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Abstract

Over the latest decades, much research work has been done on automatic fault diagnosis. However,

it is imperative to analyze at system design stage how correctness and efficiency any diagnosis

algorithm can achieve. Thus many studies were interested in analyzing and characterizing the

properties of diagnosability of a system. Diagnosability is the property of a system ensuring that it

generates observations for detecting and discriminating faults in finite time after their occurrence.

In this thesis, we investigate how to optimize distributed diagnosability analysis by abstracting

necessary and sufficient information from local objects to decide global diagnosability decision.

The algorithm efficiency can be greatly improved by synchronization of abstracted local objects

compared to that of non abstracted local ones.

Then we extend the distributed diagnosability algorithm from fault event first to simple pattern

and then to general pattern, where pattern can describe more general objects in the diagnosis prob-

lem, e.g. multiple faults, multiple occurrences of the same fault, ordered occurrence of significant

events, etc. In the distributed framework, the pattern recognition is first incrementally performed

normally in a subsystem and then pattern diagnosability can be determined by adjusting abstracted

method used in fault event case. We prove the correctness and efficiency of our proposed algorithm

both in theory through proof and in practice through implementation.

Finally we study joint diagnosability problem in systems with autonomous components, i.e.

observable information is distributed instead of centralized. In other words, each component can

only observe its own observable events. We give joint diagnosability definition. And then we

discuss the undecidability of joint diagnosability in the general case, i.e., communication events

are not observable, before proposing an algorithm to test its sufficient condition. In addition, we

also get a decidability result and algorithm when communications are observable.
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Chapter 1

Introduction

Over the latest decades, with the advancement of technologies, systems are becoming more and

more complex since more performance requirements are imposed on them and thus more errors

that they are subject to. However, it is not realistic to detect faults manually for complex systems.

Automated diagnosis mechanisms are therefore required to monitor large distributed applications

such as transportation systems, communication networks, manufacturing systems, web services,

spatial systems and power systems. For example, some industrial disasters could have been pre-

vented by well designed diagnosis and repair devices, like total blackouts of important big cities

in the world, nuclear power plant accidents, etc. Thus the high reliability and quality of services

are required even in faulty situations. In other words, it is crucial for a complex system to perceive

that it is not operating correctly and then without human intervention, to detect and isolate original

faults, which will be restored by repair plans to normality.

1.1 Motivation

In the literature, three types of systems are under investigation for diagnosis problem: continuous

systems, discrete event systems and hybrid systems ([6], [7], [24], [26], [31], [28], [29], [36],

[37], [38]). In this thesis, the dynamic systems studied are discrete event systems (abbreviated

DES hereafter). Given a system, if its state space is naturally described by a discrete set and if

state transitions are only observed at discrete points in time, we associate these transitions with

events and this system is called a DES. The reason why we choose DES for investigation is that

most of the man-made systems are DES and that continuous systems can be abstracted to be DES.

Nowadays lots of works have been studied on control of DES, including diagnosis algorithm,
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CHAPTER 1. INTRODUCTION

diagnosability analysis, predictability analysis, etc ([5], [8], [12], [14], [21], [22]).

Generally speaking, diagnosis reasoning is to detect possible faults that can explain the obser-

vations. The possibility to achieve such a diagnosis reasoning depends on the diagnosability of

the system. Diagnosability is an important property that determines at design stage how accurate

any diagnosis algorithm can be on a partially observable system and thus has significant economic

impact on the improvement of performance and reliability of complex systems. The diagnosabil-

ity analysis problem has received considerable attention in the literature. Now let us review the

existing works concerning diagnosability for DES and analyze their possible improvable aspects.

1. Some existing works analyze diagnosability in a centralized way ([61], [44] and [15]), i.e.,

the knowledge of the monolithic model of a given system is hypothesized, which is the very

powerful information for diagnosability analysis. However, real systems, e.g. telecommu-

nication networks, water distribution networks, transportation systems, are steadily growing

in terms of sizes, complexity and interactions. The centralized diagnosability approach re-

quires an unrealistic combinatorial explosion of the search space.

2. Very recently the distributed approach for diagnosability began to be investigated ([53], [52]

and [64]), relying on local objects. More precisely, in these distributed approaches, original

diagnosability information can be obtained from the components where the fault may occur

and then the global decision is calculated by checking its global consistency. However,

even using local objects, during global checking procedure, the abstraction level of local

information is not enough high such that in the worst case, the final state space is either the

same as in the centralized approach ([53]) or reduced compared to the centralized one ([64])

but still quite large.

3. Some recent works have generalized the property usually checked in diagnosability, i.e., the

occurrence of a fault event, to the recognition of a pattern that can represent more general

objectives such as multiple faults, ordered occurrence of significant events, multiple occur-

rences of the same fault, etc ([34] and [43]). Actually the single fault event case is one

special case of the pattern one. All works about pattern case adopt centralized framework,

which, as said above, is not realistic due to the combinatorial explosion of the search state

space.

4. All above approaches assume that each observable event in the system can be observed by

all components in the system, i.e., globally observed. However, there are some cases where

2



CHAPTER 1. INTRODUCTION

it is not possible to assume the presence of global information. For example, networked

control systems are characterized by that multiple distributed components possess their own

part of available information instead of global knowledge. Thus some concerned works

about distributed observations are investigated ([30], [72] and [56]). But they assume there

is no communication between different sites. In other words, they separate several sites

from the monolithic model of the system and each site can observe one subset of observable

events set of the whole system. Then each site decides its own local decision from its own

observations. With some merged rules, these local decisions are combined to get global de-

cision. Clearly, these approaches are based on the monolithic model, which is not practical

for real systems.

From above, we know that the study about diagnosability analysis for DES in literature devel-

ops quite a lot and there are whereas lots of aspects we can improve. The next section will show

our contributions to diagnosability problem considering the insufficiency of the current works.

1.2 Contribution

There are several contributions in this thesis to diagnosability problem, which are described as

follows.

• We optimize distributed diagnosability algorithm based on the approach of [53] by improv-

ing the abstraction level of local objects to reduce the final search state space.

• Then we extend pattern diagnosability analysis from centralized framework to distributed

one, where the high abstraction level of local objects is adopted.

• We also investigate distributed diagnosability without global knowledge, which means that

the available observations are distributed into local components and there is no assumption

about the monolithic model for the considered system.

Next we describe our major contributions in detail.

1.2.1 Optimization of distributed diagnosability through abstraction

In chapter 3, we describe the major steps concerning how to optimize distributed diagnosability

through abstraction.

3



CHAPTER 1. INTRODUCTION

• First we gear the definition of classical diagnosability for an entire system to that of regional

diagnosability for a subsystem, which leads to defining a diagnosable subsystem.

• Then we describe how to improve diagnosis algorithm in terms of observation reduction

with a given diagnosable subsystem in a formal way.

• And we provide a new distributed theoretical framework to check regional diagnosability

and thus diagnosability of distributed systems. Instead of performing diagnosability verifi-

cation on global object or local objects, we abstract necessary and sufficient diagnosability

information from local objects and then distribute the search on these abstracted local ones.

This algorithm is optimized in the sense that with our abstracted diagnosability information,

the search state space is reduced to be as small as possible.

• We also discuss the strategy of next component selection for further exploitation during

global consistency checking such that the returned diagnosable subsystem being a minimal

diagnosable subsystem is more possible when the system is diagnosable.

• And then the diagnosability result that we obtain can help in improving the diagnosis al-

gorithm when the system is diagnosable, in which case the algorithm returns a diagnosable

subsystem. Otherwise, the algorithm provides some helpful information about indistin-

guishable behaviors that can be used to upgrade the diagnosability level of the system when

the system is verified to be not diagnosable.

This major contribution, to some extent, fills up the gaps of the first and the second points described

in the section 1.1. In other words, this approach not only takes into account the distributed nature

of real systems but also performs a higher level of abstraction from local objects, which greatly

reduces the final search space compared to the current existing works.

1.2.2 Distributed pattern diagnosability

The important steps concerning distributed pattern diagnosability are shown as below.

• First we extend pattern diagnosability problem from centralized framework to distributed

one.

• Then pattern recognition can be checked by constructing pattern recognizers for incremen-

tally extended subsystems. More precisely, the subsystem is extended by synchronizing the

4



CHAPTER 1. INTRODUCTION

diagnosability relative part of the current subsystem with next selected component. In this

way we may avoid global model construction considering that normally the diagnosability

relative part of the subsystem is a small subpart of the whole subsystem.

• Furthermore, we propose a way to abstract necessary and sufficient diagnosability infor-

mation from regional object, which we call pattern verifier in chapter 4, that is constructed

from the subsystem where the pattern is completely recognized. Then the global consis-

tency checking is based on the abstracted local objects to check pattern diagnosability. In

this way, we avoid constructing global objects both for pattern recognition and for pattern

diagnosability verification.

• Finally some important information about the reasons why the system is not pattern diag-

nosable is provided by our algorithm when the system is not diagnosable, which, to some

extent, can help the designer to improve the diagnosability level of the system by rearranging

sensor placement, reconfiguration, etc.

This pattern diagnosability algorithm is in a distributed way. Furthermore, it adopts the high level

of abstraction from local objects as described in the section 1.2.1. Thus it fills up the gap of the

third point in the section 1.1. The idea is to find an equivalent alternative to the centralized pattern

diagnosability checking that is more efficient in order to improve the scalability of the problem. In

chapter 4, we theoretically prove the correctness and the efficiency of this distributed algorithm.

Then in chapter 5, we also implement and evaluate this algorithm with results consistent with the

theoretical analysis.

1.2.3 Distributed diagnosability for systems with autonomous components

The crucial points of distributed diagnosability for systems with autonomous components are pre-

sented as the following.

• We first describe systems with autonomous components, where each observable event can

only be observed by its own component. In other words, there is no global knowledge avail-

able about the system, like globally observable events. And then we define communication

compatibility that is identical to reconstructibility in trace theory.

• Then we define joint diagnosability definition for systems with autonomous components,

which is proved to be undecidable when communication events are unobservable. We then
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CHAPTER 1. INTRODUCTION

give an algorithm to sufficiently but not necessarily test joint diagnosability. And then we

provide another algorithm to test joint diagnosability in a decidable case, where communi-

cation events are assumed to be observable.

Clearly, this approach is to deal with the drawback of the fourth point in the section 1.1. In

other words, here we consider that each component is autonomous, i.e., each component can only

observe its own observable events and thus there is no global knowledge.

1.3 Organization

This thesis is organized as follows. In chapter 2, we review some existing methods of diagnosis and

diagnosability, especially the diagnosability methods that are relative to ours. Then we describe

how to optimize the existing distributed diagnosability by heightening the level of abstraction

from local objects in chapter 3. And then the pattern diagnosability is extended from centralized

framework to distributed one, including the high level of abstraction from local objects, which is

described in chapter 4. Then in chapter 5, the implementation of distributed pattern diagnosability

algorithm is presented with its test case. Since the case of single fault event is a special case of the

pattern one, thus the implementation is also suitable for the approach described in chapter 3. Here

we can see the search space is really reduced in practice. And then we define joint diagnosability

before discussing about its undecidable case and decidable case and the corresponding algorithms

are detailed in chapter 6. Finally conclusion and perspectives are presented in chapter 7.
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Chapter 2

Diagnosis and diagnosability

methodologies

In this section, we review some major diagnosis approaches and then modeling formalisms for

DES before describing some important diagnosability algorithms for DES, which will help in

understanding the contributions of this thesis.

2.1 Diagnosis approaches

In recent decades, the design and implementation of diagnosis systems have received considerable

attention in the literature. Many approaches with different frameworks have been proposed. Most

of the diagnosis approaches that rely on explicit knowledge (we do not consider here black-box

approaches like statistical learning, etc.) can be divided into the following four classes:

• fault tree analysis;

• analytical redundancy methods;

• expert systems and knowledge-based methods;

• model-based reasoning methods.

2.1.1 Fault tree analysis

Fault tree analysis ([70], [49] and [50]) is top-down deductive analytical method where the effects

of initiating faults and events on a complex system are analyzed. It can be qualitative or quanti-
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tative, depending on whether fault event probabilities are unknown or known. To construct fault

tree, the first step is to define the undesired event to study, which is taken as root of the fault tree.

Then all causes (with probabilities) of the undesired event are studied and analyzed. Finally the

fault tree is constructed based on AND and OR gates which define the major characteristics of the

fault tree. From its construction, obviously, the fault tree is used to reason backwards until the root

cause of the fault is found when an observation indicates an abnormality of a system. However,

assembling a fault tree can be a costly and cumbersome experience and thus limits its applicability

in practice. Moreover, a fault tree is used to analyze a single fault event, and that one and only one

event can be analyzed during a single fault tree. In other words, one undesired event for one fault

tree and no two undesired events will be used to make one fault tree.

2.1.2 Analytical redundancy methods

Most of the approaches for fault diagnosis proposed by Control Community are based on analyti-

cal redundancy techniques ([32], [69], [73]). The main principle is to use a residual, a symptom of

process faults to facilitate the diagnosis tasks. Residuals are quantities that represent the inconsis-

tency between the actual system variables and the mathematical model. In other words, residual

signals are generated by comparing predicted values of system variables with the actual observed

values, where the predicted values come from the available mathematical model of the system.

And then the evaluation of the residuals for the likelihood of faults using for instance likelihood

ratio functions can lead to the final decision and fault isolation. In other words, residuals are

ideally zero and some residuals become non-zero if the actual system differs from the ideal one,

which may be due to faults, disturbances, noise. However, the approaches based on analytical

redundancy techniques are very sensitive to modeling errors and to complex problems of detailed

on-line modeling of system behaviors.

2.1.3 Expert systems and knowledge-based methods

Expert system methods and knowledge-based methods [63] for fault diagnosis are mostly for

systems that are difficult to model. The terms expert system and knowledge-based system are often

used synonymously. In expert system methods, based on experience with the system, heuristic

knowledge of experts is captured in a set of rules that efficiently associate the observations to the

corresponding diagnoses. There are several drawbacks of expert system methods. First, it is quite

difficult to acquire the expertise, which is only available after a long period of use of the system

8



CHAPTER 2. DIAGNOSIS AND DIAGNOSABILITY METHODOLOGIES

in most cases. Then, when a previously unseen behavior occurs leading to undesired observation,

it is impossible to decide a diagnosis. In other words, the acquired expert knowledge can never be

guaranteed to be complete. Moreover, in the case where a very small modification is made on the

system, the expert system must be constructed again.

2.1.4 Model-based reasoning methods

Model-based diagnosis ([45], [57], [3], [4], [13], [16], [19], [54], [27], [40], [46], [47], [65], [74],

[2]) is based on an explicit behavioral model of the system to be diagnosed and offers a continuum

from consistency-based reasoning to abductive reasoning. A behavioral model is a functional

representation of the system where its behavior can be predicted purely from the internal states of

the model and the values of the input variables. More precisely, a behavioral model of the system

is composed of a list of the component models and of their connections. For each component

model, it is characterized by a set of variables, a set of modes with ok mode and sometimes a set

of fault modes and a set of relations to describe the behavior of the component in such a mode.

System Modeling Model

Observing

Actual
behavior

Comparing

Simulating

Predicted
behavior

Diagnosis

Figure 2.1: The procedure of model-based diagnosis.

Figure 2.1 depicts the principle of model-based diagnosis. Given observations of the system,

i.e., actual behavior of the system, the model is used to simulate the system to gain the predicted

behavior, and then the diagnosis can be obtained by comparing the actual behavior with the pre-

dicted behavior. The Artificial Intelligence approaches are normally based on qualitative models,

where the domain of each variable is a finite set of values. Such an abstraction is simpler than

quantitative models and has proven to be quite powerful for diagnostic purposes.

The main advantages of model-based diagnosis are its generality, reliability, flexibility and

capability to explain diagnoses. For example, it decides diagnosis without dependance on infor-

9
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mation about previously experienced faults, which is at the contrary the fundamental requirement

of expert systems and knowledge-based methods. The difficulty lies in general in model acquisi-

tion.

2.2 Modeling formalisms for DES

Since DES is the type of systems studied in this thesis, we first look at its modeling formalisms.

Many formalisms have been proposed to model DES, such as finite state machines (FSM) or au-

tomata ([61], [59], [48], [41]), Petri nets ([1], [33]), process algebra ([17], [18]) and so on. The

most classical ones are FSM and Petri nets. They both use a state transition structure, that is, by

specifying what the possible events are in each state of the system. This highlights structural in-

formation about the system behavior, which is convenient to manipulate when addressing analysis

and controller synthesis issues. As far as distributed or very complex systems are concerned, the

component oriented approach is clearly preferred. In other words, to model such a system, it is

necessary to consider the system as a set of communicating components, where each component

is modeled separately with its communication information. For the formalism of Petri nets, com-

munication is represented by common places or transitions between several components. Thus to

obtain the global model of the whole system, the different nets are merged over the shared places

and transitions. As far as FSM are concerned, communication is modeled by common events,

which are also called communication events. The global model is obtained by the synchronization

of all the system components. In this thesis, we choose the FSM as the modeling formalism for

DES for the sake of simplicity and its amenability to analysis for answering various questions

about the behavior of DES.

2.3 Diagnosability for DES

In some cases, diagnosis decision could be necessarily ambiguous, and thus running a diagnosis

engine does not make sense. So it is very important to decide at design stage how accurate any

diagnosis algorithm can be on a given system based on system model. This problem is called

diagnosability analysis and is the basic question that underlies diagnosis.

10
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2.3.1 Centralized and distributed approaches

The approaches for diagnosability analysis can also be classified into centralized and distributed

methods. For the former one, there is always a global system model from which the diagnosability

property is tested directly or indirectly ([61], [44], [80], etc.). For distributed methods, there are

two types. One is for systems where the information used for diagnosability analysis is centralized,

i.e., the observations being globally observed. The other one is for systems where the information

is distributed, i.e., several work stations having access to their own local observable information.

In distributed approaches with centralized information such as [53], [52] and [64], a global model

is implicitly defined as the synchronization of the set of system components. For each of these

components, the local diagnosability information is computed and later combined to obtain the

global diagnosability result. Due to the underlying global system model, all events emitted from

the system are globally ordered, which allows reasoning about global dependencies among faults.

For the latter, the distributed methods with distributed information ([30], [56] and [66]) assume

that only the observations from the same subsystem, also referred to as work station or as site,

are ordered. Mostly, each site has its own local diagnoser associated to it. This differs from the

distributed approaches with centralized information, where there is a centralized coordination of

the local diagnosability analysis. Actually, in the existing distributed approaches with distributed

information, the system is not modeled as a set of communicating components, which means that

the observations are distributed into different sites that are divided from an entire system, i.e. the

monolithic model of the system is assumed. In comparison to centralized approaches, distributed

ones require less space. In fact, due to the high space requirements of centralized methods, they

can hardly be applied to large scale systems.

Next we describe the most popular centralized approaches for diagnosability analysis of DES

to understand their essential idea. We will present relatively important distributed diagnosability

approaches in the following chapters to compare with our proposed distributed approaches.

2.3.2 Centralized diagnosability for DES

Informally speaking, the existence of two indistinguishable behaviors, i.e., holding the same

enough observations, with exactly one of them containing one given fault violates diagnosabil-

ity property. The classical and centralized diagnosability analysis methods check the existence of

such indistinguishable behaviors with the assumption that the knowledge about the system is a

monolithic model.

11
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Definition 1 (System model). A system is modeled as a FSM, denoted by G = (Q,Σ, δ, q0), where

• Q is a finite set of states;

• Σ is a finite set of events;

• δ ⊆ Q× Σ×Q is a finite set of transitions;

• q0 is the initial state.

The events set Σ is partitioned into three subsets: Σ = Σo
⊎

Σu
⊎

Σf , where Σo denotes the

set of observable events, Σu denotes the set of unobservable normal events and Σf denotes the

set of unobservable fault events. For the transition set, it is easy to extend δ ⊆ Q × Σ × Q to

δ ⊆ Q× Σ∗ ×Q in the following way:

• (q, ε, q) ∈ δ, where ε is the null event;

• (q, se, q1) ∈ δ if ∃q′ ∈ Q, (q, s, q′) ∈ δ and (q′, e, q1) ∈ δ, where s ∈ Σ∗, e ∈ Σ.

Given a system model G, the prefix-closed language L(G), which describes the normal and

faulty behaviors of the system, is a subset of the Kleene closure of Σ: L(G) ⊆ Σ∗. Formally, the

language L(G) is the set of words produced by FSM G:

L(G) = {s ∈ Σ∗|∃q ∈ Q, (q0, s, q) ∈ δ}.

Sometimes there is a set F of final states in the FSM. In such a FSM, we denote the marked

language generated by G by:

Lm(G) = {s ∈ L(G)|∃q ∈ F, (q0, s, q) ∈ δ}.

In the following, we call a word from L(G) a trajectory in G and a sequence q0σ0q1σ1... a path in

G, where σ0σ1... is a trajectory in G and for all i, we have (qi, σi, qi+1) ∈ δ. Given s ∈ L(G),

we denote the post-language of L(G) after s by L(G)/s, formally defined as: L(G)/s = {t ∈
Σ∗|s.t ∈ L(G)}. The projection of the trajectory s to observable events is denoted by P (s).

And the inverse projection of an observation sequence s, denoted by P−1(s), returns the set of all

trajectories whose observable projection is s.

Two composition operations are defined as follows. For the sake of simplicity, they are pre-

sented for two deterministic FSMs. It is easy to generalize them for a set of FSMs using the

associativity properties and nondeterministic FSMs can be composed with the same rules.
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Definition 2 (Synchronization). Given two FSMs G1 = (Q1,Σ1, δ1, q
0
1) and G2 = (Q2, Σ2, δ2, q

0
2),

their synchronization is G1‖ΣsG2=(Q1 × Q2, Σ1 ∪ Σ2, δ1‖2, (q0
1, q

0
2)), where Σs = Σ1 ∩ Σ2 is

the set of shared events, which can be omitted when there is no ambiguity in the context, and δ1‖2
is defined as follows:

• ((q1, q2), σ, (q′1, q
′
2)) ∈ δ1‖2, if σ ∈ Σs, (q1, σ, q′1) ∈ δ1 and (q2, σ, q′2) ∈ δ2;

• ((q1, q2), σ, (q′1, q2)) ∈ δ1‖2, if σ ∈ Σ1\Σs and (q1, σ, q′1) ∈ δ1;

• ((q1, q2), σ, (q1, q
′
2)) ∈ δ1‖2, if σ ∈ Σ2\Σs and (q2, σ, q′2) ∈ δ2.

Definition 3 (Product). Given two FSMs G1 and G2, their product is G1 × G2 = (Q1 × Q2,

Σ1 ∪ Σ2, δ1×2, (q0
1, q

0
2)), where δ1×2((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ)) if both δ1(q1, σ) and

δ2(q2, σ) are defined in G1, G2 respectively. Otherwise, δ1×2((q1, q2), σ) is undefined in G1×G2.

Definition 4 (Delay Closure). Given a FSM G = (Q,Σ, δ, q0), its delay closure with respect to

Σd, where Σd ⊆ Σ, is {Σd
(G) = (Q,Σd, δd, q

0), where δd(q, σ) = q′ with σ ∈ Σd if ∃s ∈
(Σ\Σd)∗, δ(q, sσ) = q′ in G.

The operation of product is sometimes called complete synchronization. The main difference

between the two operations is how the private events, i.e., the events not in Σ1 ∩ Σ2, are handled.

In the product, the transitions of the two FSMs must always be synchronized on a shared event,

σ ∈ Σ1 ∩ Σ2. In other words, an event in the product occurs iff it occurs in both FSMs. In the

synchronization, the two FSMs are still synchronized on the shared events but the private events

can independently be executed whenever possible. So if Σ1 = Σ2, then the synchronization

reduces to product because all events are forced to be synchronized. The standard way of building

models of entire systems from models of individual system components is by synchronization. As

for the operation of delay closure with respect to Σd, we preserve the information about the events

in Σd while abstracting away irrelevant parts.

Figure 2.2 depicts a simple system example, where the events Oi denote observable events,

the event F denotes unobservable fault event, the events Ui denote unobservable normal events.

Two assumptions are made on the system under investigation during the diagnosability analysis:

• The language of system L(G) is live, which means that there is at least one transition defined

at each state in Q.

• There does not exist any cycle of unobservable events in G.
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Figure 2.2: A system example.

A fault F is diagnosable in a system G iff its occurrence is determinable when enough events

are observed from the system after the occurrence of F , which is formally defined as follows

([61]), where sF denotes a trajectory in G ending with F .

Definition 5 (Diagnosability). A fault F is diagnosable in a system G iff

∃k ∈ N,∀sF ∈ L(G),∀t ∈ L(G)/sF , |t| ≥ k ⇒
(∀p ∈ L(G), P (p) = P (sF .t) ⇒ F ∈ p).

The above definition states that for each trajectory sF in G, for each t that is an extension of sF

in G with sufficient events, every trajectory p in G that is observation equivalent to sF .t should

contain in it F . In other words, the (non-)diagnosability checking consists in searching for a pair

of trajectories p and p′ satisfying the following conditions:

• p contains F and p′ does not;

• p has arbitrarily long observations after the occurrence of F ;

• P (p) = P (p′).

Such a pair is called a critical pair [15], which violates definition 5 and thus witnesses non-

diagnosability. Next we will recall the most popular approaches to check diagnosability of DES in

the centralized way. Since the purpose here is to illustrate the essential idea of these approaches,

for the sake of simplicity, we assume that there is only one fault event, denoted by F , which can

be directly extended to the case of a set of fault events.
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2.3.2.1 Deterministic diagnoser approach

In the literature, the first way proposed to verify the diagnosability of DES is to construct a de-

terministic FSM, called a deterministic diagnoser ([61]). Before deterministic diagnoser construc-

tion, we show a nondeterministic generator construction based on system model, which we call

pre-diagnoser in the following.

Definition 6 (Pre-diagnoser). The pre-diagnoser of the system G is a FSM, denoted by D =

(QD,ΣD, δD, q0
D) where

• QD ⊆ Q× 2Σf is the set of states;

• ΣD = Σo is the set of events;

• δD ⊆ QD × ΣD ×QD is the set of transitions;

• q0
D = (q0, ∅) is the initial state.

