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Abstract

Advanced Driver Assistance Systems (ADAS) can improve road safety by supporting
the driver through warnings in hazardous circumstances or triggering appropriate ac-
tions when facing imminent collision situations (e.g. airbags, emergency brake systems,
etc). In this context, the knowledge of the location and the speed of the surrounding

mobile objects constitute a key information.

Consequently, in this work, we focus on object detection, localization and tracking in
dynamic scenes. Noticing the increasing presence of embedded multi-camera systems
on vehicles and recognizing the effectiveness of lidar automotive systems to detect
obstacles, we investigate stereo vision systems contributions to multi-modal perception

of the environment geometry.

In order to fuse geometrical information between lidar and vision system, we propose a
calibration process which determines the extrinsic parameters between the exterocep-

tive sensors and quantifies the uncertainties of this estimation.

We present a real-time visual odometry method which estimates the vehicle ego-motion

and simplifies dynamic object motion analysis.

Then, the integrity of the lidar-based object detection and tracking is increased by the
means of a visual confirmation method that exploits stereo-vision 3D dense reconstruc-

tion in focused areas.
Finally, a complete full scale automotive system integrating the considered perception
modalities was implemented and tested experimentally in open road situations with an

experimental car.






Résumé

Les systémes d’aide a la conduite peuvent améliorer la sécurité routiere en aidant les
utilisateurs via des avertissements de situations dangereuses ou en déclenchant des
actions appropriées en cas de collision imminente (airbags, freinage d’urgence, etc).
Dans ce cas, la connaissance de la position et de la vitesse des objets mobiles alentours

constitue une information clé.

C’est pourquoi, dans ce travail, nous nous focalisons sur la détection et le suivi d’objets
dans une scéne dynamique. En remarquant que les systemes multi-caméras sont de plus
en plus présents dans les véhicules et en sachant que le lidar est performant pour la
détection d’obstacles, nous nous intéressons a ’apport de la vision stéréoscopique dans

la perception géométrique multimodale de I’environnement.

Afin de fusionner les informations géométriques entre le lidar et le systéme de vision,
nous avons développé un procédé de calibrage qui détermine les parametres extrinseques

et évalue les incertitudes sur ces estimations.

Nous proposons ensuite une méthode d’odométrie visuelle temps-réel permettant d’es-
timer le mouvement propre du véhicule afin de simplifier ’analyse du mouvement des

objets dynamiques.

Dans un second temps, nous montrons comment l'intégrité de la détection et du suivi
des objets par lidar peut étre améliorée en utilisant une méthode de confirmation

visuelle qui procede par reconstruction dense de l’environnement 3D.
Pour finir, le systeme de perception multimodal a été intégré sur une plateforme auto-

mobile, ce qui a permis de tester expérimentalement les différentes approches proposées

dans des situations routiéres en environnement non controlé.
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General Introduction

Right behind almost every research work, no matter the subject, there is always a social
context which motivates it. Hereafter, this thesis gets into one of the actual subjects of
our modern civilization: Intelligent vehicles and safety for driving assistance. In this
huge context, we focus on traffic accidents problem in dynamic and complex urban
environments. So far, vehicle accidental statistics confirm, every year, that human

errors are the main cause of road accidents [SW09].

From above, two major research trends can be highlighted because of their contributions

to address this important issue.

The first one is the development of autonomous cars. This advanced technology would
not only potentially reduce traffic accidents, but also considerably improve the global

energy consumption and the comfort of future passengers.

Researches on self-driving cars have revealed, in the past years, contributions in three
widely known DARPA!-sponsored competitions: Two “Grand Challenges” and a “Ur-
ban Challenge” (see Fig. 1). These competitions have enlarged the scope and boosted
the production of new researches in perception, control and motion planning. These ar-
eas cover probabilistic localization methods, mapping techniques, tracking strategies,
global and local planning and the decision management through behavioral hierar-
chies. The DARPA challenges have demonstrated that embedded robotic systems can,
nowadays, completely operate a passenger car traveling over significant distances and

manage complex situations arising in quasi-urban real conditions.

The introduction of new sensory solutions was also an achievement of the last com-
petition, proving the effectiveness of a high definition lidar in environment perception
tasks. This sensor, namely Velodyne, was embedded in five of the six finalists cars,
providing, in a 120m range, a full 360° horizontal field-of-view (FOV) and a 26.8° ver-
tical FOV sampled in 64 layers. The cost, size and design of this sensor, however,
situate this technology, for the moment, far away from a near feasible passenger car

integration.

! Defense Advanced Research Projects Agency
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(a) Junior: Stanford Racing Team (b) MIG: Freie Universitit Berlin

Figure 1: Ezamples of autonomous vehicles®

The second research trend concerns Advanced Driving Assistance Systems (ADAS). It
stands for the deployment of active car safety systems that can efficiently assist users,
while preserving their pleasure to drive. In contrast to autonomous vehicles, ADAS
functionalities are mainly oriented towards proprio- and extero- perception understand-
ing tasks which support and warn the driver by emitting alarms in presumed dangerous
situations. Imminent harmful situations automatically trigger appropriate actions in
the vehicle actuators (e.g. breaking) or passive systems (e.g. airbags, belt-tensioners,
emergency call), in order to preserve the safety of the vehicle’s occupants and of the

involved road users.

Scene analysis and understanding performed by ADAS functionalities make use of
multiple sensors. Naturally, the use and the interaction of multiple sensing principles
is motivated by the complementarity of the perception means and the advantages of

exploiting redundant information.

Nowadays, automotive manufacturers and suppliers commercialize innovative systems
like Adaptive Cruise Control (ACC), forward collision warning, speed regulation, blind
spot monitoring and lane departure warning. These functionalities are fundamentally
based on the fusion of data provided by wheel speed sensors (WSS), gyroscopes and

two innovative sensor technologies: Radars and cameras.

Since they achieve precise positioning and speed measurements of forward objects,
radars (hyper frequency) are actually the most exploited sensors which are suitable
for assistance tasks in high dynamical environments (e.g. highways) such as ACC and

collision warning.

Cameras are passive sensors which are more and more used in ADAS, like blind spot
monitoring, lane departure warning, speed limit signals and pedestrian recognition.
The large functional spectrum offered by this sensor makes it quite attractive, since it

can replace existing on-board sensors or provide redundancy in safety applications (see
Fig. 2).

2Images from [SKG09] and www.autonomos-labs.de repectively
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>

Auto braking
by City safety

D =2o0°c

X 1000 R/MIN

(a) Volvo City Safety Application (b) Continental Lane Departure (c) Mobileye: Forward collision
based on Vision Warning Assistance warning

Figure 2: Ezamples of Advanced Driver Assistance Systems 3

In academical research, lasers (e.g. lidar) constitute a promising sensor technology
which grants access to accurate measurements of the scene geometry, reliable in poor
weather conditions. This information is crucial for object detection and tracking appli-
cations in dense traffic conditions. Alternatively, multiple camera systems are able to
provide full 3D range measurements at a high rate, registered with dense photometrical
information. This visual scene geometry information is rarely exploited in ADAS. In
this context, the interaction between lidar and cameras seems to be favorable for the

improvement of existing lidar-based multiple target tracking applications.

Accordingly, our research addresses the study of multiple cameras capabilities (here
stereo vision) by exploring their potential contribution to the scene geometry perception
in a multi-sensor object localization and tracking scheme for Intelligent Vehicles. A
possible solution to this issue could be to detect and to track objects based on lidar
measurements only. As lidar measurements are referenced to a mobile platform, the
dynamics of an observed object and its trajectory are complex and rarely suitable to be
linearly approximated. Wheel speed sensors can be used to compensate the vehicle’s
motion, achieving a better localization and tracking of the observed objects with respect

to a fixed reference frame.

In order to enable geometrical data exchanges between a lidar and a vision system, we
firstly deploy, in this thesis project, a new calibration technique. This link is established
through the estimation of the extrinsic parameters and their corresponding confidence

intervals.

In order to determine the real ego-trajectory in space, we also estimate, in real-time, the
accurate 3D motion of the vehicle relying only on stereo images. The proposed method
is then considerably improved through the fusion of wheel speed sensors and yaw-rate

gyrometer measurements. This positioning solution can constitute an alternative to

3Images from www.volvo.com, www.conti-online.com and www.mobileye.com
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the widely spread navigation systems based on GPS? receivers.

Considering that the trust accorded by the driver to an ADAS is extremely important,
we propose a self-assessment function to verify the existence of tracked objects through
visual confirmation. In this way, the integrity of the perceived environment is increased

as false alarms are reduced.

Since the asynchronicity of multi-perception functions in real life conditions is a prob-
lem that has a great impact on the fusion, a synchronization strategy is also proposed
based on the use of predictive filters. This solution preserves the temporal integrity of

the fusion data process.

Finally, the complete multi-modal object localization and tracking system is deployed
and evaluated in real world conditions, using stereo vision to estimate the vehicle’s
motion and to simultaneously confirm the existence of tracked objects. This system
is able to provide a dynamic map containing the kinematic states of the surrounding

objects in the scene.

Outline of the manuscript

This thesis contains a detailed description of the methods, theoretical concepts, experi-
mental observations, results and conclusions of this research. Every chapter constitutes
a small step towards the implementation of a complete multi-modal object localization
and tracking system enhanced by vision. Three major chapters enclose all this work:
Multi-Modal Perception System, Vision-based Odometry and Multi-Modal Object Lo-

calization and Tracking.

Multi-Modal Perception System

As our research is directly related to the considered experimental platform, this chapter
starts by providing a detailed description of the involved perception means. Addition-
ally, a calibration methodology between the lidar and the vision system is proposed.
The obtained results are used as a link, allowing us to merge the geometrical perception
of both sensors in a common reference frame. These results are consequently used in

the further experiments of this research.

Vision-based Odometry

The motion estimation from stereo image sequences requires the knowledge of the
multiple view geometry induced by the image formation process. These theoretical

principles are presented as well as the formal development of the 3D motion estimation

4Global Positioning Systems
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loop. Based on the incremental integration of elementary displacements, this chapter
presents an alternative localization method able to provide the position and the atti-
tude of the vehicle in the 3D space. The last part of this chapter is devoted to the
presentation of a strategy to provide a GPS-like positioning based on the proposed

odometry method.

Multi-Modal Object Localization and Tracking

Herein, the complete multiple target tracking system is detailed. The geometrical scene
information provided by the vision system is integrated in a self-assessment function
which confirms the existence of the tracked objects. This function aims at increas-
ing the integrity of the track hypothesis and to reduce the false alarms issued by the
system. This chapter also addresses the multi-rate information management required
when dealing with asynchronous perception functions. The management of the system

asynchronism ensures the temporal consistency of the fused data.

The document is concluded by a synthesis of the addressed problems, the contributions

and some research perspectives.
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1.1 Introduction

Perception is a complex task in variable and non structured environments, even for
human beings. Naturally, humans can fuse their five senses to infer and solve complex
reasoning tasks. The concept of fusing multiple perception sources to achieve a more
specific inferences has been applied for several years, mainly in robotic applications.
This knowledge and advancements are now applied to “assist” drivers on-board. Since
an Intelligent Vehicle (IV) has to perceive, to monitor and to understand every single
change in its own state and in the surroundings, multiple sensory principles have to be

exploited.

Combining multiple information sources does not only have a complementarity objec-
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tive. Redundancy is also a statistical advantage obtained, for instance, through the

combination of sensors having the same field-of-view.

In this context, this chapter presents, in section 1.2, a detailed description of the
experimental platform considered in this study, its perception capabilities and sensor
technology. Additionally, in-depth details about the geometrical sensor models and
calibration procedure used specifically for lidar and vision sensors are also provided in
section 1.3. The calibration proposed technique is intended to ensure the consistency
and the quality of the merged information and to quantify the uncertainty intervals of

estimated results.

1.2 Sensing capabilities of Carmen

An experimental vehicle belonging to the Heudiasyc Laboratory is used for the imple-
mentation and the validation of the global perception functions in real-life conditions.
The platform is called Carmen and is equipped with a long-range radar, a Velodyne
lidar scanner, GPS receivers, a stereo and a monocular vision system, a multi-layer li-
dar and a CAN-bus! gateway which grants access to embedded sensors used by built-in
ABS? and ESP? functions: Wheel Speed Sensors (WSS) and yaw rate gyroscope.

For computation, Carmen uses a central unit equipped of a single 3.1 GHz Core Duo
Quad processor with 4GB of memory and a RAID*0 of four hard disks providing 2TB
for data logging.

Figure 1.1: Test-bed vehicle

!Controller Area Network

2 Anti-lock Braking System

3Electronic Stability Program
4Redundant Array of Independent Disks
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The multi-sensor system considered in this study is composed of a multi-layer lidar,
cameras rigidly fixed to the vehicle (i.e. monocular and stereo vision systems) and the
WSS-Gyro measurements. The ML lidar is installed at the front of the vehicle in the
bumper section and the cameras are located behind the windshield and on the top of
the vehicle (see Fig. 1.1). This sensor configuration only presents some occlusions to
the camera for short distances with respect to the ML-lidar. Layout representations

of the field-of-view coverage provided by the exteroceptive sensors are illustrated in

Fig. 1.2.

140° ML Lidar FOV
_-=n 200 m range

-

(a) Layout representation of the horizontal perception coverage provided
by the stereo vision system (SVS) and the ML lidar

/
/

______

(b) Layout representation of the vertical perception field-of-view.
The multi-layer divergence of the lidar is exaggerated for clarity.

Figure 1.2: Field-of-view coverage of the experimental vehicle

In the following, detailed information of the considered sensors is presented, addressing

the perception principle, the sensor specifications and their typical automotive appli-

cations.

1.2.1 Multi-layer Lidar

Laser range sensors constitute an interesting active mean for measuring the relative dis-
tance of a remote target. There are three major sensing principles for this measurement

instrument: Triangulation, phase modulation and time-of-flight (TOF).
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Automotive and robotic range finders are usually TOF-based sensors which have been
widely exploited, principally, to accomplish many perception tasks, like mapping and
obstacle detection. The estimation of range distances, in this case, is achieved by
measuring the elapsed flight time of a pulsed light to the target and back. The distance
is then computed as [ = (t ¢)/2, where ¢ is the measured TOF and ¢ the speed of light in
the given medium. Considering that the sensor emits a pulsed light, the measurement

uncertainty is given by Al = (¢ At)/2 where At is the pulse width.

As illustrated in Fig. 1.3, laser range sensors often use a horizontally rotating mirror,
which deflects the laser beam in different angles. This configuration achieves a range

scan measurement of the scene surroundings.

A common advantage of laser range sensors is that they can provide not only range
but also reflectance information. This latter grants meaningful knowledge about the

object surface appearance.

Concerning their drawbacks, two major problems can be listed. First, range sensors are
based on a diffuse light beam reflection assumption. Thus, in case of specular surfaces
(e.g. mirrors, polished metal, water, and so on), the sensor receiver can detect light
beam reflections, which have potentially followed multiple paths. These measurements
entail incorrect or missing range echos. Second, the laser beam spot is subject to
diffraction effects, so it can partially impact two surfaces placed at different distances.
In such a case, the sensor usually reports a spurious range corresponding to the mean
distance of both detected objects.

Motor with

angle encoder .
: Outgoing beam
Rotating mirror

N .,

- Reflected echo
Photo diode

receiver IR-transmitting laser diode

Figure 1.3: Laser range finder internals®

LIDAR technology

LIght Detection And Ranging (LIDAR) is a technology similar to the one presented for

telemeters. In contrast, LIDAR sensors are characterized by the emission of a pulsed

*Image taken from IBEO Alasca XT user manual
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light source with high peak power and a wavelength range which spans from near-UV
(300 nm) to far IR (10 pwm). In addition, the delay and attenuation of the received
echos can be exploited to determine, for instance, if the laser reflection comes from a

water drop, an object or the ground.

Specifications of the lidar sensor

Nowadays, one of the most adapted lidar design for automotive applications is the
Ibeo Alasca XT. Equipped with a rotating mirror and four independent photodiode
receivers, this sensor is able to report 200m range measurements from four different

detection planes also called layers (see Fig. 1.4).

+180°

(a) Ibeo Alasca XT (b) The Ibeo Alasca XT measures ranges in four de-
tection planes (i.e. layer) with different directions

Figure 1.4: Ibeo Alasca XT 6

These four crossed scan layers cover a vertical field-of-view of 3.2° where the inter-layer
divergence corresponds to 0.8°. The advertised light beam divergence is 0.5 mrad which
is equivalent to a 50 cm diameter spot at a 100m range. The multi-layer technology is
intended to ensure object detection in case of vehicle pitch changes (assuming that the

sensor is mounted at the front of the vehicle).

This TOF sensor is also equipped with a multi-target technology allowing the reception
of up to four echoes per transmitted pulse. In this way, the lidar sensor can eliminate,
sometimes, potential artifact reflections arising from a dirty cover or poor weather

conditions (e.g. fog or heavy rain).

The supported scanning frequencies vary from 8 to 40 Hz, but optimized operation is
achieved for rotation frequencies of 12.5 Hz and 25 Hz. The angular resolution of the
sensor is directly related to the scanning period, it can thus be enhanced by increasing

the scan duration, within an eye-safe operating limit. For the specific case of 12.5 and

6Images taken from Ibeo Alasca XT user manual document
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25 Hz scan frequencies, the angular resolution is illustrated in Fig. 1.5, covering a total
horizontal FOV of almost 330°.

Typically, the multi-layer lidar is mounted either at the front (center or left/right
corners) or the rear of the vehicle for applications such as pedestrian and obstacle
detection, lane departure warning and ACC (acronym of Adaptive Cruise Control)
functionalities and autonomous navigation tasks [SF06]. Recently in [MONO09], the ML-
lidar perception capabilities were exploited for a simultaneous ego-motion estimation

and object detection and tracking.

Resolution

12.5 Hz 25 Hz

0.5° 1°
10 20

164° | —164°

Figure 1.5: Ibeo Alasca XT field-of-view and angular resolution ©

1.2.2 Vision system

A vision system is a passive exteroceptive perception mean which grants access to a
huge quantity of photometrical and geometrical information represented on an image.
The existence of this great information source is one of the reasons why the machine
vision field is a vast discipline where different approaches of widespread applications
take advantage of this mean; Robotics is not an exception. As vision systems provides
a large functional spectrum at a relative low cost, car manufactures and suppliers of
the automotive industry have recently focused their attention on it for the development
of Advance Driver Assistance Systems (ADAS).

Sensor imager technology

An image is represented by a bi-dimensional array where each element, called pizel,
takes positive values over a discrete brightness (i.e. irradiance) range (typically 0 to

255). This representation is an abstraction of a rectangular planar photosensitive

"Image taken from Ibeo Alasca XT user manual information document
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sensor, known as the imager. In a gray-scaled image each single photo detector maps
into a pixel value. For the particular case of color imagers, four interlaced single photo
detectors reconstitute a pixel, composed by the three basic components of the visible
spectrum (i.e. red-green-blue). This is done through the use of a color filter, referred

to as the Bayer filter.

The most known sensor technology is the charge-coupled device (CCD) which is a
passive-pixel sensor. The most energy-efficient and cheapest technology, however, is
the CMOS (Complementary Metal-Oxide-Semiconductor) image sensor, in which photo
detectors are coupled with an active amplifier. Contrarily to the CCD, the latter
technology allows the integration of image processing functions which are built-in the
imager chip.

Since images are formed by the total exposition of the photosensitive sensor during
a determined integration time, vision systems are drastically sensible to changing il-
lumination conditions induced principally by the weather or the dynamic content of
the observed scene. To mitigate this drawback, a controlled acquisition method called
rolling shutter, consists in exposing partially and progressively the pixel-sensor, scan-
ning the whole image. Like the laser scanner, this technique can induce spatial and

temporal image aliasing in extreme dynamic conditions.

Imaging sensors

The concepts presented so far, are applicable for a large variety of imaging sensors,
commonly called cameras. The most traditional one is the perspective camera which
is composed of an optical system, focusing the light right on the imager. The study
of the image formation process in the perspective cameras is well known and describes
how observed objects give rise to images. Moreover, computer vision addresses the
inverse problem so as to recover a description of objects in space from images. Such an
object description could be obtained either semantically, like object recognition based

on photometrical information, or geometrically based on the scene structure [BSFCO8].

A perspective camera covers typically a 45° horizontal field-of-view. Some automo-
tive applications, however, require to cover larger blind-zones [HGJDO09]. To this end,
a perspective camera can be modified by the use of a wide-lens, creating a so-called
fish-eye system (i.e. dioptric camera). Fish-eye cameras can cover up to 180° hori-
zontal field-of-view, but radial lens distortions cause a nonlinear pixel mapping of the
image plane. This complexifies image processes in applications like object detection,

recognition and classification.

Another interesting imaging sensor is the catadioptric camera (also called omnidirec-
tional camera). This variant is obtained with a perspective camera and a convex mirror
and its major advantage is the coverage of a hemisphere field-of-view in a single image.

Mobile navigation applications exploit quite well the appropriate information provided
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by this perception mean [SFS09, Mei07]. It is worth mentioning that images obtained
with the use of catadioptric cameras are characterized by a low resolution and a central

blind spot. A sample image of each presented imaging sensor is shown in Fig. 1.6.

Figure 1.6: Perspective, dioptric®and catadioptric®images

The combination of two projective cameras with overlapping field-of-views engenders
a stereo imaging system able to provide full 3D range measurements, registered with
dense photometrical information at a high rate (up to 30 fps). This can not be achieved

by other existing range sensor.

Based on the ideal geometrical configuration illustrated in Fig. 1.7, stereo imaging
systems can triangulate the 3D localization of a point knowing the baseline distance
between the cameras, the projective cameras’ parameters (i.e. focal distance and image
center point) and the location of the observed point in both images. This last require-
ment constitutes the main difficulty to ensure 3D reliable estimates as those provided
by a lidar range sensor. In-depth details about the projective camera model and the

two-view geometry will be provided in further sections.

Figure 1.7: Stereo vision perception '°

8Dioptric image taken from [HGJDO09]
9Catadioptric image taken from [GT05]
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Automotive experiences reported by Dickmanns [Dic07] in the use of stereo vision over
5000 km of fully autonomous driving in normal traffic on German and French freeways
show the viability of this kind of system. Typically installed looking forward close
to the rear-view mirror, vision systems have shown a great potential in applications
such as distance keeping (platooning), lane departure warning, intelligent headlamp
control, emergency brake assistance, obstacle detection and pedestrian and traffic sign

recognition.

Specifications of the monocular and stereo vision system

The considered monocular system is composed of a perspective camera Sony DFW-
VL500 (see Fig. 1.8a). This imaging sensor is configured to deliver 640 x 480 pixel
gray-scaled images acquired with a CCD imager and an integral 12x motorized zoom
lens. This camera is used particularly in camera-lidar calibration tests or just as a

visual reference.

The installed stereo vision system (SVS) is a Videre STH-MDCS-VARX (see Fig. 1.8b)
which provides a wide variable baseline rig set up to 47cm. This system is composed
of two CMOS cameras with 4.5mm lenses and is configured to acquire 320 x 240 pixels
gray-scale images at 30 fps. Equipped with synchronized imagers, this SVS ensures

the exposure of corresponding pixels at exactly the same time.

(a) Perspective CCD camera (b) Videre STH-MDCS-VARX composed of CMOS perspective
Sony DFW-VL500 cameras

Figure 1.8: Monocular and stereo vision systems on-board Carmen

1.3 Geometrical calibration

As said previously, each range sensor (Stereo vision and Lidar) used in our percep-
tion system will provide range information (3D depth points) in its own local frame.

Therefore, if one wants to fuse the geometrical information supplied by each sensor

10Qriginal image source from database of the MOBILE3DTYV project funded by the Europe’s Sev-
enth Framework Programme
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in a cooperative way, one has to estimate the relative pose (misalignment or calibra-
tion) between these two sensors. Different calibration methods have been proposed to
estimate with accuracy, the rigid transformation (6 degrees of freedom corresponding
to a rotation matrix and a translation vector) between a camera and a range sensor.
Zhang et al. [ZP04] have proposed a target-based calibration method between a cam-
era and a single-row laser range finder. This method was considerably improved by
Dupont et al. in [DKF05]. A target-less calibration approach for a 3D laser range
finder has been presented by Scaramuzza et al. in [SHS07]. In the same way, Zhao et
al. in [ZXJ109] define the calibration procedure as a sensor alignment problem using
geometric primitives defined in both perception modalities. Then, the user specifies
which primitives to associate and the process estimates the relative motion between
the sensors. In our case, we focus on the use of a calibration target, since we want to
obtain an automatic calibration procedure with minimal user interaction. The choice
of a suitable multi-modal calibration object is complicated: It has to be easy to detect
by each sensor and its geometrical properties must provide 3-D relevant information
so as to obtain a full 3-D extrinsic calibration. Base on these criteria, we propose
a method which takes advantage of visual information and ML lidar data (i.e. four
layers) by using a circle-based calibration target. Indeed, this kind of target is easy to
detect and projective properties of conics can be used to estimate both internal camera
and pose parameters. The circle-based calibration target is a rigid plane with a printed

black ring where the inner circle describes a plane perforation (see Fig. 1.9).

1.3.1 Principle of the method

|
|
SVs frame : eﬂ camera frame /,
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Figure 1.9: Frames involved in the lidar-camera calibration
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The purpose of the proposed approach is to estimate the rigid body transformation,
denoted € [R, t],, between the ML lidar and one of the SVS frames (here, the left
camera frame) using a shape-constrained calibration target (See Fig. 1.9). Hence, the
composition of the partial transformations between ML lidar - target and left camera
- target corresponds to the direct mapping between the Euclidean spaces of the ML
lidar and the left camera. For this, let M be the circular calibration target frame, C
( C') the left (right) camera frame and £ the lidar frame. Thus, a 3D point p can be
defined in each frame by *p where X can be one of the frames M, £, S, C or C'.

Hereafter, the proposed method is detailed in four major steps which cover the target
pose estimation in the lidar and in the camera frame, the computation of the calibration

parameters and the estimation of accuracy indicators.

1.3.2 Target pose estimation in the lidar sensor frame

This section briefly presents the model adopted for the geometrical perception granted
by the ML lidar. The identification and the localization of the target pose based on

the lidar measurements is then detailed.

Geometrical model of the Lidar

As presented in section 1.2.1, a multi-layer lidar sensor provides 4 crossed-scan-planes.
Each scan-plane has a relative altitude aperture and an azimuthal angle resolution. A
3D laser impact can be defined in the lidar frame £, as: “p = [Cp(w), Py P "
In order to express the location any lidar point with respect to the calibration object
frame (i.e. target frame, M), it is necessary to define a rigid geometric transformation
composed of a rotation and a translation ™ [R,, t] ¢~ Therefore, the corresponding point
of “p in the target frame M, noted Mp, can be obtained by applying the following
rigid transformation:

Mp =M R, “p+Mt, (1.1)

The scan of lidar beams describes the inner perforation border as a 3D circle shape.
A robust circle detection is achieved using of several lidar scans of the target. Then,
outlier data can be filtered using the technique proposed in [DKF05] and applied on
n 4-layer lidar scans of the calibration scene, generating 8 points per pose. Using
the filtered data, points lying in the perforation border of the calibration target are
extracted using a 1-D edge detection. The detected border points are used in a circle
fitting algorithm [GGS94] obtaining in this way the normal “n to the supporting plane

of the circle and its center “c.

Using Eq. 1.1, it is possible to obtain the pose of target frame origin with respect to the
lidar frame by £¢ = —(MRE.M¢,). Taking advantage of this fact, one can perform a
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nonlinear 3D circle fitting problem constrained to a known radius, r, and parametrized

as follows: &, B are the orientation angles of the 3D circle axis vector, En(a 8): with

. . . . LA LA LA LA T
respect to y-axis and z-axis respectively (See Fig. 1.9) and “¢ = [ C@)s “Cy), c(z)} are
the Cartesian coordinates of the estimated 3D circle center coincident with the target
frame origin. As proposed in [Sha98|, it is possible to estimate the normal vector
Cn(& 8) and the circle center “¢& using a non linear minimization over the following

geometrical criterion:

e = YA+ B (1.2)

with
A = En(d,ﬁ)'<ﬁpi ~£¢) (1.3)
By = |Ingag) % (“pi—5¢) | v (1.4)

where the dot and cross product operators are denoted respectively (-) and (x), and:

— A, corresponds to the Euclidean distance between a target-contour ML lidar
impact, “p;, and the 3D plane defined by Ln(d 8) and the estimated circle center,
LA

C.
— B, represents the Euclidean distance between a target-contour ML lidar point,

£p;, and the 3D circle axis defined by En(éY 8) and the estimated circle center, £¢.

Accordingly, the criterion in Eq. 1.2 is minimized making use of the Levenberg-Marquardt
algorithm (LM-algorithm) [Mar63]. After convergence of the non linear minimization
algorithm and by applying this technique to various poses of the calibration target, we

L

obtain not only a first set of 3D laser features (i.e. circle centers, ¢, and normal plane

vectors, £n) but also a 3D circle reconstruction in the ML lidar frame for every pose.

1.3.3 Target pose estimation in the vision sensor frame

In contrast to the lidar case, a camera is a passive sensor. As stated before, its percep-
tion principle relies on the convergence of the light onto its imager. This study consider
the image formation process through an ideal pinhole camera model. In the sequel the
ideal perspective projection concepts are provided and a strategy to estimate the target

pose in space by the means of two imaged concentric circles is proposed.

Model of the vision Sensor

Let Mp = [X, Y, Z]T be a 3D point in the target frame M and x = [u, v, 1]7 the 2D

homogeneous coordinates of its projection in the image of the left camera frame C (see
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Fig. 1.10). The relationship between p and x is expressed as a perspective projection
equation [HZ03],

We use the notation ~ to denote an equality up to a scale factor. The matrix K is an

upper triangular matrix called the intrinsic matrix [HZ03]:

fﬂc S U
K=[0 f, u (1.6)
0 0 1

The parameters f,, f,, uo and v are known as the intrinsic parameters (assuming zero
skew) and represent respectively the focal lengths in the x and y directions, and the
coordinates of the principal point. ‘R and “t are respectively the rotation matrix

and the translation vector between the frames M and C.

* image plane: imager abstraction
(%

X

"

brightness yalue
P g

i\

image plane

pixel coordinates

Figure 1.10: Frontal pinhole model of image formation

It is important to notice that prior to the intrinsic calibration, the lens distortions (es-
pecially radial distortion) have to be removed. Let (u, v) be the ideal (distortion-free)
pixel image coordinates, which are obtained using Eq. 1.5, and (u, 0) the corresponding

real observed image coordinates.

u+ (u—ug) (ky.r? + ko.r?)
v+ (v —wvg) (ky.r% + ko.rt)

¢

(1.7)

o{¢
|

2 2
where k; and ks, are the coefficients of the radial distortion, and 7% = (%) + (”}ZO)

The proposed circle-based calibration target is composed by two concentric circles.
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Projective properties of conics make them suitable for camera calibration [KGKO05,
FC02, KOO04]. Tt is therefore possible to infer metric properties about the camera (in-
trinsic parameters) and the scene (3D calibration target position) from the perspective
projections of circular features.

Let define a reference plane in frame M with equation MZ = 0. The equation 1.5

becomes

x ~K[rra t] Mp ~HMp (1.8)

where Mp = [X, Y, 1]* and ry, ry are the first two columns of R. The equation of a

3D circle of radius r centered at the origin of the frame M can be defined as:

10 0
0, Q=]01 0 (1.9)
00

<
o)

N

o

<
g
Il

2

Using Eq. 1.8, the perspective projection of the circle Q gives a conic C which is
defined by

x'Cx=0, C~HTQH™" (1.10)

As stated in [Zha00], the Imaged Circular Points (ICPs), which are the projections of
the Circular Points (common to all circles including the projective invariant known as
the Absolute Conic) are in the form of e = hy + thy where h; and hy are the first
two columns of the world-to-image homography H.

Thanks to [Tri97], the Image of the Absolute Conic (IAC), denoted w, encodes the

intrinsic properties of the camera and is defined by

1 0 —Ug
72 72

w~KTKT =] 0 5 7 (1.11)
2 2

7 O gt atl

As stated in [KGKO05], all intrinsic calibration parameters can be obtained first by com-
puting the image of the absolute conic (IAC) with precision from the imaged circular
points using at least three images of two concentric circles under different orientations.
By using the method exposed in [KGKO05| the intrinsic camera parameters denoted in

1.6 can be estimated.

