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Abstract

This work is dedicated to the study of dynamics and rheology of the complex fluids.
We use three dimensional numerical simulations. The systems we study here are: sus-
pensions of biological active micro-swimmers, suspensions of rigid spherical particles in
presence of an external field and the dynamics of sheared confined spherical particles.

Micro-swimmers are the microscopic objects that propel themselves through a fluid
and they are ubiquitous in nature. A common example of micro-swimmers is the
Chlamydomonas. One of the main goal of this thesis is to understand the effect of
self-motility of these micro-organisms on the global macroscopic properties of the fluid,
such as the effective viscosity to explain experimental observations. We elaborated
different models for Chlamydomonas suspensions and conducted numerical simulations
using the 3D version of the Fluid Particle Dynamics method (explained in this thesis).
The results of our numerical simulations has been shown and discussed in light of the
experimental observations. One of the proposed models incorporates all experimentally
observed phenomena and is extendable for other types of micro-swimmer suspensions.

This thesis is also dealing with the effects of confinement on the dynamics of sheared
spherical particles. We found that in confined geometry, angular velocity of sheared
particles decreases compared to the one imposed by the shear low. The angular velocity
of the particles decreases also when the particle are close to a single wall and the
translational velocity of the particles changes so that the difference between velocity of
the particle and the velocity of the wall decreases.

Another objective of this work is to study suspensions with tunable effective viscos-
ity. We conducted a numerical investigation of sheared spherical particle suspensions
in presence of an external torque. We showed that the change of particle angular ve-
locity with an external torque is sufficient to strongly change the effective viscosity of
the suspension. Based on numerical simulations, a semi-empirical formula has been
proposed for the effective viscosity of spherical particles suspensions valid up to 40%
concentration. We also showed that a modified second Faxén law can be equivalently

established for large concentrations.



Résumé

Cette thése est consacrée a I'étude de la dynamique et de la rhéologie des fluides
complexes. Nous utilisons une méthode de simulation numérique a trois dimensions.
Les systémes que nous étudions ici sont des suspensions de micro-nageurs actifs, des
suspensions de particules sphériques rigides en présence d'un champ externe auquel elles
sont sensibles et de la dynamique de suspensions de particules sphériques et confinées
en cisaillement.

Les Micro-nageurs sont les objets microscopiques qui se propulsent dans un fluide
et ils sont omniprésents dans la nature. Un exemple commun de micro-nageurs est la
micro-algue Chlamydomonas. Un des buts principaux de cette thése est de comprendre
Peffet de la motilité de ces micro-organismes sur les propriétés macroscopiques globales
de la suspension, telles que la viscosité effective pour expliquer les observations expéri-
mentales. Nous avons élaboré différents modéles de suspensions de Chlamydomonas
et effectué des simulations numériques utilisant la version 3D de la dynamique des
particules fluides (FPD) (méthode expliquée dans cette thése). Les résultats de nos
simulations numériques ont été présentés et discutés a la lumiére des observations ex-
périmentales. Un des modéles proposés intégre tous les phénomeénes observés expéri-
mentalement et sont applicables & d’autres types de suspensions de micro-nageurs.

Cette thése consacre également un chapitre sur les effets du confinement sur la
dynamique de cisaillement des suspensions diluées de particules sphériques. Nous avons
constaté que dans la géométrie confinée, la vitesse angulaire des particules diminue
par rapport a celle imposée par I’écoulement de cisaillement. La vitesse angulaire des
particules diminue également lorsque la particule est proche d’une paroi unique et la
vitesse de translation de la particule par rapport a la vitesse de la paroi diminue.

Un autre objectif de cette thése est d’étudier les suspensions a viscosité effective
ajustable. Nous avons mené une étude numérique sur des suspensions de particules
sphériques en présence d'un couple externe. Nous avons montré que le changement
de vitesse angulaire des particules due a I'application d’un couple externe est suff-
isante pour modifier fortement la viscosité de la suspension. Basée sur des simulations
numériques, une formule semi-empirique a été proposée pour la viscosité des suspensions
de particules sphériques valables jusqu’a 40% de concentration. Nous avons également
montré que la 2éme loi de Faxén peut étre étendue par une expression empirique pour

de grandes concentrations.



Chapter 1

Introduction

1.1 Background

Complex fluids are common and can be found almost everywhere in our life. Complex
fluids include: emulsions, suspensions, biofluids, gels, foams, polymers, solutions, liquid
crystals, colloidal crystals etc. Typical examples of complex fluids are: blood, cosmetic
or pharmaceutical creams, foods (milk, yogurt, chocolate, mayonnaise etc). Usually
complex fluids are also non-Newtonian fluids which means they do not obey the (Newto-
nian) linear relationship between applied stress (o) and () shear rate. Non-Newtonian
fluids reveal diverse and interesting behavior which is applicable both in science and
technology. One of the most important aim of studying the complex fluids is to under-
stand the mechanism (forces and interactions) acting on an intermediate length scale
which defines the fluid behavior. This would give an opportunity to design and control
new material with the desired properties. Such materials can be useful in engineering
(automobiles) or in medicine for example.

Complex fluids are substances with an intermediate length scale which plays a key
role in determining the properties of the substances. An intermediate length scales ex-
isting between molecular and macroscopic length scales can be represented by organized
atoms and molecules forming larger structures, colloids, microscopic rigid particles or
even alive micro-organisms [1]. The science which establishes relationships between
properties of the fluid and its structure at intermediate length scale is the rheology.

More generally the rheology is the study of deformation and flow of matter in response

3



4 CHAPTER 1. INTRODUCTION

of an applied stress. The common rheological properties which are used to characterize
the non-Newtonian fluids include: effective viscosity (shear viscosity 7rs, vortex vis-
cosity ngcf); stress o (shear stress, normal stress, normal stress difference); relaxation
time 7; viscoelastic modulus etc.

The non-Newtonian fluids can reveal shear thinning or shear thickening behavior
or/and viscoelastic effects (for example the Weissenberg effect [2]). The shear thinning
is the tendency of a fluid to reduce its viscosity when the applied shear rate increases
[3]. The shear thickening behavior is observed when the viscosity of the fluid increases
with the shear rate |4, 5].

Complex fluids can be studied using analytical approaches, numerical simulations or
experiments. In this work, we use numerical simulations and compare our results to

experimental observations and analytical approaches.

1.2 Research objectives

In this thesis, we analyze properties (such as effective viscosity) of suspensions with
active particles. These active particles can be natural micro-swimmers, but also field-
sensitive particles or confined particles. Their activity (swimming, rotation) have a
consequence on the macroscopic properties of the suspensions: it changes its effective
viscosity. A link between micro and macro properties of the fluid is established.

In recent years there has been considerable interest in the physics of swimming
microorganisms. Such micro-swimmers are widespread in nature. For example: bacteria
and spermatozoa in biofluids, micro-algae etc. The physics of these micro-organisms is
interesting both: at microscopic length scales as individual swimmers |6] and at a larger
length scales as component parts of complex systems (or "active fluids”). Despite the fact
that micro-swimmers are simple organisms, the way they move through the fluid is more
complicated than the way we swim. Since at the length scale where they live ( Re < 1,
where Re denotes the Reynold’s number) inertia is negligible and micro-swimmers need
to deform or propel themselves in a (non-reciprocal) way which is not invariant under
time reversal symmetry |7, 8|. Besides the particularities of such swimming mechanism
a fluid containing a large number of those organisms drastically changes its rheological

properties. For example micro-swimmers change the fluids viscosity of the suspension
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to which they belong [9, 10].

One of the main objectives of this thesis is a numerical modelization of the micro-
swimmer suspensions (namely suspensions of Chlamydomonas) to establish a relation-
ship between mechanisms of individual cells motion and the macroscopic properties
of the fluid like the effective viscosity. Consistently with the experiments performed
in our team, Chlamydomonas reinhardtic has been chosen as a model system in order
to understand the effect of their motility on the global macroscopic parameters of the
suspension.

The next aim of the thesis is to study more fundamental issues of fluid mechanics
at small Reynolds numbers, like influence of finite geometry on the dynamics of rigid
particles in the shear (Couette) flow. Despite that in many microfluidic devices or
capillaries in biological systems, the size of suspended objects are comparable with one
or more dimensions of the channels, there are small number of works dealing with the
effects of confinement on flow fields and mechanics of confined suspended objects.

Another objective of the present work is the numerical investigation of suspensions
with a tunable effective viscosity. In electro rheological (ER) fluids for example where
particles are sensitive to an electrical field one can modify the rotation of the particles
using the external field. As a result, viscosity of suspensions can be adjusted. Such flu-
ids with controllable viscosity has technological applications in many kinds of industrial
devices such as active dampers, clutches or brakes [11, 12]. For example, depending
on road conditions, viscosity of the damping fluid needs to be adjusted in automobile
dampers [13]. The contribution of an external torque to the effective viscosity of sus-
pensions was theoretically studied in dilute regime by Brenner in 1970 [14|. Our goal
in this work is to investigate this contribution on a wider range of concentrations and
to establish relationship between the applied torque and the rheological properties of

these suspensions.

1.3 Thesis outline

The present work is organized as follow.
Chapter 3 is dedicated to the numerical method, The Fluid Particle Dynamics

(FPD). The main idea of the method as well as its positive and negative aspects
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are described. The theory behind the FPD method and some details of numerical
discretization techniques are introduced. New contributions, number of changes and
possible extensions made in the FPD method are listed. Since the FPD method is rela-
tively new in order to verify and illustrate it, we present some problems solved using the
FPD method in comparison to well-known analytical results. Among them are: Stokes
flow past sphere; a spherical particle in the shear flow; collision between two spheres
and Jeffery’s orbit for ellipsoidal particles in a shear flow. Afterwards, everywhere is
this work the FPD method is used to solve several different problems.

Chapter 4 describes the effects of confinement on the dynamics of a single spherical
particle in a shear flow. Two major effects are considered: decrease of the rotational
velocity of the sphere in the shear flow due to particle-wall interactions and change of
the translational velocity of the sheared particle in vicinity of the wall. Flow field are
shown and result are compared with previous numerical and analytical predictions.

Chapter 5 numerically investigates the contribution of an external torque applied to
a field-sensitive particle suspensions to the effective viscosity. The relationship between
the torque applied to each particle and the effective viscosity of the fluid is established
beyond the dilute regime and the semi-empirical formula is derived for the effective
viscosity. Also an empirical second Faxén law is established and is valid up to 40%
concentration.

Chapter 6 is dealing with the models and numerical simulations of Chlamydomonas
micro-swimmer suspensions. After some general review of micro-swimmers and their
specific low Reynolds number constrains, the main experimental observations of green
algae suspension are summarized. Then several different models are considered in order
to figure out the effects of motility of micro-swimmers into the global rheological prop-
erties of the fluid. The last section of chapter 6 describes the model which converges
in anisotropic distribution of force dipoles by taking into account the Chlamydomonas
swimming features in the shear flow and incorporates all experimentally observed phe-
nomena.

In chapter 7, we conclude by briefly summarizing the main results and contribution

of this work. We also present some future perspectives.



Chapter 2

Introduction en Francais

2.1 Contexte

Les fluides complexes sont trés courants dans notre environnement de tous les jours.
Les fluides complexes incluent: les émulsions, les suspensions, les biofluides, les gels, les
mousses, les polymeéres, les solutions, les cristaux liquides, les cristaux colloidaux, etc.
Parmi ces fluides on trouve: le sang, les crémes cosmétiques ou pharmaceutiques, les
aliments (lait, yaourt, chocolat, mayonnaise, etc). Habituellement les fluides complexes
sont aussi des fluides non-newtoniens, ce qui signifie qu’ils n’obéissent pas a la relation
(newtonienne) linéaire entre la contrainte appliquée (o) et (%) le taux de cisaillement.
Les fluides non-newtoniens présentent des comportements assez diversifiés, étonnants et
intéressants, et qui est applicable a la fois en sciences et en technologie. Un des objectifs
les plus importants de 1’étude des fluides complexes est de comprendre le mécanisme
(les forces et les interactions) agissant sur une échelle de longueur intermédiaire, qui
définit le comportement de ces fluides. Cela donnerait une occasion de concevoir et de
controler de nouveaux matériaux avec les propriétés souhaitées. Ce type de matériaux
commencent a étre utilisé dans I'ingénierie (automobile) ou en médecine par exemple.

Les fluides complexes sont des substances ayant une échelle de longueur intermédi-
aire, qui joue un roéle clé dans la détermination des propriétés de ces substances. Ces
échelles de longueur intermédiaires existent entre les échelles de longueurs moléculaires
et les échelles de longueurs macroscopiques. Elles proviennent par exemple des atomes

et des molécules formant de grandes structures organisées, des colloides, des particules

7



8 CHAPTER 2. INTRODUCTION EN FRANCAIS

microscopiques rigides ou méme des micro-organismes vivants [1]. La science qui établit
des relations entre les propriétés du fluide et de sa structure a ’échelle de longueur inter-
médiaire est la rhéologie. Plus généralement la rhéologie est I’étude de la déformation
et de I’écoulement de la matiére, en réponse a une contrainte appliquée. Les propriétés
rhéologiques communes qui sont utilisées pour caractériser les fluides non-newtoniens
comprennent: la viscosité effective (viscosité de cisaillement 7.¢¢, la viscosité tourbil-
lonnaire 7/ ;); le stress o (contrainte de cisaillement, contrainte normale, différence de
contraintes normales); le temps de relaxation 7; le module viscoélastique etc.

Les fluides non-newtoniens peuvent présenter un comportement rhéofluidifiant ou
rhéo-épaississement sous cisaillement ainsi que des effets viscoélastiques (par exemple
'effet Weissenberg [2]). La fluidification est la tendance d’un fluide a réduire sa vis-
cosité lorsqu’on lui applique un taux de cisaillement croissant [3]. Au contraire, le
comportement rhéo-épaississant sous cisaillement est observé lorsque la viscosité du
fluide augmente avec le taux de cisaillement [4, 5|.

Les fluides complexes peuvent étre étudiés en utilisant des approches analytiques,
des simulations numériques ou des expériences. Dans ce travail, nous utilisons des
simulations numériques et nous comparons nos résultats quand cela est possible a des

observations expérimentales et des appoches analytiques.

2.2 Objectifs de la recherche

Dans cette thése, nous analysons les propriétés telles que la viscosité effective des sus-
pensions avec des particules actives. Ces particules actives peuvent étre des micro-
nageurs naturels, mais aussi des particules sensibles a des champ externes ou des par-
ticules confinées. Cette perturbation active a une conséquence sur les propriétés macro-
scopiques des suspensions: elle change sa viscosité effective. Notre étude nous a ainsi
permis d’établir un lien entre les propriétés microscopiques et macroscopiques du fluide.

Ces derniéres années il y a eu un intérét considérable dans la physique des micro-
nageurs. Ces micro-nageurs sont trés répandues dans la nature. Par exemple: les
bactéries et les spermatozoides dans les biofluides, les micro-algues, etc. La physique de
ces micro-organismes est intéressante a la fois a des échelles de longueur microscopique

pour décrire les nageurs individuels [6] et & une échelle de longueur plus grande en tant
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que composants de systémes complexes (ou «liquides actifs»). Malgré le fait que les
micro-nageurs soient des organismes simples, la facon dont ils se déplacent a travers le
fluide est plus compliquée que la facon dont nous nageons a notre échelle. Comme &
I’échelle de longueur ou ils vivent (Re < 1, ou Re représente le nombre de Reynolds)
I'inertie est négligeable et les micro-nageurs ont besoin de déformer ou de se propulser
d’une fagon non réciproque qui n’est pas invariante sous une symétrie d’inversion du
temps [7, 8]. Outre les particularités du mécanisme de nage un fluide contenant un
grand nombre de ces organismes change radicalement ses propriétés rhéologiques. Par
exemple, les micro-nageurs changent la viscosité des fluides de la suspension a laquelle

ils appartiennent [9, 10].

Un des principaux objectifs de cette thése est une modélisation numérique des sus-
pensions de micro-nageurs (a savoir des suspensions de Chlamydomonas) pour établir
une relation entre les mécanismes microscopiques des mouvements de chaque cellule in-
dividuelle et les propriétés macroscopiques du fluide comme la viscosité effective. En co-
hérence avec les expériences réalisées dans notre équipe, les micro-algues Chlamydomonas
reinhardtii ont été choisies comme systéme modéle pour comprendre I'effet de leur motil-

ité sur les parameétres globaux macroscopiques de la suspension.

L’autre objectif de la thése est d’étudier des questions plus fondamentales de la
mécanique des fluides a un petit nombre de Reynolds, comme 'influence du confinment
sur la dynamique des particules rigides dans un cisaillement de Couette. En effet
I'interaction entre parois et particules est trés important dans de nombreux dispositifs
microfluidiques ou capillaires ot la taille typique des systémes biologiques ou des objets
en suspension est comparable a une ou plusieurs dimensions des canaux, le nombre
de publications est encore faible mais en pleine expansion concernant le traitement de
ces effets de confinement sur des champs d’écoulement et de la mécanique des objets

suspendus.

Un autre objectif de ce travail est ’étude numérique de suspensions avec une viscosité
ajustable. Ces fluides sont constitués par des suspensions sensibles a des champs ex-
térieurs (électriques ou magnétiques). Par exemple, dans les fluides électro rhéologiques
(ER) on les particules sont sensibles aux champs électriques externes, on peut modifier
la rotation des particules en utilisant un champ externe. Ainsi la viscosité de ces sus-

pensions peut étre ajustée en jouant sur l'orientation et l'intensité du champ appliqué.
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Ces fluides a viscosité controlable ont des applications technologiques dans de nom-
breux types de systémes industriels tels que les amortisseurs actifs, les embrayages ou
les freins |11, 12|. Par exemple, selon les conditions routiéres, la viscosité du fluide peut
étre ajustée dans les amortisseurs automobiles [13]. La contribution d’un couple externe
a la viscosité effective de suspensions de particules polaires a été étudié théoriquement
en régime dilué par Brenner en 1970 [14]. Notre but ici est d’étendre notre compréhen-
sion sur une plus large gamme de concentrations et d’établir une relation entre le couple

appliqué et les propriétés rhéologiques de ces suspensions.

2.3 Organisation du manuscrit

Le présent ouvrage est organisé comme suit.

