez des enfants d’dge pré-scolaire de fagon a repérer les classes de
lettres @ forte probabilité de confusion. Puis on a réalisé une expérience d’apprentissage
perceptif des lettres "difficiles" sur un autre échantillon d’enfants de la méme population, les
enfants étant soumis @ un pré-test, puis @ un post-test de discrimination des lettres,
respectivement avant et aprés l’apprentissage. L'apprentissage pouvait introduire ou non une
analyse des lettres en segments simples, et il pouvait d’autre part introduire ou non une
représentation dynamique du tracé de chaque lettre correspondant au geste d’écriture. Les
résultats montrent que l'analyse en segments simples a un effet significativement bénéfique
sur Papprentissage perceptif, alors que lintroduction de représentations dynamiques reste
inopérante. Ceci milite en faveur de I'hypothése de processus perceptifs analytiques n'utilisant
pas de représentation paramétrique du tracé.
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Inverse discrimination time as a perceptual distance
for alphabetic characters
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Reaction times to discriminate lower-case letters were collected in an experiment.
The inverse discrimination times were used to build metrics on the space of letters.
These metrics were found to be significantly correlated with various well-known
letter confusability measures, and a meaningful dimensional analysis of the
alphabet was performed. This methodology is mathematically well founded, it
requires fewer data than common methods, and it appears to be highly sensitive to
visual similarity between letters, which allows visual letter features to be
effectively analysed.

A number of prior studies have attempted to analyse the perceptual relations
between lower-case letters of the Roman alphabet by collecting subjective
similarity data (Dunn-Rankin, 1968; Dunn-Rankin, Leton, & Shelton, 1968;
Kuennapas & Janson, 1969) or confusion data (Bouma, 1971; Courrieu & de
Falco, 1989). Understanding these relations is important from a theoretical point
of view, in order to build appropriate models of letter recognition and reading.
This is also important in order to build suitable measures of the orthographic
similarity between letter strings, because visual similarity of characters probably
plays a role in the confusability of strings (are the orthographic neighbours
“‘wine’’, ‘“‘wire’’, and ‘‘wide’’ equally similar to each other?). In addition, one
can also consider that this is a particular (and quite convenient) example of
visual shape processing whose study can lead to more general conclusions
concerning visual pattern recognition.

Direct subjective similarity rating methods are handicapped by the fact that
one does not know whether the similarity criteria actually used by subjects are
those that are involved in perceptual processing. On the other hand, methods for
collecting confusion data are quite time consuming since they require many
trials and subjects in order to obtain sensitive measures. As pointed out by
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Podgorny and Garner (1979), experimenters must degrade the viewing condi-
tions in order to obtain a high enough confusion rate, while the similarity
structure is known to depend on the type of degradation used. Moreover, these
methods usually collect data on interval or ordinal scales, with the consequence
that transforming the resulting measures into a metric is problematic both the-
oretically and practically, since a metric requires a ratio level of scaling (Lee,
2001). The strong structure of metric spaces (particularly Euclidean ones) allows
one to apply powerful data analysis methods (e.g., multidimensional scaling),
while nonmetric topological data are much harder to analyse given the relatively
weak (and usually unknown) structure of the space they belong to.

In a seminal study, Podgorny and Garner (1979) found strong empirical
evidence that the time required to discriminate upper-case letters is an increasing
function of the perceptual similarity of these letters. The authors pointed out that
response time based similarity measures potentially allow for solving many of
the problems encountered with other types of similarity measure. An alternative
approach is to measure saccade latencies to letters presented in peripheral vision
(Jacobs, Nazir, & Heller, 1989). In Jacobs et al., a given target letter was
presented centrally, followed by two letters, one of which was the target, in
peripheral vision (one to the left, the other to the right of fixation). The parti-
cipants had to move their eyes to the location of the target letter. Saccade
latencies to the parafoveal target were used to generate a discrimination matrix
for all pairs of lower-case letters. Thus, the idea of using reaction times for
measuring the similarity of visual stimuli is not new. However, a reaction time is
not a metric, and a true metric would be useful for methodological as well as
theoretical purposes.

The goal of the present study is to propose a simple and sensitive measure of
the similarity of stimulus pairs based on response times. The sensitivity of this
measure should help economize on data collection, and its ratio scale will
facilitate the building of metrics, including Euclidean ones, by using recently
proposed mathematical tools (Courrieu, 2002). In the following study, we pre-
sent two metrics using measures of the time taken to discriminate lower-case
letters from the Roman alphabet. The first metric is as simple as possible, while
the second one is Euclidean and allows for sophisticated similarity analysis
methods to be applied, which will be illustrated with a dimensional analysis of
the alphabet. We first describe a method for building a metric based on dis-
crimination response times, and then an experiment that collected such response
times before presenting the resulting metric.

BUILDING DISCRIMINATION TIME-BASED
METRICS

This study was designed to examine whether discrimination time can provide the
basis of a reliable measure of the visual similarity of lower-case letters
embedded in character strings, as they usually appear in reading, with lateral

34



DISCRIMINATION TIME 903

masking effects. Given its importance in the perception of printed words, the
‘“‘space’’ character was included in the ‘‘completed alphabet’’, and it will be
symbolically denoted ‘“ in this paper. Our main goal was to find a simple
continuous and strictly monotonic function of discrimination time, with this
function being a true metric on the completed alphabet, and the obtained dis-
tances actually reflecting the visual dissimilarity of characters. One must
remember that a metric, or distance, associated with a set S (e.g., an alphabet) is
a numerical function d on the set of pairs of elements of S (e.g., letters) such
that, for any three elements a, b, and ¢ of S, one has the following four relations:

1. d(a, b) = 0 <=> a = b, that is, the distance is zero between identical
elements only.

2. d(a, b) > 0, that is, a distance cannot be negative (positiveness).

3. d(a, b) = d(b, a), that is, the distance between two elements does not
depend on the ordering of these elements (symmetry).

4. d(a, c) < d(a, b) + d(b, ¢), that is, between any two elements, there is no
“‘path’’ shorter than their distance (triangle inequality).

Whenever the elements of a set are described in some coordinate system, one
can compute a distance between two elements using an appropriate formula. For
example, in a set of character strings of a given length, the Hamming distance
between two strings is the number of positions where the characters of the two
strings are different, while the special case of a Hamming distance of 1 corre-
sponds to ‘‘orthographic neighbours’’ (Coltheart, Davelaar, Jonasson, & Besner,
1977). Another example is that of Minkowskian metrics in a real n-dimensional
space:

d(X,Y) = (X alx — wi)'",

where the parameter r characterizes a particular Minkowskian distance, for
example r = 1 for the “‘city-block’” distance, r = 2 for the Euclidean distance.
However, standard formulas cannot be used when no coordinates are provided.
In such cases, one can attempt to empirically measure distances, for example by
using a ruler, or measuring the latency of an echo. Sometimes, the empirical
measures themselves are not metrics (i.e., they do not satisfy relations 14
above), but a true metric can be regularly derived from them by a simple
transformation, which is what we are going to do in the present study.
Following Podgorny and Garner (1979), our working hypothesis is that dis-
crimination time is an increasing function of the perceptual similarity of stimuli.
If one excludes false discriminations, then the discrimination time of identical
stimuli is a priori infinite. Hence, the discrimination time and the metric we seek
to establish must be inversely related since a metric has a value of zero for
identical elements (1). On the other hand, if two stimuli are distinct, then there is
certainly a finite delay after which any subject with normal vision is able to
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detect a difference. This implies that a measure inversely related to the dis-
crimination time has a nonzero value for distinct stimuli, and this measure is
positive (provided that the measure of discrimination time is also positive!),
which satisfies (2). The symmetry property (3) can easily be obtained using an
experimental measure where the stimuli to be compared in a pair are not a priori
ordered, or eventually taking the mean discrimination time for the two possible
ordered pairs. Of course, this is relevant provided that the original data matrix is
not basically asymmetric. The most difficult property to obtain is triangle
inequality (4). Fortunately, one knows that if a function d satisfies relations 1-3,
then one can find a strictly positive real number y such that d* also satisfies
triangle inequality, and then is a metric (Courrieu, 2002, Lemma 2). Moreover,
there is another strictly positive real number o, such that oo < y and d* is a
Euclidean metric for the set S (Courrieu, 2002, Theorem 3). Mathematical
considerations leading to these results are quite technical, and the reader can find
them in the cited reference, together with practical algorithms for applications.
Obtaining a Euclidean metric allows one to embed the set S in a real vectorial
Euclidean space (this is a multidimensional scaling procedure). The Euclidean
metric is the only metric that is invariant through any orthogonal transformation
of coordinates (e.g., rotation), which allows meaningful embedded solutions to
be found by suitably rotating coordinate axes. This is not possible using non-
Euclidean metrics, such as the ‘‘city-block’ metric, for example, that is also
frequently used in psychological modelling. Finally, the following remark will
turn out to be helpful. Assume that a function d satisfies the relations 1-3, that
the minimum of d for pairs of distinct stimuli is min(d), and the maximum is
max(d). Then, if max(d) < 2 min(d), then d necessarily satisfies the triangle
inequality (4), that is d is a metric.

Summarizing the above considerations, we can note that one of the simplest
way of building the desired metric d from discrimination time t consists of
taking d =t ¥, while y = 1 (that is d = 1/t) is allowed provided that one obtains
max(d) < 2 min(d), where the min is taken for all pairs of distinct stimuli.

We now need to define an appropriate measure of discrimination time t. Let T
be the total reaction time in a discrimination task where stimuli are presented in
pairs and the subject must press a key as quickly as possible whenever the two
presented stimuli are distinct, and must not respond whenever the two presented
stimuli are similar (go/no-go task). Then the reaction time T is greater than the
discrimination time t since in addition to t, there is at least a motor reaction time
and possibly some other irrelevant partial times. Hence, we have T =t + t0,
where t0 denotes the sum of the motor time and other irrelevant partial times.
Now, assume an extreme case where t0 is much larger than t, in such a way that
the contribution of t to T becomes negligible. Then one would obtain T close to
t0 for any pair of stimuli, and given that certainly 1/t0 < 2/t0, one would obtain a
true metric that is not related to the similarity of stimuli. For that reason, it is
essential to estimate t0 as precisely as possible in order to obtain an appropriate
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measure of the discrimination time t = T — t0. In addition, one must of course
verify that the obtained metric is related to some other well-known measures of
similarity, and that it actually reflects the similarity of the stimuli. Finally, we
note that if d is a metric, then for any real number k > 0, the quantity kd is the
same metric with a different scale. This means that the scale of the metric can be
chosen in such a way that its values be distributed around a reference value (for
example 1 or 100). Then one obtains the general formulation of the metric
model:

5. t=a(T - t0),
6. d=t7",

where a > 0 provides the desired scale, and ¥ > 0 is determined in order to
provide triangle inequality for the whole set S (here the completed alphabet).
Now, if it is required that the metric be Euclidean, then one replaces (6) by:

7.d=t"7

where 0 < o < v, and « is determined according to Courrieu (2002) in such a
way that (S, d) is a Euclidean metric set, which means that there is a set of points
in a real vectorial space, each point corresponding to an element of S (i.e., a
character), and the Euclidean distances between these points are equal to the
values of metric d.

DATA COLLECTION METHOD
Participants

Forty-two psychology students at the University of Provence participated in the
experiment. They were all native speakers of French, aged 18-22 years, and
reported normal or corrected-to-normal vision.

Design and materials

Stimuli were all lowercase letters of the Roman alphabet plus a blank space. All
possible combinations of these stimuli were constructed giving 27 x 27 stimulus
pairs. For a given group of participants half of the stimulus pairs were presented
in alphabetic order (e.g., a b), and the other half in the opposite order (e.g., d ¢).
Two independent groups of participants were presented with either of two dif-
ferent stimulus lists such that a given stimulus pair was seen in one order in one
group of participants and in the other order in the other group of participants.
Each participant saw all possible pairs of different characters once (27 x 26/2 =
351 pairs), and 13 occurrences of each of the 27 identical pairs (no-go trials),
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giving a total of 702 experimental trials. The order of trials was random with a
different order for each participant.

Procedure

Letters were presented in lower-case Arial bold, 12 point. Each trial consisted in
the presentation of a given pair of stimuli accompanied by three hash marks.
First, five hash marks (#####) were presented for 250 ms, followed by three hash
marks with two test characters (e.g., #a#b#). Stimulus presentation and
recording of participant responses was done using the DMDX software (Forster
& Forster, 2003). Participants were requested to respond as rapidly and as
accurately as possible if the two test characters were different. They were
instructed not to respond to pairs of identical stimuli (go/no-go procedure). The
screen was cleared when subjects responded. A timeout of 2 s was used and the
timeout data were ignored in the analysis. In a preliminary phase, simple
detection RT was measured for each participant by asking him/her to respond as
rapidly as possible whenever two fixed characters (#$#£#) appeared among the
hash marks. In this phase, the prior five hash marks were presented for a ran-
domly variable time (uniformly sampled between 600 and 1000 ms), in order to
avoid time-based strategies. The mean of the 20 shortest RTs out of 25 trials was
used to calculate the baseline detection RT (that is t0) for each participant.
Participants were then given a set of 20 practice trials using pairs of numbers, of
which half were identical and half composed of different numbers. Similarly to
the letter stimuli in the main experiment, participants had to respond only when
the numbers were different (e.g., #5#8#). After being informed that the stimuli
would now consist of letters and sometimes spaces, the participants moved on to
the main experiment. The 702 experimental trials were broken into three blocks
of 234 trials with a short rest between blocks.

COMPUTATION OF THE METRICS

Discrimination time matrix

The additional time t0 was estimated for each subject as described above in the
simple detection task. This value was subtracted from each response time of the
subject in the discrimination task, and the resulting times were divided by their
mean in order to obtain a mean discrimination time equal to 1 for each subject.
Then each cell of the 27 x 27 discrimination time matrix received the mean of
the discrimination times provided by all subjects who responded to the corre-
sponding pair of characters. Given that the left—right disposition of characters in
a pair was reversed for half the subjects, the data concerning cells of symme-
trical positions in the matrix were not provided by the same subjects.
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Symmetrization of the discrimination time matrix

As a measure of symmetry, a linear correlation coefficient was computed
between the 351 upper out-diagonal values of the discrimination time matrix and
the corresponding lower out-diagonal values of the same matrix. The resulting
correlation was r = .654, p < .001. As one can see, the symmetry is not perfect,
however the values of symmetric data cells vary in a significantly similar way.
Hence, the matrix was symmetrized by taking the mean value of the symmetric
cells of the original matrix. This provided the matrix of the t values, while the
diagonal coefficients (corresponding to identical pairs) are a priori assumed to
be infinite.

Determining the metrics

Taking d = 1/t (i.e., y = 1), one obtained min(d) = 0.6544 and max(d)= 1.295.
Then the relation max(d) < 2 min(d) was satisfied, that is d = 1/t is a metric for
the completed alphabet. However, this metric was not Euclidean since the
computation of the number o as the power for obtaining a Euclidean metric
(equation 7) provided oo = .7321. The values of the (non-Euclidean) metric d
(multiplied by 100) for the completed alphabet are reported in Table 1.

COMPARISON WITH OTHER DATA

A possibility was that the subjects did not actually compare the characters but
compared their name after verbal encoding. In order to test this eventuality, the
mean discrimination time of each letter was compared to the corresponding
letter naming time obtained in another experiment (Petit & Grainger, 2004). In
Petit and Grainger’s study, delayed naming latencies were subtracted from
online naming latencies (both obtained on the same trial) in order to extract
purely articulatory influences on the time taken to name letters. It turned out that
only a small and nonsignificant correlation (.11) existed between the two sets of
data. Thus there is no evidence for a verbal encoding mediation in the dis-
crimination task.

Next we examined whether the elaborated metric is actually related to the
visual similarity of letters. This was first done by comparing the data of Table 1
to a letter confusion matrix (Table 2) obtained with preschool children just
before they began learning to read (Courrieu & de Falco, 1989). These children
had just sufficient maturity for beginning to read, however their perception was
not influenced by language factors such as the name and frequency of letters, or
grapheme—phoneme correspondences. This is therefore a way of measuring pure
visual letter confusability. The methodology was of course adapted to young
prereaders, without any time constraint, and the obtained confusion matrix is in
fact quite “‘empty’’ (many zeros), as one can see in Table 2. The linear corre-
lation between the comparable data of Table 1 and Table 2 (325 out-diagonal
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TABLE 1
Matrix of the metric built from letter discrimination times

85 110

86 104 110

78 106 69 107

78 97 111 99 111

80 107 106 106 91 107

91 110 107 115 100 117 105

75 113 98 112 104 115 95 112

77 104 108 104 103 104 85 99 105

78 108 106 110 97 96 97 117 101 78

83 115 108 128 105 117 104 118 88 94 96

73 99 98 99 95 92 77104 90 70 93 87

103 102 107 100 97 106 101 99 100 109 102 105

88 105 105 112 103 117 109 103 82 98 103 113 99 79

88 96 99 91 95103 102 116 112 106 106 129 100 94 104

83 109 87 112 101 94 101 94 119 106 102 102 94 102 103 102

85 112 105 108 94 121 107 74 103 96 93 105 106 107 104 96 68

77 106 103 96 111 109 99 103 106 91 101 102 94 97 107 118 108 104

76 98 117 108 120 102 112 129 118 99 100 108 101 97 110 100 114 119 93

65 101 106 103 105 102 78 113 101 88 94 88 71 104 106 110 102 108 84 101

89 111 105 99 104 106 97 100 97 109 104 100 110 87 92 98 113 107 96 120 101
78 107 107 115 116 111 86 110 119 102 103 98 82 89 104 121 120 120 101 111 101
85 99 93100 106 99 106 97 101 103 100 92 95 84 95100 108 103 95 97 98
83 112 114 113 108 114 110 113 103 97 91 93 87 103 102 111 114 113 93 97 101
86 128 116 124 116 111 109 109 117 100 97 107 82 93 118 119 109 109 106 121 98
77 107 112 110 114 111 102 119 111 101 107 109 90 106 108 107 109 103 98 103 101
“a b ¢ d e f g h i j k I mmn o p q r s t

98

104 86

97 97 102

109 105 92 93

96 102 98 82 104
u v w X Yy

N X g <o *®w=0DT o83 —®m— —50@ "o oo o
oo
w

N< % g <

The column entry " corresponds to the space character. The values of the metric were multiplied
by 100 and rounded for readability. Dividing the values in the table by 100 and raising them to the
power 0.7321, one obtains a Euclidean metric on the alphabet.

coefficients) is » = —.355, p < .01. The linear correlation between the Euclidean
version of the metric and the children’s confusion data is » = —.366, p < .01.
The fact that the correlations are negative simply means that the confusability of
letters increases as their distance decreases. Hence, our main hypothesis is
confirmed, and it is clear that inverse discrimination time is not only a true
metric on the completed alphabet, but also significantly affected by visual
similarity.
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TABLE 2
Letter confusion matrix of preschool children (data from Courrieu & de Falco, 1989)

a 123
b 2 99
c 2 0133
d 2 92 0127
e 0 0 4 0132
f 0 0 0 0 01729
g 0 3 0 2 0 0128
h 0 0 0 0 0 0 0117
i 0 0 0 0 0 0 0 0135
j 0 0 0 0 0 2 1 0 6131
k 0 0 0 0 0 0 O 0 0 01720
!l 0 0 0 0 0 0 O 0 6 2 0128
m 0 0 0 0 0 0 O O 0 0 0 0138
n 0 0 O O 0O O O 8 0 O 0 0 01712
o 4 0 8 0 0 0 0 0 0 O O O O 012
p 027 02 0 0 I 0 0 0 0 0 0 0 017102
q 220 02 0 0 1 0 0 0 0 0 O O 0 8099
r 0 0 0 0 0 2 0 0 0 0 0 O 0 0 0 00 120
s 0 0 0 0 0O O O 0 0 O 0O O O 0 O OO 0118
t 0 0 0 0O 04 0 0 O 1 0 0O O O 0 0O 2 0122
u O 0 0 0O 0 0O O 4 0 O 1 0 123 0 00 1 0 017/4
v 0 0 0 0 0 0 0 0 0 0 00 01 0 00 0 0 0 1
w 0 0 0 O O O O O O0OO0O O0O O0O 6 0 0 O0OO0O 0 0 0 1
x O 60 0 0 0 o0 0O O O o0 6 0O O O O OO o0 o0 o0 o0
y 0 1 o0 0 0 0 0 0 0 0 0 0O 0O 0 O 0O o0 0 0 O
z 0 0 0O 0O 0O O O O O O O O O O O OO O 5 0 O
a b ¢ d e f g h i j k I mmn o pq r s t u
v 125
w 0133
x 0 0141
y 0 0 0143
z 0 0 2 01729
vV W X y z

The linear corelation between the 325 out-diagonal coefficients of this matrix and the
corresponding coefficients in Table 1 is » = —.355, p <.001, while the correlation with the Euclidean
version of the metric is » = —.366, p < .001.

In addition, we compared our discrimination time based metrics with the
letter confusion data obtained by Bouma (1971) with skilled adult readers.
Bouma’s matrices were symmetrized by averaging the values of out-diagonal
symmetric position cells. The linear correlation between Bouma’s ‘‘distance
vision’’ data and our metric (325 out-diagonal coefficients) was r = —.267, p <
.01, while the correlation of these data with the Euclidean version of the metric
was » = —.271, p < .01. The linear correlation between Bouma’s ‘‘eccentric
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vision’’ data and our metric (only 300 out-diagonal coefficients, since Bouma
omitted the stimulus “‘y’”) was = —.322, p <.01, while the correlation of these
data with the Euclidean version of the metric was r = —.327, p <.01. As one can
see, the Euclidean version of the metric is at least as good as the basic metric in
all cases.

Finally, we compared our metrics with the saccade latencies obtained by
Jacobs et al. (1989). The observed correlation with the simple metric was r =
—.265, p < .01, while the correlation with the Euclidean metric was r = —.269,
p < .01. However, if one attempts to interpret the saccade latencies in the
experiment of Jacobs et al. as discrimination times, one expects a strong positive
relation to the inverse of our simple metric. The obtained correlation was » =
291, p < .01, which is significant but not as strong as expected. A possibility is
that the perception of letters in peripheral vision, which was required in Jacobs
et al.’s experiment, has some differences with the foveal perception required in
our experiment. If this is the case, one might expect a strong relation between
the saccade latencies and the ‘‘eccentric vision’” data of Bouma (1971). The
obtained correlation is » = .334, p < .01, which is significant but not particularly
strong. Hence, we conclude that, although these various methods obviously
captured some common features, they are far from being equivalent.

DIMENSIONAL ANALYSIS OF THE SIMILARITY

Another way of verifying that discrimination time actually reflects the visual
similarity of letters is to assess whether a set of meaningful dimensions can
account for the observed variations in discrimination time. Note however that
our purpose here is not to find an optimal set of features in order to build or to
test a special theory of letter perception. We need only show that a set of obvious
visual similarity factors exists which account for a substantial part of the data.
Obviously, visual similarity of letters will depend to some extent on the parti-
cular type font tested (Arial, 12 point, bold font, in the present experiment).

Computational method

First we used a monotonic embedding method (Courrieu, 2002) in order to
compute the number o of equation 7, which provided the result o = .7321, as
mentioned above. This is a special multidimensional scaling method, which
provides a set of points in the form of a singular triangular matrix, and the
dimension of the Euclidean embedding space is minimized as a consequence of
the appropriate determination of o. The dimension of the embedding space was
found to be 25. This first solution also allowed us to compute the centre of
gravity of the 27 representative points and then to centre the cluster. However,
this solution depends on the order of the elements of the set, which in the present
case is the (arbitrary) alphabetical order. Since we are now in a Euclidean space,
we can apply any orthogonal transformation to the coordinates without changing

42



DISCRIMINATION TIME 911

the Euclidean distances between the points. A solution that is mathematically of
special interest is the solution whose coordinate axes are the eigendimensions of
the cluster." In order to obtain this special solution, we computed the 27 x 27
symmetric matrix A = V'V, where V is the matrix whose 27 column vectors are
the centred coordinates of the representative points previously found, and the ’
denotes the transposition operator. The matrix A is positive definite (matrix of
scalar products) and of rank 25, which means that A has exactly 25 strictly
positive real eigenvalues and two zero eigenvalues. Since A is symmetric, it can
be written in the form A = QDQ’, where Q is an orthogonal matrix whose
columns are the eigenvectors of A, and D is the diagonal matrix of eigenvalues
of A. Since A has only nonnegative eigenvalues, the solution is the matrix E =
QD'?, which has 25 nonzero columns and whose 27 row vectors are the
coordinates of the representative points on the 25 eigendimensions. The com-
putation of the matrices Q and D was performed using the well-known Jacobi’s
algorithm applied to the symmetric matrix A. The obtained matrix E is reported
in Table 3.

Similarity factors

An inspection of Table 3 suggests that certain eigendimensions (particularly the
first ones) would be interpretable, however the matrix as a whole is not easy to
read. This results from the fact that successive eigendimensions maximize a
purely quantitative criterion (explained inertia), which frequently leads eigen-
axes to adopt an intermediate position between several important, but distinct,
groups of elements (characters). Hence, we applied a series of orthogonal
rotations to the matrix of eigenvectors in order to obtain a more readable
solution where each dimension mainly accounts for the similarity of only one
group of characters.” The result of this orthogonal transformation is reported in
Table 4, from which one can verify that the Euclidean distances between the
points representative of the characters remain unchanged and are equal to the
power o = .7321 of the initial metric (Table 1). Low absolute value coordinates
are poorly reliable since they can vary substantially with small rotations and the
data are not noise free. Hence, in Table 5, we provide a qualitative reading of the
dimensions, where we take into account only coordinates whose absolute value
is at least equal to 0.20. For each dimension (X01 to X25), we provide the main
similarity class of characters associated to that dimension, the main contrasting

3

! Eigendimensions (or ““principal components’’, according to Hotelling’s, 1936, terminology)
form an orthogonal coordinate system whose origin is the centre of gravity of the cluster, and with
the particularity that the first k dimensions account for a maximum part of the total inertia (sum of
squared coordinates), for any k lower or equal to the number of dimensions.

2 A computer program, whose technical detail is of minor interest here, has been developed to
help finding suitable rotations. Interested readers can contact the first author for more details.
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TABLE 5
Main character similarity classes, contrasting classes, and possible critical features
corresponding to the dimensions reported in Table 4

XO01. Main similarity class: { b, d, g, p, q }
Main contrasting class: — { r, s, X }
Common feature: a circle with an ascender or descender. Note that in the font used, the graphic

(TP

realisation of the letter ‘g’ is the one that looks like ‘‘q”’ and the digit ““9".
X02. {a,¢c,e0,8},—{hky}

Small curvilinear shapes.

X03. {m,nuw} -{fijLpaqt}

Repeated small vertical strokes.

X04. {b,d},-{gu}

Ascender subclass of X01.

X05. {v,y},—{hu}

The v-shape.

X06. { f,t}, - {}

An ascender with a horizontal bar.

X07.{h,n},—{v,z}

The n-shape.

X08. { x, 2}, — {}

Four corners and a diagonal of a square (as in ““%”’).

X09. {ij}—{wy}

The i-shape.

X10. {a, g}, -{q}

In the used font, one can obtain the character *‘g’’ by reversing and stretching the character “‘a’’.
X1l {c,r},—{}

An upper-left arc of circle.

X12.{i, 1}, -{x}

The i-shape is similar to an l-shape with an interruption.

XI3. {s.z},~{u}

Sigmoid shape.

X14.{b,p},—f{cdf}

The circle-at-right subclass of X01.

The next 11 dimensions plausibly concern remaining distinctive features of individual characters:
X15.{t},-{f}

X16. {x},—{aj}

X17.{w},—{u}

X18.{k},-{jy}

X19.{q}-{v}

X20. {0}, {}

X21.{r},—{c}

X22. {a},-{gvy}

X23. {v}-{mpy}

X24. {s} - {i}

X25.{" 5 -4}

916
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class (opposite sign), and we comment on the likely common feature of the main
similarity class. The contrasting class is a set of characters that do not share the
feature common to the characters of the similarity class, and can therefore help
to identify this feature.

The first 14 dimensions, that are obviously visual similarity factors, account
for 68.02% of the total inertia (sum of squared coordinates), while the 11
remaining dimensions are not meaningless. We note that the similarity factors
widely account for the letter confusion classes observed with preschool children
(Courrieu & de Falco, 1989), which was of course expected from the significant
correlation between the two sets of data. There are also strong similarities
between our results and other well-known factor analyses of letter similarity data
(e.g., Dunn-Rankin, 1968; Dunn-Rankin et al., 1968; Kuennapas & Janson,
1969).

Comments on features

Our purpose is not to develop a theory of letter perception on the basis of this
analysis; however, our results have some implications for existing or potential
theories. We observe that certain features reduce to the presence of a certain
shape, without any transformation, as part of the characters (X05, X06, X07,
X09, X11, X12). Such features could be compatible with a simple ‘‘template
matching’’ theory of letter recognition (see Neisser, 1967). However, one knows
that this type of theory cannot account for the observed capability of the visual
perception to recognize objects under various transformations. Hence, the
concept of “‘prototype’’ has been proposed in order to introduce more flexibility
in the recognition process (Posner & Keele, 1968), and there are to date neu-
rocomputational models that are able to extract (from strings) and to recognize
characters with strong invariance to transformations such as translation, scale
change, stretching, and a limited amount of random distortion (Fukushima,
1992; Fukushima & Imagawa, 1993; Fukushima, Miyake, & Ito, 1983). How-
ever, we note that several of our similarity factors assume features invariant
through affine transformations that are not supported by these models, such as
symmetries (mirrors) with respect to the vertical and/or the horizontal axes
(X01, X04, X10, X13, X14). We note also that certain features are more abstract
than usually assumed by the notion of prototype (curvilinearity for X02, repe-
tition for X03), however this notion itself seems quite flexible. Another obser-
vation is that certain features are hierarchically dependent: X04 and X14 provide
partitions of X01. Finally, certain details appear methodologically important for
the use of masked priming techniques: While the space character (X25) seems to
be poorly confusable, there are some nonalphabetical characters that contain
detectable letter features, such as X08 in %. In fact, the character % is known to
provide strong masking effects on target letter strings (Peressotti & Grainger,
1999).
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CONCLUSION

The present study examined whether inverse discrimination time (equations 5
and 6), as well as its monotonic transform into a Euclidean metric (equation 7),
could account for the visual similarity relations among lower-case letters. This
was verified by comparing the two metrics to known letter confusion data, and
by a dimensional analysis of the factors governing the variations of the Eucli-
dean version of the metric. The proposed methodology can certainly be used for
other types of stimuli, and the available data seem sufficiently reliable to be
reused in other studies. The main advantage of discrimination time-based
metrics is that they provide a sensitive measure of perceptual similarity, while
requiring much less experimental data than the usual confusion based approa-
ches. Another advantage is that the method provides a ratio level of data scaling,
whereas, as pointed out by Lee (2001), usual methods collect similarity data on
interval or ordinal scales. As a consequence, the transformation of data into a
metric is highly simplified and theoretically well founded with the present
approach, whereas this is frequently problematic with other commonly used
methods. Finally, the dimensional analysis of the alphabet clearly illustrates the
sensitivity of the method and provides useful empirical data for testing models
of letter recognition. An important conclusion is that letter recognition models
must account for features invariant to a number of affine transformations,
including symmetries (if not rotations). Finally, we note that letters are quite
simple shapes, and it remains to be seen whether all detected features are
relevant in the context of letter string and word perception.
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I1.B Modzéles de codage de données

De trés nombreux problémes cognitifs peuvent étre décrits comme (ou ramenés a) des
problémes d'approximation de fonctions numériques, méme lorsque les problémes sont
initialement présentés sous forme symbolique, et pourvu que 1'on encode convenablement les
données (Courrieu, 1994b). Une fonction numérique suppose définies trois entités: un espace
numérique d'entrée, un espace numérique de sortie, et une "machinerie" (par exemple un
réseau de neurones) établissant un lien fonctionnel entre les éléments de 'espace d'entrée et
les ¢léments de l'espace de sortie. La machinerie fonctionnelle requise sera par ailleurs
d'autant moins complexe que les topologies des espaces d'entrée et de sortie sont plus
compatibles. Pour faire simple, disons que les topologies sont compatibles si des ¢léments
proches dans l'espace d'entrée ont toujours des images proches dans I'espace de sortie, et la
compatibilité est encore plus grande (équivalence) si la réciproque est également vraie. Par
ailleurs, la topologie des espaces d'entrée et de sortie est largement dépendante du codage que
'on adopte pour les données correspondantes. On voit donc qu'il est essentiel de déterminer
des codages appropriés lorsqu'on veut modéliser des fonctions cognitives, sans quoi il peut
s'avérer pratiquement impossible d'approcher convenablement les fonctions a modéliser. Il
faut bien reconnaitre que le codage est souvent réalis¢é de manieére empirique et intuitive par
les modélisateurs, avec plus ou moins de succés suivant les cas. J'ai pour ma part consacré
beaucoup d'efforts a la recherche de méthodes de codage appropriées pour différentes sortes
de données de base. Le cas particulier, mais particuliecrement important, des données de type
image sera examiné a la section II.C. Je vais ici présenter le cas des nuages et séquences de
points, ainsi que le cas des données de similitude. J'avais par ailleurs rapidement examiné le
cas des données symboliques dans (Courrieu, 1994b), et il existe une abondante littérature sur
le sujet, mais je n'en parlerai pas ici.

Il arrive que les données se présentent sous la forme non pas de simples points
(vecteurs), mais d'ensembles de plusieurs points d'un espace réel multidimensionnel. Lorsque
les points sont naturellement ordonnés, il s'agit d'une séquence de points, et cela ne pose pas
de probléme de codage difficile. Dans ce cas, on aura simplement une matrice au lieu d'un
unique vecteur. Il n'en va pas de méme lorsque les points, a priori, ne sont pas ordonnés, et
l'on parle dans ce cas de nuages de points. A titre d'exemple, supposons que 1'on représente
1'état d'un footballeur par deux coordonnées de position (x, y) sur le terrain, et un vecteur de
déplacement (angle, vélocité), ce qui donne 4 coordonnées réelles par joueur. Supposons que

chaque donnée a considérer consiste en une configuration de jeu d'une équipe de 11
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footballeurs. A priori, les différents joueurs ne sont pas ordonnés, sauf si I'on considére les
numéros de dossards, mais cela n'est pas pertinent dans la plupart des problémes a traiter en
psychologie du sport. Comment pouvons nous représenter une configuration de jeu sans
induire un ordre arbitraire des joueurs, ce qui conduirait a considérer comme différentes des
configurations identiques a une permutation des joueurs pres? J'ai proposé deux solutions
dans (Courrieu, 2001, article ci-joint), la seconde solution étant en fait plus particuliérement
adaptée aux séquences de points. La premiere solution encode un nuage de points par les
coefficients d'un polyndme multivarié particulier dont les zéros coincident exactement avec
les points du nuage, ce qui donne bien un codage invariant par permutation des points. Cette
méthode de codage a été appliquée en psychologie du sport, dans la modélisation d'une tache
de discrimination de configurations de jeu de basket-ball par des joueurs experts ou novices
(Baratgin, Courrieu, Ripoll, Laurent, & Ripoll, 2002; Ripoll, Baratgin, Laurent, Courrieu, &
Ripoll, 2001).

Les données de similitude constituent un autre type de données fréquemment
rencontrées en psychologie (matrices de confusion ou de comparaison par paires). Ces
données sont souvent traitées par des méthodes de "multidimensional scaling" (Shepard,
1962), ce qui permet de représenter les objets comparés par des points d'un espace métrique,
méme lorsque les données de similitude ne sont pas vraiment réductibles a des mesures de
distance exactes. A strictement parler, il s'agit de méthodes d'analyse de données, mais on
peut aussi les considérer comme des méthodes de codage permettant de construire 1'espace de
sortie de modeles fonctionnels a partir de données de similitude empiriques (Baratgin et al.,
2002). Jai défini une méthode simple permettant de transformer, de facon strictement
monotone, des mesures de similitude empiriques (pourvu qu'elles soient symétriques) en une
métrique euclidienne, et de réaliser un multidimensional scaling direct sur ces mesures
transformées (Courrieu, 2002, article ci-joint). Cette méthode, appelée "plongement monotone
euclidien", a été appliquée dans I'étude de Courrieu et al. (2004) décrite dans la section II.A
précédente. Au passage, I'¢laboration de cette méthode m'a conduit a étendre la méthode de
factorisation de Cholesky a des matrices singulicres, ce qui s'est par la suite avéré utile dans

d'autres contextes (voir section IL.E).
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Abstract

This paper presents two methods for generating numerical codes representing clusters of R", while preserving various topological
properties of data spaces. This is useful for networks whose input, or eventually output, consists of unordered sets of points. The first
method is the best one from a theoretical point of view, while the second one is more usable for large clusters in practice. © 2001 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

There are applications in which the input, or eventually the
output, of a neural network is not a point but a cluster, that is an
unordered, countable finite set of points of R". A frequent
difficulty is to find an appropriate representation for such an
input, given that there is no natural order of points in R" for
n > 1. Any permutation of a cluster’s points is a priori equiva-
lent to other ones, but distinct permutations provide distinct
input vectors, and learning the equivalence of permutations is
a very complex problem given that for a set of m points there
are m! possible permutations. One can always build an artifi-
cial order of points in R", for example using a Peano—Hilbert
scanning. Unfortunately, this type of procedure never allows
for preserving the topology of data spaces, and a small varia-
tion of data points can lead to a large variation in the repre-
sentation. This results in major difficulties for learning regular
functions on the space of such representations. A quite similar
problem occurs with pseudo-sequences of points, that is when
data points are ordered with respect to a natural variable, such
as a time coordinate, but the underlying process (generating
data points) is not actually sequential or is a random mixture of
several sequences. In this case, small and possibly random
variations of time coordinates can modify the order of points,
resulting in large variations of the input representation.

The problem we address here is: find a mapping from the
set of clusters of R" to a set of real vectors (or matrices),
referred to as ‘cluster codes’, such that (1) any cluster has a
unique code, (2) distinct clusters have distinct codes, and (3)

* Tel.: +33-4-4295-3728; fax: +33-4-4220-5905.
E-mail address: crepco@newsup.univ-mrs.fr (P. Courrieu).

to any continuous movement of points in a cluster corre-
sponds a continuous variation of code components. Such a
mapping would be appropriate for encoding input clusters.
Now, if the application requires that one can decode output
cluster codes, we also need that (4) the mapping is inversible
(which implies (2)). A mapping with the four above proper-
ties is in general an homeomorphism between the data space
and the code space. However, one must take care that the
code space can be a special part of R, which is not as simple
as R¥ itself. To date, we know of no solution which can be
applied to all practical problems. However, there are various
solutions for various families of problems. Two of these
solutions are presented hereafter. Note that the problem
addressed here is to find a finite exact representation of
data, in a format which ensures that representations of
various clusters can be compared. This is a problem differ-
ent (and much less studied in the literature) from that of
approximating data distribution by a density of probability
(Husmeier & Taylor, 1998; Specht, 1990; Traven, 1991) or
an attractor (Barnsley, 1993; Diaconis & Freedman, 1999).
The problem is in some way related to the ‘encoding
problem’ in neural self associators (Rumelhart, Hinton &
Williams, 1986). However, such encoders require prior
learning, and they cannot guarantee property (1), since a
permutation of a cluster’s points generally results in a
change of the internal representation.

2. First method: polynomial encoding of clusters

For encoding a cluster in R or R only, one can consider a
real or complex polynomial of the form P(z) = [ ]2 (z — z)),

0893-6080/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
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which has exactly m real or complex roots, depending on the
dimension. These roots are obviously the z;’s, which are the
coordinates of the cluster’s points. The product in real or
complex algebra is commutative and associative, then P(z)
does not depend on the order in which the m roots are taken
into account. As a consequence, P(z) is unequivocally asso-
ciated to the unordered set of roots (that is the cluster to be
encoded). One can expand the polynomial P(z), this expan-
sion resulting in a sequence of (m + 1) real or complex
coefficients which is a possible cluster code satisfying all
requirements (1)—(4). Unfortunately, as a consequence of
the well known Frobenius theorem, one knows that there is
no commutative and associative algebra in dimension larger
than 2. There is an associative algebra in dimension 4
(quaternions algebra), but this algebra is not commutative.
Then, the above sketched method cannot be extended for
encoding clusters in dimension larger than 2.

The method described hereafter satisfies requirements
(1)—(4) for any cluster of R", and for any n. So, it is theore-
tically a very general method, and it can be useful for theo-
retical purpose. However, there are restrictions in practice
due to the fact that the generated code size increases rapidly
with the cluster dimension (n) and the cluster size (m).
Moreover, decoding is a complex operation, and when the
code is only an approximation the result of decoding can be
very approximate. Therefore, the author recommends the
practical use of this method only for encoding small clusters
in low dimension spaces, and when the application does not
require decoding. A possible application field is the encod-
ing of game configurations, and the method is well adapted
for encoding configurations which contain several distinct
clusters of various sizes and dimensions.

2.1. Data projection on the half unit sphere of R""’

Let {X; € R"; 1 = j = m} be the set of points of a cluster,
where one assumes that no point has infinite coordinates.
Choose an origin point O € R" and a real » > 0 such that, for
any j, ||X] — O|| = r, where |||| denotes the Euclidean norm.
Then the projection on the half unit sphere of R"*' of the
point X; = (xy;, ..., x ,j) is given by:

u,]Z(xU—O,,)/r, 1= iSn,
and
n
2,172
i=1
The vector U; = (ug), uyj, ..., uy;) is such that ||U]|| =1, and

the projection is obviously inversible by x;=ru; + o;
l=i=n.

One can choose standard O and r, and then project any
cluster which is inside the sphere of R" of center O and
radius r. This sphere will be referred as the ‘encoding
sphere’, and one can remark that projected coordinates are
always continuous real functions of original coordinates
inside the encoding sphere. One can also take for O the
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center of gravity of the cluster, which provides translation
invariance, and/or take r=-s max,SJSm“Xj =0, s=1
fixed, which provides scale invariance. In the latter case,
any cluster of R" is inside its own encoding sphere.

The main interest of the projection on the half unit sphere
of R""! is that all vectors U have unit norm, and then:

alo-uf=1-ve

1—U.Uj:0<:>U+Uj<:>X=Xj.

2.2. Polynomial associated with a cluster

Consider the polynomial defined by:
m
P =[]0 -Uv.U)
j=1
where the U;’s are the projections of the cluster’s points on
the half unit sphere of R""', U is the projection of the vari-
able, and ‘.’ denotes the inner (dot) product of vectors.
This is a real polynomial of degree m with n + 1 vari-
ables, and after Section 2.1, the set of roots of this polyno-
mial is exactly the set of projections of the m cluster’s points
on the half unit sphere of R"*!. Given that the (real) product
is commutative and associative, this polynomial does not
depend on the order in which data points are taken into
account. Since the projection on the half unit sphere is
inversible, P(U) is unequivocally associated with the cluster
in a given encoding sphere. Then, expanding P(U), one
obtains a sequence of coefficients which is a possible cluster
code. The expansion of this algebraic polynomial is finite,
and it is of the form:

RUED DY

k=0 ay +a; +-- +a,=k

k n
(_1) C[ao’alv ~--,an]”80u‘111"'”2 >

where the a;’s are integer exponents of the (projected) varia-
ble’s coordinates. The real coefficients c[.] are the code
components, and they can be described in the following
way. Let P[m, k] denote the set of parts with k elements of
the integer set {1, 2, ..., m}, and let Q{ay, ay, ..., a,} denote
the set of all distinct permutations of the set which contains

ay integer values 0, a, integer values 1, ..., a, integer values
n. With k=ay + a; + --- + a,, one has:
c[0,0,...0] =1,

k

clag,ay,...,a,1 = z n%w

(1o fi)EPIMK] (iy,...i)EQlay,....a,] s=1

It should be noted that the coefficients of the expansion
comprise only products and sums of the projected coordi-
nates of the cluster’s points, which guarantees that these
coefficients are continuous functions of the coordinates of
points, as long as clusters remain inside the encoding
sphere.
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Example. —With n =2 and m = 3, one must expand the
polynomial:
Plug, uy, up) = (1 — ugiug — uyjuy — yup) (1 — upputg

— upputy — upy) (1 — ugsug — ujzu;

= Up3lty).

The expansion by hand is quite tedious but easy, and one
obtains:

Plug, uy,up) = 1 — (ugy + upp + ugz)ug — (uyy + upp
+uz)uy — (g + uy + upz)uy + (ug o
+ up gy + ugriyz + U e + oUgpltys
+ uypugs)uouy + (g Uy + Uy Uy + Ug Uns
+ uy gz + Utz + upugz)uguy + (uyjun

1 Uiy T oupuay T up gy + Uiy

2
+ ugpug3)uiuy + (Ugiugy + gz T Ugr U3 )Up

2
+ (upuy + upugz T upuuy + (U up
+ + i — (
Uz Up3 T UppUn3)Up UprUialUn3
t g ooy t Uy UpU 3 T U U U
+ up uppttyz + up upauez ) ugU y — (Mo Ugplt3
2
+ ugpUps + upUgp Uz Uy — (Ui tgaUns
2
+ ugpupz + Uy Ugp U3 Uy — (UpgloUs3
2
+ upupuyz + uy iUz uiuy — (Ug oty 3
2
+ upuguyz + ugupugzuguy — (UgitixUss
2
+ U Uz + Uy U Uz Uy — (Uil Uss
+ + 3 - 0
Up U plp3 T Uy Upply3)U Uy — Ugy UgpUosly
_ 3 3
UpUppUyziy — UpjUppUssly.

Fortunately, there is another way of computing the coeffi-
cients of the expansion, as we shall see in the next section.

2.3. Encoding procedure

2.3.1. Computing the coefficients

The following procedure provides the same coefficients
than those of Section 2.2, however, its recurrent form makes
it much easier to implement on standard computers. The
encoding procedure is presented in pseudo-Pascal notation:

c[0,0,...,0]:=1;

59

for j: =1 to m do
for k: =j downto 1 do
for ag: = 0 to k do
for a;: = 0 to (k — ap) do

for a, := 0to (k— Y/ fa;) do

begin
-1
ay;=k— > oa;
if k =j then clay, a,, ..., a,]: =0;
clag,ay, ..., a,] = clay, ay, ..., a,]
+ Y a0 uclag,....a; — 1,...,a,];
end;

Note. For readers unfamiliar with pseudo-Pascal notation,
one can say that this is simply English mixed with mathe-
matical notations. The semicolon is the statement separator,
while ‘x: = y‘ means that x takes the value of the expression
y. The sequence of statements between ‘begin’ and ‘end’
must be repeated in each iteration governed by the ‘for’
statements.

2.3.2. Addressing the coefficients in a vector

For clarity in the procedure (2.3.1) statement, we used a
multidimensional array notation for c[.], where we have in
fact to obtain a vector. Moreover, the size of this multidi-
mensional array would be of (m + 1)"*! real numbers, while
the total number of coefficients of the expansion is only
K\, = (’[’,’,,J]’"H). The combinatorial K/ can be recursively
computed using the relations:

K=K, =1,
and

o -
K=K +K .

Using this combinatorial, one can compactly address the
coefficients in a one dimension array as follows:

k:=a0+a|+~--+a

n»

index(ag, ay, ..., a,) := {k > 0}KX, 1+

ay— 1 ) a; — 1 )
{ag >0} > Ki7 +{a; >0} > K7+
j=0 =0

a, —1 )
{az >0} Z Kﬁ:go_al_] +
=0

a,-—1 )
(a1 >0) 3 Ko
Jj=0

where we note that {false} =0, and {true} = 1.

In practical implementations, the multi-index
[ao, @i, ..., a,] which appears in Section 2.3.1 must be
replaced by the scalar integer function index(ay, ay, ..., a,)
defined above. Indexed this way, the coefficients are ordered
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Table 1

Mean distances (and standard deviations) in the space of codes (d(C, C'),
first method), and in the space of data (Hausdorff), as a function of the
modification scale &

) dc, ¢ Hausdorff

0.0001 000.11 0.04) 0.0002 (0.0000)
0.001 001.10 0.43) 0.0015 (0.0001)
0.01 010.71 (4.12) 0.0154 (0.0009)
0.02 021.33 8.27) 0.0309 (0.0019)
0.04 043.64 (17.3) 0.0615 (0.0041)
0.08 087.96 (36.0) 0.1232 (0.0086)
0.16 163.79 (57.6) 0.2450 (0.0182)
0.32 331.29 (129) 0.4814 (0.0375)
0.64 602.82 (262) 0.8909 (0.0783)
1.28 886.72 (243) 1.2303 (0.1692)

in increasing order of the total degree of the terms they
weight. Then the total degree corresponding to the last
non zero coefficient provides the number m of points of
the cluster. If the index of this coefficient is larger than
K,’,‘Izl but no larger than K’,f+2 then the degree is k, and
m=k. One can theoretically use an infinite vector for
encoding any cluster of R", the unused components being
set to zero.

2.4. Decoding

Properties (1) and (2) of the Introduction imply that there
is a bijection between the set of clusters of R", inside a given
encoding sphere, and the set of exact cluster codes. This
guarantees that any exact cluster code is, in some way,
decodable with an exact result. Now, in practice, codes to
be decoded are in general approximations which are not
necessarily exact cluster codes, since the set of exact cluster
codes is only a subset of the set of real vectors. We sketch
hereafter a method which theoretically allows for approxi-
mately decoding a real vector into a cluster. Of course, an
exact result is accessible if the vector is an exact cluster
code.

First one can find the number of points (m) from the last
non zero coefficient of the vector V to be decoded (see
Section 2.3.2). Let Q be the set of clusters of size m in a
given encoding sphere, consider a cluster ¢ € Q, and denote
C(g) the cluster code associated with g by the encoding
method (Sections 2.1 and 2.3). Then a solution, denoted
q", to the decoding problem is provided by solving the
following global optimization problem:

q" = arg min,e,||Clg) — V||

Since the search domain is bounded (encoding sphere) and
the functional to be minimized is continuous (as a conse-
quence of property (3)), there are global optimization algo-
rithms whose convergence to a global minimizer is
guaranteed (Courrieu, 1997, Theorem 1; Ingber & Rosen,
1992; Solis & Wets, 1981). This theoretically guarantees the
solvability of the decoding problem. However, it was
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observed in practice that the solving time increases very
fast with the dimension (n) and the size (m) of clusters.
So, the above described decoding method cannot reasonably
be recommended as a practical one, except for very small
problems.

2.5. Computational test

We know that the encoding preserves basic topological
properties of the data space. The object of the computational
test is to see if metric relations are also preserved, and if they
correctly reflect variations in data generating processes. For
the computational test, we generated 20 uniformly random
clusters of m = 12 points in [—1, 1]4 (i.e. n =4). Ten modi-
fied versions of each cluster were generated by adding a
random quantity, uniformly sampled in [—§, 8], to each
coordinate of each point. The modification scale & was
experimentally varied from 0.0001 to 1.28, and each
added quantity was eventually resampled until the modified
coordinate was in [—1, 1]. The distance between the code C
of a cluster and the code C’ of a modified version was
defined as the Euclidean distance of codes: d(C,C’) =
|c—cC /|| We also computed, for comparison, the Hausdorff
distance (associated to the Euclidean distance in R")
between clusters in the data space (see Barnsley, 1993).
Let g and ¢’ be the two clusters to be compared, then their
Hausdorff distance is defined by:

b}

h(q, ¢’) = max(maxye, minye, || X =Y
maxye, minge, || ¥ — X |).

Mean distances (with standard deviations on 19 degrees of
freedom) are reported in Table 1.

As one can see in Table 1, the distance of codes is, on the
average, a monotone increasing function of the modification
scale, and is approximately proportional to the Hausdorff
distance (d(C, C') = 700 Hausdorff). Hence, it seems that
the encoding method generates a code space whose metric
properties are compatible with those of the data space.