If each ICP lies on the TAC, the following constraint is enforced:

er’wer ~ 0 (1.12)

which can be rewritten as
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thth =

1.13
thWhl — hzTu}hz = ( )

Each view of the target gives two equations which are linear in the upper diagonal
elements of the IAC [HZ03]. Providing that K is constant, three views are necessary
to obtain a solution. As presented in [KGKO05], one ICP (and therefore its complex
conjugate) can be recovered from one view of a pair of projected concentric circles

{Cy, Cs} computing the rank-2 matrix Aj:

Ay = B,C7t — C5t ~ Hdiag(0, 0, 1) HY (1.14)

Then the ICPs are recovered in the form of \/sju; £ i,/souz, where u; and uy are
the first two columns of U resulting from the SVD (Single Value Decomposition) of
A, = Udiag(si, s2,0)UT with UUT = I. The determination of K, is performed by
estimating the TAC, w, as the locus of all ICPs, through a linear formulation of the
problem (Eq. 1.13). Finally, a Cholesky factorization of the IAC gives the matrix K.
Thus far, all intrinsic parameters in Eq. 1.6 have been estimated. The next stage is

now to obtain the relative transformation between the target and the camera frames.

As stated earlier, the considered target consists in two concentric circles Q; (of radius
r1) and Qs (of radius r3). Those circles are projected on the image as conic curves Cyq
(exterior) and C, (interior) (see Eq. 1.10). Both circles can be detected in the image
using segmentation methods widely explained in [KO04, XJ02].

Now, let be C, a generic conic obtained by the perspective projection of a 3D circle,

Alfe/ 1) B/2 DJ2f,
C=| B/2 Cf./f,) E/2f (1.15)
Dj2f,  Ef2fe F/(fofy)

where A, B, C, D, E and F are the scalar conic parameters obtained using an ellipse
fitting algorithm [GGS94]. In order to remove the scale indeterminacy, the conics Cy
and Cy are normalized to det C = —1. Extending the concept presented in [KO04],

the normal vector to the target plane is given by:

CUc/fz
ng = Cy yc/fy (1'16>
1

c

where x. and y,. are the pixel coordinates of the projected circle center. Finally, the

c

center of circle Q; in the camera frame, “co is computed as in [KO04]:

C _ \/F'rl (xc/f:m yc/fya 1)T

1.17
o Cno (xc/fm yc/fy> 1)T ( )
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where A is the smallest positive eigenvalue of Q; and r is the radius of the correspond-
ing circle. The variables “ng and “cq represents an algebraic closed-form solution of the
camera pose estimation which could be very sensible to noise conditions but usually a
very good first estimation as shown in Fig. 1.11. Therefore, an accurate camera pose
estimation is obtained by minimizing the conic parameters error obtained between the

3D circle image projection and the edged image of the conic:

f(°n,

“c[) = min (e) (1.18)

where € is the conic parameter error function:

€ =

efc—ire;—l—e?w—l—e?n—i—egH (1.19)

where e, €2, e3,, e, and e are the errors of the ellipse center, the major axis, the minor

axis and orientation angle respectively. It is worth to mention that the number of the
nonlinear minimization parameters is reduced (i.e. 4 DOF) by taking into account the

direction of the translation vector, “c (see Fig. 1.11). This vector is obtained by

Te
Cc=K'| (1.20)
1

Ground truth

Directionof the translation vector.

1

L-Algebraic
solution

Figure 1.11: Ezample of the camera pose estimation under an image noise of 3 pizels

1.3.4 Lidar to Camera Transformation Estimation

A well-known closed-form solution for this problem is the method developed by [AHB87].
This method consists in obtaining the optimal rotation from the Singular Value De-
composition (SVD) of the correlation matrix of the centered point sets represented by
>
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2= [ -te  [¢-Ce =usv” (1.21)

3xn nx3

L

where n is the number of poses, ~¢; are the estimated coordinates of the 3D circle

center from the " pose of lidar measurements. “€ is the centroid of the 3D-circle

e, are the coordinates of the 3D-circle center point

center point set in the lidar frame,
set estimated from the " pose of camera measurements and €€ is the centroid of the
3D-circle center point set in the camera frame. Therefore, the 3 x 3 optimal rotation

matrix is obtained as follows:

‘Ro, = VU” (1.22)

where the subscript (0) denotes that it constitutes an initial estimation. The translation
vector Ct(), £ is obtained as the vector which aligns the centroid of the 3D-circle center

point set in the camera frame, “€, and the rotated centroid ‘Rg .fe:
“tor =C TRy, C (1.23)

Non-linear solution

The rigid transformation obtained in the above section,® [Ro, to], is a linear minimiza-
tion of the Euclidean distance error between the 3D circle center point sets. This
solution is usually a good starting guess of the extrinsic calibration. Therefore, in the
aim of refining these estimated parameters, we first generate the 3D circles of the n
poses estimated by the camera. It consists in computing m points of every estimated
circle pose by using the 3D circle center and an orthonormal base lying in circle’s plane.
This orthonormal base is obtained from the normal vector to the circle’s plane apply-
ing the Gram-Schmidt procedure [GvL96]. Let be ¢p;, the k™ generated 3D point
using the camera estimation of the i*” pose. Secondly, the 3D circles of all the poses
estimated by the lidar (section 1.3.2) are generated in the same way as presented for
the camera estimations obtaining “p; ;. Then, the first guess is systematically applied
for the rigid transformation, ¢ [Ryg, to] . to get the points in the camera frame. Thirdly,
under the assumption that the error orientation of the first guess rigid transformation
is lower than m/2, we match the 3D points of the camera and lidar transformed es-
timations for every pose by using the nearest neighbor criterion as illustrated in Fig.
1.12. At this point, it is worth to mention that we have a 3D point set of camera and
lidar observations associated. Finally, the refining of the rigid transformation param-
eters, [¢, B, &, ts, t,, t.]* is obtained by minimizing the following non-linear objective

function: .

€= Z i W.D3, (1.24)

=1 k=1
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with

Dy, = HCPz,k — R (o, 8,0) “Pisk = b taty. 1) (1.25)

where Dy, represents the Euclidean distance residual of the points after applying the
rigid transformation and W is a weighting matrix. The results are obtained by using
a robust M-estimator algorithm for calculating the robust weights as stated in [Ste99]
and the LM-algorithm. After convergence, the solution of the calibration problem is

represented by € [R, t] .

4.6

Figure 1.12: Matching camera and lidar target pose estimations

1.3.5 Calibration Accuracy Estimation

Thus far, we have estimated the rigid transformation between the camera and the ML
lidar frame. The accuracy of the calibration results is estimated under the assumption
that measurement errors are normally distributed. Therefore, the covariance matrix of

the estimated parameters, C,, is defined as follows :

C,=MSE.JJ" (1.26)

with MSE = ﬁ 39, €2 J represents the Jacobian matrix of the last LM-algorithm
iteration and M SFE represents the mean squared error defined by €, the number of
observations, ¢, the number of estimated parameters and € the residual of the non-
linear objective function. In our case, ¢ is equal to 6 (3 rotations and 3 translations)
and 6 — ¢ represents the degree of freedom of the x? distribution. Based in the above
classical approach for the covariance matrix of the non-linear fitted parameters, the
width of the 95% confidence interval is obtained thanks to [Lup93]:

501 - 1/MX2(95%’§0). Ccr (l, Z) (127)

where /C, (i, i) is the standard deviation of the estimated parameter and M the
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corresponding value of the y? distribution function.

1.3.6 Calibration Algorithm

Algorithm 1.3.1 Circle-based Lidar-Vision sensors Calibration Algorithm

Input: - Images of the circular pattern (for at least n = 6 poses)

- 3D range points of the circular pattern from lidar (for at least n = 6 poses)
Output: ¢ [R, t],

for i=1 don

» Estimate the i*" lidar calibration pose, [En, ﬁé] , as stated in section 1.3.2.
1

: end for

1:
2
3: » Estimate the i*" camera calibration pose, {Cn, Cé] , as stated in section 1.3.3.
4
5: » Compute a first guess, € [Rg, to] ¢ for the lidar-camera rigid transformation using the
linear solution (section 1.3.4)
repeat
» Non-linear minimization using LM-algorithm according to the criterion Eq. 1.24

» Robust noise variance estimation o2 based in non-linear minimization residuals

» Weighting matrix W update
10: until convergence of ¢ [R, t],

1.4 Results

Experiments were carried out in simulated and in real conditions. Five simulations
trials are reported hereafter, where the accuracy and consistency of the proposed cali-
bration routine are respectively quantified and verified. Trials in real conditions using
to different imaging sensors were performed achieving accurate results, crucial in fur-

ther multi-modal experiments addressed in this study.

The calibration routine was implemented with MATLAB, since the procedure is an

offline process which does not have real-time execution constraints.

1.4.1 Simulation Trials

Considering similar conditions to our multi-sensor system embedded, the simulation

model correspond to the sensor relative position on board the vehicle.

The extrinsic parameters were set up to a constant translation vector in meters ‘t, =
[—0.2, 0.8, 1.8]T and an orientation matrix “Rg (4, 5,4), computed from the rotation
angles ¢ = 11°, § = —1° and ¢ = 0.5° respectively in the X, Y and Z axis.

The ML lidar impacts were generated as the intersection of the lidar beam emission

vectors and the simulated calibration target plane. A 3D space constraint was used
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to ensure that all lidar layers scan the calibration object. A Gaussian white noise was

added in the direction of the lidar beam emission simulating range measurement errors.

Based on the model stated in Eq. 1.5, a synthetic image was generated through a
discrete image projection of the circle-based calibration target. The intrinsic param-
eters used in the camera model were a focal length in x direction f,, a focal length
in y direction f, and principal point (ug, vp). Their numerical values were modified
accordingly to the simulations test. A Gaussian white noise was added as well to the
projected coordinates of the circle-based calibration target onto the image plane and

to the intrinsic parameters of camera model.

Test No. 1: Influence of the number of poses

A first Monte Carlo-like simulation test was made in order to estimate the precision
achieved by the proposed method using a minimal number of poses (worst case). To this
end, six random poses were distributed and oriented randomly in the common field-of-
view of the multi-sensor system by 100 trials. The noise added to the image coordinates
and the focal lengths was fixed to a standard deviation of one pixel. Here, the intrinsic
camera parameters were constrained to a unitary aspect ratio (i.e. f, = f, = 1670)

and a principal point at the image center.

At each trial, the extrinsic parameters were estimated. The results obtained are pre-
sented in Table 1.1. Six poses seems to be not enough accurate considering that the
obtained calibration results lead to a unacceptable image projection errors of objects
located at the advertised range of the ML lidar (200m). Thus, a complementary test

was performed in order to observed the error evolution as the number of poses changes.

] Results of the Test No. 1 (Using only 6 poses) \
’ Relative Position error (millimeters) ‘ 46.1059 ‘

’ Relative Orientation error (degrees) \ 3.4362 ‘
’ Iterations \ 401 ‘

Table 1.1: Achieved precision under a minimal number of poses

As shown in Fig. 1.13, a considerable improvement is obtained as the number of poses
increases. One can conclude that the use of seven to nine poses for calibration gives a

good trade-off between accuracy and the number of poses to be acquired.
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Figure 1.13: Euxtrinsic calibration parameter error behavior by poses

Test No. 2: Influence of image noise

In order for the error behavior of the method to be evaluated with respect to an image
noise variation, a second simulation test was performed. In a similar way to the first
simulation test, a hundred trials using seven poses were generated for each level of
the image noise. The Gaussian white noise added spans between one to three pixels
of standard deviation. Aiming at comparing the results obtained by the robust non-
linear minimization of the 3D poses, we have also executed an Iterative Closest Point
algorithm [BM92] as a reference of a classical registration of 3-D point sets. The results
given in Fig. 1.14 evidences that the proposed robust registration scheme performs quite

well and much better than the classical one.
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Figure 1.14: Extrinsic calibration errors regarding different image noise levels

Test No. 3: Consistency test

The consistency of the estimated calibration accuracy, presented in section 1.3.5, is
crucial for the error propagation and the uncertainty quantification when fusing lidar

and vision data. As the estimated intervals ensure that the solution is included accord-



40

Chapter 1: Multi-Modal Perception System

ingly to a given probability (e.g. 420 for a 95% confidence), a consistency test was
performed to verify this fact. To this end, the estimations of the rigid transformations
and the confidence intervals using 7 poses in the calibration process were plotted over

a hundred trials.

Fig. 1.15 illustrates as example the consistency test of the orientation angle parameter
in the y-axis of the lidar frame (i.e. pitch vehicle angle) previously denoted 3. A
comparison of the results obtained through the Iterative Closest Point registration is
shown as well. In the figure, the estimates were centered so as the ground truth value

is the x plot axis.
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Figure 1.15: Consistency test for 5 at 20

One can notice that the robust non linear algorithm improves significantly the results
and it has a good statistical efficiency but its convergence is not guaranteed as observed
at the 537, 69" and 88" trials.

Test No. 4: Influence of the projection camera model

Focusing now on the behavior of the extrinsic calibration method with regard to the
projection camera model parameters, a new Monte Carlo-like test was performed with
fifty trials each. In this test, seven random poses were used and a Gaussian-white
noise which spans between one to three pixels of standard deviation was added to the
image coordinates. The projection camera model used during the calibration process
was constrained to a unitary aspect ratio (i.e. f, = f,), on the contrary the simulated

model was not.
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Figure 1.16: Absolute errors using camera model with unitary aspect ratio: Translational
(mm); Orientation (degrees)

For every trial, the extrinsic parameters were estimated and the mean error of the fifty
trials was computed. The results obtained by the robust non-linear minimization of
the 3D poses are presented in Fig. 1.16. It can be noticed that even if the calibration
parameters error is not negligible, it provides much better results than those obtained

with the classical registration method.

A second test was performed taking into account the same conditions but now the
camera model was unconstrained to a non-unitary aspect ratio. This test let us to
estimate the influence of the camera model over the absolute error of the extrinsic
calibration parameters. Fig. 1.17 illustrates an important improvement by using an

unconstrained camera model.
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Figure 1.17: Absolute errors using unconstrained camera model: Translational (mm); Ori-
entation (degrees)

The results of this last test reveal that the intrinsic parameters have an important
influence over the extrinsic parameters. It is worth recalling that the extrinsic cali-
bration method is based only on the minimization of the Euclidean error between the
lidar and the camera perception. Therefore, errors in the intrinsic parameters will be

compensated by the extrinsic ones so as to reduce this bias.
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1.4.2 Real Experiments

The evaluation of the calibration method in real conditions was achieved between a
ML lidar and two different vision systems: Monocular and stereo vision. In the sequel,
the experimental condition details and the results for both considered configurations

are reported.

Experiment using monocular vision

In this experiment an IBEO Alasca XT and a camera Sony DFW-VL500 were employed
(see Fig. 1.18). The resolution of the camera was set to 640 x 480 pixels. We have used a
calibration target with two concentric circles of radii 33cm and 23cm. The camera focal
distances f, and f, have been estimated by using the circle-based calibration target.
However, the principal point was estimated by using the classical Zhang’s method
[Zha00] due aux some instabilities observed under these experimental conditions (i.e.

the important distance of the calibration target with respect to the camera).

A number of twenty scans were taken into account for each pose in the calibration
process. Only 7 poses were used to estimate the initial guess solution for the rigid

transformation.

Figure 1.18: FExperimental platform indicating the relative locations of the sensors

Considering a unitary aspect ratio in the projection camera model, the extrinsic pa-
rameters were firstly estimated. By using this rigid transformation, a projection of the

multi-layer measurements onto the scene image was achieved (see Fig. 1.19).

In a second trial, we used an unconstrained aspect ratio camera model and recomputed

the corresponding extrinsic parameters.
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(a) Results using an unconstrained aspect ratio (b) Results using a unitary aspect ratio camera
camera model model

Figure 1.19: Projection image of lidar data using the extrinsic calibration method

The image projection of the lidar data reveals that the error induced by the assumption
of unitary aspect ratio in the projective camera model are almost imperceptible. In
the Table 1.2, however, one can notice that the assumption provides an estimate of the
relative sensors position which is biased. It was already noticeable by the increase in

the absolute error in the previous simulations.

\ Results of the Test using Real Data \

Translation | Two Focal Lengths | Confidence | One Focal Length | Confidence Measured
Camera Model Interval Camera Model Interval
te -0.1651 m +0.0491 -0.3331 m +0.0647 -0.2 m
ty 0.9208 m +0.1176 0.9246 m +0.0648 0.88 m
t, 1.8466 m +0.0116 1.8027 m +0.0087 1.82 m
Rot. angles
R,=¢ 1.5370 rad +0.0296 1.5428 rad +0.0156 n.a.
R,=p -0.0455 rad +0.0118 -0.0505 rad +0.0149 n.a.
R, =% 1.6075 rad +0.0466 1.6296 rad +0.0261 n.a.

Table 1.2: Results achieved with real data

So as to provide additional evidence of the performance of our proposed approach,
some snapshots acquired while driving, of the lidar data projected onto images, are
illustrated in Fig. 1.20.

Experiment using stereo vision

In the ML lidar-stereo vision calibration trial, eight different target poses were acquired.
Each pose was composed of twenty lidar scans and the corresponding target image of the
left camera of the stereo rig. The stereo vision system was previously calibrated using
a classical plane-based method [Zha00], hence their intrinsic parameters are estimated

as well as the extrinsic ones between both cameras.
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(a) The correctness of the calibration parame- (b) Fven if the camera and the lidar data is re-
ters can be assessed in the geometrical coherence ceived asynchronously, their slight temporal off-
with the observed scene as shown in the detected set is almost imperceptible in dynamic objects as
parked vehicles. observed in the figure.

(¢) Lidar impacts of objects located in a long
range are projected correctly.

Figure 1.20: Image re-projection of multi-layer lidar data in dynamic scenes

Then, the rigid transformation between the ML lidar and the left camera was computed
and their corresponding intervals of confidence were estimated. The obtained relative
orientation and position of the sensors are presented as an Euler vector in radians and

a translation in meters respectively:

T
[0 Bw]T = [ 0.0874 £ 0.0330 —0.0327 £ 0.0327 0.0114 % 0.0580 ]

T
[to tyt.]" = [ 0.3427 £ 0.0953 1.0788 + 0.1055 2.5763 & 0.0236 ]

Rotation parameters, [¢, [, zp]T, are then converted into a quaternion formalizing the
extrinsic parameters to the form € [q, t] £~ One can applied this transformation to the
lidar point coordinates and then project them onto the left image. In order to project
lidar scan points onto the right image, the lidar point coordinates in the left camera
frame have to be transformed to the right camera one using the extrinsics of the stereo

rig. Fig. 1.21 illustrates the resulting lidar data projection onto the stereo images.
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Figure 1.21: ML Lidar data re-projection onto stereo images

1.5 Conclusion

A new extrinsic calibration method for a common sensor configuration in vehicle ap-
plications has been proposed. By using a circle-based calibration target, extrinsic
calibration and intrinsic camera calibration can be effectuated simultaneously. The
results obtained in real data tests illustrate an appropriate and accurate projection of
the lidar data. The estimation of the confidence intervals in the calibration method
allows taking into account the error propagation in data sensor fusion applications.
The integration of a full projection camera model can improve the calibration method.

It constitutes a perspective of this research.






Chapter 2

Vision-based Odometry

Contents
2.1 Imtroduction . ... ... ....... .. . . .. 47
2.2 Features Extraction . . ... ... ... ... .. ..., 49
2.3 PFeature Tracking . . . . ... ... ... ... 56
2.3.1 Aperture problem . . . . ... ... 58
2.3.2 Variants of the feature tracking . . . . . . ... ... ... .. 59
2.4 Multiple View Geometry Constraints . . .. ... ... .. 60
2.4.1 Two-view geometry . . . . . . . .. ... 60
2.4.2 Multiple View Geometry over Time . . . . . ... ... ... 72
2.5 Proposed 3D Visual Odometry Method . . ... ... ... 76
2.5.1 Applying Feature Tracking to the Visual Odometry Problem 77
2.5.2  Multiple View Parametrization for Ego-motion Estimation . 78
2.5.3 Ego-motion Estimation . . .. ... ... ... ... ... 83
2.6 Multi-modal 3D Odometry ............ ... 86
2.7 Localization using 3D Visual Odometry . . . ... ... .. 88
2.7.1 Odometry Integration . . .. .. .. ... ... ... ..... 88
2.7.2 Geo-localizing 3D Visual Odometry . . . ... ... ... .. 89
2.8 Real-time 3D Visual Odometry Algorithm ... ... ... 92
2.9 Experiments . ... .. .. ...t 94
2.9.1 Simulation . . ... ... o 95
292 Realdataresults . . . ... ... ... ... oL 97
2.10 Conclusion . . . . ... . ittt ittt 106

2.1 Introduction

A reliable and precise estimation of the ego motion is essential for Advanced Driver
Assistance Systems intended for safety applications, like obstacle collision avoidance

systems. Such applications are usually designed to mitigate or avoid damages and in-
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juries in particular conditions, for instance, in urban environments. Global Positioning
System (GPS) is an affordable solution able to provide 3D positioning estimates (3D
attitude is not available with one antenna) at an acceptable frequency (typically 10Hz).
Unfortunately, its performance can be significantly decreased in urban environments
because of multi-paths and satellites outages. Dead-reckoning is then a complementary
solution which can be used when GPS information is unreliable. This localization tech-
nique relies on incremental integration of partial motion estimates to infer the vehicle
pose starting from a known pose. A variety of techniques relaying on different percep-
tion means have contribute to solve the motion estimation problem. Among them, we
can highlight wheel-speed sensor, inertial, range (e.g. lidar) and visual measurements

strategies.

Problem Statement: Vehicle localization in a urban environment

In this chapter, the addressed problem consists in estimating the 3D pose of the vehicle
as a function of time with respect to a static frame lying, for instance, in a tangent plane

to the Earth surface. Hereafter, this problem is referred to the 3D ego-localization.

A previous work of Cappelle et al. [CNPCO8] has shown that the 3D ego-localization
of a vehicle can be achieved through a multi-sensor data fusion strategy of propriocep-
tive and exteroceptive sensors. Their proposed system operates using a GPS receiver,
incremental encoders and a gyroscope. During degraded GPS conditions, the 3D ve-
hicle pose is estimated using incremental encoders, a gyroscope, a camera and a 3D

Geographical Information System (GIS).

Vision systems constitute nowadays affordable and promising environment sensing
means for many on-board Intelligent Vehicle (IV) applications. Their large-spectrum
perception capabilities are usually exploited for detection and recognition tasks, applied
for instance, to roadsigns [KLDO09], pedestrians [VJS03, GMO06] and obstacles [Dic07].
However, cameras can be also suitable for 3D odometry, since they can provide esti-
mates of the complete 6 degrees of freedom of a mobile platform (i.e. position and
attitude) [vdMFDGO02, Sol07, NNB06]. Agrawal et al. [AKO06] have shown how visual
odometry approaches can be complementary to the use of classical robotic techniques
that rely on Inertial Measurement Units (IMU/Gyroscope) and Wheel Speed Sensors
(WSS) which are subject to wheel slippage.

The motion estimation problem from images can vary depends deeply on the vision
system configuration. For instance, the 3D trajectory of a monocular system can be
retrieved from images over time, up to a scale factor (so called Structure-from-motion
problem). Alternatively, Scaramuzza et al. [SFS09] have proposed an efficient real-time
odometry method, based only on images provided by an omnidirectional camera. Stereo
vision systems appear in this panorama of options, as an attractive sensing mean which

grants access to the 3D structure of the scene, without any ambiguity, in a “snapshot”
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way. Recently, Comport et al. [CMR07, CMR10] have proposed a novel 3D odometry
method using a stereo vision system based on multiple view geometrical relations (i.e.
4-views or quadrifocal constraints). This approach makes use of a dense image warping
technique which requires important optimization efforts and computational resources

for real-time execution.

Our study focuses on the design and the implementation of a multi-modal localization
strategy for vehicles immersed in urban environments. We focus here in the use of
vision as dominant perception mean. This chapter is organized as follows: Section 2.2
presents how keypoints can be extracted to deal with relevant 3D scene information
provided by images. This sparse approach is also crucial to satisfy real-time execution
constraints. Section 2.3 presents a method intended to track observed keypoints over
time. In this way, temporal scene analysis can be achieved by measuring the features
apparent motion on image induced by the vehicle motion in space. In section 2.4,
multiple view geometrical constraints are studied in order to predict keypoints locations

given 3D a motion of the vision system.

By combining all of these theoretical principles, an ego-motion estimation method is
proposed to address the vehicle localization problem. This technique provides a positive

balance between precision and execution time thanks to a sparse feature strategy.

In a first vision-only based approach (see section 2.5), the algorithm finds the ego-
motion parameters which minimize the error between the measured and the predicted
motion of a feature set, in the image plane. The measured feature image motion is
obtained using a pyramidal feature tracking. The predicted motion is computed as a

quadrifocal warping, based on multiple view geometrical constraints.

A second strategy is proposed using stereo vision and WSS-Gyro fused with a tightly
coupled scheme (see section 2.6). This technique copes with each perception drawback,

increasing the precision and the reliability of the perception system.

The remaining of the chapter is dedicated to cover the computation of the vehicle
position by integrating ego-motion estimates. The problem of obtaining a Geo-reference
positioning is also presented. Finally, results in simulated and real-time execution

conditions are reported and analyzed.

2.2 Features Extraction

Dealing with video sources involves quite an important amount of data. Processing all
image data in a dense way is a time consuming task. A usual method to reduce image
processing time is to determine what is interesting in the scene by its observed motion.
For this, unidentified objects observed in a scene can be visually tracked based on key

local features rather than complex representations.
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An image keypoint is a local feature which is near to be unique and can be compared to
other keypoints based on a set of parameters. Different kinds of image keypoints (i.e.
features) are known in the literature. Harris, SIFT (Scale Invariant Features Trans-
form) and SURF (Speeded-Up Robust Features) features are part of a representative

but non exhaustive list of image keypoints.

This section is intended to present different techniques for extracting relevant photo-

metric information from images by means of keypoint detectors.

Harris Features

Attempting to solve the keypoint association and tracking between images, Harris et
al. [HS88] have proposed a corner and edge detector based on a local autocorrelation
function. In this way, corner, edge and flat regions are efficiently detected using an
anisotropic correlation response, f(du,dv), induced by a small shift, (du, dv), as stated

in the following:

fldu, dv) = [du dv]M[du dv]" with M =Y W(u,v) [ L Lo ] (2.1)

U,V uv Ivv

where the shape of the autocorrelation function f at the origin is denoted by M, the
image pixel intensities are represented by I , the image coordinates are (uv) and the
partial derivatives of I in the u and v directions are respectively I, and I,. W is a
windowing function (e.g. Gaussian weighting matrix). The Harris key features are

parametrized by the rotational invariant eigenvalues of M and the corner response r =
Det(M) — &k Tr(M)? with k as a constant.

Despite the computational effectiveness of the corner feature detector, it has some
limitations like its low repeatability rate when scale and affine changes are involved
as illustrated in Fig. 2.1. Other keypoints have been proposed to overcome these
limitations like SIFT and SURF features.

Scale-Invariant Feature Transform Features

The Scale-Invariant Feature Transform [Low04] provides local keypoints which are char-
acterized by highly distinctive descriptors. The fundamental principle of this feature
extraction approach is based on a keypoint detection which is performed in the spatial
and frequency domains. This makes the approach robust to image scaling, rotation
and partially invariant to illumination and 3D camera viewpoint changes. The method
can be outlined in four major stages applied in a cascade filter algorithm: scale-space
extrema detection, accurate keypoint localization, orientation assignment and keypoint

descriptor computation.
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(a) The example illustrates the distinctiveness and repeatability of Harris features
in a lateral translation change

(c) Scale changes represent another limitation in the use of Harris features as
shown here

Figure 2.1: Harris feature detection on a road scene. In this example some Harris keypoints
were extracted and their image positions were denoted by color squares. Their repeatability
and distinctiveness is illustrated through the identification of same features after translation,
rotation and scale image changes. !

Firstly, the keypoints candidates are detected as the maxima/minima of a multi-scale
Difference of Gaussians (DoG). For this, the image is convolved at different scales
with different Gaussian filters. Then, the DoG is obtained as the successive difference
between the convolved images. The keypoint candidates are then locally identified

across the scales as the extrema in the DoG as illustrated in the Fig. 2.2.

1Original image source from database of the MOBILE3DTYV project funded by the Europe’s Sev-
enth Framework Programme
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Scales by octaves

Scale-space extrema
detection

Gaussians  pifference of Gaussians
(Convolved image with (DoG)

Gaussian filters)

Figure 2.2: Scale-space extrema detection- This figure is as schematic of the Scale-space
extrema detection

Secondly, keypoint candidates are localized accurately and those with low-contrast or
issued of poor edge responses are rejected. This step attempts to ensure the stability
of the keypoints. The accurate location of a keypoint candidate is estimated by in-
terpolating its position using the quadratic Taylor expansion of the DoG space-scale

function, D(x), such as,

D(x) = D(0) + <8£<T)x0x + ;XT (a;}?)xox (2.2)

where D has been shifted so that the keypoint location, (u, v, 0), is placed at the origin

and the location offset x = [dudv do]” is defined in the space (u,v) and the scale (o).

The precise offset, X, from the location of the keypoint candidate is finally determined
by setting to zero the derivative of D(x) with respect to x. Once X has been estimated,

the keypoint candidate is kept according to the following criteria:

— Ifx > 0.5, the keypoint candidate is discarded since there exists another keypoint

closer to the image feature

— If X < 0.5, the candidate is kept and the final keypoint location is obtained by
shifting its position by this offset. In order to avoid low-contrast keypoints, those
having |D(>€)] < 0.03 are rejected.

Then, the keypoints issued of poor edge responses are identified and hence rejected
based on the eigenvalues of the second-order Hessian matrix, H, following a quite

similar approach to the one suggested in the Harris corner detector:

H — DUU DU/U
DU'U Dl)'l)
Knowing that the eigenvalues of H are proportional to the principal curvatures of D,

the following quality test is performed:
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Tr(H)?  (r+ 1)
Det(H) <

where 7 is an appropriate ratio threshold (e.g. » = 10) .

Thirdly, the orientation of every keypoint is computed and assigned to the feature de-
scriptor, achieving in this manner robustness to rotational changes. For this, the local
gradient magnitude, g(u,v), and orientation, 6(u,v), are computed using pixel differ-
ences in the Gaussian smoothed image, L, which corresponds to the nearest keypoint

scale:

g(u,v) = \/(L(u +1,0) = L(u—1,0))* + (L(u,v + 1) = L(u,v — 1))*  (2.3)
O(u,v) = tan' ((L(u,v+1) —L(u,v — 1)) / (L(u + 1,v) — L(u — 1,v)) (2.4)

Subsequently, an orientation histogram of 36 discretized local gradient orientations
(i.e. bins representing 10 degrees intervals) of the keypoint is computed. The highest
histogram peak creates a SIFT keypoint with that orientation. In the case where
other histogram peaks are withing 80% of the highest one, multiple SIFT keypoints

are created with the corresponding orientations.

The previous steps provide a set of SIF'T keypoints characterized by their location, scale
and orientation ensuring invariance to rotational and scaling changes. The fourth and
last step consists in computing a distinctive descriptor composed of histograms which
are characterized by magnitude and orientation. Arranged in a normalized 128-vector
(8 orientation bins of 4x4 location bins), the SIFT keypoints enhance the invariance to
minor affine and illumination changes. Fig. 2.3 shows the SIFT feature distinctiveness

invariance in translation, rotation and scale changes, in a road scene.

Speeded-Up Robust Features

In [BETGOS8], Bay et al. have proposed a new approach for local keypoint extraction,
description and matching, called Speeded-Up Robust Features, SURF for short, which
are distinctive and relatively fast for on-line applications. The keypoint extraction
algorithm follows the basic scheme of the SIFT features with various refinements. One
of these relevant enhancements is the use of the integral image concept in order to
drastically decrease the computation time, particularly for the image-Gaussian filters

convolution.
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(a) SIFT Features are quite robust to translation image changes as illustrated in the
figure where just one mistaken identification

(b) In this example, the use of the SIFT Feature descriptors provides a reliable
feature identification in rotation changes

(c) The performance of the SIFT features identification remains invariant in scale
image changes

Figure 2.3: SIFT feature detection on a road scene. In this example some a set of SIFT
keypoints were extracted in a road scene. The invariance of the SIFT features to translation,
rotation and scale changes is demonstrated through the correctness of the feature identification.

SURF keypoints candidates are localized across scales based on a space-scale represen-
tation obtained by the use of the convolution of the second order derivatives Gaussian
filters with the image. For this, the Hessian matrix and its determinant are efficiently

approximated for a given point x(, . at scale o using Haar wavelets (i.e. Fast-Hessian):

2 (2.5)

Det(H) = DyuuDyy — (wDyy)? (2.6)
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where w is a regularization value which changes depending on the scale, D,,, D,
and D, correspond to the second order Gaussian partial derivatives in u, v, and uv di-
rections respectively. The locations of the SURF keypoints are estimated by a maxi-
mum detection in the space-scale neighborhood (i.e. u, v, o) and are then refined by

interpolation.

