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CCS
Carbon Capture and Storage

Technical process:

Physical and chemical phenomena:
� CO2 dissolves partially in water and changes pH
� Acid water attacks rock matrix
� Change in geophysical properties

has impact on Darcy flow
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Challenges in Reactive
Transport Numerical Simulation

Physical challenges:
� Large domains and long simulation times
� Strong heterogeneity in time and space
� Occurring effects on different time scales
� Many chemical species (mobile and fixed)

Numerical challenges:
� Large coupled systems
� Strong nonlinearities

4 IFP Energies nouvelles and LAGA University Paris XIII - Time Space DD Methods for RT - 14 October 2011



Existing Approaches
for Reactive Transport

� Splitting methods:
+ Highly developed solvers for subproblems
– Poor performance for long-term simulations with strong chemistry
o local time-stepping for pure advective cases

� Global Implicit Approach:
+ High-performing approaches for long-term simulation
o Different formulations
o local time-stepping not yet developed
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Approach in this Work

Reactive Transport Model
� Global implicit approach
� Multispecies reactive transport
� Global-DAE formulation [Amir, Dieuleveult, Erhel, Kern] extended

to kinetic reactions and mineral species

Domain Decomposition Approach
� Schwarz Waveform Relaxation (SWR)
� Localising heterogeneity affecting the performance of the

non-linear solver
� Individual per subdomain time-stepping
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Global Problem in Ω× [0, T ]
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Classical Strategy
for Time-Dependant Problems
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SWR
Schwarz Waveform Relaxation
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Numerical Discretisation
Using DD in the FV Context

� Implicit Euler method in time

� Hybrid Finite Volume scheme in space [Eymard, Gallouët, Herbin]
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� Projection algorithm in space and time [Achdou, Japhet, Maday,
Nataf], [Gander, Japhet]

� Numerical study of the influence of projections
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The Coupled System

φ∂tu + div(−a~∇u + ~bu)−k(v − cu) = 0 on Ω× (0,T )
φ∂tv +k(v − cu) = 0 on Ω× (0,T )

u: Mobile species
v : Fixed species

φ: Porosity
a: Scalar diffusion coefficient
~b: Darcy field
k : Reaction rate coefficient
c: Equilibrium constant
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SWR Algorithm for
the Coupled System

φ∂tuk+1
1 +L(uk+1

1 )−k(vk+1
1 − cuk+1

1 ) = 0 on Ω1 × (0,T )

φ∂tvk+1
1 +k(vk+1

1 − cuk+1
1 ) = 0 on Ω1 × (0,T )

(uk+1
1 (x ,0), vk+1

1 (x ,0)) = (u0, v0) on Ω1
B. C. on ∂Ω ∩ ∂Ω1 × (0, T )

B1

(
uk+1

1 , vk+1
1

)
= B1

(
uk

2 , v
k
2

)
on Γ1 × (0,T )

φ∂tuk+1
2 +L(uk+1

2 )−k(vk+1
2 − cuk+1

2 ) = 0 on Ω2 × (0,T )

φ∂tvk+1
2 +k(vk+1

2 − cuk+1
2 ) = 0 on Ω2 × (0,T )

B. C. on ∂Ω ∩ ∂Ω2 × (0, T )

(uk+1
2 (x ,0), vk+1

2 (x ,0)) = (u0, v0) on Ω2

B2

(
uk+1

2 , vk+1
2

)
= B2

(
uk

1 , v
k
1

)
on Γ2 × (0,T )

13 IFP Energies nouvelles and LAGA University Paris XIII - Time Space DD Methods for RT - 14 October 2011



Evolution from Scalar
Equation to Coupled System

Scalar equation:

φ∂tu + div(−a~∇u + ~bu) − cu = 0 on Ω× (0,T )

Gander, Halpern, Kern: A SWR Method for Advection-Diffusion-Reaction Problems
with Discontinuous Coefficients and non-Matching Grids. DD16, Springer, 2007.
Bennequin, Gander, Halpern: A Homographic Best Approximation Problem with
Application to Optimized SWR. Math. Comp. 78, no. 265, pp 185—223, 2009.

Coupled system:

φ∂tu + div(−a~∇u + ~bu)−k(v − cu) = 0 on Ω× (0,T )
φ∂tv +k(v − cu) = 0 on Ω× (0,T )
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Well-posedness
of the SWR Algorithm

� Well-posedness (energy estimates, Galerkin method)
� Global problem
� Sub-Problems using Robin/Ventcel conditions
� SWR algorithm with different transmission conditions L ≥ 0

Theorem
Let p > 0 be given and L > 0. If (u0, v0) ∈ H2(Rd )× L2(Rd ) and
gb

0
i ∈ H

1
4 (0,T ; L2(Γi )) ∩ L2(0,T ; H

1
2 (Γi )), i = 1,2, are given, then the SWR
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Convergence of
the SWR Algorithm

� Convergence and convergence factor of the SWR algorithm with
different transmission conditions with/without overlap (energy
estimates, Fourier transform)

Theorem
Let L > 0 and suppose that the advection speed b is such that bx 6= 0.
Let p > 0. Then the sequence

