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Abstract

The number of pods per plant and the number of seeds per pod are the most variable
yield components in winter oilseed rape (WOSR). The production of a seed is the
combination of several physiological processes, namely formation of ovules and pollen
grains, fertilization of the ovules and development of young embryos, any problem in
these processes may result in seed abortion or pod abortion. Both the number of ovules
per pod and the potential for the ovule to develop into a mature seed may depend
on pod position in the plant architecture and time of appearance. Furthermore, the
expansion (basipetal) of ramifications is in inverse order of the initiation (acropetal) in
WOSR. The complex developmental pattern of WOSR makes it difficult to analyze.
In this thesis, we first investigated the variability of the following yield components (a)
ovules/pod, (b) seeds/pod, and (c) pods/axis in relation to two explanatory variables.
These two variables include (1) flower and inflorescence position and (2) time of pod
appearance, linked to the effect of assimilate availability. Based on these experiments,
we developed a probabilistic model to simulate the number of ovules per ovary and
seeds per pod according to the biological phenomena of flower fertility. The model
can deduce the distribution of the number of pollen grains per stigma and distinguish
the factors that influence the yield. Meanwhile, we compared our model to another
model of flower fertility in kiwifruit developed by Lescourret et al., and improved the
computation for the distribution of pollen grain number in our model.. In the last,
we tested our model on the other species including cacao tree and soybean. The main
contents are as follows:

1 The number and position of flowers and pods were recorded for the main stem
(R0) and inflorescences R1, R4, R7, R9 and R11. The variety was Mendel. The
results indicated that for the main stem, the number of ovules per pod decreased
for a few ranks and then tended to increase and again to decrease at the end. On
the ramifications R1 and R4, the number of ovules increased at first then remained
constant with the pod rank, but it remained constant along the inflorescence on
the other ramifications. However, the mean number of ovules per pod increased
with ramifications from top to bottom. The number of seeds per pod did not
vary with the pod rank at the basal positions and decreased afterwards along the
inflorescence, but it did not differ between inflorescences. The number of ovules
and seeds per pod did not vary with the time of pod appearance for the pods.
However, the number of ovules and seeds per pod can be impacted by the time
of pod appearance on the plant scale.

2 To analyze the effect of available assimilates on the yield components, different
trophic states were created by clipping the main stem, ramifications or basal flow-
ers. The results indicated that clipping the main stem or ramifications increased
the number of ovules per pod, seeds per pod and pods per axis. However, clipping
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all the ramifications and basal flowers only increased the number of pods on the
main stem. In addition, clipping treatments increased the mean seed weight. Ac-
cordingly, we can conclude that assimilate availability is one of factors influencing
the seed production.

3 The model of flower fertility was developed by combining different probability
distributions. The model can simulate the number of viable ovules per ovary,
the number of pollen grains per flower, the probability of seed viability and the
survival probability of pod. Model parameters were estimated using a Generalized
Least Square method with two years, clipping treatments, pod ranks, ramification
ranks and four varieties. The results indicated that ovule viability, the intensity
of pollination, assimilate availability and architectural effects can influence the
seed production.

4 Two resampling methods were used to analyze the stability of the model. The
coefficients of variation (CV) using jackknifing were smaller than that using boot-
strapping. However, the results of the two methods indicated that the parameters
in the model were quite stable. The CVs of the parameters were small except the
variance of the number of ovules per pod. The CV was a little large with 3.3 for
jackknife and 11 for bootstrap, respectively.

5 The estimation for the distribution of pollen grain number was improved by com-
paring our model to the model of flower fertility in kiwifruit developed by Le-
scourret et al. The flower fertility of model in kiwifruit computed the number
of fertilized ovules using stochastic method. The results were good but it was
time-consuming. The model developed in the thesis assumed that the ratio of
ovule and pollen was 1:1. The smaller value of them was taken as the number of
fertilized ovules. However, the studies in other species found that one pollen grain
might not be enough to fertilize one ovule. Thus, we introduced one parameter
k to estimate the proportion of effective pollen grains in the model, in turns, to
compute the distribution of pollen grain number. The results indicated that the
model can simulate the flower fertility in WOSR very well.

6 The model of flower fertility was used to simulate the number of seeds per pod
in soybean and cacao tree. The results in soybean were good. The number of
ovules and seeds per pod can be well calibrated. For the cacao tree, the model can
estimate the number of ovules and seeds per pod with good pollination. However,
the estimations were not good for the situation of poor pollination. We do not
figure out why the results were not good.

Based on the field experiments and model estimations, the following conclusions can
be drawn. The amount of available assimilates was the primary determinant of pod
and seed production during the flowering period. Furthermore, the ovule viability and
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pollination limitation could result in the decrease of the number of pods and the number
of seeds per pod at the distal position of inflorescence. In addition, the distribution of
resources was significantly affected by both the positions of pods within an inflorescence
and the position of inflorescences within a plant in WOSR. The model of flower fertility
could be a useful tool to study how to improve seed yield in flowering plants and the
model can be applied to the other flowering plants.
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Chapter 1

Introduction

1.1 Context

Seed yield of oilseed rape is determined by several variables, including plant density,
number of pods per plant, number of seeds per pod and individual seed weight [Diepen-
brock, 2000]. Seed yield was significantly and positive correlated with the number of
pod per plant and 1000-seed weight [Ozer et al., 1999]. Furthermore, Tuncturk et al.
[Tuncturk and Ciftci, 2007] investigated the relationships between yield and some yield
components of 16 oilseed rape cultivars by using correlation and path coefficient anal-
ysis. The results revealed that number of branches per plant, the number of pods per
plant, 1000-seed weight and number of seeds per pod have shown a considerable direct
positive effect on seed yield. Large variations exist in the yield components of oilseed
rape among varieties [Ali et al., 2003] and between plants of the same variety grown in
the same field [Malagoli et al., 2004].
Flowers provide the most trustworthy external characteristics for establishing relation-
ships among angiosperm species. Flowers show remarkable variation in form and elabo-
ration between angiosperm species and between plants in the same species. The pattern
most commonly found is a reduction in the number or size of reproductive structures
from proximal/early to distal/late flowers within the inflorescence [Buide, 2004; Lee,
1988], or a similar reduction in fruit set and/or seed set [Guitián and Navarro, 1996;
Solomon, 1988]. In most flowering plants, the number of seeds is affected by low ratios
of fruit-to-flower [Stephenson, 1981] and seed-to-ovule [Arathi et al., 1999]. In fact,
only part of the flowers and ovules that are initiated form fruits and seeds [Bawa and
Webb, 1984; Lloyd, 1980]. Abortions occur at several developmental stages, even in
mature fruits [Arathi et al., 1999]. In addition, in some plants, a fruit with too few
seeds may abort [Bertin, 1982; Ganeshaiah et al., 1986]. Particularly for plants with
inflorescences, as their flower and fruit formation occur during a long period, and it is
subjected to a great variability in various environmental conditions, the size and num-
ber of reproductive structures and the components of female reproductive success show
marked variations among flowers within the inflorescence [Lee, 1988; Stephenson, 1980].

1



2 CHAPTER 1. INTRODUCTION

Numerous studies have investigated the relationships between reproductive effort and
spatial position (proximal or distal), and time of opening (early or late) within the
inflorescence. The probability of fruit set and number of seeds per fruit are often lower
for distal/late-opening flowers than that for proximal/early-opening flowers [Guitián
and Navarro, 1996]. The earliest opening flowers on an inflorescence are more likely
to set fruit and produce more seeds than later opening flowers [Medrano et al., 2000].
The flowers located at a lower position of the inflorescence and which opened earlier
showed higher fruit set than those at a higher position and which opened later within
the inflorescences [Hiei and Ohara, 2002]. Likewise, fruit size [Wolfe, 1992], flower size
and ovary size [Ashman, 1992], stamen number [Diggle, 1995], ovule number and seed
number [Brookes et al., 2010; Burd et al., 2009; Cruden, 1977] and pollen production
[Brunet and Charlesworth, 1995; Burd, 1995] have been observed to decline in a proxi-
mal to distal pattern.
Taken together, the flowers play an important role on reproductive success of flowering
plants, which brings up a research subject that which factors impact the reproductive
success and how they work.

1.2 Problematics

1.2.1 Causes of reproductive failure in flowering plants

An upper limit to the number of fruits that can be produced by an individual during a
reproductive episode is set by the number of female flowers, while an upper limit to the
number of seeds is set by the number of ovules within these flowers [Stephenson, 1981].
The fraction of this reproductive potential depends upon the number of pollinated
flowers [Stephenson, 1981], the number of fertilized ovules [Bouttier and Morgan, 1992b],
fruit/seed predation [Janzen, 1971], and the ability of the maternal parent to provide
the necessary resources for development [Elizabeth, 1991]. Various non-exclusive factors
have been put forward to explain variation of reproductive failure in plant species, such
as resource competition [Arathi et al., 1999; Lee, 1988; Stephenson, 1980], non-uniform
pollination [Berjano et al., 2006; Gruber and Claupein, 2007] and architectural effects
[Diggle, 1995; Medrano et al., 2000; Vallius, 2000]. In this section, based on the previous
studies, we can conclude about the factors influencing seed production and detail them
in the following.

Ovule viability

Seed number per pod is determined by the number of ovules per ovary, the number of
ovules fertilized and the number of fertilized ovules developing into seeds. The number
of ovules per ovary is a genetic factor of plant and varies with genotype. The probability
of ovule viability is quite stable for the same species [De Reffye, 1974]. Ovule viability
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is described as the percentage of ovules with complete embryo sacs at flower opening
[Bouttier and Morgan, 1992b]. Generally speaking, 30% of the ovules are sterile due
to the absence of an embryo sac [Bouttier and Morgan, 1992b]. Within the terminal
raceme, decreased ovule viability due to the sterility of ovules is one of the causes for
the lower number of seeds per pod in the apical region compared to the basal region. If
the proportion of ovules with embryo sac decreases according to the rank, pollination
will be incomplete even if the amount of pollen grains is large, because not all the ovules
of a pod will be fertilized [Charlesworth, 1989]. Thus, ovule viability is responsible for
the lower number of seeds of late flowers.

Pollination limitation

Pollination limitation could also lead to a variation in pods and seeds [Brookes et al.,
2010; Brunet and Charlesworth, 1995; Campbell and Halama, 1993; Harder and Aizen,
2010]. The magnitude of pollen limitation varies among flowers within an inflorescence,
among inflorescences within a plant, and among plants within a season [Knight et al.,
2005]. The failure of seed production may be caused by either reduced pollen production
or poor pollen quality [Berjano et al., 2006]. Variations in reproductive traits and
female reproductive success may also be attributable to differences in the quantity
and quality of pollen [Burd, 1994]. On a given inflorescence or individual, the fruits
from the first pollinated flowers are more likely to mature than those from flowers
pollinated later [Lee, 1980; Stephenson, 1980]. Many, but not all, of the species with this
pattern of flower and fruit abortion have inflorescences that develop acropetally (from
top to bottom) [Stephenson, 1981]. The intensity and the efficiency of pollination are
of crucial importance for the number of seeds [Brookfield et al., 1996; Wertheim, 1991].
Burd [Burd, 1994] reported that 62% of 258 species of angiosperms show evidence of
pollen limitation. In addition, flower and seed abortion varies with flower position and
flowering time [Hiei and Ohara, 2002]. Furthermore, flowering time is linked to the
variation in pollen receipt and the abundance of pollinators [Medrano et al., 2000].
The quantity of pollen depends on the season, plot and cultivars. These differences in
terms of pollination among cultivars observed in the same plot remain unexplained and
may a specific attractiveness of cacao for insects and pollinators [De Reffye, 1974; Mossu
et al., 1981]. Natural variation in the number of pollen grains deposited on stigmas also
leads to variance in seed number among the fruits on a given individual. When this
occurs, the fruits with a low seed number are often the most likely to abort [Bertin,
1982; Lee, 1980]. For example, Bertin found that 80% of fruits aborted if they received
200-800 pollen grains, whereas the flowers produced mature fruits if they received more
than 800 pollen grains in Campsis radicans [Bertin, 1982]. These studies suggest that
there is a threshold seed number below which it is not advantageous for the plant to
mature fruits.
In addition, in plants with self-incompatibility (SI), when a pollen grain produced in
a plant reaches a stigma of the same plant or another plant with a similar genotype,
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the process of pollen germination, pollen tube growth, ovule fertilization, and embryo
development is halted at one of its stages, and consequently no seeds are produced
[Sage and Sampson, 2003]. SI is defined as ‘the inability of a fertile hermaphrodite seed
plant to preduce zygotes after self-pollination’. It is a general name for several genetic
mechanisms in angiosperms, which prevent self-fertilization and thus encourage out-
crossing. In some species, fruits from self-pollinated flowers tend to have fewer seeds
and are more likely to abort than fruits from cross-pollinated flowers [Murneek, 1954].

Assimilate avalilability

The variation in number of pods and seeds highly depends on their access to assimilates
[Arathi et al., 1996; 1999; Bawa and Webb, 1984; Lee and Bazzaz, 1982; Stephenson,
1980]. The assimilate availability for one organ depends both on the quantity of assim-
ilates available at the whole plant level [Hocking and Pate, 1977] and on the competi-
tion with the other demanding organs [Hocking and Pate, 1977; Robinson et al., 1980].
These processes are subject to different constraints. Plant architecture has a strong
effect on assimilate partitioning among organs [Farrington and Pate, 1981]. Flower
position within one inflorescence and inflorescence position within the overall architec-
ture of the plant are important factors affecting yield variation [Brookes et al., 2010;
Ellis and Sedgley, 1992]. Within one inflorescence, flowers and seeds located close to
the source of assimilates are more likely to survive [Diggle, 1995; Guitián and Navarro,
1996; Medrano et al., 2000; Nakamura, 1986; Thomson, 1989]. This phenomenon is ob-
served in many species [Berry and Calvo, 1991; Diggle, 1997; Obeso, 1993]. The number
of reproductive structures that depend on the available resources also affects the allo-
cation of assimilates between flowers or fruits located on different branches [Keiller and
Morgan, 1988; Stephenson, 1981].
The course of fruit development in flowering plants includes periods of considerable
overlap between growing fruits and seeds among inflorescences. This pattern of intense
reproductive growth causes high demand within a short period of time. Thus, the
timing of organ initiation and development regulates the partitioning of assimilates in
the plant. Furthermore, senescence of the leaves during pod development decreases the
assimilate supply, which controls the overlap in the growth of competing sinks and the
relation between the photosynthetic source and sink [Bustan et al., 1995]. As a result,
early developed fruits and seeds receive more resources than those that develop later
[Guitián and Navarro, 1996; Stephenson, 1980; Thomson, 1989].
Based on the factors of variation discussed above, we analysed the yield elaboration in
WOSR on both the pod scale and the plant scale, according to the position and time of
pod development. Yield elaboration on the pod scale depends on the number of ovules.
Fertilisation then influences the number of seeds per pod. Once the number of seeds is
set, assimilate accumulation in the seed can lead to an increase in seed weight. At each
stage, competition for assimilates results in a reduction in either the number or the
weight of the organs. Thus, it is important to study the variations in yield components
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and the relationship between their variability and assimilate availability.

Architectural effects

Some authors have proposed that resource competition is not the only cause of differ-
ences at the intra-inflorescence level, but rather that developmental constraints [Diggle
and Miller, 2004; Wolfe, 1992] or architectural effects [Diggle, 1995; 1997; Pritchard and
Edwards, 2005] also have to be considered. Architectural patterns of intra-inflorescence
variation may be viewed as the result of natural selection and/or resource condi-
tions among flowers at different positions [Ashman and Hitchens, 2000; Brunet and
Charlesworth, 1995; Burd, 1999; Frank, 1987; Mazer and Dawson, 2001]. Architectural
variation can mimic the effects of resource competition within inflorescences [Buide,
2008; Stephenson, 1981]. As a result, the importance and/or magnitude of resource
competition as a source of variation in plant reproductive characters has likely been
vastly overestimated [Diggle, 2003]. According to these hypotheses, differences in floral
characteristics from early to late flowers, or from proximal to distal position within the
inflorescence, are maintained even in the absence of differential resource allocation, and
recent studies have attempted to dissect the causes of intra-inflorescence variation by
testing these two hypotheses (i.e. extrinsic resources vs. intrinsic restraints; note of
course that both effects may act simultaneously) [Ashman and Hitchens, 2000; Diggle,
1995; Medrano et al., 2000; Wolfe and Denton, 2001].
Flower position within inflorescences and inflorescence position within the overall ar-
chitecture of the plant are important factors resulting in abortion of pods and seeds
[Hiei and Ohara, 2002; Medrano et al., 2000; Stephenson, 1981], which is connected to
the effect of flowering time [Hiei and Ohara, 2002]. One hypothesis for a proximate
cue is that architectural variation is just resource competition occurring earlier in de-
velopment than the fruiting stage. That is, variation in morphology or function among
flowers of non-fruiting plants occurs because resources will always be consumed during
the developmental process and later, distal, flowers will always be at a disadvantage
with respect to resource allocation. A second hypothesis is that architectural effects are
attributable to declining amounts of vascular tissue along the length of an inflorescence
[Wilson, 2001]. The same complex patterns of intra-inflorescence variation that argue
against resource variation also indicate that vascular supply may not provide a univer-
sal explanation. In addition, vascular differentiation is clearly plastic and responds to
the demands of developing sinks such as flowers and fruits [Bustan et al., 1995; Gane-
shaiah and Uma, 1994; Preston, 1998]. Inflorescences are likely to contain the amount
of vascular tissue necessary to supply the demands of distal structures.
Architectural effects are a common and important component of plant reproductive
phenotypes and understanding positional variation is critical to many different areas of
plant reproductive biology.
According to the analyses above, the following questions were addressed: Do the num-
bers of ovules per ovary, seeds per pod and pollen grains per stigma vary with pod
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Figure 1.1: Life cycle of flowering plants and the structure of embryo sac (From website).
Flower is composed of four parts: calyx, sepal, stamen and pistil. The stamen produces
pollen and the ovary includes the embryo sac with ovules

position and the time of appearance? If so, are the variations correlated to the assimi-
late competition or to pollination limitation?