Once the SURF keypoints have been localized, each point is described by its orientation
and descriptor, similarly to the concept of the SIFT keypoints. The orientation of the
keypoint is estimated as the sum of the horizontal and vertical Haar wavelets responses,
obtained in the circular surrounding region of the point. The SURF descriptor is
estimated in a square region oriented as the keypoint. For this, the sum of the horizontal
and vertical Haar wavelet responses and the sum of their absolute values are computed
in 4 X 4 sub-regions. Finally, the obtained values are concatenated in a normalized

64-vector (i.e. unit vector) achieving invariance to contrast.

Applying the presented SURF feature detector in a road scene image, it can be re-
marked in Fig. 2.4, that this detector is as robust as SIFT features. The extraction of
SURF features requires, however, a smaller computation time than the SIFT detector.

A summary of key characteristics of the presented feature point detectors is provided
in Table 2.1.

Table 2.1: Feature detectors summary

\ Feature Points Harris \ SIFT \ SURF \
Repeatability ° oo '
Rotation, Affine and Scale changes invariance — coe oo
[Nlumination changes — oo oo
On-line applications XY . oo

In practice, Harris and SURF keypoints are well-adapted features for on-line vehicle
applications, since they are distinguishable enough in road scenes and their detection
performs quite fast. As it can be noted in Fig. 2.1, 2.3 and 2.4, features are rarely
detected in the image section corresponding to the road, because it constitutes a ho-
mogeneous texture. Such situations can lead to obtaining keypoints located only in a
small image region. A strategy attempting to get a well distributed set of keypoints,
consist in partitioning the image by sectors (so called bucketing feature detection).
Then, a constant number of features by sector is extracted, ensuring scattered key-

points in all the image area.
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(c) The SURF features performance in scale changes is illustrated in this example

Figure 2.4: SURF feature detection on a road scene. In this example SURF keypoints were
extracted and its descriptor invariance was tested regarding translation, rotation and scale
changes.

2.3 Feature Tracking

Thus far, the 3D information provided by a vision system has been considered as mo-
tionless. However, processing consecutive images over time can also provide helpful
information for scene understanding and 3D motion estimation. Therefore, our at-
tention is now aimed at measuring the apparent motion of the unidentified objects
observed in the image plane. This apparent motion estimation (also known as optical
flow) can be computed through a sparse (also known as feature tracking) or a dense
tracking of the “local pixel displacements”. For more details about dense tracking
please refers to [HS81].

The feature tracking problem consists in determining the image displacement of a
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keypoint based on a local brightness similarity error as proposed by Lucas and Kanade
in [LK81]. For this basic idea, three assumptions must be considered (see Fig. 2.5). The
first one is brightness constancy, which assumes that the brightness of the key feature
does not change as it moves from image to image. The second assumption considers
an infinitesimal increment of time between frames ensuring small image motions. The
third is the spatial coherence, which assumes that the surrounding pixels of a keypoint

belong to the same surface with quite similar observed motions.

Brightness constancy
HI<X(U’U) + dX, t) — I(X(uﬂ,),t — 1)” =0

Temporal persistence
Infinitesimal
sampling time

Spatial coherence
Keypoint = local 3D surface projection

Figure 2.5: Feature Tracking Assumptions. The brightness constancy, which assumes that
the brightness of the key feature does not change over time. The second assumption considers
small image motions between frames. The spatial coherence assumes that the surrounding
pizels of a keypoint belong to the same surface with quite similar observed motions.

Based on the above assumptions, the frame-to-frame motion of a key feature is esti-
mated by locally minimizing (i.e. correlation window) the brightness error between the

observed keypoint at two instants of time,

e = 3 (MW (X, d%), £) = £ — )]’ (2.7)

where I(-,t—1) and I(+, ¢) are the local image templates of the observed keypoint at con-
secutive times (for simplicity, time is indexed as t —1 and ¢, respectively), dx represents
the vector of parameters to be estimated, x(,,) denotes the image coordinates of the
tracked keypoint x and w(-) is the warping operator which models the apparent motion
parametrized by dx. This operator associates the templates I(-,¢ — 1) and I(-,¢) for
a given parameter dx. In [BAHH92], an affine warping operator was proposed for
tracking an image patch moving in 3D. For computing the apparent motion of the
tracked keypoints, it can be considered a warping operator representing a 2D image
translational motion defined as [BM04, ST94]:
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u—+ du

2.8
v+ dv (28)

W(X(M), dx) = X(up) + dx =

where dx = udt = [du, dv]T is the 2D image displacement of the keypoint. Note

that u represents some kind of velocity of the keypoint in the image.

Thus, Eq. 2.7 yields,

€= (I + dx, ) — Iyt — 1)]° (2.9)

The quadratic non-linear function e(u) can be then formulated as a minimization prob-
lem that can be solved iteratively based on the gradient constraint and starting at initial

conditions ug. For this, e(u) can be rewritten using the first order Taylor expansion,

c(w) = Y [VI"u+ 1] (2.10)

X

with I= I(X(uﬂ,) + dx, t) — I(X(uw),t — 1)

T .
where u = {%‘, %} is the optical flow. I and VT represents the temporal and spatial
image derivatives evaluated at x(,,). Note that these derivatives are directly measur-
able from images.

Then, for each keypoint, the optimal values of u which minimize e(u) can be obtained

at each iteration as the least squares estimate of u which satisfies:

Ve(u) =23 VI |[VI"u+1] =0 (2.11)
In this way, the estimate of u is updated until either the brightness similarity error
becomes minimal or the maximum number of iteration is reached.
2.3.1 Aperture problem

One of the constraints considered in the feature tracking problem is the brightness
constancy formalized in Eq. 2.10. Recalling this assumption, a tracked keypoint must

satisfies:

VIfu+1=0 (2.12)

Since the brightness constancy equation only provides a single constraint for the two
T

components of the optical flow, u = {%, %} , Eq. 2.12 could be singular for keypoints

lying on edges. In consequence, only the component of the optical flow which is normal
to the image intensity gradient (called normal flow) can be determined. This restric-

tion is known as the aperture problem and is easily visualized in contours where the
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motion along lines (called tangential flow) is indiscernible in the correlation window as
illustrated in Fig. 2.6.

normal flow estimated from
the image gradient \

normal

tangential \— optical flow

\

Figure 2.6: Aperture problem restricts the computed apparent motion to the normal flow.

2.3.2 Variants of the feature tracking

The Lucas-Kanade feature tracking algorithm offers an efficient method to estimate
the apparent motion. However, its performance is limited essentially by the approach
assumptions. For instance, the estimated image displacements are quite restricted (i.e.
up to 1 pixel) due to the “small motion” assumption. For this, a coarse-to-fine optical
flow estimation strategy has been proposed by Bouguet in [Bou02] achieving in this

way robustness to the assumption violation.

Thus, a pyramid constituted of the sub-sampled image at different scales allows the
iterative estimation of the optical flow (see Fig. 2.7). A coarse optical flow is estimated
at the lowest image resolution, tracking large image motions, and is then propagated

and refined up to the maximal image resolution, to track small motions.

Iterative optical flow estimation

Coarse-to-fine LK iterations
technique A

Pyramid of
sub-sampled images

Figure 2.7: The image pyramid structure allows the tracking of important inter-frame feature
motions relaxing in this way the temporal persistence assumption.
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2.4 Multiple View Geometry Constraints

2.4.1 Two-view geometry
Epipolar geometry and fundamental matrix

Consider two different views of a scene provided by calibrated cameras, rigidly linked
by a baseline axis. The engendered geometry of these two views, is defined by the
family of planes passing through the baseline axis and the image planes as illustrated
in Fig. 2.8. This geometry, known as epipolar geometry, is completely invariant to
the scene structure and depends only on the relative pose between the cameras (i.e.

extrinsic) and their internal parameters (i.e. intrinsic).

T

epipolar plane
IT

/

C D / ' C’
N baseline axis /e J
1 I

epipolar lines

Figure 2.8: Epipolar Geometry engendered by two views

Let z be a point in the 3D space of the scene which is projected, respectively in both
views, at x = [u, v, 1]T and x’ = [/, v/, 1]T representing its corresponding homoge-
neous image coordinates. A plane II passing through x and the camera centers can
be defined. This projective plane establishes a geometrical link between both views,
since x and x’' are coplanar and lie in the epipolar plane II. Additionally, this ge-
ometrical link introduces and defines new entities: epipoles and epipolar lines. The
epipoles are the imaged points where the baseline axis intersects with image planes in
the left view, noted e, and the right noted €. The epipolar lines, noted 1 and 1’, are

the intersections between the images and the epipolar plane as illustrated in Fig. 2.8.

We now focused on a direct mapping which allows us to determine the epipolar line, ',
corresponding to each point x in the left view. This mapping will constrain the two-view
feature matching to a simple search of the corresponding point x’ along the epipolar

line.

The fundamental matrixz, noted F, formalizes this mapping by encapsulating the epipo-

lar geometry in an algebraic representation. Since this mapping transfers from a 2-
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dimensional onto a 1-dimensional projective space, it is defined by a 3 x 3-matrix of

rank 2.

As depicted in Fig. 2.9, the fundamental matrix can be inferred geometrically by a
point transfer through a plane Q [HZ03]. For this, a 2D homography, Hgq is computed,
since the correspondence of a set of imaged points, x; and x’;, is known. These imaged
points are issued of the projection of a set of points z; lying in €2. Then, the epipolar
line in the second view 1, passing through the epipole € and x’ can be defined by the

following crossed product:

I'=¢€' xx' (2.13)

where x’ can be conveniently replaced by Hox. Hence,

I'=[e/], Hox = Fx (2.14)

where the operator [-],, denotes the skew-symmetric matrix form.

Q

epipolar plane

B
v

Hg

2D homography ‘

1/ epipolar line in
second view

Figure 2.9: Geometrical inference of the Fundamental Matriz by a point transfer through a
plane.

Alternatively, the epipolar line in the second view can be obtained in an algebraic man-
ner. For this, consider two camera projection matrices referenced with respect to the
left camera. The left and right canonical projective camera matrices are noted Py and P’

respectively. They are defined as follows:

P, = K|[[;0] (2.15)
P, = K'[Rt] (2.16)

where 3,3 is the identity matrix, K and K’ are 3 x 3 matrices containing the intrinsic
camera parameters and [R t] are the extrinsic parameters expressing the orientation

and the position of the right camera with respect to the left one. In this manner, the
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back-projection of the imaged point x up to a scale factor A is given by:

X ~Plx+AC with P} =

K! ~
o7 } and C =

0
X ] (2.17)

where X, with abuse of the notation, represents the homogeneous coordinates in the
3D space of =z, P(T) the pseudo-inverse of Py and C the homogeneous coordinates of the
first camera center, noted C. Thus, I’ is computed as the line joining the projection into

the second view of the first camera center P’ oé and the point X at the scale A\ = 0,

I = (P,C) x (P Pix) (2.18)
= Fx (2.19)

where the fundamental matrix is algebraically computed as:

F = [P{C| PP} (2.20)

Different forms of the fundamental matrix can result by replacing the corresponding

variables in Eq. 2.20. Some of them are provided by the following,

F = [K't], KRK (2.21)
= K Tt],RK ' (2.22)

Eq. 2.19 not only provides an algebraic expression to compute the epipolar line 1 but
also encloses a practical property of the fundamental matrix. This property establishes

that a 3D point observed in two different views must satisfies the following statement

xTFx =0 (2.23)

The specialized representation of the fundamental matrix for the case of normalized
camera matrices is the so called essential matriz. This representation assumes the use
of calibrated cameras, hence, the effects of the camera calibration matrix are removed

by considering it as the identity matrix.

From the above, consider two normalized camera matrices (canonical form) respectively

denoted P = [I0] and P’ = [R t]. Thus, the corresponding essential matrix is given by
E = [t],R = R[R” t], (2.24)

The essential matrix preserves the fundamental matrix property, stated in Eq. 2.23,
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for normalized image coordinates as follows,
XTK"EK 'x) =0 (2.25)

Monocular Vision

Two-view geometry constraints can be considered for a moving monocular system over
time (two samples) which is observing a static scene. So far, the estimation of the fun-
damental and the essential matrices have been addressed based on the prior knowledge
of the camera view points (i.e extrinsic parameters). Now, we focus on the estima-
tion of the camera pose from measured and associated points. This inverse problem is
known as structure-from-motion [CCGO6]. To deal with, it is necessary to consider the

use of two-view constraints.

Structure-from-Motion Problem Consider a calibrated camera and the associ-
ated imaged positions of at least five observed points in two views. Based on this
minimal parametrization, it can be recovered the relative structure of the points and
the camera motion in space (so called five-point problem) [Nis04, LHO06]. In practice,
however, more than five-points are needed to achieving a robust structure and motion
estimation. These estimations are subject to an arbitrary projective transformation

(i.e. scale).

To illustrate this, let be Py = K|I3430] and P; = K[R t], the projective matrices of
a moving camera in space at two sampling times. These matrices are reduced to their

canonical form, postmultiplying them by an invertible 4 x 4 real matrix,

H— [I;Tl 2} (2.26)

where a is a 3-vector with arbitrary elements and A is a non-zero real number. Re-
defining Py = [[3x30] and P; = [Rt], it can be noticed that there still remains the

scale ambiguity for

H3><3 0
H = 2.27
N 227

A being a scale factor not equals to 1. This scale factor means, for instance, that if we
try to estimate the relative camera motion parameters, here [R t], for a set of observed

3D points, the transformation [R At] is a possible solution.

The projective ambiguity evidenced by A, can be easily solved through the knowledge
integration of a metric constraint between the observed 3D points. Alternatively, two

cameras rigidly joint can provide a straightforward 3D estimation of the scene structure
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without any ambiguity. In the next, this vision system configuration is examined

focusing on the ego-motion estimation problem.

Stereo Vision

Based on the same principle as human vision, it is possible to reconstruct in a snap-
shoot the scene structure from stereo images. This task can be accomplished, since the
correspondence between the points seen from both views is known. Finding point cor-
respondences and computing two-view constraints constitute a “chicken-egg” dilemma.
Indeed, in order to compute the fundamental matrix is necessary a set of correspond-
ing points. Conversely, the search of the point correspondence is made based on the
two-view constraints. This problem is partially solved in stereo vision systems by
performing an offline calibration routine. In this way, the point correspondence (so
called stereo matching) is determined through a human-supervised procedure and the

two-view constraints engendered in the stereo vision system are estimated.

Once the extrinsic parameters of the stereo rig are determined, the stereo point asso-
ciation task can be better addressed. Additional issues must be considered also such
as the image lens distortions and the optical axes misalignment of the cameras which
complexifies the image point matching task. To this end, a stereo image correction

known as stereo image rectification should be performed.

Stereo Image Rectification The perfect alignment of the stereo images provides
interesting advantages in the stereo correspondence process. These advantages not only
speed up the matching process, but also grant a computational efficient application of
the two-view constraints. In practice, real stereo vision systems are never perfectly
aligned. Moreover, optical image distortions are also present and can cause unreliable
parings.

For this reason, the acquired images must be corrected into a exact coplanar, row-
aligned configuration. Such a correction is not performed on the vision system hard-
ware, but in the pixel image coordinates mapping. The choice of a good correction

mapping is usually based on the view overlapping maximization and the minimization
of the undesired effects such image distortions [FTV99].

Considering the particular case of calibrated cameras, the rotation and translation
between them are known. Thus, the image alignment procedure is straightforward. To
this end, distortions are corrected making use of the coefficients estimated in the camera
calibration routine. Then, the left and right image rectification mappings are obtained
from a two rotation composition of the image planes. Applying the rectification of every
pixel location can cause empty pixel regions on the final image. This problem is dealt

through a bi-linear pixel interpolation of the pixels values. Finally, the effective image



2.4 Multiple View Geometry Constraints

65

regions are cropped ensuring a maximal common view image area. This procedure is

summarized in Fig. 2.10.

Observed object

e

Left view Right view

Raw stereo @
images

&

m undistortion

Rectification
and pixel
interpolation

T

Figure 2.10: Stereo rectification routine can be summarized in three main steps: In the
undistortion step, image distortions induced by the camera lens are corrected. In the rectifi-
cation step, images are “deformed” so as the image planes become coplanar and row-aligned.
Then, missing pixel values are interpolated. Finally, the rectified images are cropped ensuring
a good view overlapping.

Feature-based Stereo Matching The stereo correspondence problem establishes
the link between brightness and geometrical scene information. This link is crucial for
achieving scene understanding and 3D structure reconstruction (i.e. objects, surfaces,
etc.). Thus, image points can be associated using a discriminant enough criterion based
on their appearance similarity. This criterion exploits the texture information enclosed
in the images. For this, a score is computed and locally maximized by taking into
account the pixel values included in a centered correlation window as illustrated in
Fig. 2.11.

This technique is called feature-based matching (also known as template matching)
and is well adapted for on-line applications. However, associating points by their local
appearance similarity does not ensure at all the rightness of the stereo matching. For
instance, template association in boundary regions of imaged objects (i.e. speckle re-
gions) may lead to ambiguities. This is due to the background regions in the correlation
window which might be occluded in one of the views. Attempting to reduce as possible

all error sources, robust statistics techniques and geometrical constraints must also be
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combined with the appearance criterion.

Local similarity maximization

Block matching by correlation

Figure 2.11: Stereo association along the epipolar line using a block matching technique

In the literature, one can refer to a quite large variety of similarity metric criteria as
it has been presented in [SSO01]. Two common similarity measurements are the Sum of
Absolute Differences (SAD) and the Sum of Squared Differences (SSD). They can be

easily computed as follows:

1 . o

SAD = o 3 IG.0) <L) (2:28)
1 . N

SSD = p—— ;1(11(2,3) —Ix(i, 7)) (2.29)

where m and n are the dimensions of the centered templates I; and Is. The minimal
value of these metrics is associated with the highest similarity of the compared tem-
plates. Based on simple brightness differences, these criteria can be implemented with

a low computational cost. Nevertheless, such criteria are very sensitive to image noise.

A better choice for associating photometric features is the use of a correlation measure-
ment such as the Normalized Cross-Correlation (NCC) and the Zero-mean Normalized
Cross-Correlation (ZNCC). A high discriminant effectiveness can be achieved using
such correlation measurements since they are invariant to scalings and shifts of bright-
ness intensities which are due to illumination changes over time. The NCC and the
ZNCC correlations, estimated in a block-matching window of m x n pixels centered

around an image point, can be computed through the following expressions:

oo S [6,9) ((0,) 230

\/Ez] 1 Il Zj) sz 1(12(Z .7))
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where I, I, are the mean intensity values of the template images I, and I,. As one
can notice, the robustness achieved by these correlation criteria is obtained thanks to
normalized brightness differences, at the expense of a higher computational complex-
ity. The template similarity is then expressed within a normalized interval, [—1 + 1],
independently of the window correlation size. Thus, a correlation value of 1 indicates

the highest template likeness.

Associating image points based only on their brightness similarity in a dense way,
constitutes a time consuming task doomed to several erroneous matching. Attempting
to improve the performance and the robustness of the feature-based stereo matching,

different strategies can be additionally adopted.

An interesting approach is the sparse stereo matching, since it speeds up the corre-
spondence process by reducing the association to a set of rich texture features (see
Section 2.2) and preserves the key information of the scene structure. Stereo vision
systems induce geometrical constraints from the projective principle of the image for-
mation. The use of these two view properties reduces the number of image point candi-
dates to be evaluated in the matching process, since the location of the corresponding

image point can be constrained.

Suppose that a set of keypoints have been extracted in the left and right images. Then,
the search space of the corresponding point of a left feature point can be drastically
limited to the keypoints which lie in the right epipolar line. For the particular case
where the provided images are rectified, the search is reduced to include only the
keypoints located at the same row image line (i.e. v image coordinate) as illustrated
in Fig. 2.12

3D point /A-’ Max Correlation function .\'-\_
/ \
\ i i
\ RN Disparity interval 7
Correlation window \ ! ~... (horopter) -
\ / .. e
u | u-\ TRl -
\ I.-/ \"\(_"’
[ ettty =0 :::-D:@:\:\:‘:\:\:\:‘y_—:: Epipolar line
. \1—/.'
Imaged point S—am

Scan direction

Left view Right view

Rectified stereo images

Figure 2.12: Stereo Matching in Rectified Images

Disparity constraint Visual odometry relies on observed key features over time for
estimating the ego-motion performed by the moving vision system. This is why it is
necessary to keep viewing key features as long as possible. Consider that the vision

system is aimed forward in the same direction as the motion. Thus, the key features
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corresponding to objects which are too close to the vision system will go out of the field
of view quickly. In order to select features at an appropriate distance form the vision
system, the stereo matching search can be constrained to a defined disparity interval.
This constraint cuts down the stereo matched features to only those contained in a

defined 3D volume attempting, in this way, to ensure their visibility over time.

The disparity, noted d in pixels, between two associated features is directly linked to

the depth distance of the corresponding 3D point as follows,

2= with —d = Xy — X, (2.32)

where z is the coordinate in the depth axis direction, b the baseline distance in metric
units, f the focal distance in pixels and, x(,) and x’(u) are the u-image coordinates
of the associated features. Therefore, the disparity is restrained to an interval limit
establishing the horopter of the stereo vision system. The horopter only depends on
the baseline distance, the focal length and the disparity limit. Hereafter, the baseline
and the focal length are considered invariant over time and only the disparity limits are
used to induce changes in the horopter of the vision system. The disparity limits are
defined in the 3D space by two planes fixed in depth from the cameras as illustrated
in Fig. 2.13.
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Figure 2.13: Disparity Limits represented in the 3D Space

For vehicle applications in particular, the horopter can be dynamically set as a function
of the platform velocity. Thus, the disparity is bounded to the interval [dpn dimas] rep-
resenting, in the 3D space, the maximal and the minimal depth distance from the
cameras to be considered. The following expressions associate, through a linear func-

tion, the changes induced in the disparity bounds with respect to the velocity,
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b b
dmin = 7f ) dmaz = f (233>
Zmax Zmin
with
A A
Zmaz = Pmaz + U & and  Zpin = hmin + v : (2.34)
Umaz Umax

where the interval [z, Zmae] denotes the depth metric bounds computed from the
default depth interval in meters [hpin hmaz|, v the platform velocity, vpq, the maxi-
mal speed of the vehicle and Az the maximal offset to be applied to the horopters.
The dynamic configuration of the horopter regarding the vehicle speed is depicted in
Fig. 2.14.

17 12 8 3 0 Distance (m)

Disparity interval at 50 Km/h
Disparity interval at 30 Km/h
Disparity interval at 15 Km/h

Figure 2.14: Dynamic Horopter

Cross-check association method The occlusion is a particular problem which oc-
curs when a real point in space can only be visible from one of the vantage points
(i.e. half-occlusion). This inevitable fact happens because of the scene geometry or the
obstruction caused by other objects. As represented in Fig. 2.15, the object B is almost
occluded in the right camera view, C’, by the object A. Thus, the 3D point x5 lying in
the object B imaged at x5 in the left view C, is not visible in the right one. This point
cannot be associated and is hence considered as an orphan point. However, the image
point x4 corresponding to a 3D point lying in the object A, may lead to an incorrect
association to Xs. On the other hand, the 3D point z; in the object A is completely
visible from both camera views. Hence, the image points x; and X} can be correctly

paired.

Occlusions do not make the stereo matching task easier since they can lead the al-
gorithm to incorrect pairings. Thus, this problem is addressed using a cross-check
association [CS09, NNB04, NNBO06]. For this, the feature-based stereo matching pro-
cess is performed in two steps which are detailed in Alg. 2.4.2. First, the left features
are considered as a reference and they are associated to the right ones. Conversely in
the second stage, the right features are kept as a reference and then associated to the
left ones. Finally, only those features which have been associated in both steps are

considered correct, otherwise the feature point is probably occluded. In practice, this
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test can be efficiently implemented by checking the disparity values computed for each

point at the two steps.
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Figure 2.15: Occlusions

In the literature, alternative techniques to address the half-occlusion problem are also
proposed. For instance, the point Ordering Constraint (ORD) consists in detecting the
potential occluded points by checking the order of the associated features along the

epipolar line obtained after the two-way matching (i.e. left-right, right-left).

Algorithm 2.4.2 Cross-check association algorithm

Input: - Gray scale stereo image pair or feature descriptors

/%

- Left and right extracted keypoints coordinates p* = {p’{l} and p™* = {p"*1 ;.
Output: Associated keypoints

for =0 don > First matching process
for =0 don
» Associate p; located at (u,v) with respect to the right image features pg-*

end for

1:
2
3
4
5: » Update the sparse disparity map referenced to the left image, Dy(u,v)
6: end for

7. for i=0 don > Second matching process
8 for =0 don

9 » Associate p;* located at (u',v’) with respect to the left image features p;

10: end for

11: » Update the sparse disparity map referenced to the right image, D/, (v, v")

12: end for

13: if Dg(u,v) = D)(v' 4+ Dy(u,v),v’) then

14: » Correct match

15: else

16: » A feasible occluded feature point

17: end if
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Algorithm: Feature-based stereo matching  Given a rectified stereo image
pair, I and I’, corresponding to the left and right views of a scene and a set of key
points selected for each image, p* and p™, the complete feature-based stereo matching is
summarized in Alg. 2.4.3. It takes into account the brightness information and the ge-
ometrical constraints induced by the stereoscopic vision system. Attempting to detect
potential occlusions, a cross-check validation is performed. In real time applications,
this algorithm can be easily implemented and parallelized.

Algorithm 2.4.3 Feature-based stereo matching algorithm

Input: - Gray scale stereo image pair, I and T’
- Left and right extracted keypoints coordinates p* = {p’l‘z} and p™* = {p"1 ;. .}
- Template correlation size (typically 9 x 9 or 11 x 11)
- Disparity interval — [dmnin, dmaz)
- Epipolar alignment error tolerance ~— Thepipolar (typically £2 pixels)

- ZNCC minimum acceptable value — Thzncco (typically 0.7 to 0.8)

Output: Matched feature points

1: for =0 don > First matching process
2 » Extract template at I(u,v), around the feature point p}

3 for =0 don

4 » Update disparity constraint and set ZNCCjgsr < 0

5: if Thepipolar and [dmin, dmaz| constraints are satisfied then

6 » Extract template at I'(u’, v'), around the feature point p’*
7 » Compute correlation value ZNCC(I(u,v), I'(u, v"))

8 if ZNCC >Thznce and ZNCC > ZNCCj,s then

9 » Update ZNCCjuqt «—~ ZNCC
10: » Associate p; to the right image feature p;*
11: end if
12: end if

13: end for
14: » Update the sparse disparity map referenced to the left image, Dy(u,v)
15: end for

16: for i =0 don > Second matching process
17: » Extract template at I'(v/,v"), around the feature point p.*

18: for =0 don

19: » Update disparity constraint and set ZNCCj,g < 0

20: if Thepipolar and [dmin, dmae) constraints are satisfied then

21: » Extract template at I(u,v), around the feature point p;*

22: » Compute correlation value ZNCC(I'(v/,v"), I(u,v))

23: if ZNCC > Thzncco and ZNCC > ZNCC),s then
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24: » Update ZNCCjust —~ ZNCC

25: » Associate pj* to the left image feature p;
26: end if

27: end if

28: end for

29: » Update the sparse disparity map referenced to the right image, D/;(u,v)
30: end for

31: if Dg(u,v) = Dj(v' + Dg(u,v),v’) then

32: » Correct match

33: end if

2.4.2 Multiple View Geometry over Time

In the previous subsection, a stereo feature tracking technique has been presented. This
function “measures” the apparent motion (i.e. displacement) of the key features during
two succeeding times. Hereafter, the geometric constraints engendered by multiple
views (i.e. two succeeding stereo images pairs) are studied in order to “predict” the
image displacement of the key features after performing a 3D rigid motion of the SVS.
Suppose a static scene where a stereo point pair is obtained from of a 3D point observed
at t — 1. These points can be “transferred” to the stereo view at t, since the camera

parameters and the performed motion are known.

As presented in section 2.4.1, the fundamental matrix encloses the geometric relations
(i.e. projective) between two views independently of the scene structure. Indeed, mul-
tiple dependent fundamental matrices can be defined for two succeeding stereo images
pairs since they are arranged by couples of vantage views as depicted in Fig. 2.16a. For
more details about the fundamental matrices for multiple views and their interdepen-

dency please refer to [HZ03].

3D static point 3D static point

(a) Multiple views transfer through fundamental (b) Multiple views transfer through trifocal ten-
matrices sors

Figure 2.16: Multiple View relations using fundamental matrices and Trifocal Tensors

Like the fundamental matrix, the trifocal tensor encapsulates the geometrical relations
between three views in a more compact representation (see Fig. 2.16b). It is composed

of 27 elements which can be figured in a 3 x 3 x 3 cube (or three 3 x 3 slides) represen-
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tation. Such a cube keeps the consistency of the geometrical information transferred

through the different views.

In the following, a short introduction about the theoretical basis and the geometrical
information transfer through the trifocal tensor is provided. Then, the multiple view
parametrization, applied to the ego-motion estimation problem is presented. For this,
the Einstein tensor notation is adopted. Dealing with this notation involves some

specific concepts which have been included in appendix B.

Derivation of the trifocal tensor for calibrated cameras

Consider three cameras, C, C' and C”, at different view points defined respectively by

their canonical form of their projective matrices as,

POZ[IBXB 03><1}7PE):[H2>0 3_4} andPg:{H,O/O b4}

where H and H/_ are 3 x 3 matrices representing the infinite homographies of the
second and third cameras and, a; and b; denote the i"® column composing the 3 x
4 camera matrices. More specifically, a, and by represent the epipoles of the second
and the third views (i.e. P{ and P{) generated by the first camera center. The use
of canonical cameras defines a common 3D space referenced with respect to the first

camera view.

Suppose, a single line L in the 3D space imaged at 1, I’ and 1”7 in the three camera
views. This single line represents the intersection in space of the three planes derived
from the back-projection of the imaged line in each camera view as depicted in the
Fig. 2.17.

I p—— C//

C/
/

Figure 2.17: Back-projection of the 3 lines defining 3D planes intersecting in space

As shown in Fig. 2.17, the planes noted 2, ' and " are given by:

l H/Tl/ H//T]//
Q=Pll= Q=PII=|" and Q" =PI | (2.35)
0 all bT1”
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These planes are related, since they intersect with each other at the line L. This
relation can be algebraically expressed making use of the Plitkker matrix representation
for a line [HZ03, p. 68-73] formed by the intersection of three planes as follows [HZ03,
p. 366-367]:

(2.36)

1 H/TI/ H//TI//
M:[Q Q/ Q//}:[ ] [e'e) ]

0 all bl
where M is a 4 x 3 matrix. The fact that M is a rank-2 matrix proves the linear

dependence between its columns which can be expressed as,

Q=aQ + 59" (2.37)
Replacing the bottom line of M in Eq. 2.37 yields,
0=a (ajl) + 8 (b]1)
with o and 3 defined as,

o=k (b1") and B=—k (a]l) (2.38)

where k is a constant.

Now, applying this relation to the upper line of M, up to a homogeneous scale factor,
1= (b]1") HIV — (afV) HZ1 = (1"b,) HIV — (17a,) HI1
Thus, rewriting this geometrical relation for the i** element of 1, noted I;, yields

I, = 1T (b4a;‘F) V17 <a4b;f) 1 =17 (ain) A (a4bl;l‘) 1

simplified as,

, =1"T1" with T;=ab. —asb] (2.39)

where ¢ spans the 3 elements of 1. The set of matrices noted T; represents the trifocal
tensor. Hereafter, the trifocal tensor is dealt with in the standard tensor notation

(please refer to appendix B) as follows,
775 = albh — albk (2.40)

Geometric transfer through multiple views

The knowledge of the intrinsic and extrinsic parameters of multiple cameras, allows the

geometrical mapping of the information between their different views. Such a map-



2.4 Multiple View Geometry Constraints

75

ping does not take into account the image content but only considers the geometrical

relations between views.

An elementary exchange problem between views is the point transfer. This problem
is addressed in order to predict the image location of the observed keypoints after a
3D motion of the SVS. As illustrated in Fig. 2.18, it consists in determining the image

position, in a third view, of a point observed in two other view points.

F13X

epipolar transfer
F23 x

3D static point

Figure 2.18: Point Transfer between multiple views using fundamental matrices

A first solution to the point transfer problem may be achieved using the fundamental
matrix. Consider x and x’, the homogeneous image coordinates of two corresponding
points in the first and second view as shown in Fig. 2.18. The fundamental matrices
between the cameras C and C”, noted F3, and the cameras C' and C”, noted Fy3 can be
estimated since the extrinsic and intrinsic parameters are known. Thus, the epipolar
line where a point x maps in the third view is defined by Fi3x. In a similar way,
the epipolar line where the corresponding point X’ maps in the third view is obtained
as Fa3x’. The intersection between the epipolar lines Fi3x and Fay3x’ determines the

image position of the point x transferred into the third view as follows:

" = (F13x) X (Fgsx') (2.41)

»

where x denotes the cross-product.

