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Abstract

La bioinformatique nécessite l’analyse de grandes quantités de données. Avec l’apparition
de nouvelles technologies permettant un séquençage à haut débit à bas coût, la puissance de
calcul requise pour traiter les données a énormément augmenté. De plus, la puissance des CPU
évolue comparativement moins vite, aboutissant à des temps d’exécution de plus en plus longs.
En revanche, les processeurs graphiques (GPU) sont maintenant suffisamment programmables
pour permettre de réaliser des calculs non graphiques, fournissant ainsi une puissance de calcul
élevée bon marché. Cette thèse examine la possibilité d’utiliser les GPU pour des applications
de bioinformatique. Dans un premier temps, ce travail s’intéresse au calcul des structures
secondaires d’ARN. Ce problème est en général calculé par programmation dynamique, avec
un algorithme qui pose de sérieux problèmes pour un code GPU: des relations de récurrence
complexes et un accès mémoire compliqué. Nous introduisons une nouvelle implémentation
tuilée qui fait apparaitre une bonne localité des accès mémoire, permettant ainsi un programme
GPU très efficace. Cette modification permet également de vectoriser le code CPU et donc
de faire une comparaison honnête des performances entre GPU et CPU. Dans un deuxième
temps, ce travail aborde le problème d’alignements de séquences sur un génome de référence.
Nous présentons une parallélisation GPU d’une méthode utilisant une indexation par graines.
L’ implémentation sur GPU n’étant pas efficace, nous nous tournons vers le développement
d’une version CPU. Notre contribution principale est le développement d’un nouvel algorithme
éliminant rapidement les nombreux alignements potentiels, basé sur le précalcul de portions de
la matrice de programmation dynamique. Ce nouvel algorithme a conduit au développement
d’un nouveau programme d’alignement très efficace. Notre travail fournit l’exemple de deux
problèmes différents dont seulement un a pu être efficacement parallélisé sur GPU. Ces deux
expériences nous permettent d’évaluer l’efficacité des GPU et leur place en bioinformatique.

Keywords : GPGPU, Next Generation Sequencing, mapping, RNA folding.

Abstract

Bioinformatics require the analysis of large amounts of data. With the recent advent of
next generation sequencing technologies generating data at a cheap cost, the computational
power needed has increased dramatically. However, CPU performance is not keeping up with
this evolution, leading to unreasonable execution times and storage issues. On the other hand,
Graphic Processing Units (GPU) are now programmable beyond simple graphic computations,
providing high performance for general purpose applications at a low cost. This thesis explores
the usage of GPUs for bioinformatics applications. First, this work focuses on the computation
of secondary structures of RNA sequences. It is traditionally conducted with a dynamic pro-
gramming algorithm, which poses significant challenges for a GPU implementation: complex
data dependency scheme and memory access pattern. We introduce a new tiled implementa-
tion providing good data locality and therefore very efficient GPU code. We note that our
algorithmic modification also enables tiling and subsequent vectorization of the CPU program,
allowing us to conduct a fair CPU-GPU comparison. Secondly, this works addresses the short
sequence alignment problem. We present an attempt at GPU parallelization using the seed-
and-extend paradigm. Since this attempt is unsuccessful, we then focus on the development
of a program running on CPU. Our main contribution is the development of a new algorithm
filtering candidate alignment locations quickly, based on the pre computation of tiles of the
dynamic programming matrix. This new algorithm proved to be in fact more effective on a
sequential CPU program and lead to an efficient new CPU aligner. Our work provides the
example of both successful an unsuccessful attempts at GPU parallelization. These two points
of view allow us to evaluate GPUs efficiency and the role they can play in bioinformatics.

Keywords : GPGPU, Next Generation Sequencing, mapping, RNA folding.
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Résumé étendu

Contexte

La bio-informatique est le développement de méthodes informatiques permettant
l’analyse de données biologiques. Les champs d’applications concernent par exemple
l’analyse des séquences d’ADN qui constituent un génome, ou la comparaison et la pré-
diction des structures des protéines ou des séquences d’ARN. De plus, la quantité de
données à analyser a augmenté de manière exponentielle au cours des dernière années.

En ce qui concerne le séquençage de l’ADN, les progrès ont été très rapides. la
structure en double hélice a été découverte en 1953 par Watson et Crick. En 1977,
le premier génome entier d’un organisme fut séquencé, celui du bacteriophage φ X 174
composé de 5386 bases. Le génome humain, composé de 3 milliards de paires de bases, a
été séquencé en 2000 à un coût de plusieurs milliards de dollars. De nos jours, plusieurs
milliards de paires de bases peuvent être séquencées pour quelques milliers de dollars.

En conséquence, la quantité de données à analyser est de plus en plus grande. D’un
autre côté, la puissance de calcul des ordinateurs augmente, mais moins rapidement.
Cela conduit à un allongement important des temps de traitement. Une solution pour
réduire les temps de calcul est de paralléliser les calculs. La première solution est
l’utilisation de CPU multi-coeurs ainsi que des clusters de CPU. Bien qu’efficace, cette
solution est coûteuse. Une autre solution est l’utilisation de matériel haute performance
spécialisé. Par exemple les FPGAs peuvent fournir une puissance de calcul très élevée,
mais sont également très coûteux.

Une autre solution vient de l’utilisation des processeurs graphiques (GPU). Les GPUs
sont des processeurs spécialement conçus pour accélérer l’affichage de graphismes com-
plexes sur un écran. C’est une tâche avec beaucoup de parallélisme de données: des
traitements identiques doivent être appliqués à tous les pixels et objets géométriques
qui constituent l’image. Les GPU ont été conçus pour traiter efficacement ce type de
calcul: ils comportent de nombreuses unités de calcul capables d’appliquer le même
calcul à différentes données. A l’origine limités à des calculs graphiques de base, les
GPU ont graduellement acquis la capacité d’effectuer des traitements de plus en plus
complexes, afin que les programmeurs graphiques puissent développer des effets plus réal-
istes. Cette programmabilité accrue est arrivée à un point ou des calculs non graphiques
ont aussi pu être exécutés sur des cartes graphiques, donnant naissance à un nouveau
champ d’application, le calcul générique sur cartes graphiques (GPGPU en anglais).
NVIDIA a introduit en 2006 le langage de programmation CUDA, spécialement conçu
pour faciliter le développement de programmes GPGPU.
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Utiliser les GPUs pour exécuter des programmes non graphiques a plusieurs avan-
tages. D’abord, une forte concurrence tirée par l’industrie du jeu vidéo a conduit à des
GPUs bon marché, avec une puissance de calcul en constante augmentation. Tous les
ordinateurs peuvent être équipés d’un GPU haut de gamme, augmentant considérable-
ment sa puissance totale de calcul à faible coût.

Ensuite, les GPU sont naturellement bien adaptés pour tout problème avec un
fort parallélisme de données, apparaissant dans de nombreux domaines de recherche
scientifique. Par exemple en imagerie médicale, pour des simulations de dynamique
des fluides, en finance, traitement du signal, ou encore pour la cryptanalyse. La bio-
informatique comporte aussi beaucoup de parallélisme de données: l’analyse de données
biologiques nécessite souvent d’appliquer le même calcul sur des données différentes. A
priori, il semble donc naturel d’utiliser les GPU pour accélérer les programmes utilisés
en bio-informatique.

Objectifs

L’objectif de cette thèse est d’évaluer les capacités des GPU dans des applications de
bio-informatique typiques, et de comparer les résultats obtenus avec une parallélisation
plus traditionnelle sur CPU multi-coeurs. Pour cela notre étude se penche sur deux
problèmes distincts, à la fois bien représentatifs de ce qui se fait en bio-informatique,
et différents en termes de méthodes de calculs utilisés pour les résoudre. Le premier
problème est l’étude de la prédiction de structure secondaire d’ARN. L’algorithme utilisé
est un calcul intensif qui se prête a priori bien à une parallélisation sur GPU. Le second
problème porte sur l’alignement de séquences de petite taille, générées par les nouvelles
technologies de séquençage, sur un génome de référence. Le calcul est moins intensif et
nécessite au contraire plus d’accès à la mémoire, en utilisant une structure de données
élaborée. Ces deux problèmes représentent donc un spectre varié de ce que l’on peut
trouver en bio-informatique, et leur étude permet de répondre à la problématique de
cette thèse: les algorithmes utilisés en bio-informatique peuvent-ils être efficacement
implémentés sur GPU ?

L’évaluation des GPU doit s’effectuer sur plusieurs niveaux. Le premier point im-
portant est le temps nécessaire au développement d’applications sur GPU. Les GPUs
sont a priori plus simples à programmer que des FPGAs, mais plus difficiles que des
CPU. Toutefois cela nécessite d’être confirmé en pratique. Deuxièmement, les temps
d’exécutions doivent être mesurés et comparés à un code tournant sur CPU. Pour une
comparaison honnête, il faut comparer le code GPU à un programme bien optimisé
sur CPU, utilisant tous les coeurs disponibles ainsi que les instructions vectorielles qui
augmentent significativement la puissance des CPUs. Enfin, les coûts d’achat et de
fonctionnement des GPUs doivent aussi être évalués.

Chapitre 1 : Architecture

la première étape pour savoir si les GPUs peuvent accélérer des programmes de
bio-informatique est de connaître leur fonctionnement et l’architecture en détail, de
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déterminer les points faibles et points forts et de les comparer avec l’architecture CPU.

1.1 Introduction

Le temps d’exécution total d’un programme dépend de plusieurs facteurs, communs aux
architectures CPU et GPU. Nous pouvons distinguer trois caractéristiques principales:
la puissance de calcul brute, la bande passante mémoire, et la latence.
La puissance brute détermine le nombre d’opérations qui peuvent être exécutées
par unité de temps. Elle est généralement fournie par les constructeurs en nombre
d’opérations par cycles d’horloge. La multiplication de ce chiffre par la fréquence four-
nit le nombre d’opérations par secondes, usuellement défini en milliards d’opérations
flottantes par secondes, GFLOPS en anglais. Par exemple la puissance maximale d’un
CPU Xeon X5482 est de 102.4 GFLOPS pour des opérations en 32 bits, en utilisant les
instructions SSE et tous les coeurs disponibles. Pour une carte graphique Tesla C1060, la
puissance maximale théorique est de 624 GFLOPS. Cela signifie que l’on peut s’attendre
à facteur d’accélération de x6 en utilisant un GPU. Toutefois, le facteur d’accélération
réel dépend bien évidemment de la fraction de cette puissance maximale que l’on arrive
à exploiter en pratique.
Le deuxième facteur est la bande passante mémoire, i.e. la quantité de données trans-
férée par unité de temps, exprimée en Goctets/sec (Go/sec). Schématiquement, les
données sont transférées de la mémoire pour alimenter le processeur, puis dans l’autre
sens pour stocker les résultats. Pour une Tesla C1060 et un CPU Xeon 5500, la bande
passante maximale est respectivement de 102.4 Go/sec et 32.0 Go/sec. Le rapport en-
tre la bande passante et la puissance brute détermine l’intensité arithmétique nécessaire
pour exploiter au maximum les ressources disponibles. Par exemple pour la Tesla C1060,
un programme doit effectuer au moins 24 opérations flottantes par accès mémoire pour
atteindre la puissance de calcul maximale. Toutefois, si le jeu de données d’un algo-
rithme tient dans la mémoire présente sur la puce, les données peuvent être chargées
une seule fois de la mémoire principale et réutilisées plusieurs fois. Dans ce cas, la bande
passante mémoire est moins souvent une limitation.
Le troisième point est la latence, le délai entre le lancement d’une opération et le mo-
ment ou le résultat est disponible. La latence concerne à la fois les les instructions
processeurs, et les transactions mémoires. Dans un système purement séquentiel la
latence est un problème important. C’est pourquoi les CPU intègrent de nombreux
niveaux de mémoire cache pour diminuer la latence d’accès à la mémoire, et des sys-
tèmes complexes tel que l’exécution out-of-order des instructions. D’un autre côté, le
parallélisme de tâches permet aussi de combattre efficacement les problèmes de latence:
pendant qu’une tâche est en attente, une autre tâche est exécutée, les unités de calcul
ne sont donc pas bloquées. C’est ce qui est utilisé par les GPU, et qui leur permettent
de se passer de grandes quantités de mémoire sur la puce.

1.2 Comparaison CPU/ GPU

Nos expérimentations ont été effectuées sur un système 8 coeurs composé de deux quad-
core Xeon E5430 fonctionnant à 2.66GHz. Chaque Xeon contient 32KB de cache L1 par
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coeur, et 6MB de cache L2 commun à deux coeurs. Ce CPU supporte le parallélisme de
tâches, traditionnellement implémenté avec les threads POSIX ou avec l’API OpenMP.
Il supporte aussi le parallélisme de données avec les instructions vectorielles SSE.

Nous avons utilisé l’architecture GPU CUDA de Nvidia, qui combine hautes perfor-
mances et facilité de programmation avec le langage C for CUDA. En résumé, les GPUs
échangent le grand nombre de transistors dédiés à la mémoire cache et aux mécanismes
de contrôle de flux présent sur les CPUs contre plus d’unités de calculs. A la place, les
GPU comptent sur le multithreading pour masquer la latence. Un programme GPU est
un kernel, appelé sur un ensemble de trheads, répartis en un grille de blocs. les blocs
sont subdivisés en warps de 32 threads qui s’exécutent en SIMD. Les threads d’un bloc
peuvent être synchronisés et partager un petite mémoire rapide partagée de 16 Ko.
Quelques points particuliers sont: (i) la bande passante maximale n’est atteinte que si
les différents accès mémoire sont regroupés, ce qui nécessite que chaque thread accède à
des données consécutives en mémoire, (ii) chaque multiprocesseur de la carte peut gérer
au maximum 32 warps à la fois. L’occupation mesure le pourcentage de ce maximum qui
est utilisé en pratique. Une occupation plus élevée permet en général de mieux utiliser
les ressources de la carte, mais nécessite d’utiliser peu de registres par thread. (iii) La
mémoire partagée est un point crucial pour obtenir une bonne performance, elle permet
de stocker sur la puce des données susceptibles d’être utilisées par différents threads.
Elle est gérée entièrement manuellement par le programmeur.

Les architectures CPU et GPU sont assez différentes dans le sens où le CPU con-
tient beaucoup d’éléments dont le but est d’exécuter rapidement une tâche séquentielle,
alors que le GPU est très lent s’il exécute une seule tâche. Comme le GPU compte
sur le multi-threading pour ses performances, il requiert des milliers de threads pour
fonctionner efficacement, contrairement au CPU qui est déjà très rapide avec un seul
thread. Toutefois, il y aussi un certain nombre de similarités: un GPU est un ensemble
de multiprocesseurs, chacun contenant une unité SIMD, un CPU est un ensemble de
coeurs, chacun contenant également un unité SIMD. De plus, les architectures semblent
converger: les GPU évoluent vers une programmation plus souple, tandis que les CPUs
évoluent vers plus de parallélisme. Par conséquent, les GPUs ne font qu’anticiper ce
qu’il sera nécessaire de faire pour les CPU de demain.

Chapitre 2 : Prédiction de structure secondaire
d’ARN

La prédiction des structures secondaires d’ARN est un problème étudié depuis
longtemps par la communauté scientifique, et est utilisée régulièrement dans des
pipelines de bio-informatique. C’est un algorithme de calcul intensif, dont le temps
d’exécution pose problème pour des séquences de grande taille. Une parallélisation
GPU n’a jusqu’à présent à notre connaissance jamais été tentée.
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2.1 Introduction

La molécule d’ADN est plus connue sous sa forme double brin qui forme une double
hélice. Toutefois, la molécule d’ARN se trouve plus généralement en simple brin dans la
cellule. Elle est composée de 4 nucléotides, aussi appelées bases : adenine (A), cytosine
(C), guanine (G) et uracil (U). Deux nucléotides peuvent se lier formant ainsi une paire
de bases, selon la règle de complémentarité de Watson et Crick: A avec U, G avec C,
mais aussi la paire “bancale" plus instable G avec U. Les liaisons intra-moléculaires de ce
simple brin d’ARN forcent la chaîne à se replier sur elle même en un ensemble de boucles
de différent types : des épingles à cheveux, des hernies, des boucles internes ou multi-
ples. Cette conformation 2D est appelée la structure secondaire, dont la connaissance
est nécessaire à de nombreux problèmes de bio-informatique. Les algorithmes calculant
cette structure ont une complexité en O(n3), ce qui signifie que le temps d’exécution
devient rapidement problématique pour des grandes séquences. L’algorithme le plus
connu est celui de Zuker introduit en 1981, qui utilise un modèle thermodynamique
précis pour mesurer la stabilité des différents éléments de la structure [85]. Il est en-
core largement utilisé aujourd’hui et disponible dans deux packages, ViennaRNA [29]
et Unafold [56]. Notre objectif est de développer une implémentation GPU efficace de
l’algorithme donnant les mêmes résultats que Unafold.

En résumé, l’algorithme de prédiction de structure fonctionne de la manière suivante.
Il détermine la structure la plus stable, c’est à dire celle qui maximise un schéma de
score fixé, ou plutôt, qui minimise l’énergie libre totale de la molécule d’ARN. L’énergie
de la séquence entière se décompose facilement en la somme des énergies de ses sous-
structures. Un modèle thermodynamique définit l’énergie des structures élémentaires en
fonction de leur taille, type, et composition en nucléotides. Le problème est un problème
d’optimisation: parmi toutes les structures possible, il s’agit de trouver celle d’énergie
minimum. Ce problème est résolu par programmation dynamique: le problème entier
est décomposé en sous-problèmes plus faciles à résoudre. Le problème est résolu pour
des sous-séquences de la séquence principale, dont les solutions permettent ensuite de
reconstituer les solutions pour des problèmes de plus en plus grands, jusqu’à obtenir la
solution pour la séquence entière. L’algorithme introduit les 3 quantités QPi,j,QMi,j et
QSi,j qui représentent les solutions pour les sous-séquences i . . . j dans trois cas de figures
différents. QPi,j représente le score d’un séquence dont les extrémités sont appariées,
QMi,j une séquence contenant au moins deux paires de bases, et QSi,j une séquence
contenant au moins une paire de bases. Les relations de récurrence suivantes permettent
de reconstruire de proche en proche la solution pour des séquences de plus en plus
grandes :

QPi,j =
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Es(i, j) + QPi+1,j−1

min
{k,l|i<k,l<j}

Ei(i, j, k, l) + QPk,l

QMi+1,j−1



















i · j est autorisée

∞ si paire i · j interdite

(2.1)
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QMi,j = min
i<k<j

(QSi,k + QSk+1,j) (2.2)

QSi,j = min {QMi,j, min(QSi+1,j, QSi,j−1), QPi,j} (2.3)

Les trois quantités QPi,j,QMi,j et QSi,j définissent la matrice de programmation
dynamique pour i, j variant entre 1 et n. C’est une matrice symétrique: on a QPi,j =
QPj,i. Les équations de récurrence impliquent un schéma de dépendance des données et
donc un certain ordre de calcul de cette matrice. En séquentiel, les calculs s’effectuent
colonnes après colonnes de la gauche vers la droite, et chaque colonne de bas en haut.
L’équation qui calcule QMi,j est en O(n3), les deux autres en O(n2). Une mesure du
temps passé dans les différentes parties du code montre que pour des séquences de taille
8000, plus de 80% du temps total est passé dans le calcul de QM . En revanche, pour
des séquences de taille 1000, la répartition est respectivement de 30%,40% et 20% pour
QM ,QP et QS. Pour avoir une bonne accélération globale pour différentes taille de
séquences, il faut donc accélérer efficacement ces 3 parties de l’algorithme. Pour des
grandes séquences, l’accélération globale obtenue avec une parallélisation GPU va donc
approcher l’accélération de la partie en O(n3), qui calcule QM .

2.2 Principe de parallélisation

Les équations de récurrence impliquent une parallélisation a priori évidente des calculs:
les différentes cases qui composent une diagonale i − j = constante peuvent être cal-
culées en parallèle. Trois kernels sont conçus pour le calcul de QPi,j, QMi,j et QSi,j,
correspondant aux 3 équations de récurrences. Chaque kernel calcule une diagonale,
avec un thread par case. La matrice complète est ensuite calculée séquentiellement avec
une boucle sur toutes les diagonales. La synchronisation nécessaire entre chaque diago-
nale s’effectue donc naturellement entre l’exécution des différents kernels.

La partie la plus problématique concerne la parallélisation de la partie en O(n3) qui
calcule QM . La parallélisation naïve par diagonale requiert en effet beaucoup de bande
passante, car chaque case de la matrice nécessite l’accès à O(n) données pour O(n)
calculs, et il n’y a pas de partage possible des accès entre les différentes cases d’une
diagonale. En théorie, il pourrait y avoir une réutilisation des données, car une valeur
QS(i, k) va être utilisée pour le calcul des différentes cases QM(i, j) avec j ∈ [k; n].
Cependant, le schéma de dépendance des données rend impossible d’en tirer avantage,
car l’ensemble des cellules QM(i, j) j ∈ [k; n] sont situées sur différentes diagonales et
donc calculées dans des appels kernels distincts.
Nous avons développé une implémentation pavée qui fait apparaitre une bonne local-
ité mémoire. L’observation clé est que le calcul d’une case est une minimisation sur
i < k < j, qui peut être découpée en plusieurs parties. Notre approche est inspirée de
l’implémentation systolique du problème de parenthésage optimal développé par Guibas-
Kung-Thompson[27, 65]. L’idée est de décomposer et réordonner la réduction afin de
faire apparaitre une bonne localité mémoire et donc un code efficace sur GPU. Con-
sidérons que les cases jusqu’à une certaine diagonale d0 sont déjà calculées, c’est à dire
toutes les cellules (i, j) telles que j < i + d0. Pour (i1, j1) fixé en dehors de la zone
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connue, avec j1 = i1 + d0 +T, T > 0, le calcul entier min
i1<k<j1

(QSi1,k +QSk+1,j1) n’est pas

possible car de nombreuses valeurs QS sont encore inconnues.
Toutefois, il est possible de calculer une partie de la réduction pour laquelle les valeurs
QS sont connues: pour δ1 < k < δ2 avec δ1 = j − d0 et δ2 = i + d0. Cela signifie qu’en
enlevant la partie de la réduction qui viole la relation de dépendance des données, il est
possible de calculer en parallèle dans un pavé un ensemble de cases de la matrice. Dans
ce pavé, la bonne localité mémoire permet de charger en mémoire partagée du GPU
les données nécessaires au calcul. Chaque thread va ensuite accéder à cette mémoire
partagée pour effectuer ses opérations. De cette manière, les besoins en bande passante
sont réduits d’un facteur égal à la taille du pavé (16 dans notre implémentation GPU).
Le kernel n’est plus limité par la bande passante et peut au contraire exploiter au max-
imum les capacités de calcul du GPU. Le reste de la réduction est calculé de manière
traditionnelle diagonale après diagonale.

Ce schéma de pavage est aussi applicable au code CPU. La bonne localité mémoire
est aussi bénéfique sur un processeur traditionnel: elle garantit un faible nombre de
défauts de cache. De plus, le code pavé rend relativement aisé une vectorisation du
code avec les instructions SSE. Une implémentation sur CPU avec les instructions SSE
a été développée. De plus, un second niveau de pavage permet une réutilisation des
chargements mémoire au niveau des registres SSE. Le code CPU peut également facile-
ment tirer partie d’une parallélisation multi-coeurs avec openMP en parallélisant sur les
différentes cases ou pavés d’une diagonale. Cela permet une vectorisation efficace du
code CPU, et donc une comparaison honnête des performances entre CPU et GPU.

2.3 Résultats

Pour des grandes séquences, le code pavé sur GPU est jusqu’à 150x plus rapide que le
code séquentiel UNAfold disponible sur internet. Le code pavé et vectorisé sur CPU
est quant à lui jusqu’à 12x plus rapide que UNAfold. Cette accélération provient à la
fois de la bonne localité fournie par le pavage et de la vectorisation SSE. Le code CPU
vectorisé et parallélisé sur 8 coeurs de CPU est quant à lui “seulement” deux fois plus
lent que le code GPU.
Des algorithmes proches du calcul de la structure secondaire optimale existent, en par-
ticulier le calcul de structures sous-optimales et la fonction de partition [84, 58]. Nous
avons également appliqué notre approche à ces algorithmes et avons obtenus des ac-
célérations similaires.
Notre implémentation GPU pavée va faire l’objet d’un chapitre dans l’ouvrage de
NVIDIA “GPU computing gems”:

Rizk, G., Lavenier, D., and Rajopadhye, S. (2010). GPU computing Gems, chapter
GPU accelerated RNA folding algorithm. Addison-Wesley Professional.
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2.4 Discussion

Dans ce chapitre, l’objectif était de déterminer s’il était possible d’avoir une implé-
mentation efficace sur GPU du calcul de la structure secondaire de l’ARN. Nous avons
développée une première parallélisation “naïve” fortement limitée par la bande passante
mémoire de la carte graphique. Nous avons ensuite développé une nouvelle approche
pavée de l’algorithme qui fait apparaître une bonne localité mémoire, permettant de
passer d’un code limité par la bande passante à un code limité par la puissance brute de
la carte. L’accélération obtenue va jusqu’à 150x par rapport au programme UNAfold.
Le réponse est donc positive, il est possible de paralléliser efficacement un algorithme de
programmation dynamique complexe de l’envergure de l’algorithme de calcul de struc-
ture secondaire. Toutefois, le facteur 150x est à prendre avec des pincettes, il ne provient
pas uniquement de l’accélération GPU, mais aussi de notre nouvelle approche pavée.
Nous avons noté que cette nouvelle approche permettait également une bonne accéléra-
tion du programme CPU, fournissant ainsi une comparaison honnête des performances
entre GPU et CPU. L’accélération GPU par rapport à notre code vectorisé sur CPU
est de 2x sur un système octo-coeurs. Cela correspond aux accélérations observées dans
[40] quand le code CPU est bien vectorisé. Cela peut paraître une faible accélération
mais constitue en réalité déjà une optimisation très intéressante pour les pipelines de
bio-informatique nécessitant d’exécuter ce programme de manière intensive.

Chapitre 3 : Alignement de séquences

L’alignement de séquences est un domaine majeur de la bio-informatique. Avec
l’avènement des nouvelles générations de séquenceurs, le développement de nouveaux
programmes d’alignements efficaces est plus que jamais une priorité. Dans ce chapitre
l’objectif est de déterminer si une parallélisation GPU peut résoudre ce problème effi-
cacement. Nous avons développé une stratégie qui élimine la plupart des alignements
potentiels provenant de la phase d’indexation, avant qu’ils aient à être étendus par le
coûteux algorithme de programmation dynamique de type Needleman-Wunsch. En re-
vanche, cette approche rend difficile une implémentation GPU efficace. Il a donc été
jugé préférable de développer et optimiser la version CPU du programme, qui a aboutit
à la création d’un nouveau programme d’alignement, appelé GASSST.

3.1 Introduction

Les nouvelles technologies de séquençage (NGS) produisent de grandes quantités de don-
nées. Elles sont utilisées dans un large spectre d’applications, incluant le re-séquençage
de génome, la détection de polymorphisme ou l’étude des éléments transcrits. Les don-
nées consistent en un grand nombre de petites séquences appelées reads. Un problème
récurrent est de localiser ces reads dans un génome de référence, en autorisant quelques
erreurs, mismatchs, insertions ou délétions. Pour cela, la stratégie seed and extend est
la plus utilisée en pratique. L’idée est que des alignements significatifs vont inclure
des régions avec une correspondance parfaite entre la séquence requête et la séquence



xi

de référence. Par exemple, tout alignement de 50 paires de bases avec 3 erreurs con-
tient au moins 12 bases identiques consécutives. En conséquent, dans la stratégie seed
and extend, seules les séquences partageant des k-mers identiques avec la référence sont
considérées comme alignements potentiels. La détection de k-mers communs est par
exemple effectuée en utilisant un index localisant tous les k-mers sur la séquence de
référence. Ensuite, tous les k-mers chevauchants, appelés graines, de cette séquence
sont extraits. Pour chaque graine l’index fournit une liste de positions dans la référence,
qui sont autant d’alignements potentiels, appelés CAL pour candidate alignment lo-
cation. Chaque alignement potentiel doit ensuite être “étendu” pour savoir s’il peut
générer un alignement suffisamment similaire. Pour autoriser les insertions/délétions,
cette étape est en générale effectuée avec un algorithme de programmation dynamique
de type Needleman-Wunsch. Cette méthode bénéficie d’une bonne précision et d’une
bonne sensibilité, mais est aussi extrêmement lente à cause du nombre très élevé de
coûteuses instances de programmation dynamique à résoudre.
Les solutions utilisées dans la littérature pour accélérer cette stratégie sont l’utilisation
de graines espacées ou multiples. C’est par exemple le cas des programmes BFAST
[30], SHRiMP [71] et MAQ [44]. Une autre solution développée dans SHRiMP est la
vectorisation en SSE du code de programmation dynamique. La principale méthode
concurrent à la stratégie seed and extend est celle qui utilise un indexation basée sur
une transformée de Burrows-Wheeler (BWT) [9]. La méthode utilise une technique
appelée backward search [22] qui permet d’utiliser l’index pour obtenir des résultats
similaires à une recherche utilisant un arbre des suffixes. Cette méthode est utilisée par
les programmes Bowtie [38], SOAPv2 [47], et BWA [42]. L’avantage de cette méthode
est des temps d’exécution très courts et peu de besoins de mémoire vive, mais elle ne
fonctionne bien en général que pour des alignements avec un faible taux d’erreurs.