1.2.2 Biology of flower fertility in flowering plants

In flowering plants, most angiosperms have hermaphrodite flowers, which can produce
both male and female gametes (Fig. 1.1). Female gametes are produced inside the
ovary of the flower, where they remain until they are fertilized. In some types of flower,
the ovary may hold as many as a hundred female gametes, each one contained inside a
separate ovule. The series of cell divisions leads to the production of a female gamete
inside an ovule. The sequence begins with a hypodermal cell, which is just one of the
normal, diploid cells that make up the ovule. After one meiotic division and three
mitotic divisions, this produces a structure called the embryo sac which contains eight
haploid nuclei, one of which is the ovule, or female gamete. By the end of the maturation
process, every ovule in the ovary of the flower will contain a single embryo sac with a
single ovule, or female gamete, inside it [Johnstone, 2000].

The production of male gametes, in the anthers of the flower, involves a slightly dif-
ferent series of cell divisions [Johnstone, 2000]. As before, the sequence starts with a
hypodermal cell, which is just one of the normal, diploid cells that make up the an-
ther. This hypodermal cell undergoes a single meiotic division to produce four haploid
daughter cells. In male gamete production, in contrast to female, all of these daughter
cells survive and each one undergoes a further mitotic division to produce a pollen grain
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containing two identical haploid nuclei, one of which, the generative nucleus, is the male
gamete. It is important to note that the pollen grain is the structure that contains the
male gamete, in the same way that the embryo sac contains the female gamete. The
pollen grain is not, itself, a gamete.
The function of the pollen grain is to carry the male gamete from the flower where it
was produced to the flower of another plant where it will be able to fertilize a female
gamete. The transfer of pollen from the anther of one flower to the stigma of another
is known as pollination. When an insect visits the flower it gets dusted with sticky
pollen which will then get rubbed off on the stigma of the next flower it visits. Other
flowers, such as those found on a wheat plant, are wind-pollinated. They produce large
quantities of very light pollen grains which are carried away by the wind and picked up
by the dangling, feathery stigmas of other wind-pollinated flowers.
Once a pollen grain has landed on the stigma of a compatible flower, it germinates
and produces a pollen tube which begins to grow down through the style of the flower
towards the ovary. The growth of the pollen tube is controlled by the tube nucleus.
The generative nucleus, or male gamete, travels down the pollen tube just behind the
tube nucleus and in this way it is able to get down to an ovule, inside the ovary of the
flower, where it can fuse with a female gamete.
Once the pollen tube has reached an ovule, it stops growing, and the tube nucleus, hav-
ing done its job, breaks down. The generative nucleus then undergoes a final mitotic
division and splits in half to produce two male nuclei. One male nucleus fuses with the
ovule, or female gamete, at the bottom of the embryo sac, to produce a diploid zygote.
The other male nucleus fuses with the two polar nuclei, in the middle of the embryo
sac, to produce a triploid endosperm nucleus. This double ferti1ization is unique to
flowering plants.
After fertilization, the ovule develops into a seed. The zygote grows to become the
embryo, or baby plant, inside the seed, while the triploid endosperm nucleus divides
away repeatedly to produce the seed’s endosperm food store [Reiser and Fischer, 1993].
The integuments, which once surrounded the ovule, become the seed’s coat and the
ovary, in which the seed is located, swells up to become a fruit [Johnstone, 2000].
Flowers are described as reproductive organs because they are the place where male and
female gametes are produced [Johnstone, 2000]. The function of the flower is to ensure
fertilization of the ovule and development of fruit containing seeds. More typically, the
flower-bearing portion of the plant is sharply distinguished from the foliage-bearing or
vegetative portion, and forms a more or less elaborate branch-system called an inflo-
rescence.
An inflorescence is a group or cluster of flowers arranged on a stem that is composed of
a main branch or a complicated arrangement of branches. Inflorescences are described
by many different characteristics including how the flowers are arranged on the pedun-
cle, the blooming order of the flowers and how different clusters of flowers are grouped
within it.



8 CHAPTER 1. INTRODUCTION

1.2.3 Models of flower fertility

Based on the analysis above, to improve the seed produciton, it is important to study
the processes of flower fertility for flowering plant and the factors influencing the repro-
ductive success.
According to the biological description, seed production involves several processes and
floral components, as mentioned before. The association of ovule and pollen is likely
to create a seed but in some conditions there may be an abortion of the seed due to a
fertility problem [Arathi et al., 1999]. Thus, we can simplify the production of a seed
as the combination of several physiological processes, namely formation of ovules and
pollen grains, fertilization of the ovules, development of young embryos and pods, any
problem in these processes may result in seed abortion or pod abortion. Our objectives
are firstly to develop a probabilistic model to simulate the number of seeds per pod by
reproducing the processes of flower fertility and validate the model using the experi-
mental measurements; secondly, by conducting the different treatments, to identify the
factors of influencing the development of seeds and pods.
Several models were developed to model the processes of seed reproduction. A model of
seed formation was developed by De Reffye for tropical crops such as coffee, cacao and
oil-palm [De Reffye, 1974]. De Reffye (1974) firstly presented a fertility model of coffee
flowers. Two main factors impact the yield of coffee. One is production capacity based
on morphological characteristics (the number of flowering nodes, the number of flowers
per node). The other one is the fertility of flowers. The ovary in a coffee flower contains
two ovules. He assumed that the two ovules in the ovary were fertilized by two pollen
grains and were independent genetically. Three types of cherry F, A’ and B’ may be
obtained (Fig. 1.2). The fertility probability of one ovule was denoted by P1, which was
the rate of appearance of a young endosperm from an ovule. A binomial distribution
can describe this process. Six to eight months after flowering, the endosperm contained

Figure 1.2: Biological description and mathematical expression of ovule fertility in coffee
tree

in the boxes of cherries will develop into grains or abortion. The aborted grain gives



1.2. PROBLEMATICS 9

the empty chamber. They described the various categories of cherry and ovary by the
letters A, B, C, D, E, F (Fig. 1.3).

• Type A: Cherry has two natural grains.

• Type B: Cherry has a grain, and a shell (egg early abortion).

• Type C: Cherry has a normal grain and empty box (endosperm abort later).

• Type D: cherry has an empty box and a shell (empty box peaberry).

• Type E: Cherry has two empty boxes.

• Type F: Ovary not become into fruit and dries in two months (cherry has two
shells).

Only categories A, B, C provide grains. The probability P2 was used to describe the
processes of seed production (Fig. 1.3), which is the rate of appearance of a seed. And
another parameter r was used to consider the influence of environmental conditions.
Therefore, the probability of an ovule developed into a seed can be computed using the

Figure 1.3: Probability of an ovule developed into a seed in coffee tree

equation shown in the fig. 1.3. The result demonstrated that the viability of ovules
and of embryos is determined genetically in coffee tree, and they determine, in their
turn, the number of seeds. The sterility of flowers is mainly due to the failure of the
fertilization of the endosperm in the double fertilization.
Parvais et al. [Parvais et al., 1977] counted the frequency of aggregates of pollen grains
and derived the curves representing the law of aggregation of pollen grains for a cacao
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Figure 1.4: Distribution of the number of pollen grains per style in cacao tree

tree. They found that most of pollen grains are singly scattered (Fig. 1.4). Aggregates
for more than fifteen of pollen grains are infrequent. The shapes of these curves are al-
ways the similar and appears to be a characteristic of cacao tree. Thus, they elaborated
a stochastic model of the distribution of number of pollen grains on each style taking
account of the distribution of number of ovules per ovary, and compared the simulation
with observation. The model is the same as for coffee. Moreover, the variation of the
pollination rate among seasons was proven to be closely related to the cacao yield in
the fields [Falque et al., 1995; Mossu et al., 1981]. The scarcity of effective pollinators
and the low frequency of large aggregates of pollen grains explained the low percentages
of pollinated flowers in cacao.
To assess the proportion of different factors controlling the seed production, De Reffye
et al. [de Reffye et al., 1978] represented the stochastic processes of flower fertility in
cacao tree. They took into account four parameters, including the variability in the
number of ovules per ovary N (normal distribution), the condition of pollination a
(Pareto distribution), the rate of formation of ovules to seeds P (Binomial distribution)
and the wilting point of a pod Xw. They measured the number of ovules per ovary, the
number of pollen grains per style and the number of seeds per pod and compared them
with the computed values (Fig. 1.5). The results indicated if the number of ovules
per ovary (N), the rate of formation of ovules and seeds (P ) and the wilting point
Xw are fixed, the yield does depend only of the quality of pollination, that is to say,
the effectiveness of pollen, the total number of pollinated flowers, the scarcity index of
pollination. These last two parameters are very variable even for a same genotype. The
model is the same as for coffee. However, the model relies more on simulation tech-
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niques. Estimation of parameter values was empirical. Similar results were obtained
on the oil-Palm [Lecoustre and De Reffye, 1987]. Another model was developed for
kiwifruit [Lescourret et al., 1999].

Figure 1.5: Observed and estimated values of the number of seeds per pod in cacao tree
under different pollination conditions

1.2.4 Developmental characteristics of WOSR

In WOSR, the life cycle can be divided into seven stages: germination/emergence,
production of leaves, extension of the stem, development of buds, flowering, pod devel-
opment and seed development [Sylvester-Bradley and Makepeace, 1984]. In particular,
the latter three stages overlap considerably, because vegetative, generative and repro-
ductive organs develop simultaneously [Diepenbrock, 2000], which lead to the variation
of the yield.
Winter oilseed rape have a complex branched structure, after initiation of the inflores-
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cence on the main stem, the apices of branches turn also into inflorescence. Although
the initiation of branches starts from base to top, the flowers bloom in the inverse order
of the initiation of their branches. Besides, flowers develop acropetally on each inflores-
cence, and the flowering ceases at about the same time on all inflorescences [Keiller and
Morgan, 1988]. Hence, this ‘double sense’ gradient induces large differences in age and
position of pods within the inflorescence/plant and hence in pods access to assimilates
during their development [Tayo, 1974; Tayo and Morgan, 1975]. WOSR is appropriate
to investigate resource investment and pollination between individual flowers and in-
florescences and subsequent seed production. As the developmental patterns of floral
organs (flower position, flower size, flower number) [Takahata et al., 2008] impact the
number of seeds, regarding floral biology, it is an interesting species bearing several
inflorescences with more than forty flowers per inflorescence. Besides, flowering lasts
about one month inducing a large extension of time between the first emerged pods and
the last ones, and therefore, they are subject to contrasting environmental conditions.
The ultimate number of pods and seeds is very dependent on a continuous supply of
assimilates [Diepenbrock, 2000].

Figure 1.6: Structure of Oilssed rape
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1.3 Presentation of the approach

Our main objective was first to analyze the variability of yield components and distin-
guish the factors of influencing the reproductive failure by the analysis of experimental
data. The factors includes ovule viablity, pollination limitation, assimilate competition
and architectural effects. Secondly, according to the biological description of flower
fertility, we developed a probabilistic model to describe the processes of flower fertility
and estimated the model parameter values using the experimental data with Genelized
Least Square method (GLSQR). Then we analyzed the stability of model parameter
using resampling method and tested if the model can be used to simulate the other
flowering plants.
To perform the objectives presented above, we introduced the experimental designs in
WOSR in the Chapter 2. we first made some experiments in WOSR to analyze the
characteristics of the numbers of ovules per ovary and of seeds per pod, and the num-
ber of pods per axis. Then we carried out some treatments including clipping of main
stem or ramifications and removal of early flowers to decrease the competition of assim-
ilates. Accordingly, we analyzed the effect of assimilate competition on the number of
ovules per ovary, the number of seeds per pod and the number of pods per axis/plant.
Furthormore, to analyze the difference of the number of ovules per ovary and of the
number of seeds per pod among varieties, we made the measurements for four varieties.
In the Chapter 3, we analyzed the effect of different factors on the numbers of ovules
per ovary, seeds per pod and pods per inflorescence. These factors include pod position
(within one inflorescence and between inflorescences), the time of appearance, pollina-
tion conditions and assimilate availability. Furthermore, the differences of the number
of ovules per ovary and seeds per pod between varieties were studied. We presented a
model using some probabilistic distributions to compute the number of seeds per pod in
the Chapter 4. The model can simulate the distribution of the number of pollen grains
and distinguish the factors influencing seed production. The model parameter were es-
timated using the nonlinear parameter estimation method (GLSQR). We estimated the
parameters of model between two years (2008 and 2009) using the model. The differ-
ences of parameter values between the two years were analyzed. In addition, to analyze
the effect of assimilate availability on the number of ovules per ovary and the number
of seeds per pod, we estimated the parameters between the control and clipped plants
(Clipping of main stem or removal of early flowers). As mentioned in the introduction,
the flowering time and flower position has influence on the number of seeds per pod,
we estimated the parameters according to the pod rank on the main stem and between
inflorescences to analyze the effect of plant architecture. Furthermore, the parameters
were estimated for four varieties to analyze the difference of the yield components. In
the following part, we studied the stability of the model by using the random subsets
methods, including bootstrap resampling and jackknife resmapling. We compared the
model in the thesis with the model of flower fertility developed by Lescourret et al. in
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kiwifruit. The simulation of the number of pollen grains was improved by introducing a
parameter k (the proportion of effective pollen grains). In the last, the model was used
to compute the number of seeds per pod in other flowering plants, such as soybean and
cacao tree.
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Experiment Designs
Results of Experiment

15





Chapter 2

Field experiment approach

2.1 Plant materials

WOSR is an annual plant with inflorescences of yellow flowers. Seeds are sown in the
autumn and before winter. The plant develops a rosette of 10-15 leaves [Jullien et al.,
2010]. Stem extension begins with the return of the growing season in the spring.
Flowering begins before stem extension has finished and continues for more than one
month. The number of ramifications is pre-determined during the organ initiation early
in the growth cycle in autumn. The meristem produces leaves, which bears axillary buds
that can produce a ramification [Diepenbrock, 2000; Tittonel, 1990].
Flowering begins with the opening of the lowest bud on the main stem and continues
upward with three to five or more flowers opening per day. Flowering at the base of
the first secondary branch begins two to three days after the first flower opens on the
main stem. WOSR has entomophilous flowers that are capable of both self- and cross-
pollination. [Becker et al., 1992] found that depending on variety and weather, oilseed
rape exhibits approximately 30% out-crossing. Insect mediated cross pollination may
be of only secondary importance for oilseed rape [Mesquida et al., 1988]. Following
emergence of the leaves, internodes of the main stem begin to elongate. The expansion
of the ramification is delayed compared to the main stem. Lateral inflorescences expand
along the main stem from the top to the bottom. Flower emergence starts on the
main inflorescence and develops basipetally to the lateral inflorescences [Tittonel, 1990],
causing the basal and oldest ramifications to bear the youngest inflorescences. Pods are
set once all of the leaves of the main stem have emerged. The first pods are initiated on
the main stem and then on the ramifications from apical to basal. Within a ramification,
pod setting remains acropetal [Jullien et al., 2010].
The inflorescences were numbered from top to bottom along the main stem. Thus the
main stem is number R0 and the highest ramification is number R1. Flowers and pods
on each inflorescence were recorded by their rank number starting from the base of the
inflorescence (Fig. 2.1). On an inflorescence, pod number 1 is closest to the leaves and
the main stem.

17
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Figure 2.1: Schematic diagram of winter oilseed rape. Plant development: the inflores-
cences initiate acropetally but expand basipetally. Flowering starts on the main stem
(R0) and is followed by lateral inflorescences from top to bottom (basipetal). Inflores-
cence development: flowering and pod setting on the inflorescence occur from bottom
to top (acropetal)

2.2 Experimental design and growing conditions

Field experiments were conducted in Grignon (velines, France, 48.9◦ N, 1.9◦ E) at the
National Institute for Agricultural Research (INRA) in 2008 and 2009. Seeds were sown
on September 9th in the two seasons at a density of 50 seeds per m2. Plots were twenty
rows, 0.30 m apart and 30 m long, and the plots were kept free of weeds, insects and
diseases. The plants were harvested at the beginning of July.

2.3 Measurements of number of ovules per ovary

and seeds per pod on the main stem

The experiment was conducted in 2007-2008 and used the Mendel variety. To study the
characteristics of the number of ovules per ovary and the number of seeds per pod, the
abortion rate of pods, we randomly selected 45 plants to count the number of ovules
per ovary and seeds per pod according to their rank on the main stem. The number
of ovules per ovary was calculated as the sum of mature and aborted seeds per pod.
Measurements started when all the flowers have developed into pods to make sure that
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the number of seeds and ovules can be measured in all the pods of the inflorescences.
The experimental data was used to calibrate the model paramters and analyze the effect
of pod rank on the main stem.

The experiment was conducted in 2008-2009 used the Mendel variety. 18 plants were
randomly collected to compare the estimated parameters among years. The number
of seeds and aborted ovules per pod for all the pods on the main stem were counted
according to the pod rank. In addition, the number of seeds and aborted seeds on the
ramification R1, R4, R7, R9, R11 were measured according to their positions on the
inflorescences. Accordingly, we can analyze the difference of parameter values between
inflorescences. The experimental data of the two years were used to estimate the model
parameter values and to analyze the difference of parameter values between years.
Analysis of variance (ANOVA) was used to test the effect of pod position and the
number of ovules per ovary on the number of seeds per pod.

2.4 Difference of the number of ovules in different

developmental stages

We observed the number of ovules per ovary in different developmental stages for flower
buds, flowers and pods (Fig. 2.2) to study the difference of the number of ovules per
ovary between flower buds, flowers and pods in 2008-2009. The variety was Pollen. One
plant was randomly selected to count the number of ovules per ovary with Microscope.
We chose the pods on the main stem and ramifications R1 and R4 to analyze the
difference between different inflorescences. The measurements were conducted five times
during the flowering period and one plant was measured for each time.
ANOVA was performed to test the difference of the number of ovules between bud,
flower and pod for each inflorescence, and the difference of the number of ovules per
bud, flower and pod between the inflorescences R0, R1 and R4. Tukey’s HSD (Honestly
Significant Differences) multiple comparison test was used when significant effect was
encountered to determine which means were significantly different from one another.

