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Chapter 1

Introduction

Call centers have become more and more important for many large organizations. Brown et al.

(2002) report that in 2002 more than 70% of all customer-business interactions were handled by

call centers. They also report that call centers in the U.S. employ more than 3.5 million people,

i.e., 2.6% of the workforce. Due to the importance of this industry, considerable literature

has focused on the operations management of call centers, in particular on the following issues:

demand forecasting, quality of service and call routing (often using queueing theory), and staffing

and agents shift scheduling (using combinatorial optimization). We refer the reader to the

comprehensive surveys of Gans et al. (2003) and Aksin et al. (2007). A central feature in call

centers is the significant uncertainty in the number and length of calls or on the effective number

of available agents. This randomness leads to performance measures which deviate from those

predicted at the moment of planning (see Avramidis et al. (2004); Harrison and Zeevi (2005);

Whitt (2006); Robbins (2007) and Green et al. (2007)).

Comparing to the traditional manufacturing operations, the service capacity of a call center

mainly depends on the quantity and skills of human resources available, either through a direct

employment, subcontracting, or through cooperation with other service firms. This heavy de-

pendence on human resources implies that the Manpower Planning Problem is a key challenge

for managers.

The Manpower Planing Problem for call centers contains three parts: the resource acquisition,

the resource deployment and real-time updating and call routing (Aksin et al. (2007)). The

resource acquisition determines the quantity and the time to hire the agents by a long-term

view of demand for services. The resource deployment schedules the available agents based on a

short-term forecasts of demand for services. After that the resource deployment decisions have

been made, in real time, it is also possible to make shorter-term decisions like forecast updating,

schedule updating, and real-time call routing.

3



4 Introduction

Due to the complexity of the process of hiring and training agents which requires long lead

times, resource acquisition decisions should be made several weeks and sometimes months ahead

of time. Resource deployment decisions requires less lead time, and are usually made several

weeks before the actual arrive of calls. The challenge of resource deployment plan is to minimize

the cost, and at the same time closely match the supply with the uncertain demand of agent

resources. Many studies of call forecasts show that both of the call arrival distributions and

service time distributions vary over time (Aksin et al. (2007) and Gans et al. (2003)), consequently

the demand for resources is highly variable. Both forecasting and queueing models are therefore

important in modeling resource deployment decisions. A third activity which plays important

role in resource deployment decisions is the scheduling planning, which determines the number

of agents assigned to a range of shifts. The process of determining an optimal (or near-optimal)

schedule is well known to have a significant combinatorial complexity. This is our major concern

in this dissertation. Once the decisions of resource acquisition and resource deployment have

been made, for a given day or week, some new information about forecasts and agent availability

become available. One can use these new elements to update the call volume forecast and the

agents schedules. This problem is also analyzed in this dissertation. Finally, at the time when

calls arrive, queueing policies and real-time call routing are used to assign calls to the appropriate

agents.

In this dissertation, we consider the staffing-scheduling problem. The staffing-scheduling

planning problem aims to build an agent schedule that minimizes costs while achieving some

predefined quality of service objectives. By dividing the scheduling horizon into several periods,

for example periods with 30 minutes each, staffing decisions are usually made to determine the

target staffing level for each period. These targets depend on both the quantity of work arriving

(as estimated by the call volume forecasts), the duration (the forecasted mean service times)

and the quickness the call center seeks to serves these customers (estimated by some function of

the customer waiting time distribution). Once the forecasts and waiting time goals have been

established, staffing formulations such as queueing performance evaluation models and simulation

models are used to determine the targeted number of service resources, typically on a period-

by-period basis. Taking the targeted number of service resources as inputs, giving the definition

of shifts, the scheduling problem determines an optimal set of agents numbers for each shift.

The traditional way to solve the scheduling problem is to formulate and solve a mathematical

program to identify a minimum cost schedule while achieving the target staffing level or other

labor requirements.

In what follows, we motivate our work and describe its contribution to practice and to the
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literature of call centers.

1.1 Motivation

Call centers have emerged as the primary vehicle for firms to interact with consumers, transform-

ing consumer service jobs once characterized by variety and personal relationships into routinized

and high speed operations. Call centers are used to provide services in many areas and industries:

banks, insurance companies, emergency centers, information centers, help-desks, tele-marketing

and more. Technological development has allowed remote service delivery using various channels

of telecommunication. The definition of a call center is continuously changing, but the core fun-

damentals of a customer making a call (via an inbound call or outbound call by phone, email,

web site, fax or Interactive Voice Response) to a center (collection of resources) will remain con-

stant. Call center, contact center or customer interaction center operate on identical principals

of meeting customer needs in real-time or near real-time. Here, we consider a call center dealing

with inbound calls and back office jobs such as emails.

Call centers can be broadly classified into two types: call centers with equally skilled agents

and homogeneous calls and call centers with multiple queues and agent skills. Our concern in

this thesis is single-skilled call centers.

A large quantity of literature, both in the context of call centers (see references in Gans

et al. (2003)) and in more general contexts (see Ernst et al. (2004)), has extensively studies the

scheduling problem. In the context of call centers, the arrival process of calls is usually assumed

to be Poisson. In most of the existing scheduling problem models, the overall arrival rate is

assumed to be known. However, Gans et al. (2003) point out that this is typically not the case.

Rather, the arrival rate is predicted from historical data and the forecasts of arrival rate are

not exact. Due to insufficient historical data upon which reliable estimates can be based, and

unpredictable factors such as weather conditions, the arrival rate is not known with certainty,

this is called parameter uncertainty. The authors in Gans et al. (2003) say “It can be risky to

ignore arrival-rate uncertainty" and “Surprisingly, however, there is little work devoted to an

exploration of how to accommodate uncertainty".

In Aksin et al. (2007), the authors also underline that reconsidering the scheduling problems

under the more general assumption that arrival rates are random variables is very promising area

that is just now beginning to receive attention from researchers.

In this dissertation, we consider the shift scheduling problems of a call center, in which we

allow the mean arrival rate of calls to be uncertain. We model in this whole dissertation the

arrival process of calls by a doubly non-stationary stochastic process, with random mean arrival
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rates.

1.2 Description and Contribution

The goal of the present thesis is to contribute to the operations management research of call

centers. We aim to enhance our understanding of such complex systems, so as we gain useful

guidelines for the practitioners. We specifically address the analysis of four problems that take

into account the important feature of uncertainty in the call arrival parameters. In what follows,

we briefly provide the description of the models under consideration.

1. Blending Single Shift Scheduling Problem: In the first model, we consider a multi-

period staffing problem in a single-shift call center. The call arrival process is assumed to

follow a doubly non-stationary stochastic process with a random mean arrival rate. We

consider a setting in which there exists some flexibility to modify in real-time (within the

same day) the instantaneous capacity dealing with inbound calls. The alternative work for

the employees is to handle the day’s workload of back-office jobs. The flexibility arises from

the fact that back-office jobs, which can be viewed as storable, can be answered at any

time of the day, but they have to be treated within the same day, in overtime if necessary.

The inbound calls in our model should be handled (almost) immediately, using a standard

service level constraint (on average at least a given fraction of customers should wait less

than a given threshold of time). This constraint has to be satisfied on a period-by-period

basis. After closing the inbound calls channel, agents can recourse to work on overtime

hours in order to handle eventual unfinished back-office jobs.

The staffing problem is modeled as a cost optimization-based newsboy-type model. The

cost criterion function includes the regular and overtime salary cost, a penalty cost for

excessive waiting times for inbound calls. Our objective is to find the optimal staffing level

which minimizes the total call center operating cost. We propose two solution methodolo-

gies: the stochastic and robust programming, to solve this problem, and give managerial

insight on the trade-off between operation cost and service quality. Also, we analyze the

impact of the flexibility offered by back-office workloads. We show that combining the two

types of jobs offers flexibility, partially absorbing the undesirable effects of uncertainty in

the arrival parameters.

2. Multi Shifts Scheduling Problem with Recourse: In the second model, we consider

a multi-periodic multi-shift call center staffing problem, which decides an initial schedules

before the beginning of the working day and allows real-time recourse actions to adjust
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the initially scheduled staffing levels in reaction to realized deviations from arrival-rate

forecasts.

In most of call center environment, scheduling decisions are typically taken one or two

weeks ahead of time. However, many random elements such as the call arrival rate reveal

only until that day has begun. It is then important to make real-schedule adjustment even

though very little attention has been devoted to this issue, either for call centers or other

types of service systems. We construct a two-stage model with the first-stage decision as

initial schedules and the second-stage decision allowing the manager to make adjustment by

increasing or decreasing staffing levels. The objective is to minimize the sum of the regular

salary, the update adjustment cost and the penalty cost of agents shortfall (under-staffing).

We analyze a special case where all shifts are without break, thanks to which we find

some very important and interesting property of the two-stage recourse problem. Two

different solution approaches are considered: the classic two-stage stochastic program with

recourse, and the modified robust optimization method with discrete recourse decisions.

The efficiency and excellent performance of these two approaches are analyzed theatrically

and illustrated through a numerical study based on real-life data. We also analyze the

added advantage of using dynamic adjustment (update). We show that the update action

reduces the operational cost and the under-staffing probability.

3. Distributionally Robust Optimization Problem: In the third model, besides the pa-

rameter uncertainty on arrival rate as presented above, we consider an additional type of

uncertainty: the uncertainty on the probability distribution of a random parameter. The

traditional way to take into account the parameter uncertainty is to assume a known prob-

ability distribution of this random parameter. However, in practice, the exact probability

distributions are often unknown. In this model, we consider the case where the probabil-

ity distribution of the random parameter is ambiguous and belongs to some probability

distribution set.

We consider a multi-periodic multi-shift static call center shift-scheduling problem. A

random number of agents related with the ambiguous probability distribution is required

to handle the inbound calls in each period. The assigned agents number is allowed to be

less than that required, i.e., under-staffing, but the expected total under-staffing for the

whole day should not exceed a certain limit, even for the worst case probability distribution

belonging to the considered probability distribution set. The objective is to minimize the

agents salary under condition of respecting the expected total under-staffing limit.
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We propose an approach combining stochastic programming and distributionally robust

optimization to optimize the operation cost, and show the necessity of taking into account

the uncertainty on probability distribution of random parameters.

4. Staffing-Scheduling Problem with Global Service Level and Update: To the

contrary of all the above models which consider period to period service levels, we consider

in this last model a global service level objective for the whole day.

For the above three models, we assumes that service level goals, or the targeted number of

service resources, are hard constraints that must be met during each period. One could use

the Erlang formula to determine the staffing level for each period, and then schedule for

each shift a certain number of agents to obtain the staffing level for each period. However,

the model with global service level combines both the staffing level determination and

the shift scheduling steps. In general, comparing the two types of models, the one with

hard constraints leads to more overcapacity in certain intervals than the model with global

service level.

We consider a multi-periodic multi-shift call center staffing problem with possibility to

adjust the staffing level during the day. The call center’s operational cost includes the

initial staffing salary cost and the adjusted staffing cost. The achieved global service

level is allowed to be less than the target global service level, but the expected service

level shortfall should not exceed a certain limit. We construct two models to describe

this problem and analyze the efficiency and performance of these two models. We then

conduct a comparison study of different models: the above two models, the model with

hard constraints and staffing update, and the static one with global service level constraint

and without staffing update. The comparison shows the advantages of adding the update

flexibility, and points out the impact of having a global service level constraint.

In Chapter 2 we provide the industrial background on call center workforce management and

the basic mathematical tools dealing with uncertainty optimization. Also we review the relevant

literature related to this thesis. In Chapters 3-6, we give the analysis of the four problems

presented above, respectively. The manuscript ends with general conclusions and future research.



Chapter 2

Background and Literature Review

This chapter introduces and defines the different concepts used in this thesis, and

reviews the related literature.

In Section 2.1, we give a brief introduction of the call center workforce management,

such as the call center operation system, the staffing-scheduling problem and some

possible ways to offer staff flexibility. We emphasize the uncertainty in arrival rate

of inbound calls, and the definition of a special shift-setting which leads to total

unimodular period-shift matrix.

In Section 2.2, we collect the main mathematical optimization facts and results on

uncertainty optimization, upon which we build our results in the sequel. The most

common way to treat uncertainty is stochastic optimization. A more recent approach

called Robust Optimization takes a deterministic set-based view of uncertainty in

optimization thus remains highly tractable. We present also the results in recourse

in stochastic optimization and robust optimization.

Lastly, We review the literature related to the staffing-scheduling problem in call

center management.

9
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2.1 Call Center Workforce Management

2.1.1 Introduction to Call Center Operations

Many companies and organizations, in public and private sector, use call centers to communi-

cate with their customer relationships. For some of the companies, such as banks and cellular

operators, their call centers are the main channel for maintaining contact with their customers.

In general, call centers are becoming a vital part of the service-driven society nowadays. As a

result call centers have also become an object for academic research.

Besides the agents, call centers are also equipped with computers and telecommunication

equipment which enable to the delivery of services via the telephones. Figure 2.1 provides

a general architecture of the equipment. An inbound call connects from the public service

telephone network (PSTN) to the call center’s privately owned switch, the private automatic

branch exchange (PABX or PBX), though a number of telephone lines often called trunk lines.

At first, calls may be connected thought the PABX to an Interactive Voice Response unit (IVR)

where the caller can use her keypad to select options and potentially provide data input to call

center systems. If callers need to speak to an agent, the calls are handed from the IVR to an

automatic call distributor (ACD). The ACD is a specialized switch to route calls from PABX

to individual agent. Modern ACDs are highly sophisticated and they can monitor agent status,

collect data, manage on hold queues and make complex routing decisions based on various criteria.

Particulary in call centers employing skills based routing, the decision process to match callers and

agents can turn out to be quite complex. In addition, Computer-telephone integration (CTI) can

be used to improve the efficiency of routing process and agents work by using the callers’ record

information. In more sophisticated settings, CTI is used to integrate the customer relationship

management (CRM) system, which track callers records and allow them to be used in operating

decisions, such as suggesting cross-selling (Gans et al. (2003)).

Figure 2.2 depicts an operational scheme of a simple call center as a queueing system. The

trunk lines connect calls to the center while a group of agents serve incoming calls. An arriving

call that find all the trunk lines occupied receives a busy signal and is blocked from entering the

system. Otherwise it is connected to the call center and occupies one of the free trunk lines. If

some of the agents are available, the call is served immediately. Otherwise, it waits in queue

for an agents to become available. Callers who become impatient hang up, or abandon, before

getting into service. Some of the blocked and abandoned calls become retrials that attempt to

reenter service. The remaining of them are lost. Finally, it is also possible that served caller may

return to the system (Gans et al. (2003)).
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Service quality is an important and complex issue related to evaluate the call center man-

agement. The notions of service quality most commonly tracked and managed by call centers

could be the accessibility of agents (how long the callers have to wait to speak to an agent), the

effectiveness of service encounters (whether need to rework), and the content of agents interac-

tion with the callers (Gans et al. (2003)). A standard quality of service constraint is that ensures

that SL% of customers wait less than AWT seconds, i.e., P{Wait ≤ AWT} ≥ SL. For example,

the 80/20 rule, where at least 80% of customers wait in queue less than 20 seconds. The service

quality can be defined for a month, a day, an hour or a period even shorter.

The staffing cost is a major component in the operating costs of call centers. In Gans et al.

(2003), the authors indicate that it represents 70% of the labor cost. An efficient staffing is

thereafter crucial. Unfortunately, the uncertainty of arrivals make the staffing problem difficult.

In addition to the usual uncertainty modelled by a stochastic process, there is indeed also, as

mentioned in Chapter 1, uncertainty in the process parameters. Another source of uncertainty

is the absenteeism of agents which highly affects the efficiency of the before-hand planned agents

in order to meet the quality of service constraints. In this dissertation, we do not consider the

latter type of uncertainty. We only consider the uncertainty in the inbound call arrival process

parameter while allowing it to be non-stationary, i.e., varying in the day time. Most call center

models in the literature assume a known, fixed arrival rate and ignore the issue of arrival rate

uncertainty. In Gans et al. (2003), the authors say “Surprisingly, however, there is little work

devoted to an exploration of how to accommodate uncertainty".

2.1.2 Uncertain and Non-Stationary Arrival Rate

Several characteristics of the arrival process of calls have been underlined in the recent call center

literature. First, it has been observed that the total daily number of calls has an overdispersion

relative to the classical Poisson distribution. Second, the mean arrival rate considerably varies

with the time of day. Third, there is a strong positive correlation between arrival counts during

the different periods of the same day. We refer the reader to Avramidis et al. (2004) and Brown

et al. (2005) for more details.

In order to address uncertain and time-varying mean arrival rates coupled with significant

correlations, we model the inbound call arrival process by a doubly stochastic Poisson process

(see Avramidis et al. (2004); Harrison and Zeevi (2005), and Whitt (1999)) as follows. We assume

that a given working day is divided into n distinct, equal periods of length T , so that the overall

horizon is of length nT . The period length in practice is often 15 or 30 minutes. The mean arrival

rate of calls during period i is denoted by Λi and is random. The stochastic process describing
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the cumulative number of arrivals up to time t is defined by

A(t) =M(

κ∑
i=0

TΛi + (t− Tκ)Λκ+1 : κ = ⌊t/T ⌋), (2.1)

where M = (M(t) : 0 ≤ t < ∞) is the unit rate Poisson process, and Λ = (Λi : 0 ≤ i ≤ n) is

the sequence of arrival rates, with E[

n∑
i=1

Λi] <∞. By conditioning on an outcome of the average

arrival rate in a given period, say λ, the process A(·) is therefore a rate-λ Poisson process during

that period. Furthermore, using the modeling in Avramidis et al. (2004) and in Whitt (1999),

we assume that the arrival rate Λi is of the form

Λi = Θfi, for i = 1, ..., n, (2.2)

where Θ is a positive real-valued random variable. The random variable Θ can be interpreted as

the unpredictable busyness of a day. A large (small) outcome of Θ corresponds to a busy (not

busy) day. The constants fi model the shape of the variation of the arrival rate intensity across

the periods of the day. Formally, let us denote a sample value, for a given day, of the random

variable Θ by the positive real value θ. Then, the corresponding replication of the arrival rate

over period i for that day is λi = θfi.

Using the data of a Dutch hospital, we determine the fis of Monday by averaging on all

Mondays of a year. In Figure 2.3, we plot in solid line fi as a function of period i, and also

plot in dashed line two examples of not busy and busy days. The example of the Dutch hospital

we consider in this dissertation agrees with the observed experience in call centers. In most call

centers we indeed have very significant time-of-day seasonality. The arrival rate at the beginning

and at the end of the day is quite low. It ramps up sharply in the morning and tends to dip

down around the lunch break, but a second lower peak occurs in the afternoon. Although there

is a significant stochastic variability in the arrival rate from one day to another, there is a strong

seasonal pattern across the periods of a given day.

2.1.3 The Call Center Staffing and Scheduling Problem

The call centers staffing and scheduling problem consists on building an agent schedule that

minimizes costs while achieving some customer waiting time distribution objective. An efficient

schedule balances firm and individual goals and constraints. As such, the key input of this

staffing scheduling problem is the targeted staffing levels, which depend on the forecasted arrival

call volume, the forecasted mean service time and the objective distribution of costumer waiting

time. Simulation models and analytic queueing models(exact or approximation) are the two
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alternatives to evaluate performance. And they can be used to determine the target staffing

levels once the forecasts on mean arrival rates and mean service time, the waiting time goals are

established.

Staffing problem

Queueing analytical models are used to determine how many agents must be available to serve

calls over a given period. The simplest M/M/N (Erlang C) queueing model is widely used to

estimate stationary system performance of short-half-hour or hour-periods. A standard service

level constraint is introduced for each time period, through which the waiting time is kept in

convenient limits. For period i, let the random variable WTi denote the waiting time of an

arbitrary call. The probability distribution of the waiting time of calls is computed using the

classical results of the Erlang C model. In doing so, the mean arrival rates and service rates

are assumed to be constant in each period of the day. Also, it is reasonable to assume that the

system achieves a steady state quickly within each period. It is known (see for example Gross

and Harris (1998)) that for a given staffing level N which only handle inbound calls, one has for

period i,

P{WTi ≤ AWT | θ}(N) = 1−

(
N−1∑
k=0

(θ fi/µ)
k

k!
+

(θ fi/µ)
N

N ! (1− θ fi/µ
N )

)−1
(θ fi/µ)

N

N ! (1− (θ fi/µ)
N )

e−(Nµ−θ fi)AWT

= Fθ fi(N), (2.3)

where AWT represents the Acceptable Waiting Time (for example 20 seconds). For a given

value of the objective service level in period i, say SLi%, and a given sample value of the arrival
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rate, θ fi, this formula is used in the reciprocal way in order to compute the staffing level which

guarantees the required service level,

Ni(θ fi) = F−1
θ fi

(SLi). (2.4)

Although the Erlang C formula is widely used and easily implemented, it does not give an

intuitive insight on the size of agents number required and it can turn out to be highly inaccurate

if underlying assumptions are violated (Gans et al. (2003)). A well known approximation of the

Erlang C for heavy-traffic regimes, those in which agents utilization is high, is the square-root

safety staffing approximation. Given the arrival rate λi for period i and service rate µ, this

implies that the system’s offered load in this period is given by Ri = λi
µ . In their pioneering

paper, Halfin and Whitt (1981) showed that when the offered load Ri is high, and an appropriate

number of agents are employed, a system can achieve a high agent utilization and yet deliver a

good service level by choosing the number of servers called square-root safety staffing Ri+β
√
Ri,

where β is some fixed service grade related to a target delay probability P(WTi > 0) by the

following expression:

P (WTi > 0) ≈ P (β) = [1 +
β Φ(β)

ϕ(β)
]−1. (2.5)

In the equation above, Φ and ϕ are the cumulative distribution and density functions of the

standard normal distribution (mean=0, variance=1), respectively.

With this square-root safety staffing formula, the agents are highly utilized, answering calls

almost 100% of the time. On the other hand, a large fraction of customers should receive no

or just a small amount of waiting. This form of staffing gives rise to the so-called Quality

and Efficiency Driven (QED) regime that has been extensively studied in the literature; see for

example Borst et al. (2004) and the survey paper by Gans et al. (2003).

Erlang B is a loss model which assumes that the number of lines is equal to the number

of agents (no queues) and incorporates blocking of the customers. Eralng B is often used to

calculate the number of lines required in order to achieve a desired blocking probability. While

Erlang C is a direct result of the assumption of zero abandonment, it is further developed to

incorporate customer impatience in the Erlang A system. Detail reviews of queueing models of

call centers are available in Koole and Mandelbaum (2002).
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Shifts-scheduling Problem

Taking the results from the staffing problems as input, the shifts-scheduling problem deals with

the assignment of a specific number of agents to detailed shifts. A shift denotes a set of periods

during which an agent works over the course of the day.

The shifts-scheduling problem has been extensively analyzed in the literature, dating back to

the set covering problem modeled by Dantzig (1954). Let J be the set of all the feasible work

schedules, each of which dictates if an agent answers calls in period i ∈ I. For i ∈ I and j ∈ J ,

we define the |I| × |J | matrix A = [aij ], where

aij =

 1, if agents in schedule j answer calls during period i,

0, otherwise.

Each agent assigned to shift j gets a salary cj for the day. Letting the decision variables xj ,

j ∈ J represent the numbers of agents assigned to the various shifts and let Ni, i ∈ I, denote

the required number of agents of each period. The set covering problem can be expressed as

Min cT x

s.t. Ax ≥ N (2.6)

x ∈ Z.

The optimal solution of Equation (2.6) defines the number of agents assigned to each shift, and

for each period the constraint on available agents is respected.

This shift-scheduling problem is known to be NP complete unless that each shifts is continuous

with no breaks. It can be very difficult to solve for problems with many shifts and periods. In

practice, these scheduling problems are not solved to optimality. The reasons are first the integer

nature of the decision variables, and second the presence of breaks in the middle of the shifts.

A particular case is that each agent works over consecutive periods, without breaks. Then

every column of matrix A has contiguous ones and this kind of matrix is totally unimodular.

Totally unimodular matrices are of extreme importance in polyhedral combinatorics and combi-

natorial optimization. It is well known that if matrix A is totally unimodular and vector N is

integral, every extreme point of the feasible region {x | Ax ≥ N} is integral and thus the feasible

region is an integral polyhedron. This implies that the linear program (LP) of Equaiton (2.6) is

integral (has an integral optimum, when any optimum exists).



Call Center Workforce Management 17

2.1.4 Flexibility in Staffing

Call centers may benefit from flexible staffing, i.e., the ability to adjust from one period to another

staffing levels (and/or schedules) with observed traffic. Such flexibility may be attained using

temporary operators, in addition to the permanent ones always available to provide service.

The temporary operators may be either supervisors/managers or other operators who are on

call. Another type of flexibility corresponds to the presence of different shifts for the operators.

By combining such shifts, the operators capacity can be aligned with the time-period varying

average workload. The third type of flexibility concerns an objective in terms of a global service

level. It allows to achieve low service level during some periods of the day, and to achieve higher

ones during the other periods. A last type of flexibility corresponds to the presence of blending

of jobs, i.e., dealing with different types of jobs, with different admissible qualities of service.

The key flexibility of problems with jobs blending comes from the fact that less urgent calls (as

e-mails or calls with a possible callback) can be inventoried to some extent, to the contrary to

other more urgent calls.

Blending different types of jobs

One of the strategies hedging against parameter uncertainty is to provide flexibility to change

the staffing level upon short notice in response to unanticipated change in demand, as discussed

in Whitt (1999). Flexibility staffing can be achieved by ensuring that the staff of the call center

have alternative work. The forms of alternative works are various, such as training, after-call

processing of previous calls and making outbound calls. But Whitt (1999) limits in obtaining

reliable estimates of the mean and variance of the demand in the near future, in order to adapt

the necessary staff.

Gans et al. (2003) present additionally the multimedia. Differences among media are deeper

than differences among calls: One important difference is the natural time scales at which the

various media must be responded to. Typically, telephone calls should be served immediately

(within seconds or minutes), and should not be interrupted once started. E-mail and fax, on the

other hand, can be delayed for hours or days. This time natural difference lead one to consider

a blending center with inbound calls which requires high priority and emails or fax with lower

priority. During the time intervals, agents who might be idle can become productive by handling

low-priority work.

In Chapter 3 we construct a model with multimedia: the inbound call and the alterative work

represented as emails which could be handled by idle agents. And we analyze the advantages of

flexibility. In Robbins et al. (2008, 2007) the authors introduce an improvement on the overall
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operating characteristics of the queueing system by adding a relatively small portion of cross

trained workforce. This is an example of blending calls.

Real-time schedules adjustments

Another type of flexibility comes from real-time schedules adjustments which are made after

agents have been hired and trained and agents schedules have been created. These adjustments

are made on an intra-day basis to agents’ schedules, once additional information about call vol-

umes, absenteeism and all other activities such and training and meeting, have become available.

Mehrotra et al. (2010) point out four reasons why real-time schedules adjustment helps for

successful call center management. We simply quote the following sentences:

“Most importantly, several researchers ( Avramidis et al. (2004), Brown et al. (2005),Jong-

bloed and Koole (2001a),Shen and Huang (2008),Steckley et al. (2004) and Weinberg et al.

(2007)) have recently identified significant correlation between arrivals in different time intervals

within the same day, and have suggested methods for updating call forecasts on an intra-day ba-

sis; a primary purpose for such updated call forecasts is to provide support for real-time schedule

adjustments. Secondly, given the lead time associated with schedule generation, many changes

to employee availability can and do take place after the original schedules have been created.

Thirdly, detecting how well the scheduled agent workforce actually matches the actual workload

is often not possible for a given day until that day has begun, at which point responding to the

incremental (positive or negative) demand may be crucial. Finally, managers regularly struggle

with staffing tradeoffs, for while having too few agents on duty can lead to severe degradations

in service quality, having too many agents results in low resource utilization and overspending

of scarce financial resources."

In Chapter 4 we construct a model with information update and real-time schedules adjust-

ment. Different to the two relevant work existing (Gans et al. (2009) and Mehrotra et al. (2010)),

we employ totally unimodular property to obtain interesting result for the solving process. More-

over, we modify and apply the adjustable approach for this real-time schedules adjustment prob-

lem.

Global service level

Generally, papers treating agent scheduling problems consider service level constraints period by

period, which is referred to as hard constraint by Koole and van der Sluis (2003). Using Erlang

formula to determine the required staffing level for each time interval, and solving a setting cover

integer problem, the solution leads in general to overcapacity in certain intervals. On average,
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the service level is higher than required, and as a consequence the number of scheduled shifts is

higher than necessary.

Koole and van der Sluis (2003) is the first to consider a global service level constraint, which is

called soft constraint, where a larger number of employees in one time interval can compensate a

shortage in another interval. The flexibility involves in allowing that intervals with a low service

level to be compensated by intervals with high service levels: the objective is to reach on average

at the correct service level.

In Chapter 6 we construct a model with a global service level constraint, in which the real-time

schedules adjustments are allowed.

2.2 Uncertainty Optimization

Uncertainty can take two forms: (i) the parameters are constant but unknown. The randomness

comes form the errors produced by our estimation of the parameter values, and (ii) the parameters

themselves vary as a function of the states conditions and the decisions taken beforehand. In this

thesis, we consider only the fist case, in which for a multi-stage problem, the random parameters

are independent of the decisions of previous stages.

The filed of decision-making under uncertainty was pioneered by Dantzig (1955) and Charnes

and Cooper (1959b) in the 1950’s. They set foundation respectively for stochastic programming

and optimization under probabilistic constraints. Both of these classes of problems share the same

assumption that the probability distribution of the random variables are known exactly. Another

stream of research call robust optimization which is pioneered by Soyster (1973), addresses

the decision-making problem under uncertainty but without this probability assumption. In

robust optimization, random variables are modelled as uncertain parameters belong to a convex

uncertainty set and the decision-maker protect the system against the worst case in that set.

In this section, we survey the primary research, on both stochastic programming and robust

programming optimization.

Uncertainty can come in many different forms, and hence it is possible to model it in various

ways. In a mathematical approach one formulates an objective function f : Rn → R which

should be optimized (say minimized) subject to specified constraints. That is, one formulates a

mathematical programming problem:

Minx∈Xf(x). (2.7)

The feasible set X ∈ Rn is defined by a number of constraints {x ∈ Rn : gi(x), i ∈ I}. Inevitably
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the objective and constraint functions depend on parameters, denoted by vector ε̃ ∈ Rd. This

indicates that f(x, ε̃) and gi(x, ε̃), i ∈ I, can be viewed as functions of the decision vector X ∈ Rn

and the parameter vector ε̃ ∈ Rd.

In the usual set-up, the parameters defining the optimization, are known deterministically.

Even if we can find the optimal solution for this problem (for integer optimization, it is not

guaranteed to get an optimal solution), the solution is not designed to be robust in perturbation

in the feasible set. Ben-Tal and Nemirovski (2000) shows that even small perturbations of

parameters make the usual optimal solution completely meaningless from a practical point of

view. Stochastic programming and robust optimization, using different models and solution

techniques, immune the problem against parameter uncertainty. In what follows, we discuss

these two main streams of research.

2.2.1 Stochastic Optimization

Math programs which explicitly incorporate uncertainty in parameter values are known as

stochastic programs. The notion of stochastic programming was first introduced in the 1950s,

see Dantzig (1955).

Overview and Scenarios Construction

When the parameters are uncertain, but assumed to take values in some given set of possible

values, one may seek to find solutions which are feasible for all choices of possible parameters

and optimize a given objective function. Stochastic programming models assumes that the

probability distributions governing the data are known or can be estimated. The objective is to

find decisions which are feasible for all (or almost all) the possible parameter realizations and

optimize the expectation of some function of the decisions and the random variables.

Coming back to Problem (2.7), suppose that ε̃ takes values in set Ξ, with corresponding

probability distribution P. We then formulate the following stochastic programming problem:

Minx∈XE[f(x)] =Minx∈X

∫
Ξ
f(x, ε̃)dP (ε̃). (2.8)

A possible justification of this approach is as follows. If the process repeats itself, by the Law

of Large Numbers, for a given solution x, if we are supposed to solve the same problem under

the same probability distribution many times, the average of the total cost will converge to the

expectation E[f(x)]. In that case Formulation (2.8) gives a best possible solution on average.

Next, we give a short review about the scenarios construction. In general, it is preferable that

the number of constructed scenarios is relatively modest so that the obtained (linear) problem
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can be solved within reasonable computational effort. A standard approach to generate scenarios

is by discretization. That is, one discretes the continuous probability distributions into a finite

number of points {ε̃k ∈ Ξ, k ∈ K} with K the set of points. A positive weight pk is assigned to

each ε̃k, with
∑
k∈K

pk = 1. The discretized set {ε̃k, k ∈ K} and the corresponding probabilities

{pk, k ∈ K} can be viewed as a representation of the underlying probability distribution. With

respect to this distribution, the integral Problem (2.8) is approximated by

Minx∈XE[f(x)] =Minx∈X
∑
k∈K

pk f(x, ε̃k). (2.9)

Suppose that the components of the random vector ε̃ ∈ Rd are independent from each other.

We construct scenarios by discretizing the probability distributions of each components into M

possible values. Then the total number of scenarios is Md. Such exponential growth of the

number of scenarios makes the method of discretization very difficult, even for reasonable size

(see Shapiro (2008)). The discretization approach may still work for two, may be three, or even

four (parameter components) variables. It is not possible to use such a discretization approach

with more than 10 variables, which would lead to a curse of dimensionality.

An alterative approach that reduces the scenarios to a manageable size is the Monte Carlo

Simulation. Assume that the total number of scenarios is very large or even infinite, due to the

exponential growth in the number of random parameters. Assume further that it is possible to

generate a random sample {ε̃1, ε̃2, ..., ε̃N} of N replications of the random vector ε̃. That is,

each sample ε̃j , j = 1, .., N , has the same probability distribution as ε̃. Moreover, assuming that

ε̃j , j = 1, .., N , are independent, the corresponding sample average function is

f̂N (x) = N−1
N∑
j=1

f(x, ε̃j). (2.10)

The function f̂N (x) is random since it depends on the generated random sample. It is an

approximation of the expected function E[f(x)] when N → ∞ by the Law of Large Numbers.

This motives to introduce the sample average approximation (SAA) problem:

Minx∈X{f̂N (x) = N−1
N∑
j=1

f(x, ε̃j)}. (2.11)

Note that once the sample is generated, Problem (2.11) becomes a problem of the form of (2.9),

with scenarios ε̃j , j = 1, .., N , and identical probabilities pj = 1
N , j = 1, .., N .

Two basic varieties of stochastic programs are chance constrained programs and recourse
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programs. Chance constrained programs implement constraints with some confidence level, the

higher the confident level is, the lower the probability of violation of constraint would be. Re-

course programs on the other hand recognize two types of decisions, which are decisions that

occur before uncertainty is revealed: (i)the (here and now) first-stage decisions, and (ii) decisions

that occur after uncertainty has been revealed: the (wait and see) recourse decisions.

Recourse Programs

Recourse problems have been widely analyzed in the literature. A brief tutorial type introduction

is provided in Higle (2005). Several excellent texts are also available that outline the structure

and solution approaches for stochastic programming. Kall and Wallace (1994) is an excellent

introduction that includes a survey of various solution techniques and algorithms. Birge and

Louveaux (1997) is a thorough review of linear and non-linear stochastic programming, while

Kall and Mayer (2005) focuses strictly on stochastic linear programs.

For a two stage stochastic recourse problem, the recourse decisions evolve the second time

horizon. Adopting the notation from Birge and Louveaux (1997), the general stochastic linear

programming problem can be expressed as

Min cT x+ Eξ[minq(ω)T y(ω)]

s.t Ax ≥ b (2.12)

T(ω)x+Wy(ω) ≥ h(ω)

x ≥ 0,y(ω) ≥ 0.

The objective of the stochastic linear program (2.12) is to minimize the cost of the first-stage

decision, plus the expected cost of the recourse decisions. The optimization is constrained by

the first set of constraints that depend only on the deterministic first-stage variables, and the

second set of constraints that depend on the recourse decisions (y(ω)) and may have random

components. The stochastic program is typically solved relative to a finite set of scenarios,

sample draws of the random vector ξ. If the number of sample outcomes is denoted by K, with

probability pk for each scenario, then we can write the stochastic program in extensive form as

Min cT x+
K∑
k=1

pk q
T
k yk

s.t Ax ≥ b (2.13)

Tk x+Wyk ≥ hk, k = 1, ...,K

x ≥ 0,yk ≥ 0, k = 1, ...,K.
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The extensive form program (2.13) is the deterministic equivalent of (2.12) with a finite set of

outcomes, and as such can be written as a large linear program. The program can then be solved

using the standard simplex algorithm for linear programs. However, as the number of realizations

increases the size of the program can be quite large and difficult to solve. Some approach

are proposed for solving large scale stochastic programs, such as the L-Sharped decomposition,

Benders decomposition, stochastic decomposition, etc. We shall present in detail the Benders’

decomposition later.