3.2 Principe

Notre objectif est la création d’un nouveau programme d’alignement efficace, fonction-
nant dans un grand nombre de situations : avec des reads courts ou longs, et des taux
d’erreurs faibles ou élevés. Nous avons exploré deux pistes pour le développement de
cet algorithme. Premièrement, une approche par filtrage, et deuxièmement, une paral-
lélisation sur GPU.

L’approche par filtrage vient de l’observation que la plupart des alignements can-
didats produits par la stratégie seed and extend ne génèrent pas de bons alignements.
Seul un très faible pourcentage, généralement inférieur à 1%, conduit à des alignements
significatifs. De plus, il n’est probablement pas nécessaire d’effectuer le complexe calcul
de Needleman-Wunsch pour se rendre compte qu’un alignement va être mauvais. L’idée
du filtrage est alors de mettre au point des tests consistant en calculs simples et rapi-
des qui permettent d’éliminer rapidement les alignements candidats avec un faible score
de similarité. Les alignements candidats qui passent ces filtres sont ensuite recalculés
avec Needleman-Wunsch pour obtenir l’alignement complet. Le filtre que nous avons
développé est basé sur l’utilisation de tables de scores pré-calculés qui contiennent le
score d’alignement de Needleman-Wunsch de toutes les paires de mots de taille l. En
stockant chaque score dans un octet, la taille de la table est de 42l octets. En pratique,
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nous utilisons l = 4 ce qui conduit à une table de 64Ko. C’est une table suffisamment
petite pour tenir dans les premiers niveaux de cache du processeur et peut donc être ac-
cédée très rapidement dans un algorithme. Nous avons développé un nouvel algorithme
qui réutilise cette table un grand nombre de fois pour calculer une approximation de
l’algorithme de Needleman-Wunsch. En choisissant un schéma de score simple, i.e. 1
pour une erreur, mismatch, insertion ou délétion et 0 sinon, notre algorithme calcule une
borne inférieure du score obtenu par Needleman-Wunsch. C’est à dire que l’algorithme
détermine une borne inférieure du nombre d’erreurs présentes dans l’alignement. Nos
mesures montrent que cette borne est calculée 10 à 100 fois plus vite que le score ex-
act de Needleman-Wunsch. Son utilisation constitue donc un filtre très efficace pour
éliminer rapidement des alignements candidats. Le fait que l’algorithme calcule une
borne inférieure permet d’éliminer sans se tromper des alignements candidats avec trop
d’erreurs. Aucun bon alignement n’est éliminé par le filtre, la sensibilité n’est donc
pas diminuée. En revanche, certains alignements avec trop d’erreurs peuvent passer le
filtre. Ceux-ci sont éliminés dans la phase finale de l’algorithme ou le calcul exact de
Needleman-Wunsch est effectué sur les alignements candidats qui passent le filtre.

La deuxième piste explorée est la parallélisation sur GPU. Il y a deux possibilités
pour cette parallélisation : soit la parallélisation de l’approche filtrée, soit la paralléli-
sation de l’algorithme sans filtres. L’algorithme sans filtres est facile à paralléliser sur
GPU, mais nos mesures ont montré que l’approche sans filtres est 10 à 100 fois plus lente
que l’approche filtrée. Sa parallélisation GPU est donc inutile. L’algorithme filtré est
rapide sur CPU, mais est en revanche très difficile à paralléliser efficacement sur GPU:
l’utilisation de filtres introduit des divergences dans le traitement des différents aligne-
ments candidats: pour certains le calcul s’arrête dès le premier filtre, pour d’autres le
traitement passe tous les tests. Le programme ne convient donc plus à un parallélisme
de données ou les différents unités de calcul doivent effectuer exactement la même tache,
comme c’est le cas sur GPU. Il convient par contre tout de même à un parallélisme de
tâches, pour une parallélisation sur multi-coeurs. Pour cette raison nous avons donc
décidé d’abandonner la parallélisation GPU de cet algorithme. En revanche, la nouvelle
approche filtrée développée a permis la création d’un nouveau programme d’alignement
efficace, appelé GASSST, pour Global Alignment Short Sequence Search Tool.

3.3 Résultats

Les résultats du programme GASSST ont été comparés en particulier avec ceux des
programmes BFAST et BWA qui sont actuellement les plus utilisés. Pour cela, des jeux
de données simulés ont été utilisés. Des reads de différentes tailles et taux d’erreurs
ont été généres à partir du génome humain. Pour chaque expérience, la sensibilité, la
précision et le temps de calcul ont été mesurés. Des jeux de données réels ont aussi été
utilisés, pour lesquels la sensibilité ne peut être qu’estimée. Ces évaluations ont montré
que le programme GASSST est efficace dans beaucoup de situations différentes: pour
des reads courts et longs, avec un taux d’erreurs autorisées dans les alignements faible
ou élevé. GASSST est aussi rapide que BWA pour des reads courts avec un faible taux
d’erreurs, et devient beaucoup plus sensible pour des taux d’erreurs plus élevés.

Le programme GASSST est disponible en licence CeCILL, et a été l’objet d’un article
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dans la revue bioinformatics :
Rizk, G. and Lavenier, D. (2010). GASSST: global alignment short sequence search
tool. Bioinformatics, 26(20), 2534–2540.

3.4 Discussion

Dans ce chapitre, l’objectif était de déterminer si les GPU pouvaient être utilisés pour
créer des algorithmes rapides d’alignement de séquences. Nous avons développé une
approche par filtrage qui a donné de très bons résultats mais qui n’a pas pu être paral-
lélisée sur GPU. Le dilemme pour la parallélisation GPU est le suivant: soit paralléliser
l’approche non filtrée, qui est régulière et donc efficacement parallélisée sur GPU, mais
qui est à la base très lente; soit essayer de paralléliser l’approche filtrée, qui est très rapide
mais aussi très difficile à paralléliser. Les deux options menant à une impasse pour la
parallélisation GPU, il apparaît donc impossible d’utiliser les GPU pour paralléliser la
stratégie seed and extend .

Chapitre 4 : Conclusion

4.1 Contributions

Nous avons contribué à deux problèmes différents: le calcul de structures sec-
ondaires d’ARN et l’alignement de séquences générées par les nouvelles technologies
de séquençage. Pour le premier problème, nous avons développé un code GPU qui
va jusqu’à 150x plus vite que le programme UNAfold. Cela a été rendu possible par
l’utilisation d’une méthode de pavage qui fait apparaître un bonne localité mémoire.
Nous avons aussi développé un programme CPU qui exploite le pavage et vectorisé en
SSE, qui est jusqu’à 10 x plus rapide que UNAfold. Nos méthodes ont également été
appliquées au calcul des structures secondaires sous-optimales et au calcul de la fonction
de partition. La méthode de pavage que nous avons développée est un bon exemple de
ce qu’il faut faire pour obtenir des bonnes performances sur GPU. Tandis que notre
première implémentation était limitée par la bande passante et n’utilisait donc qu’une
faible fraction des capacités de calcul du GPU, la version pavée n’est plus limitée par la
bande passante et utilise donc au maximum les capacités de calcul du GPU. Des méth-
odes similaires pourraient être utiles à d’autres applications GPGPU. Pour le second
problème, l’alignement de séquences, nous avons développé un nouvelle approche filtrée
basée sur l’utilisation de tables pré-calculées, qui a conduit à la création du programme
GASSST fonctionnant sur CPU.
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4.2 Perspectives

Pour le repliement d’ARN, il serait possible d’explorer des variations sur la méthode
de pavage, apportant éventuellement encore un gain pour le GPU. Il serait également
intéressant d’essayer d’appliquer notre méthode à des algorithmes similaires, par ex-
emple ceux qui calculent les structures secondaires avec pseudo-noeuds, ou les algo-
rithmes calculant d’autres classes de structures sous-optimales. Pour l’alignement de
séquences, il semble possible d’optimiser davantage le programme GASSST. Dans un
premier temps, il serait possible d’essayer des méthodes d’indexation plus élaborées,
telles que des graines espacées. Il serait aussi utile d’étudier l’impact de l’utilisation de
schéma de scores plus complexes pour notre approche de filtrage. Bien qu’il semble diffi-
cile pour la méthode actuelle d’intégrer des scores plus complexes (avec un coût différent
pour le début ou l’extension d’une délétion), des méthodes approchées pourraient être
développées. Plus généralement, il reste probablement de nombreuses pistes à explorer
pour accélérer l’alignement de séquences. La stratégie seed and extend bénéficie d’une
bonne sensibilité, mais souffre aussi d’une certaine lourdeur: elle génère un très grand
nombre d’alignements candidats, générant beaucoup de calculs inutiles. Pour obtenir
de meilleures performances, il semble nécessaire d’élaborer une stratégie radicalement
différente.

4.3 Discussion

La problématique de cette thèse est de déterminer si les algorithmes utilisés en bio-
informatique peuvent ou non être efficacement implémentes sur GPU. Par l’étude de
deux problèmes différents, il nous est possible d’avoir un début de réponse à cette ques-
tion. Pour les algorithmes de calcul intensif du type de l’algorithme de repliement
d’ARN, les GPU peuvent fournir une implémentation efficace, même s’il peut être dif-
ficile d’exposer une bonne localité mémoire, nécessaire pour obtenir des bonnes per-
formances. En revanche, pour le domaine du traitement des séquences en général,
la réponse est non. Plusieurs facteurs en sont la cause: premièrement ils nécessitent
en général la manipulation de grandes quantités de données, qui peuvent être longs à
transférer sur GPU. Deuxièmement, l’intensité arithmétique ( le ratio entre le nom-
bre d’opérations et la quantité de transactions mémoire) est en générale faible, ce qui
conduit à une sous-utilisation de la puissance de calcul des GPUs. Troisièmement, des
structures de données complexes sont souvent utilisées, qui requièrent des accès aléatoire
à la mémoire, et donc induisent une faible bande passante sur GPU.
En ce qui concerne les performances, dans notre cas le code GPU est environ équivalent
à 16 coeurs de CPU. C’est moins qu’espéré initialement, mais déjà un bon résultat si on
compare le coût de fonctionnement d’un GPU et de 16 coeurs de CPU. Enfin, la ques-
tion du temps de développement sur GPU est importante. Notre expérience a montré
que les temps de développement sur GPU sont assez longs, du fait d’un grand nombre
de paramètres à tester et optimiser. Bien que subjectif, car fortement dépendant de
l’expérience de chacun, il nous semble plus simple de paralléliser pour des instructions
vectorielles SSE que pour GPU. Comme les instructions vectorielles des CPU four-
nissent déjà un gain de performance significatif, il semble judicieux pour de nombreux
algorithmes de commencer par une implémentation SSE que par un portage sur GPU.
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Introduction

Context

Bioinformatics deals with techniques to analyze biological data. Common fields include
DNA or protein sequence alignments, analysis and comparison of protein or RNA struc-
tures. For all these fields, the amount of data available has been growing exponentially
in the past decades.

As regards DNA sequencing, progress has been very fast. The double helix structure
of the DNA was discovered in 1953 by Watson and Crick. The first organism to be
sequenced was the bacteriophage φ X 174 composed of 5386 bases in 1977. The first
draft of the human genome, more than 3 billion base-pair long, was released in 2000 at a
cost of several billion of dollars. With nowadays next generation sequencing technologies,
several giga base-pairs can be sequenced in a single run for approximately 10K$.

As a consequence, database size has grown exponentially. More and more data need
to be analyzed. Furthermore, because of the dramatically decreasing sequencing costs
and comparatively much slower evolution of storage capacity, it has sometimes become
paradoxically cheaper to re-sequence than to store the sequence for later reuse. This
stresses the need to analyze huge quantities of data on the fly, and store only interesting
results. Moreover, CPU performance is not keeping up with this evolution. As a result,
program execution takes more and more time and biologists are facing increasingly
serious storage issues.

Contrary to the past, we cannot just wait for the next generation of processors to
speed up slow sequential programs. In the past, ever increasing processor frequencies
provided easy to use new processing power. This trend has now reached a dead-end, for
two main reasons: the memory wall and the power wall. The former is the increasing
gap between memory and processor speed, requiring larger and larger cache memories.
The latter is the exponentially increasing power consumption as frequency increases.

The only way left to get more processing power is through parallelism. The first
solution is the use of multi-core CPUs and clusters of computers. While effective, this is
also an expensive solution. Another solution is the use of high performance specialized
hardware. For example FPGAs are able to provide very high performance, but still
suffer from high development costs.

Yet another solution comes from Graphic Processing Units (GPU). A GPU is a spe-
cialized processor designed to accelerate the rendering of graphics on screen. It is a
highly data-parallel problem: identical computations need to be executed on many ver-
tices and pixels. Therefore, GPUs were designed as massively data-parallel architectures:

1
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they are composed of many computational units able to apply the same computation ef-
ficiently on different input data. Moreover, from fixed basic graphic functionality, GPUs
gradually included more and more programmability options to allow game programmers
to generate more realistic effects. This programmability and flexibility came to a point
where non-graphic computation became also possible, giving birth to General Purpose
computing on Graphics Processing Units (GPGPU). NVIDIA introduced in November
2006 the CUDA programming language designed entirely to facilitate GPGPU on their
GPUs.

Using GPUs for standard computation has many advantages. First, strong compe-
tition driven by the game industry lead to cheap GPUs, and ever-increasing processing
power. Every standard computer can be fitted with a high-end GPU, dramatically in-
creasing its total computational power at a low cost. Secondly, GPUs are naturally
well suited for any massively data parallel problem, arising in many scientific research
domains. This includes computational fluid dynamics, medical imaging, finance, sig-
nal processing, cryptanalysis. Bioinformatics also exhibits a lot of data parallelism:
the analysis of large data sets often requires to apply the same computation on differ-
ent data. A priori it therefore seems natural to use GPUs to speed up bioinformatics
applications.

Objectives

The objective of this thesis is to estimate GPU capabilities in typical bioinformatics
applications. Our study focuses on two different problems, the computation of RNA
structures and sequence alignments. Both have already been studied for a long time
by the scientific community, but still poses computational issues, because of the rapid
growth of biological data.

The fact that a problem shows a high level of data parallelism is not enough to
predict that GPUs will be effective in practice. In fact, GPU architecture has many
specificities that restrict the scope of possible applications. Our objective is also to
evaluate the impact of these GPU specificities.

The evaluation of GPU has to be conducted on several different aspects. First, an
important point is the development time required for an efficient GPU implementation.
For instance, GPUs are a priori easier to program than FPGAs, but more difficult than
CPUs. This needs to be evaluated in practice. Secondly, the execution speed. For a
fair evaluation, GPU contribution needs to be compared with optimized CPU code. In
particular, comparison with the vector computation units of CPU has to be conducted.
Nowadays, all CPUs contain vector units able to provide small scale data parallelism,
but still rarely used in practice. Then, the cost. Both the device initial cost and running
costs need to be considered. The latter is directly dependent on power consumption,
hence often evaluated as a performance per watt ratio.

Finally, the objective is more than just a GPU evaluation. It is also to develop,
if possible, general methods to transform efficiently a program for an efficient GPU
implementation. Techniques developed for the GPU implementation of the two prob-
lems studied here might prove to be useful for other unrelated problems using similar
algorithmic schemes.
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Outline

Chapter 1 - This first chapter explains the operating principles of the GPU hardware.
Comparing it with the traditional CPU architecture enables to shed light on the strong
and the weak points of GPUs. In a first part, the basic characteristics—computational
power, latency, bandwidth—are introduced and detailed. Then, GPU specificities are
explained.

Chapter 2 - This chapter is an optimization case study of what can be done with
various high performance hardware on a well known bioinformatic algorithm: the Smith-
Waterman algorithm, which computes optimal sequence alignments. This review shows
the advantages and drawbacks of different hardware and puts GPU performance in
perspective. It also provides a state of the art of parallelization methods for dynamic
programming algorithms.

Chapter 3 - In this chapter, we present our first contribution: the GPU implementa-
tion of the RNA folding computation. This computation is conducted with a dynamic
programming (DP) algorithm. Although other DP algorithms have already been success-
fully implemented on GPU, the RNA folding computation poses significant challenges:
complex data dependency scheme and memory access pattern. We introduce here a new
tiled implementation which provides highly efficient GPU implementation. This tiled
scheme is also applied to a CPU implementation, fully optimized with the use of vec-
torized instructions. Algorithms computing sub-optimal foldings and partition function
were also studied and implemented on GPU and vectorized on CPU.

Chapter 4 - Our second contribution is developed in this chapter: the design of a
new sequence alignment program. More precisely, the short read mapping problem,
coming with the advent of next generation sequencing technologies, is targeted. After
a state of the art of the short read mapping techniques, we introduce our attempt at
GPU parallelization. Our main contribution is the development of a new algorithm
filtering candidate alignment positions quickly, based on the precomputation of tiles
of the dynamic programming matrix. This new algorithm proved to be in fact more
effective on a sequential CPU program and lead to the creation of the GASSST software,
standing for Global Alignment Short Sequence Search Tool.
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Chapter 1

Architecture

Our objective is to accelerate bioinformatics programs through the use of high-
performance commodity hardware: GPUs. The first step is to study the hardware
in details, to know its weak and its strong points and to see how it competes with
traditional CPU architectures.

First in section 1.1 the basic notions required to compare different architectures are
detailed. We distinguish three main characteristics: raw power computation, memory
bandwidth and latency. We explain how these characteristics impact the total execution
time of a program and how they differ between GPU and CPU architectures.

Then in section 1.2 the CPU and GPU devices used in our work are presented.
The different forms of parallelization provided by CPU are quickly explained, and GPU
specificities are described. Finally GPU and CPU differences are discussed.

1.1 Common concepts

The total execution time of a program depends on many factors. In this section, we will
address the hardware point of view. For a given program, which hardware characteristics
determine the speed at which it will be executed ?

We distinguish three main characteristics: raw power computation, memory band-
width and latency. These features are important because they give the basis for compar-
ing different architectures. If the performance of each architecture are known on each of
these characteristics, and also how the execution speed of a program is related to them,
we can determine the theoretical speedup which can achieved when moving from one
architecture to another.

1.1.1 Throughput

Throughput is the computational raw power of an architecture. It is the number of
operations that can be executed within a given time. Architecture manufacturers usually
give figures in operations per clock cycle. Sometimes reciprocal throughput is given, i.e.
the average number of cycles it takes to perform an operation.

5
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Some processors are designed to perform multiple operations on each clock cycle,
greatly increasing their computational throughput. We distinguish three classes, possi-
bly cumulative: scalar, vector and superscalar processors.

Scalar processors. Instructions handle a single data item at a time, therefore the
maximum number of operations per clock cycle is one.

Vector processors. Each instruction operates simultaneously on many data items.
The processor is therefore able to perform several operations at each clock cycle.

Superscalar processors. Such processors can execute several different instructions
on each clock cycle by dispatching instructions to several functional units contained
in the processor. Again, the processor is able to perform several operations per
clock, possibly of different kinds.

Current processors are usually both superscalar and vector processors, with several
Arithmetic Logic Units (ALU), Floating Point Units (FPU), and vector units.

Multiplying operations per clock cycle by the clock rate returns operations per sec-
onds, usually defined as Giga Floating point Operations per Seconds (GFLOPS) or
GOPS for other operations.

Table 1.1 shows the throughput for different operations on several architectures. Fig-
ures are computed from the Nvidia and Intel optimization guides providing the through-
put in operation per clock cycle [31, 63]. For the Xeon, we display the overall throughput
when using the four cores of the CPU. Those are only theoretical maximum values and
are sometimes in fact only obtained for very special cases.

For example the 38.4 GOPS of the Xeon for the 32-bit add (without using SSE) is
obtained with the formula 4 cores × 3.2 Ghz × 3 execution units. The XeonX5482 is
indeed able to dispatch an integer add to any of three execution units and therefore able
to perform 3 integer add each cycle. This peak add throughput can be reached only if
the processor finds 3 independent instructions in the code at each clock cycle, which is
highly unlikely.

The GPU hardware possesses fixed function units for the computation of transcen-
dental operations like exp, log, cos, ..., whereas those operations are evaluated through
algebraic expressions in CPU. This explains the huge difference showed table 1.1 for
cos : the Tesla C1060 is hundreds of times faster than the Xeon. Other than this special
case, Tesla C1060 peak throughput is between 3 and 6 times that of the quad core Xeon
using SSE for 32-bit operations. In practice the actual speedup will of course depends
on how much of this peak throughput each architecture is able to harness.

Besides, computation throughput is not the only factor to consider, as we shall see
next.

1.1.2 Bandwidth

Bandwidth is the amount of data transferred per unit of time, usually expressed in
Gbits/sec (Gb/s) or GBytes/sec (GB/s).
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Table 1.1. Instruction Throughput on GPU and CPU

Operation Tesla C870 Tesla C1060 Xeon X5482 Xeon X5482, with SSE

32-bit integer add 166.4 312 38.4 102.4
32-bit floating point add 166.4 312 12.8 51.2
32-bit floating point divide 18 - 36 34 - 68 ≈ 0.64 ≈ 2.56
32-bit floating point cosinus 41.6 78 ≈ 0.15 -
64-bit floating point add - 39 12.8 25.6
peak 32-bit GFLOPS, best case 332.8 624 25.6 102 .4
peak 64-bit GFLOPS, best case - 78 12.8 51.2

Instruction Throughput is given in giga operations per seconds. Figures are inferred from NVIDIA and
Intel optimization guides [31, 63]. The best GFLOPS case is attained with multiply-add operations. The
claimed GFLOPS peak is sometimes 933 for the the Tesla C1060 when mixing multiply-add and mul
operations, but this does not appear to work in practice, even on simple kernels [personal tests].

Table 1.2. Maximum theoretical and measured bandwidth

Model peak in GB/s Measured formula

GPU C870 76.8 60.5 384 bit bus × 1.6Ghz / 8
GPU C1060 102.4 81.6 512 bit bus × 1.6Ghz / 8
GPU GTX280 140.8 114 512 bit bus × 2.2Ghz / 8
CPU Xeon 5400 10.6 ≈ 4.5 64 bit bus × 1.3Ghz FSB / 8
CPU Xeon 5500 32.0 - 64 bit bus × 1.3Ghz FSB × 3 channels / 8
PCI 2.0 16x 8 5.7 -
GPU C1060 shared memorya 41.6 - 32 bit × 0.65Ghz × 16 banks /8
Xeon 5500 L1 cacheb 51.2 - 128 bit × 3.2Ghz /8

Bandwidth between memory and processor for several GPU and CPU models, and over the PCI link
between GPU and CPU. Figures are given in GB/sec with GB=109 bytes. Second column is actual
measured bandwidth with handwritten benchmarks. Last column shows the formula used to compute the
peak bandwidth.
a Bandwidth per GPU multiprocessor, C1060 has 30 MP.
b L1 bandwidth per CPU core.

Schematically, data transfers happen to feed the processor with data stored in the
memory, and to store back results. The actual situation is however quite complex,
because of the complex memory hierarchy in a typical system. Bandwidth can refer to
transfers between main memory and processor, between L1 or L2 cache and processor,
or between CPU and GPU main memory over the PCI bus.

Table 1.2 shows the maximal theoretical bandwidth for the memory to processor
transfer of various GPU and CPU. GPU bandwidth is approximately ten times greater
that Xeon 5400 bandwidth. However, with the new nehalem architecture, CPU band-
width has also recently seen a large increase.

Depending on the arithmetic intensity (the ratio of arithmetic operations over mem-
ory operations) the memory bandwidth or the computational throughput can be the
bottleneck. For example, with the Tesla C1060, according to peak throughput and
bandwidth, a program has to perform at least 24 floating point operations per memory
load/store to reach the full GFLOPS peak. However, if the working set of an algorithm
fits in the on-chip storage, data can be loaded once and reused several times. In this
case, main memory bandwidth is less often a limitation.



8 Common concepts

Table 1.3. Latency table

Latency, in clock cycles
GPU main memory 400-800
CPU main memory ≈ 100
Xeon 5482 L1 cache 3
Xeon 5482 L2 cache 14

Xeon 5482 floating point add 3
Xeon 5482 floating point divide 6-20
Xeon 5482 integer add 1

Indicative latency of different memories and some CPU in-
structions.

1.1.3 Latency

Latency is the time delay between issuing an operation and receiving its result. It is
usually expressed in nano-sec or in clock cycles.

First, it concerns any processor instructions, and tells the time it takes to finish
some computation. In a non-pipelined system, latency of the instructions equals the
reciprocal throughput. On the contrary, in a pipelined architecture, the processor does
not have to wait for the result of an operation before issuing the next instruction. In
this case, latency and throughput are different and should not be confused.

Secondly, latency concerns memory transactions: the time delay between asking for
some data and actually receiving it. In this case latency greatly depends on the memory
physical location: off-chip memory latency is several orders of magnitude higher than
on-chip memory latency.

Table 1.3 gives the indicative latency of several different memory operations and
instructions.

1.1.4 Analysis

In a purely sequential system latency is a major issue. For example if an operand
resides in main memory, the latency will be high and the processor will stall until it
becomes available. Similarly, if some operand is the result of a previous computation,
the processor will stall until this previous operation is complete.

The first solution to reduce memory-induced latency is the use of a hierarchical
memory system: L1, L2 and sometimes L3 cache between the CPU registers and the
main memory. Data used often will reside in small memory closer to the CPU and thus
have lower access latency. Since this solution works well, CPU caches have seen their
size increased a lot in the past few years.

A second solution to the latency problem is the out-of-order execution implemented
in most CPUs. It consists in reordering differently instructions of a program: if some
instruction is waiting for some operand, the processor will try to execute another up-
coming instruction of the program. In that case, some latency is effectively hidden.
This reordering depends on the amount of Instruction Level Parallelism (ILP) of the
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program—ILP measures how many instructions a program can perform simultaneously.
In a series of dependent operations the processor will not be able to re-order instructions.

Yet another solution is to exploit task-parallelism. If a task is waiting for some data,
the processor will execute instructions from another task—i.e. another thread—so that
the processor is not stalled. This is implemented by Intel with their hyper-threading
technology.

Likewise in the highly parallel GPU architecture, the hardware is often able to ef-
fectively hide most of the latency, as we shall see in next section detailing the GPU
architecture.

1.2 Platforms

In this section the CPU and GPU architectures used for our experiments are presented.

1.2.1 CPU

Description

Experiments were mainly conducted on an 8-core system composed of two quad-core
Xeon E5430. It was introduced by Intel in November 2007 and is based on a core
microarchitecture using a 45nm fabrication process.

Each Xeon E5430 contains 4 CPU cores. There are 32KB of L1 data cache per core,
and 6MB of L2 cache shared between two cores. The Xeon E5430 runs at 2.66Ghz, and
some tests were also ran on the E5482 variant running at 3.2Ghz.

Task parallelism

Definition 1. Task parallelism is an execution scheme where multiple processing ele-
ments are working on different independent tasks.

This form of parallelization is handled by the different cores of the CPU. It is tradi-
tionally conducted with the POSIX threads (Pthreads) or OpenMP APIs.

Data parallelism

Definition 2. Data parallelism is an execution scheme where multiple processing ele-
ments are executing the same task on different data.

Current Intel processors exploit data parallelism with a set of instructions working
with vectors, i.e. the same instruction is applied on each vector element. This is a Single
Instruction Multiple Data (SIMD) system. The instruction set is called Streaming SIMD
Extension (SSE). Xeon E5430 includes SSE up to version 4.1. Vectors are 128 bit wide,
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meaning that four 32-bit floating point operations can be handled simultaneously, or up
to sixteen 8-bit integer operations.

The first way to implement SSE in a program is directly via the corresponding as-
sembly code. It is obviously the most challenging approach, but potentially yielding the
best results.
The second way is through the use of intrinsics. It is an API extension set built into
the compiler giving access to the low-level SIMD instructions. It makes possible an easy
implementation in a C/C++ program and, contrary to direct assembly code, relieves
programmer from tedious register management.
The last way is via automatic vectorization handled by the compiler itself. This obvi-
ously does not work in all cases and is an ongoing field of research.

1.2.2 GPU

The GPU architecture we used is the Compute Unified Device Architecture (CUDA)
developed by NVIDIA. It combines high performance with the ease of use of a C-like
environment with the C for CUDA1 programming language [63].

GPUs are massively parallel architectures providing cheap high performance comput-
ing, originally designed for image processing. Their first use for general computing were
done through the use of graphic programming languages like openGL, which has the
advantage of running on all graphic cards. However, this approach requires the painful
work of mapping algorithms into graphic concepts and is not fully efficient. That is why
GPU vendors have developed specific programming languages for general computation,
CTM (Close To Metal) for AMD, C for CUDA for NVIDIA, and more recently OpenCL
by the Khronos consortium which aims at providing one universal computation language
for all graphic cards.

Shortly speaking, GPUs trade the high amount of transistors devoted to on-chip
memory cache and flow-control in traditional CPUs for more processing units. Instead,
they rely on multithreading to hide latency, which requires a high arithmetic intensity
(many calculations per memory access) to work efficiently.

Description

Work was conducted with two generations of NVIDIA graphic cards, G80 and GT200.
The latest Fermi architecture was not available at development time.

The GT200 is divided into 30 multiprocessors each being a SIMD unit of 8 32-
bit scalar processors (SP), as shown figure 1.1. Each multiprocessor also contains one
double-precision execution unit, two special function units (SFU) dedicated to transcen-
dental functions, and a single instruction fetch unit.