Out of curiosity, the decoding problem was tested on
exact codes of very small clusters, ] =m =4, in [—1, 1]4.
Decoding problems were exactly solved using the so called
‘Hyperbell algorithm’ (Courrieu, 1997). It turned out that
the number of steps of the algorithm for finding exact solu-
tions was about 455 X 10™, where each step required encod-
ing a cluster. Clearly, this is not a practical solution.

2.6. An example of application

The above described encoding method was recently used
in sport’s science area for encoding and comparing basket-
ball play configurations (Courrieu, Ripoll, Ripoll, Baratgin
& Laurent, submitted; Baratgin, Ripoll, Ripoll, Courrieu &
Laurent, submitted). Basketball play configurations can be
schematized as illustrated in Fig. 1. In this type of represen-
tation, ground marks provide a reference, the dot stands for
the ball, crosses represent attackers, and segments represent
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Configuration 1

Configuration 2

X X X X
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.\ 0\ —
X X X X
Configuration 3 Configuration 4
X X
X X
o 7 ] 7
D X D X
X T X
Configuration X Euclidean distance between codes
Config 1 2 3 4
N
=~ 1 0
an 2 070 0
~ X
X ~N 3 102 084 0
X 4 1.53 142 1.14 0
X 15.37 15.61 15.67 14.98
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Fig. 1. Five schematized basketball play configurations and the Euclidean distances between their associated codes (first method applied by Courrieu et al.,

submitted; Baratgin et al., submitted).

defenders with their orientation. Coaches commonly use
such representations for training basketball teams. A play
configuration can be described as a set of three clusters: the
ball which is a cluster of one point in the plane, the attacker
team, which is a cluster of five points in the plane, and the
defender team, which is a cluster of five points in a four
dimension space since each defender is represented by his
position in the plane (two coordinates) and his orientation
(two more coordinates). A convenient way of representing a
defender consists of taking his “left hand” and “right hand”
plane coordinates. Then, it suffices to encode each of the
three clusters as described above, and to concatenate the
resulting codes, in fixed order, in a global vector (312 real
coefficients). This vector unequivocally represents the
multicluster play configuration. Fig. 1 shows four close
configurations (numbered from 1 to 4), each of them
being obtained from the previous one by changing the posi-
tion of one player, while the fifth configuration (X) is very
different from the other ones. Euclidean distances between
codes associated to these configurations were computed and
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they are shown at the bottom-right of Fig. 1. As one can see,
these distances reflect the differences between play config-
urations in a quite natural way. More advanced results on
this topic are reported in Courrieu et al. (submitted) and
Baratgin et al. (submitted).

3. Second method: cluster codes depending on a
separating variable

This method satisfies requirements (1) and (3) for any
cluster, and requirements (2) and (4) in most cases, but
not all. Its advantages are that the generated code is concise
(nm real coefficients), and that decoding, when possible, is
very simple. Moreover, a simple inspection of a code vector
immediately shows whether or not decoding is allowed.
This method is particularly adapted for encoding and decod-
ing pseudo-sequences of points. A possible application field
is the encoding of sets of seismic events, such events being
rarely simultaneous if the time is measured with relatively
high precision. Another possible application field is the
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analysis of sequences of regularly sampled physical
measures (e.g. acoustical or electrophysiological measures).

3.1. The one variable case

The one variable case is very simple since points of R are
naturally ordered. Then it is sufficient to order data points in
increasing order (or in fact any fixed order) of their values to
obtain a cluster code which trivially satisfies requirements
(1)-(4) in all cases. In particular, decoding is simply the
identity mapping. In the case where all points of a cluster
of R have distinct coordinates, we say that the variable
separates the points of this cluster. The set of clusters for
which the variable is not separating (i.e. clusters which have
repeated points) is a set of zero measure. To be convinced of
this, note that for any cluster size m > 1, the set of clusters
with repeated points is the union of hyperplanes of R™
whose equations are x; —x;=0, 1 =i<j=m. This is
obviously a zero measure subset of R".

3.2. Encoding clusters of R"

Let ¢ be the first coordinate of R", and consider a cluster of
m points {X;= (t;, xpj, ..., X,); 1 =j=m } in R", where
points have been ordered in such a way that 1, <t
1 =j=(@m—1). Let g(¢) be a stricly monotonic continuous
function, and form the square matrix §=(s;), 1 =i=m,
1 =j=m, where s; = [g(tj)]ifl. All coefficients in the first
row of the matrix S have value [g(.)]O = 1, and remaining
rows are successive integer powers of the second row coef-
ficients. A matrix with such a structure has a determinant,
called ‘Vandermonde determinant’, which is:

[T Gu—sy.

1<=j<k=m

detS =

It is clear that this determinant is different from zero if and
only if all coefficients in the second row have different
values. Given that g is strictly monotonic, one obtains:

Now, consider the vectors T= (), | =j =<m, and V; = (x),
1=j=m, 2=i=n. The mXn matrix C whose first
column is C;=T, and whose ith column is C;=SV,,
2 =i=n, is a code which satisfies requirements (1) and
(3) in all cases. The first column encodes only one variable
(), then after Section 3.1, the conventional increasing order
of C; components is appropriate. On the other hand, the
columns C;, i > 1, do not depend on any ordering of points:
let p be an m X m permutation matrix, then a permutation of
the points gives C;= Spp'V;= SV;, where p’ denotes the
transposed of p, which is equal to its inverse given that
any permutation matrix is orthogonal. This guarantees the
property (1), while the property (3) results from the fact that
g is continuous and the encoding only implies products and
sums. Moreover, if detS# 0, then S is inversible and
Vi= SﬂC,-, 2<i=n, where S, and then S, can be
computed from the column C;. In other words, this encoding
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satisfies requirements (2) and (4) if and only if the ¢ variable
separates the cluster’s points. After Section 3.1, the set of
clusters for which ¢ is not separating is a set of zero measure,
however it is not an empty set. Now, a simple inspection of
the column C; of the code immediately shows whether it
contains equal coefficients, that is, if decoding is allowed or
not. When a code was obtained as the output of an approxima-
tion process (neural network), it can happen that the compo-
nents of C| are not in increasing order. This is not problematic,
since the set of points provided by decoding will be the same,
in permuted order (since (Sp)fl C; =p'S71C,- =p'V).
However, if comparisons between codes are required, then
it is necessary to reorder C; (and only C,!).

The code has another property which can be useful in
certain applications. Let V be the matrix whose columns
are the V;‘s, let W be the matrix whose columns are the
C’s, 2=i=mn, and let B be any (n — 1) X (n — 1) real
matrix. Then, the cluster whose coordinate matrix is
(T, VB) has the code matrix (7, WB), since the matrix S
only depends on 7, and W= SV implies that SVB = WB.
In other words, applying a linear transform to the data coor-
dinates, without changing the first coordinate, results in
applying the same transform to the code.

3.3. Practical choice of g(t)

After Section 3.2, the only theoretical requirements for
the g function are that the function is continuous and strictly
monotonic. Now, depending on this function, successive
powers which are used in the matrix S can rapidly go to
very high or very low values. Hence, one must choose the
g function in such a way that none of the coefficients of S
tends to infinity as the power (i.e. the row number)
increases. This means that —1 = g(f) = 1, for all possible
values of ¢. A solution is g(f) =2F(t) — 1, where F(¢) is a
continuous strictly monotonic approximation of the cumu-
lative probability function of 7. Another advantage of this
solution is that the distribution of g(¢) is approximately
uniform in [—1, 1]. Note that one can as well choose
g(t) = F(¢), and then the variation interval is [0, 1].

3.4. Summary of the method

For the whole application:

e choose one of the variables, which is the most probably
separating, as the variable 7,

e determine a function g(¥) = 2F(t) — 1, or g(¢) = F(?),
where F(?) is a strictly monotonic continuous approx-
imation of the cumulative probability function of z.

Encoding a cluster:

e form the matrix S = (sy), s; = [g(£)]"",

e the first column of the code is C; =T, in increasing
order of t values,

e the ith column of the code is C; =SV, 2 =i=n.

Decoding a code matrix:

e T=(,,
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e if all components of T have distinct values then the
code is decodable, and one forms the matrix S as for
the encoding,

e Vi=S'C,2=i=n.

Note: If certain values of ¢ are very close, then the matrix §
is ill-conditioned, which implies that a small approximation
error of C; can result in a quite large approximation error in
the decoded V..

3.5. Computational test

Given that the above described encoding satisfies require-
ments (1) and (3) in all cases, various topological properties
of data spaces are preserved in code spaces. However, since
this encoding does not satisfy requirement (2) everywhere,
there is a potential drawback which is that two distinct
clusters can have the same code, and combined with (3),
there are quite different clusters which have close codes.
Now, since the set of unseparated clusters is of zero
measure, one can hope that the drawback is limited and
has statistically weak effect. For the computational test,
we generated 20 uniformly random clusters of m = 128
points in [—1, 1]16 (i.e. n=16). Ten modified versions of
each cluster were generated by adding a random quantity,
uniformly sampled in [—8, 6], to each coordinate of each
point. The modification scale & was experimentally varied
from 0.0001 to 1.28, and each added quantity was even-
tually resampled until the modified coordinate was in
[—1, 1]. The distance between the code C of a cluster and
the code C’ of a modified version was defined as the Eucli-
dean matricial norm of the difference of codes: d(C, C') =
|C — C||, which is equivalent to the Euclidean distance in
R™. We also computed, for comparison, the Hausdorff
distance between clusters in the data space. Mean distances
(and standard deviations) are reported in Table 2.

As one can see in Table 2, the distance of codes is, on the
average, a monotone increasing function of the modification
scale, as is the Hausdorff distance (however the relations are
not linear). Hence, it seems that the encoding method has
reasonable properties for practical use. Now, it is clear that
when one chooses learning examples for a neural algorithm,
it is desirable to avoid those examples of clusters whose first
coordinate is not separating. When decoding an approxi-
mated output code, one has to consider with caution clusters
whose points are very irregularly spaced on the first coordi-
nate (in fact, what is important is the spacing of g(¢) values).

3.6. An example of pseudo-sequence problem

One can suspect that many natural processes are in fact
pseudo-sequences, that is sequences of randomly ordered
events or random mixtures of several distinct processes. In
order to show how the above cluster encoding method can
help to solve pseudo-sequence problems, we take now the
example of sequences made of a random mixture of two
independent processes: a process generated by the well-
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Table 2

Mean distances (and standard deviations) in the space of codes (d(C, C"),
second method), and in the space of data (Hausdorff), as a function of the
modification scale &

5 d(c, ¢ Hausdorff

0.0001 00.09 (0.06) 0.0003 (0.0000)
0.001 00.89 (0.47) 0.0029 (0.0001)
0.01 06.31 (2.78) 0.0290 (0.0009)
0.02 10.84 (5.18) 0.0580 (0.0018)
0.04 16.30 (5.09) 0.1157 (0.0029)
0.08 23.72 (7.48) 0.2317 (0.0063)
0.16 29.26 (7.05) 0.4610 (0.0105)
0.32 36.33 (7.78) 0.9187 (0.0253)
0.64 43.57 (5.73) 1.8009 (0.0607)
1.28 57.36 (6.54) 2.5288 (0.0908)

known logistic map, and a process generated by the so
called ‘kappa map’ (Husmeier & Taylor, 1998). A logistic
process will be defined by:

y(' + 1) = ay(")[1 = y()],(0) = 0.5, € [3,4],
while a kappa process will be defined by:

2"+ 1) =1-z:")",2(0) = 0.5,k € [0.5,1.25].
Taking t=1' + ¢”, one can define a pseudo-sequence by:

x(t + 1) = y(t' + 1) with probability p(t’, 1", Apa),

x(t + 1) = z(¢" + 1) with probability 1 — p(¢',t", Apa)s
where the probability of processes is given by:
p(' 1", A = max(0, min(1,0.5 + 0.5(t" — t')/Apa),

where A, >0 is an integer number.

Note that if A, tends to infinity then p = 0.5 at any step,
independently of previous events, while taking a low value
for A, constrains ¢ and ¢’ to remain close to each other.
This is a way of limiting the random variability of the
mixture. However, the global probability of each of the
two processes is always 0.5.

A sequence can be considered as a cluster {(¢, x(¥));
1 =t =m)} in R, where ¢ is obviously a separating variable
uniformly distributed in the interval [1, m]. Then one can
take g(#) = t/m and apply the cluster encoding method. In
this study, we take m = 200, and we can draw the sequences
given that they are in R”. Note, however, that the same
methodology can as well be applied with higher dimension
(vector sequences), but this would be hard to draw.

Each of the two component processes of a sequence
depends on a parameter, and each pair of parameters
(a, k) corresponds to a family of random mixtures of the
same processes, while changing the parameters leads to
another family (see Fig. 2). The question is: does the cluster
code reflect the family the sequence belongs to? If this is the
case, then the distance between codes of sequences belong-
ing to the same family must be lower than the distance
between codes of sequences belonging to distinct families,
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Two sequences with o = 3.98 and x = 0.8
data distance = 4.86, code distance = 1.02

|
f

b
iy

First sequence: o = 3.57, k =1.1; second sequence: o = 3.98, k = 0.8
data distance = 4.46, code distance = 23.18

i

Fig. 2. Two pairs of sequences generated by a random mixture of independent logistic and kappa processes (A.x = 200). Codes were computed using the

second method.

and the encoding method can be used for building robust
sequence classifiers (for example). Of course, cluster codes
are useful only if they reflect the component processes better
than data themselves.

A code distance can be defined, as in Section 3.5, by the
Euclidean norm of the difference of codes, while a data
distance can be defined in the same way, replacing the
code components by the (sequentially ordered) data points.
Note that, in the present case, distances do not depend on the
values of 7, since these values are the same for all sequences.

A computational experiment was designed as follows. Four
values of A, were selected (2, 3, 4, and 200). For each of
these values, a uniform random sample of 80 pairs of para-
meters («, k) was generated in the sampling intervals of these
parameters. 40 of these pairs were used for generating 40 pairs
of sequences (m = 200), the two sequences in a pair being
distinct random mixtures of the same two processes. The
remaining 40 pairs of parameters were randomly associated
to the previous ones for generating 40 other pairs of sequences,
the two sequences in a pair being random mixtures of
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(randomly) distinct processes. The data distance and the
code distance were computed for each pair of sequences.
Mean distances (and standard deviations on 39 degrees of
freedom) for all experimental conditions are reported in
Table 3. In addition, Student ¢ tests (with 78 degrees of free-
dom) were used for comparing the distances between
sequences generated with similar processes to the distances
between sequences generated with distinct processes. Statis-
tical significance was tested according to the usual decision
threshold p < 0.05 (while ‘n.s.” means that the tested differ-
ence is statistically non significant).

As one can see in Table 3, with A, =2, the data
distance was just significantly lower for similar processes
than for distinct processes, while for higher values of A,
the data distance clearly does not allow for detecting the
similarity of processes. Contrasting with this result, the code
distance was always largely and significantly lower for simi-
lar processes than for distinct processes. Hence, the
proposed encoding method clearly appears as an efficient
tool for solving pseudo-sequence problems. Moreover, this
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Table 3

Mean data distance and code distance (with standard deviation) between sequences made of distinct random mixtures of independent logistic and kappa
processes. The component processes of two compared sequences can be similar or randomly distinct. When processes are similar, lowering A, results in
bringing the ranks of similar values of the two sequences nearer

Apnax 2 3 4 200

Data distance

Similar (a, k) 3.27 (0.90) 4.15 (1.15) 3.79 (1.10) 3.55 (0.99)
Distinct (a, k) 3.66 (0.75) 4.10 (0.82) 4.07 (0.88) 3.80 (0.96)
Student #(78), significance 2.10, p <0.05 0.21, n.s. 1.23, n.s. 1.12, n.s.

Code distance

Similar (a, k) 2.66 (2.63) 4.06 (3.60) 3.15 (2.98) 3.76 (1.73)
Distinct (a, k) 9.24 (5.33) 9.57 (6.32) 10.07 (6.03) 8.89 (4.52)
Student #(78), significance 7.00, p < 0.001 4.79, p < 0.001 6.52, p < 0.001 6.70, p < 0.001
result suggests that the tool allows for robust comparisons of Acknowledgements

sequences in general.
This work was partially supported by a grant from Minis-
tere de I’Education Nationale, de la Recherche et de la

4. Conclusion Technologie—ACI ‘Cognitique’ (1999, #90).

Two methods for encoding clusters were presented. In
applications, cluster codes can be used for comparisons or
as arguments of various functions (Spline functions, Radial
Basis functions, etc.), and decodable codes can also be used
as output of approximation processes. The first method is
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Abstract

This paper presents a fast incremental algorithm for embedding data sets belonging to various topological spaces in Euclidean spaces. This
is useful for networks whose input consists of non-Euclidean (possibly non-numerical) data, for the on-line computation of spatial maps in
autonomous agent navigation problems, and for building internal representations from empirical similarity data. © 2002 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

The main concern of this paper is the spatial represen-
tation in Euclidean spaces of data sets belonging to metric
or non-metric topological spaces. In a previous study
(Courrieu, 2001), the particular case of spaces of clusters
was treated, a cluster being defined as a finite unordered set
of points. Two methods were proposed for encoding clusters
in an Euclidean code space, while preserving various
topological properties of data spaces. The present work
concerns other types of data spaces, and is related to a well
known field in data analysis, i.e. ‘multidimensional scaling’
(Cox & Cox, 1994; Kruskal, 1964a,b; Shepard, 1962a,b;
Young & Torgerson, 1967). Usual multidimensional scaling
algorithms search for a set of points of R" whose mutual
distances (for a given metric) approximate a given
‘dissimilarity’ measure between the corresponding elements
of the data space, while the dissimilarity measure is not
necessarily a metric. Most of these algorithms attempt to
minimize an error criterion using a gradient descent type
procedure, which gives rise to quite slow computation and
frequently causes the search process to be trapped into local
minima. A recent variant of gradient descent allows for
improving the performance of these methods (Demartines &
Hérault, 1997). From a mathematical point of view,
multidimensional scaling is closely related to the well
known ‘isometric embedding’ problem (Blumenthal, 1936;

* Corresponding author. Tel.: +33-4-42-95-37-28; fax: +33-4-42-20-59-
0s.
E-mail address: courrieu@up.univ-mrs.fr (P. Courrieu).

Fréchet, 1910; Micchelli, 1986; Schoenberg, 1937, 1938).
This connection will be widely exploited in this paper.
The Neural Networks community is concerned with this
problematic in several ways. First, neural computation
research has developped powerful methods for approximat-
ing continuous mappings on compact subsets of Euclidean
spaces, from finite sets of data points. The Euclidean nature
of the support space is particularly clear for Radial Basis
Function Networks and Radial Spline systems (Girosi &
Poggio, 1990; Poggio & Girosi, 1990), since Radial Basis
Functions are functions of an Euclidean distance on the
input space. Moreover, fundamental properties of networks,
such as their approximation and regularization capabilities,
critically depend on the hypothesis concerning the support
space. However, as concerns practical applications, one can
note that available data spaces are frequently not Euclidean,
and even that they are frequently not real vectorial spaces.
This results in difficulties for engineers faced with
implementing artificial neural network applications, since
they must transform given data spaces into real vectorial
spaces empirically, and in general without any guarantee
concerning the relevance of this operation. Certain numeri-
cal data sets can be artificially considered as Euclidean
spaces, however, using an Euclidean metric on such data
sets frequently leads to very disappointing results. A well
known example of this is the case of numerical time series:
one can always consider time series as vectors and compute
an Euclidean distance between two vectors, however, this is
rarely relevant. Dissimilarity measures provided by
Dynamic Programming methods (‘elastic template match-
ing’) are in general much more appropriate, however, the

0893-6080/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
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resulting space is not Euclidean, a priori, and in fact it is not
necessarily metric if the measure used is not a true metric
(Okochi & Sakai, 1982; Vinstuk, 1968). There are also data
spaces which are not numerical, such as spaces of symbol
strings, for example. However, there are well-known
methods for defining dissimilarity measures on symbol
string spaces, these measures being called ‘edition dis-
tances’ (Lowrance & Wagner, 1975; Wagner & Fischer,
1974). One can find many other examples of data spaces
which are not Euclidean, or even not numerical, but on
which one can define a dissimilarity measure which has at
least some properies of a metric. In general, triangle
inequality is the most difficult property to obtain. Now,
assume that one can define a simple continuous strictly
increasing transform of a dissimilarity measure, and the
useful part of the data space with this monotonically
transformed dissimilarity measure is a metric set iso-
metrically embeddable in an Euclidean space (this is a
‘monotonic embedding’). It is clear that this would help to
solve a number of practical problems of data encoding for
neural network applications. Another field of interest
concerns autonomous agents (alive or artificial) which
must locate objects and themselves in a given environment,
using approximative evaluations of distances for building a
‘spatial cognitive map’. The interest of multidimensional
scaling in this navigational context is obvious, however, this
requires on line computation, that is simple and fast
algorithms. The problem is clear for robotic applications,
while the principle of an on line computation of spatial
cognitive maps also seems relevant from a neurobiological
point of view if one consider the behavior of hippo-
campal place cells (Cressant, Muller, & Poucet, 1997, 1999;
Muller, 1996; O’Keefe & Nadel, 1978; Poucet, Save, &
Lenck-Santini, 2000). Finally, multidimensional scaling
methods were widely used in the area of psychological
science for approximating the so-called ‘psychological
spaces’ from empirical subjective similarity data (Nosofsky,
1992; Shepard, 1987). This can be viewed as a generaliz-
ation of spatial cognitive maps to more abstract spaces.

In this paper, we present a particular approach of
multidimensional scaling which, in a sense, is less general
than usual multidimensional scaling methods, since it does
not allow for embedding data sets in any real metric space.
However, the method developed here is particularly
appropriate to neural network applications since it allows
for an exact monotonic embedding of data sets in Euclidean
spaces, using a straight, fast and incremental algorithm. The
incremental character of the algorithm implies that one can
embed any new item without recomputing or modifying the
embedding of previously embedded items. This is absol-
utely necessary for embedding the current input of a
network, or of a navigation system, without modifying the
embedding of the learning set (and hence the network itself),
or of the landmarks. A straight fast procedure is required for
on-line computation, while the exactitude of the embedding
is not the most relevant characteristic in the case of noisy
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data, however, this is a way of obtaining fast computation.
The present approach lies on mathematical fundations
which extend the earlier mentioned classical results
concerning the isometric embedding problem. Surprisingly,
these classical results were much more widely used in the
study of positive definite functions than in the field of
multidimensional scaling, despite the fact that multidimen-
sional scaling is basically an isometric (or monotonic)
embedding problem.

2. Conventions and background
2.1. Notations

The identity matrix is denoted /. The transposed row
vector of a collumn vector v is denoted v/, while the
transposed matrix of a matrix Q is denoted Q'. For
specifying the content and size of a function vector or a
function matrix, it will be convenient to use notations of the
form:

v=[Wil=1, . n
where v; can be an expression,
D = [dyl; j—o,..n,

where d;; can be an expression.
For example, let A, B and C be three m + 1) X (n+ 1)
matrices, then

A +B — C= [al] + bl] - Cl:j]i,‘izo,...,n'

2.2. Usual definitions

2.2.1. Topological and metric spaces

A ‘metric’ or ‘distance’ associated to a set S, is a real
valued function d on S X S such that, for any a, b, c € S, one
has the four following properties: (1) d(a,b) =0 and
d(a,a) =0, (2) d(a,b)=d(b,a), (3) d(a,b) = d(a,c)+
d(b,c), (4)if a # b then d(a, b) > 0. The triangle inequality
(3) can also be writen as d(a, b) = ld(a,c) — d(b,c)l.

A function which satisfies only requirements (1)—(3) is
called a ‘semi-metric’. A function d which satisfies only
requirements (1) and (2) is sufficient for inducing a topology
on S. An open (resp. closed) ‘ball’ of center x € S, and of
radius r = 0, is the set of points {y € S;d'(x,y) < r(resp. <
r)}. The set of all balls is a neighbourhood system and then,
(S,d)isa topological space. Now, if d is a true metric, then
(S, d) is called a ‘metric space’, or ‘metric set’. If S is a finite
set of n+ 1 elements, then one can associate to (S,d)a
do the same even if d is not a true metric (while avoiding the
term ‘distance matrix’ in this case).
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2.2.2. Minkowskian metrics
A Minkowskian metric is a metric associated to R" of the

form
1/q
y;”) . g=1

M(X,Y) = (Z b, —
i=1

The most usual Minkowskian metrics are the ‘city-block’
metric M,, the Euclidean metric M, and the ‘dominance’
metric Mo, (X,Y) = max; lx; — y;/. While all Minkowskian
metrics are invariant by changing the origin or the sign of
coordinates, the Euclidean metric is the only one which is
also invariant by any orthogonal transform of the coordin-
ates (e.g. rotation).

2.2.3. Embeddings

A metric space (§',d') is said to be ‘isometrically
embeddable’ in a metric space (S,d) if there is a
mapping f from ' to S such that, for any a,b € §, one
has d(f(a),f (b)) = d'(a, b).

A topological space (5',d') will be said to be ‘mono-
tonically embeddable’ in a metric space (S, d) iff there is
a continuous strictly increasing function g on [0,00) such
that (5, g(d')) is a metric space isometrically embeddable
in (S, d).

2.2.4. Properties of symmetric matrices

The ‘Rayleigh’s ratio’ of a symmetric matrix B by a non-
zero vector v is the ratio Rg(v) = V'Bv/(v'v). The lowest
eigenvalue of B is equal to inf, Rg(v), while the greatest
eigenvalue of B is equal to sup, Rg(V).

A real symmetric matrix B of order n X n is said to be
‘positive definite’ iff for any vector v € R", one has:
VBy = 0. It is equivalent to say that none of the
eigenvalues of B is negative.

A real symmetric matrix B of order n X n is said to be
‘strictly positive definite’ iff for any non-zero vector v €
R", one has: V'Bv > 0. It is equivalent to say that all
eigenvalues of B are strictly positive.

A real symmetric matrix B of order n X n is said to be
‘almost negative definite’ (Donoghue, 1974; Micchelli,
1986) iff for any vector v € R" such that > 7, v; = 0, one
has: VBv = 0.

A real symmetric matrix B of order n X n will be said to
be ‘almost strictly negative definite’ iff for any non-zero
vector v € R" such that >, v; = 0, one has: vV'Bv < 0.

2.3. Useful theorems

Bessel—Parseval’s inequality. Let H be a pre-Hilbert
space, and (e;);— .. ,, be an orthonormal family of H. Then,
for any vector x E H, the family (I(x,e)) Lom 1S
summable and 37, (x, ¢;)1* = lIxI*, where {-,-) denotes the
scalar product of H, and |l is the corresponding norm. The
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orthonormal famlly
xiff Y7 Kx, et =

(€)i=1..n 1is complete for
= lixlI* (Parseval’s identity).

Theorem 1 (Gerschgorin). Let B be a square n X n matrix.
Then all eigenvalues of B belong to the union of the intervals
defined by

|x—bi,~‘ —Zlbu,

Viall

Lemma 1 (Fréchet, 1910; Schoenberg, 1938). Any finite
metric set (S,d) of n+ 1 points may be embedded
isometrically in (R", M,,).Solution:

l1=i=n.

[-xij]izl,...,n,j:O,...,n = [dij]izl,...,n,j:O,...,n'

Theorem 2 (Schoenberg, 1937, 1938; Micchelli, 1986). A
necessary and sufficient condition for the isometric
embeddability of a finite metric set (S,d) of n 4+ 1 elements
in an Euclidean space is that one of the two following
statements be true:

(1) the matrix [d(z), + d,
(ii) the matrix [dlj], j=0,..

d,]],J_ ’’’’’ . IS positive definite,
, is almost negative definite.

Moreover one has (i) < (ii).
Corollary 1. The two following statements are equivalent:

(iii) the matrix [dZ; —i—doj d,%]l =1,
definite,

(iv) the matrix [d,-zj]i!_,-:(),_”,n is almost strictly negative
definite.

_.a Is strictly positive

Proof. It suffices to replace ‘=’ and ‘=’ by ‘>’ and

¢ <, respectively, in the inequalities stated by Schoenberg
(1938, pp. 525-526). O

Corollary 2. If the finite metric set (S,d) is isometrically
embeddable in an Euclidean space, then the required
minimum dimension of this space is equal to the rank of the
matrix [d%[ + d(z)j — dizj]i’j:] """" e

Proof. Considering d as an Euclidean distance and taking
the element of S with the index O as the origin (that is
Xy = 0), one has:

d; + dg; — di; = X, +Ix;IP — Ix; — X;I° = 2X;.X,,

that is
2 2 2
[do: + doj — dijli j=1,..n

Since X'X is symmetric, one has X'X = QAQ', where Q is
the orthogonal matrix of eigenvectors, and A is the diagonal
matrix of eigenvalues of X'X. Since these eigenvalues are
not negative (after Theorem 2), on can take X = A0 as

=2X'X.



1188 P. Courrieu / Neural Networks 15 (2002) 1185-1196

an embedding solution. Then the number of dimensions is
equal to the number of non-zero eigenvalues, and this
completes the proof. [J

3. Monotonic embeddability in metric spaces

In this section, one examines general conditions of
monotonic embeddability of data sets in a real metric space,
whenever it is not required that this space be Euclidean.

Lemma 2. Let S be any finite set comprised of n 4 1 distinct
elements, and let w be a real valued function on S X S such
that, for any a,b € S, one has w(a,a) = 0, and if a # b then
ula,b) = w(b,a) >0, ula,b) < . Then there is a real
YS) > 0 such that for any stricly positive real p = ¥(S), the
space (S, ub) is a metric set isometrically embeddable in
(R",M,,).

Proof. Consider the matrix [w;]; j—, ., associated to the
(non-metric) space (S, u), let inf w = min;; w; > 0, and
Sup u = max;; p;. Then, for areal p > 0, the space (S, u”)
is a metric set provided that for any i, j, k, one has the
triangle inequality wj; = uj; + wj;, which is guaranteed
if p is such that (sup w)’ = 2(inf w)’, that is p =
In(2)/In(sup w/inf w) = y(S). Then the isometric embedd-
ability of (S,u”) in (R",M,) results from Fréchet—
Schoenberg’s lemma (i.e. Lemma 1), which proves
Lemma 2. [

Given Lemma 1, it is quite natural to ask whether any
finite metric set is isometrically embeddable in an Euclidean
space. The answer to this question is easy, since one can find
many decisive examples.

Lemma 3. There are finite metric sets which are not
isometrically embeddable in an Euclidean space.

Proof. Consider finite metric sets of n + 1 elements, n = 4,
whose distance matrices have the following structure.
Chose a real vector z € R", n = 4, such that

lzll = 1, Izl = 172, 1<i<n, (z; — z)° =< 3/4,

l=i=j=n.

Define the distances by
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Using this definition, one obtains

12=d;=d; =1, 0=i<j=n,

and then, for any i, j, k, one has
dij = dy + dy;,

which is triangle inequality. Since d obviously has the other
properties of a distance, it is clear that this is actually a
metric for the considered set.

Now, one has also

2d3 =1- 22,
d(%i + d(%j - diz' = _Zi2 - ij +(z — Zj)2 = —2z;z,
that is

[do; + dtz)j - dizj]i,j:],...,n =7]-277,
where the right member is, by definition, a Householder’s

matrix. Since one has
U —2z0)z=—1,

it is clear that the matrix [d}; +d(2)j - dizj]i, j=1,..n 18 nOt
positive definite, and then, following Theorem 2, the finite
metric set whose distance matrix is [dj];j—o ., is not
isometrically embeddable in an Euclidean space, which
proves Lemma 3. [

The above proof concerns metric sets of at least five
points. Metric sets of one ore two points are trivially
isometrically embeddable in an Euclidean space. Metric sets
of three points are also embeddable since the triangle
inequality always allows for building a triangle in R * with
appropriate side lengths. The case of metric sets of four
points has been studied by Blumenthal (1936), who found
that raising the metric to a positive power, lower or equal to
1/2, compels the embeddability.

4. Monotonic embedding in Euclidean spaces

We have seen in Section 3 that, under quite general
conditions, data sets can be monotonically embedded in at
least one real metric space in a simple way (Lemma 2),
while this does not guarantee the embeddability in an
Euclidean space (Lemma 3). In this section, one states
general conditions of monotonic embeddability of data sets
in Euclidean spaces.

Definition 1. Let S be any set. A ‘dissimilarity’ function
associated to S is a real valued function u on S X § such that,
for any a,b € S, one has u(a,a) =0, and if a # b then
ula,b) = w(b,a) > 0. The set of dissimilarity functions
associated to S is denoted &(S).

Note that metrics are dissimilarities (which, in addition,
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satisfy triangle inequality), while semi-metrics are not
dissimilarities since they allow distinct elements to have a
zero distance.

Definition 2. One denotes G the set of functions g(u; p) of
one real variable u = 0, and one real parameter p > 0 such
that:

g(u; p) is a continuous strictly increasing function of u,
8(0;p) =0,

for any w > 0, for any real € > 0, there is a real a > 0
such that

p=a=lg(up -1 =e

Example 1. Power function g(u;p) = ¥ € G, with the
restriction that sup u < oo :Without loss of generality, one
can assume that € < 1, then

In(e + 1)/21n w), if u>1,
a={In(l —e/Qlnp), if p<I,
>0, if w=1.

Example 2. Weibull’s function

g(uw;p) =1 —exp(—u'/p) € G, with r > 0 :

with € < 1 one has
—u

T -Vi-e

,,,,,

associated to n + 1 distinct elements, that is t; = 0, and if
i # j then t;; = 1. Consider a symmetric matrix of the form
[gz(,u,j;p)],-,.,-zo """" 2 Where u € &(S), for a given set S of
n + 1 distinct elements (Definition 1), and g € G (Defini-
tion 2). Then for any real € > 0, there is a real a > 0 such

that
0<p=a=lig"(u;plijo...—Tlo <€,

where the matricial norm |IBll, = max; Ej|bij|.

Proof. The diagonals of the two symmetric matrices
[gz(p,,»j; P)ij=o...n and T are zero, which implies that there
are at most n non-zero differences per row of the difference
matrix. For each non-diagonal cell of the first matrix, there
is a real a; > 0 such that p = a; = Ig*(u;;p) — 1 = e/n,
by definition of the function g. This implies that there is an
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appropriate real number a such that ¢ = miny<,<j<, a; > 0,
which completes the proof. [J

Theorem 3. Let S be any finite set comprised of n+ 1
distinct elements, consider a dissimilarity p € &(S), and a
function g € G. Then the following two statements are true:

(1) There is a real oS) > 0 such that for any stricly
positive real p = a(S), the space (S, g(u; p)) is a metric
set isometrically embeddable in an Euclidean space
whose dimension is at most n.

(1) There is a real B(S) > 0, B(S) = a(S), such that for
any stricly positive real p < B(S), the space (S, g(; p))
is a metric set isometrically embeddable in an
Euclidean space whose dimension is exactly n.

Proof. Step 1. Let T = [;]; /=0, be a trivial distance
matrix, whose diagonal coefficients equal 0, and other
coefficients equal 1. Then for any vector v € R""! such that
S o v; = 0, one obtains

VTy = Zvj —v; =V(—v)= -’ =0,
J=0 i=0,...,n

which proves that 7T is almost negative definite.
Step 2. Consider the symmetric matrix D, =
[gz(p,,-j;p)]i,j:() ,,,, . associated to the space (S, g(u; p)), for a

given p > 0. One can write

D,=T+ (D, - T),

and for any vector v € R"™! such that 3, v; = 0, one has
v’Dpv =VTv + v’(Dp —Tyw= -+ v'(Dp —Tv,

after Step 1. Then one obtains the equivalence
VD,y=0& VD, - Ty = llvl2,

while a sufficient condition for obtaining the last inequality
is that the greatest eigenvalue of the symmetric matrix
(D, —T) not be greater than 1 (after usual properties of
Rayleigh’s ratio for symmetric matrices). Now, after the
well-known theorem of Gerschgorin, one knows that the
greatest eigenvalue of any square matrix B cannot exceed
IBll,,, while after Lemma 4, there is a real a > 0 such that

0<p=a=ID,-Tl, =1.

Then, clearly, for any p in the above interval, the matrix D,
is almost negative definite, and (i) of Theorem 3 is proved
(in account of Theorem 2 and Corollary 2). Note, however,
that the condition used for defining the upper bound (a) of
the critical interval of p is sufficient but not necessary, and
one has in fact a(S) = a.

Step 3. After Lemma 4, for any € such that 0 < e < 1, there
is a real »>0 such that 0<p=b=ID,—Tl, =e.
Then, for any p in this interval, for any non-zero vector
v € R™! such that >} v; = 0, one has v'D,v < 0, which
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implies that the matrix [gz(uoj;p) +g2(u0j;p) -
gz(p,,-j; P j=1...a 18 strictly positive definite (after Corollary
1), and then the dimension of the embedding space is
exactly n (after Corollary 2). Note that one has in fact
B(S) > b. Moreover, comparing (i) with (ii), it is clear that

B(S) = a(S), and Theorem 3 is proved. [J

Corollary 3. Let S be a given set of n distinct elements, let ()
be a generalization set including S, while uw € 8({2), and
g € G. Then there is a real a(Q|S) > 0 such that for any
stricly positive real p < a(Q\S), and for any y € (), the
space (SU {y},g(u;p)) is a metric set isometrically
embeddable in a n-dimensional Euclidean space.

Proof. One obviously has a(£2IS) = inf,cq a(S U {y}),
while after Theorem 3: 7
if y € Sthen a(SU {y}) = a(S) > 0, if y € S then (S U
{yh >0,
which completes the proof. [J

When the embedding parameter p tends to 0, the space
(S, g(u; p)) tends to (S,¢), where ¢ is the trivial distance.
Then the points of the mapping in an Euclidean space tend
to the vertices of an equilateral polytope (e.g. an equilateral
triangle for n = 2, an equilateral tetraedron for n = 3, and
so on), which account for the equidistance of these points.
Then the particular structure of the data set is represented
more and more weakly in the embedding space as p tends to
0. However, as long as p > 0, the structural information
remains available, since the g transform remains inversible,
by virtue of its strict monotonicity with respect to wu.
Corollary 3 is particularly important for neural network
applications since it states that one can embed any
generalization item (current input), belonging to a given
generalization set {2, together with a finite learning set (or a
set of landmarks) S. Note, however, that this does not mean
that one can globally embed an infinite set (2.

5. Relation with the city-block metric

There is a particular relation between city-block metric
sets and Euclidean metric sets. This relation allows for a
very simple determination of an appropriate g function with
an appropriate embedding parameter p, whenever one
knows that a data set is a city-block metric set. Moreover,
it can be important to know such a relation for the study of
psychological spaces, since various observations suggested
that objects described on dimensions of the same nature
(e.g. width and height) are encoded by humans in an
Euclidean space, while objects described on heterogeneous
dimensions (e.g. size and colour) are encoded in a city-block
space. However, there has been some debate on this
question (Ennis, 1988; Nosofsky, 1986; Shepard, 1986).

Lemma 5. Let S be a finite set of n + 1 distinct points of R",
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and d be a city-block metric (M) on S X S, where d is finite
on this set. Then the set (S, d I 2) is isometrically embeddable
in the Euclidean space (R", M,).

Proof. After the definition of a city-block metric, one has
m k

[dilijmo..0 = D 1) =000
k=1

where the upper index (k) indexes the dimensions, and
metric on a real space of dimension 1. In dimension 1,
all Minkowskian metrics are equal, and in particular
they are equal to the Euclidean one. Since the power
function is in G for finite measures, Theorem 3
guarantees that if one raises an Euclidean metric to
the power 1/2, it remains an Euclidean metric (for a
different set of points), and after Theorem 2, if one
squares this new Euclidean metric one obtains that all
matrices [df-;‘)],-,jzo,m,n, k=1,...,m, are almost negative
definite. Since a sum of almost negative definite
matrices is an almost negative definite matrix, one
concludes that [dj]; -, is almost negative definite,
which implies that (S,d"?) is isometrically embeddable
in the Euclidean space (R",M,), and Lemma 5 is
proved. [

6. Cholesky factorization of a singular matrix

In this section, one states a result which will be necessary
for defining an embedding algorithm in Section 7. One
knows that a symmetric strictly positive definite matrix B
can be factorized as a product of the form B = X'X, where X
is a non-singular upper triangular matrix. This is the well-
known Cholesky factorization of B. Now, a difficulty arises
whenever B is singular, since in this case the Cholesky
factorization leads to a division by zero resulting from an
indetermination of the form O-x =0 in Cholesky’s
equations. The following result allows for removing this
indetermination, and then to define a simple variant of the
Cholesky factorization for possibly singular matrices.

Theorem 4. Let B be a symmetric, possibly singular,
positive definite matrix of order n X n. Then there is an
upper triangular matrix X such that XX =B, x; =0, 1 =
i =n, and if for an index i one has x; =0, then x; =0,
1 = j = n. Moreover, the matrix X with these properties is
unique.

Proof. Existence proof. Since B is symmetric positive
definite, there is a square matrix Y such that Y'Y = B (for
example ¥ = A"2Q)/, as in the proof of Corollary 2). One
can define a special variant of the usual QR factorization,
this variant being of the form Y = HX, where H is an
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orthogonal matrix and X is upper triangular:

1. Hy = 0 (auxiliary vector),
2. for j=1to ndo (3)-(5)
i—1
3. Z=Y; — Yo (Y HYH,,
4. if Z; = 0 then replace it by any non-zero vector Z; such
that Zj L {Hl’ ""[—ijl’ Yj, ceey Yn}»
5. H; = 7z,
6. X=H'Y.

In the above procedure, HjorY, with j > 0, stands for the
Jjth column vector of the corresponding matrix. Steps (1),
(2), (3) and (5) correspond to the well-known Gram-—
Schmidt orthonormalization process, while a variant is
introduced at step (4). Then a crucial point is the existence
of an appropriate non-zero vector Z; when step (3) provides
a zero vector. All vectors have the dimension n, while if step
(3) provides a zero vector, this means that Y; is a linear
combination of the vectors Hy, k= 1,...,j — 1. Then the
rank of the matrix whose collumn vectors are
{Hl,...,Hj,l,Yj,...,Y,,} is at most n — 1, which implies
that there is a non-zero vector of dimension n which is
orthogonal to all these vectors, and step (4) is valid. Now,
one verifies that step (6) provides a matrix X which has all
the desired properties.

X is upper triangular since H; LY, k=1,....j— 1.

Using the equation of step (3), one obtains that

j—1
2
Yz =YIP = > (¥-H)* =0,
k=1

since the vectors Hy, k = 1,...,j — 1, form an orthonormal-
ized basis (complete or not for Y¥;), and Z’k;ll (YJ-H,()2 =
||Yj||2, by virtue of Bessel—Parseval’s inequality. If the basis
is not complete for Y;, then the above inequality is strict,
which implies that x;=H;Y; > 0, while if the basis is
complete for Y;, then step (3) provides a zero vector, and
step (4) guarantees that H; is orthogonal to all columns of Y,
which implies that the whole jth row of X is zero.

Finally, one has X'X = Y'HH'Y =Y'Y =B, since H is
orthogonal (that is HH' = I), which completes the existence
proof.

Comment. Assume that a vector H; has been chosen using
step (4). Then this choice does not affect the computation
of the next vectors by step (3) since (Y;-H) =0, j=
k+1,...,n. In particular, the set of vectors for which step
(3) generates a zero result remains the same, whatever be the
particular choice of Hj. On the other hand, all vectors
generated using step (4) provide an identical effect on the
matrix X, that is a zero row. This implies that the particular
choice of certain vectors by step (4) does not affect the
resulting matrix X, and then this matrix is unique for a given
matrix Y, while the orthogonal matrix H is not unique if ¥
(and hence B) is singular.

Unicity proof. It remains to prove that X does not depend on
a particular choice of the matrix Y. Since an appropriate
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matrix X exists (see the existence proof earlier), one can
write the Cholesky’s equations of the system B = X'X.
Using an auxiliary row vector [xy]i=; ., = 0, for writing
convenience, one obtains:

j=1,...,n, i=1,...,j:
if i = j then
i 2
bu = Zxkl =X =
k=0
else

i—1

bt] = xiixij + Z xk,-xkj = xij
k=0

i—1
_ (b,j - Zxk,»xkj)/x,-[, if Xii > O,
- k=0

0, if Xii = 0

by hypothesis on X properties.

One can note that the solution X is unequivocally
determined by the constraints without any reference to
a particular matrix Y, which completes the proof of
Theorem 4. [

Note that we have just defined a Cholesky’s factorization
of a possibly singular symmetric positive definite matrix B,
which was in fact the main goal of Theorem 4. This
factorization is very similar to usual Cholesky’s factoriz-
ations of strictly positive definite symmetric matrices,
except that the singular case (x; = 0) is allowed, with a
unique guaranteed solution.

7. Monotonic embedding algorithm

We are now ready to define a monotonic embedding
algorithm of data sets in Euclidean spaces with the
desired properties for neural network applications. First,
one can note that if Y is an isometric embedding
mapping of a set S in an Euclidean space, then so is
QY, for any orthogonal matrix Q, since the Euclidean
distance is invariant by any orthogonal transform of
coordinates. In particular X = H'Y, where X is upper
triangular as in Section 6, is a solution. After Theorem 3
(and Corollary 3), for a given data set S, there is a(S) > 0
such that 0 < p = «(S) implies that

L& (o p) + & (ojsP) — & (s Pl jmr..n = XX = B,

where u € 6(S), ¢ € G, and the solution X of course
depends on p.

After Theorem 4, this system can be solved using an
appropriate Cholesky factorization, even if B is singular,
which can happen if p = B(S). It remains to define a way of
finding an appropriate p, given that in general, one does not
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know «(S) a priori. For doing this, one can exploite the fact
that if p = «(S), then B is positive definite and the Cholesky
factorization has a real solution, while if p > «(S), then B
has negative eigenvalues and there are negative arguments
for a square root function in the computation of the diagonal
coefficients of X. Hence, each time that one detects such an
imaginary value case, this means that p > «(S), and that one
must lower p. Then a simple bounding procedure allows for
approximating «(S) (resp. B(S)) as closely as one wants.

7.1. Procedure for embedding one element

The following procedure (EMBED) allows for embed-
ding the element number j of a set, while the elements of
number 0 to j — 1 have been previously embedded. This is
the fundamental procedure which is called by all particular
application algorithms. One can eventually limit the
dimension m of the embedding space, while if no limit of
dimension is fixed, it suffices to call EMBED with an
arbitrary strictly positive parameter m = j, remembering
that x; = 0 if i > j. One can arbitrarily limit the dimension
m since the Cholesky factorization of the matrix B is not
only incremental with respect to the collumns, but also with
respect to the rows. One assumes that a dissimilarity
function w is associated to the data set, that a function g €
G has been fixed, and that the embedding parameter p
currently has a defined value. The procedure returns an
arbitrary negative diagonal value (x; = —1) when the jth
element is not embeddable using the current value of p.

EMBED (j,m,p)
if j <mthenfori:=j+ I tomdox;:=0
if j > 0 then
for i := 1 to min(j,m) do
by = (112)(g*(1oi P) + & (1> p) — & (1i5:P))
if i > 1 then s == Yi_} XXy else s := 0

bj=b;—s
if i = j then

if by is very close to 0 then b; :=0

if b; < 0 then x;; .= —1 else x;; = \/b;;
if i # j then

if X = 0 then .x,'j =0 else x,-j = b,-j/xl-,-.

Note: in the case (i = j), if b;; is very close to O then it is
set to 0 before the test (b; < 0) in order to take into account
the rounding errors which occur in computer’s floating point
arithmetic.

7.2. Multidimensional scaling procedure

The procedure named MDS allows for monotonically
embedding a set S of n 4 1 elements, for given u and g
functions, while one requires that any diagonal value of the
matrix X is at least equal to a positive value e. If one calls
MDS with e =0 then the final value of p is an
approximation of «(S) with the specified ‘precision’. The
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parameter pSup (strictly positive) is choosen as the upper
bound of the search interval of p. If the final value of p is
equal to pSup, this means that pSup = «(S). Similarly, one
can obtain an approximation of B(S) by choosing e just
greater than zero. Take care that too large a value of e can be
incompatible with the data, which leads p to tend to zero.

MDS(e, n, pSup)
EMBED(0, n, 1) {the first element is the origin}
pInf:=0
p = pSup
repeat
j=0
repeat
Jj=j+1
EMBED(j, n, p)
until (j =n) or (x; < e)
if (x;; < e) then pSup := p else plnf :=p
p = (pInf + pSup)/2
until (pSup — pInf) < precision.

The procedure MDS1 allows for embedding a new
element together with n 4 1 previously embedded
elements. MDS1 must be called with the current value of
the embedding parameter p. This value will be lowered in a
call to MDS if necessary. For avoiding this modification,
replace the call to MDS by any appropriate instruction (for
example, display the message ‘the new item is not
embeddable’).

MDSI(e, n, p)
m=n+1
EMBED@m, m, p)
if x,,, < e then MDS(e, m, p)

The procedure MDS| is useful for approximating a(£21S)
of Corollary 3, while S is a learning set of n + 1 elements,
and (2 is a generalization set. Each generalization element
must be embeddable together with S, independently of other
generalization elements. Then repeatedly sampling (2 and
embedding each generalization item together with S by
MDS1(0, n, p), one can hope that p converges to a({2IS).

7.3. Fixed dimension spatial maps

The procedure named MAP allows for building a spatial
map of fixed dimension m from a set of approximated
distances between n 4 1 objects (n = m). The first m + 1
objects are taken as landmarks, the first one being the origin
of coordinates (X, = 0). The embedding space is com-
pletely defined by the landmarks, while the remaining
objects are embedded in this space only, and their mutual
distances are not taken into account. In this type of
application, w is in general an approximation of an
Euclidean distance (however, this is not necessary), and
one chooses for g the power function, that is g(w; p) = u’.
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Table 1

Averaged values of a(S) on four runs of MDS(0, 7, 10), and dimension (1)
of the embedding space as functions of the size of the set (n + 1), and the
type of data space, with g = u”, and m =n
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Table 2

Averaged values of «(S) on four runs of MDS(0, 128, 10), and dimension
(m') of the embedding space as functions of the type of metric data space,
and of its dimension (m ), with g = u, and n = 128

Data space: Non-metric Metric Euclidean Data space: Euclidean Metric City-block

n a(S) ' a(S) ' a(S) ' m a(S) m a(S) ' a(S) m
4 0.202 3 0.894 3 1.102 3 4 1 4 0.146 127 0.504 127
8 0.159 7 0.781 7 1.003 7 8 1 8 0.114 127 0.511 127
16 0.084 15 0.596 15 1.003 15 16 1 16 0.160 127 0.524 127
32 0.054 31 0.540 31 >1 31 32 1 32 0.219 127 0.547 127
64 0.035 63 0.528 63 >1 63 64 1 64 0.330 127 0.592 127
128 0.023 127 0.499 127 >1 127

Hence, if u is actually an Euclidean distance between the
landmarks, then one obtains p = 1. The bounding method
used in the procedure MDS for the search for p is replaced
here by a simple decay method, starting from p = 1, and
applying, if necessary, a reduction -coefficient
(0 <reduc < 1) close to 1. This strategy is fast whenever
s close to an Euclidean distance between the landmarks.
If this is not the case, then the decay method can of course
be replaced by another one, for axample the one used in the
MDS procedure. Taking a small e > 0 ensures that the
embedding space is exactly of dimension m.

MAP(e, m, n, reduc)
EMBED(0, m, 1) {the first element is the origin}
p=1
OK := false
repeat
j=0
repeat
j=j+1
EMBED(j, m, p)
until (j = n) or ((j = m) and (x; < e))
if (j = m) and (x;; < e) then p :=reduc X p else
OK := true
until OK

Note that in real life navigational applications, the
landmarks are frequently fixed objects. In this case, the
embedding space must be computed only once, possibly in
quite good conditions for the approximation of distances
(e.g. prior exploration of the environment). Then the on-line
computation reduces to embedding the remaining (possibly
moving) objects, that is:

MAPI1(m, n, p)
for j:=m+ 1 to n do EMBED(j, m, p).

