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1
Introduction

The subject of this thesis is triggered by our curiosity about the geometry of

nuclei, especially 6He and 8He for the reasons that will be outlined below.

1.1 Two-particle systems

Two-particle systems refer to the nuclei with two identical valence nucleons.

They are well exemplified by 6He, which is typically depicted as a particularly

stable 4He (α particle) core having the proton and neutron 0s1/2 shells filled up,

accompanied by two valence neutrons. Simple as it may seem, 6He has been

at the heart of a long-lasting debate as to whether the valence neutrons spend

more time staying close to each other looking like a di-neutron (Fig. 1.1), or

keeping their distance from each other to form a so-called cigar-like configuration

(Fig. 1.2) (see Sec. 1.1.3). The nucleus of 6He features elements of a rewarding

investigation, among which are pairing, nuclear halo phenomenon, Borromean

nuclei, etc.
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Figure 1.1: The di-neutron configura-
tion of 6He

Figure 1.2: The cigar-like configuration
of 6He

1.1.1 Pairing

Identical nucleons tend to pair up. Pairing explains why all known even-

even nuclei have Jπ = 0+ ground states, and most odd-mass nuclei have the total

angular momentum of the last unpaired nucleon†. Another direct evidence is the

odd-even mass difference, pointing to the fact that for the same type of nucleons,

protons or neutrons, the gain in binding energy is larger when a doubly-even

nucleus is formed than when its neighboring odd-mass isotones or isotopes are

formed. This is illustrated in Fig. 1.3 by the staggering one-neutron separation

energy S(n) (Fig. 1.3(a)) of some ruthenium isotopes near 100
44 Ru, and one-proton

separation energy S(p) (Fig. 1.3(b)) of some isotones of 100
44 Ru. The staggering

feature is shared by all isotopic and isotonic sequences of nuclei.

In the present context, the fact that 6He has a ground state of 0+, whereas 5He,

the isotope of 6He with one less neutron, is unbound and has the total nuclear

spin 3/2−, hints at the undisputed presence of pairing.

Two typical level schemes of singly magic nuclei with two valence nucleons

that can be described within the pure shell model picture are presented in Fig.

†Strictly speaking, nuclei with more than one valence nucleon may have a total angular mo-
mentum other than that of the last unpaired nucleon in the ground state due to residual interac-
tions. For instance, although both 45

22Ti and 47
22Ti have the last unpaired neutron in the shell 0f7/2,

the former has a 7/2− ground state while the latter, a 5/2− ground state because of the quadrupole
correlation.
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(a) Neutron separation energy of isotopes of 100Ru

(b) Proton separation energy of isotones of 100Ru

Figure 1.3: Neutron and proton separation energies of nuclei near 100Ru (taken
from http://www.obacs.com).
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1.4. Both of them have a very low-lying 0+ ground state and a succession of states

with higher even angular momenta.

0

1.570

2.695

3.215

(a)

0.80

1.10
1.20
1.28

0

(b)

Figure 1.4: The level schemes of 50Ti and 210Pb (data taken from NNDC). The
energies are in units of MeV.

The physical mechanism of the pairing effect on the level schemes can be bet-

ter understood with multipole expansion. The multipole expansion is widely

used to decompose two-body interactions into spherical tensor components as

follows

V (|~r1 −~r2|) =
∞∑
k=0

vk(r1, r2)Pk(cosθ12)

=
k∑

m=−k

∞∑
k=0

vk(r1, r2)
4π

2k + 1
Y ∗km(θ1,φ1)Ykm(θ2,φ2),

where vk(r1r2) is given by [1]

vk(r1, r2) =
2k + 1

2

∫
V (|~r1 −~r2|)Pk(cosθ12)d cosθ12.

The pairing effect described by the level schemes above in Fig. 1.4 can be

mocked up by a zero-range δ interaction that will be among the subjects dis-

cussed in Chapter 3. The multipole expansion of the δ interaction reads

δ(~r1 −~r2) =
k∑

m=−k

∞∑
k=0

δ(r1 − r2)
r1r2

Y ∗km(θ1,φ1)Ykm(θ2,φ2).
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As far as two nucleons in the same shell j are concerned, the energy splitting

originated by a δ interaction for a J-coupled state in jj-coupling scheme is given

by the matrix element 〈j2; JM |δ(~r1−~r2)|j2; JM〉. Contributions from different mul-

tipole components then can be compared by including successively higher orders

in the expansion of the interaction and plotting the level schemes. Such a plot

is shown for 0h11/2 [2, 3] in Fig. 1.5. It is inferred from Fig. 1.5 that it is the

Figure 1.5: The level schemes of a (0h11/2)2 configuration calculated by including
successively higher multipole order components (taken from [3]).

high-order multipole components that account for the large energy gain for the

0+ states. Consequently, pairing is often associated with attractive short-range

interactions that high multipole order components dominate, which can be mis-

leading because interactions originally defined in second quantization, such as

the pairing interaction that correlates nucleons in zero-coupled pairs (see Chap-

ter 4), cannot be analyzed in coordinate space in terms of their “range”.