A GPU procedure is a kernel called on a set of threads, divided in a grid of blocks
each running on a single multiprocessor. Furthermore blocks are divided into warps of

1The “C for CUDA” programming language is often simply referred to as CUDA, although CUDA
is originally just the name of the architecture.
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32 threads executed in a SIMD-like fashion. Moreover, only threads within a block can
be synchronized and share the fast on-chip shared memory.

One key difference with a traditional CPU implementation is that the programmer
has to explicitly handle several memory spaces having different performance, size, scope
and lifetime:

• Global memory: slow, large, read-write, not cached, per grid, application lifetime.

• Texture memory: slow, large, read only, cached with spatial locality, per grid,
application lifetime.

• Constant memory: slow, small, read only, cached, per grid, application lifetime.

• Shared memory: fast, small, read-write, on-chip, per block, kernel lifetime.

• Registers: fast, small, read-write, on-chip, per thread, kernel lifetime.

In order to achieve good performance, the programmer has to isolate key data compo-
nents and allocate them to different memory spaces according to their size and access
pattern. This is a difficult task since it requires careful tuning and benchmarking of
numerous different options.

Specificities

SIMT. NVIDIA emphasizes that strictly speaking, the hardware is not SIMD but
SIMT, meaning Single-Instruction, Multiple Threads. Whereas a SIMD system
applies one instruction to multiple data lanes, SIMT applies one instruction to
multiple independent threads. All threads of a warp start together at the same
program address, but each has its own instruction address and register states
meaning that threads are free to branch and execute independently. At each
cycle, the multiprocessor executes one common instruction of a warp at a time.
Therefore, full efficiency is reached when all threads of a warp take the same code
path.

The first difference appears in software: contrary to SIMD which exposes the vector
width explicitly to the programmer, a SIMT program specifies the execution and
branching behavior of a single thread. This new coding paradigm appears to be
one of the major reason of the CUDA success in the community.

Secondly, it is believed but not clearly documented by NVIDIA that the SIMT
hardware may be more efficient than SIMD when handling divergent code path,
thanks to the fact that each thread has its own program counter.

Width. Although a multiprocessor is made of 8 SPs, warps are grouped into 32 threads.
The instruction fetch unit works at half the clock rate of the SPs, and may dispatch
instructions alternatively to the 8 SP or to the two SFUs who work independently,
hence the 4x ratio. Branching (if-then-else control flow instructions) occurring
across different warps does not affect performance.



12 Platforms

Shared memory 

16KB

Registers

16384 x 32bits

SP SP

SP SP

SP SP

SP SP

Multiprocessor 1

SFU SFU

DP

Shared memory 

16KB

Registers

16384 x 32bits

SP SP

SP SP

SP SP

SP SP

Multiprocessor 2

SFU SFU

DP

Shared memory 

16KB

Registers

16384 x 32bits

SP SP

SP SP

SP SP

SP SP

Multiprocessor 3

SFU SFU

DP

Texture Cache 

Texture units

... Texture Processor cluster 10 

Global Memory, texture memoryHost

Shared memory 

16KB

Registers

16384 x 32bits

SP SP

SP SP

SP SP

SP SP

Multiprocessor 1

SFU SFU

DP

Shared memory 

16KB

Registers

16384 x 32bits

SP SP

SP SP

SP SP

SP SP

Multiprocessor 2

SFU SFU

DP

Shared memory 

16KB

Registers

16384 x 32bits

SP SP

SP SP

SP SP

SP SP

Multiprocessor 3

SFU SFU

DP

Texture Cache 

Texture units

Texture Processor cluster 1

Figure 1.1. GT200 architecture. The GT200 has 30 multiprocessors each contain-
ing 8 stream processors, 2 special function units and one double precision unit. Mul-
tiprocessors are grouped by 3 in texture processor clusters with a texture unit. Each
multiprocessor contains 16KB of on-chip shared memory and 16384 32-bit registers.
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Coalesced reads. Maximum memory bandwidth is achieved only when threads of a
warp coalesce their memory accesses. Detailed requirements for coalesced reads
depend on device generation, but roughly are to have consecutive threads access
consecutive memory locations at the same time.

Shared memory. It is a fundamental element responsible of the architecture effi-
ciency. As stated in section 1.1.2, although already quite high the main memory
bandwidth is generally not sufficient to feed with data the numerous execution
units. The issue is addressed by storing data reused several times or by differ-
ent threads in the small shared memory. Moreover, full performance is achieved
only when simultaneous accesses hit the 16 different memory banks composing the
shared memory. Avoiding bank conflicts is however generally a late optimization
stage.

Occupancy. Each multiprocessor in the GT200 chip can handle 32 warps at a time,
i.e. 1024 threads. The ratio between the actual amount of warps residing in a
multiprocessor and the maximum is called occupancy. A high number of threads
allows the hardware to hide most of the memory latency: while a warp waits for
some data, another warp is scheduled for execution. This mechanism is the reason
why the GPU architecture does not need large data cache, but it works best only
if the occupancy is high enough.

Hardware multithreading. The execution context of each active warp in a multi-
processor is stored and maintained on-chip. This implies that switching from one
warp to another is completely free. It also means that on-chip resources (registers,
shared memory) are shared between all active warps. This implies that occupancy
is limited by the registers and by the shared memory consumption of each warp.

1.2.3 CPU/GPU comparison

From a general point of view, CPU and GPU architectures might look similar: a GT200
chip is an array of multiprocessors each containing a SIMD unit, while the Xeon E5430
is an array of cores each containing scalar and SIMD units. However, taking a closer
look reveals many key differences.

The CPU contains many components aimed at making a single instruction stream
run fast: out of order execution, complex branch prediction, memory pre-fetch system,
and large data cache. The GPU does not need such components, because massive multi-
threading provides an easy way to keep pipelines execution full.

GPU can therefore devote more space to computation units, which explains the
difference in peak throughput observed. The drawback is however that full efficiency is
only reached with a high enough number of threads. The GPU relies on multi-threading
for its performance, therefore, contrary to the CPU which can run at full efficiency with
one thread per core, the GPU needs thousands of threads to make full use of its 240
“cores”.

Despite these differences, GPU and CPU appear to follow a converging path. GPU
are evolving toward easier programmability while CPU are evolving toward more and
more parallelism: latest GPU Fermi architecture includes an automatic cache, CPUs
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have more and more cores and will have wider SIMD units in the future. Therefore,
GPUs are merely anticipating what will need to be done for tomorrow’s CPUs.



Chapter 2

Optimization case study: Smith

Waterman algorithm

The Smith-Waterman (SW) algorithm is a well-known bioinformatic algorithm perform-
ing local alignment [74, 25]. It is the most sensitive algorithm, but also computationally
demanding with its quadratic complexity. Therefore heuristic approaches are often pre-
ferred, such as BLAST [4, 5] although it may miss alignments.

To achieve both high sensitivity and reasonable execution times, the solution is to
make SW algorithm run faster. That is why SW has been thoroughly studied and
optimized in the past decades. It has been implemented on many high-performance
architectures: VLSI, FPGA, GPU, Cell, SIMD CPU.

It is therefore a good example to have an overview of the different high performance
architectures and to see how a GPU implementation competes with them.

2.1 Smith Waterman algorithm

SW is a dynamic programming (DP) algorithm: the global problem is recursively com-
puted from smaller subproblems. The similarity score H(i, j) of two sequences S1 and
S2 ending at position i and j is computed recursively with the equations:

E(i, j) = max(E(i, j − 1) − Gext, H(i, j − 1) − Ginit) (2.1)

F (i, j) = max(F (i − 1, j) − Gext, H(i − 1, j) − Ginit) (2.2)

H(i, j) = max(0, E(i, j), F (i, j), H(i − 1, j − 1 − W (S1(i), S2(j)))) (2.3)

Ginit and Gext are the penalties for starting or extending a gap, and W (S1(i), S2(j))
the substitution scoring matrix for all nucleotide pairs. The computation of each cell H
depends on its left, upper and upper-left neighbors meaning cells along a minor diagonal
can be computed in parallel.

Performance of the SW algorithm is usually given in Cell Updates Per Second
(CUPS), calculated as |S1|× |S2|/ execution time.
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2.2 VLSI accelerators

An application specific integrated circuit (ASIC) is a chip customized for a particular
use. It provides highest performance but also highest development costs.

High performance is achieved with parallelization of the O(n2) DP matrix. A com-
mon scheme is to parallelize work across the minor diagonal. For two sequences S1 and
S2, a linear array of |S1| processing elements (PE) can finish computation in |S1|+|S2|−1
steps. Each PE is assigned a letter of S1 (i.e. a line in the DP matrix), then at each
step a database sequence is shifted through the array. Each PE computes one cell of
the matrix at each step. Since the number of PEs available is usually smaller than |S1|,
some partitioning strategy is needed.

In 1987, Lopresti [51] presented the first VLSI implementation. He designed a chip
with 30 PEs with fixed substitution score matrix and linear gap score, limited to global
alignments. They reported a 125x speedup compared to a DEC VAX 11/785. They
noted that their design was severely limited by I/O bandwith, and that PEs were actually
running at a tenth of their full capacity.

Chow et al. [12] designed in 1991 a chip with 16 PEs. Their chip permits local and
global alignment and parameterizable insertions/deletions and score penalties. They
describe a system with 16 connected chips controlled by a Motorola 68020 microproces-
sor. Their system can be linearly extended with many chips to allow alignment of large
sequences without the help of external software.

In 1996, Guerdoux-Jamet and Lavenier [26] presented the SAMBA accelerator, a
systolic array of 128 VLSI processors designed to compute cells of the DP matrix. Key
aspects are: (i) the algorithm is parameterized so that computation of ungapped, gapped
local or global alignment are all possible, (ii) an FPGA interface handles the partitioning
of computation required when input sequences are longer than 128. SAMBA yielded a
96x speedup compared to a 200 MHz Pentium Pro .

VLSI accelerators suffer from high development and production costs. This is the
reason why they have gradually been replaced by FPGAs. FPGAs allows programmers
to implement architectures similar than with VLSI, with the added benefit that a design
can be regularly upgraded to use state-of-the art technology.

2.3 FPGA accelerators

FPGAs are high density arrays of logic components that programmers can configure to
approximate specialized hardware accelerators. They are a good alternative to special-
purpose hardware since they combine high performance with reconfigurability. Moreover
the SW algorithm only requires simple integer arithmetic for which FPGAs excel. They
usually implement the SW algorithm with the same architecture as VLSI accelerators,
i.e. with a linear array of processing elements.

Oliver et al. [64] implemented the SW algorithm on FPGA by parallelizing work
across the minor diagonal. They designed an array of 252 PEs implementing SW with
linear gap penalties, and composed of 168 PEs in the case of affine gap penalties. They
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described a partitioning strategy to implement database scan with query sequences of
any length. They reported a 125x speedup over contemporary P4 1.6 GHz processor.

More recently Allred et al. [2], Zhang et al. [83] followed the same parallelization
scheme and obtained 9 to 25.6 GCUPS.

Li et al. [45] proposed another FPGA implementation scheme: they still have one
PE compute a cell, but create a square 8x8 array of them. Within this tile the cell scores
are calculated through unclocked signal propagation. The whole matrix is subdivided
in as many 8x8 tiles as necessary. They reported a peak 24.5 MCUPS.

Cornu et al. [14] described how to use the ImpulseC C-to-hardware compiler tool
to quickly implement a traditional linear systolic array architecture computing the SW
algorithm. ImpulseC is a high level synthesis tool based on ANSI C aimed at facilitat-
ing the design process. They reported that ImpulseC indeed significantly accelerated
design process and allowed to try several different design options much faster than with
traditional methods. They obtained a peak 38.4 GCUPS.

2.4 CPU vectorization

Wozniak [81] proposed a vectorization scheme with vectors parallel to the minor diag-
onal using SIMD-like video oriented instructions on an ULTRA SPARC processor. He
reported a twofold speedup over a traditional implementation.

Rognes and Seeberg [70] proposed another vectorization scheme with vectors parallel
to the query sequence using the Intel MMX SIMD instructions. This new vector orien-
tation greatly facilitates loading of substitution scores: a query profile—a kind of query
specific scoring matrix—is computed once for an entire database search and permits to
load all substitution scores of a vector of cells in one operation. However, in this scheme
each element of a vector is dependent on the element above it. They however noted that
the vertical contribution of F does not occur very often and can therefore be evaluated
in a lazy fashion afterwards. They reported a six-fold speedup over sequential code.

Farrar [19] then also used this scheme with vectors parallel to the query but in
a striped manner: a vector contains non consecutive values. This key improvement
made it possible to move conditional branches of the lazy F evaluation outside of the
inner critical loop. Sixteen 8-bits operations are conducted per SIMD vector, which
limits scores to 255 maximum but also doubles computational throughput. Higher 16-
bit precision computation is conducted when necessary. Farrar reported up to six-fold
speedup over previous SIMD implementations.

Szalkowski et al. [76] slightly improved Farrar’s implementation with optimizations
when loading the query profile and in the lazy F loop evaluation. They also provided
multi-core support. They reached a maximum of 15.7 GCUPS on a Quad core Q6600
2.4 GHz.
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2.5 Cell

The Cell broadband engine is a processor developed by IBM, present in particular in
the Playstation 3 [36]. It is a heterogenous multi-core system: it combines a Power
Processor Element (PPE) with 8 Synergistic Processor Elements1 (SPE). Each SPE has
a 128-bit SIMD unit and 256 Ko of local storage. It therefore combines task parallelism
and data parallelism.

The difficulty especially lies in the fact that SPEs cannot directly access main mem-
ory, instead software controlled DMA transfers are used to copy data to the local storage.
Moreover, it does not natively support saturated arithmetics, and 16-bit half word is
the smallest supported element, which reduces throughput compared to SSE implemen-
tation on CPU.

Wirawan et al. [80] implemented SW on a Playstation 3 with SIMD vectors parallel
to the query sequence, similar to the Rognes and Seeberg [70] scheme. The reference
database is split among the different SPEs. They reported a speedup of 1.64 over the
Farrar’s striped vectorization running on a dual core Core2 2.4 GHz, and a peak 3.6
GCUPS.

Szalkowski et al. [76] then presented an improved Cell implementation using the
Farrar’s striped scheme. They obtained a peak 8 GCUPS on a Playstation 3.

Farrar also presented in an unpublished article a Cell implementation with his striped
scheme [20], where he claimed a 12 GCUPS on a Playstation 3. He also reported that
a Cell with 8 SPE(in an IBM QS20 blade) running at 3.2 GHz is 20% slower than an
8-core Xeon 5130 running at 1.6 GHz, in particular because of the lack of saturated
arithmetic support.

2.6 GPU

The first GPU implementation was conducted in OpenGL before CUDA was available
by Liu et al. [48]. General purpose computation on GPU through OpenGL requires to
map the algorithm to the graphic pipeline: ask the GPU to render a quad, which will be
decomposed into pixels by the GPU rasterizer, and provide a fragment shader program
that will be applied to every pixel in parallel. In their implementation, a fragment
program computes one cell of the matrix and the quad covers a minor diagonal (skewed
to a column). They reported up to 650 MCUPS on a 7800GTX.

CUDA then made it significantly easier and more efficient to implement SW on
GPUs. Manavski and Valle [55] provided the first CUDA implementation. Their im-
plementation is inter-task : each GPU thread computes the whole alignment between a
query sequence and a database sequence. The database is sorted according to sequence
lengths so that different threads stop computing approximately at the same time. Their
implementation performance is 1.8 GCUPS on a 8800 GTX and about 3.0 GCUPS on
a GTX280.

Liu et al. [49] then provided a significantly more efficient CUDA implementation.

1In the Playstation 3, only 6 SPEs are available.
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They still used the inter-task parallelization, with several optimizations: (i) database
sequences and DP matrices are stored in a special way so that memory accesses are
coalesced across threads, (ii) in a 8x8 tile of the matrix, intermediate results are stored
in registers in order to decrease the number of global memory accesses. They obtained
9 GCUPS on a GTX 280.

Liu et al. [50] further improved their CUDA implementation by packing query profile
and sequence data in char4 vectors, fetched in a single texture access. These optimiza-
tions yielded 17 GCUPS on a GTX 280.

2.7 Four-Russians speedup

Contrary to previous sections detailing hardware accelerations of the algorithm, we now
present an algorithmic optimization of the SW algorithm, known as the Four-Russians
speedup. Although not directly related to our study focused on hardware acceleration,
we deem it necessary to also describe this approach.

It was introduced in 1970 by Arlazarov et al. [6] and initially developed for boolean
matrix multiplication. The principle is to partition the whole DP matrix into blocks of
t x t cells. In each block, the outputs are the last row and last column. They can be
computed from the block inputs: the first row and column, and substrings of the two
sequences spanning the block interval.

The idea is to precompute the block output results for every possible input and
store them in a lookup table. Then, partition the whole DP matrix in blocks having one
overlapping line and column, so that a block output becomes a neighbor’s block input.
Results of each block are obtained in constant time through the lookup table, hence
the overall computation is conducted in O(n2/t2) steps. When choosing t = log(n),
complexity becomes O(n2/(log(n))2).

One issue is the time taken for pre-computation. One key observation is that when
using a simple scoring scheme such as -1 for mismatch and gap open/extension, a block
input row and column can be coded as an offset vectors of −1, 0, +1 values. The number
of different possible inputs for a block is then 32t×4t on a 4-letter alphabet, each taking
t2 steps to compute. With t = log(n), pre-computation is conducted in O(n(log(n))2)
steps.

In practice the method would be used with t fixed resulting in O(n2/t2) complexity.
It is however not commonly used, in particular because of the restriction it requires on
the scoring scheme. The general idea is nevertheless very interesting and we believe
related methods could prove to be very useful in some cases.

2.8 Discussion

Table 2.1 shows the peak performance of the various architectures presented. The first
thing that should be noted is that for all architectures, finding the optimal implemen-
tation is not obvious and was not obtained at first time. It is the most striking with
GPUs, where implementation from Manavski and Valle on a GTX280 first yielded 3
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Table 2.1. Smith Waterman performance on various architectures

Author Architecture Device model peak GCUPS

Rognes and Seeberg SIMD CPU Xeon Core2 2.0 Ghz 0.865
Farrar SIMD CPU Xeon Core2 2.0 Ghz 3.0
Farrar, Szalkowski et al. SIMD CPU quad core Q6600 2.4 Ghz 15.7

Liu et al. GPU GTX 7800 0.65
Manavski and Valle GPU GTX 8800 1.8
Manavski and Valle GPU GTX 280 3.0
Liu et al., first version GPU GTX 280 9.0
Liu et al., second version GPU GTX 280 17.0
Liu et al., second version GPU GTX 295 28.0

Wirawan et al. Cell BE Playstation 3 3.6
Szalkowski et al. Cell BE Playstation 3 8.0

Oliver et al. FPGA Virtex II XC2V6000 5.8
Allred et al. FPGA XD2000i 9
Zhang et al. FPGA XD1000/ Altera StratixII 25.6
Cornu et al. FPGA XD2000i 38.4

Peak GCUPS performance on CPU, GPU and FPGA. Figures for CPU, GPU and FPGA
are, respectively, taken from [19, 76], [48, 55, 50] and [64, 83, 2, 14].

GCUPS, then Liu et al. obtained 9 GCUPS and finally 17 GCUPS, realizing a 5.6x
speedup on the same GPU. Similarly with SSE on CPU, there is a 3.5x performance
difference between the Rognes and Seeberg, and Farrar implementations running on the
same CPU.

This shows that although the SW algorithm is apparently simple, with each cell
being computed from only three neighbors with simple arithmetic, getting the most of
an architecture is a difficult task. Concerning GPUs, it seems that memory bandwidth is
the most problematic point: improvements from Liu et al. mainly concern decreasing the
number of global memory accesses when possible and developing a data layout allowing
threads to access memory in a coalesced way.

GPU demonstrated its ability to provide cheap performance compared to other ar-
chitectures: a GTX 295 card, costing around 450 $ contains 2 GT200 GPU chips and
reaches a high 28.0 GCUPS. However, vectorized code running on CPU is also perform-
ing remarkably well. The ability to perform operations on 8-bit elements is probably
largely responsible for this good result. There is not a large gap between vectorized
CPU code and the best GPU or FPGA implementations: the GTX 295 is less than 2
times faster than the quad core CPU. When considering hardware costs, the benefit of
high performance hardware is therefore not obvious.

What can be learned from this case study is first that GPUs are able to compete
with other high-performance hardwares. Secondly, getting high performance is a difficult
task even on a simple dynamic programming algorithm, it is therefore a real challenge
to obtain a good speedup on a significantly more complex algorithm such as the RNA
folding problem, presented in the following chapter. Finally, CPU is in fact a serious
competitor.



Chapter 3

RNA folding

The RNA secondary structure prediction problem has been studied for a very long time
and is routinely used in many bioinformatic pipelines. It is a computationally intensive
algorithm whose execution time is often a problem when dealing with large data sets of
sequences, therefore making it worthwhile to work on its optimization. However a GPU
parallelization was never attempted before.

In this chapter, we investigate whether GPU architecture is able to provide a good
speedup for this problem. After an introduction of the principles of RNA folding in
section 3.1 and a state-of-the-art in 3.2, a profiling of the standard sequential algorithm
is conducted in 3.3. We then detail our GPU implementation in sections 3.4 to 3.5, and
the CPU implementation in 3.6. Results are presented in section 3.7, then variation of
the algorithms are studied in 3.8.

3.1 Main algorithm

3.1.1 Problem Statement

RNA or Ribonucleic acid is a single-stranded chain of nucleotide units. There are four
different nucleotides, also called bases : adenine (A), cytosine (C), guanine (G) and uracil
(U). Two nucleotides can form a bond thus forming a base pair, according to the Watson-
Crick complementarity: A with U, G with C; but also the less stable combination G
with U, called wobble base-pair. Because RNA is single-stranded, it does not have
the double-helix structure of DNA. Rather, all the base pairs of a sequence force the
nucleotide chain to fold in “on itself” into a system of different recognizable domains like
hairpin loops, bulges, interior loops or stacked regions.

This 2-D space conformation of RNA sequences is called the secondary structure,
and many bioinformatic studies require its knowledge. Figures 3.1 and 3.2 show different
representations of a secondary structure along with the different kinds of loops. Algo-
rithms computing this 2-D folding runs in O(n3) complexity, which means computation
time quickly becomes prohibitive when dealing with large data sets of long sequences.

The first algorithm was introduced in 1978 by Nussinov, which finds the structure
with the largest number of base pairs [62]. In 1981 Zuker and Stiegler proposed an
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Figure 3.1. Secondary structure of an RNA sequence. An RNA sequence is
a chain of four different nucleotide units A,C,G,U. In the bracket representation, a
matching pair of parenthesis represents a base pair, and a dot an unpaired nucleotide.
The figure shows the different kinds of loops: (1) a stacked base pair, (2) an interior loop,
(3) a multi-loop, (4) a bulge loop and (5,6) hairpin loops. The score -24.5 represents
the stability of the structure: the lower it is, the more stable the folding is.

algorithm with a more realistic energy model than simply the count of the number of
pairs [85]. It is still widely used today and is available in two widely used packages,
ViennaRNA [29] and Unafold [56]. Our goal was to write a GPU efficient algorithm
with same usage and results as the one in the Unafold implementation.

RNA folding algorithms compute the most stable structure of an RNA sequence, i.e.,
the structure maximizing a given scoring system, or rather, minimizing the total free
energy of the RNA molecule.

Although this may seem a daunting task since there is an exponential number of
different possible structures, a key observation makes it computationally feasible in rea-
sonable time: the optimal score of the whole sequence can be defined in terms of optimal
scores of smaller subsequences, leading to a simple dynamic programming formulation.

In the following, we note i . . . j the subsequence starting at position i and ending
at position j. Let us look at the optimal score E of the whole sequence. As shown in
recursion diagram 3.3.A, there are two possible ways it can be constructed: the last base
n is either paired or unpaired. If it is unpaired, the scoring system implies that E can
be directly derived from the score of sequence 1 . . . n−1. In the second case, it is paired
with some base k, thus breaking the sequence in two parts: subsequences 1 . . . k− 1 and
k . . . n, with k, n forming a base pair. The scoring system implies that E is the sum
of the score of these two parts. Now, if determining optimal scores of both parts are
self-contained subproblems, meaning they are independent of the rest of the sequence,
then they need to be computed only once, stored and reused wherever the subsequence
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AAAAAAGGGAAAAGAACAAAGGAGACUCUUCUCCUUUUUCAAAGGAAGAGGAGACUCUUUCAAAAAUCCCUCUUUU 
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Figure 3.2. Secondary structure of an RNA sequence, arc representation. In
this representation the polymer backbone is a straight line and base pairs are connected
by arcs. In the absence of pseudoknots all loop structures are perfectly nested. This
means that the structure of a subsequence i . . . j in the case where i, j form a base pair
does not depend on exterior element of i . . . j, i.e the subproblem is self-contained. This
opens the path to dynamic programming.

occurs again. This opens the path to dynamic programming, E is computed as the
optimal way to construct it recursively with the equation:

Ej = min

�

Ej−1, min
1<k<j

(Ek−1 + QPk,j)

�

(3.1)

With Ej the optimal score of subsequence 1 . . . j and QPk,j the optimal score of
subsequence k . . . j when k, j form a base pair. The assumption that sub-problems are
self-contained implies that there cannot exist a base pair d, e with d < k and k < e < j,
i.e., something that would make their scores dependent on exterior elements. Such
forbidden base pairs are called pseudoknots.

Quantity QPi,j is also broken down in smaller sub-problems as shown in recursion
diagram 3.3.B. Either subsequence i . . . j contains no other base pairs—i, j is then called
a hairpin loop—or there exists one internal base pair k, l forming the interior loop
i, j, k, l, or there are at least two interior base pairs, forming a multiloop. The recursion
can then be conceptually written in the simplified form:

QPi,j =















min







Hairpin loop
Interior loops
Multi loops

if pair i · j is allowed

∞ if pair i · j is not allowed

(3.2)

3.1.2 Recurrence equations

We first describe with more details the principles of the folding algorithm as implemented
in the Unafold package in the function hybrid-ss-min [56]. Recurrence equations of the
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Figure 3.3. Recursion diagrams [66] represent the recursive equations of the dynamic
programming algorithm. The flat line represents the backbone of an RNA sequence. A
base pair is indicated by a solid curved line, and a dashed curved line represents a sub-
sequence with terminal bases that may be paired or unpaired. Shaded regions are parts
of the structure fixed by the recursion, and white regions denote sub-structures whose
scores have already been computed and stored in previous steps of the recursion. A.

Recursion of subsequence 1 . . . j assuming no exterior dependence. Last base j is either
paired or unpaired. B. Recursion for subsequence i . . . j assuming i, j are paired. The
subsequence either contains none, one or several internal base pairs. This corresponds,
respectively, to hairpin loops, interior loops and multi loops. In the case of multi loops
another quantity QM is introduced and computed through another recursion.

RNA folding algorithm are well known in the bioinformatic community [85, 29]. Re-
currence equation 3.1 shows that finding the most stable structure of an RNA sequence
involves computing table QPi,j, itself constructed in three possible ways as shown in
equation 3.2. The first possibility is a hairpin loop, whose score is given by a function
Eh mainly depending on loop length. The second possibility is interior loops, containing
the special case where k = i + 1 and l = j − 1 corresponding to a stacked base pair.
Functions Es and Ei give, respectively, the scores of stacked pairs and interior loops.
The last possibility is when subsequence i . . . j contains at least two internal base pairs,
forming a multi loop. Another quantity QM is introduced, representing the score of a
subsequence assuming it is forming a multi-loop. Recursive equation 3.2 can then be
detailed as:

QPi,j =



























min



















Eh(i, j)
Es(i, j) + QPi+1,j−1

min
{k,l|i<k,l<j}

Ei(i, j, k, l) + QPk,l

QMi+1,j−1



















if pair i · j is allowed

∞ if pair i · j is not allowed

(3.3)

The value QM represents the score of a subsequence with at least two internal base
pairs. It is simply broken down as two subsequences i . . . k and k + 1 . . . j containing
both at least one internal base pair. A third value QS is introduced to represent the
score of such subsequences. QSi,j decomposition is then straightforward: either a pair
is on i, j giving QPi,j, or there are several pairs giving QMi,j, or i or j are unpaired,
giving QSi+,j or QSi,j−1.
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Figure 3.4. A. Recursion of subsequence i . . . j containing at least two internal base
pairs. Both subsequences i . . . k − 1 and k . . . j each contains at least one base pair. B.

Recursion for subsequence i . . . j containing at least one internal base pair. It contains
either several or one base pair on i, j, or on i, j − 1 or i − 1, j if i or j are unpaired.

Recursion diagrams 3.4 shows their decomposition patterns. Their recurrence equa-
tions are written as:

QMi,j = min
i<k<j

(QSi,k + QSk+1,j) (3.4)

QSi,j = min {QMi,j, min(QSi+1,j, QSi,j−1), QPi,j} (3.5)

The third term of equation 3.3 is computed over the four variables i, j, k, l, hence
implying a complexity of O(n4). However, a common approximation is to limit internal
loops sizes to K = 30, thus reducing complexity to O(n2 ·K2). Equation 3.4 is in O(n3),
leading to an overall O(n2 ·K2 +n3) complexity. The corresponding secondary structure
is then obtained by a trace-back procedure.