As for the multi-stage stochastic optimization, the recourse decisions evolve over some (usu-

ally finite) stages. This is even more complicate than the two stage recourse stochastic problem.

Then multi-stage model can be expressed as:

Min c1
T x1 + Eξ2 [minc2T x2(ω2) + ...+EξH [mincHT xH(ωH)]]

s.t Ax1 ≥ b1 (2.14)

T1(ω)x1 +W2 x2(ω2) ≥ h2(ω)

...

TH−1(ω)xH−1 +WH xH(ωH) ≥ hH(ω)

x1 ≥ 0,xt(ωt) ≥ 0, t = 2, ..., H.

In the above model (2.14), the decision xt made in each stage t depend on the realized infor-

mation vector (ωt), which contains all the information observed in previous stages. A common

way to represent these realizations is via a scenario tree. A scenario tree is a graph with a single

root node at level 0, and branches to a series of nodes at level 1, with each node representing

a possible realization of ω in this period. Again each node branches to a series of nodes (finite

number) at the successor level. And each node has a single predecessor node. It is obvious

that the size of the scenario tree grows very quickly. Suppose the stage number is T , with Rt

realizations at each stage, the total number of scenarios of this scenario tree is

N = ΠT
t=1Rt (2.15)

The size of scenarios increases non-linearly and grows very large either when the stage number

or the scenario number of each stage are big. Figure 2.4 shows an example of a scenarios tree.

There are many studies on how to construct such scenarios trees in a reasonable and mean-

ingful way. One possible approach is to use Monte Carlo technique to generate scenarios by
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t=0 t=1 t=2 

Figure 2.4: Scenario tree example

conditional sampling. This is an extension of SAA method to multi-stage setting. Noting that

the total number of scenarios N is the product of constructed realization number Rt at each

stage. In order to avoid the explosion of the number of scenarios, and reduce it to a manageable

level, one may take Rt = 1 from a certain stage on. This means that we relax the assumptions

that the parameters are random from this stage on. The reason for doing so, it is that for the

multi-stage stochastic program, the most important is to compute the first-stage optimal deci-

sion. After that the first-stage decision has been applied, more information about the random

parameter are available, the managers could re-optimize the decisions of the follow-up stages by

using new information.

For a large-scaled multi-stage linear problem, several decomposing and partitioning tech-

niques are proposed in the literature. In what follows, we give a summary of one of the well

known techniques, namely, the Benders decomposition.

Benders’ decomposition (Benders (1962)) is a well-known approach for solving two-stage

linear models and also combinatorial optimization problems. There are many examples of suc-

cessful applications of this methodology. For example, the large scale water resource management

problem (Cai et al. (2001)) and the two-stage stochastic linear problem (Zhao (2001)).

The main idea of Benders’ composition is to partition the model into two simpler problems:

a master problem and a subproblem. The master problem is a relaxed version of the original

problem, containing only a subset of the original variables and the associated constraints. The

variables obtained in the master problem takes fixed values in the subproblem. They are used

as linking variables.

Consider the following general formulation in order the illustrate the main idea of the Benders’
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decomposition:

Minimize cT x+ dT y

s.t. Ax+By ≥ b, (2.16)

Dy ≥ e,

x,y ≥ 0.

For the combinatorial optimization problem, Benders’ decomposition also works for the case

where x and y are continuous and integer decision vectors, respectively. Vectors c and d are

associated with costs. Matrices A,B,D,b and e are of appropriate dimensions. This problem

can be written as:

Minȳ∈Y {dT y + Minx≥0 {cT x : Ax ≥ b−Bȳ}}, (2.17)

where Y = {y|Dy ≥ e,y ≥ 0}. The Benders’ decomposition subproblem is

Min cT x

Ax ≥ b−Bȳ, (2.18)

x ≥ 0.

The dual version of this problem is

Max uT (b−Bȳ)

uA ≤ c, (2.19)

u ≥ 0.

Let F the feasible set of the dual maximization problem (2.19). It should be noticed that

this feasible set is independent of the values of y. We assume that F is not empty for it would

correspond to a primal problem either infeasible or unbounded. F is therefore composed of

extreme points up for (p = 1...P ) and extreme rays rq for (q = 1...Q).

The solution of the dual problem (2.19) can be either bounded or unbounded. A feasible

primal problem ends a bounded dual problem, in which case the solution is one of the extreme

points up(p = 1...P ). An unfeasible primal problem leads to the unbounded dual problem. In

such a situation, there is a direction rq for which rq (b − Bȳ) ≥ 0. This situation should be
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avoided. A group of constraints

rq (b−Bȳ) ≤ 0, q = 1...Q, (2.20)

restricts this unbounded situation for the dual maximum problem. With this restrictions, the

maximum value of the dual problem falls on one of the extreme points of F .

Since the primal and dual formulations can be interchanged according to duality theory,

(2.17) can be rewritten as

Minȳ∈Y {dT y + Maxu≥0 {uT (b−Bȳ) : uA ≤ c}}, (2.21)

which is equivalent to

Minȳ∈Y {dT y + Max {up (b−Bȳ) : p = 1...P}}, (2.22)

s.t. rq (b−Bȳ) ≤ 0, q = 1...Q.

Adding an auxiliary continuous variable z, the Benders’ reformulation of (2.22) is:

Min dT y + z

s.t. z ≥ up (b−Bȳ), p = 1...P, (2.23)

rq (b−Bȳ) ≤ 0, q = 1...Q,

y ∈ Y, z ≥ 0.

The number of extreme points and extreme rays is usually extremely large. It is difficult to find

out them all at once. Benders’ proposes to generate the extreme points and extreme rays by

iteration. Initially, only the following simplified master problem is solved:

Min dT y + z

s.t. y ∈ Y, z ≥ 0. (2.24)

This problem is a relaxed version of (2.23) and therefore the objective value is a lower bound to

the original problem. The optimal value of ȳ by solving this problem is used in the subproblem

(2.18) or equivalently (2.19). This subproblem is solved and the results are either unbounded or

bounded, consequently, an extreme ray rq or an extreme point up is found. The sum of dT ȳ

and the objective value of the subproblem (2.18) gives an upper bound of the original problem.

The master and the subproblem are solved iteratively, until the upper and lower bounds are
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sufficiently close. The Benders’ Decomposition algorithm can be stated as:

Algorithm of Benders’ decomposition()

Initialization: ε (a small value), ȳ (initial feasible integer solution), LB(−∞),

UB(∞) q = 0, p = 0,,

If UB − LB ≥ ε Then

solve Problem (2.19)

If unbounded then

q = q + 1, get unbounded ray rq,

add cut rq (b−Bȳ) ≤ 0 to master problem

Else

p = p+ 1, get extreme point up,

add cut z ≥ up (b−Bȳ) to master problem

UB := min{UB,dT ȳ + up (b−Bȳ})

end if

solve master problem

LB := dT y + z.

end while

End Algorithm.

Chance Constraints Programs

An alternative aspect of stochastic programming is chance constraints programs introduced by

Charnes and Cooper (1959a). To the contrary to the aspect of multi-stage models, chance

constraints programs focus on constraints violation probability. A chance constrained model of

a single stage problem is defined as follows.

Min cT x

s.t. P (AT (ε̃)x ≥ b(ε̃)) ≥ 1− α (2.25)

x ∈ X,

where X is a feasible set of x. In model(2.25), the probability that all the m linear constraints

are jointly feasible is required to be more than 1 − α, with α ∈ [0, 1]. Let m be the dimension

of vector b(ε̃)). If m = 1 then Problem (2.25) is called individual chance constrained problem;

otherwise, it is called joint chance constrained problem. It is obvious to see that the latter is
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more complicated than the former.

The intension of chance constraints is reasonable, in order to avoid the solutions to be too

conservative and to make a trade off between the violation of constraints and the objective qual-

ity. Chance constrained problems are computationally intractable in general, see Nemirovski and

Shapiro (2006). The only exception is by assuming that the random parameters following a mul-

tivariate normal distribution. Then the optimization model of an individual chance constrained

problem becomes a second-order cone problem, which is tractable.

Consider the objective of model (2.25), let us put the objective into a chance constraint as

follows,

s(α) = min{s|Pr{cT x ≤ s} ≥ 1− α)}. (2.26)

The critical threshold s(α) guarantees that the objective cT x is smaller than s(α) with a prob-

ability higher than 1 − α. This is the definition of the popular risk measure in finance called

Value at Risk (VaR), which is the maximum loss not exceeded with a given probability defined

as the confidence level, over a given period of time. VaR is coherent only when it is based on

the standard deviation of normal distributions. And it is difficult to optimize when calculated

by generating scenarios, since VaR is non-convex, non-smooth and has multiple local extremes

in this case.

An alternative and more attractive way to take into account the risk consists on bounding the

conditional value at risk (CVaR), see Rockafellar and Uryasev (2002). CVaR is more consistent

because of its sub-additivity and convexity. Ogryczak and Ruszczynski (2002) mention that

the CVaR is a coherent risk measure which is computationally tractable in the framework of

stochastic programming.

The CVaR is defined by

CV aRα(x) = E(cT x|cT x ≥ s(α)). (2.27)

Rockafellar and Uryasev (2002) proved that the minimization of CV aRα(x) w.r.t. the decision

vector x is the solution of a simple minimization problem given by

ρ1−α(c
T x) = min

x
CV aRα(x) = min

x,s
{s+ α−1E[cT x− s)+]}. (2.28)

Furthermore, the right-hand side of the optimization problem (2.28) is jointly convex in (x, s) if

the cost function cT x is convex in x.

From the definition, it is clear that VaR is always smaller or equal to CVaR, then minimizing

CVaR also leads to near minimization of VaR. Similarly to CVaR minimization on objective
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function, we can include CVaR in a constraint by adding the following constraint:

ρ1−α(b− aT x) ≤ 0. (2.29)

Nemirovski and Shapiro (2006) has established that the CVaR constraint (2.29) is the tightest

convex approximation of the following individual chance constraint

P (b(ε̃)− aT (ε̃)x ≤ 0) ≥ 1− α. (2.30)

The CVaR constraints can be approximated by sampling average approximations, but its

solutions may not be a safe approximation for the chance constraint. The same to the classical

stochastic programming, sampling approximation requires full knowledge of the distribution of

random parameters, which would not be always available. Chen et al. (2010) propose upper

bounds for the CVaR constrains by using robust optimization on a varieties of uncertainty set.

Thus the chance constrained problem is approximately solved.

2.2.2 Robust Optimization

Stochastic programming is widely used as a strong modelling tool when an accurate probability

description of the random is available. However, the decision-maker does not necessarily have

this perfect information in real-life application. A more recent approach to optimization under

uncertainty, in which the uncertainty model is not stochastic, but rather deterministic and set

based, is pioneered by Soyster (1973). In this work, the author proposes a linear optimization

model to construct a solution which is feasible for all data belonging to a convex set. This model

was widely deemed being too conservative in the sense that too much of optimality is lost in

order to ensure robustness. In the late 1990s, a significant step forward for developing a theory

for robust optimization was taken by research teams led by Ben-Tal and Nemirovski (1998, 1999,

2000) and Ghaoui and Lebret (1997); Ghaoui et al. (1998). These papers addressed the issue

of overconservative by restricting the uncertain parameters to belong to ellipsoidal uncertainty

set, which involves solving the robust counterpart of the nominal problem in the form of conic

quadratic problem. A draw-back of the robust modelling framework with ellipsoidal uncertainty

sets is that it increases the computational complexity of the problem. For example, the robust

counterpart of a linear programming problem is non-linear, although it is a convex problem.

More lately, Bertsimas and Sim (2003, 2004) and Bertsimas et al. (2004) propose a robust op-

timization approach based on polyhedral uncertainty sets. To the contrary to the approaches

with ellipsoidal uncertainty sets, the robust counterpart they propose are linear optimization
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problems. This approach is thus generalized to discrete optimization problems. The origin of

robust optimization deals with static problems where all the decision variables are determined

before any of the uncertainty parameters are realized. Ben-Tal et al. (2004) first extended the

robust optimization to dynamic setting, where the decision-maker adjusts his strategy according

to information revealed. They suggested an approximation to the linear adjustable robust coun-

terpart called affinley adjustable robust counterpart. More recently, Bertsimas and Caramanis

(2010) propose the finite adaptability which treats problems in which the second-stage decisions

are discrete.

This section outline the main aspects of robust optimization. The first part focuses on

the introduction of models and solving techniques concerning static robust optimization with

polyhedral uncertainty sets. The second part describes the new results on the direction of

dynamic robust optimization, incorporating the fact that information is revealed in stages.

Static Robust Optimization

Firstly, we present the robust optimization framework when all decisions should be decided before

(or without) knowing the exact value taken by the uncertain parameters. We address later the

case where the decision-maker can adjust his decisions according to the revealed information.

Given an objective f0(x) to optimize, subject to constraints fi(x,ui) ≥ 0 with uncertain

parameters, {ui}, the general optimization formulation is:

min f0(x)

s.t. fi(x,ui) ≥ 0, ∀ui ∈ Ui, i = 1, ...,m, (2.31)

with x as vector of decision variables, f0, fi : Rn → R as functions, and uncertainty parameters

ui ∈ Rk taking arbitrary values in the closed uncertainty sets Ui ∈ Rk.

The goal of (2.31) is to find the minimum cost solution x which is feasible for all realizations

of the uncertain parameter ui ∈ Ui. Computational tractability is an important issue of the

robust optimization. In general, the robust version of a tractable optimization problem may

not itself be tractable. The tractability of the robust counterpart of a problem depends on the

structure of the nominal problem as well as the class of uncertainty set. It is well-known that

some classes of optimization problems, including LP, QCQP, SOCP, SDP, and some discrete

problems as well, have a robust counterpart formulation that is tractable. It is important to take

care of the choice of the uncertainty set to ensure that tractability is preserved.

We now give a summary of the LP robust optimization with a polyhedron uncertainty set

A, as proposed by Bertsimas et al. (2004). Consider the following nominal linear optimization
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problem:

min cT x

s.t. Ax ≥ b, (2.32)

x ∈ X .

Without loss of generality, we assume that the uncertainty affects only the matrix A, and X is a

polyhedron not subject to uncertainty. Noting that if the coefficient c in the objective is affected

by uncertainty, we can simply add the constraint Z − cT x ≥ 0 and use the objective minimize

Z. The reformulated problem then has the form of (2.32).

Feasibility of the solutions is a fundamental issue of this problem with random parameters.

One feature of robust optimization is that it guarantees that every constraint is satisfied for any

possible value of A in a given convex set A. This leads to the following robust counterpart of

Problem (2.32):

min cT x

s.t. aTi x ≥ bi, ∀ i, ∀ai ∈ A, (2.33)

x ∈ X ,

where ai is the ith vector of A. It is more difficult to solve the robust problem (2.33) than the

nominal one (2.32), since the former requires the minimum value of aTi x with ai ∈ A be still

equal or bigger than bi.

The uncertainty set A is defined as follows. In order to keep simplicity, it is assumed that

each coefficient aij of the matrix A is affected by the uncertainty, and is modelled as a symmetric

and bounded random variable ãij that takes values in [āij − âij , āij + âij ]. It is also assumed

that all the coefficients are independent from each other. The scaled deviation zij is defined as

zij =
ãij−āij

âij
, which obeys an unknown but symmetric distribution, and takes values in [−1, 1].

For each i,
∑n

j=1 zij takes values in the interval [0, n]. As analyzed in Bertsimas and Thiele

(2006), the true value of
∑n

j=1 zij will take much less value than n since some parameters will

exceed their point forecasts and others will fall below estimate, so zij tends to cancel each other

out. This coincides with the fact that aggregate forecasts are more accurate than individual

ones.

For each i, a parameter Γi is introduced as
∑n

j=1 |zij |, called budget of uncertainty. Then the
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set A becomes:

A = {(ãij)|ãij = āij + âij zij ,∀i, j, z ∈ U}, (2.34)

with uncertainty set U:

U = {z||zij | < 1,∀i, j,
n∑

j=1

|zij | ≤ Γi,∀i}. (2.35)

This uncertainty set considers all parameters ãij such that belonging to the interval [āij−âij , āij+

âij ], with the restriction that the total weight of deviation from āij , summed across all realiza-

tions, may be no more than Γi. When Γi = 0, this set is the singleton āij . At the other extreme,

when Γi = n, it considers all uncertainty realizations in the range [āij − âij , āij + âij ].

Besides the tractability, the managerial insights support of choosing uncertainty set as (2.35)

is as follows. From the point view of management, point forecasts are less meaningful than

range forecasts, since the point forecasts are always wrong. And aggregate forecasts are more

accurate than individual ones (see Bertsimas and Thiele (2006)). Thus the framework of robust

optimization cooperate these managerial insights, the uncertainty parameters or variables are

assumed to belong to an interval, and an additional constraint limits the maximum deviation of

the aggregate forecasts from its nominal value.

The problem (2.33) can be then reformulated as:

min cT x

s.t. āTi x+ min
zi∈Ui

n∑
j=1

âij zij xj ≥ bi, ∀ i, (2.36)

x ∈ X ,

where zi is the vector whose j-th element is zij and Ui is defined as

Ui = {zi||zij | < 1,∀j,
n∑

j=1

|zij | ≤ Γi}. (2.37)
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min
zi∈Ui

n∑
j=1

âij zij xj for a given i is equivalent to

−max

n∑
j=1

âij zij |xj |

s.t. |zij | < 1,∀j, (2.38)
n∑

j=1

|zij | ≤ Γi.

This equation is linear in the decision variables zij . The strong duality of problem (2.38) is

as follows.

−min (

n∑
j=1

qij + Γi pi)

s.t. pi + qij ≥ âij yj , ∀ j, (2.39)

−yj ≤ xj ≤ xj ,∀ j,

pi, qij ≥ 0,∀ j.

The robust problem is then reformulated as a linear programming problem:

min cT x

s.t. āTi x− (

n∑
j=1

qij + Γi pi) ≥ bi, ∀ i, (2.40)

pi + qij ≥ âij yj , ∀ i, j,

−yj ≤ xj ≤ xj ,∀ i, j,

pi, qij ≥ 0,∀ i, j,

x ∈ X .

Compared to Problem (2.32), which contains m constraints and n variables, Problem (2.40)

has n+m(n+ 1) variables and n(m+ 2) constraints besides the nonnegativity ones, but keeps

being LP.

The value assigned to budget of uncertainty Γi for each i reflects the decision-maker’s attitude

toward uncertainty. Despite the lack of information of the random matrix A, we might ask for

probabilistic guarantees for the robust solution as a function of the structure and size of the

uncertainty set. Specifically, what is the probability of feasibility of the the robust solution in

practice? This may become a guideline for the selection of the budget of uncertainty Γi.

For the constraints and uncertainty set defined above, Bertsimas et al. (2004) links the value of
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the budget to the probability of constraints violation as follows. Let x∗ salsifies constraint aT x ≥

bi, when each aij obeys a symmetric distribution centered at āij and of support [āij−âij , āij+âij ],

the probability that the constraints aT x ≥ bi to be violated is at most e−
Γi

2 |J| .

More generally, there are fundamental connections between distributional ambiguity, mea-

sures of risk, and uncertainty sets in robust optimization. The reader is referred to Bertsimas

et al. (2010a), Chen et al. (2007) and reference therein for further details.

Dynamic Robust Optimization

Ben-Tal et al. (2004) first extended the robust optimization framework to dynamic setting.

Similarly to the two-stage stochastic optimization with recourse, the decision-maker selects the

here-and-now, or first-stage decisions, before having any knowledge of the actual value about

the uncertainty. He observes then the realization of the uncertainty and after, he chooses the

wait-and-see, or second-stage decisions according to the outcome of the uncertainty. In a short,

rather than re-optimization, the decision-maker adjust his strategy to information revealed over

time using policies.

Similarly to the static robust optimization, the dynamic robust optimization ensures that

the solutions obtained are feasible for any realization of the uncertainty in the uncertainty set

chosen. The general model of adjustable robust counterpart is as follows.

min cT x

s.t. Ax ≥ b, (2.41)

T(ω)x+W(ω)y(ω) ≥ h(ω), ∀ω ∈ U,

where {[T(ω),W(ω),W(ω], ω ∈ U} is a convex uncertainty set describing the possible values

taken by the uncertainty parameters. The second-stage decisions y are allowed to depend on the

uncertainty and the first-stage decision x have no adaptability to the uncertainty vector ω.

Note that a problem with second-stage decision y in the objective can immediately be refor-

mulate as:

min Z

s.t. cT x− dTy(ω) ≤ Z, ∀ω ∈ U, (2.42)

Ax ≥ b,

T(ω)x+W(ω)y(ω) ≥ h(ω), ∀ω ∈ U,
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which has the form of Problem (2.41).

Problem (2.41) is more flexible than Problem (2.33). But this flexibility comes at the expense

of tractability (mathematically, the full adaptability Problem (2.41) is NP-hard). To address this

issue, Ben-Tal et al. (2004) propose the affinely adjustable robust counterpart (AARC), in which

the second-stage decisions are restricted to be affinely depend on the realized data, which is

called Linear Decision Rule (LDR).

In this section, we give a brief review of the AARC methodology pioneered by Ben-Tal et al.

(2004). The specific from of LDR proposed by Ben-Tal et al. (2004) for the adjustable variable

y is as follows.

y = q+Qω, (2.43)

for some q and Q to be determined. The AARC of Problem (2.41) is then

min cT x

s.t. Ax ≥ b, (2.44)

T(ω)x+W(ω) (q+Qω) ≥ h(ω), ∀ω ∈ U.

An important case of AARC is that the parameters associated with the adjustable variable in

the LP are constants, independent of the uncertainty. This case is known as fixed recourse.

Ben-Tal et al. (2004) show that AARCs with fixed recourse are computationally tractable for

a wide spectrum of uncertainty set. Ben-Tal et al. (2005) employ this methodology to solve a

retailer-supplier flexible commitment contract problem.

Suppose that the parameters depend affinely on uncertainty, which can be expressed as

T(ω) = T0 + T1 ω, h(ω) = h0 + h1 ω. In what follows, we introduce the process to solve a

dynamic robust optimization problem with fixed recourse. The two-stage optimization problem

(2.44) can be written as

min cT x

s.t. Ax ≥ b, (2.45)

(T0 +T1 ω)x+W (q+Qω) ≥ h0 + h1 ω, ∀ω ∈ U.

with the values of vectors x,q and matix Q to be determined.

An important step in building the AARC formulation is the selection of the uncertainty set.

Ben-Tal and Nemirovski (2000) show that if the uncertainty set is chosen to be either a polyhedral
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or an ellipsoidal, the resultant AARC can be solved efficiently. We present an example by defining

U as a polyhedral uncertainty:

U = {ω : |ω − ω̄| ≤ ρ}. (2.46)

The AARC formulation corresponding to the LP(2.41) is as follows.

min cT x

s.t. Ax ≥ b, (2.47)

h0 −T0 x−Wq+ (h1 −T1 x−WQ)ω ≤ 0, ∀ω ∈ U.

For the polyhedral uncertainty set (2.46), the second inequality constraint in (2.47) is equiv-

alent to

max{h0 −T0 x−Wq+ (h1 −T1 x−WQ)ω : |ω − ω̄| ≤ ρ} ≤ 0, (2.48)

and its optimal solution is

h0 −T0 x−Wq+ (h1 −T1 x−WQ) ω̄ + |h1 −T1 x−WQ| ρ ≤ 0. (2.49)

By adding a new non-negative vector G which has the same dimension as vector b, the AARC

formulation (2.47) can be further expressed as

min cT x

s.t. Ax ≥ b, (2.50)

h0 −T0 x−Wq+ (h1 −T1 x−WQ) ω̄ +G ρ ≤ 0,

G ≤ h1 −T1 x−WQ ≤ G.

We can see that Problem (2.50) is LP and can be solved very efficiently.

The AARC methodology uses a linear decision rule to provide the decision-maker a linear

policy, even though there is no guarantee that the optimal solution (which is impossible to find)

is close to a linear decision rule. However, for adaptability problems with discrete second-stage

variables, the AARC methodology does not work. To the best of our knowledge, Bertsimas

and Caramanis (2010) is the only work addressing the case of integer second-stage variables
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within the framework of deterministic uncertainty-set. The authors propose to partition the

uncertainty set into a finite number of pieces and determine a piece-wise constant recourse in

each. This called finite adaptability. One important feature of this approach is that it provides

a hierarchy of adaptability. Moreover, it can cooperate integer second-stage variables and non-

convex uncertainty sets, while other approaches can not. Below, we present some of the results

of Bertsimas and Caramanis (2010).

We consider a full adaptability Problem (2.51).

min cT x+ dT y(ω)

s.t. A(ω)x+B(ω)y(ω) ≥ b(ω), ∀ω ∈ U, (2.51)

y(ω) ∈ Z+.

Bertsimas and Caramanis (2010) cover the uncertainty set U with a partition of K (possibly

non-disjoint) pieces: U =

K∑
k=1

Uk, and determine K second-stage solutions as contingency plans.

After observing the realization of the uncertainty, one of theses contingency plans is implemented.

The optimal K-adaptability problem becomes:

min cT x+max{dT y1, ...,d
T yK}

s.t. A(ω)x+B(ω)y1 ≥ b(ω), ∀ω ∈ U1, (2.52)

...

A(ω)x+B(ω)yK ≥ b(ω), ∀ω ∈ UK ,

y1, ...,yK ∈ Z+.

The problem becomes a static robust optimization problem with K second-stage decisions which

is easier to be solved than Problem (2.51). This model of adaptability also eliminates the con-

servativeness of the static robust formulation in the case of a two-stage optimization problem.

It provides a hierarchy that bridges the cap between the static robust and fully adaptable for-

mulation as the the level of adaptability (K) increases. Moreover, it is possible to accommodate

discrete variables as second-stage decisions.

Two important issues of the finite adaptability approaches are how to partition the uncertainty

set U optimally into K pieces, and the necessary conditions that any finite adaptability scheme

must satisfy in order to improve the static robust solution by at least a certain quantity. The

reader is referred to Bertsimas and Caramanis (2010) for detail information.

As pointed in Bertsimas and Caramanis (2010), finite adaptability is not comparable to affine
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adaptability, in the sense that neither technique performs consistently better than the other.

2.3 Summary of the Current State of Art

Operations management of call centers constitutes a large stream of research. Many models

in the literature address the key issue of call center staffing and scheduling under stationary

parameters. The considered randomness concerns exclusively the stochastic variability of inter-

arrival and service times. The impact of fluctuations in the arrival rates (and the associated

flexibility issue) is ignored and the results rely on the assumption of known stationary arrival

rates. However, it has become apparent that general queueing systems performance indicators

are very sensitive to fluctuations of the parameters characterizing the arrival process overtime,

see for example Ingolfsson et al. (2007). As a consequence, a stream of research has begun to

address the problem of how call centers can better manage the capacity-demand mismatch that

results from arrival rate uncertainty.

First, the pure statistical forecasting issue has been considered in several papers analyzing the

probability distribution of arrival rates (see Avramidis et al. (2004); Brown et al. (2005, 2002);

Weinberg et al. (2007); Shen and Huang (2008); Aldor-Noiman et al. (2009)). Various call center

particularities have been pointed out in these studies.

As a second step, the analysis of performance measures of queueing systems with fluctuating

arrival rates has appeared. The first setting concerns deterministic non-stationarity, i.e., some

parameters evolve along time according to a known dynamics. A direct method of accommodat-

ing such time-varying parameters consists of numerically solving the complex queueing models

associated to the transient system behavior, see for example Ingolfsson et al. (2007) and Yoo

(1996). Another intuitive means of accommodating changes in the arrival rate is to consider

piecewise stationary measures over successive intervals, while reducing the time length of the

intervals over which such stationary measures could be applied. This is the essence of the point-

wise stationary approximation (PSA) used in Green et al. (2007); Green and Kolesar (1991);

Green et al. (2003); Ingolfsson et al. (2007). In a different setting, a few papers have consid-

ered the issue of random non-stationarity in the arrival process parameters. In Jongbloed and

Koole (2001b), the authors include arrival parameter uncertainty via a Poisson mixture model

for the arrival process, which permits to model the overdispersion associated with random arrival

rates. They develop a generalization of the standard Erlang formula-type staffing approaches.

In a different vein, in Harrison and Zeevi (2005); Whitt (2006); Robbins (2007); Steckley et al.

(2004), another idea is developed. It can be summarized as estimating performance indices, by

first conditioning on the random model-parameter vector, and by thereafter unconditioning to
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get the effective indices. Most of these methods assume independent intervals. This would lead

to inaccurate results particularly in this case of systems that are overloaded during a certain

number of periods. Stolletz (2008) proposes a new approximation for time-varying queueing

systems that can be overloaded. The approximation is based on the modeling of the overflow of

calls between the periods. Another paper which models dependency between the periods is that

of Thompson (1993). The latter does not however allow the analysis of overloaded systems.

The last issue concerns the call center staffing optimization problem under non-stationary

parameters. Some models rely on a fixed staffing level methodology: there is no possible flexibility

during a daily period and the staffing cannot be updated throughout the day. In Harrison

and Zeevi (2005); Whitt (2006), this problem is solved via a static stochastic program using a

stochastic fluid model approximation. In Jongbloed and Koole (2001b), the standard Erlang

formula-type for a fixed staffing approach is generalized through a new Poisson mixture model

for the arrival process.

In many situations, call centers may indeed benefit from flexible staffing, i.e., the ability

to adjust staffing levels (and/or schedules) from one period to another. Such flexibility may

be attained by utilizing temporary operators, in addition to the permanent operators always

available to provide service. The temporary operators may be either supervisors/decision-makers

or other operators who are on call. Another type of flexibility corresponds to the presence of

different shifts for the operators. By combining such shifts, the operator capacity can be aligned

with the time-varying average workload. A last type of flexibility consists of combining different

types of calls, with different admissible delays. Some flexibility exists as less urgent calls (as

e-mails or calls with a possible callback) can be kept in inventory for some time. Flexible

staffing methods coupled with deterministic time-varying arrival rates has been considered in

numerous papers. We refer the reader to Gans et al. (2003); Green et al. (2007) and the references

therein. A stream of research has sought to use a classical rolling horizon methodology, based

on deterministic arrival rate approximations, updated at each period. In Hur et al. (2004), a

case study is presented in which the staffing problem under uncertain/non-stationary assumption

is addressed via recoursing to a rolling horizon decision process where each step is modeled as

a deterministic system. In an alternative research stream, the arrival rates are formally taken

into account in the model. This approach mainly consists of generalizing the well-known fluid

approximation models in order to introduce staffing level updates for the different periods coupled

with available arrival rate updated forecasts. The time horizon is divided into smaller periods

and deterministic forecasts for the customer arrival rates for each period are used to determine

the respective staffing levels (as in Feldman et al. (2008) and Whitt (1999)).
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Lastly, Robbins and Harrison (2010) consider a multi-period multiple-class call center staffing

scheduling cost model, with global service constraints. The authors introduce uncertainty for

parameters via a discretization of the underlying parameters probability distribution, which

amounts to a scenario-based approach coupled with large scale multi-stage stochastic programs

to be numerically solved. The approach has also been applied in the case of a call center with

multiple call types in order to investigate the flexibility introduced by adding a proportion of

cross trained workforce (see Robbins et al. (2007, 2008)). Bhandari et al. (2008) formulate, un-

der suitable assumptions for the arrival process and service time distributions, the multi-periodic

staffing problem as a Markov Decision Process with probabilistic constraints. In Bertsimas and

Doan (2010), the authors develop a fluid model approximation to solve both the staffing and

routing problem for large multi-class/multi-pool call centers with random arrival rates and cus-

tomer abandonment. The model is solved via a robust optimization approach. Gurvich et al.

(2010) propose a fluid approximation model for large-scale multi-class call centers with uncer-

tain parameters. The optimal staffing problems is solved by a chance-constrained programming

approach. Helber and Henken (2010) consider a shift scheduling problem of complex call centers

with random arrival rates, skills-based routing, impatient customers and retrials. These authors

propose a specific approach in which a discrete-time model captures, for a few simulated sam-

ples, the dynamics of the systems due to the time-dependent arrival rates. The associated integer

program has then to be numerically solved.

Very little attention has been devoted to the issues of information update and real-time ad-

justment decisions. Mehrotra et al. (2010) and Gans et al. (2009) develop frameworks to make

intra-day resource adjustment decisions in call centers. The former suppose that the initial sched-

ules existed and solve the real-time agents schedule adjustment as a one-stage static problem.

Gans et al. (2009) extends to include forecast updates and two-stage stochastic programs with

recourse.

As for the literature that addresses methodologies issues related to optimization under un-

certainty, we have already reviewed some basic knowledge of stochastic programming and robust

programming in Section 2.2. Here we introduce an approach which bridges the gap between

the conservatism of robust optimization and the specificity of stochastic programming. This ap-

proach optimizes the worst-case objective over a family of possible distributions, and we call this

min-max stochastic optimization problem distributionally robust. This approach was pioneered

by Žáčková (1966) and Dupačová (1987). Many other works proposed algorithms to solve min-

max stochastic optimization problems: the sample-average approximation method (see Shapiro

and Kleywegt (2002) and Shapiro and Ahmed (2004)), sub-gradient-based methods (see Bre-
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ton and El Hachem (1995)) and cutting plane algorithms (see Riis and Andersen (2005)). This

approach has numerous applications, for example, for the news-vendor problem, Scarf (1958)

and Gallego and Moon (1993) derived the optimal order quantity that maximizes the worst case

expected profit under the distribution that has a fixed mean and variance. As well as Yue et al.

(2006) tried to minimize the worst case absolute regret for all distributions with certain mean

and variance. Moreover, El Ghaoui et al. (2003) developed worst-case Value-at-Risk bounds for

a robust portfolio selection problem, when only the bounds on the means of the assets and their

covariance matrix are known. Natarajan et al. (2010) derived a distributionally robust model

applied to portfolio optimization, where the investor maximizes his worst case expected utility

over a set of ambiguous distributions described by the knowledge of the mean, covariance and

support information. Calafiore and El Ghaoui (2006) considered linear optimization problems

with chance constraints in which the underlying distribution is known to belong only within a

given set. Erdogan and Iyengar (2006) develop a robust sampled version of ambiguous chance-

constrained problems that is feasible with high probability. Chen et al. (2007) propose a tractable

means of approximating distributionally robust optimization problems using directional devia-

tion measures. Goh and Sim (2010) extend to allow for expectations of recourse variables in the

constraint specifications. Bertsimas et al. (2010b) analyze two-stage min-max stochastic linear

optimization problems with risk aversion, where the class of probability distributions is described

by their first and second moments. Delage and Ye (2010) provide a polynomial-time algorithm

for sample-driven robust stochastic programs where the mean and covariance of the primitive

uncertainties are themselves subject to uncertainty. Also, some works draw connections between

distributionally robust and objects that have been axiomatized and developed in the decision

theory literature over the past several decades (see Xu et al. (2010) and Ben-Tal et al. (2010)).
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Chapter 3

Single Shift Staffing

In this chapter, we consider a multi-period staffing problem in a single-shift call cen-

ter. The call center handles inbound calls, as well as some alternative back-office

jobs. The call arrival process is assumed to follow a doubly non-stationary stochastic

process with a random mean arrival rate. The inbound calls have to be handled as

quickly as possible, while the back-office jobs, such as answering emails, may be de-

layed to some extent. The staffing problem is modeled as a generalized newsboy-type

model under an expected cost criterion. Two different solution approaches are consid-

ered. First, by discretization of the underlying probability distribution, we explicitly

formulate the expected cost newsboy-type formulation as a stochastic program. Sec-

ond, we develop a robust programming formulation. The characteristics of the two

methods and the associated optimal solutions are illustrated through a numerical

study based on real-life data. In particular we focus on the numerical tractability

of each formulation. We also show that the alternative workload of back-office jobs

offers an interesting flexibility allowing to decrease the total operating cost of the call

center.

The paper version of this chapter, Liao, Koole, van Delft and Jouini Liao et al. (2010),

is accepted by OR Spectrum for publication.

43
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3.1 Introduction

The staffing cost is a major component in the operating costs of call centers. Unfortunately,

uncertainty plaguing the arrival process and the corresponding workloads usually leads to a

complex staffing problem. Traditionally, most call center models in the literature assume known

and constant mean arrival rates, mainly for tractability issues. However, in addition to the usual

uncertainty captured by a stochastic process modeling, real data show another uncertainty in the

process parameters themselves. In this chapter, we consider the staffing problem of a single shift

call center, in which we allow the mean arrival rate of calls to be uncertain. We model the arrival

process of calls by a doubly non-stationary stochastic process, with random mean arrival rates.