Le chapitre 3 est consacré a la méthode numérique que nous utilisons, la dynamique
des particules fluides (FPD). L’idée principale de la méthode ainsi que ses aspects posi-
tifs et négatifs sont décrits. La théorie sousjacente de la méthode FPD et certains
détails des techniques de discrétisation numériques sont introduits. Nos nouvelles con-
tributions, le nombre de modifications et d’extensions possibles de cette méthode sont
répertoriés. Puisque la méthode FPD est relativement nouvelle dans le but de vérifier
sa fiabilité et de l'illustrer, nous présentons quelques problémes résolus en utilisant cette
méthode en comparaison avec des résultats analytiques biens connus. Parmi eux, on
peut citer ’écoulement de Stokes autour d’une sphére immobile; 1’écoulement autour
d’une particule sphérique dans un cisaillement de Couette; les collisions entre deux
sphéres et enfin I'orbite de Jeffery de particules ellipsoidales dans un écoulement de ci-
saillement. Cette méthode FPD sera utilisée dans ’ensemble de ce travail pour résoudre
plusieurs problémes différents.

Le chapitre 4 décrit I'effet du confinement sur la dynamique d'une seule particule
sphérique en suspension dans un écoulement de cisaillement. Deux effets majeurs sont
considérés: la diminution de la vitesse de rotation de la sphére dans le flux de cisaille-
ment due aux interactions particule-paroi et le changement de la vitesse de translation
de la particule dans le voisinage de la paroi. Les champs d’écoulement sont présentés et
les résultats sont comparés avec de précédentes prédictions numériques et analytiques.

Le chapitre 5 est consacré a I’étude numérique de la contribution d’un couple externe
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appliqué sur une suspension de particules sensibles & un chmap extérieur. Ce champ
exerce un couple sur ces particules qui augmente ou diminue la vitesse angulaire de
chaque particule. La relation entre le couple appliqué sur chaque particule et la viscosité
effective du fluide est établi au-dela du régime dilué et une formule semi-empirique est
dérivée pour la viscosité effective. Une loi empirique du type seconde loi de Faxén est
établie et est valable jusqu’a 40% de concentration.

Le chapitre 6 traite des modéles et des simulations numériques associées aux suspen-
sions de Chlamydomonas. Aprés une revue générale des micro-nageurs a faible nombre
de Reynolds, les principales observations expérimentales effectuées sur des suspensions
d’algues vertes sont résumées. Puis, plusieurs modéles différents sont pris en compte
afin de comprendre les effets de la motilité des micro-nageurs sur les propriétés globales
rhéologiques du fluide. La derniére section du chapitre 6 décrit le modéle qui convergent
vers une distribution anisotrope des particules en prenant en compte la nage spécifiques
des Chlamydomonas en fonction du taux de cisaillement et intégre tous les phénomeénes
observés expérimentalement.

Au chapitre 7, nous concluons en résumant briévement les principaux résultats de
ce travail. Nous présentons également une liste de quelques perspectives d’avenir qui

nous semble intéressantes et facilement accessibles avec notre méthode numérique.
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Chapter 3
Fluid Particle Dynamics

In this chapter, we describe the Fluid Particle Dynamics (FPD) which is the simulation method of colloidal
(or non-colloidal) suspensions. The FPD method allows to avoid the difficulties which arise from solid-fluid
boundary conditions by treating a colloid as a fluid particle. We describe the FPD method, introduce the
theory behind it and considered the main features of the method. Number of changes and possible extensions
made in the FPD method has been listed. Finally, we show some canonical problems solved using the FPD
method in comparison to well known exact analytical solutions. Among them: Stokes flow past a sphere, a
spherical particle in the shear flow and Jeffery’s orbit for ellipsoidal particles in a shear flow. We also treat the
collision between two spheres.

Dans ce chapitre, nous décrivons la méthode numérique de dynamique des particules fluides (FPD) qui est
une méthode de simulation de suspensions colloidales ou non colloidales. La méthode FPD permet d’éviter les
difficultés liées aux conditions aux limites particule solide-fluide en traitant une particule comme une particule
fluide. Nous décrivons la méthode FPD en introduisant la théorie sousjacente. Nous examinons les principales
caractéristiques de la méthode. Nous discutons des nombreux changements et des extensions qui ont été faites
sur le code de cette méthode. Enfin, nous montrons quelques problémes canoniques résolus en utilisant la
méthode FPD en comparaison avec des solutions analytiques exactes bien connues . Parmi eux, I’écoulement
de Stokes autour d’une sphére immobile, une particule sphérique dans un écoulement de cisaillement et les
orbites de Jeffery pour des particules ellipsoidales dans un cisaillement de Couette plan. Enfin nous simulons
une collision entre deux sphéres.

3.1 Introduction

The Fluid Particle Dynamics method (FPD) is used to simulate a suspension of colloidal
or non-colloidal particles at low Reynolds number. This system presents a wide range
of problems concerning suspensions like rheological behaviors under shear flow, their
confinement |15, 16, 17, 18, 19, 20|, suspension under an external field |14, 21, 22, 23|,

13
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the kinetics of colloidal aggregation [24, 25, 26, 27|, phase separation [28, 29, 30, 31,
32|, gel formation [33, 34|, crystallization [35, 36, 37, 38, 39| etc. This method was
originally developed by Tanaka and Araki in two dimensions [40|, then extended to
three dimensions by Peyla [15, 16]. In other simulation methods such as: Stokesian
Dynamics [41] or Lattice Boltzmann methods [42] colloidal suspensions are treated as
a mixture of solid particles and a simple liquid as it is in reality. Unlike those methods,
within the FPD method, colloidal suspensions are treated as a mixture of viscous fluid
particles in a less viscous simple Newtonian liquid. The method is based on a hybrid
model which uses the lattice simulation for the continuous fields (velocity, pressure
and viscosity) and an off-lattice simulation for the suspended particles. The main
advantage of the FPD method is that it allows us to avoid explicitly tracking solid-fluid
boundary of a colloidal particle and thus avoid applying the boundary conditions at
the moving surface of the particles. This kind of methods is also known as ”penalty
method” [43]. The method also automatically implies the finite size of the colloids
unlike the Brownian Dynamics method [44| where the particles are treated as point-like
particles. An important point is that the FPD method provides a proper handling
of the hydrodynamic interactions between particles in a suspension which play a key
role in many problems concerning suspensions. The FPD method is not suitable to
study a deformable or elastic particles such as vesicles or red blood cells. However,
the method is convenient to study collective effects in the suspensions, confinement as
well as dynamics of single objects (movement, rotation, diffusion etc.). Spherical or

ellipsoidal objects are treated in this work.

3.2 Theory of the FPD method

The motion of incompressible fluid is described by the Navier-Stokes equation and the

incompressibility condition:

p(%—j—l—v-Vv) = Vo + 1, (3.1)

Vv =0, (3.2)

where v is the velocity field of the fluid, p is the fluid density which is assumed to be
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the same for the particles and the solvent. f represents the external and internal force
field (for example exerted by a swimmer) per unit volume acting on the fluid. The

stress tensor o is given by the Newtonian law:
Oij = —pém + n(@ivj + 8jvl-), (33)

where 7 is the viscosity of the fluid and p the pressure field. Derivation of the Navier-
Stokes equation (3.1) and the incompressibility condition (3.2) starts from application

of Newton’s Laws.

Within the FPD method, one can apply the Navier-Stokes equation on a colloidal
suspension without suffering from constructing solid-fluid boundary condition on mov-
ing boundary. The problem is circumvented as following: the particles in suspension are
defined as a high viscosity region in comparison to the solvent viscosity. Therefore, the
flow field is defined in the entire domain and not only outside the particles. Then the
colloidal suspension is treated as a mixture of viscous fluid particles (with the particle
viscosity 7,) and less-viscous liquid (with the solvent viscosity 7). When the viscosity
contrast tends to infinity (n,/n — o0), fluid particles can be regarded as solid ones.
This ratio 7,/n defines the accuracy of the approximation. In our simulations, we usu-
ally use fixed high viscosity contrast, such as n,/n = 100 to avoid any recirculation of
the fluid inside the particles (see figure 3.14). The particle number n which is off-lattice

centered is located at r,, and is represented by the auxiliary field:

2 §

& represents the fluid-particle interface thickness where viscosity decays form the particle

onl(r) = 2 {1 + tanh(w)] , (3.4)

viscosity 7, to the solvent viscosity 7, and a is the size of the particles. So, the effective
radius of the beads is R.fy ~ a + 2§. The figure 3.1 shows the viscosity profiles around
the single particle with a = 39, £ = 0.50 where 6 = 1 is the mesh size, n = 1 and
n, = 100. In that way, the difficulty associated with the sharp interface between each
moving spheres and the fluid is circumvented by introducing a diffuse interface. Then

using the auxiliary field (3.4) the spatial distribution of the viscosity field for N spherical
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Figure 3.1: The viscosity field around a single particle. 7 =1 and 7, = 100.

particles is defined as:
N (@) =n+m—n_ e (3.5)

This ensures that far enough from a particle the local viscosity is ' = n (the solvent

viscosity) and inside the particle viscosity is 1’ = 7, (the particle viscosity).

Using equations (3.3) and (3.5) Navier-Stokes equation (3.1) with the incompress-

ibility condition can be rewritten as follows:
p(0r +v-V)v ==Vp+ V[n(r)(Vv + (Vv))] + f (3.6)

V-v=0. (3.7)

FPD equations (3.6) and (3.7) are used to simulate dynamics of the fluid/particles
systems. They are solved numerically using the Projection Method, on the three di-
mensional MAC-grid [45].

Note that despite the fact that we are concerned about low Reynolds number fluid

mechanics we solve numerically the Navier-Stokes equation (3.1) and not the Stokes
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equation. Therefore, our code is able to handle small but finite Reynolds numbers.
Usually, we work with Reynolds number R < 1 , therefore inertial effects are indeed

negligible.

3.3 The Projection Method

To solve numerically time-dependent Navier-Stokes equation under incompressibility
condition an explicit finite-difference scheme, so called "Projection Method” was orig-
inally and independently proposed by Corim (1968) and Team (1969) [46, 47]. The
explicit version of the method was proposed by Fortin et. al. (1971) [48|. The method
can be divided schematically into three main steps. At the first step, after discretization
in time of (3.6) one calculates intermediate "wrong” velocity field v* with

v —v" Vn)(Vv+ (Vv))]  f

St + (V' V)V = P + ;, (3.8)

Where §t is the time step. Note that the pressure term is omitted in (3.8).

+ - —(v-V)v

p ; (3.9)

o vee i { NI (Vo)) |t 3

n+1

To calculate the divergence free velocity field v (the "real” velocity) at time step

n + 1 we start from

vl —v* V¥
LY

—5 o, =0 (3.10)
Note that if we combine equations (3.8) and (3.10) the v* will cancel and we obtain
equation (3.6) discretized in time.

By Taking divergence of (3.10) and using (3.7) i.e. incompressibility condition for

the new velocity field (V - v"*! = 0) one obtains

Vp V-v*
== = ) A1
v ( p > ot (8-11)
or
o P
Ap=V-v'—. (3.12)

ot
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We solve numerically the Poisson’s equation (3.12) to find the pressure field p by using
intermediate velocity field v*, this is the second step of the Projection Method. To
solve equation (3.12), we use two different methods discussed below in section 3.5.

At the last step one uses equation (3.10) to obtain new velocity field v**! at time

step n + 1 using velocity field v* and pressure field p,

ot
vt = v* — —Vp. (3.13)
p

3.4 MAC grid and discretization

grid so called "Marker And Cells grid” (MAC grid) [45, 46, 49]. On the MAC grid scalar

values such as pressure p; ;; and viscosity 7; ; ; as well as stress tensor o; ; ; are defined at

Equations (3.9), (3.12) and (3.13) are solved numerically on a three-dimensional special

the center of the (i, j, k) cell while velocity v = (u, v, w) components: Uitd jks Vil

and w; ;.1 are defined at the corresponding faces of the (i, j, k) cell as shown in figure

3.2. For the components of equation (3.9) one finds:

+ = —(v

R N e

+__

vt =" 4 Ot { (n(ty + V))a & (277;1;)3/ * (e T wy)): ];y (v- V)v} ., (3.15)

(s + w))e + (v + )y + Qo). | fo o
; H () } (3.16)

w' =w" + ot {
To calculate the velocity components (u*, v*, w*) and then update velocity components
(u, v, w) equations (3.14), (3.15) and (3.16) are written on appropriate cell faces. Note
that we consider field 7(r) which will be useful in our numerical method. Discretization
of the first viscous term (2nu,), in the equation (3.14) at the point X;;1/2 ;5 where u,

denotes the partial derivation of the velocity

o
Oz

Ug
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Figure 3.2: The MAC mesh.

using the central differencing gives:

. 277z'+1,j,k(um)i+1,j,k - 27]i,j,k<uz>z’,j,k

2NUy )y = , 3.17
(2mu,) o (3.17)
where
Uit1/2,5,k — Wi—1/2,5,k
(Us)ijk = : (3.18)
et dx
and finally
2 Ui43/2,5.k — Ui+1/2,5.k Uit1/2,5,k — Wi—1/2,5.k
(2nug)e = ar {ni—i—l,j,k /2] e [22k i ik /23 iz 225 (3.19)

For the second viscous term in the equation (3.14) at the same point X;, 1o jx one finds:

(g + v2))y = 77i+1/2,j+1/2,k(uy + Ux)i+1/2,j+1/2,k — 772'+1/2,j71/2,k(uy + Ux)i+1/2,jfl/2,k
y z))y dy .
(3.20)

Where
WUit1/2,5+41,k — Wit1/2,5.k
(uy)iv1/2541/28 = /2] a0 [Zik (3.21)
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j+l
Viq+12k9 Vieljr12x 9
j °
172,k
Vij12x 9 Vierg-12x 9
j-1
i-1 i i+l

Figure 3.3: The XY cross section of the MAC mesh.

Uit1/2,5k — Wit1/2,j—1,k

(Uy)it1/2,5-1/26 = 0y , (3.22)
and
Vit1,+1/2,k — Vij+1/2,k
(Va)it1/2,5+1/2k = LIl I 1/2k (3.23)

The viscosity 7 is defined at the center of cells (on the grid points). But by simply

averaging it can be defined everywhere:

Mgk + Miv1/2,5.k T Mig+1/2k T Mit1/2,41/2,k
Ni+1/2,541/2,k = . /2 i / /2L /2k (3.24)

In the same way the third viscous term in the equation (3.14) will be discretized as

follows:

4 j uz+wwi j — 1 i k— uz+wzi i k—
(U(Uz + wx))z _ n +1/2,J,k+1/2( ) +1/2,5,k4+1/2 dzﬂ +1/2,5,k 1/2( ) +1/2,5,k 1/2’

(3.25)

where
Ui41/2,5,k+1 — Wit1/2,5.k
(Uz)iv1/2,5k41/2 = 7 , (3.26)
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Ui41/2,5,k — Wit1/2,5,k—1

(U2)it1/2,jk—1/2 = P , (3.27)
and
Wi+1,5,k+1/2 — Wi jk+1/2
(Wa)it1/2, k4172 = 7 /dx DAL (3.28)

In a similar manner the viscous terms of equations (3.15) and (3.16) can be discretized
as well.

Discretization of the convective terms in equations (3.14-3.16) for example (v-V)u
at the point X;;1/5;, where only the first component of velocity ;419 is defined
requires averaging for other velocity components. In figure 3.3 it is shown the xy cross
section of the MAC mesh. The velocities on the red points are used to calculate the

velocity component v/, at the point X; 115 ;5 (blue point).

Vij—1/2,k T Vij+1/2.k T Vi1 j-1/2k + Vit1j+1/2.k

Vit1/2,5,k = 1 , (3.29)
and
Wi jk—1/2 T Wi k+1/2 T Wit1 jk—1/2 T Wit1 jk+1/2
et TN C X )

In equation 3.9 to handle the advective term (v- V)v, we use WENO method (Weighted
Essentially Non-Oscillatory polynomial interpolation of data for the numerical solution

of conservation laws) method [45].

3.5 Numerical algorithm for the FPD method

In this section, we present sequences of successive basic numerical operations in the
Fluid Particle Dynamics method and some specific details of the method. For sake of
simplicity, we neglect thermal fluctuations and assume that the density of the suspended
fluid particles is the same as the density of the solvent. We consider the low Reynolds
number fluids and therefore the advective term (v-V)v in most cases is negligible and
in such cases we neglect it. However, the absence of the inertial terms is the origin
of a slow artificial particle migration perpendicular to the flow. Therefore, in some
cases when we need long term observation of a suspension (for example when number

of iteration is much more than 10°) the convective term can be important and we keep
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Figure 3.4: Shear flow.

it.

Initially, we take three-dimensional [N,][N,][N.] equal spacing (dx = dy =dz =6 =
1) MAC grid and initialize parameters such as number and size of suspended particles
(objects). The next step is to define an initial flow. In the case of a shear flow, we
either impose constant and opposite values of velocities on two opposite plates in a

given direction or impose initial velocity everywhere inside the fluid as
w(x) = qz, (3.31)

where 4 is the shear rate and velocities of plates are v = +%h/2, here h is the distance
between the plates (see figure 3.4). We use no-slip conditions at the fluid/walls interface.
For example in the case of a Poiseuille flow, we can impose pressure gradient in one
direction. We impose the periodic boundary condition in the same direction (the z
direction on figure 3.4). In = and y directions, we consider walls with no-slip boundary
conditions. After initializing the flow, we set the initial positions and orientations of the
suspended objects. Those objects can be simple spherical particles, ellipsoidal particles,
dumbbells or chain of a few spherical/ellipsoidal particles. To study a disordered phase

of a suspension, we randomly and isotropically distribute objects in the simulation box
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(taking care to avoid any overlaps). To obtain a random distribution of particles, it is

convenient to use a random variable uniformly distributed on [0; 1] interval (z; € [0;1]),
T, = a; + (bz — (li>$i

where ¢ = 1,2, 3 for a three-dimensional box, a; and b; are the edges of a box in each
direction and r; is the random number in the [a;; b;] interval. To obtain an isotropic
random distribution of objects one needs an isotropic distribution of vectors in three
dimensions. This can be obtained in the spherical coordinate by defining the angular

variables as follow:
p=m(1 —2xy)

and
cos(0) =1 — 2

where z; and xo are random variables defined in the [0;1] interval. Note that the

distribution associated with the random variable is uniform in [0; 1] interval.

After initializing the particles position, we can define the viscosity field in the whole
suspension using the equations (3.4) and (3.5). The next step is the calculation of
the viscous terms, advective terms (v-V)u (if it is taken into account) and forces f
in equations (3.14), (3.15) and (3.16). The calculation of forces varies depending on
the chosen system of suspended objects, presence of an external field, configuration of
suspensions, etc. Once viscous terms, advective terms and forces are calculated, we can
calculate v* velocity field using the equations (3.14-3.16). This is the first step of the
Projection Method (PM). Then using v*, we solve the Poisson’s equation (3.12) to find
the pressure field (second step of the PM).