2.5 Effect of pollination conditions on the number

of ovules and seeds per pod

To analyze if pollination condition has an effect on the number of seeds per pod in
WOSR, hand pollination was carried out for the Mendel variety in 2008-2009. We
randomly selected 24 plants to pollinate the flowers on the main stem. One day before
pollination, select the plants to remove the ramifications, opening flowers by tweezers,
then isolate them with plastic bags. Four plants were selected as self pollinated plants
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Figure 2.2: Ovules in bud, flower and pod in WOSR. A. Bud; B. Flower; C. Pod.
Measurement scale: 0.5 mm

(CK Self). Pick up the anthers with pollen from the other plants and rub the pollen on
the stigma of flowers for the rest 20 selected plants. After pollination, put the plastic
bag to isolate them and make sure that the bags will not influence the growth of flowers
after 2-3 days. Take the bags off after one week. In addition, select 6 plants from
the treatment of clipping all the ramifications (M R-) as the natural pollinated plants
(CK Natural). Because the early flowers were clipped for the hand pollinated and self
pollinated plants, the number of seeds and aborted ovules per pod from the pods located
rank 20-60 were counted for each plants one month later. The number of ovules per
pod was computed as the sum of the number of seeds and aborted ovules. ANOVA was
used to test the difference of the number of ovules and seeds per pod between different
pollination conditions.

2.6 Effect of pod position and the time of pod ap-

pearance on the number of ovules per pod, seeds

per pod and pods per inflorescence

On the field experimental site, the plants started to flower in mid-April, and, the flow-
ering season continued until mid-May. To investigate the effect of the position and
appearance time of pods on the number of ovules and seeds per pod among inflores-
cences, 18 Mendel plants were randomly marked in mid-April in 2008-2009, just before
the flowering season. When the plants came intobegan to bloom, the numbers and
positions of flowers that bloomed within inflorescences were recorded every two or to
three days throughout the flowering season from Apr,16th-May,18th. The positions and
the times of appearance of the flowers and pods were recorded from the main stem (R0)
and from the ramifications (R1, R4, R7, R9 and R11, see Fig. 2.1). The plants were
same with the plants measured in the Section 2.3. Furthermore, to analyze the effect
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of the number of flowers on the number of aborted ovules, the plants in a plot with the
area of 0.65 m2 (1.23m× 0.53m) were selected to count the number of opening flowers
every 2-3 days.
The Kruskal-Wallis rank sum test was used to test the difference in the distributions of
ovules and seeds per pod with times of pod appearance.

2.7 Effect of assimilate availability on the number

of ovules per pod, seeds per pod and pods per

inflorescence

2.7.1 Clipping treatments and measurements

The demand of assimilates can be changed by clipping the main stem, ramifications
or basal flowers. Thus, clipping treatments were conducted in 2008-2009 to investigate
the effect of the competition for assimilates inter-flower within an inflorescence, among
inflorescences and at the plant level. To check if the characteristics of yield compo-
nents are independent of variety, two varieties were used (Mendel and Pollen). First,
20 Mendel variety plants were randomly selected on the basis of similarity of their de-
velopmental stages in the field. Two treatments were administered, clipping the main
stem (Treatment M M-) or clipping ramifications (Treatment M R-). Clippings were
done when there were about 20 flowers on the main stem. The plants selected for the
continuous observations were used as the control plants for the Mendel variety (Treat-
ment M CK). Second, 15 Pollen variety plants were randomly selected on the basis of
similarity of their developmental stages. Clippings of 20 basal flowers on the main stem
and all of the ramifications (Treatment P R-’) was were conducted for 10 plants. The
other 5 plants were used as the control (P CK). We assumed that if the presence of early
opening flowers led to a reduction of late opening flowers due to assimilate competition
and that, if this was the principal cause of fruit failure in late opening flowers, then
later opening flowers should produce more pods or seeds compared to control plants
when released from competition of early flowers. All of the treatments are shown in
Table 2.1.
Measurements began in mid-June. Measurements started when all of the flowers had
developed into pods to ensure that the number of seeds and ovules could be measured
in all of the pods of the inflorescences. For each plant, the number of pods per inflo-
rescence and the number of seeds and aborted seeds per pod were carefully recorded
according to the position of the pod (number of inflorescence and rank on the inflo-
rescence). The number of ovules per pod was calculated as the sum of undeveloped
ovules, aborted seeds and mature seeds per pod. The seed dry weight per ten pods was
measured for the treatment M R-, M CK and P R-’ treatments. The experimental data
of the treatemts M CK, M R-, P CK and P R-’ were also used to estimate the model
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parameters to analyze the effect of assimlate avalability. The pods were gathered five
by five to analyse the effect of pod rank on the number of ovules and seeds per pod.
Because the length of inflorescences is different between plants, pod ranks were nor-
malised for each inflorescence by dividing by the maximum rank on the inflorescence.
This approach allows the conversion of the ranks of all of the inflorescences into a range
between 0-1.

Table 2.1: Description of clipping treatments for two varieties ’Mendel’ (M) and ’Pollen’
(P). For Mendel: M R- denotes the treatment of clipping all the ramifications; M M-
denotes the treatment of clipping the main stem and keeping all the ramifications; M CK
denotes the control plants (no treatment); For Pollen: P R-’ denotes the treatment of
clipping all the ramifications and removing the 20 basal flowers; P CK denotes the
control plants. ’+’ and ’-’ represent keeping or removing main stem, ramification or 20
basal flowers respectively.

Variety Treatments Main stem Ramifications 20 basal flowers Sample size

Mendel M R- + - + 10
M M- - + + 10
M CK + + + 18

Pollen P R-’ + - - 10
P CK + + + 5

2.7.2 Statistial analysis of the effect of pod position and clip-
ping treatments on the number of ovules and seeds per
pod

Segmented regression is a method of regression analysis in which the independent vari-
able is partitioned into intervals and a separate line segment is fit to each interval. The
boundaries between the segments are breakpoints. Segmented regression is regression
analysis in which changes in the mean outcome levels and trends before and after an
intervention are estimated [Wagner et al., 2002].
In our study, segmented regression was used to estimate the change in trend in pod rank
before and after a breakpoint and the difference between the control and clipped plants.
We created several variables to analyse the effect of pod rank and clipping treatment.
A created variable is an artificial variable created to represent an attribute with two or
more distinct levels.
Our experimental data showed that there are three segments on the main stem, and two
segments on ramifications. Therefore, segmented regression with one or two breakpoints
was used for ramifications and the main stem, respectively.
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• Segmented regression with one breakpoint Segmented linear regression with two
segments separated by a breakpoint can be useful to quantify an abrupt change
in the response function (Y ) of a varying influential factor (X).

Y = b0 + b1X + b2T + et (2.1)

X is the variable of pod rank; T is a created variable for before or after the
breakpoint. T is coded 0 before the breakpoint and continuous starting at 1 after
the breakpoint; et is the random variation at rank X not explained by the model.
b0 is the intercept of the line, b1 is the slope before the breakpoint and b2 is the
change in the slope before and after the breakpoint (difference in the slopes of
two segments).

• Segmented regression with two breakpoints

Y = b0 + b1X + b2TA+ b3TB (2.2)

X is pod rank from baseline; TA is a created variable for the first segment coded 0
before 1st breakpoint and starts at 1 after the breakpoint; TB is a created variable
for the second segment coded 0 before 2nd breakpoint and starts at 1 after the
2nd breakpoint. b0 is the value of dependent variable at baseline; b1 is the trend
prior to the 1st breakpoint; b2 is the change in trend after the 1st breakpoint; b3

is the change in trend after the 2nd breakpoint.

• Segmented regression between two groups with one breakpoint
A dummy variable is incorporated for group to analyse the change in slope after
the breakpoint and between the control and clipped group.

Y = b0 + b1X + b2T + b3G+ b4GX + b5GT (2.3)

G is a created variable for groups, coded 0 for control plants and 1 for clipped
plants; GX is a created variable for the control plants coded 0 before 1st break-
point and starts at 1 after the breakpoint; GT is a created variable for the clipped
plants coded 0 before the 1st breakpoint and starts at 1 after the breakpoint.
b0 is the value of dependent variable at baseline; b1 is the trend before the break-
point; b2 is the change in trend after the breakpoint; b3 is the difference between
the groups; b4 is the difference between the groups in change in trend before the
breakpoint; b5 is the difference between the groups in change in trend after the
breakpoint.
The t-test is used to test the significance of the individual coefficients in the equa-
tion. For example, if we are testing H0 : bi = 0 and Ha : bi 6= 0, then we consider
the P-values to determine whether to reject or accept H0. If the P-value is less
than 0.05, then we reject H0. The null being tested by this test is bi = 0, which
indicates that this variable is not related to Y .
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2.7.3 Significant tests of the difference of yield components
between inflorescence

ANOVA was performed to test the differences of the number of ovules and seeds per
pod, the number of pods per axis and the total number of seeds and pods. Tukey’s HSD
(Honestly Significant Differences) multiple comparison test was used when significant
effect was encountered to determine which means were significantly different from one
another.
The F-test and Student’s t-test were applied to evaluate the differences in the mean
numbers of ovules, seeds per pod and pods per axis between control and clipped plants
[Stephenson, 1980].

2.8 Measurements of the number of ovules and seeds

per pod for four varieties

In 2008-2009, to investigate the difference of the number of ovules and seeds per pod for
four varieties (Mendel, Pollen, Exocet and Gamin). 10 plants were randomly selected
on the basis of similarity of their developmental stages for each variety. 15 pods from
rank 11-40 (to eliminate the effect of position) on the main stem and 10 pods from
rank 1-20 on the ramifications were collected on each plant. The number of seeds and
aborted ovules per pod were counted. The number of seeds and aborted seeds were
counted when all the pods matured. The data were used to analyze the difference of
model parameters between varieties.



Chapter 3

Field experiment results

3.1 Number of ovules per pod, number of seeds per

pod and aboriton rate of pods

The average number of ovules and seeds according to the pod rank on the main stem
is given in the Fig. 3.1a, for all the plants measured in 2008 and 2009. For the two
years, the number of ovules per pod remained constant along the main stem while that
of seeds decreased after the 30th rank.
Flower position had no significant influence on the number of ovules per pod (ANOVA,

(a) (b)

Figure 3.1: Number of ovules per pod, number of seeds per pod and abortion rate of
pods according to the pod rank in WOSR.

P > 0.1), but it had great impact on the number of seeds per pod (ANOVA, P < 0.001).
Besides, the number of ovules per pod had no significant influence on the number of
seeds per pod (ANOVA, P > 0.1) (Table 3.1). The two years experiments gave the
similar results (Fig.3.1).

25
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Table 3.1: Analysis of variance for the effects of the number of ovules and positions on
the number of seeds per pod.

Df SumSq Mean Sq F value P (> F )
Position 69 8264 120 1.768 0.0002***
Ovule 21 1789 85 1.257 0.196
Residuals 752 50945 68

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’

Abortion rate of pods on the main stem was a little larger at the beginning, then
remained constant and increased linearly with the pod rank (Fig. 3.1b). It seems that
the increase in the abortion of pods starts at the same time as the decrease in the
number of seeds per pod.

3.2 Difference of the number of ovules in different

developmental stages

The study of [Bouttier and Morgan, 1992b] indicated that the conditions experienced
by the flower buds over the whole plant when the ovules formed are clearly important
in determining eventual seed number per pod.
In our thesis, the number of ovules between bud and flower had no significant difference
within one inflorescence (ANOVA, P > 0.1, Table3.2), but the number of ovules for
buds and flowers had significant difference compared to the number for pods (ANOVA,
P > 0.1, Table3.2). However, there was no trend for the variation of the number of
ovules per flower between the inflorescence R0, R1 and R4, as shown in the fig. 3.2 .
The number of ovules for buds and pods differ significantly between the inflorescences
R0, R1 and R4 (ANOVA, P < 0.05, Table3.2), but the number of ovules has no differ-
ence for flowers (ANOVA, P > 0.1, Table 3.2). The decrease of the number of ovules
for pods compared to buds or flowers was consistent with the study of [Bouttier and
Morgan, 1992b].
The study of stem explants in vitro conducted by [Bouttier and Morgan, 1992a] in-
dicated that open flowers and young pods underwent normal development but the
developments of buds was less successful. Young buds (3 mm long) did not develop and
only limited development of the older buds (5 mm long) took place. Pod and seed set
in open flowers were not affected by adding plant growth substances to the medium.
Reducing the supply of minerals to open flowers reduced seed set, pod elongation and
pod weight but did not affect pod set. The results showed that the environmental
conditions experienced by the flower when it developed are very important.
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Table 3.2: Analysis of variance (ANOVA) for the difference of the number of ovules
per bud, flower and pod on the inflorescences R0, R1 and R4. Values with different
superscripts differ significantly using the Tukey’s HSD test at P < 0.05. The uppercase
letters represent the difference between inflorescences (within a column); the lowercase
letters represent the difference between bud, flower and pod (within a row)

Bud F lower Pod P value
R0 32.2± 3.7bB 30.8± 2.4b 28.7± 3.6aAB < 0.0001 ∗ ∗∗
R1 29.1± 2.6abA 30.1± 3.8b 27.4± 3.4aA < 0.05∗
R4 32.1± 2.6bB 32.1± 3.1b 29.9± 2.6aB < 0.001 ∗ ∗
P value < 0.01 ∗ ∗ > 0.1 < 0.01 ∗ ∗

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ not significant ’ns’

3.3 Effect of pollination conditions on the number

of aborted ovules and seeds per pod

Figure 3.3 indicated that the number of ovules did not differ between the hand-pollinated
plants (Hand), self-pollinated plants (Self) and natural-pollinated plants (Natural). But
the number of seeds per pod was larger on the hand-pollinated plants than that on the
self-pollinated plants and natural-pollinated plants. However, the difference of the
number of seeds per pod was not significant (Table 3.3). Furthermore, the number of
aborted ovules was significantly smaller on the hand-pollinated plants than that on the
self-pollinated plants (ANOVA, Table 3.3). The results indicated that the number of
seeds per pod did not differ between the hand-pollinated plants and the self-pollinated
plants, although the number of aborted ovules was larger on the self-pollinated plants.
The results were inaccordance with the study of [Adegas and Nogueira Couto, 1992].
We can conclude that the Mendel variety is self-compatible, the self-incompatible is not
the factor leading to the seed abortion.

Table 3.3: ANOVA for the difference of the number of ovules and seeds per pod on the
he hand-pollinated, self-pollinated and natural-pollinated plants.

Number of Number of Number of
Plants ovules per pod seeds per pod aborted ovules per pod

Hand 31.4±3.0 29.0±4.0 2.3±2.8a

Self 31.7±2.6 27.5±4.8 4.0±4.1b

Natural 31.6±3.4 28.6±3.9 3.0±2.6a

P value > 0.1 > 0.1 < 0.01∗∗
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Figure 3.2: Number of ovules in different development stages (Bud, flower and pod) for
the inflorescences R0, R1 and R4 (Left column); Number of ovules in inflorescences R0,
R1 and R4 for different development stages (Right column). The data were observed
by microscope.

3.4 Effect of flower position and time of pod appear-

ance on the number of ovules and seeds per pod

Along an inflorescence axis, pods appear acropetally, pods with higher ranks appear
after pods with lower ranks. Furthermore, ramifications grow basipetally (from the top
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Figure 3.3: Boxplot of the number of ovules per pod (A), seeds per pod (B) and
aborted ovules (C) for the hand-pollinated, self-pollinated and natural-pollinated plants
(Variety: Mendel).
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to the bottom along the main stem). A high correlation exists between pod position
and time of appearance for each ramification (correlation coefficient is equal to 1 for
each inflorescence on each plant). Fig. 3.4 showed that the mean pod rank increased
with the appearance time of pods for each ramification.

Figure 3.4: Boxplot of pod position and its appearance time for the inflorescences R0,
R1, R4, R7, R9 and R11.

3.4.1 Effect of the time of pod appearance on the number of
ovules and seeds per pod

Number of ovules and seeds per pod

To analyze the effect of the time of pod appearance on the number of ovules and seeds
per pod, the pods located three positions were selected for the inflorescences R0, R1,
R4, R7, R9 and R11. The three positions were the basal positon (Normalized rank
0.01-0.1), middle position (rank 0.51-0.6) and distal position (rank 0.91-1).
The mean number of ovules (ANOVA, F < 1, P > 0.1 for each ramification) and seeds
(ANOVA, F < 1, P > 0.1 for each ramification) per pod for the pods located at the
basal, middlle and distal positions did not differ significantly according to the time of
pod appearance for the inflorescences R0, R1, R4, R7, R9 and R11 (Fig. 3.5). The
results indicated that the time of pod appearance had no influence on the number of
ovules per pod for these pods.
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The distributions of the number of ovules per pod tended to shift towards greater values
with the time of pod appearance on the inflorescences R0, R1 and R4 (Kruskal-Wallis
rank sum test, R0: χ2 = 88.5, df = 8, P < 0.001; R1: χ2 = 43.6, df = 6, P < 0.001
and R4: χ2 = 25.9, df = 5, P < 0.001). However, it had no significant difference on
ramifications R7, R9 and R11 (Kruskal-Wallis rank sum test, R7: χ2 = 7.9, df = 6, P =
0.25; R9: χ2 = 3.9, df = 5, P = 0.56; R11: χ2 = 9.2, df = 6, P = 0.17, Fig. 3.6).
The distributions of the number of seeds per pod showed a statistically significant
difference with the time of pod appearance for inflorescences except R11 (Kruskal-
Wallis rank sum test, R0: χ2 = 51.3, df = 8, P < 0.001; R1: χ2 = 32.5, df = 6, P <
0.001; R4: χ2 = 27.1, df = 5, P < 0.001; R7: χ2 = 34.7, df = 6, P < 0.001; R9:
χ2 = 43.1, df = 5, P < 0.001; R11: χ2 = 4.9, df = 6, P = 0.55). At the end of the
flowering time, more pods with a small number of seeds were present.