This is very simple, while the main problem is of course
the on-line approximation of the distances.
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8. Some numerical results

This section summarises numerical results obtained by
the application of the procedure MDS (Section 7.2) to data
sets of various types and sizes. For ‘non-metric’ data sets,
dissimilarity symmetric matrices with zero diagonal coeffi-
cients were generated by a uniform random sampling of
non-diagonal coefficients in the interval [0.01,100]. The
distance matrices of metric data sets were generated by
computing Minkowskian M, distances between random
vectors (uniform random coordinates in [—1,1]). After
Lemma 1 (Fréchet—Schoenberg), this is representative of
the whole set of finite metric sets. The distance matrices of
‘Euclidean’ data sets were generated in the same way, using
the Euclidean metric M,. while distance matrices of ‘City-
Block’ metric sets were obtained using the metric M. The
size of the sets (n 4+ 1 elements) was varied from n = 4 to
128. The actual dimension (m ) of the metric spaces was also
varied. Tables present averaged values of the observed
embedding parameter bounds («(S)) on four independent
problems solved by MDS(0, n, 10), and the obtained
dimension of the embedding space (m' = number of non-
zero diagonal coefficients of X). Tables 1 and 2 present
results obtained with the power function as g function, while
Table 3 presents results obtained with two distinct Weibull
functions (r =1 and 2, respectively) as g functions. The
inspection of Table 1 shows that «(S) is lower for non-
metric sets than for metric sets, and that it is greater than one
for Euclidean sets only. Moreover, «(S) decreases as the

Table 3
Averaged values of a(S) on four runs of MDS(0, 7, 10), and dimension (1)
of the embedding space as functions of the size of the set (n + 1), and the

type of data space, with g = 1 — exp(—u'/p), m =n
Data space Non-metric Metric Euclidean

a(S) m a(S) m a(S) m
r=1,n=16 1.419 15 1.594 15 >10 (16)
r=1,n=128 0.092 127 1.273 127 >10 (128)
r=2,n=16 6.022 15 0.802 15 5.648 15
r=2,n=128 0.009 127 0.831 127 >10 (128)
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Exact 2D map

Simulated view of the scene form the agent place

Approximated distance map

O

O

Fig. 1. Simulated view of a scene with three landmarks (pegs) and two possibly moving objects (balls), followed by two maps computed by the embedding
algorithm from exact and approximated distance data. In these maps, the white disk stands for the autonomous agent, while the other objects are distinguished
by the diameter of their head. The origin of the coordinates is always the thin peg.

size of the set (n) increases, always remaining greater than
one for Euclidean sets. The obtained dimension of the
embedding space for p = a(S) was always m' =n — 1,
while the actual dimension of the used metric sets was m =
n. Additional results were computed for City-Block metric
sets. As expected from Lemma 5, a(S) was always greater
than 0.5 for these sets and one obtained an averaged a(S) =
0.673 with n = m = 128.

Table 2 shows the effect of the actual dimension (m ) of
three types of metric sets (with n = 128). The results are
clear for Euclidean sets, where the actual dimension was
always detected by the algorithm (m' = m). For the two
other types of metric sets, the actual dimension was not
detected (m' = n — 1), however, one can observe that a(S)
systematically varied as a function of m. Further
theoretical investigations are required for understanding
this relation.

Table 3 rapidly provides some elements concerning the
behavior of the embedding algorithm with Weibull func-
tions. The algorithm works well with these functions which
are more appropriate to function approximation contexts
than to distance geometry.
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Additional results showed, in all cases, that B(S) = «(S),
that is, taking an embedding parameter p just lower than
a(S) always provides an embedding space of dimension n
exactly, whatever be m’ for p = «(S). Finally, a general
observation which can be outlined from the above results is
that dissimilarity functions (which were completely random
in this study) must be preferably built in a way which
provides them with properties close to those of a metric, in
order to avoid very low values of «(S) and large
transformations of the data space.

9. Example of application to a robot navigation problem

As suggested in Section 1, there are various application
fields and various ways of exploiting an embedding
algorithm. The example presented in this section has the
advantage of providing suggestive visual illustrations.
Robotic and compuer vision are very active fields, while
robot vision systems can vary considerably in their
sophistication. For this illustration, minimal hypothesis
concerning the robot technology were retained. We assume
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Exact 2D map

Simulated view of the scene form the agent place

Approximated distance map

Fig. 2. Similar to Fig. 1, with the same landmarks and a different configuration of the three moving objects.

a robot (autonomous agent) equiped with a simple video
camera whose images are numerised in a 200 X 400 matrix
of binary pixels (black/white). We also assume that the
robot’s computational power is limited, and that the
computer vision program is not very sophisticated. How-
ever, this program must be able to approximately segment
an image into regions corresponding to individual objects,
discriminate objects of various shapes, and measure the
angular distance between any two points. If the two
considered points are not simultaneously present in the
visual field (e.g. if the robot lands between two objects),
then the angular distance is the absolute rotation angle of the
camera required for successively centering the two points.
In addition, we assume that the program can use a data base
providing the actual size of objects (at least approximately).
Such a data base may have been obtained from a prior
exploration of the environment. With all this information
available, one can approximate the distances between
objects (including the agent) by applying usual projection
and triangulation formulas (such as those used in astron-
omy). Then the approximated distance matrix can be used as
the input of the monotonic embedding algorithm in order to
compute a 2D map of the spatial configuration of the objects
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(including the agent). Certain fixed objects can be used as
landmarks, while at least three objects (fixed or not) are
required for computing a 2D map. The main difficulties
result from the presence of image numerization noise,
shadows, noisy background, partially hidden objects, and
poorly discriminable landmarks. This can result in a certain
amount of error in the approximation of distances, which
leads to distortions in the spatial map. Figs. 1 and 2 show
two views of a simulated environment made of three
landmarks (pegs) and two moving objects (balls). The
choosen order of these objects is: thin peg, round head peg,
ellipsoid head peg, and the balls. The two balls have
undiscernable shapes, hence their set is a cluster which may
eventually be encoded in a special way after a spatial map
has been computed (Courrieu, 2001). Below each view, on
can see two 2D maps computed by the procedure MAP(e, 2,
5, 0.999), with a small positive e appropriate to the data
scale (which is arbitrary). The first map was computed by
the embedding algorithm from exact distances (known a
priori), while the other map was computed from distances
appproximated by a rudimentary (poorly performing)
computer vision program. Despite the distance approxi-
mation errors generated by this program (up to 20%), one
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can see in Figs. 1 and 2 that the obtained maps are quite
close to the exact ones.

10. Conclusion

Embedding algorithms and multidimensional scaling
potentially have a wide set of applications in various fields
(data analysis, function approximation on non-Euclidean
topological spaces, autonomous agent navigation problems,
psychological science). Mathematical fundations of a fast
monotonic embedding algorithm of data sets in Euclidean
spaces were presented, and then the algorithm was defined,
with variants for various types of applications. The
particularity of the algorithm, with respect to usual multi-
dimensional scaling methods, is that it is straight, fast, and
incremental, which makes it particularly appropriate to
Neural Network applications and on-line computation.
Some general numerical results were provided, and an
illustrative example of application in robot navigation was
presented. Further investigations are needed for solving
remaining problems such as the optimal reduction of the
embedding space dimension, however, this mainly concerns
data analysis applications.
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I1.C Mode¢les de codage d'images

Le probléme du codage des images est étroitement lié au probléme de la segmentation
des images en formes identifiables, ainsi qu'au probléme des invariants perceptifs, c'est-a-dire
des transformations (géométriques ou autres) que peut subir le contenu d'une image tout en
restant identifiable, sans donner lieu a une dégradation importante des performances. Il est
communément admis que la perception visuelle posseéde un certain degré d'invariance par
translation ou changement d'échelle des objets percus. En fait, il semble que l'invariance par
translation soit limitée a des ¢léments visuels simples et familiers composant 1'image (Nazir &
O'Regan, 1990). Ces transformations élémentaires sont faciles a modéliser, mais d'autres
transformations affines comme les rotations et les symétries sont plus problématiques. De fait,
la réalité perceptive des invariants par rotation ou symétrie n'est pas établie pour le cas
général. D'un coté, on a de bonnes raisons de penser que la détection rapide d'éléments
relativement simples, par exemple des formes caractérisant localement la présence d'un
animal (oeil, bec, aile), est largement invariante par rotation de l'image (Guyonneau,
Kirchner, & Thorpe, 2006). D'un autre co6té, on sait par exemple que l'identification d'un
visage est trés fortement perturbée par un retournement vertical de 1'image, et 1'expérience
commune montre qu'il est assez difficile de lire des mots présentés a I'envers. L'invariance
perceptive par rotation/symétrie pourrait donc dépendre de la complexité des formes et de
celle de la tache. Le modele de codage d'images par "Affine Moment Invariants" (AMI: Suk
& Flusser, 2003, 2004) fournit une représentation vectorielle d'une image globale invariante
par toute transformation affine, mais la vraisemblance perceptive de cette ¢élégante approche
n'a, & ma connaissance, jamais ¢été évaluée. Toutefois, une invariance radicale, incluant
rotations et symétries, n'est a priori pas compatible avec les observations concernant
l'identification perceptive des formes complexes. De plus, il semble que la perception visuelle
est en mesure de s'affranchir d'une large gamme de transformations naturelles non affines des
images, telles que des flexions et ondulations (ex. effet du vent sur des végétaux, reflets dans
I'eau mouvante), et I'on ne connait pas de moyen de généraliser les AMI a ces sortes de
transformations. J'ai donc développé¢ une méthode de codage de données, plus
particulicrement adaptée aux images, mais pas uniquement, qui permet de représenter et de
comparer des formes globales sur la base d'une distribution de points dont la densité de
probabilité reproduit la fonction de densité graphique de chaque image. Cette méthode permet
d'obtenir des invariances par une large variét¢ de transformations affines et non affines

d'apparence assez naturelle, pourvu que ces transformations aient une matrice jacobienne
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triangulaire, ce qui exclut les rotations, mais couvre toutes sortes de flexions et ondulations
(Courrieu, 2006, 2007, articles ci-joints). L'article de 2006 présente une version trés générale
de la méthode, ainsi qu'une version parallele réservée aux images, sous la forme d'un réseau
de neurones feedforward. Cette deuxiéme version serait trés rapide dans une implémentation
effectivement parallele, mais le calcul sur une machine conventionnelle est assez long.
Comme la version générale n'est elle-méme pas assez rapide pour certaines applications sur
de grosses bases de données d'images, j'ai développé, dans l'article de 2007, une variante tres
rapide de la méthode pour I'encodage des images sur des ordinateurs conventionnels. Cette
variante n'est pas aussi rapide que les techniques spécialisées d'indexation d'images (voir par
exemple Glotin, Zhao, & Ayache, 2009), mais les temps de calcul sont du méme ordre de

grandeur et la gamme d'invariants est plus étendue.
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Abstract

This paper presents an algorithm that allows for encoding probability density functions associated to samples of points of R". The resulting code

is a sequence of points of R" whose density function approximates that of the set of data points. However, contrarily to sampled data points, code
points associated to two different density functions can be matched, which allows to efficiently compare such functions. Moreover, the comparison
of two codes can be made invariant to a wide variety of geometrical transformations of the support coordinates, provided that the Jacobian matrix
of the transformation be everywhere triangular, with a strictly positive diagonal. Such invariances are commonly encountered in visual shape
recognition, for example. Thus, using this tool, one can build spaces of shapes that are suitable input spaces for pattern recognition and pattern
analysis neural networks. Moreover, a parallel neural implementation of the encoding algorithm is available for 2D image data.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There are applications in which the input provided to a
neural network is not a point (real vector) but a set of unordered
points of R". Specific methods for suitably encoding unordered,
deterministic, fixed size sets of points have been proposed
(Courrieu, 2001). However, one can frequently consider that a
set of points results from random sampling governed by a
particular density of probability on R". In this case, it is usually
the density function (not the random sample) that is relevant for
the application. For example, the set of black pixels in an image
representing a written word, or an object whose detail can be
subject to some random variation, can be considered as a
random sample of points of R generated by a density function
that characterizes a recognizable shape (that of the word or of
the object). However, many pattern recognition problems show
that recognizable shapes can vary not only in a (limited)
random way, but also in a large regular way. For example,
depending on the used character font, or on the particular
writer, a written word can substantially vary in width, in height,
and in skewing, and its position in the image can also vary.
Thus, a recognizable shape must, in fact, be characterized by a
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E-mail address: courrieu@up.univ-mrs.fr

0893-6080/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
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family of density functions depending on a set of regular
transformations of the support. The set of transformations that
does not affect the recognizable identity of a shape can
conveniently be called ‘invariance set’. Note that the
invariance set depends on the considered shape: for example,
the character ’x’ is invariant to a 180° rotation, while the
character ’b’ is not (since it becomes 'q’). More globally, the
set of letters (alphabet) is invariant to transformations such as
translations, scaling, stretching, and skewing, but not to
reflections (symmetries) or large orthogonal rotations (consider
the subsets {b, d, p, q}, {u, n}, {f, t}, {N, Z}). The same seems
to be true, in human vision, for more complex shapes such as
written words: words are easily recognized with geometrical
transformations that do not change their orientation, however,
reading words in a mirror is quite uneasy for human readers,
and psychologists hypothesized that reading inverted words
requires a prior corrective mental rotation of the word image
(Tzelgov & Henik, 1983). Various methods have been
developed, in pattern recognition area, in order to encode
shapes (usually 2D-shapes) invariant to certain affine trans-
formations. Well-known methods are based on moment
invariants (Heikkild, 2004; Hu, 1962; Jin & Tianxu, 2004,
Suk & Flusser, 2003), on Fourier descriptors (Arbter, Snyder,
Burkhardt, & Hirzinger, 1990; Zhang & Lu, 2002), or on an
analysis of characteristic contour points (landmarks) such as
extreme points, or curvature maxima (Mokhtarian & Abbasi,
2002; Zhang, Zhang, Krim, & Walter, 2003). Density functions
do not seem to be very popular in this context, despite the fact
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that densities can be simply approximated from sampled data
(Cacoullos, 1966; Parzen, 1962; Specht, 1990). Although
information geometry methods allow for computing simi-
larities between parametrically described densities (Amari &
Nagaoka, 2000), density functions are handicapped by the fact
that one does not know any way of encoding them that allows
for suitably comparing them in the context of shape
recognition, and thus for defining spaces of densities as
shape spaces (in a sense similar to Kendall, 1984). The purpose
of the present work is to define an encoding method for density
functions associated to samples of points of R", such that the
codes associated to different densities can be compared, and a
wide family of regular transformations can be simply reduced.
As we shall see, there is a simple solution if we forgo reducing
certain transformations such as reflections and orthogonal
rotations.

2. Approximation of probability functions

Given a set of m sampled data points of R", there is a very
simple way of approximating the density of probability
function that governed the sampling: this is the well-known
method of Parzen (1962), that have been extended by
Cacoullos (1966), and Specht (1990). In summary, one chooses
a n-dimensional kernel function (commonly a Gaussian
density), together with a scale parameter (e.g. the standard
deviation s for a Gaussian) that determines the degree of
smoothing of the approximation, and one centers such a kernel
at each of the data points. Then the approximated density at any
point X is simply the arithmetic mean of the values of the m
kernel functions at this point. One knows that, under very
general conditions, this approximation converges in quadratic
mean towards the true density as the sample size m tends to
infinity. Other probability functions (cumulative, marginal, and
conditional) can also be easily approximated if the n-dimen-
sional kernel function is a product of n univariate kernels, and
each univariate kernel can easily be integrated because it has a
simple primitive function (e.g. logistic kernel, Cauchy kernel),
or a suitable expansion (e.g. Gaussian kernel). We rapidly
provide hereafter some usual formulas and notations that we
must remember in the following sections.

Consider a set K of m data points of R"

K = {Xl,Xz,...,Xm},

XJ = (xlj,xzj,...,x,,j), j=1l...m

An approximation of the density of probability at any point X
of R" is given by

1 m
j=

where the kernel functions are simple probability density
functions of the form

JX)

n
8(X:X;.8) = [ [ gitxinxyos),
i=1
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with, for example, in the case of a Gaussian kernel:

1 2 2
. _ —(x;—x;;)"12s
g'(X',X“,S) - e .

1 1 Ui s /275
We use uppercase letters for integrative functions (or primitive
functions if they exist):
a

Gi(asx;j,s) = J 8i(x;x,8)dx.
Given that the kernel functions are densities of probability, one
has always:

Gi(o3xy,8) = 1.

the (n—k+1)-dimensional marginal
X,,) has the density:

Thus, for example,
variable (xz, Xz 4 15...,

f(O,...,O,xk,xk+1,...,x,,) = J f(xl,...,x,,)dxl...dxk_l

Rk

m k— n
> (H Gi(w; x,,,s)) (H gi<x,»;x,-,»,s>>
i=k

Jj=1

§|—‘

n

I
S

gi(.xl';.xl:i,s).
1 i=k

<
Il

It is convenient here to use the following rule:
B

if B<A then [Ju;=
i=A
The one-dimensional conditional variable (xglx;y=axy
l»---» X, =a,) has the density:

1, whatever be u;.

_f(e, e a .. 00y)
f(°,-..,O,O,ak+1,...,an)

f(xklxk+l = Qi15--X = an)

ng(xerkjvs) H gl(anxuas)
j= i=k+1

Z H gi(ai;xij’s)

j=1i=k+1

and the cumulative probability function of this conditional
variable is given by:
Prob(x, < Dlxpi1 = Gpptse. Xy = ap)

T f(ono
- Jw f(.’,l.....,,.

ZGk(bxkj’S) H gl(azvxzps)
j= i=k+1

s 15+ n)

> @5 Ap 41500+ n)

i

=k+

8i(a;;x;j»s)

We use also a simplified notation for the above function
an) = F(blak+1" . ~’an),

where the uppercase F recalls that the corresponding density
function is f, and F could be replaced by H if the density
function was named /.

Prob(x; < blxp| = Grgpsee Xy =
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3. Method foundations

The principle of the encoding method is simply a
combination of the above probability function approximation
techniques with a well-known method for generating pseudo-
random data from a given probability law on R" (see, e.g. Calot,
1967, pp. 185, 436-438). However, the use of these methods
for encoding purposes requires some specific foundations.

3.1. Density encoding principle

Definition 1. Let f{X) be a probability density function on R",
one associates to f the mapping P|[f]:

PIFIX) = (P1[f1X),P[f1(X),...P, [f1(X)),

with  P,[f1(X)=F(x,)= [%.f(e....,
FOo X iy 0xy), 1<k<n—1.

e nds, and Pi[f](X)=

Theorem 1. Assume that f is a continuous probability density
function on R" such that

IX]] < 0=f(X)>0, XER",

then

(i) P[f1(X) is a continuous bijection from R" to (0, 1)",
(ii) the reciprocal bijection P~ '[f](U), with U uniformly
distributed in (0, 1)", is distributed as X, with density f.

Proof. If the density fis nowhere zero on R", then the densities
of the conditional variables (Xy|Xy41,...,Xn), 1<k<n, are
nowhere zero on R, which implies that the cumulative
probability functions F(xi|Xi+1,....Xp), 1 <k<n, are strictly
increasing, thus they are everywhere invertible, and (i) is
proven since these functions are the n components of P[f].

In what concerns (ii), with P[f](X)=U&<(0, 1)", one has:

PIFIU) = F ') = x,,,

PUAWU) = F ' uglugs s u,) = lxesqse . x,),
k=n—1n-2,...1.

If the n components u;, 1 <k<n, are independent variables
uniformly distributed in (0, 1), then the conditional variable
(gl 1,...,1,) is simply distributed as uy, that is uniformly in
(0, 1), thus the density of P; [f1(U) is equal to f (xg|xy 4 1,-...%,),
as a (well-known) consequence of applying an inverse
cumulative function to a uniform variable in (0, 1). On the
other hand, one can easily verify that the conditional variables
(xxlxr 415+ %), 1<k<n, are independent from each other,
since:

f((xk|xk+1 oo .,)C”) AND (.,. ..

= f(o,...,

,.,Xk+1,. . ~9-xn))
© XXt 1w sXn)
® Xk+15-- ~:-xn)'

= Ol Xerrse ) f(0,e
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Thus the density of P~ '[fl(U) is equal to [ f(xlxes1s...X)=
f(X), which completes the proof. [ !

In practice, the conditions of Theorem 1 can always be
fulfilled given that the densities to be encoded are in fact
approximations obtained by a superposition of kernel functions
(see Section 2), thus it suffices to use strictly positive
continuous kernel functions that tend to zero asymptotically
as variables tend to infinity, which is the case of common
kernel functions.

Definition 2. Let f be a probability density function on R" that
fulfills the conditions of Theorem 1, and let Sy,=
(U1,U,,...,Uy) be a fixed sequence of points uniformly
distributed in the open cube (0, 1)", then the sequence (P~
1D‘](Uj), j=1...M) is called a ‘density code’ associated to f.

Assume that we generated a fixed sequence of pseudo-
random points (U;,U,,...,Uy,) uniformly distributed in the
open cube (0, 1)", and that we approximated a density
function f from an empirical data set as described in
Section 2. Then Theorem 1 implies that the sequence of
points (P_][]‘](Uj), j=1...M) is approximately distributed as
the original data set, with density f. However, contrarily to
the original data set, this is not a random sample made of
any number of unordered points, but this is in fact a
deterministic, fixed length sequence of M points, that is
representative of the data distribution.

3.2. Relation between density codes

Now, assume that we approximated two densities, say f and
h, from two distinct data sets, then we can obtain two density
codes, (P~ '[AI(U), j=1...M) and (P~ '[h)(U)), j=1...M), that
can be compared to each other because the M points of each
sequence are paired to the M points of the other one by the
intermediate of the common U; points. We need to know what
is the meaning of such a matching, which is the object of
Theorem 2.

Theorem 2. Let XER" be a random variable whose density
fX) fulfills the conditions of Theorem 1. Let YER" be another
random variable functionally related to X by a continuous
invertible transformation Y such that Y =yX)=

W1 (X)o(X),...¥,(X)), with:

7

Vi = VX)) = Yl x,), and a—(X)> 0, VXeER"
Xk

In other words, one assumes that the kth component of Y
only depends on the n—k+ 1 last components of X, and that it
is a strictly increasing function of the kth component of X. If h
denotes the density function of Y, and U is a variable in (0, 1)",
then one has:

(i) P[f](X)=P[h](Y),
(ii) P~ '[h]-P[fl=4¢,
(i) P~ '[h](U)=¢(P~'[f1(V)).
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Proof. The conditions of Theorem 2 imply that the Jacobian
matrix ((9y,/0x;)(X)) of the transformation y(X), at any point X,
is triangular and has a strictly positive diagonal. Thus, the
Jacobian determinant of the transformation is nowhere zero,
and it is given by:

T

Ty =[]0 >0.
i=1 i

On the other hand, given the functional relation between the
two random variables, their density functions are related by:

= f(X)J " (W(X)).

Considering the n components in decreasing order, one has for
the nth one:

h(Y)

Y,
Pt = || ety
—o0 Rn—l
v (@)
= J f(gl"-"gn)'J_l(ll/(gl"'-3En)).‘](¢(gli'-"gn))dgl'-'dEn
—o0 Rn*l

xn

J J f(gl’“"gn)dgl'“dgn =Pn[f](X)

—oo pn—l

For the remaining n— 1 components, one obtains:

’Ck’yk+1»‘ . '»yn)dZI .. dgk
-’yn)dcl . de

Yk
| [ h (G,
Pk[h](Y)=_°°f G
Rk 1oee-

YY)

7]" [r1 fE e

s Vit15e-

—1 n
’5k’xk+1’ n) (H a‘j/l (&)) ( H

i:k+1

approximations used in practice (see Section 2) can lead to
some non-zero error.

3.3. Density code dissimilarity functions

Definition 3. Let W be a set of transformation mappings of the
form

X)) = (1 (X),...,7,(X)), XER",

N
TX) =Y tybiX), 13 €R, k=1.n,

where {b(X); 0<i<N,XER"}isagiven set of basis functions on
R", and the matrix 7= (t;) ER™T>" depends on the data, as
explained below. Consider two density codes § = (X; = Pf1X
(U), j=1..M)and{=(Y;= P! [A)(U;), j=1...M). Then
one defines the ‘dissimilarity’ of the first density code from the
second one, with invariance to the transformation family ¥, as:

1 M 12
611’(&* c) = minTElI/ <M Z ”T(ij) _Yj”2> .
J=1

Consider the two above density codes, £ and £, in the form of two
(M X n)real matrices, and let By=(b(X)),j=1...M,i=0...N, be
the (M X (N + 1)) matrix of the basis functions for . Then, using a
common least square method, one obtains

—1
e (x; )) (H Wi, )) d,...d&

i=1

! n k
[ f Gt p(n%m) (H %w) (Hais>)d51...dsk

i=k+1

f J’kalf(fl,...,fk,ka,...,x,,)dfl dgk

== = P, [f1(X).
JR"'f(gl"“’gk’xk+l’""xn)dgl'-'dgk k[f]( )

This completes the proof of (i).
Set P[f]1(X)= P[h](Y)= U, then:

PTURIPIfIX)) = PTHANPIAN(Y)) = Y = Y(X),
which proves (ii). Moreover, after (ii) one has:

= P [RI(PIFIPTIFICU))) = w(P ' [FIU)),

which proves (iii), and then completes the proof of Theorem

2. 0O

Hence, if two random variables are related by a
transformation y that fulfills the conditions of Theorem 2,
then the corresponding density codes are related by
PRI(U) = w(P'[fI(U)), j=1...M.Of course, this equal-
ity holds for exact probability functions, while the
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P [hI(U)

1 1 _
op(£,%) = ming (W IIBXT—CH) =7 IBxBY e I,

where BEZ” is a pseudo-inverse matrix of By. If By is of rank
N+1, then one has simply:

B = (ByBy) "' B,

else Bg;l] is the Moore—Penrose generalized inverse of By (Ben
Israel & Greville, 2003; Courrieu, 2005b). As a simple but useful
example, if ¥ is the set of affine transformations, then the set of
basis functions reduces to {hy(X) = 1,b;(X) = xy,...,b,(X) = x,,},
N=n, and Bx=[1, &]. If two random variables, X and Y, are
related by a transformation Y= {(X) that fulfills the conditions of
Theorem 2, and Yy €W, then oy(§, {)=0 (plus possibly an
approximation error). One can also have 6y(Z, §) =0iff ley,
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which is the case for invertible affine transformations, but not for
every family of transformations. As an example, the reciprocal
function of an invertible algebraic polynomial is usually not an
algebraic polynomial. Note that one has in general 0y(&,
O #0w(C, &) in the non-zero case, thus 0y is certainly not a
distance, and it cannot be monotonically transformed into a
distance (Courrieu, 2002). If one requires that dy (€, £) =0, then ¥
must include at least the set of linear transformations, in order to
make the identity transform available. Let Q,, be the set of all
density codes that can be generated from the same uniform
sequence Sy, (Definition 2), then the space (2, Oy ) is a non-
metric space whose topology is induced by dy. In particular, a
closed ball of center X € Q,,, and of radius > 0, can be defined as
the set:

B(X,r) ={Y € Qy,04(X,Y)<r}.

An open ball can obviously be defined in a similar way, by using
strict inequalities (> and <, instead of > and <). Thus there is
clearly a neighborhood system associated to (2, 0y). In the
context of shape recognition problems, the space (2,,, 0y) can be
called a ‘shape space’, and it can be used as an input space for
networks that do not require metric input data, such as nearest
neighbor classifiers, or non-metric data function approximators
(Courrieu, 2005a).

4. Implementations
4.1. Computer implementation

The principles stated in Sections 2 and 3 can be used to
develop practical algorithms for the computation of density
codes associated to empirical data sets, and for their
comparison. A Matlab program for the computation of density
codes is presented in Appendices A.1-A.3, and a Matlab
program for the computation of 0y, where ¥ is the set of
algebraic multivariate polynomials, is presented in Appendix
A.4, which allows Matlab users to test the tool and provides an
easily readable model for practical implementations. Note,
however, that this is an illustrative program for academic use
only, since it has not been optimized with respect to reliability,
speed and precision performance. The main elements of this
program have been discussed above, however, we have not
defined a practical way of generating a sequence of points
uniformly distributed in (0,1)", nor a practical way of inversing
the mapping P[f]. In what concerns this last point, we noted
that each component of the mapping P[f](X) is a strictly
increasing, one-variable function (Definition 1 and Theorem
1), which means that we can apply simple usual methods (e.g. a
bounding method) in order to find the inverse mapping P~
[/1(U), at any point U. One must compute the components of
the inverse mapping in decreasing order of their number. Since
the last component of P[f](X) is simply the cumulative
probability function of the marginal variable x,, it can be
computed directly from u,,. The (n — 1)th component of P[f](X)
is the cumulative probability function of the (n— 1)th marginal
variable, conditional to the value of the nth one that has just
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been computed, thus x,,_; can be computed from u,,_ |, and the
value of x,. The situation is clearly similar for the remaining
components in decreasing order, and x,_; can be computed
from u, _,, given the previously computed values of x,_;
Is---»Xn. The main function of the program in Appendix A.l
implements this principle, while the probability functions are
approximated using the method of Section 2, and examples of
kernels and their cumulative probability functions are given in
the Matlab sub-functions of Appendix A2. In what concerns the
generation of sequences of points uniformly distributed in
(0,1)" (that is the Sy-sequences of Definition 2), we use quasi-
uniform Faure sequences (Faure, 1982, 2001), that are known
to provide low discrepancy, even in high dimension spaces.
Original Faure (1982) sequences are in [0, 1), thus we must
exclude points that have at least one zero coordinate, in order
to avoid infinite coordinate inverse mappings. This is
implemented in the Matlab sub-functions of Appendix A3. In
what concerns the choice of the number M of code points, we
note that a choice of the form M=g*, where k is a positive
integer, and ¢ is the smallest prime number greater or equal to
the dimension n, allows to obtain complete Faure sequences.
On the other hand, we note that the larger is M, the more
precise is the density encoding. However, the densities that we
encode are themselves approximated from data point sets. Thus
a simple and reasonable strategy consists of choosing k such
that M= ¢* is close to the mean number of data points per shape
of the considered shape space. However, there are many cases
where this number can be lowered because data samples are
frequently larger than necessary in order to define shapes (see
Section 5.2). Finally, note that other methods can be used for
generating quasi-uniform sequences, such as, for example, the
well-known Halton sequences (Halton, 1960). Halton’s
sequences work well in low dimension spaces, however, it is
known that their uniformity properties are degraded as the
dimension increases. Since the present encoding method must
work for every finite dimension, we must clearly prefer Faure
sequences.

4.2. Parallel implementation for 2D image data

The computer implementation described above is quite
general, it allows the computation of density codes in any
dimension (n), with various kernel functions, and with any
arbitrary precision (via the parameter named ‘Tol’). However,
in the case of image encoding for perception modeling, one
commonly requires that the encoding be fast in a neuron-like
architecture, while the dimension of data is typically n=2, and
a ‘gray level’ type value can be associated to each data point.
We describe hereafter a parallel implementation suitable for
such data. This implementation requires a three-layered feed-
forward architecture.

Layer 1. This is a bi-dimensional input layer (xj(-”, J(-')), j=
1...m, whose m cells correspond to image pixels, and whose
activation function q; = a(x](»l) ,yj(l)) corresponds to a positive
gray level function. The upper index in parenthesis indicates
the number of the layer in which the coordinates are
considered.
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Layer 2. This layer computes the mapping P[f](x,y) on a
fixed set of points (possibly the same as those of the input
layer). A positive gray level function can be considered as a
weighting function, and the density approximation at any point
(x,y)ER2 can be reformulated as

Z 8((y): (Y 3. s)

fxy) =

Ik

a;

j=1

which implies that:

m
> a;Gy(y3y;s)

Plflxy) = F(y) = m ,
2.4
j=1
Z a; Gl ()C )C( )7s)g2(y9y](1)’ )
Pi[f1(xy) = F(xly) =

Z 2 (viyi.s)

Note that, if a(x,y)€{0,1}, V(x,y)ERz, then the above
formulation is equivalent to that of Section 2. The second
layer is made of two arrays of cells: a one-dimensional array of
N2 cells that compute P,[f] at N2 distinct fixed values of the y
coordinate (y(z) i ,y(z)) and a bi-dimensional (N2 X N1) array
of cells that compute P4[f] at N1 distinct fixed values of the x
coordinate (x(z) xﬁ;) for the N2 fixed values of y. Thus,
each cell of the first array is characterized by a particular y
coordinate, and each cell of the second array is characterized
by particular x and y coordinates. The computation of P[f] as
defined above implies that each cell of Layer 2 receives
connections from all cells of Layer 1, however, the only
quantities that vary from an input to another one are the
activation values (a;).

Layer 3. This is an output layer that approximates the
density code P~ '[f](u,v) on a fixed set of M points uniformly
distributed in (0, 1)2. Each cell of the third layer is
characterized by a particular point (i;, v;) €(0, 1)2, i=1..M
and an output variable (x or y coordinate). Since two output
coordinates are required in all cases, it is convenient to
consider that each unit of Layer 3 is made of two cells that
share the same (u;, v;) characteristic point. Each unit of Layer 3
computes a quantity of the form:

P 1wv))
%NZ( 2912 )exp (—Bllsv)— (P 171 (x

1j=1

2 52) P2l (s )
N2 NI B

2 2 exp (=l = (P (5717) P201(+02) )

where the values of P[f] and P,[f] are provided, respectively by the bi-
dimensional and the one-dimensional array of cells of Layer 2, and the

(2)

coordinates (x;”,y; ) are used as synaptic weights. As the parameter (8

tends to infinity, the above expression tends to the point of coordinates
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(x /(2),y§(2)) whose P[f] mapping is the closest to the point (i;,v;), which

provides the desired approximation of P~ l[)‘](u,~,v,-). Note that this
approximation is based on a MIN-like variant of the MAX-like operation
of Riesenhuber & Poggio (1999). Appendix A5 presents a Matlab
program for computer simulations of the above parallel implementation.

5. Illustrative examples

5.1. Pseudo-handwriting data, affine transformations, and
orthographic similarity

In this section, we use, as input data, the six binary images
of pseudo-handwritten words presented in Fig. 1. Left column
images (we refer to as ‘word-1’, ‘work-1’, and ‘play-1’) are
resampled affine transforms (by scaling, stretching and
skewing) of right column images (we refer to as ‘word-2’,
‘work-2’, and ‘play-2’). On the other hand, the first two words
(‘word’ and ‘work’) are orthographic neighbors, while the third
word (‘play’) has no common letter with the two previous ones.
Intuitively, a good dissimilarity measure must provide a
minimum (possibly zero) difference between left column
images and their corresponding right column images (0-letter

~ wod  word
My oy

50 10 10 200 250 300 %0 400

Fig. 1. Images of three words in two graphic versions (pseudo-handwriting).
Left column versions (1) differ from right column versions (2) by scaling,
stretching and skewing transformations. The first two words differ by only one
letter (orthographic neighbors), while the third one has no common letter with
them.
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difference), and the image dissimilarity must increase as the
number of different letters between words increases, indepen-
dently of affine transformations. In other words, we expect the
shape space to have a topology compatible with an abstract
orthographic analysis. In order to test these expectations, we
must compare various dissimilarity measures, and since we do
not know, a priori, how the dissimilarity measures are
distributed, we must use non-parametric (rank-based) statisti-
cal tests. In the following, we use Mann—Whitney tests for
independent data samples, and we use Friedman tests for paired
data samples.

5.1.1. Density codes and the effect of Sy-sequences

In this section, we test the above expectations together with
the effect of particular Sy,-sequences (Faure sequences vs.
Halton sequences) on the performance of density codes. Since
we work in a low dimension space (n=2), the two types of Sy,
sequences must provide very similar performance, showing
that the algorithm is robust with respect to the choice of
particular quasi-uniform sequences. Density codes have been
computed by the program described in Section 4.1, and by a
variant where the Faure sequence was replaced by a Halton
sequence. An input data matrix can be obtained from a binary
image matrix (say ‘image’), with O code for black pixels, by the
Matlab function [y, x]=find(image= =0), and X=[x, y]. For
each type of Sy-sequence and each image, a density code of
4096 points has been generated, using Gaussian kernels with a
standard deviation of 0.3 pixels, and a tolerance error of about
0.5 pixels. Then each code has been segmented into two
distinct but equivalent density codes of M=2048 points, that
have been used for computing the 0y values, and the equivalent
oy values have been averaged. Fig. 2 shows six distributions of
2048 density code points corresponding to the data of Fig. 1,
for Faure Sj,-sequences (upper half-figure), and Halton S,,-
sequences (lower half-figure). As one can see in Fig. 2, the
distributions of density code points are closely similar to the
corresponding data distributions, as Theorem 1 implies,
whatever be the considered Sj,~sequence type.

Table 1 shows the averaged 0y values, where ¥ is the set of
affine transformations (i.e. degree one polynomial transform-
ations), for all pairs of images of Fig. 1, for Faure S,;,-sequences
(upper sub-table), and Halton S,,-sequences (lower sub-table).
At the bottom of each sub-table, we present a comparison
(means, standard deviations, and Mann—Whitney tests)
between the 0y functions of pairs of distinct images of words
differing by 0, 1, and 4 letters. As one can see, the three Oy
value distributions are ordered and well separated as expected,
whatever be the considered Sy,-sequence type. Moreover, the
linear correlation coefficient between the 30 out-diagonal 6y
values of the two sub-tables is r=0.9995, and Friedman’s test
provides x*(1)=0.5333, n.s. Clearly, the two types of Sy
sequences provide very similar results, as expected.

5.1.2. Comparison with Affine Moment Invariants based
methods

One of the most attractive ways of encoding shapes with
invariance to certain transformations is probably the approach
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Fig. 2. Spatial repartition of density code points associated to the six images of
Fig. 1, using a Faure Sj-sequence (upper half-figure), and a Halton Sy
sequence (lower half-figure). The data density functions were approximated
using a Gaussian kernel, with a scale of 0.3 pixels, and each code is a sequence
of M=2048 points.

based on Affine Moment Invariants, which was initiated by Hu
(1962), and that has recently been considerably improved
(Heikkild, 2004; Jin & Tianxu, 2004; Suk & Flusser, 2003).
Most of the tools described in this area, as well as Fourier
descriptors (Zhang & Lu, 2002), only provide invariance to
affine transformations of rigid object images (translation, scale
change, and rotation), however, certain algorithms provide
invariance to more general affine transformations, including
stretching and skewing (Heikkiléd, 2004; Suk & Flusser, 2003).
To date, affine moment invariants are described for two-
dimensional data only (mainly image data). On the other hand,
density codes described in this paper can work with data of any
dimension, and allow to reduce transformations that are not
necessarily affine, but with the restriction that the Jacobian
matrix of the transformation must be triangular with strictly
positive diagonal (Theorem 2), which excludes rotation and
reflection transformations. As one can see, the application
fields of the various tools are not the same, although they have
a non-empty intersection. In this section, we use the data of
Fig. 1 to compare density code performance to that of
Combined Blur and Affine moment Invariants (CBAISs)
proposed by Suk and Flusser (2003), and to that of affine
moments based matching method of Heikkild (2004). Table 2
shows Euclidean distances between the six images of Fig. 1 in
the space of the six available CBAIs (Suk & Flusser, 2003),
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Table 1
Affinely minimized 0y functions between density codes of the six images of Fig. 1
op(l,—) word-1 word-2 work-1 work-2 play-1 play-2
Faure Sy-sequence
word-1 0.0000 4.1362 6.3857 8.8726 14.0711 19.2374
word-2 2.9027 0.0000 6.3974 8.8101 13.9922 19.1730
work-1 6.8646 9.5150 0.0000 2.5591 13.4056 18.4914
work-2 6.9050 9.5031 1.8074 0.0000 13.5776 18.8269
play-1 15.8377 21.7298 13.9026 19.3930 0.0000 5.9511
play-2 15.6800 21.5323 13.7298 19.1829 4.1776 0.0000
Differ 0 letters 1 letter 4 letters
mean Oy 3.59 (£1.5) [MW(6,8)=21, p<0.5] 791 (£1.4) [MW (8,16)=36, p<.05] 1699 (£3.0)
Halton Sy-sequence
word-1 0.0000 3.7918 6.2827 8.6296 14.1536 19.3849
word-2 2.6674 0.0000 6.3201 8.6807 14.0860 19.3339
work-1 6.7624 9.4031 0.0000 3.0156 13.4681 18.6299
work-2 6.7381 9.3763 2.1326 0.0000 13.6119 18.9303
play-1 15.9097 21.8506 13.9325 19.3818 0.0000 5.3871
play-2 15.8130 21.7443 13.8273 19.2629 3.7959 0.0000
Differ 0 letters 1 letter 4 letters
mean Oy 3.47 (£1.1) [MW(6,8)=21, p<.05] 7.77 (£1.4) [MW (8,16)=36, p<.05] 17.08 (£3.0)

oy values are averaged for two distinct Faure Sy,-sequences (upper sub-table), and two distinct Halton Sy,-sequences (lower sub-table), with M =2048. At the bottom of
each sub-table, comparisons (means, standard deviations, and Mann—Whitney tests) between the dy, functions of pairs of distinct images of words differing by 0, 1, and 4
letters. The linear correlation coefficient between the 30 out-diagonal 8y values of the two sub-tables is 7=0.9995, and Friedman’s test provides x*(1)=0.5333, n.s.

where each CBAI has been normalized (i.e. weighted by its
inverse empirical standard deviation). At the bottom of the
table, we present comparisons between the CBAI distances of
pairs of distinct images of words differing by 0, 1, and 4 letters,
as we did in Table 1 for density code dissimilarities. Mean
CBAI distances are ordered as expected, however, the
distributions corresponding to O-letter and 1-letter differences
are not well separated (non-significant Mann—Whitney test),
and one can see their overlapping in the distance table, where
the CBAI distance between ‘word-1’ and ‘word-2’ (O-letter
difference) is greater than all 1-letter difference CBAI
distances. Table 3 presents the Hausdorff distances provided
by Heikkild (2004)’s matching algorithm between the six
images of Fig. 1. At the bottom of the table, one can see that the
mean distances for O, 1, and 4 letter differences are also ordered
as expected, however, the distributions corresponding to
1-letter and 4-letter differences are not well separated
(non-significant Mann—Whitney test), and one can see their

overlapping in the distance table. Comparing these results
to those of Table 1, we can conclude that density code
dissimilarity functions provide a performance at least as good
as those of the tested affine moment based algorithms, in the
common part of their respective application domains.

5.2. Effects of code length and kernel scale

The required number of code points (M) can depend on the
complexity of the shapes and on the relative scale of relevant
distinctive details in the considered shape space. On the other
hand, the required kernel scale (s) depends on the spacing of
data points, and there are well-known heuristics that allow for
estimating this scale. As an example, the ‘global first nearest-
neighbor heuristic’ (Moody & Darken, 1989) is implemented
as the default choice for s in the program of Appendix A.l. In
this section, we test the robustness of the proposed encoding
method across variations of M and s, using the data presented in

Table 2

Euclidean distances between the six images of Fig. 1 in the space of normalized CBAIs (Suk & Flusser, 2003)

dcl,—) word-1 word-2 work-1 work-2 play-1 play-2
word-1 0.0000 3.0444 2.7607 2.6100 3.9205 4.8519
word-2 3.0444 0.0000 2.9648 2.7556 3.3761 4.5974
work-1 2.7607 2.9648 0.0000 0.3308 2.9449 4.8048
work-2 2.6100 2.7556 0.3308 0.0000 2.9169 4.6587
play-1 3.9205 3.3761 2.9449 2.9169 0.0000 2.5279
play-2 4.8519 4.5974 4.8048 4.6587 2.5279 0.0000
Differ 0 letters 1 letter 4 letters
mean d 1.97 (£1.3) [MW(6,8)=37, n.s.] 277 (£0.1) [MW (8,16)=44, p<.05] 4.01 (£0.8)

At the bottom of the table, comparisons between the distances of pairs of distinct images of words differing by 0, 1, and 4 letters are provided.
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Table 3

Dissimilarities between the six images of Fig. 1 in the space generated by Heikkild (2004)’s matching algorithm

D(],—) word-1 word-2 work-1 work-2 play-1 play-2
word-1 0 1.5124 19.3769 18.1033 32.4786 27.6237
word-2 1.5968 0 16.3696 17.8982 32.2108 28.1221
work-1 24.8532 17.3045 0 1.5326 22.4767 24.8052
work-2 17.6128 18.4146 1.5732 0 22.5561 16.5242
play-1 27.7808 13.7445 13.9387 22.7215 0 1.9775
play-2 26.6723 15.1146 20.1152 11.4153 1.0259 0
Differ 0 letters 1 letter 4 letters
mean D 1.54 (£0.3) [MW(6,8)=21, p<.05] 18.74 (£2.6) [MW (8,16)=280, n.s.] 22.39 (£6.7)

At the bottom of the table, comparisons between the dissimilarities of pairs of distinct images of words differing by 0, 1, and 4 letters are provided.

Fig. 3. The four left column shapes were obtained using a
threshold function on one color component of numerical
photos of flowers, in order to separate the flower shapes from
their background, and to provide suitable data points. The
number of data points (black pixels) per shape ranges from
5279 to 7885. The middle column data were obtained by an
affine transformation (stretching and skewing) of the left
column data. The number of data points per shape ranges from
2911 to 4201. The data in the right column were obtained by a
non-affine transformation of left column data. The number of
data points per shape ranges from 3774 to 5585. For all shapes,
the default kernel scale provided by the ‘global first nearest-
neighbor heuristic’ was very close to 1 (range: 1-1.04). In the
experiment, we used four kernel scales (s=0.5, 1, 2, 4), with
logistic kernel functions, that allow faster computation of P[f]
mappings than Gaussian kernels. In what concerns the code
length, we varied M from 22 t0 2'2. In order to do this, each of
the 12 shapes was encoded with 4096 code points, for each
value of s. For each code length, the 4096 point sequence was
segmented into 2'>7* subsequences of length M=2% k=
2...12. Then relevant 6y functions (where ¥ is the set of affine
transformations) were computed using all these subsequences
as arguments and averaged. Dissimilarities were computed
between Fig. 3 left column shapes and the corresponding
middle column shapes (with the two argument orders), which
provided o0y values for the ‘affinely similar’ condition.
Dissimilarities were also computed between Fig. 3 left column
shapes and the corresponding right column shapes, which
provided 0y values for the ‘non-affinely similar’ condition.
Finally, dissimilarities were computed for all pairs of distinct
shapes in the first column of Fig. 3, which provided 0y values
for the ‘unrelated’ condition. Since ¥ is the set of affine
transformations, we expect small dissimilarities for the
‘affinely similar’ condition. As in Section 5.2, we expect
intermediate dissimilarities for similarities that are not in ¥,
that is for the ‘non-affinely similar’ condition. Finally, we
expect maximum dissimilarities for the ‘unrelated’ condition.
Results are summarized in Fig. 4, where one can see means and
standard deviations of dy in the three conditions, for all M and
s values. In all cases, 0y distributions are ordered as expected,
they reach stable mean values and are well separated with
M>2° code points, which is much less than the number of data
points per shape. Increasing the kernel scale tends to lower
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large dissimilarities, however, the proposed default s (global,
first nearest-neighbor heuristic) is visibly close to an optimum
in this experiment, and it is not necessary to have a very precise
estimation of this parameter.

5.3. Three-dimensional shapes and non-affine transformations

In this section, we illustrate density code capabilities with
the example of random three-dimensional thread-like shapes as
those presented in Fig. 5, with random third degree polynomial
transformations whose Jacobian matrices are everywhere
triangular with strictly positive diagonals (as required by
Theorem 2). As Fig. 5 suggests, such transformations are
suitable for modeling soft object spaces. We computed the
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Fig. 3. Four thresholded photos of flowers (left column), affinely similar data
(middle column), and non-affinely similar data (right column). The original
photos are available at http://www.pdphoto.org/ (public domain).
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Fig. 4. Averaged affinely minimized dissimilarities (vertical bars mark standard deviations) of affinely similar, non-affinely similar, and unrelated flower data (see
Fig. 3), as a function of the code size (for M =4-4096), and of the scale parameter of logistic kernels (s=0.5, 1, 2, 4). The default scale parameters, as provided by the
‘global first nearest-neighbour heuristic’ (Moody & Darken, 1989), ranged from 1 to 1.04.
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Fig. 5. Two examples of random 3D shapes (left column) and their random third degree polynomial transformations (right column). These soft transformations have
triangular Jacobian matrices with positive diagonals everywhere.
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density codes of these shapes using M=3°=729 code points
(in R%), with logistic kernel functions. We used the default
scale and tolerance parameters provided by the ‘DensityCode’
program (see Appendix A.l). The dissimilarity values (0y)
have been computed using the ‘DeltaPoly’ function (Appendix
A4), where the optimal degree parameter for this example is
d=3. For the examples of Fig. 5, the obtained dissimilarities of
shape 1 and shape 2 from their transforms are 0.22 and 0.14,
while the dissimilarities of the transforms from the source
shapes are 0.25 and 0.16. In contrast, the dissimilarities
between distinct shapes ranged from 0.36 to 0.47. Thus, despite
the fact that the inverse of a third degree polynomial is not a
third degree polynomial, the dissimilarity function correctly
separated transformation cases from shape difference cases,
even with non-optimally ordered arguments (which leads only
to a small penalty).

One can of course ask whether this result generalizes to
large sets of shapes and transformations. One can also ask what
happens if one does not choose the optimal transformation
degree for the computation of 0y, since in real life problems,
one does not necessarily know a priori the appropriate
transformation family. In order to answer these questions, we
performed the following experiment. First, we generated a set
of 80 random source shapes, each one consisting of 730
sampled points of a random 3D trigonometric parametric
curve, as the shapes in the left column of Fig. 5. These shapes
were randomly paired, resulting in 40 pairs (S;, S;) of source
shapes. Then for each pair, a random third degree polynomial
transformation (that fulfilled the requirements of Theorem 2)
was applied to the two shapes, resulting in a pair (T}, T;) of
transforms, as in the right column of Fig. 5. To each source
shape, say S;, one associated four dissimilarity measures: 0y (S;,
1), ow(T;, T)), 6w (T}, S;), and 6y(S;, S;), where the density codes
are denoted in the same way as the corresponding data (there is
no ambiguity here). Since we must compare dissimilarity
measures, we must take care that the scale of a dissimilarity is
relative to the scale of its second argument, since the first
argument is transformed in order to approximate the second
one (see Section 3.3). Given that source shapes and their
transforms do not have necessarily equal scales, one must
avoid comparisons of dissimilarities that do not have the same
second argument, however, one can reliably compare the first
two or the last two dissimilarities listed above. Thus, we

Table 4

compare the dissimilarity of a shape from its transform to the
dissimilarity of transforms of two different source shapes, and
we compare the dissimilarity of a transform from its source
shape to the dissimilarity of two different source shapes. In the
first type of comparison, we expect that the first dissimilarity is
systematically lower than the second one, because transforms
of two different source shapes are not related by a tractable
transformation. If we obtain a similar inequality for the second
type of comparison, this means that one can reasonably
approximate an inverse transformation in the same polynomial
set as the direct transformation (strictly speaking, this is true
only for degree one transformations). Finally, for all shapes, we
varied the degree of the polynomial set ¥ (used in the
computation of 0y) from 1 to 5, and we added the pseudo-
degree 0, for which ¥ reduces to the identity transform
(remember that the actual degree of shape transformations is
3). Results of this experiment are summarized in Table 4,
where one can see the mean dy (and standard deviation) for
each experimental condition, together with Friedman’s x*(1)
tests for relevant comparisons. All tested differences are highly
significant (p <0.001) and in the expected direction, except for
the pseudo-degree O (no invariance). Thus, all ¥ polynomial
sets, from degree 1 to degree 5, provide 0y functions that
suitably account for degree 3 similarities, whatever be the order
of the arguments provided to the dissimilarity function. These
results clearly suggest that the tool is robust with respect to the
approximation of ¥. One can also observe that all dissim-
ilarities decrease as the degree of ¥ increases, which is normal
since the approximation capability of a polynomial tends to
increase as the number of polynomial’s terms increases. In a
limit case, if the number of terms equals M, then all
dissimilarities equal zero, whatever be the arguments, but
this is of course meaningless.