To solve the Poisson’s equation, we use either one of two different numerical methods.
The first method is the Successive Over Relaxation (SOR) method where instead of

directly solving the Poisson’s equation (3.12), we solve the following equation:

dp P
— =Ap—-V.-v'—. 32
or b M dt (3:32)

Here 7 is an artificial time and the equation (3.32) is solved by a 3"¢ order Euler method

until an absolute value of each side of the equation is smaller than the chosen value
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Figure 3.5: Basic flow chart of an algorithm for the FPD method.
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which defines an accuracy of the numerical solution. The second method which we use
to calculate numerically the equation (3.12) is based on direct solver of the Poisson’s
equation from the FISHPACK library |50|. Once the temporary velocity field v* and
pressure field is found using the equation (3.13) the new velocity field v"™! can be
calculated immediately. This is the third step of the PM. At this stage, we have full
information about viscosity, velocity and pressure field in whole suspension at proper
places (viscosity and velocity are defined at the center of cells and velocity components
are defined on the corresponding faces) and we can calculate the stress components.
The last step of the full loop is updating positions of the particles in the suspension as
following;:

r,(t+dt) =r,(t) + (v,) dt, (3.33)

where r,, is the coordinate of the n — th particle center and (v,,) denotes the average

velocity inside of this particle:
(3.34)

To ensure averaging inside a particle initially, we take a close cube around the particle

and then use the factor,
_ Mgk — M
- 7

Mp — 1

which is close to 1.0 inside the particle (in high viscosity region) and decreases down to

«v

zero outside and close to the particle. When & = 0, there are only two possible values
for a: inside particles & = 1 and everywhere else @ = 0. The basic flow chart of an
algorithm for the FPD method is shown in figure 3.5.

3.6 Determination of the volume fraction

The volume fraction ¢ of a suspension is defined as the volume of suspended phase

(particles for example) divided by the whole volume of the suspension.

N
Zizl V;/
)

¢ == (3.35)

where N is the number of suspended particles, V/ is the volume of the i — th particle
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Figure 3.6: The viscosity profile of a spherical particle.

and V' denotes the total volume of the suspension. For the suspension of spherical

mono-disperse spheres of radius R the volume fraction will be:

4
§7TR3N '

="

(3.36)

In the FPD method the use of equation (3.35) even for a suspensions of identical
spherical particles is complicated because of the presence of a shell (of size 2§), where
viscosity decreases from the particle viscosity 7, to the solvent viscosity 1 and an effec-
tive radius of beads are not clearly defined (figure 3.6). Furthermore, if two particles
touch each other their total volume can be slightly changed. Therefore, we use an em-
pirical critical value of viscosity 7. in order to estimate the volume fraction ¢. Namely,
we count the number of cells, where viscosity is higher than 7. (7; ;% > 7.), then the
ratio of this number over the total number of cells in the simulation box gives estima-
tion of the volume fraction of the suspension. The critical value of viscosity 7. depends
on the ratio £/a, where ¢ is the fluid-particle interface thickness and a is the typical
size of a particle, it also depends on the particle viscosity 7, and solvent viscosity 7.
The viscosity profile in the middle of a spherical particle for a = 24, £ = 0.50, n = 1,
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Figure 3.7: Forces on and streamlines around a sphere in Stokes flow.

np, = 100, n. = 2 and R.sr >~ a + 2§ = 39 (§ = 1 is the mesh size) is plotted in figure
3.6. To determine the value of 7. and then the volume fraction, we use two different
ways. The first way is to put spherical particles in a uniform Stokes flow and apply a
force F which is required to compensate the drag force F; exerted by the flow on the

particle and make it immobile (see figure 3.7).
F, = 6mRU, (3.37)

here U is the flow velocity at infinity. At equilibrium F = F; and from equation (3.37)
the effective radius R.;; can be determined. Using the effective radius for a single

particle, one can estimate the value of the critical viscosity 7. and R.ss for given values

of a and &.

The second method to determine the value of the critical viscosity is to chose it in
such a way that the volume fraction and the corresponding effective viscosity 7., (of

suspensions of rigid spherical particles) is in agreement with the Einstein’s law in dilute
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regime,
)
neff = 77<1 + §¢)7

Both ways for determining 7. is consistent to each other and gives the same results.
For example for spheres with radius a = 26 and thickness ¢ = 0.50 the critical value
of viscosity is 1. = 2 which corresponds to the effective radius Resp ~ a + 2§ = 30 as

shown in figure 3.6.

3.7 Improvement and extension of the FPD method

In this section, I briefly list the improvements and extensions I made to the FPD
method.

1. In the Successive Over Relaxation (SOR) method for solving the Poisson’s equa-
tion (3.12) instead of equally relaxing all the cells in the simulation box, we can sepa-
rately relax part of them where absolute value of the right hand side of equation (3.32)
is bigger to the value estimated on the rest of the cells which are already below the
precision value. Depending on the amplitude and intensity of the forces in simulation
box this modification speeds up the calculations time by factor from 1 to 12.

2. Adding the periodic boundary condition in all directions. In the case of a shear
flow the periodic boundary conditions can be applied only in two directions. For exam-
ple along z and y in figure 3.4.

3. Generalization of the shape of suspended particles to an ellipsoidal shape. In-
stead of the auxiliary field (3.4) which can only express spherical particles, we use the
generalized auxiliary field (3.38). It makes possible to describe any particle (or part of
object) of ellipsoidal shape.

Pn(T) =

DO | —

§

1+ tanh <(abc)1/3 (1= S)>] , (3.38)

and

: (3.39)

(Ar,.n,)? (Ar,.ny)? (Ar,.n.)?
° T \/ a? + b? + c2
where Ar, = r —r,, r, is the off-lattice center of the n — th ellipsoid, a, b, and ¢

are semi-axes and n,, n, and n. are orthogonal unit vectors along those semi-axes,
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Figure 3.8: Three dimensional view of the ellipsoidal particle in the simulation box. a)
The viscosity field. b) Isosurface of the viscosity field.
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respectively. Moreover in the case of an ellipsoidal particle one needs to rotate the unit
vectors ng,, n, and n. of each ellipsoids at each time iteration. To do so, we calculate
the vorticity vector w of each ellipsoids at every iteration by averaging components of

the vorticity inside ellipsoids. The angular velocity €2 is half of the vorticity,
w, =V xv, =20,
Using the average angular velocity
1
(@) =~ Zﬂ: Q, (3.40)
one can rotate the unit vectors n,, n, and n. as follow:
n,(t + dt) = n;(t) + dt((2) x n;(t)), (3.41)

where ¢ = a,b,c. We need to carefully rotate the smallest parallelepiped around the
ellipsoid where averaging (equation 3.40) takes places with the particle. On figure 3.8
we show three dimensional view of the ellipsoidal particle with a = 200, b = ¢ =
75, € = 056, 7 = 1, n, = 100, n, = (=1/v/2,1/v/2, 1), n;, = (0,0, 1) and n, =
(1/v/2, 1/4/2, 1) a) the viscosity field. b) the isosurface of the viscosity field.

4. In a shear flow, applying force (shear stress) on the plates and measure the
established shear rate instead of applying a given shear rate (by applying constant
velocities on plates) and calculating stress close to walls (plates). If we impose the
shear stress, the velocity of plates varies according to the average velocities on their
closest active layers.

5. Calculation of forces in equations (3.14), 3.15) and (3.16) for every individual

studding systems (models). For swimmers for example (see chapter 6).

3.8 Examples

In this section, are presented some canonical results obtained using the FPD method
in comparison to corresponding well known analytical solutions to validate the FPD
method.
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3.8.1 Stokes flow past a sphere

One of the fundamental results in low Reynolds number hydrodynamics is the Stokes
solution for a uniform flow past a sphere. The exact analytical solutions for veloc-
ity components and the pressure in the spherical coordinate system (r,6,¢) at zero

Reynolds number have the following form [51]:

R* 3R
v, = Ucost [1 t55~ E] , (3.42)
— Ueosp |1 30 (3.43)
e T ‘
and 3 nUR
n
P=Poe— 5 3 cosb. (3.44)

Here v, and vy are the radial and angular components of fluids velocity in the spherical
coordinates, U and p,, are the velocity and pressure of the uniform flow at infinity (far
enough from the sphere), 7 is the viscosity of the fluid and R is the sphere radius. In
order to numerically simulate Stokes flow fast a sphere, we use a simulation box with
dimension [60][60][60] and impose an initial uniform flow everywhere with the velocity
v = (0,0,U), where U = 0.02 is constant on the boundaries. Then we use a spherical
particle with a radius a = 46; and fluid-particle interface thickness £ = 0.50, (Repy ~
a + 2§ = 50) placed in the middle of the box. We apply a force F = —F; = —6mnRv
according to equation (3.37) at the center of the particle to compensate the drag exerted
by the flow on the particle (see figure 3.7). Size of the simulation box in each direction
is six times bigger than the diameter of the particle, so we neglect a confinement effect
due to the finite size of box and keep fixed the velocity of the fluid on the boundary
plates of the box perpendicular to the z axis. On figure 3.9 we show the superposition
of two (numerical and analytical) velocity fields for the spherical particle in the uniform
Stokes flow with U = 0.02, a = 46, £ = 0.59, R.fr >~ a+2¢ = 59 (§ = 1 is the mesh size).
The dark green circle corresponds to the radius a and the light green circle corresponds
to the radius with diffusive interface a+2¢. Three dimensional view of the velocity field
around the spherical particle in the uniform Stokes flow are shown on figure 3.12 for the

same values of the parameters. We also show relative errors of the velocity field. On
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Figure 3.9: a) The velocity fields around the spherical particle in the uniform Stokes flow.
b) The relative errors of the velocity field.
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Figure 3.10: The pressure fields around the spherical particle in the uniform Stokes flow.
a) numerical result obtained using the FPD method. b) The theoretical prediction.
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Figure 3.12: Three dimensional view of the velocity fields around the spherical particle
in the uniform Stokes flow.

the panel a) red arrows represents numerical results using the FPD method while the
blue arrows are plotted using the (3.42) and (3.43) analytical solution. On the panel
b) we show the relative errors of the velocity field estimated as following:

. |Vnum - Vthe|

€= )

U
where v, and v, are numerical and theoretical velocities, respectively.

The figure 3.10 shows the pressure fields around a spherical particle in a uniform
Stokes flow: a) numerical result obtained using the FPD method, b) The exact ana-
Iytical prediction (3.43) with us = 0.02, a = 40, £ = 0.50 and Resr >~ r + 2§ = 50.
On figure 3.11 the pressure is plotted in the middle of the box for three different values
of fluid-particle thickness: a) & = 0; Repp >~ 49, b) € = 0.5; Repp ~ 5 and ¢) & = 6;
Rc.sy ~ 60. The red dots are numerical results and the solid line is plotted using the

analytical solution. The double arrow indicates the region occupied by the sphere along
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Figure 3.13: The velocity profile along z— axis for a Stokes flow past a sphere.

z. On figure 3.13 the velocity profiles is shown along x axis for a Stokes flow past a
sphere. The numerical results (full circles) are compared to the analytical results (solid
curve) outside of the sphere calculated using equations (3.42-3.43).

To illustrate how the viscosity contrast represents the solid-like nature of the fluid
particle in the FPD method on figure 3.14 we show the velocity fields of Stokes flow
past a sphere calculated using FPD method for different values of the viscosity ratio
between inside and outside of the bead: a) n,/n =1, b) n,/n =3, ¢) n,/n =10 and d)
n,/n = 100. The velocity of the flow is U = 0.02, radius of bead a = 66 and & = 0.56.
As we can see on figure 3.14 d) and figure 3.9 a) for the high viscosity contrast the flow
field is very similar to those for a solid particle. While there are some recirculation of
the flow inside the particle for small viscosity ratios (3.14 a) and b)).

Note that our code is able to handle zero fluid-particle interface thickness (£ = 0).
However, some small oscillations appear in the numerical values of the pressure as shown
in figure 3.10 a. That is the reason why we choose for all our simulations the value

¢ = 0.50 which ensures the most reliable velocity and pressure fields.
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Figure 3.14: The velocity fields of Stokes flow past a sphere for different viscosity contrast.



38 CHAPTER 3. FLUID PARTICLE DYNAMICS
3.8.2 Spherical particle in a shear flow

An another important example to compare our numerical result to the well known exact
theoretical solution is the shear flow around a rigid spherical particle at zero Reynolds
number. The solutions for the velocity components (u, v, w) and pressure for the shear

flow around a sphere in Cartesian coordinates have the following form [52]:

x 1 x 1 522x [ 1 1 Qux
D S § R I T B i [ 4
Y 7{2[ 7“5}—'—2{ 7“3} 2 R? |:7“5 7“7} 7“3}’ (3.45)
2z 1 z 1 5za2 [ 1 1 Oz
=A== |l-=|—-=z|l-=| == |=—= — 0, 3.46
v 7{2{ 7’5] 2[ rd} 2 R? [7’5 7“7}—'—7“5} ( )
Sxyz | 1 1
e ACh (347
and 6
Fxz
P=Px~ 35 (3.48)
Where
2 g2 22
"TVRT TR TR

4 is the shear rate, p,, is the pressure far enough from particle, R is the radius of
particle and

Q=2 (3.49)

Y

here  w, denotes the angular velocity of a rigid sphere in the shear flow. If a spherical
particle is free in the shear flow then it rotates with the angular velocity w, = —%/2, so
) = 1/2. When particle is not rotating in the shear flow (for example in the presence of
an external counter torque) the angular velocity w, can be equal to zero and therefore
Q2 = 0. On the contrary if €2 is increased, (using external torque) we can obtain angular
velocity w, = —% and €2 = 1 for example. To compare the result obtained with FPD
method to the analytical one for a spherical particle in a shear flow, we took three-
dimensional [60][60][60] simulation box and imposed a shear flow in ZOX plane (see
3.4) with the shear rate 4 = 0.02 with a spherical particle with radius a = 46 and
€ =0.56, (Reff ~ a+ 26 = 59) placed in the middle of the box. The fluid velocity on
the boundary plates of the box (perpendicular to x axis) is constant, so the shear rate

is fixed during the simulation. To stop or enhance the rotation of particle in shear flow
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Figure 3.15: a) The full velocity field around the spherical particle

[

n a shear flow. b)

The disturbance of the velocity fields. 2 = 1/2.
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Figure 3.17: a) The full velocity field around the spherical particle in a shear flow. b)

The disturbance of the velocity fields. €2
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Figure 3.18: The pressure fields around the spherical particle in the shear flow. a) Nu-
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Figure 3.20: The velocity profile along the x— axis for a sphere in the shear flow.

we applied force quadrupole on the particle (see details in chapter 5).

In figures 3.15, 3.16 and 3.17 it is shown two different representations of two velocity
fields for a spherical particle in a shear flow for three values of the angular velocity:
2 =1/2,Q=0and 2 = 1, respectively. Red arrows presents the velocity field obtained
using the FPD method and the blue arrows corresponds to the velocity field plotted
using analytical expressions (3.45) and (3.46). The radius of the particle is a = 44,
the fluid-particle interface thickness & = 0.5 and the effective radius R.sp >~ a + 2§ =
5. On figures 3.15, 3.16 and 3.17, a) shows the fluid velocity fields while b) shows
disturbances of the velocity fields of the shear flow due to the presence of the particle
(v/ = v — 4z). Figure 3.20 shows the velocity profiles v = V/u? 4 v2 + w? along z axis
for a sphere in the shear flow. The numerical results (full green circles) are compared
to the analytical results (solid curve) outside of the sphere obtained using equations
(3.45-3.47). The pressure fields around the spherical particle in the shear flow obtained
using the FPD method is compared to the theoretically predicted one plotted using the

equation (3.48) on the figure 3.18. On figure 3.19, we show three dimensional views of
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the numerically obtained velocity around the spherical particle in the shear flow and
the disturbances of the velocity fields of shear flow for the parameters given above.

Note that the numerical method shows the velocity and pressure distribution even
inside the particle since the viscosity of the particle in the simulation is finite (n = 1;
n, = 100) while the analytical expressions (3.48) predicts the pressure only outside of
the particle.

3.8.3 Collision between two spheres

Another test of the method is the simulation of the collision between two spheres in
a symmetric shear flow zOx—plane (figure 3.21). Tt allows to test the contact events
between two particles as well as the reversibility of the Stokes equation. The two spheres
are initially moving toward each other, symmetrically positioned along the z— axis with
respect to the line v, = 0. The initial z inter-distance between the particle centers is the
impact parameter noted b. Of course, when they are very close, the two spheres are not
in true physical contact at any time: a thin layer of fluid is clearly visible on figure 3.21.
When the two spheres collide (if b < 2R), they form a doublet. This doublet rotates
around the y — axis, its orientation is defined by the angle ¢. Initially, when the two
spheres come into contact, (at ¢ = o which depends on b) the doublet is rotating as a
rigid system at a certain angular velocity. Then for ¢ = —¢, the two sphere separate.
Separation and contact as well as the spheres trajectories before and after ¢ = 0 are
the mirror images of each other through the plane z = 0 simply reflecting the Stokes
equation reversibility in the case of rigid spheres. The angular velocity of the doublet
is not constant but increases to a maximum at ¢ = 0. Following the work of Bartok
& Mason [53], we compare the doublet rotation [¢(t)] to the Jeffery orbit [54| of an

ellipsoid of revolution with an axis ratio of 2:

24t
tan(p) = 2tan (%) : (3.50)
Figure 3.21 shows the collision between two identical spheres in a shear flow. a) b = 5§
and R = 30 (a = 2.50, £ = 0.50). b) b =80 and R = 5J (a = 46, £ = 0.5). The
upper sphere is going to the right while the lower one is going to the left. The inset

show the doublet when the spheres are in contact. The dotted-line circles represent the
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Figure 3.21: The collision between two identical spheres in a shear flow. a) b = 50 and

R =30.b)b=28) and R = 5J.



3.8. EXAMPLES 47

90 T | T | T | T T T T T T T Z
" |— bR=16 ]
—- bR=14 ) B
O |... br=12 .
i e Bartok & Mason v i
30 —
s o ya .
30 - o ]
- /”/ ° .
/’I ° °
-60 |- -
-90 ’/l | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
-025 -02 -0.15 -0.1 -0.05 O 005 01 015 02 025
t/T

Figure 3.22: The variation of ¢ with time for different impact parameters and compared
to equation (3.50) as well as experimental results of Bartok & Mason [53].

initial positions of the spheres at time ¢t = —t3. The dashed-line circles represents the
spheres at t = 0 and the solid-line circles at a time t = t5 . The two curves represents
the trajectory of the sphere centers. One can see that the z—distance between the two
spheres is identical for t = +t, , this is due to the reversibility of the Stokes equation
in the case of rigid spheres. Figure 3.22 shows an excellent agreement between our
numerical results, the law (3.50) and the experimental values of Bartok & Mason [53].
On this figure, time is conventionally fixed to ¢ = 0 when the doublet is vertical (along

the z— axis, i.e. p =0).