Figure 3.5: Variation of the number of ovules and seeds per pod for the pods located
at the basal, middle and distal positions according to the time of pod appearance

Number of aborted ovules per pod

The number of aborted ovules corresponds to the difference between the number of
ovules and the number of seeds in a pod. This number of aborted ovules was related to
the number of flowers per square meter in the field. The higher the number of flowers
in the field was, the smaller the number of aborted ovules per pod (Fig. 3.7). The
total number of aborted ovules was large at the beginning then remained constant and
increased with the time at the end of flowering. The result indicated that the time of
pod appearance influences the number of seeds per pod in pods appears earlier or later
during the flowering period.
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Figure 3.6: Variation of the distribution of the number of ovules and seeds per pod
according to the time of pod appearance

Figure 3.7: Number of flowers in the field per square meter and number of aborted
ovules per pod during the flowering period.
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3.4.2 Effect of pod position on the number of ovules and seeds
per pod

The number of ovules per pod was small on the basal positions, then increased with
the pod rank and remained constant on the main stem R0 and the ramifications R1
and R4. But the number of ovules per pod did not vary with the pod rank on the
ramification R7, R9 and R11 (Fig. 3.8). In addition, the mean number of ovules per
pod increased with ramification rank along the main stem.
The number of seeds per pod remained constant at the basal positions, then decrease
with the pod rank for each inflorescence. However, as shown in the Fig. 3.8B, it
seemed that the mean number of seeds per pod did not vary with ramification rank,
the difference resulted from the pod rank.

Figure 3.8: Effect of pod rank on number of ovules per pod (A) and number of seeds
per pod (B) for different inflorescences; R0, R1, R4, R7, R9, R11 represent the rank
number of ramifications downwards.

3.5 Effect of assimilate availability on yield compo-

nents

3.5.1 Effect of clipping the main stem or ramifications on the
number of ovules per pod

Effect of pod position and clipping treatments on the main stem

Effect of pod ranks The segmented regression demonstrated that the number of
ovules per pod differed significantly with the pod rank on the main stem in the control
plants (coefficient b1 in Eqn. 2.2, t = −2.2, P = 0.04), but not in the clipped plants
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(coefficient b1 in Eqn. 2.2, t = −1.6, P = 0.13). The number of ovules per pod
fluctuated along the main stem and decreased for a few ranks followed by a tendency
to increase and then to decrease at the end of the stem.

Effect of clipping ramifications Significant changes were present in trend (slope)
before and after the 1st breakpoint (coefficient b2 in Eqn. 2.2, 0.19 ± 0.04 for M CK,
t = 2.9, P < 0.05 and 0.15 ± 0.09 for M R-, t = 2.3, P < 0.05) and 2nd breakpoint
(coefficient b3 in Eqn. 2.2, 0.85± 0.06 for M CK, t = −4.5, P < 0.001 and 0.81± 0.06
for M R-, t = −2.5, P < 0.05) in the control and clipped plants, as shown in Fig. 3.9.
The number of ovules per pod was significantly different in the second segment between
the control and clipped plants (coefficient b3 in Eqn. 2.3, t = 3.7, P < 0.001), but not
in the first and third segments. Because the 1st breakpoint was the location where
clipping ramifications were performed, the result indicated that clipping ramifications
did have an instant influence on the number of ovules per pod on the main stem.
The mean numbers of ovules on the main stem were larger in the clipped plants than
in the control plants (t-test, t = −7.4, df = 379, P < 0.001). The total mean number of
ovules per axis increased ranging from 1340 ± 334 (mean ± SD) to 1876 ± 455 (mean
± SD) in the control and clipped plants, respectively.

Effect of pod position and clipping treatments between ramifications

Effect of pod ranks Segmented regression indicated that the number of ovules per
pod varied with the pod rank on ramifications R1 (coefficient b1 in Eqn. 2.1, t =
3.4, P < 0.01) and R4 (t = 4.6, P < 0.001) in the control plants, but not in the clipped
plants (coefficient b1 in Eqn. (1), t = −0.6, P = 0.58 for R1 and t = −0.3, P = 0.8 for
R4, respectively). The number of ovules per pod did not vary with the pod rank on
ramifications R7, R9 and R11 (coefficient b1 in Eqn. 2.1, P > 0.1 for each ramification).

Effect of clipping the main stem Significant differences were present in trend ob-
served for the number of ovules per pod after the breakpoint in the control plants on
ramifications R1 (coefficient b2 in Eqn. 2.1, t = −4.1, P < 0.001) and R4 (t = −3.0, P <
0.05), but not in the clipped plants (coefficient b2 in Eqn. 2.1, t = 1.6, P = 0.14 for
R1 and t = 0.5, P = 0.66 for R4). The number of ovules per pod was somewhat small
before the breakpoint, and then increased after the breakpoint for ramifications R1
and R4 (Fig. 3.9). However, segmented regression for ramifications R7, R9 and R11
indicated that there were no significant changes in the trend after the breakpoint in the
control and clipped plants (coefficient b1 in Eqn. 2.1, P > 0.01 for ramifications R7,
R9 and R11).
The mean number of ovules per pod was significantly higher in the clipped plants than
in the control plants for the ramifications R1, R4, R7, R9 and R11 (Fig. 3.10, coefficient
b3 in Eqn. 2.3, P < 0.001 for each ramification).
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Figure 3.9: Mean number of ovules per pod along the inflorescence on the main stem
R0 and the ramifications R1, R4, R7, R9 and R11 (Variety: Mendel). Dots and cir-
cles represent mean number of ovules per pod for the control (M CK) and clipped
(M R-) plants respectively. Vertical bars represent standard deviations. Fit lines using
segmented regression are shown.
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Table 3.4: Effect of clipping main stem treatment (M M-) on the number of ovules and
seeds per pod on ramifications R0, R1, R4, R7, R9 and R11 compared to the clipped
plants (M CK). Values are mean ± SD. Values with different superscripts (within a
column) differ significantly using the Tukey’s HSD test at P < 0.05

Mean total number of seeds Mean total number of pods
per axis ± SD per axis ± SD

NO. Ramification M CK M M- M CK M M-
R0 30.9± 2.7a 24.2± 6.8b

R1 30.7± 2.6a 33.1± 2.4a 22.4± 7.1a 26.0± 7.6ab

R4 31.6± 2.5b 33.7± 2.7a 21.4± 8.1a 27.3± 6.7ab

R7 33.1± 2.5bc 35.2± 3.1b 21.7± 9.2a 24.3± 9.2b

R9 33.4± 2.2bc 35.0± 3.0b 21.0± 9.8a 23.8± 8.8bc

R11 33.8± 2.7bc 35.0± 2.7b 24.4± 8.8b 21.7± 9.0c

df 5 4 5 4
F 10.7 11.7 89.8 23.9

P-value ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
M CK vs. M M- df = 1, F = 32.7, p < 0.001 df = 1, F = 672.7, p < 0.001

∗ ∗ ∗, P < 0.001

The measurements of the control plants (Treatment M CK) suggested that the mean
number of ovules per pod increased from R0 to R11 (30.8−33.8) between the ramifica-
tions from top to bottom (Tukey’s HSD comparison test, P < 0.001, df = 5, F = 10.7,
Table 3.4, M CK).

3.5.2 Effect of clipping the main stem or ramifications on the
number of seeds per pod

Effect of pod position and clipping treatments on the main stem

Effect of pod ranks The segmented regression demonstrated that the number of
seeds per pod remained constant before the 2nd breakpoint (0.77 ± 0.04, coefficient
b1 in Eqn. 2.2, t = −1.2, P > 0.1) and decreased significantly after that point with
rank on the main stem in the control plants (coefficient b1 in Eqn. (1), Fig. 3.10, R0,
t = −2.8, P < 0.05). However, the number of seeds per pod did not show a significant
difference before and after the 2nd breakpoint (0.6 ± 0.04, coefficient b1 in Eqn. 2.2,
t = −0.5, P = 0.64) with the pod rank in the clipped plants.

Effect of clipping ramifications Segmented regression indicated that no significant
changes in trend (slope) existed before and after the 1st breakpoint on the main stem
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Figure 3.10: Mean number of seeds per pod along the inflorescence on the main stem
R0 and the ramifications R1, R4, R7, R9 and R11 (Variety: Mendel). Dots and circles
represent mean number of seeds per pod for the control (M CK) and clipped (M R-
) plants, respectively. Vertical bars represent standard deviations. Fit lines using
segmented regression are shown.
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Table 3.5: Effect of clipping main stem treatment (M M-) on the total number of pods
per axis and seeds per axis on ramifications R0, R1, R4, R7, R9 and R11 for clipped
plants and control plants. Values are mean ± SD. Values with different superscripts
(within a column) differ significantly using the Tukey’s HSD test at P < 0.05.

Mean total number of seeds Mean total number of pods
per axis ± SD per axis ± SD

NO. Ramification M CK M M- M CK M M-
R0 1062.3± 703a 43.9± 11a

R1 475± 29b 611± 65 21.2± 4.7b 23.9± 5.3b

R4 471± 42b 720± 60 22.1± 6.5b 26.7± 5.4b

R7 543± 36b 735± 66 25.1± 5.9b 27.4± 6.2b

R9 496± 49b 713± 37 23.6± 8.1b 30.0± 6.9b

R11 633± 90b 766± 128 26.0± 8.1b 35.3± 8.7c

Total number per plant 4912± 194 4927± 51 150± 2 144± 4
df 5 4 5 4
F 23.3 0.69 23.3 3.24

P-value ∗ ∗ ∗ ns ∗ ∗ ∗ ∗
M CK vs. M M- df = 1, F = 26.9, p < 0.001 df = 1, F = 16, p = 0.0001

∗ ∗ ∗, P < 0.001; ∗∗, P < 0.01; ∗, P < 0.05; ns, not significant

in the control (coefficient b2 in Eqn. (2), 0.12 ± 0.05, t = 1.1, P = 0.29) and clipped
plants (0.18 ± 0.07, t = 0.9, P = 0.39). However, the changes in trend before and
after the 2nd breakpoint were significant in the control (coefficient b3 in Eqn. 2.2,
t = −6.6, P < 0.001) and clipped plants (coefficient b3 in Eqn. 2.2, t = −4.1, P < 0.05).
Therefore, the change in the number of seeds per pod in the distal pods was larger than
in the basal pods. This result indicated that the effect of clipping ramifications on the
number of seeds per pod depended on the position of pods within the main stem.
The number of seeds per pod did differ significantly before and after the 2nd breakpoint
(coefficient b3 in Eqn. 2.3, t = 3.8, P < 0.001), but not for the 1st breakpoint (coefficient
b3 in Eqn. 2.2, t = −0.2, P > 0.1) between the control and clipped plants. Clipping
ramifications did have a significant effect on the number of seeds per pod (Fig. 3.10,
R0).
The mean numbers of seeds per axis were larger in the clipped plants (t-test, t =
2.9, df = 386, P < 0.05). An increase in the total number of seeds per axis was present,
ranging from 1054± 282 (mean ± SD) to 1568± 398 (mean ± SD) in the control and
clipped plants, respectively.
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Effect of pod position and clipping treatments between ramifications

Effect of pod ranks The mean number of seeds per pod did not differ significantly
in pods before breakpoints for each ramification on the control plants (coefficient b1
in Eqn. 2.1, breakpoint: R1: 0.6 ± 0.04, t = −0.8, P = 0.44; R4: 0.67 ± 0.03, t =
−1.9, P = 0.08; R7: 0.63± 0.08, t = −0.9, P = 0.4; R9: 0.24± 0.17, t = −1.1, P = 0.2
and R11: 0.66 ± 0.2, t = −1.7, P = 0.12). However, significant decreases were present
in the number of seeds per pod with rank after the breakpoints for each ramification
in the control plants (coefficient b2 in Eqn. 2.1, P < 0.001 for each ramification). The
number of seeds per pod did not vary significantly with the pod rank in the clipped
plants (coefficient b2 in Eqn. 2.1, P > 0.1 for each ramification). The number of seeds
per pod tended to decline with higher pod rank, but the decline was more severe along
the inflorescence for ramifications R1, R4 and R7 (Fig. 3, coefficient b2 in Eqn. (1),
P < 0.05 for each ramification). Furthermore, as shown in Fig. 3, a large variability
was present in the number of seeds per pod along the inflorescence on ramification R11.

Effect of clipping the main stem Clipping the main stem did not significantly
influence the number of seeds per pod before breakpoints on ramifications R1, R7, R9
and R11 (coefficient b3 in Eqn. 2.3, P > 0.1 for each ramification), but it had an
impact on the ramification R4 (coefficient b3 in Eqn. 2.3, t = 3.6, P = 0.001). The
differences in the number of seeds per pod were significant between the control and
clipped plants after breakpoints for ramifications R1, R4, R7 and R9 (coefficient b3 in
Eqn. 2.3, P < 0.001 for each ramification). Thus, the results indicated that clipping
the main stem had a greater influence on the number of seeds per pod on the upper
ramifications than on the lower ramifications.
The mean number of seeds per pod on the main stem and on ramification R11 was
higher than on ramifications R1, R4, R7 and R9 in the control plants. However, the
mean number of seeds per pod decreased with ramifications from top to bottom in the
clipped plants (Table 3.4). The mean total number of seeds per ramification increased
(F = 26.9, df = 1, P < 0.005, ANOVA, Table 3.5) in the clipped plants compared to the
control plants. However, the total number of seeds per plant was not different (Mean
± SD, M CK: 4912± 194 and M M-: 4927± 51, t-test, t = −0.72, df = 9, P = 0.5).

3.5.3 Effect of clipping the main stem or ramifications on the
number of pods

Effect of pod ranks

The number of pods per inflorescence depends on the number of developed pods and
aborted pods, which can be described by the ratio of the number of aborted pods to
the total number of pods at each pod rank (Pod abortion). This ratio was large at
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Figure 3.11: Rate of pod abortion according to the normalised rank on inflorescences
R0, R1, R4, R7, R9 and R11 (Variety: Mendel).

the basal position, then remained constant and increased with the pod rank along the
inflorescence (Fig. 3.11) in the control (M CK) and clipped plants (M M-).

Effect of clipping treatment The rate of pod abortion was not significantly differ-
ent between inflorescences in the control (F = 1.65, df = 5, P = 0.15) and clipped plants
(F = 0.6, df = 4, P = 0.66) (Fig. 3.11). Furthermore, the pod abortion rate did not
differ significantly between the control and clipped plants (F = 1.2, df = 1, P = 0.28).
All pods aborted at the end of inflorescence on the clipped plants.
Ramification clipping induced a significant increase in the number of pods on the main
stem (t-test, t = −3.1, df = 17, P < 0.01), with an average of 58 ± 13 (mean ± SD)
pods in the plants with clipped ramifications compared to 44± 11 (mean ± SD) pods
in the control plants.
Furthermore, the mean total number of pods per axis also increased compared to the
control plants (ANOVA, F = 16, df = 1, P < 0.0001, Table 3.4). The plants with
clipped main stems had an average increase of 5 pods for each ramification compared
to the control plants. However, the mean total number of pods per plant was not signif-
icantly different (t-test, t = −0.12, d = 8, P = 0.3) between the control (M CK: 144± 4
(mean ± SD); R0, R1, R4, R7 and R11) and clipped plants (M M-: 150 ± 2 (mean ±
SD); R1, R4, R7 and R11, Table 3.5).
The mean total number of pods per axis was larger on the main stem than on ramifica-
tions and did not differ significantly among ramifications (TukeyHSD’s test, P < 0.01,
Table 3.5). In addition, ramification clipping induced an increase of 30% of the mean
seed weight (data not shown) on the main stem.
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3.5.4 Effect of clipping the ramifications and 20 basal flowers
on the number of ovules per ovary, seeds per pod and
mean seed weight

The number of ovules and seeds per pod in the clipped plants did not differ signifi-
cantly between the clipped and control plants for the Pollen variety (Treatment P R-’)
(ANOVA, P > 0.1), as shown in the fig. 3.12. The result was consistent with the
study of [Bell, 1985], the removal of flowers did not influence the number of seeds per
pod. However, the mean seed weight for the clipped plants increased. Clipping of
all the ramification and basal flowers induced an increase of 30% of the mean seed
weight on the main stem. The results indicated that the more basal pods deplete or
intercept the assimilate to the detriment of the more distal pods within an inflorescence.

Figure 3.12: Number of ovules and seeds per pod for the clipped and control plants
(Variety: Pollen).

3.6 Difference of the number of ovules and seeds

per pod between varieties

3.6.1 Number of ovules and seeds per pod on each inflores-
cence

For each inflorescences, the number of ovules per pod is Exocet > Gamin > Pollen >
Mendel (Fig. 3.13A). However, there is no significant difference between the varieties
Gamin, Pollen and Mendel. In contrast, the variation of the number of seeds per pod is
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quite obvious. The number of seeds per pod for Gamin variety is obviously small even
if it has larger number of ovules per pod. There is no big difference between the other
varieties for the number of seeds per pod (Fig. 3.13B).

3.6.2 Number of ovules and seeds per pod between inflores-
cences for each variety

The number of ovules per pod increased with ramifications from top to bottom for the
variety Exocet, Pollen and Mendel. However, for the Gamin variety, the number of
ovules per pod did not show the tendency of increase with ramifications (Fig. 3.14A).
The number of seeds per pod did not differ significationly with ramifications for the
variety Pollen and Mendel. However, the number increased with ramifications from top
to bottom for the Exocet variety. There was same tendency of the number of seeds per
pod for the Gamin variety between ramifications, but the ramification R11 had small
number of seeds per pod for this variety (Fig. 3.14B).

3.6.3 Comparison of seed yield

The mean seed weight for the four varieties are presented in fig. 3.15. The Gamin
variety had higher mean seed weight than the others (P < 0.001, ANOVA).

3.7 Conclusion

In the thesis, WOSR plants varied in both intra-inflorescence and inter-inflorescence
yield components. Pod position and time of pod appearance, related to assimilate
availability, had effects on yield components in varying degrees (Table 3.6). In addi-
tion, the number of ovules and seeds per pod did differ between varieties and between
inflorescences for one variety.
[Allen and Morgan, 1975] compared the development and yield of four varieties in oilseed
rape. They found that the number of seeds per pod and pods per axis were positively
correlated to the index of leaf area [Gabrielle et al., 1998]. The results indicated that
the assimilate availability during the flowering period is an important factor to deter-
mine the seed yield. The variation between varieties may be due to the difference of
development time [Allen and Morgan, 1975; Mendham et al., 1981a].