The transitions of δD are those ((q, `), e, (q′, `′)) with (q, `) reachable from the initial state q0
D and

satisfying the following condition: there is a transition path p = (q u1−→ q1...
um−−→ qm

e−→ q′) in G,

with uk ∈ Σu, ∀k ∈ {1, ..., m}, e ∈ Σo and `′ = ` ∪ ({u1, ...um} ∩ Σf ).

From the top part of figure 2.3, which is the pre-diagnoser of the system depicted in figure

2.2, we can see that it is designed to preserve all observable information from the original system

model and to append to every state an estimate of failure information, which is called fault label.

Then the deterministic diagnoser can be built from the pre-diagnoser, formally defined as follows:

Definition 7 (Deterministic diagnoser). The deterministic diagnoser of the system G is a FSM,

denoted by Dd = (QDd
, ΣDd

, δDd
, q0

Dd
) where

• QDd
⊆ 2QD is the set of states;

• ΣDd
= Σo is the set of events;

• δDd
⊆ QDd

× ΣDd
×QDd

is the set of transitions;

• q0
Dd

= (q0, ∅) is the initial state.

Since the state space QDd
is a subset of the powerset of QD, each state qDd

of Dd is of the form:

qDd
= {q1

d, ..., q
n
d }, where qk

d ∈ QD,∀k ∈ {1, ..., n}. For each transition δDd
(q1, σ) = q2, q2 is

obtained as follows:

15



CHAPTER 2. DIAGNOSIS AND DIAGNOSABILITY METHODOLOGIES

q2 =
⋃

{qd|qd∈q1∧∃q′d,δD(qd,σ)=q′d}
{δD(qd, σ)}

A deterministic diagnoser state, qDd
∈ QDd

, is called a F-certain state, if ∀qd = (q, `) ∈ qDd
, F ∈

`, or a certain normal state, if ∀qd = (q, `) ∈ qDd
, ` = {}. If there exists q1

d = (q, `), q2
d =

(q′, `′) ∈ qDd
such that F ∈ ` and F /∈ `′, then qDd

is called a F -uncertain state. A cycle in the

deterministic diagnoser is called a F -indeterminate cycle if it satisfies the following conditions:

1. There exists a corresponding cycle in its pre-diagnoser involving only states whose fault

label contains F ;

2. There exists a corresponding cycle in its pre-diagnoser involving only states whose fault

label does not contain F ;

3. All the states in the cycle are F -uncertain states.

Clearly, the third condition is the result of the first and the second conditions. Each F -indeterminate

cycle is corresponding to a critical pair with respect to F , which violates diagnosability property.

So diagnosability verification consists in checking the existence of F -indeterminate cycles in the

deterministic diagnoser of the system.

Theorem 1 A fault F is diagnosable in a system G iff there is no F -indeterminate cycle in the

deterministic diagnoser of G.

The bottom part of figure 2.3 is the deterministic diagnoser of system depicted in figure 2.2.

For all deterministic diagnoser states, we attach the top labels S0, ..., S4, which are used as their

identifiers. In this diagnoser, the states S1, S2, S3 are F -uncertain states and S0, S4 are normal

states. From the definition of F -indeterminate cycle, it is seen that the cycle containing the states

(S2, S3) is a F -indeterminate cycle since there is a corresponding cycle (X2{F}, X4{F}) in the

pre-diagnoser (top part of figure 2.3) involving only states whose fault label contains F and there

is a corresponding cycle (X5{}, X8{}) in the pre-diagnoser involving only states whose fault

label is empty. So the fault F is not diagnosable in this system.

Afterward some studies for diagnosability analysis were based on this deterministic diagnoser

approach. One recent is [11], where the intermittent sensor failures leading to loss of observability

are taken into account. In other words, the authors of [11] assume the presence of intermittent

sensor failures, which includes permanent sensor failures that can be viewed as a forever lasting

intermittent failure. To consider the influence of intermittent sensor failures on the system behav-

ior, the events set of the system is divided into three disjoint subsets: the set of observable events
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Figure 2.3: The pre-diagnoser (top) and the deterministic diagnoser (bottom).

associated with intermittent sensor failures; the set of observable events associated with sensors

without failures and the set of unobservable events. A new language operation, called language

dilation, is proposed to model systems of both normal behavior and subject to sensor failures. An

algorithm to construct an automaton modeling the observed behavior of system with intermittent

sensor failures from the original system model is described. Then robust diagnosability of DES

subject to intermittent sensor failures is defined. Finally they show how to construct a robust

diagnoser to verify robust diagnosability with the proposed necessary and sufficient condition.

2.3.2.2 Twin plant approach

The main drawback of deterministic diagnoser approach is its exponential space complexity in the

number of system states. Then the authors of [44] proposed a new algorithm called twin plant

method with polynomial complexity in the number of system states, based on the construction of

nondeterministic automata and on the search for cycles with a given property.

In the twin plant method, given a system model G, first the pre-diagnoser is constructed based

on G and then a twin plant is obtained by synchronizing the pre-diagnoser with itself based on the

observable events to obtain all pairs of trajectories with the same observations. Since the events
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set of pre-diagnoser is the set of observable events, then such a synchronization is equal to the

product of the pre-diagnoser with itself.

Definition 8 (Twin Plant) The twin plant of the system G, denoted by T , is the FSM: T = D×D,

where D is the pre-diagnoser of the system G.

T0

X0{}
X0{}

T1

X2{F}
X2{F}
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X4{F}
X4{F}

T3

X2{F}
X5{}

T4

X4{F}
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T5

X2{F}
X7{}

T6

X4{F}
X8{}

O1

O2

O3

O1 O2 O3

O2O3

Figure 2.4: Part of the twin plant of system depicted in figure 2.2.

Each state of a twin plant is a pair of pre-diagnoser states that provide two possible diagnoses

with the same observations. Given a twin plant state, if the fault F is contained in only one

pre-diagnoser state, which means that the occurrence of F is not certain up to this twin plant state

with the same observations, this twin plant state is called an ambiguous state with respect to F . An

ambiguous state cycle is a cycle containing only ambiguous states. It has been proved that a path in

the twin plant containing an ambiguous state cycle with at least one observable event corresponds

to a critical pair in the system. We call this kind of path a critical path. So the diagnosability

verification in the twin plant method is to check the existence of critical paths. From here we can

see that the maximum states and the maximum transitions of the pre-diagnoser are (|Q| × 2|Σf |)

and (|Q|2 × 22|Σf | × |Σo|), respectively. And the states and the transitions of the twin plant are at

most (|Q|2 × 22|Σf |) and (|Q|4 × 24|Σf | × |Σo|). Thus the complexity of the twin plant method

is O(|Q|4 × 24|Σf | × |Σo|) i.e. with polynomial complexity in the number of system states and

exponential complexity in the number of faults.

Figure 2.4 depicts a part of twin plant T of the system G, where its state labels (top) are

composed of a pair of pre-diagnoser state labels (middle and bottom). The gray nodes represent

ambiguous states with respect to F , which form one ambiguous state cycle (T3, T6). So the fault

is not diagnosable in this system.
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We have the following fundamental theorem for diagnosability verification [44].

Theorem 2 A fault is diagnosable in a system G iff there is no critical path in the twin plant of G.

2.3.2.3 Other approaches

Some people use process algebra as modeling formalism for diagnosability analysis. For instance,

the authors of [17] propose to adopt a stochastic process algebra called Performance Evaluation

Process Algebra (PEPA) for modeling physical systems and diagnosability verification without

considering time issues. PEPA is a parsimonious language with only four combinators but is very

expressive to define high-level complex systems. It can be used to study both quantitative prop-

erties and qualitative properties of the system. It has been demonstrated that it is easy to model

a complex system as two parts with PEPA: a model of the behavior of each component type and

a model of system structure. And then the semantics of PEPA model is represented by a Labeled

Transition System (LTS), which describes all possible evolutions of the components individually

as well as cooperatively. At the same time, the observations can be expressed as equations in

terms of PEPA. Thus the diagnosis can be defined as an equation with system description and

observations, all in terms of PEPA. More precisely, the diagnosis is the synchronization of system

description and a set of observations based on the set of actions that the sensors can witness. Fi-

nally they rephrase the diagnosability definition and provide the necessary and sufficient condition

to verify diagnosability in their very own framework by introducing d-equivalent paths, which are

proved to correspond to the same minimal candidate diagnosis. One advantage of their approach

is that there is no assumptions on which parameters can be observed. The observations are repre-

sented by algebraic expressions and simply synchronized with the system itself. Furthermore, with

PEPA, diagnosis and diagnosability analysis can be automatically computed using a prototype tool

called PEPA Workbench [35] that supports modeling and analysis with PEPA.

Another way to improve the efficiency of diagnosability analysis is described in [15], where

the authors propose to reduce the diagnosability problem to a model checking problem. First,

they define a critical pair as a pair of executions that are observationally indistinguishable but

cause situations required to be distinguished, e.g. fault and normal behavior of the system. They

model the system as a FSM. In their assumption, the input and output of the plant are observable

and internal evolution of the plant is unobservable. Specifically, their system model is a structure

P = (Q, I, O, δ, λ), where Q denotes the state space, I,O denote input space and output space

respectively, δ ⊂ Q× I ×Q is the transition relation and λ ⊂ Q×O is the observation relation.
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Then very similarly to twin plant construction, they build a FSM called coupled twin plant from

their system model and then they prove that a critical pair in the system is equivalent to a feasible

execution in this coupled twin plant. Next the model checking technique is employed. First step is

to associate to the system model a Kripke structure, which is a nondeterministic transition system,

where each state is assigned a valuation to the state variables of the structure. The idea is that

the state, input an output spaces of the system model can be encoded into the state space of the

Kripke structure. Then in the same way, the Kripke structure corresponding to their coupled twin

plant is constructed, denoted by Kp2 . The second step is to use the symbolic representation by

defining Kp2 with a vector of variables. Atomic propositions over such variables are expressed.

The third step is to characterize behaviors of the system over time through the temporal logics. In

this way, the necessary and sufficient condition of diagnosability is expressed by Kripke structure

with temporal logic formula, which can be verified directly by the maturely developed symbolic

model checker.

The diagnosability analysis in the above approach is quite narrow in the sense that the delay is

1, which means that only one further event has to be observed before being certain that a failure has

taken place. Then the authors of [58] propose another extensible approach to solve diagnosability

testing by reducing it to the satisfiability problem of the classical propositional logic. In their

framework, the system states are represented in terms of Boolean state variables and the relations

corresponding to events in terms of changes to the values of the state variables. To improve the

efficiency of SAT-based technique used for diagnosability analysis, the diagnosability definition

with non-interfering simultaneous events is also discussed. In their logic formula, the events at

each time point t are described with a parameter t. Then a formula to find a pair of infinite

executions with the same observations but only one of them contains a failure is defined. They have

proved that this formula is satisfiable iff the system is not diagnosable, which can be efficiently

tested by SAT tools. One weakness of this SAT-based approach is that the diagnosability test is

better suited to detect non-diagnosability than diagnosability since it is often easy to detect the

presence of paths in transition systems but difficult to detect the absence of paths with a given

property without length restrictions.

2.3.2.4 Pattern diagnosability for DES

All above approaches assume that the fault is a predefined event resulting in unexpected system

behavior. However, sometimes the fault can be a sequence of some important events while any
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single one of them is not the fault by itself. For example, the action of driving a car followed by the

action of opening the car door without stopping driving between these two actions will cause an

abnormal situation for the car, which should be considered as a fault. In this case, any single action

is legal. A new proposal is provided by the authors of [43], who formally introduce the notion of

supervision pattern, simply called pattern, that is general enough to cover an important class of

diagnosis objectives, e.g. diagnosing multiple faults, repeating faults, sequences of significant

events, etc. A fault event is a special case of pattern.

Since the pattern is actually the sequences of events, then in the system model, there is no fault

event in the system events set.

Definition 9 (Pattern). A pattern is a FSM with final states set FΩ, Ω = (QΩ, ΣΩ, δΩ, q0
Ω, FΩ),

which satisfies the following conditions:

• ∀q ∈ QΩ, ∀σ ∈ ΣΩ, if (q, σ, q1) ∈ δΩ and (q, σ, q2) ∈ δΩ, then q1 = q2

• ∀q ∈ QΩ, ΣΩ(q) = ΣΩ where ΣΩ(q) = {σ ∈ ΣΩ|∃q′ ∈ QΩ, (q, σ, q′) ∈ δΩ}

• FΩ ⊆ QΩ and δΩ(FΩ, ΣΩ) ⊆ FΩ where δΩ(FΩ, ΣΩ) =
⋃

q∈FΩ,σ∈ΣΩ
{q′ ∈ QΩ|(q, σ, q′) ∈

δΩ}

The first two conditions describe the pattern as a deterministic and complete FSM. The third

condition characterizes that the final states set FΩ is stable. Then it can be deduced that its marked

language is "extension-closed", formally described as

∀s ∈ Lm(Ω),∀s′ ∈ Σ∗Ω, ss′ ∈ Lm(Ω)

which means that once the pattern arrives in a final state, it will be always in a final state in

the future. Note that for all s ∈ Lm(Ω), ∃e ∈ s such that e is unobservable, otherwise, the

diagnosability problem with respect to the pattern would be trivial.

Given a system G = (Q,Σ, δ, q0) and a pattern Ω = (QΩ, ΣΩ, δΩ, q0
Ω, FΩ), we assume

Σ = ΣΩ, Σo = ΣΩo , Σu = ΣΩu . A trajectory s ∈ L(G) is recognized by Ω iff s ∈ Lm(Ω).

The property of pattern diagnosability concerns the ability of a system to detect any trajectory

recognized by a pattern with certainty, based on a sequence of observations. For example, fig-

ure 2.5 depicts an example of such a system and a pattern. Here in the pattern (bottom part)

Σ = {U1, U2, O1, O2, O3}, which is the same events set as that of the system (top part). For

both the system and the pattern, we have the set of unobservable events {U1, U2} and the set of

observable events {O1, O2, O3}. And the final states set of the pattern is {P2}. We can see that
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Figure 2.5: The system without fault event (top) and the considered pattern (bottom).

the pattern is actually the ordered occurrence of the events U1, O3 without the event O2 between

them but can be with any other events between them.

Definition 10 (Pattern Diagnosability). A pattern Ω is diagnosable in a system G, iff

∃n ∈ N,∀s ∈ L(G) ∩ Lm(Ω), ∀t ∈ L(G)/s,

if |t| ≥ n, then P−1P (s.t) ⊆ Lm(Ω).

If Ω is diagnosable in G, then for any trajectory s in G that is recognized by the pattern, for

any extension t of s with enough events, any trajectory with the same observations as s.t is also

recognized by the pattern. A critical pair p, p′ of system G with respect to the pattern Ω should

satisfy the following conditions:

• p ∈ Lm(Ω) and p′ /∈ Lm(Ω);

• p is of arbitrarily long length after pattern recognition;

• P (p) = P (p′).

The existence of such a critical pair states that Ω is not diagnosable in G. So similar to the case

of fault event, pattern diagnosability checking is to search for critical pairs. The idea in [43] is to

reuse twin plant method in the pattern case with some modifications.

Definition 11 (Pattern Recognizer). Given a system G = (Q,Σ, δ, q0) and a pattern Ω =

(QΩ, ΣΩ, δΩ, q0
Ω, FΩ), then the pattern recognizer of G is RG = (QRG

, ΣRG
, δRG

, q0
RG

, FRG
) =

G×Ω, where the initial state is q0
RG

= (q0, q0
Ω), FRG

= (Q×FΩ)∩QRG
is the set of final states.
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Since Ω is a complete FSM, we have L(Ω) = Σ∗ and thus L(RG) = L(G) ∩ L(Ω) = L(G).

So the pattern recognizer shows which part of the pattern can be recognized after any trajectory in

the system. The top part of figure 2.6 shows the pattern recognizer for the system and the pattern

depicted in figure 2.5. Each state of the recognizer is composed of two parts with the left part

being the system state and the right part being the pattern state. The set of three recognizer states

((X5, {P2}), (X6, {P2}), (X7, {P2})) is the set of final states, which forms a cycle containing

only final states.

X0 {P0}

X1{P0} X2 {P0} X3 {P1} X4 {P0} X3 {P0}

X5 {P0} X6 {P0} X7 {P1} X5 {P2} X6 {P2}

X7 {P2}

U2
O1 U1 O2

O3

O2

O2

U1O3

O3U1O2O1

X0 {P0}

X2 {P0} X4 {P0} X3 {P0}

X5 {P0} X6 {P0} X5 {P2} X6 {P2}

O1
O2

O3

O2

O2

O3

O3O2O1

Figure 2.6: The pattern recognizer RG (top) and its {Σo(RG) (bottom).

Before using the twin plant method, for the sake of simplicity, the delay closure with respect

to the set of observable events is performed on the pattern recognizer: {Σo(RG). The bottom part

of figure 2.6 is the result of performing this delay closure on the pattern recognizer shown in the

top part of figure 2.6. Then for the sake of clarity, we rename the twin plant in the pattern case as

the pattern verifier.

Definition 12 (Pattern verifier). Given a pattern recognizer RG, the corresponding pattern veri-

fier, denoted by V , is obtained by V = {Σo(RG)× {Σo(RG).

Similar to twin plant defined in definition 8, each state of V is a pair of pattern recognizer

states that provide two possible pattern recognitions with the same observations. Given a pattern

verifier state, if it has only one pattern recognizer state that is a final state, which means that the

occurrence of the pattern is not certain up to this verifier state with the same observations, then

this verifier state is called an ambiguous state. An ambiguous state cycle is a cycle containing
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only ambiguous states. Then a path in V containing an ambiguous state cycle corresponds to a

critical pair in the system, which is called a pattern critical path, simply critical path if there is

no ambiguity in the context. So the pattern diagnosability verification consists in checking the

existence of critical paths in the pattern verifier.

Theorem 3 A pattern is diagnosable in a system G iff there is no critical path in the pattern

verifier of G.
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X0{P0}
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O1 O2 O3
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O2 O3
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O3

T8
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X5{P0}

T9

X6{P0}

X6{P0}

T10

X5{P2}

X5{P2}

T11

X6{P2}

X6{P2}

O1

Figure 2.7: Part of twin plant for pattern recognizer.

Figure 2.7 depicts a part of the pattern verifier constructed from the pattern recognizer shown

in the bottom part of figure 2.6, where its state labels (top) are composed of a pair of pattern

recognizer state labels (middle and bottom). The gray nodes represent ambiguous states, which

form one ambiguous state cycle (T6, T7). So the pattern is not diagnosable in this system.
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Chapter 3

Optimized diagnosability algorithm

through abstraction

The classical and centralized diagnosability checking methods are to check the existence of crit-

ical pairs with the assumption that the knowledge about the system is a monolithic model. This

hypothesis is normally unrealistic when dealing with real complex systems due to the combina-

torial explosion of the search space. So we propose here a new formal framework for checking

diagnosability of distributed DES, where the problem is described as a distributed search problem

to avoid calculating global objects.

Our proposed approach makes several contributions to the diagnosability problem. First, we

gear classical diagnosability definition for an entire system to regional diagnosability for a subsys-

tem, which leads to defining a diagnosable subsystem. And we describe how to improve diagnosis

algorithm in terms of observation reduction with a given diagnosable subsystem in a formal way.

Second, we provide a new distributed theoretical framework to check regional diagnosability as

well as diagnosability of the whole system. Instead of performing diagnosability verification on

the global twin plant or local twin plant, i.e., searching for critical paths, we abstract necessary

and sufficient diagnosability information from the local twin plant and then perform the search for

local critical paths on the abstracted one before checking their global consistency. Our algorithm

is optimized in the sense that with the abstracted diagnosability information, the search space is

reduced to be as small as possible. Third, the diagnosability results we obtain can possibly help

in the improvement of diagnosis algorithm when the system is diagnosable, in which case the

algorithm returns a diagnosable subsystem. Otherwise, the algorithm provides some helpful infor-

mation about indistinguishable behaviors that can be used to upgrade the diagnosability level of

25



CHAPTER 3. OPTIMIZED DIAGNOSABILITY ALGORITHM THROUGH ABSTRACTION

the system when the system is verified to be not diagnosable.

3.1 Distributed system model

We consider a distributed DES composed of a set of components G1, ..., Gn that can communicate

with each other by communication events. Such a system is modeled by a set of FSMs, each of

them modeling one component.

Definition 13 (Local Model) A component Gi is modeled as a FSM, denoted by Gi = (Qi, Σi, δi, q
0
i ),

where

• Qi is the set of states;

• Σi is the set of events;

• δi ⊆ Qi × Σi ×Qi is the set of transitions;

• q0
i is the initial state.

The set of events Σi is divided into four disjoint parts: Σio , the set of observable events in Gi,

Σif , the set of unobservable fault events in Gi, Σiu , the set of unobservable normal events in Gi

and Σic , the set of unobservable communication events in Gi that are shared by at least one other

component. Then we have Σi = Σio

⊎
Σif

⊎
Σiu

⊎
Σic . And for any two different components

Gi and Gj , we have (Σi\Σic) ∩ (Σj\Σjc) = ∅. In other words, the only shared events between

different components are unobservable communication events. Actually here we implicitly have

two assumption about communication events, which can be relaxed, as it will presented in section

3.5.

Assumption 1 Any communication event is unobservable.

Assumption 2 Any communication event is correct.

The first assumption indicates that our case is the most difficult one for distributed systems in

terms of observability. In other words, our analysis can become much easier if the communication

events are observable. While the second one is for the sake of simplicity and understandability,

which is considered as a constraint here but can be relaxed in a straightforward way, which will be

discussed in section 3.4.
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The global model of the entire system is implicitly defined as the synchronized FSM of

all component models based on their shared events, here communication events, denoted by

G = ‖n
i=1Gi. The synchronized FSM on any non-empty set {Gi1 , ...Gim} is called a subsys-

tem of the system G, denoted by GS , where Gik , k ∈ {1, ...m} could be any component in G.

Figure 3.1 depicts a distributed system composed of three components G1 (top), G2 (middle) and

G3 (bottom), where the events Oi denote observable events, the events Fi denote unobservable

fault events, the events Ui denote unobservable normal events and the events Ci denote the unob-

servable communication events.

C1

F1

X1 X2
O1

X4
O1

X0 X3
C2

X5

O2

X6
O3

X7

X8

C3 O1

O2

U1

C1

Y0

Y1 O4

O4
Y2

O6

Z0

Z1 C1

O6

Z3

Z2

C2

Z4

C3

O7

Y3

O5

C3

Figure 3.1: A system with three components G1 (top), G2 (middle) and G3 (bottom).

In the distributed framework, we have a similar assumption to that described in [61], which

holds in the whole thesis.

Assumption 3 Each component projection of the global language is both live and observable

live.

This assumption means that for each global trajectory, its projection on each component is live

without unobservable cycle.
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3.2 Local twin plant and local twin checker

The basic idea of local twin plant, similar to that of twin plant described in [44] but for one compo-

nent, is to build a FSM that compares every pair of local trajectories with the same observations to

search for pairs of local trajectories with the same enough local observations but only one of them

contains the fault. We first show how to construct the local pre-diagnoser from a given component

model, which in turn serves to compute its corresponding local twin plant. The only difference be-

tween local pre-diagnoser and pre-diagnoser defined in definition 6 is that for local pre-diagnoser,

we retain the information about communication events besides that about observable events, which

will serve to check global consistency. While this is not the case for pre-diagnoser since in a cen-

tralized way, it is supposed to have a monolithic model for the whole system and thus the global

consistency is implicitly guaranteed.

Definition 14 (Local pre-diagnoser) The local pre-diagnoser of the component Gi is the FSM

Di = (QDi , ΣDi , δDi , q
0
Di

) where

• QDi ⊆ Qi × 2Σif is the set of states

• ΣDi = Σio ∪ Σic is the set of events

• δDi ⊆ QDi × ΣDi ×QDi is the set of transitions

• q0
Di

= (q0
i , ∅) is the initial state

The transitions of δDi are those ((q, qf ), e, (q′, qf ′)) with (q, qf ) reachable from the initial state

q0
Di

and satisfying the following condition:

• there is a transition sequence p = (q uo1−−→ q1...
uom−−→ qm

e−→ q′) in Gi with uok ∈ Σiu ∪
Σif , ∀k ∈ {1, ..., m}, e ∈ Σio ∪ Σic and qf ′ = qf ∪ ({uo1, ...uom} ∩ Σif ).

Without loss of generality, we give the definition of local pre-diagnoser for the set of faults in the

component Gi, which is perfectly suitable to deal with single fault when we run our algorithm

each time for one fault. A local pre-diagnoser shows all possible faults after any local sequence of

observable events and communication events. Figure 3.2 presents the local pre-diagnoser of the

component G1. The corresponding local twin plant is obtained by synchronizing the local pre-

diagnoser with itself based on the set of observable events to obtain all pairs of local trajectories

with the same observations. The two identical pre-diagnosers are denoted by Dl
i (left instance) and
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Dr
i (right instance). Since this synchronization is based on the set of observable events and with

assumption 1 that communication events are unobservable, the non-synchronized communication

events are distinguished between the two instances by the prefix L and R: in Dl
i (Dr

i ), each

communication event c ∈ Σic from Di is renamed by L : c (R : c) and all their observable events

do not change their name.

X0 {}

X1 {} X4 F1{ } X5 F1{ }

X3 {}

C1
O1

X4 {} X5 {}C2

X6 F1{ } X7 F1{ }

X8 F1{ }

X6 {} X7 {}

X8 {}

O2

O2

O1

O2

O2

O3

O3

C3

O1O2

C3

O1

O2

Figure 3.2: The local pre-diagnoser D1 of component G1 (see figure 3.1).

Definition 15 (Local Twin Plant) The local twin plant of the component Gi is the FSM Ti =

Dl
i‖Dr

i .

From definition 15, we can see that the construction of local twin plant is different from that of twin

plant defined in definition 8. The latter is constructed by the product of pre-diagnoser with itself

based on the set of observable events. Different from pre-diagnoser, a local pre-diagnoser contains

the communication events, which are not the synchronized events during local twin plant construc-

tion, where the only synchronized events are the observable events. While in pre-diagnoser there

are only observable events. As said in section 2.3.2, the operation of synchronization reduces to

the operation of product when the two FSMs have the same set of events and all events are the

synchronized events. Thus the twin plant defined in definition 8 can also be expressed by the

synchronization of the pre-diagnoser with itself based on its whole set of events.