3.2 Related work

3.2.1 Alternative approaches

The most used algorithm for RNA secondary structure prediction is the Minimum Free
Energy (MFE) method, implemented in the two packages Unafold and ViennaRNA
[56, 29]. This method relies on thousands of experimentally measured thermodynamic
parameters giving the energy of the many different kinds of possible loops. On the
contrary, the Stochastic Context Free Grammar (SCFG) approach does not rely on such
thermodynamic parameters, it instead uses automated statistical learning algorithms
to derive model parameters. It is obviously a major advantage, since experimentally
measuring parameters is both expensive and not necessarily accurate.

However, first attempts at this method did not yield very accurate results [37, 18].
Then Do et al. [16] significantly improved the method and obtained even better accuracy
than the MFE method. The SCFG approach, while promising, is still not often used.
We therefore preferred to focus our work on the widely accepted and used MFE method.
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The last approach is the comparative analysis method, which predicts RNA sec-
ondary structures from multiple sequence alignments. Extensive work has also been
conducted in this field, see in particular the review of [24].

One particularly noteworthy approach was conducted by Frid and Gusfield [23].
They used the Four-Russians technique presented in section 2.7 to achieve a worst-case
time bound of O(n3/ log(n)). They however used the simple Nussinov scoring scheme
(the count of base pairs) and acknowledged that they did not provide yet a finished
competitive program. Their work nonetheless illustrates that it is possible to obtain
in practice a speedup with the Four-Russians approach even on a complex dynamic
programming algorithm. They also claim that their method could be extended to more
complex scoring schemes and energy functions.

There is a huge number of programs computing the secondary structures [1], detailing
the different approaches is out of scope of this thesis. We instead focus now on the
previous attempts at parallelizing the MFE method.

3.2.2 Parallelization

Parallelization on cluster, i.e. distributed memory

First parallelization efforts were aimed toward parallelization of the computation of a
single sequence over multiple computers via MPI [28, 21]. A diagonal is distributed
across the different nodes of the cluster. The problematic point is the amount of data
transfer needed which greatly reduces overall speedup. Subsequent work aimed at de-
veloping a tiling scheme minimizing those costly transfers [3].

Those pioneer parallelization work are however not as useful today, since the com-
putation of even a very large sequence can be conducted on a single computer. Clusters
potential is now generally trivially exploited by distributing many different sequences
across a cluster nodes.

Parallelization on multi core CPU, i.e. shared memory

Mathuriya et al. [57] implemented the MFE folding algorithm for multi cores using
OpenMP in their GTfold program. Their implementation splits the elements of a di-
agonal across the available CPU cores. They use for the last diagonals the finer grain
parallelization level consisting in splitting the minimization loop of the different kinds of
structure loops. They also implemented the fast O(n3) algorithm for the computation
of internal loops introduced by Lyngsø et al. [53].

They ran their program on a 32 core P5-570 cluster and reported a 19x speedup
compared to the sequential version. They also reported a 84s running time on a 9781
nucleotide-long HIV virus sequence.

Parallelization on FPGA

Jacob et al. [32] first parallelized both the Nussinov and Zuker algorithms [62] on FPGA.
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Since the Nussinov algorithm does not use energy tables but only counts the number of
base pairs, it is significantly simpler than the Zuker algorithm and as such a good first
step to evaluate the FPGA approach. For the Zuker algorithm, they reported a 103x
speedup with their FPGA implementation over a single core of a 3.0 Ghz Core 2 duo,
but their implementation is limited to 273-nucleotide-long sequences [33].

3.3 Algorithm profiling

The first step before a GPU implementation is a code analysis to see which part is the
most time-consuming, and if it can be parallelized. Due to Amdahl’s law, it is of the
outmost importance to check that the non-parallelizable portion is negligible. Even a
small 5% non parallelizable part would seriously impact overall speedup.

We profiled the hybrid-ss-min function of the Unafold 3.7 package which computes
the minimum free energy of folding of an RNA sequence. Figure 3.5 shows the percentage
time spent by the different parts of the algorithm for sequences from 100 to 8000 nt.

For short sequences, computation of QM, QS, QP—corresponding to equations 3.4,
3.5 and 3.3—represents, respectively, about 22%, 20% and 52% of total time. The
remainder is composed of the Final reduction, computed with equation 3.1 (about 4%
total time) and of the initialization phase of the different matrices (approximately 1%
of total time). For longer sequences, computation of QM gradually becomes more and
more important since it has the highest O(n3) complexity, and reaches 88% of total time
for a 8000 nt sequence.

These results show that in order to obtain a good overall speedup, a GPU imple-
mentation needs to parallelize all these different parts, including the Final reduction
and the initialization step. Fortunately, all these parts are parallelizable, as we shall see
in the next section. We can also expect that overall speedup will be different on short
sequences and long sequences: long sequences overall speedup will be dominated by the
speedup of the QM part (which becomes predominant for large sequences), and by that
of QP for short sequences.
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Figure 3.5. Percentage of time spent in the different parts of the hybrid-ss-min function
of the standard Unafold package computing the minimum free energy of sequences from
100 to 8000 nucleotides. QM is the computation of multi-loops in equation 3.4. It is
the only O(n3) part of the algorithm, therefore it gradually becomes preponderant. QP,
QS and Final reduction refer, respectively, to equations 3.3, 3.5 and 3.1

3.4 First implementation

3.4.1 General parallelization scheme

Figure 3.6 shows the data dependencies coming from the recursion (3.3) to (3.5). They
imply that, once all previous diagonals are available, all cells of a diagonal can be pro-
cessed independently. Three kernels are designed for the computation of QPi,j, QMi,j

and QSi,j, corresponding to equations (3.3) to (3.5). Each one computes one full diago-
nal. The whole matrix is then processed sequentially through a loop over the diagonals.
The next step corresponding to equation (3.1) is a combination of reductions (search of
the minimum of an array) which is parallelized in another kernel. The pseudo-code for
the host side of this parallelization scheme is given in algorithm 1.
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Algorithm 1 Host code, first implementation
1: Input: sequence of length N
2: Output: minimal energy of the sequence
3: for diagonal d in [1; N ] do

4: launch kernel GPU_QP (i ∈ [1; N − d], j = i + d)
5: launch kernel GPU_QM(i ∈ [1; N − d], j = i + d)
6: launch kernel GPU_QS(i ∈ [1; N − d], j = i + d)
7: end for

8: launch kernel GPU_reduction EN
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Figure 3.6. Left: Data dependency relationship. Each cell of the matrix contains
the three values QP , QM and QS. As subsequence i, j is the same as subsequence
j, i only the upper half of the matrix is needed. The computation of cell i, j needs
the lower left dashed triangle and the two vertical and horizontal dotted lines. Right:

Parallelization. According to the data dependencies, all cells along a diagonal can be
computed in parallel from all previous diagonals.
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3.4.2 O(n2) part: Internal loops

The third term of equation 3.3 corresponds to the computation of internal loops. Their
size is usually limited to K = 30, which means the minimization is conducted over the
domain defined by (k, l) with i < k < l < j and (k − i) + (j − l) < K. This domain
is represented by the dashed triangle in figure 3.6. This term is therefore responsible
in total for O(n2 ·K2) computations. The kernel GPU_QP is designed to compute all
cells QP (i, j) over a diagonal d.
One major issue with this kernel is the divergence caused by the two branches in equa-
tion 3.3: if pair i, j is not allowed then QP (i, j) is assigned the score ∞ and no compu-
tations are required. Different cells of the diagonal are following different code paths,
causing a huge loss in performance. To tackle this problem we compute on CPU an
index of all diagonal cells i, j where base pair i, j is allowed. The kernel computation
domain is then the set of cells pointed by this index.

3.4.3 O(n3) part: Multi-loops

Equation 3.4 computes the most stable multi-loop formed by subsequence i, j, and
requires O(n) computations per cell, thus O(n3) overall for the n2 cells of the matrix. It
requires the knowledge of the line and column represented by dotted lines in figure 3.6
and is simply computed by finding the minimum of (QSi,k + QSk+1,j) over k ∈ [i; j].
Although it is a simple computation, it is the only O(n3) part of the algorithm and as
such the most important one for large sequences.

First implementation

The obvious way to implement it on GPU is to compute cells of a diagonal in parallel,
with the reduction computation of each cell being itself parallelized over several threads.
This way is implemented in kernel GPU_QM , shown in algorithm 2 and used in our
first implementation. The scheme is simple: BX threads cooperate to compute the
reduction, with each thread sequentially accessing memory locations BX cells apart, so
that the memory accesses to QS(i, k) are coalesced among threads. The code shows
that each thread does 2 operations for every 2 global memory elements accessed, on
line 7. This is a very poor ratio, worsened by the fact that accesses QS(k + 1, j) are
not coalesced. Performance for this piece of code is measured at only 4.5 GOPS (Giga
Operations Per Second) and a bandwidth usage of 17 GB/s for a 10kb sequence. It is
obviously severely bandwidth limited. It may be possible to improve and coalesce the
second reference in the loop body by storing QS and its transpose in global memory, but
we did not pursue this approach since tiling leads to significantly higher performance as
we shall see next.
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Algorithm 2 QM kernel, first implementation
1: BlockSize: One dimension = BX
2: Block Assignment: Computation of one cell QMi,j

3: tx ← threadIdx.x
4: k ← i + tx
5: Shared_data[tx] ← ∞

6: while k < j do

7: Shared_data[tx] ← min (Shared_data[tx] , QS(i,k) + QS(k+1,j))
8: k ← k + BX
9: end while

10: Syncthreads
11: QMi,j ← Minimum of array Shared_data

3.5 Multi loops second implementation

This section explains the second parallelization scheme with a new efficient reordering
of the computation of the multi loops part, allowing a tiled implementation with good
data locality.

3.5.1 Reduction split and reordering

The main issue with our first implementation is that it requires a lot of memory band-
width, as each cell of the diagonal requires O(n) data, and there is no reuse of data
between the computation of different cells. Theoretically there is a lot of data reuse,
as a single value QS(i, k) will be used for the computation of all cells QM(i, j) with
j ∈ [k; n]. Unfortunately the dependency pattern makes it a priori impossible to take
advantage of this, as the set of cells QM(i, j) j ∈ [k; n] are located on different diagonals
and thus computed in separate kernel calls.

In our “tiled implementation,” we designed a way to exploit this data reuse. The key
observation is that the computation of a single cell is a minimization over i < k < j,
which can be split into several parts. Our approach is inspired by the systolic ar-
ray implementation of the optimum string parenthesization problem by Guibas-Kung-
Thompson [27, 65], which completely splits reductions in order to have a parallelization
scheme working for an array of O(n2) processors. Although not going as far, our ap-
proach exploits the same idea: we split and reorder the reductions, in order to obtain a
parallelization scheme better suited for GPU.
Let’s say we have already computed all cells up to a given diagonal d0, meaning that all
cells (i, j) such that j < i + d0 are known. For a given (i1, j1) outside of the known area
(marked with an x in Figure 3.7) with j1 = i1 + d0 + T, T > 0, the whole computation
min

i1<k<j1
(QSi1,k + QSk+1,j1) is not possible as many QS values are still unknown.

Nevertheless, we can compute a part of the minimization for which QS values are al-
ready known: for δ1 < k < δ2 with δ1 = j−d0 and δ2 = i+d0 (shown as the pair of thin
blue lines in the left part of Figure 3.7). Similar “blue portions” of the accumulations of
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Figure 3.7. Left: Reduction split. All cells in light blue are already available.
For a point (i, j) located outside of the known area, the middle part of the reduction
represented by the thin blue line can be computed. Right: Tiling scheme. The
middle part of the reduction is done “in advance” in the blue tiles. The remaining part
is done on the red cells, diagonal after diagonal.

all the points in the tile can be computed in parallel. This means that by taking apart
the range that violates the dependency pattern, we can compute in parallel a tile of cells
and thus benefit from a good memory reuse scheme. Figure 3.7 shows such a tile and
how the minimization is split.

3.5.2 Tiling scheme

We still move sequentially diagonal after diagonal, but we compute “in advance” the
middle part of the minimization of equation 3.4 in tiles. This tiled computation is
implemented in the kernel GPU_QM_tiled, and called every Tile_Size diagonals.
The remaining part of the minimization is done in kernel GPU_finish_QM called
every diagonal, as shown in algorithm 3 and depicted with dotted red line in the right
part of Figure 3.7.

3.5.3 GPU implementation

Thanks to the tiled implementation the GPU program is very efficient: each tile is
computed by a thread block, which can sequentially load into shared memory blocks
of lines and columns, similar to a standard tiled matrix-matrix multiplication. Kernel
code of GPU_QM_tiled is shown in algorithm 4. QS values are stored in shared
memory lines 9, 10 and reused BS times each, on line 13. Bandwidth requirement is
therefore reduced by a factor of Tile_Size = BS compared to the first implementation.
Performance of this kernel is now 90 GOPS with a bandwidth usage of 23 GB/s.
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Algorithm 3 Host code, tiled implementation
1: Input: sequence of length N
2: Output: minimal energy of the sequence
3: for diagonal d in [1; N ] do

4: launch kernel GPU_QP (i ∈ [1; N − d], j = i + d)
5: if (d modulo Tile_Size == 0) then

6: launch kernel GPU_QM_tiled(d)
7: end if

8: launch kernel GPU_finish_QM(i ∈ [1; N − d], j = i + d)
9: launch kernel GPU_QS(i ∈ [1; N − d], j = i + d)

10: end for

11: launch kernel GPU_reductionEN

Algorithm 4 QM kernel, tiled implementation
1: BlockSize: Two dimension = BS · BS
2: Block Assignment: Computation of “middle part” of QM for a tile of BS · BS

cells, with upper left corner (i0, j0)
3: tx ← threadIdx.x, ty ← threadIdx.y
4: iter ← beginning of “middle part”
5: bound ← end of “middle part”
6: temp ← ∞

7: while iter < bound do

8: Load blocks in shared memory:
9: Shared_L [tx][ty] ← QS(i0 + ty, iter + tx)

10: Shared_C [tx][ty] ← QS(iter + 1 + ty, j0 + tx)
11: Syncthreads
12: for k = 0, k ≤ BS, k + + do

13: temp ← min(temp,Shared_L [ty][k] +Shared_C [k][tx] )
14: end for

15: iter ← iter + BS
16: end while

17: QMi0+tx,j0+ty ← temp
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3.6 CPU new implementation

Vectorization

The tiled approach we developed for GPU also has significant advantages for the CPU
version. In the standard sequential Unafold implementation, the computation of QM is
not very efficient because of the memory accesses to QSk+1,j which are made column-
wise. Such accesses are inefficient as each data is in a different cache line.

A simple solution, implemented in the Vienna RNA package, is to store the column
in a temporary array so that consecutive accesses are in the same cache line. This
temporary array can be loaded once and reused many times since in the sequential code
the matrix is filled column after column, from bottom to top.

Our tiled approach is also a good fix to this problem: the tiling scheme naturally
provides a very good temporal locality, each QS cell is reused many times for the
computation of other cells of the tile. Moreover, this tiling scheme also provides an
obvious way to implement an efficient vectorization: four consecutive cells of a tile are
computed at the same time.

Additionally, a second level of tiling is applied. While the first level permits data
to fit in the CPU L1 cache, the second level permits data to fit in the CPU SIMD
vector registers. Data is loaded once in a SIMD register and reused several times for the
computation of cells inside the second sub-tile. This way the overhead cost of loading
data in SIMD registers is amortized.

The code for vectorized implementation is presented in algorithm 5. Variables VEC
denote SIMD registers able to contain four 32-bit values. The second level of tiling
operates on a 4 by 4 sub-tile, lines 6 and 7. The sixteen corresponding QM values
are stored in the 4 SIMD registers VEC0 to VEC3. Each QS value loaded in a SIMD
register, at line 14 and 16, is reused 4 times. The innermost loop at line 15 is unrolled
in the implementation.

A larger sub-tile would exhibit more data reuse and thus would amortize loading
costs more. However, the number of SIMD registers is very restricted, generally 8 or
16. Our implementation only uses 6 registers and therefore works well on all CPUs with
SSE. The min operation was introduced in SSE4, but can also be decomposed in four
native SSE2 instructions. We provide a flag at compilation to select the correct version.

Figure 3.9 shows a break down of the time spent in the different part of the algorithm
for our new vectorized implementation. The time spent in the tiled vectorized part is
now only 30% of total time for a 8Kb sequence. It has however the dominating O(n3)
complexity and is therefore growing, although at a slow rate.

Multi core parallelization

We implemented the multi core parallelization via OpenMP across the different tasks
of a diagonal. Thanks to the ease of use of OpenMP this was effectively a 5-minute
transformation of the code.
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Algorithm 5 CPU vectorized algorithm

1: Input: A tile of dimension BS_CPU · BS_CPU , with upper left corner (i0, j0) .
2: Output: Computation of “middle part” of QM .
3: start ← beginning of “middle part”
4: bound ← end of “middle part”
5: for tk = start, tk < bound, tk+ = BS_CPU do

6: for ti = 0, ti < BS_CPU , ti+ = 4 do

7: for tj = 0, tj < BS_CPU , tj+ = 4 do

8: Load a 4 by 4 sub tile in SIMD registers:
9: VEC0 ← QM(ti + i0, tj + j0), . . . , QM(ti + i0, tj + j0 + 3)

10: VEC1 ← QM(ti + i0 + 1, tj + j0), . . . , QM(ti + i0 + 1, tj + j0 + 3)
11: VEC2 ← QM(ti + i0 + 2, tj + j0), . . . , QM(ti + i0 + 2, tj + j0 + 3)
12: VEC3 ← QM(ti + i0 + 3, tj + j0), . . . , QM(ti + i0 + 3, tj + j0 + 3)
13: for k = 0, k < BS_CPU , k + + do

14: VEC_C ← QS(tk + k, tj + j0), . . . , QS(tk + k, tj + j0 + 3)
15: for i = 0, i < 4, i + + do

16: VEC_L ← four times the same value : QS(ti + i0 + i, tk + k)
17: Core SIMD computation:
18: VECi ← min(VECi, VEC_C + VEC_L )
19: end for

20: end for

21: Store back the four by four sub tile results
22: QM(ti + i0 to ti + i0 + 3, tj + j0 to tj + j0 + 3) ← VEC0,VEC1,VEC2,VEC3
23: end for

24: end for

25: end for
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3.7 Results

Our GPU implementation uses exactly the same thermodynamic rules as Unafold, thus
the results and accuracy obtained on GPU is exactly the same as the standard CPU
Unafold function. We therefore only compare the execution time between programs,
including the host-to-device transfer for the GPU implementation. Our tests are run on
a Xeon E5450 @ 3.0GHz and a Tesla C1060. CPU code is running on fedora 9, compiled
with gcc 4.3.0 with -O3 optimization level.

3.7.1 Tiled implementation

Figure 3.8 A shows the speedup obtained by the tiled implementation on a Tesla C1060
over the standard Unafold algorithm running on one core of a Xeon E5450 for randomly
generated sequences of different lengths. Sequences are generated with each of the four
letters being equiprobable. Tests are run with a large enough number of sequences
ensuring GPU starting costs are amortized. The speedup starts at around 20x for short
sequences and goes up to 150x for large sequences. For small sequences, the O(n2)
part of the algorithm is preponderant. Thus, the overall speedup is roughly that of the
kernel computing internal loops, called GPU_QP and explained in section 3.4.2. As
sequence size increases, the O(n3) multi-loop computation becomes more important so
the speedup approaches that of kernel GPU_QM_tiled which is very efficient thanks
to our tiled code.

In order to do a fair, “apples-to-apples” comparison, we applied our tiling technique
on the CPU and used SSE vectorized instructions to get the full potential of CPU
performance. Execution speed of the vectorized part of the code is 5.4 GOPS for a 10
kb sequence, which is quite high considering first GPU implementation speed was only
4.5 GOPS. Speedup obtained by the second GPU implementation against this optimized
code is presented figure 3.8 B. Here, speedup is more stable across sequence lengths as
like the GPU, CPU tiled code is very efficient. GPU speedup of the O(n3) part of
the code compared to CPU code using same tiling technique and vectorized code is 90
GOPS / 5.4 GOPS = 16.6x. This is therefore the theoretical maximum speedup that
can be achieved when running on very large sequences when the O(n2) part—exhibiting
different speedup—becomes negligible.

The global memory to device bandwidth GPU usage of the O(n3) part of the code
computing multi loops was measured at 23 GB/s. The maximum bandwidth is around
100 GB/s for the GPU used, the code is not bandwidth limited. Although we do not
attain peak GPU 312 GOPS computational throughput, the code is actually computa-
tion bound.
First, the real peak GOPS is only 66% of the maximum when doing computation from
shared memory, consequently the maximum is only 205 GOPS [40, 77]. The remainder
is probably explained by some inefficiencies in the code.
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Figure 3.8. Tesla C1060 speedup against one core of Xeon E5450 @ 3.0Ghz for various
sequence lengths.A: Speedup against standard Unafold code. B: Speedup against tiled
and vectorized CPU code.

3.7.2 Overall comparison

Figure 3.11 compares performance on a 9781-nucleotide-long virus sequence on a larger
set of programs: the first untiled GPU implementation, the tiled one, the standard
Unafold CPU code [56], the GTfold algorithm [57] running on 8 CPU cores, and the
new SSE-optimized CPU code running on one or eight threads.

We can see that our new CPU code is running 10 times faster than the regular
Unafold code, thanks to both SSE and better memory locality of the tiled code. Even
against this fast CPU code, the Tesla C1060 is still more than 11 times faster than
the Xeon. It is also worth noting the 6x speedup obtained between the GPU tiled and
untiled code.

For the CPU tiled and vectorized however, going from one to eight threads yielded
a 6.2x speedup. We measured memory bandwidth usage of the tiled part of the code
at 0.6 GB/s when running on one CPU core, therefore running 8 cores at full potential
would require 4.8 GB/s, exceeding the memory bandwidth limit of the Xeon E5450. As
a result, the single GPU tested is approximately 2 times faster than this 8-core CPU
system.

This may seem a low speedup, especially to those used to seeing hyped up GPU
performance gains. However, this is a more reasonable expectation – for example the
commercially released CULA package for linear algebra is “only" about 3-5 times faster
than a vectorized and optimized linear algebra library on a 4-core CPU.
Also note that when dealing with huge numbers of sequences, GPU computing provides
significant advantages for this application; when considering performance/watt, or the
ability to stack several GPU cards in a single system, hence rivaling with a small cluster
at a fraction of the cost.
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Figure 3.9. Percentage of time spent in the different parts of our SSE vectorized imple-
mentation of hybrid-ss-min function, computing the minimum free energy of sequences
from 100 to 8000 nt. QM is the computation of multi-loops in equation 3.4. The dark
purple segment representing the tiled portion of the computation of QM is the only
O(n3) part of the algorithm. Its vectorized SSE implementation is so efficient compared
to other parts of the code—of complexity O(n2)—that its proportion is growing only
very slowly. Even for large 8000 nt sequences, it represents only 30% of total execution
time.
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Figure 3.10. Percentage of time spent in the different parts of our GPU implementation
of hybrid-ss-min function. Top. Profile for the untiled first implementation. Bottom.
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40 Results

Execution Time (s)

Tesla C1060 tiled : 13 s

Tesla C1060 untiled : 83 s

New CPU tiled and vectorized implementation, 1 Xeon core: 154 s

GTfold - 8 core Xeon : 225 s

Unafold 3.7  Xeon 3.0 Ghz : 1592 s

New CPU tiled and vectorized implementation, 8 Xeon cores : 25 s

Vienna Package RNAfold , Xeon 3.0 Ghz : 330 s

Figure 3.11. Execution time on a 9781-nucleotide-long virus sequence. Various imple-
mentations are compared: standard Unafold and Vienna packages, the GTfold program
conducting multi core parallelization, our new CPU tiled and vectorized code, and GPU
implementation with or without tiling. It is striking to see the difference in speedup we
obtain when changing the reference: GPU tiled implementation is 122 times faster than
standard Unafold code, but only 1.9 times faster than a eight core CPU system used at
its full potential.
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3.7.3 Multi-GPU implementation

Usually many independent sequences need to be folded. In that case, this provides a
coarse grain level of parallelism. We exploit this level to parallelize work across several
GPUs. Our program send sets of sequences to the different GPUs available. This is
easily implemented with the Pthreads API and by creating a CUDA context in each
one of them. Synchronization is only needed when the different threads write in the
same result file. Since no synchronization or data transfer is needed between GPUs,
performance effectively scales linearly with the the number of GPU used.

3.8 Related algorithms

We also investigated the computation of sub-optimal foldings and the partition function
of a sequence, whose algorithms are similar to the one presented for optimal foldings in
section 3.1. Sub-optimal foldings and partition function are very useful to give a more
accurate view of a sequence ensemble of possible foldings, since the unique “optimal”
folding is not necessarily always representative of biological reality.

3.8.1 Sub-optimal foldings

Finding the optimal folding of a sequence is a good mathematical result, but is in prac-
tice often not enough. First, there can be many foldings within a few percents of the
minimum free energy, and these foldings can be very different form the optimal one [86].
Moreover, since folding takes place during transcription, RNA sequences are in fact often
kinetically trapped in locally optimal structures. Therefore having an overview of the
possible sub-optimal foldings of a sequence is essential to many bioinformatic studies.

Steger et al. [75] first observed that by computing additional values representing the
minimum energy of the “excluded fragments”, one could compute the minimum energy
of a sequence containing a given base pair i, j. In section 3.1, QPi,j was introduced as
the optimal score of of subsequence i . . . j when i, j form a base pair. Similarly, Steger
et al. [75] defined1 QP ext

i,j as the sum of optimal score of both subsequences 1 . . . i and
j . . . n. QPi,j + QP ext

i,j then represents the minimum energy over the whole sequence of
a structure containing base pair i, j.

Zuker [84] then used this extension to compute a collection of sub-optimal repre-
sentative foldings. For every pair i, j, his algorithm computes the optimal structure
containing this pair. A distance criterion also ensures to output structures that are not
too similar. This is implemented in the hybrid-ss-min function (–mfold option) of the
Unafold package [56].

Following this seminal work, Wuchty et al. [82] then introduced an algorithm to
compute the exhaustive list of suboptimal foldings within a ∆ band of the MFE. This

1originally with notation V (j, i) in [84], as opposed to V (i, j) for the internal part. We prefer to use
an ext exponent to denote the external part of a subsequence.
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is implemented in the RNAsubopt function of the ViennaRNA package [29]. Finding
relevant sub-optimal foldings is still an ongoing field of research [7, 52, 72].

In the following, we study the sub-optimal folding algorithm introduced by Zuker
[84] and examine its GPU implementation.

Zuker sub-optimal folding Algorithm

Algorithm 6 is the Zuker algorithm as implemented in the hybrid-ss-min function of the
Unafold package. The list L is the collections of all base pairs i, j along with the mini-
mum free energy of any folding that contains the given base pair. It contains therefore
at most n2/2 elements.
A quick profiling of the code showed that lines 1 and 3 are the most time consuming
parts of the algorithm. Since the list contains at most n2/2 elements, the sort (line 7)
complexity conducted with an efficient merge-sort2 is in O(n2 log n), less than the O(n3)
complexity required to fill the QP matrix.

GPU computation of line 1 is already detailed in section 3.5. Computation of QP ext
i,j

can also be conducted recursively as depicted with recursion diagrams 3.12, with the
following equations:

With i < j :

QP ext
i,j =
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Es(i, j) + QP ext
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min
{k,l|k<i,j<l}
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if pair i · j is allowed

∞ if pair i · j is not allowed

(3.6)

QM ext
i,j =

�

min
j<k<n

(QSj,k + QS ext
k+1,i)

min
1<k<i

(QSi,k+1 + QS ext
k,i )

(3.7)

QS ext
i,j = min

�

QM ext
i,j , min(QS ext

i−1,j, QS ext
i,j+1), QP ext

i,j

�

(3.8)

Quantities QS, Es(), Ei() are those already defined in section 3.1.2. Ei is the MFE
of subsequence 1 . . . i as defined in equation 3.1. Bj is a new value corresponding to
the MFE of subsequence j . . . n. It is the symmetric of Ei and computed the exact
same way. QP (i, j) ext, QS(i, j) ext, QM(i, j) ext are, respectively, the equivalent of the
QP, QS, QM values but referring to the exterior part of subsequence i . . . j.

Equation 3.7 is particularly noteworthy: it is decomposed the same way as QM in
equation 3.4, however since the exterior part of i . . . j is composed of the two parts 1 . . . i
and j . . . n the decomposition must also be broken down in two parts. Although still in
O(n3), the computation of QM ext is roughly twice as long as that of QM .

2As of version 3.8, Unafold implements this sort with a quadratic sort, resulting in overall O(n4)
complexity. Unafold implementation is obviously designed to compute small sequences only.
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Algorithm 6 Zuker sub optimal foldings algorithm
1: Compute QPi,j

2: QPi,j is the minimum energy of the subsequence i . . . j when i, j are paired.
3: Compute QP ext

i,j

4: QP ext
i,j is the minimum energy of the exterior of subsequence i . . . j when i, j are

paired.
5: ∆G(i, j) = QPi,j + QP ext

i,j

6: ∆G(i, j) is the the minimum energy of any folding that contains the i, j base pair.
7: Sort the list L of triplets {i, j, ∆G(i, j)} in order of increasing ∆G(i, j).
8: while L �= empty do

9: Compute the optimal folding containing the i, j pair at the top of the list L
10: Remove from L all base pairs in the computed folding as well as those within a

distance of W base pairs.
11: Output computed folding if it contains at least W base pairs not present in pre-

vious foldings
12: end while
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Figure 3.12. Recursion diagrams for the exterior part of i · · · j. A base pair
is indicated by a solid curved line, and a dashed curved line represents a subsequence
with terminal bases that may be paired or unpaired. Shaded regions are parts of the
structure fixed by the recursion, while white regions denote sub-structures whose scores
have already been computed and stored in previous steps of the recursion. The dashed
region represents the interior segment enclosed by bases i and j which is not considered
here. A. Recursion for QP ext

i,j representing the MFE of the external part of subsequence
i . . . j when i, j is a base pair. B. Recursion for QM ext

i,j representing the MFE of the
external part of subsequence i . . . j when there is a multi-loop in the external part.
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Figure 3.13. Left: Data dependency relationship. The lower left triangle of the
matrix contains the three values QP ext, QM ext and QS ext. The computation of cell j, i
needs the lower left dashed triangle and the vertical and horizontal dotted lines. The
computation requires values in the upper right triangle, i.e the algorithm must first fill
the values QP , QM and QS of the upper triangle before beginning the computation of
the lower left triangle. Right: Parallelization. According to the data dependencies,
all cells along a diagonal can be computed in parallel from all previous diagonals.