As in the traditional way, a service level constraint limits the waiting time for inbound calls.

In addition to the job of calls, our call center has to process back-office jobs, such as answering

emails. These additional jobs are assumed to be given at the beginning of the day and have to be

processed within the same day, if necessary in overtime. We also allow the workload of back-office

jobs to be random. The possibility of delaying back-office jobs introduces some flexibility to the

daily workforce management. A typical example of our call center is that of a hospital, or of a

government or of a public agency, where inbound calls and back-office operations are handled by

agents in a single shift (during administrative hours). The agents can be, in real-time, affected

to one job type or another depending on the actual workload and the operating costs.

As mentioned above, our staffing problem incorporates uncertainty in the call arrival pa-

rameters. The staffing problem is modeled as a cost optimization-based newsboy-type model.

The cost criterion function includes the regular and overtime salary cost and a penalty cost

for excessive waiting times for inbound calls. Our objective is to find the optimal staffing level

which minimizes the total call center operating cost. We consider a multi-period single-shift

call center staffing problem, with the constant staffing level as the single decision variable. We

propose two solution methodologies. First, we formulate the problem as a stochastic program,

by a discretization of the underlying probability distributions. The second approach relies on

robust optimization theory. We prove a convexity result of the problem, which allows us to find

the optimal solution via a relaxed real-valued optimization model. We then conduct a numerical

study in order to illustrate the main characteristics of the two approaches and the associated

optimal solutions. In the numerical illustration, we use real data gathered from a call center of

a Dutch hospital handling inbound calls and emails.

We distinguish two main contributions in this chapter. The first contribution is the modeling

and the analysis of the staffing problem of a call center with two types of jobs and uncertain

arrival parameters: inbound calls, to be handled as quickly as possible, and back-office jobs, that



Problem Formulation 45

can be delayed to some extent. The second contribution is the analysis of the impact of the

flexibility offered by back-office workloads. We show that combining the two types of jobs offers

flexibility, partially absorbing the undesirable effects of uncertainty in the arrival parameters.

The rest of the chapter is structured as follows. In Section 3.2, we describe the call center

model under consideration and formulate the associated staffing problem. In Section 3.3, we

present the different solution approaches. In Section 3.4, we then conduct a numerical study

to evaluate these alternative formulations. We exhibit the impact of the uncertainty of the

call arrival parameter and the benefits of the flexibility offered by back-office workloads on the

optimization problem. In Section 3.5, we extend the analysis to more general cases, with overflows

of calls between successive periods. This chapter ends with concluding remarks and highlights

some future research.

3.2 Problem Formulation

We consider a multi-period single-shift call center staffing problem. The call center handles

various types of jobs: inbound calls as well as some alternative back-office jobs. The mean

arrival rate of inbound calls is allowed to be uncertain. The workload of the back-office jobs is

also uncertain. The inbound calls have to be handled as soon as possible, while the back-office

jobs, such as emails, can be delayed to some extent within the same day. In this section, we

describe the corresponding stochastic minimal cost staffing problem.

3.2.1 The Inbound Call Arrival Process

Recall the characteristics of the arrival process of calls presented in Section 2.1.2. First, it has

been observed that the total daily number of calls has an overdispersion relative to the classical

Poisson distribution. Second, the mean arrival rate considerably varies with the time of day.

Third, there is a strong positive correlation between arrival counts during the different periods

of the same day.

Assume that a given working day is divided into n distinct, and the arrival rate Λi is of the

form

Λi = Θfi, for i = 1, ..., n, (3.1)

where Θ is a positive real-valued random variable. The random variable Θ can be interpreted as

the unpredictable busyness of a day. A large (small) outcome of Θ corresponds to a busy (not

busy) day. The constants fi model the shape of the variation of the arrival rate intensity across
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the periods of the day. Formally, if a sample value in a given day of the random variable Θ is

denoted by θ, the corresponding outcome of the arrival rate over period i for that day is defined

by λi = θfi. The random variable Θ is assumed to follow a discrete probability distribution,

defined by the sequence of outcomes θl and the associated sequence of probabilities pθl , with

l = 1, ..., L.

We assume that service times for inbound calls are independent and exponentially distributed

with rate µ. The calls arrive to a single infinite queue working under the the first come, first

served (FCFS) discipline of service. Neither abandonment nor retrials are allowed.

Using the Erlang C Staffing presented in Section 2.1.3, the staffing level which guarantees

the required service level is computed by

vi(θ fi) = F−1
θ i (SLi). (3.2)

with the function F defined by Equation (2.3).

3.2.2 The Back-Office Workload Process

We assume that the random back-office workload arrives at the beginning of the day. As an

example, one can think of a call center that stores all the emails of a given day and handles

them the next day. We denote by W the number of agents required to handle this back-office

workload during a single period. The random variableW is characterized by a discrete probability

distribution, defined by the sequence of outcomes wk and the associated sequence of probabilities

pwk
, with k = 1, ...,K.

3.2.3 Cost Criterion

In this chapter we consider a single-shift call center. Let us denote by y the number of agents

staffed for the day. All the y agents will be therefore present all day long. We also assume

that all agents are able to handle both types of jobs, calls and back-office jobs. We give priority

to inbound calls as follows. For each period i, if the actual number of agents y is larger than

vi(θfi) (the required number of agents to handle the calls), we assign vi(θfi) agents to calls and

y − vi(θfi) agents to back-office jobs. If y < vi(θfi), all the y agents are assigned to calls. If

back-office jobs are not yet finished at the end of the regular working periods in that day, they

are done in overtime.

For a given period, any under-staffing situation is penalized. Under perfectly predictable

arrival rates, a straightforward formulation of the optimization problem is to consider quality-

of-service constraints requiring that the service level SLi is reached in period i. However in the
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presence of uncertain arrival rates as in this dissertation, the service level per period is indeed

itself a random variable, depending on the outcomes of the arrival rates. A possible formulation

is to adopt a chance constrained approach requiring that the quality-of-service constraints are

satisfied for some pre-specified fraction of the arrival rate realizations (i.e., with some given

probability). This approach has been used in the context of large skill-based routing call centers

in Gurvich et al. (2010), where the authors have developed a staffing method leading to nearly

optimal solutions.

More clearly, a chance constrained formulation (for a risk level α, and a stochastic parameter

Θ for the arrival process) can be expressed as finding the staffing level yα given by

Pr{yα ≤ Vi(Θ fi), i = 1, .., n} = α, (3.3)

with Vi(Θ fi), the underlying random number of agents required to handle the calls in period

i, in order to fulfill the required quality-of-service constraints. By choosing the risk-level α,

the decision-maker may choose a trade-off between staffing costs and safety in terms of the

likelihood with which the quality-of-service constraints are met. However, such a formulation

corresponds to quite complex non-convex non-linear optimization problems requiring specific

approximations and heuristics, out of the scope of this dissertation. In order to propose a

solvable linear programming formulation, the risk level α is expressed via an associated under-

staffing penalty cost denoted as uα. This formulation approach has been applied for example

in Robbins (2007). More concretely for each period i, a proportional under-staffing penalty uα

is paid when the actual capacity y is lower than a sample value of the required agents number

vi(θfi). The value of the parameter uα can be tuned, for example, via an algorithm based

on successive problem solutions and successive numerical estimations of the effective constraint

violation probability α for each current staffing solution. This numerical estimation can be

made through a direct computation if the probability distribution of Θ is known or, otherwise,

through simulations of the arrival process. In the numerical examples presented in this chapter,

this tuning procedure algorithm converged very quickly.

In our cost setting, we also assume that each agent gets a salary c per period, the overtime

salary is r per agent per period. As usual, the cost parameters satisfy the ordering c < r < uα

for all possible values of α. The inequality r < uα ensures that inbound calls have the priority

over back-office jobs. The inequality c < r is straightforward.

Since the time-horizon of the considered problematic is significant, the cost criterion of the

formulation is the expected daily total cost associated with the staffing level y, which is expressed
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as

C(y) = E

[
C(y, θ, w)

]
=

L∑
l=1

K∑
k=1

pθl pwk
C(y, θl, wk), (3.4)

with

C(y, θ, w) = n c y + uα

n∑
i=1

(y − vi(θfi))
− + r

[
w −

n∑
i=1

(y − vi(θfi))
+

]+
, (3.5)

where E[·] denotes the expectation, x+ = max(0, x) and x− = max(0,−x) for x ∈ R. In

Equation (3.5), the first term is the salary of the agents working during regular time. The

second term is the under-staffing penalty cost. The third is the overtime salary.

Under this economic framework, our objective consists of deciding on the optimal value of y

which minimizes the expected daily total cost given by Equation (3.4). In the following theorem

we give a convexity result for the expected daily total cost as a function of the decision variable

y. All the proofs of the results in this dissertation are given in the appendix.

Theorem 3.1 The expected daily total cost function C(y) is convex in y.

We can see from the proof that no specific assumption on the arrival rates probability distribu-

tions is required.

3.3 Solution Methodologies

The classical paradigm to solve the problem given by Equation (3.4) is to develop a deterministic

approach using the expected values of the random variables Θ and W . The optimal solution

under the deterministic approach might lead to a far greater cost than the actual one when the

parameters take values that are different from those expected, and in particular, when the system

is sensitive to data variation (for example, for a high value of uα). This will be underlined later

in the numerical study. It is thus important to take into account the effect of data uncertainties

and develop better solution approaches.

In this section we develop two different approaches to solve the staffing problem given by

Equation (3.4), according to the availability of the probability distributions of the random vari-

ables. These approaches are then used in the numerical study in Section 3.4. First, under the

assumption that the probability distributions associated with the random variables are known

exactly, a direct stochastic programming approach is applied to Equation (3.4), built on the

discrete probability distributions characterizing Θ and W . The second approach referred to as

robust programming consists of optimizing the staffing level with respect to (w.r.t) the worst case

scenarios in a given uncertainty set.



Solution Methodologies 49

The property given in Theorem 3.1 is directly used in the optimization procedure. The integer

optimal solution is indeed known to be in the neighborhood of the real-valued relaxed optimal

solution. We thus relax the integer problem and only solve the real-valued version. Then, if the

optimal decision value of y is not integer as the staffing level should be, it suffices to compare

the objective costs corresponding to the two nearest integers, and the optimal integer solution is

that with the lower objective cost.

3.3.1 Stochastic Programming Approach

Assuming that we know the exact probability distributions associated with the random variables

Θ and W , a common approach consists of expressing Equation (3.4) as a linear program via the

discrete probability distributions associated with these random variables. For each sample θl of

Θ, we use the associate sample arrival rate in each period i, λi,l = θl fi. The required number of

agents is vi(λi,l) and is given using Condition (2.3) as a function of λi,l.

The optimization problem from Equation (3.4) can be then formulated by the following linear

program:

Min nc y + uα

L∑
l=1

n∑
i=1

pθl M
−
i,l + r

K∑
k=1

L∑
l=1

pθl pwk
Nk,l (3.6)

s.t. Mi,l = y − vi(θl fi), with i = 1, ..., n, l = 1, ..., L, (3.7)

Mi,l =M+
i,l −M−

i,l, with i = 1, ..., n, l = 1, ..., L, (3.8)

Nk,l ≥ wk −
n∑

i=1

M+
i,l, with l = 1, ..., L, k = 1, ...,K, (3.9)

y,M+
i,l,M

−
i,l, Nk,l ≥ 0, with i = 1, ..., n, l = 1, ..., L, k = 1, ...,K. (3.10)

In this problem Mi,l represents the difference between the staffing level and the required

agent number in period i for scenario l. The positive and negative part of Mi,l are denoted by

M+
i,l and M−

i,l, respectively. M−
i,l is associated to under-staffing cost in the objective function.

Nk,l is the over-time workload required in order to finish back-office jobs in scenario (k, l). This

overtime induces overtime cost in the objective function. The unique decision variable in our

staffing problem is the staffing level y.

In this formulation, a possible way to take into account the risk consists of bounding the

conditional-value-at-risk (CVaR), see Rockafellar and Uryasev (2002). Let 0 < β ≤ 1 be a

confident level and let CV aRβ be the mean of the total costs belonging to the largest proportion

β. Rockafellar and Uryasev (2002) proved that the minimization of CV aRβ(y) with respect to
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the decision variable y is simply given by

min
y
CV aRβ(y) = min

y,s
{s+ β−1E[(C(y, θ, w)− s)+]}. (3.11)

Furthermore, the right-hand side of the optimization problem (3.11) is jointly convex in (y, s) if

the cost function C(y, θ, w) is convex in y.

Ogryczak and Ruszczynski (2002) mention that the CVaR is a coherent risk measure which

is computationally tractable in the framework of stochastic programming. For a given β, the

CVaR optimization problem given by (3.11) can be formulated by the following linear program:

Min s+ β−1
K∑
k=1

L∑
l=1

pwk
pθl zk,l (3.12)

s.t. nc y + uα

n∑
i=1

M−
i,l + r Nk,l − s ≤ zk,l, with k = 1, ...,K, l = 1, ..., L, (3.13)

Mi,l = y − vi(θl fi), with i = 1, ..., n, l = 1, ..., L, (3.14)

Mi,l =M+
i,l −M−

i,l, with i = 1, ..., n, l = 1, ..., L, (3.15)

Nk,l ≥ wk −
n∑

i=1

M+
i,l, with l = 1, ..., L, k = 1, ...,K, (3.16)

y,M+
i,l,M

−
i,l, Nk,l, zk,l ≥ 0, with i = 1, ..., n, l = 1, ..., L, k = 1, ...,K,(3.17)

s ∈ R. (3.18)

In Equation (3.12)-(3.18) , the variable s represents a critical threshold which is also called

value-at-risk. The variable zk,l represents the positive gap between the total cost in scenario (k, l)

and threshold s. The key point is that this conditional-value-at-risk formulation has a similar

structure as that of the original formulation (3.6)-(3.10), i.e., we can again use the real-valued

relaxed version in order to solve it.

3.3.2 Robust Programming Approach

Stochastic programming formulations associated with discrete distributions suffer very often from

the high dimensionality of the corresponding linear programs. We refer the reader to Thenie

et al. (2007) or van Delft and Vial (2004). More importantly, stochastic programming requires

an accurate probabilistic description of the randomness; however, in many life applications this

information is not available. An alternative, non-probabilistic approach can be implemented

via a robust optimization formulation which adopts a Min-Max -type approach coupled with

uncertainty sets associated to the random parameters of the problem. Robust programming

based formulations are often computationally tractable even for large-scale problems and don’t
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require a probabilistic description of the uncertain parameters.

A main issue of the robust programming implementation is the design of an efficient uncer-

tainty set which fixes the trade-off between robustness (i.e., protection against the worst case)

and average performance (see Bertsimas and Brown (2009) and Natarajan et al. (2009) for further

details). If we choose an uncertainty set covering the whole underlying sample space associated

with the random parameters, implemented over sample data, this solution exhibits the best pos-

sible worst case performance, but does poorly on average (see Soyster (1973)). One can then

choose an uncertainty set which does not cover the whole underlying sample space. In this case,

the solution can be expected to exhibit improved average costs for sample data, however this

solution will be less robust to the worst case, as some of the sample scenarios are likely to be

outside of the reduced uncertainty set. By considering different sizes for the uncertainty sets,

one reviews different possible trade-offs between average performance and protection against

uncertainty (see Bertsimas and Sim (2004)).

We consider a robust approach associated with uncertainty sets for Θ and W . In order to

analyze the above robust formulation, we first study the properties of the optimal value, denoted

as C∗(θ, w), of the purely deterministic optimization problem for given outcomes θ and w,

Min nc y + uα

n∑
i=1

M−
i + r N (3.19)

s.t. Mi = y − vi(θ fi), with i = 1, ..., n, (3.20)

Mi =M+
i −M−

i , with i = 1, ..., n, (3.21)

N ≥ w −
n∑

i=1

M+
i , (3.22)

y,M+
i ,M

−
i , N ≥ 0, with i = 1, ..., n. (3.23)

In this formulation, Mi represents the difference between the staffing level and the required

agent number in period i. The positive and negative part of Mi are denoted by M+
i and M−

i ,

respectively. M−
i is associated to under-staffing cost in the objective function. N is the over-time

workload required in order to finish back-office jobs.

In the next proposition, we exhibit some properties of C∗(·, ·), that are used in the robust

programming formulation.

Proposition 3.1 Let C∗(θ, w) be the optimal objective value of the problem defined in (3.19)-
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(3.23). For δ > 0, we have the following inequalities,

C∗(θ + δ, w) ≥ C∗(θ, w), (3.24)

C∗(θ, w + δ) ≥ C∗(θ, w). (3.25)

Proof: See Appendix B.

Corollary 1 For uncertainty sets defined as

U = {(θ, w) : 0 ≤ θ ≤ θ + η σθ, 0 ≤ w ≤ w + η σw, η ≥ 0}, (3.26)

by Proposition 3.1, we have

max
(θ,w)∈U

C∗(θ, w) = C∗(θ + η σθ, w + η σw). (3.27)

These results are straightforward by applying Proposition 1 and are intuitively clear: a call center

with additional workload (of calls and/or back-office jobs) will require an additional cost, related

to additional salary, additional under-staffing or overtime costs. The robust formulation of the

staffing problem with the uncertainty set (3.26) is as follows.

Min nc y + uα

n∑
i=1

M−
i + r N (3.28)

s.t. Mi = y − vi((θ + η σθ)fi), with i = 1, ..., n, (3.29)

Mi =M+
i −M−

i , with i = 1, ..., n, (3.30)

N ≥ w + η σw −
n∑

i=1

M+
i , (3.31)

y,M+
i ,M

−
i , N ≥ 0, with i = 1, ..., n. (3.32)

As in Section 3.3.1, we relax integrity constraints for the variables. The parameter η ∈ R+ fixes

the upper bound values for the uncertain parameters Θ and W in (3.26). The decision-maker

chooses to fix the trade-off between the protection level against uncertainty and the average

cost performance. We note here that it is also possible to build a formulation mixing stochastic

and robust programming, for example by defining an uncertainty set for Θ and a probability

distribution for W (the corresponding formulation is given in Appendix A.3).
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3.4 Numerical Comparison

In this section, we conduct a numerical study in order to evaluate the proposed approaches. In

Section 3.4.1, we describe the numerical experiments. In Section 3.4.2, we analyze the results

and give some insights.

3.4.1 Experiments

We first describe the data used in the numerical examples. We next describe the experiments

and give the numerical results.

Parameter Values

Inbound calls. In the experiments we use real data from a Dutch hospital which exhibits a

typical and significant workload time-of-day seasonality. Figure 3.1 displays the mean arrival

rates as a function of the periods in the day. We focus on a particular day, namely Monday.

With the solid line, we plot this curve for an average day, and in dashed lines we represent two

samples corresponding to busy and not busy days. The mean arrival rate at the beginning and

at the end of the day is quite low, exhibits a high peak in the late morning, tends to decrease

around the lunch break, and finally has a second lower peak in the afternoon. Although there is

a significant stochastic variability in the arrival rate from one day to another, there is a strong

seasonal pattern across the periods of a given day. The day starts at 7 am, finishes at 6 pm, and

is divided into n = 11 periods, of one hour each.

Without loss of generality, we choose E[Θ] = 1. This leads to fi = E[Λi], and from a one-

year-horizon data we numerically find via a standard statistical analysis, that f1, f2, ..., f11 are

3.5, 18.4, 34.4, 31.5, 29.0, 12.9, 28.4, 25.0, 17.4, 7.2, 5.3 calls per minute, respectively.

Recall that the random variable Θ describes the busyness of the day. We assume that

Θ follows a discretized truncated Gaussian probability distribution. Since we normalized the

realizations of Θ such that E[Θ] = 1, the busyness factor, say θt, of a given day t with a total

daily call number, say Dt, is θt = Dt∑n
i=1 fi

. Collecting the θt values of all the days of the data,

we obtain a sequence of values for which we compute a statistical standard deviation. We find

σΘ = 0.21. This finishes the characterization of the random variable Λi.

The mean service time is
1

µ
= 5 minutes. We assume a classical service level corresponding

to the well-known 80/20 rule: the probability that a call waits for less than 20 seconds has to

be larger or equal to 80 percent. Using Condition (2.3), we can therefore deduce the required

number of agents vi during period i.
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Figure 3.1: Arrival rate graph

Back-office jobs. In this real-life case, the back-office jobs correspond to the emails to be

answered in a given day. The random daily workload of emails, W , is assumed to follow a trun-

cated Gaussian distribution. We consider three scenarios with high, medium and low workload

of emails, corresponding to 1000, 600, 50 for the means and 100, 60, 5 for the standard deviations,

respectively.

Cost parameters. The salary during the regular time is c = 15 per agent per period. The salary

during the overtime is r = 20 per agent per period. For each period, a penalty uα, for being

under-staffed by one agent, is incurred, within the ordering c < r < uα, given in Section 3.2.3.

We considered three scenarios for the under-staffing probability α = 10%, α = 5%, α = 1%, and

determined, as explained in Section 3.4, the corresponding values for the penalty cost u10%, u5%

and u1%. It should be mentioned that uα depends not only on α, but also on other parameters

of the call center.

Design of the Experiments

Benchmark. As an initial benchmark, we consider the simple approach based on the expected

value of the random variable Θ, referred to as average based deterministic approximation, denoted

by DA. In this case, Λi reduces to the single value E[Θ]fi. The required number of agents to

handle the calls of period i is vi(E[Θ]fi) given by Condition (2.3). Here we keep the amount of

emails W as a random variable, and average on all of its outcomes. The optimization problem
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can be then formulated as:

Min nc y + uα

n∑
i=1

M−
i + r

K∑
k=1

pwk
Nk (3.33)

s.t. Mi = y − vi(E[Θ] fi), with i = 1, ..., n, (3.34)

Mi =M+
i −M−

i , with i = 1, ..., n, (3.35)

Nk ≥ wk −
n∑

i=1

M+
i , with k = 1, ...,K, (3.36)

y,M+
i ,M

−
i , Nk ≥ 0, with i = 1, ..., n. (3.37)

In this problem, Mi represents the difference between the staffing level and the required agent

number in period i for the average arrival rate E[Θ] fi. The positive and negative part of Mi are

denoted by M+
i and M−

i . Nk is the over-time workload required in order to finish back-office

jobs in scenario k.

Lower bound. As a lower bound solution, we consider a perfect information model (PI ) for

which the value of the pair (θ, w), the actual workload, is assumed to be known before the

optimization step of the variable y. For each pair (θl, wk), we solve the problem (3.38)-(3.42) in

order to get the optimal value of yl,k and its associated total cost.

Min nc yl,k + uα

n∑
i=1

M−
i,l + r Nk,l (3.38)

s.t. Mi,l = yl,k − vi(θl fi), with i = 1, ..., n, l = 1, ..., L, k = 1, ...,K, (3.39)

Mi,l =M+
i,l −M−

i,l, with i = 1, ..., n, l = 1, ..., L, (3.40)

Nk,l ≥ wk −
n∑

i=1

M+
i,l, with l = 1, ..., L, k = 1, ...,K, (3.41)

yl,k,M
+
i,l,M

−
i,l, Nk,l ≥ 0, with i = 1, ..., n, l = 1, ..., L, k = 1, ...,K. (3.42)

The computation of the corresponding average total cost is then straightforward according

to (3.4).

Additional Notations. We compute the optimal staffing levels given by the average based

deterministic approximation (DA), the classical stochastic programming approach (SP), robust

(RP) and mixed (MxRP) programming approaches with various robustness levels. For the

robust programming approaches and the mixed robust programming approaches, the size of the

uncertainty sets varies according to η = 0.1, 0.5, 1.0, 2.0 and 3.0.

Optimal policy performance simulations. In order to estimate the cost criterion probability

distribution associated with the different policies, 20000 sample values are randomly generated

as outcomes of (Θ,W ).
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Numerical Results

The results are given in Tables 3.1, A.1 and A.2, which correspond to low, medium and high

volumes of emails, respectively. Tables A.1 and A.2 are given in Appendix A.4. For the value

of uα corresponding to a given estimated under-staffed probability (α = 10%, 5%, 1%) in the

call center, and for a given approach, each table displays the optimal staffing level, the average

total cost, the average values of the three components of the total cost, the standard deviations

(STD.) of the total cost and the under-staffing cost and the over-time cost. At the end of each

line, the under-staffing probability is given.

The computations have been performed using Cplex on an Intel Core Duo CPU 1.20 Ghz

with 0.99 GBytes RAM. For the considered problems, the computing time of DA and RP never

exceeded 0.1 seconds while for SP, this time is around 170 seconds.

3.4.2 Insights

In this section, we comment on the numerical results and derive the main insights. First, we

compare the proposed approaches and show the advantage of explicitly taking into account the

uncertainty in the call arrival parameters. Second, we analyze the benefits of the flexibility

provided by emails on our staffing optimization problem and the number of flexible servers

necessary.

Analysis of the numerical experiments

In what follows, we compare between the performance measures of the proposed approaches.

First, we mention that some trade-off exists between the average cost and the associated standard

deviation: Above the threshold which is the optimal staffing level of SP, the average total cost

increases (see Theorem 3.1) while the associated standard deviation decreases in y. It is also

obvious to see that the under-staffing probability decreases in the under-staffing penalty uα.

For large values of uα, this probability becomes negligible. For the call centers with the same

parameters as those in Tables 3.1, A.1 and A.2, we have conducted additional runs showing that

when uα = 1e+ 5, the associated under-staffing probabilities are lower than 0.015%.

Concerning the average cost, SP is as expected the most efficient. In Tables 1, 3 and 4, we

observe that for a given value of the risk level α, the optimal solutions of SP of the three tables

are the same. This stems from the fact that for a call center with given distributions of the

busyness factor Θ and the back-office workload W , we associate an under-staffing penalty cost

uα which expresses the chance constraint (3.3). For a given period i, the distribution of the

required number of agents Vi(Θ fi) is unchanged for the three tables, since the distribution of Θ
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Table 3.1: E[Θ] = 1 and σΘ = 0.21; E[W ] = 50 and σW = 5

Total Cost Salary cost Under-staffing cost Overtime cost Constr.
Optimal violation
staff y∗ Average STD. Average STD. Average STD. Pct.(%)

PI — 29764.72 5972.79 27620.88 2143.83 444.09 0.00 0.00 9.09

DA 167 35016.90 10945.22 27555.00 7461.90 10945.22 0.00 0.00 17.22

SP 184 34105.39 7365.34 30360.00 3745.39 7365.34 0.00 0.00 10.08

RP
α = 10% η = 0.1 170 34710.15 10273.64 28050.00 6660.15 10273.64 0.00 0.00 15.81
uα=145 η = 0.5 184 34105.39 7365.34 30360.00 3745.39 7365.34 0.00 0.00 10.08

η = 1.0 201 34841.42 4532.19 33165.00 1676.42 4532.19 0.00 0.00 5.20
η = 2.0 234 38858.72 1381.78 38610.00 248.72 1381.78 0.00 0.00 0.99
η = 3.0 268 44239.97 278.47 44220.00 19.97 278.47 0.00 0.00 0.10

MxRP
η = 0.1 170 34710.15 10273.64 28050.00 6660.15 10273.64 0.00 0.00 15.81
η = 0.5 184 34105.39 7365.34 30360.00 3745.39 7365.34 0.00 0.00 10.08
η = 1.0 201 34841.42 4532.19 33165.00 1676.42 4532.19 0.00 0.00 5.20
η = 2.0 234 38858.72 1381.78 38610.00 248.72 1381.78 0.00 0.00 0.99
η = 3.0 268 44239.97 278.47 44220.00 19.97 278.47 0.00 0.00 0.10

PI — 30060.42 6033.53 30060.42 0.00 0.00 0.00 0.00 0.00

DA 182 38480.79 16040.49 30030.00 8450.79 16040.49 0.00 0.00 10.81

SP 202 36626.72 9088.74 33330.00 3296.72 9088.74 0.00 0.00 4.98

RP
α = 5% η = 0.1 186 37784.84 14458.39 30690.00 7094.84 14458.39 0.00 0.00 9.40
uα=300 η = 0.5 200 36648.18 9671.77 33000.00 3648.18 9671.77 0.00 0.00 5.45

η = 1.0 219 37436.04 5108.90 36135.00 1301.04 5108.90 0.00 0.00 2.23
η = 2.0 255 42191.39 1116.90 42075.00 116.39 1116.90 0.00 0.00 0.26
η = 3.0 292 48183.71 124.35 48180.00 3.71 124.35 0.00 0.00 0.01

MxRP
η = 0.1 186 37784.84 14458.39 30690.00 7094.84 14458.39 0.00 0.00 9.40
η = 0.5 200 36648.18 9671.77 33000.00 3648.18 9671.77 0.00 0.00 5.45
η = 1.0 219 37436.04 5108.90 36135.00 1301.04 5108.90 0.00 0.00 2.23
η = 2.0 255 42191.39 1116.90 42075.00 116.39 1116.90 0.00 0.00 0.26
η = 3.0 292 48183.71 124.35 48180.00 3.71 124.35 0.00 0.00 0.01

PI — 30060.42 6033.53 30060.42 0.00 0.00 0.00 0.00 0.00

DA 182 71579.72 78865.76 30030.00 41549.72 78865.76 0.00 0.00 10.81

SP 233 41147.64 14645.96 38445.00 2702.64 14645.96 0.00 0.00 1.06

RP
α = 1% η = 0.1 186 65572.94 71087.09 30690.00 34882.94 71087.09 0.00 0.00 9.40
uα=1475 η = 0.5 200 50936.89 47552.87 33000.00 17936.89 47552.87 0.00 0.00 5.45

η = 1.0 219 42531.78 25118.77 36135.00 6396.78 25118.77 0.00 0.00 2.23
η = 2.0 255 42647.23 5491.41 42075.00 572.23 5491.41 0.00 0.00 0.26
η = 3.0 292 48198.22 611.38 48180.00 18.22 611.38 0.00 0.00 0.01

MxRP
η = 0.1 186 65572.94 71087.09 30690.00 34882.94 71087.09 0.00 0.00 9.40
η = 0.5 200 50936.89 47552.87 33000.00 17936.89 47552.87 0.00 0.00 5.45
η = 1.0 219 42531.78 25118.77 36135.00 6396.78 25118.77 0.00 0.00 2.23
η = 2.0 255 42647.23 5491.41 42075.00 572.23 5491.41 0.00 0.00 0.26
η = 3.0 292 48198.22 611.38 48180.00 18.22 611.38 0.00 0.00 0.01



58 Single Shift Staffing

is kept the same. Thus, the optimal staffing level y is also unchanged for the three tables. Note

also that the value of the under-staffing penalty cost uα varies with different sizes of the email

workload W . We should mention that if we do not relate the chance constraint (3.3) with the

under-staffing penalty cost, the optimal staffing level would change with the size of back-office

workload for fixed under-staffing penalty cost (more details are given in Section 3.4.2).

The gap between the optimal staffing levels of DA and SP is remarkable, especially when the

back-office workload is small. Neither DA captures the negative impact of the randomness in call

arrival rates on service quality, nor on the under-staffing cost. Particularly, it can be seen that

the optimal solutions of DA remains constant once the penalty cost uα exceeds some threshold.

Consequently, in the case of a high penalty cost and significant arrival rate randomness, DA

should not be used. However, it can be noticed that when the back-office workload is high, the

induced flexibility is quite profitable and the global performance of the DA optimal solution is

in that case less affected by the randomness of the arrival process.

As described in Section 3.3.2, robust optimization relies on a worst-case-type analysis for a

given uncertainty set. In order to examine different trade-offs between the average performance

and the protection against risk, we have considered different η values. The higher the η value,

the higher the degree of protection in the solution. An extreme case can be considered, namely

η = 0, which can be viewed as equivalent to DA. By increasing the η value, the optimal RP

solution includes a progressively increasing over-staffing, which eliminates under-staffing penalty

costs, but at the same time increases the direct salary costs. Since RP always considers a worst-

case setting, it is therefore important to choose an appropriate uncertainty set by taking into

account the calls arrival rate variations, the target α and the flexibility offered by the back-office

workload.

In Tables 3.1 and A.1, MxRP has the same optimal solution and cost performance as RP.

Basically, this stems from the fact that the back-office workload uncertainty is not significant

w.r.t. the arrival process randomness. The results exhibit a slight difference for increased back-

office workload uncertainty (see Table A.2).

Benefits of The Flexibility Offered by Back-Office Jobs

An obvious benefit from adding back-office jobs comes from the fluctuating shape exhibited by

the call arrival rate as a function of the periods of the days (see Figure 3.1). Since we are

considering a single shift call center, the strongest quality-of-service constraints (corresponding

to the period with the highest arrival rates), tend to force to have a typically high staffing level

for the whole day. Such a level is in fact required for only some periods. Clearly, this situation
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leads to over-staffing during the other periods, which can be used without any additional cost

in order to handle some back-office jobs. For example, it can be seen from Tables 3.1 and A.1,

that the optimal staffing levels are identical (and do not increase) while the back-office workload

has been increased from 50 to 600. The savings are thus the direct salary costs corresponding

to this increase (namely 600 × c = 9000) minus the under-staffing cost increase and minus the

overtime cost increase (which are negligible w.r.t. 9000).

We note also that the variability of the calls arrival process can be smoothed by increasing

back-office workload. Via Tables 3.1 and A.2, it can be observed that for a given risk level α,

the associated uα in the former (with low back-office workload) is greater than that in the latter

(with high back-office workload).

In order to characterize the limits of the flexibility offered by back-office jobs, we analyze the

gain function G(w) associated with the flexibility offered by the back-office workload w. This

function is defined as follows. Denote a given value of under-staffing penalty cost by u, for sample

values θ and w, recall that the optimal total cost for the call center including the back-office jobs

(see Equation (3.5)) is given by

C(y∗, θ, w) = n c y∗ + u
n∑

i=1

(y∗ − vi(θfi))
− + r

[
w −

n∑
i=1

(y∗ − vi(θfi))
+

]+
, (3.43)

with y∗ the optimal solution of

min
y∈N

{n c y + uE[

n∑
i=1

(y − Vi(Θfi))
−] + r E[W − E[

n∑
i=1

(y − Vi(Θfi))
+] ]+}. (3.44)

If the back-office workload is considered to be externally processed, for a direct cost cw, the

optimal total cost for the call center without any back-office jobs is given by

C ′(y′∗, θ) = n c y′∗ + u

n∑
i=1

(y′∗ − vi(θfi))
−, (3.45)

where y′∗ is the optimal solution of

min
y′∈N

{n c y′ + uE[

n∑
i=1

(y′ − Vi(Θfi))
−]}. (3.46)

The gain function G(w) may be therefore written as

G(w) = C ′(y′∗, θ) + cw − C(y∗, θ, w). (3.47)

If one considers an SP solving methodology, the corresponding expected profit E[G(W )], given
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as a function of the expected value of W , is displayed in Figure 3.2 for different penalty cost

values u = 145, 300, and 1475. The other parameters are identical to those used in Section 3.4.1.

Figure 3.2 shows that E[G(W )] is an increasing concave function of E[W ], asymptotically

converging towards a constant level for high E[W ] values. We see that above a certain amount,

additional back-office jobs no longer generate an additional profit. Here the thresholds are 2400,

2700 and 3000 for penalty costs respectively given by u = 145, 300 and 1475.

This observation brings forth consideration of the best setting up of the agents groups: the

required number of flexible servers (those able to deal with both calls and back-office jobs), and

that of the specialized servers. With similar parameters as in Section 3.2, we propose a model

with three types of servers: single skilled servers (for calls), single skilled servers (for back-office

jobs) and flexible servers. The sizes of the three groups are denoted by yc, ybo, yfx respectively. In

order to force the optimal solution to have a minimum number of flexible servers, while keeping

unchanged the total number of servers comparing to the single type (flexible) servers model

analyzed above, the flexible servers’ salary, say cfx, is assumed to be just slightly increased,

w.r.t. the salary of single skilled servers. For our numerical example, we choose c = 15, and

cfx = 15.0001.

The optimization problem can be formulated by the following stochastic integer program:

Min nc (yc + ybo) + ncfx yfx + u

L∑
l=1

n∑
i=1

pθl M
−
i,l + r

K∑
k=1

L∑
l=1

pθl pwk
Nk,l (3.48)

s.t. Mi,l = yc + yfx − vi(θl fi), with i = 1, ..., n, l = 1, ..., L, (3.49)

Mi,l =M+
i,l −M−

i,l, with i = 1, ..., n, l = 1, ..., L, (3.50)

Ri,l ≤ yfx, with i = 1, ..., n, l = 1, ..., L, (3.51)

Ri,l ≤M+
i,l, with i = 1, ..., n, l = 1, ..., L, (3.52)

Nk,l ≥ wk − n ybo −
n∑

i=1

Ri,l, with l = 1, ..., L, k = 1, ...,K, (3.53)

M+
i,l,M

−
i,l, Nk,l, Ri,l ≥ 0, with i = 1, ..., n, l = 1, ..., L, k = 1, ...,K, (3.54)

yc, yfx, ybo ∈ Z+. (3.55)

This model generalizes the original one (3.6)-(3.10), since we now allow to have three different

types of agents (for calls, for emails, and for both) instead of a single type (handling both calls

and emails). The variable Ri,l represents the number of flexible agents which are assigned to

handle back-office jobs in period i of scenario l.