3.8.4 Ellipsoidal particle in the shear flow

The motion of an ellipsoidal particle in a shear flow of a Newtonian fluid was studied by

Jeffery in 1922 |54]. The exact analytical solution for the orbit of ellipsoid of revolution
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- 2

Figure 3.23: The ellipsoidal particle in the shear flow.

in shear flow at zero Reynolds number has the following form:

tan(yp) = %tan (%) : (3.51)
where ¢ is the angle of orientation a, b and ¢ (b = ¢) are semi-axes of ellipsoid,¥ denotes
the shear rate and ¢ is the time. To compare orbit of rotation obtained by the FPD
method to the Jeffery’s orbit defined by equation (3.51), we put the prolate spheroid in
the middle of the simulation box where the shear flow is imposed with the shear rate
4 = 0.02. The semi-major axis a is initially parallel to the z axis, the semi-minor axis
b is directed along = (c = b) (see the figure 3.23). The figure 3.23 shows the schematic
diagram of the ellipsoidal particle in the shear low with 4 = 0.02, a =5, b = ¢ = 2 and
¢ = 0.5. The orientation angle ¢ is defined in the range (—m/2; 7/2) using the equation
(3.51) while the angle of orientation ¢; obtained from the simulation, ¢, = arccos(a,,)
is defined in the domain (0; 7), here a, is x component of the unit vector along the

semi-minor axis a. We decompose both orientation angles in the interval (0; 7/2) in
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Figure 3.24: Comparison between the Jeffery’s orbit and the one obtained using the FPD
method.

order to compare the numerically obtained result and the analytical prediction.

Y1t
' = |arctan |ro.tan—L e (0: 7/2 3.5
© arctan [r cmre eyt ¢ € (0; m/2) ( )
/ ﬂ- m /
Y] = ’5 — ‘arccos(ax) -5 ’ , 1 € (0; m/2) (3.53)

here r, is the ratio between the major and minor axis of an ellipsoid of revolution.
The figure 3.24 shows comparison between the numerically obtained orbits of ellip-
soid using the FPD method to the Jeffery’s orbits defined using the equation (3.51).
The solid red line ¢/ defined in the interval (0; 7/2) represents the numerical result.
While the dashed blue line ¢’ defined in the same interval corresponds to the Jeffery’s
orbit with r, = 0.518. The semi-axes are a = 50; b = ¢ = 20, the particle fluid interface
thickness is £ = 0.50 and shear rate is 7 = 0.02. The ratio between the major and



50 CHAPTER 3. FLUID PARTICLE DYNAMICS

:
= - = -
25 — 25+ —
21~ N 2 N
S =
15— — 1.5 —
= N 1 N
05— — 05— —
0 PR [ [ [ | | | [0« e S T T S I NS
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 16 18 20
a) 7t b) 7t

Figure 3.25: Jeffery’s orbits a) r, = 0.5 and r/ = 0.518. b) r, = 2/7 and 7/ = 0.33.

minor axis 7, in equation (3.52) fits the numerical result if 7" = 0.518, which is close

to the expected one,
a+2§ 2+2x05

e e 2 T 542x05

The orientation angle for rotation of prolate spheroid under shear as a function of time

0.5.

are shown in figure 3.25. The red curves represents the Jeffery’s orbit defined in the
interval (0; 7). The blue dotted lines are the result of our simulations using the FPD
method. The shear rate ¥ = 0.02. a) a = 55; b = ¢ = 2§; £ = 0.59; r. = 0.5 and
r/ =0518.b) a=60; b=c=05; & =0.50; 7. = 2/7 = 0.286 and !/ = 0.33, where 7/

is the ratio between the major and minor axis used in equation (3.52).

3.9 Conclusion

In this chapter, we described the Fluid Particle Dynamic method (FPD). In the intro-
duction (section 3.1), we reviewed some background and utilization of the method as
well as its positive and negative aspects. In the section 3.2, we introduced the main
theory behind the FPD method. In the next section 3.3, we considered the projection
method which is integrated with the FPD method. Then, in section 3.4, we introduced
the MAC grid and some details of the discretization. In the next section 3.5, we wrote

down the numerical procedure of the FPD method and present the basic flow chart
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of the algorithm. In the section 3.6, we selectively considered determination of the
volume fraction. In the next section 3.7, we briefly listed number of changes and pos-
sible extensions made in the FPD method. Then in the section 3.8, we presented some
canonical examples obtained using the FPD method in comparison with well-known
analytical results. Namely, Stokes flow past a sphere, a spherical particle in the shear
flow, collision between two spheres and Jeffery’s orbit for ellipsoidal particles in the
shear flow. These examples show very good agreements with the corresponding exact
analytical solutions which provides additional reliability of the FPD method.

Now that we are convinced about the reliability of the FPD method, in the next
chapters, we will extensively use this method to solve several different problems (a
confined sphere in a shear flow: chapter 4; a suspension in the presence of torque

chapter 5; suspension of micro swimmers chapter 6).
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Chapter 4

The effect of confinement on the
rotation of a spherical particle in a

shear flow

In this chapter, we numerically examine the role of particle-wall interactions for a single spherical particle in a
Newtonian fluid being confined and submitted to a simple shear flow at low Reynolds numbers. We show that
particle-wall interactions decrease the rotational velocity of the sphere in the shear flow. We also show that
in a unconfined shear flow the presence of the wall in the vicinity of a particle decreases as well the rotational
velocity and changes the translational velocity of the particle so that the difference between velocity of the
particle and the velocity of the wall decreases. All simulations are performed in 3D. Our numerical results are
compared with another theoretical and numerical works, a very good agreement is found with [55, 56, 18, 57, 58]
and disagreement with [59].

Dans ce chapitre nous examinons numériquement le role des interactions particule-paroi pour une seule particule
sphérique dans un fluide Newtonien confinée entre deux parois et soumise & un simple écoulement de cisaillement
a faible nombre de Reynolds. Nous montrons que 'interaction particule-paroi fait diminuer la vitesse de rotation
de la sphére. Nous montrons également que dans un cisaillement non confiné en présence d’une seule paroi,
une particule proche de la paroi voit diminuer sa vitesse de rotation ainsi que la différence entre sa vitesse de
translation et la vitesse de la paroi. Toutes les simulations sont réalisées en 3D. Nos résultats numériques sont
comparés avec des travaux théoriques et numeériques, un trés bon accord est trouvé avec [55, 56, 18, 57, 58| et
de désaccord avec [59].

4.1 Introduction

Quite often, in microfluidic devices used in biochemical and biomechanical processes

(to study blood samples, bacteria, micro-swimmers etc.) one or more dimensions of a

33
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micro-channel are comparable with the size of the objects in this channel. In such cases
an effect of the finite dimension of the channel on the flow fields and motion/rotation
of particles becomes important. Note that the effect of confinement on a sheared rigid
object is similar to geological processes: tectonic shortening of deep-seated rocks to

shallow levels in the lithosphere [60, 61], the dispersion of agglomerated fillers [62].

The behavior of a spherical particle in an infinite shear flow is very well described
analytically [54]. The spherical particle experiences a uniform rotation with an angular

velocity w, = £%/2, where 7 is the shear rate.

In the case where a two walls moving with equal but opposite velocities v are touching
the spherical bead (the sphere diameter is equal to the gap size between the walls) the
tangential velocity of the bead is the same as the velocity of walls, so the angular
velocity of the bead is w, = £% [59] (see figure 4.1).

The effect of finite dimension on the rotation of a single spherical particle under shear
flow was numerically investigated by Bikard et al. [55] using Rem3D finite element
method. They found that proximity of the particle and walls increases the rotational
period of the sphere but because of the numerical convergence problems they did not
reach the sticking contact between the sphere and the walls. The similar behavior was
found by D’Avino et al. |56] using the finite element method. However, an opposite
effect was obtained by Pomchaitawarda et al. [59]. They observed an enhancement
of the angular velocity of the sphere when reducing the gap size. Pomchaitawarda et
al. used a cone-and-plate shearing device. However, they report in the limit cases that
w, = —% with a sticking contact between the sphere and the walls and w, = —7/2 in

an unconfined flow.

We make numerical simulations using FPD method (discussed in chapter 3) and
found that by decreasing the gap size between spherical particle and walls while the
particle is getting closer to the walls, the absolute value of the angular velocity of the
particle is decreasing. The result is in very good agreement with the result of Bikard et
al. [55] as well as results of D’Avino et al. [56] and analytical calculations of Sangani
et al. |18] but our result is in disagreement with the measurement of Pomchaitawarda
et al. [59].

We also investigate the effect of a singe wall on the rotation and movement of

the spherical particle. When the particle is close to the wall in the shear flow, ro-
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|

Figure 4.1: Schematic diagram of a spherical particle with sticking contact to walls in
shear flow.

tational velocity of the particle decreases and the translational velocity of the particle
increases/decreases so that the difference between the velocity of the particle and the
velocity of the wall decreases in comparison to the velocity (rotational and transla-
tional) of the flow. Our results are compared with the literature and a good agreement
is found with the theoretical work of Goldman et al. [57] and experimental observations
of Darabaner et al. [58].

In the following section, we consider parameters used in the numerical method. Then
in section 4.3, we show our numerical results in comparison to the ones of other authors,
we give an interpretation of our results, the velocity fields around a spherical particle

in a shear flow for different confinements. We conclude in section 4.4.

4.2 Numerical consideration

In order to study the effects of confinement and presence of walls on the dynamics of a
single spherical particle in a shear flow, we use the "fluid particle dynamics” FPD (see
details in Chapter 3). The particle is considered large enough and the Brownian motion
is not taken into account. The density of the particle and of the solvent is equal, so
the effect of gravity is neglected. A spherical particle with viscosity 7, is placed in a
Newtonian liquid of viscosity n sheared between two walls. The simulation box size is
l, = (, =600 and 130 < {, = w < 606, here, § = 1 is the mesh size. The spherical

particle is placed at the center of the simulation box (see figure 4.2). The two walls
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Figure 4.2: Schematic representation of the simulation box around spherical particle in
a shear flow.

located at = +w/2 move with v, = £, velocities,

L

v, (x = ig,y,z) = tuy 5

2

respectively, such that the constant shear rate (4 = 0.025) is maintained for different
values of w. The periodic boundary conditions are used along y and z directions, while
fixed velocities are imposed to the walls. No-slip conditions are used at the fluid /walls
interface.

The time step for each numerical iteration is 0t = 0.001. A typical size of particle
used in the simulations is a = 40, the fluid-particle interface thickness & = 0.5, and
the effective radius of particles R ~ a + 2§ = 50. The small Reynolds number is such

that: L
pia

1
and the advection term in the Navier-Stokes equation is taken into account.

Re = ~ (.625,

4.3 Simulations results

In this section, we present our numerical result obtained with FPD method in compar-

ison to other numerical and theoretical results. Then, we show the flow field around
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Figure 4.3: Normalized angular velocity as a function of (Gap size)/(Particle diameter).

the confined particle. finally, we show some results concerning the effect of the wall on

the translational and rotational velocities of the particle.

4.3.1 Rotation of confined spherical particle in a shear flow

To study the effect of finite dimension on the rotation of a spherical particle in a shear
flow, we place the spherical particle with a = 46, £ = 0.59, (Rff =~ 5J) where § = 1 in
the center of the simulation box. We vary the gap size w between the walls from 136 to
600 and calculate the angular velocity of particle w,. To calculate the angular velocity
of a rigid spherical particle, we calculated the vorticity of the velocity field V and then

averaged it inside the particle:

1
wy:§ < rotV >,
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here < . > denotes averaging in the high viscosity region. On figure 4.3, we plot the
normalized angular velocity w; = w,/(—7¥/2) as a function of w/2R where w is the gap
size and 2R is the particle diameter. Our numerical results (full red circles with line) are
compared with the results of Bikard et al. [55] (blue squares), D’Avino et al. [56] (green
triangles), Sangani et al. [18] (violet diamonds) and Pomchaitawarda et al. |59] (black
stars). A good agreement is found with results of Bikard et al. [55], D’Avino et al. [56]
and Sangani et al. [18] while disagreement is found with the experimental results of
Pomchaitawarda et al. [59] Although, when the sphere diameter is equal to the gap size
according to the rigid contact between the sphere and walls angular velocity of sphere
should be w, = —%. The results of Pomchaitawarda et al. incorporates correctly this
behavior (w = —%, when w = 2R) as well as another asymptotic behavior: w = —5/2
in unconfined flow. However, we believe that some experimental artifacts are present
in their results. There are certainly some solid contacts between the particles and
the walls of their rheometer. The methods of Bikard et al. [55], D’Avino et al. [56]
and Sangani et al. [18] cannot express the case where rigid contact occur between the
sphere and walls. In our simulations for very small gap size the angular velocity of the
sphere increases (see figure 4.3). Because of the presence the diffusive interface around
the sphere where viscosity of fluid decrease from the particle viscosity (7, = 100) to
the solvent viscosity (n = 1): when the gap size decreases an equivalent rigid contact
between sphere and walls occurs even before w/(2R) reaches 1.0 within a small interval
with different intensity and w* = w/(—v/2) increases.

As a matter of fact, when the sphere interface touches the walls, the angular velocity

of the wall is imposed to the sphere and w, — —7¥ for w/2R — 1.

4.3.2 The velocity field around confined spherical particle in a shear flow

Figures 4.4 and 4.5 show the xz cross section of the velocity field at the center of
the simulation box as well as the spherical particle placed in the confined shear flow.
a) and c¢) show v— the velocity field of the shear flow around the particle, while b)
and d) represent the disturbances of the velocity field due to presence of the particle
(v = v — gk, here k is the unit vector along z axis). The size of particle a = 40,
§ = 0.59, and R.ff = 56 where 6 = 1. shear rate 7 = 0.025, n, = 100 and n = 1. On
figure 4.4 for a) and b) w/(2R) = 1.0, and for ¢) and d) w/(2R) = 1.4. For figure 4.5
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Figure 4.4: a) and ¢) cross section of the full velocity field around the spherical particle

in confined shear flow. b) and d) the disturbance of the velocity fields.

w/(2R) =1.0,¢) & d) w/(2R) = 1.4.

a) & b)
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Figure 4.5: a) Cross section of the full velocity field around the spherical particle in
non-confined shear flow. b) The disturbance of the velocity fields. w/(2R) = 4.0.
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Figure 4.6: Schematic diagram of the shear flow around the spherical particle close to a
wall.

confinement is very small w/(2R) = 4.0 and the flow is quite similar to the uniform

shear flow around a spherical particle (see 3.8.2).

This velocity field allows us to better understand the decrease of the angular velocity
wy, when increasing the confinement. The presence of a rigid spherical particle in
confined shear flow creates two vortices on the left and right sides of the particle as we
can see on figure 4.4 b) and d). Those vortices rotate in the opposite direction with
respect to the one imposed by the shear flow on the particle and they slow down the
particle rotation. A flow line between the particle and the walls is clearly oppose to the
shear flow (figure 4.4 d). We can also clearly see the recirculation areas on figure 4.4 a)
and c) left and right side of particle which are vanishing small when gap size is larger
(see figure 4.5 a). Note that this vortexes have been also obtained by Kaoui et al. [63]

on the confined spherical vesicle.
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Figure 4.7: Change of angular velocity for different distances to the wall.

4.3.3 The effects of a single wall on the dynamics of a spherical particle in

a uniform shear flow

We found that when a spherical particle is close to a single wall even in a unconfined
shear flow the particle velocity changes. Namely, the particle rotational velocity de-
creases when the particle approaches the wall and the translational velocity increases
or decreases depending on the velocity of the wall in such a way that the difference
between the velocity of the particle and the velocity of the wall decreases compared to
the difference between the velocity of the flow at the same place and the velocity of the
wall (see blue arrow on figure 4.6). In order to separate the difference of the transla-
tional velocity of the particle from the velocity of the shear flow, velocities of walls (v
and vy) are such that shear rate is fixed and velocity of shear flow at the center of the

particle is zero in the absence of a particle (see figure 4.6). On figure 4.7 , we compare
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Figure 4.8: The translational velocity of the spherical particle for different distance to
the wall.

normalized angular velocity wy = w,/(—7/2) of a spherical particle placed close to a
wall (pink squares with line) and wy for a spherical particle in a confined shear flow (red
circles with line) as function of w/(2R) with their results of Goldman et al. [57] and
Darabaner et al. [58]. Where R is the radius of the particle and w is twice the distance
from the center of the particle to the wall (see figure 4.6). In the case of the confinement
(red circles with line) w is the gap size between walls. As we can see on figure 4.7 the
particle rotational velocity decreases in both cases, in confinement and in the vicinity
to a single wall. When w/(2R) = 1.32, the angular velocity of confined sphere is about
9% smaller than angular velocity of spherical particle placed close to single wall. Below
w/(2R) = 1.32 the sphere starts to touch the wall (through its interface of thickness &)

and w* starts to increase.

Figure 4.8 shows (—v*/¥) the change of translational velocity of a spherical particle
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Figure 4.9: Decrease of the translational velocity of the spherical particle close to a wall
in a shear flow.

in a shear flow close to a single wall as function of w/(2R), here v* is the difference
between the velocity of the particle and the velocity of the pure shear flow at the center
of particle, 7 is the shear rate. The particle radius a = 4.49, fluid-particle interface
thickness £ = 0.50, and effective radius R.;s = 5.40 where 6 = 1. shear rate ¥ = 0.025.
On figure 4.9 the full normalized translational velocity of the spherical particle (U/(%%))
as function of w/(2R) is compared with the theoretical work of Goldman et al. [57] and
good agreement is found. Here U is the full translational velocity of the particle in the
shear flow (U = 9% +v* and U/(57) = 1 + 2v*/(fw)).

Figure 4.10 shows the xz cross sections of the velocity field at the center of the
simulation box. The spherical particle with effective radius R.;y = 5.40 is placed close
to a single wall in the shear flow. a) shows the full velocity field of shear flow around

particle v, while b) is the disturbances of the velocity fields and ¢) is the velocity field
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Figure 4.10: a) Cross section of the full velocity field around the spherical particle in

unconfined shear flow placed close to wall. b)
The velocity field shifted by v*.

The disturbance of the velocity fields. c)



66 CHAPTER 4. THE EFFECT OF CONFINEMENT

in the frame where the particle is immobile (v = v —v*). The distance from the center
of the particle to the wall is w/2 = 74. The flow field close to wall is stronger and the
particle is moving left with the velocity v* = —0.0225 k, where k is the unit vector along
z axis. This creates an impression that the particle is higher than the green contour
as we can see on figure 4.10 a). After shift the full velocity field v by v*, we recover a

vortex which shows the particle in its actual place, in the green contour (see figure 4.10

c).