GPU implementation

The GPU implementation is conducted in a similar way as that of the minimum energy
of folding. We use the same general scheme as the one implemented in the Unafold
package: a square matrix is allocated to hold the QM, QP, QS, QM ext, QP ext, QS ext

values. The upper right triangle is used to store the internal values, while
the lower left triangle is used to store the external values. With i < j, cell
(i, j) of the matrix contains QM(i, j), QP (i, j), QS(i, j), and cell (j, i) contains3

QM(i, j) ext, QP (i, j) ext, QS(i, j) ext.

Implementation of equations 3.8 and 3.6 is the same as for the internal case. Fig-
ure 3.14 details equation 3.7 which is slightly different. Tiling is conducted the same
way, the only difference is that data needed are both in the upper and lower parts of
the matrix. Special care is needed to handle properly the boundary cases, i.e tiles cut
because of their proximity to the diagonal.

Results

We compared our GPU implementation of the Zuker sub-optimal foldings algorithm
with the the standard UNAfold 3.8 package on sequences of lengths up to 8 kb. We

3This implementation probably explains the original V (j, i) notation to refer to external fragments
[84].
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Figure 3.14. Tiling implementation of QM ext computation. Left: QM ext de-

composition. The two steps of equation 3.7 are shown. Right: Tiling. The red line
shows the part of the minimization which is taken apart so that elements of a tile can
be computed in parallel in a GPU block of threads. This red part is done in a later step,
in the regular untiled way.

also implemented an SSE-vectorized code with our tiling technique to provide a fair
CPU-GPU comparison4. Speedup is presented in figure 3.15. The speedup obtained is
up to 80x for long sequences compared to the standard UNAfold package, and between
10x and 17x compared to our optimized CPU code.

4Our CPU implementation also includes an efficient merge-sort as opposed to the quadratic sort of
the UNAfold package for line 7 of algorithm 6.
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Figure 3.15. Suboptimal folding algorithm GPU speedup. Tesla C1060 speedup
against one core of Xeon E5450 @ 3.0GHz for various sequence lengths for the algorithm
computing sub-optimal foldings (option –mfold="5,-1,100"). Left. Speedup against
standard Unafold code. Right. Speedup against our new tiled and vectorized CPU
code.
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3.8.2 Partition function

Contrary to the MFE which gives an information only about the most stable secondary
structure of a sequence, the partition function aims to give an information about the
ensemble of all possible foldings of a sequence. It therefore provides a more accurate
view of a sequence foldings.

The partition function Z is the sum over the set S of all possible secondary structures:

Z =
�

s∈S

exp−∆Gs/RT (3.9)

With R the universal gas constant, ∆Gs the energy of a structure s and T the temper-
ature. The equation is best understood with its relation to thermodynamic notions.

Thermodynamic reminder

Consider a general chemical equilibrium with stoichiometric coefficients α, β, γ, δ

αA + βB � γG + δD

In solution the equilibrium constant is defined as :

K =
[G]γ[D]δ

[A]α[B]β

With [ ] denoting the concentration of the different species in the solution.
The free energy ∆G of the equilibrium is linked to K with the relation:

K(T ) = exp−∆G/RT

The partition function Z can therefore be seen as the equilibrium constant of the
reaction:

Sunfolded � Sfolded

Where Sunfolded represents an RNA sequence in its unfolded state, and Sfolded the
sequence folded in any of its possible secondary structure. We consequently also have :

Z =
[Sfolded]

[Sunfolded]

Z provides the relative concentration of the folded and unfolded states.
The partition function can also be used to compute the probability of a structure s:

P (s) =
exp−∆Gs/RT

Z
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Computation

McCaskill [58] first developed an algorithm to compute the partition function. It is
based on the observation that since the energy is additive—energy of sequence 1 · · ·n is
the sum of energies of 1 · · · k and k · · ·n—the partition function is multiplicative. With
1 < k < n, partition function of the whole sequence 1 · · ·n is the product of partition
function over 1 · · · k and over k · · ·n.

Following work in the community focused on computing the partition function in-
cluding some classes of pseudoknots [15, 8, 66]. Dirks and Pierce [15] article also provides
a very clear introduction on partition function computation.

Partition function can therefore be computed with dynamic programming as the
MFE. Similar recurrence equations are used, by replacing the minimization over different
structures with a sum, and the sum over the different subsequences by a product.
The decomposition looks the same: quantities ZP (i, j), Z1(i, j), ZS(i, j) are introduced
representing the partition function over a subsequence i · · · j in different cases.

Base pair probability

In the same way as for suboptimal foldings, quantity ZP (i, j)ext can be computed. It
represents the partition function of the external part of sequence i · · · j when i, j forms
a base pair. Due to the multiplicativity of the partition function, ZP (i, j)ext · ZP (i, j)
represents the partition function over the set of structures that contains the i, j base
pair.

Therefore the probability of i, j forming a base pair can be derived as:

P (i, j) =
ZP (i, j)ext · ZP (i, j)

Z

Implementation

Although using similar recurrence equations as the MFE, the computation of the par-
tition function is much more computationally intensive. The main reason is that it
operates on double precision floating point numbers instead of integers. Secondly, since
Z grows exponentially with the length of the sequence, computation inevitably overflows.
Unafold counteracts this with a scaling system, which, while effective, also significantly
burdens computations in critical sections of the algorithm.

Our tiling approach introduced in section 3.5 can still be applied here. We imple-
mented again an SSE-vectorized CPU code. The method used is the same as the one
already introduced in section 3.5. Some adjustments had to be made in the tiling scheme
to fit the particularities of partition function computation, yet globally the method re-
mains the same.

It is nevertheless interesting to see how the SSE-vectorized CPU implementation
behave in this case, where computation is conducted on double precision floating point
numbers. In the MFE code, SSE was able to compute four 32-bit integers at a time with
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its 128-bit SIMD vector, here it can compute only two 64 bits floating point values. We
therefore expect to have a lower SSE speedup than before.

We also tried a GPU implementation. Preliminary results were not very good, which
was expected since GPU hardware double precision support is still limited5. We therefore
considered it was not worth the effort to pursue the GPU implementation of the partition
function. We instead focused on the SSE vectorized implementation, whose results are
presented in the next section.

Results

We computed the partition function on the 9781 nucleotide long hiv virus sequence. On
the standard Unafold 3.8 package and with our new tiled and vectorized implementation,
execution time was, respectively, 184 minutes and 20 minutes, a 9.2x speedup. This is a
good result considering the SSE vectorization only provides at best a 2x speedup here.
The remainder of the speedup comes from better memory locality of our approach, and
from some computation we were able to factorize thanks to our tiling approach.

3.9 Applications

This section gives examples of bioinformatic studies where the computation of RNA
secondary structures was successfully conducted with our GPU implementation.

3.9.1 MicroRNAs Prediction

MicroRNAs (miRNAs) are small (18-25 nt) non coding RNAs playing crucial roles in
the regulation of gene expression in eukaryotes. miRNAs precursors have a distinctive
hairpin secondary structure between 65 and 100 nt long. In insects, they are involved
for example in embryonic development and tissue differentiation [34].

In collaboration with bioinformaticians and biologists working at INRA (Fabrice
Legai, Denis Tagu, Stéphanie Jaubert-Possamai) we developed a tool to identify new
miRNAs of the pea aphid Acyrthosiphon pisum. Contrary to common methods relying
in part on comparative analysis of related genomes to identify miRNAs, the new method
relied only on the analysis of the pea aphid genome and known miRNA characteristics.
This work lead to a publication in BMC genomics [41].

The whole pea aphid genome was scanned to find miRNA-like hairpins. For that the
secondary structures of 120 nucleotides long windows with an overlap of 100 nucleotides
were computed. On the whole genome, this represents a total of 21 million windows.

Hairpins longer than 63 nucleotides were selected, leading to approximately 2.5 mil-
lion genomic hairpins. A set of features was developed to discriminate between miRNA

5Tests were conducted with a Tesla C1060 where double precision throughput is only 1/8 that of
single precision. At the time of development the new Fermi architecture with improved double precision
support was not yet available.
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and non miRNA hairpins: folding energy, total and maximum internal loop size and
symmetry, arms and terminal loop sizes; GC% and complexity score.

Using 38 pea aphid miRNAs already found by homology search as a learning set, we
constructed a classifier using all these features. We first used a decision tree implemented
in the R tree package to build a prototype classifier and then hand tuned it to improve its
selectivity. Out of the 2.5 million genomic hairpins, the classifier identified 4500 hairpins
as putative miRNAs, out of which 98 were confirmed to be expressed by comparison
with deep sequencing data.

Although not related to our GPU parallelization work, this bioinformatic study pro-
vided a real-world test of our GPU implementation. The 21 million 120 nt long windows
were successfully folded in less than two hours with a Tesla C870 and a GTX280, whereas
this would have taken 24 hours if running on a typical dual core CPU. Work is still in
progress to generalize the tool so that it can predict miRNAs of other organisms.

3.10 Discussion

In this chapter, the goal was to find whether GPUs were able to provide an efficient
implementation of the RNA secondary structure prediction problem. We developed
a first parallelization which yielded a 17x speedup compared to the standard Unafold
package [67]. This first version was however severely bandwidth limited.

We then developed a new tiling approach of the algorithm. This approach exhibits
a lot of data reuse between threads. This technique therefore allowed us to move from
a memory-bound algorithm to a compute-bound kernel, thus fully unleashing raw GPU
power. This tiled implementation is detailed in a chapter of the NVIDIA GPU comput-
ing gems book to be published [69]. The speedup obtained compared to the sequential
standard Unafold algorithm is up to 150x for large sequences, a lot more than our initial
expectations.

Moreover we also successfully applied the method to the computation of suboptimal
foldings. The answer is thus definitely positive, it is possible to parallelize efficiently
on GPU a dynamic programming algorithm of the scope of the complex RNA folding
algorithm.

However, the 150x speedup needs to be considered carefully. It does not solely comes
from GPU parallelization, but also from the benefits of our new tiling approach. We
noted that our algorithmic modification also enables tiling and subsequent vectorization
of the standard CPU implementation. This allowed us to a do a fair apples-to-apples
comparison of the CPU and GPU implementations, and avoid the hype surrounding
GPGPU.

The speedup compared to our well optimized and vectorized CPU code is around 2x
compared to an eight core system. This corresponds to the typical speedup observed
when comparing to vectorized CPU code [40]. This may seem a low speedup but in fact
already very interesting for people having to conduct RNA folding intensively.

To sum up, our contribution to the RNA folding problem are manifold: we developed
a GPU parallelization for the MFE and suboptimal problems, and a new SSE vector-
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ized CPU implementation for the MFE problem, suboptimal foldings and the partition
function. The new CPU vectorized code is in itself a very good result.

An interesting point is that the method we developed for GPU was also able to
provide a large speedup of the CPU code. It is in fact not surprising, since both archi-
tectures equally benefit from good data locality and from efficient vectorization.
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Chapter 4

Short Sequence Alignment

Sequence alignment is a major field of bioinformatics. With the advent of next gener-
ation sequencing technologies, developing highly efficient alignment programs is more
than ever a priority. In this chapter the goal is to find whether a GPU parallelization is
able to tackle this problem efficiently.

Section 4.1 first explicits the problem, then section 4.2 details state of the art methods
used to tackle the alignment problem: algorithms based on seeds or on suffix trees.

Our GPU study is based on the ORIS algorithm already developed by Lavenier
in [39], initially targeting ungapped alignments. This algorithm exhibits good data
locality and provides many indepedent tasks, making it a priori a good match for GPU
parallelization. It is presented section 4.3. However, first profiling tests showed that in
the case of gapped alignments, significant optimizations were possible.

We developed a filtering strategy that discards most alignments coming from the
seed phase before they are checked by the costly dynamic programming algorithm (sec-
tion 4.4). Promising results were obtained with this strategy on a first prototype running
on CPU.

GPU parallelization of this first prototype is conducted in section 4.5. Although
necessary, the filtering strategy also makes GPU implementation significantly more dif-
ficult. It was therefore decided to move back to a CPU program in order to be able to
develop the filtering strategy to its full potential (section 4.6). This lead to the creation
of the GASSST program, whose results are analysed in section 4.7.

4.1 Problem presentation

Next generation sequencing (NGS) technologies are now able to produce large quantities
of genomic data. They are used for a wide range of applications, including genome re-
sequencing or polymorphism discovery. A very large amount of short sequences are
generated by these new technologies. For example, the Illumina-Solexa system can
produce over 50 million 32-100 bp reads in a single run. A first step is generally to map
these short reads over a reference genome, in other words, find the initial location of
the read in the genome. To enable efficient, fast and accurate mapping, new alignment

53
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programs have been recently developed. Their main goals are to globally align short
sequences to local regions of complete genomes in a very short time. Furthermore, to
increase sensitivity, a few alignment errors are permitted.

The seed and extend technique is mostly used for this purpose. The underlying
idea is that significant alignments include regions having exact matches between two
sequences. For example, any 50 bp- read alignments with up to 3 errors contains at
least 12 identical consecutive bases. Thus, using the seed and extend technique, only
sequences sharing common k-mers are considered for a possible alignment. Detection of
common k-mers is usually performed through indexes localizing all k-mers.

Recently, several index methods have been investigated and implemented in various
bioinformatic search tools. The first method, used by SHRiMP [71] and MAQ [44],
creates an index from the reads and scans the genome. The advantage is a rather small
memory footprint. The second method makes the opposite choice: it creates an index
from the genome, and then aligns each read iteratively. PASS [10], SOAPv1 [46] and
BFAST [30] use this approach. The last method, used in ORIS and CloudBurst indexes
both the genome and the reads [39, 73]. Although more memory is needed, the algorithm
should exhibit better performance due to memory cache locality. Another short read
alignment technique, used in Bowtie [38], SOAPv2 [47], and BWA [42], uses a method
called backward search [22] to search an index based on the Burrows-Wheeler Transform
(BWT) [9]. Basically, it allows exact matches to be found before using a backtracking
procedure that allows the addition of some errors. Although this technique reports
extremely fast running times and small memory footprints, some data configurations
lead to poor performances1.

Moreover, in order to speed-up computations, some methods restrict the type or the
number of errors per alignment to a few mismatch and indel errors. In the building
alignment process, computing the number of mismatches requires linear time, whereas
indel errors require more costly algorithms such as the dynamic programming techniques
used in the Smith-Waterman [74] or Needleman-Wunsch [59] algorithms. For instance,
MAQ, Eland and Bowtie do not allow gaps. EMBF [79], SOAPv1 and SOAPv2 allow
only one continuous gap, while PASS, SHRiMP, BFAST and SeqMap [35] allow any
combination of mismatch and indel errors. In most applications, when reads are very
short, dealing with a restricted number of errors is acceptable. On the other hand, when
longer reads are processed, or when more distant reference genomes are compared, this
restriction may greatly affect the quality of the search.

4.1.1 Problem definition

The mapping problem can be formally stated as follows:

Problem 1. Let R = {r1, r2, ...} and Q = {q1, q2, ...} be two collections of sequences,
usually referred to as reference and query set. For a given scoring function F , find
for every query sequence qi the substring s of any sequence in R which maximizes the
optimal alignment score F(s, qi).

1Bowtie online manual at http://bowtie-bio.sourceforge.net/manual.shtml specifies for example that
reporting multiple alignments per read or allowing more "backtracks" to be performed significantly slows
down the program.
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Additionally, users can impose a minimal alignment score, i.e a maximal number of
errors above which alignments are deemed not significant enough and not outputted.
Queries, also called reads, can be as short as 36nt, however their length is rapidly
increasing. One particular issue is when a query aligns equally well to many positions
of the reference. In that case, it is difficult for the mapping algorithm to choose one
position over another. The typical solution is to pick one randomly and warn the user
that the read is probably not correctly mapped. Errors in the alignment originate from
two sources: mutations between the sequenced chromosomes and the reference genome,
and sequencing errors.

4.2 State of the art

Alignments algorithms have to deal with millions of short sequences, and map them on
a reference sequence, which can be as long as several giga base-pairs (Gbp) in the case of
the human genome. This is a daunting task if data are not handled correctly. The key
is the use of data structures organizing the data. The data structures commonly used
can be grouped in two major categories: algorithm based on hash tables containing the
position of k-mers and algorithm based on suffix trees.

4.2.1 Seed Based Algorithms

Introduction

This is the most commonly used strategy. The idea behind this strategy is that a sig-
nificant alignment will include some region having an exact match between the two
sequences. More formally, a l-nt long sequence with k differences from a reference se-
quence is guaranteed to share at least a l/(k +1) long substring with the reference. The
alignment problem can then be reduced to the search for common substrings between
the query and the reference. This idea, initially developed in BLAST [4, 5], is imple-
mented by creating a hash-table containing the position of every k-mer of a sequence.
The other sequence is then scanned: k-mers substrings—also called seeds—are extracted
and looked up in the hash-table. A couple of matching seeds in the two sequences is
potentially the start of a good alignment, sometimes called a hit, or Candidate Align-
ment Location (CAL) [30]. This first phase, called seed step, provides all potentially
homologous areas in the genome with a given query sequence. Each CAL generated by
the seed step needs to be checked to know if a good enough alignment can be generated,
i.e. with an alignment score below a given threshold. This is called the extend step.
To include gaps, the extend step is carried out with a dynamic programming algorithm
(Needleman-Wunsh or Smith-Waterman). This approach provides high accuracy, but is
prohibitively expensive due to the high number of costly Needleman-Wunsh extensions
that have to be performed.

To tackle this issue, several approaches have been proposed. The first idea is to
restrict the size of the candidate hit space, with an improved seed step.
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Reduction of the hit space

Spaced seeds Ma et al. [54] found that non consecutive matches, called spaced seed,
significantly increase sensitivity. The relative positions of the k required matches are a
model, for example 110100110010101111. k is the weight of the spaced seed. Compar-
atively to contiguous seeds of same weight, spaced seeds both increase sensitivity and
decrease the average number of generated CALs. Patternhunter was the first program
to implement such spaced seeds [54], and was followed by many other programs. In
particular, YASS [61] introduced a more elaborate model called transition-constrained
seeds defined with a third symbol defining a match or a transition (mutation A ↔ G or
C ↔ T ).
Eland (A.J. Cox, unpublished results) was one of the first program able to quickly
map millions of short reads to the human genome. A set of 6 spaced seeds span-
ning the whole 32 bp alignment are used, designed to find 32-bp alignments with at
most 2 mismatches. The idea is that if the alignment is divided in four 8-nt long re-
gions, then any alignment with 2 mismatches will have at least two 8-nt long regions
which are perfect matches. There are

�

4
2

�

= 6 possible ways of choosing these two re-
gions, creating the 6 associated spaced seeds (i.e. 11111111000000001111111100000000,
11111111000000000000000011111111, ...). The algorithm is however restricted to un-
gapped alignment of size 32bp.
SOAPv1 and MAQ [46, 44] then used the same idea. SOAPv1 added the possibility of
one continuous gap of size 1 to 3 bp, while MAQ extended the principle to be able to
align reads up to 128 nt-long with more than two errors. The search is restricted to
alignments with at most 2 errors in the first 28 bp of the read. MAQ also introduced the
key concept of mapping quality score, which is a measure of confidence a read actually
comes from the position found by the mapping algorithm. Such a mapping quality score
is now commonly provided by most mapping algorithms.
BFAST [30] also uses spaced seeds. Its design idea is to decrease the number of CALs
generated by the seed step with the use of large spaced seeds. In order to achieve high
sensitivity, a set of different seeds is used, usually ten. The associated indexes are loaded
iteratively in memory to generate a list of CALs. Gapped alignment is then performed
with standard dynamic programming algorithm.

Multiple seeds A second idea is to generate CALs only when multiple seed matches
occurs. A large spaced seed of the form 111111110000000011111111 might seem similar
as it apparently also allows two distinct 8-nt seed matches. However it is in fact different
as the spaced seed does not allow gaps to occur in the ’0’ regions, whereas the multiple
seed technique does. Multiple seeds are used for example in the SHRiMP and in the
LSPMUL algorithms [71, 17]. It is based on the observation that a l-long query string
with k differences from a reference sequence contains at least l +1− (k +1)w substrings
of length w in common with the reference sequence. In SHRiMP the reads are indexed,
then a window is moved along the genome. If a read is found to have more than
a specified number of matches in that window then it is considered as a candidate
alignment location.
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Filter step

The last idea is to include an additional filter step after CALs have been generated and
before they are checked by the costly dynamic programming algorithm used to obtain
the actual gapped alignment. The idea is to discards CALs with some computation
that is faster than the full dynamic programming. SHRiMP uses a vectorized Smith-
Waterman algorithm that computes only the score of the alignment, i.e. which does not
perform the traceback procedure providing the actual alignment. PASS [10] implements
another solution: a pre-computed table of all possible short words, aligned against each
other, is built to perform a quick analysis of the flanking regions adjacent to seed words.
The number of errors in the flanking region is directly given by the pre-computed table.
If it is greater than the maximum number of allowed errors, the CALs can be discarded.
In practice PASS works on 7-nt long flanking regions, resulting in a 414 = 256 MB
pre-computed table.

4.2.2 Algorithms based on suffix tries

The use of suffix/prefix trees solves efficiently the problem of finding exact matches. The
main advantage of this data structure is that multiple identical substrings occurring in a
sequence are grouped in a single path in the prefix tree. This saves a lot of computations
compared to the hash table method where every copy in the reference need to be treated
separately. On the other hand, prefix trees requires a lot of memory. However, the
backward search technique developed by Ferragina and Manzini [22] allows to mimic the
traversal of a prefix tree without actually putting the tree in memory, but just through
the use of the Burrows-Wheeler Transform of the sequence [9]. This key innovation
enables programs to benefit from the fast resolution of the exact matching problem with
a very small memory footprint (between 2 and 3 Gb for the human genome). If an exact
match is not found with this procedure, the search is generally extended to strings with
some substitutions/indels. This approach is very efficient when dealing with sequences
with a low error rate. This backward search method is used in BWA, SOAPv2 and
Bowtie [42, 47, 38].

4.3 Starting point

In [39] Dominique Lavenier proposed the ORIS algorithm based on the seed-extend
paradigm, aimed toward faster execution time, with a new way of manipulating seeds.
The key idea comes from the observation that a lot of time is spent when accessing
the index. Traditionally the reference sequence is indexed, then for each seed in the
sequence query, the index is looked up to get the list of occurrences of the seed on the
reference sequence. Since the index is large (several gigabytes) and accesses are random,
this results in many time consuming cache-misses. The ORIS algorithm was designed
to address this issue.

The principle is to order seeds such that memory accesses exhibit better locality.
The two sequence banks are indexed for contiguous seeds, then seeds are enumerated in
a strict order. For each seed s, two sets Qs and Rs of occurrences are obtained, one from
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the reference sequence (Rs) and one from the query (Qs). Each pair in the cartesian
product Rs ×Qs—representing a candidate alignment position—is then extended to see
if it generates a correct alignment. By doing so every access to elements of Rs and Qs

happen in a short time: the algorithm exhibits good temporal locality. In the case of
gapped alignment, the extension is conducted with a dynamic programming algorithm to
obtain the exact alignment, i.e. the Needleman-Wunsch algorithm for a global alignment
of the query sequence.

However, this special seed ordering also raises new problems. Since an alignment can
be generated by different seeds, a method to ensure unique alignments are generated
had to be developed. The binary encoding of the seeds provides a straight-forward strict
ordering of seeds. Then, when an alignment is generated with a seed s1 every potential
seed s2 able to produce the same alignment are compared to s1. If s2 < s1 then the
alignment is discarded. Each alignment is uniquely generated by its lowest seed. The
drawback is that, in the case of gapped alignment, this check can only be conducted
after dynamic programming. This results in a waste of computation.

Lavenier reported a speedup of 5 to 28 compared to BLASTN. The initial idea,
developed in the next section, was to capitalize from these good results to create a
new GPU-accelerated program, suitable for sequences generated by next generation
sequencing technologies, i.e efficient for a massive number of short sequences. Several
levels of parallelization can be exploited: different seeds can be computed in parallel, and
each seed generates a list of candidate alignment locations that can also be computed
independently. Moreover the good data reuse of the algorithm makes it a priori a good
candidate for GPU implementation.

4.4 Preliminary work

Since the ungapped mapping problem was already tackled efficiently with BWT ap-
proaches, whose GPU implementation seems problematic, the idea was to target gapped
alignments. Common techniques often restrict indels in the alignment to improve speed.
The goal is to find whether GPUs are able to provide an efficient algorithm for short
read gapped alignments.
As with every GPU implementation we first need to: (i) profile the CPU sequential code
and identify the most time consuming sections; (ii) make sure those sections are really
needed and cannot be further optimized, (iii) identify a parallelization scheme suitable
for GPU. These points are examined in the three following paragraphs.

4.4.1 Profiling of the sequential code

The program implementing the ORIS algorithm, referred to as Prototype_V0, presented
in [39] and based on the seed-extend paradigm, contains two major steps: (i) searching
for exact matching seeds between the reference and the query sequences, (ii) computing
the full gapped alignment with the Needleman-Wunsch (NW) algorithm. Alignments
with a number of errors below a user-specified threshold are then printed. It should
be noted that since both sides of a Candidate Alignment Location (CAL) need to be
extended, the number of NW algorithm instances is a priori twice the number of CALs.



4.4.2 - Major optimization: Tiled-NW filter 59

However, CALs can be discarded after the extension of only one side if the one-sided
alignment already contains too many errors.

The code has been profiled with a small test case of a 20 Mb reference sequence, and
one million query sequences of 36 bases. The program was run to output all alignment
with at most 2 errors. Results show that 96% of total time was spent in the dynamic
programming part computing gapped alignment. More interesting, we also measured
a number of 1.4 × 109 CALs generated by the seed phase, 1.8 × 109 instances of NW
computed, and 3.4 × 106 alignments outputted in 53 minutes. First, it shows that only
a small fraction (0.2%) of CALs generate good alignments. Most NW instances are only
used to see that a given alignment is not good enough and needs to be discarded. Do we
actually need to compute the full optimal gapped alignment to realize that? Probably
not.

Secondly, as 1.8 = 1.0 + 2 · 0.4 we can see that for 1.0 × 109 CALs only one side
of the seed was extended, after what the alignment was discarded. The fact that the
extension is split in two parts saves a lot of computation. The sooner the algorithm
can discard an alignment, the better. This key observation can probably lead to further
optimizations, if we find ways to split the extension in smaller parts and discard a false-
positive alignment sooner. Hence, optimizations are needed before considering GPU
implementation. Parallelizing is good, but avoiding computation is even better.

PASS [10] followed a similar approach, as it uses pre-computed table corresponding
to the first part of the dynamic programming algorithm. They discard alignments if this
first small part already contains too many errors. However, PASS only checks at most
a 7× 7 sub-matrix. This is enough in the case of small 36 bp sequences, but ineffective
when considering longer reads with higher error rates. Moreover, in PASS, the size of a
7 × 7 lookup table is 414 = 256 MB, as a score is memorized in a single byte. This fits
into any computer’s main memory, but not in the first level CPU cache. Hence, random
access of the table, even if many computations are avoided, may still be costly. Our
idea was to extend further this method. The next section presents our new algorithm
using pre-computed tables.

4.4.2 Major optimization: Tiled-NW filter

A lookup table, called PSTl for Precomputed Score Table, containing all the alignment
scores of all possible pairs of l-nt long words is first computed. PASS uses a PST7 to
analyze discrepancies near the 7-nt long flanking region adjacent to the seeds. The bigger
the table, the better the filtering. But unfortunately, the table grows exponentially
with l. To address this issue, the idea is to analyze discrepancies in a region of any
length thanks to the re-use of a small PST4 table. The goal is to provide a lower
bound approximation of the real Needleman-Wunsch score along the whole alignment.
If estimated lower bounds are greater than the maximum number of allowed errors, then
alignments are eliminated. If not, alignments are passed to the next step.

The following values are used for the Needleman-Wunsh score computation: 0 for a
match, and 1 for mismatch and indel errors. Consequently, the final score indicates the
number of discrepancies in the alignment.

Definition 3. In the following we call semi-global alignment of two sequences S1 and
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S2 an alignment that starts at the beginning of both sequences and includes the end of
one or the other sequence.

The PSTl contains the optimal semi-global alignment score of all 42lpossible pairs
of l-nt long words. For two sequences S1 and S2 of size l, the strings participating in
the alignment are therefore S1(1, i) and S2(1, j), with i = l or j = l. When seeing an
alignment as a path in the l× l dynamic programming matrix, the score is the minimum
number of errors of any path starting at the top left corner and ending somewhere in
the right column or bottom line—only the starting point of the path is constrained.