In Figure 3.3, we plot the optimal required number of flexible servers as a function of E[W ],

for different under-staffing penalty costs u = 145, 300, and 1475. Similarly to Figure 3.2, we
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Figure 3.2: Expected gain as a function of the back-office average workload
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observe that the required number of flexible servers is increasing and concave in E[W ]. The

maximum required numbers of flexible servers are 320, 326 and 339 for u = 145, 300 and 1475,

respectively. Call center flexibility results from the ability of the flexible servers to deal with

the two types of jobs. In Figure 3.4, we plot the percentage of flexible servers from the total

number of servers as a function of E[W ], for u = 145, 300, and 1475. Figure 3.4 shows that

this percentage decreases after a peak around 90%. The reason is that for a given value of u,

the total staffing level increases along with the back-office workload. However, above a certain

amount of back-office workload, the required number of flexible servers remains constant. The

ratio of flexible servers will therefore decrease.
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Figure 3.5: Expected gain for different seasonal pattern and busyness variance
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The impact of the flexibility on costs performance depends also on the value of the under-

staffing penalty cost and the variability of inbound calls. For small workloads of back-office jobs,

Figure 3.2 shows that the gains associated with the flexibility are constant w.r.t. u. Indeed, in

such situations, the over-staffed agents (for calls) can easily handle the back-office jobs without

any additional cost. For large back-office workloads and high under-staffing penalty cost, the

gain is larger because a higher staffing level is required, inducing more over-staffing. The next

examples, illustrated by Figures 3.5 and 3.6, show the impact of variability of inbound calls on

the gain associated with the flexibility offered by back-office jobs. This inbound calls variability

results from the combination of the variations of the daily deterministic pattern (defined by

the variations of the fi coefficients), of the Θ random variability and of the inbound calls total

average workload (defined by
∑n

i=1 fi), that can be viewed as the call center size.

In Figure 3.5, we compare three cases. First, the original case is depicted, corresponding to

the daily pattern fi and the random variable Θ with a Gaussian distribution (with mean equal

to 1 and standard deviation equal to 0.21). The two other cases have smoother calls workload

fluctuations, but still the same global daily workload. For one example, we keep the variability

of the process Θ similar, but we smooth the daily pattern by fixing f ′1, f ′2, ..., f ′11 equal to 13.5,

18.4, 24.4, 21.5, 19, 22.9, 18.4, 25, 17.4, 17.2 and 15.3 calls per minute. It is worth noting

that
∑11

i=1 fi =
∑11

i=1 f
′
i . In the second case, the standard deviation of the Θ random variable

is decreased, from 0.21 to 0.10, but the the daily pattern is still given by the fi parameters.

As expected, it can be seen in Figure 3.5 that the benefit obtained through flexibility decreases

when overall variability decreases, either because of a smoother seasonal pattern, or because of

a reduction of the daily busyness variance.
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In Figure 3.6, we compare three cases with similar successive periodic daily fluctuations (i.e.,

with similar values for the differences fi+1 − fi) and similar Θ process. However, we vary the

inbound calls total average workload (defined by
∑n

i=1 fi), which can be viewed as varying the

call center size. We have considered coefficients respectively given by the sequences fi + 3, fi

and fi−3. The figure shows a decrease in the gain obtained from server flexibility for call center

with reduced size. The underlying reason is simple: the size of the stochastic fluctuations due to

Θ is reduced, for smaller fi coefficients, and, as a consequence, the required (or useful) flexibility

level is also smaller.

3.5 Extension to Models with Overflow

In this section, we extend the analysis to call centers with possible call overflows between succes-

sive periods. Some call center models which include an overflow process have been analyzed in

the literature (see Thompson (1993) and Stolletz (2008)). According to these papers, we assume

the outcome of the arrival rate λi, in period i, to be substituted by a modified auxiliary arrival

rate λMi , given by

λMi (y) = λi + bi−1(y)− bi(y), (3.56)

for 2 ≤ i ≤ n − 1, where bi(y) is the arrival rate generated by the backlog of period i. For the

boundary periods i = 1 and i = n, we have λM1 (y) = λ1 − b1(y) and λMn (y) = λn + bn−1(y),

respectively. These backlogs bi(y) are evaluated via an Erlang-loss system (see Stolletz (2008)).

The overflow impacts are introduced in our cost model as follows. An overflow rate bi−1(y) can

be viewed as associated to an under-staffing situation of ⌈ bi−1(y)
µ ⌉ agents, where ⌈x⌉ denotes the

smallest integer not less than x. The penalty cost u⌈ bi−1(y)
µ ⌉ is then added in Equation (3.5) and

we have the following new cost function expression,

n c y + u

n∑
i=1

(y − vi(θfi))
− + r

[
w −

n∑
i=1

(y − vi(θfi))
+

]+
+ u⌈bi−1(y)

µ
⌉. (3.57)

In Equation (3.57), two different kinds of under-staffing are penalized: one with respect to the

agent requirement according to the service level (defined by Condition (2.3)) and another one

for overflow (based on ⌈ bi−1(y)
µ ⌉). The staffing level vi(θfi) which guarantees the required service

level is calculated based on the auxiliary arrival rate of Equation (3.56).

Since the overflow rates bi(y) are non-linear functions of the decision variable y, the non-linear

optimization problem (3.57) is solved via successive iterations by updating in each iteration the

values of the overflows bi(y).
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The SP approach has been successively applied to the original model and to the model with

overflow for three numerical examples. The parameter values of these examples are the same as

in Section 3.4.1. For each example, Table 3.2 displays the optimal staffing levels for the original

model without overflow, denoted by y∗ and the optimal solution for the overflow model, y∗M .

Table 3.2: Optimal staffing levels

E[W ] = 50, E[W ] = 600, E[W ] = 1000,
σW = 5 σW = 60 σW = 100

u1% 1475 1475 1350

y∗ 233 233 233
y∗M 229 229 229

u5% 300 300 166

y∗ 202 202 202
y∗M 201 201 202

u10% 145 140 30

y∗ 184 184 184
y∗M 184 185 184

From Table 3.2, we see that the gap between the staffing levels for the two models is small,

which tends to support the robustness of our original model. We have noticed from the numerical

experiments that the algorithm with successive iterations very quickly converges after a limited

number of steps.

3.6 Concluding Remarks

We have developed a single shift call center model with two types of jobs: inbound calls and

back-office jobs. We focused on optimizing the staffing level w.r.t. the total operating cost of

the call center.

We modeled this problem as a cost optimization-based newsboy-type model. We then pro-

posed various approaches to solve it numerically: a classical stochastic programming approach, a

robust programming approach and a mixed robust programming approach. We next conducted

a numerical study in order to evaluate the performance of each approach and gain useful insights.

First, by comparing with the average based deterministic approximation, we underlined the ne-

cessity of taking into account the uncertainty in the call demand parameters, which is usually

not the case in the majority of existing studies. Second, we highlighted the respective advantages

and drawbacks of each approach. Third, we showed to what extent the flexibility associated with

storable back-office jobs helps in absorbing uncertainty in the call process.
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In the succeeding chapters, we intend to extend the analysis of this chapter to a multi-shift

setting, with the possibility of removing or adding agents within the same day. Another extension

is to consider a global service level constraint for the whole day, instead of having a period by

period constraint.



Chapter 4

Multi-shift Staffing Problem with

Information Update

In this chapter we consider a multi-periodic multi-shift call center staffing problem.

The call arrival process is assumed to follow a doubly non-stationary stochastic pro-

cess with a random mean arrival rate. The number of agents working in each shift

is decided initially before the beginning of the working day, but a real-time update

is allowed within the same day. The objective is to minimize the sum of the regu-

lar salary, the update adjustment cost and the penalty cost of agents under-staffing.

We focus the analysis to the case where all shifts are without break. Two different

solution approaches are considered. First, by the discretization of the underlying

probability distribution, we explicitly formulate the expected cost formulation as a

two-stage stochastic program with recourse. Using the property of totally unimodu-

lar, we prove that the linear relaxation of this stochastic program is integral. And the

large-scaled mixed integer program (MIP) can be relaxed and be solved efficiently.

Second, we develop a robust programming formulation for this two-stage optimiza-

tion problem. Also, we show how a property of totally unimodular can help to make

integer second-stage decisions, using piece-wise linear recourse rules. The MIP be-

comes very easy to be solved. The efficiency and excellent performance of these two

approaches are illustrated through a numerical study based on real-life data. The

advantage of adding the update flexibility and the necessity of taking into account

the parameter uncertainty are also demonstrated.

67
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4.1 Introduction

As presented in the previous chapters, the arrival process of calls includes two types of uncer-

tainty: the usual uncertainty captured by a stochastic process modeling, and the uncertainty in

the process parameter themselves. In this chapter, we continue the study of the shift-scheduling

problem of a call center, in which we allow the mean arrival rate of calls to be uncertain. The

arrival process of calls keeps being modelled by a doubly non-stationary stochastic process, with

random mean arrival rates. Different to that in Chapter 3, we consider a multi-shift call center

in this chapter.

Due to the non avoidable errors on the forecasting (on calls, on the effective number of agents

who will be present, etc.) which considerably affect the efficiency of the beforehand planning, and

considering the existence of significant correlation between arrivals in different times intervals

in the same day (see Avramidis et al. (2004)), we have recently seen in practice a new planning

activity. This new activity is referred to as intra-day performance management or trafficing,

for which decisions are made through several steps. The first decisions of staffing are made

before the day of the interest, and the other decisions are taken during the day itself. The latter

can be seen as corrections of the beforehand planning. As a function of the actual demand

during the beginning of the day in question, trafficing consists on taking very-short horizon

decisions within the same day. These decisions would correct/adjust the capacity using some

available flexibility (for example adding or removing some agents) in order to efficiently handle

the actual demand. Recent empirical research (Mehrotra et al. (2009)) estimates that over 70%

of call centers routinely make trafficing based on largely experience and intuition. However, the

literature on this subject is still quite poor with regard to a such interesting feature. In this

chapter, we consider a shift-scheduling problem with trafficing.

As mentioned above, our shift-scheduling problem incorporates uncertainty in the call arrival

parameters, and allows the decision-maker to adjust his initial decisions after that more call

volume information have become available. The shift-scheduling problem is modeled as a cost

optimization-based two-stage model. The cost criterion function includes the regular salary cost,

adjustment cost and a penalty cost for under-staffing. Our objective is to find the optimal

initial shift scheduling and update policy which minimize the total call center operating cost.

Concerning the shifts, we assume a particular case where no breaks present at any period in the

middle of the shift and each agent works consecutively until the shift ends. This leads to an

important property of the period-shift matrix called totally unimodular (TU). In this chapter,

we drive helpful and interesting results thanks to this totally unimodular property. One may

take our results as the first step, and extend to the general case where beaks present within
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shifts, using heuristic methods (Gans et al. (2003)). We propose two solution methodologies.

First, we formulate the problem as a two-stage stochastic program with recourse, by discretizing

the probability distribution and constructing the associated event-trees and scenarios. Using the

totally unimodular property, we prove that the large scale Mixed Integer Problem (MIP) can

be solved efficiently by just relaxing it to a linear problem (LP). The second approach relies

on adjustable robust optimization theory. Again by taking advantage of the totally unimodular

property, we make some modification on the Affinely Adjustable Robust Counterpart (AARC)

methodology which is supposed to be applied in linear problems. Then we solve the MIP very

efficiently and get piecewise linear update policies. A numerical study is conducted in order to

illustrate the efficiency of the two approaches and the advantage to provide update flexibility. In

the numerical illustration, we use real data gathered from a call center of a Dutch hospital.

We distinguish two main contributions in this chapter. The first contribution is, under the

assumption that the period-shift matrix has the totally unimodular property, we propose two

approaches to modeling and to solve efficiently a large scale two-stage call center shift-scheduling

problem with uncertain arrival parameters. The second contribution is the analysis of the added

advantage of using dynamic adjustment (update). We show that the update action reduces the

operational cost and the under-staffing probability.

The most related work to ours which develops frameworks to make intra-day resource adjust-

ment decisions in call centers is that of Mehrotra et al. (2010) and Gans et al. (2009). However,

the former suppose that the initial schedules existed and solve the real-time agents schedule

adjustment as a one-stage static problem. Gans et al. (2009) extends to include forecast updates

and two-stage stochastic programs with recourse. But they use neither the totally unimodular

property nor the adjustable robust approach.

The rest of the chapter is structured as follows. In Section 4.2, we describe the call center

model under consideration and formulate the associated shift-scheduling problem. In Section 4.3

and 4.4, we present the different solution approaches and analyze their interesting properties. In

Section 4.5, we then conduct a numerical study to evaluate these alternative approaches. We

also exhibit the advantage of doing trafficing. The chapter ends with concluding remarks.

4.2 Problem Formulation

We consider a multi-period multi-shift call center with a single type of inbound calls. The

inbound call mean arrival rate in each period is allowed to be uncertain. The periods of a day

are assumed to be divided into two time horizons. During the early time horizon, the decision-

maker implements the first-stage (here-and-now) decisions without information on the actual
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requirements. After the uncertainty in the early time horizon has realized, the decision-maker

has a better estimation of the uncertainty in the later time horizon. Then he chooses the second-

stage (wait-and-see) decisions for the later time horizon according to his observation. In this

section, we describe the corresponding two-stage recourse workforce shift-scheduling problem.

4.2.1 The Inbound Call Arrival Process

Due to the characteristics of the arrival process of calls presented in Section 2.1.2 (Chapter

2), in order to address uncertain and time-varying mean arrival rates coupled with significant

correlations, we model the inbound call arrival process by a doubly stochastic Poisson process

(see Avramidis et al. (2004); Harrison and Zeevi (2005), and Whitt (1999)) as follows. We assume

that a given working day is divided into t distinct, equal periods of length T , so that the overall

horizon is of length tT . The period length in practice is often 15 or 30 minutes.

The inbound calls arrive following a stochastic process with a random arrival rate in each

period i, denoted by Λi. Furthermore, using the modeling in Avramidis et al. (2004) and in

Whitt (1999), we assume that the arrival rate Λi is of the form

Λi = Θfi, for i = 1, ..., t, (4.1)

where Θ is a positive real-valued random variable. The random variable Θ can be interpreted as

the unpredictable busyness of a day: A large (small) outcome of Θ corresponds to a busy (not

busy) day. The constants fi model the intra day seasonality, e.x., the shape of the variation of the

arrival rate intensity across the periods of the day, and they are assumed to be known. Formally,

if a sample value in a given day of the random variable Θ is denoted by θ, the corresponding

outcome of the arrival rate over period i for that day is defined by λi = θfi.

We assume that service times for inbound calls are independent and exponentially distributed

with rate µ. The calls arrive to a single infinite queue working under the the first come, first

served (FCFS) discipline of service. Neither abandonment nor retrials are allowed. The staffing

level which guarantees the required service level is then computed by

ni(θ) = F−1
θ fi

(SLi). (4.2)

with the function F defined by Equation (2.3). We denote the required staffing level by ni(θ)

because fi is constant for each i.
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4.2.2 Shifts Setting

We denote the period sets of the overall daily horizon by I. In this chapter, we consider a multi-

shift call center. Two catalogs of shifts are considered: the initial decisions (before update) and

the update decisions.

Let J be the set of all the feasible work schedules, each of which dictates if an agent answers

calls in period i ∈ I. We define the |I| × |J | matrix A = [aij ], where for i ∈ I and j ∈ J ,

aij =

 1, if agents in schedule j answer calls during period i,

0, otherwise.

We divide the overall horizon into the early horizon and late horizon, denoted by I1 and I2,

respectively. After observing the call volumes in the early horizon, a real-time update of staff

capacity is allowed at the beginning of the late horizon. We define also the |I| × |J | matrix

A′ = [a′ij ] with

a′ij =

 1, if agents in new (after updating) schedule j answer calls during period i,

0, otherwise.

Note that here the first |I1| lines of matrix A′ are all zeros.

4.2.3 Cost Criterion

Let the first-stage (here-and-now) decision variables Xj , j ∈ J , represent the numbers of agents

assigned to the various schedules implemented before the start of the overall planning horizon.

And the second-stage (wait-and-see) decision variables Yj and Zj , j ∈ J , denote respectively the

numbers of agents added to and removed from the schedule j after the observation of uncertainty

of the early horizon. And ni(θ) represents the required agents number for period i related to the

busyness factor realization θ.

Each agent initially assigned to shift j gets a salary cj for the day. For the recourse actions,

the cost of adding an agent to schedule j is dj , the cost saving by removing an agent from

scheduling j is rj , j ∈ J . In each period, a per person under-staffing penalty u is penalized if the

number of agents assigned to this period is less than the required agents number. As usual, the

cost parameters satisfy the ordering rj < cj < dj for j ∈ J , which ensures that it costs more to

modify the staffing level by second-stage decisions than to determiner it by the initial scheduling.

The setting that u is larger than periodic (adding agents or regular) salary is straightforward.

Primarily, we use a small numeric example to illustrate the advantage of making trafficing.

Example:
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Suppose that a call center is divided into three period: morning, noon and afternoon, (i =

1, 2, 3). The busyness of a day has three scenarios (l = 1, 2, 3): busy, average, not busy day,

with L as the set of scenarios. Consequently a subscript l relating to scenario is added for ni, Yj

and Zj and the notations become nil, Yjl, Zjl. The required agents numbers are n = [nil] :

[15, 20, 25; 45, 60, 75; 30, 40, 50]. The probabilities of the three busyness scenarios ( busy, average,

not busy) are p1 = 0.3, p2 = 0.4 and p3 = 0.3 respectively. Suppose that there are two feasible

shifts (j = 1, 2), with the definition of the matrix A as [1, 1; 0, 1; 1, 1]. The update is done after the

first period, and we define the matrix A′ as [0, 0; 0, 1; 1, 1]. The regular salary cost c1 = 2, c2 = 3,

and the adjustment update cost is defined as d1 = 1.2, d2 = 2.4 and r1 = 0.8, c2 = 1.6. The

under staffing penalty is u = 5.

We assume that the decision-maker knows exactly which scenario the day belongs to after

his observation during the first period. We solve the following two shift-scheduling problems:

Problem (4.3) without update and Problem (4.4) allowing update, and compare their total costs.

Min
∑
j∈J

cj Xj +
∑
i∈I

uMil

s.t.
∑
j∈J

aijXj +Mil ≥ ni,l, i ∈ I, l ∈ L, (4.3)

Mil ≥ 0, i ∈ I, l ∈ L,

Xj ∈ Z+, j ∈ J.

Min
∑
j∈J

cj Xj +
∑

j∈J,l∈L
pl (dj Yjl − rj Zjl) +

∑
i∈I

uMil

s.t.
∑
j∈J

aijXj +Mil ≥ ni,l, i ∈ I1, l ∈ L, (4.4)

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yjl − Zjl) +Mil ≥ ni,l, i ∈ I2, l ∈ L,

Xj ≥ Zjl, j ∈ J, l ∈ L,

Mil ≥ 0, i ∈ I, l ∈ L,

Xj , Yjl, Zjl ∈ Z+, j ∈ J, l ∈ L.

In the two equations above, it is obvious that Yjl, Zjl and ni,l are related to the realized

busyness factor θl, and we let Mil present the agents number shortfall in period i of scenario l.

We find out that the optimal costs of Problems (4.3) and (4.4) are 202.5 and 181.5 respectively.

This small example shows the interest on cost saving of using available information to adjust the
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staffing capacity in real-time.

4.2.4 Totally Unimodular Matrix

In this chapter we consider a particular case where each agent is to work consecutive periods,

without breaks. Then every column of both matrix A and A′ has contiguous ones and this

kind of matrix is totally unimodular. Totally unimodular matrices are of extreme importance

in polyhedral combinatorics and combinatorial optimization. It is well known that if matrix

A is totally unimodular and vector b is integral, every extreme point of the feasible region

{x | Ax ≥ b} is integral and thus the feasible region is an integral polyhedron. This gives

a quick way to verify that a linear program is integral (has an integral optimum, when any

optimum exists). The property of totally unimodular facilitates a lot the solving process for our

solution methodologies presented in Section 4.3 and 4.4.

4.2.5 Information Update

As mentioned above, Θ is an random variable which can be interpreted as the unpredictable

busyness factor. Since the decision-maker has an opportunity to adjust the agents capacity

during the day, he may would like to know better the realized busyness factor θ before doing

the adjustment. The reason is simply that θ is the crucial and unique unknown parameter

to calculate the required gents number. Unfortunately, in real life, the decision-maker can not

observe directly the value of θ, but only use the observed call volumes in the early horizon periods

to get an estimate value θ̃. In this chapter, we consider this realistic situation.

θ  realizes    
 

Periods  
Observe,θ~   

Assign, jX              Assign, )~(),~( θθ jj ZY  

Agent requirements realize )(θin  

Figure 4.1: Two-stage staffing process

Figure 4.1 shows the staffing process we consider in this problem. At the beginning of the
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day, the initial staffing policy Xj , j ∈ J, is applied. The true busyness factor θ realizes but the

decision-make observes and get only an estimate busyness factor θ̃. He then chooses the second-

stage (wait-and-see) decision variables Yj and Zj , j ∈ J , according to the estimated uncertain

parameter value θ̃.

4.2.6 Problem Setting

For any given fist-stage decisions Xj , j ∈ J , a true busyness factor θ, and an observed busyness

factor θ̃, the second-stage cost of the call center, associated with a second-stage decision variables

Yj , Zj , is

π′(Xj , θ̃) :=
∑
j∈J

dj Yj −
∑
j∈J

rj Zj +
∑
i∈I2

u (ni(θ)−
∑
j∈J

aijXj −
∑
j∈J

a′ij(Yj − Zj))
+. (4.5)

The variables Yj , Zj will be optimized for this given Xj and observed busyness factor θ̃. In

Equation (4.5), the first and second terms correspond to the staffing capacity adjustment cost,

and the last term corresponds to the agents shortfall penalty for the late horizon periods. The

optimization problem at the second-stage is to determine the optimal set of variables Yj , Zj , j ∈ J

to minimize the second-stage cost π′(Xj , θ̃). In order to keep being logic, we ask that the number

of agents removed is less than the number of agents initially assigned, Xj ≥ Zj , for each shift

j ∈ J .

In order to formulate the problem as an integer linear program, we replace x+ by y ≥ x, y ≥ 0.

The two-stage recourse shift-scheduling problem can be formulated as the following mixed integer

program(MIP):

Min
∑
j∈J

cj Xj +
∑
j∈J

dj Yj −
∑
j∈J

rj Zj +
∑
i∈I1

uMi +
∑
i∈I2

uM ′
i

s.t.
∑
j∈J

aijXj +Mi ≥ ni(θ), i ∈ I1, (4.6)

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj − Zj) +M ′
i ≥ ni(θ), i ∈ I2,

Xj ≥ Zj , j ∈ J,

Mi ≥ 0, i ∈ I1,

M ′
i ≥ 0, i ∈ I2,

Xj , Yj , Zj ∈ Z+, j ∈ J.

The objective of this model is to minimize the total cost of initial scheduling, recourse de-

cisions and the under-staffing penalty cost associated with failure to satisfy all staffing require-
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ments. The first and second sets of constraints calculate the agents number shortfall Mi (i ∈ I1)

and M ′
i (i ∈ I2), which depend on θ and (θ, θ̃) respectively. The third set of constraints ensures

that the number of agents removed is less than the number of agents initially assigned, for each

shift j ∈ J . The last three sets of constraints define the non-negativity and integer conditions

for program variables.

In the following two sections we develop two methods to solve the shift-scheduling problem

given by Equation (4.6). These approaches are then demonstrated by the numerical study in

Section 4.5. First, under the assumption that the probability distributions associated with the

random variables are known exactly, a two-stage stochastic programming approach is applied to

problem (4.6), built on the discrete probability distributions characterizing uncertain parameters.

The second approach refereed to as adjustable robust programming consists of optimizing the

staffing level with respect to the worst case scenarios in a given uncertainty set. In what follows,

we describe these approaches.

4.3 Two-Stage Stochastic Programming Approach

The traditional way to take into account parameters uncertainty consists of using a stochastic

programming formulation, which minimizes the expected cost by assuming that the parameters

obey a known probability distribution.

Suppose that the true busyness factor θ has the probability density function p(θ), the standard

way (as that in Gans et al. (2009)) to estimate the probability density function of the observed

busyness factor θ̃ is as follows. Assume that the joint probability density function of the true

and estimated busyness factor is ψ(θ, θ̃) and p(θ) > 0 for each θ. After the beginning of the

day that a true busyness factor θ is realized, the conditional probability density function of the

estimated busyness factor θ̃, given that Θ = θ, is given by pb(θ̃|θ) = ψ(θ, θ̃)/p(θ).

In this chapter, we assume the random variable Θ to follow a discretized probability distribu-

tion, defined by the sequence of outcomes θl and the associated sequence of probabilities pl, l ∈ L,

with L as the set of scenarios of possible true busyness factor. We have
∑

l∈L pl = 1, pl ≥ 0. For a

given θl, the decision-maker estimates it as θ̃k with probability pbl,k, k ∈ K, with K as set of sce-

narios of possible estimated busyness factor. For each l ∈ L, we have
∑

k∈K pbl,k = 1, pbl,k ≥ 0.

To better understand the probability relation between θl and θ̃k please see Figure 4.2.

Let Xj , j ∈ J, represent initial scheduling decisions. Late-horizon recourse decisions vary by

the estimated value of θ̃k. The decision variables Yj,k, Zj,k with j ∈ J, k ∈ K represent the full

set of the recourse actions.

As shown in Figure 4.3, before the day begins, the initial scheduling decisions Xj , j ∈ J, are
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1θ  2θ  3θ  

2~θ  3~θ  4~θ  

Realize, lθ  

1~θ  

5~θ  

Observe, kθ~  klpb ,  

Figure 4.2: Probability relation between θl and θ̃k

lθ  realizes   with lp  
 

Periods  
Observe, kθ~   
with  klpb ,  

Assign, jX                      Assign, kjkj ZY ,, ,  
 

Agent requirements realize  lin ,  
Agents shortfall: liM ,                  kliM ,,'  

Figure 4.3: Two-stage staffing process in stochastic setting
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assigned. When the day begins, a scenario l may realize with the true busyness factor θl, the

periodic required numbers of agents also realize, we dote them by ni,l for i ∈ I. The number of

agents shortfall for each early horizon periods is denoted by Mi,l for i ∈ I1. After the observation,

the true busyness factor θl is estimated to be θ̃k, k ∈ K. According to the estimated θ̃k, the

decision-maker then implements the corresponding second-stage policy Yj,k, Zj,k with j ∈ J . In

this case, the number of agents shortfall for each later horizon period is denoted by M ′
i,l,k, for

i ∈ I2.

The objective the two-stage stochastic integer program is to optimize the expected total

cost of initial scheduling, recourse actions and under-staffing penalty. It determines the optimal

set of first-stage decisions and the set of recourse actions for each possible estimated value θ̃k.

Mathematically, the two-stage stochastic counterpart of problem (4.6) can be formulated as the

following MIP:

Min
∑
j∈J

cj Xj +
∑
l∈L

∑
i∈I1

pl uMi,l +
∑
l∈L

∑
k∈K

pbl,k [
∑
j∈J

dj Yj,k −
∑
j∈J

rj Zj,k +
∑
i∈I2

uM ′
i,l,k]

s.t.
∑
j∈J

aijXj +Mi,l ≥ ni,l, i ∈ I1, l ∈ L, (4.7)

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj,k − Zj,k) +M ′
i,l,k ≥ ni,l, i ∈ I2, l ∈ L, k ∈ K,

Xj ≥ Zj,k, j ∈ J, k ∈ K,

Mi,l ≥ 0, i ∈ I1, l ∈ L,

M ′
i,l,k ≥ 0, i ∈ I2, l ∈ L, k ∈ K,

Xj , Yj,k, Zj,k ∈ Z+, j ∈ J, k ∈ K.

The size of this model is impacted mainly by the size of shift schedules set J , the sizes of

scenarios sets L and K. The number of integer variables is equal to |J |+2×|J |× |K|, while the

number of continuous variables is equal to |I1| × |L|+ |I2| × |L| × |K|.

Example:

We consider a day with 25 periods where the first 5 periods are considered as early horizon

and the rest are later horizon. The number of possible shifts is 162. Set L contains 200 scenarios,

and set K contains 21 scenarios. This implies the requirement to solve models with 6966 integer

variables and 85 000 continuous variables. As analyzed in van Delft and Vial (2004), this kind

of scenario tree leads to a large scale problem. Fortunately, we discover an interesting and

important property of the MIP (4.7) as presented in the following theorem.

Theorem 4.1 The relaxed linear programs of MIPs (4.7) is integral (has an integral optimum,

when any optimum exists).
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The proofs is given in the appendix.

The property given in Theorem 4.1 is directly used in the optimization procedure. We relax

the MIP (4.7) and solve a linear problem.

4.4 Adjustable Robust Approach

In contrast with the stochastic programming framework which explicitly requires a probability

description of the uncertainty, robust optimization models uncertain parameters using uncer-

tainty sets. The objective is then to minimize the worst-case cost in those sets. Suppose that the

uncertainty realizations of the parameters θ lie in the uncertainty set U . If we ignore the fact

that the decision variables Yj and Zj could be determined after observation and getting more

information about the uncertain parameter θ, the static one-stage robust counterpart of problem

(4.6) can be formulated as:

min
Xj ,Yj ,Zj

max
θ∈U

∑
j∈J

cj Xj +
∑
j∈J

dj Yj −
∑
j∈J

rj Zj +
∑
i∈I

uMi

s.t.
∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj − Zj) +Mi ≥ ni(θ), i ∈ I, (4.8)

Xj ≥ Zj , j ∈ J,

Mi ≥ 0, i ∈ I,

Xj , Yj , Zj ∈ Z+, j ∈ J.

Note that in the formulation above, Mi with i ∈ I, are the state variables which describe the

staffing capacity shortfall, and they depend on the value of θ. The decision variables are Xj , Yj

and Zj , j ∈ J . The optimal solution (X∗
j , Y

∗
j , Z

∗
j ) of (4.8) satisfies the constraints for all possible

realizations θ, and guarantees a worst case objective cost. Thus it is called robust. But this worst

case objective cost would be grossly overestimated since the static one-stage robust counterpart

losses the flexibility that (Yj , Zj) can be decided after getting a better information about the

uncertainty.

Ben-Tal et al. (2004) first extended the robust optimization framework to dynamic setting.

Similar to the two-stage stochastic optimization with recourse, the decision-maker selects the

here-and-now, or first-stage decisions, before having any knowledge of the actual value about the

uncertainty. He observes then the realization of the uncertainty and after, and he chooses the

wait-and-see, or second-stage decisions according to the outcome of the uncertainty. In a short,

rather than re-optimization, the decision-maker adjusts his strategy according to information

revealed over time using policies. Recall that in our problem setting, the second-stage (wait-and-
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see) decisions do not have to be determined a priori, the staffing adjustment strategy Yj and Zj

could be adjusted according to the revealed information θ.

We introduce as follows the dynamic formulation by assuming that the decision-maker could

estimate the true uncertainty parameter θ after observation. We can reformulate the Min-Max

adjustable robust counterpart of problem (4.6) as follows.

min
Xj ,Yj ,Zj

∑
j∈J

cj Xj +max
θ∈U

{
∑
j∈J

dj Yj(θ)−
∑
j∈J

rj Zj(θ) +
∑
i∈I

uMi}

s.t.
∑
j∈J

aijXj +Mi ≥ ni(θ), i ∈ I1, (4.9)

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj(θ)− Zj(θ)) +Mi ≥ ni(θ), i ∈ I2,

Xj ≥ Zj(θ), j ∈ J,

Mi ≥ 0, i ∈ I,

Xj , Yj(θ), Zj(θ) ∈ Z+, j ∈ J.

Problem (4.9) is more flexible than Problem(4.8), the notations Yj(θ) and Zj(θ) indicate that

adjustable strategy Yj and Zj depend on the revealed information θ. But this flexibility comes at

the expense of tractability. Mathematically, even by relaxing the integer constraints in Problem

(4.9) and assuming that parameters ni(θ) are linear in θ, the full adaptability is NP-hard.

To address this issue, in Ben-Tal et al. (2004), the authors suggested an approximation to

the linear adjustable robust counterpart which they call the Affinely Adjustable Robust Coun-

terpart(AARC). They proposed a so called linear decision rule (LDR) which restricts that the

future decisions as affine functions of the revealed uncertainty. An important case of AARC is

that the parameters associated with the adjustable variable in the linear problem are constants,

independent of the uncertainty. This case is known as fixed recourse. Ben-Tal et al. (2004) show

that AARCs with fixed recourse are computationally tractable for a wide spectrum of uncertainty

set. A brief review of the AARC methodology is given in Section 2.2.2 in Chapter 2.

In the problem we consider in this chapter, the parameters associated with the adjustable

variable are constants (fixed recourse), however, there exists three major difficulties:

1. The decision-maker can not observe the true busyness factor θ. He can only observe the

call volume and get an estimate busyness factor θ̃, which contains some error on estimation.

2. Parameters ni(θ) are not affine, but non-linear increasing concave functions of random

parameter θ, we don’t have an affinely adjustable robust counterpart.

3. The second-stage decisions Yj and Zj are integer variables, consequently, the linear decision
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rule can not be applied directly to the second-stage decision variables.

In the following three subsections, we explain our methods to treat these difficulties. In

Section 4.4.1 we introduce the robust adjustable model with error on estimating the uncertainty

parameter θ. In Section 4.4.2 we use piecewise linear approximation to approach the non-linear

function ni(θ). Section 4.4.3 presents the way to treat the second-stage integer decision variables:

We apply the LDR on the periodic staffing level
∑

j∈J a
′
ij(Yj − Zj) instead of on shift staffing

level Yj and Zj . With this modification, on the one hand, we can determine the parameters

of the linear decision rule just like what is done in Ben-Tal et al. (2004). One the other hand,

we can take advantage of the totally unimodularity of matrix A′, and solve the mixed integer

problem efficiently.

4.4.1 The Robust Adjustable Model

In our problem setting, the busyness factor θ̃ estimated by the decision-maker is not exactly the

true busyness factor θ, but contains some error on estimation: θ̃ = θ+ ϵ with −τ ≤ ϵ ≤ τ, τ > 0.

Consequently, once the decision-maker gets an estimate value θ̃, he has a better information on

the true busyness factor θ by knowing that it falls in a reduced interval [θ̃−τ, θ̃+τ ]. Following the

main idea of robust optimization, he makes the second-stage decisions in order to minimize the

worst cost associated with all possible true parameter values θ within this reduced interval, which

is the cost associated with θ = θ̃ + τ (see Appendix B.2 for the proof). The relation between

the realized θ, the observed value θ̃ and the speculated interval of possible true busyness factor

according to the observation, is presented in Figure 4.4.

Increase 
direction 

Realize,θ  
Observe, 
θ~  

Possible θ  
leading to θ~  

Worst θ  
leading to θ~  

Realized 
busyness 
factor 

Observed 
busyness 
factor 

Speculated 
busyness 
factor 

Figure 4.4: Relation between θ and θ̃ in robust setting
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The staffing process is as follows (as presented in Figure 4.5). Before the beginning of the day,

the initial scheduling decisions Xj , j ∈ J, are assigned. When the day begins, the true busyness

factor θ realizes, consequently the agent equipments ni(θ) realize. Unfortunately, during the

early horizon periods, the decision-maker can not find the true busyness factor θ. He can only

observe the realized call volumes and get an estimate busyness factor θ̃. This estimate busyness

factor θ̃ contains some error of estimation: θ̃ = θ + ϵ. With this estimate θ̃, the decision-maker

speculates that the true busyness factor may fall in a reduced interval [θ̃ − τ, θ̃ + τ ] with τ > 0.

At the end of the early horizon, the decision-maker then implements the second-stage decisions

Yj and Zj in order to protect against the worst case busyness factor θ̃ + τ .