Each state of a local twin plant Ti is a pair of local pre-diagnoser states that provide two pos-

sible diagnoses with the same local observations. Given a local twin plant state ((ql, ql
f )(qr, qr

f )),

if the fault f ∈ ql
f ∪ qr

f but f /∈ ql
f ∩ qr

f , which means that the occurrence of f is not certain up to

this state with the same local observations, then this local twin plant state is called an ambiguous

state with respect to f . An ambiguous state cycle is a cycle containing only ambiguous states.

Figure 3.3 depicts a part of local twin plant T1 of the component G1, where each state label (top)

is composed of a state label of Dl
i (middle) and that of Dr

i (bottom). The gray nodes represent
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ambiguous states with respect to F1, which form ambiguous state cycles. In a local twin plant, if a

path contains at least one ambiguous state cycle and from assumption 3, this cycle contains at least

one observable event for this component, then it is called a local possible critical path, LPCP for

short. Actually a LPCP corresponds to a pair of local trajectories in the local pre-diagnoser that

have the same enough local observations but only one of them contains the fault, which is called

a local critical pair in the following. If a LPCP is globally consistent (which will be described

in next sections), which means that its corresponding local critical pair can be extended to be a

global critical pair after synchronizing with other components.

We know that the function of local twin plant is to obtain all LPCPs. From figure 3.3, we

can see that a local twin plant constructed as described above (see [53]) normally has a large re-

dundant part which is useless, e.g. all paths without ambiguous state cycles. Furthermore, from

the way to construct local twin plant, it can be seen that in the local twin plant, any local crit-

ical pair in the local pre-diagnoser has more than one corresponding LPCPs. In other words,

there could be several LPCPs that correspond to the same pair of local trajectories in the local

pre-diagnoser. For example, figure 3.4 shows a part of figure 3.3. We can see that two LPCPs

(R:C1.O1.L:C2.O2.O2∗), (L:C1.O1.R:C2.O2.O2∗) correspond to the same pair of local trajec-

tories in the local pre-diagnoser (see figure 3.2)(C1.O1.O2.O2∗), (O1.C2.O2.O2∗) and another

two (R:C1.O1.L:C2.O3.(R:C3.L:C3.O1.O2)∗), (L:C1.O1.R:C2.O3.(L:C3.R:C3.O1.O2)∗)

correspond to the same pair of trajectories in the local pre-diagnoser(C1.O1.O3.(C3.O1.O2)∗),

(O1.C2.O3.(C3.O1.O2)∗). So to ameliorate the redundant calculation, we can improve the local

twin plant construction by reducing the left instance Dl
i and the right instance Dr

i . We reduce Dl
i

constructed as above by only retaining the paths with at least one fault state cycle, i.e., there exists

at least one cycle in this path of the local pre-diagnoser that contains a state (q, qf ), where f ∈ qf

and f is the considered fault. Then Dr
i is reduced by only retaining the paths with at least one

cycle without fault state. Then the improved local twin plant is constructed by synchronizing the

reduced Dl
i and the reduced Dr

i as defined in definition 15, which is called optimized local twin

plant in the following. Figure 3.5 depicts the reduced Dl
1 (left) and the reduced Dr

1 (right), where

the gray nodes represent fault state in the local pre-diagnoser.

Lemma 1 The set of LPCPs in the local twin plant corresponds to the same set of local critical

pairs in the local pre-diagnoser as the set of LPCPs in the improved local twin plant does.

Proof :

As described before, the local twin plant is constructed by synchronizing the non-reduced left
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Figure 3.3: Part of local twin plant T1 of component G1 (see figure 3.1).
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Figure 3.4: Part of local twin plant T1 of component G1 (part of figure 3.3).

instance Dl
i and the non-reduced right instance Dr

i while the optimized local twin plant is con-

structed by synchronizing the reduced left instance Dl
i and the reduced right instance Dr

i . For

the sake of clarity, in the non-reduced Dl
i, we denote the set of paths with only fault state cy-

cles by Λl
f , and denote the set of paths without fault state cycle by Λl

¬f , and then denote the

set of paths with both fault state cycles and cycles without fault state by Λl
both. In the same

way, in the non-reduced Dr
i , we denote the set of paths with only fault state cycles by Λr

f , de-

note the set of paths without fault state cycle by Λr
¬f , and denote the set of paths with both fault

state cycles and cycles without fault state by Λr
both. Then the local twin plant is constructed by

(Λl
¬f ∪Λl

f ∪Λl
both) ‖ (Λr

¬f ∪Λr
f ∪Λr

both). On the other hand, the reduced Dl
i retains the paths with

at least one fault state cycle and the reduced Dr
i retains the paths with at least one cycle without

fault state. Then the optimized local twin plant is constructed by (Λl
f∪Λl

both) ‖ (Λr
¬f∪Λr

both). The

local twin plant construction can also be expressed by the addition of the synchronized results of

nine cases: 1) (Λl
¬f ) ‖Σio

(Λr
¬f ); 2)(Λl

¬f ) ‖Σio
(Λr

f ); 3)(Λl
¬f ) ‖Σio

(Λr
both) 4)(Λl

f ) ‖Σio
(Λr
¬f );

5) (Λl
f ) ‖Σio

(Λr
f ); 6) (Λl

f ) ‖Σio
(Λr

both); 7)(Λl
both) ‖Σio

(Λr
¬f ); 8) (Λl

both) ‖Σio
(Λr

f ) and 9)

(Λl
both) ‖Σio

(Λr
both). And in the same way, the optimized local twin plant construction can also

be expressed by the addition of the synchronized results of above four cases, which are actually

(case 4 + case 6 + case 7+ case 9). So compared to the optimized local twin plant, the local twin

plant has five more synchronized results (case 1 + case 2 + case 3 + case 5 + case 8). Now consider

case 4 and case 2, which are actually symmetrical. We can see that the part in left instance of case

2 is the same as the part in right instance of case 4 and the part in right instance of case 2 is the
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Figure 3.5: The reduced Dl
1(top) and the reduced Dr

i (bottom) (see figure 3.2).

same as the part in left instance of case 4. It is easy to prove that the synchronized result of case 2

corresponds to the same set of local trajectory pairs in the local pre-diagnoser as the synchronized

result of case 4 does. In the same way, case 6 has the same result as case 8 and case 7 has the same

result as case 3. Now the local twin plant has two more synchronized results (case 1 + case 5) than

the optimized local twin plant. However, case 1 and case 5 can never get any LPCP. The reason

is that in case 1, any path in Λl
¬f and in Λr

¬f has no fault state cycle, then the synchronized result

has no ambiguous state cycle, which means that there is no LPCP. And in case 5, any path in Λl
f

and in Λr
f has only fault state cycles, which means that there is no cycle without fault state. So

their synchronization cannot obtain LPCP. Now we can say that the local twin plant corresponds

to the same set of local trajectories in the local pre-diagnoser as the optimized local twin plant

does, which proves lemma 1.

The part of local twin plant depicted in figure 3.3 is reduced to the part of optimized local twin

plant shown in figure 3.7. So the state space of optimized local twin plant is much smaller than

local twin plant but contains all local critical pairs. In our next sections, we calculate optimized

local twin plant instead of local twin plant.

Next we define the local twin checker for a given component. First we operate delay closure on

the component model, which is denoted by Gi• = {Σid
(Gi), where Σid is the set of communica-

tion events and observable events of Gi. Then the local twin checker is obtained by synchronizing

Gi• with itself based on the observable events. The idea is to obtain all pairs of local trajectories

with the same observations. The two identical instances are denoted by Gl
i• (left instance) and
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Gr
i• (right instance). Since this synchronization is based on the set of observable events and with

assumption 1, the non-synchronized communication events are distinguished between the two in-

stances by the prefix of L and R: in Gl
i• (Gr

i•), each communication event c ∈ Σic from Gi•

is renamed by L : c (R : c). The difference between local twin plant and local twin checker is

that local twin checker has no fault information while local twin plant provides fault information.

Figure 3.6 depicts a part of the local twin checker of the component G2 and a part of the local

twin checker of the component G3, where there is no fault information. Each path corresponds to

a pair of local trajectories with the same observations.

Definition 16 (Local Twin Checker) The local twin checker of the component Gi is the FSM

Ci = Gl
i•‖Gr

i• .

In the following, we denote the component where the fault f may occur by Gf . Note that

the local twin plant is only constructed for the component Gf since the fault occurs only in this

component. In the synchronized FSM of the local twin plant for the component Gf and a set of

local twin checkers based on their communication events (left communication events synchronized

with left ones and right communication events synchronized with right ones), (‖m
i=1Csi)‖Tf , si ∈

({1, ..., n}\{f}), ∀i ∈ {1, ..., m}, any state is composed of one local twin plant state and a set of

local twin checker states qt = (qt
Tf

, qt
Cs1

, ..., qt
Csm

), where qt
Csi

represents a state of the local twin

checker Csi and qt
Tf

is a state of the local twin plant Tf . If qt
Tf

in qt is an ambiguous state, then qt

is called an ambiguous state. Then we define global twin plant as follows.

Definition 17 (Global Twin Plant) The global twin plant of a system with components G1, ..., Gn

is the FSM T = (‖(
i=1n− 1)Csi)‖Tf , si ∈ ({1, ..., n}\{f}), ∀i ∈ {1, ..., n− 1}.

The global twin plant is defined by synchronizing the local twin checkers of all components except

Gf and the local twin plant of Gf . Recall that in the centralized approach described in section

2.3.2.2, a path in the twin plant containing at least one ambiguous state cycle with at least one

observable event is called a critical path. While in our approach, with the assumption 3, we have

the following definition for global critical path.

Definition 18 (Global Critical Path) Given the global twin plant, a path is called a global critical

path if it contains at least one ambiguous state cycle φ such that ∀i ∈ {1, ..., n}, Σφ ∩ Σio 6= ∅,

where Σφ denotes the set of events in the cycle φ.
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Figure 3.6: Part of local twin checker C2 for G2 and part of local twin checker C3 for G3.
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In the global twin plant, if a path possesses an ambiguous state cycle containing at least one

observable event for all components, then this path is called a global critical path, whose existence

verifies non-diagnosability. Actually if a path in the global twin plant only possesses an ambiguous

state cycle containing observable events for some but not all components, from the assumption 3,

it can be deduced that its corresponding pair of trajectories must be blocked when synchronizing

with the components that have no observable event in this ambiguous state cycle.

3.3 Distributed Framework

The non existence of global critical paths verifies diagnosability property of a system. The dis-

tributed idea is to decide diagnosability without necessarily building global objects, whose con-

struction can be very computationally demanding for large and complex systems. In this section,

we first define regional diagnosability for a subsystem in a distributed system and then show how

to abstract necessary and sufficient diagnosability information and how to check regional diagnos-

ability based on the abstracted version of local twin plant as well as those of local twin checkers

with as small search space as possible.

3.3.1 Regional Diagnosability

For a distributed system, definition 5 can be geared to be suitable for a subsystem GS containing

a subset of components, which is called regional diagnosability. Let ΣS denote the events set of

the subsystem GS , PS(p) denote the projection of the trajectory p to observable events in the sub-

system GS and sf denote a trajectory ending with f . We formally define regional diagnosability

as follows.

Definition 19 (Regional Diagnosability) A fault f is regionally diagnosable in a system G with

respect to a subsystem GS , where f ∈ ΣS , iff

∃k ∈ N,∀sf ∈ L(G), ∀t ∈ L(G)\sf , |PS(t)| ≥ k ⇒
(∀p ∈ L(G), PS(p) = PS(sf .t) ⇒ f ∈ p).

If f is regionally diagnosable in G with respect to GS , then G is called a fGS -diagnosable system

and GS is called a diagnosable subsystem with respect to f . In such a system, we are sure that f

has effectively occurred in GS when we observe enough events from GS after the occurrence of

f . Thus the observations from GS are sufficient for diagnosis decision with respect to the fault
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f , denoted by Diagf . Given a fGS -diagnosable system, the diagnosis decision can be defined as

follows:

• Diagf (obss) = 1, when ∃p ∈ L(G), PS(p) = obss and f occurs in p (as G is a fGS -

diagnosable system, it is the case that ∀p ∈ L(G) with PS(p) = obss, then f occurs in p if

obss is long enough);

• Otherwise, Diagf (obss) = 0.

Here Diagf (obss) being 1 means the effective occurrence of f on the trajectory with obss as

its observations, otherwise Diagf (obss) is 0. Note that with a diagnosable subsystem GS , only

observations from GS are involved in diagnosis decision. Otherwise, we need all observations in

the whole system to decide diagnosis.

Lemma 2 If a system G is fGS -diagnosable, then it is fGS′-diagnosable, where GS ⊆ GS′.

Proof :

Suppose that G is fGS -diagnosable and GS ⊆ GS′. Since G is fGS -diagnosable, from definition

19, with a finite and enough number of observations from GS , we are sure that f has effectively

occurred after the occurrence of f . Then from the fact that the observable events between com-

ponents are disjoint and from assumption 3 that implies no loop of unobservable events in any

component, the occurrence of f is also determinable after a finite and enough number of observa-

tions from the subsystem GS′. It follows that G is fGS′-diagnosable. Actually without assumption

3, there may exist the case that the system is fGS -diagnosable but not fGS′-diagnosable. For ex-

ample, if in the subsystem GS , there exists a cycle with only unobservable events, it may still be a

diagnosable subsystem, i.e., no existence of critical path. It is possible that GS′ is not diagnosable

subsystem if there exists a critical pairs in GS′.

Lemma 2 means that the existence of a diagnosable subsystem verifies the diagnosability prop-

erty of the whole system. Let G be a fGS -diagnosable system. If ∀G′
S , G′

S ⊂ GS , G is not fG′S -

diagnosable, then GS is called a minimal diagnosable subsystem with respect to f , which is not

necessarily unique.

3.3.2 Diagnosability Information Abstraction

We now present how to abstract diagnosability information from local twin plant and local twin

checkers. As said before, Gf denotes the component where the fault f may occur and Tf denotes
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the local twin plant of the component Gf . In a local twin plant, LPCP is a local path containing an

ambiguous state cycle with at least one observable event of the component. For example, figure 3.7

contains two LPCPs of the local twin plant T1(see figure 3.3) since both of them have ambiguous

state cycles with at least one observable event of G1. The relations between global critical paths

and LPCPs can be concluded as follows.

1. For any global critical path in the global twin plant, its projection on the local twin plant Tf

must be a LPCP.

2. If there is no LPCP in Tf , then there is no global critical path in the global twin plant.

3. If there is a LPCP in Tf , then it may or may not be extended as a global critical path in the

global twin plant when synchronizing with other local twin checkers.

What we are interested in is the case 3, where the diagnosability information, i.e., LPCPs, origi-

nates only in the local twin plant Tf . So our goal is to determine if the LPCPs are going to develop

as a global critical path with as small space as possible instead of computing the global twin plant.

Since all local paths of local twin plant are synchronized via communication events with local

twin checkers, they can only be blocked by communication events. With assumption 3, we can see

that one way to check whether a local path in the local twin plant can survive after synchronizing

with local twin checkers consists in checking the existence of observable events of all involved

components in the corresponding cycles. So it suffices to consider all communication events and

only those observable events in cycles.

In the local twin plant Tf , considering that the events set of a local twin plant is the set of

communication events and observable events and in any component, each cycle contains at least

one observable event of this component, an ambiguous state cycle could only be two types:

1. with both communication events and observable events;

2. with only observable events.

Then to keep all communication events and only observable events in ambiguous state cycles of all

LPCPs, we first operate delay closure with respect to the set of communication events, which keeps

all ambiguous state cycles in Tf of the first type. But this delay closure loses the observable events

in this kind of cycles. For this, it is sufficient to add the existence information of observations

in the component Gf . For the second type, operating delay closure with respect to the set of

communication events on Tf loses those ambiguous state cycles with only observable events.
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So we recuperate them by adding their corresponding ambiguous state cycle with observation

information. We define abstracted local twin plant as follows, where we use obsi to represent the

existence of observable events of component Gi. The idea is to recover the lost ambiguous state

cycles and the lost observable information in a qualitative way. While the question about how

many observable events and which ones in a cycle does not affect diagnosability verification in the

following steps.
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Figure 3.7: Two local possible critical paths (LPCPs) in the local twin plant T1 (see figure 3.3).

Definition 20 (Abstracted Local Twin Plant-ALTP) The abstracted local twin plant (ALTP) from

a local twin plant Ti, denoted by T a
i , is obtained by the following steps:

1. Delay Closure with respect to the set of communication events is operated on the local twin

plant Ti, T a
i = {Σic

(Ti).

2. For any cycle φ in T a
i , φ = q′0

c1−→ q′1...
cm−−→ q′m with q′0 = q′m and all states in this cycle

are ambiguous states, suppose its corresponding cycle in Ti is: q0
e1−→ q1...

en−→ qn with

q0 = qn, from assumption 3, we know that there exists at least one observable event in

this cycle, then φ is modified as φ′ = q′0
c1−→ q′1...

cm−1−−−→ q′m−1
obsi−−→ qF cm−−→ q′m in T a

i ,

where obsi represents at least one observable event of component Gi, i.e., the existence of

observable events of Gi, and qF represents a local twin plant state that is ambiguous with

respect to any fault in F , whose ambiguity is the same as any other local twin plant state in

this cycle.

3. If there exists a local path in Ti: q0
e1−→ q1...

en−→ qn, where q0 is the initial state of Ti,

∃j ∈ {0, ..., n − 1}, qj = qn, ∀k ∈ {j + 1, ..., n}, ek ∈ Σio and ∀qp, p ∈ {j, ..., n}, qp

is an ambiguous state, then suppose that the corresponding local path in T a
i is p = q′0

c1−→
q′1...

cm−−→ q′m, then it is modified as p′ = q′0
c1−→ q′1...

cm−−→ q′m
obsi−−→ qF obsi−−→ qF , where obsi

represents at least one observable event of component Gi, and qF represents an ambiguous
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local twin plant state with respect to the set of faults F , whose ambiguity is the same as qk,

∀k ∈ {j, ..., n}.

In the above definition, clause(1) keeps all ambiguous state cycles in the local twin plant that with

at least one communication event. Clause(2) gets back the information about the existence of

observable events in the ambiguous state cycles with communication events. And clause(3) recu-

perates the lost ambiguous state cycles with only observable events by adding their corresponding

cycle with observation information. So we can see that since ambiguous state cycles only origi-

nate in Tf , the ALTP of Tf is to retain the corresponding part of all ambiguous state cycles with

the information about the existence of observable events as well as communication events, i.e., all

original diagnosability information. Then we have the following lemma.

Lemma 3 The ALTP T a
f for the local twin plant Tf retains the corresponding part of all ambigu-

ous state cycles with observation information of all LPCPs in Tf .

In the similar way to ALTP, we define the abstracted local twin checker as follows.

Definition 21 (Abstracted Local Twin Checker-ALTC) The abstracted local twin checker (ALTC)

from a local twin checker Ci, denoted by Ca
i , is obtained by the following steps:

1. Delay Closure with respect to the set of communication events is operated on the local twin

checker Ci, Ca
i = {Σic

(Ci).

2. For any cycle φ in Ca
i , φ = q′0

c1−→ q′1...
cm−−→ q′m with q′0 = q′m, suppose its corresponding

cycle in Ci is: q0
e1−→ q1...

en−→ qn with q0 = qn, then φ is modified as φ′ = q′0
c1−→

q′1...
cm−1−−−→ q′m−1

obsi−−→ qi cm−−→ q′m in Ca
i , where obsi represents at least one observable

event of component Gi and qi represents a local twin checker state for the component Gi.

3. If there exists a local path in Ci: q0
e1−→ q1...

en−→ qn, where q0 is the initial state of Ci,

∃j ∈ {0, ..., n− 1}, qj = qn, ∀k ∈ {j +1, ..., n}, ek ∈ Σio , suppose that the corresponding

local path in Ca
i is p = q′0

c1−→ q′1...
cm−−→ q′m, then it is modified as p′ = q′0

c1−→ q′1...
cm−−→

q′m
obsi−−→ q′m, where obsi represents at least one observable event of component Gi.

For all components except Gf , their ALTC preserves all communication events as well as all

cycles with the existence of observable events. The idea is to check whether the ambiguous state

cycles in T a
f can survive after synchronizing with all other ALTCs. After synchronization, if these

ambiguous state cycles do not disappear and contain at least one observable event for all involved
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components, then they are considered to survive in the global twin plant. In T a
f , the corresponding

local path of a LPCP from Tf is still called a LPCP, which preserves all ambiguous state cycles.

The ALTP thus keeps all necessary and sufficient diagnosability information but is practically

much smaller than its corresponding local twin plant. Figure 3.8 illustrates part of ALTP T a
1

(top), part of ALTC Ca
2 (middle) and part of ALTC Ca

3 (bottom) of components G1, G2 and G3,

respectively. T a
1 is abstracted from figure 3.7 and Ca

2 (resp. Ca
3 ) is abstracted from only one path

in figure 3.6. Here Obs1, Obs2 and Obs3 represent at least one observable event of component

G1, G2 and G3. And q{F1} represents an ambiguous local twin plant state with respect to F1.

Only T a
1 contains diagnosability information, i.e., ambiguous state cycles formed by gray nodes

with at least one observable event of G1.
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Figure 3.8: Part of ALTP T a
1 (top), part of ALTC Ca

2 (middle) and part of ALTC Ca
3 (bottom) of components

G1, G2, G3, respectively.

3.3.3 Distributed Verification

The reachability of LPCPs of T a
f in the global twin plant can be determined by synchronizing T a

f

with other ALTCs. Now we first define a globally consistent LPCP.

Definition 22 (Globally Consistent LPCP)
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• Given a LPCP ρ in T a
f and a subsystem GS containing the component Gf , if ρ does not

disappear and contains an ambiguous state cycle with at least one observable event for all

involved components of GS in the synchronized FSM of T a
f and the set of ALTCs corre-

sponding to the set of components of GS except Gf , then ρ is called a consistent LPCP of

the subsystem GS .

• If a local path ρ in T a
f is a consistent LPCP of the system G, i.e., GS = G, then ρ is called

a globally consistent LPCP.

Remark: if ρ is a consistent LPCP of the subsystem GS and there is no communication event in

GS that is also contained in G\GS , then ρ is a globally consistent LPCP. The reason is that in this

case all communication events in ρ are validated in terms of the interactions with its neighborhood.

Thus it will still be a consistent LPCP when current subsystem is extended to the whole system.

So ρ is globally consistent.

Lemma 4 A LPCP in T a
f is a globally consistent LPCP iff it corresponds to a global critical path.

Proof :

(⇒) Suppose a LPCP ρ in T a
f is a globally consistent LPCP and that it does not correspond to a

global critical path. Recall that a global critical path is a path in the global twin plant containing

an ambiguous state cycle with at least one observable event for all components. It follows that

there are two causes leading to non correspondence of ρ to a global critical path:

• all ambiguous state cycles in ρ disappear when synchronizing with other ALTCs, which

means that it has no corresponding path with ambiguous state cycles in the global twin

plant;

• ρ has a corresponding path in the global twin plant with ambiguous state cycles but none

of them contains at least one observable event of all components, which means that these

preserved ambiguous state cycles have observable events of only some components but not

all.

From the definition of a globally consistent LPCP mentioned as above with assumption 3 implying

that each cycle in any component of the system has at least one observable event of its component,

both cases indicate that ρ is not a globally consistent LPCP, which contradicts the assumption that

actually it is.
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(⇐) Now suppose that a LPCP ρ in T a
f corresponds to a global critical path but it is not a globally

consistent LPCP. Its non global consistency means that either all its ambiguous state cycles dis-

appear when synchronizing with other ALTCs or its corresponding path in the global twin plant

contains ambiguous state cycles but none of them contains observable events of all components.

From the definition of a global critical path (see section 3.2), both cases imply that ρ has no cor-

responding global critical path. Thus the assumption that ρ corresponds to a global critical path is

contradicted.

Lemma 4 implies the equality between globally consistent LPCPs and global critical paths,

i.e., there is no globally consistent LPCP iff there is no global critical path. Then from theorem 2,

we can obtain the following important result.

Theorem 4 The fault f is diagnosable in a system G iff there is no globally consistent LPCP.

3.3.4 Algorithm

Algorithm 1 Optimized Diagnosability Verification Algorithm for Distributed DES
1: INPUT:

component models G1, ..., Gn of the system G;
the considered fault f that may occur in Gf

2: T ← ConstructALTP (Gf , f)
3: GS ← Gf

4: while T 6= ∅ and ConnectComp(GS) 6= ∅ do
5: G ← Select(ConnectComp(GS))
6: T ′ ← ConstructALTC(G)
7: T ← Sync(T, T ′)
8: T ← Reduce(T )
9: GS ← Add(GS , G)

10: end while
11: if T = ∅ then
12: return GS

13: else
14: return T
15: end if

Now we describe our distributed algorithm to check diagnosability based on theorem 4, which

is optimized in the sense that we reduce the search space as small as possible by distributing the

analysis on the ALTP and relative ALTCs. The starting point is the construction of the ALTP

of the component Gf . As said before, since f occurs only in the component Gf , we only need
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to construct the ALTP of the component Gf . Then with this original ALTP, the core part is its

incremental synchronization with the ALTCs of components communicating with current subsys-

tem. Here the synchronized FSM of the ALTP T a
i and the ALTC Ca

j is called the ALTP of the

subsystem composed of Gi and Gj . As shown in the pseudo-code for this verification procedure,

algorithm 1 performs as follows. Given the input as the set of component models, the fault f that

may occur in the component Gf , we first construct the ALTP of Gf that contains all LPCPs (line

2). Current subsystem, denoted by GS , is then assigned by Gf . When the reduced ALTP of GS is

not empty and there exists at least one component neighboring to GS , i.e., a component has at least

one communication event in common with the ones of GS , which means that there exists at least

one consistent LPCP of current subsystem whose global consistency should be further checked,

then the algorithm repeatedly performs as follows:

1. Select one component neighboring to GS and construct the ALTC of this selected compo-

nent. (line 5-6 )

2. The obtained ALTC is synchronized with the previous (reduced) ALTP based on their com-

mon communication events (left communication events and right communication events).