3.7.1 Effect of pod position

Pod position (within one inflorescence and between inflorescences in a plant) plays
an important role in the number of ovules per pod, seeds per pod and pods per axis
[Brookes et al., 2010; Ortiz et al., 2009]. The number of ovules per pod differed between
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Figure 3.13: Boxplot of the number of ovules per pod (A) and seeds per pod (B) for
the four varieties on the inflorescences R0, R1, R4, R7, R9 and R11.



44 CHAPTER 3. FIELD EXPERIMENT RESULTS

Figure 3.13: Boxplot of the number of ovules per pod (A) and seeds per pod (B) for
the four varieties on the ramifications R0, R1, R4, R7, R9 and R11. (Continued..)
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Figure 3.14: Boxplot of the number of ovules per pod (A) and seeds per pod (B) on
the ramifications R0, R1, R4, R7, R9 and R11 for each variety.
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Figure 3.14: Boxplot of the number of ovules per pod (A) and seeds per pod (B) on
the ramifications R0, R1, R4, R7, R9 and R11 for each variety. (Continued..)

two axes. On the main stem, the number of ovules per pod was large at the basal po-
sitions followed by small numbers, then increased along the inflorescence but decreased
at the distal positions. Furthermore, the number of ovules per pod was small at the
beginning of ramifications R1 and R4. This difference could be due to the complex de-
velopmental patterns of inflorescences in WOSR. Ramifications are initiated from the
bottom to the top, however, the expansion of ramifications occurs in the inverse order
of their initiation and is delayed compared to the main stem. The duration between ini-
tiation and expansion is longer for basal ramifications than for upper ramifications. As
a result, initiated pods on the basal ramifications have a longer developmental period,
which could explain the greater number of ovules per pod in the lower ramifications.
The pod rank appeared to be the major determinant of the number of seeds per pod
within one inflorescence. The decreasing pattern observed could be due to a limited
access to assimilate because they have been depleted or intercepted by more proximal
pods along the stem [Brookes et al., 2010; Lee, 1988; Stephenson, 1981]. This result
indicates the importance of the pod position because the farther the pod is from the
leaves, the smaller its number of seeds [Pate and Farrington, 1981]. The interception
of assimilates by proximal pods could explain why the number of seeds per pod in dis-
tal pods did not vary with the pod rank in the clipped plants, as the competition for
assimilates is assumed to be lower for these plants.
The distribution of the number of seeds in the plant architecture is more complex. The
main stem had larger number of seeds per pod than the ramifications. These results
might be due to the apical dominance effects [Ruiz de Clavijo, 1995]. Apical dominance
is an inhibitory influence exerted by the main stem on the development of axillary in-
florescences and is best demonstrated via main stem removal [Cline, 1997]. If the main
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Figure 3.15: Mean seed weight on the main stem for the four cultivars. The short lines
represent the error bounds.

stem is clipped, then apical dominance is released and one or more of these lower lateral
inflorescences begins to grow out. This phenomenon can explain why the main stem
had more pods than the ramifications and why the main stem had a slower decrease in
the number of seeds per pod according to the rank than the ramifications. Furthermore,
the main stem flowers earlier and has a competitive advantage over the ramifications
as the supply of assimilates is higher during main stem growth [Pate and Farrington,
1981]. Also, at the end of the flowering period, the competition for assimilates increased
as leaf area decreased, the number of pods increased and the pod canopy created deep
shade [Mendham et al., 1981a].
When clipping the main stem or ramifications, the demand for assimilate and thus the
trophic pressure in the entire plant decreases. Plants subjected to clipping treatments
developed more pods and more seeds per pod than control plants that were not sub-
jected to clippings. These results are similar to other cases in which fruit production
in late opening flowers has been increased experimentally by removing early opening
flowers or stigmas [Ehrlen, 1993; Lehtila and Syrjanen, 1995]. [Hiei and Ohara, 2002]
indicated that main stem clipping enhances the performance of lateral branches in
Melampyrum japonicum, as more ovules and more seeds per pod as well as more pods
in ramifications were obtained. The clipping treatments induced significant variations
in the number of ovules, seeds and pods in the plants. The comparison of the two
varieties highlighted different behaviors. For the Mendel variety, the number of ovules
increased in pods that emerged immediately after the clipping, regardless of which axis
was clipped (main stem: M M- or ramifications: M R-). Ramification clippings were
performed approximately in the rank 20th on the main stem, and the number of ovules
and seeds per pod increased from normalised rank 0.2 compared to the control plants.
This variety appears to have a quick response to the loss of organs, resulting in the fast
production of new reproductive organs [Wright and Meagher, 2003]. Furthermore, the
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Table 3.6: Variation of yield components of WOSR with different factors

Number of ovules Number of seeds Number of pods
Factors per pod per pod per axis

Pod rank a b NA
Ramification position + + ns

Clipping ramifications (M R-) + + +
Clipping main stem (M M-) + + +

Clipping basal flowers (P R-’) ns ns +
Time of pod appearance ns c ND

’a’ represents first decrease, then increase and decrease again. ’b’ represents first remain

constant, and then decrease. ’c’ represents the time of pod appearance had effect on the

number of seeds per pod. ’+’ and ’-’ represent ’increase’ or ’decrease’ with the factors,

respectively. ’ns’ represents not significant. ’NA’ not appropriate. ’ND’ no data to analyse

number of pods significantly increased on the main stem in the clipped plants. For the
clipping the main stem plants, the number of ovules per pod in ramifications R1 and
R4 did not vary with the pod rank. In addition, the number of ovules per pod was also
larger in all of the ramifications in the clipped plants compared to the control plants.
The number of seeds per pod did not decrease with higher pod rank on the main stem
and ramifications in the clipped plants. However, the total number of seeds and pods
per axis did not show any significant difference between the control and clipped plants.
The results indicated that WOSR has the potential for growth after flowering, which
compensates for losses of flowers, pods and branches [Diepenbrock, 2000; Wright and
Meagher, 2003]. When clipping the ramifications or flowers, the Mendel variety can pro-
duce the new reproductive organs to compensate the losses. Under normal conditions,
the plants can not reach the potential of production due to the supply of assimilates.
The Pollen variety was subjected to a more severe clipping than Mendel, all of the
ramifications and basal 20 flowers were removed, thus the supply of assimlilates may
decrease correspondingly, and yet, the number of ovules and seeds per pod remained
unchanged between control and clipped plants. However, a compensation of the loss
of reproductive organs was observed by an increase in mean seed weight and in the
number of pods per inflorescence. Furthermore, a large variability on the ramification
R11 in the control and clipped plants was present, which could be due to assimilate
availability. Most of the pods in the plant stopped growing, so the competition for
assimilates should be smaller at the end of reproductive stage. However, the supply of
assimilates in this period also decrease. More studies need to be done to analyze the
cause of variation in the ramification R11.
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3.7.2 Effect of time of pod appearance

The data analysis reveals that the time of pod appearance had impact on the number of
ovules and seeds on the whole plant level. The number of ovules per pod was small at the
beginning of flowering period, then the number increased and remained constant with
the time of pod appearance. The number of pods with small number of seeds increased
at the end of flowering period. In addition, the number of aborted ovules was large at
the beginning, then decreased and remained constant, but increased with the time of
pod appearance. The phenomena could be due to the developmental pattern of WOSR.
Pods develop acropetally within one inflorescence. Thus, the early developed pods have
a competitive advantage to obtain assimilates over later formed pods. Flowering on the
later developing secondary inflorescences may continue for some time after the main
stem has finished flowering. Older pods at the base of these flowering inflorescences are
well developed, while new flowers are still being initiated at the tips. Thus, the number
of seeds that develop in these pods will be influenced by resource availability.
This pattern of ovule abortion is correlated inversely with the number of flowers in
the fields. Few flowers open at the beginning of the flowering and only on the main
stem. The number of ovule abortions progressively increases while flowers appear on
all of the ramifications. Finally, most flowers become pods and inflorescences gradually
stop growing, which results in a lower number of flowers in the field at the end of the
reproductive period and, hence, a reduced amount of pollen grains for late flowers. This
reduced pollen count corresponds to the variation of pollen quantity and quality during
the flowering period, for example, the inefficient pollinator [Berjano et al., 2006], and
thus leads to different pollination conditions, which can affect negatively the fertilization
process and the abortion of seeds [Brookes et al., 2010; Brunet and Charlesworth, 1995].
Furthermore, the variation of aborted ovules could be a cause of the variation of the
rate of pod abortion with the pod rank. Because the survival of pods depends on the
number of seeds per pod [Ganeshaiah et al., 1986]. Plant architecture could also induce
differences in the ability of a flower to be pollinated. The density of pollen might vary
at different locations in the WOSR canopy [McCartney and Lacey, 1991].
Furthermore, a correlation exists between the position of a pod and its date of emergence
in the plant, but these two factors are difficult to differentiate. However, we know that
the ratio of supply of assimilates to demand decreases with time during the reproductive
period [Jullien et al., 2010]. Furthermore, the number of seeds per pod was smaller for
the latest developed pods, which is in accordance with the hypothesis that resource
availability is an important factor in ovule abortion [Bouttier and Morgan, 1992a]. In
conclusion, our results indicate that in WOSR, the amount of available assimilates was
the primary determinant of pod and seed production during the period of flowering
and pod setting. The distribution of resources was significantly affected both by the
position of a pod within inflorescences, and by the position of the inflorescences within
a plant. Basally positioned pods had a distinct advantage in acquiring resources due
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to their greater proximity and earlier development time. Increases in pod rank and
ramification position affect appearing time, which can be observed through the change
in assimilate availability on the entire plant.
Our study focuses primarily on the effect of assimilate availability on yield components.
However, pollination also influences the yield. To study the impact of the pollination
of the yield components, a probabilistic model has been developed to simulate the
distributions of the number of ovules and seeds per pod. The model can also be used
to simulate the distribution of the number of pollen grains [Wang et al., 2009]. This
model allows us to estimate the distribution parameters of the number of pollen grains
per stigma and discuss the effect of pollination deficit on the number of seeds per pod.
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Chapter 4

Modelization - model description,
calibration and parameter
identification

4.1 Model description

Seed production involves several floral components, including steman, pistil and ovules
(Fig. 4.1). Seed production depends on the successful completion of pollination and
fertilization [Gillaspy et al., 1993]. The compatible pollen has to germinate on the
stigma of the pistil, and forms a pollen tube. This pollen tube then grows through the
style and the ovular micropyle to deliver two sperm cells in the embryo sac. There a
double fertilization occurs; one of the two sperm cells fertilizes the ovule, while the other
fuses with two haploid polar nuclei in the central cell (Fig. 1.1). The fertilized ovules
develop into seeds and the ovary enlarges and becomes a fruit. The association of ovule
and pollen is likely to create a seed but in some conditions there may be an abortion
of the seed due to a fertility problem [Arathi et al., 1999]. We simulated the processes
of seed production using several probabilistic distributions and simplied the processes.
The model mainly focuss on the stages with higher probabilities of abortions. Based on
the biological description, theoretically, the model can reproduces the main steps from
flower appearance to seed production with the five following probability distributions.

(1) Distribution of the number of ovules in the ovary

(2) Distribution of the number of pollen grains landing on a flower;

(3) Distribution of the number of fertilized ovules;

(4) Viability of seeds: the probability for a fertilized ovule to develop into a mature
seed;

(5) Abortion of a pod according to its number of seeds.

53
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Figure 4.1: Schematic presentation of the events of seed development. Seed production
involves several processes and floral components: pollen production by the anther,
deposition of pollen grains (a) on the stigma (b), pollen germination and growth of the
pollen tube (c), fertilization (d) and development of embryo and seed (e).

Firstly, Y denotes the random variable of the number of ovules in the ovary. At first, the
number of ovules per flower is different between species, even for the same species, the
number of ovules per flower is also uncertainty. Binomial distribution with parameters
N and b is used to describe the number of ovules per ovary. N is seen here as the
maximum number of ovules and b is the probability of survival of an ovule. Thus the
probability that an ovary contained y viable ovules is given by the equation 4.1:

P (Y = y) = Cy
Nb

y(1− b)N−y (4.1)

However, thanks to the variation of the number of ovules for the measurements, N
varied a lot when we estimated the parameters b and N using different data set. If we
fit the N to estimate the b, it will influence the the following estimations. Fortunerately,
we found that the mean number of ovules per pod remained stable for different data
set. In addition, the number of ovules per flower tends to cluster around the mean.
Therefore, the distribution of the number of ovules per ovary is described with a normal
distribution with mean µ and standard deviation σ. Thus the probability that an ovary
contained y viable ovules is given by the equation 4.2.

fY (y) =
1√

2πσ2
e
−(x− µ)2

2σ2
(4.2)

Secondly, the number of pollen grains that arrive into the stigma of a flower is described
by the random variable T . According to the assumption of [Falque et al., 1995], pollen
tubes reach ovules in a similar way whether or not these ovules have already been
reached by another pollen tube. And [Sakai and Kojima, 2009] also found that seed
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production does not depend on the time of ovule fertilized within a flower. To model
the complex phenomenon of pollination, three probability distributions have been com-
pared: Pareto law, negative binomial law and lognormal law.

• Pareto law is defined by the probability density function 4.3, with parameters a,
xo:

fP (t) =
axO
ta+1

(4.3)

• The negative binomial distribution is defined by the probability 4.4:

fN(t) = Ct
t+K−1 · aK · (1− a)t (4.4)

where K, a are the probability parameters.

• The log-normal distribution is defined by the probability density 4.5:

fL(t) =
e
−

(lnt −m)2

2s2

ts
√

2π
(4.5)

where m, s are the parameters of the distribution.

As continuous density functions were chosen for discrete variables (number of pollen
grains, number of ovules), these continuous distributions were corrected using the con-
tinuity correction [Pirie and Hamdan, 1972]. The discrete form can be obtained with
the following relationship 4.6:

P (T = t) = f(t+ 0.5)− f(t− 0.5) (4.6)

The estimation results indicated that lognormal distribution can give the best result,
thus we chose log-normal distribution in our model. This will be introduced in the
section 4.3.1.
A pollen grain is assumed to be effective if it germinates and penetrates into the ovary
to pollinate an ovule. The number of effective pollen grains (X) that can germinate
and produce the pollen tube on a stigma is described by the random variable X = kT ,
k is the ratio of effective to total pollen grains. Thus, the number of effective pollen
grains can be denoted by equation 4.7:

f(x) =
1

x

k
σ
√

2π
e

−(ln

x

k − µ)2

2σ2 1

k
=

1

xσ
√

2π
e

−[lnx − (lnk + µ)]2

2σ2 (4.7)

This function is also a log-normal distribution.
During the general parameterization of model parameters by optimization, only one
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parameter s is optimized to define log-normal distribution, and the another parameter
m is subsequently derived from Ao by iteration using the constraint 4.8

Ao =
m

m+
s2

2

(4.8)

Ao is an empirical coefficient that ranges from 0 to 1, thus, we can compute the effective
number of pollen grains using the following equation 4.9:

f(t) =
1

xσ
√

2π
e

−[lnx − (lnk +
Ao · s2

2(1− Ao)
)]2

2σ2 (4.9)

One effective pollen grain is necessary and sufficient for the fertilization of one ovule.
Z denotes the number of fertilized ovules and we have the equation Z = min(X, Y ).
The probability to get y fertilized ovules is given by the equation 4.10:

P (Z = y) = P (X = y)P (Y > y) (4.10)

+ P (Y = y)P (X ≥ y)

Then, the fertilized ovules may develop into mature seeds with probability p because of
seed viability. This viability is supposed to be linked to several factors, and mainly the
resource competition. A fertilized ovule is more likely not to form a seed when there is
a high competition for resources. If S is the number of fertilized ovules to form seeds,
the probability to get i seeds is given by the equation 4.11:

P (S = i) =
N∑
y=0

Ci
yp
i(1− p)y−iP (Y = y)P (X ≥ y) (4.11)

+
N∑
y=0

y−1∑
k=i

Ci
kp
i(1− p)k−iP (X = k)P (Y = y)

The demonstration of equation 4.11 is given in appendix A.
Lastly, if a pod contained too few seeds, then it may abort. In the study of frequency
distribution of the number of seeds in pod of Leucaena leucocephala (Lam), Ganeshaiah
found that the formation of pods was related to the number of seeds in it [Ganeshaiah
et al., 1986]. This relationship was modelled with the beta function in the model, which
is a flexible function commonly used in biological models, see [Yin et al., 2003] for an
example. The probability of pod survival is defined by a function F (i) that depends on
the number i of seeds per pod contained inside with parameters α, β.

F (i) =
i∑

j=1

g(j)

Mo
(4.12)
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g(j) =
1

N

(
j − 0.5

N

)α−1 (
1− j + 0.5

N

)β−1

Mo =
N∑
j=1

g(j)

In Equation 4.13, N is the maximum number of ovules per ovary, F (i) is a normalized
function that describes the cumulative probability of pod survival.
During the general parameterization of model parameters by optimization, only one
parameter (Bo) is optimized to define the beta function, and β is derived from Bo by
iteration using the constraint 4.13:

Bo =
α− 1

α + β − 2
(4.13)

Thus the g(j) can be computed using the equation 4.14:

g(j) =
1

N

(
j − 0.5

N

)α−1 (
1− j + 0.5

N

)α− 1

Bo
− α + 1

(4.14)

B is the random variable of the final number of seeds per pod, and its probability
distribution is given by the following equation 4.15:

P (B = i) = P (S = i)F (i) (4.15)

By combining these laws, we can compute the final number of seeds per pod. The
model has been developed in Scilab 4.0 (INRIA-ENPC, 2006).

4.2 Model parameters

The model parameters were estimated according to the experimental data. Table 4.1
summarized the parameters of the model. Firstly, the parameters µ and σ were esti-
mated for the normal distribution with maximum likelihood estimation method (MLE).
Then their values were set to the estimated values and the parameters for pollen grain
distribution, the probability of seed viability and the probability of pod abortion were
estimated simultaneously with the Generalized Least Square Method (GLSQR) [Zhan
et al., 2003].