θ  realizes   
 

Periods 
Observe, εθθ +=~   

Assign, jX                   Assign, jj ZY ,  in order to protect against 
                                      the worst  case τθθ += ~  

Agent requirements realize )(θin  

Figure 4.5: Two-stage staffing process in robust setting

We can then reformulate the Min-Max adjustable robust counterpart of problem (4.6) as

follow.

min
Xj ,Yj ,Zj

max
θ∈U,θ̃=θ+ϵ

∑
j∈J

cj Xj +
∑
j∈J

dj Yj −
∑
j∈J

rj Zj +
∑
i∈I1

uMi +
∑
i∈I2

uM ′
i

s.t.
∑
j∈J

aijXj +Mi ≥ ni(θ), i ∈ I1, (4.10)

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj − Zj)(θ̃ + τ) +M ′
i ≥ ni(θ), i ∈ I2,

Xj ≥ Zj , j ∈ J,

Mi ≥ 0, i ∈ I1,

M ′
i ≥ 0, i ∈ I2,

Xj , Yj , Zj ∈ Z+, j ∈ J.
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Note that Mi and M ′
i are the state variables which denote the staffing capacity shortfall for the

periods in early and late horizon respectively. We use the notation
∑

j∈J a
′
ij(Yj − Zj)(θ̃ + τ) in

order to emphasize the fact that we will take the periodic staffing level adjustment as an entirety

to define the adjustable strategies. Similar to the model (4.9), due to the unknown functional

relations between
∑

j∈J a
′
ij(Yj − Zj)(θ̃ + τ) and θ̃ + τ , it is a common result that the two-stage

full adaptive optimization problem is often computational intractable (NP-hard) even for linear

problem with simple uncertainty sets(see Ben-Tal et al. (2004)). Model (4.10) is again more

complex as the second-stage decisions variables are integers, and the parameters ni(θ) are not

affinely affected by uncertainty θ.

4.4.2 Piecewise Linear Approximation

To the best of our knowledge, the only work addressing the case of integer second-stage variables

within the framework of deterministic set-based uncertainty is that of Bertsimas and Caramanis

(2010). The author propose the finite adaptability where the uncertainty set is partitioned into

several pieces and a best recourse in each is determined. There, the second-stage variables are

piecewise constant functions of the uncertainty, and the decision-maker commits to one of them

only after observation of the uncertainty realization. With this method, the dynamic integer

problem is approximated by several static one-stage integer problem, and the computational

complexity increases along with the number of partitioned pieces. Nevertheless the original

intention of Bertsimas and Caramanis (2010) to partition the uncertainty set is to address the

issue of over-conservatism, we use this idea for the purpose of partitioning non-linear functions

into piecewise linear functions. Denote the function which defines the required agents number

ni(θ) by φi(θ), we have ni(θ) = ⌈φi(θ)⌉, for i ∈ I, where ⌈·⌉ denotes the ceiling of a continuous

variable. In what follows, we consider a general case where φi(θ) is non-linear function of θ. We

adapt to our setting the principle of k-adaptable robust counterpart proposed by Bertsimas and

Caramanis (2010), which covers the uncertainty set with a partition of k pieces, and selects a

contingency plan for each subset.

Firstly, we approximate the function φi(θ) by a set of piecewise linear functions, denote that

set as K. Since the uncertain variable θ is of one-dimension, corresponding to the projection of

these piecewise linear functions, the uncertainty set U is partitioned into |K| disjoint regions:

U = U1∪ ...∪U|K|. Recall that we assume that the observed θ̃ contains small error on estimating

the true value of θ: θ̃ = θ + ϵ with −τ ≤ ϵ ≤ τ . For all θ ∈ Uk, the uncertainty set which

contains the associated θ̃ is denoted as U ′
k(θ). We have the whole set of possible θ̃ values:

U ′(θ) = U ′
1(θ) ∪ ... ∪ U ′

|K|(θ). In order to partition the uncertainty set U ′ into disjoint regions,
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we let the joint part of two adjacent uncertainty sets belong only to the one with smaller indices

value. Mathematically, we denote:

Uk = {θ : |θ − θ̄k| ≤ ρk}, k ∈ K, (4.11)

U ′
k(θ) = {θ̃ : θ̃ = θ + ϵ, θ ∈ Uk,−τ ≤ ϵ ≤ τ} \ U ′

k−1, k ∈ K, (4.12)

where ρk > 0, and the mean value of each partitioned uncertainty set Uk is denoted by θ̄k. θ̄k

increases along with the indices k. In order to better explain the idea, we plot the definition of

the relation between set Uk and U ′
k by Figure 4.6.

 

Increase 
direction 

1U  1'U  

2U  

2'U  

Figure 4.6: Relation between sets Uk and U ′
k

We formulate φi(θ) by the piecewise linear functions approximation:

φi(θ) = φik
1 + φik

2 θ, i ∈ I, θ ∈ Uk, k ∈ K. (4.13)
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The optimal piecewise adaptability problem can be formulated as Equation (4.14)-(4.21).

min
Xj

∑
j∈J

cj Xj +max
k∈K

{ min
Yjk,Zjk

∑
j∈J

dj Yjk −
∑
j∈J

rj Zjk +
∑
i∈I1

uMik +
∑
i∈I2

uM ′
ik} (4.14)

s.t.
∑
j∈J

aijXj +Mik ≥ Nik(θ), i ∈ I1, θ ∈ Uk, k ∈ K, (4.15)

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yjk − Zjk)(θ̃ + τ) +M ′
ik ≥ Nik(θ),

i ∈ I2, θ ∈ Uk, θ̃ ∈ [θ − τ, θ + τ ] ∩ U ′
k(θ), k ∈ K, (4.16)

Nik(θ) ≥ φik
1 + φik

2 θ, i ∈ I, θ ∈ Uk, k ∈ K, (4.17)

Xj ≥ Zjk, j ∈ J, k ∈ K, (4.18)

Mik ≥ 0, i ∈ I1, k ∈ K, (4.19)

M ′
ik ≥ 0, i ∈ I2, k ∈ K, (4.20)

Xj , Yjk, Zjk ∈ Z+, j ∈ J, k ∈ K. (4.21)

In this equation, for each couple of partitioned uncertainty sets (Uk, U
′
k(θ)) with k ∈ K, the

required number of agents are denoted by variable Nik(θ) with i ∈ I, and the total cost is defined

as the sum of the initial shift scheduling salary (which is common for all couples of uncertainty

sets), the recours salary and the agents shortfall penalty. The objective function is to minimize

the worst one among all these total costs. The first-stage decision variables are the initial shift

scheduling Xj , j ∈ J . And for each k ∈ K, a contingency plan (Yjk, Zjk, j ∈ J) is selected.

In the next theorem, we exhibit some properties of Equation (4.14)-(4.21), that are used in

the robust programming formulation.

Theorem 4.2 If there exists a value of θ, denoted by θ̂, for which Ni(θ̂) ≥ Nik(θ) with i ∈ I for

any θ ∈ Uk, k ∈ K, then Equation (4.14)-(4.21) can be simplified as Equation (4.22)-(4.29).

Proof : see Appendix B.3.

Let θ̂ + ϵ denote the observed value of θ̂, which is slightly different from θ̂ and affects the
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second-stage decisions.

min
Xj ,Yj ,Zj

∑
j∈J

cj Xj +
∑
j∈J

dj Yj −
∑
j∈J

rj Zj +
∑
i∈I1

uMi +
∑
i∈I2

uM ′
i (4.22)

s.t.
∑
j∈J

aijXj +Mi ≥ Ni(θ̂), i ∈ I1, (4.23)

Ni(θ̂) ≥ φik
1 + φik

2 θ, i ∈ I, θ ∈ Uk, k ∈ K, (4.24)∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj − Zj)(θ̂ + ϵ+ τ) +M ′
i ≥ Ni(θ̂), i ∈ I2, (4.25)

Xj ≥ Zj , j ∈ J, (4.26)

Mi ≥ 0, i ∈ I1, (4.27)

M ′
i ≥ 0, i ∈ I2, (4.28)

Xj , Yj , Zj , Ni(θ̂) ∈ Z+, j ∈ J, i ∈ I. (4.29)

Similar to Equation (4.10), Problem (4.22)-(4.29) with full adaptive second-stage decisions is

NP-hard. Specially, the second-stage decisions are integers. In what follows, we analysis how to

solve Problem (4.22)-(4.29) efficiently.

In model (4.22)-(4.29), the matrix A′ associated with the adjustable variables is constant,

this is the case of fixed recourse. But the second-stage decisions Yj and Zj are subject to be

integers while the LDR is a continuous function. This ends that LDR can not be applied directly

on the second-stage decision variables Yj and Zj .

In Section 4.4.3, we provide the technique how we relate the discrete second-stage variables

with the LDR. Thanks to the totally unimodular property of the period-shift matrix, the problem

is solved without computational difficulty.

4.4.3 Relating Discrete Seconde-Stage Variables with Affine Adaptability

As mentioned above, a continuous decision rule can not be implemented directly on the discrete

second-stage decision variables Yj and Zj for j ∈ J . We thus propose to implement the decision

rule on a group of auxiliary state variables Qi, i ∈ I2, rather than directly on the second-stage

decision variables. This is the major difference between our method and the traditional AARC

methodology.

Similar to AARC methodology, we define the linear decision rules as

Gik(θ̃) = Gik
1 +Gik

2 (θ̃ + τ), i ∈ I2, k ∈ K. (4.30)

In these linear decision rules, parameters Gik
1 and Gik

2 are to be determined by solving model
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(4.31)-(4.42).

Let the auxiliary integer state variables Qi denote the quantity of staff capacity adjustment

for each period in the late horizon I2. The optimal piecewise linear adaptability problem can be

formulated as follows.

min
Xj ,Yj ,Zj

∑
j∈J

cj Xj +
∑
j∈J

dj Yj −
∑
j∈J

rj Zj +
∑
i∈I1

uMi +
∑
i∈I2

uM ′
i (4.31)

s.t.
∑
j∈J

aijXj +Mi ≥ Ni, i ∈ I1, (4.32)

Ni ≥ φik
1 + φik

2 θ, i ∈ I1, θ ∈ Uk, k ∈ K, (4.33)∑
j∈J

a′ij(Yj − Zj) ≥ Qi, i ∈ I2, (4.34)

Qi ≥ Gik
1 +Gik

2 (θ̃ + τ),

i ∈ I2, k ∈ K, θ ∈ Uk, θ̃ ∈ [θ − τ, θ + τ ] ∩ U ′
k(θ), (4.35)∑

j∈J
aijXj +M ′

i ≥ Oi, i ∈ I2, (4.36)

Oi ≥ φik
1 + φik

2 θ −Gik
1 −Gik

2 (θ̃ + τ),

i ∈ I2, k ∈ K, θ ∈ Uk, θ̃ ∈ [θ − τ, θ + τ ] ∩ U ′
k(θ), (4.37)

Xj ≥ Zj , j ∈ J, (4.38)

Mi ≥ 0, Ni ∈ Z+, i ∈ I1, (4.39)

M ′
i ≥ 0, Qi ∈ Z, Oi ∈ Z+, i ∈ I2, (4.40)

Xj , Yj , Zj ≥ 0, j ∈ J, (4.41)

Gik
1 , G

ik
2 ∈ R, i ∈ I2, k ∈ K. (4.42)

In order to simplify the presentation, in this equation and those follows, we replace Ni(θ) by Ni,

similar omissions are done for all other variables depending on θ and/or θ̃. In this equation, the

first-stage decision variables are the initial shift scheduling Xj , j ∈ J . And for each k ∈ K, the

parameters of a linear decision rule, Gik
1 , G

ik
2 with i ∈ I2, are determined.

The objective (4.31), Constraints (4.32) and (4.33) are similar to (4.22), (4.23) and (4.24),

respectively. Constraints (4.34)-(4.37) replace constraints set (4.25). Constraint (4.34) restricts

that the adding or removing actions should grantee that at least Q+
i agents are added, or at

most Q−
i agents are removed. We use inequality instead of equality constraints in order that

the problem has feasible solutions. For i ∈ I2, Qi are required to be integer, and they are

approximated by the maximum value determined by all decisions rules Gik with k ∈ K, as

shown in Constraint (4.35). The variable Oi in Constraints (4.36)-(4.37) equals to Ni −Qi, for
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i ∈ I2. Constraint (4.38) restricts that the agents removed are less than that assigned initially.

Constraints (4.39)-(4.42) define the non-negative and integer conditions for programs variables.

We underline Constraint (4.41) in which the integer constraints on Xj , Yj , Zj , j ∈ J, are

relaxed to be linear. The reason is that by solving Problem (4.31)-(4.42), the solutions Xj , Yj and

Zj are integer. The explanation is as follows. The feasible region of {Xj , Yj , Zj} is constructed

by Constraints (4.32), (4.34), (4.36), (4.38),

∑
j∈J aijXj +Mi ≥ Ni, i ∈ I1,∑
j∈J a

′
ij(Yj − Zj) ≥ Qi, i ∈ I2,∑

j∈J aijXj +M ′
i ≥ Oi, i ∈ I2,

Xj ≥ Zj , j ∈ J.

Since the matrices are (AI) and A′ are totally unimodular and variables Ni, Qi and Oi are

integer, the results in Appendix B.1 show that the feasible region of {Xj , Yj , Zj} is an integral

polyhedron. Thus the solutions Xj , Yj and Zj are automatically integer. This is the main interest

of our technique which relates discrete seconde-stage variables with affine adaptability.

Similar to the AARC methodology, with the uncertainty set (4.11) and (4.12), the inequality

constraints (4.33), (4.35) and (4.37) are equivalent to

Ni ≥ φik
1 + φik

2 θ̄k + |φik
2 | ρk, i ∈ I1, k ∈ K,

Qi ≥ Gik
1 +Gik

2 (θ̄k + τ) + |Gik
2 | (ρk + τ), i ∈ I2, k ∈ K,

Oi ≥ φik
1 −Gik

1 + (φik
2 −Gik

2 ) θ̄k + |φik
2 −Gik

2 | ρk + τ | −Gik
2 | − τ Gik

2 , i ∈ I2, k ∈ K.

By adding non-negative variables Pik, Rik, i ∈ I2, k ∈ K, Equation(4.31)-(4.42) can be further
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expressed as

min
Xj ,Yj ,Zj

∑
j∈J

cj Xj +
∑
j∈J

dj Yj −
∑
j∈J

rj Zj +
∑
i∈I1

uMi +
∑
i∈I2

uM ′
i (4.43)

s.t.
∑
j∈J

aijXj +Mi ≥ Ni, i ∈ I1, (4.44)

∑
j∈J

a′ij(Yj − Zj) ≥ Qi, i ∈ I2, (4.45)

∑
j∈J

aijXj +M ′
i ≥ Oi, i ∈ I2, (4.46)

Ni ≥ φik
1 + φik

2 θ̄k + |φik
2 | ρk, i ∈ I1, k ∈ K, (4.47)

Qi ≥ Gik
1 +Gik

2 (θ̄k + τ) +Rik (ρk + τ), i ∈ I2, k ∈ K, (4.48)

Oi ≥ φik
1 −Gik

1 + (φik
2 −Gik

2 ) θ̄k − τ Gik
2 + Pik ρk +Rik τ, i ∈ I2, k ∈ K, (4.49)

−Pik ≤ φik
2 −Gik

2 ≤ Pik, i ∈ I2, k ∈ K, (4.50)

−Rik ≤ Gik
2 ≤ Rik, i ∈ I2, k ∈ K, (4.51)

Xj ≥ Zj , j ∈ J, (4.52)

Mi ≥ 0, Ni ∈ Z+, i ∈ I1, (4.53)

M ′
i ≥ 0, Qi ∈ Z, Oi ∈ Z+, i ∈ I2, (4.54)

Xj , Yj , Zj ≥ 0, j ∈ J, (4.55)

Gik
1 , G

ik
2 ∈ R, Pik, Rik ≥ 0, i ∈ I2, k ∈ K. (4.56)

The MIP (4.43)-(4.56) contains |I|+ |I2| integer and 4× |I2| × |K|+ |I|+3× |J | continuous

variables.

Example:

Consider the same structure of call center as described in Section 4.3 (a day with 25 periods

and 162 possible shifts, where the first 5 periods are considered as early horizon), if we parti-

tion the uncertainty set into 11 pieces, this implies to solve a model with 45 integer variables

and 1391 continuous variables. This Equation (4.43)-(4.56) is very well structured. Firstly, the

number of integer variables keeps the same even the shifts number and partitioned sets number

increase. Secondly, and more importantly, the integer constraints are only to find the ceilings of

some continuous values, which is quite a simply requirement. Consequently, the computational

difficulty of solving Equation (4.43)-(4.56) is almost as that of a linear problem.

In conclusion, we consider the two-stage shift scheduling problem, in which both first and

second-stage decisions are discrete variables, and the parameters are not affinely affected by the
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data uncertainty. Firstly, for the non-affine affection of data uncertainty on the parameter func-

tions, we approximate the non-linear function by several piecewise linear functions, equivalently

partition the one dimensional uncertainty set into several pieces, in order to determiner a decision

rule for each sub uncertainty set. Then we propose a method to relate the discrete variables and

the affine decision rule, the approximate MIP has a very good structure thanks to the totally

unimodular property. The approximate problem can be solved with no computational difficulty.

4.5 Numerical Experiments and Results

In this section, we conduct a numerical study in order to evaluate and compare between the

proposed approaches. In Section 4.5.1, we describe the numerical experiments. In Section 4.5.2,

we analyze the results and derive various insights.

4.5.1 Experiments

We describe in this section the data used in the numerical examples first, and then the design of

experiments.

Parameter Values

Inbound calls. In the experiments, we use real data from a Dutch hospital which exhibits

a typical and significant workload time-of-day seasonality. In Figure 4.7, we plot the curve of

the mean arrival rates as a function of the periods of the day. We focus on a particular day,

namely Monday. In solid line, we plot this curve for an average day, and in dashed lines we

plot two examples of not busy and busy days. The mean arrival rate at the beginning and at

the end of the day is quite low. It has a high peak in the late morning and tends to decrease

around the lunch break, but a second lower peak occurs also in the afternoon. Although there is

a significant stochastic variability in the arrival rate from one day to another, there is a strong

seasonal pattern across the periods of a given day. The day starts at 8:00 am, finishes at 8:30

pm, and is divided into n = 25 periods of half hour each. The first 5 periods are considered as

early horizon, and the other periods construct the later horizon.

Without loss of generality, we choose E[Θ] = 1. This leads to fi = E[Λi], and from a one-

year-horizon data we numerically find via a standard statistical analysis, that f1, f2, ..., f25 are

98.8, 148, 200, 226.4, 237.6, 236.4, 242.8, 231.6, 218.8, 219.2, 226.8, 215.6, 216.8, 210, 213.6,

226.8, 232.8, 212, 174.4, 158, 136, 122.4, 102, 92.8 and 74.8 calls per minute, respectively.

Recall that the random variable Θ describes the busyness of the day. We assume that Θ

follows a discretized truncated Gamma probability distribution. From the data, we estimate the
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Figure 4.7: Arrival rate graph

distribution as Gamma(25, 0.04) with mean 1 and variance 0.04. This finishes the characteriza-

tion of the random variable Λi. The mean service time is
1

µ
= 5 minutes. We assume a classical

service level corresponding to the well-known 80/20 rule: the probability that a call waits for

less than 20 seconds has to be larger or equal to 80 percent. Using Condition (2.3), we can

therefore deduce the required number of agents ni during period i. For a given period i, the

relation between ni and θ can be approximated by piecewise linear functions.

Information Update Method. In what follows, we present how the decision-maker uses the

actual call volumes early in a day to get an estimated busyness factor θ̃. First, we follow the work

of Brown et al. (2005), and use the variance-stabilizing transformation for Poisson data. If V

is Poisson(λ), then
√
V + 1

4 has approximately mean
√
λ and variance 1

4 . In addition,
√
V + 1

4

is asymptotically normal (as λ → ∞). Using this approximation and Equation (4.1), we obtain

the following model for a given value of θ:√
Vi +

1

4
=
√
θ fi + εi, with εi ∼ Gaussian((0, 1/4). (4.57)

Next, using the model (4.57), we estimate the busyness factor from the observed call volumes

Vi, i ∈ I1. Operationally, it exist a trade-off between having more information about call volumes

and adjusting the agents capacity earlier in the day. One achieves a better approximation of the

busyness factor by having more collected information, but the decision-maker then has to wait

longer to implement the second-stage decisions. Since it requires many observed periodical call

volumes to estimate θ using the variance of εi, we use its mean instead. Equation (4.57) shows



Numerical Experiments and Results 91

that εi for i ∈ I1 has approximately mean 0. We then have

∑
i∈I1

(√
Vi +

1

4
−
√
θ fi

)
≈ 0, (4.58)

and we get an estimated θ̃ by

θ̃ =

∑i∈I1

√
Vi +

1
4∑

i∈I1
√
fi

2

. (4.59)

As mentioned in Section 4.3, for a given θl (associated with probability pl, l ∈ L), the

decision maker estimates it as θ̃k with probability pbl,k, k ∈ K. The way we obtain the set K

and parameters pbl,k is as follows. Given θl, the call volume Vil is Poisson (λi,l), i ∈ I1. The

probability that a particular combination of early periods call volumes occurs, is pl multiples

the product of the poisson probabilities of these call volumes. We calculate the estimated θ̃

associated as explained above. The sum of the probabilities associated with combinations which

lead to the given θ̃k, is defined as probability pbl,k. Set K assembles all possible values of θ̃k. We

find that for a given θl, its estimated value falls highly probably not far from its own value.

Cost parameters. Agents work between 7 with 18 half-hour periods a day, without intermediate

break. A shift can start at the beginning of any period, while guaranteeing the length of between

7 with 18 half-hour periods before the day ends. Enumeration shows that there are 162 feasible

schedules.

We define the shifts with a length less than 11 half-hour periods as part-time shifts, and

the others as full-time shifts. Without loss of generality, we use a normalized cost of 1 for each

half-hour an agent works at regular full time shifts. In order to avoid that first-stage decisions

Xj , j ∈ J takes too many part-time agents which are usually less professional, we defined the

regular part time shifts unit cost as 1.1 per half-hour. Therefore cj =
∑

i∈I aij for full-time

shifts and cj = 1.1
∑

i∈I aij for part-time ones. The temporarily added shift should be payed

more expensively than the regular one, we then define dj = 1.2×
∑

i∈I a
′
ij . Removing an agent

from shift j makes some cost saving, but this cost saving should be less than cj . We choose

rj = 0.5 ×
∑

i∈I a
′
ij . The value of under-staffing penalty parameter is taken as u = 25, which

is chosen via successive trials/corrections based on stochastic two-stage recourse programming

approach (SRA), and estimates that the optimal solution of SRA leads to about 3% under-

staffing. This way of choosing of under-staffing penalty value u is similar to that in Liao et al.

(2010).
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Design of the Experiments

Lower bound. As a lower bound solution, we consider a perfect information model (PI )

for which the value of θ, the actual workload, consequently the required agents number ni, is

assumed to be known before the optimization step of the variable Xj , Yj , Zj , j ∈ J . For each

sample θs, s ∈ S, with S as the set of samples, we solve the problem (4.60) in order to get

the optimal value of Xsj , Ysj , Zsj , j ∈ J and its associated total cost. The computation of the

corresponding average total cost is then straightforward.

Min
∑
j∈J

cj Xsj +
∑
j∈J

dj Ysj −
∑
j∈J

rj Zsj +
∑
i∈I

uMis

s.t.
∑
j∈J

aijXsj +Mis ≥ ni(θs fi), i ∈ I1, (4.60)

∑
j∈J

aijXsj +
∑
j∈J

a′ij(Ysj − Zsj) +Mis ≥ ni(θs fi), i ∈ I2,

Xsj ≥ Zsj , j ∈ J,

Xsj , Ysj , Zsj ∈ Z+, j ∈ J,

Mis ≥ 0, i ∈ I.

Benchmark1. As an initial benchmark, we consider the simple approach based on the expected

value of the random variable Θ, referred to as average based deterministic approximation, denoted

by DA. In this case, Λi reduces to the single value E[Θ] fi. The required number of agents to

handle the calls of period i is ni(E[Θ] fi). The optimization problem can be then formulated as:

Min
∑
j∈J

cj Xj +
∑
j∈J

dj Yj −
∑
j∈J

rj Zj +
∑
i∈I

uMi

s.t.
∑
j∈J

aijXj +Mi ≥ ni(E[Θ] fi), i ∈ I1, (4.61)

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj − Zj) +Mi ≥ ni(E[Θ] fi), i ∈ I2,

Xj ≥ Zj , j ∈ J,

Xj , Yj , Zj ∈ Z+, j ∈ J,

Mi ≥ 0, i ∈ I.

Benchmark2. Another benchmark we consider is the approach where the decision maker takes

into account of the randomness of variable Θ, but the second-stage variables have no dependence

on θ̃, referred to as static one-stage stochastic approximation. The static one-stage stochastic

optimization problem (4.62) is built on the discrete probability distributions characterizing Θ.
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The difference between (4.7) and (4.62) is that in the latter all decisions variables Xj , Yj , Zj , j ∈ J

are decided before the day begins.

Min
∑
j∈J

(cj Xj + dj Yj − rj Zj) +
∑
l∈L

∑
i∈I

pl uMi,l

s.t.
∑
j∈J

aijXj +Mi,l ≥ ni,l i ∈ I1, l ∈ L, (4.62)

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj − Zj) +Mi,l ≥ ni,l, i ∈ I2, l ∈ L

Xj ≥ Zj , j ∈ J,

Mi,l ≥ 0, i ∈ I, l ∈ L,

Xj , Yj , Zj ∈ Z+, j ∈ J.

The relaxed linear programs of all MIPs (4.60), (4.61) and (4.62) are integral (see Appendix

B.1). We thus relax these MIPs and solve linear problems.

Additional Notations. We compute the optimal staffing levels given by the average based

deterministic approximation (DA), the static one-stage stochastic programming approach (SSA),

the stochastic two-stage recourse programming approach (SRA) and piecewise linear adjustable

robust approach(ARA). For the piecewise linear adjustable robust approach, we partitioned the

uncertainty set U = {θ : 0.3 ≤ θ ≤ 1.4} into 11 uncertainty set with harmonious size. Then we

have Uk = {θ : |θ− 0.1 ∗ (k+ 2.5)| ≤ 0.05}, for k = 1, ..., 11. The corresponding uncertainty sets

for θ̃ are defined as in (4.12), and the value of τ is determined to be 0.01.

Optimal policy performance simulations. In order to estimated the cost criterion associated

with the different policies, 10000 samples values are randomly generated as outcomes of Θ. For

each sample, the arrival rates and the required numbers of agents of the 25 periods are calculated

using the sample value θs, s ∈ S. And the call volumes of the first five periods Vi(i = 1, .., 5),

are randomly given around the corresponding mean arrival rates. The estimated θ̃ is calculated

based on these call volumes.

In order to evaluate the stochastic two-stage recourse programming, the decision-maker im-

plements the initial scheduling decisions and choose the second-stage decisions from its recourse

actions set according to the estimated θ̃. Similarly, in order to evaluate the adjustable robust

approach, the initial scheduling decisions are implemented first, and if θ̃ falls in the uncertainty

set k̂, then the decision maker get the capacity adjustment value Gik̂, i ∈ I2 according to de-

cision rule (4.30), with parameters determined by (4.43)-(4.56). Since the uncertainty set we

considered may not cover all possible values of θ̃, in this case, we apply the decision rule of the

sub uncertainty set which is the most close to θ̃. A simple transforms is need to get the recours
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actions Yj , Zj :

Min
∑
i∈I2

Gapi

Gapi ≥
∑
j∈J

a′ij(Yj − Zj)−Qi, i ∈ I2,

Qi ≥ Gik̂
1 +Gik̂

2 (θ̃ + τ), i ∈ I2 (4.63)

Gapi ≥ 0, Qi ∈ Z, i ∈ I2,

Yj , Zj ≥ 0, j ∈ J.

The optimal solutions of the two benchmark approaches are implemented directly. The

average total cost, probability of under-staffing and computing time associated with all the

approaches are reported in the next section.

4.5.2 Insights

In this section, we comment on the numerical results and derive the main insights. First, we

report the computing time of each solution approach. Second,we compare the average total costs

and under-staffing probabilities between the approaches. We show the necessity of explicitly

taking into account the uncertainty in the call arrival parameters. And the advantage of the

flexibility provided by information update is also analyzed.

Computing time report

For the SRA and SSA, We discretize Gamma distribution to 200 scenarios. The set K contains 21

scenarios for SRA. And for ARA, the considered uncertainty sets are partitioned into 11 pieces.

The size of the problems and their computing time are reported in Table 4.1. The computations

have been performed using Cplex on an Intel Core Duo CPU 1.20 Ghz with 0.99 GBytes RAM.

Table 4.1: Computing time and problem size

Approache Computing time (Sec.) variable numbers
total time/ solving time

SRA 194s/72.80 s 91 966 continous
ARA 0.17s/0.03 s 45 integers, 1391 continous
SSA 1.48s/0.84 s 5 486continous
DA 0.17s/0.02s 511 continous

It is shown that both the large size LP of SRA and MIP of ARA require very little time to be
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solved. This is one of the most important contributions in this chapter. We construct the model

of a two-stage call center staffing-scheduling recourse problem, of which the solving process is

supposed to be quite time consuming, but we solve it very efficiently by two approaches.

Cost Comparison

Table 4.2 displays for each approach (SRA, ARA, SSA, DA and PI), the average total cost, the

average values of the three components of the total cost, the standard deviations (Std.) of the

total cost, the update cost and the under-staffing cost. At the end of each line, the under-staffing

probability is given. The PI solution is clearly the ultimate lower bound on the minimal cost of

all the other solution method.

Table 4.2: Θ ∼ Gamma(25,0.04)

Approach Total Cost Regular Update cost Under-staff. cost Under-staff.
Average Std. salary Average Std. Average Std. probability

PI 24844.60 4869.61 24844.6 0.00 0.00 0.00 0.00 0.00%
SRA 30534.32 6483.75 27007.4 2939.10 3930.04 587.82 3556.61 0.87%
ARA 37013.14 19529.28 34519.3 683.92 168.92 1809.92 19525.48 3.02%
SSA 36335.84 16908.21 33801.6 57.60 0.00 2476.64 16908.21 3.89%
DA 72813.81 75804.59 24860.4 0.00 0.00 47953.41 75804.59 47.01%

We can see that SRA for which the probability distribution is available, performs better than

ARA in terms of the average total cost, the total cost standard deviation and the probability of

under-staffing. We underline here that if no reliable knowledge of the probability distributions of

the uncertain parameter is available, it is reasonable to apply methods such as the ARA to use

a min-max objective function. Otherwise, SRA may be more appropriate and will result better

on average total cost, and even on other criteria.

The main idea of the (adjustable) robust approach is that it allows an adjustment of the level

of robustness of the solution in order to trade off between performance and protection against

uncertainty ( see Bertsimas et al. (2004)). The key point in line with practical efficiency of robust

programs consists of the design of the uncertainty sets. In addition, for the adjustable robust

approach, Ben-Tal et al. (2005) argue that there is no guarantee that the optimal solution is close

to a linear decision rule, although AARC proposes the decision rule to be linear. We declare a

similar property for the ARA in this chapter.

Comparing the two approaches SRA and SSA for both of which the information of probability

distribution is available, we can see that the SSA has larger average total cost and bigger under-

staffing probability than that of SRA, this emphasizes the advantage of adding the update
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flexibility.

The gaps between DA and other approaches on average total cost, total cost standard deriva-

tion and under-staffing probability are quite large. It is thus very important to take into account

the effect of data uncertainties and develop better solution approaches.

4.6 Conclusion

We have developed a multi-shift call center model allowing a real-time staff capacity adjustment.

We focused on optimizing the initial staffing level and the real-time adjustable policy w.r.t. the

total operating cost of the call center.

We modeled this problem as a cost optimization-based two-stage model. We then proposed

two approaches to solve it numerically: a stochastic two-stage recourse programming approach

and an adjustable robust programming approach. These two approaches can both solve the mixed

integer problem of large size without computational difficulties. We next conducted a numerical

study in order to evaluate the performance of each approach and gain useful insights. First,

computing time and problem sizes illustrate the efficiency of the approaches we proposed. Second,

by comparing the average total cost and under-staffing probability between these two approaches,

the static one-stage stochastic approach and the average based deterministic approximation, we

underlined the advantage of adding the update flexibility and the necessity of taking into account

the uncertainty in the call demand parameters.

This chapter consider only the case where the shifts are without breaks. One extension of

this work is to take our results as the fist step, and place breaks within shifts using heuristical

methods.



Chapter 5

Multi-shift Staffing Problem with

Distributionally Robust Optimization

This chapter continues to deal with the call center scheduling aims to set-up the

workforce so as to meet target service levels, in a multi-periodic multi-shift setting.

The service level depends on the mean rate of arrival calls, which fluctuates during

the day and from day to day. The staff scheduling must adjust the workforce period

per period during the day, but the flexibility in so doing is limited by the workforce

organization by shifts. The challenge is to balance salary costs and possible failures

to meet service levels. We consider uncertain arrival rates, that vary according to

an intra-day seasonality and a global busyness factor. Both factors (seasonal and

global) are estimated from past data and are subject to errors. We propose an

approach combining stochastic programming and distributionally robust optimization

to minimize the total salary costs under service level constraints. The performance

of the robust solution is simulated via Monte-Carlo techniques and compared to the

pure stochastic programming.

97
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5.1 Introduction

In this chapter, we continue to allow the mean arrival rate of calls to be uncertain and to follow

some periodical fluctuation pattern. We model the arrival process of calls by a doubly non-

stationary stochastic process, with random mean arrival rates which are related to a random

parameter called busyness factor of the day. In each period, one can estimate the theoretical

number of agents required to efficiently handle the inbound calls. The assigned agents number

is allowed to be less than that required (under-staffing), but the total expect under-staffing in

the whole day should not exceed a certain limit. The staff-scheduling problem is modeled as a

cost optimization-based model with constraints. The cost criterion function is the agents salary

cost. Our objective is to find the optimal shift scheduling which minimizes the salary cost under

condition of respecting the total expect under-staffing limit.

There are many different approaches to modeling uncertainty in the context of such opti-

mization problem. The traditional way to take into account the parameters uncertainty is using

stochastic programming techniques, which minimizes the expected cost by assuming that the

parameters obey a known probability distribution (see Birge and Louveaux (1997); Ruszczynski

and Shapiro (2003); Shapiro et al. (2009)). Even though this can give us a complete picture of

randomness, as a typical critique of stochastic approaches, the exact probability distributions

are however often unknown in practice and can be computationally unwieldy (see Shapiro and

Nemirovski (2005)). In contrast with this stochastic programming framework which explicitly

incorporates a probability description of the uncertainty, robust optimization models uncertain

parameters using uncertainty sets. The objective is then to minimize the worst-case cost in that

sets. For a summary of the state-of- the-art in robust optimization, the reader is referred to Ben-

Tal et al. (2009). Robust programming based formulations are often computationally tractable

even for large-scale problems. The main disadvantage of the robust programming is that the solu-

tion tends to be conservative, since the approach fundamentally implements a worst-case analysis

in some given uncertainty set. As a consequence, the uncertainty sets used in the formulations

have to be carefully designed in order to solve efficiently the trade off between performance and

protection against uncertainty (see for instance Bertsimas and Sim (2004); Bertsimas and Brown

(2009)).

It is then natural to consider an approach which bridges the gap between the conservatism of

robust optimization and the specificity of stochastic programming. This approach optimizes the

worst-case expected objective function over a family of possible probability distributions. This

class of min-max stochastic optimization problems is known as distributionally robust. Pioneering

papers along this line are Scarf (1958), with a closed form solution for a distributionally robust
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newsvendor model, and Dupačová (1987); Žáčková (1966) who considered general distributionally

robust stochastic linear programs.

A key issue in this approach is the structure of the family of possible probability distributions.

In a first stream of research, the possible distributions are described only using properties such as

their support and/or moments Bertsimas et al. (2010b); Calafiore and El Ghaoui (2006); Delage

and Ye (2010); El Ghaoui et al. (2003); Natarajan et al. (2010).

Under situations when samples data of the uncertainty are available, it is however a pity to

ignore full information of sample data but to use only part of available information to describe

the family of possible distributions. In this chapter, we fully exploits the sample data, and

consider a set of discrete probability distributions within a given range from the observed sample

distribution. The most similar work to ours is Wang et al. (2009), in which they authors construct

a model to minimizes the worst case cost under the set of all distributions that maintain a certain

level of likelihood of the observed data.

For each structure of family of probability distributions, the corresponding min-max optimiza-

tion models potentially exhibit specific linearity/convexity properties and associated complexity.

As a consequence various solution methodologies and algorithms have been developed (see for

instance Bertsimas et al. (2010b); Breton and El Hachem (1995); Calafiore and El Ghaoui (2006);

Delage and Ye (2010); Erdogan and Iyengar (2006); El Ghaoui et al. (2003); Natarajan et al.