5.4. An example of neural image encoding

The parallel implementation of the density encoding
algorithm described in Section 4.2, for image data, implies a
fixed discrete sampling of the space of variables and an
approximation of code points. This can result in a loss of
precision with respect to the standard algorithm, and thus, we
must verify that there is no dramatic degradation of
performance. In order to do this, we choose the example of

Means (with standard deviations) of dissimilarity values of 3D source shapes (S;, S;), and their third degree polynomial transforms (73, T}), as a function of the degree

of the polynomial set ¥, and of the type of matching

W degree ow(S;, T) (D) oul(T}, T) ou(T, S) xX*(D) ou(S;, S)

0 1.32 (0.31) 8.45 1.19 (0.31) 1.32 (0.31) 57.80 0.88 (0.13)
1 0.39 (0.13) 76.05 0.69 (0.20) 0.30 (0.09) 76.05 0.53 (0.11)
2 0.29 (0.12) 80.00 0.59 (0.19) 0.23 (0.08) 80.00 0.47 (0.10)
3 0.23 (0.12) 76.05 0.51 (0.17) 0.21 (0.08) 80.00 0.41 (0.09)
4 0.22 (0.12) 76.05 0.46 (0.15) 0.19 (0.07) 80.00 0.37 (0.09)
5 0.21 (0.11) 76.05 0.41 (0.14) 0.18 (0.07) 80.00 0.34 (0.08)

Friedman’s (1) tests are all significant.
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Fig. 6. Two blurred ‘vegetable-like’ fractals (left-top= ‘fern’, left-bottom= ‘bush’), and their ‘wind-like’ transformations (right column).

the four images shown in Fig. 6. These are 200 X 200 gray level
pixel images, that are blurred ‘vegetable-like’ fractals (left
column), subject to a ‘wind-like’ transformation (right
column), that is in fact a third degree polynomial transform-
ation that fulfills Theorem 2 requirements. For convenience,
the fractal at the top of the figure will be called ‘fern’, and the
fractal at the bottom of the figure will be called ‘bush’. The
parallel encoding algorithm (Appendix AS program) has been
applied to the four images, with M =2048 code points, logistic
kernels with scale parameter s=0.3 pixels, and 8=15000. For
comparison, the standard encoding algorithm (Appendix A.1
program) has been applied to the set of coordinates of all non-
black pixels from each image (in Matlab: [y,x] =find(image >
0), X=[x,y]), with the same parameters as for the parallel
version, except (3 that was replaced by the default tolerance.
Resulting 0y values, where ¥ is the set of third degree

polynomial transformations, are reported in Table 5. As one
can see, the loss of precision in the parallel implementation
results in a global 10% increase of non-zero dissimilarities,
however, all important relations between dissimilarity values
are preserved, that is, each of the vegetables can be recognized
and discriminated from the other one, whatever be the wind
conditions.

Finally, take care that the simulation of a parallel process on
a sequential processor can lead to some uncomfortable
computation time. As an indication, the encoding of a 200X
200 image by the program of Appendix AS, on a common
personal computer, requires about 67 min, while the encoding
by the standard implementation requires about 6 min and 45 s
for about 4300 data points. However, the important fact, for
modeling natural perceptual processes, or for specialized
hardware development, is that the image encoding can be

Table 5

Comparison of ¢y values on density codes provided by the parallel version and the standard version of the encoding algorithm, for the four images of Fig. 6
op(l,—) Fern Fern/wind Bush Bush/wind
Simulated parallel implementation

Fern 0.0000 2.9899 10.1709 9.8703
Fern/wind 2.9319 0.0000 10.0721 9.9167
Bush 6.2984 6.3261 0.0000 5.4999
Bush/wind 6.2787 6.3934 5.5801 0.0000
Standard implementation

Fern 0.0000 1.5961 9.7007 9.2874
Fern/wind 1.6042 0.0000 9.2206 9.0129
Bush 5.9770 5.8693 0.0000 4.9764
Bush/wind 6.0729 6.0519 5.1855 0.0000
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computed by a three-layered feed-forward neural network, thus
very fast. Note also that there are simple recurrent neural
networks that can solve least square systems (in order to
compute Oy functions) in a short time compatible with known
performance of biological perceptual systems (Courrieu,
2004).

6. Conclusion

We have defined a tool that allows for encoding any set of
data points of R" in the form of a fixed length, deterministic
sequence of points of R", whose density function approximates
the (unknown) data probability density function. Such
sequences are called ‘density codes’, and they can be used as
elements of a ‘shape space’ whose topology is induced by a
suitable dissimilarity function. Contrarily to data points, code
points associated to different data sets can be suitably matched,
which allows to define dissimilarity functions that can be made
invariant to any set of coordinate transformations whose
Jacobian matrices are triangular and have strictly positive
diagonals. This is a restriction with respect to other methods
such as affine moment invariants (Suk & Flusser, 2003), or
affine moment based matching (Heikkild, 2004), for

function C =

DensityCode (X, M, krnl,

441

comparisons of two-dimensional data subject to affine
transformations. However, the present method is clearly not
limited to affine transformations, and it works for any data
space dimension. Moreover, intractable transformations such
as reflections and orthogonal rotations are known to be
problematic for visual shape recognition by human as well.
In the perspective of modeling perceptual processes, a parallel
neural implementation for encoding image data is proposed.
More generally, shape spaces, as they are defined here, can be
used as input spaces for pattern analysis and pattern recognition
neural networks that do not require a metric input space
(Courrieu, 2005a), since dissimilarity measures are not
distances.

Appendix A. Matlab code

Appendix A.1

Main function of a Matlab program that computes the
density code ((M X n) matrix) from an input data (m X n) matrix
X. One can choose the kernel function (Gaussian, Logistic, or
Cauchy density), and its scale parameter (default options are
also provided).

s, Tol)

¢ Input: X = (m x n) matrix of data, M = number of code points.
% Option: krnl = Gauss(1l), Logistic(2), or Cauchy(3) kernel.
% Option: s = kernel scale parameter (> 0).
% Option: Tol = tolerance coefficient (0 < Tol < 1).
$ Output: C = (M x n) density code matrix.
$ Initializations:
if nargin < 5, Tol = le-6; end ¢ default tolerance = le-6.
[NbrData, n] = size(X); mData = mean(X); sData = std(X);
TolC = Tol*sData;
C = Faure(M,n); % Faure (1982) sequence of M points in (0,1)"n.
if nargin < 4 % default scale »~ mean nearest neighbour distance.
NProbe = 30; s 0;
for 1 = 1:NProbe
p = fix(rand(1l,1)*NbrData)+1l; NN = inf;
for j = 1:NbrData
d = norm(X(p,:)-X(J,:));
if (d ~= 0) && (d < NN), NN = d; end
end
s = s + NN;
end
s = s/NProbe;
end
if nargin < 3, krnl = 1; end $ default kernel = Gaussian.
% Code computation by a bounding method:
for k = 1:M
ProdKer = ones (NbrData,l); sumProdKer = NbrData; u = C(k,:);
for ii = 1:n
i = n-ii+1l; ci = mbata(i);

p = sum(prob(ci,X(:,1i),s,krnl).*ProdKer) /sumProdKer;

if p < u(i)
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while p < u(i)

cinf = ci; ci = ci + sDhata(i);
p = sum(prob(ci,X(:,1i),s,krnl).*ProdKer) /sumProdKer;
end
csup = ci;
else
while p >= u(i)
csup = ci; ci = ci - shata(i);
p = sum(prob(ci,X(:,1i),s,krnl).*ProdKer) /sumProdKer;
end
cinf = ci;
end
while (csup-cinf) > TolC(1)
ci = (csup+cinf)/2;

p = sum(prob(ci,X(:,1),s,krnl).*ProdKer) /sumProdKer;
if p < u(i), cinf = ci; else csup = ci; end
end
C(k,i) = ci;
ProdKer = ProdKer.*kernel(ci,X(:,1i),s,krnl);
sumProdKer = sum(ProdKer) ;
end

end % end of the main function DensityCode.

Appendix A.2

Probability functions that are called by the main function DensityCode.

function f = kernel(x,m,s, krnl)
% Three kernel density functions
switch krnl

case 1 % Gauss density

f = exp(-(x-m)."2./(2%s.72)) ./ (s*sqgrt(2*pi));
case 2 % Logistic density

vv = exp(-(x-m)./s);

£ = (vv./s)./(1l+vv)."2;

otherwise $% Cauchy density

£f = (1./(pi*s))./(1+((x-m)./s)."2);
end % end of kernel.

function f = prob(x,m,s, krnl)

o

$ Three cumulative probability functions
switch krnl

case 1 % Gauss probability

f = 0.5%erfc(-(x-m)./(s*sqgrt(2)));
case 2 % Logistic probability

f = 1./(l+exp(-(x-m)./s));

(
otherwise ¢ Cauchy probability
f = atan((x-m)./s)./pi + 0.5;

end ¢ end of prob.

Appendix A.3

Functions for generating Faure sequences (Faure, 1982) of length M and dimension n. Points that have at least one

coordinate are excluded.
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function S = Faure(M,n)

% Generates a sequence of M points, quasi-uniform in

g = nj
while ~isprime(qg), g = g+l; end
S = zeros(M,n);
tl = 1;
for t = 1:M
S(t,:) = FaurePoint(n,tl,q);
while min(S(t,:))==0 ¢ exclude bound points
tl = tl+1;
S(t,:) = FaurePoint(n,tl,q);
end
tl = tl+1;

end % end of Faure.

function p = FaurePoint(n,t,q)

¢ Generates the tth point of a Faure (1982) sequence

t = t-1;

kk = 1;

b(kk) = mod(t,q);

t = fix(t/q);

while t > 0
kk = kk+1;
b(kk) = mod(t,q):;
t = fix(t/q);

p = zeros(l,n);
aj = 1;
i =
for j

=
s~

0:(kk-1)

ones(1l,n);

cj = b(j+1) *c;

if § < (kk-1)

for jj = 1:(kk-1-3)

Q
1]

c = (3J+33)*(i-1).*(c./33);
cj = cj+b(j+jj+1)*c;
end
end
cj = mod(round(cj),q);
aj = aj*q;

p = p+cj./qj;

end ¢ end of FaurePoint.

Appendix A.4

(0,1)"n
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The function DeltaPoly(c1, 2, d) computes oy(cl, ¢2), where ¢l and c¢2 are density codes, and ¥ is the set of n-variable

polynomials of degree lower or equal to d.

function delta = DeltaPoly(cl, c2, d)

% delta(cl,c2) with d-degree polynomial invariants
[m,n] = size(cl);
if d == 0 % direct comparison of density codes
delta = sgrt(sum(sum((cl-c2).72))/m);
else % comparison of codes using invariants
pw = AllPowers(n,d);
[n,NbrTerms] = size (pw) ;
x = ones (m,NbrTerms) ;
for t = 1:NbrTerms
for i = 1:n

x(:,t) = x(:,t).*cl(:,1). pw(i,t);
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end
end
T = pinv(x)*c2; $ Moore-Penrose inverse method
delta = sgrt(sum(sum((x*T - c2).72))/m);
end ¢ end of DeltaPoly.

function pwrs = AllPowers(n,d)
% All vectors of n positive integers of sum < d
global PW;
PW = [];
for k = 0:d
kPowers(n, [],k);
end
pwrs = PW; % end of AllPowers.

function kPowers(n,v,k)
% Recursively builds vectors of sum k
global PW;
if length(v) == (n-1)

v = [v;k];

PW = [PW,V];
else

for p = 0:k

kPowers (n, [v;p],k-p);
end

end % end of kPowers.

Appendix A.5

Main function of a Matlab program for the simulation of a parallel neural implementation of the density encoding algorithm
usable on gray level images.

function layer3 = ImageDensityCode(layerla,M,krnl,s, beta)
% Simulation of a parallel implementation of image density encoding

% The first input argument 1is the Layer 1 activation matrix

[row,col] = size(layerla);
layer2P2 = zeros(row,1l);
layer2Pl = zeros(row,col); % similar grids for layers 1 and 2
[X1,Y1l] = meshgrid(l:col,l:row);
suma = sum(sum(layerla));
for y2 = l:row % computation of P2([f] in Layer 2
sumaG2 = sum(sum(layerla.*prob(y2,Yl,s,krnl)));
layer2P2(y2,1) = sumaG2/suma;
end
for y2 = l:row & computation of P1[f] in Layer 2
sumag2 = sum(sum(layerla.*kernel(y2,Y1l,s,krnl)));
for x2 = 1:col
sumaGlg2 =
sum(sum(layerla.*prob(x2,X1,s,krnl) .*kernel(y2,Y1l,s,krnl)));
layer2Pl (y2,x2) = sumaGlg2/sumag?2;
end
end
layer3 = Faure(M,2); % computation of the density code in Layer 3

for i = 1:M
ui = layer3(i,l); vi = layer3(i,2);

W = (ui - layer2Pl) ."2;
V = (vi - layer2P2) ."2;
for x2 = 1l:col
W(:,x2) = exp(-beta*sqrt(W(:,x2) + V));
end
sumexp = sum(sum(W)) ;
layer3(i,1) = sum(sum(X1l.*W))/sumexp;
layer3(i,2) = sum(sum(Y1l.*W))/sumexp;

)

end ¢ end of ImageDensityCode.
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Abstract—Recently, a new method for encoding data sets in the form of "Density Codes"
was proposed in the literature (Courrieu, 2006). This method allows to compare sets of
points belonging to every multidimensional space, and to build shape spaces invariant to a
wide variety of affine and non-affine transformations. However, this general method does
not take advantage of the special properties of image data, resulting in a quite slow
encoding process that makes this tool practically unusable for processing large image
databases with conventional computers. This paper proposes a very simple variant of the
density code method that directly works on the image function, which is thousands times
faster than the original Parzen window based method, without loss of its useful properties.

Keywords—Image encoding, shape recognition, invariants, fast computation, neural
processing simulation.

1. Introduction

Recently, a new method for encoding sets of points belonging to multidimensional spaces has been
proposed by [1]. Given a set of data points, this method builds a deterministic sequence of points, called "density
code”, whose spatial distribution approximates that of the data. However, contrarily to data points, code points
are strictly ordered in a non-arbitrary way, which makes any pair of density codes comparable. This allows
building powerful code dissimilarity functions that can be simply made invariant to a wide variety of affine and
non-affine natural transformations. As demonstrated in [1], this is clearly a promising approach to pattern
recognition problems. However, it turned out that the encoding process is quite slow (several minutes for a
200x200 pixels image), mainly due to the use of a Parzen window scheme to smoothly approximate the data
density [2], and to the requirement of integrating kernel functions. It was also proposed, in [1], a parallel neuron-
like implementation of the method for image data, which could be fast when actually running on a parallel
architecture. Unfortunately, the simulation of this parallel implementation on a conventional sequential computer
is much slower than the basic implementation, that is itself too slow to be used on-line, or to process large image
databases and to perform realistic simulations of neural processing models. Given that most simulations are
performed on conventional computers, there is clearly a need to find a rapid way of building density codes for
common data types such as images or image sequences, without loosing the useful properties of these codes.
Fortunately, this is easy if one takes into account the "array of pixels" structure of image data, as we shall see.

2. Theory and Formulation

Background—First, we rapidly summarize the density code method foundations as stated in [1]. Let
f (X) be a probability density function on R", then the density of the (n — Kk +1)-dimensional marginal
variable (X, Xy,q,--, X,,) is given by: _
£ (0000, X Xy Xo) = ] F (KponnnX,) XX, .

kal
The density of the one-dimensional conditional variable (X, | X,,; = &, 4,---, X, = &,) is given by:
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f (8009 X By )

f(o,..,00a,,..,a)
The cumulative probability function of this variable is given by:

f(o....9%,8 ., a,
Pr(X, <b| X,y =80 X, =8,) = T f((. "ka = " )) dx,.
—00 [EREE It et B "SR RS R}

In compliance with [1], one simplifies the above notation by:
Pr(Xk < b | Xk+1 = a'kﬁ-l""’xn = an) = F(b | ak+l""’an)’
where the uppercase F recalls that de corresponding density function is f .

f(xk | Xk+l = akJrl""’)(n = an) =

For a random variable X € R" with density f, one defines a mapping P[f] from R" to (0,1)n as:

PLTI(X) = (RLTI(X),PLT1(X),.... P, [T1(X)),

where

P.LTI(X)=F(x,) = XJE f(,...et)dt,

—o0

and

PLf1(X) = F(X, | XpupomnX,), 1<k<n-—1.
Let U be a random variable uniformly distributed in (O,l)n, and assume that P[f] is a bijection, then,
according to Theorem 1 from [1], the reciprocal bijection P~'[ f] has the following property:

P[f](U) is distributed as X , with a probability density equal to f .
The above result is the foundation of the density coding method, since a density code is simply a realization of
the mapping P [ f ](U) with a fixed sequence of m distinct values of U. Theorem 1 from [1] also states that
a sufficient condition for P[ f] to be a bijection is that f be continuous and nowhere zero. This fact motivated
the use in [1] of a superposition of continuous kernel functions centered on data points and asymptotically
decreasing to zero, in order to approximate f . This solution works, however it is computationally slow.

Let Y € R" be a random variable functionally related to X by a continuous invertible transformation v, then:
Y =w(X),and g(Y) = f(X)I7(w(X)),

where g is the probability density of Y, and J(w(X)) is the Jacobian determinant of the transformation.

Theorem 2 from [1] states that if the Jacobian matrix ((O;/cX;)(X)) of the transformation is everywhere

triangular ( j <i=> Jy; /X, = 0), and has a strictly positive diagonal (Jy; /X; >0, 1<i<n), then:
P [g](V) = w(P7[f](V)).

The above result is the foundation of the density code comparison method. The set of transformations that have
the required properties includes a wide variety of affine and non-affine natural transformations. However, certain
common affine transformations such as rotations and reflections are excluded.

Encoding Algorithm—Now, how can we translate the above model for finite array data types such as
images or sequences of images? First, we assume that the (unknown) original image function h is a positive

function whose continuous support is a hyper-rectangle R =[0, Sl]x...x[O, Sn], where the S;'s are
expressed in pixel side units, and h =0 outside this hyper-rectangle. The image discretization results in a
(given) multidimensional array h where each (hyper-) pixel, with integer coordinates (Xl,...,xn), 1<x,<S;,
has the mean value of h on the unit volume hypercube [X; =1, X, ] x...x [x, =1, X, ] that is:

h(Xy .o X,) = Xj...Th(t,...,tn)dtl...dtn.

X -1 x,-1
This simple and quite reasonable approximation of the discretization process allows us to reduce all
subsequent integrals to finite discrete sums of pixel values. However, image data are subject to variations of
foreground and background lighting that are irrelevant for shape recognition. An image affine transformation
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allows us to partly solve this problem. Let min(ﬁ) and max(ﬁ) denote respectively the minimum and
maximum pixel values in ﬁ then one transforms the array ﬁ into an array g by:

g = (h—min(h))/(max(h) —min(h)),  fora light figure on a dark background,

g= (max(ﬁ) — ﬁ) /(max(ﬁ) - min(ﬁ)) ,  for adark figure on a light background.

Let Z(A) denote a real number that is the sum of all cell values of an array A. Then one can choose the
code length about m ~ ¢ 2(Q), for a fixed a >0, in order to make the number of code points proportional to
the image "foreground mass". One can note that the array ¢/ Z(g) has the properties of a discrete probability

function, however, certain cells have a zero value, with the consequence that certain cumulative probability
functions are not strictly increasing, and thus they cannot be inversed. A simple solution to this problem consists
of adding to each cell of the array ¢ a small positive quantity C such as:

c=2 z(g)/]_l[si ,

where A is a small positive constant (e.g. A =0.0001). This limited "lighting of the background" has the same
role as the strictly positive kernel functions used in the original method [1]. Finally, the discrete probability
function from which we are going to build the density code is given by the array f defined by:

f=(g+c)/Z(g+c).
The remaining difficulty results from the fact that f contains only a finite set of values, and thus the same
is true for any cumulative function computed from f . As a consequence, one can find an infinite number of

values of U e (0,2)" for which there is no corresponding cell in f . This problem can be solved using a discrete
dichotomic bounding search completed with a local linear interpolation. Given a value of U € (O,l)n, one can
compute its corresponding code point X = P~*[f](U) e R, asfollows:

function P f](u,...,u,) returns (x,,...,X,)

fo« f

for k <— n downto1do
PLf1(0)« 0 % computation of the vector P,[f](0:S,)
fori<—1to S, do P [f](i))« P[f](i-1)+ Z f (i,....1,_,,1) endfori

el

PITIA:S) « RIFIA:S)/RITIES,)
inf <0, sup<« S, % dichotomic search
while (sup —inf)>1do

mid « (inf + sup) div 2

if u, > PR, [ f](mid) then inf < mid else sup <— mid endif
endwhile
w <« (u,—PJ[f1(inf))/(P[ f1(sup)— P f](inf)) % linear interpolation
X, < inf +w sup
if k>1then

if inf >0then f, , « f (1:S,...,1:S,,inf)+w f (1:S,...1:S, ,,sup)

else f, ,«w f (1:S,...1:S, ;,sup) endif

endif

endfork
In the above pseudo-code, the notation "a:b" is that of Matlab, and it refers to the index range
[a,a+1,...,0—1Db]. Any text at right of "%" is a comment. Note that, for computational effectiveness, it is
preferable to implement a specific version for each dimension N, as illustrated by the Matlab function
"ImageCode", listed in the Appendix, for N = 2. One must also take care that the order of variables determines
the set of coordinate transformations to which the comparison of codes can be made invariant. Typically, for
image data, the order (X,Y) of the geometrical plane coordinates corresponds to a more probable variety of
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natural transformations than the reverse order (Y,X). However, the first dimension of an array usually
corresponds to the Yy coordinate, and the second dimension corresponds to the X coordinate. So, the
implementation must consider the dimensions in the most appropriate order, which is not necessarily the order of
the array dimensions.

It remains to choose a sequence of points (U,,...,U ) uniformly distributed in (0,1)", and to compute the

code point corresponding to each of these points by the mapping P’l[f](Uj) , 1< jJ<m, in the same order,

which provides the desired density code. The length M of the sequence can vary, if necessary, depending on the
image size and complexity, however, for every given index j, the point Uj must always be the same in order to

make different density codes comparable. A good choice is to use a quasi-uniform sequence such as a Halton
sequence [3] or a Faure sequence [4,5], as in [1]. It is well known that Faure sequences must be preferred for
high dimension spaces, however, the data arrays considered in this paper have rarely more than three
dimensions, thus one can as well use simple Halton sequences, and the Matlab function named "Halton" in the
Appendix generates such sequences.

Dissimilarity Function—Given two density codes V and W, that are MXN real matrices, both
computed using the same quasi-uniform sequence, and given a chosen family W of transformation mappings,
one can attempt to find a transformation 7 € W that minimizes the quadratic matching error:

E5(V.W)=min,_,[(v)-W/|".
This minimization problem is very easy to solve if the transformation family W is linear in its parameters, which
is the case, for example, of the family of multivariate polynomials of a given degree d, that has the special
advantage of naturally including the family of affine transformations (first degree polynomials). In this case, one
computes the polynomial basis functions for each point in V, resulting in a real matrix B, of order m xq,

where the number of monomials ¢ depends on n and d. Then the gxn real matrix T of the optimal

polynomial coefficients is simply given by T = B\EW , Where B\T, is the pseudo-inverse of B, [6,7]. In [1], it
was proposed to use a dissimilarity function defined by:
S, (VW) =B, T-W|//m.

This dissimilarity function works well for data that conform to the basic probabilistic model, however, image
functions do not behave exactly as probability functions, due to the presence of lighting variations, shadows,
non-uniform background, and other sources of noise. As a result, when one compares two similar shapes, there is
frequently a small proportion of code points that do not match and that provide very large errors. These points
are outliers, and it is desirable to limit their effect on the dissimilarity measure. A simple solution to this problem
is to replace the square root of the mean quadratic matching error, which is sensitive to outliers, by the median
matching error, which is much less sensitive to outliers. Another difficulty, pointed out by [1], is that the
dissimilarity measure is asymmetric and has the scale of the target code (W ). This makes dissimilarity measures
hard to compare when one works on a set of images that have different sizes. The solution is to make the
dissimilarity measure relative to some evaluation of the scale of the target code. For example, one can divide the
median matching error by the median distance of the target code points to their center of gravity (and multiply
the result by 100 in order to obtain more readable numbers). Finally, in [1], only density codes having the same
length were considered comparable, however, if two codes have different length, say M, and m,, then the first
m =min(m,;,m,) code points are in fact comparable since they have been computed using the same quasi-
uniform sub-sequence. Thus, we can compare density codes of different length, and we are no longer constrained
to use a unique code length for all items in a database. The minor, yet useful, improvements of &, suggested
above are implemented in the Matlab function "DeltaMedian” listed in the Appendix.

3. Results

Codes—In order to test the performance of the above described method, we generated 6 pairs of images,
each pair including a "plant-like" blurred fractal (A), and a "wind-like" transformation of it (B). Figure 1 shows
the 12 test images, together with their first 1025 density code points generated using function calls of the form
"CodeName = ImageCode (DataArray, U, 0)", with "U = Halton (1025, 2)" (see Appendix).
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Image A Code A Code B

Figure 1. The 12 test images (256x256 pixels each) and their first 1025 density code points.
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As one can see in Figure 1, the spatial distributions of code points suitably approximate the corresponding
image foregrounds. Each code (1025 points for an image size of 256x256 pixels) was computed in about 19
milliseconds, in Matlab 7.4 running on a MacBook computer (Mac OS X, version 10.4.10), with a 2 GHz Intel
Core 2 Duo processor.

Dissimilarity Measure—The "wind-like" transformations between A and B images of Figure 1 can be
approximated by bivariate third-degree polynomial transformations, whose set was chosen as . The number of
code points was made proportional (coefficient «) to the image foreground mass, using function calls of the
form "CodeName = ImageCode (DataArray, U, 0, «)" (see Appendix), while o was experimentally varied
from 0.01 to 0.5 (step 0.01). The foreground masses of test images ranged 3729-8923, and a long enough Halton
sequence was available in all cases. Dissimilarity measures ( ) were computed for all pairs of distinct images,
for the two possible argument orders (since J,, is asymmetric), and for all o values. The function calls were of
the form "Delta = DeltaMedian (Codel, Code2, 3)" (see Appendix). For each « value, one selected the
minimum and maximum obtained &, values, for pairs of unrelated shapes (distinct “plants”), and for pairs of
related shapes (A-B "wind-like" transforms). The result is plotted in Figure 2.

35 T T T T
I|_II {-'-I-’{ﬁ_\-\"_HJH_FHJ-IH_N_E'\—_J“_“—F__EH_H_‘_#‘_-\_'#-
'|If
J0F ]
— — max unrelated
25 — — min unrelated
i b related ]
rmin related
ol threshald |
"=
15 + ]
10+ ]
gL
|:| 1 1 1 1
1] 0.1 n.z 0.3 0.4 0.5

Figure 2. Observed &, boundaries for related and unrelated image pairs, as functions of .

As one can see in Figure 2, for o > 0.04, the related and unrelated o, distributions do not overlap, the o,
values become quite stable, and one can reliably decide whether or not two images are related using a simple
threshold of about 5. One can also note that the maximum separation of J,, distributions is reached for a =

0.25, however, this a priori depends on the considered shape space, and in particular on the relative scale of
relevant distinctive features.

Code Computation Time—An examination of the operations involved in the image coding process shows
that the complexity depends on both the image height ( H), the image width (W), and the number of code
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points (M). The heaviest operations concern the image preprocessing (O(HW)), the m-times iterated
dichotomic searches (O(m(log, H +10og, W —2))), and the m-times iterated computation of interpolated
row vectors (O(MW )). In order to estimate the weights of these operations (for our platform), we measured the
encoding time of random images whose height and width where independently varied from 16 to 1024 pixels (in
powers of 2), while the code length was also independently varied from 16 to 1024, with repeated measures
using 20 independent random images per condition. Then the regression equation was solved using a least square
method, and we obtained the following approximation of the code computation time (in milliseconds):

t(H,W,m) ~10(0.6853 HW + 3.8459 m(log,(HW ) —2) + 0.3943 mW ), (£ 2.66).

The standard approximation error is small enough for practical use, and the correlation between the observed and
approximated computation times is r=0.99. As an example, the approximated computation time for the
images of Figure 1, with 1025 code points, is 20.4 £ 2.66 milliseconds, whereas the observed computation time
was about 19 milliseconds. We observed that adding more terms to the regression equation does not significantly
improve the approximation accuracy, whereas the formula is obscured by the presence of negative coefficients.

Finally, we note that the obtained computation times make the density code approach perfectly usable for
on-line computation and for the processing of large image databases. Using the original encoding algorithm, the
code computation time, as reported in [1], was of 6 minutes and 45 seconds for 2048 code points on an image of
200x200 pixels. Even though the used computers are not the same, there is no doubt that the present algorithm
considerably improves the situation, performing a similar encoding in only 29.4 milliseconds.

Appendix

The following implementation code, in Matlab 7.4, is provided for example, and for academic use only.
The code is not optimized and exception cases are not managed.

function code = ImageCode (f,u,DarkOnLight,alpha)
% Density code of an image f for a quasi-uniform sequence u
For a fixed length code, do not provide the alpha argument
Set DarkOnLight=1 for a dark figure on a light background (else 0)
[ymax,xmax] =size (f); minf=min (min (f)); maxf=max(max(f)) ;
if DarkOnLight>0, f=(maxf-f)/(maxf-minf); else f=(f-minf)/(maxf-minf); end
Sf=sum(sum(£f)) ;
if nargin<4, m=length(u); else m=min(length (u),round(alpha*Sf)); end
lambda=0.0001; f=f+lambda*Sf/(ymax*xmax); Pyf=sum(f,2);
Pyf=cumsum (Pyf); Pyf=Pyf/Pyf (ymax) ; $ Pn[f] is computed only once
for p=1:m
v=u(p,2); lob=1l; upb=ymax;
if v<=Pyf (1), w=v/Pyf(1l); Pxf=£f(1,:)*w;
else while (upb-lob)>1
y=round ( (lob+upb) /2) ;
if Pyf(y)>v, upb=y; else lob=y; end
end
w= (v-Pyf (lob) )/ (Pyf (upb) -Pyf (1lob)) ;
u(p,2)=1ob+ (upb-1lob) *w;
Pxf=f (lob, :) + (f (upb, :)-f (1ob, :)) *w;
end
Pxf=cumsum (Pxf) ; Pxf=Pxf/Pxf (xmax) ;
v=u(p,1l); lob=1l; upb=xmax;
if v>Pxf (1)
while (upb-lob)>1
x=round ( (lob+upb) /2) ;
if Pxf(x)>v, upb=x; else lob=x; end
end
u(p,1)=1ob+ (upb-1lob) * (v-Pxf (1lob) ) / (Pxf (upb) -Pxf (1lob) ) ;
end
end
code=u(l:m, :);

o\° o

o\°

Pk[f],k<n, is computed m times

function u = Halton (m,n)

[

% Halton quasi-uniform sequence of m points in (0,1)”n
p=zeros(n,1);
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p(l,1)=2;
for k=2:n
p(k,1)=p(k-1,1)+1;
while ~isprime(p(k,1)), p(k,1)=p(k,1)+1; end
end
u=zeros (m,n) ;
for t=1:m
u(t, :)=point(n,t,p);
end

function pt=point(n,t,p)
pt=zeros(1l,n) ;
for k=1:n
pk=p(k,1); i=t; h=0; ib=1/pk;
while (i>0)

d=mod (i, pk) ;
h=h+d*ib;
i=round( (i-4d) /pk) ;
ib=ib/pk;

end

pt(llk):h;

end

function delta = DeltaMedian(cl, c2, d)
% Delta function with d-degree polynomial invariants

% Modified from the DeltaPoly function listed in Courrieu (2006)
[ml,n]=size(cl); [m2,n]=size(c2); m=min(ml,m2) ;

cl=cl(1l:m,:); c2=c2(l:m,:); % reduce to comparable sub-sequences
if d == 0 % direct comparison of density codes
err = sgrt(sum((cl-c2).%2,2));
else % comparison of codes using invariants
pw = AllPowers(n,d) ;
[n,NbrTerms] = size (pw) ;
x = ones (m,NbrTerms) ;
for t = 1:NbrTerms
for i = 1:n
x(:,t) = x(:,t) .*cl(:,1) . pw(i,t);
end
end
T = pinv(x)*c2; % optimal transformation coefficients
err = sqgrt (sum( (x*T - c2)."2,2));
end
delta=median (err) ; % median mismatch based dissimilarity
TargetCentre=mean (c2) ;
TargetScale= median (sgrt (sum((c2-kron(ones (m,1),TargetCentre)).”2,2)));

delta=100*delta/TargetScale;

function pwrs = AllPowers (n,d)
% All vectors of n positive integers of sum <= d
global PW;
PW = [];
for k = 0:d
kPowers (n, [1,k);
end
pwrs = PW;

function kPowers (n,v, k)
% Recursively builds vectors of sum k
global PW;
if length(v) == (n-1)

v = [v;k]l;

PW = [PW,V];
else

for p = 0:k

kPowers (n, [v;pl , k-p) ;
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end
end
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I1.D Réseaux de neurones et apprentissage supervisé

Lorsqu'on a construit un espace d'entrée et un espace de sortie, il reste a construire la
machinerie établissant un lien fonctionnel des entrées vers les sorties. La Théorie de
'Approximation des Fonctions fournit depuis longtemps des bases solides pour construire des
approximations aussi précises que I'on voudra de toute fonction continue (ou méme seulement
continue par morceaux) d'un espace métrique vers un (autre) espace métrique. Ces bases
théoriques indispensables ne fournissent cependant pas directement les méthodes pratiques
nécessaires pour résoudre les problémes concrets d'approximation de fonctions que I'on
rencontre dans les applications et dans la modélisation cognitive. C'est un des grands mérites
de la théorie des réseaux de neurones artificiels que d'avoir développé des méthodes
d'apprentissage qui, associées aux théorémes fondamentaux d'approximation des fonctions,
ont donné des algorithmes trés efficaces pour résoudre des problémes "naturels". Pour ma
part, je me suis essentiellement intéressé aux réseaux de neurones dits "feedforward", c'est-a-
dire aux réseaux ou l'activation chemine des entrées vers les sorties sans rétroactions. Le
cerveau humain étant en réalité un systéme dynamique non-linéaire complexe (Pezard &
Nandrino, 2001), il est clair que les modeles feedforward sont des abstractions qui permettent,
au mieux, d'approcher certaines fonctions cognitives, mais sans doute pas les fonctions
cérébrales sous-jacentes. Ce que I'on appelle "apprentissage supervisé" consiste a calculer les
paramétres, et éventuellement l'architecture, d'une machinerie neuronale implémentant une
fonction compléte (en général continue) a partir d'un échantillon fini de points de la fonction,
appelés "exemples", dont on connait les valeurs d'entrée et de sortie. Les points qui ne sont
pas des exemples sont des points de "généralisation" ou, étant donnée une valeur d'entrée, la
machine neuronale doit estimer la valeur de sortie correspondante (par interpolation ou
extrapolation), apres un éventuel "lissage" visant a éliminer le bruit que peuvent contenir les
exemples. Certains algorithmes d'apprentissage utilisent les exemples pour calculer les
paramétres d'un réseau de neurones dont l'architecture est prédéterminée par le modélisateur.
Clest le cas du tres célebre algorithme de rétropropagation du gradient d'erreur (Rumelhart,
Hinton, & Williams, 1986), et des algorithmes plus simples, de type "moindres carrés", que
l'on utilise avec les réseaux a fonctions bases radiales (Poggio & Girosi, 1990; Yoon, 2001).
D'autres algorithmes d'apprentissage, comme la "Cascade-Correlation" (Fahlman, & Lebiere,
1990), déterminent a la fois l'architecture et les paramétres du réseau rendant compte des
exemples. Il existe également des variantes incrémentales des méthodes de moindres carrés

qui permettent de construire progressivement un réseau a fonctions bases radiales ou
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similaires (Sin & DeFigueiredo, 1993). J'ai proposé, indépendamment du travail de Fahlman
et Lebiere (1990) que je ne connaissais pas a 1'époque, un algorithme d'apprentissage qui s'est
avéré étre une variante de 1'algorithme de Cascade-Correlation (Courrieu, 1993a). Le travail
de Fahlman et Lebiere n'était pas encore trés connu, et personne (pas méme les referees de
"Neural Networks" ou j'ai publié mon travail) n'a relevé la similitude des algorithmes a ce
moment 1a. D'autres variantes de 1'algorithme de Cascade-Correlation ont été publiées depuis,
et c'est une famille d'algorithmes trés utilisée dans les applications pratiques.

Cependant, une difficulté est apparue avec les réseaux de neurones et autres méthodes
classiques d'approximation des fonctions. Ces méthodes sont congues pour approcher des
fonctions sur des espaces métriques euclidiens. Or il est de nombreux problémes, notamment
en reconnaissance des formes, ou l'espace d'entrée n'est pas euclidien. C'est par exemple
souvent le cas lorsque, désirant approcher une fonction sur un espace de chaines de caracteres,
on structure cet espace par une pseudo-distance entre chaines, obtenue par une méthode de
Programmation Dynamique. C'est également le cas lorsque, désirant approcher une fonction
sur un espace de formes en réduisant les transformations réguli¢res, on structure 1'espace par
une mesure de "dissimilarité" non métrique entre formes (Courrieu, 2006, 2007, voir Section
I1.C). 1l existe a ce jour deux facons de résoudre ce probléme. La premicre fait appel a une
extension simple de I'approximation "au plus proche voisin" usuelle, mais cette approche est
trés peu réguliére et donne des généralisations assez grossicres. J'ai proposé une autre
approche, beaucoup plus "régularisée", qui donne de meilleurs résultats (Courrieu, 2005a,
article ci-joint). Le modele neurocomputationnel développé garantit la possibilité d'approcher
aussi précisément que l'on voudra toute fonction continue, non seulement sur tout espace
métrique (euclidien ou non), mais également sur une tres large variété d'espaces topologiques
non métriques, couvrant sans doute I'ensemble des besoins pratiques courants. Ainsi qu'il est
dit dans l'article, ce résultat représente, me semble-t-il, une extension significative de la
notion usuelle de "capacité d'approximation universelle". Il me faut cependant mettre un
bémol a cet autosatisfecit, car la publication de ce travail semble n'avoir eu qu'un succes tres
modeste. Parmi les rares auteurs qui ont cité l'article, certains n'ont méme pas relevé que
l'outil proposé permet d'approcher des fonctions sur des espaces non métriques, de sorte que
je me demande pourquoi ils ont cité ce travail. La faute est sans doute a ma maladresse
chronique en matiére de communication. Je profite donc de la présente circonstance
académique pour signaler que, si I'on a a approcher une fonction sur un espace aux propriétés
topologiques extravagantes, il peut étre de quelque utilité de consulter la référence Courrieu

(2005a), ainsi d'ailleurs que la référence Courrieu (2002) présentée dans la section II.B.
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Abstract

This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and
also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation
schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and
illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’.
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1. Introduction

Neural computation research, together with related areas
in approximation theory, have developed powerful methods
for approximating continuous mappings on compact
subsets of R" as a Euclidean space. Most approximation
schemes use three layered feed-forward neural architectures
with scalar product based neurons (Cybenko, 1989;
Funahashi, 1989; Hornik, 1993; Leshno, Lin, Pinkus, &
Schocken, 1993; Rumelhart, Hinton, & Williams, 1986a,b),
or Euclidean distance based neurons (Girosi & Poggio,
1990; Micchelli, 1986; Poggio & Girosi, 1990; Yoon,
2001), while more general feed-forward architectures have
also sometimes been studied (Courrieu, 1993; Fahlman &
Lebiere, 1990; Kreinovich, 1991). In such schemes,
function approximation capabilities critically depend on
the Euclidean metric nature of the input space. However, it
is frequent in practical applications that one must approxi-
mate functions on data spaces that are not Euclidean, not
metric, or even not numerical (symbol strings, graphs). In
such cases, one usually attempts to empirically encode the
input data in the form of numerical vectors, with the hope,
but without any guarantee, that the performed encoding is
relevant. Then one applies conventional neural methods on

* Tel.: +33 442 95 37 28; fax: +33 4 42 20 59 05.
E-mail address: courrieu@up.univ-mrs.fr.

0893-6080/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
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the space of codes, assuming that it is Euclidean and that it
suitably preserves the topology of the original data space.
Such an empirical encoding can result in a failure in
approximating the objective function because the complex-
ity of the approximation to be found not only depends on
that of the objective function, but also on the suitability of
the encoding. The data-encoding problem has been
previously treated for special data types such as clusters,
that have been shown to be suitably encodable in Euclidean
spaces (Courrieu, 2001). It has also been shown that certain
data sets can be monotonically embedded in a Euclidean
space, provided that their topology is induced by a function
that has at least some properties of a metric, except possibly
the triangle inequality (Courrieu, 2002). In these cases, one
can apply a conventional neural method for function
approximation on the Euclidean embedding space. How-
ever, there are also data spaces that cannot be embedded in a
Euclidean space without strongly modifying their topology.
This is the case, for example, of data spaces where
neighborhood relations are not symmetric, or whose
topology is induced by a semi-metric (that can take a zero
value for pairs of distinct elements). Such topological data
spaces are not rare in practice, and it can even happen that
their basically non-metric properties are in fact relevant to
the function approximation problem to be solved. Consider,
for example, objective functions invariant to certain regular
transformations of the input, which are common in pattern
recognition (see Section 8 of this paper for a meaningful


http://www.elsevier.com/locate/neunet

92

example). Non-Euclidean and non-metric spaces are also
commonly generated by Dynamic Programming methods
applied to time series or symbol strings (see Section 9).
Thus, there is clearly a need for building function
approximation schemes on data spaces with minimal
requirements concerning their topology, which is the
purpose of this paper. The model proposed hereafter has
the form of a layered feed-forward neural network, with
special neural basis functions, and it can approximate
functions on a wide variety of non-metric data spaces, as
well as on any metric space. Data spaces are usually
probabilized by a (possibly unknown) sampling probability
function on the input space. This property will be explicitly
used hereafter.

2. Problem statement
2.1. Input space topology
Let Q be any set, and 0 be a real valued function on Q X

Q such that, for any X,Y € Q:
oX,X) =0,

8(X,Y)> 0,

0X,Y) < o,

Then (Q,0) is a topological space whose topology is
induced by 0. In particular, a closed ball of center X € Q, and
of radius r>0, is the set defined by:

BX,r)={reQ, ¢X,Y)<r}.
2.2. Sampling probability

Let u be a sampling probability on © such that:
we) =1,

Note that this last requirement implies some restriction
concerning o0. In particular, if Q is a continuum and u is a
continuous probability function, then ¢ cannot be a trivial
distance because any ball of radius less than 1 would have
only one element (its center), and then would be a subset of
zero measure of Q.

forany X € Q, r> 0= u(B(X,r))> 0.

2.3. Objective function

Let fbe a real valued mapping from Q to R¥ such that, for
any X,YE Q:

[iX) — fiN < a;6(X, Y),

If (2,0) is a metric space, then the above requirement is
simply a Lipschitz condition on f. The above property,
together with the finiteness of 6 (see Section 2.1), implies
that fis bounded on Q.

0<a<w, 1<i<K.

114

P. Courrieu / Neural Networks 18 (2005) 91-102

2.4. Approximation problem

Find an approximation of f, given a learning set of M data
points

E={X, fX)), 1<i<M},

where points are sampled on Q with the probability u.
One requires that the approximation be uniformly
convergent as M tends to infinity.

3. Approximation method

3.1. Prototypical examples

First, one must select a subset of m data points from ZE,

with m <M, in such a way that
min o(X;, X;) = s> 0.

1<i#j<m

Each of these points is a ‘prototype’ that will be
associated to a particular basis function. The strictly positive
real number s is the minimum ‘spacing’ of prototypes in
(2,0), while non-prototypical examples are not subject to
any spacing constraint. The set of input values of prototypes
is denoted .

3.2. Low level layer(s)

Given an input X€ Q, one uses one or more low level
layer(s) for computing ¢ values between the current input X
and the m prototypical input points X;, 1 <i <m. The output
of this processing is a set of m real values 0(X,X;), 1 <i<m.
Note that the order of the arguments of ¢ is relevant since we
do not assume that ¢ is symmetric. The exact specification
of this low level processing of course depends on each
particular input space (2,0).

3.3. Basis functions

The output of the low level processing (Section 3.2) is
used as the input of a layer of m neural basis functions, that
are defined as follows:

e B-30XX)

8X:0) = o 1S

, <i<m.
S e P

The determination of the real parameter >0 will be
studied in the following sections. We note that the basis
functions are all positive and that their sum is equal to 1, for
any X€ Q.

3.4. Output layer

The output of the basis function layer (Section 3.3) is
used as the input of an output layer of K (linear) neurons.
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The synaptic weight of the connection from the ith basis
function neuron to the jth output neuron is denoted w;;, with
1<i<m, and 1 <j<K. The output functions are given by:

P (X) = wygiX: ), 1<j<K.
i=1

In the following, we will refer to such approximators as
‘@ approximators’.

3.5. Computation of synaptic weights

Synaptic weights are simply computed by a usual Least
Square method, which provides an exact interpolation of
data points if m =M, or which allows for filtering possible
data noise if m <M.

Let G be the M X m real matrix of basis function values
for the M learning examples:

G = (8:i(X,: 6)),

Let F be the M X K real matrix of the objective function
values for the learning examples.

Let W be the m X K real matrix of synaptic weights to be
computed.

The Least Square solution can be obtained, for example,
by using the pseudo-inverse method

1<p<M, 1<i<m.

W = (G'G)"'G'F,

where the ' denotes the transposition operator.

This assumes that the symmetric matrix (G'G) is
invertible, which can be guaranteed by a suitable choice
of the parameter (3, as we shall see in Section 5. In practice,
very large systems can be solved using another approach,
such as a Conjugate Gradient method. However, the
existence of a solution is always guaranteed by the non-
singularity of G'G.

4. Uniform approximation capability

The uniform convergence proof of the above approx-
imator does not require that s>0 (see Section 3.1), thus in
this section we can simply consider the case m= M. Before
proving the uniform convergence of the approximator, we
must generalize a result that is well-know for continuous
function approximation on compact subsets of R". In order
to simplify the writing, we state the results for K=1, while
the generalization to any K is immediate since all output
components have similar properties.

Definition 1. The ‘nearest known neighborhood’ of any
point X € Q is the set defined by

NX) = {X; € x; 6(X, X;) = min 6(X, X,)}.

1<j<m
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The number of points in N(X) is denoted |N(X)|, and one
has necessarily |[N(X)| > 1.

Definition 2. The ‘stepwise approximation’ of a function f
on  is defined by

0uX) = G(Xf (X)),
j=1

with

1 .

0 otherwise

Lemma 1. Under the general conditions stated in Section 2,
one has, for any ¢>0:

lim Prob(sup |[f(X) — Q,,(X)| > &) = 0.
m—e XeQ
Proof.

(i) Using Section 2.2, for any X€ Q, r> 0= u(B(X,r)) >0,
and thus: for any >0, lim,,,., Prob(min<,<,, 6(X, X;)
>r)=lim,,_.(1 —w(BX, r)))" =0.

(ii) Using Section 2.3, 6(X.X))<r=|f(X)—fX)|<ar,
with a < o, and thus:

1
[0 — Q.01 = Poo NI > )

X, EN(X)
- IN<1X>| Xi;}()f X) —f(X))
= IN(1X>| X,EEN:(X) [Feo —fxol
< v Nl = ar

(iii) One obtains Lemma 1 from (i) and (ii), with r=

ela. [
We are now ready to prove the following theorem.

Theorem 1. Let 3= (3(m) be a positive increasing function
of m such that lim,,_,,, B(m)= . Then, under the general
conditions stated in Section 2, there are synaptic weights w;,
1 <i<m, for the approximator ¢(X) defined in Section 3.4,
such that, for any ¢>0:

lim Prob (sup FX) — o(X)| > s) =0.
m—® XeQ

Proof. Given Lemma 1, it suffices to take w;=f(X)),
1 <i<m, and to show that:

lim g;(X; 60m)) = ¢;(X).
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We note that the ith neural basis function can also be written
as:

1
gi(X;p) = S PO

If X;eN(X) then

1

[ X; = s
8i(X;6) NGO+ Sy gy €2 00H) 3K

where the arguments of the exponentials are all strictly
negative, and thus the sum of these exponentials tends to zero
as (8 tends to infinity, which leads to the expected result:

8i(X;8)— as f— .

1
INGOI”
On the other hand, if X; & N(X) then
gGXHS D GX:B)

X, ENX)

1
—-1— g§X:8) =1 = INX)|
x,g{m , NGO

=0, as ﬁ—»oo,

which completes the proof. []

5. Interpolation and Least Square approximation

5.1. Interpolation problem

This is the case m=M, with a minimum spacing s>0
(see Sections 3.1 and 3.5). The computation of synaptic
weights reduces to W= G~ 'F, which requires that the m X m
matrix G be invertible.

Theorem 2. With m> 1 and s> 0, there is a real number (3
such that 0 < Bo<In(m—1)/s, and if 8> (3, then the matrix
G=(g;)=(g{X1:0)), 1 <i,j<m, is invertible.

Proof. After the well-known theorem of Gerschgorin—
Hadamard, one knows that a sufficient (but not necessary)
condition for a square matrix to be invertible is that the
absolute value of each of its diagonal coefficients be greater
than the sum of the absolute values of all non-diagonal
coefficients in the same row. Given that all coefficients of G
are positive and that each row has a sum equal to 1, the
theorem of Gerschgorin-Hadamard applies if g;>1/2,
1<i<m.

One has:
1 1 i 8-0(X;.X;)
8ii — m —5'6(Xi,X>)>_<: e POV <.
1 +Zj —1¢ j 2 =
JFi j#i
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On the other hand, one has:

Z e PIEX) < (1 — e,
j=1
j#F1
and finally:

(m—l)e*ﬂf<1<:>ﬁ>m(m%l).

Thus the lower bound (3 is at most equal to In(m— 1)/s,
which completes the proof. []

5.2. Least square approximation

This is the case M>m, which allows for approximating
the objective function while filtering possible data noise. As
stated in Section 3.5, one must inverse the symmetric matrix
G'G, while G is a rectangular M X m matrix. The following
evidence solves the problem.

Lemma 2. If the square m X m submatrix of G correspond-
ing to the prototypical examples is invertible, then G' G is
invertible.

Proof. If the submatrix of G corresponding to the
prototypical examples is invertible, then its m column
vectors are linearly independent, which implies that the m
column vectors of G are also linearly independent since
there is no non-zero vector u such that Gu=0. As a
consequence, there is no non-zero vector u such that
u'G'Gu=0, which means that none of the eigenvalues of
G'G is zero, and thus G'G is invertible. [

As one can see, it suffices to apply Theorem 2 to the set of
prototypes to be sure that the Least Square approximation
problem has a solution (W=(G'G)™'G'F). Note however
that the above proof assumes that all prototypes actually
belong to the learning set.