4.3 Model calibration

The experimental data of different measurements and treatments were used to estimate
the parameter values. The measurements of 2007-2008 and 2008-2009 on the main stem
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Table 4.1: Model parameters

Parameters Distributions Description

µ Normal Parameter for the distribution of ovule number
σ Normal Parameter for the distribution of ovule number
s Log-normal Parameter for the distribution of pollen number
k Log-normal Parameter for the percentage of effective pollen number
Ao Log-normal Parameter for the distribution of pollen number (fix to 0.9)
p Bernoulli Parameter for the viability of seeds
α Beta Parameter for pod abortion (fix to 3)
Bo Beta Parameter for pod abortion

m and β can be calculated according to the constraint formula 4.8 and 4.13, respectively.

was used to analyze the difference of parameter values between two years. The data
of clipping all the ramifications or 20 basal flowers were used to analyze the difference
of different situation of assimilate supply. Furthermore, the difference of parameter
values between pod position (within the main stem and between inflorescences) were
analyzed.
Pearson product-moment correlation coefficient (R2) is used to test the correlation
between the observed values and the estimated values. It can be expressed as:

R =

∑
(X − µX)(Y − µY )

NσXσY
(4.16)

where µX , µY are the mean of X, Y variables; σX , σY are the variance of X, Y variables;
N is the sample size.

4.3.1 Selection of the distribution of the number of pollen
grains per stigma

As mentioned above, the pollination of flower is a complex phenomenon, three dis-
tribution function (Pareto distribution, negative binomial distribution and lognormal
distribution) were compared to see which one is better to describe it in our study. The
experimental data in the section 2.3 was used to estimate the parameter values of model.
Akaike information criterion (AIC) Akaike [1973] was used to choose the appropriate
distribution of number of pollen grains. It is a tool for model selection by measuring
the goodness of fit of a model that takes into account the number of parameters in the
model and the number of observations.
The AIC is computed using the equation

AIC = 2k + n
[
ln(

2πRss

n
) + 1

]
(4.17)
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where k is the number of parameters in the statistical model, n is the number of
observations and Rss is the residual sum of squares. Rss can be computed

Rss =
n∑
i=1

[yi − f(xi)]
2 (4.18)

The distributions of the number of pollen grains (Fig. 4.2C) and the probability of pod
abortion (Fig. 4.2D) differed significantly between the three distributions. Table 4.2
presents the corresponding parameter values of model for each process. The distribu-
tions of observed and computed the numbers of ovules and seeds are presented in Fig.
4.2. The number of seeds per pod was better fitted with lognormal law for pollen grain
number, as confirmed by the AIC values (Table 4.2). Thus, we choose the lognormal
distribution to estimate the parameter value in the following estimations.

Table 4.2: Estimated parameters of the model for three distributions of number of
pollen grains.

Pollination distribution
Description Distribution Parameter Pareto negative lognormal

Distribution of ovule number normal µ 31.3 31.3 31.3
Distribution of ovule number normal σ 4.1 4.1 4.1
Distribution of pollen number Pareto xo 0.5∗

Distribution of pollen number Pareto a 0.095
Distribution of pollen number negative binomial K 4∗

Distribution of pollen number negative binomial a 0.105
Distribution of pollen number log-normal m 3.403
Distribution of pollen number log-normal s 0.105

Viability of seeds Bernoulli p 0.814 0.87 0.883
Pod abortion Beta α 3 3 3
Pod abortion Beta Bo 0.088 0.234 0.258

AIC 7416 6288 6285

’*’ represents parameter not estimated.

4.3.2 Difference of estimated parameter values between years

The model parameters were estimated to analyze the difference between the two ex-
perimental years in 2007-2008 and 2008-2009. Fig. 4.3 shows the distrubution of the
number of ovules (A) and seeds (B) per pod. There are more large number of ovules per
pod in 2009 compared to 2008, but the mean number of ovules per ovary (µ) was same.
The mean number of seeds per pod was larger in 2009 than 2008. The distribution of
the number of pollen grains (s) was slightly large in 2009 (Fig. 4.3C) and the percentage
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Figure 4.2: (A) Distribution of number of ovules per pod for the data in 2008. (B) Dis-
tribution of number of seeds per pod for three distributions Pareto, negative binomial
and log-normal. (C) Distribution of number of effective pollen grains for three distri-
butions; (D) Probability of pod abortion for three distributions. Circles and triangles
represent the observed number of ovules and seeds per pod, respectively; Filled circles
and circles represent respectively the observed number of seeds and ovules; Solid line
and dash line represent respectively the computed number of seeds and ovules. Lines
represent the computed number of ovules and seeds per pod for three distributions.
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of effective pollen grains (k) was same between 2009 and 2008. The distribution of the
number of effective pollen grains did not present significant difference between the two
years. The values of parameters for each process are given in Table 4.3. The probability
of seed viability (p) was larger in 2009 (Fig. 4.3C). Furthermore, the probability of pod
abortion (Bo) was larger in 2008 than 2009 (4.3D), which is due to the whole situation
of the number of seeds in the plant. The results indicated that the seed production was
better in 2009 than 2008. The variation of the number of ovule per ovary, the number
of seeds per pod and pod abortion indicated that the effect of assimilate availability,
which could be due to the environmental conditions (rain, temperature and light).

Table 4.3: Estimated parameters of the model for 2008 and 2009.

Values
Description Distributions Parameters 2008 2009

Distribution of ovule number Normal µ 31 31
Distribution of ovule number Normal σ 3.95 2.72
Distribution of pollen number Log-normal s 0.875 0.883

Percentage of effective pollen grains Linear k 0.798 0.798
Distribution of pollen number Log-normal Ao 0.9 0.9

Viability of seeds Bernoulli p 0.856 0.88
Pod abortion Beta α 3 3
Pod abortion Beta Bo 0.25 0.34

R2 0.95 0.92

4.3.3 Effect of assimilate availability on the estimated param-
eter values

The data of section 2.7.1 was used to analyze the effect of assimilate availabiligy on the
parameter values.

Parameter estimation for clipping ramifications (Variety Mendel)

Observed and computed distributions of the number of ovules (Fig. 4.4A) and seeds
per pod (Fig. 4.4B) increased in the clipped plants. As shown in the table 4.4, the
mean number of ovules per pod (µ) and the probability of seed viability (p) increased
with ramification clipping. In addition, the distribution parameters of the number of
pollen grains (s) and the percentage of effective pollen grains (k) were same between
the control plants and clipped plants (Fig. 4.4C). The probability of pod abortion
differed between the control and clipped plants (Fig. 4.4D). The results indicated that
assimilate availability has influence on the number of ovules per ovary, the number of
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Figure 4.3: Adjusted model and measurements for the number of ovules per flower (A),
number of seeds per pod (B), the estimation for the distribution number of pollen grains
per flower (C) and the probability of pod abortion according to the number of seeds
per pod (D) on the main stem in 2008 and 2009 (Variety: Mendel). Symbols and lines
represent observed and computed values, respectively.

seeds per pod and pod abortion, but the distribution of the number of pollen grains
per stigma was not impacted by assimilate availability.

Parameter estimation for clipping all the ramification and 20 basal flowers
(Variety Pollen)

The distributions of the number of ovules and seeds per pod for the clipped and control
plants (Fig. 4.5) did not differ significantly. Likewise, the distribution of the number
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Figure 4.4: Adjusted model and measurements for the number of ovules per flower (A),
number of seeds per pod (B), the estimation for the distribution number of pollen grains
per flower (C) and the probability of pod abortion according to the number of seeds
per pod (D) on the main stem in the control and clipped plants (Variety: Mendel).
Symbols and lines represent observed and computed values, respectively.
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Table 4.4: Parameter values estimated parameters for each process in the clipping
ramifications and control plants.

Values
Description Distributions Parameters M CK M R-

Distribution of ovule number Normal µ 31 32
Distribution of ovule number Normal σ 2.72 3.11
Distribution of pollen number Log-normal s 0.883 0.883

Percentage of effective pollen grains Linear k 0.798 0.798
Distribution of pollen number Log-normal Ao 0.9 0.9

Viability of seeds Bernoulli p 0.88 0.93
Pod abortion Beta α 3 3
Pod abortion Beta Bo 0.34 0.3

R2 0.92 0.95

of effective pollen grains per flower was not different. However, the probability of pod
abortion decreased significantly (Fig. 4.5). The parameter values in the Table. 4.5
gives the same results. The number of ovules and seeds per pod had no difference. This
could be due to the decrease of the competition and the supply for assimilates exist
simultaneously when clipped all of the ramifications and early flowers. The study of
[Yu et al., 2010] showed that the pod can produce assimilates.

Table 4.5: Parameter values estimated parameters for each process in the clipping early
flowers and control plants.

Values
Description Distributions Parameters P CK P R-’

Distribution of ovule number Normal µ 31.4 31.5
Distribution of ovule number Normal σ 2.83 2.94
Distribution of pollen number Log-normal s 0.894 0.894

Percentage of effective pollen grains Linear k 0.9 0.9
Distribution of pollen number Log-normal Ao 0.9 0.9

Viability of seeds Bernoulli p 0.915 0.923
Pod abortion Beta α 3 3
Pod abortion Beta Bo 0.23 0.34

R2 0.99 0.96

4.3.4 Effect of pod rank on estimated parameter values

Data analysis revealed that pod ranks had significant influence on the number of seeds
per pod [Wang et al., 2011]. The number of seeds per pod remained constant, and then



4.3. MODEL CALIBRATION 65

Figure 4.5: Adjusted model and measurements for the number of ovules per flower (A),
number of seeds per pod (B), the estimation for the distribution number of pollen grains
per flower (C) and the probability of pod abortion according to the number of seeds per
pod (D) on the main stem in the control and clipped plants (Variety: Pollen). Symbols
and lines represent observed and computed values, respectively.

decreased with higher rank. Thus it is interesting to estimate the variation of parameter
values according to the pod rank.
The mean number of ovules per ovary (µ), the probability of seed viability (p) and the
parameters of the probability for a pod to survive (Bo) did not differ significantly with
the pod rank (Fig. 4.6). The mean value of the parameter µ, p and Bo was 30.9, 0.86
and 0.3, respectively. However, the distribution parameters of the number of pollen
grains (s) and the percentage of effective pollen grains (k) varied with the pod rank
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Figure 4.6: Parameter values of model according to the pod rank.

(Fig. 4.6B). The simulated distribution of the number of effective pollen grains can
be divided into three stages for the main stem. The effective and total numbers of
pollen grains were slightly small for a few ranks, then increased with the pod rank and
remained constant, but decreased at the end of the stem.

4.3.5 Effect of inflorescence position on estimated parameter
values

To analyse if the distribution of the number of pollen grains differ between inflores-
cences, the parameter values of each step were set to the same values except the dis-
tribution parameter of the total number of pollen grains (s) for the inflorescences R0,
R1, R4, R7, R9 and R11. The number of seeds per pod can be well calibarated (Fig.
4.7B).
The mean number of ovules per pod (µ) increased with inflorescences from top to bot-
tom (Table 4.6). The upper the inflorescence is, the larger number of pollen grains has
on the inflorescence except ramification R11. The results indicated that inflorescence
position had influence on the number of pollen grains, therefore, the number of seeds
per pod.

4.3.6 Difference of estimated parameter values for four vari-
eties

The results of parameter estimation for the four varieties under the same conditions
are presented in fig. 4.8 and Table 4.7. The mean number of ovules per ovary (µ), the
parameters of pollination (s) and (k), seed viability (p) and pod abortion (Bo) varied
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Figure 4.7: Adjusted model and measurements for the number of ovules per flower (A),
number of seeds per pod (B), the estimation for the distribution number of pollen grains
per flower (C) and the probability of pod abortion according to the number of seeds per
pod (D) on the main stem (R0) and ramifications R1, R4, R7, R9 and R11 (Variety:
Mendel). Symbols and lines represent observed and computed values, respectively.
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Table 4.6: Parameter values of different steps for treatment plants and control ones.

Values

Description Parameters R0 R1 R4 R7 R9 R11
Distribution of ovule number µ 30.8 30.7 31.6 33.2 33.4 33.8
Distribution of ovule number σ 2.72 2.32 2.56 2.48 2.17 2.64
Distribution of pollen number s 0.883 0.863 0.846 0.852 0.83 0.864

Percentage of effective pollen grains k 0.798 0.798 0.798 0.798 0.798 0.798
Distribution of pollen number Ao 0.9 0.9 0.9 0.9 0.9 0.9

Viability of seeds p 0.88 0.88 0.88 0.88 0.88 0.88
Pod abortion α 3 3 3 3 3 3
Pod abortion Bo 0.341 0.341 0.341 0.341 0.341 0.341

R2 0.92 0.81 0.78 0.73 0.78 0.86

with the variety (Table 4.7).
The Gamin variety had large number of ovules per pod, but smaller number of seeds
per pod comparing to the other varieties (Fig. 4.8B).
The distribution of pollination predicted by the model was different between the four
varieties (Fig. 4.8C), although they were grown in the same field. The pollination dis-
tribution of Gamin variety was significant different from other varieties. The proportion
of the number of effective pollen grains was small (0.572) for this variety. In addition,
the probability of seed viability (p) was quite small for the Gamin variety according to
the estimation results.
Furthermore, the probability of pod abortion differed significantly for the Gamin va-
riety from the other varieties. There was smaller threshold value (14) of pod survival
compared to the other varieties. It was 35, 31 and 31 for the variety Exocet, Pollen and
Mendel, respectively.

Table 4.7: Estimated parameter values of different processes for each variety.

Values

Description Parameters Exocet Gamin Pollen Mendel
Distribution of ovule number µ 37.5 32.9 30.7 29.7
Distribution of ovule number σ 2.99 2.96 2.66 2.23
Distribution of pollen number s 1.057 0.938 1.024 1.039

Percentage of effective pollen grains k 0.997 0.572 0.9 0.809
Distribution of pollen number Ao 0.9 0.9 0.9 0.9

Viability of seeds p 0.762 0.476 0.884 0.88
Pod abortion α 3 3 3 3
Pod abortion Bo 0.285 0.062 0.269 0.344

R2 0.9 0.86 0.88 0.9
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Figure 4.8: Adjusted model and measurements for the number of ovules per flower
(A), number of seeds per pod (B), the estimation for the distribution number of pollen
grains per flower (C) and the probability of pod abortion according to the number of
seeds per pod (D) on the main stem for the four varieties (Exocet, Gamin, Pollen and
Mendel). Symbols and lines represent observed and computed values, respectively.
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4.4 Conclusion

A model is presented in this paper and it can simulate the abortion of seeds and pods.
The parameters of the model were estimated according to the years, clipping treat-
ments, pod ranks, inflorescence positions and four contrasting varieties. The differences
of parameter values were analyzed to distinguish the factorst of seed and pod abortion,
including ovule fertilization, pollination limitation, competition for assimilates and ar-
chitectural effects. These factors have different impacts on the abortion of seeds and
pods (4.8). According to the estimations, we can draw the following conclusions:

Table 4.8: Variation of parameter values under different conditions for each process.

Parameter Years Treatment Pod ranks Inflorescences Variety

µ Constant Increase Constant Increase Vary
s Vary slightly Constant Decrease Decrease Vary
k Constant Increase Decrease Constant Vary
p Vary Increase Constant Constant Vary
Bo Vary Vary Vary (no trend) Constant Vary

1 The mean number of ovules per flower (µ) was constant between years, but var-
ied with pod positions (within one inflorescence and between inflorescences) and
assimilates availability (clipping treatments).

2 The probability of seed viability (p) remained constant with pod ranks and rami-
fications, but the probability was impacted by assimilate availability (years, clip-
ping treatments). The probability of pod abortion (Bo) was related to the number
of seeds it contains.

3 The distribution parameters of the number of pollen grains (s and k) varied with
years and pod positions. However, assimilate availability has no effect on this
parameter.

Components that determine the number of seeds are the number of ovules per ovary and
the percentage of these ovules that develop into seeds. Accordingly, seed abortion could
be due to two factors: ovule viability or/and pollination limitation. If the ovule is not
viable, even if it can receive a pollen grain, or if the pollen is ineffective, it cannot form
a fertilized ovule, thus it leads to seed abortion. Seed abortion results from two periods
could due to two factors: ovule viability Bouttier and Morgan [1992b] and pollination
limitation [Pechan, 1988].



4.4. CONCLUSION 71

4.4.1 Ovule viability

[Bouttier, 1990] found that 30-40% ovules lack an embryo sac at flower opening. The
success or failure of embryo sac development is already determined at the bud stage
of 4 mm [Bouttier and Morgan, 1992b]. According to the study of [Bouttier and Mor-
gan, 1992b], environmental factors, such as temperature, light, nutrient supply, during
meiosis II and/or early megaspore differentiation are determining events on seed yields.
Within the inflorescence, decreased ovule viability was one of the causes for the lower
number of seeds per pod in the apical region compared to the basal region [Bawa and
Webb, 1984; Sedgley, 1980]. Lower ovule viability in the distal region of ovaries from
the apical region of the inflorescence may result from an insufficient supply of resources
leading to intra-ovary competition in later formed buds. The assimilates were intercept
by the basal pods [Lloyd, 1980].
The mean number of ovules per ovary increased with inflorescence from top to bottom
along the main stem, and the mean increased with clipping treatment. The results
could be due to assimilate availability [Bouttier, 1990]. The supply and allocation of
assimilates between the organs within the plant vary with the time. This could lead
to the difference of assimilates obtained by pods appear in different time and position
[Keiller and Morgan, 1988; Stephenson, 1981]. Furthermore, clipping treatment can
reduce the competition for assimilates, which results in the increase of the number of
ovules per ovary.
Furthermore, the number of ovules per ovary varies with the variety, as indicated by the
results of the four varieties. This phenomenon is well known in other plants [De Reffye,
1974; de Reffye et al., 1978; Falque et al., 1995]. Normally, the number of ovules is much
larger than the final number of seeds, therefore, it is not a limiting component [Ancha,
1988; Mendham et al., 1981b; Pechan and Morgan, 1985]. The numbers of seeds that
develop in pods are mainly limited by the failure of fertilization [Pechan, 1988].