4.4 Conclusion

In this chapter, we conducted a numerical study in order to investigate the effect of
confinement on the rotation of a spherical particle placed in the shear flow, as well as
the effect of the wall on the rotation and translation of a particle close to a single wall in
an unconfined shear flow. We show that the confinement reduces the particle rotation.
We compare our result to the other numerical and theoretical results and found very
good quantitative agreement. We also found that the vicinity of a single wall modifies
the velocity of a particle. Namely, the angular velocity of a particle is reduced and the
translational velocity of a particle is modified so that the difference between the velocity
of particle and the velocity of the wall is decreased. We believe taking into account
those effects presented in confined geometry would be useful in order to optimize the
setup of some microfluidic devices. We also showed that when the particle is very close
to the wall(s) it starts to touch to wall(s) through its interface (of thickness &). It
seems that we are able to reproduce a sort of solid contact between the particle and
the wall(s).

In the next chapter, we will consider the rheology of the sheared suspension in
presence of an external torque which modifies as well the rotation of particles in a shear

flow.



Chapter 5

Sheared suspensions in presence of an

external torque

In this chapter, we conduct a numerical investigation on sheared suspensions of non-colloidal spherical par-
ticles on which a torque is applied. Particles are mono-dispersed and neutrally buoyant. Since the torque
modifies particles rotation, we show that it can indeed strongly change the effective viscosity of semi-dilute
or even more concentrated suspensions. We performed our calculations up to a volume fraction of 28%. And
we compare our results to data obtained at 40% by Yeo and Maxey [Phys. Rev. E81, 62501 (2010)] with
a totally different numerical method. Depending on the torque orientation, one can increase (decrease) the
rotation of the particles. This results in a strong enhancement (reduction) of the effective shear-viscosity of the
suspension. We construct a dimensionless number © which represents the average relative angular velocity of
the particles divided by the vorticity of the fluid generated by the shear flow. We show that the contribution of
the particles to the effective viscosity can be suppressed for a given and unique value of © independently of the
volume fraction. In addition, we obtain a universal behavior (i.e. independent of the volume fraction) when
we plot the relative effective viscosity divided by the relative effective viscosity without torque as a function of
O. Finally, we show that a modified second Faxén law can be equivalently established for large concentration.

Dans ce chapitre, nous effectuons une étude numérique sur les suspensions non-colloidales de particules
sphériques en cisaillement ot un couple est appliqué sur les particules. Les particules sont mono-disperses
avec une flottabilité neutre. Comme le couple modifie la vitesse angulaire des particules, nous montrons qu’il
peut en résulter un fort changement de la viscosité effective des suspensions en régime dilué mais aussi a des
régimes plus concentrés. Nous avons effectué nos calculs jusqu’a une fraction volumique de 28%. FEt nous
comparons nos résultats aux données obtenues a 40% par Yeo et Maxey [Phys. Rev E81, 62501 (2010)] avec
une méthode numérique totalement différente. Selon I'orientation du couple, on peut augmenter (diminuer) la
rotation des particules. Il en résulte une augmentation (diminution) forte de la viscosité effective de la sus-
pension. Nous construisons un nombre sans dimension © qui représente la vitesse angulaire relative moyenne
des particules divisée par la vorticité du fluide générée par I’écoulement de cisaillement. Nous montrons que
la contribution des particules a la viscosité effective peut étre supprimée pour une valeur donnée et unique
de © indépendamment, de la fraction volumique. De plus, nous obtenons un comportement universel (i.e.
indépendant de la fraction volumique) lorsque nous tragons la viscosité relative divisée par la viscosité relative
en 'absence de couple en fonction de ©. Enfin, nous établissons une seconde loi de Faxén empirique valable
des régimes dilués aux régimes concentrés.

67
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5.1 Introduction

Solid particles suspended in a conventional Newtonian liquid form a suspension. This
composite fluid constitutes a widespread fluid material in nature as well as in industry
[64]. Fluids with controllable viscosity when an external field is applied are of a con-
siderable interest because of their occurrence in many kinds of industrial devices such
as active dampers, clutches or brakes [13, 12, 11]. For example, concerning automobile
dampers: depending on road conditions, viscosity of the damping fluid needs to be ad-
justed. An external field is used to modify properties of the fluid by exerting a torque
on suspended particles of nanometric or micrometric size. For electro-rheological (ER)
fluids [21, 65], polarizable particles are dispersed in a nonconducting liquid. When the
suspension is submitted to an electric field, each dipolar particle can align itself along
the electric field direction. This alignment is suspected to stop or modify the shear-
induced rotation of particles perpendicularly to the field. A second phenomenon is a
clustering: the particles group together in elongated aggregates due to their attractive
dipole-dipole interaction of magnetic or electrical origin for example. These two effects
reversibly change the mechanical properties and thus the rheology of the medium. In
some ER fluids, a rotation of the particles can be induced by the electric field. This
rotation has been experimentally observed as well as its impact on the effective viscos-
ity of the overall suspension [65|. This phenomenon can be used to tune the effective
viscosity of a suspension. The possibility of changing the viscosity of a suspension by
exerting a torque on its particles has also been demonstrated on ferrofluids subjected
to a rotating magnetic field |66]|. Ferrofluids are suspensions of rigid particles wearing a
magnetic dipole. By applying a time varying external magnetic field, a torque is exerted
on particles which thus rotate. This kind of effect exists not only for industrial appli-
cations but also for biological suspensions where the gravitational field is suspected to
exert a torque on inhomogeneous spherical unicellular algae [67, 9]. By changing cells
rotation in a shear flow, gravity might impact flow properties of algae suspensions.
Brenner [14] analytically studied the dynamics of polar spherical particles in a shear

flow. The suspension is submitted to an external field which modifies the rotation
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N &

a) b)

Figure 5.1: Particle in a shear flow submitted to an external torque L.

of the spheres and therefore the effective viscosity of the suspension. This work was
inspired by an experimental study [22| on magnetic fluids. In the dilute regime where
hydrodynamic interactions can be neglected, the case of dipolar spherical particles in

an external field can be solved analytically (see below).

At higher concentrations, numerical investigations are necessary. We refer here to
the work of Prosperetti and his group [68, 69, 70, 71| hereafter referred to collectively as
Prosperetti et al. They used a direct simulation method and studied the behavior of a
suspension subjected to a torque in a statistically nonuniform flow and the behavior of a
suspension subjected to a uniform shear flow. Feng et al. [72| used a boundary element
method and studied a set of force-free translationally mobile spheres confined between
a pair of no-slip parallel plates. The spheres rotate at an imposed position-independent

angular velocity w, by applying a given torque. There is no imposed shear rate: the
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rotation of the spheres generate a suspension-scale simple shear flow (Couette flow)
. Feng et al. |72| also used a Poiseuille geometry. Yeo and Maxey [17] used a force-
coupling method to study sheared suspensions at high concentrations and submitted
to a torque. At concentration higher than 48%, they observe a regular and periodic
arrangement of the particles in the flow. Below that value, including 40%, they observe
an homogeneous sheared suspension without any rearrangement.

On figure 5.1 we show a) Particle in a shear flow submitted to an external torque
L. The flow makes the particle rotate in one direction (solid arrow) while the torque
induces a rotation in the same direction or in the opposite direction (dashed arrow)
depending on the orientation of L. b) In our simulations, the torque is applied with a
set of tangential forces F; with ¢ = 1..4 applied to each sphere in the xOy plane.

In this paper, we use the fluid particle dynamics method (FPD discussed in chapter
3) [40] to investigate the effect of torque on the rheology of a suspension of spherical
particles. We analyze the competition between an imposed shear flow and an applied
torque, as well as their respective contribution to the total effective viscosity on a range
of volume fraction from 0 to 28%. We obtain a universal behavior independent of the
volume fraction when we plot the total relative effective viscosity divided by the total
relative effective viscosity in the absence of torque as a function of the dimensionless

number ©: .
Y2+ <w >

V/2
It represents the difference between the angular rotation of the particles < w, > and the

o (5.1)

solid rotation component of the sheared fluid (4/2) in the absence of particles, divided
by /2. In the absence of an external torque, the particles angular rotation is equal
to —j/2 and © = 0. This number can be either positive or negative depending on
the torque orientation anti-parallel or parallel to the flow vorticity (figure 5.1). © is
the dimensionless number used all along this paper. The symbol < . > means that we
average on the set of particles. Since here we impose a constant torque on each particle,
we average the angular velocity on the set of particles. Note that © has a meaning only
when 7 is non-zero.

We perform simulations up to 28% and we also include the plot of Yeo and Maxey
[17] data obtained at 40% with a different numerical method. We show that they are

perfectly consistent with our results when these data are plotted as a function of ©.
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The volume fraction ¢ is defined as the volume of the set of particles divided by the
total volume of the suspension. On each particle, the same value of the torque is applied.
When the external applied torque is anti-parallel to the vorticity (z-axis on figure 5.1),
the torque slows down particles rotation and the effective viscosity is increased. This
can be understood since particles create a counter rotating flow opposed to that of the
shear flow. Therefore, in order to impose the same value of the shear rate 7, the shear

stress 0., must be larger. Thus, the effective viscosity

Ozy
Ne = — (52)
Ir B

is increased. On the contrary, when the particle rotation is enhanced by an external

torque parallel to the vorticity, it is easier to shear the suspension and 7., decreases.

We show that structuration of the particles into aggregates is not necessary to obtain
a strong modification of the effective viscosity: the modification of particles rotation
is indeed sufficient to create a shear thinning or a shear thickening effect. The second
Faxén law [73] which is a relationship between applied torque and rotation velocity of
particles is usually valid for dilute suspensions. Here, we derive an empirical second

Faxén law valid from dilute to concentrated suspensions (up to 40%).

In section 5.2, we briefly present the well known results concerning the effective
viscosity of sheared suspensions. In section 5.3, we apply a torque on particles in
a dilute suspension under shear. We analytically derive the effective viscosity as a
function of ©. In section 5.4, we show some parameters and details of our numerical
method, the fluid particle dynamics. In section 5.5, in order to test our method with
several particles, we first apply a constant torque on each sphere in a fluid at rest (in the
absence of a shear flow). In such a case, we compare our results on vortex viscosity with
the ones of Prosperetti et al. as well as Feng et al. [72] We also compare our numerical
results on shear viscosity in the absence of torque with other published results. Then,
concerning our work (rotating particles submitted to a torque and a shear flow) we
show that plotting the effective viscosity as a function of ©, reveals universal behavior

(i.e. independent of the volume fraction). Finally, we conclude in section 5.6.
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5.2 Effective viscosity of suspensions of torque free and rigid

particles

It is well known that the effective viscosity 772ff of a sheared suspension of torque free

spherical particles follows a virial expansion [64]:

s = N[l +ad + B¢* + O(¢%) (5.3)

where ¢ is the volume fraction defined as the volume of particles normalized by the total
volume of the suspension, n being the viscosity of the suspending Newtonian fluid. For
a suspension of hard spheres, the linear term (the intrinsic viscosity) is o = 2.5 as
calculated by Einstein [74, 75] for a strong dilution. Then, when the semi-dilute regime
is reached (for ¢ > 20%), the particles get closer and start to interact hydrodynamically.
Batchelor and Green [76] showed that hydrodynamic interactions contribute to the
second order in ¢. They found § = 5.2 £ 0.3 for a non-Brownian suspension where
particles are uniformly distributed. Since then, a more precise estimation of 5 = 5.0
has been achieved by Cichocki and Felderhof [77|. For more concentrated suspensions,
interactions with three or even more bodies contribute to the effective viscosity and the
empirical law of Krieger and Dougherty [78] describes 7, on a broad range of volume

fractions:

L PR &4

where ¢,, corresponds to the maximum random packing value of the volume fraction:
Om ~ 0.62

for spherical and rigid particles. Note that equation (5.3) is the Taylor expansion up
to order 2 of equation (5.4) for ¢ < 1.

We define the relative effective viscosity in the absence of torque:

0
Negr — 1
My =L (5.5)
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5.3 Dilute suspensions in presence of an external torque

In this section we show how to calculate the contribution of an external torque exerted
on each particle to the effective viscosity of a sheared suspension in the dilute regime.
If we consider a dilute regime where spherical and neutrally buoyant particles of radius
R, are far enough not to interact, we can consider a set of N independent particles
like the one represented on figure 5.1. In the dilute regime and in the absence of an
external torque, each particle rotates in the shear flow at the angular velocity w with
the non-zero component .
8
W =5 (5.6)
When an external torque L is applied to the particle along the z-axis, w, can be
increased or decreased depending on the orientation of the torque. The total deviatoric
stress 0, which must be applied to the suspension in order to maintain a given shear
rate 7 is such that

Oy = 09, + Ufy. (5.7)

Where ¢ is the contribution of the external torque to the stress, while o is the

deviatoric stress in the absence of torque. Batchelor |79] showed that:

R _NL

o

where L is the component of the torque L along the z-axis, NV is the number of particles
and )V is the total volume of the suspension. Since we deal with low Reynolds number
hydrodynamics, we can use the linearity of Stokes equation which rules the incompress-
ible fluid flow around particles. The second Faxén law [73| relates the external torque

L exerted on the particle to the angular velocity w:
5 1
L=-87R 77(5 rot Vo — w), (5.9)

where Vj is the velocity field in the absence of particles, in our case: Vo = (4y,0,0).
It gives
L = 87 R*nQ (5.10)
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where

Q:%—I—wz (5.11)

represents the difference of angular velocity between w, and the one imposed by the
shear flow alone: —%/2. For a torque free particle, we have Q = 0 (i.e. w, = —7/2).

By using the definition of the volume fraction

= 4/37R3 N
Ty
we obtain: . 6V 519
N ¢nQ’ '
which gives
ol = 3¢n (5.13)

and the contribution of the particles relative rotation to the effective viscosity in the

dilute regime,

R o
Nepr = Ty (5.14)
is such that: 5
Neps = 5000 (5.15)
with
Y
¥/2

as defined before. Note that nf}f has been also called vortex viscosity by Condiff and
Dabhler [80].

When no torque is applied (w, = —%/2), it corresponds to © = 0, and when the
external torque stops the particle rotation (w, = 0) then © = 1. When © is positive
(L > 0), particles rotation is slowed down by the external torque and effective viscosity
is increased. But when O is negative (L < 0), the rotation of particles is increased by
the external torque and the effective viscosity is decreased. Therefore, at fixed external
torque, shear thickening or shear thinning is observed when © is respectively positive
or negative. As a matter of fact when increasing the shear rate 5 the flow overcomes

the external torque effect and since © tends to 0 the suspension recovers its torque free
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effective viscosity 7.

The total effective viscosity is given by:

0 R
Meff = M (5.16)

it leads to
=+t (5.17)
Neff = Neps T Tegy- .

As in equation 5.5, we can define the relative effective viscosity in the presence of torque:

Neff — 1
A?]eff = —< 1 ) (518)
U]
which gives for dilute suspensions:
5 3
Anes(¢,0) = 5 ¢(1 + - 0). (5.19)

For example, when the external torque stops the particle rotation (w, =0 and © = 1),
one obtains An.s; = 4¢. This gives a modified intrinsic viscosity such that o(© =1) =
4: a result which was first derived by Brenner [14].

5.4 Model and 3D numerical method

Suspended elements are mono-disperse spheres of radius R. Considering large particles,
the Brownian motion is not taken into account. Spheres are suspended in a Newtonian
liquid of viscosity n sheared between two walls. The two walls located at y = 4w/2

move at v, = £y respectively, so that the shear rate is

No-slip conditions are used at the fluid /walls interface. In order to neglect the effect of
walls, we choose 15 < w/R < 20 i.e. w > R. As an initial condition, we distribute the
spheres randomly and homogeneously (taking care to avoid any overlaps).

Note that our code is able to handle small but finite Reynolds numbers. However,

in this work, Reynolds number are about 1072, therefore inertial effects are indeed
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negligible. We deal with neutrally buoyant particles with a density p equal to the fluid
density. We use the 3 dimensional version of "fluid particle dynamics” (FPD) see details
in Chapter 3). Note that our calculations are done for several volume fractions up to
¢ = 28%. For bigger ¢-values, we cannot avoid effects such as the formation of depletion

layers close to the walls [15].

In order to apply an external torque perpendicular to the shear plane (xOy) on the
particles, a set of tangential forces F; where ¢ = 1...4 are applied on each particle in the

Oy plane (figure 5.1-b). Each force has the same intensity. Then, the same torque
L= xF, (5.20)

is applied on each particle. In order to change L, we vary the components F;.

Depending on simulations, values from 4 = 107°/§t = 1072 to 4 = 1075/§t = 1073

are used. Inertia is negligible since only small Reynolds numbers are considered here:

2

1072 < Re = 0% < 1071,

n
The typical simulation box size is ¢, = {, = {, = w = 600. Here, 6 = 1. Boundary
conditions are such that the fluid velocity is imposed on the upper (y = +w/2) and
lower (y = —w/2) wall: v,(x,y = +w/2, z) = vy, while periodic boundary conditions

are adopted in the zz - directions.

The stokes flow around the spheres is sufficient to avoid particle inter-penetrations.
However, above ¢ = 35%, we must decrease the time step ¢ in order to avoid such
numerical artifacts. Note that in our simulations, we have not included the dipole-
dipole attraction (like magnetic interactions for example) since we would like to study
the effect of rotation of particles on the rheology separately from the effects of clustering.
On figure 5.2 we show: a) the viscosity field of a suspension of 50 spherical particles. b)
The isosurface of the viscosity field. The radius of particles is a = 39, the fluid-particle
interface thickness & = 0.50, effective radius of particles R ~ a + 2§ = 40, the particle

viscosity 1, = 100 and the solvent viscosity, here 6 = 1 is the mesh size.
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Figure 5.2: a) The viscosity profile of the suspension of 50 spherical particles.

[sosurface of the viscosity field.

b) The
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5.4.1 Calculation of the effective viscosity

The effective viscosity of the suspension is evaluated by calculating the tangential force

per unit surface exerted by the walls on the fluid:
f;t(t) = 0uy(y = Tw/2, t)n, (5.21)

which is necessary to maintain a constant velocity +vy on the upper (+) and lower
(—) walls. The unit vector n is normal to the fluid/wall interface. &,, represents the
average of 0,,(+w/2) on the whole surface of the fluid in contact with the walls. The
time dependent effective viscosity is thus

_ W= f (@)

Negr () = S — (5.22)

Initially, we start with a random distribution of spheres positions. After a transient
regime, the effective viscosity reaches a plateau and remains stable after several thou-
sands of time steps (see figure 5.3). By eliminating the initial transient regime and
averaging the plateau values, we finally obtain the averaged effective viscosity 7., cal-
culated for a given initial configuration. On figure 5.3 we plot the relative effective

viscosity as function of the simulation time with shear rate 4 ~ 0.0175.