The point transfer solution using fundamental matrices contains a serious deficiency
in a particular configuration which often dooms this method to fail. This degenerated
configuration occurs when the three camera centers involved in the transfer and the
imaged 3D point are close to be coplanar (i.e. close to the trifocal plane). Under this
condition, the epipolar lines transferred to the third view become collinear. Thus, their
intersection is ill-conditioned and quite inaccurate. When the coplanarity occurs the

transfer is undefined.

This degenerated configuration makes the multiple view transfer through the funda-
mental matrix quite restrictive for practical applications. However, as will be explain
later in this section, the trifocal tensor helps us avoid this issue. Thus, in a similar way
as for the epipolar transfer, the homogeneous coordinates of the corresponding point

in the third view, x”, are given by the following tensorial expression:
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e xil}’ﬁjk (2.42)

where 2" is the contravariant representation of x” and z’ is the contravariant vector
representing the homogeneous coordinates of the point to be transferred x, located
in the first view. [} is the covariant vector representing a line passing through the
point x’ in the second view and T/ " is the trifocal tensor. The Fig. 2.19 illustrates the

point-line-point transfer from the cameras C and C’ into C”.

It should be noted that the appropriate choice of [; ensures the avoidance of the point
transfer degenerate configuration. Different methods have been proposed to select I,
but many of them might be a degeneracy overkilling. An easy-to-exploit alternative
consists in choosing I as the line passing through x”, orthogonal to the epipolar line I, =
Fox [HZ03]. This simple condition provides a well conditioned ray-plane intersection
generated from the back-projection of I and x in the cameras C’ and C respectively.

Thus, [} is given by:

I = ~Lq (2.43)

Point-line-point transfer

i k
I//k — $]l;77

T 3D point

e

Figure 2.19: Point transfer through the trifocal tensor

2.5 Proposed 3D Visual Odometry Method

The proposed visual odometry algorithm starts by extracting an initial set of features
from synchronized stereo images. The number of extracted features which are kept for
each image was limited, bounding in this way the execution time. Let p* and p”™ be the
sets of extracted keypoints from the left and right image respectively which are acquired
at time t. These sets contain the corresponding homogeneous image coordinates of the

features as follows:
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pr = {wo U] o 1T, (2.44)
o = {0, 1T (2.45)

where u, v and u/, v" are sub-pixel image coordinates. ¢ and j, are the index number

of the keypoints obtained from each image.

Alternative strategies for composing the initial keypoints set have been experimented.
For instance, a strategy attempting to obtain a well distributed set of keypoints, consist
in partitioning the image in sectors. Then, a constant number of features by sector
is extracted, ensuring scattered keypoints in all the image area. In fact, this extrac-
tion strategy helps avoiding keypoints concentrations on specific objects improving
the robustness of the algorithm. However, no significant impact was observed in our

experimental results.

2.5.1 Applying Feature Tracking to the Visual Odometry Prob-

lem

There are different ways to exploit feature tracking in order to estimate the 3D mo-
tion of a moving stereo vision system. In the following, a tracking scheme applied to
stereoscopic images is presented. This scheme aims at accelerating and simplifying the
association process of the features through frames over time. This is possible since

tracking avoids continuous feature extraction from stereo image at every sample time.

The pyramidal Lucas-Kanade tracking (for short LK tracking) method allows us to
measure the image position of the features at ¢ + 1 by minimizing the error function

criterion stated in Eq. 2.7. Rewriting Eq. 2.7 in a more detailed form yields:

u+m/2  v+n/2 du dv

eu)= > > (I([i + E,j + E]T’t) —1([i, 4"t — 1)) (2.46)

i=u—m/2 j=v—n/2
where m and n are the correlation window dimensions, u is the optical flow vec-
tor, I+, t—1) is the gray-scale image template feature to be tracked centered at (u, v) and I(-, ) is
the current gray-scale image template feature which position is estimated iteratively

at different scales by the minima of the error function.

The LK tracking is performed from frame-to-frame independently in the left and the
right views, without any stereo and scene rigidity constraint. Then, the tracked features

in both views at ¢ are associated using the Alg. 2.4.3 presented in section 2.4.1.
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Figure 2.20: Tracking Features in stereoscopic images

Subsequently, the algorithm keeps only those tracked features who have been stereo
associated at t in the same way as they were associated at ¢ — 1. This last stereo
matching time invariance aims at ensuring the consistency of the observed features
(i.e. consistency check). This procedure is depicted in Fig. 2.20 and summarized in
the Alg. 2.1.

Algorithm 2.1 Stereo Feature Tracking

Input: - Input parameters of the feature-based stereo matching algorithm 2.4.3
- Pyramid levels (typically 3 levels for a 320 x 240 pixel image resolution)

Output: - Features localized in two successive stereo image pairs
- Sparse optical flow

» Extract key features in stereo view at time t — 1

» Perform the feature-based stereo matching detailed in Alg. 2.4.3

» Track features from left and right view independently

» Perform stereo association of the tracked features at time ¢

» Check tracking consistency over time regarding to the stereo feature association

2.5.2 Multiple View Parametrization for Ego-motion Estima-

tion

In order to estimate the 3D motion of a SVS in space, the multiple view transfer
formalism is extended to the four views. Four vantage points are obtained considering
the moving SVS which observes a static scene at two succeeding times. Under this
conditions, all the observed views must satisfy the engendered quadrilinear relations
independently of the scene structure. This fact can be verified through a stereo warping
operator, proposed by Comport et al. [CMRO07], able to transfer with sub-pixel accuracy

any corresponding point observed in a stereo image pair to a next one over time.

Consider a temporal framework composed by two rectified stereo images sampled at ¢t —
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1 and t, where t designates the current sampling index as depicted in Fig. 2.21. The
left and right images acquired at t — 1 are adopted as the reference views and are noted
respectively I* and I'*. In these reference frames the keypoints set are noted as p* =
{pi,...,p5 ..., piteFand p* = {p™1,...,p", ..., P"s} € I where p; and p’*; des-
ignate the homogeneous image coordinates of a stereo corresponding point. Accord-

ingly, the left and right images acquired at ¢ are referred to, as I"” and I".

The 3D motion of the SVS between two sample times is modeled by a rigid transfor-
mation (i.e. rotation-translation composition) between an orthonormal frame S(¢ —1),
located in the middle of the SVS baseline, and its corresponding position at ¢, S(t).
This transformation is noted in the following as S~V [Aw, AV] s( defined in the spe-

cial Euclidean group SE(3).

Figure 2.21: Quadrifocal warping

Based on the above framework description, the location of any reference stereo key-
points, pf, p”*;, may be efficiently determined in the stereo image pair at time ¢ (i.e. I”

and I"), through a quadrifocal warping function

w(S(t_l)[Aw’ AV]S(t) ) p; p/*i) (247>

where Aw is an axis-angle rotation, Av is a translation vector and the new estimated

coordinates are denoted p! and p!”

.
The properties of such a warping operator, w(-), considerably depend on the choice
of its parametrization. Different parametrization cases were evoked by Comport et al.
in [CMR10]. A first possible parametrization consists in the use of one quadrifocal
tensor defined, for instance, with respect to the left reference camera, C (see upper
left section in Fig. 2.22). This configuration provides a warping operator with a low-
complexity and a simple pixel accuracy. Another considered parametrization consists in
defining two quadrifocal tensors, one w.r.t to the left reference camera, C, and the other
w.r.t to the right one, C’. Contrary to the first case, the latter parametrization, depicted

in the upper right section in Fig. 2.22, provides an ideal sub-pixel warping accuracy

with the drawback of an important number of quadrilinear relations. This approach
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remains the most adapted choice for achieving an accurate 3D motion estimation, even

though it presents high computational cost.

To reduce the number of constraints provided by the two-quadrifocal approach, each
tensor can be decomposed into (or constructed from) a fundamental matrix and two
trifocal tensors as stated in [SWO00],

0yt Q7 = {@Mﬂfj]x Fs, [@Mﬂ?h (2.48)

where Q¥* is a quadrifocal tensor, a fourth order tensor represented by a homogeneous
3 x 3 x 3 x 3 array of elements which connects images points along four views. x is an
index from the set {4, j, k, [} and 0;, u; vary to range over (1, 0, 0), (0, 1, 0), (0, 0, 1).
From Eq. 2.48, the two-quadrifocal tensor approach can be then decomposed in a total

of four trifocal tensors and two fundamental matrices as depicted in lower right section
of Fig 2.22.

—
— —
tC— g I —
A A M M.
t-11 t-11
Simple Quadrifocal Double Quadrifocal
Tensor Tensor
(1t parametrization) (2nd parametrization)
—

[ e T S—
e Reference y

<«— Fundamental matrix
T_ Trifocal tensor 11 L
R .

T_T Quadrifocal tensor

Warping Operator
(Quadrifocal Tensor)

Figure 2.22: Two-quadrifocal tensor approach decomposition

As stated in [CMRI10], the simplified constraint parametrization is constituted by
the tensors relating the camera triplets (C, C’', C") and (C’, C, C"), denoted respec-
tively 7%, 7,7, and the fundamental matrix F34 of (C”, C"), which is equivalent to
F12. This parametrization remains robust to the camera modeling errors and depends

on the unknown motion parameters only, =1 [Aw, Av] S(t) - Thus, the stereo warping

p//k p*il,- 7;]‘/6
[pllln ] - |:pl*ll]7;mn (249)

where [; and [,,, are respectively the covariant representation of the left and right image

operator is given by:

lines passing through the image points p** and p™*!, and perpendicular to the epipo-
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/1m

lar line. The image points p*i, p’*!, "%, p"™ are the contravariant representations of

" p”" P’ p
tation has been omitted for clarity.

""", Here, the subscript index, i, of the homogeneous coordinate represen-

The trifocal tensors involved in the stereo warping operator (see Eq. 2.49) are functions
of the intrinsic-extrinsic SVS parameters and the 3D camera motion. As the motion of
the camera is referenced in a common geometrical frame S(t — 1) (see Fig. 2.23), the
formalism of canonical projective cameras is used. In the following, the computation
of the trifocal tensors is detailed for a calibrated SVS.

Figure 2.23: Frame transformations and ego-motion parametrization considered for the
trifocal tensors computation of the stereo warping operator

Consider the triplet camera views (C, C’, C") associated to the tensor '77 ¥ The 3 x 4
projective camera matrix of C defined in the SVS frame, S(t — 1), is given by:

P = K[“Rs(-1) “tsi—1)] (2.50)

where K represents the left intrinsic camera parameters, CRS(t_l) is a 3 x 3 rotation
matrix and Ctg(t,l) is a 3 X 1 translation vector expressing respectively the orientation
and the position of S(t — 1) in C. The rigid transformation from S(t — 1) to C is
denoted ¢ [R, t]5_1)-

To obtain the desired canonical matrix of the camera C, noted ‘P, let U be an

augmented 4 X 4 non-singular matrix,

(2.51)
01><3 1

4x4

which verifies,

Py = PU = [I5,305,] (2.52)

Hence, the corresponding canonical matrices of the cameras C' and C” are:
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‘P, = P'U with P =K'[“Rsy_ 1) “tsu_1)] (2.53)
‘P = P'U with P"=K[" R 1) tsu 1) (2.54)

where K’ denotes the intrinsic parameters of the right camera,®’ [R, t] S(t—1) the trans-
formation from C’ to S(t—1) and ¢" [R, t]5(;_1) the transformation from C” to S(t—1).
Recalling that the notation in ¢P) indicates the canonical camera matrix of C’ with
respect to the camera C. Accordingly, P} is the canonical matrix of C” w.r.t. C. In
Eq. 2.54, the intrinsic matrix of the left camera is used, since the camera parameters

are considered constant over time.

Now, given the triplet camera views (C’, C, C"") and following in a similar manner the
procedure for the first triplet of cameras, the canonical matrices are computed keeping

as a reference the camera C'.

Thus,

Py = PV = I3 0] (2:55)
P, - PV (2.56)
C/P,,,O _ P///V U)Zth P/// — K,[CWRS(tfl) c/"ts(t,l)] (257>
where V is given by,
P
_ (2.58)
Oi1x3 1 ixd

From Eq. 2.54 and Eq. 2.57, one can notice that the rigid transformations ¢ [R, t] S(t-1)
and " [R, t] S(t—1) may be decomposed as functions of the 3D motion parameters of

the SVS as follows:

“Rsiy = “Resp PRsp (2.59)
“tse-y = “Rsp) Dtsaon) + ts (2.60)

and
“Rsiy = “RspSPRsu (2.61)

1

sy = CRepy S Dtsuony +¢ ts (2.62)
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where the only non-constant transformation, S® [R, t] S(t—1)> corresponds to the SVS
ego-motion. All other frame transformations are obtained from the extrinsic calibration
parameters. The defined input motion parameters of the stereo warping operator, w(-),

corresponds to the inverse transformation induced by the ego-motion,

S(t)RS(t—l) = S(til)R(Aw)g(t) (2.63)
SWtg4or) = S(tfl)R(Aw)g(t)(—AV) (2.64)

where R(Aw) means the rotation matrix corresponding to the axis-angle vector Aw.

Once the canonical cameras are estimated, the trifocal tensors can be computed through
the use of Eq. 2.40.

2.5.3 Ego-motion Estimation

The proposed visual odometry method concludes by the formal development of a 3D
motion estimation loop. Such an estimation loop is based on the feature tracking and
the stereo warping operator presented in former subsections. The feature tracking
represents a brightness-based technique providing the image motion measurement (i.e.
optical flow) of a set of stereo features over time. The stereo warping operator, based
on multiple view geometrical constraints, models the motion of the features in the

image plane as a function of the SVS 3D ego-motion.

Assume that a static 3D point is observed from a moving SVS over two sampling
times under ideal conditions (no image noise and no stereo association errors) and is
tracked over time. The feature image location provided by the feature tracking at
time ¢t must match the corresponding feature image location predicted by the stereo

warping operator. This condition closes the estimation loop of the 3D ego-motion.

As the major objective is to minimize the location error between the feature point
location measured by the tracking and the one predicted by the warping operator, the

problem can be resolved as an error optimization problem.

Robust function

Measured features IRLS/ m-estimator Ego-motion
q 7\ M ar o | parameters
motion (= Woichted rosidual » LM Solver >
tracks features over time eighted resiauals

Quadrifocal Warping Operator
estimates the image feature
motion

-~

Figure 2.24: FEstimation loop of the proposed 3D wvisual odometry method

We propose to estimate the 6 degrees of freedom the 3D trajectory followed by the
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stereo vision system. This is done by minimizing a non-linear objective function which
represents the error between the measured image motion, obtained by the tracked

features, and the estimated one, obtained by the warped features.

f(Aw,AV)ZZ[II”’— il +11pi" = pll] (2.65)

=1

where p and p;” are respectively the homogeneous coordinates of the i tracked feature
points at time t. Correspondingly, p/ and p}” are the homogeneous coordinates of the
feature points warped by the estimated motion (see Eq. 2.49). s is the total number

of tracked feature points.

Since Eq. 2.65 is a non-linear objective function, an iterative method of gradient descent
is used to solve it. The Levenberg-Marquard Algorithm (LM) [Mar63, Lev44] is a
standard nonlinear least-square routine able to find the global minimum by performing
a downhill search. This search is guided by the Jacobian matrix of the objective
function. In this way, the 3D ego-motion parameters are iteratively updated, as the
residual error is minimized, until a tolerance threshold or a maximum cycle limit is

reached.

The 3D visual odometry scheme holds in the rigid scene assumption. When this as-
sumption is not satisfied, the estimation loop is broken, hence the ego-motion parame-
ters are biased or completely incorrect. However, such an assumption is not realistic for
intelligent vehicle applications, since the SVS will be immersed in environments charac-
terized by mobile objects, complex backgrounds and occlusions. The relaxation of the
rigid scene assumption can be made through the use of a robust estimator which also
helps us cope with other error sources like image noise, stereo matching and tracking

drifts. It should be noticed that such errors lead to breaking the same assumption.

The robust estimator mitigates the influence of outliers (i.e. feature points) which
break, partially or completely, the rigidity assumption in the 3D ego-motion estimation
process. The solution suggested by Hubber [Hub81] entails the use of the Iteratively
Re-weighted Least Squares (IRLS) algorithm [Ste99]. The IRLS finds the maximum
likelihood motion parameters by solving iteratively the following robust objective func-

tion,

f’robust Aw AV ZW HNH || + HNW /Hm (266>

where f(-) grows sub-quadratically and is monotonically non-decreasing with increas-
ing |r;/o;| (i.e. normalized residuals absolute value) [Hub81]. In addition, ¢7 is the
variance associated with the LM residual values, r;, of each feature point and W is a
weighting matrix computed through a robust M-estimator. For this, at each iterative

step of the IRLS routine, Eq. 2.66 is solved using the LM algorithm with an initial
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motion guess to compute new optimized estimates with the updated weighting matrix.
The initialization parameters may be obtained in different ways. For instance, a naive
initialization method consists in using the ego-motion estimates obtained at t — 1 to
initialize the ego-motion optimization at ¢t. Such a method implies a constant vehicle

speed assumption.

On the other hand, the updating process of the diagonal elements of W' is done through
a weight function p(-),

A(ri/o;
plrfor) = 242 (267
where A(+) is an influence function modeling the outlier rejection tendency.
Different influence functions have been proposed [BT74, Hub81], where those with a
rapid convergence to zero are known as “hard re-descenders” (e.g. Beaton and Tukey
influence function). This kind of influence functions performs an aggressive outlier
rejection and is well suited for computer vision problems [Ste99]. Hence, the Beaton

and Tukey influence function is used in the solution of our motion estimation problem.

The robust routine is summarized in Alg. 2.5.4.

Algorithm 2.5.4 Tterative Re-weighted Least Squares Algorithm

Input: - Keypoints localized in two successive stereo image pairs based on
image feature tracking (at least 30 tracked keypoints are typically used)
- A prior motion estimate ¢~ [Awy, Avolg € SE(3)
- Intrinsic and extrinsic parameters of the stereo vision system
- IRLS convergence criterion — Thrrrs

- Levenberg-Marquard convergence criterion

Output: 6 DOF Ego-motion parameters S¢~—1 [Aw, Av]s(t)

1: » Initialize the LM algorithm with a prior estimate € SE(3)
2: » Initialize weights (e.g. typically W =1)
3: repeat
4: » Solve
argmin (W [I[5 — /1l + 5" — /'l
5: » Extract LM optimization residuals
6: » Compute the variance associated with the LM residual values, o7
7: » Update weights based on the influence function A(-)
8: » Evaluate changes of the optimized motion parameters
9: until satisfy a given criterion Thirrs

Finally, the convergence of the IRLS optimization process is determined based on three

different criteria:
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— The optimized parameters changes: As the M-estimator is found, the weighing
matrix values and the optimized parameters do not evolve anymore. Such changes

are evaluated by thresholding.

— The maximum number of iteration cycles: Since the visual odometry function is
destined for real-time applications, the convergence time should be constrained

by a maximum iteration limit.

— The outlier breakdown point: This is the minimum fraction of outlying data
which may lead to the divergence of an estimate. Its theoretical value corre-
sponds to 0.5 because in presence of more than 50% of outliers, the aberrant
data might minimize the estimator objective function. This criterion for the pro-
posed application implies that more than 50% of the feature points lie on moving

objects or are issued of matching and tracking errors.

2.6 Multi-modal 3D Odometry

In section 2.5, a vision-based only strategy able to provide, in real-time, positioning
estimates has been presented. This method relies principally on a robust optimization
process of the ego-motion parameters, S¢=1) [Aw, Av] oK Being an iterative process,
the optimization needs an initial guess of the motion parameters (see Alg. 2.5.4). In
section 2.5.3, a naive but pragmatical initialization method based on a constant speed
assumption was proposed. A more complex solution could consist in the implemen-
tation of a predictive filter of the ego-motion parameters. As the initial guess gets
closer to the optimal solution, less iterations are needed to converge and the algorithm

performs faster.

CAN-Bus Sensors
Wheel speed and Yaw | planar .

rate measurements | motion | Multi-modal 3D Odometry 3D vehicle
Computes the ego-motion [PO5€,

parameters of vehicle

Stereo Vision
Synchronized and
Rectified images

A 4

3D ego-motion

Stereo images

Figure 2.25: Multi-modal 3D ego-localization scheme

Modern vehicles are equipped with low-cost wheel speed and inertial sensors (WSS and
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gyroscope) which can provide a good planar estimation of the vehicle motion. Such

estimations are, however, quite sensitive to wheel slippage and road conditions.

Hereafter, a cooperative strategy implemented in a tightly coupled scheme between
vision and proprioceptive sensors is detailed. This strategy consists in providing an
initial planar motion guess computed using the proprioceptive sensors in an interval
of time At. Subsequently, the 3D visual motion estimation algorithm is initialized
with this motion guess (i.e. trust convergence region) and then iteratively refined (see
Fig. 2.25).

Figure 2.26: Planar computation of the vehicle trajectory

Let R(t) be the center of the body frame defined at time ¢t — 1. If the sampling
frequency of the gyro and the WSS is high enough (about 40 Hz), the wheel speed can
be considered constant during At, and the planar ego-motion can be approximated by
a circle arc. As illustrated in Fig. 2.26, the planar ego-motion of the vehicle is modeled
as follows [DJ0S]:

0 As - sin(Af/2)
AL«JO = Af AVO = 0
0 As - cos(A0/2)

where Af is the angle obtained by integrating the yaw rate and As is the integrated
rear-wheel odometry in meters. Awy is a vector representing the axis-angle rotation of
the vehicle motion and Avy is a vector representing the estimated displacement of the

rear-wheel axis center.

The estimated motion *¢=1 [Awy, AVQ]R(t) is then considered as a near estimate of
St [Awg, Avg) s(- This planar motion approximation is employed in the first step
of the IRLS routine (please refer to Alg. 2.5.4, line 1).
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2.7 Localization using 3D Visual Odometry

One of the most classical methods employed to localize a robotic structure, consists
in the incremental integration of elementary displacements. This technique is known
as dead-reckoning or deductive-reckoning. In the context of intelligent vehicles, the
relative vehicle localization is obtained following this classical odometry technique as
illustrated in Fig.2.27. In the sequel, the local position with respect to its initial fix
is formalized and an easy-to-use technique for the Geo-localization of the 3D vehicle

trajectory is detailed.

Ego-motion
1 [Aw, Av]g(t) € SE(3)

Figure 2.27: The local vehicle position (i.e. position and attitude) is determined by the
incremental use of the 3D wvisual odometry

2.7.1 Odometry Integration

As odometry relies on an incremental computation of the elementary displacements, let
S(t = 0) be the initial frame position of the SVS, rigidly linked to the vehicle. Every
consecutive vehicle positioning estimate is referenced with respect to this frame. Thus,
the vehicle fix and attitude w.r.t. S(t = 0) are denoted ¢ [q(t), p(t)]which corresponds
to the frame transformation, (=% [q, t]5(). from S(t) to S(t = 0) as follows,

Sq(t) = " qsq (2.68)
*p(t) = SOt (2.69)

where the vehicle attitude is represented by a unit quaternion q(¢) and its 3D position
by a 3 x 1 vector, °p(t). Underlined vectors (e.g. p) denote expanded forms (i.e. p =

0, p]*) for the use of the quaternion multiplication.

The positioning parameters stated in Eq. 2.68 and Eq. 2.69 are updated by concate-
nating the new partial motion estimates, ¢~V [Aw, Av] s(: during the interval of

time At as follows,
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S0t = T aseo) ¥ Avg #T Qs+ gy (271)

where q(Aw) is the unit quaternion corresponding to the estimated rotation of the ve-
hicle ego-motion St~ [Aw, Av] s()» * denotes the multiplication quaternion operator
and q represents the corresponding quaternion conjugate. More details about rotation

representations, compositions and transformations are provided in the appendix A.

2.7.2 Geo-localizing 3D Visual Odometry

Cooperative approaches for ADAS are based on the perception exchange between mul-
tiple vehicles [SAF]. Such approaches aim at enlarging the vehicle field of view by
fusing information provided by other vehicles. For this, it is necessary to reference
the local vehicle perception with respect to a global frame. GPS provides an-easy-to-
exploit global frame, and allows a global localization of the 3D trajectories obtained
through visual odometry. In this study, this Geo-localization is also useful to compare

different localization methods.

Geo-localization consists in two principal steps: Initialization, where the transfor-
mation between the local and the Geo reference is estimated and trajectory map-
ping, which systematically transforms the local vehicle estimated position into Geo-

referenced coordinates.

Initialization

In the initialization step, the attitude misalignment between the GPS and the visual
odometry measurements is estimated. For this, a set of GPS measurements (typically
50 positioning points) is acquired simultaneously while the vehicle position is estimated
through visual odometry in a local frame. For each 3D estimated vehicle position, the
associated GPS fix is matched. Please notice that a GPS receiver only provides 3D
positions. In order to initialize the 3D attitude, the system waits until the vehicle has
traveled a given distance. Once the initialization sets of GPS and visual odometry
measurements are acquired, the data misalignment can be solved as an absolute ori-
entation problem [AHBS87]|. For this, the two sets of measurements must be defined
in a pertinent Cartesian frame. Since the GPS measurements are often provided in
geodetic coordinates in a World Geodetic System (i.e. WGS-84: latitude, longitude and
ellipsoidal height), they can be converted to a Local Tangent Plane (LTP) frame, such
as the East-North-Up (ENU) frame depicted in Fig. 2.28.
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Figure 2.28: FEast-North-Up Local Tangent Plane. Such a frame is usually employed in
projection coordinates like Lambert 93 in France

The WGS-84 to ENU coordinate transformation needs an intermediate conversion
through the Earth-Centered-Earth-Fixed (ECEF) frame as stated in the following,

FCPEp = llh2ece f(*'p) (2.72)
ENUi = PNUqpopp 7O P AN qpepr VY tpopr (2.73)
where ““Yp = [pat), Pon), Pam)]’ denotes the GPS measurement composed of the

ECEFp is the corresponding GPS

geodetic latitude, longitude and ellipsoidal height,
coordinates in the ECEF frame and llh2ecef(-) is the function performing the geodetic
WGS-84 conversion into Cartesian ECEF. The final GPS point coordinates associated

with the visual odometry fix estimation are represented by “*Vp.

The ECEF-ENU rigid transformation, ¥V [q, t],.px , is obtained as follows,

Y apepr = a("""Recer) (2.74)
P pcpr = — (ENUQECEF KFOPE g oy %NV 51E0EF> (2.75)
with
7S(LLHp(lon)) C(LLHp(lon)) 0
PNURgomr = | —c(** Do) - s*Dan) =T Dgon) - sHDgan) (M Dan)
C(LLHp(lan)) ’ C(LLHp(lat)) S(LLHp(lon)) ’ C(LLHp(lat)) S(LLHp(lat))
(2.76)

where q(*NYRpepr), in Eq. 2.74, is the quaternion corresponding to the rotation

matrix E¥URgepr and c(+), s(-) are respectively the cosine and sine trigonometrical
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functions. It is important to highlight that F¢FFt gy is the first acquired GPS fix in
ECEF coordinates, it defines the position of the ENU origin.

The last part of the initialization step consists in determining the attitude misalign-
ment (i.e. rotation) between the ENU and the visual odometry space defined by the
frame S(¢t = 0). Only an attitude misalignment is considered here because the GPS an-
tenna is placed at the SVS frame origin (i.e. midpoint of the SVS). The data mapping

between these two spaces is given by,

ENUB _ENU As(10) S p(t) LENU sty (2.77)

ENUp denotes

recalling that p(t) is a vehicle point fix determined by visual odometry,
the corresponding coordinates in the ENU frame and #"Yqsu—o) is the quaternion
rotation representing the unknown attitude.

Since the GPS positioning points in the ENU frame must match the visual odometry

ones in the frame S(t = 0), the optimal rotation £¥Vqg

(t=0) can be found as a least
squares solution. Based on the Singular Value Decomposition (SVD) of the correlation

matrix of the centered point sets, this rotation is given by [AHB87]:

ENUQS(t:o) = Q(VUT) (2~78)

with

USVT = [SP(O, ceey i, cees t) - 813]3><t[ENUp(07 Tt iv T t) - ENUI_)]?X?: (279>

where the correlation matrix of the centered point sets is a 3 X 3 matrix which is
factored into left and right orthogonal matrices U and V7 and a diagonal matrix
S. °p(0,...,4,...,t) is the set of fix estimates provided by the visual odometry, $p is
the centroid of the point set Sp(0, ..., i, ..., t), PNVUp(0, ..., 4, ..., t) is the point set of GPS

associated fixes and #NVp is its centroid.

This method is quite easy to implement and provides a reliable heading most of the
time. It presents, however, some lacks when the initialization trajectory represents
a straight line in space. In this case, all the degrees-of-freedom are not constrained,
and hence, the estimated heading is a singular solution. Moreover, this method is
not robust to discontinuous or inaccurate GPS initialization trajectory. These special
cases can be coped with the use of a Geographical Information System (GIS) and a

map matching routine.

Geodetic coordinates of the ego-vehicle

This routine is intended to perform an on-line conversion of the visual odometry esti-

mates of the ego-vehicle into a GPS like positioning. It consists in computing, consec-
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utively, the geodetic coordinates, ““'p, of the local vehicle position, p(t), once the

initialization step is finished. Thus,

ENUB _ ENUqS(tZO) S p(t) LENU dst—o) (2.80)
ECEFB _ BCEFG, . (ENU p WFOBE g 4 FOBF ¢ (2.81)
LLHy = ecef2llh(ECEFp) (2.82)
with
"apcer =" Qenu (2.83)

where ece f2llh(-) is an iterative function to convert Cartesian ECEF to geodetic WGS-

84 coordinates.

2.8 Real-time 3D Visual Odometry Algorithm

Stereo Vision CAN-Bus Sensors b GPS Receiver
Synchronized and Wheel speed and Yaw > ‘¥Global positioning
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Keypoints synthesize .
the 3D scene structure M.OFIO.H .
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Feature Stereo Matching Geo-localization Latitude,
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on their appearance similarity of the estimated trajectory ellipsoidal height
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Figure 2.29: Localization system overview

In section 2.5, the sub-routines necessary to the vision-based odometry method have
been detailed. An overview of the proposed strategy shown in Fig. 2.29 and the com-
plete method is summarized in the algorithm 2.8.5. As it has been indicated, the
proposed algorithm has been developed considering a calibrated stereo vision system

which provides rectified images. The main objective is to estimate, from succeeding
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stereo image pairs, the ego-motion parameters representing the 3D trajectory followed

by the SVS.

Algorithm 2.8.5 Real-time 3D Visual Odometry Algorithm

Input: - Synchronized and rectified gray-scale stereo images (320 x 240 pixels resolution)
- Intrinsic and extrinsic parameters of the stereo vision system
- Keypoint detector, typically SURF features
- Template correlation size (usually defined for 9 x 9 and 11 x 11)
- Dynamic disparity interval
- Epipolar alignment error tolerance (typically +2 pixels)
- ZNCC minimum acceptable value (typically 0.7 to 0.8)
- Pyramid levels (typically 3 levels)
- Min. tracked keypoints for motion estimation, typically 30 feature points are required
- Prior motion estimate (=1 [Awy, Avolgy € SE(3)
- IRLS maximum iteration cycles (typical value 8)

- Levenberg-Marquard maximum iteration cycles (typical limit 60)

Optional inputs:
- Planar motion (typically provided by WSS-Gyro measurements)

- Global positioning measurements

Output: - 6 degrees-of-freedom (DOF) Ego-motion parameters =1 [Aw, Av]s(t)

- Locally referenced positioning in Cartesian coordinates

Optional outputs:
- Geo-referenced positioning in WGS-84 coordinates (latitude, longitude, altitude)

1: while Data acquisition do

2 » Acquire a new rectified gray-scale stereo image pair

3 if Initialization routine then

4 » Keypoint extraction from reference views (I* and I'*)

5: » Load left and right reference key feature sets (p* and p™*)

6 » Associate keypoint sets {p*, p’*}s using the stereo matching algorithm 2.4.3

7 end if

8 if Tracking routine then

9 » Track the reference stereo features {p*,p*}s to the current stereo view using

the pyramidal Lucas-Kanade algorithm
Begin IRLS Optimization routine:

10: if Enough stereo features are tracked then

11: » Initialize the LM algorithm with a prior estimate S~ [Awy, AVO]S(t)
12: » Initialize weights (e.g. typically W =1)

13: repeat

14: » Solve
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argmin (W [II5 — 7l + 15" — /"Il

15: » Extract optimization residuals and update weights
16: » Evaluate changes of the optimized motion parameters
17: until Optimized motion parameters are not stable AND

Maximum iteration limit is not reached AND

Outlier breakdown point < 0.5

18: else
19: » Re-initialize algorithm, go to line 3
20: end if

End IRLS Optimization routine

21: end if
22: Swap all t — 1 and t variables
23: end while

2.9 Experiments

Several experiments have been carried out to validate the proposed 3D visual odom-
etry method and to analyze and quantify the accuracy of the method with respect
to other sensing techniques. Following the description presented in section 2.5, the
3D visual odometry method was implemented in C/C++ using Intel’s OpenCV tool-
box [Ope, BK08] and the Levenberg-Marquardt nonlinear least squares algorithm im-

plementation, levmar, [Lou].