4.4.2 Pollination limitation

Poor pollination is often cited [Teixeira et al., 2006] to explain low seed set, and the
stochastic pollinator environment is often stressed as an important cause of pollen lim-
itation Price et al. [2005]. The quantity of pollen in the air is strongly influenced by
weather conditions, such as wind, temperature and precipitation [Gruber and Clau-
pein, 2007], as wind pollination is important for the fertility of oilseed rape. De Reffye
[de Reffye et al., 1978] noted that pollination is a random process which varies with the
season and the genotype in cacao tree. The decrease in the number of seeds per pod
observed at the top of the main stem could be the consequence of the decreasing number
of flowers or/and inefficient pollinators. Indeed, most flowers develop into pods at the
end of the flowering period and the main stem gradually stop growing, which lead to a
lower number of flowers in the field, and hence a reduced amount of pollen grains for
late flowers. Furthermore, the amount of pollen fluctuated greatly from day to day and
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varied with the stage of flowering of the crop [Williams, 1984]. The model estimated
the distribution of the number of effective pollen grains per flower in different pod ranks
and inflorescence positions. The results were consistent with the conclusions above. As
the main stem expands first, followed by the ramifications from top to bottom, the po-
sition that flower located determines the time of its flowering and pod setting. During
flowering period, few pollen grains were caught during early and late flowering and most
during peak flowering [McCartney and Lacey, 1991]. The estimation for four varieties
indicated that pollination distribution varied largely, especially for the Gamin variety.
One output of the model is the pollination law that is not easy to measure experi-
mentally. The distribution of the number of pollen grains deposited was in coherent
with the result of Mesquida and Renard [Mesquida and Renard, 1982; 1983; Mesquida
et al., 1988]. He studied the distribution of pollen grains in oilseed rape and found most
flowers can receive enough pollen grains to fertilize the ovules. The model allows us to
deduce the law of pollination deposited and it is a kind of validation.
[Pechan, 1988] and [Ancha, 1988] found that pollen germination was not the factor lead-
ing to seed aboriton Araujo et al. [2007]. The failure of ovule viability and the pollen
tube penetrating the ovule are the important factors of seed abortion. The decreases of
the number of seeds per pod and of the number of effective pollen grains at the end of
the inflorescence could be due to the reduced ability of ovule fertility, or the decrease
of the quantity and quality of pollen grains.
In addition, many ovules do not resume growth after pollination and degenerate by 2
days after flower opening [Bouttier and Morgan, 1992b]. That could be due to the triple
fusion does not take place (no endosperm), which leads to seeds were ’starved to death’
from the lack of nutrients [Pechan, 1988]. Some seeds stop growing after a few days
of development. It could be a result of delayed development and consequently reduced
ability to compete with the more developed seeds for available nutrients. However, the
second series of abortions does not affect many seeds [Pechan and Morgan, 1985]. The
above evidence suggests that the maturity and/or the receptivity of the ovules at the
time of flower opening may be important in determining seed set [Ancha, 1988]. Thus,
the opened flower stage is critical for seed set.

4.4.3 Competition for assimilates

Brassica napus is a species with a complex reproductive architecture, yield results from
the product of the number of ramifications, number of pods per ramification, number
of seeds per pod [Mendham et al., 1981a]. The plant is very plastic, and there may
be compensatory mechanisms between different components that are linked to source-
sink relationships [Wang et al., 2011]. The competition for assimilates within one plant
leads to a trade-off between inflorescences. The rhythm of pod setting for ramifications
was found to be slower than for the main stem. This could be due to pod setting on
ramifications is subject to higher competition for assimilates than on the main stem
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because of the internode expansion and pod setting on all ramifications within a short
period [Jullien et al., 2010]. The probability of seed viability increased in the clipping
ramifications or basal flowers plants indicated that the competition for assimilates has
effect on seed and pod production. [Tayo and Morgan, 1979] studied the impact of
shading or leaf removal on the number of pods on the main stem. They concluded
that irrespective of the developmental stages over which shading took place, reductions
in the number of pods occurred on the terminal inflorescences. The number of pods
per plant was significantly reduced when the shading was applied at anthesis, although
the reduction in the number of pods was partially compensated by an increase in the
number of seeds per pod in the basal pods. Leaf removal treatments led to more severe
reductions in the number of pods, pod yield and seed yield than the shading treat-
ments. Furthermore, [Pechan and Morgan, 1985] found that defoliation on the terminal
inflorescence at anthesis causes a significant reduction in the weight of pods per plant
as a result of reducing the weight of the individual pods. These studies suggest that
the competition for assimilates within one inflorescences may be due to the intercept
of assimilates of the basal pods.
Competition for assimilates should be one cause leading to the abortion of pods. When
the upper pods start growing, they are simultaneously confronted to a higher competi-
tion for assimilates and a decrease in the sources [Stephenson, 1980; Udovic and Aker,
1981]. And there is competition among the ovaries of an inflorescence, as speculated by
the resource competition hypothesis [Arathi et al., 1999; Lee, 1988; Stephenson, 1980].
Model parameter estimation indicated that the resource competition is not visible at
the level of the seed (p constant according to the pod rank), but rather at the pod
level. The probability of pod abortion is correlated to the number of seeds it contains.
The amount of assimilates is regulated at the level of single flower and fruit, particu-
larly for the determination of flowers, the development of ovaries and the maturation
of fruit. At each stage, the initiation or expansion of an organ requires an amount of
available resources above a certain threshold [Ganeshaiah et al., 1986]. If a pod with
too few seeds, it will abort. This phenomenon could be related to a lack of available
assimilates. Hence, assimilate is continually adjusted to the resources available at each
developmental stage.

4.4.4 Architectural effects

The position of pods within one plant varies due to the complex structure in WOSR.
The difference of pod positions results in the difference of initial time of pods [Egli and
Bruening, 2006]. The time of flowering and pod setting differ between the pods within
one inflorescence and between inflorescences within one plant. The basal pods and the
apical inflorescences flower and develop first. The time is closely related to the supply of
assimilates [Gabrielle et al., 1998] and pollination conditions [Kang and Primack, 1991].
This could be lead to the variation of the number of ovules and seeds per pod in WOSR.
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In conclusion, the model allows us to reproduce the steps of flower fertility on WOSR
with a few parameters and probabilistic distributions. Model can simulate the phe-
nomena of observations and allow us to deduce the distribution of the number of pollen
grains in a flower and to identify the factors that influence the yield, which include
ovule viability, resource competition and pollination limitation and architectural ef-
fects. Model parameters are useful as selection criteria, to study variability of seed
production, or to estimate the contribution of genetic and environmental factors to
seed abortion, given a relevant experimental design.

4.5 Stability of model parameters - Jackknife and

Bootstrap resampling

In statistics, resampling is used to test the stability of model parameters by using ran-
dom subset, such as jackknifing, bootstrapping and cross validation.
Jackknifing was introduced by [Quenouille, 1949], which is used in statistical inference
to estimate the bias and standard error (variance) of a statistic, when a random sample
of observations is used to calculate it. The basic idea behind the jackknife variance
estimator lies in systematically recomputing the statistic estimate leaving out one or
more observations at a time from the sample set. From this new set of replicates of the
statistic, an estimate for the bias and an estimate for the variance of the statistic can
be calculated [Li et al., 2008].
Bootstrapping is a statistical method for estimating the sampling distribution of an
estimator by sampling with replacement from the original sample [Chaudhury et al.,
1998], most often with the purpose of deriving robust estimates of standard errors and
confidence intervals of a population parameter like a mean, median, proportion, cor-
relation coefficient or regression coefficient [Sahinler and Topuz, 2007]. It may also
be used for constructing hypothesis tests. It is often used as a robust alternative to
inference based on parametric assumptions when those assumptions are in doubt, or
where parametric inference is impossible or requires very complicated formulas for the
calculation of standard errors.
The bootstrap and the jackknife estimate the variability of a statistic from the variabil-
ity of that statistic between subsamples, rather than from parametric assumptions. The
jackknife is a less general technique than the bootstrap, and explores the sample varia-
tion differently. However, the jackknife is easier to apply to complex sampling schemes,
such as multi-stage sampling with varying sampling weights, than the bootstrap. The
jackknife and bootstrap may in many situations yield similar results. But when used
to estimate the standard error of a statistic, bootstrap gives slightly different results
when repeated on the same data, whereas the jackknife gives exactly the same result
each time (assuming the subsets to be removed are the same).
Whether to use bootstrap or jackknife may depend more on non-statistical concerns
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but on operational aspects of a survey [Muller, 2005]. The bootstrap provides a pow-
erful and easy way to estimate not just the variance of a point estimator but its whole
distribution, thus becoming highly computer intensive. On the other hand, the jack-
knife (originally used for bias reduction) only provides estimates of the variance of the
point estimator. This can be enough for basic statistical inference (e.g. hypothesis
testing, confidence intervals). Hence, the jackknife is a specialized method for estimat-
ing variances whereas the bootstrap can be applied to both variance and distribution
estimation problems. However, the bootstrap variance estimator is not as good as the
jackknife in terms of the empirical results. Furthermore, the bootstrap variance esti-
mator usually requires more computations than the jackknife [Spiegelman and Park,
2007]. Thus, the bootstrap is mainly recommended for distribution estimation. In this
section, we used the jackknifing and bootstrapping method to test the uncertainty we
have on our parameter values.

4.5.1 Jackknife resampling

Introduction

The jackknife resampling method is used to perform an investigation of the stability
or uncertainty of the fitted model [Li et al., 2008; Sahinler and Topuz, 2007]. By
resampling with omission of the original sample, the stability of the parameters derived
from the observations can be determined.
Due to the large size of our data sample, the deleted-1 is too computationally intensive,
thus the delete-q jackknife approach [Efron and Tibshirani, 1993] is used in our study.
Assume a data sample of size n is divided into g groups of size q(n = gq), denoted by
X = x1, x2, . . . , xg−1, xg. The aim is to estimate the parameter θ̂ = f(x). The delete-

q jackknife estimate of standard error of θ̂ is obtained by deleting selected groups
of observations at a time, and computing θ̂i using the remaining sampled data, the
equation is given by 4.19:

θ̂ = f(x1, x2, . . . , xi−1, xi+1, . . . , xg−1, xg) (4.19)

This process is repeated for i = 1, 2, . . . , g− 1, g until each group has been deleted once
and only once, there by generating g jackknife estimates of θ̂. The mean and standard
error of the jackknife estimate are given by 4.20 and 4.21:

¯̂
θ =

1

g

g∑
i=1

θ̂i (4.20)

STD = [
1

g − 1

g∑
i=1

(θ̂i − ¯̂
θ)

2
]

1

2 (4.21)
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The 95%(α = 0.05) confidence intervals of mean with the unknown population variance
are estimated by using the following equation 4.22:

¯̂
θ − t

g−1,
α

2

g − 1

g
STD < θ <

¯̂
θ + t

g−1,
α

2

g − 1

g
STD (4.22)

where tg−1,α
2

is the critical value of t-distribution with probability α
2

the right-tailed for

g − 1 degrees of freedom [Sahinler and Topuz, 2007]. The factor g−1
g

have been chosen

such that STD is unbiased variance estimator of the standard deviation [Duchesne and
MacGregor, 2001].

Results

The data of 2008 was used with 1800 pods, corresponding to 45 plants with 40 pods
per plant. The parameters were estimated, with removing one plant (40 pods) from
the whole sample at each step for the jackknife method. Table 4.9 gives the mean of
parameter values, their standard deviation and their coefficient of variation (CV), where
n = 1800, g = 45, q = 40, t44,α

2
= 2.015. The CVs indicate a quite good stability for all

the parameters, the less accurate ones being the parameters σ related to the variance
of the number of ovules per pod and the parameters (Bo) related to the probability for
a pod to survive according to its number of seeds.

Table 4.9: The summary statistics of the parameter values for jackknife subsample
(n = 1800, g = 45, q = 40, t44,α

2
= 2.015)

Parameter mean STD CI min CI max CV (%)

µ 31.3 0.147 31.0 31.6 0.47
σ 4.1 0.135 3.8 4.3 3.32
s 0.924 0.004 0.916 0.931 0.423
p 0.846 0.006 0.834 0.857 0.708
Bo 0.211 0.005 0.201 0.221 2.3

4.5.2 Bootstrap resampling

Introduction

A dataset of size n has possible 2n−1 non-empty subsets; however, the jackknife resam-
pling uses only n of them. Thus, it can be seen that there is further scope for resampling
and the jackknife resampling may be improved upon by obtaining estimates from more
than n subsets. For this purpose, the bootstrap resampling was introduced by Efron
[Efron, 1979]. The idea behind the bootstrap resampling is to randomly sample the
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dataset a very large number of times (b times), in a similar manner to Monte Carlo
simulation.
The assumption is that each data point is a valid member of the total sample and that
at any time, there is an equal probability of ’picking’ any of the data values in the
original sample. Thus, new and equally valid resampled datasets can be created by
picking from the original sample at random.
Bootstrap resampling is achieved by randomly selecting n data points, with replace-
ment, from the original observed random sample. Therefore, it is possible that in any
sample of n data points, some of the original data points can appear twice or more
and some of the original data points may not appear at all. All bootstrap replicates
(samples) have the same length as the original samples and each of the b bootstrap
replicates can provide an estimator θ̂. The spread in the estimators formed from these
resampled datasets then provide information on the stability of the estimator with re-
spect to different possible outcomes represented by the bootstrap replicates. However,
resampling with replacement may lead to unrealistic bootstrap samples. Therefore, a
large number of replicates are generally recommended.
The mean and standard error of the bootstrap estimate are given by 4.23 and 4.24:

¯̂
θ =

1

b

b∑
i=1

θ̂i (4.23)

STD = [
1

b− 1

b∑
i=1

(θ̂i − ¯̂
θ)

2
]

1

2 (4.24)

The 95%(α = 0.05) confidence intervals of mean with the unknown population variance
are estimated by using the following equation 4.25:

¯̂
θ − zαSTD < θ <

¯̂
θ + zαSTD (4.25)

where zα is the critical value of z-distribution with probability α the right-tailed for
b− 1 degrees of freedom [Sahinler and Topuz, 2007].

Results

Table 4.10 gives the mean of parameter values, their standard deviation and their
coefficient of variation (CV), where n = 1800, b = 100, zα = 1.645. The parameter σ
related to the variance of the number of ovules per pod and the parameters (Bo) related
to the probability for a pod to survive according to its number of seeds had large CVs.

4.5.3 Conclusion

The results indicated that the CVs were larger with bootstrap resampling than jackknife
resampling, which results from the resample method. Jackknife method deletes q(q =
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Table 4.10: The summary statistics of the parameter values for bootstrap subsample
(n = 1800, b = 100, zα = 1.645)

Parameter mean STD CI min CI max CV (%)

µ 31.3 0.74 30.0 32.5 2.36
σ 4.0 0.45 3.27 4.76 11.2
s 0.923 0.01 0.906 0.939 1.07
p 0.848 0.02 0.815 0.88 2.36
Bo 0.21 0.009 0.195 0.225 4.4

40) samples from the whole sample for each time, the subsample is more similar with
the whole population. While bootstrap method randomly select the samples from the
whole sample, some samples could not be selected, but some samples could be selected
several times or more, this could be lead to the large difference from the population.
However, the results obtained by jackknife resampling and bootstrap resampling are
consistent. The CV of the variance of the number of ovules per pod (σ) was larger
compared to the other parameters. Furthermore, the parameter Bo had big variation,
which could result from the number of seeds per pod. This could be due to the different
subsamples, which have different number of ovules and seeds per pod. Thus, we can
conclude that sample set has an effect on the estimations of the variance of the number
of ovules and the probability for a pod to survive, but sample set has no effect on
the estimation of the distribution of pollen grain number and the probability of seed
viability.

4.6 Model comparison

4.6.1 A pollination and fertilisation model for multi-seeded
fruit and its application to kiwifruit

Lescourret [Lescourret et al., 1999] developed a model describing flower pollination and
ovule fertilisation. The outcome of the model varies with the climate, the number and
phenology of flowers in an orchard, the planting scheme and the choice of pollenizers.
The model takes into account the presence in the orchard of various pollenizer groups.
The model was applied to kiwifruit, which is a dioecious species.
The fertilization of a kiwifruit flower can be viewed as the combination of four processes:

1 Deposition of pollen grains on the stigmas during the effective pollination period
of the flower

2 Selection of fertile pollen grains, i.e. the grains that produce tubes able to bring
the male gametes to the ovules
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3 Fertilization of ovules conditional on the presence of N ovules in the ovary

4 Selection of fertile ovules.

• The first process a Poisson-distributed deposition of pollen on the stigmas of
flowers during the effective pollination period of these flowers. The Poisson dis-
tribution is currently employed to count events or things randomly dispersed in
time or space, as it can be assumed here for pollen grains in the space occupied by
flowers. For the sake of simplicity, they suppose that the population of pollenizers
is homogeneous in regard to pollen fertility and pollen production per flower. The
intensity λ of this Poisson process is supposed to depend on the date of anthe-
sis of the flower to be pollinated with respect to the temporal pattern of pollen
availability in the orchard. They assumed that pollen release is uniform balanced
during the effective pollination period. Pollen production depends on the number
and time-distribution of flowers that open, and on the number of pollen grains
produced per flower p, which is considered as a fixed input value and can vary
with the cultivar. Pollen reception is a function that should describe the part
of the pollen produced by a source that is transported on the target, according
to various features among which the distance between the source and the target.
This function may be different according to the species. They suggest a function
for the case of kiwifruit.

• The model assumed that the second process is binomial distribution with param-
eter f (pollen fertility), considering that at each trial (selection of a pollen grain),
either of two exclusive events can take place, i.e. the pollen grain is fertile (with
a probability f) or not fertile (with a probability 1− f).