Then the newly obtained ALTP is reduced by retaining only consistent LPCPs of the newly

extended subsystem considering that the synchronization may possibly produce some paths

that are not consistent LPCPs. This extended subsystem is obtained by adding this selected

component. (line 7-9)

Note that each time when we reduce the ALTP to retain only LPCPs, we keep the same events set.

In other words, a reduced ALTP has the same events set as its corresponding non-reduced ALTP.

Only in this way, we can guarantee that the synchronized FSM of the reduced ALTP with another

ALTC based on their shared communication events has the same result as the synchronized FSM

of their corresponding local twin plant and local twin checker. If the reduced ALTP of current

subsystem GS is empty, which means that there is no consistent LPCP of GS , thus we verify

the non existence of global critical paths. Then the algorithm returns current subsystem as a

diagnosable subsystem (line 11-12). Otherwise, if there is no component connected with GS and

the reduced ALTP of GS is not empty, then there exists at least one globally consistent LPCP. From

theorem 4, the system is not diagnosable. Thus the algorithm returns the final reduced ALTP that

provides some useful information about global critical paths (line 13-14).
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3.4 Results Discussion

When the algorithm returns a diagnosable subsystem GS , if the number of involved components

|GS | ≤ 2, we can directly prove that it is a minimal diagnosable subsystem. Otherwise, if |GS | >
2, it is not necessarily a minimal diagnosable subsystem. When the system is diagnosable, we

can enhance the possibility of the returned subsystem being a minimal diagnosable subsystem by

adopting an appropriate component selection strategy. Let ΣSc be the set of communication events

in the current subsystem. To choose next component for further exploitation, we prefer to select

the one, suppose Gi, such that |ΣSc ∩ Σic |, the number of communication events in Gi contained

also in the current subsystem, is maximum compared to any other component to be selected. The

idea here is to block LPCPs by the concerned communication events with as few components as

possible if the system is diagnosable. In this way, more communication events of the selected

component are involved in the current subsystem, i.e., more communication constraints imposed

on LPCPs, more likely the LPCPs disappear after the synchronization.

Consider our example (see figure 3.8). Suppose that after T a
1 being built, we choose G2 as

the next component to decide diagnosability, the LPCPs in T a
1 are still consistent after synchro-

nizing with the abstracted local twin checker Ca
2 . Thus we select G3 for next checking and all

LPCPs disappear after synchronizing with Ca
3 . Then our algorithm returns a diagnosable subsys-

tem involving all three components. However, this is not a minimal diagnosable subsystem. If

we adopt component selection strategy mentioned as above, after obtaining T a
1 , we select G3 as

the next component because it contains more communication events in common with the ones of

G1 (c1, c2, c3) and thus has more constraints compared to G2, whose common communication

events with G1 is (c1, c3). When the LPCPs are synchronized with Ca
3 , all of them disappear. Our

algorithm thus returns a diagnosable subsystem composed of G1, G3, which is actually a minimal

diagnosable subsystem.

We have described how a diagnosable subsystem can improve diagnosis algorithm in terms

of observation reduction in section 3.3.1. Now we illustrate this with our example. Consider

the diagnosable subsystem composed of G1 and G3. Since it is a diagnosable subsystem, then

only the observations from G1 and G3 are sufficient for diagnosis decision, which means that we

do not need observations from the component G2. While without a diagnosable subsystem, to

decide diagnosis, the observations from all three components are required. Table 3.1 shows the

diagnosis decision with the observations required with the diagnosable subsystem composed of G1

and G3 and without it. In the table, s1‖s2 denotes the synchronization of events sequence s1 and
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Table 3.1: Diagnosis Decision with and without a Diagnosable Subsystem

Diagnosis Table Observations Diagnosis
decision

With diagnosable subsystem
O6.O1.O3.(O1.O2‖O7)∗ 1
O1.(O3‖O6)(O1.O2‖O7)∗ 0
... ...

Without diagnosable subsystem
O6.(O1.O3‖O4.O5).(O1.O2‖O7‖O5)∗ 1
((O1.(O3‖O6))‖O4.O5).(O1.O2‖O7‖O5)∗ 0
... ...

sequence s2, where there is no synchronized event between these two sequences. For example,

the result of O1.O2‖O7 is the sequences set {{O7.O1.O2}, {O1.O7.O2}, {O1.O2.O7}}. With

the diagnosable subsystem, with only observations from this subsystem, we can decide diagnosis.

Otherwise, we need observations from all components.

For the sake of generalization, we give some definitions, such as local pre-diagnoser and local

twin plant, to deal with set of faults. However, considering that the search space is exponential in

the number of faults, it is better to check diagnosability by running our algorithm as many times

as the number of faults, each time for one fault, which greatly reduces complexity. Obviously, our

algorithm practically improves the efficiency of diagnosability problem solving. The twin plant

method has polynomial space complexity in the number of system states, which however has ex-

ponential complexity in the number of components. In our approach, from the way to construct

ALTP and ALTCs and to distribute diagnosability checking on them, in the worst case, the space

complexity is polynomial in the number of a subset of system states, i.e., the states of commu-

nication transitions and observable transition in cycles. Even though we still have exponential

complexity in the number of components, but normally the growth factor is greatly reduced, i.e.,

the state number of ALTP being much smaller than that of local twin plant. Furthermore, in prac-

tice, our algorithm often involves only a subset of components, both for the diagnosable cases and

non-diagnosable cases.

3.5 Relaxation of assumptions

In our approach, we have the assumption 1 that any communication event is not observable, which

is actually the more difficult case than that where the communication event is observable. Now

we relax this assumption by dividing the set of communication events into two disjoint parts: Σioc ,

observable communication events set and Σiuc , unobservable communication events set. In other
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words, communication events could be observable or unobservable. Then our algorithm can be

adapted as following.

• From the local component Gf , we construct its pre-local diagnoser by preserving the infor-

mation about all observable events as well as all communication events, including observ-

able ones and unobservable ones, and then append to each retained state fault information,

which is the same as that described above.

• In this pre-local diagnoser, for each event σ ∈ Σiuc , we distinguish it between two instances

by adding the prefix of L (for left instance, σ being L : σ) and R (for right instance, σ being

R : σ). Then we obtain local twin plant by synchronizing these two instances based on the

set of observable events and the set of observable communication events, i.e., Σio and Σioc .

• We construct ALTP by keeping all communication events, including observable communi-

cation events, left unobservable communication events and right unobservable communica-

tion events, as well as the observable information in ambiguous cycles.

• For other connected components, we construct their local twin checker in the same way

as local twin plant except without diagnosis information. Afterwards the corresponding

ALTC is obtained by operating delay closure to keep all communication event and then by

recuperating observable information for each cycle.

• Global consistency checking of LPCPs consists in synchronizing ALTP and connected

ALTCs based on communication events (observable communication event with observable

one, left unobservable communication event with left unobservable one and right unobserv-

able communication with right unobservable one). Before each synchronization, we only

keep those paths with ambiguous state cycles containing observable events for all involved

components. If in the end, the final obtained FSM is not empty, which means that there

does exist at least one globally consistent LPCP and thus non diagnosability is verified.

Otherwise, if final FSM is empty, then non existence of globally consistent LPCP and thus

diagnosability is proved.

For the sake of simplicity, we also have assumption 2 that a communication event is not a

fault event, i.e. Σif ∩ Σic = ∅. If we relax this assumption, which means that a fault event

can also be an unobservable communication event. Actually our approach can also deal with the

relaxed case. For example, without loss of generality, suppose that the considered fault event f is
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a communication event contained in two components Gi and Gj . We check diagnosability in the

following three ways.

• Construct the ALTP of Gi to obtain LPCPs and then check their global consistency with

connected ALTCs, including that of Gj

• Construct the ALTP of Gj to obtain LPCPs and then check their global consistency with

connected ALTCs, including that of Gi

• Construct the ALTPs of both Gi and Gj and then synchronize them to get LPCPs, and then

check global consistency with connected ALTCs

Since the fault event is a shared event of Gi and Gj , from the global consistency checking pro-

cedure, it is easy to prove that the results of the above three methods are the same. So we can

just choose only one component that contains the fault communication event and then perform

the same algorithm as the case where the fault is not a communication event, i.e., the first or the

second procedure described above.

As for assumption 3 that each component projection of the global language is observation

live, which is quite constrained but can be easily relaxed to the liveliness of local observation

language. In the relaxed case, we assume that both the language and the observable language of

any component are live without considering their correspondence in global language. In other

words, their observable liveness is not necessarily true in global language. In this case, we use the

same algorithm with the only difference that during searching for LPCP and global consistency,

we only care about those paths with ambiguous state cycles containing observable event only for

the component Gf . So diagnosability verification procedure can be described as follows.

• From the local component Gf , we construct its pre-local diagnoser and then its local twin

plant as well as ALTP.

• For other connected components, we construct their local twin checker in the same way as

local twin plant except without diagnosis information. Then the corresponding ALTC is

obtained by only operating delay closure to keep all communication event. Here we do not

need to recuperate observable information in cycles because with the relaxed assumption,

what we are interested in is only the observable events of Gf in ambiguous cycles, i.e.,

whether ambiguous cycles in local twin plant of Gf will be blocked during global consis-

tency checking.
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• During global consistency checking by synchronizing ALTP and connected ALTCs, before

each synchronization, we only keep those paths with ambiguous state cycles containing ob-

servable events for Gf . If in the end, the final obtained FSM is not empty, non diagnosability

is verified since there is no globally consistent LPCP. Otherwise, if final FSM is empty, we

verify system diagnosability.

3.6 Related work

As said in chapter 2, the first definition of diagnosability for DES is introduced in [61]. The au-

thors proposed a necessary and sufficient condition for testing diagnosability by constructing a

deterministic diagnoser for the entire system. The main drawback is its exponential space com-

plexity in the number of system states and as a consequence doubly exponential in the number

of components in the system. Then the authors of [44] and [80] proposed new algorithms with

polynomial complexity in the number of system states, which introduced the classical twin plant

method. These approaches assume that the knowledge about the system is the monolithic model,

which is not realistic for real complex systems. It is why very recently distributed approaches for

diagnosability began to be investigated, relying on local objects.

In [53], the author introduces the diagnosability problem of a system in a distributed way. In

this approach, the local twin plant is constructed for each component based on its local model

and then the local twin plant for the component Gf , the component where the fault may occur,

is incrementally synchronized with all connected local twin plants. The local twin plant of Gf is

constructed by synchronizing the non-reduced left instance of pre-diagnoser and the non-reduced

right instance. Furthermore, during the diagnosability verification, the set of local twin plants are

neither abstracted nor reduced. So in the worst case, i.e., all components are connected directly or

indirectly, the finally obtained FSM to search for global critical paths is actually the global twin

plant. The search space can be reduced compared to centralized one only when there does exist at

least one component that is not connected to the component Gf , neither directly nor indirectly.

In [64], to search for global critical paths in a distributed way, non-diagnosable states in each

local twin plant are first decided by propagating diagnosability information. This is done by syn-

chronizing relative local twin plants based on their connectivity with the local twin plant of the

component Gf . And then reduced local twin plants are computed that only contain the parts

relevant to solve the diagnosability problem. So diagnosability verification is performed by syn-

chronizing the reduced but non-abstracted local twin plants.
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Different from the existing distributed approaches mentioned above, we first optimize the

local twin plant construction by reducing the left and right instances of the pre-diagnoser for the

component Gf . And then we show how to construct ALTP and ALTC by abstracting necessary and

sufficient diagnosability information from local twin plant and local twin checker. Then the search

for global critical paths is performed by synchronizing the reduced ALTP with the connected

ALTCs. In a system where there are a large number of observable events, our approach greatly

reduces the search space since in our abstracted version, we only retain one observable event for

each component in each cycle.

Another similar approach is described in [20], where modular diagnosability is defined and

its verification is performed based on checking the global consistency of indeterminate cycles

through synchronizing with only the communication events in other connected components. The

major differences between our approach described in this chapter and theirs are as follows.

• The original diagnosability information is obtained by constructing deterministic local di-

agnoser in [20], which is modified from that described in [61], while we choose to get this

by building local twin plant that is an optimized version of that presented in [53].

• Their modular diagnosability focuses only on traces where events from module or called

component Gf , which is the component where the fault f originates. More precisely, mod-

ular diagnosability of f in the system implies that after f occurs in the component Gf ,

detection and isolation of that fault is only required along continuations that involve events

from Gf . In other words, modular diagnosability requires that only observations from Gf

is sufficient to determine whether f has occurred or not.While our proposed regional diag-

nosability is to search for a diagnosable subsystem, which exists if the fault is diagnosable

in the entire system.

• We assume that observable behavior of each component is live. The idea is to guarantee that

regional diagnosability of the fault implies its diagnosability in the whole system, which is

not the case in [20]. Furthermore, we assume the common events between components,i.e.,

communication events, to be unobservable while they assume the common events to be

observable, which leads to great difference during global consistency checking of original

diagnosability. Obviously non observability of common events makes the verification more

complex but more general when dealing with real systems.
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Chapter 4

Distributed pattern diagnosability

The existing work for pattern diagnosability adopts centralized framework ([34], [43]), which

means that the monolithic model for a distributed system is hypothesized beforehand. As said in

the fault event case, this hypothesis is normally unrealistic when dealing with real complex sys-

tems. So we propose a distributed framework for pattern diagnosability. For the sake of simplicity,

we first consider a pattern as one sequence of events. Then we will extend our approach for general

patterns that may have multiple even infinite sequences of events.

In this section, we show how to generalize distributed diagnosability analysis from fault events

to predefined patterns. The idea is to find an equivalent alternative to the centralized pattern

diagnosability checking but being more efficient in order to improve the scalability of the problem.

Our approach contributes to the pattern diagnosability problem in several aspects. First, we extend

the pattern diagnosability problem from the centralized framework to the distributed one. Second,

pattern recognition can be checked by incrementally constructing pattern recognizers, which may

concern several components. Third, we construct pattern verifier and then abstract necessary and

sufficient diagnosability information from it to search for partial critical paths, which are similar

to LPCPs described in section 3.3.2, whose global consistency is then checked. Finally some key

information about the reasons why the system is not diagnosable is provided by our algorithm

when the system is not diagnosable, which can help the designer to improve the diagnosability

level of the system by rearranging sensor placement, system reconfiguration, etc.

Actually there is another possible way to deal with pattern diagnosability for a distributed

system, where a fault event is added to the end of pattern and the pattern is considered as one

additional component in this system, i.e., the system is composed of its own components plus

the pattern component. And then we can possibly apply the method in chapter 3 to check the
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diagnosability of this added fault event. However, to fulfill all assumptions of chapter 3 and

the assumptions about what is a pattern, it would imply that all events in the system should be

considered as observable communicating events, which is too strict to be realistic. This is why we

propose here a more efficient distributed method in this chapter.

4.1 Models and notations

As in the fault event case, a distributed system under our consideration is composed of a set of

components G1, ...Gn that communicate with each other by their shared communication events.

Each component is modeled by a FSM defined in the definition 13. Different from the fault event

case (see section 3.1), the events set Σi of the component Gi is divided into three disjoint parts:

Σio , the set of observable events in Gi; Σiu , the set of unobservable events in Gi; and Σic , the

set of unobservable communication events in Gi that are shared by at least one other component.

The only shared events between different components are unobservable communication events.

Figure 4.1 depicts a distributed system composed of three components G1(top), G2(bottom left)

and G3(bottom right), where the events Oi denote observable events, the events Ci denote unob-

servable communication events, the events Ui denote unobservable events.

U1 C1

X0

X1

X3

U2

X4

O1
U2

X2

O3 C2

Y0

Y1

Y3

O4
C1 O3

Y2

C2

O2

C1 O5

Z0

Z1

Z2

O6

C2

Figure 4.1: Distributed system with three components G1(top), G2(bottom left) and G3(bottom right).

In a pattern Ω = (QΩ, ΣΩ, δΩ, q0
Ω, FΩ), we call an event σ a significant event of Ω if ∃(q, σ, q′) ∈

δΩ with q 6= q′. In other words, a significant event of a pattern is an event that changes at least

one pattern state. We use ΘΩ to denote the set of significant events of Ω and $̂q to denote the set

of events in ΘΩ such that ∀σ ∈ $̂q, ∃(q, σ, q′) ∈ δΩ, with q 6= q′. Thus $̂q is actually the set of

significant events of Ω that change the state q.
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Definition 23 (Simple Pattern). A pattern Ω is called a simple pattern if ∀qΩ, qΩ ∈ QΩ∧qΩ /∈ FΩ,

we have |$̂qΩ | = 1.

In a simple pattern, for any state that is not a final state, there is one and only one event that

changes it to another state. With simple patterns, the diagnosis problem can be generalized from

detecting fault events to recognizing events sequence that can describe more general objectives,

such as ordered occurrence of several important events, multiple occurrences of the same fault, etc

[43]. Actually the fault event case is a special case of the pattern one.

Due to FΩ being stable, we can merge all final states in one beforehand, which has no impact

on our diagnosability analysis. In a simple pattern, the significant event that changes state q is

denoted by $s
q . If qf is the final state, $s

qf
= ε. Figure 4.2 depicts a pattern that describes the

ordered occurrence of two significant events ΘΩ = {u1, o3}. For this pattern, we have QΩ =

{p0, p1, p2}, ΣΩ = {c1, c2, u1, u2, o1, o2, o3, o4, o5, o6}, ΣΩo = {o1, o2, o3,o4, o5, o6}, ΣΩu =

{u1, u2}. We also have ΘΩ = {u1, o3}, $s
p0 = u1, $s

p1 = o3, q0
Ω = p0, FΩ = {p2}. We can see

that it has the same events set as the system depicted in figure 4.1.

P2P1P0

∑ U1Ω\

U1

∑Ω\O3

O3

∑Ω

Figure 4.2: The predefined pattern Ω for the system depicted in 4.1.

Given a system G = (Q,Σ, δ, q0) and a pattern Ω = (QΩ, ΣΩ, δΩ, q0
Ω, FΩ), we assume

Σ = ΣΩ, Σo = ΣΩo , Σu = ΣΩu and ∀σ ∈ ΘΩ, ∀σ′ ∈ Σc, σ′ 6= σ, where Σc is the set of

communication events in G. In other words, any significant event of the pattern is not a com-

munication event, which has meaning in the sense that communication events function only for

exchanging messages between components of the system. And we assume that the pattern is not

concerned with the distributed structure and communication architecture of the system.

4.2 Theoretical distributed framework for simple pattern diagnos-

ability

Now we show how to distribute the pattern recognition and its diagnosability verification on sub-

systems without computing the global model and the global pattern verifier. We begin the pattern
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recognition from the component containing the event ωs
q0
Ω

, where q0
Ω is the initial state of the pat-

tern. In other words, this component, called the initial subsystem in the following, contains the

significant event of Ω that changes the initial state of Ω. If the pattern cannot be completely rec-

ognized in this component, the subsystem will be extended by propagating only diagnosability

relative part to the next selected component for the next recognition. If the next recognition is still

not completed, then in the same way we continue to extend the subsystem until the recognition is

completed. In this incremental way what we obtain is often a small subpart of the global model be-

cause the propagated subsystem part is often much smaller than the whole subsystem, which will

be described in Section 4.2.2, and also because components concerned by the pattern are normally

a subset of system components.

The idea of centralized pattern diagnosability approach is to check if there exists a critical path

in the global pattern verifier. In the pattern case, we still adopt assumption 3, which means that

in every component, each cycle has at least one observable event of this component. Then in the

global pattern verifier, if a path has an ambiguous state cycle that contains at least one observable

event for all components of the system, this path is called a global critical path in the following,

whose existence verifies non-diagnosability. Our distributed approach is to avoid the calculation

of the global pattern verifier by computing abstracted pattern verifier for the subsystem where the

pattern recognition is completed to search for partial critical paths. Then we demonstrate how to

decide whether a partial critical path, which is a path in the verifier containing an ambiguous state

cycle with at least one observable event for all involved components of this subsystem, corresponds

to a global critical path after global consistency checking. In this distributed way, the finally

obtained FSM for diagnosability verification is normally a quite small subpart of the global pattern

verifier.

As in the fault event case, let PS(p) denote the projection of the trajectory p to observable

events in a subsystem GS . We define regional pattern diagnosability as follows.

Definition 24 (Regional Pattern Diagnosability) A pattern Ω is regionally diagnosable in a sys-

tem G with respect to a subsystem GS , iff

∃k ∈ N,∀s ∈ L(G) ∩ Lm(Ω), ∀t ∈ L(G)\s, |t| ≥ k ⇒
(∀p ∈ L(G), PS(p) = PS(s.t) ⇒ p ∈ Lm(Ω)).

If a pattern Ω is regionally diagnosable in G with respect to the subsystem GS , then GS is called

a Ω-diagnosable subsystem. In such a system, we are sure about the occurrence of the pattern

when enough events are observed from GS after its occurrence. So similar to fault event case, the
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observations from GS are sufficient for diagnosis decision with respect to Ω, denoted by DiagΩ.

So given a Ω-diagnosable subsystem GS , the diagnosis decision can be defined as follows:

• DiagΩ(obss) = 1, when ∃p ∈ L(G) ∩ Lm(Ω), PS(p) = obss (as GS is a Ω-diagnosable

subsystem, then we have that ∀p ∈ L(G) with PS(p) = obss, then p ∈ Lm(Ω) if obss is

long enough);

• Otherwise, DiagΩ(obss) = 0.

Here DiagΩ(obss) being 1 means the effective recognition of Ω on the trajectory with obss as its

observations, otherwise DiagΩ(obss) is 0. Note that with a Ω-diagnosable subsystem GS , only

observations from GS are involved to decide diagnosis. Otherwise, we need all observations in

the whole system to decide diagnosis. Then we have the following lemma, whose proof is similar

to that of lemma 2.

Lemma 5 In a system G, if the subsystem GS is a Ω-diagnosable subsystem and if GS ⊆ GS′,

then the subsystem GS′ is also a Ω-diagnosable subsystem.

The existence of a Ω-diagnosable subsystem verifies that the system is Ω-diagnosable. And a

Ω-diagnosable subsystem is called a minimal Ω-diagnosable subsystem if it does not contain any

other Ω-diagnosable subsystem.

4.2.1 Pattern recognizer

Pattern recognition in a subsystem is performed by constructing the corresponding pattern recog-

nizer, which is defined as below.

Definition 25 (Pattern Recognizer). Given a subsystem GS = (QS , ΣS , δS , q0
S) and a pattern

Ω = (QΩ, ΣΩ, δΩ, q0
Ω, FΩ), then the pattern recognizer of GS is RGS

= (QRGS
,ΣRGS

, δRGS
,

q0
RGS

, FRGS
) = GS ×Ω, where the initial state is q0

RGS
= (q0

S , q0
Ω), FRGS

= (QS ×FΩ)∩QRGS

is the set of final states of the pattern recognizer.

Since Ω is a complete FSM, we have L(Ω) = Σ∗ and thus we have L(RGS
) = L(GS) ∩

L(Ω) = L(GS). The pattern recognizer can show which part of the pattern can be recognized

after any trajectory in the subsystem. Given the initial recognizer state q0
RGS

= (q0
S , q0

Ω), a state

(q, qΩ) is called a suspicious state of RGS
if q0

Ω 6= qΩ. Given the set of all suspicious states in RGS
,

ω = {(q1, q
1
Ω),...(qn, qn

Ω)}, a state (qi, q
i
Ω) ∈ ω is called a Target Suspicious State (TSS) of RGS

if
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in Ω, an events sequence through which qf , the final state of Ω, can be reached from qi
Ω contains

the minimal number of significant events of Ω compared to all qk
Ω, where k ∈ {1, ...n}. In other

words, for a simple pattern, given a recognizer state (qi, q
i
Ω), it is TSS if the number of transitions

with significant events (not those events with the source state as the same as the destination state)

in the path from q0
Ω to qi

Ω in the pattern is maximal, where q0
Ω is the initial state of pattern. TSS is

thus defined to show which part of the pattern can be recognized in the current subsystem (from

initial state to which state, the latter one is the pattern state contained in TSS). If FRGS
6= ∅, then

the pattern is completely recognized in GS and RGS
is called the complete recognizer, denoted

by Rc. On the other hand, if FRGS
= ∅, then the pattern is not completely recognized in GS

and we should choose one next component to extend the current subsystem for building the next

recognizer. As said before, the initial subsystem is the component that contains the event $s
q0
Ω

.

Suppose that qc 6= qf is the pattern state contained in a TSS of the pattern recognizer of the

current subsystem, then the next component to be selected for subsystem extension is the one

containing the event ωs
qc , which is the significant event that changes state qc. Considering that

any significant event is not a communication event and that Ω is a simple pattern, this selected

component is always unique.
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Figure 4.3: The pattern recognizer RGS
(top) and its part RΩ

GS
(bottom)

For our example, the pattern recognizer of the initial subsystem, denoted by RGS
, is depicted

by the top part of figure 4.3. Actually the initial subsystem is the component G1, which contains

the event $s
q0
Ω

= $s
p0 = u1. In this recognizer, the states whose pattern state part is p1 are TSSs,

which are represented by the gray nodes. In other words, in the initial subsystem, the recognized
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pattern part is the part from the initial state p0 to the state p1. Then the next selected component

should contain the event ωs
p1 = o3, i.e., is G2.

4.2.2 Diagnosability information propagation

A non complete recognizer can only recognize a part of the pattern. The recognition should be

completed by incrementally extending the subsystem. Given a non complete recognizer RGS
, we

do the following reduction to retain only diagnosability relative part: retain the set of paths where

there is at least one TSS, this set of paths denoted by χΩ; retain a path p, if PS(p) = PS(p′)
and p′ ∈ χΩ, where PS(p) denotes the observations of p in the subsystem GS . The reduced

recognizer is denoted by RΩ
GS

. As said before, we have L(RGS
) = L(GS) and we also have

L(RΩ
GS

) ⊆ L(RGS
), then we get L(RΩ

GS
) ⊆ L(GS). To recognize the next part of the pattern,

we extend the current subsystem by synchronizing RΩ
GS

with Gj , RΩ
GS
‖Gj , where Gj is the next

selected component. Note that we keep the events set of RΩ
GS

as the same as that of RGS
. Only

in this way, the result of this synchronization is the same as that of RGS
with Gj . In a real

complex system, RΩ
GS

is normally a small subpart of RGS
, L(RΩ

GS
) ⊂ L(GS), which means that

the propagated part is actually quite limited. Thus the synchronized FSM of RΩ
GS

and Gj contains

smaller space compared to that obtained by synchronizing the whole subsystem recognizer RGS

with the next component Gj . If the pattern can be recognized in the system, then the recognizer

of the extended subsystem must achieve next recognition of the pattern.