6. Behavior of the approximator as a function of 38

In order to visualize the behavior of the approximator
@(X) as a function of 3, we interpolated a fixed set of 20
distinct data points on the unit square of R2, with 6(X,Y)=
||X — YI|? (thus the support space is Euclidean for this visual
example), using various values for 8. In this case, each
coefficient of the matrix G is equal to a Gaussian divided by
a sum of Gaussians, and the matrix G is equal to the product
of a non-singular diagonal matrix (inverse sums) by a
symmetric matrix of Gaussians. This implies that any >0
can be used (that is 8,=0), since such a matrix G is always
invertible (Micchelli, 1986). We have m =20, s=0.02, and
thus In(m—1)/s=147.22. One can see, in Fig. 1, interp-
olation surfaces obtained for =150 (upper panel), and for
B=50 (lower panel). The interpolation surface obtained
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B =150

Fig. 1. Two interpolation surfaces of a set of 20 data points on the real unit square, with two different values of (.

with 6=150 looks like a ‘smoothed stepwise approxi-
mation’, with typical sigmoid profiles between data points.
The corresponding minimum diagonal coefficient of G is
equal to 0.95, which is unnecessarily large. The interp-
olation surface obtained with =50 is more regular,
although its variation range is wider. The corresponding
minimum diagonal coefficient of G is equal to 0.675.
Gradually lowering (3, one obtains larger and larger
oscillations of the interpolator between data points, and
clear symptoms of ill-conditioning (of G) for § <15, while
the minimum diagonal coefficient of G is lower than 0.30.

7. Regularization

One knows that regularizing an approximator is import-
ant in order to obtain a good generalization capability
from finite samples of data points. Regularizations of
approximators on R" are commonly obtained by minimizing
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norms of differential operators (Girosi & Poggio, 1990;
Poggio & Girosi, 1990). Unfortunately, such operators are
not defined for functions on non-metric spaces. So, we must
first define some suitable stabilizer usable on such spaces,
which requires some reasonably restrictive additional
conditions concerning the space (Q,0).

7.1. Foundations

Definition 3. With C(X,r)={Y€Q, 0<iX,Y)<r}, the
absolute local variation ratio of an approximator ¢ at point
X € Q is defined as:

Ap(X) =1lim sup (lp(X) —o(N)|/6(X,Y)).
=0 yecx,r)

In the following, we will determine a positive function
V(B) such that:

sup Ap(X) < V().
XeQ
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Then there is a particular 8, denoted 3*, such that

V(B*) = 2;“5“ V(B),

where 8" is the § value for which min,;<,, g; = 0.5, and
thus 8> 8" guarantees that the matrix G is invertible since
68" > B, (see Theorem 2).

In other words, our regularization approach consists of
minimizing an upper bound of the absolute local variation
ratio of ¢ on (Q,0).

In order to do this, we consider first the case of an exact
interpolation (m=M, s>0), and we require the following
two additional conditions:

e For any X€ Q, for any >0, C(X,r) is not empty (thus
Ap(X) is defined).

e There is a positive number y <o such that, for any
XY,ZeQ

[6(X,Z) — 6(Y,Z)| < v-6(X, Y).

As we shall see, there is no need for knowing the value of
v, provided that one can assume that it is finite. Note also
that in the special case where ¢ is a metric, one has y=1,
and the condition is equivalent to the triangle inequality
(which, of course, is not required here).

Theorem 3. Under the above specified conditions, for any
8> p", one has:

B

sup Ap(X) < V(B) = . .
miny<j<m 85 — 0.5

XeQ

max [FX)ye

Proof. Step 1

loQO) — o)l = > wigi(X:8) — Y wigi(¥; 6)‘
i=1 i=1
= > wilgi(X; 8) — gilY; ﬁ))'
i=1
< max |w| ; lg,(X; 8) — g,(Y: B).

and thus, for any X€ Q:
< ,
Ap(X) < (1‘3% Iwzl>

. (lim sup Y 1g(X: 8) — g;(Y: B)I/6(X, Y))-
=0 yecx.n =
Step 2

Given that all prototypes have non-zero spacing, the m X
m matrix G tends to the identity matrix / as § tends to
infinity, and thus W=G~ 'F tends to F. Now, for B < o, one
can use a well-known theorem on linear system
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conditioning (Ciarlet, 1982, pp. 30-31), which gives

Il = Gll
IF =Wl £ ————
1 —|II - Gllw

[1F|les
that is

21
) —w <
max |f(X;) —wl <=

_minlgjgm gji) - max [f(X))]
2(1 = miny gy g;) 1= =

which implies that

1+

- max [f(Xp)| =

1<i<m

2(1 — min;gj<,, gj7) )

—2(1 — min i<, g;5)
max <i<y [f(X)]

2-minj g, g — 1

max |w;| <
1<i<m

Step 3
First, we note that
160X, 2) = 6(Y. )| < y-8(X,Y) = e 7 0%7)

= [e—ﬁ(é(Y.ZHV'é(X,Y))’ e—ﬁ(é(Y,Z)—Y'ﬁ(X,Y))]

— [eBYOKD) (B (KX)o 002

Here, we use some interval calculation rules (numbered
I1-112, see Appendix):

> 18iX: 8) — gi(Y; )l

1

=25

m
i=

e B-0X.X) e B-0(r.X)

- |
T B S =)

m [e =B 00LY) of70X.Y) 10V X)

|
; [e=PY 00T By D] S o =FroT )

(S

1, 1].6*5'5()’,5(,-)
TS e

(11,112)

e B3 X)

—26v-6(X,Y) _2Bv-0(X,Y)
I[e ,€ ]—Z]"":l )

m

i=1
o BOY.X)

— s |

(I5,110)

m
=Y [[e IR 2PN )
i=1

e B3 X

XS o |

I11)

= [0, — 1) " gi(¥: ) (18.19,112)
i=1



P. Courrieu / Neural Networks 18 (2005) 91-102 97

Since Y i, g;,(Y; B) = 1, one obtains:
D l8i(X: B) = gi(Yi )l < eI — 1.
=1

Remembering that (e“—1) is equivalent to u on the
neighborhood of 0, we obtain:

lim sup Z |g;(X: 8) — g;(Y: BI/6(X. Y)
=0 yecix,n 5
270X _

<lim sup SX.T)

=0 yecx,r)

=~2v-6.

Following Step 1, this last result time the result of Step 2
provides an upper bound of A¢(X) on Q, which completes
the proof of Theorem 3. [

We note that the location of a minimizer 8* of V(0)
depends only on the ratio 8/(min;;<,, g; — 0.5) since the
remaining factors of V(@) are constant with respect to (.

7.2. Computation of (3*

In order to examine the behavior of the function V(B)
defined in Theorem 3, we generated a large set of square
matrices with zero diagonal coefficients and strictly positive
random out-diagonal coefficients. These coefficients were
used as random ¢ values, and we plotted the corresponding
V() functions for 8> 0. It turned out that V(5) was always
uniminimal on its positive part (that is for 3> 8"). A typical
profile of V(B) can be seen in Fig. 2. Unfortunately, we
failed to state a formal proof that V() is necessarily
uniminimal on its positive part, so there is a small doubt that
could justify the use of a global optimization method in
order to minimize V(8). As verification, we applied well-
known random walk type global optimization algorithms,
whose convergence is guaranteed and that usually provide
accurate results (Courrieu, 1997; Ingber & Rosen, 1992).
This always provided the same result as the following
simple local search procedure, where the matrix G is
explicitly expressed as a function of § (i.e. G=G(()), and
the output §* is a minimizer of V(f3) on its positive part.

Procedure 1

function V(b) = b/(min, <, g;;(b) — 0.5).
bl:=In(m)/s; b2:=1.1*b1; b3:=1.2%b1;
while V(b1)<V(b2) do

b3:=02; b2:=bl; bl:=2%b2—b3;

while min, .., (1) < 0.5 do b1:=(b1 +b2)/2;
end
while V(b3) <V(b2) do

bl:=b2; b2:=b3; b3:=2*b2—bl,;
end
while (b3 —b1)> precision*b2 do

cl:==(b1+b2)/2; c2:=(b2+b3)/2;

if V(c1)<V(b2) then

b3:=b2; b2:=cl,;
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Fig. 2. A typical shape of the function V().

else if V(b2) <V(c2) then
bl:=cl; b3:=c2;
else
bl:=b2; b2:=c2;
end
end
B*:=b2.

Note that the above procedure is written to be easily
readable, however, in practical implementations, one must
of course avoid repeated calls to the V() function with the
same argument, and reusable values must be stored. This
procedure has been applied to the illustrative interpolation
problem of Section 6. The obtained value was §*=70,
while the corresponding minimum diagonal coefficient of G
was 0.78. The obtained interpolation surface is shown in
Fig. 3, where the regularization provided by (* seems
effective. We note that the interpolation surface is close to
that obtained with §=50 (Fig. 1, lower panel), but that
surface oscillations between data points are a bit smaller.

Finally, we note that 3* can be computed in all cases,
provided that s>0. In the case of a Least Square
approximation (m<M), * must be computed for the
square mXm submatrix of G corresponding to the
prototypical examples. * can also be computed whether
we know that v is finite or not, since vy is not actually used in
practical computation. Similarly, the condition that C(X,r) is
never empty, which excludes discrete spaces, is not
necessary for 8* computation. Thus we conclude that 8*
can always be used at least as a reasonable default
parameter, while its full theoretical justification of course
requires the conditions stated in (Section 7.1).

8. The example of affinely invariant pattern functions

There are many kinds of data spaces on which the above
function approximation scheme can be used because the
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Fig. 3. Interpolation surface of the same data points as those of Fig. 1, with §=(*.

requirements concerning (Q,0) are very weak. As an
example, we chose a problem that, at first glance, can
seem to be of metric nature, but that in fact is not. This is the
problem of approximating a function on a space of patterns,
while the function is invariant to affine transformations of
the input. Of course, one can ignore this last property and
build a metric input space in which each possible pattern is
considered as independent of other ones. Another approach
consists of taking into account the invariance property in
order to improve the generalization and to reduce the
required amount of learning, but this leads to build some
non-metric input space, as we shall see hereafter.

8.1. Input patterns

We consider here Q as the set of sequences of L points of
a bounded subset of R", with L>n Any sequence is
represented in the form of a LX (n+ 1) real matrix X whose
first column coefficients are equal to 1, and the remaining n
columns correspond to the coordinates of points. A
sequence X belongs to Q if det(X'X)>0, which means that
X is of rank n+1, or equivalently that the set of L points is
actually of dimension n.

8.2. The 0 function

We must define a ¢ function such that for any X, Y€ Q,
0(X,Y)=0 if there is an affine transformation 7 of the n
coordinates such that 7(X)=Y. Given that we added a
constant unit coordinate to each point in order to compute
translations, it is equivalent to say that 6(X,Y) =0 if there is a
square (n+1)X(n-+1) matrix 7 such that XT=Y. The
following lemma will be useful.

Lemma 3. If X and Y are both of rank n+ 1 and there is T
such that XT=Y, then T is invertible.
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Proof. If T'is not invertible, then there is a non-zero vector u
such that 7u =0. Then X7'=Y implies that X7Tu= Yu =0, and
thus Yis not of rank n+ 1, which contradicts the hypothesis.

Now, one can define 6(X, Y), for example, as the least
square error function:

6(X.Y) = inf [IXT — YIIP = llxx'’x)"'x" — ny||*.

This ¢ function obviously satisfies the requirements of
Section 2.1, however one can have 6(X,Y)=0 while X#7Y,
and if 6(X,Y)#0, then one has in general 6(X,Y)+# o(Y,X).
Thus 6(X,Y) is certainly not a metric and it cannot by
monotonically transformed into a metric (Courrieu, 2002).
The first additional requirement of Section 7.1 is satisfied
since (£2,0) is in fact a continuum. Now, we must verify that
o satisfies the second additional requirement of (Section 7.1)
that v is finite, which allows for applying Theorem 3, and
thus theoretically justifies the use of §*.

Theorem 4. With Q and 6 defined as above, there is a
positive number < such that, for any X Y,Z€Q,
|6(X,2)—o(Y,Z)| <v-6(X.Y).

Proof. Given that all data points belong to a bounded subset
of R", and that for any X € Q, the matrix X'X is invertible, we
have that for any X,Y€ Q, 6(X,Y) < %, and thus for any X,Y,
ZeQ, |6(X, Z)—6(Y,Z)| < «. This implies that, if 6(X,Y)>
0, then |6(X,Z)— 6(Y,Z)|/6(X,Y) < «. On the other hand, if
0(X,Y)=0, then there is a transformation matrix 7 such that
XT=Y, and after Lemma 3, this matrix is invertible, thus
YT~ '=X. Assume that 6(X,Z)=||XU—Z||?, and 6(Y,Z)=
[lYV—2Z||%. If 6(X,Z2)<d(Y,Z), then 6(Y,Z) is not the least
square solution since ||YT~ 'U—Z||*<6(Y,Z). Similarly, if
0(X,2)> 6(Y,Z), then 6(X,Z) is not the least square solution
since ||XTV—Z||><6(X,Z). Since ¢ is in all cases the least
square error function, we can conclude that if 6(X,Y)=0
then |6(X,Z)—6(Y,Z)| =0, for any ZeQ [O.
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8.3. Computational test

For this test, we used as input patterns sequences of 4
points of [0,1]2, and sequences of 12 points of [0,1]4, while
patterns were encoded as described in Section 8.1. Learning
example patterns were randomly generated, while general-
ization test patterns were generated in the following way.
For each generalization input Z, a learning example X was
selected, a random affine transformation matrix 7 and a
random pattern R were generated, and finally:

Z=(1—mXT +nR, 0<n<l.

Whenever n=0, Z is a random affine transform of a
learning example. Whenever n=1, Z is completely
independent of the learning set. Five n values were used
for the test: 0, 0.25, 0.5, 0.75, and 1. The size m of the
learning set was varied from 15 to 240, and for each (m,n)
combination, 60 generalization patterns were generated. An
artificial objective function invariant to affine transform-
ations of the input was built in the following way

F(X) = 100/(1 + c-6(X,X,)), ¢ = 28/(nL),

where the ¢ function is defined as in Section 8.2, and X, is a
fixed reference pattern that does not belong to the learning
set.

For comparison, we tested three types of interpolators.
The first one, referred to as ‘NN-invar’, is the ¢
approximator with the ¢ function invariant to affine
transformations defined in Section 8.2. The second one,
referred to as ‘NN-metric’, is the ¢ approximator with a ¢
function, say 0’, that is a squared Euclidean metric on R'L,
namely ¢/(X,Y)=|1X—"Y||> In all cases, ¢ approximators
were tested with B=(*, where f* was computed by
Procedure 1. Now, ¢’ can also be used with usual radial basis
function approximators, since it is a squared Euclidean
metric. We chose Radial Splines as the third type of
interpolator. Radial Spline interpolators are of common use,
they have well-known uniform approximation and regular-
ization capabilities on Euclidean spaces (Girosi & Poggio,
1990; Poggio & Girosi, 1990), and they do not require any
free parameter tuning. Given that nL is always even here, we
used Radial Spline basis functions of the form:

SX,Y) =In(r)-r*, with P =6X,Y) =[x —-Y|"

Comparing the generalization performance of NN-invar
to that of NN-metric allows for evaluating the interest of
using non-metric input spaces in this type of problem.
Comparing the generalization performance of NN-metric to
that of Spline interpolators (necessarily on a Euclidean
space) provides an evaluation of general capabilities of ¢
approximators with respect to a well-known reference.

Results of the test are reported in Table 1, for L=4 and
n=2, and in Table 2, for L=12 and n=4. Tables show the
mean absolute generalization error (for 60 test items), and
the corresponding standard deviation in parenthesis, in the
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various (m,n) conditions for the three types of interpolators.
In addition, Student z-tests were performed in order to test
the difference of performance between NN-invar and NN-
metric interpolators, and between NN-metric and Spline
interpolators. The notation ‘n.s’ means that the difference
between the mean just above and the mean just below ‘n.s’
is statistically non-significant. The notation A (or V)
means that the difference between means in marginally
significant (p <0.10). The notation A A (or V V) means
that the difference is significant (p <0.05), according to
usual decision criterions, while the notation A A A (or
V V V) means that the difference is highly significant (p <
0.01).

Although there are some visible differences between the
processing of the smallest patterns (Table 1) and that of the
largest patterns (Table 2), we can make the following
general observations. First, the NN-invar interpolator
always provides zero generalization error for =0, which
simply confirms that this type of network ‘recognizes’
known patterns independently of affine transformations. For
1n>0, the advantage of NN-invar over NN-metric is not
systematic with small learning sets, however, NN-invar

Table 1

Mean absolute generalization error (and standard deviation) of three types
of approximations of a function invariant to affine transformations of input
sequences of 4 points of [0,1]*

L=4,n=2 n=0 n=0.25 n=0.50 n=0.75 n=1

m=15

NN-invar 0 (0) 22 (17) 26 (21) 19 (14) 28 (22)
ANAN n.s n.s n.s n.s

NN-metric 15 (11) 24 (15) 23 (15) 19 (13) 25 (13)
AAN AAN AYAYAS AAN ANAN

Spline 777 (519) 676 (394) 755(359) 712 (371) 880 (750)
m=30
NN-invar 0 (0) 12(14) 1111  12310)  12(12)

ANAN AAN AYAYAS AAN ANAN
NN-metric 18 (13) 22 (11) 22 (13) 19 (13) 20 (14)
AYAYAS AAN AAN ANAN ANAN

Spline 85 (54) 64 (40) 62 (41) 60 (48) 102 (81)

m=60

NN-invar 0 (0) 12 (15) 15 (17) 11 (14) 13 (14)
ANN ANN AN ANN ANAN

NN-metric 18 (13) 24 (13) 20 (13) 21 (12) 21 (13)
n.s U n.s n.s \

Spline 19 (14) 22 (13) 21 (12) 22 (14) 18 (15)

m=120

NN-invar 0 (0) 6.9 (8.8) 7.8(9.0) 7.6(8.7) 8.2 (11)

ANAN ANAN ANN ANAN ANN
NN-metric 18 (15) 20 (14) 20 (15) 17 (13) 15 (12)
AN n.s n.s n.s A
Spline 21 (13) 21 (13) 18 (13) 19 (13) 18 (14)
m=240
NN-invar 0 (0) 5.3(6.3) 5.1(64) 462 3.3 (4.5)
ANAN ANAN ANAN ANAN ANAN
NN-metric 21 (16) 20 (13) 18 (17) 17 (14) 17 (13)
n.s n.s AN \% n.s
Spline 22 (14) 19 (13) 22 (15) 15 (12) 16 (11)

The ¢ approximator ‘NN-invar’ uses a non-metric input space with affine
invariance properties.
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Table 2
Similar to Table 1, with input sequences of 12 points of [0,1]*
L=12,n=4 n=0 n=0.25 n=0.50 n=0.75 n=1
m=15
NN-invar 0 (0) 574.6) 8.1(.2) 84(46) 8447
ANN ANNN n.s VvV n.s
NN-metric 93 (6.1) 85(6.1) 7237 72(5.00 8.04.7)
VAWAYAN VAWAYAN ANAN VAWAYAN VAWAYAN
Spline 51 (45) 38 (32) 31 (22) 29 (22) 40 (28)
m=30
NN-invar 0 (0) 44 (3.7 65(5.6) 175(6.5) 6.0(4.9)
ANNN ANNN n.s n.s n.s
NN-metric 563.7) 6.1(5.0 692 78(75 65(5.8)
ANN ANN AVAWAY ANAN AVAWAY
Spline 48 (41) 38 (25) 33 (23) 29 (27) 34 (24)
m=060
NN-invar 0 (0) 4745) 59054 4942 5647
ANAN ANN AVAWAY ANAN A
NN-metric 72(7.1) 69(72) 7007 6044 6447
ANN ANNA ANN VAWAYAN VAWAYAN
Spline 89 (61) 59 (37) 57 (40) 58 (42) 55 (38)
m=120
NN-invar 0 (0) 53(5.1) 5240 6245 63(5.0)
ANNA AN ANAN VAWAYAN VAWAYAN
NN-metric 6.5(5.6) 69(7.6) 6.1(44) 72058 7152
ANAN ANN AVAWAY AVAWAY AVAWAY
Spline 39 (32) 22 (19) 22 (16) 20 (15) 21 (17)
m=240
NN-invar 0 (0) 474.5) 58(59) 55(3.5) 50@4))
ANN AN AVAWAY ANAN AVAWAY
NN-metric 73(64) 63(52) 68(6.8) 65(4.00 5847
VAWAYAN VAWAYAN ANN A A
Spline 10 (10) 8.0(54) 87(.1) 17340 6.7(5.6)

performs systematically better than NN-metric with large
enough learning sets (m>30 for the smallest patterns,
m 2> 60 for the largest patterns). In fact, if 1 is small enough,
then NN-invar performs better than NN-metric whatever be
m, as one can see in Table 2 for n=0.25. The explanation is
obvious: the invariance of the interpolator to affine
transformations is efficient only if the current input is
quite close to at least one of the learning examples, modulo
an affine transformation. This can be obtained by using a
small 7, or by using a large learning set as well. Spline
interpolators seem to have special difficulties to generalize
from small learning sets for this problem, however, their
learning is convergent as m increases. This appears to result
from the fact that, contrarily to ¢ approximators, Spline
interpolators are not bounded on the extrapolation area, that
is, outside the interpolation polytope of the learning set
(Courrieu, 1994; Pelillo, 1996). So, a great Spline
generalization error can occur whenever a generalization
input falls outside the interpolation polytope, which is more
probable with small (random) learning sets than with large
ones. We note that the ¢ approximator NN-metric performs
at least as well as Spline interpolators, even with the largest
learning sets. Thus, we conclude from this test that the
approximator presented in this paper is suitable for practical
applications, and its particular capability of working on non-
metric spaces makes it of special interest.
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9. Non-metric 6 functions from dynamic programming

Dynamic Programming methods provide another source
of non-metric 6 functions. These methods allow for
comparing numerical sequences or symbol strings of
different lengths, and they have been extensively applied
in speech recognition (Sakoe & Chiba, 1978). Although the
resulting ¢ functions can have some properties of distances
under reasonably restrictive conditions, most of these
functions are not metrics, since they usually break the
triangle inequality (Okochi & Sakai, 1982). Whenever the
triangle inequality is the only distance property that is
broken, one can monotonically embed the data set into a
Euclidean space (Courrieu, 2002), and then apply a usual
neural algorithm on the embedding space. However, it can
be more convenient to directly use a ¢ approximator on the
original data space, which avoids prior input data embed-
ding, or possibly undesirable restrictions concerning ¢, and
does not require prior knowledge of all properties of o,
except those listed in Section 2.1.

As an example, we briefly consider hereafter the well-
known algorithm of Sakoe and Chiba (1978). Let Q be a set
of sequences of points of R¥, and let d be some metric
associated to R, Let X=(X1,X2,...X), and Y=(y1,Y2,-.. V)
be two sequences, of length m>1 and n> 1, respectively,
belonging to Q. The algorithm statement is:

D(1,1)=2d(x,,y);
for j=2...n D(1,j))=D(1,j—1)+d(x,y;);
for i=2...m D(i,1)=D@{—1,1)+d(x;,y1);
Jori=2...m
for j=2...n D(ij)=min[D(@j—1)+d(x;y;),
DG~ 1j—1)+2d(xi,yy), Dli— 1) +d(xiy))l;
0(X,Y)=D(m,n)/(m+ n).

The above ¢ function is insensitive to repetition (e.g.
0((1,1,1,2,3,3),(1,2,2,3))=0), which makes it suitable for
comparing sequences of regularly sampled acoustical
parameters in speech recognition, given that speech speed
is naturally variable. As an example of triangle inequality
breaking, consider X=(1,2,3), Y=(4,5,6), Z=(2,5). Then
one obtains 6(X, Y)=2.333..., 6(X,2)=1, 6(Z,Y)=1, thus
0(X,Y)>d6(X,Z)+06(Z,Y). The above algorithm can as well
be used to compare symbol strings provided that one can
define some natural distance d between the elements of the
used alphabet (Courrieu, Farioli, & Grainger, in press). Its
behavior is quite different from that of well-known ‘edition
distances’ for character strings (Lowrance & Wagner, 1975;
Wagner & Fischer, 1974).

10. Conclusion

We have defined a function approximation scheme that
can be expressed as a layered feed-forward neural network,
and that is able to uniformly approximate functions on a wide
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variety of non-metric spaces as well as on any metric space,
while usual approximators are guaranteed to work only on
real Euclidean spaces. Non-Euclidean metric or non-metric
data spaces are commonly encountered in practical appli-
cations. For example, time series can be compared using
Dynamic Programming methods (elastic matching), but the
resulting space is not metric, in general. The same is true for
spaces of symbol strings, or for spaces of graphs. Another
example is that of spaces of real patterns invariant to some
class of transformations, while the particular case of affine
invariance has been detailed and illustrated above. Hence,
the proposed tool clearly responds to practical needs that
have been poorly investigated previously. Theoretical
foundations are provided concerning the uniform approxi-
mation capability of the approximator, the solution of
interpolation and least square approximation problems, and
an approach of regularization suitable to the considered data
spaces. All required practical algorithms are simple, and
computational examples are provided that clearly show the
suitability of the tool. As a final remark, we note that ¢
approximators have conventional architectures, and that
their specificity simply resides in their special basis
functions, although these basis functions themselves do not
have an extremely ‘exotic’ form, except that they accept very
weakly constrained 6 functions as arguments, where Radial
Basis Functions, for example, require Euclidean metrics.
This leads us to suspect that other approximators with similar
capabilities could exist, however, their theoretical investi-
gation remains to do. This is of interest because the result is,
in fact, a significant extension of the concept of ‘universal
approximation capability’.

Appendix. Interval calculation

Interval calculation has been developed by Moore (1966)
and Ratschek and Rokra (1984). Interval arithmetic is also
reported in Zhigljavsky (1991). We list hereafter some
useful rules (I1-112) whose consistency is easy to verify.
We consider here closed real intervals of the form Z;=
[ai,bi], with aigb,‘.

I11. For x€R, x=[x,x]=][1,1] x.
Interval arithmetic

12. Zl + Zz == [al + aj, b1 + bz]

13. Zl _ZZZ [a1 _szbl _612]

14. Zl 'ZZ= [min(alaz,albz,blaz,blbz),

max(a;ay,a;by,bya,,b1b,)]
I5. ZI/ZZZZI[l/bz,l/az], lf0$22

Interval functions

I6. If h is a monotonic increasing function, then h(Z)=

[7(a),h(D)].

I7. If h is a monotonic decreasing function, then h(Z)=

[h(b),h(a)].
I8. The absolute value function of an interval is given by:

[0, max(|al, |5])] if ab<0

|[a,b]| = . o
[min(lal, |b]), max(lal, |b])] otherwise

Intervals and numbers

19. |[a,b]-x| = |[a, b]|- |x]|

110. [ai,b11-x _ lay,b1] A a, b

[ay, by]-x, B laz,by] x;

>0, and a,,by,x,>0

I11. [a,b]'x—[1,1]'x=[a—1,b—1]-x
112. Y% [a,blx;=[a,b]- > % x;, if 5,20, I<i<m
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I1I.LE Méthodes de calcul des parametres de modéles

La modélisation numérique fait appel a des techniques de calcul sophistiquées, soit
pour calculer les paramétres internes des modeles, soit pour déterminer leur domaine
d'utilisation. C'est 1a, on s'en doute, un terrain de jeu de choix pour les mathématiques
appliquées. La validation expérimentale des modéles fait, pour sa part, appel a des techniques

statistiques spécialisées qui seront évoquées dans la section II.F.
Polytopes convexes et extériorité d'un point

J'ai eu 'occasion de montrer que les réseaux de neurones généralisent efficacement en
des points d'interpolation, c'est-a-dire, des points situés a l'intérieur du polytope enveloppe
convexe de I'ensemble des exemples d'apprentissage dans l'espace d'entrée. Par ailleurs, les
performances de généralisation se dégradent lorsque le point de généralisation est extérieur a
ce polytope (extrapolation), et ce d'autant plus que le point de généralisation est plus éloigné
du point intérieur au polytope le plus proche. Ceci m'a conduit & définir "l'extériorité" d'un
point de généralisation comme la distance euclidienne de ce point a son plus proche voisin
intérieur au polytope d'interpolation. J'ai proposé¢ un algorithme efficace pour calculer le
polytope d'interpolation et l'extériorité de tout point de généralisation a ce polytope (Courrieu,
1994a). Cette technique s'applique aussi a d'autres problémes, et elle peut notamment
permettre de calculer la probabilité optimale, en regard des données, de chaque systeme dans
les modeles multi-systémes (Ashby, Alfonso-Reese, Turken, & Waldron, 1998).

Formellement, le probléeme se présente ainsi. Etant donné un ensemble
D={X,,X,....X, } de m points X, ER", 1<i<m, et un point ¥ € R" quelconque, trouver
un vecteur réel P(Y,D) = (p,,p,,---,P,,), tel que:

p;z0,1<si<sm,

m

1pi =1,

i=

et tel que l'extériorité du point ¥ au nuage D, définie par

Y- 22117’)("

9

E(Y,D) =min,

soit minimale.
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La solution trés simple que j'ai proposée (Courrieu, 1994a, Algorithme 1) consiste a
remplacer le probléme avec contraintes ci-dessus par le probléme sans contraintes suivant.

Trouver un vecteur réel W (Y,D) = (w,,w,,...,w, ) tel que:

‘Y—EZIWfX,./E;wi

soit minimal. Ce probléme peut étre résolu par une simple minimisation locale (ex. descente

2
2 .
E“(Y,D) = miny, ,

de gradient partant d'un W initial sans composante nulle), et 'on obtient ensuite aisément:

2 mn 2 .
pi=w:/ 'le,lszsm.
=

Cette solution est une alternative pratique a des approches plus complexes que 1'on trouve en
Programmation Mathematique (Clarkson, 2008; Pelillo, 1996). 1l existe également une
variante technique assez facile a calculer de l'extériorité, appelée "distance de polytope"
(Gértner, & Jaggi, 2009), mais cette approche ne fournit pas les poids ( p;). A noter que les
sommets du polytope enveloppe convexe du nuage D sont les points de D dont l'extériorité
au nuage des autres points est non nulle, ce qui fournit une méthode pratique pour déterminer
le polytope enveloppe convexe.

A titre d'exemple, supposons que Y est un vecteur d'observations (moyennes ou
fréquences), et que D est un ensemble de vecteurs de prédictions générés par m systémes
distincts, supposés indépendants. Alors on peut calculer P(Y,D) qui est, dans ce cas, un
vecteur de probabilités associées aux différents systémes, au sein d'un modele multi-systémes,

de fagon a minimiser l'erreur de prédiction globale évaluée par l'extériorité E(Y,D).
Optimisation globale

Dans la modélisation numérique, il est courant que 1'on doive déterminer les valeurs de
parametres d'un modele de facon a minimiser (ou parfois maximiser) une certaine fonction,
par exemple une fonction d'erreur des prédictions du modele relativement a des données,
fonction éventuellement compliquée par un certain nombre des contraintes de domaine et/ou
de régularisation. Quand on est trés astucieux, on arrive parfois a construire le modele et la
fonction a optimiser de telle maniére que ladite fonction ne posséde qu'un seul optimum
global, et aucun extremum "local". Les extrema locaux correspondent a des points de 1'espace
des paramétres pour lesquels la fonction prend une valeur localement optimale, relativement
au voisinage proche de ces points, mais la valeur obtenue n'est pas globalement optimale pour

I'ensemble du domaine de recherche des paramétres. Les extrema locaux sont des piéges pour
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les méthodes de recherche "locales" des valeurs de paramétres (ex. descente de gradient),
méthodes qui sont par ailleurs assez simples et efficaces lorsqu'il n'y a pas d'extrema locaux.
Malheureusement, l'astuce du modélisateur a ses limites, et il est des problémes ou 1'on ne sait
pas éviter la présence d'extrema locaux. C'est par exemple le cas lorsqu'on calcule les poids
synaptiques des unités cachées dans un réseau de neurones multicouche ou de type "Cascade-
Correlation". On est alors obligé de recourir a des techniques d'optimisation globale capables
d'échapper aux pi¢ges des extrema locaux pour converger vers un optimum global. Il n'existe
aucune méthode générale permettant d'obtenir a coup slr le bon résultat en un temps fini,
mais il existe des méthodes permettant d'approcher ce résultat, et dont on peut garantir la
convergence "a la limite" grace, notamment, a un théoréme di a Solis et Wets (1981). J'ai
propos¢ un premier algorithme d'optimisation globale, appelé¢ "Recherche Distribuée", qui
¢tait assez performant mais vorace en espace mémoire, ce qui le rendait peu pratique pour des
problémes comportant un grand nombre de variables comme le calcul des réseaux de
neurones (Courrieu, 1993b). J'ai par la suite développé un algorithme beaucoup plus économe
et non moins efficace, dénommé "Hypercloche", que j'utilise aujourd'hui encore, notamment
pour calculer les unités cachées des réseaux dans les procédures d'apprentissage de type

"Cascade-Correlation" (Courrieu, 1997, article ci-joint).

Meéthodes de moindres carrés

Les techniques de moindres carrés sont d'un usage trés courant lorsqu'on désire
minimiser une fonction d'erreur quadratique. Les récentes sophistications de ces techniques
("iteratively weighted least squares'") sont également utilisées au sein de méthodes de calcul
de "statistiques robustes" dépassant le cadre des méthodes de moindres carrés proprement
dites (Maronna, Martin, & Yohai, 2006). En ce qui concerne la modélisation
neurocomputationnelle, les techniques de moindres carrés sont habituellement utilisées pour
calculer les poids synaptiques des neurones de sortie des réseaux feedforward.

Dans le cadre d'applications en reconnaissance de formes, diverses variantes des
techniques de moindres carrés sont utiles pour calculer des mesures de similitude entre
formes. Je me suis donc assuré, dans un premier temps, qu'il serait théoriquement possible,
pour des réseaux de neurones biologiques (récurrents dans ce cas), de résoudre des systemes
moindres carrés conséquents dans des temps compatibles avec les performances perceptives

connues, disons en moins de 250 millisecondes (Courrieu, 2004). Il ne serait donc pas a priori
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complétement extravagant de modéliser des processus de reconnaissance visuelle de formes a
l'aide de systémes moindres carrés.

La résolution d'un systéme moindres carrés est une opération assez simple lorsque la
matrice du systéme est "de plein rang", mais il n'est pas rare en pratique de rencontrer des
systémes "de rang déficient", surtout lorsqu'il s'agit de systémes pondérés. Dans tous les cas,
la solution consiste a calculer une matrice "inverse généralisée", également appelée "pseudo-
inverse", la plus connue de ces inverses généralisées étant l'inverse de Moore-Penrose (Ben-
Israel & Greville, 2003). J'ai proposé un algorithme qui est a ce jour, et a ma connaissance,
l'algorithme numérique le plus rapide pour calculer l'inverse de Moore-Penrose (Courrieu,
2005b). Je ne joins pas cet article au dossier car I'algorithme est également décrit dans l'article
dont il sera question au paragraphe suivant.

L'inverse de Moore-Penrose posseéde des propriétés tout a fait remarquables, mais elle
n'est pas la seule inverse généralisée qui permette de résoudre des systémes moindres carrés.
D'autres inverses généralisées, désignées comme "{I, 3}-inverses", font tout aussi bien
l'affaire. J'ai pu définir un algorithme de calcul de l'une ces inverses, qui est a la fois plus
rapide et numériquement plus stable que le calcul de l'inverse de Moore-Penrose (Courrieu,
2009, article ci-joint). J'ai utilisé cet outil pour développer une méthode de résolution de
"systémes moindres carrés a appariement pondéré". Ce sont des systémes que 1'on rencontre,
par exemple, lorsqu'on veut mesurer la similitude de deux ensembles de points (tels que deux
codes de densité représentant des formes), en utilisant une méthode de régression, mais qu'on
ne connait pas précisément les correspondances entre les points des deux ensembles. On
associe alors a chaque paire de points possible une certaine mesure de vraisemblance (poids),
ce qui donne un systéme moindres carrés pondéré dont la matrice de poids est pleine et
rectangulaire (au lieu d'étre diagonale comme dans les systémes pondérés classiques). Il n'y a

alors plus qu'a résoudre le systéme pour obtenir la mesure désirée.
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Abstract. This article presents a new agorithm, caled the “Hyperbell Algorithm”, that searches
for the global extrema of numerical functions of numerical variables. The agorithm relies on the
principle of a monotone improving random wak whose steps are generated around the current
position according to agradually scaled down Cauchy distribution. The convergence of the algorithm
is proven and its rate of convergence is discussed. Its performance is tested on some “hard” test
functions and compared to that of other recent algorithms and possible variants. An experimental
study of complexity isaso provided, and simple tuning procedures for applications are proposed.

Key words: global optimization, random search, Cauchy distributions.

1. Introduction

Optimization problems vary in difficulty, depending on the properties of the func-
tion to be optimized. Uniextremal functions are generally the easiest to optimize
because “local search” procedures can be used. These procedures, such as usual
gradient based methods among others, are efficient and guarantee finding the solu-
tion. But many functions encountered in practice have multiple extrema, making
it necessary to use “global search” methods, which can generally only guarantee
finding the solution with a given degree of probability. Extensive efforts have
been made within the past few years to solve hard optimization problems (see
Horst & Pardalos, 1995). Certain recent methods are deterministic (Baritompa,
1993; Breiman & Cutler, 1993; Wood, 1992), but they will not be considered
here. Most of the known approachesin global optimization are based on stochas-
tic processes (see Zhigljavsky, 1991). Certain algorithms rely on the principle of
a random walk converging to an extremum of the objective function (Dekker &
Aarts, 1991; Romeijn & Smith, 1994; Solis & Wets, 1981; Zabinsky et al., 1993).
In other methods, global distributions of probabilities represented by samples of
points (“ populations™) belonging to the search domain are made to converge (Cour-
rieu, 1993; Goldberg, 1989; Holland, 1975). In still other methods, convergence
is achieved by the global distribution control of a set of local searches (Boen-
der, 1982; Rinnooy Kan & Timmer, 1987a, 1987b). Branch-and-Bound methods
(Pintér, 1988; Zhigljavsky, 1991) construct a partition of the search domain and
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sequentialy reject those subsets which have the lowest probability of containing a
global optimum. Other approachesexist, although many of them appear to be more
interesting from atheoretical than practical point of view.

Presented below is a new stochastic global optimization algorithm, which will
be called the “Hyperbell Algorithm”. This algorithm relies on the principle of a
monotone improving random walk whose steps are generated around the current
position according to an n-dimensional Cauchy distribution which is gradually
scaled down. The name “Hyperbell” refers to the shape of the probability density
function. The algorithm is applicable to the search for the global extrema of a
numerical function f defined on a bounded domain €2 of R”. It is of interest
to situate this approach within the theoretical framework proposed by Solis and
Wets (1981) becausethe Hyperbell Algorithm is compatible with their “conceptual
algorithm”. The choice of Cauchy distributions is motivated by the search for a
good compromise between the speed and the guarantee of convergence. As pointed
out by Solisand Wets, guaranteeing convergence requiresthat the sampling strategy
must not indefinitely ignore any subset (which has a positive L ebesgue mesure) of
the searchdomain . Using auniform distribution on the whol e search domain would
satisfy this requirement, but unfortunately this leads to very slow convergence. In
order to improve the speed of convergence, a common strategy is to gradually
concentrate the search on the most “promising” regions. This is the strategy of
Branch-and-Bound methods, for example, but the definitive rejection of certain
subsets of the search domain does not enable one to guarantee convergence in
all cases. Hence, we must concentrate the search on certain subsets while not
completely ignoring any subset of the search domain. This can be done by using a
bell- shaped probability density of sampling centered on the current positionin the
search domain, and whose scale can be controlled. Certain common bell-shaped
densities, like Gauss or logistic densities, decrease exponentially as the distance
from their center increases (in scale units). Hence, the density rapidly tends to
zero after a certain distance, resulting in a distribution whose support is “quasi-
bounded” , and whose behavior for finite samplingsisvery similar to that of bounded
support distributions. This resultsin arelatively high probability for the search to
be trapped in local extrema basins of many functions, and there is poor guarantee
of convergence in practice. Cauchy densities are more appropriate because the
density decreases very slowly as the distance from the center of the distribution
increases. Hence the probability of sampling is truly non-zero for any subset of
the search domain which has a non-zero Lebesgue mesure. The position and the
quartile deviations of Cauchy densities are easy to control in order to concentrate
the search on appropriate regions. Note that the use of Cauchy distributions was
previously shown to be more effective than the use of exponentia distributions
in the framework of Simulated Annealing algorithms (see Ingber, 1989; Ingber &
Rosen, 1992). However, the Hyperbell algorithm is monotonically improving and
does not use any concept equivalent to the “temperature” of Simulated Annealing.
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2. Hyperbell Algorithm

The algorithm is presented in Pseudo-Pascal. The term “random”, followed by an
interval, denotes a random value taken from a uniform distribution of probabilities
on the specifiedinterval. The algorithm shown here concernsthe search for minima
of a function defined on a bounded feasible region ©2 of R" (remember that the
search for maxima of afunction f is equivalent to the search for minima of — f).
In order to initialize the Cauchy distribution scales (s, s2, . .., 8,), it is useful to
determine the upper and lower boundary of each variable such that a; < z; < b;
and 2 isincluded in the hyperrectangle [T;" 1 [a;, b;].

{Parameters:
a € [0.8,1) : scalereduction parameter;
e>0 - arbitrarily small constant;
DLS : variant selector}
{Scaleinitialization (indicative example)}
for i :=1tondos; = bi —ai ;
o " 2tg(w(0.5)Y/n /2)’
{Starting point}
repeat
for i := 1ton do x; := random [a;, b;];
until (X € Q);
{Search}
repeat
repeat
for i := 1ton doy; := s; tangent(w random(—1/2,1/2)) + z; ;
until (Y € Q);

if DLSthenY :=Y —rVf(Y); {compute r using a bisection method}
if f(Y)< f(X)then X =Y elsefori:=1tondos;:=a(s; —¢)+e;
until (stopping rule);

The Parameters

The parameter « is the reduction coefficient of Cauchy’s distribution scale, when
this scale is reduced. Increasing « lowers the speed of convergence and the prob-
ability of being trapped in local minima of complex functions. Note that function
complexity should not be assessed solely on the basis of the number of local
extrema. We shall see in the experimental section below that there are functions
with aninfinite number of local minimawhich are easy to optimize with the Hyper-
bell Algorithm. The parameter ¢ has little effect in practice, but it guarantees that
the s; scales will not drop to zero and thereby prevents the process from freezing
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indefinitely. e is arbitrarily small and it is generally chosen to be smaller than the
desired precision for theresult in €2 .

About Scale Initialization

The example of scale initialization given in the algorithm statement corresponds
to a probability of 1/2 of generating anew point inside the critical hyperrectangle
if the starting point is the center of this hyperrectangle. This choice may seem
somewhat arbitrary, however it was empirically found to be usually appropriate.
Note that ¢ must be chosen to be smaller than theinitial scales.

Generation of Points

The coordinates of the sampled points are generated independently by means of
the generating function: y; = s;tg(mwu;) + z;, with u; taken at random from a
uniform distribution on (—1/2,1/2). The random variable defined as such obeys
an n-dimensional Cauchy law with the density:

o1 1
(Y ; X,S) = H p

i1 T8 <yi_$i)2‘
S

Thepoint X isthe center of the distribution (the z;’s are the modes and medians of
the marginal distributions), and corresponds to the current position of the random
walk in the search domain. The scale parameters s; are the quartile deviations.
Cauchy’s law has no moments, and in particular its variance is infinite, which is
a reflection of the fact that the density decreases slowly and is never negligible.
Giventhat pointsgenerated outside Q) arerejected, thedensity isin fact aconditional
distribution, denoted h, given by:

gn(Y; X, S)
ha(Y; X, S) o7 X572 m(Y:X,8), fory eQ,

ho(Y;X,S) =0, forY ¢Q.

DLS Variant

Certain functions to be optimized have special properties, making the use of par-
ticular local transformations of the generated pointsinteresting. One of thesetrans-
formations, whichwewill refer to asthe” Directional Local Search” (DLS) variant,
consists simply of one standard local search step: YV :=Y — »V f(Y'), where the
step length r is positive, and is determined using a standard bisection method (see
Zhigljavsky, 1991, pp. 21-22) with the constraint that Y € €2 . The gradient cal-
culation supposes that the function is C* continuous and is easily derivable, but
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an approximation can also be used by replacing the partial derivatives with the
corresponding finite increase ratios.

Sopping Rules

Various stopping rules can be used, depending on the requirements for the appli-
cation. One can simply limit the number of function calls (consumption criterion),
or wait until the generation scales are close to ¢ (precision criterion on £2).

Convergence

THEOREM 1. Let f be a function defined on a bounded subset Q2 of R”. Let
X; € Q be the point generated by the Hyperbell Algorithm at time ¢ of the
search for a minimum of f on Q. If f is continuous at a global minimum then:
Vo > 0,limg_ o0 Prob{3t < k;|f(X:) — minxeq f(X)| < 0} = 1. (Replace
“min” with “max” for a maximum search).
Proof.
(D)- Vi < n;si(t+1) > a(si(t) —e) + e = Vi < n; Vit si(t) > e > 0.
(2)- If QisboundedthenVX,Y € Q;||Y — X|| < 0o .
(3)- (D) and (2) = IN > O;VE; VX, Y € Q; h, (Y X, S(8)) > X
(4)- Set Qs ={Y € X [f(Y) —minzeq f(Z)] < 6},
let 1 be the Lebesgue measure on the subsets of R™, if f is continuous at a
global minimum thenVé > 0; 1(€25) > O.
(5)- () and (4) = [q, hn(Y; X, 5)dY > Au(Qs) > 0.
(6)- (5) = V6 > 0,Prob{3t < k;|f(X;) — Minxeq f(X)| < 6} > 1— (1~
Mi(Q25)F.
(7)- Finally limj, o0 1 — (1 — A\x(Q5))* = 1, which completes the proof. O

The situation is very similar using the DLS variant of the algorithm, since this
variant is only an additional process which localy favours sampling the best
points.

One can aso use the globa search convergence theorem of Solis and Wets
(1981) since the Hyperbell Algorithm is clearly a case of their “conceptua ago-
rithm” and it satisfies their conditions H1 and H2. The condition A1 is trivially
satisfied by the acceptance rule of steps. Proving H2 is quite similar to the above
proof, where one replaces Q5 by any subset of Q2 with non-zero L ebesgue mesure.

Concerning the rate of convergence with Cauchy distributions, one can use
equation 11 from Ingber (1989), or Ingber and Rosen (1992), and conclude that
it is a sufficient condition, for obtaining stochastic convergence in any problem,
that the scales decrease no faster than s(0)/t%/". However, this limit rate does
not take into account properties of the problem other than the dimension (n), and
faster convergence can almost always be obtained in practice. Thisusually requires
the use of “free parameters’, like « for the Hyperbell algorithm whose stochastic
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convergence was stated above. Let  tend to O, then the ith scale at time ¢ is
approximately equal to s;(0)a!~*®), where w(t) isthe number of improving steps
at time t. Clearly, the convergence rate has an exponential form, but it depends
on the frequency of winning trials. The scales at a given stage of the process tend
to stabilize as long as they are productive of improving steps, and they rapidly
decrease when the frequency of winning trials decreases. The choice of o depends
on the properties of the problem to be solved. Unfortunately, the author does not
know any theory which would enable this choice to be generally optimized. To
date, the most usual method consists of empirically determining an «-function
appropriate to the class of problems to be solved in a given application. This is
not generally difficult, but the cost of the tuning procedure has to be added to the
implementation cost.

3. Experimental Study of Performance
Box-Constrained Test Functions

Presented below is an experimental study of the performance of the Hyperbell
Algorithm on some hard minimization problems. Most test functions used in the
current literature have only a small number of local extrema, which severely
limits the scope of the tests (see, however, Floudas & Pardalos, 1990). We were
nevertheless able to find two families of standard hard functions for the test:
Csendesfunctions(Csendes, 1985; seealso Zhigljavsky, 1991, p. 16) and Griewank
functions (Griewank, 1981; seealso Rinnooy Kan & Timmer, 1987Db, p. 76). A third
family of hard functions, previously used by Courrieu (1993), was also selected.
This family will be called the W functions. The three families of functions were
used with 2 and 10 variables in the comparative study. They were used with 10
variables in the study of densities. Only the W family was used in the complexity
study.

Csendes test functions

Cn(X)—;:L"i (2-|-Sln$i), 1<z <L

Contrary to what might appear, this function is defined at X = 0, precisely
where it has its unique global minimum (0). The function possesses a countable
infinity of local minima on the search domain, and the oscillation frequency tends
towards infinity on the neighborhood of the global solution. This property makesit
practically impossible to minimize by applying local searches. However, Csendes
functions have the following feature: they oscillate between two convex “hulls’
which approach each other on the neighborhood of the solution.
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Note: what we refer to as a “hull” of afunction is a hypersurface which joins
all the extrema of the same type (maxima or minima) of the function, and which
itself has the minimum number of extrema.

W functions

1 n
Wn, k(X) = - Y 1—cos(kz;) exp(—27/2), —m <z <
=1

W functions have their unique global minimum (0) at X = 0. The number of
local minima on the search domain is k™ (for £ odd) or (k + 1)" (for k even).
Only k = 10 was used in the comparative study, which gave 121 local minima
for n = 2, and more than 2.59 x 10% local minima for n = 10. The function
oscillates between two hulls of constant mean (= 1) whose distance from each
other is maximal on the neighborhood of the solution.

Griewank test functions

Gn(X) =1+ Zn:xlz/d— ﬁcos(xi/\/z),
i=1

=1

Forn =2:d = 200,-100 < z; < 100. For n = 10 : d = 4000, —600 < z; <
600. These functions have their unique global minimum (0) at X = 0, and havea
large number of local minima. They havemany “trap” basinson alarge areaaround
the solution. However, in the neighborhood of certain points, Griewank functions
have some special directional local properties. To get an idea of these properties,
assign one of the variablesavalue like z; = (2k + 1)7v/i/2,k € Z. Inthis case,
the partial derivativesfor al other variables point to the solution, which is a stable
attractor for the variables that reach its neighborhood.

Compar ative Study for Box-Constrained Problems
Reference algorithms

Because the experimental results for problems like these are rare in the literature,
three reference algorithms were used.

Smulated Annealing: We chosethe Dekker and Aarts(1991) algorithm, whichis
arecent version of the Simulated Annealing algorithm adapted to numerical spaces.
Itislike a sequential Multistart algorithm in that it uses multiple directional local
search steps, whose global distribution is governed by a simulated annealing rule.
Thealgorithm wasimplemented in compliancewith theindications provided by the
authors, except that the stopping rule was simplified in an experimentally adapted
way. Thisrule wasreplaced by a“temperature” thresholding, involving acomplete
local search starting from the best point found whenever the temperature fell below
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108, For the test functions used, this order of magnitude for the temperature was
indeed found to correspond to a “freezing” point in the process, after which no
progresswas observed. We used the tuning val ues proposed by the authors (namely:
xo = 0.9, Lo = 10,¢ = 0.75), with mo = 100, except for the speed parameter
that usually had to be reduced since ad of 0.1 proved to be unsuitable to problems
this difficult. To determine §, a trial and error procedure was used to obtain 10
successiverunswith no error in the result for each problem. This search succeeded
for three out of six problems (W2, G2, G10), but it was impossible to obtain an
exact result for the remaining problems, even once. The value used for §, then, was
simply the minimum value found in those problems which were solved (0.005).

Improving Hit-and-Run: we chose the algorithm proposed by Zabinsky et al.
(1993) (seealso Romeijn & Smith, 1994). It isaconverging random walk a gorithm
which generates an asymptotically uniform distribution on the feasible region, and
it was implemented as it is described by the authors (with H = I). No tuning
is necessary for the Improving Hit-and-Run algorithm, and the stopping rule was
fixed at 500000 evaluations of the function.

Distributed Search: this algorithm proposed by Courrieu (1993) was chosen
because it uses Cauchy distributions like the Hyperbell Algorithm, but it is not a
random walk. The Distributed Search usesapopulation of M pointsinthefeasible
region, each of them being the center of a Cauchy distribution. The convergenceis
obtained by estimating the most appropriate positions and scales of the M distri-
butions at successive stages of the search. The speed of convergenceis controlled
by a parameter («), and the algorithm has a DLS variant which is quite similar
to that of the Hyperbell Algorithm. To determine M, « and the eventual necessity
of applying the DLS variant, a trial and error procedure was used to obtain 10
successive runs with no error in the result for each problem.