• For the third process, a basic hypothesis, formulated by Falque et al. [Falque
et al., 1995], is that pollen tubes reach ovules in a similar way whether or not
these ovules have already been reached by another pollen tube. According to
Falque et al. [Falque et al., 1995], it results that the probability that a fertile
pollen tube does not reach a given ovule i among a total of N ovules present in
the ovary is 1 − 1

N
. Then, combining the Poisson process of intensity λ and the

binomial process of parameter f (pollen fertility) leads to the formulation of the
third process, i.e. the calculation of the probability that ovule i is fertilized given
a total of N ovules in the ovary [Lescourret et al., 1998] 4.26:

P (i fertilized|N) = 1− e−
λf
N (4.26)

• The fourth process is binomially distributed with parameter F (ovule fertility),
Ovule i fertilization by pollen and ovule fertility being assumed independent, the

probability that i is fertile and fertilized is F (1− e−
λf
N ).
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The result of the combination of the four processes is viewed as binomially distributed,
and the probability that n ovules out of N develop into mature seeds is thus 4.27:

P (n|N) = Cn
N [F (1− e−

λf
N ]n[F (1− e−

λf
N ]N−n (4.27)

provided that ovules in a flower are independent of each other with regard to fertiliza-
tion.
In our model, we chose the smaller values of the number of ovules and pollen grains as
the number of fertilized ovules. That is to say, the ratio of ovule and effective pollen
grain was 1:1. But for most species, one pollen may not enough for fertilizing one ovule
[Falque et al., 1995]. If we let each pollen to randomly choose which ovule to fertilize,
we can estimate the parameters to fit the distribution curves of the number of ovules
and seeds per pod by setting a maximum value of the number of pollen grains. Accord-
ing to this method, we can compute the distribution of the number of fertilized ovules.
Thus, we can improve our model to compute the number of seeds per pod.
Calculation of the probability that ovule i is fertilized given a total of Y ovules in the
ovary and a total amount of X pollen grains on the stigmas: X, Y , Z denotes that
the numbers of pollen grains, ovules and fertilized ovules, respectively. The equation
to compute the probability of fertilized ovules is 4.28:

P (Z = z) =
X∑
j=1

Ci
Y

j

Y
(SX−1

j−1 + SX−1
j ) (4.28)

4.6.2 Estimation results

We tried to change the maximum number of pollen grains to obtain the best estimation
results. We found that when the maximum number of pollen grains was set to 100,
the distributions of the number of ovules and seeds per pod can be well calibrated, as
shown in the Fig. 4.9. The probability with small number of pollen grains was quite
small, the maximum probability of the number of pollen grains was 0.03 for this model
and 0.06 for our model. The result is consistent with that obtained with our model, in
which the distribution of the number of efficient pollen grains was given. Besides, the
distribution of in 2009 was better than 2008, which is in accordance with the result of
our model.

4.6.3 Conclusions

The estimation for the distribution of pollen grain number was improved by comparing
our model to the model of flower fertility in kiwifruit developed by Lescousrret et al.
The flower fertility of model described the distribution of pollen grain number as a
Poisson distribution, and computed the fertility of pollen using Binomial distribution,
then computed the number of fertilized ovules. The model developed in the thesis
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Figure 4.9: Adjusted model and measurements for the number of ovules per flower (A),
number of seeds per pod (B), the estimation for the distribution number of pollen grains
per flower using the flower fertility of model (C) and the estimation for the distribution
number of effective pollen grains per flower using our model (D) on the main stem in
2008 and 2009 (Variety: Mendel). Symbols and lines represent observed and computed
values, respectively.

assumed that the ratio of ovule and pollen was 1:1. The number of fertilized ovules was
the smaller value of them. However, the studies in other species found that one pollen
grain might not be enough to fertilize one ovule. Thus, we introduced one parameter k
to estimate the proportion of effective pollen grains in the model, in turns, to compute
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the distribution of pollen grain number.
According to the estimations, it is better if we can let one pollen to randomly select
one ovule to fertilze. However, the computation is time-consuming. Comparing to
the results using the model developed in the thesis, the results are not very large
improvement. Therefore, we choose to introduce a parameter k to compute the effective
pollen grains in our model, as mentioned before. The assumation that one pollen is
sufficient to fertile one ovule is approriate to estimate the distribution of the number
of pollen grains. Our model can well calibrate the distribution of the number of ovules
and seeds per pod.

4.7 Application to other species

The angiosperms, or flowering plants, are one of the major groups of extant seed plants
and arguably the most diverse major extant plant group on the planet, with at least
260,000 living species classified in 453 families [II, 2003; Judd et al., 2002]. They can
be small herbs, parasitic plants, shrubs, vines, lianas, or giant trees. There is a huge
amount of diversity in reproductive morphology. Despite their diversity, angiosperms
are clearly united by a suite of synapomorphies including:

1 An ovary consists of ovules that are enclosed within a carpel, and the stigma, a
structure where pollen lands and germinates on it;

2 Stamens with two pairs of pollen sacs;

3 Double fertilization, which leads to the formation of an endosperm (a nutritive
tissue within the seed that feeds the developing plant embryo);

4 Features of gametophyte structure and development [Doyle and Donoghue, 1986;
Soltis and Soltis, 2004; Soltis et al., 2004].

These characteristics include flowers, endosperm within the seeds, and the production
of fruits that contain the seeds. Thus, we try to use our model of flower fertility to the
other species, such as soybean and cacao tree.

4.7.1 Soybean

Plant

The soybean (Glycine max L. Merr., family Leguminosae), the height of the plant varies
from below 20 cm up to 2 metres. The pods, stems, and leaves are covered with fine
brown or gray hairs. The leaves are trifoliolate, having 3 to 4 leaflets per leaf, and the
leaflets are 6-15 cm long and 2-7 cm broad. The leaves fall before the seeds are mature.
The inconspicuous, self-fertile flowers are borne in the axil of the leaf and are white,
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pink or purple.
The seeds are borne, 1-5 (usually 2-4) to a pod, the 3-15 pods are in a cluster on the
short seed stalk in the rachis or base of the leaf. A productive plant may have as many
as 100 seed clusters. The seeds are mechanically harvested after the plant sheds its
leaves as it matures.

Inflorescence

There may be from 1-35 purple or white florets, 3-8 of an inch long, on each short
raceme or flower cluster. A single plant may bear as many as 800 florets, but may set
only 13-57 percent. The floret has the characteristics and shape of many other legume
flowers - a large standard petal, two small wing petals, and a keel petal that encloses
the staminal column (Fig. 4.10). The calyx is relatively large in proportion to the
flower or even to the calyx of other legumes. Each floret is capable of producing a bean
pod. Southern grown cultivars stop growing when flowering begins. Flowering usually
continues for 4 to 6 weeks. There may be one-half million florets per acre. There are
no extrafloral nectaries (Jaycox 1970).

Figure 4.10: Structure of soybean flower (From website)

The soybean is considered to be self-fertile and not benefited by insect pollination
[Rubis, 1970]. Soybean flowers attract relatively few bees. Pollination and fertilization
is usually accomplished before the flower opens. Therefore, we do not need to consider
the distribution of the number of pollen grains per flower. Thus, the computation of
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the number of seeds per pod can be described as three steps: (1) the number of ovules
per pod; (2) the viability of seeds; (3) the abortion of pods.

Estimation results

The number of ovules and seeds per pod can be computed very well in soybean using
the model (Fig. 4.11).

Figure 4.11: Estimations and measurements for the number of ovules and seeds per
pod in soybean

4.7.2 Cacao

Cacao

Cacao (Theobroma cacao L., Sterculiaceae) is a tropical tree with its center of diversity
located in the Amazon basin [Lanaud, 1986], and it is now cultivated in the humid trop-
ical regions of West Africa, Latin America and Aisa. Cacao flowering is usually abun-
dant, particularly in full sun, with up to 125000 flowers per tree each year [Lachenaud
and Mossu, 1985]. Cacao inflorescences are grouped in flower cushions located on the
tree trunk and branches. The hermaphrodite flowers last only 1 day, as for many trop-
ical species [Bawa, 1983]. Each flower contains five styles connate at their base, which
end in a five-branched stigma, and the ovary contains 40-65 ovules [Lachenaud, 1991].
Pollination intensity (PI), the number of pollen grains received per stigma, was moni-
tored in Ivory Coast [de Reffye et al., 1978; Parvais et al., 1977]. These studies indicate
that 53-76% of the stigmas were void of pollen. [Falque et al., 1995] also examined the
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distribution of the number of seeds per fruit and concluded that flower abortion and
low number of seeds per pod were consequence of the small number of fertilized ovules
resulting from insufficient pollination.
In this thesis, we consider the fertility of cacao flowers as follows: (1) number of ovules
per flower; (2) number of pollen grains per style; (3) number of fertilized ovules; (4)
seed viability; (5) Pod abortion.

Source of data set

The data come from the paper of Pauline [Paulin, 1981]. The study was conducted in
the station the IFCC Bingerville. The cultivar is UPA 620. They measured the number
of ovules per pod, the number of pollen grains per style and the number of seeds per
pod. Thus, we can estimate the parameter values using the data. Four groups of data
in cacao tree were used to estimate the parameter values using the model (Fig. 4.12).
The distribution curves of the number of seeds per pod (Fig. 4.12 A, B, C) illustrate the
impact of the pollination on seed filling and pod yield in natural pollination. Fig. 4.12
D shows the distribution curve of the number of seeds per pod with hand pollination
for the UPA clone 620.
The curve shown in Fig. 4.12 A is positively skewed unimodal, the plot had been
subject to a very inadequate pollination (Pareto: a=2.10). a is the index of scarcity
of pollen for the Pareto distribution. The larger a is, the less the number of pollen
grains per style. No flower has received enough pollen to ensure that all ovules from
the ovary are fertilized. The curve in Fig. 4.12 B is bimodale, the value of a was
reduced (a=0.93), the pollination conditions are better, but still insufficient, it has a
center peak saturation of 46, which shows a certain proportion flowers were pollinated
properly: the pollen is deposited in quantities exceeding the average number of ovules.
Figure 4.12 C shows that natural pollination was good: the curve is a unimodal negative
asymmetry, the great majority of flowers had been pollinated enough, the scarcity index
is low (a=0.35), little flowers with insufficiently pollinated. In the Fig. 4.12 D, there
was sufficient pollen grains on all the styles and the scarcity index tends to 0 (a=0.08),
we observed a peak very marked. All pods are properly filled seed, the optimal harvest
is here. The peak was displaced very significantly, from 47 to 51. The fertility has
been completed well with P=0.95. With hand pollination, they optimized the fertility
of pollen (viability, compatibility) by controlled choice pollen. Thus, under the same
number of pollinated flowers, the quality of pollination (the number of flowers receiving
large aggregates) is an essential component.

Estimation results

We can see that our model can compute the number of seeds per pod well when seed
production is better (4.12 C,D). However, if seed production is not good, the model can
not compute the number of seeds well.
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Figure 4.12: Estimations and measurements for the number of ovules and seeds per
pod, the computed distribution of pollen grain number in cacao tree



Chapter 5

Conclusions and perspectives

5.1 Conclusions

The thesis investigated the variation of main yield components, including the number
of ovules per pod, the number of seeds per pod and abortion rate of pods in WOSR.
The factors influencing these yield components were analyzed, such as ovule fertiliza-
tion, pollination limitation and competition for assimilates and architectural effects.
Field experiments were conducted to investment the influence of these factors on yield
components in WOSR. Continuous observations were carried out during the flowering
period, and some treatments and measurements were performed to analyze the effect of
different factors on seed production. In addition, the difference of the number of ovules
and seeds per pod between varieties were investigated. Based on some previous studies
in cacao tree, coffee tree and oil-palm, we developed a probabilistic model of flower
fertility by combining some probability distributions in WOSR. The experimental data
of different measurements and treatments were used to estimate the parameter values of
the model, which can help us to distinguish the factors influencing the yield. Further-
more,rResampling method was used to estimated the stability of the model parameters.
In the last, we used the model to simulate the flower fertility of other flowering plants.
Accordingly, some main conclusions can be drawn:

1 The number of ovules per pod varied with pod ranks on the main stem (R0) and
ramifications R1 and R4. The number of ovules per pod was small at the beginning
of the stem, then remained constant along the inflorescence. But the number
remained constant on the other ramifications R7, R9 and R11. Furthermore, the
number of ovules per pod increased with the ramifications from top to bottom.
The results indicated that plant architecure (pod rank and inflorescence position)
has an effect on the number of ovules per pod. This difference could be due to
the complex developmental patterns of inflorescences in WOSR.

2 The pod rank appeared to be the major determinant of the number of seeds per
pod within one inflorescence. The number of seeds per pod remained constant

87
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at the basal position and then decreased with the increase of pod ranks. In
addition, the number of seeds per pod started to decrease later on the main
stem (R0) than the ramifications, but the number of seeds per pod did not differ
between ramifications (R1, R4, R7, R9 and R11). The decreasing pattern observed
could be due to a limited access to assimilate because they have been depleted or
intercepted by more proximal pods along the stem. In addition, the decrease of
ovule viability could lead to the decrease of the number of seeds per pod.

3 The rate of pod abortion was large at the basal position, then remained constant
and increased with the pod rank along the inflorescence. The number of aborted
ovules behaved the same trend with the time of pod appearance. The results
indicated that the number of pods and seeds depend on flowering time on the
whole plant level.

4 The clipping treatments induced significant increases in the number of ovules,
seeds and pods in the plants. When clipping the main stem or ramifications, the
demand for assimilate and thus the trophic pressure in the entire plant decreases.
Plants subjected to clipping treatments developed more pods and more seeds
per pod than control plants that were not subjected to clippings. These results
indicated that assimilate availability should be a cause of influencing the seed
production.

5 The parameter of pollination varied with pod ranks, inflorescence positions and
varieties. Thus, the variation of pollination could result in the variation of yield
components. The parameter of seed viability increased and the probability for
a pod to survive varied with clipping treatments. The results suggested that
assimilate availability is the factor influencing seed production.

6 The CVs of model parameters were not large using resampling method (Jackknife
and Bootstrap). The results demonstrated that the model parameters are stable
and the estimations were reliable.

7 The model can simulate the distribution of the number of ovules and seeds per pod
in soybean, and the estimations were good for cacao tree under good pollination
condition. The results indicated that the model can be used to simulate the flower
fertility of the other flowering plants. However, the model should be adjusted for
each of flowering plant.

Taken together, our results indicate that in WOSR, the amount of available assimilates
was the primary determinant of pod and seed production during the period of flowering
and pod setting. The distribution of resources was significantly affected both by the
position of a pod within inflorescences, and by the position of the inflorescences within
a plant. Basally positioned pods had a distinct advantage in acquiring resources due
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to their greater proximity and earlier development time. Increases in pod rank and
ramification position affect appearing time, which can be observed through the change
in assimilate availability on the entire plant. Furthermore, the estimated distribution
parameter of pollen grain number indicated that pollination limitation could result in
the variation of seed production. In addition, the decrease number of seeds per pod at
the distal positions of the stem could due to ovule viability.

5.2 Innovation

1 Application of modelling and statistics approaches in agronomy
The biological processes were described by bio-mathematical method. Seed pro-
duction depends on the successful completion of pollination and fertilization. In
the thesis, winter oilseed rape flower fertility and processes of seed production
were simulated with probabilistic distributions, by which the non observable or
measurable parameters can be deduced such as the distribution of the number of
pollen grains. Furthermore, the stability of model parameter was analyzed using
the jackknife and bootstrap resampling methods.

2 Description of temporal and spatial variability of yield components
The impact of pod appearance time and pod position in WOSR on the variabil-
ity of yield components was demonstrated by the measurements of the numbers
of ovules per ovary, seeds per pod and pods per inflorescence. By combining
experimental and modelling approaches, parameter estimations using the model
were performed for the processes of flower fertility under different treatments and
measurements to analyze the factors influencing the seed production.

5.3 Problem to be solved

• Because of the difficulty to measure the number of pollen grains in WOSR, we can
not valid whether the distribution we chose in our model is proper. Some detailed
investigates need to be made to observe the pollination conditions in WOSR.

• The number of seeds per pod and the estimation of the number of pollen grains
on the ramification R11 was different from the other ramifications, we can not
explain the reason. More studies on this phenomenon should be done.

5.4 Perspectives

This model is suited to simulate the processes of flower fertility in other flowering plants,
which have synapomorphies in seed production. The thesis applied this model to the
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soybean and cacao tree, the work were very preliminary.
Functional-Structural model Greenlab considers the inflorescences as an organ to simu-
late the plant development. The model can be linked to the Greenlab model to consider
the flower development in detail.
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Appendix A

Formula for computing the
probability of seed number

X, Y and Z, respectively, denote the numbers of pollen grains, ovules and fertilized
ovules. We assume in the model that Z = min(X, Y ). Hence, we recall the equation
[4.10]:

P (Z = k) = P (X = k)P (Y > k) + P (Y = k)P (X ≥ k)

We use the theory of total probability to write the probability to get k fertilized ovules:

P (Z = k) =
N∑
y=0

P (Z = k/Y = y)P (Y = y)

P (Z = k) =
N∑
y=0

P (min(X, Y ) = k|Y = y)P (Y = y)

P (min(X, Y ) = k/Y = y) =


0 k > y
P (X = k) k < y
P (X ≥ k) k = y

(A.1)

Hence we have:

P (Z = k) = P (Y = k)P (X ≥ k) +
N∑

y=k+1

P (X = k)P (Y = y)

Lastlty, we assume that the number S of fertile ovules depends on Z with a Bernoulli
process of parameter p, which means that:

P (S = i/Z = k) = Ci
kp
i(1− p)k−i
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Likewise, we use the theory of total probability to compute the law of the random
variable S:

P (S = i) =
∑N

k=i
P (S=i/Z=k)P (Z=k)

=
∑N

k=i
Cikp

i(1−p)k−iP (Z=k)

=
∑N
k=iC

i
kp
i(1− p)k−iP (Y = k)P (X ≥ k)

+
∑N
k=iC

i
kp
i(1− p)k−i∑N

y=k+1 P (X = k)P (Y = y)

=
∑N
y=0C

i
yp
i(1− p)y−iP (Y = y)P (X ≥ y)

+
∑N
y=0

∑y−1
k=i C

i
kp
i(1− p)k−iP (X = k)P (Y = y)
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