There are two intentions of diagnosability information propagation. One is to continue the

recognition process. Another is to keep all information about critical pairs to facilitate the diag-

nosability analysis because we retain not only the paths containing TSS but also the paths with the

same observations as those with TSS.

For our example, the bottom part of figure 4.3 depicts the diagnosability relative part RΩ
GS

.

There is one trajectory in RGS
that is not in RΩ

GS
, which can never be recognized by the pattern

when it is synchronized with other components and can never be the one with the same observa-

tions as those recognized by the pattern. In other words, this trajectory can never be involved in

any global critical pair. Thus it is relative to neither the pattern recognition nor the pattern diag-

nosability verification. The top part of figure 4.4 presents a part of RΩ
GS
‖G2. Then we construct

the pattern recognizer of this extended subsystem, partly depicted by the bottom part of figure 4.4.

It is actually the complete recognizer since it contains final states (corresponding to the final state

p2 of Ω, in gray) and thus the pattern can be completely recognized in the current subsystem made
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up of components G1 and G2.
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Figure 4.4: Part of the synchronization RΩ
GS
‖G2(top) and part of the complete recognizer Rc (bottom).

4.2.3 Pattern verifier abstraction

Next we show how to construct the abstracted pattern verifier to search for partial critical paths

and how to check their global consistency, which normally involves smaller search space than the

global pattern verifier. The efficiency will be analyzed in section 5.2.2. Now we provide some

lemmas that are the basis of proving the correctness of our distributed approach.

From non intersection of observable events set between components, we can get the following

lemma.

Lemma 6 The two trajectories of any global critical pair have the same local observable projec-

tion on each component.

Proof :

As described before, in the distributed system, for any two different components Gi and Gj , we

have Σio ∩ Σjo = ∅. Then from the definition of a global critical pair, i.e., a pair of global

trajectories with the same enough observations but only one of them recognizes the pattern, it can

be deduced that the observable projections of the two trajectories of any global critical pair on

each component are the same, which proves the lemma.
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Then from the way to construct the complete recognizer and from lemma 6, we get the next

lemma.

Lemma 7 The complete recognizer Rc contains the subpart in the corresponding subsystem of all

global critical pairs.

Proof :

Due to the fact that the only shared events between components are communication events and

that any significant event of the pattern is not a communication event, then any significant event

of the pattern is contained in only one component. Let Gi be the initial subsystem. In the pattern

recognizer RGi , the paths not containing a TSS of RGi are never the subpart of those paths that can

be recognized by the pattern because the significant event leading to the pattern state contained in

a TSS cannot be in any other component. In other words, the set of paths in RGi with a TSS must

contain the corresponding subpart of all paths that can be recognized by the pattern. From lemma

6, we get that the two trajectories of any global critical pair have the same observable projection on

Gi. Thus since in the reduced recognizer RΩ
Gi

, all the paths having the same observations as those

containing a TSS are also retained, we know that RΩ
Gi

contains the subpart in the initial subsystem

Gi of all global critical pairs. Then after synchronizing RΩ
Gi

with the next selected component,

suppose Gj , again from lemma 6 and in the same way as above, we can deduce that the recognizer

of the extended subsystem contains the subpart in the extended subsystem of all global critical

pairs. We repeat the above steps until the complete recognizer is obtained. So now we can deduce

that the complete recognizer must contain the subpart in the corresponding subsystem of all global

critical pairs.

As in the fault event case, before pattern verifier construction, we refine the complete recog-

nizer by the delay closure with respect to Σd, where Σd is the set of communication events and

observable events, Rr = {Σd
(Rc). We obtain left instance of Rr, denoted by Rl

r, by prefixing

the communication events with L and then by retaining only the paths with at least one cycle

that contains both final states of the recognizer and at least one observable event for all involved

components. Then we get the right instance of Rr, denoted by Rr
r , by prefixing the communica-

tion events with R and then by retaining the paths with at least one cycle that does not contain

final states but contains at least one observable event for all involved components. The pattern

verifier can be constructed by synchronizing the left instance with the right instance based on all

observable events in Rr.

59



CHAPTER 4. DISTRIBUTED PATTERN DIAGNOSABILITY

Definition 26 (Pattern Verifier). Given the refined recognizer Rr, its corresponding pattern veri-

fier is V = Rl
r‖Rr

r.

In the pattern verifier, if a path % has at least one ambiguous state cycle that contains at least one

observable event for all involved components, then % is called a partial critical path, which is with

the same idea as LPCP in Section 3.3.2. The only difference between a partial critical path and

a LPCP is that the ambiguous state cycles in the LPCP only contain observable events for one

component and the ambiguous state cycles in the partial critical path should contain observable

events for all involved components. The reason is that the LPCP is for the fault event case, which

only occurs in one component while the partial critical path is for the pattern case, which normally

relates to several components. Next we show how to abstract diagnosability information from the

pattern verifier.

Definition 27 (Abstracted Pattern Verifier) The abstracted pattern verifier, denoted by V a, is

obtained from its corresponding pattern verifier V by the following steps, where the involved

components are {Gs1 , ...Gsm}:

1. Delay Closure with respect to the set of communication events is operated on the pattern

verifier V , V a = {Σc(V ).

2. For any cycle φ in V a, φ = q′0
c1−→ q′1...

cm−−→ q′m with q′0 = q′m and all states in this cycle are

ambiguous states, suppose its corresponding cycle in V is: q0
e1−→ q1...

en−→ qn with q0 = qn.

If ∀Gsk
, k ∈ {1, ...m}, Σsko

∩ {e1, ..., en} 6= ∅, Σsko
denoting the observable events set of

the component Gsk
, which means that this cycle contains at least one observable event

for all involved components, then φ is modified as φ′ = q′0
c1−→ q′1...

cm−1−−−→ q′m−1

obss1−−−→
qΩ...

obssm−−−−→ qΩ cm−−→ q′m in V a, where obssi represents the existence of observable events

of component Gsi and qΩ represents a verifier state that is ambiguous with respect to the

pattern Ω, whose ambiguity is the same as any other pattern verifier state in this cycle.

3. If there exists a local path in V : q0
e1−→ q1...

en−→ qn, where q0 is the initial state of V , ∃j ∈
{0, ..., n−1}, qj = qn, ek ∈ Σo,∀k ∈ {j+1, ..., n}, where Σo denotes the observable events

set of the system, this means that all events in this cycle are observable events, if ∀qp, p ∈
{j, ..., n}, qp is an ambiguous state and if ∀Gsk

, k ∈ {1, ...m},Σsko
∩ {ej+1, ..., en} 6= ∅,

which means that this is an ambiguous state cycle with at least one observable event for

all involved components, suppose that the corresponding local path in V a is p = q′0
c1−→
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q′1...
cm−−→ q′m, then it is modified as p′ = q′0

c1−→ q′1...
cm−−→ q′m

obs−−→ qΩ
obss1−−−→ qΩ...

obssm−−−−→ qΩ,

where obs means that the event that changes the state from q′m to qΩ is an observable event

but which one is not important, obssi represents at least one observable event of component

Gsi , and qΩ represents an ambiguous verifier state with respect to the pattern Ω, whose

ambiguity is the same as qp, ∀p ∈ {j, ..., n}.

From the construction of abstracted pattern verifier, we know that it retains all communication

events as well as all ambiguous state cycles that contain at least one observable event for each

involved component in the current subsystem. In other words, the abstracted pattern verifier retains

the corresponding part of all partial critical paths in the pattern verifier, the proof is similar to that

of lemma 3 in section 3.3.2.
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Figure 4.5: Part of the pattern verifier V (top) and part of abstracted pattern verifier V a(bottom) .

For our example, the top part of figure 4.5 partly depicts the pattern verifier and the bottom

part is its corresponding part of abstracted pattern verifier. The gray nodes represent ambiguous

states with respect to the pattern Ω. This depicted part is actually a partial critical path since it

contains an ambiguous state cycle with one observable event for both involved components G1 and

G2. Note that in the abstracted pattern verifier, we do not retain those ambiguous state cycles with

observable events for only some involved components but not all of them. For example, in figure

4.5, the abstracted one (bottom) does not preserve the ambiguous state cycle with only observable

event O4 (top) but preserves the ambiguous state cycle with the observable events O1 and O4,

which are represented by Obs1 and Obs2. The reason is that the ambiguous state cycle with

only O4 will never be extended to an ambiguous state cycle containing observable events for all

components, whose existence in the path is a necessary and sufficient condition for being a global

critical path. So to search for global critical paths, in the abstracted pattern verifier, what we are

interested in is those ambiguous state cycles with observable events for all involved components.
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4.2.4 Global consistency checking

The existence of global critical paths implies the existence of partial critical paths in the abstracted

pattern verifier but not each obtained partial critical path corresponds to a global critical path. The

reason is that for now we do not take into account the communication of partial critical paths with

the neighborhood of the current subsystem in the whole system. To solve this, we need to use the

abstracted local twin checker of a component whose construction is described in section 3.2 and in

section 3.3, which is to obtain all pairs of local trajectories with the same observations. And then

the partial critical paths are synchronized with the abstracted local twin checker of the connected

components to check their global consistency. Now we define the global consistency of partial

critical path as follows.

Definition 28 (Global consistency). Given a partial critical path, it is globally consistent if after

synchronizing with abstracted local twin checkers of all connected components, it still contains an

ambiguous state cycle with at least one observable event for all involved components.

Algorithm 2 Global Consistency Checking for Abstracted Pattern Verifier
1: INPUT:

component models G1, ..., Gn of the system G;
the abstracted pattern verifier V a;
the current subsystem GS , which is the subsystem corresponding to V a

2: V a ← Reduce(V a)
3: while V a 6= ∅ and ConnectComp(GS) 6= ∅ do
4: Gj ← Select(ConnectComp(GS))
5: Ca

j ← ConstructALTC(Gj)
6: V a ← Sync(V a, Ca

j )
7: V a ← Reduce(V a)
8: GS ← Add(GS , Gj)
9: end while

10: if V a 6= ∅ then
11: return V a

12: else
13: return GS

14: end if

Algorithm 2 provides the pseudo-code of global consistency checking procedure for the ab-

stracted pattern verifier. With the set of component models, the abstracted pattern verifier V a and

the current subsystem GS as input, the abstracted pattern verifier V a is first reduced by only retain-

ing all partial critical paths (line 2). When the reduced abstracted pattern verifier is not empty and
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there exists at least one component Gj that is not involved in the current subsystem GS but neigh-

boring to GS (line 3), which means that Gj contains at least one communication event contained

also in GS , then the algorithm repeatedly performs the following steps:

• Select one connected component Gj and construct its abstracted local twin checker Ca
j .

(line 4-5)

• Synchronize the abstracted local twin checker Ca
j with the reduced abstracted pattern ver-

ifier V a, where the synchronized events set is the set of common left and right communi-

cation events of GS and Gj . This resulted FSM is still called an abstracted pattern verifier.

(line 6)

• Reduce the newly obtained abstracted pattern verifier by only retaining all partial critical

paths. Here the partial critical paths are those having an ambiguous state cycle containing

at least one local observable event for all involved components including Gj and then the

current subsystem GS is updated by adding Gj . (line 7-8)

When there is no other connected component, any partial critical path obtained in the final FSM is

globally consistent. If there is at least one such path, which means that the final FSM is not empty,

then this FSM is returned to provide the non-diagnosability information (line 10-11). Otherwise,

if there is no such path, which means that the current reduced abstracted pattern verifier is empty,

then the current subsystem GS is a diagnosable subsystem with respect to Ω, which is returned by

our algorithm (line 12-13).

Lemma 8 A partial critical path is globally consistent iff it corresponds to a global critical path.

Proof :

(⇒) Suppose that a partial critical path ρ is globally consistent and that ρ does not correspond

to a global critical path. Since ρ has no corresponding global critical path, then either it has no

corresponding path in the global pattern verifier or its corresponding path in the global pattern

verifier has no ambiguous state cycle with observable events for all components. And then from

the way to construct the global pattern verifier and from the way to check global consistency,

it is easy to know that after global consistency checking, i.e., after synchronizing the abstracted

pattern verifier with connected abstracted local twin checkers, ALTCs, any ambiguous state cycle

in ρ either disappears or does not contain observable events for all involved components. It follows

that ρ is not globally consistent, which contradicts the assumption.
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(⇐) Suppose now that a partial critical path ρ is not globally consistent and that it corresponds to

a global critical path. From the non global consistency of ρ, it follows that any ambiguous state

cycle in ρ either disappears or only contains observable events for some involved components but

not all of them after global consistency checking, which means that at least one communication of

ρ with its neighborhood is not valid. However, any global critical path has valid communication

in the whole system because it is constructed from the global model and it contains an ambiguous

state cycle with observable events for all components. This implies that ρ does not correspond to

a global critical path, which contradicts the assumption.

Then from lemma 8 and theorem 3, we can directly obtain the following theorem to verify

pattern diagnosability in a distributed way.

Theorem 5 A pattern Ω is diagnosable in a system G iff there is no partial critical path that is

globally consistent.
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Figure 4.6: The abstracted local twin checker Ca
3 for G3.

For our example, after global consistency checking, the partial critical path depicted in figure

4.5 contains an ambiguous state cycle with only observable events for G1 and G2 but not for G3

due to its synchronization with the abstracted local twin checker Ca
3 of the component G3, which

means that it has no corresponding global critical path. Figure 4.6 shows the abstracted local twin

checker Ca
3 . In the same way, after checking all the rest part of the abstracted pattern verifier,

we know that there is no partial critical path being globally consistent. Thus from theorem 5, the

system is verified to be Ω-diagnosable and its diagnosable subsystem is actually the set of all three

components.

Now let us change the component G3 in the system depicted in figure 4.1. The changed

component is shown in the top part of figure 4.7, which is denoted by G′
3. Then the bottom part
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Figure 4.7: The component G′3(top) and one path of abstracted local twin checker Ca
3 ′ for G′3(bottom).

of figure 4.7 is one path of the abstracted local twin checker Ca
3 ′ for the component G′

3. After

synchronizing the partial critical path depicted in figure 4.5 with this path of the abstracted local

twin checker Ca
3 ′, the obtained path is shown in figure 4.8, which verifies that this partial critical

path is actually globally consistent because the ambiguous state cycle does not disappear and it

contains at least one observable event for all three components. So the pattern is not diagnosable

in this new system, i.e., the system composed of G1, G2 in figure 4.1 and G′
3 in figure 4.7.
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Figure 4.8: One globally consistent partial critical path.

4.2.5 Algorithm

This section presents the algorithm of simple pattern diagnosability verification in a distributed

way. Note that in this algorithm, we do not need to calculate the global pattern verifier.

Algorithm 3 gives the pseudo-code of our proposed distributed simple pattern diagnosabil-

ity verification procedure. With the input as the set of component models and the pattern to be

diagnosed, after the initialization of the parameters, when the current recognizer is not the com-

plete one and the next selected component with respect to the current pattern recognizer is not

empty, which means that for the moment the pattern is not yet completely recognized in the cur-
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Algorithm 3 Diagnosability Algorithm of Simple Pattern for Distributed Systems
1: INPUT:

component models G1, ..., Gn of the system G, denoted by G = {G1, ...Gn};
the pattern Ω to be diagnosed in G

2: Initializations:
qc ← q0

Ω(currently recognized pattern state, initially the initial state of Ω);
R ← ∅ (the current recognizer, initially empty);
GS ← ∅ (the current subsystem, initially empty)

3: while R is not the complete recognizer and NextCom(G,GS ,Ω, qc) 6= ∅ do
4: R ← REDUCE(R)
5: Gi ← NextCom(G,GS , Ω, qc)
6: Gi ← Sync(Gi, R), where the synchronized events set is the set of common communica-

tion events of the current subsystem and the component Gi

7: R ← ConstructPR(Gi, Ω)
8: GS ← Add(GS , Gi)
9: qc ← q′, where q′ is the pattern state in a TSS of R

10: end while
11: if R is not the complete recognizer then
12: return "Ω cannot be recognized in G."
13: else
14: R ← Refine(R)
15: V ← ConstructPV (R)
16: V a ← ConstructAPV (V, GS)
17: CheckGlobalConsistency(G,V a, GS), see algorithm 2
18: end if
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rent subsystem and there exists the next component that we need to exploit for next recognition,

the algorithm repeatedly performs the following steps.

1. The current recognizer is reduced as described in Section 4.2.2, doing nothing for the current

recognizer being empty (for the first time), and then the next component Gi is selected for

extending the subsystem, where Gi contains the event $s
qc and not involved in the current

subsystem GS . This strategy of next component selection is described in Section 4.2.1. (line

4-5)

2. The reduced recognizer is synchronized with the selected component based on the set of

common communication events of the current subsystem and the selected component and

then the pattern recognizer of this synchronized FSM is constructed again. (line 6-7)

3. The current subsystem GS is now updated by adding the selected component and then the

currently recognized pattern state qc is updated by assigning q′, which is the pattern state in

a TSS of the current recognizer. (line 8-9)

When the current recognizer is not the complete one and there does not exist the next component,

since the pattern events set is the same as the events set of the system, there is only one reason

leading to this situation. The reason is that the component containing $s
qc is in the current subsys-

tem. In other words, the occurrence order of significant events in the current subsystem is not the

same as that in the pattern. So the pattern cannot be recognized in the system and our algorithm

returns information about non-recognition of the pattern. (line 11-12)

Otherwise, if the complete recognizer is obtained, we check pattern diagnosability first by re-

fining this recognizer through the delay closure as described in Section 4.2.3 and then by construct-

ing the corresponding pattern verifier as well as abstracted pattern verifier for global consistency

checking (line 14-17). There are several causes that can stop this algorithm.

• The pattern cannot be recognized in the system, then the algorithm returns non-recognition

information.

• The pattern can be recognized but is not diagnosable, then the returned FSM of function

CheckGlobalConsistency(G, V a, GS), which is described in algorithm 2, contains the

information about the undistinguishable behaviors that cause the non-diagnosability of the

pattern.

• The pattern can be recognized and is diagnosable, then CheckGlobalConsistency (G, V a,

GS) returns a diagnosable subsystem with respect to the pattern.
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4.3 Extension to general patterns

Now we investigate how to extend pattern diagnosability in a distributed way from the simple

pattern case to the general pattern case, which is more complicated considering that a general

pattern could be composed of multiple or even infinite number of simple patterns.

As in the simple pattern case, we still use $̂q to denote the set of significant events of Ω that

change the state q. The difference is that in a simple pattern, |$̂q|, the number of such significant

events is only one if q is not a final state while in a general pattern, |$̂q| could be multiple if q is

not a final state. Before pattern recognition, for the sake of simplicity, we first merge final states

in the following way:

∀ρ, where ρ is a path in Ω, such that q
σ1−→ q1...

σn−→ qn
σ′−→ q′,

where {q1, ..., qn, q′} ⊆ FΩ, q /∈ FΩ and {σ1, ...σn, σ′} ⊆ ΘΩ,

it is modified as a path ρ′ = q
σ1−→ q1

ΣΩ−−→ q1.

This means that in Ω, the set of final states Γq with the same last preceding state q that is not

a final state and the same last transition σ1 can be merged into one final state. Since the set

of final states of Ω is stable, then this operation will not have an impact on the correctness of

diagnosability algorithm except to make it more simpler. Figure 4.9 shows one example of a

general pattern, denoted by Ω′. The difference of Ω′ from the simple pattern depicted in figure 4.2

is that the significant events of $̂p1 are O3 and U2. In Ω′, the final state will be achieved when

the occurrence of O3 is after the occurrence of U1 and there is no occurrence of U2 between U1

and O3.

P0 P1

U1

P2
O3

∑
U2

∑\{U1} ∑\{U2, O3}

Figure 4.9: One example of a general pattern Ω′.

For a subsystem GS , we use the definition 25 to construct its pattern recognizer RGS
. Then for

the reduction of pattern recognizer by retaining only diagnosability relative part RΩ
GS

, the use of

Target Suspicious State (TSS) defined in section 4.2.1 is not appropriate considering that a general

pattern may contain multiple simple patterns and thus multiple final states even after the mergence

described as above. So different from TSS , we define recognition relative paths and diagnosability

relative paths as follows.
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Definition 29 (Recognition relative paths and Diagnosability relative paths).

• Given an infinite path ρ in the pattern recognizer of the subsystem GS , if ∃qr = (q, qΩ) ∈ ρ,

such that either qΩ is a final state of the pattern or ∃σ ∈ $̂qΩ such that σ ∈ Σ\ΣS , where ΣS

is the events set of GS and Σ is the events set of the entire system G, then ρ is a recognition

relative path. And σ is called a next recognizable event with respect to the subsystem GS .

The set of next recognizable events with respect to GS is denoted by ΛGS
.

• Given an infinite path ρ in the pattern recognizer, if it is a recognition relative path or it has

the same observations as any recognition relative path of this pattern recognizer, then it is

a diagnosability relative path.

Intuitively, a recognition relative path of the pattern recognizer contains either at least one final

state of the recognizer or at least one state such that it is the source state of a significant event in the

pattern that changes it and that is contained outside of the current subsystem. Only such kind of

paths can possibly recognize the pattern after synchronizing with other components that are not in

the current subsystem. And such a state is similar to TSS in the simple pattern case with the only

difference that TSS pattern state is unique while this kind of states in the general pattern case can

be multiple. The set of recognition relative paths contains the corresponding subpart of all global

trajectories that recognize the considered pattern. So similar to the simple pattern case, the pattern

recognizer is reduced to RΩ
GS

by only retaining all diagnosability relative paths in RGS
. Then it

is easy to prove the following lemma since the set of diagnosability relative paths includes not

only recognition relative paths but also all the paths with the same observations as any recognition

relative path.

Lemma 9 The reduced pattern recognizer RΩ
GS

contains the corresponding subpart in the sub-

system GS of all global critical pairs.

Consider the system depicted in figure 4.1 and the general pattern Ω′ depicted in figure 4.9.

The top part of figure 4.10 shows the pattern recognizer for the component G1 and the bottom

part is its diagnosability relative paths. In the pattern recognizer, from definition 29, we know that

there is only one next recognizable event, O3. The path (X0P0 U1−−→ X1P1 C1−−→ X3P1 U2−−→
X4P0 O1−−→ X4P0) is the recognition relative path, which has the same observations as the path

(X0P0 C2−−→ X3P0 U2−−→ X4P0 O1−−→ X4P0). So we get all diagnosability relative paths shown in

the bottom part of figure 4.10.
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Figure 4.10: The pattern recognizer RGS
for the initial subsystem, i.e., the component G1(top) and its set

of diagnosability relative paths RΩ
GS

(bottom).

In the simple pattern case, we define the complete recognizer as a pattern recognizer that

contains at least one final state. The reason is that since there is only one final state in a simple

pattern, then if there is a final state in a pattern recognizer, this means that the simple pattern is

completely recognized in the current subsystem and we do not need to exploit another component

for next pattern recognition. However, in the general pattern case, since there could be multiple

simple patterns as well as multiple final states, the complete recognizer is defined as a pattern

recognizer with at least one final state and with no next recognizable event with respect to the

current subsystem. In other words, a pattern recognizer RGS
is the complete recognizer if it

satisfies two conditions:

• in RGS
, ∃q ∈ QRGS

such that q ∈ FRGS
, where FRGS

is the set of final states of the pattern

recognizer RGS
;

• ΛGS
= ∅.

So the complete recognizer means that the pattern can be recognized in the current subsystem and

there is no other component that should be further exploited for next pattern recognition. If the

current pattern recognizer RGS
is not the complete recognizer, then there are three cases:

1. there is no final state in RGS
and the set of next recognizable events is not empty ΛGS

6= ∅;

2. there exists at least one final state in RGS
and the set of next recognizable events is not

empty ΛGS
6= ∅;
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3. there is no final state in RGS
and the set of next recognizable events is empty ΛGS

= ∅;

In case 1 and case 2, where case 1 means that the pattern is not recognized in the current subsystem

and there exists at least one next recognizable event and case 2 means that the pattern is recognized

in the current subsystem and there exists at least one next recognizable event for next recognition,

we select a component Gj that contains at least one next recognizable event with respect to GS .

In other words, we have Σj ∩ ΛGS
6= ∅. Note that the number of events in ΛGS

is not necessarily

only one since the pattern under consideration is a general pattern, so Gj is not unique in general

but the order of selection is however not influential for pattern recognition. Case 3 means that the

pattern is not recognized in the current subsystem and there is no next recognizable event. In other

words, case 3 implies that the pattern cannot be recognized in the whole system.
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Figure 4.11: Part of the extended subsystem RΩ
GS
‖G2 (top) and part of pattern recognizer for this extended

subsystem (bottom).

A part of the extended subsystem is shown in the top part of figure 4.11, that is obtained by

synchronizing the diagnosability relative paths in the pattern recognizer for the component G1

with the component G2, where G2 contains the next recognizable event O3. Then the bottom

part in the figure is a part of pattern recognizer for the extended subsystem. Then this pattern

71



CHAPTER 4. DISTRIBUTED PATTERN DIAGNOSABILITY

recognizer is actually the complete recognizer since there is no next recognizable event and there

does exist final states in it. Next we refine the complete recognizer through the delay closure with

respect to the set of observable events and communication events and then construct the pattern

verifier to get the abstracted pattern verifier. The top part of figure 4.12 depicts one partial critical

path in the abstracted pattern verifier, which can be verified to be globally consistent when it is

synchronized with the abstracted local twin checker for the component G3 shown in figure 4.6.

This globally consistent partial critical path is depicted in the bottom part of figure 4.12. So the

general pattern Ω′ shown in figure 4.9 is not diagnosable in the system depicted in figure 4.1 while

the simple pattern Ω shown in figure 4.2 is diagnosable in the same system.
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Figure 4.12: One partial critical path in the abstracted pattern verifier (top) and the corresponding globally
consistent partial critical path (bottom).