In the following, only the right side of the seed is considered, the processing of the
other side being symmetrical.

Definition 4. We call TNWl(n) the score of a region of n nucleotides which are adjacent
to the right of the seed and which are computed with a PSTl. TNW stands for Tiled
Needleman Wunsch. TNWl(full) operates on the maximum length available, i.e. from
the right of the seed to the end of the query sequence.

Definition 5. If S1 and S2 are the two sequences directly adjacent to the right of
the seed, we call PSTl(i, j) the pre-computed NW score for the two l-nt long words
S1(i, i + l − 1) and S2(j, j + l − 1).

If Gm is the maximum number of allowed gaps, TNWl(n) is computed with the
following recursion:

If n ≤ l then
TNWl(n) = PSTl(1, 1) (4.1)

Else

TNWl(n) = min (A, B, C) (4.2)

With

A = TNWl(n − l) + PSTl(n − l + 1, n − l + 1)

B = min
1≤s≤Gm

(max(s, TNWl(n − l)) + PSTl(n − l + 1, n − l + 1 − s))

C = min
1≤s≤Gm

(max(s, TNWl(n − l)) + PSTl(n − l + 1 − s, n − l + 1))

Figure 4.1.B shows a graphical representation of this recursion.

The beginning of the recursion is straight forward: the alignment path must start
right after the seed. Hence, PSTl(1, 1) is the first level. At the second level, the TWN
computation minimizes over all the different points an alignment can go through when
exiting the first sub-matrix.

Theorem 1. The score TNWl(n) is a lower bound of the score of the optimal semi-global
alignment of S1(1, n) and S2(2, n) computed by the Needleman-Wunsch algorithm.
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Tiled Algorithm Computations:

Step 3: 
PST(AGCG,ATCG)=1
PST(AGCG,TCGA)=2
PST(GAGC,TCGA)=2

 Step 1:
 PST(AACG,AACG)=0 

error = min(1+1, 1+2, 1+2) = 2

Step 2: 
PST(GATG,ATAG)=2
PST(ATGA,ATAG)=1
PST(ATGA,GATA)=2
error = min(1+2, 0+1, 1+2) = 1

B. New Tiled Algorithm

error = 0

Alignment result : 2 errors

Figure 4.1. Computation of a semi-global alignment (only the query sequence needs
to be globally aligned), in the case of a maximum of 1 error. A. Dynamic Program-

ming. With 12-nt long sequences and a traditional dynamic programming algorithm,
cell calculations can be limited in a band, but there are still 34 cells to compute. B.

Tiled Algorithm. With a pre-computed table score of size 4 × 4, the tiled algorithm
is performed in only three steps. The first step requires 1 table access, while the second
and third steps both require 3 table accesses. Here, the score given by the tiled algo-
rithm is the same as the full dynamic programming algorithm - there are 2 errors in
the alignment. In the general case, the tiled algorithm only gives a lower bound of the
number of errors present in the alignment.
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Theorem proof is in appendix A.1.

Since the score is the number of errors in the optimal alignment (scoring scheme is
0 for a match, 1 for mismatch or indel), theorem 1 implies that TNWl(n) is a lower
bound of the number of errors in the alignment.

TNWl(n) can therefore be used as a filter which will not decrease overall sensitivity:
if TNWl(n) is greater than the user-specified maximum number of errors, we can safely
discard a CAL before computing its actual NW score, knowing for sure it would have
been eliminated anyway. The filter never eliminates CALs which could have produced
good alignments.

In other words, the theorem implies TNWl(n) filter has 100 % sensitivity. It is an
essential point which greatly differentiates this approach to commonly used heuristics
where a speed/sensitivity tradeoff is involved. Here the approach increases execution
speed at no cost to sensitivity.

On the other hand, the filter does not have 100 % specificity: as it computes a
lower bound, some CALs having more than the maximum number of errors will pass
the filter. Such CALs will be discarded by the next step of the algorithm: the dynamic
programming algorithm computing the exact number of errors in the alignment.

Complexity of the filter With a PST4 lookup table storing each score in a single
byte, memory storage is equal to 64 KB. This small size allows the PST4 to fit into a
CPU cache of today’s desktop computers. PST4 hence requires only a few clock cycles
to be computed.

In the general case, the number of PSTl accesses Nacc[TNWl(n)] needed for the
computation is in O(n). If Gm is the maximum number of allowed gaps, the exact
number of accesses Nacc is given by:

Nacc[TNWl(n)] = (
�n

l

�

− 1) · (1 + 2 · Gm) + 1 (4.3)

The filter works with iterative l-sized levels. The first one takes 1 access, then
each following level requires (1 + 2 · Gm) PSTl accesses. Each new level filters more
and more false-positive alignments. Large PSTl tables lead to fewer levels and higher
specificity, but they imply longer execution times since the number of memory cache
misses increases rapidly with bigger tables.

Implementation of the filter For each seed, in the index, the position and the
flanking regions are binary encoded. Two 32-bit integers are required for the position:
one indicating the sequence number and the other its index. Up to 16 nucleotides are
stored on the left and on the right of the seed in order to speed up the filtering steps,
hence requiring 2 additional 32-bit integers. The total size of the index is therefore four
32 bit integers per seed, i.e a 16 · N bytes index with N the number of nucleotides in
the bank.
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The PST4 is constructed to take as input 2 binary encoded strings of 4 nucleotides.
Before computing the full NW alignment score, TNW4(16) is computed on each side of
the seed. The filter is therefore composed of 4 levels. After each level, the partial scores
TNW4(4), TNW4(8), TNW4(12), TNW4(16) are compared with the maximum number
of errors allowed to see if CALs can already be eliminated. The filter is therefore a series
of 4 filters. This exactly performs what we intended: the extension process is split in
small fast computed parts, and alignments are discarded as soon as possible.

4.4.3 Analysis

We implemented the TNW4(16) on CPU, in a program we will refer to as Prototype_V1.
The only difference with Prototype_V0 is the new filter.

We conducted a profiling of Prototype_V1 on the same small test case of sec-
tion 4.4.1. The 3.4 × 106 alignments were now outputted in about 5 minutes, a 10x
speedup compared to the first non-filtered version.

Out of the 1.4 × 109 CALs generated by the seed step, 13 × 106 (0.9%) passed the
TNW4(16) filter. Profiling shows that 70% of total time is spent in the filtering process,
only 7% in the NW extension and most of the remainder in the indexing step. These
are indicative figures, indexing part would decrease when dealing with large data banks
(indexing complexity is O(N1 + N2) while alignment is O(N1 · N2) with N1 and N2
the size of the two banks), and filtering percentage depends on the maximum number
of errors allowed.

These results nevertheless show that this filtering step is an essential optimization,
and that GPU parallelization should focus on its parallelization. A GPU implementa-
tion without this filtering step would be much easier since more regular. However, it
would be inefficient considering the 10x speedup filtering already provides by TNW opti-
mization. The parallelization scheme seems straightforward: thousands of independent
seeds provide more than enough work for the GPU.

4.5 GPU approach

In this section, we explore the GPU implementation of the filter introduced in sec-
tion 4.4.2. On one hand, there is plenty of parallelism to exploit with good data reuse.
On the other hand, tasks than need to be executed on GPU cannot be mapped per-
fectly on a SIMD execution model—different instances of the TNW4(16) filter can stop
at different levels. In this case, it is difficult to predict the outcome of the GPU imple-
mentation.

4.5.1 Parallelization scheme

With w the size of the seed, there are 4w seeds to enumerate. Each of them can be
computed independently, and will give two lists Qs and Rs of occurrences, one from the
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reference sequence, the other from the set of queries. Each pair in the cartesian product
Rs × Qs represents a Candidate Alignment Location (CAL) that can also be treated
independently from each other.

We exploit both levels of parallelization: we issue one GPU thread block per seed. We
choose to have bidimensional thread blocks of BX · BY threads, with the TNW4(16)
filter of each CAL being computed by a single thread. The BX · BY threads of a
block will iterate sequentially over the |Qs × Rs| different CAL generated by the seed.
Figure 4.2 shows a graphical representation of this parallelization scheme.

Data specific to each occurrence of a seed are the two 32-bits integers representing
the two 16-nucleotides flanking regions of a seed. Computation of the TNW4(16) filter
only requires these flanking regions along with the PST table itself. Therefore the
GPU, computing only this filter, does not need access to the whole data bank, the index
containing the binary-encoded flanking regions is enough. Each occurrence of a seed
is reused many times, allowing the two flanking regions to be stored in the fast shared
memory.

Algorithm 7 GPU kernel code
1: BlockSize: Two dimensions = BX · BY
2: Block Assignment: Computation of TNW4(16) filter for every CAL generated by

seed s
3: Total number of blocks = number of seeds = 4w

4: parameter: n (maximum errors allowed).
5: tx ← threadIdx.x, ty ← threadIdx.y
6: T1 ← number of occurrences of s in Bank1
7: T2 ← number of occurrences of s in Bank2
8: for i = ty, i ≤ T2, i = i + BY do

9: if tx == 0 then

10: Store occurrence i of s in Bank2 in shared memory
11: end if

12: for j = tx, i ≤ T1, j = j + BX do

13: if ty == 0 then

14: Store occurrence j of s in Bank1 in shared memory
15: end if

16: if TNW4(16){ CAL(i,j)} < n then

17: Push CAL(i,j) in result list.
18: end if

19: end for

20: end for

NB: Push result is done with an atomic incrementation of a global counter
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Figure 4.2. Parallelization scheme. Each GPU thread block is mapped to a single
seed s. A lookup in the index for seed s gives T1 occurrences in the reference and T2
occurrences in the queries. This produces a total of T1·T2 candidate alignment locations
represented by this T1 · T2 matrix. For each one the TNW4(16) filter is computed by
a single GPU thread. A thread block is a BX · BY sub-matrix. The whole space is
computed by a single thread block by sequentially moving the BX · BY sub-matrix
from left to right, then up to bottom. Data needed for each occurrence can be stored
in GPU shared memory. Data for occurrences in bank 2 are reused T1 times while data
concerning occurrences in bank 1 are reused BY times. For each cell, the outcome of
the TNW4(16) filter is a boolean value.

4.5.2 Key optimizations

PST table

The first optimization to consider is memory access. Flanking regions are stored in fast
shared memory, but the PST table itself, simultaneously accessed by all threads, also
requires careful consideration. A PST4 requires 64 KB if each score is stored in a byte.
This is too large to fit in the 16 KB shared memory.

The first idea would be to compress this table. First, the table is symmetric,
score(S1,S2) equals score(S2,S1). Secondly, with the scoring scheme used and 4 nt-long
sequences, the score is in the range 0− 4. We could clamp this range to 0− 3(resulting
in a decrease in filtering power) and store each score with 2 bits. The overall size of this
compressed PST4 would then be 8 KB and would fit in shared memory. This would
however render accesses to the table very clumsy.

The second idea, which we chose to implement, is to leave the table in global memory.
This could seem a bad idea, as this both causes a lot of latency and greatly reduced
peak bandwidth. However, (i) latency can be completely hidden if occupancy is high
enough, (ii) since the table will be “out of cache” anyway, we might as well have a bigger
table, PST6 or PST7, (iii) potential problem is memory bandwidth, but we cannot be
sure this will be a bottleneck before we try. Aside from the potential access latency
problem, a larger PST table is better since it allows the filter on the 16-nt region to be
computed with fewer steps.

Respective sizes of tables PST4, PST5, PST6, PST7 are 64 KB, 1 MB, 16 MB
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and 256 MB. We were surprised to observe that performance degraded significantly
with the use of the PST7 table. It seems that for the large PST7 stored in 256 MB
access latency doubled. This phenomenon, not documented by NVIDIA, is explained in
[13, 77]. Nearly double latency is observed when misses in the TLB2 occurs. Random
accesses to a large 256 MB table are indeed susceptible to many TLB misses, hence the
PST6 was preferred.

Result storage

The second problematic point is how to transfer results computed by the GPU back to
the CPU. The result is a boolean value for each possible CAL—a CAL either passes the
TNW (16) filter or it does not. CALs that passes the filter needs to be extended with
the NW algorithm on CPU.

A naive solution would be to store the result in a large bit array and transfer it back
to the CPU. Considering that the filtering rate on a typical test case is about 99%, this
would be inefficient. It would require a lot of space, and the CPU would need to scan
the whole array to find the 1% cases passing the filter, a relatively costly operation.

Instead, we implemented another solution: the GPU outputs the list of all CALs that
pass the filter. Each CAL can be uniquely identified by two 32-bits integers representing
the two occurrences of a seed. As this is only stored for 1% instances, this still requires
less space and less bandwidth than a whole bit array containing boolean values.

This is implemented on GPU with the use of atomic operations allowing all threads
to push elements in a shared list residing in global memory. Atomic operations have to
be used with care since they serialize computation. However, here, it is not a problem
as only 1% threads actually use it.
Since CUDA code cannot dynamically allocate memory, we statically allocate at the
beginning a “big enough” array which will be used to store the list. This can be prob-
lematic since we do not know for sure in advance what the filtering rate will be, and
therefore how much space will be required. When the array is full, the GPU stops out-
putting CALs, resulting in a loss of sensitivity of the algorithm.

Needleman-Wunsch computation

For each CAL passing the TNW4(16) filter, we need to compute the true Needleman-
Wunsch alignment. Profiling showed that this operation was about ten times faster than
the computation of every TNW4(16) filter on CPU. Therefore, if computing the filter
on GPU and the NW extension on CPU, both operations should take roughly the same
time. We overlap the CPU computation of NW with the GPU computation of the filter.
This way, we exploit to its maximum the ressources of the hardware, and “hide” most
of the computation time of the NW computation.

2Translation Lookaside Buffer, cache used by the memory hardware to improve virtual address
translation speed. TLB implementation on NVIDIA GPUs is studied in [13, 77].
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4.5.3 Results

We call this GPU implementation Prototype_V1_GPU. We compared it to Proto-
type_V1 on various test cases. In the best scenario, we obtained a 10x speedup. It
is a good result when considering that the parallelization is in contradiction with the
SIMD model. Since the TNW4(16) filter is in fact a series of 4 filters and execution can
stop at any level, different threads will compute filter instances that do not stop at the
same level. This results in many idle threads. The computation overlap between CPU
and GPU dramatically helped achieve this 10x speedup.

However, it is highly dependent on the data set and configuration. One major
problem is when dealing with longer reads or with higher error rates, which both leads
to a lower filtering rate. In that case, (i) the part parallelized on GPU is less important,
resulting in a much lower overall speedup, (ii) the list storing CALs passing the filter no
longer fits in GPU memory, resulting in a major loss of CALs and decrease in sensitivity.
We could implement the NW extension on GPU to improve overall speedup, but this
would not solve the “storage” issue.

In its current development state, this GPU sequence alignment program only works
well on a small set of configurations. Some more work could be done to improve it.
However, the work already done revealed that this filtering scheme is not a good match
for GPU parallelization. In particular, the storage of elements passing a filter will always
be highly problematic.

Although it makes efficient parallelization very difficult on GPU, the filtering ap-
proach is interesting, since it saves a lot of computation. Therefore, instead of trying
to improve its clumsy GPU implementation, we choose to develop the filtering strategy
further, even if it means it will only work on CPU.

4.6 CPU approach

A CPU architecture is now targeted. Free of the constraints of GPU parallelization,
we can develop the filtering strategy and bring it to a higher level. This lead to the
creation of a new short sequence alignment CPU program, referred to as GASSST 3 in
the following.

4.6.1 Overview

We use a traditional anchoring method followed by a Needleman-Wunsch extension
step. However, fast computation is achieved thanks to a very efficient filtering step.
Candidate positions are selected through a carefully designed series of filters of increasing
complexity and efficiency. There are two main types of filter. One is related to the
computation of an Euler distance between nucleotide frequency vectors as defined by
[79]. The idea is the following: if one sequence has, for example, 3 more ’T’ nucleotides
than another one, then the alignment will have at least 3 errors (mismatches or indels).

3Global Alignment Short Sequence Search Tool
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The other is the filter introduced section 4.4.2. It is now used in different forms:
it is not restricted to a 16-nt long flanking region, but computed up to the end of the
query sequence. In this way, the filter is much more selective and discards a very large
number of false-positive CALs, thus drastically decreasing the time spent in the final
extend step.

GASSST algorithm has three stages: (1) searching for exact matching seeds be-
tween the reference genome and the query sequences, (2) quickly eliminating hits that
have more than a user-specified number of errors, and (3) computing the full gapped
alignment with the Needleman-Wunsch algorithm. These three steps are referred to
respectively as seed-filter-extend. The novelty of the GASSST approach relies on a new
highly-efficient filter method.

4.6.2 Seed

First, contrary to Prototype_V1, we chose to move back to a single index scheme. The
double index scheme becomes inefficient when dealing with gaps since it can detect
duplicate alignments only after dynamic programming. Moreover the double index
scheme does not make it possible to output only the k best alignments of a read.

On the contrary the single-index scheme can perform per-read operations that would
otherwise be impossible. It makes it possible to sort alignments of a given read according
to their similarity score and output only the k best, an essential feature for short read
mapping. Efficiently taking care of duplicate alignments is also much easier with the
single index.

GASSST creates an index of all possible k-mers in the reference sequence and then
iterates over every query sequence. For each read, every overlapping seed it contains is
looked up in the index to get a set of CALs.

The index contains a list L of all k-mers occurring in the reference sequence along
with their list of occurrences. For each k-mer occurrence in the reference sequence,
the index contains the sequence number, the position where it occurs, and the flanking
regions (binary encoded). Up to 16 nucleotides are stored on the left and on the right
of the seed in order to speed up the next filtering steps. The size of this index is equal
to 16 × N bytes, with N the size of the reference sequence.

A structure is then needed to know, for a given k-mer, if it actually occurs in the
reference, and if yes, its position in the list L. For seeds shorter or equal to 14, this
information is stored in an array containing all possible 4k k-mers. This is the fastest
way, although space-inefficient. For k such that 4k >> Reference Genome Size only a
small subset of every possible k-mer actually occurs in the reference sequence.

When seeds longer than 14 are selected the algorithm uses a simple hash-table mech-
anism. A hash function associates to every k-mer a 28-bit key used to index a table
with 228 entries. By using a hash-function with a good scattering behavior, we expect
to have less than 10 collisions per entry with most reference sequences.

If large reference sequences which exceed the memory size are considered, a simple
partitioning scheme is provided; the reference sequence is split into as many parts as
necessary to fit in the available RAM. Each part is then processed iteratively.
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4.6.3 Tiled-NW filter

We use the same TNWl(n) as introduced in section 4.4.2. With different values of l and
n we have some variations of the filter. A 16-nt long seed flanking region is stored in
the index, allowing computation of the filter to be fast for n ≤ 16. Additionally from
the already used TNW4(16), we now also use TNW5(full) which operates until the end
of the query sequence with a larger PST5 table. The objective of this second filter is
twofold. First, using PST5 instead of PST4 shifts the starting position of the different
levels of the filter. Since some potential mismatches are missed in these “junctions”
between levels4, using a PST5 allows errors that could have been missed with the PST4

to be detected. Secondly, computing the filter on the full length of the sequence, even
if it requires more computation, allows a larger number of false-positive CALs to be
discarded.

4.6.4 Frequency vector filter

The frequency vector filter of GASSST is the same as the one used in EMBF [79]. The
idea is quite simple: if one sequence has, for example, 3 more ‘G’ nucleotides than
another sequence, then their alignment will have at least 3 errors. If the user-specified
maximum number of errors is 2, then the alignment can be directly eliminated.

For a sequence S = s1s2...sn of characters in the alphabet Σ = {a1, a2, ..., ap}, the
frequency vector F = {f1, f2, ..., fm} is defined as:

∀i ∈ [1; m] fi =
�

1≤k≤n

δsk,ai
(4.4)

With

δsk,ai
=

�

1 if sk = ai

0 otherwise
(4.5)

The Euler distance has to be computed on similar frequency vectors, i.e., referring
to sequences of equal length. The distance is computed with:

ECD(F, G) =
�

1≤i≤m

|ui − vi|

2
(4.6)

In GASSST, frequency vectors of sequences of up to 16 nucleotides on both sides of
the seed are computed. Actually, this value is often limited by the length of the reads,
and forbids vectors of the reference sequence to be computed once and for all. Indeed,
the size of subsequences for which the frequency vector is computed depends on the size
available on the read, which is often less than 16 for short reads and which is only known
at compute-time. The Euler distance is computed between the frequency vectors of the
read and the genome. If the result is greater than the maximum number of errors then
the alignment is discarded.

4See proof of theorem 1
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The computation of the frequency vectors is vectorized and quickly performed thanks
to the binary format of the seed flanking regions. The frequency vectors and the Euler
distance computations are both vectorized to benefit from vector execution units present
in modern processors. Since a 16-nt sequence is 32-bit encoded, counting the frequency
of a single nucleotide can be done with bit-level logical operations that operate on
traditional 32-bit words. The vectorization consists of simultaneously computing values
for the 4 nucleotides of the alphabet and operates on 128-bit wide words. The frequency
distance vectorized filter is referred to as FD-vec.

4.6.5 Filters combination

The goal of the filter step is to eliminate as many false-positive alignments generated
by the seed step as possible, and in the fastest possible way. This is done by ordering
the individual filters from the fastest to the most complex and powerful. Algorithm 8
shows the main computation loop of GASSST with the series of filters. TNW4(4) is
first since it is the fastest. It requires only one PST4 table access, hence is computed in
only a few clock cycles. It is followed by the vectorized frequency filter that rules out
remaining false-positive alignments. Then a more thorough filter is used (TNW4(16)).
The last filter is a TNW5(full) filter which is applied on the full length of the sequence
and with a PST5 in order to eliminate a maximum number of false-positive alignments.
It is computationally intensive, but it comes at the end when most alignments have
already been ruled out.

Finally, the true Needleman-Wunsch alignment is computed on alignments that go
through all filters. This combination of filters ensures an efficient and fast filtering in a
wide range of configurations, from short to longer reads, with low or high polymorphism.

One important point is that these filters only discard alignments which are proven to
have too many errors and that would have been eliminated by the Needleman-Wunsch
algorithm. They never eliminate good alignments, hence they do not decrease sensitivity.

Moreover, to reduce execution time, the search is stopped when a maximal number
of occurrences of a seed in the reference sequence has been reached. This kind of lim-
itation is present in most other aligners. The only difference here is that a threshold
is also checked in some stage of the filtering process. The threshold is automatically
computed according to seed length and reference sequence size. Users can control the
speed/sensitivity trade-off of this heuristic through a parameter s in 0 − 5 which mod-
ulates this threshold.
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Algorithm 8 GASSST main computation loop
1: Input:
2: reference genome, short query sequences.
3: parameter: n (maximum errors allowed).
4: Pre-calculation:
5: Compute the reference genome index
6: for each query q do

7: for each overlapping seed s in q do

8: for each occurrence o of s in reference genome do

9: if TNW4(4){q,s,o} < n then

10: if FD-vec{q,s,o} < n then

11: if not isDuplicate{q,s,o} then

12: if TNW4(16){q,s,o} < n then

13: if TNW5(full){q,s,o} < n then

14: if NW{q,s,o} < n then

15: Print Alignment {q,s,o}
16: end if

17: end if

18: end if

19: end if

20: end if

21: end if

22: end for

23: end for

24: end for

A triplet query, seed, occurrence {q,s,o} defines a Candidate Alignment Location (CAL)

4.6.6 Duplicate alignments

Since every overlapping seed in a query is considered, a single alignment can be generated
multiple times by different seeds of a same query sequence. For example, an alignment
of a 50 bp query with two mismatches contains at least nine 14-nt seeds in common with
the reference. If not detected early, this can dramatically increase computation time.
In GASSST, a simple mechanism is used: a bit array stores if each position has already
been tested for the query currently considered. The function isDuplicate simply checks
this array to determine if a given position has already been tested, if yes the associated
CAL is discarded. The array is then reset to zero between each query. This mechanism
was not possible with the double-index model of Prototype_V1 where the enumeration
was seed-ordered and not query-ordered.

4.6.7 Long reads

For long reads, the key is to use larger seeds. Larger seeds are much more selective and
lead to a much lower number of CALs. However, large keys can also lead to a lower
sensitivity in the presence of more errors. It is known that a l-long alignment with
k errors (mismatches and gaps) contains at least l/(k + 1) consecutive bases. This is



72 CPU approach

0 10 20 30 40

0
1
0

2
0

3
0

4
0

5
0

Percentage of missed 200bp alignments 

number of  errors

 S
e
e
d
 l
e
n
g
th

0%

< 1%

< 5%

< 10%

< 25%

> 25%

Figure 4.3. The figure shows, for 200-nucleotide long reads, the percentage of missed
alignments for a given seed length (y axis) and number of errors (x axis). Data is
computed with a uniform distribution of errors across the alignment. Below the y =
200/(x+1) curve (dashed region), we are sure not to miss any alignment. It is interesting
to see that if accepting to miss at most 1% alignments, we can select a much larger
seed that will result in dramatically faster execution. For example with 20 errors a
conservative choice would be a 9-nt long seed, while a 20-nt long seed will only miss
1% alignments with a uniform distribution of errors. In practice, the distribution of
errors is non uniform, resulting in an even lower miss ratio. GASSST includes a model
to automatically selects a good seed length, guaranteeing both fast execution and high
sensitivity, according to the read length and maximum number of errors allowed in the
alignment.

very restrictive, since this bound is attained when errors are equally scattered across
the alignment, which is in practice highly unlikely. We included in GASSST a simple
statistical model estimating a good seed size according to the read length and selected
error rate. For example, for a 200-bp read and 10% errors maximum, a conservative
approach would select a 9-bp long seed (200/21), whereas a statistical study shows that
if the 20 errors are placed randomly in the alignment, a 20-bp long seed will only miss
1% of total alignments. This phenomenon is more pronounced with larger reads, where
the probability of errors being equally scattered is less and less likely. Figure 4.3 shows
the percentage map of 200-bp long alignments missed by a seed of length l (y axis) in
the presence of r errors (x axis).
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4.6.8 Extend

The extend step receives alignments that passed the filter step. It is computed using
a traditional banded Needleman-Wunsch algorithm. Significant alignments are then
printed with their full description. It should be noted that if the filter step provides
good efficiency, no optimization of the extend step is required. Indeed, if most false-
positive alignments have already been ruled out, the extend step should only take a
negligible fraction of the total execution time.

4.6.9 Task parallelism

The parallelization over multiple CPU threads is straight-forward: the loop over differ-
ent queries (line 6 of algorithm 8) is split among the available CPU cores. It is conducted
with the Pthreads API. The only two critical sections of the code needing mutual ex-
clusions are (i) when the main thread gives tasks to worker threads, (ii) when worker
threads write results to the same file. This is not an issue with standard multi-core
platforms but might become a bottleneck with massively multi-core systems.

The indexing part is not parallelized. Thus, it can significantly decrease overall
speedup. It however becomes a negligible part when dealing with huge numbers of
reads.

4.7 Results

GASSST results are evaluated both on simulated and real data, and compared against
four state-of-the-art aligners. Performance and behavior of GASSST filters are also
analyzed in detail.

4.7.1 Implementation

GASSST is implemented in C++ and runs on Linux, and OS X. It benefits from
vector execution units with the use of SSE instructions, and is multi-threaded. It
performs accurate and fast gapped alignments and allows the user to specify the
number of hits given per read (−h option). GASSST outputs either the best align-
ments or all alignments. GASSST is distributed under the CeCILL software license
(http://www.cecill.info). Documentations and source code are freely available from the
following web site: http://www.irisa.fr/symbiose/projects/gassst/.

4.7.2 Evaluated Programs

The performance of GASSST is compared with four other programs: PASS 0.74 [10]
BFAST 0.6.3c [30], BWA 0.5.7 [42] and SSAHA 2.5.2 [60].

PASS indexes the genome and scans reads. It uses a pre-computed Needleman-
Wunsch table to filter alignments before conducting the extension with a dynamic pro-
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gramming algorithm. BFAST is currently one of the most popular tools. It relies on
large spaced-seeds for a fast execution, and on many different indexes for sensitivity.
SSAHA also creates a hash table of the reference genome to store occurences of seeds.
For each read a list of hits is created and sorted, then regions with enough hits are
aligned with a banded SW algorithm.

BWA uses another approach, based on the Burrows-Wheeler Transform, and is prob-
ably one of the fastest aligners to date for alignments with a low error rate. We also
tested the BWA-SW variant intended to work best for longer reads.

The computer used for the tests is an Intel Xeon E5462 with 32 GB RAM running
at 2.8 GHz. Although all programs tested are able to benefit from multi-threaded
computations, we choose to compare performance on a single thread, as it is enough to
assess their respective strong or weak points.

We ran experiments with real data sets to give an indicative behavior. Detailed
program analysis was conducted on simulated data where alignment correctness could
be assessed.

4.7.3 Evaluation on real data

Performance was evaluated on three real datasets of short reads obtained from the NCBI
Short Reads Trace Archive. The three sets contain, respectively, 11.9 million sequences
of 36 bases, 6.8 million sequences of 50 bases and 8.5 million sequences of 76 bases of
accession numbers SRR002320, SRR039633 and SRR017179. They are all aligned with
the whole human genome.

BWA short read aligner was run with default options, BFAST was run with its ten
recommended indexes and default options, GASSST and PASS were set to search for
alignments with at most 10% errors. SSAHA was not initially designed for short reads
and hence only tested with longer reads in section 4.7.4.