3D Simulated Trajectory

Initial Position of the
Stereo Vision Camera

Figure 2.30: SVS trajectory in a simulated scene

In the sequel, experimental results of a first test under simulated conditions and two

other tests using real data are presented.
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2.9.1 Simulation

During the development of this work, it was not so easy to find an error function
which lets us calculate a good motion estimation by ensuring an affordable time of
convergence for real time execution. For this, we started by carrying out a test using
data that simulates quasi-urban conditions, such as the acquisition frequency, the image

resolution, the 3D inter-frame motion and the presence of static and dynamic objects.

The considerations which were taken into account in the simulation model correspond
to a stereo pair image resolution of 320 x 240 pixels at an acquisition frequency of
15fps. In order to generate the synthetic stereo images (see Fig. 2.31, upper stereo
image pair), the 3D camera motion was estimated as a function of the vehicle velocity
curve and the camera acquisition frequency. The range of the applied 3D ego-motion
varies between a minimum of 0.27 ¢m and a maximum of 0.92 cm. These conditions
simulate respectively vehicle speeds between 15 Km/h and 50 Km/h along a 66 m
trajectory (see Fig. 2.30).

Figure 2.31: Simulation test with outliers

For the simulation test, a total of 100 visible simulated feature points were provided to
the algorithm for each ego-motion estimation. A first trial have consisted in estimating
the 3D trajectory followed by the SVS under ideal conditions. Thus, the features points
provided to the algorithm corresponded to static points only, which were projected onto
the image plane without noise and no stereo matching errors. In the upper section
of Fig. 2.32 is illustrated the obtained trajectory results showing the quality of the
optimized error function. The convergence of the LM algorithm was achieved even by

initializing the ego-motion parameters to zero.
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Figure 2.32: Obtained trajectory in simulated conditions (Blue: Ground truth trajectory,
Green: Estimated trajectory)

A second trial was performed in order to validate the robustness of the algorithm by
having 20% of the features coming from dynamic objects in the simulated environment,
and adding some random stereo-feature mismatching and a one pixel o noise. The

obtained 3D trajectory is shown in the lower section of Fig. 2.32.

The results which are illustrated in the lower image pair of Fig. 2.31 show that the
algorithm converges into a motion solution which minimizes the optical flow error

generated by the static environment.

Fig. 2.33 shows the error time evolution computed along the obtained trajectory in the
second trial. This curve lets us observe a drift, generated particularly in the trajectory
sections where there is an important rotation motion (i.e. 90° turns). This is because
important ego-motions need more iterations for convergence. Note that the number of

iterations is constrained here because of real-time execution.

The error evolution curve illustrated in the upper plot of Fig. 2.33 shows the error
percentage computed with respect to the traveled distance. The absolute positioning
error shown in the lower plot of Fig. 2.33 is computed as the euclidean distance between
the ground truth and the estimated fix. As expected, the absolute positioning error
increases with distance as the estimation errors are continuously integrated. This
constitutes the main drawback of dead-reckoning techniques. The simulation results

are, however, meaningful for a first method validation.
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Figure 2.33: Error evolution in simulated conditions

2.9.2 Real data results

Experiments using real data were carried out thanks to the experimental vehicle Car-
men of the Heudiasyc laboratory. In this section, two different trials using real data
are reported. During both trials the vehicle was equipped with a 47cm-baseline Videre
Stereo Vision System installed at the top. This system is composed of CMOS cameras
with 4.5mm lenses that were set up to acquire gray-scale images with a resolution of
320 x 240 pixels.

The visual odometry algorithm was always set to extract up to 300 SURF keypoints and
to track them over time. The reinitialization condition is triggered when there are no
more than 30 features available for the ego-motion estimation. The IRLS optimization
routine was limited to 8 iterations and the LM nonlinear minimization to 60 iterations

for the real-time execution.

In order to compare the visual odometry results to other localization techniques, the
data provided by a Septentrio PolaRx2c¢c GPS receiver and the vehicle proprioceptive
sensors (WSS-Gyroscope) were also accurately logged (i.e. time stamped data). Here-

after, the obtained results are presented and discussed.

Experimental trial in open loop trajectory

In the first trial, the vehicle was driven over a 790 m long trajectory in a quasi-urban
environment characterized by moving objects (i.e. vehicles, cycles, pedestrians), some
buildings and trees. The vehicle velocity was less than 60 Km/h. The video sequence
was recorded at a frequency of 15 fps in sunny exposition conditions. During the
experiment, GPS and proprioceptive data were also acquired simultaneously by the
same multi-threaded application. The execution performance illustrated during this
trial has been obtained on a Intel Core 2 CPU 2.1 GHz running under Windows XP
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OS.

Figure 2.34: Feature points during real-time odometry estimation,B: Outliers O : Inliers

In order to verify the results coherence regarding the stereo feature matching and
the motion segmentation of the observed scene, the feature points were indexed and
displayed in the stereo images. As shown in Fig. 2.34, the indexation reveals a good
stereo matching performance, since almost all of them are correctly associated. The
shown classification of the stereo features identifies the inliers, used during the ego-
motion estimation, by empty squares. It is also worth to mention that almost all the
stereo feature points lying in the moving vehicle are classified as outliers (i.e. filled

squares) by the robust function.

As can be noticed in Figure 2.35, some objects like tree leaves are an important source
of possible mismatching. This sort of objects increases the test scenes complexity. In

spite of that, the rejection of moving objects has performed quite well.

I Left camera = |EI|£|[ I Right camera )
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Figure 2.35: Feature points lying in moving objects B : Outliers (1 : Inliers

No ground truth localization system was available during this experiment, particularly

for the attitude estimates. Therefore, we only report here the comparison of the visual
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odometry trajectory with the GPS receiver (Fig. 2.36 and Fig. 2.39) and the propri-
oceptive sensors (WSS-Gyro) 2D Odometry (Fig. 2.36). As the key characteristic of
any dead-reckoning system is its drift with respect to the traveled distance, the low
accuracy (absolute error) of the GPS used here is not an issue. Since the GPS was used
in differential SBAS (Satellite Based Augmentation System) mode, the atmospheric ef-
fects that often bias the pseudo-ranges are subject to slow variation. So, the precision
(relative error) is very good in open sky conditions (less than one meter typically).
Therefore, using a GPS for comparison is meaningful, even if there are still multi-path
effects and satellites outages that introduce jumps. It is important to keep in mind that

this approach does not allow estimating the real errors, only differences are computed.

0 5" II CAN Odometry
= GPS trajectory
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Figure 2.36: 2D estimated trajectory using GPS, proprioceptive sensors and visual odometry

The visual odometry position was initialized using the first GPS point and the at-
titude using the median of the first 50 points headings as explained before. Taking
into account the total trajectory distance of the trial, planar (x-z plane) and vertical
(y-axis direction) drifts of 3.9% and 0.25% were obtained respectively, using the visual
odometry. These differences correspond to the ratio of the Euclidean distance with re-
spect to the GPS position over the total traveled distance. The 2D-odometry difference

evolution is shown in the Fig. 2.37.



100

Chapter 2: Vision-based Odometry

=

=20

=

v

5

&

£ 101 -

% \ﬁmp/,ﬁﬁf\NMNW\Nr\/’JﬁfALJA\mVNN‘\r\aMw
% 0 100 200 300 400 500 600 700 800
_ Traveled distance [m]

E 40

g

g Ve
2 Vb 2

- ” TN

Z

[t

[=)

100 200 300 400 500 600 700 800
Traveled distance [m]

Figure 2.37: Difference evolution between GPS and Visual Odometry

These results highlight a quite acceptable visual odometry drift. Different causes can
lead the visual odometry to drift. The principal cause occurs when, in the observed
scene, the number of features lying in vehicles exceeds the feature points in the static
scene. For instance, in case of a total or partial occlusion of the SVS field of view
by a mobile object (i.e. more than 40% of the image), there might be more feature
points on this object than in the static scene. Thus, the algorithm would estimate the
vehicle motion with respect to the mobile object. Such situations break the principal
assumption of the robust optimization process. This constitutes the main drawback of

the sparse approach.

Figure 2.38: Observed drift caused by critical conditions

Another observed drift source is caused by the aperture problem in the tracking routine.
Fig. 2.38 shows a zoomed part of the trajectory reconstructed in Fig. 2.36, highlighting
a drift start. By observing the left stereo corresponding image, one can see that some

feature points present a sliding motion (left sidewalk) and a few of them lie on poor
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texture surfaces, such as the reflective pattern on the top-right building. These features
induce a bias on the optical flow. In addition, the non-uniform feature dispersion on
the image plane also decreases the precision of the motion estimation.

During the trial, each reinitialization of the algorithm was logged as well. These data
allow us to detect situations where very few points were tracked in the process. Please
note that the lack of tracked feature points represents a situation which did not ap-
pear in the simulated conditions. This phenomenon is a crucial issue in real condi-
tions. Fig. 2.36 shows in green crosses when the visual odometry is reinitialized for
re-extracting new feature points. As expected, the algorithm re-initializes frequently

in turns because the observed feature points go easily out of view.

- GPS trajectory
* Visual Odometry |

X (m)

Figure 2.39: 3D estimated trajectory (local frame coordinates)

Even if one can conclude that visual odometry does not improve the 2D accuracy
compared to WSS odometry on good quality roads, it should be noticed that it provides

the full 6 degrees of freedom which is not possible using wheel-based odometry.

Fig. 2.39 plots the 3D estimated trajectory obtained using visual odometry and GPS.
The GPS jumps, particularly visible in this plot, are mainly due to the satellites
changes. Omne can notice that the 3D trajectory, obtained using the visual odome-
try, is quite smooth. This is an interesting feature for integrity monitoring since a
smoothed prediction of the pose is crucial to eliminate GPS outliers. Additionally, the
altitude drift is very small (less than 0.3% of the traveled distance) which is a very
good quality.

Finally, Fig. 2.40 presents a time execution histogram of the algorithm revealing that
convergence time is not constant. This is caused by the non homogeneous vehicle
motion and by the variability of scene complexity (i.e. outliers/inliers ratio). However,
approximately half of the ego-motion estimations converged in less than 100 ms, this

being a good real-time performance for a non optimized implementation.
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Figure 2.40: Computation time histogram for the complete sequence

Closed loop experiment

The goal of the second trial is the validation of the multi-modal odometry strategy
(i.e. Visual Odometry + proprioceptive sensors), thus, the reported results were ob-
tained using the technique described in section 2.6. The second trial conditions were
different w.r.t. the first one, since the vehicle was driven in an urban environment in
snowy conditions. The observed scenes were composed of low-rise buildings, trees and
moving objects. The followed trajectory describes a 227m clockwise closed loop with
pedestrians and vehicles. Low-textured scenes (e.g. rural environments and parking
lots) were not included in this test. The vehicle speed was around 30 Km/h and the
video sequence was recorded at 30 fps (i.e. maximum inter-frame distance of 27cm).
As the image frequency acquisition has been increased, the data management required
more computational resources. This is why an Intel Core Duo Quad CPU 3.1 GHz

running under Windows XP OS was used to compute the reported results.

A first interesting result is illustrated in Fig. 2.41 where a set of feature points lying
on a pedestrian are classified as outliers. This figure shows that even a small image

motion induced by a pedestrian can be detected by the robust optimization scheme.

_] =100 ]

Pedestrian

Figure 2.41: Outlier rejection of keypoints lying on a walking pedestrian
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Two other examples of the rejection of the outlier feature points lying on moving
vehicles are illustrated in Fig. 2.42. Since the outliers are principally located on moving
objects, this information may be useful for a mobile object detector. However, such an
application would require a dense feature tracking to ensure a continuous and reliable

detection with a higher computational cost.

Figure 2.42: Outlier rejection of feature points lying on moving vehicles

Some complicated situations were observed during this test. Fig. 2.43 shows a 90°
turn where just a few feature points are tracked. In addition, almost all of the tracked
features are concentrated in the upper left image section providing a poor geometri-
cal conditioning. The geometrical conditioning can not be improved, here, using a
bucketing technique since half the image is poorly textured (i.e. road surface). This
particular scene induced an important rotation error which was integrated all along the
trajectory, thus increasing the final altitude drift significantly. This kind of situation

can be avoided by a temporal filtering.

One can also highlight that even if the robust function can detect the stereo matching

errors, it could also miss a few of them as shown in Fig. 2.43.

- =100 x| =10/ x|

Figure 2.43: Complex scene configured by a 90° turn



104

Chapter 2: Vision-based Odometry

The multi-modal 3D odometry trajectory, the WSS-Gyro based odometry and the
GPS positioning were referenced in the same 3D space using the initialization method
detailed in section 2.7. The 3D view of the complete closed loop trajectory is illustrated
in Fig. 2.44.

—— 3D Multi-modal odometry |-

— GPS positioning

— WSS-Gyro based odometry | -
,,/ i /,' /,‘(' mw mmmmmmm \\

50 0

Figure 2.44: Comparison of three different trajectories reconstructed from GPS, WSS-Gyro
based odometry and multimodal 3D odometry. The 3D view of the reconstructed trajectories
shows that multimodal 3D odometry is a complementary solution which can be used when
GPS information is unreliable.

The GPS performance during this trial was significantly decreased because of multi-
paths and satellites outages. As shown in Fig. 2.44, the GPS positioning (i.e. red
curve) was unreliable during half of the test sequence. A comparison between the GPS
positioning and the multi-modal 3D odometry technique is provided through an aerial

view of the estimated trajectories projections (see Fig. 2.45).

odal 3D Odometry

7 l‘ N '
“ % _starts here
v |

Figure 2.45: Aerial view of the GPS and multi-modal 3D odometry trajectories projections
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From the figure, it can be verified that the precision of the GPS is reduced when the
vehicle is close to the buildings. In the right side of the same figure, the multi-modal 3D
odometry is Geo-localized. For this, the first segment of the GPS was used to initialize
the algorithm. Once the system is initialized, the estimated vehicle fix is projected

directly onto the map providing a smooth and reliable positioning.

The bird view of the estimated trajectories in Fig. 2.46, shows the gaps at the loop
closing point. The 2D trajectory obtained using the WSS-Gyro based odometry (i.e.
blue curve) achieves an acceptable drift representing 1.84% of the total traveled distance
(i.e. 4.17 m for a closed loop). The total drift of the multi-modal strategy, computed as
the Euclidean distance between the starting and the final trajectory position, was 1.9%
of the total traveled distance. However, the drift of the planar trajectory projection
of the multi-modal algorithm corresponds to 0.58% only, which represents an error 3

times lower than the one achieved by the WSS-Gyro based odometry.
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‘ | —— 3D Multi-modal odometry
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Figure 2.46: The bird view of the 8D trajectory shows the improved results of the multimodal
3D odometry. The circled region evidences GPS jumps when visual odometry provides smooth
estimates.

The execution histogram which presents the convergence time of the multi-modal odom-
etry algorithm is shown in Fig. 2.47. The computation time was reduced considerably,
not only due to the more powerful computational resources but also thanks to the good
initialization parameters provided by the planar odometry estimates. This initializa-
tion technique moderates as well the convergence variability observed during the first

trial. The video sequence duration takes 90 seconds at 30fps providing 2700 stereo
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pairs, where only about 2270 stereo pairs were processed. Some image pairs were
skipped because the acquisition and the computation threads are independent. In this
way, the implementation ensures that the algorithm receives the most recently acquired

image pair.
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Figure 2.47: Computation time histogram of the multi-modal odometry algorithm conver-
gence along the complete video sequence

In summary, these results show that the cooperative strategy helps coping with errors
of the WSS-Gyro based odometry. Thanks to the planar motion initialization, which
avoids any local minima solution, this technique improves the visual odometry perfor-
mance in critical situations like high rotational speed in 90° turns and roundabouts.
Additionally, the outlier rejection is enhanced and the minimization iteration cycles
are reduced. The 3D ego-localization system performs quite well in situations when

GPS can not provide a precise position.

2.10 Conclusion

A real-time 3D visual odometry approach has been presented and experimentally stud-
ied. The core of the method combines, in one non linear criterion, the ego-motion
estimation based on sparse optical flow and the rigidity scene constraints provided by

a quadrifocal tensor warping.

An experiment under quasi-urban conditions illustrates the good performance of the
visual based only odometry with respect to GPS and proprioceptive ones. The obtained
real-time results show a good trade-off between precision and execution time thanks
to a sparse feature approach. This experiment revealed, however, that an important
degradation source of the visual odometry performance is due to high rotational speed

motions like 90° turns and roundabouts.

To mitigate the influence of these critical conditions and the reduction of the drift, a

multi-modal 3D odometry strategy was proposed. For this, the visual based odometry
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was tightly coupled with 2D odometry obtained through the use of proprioceptive
sensors (WSS-Gyro). This multi-sensor technique was evaluated and the obtained
results in a second experiment under urban conditions have confirmed the effectiveness
of the approach. The proposed method has achieved, thanks to closed loop trajectory
test, 3 times less drift compared to WSS-Gyro based odometry. This multi-modal
approach constitutes a complementary solution when GPS information is unreliable.
The management of altitude drifts and the estimation of the localization uncertainty

constitutes the main prospects of this research.
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3.1 Introduction

Advanced Driver Assistance Systems (ADAS) can improve road safety thanks to ob-

stacle detection, warning and avoidance functionalities. In this context, the precise



110

Chapter 3: Multi-Modal Object Localization and Tracking

knowledge of the existence and the location and speed of the surrounding mobile ob-
jects constitutes a key information. Since the whole scene perception is provided from
a moving vehicle, this problem is not trivial and entails the necessity of a precise

ego-motion estimation to achieve good performance.

In the literature, different approaches address the object localization and tracking
problem. Robotics approaches can be used to model the static part of the environment
[DWB06] and to simultaneously detect moving objects [WTH'07]. These approaches
are principally intended to retrieve a detailed environment representation or an accurate

location of the mobile perception platform at any time.

Another approach, more suitable for urban navigation, was presented by Leibe et al.
in [LCCGO7]. This method makes use of a stereo vision based strategy to obtain
a 3D dynamic map using a Structure-from-Motion technique and image object de-
tectors. Alternatively, a Multi-layer lidar (for short ML lidar) alone can be used to
estimate the ego-motion and to detect mobile objects thanks to a dense 3D grid-map
approach [MONO09]. In [SHRE00],[BCG*09] and [LRGAO05] real time sensor-referenced
approaches (i.e. ego-localization was not considered) were examined and implemented
using multi-sensor systems showing the complementarity of lidar and vision systems.
Moreover, the high level reliability achieved by this multi-modal perception concept

makes it suitable for automotive applications.

In the aim of tracking objects as they move in space, a world-centric approach presents
interesting properties once the ego-localization is estimated accurately (typically up
to 1 cm per speed unit in Km/h). The tracking performance can considerably be
increased, since the dynamics of the mobile objects are better modeled. This approach

also simplifies the tasks involving scene understanding and ADAS implementation.

Ego localization can be achieved using proprioceptive exteroceptive sensors [CNPCO08].
Coupling stereo vision and inertial measurements, a precise vehicle pose estimation can

be achieved in real time as already presented in section 2.5.

Object tracking for ADAS is still an active research domain. Indeed, urban environ-
ments are characterized by complex conditions: moving and static objects, mobile
perception, varied infrastructures. Object representation [PT09, NKLO08|, association
methods [SB00], motion model and tracking strategies [LHLO8|] are key points which

have to be considered with a particular attention.

Consequently, this chapter presents the formalization, the examination and an experi-
mental validation of a multi-modal object detection, localization and tracking system.
To this end, the system makes use of vision, lidar and inertial sensors. The outline of
this approach is as follows: Firstly, objects are detected using a multi-layer lidar that is
simultaneously used to identify a zone of interest (called maneuvering window) which
reduces the complexity of the object-track assignment process. Then, only the objects

lying within the maneuvering window are considered and localized w.r.t. a fixed refer-
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ence (i.e. world frame) by compensating the motion of the ego-vehicle. Subsequently,
objects are tracked in this world frame. The vehicle pose is obtained through the pro-
posed localization technique presented in section 2.8 which provides reliable and good

enough estimates.

The outcome of the proposed system consists in a sparse environment representation
composed of kinematic states of the surrounding objects and the ego-vehicle, arranged
in a dynamic map. The integrity of this map is then increased by the means of stereo
vision that confirms or not the existence of the tracked objects. This self-assessment

functionality has to manage the asynchronicity of the different sensing modalities.

The chapter is organized in four major parts: Object tracking, visual confirmation,
multi-rate information management and experimental results. Section 3.2, details ob-
ject detection, modeling and tracking issues. The visual track confirmation technique
is then presented in section 3.3. The methodology employed to deal with the non-
synchronicity of the sensing functions is presented in section 3.4. Finally, section 3.5

provides experimental results of the proposed concept in real conditions.

3.2 Object Tracking

This section describes a multi-modal perception strategy, able to estimate the planar
trajectory of the surrounding objects as they move in the scene. This is made possible
by integrating the spatial information (i.e. range measurements) provided by the lidar,
and refining, over time, the knowledge of the detected objects dynamics. This function
is formalized as a Multiple Target Tracking (MTT) problem which is addressed through

a state-space filtering of the kinematic object states.

Multiple-Target Tracking (namely object tracking in the following), is a sequential
process where a set of objects of interest are “followed”, in a specific region of the field
of view (maneuvering window). For this, input data coming from a single or multiple
sensing sources, are necessary. Before going further, the concepts of object and track
have to be defined. An object is a subjective representation located in space from a
single measurement. For the particular case of a lidar, the kinematic properties of an
object are unknown. In contrast, a track defines the kinematic state (i.e. location and

speed) of an object which has been observed multiple times.

The sensing information consists in a set of incoming objects, which parameters are
measured and used for the update of existing tracks or for the creation of new ones.
The state of a track can only be updated if it is associated with (or assigned to) a
newly observed object. The track process cycle is ended by a prediction stage of the

tracks states, to the arrival time of the next set of incoming objects.

The tracked objects states, provided by this multi-modal perception function, are in-

corporated in a fixed-referenced model of the surrounding environment. The proposed
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perception process performs in a fixed reference frame, since the precise mobile platform

pose is estimated by visual odometry as detailed in section 2.5 of chapter 2.
The tracking strategy is outlined in five major parts as illustrated in Fig. 3.1: Object
detection, maneuvering window identification, track prediction, object-track associa-

tion and updating.

Mu(l)til-modal 3D Object Detection and Man;;:;:i}?famzdow Object-track Association
ometry |, Localization — > X Assigns new detected
3D Ego-Vehicle Detects lidar objects and Identifies a region where —> . "
A . . ol 5 . object reports to existing
positioning incorporates them in a potential interesting
. . track hypotheses
MI-lidar fixed-reference frame targets might be found
Scan points (World)
A4
Updating

Track Prediction
Predicts a priori track
states from a kinematic
evolution model

Associated tracks states

«— are corrected and new

track hypotheses are
created

Tracked objects states

Figure 3.1: The Owerall Object Localization and Tracking Strategy consists in an iterative
filtering scheme structured in five stages: object detection, maneuvering window identification,
track prediction, object-track association and updating. This strategy makes use of lidar scan
points and visual odometry and provides in output a set of tracked objects referenced to the
world frame.

3.2.1 Object Detection and Localization

Object detection is the first step that grants access to an automatic scene analysis.
This process consists basically in a segmentation of the range measurements pro-
vided by the ML-lidar. Several works have addressed object detection using laser
range data, coupled with classification algorithms, as part of the association process.
In [NKLOS8], geometric predefined features combined with a Douglas—Peucker algo-
rithm [NMTS07] (split-n-merge) have been used to detect and classify objects. This
technique, however, requires prior object knowledge. Multi-modal techniques, perform-
ing a spatio-temporal segmentation of the sensing data, can also be used to provide an

enhanced scene analysis [KZD04].

In this study, object detection does not make use of any classification step. Objects
are dealt with in a generic context. The multi-layer scanner measurements are filtered,
by discarding impacts which have been detected as lying on the road plane surface
(filtering details are provided in section 3.2.2). The filtered ranging measurements of
each ML-lidar scan are then segmented (clustered), using a technique similar to the
one proposed by Dietmayer et al. [DSS01]. In this way, the object detection function
delivers a set of surrounding objects, based on a 3D Euclidean inter-distance clustering.

The output of this perception function is illustrated through a bird-eye view of the
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segmented scan in the right-hand side of Fig. 3.2 with its corresponding scene image
in the left-hand side.

b
ML lidar

f

Figure 3.2: The ML lidar-based object detection delivers a set of surrounding objects, based
on an efficient 3D FEuclidean inter-distance clustering. A bird-eye view of the segmented scan
1s illustrated in the right-hand side and the corresponding detected objects are referenced in
the left-hand side image.

The detected objects are characterized by their planar location (i.e. *Z = 0) in the
lidar frame £, and their dimension (i.e. bounding circle) as depicted in Fig. 3.3. Even if
the multi-layer technology provides a vertical FOV (i.e. 3.2° coverage) of the scene, its
4-layer resolution is insufficient to observe objects heights. This is why the object size
is computed from an orthogonal projection of the 4-layer data onto the plane *Z = 0.
The circle bounding the object can be extended to a cylinder using a given object
height.

Lidar imnpacts centroid

= x ~.

%ML lidar layers ~ Bounding cylinder

—ML lidar

Ego-vehicle

Figure 3.3: The object model representation (in space) of the ML lidar objects is defined by
a bounding circle of the segmented scan points and its planar location (i.e. “Z = 0) in the
lidar frame L. The bounding circle object representation can, be extended to a cylinder using
a given object height.

The imprecision and the uncertainty of each detected object are modeled through a



114 Chapter 3: Multi-Modal Object Localization and Tracking

global detection confidence indicator, which relies on the following criteria [Fay09]:

— The ability of the ML lidar sensor to detect vertical objects with respect to its

range position.

— The beam divergence, which worsens the measurement precision, particularly in

situations of a non perpendicular incidence angle.

— The theoretical maximum number of laser impacts (per layer) lying on a detected
object. This factor can be computed as a function of the object dimension, the

detection range and the laser scanner resolution.

For the implementation details of these criteria please refer to [Fay09, p. 124-127].

As the objects are detected by the ML-lidar, their reported positions are locally refer-
enced with respect to the lidar frame £ , which is rigidly linked to the mobile platform.
The object motion in space, observed from a moving platform, follows, most of the
time, a non linear behavior. This phenomenon is particularly noticeable in turns as

depicted by Fig. 3.4 the observed trajectory of a pedestrian in a crosswalk.

Often, this non linear motion is frequently linearized, inducing important errors in the
tracking process. Such errors can be reduced if the object motion is isolated from
the moving platform motion: The tracking performance is increased by modeling the
dynamics of the mobile objects with respect to a fixed-reference frame. This relies on

a precise object localization of the ego vehicle.

1 2 3 4 5

Qeees0 e e 0 Qe erOree 0 Ol
Linear Pedestrian trajectory Non-linear observed
. Pedestrian trajectory
L>-. 2,

\/v Ego-vehicle 4 5
. trajectory
V\/‘ . §
- \f Ego-centered
- perception
. z

Fixed-referenced motion Mobile-referenced motion

Figure 3.4: Ezxzample of the observed motion of a pedestrian in a crosswalk while the ego-
vehicle turns, using a fived-reference (left) and a mobile referenced approach (right).

Given the above, the proposed strategy consists in performing the tracking process
in a fixed frame. Reported object fixes are transferred into a world frame W for
further processing, by compensating the induced motion (3D ego-motion) of the mobile

platform.
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For instance, let £§(¢) = [z y 0]" be the coordinates of a detected object at time # in
the lidar frame. Its corresponding localization in W can be computed as follows, by

composing two rigid transformations:

¥(t) = (Sac 30+ ac) +° t, (3.1)
Wi(t) = (WCIS(t) xS y(t) i 513@:)) +W tsw (3.2)

where Sy (t) and "y (t) are respectively the coordinates of the detected object in the
SVS and in the world frame at time ¢. The transformation denoted as © |
to the multi-sensor calibration between the SVS and the ML lidar frames which has

been determined through the extrinsic calibration process. Additionally, ¥ [q, t] S

q, t], refers

represents the vehicle pose to be compensated in order to localize the objects in the
world frame. This transformation! denotes implicitly the vehicle positioning at ¢ in W.

The object localization process is summarized in Fig. 3.5.

Only the detected objects which are included in a zone of interest are localized w.r.t.
the world frame using Eq. 3.1 and 3.2. This zone is dynamically detected and used as
a global tracking gate as detailed in the following.

Multi-modal 3D Object Detection and Localization
Odometry |y Detects lidar objects and incorporates them in a fixed-reference frame (World)
3D Eg.o.—Ve.hicle Lidar to SVS SVS to World
positioning frame frame W3
L5 () — St > t
ML-lidar | | y(t) Sq, t], —S( )y(t)—> Wiq, t]S(t) Y( ) ' .
Scan points Detected objects in

world frame

w “« T .. s
k-\, > Kv [a, t]S(t)
Wl tlsgony™-

Detected object

\ Ego-vehicle

Figure 3.5: The localization of the detected objects in the world frame is done by compensat-
ing the vehicle motion. For this, the coordinates of the detected objects are firstly transferred
to the SVS frame making use of the extrinsic calibration parameters. Then, the object is
localized in the world frame compensating the estimated vehicle motion.

3.2.2 Maneuvering Window

Urban environments are complex, dynamic and completely variable. As such environ-
ments can be characterized by the presence of a large amount of static and mobile ob-

jects, the computational efficiency of an object tracker could be considerably decreased.

'In a further section, the detailed computation of this rigid transformation will be provided.
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A key issue here consists in determining objects which constitute potential maneuver-
ing targets and so computational resources can be dedicated mainly to tracks requiring
a particular attention. Moreover, many incorrect observation-to-track pairings can be
avoided. In the literature, the concept of maneuvering window has been widely studied
in aeronautical MTT? applications [BP99]. This concept has been recently proposed
for pedestrian detection applications in the LOVe project (French acronym for Logiciels
d’ Observation de VulnérablEs 2006-2009) [LOV], where this zone is estimated based
on the ego-vehicle state (typically speed and steering angle).

For this study, the 3D observation space is restricted to a Zone Of Interest (ZOI) which
is identified based on the prior knowledge of the scene only. This function provides
the tracking algorithm with the ability to efficiently focus the computational resources
on a maneuvering zone, where collisions might be predicted at appropriate reaction
delays. Fig. 3.6 provides an example of the maneuvering window concept in an urban

environment.

This function was proposed and implemented in real time by Fayad et al. in [FCO7].

The method relies on maxima detection of lidar scan histograms.

Static Object Maneuvering Window

\

\ .7‘
@ Mobile Objects > '—!..3’
0
1'/ V4

~N e‘f‘.‘C\e World frame
BeP w

Figure 3.6: Maneuvering window: This zone of interest aims at determining which ob-
jects constitute potential maneuvering targets. In this way, the computational resources can
be appropriately dedicated to tracks requiring a particular attention and some first unlikely
observation-to-track pairings can be avoided.

A first lidar data filtering is performed not only to improve the ZOI detection but also
to significantly decrease the scene clustering issues. This filtering consists in detecting
the 3D lidar data corresponding to the road surface. This detection is done using the
characteristic pattern observed when the two lower layers intersect the road plane at
different angles as illustrated in Fig. 3.7. The second lidar layer can be predicted based
on the first lidar layer and the geometrical constraints. The measurements belonging to

the road plane are detected and excluded from further processes, when the Euclidean

2 Multiple Target Tracking
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error between the predicted and the measured layer is lower than a predefined threshold.
The pitch angle of the ML-lidar noted p, is estimated by a temporal filtering and
is updated using the detected road impacts. The parameters h (ML-lidar height)

and v (inter-layer angle) are considered known.

ML Lidar p p pitch angle
h  ML-lidar height
inter-layer angle

-

<
“~oo tolerance
Road planée~~__ >

~
S~

First lidar layer ~ S ~\\<</’///’/
Second lidar layer (Predicted) \(\\

~

Figure 3.7: Characteristic pattern observed when two layers of the ML lidar intersect the
road plane. This geometrical constraint is used to identify which scan points lie in the road
plane and to exclude them from further processes.

The maneuvering window is characterized by two local limits in the x-axis direc-
tion of the lidar frame. As illustrated in Fig. 3.8, a 4-layer data scan is projected
onto the “XY plane (see the upper subplot) and provides an easy- to-exploit his-
togram £Y axis (see the lower subplot). Objects like security barriers, walls and
parked vehicles efficiently reduce the maneuvering window. The detected limits are
finally filtered using a fixed-gain Luenberger observer in order to reduce the oscilla-

tions produced by important pitch changes situations [FCO7].
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Figure 3.8: Maneuvering window identification using y-axis histogram of the ML lidar scan
points
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In turns and roundabouts scenarios, histogram peaks may fade out as illustrated in
Fig. 3.9. In this case, the predicted localization of the maneuvering window limits
would not be associated with new observations. Thus, the updating stage of the fixed-
gain filter is not carried out, keeping in consequence the last maneuvering window

estimation.
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Figure 3.9: ML lidar y-axis histogram peaks in turns may fade out. To deal with this, the
detected limits are filtered using a fixed-gain Luenberger observer.