5.5 Results

In this section, we show our numerical results for the vortex viscosity in comparison
to other published results as well as shear viscosity in the absence of torque. Then we
present our results concerning shear viscosity in presence of an external torque. After
that we derive a semi-empirical formula for the effective viscosity of the suspension

valid up to 40% concentration.

5.5.1 Vortex viscosity

Feng et al. [72] have calculated the contribution of a torque applied on suspended
particles in a fluid at rest to the effective viscosity 7%} (¢) (vortex viscosity). In order

to compare our results with Feng et al. and Prosperetti et al. we apply the same torque
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Figure 5.3: a) The effective viscosity as function of simulation time.

L on each particle and by averaging the angular velocity of the particles < w, > (a
value that depends on ¢) we can easily obtain the vortex viscosity by using the following
relation [72, 80:

1
L =4l (¢) 5v X Vo— < w >|, (5.23)

where
LN
v

is the total torque per unit volume. Note that this expression is an a priori constitutive
law which applies to the suspension itself. It is different from the 2nd Faxén law (5.9)
which applies to a single sphere in a fluid. Equation (5.23) simply shows that difference
between the particles angular velocity and the vorticity of the fluid is proportional to
L. The coefficient of proportionality is the effective vortex viscosity. This expression
originally introduced by Condiff and Dahler [80] has been a posteriori verified by Feng
et al. in two different geometries. In our case we apply the same torque L on each

particle along the z—axis (L > 0) and the particles have a clockwise rotation. Therefore,
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it reads
L=2L (5.24)

Since the fluid is at rest when no torque is applied (Vy = 0), we obtain:

JR

R zy
= — 5.25
Nerr )< w. > ( )
Here, the configuration (rotating particles in a fluid at rest) is a bit different from the
other configuration studied in this paper (rotating particles in an imposed shear flow).
In the first case, the value of the induced shear rate 7;,; depends on ¢. Therefore, the
corresponding value of © depends also on ¢. However, by using equation (5.9) which

holds for the dilute regime (¢ < 1), we obtain

N
Opy = W87rnR3wz (5.26)
Thus B
Negs 3
— == 5.27
23 (5.27

[14] equivalent to © = 1 for a dilute suspension of non-rotating spherical particles in an
imposed shear flow. On figure 5.4, we compare our results to Feng’s results and to the
results obtained previously by Prosperetti et al: numerical results and the empirical
law:
nk
eff — 15¢ (1 o ¢)1.5—0.41¢ (528)
Ui
The agreement is indeed very good. In our simulations, the same torque is applied on

all the spherical particles. As expected, at low ¢, the result of Brenner [14] is recovered.

We can also calculate the effective viscosity when no torque is applied on a sheared
suspension (4 imposed and L = 0) (i.e. © = 0), this validates also our measure of ¢. In

the first case, the effective viscosity of the sheared suspension behaves as equation 5.4.

On figure 5.5, we have plotted our numerical results, effective shear viscosity as a
function of the volume fraction when no torque is applied (i.e. © = 0). Comparison is
made with experimental data (upper and lower limits are given by Thomas [81] as well
as with the simulation results of others. 72, 82, 83, 81, 84| Here also we obtain a very

good agreement.
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Figure 5.4: Vortex viscosity as a function of the volume fraction.

5.5.2 Shear viscosity in presence of an external torque

Now, we concentrate on a sheared suspension in the presence of a torque on each particle
(4 # 0, i.e. © finite) which represents our new results. We examine the competition
between the torque exerted on each particle and the shear rate imposed by the flow.
The torque can help to increase or decrease the rotation velocity of the particles in
comparison to the one (w, = —4/2) imposed by the shear rate. =~ This has been
already examined for very dense suspensions by Yeo and Maxey [17| where periodic
arrangements were observed for ¢ > 48%. Here, we examine the range of 0 < ¢ <
28%. However, we show the results of Yeo and Maxey obtained for ¢ = 40% (below
concentration where arrangements are observed) are consistent with our results once

plotted as a function of © (they are plotted as a function of a dimensionless torque by
Yeo and Maxey [17]).

In figure 5.6, the relative effective viscosity is plotted for three values of © as a

function of ¢. Solid lines are calculated with equation (5.29). When no torque is
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Figure 5.5: Effective shear viscosity as a function of the volume fraction when no torque
is applied.

applied (© = 0), we recover the non-linear dependence of Angff well fitted by equation
(5.4). When particle rotation is stopped (© = 1) the effective viscosity is increased while
it is decreased when particle rotation is in the same direction than the one imposed by
the shear flow (© = —1). At ¢ = 28%, we see a small difference between Krieger and
Dougherty’s law and our data. This is due to a slight depletion of particles close to the
walls which occur at hight enough concentration [15] which tends to decrease the shear
effective viscosity.

As predicted by equation (5.19) for dilute regimes, plotting the relative effective
viscosity An.sr as a function of © gives a set of linear curves which cross the zero
viscosity axis for the same value © ~ —1.6 + 0.1 close to © = —5/3 and with a slope
3/2¢ (figure 5.7). But, An.ss is still linear for higher volume fractions up to 28%,

following the empirical law:

Args(6.0) = iy (o) (1+ 2o (5.29)
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Figure 5.6: Relative effective viscosity as a function of the volume fraction ¢ for three
different values of ©.

which tends to equation (5.19) when ¢ < 1 since Angff tends to 5/2¢. Here the value

of © is averaged on the N particles:

< Q> <w, >
0=— =14 - 5.30
¥/2 ¥/2 (5:50)

where < . > is the average on the set of particles. On figure 5.7 we show relative

effective viscosity as a function of © for different values of the volume fraction. Solid
lines are obtained with equation (5.29) which fits remarkably well our numerical results.
The data points of Yeo and Maxey |17]| obtained for ¢ = 40% with a totally different
numerical method are also very well fitted when represented as a function of © (see
below). Therefore all the curves, whatever the value of ¢ collapse on one single curve

while plotting

An,
F(©) = AUOZ (5.31)
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as a function of O:

F(O) =1+ g@. (5.32)

Ratio F'(©) of the relative effective viscosities Anepr and Anl;; as a function of © is
shown on figure 5.9 for different values of the volume fraction ¢. A single master curve
is obtained: as predicted by equation (5.32) represented by the straight line. The Yeo
and Maxey [17| data are very well fitted by the law (5.32). Note that it is possible to
obtain a negative relative effective viscosity for sufficiently high absolute values of ©
(for © < 0). This is due to the rotation of particles (for © < 0) which increases the
shear rate while a negative stress o,, has to be imposed to maintain the same value
of 4. Note that whatever the volume fraction, for the same value of © = —5/3 (i.e.
< w, >= —4/3%), the contribution of the particles to the effective viscosity can be
suppressed by applying a critical torque L. derived below.
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Figure 5.8: Dimensionless angular velocity as a function of volume fraction for several
values of the applied dimensionless torque.

5.5.3 Empirically modified second Faxén law

We can also derive the expression of L from an empirically modified second Faxén law.
By transposing the expression of L(w,) i.e. equation (5.9) in the dilute regime to a
concentrated regime, one can write:

12V 1—
BN (ngf - 77) §rOtVO|z_ <w, >, (5.33)

where we have replaced 5/2¢n by (n%;; —n). This is exact for dilute regimes and
empirical for more concentrated regimes. rotVy|, is the z—component of the vorticity
averaged on the total volume of the suspension in the absence of torque |[71]. But since

we impose a given shear rate, we get:

rotVo|. = —7/2. (5.34)
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Figure 5.9: Ratio F'(©) of the relative effective viscosities Ane; and An?;, as a function
of © for different values of the volume fraction ¢.

Thus we can write:

_ 12y, gl
L= = (Mepr — M) (5—1- < w, >> . (5.35)

In our simulations, for a given volume fraction, we impose the same value of the
torque L on each particle and we calculate the value of w, averaged on all the particles.
Dimensionless angular velocity as a function of volume fraction for several values of the
applied dimensionless torque L* = L/(87R317) is shown in figure 5.8. The numerical
results are indeed very well fitted with equation (5.35). Figure 5.10 shows the values of
the torque per particle needed to obtain © = —5/3 (i.e. An.sr =0). When ¢ < 1, L,
tends to a constant value independent of ¢:

20
L.= gwR?’m, (5.36)
it is the torque per particle that is needed to obtain ® = —5/3 in the dilute regime.

Yeo and Maxey [17] plotted the total effective viscosity in the presence of a torque
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Here, we plot their values as a function of ©. From equation (5.35), we obtain the

following relation between L* and ©:

Anoff(¢)
L*=—""""9, 5.37
/ (5.37)
For dilute regimes (¢ < 1), it reads L* = ©/2, but for higher values of ¢ the

relationship (5.37) between the two dimensionless numbers depends on ¢. For example
when ¢ = 40%, it gives L* ~ 2.00. Equation (5.35) could be generalized in the
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following vectorial equation:

12V

L=_-2"
5N

11—
0
— —rot Vop— <w >|. 5.38
(Uef f 7]) 9 0 ( )
Note that expression (5.38) tends to the usual second Faxén law (5.9) for dilute regimes,
i.e. when ¢ < 1.
We can recover the expression (5.29) of the relative effective viscosity in presence of

a torque for high concentrations. The xy-stress being given by

NL 6
R z 0
Ory = v 5(776ff n) <>, (5.39)

and by using

Teff = Ty + et (5.40)
with R
k. = Toy (5.41)
eff 7
we obtain:

< Q>
i/

3
Neff = Nops + 5(773ff — 1) (5.42)

which is equivalent to the expression (5.29).

5.6 Conclusions

In this chapter, we show that we can tune the effective viscosity of a sheared suspension
of neutrally buoyant spherical particles if they are sensitive to an external torque that
modifies their rotation. The competition between the two effects (shear flow and torque)
is well described with the dimensionless number © representing the relative angular
velocity of the particles divided by the vorticity of the shear flow. Enhancement and
reduction of the shear-effective viscosity are found and depend on the applied torque
intensity and sign. For a given value of the mean angular velocity of the particles
(< w, >= —4/3%) which is independent of the volume fraction, the contribution of
the particles to the effective viscosity can be suppressed and the effective viscosity of

the suspension becomes equal to the viscosity of the solvent. An empirical formula
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is proposed for the effective viscosity of the suspension which fits remarkably well the
data. We can recover this law by using an empirical second Faxén law adapted to more

concentrated regime (up to 40%).
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Chapter 6

Models and numerical simulations of
Chlamydomonas micro-swimmer

suspensions

In this chapter, we review two types of micro-swimmers, “pullers” and “pushers” and some low Reynolds
numbers constrains. Then, we briefly introduce our experimental observations concerning the rheology of
Chlamydomonas micro-swimmer suspensions. Namely, the increase of the effective viscosity of sheared sus-
pensions of live unicellular motile micro-algae compared to the effective viscosity of suspensions containing
the same volume fraction of dead cells and a shear thinning behavior [9]. Different possible mechanisms are
considered which can be involved in this phenomena. We present our models and numerical simulations results
which are compared to the experimental results and we explain the experimentally observed phenomena. Our
model which converges to anisotropic distribution of the force dipoles provides a good agreement with the
experimental results. The model is extendable for pusher type micro swimmer suspensions where the opposite
effect, the decrease of the effective viscosity of active bacterial suspensions was observed experimentally [10].

Dans ce chapitre, nous examinons deux types de micro-nageurs, «tireurs» (pullers) et «pousseursy (pushers)
aux faibles nombres de Reynolds. Nous présentons briévement nos observations expérimentales concernant la
rhéologie de suspensions de Chlamydomonas. A savoir, 'augmentation de la viscosité des suspensions cisaillées
constituées de micro-algues mobiles (vivantes) par rapport a la viscosité effective de suspensions contenant
la méme fraction volumique de cellules mortes. Nous étudions également le comportement rhéofluidifiant [9]
de ces suspensions. Différents mécanismes possibles sont considérés comme pouvant étre impliqués dans ce
phénomeéne. Nous présentons nos modéles numériques et des résultats des simulations qui sont comparés aux
résultats expérimentaux et expliquent les phénomeénes observés expérimentalement. Notre modéle qui converge
vers la distribution anisotrope des particules (forces dipolaires) prévoit un bon accord avec les résultats expéri-
mentaux. Le modéle peut étre étendu aux suspensions de type pousseurs ot Ueffet inverse est observé, c’est a
dire la diminution de la viscosité des suspensions actives bactériennes observée expérimentalement [10].

91
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6.1 Introduction

Within the last few years there has been growing interest of soft active systems physics.
Examples of such systems represent suspensions of living self-propelled micro-organisms,
swimming cells and artificial micro-swimmers [85, 86, 87, 88|. In active suspensions (or
"active fluids”) living organisms or particles continuously transform chemical energy
of surrounding fluids or their stored energy into a mechanical work (locomotion or
rotary motion). Because of this feature active suspensions represent a new type of
condensed soft mater which have drastically different properties from suspensions of
passive inclusions |1]|. Typical examples of active suspensions are suspensions of micro-
algae, bacterias and sperms [89, 7|. Study of such active systems has fundamental
meaning |1] as well as relevance in various potential technological applications |90, 91,
92|, in ecology 93| and medicine [94].

Depending on swimming mechanism of each type of micro-swimmers which results
in hydrodynamic interactions between swimmers in suspensions, various interesting
phenomena have been reported. Among them: complex rheological behavior of micro
swimmer suspensions |1, 10, 9]; pattern formation in bacterial suspensions [91, 95]; com-
plex motions, enhanced diffusion and spatial correlation in micro-swimmer suspensions
[96, 97, 98, 99]; phototaxis and bioconvection in suspensions of phototactic micro-
swimmers [100, 101|, etc. In this work, we concentrate ourselves on the study of the
rheology of active suspensions. So far only few experimental works have been performed
to study the effect of swimming micro-organisms on the rheological properties of sus-
pensions. In 2009 Sokolov & Aranson measured experimentally the effective viscosity of
suspension of Bacillus subtilis [10]. They report strong decrease of the effective viscosity
(up to a factor of 7). Then, we measured the effective viscosity of sheared suspensions
of live unicellular motile micro-algae ( Chlamydomonas Reinhardtii) and found it much
bigger (about a factor of 2) than for suspensions containing the same volume fraction
of dead cells |9]. Suspensions of live micro-algae also show a shear thinning behavior.
Few theoretical and computational works have been done to explain those experimen-
tal observations [102, 103, 104, 105]. Saintillan used simple kinetic model to study the
rheology of dilute active suspensions [102]. Heidenreich et al. used analytical approach
to study nonlinear rheology of active suspensions [104]. Their results are consistent

with previous analytical predictions of Hatwalne et al. |1] and Haines et al. [106]. The
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models which takes into account the rod-like shape of Bacillus subtilis, and anisotropic
orientation distribution of swimmers are able to describe successfully the decrease of
the effective viscosity in bacterial ("pusher” type) suspension [102, 106|. Those models
also predict increase of the effective viscosity in "puller” type suspensions. However,
the increase of the effective viscosity for micro-algae suspensions based on supposition
that swimmers are aligned in the flow is rather difficult, because Chlamydomonas has
almost a spherical shape (see figure 6.2 a-b) dislike the bacillus subtilis.

In the next section, we review two types of micro-swimmers: “pullers” and "push-
ers” and the scallop theorem. In section 6.3, we briefly show our experimental result
concerning the effective viscosity of micro-swimmer suspensions. Then we discuss our
different models to explain the experimental observations and show results of our nu-
merical simulations. We begin with a simple model where the swimmers are represented
by isotropically distributed force dipoles (section 6.4). Then we consider a model where
non-zero torque is applied by swimmers on the fluid (section 6.5). In section 6.6, we
take into account the effect of flagella of Chlamydomonas by considering suspensions
of objects consisting of three beads (one central big bead (for the body) and two small
satellite beads (for flagella)). The last model which converge in anisotropic distribution
of force dipole is presented in section 6.7. This model can be extended also for the
pusher type micro-swimmer suspensions (some results are present in section 6.7.1). We

make conclusion in section 6.8.

6.2 Two types of micro-swimmers

Micro-swimmers can be classified in two broad categories: "pullers” and “pushers” ac-
cording to the force they exert on the surrounding fluid. Pullers pull the fluid towards
them with their flagella along their moving axis and push the fluid perpendicularly (see
figure 6.1 a). Pushers push the fluid back with their propellers along their moving axis
and pull the fluid perpendicularly (see figure 6.1 b). Pullers are actuated by anterior
flagella attached to the "head” of the swimmer with respect to the direction of its stroke
averaged self-propelled motion. While pushers are actuated by posterior flagella fixed
behind the body.

Figure 6.1 shows the velocity fields and streamlines induced by force dipole of a
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Figure 6.1: Velocity fields and streamlines at the middle crossing plane of two unequal
beads with force dipole representing: a) the puller and b) the pusher.
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Figure 6.2: Micro-swimmers: a-b) Chlamydomonas Reinhardtii; ¢) Escherichia coli; d)
human spermatozoa; e) bacillus subtilis; f) artificial swimmers [85]; g) schematic picture
of an artificial micro-swimmers; h) Volvox multi-cellular algae and j) a ciliate.
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single a) puller or b) pusher. The self-propulsion direction is indicated by brown arrows.
Each swimmer is represented by two unequal beads with radii Ry = 66 (the body) and
Ry = 2§ (the flagella), here ¢ is the mesh size. The distance between the centers of
beads is 156. Two equal and opposite forces F' are applied at the centers of the beads.

One prototype of puller type micro-swimmers is Chlamydomonas Reinhardtii (CR),
a 10 pm motile unicellular alga (see figure 6.2 a-b). Most of bacteria: Escherichia coli;
bacillus subtilis, spermatozoa and artificial swimmers [85] are examples of pusher type
micro swimmers (see figure 6.2 c-g).

Note that exist other swimming microorganisms, like the ciliates and multi-cellular

algae Volvox which do not belong to those two categories of micro swimmers (figure 6.2
j-f).

6.2.1 Low Reynolds number constrains

At the small scales where micro-swimmers live, the viscous forces dominate over iner-
tial forces. As a result there are some constrains on the locomotion of micro-swimmers.
Those constrains was well explained in the Purcell’s paper ‘‘Life at low Reynolds num-
ber” later known as "The scallop theorem” [7]. The scallop theorem explains that in
very viscous fluids or at small scales (at low Reynolds number) locomotion cannot be
achieved by sequence of shape which is reciprocal (time reversible). In his discussion
Purcell invoked the example of scallop which is an inertial simple swimmer, swimming

by sequence of fast opening and slow closing its shells.

<:<

If a scallop swims in a low Reynolds number fluid, it would not achieve propulsion
in the fluid (but only a back and fourth motion).  Figure 6.3 shows a schematic
sequence of a non-reciprocal motion of flagella that a green alga uses to swim at a
low Reynolds number [107]. Every individual micro-swimmers at low Reynolds number
need to deform itself in non-reciprocal way (not invariant under time reversal) to achieve
a locomotion. However, it has been shown that two active particles together which

perform a reciprocal motion can break the scallop theorem and swim collectively [108].
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Figure 6.3: Schematic picture of non-reciprocal motion of green alga’s flagella [107].