((
uk

1 , v
k
1
)
,
(
uk

2 , v
k
2
))

defined by the SWR
algorithm with Robin transmission operators converges to
((u, v)|Ω1

, (u, v)|Ω2
), in

∏2
i=1(L2(0,T ; L2(Ωi))× L2(0,T ; L2(Ωi))) for

k →∞.
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Convergence of
the SWR Algorithm
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Optimised
Transmission Conditions

� Numerical optimisation of parameters: Comparison between
scalar adv.-diff. equation and coupled system

� Parameters of scalar advection-diffusion equation applicable even
for strong chemistry (Ventcel 1D; Robin and Ventcel in 2D, 3D)

� Significant differences for Robin in 1D
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Analytical Formula
for Optimised Parameter in 1D

� Analytical solution for Robin without overlap in 1D following
[Bennequin, Gander, Halpern 2009]
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Application of
1D Parameter in 2D/3D cases

� Localised strategy in 2D/3D for advection-dominant cases:
p = const =⇒ p(x) on Γ
1D optimisation or Taylor approximation on every face
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The Nonlinear Coupled System

φ∂tu + div(−a~∇u + ~bu)−R(u, v) = 0 on Ω× (0,T )
φ∂tv +R(u, v) = 0 on Ω× (0,T )

R : R2 → R nonlinear function
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Optimised
Transmission Conditions

� Robin transmission condition
� Realisation as in the linear cases
� Accordance of optimised parameter with linear case
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BET Isotherm R(u, v) = exp(10(2v − 3u))− 1
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Mixing Newton and SWR

1. Classical approach:
� Fixpoint

(
SWR

(
NLPb

))
� Nonlinear subproblems at every iteration

2. Nested Iteration Approach (NIA):
� Newton-Krylov

(
SWR

(
NLPb

))
� Linearised problems for Jacobian evaluation
� Nonlinear problems for residual evaluation

3. Common Iteration Approach (CIA):
� Krylov-SWR

(
Newton

(
NLPb

))
� Linearised problems for Jacobian evaluation
� Linearised problems for residual evaluation

[Haeberlein, Halpern, Michel, DD20, 2011, submitted]

24 IFP Energies nouvelles and LAGA University Paris XIII - Time Space DD Methods for RT - 14 October 2011



Mixing Newton and SWR
Numerical Results

+ Easy to add to standard approach
+ Accelerating properties
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Mixing Newton and SWR
Numerical Results

+ Easy to add to standard approach
+ Accelerating properties
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Mixing Newton and SWR
Numerical Results

+ Easy to add to standard approach
+ Accelerating properties
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Mixing Newton and SWR
Numerical Results

+ Easy to add to standard approach
+ Accelerating properties
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Mixing Newton and SWR
Numerical Results

+ Easy to add to standard approach
+ Accelerating properties

o Needs adaptive strategy for linear solver to be performant

– Overhead cost for coarse discretisation =⇒ No acceleration
– Storage cost for CIA
– Dependence of the performance on the character of the test case
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Performance Results
for Nonlinear Two Species System

� Advection-dominant cases
� Time-space localisation of chemical disequilibria

� Overlap
� Taylor approximation for Robin condition
� Initial state as guess for SWR

⇒ ≈ 3 SWR iterations.

� Isolation of disequilibria in separate subdomain m(ΩR) ≤ 0.3 m(Ω)

� Different time steps in subdomains 3∆tR ≤ ∆tNR

⇒ ≈ 20 % gain in CPU time.
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The Treated Problem
Phases and Species

mobile phase

c1

x1
x2

c2

q1
q2 z1

s1 s2

y1

fixed phases

sorbed phase mineral phases
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The Treated Problem
Components Representation

Equilibrium reactions are represented by a Morel tableau:

c s q

c Id

s Id

q Id

x Sx
c

y Sy
c Sy

s

z Sz
c

Ideal activity model: ai = ci .
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The Treated Problem
The Chemical Flash

θw c + θw (Sx
c )tx + θs(Sy

c )ty + (Sz
c )t (θz · z) = T ,

θss + θs(Sy
s )ty = W ,

θq · q = Q,

ln(ax )− (Sx
c ) ln(ac) = ln Kx ,

ln(ay )− (Sy
c ) ln(ac)− (Sy

s ) ln(as) = ln Ky ,

ln(az)− (Sz
c ) ln(ac) = ln Kz ,

Nc∑
i=1

ci +
Nx∑
i=1

xi = 1, (mobile phase),

Ns∑
i=1

si +

Ny∑
i=1

yi = 1, (sorbed phase, if present),

qi = 1, i = 1, . . . ,Nq ,

zi = 1, i = 1, . . . ,Nz .
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The Treated Problem
Total Component RT Problem

∂t (φC) + ∂t (φF ) + L(C) + RT ,kin = 0 (#C),

∂tW + RW ,kin = 0 (#W ),

∂tQ + RQ,kin = 0 (#Q),

T − φC − φF = 0 (#T ),

φF −Ψ(T ,W ,Q) = 0 (#F ),

RT ,kin −Θ(T ,W ,Q) = 0 (#RT ,kin),

RW ,kin −Υ(T ,W ,Q) = 0 (#RW ,kin),

RQ,kin − Ξ(T ,W ,Q) = 0 (#RQ,kin).
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Numerical Approach for
Reactive Transport Problem