The algorithm 4 describes the distributed diagnosability verification for general patterns. With

the input as the set of component models and the pattern under consideration, the parameters of the

algorithm are initialized. Then when there exists at least one next recognizable event with respect

to the current subsystem (line 3), which means that there are other components that should be

further exploited for next pattern recognition, then the following steps are repeatedly performed.

1. The current pattern recognizer is first reduced by only retaining diagnosability relative paths,

doing nothing for the current recognizer being empty (for the first time), and then one com-

ponent containing at least one next recognizable event is selected (line 4-5).

2. The reduced recognizer is then synchronized with the selected component based on the set

of common communication events of the current subsystem and the selected component and

then the pattern recognizer for this synchronized FSM is again constructed (line 6-7).

3. The current subsystem is now updated by adding the selected component and then the set
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Algorithm 4 Diagnosability Algorithm of General patterns for Distributed System
1: INPUT:

component models G1, ..., Gn of the system G, denoted by G = {G1, ...Gn};
the pattern Ω to be diagnosed in G

2: Initializations:
GS ← ∅ (the current subsystem, initially empty);
R ← ∅ (the current pattern recognizer, initially empty);
ΛGS

← $̂q0
Ω

(the set of next recognizable events with respect to the current subsystem, ini-
tially the set of significant events of Ω that change its initial state q0

Ω);
3: while ΛGS

6= ∅ do
4: R ← REDUCE(R)
5: Gi ← SelectCom(ΛGS

, G)
6: Gi ← Sync(Gi, R), where the synchronized events set is the set of common communica-

tion events of the current subsystem GS and Gi

7: R ← ConstructPR(Gi, Ω)
8: GS ← Add(GS , Gi)
9: ΛGS

← CollectNRE(R, GS , G, Ω)
10: end while
11: if R is not the complete recognizer then
12: return "Ω cannot be recognized in G."
13: else
14: R ← Refine(R)
15: V ← ConstructPV (R)
16: V a ← ConstructAPV (V, GS)
17: CheckGlobalConsistency(G,V a, GS)
18: end if
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of next recognizable events with respect to the current subsystem is updated as described in

definition 29 (line 8-9).

When there is no next recognizable event and the current pattern recognizer is not the complete

one, which means that there is no final state in this recognizer, it can be deduced that the pattern

can never be recognized in the system. In this case, our algorithm returns the information about

non recognizability of the pattern (line 11-12). Otherwise, i.e., the current pattern recognizer is

the complete one, we first refine the complete recognizer and then construct the pattern verifier

to get the abstracted pattern verifier before checking its global consistency. All these steps (line

14-17) are the same as in the distributed diagnosability algorithm for the simple pattern case, i.e.,

algorithm 3.
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Chapter 5

Implementation and validation

In chapter 4, the correctness and efficiency of our proposed distributed pattern diagnosability algo-

rithm have been theoretically proved. In this chapter, we show the implementation and validation

from a practical point of view. Furthermore, to compare with the centralized approach for pattern

diagnosability, we also implement the centralized algorithm ([43]). Our results emphasize that the

search space of distributed algorithm is much smaller than that of centralized one in most cases.

5.1 Implementation

The implementation is coded in Java that is currently one of the most popular programming lan-

guages in use because of its reflexibility, scalability, simplicity, etc. From pattern diagnosability

verification procedure, we can see that the software architecture is based on different types of

FSMs, including subsystem, pattern, pattern recognizer, pattern verifier, local twin checker, etc.

The implementation is based on the classes of FSMs. Considering that if the number of faults

is high we will face a significant increase in complexity, it is better to check the diagnosability

individually for each fault.

5.1.1 Flowchart of procedures

Figure 5.1 shows the flowchart of distributed pattern diagnosability verification procedure (see its

formal algorithm 4). We recall its major steps as follows.

1. The pattern recognizer for a subsystem is obtained by the product of the subsystem model

and the pattern. If there exists at least one next recognizable event outside of the current

subsystem, then we reduce the pattern recognizer by retaining only diagnosability relative

75



CHAPTER 5. IMPLEMENTATION AND VALIDATION

paths and select one component containing such a next recognizable event. Then the re-

duced pattern recognizer is synchronized with the selected component to extend the current

subsystem. Here next recognizable events and diagnosability relative paths are defined by

definition 29 in section 4.3.

2. We repeat the above step until there is no next recognizable event. Then if the current pat-

tern recognizer is not the complete one, i.e., there is no final state in the current recognizer,

this means that the pattern cannot be recognized in the system and thus the non recogniz-

ability is returned. Otherwise, if the current pattern recognizer is the complete one, then the

pattern verifier is constructed as described by definition 26 in section 4.2.3. To improve the

efficiency, the abstracted pattern verifier is calculated from the pattern verifier as described

by definition 27 in section 4.2.3.

3. In the current abstracted pattern verifier, if there exists at least one consistent ambiguous

cycle, where a consistent ambiguous cycle is a cycle containing only ambiguous states with

at least one observable event for all involved components in the current subsystem, then

the abstracted pattern verifier is reduced to retain only those paths with consistent ambigu-

ous cycles. Otherwise, if there does not exist consistent ambiguous cycle in the current

abstracted pattern verifier, then the current subsystem is returned, which is a diagnosable

subsystem with respect to the pattern.

4. If there does not exist a component neighboring to the current subsystem, then the current

reduced abstract pattern verifier is returned to provide some information about the reasons

why the pattern is not diagnosable. Otherwise, if there exists at least one connected com-

ponent,i.e., a component containing at least one communication event that is also contained

in the current subsystem, then one such component is selected before constructing its local

twin checker. And the abstracted local twin checker is obtained from the local twin checker

as described by definition 21 in section 3.3.2. Then the abstracted pattern verifier is up-

dated by synchronizing the current reduced abstracted pattern verifier with the abstracted

local twin checker. In the same way, the algorithm repeats step 3 and step 4 until either

a diagnosable subsystem is returned when the pattern is diagnosable in the system or the

current reduced abstracted pattern verifier is returned when the pattern is not diagnosable in

the system.
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Figure 5.1: Flowchart of distributed pattern diagnosability checking procedure.
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To compare with the centralized approach, we also implement the centralized algorithm. To

be more clear, we present here its formal algorithm and the flowchart of its procedure.

Algorithm 5 Centralized Pattern Diagnosability Algorithm
1: INPUT:

component models G1, ..., Gn of the system G, denoted by G = {G1, ..., Gn};
the considered pattern Ω

2: Initialization:
global model GS ← ∅

3: while |GS | 6= |G| do
4: Gi ← SelectComp(GS , G1, ..., Gn)
5: GS ← Sync(GS , Gi)
6: end while
7: R ← ConstructGPR(GS , Ω)
8: if there does not exist final state in R then
9: return "pattern is not recognizable in the system"

10: else
11: V ← ConstructGPV (R)
12: if there exists at least one global critical path in V then
13: V ← Reduce(V )
14: return V
15: else
16: return "pattern is diagnosable in the system"
17: end if
18: end if

Algorithm 5 presents the centralized pattern diagnosability checking procedure and its flowchart

is depicted in figure 5.2. We describe its major steps as follows.

1. The global model of the system is obtained by synchronizing all components (line 3-6 in

algorithm).

2. When there is no component outside of the current subsystem, which means that this subsys-

tem is actually the global model, then the global pattern recognizer is constructed through

the product of the pattern and the global model (line 7).

3. If there is no final state in the global pattern recognizer, which means that the pattern cannot

be recognized in the system, then the non recognizability information is returned (line 8-9).

Otherwise, if there does exist at least one final state, the global pattern verifier is constructed

first by operating the delay closure on the pattern recognizer with respect to the set of ob-

servable events and then by synchronizing the obtained FSM with itself based on the set of

observable events (line 10-11).
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4. In the global pattern verifier, if there exists at least one consistent ambiguous state cycle, i.e.,

a cycle containing ambiguous states with at least one observable event for all components,

whose corresponding path is actually a global critical path, then the global pattern verifier

is reduced to retain only all global critical paths, which are returned by the algorithm (line

12-14). Otherwise, if there is no consistent ambiguous state cycle, the pattern is diagnosable

in the system and thus the diagnosability information is returned (line 15-18).

5.1.2 Comparison

Now consider the different major steps in the centralized approach and in the distributed approach

from figure 5.2 and figure 5.1 to understand the efficiency of the distributed algorithm. In total,

the differences lie in two major aspects: pattern recognizability analysis and pattern diagnosability

verification.

• For pattern recognizability analysis, in the centralized approach, the global model is con-

structed before the global pattern recognizer construction. While in the distributed approach,

we incrementally extend subsystem by synchronizing the diagnosability relative paths of the

current subsystem with the next selected component, i.e., the component containing at least

one next recognizable event. In this way, we can significantly save the state space because in

real complex systems, the part of diagnosability relative paths in the subsystem is normally

much smaller than the whole subsystem. Furthermore, figure 5.1 shows that the components

that do not contain any next recognizable event in every step of subsystem extension are not

involved in pattern recognizability analysis.

• For pattern diagnosability checking, in the centralized approach, the global pattern veri-

fier is constructed by synchronizing the refined global pattern recognizer with itself, i.e.,

the synchronization of two identical instances. While in the distributed approach, the pat-

tern verifier is obtained by synchronizing the reduced left instance of the refined complete

pattern recognizer with its reduced right instance, where the reduced left instance contains

only the paths with at least one consistent ambiguous state cycle that contains at least one

observable event for all involved components and the reduced right instance contains only

the paths with at least one cycle without ambiguous state but with at least one observable

event for all involved components. This difference greatly improves the efficiency. Further-

more, to check the global consistency of partial critical paths, before synchronization, we
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Figure 5.2: Flowchart of centralized pattern diagnosability checking procedure.
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abstract necessary and sufficient information from pattern verifier and local twin checkers,

i.e., abstracted pattern verifier and abstracted local twin checkers. The synchronization of

abstracted ones is simpler than that of non abstracted ones.

We can see that abstraction and reduction play an important role to save search space compared

to the centralized method even to normal distributed method without abstraction and reduction.

While the abstraction and reduction mainly consist in searching ambiguous state cycles containing

observations for all involved components. In our implementation, we separate cycles into two

types: elementary cycles that contain no other cycle and embedded cycles that contain at least one

other cycle. More precisely, the data structure of elementary cycle is a set of transitions, where

there is only one pair of transitions such that the source state of one transition is the same as the

destination state of the other transition. And searching elementary cycles is linear in the number

of states and transitions of the corresponding FSM through depth-first search. For embedded

cycles, all elementary cycles that share at least one state constitute an embedded cycle, where we

can check observations for all concerned components. So searching ambiguous state cycles, no

matter the cycle being elementary or embedded, is linear in the number of states and transitions

in the concerned FSM in each step during diagnosability checking. We will see the search space

reduction of the distributed approach compared to the centralized one in the next section through

examples.

5.2 Validation

As said before, we have theoretically proved the correctness and efficiency of the distributed pat-

tern diagnosability algorithm, i.e., with the same result, diagnosable or not diagnosable, as the

centralized one while with smaller search space than the centralized one. In this section, we show

the results of some examples to validate its properties.

5.2.1 Test case

The test case that we adopt is a simple example of an office system composed of three compo-

nents including a file processer component, a scanner component and a photocopier component.

This system is depicted in figure 5.3. The file processer component is to manipulate files, like

creating file (Create_file), deleting file (Delete_file), modifying file (Modify_file) and read-

ing file (Read_file). Furthermore, it can send the request to the scanner component to scan the
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Table 5.1: Search space of pattern diagnosability checking for G1 and Ω1

Centralized algorithm Distributed algorithm
global pattern recognizer

states number: 22
transitions number: 46

complete pattern recognizer
states number: 17

transitions number: 33
global pattern verifier

states number: 80
transitions number: 173

the pattern verifier after global checking
states number: 24

transitions number: 41

file (Scan_request). We suppose that the operation of Delete_file is an unobservable event,

the operation of Scan_request is an unobservable communication event and all other events are

observable events. The scanner component can execute two tasks. One is that when receiving

the scan request (Scan_request) from the file processer, then the Scan task is performed. The

other task is the manual scan. In this case, what it receives is not the Scan_request from the

file processer but the order from the environment outside of the system, e.g. one person manu-

ally pressing the scan button. Then the scanner performs the Scan task and saves the scanned file

by sending it to the appropriate email address (Send_email). And the photocopier component

only executes the Copy task according to the order from outside of the system. We suppose that

Scan, Send_email and Copy are observable events as well as Wait_process, Waitscan and

Waitcopy.

Then the pattern under investigation that defines the faulty behavior with respect to this office

system is shown in figure 5.4, denoted by Ω1. The faulty behavior predefined for this system is

that the occurrence of Scan is after the occurrence of Delete_file and there is no operation of

Create_file between these two events. In other words, the scanner cannot scan an empty file.

The events set of this pattern is the same as that of the whole system.

Tables 5.1, 5.2 and figures 5.5, 5.6 show the search space of the distributed pattern diagnos-

ability algorithm and that of the centralized one for two system examples.

• The system with only two components in figure 5.3, denoted by G1: the file processer and

the scanner, and the pattern Ω1 that is shown in figure 5.4.

• The system with three components in figure 5.3, denoted by G2: the file processer, the

scanner and the photocopier, and the pattern Ω1.

During the diagnosability checking procedure, in the distributed algorithm, we calculate the

number of states and the number of transitions of the complete pattern recognizer, which is pre-
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Figure 5.3: A distributed system composed of a file processer component (top), a scanner component
(middle) and a photocopier component (bottom).
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Figure 5.4: The pattern Ω1 for the system depicted in 5.3.

Table 5.2: Search space of pattern diagnosability checking for G2 and Ω1

Centralized algorithm Distributed algorithm
global pattern recognizer

states number: 44
transitions number: 136

complete pattern recognizer
states number: 17

transitions number: 33
global pattern verifier

states number: 198
transitions number: 809

the pattern verifier after global checking
states number: 24

transitions number: 41
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Figure 5.5: The search space of pattern recognition and pattern diagnosability for the system G1 and Ω1.
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Figure 5.6: The search space of pattern recognition and pattern diagnosability for the system G2 and Ω1 .

sented as pattern recognition in the figures. Correspondingly, in the centralized one, we calculate

the number of states and the number of transitions of the global pattern recognizer, which is called

pattern recognition in the figures. Furthermore, in the distributed one, we compute the number

of states and the number of transitions of the finally obtained pattern verifier after the global con-

sistency checking, which is called pattern diagnosability in the figures. Then in the centralized

one, we compute the number of states and the number of transitions of the global pattern verifier

that is called pattern diagnosability in the figures. In this way, we can clearly show the efficiency

improvement of the distributed algorithm compared to the centralized one, i.e., search space is

greatly reduced. We see that the search space is even much more reduced for the system G2. The

reason is that for G2, in the distributed framework, the pattern recognition can be completed in the

subsystem of two components: the file processer and the scanner. Then since the component of the

photocopier has no communication event, the original diagnosability information obtained from

the pattern verifier does not need global consistency checking considering that the system is com-
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Figure 5.7: The search space growth when adding simple independent components.

posed of three components and the photocopier component is independent without any connection

with other components. In other words, neither pattern recognition nor pattern diagnosability

checking requires any information of the photocopier component. While in the centralized frame-

work, for G2, we first synchronize the three components to get the global model and the global

pattern recognizer before the global pattern verifier construction. For these two systems, both the

centralized algorithm and the distributed one return some non diagnosability information, which

means that the pattern is not diagnosable in G1 and G2. Now we can say that if the system has

more independent components, i.e., components not connected to the subsystem where the pattern

is completely recognized, the distributed algorithm can hugely reduce the search space. Figure

5.7 shows the growth of states number and of transitions number in the global pattern recognizer,

the global pattern verifier, the distributed complete pattern recognizer and the distributed pattern

verifier when the system G1 is extended by adding more independent components, where the sys-

tem with components number 3 is actually G2 mentioned above. We can see that since the added

components are independent, then for distributed approach, the search space of complete pattern

recognizer (distributed PR) and of the distributed pattern verifier (distributed PV) never increase

while for centralized approach, the search spaces of the global pattern recognizer (global PR) and

of the global pattern verifier (global PV) dramatically increase (here we only consider the simplest
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Table 5.3: Search space of pattern diagnosability checking for G3 and Ω2

Centralized algorithm Distributed algorithm
global pattern recognizer

states number: 14
transitions number: 35

complete pattern recognizer
states number: 8

transitions number: 14
global pattern verifier

states number: 48
transitions number: 179

the pattern verifier after global checking
states number: 8

transitions number: 18

added components, each one with two events and two states like the photocopier component in

figure 5.3), which is consistent with the complexity analysis described in section 5.1.2.

Next we show the results of some other system examples. Consider the following systems and

patterns.

• The system composed of three components that are depicted in figure 4.1, here denoted by

G3.

• The system composed of three components, two of them are G1, G2 in figure 4.1 and another

one is G′
3 in figure 4.7, denoted by G4.

• The pattern depicted in figure 4.2, here denoted by Ω2

• The pattern depicted in figure 4.9, denoted by Ω3.

Then tables 5.3, 5.4, 5.5, and 5.6 show the search space of the centralized pattern diagnos-

ability algorithm and that of the distributed one for the systems G3, G4 with respect to the pattern

Ω2 and the systems G3, G4 with respect to Ω3 respectively. From these tables, we can see that

for all these cases, the search space of the distributed approach is significantly reduced both for

pattern recognition, i.e., global pattern recognizer vs. complete pattern recognizer, and for pattern

diagnosability, i.e., global pattern verifier vs. the final pattern verifier after global consistency

checking. And the pattern Ω2 is diagnosable in the system G3 because there is no globally con-

sistent critical path and the algorithm returns a diagnosable subsystem (G1, G2, G3), which is the

entire system. Then the pattern Ω2 is not diagnosable in G4 and Ω3 is not diagnosable both in G3

and G4 because in these three cases, there exists a set of globally consistent critical paths.

To show the efficiency of our method, we also compare the search space of the distributed

method through abstraction and reduction and that of the distributed one without abstraction and

reduction for three simple distributed systems, which are similar to the test case example except
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Table 5.4: Search space of pattern diagnosability checking for G4 and Ω2

Centralized algorithm Distributed algorithm
global pattern recognizer

states number: 20
transitions number: 50

complete pattern recognizer
states number: 8

transitions number: 14
global pattern verifier

states number: 101
transitions number: 349

the pattern verifier after global checking
states number: 12

transitions number: 28

Table 5.5: Search space of pattern diagnosability checking for G3 and Ω3

Centralized algorithm Distributed algorithm
global pattern recognizer

states number: 14
transitions number: 35

complete pattern recognizer
states number: 10

transitions number: 19
global pattern verifier

states number: 61
transitions number: 224

the pattern verifier after global checking
states number: 14

transitions number: 37

Table 5.6: Search space of pattern diagnosability checking for G4 and Ω3

Centralized algorithm Distributed algorithm
global pattern recognizer

states number: 20
transitions number: 50

complete pattern recognizer
states number: 10

transitions number: 19
global pattern verifier

states number: 114
transitions number: 378

the pattern verifier after global checking
states number: 16

transitions number: 39

87



CHAPTER 5. IMPLEMENTATION AND VALIDATION

Number of states

Systems

20

80

Distriubted
with abstraction
and reduction

Centralized

Distriubted
without  abstraction
and reduction

160

System1 System2 System3

Figure 5.8: The state space of two distributed algorithms and the centralized one.

Number of transitions

Systems

50

200

Distriubted
with abstraction
and reduction

Centralized

Distriubted
without  abstraction
and reduction

400

System1 System2 System3

Figure 5.9: The transition space of two distributed algorithms and the centralized one.

that all components are connected with each other. In figure 5.8 and figure 5.9, the white columns

represent the search space, the number of states and transitions, of our distributed algorithm with

abstraction and reduction, the pink ones show the search space of the normal distributed algo-

rithm, i.e., without abstraction and reduction, and the blue ones are the space of the centralized

algorithm. We can see that the abstraction and reduction can further reduce search space during

pattern diagnosability checking. The larger the system is, the more space that can be saved in our

abstracted algorithm.
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5.2.2 Results Discussion

In the centralized approach ([43]), all components are first synchronized to get the global model

and then the pattern recognizer of the global model is constructed before calculating the non-

optimized global pattern verifier as described in section 2.3.2.4. It is too expensive to apply the

centralized approach to real complex distributed systems because the size of the state space of

the global model risks an exponential growing with the number of system components. More

precisely, in the centralized approach, for the global pattern recognizer, the maximum number of

states is (|Q1| × |Q2| × ... × |Qn| × |QΩ|), where |Qi| is the number of states in the component

Gi and |QΩ| is the number of states in the pattern Ω, and the maximum number of transitions is

(|Q1|2×|Q2|2× ...×|Qn|2×|QΩ|2×|Σ|), where |Σ| is the number of events in the whole system.

Then for the global pattern verifier, the maximum number of states is (|Q1|2×|Q2|2×...×|Qn|2×
|QΩ|2) and the maximum number of transitions is (|Q1|4×|Q2|4×...×|Qn|4×|QΩ|4×|Σ|). Thus

in the worst case, the complexity is O(|Qi|4n × |QΩ|4 × |Σ|), where |Qi| is the number of states

in the component whose states set has the maximum number compared to all other components

in the system. Now consider our distributed method that avoids calculating global objects in the

following way.

1. First consider the pattern recognition. In the distributed approach, let Gk be the kth ob-

tained subsystem. We have G1 = Gi1 , where Gi1 is a component containing a significant

event that changes the pattern initial state, i.e., the initial subsystem, and Gk = RΩ
Gk−1‖Gik ,

where 1 < k ≤ n, Gik is the kth selected component for extending subsystem, and RΩ
Gk−1

is the diagnosability relative part of the (k− 1)th pattern recognizer. As analyzed in section

4.2.2, normally we have L(RΩ
Gk−1) ⊂ L(Gk−1) and |QRΩ

Gk−1
| < |QGk−1 | × |QΩ|, where

|QRΩ
Gk−1

| is the number of states in the diagnosability relative part of the (k − 1)th pat-

tern recognizer and |QGk−1 | is the number of states in the (k − 1)th obtained subsystem.

While for the centralized approach, to recognize pattern, the global model is constructed by

synchronizing all components G1‖...‖Gn. In other words, one major difference between

centralized approach and distributed approach is that for the latter, beginning from the ini-

tial subsystem, each time for subsystem extension, we only synchronize the diagnosability

relative part, which is actually a subpart of the current subsystem, with the next selected

component. While for the centralized one, we totally synchronize all components without

reduction. Suppose that in the distributed approach, the subsystem corresponding to the

complete recognizer is the mth obtained subsystem, denoted by Gm, then it is easy to de-
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duce that normally we have |QRGm | = |QGm | × |QΩ| ¿ |Q1| × |Q2| × ...× |Qn| × |QΩ|.
In other words, the subsystem corresponding to the complete recognizer is generally only a

small subpart of the global model.

2. To construct pattern verifier, we synchronize the reduced left instance with the reduced right

instance of the complete recognizer, which keeps all necessary and sufficient diagnosability

information but makes the search space considerably smaller compared to the classical way

adopted by the centralized approach, where the non-reduced left instance and non-reduced

right instance are synchronized. More precisely, let |QRc | denote the number of states in

the complete recognizer, |QRl
c
| and |QRr

c
| denote the number of states in the reduced left

instance and that in the reduced right instance of the complete recognizer respectively. Nor-

mally we have |QRl
c
| < |QRc | < |QRG

| and |QRr
c
| < |QRc | < |QRG

|, where |QRG
|

denotes the number of states in the global pattern recognizer. Thus we can get that normally

the number of states in our initial pattern verifier obtained from the complete recognizer is

much smaller than that in the global pattern verifier: |QRl
c
| × |QRr

c
| ¿ |QRG

| × |QRG
|.

3. If the pattern concerned components do not include all components, i.e., {Gi1 , ...Gim} ⊂
{G1, ...Gn}, and there are other connected components, we first construct the abstracted

pattern verifier and then retain only partial critical paths every time before synchronizing

with the connected abstracted local twin checker. What we are interested in is the existence

of the globally consistent partial critical paths. Let |QV a | denote the number of states in

the abstracted and reduced pattern verifier and let |QCa
i
| denote the number of states in the

abstracted local twin checker for the component Gi. Then normally we have |QCa
i
| < |QCi |

and |QV a | < |QV |, where |QCi | and |QV | denote the number of states in the non abstracted

local twin checker and in the non abstracted pattern verifier. Even in the case where the

pattern is not diagnosable and all the components are connected with each other, the space

that we obtain in the end is much smaller than the space of the global pattern verifier.

In this way, what we finally obtain is a reasonably small and necessary portion of the global

pattern verifier, where in some cases there is even no information about those components that are

completely not connected to the subsystem corresponding to the complete recognizer. The results

of the test cases mentioned above are consistent with our analysis here.

We have shown that normally the complexity of the distributed pattern diagnosability algo-

rithm is much smaller than that of the centralized one. Then what will happen in the worst case

and what kind of system can be in the worst case? From the procedure of the distributed algorithm,
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we can deduce that any system satisfying all the following conditions is in the worst case and for

such a system, the search space of the distributed algorithm cannot be reduced compared to that

of the centralized one.

• From the initial subsystem, in each pattern recognizer except the complete recognizer, every

path is a diagnosability relative path. Only in this case, to incrementally recognize the

pattern, the current subsystem cannot be reduced to a smaller one before synchronizing

with the next selected component.

• Then in the complete recognizer, every path contains at least one cycle with final states and

with at least one observable event for all involved components and also contains at least one

cycle without final states but with at least one observable event for all involved components.

In this case, the left instance and the right instance of the complete recognizer cannot be

reduced to be smaller ones, before being synchronized to obtain the pattern verifier.

• If the subsystem, denoted by Gm, that corresponds to the complete recognizer does not con-

tain all components in the system, then the system should furthermore satisfy the following

conditions.

1. All components outside Gm should be connected to Gm.

2. Each path of the pattern verifier constructed from the complete recognizer should be a

partial critical path. And in each path, observable events are only contained in cycles

and there is only one observable event for each involved component in each cycle. In

this case, the abstracted pattern verifier has the same space as the pattern verifier.

3. In the local twin checker of each component outside of Gm, for each path, observable

events are only contained in cycles and there is only one observable event in each

cycle. Thus the abstracted local twin checker has the same space as its corresponding

local twin checker.