6.3 Effective viscosity of micro-swimmer suspensions: experi-

mental study

In this section, we briefly show our experimental results concerning the rheological
properties of active Chlamydomonas suspension |9].

We measured the effective viscosity of suspensions of puller-type micro-swimmer
Chlamydomonas reinhardtii, a 10 um motile unicellular alga. They are spheroidal in
shape with two anterior flagella (see figure 6.2 a-b) [107]|. Their back-and-forth move-
ment produces a jerky breast stroke with a mean speed of 40pum/s in a water-like
viscous medium (figure 6.3). Rheological measurements show a clear increase in the
effective viscosity compared to a dead cell suspension. Figure 6.4 shows the relative
viscosity (ness — n)/n of live and dead cell suspensions as a function of the volume
fraction. In both cases, viscosity is an increasing function of the volume fraction as it is
for passive beads. The effective viscosity of swimming cell suspensions is quantitatively
larger than the viscosity of dead cell suspensions (up to a factor of 2 for a 15% volume
fraction). Viscosity was measured at a given shear rate of 5s!.

A shear thinning behavior was also observed. The effective viscosity of active suspen-
sions decreases when increasing the shear rate. Figure 6.5 shows the effective viscosity of
Chlamydomonas suspensions as a function of the shear rate. Data are shown for differ-
ent volume fractions of the suspension (up to 25% concentration). The measurements at

high enough shear rate (above ~ 20 Hz) show that micro-swimmer suspensions behave
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Figure 6.4: Reduced effective viscosity of green algae suspensions as a function of volume
fraction

as passive particle suspension.

We also observed that swimming cells behave differently: they resist the flow ro-
tation for most of the time and eventually flip very rapidly. Figures 6.6 a) and b)
show picture sequences extracted from a fast-image film for a dead cell and a swimming
Chlamydomonas, respectively. High frequency acquisition (500 Hz) allows us to deter-
mine whether or not an alga is swimming by looking at the beating of the flagella. Time
between pictures is 20 ms. Cell diameter is about 10 ym. A dead cell in shear flow
experiences tumbling around x axis (figures 6.6 a), whereas flagella of swimming cells
beat at about 50 Hz. Here Oz is the direction of observation, yOz is the shear plane.
Time sequences of cells subjected to a 10 s~! shear rate is 50 Hz. The swimming cell
spends about two thirds of the period in the xOy plane and flips during one third of
the period whereas the dead cell rotates at a constant velocity close to 4/2 (figures 6.6

b).

In following sections, we explore different models to understand the mechanism be-
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Figure 6.6: a) Dead and b) live Chlamydomonas in the same shear flow. ¢) Schematic
view of the flow cell (Oz is the direction of observation).
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hind those observed phenomena.

6.4 Simple model with the force dipole

Initially, we consider a simple model where a live self-propelled micro-alga is replaced by
a rigid sphere with a force dipole (see figure 6.7 a). If the density of particles is equal
to the density of fluid, gravity can be neglected and particles are force-free. When
particle moves in a fluid the propulsive force must be equal to the viscous drag on the
body. A force free particle can exert on the fluid a force dipole (or higher multipoles).
Exact simulation of Chlamydomonas movement can be extremely difficult, since during
their back-and-forth movement, flagella deform in a complex non-reciprocal manner
(see figure 6.3). But flagella beating frequency is high enough (about 50 Hz) and the
force exerted by Chlamydomonas on the surrounding fluid can be approximated by a
force dipole, which is a time averaging of the instantaneous force distribution exerted by
flagella during one period of their stroke. On figure 6.7, we show: a) schematic diagram
of a force dipole used in this section; b) the velocity field exerted by this force dipole
associated with rigid body on the fluid at rest; ¢) the streamlines calculated using our
numerical velocity field and d) experimentally obtained streamlines by Drescher et al.
[109]. The spiraling of streamlines near the elliptic points are numerical artifacts caused
by direct integration of the discrete velocity fields.

To study the influence of the self-motility of micro-swimmers on the rheological
properties of a fluid, we simulate suspensions of rigid spherical particles with those force
dipoles (figure 6.8). Suspended mono-disperse spheres with a radius R = 30, (a = 24
and £ = 0.5), are randomly and homogeneously distributed initially without any overlap
between them in the simulations cell with dimensions ¢, = £, = ¢, = 60. Here 0 is
the mesh size. A randomly and isotropically distributed force dipole of amplitude F is
associated with each particle. The shear flow with the velocity v(0, 0, 4z) and fixed
shear rate 7 is imposed in the Oz plane while the periodic boundary conditions are
used in y and z directions (figure 6.8). Figure 6.8 shows the diagonal view of the
simulation cell with 100 active particles. The arrows indicate direction of the forces
applied on the rigid body which is also the direction of self locomotion. The counter

forces applied on the fluid are not shown for simplicity. The Fluid Particle Dynamics
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Figure 6.7: a) The schematic diagram of the force dipole used in this model. b) The
velocity field. ¢) Numerically obtained streamlines and d) streamlines obtained experi-
mentally by Drescher et al. [109].
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Figure 6.8: A view of 100 active particles in the simulation cell.

(considered in chapter 3) is used to simulate the dynamics of these active particles.

We simulate different numbers of suspended particles up to 20% concentration and
calculate the effective viscosity of suspensions using the velocity field (see equation
5.22 in previous chapter). The results of our simulations compared to the effective
viscosity of rigid spherical particle suspensions are show on figure 6.9. Full red circles
are numerical results for active particle suspensions. Red line is just a guide for the
eyes. Full green squares are the effective viscosity for the same suspensions without
the force dipole (F = 0). The green solid line is Kreiger & Dougherty’s semi-empirical
law [78]. Dotted line is Einstein’s effective viscosity |75] and dashed line represents the
effective viscosity with the second order term of volume fraction |79]. The force dipole
used in this model produces motility of particles in the fluid with the velocity of about
v~ 3.3 x 10756 /dt for F = 5, where dt is the iteration time step, ¢ is the mesh size
and F is the amplitude of the force applied on the particles and fluid (see figure 6.7 a).
The suspensions of active particles reveal a ballistic regime (Mean square displacement

(MSD) proportional of ¢, here ¢ is the time) at small time scale and a diffusive regime
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Figure 6.9: The reduced effective viscosity of active particles suspension as a function of
volume fraction compared to viscosity of passive particles suspensions.

(MSD proportional to t) at a larger time scale [98]. However, the effective viscosity of
active particle suspensions is very close to the one of passive suspensions, as we can
see on figure 6.9 which differ from experimental observations (see figure 6.4). A similar
result was obtained by Ishikawa and Pedley when they show no direct contribution of
non-bottom-heavy squirmers to the bulk stress [67]. Within a numerical fluctuation
the effective viscosity also does not change with shear rate. This is due to the fact
that the spherical particles are oriented in all the directions. Thus, there is no mean
contribution to the shear stress and then there is no variation in 7.¢; due to individual

swimming.

6.5 Torque involved model

Next model was inspired by our experimental observation where it has been found that

swimming Chlamydomonas resist the tumbling motion in the shear flow (figure 6.6).
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Figure 6.10: a) Schematic diagram of applied torque in a shear flow. b) The applied
torque with a force dipole.

Within this model, we force the particles to maintain their initial random orientation in
the flow. For this purpose, we applied a torque opposite to the one imposed by the shear
flow on each particles. Figure 6.10 shows the schematic diagram of the torque applied
to a single particle in the shear flow. In addition to the torque, isotropically distributed
force dipole is associated with each particles, as we showed in the previous section (figure
6.10 b). For the simulations, we used FPD method. All the parameters of suspensions
and numerical procedure used in this model are similar to the one described in previous
models (section 6.4). The torque on each particles is added using two parallel and
opposite forces Fr applied at the same points as outer parts of the force dipole acting
on the fluid (see figure 6.10 b). The force dipole (the force F) may have any orientation
in space, while F7 is always in 2Oz plane, so that Fr is parallel to the projection of F
on xOz plane. The amplitude of the force Fr is proportional to the angular velocity of

the particle in the shear flow

Fr = —4mn(a + 5)2%,
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Figure 6.11: a) The reduced effective viscosity of active particles suspension sensitive to
a torque as a function of volume fraction compared to viscosity of passive particles

suspensions. b) The reduced effective viscosity for different shear rate.
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where a = 20 are £ = 0.50 are the radius of the particle and the fluid-particle interface
thickness, respectively (the effective radius R ~ a+2¢ = 36); n = 1 is the fluid viscosity;
wy is the vorticity calculated inside the particle around the y axis. At a given shear rate
4, the applied torque produces < w, >= 0 (rotation of particles almost stopped using
the counter torque), here the symbol < . > denotes averaging on the set of particles.
The active suspension with the torque shows a rheological signature very similar to the
one observed experimentally. This results are consistent with our results concerning
the shear viscosity in presence of an external torque show in chapter 5. The results are
also in agreement with the work of Ishikawa and Pedley on the bottom-heavy squirmers
[67].

If a fixed torque is applied on the particles by increasing 7 the torque starts to be too
weak to counter the rotation imposed by the shear flow and the particles become passive.
So, an increase of the shear rate decreases the effective viscosity and a shear thinning
effect is numerically observed consistently with the experiments (figure 6.5). Figure
6.11 a) shows the reduced effective viscosity of the active particle suspension with the
torque as a function of the volume fraction. The numerical results (full red circles with
solid red line) are compared to the experimental results |9] for active cell suspensions
(magenta circles with the error bars) and with the experimental results for dead cells
suspension (green squares with the error bars), fitted by Kreiger & Dougherty’s semi-
empirical low (light green line) |78]. On figure 6.11 b) the reduced effective viscosity as

a function of ¢ is shows for different values of .

In this model particles with the force dipole and the torque are still force-free, but
not torque-free. The model can incorporate all essential points of the experimental
observations (increase of the effective viscosity of active particle suspensions, shear
thinning and the resistance of the swimmers to the tumbling motion imposed by the
shear flow). However, there is not a well-founded reason to impose an external torque on
the particles. Only candidate of the external torque on the Chlamydomonas is gravity if
we take into the account that center of mass and the geometric center of Chlamydomonas
is shifted [107]. Although, to our knowledge, there is not direct experimental evidence
proving effects of gravity of the Chlamydomonas swimming (at least in our experiments).
Besides that, the difference between Chlamydomonas center of mass and the geometric

center cannot explain different rheological and mechanical behavior of alive and dead
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cells.

6.6 Three beads model

In our previous models a Chlamydomonas was considered as a single spherical body.
The effects of flagella was reflected only through the forces exerted by them. The
drag of the flagella was not taken into account which could play an important role in
maintaining its fixed orientation. In the model presented in this section, we modeled
Chlamydomonas as an object consisting of three beads (3B), where one central bead
represents the body of the Chlamydomonas and two smaller beads represent the flagella
(we replace fiber-like flagella by a spherical bead only for purpose of simplicity). Each
of the two small satellite beads with the effective radius R = 20 (a = 0; & = 0.50)
are connected to the central bead with effective radius R = 46 (a = 30; £ = 0.59)
using three springs (see figure 6.12 a). Figure 6.12 shows: a) the exact scheme of the
three-bead object with springs, brown dots indicate grid points (distance between two
neighbor points is § = 1); b) the view of 30 "active” 3B objects in the simulation
cell submitted to the shear flow (zz is the shear plane). The holder springs: C'L and
CR on figure 6.12 a) corresponds to flagella of Chlamydomonas which are flexible but
cannot elongate too much. Therefore the holder springs are rather stronger than the
two support springs of each small beads: A;L, By L, AgkR and BrR.

When a Chlamydomonas is "alive” the flagella are situated in front of the body, while
in the case of "dead” cell, flagella are only binded to the body and follows freely the
body as it rotates. In this model, live cells are considered as the 3B objects where
springs are strong enough to maintain the small beads in front of the central bead in
a given flow (here such objects are called "active”). For the passive objects, we remove
support springs (blue lines on figure 6.12 a) by taking the spring constant equal to zero.
Then the satellite beads can freely move in a vicinity of the central bead but cannot be
separated from it.

We simulate the shear flow on 3B objects suspensions by using FPD method. The
"active” object suspension shows rheological behavior very similar to the one observed
in the experiments on green alga suspensions. Figure 6.13 a) shows the reduced effective

viscosity as a function of ¢. The numerical results for "active” object suspensions (full
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b)

Figure 6.12: a) The exact scheme of the object consisting of three beads. b) View of 30
"active” 3B objects in the simulations cell.
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red circle) and the numerical results for passive objects suspensions (full green squares)

are fitted by Kreiger & Dougherty’s semi-empirical law [78]:

Dy — n
(1= ¢/ dm)om”

with @ = 4 (red line) and o = 2.5 (green line), respectively. The numerical results
are compared to the experimental measurements: magenta circle with error bars for
swimming cells and green squares with error bars for dead cells.

For given spring constants, if we increase the shear rate the support springs become
weak enough to maintain small beads in front of the central bead (the holder springs are
much stronger compare to the support springs), therefore a shear thinning is observed.
On figure 6.13 b) the effective viscosity of “active” objects suspensions are shown as a
function of the Weissenberg number Wi = 471 for several volume fractions, here 7 is
the shear rate and 7 is the relaxation time of an elongated 3B object. The numerical
results are fitted by a power series (solid lines on figure 6.13 b). To calculate 7, we
deviate the small beads from their equilibrium position in the "active” 3B object and
calculate the LOR angle (figure 6.12 a) as function of the simulation time while small
beads return to their equilibrium position. Then, 7 is calculated by exponential fitting
of the relaxation curve (the LOR angle as function of the time). In the shear flow,
rotation of "active” 3B object is not uniform, unlike to the passive object and is similar
to the Jeffery’s rotation of an ellipsoidal body [54|. The 3B object spends relative
longer time when beads are situated along the flow direction. As an elongated object
the "active” 3B object somewhat resists the rotation imposed by the shear flow. So, the
present model as well as the previous model (with torque) can explain the experimental
observations. The shortcoming of this model is that it does not produce a swimmer.
The "active” objects as well as the passive objects both are passive, since they do not

actuate themselves through a fluid at rest.

6.7 Model with anisotropic distribution of force dipoles

The measurements of the effective viscosity of green-alga suspensions was made using
a rheometer which creates a uniform shear flow at the micro-swimmer scale. It is

well known that a shear flow can be decomposed into a extension/compression and a



110CHAPTER 6. MODELS AND SIMULATIONS OF MICRO-SWIMMER SUSPENSIONS

' I ' I ' I ' I ' I ' I ' I
1.2 - - —
® numerical results (active)
- O swimming cells g
(b -0 ) -1 _
W numerical results (passive)
B O deads exp. 7
— (1 - ¢ ) - 1
= 0.8 1-9¢/9,)
=
£0.6
£
0.4
0.2
0
0.175
a) ¢
T T T | T T | T
1.1
1 I
09—
0.8
£ L
SI—_ 0.7
= L
£ 06
0.5 oy
L _—
04 —
O 2 1 | 1 | 1 | 1 | 1 | 1 |
0 0.5 1 1.5 2 2.5 3
b) Wi=vy1

Figure 6.13: a) The reduced effective viscosity of “active” 3B objects suspension and
passive particles suspensions as function of volume fraction. b) The reduced effective
viscosity versus Weissenberg number for different values of volume fractions.



6.7. MODEL WITH ANISOTROPIC DISTRIBUTION OF FORCE DIPOLES 111

X X X
F T /><\ i N\
) Shear flow Extension/compression Rotation
a
II I v
O<=0p<=m/2 2r<@<2m T <= @ <=3/27n T2<Q<T
b)
90 : T
| | IV/i
60/ 1 Lo
| | |
| | |
i b
~ 30 | W
[ | [ |
e i oo
g 0= Lo
= | | b
| |
S a0 | i L
| | | |
| | | |
| | | |
60— | | Lo
| | | |
| | | |
| | | |
-90 [ ! ! ! |
0 0r 02 03 04 05 06 07 08 09 1
c) T

Figure 6.14: a) A shear flow decomposed into the extension /compression and the rotation
parts. b) Schematic picture of four situations of Chlamydomonas in the shear flow. c)
The simulated orientation angle of the fastening point as a function of time.



112CHAPTER 6. MODELS AND SIMULATIONS OF MICRO-SWIMMER SUSPENSIONS

solid rotation parts (see figure 6.14 a). If we place an object into the shear flow it will
experience: the extension in the direction which is at 45° from the flow direction (in the
shear plane), the compression along perpendicular direction to the extension direction
and the rotation. Therefore, objects with a rod-like shape will orient preferentially along
the extension direction in the shear flow. The Chlamydomonas Reinhardtii are almost
spherical cells (figure 6.1 a-b), therefore they would not have a preferred orientation
in the shear flow. However, Chlamydomonas has a pair of flagella which are about
10 — 12 gm in length and 0.5 wm in diameter |107|. Chlamydomonas moves through

the fluid using rapid (about 50 Hz) strokes of these fiber-like flagella.

Our model presented in this section is based on an assumption: a Chlamydomonas,
as a puller type micro-swimmer in a shear flow, can operate with its flagella when
flagella are oriented along the extension direction rather than along the compression
direction. Here ¢ is the angle between the vector which connects body center to the
fastening point and horizontal axis (z on figure 6.14 a). On figure 6.14 b) it is shown
the four situations of Chlamydomonas in a shear flow used in this model. (I) When the
fastening point (the point where flagella are bind to the body) is in the first quarter
(0 < ¢ < 7/2) the extension force imposed by the shear flow on flagella helps to
open them and Chlamydomonas effort is efficient for locomotion. (II) In the second
quarter (3/2m < ¢ < 2m) the compression force pushes flagella close to the cell body,
therefore Chlamydomonas need more effort to open flagella. (III) In the third quarter
(m < p < 3/2m) the extension force is acting on Chlamydomonas again and situation is
similar to the situation in the first quarter. (IV) In the fourth quarter (7/2 < ¢ < 7)

situation is similar to the situation in the second quarter.