(2010); Riis and Andersen (2005); Shapiro and Kleywegt (2002); Shapiro and Ahmed (2004)).

The rest of the chapter is structured as follows. In Section 5.2, we describe the call center

model under consideration and formulate the associated staff-scheduling problem. The classic

stochastic programming model of this problem is given. In Section 5.3, we introduce the distri-

butionally robust model of the staff-scheduling problem. In Section 5.4, we conduct a numerical

study to evaluate these alternative formulations. We exhibit the impact of the uncertainty of the

distributional probability.

5.2 Problem Formulation

We consider a call center with a single type of inbound calls in a multi-period multi-shift setting.

The service level depends on the current workforce (number of servers) and of the inbound call

arrival process. The latter is of the Poisson type; it essentially depends on the mean arrival rate,

which vary during the day and according to the random busyness of the day. To account for

these variations, Liao et al. (2010) proposed a stochastic programming formulation of the single

shift problem. We present here a closely related formulation with an extension to the multi-shift

problem. A main difference with the paper quoted above concerns the handling of understaffing.
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In the present chapter, we put the constraint that understaffing does not exceed a fraction of the

required staff, while in Liao et al. (2010) understaffing was simply part of the objective with a

penalty factor.

5.2.1 The Inbound Call Arrival Process

As described in Chapter 2, several characteristics of the arrival process of calls have been under-

lined in the recent call centers literature. First, it has been observed that the total daily number

of calls has an over-dispersion relative to the classical Poisson distribution. Second, the mean

arrival rate considerably varies with the time of day. Third, there is a strong positive correlation

between arrival counts during the different periods of the same day.

In order to address uncertain and time-varying mean arrival rates coupled with significant

correlations, we model the inbound call arrival process by a doubly stochastic Poisson process

(see Avramidis et al. (2004); Harrison and Zeevi (2005); Whitt (1999)) as follows. We assume

that a given working day is divided into n distinct periods of equal length T , so that the overall

horizon is of length nT . The period length is 15 or 30 minutes in practice.

The inbound calls arrive following a stochastic process with a random arrival rate in each

period i, denoted by Λi. Furthermore, using the modeling in Avramidis et al. (2004); Whitt

(1999), we assume that the arrival rate Λi is of the form

Λi = Θfi, for i = 1, ..., n, (5.1)

where Θ is a positive real-valued random variable. The random variable Θ can be interpreted

as the unpredictable level of busyness of a day. A large (small) outcome of Θ corresponds to

a busy (not busy) day. The constants fi model the intra-day seasonality, i.e. the shape of the

variation of the arrival rate intensity across the periods of the day, and they are assumed to be

known. Formally, if a sample value in a given day of the random variable Θ is denoted by θ, the

corresponding outcome of the arrival rate over period i for that day is defined by λi = θfi.

We assume that service times for inbound calls are independent and exponentially distributed

with rate µ. The calls arrive to a single infinite queue working under the the first come, first

served (FCFS) discipline of service. Neither abandonment nor retrials are allowed. The staffing

level which guarantees the required service level is then computed by

ni(θ fi) = F−1
θ fi

(SLi). (5.2)

with the function F defined by Equation (2.3).
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5.2.2 Shifts Setting

We denote the period sets of the day by I. Let J be the set of all the feasible work schedules,

each of which dictates if an agent answers calls in period i ∈ I. For i ∈ I and j ∈ J , we define

the |I| × |J | matrix A = [aij ], where

aij =

 1, if agents in schedule j answer calls during period i,

0, otherwise.

We furthermore assume that each agent works during consecutive periods, without breaks. Under

this assumption, it is direct to see that every column of both matrix A has contiguous ones and

this kind of matrix is totally unimodular, i.e., for any integral vector b, every extreme point of

the feasible region {x | Ax ≥ b} is integral and thus the feasible region is an integral polyhedron.

5.2.3 Stochastic Programming Models for An Optimal Staffing

Model with seasonality factors f known with certainty

We assume first that the fi are certain and that Θ follows a discrete probability distribution,

defined by the sequence of outcomes θl, l ∈ L with L as the set of outcomes set. The assumed

probability distribution is presented by ql, with constraint
∑
l∈L

ql = 1, ql ≥ 0. For period i ∈ I,

the parameters Nil = F−1
i,θlfi

(SLi), estimated via (5.2), represent the required number of agents

in period i associated with a particular busyness factor value θl.

Let xj , j ∈ J , be the decision variables representing the numbers of agents assigned to the

various schedules implemented before the start of the day. Each agent assigned to shift j gets

a salary cj for the day. In order to optimize the call center operational cost, Liao et al. (2010)

proposed the following stochastic programming model

min
∑
j∈J

cjxj

s.t.
∑
l∈L

∑
i∈I

qlMil ≤ M̄∑
j∈J

aijxj +Mil ≥ Nil, i ∈ I, l ∈ L

xj ∈ Z+, j ∈ J

Mil ≥ 0, i ∈ I, l ∈ L.

(5.3)

The objective of Problem (5.3) is to minimize the agents salary cost. The variables Mil represent

the amount of under-staffing at period i in event l. The first constraint states that the total
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expected under-staffing should not exceed the prescribed limit M̄ . The second constraint bounds

from below the understaffing amount at each period of day and for each level of the busyness

factor. When the first constraint on the expected understaffing is active at the optimum, the

second constraint will also be active and is equivalent to defining the understaffing as Mil =

max{0, Nil −
∑

j∈J aijxj}. The last two sets of constraint defines the non-negativity and integer

conditions for program variables.

It is possible to take advantage of the totally unimodular structure of matrix A = (aij) and

make Problem (5.3) computationally much easier by adding auxiliary variables (yi ∈ Z+, i ∈

I) to represent the available work force
∑
aijxj . Indeed, the variable x appears in equation∑

aijxj = yi and in the objective, but nowhere else. Hence, the integrality condition on y is

sufficient to enforce integrality of the x in any solution produced by the Simplex algorithm. The

new formulation is
min

∑
j∈J

cjxj

s.t.
∑
l∈L

∑
i∈I

qlMil ≤ M̄∑
j∈J

aijxj = yi, i ∈ I

yi +Mil ≥ Nil, i ∈ I, l ∈ L

yi ∈ Z+, i ∈ I

xj ≥ 0, j ∈ J

Mil ≥ 0, i ∈ I, l ∈ L.

(5.4)

Clearly, Problem (5.4) is equivalent of Problem (5.3). Notice that the integer constraints on

xj are relaxed, Problem (5.4) contains |I| integer variables and |J |+ |I|×|L| continuous variables

while Problem (5.3) contains |J | integer variables and |I|× |L| continuous variables. The integer

constraints in Problem (5.4) are only to find the ceilings of some continuous values, they are thus

less computationally consuming than that in Problem (5.3).

Model with uncertain seasonality factors f

The seasonality factors may not be known with certainty. Their value is usually estimated

through some statistical scheme, and their true value may differ from the estimated one. The

difference between the true fi and its estimator is taken to be a white noise ϵi in period i :

fi = f̂i + ϵi.
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We assume that θ and the noises ϵi are independent. The theoretical staff size that is required to

meet the desired service level in period i also depends on the random noise ϵi. We now replace

the continuous distribution of the ϵi by a discrete one, or equivalently a discrete distribution of

the fi. Let fik, k ∈ Ki be the set of discrete values and let πik, with
∑

k∈Ki
πik = 1, be the

associated probabilities. For period i ∈ I, the parameters Nikl = F−1
i,θlfik

(SLi), estimated via

(5.2), represent the required number of agents associated with a particular busyness factor value

θl and seasonality factor fik. We can now formulate an extension of the base model of Liao et al.

(2010) to account for the stochastic variability of the seasonality factors fi:

min
∑
j∈J

cjxj

s.t.
∑
l∈L

ql
∑
i∈I

∑
k∈Ki

πikMikl ≤ M̄∑
j∈J

aijxj = yi, i ∈ I

yi +Mikl ≥ Nikl, i ∈ I, k ∈ Ki, l ∈ L

yi ∈ Z+, i ∈ I

xj ≥ 0, j ∈ J

Mikl ≥ 0, i ∈ I, k ∈ Ki, l ∈ L.

(5.5)

5.3 Distributionally Robust Model

In the above stochastic programming formulation, the true distribution of θ was assumed to be

known, and as a consequence the different constraints of the models are satisfied for any outcome

θl associated with this distribution.

At the end of the previous section we proposed an extension of Liao et al. (2010) to account for

the stochastic variability of the seasonality factors. We now turn our attention to the busyness

factor θ. The same argument as for the seasonality factors holds concerning the imperfect

knowledge on the true distribution of θ. To make the solutions of models (5.4) and/or (5.5)

robust with respect to this imperfect knowledge, we substitute to the estimated probabilities

of the busyness values θ a family of alternative probabilities distributions compatible with the

observed values of θ. The distributionally robust solution is such that it solves the stochastic

programming staffing problem against the worst probability distribution in the class of alternative

distributions for θ.

A standard question in such an approach is size of the probability distribution set. It is well

known that too large sets, i.e., in our case, sets including all potential probability distributions,
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can be extremely conservative in the sense that the robust solution has an objective function

value much worse than the objective function value of the solution of the nominal distribution.

It is thus necessary to consider partial uncertainty sets, in the sense that some potential

distributions are not included. The idea consists then of introducing, by tuning the size of

the uncertainty set, efficient tradeoffs between the probability of constraint violation and the

objective function value. Our approach allows thus the modeler to vary the level of conservatism

of the robust solutions in terms of probabilistic bounds of constraint violations. Clearly, in such

a process, theoretical bounds linking uncertain sets size and constraints violation probabilities

are required.

5.3.1 Uncertainty Set Based on A Statistical Dispersion Model

The true probability distribution of the random factor Θ is not known. It must be estimated by

some statistical mean. For instance, we can imagine that a set (θ̂1, . . . , θ̂N ) of historical data is

available. The maximum likelihood estimator of the true probability pl is the observed frequency

ql = nl/N . Moreover, the classical Pearson’s test of goodness of fit is based on the quantity

X2 =
∑
l

(nl −Npl)
2

Npl
=
∑
l

N
(ql − pl)

2

pl
.

Asymptotically X2 follows a χ2 distribution with |L| − 1 degrees of freedom. This asymptotic

distribution probability makes it possible to define a first confidence region around q for the true

probability p. To this end, we define the dispersion measure
∑

lN
(ql−pl)

2

ql
and introduce the set

of alternative probabilities

Hα = {p ≥ 0 :
∑
l

N
(ql − pl)

2

ql
≤ α,

∑
l

pl = 1} (5.6)

that are somehow compatible with the observed frequencies ql.

The goal of the present analysis would be to incorporate this formulation into the stochastic

programming formulation (5.3). Namely, we shall try to solve (5.3) for the worst possible dis-

tribution of p in the confidence region (5.6). The formal implementation of this idea consists of

replacing the constraint
∑

l∈L
∑

i∈I qlMil ≤ M̄ in (5.3) with its robust counterpart

∑
l∈L

∑
i∈I

plMil ≤ M̄, for all p ∈ Hα. (5.7)
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Note that (5.7) is equivalent to

max
p∈Hα

{∑
l∈L

∑
i∈I

plMil

}
≤ M̄.

However, it can be shown that this infinite dimensional robust counterpart has an equivalent

formulation as a conic quadratic constraint. Due to the presence of integer variables x, the

equivalent robust counterpart leads to a nonlinear mixed integer problem, possibly a difficult

one to solve. We shall not use this test in our analysis, but we shall be inspired by it to define

a kind of confidence level set for the true probability p. We shall see that we can replace (5.7)

by a more restrictive constraint that is equivalent to a set of linear inequalities. In this way we

remain in the realm of linear programming with integer variables.

In order to remain in the realm of mixed integer linear programming for which powerful

commercial solvers exist, we shall replace the maximization over the confidence region Hα, by

the maximization over a larger, but linear, set

Pβ = {p ≥ 0 :
∑
l∈L

pl = 1,
∑
l∈L

|pl − ql|√
q
l

≤ β}. (5.8)

The larger β, the larger the admissible dispersion and the higher is the protection against the

unfavorable probability distributions. Clearly, in order to be coherent with (5.6), the set size

factor β has to be chosen to enforce Hα ⊂ Pβ . From the simple inequality on norms, we have

for any θ ∈ R|L| ∑
l∈L

|θl| ≤
√

|L|
√∑

l∈L
θ2l .

It follows that for βα =
√
|L|
√
α/N the set Pβα contains the set Hα. Therefore, one has

βα =
√

|L|
√
α

N
⇒ Hα ⊂ Pβα .

Hence

max
p∈Hα

{∑
l∈L

∑
i∈I

plMil

}
≤ max

p∈Pβα

{∑
l∈L

∑
i∈I

plMil

}

and (5.8) implies (5.7). Let us now derive the equivalent counterpart of (5.8). Let

F = max
p∈Pβ

∑
l∈L

pl
∑
i∈I

Mil

= max
p

{
∑
l∈L

pl
∑
i∈I

Mil :
∑
l∈L

|pl − ql|√
ql

≤ β,
∑
l∈L

pl = 1, pl ≥ 0,∀l ∈ L} (5.9)
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We shall now explicit problem (5.9) as a linear programming problem. Define the new variables

δl = pl − ql,

the problem becomes

max
δ

∑
l∈L

ql
∑
i∈I

Mil +
∑
l∈L

∑
i∈I

Milδl

s.t.
∑
i∈L

|δl|√
ql

≤ β (5.10)∑
l∈L

δl = 0

δl ≥ −ql, l ∈ L.

We consider the dual of Problem (5.10),

min
v,w,z

∑
l∈L

ql
∑
i∈I

Mil +
∑
l∈L

qlwl + βz

s.t. z ≥ √
ql

[∑
i∈I

Mil + v + wl

]
, l ∈ L (5.11)

z ≥ −√
ql

[∑
i∈I

Mil + v + wl

]
, l ∈ L

wl ≥ 0, l ∈ L.

By strong duality, since Problem (5.10) is feasible and bounded, then the dual Problem (5.11) is

also feasible and bounded and their objective values coincide.

Back to the global formulation of the staffing problem with uncertain busyness daily factors,

we obtain the following mixed integer linear programming problem in the original variables
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(x,M) and the auxiliary variables (v, w, z)

min
∑
j∈J

cjxj

s.t.
∑

l∈L ql(
∑

i∈I Mil) +
∑

l∈L qlwl + βz ≤ M̄

−z ≤ √
ql

[∑
i∈I

Mil + v + wl

]
≤ z, ∀l ∈ L∑

j∈J
aijxj +Mil ≥ Nil, i ∈ I, l ∈ L

xj ∈ Z+, j ∈ J

Mil ≥ 0, i ∈ I, l ∈ L

wl ≥ 0, l ∈ L.

(5.12)

Problem (5.12) is the equivalent robust counterpart of the robust version of Problem (5.3)

with uncertainty set (5.8) for the underlying business factor probability distribution. It is worth

elaborating on the first constraint in Problem (5.12). The first term on the left-hand side is the

expected under-staffing taken with respect to the reference, or nominal, probability distribution

q. The other two components are safety factors the extra under-staffing that could occur when

the true probability distribution is the worst possible in the uncertainty set. Note that the safety

term βz is proportional to the immunization factor β. The larger β, the larger the admissible

dispersion and the higher is the protection against the risk of incurring an extra under-staffing

if the distance between the true distribution p and the nominal distribution q increases.

Similar to that we proposed in Problem (5.4), a possible way to make Problem (5.12) easier

to be solved is to add some auxiliary variables (yi ∈ Z+, i ∈ I), Problem (5.12) can then be
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reformulated as
min

∑
j∈J

cjxj

s.t.
∑
l∈L

∑
i∈I

qlMil +
∑
l∈L

qlwl + βz ≤ M̄

−z ≤ √
ql

[∑
i∈I

Mil + v + wl

]
≤ z, ∀l ∈ L∑

j∈J
aijxj = yi, i ∈ I

yi +Mil ≥ Nil, i ∈ I, l ∈ L

yi ∈ Z+, i ∈ I

xj ≥ 0, j ∈ J

Mil ≥ 0, i ∈ I, l ∈ L

wl ≥ 0, l ∈ L.

(5.13)

Problem (5.13) is equivalent to Problem (5.12). Notice that the integer constraints on xj are

relaxed, since yi are restricted to be integers, thanks to the total unimodularity property of

matrix A, xj are automatically integers. Problem (5.13) contains |I| integer variables and |J |+

|I| × |L| + |L| + 2 continuous variables while Problem (5.12) contains |J | integer variables and

|I| × |L|+ |L|+ 2 continuous variables.

Model (5.13) is easily extended to the case with uncertain seasonality factors as it was done

in Section 5.2.3. The equivalent robust counterpart is then

min
∑
j∈J

cjxj

s.t.
∑
l∈L

∑
i∈I

ql
∑
k∈Ki

πikMikl +
∑
l∈L

qlwl + βz ≤ M̄

−z ≤ √
ql

∑
i∈I

∑
k∈Ki

πikMikl + v + wl

 ≤ z, ∀l ∈ L

∑
j∈J

aijxj = yi, i ∈ I

yi +Mikl ≥ Nikl, i ∈ I, k ∈ Ki, l ∈ L

yi ∈ Z+, i ∈ I

xj ≥ 0, j ∈ J

Mikl ≥ 0, i ∈ I, k ∈ Ki, l ∈ L

wl ≥ 0, l ∈ L.

(5.14)
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5.3.2 Standard Uncertainty Set: An Alternative Formulation

A statistical dispersion measure, like Pearson’s, is a sensible choice for the design of an efficient

uncertainty set. Unfortunately, it does not seem possible, via such a measure, to compute a

reasonable estimate of the probability that the robust solution satisfies the uncertain constraint.

In this subsection, we propose an alternative uncertainty set formulation enabling such calculation

for constraint violation probability. The derivation is based on the equivalence
∑

l∈L plMl ≤ M̄∑
l∈L pl = 1, p ≥ 0

⇔


∑

l∈L p
′
l(Ml − M̄) ≤ 0

p′ ≥ 0,
(5.15)

which holds in the following sense: if the left part holds for some p, the right part holds for

p′ = p; if the right part holds for p′ ̸= 0, the left part holds for p = p′/
∑

l∈L p
′
l). This naturally

leads to the following uncertainty model


p′l = ql(1 + ξl), ∀l ∈ L

ξl ∈ [−1, 1], ∀l ∈ L

p = p′/
∑

l∈L p
′
l.

(5.16)

The definition is meaningful if maxl∈L ql ≤ 0.5 and p′l ̸= 0. A sufficient condition for the latter

is ξl > −1 for all l ∈ L.

With this model of probability, the condition on the uncertain constraint (5.15) becomes

∑
l∈L

p′l(Ml − M̄) =
∑
l∈L

ql(Ml − M̄) +
∑
l∈L

ξlql(Ml − M̄) ≤ 0.

Define the uncertainty set

Ξ = {ξ : ||ξ||∞ ≤ 1, ||ξ||2 ≤ k}.

The robust counterpart of the uncertain constraint is thus

∑
l∈L

qlMl +
∑
l∈L

ξlql(Ml − M̄) ≤ M̄, ∀ξ ∈ Ξ.

The equivalent robust counterpart (see Babonneau et al. (2010)) is the inequality

∑
i∈I

qlMl + k||Q(M − M̄) + w||2 + ||w||1 ≤ M̄, for some u, (5.17)

where Q is a diagonal matrix with main diagonal (ql)l∈L.
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The bound on the probability of constraint satisfaction is given by the following theorem (see

Ben-Tal et al. (2009))

Theorem 5.1 Assume ξl, l ∈ L are independent random variables with range [−1, 1] and com-

mon expectation E(ξl) = 0. Then, for any z ∈ R|L|

Prob(
∑
l∈L

zlξl ≥ k||z||2) ≤ e−
k2

2 .

The theorem directly applies to a formulation with the ellipsoidal uncertainty set {ξ : ||ξ||2 ≤

k}. Because the theorem holds under the hypothesis ||ξ||∞ ≤ 1, we can replace the ellipsoidal

uncertainty set by Ξ, which is the intersection of the two balls in the l2 and l∞ norms. We thus

have

Corollary 5.1 Assume ξl, l ∈ L are independent random variables with range [−1, 1] and com-

mon expectation E(ξl) = 0. Then for any solution to the equivalent robust counterpart (5.17)

Prob(
∑
l∈L

plMl ≥ M̄) ≤ e−
k2

2 .

Because our problem involves integer variables, it is computationally more efficient (for the

time being) to replace the ellipsoidal uncertainty set by on in the l1-norm. Because the following

inequalities hold for any a ∈ R|L|

1√
|L|

||a||1 ≤ ||a||2 ≤
√

|L|||a||∞

we can replace Ξ by the larger uncertainty set

{ξ : ||ξ||∞ ≤ 1, ||ξ||1 ≤ k
√
|L|} ⊇ Ξ

and the equivalent robust counterpart (5.17) by the stricter inequality

∑
l∈I

qlMl + k
√

|L| ||Q(M − M̄) + w||∞ + ||w||1 ≤ M̄, for some w.

Finally, as shown in Proposition 1 of Babonneau et al. (2010), the above inequality is equivalent
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to the set of inequalities

∑
l∈I

qlMl + k
√

|L|z +
∑

wl ≤ M̄

z + wl ≥ ql(Ml − M̄), l ∈ L

z + wl ≥ ql(M̄ −Ml), l ∈ L

w ≥ 0, z ≥ 0,

where w ∈ R|L| and z ∈ R are auxiliary variables.

In order to have a model associated with a theoretical bound for the constraint violation

probability, we plug this inequalities in our distributionally robust call center model, we obtain

a new model, similar to (5.14). Namely

min
∑
j∈J

cjxj

s.t.
∑

l∈I ql(
∑

i∈I
∑

k∈Ki
πikMikl) + k

√
|L|z +

∑
wl ≤ M̄

z + wl ≥ ql(
∑
i∈I

∑
k∈Ki

πikMikl − M̄), ∀l ∈ L

z + wl ≥ ql(M̄ −
∑
i∈I

∑
k∈Ki

πikMikl), ∀l ∈ L∑
j∈J

aijxj = yi, i ∈ I

yi +Mikl ≥ Nikl, i ∈ I, k ∈ Ki, l ∈ L

yi ∈ Z+, i ∈ I

xj ≥ 0, j ∈ J

Mikl ≥ 0, i ∈ I, k ∈ Ki, l ∈ L

z ≥ 0, wl ≥ 0, l ∈ L.

(5.18)

We conclude this subsection by showing that the uncertainty set Ξ could be viewed as a form

of dispersion measure. Namely, we define the set of probability distributions

Pk =

{
p : p =

p′∑
l∈L p

′
l

,
∑
l∈L

(
p′ − q

q

)2

≤ k2, p′ ≥ 0

}
. (5.19)

This definition is compatible with an assumption of independence of the variables p′l. It lead us to

assume that the quantities (p′l−ql)/ql are independent random variables with range [−1, 1]. Note

that it does not imply that the pl are independent. Thanks to the independence assumption, we
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have been able to compute a bound on the probability of satisfaction of the uncertain constraint.

The alternative formulation (5.19) bypasses the difficulty we’ve met with Hα. There, p only

enters the definition and the condition
∑

l∈L pl = 1 creates an explicit dependence among the

variables.

5.4 Numerical Experiments and Results

The numerical results reported in this section aim at assessing empirically the merit of the

distributionally robust approach as compared with the plain stochastic programming approach.

A robust, or stochastic programming, solution consists in a set of shifts x. The behavior of this

solution is analyzed on large samples of daily operations scenarios.

In this section, we conduct a numerical study in order to evaluate and compare between the

classic stochastic programming approach and the distributionally robust programming approach.

In Section 5.4.1, we describe the numerical experiments. In Section 5.4.2, we analyze the results

and derive various insights.

5.4.1 Setting of the Experiments

We describe in this section the data used in the numerical examples first, and then the design of

experiments.

Parameter values

Inbound calls. In the experiments, we use real data from a Dutch hospital which exhibits a

typical and significant workload time-of-day seasonality. To give an idea of the pattern of the

mean arrival rate, we consider three days, a normal one, a busy one and a not so busy one. The

solid line in Figure 5.1, represents arrival in a normal day, while the dashed lines represent the

two other cases. Clearly the three lines have a similar pattern, with low values at the beginning

and at the end of the day, with a two peaks one in late morning and one in the afternoon, and

a relative decrease in-between during the lunch break. This illustrates the choice of the model,

with (almost) fixed seasonality factors and a multiplicative busyness factor. The day starts at

8:00 am, finishes at 8:30 pm, and is divided into |I| = 50 periods of 15 minutes each.

From this observation, we construct an illustrative example as follows. The average rate of

arrivals at each period of the day is supposed to have been estimated by statistical analysis on

a record of n = 400 working days. The estimated seasonal factors are given in Table 5.1. Note

that the seasonal factors could have been normalized because the true arrival rate is obtained by

multiplying those values by the busyness day factor.
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Figure 5.1: Arrival rate graph

Table 5.1: Average seasonality factors estimated from a sample of n = 400 working days
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

6 6.35 8.5 10 11.5 13.5 14 14.5 14.5 14.75 15 15 15.5

f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26

15 14.5 14 13.5 13.25 13.25 13 13.1 13.05 12.5 13 12.5 13

f27 f28 f29 f30 f31 f32 f33 f34 f35 f36 f37 f38 f39

12.5 12.5 13 13.5 14 14.35 14.5 15.1 14 13.25 11.5 10.3 10

f40 f41 f42 f43 f44 f45 f46 f47 f48 f49 f50

9.75 8.5 8.5 7.8 7.5 6.75 6 6 5.6 5 4.85



114 Multi-shift Staffing Problem with Distributionally Robust Optimization

The uncertain environment of the problem is built as follows. First we consider that each

individual seasonal factor is subject to an independent noise. For the sake of the illustration, we

selected a discrete distribution for each seasonal factor with three outcomes fi − fi/10, fi, fi +

fi/10, with respective probabilities 0.25, 0.5, 0.25. This choice is arbitrary, but can be easily

replaced by an alternative one. In the numeric experiments, we analyze the general case with

uncertain seasonal factors. The seasonal factors known with certainty can be considered as a

special case of uncertain seasonal factors.

The second element that introduces uncertainty is the distribution of Θ, the random busyness

factor. It is estimated by comparing the record of the mean arrival rate of each working day

with the average of all these means. We assume that the distribution of Θ has been estimated

from past records by a discrete distribution with |L| = 41 outcomes θl and probabilities ql. To

construct a plausible distribution, we choose to discretize a continuous distribution. In Avramidis

et al. (2004), the authors postulate in their Model 1 that Θ follows a gamma distribution with

shape parameter γ > 0 and scale parameter 1. In this chapter, we assume that Θ can take values

from interval [0.00, 12.00], we take 41 equidistant points including the two endpoints 0.00 and

12.00, which gives |L| = 41 possible values of θl. And we consider 3 types of estimate probability

distributions q: distributions A, B and C, which are discretized from a gamma distribution

with scale parameter 1 and shape parameter γ (consequentially the mean E[Θ]) as 2, 4 and 6,

respectively. For each type of estimate probability distributions q, we have
∑

l∈L ql = 1, ql ≥ 0.

Figure 5.2 shows the three probability density functions.
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Figure 5.2: Some probability density functions

Finally, for each value of the arrival rate at period i with busyness factor θl and seasonal

factor (given by one of the three values fi − fi/10, fi, fi + fi/10) we compute the staffing
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requirement that is needed to meet the service level. To this end, we start with the assumption

that mean service time is 1/µ = 5 minutes. We use the classical service level corresponding to

the well-known 80/20 rule: the probability that a call waits for less than 20 seconds has to be

larger or equal to 80 percent. Using Condition (5.2) and Definition (5.1), we deduce the required

number of agents Nikl during period i, associated to the values θl and fik.

The understaffing bound M̄ . The quantity is user dependent. We chose it as follows. We

compute the average or the size N =
∑

i,k,l qlπikNikl of ideal staff. We consider three values for

M̄ : 0, 1%×N and 2%×N . Note that the value M̄ imposes that all Mikl ≥ 0 in the constraint

∑
l∈L

∑
i∈I

∑
k∈Ki

plπikMikl ≤ M̄ = 0

are zero. This case corresponds to the conservative position of 100% protection.

Cost parameters. Agents work 4 or 8-hour days, with neither break nor overtime. Full-time

shifts (8-hour) start at the hour or the hour and a half. Part-time shifts (4-hour) start at the

hour between 8 am to 2 pm. There are 17 part-time and full-time feasible schedules. Without

loss of generality, we use a normalized cost of 1 for each period an agent works at full-time shifts.

The part-time shifts unit cost, assumed to be larger, is equal to 1.4 per period. Therefore the

agent salary is cj =
∑

i∈I aij for full-time shifts and cj = 1.4
∑

i∈I aij for part-time ones.

The distributionally robust solution

The DR solution is obtained from Problem (5.14) with parameters values as described above. In

this formulation, one critical factor remains to be determined, namely the immunization factor β

or, in other words, the size of the uncertainty set considered in the distributionally robust model.

Ideally, its value would be chosen so that the robust solution ensures that the constraint

∑
l∈L pl

∑
i∈I
∑

k∈Ki
πikMikl ≤ M̄ (5.20)

is satisfied with a given probability α, say 95%. A seemingly natural approach would be to use

the probability that the true distribution belongs to the uncertainty set

Pβ = {p ≥ 0 :
∑
l∈L

pl = 1,
∑
l∈L

|pl − ql|√
q
l

≤ β}

as a lower bound of the probability of satisfaction of the constraint by the robust solution. Indeed,

suppose the p’s are obtained by making a Monte-Carlo of n from the probabilities q. One
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could argue the Pearson indicator
∑

l n
(ql−pl)

2

ql
is asymptotically approximated by a χ-square

distribution with |L| − 1 degrees of freedom. Using the property that the confidence region

Hα is included in Pβ we compute a value β, ensuring that Hα has a large enough probability.

Unfortunately this path leads to a gross over estimation of β. Indeed, the values of β computed

in this way are much too large and the robust solution is overly conservative. This phenomenon is

well-known. The fact is clear when one consider the critical value β = 0 implying an uncertainty

set reduced to a singleton with probability zero. The DR solution with β = 0 still enforces the

constraint (5.20) half of the time. This just says that only one half of the possible distributions

p, close to or far from q are harmful. This phenomenon is discussed in Babonneau et al. (2010).

The literature proposes much stronger approximations of chance programming (see, e.g.,

chapter 2 of the book by Ben-Tal et al. (2009)). Those approximations strongly rely on the as-

sumption that the random coefficients in the uncertain equation, namely the p’s in the constraint

(5.20) are independent random variables. This is not the case here, because the condition
∑

l pl

make them dependent. It is not clear to us that the known techniques can be extended to handle

our case.

Our approach to determine the β will be purely empirical. We shall let β vary from 0 to 1 and

observe the behavior of the robust solution on simulations, as described in the next subsection.

This approach is quite common in robust optimization. We conclude this discussion by pointing

out that the DR solution with β = 0 is nothing else than the SP solution. A similar approach can

be considered with the uncertainty set (5.19) and the parameter k. It is worth noting that the

bound appears to be loose in our setting for most numerical applications due to the monotonic

structure of the under-staffing process with respect to the θl values.

Simulations

The idea of simulation is to create K scenarios of day operations. To this end, we first draw

by Monte-Carlo sampling, a value for p. This is done as follows. We perform n independent

random trials with respect to the probability distribution q. For each θl we record the frequency

of occurrence of θl; this frequency defines pl. Next we draw a value for each seasonal factor

among the 3 possibilities with respect to the given probabilities (here, 0.25, 0.5 and 0.25). Given

the day operation conditions, we can compute the understaffiing of the DR for that day. We

have thus K realizations of the understaffing of the DR solution.

We compute three types of statistics

1. The proportion of times the constraint on understaffing is violated, i.e., the expected un-

derstaffing M =
∑

l∈L
∑

k∈Ki

∑
i∈I plπikMilk exceeds M̄ .
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2. The conditional expectation value of (M − M̄) conditionally to M − M̄ > 0.

3. The worst case for (M − M̄) .

5.4.2 Analysis of the Numerical Results

In this section, we comment on the numerical results and derive the main insights. Four criterions

are considered in order to evaluate the performance of both SP and DR methods: The salary

cost, the probability of violation of the constraint M ≤ M̄ , the conditional expectation value of

(M − M̄) for M that exceeds M̄ , and the maximum (M − M̄) among all the K = 10000 trials.

We compare the performance between SP and DR with different sizes of uncertainty sets Pβ

(defined by (5.8)) and Pk (defined by (5.19)), for different under-staffing bound M̄ . We analyse

the trade-off between salary cost and the other three criterions, and show the necessity of taking

into account the uncertainty in the probability distribution. These comparison are done based

on the 3 types of estimate probability distributions presented previously.

For the 3 types of estimate probability distributions, the value of the under-staffing bound

M̄ , defined as 1% of the total required workforce is 64.97, 120.77 and 179.19 respectively. That

defined as 2% of the total required workforce is M̄ = 129.94, 241.54 and 358.38. For the models

with uncertain seasonal factor fi, uncertainty set Pβ , and M̄ as 1% ( 2%)of the total required

workforce, Table 5.2 (Table 5.3) displays for each type of estimate probability distribution, the

four evolutional criterions mentioned above. Table 5.4 (Table 5.5) has similar structure, but it

is related to models with uncertainty set Pk.

In order to examine the trade-off between the salary cost and the protection against risk, we

consider for DR different values of β (or k), which correspond to uncertainty sets with different

sizes. The higher the β (or k) value, the higher the degree of protection against the uncertainty in

probability distribution. An extreme case can be considered, namely β = 0 (or k = 0), which can

be viewed as equivalent to SP. For information, given the uncertainty set Pβ (Pk) chosen in the

following tables, we have observed the percentage that the sampled true probability distribution

p falls outside the uncertainty set. We find that almost 100% of p falls outside the uncertainty

set Pβ (Pk), but numeric results show that not all of them lead to constraint violation.

From Table 5.2 to 5.5, we can observe a trade-off between the salary cost and the other

three criterions which present the protection against risk. By increasing the β(ork) value, which

increases the uncertainty set size, the constraint violation percentage, the conditional expectation

of (M − M̄), and the max case (M − M̄) are eliminated progressively, with an increase in salary

cost. Figure 5.3 shows the trade-off between salary cost and the constraint violation percentage.

And Figure 5.4 shows the decreasing tendency of the other two criterions in total cost. As
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expected, SP has the lowest salary cost. However, the constraint violation percentage for the

method SP is remarkable. For the 3 types of estimate probability distribution, the solutions

of SP tend to violate the constraints by about half chance. The performance of DR is quite

nice. For example, given β = 0.2, both Table 5.2 and 5.3 show that, for the estimate probability

distribution A, B and C, DR reduces the constraint violation percentage more than 33%, 34%

and 40% by only increasing about 11%, 4% and 3% the salary cost, respectively. Similar remarks

can be found from the results in Table 5.4 and 5.5.
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Figure 5.3: Trade-off between the salary cost and constraint violation percentage
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Figure 5.4: Trade-off of the max and conditional expected (M − M̄) with the salary cost

In general, the method SP which does not take into account the uncertainty on the probability

distribution, leads to violation of constraint (infeasibility) with a quite high proportion. While
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the DR method we proposed avoids this trouble, by only paying a relatively small increase on

the salary cost. This illustrates the necessity of taking into account the uncertainty on the

probability distribution.

For both M̄ equals to 1% and 2% of the required total workforce, we find similar performance

for both SP and DR, as presented above. An extreme value of M̄ is 0, with all Mikl of both

SP and DR are zero. Consequently, SP and DR behave the same. The salary cost is the upper

bound for all further results. As M̄ grows, it is likely that SP and DR diverge more and more.

For both models with uncertainty set Pβ and Pk, Table 5.6 displays the upper bound salary

cost for the 3 types of estimate probability. We observe that given the model with uncertain fi,

the upper bound costs are the same for the 3 types of probability distribution. The reason is

simply that in our numeric example, the random variable Θ takes values from the same interval

[0.00, 12.00], and all fik are defined by the same way, then the largest required agents number

Nikl are the same for the 3 types of probability distribution.

5.5 Conclusion

We consider a staffing-scheduling problem of a multi-shift call center, of which the probability

distribution of random parameter is ambiguous. We introduce firstly the classic stochastic pro-

gramming formulation of this problem. Then we fully exploit the sample data, and construct a

linear distributionally robust model of the staffing-scheduling problem. We next conduct a nu-

merical study in order to evaluate the performance of these two methods and gain useful insights.

The necessity of taking into account the uncertainty on probability distribution is exhibited.