4. During the global consistency checking, each time after synchronizing the set of partial

critical paths with the connected abstracted local twin checker, in the new obtained

pattern verifier, each path is a partial critical path for the extended subsystem. In this

case, our reduced pattern verifier containing only partial critical paths has the same

space as the non reduced pattern verifier.

Only for systems satisfying all above conditions, the search space obtained from the distributed

algorithm is not smaller than that obtained from the centralized one. However, the real systems in
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our daily life that satisfy all these conditions are really rare. So in practice, we can say that the

system in the worst case could hardly exist. In other words, our distributed framework makes real

sense in search space reduction for pattern diagnosability verification. Furthermore, if the system

has more observable events, then the distributed algorithm can reduce more search space due to

abstraction process. And if the system has more independent components, i.e., components not

connected to the subsystem where the pattern is completely recognized, the distributed algorithm

can hugely reduce the search space.

However, in our distributed algorithm, when the system is not diagnosable, the returned non

diagnosability information is normally different from that of the centralized one. For example,

the centralized algorithm returns all observable events in global critical paths while the distributed

algorithm returns the communication events in global critical paths and the information about the

existence of observable events for components in the consistent ambiguous state cycles instead of

the precise observable events. Thus on the one hand, information returned in centralized case is

more precise in terms of observable events while in distributed case, the precise information about

observable events is abstracted. On the other hand, the information returned in distributed case is

more precise in terms of communication events, which are hidden in centralized case before global

pattern verifier is constructed. But what is important when a pattern is found not diagnosable is to

try to make it diagnosable and this is achieved by increasing observations, i.e., by adding sensors.

Thus it is more important to have the information about communication events than that about

observable events if we suppose that unobservable communication events can become observable

after adding sensors.
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Chapter 6

Distributed diagnosability for DES with

autonomous components

In the previous chapters, we have the implicit assumption that each observable event in any com-

ponent is globally observed, which means that there is still some global knowledge available and

thus at the price of privacy. We propose here a new distributed framework for checking diagnos-

ability of DES with autonomous components in terms of observation, where any component can

only observe its own observable events and thus keeps its internal structure private.

There are several objectives of this chapter. The first one is to describe how to model sys-

tems with autonomous components and then to define communication compatibility of trajecto-

ries, which is identical to reconstructibility in trace theory. The second one is to propose the new

definition of joint diagnosability for the system with autonomous components. Then we discuss

about the undecidability of joint diagnosability verification with the assumption that communi-

cation events are unobservable. Based on this, we provide a new algorithm to test a sufficient

condition of joint diagnosability. Afterwards, we show the decidability of joint diagnosability

when communication events are observable. The third one consists in the discussion about the ef-

ficiency improvement by adopting a reasonable heuristic to choose the next component for further

exploitation in the algorithm when the fault is jointly diagnosable in the system.

6.1 Preliminaries

In this section, we first describe how to model a DES with autonomous components and then give

some important concepts.
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Similar to chapter 3, we consider a distributed DES composed of a set of autonomous compo-

nents {G1, G2,..., Gn} that communicate with each other by communication events. Each com-

ponent can whereas only observe its own observable events and thus can keep its internal structure

private. Such a system is modeled by a set of FSMs, each one representing the local model of one

component.

Definition 30 (Local model of an autonomous component). The local model of the autonomous

component Gi is a FSM, denoted by Gi = (Qi, Σi, δi, q
0
i ), where

• Qi is the set of states;

• Σi is the set of events;

• δi ⊆ Qi × Σi ×Qi is the set of transitions;

• q0
i is the initial state.

The set of events Σi is partitioned into four subsets: Σio , the set of locally observable events,

that can be observed only by its own component Gi; Σiu , the set of unobservable normal events;

Σif , the set of unobservable fault events; and Σic , the set of unobservable communication events

shared by at least one other component, which are the only shared events between components.

This definition is similar to definition 13. The only difference is that in the local model of an

autonomous component, each observable event is locally observed, which means that it can only

be observed by its own component when it occurs. While in definition 13, each observable event

in any component can be observed by all components, i.e., globally observed. Figure 6.1 depicts

a system example with three autonomous components: G1 (top), G2 (middle) and G3 (bottom),

where the events Oi denote locally observable events, the events Fi denote unobservable fault

events, the events Ui denote unobservable normal events and the events Ci denote unobservable

communication events.

Similar to the system described in chapter 3, for a distributed system with autonomous com-

ponents, the global model of the entire system is also implicitly defined as the synchronized FSM

of all component models based on their shared events, i.e., communication events. However, the

global model will not be calculated in this chapter considering that the global knowledge of the

whole system will not be required during our joint diagnosability analysis (see details in the next

sections). And we also adopt assumption 3 that the projection of global language on each local

model is observable live, i.e., there is no unobservable cycle.
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Figure 6.1: A system with three autonomous components: G1 (top), G2 (middle) and G3 (bottom).

Next, we define the relative set with respect to a given component Gi, which contains all

components neighboring to Gi directly or indirectly. In other words, any component in the relative

set with respect to Gi either connects to Gi through common communication events or connects

to Gi through some other components.

Definition 31 (Relative set). Let Gi be an autonomous component in a system G, the Gi relative

set, denoted by <Gi , is the set of Gi relative components, where relative relation over the set of

components is defined as follows:

1. For a component Gj , if Gj shares at least one event with Gi, Gj is a Gi relative component,

Gi ↔ Gj;

2. The relative relation is the reflexive and transitive closure of the relation defined by point 1:

Gi is a Gi relative component, denoted by Gi ↔ Gi;

given a component Gj 6= Gi, if ∃Gm such that Gm 6= Gi ∧ Gm 6= Gj and if Gi ↔
Gm ∧Gm ↔ Gj , then Gi ↔ Gj .

Since the relation defined by point 1 of definition 31 is symmetric, with point 2, the relative relation

is actually an equivalence relation.
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Next we rephrase the definition of reconstructibility and quasi-reconstructibility introduced in

[25] and [51] in our context. Here we denote PΣ(p) as the projection of trajectory p on the set of

events Σ.

Definition 32 (Reconstructibility). Given a trajectory in a subsystem GS , after projecting on

each subpart (component or subsystem) of GS , the obtained set of trajectories is said to be recon-

structible with respect to GS .

Definition 33 (Quasi-reconstructibility). Given a set of trajectories in a set of components (sub-

systems), i.e., p1 in Gk1 ,..., pm in Gkm , if ∀(ki, kj), ki 6= kj , we have PΣc(pi) = PΣc(pj), where

Σc = Σki ∩ Σkj , i.e., Σc is the set of common events between Gki and Gkj , then we say that

this set of trajectories p1, ..., pm is quasi-reconstructible with respect to this corresponding set of

components (subsystems), here Gki could be a component or a subsystem composed of several

components.

It has been proved that quasi-reconstructibility is a necessary but not sufficient condition

of reconstructibility. In other words, a set of trajectories being reconstructible is also quasi-

reconstructible, while the inverse is not necessarily true. However, if in definition 33, this set of tra-

jectories involves only two components (subsystems), Gki and Gkj , then quasi-reconstructibility

is both sufficient and necessary condition of reconstructibility. Next for the sake of consistency

with our framework and notations, we define in a recursive way the concept of communication

compatibility, which is actually identical to reconstructibility.

Definition 34 (Communication compatibility).

• Two trajectories p1 and p2 in different components (subsystems) are communication com-

patible if they are quasi-reconstructible with respect to these two components (subsystems).

• A set of trajectories p1, ..., pn in different components (subsystems) are communication com-

patible if there exists a synchronized trajectory p = ‖n−1
i=1 pi that is communication compati-

ble with pn.

Lemma 10 In a system G, given two subsystems GS and G′
S , if ΣSc ∩ΣS′c = ∅, then ∀(s, s′), s ∈

L(GS), s′ ∈ L(G′
S), s is communication compatible with s′.

Lemma 10 means that if there is no common communication event between two subsystems,

then any trajectory in one subsystem is communication compatible with any one in the other

subsystem.
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6.2 The distributed framework for joint diagnosability verification

Since classical diagnosability definition requires global observations, then it is not suitable for sys-

tems with autonomous components. Now we define joint diagnosability that only requires local

observations without considering their global occurrence order. Then, its undecidable and decid-

able cases are discussed separately. With the unobservability of communication events, we prove

the undecidability of joint diagnosability before giving an algorithm to test its sufficient condition.

While when communication events are observable, joint diagnosability becomes decidable and

thus we propose a simple algorithm to verify it.

6.2.1 Joint diagnosability

First we recall the classical diagnosability definition described in section 2.3.2. A fault f is diag-

nosable in a system G iff its occurrence is determinable when enough events are observed from

the system after the occurrence of f . In other words, if f is diagnosable in G, then for each tra-

jectory sf that ends with f in G, for each t that is an extension of sf with sufficient observable

events, every trajectory p in G that is observation equivalent to sf .t should contain in it f . Here

the observable events are assumed to be globally observed. The diagnosability checking consists

in searching for critical pairs that witness non-diagnosability, i.e., pairs of trajectories p and p′
satisfying three conditions: 1) p contains f and p′ does not; 2) p has arbitrarily long observations

after the occurrence of f ; 3) P (p) = P (p′). Unlike the case where the observable events are

globally observed, autonomous components imply that no one has the global knowledge of the

whole system and each component is autonomous in terms of observability. Definition 5 can be

rephrased to be suitable for systems with autonomous components, which we called joint diagnos-

ability, inspired from joint observability introduced in [68]. A fault f is jointly diagnosable in a

system G iff for each trajectory sf ending with the fault f , after any extension t with enough local

observations of all components, we can be sure that f has effectively occurred. Let Pi(p) denote

the projection of the trajectory p to the set of locally observable events of the component Gi. We

define the joint diagnosability as follows.

Definition 35 (Joint diagnosability). A fault f is jointly diagnosable in a system G composed of

a set of autonomous components {G1, ...Gn}, iff

∃k ∈ N,∀sf ∈ L(G), ∀t ∈ L(G)\sf , (∀i ∈ {1, ..., n}, |Pi(t)| ≥ k)⇒
(∀p ∈ L(G) (∀i ∈ {1, ..., n}, Pi(p) = Pi(sf .t)) ⇒ f ∈ p).
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This definition means that for each trajectory sf in G, for each t that is an extension of sf with

enough locally observable events in all components, every trajectory p in G that is local observa-

tion equivalent to sf .t for each component should contain in it f . In a system with autonomous

components, we call a pair of trajectories p and p′ satisfying the following three conditions an

indeterminate pair, which is similar to a critical pair in a system with global observations:

1. p contains f and p′ does not;

2. p has arbitrarily long local observations of all components after the occurrence of f ;

3. ∀i ∈ {1, ..., n}, Pi(p) = Pi(p′).

The main difference between a critical pair and an indeterminate pair is that for a critical pair, the

two trajectories have the same sufficient global observations (the same global occurrence order),

while the two trajectories of an indeterminate pair have the same sufficient local observations in

each component without considering their global occurrence order.

Now we have the following fundamental theorem.

Theorem 6 Given a system G with autonomous components, a fault f is jointly diagnosable in G

iff there is no indeterminate pair in G.

Proof :

(⇒) Suppose that f is jointly diagnosable in a system G and there exists an indeterminate pair p

and p′ with only p containing the fault f . Now let sf denote the subpart of p that is ending with f

and let t denote the rest part of p, i.e., t = p\sf . Since p and p′ are an indeterminate pair, from its

definition, we have that p has arbitrarily long local observations for each component Gi after the

occurrence of f , and that for each component Gi, p and p′ have the same local observations, i.e.,

Pi(p) = Pi(p′). However, p′ does not contain f . This contradicts the definition of joint diagnos-

ability, where any trajectory with the same enough local observations in each component as sf .t

should also contain f . So f is not jointly diagnosable in G, which contradicts the assumption.

(⇐) Now suppose that there is no indeterminate pair in G and f is not jointly diagnosable in G.

From the non joint diagnosability of f , from definition 35, we know that for all k ∈ N , there exists

at least one trajectory containing the fault f , denoted by p = sf .t, where t has at least k observa-

tions in each component, such that there exists at least one another trajectory p′ in G without the

occurrence of the fault but with the same local observations as p in each component. By choosing

k greater than the maximum number of states of each component, which implies the presence of
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observable cycles in p and p′ in each component, thus p and p′ can be prolonged arbitrarily long. It

follows that p and p′ are an indeterminate pair since they satisfy three conditions of the definition

of an indeterminate pair, which contradicts the assumption that there is no indeterminate pair.

Now we know that joint diagnosability verification consists in checking the existence of inde-

terminate pairs in the system. First recall that the basic idea of a local twin plant is to build a FSM

that compares every pair of local trajectories to search for the pairs with the same enough local

observations, but exactly one of them contains a fault, i.e., local critical pairs. For autonomous

components, we still adopt local twin plant and local twin checker construction defined in section

3.2. In other words, we first construct the local pre-diagnoser for the component Gf . Then its

reduced left instance is obtained by keeping the paths with at least one cycle containing fault state

and then by renaming the communication events by adding the prefix L. Its reduced right instance

is the one with paths containing at least one cycle without fault state and then its communication

events renamed by adding the prefix R. The optimized local twin plant is constructed by synchro-

nizing the reduced left instance and the reduced right instance based on its set of locally observable

events.

Now consider our example. Figure 6.2 depicts the local pre-diagnoser D1 for the component

G1 (top first), the reduced left instance of the local pre-diagnoser Dl
1 (top second) with the reduced

right instance of the local pre-diagnoser Dr
1 (top third) and the local twin plant for the component

G1 (bottom). Now in a system with autonomous components, we define a path in the local twin

plant that contains an ambiguous state cycle with at least one locally observable event as local

critical path, which corresponds to a pair of local trajectories with the same sufficient local ob-

servations but exactly one of them contains the occurrence of the fault. In figure 6.2, the gray

nodes represent ambiguous states with respect to F1, which form ambiguous state cycles. So the

local twin plant depicted in the bottom contains an infinite number of local critical paths since

they contain an infinite number of ambiguous state cycles with one locally observable event. Note

that local critical paths contain original diagnosability information and can be obtained only in the

local twin plant of the component Gf .

6.2.2 Diagnosability information propagation

The existence of a local critical path in the local twin plant of the component Gf does not imply

that f is not jointly diagnosable because its corresponding pair of trajectories in the system is not

necessarily an indeterminate pair even though they are indistinguishable in Gf . In other words,
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Figure 6.2: The local pre-diagnoser D1 (top first), its left instance Dl
1 (top second), its right instance Dr

1

(top third) and the local twin plant (bottom) of component G1.
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there may exist another component, suppose Gi, whose cooperation can possibly distinguish this

pair when the local observations of their subpart in Gi are different. However, since only the com-

ponent Gf contains the fault information, the projection of any indeterminate pair on Gf must

correspond to a local critical path in the local twin plant of Gf . Thus the joint diagnosability ver-

ification consists in checking the existence of local critical paths that correspond to indeterminate

pairs.

Definition 34 refers to communication compatibility of trajectories. Now we define commu-

nication compatibility of paths in local twin plant or in local twin checkers. The difference is that

each such path corresponds to a pair of local trajectories with the same local observations.

Definition 36 (Communication compatible path) A set of paths in a set of local twin plant and

local twin checkers are communication compatible if their corresponding set of left trajectories

are communication compatible and so are the corresponding set of their right trajectories.

For example, figure 6.3 presents a part of the local twin checkers C2, C3 of the components

G2, G3, respectively. The path (Y 0 L:C1−−−→ Y 1 O3−−→ Y 2 O4−−→ Y 3 L:C3−−−→ Y 4 R:C3−−−→ Y 2) of C2

and the path (Z0 O6−−→ Z1 O6−−→ Z2 L:C3−−−→ Z3 R:C3−−−→ Z4 O6−−→ Z2) of C3 depicted here are

denoted by %2 and %3. The sequence of local communication events in the corresponding left

trajectory of %2 in G2 is {C1, C3∗} and that in the left trajectory of %3 in G3 is {C3∗}. Note that

C1 is not contained in G3, then from definition 33 and definition 34, these two trajectories are

communication compatible. In the same way, the corresponding right trajectory of %2 in G2 and

that of %3 in G3 are also communication compatible. From definition 33 and definition 36, %2 is

communication compatible with %3.

Definition 37 (Compatibility of local critical path) A local critical path is compatible in a sub-

system GS , where Gf ∈ GS , if there does exist a path in the local twin checker of each component

in this subsystem except Gf such that this set of paths, including this local critical path, are com-

munication compatible.

If %f is compatible in GS , this set of corresponding local paths in the local twin plant and in

the local twin checkers of all components in GS that are communication compatible is called

a compatible path set for %f in GS . There may exist several compatible path sets for a local

critical path in a given subsystem. Each path in a compatible path set has at least one cycle. If a

local critical path is compatible in the whole system G, then it is said globally compatible. From

definition 31 and lemma 10, it is easy to prove that a local critical path compatible in <Gf
is
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Figure 6.3: Part of local twin checker C2 of G2 (top) and part of local twin checker C3 of G3 (bottom).
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globally compatible. From figure 6.2 and figure 6.3, the local critical path (X0 L:C1−−−→ X1 O1−−→
X2 R:C2−−−→ X3 L:C3−−−→ X4 R:C3−−−→ X5 O2−−→ X6 L:C3−−−→ X4 R:C3−−−→ X5 O2−−→ X6 R:C3−−−→ X9 L:C3−−−→
X5) in the local twin plant T1, denoted by %f and presented in figure 6.2, is communication

compatible with %2 but not with %3, where %2 and %3 are described above and shown in figure

6.3. Thus the set {%f , %2, %3} is not a compatible path set for %f in the subsystem {G1, G2, G3}.

Actually here the path %f contains two elementary cycles that give birth to an infinite number of

paths, due to the way these two cycles can be interleaved. In this example, the communication

left (right) communication events for the two elementary cycles are the same: L:C3 (R:C3), thus

we can conclude that there is no compatible path set for any of the infinite number local critical

paths. Considering the case where there are embedded cycles whose elementary ones have not

the same left (right) communication events, we cannot analyze communication compatibility by

enumerating paths since there could be infinite number of paths with infinite number of different

sequences of communication events.

Lemma 11 In a system G with autonomous components, there exists a local critical path that is

globally compatible iff there exists an indeterminate pair.

Proof :

(⇒) Suppose there exists a local critical path %f that is globally compatible. Since %f is globally

compatible, from definition 37, there must exist at least one compatible path set for %f in the

whole system. Due to communication compatibility of a compatible path set and %f being a local

critical path, it can be deduced that this compatible path set, including %f , corresponds to a pair of

trajectories in the whole system such that they have the same arbitrarily long local observations for

each component but exactly one of them contains the fault f , which is actually an indeterminate

pair. So there does exist an indeterminate pair

(⇐) Now suppose that there exists an indeterminate pair, denoted by p and p′. The pair p and p′
being an indeterminate pair first implies that it corresponds to a local critical path in the local twin

plant of Gf , denoted by %f , and then implies that ∀i ∈ {1, ...n}, we have Pi(p) = Pi(p′), which

forms a path in the local twin checkers of all other components except Gf . Furthermore, since p

and p′ are global trajectories in the whole system, their corresponding paths in the local twin plant

and in other local twin checkers must be reconstructible and thus communication compatible,

which constitute a compatible path set for %f in the whole system. So from definition 37, %f is

globally compatible.
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Lemma 11 with its proof implies the equality between a local critical path that is globally

compatible and an indeterminate pair. Then from theorem 6 and lemma 11, the major result of this

chapter can be obtained as follows.

Theorem 7 Given a system G with autonomous components, a fault f is jointly diagnosable in G

iff there is no local critical path that is globally compatible.

6.2.3 Undecidable case of joint diagnosability

From theorem 7, checking joint diagnosability is to check the existence of local critical path that is

globally compatible. Next, we discuss about whether it is decidable or not. To be self-contained,

first, we recall joint observability defined in [68].

Definition 38 (Joint observability) Let L be a regular language over Σ that describes all normal

behaviors and fault behaviors of a system and let K be another regular language describing the

normal behaviors of the system, so we have K ⊆ L. Given Σio ⊆ Σ, i = 1, ..., k, then K is jointly

observable with respect to L and Σi1 , ...,Σik , if the following condition holds:

∀ρ ∈ K, ρ′ ∈ L−K, ∃i = 1, ...k, PΣio
(ρ) = PΣio

(ρ′)

Joint observability of a system means that there is no two system behaviors such that only one of

them is fault behavior but they have the same observations to all k observers.

Then the undecidability of joint observability with at least two observers is proved by reducing

Post’s Correspondence Problem (PCP) to an observation problem. Now we briefly describe the

outline of the proof with two observers [68].

• PCP: Given a finite alphabet Σ and two sets of words v1, v2, ..., vk and z1, z2, ..., zk over Σ,

then a solution to PCP is a sequence of indices (im)1≤m≤n with n ≥ 1 and 1 ≤ im ≤ k for

all m such that vi1vi2 ...vin = zi1zi2 ...zin .

• Now let Σ′ = {a1, ...ak} be a set of new letters, not in Σ. Then consider the language L over

Σ∪Σ′, defined by the regular expression: good(v1a1+...+vkak)++bad(z1a1+...+zkak)+,

where Σ+ denotes the set of all finite words over Σ except ε and all words in L that start

with good constitute the normal behaviors K.
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• If there is a solution for the above PCP, i.e., there exist indices i1, ..in ∈ {1...k}, n ≥ 1,

such that vi1vi2 ...vin = zi1zi2 ...zin , then the fault is not jointly observable. The reason is

that in this case, we have a pair of words ρ, ρ′ such that ρ = goodvi1ai1vi2ai2 ...vinain and

ρ′ = badzi1ai1zi2ai2 ...zinain . Thus both ρ, ρ′ ∈ L with ρ ∈ K, ρ′ /∈ K, and ρ, ρ′ have the

same observations to both Σ and Σ′, which violates joint observability.

• On the other side, if the fault is not jointly observable, there is at least one pair of words

violating joint observability, denoted by ρ and ρ′. Since only one of them is normal behavior,

suppose ρ, then ρ must be of the form goodvi1ai1vi2ai2 ...vinain and ρ′ must be of the form

badzj1aj1zj2aj2 ...zjmajm . Furthermore, we know that ρ and ρ′ have the same observations

both for Σ and Σ′. So we have ai1ai2 ...ain = aj1aj2 ...ajm , which means that m = n, i1 =

j1, i2 = j2, ..., in = jn. And then we also get vi1vi2 ...vin = zi1zi2 ...zin , which means that

there does exist a solution for the above PCP.

Now we show how to adapt the system used in the above proof to make it suitable in our

framework. Consider a system composed of two components as follows, where communication

events are unobservable.

• Component C1: (q10, good, q11), where q10 is the initial state of C1 and good is an un-

observable normal event; (q10, bad, q12), where bad denotes an unobservable fault event;

(q11, v1, q13), ..., (q11, vk, q1k+2), where vi, i ∈ {1...k} denotes a sequence of observable

events; (q13, c1, q12k+3), ..., (q1k+2, ck, q12k+3), where ci, i ∈ {1...k} is a communication

event; (q12k+3, c, q11), where c is a communication event; (q12, z1, q1k+3), ..., (q12, zk, q12k+2

), where zi, i ∈ {1...k} is a sequence of observable events; (q1k+3, c1, q12k+4), ..., (q12k+2, ck,

q12k+4); (q12k+4, c, q12).

• Component C2: (q20, c1, q21), ...(q20, ck, q2k), where q20 is the initial state of C2; (q21, a1,

q2k+1), ..., (q2k, ak, q2k+1), where ai, i ∈ {1...k} denotes an observable event; (q2k+1, c, q20).

The above system satisfies the system in the proof of [68] as well as all assumptions in our frame-

work. From definition 35, we know that joint diagnosability is violated iff it exists two infinite

trajectories, one with the fault and the other without the fault, and both give the same sufficient ob-

servations for each component (observer). So joint diagnosability checking boils down to checking

the existence of an infinite sequence i1...in... such that vi1 ...vin .... = zi1 ...zin ..., which is actually

infinite PCP.
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Figure 6.4: A system with two autonomous components G1 (top) and G2 (bottom).

For now we know that there are two major differences between joint diagnosability in our

framework and joint observability in [68]. One is that the former assumes that local observers are

attached to local components that are synchronized by common communication events. The other

one is that joint diagnosability consists in separating infinite trajectories while joint observability

is to separate finite ones. Then for joint diagnosability checking, if we adopt assumption 1, i.e.,

unobservability of communication events, then joint diagnosability checking boils down to infinite

PCP, which is also proved to be undecidable [39].

To be more clear about undecidability of joint diagnosability with communication events being

unobservable, for the sake of simplicity, we give a simple proof based on finite PCP [81].

Theorem 8 Given a system with autonomous components where communication events are unob-

servable, then checking joint diagnosability is undecidable.

Proof :

To prove this theorem, consider the example depicted in figure 6.4, where the system is composed

of two components G1 and G2. In G1, each one of V i, i ∈ {1, ..., k} and each one of Zi, i ∈
{1, ..., k} denotes a sequence of observable events, C1, ..., Ck are communication events, F de-

notes a fault event and O1 is an observable event. In G2, each one of Ai, i ∈ {1, ..., k} denotes an

observable event, C1, ..., Ck are communication events and O2 is an observable event. Then the

observations in G1 can be described as V i1V i2...V inO1∗ without fault or Zi1Zi2...ZinO1∗ with
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fault, where ∀ij , j ∈ {1, ..., n}, ij ∈ {1, ..., k}. In G2, the observations are Ai1Ai2...AinO2∗.

If we do not observe O1, we can be sure that the fault has not occurred. However, if we do

observe O1, then the local observations are w.O1∗ for G1 and Ai1Ai2...AinO2∗ for G2, where

w = V i1V i2...V in when there is no fault or w = Zi1Zi2...Zin when there is a fault. Clearly, if

PCP has a solution, i.e., ∃(im)1≤m≤n such that V i1V i2...V in = Zi1Zi2...Zin, we have two tra-

jectories p and p′ such that the observations of p in G1 are V i1V i2...V inO1∗, which is a trajectory

without fault, while the observations of p′ in G1 are Zi1Zi2...ZinO1∗, which is a trajectory with

a fault. And both p and p′ have the same observations for G2, i.e., Ai1Ai2...AinO2∗. Thus we get

that p and p′ have the same observations for both G1 and G2, i.e., V i1V i2...V inO1∗=Zi1Zi2...Zin

O1∗ for G1 and Ai1Ai2...AinO2∗ for G2, then the fault is not jointly diagnosable.