Tuning the Hyperbell Algorithm

TheHyperbell Algorithm parameter o was also estimated by trial and error until we
obtained 10 successive runs with no error in the result of any of the problems. This
criterion obviously did not imply that the probability of error was equal to zero,
which a priori isimpossible in finite time. The results were considered exact (for
all algorithms) when the process found a function minimum equal to 0, within the
precision range of the compiler (TURBO-PASCAL 5.0 on a COMPAQ Deskpro
486 computer). The parameter ¢ was set at 1072°. The DLS variant was applied
only if the tuning procedure failed without it (this occured only for the function
G10).

Results

Theresultsare presentedin Tablel. For each algorithm and each problem, thetable
gives the values of the tuning parameters and the mean number of function calls
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Table . Tuning, and mean performance (with standard deviation) on 10 successive runs for the
four algorithms and six test functions.

TESTED ALGORITHMS
Dekker & Zabinsky Courrieu Hyperbell
Aarts (1991) et al. (1993) (1993) Algorithm
C2 tuning 4 =0.005 - M=100,a =1.00 « =0.93
f calls 46549 (13149) 287292 (100493) 7028 (949) 663 (21)
f error  3.38E-15 (1.01E-14) 5.49E-30 (1.11E-29) No error No error

X error 2.42E-03 (1.65E-03) 8.14E-06 (5.60E-06)

C10 tuning ¢ =0.005 - M=200,a =1.00 « =0.993
f calls 430301 (41406) 465682 (31070) 89453 (2304) 6621 (88)
f error  1.30E-10 (1.18E-10) 2.03E-23 (1.79E-23) No error No error

X error 3.76E-02 (4.76E-03) 2.47E-04 (5.21E-05)

W2 tuning ¢ =0.005 - M=100,a =0.75 « =0.99
f calls 29485 (11534) 363364 (108840) 4161 (371) 2313 (41)
f error No error 2.71E-08 (3.09E-08) No error No error
X error 2.75E-05 (1.88E-05)
W10 tuning ¢ = 0.005 - M=250,a =0.75 « =0.99978
f calls 221752 (29660) 496511 (4753) 119799 (2617) 105723 (899)
f error  0.210 (0.028) 0.372 (0.058) No error No error
X error 2.927 (0.494) 4.187 (0.936)
G2 tuning 4 =0.005 - M=150,ac =0.80 « =0.995
f calls 52793 (4741) 402978 (98100) 5712 (393) 4687 (93)
f error No error 6.38E-07 (6.92E-07) No error No error
with DLS
X error 1.21E-03 (6.27E-04)
G10 tuning §=0.01 - M=300,a =0.60 « =0.995, DLS
f calls 251870 (10208) 471011 (31388) 205584 (4084) 106799 (10583)
f error No error 0.161 (0.106) No error No error
with DLS
X error 23.98 (8.12)

for the 10 runs (f calls). Each gradient calculation was counted as a calculation
of the function. This is particularly justified in the case of separable functions
where the calculation cost of the gradient is very close to the calculation cost of
the function. Also given are the mean error on the function value (f error) and the
mean Euclidean distance between the best point found and the global minimizer (X
error). Standard deviations (with 9 degrees of freedom) are shown in parentheses
to the right of the corresponding means.
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Tablell. Performance of the random walk using Gauss and
logistic densities for three test functions (ten successive

runs).
f Gauss density Logistic density
C10 tuning «=0.989 a =099
fcals 4305 (66) 4705 (58)
No error No error
W10 tuning o« =0.9999 a =0.9999

fcals 250781 (10306) 247011 (11470)
ferror  0.293(0.082)  0.268 (0.063)
Xeror 3492 (0.951)  3.397 (0.773)

G10 tuning «=099,DLS =099, DLS
fcals 59004 (1667) 58922 (2187)
No error No error

The results are quite clear. The Hyperbell Algorithm solved all the problems
with the smallest number of function evaluations. The most difficult function for
the algorithm was G10 whose optimization clearly required the DL Svariant. With-
out the DL Svariant, the process frequently became trapped by local minima. Note
that the minimization of Griewank functionsis relatively easy for the Dekker and
Aarts (1991) algorithm; thisislogical givenits strong directional local component.
However, note also that Rinnooy Kan and Timmer (1987b) reported some disap-
pointing results concerning the minimization of the same Griewank functions by
a“Multi Level Single Linkage™ algorithm. The Zabinsky et al. (1993) algorithm
found good approximationsof the minimum for functions C2, C10, W2 and G2, but
the convergencewas slow. The Distributed Search method found the exact solution
for al the problems, but as one can seein Table |, that algorithm converges much
dower than the Hyperbell Algorithm.

Sudy of Densities. Using Other Bells

The functions C10, W10 (with £ = 10) and G10 were used for testing the perfor-
mance of the random walk when one replaces the Cauchy density with gradually
scaled down Gauss and logistic densities. Approximations of Gaussian variables
were generated using a sum of 12 independent uniform random variables. Each of
the 10 standard deviations was initialized at s;(0) = (b; — a;)/3.664, given that
Prob{|z| < 3.664/2} = 0.51/10, L ogistic random variables were generated using
theformulay; = —s; Ln(1/u; — 1) + z;, with u; taken at random from a uniform
distribution on (0,1), and s;(0) = (b; — a;)/2(—Ln(2/(1+ 0.5%") — 1)), n = 10.
The tuning procedure was similar to that employed for the Hyperbell Algorithm
with Cauchy densities. Means and standard deviations of performance on ten suc-
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Table I11. Tuning of the Hyperbell Algorithm and mean number of function calls (with
standard deviation) as a function of the number of variables (ten successive runs without

error).
Number of  Tuning (a) Function Number of  Tuning () Function
variables cals variables cals
3 0.9500 504 (18) 18 0.9949 5045 (205)
6 0.9810 1339 (66) 21 0.9958 6002 (146)
9 0.9870 1982 (73) 24 0.9965 7247 (262)
12 0.9910 2875 (113) 27 0.9971 8786 (350)
15 0.9938 4127 (133) 30 0.9973 9529 (376)

cessiveruns are presented in Table I1. As one can see, Gauss and logistic densities
provided good performance on function C10, and also on function G10 with the
DLS variant. However, it was impossible to solve the W10 problem, even once,
using Gauss or logistic densities. Clearly, the use of exponential densities does
not lead to algorithms as robust as the Hyperbell Algorithm with Cauchy densities.
Thebehaviour of exponential densitieslookslikethe behaviour of bounded support
densities, they provide fast but uncertain convergence. |n contrast, approximations
of uniform densities (e.g. Improving Hit-and-Run) provide slow, truly guaranteed
convergence. The use of Cauchy densities allows for a good compromise between
speed and accuracy requirements.

Complexity Study

The behaviour of the Hyperbell Algorithm was studied varying two usual factors
of complexity: the number of variables and the number of minima. The W' test
function family was used since these complexity factors are easy to control for
these functions.

Effect of the number of variables: For this study, the W test function was used
with £ = 0 and a number of variables varying from 3 to 30 (step 3). Thisis a
set of ten uniminimal functions. The tuning procedure of the Hyperbell Algorithm
was similar to that employed in the preceding studies. Results are presented in
Table I11. The number of function calls (¢) increased as a function of the number
of variables (n). This function was close to linear. The best regression equation
ist = 343.4n13 — 922, with a very high correlation coefficient » = 0.997. A
simple linear regression gave » = 0.994. The tuning was very well predicted by
therelation o = 0.2064(1 — n~13) + 0.7934,r = 0.999.

Effect of the number of minima: For this study, the W test function withn = 1
and 13 even values for k£ was used, giving a range of 1 to 101 minima. Results
are presented in Table IV. As one can see, the number of function calls increased
monotonically asafunction of the number of minima(m). The best smplerelation
which was found is t = 47.83m08" + 156.97,» = 0.968. However, this type of
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Table IV. Tuning of the Hyperbell Algorithm and mean number of function calls (with
standard deviation) as a function of the number of minima (ten successive runs without

error).
Number of  Tuning (a) Function Number of  Tuning () Function
minima cals minima cdls
1 0.820 134 (15) 15 0.9720 764 (64)
3 0.830 149 (17) 17 0.9725 823 (28)
5 0.860 178 (10) 19 0.9730 826  (16)
7 0.940 372 (30) 21 0.9736 867  (43)
9 0.965 629 (36) 51 0.9800 1173 (40)
11 0.969 672 (73) 101 0.9923 2956 (126)
13 0971 758  (47)

relation cannot be generalized without caution since we have seenthat it is easy for
the Hyperbell Algorithm to minimize Csendes functions, which have theoretically
an infinity of minima. In fact, we have to suspect that the number of minima per
seisnot relevent, but that it is linked to more relevent caracteristics in the case of
W functions.

Compar ative Study for Nonlinearly Constrained Problems

TheHyperbell algorithm wasinitialy designed for searching global extremaof mul-
tiextremal functions defined on simple box-constrained feasible regions. However,
certain recent global optimization algorithms are designed for solving optimiza-
tion problems on feasible regions with relatively complex constraints (Zabinsky
et al., 1993; Romeijn & Smith, 1994). Hence, it appeared interesting to complete
this experimental study with standard nonlinearly constrained problems. The two
most difficult nonlinearly constrained problems used by Romeijn & Smith (1994)
were selected (problem 1 and 2, pp. 119-120). These authors reported the best
performance which was obtained with Hide-and-Seek type algorithms (including
Improving Hit-and-Run) for solving these problems with a precision of 1%. For
comparison, the same precision criterion (stopping rule) was used in the present
study. Table V presents the mean number of constraint evaluations necessary for
finding an initial point inside the feasible region (i.c.e), the mean number of func-
tion evaluations (f.e.), and the mean number of constraint evaluations (c.e.). These
means were obtained with 20 successive runs, and the corresponding standard
deviations are given in parentheses for the Hyperbell algorithm. Results concern-
ing the Hide- and-Seek algorithm are taken from Romeijn & Smith (1994). Asone
can see, the Hide-and-Seek algorithm found an initial feasible point faster than the
Hyperbell algorithm for problem 2. Hide-and-Seek algorithm has a special proce-
dure for finding an initial feasible point. When the constraint function defines a
subset with relatively low Lebesgue mesure, this procedure is more effective than
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Table V. Mean performance (with standard deviations) for 20
successive runs on two nonlinearly constrained problems solved
with 1% precision.

Hyperbell Romeijn & Smith (1994)
Problem1l «=0.992
i.ce 6.55 (6.39) 101
f.e 329.75 (131.70) 530.6
ce. 744.90 (276.10) 1876.3

Problem2 « =0.990

ice 835.85(770.82)  158.1
fe 168.95 (51.30) 281.9
ce 8323.45 (2730.87)  13893.1

the very simple initialization procedure of the Hyperbell algorithm. However, this
was the only advantage of Hide-and-Seek in the present experiment, and globally,
the Hyperbell algorithm always solved the problems faster.

4. Tuning Proceduresfor Applications

Tuning the algorithm for standard test problems is quite easy because the exact
solution of these problems is known a priori. However, this is not the case, in
general, for redlistic applications. Moreover, certain applications require strict
control of computational effort, and more or less precision (or reliability) for
the result. Usually, the tuning is performed at the time of implementation (“off-
line tuning”). In this case, one must determine an « value or an a-function (of
complexity variables) that properly generalizes to the (infinite) set of problems
which the application should be able to solve. However, in certain cases, it is not
possible to find an appropriate a-function for the entire set of potential problems.
Such a situation requires the use of an “on-line tuning” procedure. To date, we
do not know of any general tuning method with low computational cost. In this
section, we first examine the behavior of the algorithm as a function of its tuning.
Based on the resulting observations, examples of simple tuning procedures are
defined and experimental results are presented.

Test Problem

For this study, we selected a family of problems which has practical applications
and whose exact solution is not known to date. Thisisthe so called “élliptic Fekete
points problem (of order d)” (Pardalos, 1995; Shub & Smale, 1993):

global max fq(z) = [licicj<d |zi —z;ll, =€ R3,
subjectto  ||z;|| = 1,7 =1, ...,d.
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Table V1. Behavior of the Hyperbell Algorithm (means and stan-
dard deviations for 10 runs) as a function of o for a 12 Fekete
points' problem.

e Maximum of f1, found Solving time
0.8 1.78405E+8 (3.46344E+8) 392 (15)
0.9 4,62357E+8 (4.25513E+8) 810 (34)
0.95 1.55778E+9 (2.98085E+8) 1607 (44)
0.975 2.05888E+9 (1.12839E+8) 3166 (61)
0.9875 2.19609E+9 (1.00874E+8) 6192 (132)
0.99375 2.35477E+9 (6.96366E+7) 12275 (225)
0.996875 2.40710E+9 (2.66601E+7) 22209 (2480)
0.9984375 2.41785E+9 (0) 25802 (5062)
0.99921875  2.41785E+9 (0) 54298 (6732)
0.999609375  2.41785E+9 (0) 91316 (21832)
e Frequency of winning trials  Time to stop
0.8 0.491 (0.020) 395 (15)
0.9 0.477 (0.021) 816 (32)
0.95 0.459 (0.014) 1619 (42)
0.975 0.446 (0.009) 3198 (50)
0.9875 0.430 (0.010) 6262 (108)
0.99375 0.425 (0.008) 12434 (179)
0.996875 0.370 (0.055) 22880 (1902)
0.9984375 0.031 (0.006) 29599 (192)
0.99921875  0.011 (0.001) 58010 (85)
0.999609375  0.004 (0.001) 115301 (81)

The constraint definesaset of zero mesurein R® (the unit sphere surface). Hence
we have to use a projection of R? points on S2:

€T, = ZZ/HZZH,ZZ S [—1, 1]3\0

In doing this, all points z; generated along a given radial direction are equivalent,
the number of independent variablestheoretically reducesto 2d, and one can easily
verify that the convergence properties of the Hyperbell Algorithm are not modified.

Effects of Tuning

In order to illustrate a typical behavior of the Hyperbell Algorithm as a function
of o, a 12 Fekete points problem was approximately solved with 10 different
valuesof « accordingto: a1 = (ax +1)/2,00 = 0.8,k =0, ..., 9. The stopping
criterion was s(t) < 1.10s,e = 10~2° , and 10 runs were performed for each o
value. Table VI reportsthe means (and standard deviations) of the maximum found
for the objective function, the solving time (number of function calls for finding
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the result), the frequency of winning trials at stopping criterion, and the time to
stop (number of function calls for reaching the stopping criterion).

Onecan seein Table VI that the approximation of the function global maximum
isimproved as « increases, and that one obtains a stable result (with variance close
to O) after acritical value of « is reached. The computational cost monotonically
increases, and the frequency of winning trials decreases as a function of . . Note
also that the mean frequency of winning trials is lower than 1/2 for usual values
of (> 0.8). A stable result can be considered as the best solution which can be
provided by the algorithm in the limit of a given computational effort. However,
if no validity test of the result is available, one can only guessthat thisis aglobal
optimum.

Cost Constrained Tuning

This is an on-line tuning method which enables one to choose the range of the
computational cost allowed for the search. Choose a large integer T, a small real
w > ¢, and astopping criterion of the form s(t,,) < w , with the (approximative)
constraintthat £, < T'. If the scalesof the different variablesare not equal, consider
only thelargest one, or eventually choosean w valuefor each variablein such away
that w; = ¢(s;(0) — €) + ¢,7 = 1...n, where c isasmall positive constant. Clearly
T is an approximation of the maximum number of function evaluations allowed
for the search, with a precision criterion w in €2 . After the algorithm statement, we
have:

s(ty) = (s(0) —e)at e o= =

b = (1—w1w) Ina n <3(Ez))_fs> ’

where w,, is the frequency of winning trials at stopping criterion time. w,, is a
random variable whose law depends on the problem and on the tuning, however
one can estimate that 0 < w,, < 1/2 in most cases. Assuming this, we obtain:

In (82‘6)__68) /Ina < t, < 2In (SEL()))__&(g) /Ina~T,

then we take:

a = exp <2In <SEUO)%> /T) = (sEi))%)yT'

If T is sufficiently large, one can obtain a stable result (or a global extremum),
but this cannot be verified using only one run. If no validity test of the result is
available, one can use two different costs (say T1 and T2) and perform the two
corresponding runs. Then the global cost will be comprised between (T1+T2)/2
and T1+T2. Ingeneral, thereislittle chance of obtaining two similar resultsif these
are not stable solutions.
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Off-Line Tuning

Performing an off-line tuning, one must determine an « value or an a-function
(of complexity variables) which will provide reliable results with minimal com-
putational cost for alarge class of problems. Given a particular problem, we first
must find aminimal « value which provides stable results. Given the convergence
properties illustrated in Table VI, this reduces to a one variable uniextremal opti-
mization. Hence, variants of usual local search methods, such as bisection type
procedures, can be used, and the convergence towards an optimal tuning can be
guaranteed. Now, for the purpose of an application, it is not necessarily relevent
to find an exact optimal tuning for a particular problem, and one has to take into
account the computational cost of the tuning procedure itself. In particular, we
have to take into account the fact that the computational cost increases quickly as
a tendsto 1, sincethis cost is approximately proportional to |1/ In «| (see previous
section). Hence, we must define a tuning procedure which avoids large overesti-
mating of « and repeated runs using overestimated « values. As an example, the
following procedure provides quite good results:

{parameters: ap, a1: two initial low values of «;
N: critical number of repeated runs; }
{first approximation} fo := Hyperbell(f, ap);
BEST := fo; f1:= Hyperbell(f, a1);
if (f1 better than BEST) then BEST := f1;
k=1
while (fx—1 # BEST) or (fx # BEST) do
begin
k:=k+1,;

U fre1 = Freeal \ O
B = <|fk—1| + |fk—2|> ’

ap = (og—1+ Br) /(1 + Br);

fr = Hyperbell(f, o );

if (fy better than BEST) then BEST = fy;
end;

{final tuning}

k:=k-—1,
r.=1
repeat
repeat
fi :== Hyperbell (f, a);
ri=r+1;

until (r = N) or (fi # BEST);
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if (fx # BEST) then begin

ri=0;

k=Ek+1,;

b = ( | 11— BEST] )‘”.
ke |fe—1| + |BEST|/

ay = (ag—1+ Br)/(1+ Br);
if (fx_1 better than BEST) then BEST = f; 1;
end;

until (r = N);

Note that the differences () have to be tested with finite precision (e.g. 15 signif-
icant decimal digits). The expression of G, can be modified. For example, using
OBr = 1 provides an a: sequence similar to the one reported in Table VI (with ag
= 0.8 and o3 = 0.9). The choice of N (critical number of repeated runs) depends
on the desired reliability of the tuning. The “first approximation” part of the pro-
cedure can also be used as an on-line tuning procedure. This can be interesting
because the procedure ends when a result stability criterion is satisfied, however
the computational cost is not controlled for.

The tuning procedure was applied to elliptic Fekete points problems of var-
ious orders. Main results concerning orders 10, 11 and 12 are reported in Table
VII. Given the a-function (of the number of variables) previously obtained for
uniextremal functions (see the “complexity study” section), it was assumed that
a > a1 = 0.84 0.2(1 — 1/d). Tuning costs are total numbers of function evalua-
tions. The first approximation tuning cost can be viewed as an on-line tuning cost
with stability criterion. The estimated maximum of f was always obtained in the
first approximation procedurewith 15 significant digits. Thefinal tuning procedure
only minimized the solving time for the specified reliability criterion (N = 10).

The remaining problem concerns the generalization of tuning to a large class
of problems. Depending on the application, the problems can differ only by a
random set of data, or (also) by systematic complexity factors (e.g. humber of
variables). Inthefirst case, aquite evident method consists of selecting a sample of
problems and performing the tuning for each problem, which provides a sample of
tunings. Then one can determine an upper boundary of « using asimple confidence
interval method. However, the distribution of «, considered as arandom variable,
is very asymetrical. Hence, it is better to compute the confidence interval for the
t,, variable (by usual statistical methods), and then to compute the corresponding
upper bound of « using the relations stated in the “ cost constrained tuning” section.
The second case is the most frequent in practice. Unfortunately, it is also the most
problematic case because avail able empirical complexity factors are not alwaysthe
relevent ones, or the a-function is not asimple monotonic function of thesefactors.
Sometimes, it is easy to find an appropriate approximation of the a-function, as
we did in the “complexity study” section. However, if one considers for example
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Table VII. Results provided by the tuning procedure for Fekete points' problems of order 10, 11, and
12. a9 = 0.8, 01 = 0.8+ 0.2(1 — 1/d), N = 10.

flO fll f12
e 0.999609313189144 0.999654352379111 0.998184163562489
maximum of fg 5.74088185070187E+6  9.99798997082430E+7  2.41785163922926E+9
mean solving time 90807 122889 21645
first approx. cost 712488 1051620 121779
total tuning cost 1798733 2591413 352330

the set of elliptic Fekete points problems, the a-function of d seems hard to
predict. In such a situation, a practical solution would probably be to implement
the tuning values for the most frequent problems, and to implement an on-line
tuning procedure for the remaining cases.

5. Conclusion

The Hyperbell Algorithm clearly exhibits high performance levels on difficult
global optimization problems. The use of Cauchy distributions in this type of
framework is visibly more appropriate than the use of more usual distributions.
Complexity effects which were experimentally tested are close to linear, however
not all the relevent complexity factors are identified. Simple tuning procedures are
available, however verifying reliability aways requires a non negligible amount
of computational effort. Further research efforts are needed to devel op an efficient
way of determining the best algorithm tuning for each problem or application. This
requires a theory of problem complexity which is not available to date. Despite
these remaining questions, the Hyperbell algorithm is a useful tool in practice.
It is very easy to implement and, clearly, it provides reliable results with fast
convergence.
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is based on a special {1, 2, 3}-inverse, whose computation reduces to a very simple
generalization of the usual “Cholesky factorization-backward substitution” method for
solving linear systems.
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1. Introduction

In this paper, we consider weighted least-squares problems in the following generalized form:

ml m2 )
E(ViX. Y, W) =) wy [ X,V — Y|
i=1 j=1
C=arg min E(V:X,Y, W), (1)

VERH xn2

where three matrices are given: X € R™">"'y € R™2X"2 and W = (wy) is a rectangular m1 x m2 “weighted pairing” matrix
whose coefficients are non-negative real numbers. X; . denotes the ith row of X, and Y; . denotes the jth row of Y. Note that
this generalization is not the same as the so-called “Generalized Least-Squares” [1]. In the special case wherem1 = m2 = m
and W is a diagonal matrix, the above problem clearly reduces to an ordinary weighted least-squares problem, that is:

m

C =arg min wu ||X V=Y. ” =arg min
VERnlan Ve Rn1xn2

w2y — w2y | (2)

In Section 2, we show that, in fact, every problem having the form (1) can be reduced to a problem having the form (2).
In such problems, each equation of the least-squares system receives a specific weight that typically depends on some
estimate of the reliability of the data used in that equation. The usual non-weighted case corresponds to W = I (identity
matrix). Ordinary weighted least-squares (2) are commonly used to solve regression problems with noisy data [2], and in
“iteratively re-weighted least-squares” procedures for computing robust regression statistics such as M-estimators [ 3,4]. The
generalization (1) is potentially relevant in “data alignment” problems, where there is no given one-to-one correspondence
between X data points and Y data points (rows), but one has some non-negative “adequacy” or “plausibility” measure for
each possible data pair, which is represented by W. Data alignment is a hard to solve problem commonly encountered in
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image processing and pattern recognition [5]. In this paper, ||.|| denotes the Euclidean norm for vectors, and the Frobenius
norm for matrices. As in Matlab, the notation “a : b” denotes an index interval of bounds “a” and “b”, and if the bounds are
not specified (:), this corresponds to the whole index range.

Whenever W1/2X is of full column rank in (2), the solution to this problem is unique and the normal equations lead to
the well-known result:

C = X'WwX) ' X'wy, (3)

where X’ denotes the transpose of X (or the conjugate transpose in the complex case).

One of the fastest ways of numerically obtaining the factor (X'WX)~! that appears in (3) consists of computing a Cholesky
factorization LL’ of the positive definite Gram matrix X'WX, then one inverts the upper triangular factor L’ by a simple
backward substitution method, and one obtains (X’WX)~! = L'~'L~'. However, if W1/2X is not of full column rank, then
the above method does not work because the matrix X’WX is singular, and in this case, the weighted least-squares system
is said to be rank deficient. The solution of rank deficient systems requires more robust methods, which are also slower than
the above mentioned, in general. Among the fastest methods, we can consider those based on the use of suitable generalized
inverses, such as the popular Moore-Penrose inverse [6-8]. A solution to (2) is then:

C =WV tw'2y = X'wx)Ix'wy, (4)

where the Moore-Penrose inverse is known to provide the least-squares solution C whose each column has the minimum
Euclidean norm [6, p. 109].

However, one must note that the solution of least-squares problems does not specifically require the use of the
Moore-Penrose inverse, and that other types of generalized inverses, such as {1, 3}-inverses whose numerical computation
is possibly faster, can as well be used. According to ([6], pp. 104-105), one has always a solution to (2) with:

C = (WV2x) 312y, (5)

where A%® denotes any {1, 3}-inverse of the matrix A (see Section 3.2).

In fact, the problem of the computational cost is crucial in many practical applications, where one must repeatedly solve
large least-squares systems. On the other hand, most practical problems lead to full rank systems that could be solved fast
using (3), however, rank deficient systems can occasionally appear, and it is commonly not acceptable to obtain a “fatal
error” diagnostic at run time. Thus, in order to optimize the performance of applications, we present in Section 3.2 a quite
fast solution of type (4), and in Section 3.3 a solution of type (5) whose computational cost is similar to that of (3), which has
the advantage of being fast while providing a suitable least-squares solution in all cases, even if the system is rank deficient.
These solutions apply to problem (2) and to problem (1) as well.

2. The weighted pairing least-squares problem

In this section, we consider the generalization of the weighted least-squares (WLS) problem stated in (1), which we refer
to as the “weighted pairing least-squares” (WPLS) problem.

Theorem 1. Every WPLS problem of type (1) reduces to a WLS problem of type (2) since:

ml m2 m1
rg, min, 30wy % = arg, min, 3 e v 2",
where:
H = (hy) is a diagonal matrix with diagonal coefficients h;; = Z]m:z] wy, 1 <i<mi,
Z = Hfwy,
= (h;) is the Moore-Penrose inverse of H, with h;ri = 1/h; if hij > 0, and h,Tj =0if hj =0.
Proof. Set
m2 m2 2
i =) wyys — h} (Z wgyj,<> , 1<i<ml, 1<k<n2 (6)
j=1 j=1

Then one has:

ml n2 ml n2
hii ”Xi,:v —Zi; ”2 + dik hu X V. kT h“ wu}’]k + dik
2

i=1 k=1 i=1 k=1

) 2
(h]/le h]/zh,, Z qujl<> + d}k
1

1 k= j=1

3

i
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ml n2

m2 m2 2
= Z Z hi (X Vo p)® — Zhiih;r,‘(xi,:vz,k) Z wiiYjk + hn‘h;riz (Z wij.ij) + di
= =

i=1 k=1

ml n2

2
m2 m2

= Z Z hi (X Vo r)? — 2(Xi:Veg) Z wiiYjk + hl-Tl- <Z wij)’jk) + di
j=1 j=1

i=1 k=1 j=

ml n2 m2 m2 o
= Z Z <Z wU(Xi,:V:,k)z) -2 (Z w,‘jyjk(X,-_,:V:Yk)> + (Z wl]yjzk)
j=1 ‘=

i=1 k=1 j=1

ml n2 m2

=Y DY wi((XiVer)® — 206, Vei)yic + V3

i=1 k=1 j=1

ml m2

=3 wyxy -y

i=1 j=1
Noting that the additional terms (dy) given by (6) are independent of V, one obtains Theorem 1. O

Corollary 1. (i) If H'/2X is of full column rank, then (1) has the unique solution:
C = (X'HX)"'X'HZ = (X'HX)~'X'WyY.
(ii) No matter H'/?X is not of full column rank, (1) has the minimum norm solution:
C = H"*X)'H"?z = (X'HX)'X'WY.
(iii) No matter H'/?X is not of full column rank, (1) has all solutions of the form:
C = (HI/ZX)(m)H]/ZZ,
where H and Z are defined as in Theorem 1.
Proof. This directly follows from Theorem 1 and Eq. (3) for (i), Eq. (4) for (ii), and Eq. (5) for (iii). O

3. Fast solutions based on generalized inverses

3.1. Generalized Cholesky factors

Several generalizations of the Cholesky factorization can be found in the literature. A well-known generalized Cholesky
factorization for solving the so-called “augmented linear systems” is available in [9] and [ 10]. Another type of generalization
of the Cholesky factorization has been proposed in [11], and this approach has been successfully used to define a fast
numerical method for computing the Moore-Penrose inverse [7]. The fundamental result for the generalized Cholesky
factorization is:

Theorem 2 (From [11]). Let G be a symmetric positive semi-definite matrix of order n x n. Then there is an upper triangular
matrix R such that RR = G,y > 0,1 < i < n, and if for an index i one has ry; = O, thenr; = 0,1 < j < n. Moreover, the
matrix R with these properties is unique.
Proof. A proof of this is available in ([11], Theorem 4). O

The corresponding algorithm for computing the generalized Cholesky factor R defined in Theorem 2 is a very simple

variant of the usual Cholesky factorization algorithm, and its computational complexity is the same. However, the
generalization has the advantage of providing a suitable factor in all cases, even if the matrix G is singular.

Algorithm 1 (Generalized Cholesky Factor R of the given matrix G).
rj<0, 1<ij<n {initialization of R}
1 = 481
forj < 2ton
fori < 1toj

U i—1
ifi=jthenr; < /i — > 41 Th

; i—1
elseifr; > Othenr; <« (g; — Z;c.:1'r,<,-r!<j)/r,-,-
{else r;j = 0 as a result of the initialization].

By construction, the output of Algorithm 1 is an upper triangular factor R with r non-zero rows, and n — r zero rows,
where r is the rank of G. The algorithm complexity is in O(n?), but the exact operations count depends on r and the indices of
zero rows. When r = n, this count is maximum, and it is equal to that of the classical Cholesky factorization (plus n(n — 1) /2
low cost tests).
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3.2. Fast Moore-Penrose inverse based solution

Using Algorithm 1, one can define a fast method for computing the Moore-Penrose inverse of every finite matrix. Before
examining this method, we rapidly recall some definitions and notations concerning generalized inverses.

Every finite matrix A has (possibly an infinite number of) generalized inverses (hereafter denoted B) that satisfy one or
several of the following four Penrose equations:

ABA=A  (P1)
BAB=B  (P2)
(ABY =AB (P3)
(BAY =BA (P4).

Every matrix B that satisfies the equation set {Pi, Pj, ...} issaid tobe a {i, j, . . .}-inverse of A, and it is usually denoted A¢-),
The Moore-Penrose inverse of A is the unique matrix AT = A1-2.34_For a complete explanation, the reader can see [6].

There are several methods for computing the Moore-Penrose inverse, the most usual being based on the singular value
decomposition (SVD). This method is numerically very stable, however it is computationally heavy and hardly usable in
many practical applications. Another usual method is based on Gram-Schmidt orthonormalization, which is clearly faster
than SVD. However, the classical Gram-Schmidt orthonormalization (CGS or GSO) is known to be numerically instable. A
simple and effective remediation to this drawback has been proposed in the form of a re-orthogonalization additional step,
leading to the CGS2 method [12]. However, the additional step in CGS2 slows down the process, while it has been observed
that CGS is not the fastest method for computing the Moore-Penrose inverse [7]. In fact, it turned out that among the most
usual methods, including Greville’s method, SVD, CGS/GSO, and iterative methods, the fastest known numerical method for
computing the Moore-Penrose inverse is based on Algorithm 1 and on the following result [7]:

Theorem 3 (From [7]). Let A be an m x n matrix, with m > n, set G = A’A, compute the generalized Cholesky factorization
G = R'R using Algorithm 1, remove all zero rows from R, which results in a full row rank matrix S of size r x n, withr < n, and
such that S'S = G. Then:

At = 5/(55)"1(SS)SA .

Proof. The proof is available in [7]. Since it is short, we provide it hereafter.
We start with Eq. (3.2) from [8], that is:

(EF)' = F/(E'EFF)E’. (7)
Setting E = A,and F = I in (7), one obtains:

Al = @A)TA =CTA.
Setting E = S’, and F = S in (7), one obtains:

G = (§'S)T = 5'(55'ss")ts = §'(5§")~1(SS") 1S, (8)
since SS’ is invertible because S is of full row rank. O

If Ais an m x n matrix, with m < n, it suffices to use the relation A" = ((A’)")". Note also that (8) provides a simple
formula for the Moore-Penrose inverse of any symmetric positive semi-definite matrix, and that if S is of full rank r = n,
then G = G~ 1.

Corollary 2. Set A = H'/?X in Theorem 3, then the minimum norm solution of (1) is:
C =5 (sS)~1(sS)HIsx'wy,
where S is defined as in Theorem 3.

Proof. This immediately follows from Theorem 3 and Corollary 1 (ii). O

3.3. Fast {1, 2, 3}-inverse based solution

Although Corollary 2 provides a fast solution to (1), this is not necessarily the fastest way of solving this problem.
Moreover, observing Eq. (8), one can suspect a potential numerical instability whenever the matrix SS’ is ill-conditioned,
worsened by the fact that the factor (SS’)~! is repeated. In this section, we describe a {1, 2, 3}-inverse based solution
to (1) whose computational complexity is similar to that of (3), using Algorithm 1 and a simple variant of the backward
substitution method for inverting upper triangular matrices. The simplicity of this solution allows us to expect not only
faster computation, but also better numerical stability than the Moore-Penrose inverse based approach. We first define the
generalization of the backward substitution method for computing generalized inverses of generalized Cholesky factors as
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they are defined in Theorem 2. The computational complexity of the generalized algorithm is the same as that of the original
backward substitution method (0(n?)). The algorithm is designed to solve in U the following equation:

RU = I, (9)

where Iy is a diagonal n x n matrix whose ith diagonal coefficient is equal to 0 if the ith row of R is zero, else this diagonal
coefficient is equal to 1. The algorithm to solve (9) is then:

Algorithm 2 ({1, 2, 3}-inverse U of the given generalized Cholesky factor R).

uj <=0, 1<ij<n {initialization of U}
forj < ndownto 1
if rjj # 0 then {note: this test is optional}
fori < jdownto 1
if Tii 75 0 then

ifi =jthenu; < 1/r;
else uy < — (X jiyq Tikllig) /it

The test at the third line of Algorithm 2 is optional because it has no influence on the result. However, including this test
allows to save a number of useless floating-point operations (whose result is zero) whenever R is singular.

By construction, the output of Algorithm 2 is an upper triangular matrix U that has the property that if the ith row of R is
zero, then both the ith row and the ith column of U are zero. Note that the rank of U is equal to the rank of R, which is itself
equal to the rank of the factorized matrix G and to the trace of Iz. Note also that if R is not invertible (in the usual sense),
then UR # I, however, UR is always idempotent since URUR = UIzR = UR.

Theorem 4. Let R be a generalized Cholesky factor as defined in Theorem 2, let U be the corresponding output of Algorithm 2,
then U is a {1, 2, 3}-inverse of R.

Proof. U is a {1}-inverse of R since RUR = IzRR = R,

U is a {3}-inverse of R since RU = (RU)’ = I,

U is a {2}-inverse of R since U is a {1}-inverse of R and has the same rank as R, then the conclusion follows from ([6], p.
46). Alternatively, one can easily verify that URU = Ul = U. O

Theorem 5. Let A be an m x n matrix, with m > n, set G = A'A, compute the generalized Cholesky factorization G = R'R using
Algorithm 1, compute U = R®>%3 using Algorithm 2. Then:

(i) The equation A = QR has a solution in Q such that Q’Q = Ig. This solution is Q = AU.
(ii) The matrix B = UU’A" is a {1, 2, 3}-inverse of A.

Proof.

Q'Q = UAAU = U'RRU = (RUYRU = Ilg = Iy,
AU = QRU = Q = Q,

which proves (i).
Since (i) implies that B = UQ’, one has:
Bis a {1}-inverse of A since ABA = QRUQ'QR = QIzIgR = QR = A,
Bis a {2}-inverse of A since BAB = UQ'QRUQ’ = UIzIxQ' = UQ’ = B,
Bis a {3}-inverse of A since AB = QRUQ’ = QIzQ’ = (AB),

which proves (ii), and then completes the proof of Theorem 5. O

Corollary 3. Set A = H'/?X in Theorem 5, then a solution to (1) is given by:
C = UU'X'HZ = UU'X'WY,
where U is defined as in Theorem 5.
Proof. This immediately follows from Theorem 5 (ii) and Corollary 1 (iii). O

One can note that if H'/2X is of full column rank, then U = R™!, and the solution provided by Corollary 3 is equal to that
of Corollary 1 (i). Moreover, if H'/?X is of column rank r < n1, then each column of the solution C to problem (1) provided by
Corollary 3 has at most r non-zero coefficients, since the first factor (U) of the solution has n1 — r zero rows. Note, however,
that one can find particular examples showing that the above solution is not always the one having the minimum number
of non-zero coefficients.
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4. Computational test

4.1. Implementation of methods

The methods defined in Corollaries 2 and 3 for solving (1) have been implemented in Matlab code (version 7.5), and are
listed in Appendix. The Matlab function corresponding to Corollary 2 is named “WPLSdagger”, and the Matlab function
corresponding to Corollary 3 is named “WPLS123”. This makes available various implementation details that are not
specified in the formal definition of algorithms, such as the way of testing the equivalence to zero of floating-point diagonal
coefficients, or the way of avoiding an a posteriori removing of zero rows in Corollary 2 solution. In order to make the
performance of the two tested methods comparable, we avoided the use of high level Matlab operators such as “inv()”,
“chol()”, or “\”, whose implementation is hidden and compiled.

4.2. Test problems

In order to test the performance of methods for solving (1) in terms of speed, accuracy, and numerical stability, we must
build test problems in a way that allows strict control of relevant characteristics such as the size and the rank of the equation
system, the exact weighted least-squares residue norm, and the ratio of extreme non-zero singular values of the system
matrix (which can be seen as a kind of generalized condition number). Note that the solution (C) itself is not relevant for
comparisons, since it is not unique in the case of rank deficient systems. Building coherent test problems having all required
properties is not so easy, and we propose the following method.

First, one chooses the size parameters m1, n1, m2, n2, the rank parameter r < n1, and the maximum ratio, denoted «, of
non-zero eigenvalues of the Gram matrix X’'HX to be built. For practical reasons, one must choose the size parameters such
that m2 > m1 > n1. Then one builds two orthogonal Householder matrices:

4

uu .
M =1—2—, witharandom column vector u € R™,
v'u
/

VU .
N=1I- Zf, with a random column vector v € R",
v'v

where the identity matrices (I) have the appropriate size in each case. One also builds a r x r diagonal matrix D, whose ith

diagonal coefficient is equal to lcr(rf")/z(rq), 1 < i < r. Then one selects the first r columns of M and the first r rows of N,
and one builds the matrix:

A= M:,l:rDNhr,:'

The m1 x n1 matrix A is of rank r, the greatest eigenvalue of A’A is equal to «,, and the lowest non-zero eigenvalue of A’A is
equal to 1. Thus, we can set X’HX = A’A, thatis H'/2X = A.
For the next step, one builds a random (m1 — r) x n2 real matrix F, and one sets:

P =M (r+1:mF,

where we note that the columns of P are orthogonal to those of A.
One can now build a suitable diagonal matrix H = (h;), 1 < i < m1, by taking:

2
n2

h,—,—:max( Zpif> ,
¢ =

nl
S
j=1
which guarantees that both A and P can be factorized with H/? as the first factor, in order to build a coherent problem, and
one obtains the first matrix of problem (1) by:

X = (H/HA.

’

For the next step, one builds a random n1 x n2 real matrix V, and one sets:
HZ = H'?(AV + P).

It remains to build am1 x m2 matrix W, with non-negative coefficients, such that Z}"zzl wjj = h;i, 1 <i < m1l,and such that
there is an m2 x n2 matrix Y that is solution of the equation WY = HZ. Unfortunately, there is no available deterministic
method for factorizing HZ in a suitable way, thus we must use a random “trials and errors” approach, as follows. Repeat the

following four steps until WY = HZ (at the working precision):

- build a m1 x m2 matrix T = (t;) with non-negative random coefficients,
- compute the diagonal matrix K with k;; = ij:z] tj, 1 <i<ml,

- setW = HK™'T,

- setY = WTHZ.
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Table 1

Mean solving time (in milliseconds) of WPLS problems by the two methods.

nl 128 256 512

Kr 16 256 4096 16 256 4096 16 256 4096
Full rank

WPLSdagger 126 126 127 608 610 607 3438 3438 3434
WPLS123 109 109 109 523 523 523 2868 2869 2869
Rank deficient

WPLSdagger 103 102 102 502 497 498 2805 2803 2803
WPLS123 89 89 89 433 434 433 2412 2412 2468
Table 2

Mean accuracy of the two methods in solving WPLS problems.

nl 128 256 512

Kr 16 256 4096 16 256 4096 16 256 4096
Full rank

WPLSdagger 8.9E-6 9.9E-3 1.532 1.4E-6 1.3E-3 0.436 0.2E-6 0.2E-3 0.099
WPLS123 <1012 <1012 <1012 <1012 <1072 <1012 <1012 <1012 <1012
Rank deficient

WPLSdagger 3.6E-6 11.9E-3 2.872 0.9E-6 2.1E-3 0.570 0.1E-6 0.3E-3 0.137
WPLS123 <1072 <1012 <1072 <1012 <1072 <1072 <1012 <1072 <1012

The Moore-Penrose inverse W' can be obtained using an accurate (slow) SVD method. In general, one obtains a suitable
solution quite rapidly when m2 > m1, and «; is not too large. However, one can observe that the above process frequently
fails for large systems if k, > 2'2, which seems to be a practical limit for generating problems in common computational
environments such as Matlab.

We have now suitable matrices X, Y, and W for problem (1), and it remains to compute the exact weighted sum of
quadratic residues (i.e. the minimized E function of (1)) corresponding to this problem as a reference value for testing the
accuracy of solving methods. In order to do this, we use the fact that the columns of the matrix P are orthogonal to those of
A, and the proof of Theorem 1. Then one obtains:

ml n2

Eexact = IPIZ+ ) > " d,

i=1 k=1

where the additional terms (d;) are defined as in (6).

4.3. Results

Using the procedure described in Section 4.2, we generated various problems of type (1) with the parameter sets
nl = {128, 256,512}, k, = {16,256, 4096}, r = {n1, Zn1} (corresponding to “full rank” and “rank deficient” systems,
respectively), whilem1 = 2n1,m2 = 2 m1,n2 = 32.Using all parameter combinations, one obtained 18 types of problems,
and 10 problems of each type were randomly generated. Each problem was solved by both the WPLSdagger function (fast
Moore-Penrose inverse based solution), and the WPLS123 function (fast {1, 2, 3}-inverse based solution). In each case, the
solving time was recorded in milliseconds (in Matlab 7.5, on a MacBook computer), and the accuracy of each method was
measured by (Emethod — Eexact)/Eexact- The mean solving times are reported in Table 1, and the mean accuracy values are
reported in Table 2. All differences between the two methods are statistically significant (p < .01) using the sign test.

As one can see in Table 1, the {1, 2, 3}-inverse based method is faster than the fast Moore-Penrose inverse based method,
in all cases. One can also note that rank deficient systems are solved faster than full rank systems of the same size by both
methods, which is a consequence of the zeroing of certain rows in Algorithm 1. Moreover, an inspection of Table 2 clearly
shows that the {1, 2, 3}-inverse based method is accurate in all cases, while the fast Moore-Penrose inverse based method
is less accurate and highly sensitive to the parameter «,, thus numerically instable. In summary, it seems that the {1, 2,
3}-inverse based method is globally preferable to other known methods suitable for solving problem (1), except if, for some
particular reason, one requires a minimum norm solution. However, in this last case, it is certainly preferable to use an
accurate and numerically stable method for computing the Moore-Penrose inverse, but the price to be paid for this is, in
general, a quite long computation time.

5. Conclusion

We have first generalized “weighted least-squares” (WLS) to “weighted pairing least-squares” (WPLS) problems. This
generalization, which allows using a rectangular weight matrix, includes, as particular cases, the classical weighted and
non-weighted least-squares problems, and it is more particularly suitable in the framework of data alignment problems.
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We have shown that WPLS problems can always be reduced to problems having the same form as WLS problems, and we
have studied two fast methods for solving such problems in the case of rank deficient systems as well as of full rank systems.
Numerical experiments clearly showed that the best solving method, in terms of speed, accuracy, and numerical stability, is
based on a special {1, 2, 3}-inverse whose computation is very simple. In contrast, approaches based on the Moore-Penrose
inverse lead to slow computation, or alternatively to numerical instability.

Appendix

The following codes are provided for example, and for academic use only. The code is not optimized and exception cases
are not managed.

Matlab code (version 7.5) of the WPLSdagger function:

function [C,Emethod,time] = WPLSdagger(X,Y,W)
% Moore--Penrose inverse based solution of a WPLS problem
tic % start the clock
[ml,n1]=size(X); [m2,n2]=size(Y); H=sum(W,2);g=X’*((H*ones(1l,n1)) .*X);
% s = full row rank generalized Cholesky factor of g
tol=nlxeps(norm(g,inf));
s=zeros(nl,nl); ii=0;
for i=1:nl
ii=ii+1;
v=g(i,i:n1)-s(1:(ii-1),1i)’*s(1:(ii-1),i:nl);
if v(1)>tol
s(ii,i)=sqrt(v(1));
if i<n1l
s(ii, (i+1):n1)=v(2:end)/s(ii,i);
end
else ii=ii-1; end
end
rs=ii; s=s(l:rs,:);
% r = classical upper Cholesky factor of ss’
g=s%*s’;
r=zeros(rs,rs);
for i=1:rs
v=g(i,i:rs)-r(1:(i-1),1i)’*r(1:(i-1),i:rs);
r(i,i)=sqrt(v(1));
if i<rs
r(i,({+1):rs)=v(2:end)/r(i,i);
end
end

% u = classical inverse of r
u=zeros(rs,rs);

for j=rs:-1:1
for i=j:-1:1
if i==j
u(i,i)=1/r(i,1);
else
u(i,j)=-r(i, (i+1):j)*u((@+1):j,j)/r(i,1);
end
end
end
% iss = inverse of ss’
iss=u’*u;
% solution
C=s’*iss*iss*s*X’*xWxY;
time=toc; % record the solving time
% compute the weighted sum of quadratic residues
XC=X*C;
Emethod=0;
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for i=1:ml
for j=1:m2
Emethod=Emethod+W (i, j)*sum((XC(i,:)-Y(j,:)) .~ 2,2);
end
end
end

Matlab code (version 7.5) of the WPLS123 function:

function [C,Emethod,time] = WPLS123(X,Y,W)
% {1,2,3}-inverse based solution of a WPLS problem
tic % start the clock
[ml,n1]=size(X); [m2,n2]=size(Y); H=sum(W,2); g=X’+*((H*ones(1l,nl1)).*X);
% r = generalized Cholesky factor of g
tol=nl*eps(norm(g,inf));
r=zeros(nl,nl);
for i=1:ni
v=g(i,i:n1)-r(1:(i-1),i)’*r(1:(i-1),i:nl);
if v(1)>tol
r(i,i)=sqrt(v(1));
if i<ni
r(i, (i+1):n1)=v(2:end)/r(i,i);
end
end
end
% u = {1,2,3}-inverse of r
u=zeros(nl,nl);
for j=ni:-1:1
if r(j,3j)™=0

for i=j:-1:1
if r(4i,i)"=0
if i==j
u(i,i)=1/r(i,i);
else
u(i,j)=-r(i, (i+1):j)*u((i+1):j,j)/r(i,1i);
end
end
end
end

end
% solution
C=u*u’*X’*WxY;
time=toc; % record the solving time
% compute the weighted sum of quadratic residues
XC=Xx*C;
Emethod=0;
for i=1:ml
for j=1:m2
Emethod=Emethod+W (i, j)*sum((XC(i,:)-Y(j,:)).~ 2,2);
end
end
end
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II.F Méthodes de validation de modeles et bases de données comportementales

L'expérimentation classique utilise des plans factoriels pour tester l'existence d'effets
différenciant des conditions expérimentales, suivant des hypothéses de travail engendrées par
des théories plus ou moins précises selon les cas. Le développement des modeles de
simulation numériques conduit a des prédictions souvent beaucoup plus précises qui portent
sur des niveaux d'analyse fins, que 1'on a coutume d'appeler "items". La définition académique
du mot "item" est "élément d'un ensemble organisé¢" (Petit Larousse), ce qui laisse une
certaine latitude quant a son utilisation, par exemple pour "symbole d'un alphabet", ou "mot
d'un lexique", ou encore "question d'un questionnaire". La communauté de recherche sur la
reconnaissance visuelle des mots a, depuis quelques années, développé des efforts importants
en matiere de modélisation, mais aussi en matiére de constitution de grandes bases de données
comportementales permettant de tester les modeles et de réaliser des expériences virtuelles.
C'est ainsi qu'ont été successivement publiés le "English Lexicon Project" (ELP: Balota, Yap,
Cortese, Hutchison, Kessler, Loftis, Neely, Nelson, Simpson, & Treiman, 2007), qui fournit
des données de décision lexicale et de dénomination pour 40481 mots anglais, le "French
Lexicon Project" (FLP: Ferrand, New, Brysbaert, Keuleers, Bonin, Méot, Augustinova, &
Pallier, 2010), qui fournit des données de décision lexicale pour 39840 mots frangais, et le
"Dutch Lexicon Project" (DLP: Keuleers, Diependaele, & Brysbaert, 2010), qui fournit des

données de décision lexicale pour 14089 mots hollandais.

Toutefois, alors que les plans factoriels classiques permettent de tester des effets par
des techniques du type analyse de la variance, le test des prédictions fines fournies par les
modeles au niveau des items fait plutot appel a des techniques de régression ou corrélation
visant a rendre compte d'une part maximale de la variance liée aux items. Le probleme est que
les données empiriques contiennent une certaine part de variance systématique, dont les
modeles peuvent espérer rendre compte, mais aussi une part de variance aléatoire (bruit) qui
¢chappe en principe a la modélisation cognitive. La pratique courante consiste a sélectionner
les modeles de telle maniere que les "meilleurs" modeles sont ceux qui rendent compte de la
plus grande part de variance a 1'aide du minimum de paramétres libres, et un certain nombre
d'indices statistiques ont été¢ construits dans ce but (Pitt & Myung, 2002). Mais ceci ne
permet pas de répondre a la simple question: "est-ce que ce modéle rend convenablement
compte de ces données?" Pour répondre a cette question, il faut savoir assez précisément

quelle est la part de variance systématique dans les données empiriques. Si l'on rend compte
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d'une part de variance moindre, c'est un "sous-ajustement" qui révele une insuffisance du
modele. Si l'on rend compte d'une part de variance supérieure a la part de variance
systématique, c'est un "sur-ajustement” qui indique que les prédictions sont corrélées avec du
bruit aléatoire, ce qui est généralement di a 1'utilisation d'un trop grand nombre de parameétres

libres dans le modéle et entraine une faible capacité de généralisation de ce dernier.