In terms of formulation, two factors are worth mentioning. First, we have considered the

uncertainty set of probability distribution of the busyness factor Θ. It may be of interest to

consider additionally un uncertainty set of probability distribution on uncertain seasonal factors

fi. Second, we have treated the agent shortfall in each period in a similar way. However, for

periods with different numbers of required agents, the same quantity of agent shortfall may

lead the customers to experience different additional waiting time. Consequently, a given agent

shortfall in different period may of different importance. Extended formulation could introduce

weights per period that depend on the values of required agent number.
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β Salary Constr. Expectation Worst case
cost violation (%) (M - M̄ |M > M̄) M − M̄

Set A of probabilities q, M̄ = 64.97

0 21500.8 45.46 28.96 168.88
0.01 21660.8 43.13 27.82 164.58
0.05 22313.6 33.55 24.16 147.87
0.1 23164.8 22.73 20.47 126.14
0.2 24896.0 8.77 14.96 88.56
0.5 29372.8 0.11 7.62 21.54
0.8 32361.6 0 NaN -12.08

1 33673.6 0 NaN -23.40

Set B of probabilities q, M̄ = 120.77

0 27481.6 47.19 29.73 162.76
0.01 27555.2 44.76 28.57 157.71
0.05 27849.6 35.95 24.72 142.81
0.1 28220.8 25.11 21.42 126.20
0.2 28953.6 10.25 16.03 94.16
0.5 30998.4 0.13 7.11 24.62
0.8 32713.6 0 NaN -20.22

1 33667.2 0 NaN -39.90

Set C of probabilities q, M̄ = 179.19

0 32752.0 48.97 28.1 150.00
0.01 32809.6 46 26.81 145.28
0.05 33030.4 34.44 22.64 129.64
0.1 33302.4 21.56 18.56 110.80
0.2 33814.4 6.09 12.82 77.82
0.5 35171.2 0.01 4.29 4.29
0.8 36243.2 0 NaN -41.17

1 36841.6 0 NaN -62.68

Table 5.2: Models with uncertain fi, uncertainty set Pβ and M̄ is 1% of total required workforce
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β Salary Constr. Expectation Worst case
cost violation (%) (M - M̄ |M > M̄) M − M̄

Set A of probabilities q, M̄ = 129.94

0 18134 45.91 40.39 271.99
0.01 18227 43.62 39.58 268.08
0.05 18605 35.2 36.19 249.23
0.1 19098 26.03 31.9 224.26
0.2 20157 12.33 25.66 178
0.5 23578 0.4 13.11 62.66
0.8 26611 0 NaN -3.36

1 28342 0 NaN -36.14

Set B of probabilities q, M̄ = 241.54

0 24438 47.42 44.8 236.19
0.01 24493 45.66 43.31 231.43
0.05 24704 37.55 38.82 212.71
0.1 24973 28.1 34.18 190.61
0.2 25504 13.4 27.41 148.93
0.5 27059 0.38 13.22 49.83
0.8 28550 0 NaN -20.39

1 29466 0 NaN -56.78

Set C of probabilities q, M̄ = 358.38

0 29891 48.66 46.11 223.46
0.01 29939 46 44.43 217.43
0.05 30125 35.34 39.02 197.46
0.1 30352 23.59 34.13 173.81
0.2 30800 8.44 26.49 128.4
0.5 32035 0.05 11.72 20.55
0.8 33120 0 NaN -59.46

1 33766 0 NaN -99.46

Table 5.3: Models with uncertain fi, uncertainty set Pβ and M̄ is 2% of total required workforce
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k Salary Constr. Expectation Worst case
cost violation (%) (M - M̄ |M > M̄) M − M̄

Set A of probabilities q, M̄ = 64.97

0 21500.8 44.03 29.27 161.16
0.10 21865.6 38.96 26.81 152.16
0.30 22678.4 27.73 23.04 133.95
0.50 23574.4 18.28 19.25 114.24
0.80 25152.0 7.38 14.80 84.10
1.00 26246.4 3.43 12.43 65.16
1.50 29456.0 0.13 4.65 17.01
2.00 32656.0 0.00 NaN -18.91

Set B of probabilities q, M̄ = 120.77

0 27481.6 47.67 29.62 180.18
0.10 27686.4 41.20 26.73 168.26
0.30 28073.6 29.20 22.93 149.06
0.50 28473.6 19.05 19.83 131.70
0.80 29152.0 7.56 15.82 102.42
1.00 29628.8 3.37 14.75 84.59
1.50 30934.4 0.26 8.15 38.89
2.00 32361.6 0.00 NaN -2.81

Set C of probabilities q, M̄ = 179.19

0 32752.0 48.27 27.69 157.67
0.10 33040.0 32.83 22.35 135.80
0.30 33577.6 10.82 15.71 97.75
0.50 34041.6 2.75 12.39 68.12
0.80 34556.8 0.41 8.59 38.26
1.00 34819.2 0.10 10.03 24.44
1.50 35561.6 0.00 NaN -10.70
2.00 36403.2 0.00 NaN -45.40

Table 5.4: Models with uncertain fi, uncertainty set Pk and M̄ is 1% of total required workforce
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k Salary Constr. Expectation Worst case
cost violation (%) (M - M̄ |M > M̄) M − M̄

Set A of probabilities q, M̄ = 129.94

0 18134.4 45.88 40.41 272.00
0.10 18483.2 37.71 37.22 254.79
0.30 19264.0 23.10 31.14 217.21
0.50 20131.2 12.73 26.21 181.70
0.80 21673.6 3.50 18.56 122.38
1.00 22764.8 1.10 15.82 86.56
1.50 26073.6 0.01 1.32 1.32
2.00 29593.6 0.00 NaN -53.38

Set B of probabilities q, M̄ = 241.54

0 24438.4 47.41 44.78 236.15
0.10 24640.0 39.95 40.03 218.17
0.30 25059.2 25.20 33.18 184.33
0.50 25513.6 13.28 27.51 149.05
0.80 26249.6 3.38 19.22 97.65
1.00 26771.2 0.90 15.76 67.33
1.50 28195.2 0.00 NaN -6.78
2.00 29760.0 0.00 NaN -69.16

Set C of probabilities q, M̄ = 358.38

0 29891.2 48.43 45.44 255.78
0.10 30137.6 34.78 37.37 226.47
0.30 30608.0 13.31 27.59 173.67
0.50 31043.2 3.86 22.42 128.40
0.80 31619.2 0.45 15.53 72.91
1.00 31932.8 0.10 19.82 44.92
1.50 32803.2 0.00 NaN -26.15
2.00 33808.0 0.00 NaN -96.50

Table 5.5: Models with uncertain fi, uncertainty set Pk and M̄ is 2% of total required workforce

Table 5.6: M̄ = 0, the upper bound for the salary cost

Estimate prob. uncertain fi
distribution DR Salary SP Salary

A 48956.8 48956.8
B 48956.8 48956.8
C 48956.8 48956.8
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Chapter 6

Workforce Optimization of a Call

Center under a Global Service Level

Constraint and Information Update

In this chapter, we address a multi-periodic multi-shift call center staffing problem.

We consider a global service level constraint, and allow the staffing level to be up-

dated. The call arrival process is assumed to follow a doubly non-stationary stochastic

process with a random mean arrival rate. To the contrary to all the problems treated

in the previous chapters, we combine the staffing step which determines the number

of required agents for each period, and the shift-scheduling step which determines

the agents number working in each shift. The staffing-scheduling policy is initially

decided before the beginning of the working day and a real-time update is allowed

within the same day. The objective is to minimize the sum of the regular salary and

the update adjustment cost, with respect to a global service level constraint. We con-

struct two models using two-stage stochastic program with recourse to describe this

problem. Through numerical experiments, we illustrate the excellent performance of

these two approaches. The advantages of adding the update flexibility and those of

using a global service level, instead of period to period ones, are also shown.

125
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6.1 Introduction

In all of the previous chapters, we considered period to period service level (SL) constraints.

This type of SL constraints are referred to as hard constraints. As a first step, we made use of

the Erlang formula in order to determine for each period the required staffing level, and as a

second step, we optimized the scheduling of the shifts. Another optimization approach in practice

consists on considering a global SL constraint, referred to as soft constraint. The soft constraint

requires to meet an SL objective for the whole planning horizon (several periods) which might

be one day, one week or even longer. This means that the call center could reach low SLs during

some periods (or intervals) and high ones during other periods. Roughly speaking, since shifts

span multiple intervals, a model with hard constraints would lead to overcapacity in certain

periods, and the actual global SL would be much higher than required. A model with a soft

constraint avoids this inconvenience, however, solving the optimization problem would be more

complex.

In the context of call centers, Koole and van der Sluis (2003) are the first to deal with a

global SL constraint. The authors prove the multimodularity property of the shift scheduling

problem. Then, they develop a heuristic based on a local search algorithm to solve the problem.

Robbins (2007) constructs a stochastic model with a global SL constraint that takes into account

the uncertainty in arrival parameters. It is however a static single-stage model. He determines

the staffing level once for the beginning of the day, and can not adjust it later on, if needed. The

author proposes a piecewise linear approximation in order to describe the nonlinear Telephone

Service Factor (TSF) curve. In this chapter, we extend his results by allowing recourse actions.

Similarly to the previous chapters, we again consider the uncertainty in arrival rates. Recall

that there is a strong positive correlation between arrival rates during the different periods of

the same day. Also, we allow the decision-maker to modify the staffing level after observing

the actual busyness of day. If, the call center is actually over-staffed (under-staffed), then she

has the possibility to reduce (increase) the staffing level. To the best of our knowledge, the

only work which considers a combined staffing-scheduling problem with recourse actions and a

global service constraint in a stochastic setting is Gans et al. (2009). The authors construct a

two-stage stochastic model, which is an extension of the model of Robbins (2007). These two

models are smartly built, but there exist a disadvantage: they force the service level for each

period in each scenario to be higher than a certain value. This leads to the problem as follows.

For the periods before updating, the staffing level is common for all scenarios. If a scenario

with large mean arrival rates exists, since the SL for each scenario should exceed a certain level,

the decision-maker has to assign in that case a too high staffing level not necessary for other
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less busier scenarios. Using this approach, the staffing policy would be somewhat influenced by

scenarios with large arrival rates. Such scenarios occur however with negligible probabilities.

In this chapter, we consider a multi-period multi-shift staffing-scheduling problem with

staffing adjustment (update) and randomness of the call arrival rate parameters. The objec-

tive is to determine the optimal schedules that minimize the operational costs of the call center

while achieving a predefined global service level. The global service level is defined as the average

of the SLs achieved over all periods, weighted by the intensity of arrival rates. Our approach is

based on a the two-stage stochastic program with recourse.

The achieved SL in a given period is a function of the value of the call arrival rate. Thus, the

parameters associated with the staffing adjustable variables are not constant, but depend on the

uncertainty of the call arrival rate. This was not the case for the fixed recourse as presented in

Chapter 4. Hence, even if we construct an adjustable robust model for this staffing-scheduling

problem, we can not use the linear decision rule to solve it while keeping a computationally

tractable model. For this reason, we only consider here a two-stage stochastic programming

optimization problem.

We build two stochastic models: the first uses the piecewise linear approximation to approach

the TSF curve, as that proposed in Robbins (2007). The second uses a simple linear function to

approach that curve. The difference and advantages of our models comparing to that in Gans

et al. (2009), is that we don’t give any restriction on the SL in any period or scenario. The

risk mentioned above for the models of Robbins (2007) and Gans et al. (2009) is then avoided.

We then conduct a comparison study between the different models: the above two models, the

model with hard constraints and staffing update, and the static one with global service level

constraint and without staffing update. The comparison shows the advantages of adding the

update flexibility, and points out the impact of having a global service level constraint.

We distinguish two major contributions in this chapter. The first contribution is the propo-

sition of two new models for the staffing-scheduling problem with global SL constraint, taking

into account the call arrival rate uncertainty and allowing the update of the staffing level. Even

though the first one is time consuming, the numerical experiments show that both models are

good approaches for the current staffing problem. The second contribution is the analysis of the

impact of the flexibility offered by the recourse action and the global SL constraint. We show

that allowing staffing level adjustment reduces total cost, and period to period SL constraints

lead to unnecessary over-staffed situations.

The rest of this chapter is structured as follows. In Section 6.2, we describe the call center

model under consideration and formulate the first model associated with the staffing-scheduling



128
Workforce Optimization of a Call Center under a Global Service Level Constraint and

Information Update

problem, using piecewise linear functions to approach the TSF curve. In Section 6.3.2, we present

a simple model associated with the same problem, by using a single linear function to approach

the TSF curve. In Section 6.4, we conduct a numerical study with a small size problem in order

to evaluate the two new models. We exhibit the benefit offered by staffing level adjustment on

the optimization problem, and the over capacity caused by period to period SL constraints. In

Section 6.5, we extend the analysis to a larger size problem. This chapter ends with concluding

remarks.

6.2 Problem Formulation

We consider a single class call center. The problem is similar to that in Section 4.2.1 in Chapter

4. The new feature is that the target SL is no longer required for each period, but only for

the whole day. Consequently, the required number of agents for each period is not determined

through Equation (4.2). It is now a variable related to the global SL target.

6.2.1 The inbound call arrival process

In order to address uncertain and time-varying mean arrival rates coupled with significant corre-

lations, the same as the previous chapters, we model the inbound call arrival process by a doubly

stochastic Poisson process as follows.

We denote the set of periods of the day of interest by I. The mean arrival rate Λi for period

i, i ∈ I, is assumed to be of the form

Λi = Θfi, (6.1)

where Θ is a positive real-valued random variable. The random variable Θ can be interpreted

as the unpredictable busyness of the day. The constants fi model the shape of the variation of

the mean arrival rate intensity across periods, and they are assumed to be known. If a sample

value in a given day of the random variable Θ is denoted by θ, the corresponding outcome of the

arrival rate over period i for that day is λi = θfi. The random variable Θ is assumed to follow a

discretized probability distribution, defined by the sequence of outcomes θl, for l ∈ L, with L as

the set of the possible scenarios of the busyness factors. An outcome θl occurs with probability

pl, with
∑
l∈L

pl = 1.

We assume that service times for inbound calls are independent and exponentially distributed

with rate µ. The calls arrive to a single infinite queue working under the the first come, first

served (FCFS) discipline of service. Neither abandonment nor retrials are allowed.
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6.2.2 Shifts Setting

Let J be the set of the feasible work schedules, each of which dictates whether an agent answers

calls during period i, or not. For i ∈ I and j ∈ J , we define the |I| × |J | matrix A = [aij ], with

aij =

 1, if agents in schedule j answer calls during period i,

0, otherwise.

We divide the overall horizon into the early horizon and late horizon, denoted by the sets of

periods I1 and I2, respectively. After observing the call volumes in the early horizon, a real-time

update of staff capacity is allowed at the beginning of the late horizon. We define also the |I|×|J |

matrix B = [bij ] with

bij =

 1, if agents in the new schedule j answer calls during period i,

0, otherwise.

Note here that all the terms of the first |I1| lines of matrix B are all zeros.

We furthermore assume that the schedules have no breaks in the middle. Then, the binary

matrix A and B have contiguous 1 terms. Thus, A and B are totally unimodular.

6.2.3 TSF Curve and Global Service Level

The SL archived during period i is counted in the global SL through the weight
fi∑
i fi

. For a

given outcome of the arrival rate in a given period, the service level, also called the telephone

service factor (TSF) (Gans et al. (2003)), is defined based on the Erlang C model, presented in

Section 2.1.2 in Chapter 2.

We consider an example of a call center with a mean call arrival rate λ = 6.88 during a given

period, and mean service time
1

µ
= 5. Figure 6.1 shows the TSF curve which corresponds to the

percentage of customers served within 20 seconds as a function of the number of agents.

Figure 6.1 reveals that the TSF curve is non-linear in the number of agents. Point A is the

demarcation point from which the SL starts to be non-zero and the TSF curve becomes concave.

This non-linear character of the TSF curve was not an issue for the analysis in the previous

chapters. The reason is the SL target per period determines the minimum number of agents.

The latter is then used as an input in the mathematical program of optimization. Unfortunately,

this is no longer possible for problem with a global SL target, since the SL per period is a variable

itself. For tractability and in the usual way as in Robbins (2007) for example, we need to use a

linear approximation model relating the TSF with the number of agents.
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Figure 6.1: Example of a TSF curve

6.3 Two-Stage Stochastic Programming Models

The models we consider in this chapter attempt to optimize the staffing and scheduling costs

subject to satisfying a predefined global service level. Given uncertainty in the mean arrival

rates, we allow the achieved global SL to be less than the target (shortfall), but we do oblige

the expected shortfall to not exceed a certain limit. We use two methods to approximate the

non-liner TSF curves: A piece-wise linear approximation and a simple linear approximation. The

related two models are presented in Section 6.3.1 and 6.3.2, respectively.

Both models are formulated as two-stage mixed integer stochastic programs. At the beginning

of the day, the initial (first-stage) staffing policy Xj , for j ∈ J , is applied. After that the true

busyness factor has been revealed as θl with probability pl, for l ∈ L, the decision-maker then

chooses the associated adjustable staffing (second-stage) decisions Yjl and Zjl, for j ∈ J . In

Figure 6.2, we explain this two-stage staffing process.

6.3.1 Piece-Wise Linear Approximation Model

In this section, we describe the model with piece-wise linear approximation of the TSF curves.

As shown in Figure 6.3, we choose the service level in the left side of point A to be zero, and

the right side concave curve is approximated by piecewise linear functions. This approximation

is similar to but more accurate than that in Robbins (2007). In Figure 6.3, the straight lines

represent the individual linear functions. The extreme case with an infinite number of linear

functions leads to an exact model.

In what follows, we describe the notations of the sets, the parameters and the variables.
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Figure 6.2: Two-stage staffing process
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Sets

I: set of time periods in the whole horizon (one day),

I1: set of the early horizon periods, which contains the time periods before updating,

J : set of schedules,

L: set of sample scenarios.

Decision variables

xj : number of agents assigned to schedule j, for j ∈ J ,

yjl: number of agents added to schedule j after updating in scenario l, for j ∈ J and l ∈ L,

zjl: number of agents reduced from schedule j after updating in scenario l, for j ∈ J and l ∈ L.

Deterministic parameters

cj : cost of schedule j, for j ∈ J ,

dj : the cost of adding an agent to schedule j, for j ∈ J ,

rj : the cost saving by removing an agent from scheduling j, for j ∈ J ,

aij : indicates if schedules j is staffed at period i or not, for i ∈ I and j ∈ J ,

bij : indicates if schedules j is staffed at period i or not after updating, for i ∈ I and j ∈ J . Note

that bij = 0 for i ∈ I1 and j ∈ J ,

ρi: weight of period i, ρi =
fi∑
i∈I fi

, for i ∈ I,

g: global SL target for the whole day,

pl: probability associated with scenario l, for l ∈ L,

milh: slope of piecewise TSF approximation h at period i in scenario l, for i ∈ I, l ∈ L and

h ∈ H,

eilh: intercept of piecewise TSF approximation h at period i in scenario l, for i ∈ I, l ∈ L and

h ∈ H,

∆il: the minimum number of agents which leads to non-zero SL, at period i in scenario l, for

i ∈ I and l ∈ L,

State variables

sl: global SL shortfall in scenario l, for l ∈ L,

Yil: number of employees treating calls at period i in scenario l, for i ∈ I and l ∈ L,

Bil: is equal to 1, if the number of employees treating calls Yil exceeds ∆il, at period i in scenario

l, i ∈ I, l ∈ L. If not, it is equal to 0.

Vil: the positive part of Yil −∆il, at period i of scenario l, for i ∈ I and l ∈ L,

νil: percentage of customers served within the acceptable waiting time (example 20 seconds). In

another words, it is the achieved SL at period i in scenario l, for i ∈ I and l ∈ L.
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Based on the above notations, our problem can be formulated as

min
∑
j∈J

cj xj +
∑

j∈J,l∈L
pl (dj yjl + rj zjl) (6.2)

s.t.

∀ i, l, Yil =
∑
j∈J

aij xj +
∑
j∈J

bij (yjl − zjl), (6.3)

∀ i, l, Yil ≥ ∆ilBil + Vil, (6.4)

∀ i, l, Vil ≤ 1000Bil, (6.5)

∀ i, l, νil ≤ Bil, (6.6)

∀ i, l, h νil ≤ milh Vil + eilh, (6.7)

∀ l,
∑
i∈I

ρi νil + sl ≥ g, (6.8)∑
l∈L

pl sl ≤ s̄, (6.9)

∀ j, l, xj ≥ zjl, (6.10)

∀ j, l, xj , yjl, zjl ≥ 0, (6.11)

∀ i, l, Yil ∈ Z+, Bil ∈ {0, 1}, Vil ≥ 0, νil ≥ 0. (6.12)

The objective of this model is to minimize the total cost of staffing: the initial scheduling and

the update adjustment. The optimization occurs over a set of |L| sample realizations of mean

call arrival rates. These samples are called scenarios. Constraints (6.3) define the state variables

Yil as the number of agents assigned to treating calls at period i in scenario l. Constraints (6.4)

and (6.5) define two important state variables, Bil and Vil. They are related to the staffing

level Yil and the parameter ∆il which indicates the smallest staffing level leading to non-zero SL.

These two constraints define the binary variables Bil to indicate whether Yil ≥ ∆il or not, and

the variable Vil which is (Yil −∆il)
+. Since all parameters milh and eilh are positive, in order to

maximize the periodic SL νil, the variable Vil tends to take the biggest possible value which is less

than or equal to (Yil −∆il)
+. Constraints (6.6) and (6.7) define the variable νil as the periodic

SL at period i in scenario l. Constraints (6.8) calculate the global SL shortfall, and Constraint

(6.9) limits the expect value of the global service shortfall to s̄. Constraints (6.10) ensure that

the number of agents reduced from schedule j is less than that assigned initially. Constraints

(6.11) and (6.12) define the non-negativity and integer conditions for program variables.

This model is similar to those in the previous chapters, but with some extensions. First,

the staffing and scheduling steps are combined into only one optimization problem. Second, the

model uses a piecewise linear approximation for the TSF curve derived from an Erlang C model.
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One important issue that should be discussed for this model is the required computation

effort to solve it. Since we consider in this chapter the special case that each shift contains

no breaks, the period-shift matrix {aij} and {bij} are totally unimodular. This simplifies the

structure of the problem, and the integer variables xj , yjl and zjl are relaxed to real ones. The

problem hence contains |I| × |L| integer and |I| × |L| binary variables. However, the structure

of Constraints (6.4)-(6.6) makes the solving of the model time consuming. For the numerical

experiments, we are then forced to consider only small size problems with restricted numbers of

shifts and scenarios.

6.3.2 Linear Approximated Model

>From the one hand, the model presented in the previous section is a very good approximation.

From the other hand, solving it is very time consuming. In this section, we propose another

appropriate alternative that allows to quickly solve the optimization problem even for large

systems, by choosing a simpler approximation for the TSF function.

As shown in Figure 6.4, we draw a line starting from point B(0, 0) and ending at point C

which is the first point with the maximum service level 1. This gives a simple linear function

y = m′ x with m′ as the slope. Similarly to the model (6.2)-(6.12), we consider the SL in the left

side of A to be zero, and the SL in right side part of C to be 1. In contrast to Figure 6.3 which

uses several linear functions to approximate the concave part of the TSF curve, we use here a

single linear function. Its curve, as shown in Figure 6.4, is the solid part of the drawn line (from

point D to point C). As one may see, this approximation is rougher than the piecewise linear

approximation, but it allows to construct a much simpler model, with much less constraints.
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Figure 6.4: Linear approximation of TSF
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We denote the slope of the linear function (point B to C in Figure 6.4) by m′
il for period i

of scenario l. The linear approximation model can be written as

min
∑
j∈J

cj xj +
∑

j∈J,l∈L
pl (dj yjl + rj zjl) (6.13)

s.t.

∀ i, l, Yil =
∑
j∈J

aij xj +
∑
j∈J

bij (yjl − zjl), (6.14)

∀ i, l, Yil ≥ ∆ilBil, (6.15)

∀ i, l, νil ≤ Bil, (6.16)

∀ i, l, νil ≤ m′
il Yil, (6.17)

∀ l,
∑
i∈I

ρi νil + sl ≥ g, (6.18)∑
l∈L

pl sl ≤ s̄, (6.19)

∀ j, l, xj ≥ zjl, (6.20)

∀ j, l, xj , yjl, zjl ≥ 0, (6.21)

∀ i, l, Yil ∈ Z+, Bil ∈ {0, 1}, νil ≥ 0. (6.22)

This model substitutes the previous constraints (6.4-6.7) in the previous model (6.2-6.12)

by constraints (6.15-6.17), and keeps all the other constraints and the objective function the

same. Constraint (6.15) defines the binary variables which identify whether Yil ≥ ∆il, or not.

For period i of scenario l, if Yil < ∆il, Constraint (6.16) defines the associated SL to be zero.

Otherwise, Constraint (6.16) calculates the approximated SL. Even though the number of integer

and binary variables do not decrease in this model compared to the previous one, the structure

is much simpler and it has much less constraints related to the integer and binary variables.

6.4 Numerical Implementation for Small Problems

In this section, we conduct a numerical study for small size problems in order to evaluate the two

models. In Sections 6.4.1 and 6.4.2, we describe the numerical experiments. In Section 6.4.3, we

analyze the results and give some insights.

6.4.1 Parameter Values

Inbound calls: In the experiments we analyze a small size call center. The day starts at 7:00

am, finishes at 6:00 pm, and is divided into n = 5 periods of two hours each. The first 2 periods

are considered as early horizon. Similarly to the characteristics of the arrival rates described in
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the previous chapters, although there is a significant stochastic variability in the arrival rates

from one day to another, a strong seasonal pattern across the periods of a given day is preserved.

We set the seasonal factors fi as 5.475, 16.475, 10.475, 13.35 and 6.315 calls per minutes.

Concerning the random busyness factor Θ, in order to construct a plausible distribution, we

choose to discretize a continuous distribution. Similarly to Chapter 5, we assume that Θ follows

a gamma distribution with shape parameter γ = 2 and scale parameter 1, and can take values

in [0.2, 4.0]. We consider 20 equidistant points including the two endpoints 0.20 and 4.0, which

gives |L| = 20 possible values of θl.

For the piecewise linear approximation model, for the TSF curve of each period and each

scenario, we use a linear function to approach each point which achieves an SL higher than zero

but less than 1. We use for each period and each scenario |H| = 62 constraints.

The mean service time is assumed to be
1

µ
= 5 minutes, and the acceptable waiting time is

20 seconds. The target global service level g is determined as 0.8, which indicates that 80% of

calls during the day is replied with 20 seconds. The upper bound of the expect shortfall of global

service level s̄ is 0.1.

Cost parameters: An agent can work either 3, 4 or 5 periods during the day (with no breaks).

A shift can start at the beginning of any period, enumeration shows that there are 6 feasible

schedules. For the salary cj , dj and rj , without loss of generality, we use a normalized cost of 1 for

each period an agents works in regular shifts, therefore cj =
∑
i∈I

aij . And the temporarily added

shift should be payed more expensively than the regular one, we then define dj = 1.4×
∑
i∈I

bij .

Removing an agent from shift j makes some cost saving, but this cost saving should be less than

cj . We choose rj = 0.5×
∑
i∈I

bij .

6.4.2 Design of the Experiments

Benchmark1: As a first benchmark, we consider the static single-stage model which contains

only the initial staffing-scheduling decision variables. The static single-stage stochastic opti-

mization problem is also built on the discrete probability distributions characterizing Θ. The

difference between this static single-stage model and the model (6.2-6.12) is that in the static

single-stage model, only the initial decision xj determines the staffing level, and the decision-

maker does not have the flexibility to update the staffing level later on during the day. Conse-
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quently the staffing level Yil for each scenario is the same.

min
∑
j∈J

cj xj (6.23)

s.t.

∀ i, l, Yil =
∑
j∈J

aij xj , (6.24)

∀ i, l, Yil ≥ ∆ilBil + Vil, (6.25)

∀ i, l, Vil ≤ 1000Bil, (6.26)

∀ i, l, νil ≤ Bil, (6.27)

∀ i, l, h νil ≤ milh Yil + eilh, (6.28)

∀ l,
∑
i∈I

ρi νil + sl ≥ g, (6.29)∑
l∈L

pl sl ≤ s̄, (6.30)

∀ j, xj ≥ 0, (6.31)

∀ i, l, Yil ∈ Z+, Bil ∈ {0, 1}, Vil ≥ 0. (6.32)

All the parameters and variables keep the same definitions as those in the model (6.2-6.12). We

consider this static single-stage model in order to compare its total cost and SL performance

to those of the dynamic model (6.2-6.12), and analyze the benefits of the flexibility offered by

update.

Benchmark2: Another benchmark we consider is the model which is similar to that in Chapter

4, where a target service level is required for each period, instead of a global one for the whole

day. This model keeps the flexibility of update, which leads to a two-stage stochastic program-

ming optimization problem. We also build this problem on the discrete probability distribution

characterizing Θ. For period i of scenario l, Nil denotes the required number of agents in order

to achieve that target SL, calculated through the Erlang C formula. A shortfall of agents Mil

is allowed for each period and scenario, but the expected sum of shortfall during the whole day

should not exceed the limit M̄ .

In order to be comparable to the models presented above, Nil is calculated with a target SL

as 0.8 for each period. M̄ is defined as the difference between
∑

i∈I
∑

l∈L plNil with target SL
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as 0.8 and that with target SL as 0.7. The value of M̄ in this small problem is 9.

min
∑
j∈J

cj xj +
∑

j∈J,l∈L
pl (dj yjl + rj zjl) (6.33)

s.t.

∀ i, l, Yil =
∑
j∈J

aij xj +
∑
j∈J

bij (yjl − zjl), (6.34)

∀ i, l, Yil +Mil ≥ Nil, (6.35)∑
l∈L,i∈I

plMil ≤ M̄, (6.36)

∀ j, l, xj ≥ zjl, (6.37)

∀ j, l, xj , yjl, zjl ≥ 0, (6.38)

∀ i, l, Yil ∈ Z+,Mil ≥ 0. (6.39)

In this model, the objective and the first constraints are similar to those in the model (6.2)-

(6.12). Constraints (6.35) calculate the agents number shortfall for each period and scenario,

and Constraint (6.36) limits the expect sum of this shortfall. Constraints (6.37) ensure that the

number of agents removed from shift j is less than that is initially assigned, and Constraints

(6.38)-(6.39) define the non-negativity and integer conditions for program variables.

We compare this model with the model (6.2-6.12) in order to identify the advantage of

considering a global service level.

Additional Notations: We compute the optimal staffing levels given by the dynamic piece-

wise linear approximation model with global service level constraint(DPLG), the dynamic linear

approximation model with global service level constraint(DLG), the static single-stage piecewise

linear approximation model with global service level constraint(SPLG) and the dynamic model

with periodic service level constraint (DP).

Optimal policy performance simulations: In order to estimate the cost criterion associated

with the different policies, 10, 000 samples values are randomly generated as outcomes of Θ.

For the three dynamic models (DPLG, DLG and DP), the corresponding optimal policy is

selected according to each of the 10, 000 samples. And for the static single-stage model SPLG,

each sample implements the same staffing level. We then calculate the expected global SL, and

the expected global SL shortfall comparing to the target SL g = 0.8, associated with the optimal

policies of these four models.
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6.4.3 Insights

First of all, we give a report of the size of the problems and their computing time in Table 6.1.

The computations have been performed using Cplex on an Intel Core Duo CPU 1.20 Ghz with

0.99 GBytes RAM.

Table 6.1: Computing time and problem size

Approach Computation time (seconds) Number of variables

DPLG 73.17 100 integers, 100 binary, 446 continuous
DLG 2.97 100 integers, 100 binary, 346 continuous
SPLG 321 100 integers, 100 binary, 206 continuous
DP 0.06 100 integers, 346 continuous

It is shown that even though the number of integer and binary variables in models DPLG

and DLG is unchanged, model DLG requires much less computation time than the former. Both

the models DPLG and SPLG are time consuming, due to the complicate constraint structure.

The model DP requires little time, the reason is related to the total unimodularity of matrix

{aij} and {bij}, as discussed in Chapter 5.

Cost and Global SL Comparison

Table 6.2 provides for each model (DPLG, DLG, SPLG and DP), the total cost, the average

values of the global SL and the shortfall comparing target global SL g = 0.8. Since we use as

many as needed piecewise linear functions to approximate the TSF curve, the optimal policy

solved by DPLG is the real optimal solution for this small size problem. The DPLG solution is

clearly the lower bound on the minimal cost of all the three models with a global service level

constraint. And the average global SL and average shortfall on global SL achieved by DPLG is

almost what the decision-maker expects to obtain.

Table 6.2: Total cost and SL archived

Approach Total cost Expected Global SL (%) Expected Shortfall (%)

DPLG 591.63 73.53 15.86
DLG 644.22 72.31 13.55
SPLG 735.00 74.10 18.83
DP 769.50 85.36 8.49

Firstly, it is exciting to find out that the performance measures of DLG and DPLG are similar.

DLG costs only slightly higher than DPLG on the total cost. And the expected global SLs of
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both models fall in the target global SL interval [0.7, 0.8]. Even more, the expected shortfall

on global SL of DLG is even slightly smaller than that of DPLG, and approaches more to the

limit s̄ = 0.1. Sum up the performance and the computational complexity, we conclude that the

model DLG is a good approach to the exact model DPLG, the former can be used to replace the

latter in order to solve larger size problems.

The gap between the total cost of DPLG and SPLG is remarkable. SPLG gets an expected

global SL similar to that of DPLG, by paying 24% additional total cost. Moreover, the expected

shortfall on global SL of SPLG is much bigger than the limit s̄ = 0.1. Recall that the difference

between the models DPLG and SPLG is that the former takes advantages of the flexibility of

the recourse action. Numerical results show that the flexibility allowing staffing level adjustment

during the day is favorable.

Lastly, we compare between the performance measures of model DPLG and DP, which con-

siders the soft and hard service level constraints, respectively. We find out that the total cost of

model DP is 30% higher than that of DPLG, and the expected global service level is much higher

than required. This shows that the model with hard service level constraints will lead to staffing

level overcapacity, the service level is higher than required, and the total cost is much higher

than necessary. If the decision-maker evaluates the performance of a call center by a global view,

it is then more favorable to use models with global service constraint to optimize staffing and

scheduling policies.

6.5 Numerical Implementation for Large Problems

In this section, we conduct a numerical study with larger problem sizes, in the the same order

as those analyzed in the previous chapters.

6.5.1 Experiments

Inbound calls: We consider a case where the day starts at 8:00 am, finishes at 9:00 pm, and

is divided into |I| = 11 periods of one hour each. The first 3 periods are considered as early

horizon and the update actions take place at the beginning of the 4th period.

The seasonal factors fi are 3.5, 18.4, 34.4, 31.5, 29,12.9, 28.4, 25, 17.4, 7.2 and 5.3 calls per

minute. For the random busyness factor Θ, we also discretize the gamma distribution with shape

parameter γ = 2 and scale parameter 1. We assume that Θ can take values in [0.2, 6.0]. We

consider 30 equidistant points including the two endpoints 0.20 and 6.0, which give |L| = 30

possible values for θl. The mean service time is again 5 minutes, and the acceptable waiting time

is 20 seconds. In order to observe the performance associated with varying global service level,
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here we set the target global service level g to 0.9. The upper bound of the expect shortfall of

global service level s̄ is 0.1.

For the model DP, M̄ is defined as the difference between
∑
i∈I

∑
l∈L

plNil with target SL = 0.9

and that with target SL = 0.8. The value of M̄ in this large size problem is 41.

Cost parameters: An agent can work between 7 or 8 hour periods in a day, without interme-

diate breaks. A shift can start at the beginning of any period. We have 9 feasible schedules.

The definition of the salary costs cj , dj and rj are the same as those in Section 6.4: cj =
∑
i∈I

aij ,

dj = 1.4×
∑
i∈I

bij , and rj = 0.5×
∑
i∈I

bij .

Design of the Experiments: This larger problem size contains |L| = 30 scenarios and |I| = 11.

The models DPLG and SPLG become intractable due to computational complexity. After the

comparison between the performance of the models DPLG and DLG in Section 6.4.3, we find

that the model DLG can be a good approximation to the model DPLG, and gains the feasibility

for larger size problems.

During this numeric implementation, we thus compare between the performance of the models

DLG, DP, and the static single-stage version of model DLG:

min
∑
j∈J

cj xj (6.40)

s.t.