3.2.3 Kinematic Track State and Evolution Model

Once the detected objects which are included in the maneuvering window are local-
ized in the world frame, the tracking system can initialize the kinematic space state
representations of these objects. Such a representation is known as “object state” and
consists in a set of attributes arranged in a vector. The state is associated with its
imprecision represented by a covariance matrix. As the same object is observed several
times, the information, provided by multiple measurements over time, is integrated
and fused in a “track state” with its own uncertainty allowance. These representations

are detailed in the following.

Object and Track State Representations

The choice of the object and the track state representations mainly depends on the
sensing characteristics and the tracking strategy. This choice has to be done relying
on the parameters that have to be observed. This last statement implicitly assumes
the state observability (observability issues are beyond the scope of this study). Here-

inafter, two possible object and track state representations are considered.

A first possible tracking strategy consists in a tightly coupled scheme, where the track

and the vehicle dynamics are stacked in the state vector. This approach is only well
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suited for synchronous systems, since the object and the vehicle dynamics are con-
strained to be sampled (or observed) at the same time in order to be fused. It leads,
however, to replicating the vehicle dynamics measurements for each track state, which

is not computationally efficient at all.

A second tracking strategy consists in a loosely coupled fusion scheme, where the tracks
and the vehicle dynamics are managed independently. This scheme is adopted in this

study, since it allows the management of the sensing asynchronicity.

Consequently, the object state, for the loosely coupled MTT scheme, is defined as
the localization of the detected object. Assuming that the objects included in the
maneuvering window locally follow a planar motion, the object state can be efficiently
reduced to the " X Z components of its Cartesian coordinates in the world frame. With
abuse of notation the object state is represented by Wy(t)(xvz). The uncertainty of the
lidar object localization is modeled through a zero-mean, white, Gaussian measurement

noise with an assumingly known covariance IN.

The track state is denoted by "Wy(t) and is composed of the " X Z plane coordinates,
(z(t), 2(t)) in meters, and the planar velocity (v,(t), v.(t)) in m-s~! stacked in a 4D

vector as follows:

Wy(t) = a(t) =) walt) wult) ] (3.3)

This discrete notation is intended to represent the knowledge of "Vy(t) obtained by fus-
ing all past reports up to time ¢. Additionally to the state parameters, other attributes
are handled in parallel, like the object size in meters (i.e. bounding circle radius) and

the creation and update time-stamps in usec.

Track Estimation-Prediction through Kalman Filtering

Object tracking requires the ability to provide predictions, based on a state space
knowledge, which is capitalized from multiple data samplings over time (i.e. observa-
tions). This ability resembles the reasoning process that consists in drawing conclusions
from facts. A practical solution is attained by formulating this problem as a basic least
square state estimation. This approach is, however, limited to a data collection interval
(batch method), since, retaining all observations would require unbounded computa-
tional and storage resources. Furthermore, least squares formulation does not deal
with the inherited uncertainty of measurements and the modeling errors. Indeed, this

problem naturally fits in a probabilistic framework.

Addressing the “reasoning” problem from a probabilistic point of view, Kalman [Kal60]
proposed a recursive technique that is able to provide accurate state estimates by
fusing noisy measurements. This approach is widely referred to as the Kalman filter

and is principally composed of a two-step closed loop (prediction and update). It
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conveniently models the state through the use of two probabilistic moments: its mean
(i.e. state vector) and the estimated accuracy, enclosed in its covariance matrix. The
Kalman filtering considers the uncertainty as non-biased Gaussian distributions and
is constrained to a linear evolution of the states which are perturbed by an additive
Gaussian noise. Some particular advantages of the Kalman filtering utilization for the
MTT are the adequate response to complex and changing environments, and the easy

adaptability to variable sampling frequencies.

In this study, Kalman filtering is used to manage each tracked object independently.
The more observations of the same object, the better the predictions about its local-
ization and dynamic (i.e. speed), even if the measurements are provided by a single
sensing source (here the ML lidar). This property clearly increases the robustness of
the system regarding missed associations, and the management of missed detections
and occlusions. It should not be forgotten that the speed of the observed objects is
obtained by the means of the Kalman filter.

Hereafter, the Kalman filter basic concepts and equations are briefly presented, assum-
ing that notions of random variables, random process and expectation are clear for the

reader. Please consult [TFBO0] for a detailed reference.

Kalman Filter Consider the following linear Gaussian system,

x(t)=A-x(t—1)+ a(t)
z(t) = C-x(t) + B(1)

(3.4)

where A and C respectively represent the linear state transition and the observation
models. x(t — 1) represents the state vector at the previous sample time. In the same
way, a(t) and B(t) corresponds to the error model and the observation noise. They

are supposed to be additive and white zero-mean Gaussian with covariance matri-

ces, Q and R,

aft) ~ N{0,Q} (3.5)
Bt) ~ NA{0, R} (3.6)

Additionally, the independence between the evolution and the observation error noises

is assumed, meaning that they are uncorrelated in the Gaussian case:
E () B1)] =0 (3.7)

where E[-] represents the expectation operator. Now, let be X the mean and P the

covariance matrix of the multidimensional system state x:
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x = E[x] (3.8)
P = E|x-%)(x-%) (3.9)

From the above considerations, the Kalman filter consists in determining the system

state and its estimated accuracy, from all past observations up to the current time.

In to the following notation, the prediction and update equations of the iterative fil-

tering cycle are presented.

x(t|t), State estimation
P(t]t), Covariance matrix of the estimation error
z(t) Observation vector

x(t|t — 1), Predicted state

P(t|t — 1), Covariance matrix of the predicted error

Prediction step

Starting from given initial conditions at ¢ = 0, the state x(0]0) = x( and the covariance

matrix P(0]0), the system state can be predicted by

x(tt—1) = A-x(t—1]t—1) (3.10)
Ptt—1) = A-Pt—-1t—-1)-AT+Q (3.11)
with
x(tlt—1)) = E[x(t)|z(t —1)] (3.12)
P(tlt—1) = E[(x(t) - x(tft — 1)) (x(t) — x(tlt — 1))7] (3.13)

Update step

Once a new observation is available, the predicted state and its covariance can be
corrected so as to incorporate the incoming knowledge provided by the state mea-
surements. This knowledge is defined as the innovation and is computed through the
difference between the measured and the expected state values, z(t) — C - x(t[t — 1).
Thus,

G = P(t|t—1)-C"-(C-P(tJt—1)-C"+R) (3.14)
x(t) = x(tlt—1)+ G- (z(t) — C-x(t|t — 1)) (3.15)
P(t) = (I-G-C)-P(t|t — 1) (3.16)
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where, G is the optimal Kalman gain.

Kinematic Evolution of the Tracked Objects

In order to keep tracking the detected objects, their motion must be predicted by
the use of a model. The pertinence of such a model assists the Kalman filter to
predict precisely the object dynamic as it moves in space. One can realize a tracking
system that classifies the object (e.g. pedestrian, cyclist or vehicle) and then choose
an appropriate model for tracking it. Another way can be to track each object by
a “batch of filters” running in parallel with different models, and then to choose the
better one. This last technique, known as Interacting Multiple Model filtering (IMM)
[BBS88], may be quite efficient at the expense of a higher computational cost.

The studied tracking system detects and tracks objects usually present in urban en-
vironments, such as pedestrians, cyclists and vehicles. All those objects are observed
in a dynamic context not higher to 30 Km/h (i.e.. ego vehicle velocity). Since their
observed motions are reported to a fixed reference with a sampling time which is suffi-
ciently higher, they can be assumed to be locally linear with a constant speed during

a sample interval, At. This model is given as

i At -1
Ay = [ 2%2 t 2><2] (3.17)

O2><2 ]I2><2

Accordingly, the prediction of the track state is given by the following evolution equa-
tions:
Vy(t) =Ar Wyt —1) + ar(t)

(3.18)
Wy (t) @z = Cr Wy(t) + Br(t)

with Cr = | Iz Oz |

where Wy (|t —1) is the predicted state of the tracked object, Wy (t)(,..) is the observed
track location, Cr is the observation matrix and At is the sampling time period, which
is not constant. ay(t) and B,(t) are additive errors considered as white zero-mean

Gaussian noises.

3.2.4 Track-Object Association

After an initial object detection sampling, a new set of tracks is created and all tracks
parameters are set up. When a next incoming object arrives (i.e. ML-lidar sampling),
iterative tracking actions are performed, starting by a state prediction of all the tracks
at the current sampling time. The next intuitive idea, which describes the associa-
tion process, consists in selecting and assigning the closest new detected object to the

predicted track position. This idea leads immediately to the nearest neighbor (NN)
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basic concept. Before going straight into the association method, it is important to
realize that new objects reports® do not represent only objects that have already been
observed. But also, a new report could indeed contain new incoming objects in the
maneuvering window and spurious detections. The last ones are principally issued of
segmentation errors or sensor artifacts. They make complex the object-track assign-

ment.

The simplest association approach is the nearest neighbor. Its naive simplicity makes
this method, a “functional approach” under certain conditions. This technique per-
forms object-track association based on a simple track-by-track minimization of an
arbitrary distance measure. Indeed, it is not the more robust one, since it has some
particular lacks, for instance, in cases when new detected objects lie quite close to
existing tracks and in case of missed detections. A more elaborated approach is the
Global Nearest Neighbor (GNN), which is based on a object-track assignment matrix.
For this, an initial computation of all object-track distance measures is needed. Then,
the global solution is found, for instance, as the one which maximizes the number of
assignments and minimizes the total cost. This criterion can be generalized by the use

of a score function instead of a distance measure.

Gating and Assignment Metrics The NN and GNN methods are both based on
object-track distance metrics. For specific applications, object-track assignments could

7

be “evident” occasionally. However, crowded environments are prone to ambiguity,
thus, a metric can not be enough discriminant. A gating can be used to cope with (or
to mitigate) this. It consists in restricting possible assignments to those included in a
gate which encloses the predicted track. In case that more than one observation falls

within the gate, the “closest” one (i.e. minimal distance metric) is chosen.

o Prediction k Confidence coefficient
m Track o Residual variance: ;,=(cx + 0.)
o Observation

/2

Figure 3.10: Gating Fxamples: Different geometrical gate strategies can be used to isolate
most feasible observations considered in the object-to-track assignment test.

3A report contains a set of detected objects
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Gates are usually characterized by a rectangular or an ellipsoidal region [BP99] (see
Fig. 3.10) which is defined in terms of the detected object and the predicted track
covariances. Perhaps, the most widely used is the ellipsoidal gate, because it can be
efficiently implemented by a simple thresholding of the Mahalanobis distance (also

known as x? test) as follows,

datanatanotis (VY= 1)) F (D)) = p(t) S p(t) < Gate (3.19)

with
¥ = M{|t—1)+N (3.20)
u(t) = Cor Wyt —1) =Y §(t)ws (3.21)

where dyanatanobis(+, *) represents the Mahalanobis distance operator, ¥ is the residual
covariance matrix, p(t) is the state innovation and M is the covariance matrix of the
track. The gate is computed so as to cover a given percentage of possible cases (e.g.

95% ) accordingly to a x? distribution.

Alternatively, metrics can also be appropriately chosen, depending on the complexity of
the problem. Indeed, some metrics can better reflect (or distinguish) if the predicted
track and the observed object are feasibly correlated. In Table 3.1, three different
metrics are listed. The Euclidean distance represents only a geometrical indicator

about the object-track proximity, which is often not enough discriminant for a MTT

problem.
Table 3.1: Assignment Distance Measurements
Assignment Distance Measure ‘ Operator ‘ Expression
Fuclidean Distance dBuctidean (" *) [ ()]
Mahalanobis Distance dprahatanobis(*s *) p)TE"u(t)
Generalized Statistical Distance [Bla86] | dgeneratized(ss-) | p(t)TZ () +1In |3

A better choice is the Mahalanobis distance which provides a proportional metric cri-
terion based on the uncertainty of the evaluated assignment (log-likelihood measure).
Nevertheless, imprecise tracks may still generate large association gates which induces
also assignment errors. The generalized statistical distance proposed in [Bla86], penal-
izes inaccurate tracks by reducing their association gate size as shown in Fig. 3.11b.
This penalization is computed as the logarithm of the determinant of the residual

covariance matrix as follows,
dGeneTalized (WY(t|t - 1)7W y(t)(x,z)> = “(t>T2_1“<t) + In |E| (322>

where dgeneratizea(-, -) Tepresents the generalized statistical distance operator. One can



3.2 Object Tracking

125

prove that this operator maximizes the object-track association probability.

rack 1

Obs. 4

M Incorrect
association

0  Track Prediction o  Track Prediction
® Observation ®  Observation
 Gate based on the Mahalanobis 2+ Gate based on the generalized
distance statistical metric
<> Assignment operator O Gate based on the Mahalanobis
distance

<> Assignment operator

(a) Mahalanobis Distance Assignment (b) Generalized Statistical Distance Assignment

Figure 3.11: Association Metric Comparison. In Fig. 8.11a, the observation-to-track assign-
ment using the Mahalanobis distance performs quite well for tracks with reduced uncertainty.
It fails, however, in presence of tracks with important uncertainty. The generalized statistical
metric deals efficiently with these ambiguous cases as shown in Fig. 8.11b.

Fig. 3.11 shows an example where three objects are tracked and four objects have been
detected. In this example, the object and the track indexes denote implicitly the correct
assignment (e.g. Track 1 with Obs 1). The fourth object, here, corresponds to a new
observed object in the scene. Hence, it should not be associated to any existing track. In
this case, even if the Mahalanobis distance is a quite good statistical association metric,
it can sometimes fail in presence of tracks with important uncertainty, as observed in
the assignment of Track 1 with the observation, Obs. 3 (see Fig. 3.11a). In contrast,
the use of the generalized statistical metric deals efficiently with this ambiguous case
penalizing the association of inaccurate tracks. A visual interpretation of using the
generalized distance is that it decreases the size of ellipsoidal gate as shown in Fig. 3.11b

particularly for Track 1.

Managing Ambiguity As presented hereinbefore, nearest neighbor methods con-
stitute mono-hypothesis association approaches. These methods address ambiguous
assignment cases by retaining the best available observation (i.e. the closest one).
More sophisticated methods address this issue like the Joint Probabilistic Data Asso-
ciation (JPDA) which is an extension, for the MTT problem, of the Probabilistic Data
Association (PDA) in Single Target Tracking (STT) [BP99]. JPDA deals with multiple

observations included in a track gate, by combining “all-neighbors” observations. Such
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a combination takes into account single object-track and joint assignment uncertainty.

The use of this technique in a filtering process is known as JPDAF.

Extending the JPDA concept, multiple hypothesis can be created instead of combining
them. Following this scheme, ambiguities can be solved in the measure that detection
reports provides enough “evidence” to determine which assignment is correct or not.
In other words, the algorithm defers logically the assignment decision. This approach
is called Multiple Hypothesis Tracking (MHT) and is considered sub-optimal, since
the number of hypotheses must be continuously controlled to avoid an exponential
proliferation. Thus, redundant hypothesis branches must be merged and unlikely ones

must be pruned.

3.2.5 Closing the tracking loop

After a brief survey of a few assignment approaches related to MTT, we have limited
the scope of this study to a simple assignment method able to provide acceptable
results within the maneuvering window in urban conditions. Thus, a mono-hypothesis
NN approach based on the generalized statistical metric with an ellipsoidal gating

constraint is considered for further processes.

Consequently, assigned tracks states and their corresponding covariances are updated
through the Kalman filter update step equations. In such a way, a fusion of the

associated lidar objects and the predicted tracks is done.

The tracking cycle is not yet finished. There are still some important issues to manage:
Track initiation and deletion. The initiation step considers new appearing objects in
the maneuvering window as those which have not been assigned to a track. Hence,
new tracks are created from their measured location. In theory, this function is able
to initialize as many tracks as unmatched objects. However, embedded applications
imply that computational resources are limited. This is why, a fixed number of tracks

is set, to track a reasonable quantity of objects.

On the other hand, the deletion mechanism is necessary to determine, under given
conditions, which tracks should be conserved or deleted from the track list. In a NN
tracking approach, deletion is usually limited to deal with non-associated tracks only.
Defining a stable criterion to delete tracks can be tricky, since the global tracking
performance can be adversely affected. A simple thresholding can be useful, based
on the time or the numbers of reports since the last update stamp. In this way, the
tracking algorithm can cope with object occlusions. However, setting a long prediction

time may lead to keeping track artifacts.
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3.3 Visual Confirmation

The presented perception system is able to provide a precise 3D localization, with
respect to a fixed-reference frame of the ego vehicle and of the surrounding objects
that could represent potential obstacles (i.e. withing the maneuvering window). The
considered tracking functionality does not intend to recognize or classify the detected
objects, but only to track them in space. As depicted in Fig. 3.12, the object tracking
is obtained through the interaction of two complementary sensing processes: Ego-

localization and object detection.

Stereo Vision X
Synchronized and — Multi-modal 3D Odometry

Rectified images | Computes the ego-motion and

filters the vehicle state

CAN-Bus Sensors

Wheel speed and Yaw
rate measurements

Object Detection
Detects and characterizes static

Multi-modal object tracking
Tracks lidar objects in a
world-reference frame

Dynamic Map
Provides the environment with
the dynamic states of vehicle

and the surrounding objects

and mobile objects based on the
ML lidar ML lidar perception
Scan points Maneuvering Window
Identification I

Detects and provides the limits
of the perception ZOI

Figure 3.12: Perception functions and their interactions for the object localization and
tracking

The proposed system can provide valuable information to enhance functional safety for
passenger cars, such as collision warning systems. These envisioned applications are
focused on Advanced Driver Assistance Systems, which intends to increase car safety by
helping users (driver) in the driving process. In this context, the driver keeps complete

control of the vehicle and is only assisted through warnings.

Previous works on ergonomics of alarm design have studied how the reliability of warn-
ing signals impacts driver performance. Bliss and Acton [BAO3] reveals that False
Alarms (for short FAs) are potentially more harmful than non-detections. This is be-
cause FAs have a huge potential to induce driver distraction, causing users to redirect
their attention away from the primary driving task, as demonstrated in [Bab94]. In-
deed, a common reaction of the driver would be to switch the system off, if it issues

too many FAs.

In the considered system, the object detection relies on a single source: The ML lidar.
This source is quite efficient to detect and localize obstacles. Unfortunately, alarms
can arise from non-hazardous objects such as those located on the sidewalk. For this,
the spatial filtering of the detected objects is done with the use of the maneuvering
window, tracking in this way objects situated within the road only. However, sometimes
spatial filtering is not enough, since FAs can still be issued from segmentation errors or
spurious detections, also called, phantom measurements (due to snowflakes and heavy

rain for instance). A second independent sensing source can then be used to confirm
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the existence of a real object. In such a case, warnings emitted by both detection
sources would be very confusing for the driver. Warnings must be reliable and clear,
given the short time the driver has to analyze and to perform appropriate actions.
Thus, the integrity of the information provided by the warning system is essential for

driver trust.

A first effort to strengthen the integrity of the multi-modal system output was done by
integrating over time the succeeding object detection reports (temporal filtering). A
complementary way is to use different perception methods checking that same causes
produce same effects. Integrity is one of the major attributes related to the performance
of ADAS functions. To ensure this, information has to be sensed by at least two
different sensor principles [Sti01]. If the integrity is checked with respect to a given
level of confidence, appropriate warnings can be emitted by the ADAS.

The strategy proposed here consists in a visual confirmation method of the detected
and localized targets using lidar as summarized in Fig. 3.13. This approach does not
treat missed detections of the ML-lidar. On the contrary, it filters FAs and, thus,

increases integrity of warning messages.
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Figure 3.13: Multi-modal object localization and tracking with a visual track confirmation
module (dashed line section) intended to strengthen the integrity of the output system.

Visual track confirmation is performed using the following strategy. Firstly, each lidar-
tracked object is transformed into a ego vehicle frame (denoted £(¢)). Its corresponding
bounding cylinder (lidar bounding circle with an arbitrary height) is reprojected onto
the stereo images. In each image, the track projection provides a Region Of Interest
(ROI). Secondly, the pixels composing the ROI are reconstructed by stereopsis* in the
3D space in order to obtain a dense 3D point cloud. Afterward, this set of 3D points
is segmented into 2 clusters: The object and the background. At last, the track is
confirmed if one of the 3D points cluster centroids is assigned to the lidar object using
a Mahalanobis distance given a confidence level. Indeed, FAs which do not validate
the x? test are filtered.

4Reconstruction of the 3D space as a result of binocular disparity.
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3.3.1 Frames used in solving the visual confirmation problem

The process of confirming tracks through visual information requires the transformation
of geometrical data between different frames. The SVS frame, located in the baseline
midpoint of the cameras, is oriented forward and slightly down-angled towards the
road. This orientation is desirable for visual odometry, since it reduces poor textured
image regions induced by the sky (see Fig. 3.14). Nevertheless, this configuration makes

more complicated the geometrical scene analysis.

Image camera center slightly down-angled
towards the road

~

Figure 3.14: Image samples showing that the SVS orientation is tilted on the road

The ego frame & (t){Right-Down-Front} is then defined so as to have its € X Z plane
parallel to the road surface, which greatly simplifies the problem. The knowledge of
the vehicle pitch angle w.r.t. the road plane can provide a dynamic attitude correction
of this frame. In this study, however, the orientation of the ego frame is initially chosen

and no further correction is applied.

The mobile perception makes use of three principal frames: World, Ego (i.e. body
frame) and SVS, respectively denoted as W, £(t), and S(t). As it can be remarked by
their time-dependency, the ego and SVS frames are mobile references, rigidly linked
to the vehicle.As it is illustrated in Fig. 3.15, ego and SVS frames are coincident in

position (i.e. midpoint of the SVS cameras) but differ in attitude.
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On-board frames:
E(t) : Ego frame (i.e. Body frame)
S(t) : Stereo Vision System frame

Figure 3.15: On board frames. The ego frame E(t){ Right-Down-Front} attitude is such
that the € X Z plane is parallel to the road surface, which simplifies the geometrical information
analysis. Its position is coincident with the SVS frame.

For practical reasons, the world frame is selected coincident in attitude and position
as the ego frame at initial time ¢ = 0. These assumptions remain appropriate to the
cooperative perception approaches [SAF], since the world frame can be easily reported

to an ENU Geo-localized frame (as detailed in section 2.7.2 of chapter 2).

An illustration of the evolution of the frames at three sampling times is depicted in
Fig. 3.16.

Geo-reference

East |

Figure 3.16: Frame evolution over three sample times. The ego frame is initially chosen
so as to be oriented parallel to the road plane. Then, it evolves in space rigidly linked to the
SVS frame. The world frame is selected as the ego frame at time t = 0.

3.3.2 Region Of Interest in the Images

Because we are interested in a 3D dense reconstruction in a limited area, the ROIs ex-
traction is an efficient way to reduce complexity. Let us recall that the object tracking
is performed in the world frame: Tracks positions must be referenced w.r.t. a camera
frame, in order to be projected onto images. Before doing that, the 3D track posi-
tion must be reconstructed, since the state vector contains only its planar coordinates
(i.e. "X Z coordinates). For this, the last object altitude (i.e. 'Y coordinate) associ-
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ated to the track is used. Hereafter, the reconstructed 3D track fix, in the world frame,

is denoted by Wyt (t[t —1) =" [y, ,y,, ¥’ wherey, is the added altitude coordinate.

Figure 3.17: Estimation of image ROIs through the re-projection onto the image plane of
the track bounding volume. Four contour points of the track bounding volume are determined
from the track 3D fix and the radius of its bounding cylinder. The projection of such points
onto images characterizes the track ROI.

We determine four contour points of the track bounding volume using the 3D coor-
dinates of its center and the radius of its bounding cylinder. The projection of such

points onto images characterizes the ROI, as depicted by Fig. 3.17.

The reconstruction of the bounding volume supposes that observed objects are or-
thogonal to the road plane. This assumption can be easily applied in £(t), since the
€XZ plane is parallel to this surface. Consequently, tracks are localized in the ego

frame, £(t), through the following rigid transformations:

SOyttt —1) = qS(t) * (Vy (et = 1) = b)) # ase (3.23)
EOy (et —1) = *SO y (¢t — 1) +° gs (3.24)

with
Yase = Fas*®asw (3.25)
Wts(t) = qu *S LS'(t) *g EIS (326)
where S®y*(t|t — 1) is the 3D track coordinates in the S(¢) frame, ®y* (¢t — 1) is
the resultlng position of the track in £(t), "V [q, t] s( 1s the rigid transformation from

S(t) to W and €qs is the attitude between the SVS and the ego mobile frames. The

transformation © [q, t] S(t) corresponds to the 3D vehicle motion estimated in Eq. 2.70



132

Chapter 3: Multi-Modal Object Localization and Tracking

and 2.71. Hereinbefore, the frame indexes corresponding to ¢ = 0 have been conve-
niently omitted. Eq. 3.23 performs an inverse transfer. This is why " [q, t] () has
been used to obtain the track position in S(t).

()

The contour points coordinates, “‘“'py; . 43, are computed as follows,

“Wp, = FOyF(tlt — 1) + [r, hin, 0]7 (3.27)
“0py = FOyH(tt — 1) + [, huin, O] (3.28)
“Opy = FOyT(t|t — 1) + [=r, —humas, 0] (3.29)
“Op, = FOy (U]t — 1) + [r, —hmaz, 07 (3.30)

where r is the radius of its bounding cylinder and [hnin, Amaz] 1S an interval denoting
the track height (see Fig. 3.18).

g(t)Plg(t)PQ £@®) pgg(t)P4

X E0y* (1]t — 1) T

hmax

hmin

Figure 3.18: Computation of the contour points of the track.

Finally, the ROI coordinates, in the left camera image of the SVS, are determined by

projecting of points 5(t)p{1,,,.74} onto the image plane using the following equation:

u
v~ K ((Sas O p, 0 de) +Cts) (3.31)
1
where [u v 1]T are the subpixelic image coordinates and K is the left camera intrinsic
matrix. ®qg is the rotation which transfers the point coordinates from £(t) to S(t)
and “ts = —Stc is the translation which locates the points from S(t) into C, the left

camera frame. The operator ~ means up to a scale factor.

We have chosen to precompute a dense disparity map of the complete image, since it

is suitable when too many ROIs have to be confirmed. As nowadays many robotics
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cameras are able to deliver dense disparity maps and stereo images simultaneously, it

constitutes an easy-to-access information.

3.3.3 3D Dense Reconstruction of the ROI

Every pair of images contains 3D dense information of the observed scene, since the
pixels stereo correspondence and the intrinsic camera parameters are known. As the
estimated track position has been projected onto the image, a limited 3D reconstruction

Is necessary.

Let us consider that the pixel stereo correspondence is represented by a dense disparity
map referenced w.r.t. the left camera of the SVS. This representation consists in a bi-
dimensional mapping, denoted Dy, where precomputed disparity values are arranged.
Such values are the differences, in z-coordinates on the image planes, of the same

features viewed in both cameras as follows:

Dy(u, v) =u—u’ (3.32)

where (u,v) and (u/,v") are the pixel coordinates of two corresponding points. The

disparity is denoted d.

Left SVS Imag ¥

Figure 3.19: Owerlap of the estimated image ROI onto the disparity map. Depth information
contained within the overlapped ROI is used to perform 3D dense reconstruction.

The proposed 3D dense reconstruction consists firstly in overlapping the ROI onto
the disparity map as illustrated in Fig. 3.19. The 3D metric coordinates ‘[z y 2|7 of
each pixel included in the ROI are estimated by performing a classical triangulation
process [HZ03]. This process assumes a calibrated SVS with rectified stereo images,

which under ideal conditions can be modeled as illustrated in Fig. 3.20.

The depth coordinate of each point can be derived straightforwardly thanks to the
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relation of similar triangles:

b—u+u b
Co— f T Cy
b
¢, - , (3.33)
uUu—mu

The x and the y coordinates are determined using the same principle:

c
U~z
Cr = N (3.34)
C
c vhz
Yy o= T (3.35)
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Figure 3.20: Stereo triangulation model for rectified stereo images

3.3.4 Track Confirmation Test

In our study, the visual confirmation is performed using an occupancy space analysis.

Conceptually, the existence of a tracked object is confirmed if its position matches with

the 3D visual points.

One possible strategy is to test all the reconstructed points in order to determine the
percentage that matches the track location. A previous work [PLRT06] has already
examined a stereo vision confirmation method of tracks, for a long-range obstacle de-
tection system, based on a single-raw lidar. To this end, visual information is analyzed
in a parameter space representation known as v-disparity®. Re-projecting the ROI pro-
vided by the lidar in this parameter space, obstacles can then be confirmed according

to three different proposed criteria: the total number of obstacle-pixels, the prevailing

5Parameter space representation where the v—image coordinate and the corresponding disparity

value of a pixel determine its plot location.
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alignment orientation or the lidar points attitude. The track confirmation scheme is
conducted following a different approach w.r.t the one considered by Perrollaz et al.
Our technique might be similar to the criterion based on the number of obstacle-pixels
proposed in [PLRT06], but performed in the 3D space. However, such an approach is

time consuming and less suitable for an embedded real-time system.

An alternative is to cluster the points reconstructed by vision in order to handle object-
like representations. Track integrity can then be assessed by testing if the lidar track
is highly correlated with the object-like clusters. This approach can avoid many calcu-
lations and the cluster uncertainties can be integrated into a verification test. Let us

study how it works in the following.

Visual clusters centroids
using K-means

object | Background

ject z&

Left image

A

" World frame Disparity Map

Figure 3.21: Visual 3D Track Confirmation. Track integrity can then be assessed by simply
testing if the lidar track is highly correlated with the object-like clusters issued of the visual
ROI dense 3D reconstruction.

Looking at the lidar cylindrical object model, it can be noticed that image ROI contains
most of the time, not only the tracked object, but also, some scene background regions,
as illustrated by Fig. 3.19. This phenomenon can be commonly evidenced in the space
distribution of the dense ROI reconstruction. For these reasons, the clustering of the
3D points can be seen as an ideal solution for simplifying and speeding up the track

verification process.

The clustering-based track verification approach is applicable assuming that the objects
and the scene background within the ROI are distinguishable in the 3D space (see the
example given in Fig. 3.21). If this assumption holds, the reconstructed 3D points can
be segmented into two object-like clusters: track and background. This assumption is
usually justifiable, because the tested objects are located on the maneuvering window

which corresponds to the navigable space, as shown in Fig. 3.22, for a real case example.

Here, a k-Means method [Mac67] is particularly suitable, since the number of classes

is known. Besides, this clustering heuristic is efficient and can converge rapidly.
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The clustering algorithm consists in an iterative routine composed of two mere steps:
the expectation and the maximization. In the expectation step, each reconstructed 3D
point is assigned to the cluster whose centroid® is the closest, according to a distance
criterion. The maximization step consists in updating the cluster centroid where the

new point was assigned to.

5 -0

Figure 3.22: Visualization in space of a confirmed track using 3D point clusters (Real data).

The iterative cycle is repeated until the cluster point assignment does not change any
more. Hence, the determined centroid clusters are considered stables. The algorithm
provides then 2 clusters characterized by theirs centroids, 5(t)cj for all j = {1,2}, and

their 3D associated points.

For our practical problem, k-Means works quite well. However, it must be highlighted
that the theoretical convergence into the global optimum of this clustering method is
no guaranteed. To mitigate this, it is common to repeat the clustering process with

different initial conditions and take the best result (trade-off solution).

Once the clusters have been determined, the uncertainty associated with every cluster
needs to be estimated. Representing the location uncertainty of the clusters requires
a particular attention. For this purpose, the “most expected” position of every cluster
has been considered to be the average position of the points composing it. The idea
is to model the cluster location uncertainty by a covariance matrix, estimated with a
confidence score. As the centroid is determined from a set of reconstructed points, its

confidence score is indeed strongly correlated with the triangulation process quality.

As shown in [BHS87], the uncertainty in range (°®Z) and horizontal (5 X) position
depends exclusively on the horizontal image coordinates disparity of a stereo associated
feature. Their statistical independence from the vertical image coordinate are explicitly
formulated by the triangulation equations (Eq. 3.34, 3.35, 3.33).

In [BH87], Blostein and Huang have examined firstly a probabilistic interpretation of

the geometrical point projection process onto stereo image planes. Then, they have

6The centroid corresponds to the mean point of the cluster.
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determined the joint probability distribution of a 3D point within a Region Of Uncer-
tainty (ROU), reprojected on the left and right image planes. This joint probability
distribution is directly used to derive the uncertainty in range of a point using trian-

gulation.