Curieusement, si I'aspect "compétition" entre modeles concurrents a été tres étudié, la
question plus fondamentale de leur validation a été largement laissée de coté jusqu'a un passé
récent. Dans une premiére approche de cette question, Rey, Courrieu, Schmidt-Weigand, et
Jacobs (2009, article ci-joint) ont identifié une loi établissant le lien entre le nombre de
participants a une collecte de données et la proportion de variance systématique dans ces
données. Cette loi a la forme d'un coefficient de corrélation intraclasse (ICC) particulier, et
rend bien compte de temps d'identification perceptive de mots anglais. Sur cette base,
Courrieu, Brand-D'Abrescia, Peereman, Spieler, et Rey (2011, article ci-joint) ont développé
une méthodologie rigoureuse permettant de tester la validit¢é de modeles sur des bases de
données comportementales, et cette approche s'est avérée satisfaisante pour des temps de
dénomination de mots anglais et francais. Enfin, Rey et Courrieu (2010, article ci-joint) ont
¢tabli les statistiques utiles (ICC et intervalles de confiance) pour la base de données DLP
(Keuleers et al., 2010). Cette méthodologie récente nous a par ailleurs permis de conclure que
les modeles de lecture actuellement les plus performants, tels que CDP++ (Perry, Ziegler, &
Zorzi, 2010), sont encore assez loin de rendre compte de la totalit¢ de la variance

systématique des données (Rey, Brand-d'Abrescia, Peereman, Spieler, & Courrieu, 2010).

Références

Balota, D.A., Yap, M.J., Cortese, M.J., Hutchison, K.A., Kessler, B., Loftis, B., Neely, J.H.,
Nelson, D.L., Simpson, G.B., & Treiman, R. (2007). The English Lexicon Project. Behavior
Research Methods, 39(3), 445-459.

Courrieu, P., Brand-D'Abrescia, M., Peereman, R., Spieler, D., & Rey, A. (2011). Validated
intraclass correlation statistics to test item performance models. Behavior Research Methods.

doi: 10.1007/s13428-010-0002-7

162



Pierre Courrieu — dossier HDR 1I.LF.3

Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A., Augustinova, M.,
Pallier, C. (2010). The French Lexicon Project: Lexical decision data for 38,840 French words
and 38,840 pseudowords. Behavior Research Methods, 42, 488-496.

Keuleers, E., Diependaele, K., & Brysbaert, M. (2010). Practice effects in large-scale visual
word recognition studies: A lexical decision study on 14,000 Dutch mono- and disyllabic

words and nonwords.. Frontiers in Psychology 1:174. doi:10.3389/fpsyg.2010.00174

Perry, C., Ziegler , J.C., & Zorzi, M. (2010). Beyond single syllables: Large-scale modeling of
reading aloud with the Connectionist Dual Process (CDP++) model. Cognitive Psychology, 61,
106-151.

Pitt, M.A., & Myung, 1.J. (2002). When a good fit can be bad. Trends in Cognitive Sciences,
6(10), 421-425.

Rey, A., Brand-d'Abrescia, M., Peereman, R., Spieler, D., & Courrieu, P. (2010). The
nanopsycholinguistic approach: Item performance in disyllabic word naming. Oral
communication presented at the 51st Annual Meeting of the Psychonomic Society, St Louis,

USA, November 18-21.

Rey, A., & Courrieu, P. (2010). Accounting for item variance in large-scale databases.

Frontiers in Psychology 1:200. doi:10.3389/fpsyg.2010.00200

Rey, A., Courrieu, P., Schmidt-Weigand, F., & Jacobs, A.M. (2009). Item performance in

visual word recognition. Psychonomic Bulletin & Review, 16(3), 600-608.

163



164



Psychonomic Bulletin & Review
2009, 16 (3), 600-608
doi-10.3758/PBR.16.3.600

Item performance in visual word recognition

ARNAUD REY AND PIERRE COURRIEU
CNRS and Université de Provence, Marseille, France

FLORIAN SCHMIDT-WEIGAND
Universitdt Kassel, Kassel, Germany

AND

ARTHUR M. JACOBS
Freie Universitdt Berlin, Berlin, Germany

Standard factorial designs in psycholinguistics have been
complemented recently by large-scale databases providing em-
pirical constraints at the level of item performance. At the same
time, the development of precise computational architectures
has led modelers to compare item-level performance with item-
level predictions. It has been suggested, however, that item per-
formance includes a large amount of undesirable error variance
that should be quantified to determine the amount of reproducible
variance that models should account for. In the present study, we
provide a simple and tractable statistical analysis of this issue.
We also report practical solutions for estimating the amount of
reproducible variance for any database that conforms to the ad-
ditive decomposition of the variance. A new empirical database
consisting of the word identification times of 140 participants on
120 words is then used to test these practical solutions. Finally,
we show that increases in the amount of reproducible variance
are accompanied by the detection of new sources of variance.

The precision of theoretical accounts in the field of
visual word recognition has significantly increased over
recent years. Indeed, cognitive modelers have proposed
several detailed descriptions of the structure and dynam-
ics of the reading system (e.g., Ans, Carbonnel, & Valdois,
1998; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001;
Grainger & Jacobs, 1996; Harm & Seidenberg, 2004;
Perry, Ziegler, & Zorzi, 2007; Plaut, McClelland, Sei-
denberg, & Patterson, 1996; Seidenberg & McClelland,
1989). The fine-grained precision of these models has led
to the development of so-called computational models of
reading that can generate precise quantitative predictions.
As a consequence, by making fine-grained assumptions
about the cognitive architecture of visual word recogni-
tion, theorists have also remarkably increased the resolu-
tion of theoretical predictions.

This progress in theory has been accompanied by a
corresponding gain of precision for empirical data. In a
seminal study, Spieler and Balota (1997) asked 31 partici-
pants to read aloud a list of 2,870 English monosyllabic
words and compared the mean naming latency for each
item with the predictions of two computational models of
word reading (i.e., Plaut et al., 1996; Seidenberg & Mc-

Clelland, 1989). The results were somewhat surprising,
since both of these models accounted for only a small
amount of the item variance (3.3% for Plaut et al.’s model,
10.1% for Seidenberg and McClelland’s). Spieler and Ba-
lota also noticed that the models explained the amount of
variance less well than did the linear combination of three
simple linguistic predictors: log frequency, word length,
and neighborhood density (which accounted for 21.7%
of the variance). Finally, when variables related to onset
phonemes were added to the analysis, the simple predic-
tors were able to account for 42% of the item variance.
Item-level data therefore seem to provide a critical test for
computational models of reading.

Seidenberg and Plaut (1998) claimed, however, that
two reasons might explain the relatively low item vari-
ance accounted for by these models. First, item means
are affected by several factors that are not addressed by
these models. For example, they do not specify the pro-
cesses involved in letter recognition or in the production
of articulatory output. Balota and Spieler (1998) noticed,
however, that the performance of these models remains
surprisingly weak, since they fail to explain more vari-
ance than do three simple predictors (i.e., log frequency,
word length, and neighborhood density) that are, in prin-
ciple, captured by these models. Their second, and prob-
ably more critical, argument is based on the fact that item
data include a substantial amount of error variance. The
question is how substantial this amount of error variance
is. Comparing Spieler and Balota’s database with a simi-
lar database recorded by Seidenberg and Waters (1989),!
they found a .54 correlation between item latencies in the
two databases. This relatively low correlation indicates
that a large amount of the variance in one database is
absent from the other.

In the present study, in line with Seidenberg and Plaut’s
(1998) criticism, we address the issue of error variance
in item databases (for a similar approach, see Rouder &
Lu, 2005). More specifically, we propose practical solu-
tions to estimate the amount of error variance as a func-
tion of the number of participants. Increasing the number
of participants obviously decreases the amount of error
variance (related to noise) while preserving the amount
of reproducible variance (related to items). This outcome
might appear trivial, but, paradoxically, none of the exist-
ing databases has seriously considered this issue.

In the next sections, we first provide a simple analy-
sis of this problem. Second, we present a new empirical
database consisting of the word identification scores of
140 participants on 120 words, and we use it to quanti-
tatively estimate the amount of variance that should be
accounted for as a function of the number of participants.
Then, we propose a method to estimate the amount of re-
producible variance from any database, and we give an
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example. Finally, we show that an increase in reproducible
variance is accompanied by the detection of new sources
of variance.

Problem Analysis

Let / be a population of items, let P be a population of
participants, and let x be an experimental measure (e.g.,
response time) on / X P. The usual additive decomposi-
tion model is

x=u+ta+p-+e, (1.0)

where u is the mean value of x on / X P and a, 3, and ¢ are
three independent random variables with mean 0 and vari-
ance 02, o/%, and 02, respectively.2 The variable a is the par-
ticipant effect, which takes a constant value for each given
participant; j is the item effect, which takes a constant
value for each given item; ¢ is considered as random noise.
It is clear that the variable 3, whose values characterize the
items, is the variable of interest in this study.

One can derive from x another measure, denoted x(",
which is the arithmetic mean of x over n randomly selected
distinct participants, and then obtain from Equation 1.0
the following decomposition:

xM =pu+ at + f + &0, (1.1)

where the random variables a®), 5, and ¢® are always
independent with 0 means, but their variances are now
oi/n, a/%, and o%/n, respectively. When n increases, the
contributions of a( and &® to the variance of x clearly
decrease. These reductions in the amounts of variance re-
lated to participants and noise lead to an increase in the
amount of reproducible variance related to items.

One way to estimate the evolution of reproducible vari-
ance as a function of the number of participants is to com-
pare two independent realizations of x(. The amount of
variance that is common to these two groups provides a
good estimate of the total amount of reproducible vari-
ance, and it can be estimated by the squared correlation
between two independent groups of » participants. Start-
ing from Equation 1.1, a simple derivation, which is stated
in Appendix A, leads to the following equations, which re-
late the population correlation coefficient 7 to the number
of participants z and to the ratio between o} and o2.

To simplify the notation, one can define the ratio

_%
q - 2
O (2.0)
so that the correlation between two independent realiza-
tions of x( is

p=—"1
ng+1’ 2.1)
which implies that
g=—P
n(l-p) (2.2)
and also that
q(1-p) (2.3)

Clearly, given any two of the three quantities p, ¢, and
n, one can easily find the third.

In practice, one does not know the population parameters
(p or q), and one must estimate at least one of them from a
finite sample of the measure x on a sample of m items by n
participants. As we shall see below, in the sections on esti-
mation with large and small samples, the sample of x can
be used to estimate p by means of Pearson’s 7 correlation
statistic.> Before this discussion, we present the experi-
mental data that will be used to calculate the estimates.

The Database

The present database has two primary characteristics.
First, it was collected using a standard perceptual iden-
tification task, the luminance-increasing paradigm (Rey,
Jacobs, Schmidt-Weigand, & Ziegler, 1998; Rey & Schil-
ler, 2005). As in most perceptual identification paradigms,
participants generate a simple motor response as soon as
they have identified a target stimulus. This experimental
procedure therefore simplifies the model-to-data connec-
tion, since it can be assumed that word identification times
can be directly compared with word identification laten-
cies in a localist connectionist model like that of Grainger
and Jacobs (1996). Second, 140 participants were recorded
in this experiment. This large number makes it possible to
estimate the amount of error variance in item mean la-
tencies by comparing independent groups of participants
consisting of 20, 30, . . ., up to 70 participants.

Participants. One hundred forty-four undergraduate
students at Arizona State University participated in the
experiment in partial fulfillment of a course requirement.*
All of them were native English speakers and had normal
or corrected-to-normal vision.

Stimuli. The words used in the experiment were a
random sample of 120 monosyllabic, five-letter English
words taken from a list of all monosyllabic five-letter
words reported in the CELEX lexical database (Baayen,
Piepenbrock, & van Rijn, 1993). The random selection
was applied to provide a representative distribution for a
maximum number of statistical word features.

Procedure. The experiment was run on an IBM PC 486
DX2 computer.> The stimulus words were typed in lower-
case using letters created from table zero of the computer
BIOS, in which each letter is defined in an 8 X 14 pixel
matrix. To obtain a progressive increase in bottom-up
information, the screen contrast was set to its maximum
value. The background therefore was as dark as possible,
and the stimulus luminance was as bright as possible. The
experiment was done in a dark room lit only by a lamp
placed behind the participants, to keep the keyboard vis-
ible without causing reflections on the screen.

The participants were seated 50 cm in front of the com-
puter screen. The experiment started with a training ses-
sion in which 6 of the 12 training items were presented.
Data recording began with the 6 remaining training items,
and, without transition, the 120 experimental trials were
presented in a randomized order for each participant. Each
trial began with a 1-sec presentation of a fixation mark
(“+7) in the center of the screen, which was replaced im-
mediately by the target word. However, the target word
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was initially written in black, just like the background,
and so remained invisible to the participants. By incre-
menting the value of one of the RGB (red, green, blue)
counters every 100 msec, the luminance of the target word
increased progressively. Every counter was initially set
to 0. After 100 msec, the red counter was set to 1 (with
the green and blue counters remaining at 0). After an-
other cycle (i.e., 200 msec after stimulus presentation),
RGB was set to 1-1-0, then to 1-1-1 after three cycles,
to 2—1-1 after four, and so forth. As soon as the partici-
pants could identify the target word, they interrupted the
luminance-increasing process by pressing the space bar.
Immediately after this response, the item was replaced by
a pattern mask #####, which contained two more # char-
acters than there were letters in the target word. Finally,
the participants had to type in the word they had seen and
press “return” to start the next trial. The screen remained
black for 500 msec before the fixation point appeared
again. For each trial, the response time was recorded as
the time between the onset of the luminance-increasing
procedure and the pressing of the space bar. The partici-
pants were told to concentrate on accuracy rather than on
speed. Each experimental pass lasted about 25 min.

Results. After correcting obvious typing errors, 467
errors (2.7% of the data) remained. Four participants pro-
duced more than 10% errors and were excluded for this
reason from further analysis. A trimming procedure ex-
cluded response times more than three standard deviations
above and below a participant’s mean (0.9% of the data).
The resulting database was composed of 120 (words) X
140 (participants) word identification times, which in-
cluded about 4% missing data.

Estimating the Amount of Reproducible Variance

Using this database of 120 items X 140 participants,
it is now possible to estimate parameter ¢ from Equation
2.1 by conducting a Monte Carlo study in the following
way. Among the 140 participants, we randomly selected
two independent, equally sized groups. Item means for
each group were calculated, and correlation coefficients
(r) were computed between the two groups on these item
means. This procedure was repeated 1,000 times and for
various group sizes (i.e., for 1, 5, 10, 15, . . ., 70 partici-
pants per group) to generate distributions of  (i.e., 1,000
correlations for each group size).

To test model validity, we computed the ¢ value (Equa-
tion 2.1) that minimizes the standard prediction error of the
observed correlations. One can easily obtain a first approx-
imation of g—say, ¢o—by applying Equation 2.2 (in which
one replaces p with r) to the mean correlation observed for
each group size, and then averaging all resulting ¢ values.
In the present case, we obtained g, = 0.0618. This first
approximation was used as the starting point for a local
search (MATLAB fminsearch procedure) to minimize the
standard prediction error (i.e., the square root of the mean
quadratic error). The obtained result was ¢ = 0.0607, pro-
viding a standard prediction error of 0.0044. Figure 1 shows
the mean observed correlations (with standard deviations)
and the correlations predicted by Equation 2.1 (using the ¢

value above) as functions of the number of participants per
group. The result is that the predicted values are practically
indistinguishable from the observed ones.

Using the ¢ value above with Equations 2.1 and 2.3, one
can now calculate the amount of reproducible variance ob-
tained with a database composed of # participants, or the
number of participants who are engaged in an experiment,
in order to obtain a given amount of reproducible variance.
For instance, using Equation 2.1 with ¢ = 0.0607 and n =
140, one obtains » = .89, which means that by averaging
the data of the 140 participants, one obtains an item data
vector with 80% reproducible variance. Similarly, if one
desires 90% reproducible variance, the corresponding 7 is
V0.9 = .9487, and via Equation 2.3, one finds that about
304 participants would be required.

Now, it is clear that another experiment, using a dif-
ferent task and different experimental conditions, would
probably provide a different value for g. However, we can
say that any experimental variable that conforms to the
additive decomposition model (Equation 1.0) necessar-
ily conforms to Equations 2.1-2.3, with an appropriate
q value.®

Practical Method for
Small Samples of Participants

The method used in the previous section is suitable for
large samples of participants. However, experimenters
commonly use participant samples of only 20—40. Thus,
there is clearly a need to develop practical methods to esti-
mate the percentage of variance that is reproducible when
the number of participants is not large.

The proposed solution is similar to the one adopted in
the section above, and it uses a Monte Carlo approach,
which has the advantage of being distribution-free, thus
avoiding the need for unverifiable hypotheses concerning
the Gaussian nature of the variables. The principle used
here is permutation resampling (Good, 1994; Opdyke,
2003). We describe this method hereafter and, in Appen-
dix B, show an implementation in MATLAB code that is
easy to use in practice. We then provide a model for the
implementation details.

Given a data table of m items X n participants, first
choose a group size n, that is the greatest integer such
that n, = n/2. Then, randomly sample two independent
groups of n, participants, calculate item means for each
group, and compute the correlation coefficients » between
the resulting item means. When this has been repeated
T times, one can sort the obtained r values in increasing
order and easily find in this array the limits for any chosen
confidence level. However, the obtained r estimates con-
cern samples of n, participants. To obtain the correspond-
ing estimates for the whole sample of n participants, one
can compute the g values corresponding to the obtained r
values by using Equation 2.2, with n, as the sample size
parameter, and then use Equation 2.1 to compute the »
values corresponding to the ¢ values with sample size n.
As for the choice of 7, 7> 1,900 provides precise enough
estimates for most applications (Opdyke, 2003), so one
canuse 7 = 2,000.

167



NOTES AND COMMENT 603

Standard Prediction Error =

0.0044411, with g = 0.060742
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Figure 1. Means (with error bars for standard deviations) of the observed correlation
coefficient distributions, with the predicted correlations (Equation 2.1), as a function of the

number of participants per group.

To test the above method, we randomly selected from
our database 14 subsamples whose size (n) varied from
10 to 140 participants (in steps of 10). The permutation
resampling procedure (the function permugqr listed in Ap-
pendix B) was applied to each subsample, using a 95%
confidence interval. Figure 2 shows the obtained mean r
values, with confidence limits, as a function of the num-
ber of selected participants. Also plotted are the » values
corresponding to the reference value ¢ = 0.0607 (the best
estimate of ¢ for the whole database). As the figure shows,
the estimates vary randomly in the neighborhood of the
reference values, and they closely converge to these values
as the number of participants increases. In these examples,
the reference values were always within the 95% confi-
dence interval provided by the method. We performed 25
independent replications of this experiment, correspond-
ing to a total of 350 tests of the procedure. Globally, the
reference values fell outside the 95% confidence interval
only 8 times (and always for n = 40). This frequency of
about .02 is smaller than, but not too far from, the ex-
pected .05 risk.

These observations suggest that the mean 7 is a reli-
able estimate for n = 100. However, for small samples of
participants, it is better to use the lower limit of the 90%
confidence interval—that is, the quantile of probability
.05, hereafter denoted (.05)—and then to provide the
user with a statement in the form Prob[r > r(.05)] = .95.

We rapidly illustrate this approach using the MAT-
LAB function permugr, listed in Appendix B. First, we

randomly selected a sample of 30 participants from our
database; the resulting data table was named RT30. Then
we applied the permugqr function as follows,

[q, confq, 1, confr, ndr] = permuqr(RT30, 0, 0.90),
obtaining the output

q = 0.0713, confq = [0.0523; 0.0968], r = .6814,
confr = [0.6106; 0.7439].

As we can see in this example, the ¢ parameter was over-
estimated; however, the reference value (0.0607) is within
the 90% confidence interval. The lower confidence limit of
ris .6106, so one can state: Prob(r > .6106) = .95. In other
words, one can guarantee with 95% confidence that the re-
producible percentage of item variance in the sample aver-
age vector is greater than 37.27%. This tells us that a model
that accounts for about 40% of item variance, given this
sample of 30 participants, is reasonably good in terms of its
performance predictions. In a similar way, we can consider
the upper confidence limit of »—that is, .7439—and state
that Prob(r < .7439) = .95. In other words, a model that
accounts for more than 55.34% of the item variance (in our
example) probably overfits the data by using too many free
parameters, and thus actually accounts for a substantial part
of the random noise.

Increasing the Amount of Reproducible Variance
If we assume that the amount of reproducible variance
in naming with 30 participants is close to the value ob-
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Permutation Resampling:r

- Reference r

—&— Meanr -
—#- Lower Cl:95%
-4~ Upper Cl:95%

0 I
0 50

100 150

Total Number of Participants

Figure 2. Mean and 95% confidence limits of the permutation resampling r distribution
as a function of the total number of participants. The reference r values correspond to g =

0.0607.

tained in the present perceptual identification task (i.e.,
around 40%), cognitive modelers may come up against a
critical problem. Indeed, we have already mentioned that
Spieler and Balota (1997) reported that phonemic features,
together with word frequency, neighborhood density, and
length, accounted for 42% of the variance of item-naming
latencies. Similarly, Perry et al. (2007), when testing the
CDP+ model against the same item databases, were able
to account for a similar amount of variance. From these
results, one might conclude that psycholinguistic research
has fully solved the problem of visual word recognition
processes, since all of the reproducible variance at the
level of items has been accounted for. The only remain-
ing debate would concern the format of the explanation:
Should we prefer a simple, linear model description or a
sophisticated computational account?

A solution to this potential dilemma would be to in-
crease the amount of reproducible variance by simply re-
cording the performance of more participants. However,
although the reproducible variance would then increase,
the amount of variance explained by the linear or the com-
putational model could likewise increase. If, by increasing
the number of participants, one obtains 60% of the repro-
ducible variance at the level of items, the linear model
might also account for about 60% of the variance, and
this result would probably mark the end of psycholinguis-
tic research. Alternatively, as the amount of reproducible
variance increases, other sources of variance might also

become visible, such as variance related to morphologi-
cal, syntactic, or semantic processes. This second, more
optimistic outcome would then open the race for a new
generation of more sophisticated models.

To determine which of these two outcomes is the cor-
rect one, we used the Monte Carlo study described above,
in which mean item latencies were calculated for different
sizes of participant groups. We then systematically cor-
related these item means to the log frequency of items.
Figure 3 displays the evolution of correlation coefficients
as a function of the number of participants per group when
independent groups are compared (i.e., for estimating the
amount of reproducible variance) and when item means
are correlated with the log frequency.

The result is that an increase in the amount of repro-
ducible variance is not accompanied by a proportional
increase in the variance explained by log frequency. For
example, with groups of 30 participants, on average 41%
of the variance is reproducible, and 18% of the item vari-
ance is accounted for by log frequency. With groups of
70 participants, these values are now 66% and 23%, re-
spectively. Thus, when increasing from 30 to 70 partici-
pants, an increase of 25% is observed in the reproducible
variance, whereas an increase of only 5% is obtained in
the variance accounted for by log frequency. This result
suggests that the increase in reproducible variance allows
for capturing new sources of variance that were initially
not visible.
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Figure 3. Means (with error bars for standard deviations) of correlations between indepen-
dent groups composed of 570 participants (line with black squares) and between item means,
computed for groups of 5-70 participants, and log frequency (line with white circles).

Discussion

Starting with a mathematical description of the reliabil-
ity of item-level databases, we have proposed a method
of estimating the amount of variance that models should
account for when they are tested against a database with n
participants. When # is sufficiently large (i.e., larger than
100), we have shown that the function relating the amount
of reproducible variance and the number of participants in
a given experimental paradigm can be approximated pre-
cisely. When # is relatively small, calculating confidence
intervals using a permutation resampling method is still
possible and is useful for estimating the boundaries of the
amount of reproducible variance.

Following Balota and Spieler (1998) and Seidenberg
and Plaut (1998), the present study provides new argu-
ments concerning the amount of variance that models
should account for. The main result concerns the relation
between reproducible variance and the total number of
participants involved in the computation of item means.
On the basis of a common statistical model, we can con-
fidently state that the present set of item mean response
times (computed on the basis of the performance of 140
participants and recorded in this specific experimental
setup?’) is composed of 80% reproducible variance and
20% error variance. This information is of major impor-
tance, because one can now clearly evaluate the descrip-
tive adequacy of computational models and the amount of

variance that a given hypothesized cognitive architecture
can account for.8

Conclusion

One can assume that the interaction between a given
word, characterized by a set of properties (e.g., visual,
phonological, or semantic), and the population of adult
readers (supposed to share a similar cognitive architec-
ture for processing written words) can be quantified by a
measure of the processing time required to read the word
in a given experimental situation. Likewise, if one con-
siders a list of such words, it is a priori possible to rank
those words according to their processing time and to
evaluate the ability of computational models to reproduce
this ranking. Using this item-level ranking might be mis-
leading, however, if intra-item variability is greater than
between-item variability. In this case, item-level databases
only reflect general trends, and the fine-grained ranking
of items remains hidden in an undesirable source of error
variance.

The aim of the present study was to quantify the re-
spective amounts of reproducible and error variance to
determine the amount of variance that models should ac-
count for in item-level databases. The methodology we
presented offers such quantification, together with practi-
cal solutions for estimating the amount of reproducible
variance for any database. The conclusion is that collect-
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ing large-scale databases composed of both many items
and many participants will provide genuine challenges
to future generations of computational models of word
recognition.
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NOTES

1. In this study, 30 McGill University undergraduates named aloud
2,900 monosyllabic English words.

2. Itis not necessary to assume that the random variables are Gaussian,
but one can assume that the variances are finite and that 02 > 0.

3. Indeed, if an m-dimensional vector B is hypothesized to be an ap-
proximation of 3 (or of any affine function of ) for the item set under
consideration, a common procedure consists of averaging the n columns
of the data table and comparing the resulting m-dimensional vector to
B by means of Pearson’s r statistic. However, even if B = f, there is no
chance that » = 1, because of the data random variance. In the best case,
one could expect a correlation on the order of p, as defined by Equation
2.1, given that r is known to be a consistent asymptotically unbiased
estimator of p (Zimmerman, Zumbo, & Williams, 2003).

4. We are indebted to Guy Van Orden, who allowed one of us to run
the experiment in his laboratory.

5. We thank David Chesnet and Jonathan Grainger for providing us
with the computer program to implement the luminance-increasing
procedure.

6. This is visibly the case for our data, and note that the additive de-
composition model has for many years been the most commonly used
model for the analysis of experimental data (usually with the additional
assumption that the variables are Gaussian or conform to the conditions
of the central-limit theorem). If this model is grossly false for common
experimental tasks and variables, this is a serious problem that greatly
exceeds the focus of the present study.

7. Although the estimations generated with the present database
provide a concrete example of estimating the amount of reproducible
variance from any database having either a small or a large sample,
such estimations may vary greatly from one database to another. Nota-
bly, there might be important differences between experimental para-
digms (e.g., perceptual identification vs. naming), and the estimations
given here therefore cannot generalize from one experimental setup
to another.

8. This does not mean that models cannot handle error variance. So-
lutions have been proposed in which error variance or noise could be
simulated by adding, for example, a variable response mechanism based
on anormally distributed parameter (see, e.g., Grainger & Jacobs, 1996).
Here, we simply wish to dissociate the modeling of reading processes,
which can theoretically be considered as free of error variance, from the
addition of noise within cognitive models. One may, however, argue that
modeling should necessarily incorporate the presence of noise in the
studied systems.

171



NOTES AND COMMENT

607

APPENDIX A

Let us consider the bivariate distribution of pairs (X, Y), where X and Y are independent realizations of x(");
that is, the » participants are never the same for X and for Y. The population correlation between X and Y, vary-

ing the items, is given by
p(X,Y)=Cov(X,Y)/\Var(X)Var(Y),
where, using Equation 1.1, one has
Cov(X,Y)= Cov(ﬂ +el, B+ 85,")) = Var(fB) = Gé,

because the terms that are constant with respect to the item variable (« and a() play no role in the correlation,
and the variables S, s(X”), and s(,’}) are independent.
For the same reasons, one has also

Var(X) = Var(B+€}’) = Var(B) + Var(e{?)) = o} + 62 /n,

and similarly,
Var(Y) = Var(ﬂ + sg,")) = Var(B) + Var(sg,")) = 0'123 + Gg/n.

Thus, finally,
2 2 2
o5 _ noy/o; '
0'123+0'§/n no[z;/0'§+1

p(x.Y)=

Not surprisingly, the expression above is similar to that of an intraclass correlation coefficient.

APPENDIX B

Here is MATLAB code of the permuqr function, which provides expected ¢ and r values, with confidence
intervals of chosen probabilities confp, from a data table x. For ease of reading, structural coding is set in bold-
face and comments in italics.

function [q,confq,r,confr,ndr] = permuqr(x,missing,confp,dr)
% Permutation Resampling to estimate q, 1, and confidence
% intervals of given probabilities “confp” (row vector),

% from the m-items by n-participants data table x,

% where “missing” is the code for missing data in x.

% The first (second) row of “confq” corresponds to the

% lower (upper) confidence limit(s), similarly for “confr.”
% An optional desired r (dr) provides the necessary n (ndr)
% r"\2 is the reproducible proportion of item variance when
% one averages the n columns of x.

resample = 2000; % T > 1900 (see Opdyke, 2003)

[m,n] = size(x); confp = 1-confp; % Proba to alpha

ng = fix(n/2); % Number of participants per group

rt = zeros(resample, 1);

for t = 1:resample

ok = false;

while ~ok

xp = x(:,randperm(n)); % Random participant permutation
ngl = zeros(m,1); mgl =ngl; ng2 =ngl; mg2 =ngl;
fori=1m

for j = l:ng % First group

if xp(i,j) ~ = missing

ngl(i) = ngl(i) + 1; mg1(i) = mgl () + xp(i,});

end

end

for j = (ng + 1):(2*ng) % Second group

if xp(i,j) ~ = missing

ng2(i) = ng2(i) + 1; mg2(i) = mg2(i) + xp(i.j);

end

end

end

if (min(ngl) > 0) && (min(ng2) > 0), ok = true; end

end

mgl =mgl./ngl; mg2 = mg2./ng2;
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APPENDIX B (Continued)

rr = corrcoef([mgl, mg2]); rt(t) = rr(1,2);

end

q = rn2q(mean(rt),ng); r = qn2r(q,n); rt = sort(rt);
nconf = length(confp); confindex = zeros(2,nconf);
confindex(1,:) = round(resample*confp/2) + 1;
confindex(2,:) = round(resample*(1-confp/2));

confq = rn2q(rt(confindex),ng); confr = qn2r(confq,n);
if nargin = =4, ndr = round(qr2n(q,dr)); else ndr = []; end
function q = rn2q(r,n) % Provides q given r and n
q=r/(n.*(1-r));

function r = qn2r(q,n) % Provides r given q and n
r=(n.*q)./(n.*q+ 1);

function n = qr2n(q,r) % Provides n given q and r
n=r./(q.*(1-1));

(Manuscript received September 10, 2007;
revision accepted for publication January 23, 2009.)
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Introduction

Theoretical models of perceptual and cognitive processing
are commonly able to provide quantitative performance
predictions at the item level. For instance, in the field of
visual word recognition, recent models of reading are able
to predict response times to individual word stimuli (the
items) in various tasks, such as lexical decision, word
naming or word identification (Coltheart, Rastle, Perry,
Langdon, & Ziegler, 2001; Perry, Ziegler, & Zorzi, 2007,
2010; Plaut, McClelland, Seidenberg, & Patterson, 1996;
Seidenberg & McClelland, 1989). Empirical databases have
been collected to test these theoretical predictions at the
item level, which in several cases resulted in disappointing
outcomes: the tested models accounted only for a small
amount of empirical item variance (Balota & Spieler, 1998;
Seidenberg & Plaut, 1998; Spieler & Balota, 1997). This
can result from the fact that the tested models are erroneous
or incomplete; however, another possibility is that the
empirical data are not accurate enough to allow good fits of
plausible models, and we miss methods to make clear
conclusions on these two points. In fact, it has recently been
shown that the amount of reproducible variance of word
identification times is related to the number of participants
used in the data collection by a simple law having the form
of an intraclass correlation coefficient (Rey, Courrieu,
Schmidt-Weigand, & Jacobs, 2009). This constitutes a
suitable reference for testing item-level performance
models, provided we can be sure that the considered
empirical data set actually fulfils the above-mentioned
law. The main purpose of this paper is to provide an
efficient test of this statistical model for every item level
data set, to show that this statistical model actually
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applies to widely used behavioural measures, and to
show how to use validated correlation statistics to test
model predictions. This widely extends the prior work
of Rey et al., (2009) and provides a complete method-
ology to test item performance models on empirical
databases.

In order to test a model, one usually collects empirical
data to be compared to the corresponding model
predictions, and one optimizes the free parameters (if
any) of the model in order to minimise the prediction
error or to optimise some "goodness of fit" measure. At
this point, one must judge (a) whether the considered
model suitably accounts for the data or not, and (b)
whether this model must be preferred or not to other
concurrent models. Point (b) is called "model selection",
and it has been widely studied in the literature (Akaike,
1974; Hannan & Quinn, 1979; Hansen & Yu, 2001; Kass
& Raftery, 1995; Myung, Pitt, & Kim, 2005; Pitt &
Myung, 2002; Rissanen, 1996; Schwarz, 1978). Note,
however, that an answer to point (b) does not necessarily
imply a similar answer to point (a), and surprisingly, this
last point has been almost completely neglected in the
literature, leading to difficulties in interpreting a number
of results (e.g. Spieler & Balota, 1997). There are two
ways for a model fit to be bad: it can be "under-fitting" or
"over-fitting". Under-fitting results in a large prediction
error and is generated by erroneous or incomplete models.
Over-fitting is more insidious because it results in a small
prediction error for the current data, but the model is not
able to generalise suitably, and the results are poorly
reproducible. This is a well-known consequence of using
too many free parameters in a model to fit the empirical
data in such a way that the model encodes a substantial
part of the data random noise instead of capturing
essentially the data regularities. This is why usual model
selection criteria such as the Akaike Information Criterion,
abbreviated AIC (Akaike, 1974), or the Bayesian Information
Criterion, abbreviated BIC (Schwarz, 1978), require opti-
mising a compromise between the goodness of fit (maximum
log-likelihood, for these criteria) and the number of free
parameters in the model. However, none of these model
selection criteria allows us to detect under-fits or over-fits;
they just indicate a "winner" in a given set of competing
models.

For few years, considerable efforts have been devoted to
collecting and developing large-scale databases that provide
behavioural measures at the item level. Each item measure
is usually based on an average over a number of
participants. For instance, this is the case in the recent
English and French Lexicon Projects (Balota, Yap, Cortese,
Hutchison, Kessler, Loftis, Neely, Nelson, Simpson, &
Treiman, 2007; Ferrand, New, Brysbaert, Keuleers, Bonin,
M¢éot, Augustinova, & Pallier, 2010), which allow researchers
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to test various hypotheses and reading models on large sets
of empirical data. Building factorial designs on such data is
quite easy; however, testing item-level performance models
remains problematic because one does not know what can be
considered as a good model fit for these data. A solution to
this problem would be to provide, together with the
behavioural measures, some reference "goodness of fit"
measure with suitable under-fitting and over-fitting limits.
This is the ultimate goal of this work, and the Matlab
program named "ECVT" (for "Expected Correlation Validity
Test") listed in Appendix A provides an operational solution
to the problem, together with an efficient test of the validity
of the adopted approach for the data set to be processed.
Matlab users can directly copy the code in their Matlab
editor and use it, while the listed code can also serve as an
implementation model for other platforms. Comments in the
code (at right of "%") provide indications for the use of the
program, as well as for the actions of its various parts. The
reader will also find in Appendix B an example of how to
use the ECVT program with helpful comments.

Hereafter, we describe the methods implemented in the
ECVT program, we evaluate their efficiency and perfor-
mance on artificial data, and we test their relevance on three
real databases of word identification and word naming
times. In “Population model”, we present the adopted
population model and we derive theoretical correlation
functions. In “Correlation estimates”, we present statistics
suitable to estimate the useful correlations. In “Expected
correlation validation test”, we present a test to validate
(or invalidate) the population model and derived correla-
tions for a given data set. In “Testing the test”, we
demonstrate the efficiency and effectiveness of this test on
artificial data sets. In “Testing real response time
databases”, we validate the approach on three real
behavioural databases. In “Testing regression models on
simulated data”, we demonstrate the use and performance
of the new tool to test models. Finally, we consider recent
examples of reading model fits and we conclude in
“Discussion and conclusion”.

Population model

In this section, we first define a statistical model of the
behavioural measures we plan to account for. As we shall
see, this is just an additive decomposition model commonly
used for continuous variables (Behavioural variable model).
From this model, we then derive a measure of the
proportion of item variance that is not random, that is, the
proportion of item variance that a perfect model should
account for. As we shall see, this derivation results in a
well-known intraclass correlation coefficient, commonly
abbreviated ICC (Item performance correlation between
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equal size samples of participants). Finally, we define
models' fitting measures that suitably compare to the ICC,
and there are mainly two distinct kinds of models with
different appropriate fitting measures (Item performance
correlation between observed and simulated data and Item
performance correlation between a sample of participants
and a predictor).

Behavioural variable model

Let I be a population of items, let P be a population of
participants, and let X be a behavioural measure on / x P
(e.g. response time). One assumes that X conforms to the
usual additive decomposition model:

X=u+a+p+e, (1)

where g is the mean value of X on I x P, and «, (3, and ¢
are three independent random variables of mean zero, and
of variance O'i, o%, and 0'2, respectively. The variable « is
the participant effect, and it takes a constant value for
each given participant. The variable 3 is the item effect,
and it takes a constant value for each given item. The
variable ¢ is considered as a random noise; however, it can
as well result from the combination of an item-participant
interaction and of a true random noise. The variable [,
whose values characterise the items, is the variable of
interest in this study.

One can derive from X another measure, denoted X(”),
that is the arithmetic mean of X over n randomly selected
distinct participants (thus X"’ = X); then one obtains from
(1) the following decomposition:

X(") =u + a(") +'B + 5(”), (2)

where the random variables o, 3, and £™ are always
independent with means zero, but their variances are now
o’ /n, 0'123, and o /n, respectively.

Item performance correlation between equal size samples
of participants

Consider now the bivariate distribution of pairs (x, y),
where x and y are independent realisations of X”. Then the
population correlation between x and y, varying the items, is
given by:

p(x,y) = Cov(x,y)/(Var(x)Var(y))"?,
where, using (2), one has:
Cov(x,y) = Cov(B+ £, B+ 6)(/")) = Var(B) = 0',%.,

because the terms that are constant with respect to the item
variable (¢ and a™) play no role in the correlation, and the
variables 3, e, and gﬁ") are independent.

For the same reasons, one has also:
Var(x) = Var(p + ") = Var() + Var(e™) = 0-123 + 02 /n,

and similarly:

Var(y) = Var(B + 5£”>) = Var(B) + Var(sﬁ")) = 6/23 +o2/n.

Thus, finally,
53) = -2 ©)
PRI = o +o2/n

One can recognise in (3) the expression of a well-know
intraclass correlation coefficient (ICC), that is the "ICC(C,
k), Cases 2 and 2A" coefficient, according to the nomen-
clature of McGraw and Wong (1996). To simplify the

notation, it is convenient to define the ratio:
2,2
q= aﬂ/ 057 (4)

so that the correlation between two independent realizations
of X is:

; (5)

which implies that:

P
=—r _ 6
00 =p) ©)
and also that:
P
n=——, 7
q(1—p) )

which are convenient formulas for finding a parameter
when one knows the two other ones, usually replacing ¢ an
p by their estimates.

The ICC therefore provides, for a given dataset, a
reference correlation value for model tests. As described
in the following sections, a distinction has to be made,
however, between two modelling approachesthat are both
designed to account for item variance. In a first approach
(Item performance correlation between observed and
simulated data), one considers theoretical item performance
as generated by full simulation models able to simulate
participant variability (very rare to date, but probably
available in a near future), while in the second approach
(Item performance correlation between a sample of
participants and a predictor), one provides an account
of theoretical item performance as generated by predic-
tors, as in multiple regression approaches (e.g., Spicler &
Balota, 1997; Yap & Balota, 2009). Note that recent
simulation models are in fact used as simple predictors
(e.g., Perry et al. 2010).
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Item performance correlation between observed
and simulated data

Consider now a variable ¥, that could be generated, for
instance, by a full simulation model, and that is affinely
related to X by:

V=aX+b (8)
where a # 0, and b are two real numbers. Then one has:
v = aX™ + b = (ap + b) + aa™ + ap + ac"™.

Let x be a realization of X, and let v be an independent
realization of ™). Then, there is a realization y of X such
that v = ay + b, and:

p(x,v) = Cov(x,v)/(Var(x)Var(v))'/?

= aCov(x,y)/(Var(x)a*Var(y))'/?

= sign(a)p(x,y), 9)
and thus:
(10)

In other words, if a simulation model generates data that
fulfil (8), then one can expect that groups of simulated
participants provide mean item performance values whose
absolute correlation with those of human participant groups
of the same size (n) is given by (3)—(5).

lo(x,v)| = p(x,y).

Item performance correlation between a sample
of participants and a predictor

Instead of building simulation models whose output fulfils
(8), modellers commonly try to predict the unknown
variable [ that appears in (1), without modelling the
participant effect and the random variability. So, it is of
interest to know what happens if a model generates a
variable B affinely related to 3 by:

B=aB+b, (11)

for some real numbers a # 0, and b. Let x be a realization of
X and let B be defined as in (11), then on has:
Cov(x,B) = Cov(B + E}C'z), af) = a0'l23,

Var(x) = Var(B + ") = Var() + Var({") = oj+02/n,
Var(B) = a* a3,

and thus:
op
1/2
(O‘f; + 02/ n)

(12)

p(x,B) = Cov(x, B)/(Var(x)Var(B))"* = sign(a)

)
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that is:

(13)

where, at new, y represents a realization of X independent
of x. In other words, if a model generates a variable that
fulfils (11), then one can expect that the squared correlation
of this variable with the mean item performance of a group
of n participants is given by (3)—(5). Note that a coefficient
similar to p(x, B) is known in the framework of the
Generalizability Theory as the "Generalizability Coefficient"
(Webb, Shavelson, & Haertel, 2006).

p*(x,B) = p(x,y),

Correlation estimates

In “Population model”, we defined suitable correlations at
the population level. In “Correlation estimates”, we present
practical estimates of these correlations for finite data
samples.

Intraclass correlation coefficient

We consider two distinct methods to estimate the ICC. The
first one is based on the usual analysis of variance
(ANOVA) approach. It is fast and accurate, and provides
reliable confidence limits for the ICC. However, it assumes
that the underlying variables are approximately Gaussian.
The second approach is based on a Monte-Carlo method
known as "Permutation Resampling". It is distribution
free and highly flexible; however, it requires much more
computational effort than the ANOVA approach. We
observed that the ANOVA approach is less sensitive to
missing data than the Permutation Resampling
approach; however, this point will not be developed in
this paper.

ANOVA approach

In practice, one randomly selects a sample of m items in the
item population, a sample of »n participants in the
participant population, and data are collected in the form
of an m X n matrix of behavioural measures (x;),
1<i<m, 1< j <n. A standard analysis of variance
(ANOVA) of this matrix provides three variation sources:

1. The between rows item effect, whose mean square is
denoted MSi, with degrees of freedom dfi = m — 1, and
expected value EMSi = no% + o2

2. The between-columns participant effect, whose mean
square is denoted MSp, with degrees of freedom
dfp = n — 1, and expected value EMSp = mo? + o2.

3. The residual error effect, whose mean square is denoted
MSe, with degrees of freedom dfe = (m — 1)(n — 1),
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and expected value EMSe = 0. More generally, let N
be the total number of available measures in the matrix,
then dfe = N — 1 — dfi — dfp.

Then, it is easy to see that one has an estimate of the ¢
ratio (4) with:

MSi — MSe

14
n MSe (14)

/q\:

and one can estimate the intraclass correlation coefficient
p(x, y) of 3)—(5) by:

~ ng

~ MSi— MSe
ng+1 ’

MSi

(15)

Moreover, the literature provides confidence limits
and test formulas for the intraclass correlation coeffi-
cient (McGraw & Wong, 1996; Shrout & Fleiss, 1979).
The confidence interval of probability 1-a of (15) is
given by:

. Fl—a/2(dﬁa dfe) 1— 1 (16)
Fops ’ Fops X Flfa/Z(dfev dﬁ) '

1

where F,,, = MSi/MSe, and F,(a, b) is the quantile of
probability p of Fisher F' distribution with a (numerator)
and b (denominator) degrees of freedom. Take care to the
reversed order of degrees of freedom for the upper
confidence limit in (16). Note also that, in this context,
« denotes the usual type I error risk (not the participant
effect).

Special approaches of the intraclass correlation have
been developed for the particular case of binary observa-
tions (Ahmed & Shoukri, 2010), which can be useful for
the analysis of accuracy variables, for instance. However, in
this paper, we more particularly focus on continuous
behavioural variables such as reaction times.

Permutation Resampling approach

The analysis stated in “Item performance correlation
between equal size samples of participants” clearly shows
the relation between the intraclass correlation and the
correlation of average vectors. This suggests the possible
use of a Monte-Carlo type method named "Permutation
Resampling" (Opdyke, 2003) to compute the intraclass
correlation coefficient. Despite the computational effort this
method requires, Rey et al. (2009) preferred it because it is
distribution free. Another advantage is the flexibility of this
method in what concerns the number of participants taken
into account, which will allow us to build a useful test in
“Expected correlation validity test” below.
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The Permutation Resampling procedure is as follows.
Given a data table of m items X n participants, first
choose a group size n, < n/2. Then randomly sample two
independent groups of n, participants each, calculate item
means for each group, and compute the correlation
coefficient » between the two resulting vectors of size m.
Repeat this 7 times, then the average of obtained » values
is an estimate of the intraclass correlation coefficient
(ICC) for a data set of n, participants. The larger T is, the
more accurate the estimate. In order to obtain the ICC for
the whole data set with # participants, one uses the average
correlation and n, to obtain an estimate of g by (6), then
one extrapolates the desired ICC using (5) with ¢ and n as
arguments.

Model correlation

There are two cases that must be distinguished, the case of
full simulation models (Item performance correlation
between observed and simulated data) and the case of
predictors (Item performance correlation between a sample
of participants and a predictor). In both cases, human data
are summarized in the form of a m components vector of
mean item performances:

1 n
= — E i
A S I

In the case of a full simulation model, the model
prediction vector is of the form:

1 n .
Vi = — E Vij 1= 1...m
i n j=1 i ’

i=1..m.

(17)

(18)

and if the model data fulfil (8), then one has the null
hypothesis (10), where the estimate p of p(x, y) is given by
(15), and the estimate of p(x, v) is the Pearson » correlation
statistic between the vectors (17) and (18).

In the case of a simple predictor, this one is of the
form:

B=(b), i=1..m, (19)
and if it fulfils (11), then one has the null hypothesis (13),
where the estimate p of p(x, y) is given by (15), and the
estimate of p(x, B) is the Pearson r correlation statistic
between the vectors (17) and (19).

In both cases, the model fit statistic is a powered
absolute correlation of the form |r|, ¢ € {1, 2}, withc =
1 for simulation models and ¢ = 2 for predictors. Under the
null hypothesis (10) or (13), || must belong to the ICC
confidence interval (16) with probability 1-a of this
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interval. If it does not, then one can reject the null
hypothesis (with risk «)) and conclude that the considered
model does not suitably fit the data. Given that the ICC is
the reference correlation value that model fit statistics
must match as closely as possible, we refer to the ICC as
the "Expected Correlation" in this context.

Expected correlation validation test

The validity of the approach developed in “Population
model” and “Correlation estimates” critically depends on
the assumption that the considered behavioural measure
fulfils the additive decomposition model (1), or an
equivalent variant, which leads to the law (3) for the
expected correlation. However, this is not necessarily the
case for every experimental variable, and thus a prior
condition to the use of an expected correlation like the
ICC (15), as a reference value to test models, is that one
can verify that the considered data actually fulfil the
law (3). In order to do this for their word identification
time database, Rey et al. (2009) used a series of
Permutation Resampling procedures, like the one de-
scribed in “Permutation Resampling approach”, with
distinct participant group sizes (n,'s). Then they comput-
ed an estimate of the ¢ ratio that minimized the sum of
squared differences between the observed ICC estimates
and those predicted by (5) for the various selected n,
values. The predicted and observed ICCs, as functions of
the group size, were plotted in order to allow visual
comparison, and the similarity of the two graphs
appeared impressive, leading to the conclusion that the
data suitably fulfilled the expected correlation model (3).
The conclusion was correct in this case; however, visual
appreciation is not always easy and reliable, as will be
shown below. Another available information is the
prediction error measure; however, we do not know the
critical error magnitude  (if any) to reject the model (3)
for the considered data. So, we need a clear and easy to use
test of validity of the expected correlation model (3) for every
item level data set. In fact, such a test can easily be built
using a procedure similar to the one described above, but
where one replaces the prediction error measure by a suitable
statistic whose theoretical distribution is known.

Consider the empirical distribution of T correlation
values generated by Permutation Resampling for a given
group size n, (see Permutation Resampling approach).
This distribution has an average 7y, which is possibly an
estimate of the ICC for n, participants, and its variance is
denoted si,. Let p, be the true, unknown, expected
correlation for group size n,. Given that the sampled
correlation values are independent realizations of the
same bounded random variable (in [-1, 1]), all moments
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of this variable exist, and the Central Limit Theorem does
apply. Thus, as T increases, the average correlation g,
rapidly converges to a normally distributed random
variable of mean p, and of variance sﬁ,/T. This implies
that the random variable T'/?(7, — Pg)/sy is mormally
distributed with mean 0 and variance 1. Now, consider
a series of K independent Permutation Resampling
estimations for K distinct group sizes, then, by definition
of the x> random variable with K degrees of freedom,
one has:

> (re —pg)/sg)2 — 2(K). (20)

If one hypothesises that (3) is valid for the considered
data set, then there is a constant ¢ such that, by (5), one has
the null hypothesis:

Neq
py=—2=

=— =1..K.
neq + 1 &

(1)

The optimal determination of ¢ is the one that minimises
(20), while the pg's in (20) are determined by (21). In
practice, this is easy to obtain using a local search
procedure such as Newton-Raphson iterations for zeroing
the derivative of (20) with respect to ¢. This is implemented
in the Matlab sub-function named "minChi2" listed in
Appendix A. In the ECVT program, one uses 7" = 500,
which was found to provide accurate results with an
acceptable computational effort.

The choice of the series of K group sizes is somewhat
arbitrary, and it is partially constrained by the total number
of available participants (n). In the Matlab program listed in
Appendix A, the series are built in order to obtain K equally
spaced group sizes; while K is as close as possible to 12,
the greatest group size is equal to the greatest integer lower
or equal to n/2, and the lowest group size is minimally
greater than or equal to the group size spacing. Note that
using a very small group size can cause resampling
difficulties in cases where there is a certain amount of
missing data in the data set.

Finally, if the y*(K) value, obtained by (20) in the
conditions described above, is significant, then the null
hypothesis (21) can be rejected (with the chosen risk),
which means that (1) and (3) probably do not provide a
valid model for the considered data.

Testing the test

In order to examine the performance of the test described
in “Expected correlation validation test”, we are going to
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test artificial data sets that fulfil or do not fulfil the
variable model (1) by construction. In order to have an
idea of the discrimination power of the test, it is desirable
that the data can deviate from (1) at various degrees,
including a degree zero, which is simply the conformity to
(1). This can be obtained by generalising (1) in the
following way:
X=u+o+yi+e, (22)
where p, «, and ¢ are defined as in (1), A is the normalised
item effect with mean 0 and variance 1, and y is the
"participant sensitivity" to the item effect. The participant
sensitivity has a fixed value for each participant (as «),
and has global mean ¥ and variance 0'3. In the special case
where 0}2, =0, one obtains (1), with g =7yA. For the
generalised model, it is convenient to define the two
following ratios:

(23)
(24)

uzaf,/az.

Thus, (22) reduces to (1) if u = 0, and, as one can verify,
(3) is valid only in this case.