∀ i, l, Yil =
∑
j∈J

aij xj , (6.41)

∀ i, l, Yil ≥ ∆ilBil, (6.42)

∀ i, l, νil ≤ Bil, (6.43)

∀ i, l, νil ≤ m′
il Yil, (6.44)

∀ l,
∑
i∈I

ρi νil + sl ≥ g, (6.45)∑
l∈L

pl sl ≤ s̄, (6.46)

∀ j, l, xj ≥ 0, (6.47)

∀ i, l, Yil ∈ Z+, Bil ∈ {0, 1}, νil ≥ 0. (6.48)

This model differs from the model DLG only by the fact that it is static without update and

does not allow the real time update. It is referred to as SLG. We do the same experiments as

those in Section 6.4 in order to obtain further insights on the performance of optimal policies of

different models.
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6.5.2 Insights

This problem is larger than that in Section 6.4. It contains |I| = 11 periods, |L| = 30 scenarios

and |J | = 9 shifts. We list the problem size of the models DLG, SLG and DP in Table 6.3.

Table 6.3: Computing time and problem size

Approach Computation time (seconds) Number of variables

DLG 127 330 integers, 330 binary, 879 continuous
SLG 6711.58 330 integers, 330 binary, 339 continuous
DP 0.30 330 integers, 879 continuous

It is shown that all the three models could be solved within acceptable time duration. Table

6.4 shows for each model (DLG, SLG and DP), the total cost, the average values of the global

service level and the shortfall from the target global service level g = 0.9. Recall that the allowed

Table 6.4: Total cost and SL archived

Approach Total cost Expected Global SL (%) Expected Shortfall (%)

DLG 2746.40 81.23 10.65
SLG 3914.00 80.94 11.08
DP 3682.78 94.36 2.97

expected global SL shortfall is limited to s̄ = 0.1. It is shown in Table 6.4 that the expected

shortfall of the global SL of DLG approaches very closely this limit. The optimal solution of the

model DLG also achieves an average global SL as it is expected. This confirms the good quality

of model DLG as an approximation of model DPLG.

The expected value and the expected shortfall of global SL associated with model SLG are

very close to those of DLG. The only difference is that SLG costs much more than DLG. This

again confirms the benefit of the flexibility of allowing staffing adjustment. Comparing between

the performance of the models DLG and DP, we obtain similar remarks and conclusions as those

in Section 6.4: the hard constraints formulation leads to overcapacity on staffing level, global

service level higher than required and unnecessary total cost.

6.6 Concluding Remarks

We have developed a multi-period multi-shift call center problem with staffing level update and

global service level. We focused on optimizing the staffing level w.r.t. the operating cost of the

call center, under a global service level constraint.
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We modeled our problem as a cost optimization-based model. We proposed two models. The

first used piecewise linear approximations to approach the non-linear TSF curve. The second

model used a single linear function to roughly approach the TSF curve. The first model is limited

by the size of the problems. However, the second model could solve problems with large sizes

and gives at the same time appropriate results.

We compare between a model with staffing level update and global service level constraint, a

static single-stage model with global service level constraint, and a dynamic model with period

by period service level constraints. The advantages of considering a global service level constraint

and allowing staffing level dynamic adjustments are numerically analyzed.
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Chapter 7

Conclusion and Perspectives

In this chapter, we give general concluding remarks and present directions for future

research. For further details, we refer the reader to the concluding sections of the

previous chapters.
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7.1 Conclusions

A call center, or in general a contact center, is defined as a service system in which agents serve

customers, over telephone, fax, email, etc. Over the past few years, call centers have emerged as

an essential component of the customer relationship management strategy for many large com-

panies. This customer service has become a key issue to attracting and maintaining companies

market shares. As a consequence, call centers performance indices, as typical customer waiting

time, are considered now as important assets to be optimized, in particular through efficient

workforce management of skilled operators. This thesis deals with the operation management of

call centers.

For this service sector, the staffing cost is a major component in the operating costs. Call

center scheduling aims to set-up the workforce so as to meet target service levels, and minimize

the staffing cost at the same time. The service level depends on the mean rate of arrival calls,

which fluctuates during the day and from day to day. This thesis focuses on the optimization of

staffing-scheduling problem of call centers in a stochastic setting, where the mean rates of arrival

calls are assumed to be uncertain. This subject is at the same time scientifically interesting and

practically relevant.

We investigate the impact of uncertainty on the capacity management decision and develop

models that explicitly incorporate uncertainty in the staffing planning process. The arrival

process of calls is modelled by a doubly non-stationary stochastic process, with random mean

arrival rates related to a random business factor of the day. We have considered the staffing-

scheduling problem based on four cost optimization-based models:

1. Blending Single Shift Scheduling Model, in which there exists some flexibility to modify in

real-time (within the same day) the affectation of capacity between calls and emails.

2. Multi Shift Scheduling Model with Recourse which decides an initial schedule before the

beginning of the working day and allows for real-time recourse actions to adjust the initially

scheduled staffing levels in reaction to the realized deviations from arrival-rate forecasts.

3. Distributionally Robust Optimization Model, where the probability distribution of the ran-

dom parameter is ambiguous and belongs to some probability distribution set. We propose

an approach combining stochastic programming and distributionally robust optimization

to construct this model and solve the problem.

4. Global Service Level Model, with possibility to adjust the staffing level during the day, and

the target is a global service level for the whole day (instead of a target per period).
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We have proposed some approaches such as stochastic programming (with recourse), (two-

stage) robust programming, distributionally robust programming, in order to efficiently address

the above problems and gain useful insights.

7.2 Future Research

The research in this dissertation can of course be extended and expanded. As detailed in the

conclusion remarks in this chapter, we addressed specific extensions of each model. We point

out some of the key areas for potential future research in what follows.

More General Shifts: This dissertation considers only the case where the shifts are without

breaks. One extension of this work is to take our results as the fist step, and place breaks within

shifts using heuristical methods.

Multi-types of Calls: In this dissertation we consider only single type of calls. In practice

a call centre is often a multi-skill environment which often contains multi-types of calls and

multi-skilled agents. The workflows are often very complex dues to skills based routing. The

models in this dissertation cold be extended to address multi-skilled call routing.

Abandonment: We use the model Erlang C which does not consider the abandonment of

calls to calculate the required agent number and construct the TSF curve in this dissertation.

Further development to incorporate customer impatience (abandonment) as that in the Erlang

A system is worth considering.

Uncertainty on Absenteeism: The uncertainty we take into account in this dissertation

concerns only on the randomness of the arrival rates. In practice, another source of uncertainty

is the absenteeism of agents which highly affects the efficiency of the before-hand planned agents

in order to meet the quality of service constraints. It is of interest to take into account this type

of uncertainty in the extended model.

Uncertainty on Seasonal Factors: For the distributionally robust model we developed, we

have considered the uncertainty set of probability distribution of the busyness factor Θ. It may

be of interest to consider additionally un uncertainty set of probability distribution on uncertain

seasonal factors fi.

Agent shortfall penalty with weights: We have treated the agent shortfall in each period

in a similar way. However, for periods with different numbers of required agents, the same

quantity of agent shortfall may lead the customers to experience different additional waiting

time. Consequently, a given agent shortfall in different period may of different importance.

Extended formulation could introduce weights per period that depend on the values of required

agent number.
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Variable Time Horizons: The total time horizon we consider in this dissertation is basically

one day, and the SL requirement is based on one period of several hours or on a single day as

global SL. An extension of this work would analyze the situation where the service level is

evaluated over a longer time such as a week or a month.
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Appendix of Chapter 3

This appendix deals with the analysis of Chapter 3. In Appendix A.1 and A.2, we give the

proof of the Theorem 3.1 and Proposition 3.1 in Section 3.2.3 and Section 3.3.2, respectively. We

present in Appendix A.3 the mixed robust model mentioned in Section 3.3.2. Finally, Appendix

A.4 provides numeric supports for the analysis in Section 3.4.1

A.1 Proof of Theorem 3.1

Recall the definition of Theorem 3.1 as follows: The expected daily total cost function C(y) is

convex in y.

We assume that C(y) is a continuous function over y ∈ R+, Θ and W are continuous random

variables. It is clear that proving the convexity in the continuous case implies proving it for the

original discrete case. We denote by fΘ(.) and fW (.) (FΘ(.) and FW (.)) the probability density

functions ( the cumulative probability distribution functions) of the random variables Θ and

W , respectively. For a given outcome of Θ, denoted by θ, we use vi(θ) to denote the required

number of agents to handle the calls in period i. And Vi denotes the underlying random number

of agents required to handle calls in period i. The continuous version of the total cost, given in

Equation (3.4) becomes

C(y) = n c y + uα

n∑
i=1

∫ ∞

θ∗i (y)
(vi(θ)− y)fΘ(θ) dθ + r

∫ ∞

Q(y)
(x−Q(y))fW (x) dx, (A.1)

where

Q(y) = E[

n∑
i=1

(y − Vi)
+] =

n∑
i=1

∫ θ∗i (y)

0
(y − vi(θ))fΘ(θ) dθ, (A.2)

θ∗i (y) = min{θ : vi(θ) ≥ y}, i = 1, .., n. (A.3)
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Proving the convexity of the C(·) function is equivalent to prove that
d2C(y)

dy2
≥ 0 for y ∈ R+.

Applying Leibniz formula, we have

dQ(y)

dy
=

n∑
i=1

∫ θ∗i (y)

0
fΘ(θ) dθ =

n∑
i=1

FΘ(θ
∗
i (y)). (A.4)

Combining now Equations (A.1) and (A.4), we obtain

dC(y)

dy
= nc− uα

n∑
i=1

∫ ∞

θ∗i (y)
fΘ(θ)dθ + r

∫ ∞

Q(y)

∂
(
x−Q(y)

)
∂y

fW (x)dx (A.5)

= nc+ uα

(
n∑

i=1

FΘ(θ
∗
i (y))− n

)
− r

∫ ∞

Q(y)

n∑
i=1

FΘ(θ
∗
i (y)) fW (x)dx (A.6)

= n(c− uα) +
(
uα − r

(
1− FW (Q(y))

)) n∑
i=1

FΘ(θ
∗
i (y)). (A.7)

We have

d2C(y)

dy2
=

d

dy

((
uα − r

(
1− FW (Q(y))

))
·

n∑
i=1

FΘ(θ
∗
i (y))

)
. (A.8)

Since for i = 1, ..., n, FΘ(·) ≥ 0 and F ′
Θ(·) ≥ 0, FW (·) ≥ 0 and F ′

W (·) ≥ 0 and by assumption

r < uα ( see Section 3.2), we have

uα − r
(
1− FW (Q(y))

)
≥ 0, (A.9)

and
d

dy

(
uα − r

(
1− FW (Q(y))

))
= r

dFW (Q(y))

dy
≥ 0. (A.10)

We thereafter conclude that
d2C(y)

dy2
≥ 0, which finishes the proof of the theorem.

2

A.2 Proof of Proposition 3.1

We recall the Proposition 3.1 as follows: Let C∗(θ, w) be the optimal objective value of the problem

defined in (3.19)-(3.23). For δ > 0, we have the following inequalities,

C∗(θ + δ, w) ≥ C∗(θ, w), (A.11)

C∗(θ, w + δ) ≥ C∗(θ, w). (A.12)
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Recall that C(y, θ, w) is the cost associated with a given staffing level y, a business level θ and

a back-office workload w as defined in Equation (3.5). For given sample values θ and w, we denote

the optimal solution of problem (3.19)-(3.23) as y∗θ,w. Furthermore, for a given staffing level y, and

sample values θ and w, we denote the corresponding variables Mθ, w, i(y), M−
θ, w, i(y), M

+
θ, w, i(y)

and Nθ, w(y). We now prove that for δ ≥ 0, we have C(y∗θ+δ, w, θ, w) ≤ C(y∗θ+δ, w, θ + δ, w).

It is straight forward to see that the variables M−
θ, w, i(y) and M+

θ, w, i(y) can not take strictly

positive values, simultaneously. In case of over-staffing (under-staffing) at period i, we have

M+
θ, w, i(y) > 0 and M−

θ, w, i(y) = 0 ( M+
θ, w, i(y) = 0 and M−

θ, w, i(y) > 0).

Furthermore, using the Erlang C formula, we have for each period i, vi(θ fi) ≤ vi((θ +

δ) fi). For the staffing level y∗θ+δ, w, we have Mθ, w, i(y
∗
θ+δ, w) ≥ Mθ+δ, w, i(y

∗
θ+δ, w), which means

M+
θ, w, i(y

∗
θ+δ, w) ≥ M+

θ+δ, w, i(y
∗
θ+δ, w) and M−

θ, w, i(y
∗
θ+δ, w) ≤ M−

θ+δ, w, i(y
∗
θ+δ, w). Furthermore, by

constraint (3.22), we have Nθ, w(y
∗
θ+δ, w) ≤ Nθ+δ, w(y

∗
θ+δ, w). As n, c, uα, r > 0, we easily get

C(y∗θ+δ, w, θ, w) ≤ C(y∗θ+δ, w, θ + δ, w). Since C∗(θ, w) = miny∈NC(y, θ, w), we have C∗(θ, w) ≤

C(y∗θ+δ, w, θ, w). Therefore C∗(θ, w) ≤ C∗(θ + δ, w), which gives (A.11).

Consider now sample values θ and w + δ, with δ > 0. For a given staffing level y, by

constraint (3.20), we have Mθ, w, i(y) = Mθ, (w+δ), i(y), and Nθ, w(y) ≤ Nθ, w+δ(y). This leads to

C(y∗θ, w+δ, θ, w) ≤ C(y∗θ, w+δ, θ, w + δ). Since C∗(θ, w) ≤ C(y∗θ, w+δ, θ, w), we obtain C∗(θ, w) ≤

C∗(θ, w+ δ), which gives (A.12). 2

A.3 Mixed Robust Programming Formulation

Here we give a formulation mixing stochastic and robust programming (see the end of Section

3.3.2). With an uncertainty set for Θ defined as

U ′ = {θ : 0 ≤ θ ≤ θ + η σθ, with η ≥ 0} (A.13)
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and with the random back-office workload process described as in Section 3.2.2, a mixed robust

programming formulation can be given as follows.

Min nc y + uα

n∑
i=1

M−
i + r

K∑
k=1

pwk
Nk (A.14)

s.t. Mi = y − vi((θ + η σθ)fi), with i = 1, ..., n, (A.15)

Mi =M+
i −M−

i , with i = 1, ..., n, (A.16)

Nk ≥ wk −
n∑

i=1

M+
i, l, with k = 1, ...,K, (A.17)

y,M+
i ,M

−
i , Nk ≥ 0, with i = 1, ..., n, k = 1, ...,K. (A.18)

In this problem, Mi represents the difference between the staffing level and the required agent

number in period i for the highest arrival rate in the considered uncertainty set, (θ+ η σθ)fi. Nk

is the over-time workload required in order to finish back-office jobs in scenario k.

A.4 Additional Numerical Results

In Tables A.1 and A.2, we give additional support for the numerical analysis of Section 3.4.1.
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Table A.1: E[Θ] = 1 and σΘ = 0.21; E[W ] = 600 and σW = 60

Total Cost Salary cost Under-staffing cost Overtime cost Constr.
Optimal violation
staff y∗ Average STD. Average STD. Average STD. Pct.

PI — 29842.15 5698.79 28006.24 1830.28 819.21 5.64 23.82 8.23

DA 167 35096.13 11161.08 27555.00 7204.60 10567.79 336.54 781.65 17.22

SP 184 34016.92 7248.73 30360.00 3616.24 7111.36 40.69 244.55 10.08

RP
α = 10% η = 0.1 170 34726.28 10404.54 28050.00 6430.49 9919.38 245.79 660.63 15.81
uα = 140 η = 0.5 184 34016.92 7248.73 30360.00 3616.24 7111.36 40.69 244.55 10.08

η = 1.0 201 34785.34 4386.80 33165.00 1618.62 4375.90 1.72 40.21 5.20
η = 2.0 234 38850.14 1334.13 38610.00 240.14 1334.13 0.00 0.00 0.99
η = 3.0 268 44239.28 268.87 44220.00 19.28 268.87 0.00 0.00 0.10

MxRP
η = 0.1 170 34726.28 10404.54 28050.00 6430.49 9919.38 245.79 660.63 15.81
η = 0.5 184 34016.92 7248.73 30360.00 3616.24 7111.36 40.69 244.55 10.08
η = 1.0 201 34785.34 4386.80 33165.00 1618.62 4375.90 1.72 40.21 5.20
η = 2.0 234 38850.14 1334.13 38610.00 240.14 1334.13 0.00 0.00 0.99
η = 3.0 268 44239.28 268.87 44220.00 19.28 268.87 0.00 0.00 0.10

PI — 30169.06 5827.46 30159.40 0.00 0.00 9.66 36.60 0.00

DA 182 38535.26 16209.41 30030.00 8450.79 16040.49 54.47 288.14 10.81

SP 202 36628.06 9097.57 33330.00 3296.72 9088.74 1.34 35.04 4.98

RP
α = 5% η = 0.1 186 37814.84 14566.28 30690.00 7094.84 14458.39 30.01 205.77 9.40
uα = 300 η = 0.5 200 36650.35 9684.86 33000.00 3648.18 9671.77 2.17 45.95 5.45

η = 1.0 219 37436.04 5108.90 36135.00 1301.04 5108.90 0.00 0.00 2.23
η = 2.0 255 42191.39 1116.90 42075.00 116.39 1116.90 0.00 0.00 0.26
η = 3.0 292 48183.71 124.35 48180.00 3.71 124.35 0.00 0.00 0.01

MxRP
η = 0.1 186 37814.84 14566.28 30690.00 7094.84 14458.39 30.01 205.77 9.40
η = 0.5 200 36650.35 9684.86 33000.00 3648.18 9671.77 2.17 45.95 5.45
η = 1.0 219 37436.04 5108.90 36135.00 1301.04 5108.90 0.00 0.00 2.23
η = 2.0 255 42191.39 1116.90 42075.00 116.39 1116.90 0.00 0.00 0.26
η = 3.0 292 48183.71 124.35 48180.00 3.71 124.35 0.00 0.00 0.01

PI — 30169.06 5827.46 30159.40 0.00 0.00 9.66 36.60 0.00

DA 182 71634.19 79033.33 30030.00 41549.72 78865.76 54.47 288.14 10.81

SP 233 41147.64 14645.96 38445.00 2702.64 14645.96 0.00 0.00 1.06

RP
α = 1% η = 0.1 186 65602.95 71194.13 30690.00 34882.94 71087.09 30.01 205.77 9.40

uα = 1475 η = 0.5 200 50939.05 47565.89 33000.00 17936.89 47552.87 2.17 45.95 5.45
η = 1.0 219 42531.78 25118.77 36135.00 6396.78 25118.77 0.00 0.00 2.23
η = 2.0 255 42647.23 5491.41 42075.00 572.23 5491.41 0.00 0.00 0.26
η = 3.0 292 48198.22 611.38 48180.00 18.22 611.38 0.00 0.00 0.01

MxRP
η = 0.1 186 65602.95 71194.13 30690.00 34882.94 71087.09 30.01 205.77 9.40
η = 0.5 200 50939.05 47565.89 33000.00 17936.89 47552.87 2.17 45.95 5.45
η = 1.0 219 42531.78 25118.77 36135.00 6396.78 25118.77 0.00 0.00 2.23
η = 2.0 255 42647.23 5491.41 42075.00 572.23 5491.41 0.00 0.00 0.26
η = 3.0 292 48198.22 611.38 48180.00 18.22 611.38 0.00 0.00 0.01
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Table A.2: E[Θ] = 1 and σΘ = 0.21; E[W ] = 1000 and σW = 100

Total Cost Salary cost Under-staffing cost Overtime cost Constr.
Optimal violation
staff y∗ Average STD. Average STD. Average STD. Pct.

PI — 32380.01 3803.42 32229.51 93.24 269.54 57.26 52.52 2.47

DA 195 34421.47 3306.33 32175.00 467.01 1124.20 1779.45 2434.60 6.72

SP 184 34179.90 4181.90 30360.00 774.91 1523.86 3044.99 3007.52 10.08

RP
α = 10% η = 0.1 198 34573.05 3055.65 32670.00 403.20 1028.04 1499.85 2256.24 5.94
uα = 30 η = 0.5 210 35543.77 2081.96 34650.00 216.09 700.19 677.68 1529.68 3.49

η = 1.0 225 37409.53 1101.63 37125.00 91.08 408.53 193.45 775.65 1.64
η = 2.0 255 42090.97 183.05 42075.00 11.64 111.69 4.33 97.67 0.26
η = 3.0 284 46860.91 22.09 46860.00 0.90 21.93 0.01 1.05 0.03

MxRP
η = 0.1 192 34306.34 3554.89 31680.00 538.98 1225.90 2087.36 2606.67 7.56
η = 0.5 200 34695.45 2888.18 33000.00 364.82 967.18 1330.63 2134.48 5.45
η = 1.0 212 35756.59 1932.22 34980.00 193.57 654.10 583.02 1415.12 3.17
η = 2.0 233 38585.79 728.44 38445.00 54.97 297.88 85.82 490.39 1.06
η = 3.0 250 41276.60 257.09 41250.00 16.97 141.93 9.63 146.71 0.37

PI — 32725.57 4252.19 32677.93 0.00 0.00 47.64 54.13 0.00

DA 195 36538.59 8082.15 32175.00 2584.14 6220.55 1779.45 2434.60 6.72

SP 202 36328.43 6585.24 33330.00 1824.18 5029.10 1174.25 2011.94 4.98

RP
α = 5% η = 0.1 198 36400.88 7422.82 32670.00 2231.03 5688.50 1499.85 2256.24 5.94
uα = 166 η = 0.5 210 36523.37 5067.04 34650.00 1195.69 3874.39 677.68 1529.68 3.49

η = 1.0 225 37822.42 2859.08 37125.00 503.98 2260.54 193.45 775.65 1.64
η = 2.0 255 42143.73 674.59 42075.00 64.40 618.02 4.33 97.67 0.26
η = 3.0 292 48182.05 68.81 48180.00 2.05 68.81 0.00 0.00 0.01

MxRP
η = 0.1 192 36749.70 8764.76 31680.00 2982.34 6783.30 2087.36 2606.67 7.56
η = 0.5 200 36349.29 6997.70 33000.00 2018.66 5351.71 1330.63 2134.48 5.45
η = 1.0 219 37186.11 3641.13 36135.00 719.91 2826.93 331.21 1045.39 2.23
η = 2.0 255 42143.73 674.59 42075.00 64.40 618.02 4.33 97.67 0.26
η = 3.0 292 48182.05 68.81 48180.00 2.05 68.81 0.00 0.00 0.01

PI — 32725.57 4252.19 32677.93 0.00 0.00 47.64 54.13 0.00

DA 195 54970.04 52282.73 32175.00 21015.59 50588.78 1779.45 2434.60 6.72

SP 233 41004.42 13747.43 38445.00 2473.61 13404.77 85.82 490 1.06

RP
α = 1% η = 0.1 198 52313.78 47841.24 32670.00 18143.93 46261.93 1499.85 2256.24 5.94

uα = 1350 η = 0.5 210 45051.66 32601.04 34650.00 9723.98 31508.61 677.68 1529.68 3.49
η = 1.0 225 41417.05 18936.65 37125.00 4098.60 18383.90 193.45 775.65 1.64
η = 2.0 255 42603.06 5078.16 42075.00 523.73 5026.03 4.33 97.67 0.26
η = 3.0 292 48196.67 559.57 48180.00 16.67 559.57 0.00 0.00 0.01

MxRP
η = 0.1 192 58021.33 56967.56 31680.00 24253.97 55165.38 2087.36 2606.67 7.56
η = 0.5 200 50747.44 45022.91 33000.00 16416.81 43522.97 1330.63 2134.48 5.45
η = 1.0 219 42320.89 23739.77 36135.00 5854.68 22990.06 331.21 1045.39 2.23
η = 2.0 255 42603.06 5078.16 42075.00 523.73 5026.03 4.33 97.67 0.26
η = 3.0 292 48196.67 559.57 48180.00 16.67 559.57 0.00 0.00 0.01
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Appendix of Chapter 4

B.1 Proof of Theorem 4.1

In this Appendix we give the proof of Theorem 4.1: The relaxed linear programs of MIP (4.7) is

integral (has an integral optimum, when any optimum exists).

Recall the formulation of the MIP (4.7):

Min
∑
j∈J

cj Xj +
∑
l∈L

∑
i∈I1

pl uMi,l +
∑
l∈L

∑
k∈K

pbl,k

∑
j∈J

dj Yj,k −
∑
j∈J

rj Zj,k +
∑
i∈I2

uM ′
i,l,k


s.t.

∑
j∈J

aijXj +Mi,l ≥ ni,l, i ∈ I1, l ∈ L,

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj,k − Zj,k) +M ′
i,l,k ≥ ni,l, i ∈ I2, l ∈ L, k ∈ K,

Xj ≥ Zj,k, j ∈ J, k ∈ K,

Mi,l ≥ 0, i ∈ I1, l ∈ L,

M ′
i,l,k ≥ 0, i ∈ I2, l ∈ L, k ∈ K,

Xj , Yj,k, Zj,k ∈ Z+, j ∈ J, k ∈ K.

Lemma B.1 Let H, W be vectors of m dimension with each element being integer, infinite or

infinitesimal, we prove that the set E defined in (B.1) is an integer polyhedron.

Wi ≥ ei ≥ Hi, i = 1, ..,m, (B.1)

ei ≥ ej , i = 1, ..,m, j = 1, ..,m, i ̸= j.

Proof : We use the reductio ad absurdum method to prove this. Recall that in mathematics,

155
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an extreme point of a convex set E in a real vector space is a point in E which does not lie in

any open line segment joining two points of E. Suppose the polyhedron E contains an extreme

point e′ of which all the elements are not integers. Let S denotes the ensemble index where the

element of e′ is non-integer, S := {i : e′i /∈ Z, i = 1, ..,m}. And let ϕ be the minimum of the gaps

between these non-integer elements and their own closest integers. This minimum is the largest

value satisfying

ϕ ≤ ⌈e′i⌉ − e′i, i ∈ S, (B.2)

ϕ ≤ e′i − ⌊e′i⌋, i ∈ S. (B.3)

We have thereafter 0 < ϕ < 1. As an extreme point of set E, then we have e′ ∈ E, consequently

e′ satisfies the inequalities in (B.1). Let Φ be the vector of m dimension defined as Φ = {Φi =

ϕ, fori ∈ S; Φi = 0, otherwise}. It is easy seen that both e′ +Φ and e′ −Φ satisfy Inequalities

(B.1), the non-integer point e′ can not be an extreme point of polyhedron E.

Lemma B.2 The following linear problem (B.4-B.8) is integral.

Min
∑
j∈J

cj Xj +
∑
j∈J

dj Yj −
∑
j∈J

rj Zj +
∑
i∈I

uMi (B.4)

s.t.
∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj − Zj) +Mi ≥ ni, i ∈ I, (B.5)

Xj ≥ Zj , j ∈ J, (B.6)

Mi ≥ 0, i ∈ I, (B.7)

Xj , Yj , Zj ≥ 0, j ∈ J. (B.8)

Proof : Problem (B.4-B.8) is a linear function, the feasible solution set is convex and the

optimal solution is an extreme point. We show that all extreme points are integers for this

feasible solution set.

Recall the definition of the matrix A and A′ in Section 4.2.6, denote vector x = (Xj |j ∈ J),

vector y = (Yj |j ∈ J), vector z = (Zj |j ∈ J), vector M = (Mi|i ∈ I) and vector n = (ni|i ∈ I).

Constraint (B.5) can be rewritten as:

(
A A′ A′ I

)


x

y

−z

M

 =
(

n
)
.
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Recall that both matrix A and A′ are totally unimodular. Hence every column of the left side

matrix (A A′ A′ I) would have continuous ones, this matrix is also totally unimodular. As the

required agents number ni is integral, Constraint (B.5) defines a polyhedron all of whose extreme

points are integer valued. This integer polyhedron can be rewritten as:


x

y

−z

M

 ≥


α

β

γ

δ

 ,

where α, β, γ, δ are integer vectors. Combine with Constraints (B.6)-(B.8), the feasible solution

set can be formulated as:

Xj ≥ Zj , j ∈ J, (B.9)


∞

∞

(−γ)+

∞

 ≥


x

y

z

M

 ≥


α+

β+

0

δ+

 .

It is obvious that Equation (B.9) has the same structure as Equation (B.1). Therefore, the

feasible set of Equation (B.4)-(B.8) is an integer polyhedron consequently the LP (B.4)-(B.8) is

integral.

Theorem B.1 The relaxed linear programs of MIPs (4.7) is integral.

Using the results of Lemmas B.1 and B.2, we prove this theorem. For demonstration con-

venience, we consider the number of scenarios in MIP (4.7) as |L| × |K| for each period i ∈ I

and reformulate the relaxed linear program as in Equation (B.10)-(B.17). As parameters, for a

given period i and scenario l, we define that the ni,l,k = ni,l for k ∈ K. Then the linear relaxed
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version of (4.7) can be written as

Min
∑
j∈J

cj Xj +
∑
l∈L

∑
k∈K

pbl,k

∑
j∈J

dj Yj,l,k − rj Zj,l,k +
∑
i∈I

uM ′
i,l,k

 , (B.10)

s.t.
∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj,l,k − Zj,l,k) +M ′
i,l,k ≥ ni,l,k, i ∈ I, l ∈ L, k ∈ K, (B.11)

Xj ≥ Zj,1,k, j ∈ J, k ∈ K, (B.12)

Yj,1,k = Yj,l,k, j ∈ J, l ∈ L, k ∈ K, (B.13)

Zj,1,k = Zj,l,k, j ∈ J, l ∈ L, k ∈ K, (B.14)

M ′
i,l,1 =M ′

i,l,k, i ∈ I1, l ∈ L, k ∈ K, (B.15)

M ′
i,l,k ≥ 0, i ∈ I, l ∈ L, k ∈ K, (B.16)

Xj , Yj,l,k, Zj,l,k ≥ 0, j ∈ J, l ∈ L, k ∈ K. (B.17)

Equalities (B.13)-(B.14) guarantee that all scenarios which share the estimated θ̃k, implement

the same second-stage decisions. Equality (B.15) concerning the agents shortfall in the early

horizon periods are straight forward. Denote vector x = (Xj |j ∈ J). For l ∈ L, k ∈ K, we

denote the vectors as follow. M′
l,k = (M ′

i,l,k|i ∈ I), y′
l,k = (Yj,l,k|j ∈ J), z′l,k = (Zj,l,k|j ∈ J), and

n′
l,k = (ni,l,k|i ∈ I).

Constraint (B.11) can be presented as:
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

A A′ A′ I 0 0 .. .. 0

A 0 A′ A′ I 0 .. .. 0

.. .. .. .. .. .. ..

A 0 0 .. A′ A′ I .. 0

.. .. .. .. .. .. ..

A 0 0 .. 0 .. A′ A′ I





x

y1,1

−z1,1

M1,1

y1,2

−z1,2

M1,2

..

yl,k

−zl,k

Ml,k

..

y|L|,|K|

−z|L|,|K|

M|L|,|K|



=



n1,1

n1,2

..

nl,k

..

n|L|,|K|


.

And the feasible solution set of the Equation (B.10)-(B.17) can be presented as:

Xj ≥ Zj,1,k, j ∈ J, k ∈ K,

Yj,1,K = Yj,l,k, j ∈ J, l ∈ L, k ∈ K,

Zj,1,K = Zj,l,k, j ∈ J, l ∈ L, k ∈ K, (B.18)

M ′
i,l,1 =M ′

i,l,k, i ∈ I1, l ∈ L, k ∈ K,

, 
∞

∞

(−γ′)+

∞

 ≥


X

Y

Z

M′′

 ≥


α′+

β′+

0

δ′+

 ,

where we denote the vector X = (Xj |j ∈ J), vector Y = (Yj,l,k|j ∈ J, l ∈ L, k ∈ K), vector

Z = (Zj,l,k|j ∈ J, l ∈ L, k ∈ K), vector M′′ = (M ′
i,l,k|i ∈ I, l ∈ L, k ∈ K). And the vectors

α′, β′, γ′, δ′ have the corresponding dimensions. We can see that Equation (B.18) also has the

same structure as Equation (B.1). Therefore, the relaxed linear program of the MIP (4.7) is

integral. This finishes the proof. 2
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B.2 Proof of the worst case θ value within a given interval

Given the fist-stage decision variables Xj , and the estimate business factor θ̃, by the following

we prove that, among all the true business factor θ falling in the interval [θ̃ − τ, θ̃ + τ ], the one

associated with the worst cost is θ = θ̃ + τ .

Consider the following Problem (B.19). It is obvious that the optimal solution of this problem

with θ = θ̃+τ is feasible for the same problem with other θ values in [θ̃−τ, θ̃+τ ], since ni(θ) is an

increasing concave function in θ. This indicates that the optimal cost associated with θ = θ̃ + τ

is bigger or equal than that associated with other values of θ in this interval.

min
Xj ,Yj ,Zj

∑
j∈J

cj Xj +
∑
j∈J

dj Yj(θ)−
∑
j∈J

rj Zj(θ) +
∑
i∈I

uMi

s.t.
∑
j∈J

aijXj +Mi ≥ ni(θ), i ∈ I1, (B.19)

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj(θ)− Zj(θ)) +Mi ≥ ni(θ), i ∈ I2,

Xj ≥ Zj(θ), j ∈ J,

Mi ≥ 0, i ∈ I,

Xj , Yj(θ), Zj(θ) ∈ Z+, j ∈ J.

B.3 Proof of Theorem 4.2

In this section we give the proof of Theorem 4.2: If there exists a value of θ, denoted by θ̂, for

which Ni(θ̂) ≥ Nik(θ) with i ∈ I, for any θ ∈ Uk, k ∈ K, then Equation (4.14)-(4.21) can be

simplified as Equation (4.22)-(4.29).

Given values of Xj , j ∈ J , let Ck(θ, Yjk, Zjk,Mik,M
′
ik) denote the cost associated with a

given solution (Yjk, Zjk,Mik,M
′
ik).

Let C∗
k(θ), k ∈ K, denote the optimal cost of the optimization problem (B.20)-(B.27), with

optimal solution (Y ∗
jk, Z

∗
jk,M

∗
ik,M

′∗
ik).
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min
Yjk,Zjk

∑
j∈J

dj Yjk −
∑
j∈J

rj Zjk +
∑
i∈I1

uMik +
∑
i∈I2

uM ′
ik (B.20)

s.t.
∑
j∈J

aijXj +Mik ≥ Nik(θ), i ∈ I1, θ ∈ Uk, (B.21)

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yjk − Zjk)(θ̃ + τ) +M ′
ik ≥ Nik(θ),

i ∈ I2, θ ∈ Uk, θ̃ ∈ [θ − τ, θ + τ ] ∩ U ′
k(θ) (B.22)

Nik(θ) ≥ φik
1 + φik

2 θ, i ∈ I, θ ∈ Uk, (B.23)

Xj ≥ Zjk, j ∈ J, k ∈ K, (B.24)

Mik ≥ 0, i ∈ I1, (B.25)

M ′
ik ≥ 0, i ∈ I2, (B.26)

Yjk, Zjk ∈ Z+, j ∈ J. (B.27)

Let also C∗(θ̂) be the optimal cost of the optimization problem (B.28)-(B.34), with optimal

solution (Ŷj , Ẑj , M̂i, M̂
′
i).

min
Yj ,Zj

∑
j∈J

dj Yj −
∑
j∈J

rj Zj +
∑
i∈I1

uMi +
∑
i∈I2

uM ′
i , (B.28)

s.t.
∑
j∈J

aijXj +Mi ≥ Ni(θ̂), i ∈ I1, (B.29)

∑
j∈J

aijXj +
∑
j∈J

a′ij(Yj − Zj)(θ̂ + ϵ+ τ) +M ′
i ≥ Ni(θ̂), i ∈ I2, (B.30)

Xj ≥ Zj , j ∈ J, (B.31)

Mi ≥ 0, i ∈ I1, (B.32)

M ′
i ≥ 0, i ∈ I2, (B.33)

Yj , Zj ∈ Z+, j ∈ J. (B.34)

We prove by following that C∗(θ̂) ≥ C∗
k(θ) for k ∈ K. According to the assumption in Theo-

rem 4.2 that Ni(θ̂) ≥ Ni(θ) with i ∈ I for any θ ∈ Uk, k ∈ K, it is easy to see that (Ŷj , Ẑj , M̂i, M̂
′
i)

is a feasible solution for Problem (B.20)-(B.27). Then we have Ck(θ, Ŷj , Ẑj , M̂i, M̂
′
i) = C∗(θ̂) for

k ∈ K. Since C∗
k(θ) ≤ Ck(θ, Ŷj , Ẑj , M̂i, M̂

′
i), we have C∗(θ̂) ≥ C∗

k(θ) for k ∈ K. This ends the

proof of Theorem 4.2. 2
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