We measured the execution time and the percentage of mapped reads having a
mappinq quality greater than or equal to 20. The results are presented in Table 4.1.
For PASS which does not compute mapping quality, we measured percentage of reads
having a unique best alignment.

Evaluation on real data is difficult since true alignment locations are unknown. How-
ever it is possible to compare results of different aligners to estimate accuracy, as it is
done for BWA-SW evaluation in [43]. If an aligner A gives a high mapping quality
to a read and another aligner B finds an alignment at another position for that same
read with an alignment score better or just slightly worse, then A alignment is probably
wrong. A score for each read is computed as the number of matches minus three mul-
tiplied by the number of differences (mismatches and gaps). We say that A alignment
is questionable if the score derived from A minus the score derived from B is less than
20. Since this evaluation method is approximate, a full evaluation was conducted on
simulated data in section 4.7.4.

On short 36bp reads GASSST performance is comparable to BWA. On longer 76 bp
reads both PASS anf BFAST execution time increases a lot. On the other hand, the
GASSST combination of filters still works well for the 76 bp dataset.
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Table 4.1. GASSST evaluation on real data

Read Software Index (s) Align (s) Q20% Q20
length Err rate %

36 bp GASSST 1712 3211 34.5 0.14 %
BFAST 520800 17520 41.8 0.12 %
BWA 5158 3739 35.4 0.17 %
PASS 2312 5072 41.4* -

50 bp GASSST 1719 4090 73.7 0.04 %
BFAST 520800 22799 80.4 0.10 %
BWA 5158 3043 74.5 0.17 %
PASS 2144 5384 79.3* -

76 bp GASSST 1701 8483 81.3 0.04 %
BFAST 520800 161220 85.4 0.28 %
BWA 5158 3101 86.4 0.53 %
PASS 1951 118541 87.7* -

Datasets consisted, respectively, of 11.9, 6.8 and 8.5 millions of
reads of size 36, 50 and 76 bp, of accession numbers SRR002320,
SRR039633 and SRR017179. The three datasets were aligned with
the whole human genome. The time required to compute the
genome index is shown in column 3. For BFAST and BWA, the in-
dex was computed only once and stored on disk. Column 4 shows
the time required in seconds to align reads, running on a single
core of a 2.8 GHz Xeon E4562. Column 5 shows the percentage of
reads with a mapping quality greater than or equal to 20 (Q20).
Last column is the percentage of Q20 alignments that are probably
wrong given the results of other aligners: if a program gives a high
mapping quality to a read and another program finds a different
alignment of similar alignment score for that read, then the first
program is probably wrong. (*) Since PASS does not compute
mapping qualities, fifth column shows for PASS the percentage of
reads with a unique best alignment, and error rate is not computed.

GASSST and PASS currently cannot store the index on disk, yet index computation
time is amortized when working on very large sets of reads. BFAST index time is very
long because it uses ten different indexes and because its hash table relies on a sorted
list of k-mers, however they are computed only once.

4.7.4 Evaluation on simulated data

We simulated twelve datasets containing one million reads each from the entire human
genome, with lengths of 50, 100, 200 and 500 bp and with error rates of 2%, 5% and
10%. The error rate is the probability of each base being an error, twenty percent of
errors are indel errors with indel length l drawn from a geometric distribution of density
0.7 · 0.3l−1. BFAST is run with options −K 8 and −M 1280 with ten indexes. GASSST
was tested in two different configurations, a fast one with option −s 0 and an accurate
one with −s 3, which controls the speed/sensitivity trade-off of the algorithm by setting
a maximum number of occurrences per seed. It is roughly the equivalent of options
−K and −M of BFAST. Other GASSST options such as seed length and maximum
number of allowed errors were tuned accordingly to the different datasets. BWA and
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PASS options were also tuned to allow more mismatches and gaps when necessary, and
BWA-SW was run with default configuration. Finding the most efficient set of options
for each program and each dataset is a lengthy process, so although we did our best
to tune options and provide a fair evaluation, in some cases different options may yield
better performance. The results are presented in Table 4.2. Appendix A.2 gives the
detail of options parameters used.

For each run we reported accuracy, sensitivity and execution time. A read is con-
sidered to be mapped if it has a unique best alignment. A mapped read is considered
correct if it is within 10 bases of the true location. We filtered all alignments that had a
mapping quality less than 20, except for PASS which does not compute mapping qual-
ity. Sensitivity and accuracy are then respectively defined as the percentage of total or
mapped reads that are correct.

The execution time reported does not include index loading or computing phase.
Although this choice penalizes BWA, which is the only one not spending noticeable
time recomputing or reloading indexes, it is relevant since time spent for the index of
the genome is constant and is amortized when dealing with a very large number of reads.

Tests were also conducted with SHRiMP 1.3.1 but not included here since running
times were tens to hundreds of times larger than GASSST, rendering evaluation im-
practical. This corresponds to observations in other studies that had to extrapolate
SHRiMP running time [30].

With a low 2% error rate GASSST performance is comparable to BWA. For example
on short 50 bp reads, GASSST in fast mode obtained 45.8%/99.2% sensitivity/accuracy
in 584 s compared to 48.2%/99.2% in 792 s for BWA. For higher error rates GASSST
becomes better than BWA, for example on the 100 bp reads with 10% error rate GASSST
obtained 43.5%/97.5% sensitivity/accuracy in 3262 s compared to 7.3%/97.9% in 3364 s
for BWA

On datasets simulated with a high 10% error rate, GASSST consistently reports bet-
ter results than other aligners. For example on the 200 bp 10% error data set, GASSST
was the only one able to provide high sensitivity and accuracy within a reasonable
amount of time.

On the 500 bp dataset, experiments are only conducted on GASSST, BWA-SW and
SSAHA2 since other aligners are not designed for this read length. They show that
GASSST still performs very well. For example, on the 2% error rate data set, GASSST
obtained results comparable to BWA-SW. With 10% error rate GASSST is 8 times faster
than SSAHA2 for similar results, whereas BWA-SW accuracy is dropping. BFAST is
efficient on short 50 bp reads only, its execution time increases a lot for longer reads.
The ability to perform well on long reads is important since read lengths are following
an increasing trend.

BWA is efficient only with low error rates, BFAST is efficient only with short reads.
On the contrary, these experiments show that GASSST performs well on a wide range
of configurations, as expected with the design of our series of filters. This versatility is
the strong point of our approach.
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Table 4.2. GASSST evaluation on simulated data

Program Mode Metrics 50bp 100bp 200bp 500bp

2% 5% 10% 2% 5% 10% 2% 5% 10% 2% 5% 10%

GASSST fast Align sec 584 781 1720 794 981 1160 2030 2314 3051 6573 8453 11859
Sensitivity% 45.8 42.8 36.1 54.2 53.3 44.9 58.6 56.3 53.8 61.0 59.8 58.8
Accuracy% 99.2 98.5 93.8 90.5 89.4 86.9 91.9 91.5 89.7 93.0 92.8 91.7

GASSST accurate Align sec 1709 2741 4706 1290 1887 3262 3452 6173 8744 12864 18737 34222
Sensitivity% 46.7 44.6 37.5 51.0 50.3 43.5 53.4 52.8 51.7 57.5 55.7 55.5
Accuracy% 99.8 99.3 93.5 99.7 99.4 97.5 99.9 99.8 99.3 99.9 99.9 99.7

BFAST Align sec 2279 2044 1756 15263 15787 11452 - - - - - -
Sensitivity% 46.5 43.0 32.1 52.7 51.0 48.5 - - - - - -
Accuracy% 98.8 96.1 85.2 99.0 98.7 95.8 - - - - - -

BWA Align sec 792 1392 1572 1862 4941 3364 4660 2145 185 - - -
Sensitivity% 48.2 38.6 16.8 54.8 41.0 7.3 53.3 11.9 0.1 - - -
Accuracy% 99.2 97.4 93.5 99.7 99.0 97.9 99.8 99.6 96.7 - - -

BWA-SW Align sec - - - - - - 4699 3546 2365 13027 9646 7835
Sensitivity% - - - - - - 54.9 50.3 25.2 57.3 56.1 45.4
Accuracy% - - - - - - 99.4 96.9 85.7 99.2 96.8 85.2

SSAHA2 Align sec - - - 27740 41978 45295 22285 27504 65420 179095415252275622
Sensitivity% - - - 45.3 43.5 38.6 53.2 51.4 48.4 59.5 58.8 55.8
Accuracy% - - - 99.8 99.1 95.3 99.8 99.1 96.0 99.8 99.2 95.3

PASS Align sec 2012 2281 5085 14387 26033 30022 103338139436180943- - -
Sensitivity% 50.0 43.8 31.3 51.6 37.5 16.4 49.3 16.6 2.8 - - -
Accuracy% 96.6 93.2 82.4 98.5 94.0 86.8 97.2 93.6 92.4 - - -

Data sets containing one million reads each are simulated from the human genome with different lengths and error rate.
Twenty percent of errors are indel errors with indel length l drawn from a geometric distribution of density 0.7 · 0.3l−1.
The alignment time in seconds only includes the fraction of the total time proportional to the number of reads, i.e,
not the time spent in computing or loading the index of the human genome, running on a single core of a 2.8 GHz
Xeon E4562. Computed alignment coordinates are compared to the true simulated coordinates to find sensitivity and
accuracy. Sensitivity is the percentage of reads correctly mapped, while accuracy is the percentage of mapped reads
that are correctly mapped. A read is considered mapped if it has a unique best alignment. A mapped read is considered
correct if it is within 10 bp of its true coordinates. We filter alignments having a mapping quality less than 20, except
for PASS, which does not give mapping quality.

4.7.5 Filter behavior analysis

We measured the filtering power of the filter combination on the same three datasets
of the section 4.7.3 to validate their efficiency on different configurations. The allowed
similarity rate was set to 90% minimum so the number of allowed errors was 3, 4 and 7,
respectively. Other program options are possible and would result in different behavior,
so the results presented here cannot be generalized and are only intended to provide an
indicative example.

Hits coming from the seed step are pipelined through the filters. At each filter step,
we calculate the filtering percentage of the individual step as well as the cumulative
percentage of hits filtered so far. The Needleman-Wunsch alignment is seen as the last
filter and its result is also included. Table 4.3 shows the results. The first thing that can
be noted is that in all cases the percentage of hits arriving at the Needleman-Wunsch
step is limited to 4.0% of the number of hits generated by the seed phase. This means
that without filters, this step would take at least 25 times longer. In the 36 and 50 bp
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data sets it is less than 1.0%, meaning the NW step would take at least 100 times longer
without filtering.

Secondly, one interesting thing to observe is the number of false positive alignments
that passed the filters and still arrive at the Needleman-Wunsch step. The NW step
filters about 80% of incoming hits, meaning that previous filters have efficiently ruled
out most false-positive alignments - one alignment out of five that enters the NW step is
valid. As expected, on the last dataset (7 allowed errors), the TNW4(4) filter efficiency
is very poor since it can only manage a maximum of 4 errors on each side of the seed. In
the current implementation, this filter is deactivated when the number of errors exceeds
7. The filtering rate can also be presented as a bar plot where the percentage of total
CALs discarded by each filter is drawn, shown in figure 4.6.

Figure 4.4 shows the filtering rate on the nine simulated data sets.

In the case of reads simulated with higher error rates, the program is set to allow
more errors in final alignments. It is very clear that the series of filters behave differently
with different levels of errors. As the error rate is increasing, the first filters TNW4(4),
FD-vec and TNW4(16) gradually filters less and less CALs. They can manage, respec-
tively, a maximum of 4,16 and 16 errors on each side of the seed. On the contrary the
TNW5(full) filter still performs well for any level of errors. For low error levels very few
CALs pass the first filters and reach TNW5(full), hence it discards a low percentage
of total CALs. For high level of errors a lot of CALs pass the first filters and reach
TNW5(full), hence it discards a higher percentage of total CALs.

It is also worth noting the amount of duplicate alignments that are discarded by the
isDuplicate filter. A l-long query string with k differences from a reference sequence
contains at least l + 1 − (k + 1)w substrings of length w in common with the reference
sequence [11]. This is the number of duplicate alignments that are potentially generated
by our algorithm. We indeed observe in Figure 4.4 that the quantity of CALs discarded
by the isDuplicate filter is increasing for larger reads, and decreasing for higher error
rates. On the 500 bp data set with 2% errors and 20 bp long seed, the formula says
each alignment is generated by at least 280 different seeds. It is therefore of the outmost
importance to quickly discards CALs generating duplicate alignments. Figure 4.4 shows
the isDuplicate filter discards nearly 80% of all CALs in this case.

These tests showed that (i) computing short or long reads, with low or high level
of errors is radically different, (ii) our series of filters performs very well on all different
cases, the percentage of total CALs reaching the NW step is in the worst case 10% and
lower that 1% in the best case.

To complete this analysis, we measured the time spent inside each filter. The program
was profiled for a typical execution with the 50bp and 500bp dataset. For each step, the
computation time of a single hit in nano-seconds was measured. Figures are probably
not very accurate, however knowing the order of magnitude is already very interesting.
The results are shown in table 4.4. The General Overhead mostly represents the cost of
line 8 of Algorithm 8, which iterates through hits and loads the associated information.
The TNW4(4) filter takes only 5.8 ns, which represents, as expected, only a few clock
cycles of the processor. We can also verify that the filters are indeed ordered from the
most simple to the most complex.

For all simulated datasets, total execution time of each filter was also measured and
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Table 4.3. Filtering rate on three datasets

Data Set Filter Step Step filter (%) Total filter (%)

36 bp TNW4(4) 54.9 54.9
FD-vec 61.6 82.7
Duplicate 57.9 92.7
TNW4(16) 84.9 98.9
TNW5(full) 32.9 99.3
NW 81.2 99.9

50 bp TNW4(4) 12.1 12.1
FD-vec 57.3 62.4
Duplicate 49.7 81.1
TNW4(16) 84.9 97.7
TNW5(full) 67.7 99.1
NW 86.9 99.9

76 bp TNW4(4) 0.0 0.0
FD-vec 4.2 4.2
Duplicate 75.1 76.1
TNW4(16) 26.6 82.5
TNW5(full) 81.1 96.7
NW 82.2 99.4

The first column gives the % of hits filtered by a given filter.
The second column gives the total % of hits filtered by the
sequence of filters. Reads were aligned with 10 % errors max-
imum, which means a maximum of 3, 4 and 7 errors, gaps or
mismatches, respectively. Figure 4.6 is a bar plot representa-
tion of the second column.

presented in figure 4.5. With low error rates the NW step takes less than 10 % total
time which validates the assessment formulated in section 4.6.8 that we do not need to
be concerned about its optimization. However, with high error rates it still represents
up to 40 % of total time and may thus benefit from further optimization.

The time spent in accessing the index is significantly higher with reads length ≥ 100,
where the seed length selected is ≥ 15. In that case the algorithm switches to a hash
table mechanism instead of direct table lookup, which explains this major difference.
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Table 4.4. GASSST filters execution time

Step 50 bp dataset 500 bp dataset
time for one hit (ns) time for one hit (ns)

General Overhead 13.9 860
TNW4(4) 5.8 -
FD-vec 22.4 24
TNW4(16) 78.5 ≈ 300
TNW5(full) 356.7 ≈ 3000
NW 4486.5 ≈ 135000

Average time taken by each filter step for one hit of 50-bp and 500-
bp query, in nano-seconds. Note that only the times of TNW5(full)
and NW should actually depends on query size since the others only
work on a bounded size subsequence.
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Figure 4.4. Detailed filtering rate of GASSST series of filters on simulated

data sets. Data sets containing one million reads each are simulated from the human
genome with different lengths and error rate. Twenty percent of errors are indel errors
with indel length l drawn from a geometric distribution of density 0.7 · 0.3l−1. The
series of filters is composed in this order of TNW4(4), FD-vec, isDuplicate, TNW4(16),
TNW5(full), NW . The percentage of total Candidate Alignment Locations (CALs)
discarded by each filter is represented as a bar plot. CALs passing all filters are correct
alignments and outputted. It should be noted that the cumulative filtering rate of the
series of filter is very high, most of the time between 95 % and 99%. This is what makes
GASSST efficiency: the costly NW algorithm is computed on a few number of CALs
only.
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Figure 4.5. GASSST algorithm profile on the twelve simulated data sets. The figure
shows the percentage time spent in each part of the algorithm.

4.7.6 Hash table statistics

It is essential to check whether the hash function (used for seeds longer than 14 bp)
effectively scatters seeds well in the hash table. Since collisions are stored in a linked
list in each entry, if the average number of collisions for a seed is N then it takes in the
worst case N steps to find the seed in the index. If N is large overall execution time
can be significantly increased.

In GASSST the hash function is a commonly used function consisting of a combi-
nation of xor, mult and shift on the whole input seed. The result is then truncated to
28 bits. We measured the behavior of the hash function on a 500 Mb partition of the
human genome, and compared it to a simple hash function taking the 28 first bits of
the input seed, such as the one used in BFAST [30]. Since GASSST hash table has 228

entries, the best case result would be to have an average number of 1.86 collisions per
seed.

The results are presented in Table 4.5. The average number of collisions is 2.55, a
satisfying result. With the simple hash function, it is 11.2. In BFAST, this simple hash
function is used with an additional feature: seeds are sorted. It means that locating a



4.7.6 - Hash table statistics 83

Read36  Read50 Read76

Filtering rate

%
 C

A
L
s

0
2
0

4
0

6
0

8
0

1
0
0

TNW4(4)

FD−vec

Duplicate

TNW4(16)

TNW5(full)

NW

Good Alignments

Figure 4.6. Filtering rate on real data sets, consisting, respectively, of 11.9, 6.8 and 8.5
millions of reads of size 36, 50 and 76 bp, of accession numbers SRR002320, SRR039633
and SRR017179. The three datasets were aligned with the whole human genome. The
percentage of total Candidate Alignment Locations (CALs) discarded by each filter is
represented as a bar plot.
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Table 4.5. Hash Table statistics

hash function Collisions Seed 16 Seed 18 Seed 20

standard Average 2.22 2.52 2.55
Maximum 12 13 14

simple Average 4.2 7.5 11.2
Maximum 16 256 3650

Number of collisions in the index hash table with two dif-
ferent hash functions, on a 500MB partition of the human
genome. The simple hash function takes the 14 first nu-
cleotides of the seed, while the standard hash function is a
combination of xor, mult and shift operations on the whole
input seed, then truncated to the 28 first bits.

seed can be done by bisecting the list of collisions. In BFAST, where the whole genome
is usually indexed entirely in one time, sorting seeds seems a sound choice to reduce
lookup access time.

However, with GASSST the genome is usually partitioned in smaller parts, for ex-
ample 500 millions nucleotides. With these relatively small partitions, sorting seeds is
inadequate: since (i) sorting seeds significantly increases indexing time (see indexing
time of the ten indexes of BFAST in table 4.1), (ii) using a good hash function renders
the bisecting procedure useless, as log2(11.2) = 3.5 is still greater than 2.55.

4.8 Discussion

In this chapter, the goal was to find whether GPUs were able to provide new fast algo-
rithms for short sequence alignment. We started from the ORIS algorithm developed
by Lavenier [39], and tried both a GPU approach and a CPU approach. The GPU ap-
proach gave some results, but not satisfactory enough. The CPU approach yielded good
results and lead to the creation of the GASSST program, whose results were published
in the Bioinformatics journal [68].

The evolution of the place of GPU along this work is very interesting. The starting
point was an algorithm with a very high level of parallelism, highly regular and with
good data reuse. Millions of costly instances of Needleman-Wunsch computations were
indeed conducted, with a good temporal locality coming from the ordered index seed
algorithm. That made it a priori a perfect match for a GPU implementation.
Then, from benchmarks to optimizations, we gradually realized it was beneficial to break
the regularity of the code to avoid a lot of computations. For some candidate alignment
locations, it is very easy to see that they will not generate good enough alignments, while
for others it is necessary to conduct a full NW extension to be able to make a decision.
Computation is then no longer regular: the different CALs stop at different levels in the
pipeline of filters, each CAL does not require the same amount of computation. With
a complex series of filters as the one used in GASSST, it appears no longer possible to
implement an efficient GPU code.
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The first reason is that it is not possible to map a thread to a CAL since the com-
putation of different CALs, stopping at different levels of the sequence of filters, is not
in accordance with the SIMD GPU model. The other solution would be to compute
the series of filters level after level. In other words, compute in parallel for every CAL
the first filter, store the list of CALs passing the filter, then compute in parallel the
second filter, and so on. This approach would fit the SIMD model. However, that would
require storing the list of CALs passing each filter, which is highly problematic. Even
if a way was found to conduct it successfully, the overhead cost associated with this
operation—absent in the sequential CPU code—would most probably seriously impact
the overall speedup of such a GPU implementation.
Therefore, it appears nearly impossible to obtain a good speedup with a GPU imple-
mentation of the GASSST algorithm in its current state.

The GPU approach we tried in section 4.5 was working on an algorithm already
halfway between the original regular ORIS algorithm and the final GASSST algorithm
with his complex series of filters, i.e it was already using a filter. On one hand, bench-
marks showed that filtering was essential; on the other hand it is what rendered the
GPU parallelization tricky. This illustrates well the dilemma we faced with the GPU
approach: is it better to parallelize the regular, inefficient algorithm, or try to parallelize
the highly efficient but irregular one ?
The answer here is that both options lead to a dead-end for GPU parallelization, as
(i) parallelizing the regular algorithm is useless, since its speedup compared to the se-
quential efficient and irregular algorithm would be abysmal, (ii) as explained, the GPU
parallelization of the irregular algorithm seems impossible.

To conclude, GPU architecture seems not to be able to provide good speedup for
short sequence alignment, at least not for the seed-and-extend paradigm. On the other
hand, more optimizations are yet possible on the sequential algorithm.

Figure 4.5 shows that the General Overhead, the cost of iterating through hits, can
represent up to a third of the total execution time. This reveals that for the simple
indexing scheme we use, our filtering technique is close to the optimal solution, in
the sense that further improvements of filters would not bring much overall speedup.
However, combining state-of-the-art indexing techniques with our series of filters should
achieve better performance. We could, for example, replace our simple unique contiguous
seed index with spaced seeds or with the multiple indexing technique used by BFAST.
It would reduce the number of hits to explore, probably increasing performance even
further.

Moreover, GASSST currently uses a simple gap and mismatch scoring scheme,
whereas affine gap penalties are sometimes necessary. It could very easily be integrated
in the extend step. Yet if the filter and extend step uses different scoring schemes, filters
will no longer be guaranteed to discard only false-positive alignments. This could be
a problem that needs to be investigated. Another solution would also be to include
affine gap penalties in the filter step. Although apparently problematic for our tiled
NW algorithm, approximate solutions might be designed and should be the focus of
future work.
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Chapter 5

General conclusion

5.1 Contributions

We contributed to two different problems: computation of RNA secondary structures
and short sequence alignments.

For the RNA folding problem presented in chapter 3, we successfully developed a
GPU implementation yielding in the best case more than a 100x speedup compared to
the standard Unafold sequential code. This was made possible by a tiling technique ex-
posing good data locality. We also developed a new tiled and vectorized CPU program
running up to ten times faster than standard Unafold code. Our method was applied
to the computation of suboptimal foldings with Zuker algorithm, for which both GPU
and vectorized CPU programs were developed. We obtained similar speedup compared
to optimal foldings computation. Finally, we also explored the algorithm computing
the partition function. Both GPU and vectorized CPU codes were tried. However,
only the vectorized CPU program gave good results since the GPU available at that
time did not have enough double precision floating point capabilities required for the
partition function computation. The tiling scheme we developed provides a good ex-
ample of what needs to be done to exploit GPU to its full potential. Whereas our first
untiled implementation was bandwidth limited, the tiled algorithm is limited by GPU
peak computational throughput. Similar techniques might be useful for other GPGPU
programs.

In chapter 4, the initial goal was to develop a GPU program performing fast gapped
short sequence alignment. It was a failure, but our work however lead to the development
of an algorithm computing an approximation of the NW algorithm. It allowed us to
develop a new approach to quickly filter candidate alignment locations. It lead to the
development of the GASSST software, a new program to align sequences on a reference
genome. GASSST provides significant advantages compared to other state-of-the-art
aligners: it works well on short and long sequences, with low or high error rates.
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5.2 Discussion

We focused our study on two different problems: RNA folding and sequence alignments.
For the first one, the GPU implementation was successful, whereas it was not for the
second problem. The first issue with the sequence mapping problem for a GPU im-
plementation is that the problem has not reached “maturity”. Many new aligners are
proposed every year, and still many new approaches are probably yet to be discovered.
In that sense the GPU implementation of this problem may have been conducted too
early. Moreover, the new approach we developed is not consistent with the SIMD model.
This is also a reason why the GPU implementation failed.

Those two different problems provided an insightful view of GPU architecture. In
the next sections, we discuss what we learned and conduct our evaluation of GPU usage.

5.2.1 General design rules

It is very difficult to guess if a problem is going to benefit from a GPU implementation or
not. General rules can however be given. First, the problem should contain thousands of
independent tasks. Secondly, their should not be “too much” divergence within a warp.
Then, there should be some data locality to benefit from shared memory, and some way
to coalesce memory accesses. If all these rules are verified, a GPU implementation will
probably yield a good speedup. However, in most cases at least one of these rules is
violated to some degree. It is very difficult to determine a precise boundary, i.e. it is
difficult to define what is “too much” divergence. It is therefore difficult to predict the
outcome of a GPU implementation.

The most important point to obtain an efficient GPU implementation is to find a way
to expose data locality. As explained in Chapter 1, the bandwidth to computational
throughput ratio implies that, in the best case, i.e when memory accesses are fully
coalesced, more than 20 operations need to be performed for each memory load/store in
order to reach peak throughput. Without good data locality, a program will inevitably
be bandwidth limited. Exposing data locality is harder than exposing parallelism. In
many cases, parallelism is natural or requires minor transformations of the code. On
the contrary, locality generally requires to drastically change computation order, and is
a concept more difficult to grasp than parallelism.

5.2.2 GPU evaluation

Development time

The development time required for a GPU implementation is longer than what we
initially expected. The main reason is that there are numerous different possible imple-
mentation options for a GPU program. First, a parallelization scheme has to be chosen.
What will be the task of a single thread? We can have many threads performing small
basic tasks, or fewer threads conducting more complex computation, i.e. fine to large
grain parallelization. Secondly, the GPU kernel parameters: the number of threads per
block, and grid dimensionality. Then, the choice of memory space to use for the different
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data needed by the algorithm: should it be placed in registers, shared memory, constant
memory, texture memory, global memory? Additionally, data packing and layout in
memory also has a crucial impact on memory bandwidth. To make things worse, all
these parameters deeply interact with each other, making the optimization of a GPU
implementation a complex optimization problem with a very large search space. It is
difficult to predict which choice will yield the best performance. Hence, the only way is
often to test and profile many different options. Profiling and tuning a program often
leads to a local optimum of this large search space, and is the reason why most of the
time subsequent optimizations are still possible.

All these optimizations aspects take time to master. Moreover, hardware is con-
stantly evolving and regularly provides additional options. A good implementation for
a given GPU might require modifications to run best on newer generations.

In our opinion, GPU development takes significantly more time than a vectorization
on CPU using SSE instructions, its main competitor. While SIMD on CPU requires
the programmer to explicitly handle vector length and may seem to be a lower level
interaction with the hardware, the “optimization search space” associated and hardware
aspects to master are in our opinion substantially easier than on GPU.

Execution speed

It is possible to claim large 100x speedups with GPU. Our RNA folding implementation
can be more than 100x faster than standard sequential Unafold code. However, when
comparing against well-optimized CPU codes, such speedups are not possible. In a fair
comparison, when using all cores of a CPU and the vector units, the speedup generally
lies in the range 2x-4x, according to a recent study [40]. This is also what we experienced:
our GPU code is only 2x faster than an 8 core system exploiting all cores and vector
units.

This speedup is lower than what we expected initially, but already a good result for
some critical problems. For example it is possible to fit two GTX 295 GPU boards—each
one containing in fact 2 single GPUs—in a computer, totalizing the equivalent power of
64 cores of CPU for our RNA folding implementation.

It is interesting to compare how much of the peak throughput we were able to
harness for both GPU and CPU architectures. Let us consider the O(n3) tiled part
of the RNA folding computation. It uses simple arithmetic operations, min and +.
For those operations, GPU and CPU can theoretically deliver, respectively, a peak 320
GOPS for a GTX 280 and 12 GOPS for one core of a Xeon 3.0 GHz. Our code achieved
90 GOPS on GPU, and 5.4 GOPS on the CPU., i.e. 28% of the peak for GPU and 45%
for CPU. However, as reported by Volkov and Demmel [77] and Lee et al. [40], GPU
performance is only 66% of the peak when operands are in shared memory. This brings
the true GPU peak to 211 GOPS, and our implementation to 43% of this optimum. This
figure is then very close to the percentage we get on the CPU with SIMD instructions.
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Cost

For standard GPUs, the initial cost is low: high end GPUs rarely exceed 500 euros. In
fall 2010, the previous example of two GTX 295 costs around 800 euros total, much
less that what would cost 64 cores of CPU. Tesla versions, designed for reliability, are
however more expensive.

The relevant cost metric is the performance/watt ratio, as it determines the running
cost. Our code running on a Tesla C1060 is approximately 12x faster than a single core
of a quad core Xeon E5450 running at 3.0 Ghz, i.e we would need 3 quad cores to have
same computational power. The Tesla C1060 TDP is 190W, while the quad core Xeon
TDP is 80W. In this case the GPU is therefore 1.26x (80× 3/190) more power efficient.
Again, this is less than our initial expectations, but already interesting in the case of
large scale clusters.