On the other hand, if the fault is not jointly diagnosable, then we have at least one indeterminate

pair, denoted by p and p′ such that the projection of p on G1 is Ci1V i1Ci2V i2...CinV inO1∗,

on G2 is Ai1Ci1Ai2Ci2...AinCinO2∗ and that of p′ on G1 is Cj1Zj1Cj2Zj2...CjmZjmFO1∗

and on G2 is Aj1Cj1Aj2Cj2...AjmCjmO2∗. From the fact that p and p′ have the same ob-

servations for G2, we get Ai1Ai2...AinO2∗ = Aj1Aj2...AjmO2∗ and thus we have m = n

and i1 = j1, ..., in = jn. And then from the same observations of p and p′ on G1, we get

V i1V i2...V inO1∗ = Zi1Zi2...ZinO1∗, i.e., V i1V i2...V in = Zi1Zi2...Zin, which means that

there is a solution for PCP. Since PCP is undecidable, then checking joint diagnosability is also

undecidable.

6.2.3.1 Algorithm to test a sufficient condition of joint diagnosability

From theorem 7, we know that joint diagnosability verification consists in checking the exis-

tence of globally compatible local critical paths, i.e., the existence of compatible path set in the

whole system verifies non joint diagnosability. On the other hand, from theorem 8, we know

that checking joint diagnosability with assumption of communication events being unobservable

is undecidable. Next, we provide an algorithm to test a sufficient but not necessary condition

of joint diagnosability. From definition 36 and definition 37, we know that to check the global

compatibility of local critical paths, at least two points should be taken into account.

• The communication compatibility of left trajectories of paths in local twin plant and local

twin checkers, shortly called left communication compatibility checking in the following.

• The communication compatibility of right trajectories of paths in local twin plant and local

twin checkers, shortly called right communication compatibility checking in the following.
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Algorithm 6 presents the procedure of our proposed algorithm to verify a sufficient condition

of joint diagnosability. As shown in the pseudo-code, algorithm 6 performs as follows. Given the

input as the set of component models, the fault f that may occur in the component Gf , we initialize

the parameters as empty, i.e., GS , the subsystem for the left communication compatibility check-

ing, G′
S , the subsystem for the right communication compatibility checking. The abstracted local

twin plant (ALTP) and abstracted local twin checker (ALTC) are reused here (see definition 20 and

definition 21). The procedure of the algorithm can be separated by two parts: left communication

compatibility checking(line 3-13) and right communication compatibility checking (15-26). We

describe these two parts as follows.

• Left communication compatibility checking begins with the ALTP construction of Gf , the

subsystem GS being now Gf (line 3-4). When T l
f is not empty and DirectCC(G, GS)

is not empty (line 5), where any path of T l
f corresponds to the set of paths in the ALTP

and ALTC that are left communication compatible in the subsystem GS , among which the

path in the ALTP containing ambiguous state cycle, and DirectCC(G,GS) is the set of

directly connected components to the subsystem GS , the algorithm repeatedly performs the

following steps to check left communication compatibility in an extended subsystem.

1. Select one directed connected component Gi to the subsystem GS , and then construct

its ALTC, Ci (line 6-7).

2. Synchronize T l
f with Ci, based on the set of common left communication events of

GS and Gi, which is to check left communication compatibility in the subsystem

composed of GS and Gi (line 8). Since the set of synchronized events is the set of

common left communication events, then the set of non-synchronized right communi-

cation events are distinguished by the prefix of component ID. For example, (R:C2)

in ALTC of G2 is renamed as (G2:R:C2). The prefix of component ID is also useful

in the next right communication compatibility checking.

3. The subsystem is now updated by adding Gi and then in the newly synchronized FSM,

we only retain paths with cycles containing observable events for all components in

GS (line 9-10).

Then if T l
f is empty, this means that there is no set of paths that are left communication

compatible and thus non existence of local critical path that is globally compatible. So joint

diagnosability information is returned. Otherwise, if T l
f is not empty, then we proceed to
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check right communication compatibility of the corresponding paths in T l
f that are already

verified to be left communication compatible in the whole system.

• Right communication compatibility checking begins with the function AbstractRight(Gf ,

T l
f ), which is to perform delay closure with respect to the set of right communication event

and the observable events of Gf , i.e., AbstractRight(Gf , T l
f ) = {Σd

(T l
f ), where Σd =

{Gf :R:C1,..., Gf :R:Cn, obsf}, (Gf :R:Ci) means any right communication event prefixed

with Gf and obsf means the observable events of Gf since in ALTP and ALTC we only

have obsi to represent observations from Gi. And then the subsystem G′
S is assigned as

Gf (line 15-16). Then when T r
f is not empty and GS 6= G′

S (line 17), where any path of

T r
f corresponds to the set of paths in the ALTP and ALTCs that are right communication

compatible in the subsystem G′
S , we repeatedly perform the following steps to check their

right communication compatibility in a subsystem that is extended from G′
S .

1. Select a directed connected component to G′
S from GS , where GS is sufficient for this

selection because any component outside GS is not in the relative set of Gf (line 18).

2. Perform the function AbstractRight(Gi, T l
f ), which is the same as AbstractRight(Gf ,

T l
f ) described as above except that the component is Gi instead of Gf , before syn-

chronizing with T r
f based on the set of common right communication events of the

subsystem G′
S and Gi (line 19). Since the synchronized events are the common right

communication events, before this synchronization, we rename the right communi-

cation events by removing the prefix of component ID, e.g. (Gf :R:C1) renamed as

(R:C1).

3. The subsystem G′
S is updated by adding Gi and then in the newly obtained FSM T r

f

after synchronization, we only retain paths with cycles containing observable events

for all components in G′
S (line 20-21).

If T r
f is empty, then there is no set of paths corresponding to the set of left communication

compatible paths retained in T l
f that are right communication compatible and thus there is no

globally compatible local critical path. In this case, the algorithm returns joint diagnosability

information (23-24). Otherwise, if T r
f is not empty, then we cannot determine whether the

fault is jointly diagnosable or not. Then the algorithm returns the information about the

indetermination of joint diagnosability (line 25-26). In other words, empty T l
f or empty T r

f

is a sufficient condition but not necessary condition of joint diagnosability.
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Lemma 12 In algorithm 6, if T l
f or T r

f is empty, then the fault is jointly diagnosable, but the

reverse is not true.

Proof :

(⇒) First suppose that T l
f or T r

f is empty and that the fault is not jointly diagnosable. From non

joint diagnosability and from theorem 7, it follows that there exists at least one globally compatible

local critical path, i.e., a compatible path set for a local critical path, this set denoted by κ. From

the procedure of algorithm 6, we know that after left communication compatibility checking, since

communication compatibility of the paths set κ implies both left communication compatibility and

right communication compatibility (definition 36), then κ must correspond to a path both in T l
f

and in T r
f . So the existence of globally compatible local critical paths implies that both T l

f and T r
f

are not empty and thus the assumption is contradicted.

(:) Now suppose that in system G, in the ALTP or ALTC of each component Gi, there exists two

paths ρ1
i and ρ2

i such that after left communication compatibility checking, one path in T l
f corre-

sponds to the set of paths ρ1
1, ..., ρ

1
n−1, ρ

2
n in ALTP and ALTCs and another path in T l

f corresponds

to the set of paths ρ2
1, ..., ρ

2
n−1, ρ

1
n. Then during right communication compatibility checking, after

the function AbstractRight for all components, we will keep the corresponding part of the paths

ρ1
i and ρ2

i for all components. After right communication compatibility checking, if one path in

T r
f corresponds to the set of paths ρ1

1, ..., ρ
1
n−1, ρ

1
n in ALTP and ALTCs and another path in T r

f

corresponds to the set of paths ρ2
1, ..., ρ

2
n−1, ρ

2
n, this means that both T l

f and T r
f are not empty but

their retained paths do not necessarily correspond to the same set of paths in ALTP and ALTCs.

Thus the situation becomes possible where there is no globally compatible local critical path, i.e.,

joint diagnosability, but both T l
f and T r

f are not empty. So the reverse is not necessarily true. Thus

either T l
f or T r

f is empty is only sufficient but not necessary condition of joint diagnosability.

Now consider our example. The top first three parts of figure 6.5 are actually a part of ALTP

of G1 and that of ALTCs of G2 and G3 after renaming, i.e., each right communication event is

prefixed with the component ID Gi. The bottom second part of this figure is a part of FSM ob-

tained by synchronizing ALTP with ALTCs for connected components, i.e., G2 and G3. The gray

nodes represent ambiguous states. This part represents infinite number of paths due to the two

elementary ambiguous state cycles with observable events for all three components. So its corre-

sponding paths in ALTP and ALTCs are left communication compatible. In this way, clearly, we

can process embedded cycles that may produce infinite number of paths. Then this part will be

retained to check right communication compatibility. Then the bottom part of figure 6.5 shows
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Algorithm 6 Algorithm to Check Sufficient Condition of Joint Diagnosability
1: INPUT:

the system model G = (G1, ..., Gn);
f with Gf , the component where the fault f may occur

2: Initializations:
GS ← ∅ (subsystem considered for left checking);
G′

S ← ∅ (subsystem considered for right checking)
3: T l

f ← ConstructALTP (Gf )
4: GS ← Gf

5: while T l
f 6= ∅ and DirectCC(G,GS) 6= ∅ do

6: Gi ← SelectDirectCC(G,GS)
7: Ci ← ConstructALTC(Gi)
8: T l

f ← Sync(T l
f , Ci), where synchronized events are the set of common left communication

events of current subsystem and the selected component Gi

9: GS ← Add(GS , Gi)
10: T l

f ← RetainConsisPaths(T l
f )

11: end while
12: if T l

f = ∅ then
13: return "f is jointly diagnosable in G."
14: else
15: T r

f ← AbstractRight(Gf , T l
f )

16: G′
S ← Gf

17: while T r
f 6= ∅ and GS 6= G′

S do
18: Gi ← SelectDirectCC(GS , G′

S)
19: T r

f ← Sync(T r
f , AbstractRight(Gi, T

l
f )), where synchronized events are the set of

common right communication of subsystem G′
S and the selected component Gi

20: G′
S ← Add(G′

S , Gi)
21: T r

f ← RetainConsisPaths(T r
f )

22: end while
23: if T r

f = ∅ then
24: return "f is jointly diagnosable in G."
25: else
26: return "Joint diagnosability cannot be determined."
27: end if
28: end if
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Figure 6.5: Part of ALTP for G1 and of ALTCs for G2 and G3 after renaming (top first three parts), part of
the synchronization based on common left communication events (bottom second) and the result of delay
closure for three components G1, G2 and G3 respectively (bottom).
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Figure 6.6: Result of delay closure for three components G1, G2 and G3 respectively after renaming (top,
see figure 6.5), part of synchronization of FSMs depicted in top left and top middle (bottom).

the result of performing delay closure with respect to right communication events and observable

events for each component on the part depicted by the bottom second part. Then we rename the

right communication events by removing the prefix of component ID, e.g. (G1:R:C3) renamed

as (R:C3). Afterwards we synchronize them based on the common right communication events.

This synchronization check the right communication compatibility of the corresponding paths,

where the existence of cycles with observable events for all involved components verifies their

right communication compatibility. For this example, after synchronization, the bottom part of

figure 6.6 shows a part of result after checking the right communication compatibility of the cor-

responding paths in G1 and G2. Then during the synchronization of this part with top right part

of this figure (corresponding part in G3), they will be blocked at the first event (R:C2 or R:C3)

since communication events C2, C3 are contained both in current subsystem composed of G1 and

G2 and the component G3. Thus we cannot get any path with cycles containing observable events

for three components. In the same way, after checking all other parts of ALTP and ALTCs, there

is no such path, which means there is no compatible path set for local critical path, i.e., there is no

globally compatible local critical path. Thus the fault is jointly diagnosable in the system.

If f is jointly diagnosable in the system, we can improve the algorithm efficiency by searching

for a subset of <Gf
that is sufficient to verify joint diagnosability through an appropriate compo-
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nent selection strategy. Let ΣSc be the set of communication events in the current subsystem. To

choose the next component for further compatibility checking, we prefer to select the one, sup-

pose Gi, such that |ΣSc ∩ Σic |, the number of communication events in Gi contained also in the

current subsystem, is maximum comparing to other components to be selected. This is a reason-

able heuristic because more communication events of the selected component are involved in the

current subsystem, more likely the compatible path sets for local critical paths in the current sub-

system will be removed during compatibility checking for the extended subsystem. In this way,

the involved components of the algorithm are as few as possible.

6.2.4 Decidable case of joint diagnosability

As shown before, undecidability of joint diagnosability is true when communication events are

unobservable. If we assume their observability, then this problem becomes decidable. Next we

provide a simple algorithm to check joint diagnosability with the assumption that any communi-

cation event is observable.

Algorithm 7 shows this verification procedure for joint diagnosability. Taking the system

model and the faulty component as input, the parameter is initialized as empty, i.e., GS , the cur-

rent subsystem. Then the algorithm begins with the construction of ALTP of the faulty component

Gf and the current subsystem being Gf (line 3-4). Here we should emphasize that when commu-

nication events are observable, then the local twin plant should be constructed by synchronizing

two instances based on the set of observable events and the set of communication events due to the

observability of communication events (please see definition 15 and definition 16). When both Tf

and DirectCC(G,GS) are not empty (line 5), then the following steps are repeatedly performed.

• Select one component directly connected to current subsystem GS and then construct its

ALTC by first operating delay closure with respect to the set of communication events and

observable events and then by synchronizing the two instances based on all events, i.e., the

set of communication events and observable events. (line 6-7)

• Synchronize current ALTP Tf and the ALTC Ci based on their common communication

events. (line 8)

• Then the current subsystem is updated by adding this selected component and we keep only

the paths in the newly obtained FSM that contain ambiguous state cycles with observations

for all involved components. (line 9-10)
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During this procedure, if the ALTP for current subsystem happens to be empty, which means that

there is no path that contains ambiguous state cycle with observations for all concerned compo-

nents, thus there is no local critical path that is globally compatible. Otherwise, if in the end,

the final FSM is not empty, then any path in it corresponding to a global compatible local criti-

cal path. The reason is that if the communication events are observable, then any path in ALTP

and ALTCs corresponds to a pair of local trajectories with the same observations, including the

same communication events. In other words, the separate checking for left and right communi-

cation compatibility of algorithm 6 becomes only one checking for communication compatibility

in algorithm 7. While in algorithm 6, the checking into two separate phases is the reason why it

is only sufficient but not necessary for joint diagnosability verification. So with the assumption

of observability of communication events, the joint diagnosability checking becomes decidable,

whose verification algorithm is provided here.

Algorithm 7 Algorithm for checking joint diagnosability with observability of communication
events

1: INPUT:
the system model G = (G1, ..., Gn);
f with Gf , the component where the fault f may occur

2: Initializations:
GS ← ∅ (subsystem considered for current checking)

3: Tf ← ConstructALTP (Gf )
4: GS ← Gf

5: while Tf 6= ∅ and DirectCC(G,GS) 6= ∅ do
6: Gi ← SelectDirectCC(G,GS)
7: Ci ← ConstructALTC(Gi)
8: Tf ← Sync(Tf , Ci), where synchronized events are the set of common communication

events of current subsystem GS and the selected component Gi

9: GS ← Add(GS , Gi)
10: Tf ← RetainConsisPaths(Tf )
11: end while
12: if Tf = ∅ then
13: return "f is jointly diagnosable in G"
14: else
15: return Tf

16: end if
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6.3 Comparison

From the previous sections, we know that joint diagnosability for systems with autonomous com-

ponents is actually stronger than diagnosability for systems with global observations described in

chapter 3.

Lemma 13 Given two systems G composed of G1, ...Gn and G′ composed of G′
1, ...G

′
n such that

for each i ∈ {1, ..., n}, component Gi and G′
i have the same structure except that any observ-

able event in the component Gi can only be observed by Gi while any observable event in the

component G′
i can be observed by all components of G′. In other words, G is the system with

autonomous components and G′ is the one with global observations. Then we have the following

result:

if the fault f is jointly diagnosable in G, then it is diagnosable in G′.

Proof :

Suppose that the fault f is jointly diagnosable in G and that f is not diagnosable in G′. From the

non diagnosability of f in G′ and G′ is a system with global observations, we know that there ex-

ists at least one global critical pair of trajectories p1′ and p2′ in G′, i.e., p1′ and p2′ satisfying three

conditions: 1) only one of them contains f , suppose p1′; 2) p1′ has enough observations after the

occurrence of f in all components; 3) P (p1′) = P (p2′), the projection of p1′ to observable events

set of G′ is the same as that of p2′, which means that they have the same observations from a

global point of view. Now in the system with autonomous components G, let p1 and p2 denote the

corresponding trajectories of p1′ and p2′. If we do not consider the difference that each observable

event in p1 and p2 can only be observed by its own component while each observable event in p1′
and p2′ can be observed by all components, then we have p1 = p1′ and p2 = p2′. It follows

that the fault f is contained in p1 but not in p2 and after the occurrence of f , p1 has enough local

observations in each component. Furthermore, we also have ∀k ∈ {1, ..., n}, Pk(p1) = Pk(p2).

Clearly, p1 and p2 are an indeterminate pair and thus f is not jointly diagnosable in G, which

contradicts the assumption that f is jointly diagnosable in G.

If the fault f is diagnosable in G′, it is not necessarily jointly diagnosable in G. Actually,

if f is diagnosable in G′, this means that there is no critical pair in G′, however, this does not

imply that there is no indeterminate pair in G. Suppose that there is an indeterminate pair p1 and

p2 in G with p1 containing the fault. Then we have ∀k ∈ {1, ..., n}, Pk(p1) = Pk(p2). Now
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Figure 6.7: A simple system model with two components: G1(left) and G2(right).

in the system with global observations G′, let p1′ and p2′ denote the corresponding trajectories

of p1 and p2. Then we can get ∀k ∈ {1, ..., n}, Pk(p1′) = Pk(p2′), which does not mean that

we can get P (p1′) = P (p2′), which is however one condition of a critical pair. So there does

not necessarily exist a critical pair in G′. In other words, if two trajectories in G have the same

enough local observations in all components, their corresponding trajectories in G′ may have

different observations from global point of view. Thus the existence of indeterminate pairs in G

does not imply the existence of critical pairs in G′.
Now consider the system depicted in figure 6.1. It is a system with autonomous components.

After joint diagnosability checking as described in previous sections, we verify that the fault is

jointly diagnosable because there is no local critical path that is globally compatible, i.e., there

does not exist indeterminate pairs. Now suppose that the system depicted in figure 6.1 is a system

with global observations, i.e., any observable event in each component can be observed by all

components. From lemma 13, we can deduce that the fault is diagnosable in this system. Now let

us check the system diagnosability as described in chapter 3, after synchronizing the local possible

critical paths with other local twin checkers, all local possible critical paths in the local twin plant

of Gf are verified to be not globally consistent, which means that there is no critical pair and thus

the fault is diagnosable in this system with global observations, which is consistent with lemma

13.

Figure 6.7 shows a very simple system with two components, G1 (left) and G2 (right). Suppose

that it is a system with global observations. Then after checking diagnosability of the fault F

through the method in chapter 3, we can get that F is diagnosable because the local critical path in

the ALTP of component G1 cannot survive when synchronizing with ALTC of G2. In other words,

there is no local critical path that is globally consistent. Intuitively, for any faulty trajectory, the

occurrence of observable event O1 is before the occurrence of observable event O3. While for

any normal trajectory, the occurrence of O3 is before that of O1. Now suppose that this system

is composed of autonomous components. It is easy to find an indeterminate pair, such as the pair

of trajectories ρ = (O3, C1, O1, (O2, O4)∗) and ρ′ = (O1, F, C2, O3, (O2, O4)∗). Only ρ′ is
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a faulty trajectory and both of them have the same sufficient observations for each component.

Thus the fault is not jointly diagnosable. Here we can see that the global occurrence of observable

events makes the fault F diagnosable. While since joint diagnosability does not require global

occurrence of observations, so the fault is not jointly diagnosable.

6.4 Discussion

In this chapter, we suppose that a distributed system is composed of a set of components and they

communicate with each other by communication events. Furthermore, in each component, the

observable events can only be observed by its own component. Clearly, we do no need the mono-

lithic model for the whole system and each component can make its own local decision based on

the order of its own observable events. Thus the distributed nature of real systems is taken into

account. When the communication events are assumed to be unobservable, then we prove the

undecidability of joint diagnosability checking. But we still give an algorithm to test a sufficient

condition of joint diagnosability. To check the non existence of indeterminate pairs in the system,

we begin from local critical paths in the ALTP and then first check left communication compatibil-

ity and then check right communication compatibility. However, when the communication events

are observable, checking joint diagnosability becomes decidable and then we propose a simple

verification algorithm. If the fault is jointly diagnosable in the system, we can adopt heuristic

strategy to select component, which may stop algorithm at first steps.

Some relative approaches are described in [56] and [71] (also see [30], [72], and [66]). In

their approaches, several sites that observe a subset of observable events of the entire system are

separated from the system and there is no common events between sites (the monolithic model

is implicitly assumed). In addition, the authors define the notion of decentralized diagnosabil-

ity, i.e., codiagnosability. A fault f is codiagnosable iff for each sf .t in a system, there exists at

least one local site such that any trajectory indistinguishable from sf .t at this site contains f in

it. Then its verification is based on the construction of one special structure, which is to directly

show whether there exists at least one situation that violates the codiagnosability defined in the

paper. Obviously, different from codiagnosability, our joint diagnosability means that for each

sf .t, every trajectory in the system that is local observation equivalent to sf .t for each component

should contain in it f . Actually, codiagnosability requires more trajectories that should contain

f since the number of the trajectories indistinguishable from sf .t at one site is normally larger

than that of the trajectories indistinguishable from sf .t at each component. In other words, codi-
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agnosability is stronger than joint diagnosability and from last section, the joint diagnosability is

stronger than diagnosability. Furthermore, in their framework, to get the global decision, they do

not need internal information of other sites. While in our case, we need to tell the communication

information between components since the system under our investigation is a distributed system

with autonomous components that connect with each other through communication events, i.e.,

common events.
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Conclusion

In this chapter, we recall main contributions of this thesis and then outline some directions for

future work.

7.1 Thesis overview

Diagnosability analysis is crucial in system design stage, which determines whether a diagnosis

algorithm can correctly and precisely make diagnosis decision given a sequence of observations

issued from the system. Considering the centralized approaches are not realistic for large complex

distributed systems since they require the monolithic model of the entire system. Thus we propose

an abstracted approach for diagnosability analysis of distributed systems. We first define the notion

of regional diagnosability for a subsystem and then the notion of diagnosable subsystem. The

existence of a diagnosable subsystem verifies the diagnosability property of the whole system.

Furthermore, we describe how to improve the diagnosis algorithm given a diagnosable subsystem,

i.e., only the observations in the diagnosable subsystem is sufficient for diagnosis decision instead

of the observations from the whole system. Then the search for a diagnosable subsystem is based

on abstracted local twin plant for the component where the fault may occur and all connected

abstracted local twin checkers to this abstracted local twin plant. In other words, the abstracted

local twin plant contains only necessary and sufficient original diagnosability information. Then

its global consistency is checked by synchronizing with connected abstracted local twin checkers

that eliminate all observable information not in cycles and contain only the information about

existence of observable events in each cycle for each component. We prove that these abstracted

ones are sufficient to check the global consistency of original diagnosability information, i.e., the
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set of local critical paths in the abstracted local twin plant. Thus the existence of local critical

paths being globally consistent verifies non-diagnosability of the system.

Then we propose a distributed approach for pattern diagnosability taking into account the fact

that all related investigations are centralized. We first show how to recognize the pattern by syn-

chronizing the diagnosability relative paths with other pattern relative components to avoid global

model construction. Then for pattern diagnosability checking, we adopt the abstracted method to

further reduce the search space. For the sake of simplicity, we illustrate the distributed framework

for simple pattern, i.e., only one sequence of significant events, and then extend simple case to

general case, i.e., multiple even infinite sequences of significant events. Then we implement our

algorithm to show how much state space is saved in our distributed approach compared to central-

ized one. The result shows that our final state space is only a quite small part of that obtained in

the centralized approach.

Finally we propose a new framework for diagnosability analysis for systems with autonomous

components, i.e., each component has only the access to its own observable events. We first

define communication compatibility of trajectories in different components or subsystems. Then

we define joint diagnosability that is stronger than classical diagnosability definition for system

with normal components. In other words, to be jointly diagnosable, the observation requirement

is more strict for the system with autonomous components than that with normal components to

be diagnosable. Then we prove the undecidability of joint diagnosability when communication

events are unobservable but still provide an algorithm to test its one sufficient condition. Then

we propose another algorithm to test joint diagnosability with the assumption of observability of

communication events, where the problem becomes decidable.

7.2 Future work

The directions of future work relative to this thesis are described as follows.

• When a diagnosable subsystem is returned by our approach, one future work is to inves-

tigate whether the observations in this subsystem can be reduced to make the system still

diagnosable and if yes, how to reduce them ([10]). The reason is that the sensor placement

is very expensive and the reduction of the number of sensors in the system can economize

on its cost.

• Another direction of future work is to investigate the predictability property of distributed
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systems. The property of predictability is quite meaningful since it concerns the ability of

systems to predict the fault before its occurrence, which can thus be avoided ([42]). Of

course, the predictability property is stronger than diagnosability property. In other words,

a predictable system must be diagnosable while a diagnosable system is not necessarily

predictable. In the literature, only centralized approach for predictability analysis is studied.

So the investigation of distributed framework makes much sense for large complex systems

that are normally distributed.

• To be more reliable, the repairability property of systems will also be studied in the future.

The repairability is the ability of systems to be repaired automatically after perceiving the

fault occurrence [23]. In other words, the system is repairable if it has at least one repair plan

for each fault and with the diagnosis decision, it can automatically launch the corresponding

repair plans.

• One very interesting and perspective direction is that for joint diagnosability checking, we

can study to which level that we can relax the observability of communication events (make

some of them unobservable) but still keep the problem decidable.
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