Fig. 1 Predicted and observed

u = 0: ¥%(12)=9.85, p <0.629

Artificial data tables, of 360 items by 120 participants,
have been generated using (22) with ¢ = 1/16 and four
values of u € {0,1/36,1/16,1/4}. Figure 1 shows four
plots generated by the Matlab function "ECVT" listed in
the Appendix. Each plot compares the series of observed
7g values with the corresponding p, values predicted by
(21) for a given value of u, and the result of the validity
test (20) appears in the title of the plot. As one can see,
the two graphs are confounded, and the test is clearly
non-significant for # = 0. However, for all non-zero
values of u, the test is highly significant, and thus, the
non-conformity of the data to model (1) is detected.
Moreover, one can observe that for u = 1/36, the test
detected the existing difference, while this one is not
visible at the ordinary figure scale. In fact, a very small
difference becomes visible when the figure is enlarged.
This not only suggests that the test (20) is powerful, but
also that visual inspection of graphs is not reliable
enough in this problem. The four experiments of Fig. 1
were repeated 200 times each, and one recorded the
frequency of rejection of the null hypothesis for two
conventional type I error risks (o = 0.01 and a = 0.05)
and for each value of u. As one can see in Table 1, the
frequency of rejection with u = 0 is close to the chosen «
risk, as expected. The frequency of rejection is very high
with u = 1/36, and it is the maximum possible for the two
greatest values of u. So, the validity test (20) is visibly
efficient, and we can use it on real data.

u = 1/36: ¥%(12)=37.43, p <0.0002

mean correlation values (with 1 1
SD bars) as functions of the

number of selected participants 0.8 0.8
per group, in four artificial data

sets (both with 360 items x 120 0.6 0.6
participants, ¢ = 1/16), with = -
different u ratios (0, 1/36, 1/16, 0.4 0.4
1/4). Predicted and observed

functions are not significantly 0.2 0.2
different for u = 0, but they are 0 0
significantly different for all 0 20 40 60 0 20 40 60

non-zero values of u, even in
those cases where the difference
of graphs is just visible

Number of participants per group
u = 1/16: %(12)=109.72, p <0.0001

Number of participants per group
u = 1/4: ¥3(12)=228.05, p <0.0001

0.8

0.6

0.4

0.2

0.8
0.6

0.4

0.2 —x— predicted r

-0~ mean observed r (+SD)
|

0

0
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Table 1 Observed rejection frequencies of the null difference
hypothesis for two « risks (.01 and .05) in the validity test applied
to artificial data sets with different u ratios (0, 1/36, 1/16, 1/4). The
null hypothesis is true in the case u = 0 only. In both cases, the data
sets had 360 items x 120 participants, with ¢ = 1/16, and 200 random
data sets were tested for each u value

u=0 u=1/36 u=1/16 u=1/4
o =0.01 0.020 0.885 1.000 1.000
o« =0.05 0.040 0.960 1.000 1.000

Testing real response time databases

Tests on artificial data allowed us to be sure that our
tools work suitably. Now, a crucial question is to know
whether or not the proposed statistical model actually
applies to real behavioural data. We examine this
question hereafter on three real reaction time databases,
involving two word reading tasks (word identification
and word naming) and two languages (English and
French).

Word identification times from Rey et al., (2009)

This database and methodology details are described
in Rey et al., (2009). It is a set of 120 items by 140
participants’ word identification times, with about 4%
missing data. The stimuli were 120 monosyllabic, five-
letter English printed words, randomly selected in the
Celex lexical database (Baayen, Piepenbrock, & van
Rijn, 1993). The used task was a standard perceptual
identification in a luminance-increasing paradigm (Rey,
Jacobs, Schmidt-Weigand, & Ziegler, 1998; Rey & Schiller,
2005). Participants were undergraduate students at Arizona
State University, native English speakers, with normal or
corrected-to-normal vision.

The data table was given as an argument to the Matlab
function ECVT listed in Appendix A. The output provided
an overall ICC equal to 0.9016, with a 99% confidence
interval of [0.8655, 0.9315]. The correlation fit plot is
shown in Fig. 2, and the test (20) is clearly non-significant
[x*(14) = 8.62, n.s.]. Thus, the correlation model (3)
suitably accounts for these data, and the ICC above is a
reliable expected correlation to test models.

English word naming time
Participants Ninety-four undergraduate students from
Stanford University participated in the experiment. All

participants were native English speakers with normal or
corrected-to-normal vision.
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Stimuli and apparatus Seven hundred seventy English
disyllabic words randomly selected from the Celex Database
were used. The words were four to eight letters long, without
plural forms.

Procedure Each trial started with a fixation point that
was presented for 500 ms on a PC computer screen. It
was immediately followed by a word that appeared in the
middle of the computer screen in font Courier 24. The
word remained on the screen until the participant’s
response. Participants were instructed to read aloud the
target word as quickly and accurately as possible. The
interval between trials was 1,500 ms. Response times
were measured from target onset to the participant’s
response. The experimenter sat behind the participant and
recorded errors and voice key failures. The experiment
started with a training session composed of ten trials.
The experiment then started with test words presented in
a randomized order for each participant with a break
every 150 trials.

The resulting database is a set of 770 items by 94
participants’ word naming times, with 3.61% missing data.
The data table was given as argument to the Matlab
function ECVT listed in Appendix A. The output
provided an overall ICC equal to 0.9261, with a 99%
confidence interval of [0.9160, 0.9355]. The correlation fit
plot is shown in Fig. 3, and the test (20) is clearly non-

Word identification time: x2(14)=8.62, p <0.8546
1 T T T T T T

0.9 4

0.7

0.6 —— predicted r

—O--mean observed r (+SD)

0.4

0.3

0.2

0 L 1 L L L 1 1
0 10 20 30 40 50 60 70

Number of participants per group

Fig. 2 Predicted and observed mean correlation values (with SD bars)
as functions of the number of selected participants per group, in the
English word identification time data set (120 words x 140
participants, 4% missing data), from Rey et al. (2009). The two
functions are not significantly different [x*(14) = 8.62, n.s.]. The
overall ICC is equal to 0.9016, with a 99% confidence interval of
[0.8655, 0.9315]
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English word naming time: x2(1 1)=10.34, p <0.4996

0.8 W i

0.7

—— predicted r 1
-~ mean observed r (+SD)
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0.1 1

0 . . . \ 1 . . . 1 .
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Fig. 3 Predicted and observed mean correlation values (with SD bars)
as functions of the number of selected participants per group, in the
English word naming time data set (770 words x 94 participants,
3.61% missing data). The two functions are not significantly different
[x*(11) = 10.35, n.s.]. The overall ICC is equal to 0.9261, with a 99%
confidence interval of [0.9160, 0.9355]

significant [xz(ll) = 10.35, n.s.]. Thus, the correlation
model (3) suitably accounts for these data, and the ICC
above is a reliable expected correlation to test models.
Details of the above analysis are listed in Appendix B as
an example of use of the ECVT program, with helpful
comments.

French word naming time

Participants One hundred undergraduate students from the
University of Bourgogne participated in this experiment.
All were native French speakers with normal or corrected-
to-normal vision.

Stimuli A list of 615 French disyllabic words randomly
selected from the Brulex Database (Content, Mousty &
Radeau, 1990) was used. The selection was restricted to
four-to-eight letter words and excluded verbs and plural
forms.

Procedure The same procedure as the one in the English
word naming experiment (English word naming time) was
used.

The resulting database is a set of 615 items by 100
participants’ word naming times, with 3.94% missing
data. The data table was given as argument to the
Matlab function ECVT listed in Appendix A. The
output provided an overall ICC equal to 0.9578, with a

99% confidence interval of [0.9513, 0.9638]. The
correlation fit plot is shown in Fig. 4, and the test (20)
is clearly non-significant [x*(12) = 6.60, n.s.]. Thus, the
correlation model (3) suitably accounts for these data,
and the ICC above is a reliable expected correlation to
test models.

As a conclusion to “Testing real response time databases”,
we note that all the examined real data sets seem to fulfil the
variable model (1) and the resulting correlation model (3).
This is not a trivial result, since the generalized variable
model (22), with a non-constant "participant sensitivity" to
the item effect, can a priori seem more plausible.
Fortunately, the obtained results show that very commonly
used behavioural measures such as word identification and
word naming times can be analysed in terms of the
restrictive model (1), and thus, the methodology derived
from (1) to test simulation or regression models can be
applied to these variables.

Testing regression models on simulated data
Simulated Data
In order to build a test problem, one first chooses the

number m of items, the number n of participants, and the
exact number of parameters ko that the data-generating

French word naming time: x2(12)=6.6, p <0.883
1 T T T T T T T T

0.9

—— predicted r

o7l ©--mean observed r (+SD)

0.6

0.4 1

0.3 1

0.2 4

0.1 1

0 . 1 . 1
0 5 10 15 20 25 30 35 40 45 50

Number of participants per group

Fig. 4 Predicted and observed mean correlation values (with SD bars)
as functions of the number of selected participants per group, in the
French word naming time data set (615 words x 100 participants,
3.94 % missing data). The two functions are not significantly different
[x*(12) = 6.60, n.s.]. The overall ICC is equal to 0.9578, with a 99%
confidence interval of [0.9513, 0.9638]
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model will use for generating its regular part. One also
chooses k., the maximum number of free parameters
that tested models can use to fit the data. One must have
the inequalities: 1 < ko < kmax < (ko + 1) < m. In addi-
tion, one chooses the noise standard deviation (o.),
which allows approximate control of the data ¢ ratio.
One uses (1) to generate an m items by »n participants

data sample matrix (x;) in the following way:

xj = +a+p+e, 1<i<m, 1<j <n

The sample mean (¢') is a random constant. The
sample participant effect (o;) is a random Gaussian
vector of length n, with zero mean and unit standard
deviation. The sample item effect (3;) is a random
Gaussian vector of length m, with zero mean and unit
standard deviation. The sample noise is a random
Gaussian m X n matrix £ = (g;), with mean zero and
standard deviation o.. Each column of the noise matrix is
orthogonal to the item effect vector; however, the noise
matrix itself is not orthogonal.

In order to build a base for regression models of
"predictor" type (with ¢ = 2, see Model correlation), one
first builds a m x ky orthogonal matrix H = (h;) whose
first column vector has m equal components (1/m'’?), and
the remaining ko - 1 columns are orthogonal Gaussian

Fig. 5 Variation of /* and its

m=61, q=0.25088

random vectors of length m, with zero means and unit
norms, whose sum is proportional to the sample item
effect, more precisely:

(m—1)"?

—_— 1<i<m.
(kO _ 1)1/2

hij: ﬁia

j=2

A predictor with k& degrees of freedom (free parameters)
uses a base Gj made of the & first columns of H if k < k,
to which one adds the & - &, first columns of E if k > kg,
so Gy is a m X k matrix, and the predictor parameters (w
vector) are optimized as a least-squares solution of the
equation Gyw = x, where x = (x;) is the mean itim
performance vector given by (17). Thus, one has w = G, x,
and the predictor is B, = Gw. Observe that the exact
predictor can be obtained only with k = kq. If k < ko, then
the predictor under-fits the data. If & > ky, then the
predictor over-fits the data.

Under-fit and over-fit detection using the expected
correlation

The method described in “Simulated Data” was used to
build artificial problems with the parameter values n = 40,
ko = 20, kpax = 60, m € {61, 610}, and two levels of ¢
approximately equal to 1/4 and 1/16, respectively. In each
problem, 59 models whose complexity varied from 2 to 60

m=61, q=0.063722

intersection with the ICC 99% 1 1
confidence interval, as a func-
tion of the number of free = 0.8 £ 0.8
parameters used in least-squares S S
fitted models, while original w 0.6 r2 0 0.6
rtificial dat ted b g | /| g
artificial data were generated by £ 04 ICC £ 04
a model using exactly 20 o | /| 99 Conf o
parameters (plus random varia- S 0.2 E 8 0.2
bles), with 61 or 610 items, 40 ) xact ’
participants, and two levels of 0 0
the ¢ ratio. The +* values under 0 40 60 0 20 40 60
the lower ICC confidence limit Model complexity Model complexity
correspond to under-fitted m=610, q=0.24867 m=610, q=0.064042
models, while 7 values above 1 1
the upper ICC confidence limit ==
correspond to over-fitted models = 0.8 = 0.8
G G
k) kS
w 0.6 w» 0.6
3 3
5 0.4 5 0.4
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o o]
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0 0
0 40 60 0 20 40 60

Model complexity
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Fig. 6 Detection frequency of

m=61, q=0.25092

m=61, q=0.062829
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Model complexity

free parameters were fitted to the data by the least-squares
method, and one computed the squared correlation of each
model prediction vector with the data average vector.
Figure 5 shows the variation of the squared correlation as
a function of the model complexity for the two levels of m
and of g. Also in each plot the expected correlation (ICC)
and its 99% confidence interval are shown. Note that the
squared correlation always intersects the ICC confidence
interval in the neighbourhood of the exact complexity (20
parameters). Squared correlations under the lower
confidence limit are detected as under-fits, and squared
correlations above the upper confidence limit are detected
as over-fits. The four experiments of Fig. 5 were repeated
200 times each, in order to observe the frequency of under-fit
and over-fit detections as a function of model complexity. The
results are shown in Fig. 6, where one can see that the
minimum global frequency of misfit detections is always on
a close neighbourhood of the exact complexity level (20
parameters). The under-fit detection frequency rapidly

Model complexity

increases as the model complexity decreases from the
optimum, while the over-fit detection frequency more
gradually increases as the model complexity exceeds the
optimum. The accuracy of misfit detections increases as m
increases, and it is moderately sensitive to the g ratio. Table 2
shows the details of the frequency of abusive detections of
under-fits and over-fits at the exact model complexity (20
parameters). For m = 610, this frequency is exactly the
expected one, given the « risk (0.01). For m = 61, the misfit
detection frequency is a bit greater than expected; however,
the discrepancy is small enough to allow practical use,
provided that one uses « risks not greater than 0.01.

Discussion and conclusion

We have shown that, provided that the considered behav-
ioural variable fulfils the usual decomposition model (1),
one can build a suitable reference correlation (or "expected

Table 2 Detail of the frequency

m=6l,q=1/16 m =610, q~ 1/4 m =610, q = 1/16

of abusive detections of m=61,q~=1/4
under-fits and over-fits at the

exact model complexity (20 Under-fits 0.030
parameters), using the ICC 99% Over-fits 0.005
confidence interval, in the Total misfits 0.035

experiments of Fig. 6

0.010 0.005 0.005
0.005 0.005 0.005
0.015 0.010 0.010
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correlation") having the form of an intraclass correlation
coefficient. The lower and upper confidence limits of this
ICC can be considered as under-fitting and over-fitting
limits, respectively, for model goodness-of-fit statistics,
which are the absolute correlation (for full simulation
models) or the squared correlation (for predictors) of model
item performance predictions with empirical data averaged
over participants. We demonstrated the effectiveness of this
approach on artificial data that, by construction, fulfilled the
variable decomposition model (1). In order to verify that
any given data set fulfils model (1), and thus that the above
methodology is suitable for these data, we proposed a test
that is able to detect even weak deviances to this model.
The performance of this test has been demonstrated on
artificial data whose deviance to model (1) was
gradually varied. Moreover, we tested real behavioural
data sets in order to have an idea of the realism of model
(1) and of the suitability of the derived methodology in
practice. Three databases were tested: one set of English
word identification times (from Rey et al., 2009), one
new set of English word naming times, and one new set
of French word naming times. It turned out that these
three databases were compatible with model (1), demon-
strating that the proposed methodology has a wide
potential application field. Finally, the Matlab program
"ECVT" listed in Appendix A allows Matlab users to
directly apply this methodology, while it can also serve
as an implementation model for developers on other
platforms. In addition, Appendix B provides a com-
mented example of use of the ECVT program with the
data of “English word naming time”.

As an ultimate illustration, let us consider two word
reading model fits recently published in the literature.
The models are (1) a multiple regression model with
many predictors, which was used by Yap and Balota
(2009) to predict word naming latencies, and (2) a
simulation model (CDP++) published by Perry et al.
(2010), which was used as a simple predictor for data similar
to those of Yap and Balota, that is, a subset of the word
naming latencies from the ELP database (Balota et al., 2007),
corresponding to more than 6000 monomorphemic multisyl-
labic English words. On these data, Yap and Balota obtained
a global fit of R? = 0.612, while Perry et al. obtained a global
fit of R? = 0.494 after combining CDP++ predictions with
usual phonological onset factors.

What can we say about the performance of these
models? First, these are currently the best known fits for
these two types of models on such data. But are these
fits good? On one side, Yap and Balota's result seems
better; however, a multiple regression model with many
predictors always has an important risk of over-fitting. If
one assumes that the ICC of the data set is about 0.5, for
instance, then Perry et al.’s model could be the best.

@ Springer

Unfortunately, one does not know the ICC of the data set
used. However, it is possible to compute an estimation of
its order of magnitude.

Firstly, one can reasonably assume that the items used
in “English word naming time” (bisyllabic English words)
are a random sample of items belonging to the same item
population as those used to test the above models.
Secondly, there is no reason to think that the participant
populations are basically different (American college
students). Thirdly, note that the expected ICC strongly
depends on the number of participants (Egs. 3—5), but not
on the number of items. In fact, the number of items
plays an important role only for the variance of ICC
estimators, not for their expected magnitude. The
remaining critical element is the ¢ ratio (Eq. 4), which
can vary depending on the conditions in which the data
were collected (noise). So, we clearly take a risk
assuming that the ¢ ratio of the ELP database and the
one of the database of “English word naming time” are
comparable. With this caution in mind, we can attempt to
approximate the ICC of Yap and Balota data using our ¢
ratio for the English word naming times (¢ = 0.1333, see
Appendix B) and applying Equation 5 with n = 25
participants (which is the number of observations per
item for the naming data in ELP). Doing this, one obtains
an ICC of about 0.769. Clearly, none of the above models
reaches such a fitting level, indicating that the race for
new reading models remains open. However, note also
that a firm conclusion on this point cannot be drawn as
long as one does not know the ICCs of data sets on which
models were tested.

As a conclusion, it appears desirable to encourage the
use of statistics like the ones presented in this paper, or
possible equivalent, in order to allow researchers involved
in modelling to have a clear idea of "how far they are from
the truth" (the truth of the data of course!) when they test
their models. Comparing the performance of various
models is probably useful but clearly not sufficient. Having
a quite precise idea of the distance from the target result is
precious information that can considerably help modellers
improving the models. If the fit is quite close to the data
ICC, probably minor changes in the model or a simple
parameter tuning are sufficient. If the fit is far from the
ICC, more important changes are probably necessary. If the
model over-fits the data, then one must reduce the number
of degrees of freedom of the model. But without a reliable
reference fit, such as the data ICC and its confidence limits,
the target result is not defined.
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Appendix A

Matlab code (version 7.5) of the ECVT program

function [gAV,icc,conf,r,Chi2,Chi2df,Chi2p,mitem] = ECVT(x,tf,miss,pconf)
g —mmmm— e Expected Correlation Validity Test--—-——————mmmmmmmmo
2 input:

% x: (m items) X (n participants) data table

% tf: title of correlation fit plot (default: tf = '' for no figure)

% miss: numerical code for missing data in table x (default = inf)

% pconf: probabilities of ICC confidence intervals (def. [.95 .99 .999])

% output:

% gAV,icc: g ratio and intraclass correlation (ICC) of table x by ANOVA

% conf: ICC confidence intervals ([probability lower upper])

% r: estimate of the ICC by Permutation Resampling and extrapolation

% Chi2,Chi2df,Chi2p: correlation validity test (Chi"2, d.f., p), where the

% expected correlation (ICC) is not reliable if the test is significant.

% mitem: (m X 1) column vector of mean performance for each item.

[m,n] = size(x);
if nargin<4, pconf=[0.95 0.99 0.999]; end

if nargin<3, miss=inf; end

if nargin<2, tf='"'; end
% ——mmmm Compute the ICC using Analysis of Variance----—-————————-——
ti = zeros(m,1l); ni = ti; tj = zeros(l,n); nj = tj;
sx2 = 0;
for i = 1:m
for j = 1:n
if x(i,j) ~= miss

ti(i,1) = ti(i,1)+x(i,3);

ni(i,l) = ni(i,1)+1;

t3(1,3) tI(1,3)+x(1,3);
nj(1,3) = nj(1,3)+1;
sx2 = sx2 + x(1i,3)"2;

end

end

end
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m = ti./ni;

sum(ni); t = sum(ti); ss = sx2 - t"2/N;

= sum(ti.”2./ni) - t"2/N;
= sum((tj."2./nj),2) - t"2/N;
= ss - ssi - ssj;

= m-1; dfj = n-1; dfij = N-1-dfi-dfj;

ssi/dfi;

ssij/dfij; vi = max(0, (msi-vij)/n);

= vi/vij; icc = vi/(vi+vij/n); Fobs=msi/vij; % Main statistics
quantF(l-(l-pconf)/2,dfi,dfij); % Compute the ICC confidence intervals
quantF(1l-(1l-pconf)/2,dfij,dfi);

=zeros(length(pconf),3);

i=1l:length(pconf)

conf(i,l)=pconf(i);

conf(i,2)=1-Q1f(i)/Fobs;

conf(i,3)=1-1./(Q2f(i)*Fobs);

-Validity test using Permutation Resampling for several group sizes----

0; % Resampling size

,ngstep,nngl=nppg(n,12); ngs=(l:nng)'*ngstep+ng0; % Group sizes choice
bs=zeros(nng,3);

p=1l:nng % Group size loop

gs(p); % Number of participants per group

zeros(T,1);

t = 1:T % Permutation Resampling loop

ok = false;
ile ~ok
Xp = x(:,randperm(n)); % Random participant permutation

ngl = zeros(m,1l); mgl=ngl; ng2=ngl; mg2=ngl;

for i = 1:m
for j = l:ng % First group
if xp(i,j) ~= miss

ngl(i) = ngl(i)+1; mgl(i) = mgl(i)+xp(i,J);
end
end

for j = (ng+l):(2*ng) % Second group
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if xp(i,j) ~= miss

ng2(i) = ng2(i)+1; mg2(i) = mg2(i)+xp(i,J);
end
end
end
if (min(ngl)>0) && (min(ng2)>0), ok = true; end
end
mgl = mgl./ngl; mg2 = mg2./ng2;

rr = corrcoef([mgl, mg2]); rt(t)=rr(l,2);

end

nrsObs(p,:) = [ng,mean(rt),std(rt)]; % [group size, average r, S.D. of r]
end

[4,Chi2]=minChi2 (nrsObs,T); % Estimate optimal g

Chi2df=nng;

Chi2p=1-probChi2(Chi2,Chi2df); % Validity test type I error risk
rPred=qn2r(q,ngs); % Predicted r values for all group sizes
r=gn2r(gq,n); % Extrapolate r for n participants

if ~strcemp(tf,'")
tit=plotfit(nrsObs,rPred,Chi2,Chi2df,Chi2p,tf); % Visualization
end

end

function x = quantF(p,dl,d2)

% F distribution quantiles

x = quantbeta(p,dl/2,d2/2);
X = x.*d2./((1l-x).*dl);
end

function x = quantbeta(p,a,b)

% Beta distribution quantiles

tol=le-6;

x0=zeros(size(p)); xl=ones(size(p));

x=0.5*%(x0+x1); dp=betainc(x,a,b)-p;

while max(abs(dp(:)))>tol
x0(dp<=0)=x(dp<=0); x1(dp>=0)=x(dp>=0);
x=0.5*%(x0+x1); dp=betainc(x,a,b)-p;

end

end
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function [q,Chi2]=minChi2(nrs,T)
% Optimize g to minimize Chi”2 (Newton-Raphson method)
tol=1le-9; todo=true; count=0;
s2i=1./nrs(:,3)."2;
q0=s2i'*rn2q(nrs(:,2),nrs(:,1))/sum(s2i);
while todo && (count<30)
r0=gn2r(q0,nrs(:,1));
d= T*2*sum((r0/q0).*(nrs(:,2)-r0).*(r0-1)./nrs(:,3)."2);
d2=T*2*sum( ((r0/qg0)."2).*((r0-1)."2+2*(nrs(:,2)-r0).*(1-r0))./nrs(:,3)."2);
dg=d/d2; g=q0-dg; count=count+1;
if abs(dg)<abs(tol*q)
todo=false;
else
q0=g;
end
end
Chi2=T*sum( ((nrs(:,2)-gn2r(qg,nrs(:,1)))./(nrs(:,3)))."2);
if count>=30, warning('Newton-Raphson method failed to converge'); end

end

function g = rn2q(r,n) % Provides g given r and n
g =r./(n.*(1l-r));

end

function r = gn2r(gq,n) % Provides r given g and n
r = (n.*q)./(n.*gq+l);

end

function p = probChi2(x,df)
% Chi-square cumulative probability function
p=gammainc(x/2,df/2);

end

function [S0,S,K]=nppg(n,ek)
% Optimize the number of participants per group in about ek groups
maxng=£ix(n/2);

if maxng<=ek
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S0=0; S=1; K=maxng;
else
minerr=inf;
for s=1l:maxng
k=fix(maxng/s);
s0=maxng-s*k;
err=s0+s*abs(k-ek);
if err<minerr
K=k; S=s; S0=s0;
minerr=err;
end
end
end

end

function tit = plotfit(nrsObs,rPred,Chi2,Chi2df,Chi2p,tf)

% Plot the correlation fit

ns=nrsObs(:,1); r=nrsObs(:,2); s=nrsObs(:,3);

maxx=2*ns(length(ns))-ns(length(ns)-1);

Chi2=round(Chi2*100)/100; Chi2p=round(Chi2p*10000)/10000;

if Chi2p==0, Chi2p=0.0001; end

plot(ns,rPred, '-xk',ns,r(:,1),'--0ok");

axis ([0 maxx min(0,min(r-s)*1.05) 1]); set(gca, 'FontSize',12);

xlabel( 'Number of participants per group', 'FontSize',12);

ylabel('r', 'FontSize',12, 'FontWeight', 'bold");

legend( 'predicted r', 'mean observed r (*SD)', 'Location', 'Best');

hold on

for i=1l:length(ns)
plot([ns(i);ns(i)],[r(i)-s(i);r(i)+s(i)],'-k");

end

tit=strcat(tf,': \chi”2(',num2str(Chi2df),"')="',num2str(Chi2),...
', p <',num2str(Chi2p));

title(tit, 'FontSize',12);

hold off

end
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Appendix B

Example of use of the ECVT program: analysis of the
English word naming time database

>> [qAV,icc,confr,Chi2,Chi2df,Chi2p] = ECVT(English
RT,'English word naming time',0)

Comment: the input argument EnglishRT is the 770 x 94
data table, the string argument 'English word naming time'
is the title for the output figure (Fig. 3), and the input
argument 0 is the code for missing data in the data table.
We omit the last input argument (pconf) in order to obtain
the three default confidence intervals of the ICC (95%,
99%, and 99.9%). We omit the last output argument
(mitem) because we do not need the 770 average RT
vector. Then, we obtain the output:

qAV = 0.1333

This is the q ratio as it is computed by the ANOVA

icc = 0.9261

This is the ICC as it is computed by the ANOVA

conf =

0.9500 0.9185 0.9334
0.9900 0.9160 0.9355
0.9990 0.9130 0.9379

These are the three default confidence intervals of the
ICC (probability lower limit upper limit)

r=0.9236

This is the ICC as it is estimated by permutation
resampling and extrapolation

Chi® = 10.3450

This is the x° test value (equation 20) for the data set

Chi*df = 11

Number of degrees of freedom of x°

Chi’p = 0.4996

Probability of x° under the null hypothesis. Here, the
test is not significant, which means that the data in the
EnglishRT table fulfil the variable model (1), and the ICC
is a valid reference to test item performance models.

>> print -r600 -dtiff English.tif

We save the correlation plot figure (Fig. 3), which
appeared in a separate figure window.
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The Dutch Lexicon Project (DLP, Keuleers
etal., 2010) is the third published database
providing lexical decision times for a large
number of items (after the ELP, Balota et al.,
2007, and the FLP, Ferrand et al., 2010). In
this commentary, we address the issue of
the amount of item variance that models
should really try to account for in the DLP
(Spieler and Balota, 1997).

Asnoted by Seidenberg and Plaut (1998),
to test the descriptive adequacy of simula-
tion models with item-level databases,
one needs to estimate the amount of error
variance (i.e., sources of variance that are
unspecific to item processing and that mod-
els cannot, in principle, capture) and, con-
versely, the amount of item variance that
models should try to account for. One way
to address this issue is to create independ-
ent groups of participants from a single
database, and to compute the correlation
between the item performances averaged
over participants in each group (Courrieu
et al,, in press; Rey et al., 2009). One can
show that the expected value of such cor-
relations has the form of an intraclass cor-
relation coefficient (ICC):

=1 (1)
P ng+1

where p is the ICC, n is the number of
participants per group, and q is the ratio
of the item related variance on the noise
variance for the considered database (for
more details, see Courrieu et al., in press or
Rey et al., 2009).

As discussed in Courrieu et al. (in press),
there are basically two methods for estimat-
ing p and g. The first one is based on a stand-

ard analysis of variance (ANOVA) of the
database. This method is fast, accurate, and
it provides suitable confidence limits for the
ICC estimate. The other method is of Monte
Carlo type. Itisbased on a permutation resa-
mpling procedure, which is computationally
more demanding and more sensitive to miss-
ing data than the ANOVA method. However,
this approach is distribution free and much
more flexible than the ANOVA.

In order to apply these methods, the
database needs to be available in the form
of a m X n table, where m is the number of
items, and 7 is the number of participants.
The DLP database clearly fulfils this require-
ment, with m = 14089, and n = 39. The ELP
and FLP databases are more problematic
from this point of view because each par-
ticipant provided data only for a subset of
the whole set of items. A possible solution
is to create “virtual” participants by mixing
the data of various participants, previously
transformed to z-scores (Faust et al., 1999),
but this needs further investigations.

Fortunately, no such a problem occurs
with the DLP database, however, the
important proportion of missing data in
this database (16%) prevents from apply-
ing the permutation resampling method.
Nevertheless,an ANOVA based analysis pro-
vided an overall ICC equal to 0.8448, with a
99% confidence interval of (0.8386,0.8510),
indicating that this database contains about
84.5% of reproducible item variance'. A
model that accounts for less than 83.86% of
the empirical item variance probably under-
fits the data, while a model that accounts for
more than 85.10% of the empirical item vari-
ance probably over-fits the data (in general
because it uses too many free parameters). Of
course, this estimation is task-dependent and
language dependent. Using a different task,
a different language, a different set of items
(e.g., monosyllabic or disyllabic words), or
a different population sample (e.g., older
adults) might generate different outcomes.

"Note that the ICC is in the order of a squared cor-
relation, therefore providing a direct estimate of the
amount of reproducible variance (for a justification,
see Courrieu et al., in press).

Because this analysis has already been
applied to different large-scale databases
using different experimental paradigms and
different languages (i.e., a naming task with
English and French disyllabic words, Courrieu
etal.,in press,and a perceptual identification
task with English monosyllables, Rey et al.,
2009), it is now possible to directly compare
these results. Indeed, for each database, a dif-
ferent q ratio has been estimated and one can
now plot the resulting evolution of the ICC
as a function of the number of participants
for each database (see Figure 1). This figure
clearly shows that there are important vari-
ations across experimental paradigms and
languages (or population samples, which is
still a confounded factor in the present situ-
ation) and that these variations can be explic-
itly quantified. For example, to reach the same
amount of reproducible variance obtained in
the DLP database (i.e., 84.5% with 39 partici-
pants), one would need to have 90 partici-
pants in the English perceptual identification
task from Rey et al. (2009).

To conclude, the purpose of the present
commentary was to provide a precise esti-
mate of the amount of reproducible vari-
ance thatis present in the DLP database and
to compare the evolution of the reproduc-
ible variance across tasks or languages. By
providing this information, it is now possi-
ble to precisely test the descriptive adequacy
of any model that could generate item-level
predictions trying to account for item vari-
ance in the DLP database.
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I1.G Travaux en cours et perspectives

Dans cette derniére section, je présente un projet de recherche axé sur trois thémes
principaux: l'approximation rapide des fonctions multivariées par I'humain, les techniques
statistiques de validation de modeles, et enfin un modele de lecture qui devrait étre capable de
lire des écritures manuscrites. Il s'agit en fait de trois projets a peu pres indépendants, chacun
ayant déja produit un certain nombre de publications, ou faisant 1'objet de publications en
cours ou en préparation. Je décrirai aussi quelques perspectives @ moyen terme associées a

chacun des thémes de recherche évoqués.

Approximation rapide des fonctions multivariées

L'apprentissage de fonctions chez I'humain a été trés étudié, principalement dans les
cas de fonctions booléennes multivariées ou de fonctions continues univariées. Il est
cependant une capacité particuliere dont nous faisons usage quotidiennement, et qui jusqu'a
présent n'a fait 1'objet d'aucune publication. Je veux parler de la faculté que nous avons
d'estimer immédiatement (sans apprentissage) la valeur d'une fonction en un point quelconque
du plan sur le base de valeurs fournies en d'autres points. Un exemple familier est celui des
cartes de prévisions météorologiques ou des températures sont prédites en un certain nombre
de localités, mais souvent pas pour la localité qui nous intéresse. Dans ce cas, nous estimons
la température probable dans cette localité en fonction des valeurs fournies pour des localités
voisines. Autrement dit, nous réalisons une approximation rapide de fonction (température) en
un point de généralisation d'un support a deux variables (longitude et latitude), a partir d'un

échantillon fini de points de cette fonction (carte des prévisions).

J'ai eu la curiosité de tenter d'identifier les procédures que nous mettons en oeuvre
pour résoudre de tels problémes. Pour ce faire, j'ai soumis a des participants des problémes
artificiels du type décrit ci-dessus, et j'ai enregistré leurs réponses de généralisation (Courrieu,
submitted-1). La figure 1 visualise quelques uns des ces problémes (noir sur blanc) et les
réponses de généralisation moyennes de 16 participants (blanc sur noir). Il se trouve que les
réponses de généralisation des sujets présentent une certaine variabilité¢, mais sont cependant
extrémement consistantes puisque I'lCC des données est de 0.985, avec un intervalle de

confiance a 99.9% de [0.959, 0.997] (Courrieu et al., 2011, voir Section IL.F).
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Figure 1. Visualisation de 16 problémes d'approximation rapide de fonctions bivariées. Les
données des problémes sont en noir sur fond blanc, et les réponses moyennes de 16 sujets en

des points de généralisation sont en blanc sur fond noir (Courrieu, submitted-1).

J'ai ensuite compar¢ a ces données les prédictions d'un échantillon représentatif de 10
modeles connus d'approximation des fonctions. Il se trouve que le meilleur prédicteur était le
modele de Courrieu (2005), présenté dans la section II.D, mais que sa performance restait tout
de méme treés en dessous de I'ICC des données (r2 = 0.839), ce qui indique clairement que ce
modele est inexact pour cette tache, ainsi que tous les autres modeles testés. J'ai alors procédé
a une analyse approfondie des réponses humaines, ce qui m'a permis de conclure que I'humain
construit ses réponses de généralisation en combinant des approximations linéaires faites a
partir de certaines paires de points ("bipoints") ou les valeurs de la fonction sont données. Sur
cette base, j'ai construit un nouveau mod¢le d'approximation rapide des fonctions, dénommé
ABI (pour "Average of Bipoint Interpolations"), et ce modele s'est avéré capable de prédire
les réponses de généralisation humaines beaucoup plus précisément que tous les autres

modeles testés. L'ajustement obtenu est = 0.951, ce qui est légerement inférieur a la borne
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inférieure de I'lCC des données (0.959), indiquant que le mode¢le est encore inexact, mais cela
tient vraisemblablement a peu de choses.

La suite du projet consiste a tenter d'identifier et de corriger ce "peu de choses". L'une
des pistes que je vais explorer consiste a tenir compte de certains biais d'estimation qui
semblent influencer les réponses des sujets. Il est en effet possible que les approximations a
partir de bipoints ne soient linéaires que lorsque les valeurs trouvées sont dans un certain
intervalle délimité par les valeurs minimales et maximales de l'ensemble des valeurs fournies
dans les données du probléme. En dehors de cet intervalle, le sujet pourrait tenter de corriger
son estimation de fagon a ne pas trop dépasser les valeurs "vraisemblables", ce qui introduirait

le biais supposé.
Validation de modéles

L'utilisation de la technique statistique de validation de modeles développée par
Courrieu et al. (2011) m'a conduit a observer que les grandes bases de données
comportementales contiennent en général une proportion assez élevée de données manquantes
(Jusqu'a 16%), résultant d'erreurs de réponse, d'incidents techniques, ou de données aberrantes
("outliers"). J'ai également observé que ces données manquantes biaisent de fagon importante
les statistiques de consistance des données (ICC), aussi bien que les statistiques d'ajustement
des modeles (rz). A la limite, une proportion trop importante de données manquantes empéche
les tests utiles de fonctionner correctement. Il était donc urgent de trouver une parade a ce
probléme, et c'est ce que j'ai récemment fait en collaboration avec Arnaud Rey (Courrieu &
Rey, submitted-2). Dans un premier temps, nous avons défini une statistique corrigée qui
permet d'estimer tres efficacement ce que serait I'CC d'une base de données si aucune donnée
n'était manquante, alors qu'une proportion importante des données manque. Munis de cet
outil, nous avons également pu définir une statistique corrigée d'ajustement de modele (r2
corrigé) qui estime efficacement l'ajustement réel d'un modele aux données. Enfin, nous
avons défini un algorithme d'imputation des données manquantes, dénommé CRARI (pour
"Column and Row Adjusted Random Imputation") qui permet de remplacer toutes les
données manquantes par des estimations, de telle maniére que les moyennes par item
originales sont préservées, et que I'lCC de la base de données sous imputation peut étre
arbitrairement choisi. Il suffit alors de choisir pour ce dernier la valeur de 1'CC corrigé

évoqué ci-dessus, et l'on obtient une base de données sous imputation possédant des
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propriétés statistiques importantes qui seraient celles de la base de données originale si
aucune donnée n'était manquante. Précisons que l'algorithme CRARI est une extension de
l'algorithme d'imputation connu sous le nom de "Adjusted Random Imputation" (Chen, Rao,
& Sitter, 2000), ce dernier ne donnant malheureusement pas des résultats satisfaisants en ce
qui concerne I'ICC des bases de données sous imputation. La figure 2 présente une des
nombreuses expériences que nous avons réalisées avec des données simulées pour tester I'lCC
corrigé et l'algorithme CRARI. Dans ces expériences, on part d'une matrice de données
initiale compléte dont on calcule I'lCC exact, puis on dégrade progressivement la matrice en
augmentant la proportion de données manquantes (aléatoirement dans cette expérience). Dans
chaque cas, on calcule 1'CC de la matrice dégradée (courbe "missing"), puis I'lCC corrigé
(courbe "estimate"), et enfin I'lCC de la matrice sous imputation des données manquantes par
l'algorithme CRARI (courbe "imputed"). Ainsi qu'on peut le voir dans la figure 2, I'ICC de la
matrice dégradée décroit rapidement lorsque la proportion de données manquantes augmente.
En revanche, I'ICC corrigé oscille toujours dans un proche voisinage de I'lCC exact, et I'ICC

de la matrice sous imputation des données manquantes est toujours égal a 1'lCC corrigé.

Imputation method: CRARI
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Figure 2. Test de I'ICC corrigé et de I'lCC sous imputation des données manquantes par

l'algorithme CRARI sur des données simulées (Courrieu & Rey, submitted-2).
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L'utilisation de cette méthodologie nous a permis de valider 'approche ICC de
Courrieu et al. (2011) pour la base de données DLP (Keuleers, Diependaele, & Brysbaert,
2010) qui fournit des temps de décision lexicale pour plus de 14000 mots hollandais. La suite
du projet consistera a appliquer cette méthodologie a d'autres grandes bases de données
comme ELP et FLP, en résolvant les problémes particuliers résultant du caractére incomplet
du plan de recueil des données propre a ces bases de données. Nous envisageons également de
développer un site internet permettant aux utilisateurs de calculer les statistiques de leurs
propres bases de données et de tester leurs modeles en ligne, mais ce projet est subordonné a

l'obtention de ressources informatiques appropriées.

Modeéle de lecture

Il s'agit d'un projet de longue haleine sur lequel je travaille depuis plusieurs années, et
qui a déja fourni un certain nombre de résultats intermédiaires, lesquels ont leur intérét propre
dans la mesure ou ils peuvent s'appliquer dans d'autres cadres que celui de ce projet, et ont
donc donné lieu a un certain nombre de publications. On sait depuis longtemps que la lecture
de mots imprimés passe par l'identification des lettres qu'ils contiennent (McClelland, 1976),
mais ce point de vue strictement analytique doit &tre nuancé car certaines observations
indiquent qu'une forme de traitement global ("holistique") des mots pourrait également
contribuer a leur reconnaissance (Allen & Emerson, 1991; Lété & Pynte, 2003). Ceci est
encore plus vraisemblable lorsqu'on considére la lecture de mots manuscrits, dans lesquels il
n'est pas rare qu'un certain nombre de lettres ne soient tout simplement pas identifiables
individuellement. Cependant, méme dans le cas du manuscrit, nous restons capables de lire
des mots inconnus ou mal orthographiés pour lesquels il ne peut s'agir de reconnaissance a
proprement parler. Mon projet était donc d'essayer de rendre compte de ces capacités, aux
apparences un peu contradictoires, par I'hypothése suivante. Supposons que l'espace d'entrée
est un espace de formes convenablement codées (ex. Courrieu, 2006, 2007), et que nous
disposons d'un "dictionnaire" de formes correspondant & des mots (manuscrits ou imprimés)
dont nous connaissons par ailleurs I'orthographe. Nous pouvons alors comparer toute nouvelle
forme donnée en entrée aux formes contenues dans notre dictionnaire de formes, et calculer
une mesure de similitude de la nouvelle entrée a chaque forme répertoriée. Suivant un
principe similaire a celui des réseaux a fonctions bases radiales, et surtout de la généralisation

que j'en ai proposée dans ce but (Courrieu, 2005), on peut construire, par apprentissage
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supervisé sur I'espace de ces mesures de similitude, une fonction dont I'espace de sortie est un
espace de codes orthographiques. Une fois construite, cette fonction permettrait d'associer a
toute nouvelle forme d'entrée un code orthographique de sortie par généralisation. Il ne s'agit
pas de 'reconnaitre" des mots, mais plutdt d'inférer une forme orthographique
(éventuellement inconnue) a partir d'une forme visuelle, par référence a des formes connues
d'orthographe connue. Les théorémes d'approximation des fonctions disponibles garantissent
la possibilité d'obtenir une solution convenable dans tous les cas, mais le véritable probleme

est la complexité potentielle de cette solution, et donc la possibilité de la réaliser en pratique.

Afin d'évaluer la faisabilité de ce projet, j'ai dans un premier temps téléchargé la base
de données IAM (Marti, & Bunke. 2002), qui fournit 82227 images numérisées correspondant
a 10841 mots anglais distincts, manuscrits par environ 400 participants. J'ai défini 'espace
d'entrée comme l'espace des codes de densité des images (Courrieu, 2006, 2007), muni d'une
fonction de similitude des codes capable de réduire des transformation régulieres de
complexité choisie. J'ai défini l'espace de sortie comme un espace de codes orthographiques
numériques possédant un certain nombre de propriétés nécessaires pour l'application (vecteur
de dimension fixe, décodable, et résistant aux erreurs), muni d'une fonction de similitude des
codes appropriée. Ces codes orthographiques sont une variante simple du "codage spatial" de
Davis (2010). Préalablement a 1'application de la procédure d'apprentissage supervis¢€, qui
risquait d'étre lourde, j'ai préféré tester la compatibilité des topologies des espaces d'entrée et
de sortie pour différentes fonctions de similitude des formes. Pour ce faire, j'ai échantillonné
dans la base IAM un millier de paires d'images distinctes correspondant pour un tiers a des
mots identiques, pour un tiers a des mots différents mais orthographiquement proches, et pour
un tiers a des mots bien différents. J'ai ensuite calculé la corrélation entre les similitudes des
formes et les similitudes des codes orthographiques correspondants, ce qui est une fagon
d'estimer la compatibilité¢ des topologies d'entrée et de sortie. J'ai obtenu une corrélation de
0.50 dans le meilleur des cas, ce qui est loin d'étre négligeable, mais n'est cependant pas
suffisant pour générer un réseau efficace de complexité raisonnable. J'ai de plus fait
l'observation quelque peu déconcertante suivante: la corrélation diminue lorsqu'on augmente
la complexité des transformations que la fonction de similitude réduit, et il en va de méme si
l'on utilise des codes de densité plus "flexibles" (que j'ai élaborés au passage). La raison est
que la flexibilité des codes ou des fonctions de similitude profite en moyenne plus aux paires
de mots différents, en réduisant leur écart de forme, qu'aux paires de mots semblables. La

seule transformation qui améliore la corrélation est un simple centrage des codes de densité
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sur les médianes des distributions marginales. Il est donc clair qu'il faut rechercher une

variante plus efficace du modele, ce qui est 1'objet du projet suivant.

Ayant noté qu'il n'est pas pertinent de réduire des transformations régulieres dans
I'évaluation des similitudes de formes, on peut envisager de ne pas réduire les transformations
et d'intégrer la variabilité des formes dans les données d'apprentissage. Toutefois, si I'on
utilise le principe du dictionnaire de formes tel qu'il est décrit plus haut, on va évidemment
obtenir un réseau de taille considérable car il faudra intégrer au dictionnaire de nombreuses
variantes de chaque forme de référence. Une solution a ce probléme consiste a associer une
unité du dictionnaire & chaque mot appris, et non a chaque forme visuelle, puis a entrainer
chacune de ces unités a répondre a chaque forme présentée en entrée par une approximation
de la "distance" séparant les codes orthographiques du mot correspondant a I'entrée courante
et du mot représenté par l'unité. Ceci est possible car les codes de densité représentant des
formes sont des codes numériques de grande dimension, et sont de plus arbitrairement
extensibles en des polyndmes qui posseédent la capacité d'approcher uniformément toute
fonction continue. Les polyndmes étant des formes linéaires en leurs coefficients, on peut tout
simplement utiliser des "neurones linéaires", avec les techniques d'apprentissage élémentaires
qui leurs sont associées, pour approcher la fonction "distance orthographique" au mot de
référence de 1'unité considérée, pour chaque forme d'entrée. A noter que méme si la distance
orthographique utilisée lors de l'apprentissage est une métrique sur l'espace des codes
orthographiques, les réponses de généralisation obtenues ensuite (pour des formes inconnues)
ne seront pas forcément des valeurs exactes de cette métrique. Comme certaines valeurs de
généralisation peuvent étre négatives, les neurones linéaires doivent comporter une fonction
de sortie qui annule les valeurs négatives (i.e. un seuil de réponse a zéro), mais ceci
n'intervient pas dans l'apprentissage. Fort heureusement, le modé¢le neurocomputationnel
utilisé¢ pour I'étage suivant (Courrieu, 2005) admet, comme entrées, des mesures de
(dis)similarité sans exiger qu'elles aient les propriétés d'une métrique, de sorte que ce modele
peut approcher les codes orthographiques de sortie sur la base des approximations de
distances orthographiques fournies par les neurones linéaires. A partir de 13, tout se passe
comme dans le mode¢le initial, & ceci prés que la topologie induite sur l'espace des codes de
densité par les sorties de la couche de neurones linéaires est une approximation de la
topologie de Il'espace de sortie, ce qui permet d'espérer de bonnes performances de
généralisation avec une complexité raisonnable du réseau. La figure 3 présente un résumé de

l'architecture du modéle que je propose.
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Output letter nodes:

(linear)

Basis functions:

(Courrieu, 2005)

Word nodes:

Density code:
(or extension)

Image encoding

(Courrieu, 2006, 2007)

Input image

-pé1(X)

gl(X) = Ek e_ﬁék(x)

gz(X) = E

-Bo2(X)

e-ﬁék(X)

k

Word 1

6,(X) = pos(E Wi X;;)
ij

0,(X) = pos(z Wiip X;)
ij

‘ X = (31, X515 X15 X 05 X135 X035 )‘

/?1) M0

Figure 3. Architecture d'un réseau d'approximation de codes orthographiques (variante du

"codage spatial" de Davis, 2010) a partir d'images de mots (ou pseudo-mots) manuscrits. Les

poids synaptiques des noeuds "mots" (w,,), ainsi que ceux des noeuds "lettres" (v,, ) sont

appris suivant une méthode de moindres carrés simple.
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Il reste cependant a vérifier que cette approche donne effectivement des résultats
satisfaisants en pratique, ce qui nécessite des calculs assez lourds qui sont en cours de
programmation. En cas de succés, la faisabilité de ce principe sera démontrée, et je pourrai

envisager de tester les prédictions du modéle par comparaison aux performances humaines.

Pour conclure

En résumé, le projet ci-dessus comporte trois axes thématiques principaux:

1- "L'approximation rapide des fonctions multivariées par 'humain”, projet qui est déja bien
avancé et a produit un article actuellement soumis pour publication.

2- "Techniques statistiques de validation de modeles", projet aussi bien avancé qui a produit
trois publications (section II.F), ainsi qu'un article actuellement soumis pour publication.

3- "Modele de lecture", projet de longue haleine qui a déja produit trois publications
présentées dans les sections I1.C et I1.D, ainsi que I'une des publications techniques présentées
dans la section IL.LE (Courrieu, 2009). Remarquons que le modéle de lecture proposé peut
aisément étre étendu a d'autres familles de formes, telles que celles qui sont présentes dans
des scenes visuelles naturelles, ce qui est un autre développement a envisager.

Pour chacun des trois axes thématiques, le projet comporte une suite assez précisément
définie, mais on n'évitera probablement pas l'irruption de question imprévues (notamment
techniques) qui se posent habituellement en cours de route et sont également sources de
résultats pouvant présenter un intérét propre.

Ce projet, comme le reste de mon travail, est principalement centré sur la modélisation
numérique et sur la validation des mode¢les. L'expérimentation humaine en est le complément
naturel dés l'instant que les modéles sont préts a produire des prédictions vérifiables, et cela

fait aussi partie de la suite de mon programme.

Références

Allen, P.A., & Emerson, P.L. (1991). Holism revisited: evidence for parallel independent
word-level and letter-level processors during word recognition. Journal of Experimental

Psychology: Human Perception and Performance, 17,489-511.

Chen, J., Rao, J.N.K., & Sitter, R.R. (2000). Efficient random imputation for missing data in
complex surveys. Statistica Sinica, 10, 1153-1169.

205



Pierre Courrieu — dossier HDR 11.G.10

Courrieu, P. (submitted-1). Quick Approximation of Bivariate Functions.

Courrieu, P. (2005). Function approximation on non-Euclidean spaces. Neural Networks, 18,

91-102.

Courrieu, P. (2006). Density codes and shape spaces. Neural Networks, 19, 429-445.

Courrieu, P. (2007). Fast density codes for image data. Neural Information Processing -

Letters and Reviews, 11(12), 247-255.

Courrieu, P., Brand-D'Abrescia, M., Peereman, R., Spieler, D., & Rey, A. (2011). Validated
intraclass correlation statistics to test item performance models. Behavior Research Methods,

DOI: 10.1007/s13428-010-0002-7.

Courrieu, P., & Rey, A. (submitted-2). Missing Data Imputation and Corrected Statistics for

Large-Scale Behavioral Databases.

Davis, C.J. (2010). The spatial coding model of visual word identification. Psychological
Review, 117(3), 713-758.

Keuleers, E., Diependacle, K., & Brysbaert, M. (2010). Practice effects in large-scale visual
word recognition studies: A lexical decision study on 14,000 Dutch mono- and disyllabic

words and nonwords.. Frontiers in Psychology 1:174. doi:10.3389/fpsyg.2010.00174

Lété, B., & Pynte, J. (2003). Word-shape and word-lexical-frequency effects in lexical-
decision and naming tasks. Visual Cognition, 10, 913-948.

Marti, U., & Bunke. H. (2002). The IAM-database: an English sentence database for off-line

Handwriting Recognition. Int. Journal on Document Analysis and Recognition, 5, 39 - 46.

McClelland, J.L. (1976). Preliminary letter identification in the perception of words and
nonwords. Journal of Experimental Psychology: Human Perception and Performance, 2(1),

80-91.

206