Accordingly, the integration of the joint probability J, of the relative error in range,

constrained to be within a certain tolerance « is given by:

o(a—d=1
ln(l—ld*2) (2 (1—04d2 ) + ln(l - a2)) o<

1 a >

J, - (3.36)

ST S

where we recall that d denotes the disparity.

The complexity of this expression can be significantly simplified using a first order
Taylor series approximation of the natural logarithm terms. Hence, the approximate

expression is reduced to the following:

1—(1—(a-d)2) s <

J =
b 1 o>

(3.37)

Ul Q-

9

Accurate and approximated error models within the field of view of the stereo vision

system are illustrated respectively in Fig. 3.23a and 3.23b.

This error function assesses the SVS capabilities for estimating a range measurement
with a given accuracy. The larger the disparity of the imaged object, the better the
estimates of its 3D location. Logically, if an object is located at a distance where its

disparity in less than a pixel, its location estimate will be quite inaccurate.
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(a) Accurate Triangulation Error Model (b) Approzimated Triangulation Error Model

Figure 3.23: Error model behavior in the SVS Field-of-View

We adapt this error model for estimating a confidence score, denoted 7;. The score 7;

expresses the uncertainty in the cluster centroid fix, ¢®c;, in depth w.r.t the SVS.
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Thus, 7; constrained to a given tolerance factor «, is given as follows,

2 OIS
1— 1_<a.tb~f) ) o< e
_— ( e bf (3.38)

EW)e,
1 Ja > e
where 5(t)c(z),j means, with an abuse of the notation, the Z metric coordinate of the
centroid g(t)cj. The tolerance error factor, «, is set in meters, taking into account the

image resolution, the focal distance, the baseline of the SVS and the accuracy of the
SVS calibration.

In order to perform a statistical assignment test between the clusters and the candidate
track, a suitable estimate for the covariance matrix of the 2D position (i.e. in the plane
€M X 7) of the cluster centroid U can be estimated by making use of the confidence

score Tj:

0 1

ko 7

U= [ mr O ] (3.39)

where the choice of the weighting parameters k; and ks can be made on the basis that
the reconstruction error regarding to the depth has more impact in the longitudinal

direction(*®Z axis) than transversely (i.e. ko > k1)".

Each cluster is tested using a Mahalanobis distance w.r.t the ML-lidar tracked object

position:
dMahalanobis (g(t)c(m,z),jag(t) y(t‘t - 1)(:17,2)) = kK- (U + M(t‘t - 1))_1 ' HT (340)

with £ =® ¢,y —FO y(t|t — 1))

where g(t)c(m),j and Oy (¢t — 1)(s») are respectively the €M X 7 coordinates of the
centroid cluster to be tested and the tracked object. The matrix M(t|t — 1) is the

covariance of the tracked object location.

If a cluster is located within the ellipsoidal gate, the system can establish that the visual
information source matches the lidar track position. If the two clusters fall within the
gate, the closest one is chosen. A typical value for the gating threshold corresponds
to 3 standard deviations® in order to compensate approximations due to track motion
and imprecisions in case of important pitch vehicle changes. The success of the test
confirms the real existence of the tracked object. Thus, the integrity of this object is

enhanced, since two independent sensing sources have been used.

If the assignment test fails, the system does not destroy the object track, it remains to

"typically one can choose ko = 2k;
8Confidence interval of 99% for 2 DOF, according to Chi-square distribution (y?)
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be a feasible object hypothesis. However, its existence evidence is not enough trust-

worthy to be provided as an outcome.

So far, we have considered that the ROI contains only the object and background
regions. Two particular cases can sometimes happen when the estimated track location

is re-projected onto the image plane.

The first case occurs when the ROI contains only the object (i.e. absence of back-
ground). In this case, the track confirmation will still provide a correct result, because

the two clusters will remain close to each other and close to the real track.

The second possible case arises when no real object is included in the ROI (i.e. a lidar
false detection). Thus, the two estimated clusters will make part of the background

and the track will not be confirmed.

So, we can conclude that these two worst-cases have no direct impact in the clustering

convergence and visual confirmation.

3.4 Multi-rate information management

With the aim of increasing safety during driving, ADAS functions require accurate,
pertinent and reliable information about the vehicle’s surrounding. Based on this
information, a suitable scene understanding level with an adequate time response ac-
cording to the dynamic context has to be provided. Single sensor based techniques
are usually not good enough, since the observed environment is often complex. Each
sensor has a limited perception of the total space representation. Coping with sensor
limitations entails the use of multiple sensing strategies. In this way, multi-modal sys-
tems achieve complementary field-of-view sensing and redundant perception of impor-
tant information. One can imagine, then, a fused environment representation issued
of different specialized perception functions, and providing pertinent information to

high-level ADAS safety functions (e.g. pedestrian detection and collision warning).

To this end, multi-sensor data must be synchronized ensuring the time consistency
of the system. Besides, the use of synchronized information simplifies the association

data process.

In our application synchronization is crucial, since visual track confirmation requires
that image information, vehicle localization and lidar reports correspond exactly to
the same instant. Indeed, the fusion module architecture relies on three main func-
tions interacting together: Disparity map computation, 3D-ego localization and object
detection. These functions are asynchronous and run in different threads at different
frequencies (the mean frequencies are respectively: 26, 16 and 15 Hz) which can be

also variable as illustrated in Fig. 3.24.

This non-synchronicity of the perception functions requires the management of multi-

rate information. To deal with this, we have to solve the out-of-sequence and the
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temporal misalignment of the received data. Hereafter, both problems are addressed.
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(a) Perception function deviation on real-time execution. The ML lidar object de-
tection function performs almost at a constant frequency, since its time delay process
is smaller than the ML lidar sensor sampling period.
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(b) Zoom in view of the information arrivals of the perception functions illustrating
the multi-rate problem

Figure 3.24: Perception functions deviation and asynchronism

3.4.1 Out-of-sequence problem

In the literature, different strategies have been proposed to ensure the right sequential
data integration in a multi-sensor fusion module. These strategies differ from each

other depending on the system architecture.

Let us define a standard perception function for which, three intervals are to be con-
sidered: acquisition, processing and transfer. In the acquisition step, the raw sensor
data is sampled. Processing denotes the elapsed time for perception data computation.

The transfer interval represents the elapsed time until the result become available by a
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client application. As depicted in Fig. 3.25, a new acquisition is not triggered as long

as the processing stage is not finished.

Unknown latency

Acquisition Processing | Transfer |

| Acquisition| Processing | Transfer |

Figure 3.25: Time intervals composing a standard perception function cycle. The transfer
can occur in parallel with the data acquisition.

In many applications, the perception functions are asynchronous and data transfers
arrive at the fusion module with random delays. Each function can initiate a new
acquisition in parallel to the transfer of the result report. Under these conditions, the

fusion module inputs can be buffered and sorted to ensure time consistency.

In [KDO03], Kaempchen and Dietmayer have examined the overall system latency for
two sorting methods: a non-deterministic and a deterministic configuration. This study

focused on time-critical ADAS, where the overall system latency is of high-interest.

The non-deterministic sorting method does not consider constant sensor frequencies,
known latencies nor any knowledge about perception information arrivals. The prin-
ciple of this technique consists in performing sorting actions only when there is, at
least, one information arrival of each perception function is buffered. In this way, the

information can be fused in the right order, solving the out-of-sequence arrivals.

Figure 3.26: Time arrivals example of two perception functions, PF'1 and PF2, and system
latency evolution, LT. Fusion sampling times are denoted t1,...,t4. Incoming data instants
are represented by |

Consider an example of a generic multi-modal system with two data entries provided by
two different perception functions denoted respectively PF'1 and PF?2 (see Fig. 3.26).

Both functions use a common time reference. Since a new acquisition can be started
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once the perception processing is finished, two parallel lines for each perception function

illustrates the information sequence, as shown in Fig. 3.26.

Looking at Fig. 3.26, one can observe, at the beginning of the sequence, that the system
buffers the perception reports until time ¢ = ¢1. Then, only the oldest information is
integrated, in this case PF'1(a). At t = t2, the system gets a new information from
PF1(b), and integrates PF2(d) and PF2(e). The information provided by PF1(b) is
integrated at ¢t = t3 when PF2(f) arrives. Finally, PF2(f) and PF1(c) are included
at time ¢ = t4 and PF2(g) is the last integrated information of the sequence. The
evolution of the system latency denoted LT is shown at the bottom of the figure.

As it could be verified in this example, the non deterministic synchronization approach
satisfies the sequence order, required in the use of recursive filters like the Kalman-filter,

but increases the system latency.

Alternatively, the system latency can be reduced if the transfer delays are known for at
least one preceding sampling time. In this way, the system waiting constraint is relaxed,
allowing the integration of buffered reports, since the arrival time of the next perception
function measurement is known. This method is called deterministic synchronization
[KDO03].

Another buffer-based methodology to fuse delayed reports was implemented in the
middleware architecture called AROCCAM?. This method proposed by Tessier et al. in
[TCD*06] fuses information (in a filtering context) as it arrives providing an updated
state with a minimal latency. Simultaneously, a temporal buffer stores past states
and observations allowing those estimations. If an out-of-sequence observation arrives,
the architecture “rewinds” the filtering process, integrates the past observation and

recomputes the state integrating sorted data.

In [BP99], Blackman and Popoli studied different ways to filter out-of-sequence ob-
servations. Among the proposed approaches, a simplistic and sub-optimal solution
relies on the rejection of delayed observations. This technique entails an important
information loss. Another approach is to perform a “filter retrodiction” and update
the filter state in the same manner as a sorted report. This approach discards process
noise effects. To deal with this, more elaborate approaches are presented, but they are

beyond the scope of this manuscript.

For the studied multi-modal system, the out-of-sequence problem can be solved with

a deterministic synchronization technique.

9French acronym of ARchitecture d’Ordonnancement de Capteurs pour la Creation d’Algorithmes
Modulaires
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3.4.2 Management of the temporal data misalignment

Once the perception function arrivals are sorted, appropriate actions can be performed
to integrate them in sequence. Regarding the interaction of the incoming data, one can
identify two function dependencies. First, when new lidar objects are detected, ego-
localization is needed to localize them in the world reference frame. Second, when a
new disparity map is computed, ego-localization is also required to localize the tracked
objects in the ego-vehicle frame, by compensating the movement of the mobile percep-

tion platform.

It can be remarked that, even if the report arrivals are sorted, they do not correspond
to the same sampling instant. This issue constitutes the so called temporal misalign-
ment problem. Neglecting the sampling time offsets can induce unacceptable errors in
dynamic situations. To cope with this, the six ego-motion parameters, ! [Aw, Av] s,

have to be estimated for a prediction horizon equals to the sampling time offset.

In the following the general principle of the proposed solution is presented and then it

will be applied to our special case.

General principle

The objective here is to predict a pose variation Az(t+dt) for a given temporal horizon
0t. Measurements of this “ego-motion”, denoted Ax,,, are available for the time interval
[t — At 1].
A first idea to get such a prediction is to consider a constant pose variation Az pro-
portional to the time:

Az,

where At is the sampling interval. In practice, Ax can vary a lot, so this solution seems

not be good enough.

A second idea is to design a filter with an augmented state x, which provides better Az
estimates, taking into account its possible variations. Thus, let consider the following

augmented state:
1 (1)

x(t) = [ ] with zo(t) = @, (¢) (3.42)

) (t

One can define this integrator in the discrete time state space as follows:

1 At

x(t+1) = 0

x(t) with x(t+1) = x(t + At) (3.43)

Observations are then obtained through a linear model:

Az (t) = [ At 0 |x(t)+ B(t) (3.44)
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where the errors of this model are considered as an additive and white zero-mean

Gaussian noise, denoted J(t).

The state space system defined by Eq. 3.42, 3.43 and 3.44, is estimated through the
use of a Kalman filter. In this way, one can finally obtain the prediction of the pose

variation for any temporal horizon §t as follows:

Ax(t+0t)=[ 6t 0 ]x(t) (3.45)

The above general principle can be applied straightforwardly in order to predict the
ego-motion parameters. Thus, the ego vehicle state is composed by the six motion
parameters and their derivatives. A linear Kalman filter with a constant accelerated
model is considered, since the ego-vehicle can experience significant speed changes in
braking situations. Regarding the axis-angle formalism for the attitude changes, Aw, it
will be remarked that for a non-holonomic moving vehicle, the variations of the attitude
parameters are smooth. The latter assumption does not hold for extreme driving
situations (e.g. rollover). Under these assumptions, the linear speed and the attitude
changes are filtered using a single first-order model that reconstructs the derivatives of

the ego-motion parameters.

Let x(t) be the ego state vector, A the state transition matrix and H the observation

model in the following linear space state representation:

x(t) =A-x(t—1)+alt)

; (3.46)
St [Aw, Av]y, =H-x(t)+ B(t)

with
w(t)
t Iowg At-1
x(t) = V() | g | oo P01 and H=| Atlgee Opus | (347)
Q(t) 06><6 ]I6><6

where v(t) and a(t) are the linear speed and acceleration. w(t) represents the derivatives
of the axis-angle parameters which have been considered linear to a drift €2(¢), assumed
to be constant during a sample time. In this model, the sampling interval, At, is not
constant. The covariance of the model, denoted Q, is chosen taking into account the
errors due to the model approximation and, the covariance noise matrix R corresponds

to a zero-mean Gaussian white noise.

By using the discrete Kalman filter equations presented in section 3.2.3, the predicted
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state (a priori), x(t|t — 1), and its covariance, P(t|t — 1), are given by:

x(tlt—1) = A-x(t—1[t—1) (3.48)
Ptt—1) = A-P{t—1t—-1)-AT+Q (3.49)

Once a new ego-motion estimation (i.e. state observation), denoted X(t), is obtained,

the predicted state and its covariance are corrected as follows:

G = P(tft-1)-H"-(HP(t[t - )H" +R) (3.50)
x(tt) = x(t}t— 1)+ G- (X(t) — H-x(t]t — 1)) (3.51)
P(tlt) = (Loxiz— G -H)-P(t|t — 1) (3.52)

recalling that G is the optimal Kalman gain. Eq. 3.51 and 3.52 provide the a posterior:

state and covariance.

Thus, the vision confirmation module inputs are now made of the disparity map, the
ego motion parameters state and the lidar tracks. Since two of the visual confirmation
module entries are filtered (ego-motion and lidar tracks), they can be predicted to

correspond perfectly to the disparity map time stamp.

Using predictive filters with accurate time stamped data, the three possible processing

tasks over time are listed below:

First case: A new 3D-ego localization is available. The filtered ego-motion state
x(t|t — 1) and its error uncertainty is predicted to the new observation time making
use of Eq. 3.48 and Eq. 3.49. The state innovation is computed, the covariance matrix
is updated and the state is corrected (Eq. 3.51 and Eq. 3.52).

Second case: A new set of objects are detected by the ML-lidar. The last known
vehicle localization state is predicted up to this time. Then, the new lidar objects are
localized in the world frame and assigned to the existing tracked objects. Associated
tracks are updated and the remaining objects create new track hypotheses. This step

called “object localization and tracking” has been detailed in previous sections.

Third case: A new disparity map is available. The vehicle localization and the
tracked objects are extrapolated (i.e. predicted) at this time. Predicted objects are
localized in the ego-frame using the predicted vehicle pose. In this way, the entries of
the confirmation module correspond to the same instant. Finally, candidate tracks are

proposed to be confirmed by making use of the disparity map.

Fig. 3.27 shows an example of possible measurements arrivals. At ¢ = 0, the disparity

map and the localization information are available but there is no objects to be con-
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firmed. Thus, only the vehicle pose is updated. At ¢t = 1, a set of objects have been
detected. They are localized using the predicted vehicle pose. At ¢ = 2, tracks can be

confirmed using the predictions of the objects and the vehicle pose.

We remarked during our experiments that this mechanism dramatically increases the

performance of the system, particularly when the scene includes a significant dynamic

content.
Disparitymap___ _ _ _ _ _ _ oo oo - >
Object detection __ g, --I ..... >
3D ego-localization | __ __ Lol Ta oL ‘[- ----- >
7J' > 1
Multi-modal System 2 Timeline

"¢ State prediction

Figure 3.27: Ezample of possible data arrival

3.5 Experiments

An objective of the trial reported in this section is to provide a proof concept of the

proposed track confirmation methodology, using real data.

It is worth mentioning that real data tests in a multi-sensor platform requires a great
effort to be accomplished, since other tasks must be ensured beforehand, for instance,
the calibration procedures of the SVS cameras and the SVS/ML-lidar and the imple-

mentation of the middleware modules for the real-time data acquisition system.

It should be recalled that the visual track confirmation relies not only on the image-
depth information (i.e. ROI disparity) but also, on data coming from asynchronous

fusion modules (i.e. ego-motion and object tracking).

The perception modules were implemented for real-time execution and provide essen-
tial data for the computation of the 3D dynamic perception map. With the aim of
simplifying the experimental process, the out-of-sequence problem was solved by post-
processing. Thus, the perception modules outputs were precisely logged and their
arrivals were sorted in time. Even though the implementation is examined in offline
conditions, it still remains the temporal misalignment of the reports which is dealt
with through the use of predictive filtering. The proposed object tracking and visual

confirmation algorithms were implemented in Matlab as depicted in Fig. 3.28.

The experiment, reported here, was performed using the real data set called as “closed-

loop data set” in section 2.9 of chapter 2, which was also used for the evaluation of the
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multi-modal ego-motion estimation method. This data set consists in three different
trials following the same trajectory. Two of these trials provide some common traffic
situations where the ego-vehicle and other objects (e.g. pedestrians and moving and
parked vehicles) interact together in a urban scene. In the third test sequence, almost

none moving objects were observed.

In the remaining of this section the obtained results will be assessed starting with the

object tracking function. At the last, the visual track confirmation results are analyzed.

Real-time implementation
C/C++ Platform

Post-processing stage
Matlab Platform

Disparity Map
Computes dense stereo
matching

Visual Track Confirmation
Confirms tracks using visual |
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T Confirmed objects
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Figure 3.28: System implementation for the experimental trial of object tracking and visual
track confirmation. The multi-modal sensing functions: Object detection, maneuvering win-
dow identification, disparity maps computation and the 3D multi-sensor ego-localization were
processed in real time and their outputs were logged. The multi-modal object tracking and the
track confirmation function were implemented in Matlab. The results were obtained in offline
conditions, taking into account the temporal misalignment of the logged reports.

3.5.1 Maneuvering Window Identification

An interesting feature of the multi-modal system is its capability to characterize a
maneuvering window where potential obstacles require a special attention. Thus,
the evolution of this estimated region was reconstructed over the complete trajec-
tory. Fig. 3.29 illustrates the bird-eye view of the reconstructed zone of interest

(i.e. WX Z plane) in the fixed-reference frame.
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Figure 3.29: Reconstruction of the maneuvering window (WXZplane m’ew). It can be

noticed the convergence of the filter after initialization. Reduced sections are due to parked
vehicles.

This maneuvering window reconstruction was obtained by exchanging geometrical data
between the lidar and the vision-based functions thanks to the calibration information.
It can be remarked that, at the beginning of the test sequence (i.e. starting point
(0,0)), the vehicle remains stationary, which shows how the filtered boundaries of the
maneuvering window converges. Along the trajectory, some parked vehicles were ob-
served. Those trajectory sections were highlighted by the reduction of the identified
zone. These results constitute a very interesting feature which can certainly be coupled
to a GIS (Geographic Information System) for map-matching and global localization

applications.

3.5.2 Object Localization and Tracking Results

Focusing now on the kinematic state estimation of the tracked objects, Fig. 3.30 illus-
trates a zoomed area of the dynamic map. The area herein shows some state samples
of a tracked vehicle and its corresponding track re-projection on the left SVS camera
image. At the bottom of the figure, the size of the track is represented by its bounding
circle, in red, and its center as a red triangle. The corresponding image track projec-
tions and their speed vectors are also illustrated in the upper part of the figure. The

projected bounding box encloses the 3D cylinder of the track as shown in Fig. 3.18.
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Figure 3.30: Trajectory of a tracked vehicle. In the image sequence: Track projections
are represented by 3D red boxes and the track speed vector by green lines. In the dynamic
map zoomed area: The location is illustrated in six sample times. Red triangles denote the
estimated centroids of the tracked object over time. The detected track size is illustrated by red
circles. Black circles represents track covariance uncertainty. The ego-vehicle state evolution
1s also provided.

Additionally, Fig. 3.30 also shows how the detected track size changes as the object
surface is impacted by the ML lidar. This fact sometimes entails perturbations in
the speed estimation, since important size changes induce a spurious motion of the
track centroid. This problem has been already addressed in [PT09, FC07], where the
spurious centroid displacement and the occlusions were dealt using a model based
vehicle tracking. Looking at the image projection of the track speed vector, however,
one can see that, the multi-modal system performs quite well. It is worth mentioning

that objects are tracked even if they come out of the SVS field-of-view.

Fig. 3.31 shows another section of the dynamic map. Indeed, estimating the speed
of a pedestrian is a challenging task, since its motion is, sometimes, unpredictable.

However, a linear motion at constant speed has shown to be here very pertinent.
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Figure 3.31: Trajectory of a pedestrian when crossing a road. The figure illustrates the
trajectory, the speed and the detected size of a pedestrian. The conceived system provides
smooth speed estimates of the tracked object.

A usual question here would be, how to establish an object trajectory ground truth?
For this, a distributed data logging system with a common timeline reference is re-
quired. As this system being not available in the laboratory, no ground truth for
the track localization was used during the experiment. However, the reconstructed
trajectory illustrated in Fig. 3.31 is still meaningful, since it corresponds quite well
to the pedestrian’s observed trajectory in the snapshot sequence. Moreover, the es-
timated speed magnitudes are also coherent to walking speed average accorded to a
pedestrian [SW09].

In Fig. 3.32 a wheelchair pedestrian is successfully tracked. The tracking system is
able to estimate very small motion variations thanks to the accurate measurements of

the ML lidar and the good estimation of the vehicle displacement.

The fast convergence of the track filtering grants access to a good kinematic object
estimate even when the vehicle has a significant rotation speed, as shown in Fig. 3.33.

However, a degradation of the speed vector direction is noticeable when objects are
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Figure 3.32: Wheelchair pedestrian trajectory observed from the moving vehicle in a turn

getting out of the field-of-view of the sensor (see the two last samples).

3.5.3 Visual Confirmation of Mobile Objects
Performance indicators for the analysis of the considered system

As stated before, the visual track confirmation constitutes a self-assessment function-
ality aimed at increasing the integrity of the tracks outputted by the object detection

system.

The object detection module can deliver True Positive (TP) and True Negative (TN)
outputs which constitute indicators of a correct detection. Nevertheless, it can also
deliver False Negative (FN) outputs representing missed object detections and False
Positives (FP) which stand here for false alarms. This module being a detector and
not a classifier, the quantification of TN outputs is not possible (it would require
determining how many objects were not detected when no objects were observed). Since
visual confirmation can only test the existence of detected objects, the FN indicator
of the object detection is not relevant here. In consequence, only detected objects
manually classified as TP or FP are pertinent in the evaluation of the visual track

confirmation.

Looking at the visual confirmation output, one can identify as well TP, FP, TN and FN.

True Positives represent detected objects being successfully confirmed, which quanti-
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Figure 3.33: Trajectory of an observed vehicle while the ego-vehicle is taking a turn.

fies the confirmation rate. On the contrary, False Negatives stand for detected objects
which have not been confirmed, reducing the availability of the detection function.
False positives of the visual confirmation refer to spurious objects which are erro-
neously confirmed and True Negatives quantifies the rejection rate of the detection

False Alarms.

As TP and FP are complementary indicators to FN and TN respectively, the perfor-
mance of the visual track confirmation is assessed through the quantification of the
false alarms rejection and the track confirmation rate. In the following the evaluation

methodology is detailed and the obtained results are reported.

False Alarm Rejection Rate Quantification

The performance of a binary classifier is generally evaluated by the means of a ROC!?
curve [Faw06]. To this end, ground truth is required to compute TP and FP indicators.
During the experimental test, it was, however, not possible to extract enough false
detections from real data reports to compose a representative ground truth sample.
This is because false alarms in real situations constitute sparse random artifacts (e.g.

segmentation errors, spurious lidar measurements like rain and snowflakes).

In consequence, the false alarm rejection rate was evaluated by providing manually a
phantom track placed four meters in front of the vehicle at every sample time (which

means that the lidar is providing a 100% FA rate). Using a trial sequence where no

10 Receiver Operating Characteristic
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objects on the road were observed, the visual confirmation function only dealt with
these spurious tracks. Five false alarm conditions have been computed by changing

the phantom track size from 80cm to 2m. The results are shown in Table 3.2.

The computation of ROC curve from this FP indicator is not appropriate, since it does
not represent the global performance gain of the system. However, it remains meaning-
ful regarding to the single performance of the visual confirmation module. Moreover,
one can highlight that the reported false alarm rejection rates were obtained in the
worst-case conditions (i.e. 100% of false alarm input) which is unlikely in practice.

The track size changes seem to do not have an important influence in the performance

of the visual track confirmation as shown in Table 3.2.

Table 3.2: Fualse Alarm Rejection Rate Quantification

| Spurious Track size (m) 08 | 1 |12 ] 15 ] 2 |
Confirmed spurious measurements 170 207 208 219 184
Number of Analyzed Frames 2856 | 2856 | 2856 | 2856 | 2856
False Alarm Rejection Rate 94.04 | 92.75 | 92.72 | 92.33 | 93.55
Erroneous Confirmations (%) 5.95 | 7.24 | 7.28 | 7.66 | 6.44

This test has also revealed that the principal source of incorrect confirmations are the

erroneous disparity map regions of the ROI. An example is shown in Fig. 3.34.
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Vehicle Speed: 8.16 Km/h
CAN Odometer Speed: 11.23 Km/h

Figure 3.34: Phantom track erroneously confirmed

As the proposed method can filter up to 93% of false alarms, these results are quite
encouraging.
Visual Track Confirmation Rate Quantification

Another main objective of confirming tracks is to preserve the true positive detection

rate, ensuring in this way the availability of the object detection function. In order for



154

Chapter 3: Multi-Modal Object Localization and Tracking

the confirmation performance of the system to be evaluated, we report experimental

results of the visual confirmation function using five sequences.

Use Cases and Evaluation Methodology These use cases are relevant to com-
mon scenarios in urban environments. Fig. 3.35 gives a graphical description of the
considered situations involving three kinds of mobile objects: pedestrians, wheelchair

pedestrians and cars.

In the reported experiments, the ML-lidar did not give rise to any missed detections.
The evaluation methodology aims at quantifying the percentage of time during which

the object tracking function becomes unavailable because of visual non-confirmations.

The ground truth was referenced manually in the left image plane of the SVS. In this
way, the center point coordinates of the observed objects of interest were selected, frame
by frame. All the objects considered in the ground truth were localized in a common
perception region for the SVS and the ML-lidar. The confirmation track rate was
computed by counting the number of times where the bounding box of the confirmed

track contains the ground truth point.
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Figure 3.35: Use cases considered in the evaluation test

The results obtained using the ground truth are reported in Table 3.3. A total of 650
frames in 5 different situations showed that, at least 81% of the time, the detected
objects of interest were confirmed by the two modalities. Although one may conclude
that the visual track confirmation may sometimes reduce the number of true positives,
it should nevertheless be remarked that the confirmed tracks ensure the integrity of

the complete perception process.

Additionally, it should be remarked that visual track confirmation has no influence in

the iterative object tracking cycle which means that even if a track is not confirmed,
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the system keeps tracking it.

Table 3.3: Rate of detected objects confirmed by stereo vision

Video Sequence \ A \ B \ C \ D \ E ‘
Duration (s) 5 4 5 6 10
Number of Analyzed Frames 110 | 90 | 90 | 125 | 235
Number of scans 78 | 51 | 62 94 | 137
Positioning updates 72 | 37 | 65 | 121 | 160
Visual Confirmation Rate (%) 100 | 100 | 81.8 | 98.5 | 83.5

In use cases C and E, it was observed that large changes in vehicle pitch angle can
influence the precision of object tracking, since object motion is considered to be planar
and the vehicle pitch angle w.r.t. the ground is unknown. These effects are shown in
Fig. 3.36 where it can be observed that the ROI has a slight delocalization in height.

Wehicle Speed: 18.83 Kmih
CAM Speed: 18.37 Km/th

Figure 3.36: Confirmed vehicle in scenario C using stereo vision. The figure shows a
vehicle having just turned. Here the ROI is delocalized because of pitch changes, given that
the ego-vehicle is accelerating (see Fig. 3.35). In the right-hand side, the disparity map of
the analyzed scene is provided.

Fig. 3.37 illustrates the effectiveness of the confirmation concept and the accuracy in

the estimation of the speed track direction.
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Yehicle Speed: 19.53 Kmith
CAMN Speed: 17.02 Km/h

Figure 3.37: Vehicle visually confirmed in the intersection included in the scenario B (see in
Fig. 3.85). The ROI shows a quite good localization which would be interesting for recognition
tasks.

It should be reminded that absolute track speed direction can be estimated thanks to

the use of an object tracking approach based on a fixed-reference frame.
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Figure 3.38: FExzample of a confirmed tracked object using the SVS. In the left-hand side
is shown the world map containing a tracked object within the maneuvering window. In the
right-hand side, the tracked object is confirmed, since one of the cluster centroid matches the
lidar estimated position.

In Fig. 3.38, the left-hand side illustrates the world map, corresponding to Fig. 3.37,
where the ego-vehicle and the detected objects are localized and tracked. The right-

hand side of the figure shows, in blue, the reconstructed points of the ROI image.
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Looking at the ego-map, it could be remarked that one of the centroids of the clustered
point cloud has been matched with the track. This match confirms the existence of
the detected object.

Yehicle Speed: 12.80 Kmih
CAN Speed: 11.41 Kmih

Figure 3.39: A confirmed pedestrian track. The figure shows the confirmed pedestrian when
crossing the road in Scenario E (Fig. 3.85)

Fig. 3.39 presents another example of a confirmed object. Its bounding box (in red)
and its speed vector projection (in green) show a good localization. Thus far, these
results validate the synchronization strategy in scenarios involving slow and fast mov-
ing objects. Finally, the 3D view of the dynamic map corresponding to the instant
illustrated in Fig. 3.39, is provided in Fig. 3.40.
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Figure 3.40: Dynamic map of a pedestrian tracked by the multi-modal system.

3.6 Conclusion

An asynchronous embedded multi-modal system for object localization and tracking

has been proposed and experimentally tested. The approach presented here provides a
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3D dynamic map of a vehicle’s surroundings. The method merges sensor data to achieve
a robust, accurate 3D ego-localization. This function is combined with a lidar-based
object tracking focused on a maneuvering window, which provides the trajectories and
speeds of objects as they move in the space. A visual confirmation function integrated
into the tracking system checks the integrity of the provided information. To this end,
ROI are processed in a dense way. 3D points are reconstructed and compared to the
lidar-tracked object. This scheme makes full use of the broad functional spectrum
of stereo vision systems. Synchronization issues are taken into account to ensure the

temporal consistency of the system.

The obtained results show the effectiveness of the proposed strategy to increase in-
tegrity. The visual confirmation function was tested experimentally, demonstrating a
good confirmation rate and a good false alarm rejection. Additional tests are necessary
to provide more complete information about the system performance under different

scenarios.

The inclusion of a visual object recognition function for selecting the most suitable

object motion model might improve the tracking process. This is a research outlook.



Conclusions and Outlook

Conclusions

This research was devoted to the study of some contributions of stereo vision systems
for multi-modal perception of the geometry of the environment. We mainly focused on
multi-sensor object localization and tracking for Intelligent Vehicles evolving in open

roads.

Accordingly, this manuscript addressed multi-sensor calibration, visual ego-motion es-
timation in dynamic environments, multiple target tracking for ADAS applications and
perception integrity using vision.

The conducted investigations have led us to establish conclusions based on experimental

results. Hereafter, we present what we believe to be our contributions.

In order to address the cooperative fusion of the geometrical scene perception between
a ML lidar and a vision system, their relative pose has to be estimated accurately. To
this end, a new extrinsic calibration method taking into account some specificities of
vehicle integration has been proposed. This method relies on a robust registration of
multiple pose observations performed on a dedicated target. Observations are simulta-
neously obtained by the ML lidar and the camera. The circle-based calibration target
allows the estimation of not only the extrinsic system parameters but also the intrinsic
camera ones. Conscious of the importance of quantifying errors in data sensor fusion
applications, we also computed the confidence intervals of the extrinsic parameters. We
deeply studied the stability and the performance of the proposed solution in simulated
and real conditions. The geometrical transformation that is obtained allows an accu-
rate projection of the lidar data onto images. Moreover, we have noticed that errors in
the intrinsic camera parameters are compensated by the extrinsic ones, reducing the

offsets between measurements in the 3D space.