When considering specific sections of the code, the situation is different. When
looking at the tiled O(n3) part alone: GPU performance reaches 90 GOPS while 1 Xeon
core with vectorized code gets 5.4 GOPS. Here, GPU is 1.74x more power efficient than
CPU. The reason is that in this part of the algorithm, we exposed good locality allowing
GPU to make full use of its execution units. In other parts of the code, the GPU is
bandwidth bound and less power efficient, leading to the overall figure of only 1.26x
more power efficient for the whole program.

We are however aware that this crude comparison is partly flawed. It is difficult to
provide a precise comparison with CPUs. CPU and GPU peak power consumptions are
provided by manufacturers. However, in the case of GPU, power consumption is for
the whole board, i.e. including memory and various control logic and transfer units.
On the contrary, for CPU, figures concern the CPU chip only. For a fair comparison,
consumption of CPU motherboard and main memory should be added to some extent,
but difficult to evaluate.

Discussion

For our implementation of RNA folding computation exhibiting good data locality, the
GPU is very efficient. When considering the O(n3) tiled part of the RNA folding com-
putation alone, GPU is 16x faster than one core of a CPU using vectorized instructions,
a very good result. However, exposing good data locality is a difficult task, and not
always possible. Moreover, with newer GPUs the peak computational throughput is
increasing faster than memory bandwidth. As a result, the ratio of operations per mem-
ory transactions required to reach full throughput is increasing, data locality is more
and more important. This means that it is getting more and more difficult to exploit
GPUs to their maximum.

In our opinion, GPU architecture is still interesting for the speedup of bioinfor-
matic problems, although not as much as initially expected. For dynamic programming
problems, our experience with the RNA folding computation showed that it is possible
to obtain good speedup even on complex cases. GPU should be able to yield good
speedup in other dynamic programming algorithms, although it may require substantial
transformations.
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Concerning sequence alignment and more generally sequence analysis, GPU efficiency
is in fact not obvious. The first reason is that most algorithms do not bluntly apply
some computation to every sequence of a data set. Instead, they usually rely on a
data structure to organize data and quickly access sequences of interest. Such data
structures are not well suited for GPUs: most of the time they require pointer-chasing
or random access of the memory, yielding low bandwidth on GPU. Secondly, as is the
case with our software GASSST, some schemes are suitable for task parallelism for a
multi core implementation, but not for a fine grained data-parallelism required for a GPU
implementation. Task parallelism is almost always possible, whereas data parallelism
is in fact not always apparent in sequence analysis. Finally, in many cases getting the
exact result is not necessary, algorithms can afford to make approximations and use
lots of heuristics. Heuristics generally involve breaking the regularity of the algorithm
and introduce conditional branches, which decreases GPU efficiency. For example for
the BLAST algorithm which uses heuristics to speed-up alignment, as far as we know
no efficient GPU implementation has yet been achieved. The most recent attempt has
been made by Vouzis and Sahinidis [78], who report a 3.5x speedup at most. This is
of course not enough to justify the use of GPU. For the Smith Waterman algorithm
which is more regular since it does not use heuristics, GPU performance is better, as
detailed in Chapter 2. However even in that case a well-optimized CPU code using all
cores and vector units may be more interesting to use (Table 2.1). In our opinion, rather
than attempting GPU parallelization, work on sequence analysis should preferably focus
on the development of new efficient algorithms. We believe there remain unexplored
approaches and data structures which could yield significant speedup in this domain.

The lesson we learned is that in many cases, it would be better to start with a
vectorization on CPU associated with task parallelism to use all cores. CPU vector
units provide high computational power, and they are already present in all desktop
computers. In our opinion they can provide enough processing power to many high-
performance problems.

However, because of the convergence between GPU and CPU mentioned in chap-
ter 1, we also believe that a GPU implementation is never done totally in vain. Any
parallelization work conducted will eventually prove to be useful for the ever-increasing
level of parallelism needed to exploit CPU.

Moreover, conducting a GPU implementation provides in our opinion many edu-
cational benefits. First it forces programmers to conduct deep profiling of the code,
generally leading to a high level of understanding of the algorithm. This in turn may
lead to subsequent optimizations and the development of new approaches. Secondly, it
forces programmers to understand well the GPU hardware and identify specific hard-
ware bottlenecks. This knowledge is highly useful to program any high performance
architecture. Finally, it renders in comparison CPU parallelization seem relatively easy.

5.3 Future works

For the RNA folding problem, other tiling schemes might be developed, possibly yielding
better performance. Profiling however showed that further optimizations should focus
on the computation of internal loops representing generally more than 40% of total
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time. Yet, it is unclear how much more performance is still left to exploit and we are
not sure if it is worth the effort, since our current implementation already provides
significant speedup compared to standard Unafold program. Instead, additional work
may be needed to implement more options or to explore other related algorithms, such
as computation of secondary structures including pseudoknots, or more representative
suboptimal foldings.

Concerning GASSST, it would still be possible to tweak filters: there are many fil-
ters combination and parameters yet to explore. It would also be beneficial to include
a more efficient indexing technique, for example with state of the art spaced seed meth-
ods. Then, the program still lacks useful functionalities, like the support of affine gap
penalties, paired-end reads and sequences in ABI color-space format.

For the short sequence mapping problem, there are still many approaches to explore.
Different indexing methods need to be investigated. The use of seeds to generate can-
didate alignment locations is efficient but we believe better schemes are possibles, that
have yet to be discovered.



Appendix A

A.1 Theorem proof

Theorem.The score TNWl(n) is a lower bound of the score of the optimal semi-global
alignment of S1(1, n) and S2(2, n) computed by the Needleman-Wunsch algorithm.

Proof of theorem 1. We make a proof by induction for every n = k · l, with k ∈ N.

• For k = 1, n = l we have TNWl(n) = PSTl(1, 1). By construction PSTl(1, 1) is the
score of the optimal semi-global alignment between S1(1, l) and S2(1, l).

• We suppose the theorem true for k = p.
We now consider the optimal semi-global alignment Aopt between S1(1, (p + 1)l) and
S2(1, (p + 1)l).
It can be divided in two parts P1 and P2:
(P1) the semi global alignment between S1(1, pl) and S2(1, pl), and (P2) the rest of the
alignment.
The number of errors in Aopt is the sum of its errors in P1 and P2. Moreover with Gm

the maximum number of allowed gaps, any alignment, including Aopt, has (1 + 2 · Gm)
possible ways out of P1, i.e. every possible exit point out of P1 in a band corresponding
to the maximum number of gaps allowed.

Equation 4.2 iterates over all these possible ways of constructing Aopt. Variable s
represents the deviation from the diagonal of one possible exit point. For each possibil-
ity it computes the corresponding total score of the alignment as the sum of the scores
in the two parts P1 and P2. It finally takes the minimum of all these (1 + 2 · Gm)
possibilities.

For every given s, we have:

Number of errors in P1 in equation 4.2 is computed as max(s, TNWl((p + 1)l − l)).
As the theorem is true for k = p, TNWl(pl) is a lower bound of the number of errors
in P1. If the alignment Aopt passes through a point s cells away from the diagonal then
the semi-global alignment of S1(1, pl) and S2(1, pl) contains at least s gaps. Therefore
max(s, TNWl((p + 1)l − l)) is a lower bound of the number of errors in P1.
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Number of errors in P2 in equation 4.2 is computed as PSTl(pl + 1, pl + 1 − s). By
definition PSTl(pl + 1, pl + 1 − s) is the optimal semi-global alignment score between
S1(pl +1, (p+1)l) and S2(pl +1− s, (p+1)l− s), i.e. of any alignment either including
the end S1[(p + 1)l] or the end S2[(p + 1)l − s].

Moreover, the semi-global alignment Aopt either includes the end S1[(p + 1)l] or the
end S2[(p + 1)l]. If it includes S1[(p + 1)l] it may finish before or after S2[(p + 1)l − s].

• If Aopt finishes before S2[(p + 1)l − s] then it includes S1[(p + 1)l] and PSTl(pl +
1, pl +1− s) is by PST construction the minimum number of errors of Aopt in P2.

• If Aopt finishes after S2[(p + 1)l − s] then PSTl(pl + 1, pl + 1− s) is the minimum
number of errors of Aopt in P2 minus the number of errors contained in the part
of the Aopt alignment starting at S2[(p + 1)l − s]. It is therefore a lower bound.

Therefore max(s, TNWl((p + 1)l− l)) + PSTl(pl + 1, pl + 1− s) is a lower bound of the
number of errors of Aopt for s fixed. The algorithm then takes the minimum over every
possible s, then TNWl((p+1)l) is a lower bound of the number of errors of the optimal
semi-global alignment between S1(1, (p + 1)l) and S2(1, (p + 1)l).

A.2 Test Parameters

Program Option 50bp 100bp 200bp 500bp

2% 5% 10% 2% 5% 10% 2% 5% 10% 2% 5% 10%

GASSST fast -w 14 14 14 18 18 18 18 18 18 20 20 20
-p 94 90 82 96 91 85 96 92 86 97 93 87
-g 2 3 5 3 5 7 4 7 12 7 14 23
-s 0 0 0 0 0 0 0 0 0 0 0 0

GASSST accurate -w 13 13 13 18 18 18 18 18 18 20 20 20
-p 92 86 78 94 89 81 95 90 83 96 92 86
-g 3 4 6 4 6 9 5 9 13 9 16 26
-s 3 3 3 3 3 3 3 3 3 3 3 3

BWA -n def 5 5 def 7 7 def def def - - -
-o def 2 2 def 4 4 def def def - - -

PASS max_seed_hits 20 20 20 20 20 20 20 20 20 - - -
-pst 11 9 5 8 4 0 4 0 0 - - -
-fid 94 90 82 96 91 85 96 92 86 - - -
-g 2 3 5 3 5 7 4 7 12 - - -

Program parameters. “def” means with default program options.

Parameters set for each program and dataset for experiments on simulated data
corresponding to Table 4. BWA-SW and SSAHA2 were set with default options. Option
-454 was set for SSAHA2 for 100 and 200 bp reads. BFAST was run with its ten



APPENDIX A. 95

recommended indexes, with options -K 8 and -M 1280 for all datasets. PASS was run
with seed 111111101111111 and PST table W7M1m0G0X0.pst



96 Test Parameters





98 Test Parameters



Bibliography

[1] Al-Khatib, R., Abdullah, R., and Rashid, N. (2010). A comparative taxonomy of
parallel algorithms for RNA secondary structure prediction. Evolutionary bioinfor-
matics online, 6, 27.

[2] Allred, J., Coyne, J., Lynch, W., Natoli, V., Grecco, J., and Morrissette, J. (2009).
Smith-Waterman implementation on a FSB-FPGA module using the Intel Accelerator
Abstraction Layer. In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, pages 1–4. IEEE.

[3] Almeida, F., Andonov, R., Gonzalez, D., Moreno, L., Poirriez, V., and Rodriguez,
C. (2002). Optimal tiling for the RNA base pairing problem. In Proceedings of the
fourteenth annual ACM symposium on Parallel algorithms and architectures , page
182. ACM.

[4] Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990). Basic local
alignment search tool. Journal of molecular biology, 215(3), 403–410.

[5] Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., and Lipman,
D. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic acids research, 25(17), 3389.

[6] Arlazarov, V., Dinic, E., Kronrod, M., and Faradzev, I. (1970). On economical
construction of the transitive closure of an oriented graph. In Soviet Math. Dokl ,
volume 11, page 85.

[7] Benedetti, G. and Morosetti, S. (1995). A genetic algorithm to search for optimal
and suboptimal RNA secondary structures. Biophysical Chemistry , 55(3), 253–259.

[8] Bonhoeffer, S., McCaskill, J., Stadler, P., and Schuster, P. (1993). RNA multi-
structure landscapes. European Biophysics Journal , 22(1), 13–24.

[9] Burrows, M. and Wheeler, D. (1994). A block-sorting lossless data compression
algorithm. Digital SRC Research Report .

[10] Campagna, D., Albiero, A., Bilardi, A., Caniato, E., Forcato, C., Manavski, S.,
Vitulo, N., and Valle, G. (2009). PASS: a program to align short sequences. Bioin-
formatics , 25(7), 967.

[11] Cao, X., Li, S., and Tung, A. (2005). Indexing DNA sequences using q-grams. In
Database Systems for Advanced Applications, pages 4–16. Springer.

99



100 BIBLIOGRAPHY

[12] Chow, E., Hunkapiller, T., Peterson, J., and Waterman, M. (1991). Biological infor-
mation signal processor. In Application Specific Array Processors, 1991. Proceedings
of the International Conference on, pages 144–160. IEEE.

[13] Collange, S., Defour, D., and Tisserand, A. (2009). Power Consumption of GPUs
from a Software Perspective. Computational Science–ICCS 2009 , pages 914–923.

[14] Cornu, A., Derrien, S., and Lavenier, D. (2010). Designing efficient FPGA-based
accelerator for genomic sequence alignments with ImpulseC high level synthesis tools.
Technical report, INRIA.

[15] Dirks, R. and Pierce, N. (2003). A partition function algorithm for nucleic acid
secondary structure including pseudoknots. Journal of Computational Chemistry,
24(13), 1664–1677.

[16] Do, C., Woods, D., and Batzoglou, S. (2006). CONTRAfold: RNA secondary
structure prediction without physics-based models. Bioinformatics, 22(14), e90.

[17] Dudoignon, L., Glemet, E., Heus, H., and Raffinot, M. (2002). High similarity se-
quence comparison in clustering large sequence databases. In IEEE Computer Society
Bioinformatics Conference, 2002. Proceedings, pages 228–236.

[18] Fang, X.-Y., Luo, Z.-G., and Wang, Z.-H. (2008). Predicting rna secondary struc-
ture using profile stochastic context-free grammars and phylogenic analysis. J. Com-
put. Sci. Technol., 23(4), 582–589.

[19] Farrar, M. (2007). Striped Smith-Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics, 23(2), 156.

[20] Farrar, M. (2008). Optimizing smith-waterman for the cell broadband engine.

[21] Fekete, M., Hofacker, I., and Stadler, P. (2000). Prediction of RNA base pairing
probabilities on massively parallel computers. Journal of Computational Biology,
7(1-2), 171–182.

[22] Ferragina, P. and Manzini, G. (2000). Opportunistic data structures with applica-
tions. In focs , page 390. Published by the IEEE Computer Society.

[23] Frid, Y. and Gusfield, D. (2010). A simple, practical and complete O-time Algo-
rithm for RNA folding using the Four-Russians Speedup. Algorithms for Molecular
Biology , 5(1), 13.

[24] Gardner, P. and Giegerich, R. (2004). A comprehensive comparison of comparative
RNA structure prediction approaches. BMC bioinformatics, 5(1), 140.

[25] Gotoh, O. (1982). An improved algorithm for matching biological sequences. Jour-
nal of Molecular Biology , 162(3), 705–708.

[26] Guerdoux-Jamet, P. and Lavenier, D. (1997). SAMBA: hardware accelerator for
biological sequence comparison. Bioinformatics, 13(6), 609.



BIBLIOGRAPHY 101

[27] Guibas, L., Kung, H., and Thompson, C. (1979). Direct VLSI implementation of
combinatorial algorithms. In Proceedings of the Caltech Conference on Very Large
Scale Integration: held at the California Institute of Technology, 22-24 January 1979 ,
page 509. Caltech Computer Science Dept.

[28] Hofacker, I., Huynen, M., Stadler, P., and Stolorz, P. (1995). RNA folding on
parallel computers: The minimum free energy structures of complete HIV genomes.
Working Papers .

[29] Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., and
Schuster, P. (1994). Fast folding and comparison of RNA secondary structures.
Monatsh. Chem., 125, 167–188.

[30] Homer, N., Merriman, B., and Nelson, S. F. (2009). Bfast: An alignment tool for
large scale genome resequencing. PLoS ONE , 4(11), e7767.

[31] Intel (2009). Intel 64 and IA32 Architectures Optimization Reference Manual .

[32] Jacob, A., Buhler, J., and Chamberlain, R. (2008). Accelerating Nussinov RNA
secondary structure prediction with systolic arrays on FPGAs. In Application-Specific
Systems, Architectures and Processors, 2008. ASAP 2008. International Conference
on, pages 191–196. IEEE.

[33] Jacob, A., Buhler, J., and Chamberlain, R. (2010). Rapid RNA Folding: Anal-
ysis and Acceleration of the Zuker Recurrence . In Proceedings of the 2010 IEEE
Symposium on Field-Programmable Custom Computing Machines .

[34] Jaubert, S., Mereau, A., Antoniewski, C., and Tagu, D. (2007). MicroRNAs in
Drosophila: the magic wand to enter the Chamber of Secrets? Biochimie, 89(10),
1211–1220.

[35] Jiang, H. and Wong, W. (2008). SeqMap: mapping massive amount of oligonu-
cleotides to the genome. Bioinformatics, 24(20), 2395.

[36] Kahle, J., Day, M., Hofstee, H., Johns, C., Maeurer, T., and Shippy, D. (2010).
Introduction to the Cell multiprocessor. IBM journal of Research and Development ,
49(4.5), 589–604.

[37] Knudsen, B. and Hein, J. (1999). RNA secondary structure prediction using
stochastic context-free grammars and evolutionary history. Bioinformatics, 15(6),
446.

[38] Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. (2009). Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome. Genome
Biology , 10(3), R25.

[39] Lavenier, D. (2008). Ordered index seed algorithm for intensive dna sequence
comparison. In 7TH IEEE INTERNATIONAL WORKSHOP ON HIGH PERFOR-
MANCE COMPUTATIONAL BIOLOGY .

[40] Lee, V., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A., Satish, N.,
Smelyanskiy, M., Chennupaty, S., Hammarlund, P., et al. (2010). Debunking the 100X



102 BIBLIOGRAPHY

GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In
Proceedings of the 37th annual international symposium on Computer architecture,
pages 451–460. ACM.

[41] Legeai, F., Rizk, G., Walsh, T., Edwards, O., Gordon, K., Lavenier, D., Leterme,
N., Mereau, A., Nicolas, J., Tagu, D., et al. (2010). Bioinformatic prediction, deep
sequencing of microRNAs and expression analysis during phenotypic plasticity in the
pea aphid, Acyrthosiphon pisum. BMC genomics, 11(1), 281.

[42] Li, H. and Durbin, R. (2009). Fast and Accurate Short Read Alignment with
Burrows-Wheeler Transform. Bioinformatics.

[43] Li, H. and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics, 26(5), 589.

[44] Li, H., Ruan, J., and Durbin, R. (2008a). Mapping short DNA sequencing reads
and calling variants using mapping quality scores. Genome Research, 18(11), 1851.

[45] Li, I., Shum, W., and Truong, K. (2007). 160-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array(FPGA). BMC bioinfor-
matics , 8(1), 185.

[46] Li, R., Li, Y., Kristiansen, K., and Wang, J. (2008b). SOAP: short oligonucleotide
alignment program. Bioinformatics, 24(5), 713.

[47] Li, R., Yu, C., Li, Y., Lam, T., Yiu, S., Kristiansen, K., and Wang, J. (2009).
SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics.

[48] Liu, W., Schmidt, B., Voss, G., Schroder, A., and Muller-Wittig, W. (2006). Bio-
sequence database scanning on a GPU. In Parallel and Distributed Processing Sym-
posium, 2006. IPDPS 2006. 20th International , page 8. IEEE.

[49] Liu, Y., Maskell, D., and Schmidt, B. (2009). CUDASW++: optimizing Smith-
Waterman sequence database searches for CUDA-enabled graphics processing units.
BMC research notes, 2(1), 73.

[50] Liu, Y., Schmidt, B., and Maskell, D. (2010). CUDASW++ 2. 0: enhanced Smith-
Waterman protein database search on CUDA-enabled GPUs based on SIMT and
virtualized SIMD abstractions. BMC Research Notes, 3(1), 93.

[51] Lopresti, D. (1987). P-NAC: A systolic array for comparing nucleic acid sequences.
Computer , pages 98–99.

[52] Lorenz, W., Ponty, Y., and Clote, P. (2008). Asymptotics of RNA shapes. Journal
of Computational Biology , 15(1), 31–63.

[53] Lyngsø, R., Zuker, M., and Pedersen, C. (1999). Internal loops in RNA secondary
structure prediction. In Proceedings of the third annual international conference on
Computational molecular biology , pages 260–267. ACM.

[54] Ma, B., Tromp, J., and Li, M. (2002). PatternHunter: faster and more sensitive
homology search. Bioinformatics, 18(3), 440.



BIBLIOGRAPHY 103

[55] Manavski, S. and Valle, G. (2008). CUDA compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence alignment. BMC bioinformatics,
9(Suppl 2), S10.

[56] Markham, N. and Zuker, M. (2005). DINAMelt web server for nucleic acid melting
prediction. Nucleic Acids Research, 33, W577–W581.

[57] Mathuriya, A., Bader, D., Heitsch, C., and Harvey, S. (2009). GTfold: a scalable
multicore code for RNA secondary structure prediction. In Proceedings of the 2009
ACM symposium on Applied Computing , pages 981–988. ACM.

[58] McCaskill, J. (1990). The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers, 29(6-7), 1105–1119.

[59] Needleman, S. and Wunsch, C. (1970). A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J. Mol. Biol , 48(3),
443–453.

[60] Ning, Z., Cox, A., and Mullikin, J. (2001). SSAHA: A fast search method for large
DNA databases. Genome Research, 11(10), 1725.

[61] Noé, L. and Kucherov, G. (2005). YASS: enhancing the sensitivity of DNA similarity
search. Nucleic Acids Research, 33(Web Server Issue), W540.

[62] Nussinov, R., Pieczenik, G., Griggs, J., and Kleitman, D. (1978). Algorithms for
loop matchings. SIAM J. Appl. Math, 35(1), 68–82.

[63] NVIDIA (2010). NVIDIA CUDA C Programming Guide 3.1 .

[64] Oliver, T., Schmidt, B., and Maskell, D. (2005). Reconfigurable architectures for
bio-sequence database scanning on FPGAs. Circuits and Systems II: Express Briefs,
IEEE Transactions on, 52(12), 851–855.

[65] Rajopadhye, S. V. (1989). Synthesizing systolic arrays with control signals from
recurrence equations. Distributed Computing , 3, 88–105.

[66] Rivas, E. and Eddy, S. (1999). A dynamic programming algorithm for RNA struc-
ture prediction including pseudoknots1. Journal of Molecular Biology, 285(5), 2053–
2068.

[67] Rizk, G. and Lavenier, D. (2009). GPU accelerated RNA folding algorithm. Com-
putational Science–ICCS 2009 , pages 1004–1013.

[68] Rizk, G. and Lavenier, D. (2010). GASSST: global alignment short sequence search
tool. Bioinformatics, 26(20), 2534–2540.

[69] Rizk, G., Lavenier, D., and Rajopadhye, S. (2010). GPU computing Gems , chapter
GPU accelerated RNA folding algorithm. Addison-Wesley Professional.

[70] Rognes, T. and Seeberg, E. (2000). Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common microprocessors. Bioinfor-
matics , 16(8), 699.



104 BIBLIOGRAPHY

[71] Rumble, S., Lacroute, P., Dalca, A., Fiume, M., Sidow, A., and Brudno, M. (2009).
SHRiMP: Accurate Mapping of Short Color-space Reads. PLoS Computational Biol-
ogy , 5(5).

[72] Saffarian, A., Giraud, M., and Touzet, H. (2009). Paysage d’énergie et structures
localement optimales d’un arn. In Journées Ouvertes Biologie Informatique Mathé-
matiques (JOBIM 2009) (poster). poster.

[73] Schatz, M. (2009). CloudBurst: highly sensitive read mapping with MapReduce.
Bioinformatics, 25(11), 1363.

[74] Smith, T. and Waterman, M. (1981). Identification of common molecular subse-
quences. J. Mol. Bwl , 147, 195–197.

[75] Steger, G., Hofmann, H., Fortsch, J., Gross, H., Randles, J., Sanger, H., and
Riesner, D. (1984). Conformational transitions in viroids and virusoids: comparison
of results from energy minimization algorithm and from experimental data. Journal
of biomolecular structure & dynamics, 2(3), 543.

[76] Szalkowski, A., Ledergerber, C., Krahenbuhl, P., and Dessimoz, C. (2008). Swps3 -
fast multi-threaded vectorized smith-waterman for ibm cell/b.e. and x86/sse2. BMC
Research Notes, 1(1), 107.

[77] Volkov, V. and Demmel, J. (2008). Benchmarking GPUs to tune dense linear
algebra. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages
1–11. IEEE Press.

[78] Vouzis, P. D. and Sahinidis, N. V. (2011). Gpu-blast: using graphics processors to
accelerate protein sequence alignment. Bioinformatics, 27(2), 182–188.

[79] Wendi, W., Peiheng, Z., and Xinchun, L. (2009). Short read DNA fragment an-
choring algorithm. BMC Bioinformatics, 10.

[80] Wirawan, A., Kwoh, C., Hieu, N., and Schmidt, B. (2008). CBESW: Sequence
alignment on the playstation 3. BMC bioinformatics, 9(1), 377.

[81] Wozniak, A. (1997). Using video-oriented instructions to speed up sequence com-
parison. Computer applications in the biosciences: CABIOS , 13(2), 145.

[82] Wuchty, S., Fontana, W., Hofacker, I., and Schuster, P. (1999). Complete subop-
timal folding of RNA and the stability of secondary structures. Biopolymers, 49(2),
145–165.

[83] Zhang, P., Tan, G., and Gao, G. (2007). Implementation of the Smith-Waterman
algorithm on a reconfigurable supercomputing platform. In Proceedings of the 1st
international workshop on High-performance reconfigurable computing technology and
applications: held in conjunction with SC07 , pages 39–48. ACM.

[84] Zuker, M. (1989). On finding all suboptimal foldings of an RNA molecule. Sci-
ence(Washington), 244(4900), 48–48.

[85] Zuker, M. and Stiegler, P. (1981). Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Res , 9(1), 133–148.



BIBLIOGRAPHY 105

[86] Zuker, M., Jaeger, J., and Turner, D. (1991). A comparison of optimal and subopti-
mal RNA secondary structures predicted by free energy minimization with structures
determined by phylogenetic comparison. Nucleic Acids Research, 19(10), 2707.



106 BIBLIOGRAPHY



List of Figures

1.1 GT200 architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Secondary structure of an RNA sequence . . . . . . . . . . . . . . . . . . 22

3.2 Secondary structure of an RNA sequence, arc representation . . . . . . . 23

3.3 Recursion diagrams for interior loops . . . . . . . . . . . . . . . . . . . . 24

3.4 Recursion diagrams for multi-loops . . . . . . . . . . . . . . . . . . . . . 25

3.5 Sequential folding algorithm profile . . . . . . . . . . . . . . . . . . . . . 28

3.6 Data dependency and parallelization scheme . . . . . . . . . . . . . . . . 29

3.7 Reduction split and tiling scheme . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Tesla C1060 speedup against standard Unafold code and vectorized code 37

3.9 Tiled and vectorized CPU implementation profile . . . . . . . . . . . . . 38

3.10 Untiled and tiled folding algorithm GPU profile . . . . . . . . . . . . . . 39

3.11 Execution time on a 9781-nucleotide-long virus sequence for the MFE
computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.12 Recursion diagrams for the suboptimal folding algorithm . . . . . . . . . 43

3.13 Data dependency relationship and parallelization scheme for the subop-
timal folding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.14 Tiling implementation of QM ext computation . . . . . . . . . . . . . . . 45

3.15 Suboptimal folding algorithm GPU speedup . . . . . . . . . . . . . . . . 46

4.1 New Tiled Wunsch-Needleman algorithm . . . . . . . . . . . . . . . . . . 61

4.2 GPU parallelization scheme . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Percentage of missed alignments for different seed lengths . . . . . . . . . 72

4.4 Detailed filtering rate of GASSST series of filters . . . . . . . . . . . . . . 81

4.5 GASSST algorithm profile on twelve simulated data sets . . . . . . . . . 82

4.6 GASSST filtering rate on real data sets . . . . . . . . . . . . . . . . . . . 83

107



108 LIST OF FIGURES



List of Tables

1.1 Instruction Throughput on GPU and CPU . . . . . . . . . . . . . . . . 7

1.2 Maximum theoretical and measured bandwidth . . . . . . . . . . . . . . 7

1.3 Latency table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Smith Waterman performance on various architectures . . . . . . . . . . 20

4.1 GASSST evaluation on real data . . . . . . . . . . . . . . . . . . . . . . 75

4.2 GASSST evaluation on simulated data . . . . . . . . . . . . . . . . . . . 77

4.3 Filtering rate on three datasets . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 GASSST filters execution time . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Hash Table statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

109



110 LIST OF TABLES



List of Algorithms

1 Host code, first implementation . . . . . . . . . . . . . . . . . . . . . . . 29
2 QM kernel, first implementation . . . . . . . . . . . . . . . . . . . . . . . 31
3 Host code, tiled implementation . . . . . . . . . . . . . . . . . . . . . . . 33
4 QM kernel, tiled implementation . . . . . . . . . . . . . . . . . . . . . . . 33
5 CPU vectorized algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6 Zuker sub optimal foldings algorithm . . . . . . . . . . . . . . . . . . . . 43
7 GPU kernel code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8 GASSST main computation loop . . . . . . . . . . . . . . . . . . . . . . 71

111



112 LIST OF ALGORITHMS