� Adaptive time stepping strategy

� Hybrid finite volume scheme in space and implicit Euler in time
discretisation

� Global Implicit Approach

� Solve complementary condition in algebraic equivalent version by
semi-smooth Newton method [Hoffmann, Knabner, Kräutle]

� prevent from negative concentrations for mineral species in global
problem

� manage disappearing mineral phases in local problem
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Numerical Results
Cement Attack by CO2

image source: Princeton University image sources: Thesis Th. Millan,
IFP EN - Ecole des Mines de St Etienne
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Numerical Results
Cement Attack by CO2

image sources: Thesis Th. Millan,
IFP EN - Ecole des Mines de St Etienne
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Numerical Results
Cement Attack by CO2

Mobile species: H2O, tracer, CO2(aq), CaO(aq), SiO2(aq)
Mineral species: Calcite, Wollastonite, Portlandite, Silica

Kinetic reactions:
� Portlandite Dissolution: Portlandite + CO2(aq) −−→ Calcite

� Wollastonite Dissolution: Wollastonite
CO2(aq)
−−−−−→ CaO(aq) + Silica

� Calcite Precipitation: CaO(aq) + CO2(aq) −−→ Calcite

� Silica Dissolution: Silica
CaO(aq)−−−−−→ SiO2(aq)
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Numerical Results
Cement Attack by CO2
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Numerical Results
Cement Attack by CO2

Loading video...
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Numerical Results
Cement Attack by CO2

Loading video...
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Numerical Results
SHPCO2 Test Case
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Numerical Results
SHPCO2 Test Case

Water Salt Carbonates Silicates

H2O

H+ OH

Na+

Cl HCO3
 Ca++

CO2(aq)
SiO2(aq)

Calcite Quartz

CO2(g)

Tracer
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Numerical Results
SHPCO2 Test Case

Primary species:

c =



c1
c2
c3
c4
c5
c6
c7
c8


=



H2O
Tracer

CO2(aq)
Cl−

H+

Na+

Ca++

SiO2(aq)


, q =

(
q1
q2

)
=

(
Calcite
Quartz

)

Secondary species:

x =

(
x1
x2

)
=

(
HCO−3
OH−

)
, z =

(
z1
)

=
(
CO2(solid)

)
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Numerical Results
SHPCO2 Test Case

Equilibrium reactions:
� H2O ←→ H+ + OH –

� CO2(g) ←→ CO2(aq)
� H2O + CO2(aq) ←→ HCO –

3 + H+

Kinetic reactions:
� Calcite + H+ ←→ Ca++ + HCO –

3
� Quartz ←→ SiO2(aq)
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Numerical Results
SHPCO2 Test Case
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Numerical Results
SHPCO2 Test Case

Loading video...
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Numerical Results
SHPCO2 Test Case

Loading video...
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Numerical Results
SHPCO2 Test Case

Loading video...
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Numerical Results
SHPCO2 Test Case

Loading video...
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SWR Domain Decom-
position for Coupled Systems

Conclusion:
� Application of previously developed theory and techniques to a

coupled system
� Confirmation of results similar to scalar equations

� Only optimised parameters offer fast convergence
� Good accordance between theory and numerics

Perspectives:
� Optimised transmission conditions

� for unknown temporal discretisation and
� in the nonlinear case

� Comparative numerical tests for different proposed Ventcel
conditions in the nonlinear case
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SWR and Krylov
Accelerators in the Nonlinear Case

Conclusion:
� Two new numerical approaches developed
� Tested with success on nonlinear coupled system

� Accelerating properties
� Less sensibility to transmission condition parameter
� Better asymptotic behaviour

Perspectives:
� More tests on other types of equations and other test cases
� Investigation for eliminating overhead cost
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Multispecies RT
Formulation and DD Approach

Conclusion:
� Extension of existing formulation to kinetic reactions and minerals
� First approach of domain decomposition on nonlinear coupled

multispecies reactive transport systems

Perspectives:
� Study of numerical formulation (stability, conditioning,. . . )
� Study of well-posedness of multispecies reactive transport

formulation with given boundary data by domain decomposition
algorithm
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Limiting of
Kinetic Reaction Rates

M→ A + B, reaction rate k > 0

Mn+1 −Mn

∆t
+ k = 0 if Mn+1 ≥ 0

Mn+1 = 0 else

Mn+1 −Mn

∆t
+ min

{
k ,

Mn

∆t

}
= 0.
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Mineral Equilibrium Limiting

[ln(az)− (Sz
c ) ln(ac)− ln Kz ]i = 0 if mineral phase i is present

θzi = 0 if mineral phase i is not present

m

f := [ln(az)− (Sz
c ) ln(ac)− ln Kz ]i

ϕ(f , θzi ) = f + θzi −
√

f 2 + (θzi )
2 = 0
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