Concerning the dynamic object motion analysis of the scene, we developed a world-
centered approach because it simplifies the tracking task by improving the kinematic
state estimation of the observed objects. Nevertheless, this approach requires precise
knowledge of the ego-motion. To this end, we proposed a real-time visual odometry
method which was considerably improved by the use of wheel speed sensors and gyrom-

eter measurements. This multi-sensor strategy copes with vision system limitations in
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high rotational speed motions like 90° turns and roundabouts. Additionally, a good
trade-off between precision and execution time was achieved thanks to a sparse feature

approach and rigidity scene constraints provided by a quadrifocal tensor warping.

Making use of the full 3D vehicle pose estimate and a simultaneous lidar-based object
detection, a dynamic map of the vehicle’s surroundings can be created. Experimental
results confirmed how likely collisions can be straightforwardly detected based on tra-
jectories and speed vectors of the observed objects. Since the multiple target tracking is
a complex problem particularly in urban environments, the approach deals with tracks

only within a maneuvering window identified by the means of the lidar.

Keeping in mind that the dynamic map is intended to provide relevant information to
ADAS, we oriented our efforts towards the development of a self-assessment function
able to check the integrity of the track hypothesis. Thus, a visual confirmation function
was integrated to check the real existence of the tracked objects. Our tests carried out
on a full scale automotive system showed a good performance which preserves the high
detection efficiency of the system. Additionally, synchronization issues of the multiple
perception modalities were also considered and a solution was deployed through the

use of predictive filters which ensures the temporal data fusion consistency.

Future research

Along this document, we explored different areas related to a challenging objective. We
obtained some promising results in experimenting our suggested solutions. We identi-

fied some problems and interesting clues which worth pursuing in a future research.

A first perspective is the quantification of measurements errors and their propagation
in the fusion system in order to determine confidence indicators of the provided infor-
mation. Such indicators evidence the trust accorded by the driver to the fused data.
In this thesis, this topic was only examined for the extrinsic calibration parameters.
Preliminary tests (not reported in this manuscript) performed for quantifying the con-
fidence of the visual odometry estimates were shortly studied through the use of the
Unscented Transform (UT) [Jul02] to propagate residual errors to the pose state. The
UT transform seems to be a good candidate since it allows computing efficiently the
prediction of means and covariances in nonlinear systems. Further study is necessary

particularly when the visual optimization fails.

A second research perspective concerns global localization of visual odometry. In chap-
ter 2, a complete routine has been presented to obtain a GPS-like positioning using
visual odometry, in situations where GPS is not reliable. This technique could be
enhanced by integrating a Geographical Information System (GIS) with a map match-
ing algorithm using vectorial or aerial image information. In this way, the localization

method based on visual odometry can be initialized even in inaccurate GPS conditions.
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Moreover, drifts typically observed in dead-reckoning techniques could be also detected
and corrected. In order to do such a strategy, the use of a confidence information as-

sociated with the visual odometry is of prime importance.

Finally, we can mention some improvements regarding the object tracking scheme pre-
sented in chapter 3. One of them is the inclusion of a visual object recognition function
coupled with an interacting multiple model filtering. This would increase the accuracy
of the Kalman filter predictions and would facilitate the assignment of better geomet-
rical object models, like for instance, cylinders for pedestrians and boxes for vehicles.
This latter betterment should deeply improve the object track assignment and the
lidar-vision data fusion. The development of an object detection solely based on vision
is also a perspective of this work, since it would provide a redundant detection system

to the fusion architecture.






Appendix A

Rigid-body Transformations

A.1 Introduction

This study makes use of the concepts of the three-dimensional Euclidean space, E?,
defined by the axioms of Euclid. This space is represented by a Cartesian coordinate

frame where every point p € E? is identified by a point in R?® with three coordinates:

. . Pz )
p = p(z’,y,z) = |: px py pZ = py 6 R (A].)
P:

Sometimes, we can also use two subscripts to indicate 2D coordinates such as p(,,) =
T
[ P: Py } for example. Since we established a one-to-one mapping between E? and

R3, we can say that points and their coordinates are equivalent concepts.

Multiple sub-frames can be defined within the Cartesian space. Frames are then de-
noted by calligraphic letters (e.g. W, S, C). A point defined in a specific frame is

referenced with a left superscript indicating that frame e.g.”Vp.

Consider now a point p referenced in a frame C which position and attitude are defined
in the world frame W by " [R, t], as illustrated in Fig. A.1. " [R, t], can be used
as a rigid-body transformation. So, one can highlight that left superscript denotes the
“destination frame” and the right subscript indicates the “origin frame”. The notation

O, '](.) is not a matrix representation but an abstract notation as we will see later.

From above and in order to define the coordinates of ¢p in the world frame, the rigid-

body transformation which has to be applied to it is given by,
Wp=""Re “p+"tc (A.2)

where the variable R is reserved to denote rotation matrices belonging to the special
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wx

Figure A.1: Rigid-body transformation between a frame C and a world frame W

group SO(3) of orthogonal matrices in R3*3 and satisfying:

RTR = I
det(R) = +1

Translation vectors are denoted by t in R3.

Additionally, Eq. A.2 implies that a point p referenced in the world frame W can be

transformed to the frame C applying an inverse transformation:

cp _ WR(T; (Wp _w tc)
= "REp "V RE Ve (A.3)

where the rotation matrix "R is equivalent to Ry, and the operand (—WRg Wtc>

represents the translation vector Ctyy.

A.2 Rotation representations

Hereinbefore, rotations were presented and considered in their 3 x 3 matrix representa-
tion. However, there are multiple representations for the rotations which can be used

such as: Euler vectors, quaternions and axis-angle vectors.

A.2.1 Euler Angles

T
A rotation can be represented by Euler angles e = [ o B Y } which correspond
respectively to roll, pitch and yaw orientations in the ZY X convention. Since an Euler
angle vector cannot be used to perform direct transformations, it has to be converted

into a classical rotation matrix representation. Hence, the rotation matrix for the given
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Euler angles (in this order) is:

cos 3 costy sin¢ sin 8 cosy — cos ¢ cosy  cos ¢ sin 5 cos ) + sin ¢ sin
R = cosfsinty sin¢ sin 3 sint + cos¢ costp cos ¢ sin B sin1) — sin ¢ cos

—sin 8 sin ¢ cos 3 cos ¢ cos f3

(A.4)

A.2.2 Quaternions

An alternative to represent rotations is to use unit quaternions. Hereafter, only a

summary is provided.
A unit quaternion is a denoted by
. . .. T
q=qo+qit+q)+4qs) = [ % ¢ 92 g3 } (A.5)

T
where qo, g1, g2 and g3 are real numbers and the 4-vector [ G 9 G q3 } is unit

length. The conjugate of q is defined as follows:
—_ . . . . T
A=q-qi—@i—w6i=0 —a —¢ —g (A.6)
The corresponding rotation matrix of q is given by:

B+ad—6—a 2 (s —qon) 2 (g3 + qoge)
R = 2. <QIQQ + QOC]3) qg - CI% + q% - Q§ 2- (Q2Q3 - CZOCh) (A-7)
2- (13 — 90q2) 2 (203 + qoq1) q(Q) — ¢l — g+ Q32,

In opposition to Euler angles and axis-angle representations, quaternions can be used to
perform direct transformations. Let "V [q, t]. be the transformation that corresponds
to W [R, t] ¢ but which uses quaternions to express rotations. Accordingly, Eq. A.2 can
be computed as follows:

Wp =" qe+“p "V ac +" te (A.8)

where x represents the multiplication quaternion operator. Underlined vectors (e.g. p)

denote expanded forms (i.e. q = [0, p]”) for the use of the quaternion multiplication.
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Quaternion multiplication

T - T
Given two unit quaternionsql = | gqlg ql; ¢ls ¢ls | andq2 = | ¢2y ¢21 22 ¢23 } )
the product is defined by

qloq20 — qli 21 — qlaq29 — ql3q2;
10921 + gl q20 + qls g25 — qls g2
ql«q2 = qloqs1 T~ qli1qs0 T qlaqiz — ql3gag (A.9)
qloq22 — qly q23 + ql2 20 + ql3 g2,

qloq23 + ql1q22 — qlaq21 + ql3¢29

It should be noticed that q x @ = q x @ = 1 which means that the go-term of the

quaternion is 1 and the ¢;- , ¢go- and g3- are all zero.

This product is also suitable for the product of a unit quaternion and an expanded

vector.

A.2.3 Axis-angle rotation

The axis-angle representation of the rotation corresponds to a 3-vector, w, where its
length encodes the rotation angle, § = ||w]||, around the unitary axis represented by
itself. As for the Euler angles case, the axis-angle representation does not allows direct

computation of transformations. It can, however, be easily converted into a quaternion.

Axis-angle to Quaternion

T
Given an axis-angle rotation denoted w = [ Wo wp W } and its angle 6§ = ||w]|, the

quaternion q which represents w is computed as follows:

( ;0§ (3)( |

wo/0) sin (£

= 2 A.

4 (w1/0) sin (g) (4.10)
(we/0) sin (g)

Quaternion to Axis-angle

T
Consider a unit quaternion q = [ G ¢ ¢ qs } . If |go| = 1, then the angle is
= ||w|| = 0 and any unitary vector direction for the axis will do since there is no

rotation. If |go| < 1, then w is given by

a1 —q;
w = (2cos " (q)) - | q21/1 — 3 (A.11)
Q3\/1 - Q(2)



Appendix B

Tensor notation and Tensorial

algebra

B.1 Short description of tensors

The necessity to deal with higher order bases than matrices and vectors entails the use
of the standard tensor notation, also called Einstein notation. By the means of this
notation, the representation of column and row vectors is done through covariant (e.g.
;) and contravariant (e.g. 27) indexes. A matrix A, can then be represented as A}
where rows are noted by the contravariant index ¢ and columns by the covariant j.

Consider now, a linear algebra operation x’ = Ax. It can be alternatively represented

in tensor notation as:

P Z Aé-:cj = .Aja:j (B.1)
J

We define, in this convention, that indexes span over 1 to 3 and indexes repeated in
the contravariant and covariant positions imply summation (in the example 7). The

number of indexes which defines the structure of a tensor is denoted as its valence.

The trifocal tensor is a third-order tensor composed of 27 elements arranged in a cube
and represented by one covariant and two contravariants. It is possible to compute its
three covariant slices through an algebraic expression from two 3 x 4 matrices denoted
A and B:

T; = bsal —a,b! (B.2)

where a; and b; are respectively the i columns of A and B. a4 and by correspond
to their fourth columns. Accordingly, this can be done by two tensor products and a

subtraction:
7" = alb} — ajb} (B.3)

This operation can be graphically represented as depicted in Fig. B.1. It shows, for

example, that the first operand is composed of three slices in the &k direction which are
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the result of the multiplication of a! by each element of b%¥. The slices thus represent
al b, al b2 and al b3. The subtraction is done on the operand slices, element by element
in 3D.

b kS e

7 | _ I3 = T
=K, b

S 1

Jpk Jpk 7k
a; by ayb; T

1

Figure B.1: Graphical representation of the trifocal tensor computation

B.1.1 Multiple view geometry application

In computer vision applications, we deal with tensors obtained from A and B which
are computed from three canonical camera matrices. These tensors are used to achieve
the transfer of geometrical entities between these different view points. In the sequel,
two sample transfers are provided: Point transfer from first to third view via a plane
in the second view and Point transfer from first to second view via a plane in the third

view.

Point-line-point transfer

x//k — le; 7?

3D point

Figure B.2: Point transfer from first to third view via a plane in the second view

Point transfer from first to third view via a plane in the second view

Since the trifocal tensor representation encodes the geometrical constraints defined by
three views, it is possible to obtain from it, a homography mapping (transfer) allowing
the transfer between views of an observed point. Consider that a point x is observed

in the first and second view (CandC’) as shown in Fig. B.2. The image coordinates of



B.1 Short description of tensors 169

x in the third view, x” are given by:
2" = xil;’ﬁjk (B.4)

where ! is contravariant representation of the homogeneous image coordinates of x, l;
is the vertical image line passing through the corresponding point in the second view

and 2% is the transferred point coordinates.

In Eq. B.4 the trifocal tensor, ’7? M is initially “contracted” obtaining the homography,
h¥, induced by the plane defined by the back-projection of I,

k ik
k=177 (B.5)

Then a new contraction is performed on the obtained homography resulting in the

corresponding position of the observed point x transferred to the third view,
2" = hka (B.6)

Fig. B.3 graphically illustrates the detailed operations.

ST
Xl, = / o)
k > ' l/ + |2 -
°y ,L X l/ —_ ~/ gi—
i/ 2 = CET
LI 7
3 = /

T hl

(a) First contraction given by Eq. B.5

1 2 3
T xr xr ;
X X Y contraction
& kY S
? k
1"k

(b) Second contraction given by Eq. B.6

Figure B.3: Trifocal tensor contraction

Point transfer from first to second view via a plane in the third view

In a similar way to the former example, the contraction lgﬁjk corresponds to the

homography mapping between the first and the second view. This is induced by a
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plane obtained through the back-projection of [} in the third view:
2" = hilaz (B.7)

1

with h? = I/ 77",



References

[AHBS7]

[AKO06)]

[BA03]

[Bab94]

[BAHHO?]

[BBSSS]

[BCG+09]

[BETGOS]

[BHS7]

K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of
two 3-d point sets. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 9(5):698-700, 1987.

M. Agrawal and K. Konolige. Real-time localization in outdoor envi-
ronments using stereo vision and inexpensive gps. 18th International
Conference on Pattern Recognition, 2006. ICPR 2006., 3:1063 — 1068,
2006.

James P. Bliss and Sarah A. Acton. Alarm mistrust in automobiles: how
collision alarm reliability affects driving. Applied Ergonomics, 34(6):499
— 509, 2003.

Chris Baber. Human factors in Alarm Design, chapter Psychological
aspects of conventional in-car warning devices, pages 193-205. Taylor &
Francis, Inc., Bristol, PA, USA, 1994.

James R. Bergen, P. Anandan, Keith J. Hanna, and Rajesh Hingorani.
Hierarchical model-based motion estimation. FEuropean Conference on
Computer Vision, pages 237-252, 1992.

Henk A. Blom and Yaakov Bar-Shalom. The interacting multiple model
algorithm for systems with markovian switching coefficients. I[IFEFE
Transactions on Automatic Control, 33:780 — 783, 1988.

A. Broggi, P. Cerri, S. Ghidoni, P. Grisleri, and H.G. Jung. A new
approach to urban pedestrian detection for automatic braking. Journal
of Intelligent Vehicles Systems, 10(4):594-605, 2009.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.
Speeded-up robust features (surf). Computer Vision and Image Un-
derstanding (CVIU), 110:346-359, 2008.

Steven D. Blostein and Thomas S. Huang. Error analysis in stereo deter-
mination of 3d point positions. IEEFE Transactions on Pattern Analysis
and Machine Intelligence, 6:752-765, 1987.



172

REFERENCES

[BKOS]

[Blas6]

[BM92]

[BMO4]

[Bou02]

[BP99)]

[BSFCO8]

[BT74]

[CCGO6]

[CMRO7]

[CMR10]

[CNPCOS]

[CS09]

Gary Bradski and Adrian Kaehler. Learning OpenCV Computer Vision
with OpenCV. O’Reilly, 2008.

Samuel S. Blackman. Multiple Target Tracking with Radar Applications.
Dedham, MA, Artech House, 1986.

Paul J. Besl and Neil D. Mckay. A method for registration of 3-d
shapes. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 14(2):239, 1992.

Simon Baker and Tain Matthews. Lucas-kanade 20 years on: A unifying

framework. International Journal of Computer Vision, 56:221-255, 2004.

Jean-Yves Bouguet. Pyramidal implementation of the lucas kanade fea-
ture tracker description of the algorithm. Technical report, Intel Corpo-

ration Microprocessor Research Labs, 2002.

Samuel S. Blackman and Robert Popoli. Design and Analysis of Modern
Tracking Systems. Artech House, Incorporated, 1999.

Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and Roberto

Cipolla. Segmentation and recognition using structure from motion point
clouds. ECCV, 2008.

A. E. Beaton and J.W. Tukey. The fitting of power series, meaning

polynomials, illustrated on band-spectroscopic data. Technometrics, 1974.

Nico Cornelis, Kurt Cornelis, and Luc Van Gool. Fast compact city
modeling for navigation pre-visualization. IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1339-1344, 2006.

Andrew Comport, Ezio Malis, and Patrick Rives. Accurate quadrifocal
tracking for robust 3d visual odometry. IEEE International Conference
on Robotics and Automation, pages 4045, April 2007.

Andrew Comport, Ezio Malis, and Patrick Rives. Real-time quadrifocal
visual odometry. International Journal of Robotics Research, 29:245-266,
2010.

Cindy Cappelle, Maan E. El Najjar, Denis Pomorski, and Francois
Charpillet. Multi-sensors data fusion using dynamic bayesian network
for robotised vehicle geo-localisation. IEEFE Fusion, 2008.

Boguslaw Cyganek and J. Paul Siebert. An Introduction to 3D Computer
Vision Techniques and Algorithms. John Wiley and Sons, 2009.



REFERENCES

173

[Dic07]

[DJOS]

[DKF05]

[DSS01]

[DWB06]

[Faw06]

[Fay09)]

[FC02]

[FCO07]

[FTV99)]

[GGS94]

[GMO6]

Ernst D. Dickmanns. Dynamic Vision for Perception and Control of
Motion. Springer, 2007.

Gregory Dudek and Michael Jenkin. Springer Handbook of Robotics,
chapter Inertial Sensors, GPS, and Odometry, pages 477-490. Springer
Berlin Heidelberg, 2008.

Romain Dupont, Renaud Keriven, and Philippe Fuchs. An improved cal-
ibration technique for coupled single-row telemeter and ccd camera. The

International Conference on 3-D Digital Imaging and Modeling, 2005.

Klaus C. J. Dietmayer, Jan Sparbert, and Daniel Streller. Model based
object classification and object tracking in traffic scenes from range im-
ages. IEEFE Intelligent Vehicles Symposium, 1:1-6, 2001.

Hugh Durrant-Whyte and Tim Bailey. Simultaneous localisation and
mapping (slam). IEEE Robotics & Automation Magazine, 13:99-110/108
— 117, 2006.

Tom Fawcett. An introduction to roc analysis. Pattern Recognition
Letters, 27(8):861-874, 2006.

Fadi Fayad. Gestion de la confiance dans un systeme de fusion multi-
sensorielle. Application a la detection de pietons en situations routieres.
PhD thesis, Universite de Technologie de Compiegne, 2009.

Vincent Fremont and Ryad Chellali. Direct camera calibration using
two concentric circles from a single view. International Conference on
Artificial Reality and Telexistence, 2002.

Fadi Fayad and Veronique Cherfaoui. Tracking objects using a laser
scanner in driving situation based on modeling target shape. IFEFE In-
telligent Vehicles Symposium, 1:44-49, 2007.

Andrea Fusiello, Emanuele Trucco, and Alessandro Verri. A compact al-
gorithm for rectification of stereo pairs. Machine Vision and Applications
Manuscript, 1:1-8, 1999.

Walter Gander, Gene H. Golub, and Rolf Strebel. Least-squares fitting
of circles and ellipses. 1994.

D. M. Gavrila and S. Munder. Multi-cue pedestrian detection and track-
ing from a moving vehicle. International Journal of Computer Vision,
73(1):41-59, Juin 2006.



174

REFERENCES

[GT05]

[GvLI6]

[HGJDOY]

[HS81]

[HS8S]

[Hub81]

[HZ03]

[Jul02]

[Kal60]

[KD03]

[KGKO5]

[KLDOY]

[KOO4]

Tarak Gandhi and Mohan Trivedi. Parametric ego-motion estimation
for vehicle surround analysis using an omnidirectional camera. Machine
Vision and Applications, 16:85-95, 2005.

Gene H. Golub and Charles F. van Loan. Matrix computations. Johns
Hopkins University Press, Baltimore, MD, USA, 3 edition, 1996.

C. Hughes, M. Glavin, E. Jones, and P. Denny. Wide-angle camera tech-
nology for automotive applications - a review. Intelligent Transportation
Systems, 3(1):19-31, 20009.

Berthold K. P. Horn and Brian G. Schunck. Determining optical flow.
Artificial Intelligence, 17:185-203, 1981.

Chris Harris and Mike Stephens. A combined corner and edge detector.
Proceedings fo The Fourth Alvey Vision Conference, 1:147-151, 1988.

P.J. Huber. Robust Statistics. John Wiley, 1981.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Second Edition. Cambridge, 2003.

Simon J. Julier. The scaled unscented transformation. American Control
Conference, 6:4555-4559, 2002.

Rudolf Emil Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME - Journal of Basic Engineering,
(82):35-45, 1960.

Nico Kaempchen and Klaus Dietmayer. Data synchronization strate-
gies for multi-sensor fusion. Proceedings of the 10th World Congress on
Intelligent Transport Systems and Services, (T2250), 2003.

Jun-Sik Kim, Pierre Gurdjos, and In-So Kweon. Geometric and algebraic
constraints of projected concentric circles and their applications to cam-
era calibration. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(4), 2005.

Anupama Krishnan, Chris Lewis, and Day Dwight. Vision system for
identifying road signs using triangulation and bundle adjustment. IEEFE
International Conference on Intelligent Transportation Systems, 1:36—
41, 20009.

Kenichi Kanatani and Naoya Ohta. Automatic detection of circular
objects by ellipse growing. Int. J. Image Graphics, 4(1):35-50, 2004.



REFERENCES

175

[KZD04]

[LCCGO7]

[Lev4d]

[LHO6]

[LHLOS]

[LKS1]

[Lou]

[LOV]

[Low04]

[LRGAO5]

[Lup93]

[Mac67]

[Mar63]

Nico Kaempchen, Markus Zocholl, and Klaus C.J. Dietmayer. Spatio-
temporal segmentation using laserscanner and video sequences. Proceed-
ings Pattern Recognition 26th DAGM Symposium, 3175:367-374, 2004.

Bastian Leibe, Nico Cronelis, Kurt Cornelis, and Luc Van Gool. Dy-
namic 3d scene analysis from a moving vehicle. IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, CVPR, 1,
2007.

K. Levenberg. A method for the solution of certain non-linear problems
in least squares. Quarterly of Applied Mathematics, 2:164-168, 1944.

Hongdong Li and Richard Hartley. Five-point motion estimation made
easy. International Conference on Pattern Recognition, pages 630—633,
2006.

Martin E. Liggins, David L. Hall, and James Llinas. Handbook of Multi-
Sensor Data Fusion. CRC Press, 2008.

B. D. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. Proceedings of the 1981 DARPA
Imaging Understanding Workshop, 1:121-130, 1981.

Manolis Lourakis. levmar: Levenberg-marquardt nonlinear least squares

algorithms in ¢/c++.

ANR-Predit project Logiciel d’Observation des Vulnerables LOVe.
http://love.univ-bpclermont.fr.

David G. Lowe. Distinctive image features from scale-invariant key-

points. International Journal of Computer Vision, 20:91-110, 2004.

Raphael Labayrade, Cyril Royere, Dominique Gruyer, and Didier
Aubert. Cooperative fusion for multi-obstacles detection with use of

stereovision and laser scanner. Autonomous Robots, 19:117-140, 2005.

Robert Lupton. Statistics in Theory and Practice. Princeton University
Press, 1993.

J. MacQueen. Some methods for classification and analisys multivari-
ate observations. Berkeley Symposium on Mathematical Statistics and
Probability, 1:281-297, 1967.

D.W. Marquardt. An algorithm for the least-squares estimation of non-
linear parameters. SIAM Journal of Applied Mathematics, 11:431-441,
1963.



176

REFERENCES

[Mei07]

[MONO9]

[Nis04]

[INKLOS]

[NMTS07]

[INNBO4]

[NNBO6]

[Ope]

[PLR*06]

[PTOY]

[SAF]

Christopher Mei. Couplage Vision Omnidirectionnelle et Telemetrie
Laser pour la Navigation en Robotique / Laser-Augmented Omnidirec-
tional Vision for 3D Localisation and Mapping. PhD thesis, INRIA
Sophia Antipolis, Project-team ARobAS, 2007.

T. Miyasaka, Y. Ohama, and Y. Ninomiya. Ego-motion estimation and
moving object tracking using multi-layer lidar. IEEE Intelligent Vehicles
Symposium, 1:151-156, 2009.

David Nister. An efficient solution to the five-point relative pose prob-
lem. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
26:756-777, 2004.

Fawzi Nashashibi, Ayoub Khammari, and Claude Laurgeau. Vehicle
recognition and tracking using a generic multisensor and multialgorithm
fusion approach. International Journal of Vehicle Autonomous Systems,
6:134-154, 2008.

Viet Nguyen, Stefan Gachter Agostino Martinelli, Nicola Tomatis, and
Roland Siegwart. A comparison of line extraction algorithms using 2d
range data for indoor mobile robotics. Autonomous Robots, 23(2):97—
111, 2007.

David Nister, Oleg Naroditsky, and James Bergen. Visual odometry.
Proceedings of the 2004 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 1:652-659, 2004.

David Nister, Oleg Naroditsky, and James Bergen. Visual odometry for
ground vehicle applications. Journal of Field Robotics, 23(1), 2006.

Intel Corporation Open Computer Vision Library OpenCV.
http://sourceforge.net /projects/opencvlibrary.

Mathias Perrollaz, Raphael Labayarde, Cyril Royere, Nicolas Hautiere,
and Didier Aubert. Long range obstacle detection using laser scanner and
stereo vision. IFEE Intelligent Vehicles Symposium, 1:182-187, 2006.

Anna Petrovskaya and Sebastian Thrun. Model based vehicle tracking
in urban environments. IEEE International Conference on Robotics and
Automation, Workshop on Safe Navigation, 1:1-8, 2009.

SAFESPOT. Cooperative vehicles and road infraestructure for road
safety. http://www.safespot-eu.org/.



REFERENCES

177

[SBOO]

[SF06]

[SFS09]

[Shaos]

[SHREO0]

[SHS07]

[SKGO9]

[S0l07]

SS01]

[ST94]

[Ste99]

[Sti01]

Yaakov Bar Shalom and William Dale Blair. Multitarget/Multisensor
Tracking: Applications and Advances. Artech House Publishers, 2000.

Roland Schulz and Kay Furstenberg. Adavanced Microsystems for Auto-
motive Applications, chapter Laserscanner for Multiple Applications in
Passenger Cars and Trucks, pages 129-141. Springer Berlin Heidelberg,
2006.

Davide Scaramuzza, Friedrich Fraundorfer, and Roland Siegwart. Real-
time monocular visual odometry for on-road vehicles with 1-point ransac.
IEEFE International Conference on Robotics and Automation ICRA, 1:1,
2009.

Craig M. Shakarji. Least-squares fitting algorithms of the nist algorithm
testing system. Technical Report 6, National Institute of Standards and
Technology, 1998.

C. Stiller, J. Hipp, C. Rossig, and A. Ewald. Multisensor obstacle detec-
tion and tracking. Image and Vision Computing, 18(5):389-396, 2000.

D. Scaramuzza, A. Harati, and R. Siegwart. Extrinsic self calibration of
a camera and a 3d laser range finder from natural scenes. IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2007.

Bruno Siciliano, Oussama Khatib, and Frans Groen. The DARPA Urban
Challenge, volume 56 of Springer Tracts in Advanced Robotics. Springer
Berlin / Heidelberg, 2009.

Joan Sola. Towards Visual Localization, Mapping and Moving Objects
Tracking by a Mobile Robot: A Geometric and Probabilistic Approach.
PhD thesis, Institut National Politechnique de Toulouse, 2007.

Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of

dense two-frame stereo correspondence algorithms. International Jour-
nal of Computer Vision, 47:7-42, 2001.

Jianbo Shi and Carlo Tomasi. Good features to track. IEEE Conference
on Computer Vision and Pattern Recognition, pages 593 — 600, 1994.

Charles V. Stewart. Robust parameter estimation in computer vision.
Society for Industrial and Applied Mathematics, 41(3):513-537, 1999.

Christoph Stiller. Intelligent Vehicle Technologies, Theory and Appli-
cations, chapter Towards Intelligent Automotive Vision Systems, pages
113-128. Butterworth Heinemann, 2001.



178

REFERENCES

[SWO]

[SWO]

[TCD*06]

[TFBO0]

[Tri97]

[vdMFDG02]

[VJS03]

[WTH+07]

[XJ02]

[Zha00]

[ZP04]

[ZXJ*T09]

Amnon Shashua and Lior Wolf. On the structure and properties of the
quadrifocal tensor. In ECCV (1), pages 710-724, 2000.

Ciaran Simms and Denis Wood. Pedestrian and Cyclist Impact, volume

166, chapter Pedestrian and Cyclist Injuries, pages 5-30. Springer, 20009.

C. Tessier, C. Cariou, C. Debain, F. Chausse, R. Chapuis, and C. Rous-
set. A real-time, multi-sensor architecture for fusion of delayed observa-
tions: Application to vehicle localization. IEEFE Intelligent Transporta-
tion Systems Conference, pages 1316-1321, 2006.

Sebastian Thrun, Dieter Fox, and Wolfram Burgard. Probabilistic
Robotics. MIT Press, 2000.

Bill Triggs. Autocalibration and the absolute quadric. In Proceedings of
the 1997 Conference on Computer Vision and Pattern Recognition, page
609, Washington, USA, 1997. IEEE Computer Society.

Wannes van der Mark, DaniAgel Fontijne, Leo Dorst, and Frans C.A.
Groen. Vehicle ego-motion estimation with geometric algebra. Proceed-
ings IEEE Intelligent Vehicle Symposium, Versialles, 1:18-20, 2002.

Paul Viola, Michael J. Jones, and Daniel Snow. Detecting pedestrians
using patterns of motion and appearance. IEFEFE International Confer-
ence on Computer Vision, 1:734-741, 2003.

Chieh-Chih Wang, Charles Thorpe, Martial Herbert, Sebastian Thrun,
and Hugh Durrant-Whyte. Simultaneous localization, mapping and mov-
ing object tracking. International Journal of Robotics Research, 26:889—
916, 2007.

Yonghong Xie and Qiang Ji. A new efficient ellipse detection method.
International Conference on Pattern Recognition, 2:957-960, 2002.

Z. Zhang. A flexible new technique for camera calibration. IEEE T.
Pattern. Anal., 22(11):1330-1334, 2000.

Qilong Zhang and Robert Pless. Extrinsic calibration of a camera and
laser range finder (improves camera calibration). Proceedings. 2004
IEEE/RSJ. Intelligent Robots and Systems, 2004., 2004.

Huijing Zhao, Long Xiong, Zhigang Jiao, Jinshi Cui, and Hongbin Zha.
Sensor alignment towards an omni-directional measurement using an in-
telligent vehicle. IEEE Intelligent Vehicles Symposium, 1:292-298, 20009.



REFERENCES 179




	List of Symbols
	Acronyms
	List of Figures
	General Introduction
	Multi-Modal Perception System
	Introduction
	Sensing capabilities of Carmen 
	Multi-layer Lidar 
	Vision system

	Geometrical calibration
	Principle of the method
	Target pose estimation in the lidar sensor frame
	Target pose estimation in the vision sensor frame
	Lidar to Camera Transformation Estimation
	Calibration Accuracy Estimation
	Calibration Algorithm

	Results
	Simulation Trials
	Real Experiments

	Conclusion

	Vision-based Odometry
	Introduction
	Features Extraction 
	Feature Tracking
	Aperture problem
	Variants of the feature tracking

	Multiple View Geometry Constraints
	Two-view geometry 
	Multiple View Geometry over Time 

	Proposed 3D Visual Odometry Method
	Applying Feature Tracking to the Visual Odometry Problem
	Multiple View Parametrization for Ego-motion Estimation
	Ego-motion Estimation 

	Multi-modal 3D Odometry 
	Localization using 3D Visual Odometry
	Odometry Integration
	Geo-localizing 3D Visual Odometry 

	Real-time 3D Visual Odometry Algorithm
	Experiments
	Simulation
	Real data results 

	Conclusion 

	Multi-Modal Object Localization and Tracking
	Introduction
	Object Tracking 
	Object Detection and Localization
	Maneuvering Window 
	Kinematic Track State and Evolution Model
	Track-Object Association
	Closing the tracking loop

	Visual Confirmation 
	Frames used in solving the visual confirmation problem
	Region Of Interest in the Images
	3D Dense Reconstruction of the ROI
	Track Confirmation Test

	Multi-rate information management 
	Out-of-sequence problem
	Management of the temporal data misalignment

	Experiments
	Maneuvering Window Identification
	Object Localization and Tracking Results
	Visual Confirmation of Mobile Objects

	Conclusion 

	Conclusions and Outlook
	Rigid-body Transformations
	Introduction
	Rotation representations
	Euler Angles
	Quaternions 
	Axis-angle rotation


	Tensor notation and Tensorial algebra 
	Short description of tensors
	Multiple view geometry application


	References