Based on those particular features of the Chlamydomonas swimming, we conclude
that on average the amplitude of the force dipole exerted by Chlamydomonas on the
fluid is bigger when flagella are directed along the extension direction than when flagella
are directed along the compression direction. In our simulations for simplicity, we
choose nonzero amplitude (ON) of the force dipole in the extension directions (I and
[T situations on figure 6.14 b) and zero amplitude (OFF) of the force dipole in the
compression directions (IT and IV situations on figure 6.14 b). In the beginning of
simulations, orientations of the force dipoles are randomly and isotropically distributed

in the shear plane. The particles are submitted to the shear flow which rotates them
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Figure 6.16: The reduced effective viscosity of active suspension with anisotropic distri-
bution of force dipoles versus volume fraction.

clockwise with the angular velocity w, = —%/2, where ¥ is the shear rate. The fastening
point rotates with particle but force dipole is applied on particle only in first (I) and
third (III) quarter and direction of force is parallel to the extension direction (45° from
the flow direction in the first (I) quarter and 135° from the flow direction in the third
(IIT) quarter). Therefore, when the fastening point is approaching to the horizontal axis
(¢ — 0) in the first quarter and (¢ — ) in the third quarter the force dipole reduces its
rotation. Figure 6.14 c¢) shows the orientation angle of the fastening point (decompose
into the [—m/2; 7/2| interval) as a function of its rotation period 7. As we can see
on figure 6.14 swimmer spends bigger time (about 83% of its period) in the direction
of extension ((I) and (ITT) than in the compression direction (IT) and (TV), where it
rotates freely with angular velocity w, = —%/2. So, if we look at the suspension after
some time from the beginning of simulations, we will find an anisotropic distribution
(see figure 6.15). Most particles will be oriented along extension direction. Figure 6.15

a) shows a view of 100 active particles in the simulation box after long enough time
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Figure 6.17: The reduced effective viscosity versus shear rate for different values of volume
fractions.

from the beginning of simulation (the number of iterations is about 5 x 10°) and b-
e): n(p) number of particles having the orientation angle in the [¢; ¢ + 10°] interval,
normalized by the total number of particles N as a function of ¢ for four different
values of N. The similar result was found by Saintillan [102|, Haines et al. [106] for
bacterial suspension, where they predict an anisotropic distribution and decrease of the
effective viscosity in pusher type bacterial suspensions. The main difference between
their models and our model is that, we deal with spherical objects and alignment of
particles is a result of their swimming features in shear flow and not their shape or
a hydrodynamic interaction between particles. In this model a collective effect is not
necessary to obtain alignment of particles in the shear flow and it works for a single
particle as well (although, hydrodynamic interaction between particles is fully included
in our simulations using FPD method). Other details of the simulations are similar to

the one used in previous models.

Figure 6.16 shows the reduced effective viscosity of active particle suspension calcu-
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lated using the present model for different ¢. The numerical results for active swimmer
suspensions (red full circles with line) are compared to the experimental measurements
(magenta circles with error bars for swimming cells and green squares with error bars
for dead cells). The model also shows a shear thinning behavior of active particles sus-
pension. Indeed, for a fixed force dipole, if the shear rate is increased, particles spend
less time in (I) and (III) quarters (figure 6.14 b) where the force dipole is applied and
behave as passive particles. Figure 6.17 shows simulated reduced effective viscosity as
a function of 4 for different volume fractions. Numerical points are fitted by a power
series.

The present model (which is force free and torque free) successfully explains our
experimental observations: the increase of the effective viscosity in swimming cell sus-
pensions; the shear thinning effect and the resistance of an live swimmer to the shear
imposed tumbling (see section 6.3). However, additional experiments are needed to
study individual or collective dynamics of live Chlamydomonas under a shear flow and

especially to analyze the effect of a shear flow on the flagella .

6.7.1 The effective viscosity of pusher type swimmers suspensions

We use this model which converges in anisotropic distribution of force dipoles for a
pusher type swimmers suspension. For this purpose, we simply flip the sign of the
force dipoles. The particle still spends longer time in the extension direction than
in compression direction, because when the fastening point passes to the vertical axis
(¢ = m/2) in the first quarter and (¢ = 3/27) in the third quarter the force dipole
exerts a torque on the body and reduces its rotation. The model for pusher type
swimmers does not corresponds explicitly to any specific swimmers, but we calculate
the effective viscosity using this model and found a decrease of the effective viscosity
(even less than the solvent viscosity). The results are in qualitative agreement with
experimental measurements of the effective viscosity of the bacterial suspension [10].
Figure 6.18 shows our numerical results concerning the reduced effective viscosity as
a function of ¢ calculated for a pusher type swimmer suspension (full red circles).
The solid red line presents the parabolic fitting of the simulations results. The results
for pusher type swimmer suspensions are compared with Kreiger & Dougherty’s law

(dashed magenta line) for passive suspensions [78|. The obtained result is reminiscent
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Figure 6.18: The reduced effective viscosity of a pusher type swimmers suspension with
anisotropic distribution of force dipoles versus volume fraction.

to nerr(¢) of Sokolov and Aranson experimental results [10].

6.8 Conclusion

In this chapter, we developed different models to numerically study the rheology of
micro-swimmer suspensions. Namely, the effective viscosity of Chlamydomonas suspen-
sion. We begin with a general review of micro-swimmers in section 6.3 and discussed the
low Reynolds number constrains formulated in the scallop theorem (subsection 6.2.1).
In section 6.4, we briefly present some results of our experiments on Chlamydomonas
suspensions, namely, the effective viscosity of swimming and dead cells for different
volume fraction and shear rates, we also picture sequences of swimming cells and dead
cells in the shear flow. In the next section (6.4), we present models and the results of
numerical simulations, where micro-swimmers was simulated by spherical body with an

isotropically distributed force dipoles. The model shows no noticeable contribution of
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activity of swimmers on the rheological properties of the suspension. Then, we forced
particles to reduce their shear imposed rotation by applying an external torque and
found a quantitative agreement with the experimentally measured rheological proper-
ties of Chlamydomonas suspensions (section 6.5). In next section (6.6), we considered
the effects of flagella by modeling the Chlamydomonas with three beads and found good
agreement with the experimental measurements. However, the model did not produce
a self-motility of particles. Finally, in section 6.7 by taking into account the swimming
features of Chlamydomonas in the shear flow, we proposed a model which converges
to anisotropic distribution of force dipole and incorporates all experimentally observed
phenomena: increase of the effective viscosity in active Chlamydomonas suspensions;
the shear thinning behavior and resistance of swimming cells to the tumbling motion
imposed by the shear flow. We applied the model also on a pusher type swimmers sus-
pensions and found a decrease of the effective viscosity which is in qualitative agreement
with experimental observations [10].

In this chapter several models have been investigated which takes into account the
different aspects of Chlamydomonas suspensions. However, the last model is perhaps

closest to the real studying system.



Chapter 7

Conclusions and future prospects

7.1 Conclusions and major outcomes

In this section, we summarize our main results and contributions to the study of active
fluids.

Contribution to the FPD method

In chapter 3 the Fluid Particle Dynamics numerical method was introduced. We made
some improvement and extension to the FPD method. Namely, the method was adapted
for any ellipsoidal shape of the suspended particles; the Successive Over Relaxation
(SOR) method for solving the Poisson’s equation has been optimized. In order to
impose a shear flow, we can apply a shear rate or a shear stress. The periodic boundary
conditions have been extended from one direction to two directions (in three dimensional
simulations). We also presented several problems solved using FPD method compared

to well known analytical results.

Effect of finite geometry on the dynamics of a sheared suspension

We investigated the effect of walls on the rotation of a spherical particle in a shear
flow in two cases: when the particle is confined in the middle of two walls (moving in
opposite direction) and when the particle is close to a single wall. We found that in
both cases the angular velocity of the rotating spherical particle is smaller than the one

imposed by the shear flow (—7/2, where # is the shear rate). The effect is simple and
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can be easily observed in microfluidic or biological applications. However, so far there
are only a few works dealing with these effects. In addition, when a particle is confined
so that rigid contact appears between the particle and the walls the angular velocity
of particle should be increased up to —¥. Previous simulations and calculations cannot
reach the rigid contacts between particles and walls and predict only the decrease of
the angular velocity in a confined geometry [55, 56, 18]. Our numerical results are in
agreement with the previous results and seem to be able incorporate partially the rigid
contacts when walls are very close.

We also found that in vicinity of a single wall the translational velocity of a particle
is modified so that the difference between the velocity of the particle and the velocity

of the wall is decreased.

Suspensions with a tunable effective viscosity

We numerically investigated sheared suspensions of non-colloidal spherical particles on
which a torque is applied and show that (by changing the particles rotation) the effective
viscosity of the suspension can be strongly modified. We introduce a dimensionless
number O (representing the average relative angular velocity of the particles divided by
the vorticity of the fluid generated by the shear flow) and show that the contribution
of the particles to the effective viscosity can be suppressed for a given and unique value
of © independently of the volume fraction ¢. Based on our numerical simulations, we
proposed the semi-empirical formula valid up to ¢ = 40% concentration for the effective

viscosity:
3
Argy(0,0) = Aty () (14 26).

where Anesr(¢, ©) and Anl; ((¢) are the reduced effective viscosity with and without an
external torque, respectively. This expression is exact for dilute concentrations (when
¢ < 1, a modified intrinsic viscosity for dilute suspension derived by Brenner [14| can
be recovered) and empirical for more concentrated regime. We proposed also empirical

second Faxén law 73] extended to semi dilute and more concentrated regimes.

Effective viscosity of micro swimmer suspensions
In chapter 6, we conducted numerical investigation of puller type micro swimmer sus-

pensions. We explored several models. The models and numerical simulations was
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encouraged by their consistency with experiments made on Chlamydomonas suspen-
sions by S. Rafai et al. [9].

The first model with isotropically distributed force dipoles show no contribution to
the effective viscosity of suspensions. In the next model, the particles in the sus-
pension are forced to maintain their initial orientation in the shear flow by using
an external torque. This model incorporates the experimentally observed features of
Chlamydomonas suspensions. However, we did not found an experimental evidence
that an external torque is applied to the swimmers, since here gravity certainly plays
no role. Then, we considered the effect of flagella (elongation of Chlamydomonas due
to the presence of flagella) by constructing object with a three bead chain and found
again an increased effective viscosity. The shear thinning behavior is also similar to the
one obtained experimentally. The shortcoming of the model is the lack of motility of
objects in the suspension. Finally, we proposed a model where the swimming features of
Chlamydomonas in the shear flow rae taken into account and converge to an anisotropic
distribution of swimmers into the shear flow. Some suppositions made in the model
still need future experimental support. However, the model produces an increase of
the effective viscosity in quantitative agreement with the experimental observation and
also shear thinning behavior due to the resistance of swimmers to the tumbling motion
imposed by the shear flow. The last model also produces reduced effective viscosity
(even less then solvent viscosity) for a pusher type suspension which is also reminiscent

to another experimental work [10].

7.2 Perspectives

In this work, we introduced the FPD method and applied it to specific problems.
However, there are many areas for future research. In this section some of these are

summarized as follows:

Biological active systems:

e Simulations of explicitly pusher type suspensions (bacterial suspension or sperma-

tozoa suspension).



122 CHAPTER 7. CONCLUSIONS AND FUTURE PROSPECTS

e Mechanics of biological locomotion of different types of swimmers at small length

scale with modeling flagella as a bead chains.
e Diffusion and spatial correlation in different types of micro swimmer suspensions.
e The coupling of the flow and swimmers sensitive to gradients (taxis like phototaxis
or chemotaxis).
Passive systems in various flows:
e Dynamics and rheology of suspension of ellipsoidal particles.

e Characterization, ordering and phase transition in concentrated suspension under

an external field.

e Study dynamics and time-reversibility of Stokes flow for chains of beads in a shear

flow or in a Poiseuille flow.

Combination of passive and active systems:

e A single sedimenting passive sphere (the probe) moving through an active sus-
pension of micro-swimmers. The interaction between the passive sphere with the
active medium could give a very interesting information concerning micro-rheology
of the suspension. Some experiments are also planned in our team concerning this

system.

We hope that the present work will pave the way for these future projects.



Chapter 8

Conclusions et perspectives

8.1 Conclusions et principaux résultats

Dans cette section, nous résumons nos principaux résultats et les contributions a 1I’étude

des fluides actifs.

Contributions a la méthode FPD

Dans le chapitre 3, la méthode numérique de la Dynamique des Particules Fluides (FPD)
a été introduite. Nous avons fait quelques améliorations et ’extension de la méthode.
A savoir, la méthode a été adaptée pour toute forme ellipsoidale des particules en
suspension; la methode de sur-relaxation successives (SOR) a été optimisée et nous a
permis de résoudre I’équation de Poisson concernant le calcul de la pression avec plus de
rapidité. Dans le but d’imposer un flux de cisaillement, on peut appliquer un taux de
cisaillement ou une contrainte de cisaillement. Les conditions aux limites périodiques
ont été étendues aux deux directions de l'espace paralléles aux parois. Nous avons
également testé plusieurs problémes connus, solubles analytiquement, en utilisant la

méthode FPD et avons comparé nos résultats numériques avec les résultats analytiques.

Effet de la géométrie finie sur la dynamique d’une suspension cisaillée
Nous avons étudié 'effet de la rotation d’une particule sphérique dans un écoulement
de cisaillement dans deux cas: lorsque la particule est confinée dans le milieu entre deux

parois (se déplacant en sens inverse) et lorsque la particule est proche d’une seule paroi.
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Nous avons constaté que dans les deux cas, la vitesse angulaire de rotation de la particule
sphérique est plus petit que celui imposé par le cisaillement (—%/2, ou % est le taux
de cisaillement). L’effet est simple et peut facilement étre observé dans de nombreuses
applications microfluidiques ou biologiques. Cependant, jusqu’ici il n’y a que peu de
travaux traitant de ces effets. En outre, quand une particule est confinée mais que des
contacts rigides apparaissent entre les particules et les parois, alors la vitesse angulaire
de la particule est augmentée jusqu'a —7. Des simulations et des calculs précédents ne
peuvent pas atteindre le contact rigide entre des particules et des murs et ne prévoient
que la diminution de la vitesse angulaire dans une géométrie confinée [55, 56, 18]. Nos
résultats numériques sont en accord avec les résultats précédents et semble pouvoir
intégrer partiellement le contact rigide quand les parois sont trés proches.

Nous avons également constaté que dans le voisinage d'une paroi unique, la vitesse
de translation d’une particule est modifiée de sorte que la différence entre la vitesse de

la particule et la vitesse de la paroi diminue.

Suspensions avec une viscosité effective ajustable

Nous avons étudiés numériquement des suspensions cisaillées de particules sphériques
non-colloidales sur lequel un couple est appliqué. Nous avons montré qu’en changeant
la vitesse de rotation des particules grace au couple externe, la viscosité effective de
la suspension peut étre fortement modifiée. Nous introduisons un nombre sans dimen-
sion © (représentant la vitesse relative moyenne angulaire des particules divisée par la
vorticité du fluide générée par le cisaillement). Nous avons montré que la contribution
des particules a la viscosité effective peut étre supprimée pour une valeur unique de
O indépendamment de la fraction volumique ¢. A partir des résultats de nos simula-
tions numeériques, nous avons proposé la formule empirique de la viscosité effective en
fonction de © et valable jusqu’a ¢ = 40%:

Arrs(6.0) = iy (0) (1+ 26)

ot Anesp(,©) et Anli(¢) sont respectivement la viscosité effective avec et sans un
couple externe. Cette expression est exacte en régime dilué et empirique pour les
régimes plus concentrés (lorsque ¢ < 1 (régime dilué), la viscosité intrinséque dérivée

par Brenner [14| peut étre retrouvée). Nous avons également proposé une seconde
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loi de Faxén [73] empirique et étendue aux régimes semi-diluées et aux régimes plus

concentrés.

Viscosité effective des suspensions de micro-nageurs

Au chapitre 6, nous avons étudié numériquement des suspensions de micro-nageurs de
type puller. Nous avons exploré plusieurs modéles. Les modéles et les simulations
numériques sont encouragées par leur cohérence avec les expériences faites sur des sus-
pensions de Chlamydomonas par S. Rafai et al. [9].

Le premier modeéle avec des forces dipolaires distribuées isotropiquement ne montre
pas de contribution a la viscosité effective des suspensions. Le modéle suivant, ot les
particules en suspension sont contraintes de maintenir leur orientation initiale dans le
cisaillement (comme dans le chapitre précédent) en exercant un couple artificiel externe.
Cependant, nous n’avons pas trouvé de preuve expérimentale qu’un couple externe soit
appliqué aux nageurs, car ici la pesanteur ne joue certainement aucun role. Ensuite,
nous avons examiné l'effet de drag sur les flagelles (allongement de Chlamydomonas due
a la présence de flagelles) en construisant des objets a trois sphéres. Ce modéle per-
met également d’augmenter la viscosité, il permet aussi de retrouver le comportement
rhéofluidifiant similaire a celui obtenu expérimentalement. L’inconvénient de ce mod-
éle est 'absence de mobilité des objets dans la suspension. Enfin, nous avons proposé
un modeéle ou les caractéristiques de la nage des Chlamydomonas dans le cisaillement
ont été prises en compte et converge vers une distribution anisotrope des nageurs dans
I’écoulement de cisaillement. Certaines suppositions faites dans le modéle ont encore
besoin de confirmations expérimentales. Cependant, le modéle produit une augmenta-
tion de la viscosité effective en accord quantitatif avec les observations expérimentales.
Il reproduit également le comportement sous cisaillement des nageurs qui ont un mou-
vement de tumbling ralenti. Ce dernier modéle produit aussi une viscosité pour la
suspension méme inférieure a la viscosité du solvant dans le cas d’une suspension de
type pusher qui est également qualitativement proche d’'un autre travail expérimental
[10].

8.2 Perspectives

Dans ce travail, nous avons introduit la méthode FPD et nous ’avons appliquée a des
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problémes spécifiques. Cependant, de nombreux domaines de recherches peuvent encore

étre explorés dans un futur proche. Dressons en une liste succinte:

Systémes biologiques actifs:

Les

Simulation de suspensions de type pushers (suspensions bactériennes ou suspension

de spermatozoides).

Mécanique de la locomotion biologique des différents types de nageurs a I’échelle

microscopique avec des flagelles modélisés a ’aide d’une chaine de perles.
Diffusion et corrélation spatiale des nageurs dans la suspension.

Le couplage entre un écoulement et des nageurs sensibles aux gradients (tactisme,
comme le phototactisme ou le chimiotactisme).

systémes passifs dans les différents écoulements:

Dynamique et rhéologie de suspensions de particules ellipsoidales.

Charactérisation d’auto-organisation et de transition de phase en suspension con-

centrée sous un champ externe.

Dynamique de chaines de perles dans des écoulement de Stokes (cisaillement de

Couette ou écoulement de Poiseuille).

Combinaison de systémes passifs et actifs:

Une seule sphére passive en sédimentation (constituant la sonde) se déplagant
dans une suspension active de micro-nageurs. L’interaction entre la sphére passive
avec le milieu actif pourrait donner une information trés intéressante concernant
la micro-rhéologie de la suspension. Des expériences sont également prévues dans

notre équipe concernant ce systéme.

Nous espérons que le présent travail permettra d’ouvrir la voie a ces futurs projets.
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