1.1.2 Nuclear halo and Borromean nuclei

The notion of halo pervades various scientific disciplines when an unusually

diluted and extended component surrounding a more solid and massive core is
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encountered. In nuclear physics, the 1/3 power law

R = r0A
1/3, (1.1.1)

where r0 = 1.25 fm and A is the mass number, followed at least roughly by the

radii of stable nuclei, is defied by nuclei on the neutron and proton drip lines.

6He, 11Li, 11Be, 19C and 17Ne, to name a few, all exhibit exceptionally large ex-

tensions of nuclear matter. The 11Li nucleus, for one, is observed to have the

nuclear radius of the much heavier 208Pb nucleus [4]. Furthermore, in all those

nuclei, the extended matter distribution is generated by a few valence nucleons,

while loosely bound to a more stable core, extending far out into regions classi-

cally forbidden by the potential. The name halo nucleus was thus coined [4, 5].

Weakly bound, halo nuclei have a relatively short lifetime of the order of a few

milliseconds to a few seconds, before undergoing decay.

The experimental evidence of halo includes

1. Unusually large interaction cross sections indicating large sizes [4];

2. Very narrow momentum distributions of constituents in high-energy frag-

mentation which, by virtue of the uncertainty principle, should be accompa-

nied by large spatial extensions [6];

3. Electromagnetic dissociation cross sections orders of magnitude larger than

for stable nuclei which is explained by very separated charge and mass cen-

ters [7].

At present, the accepted definition [8, 9] of a halo nucleus contains two crite-

ria:

1. The total many-body wave function must have a cluster structure (> 50%

probability of having a cluster component).
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2. A large part (> 50%) of the wave function for the halo particles must be in the

non-classical region of the cluster potentials.

The cluster structure in question is the one composed of constituents that it

is easiest for the nucleus to break up into. For instance, 6He and 11Li can be

seen as three-body structures, that is, two neutrons plus a core, and 11Be a two-

body structure with one neutron plus a core. These constituents are the building

blocks of halo nuclei, and as such are the essential degrees of freedom. For halo

nucleons to have a good chance of penetrating into forbidden regions, their an-

gular momenta must be low; otherwise the centrifugal barrier would hamper the

formation of halo. It has been shown that halo nucleons only exist as s and p

waves [8, 9].

One intriguing class of halo nuclei is Borromean nuclei named after the Bor-

romean rings (Fig. 1.6) appearing on the coat of arms of the Italian family of

Borromeo since the 15th century. The three rings are interlocked in such a way

Figure 1.6: Borromean rings

that no two rings are linked; if any one of them is broken, the other two fall

apart. Analogously, Borromean nuclei are the three-body halo nuclei in which

none of the two-body subsystems are bound, and yet all together as a whole, the

three constituents lead to a bound state. If we remove one valence neutron from

6He (or 11Li), the resulting isotope 5He (or 10Li) is unbound. Furthermore, the

di-neutron subsystem is also unbound; thus 6He and 11Li are both Borromean

nuclei.
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1.1.3 Experimental and theoretical debates

Neither experimentalists nor theorists have reached a consensus on whether

di-neutron or cigar is more probable in 6He. Experimentally, a variety of methods

have been used to look into neutron correlations in 6He. Although people seem

to agree on the co-existence of the two possible configurations, opinions are split

concerning which one is predominant. For example, two neutron transfer [10],

the elastic transfer in the 4He(6He, 6He)4He reaction [11] and neutron breakup

[12] show a prevalence of the di-neutron configuration. On the other hand, the

radiative capture of a proton on 6He [13] indicates the contrary.

The theoretical side of the story is that, most people consent to the co-

existence of the two configurations established by Zhukov et al. with the three-

body calculation in Ref. [14]. Nevertheless, there is a dissenting voice coming

from Suzuki who claims in Ref. [15] rather a pure di-neutron configuration.

Our intention is first to show that, the two configurations show up as a pure

geometrical consequence of an identical nucleon pair in the 0p shell zero-coupled

in the LS coupling scheme (L = 0, S = 0), and to provide theoretical predictions

for the geometry of such correlated† identical nucleon pairs in any shell (Chapter

2), as well as for states with the total angular momentum L other than zero. Then,

6He, a perfect laboratory for studying two-particle correlations, endowed with

halo and Borromean particularities, will be considered (Chapter 3 and 4).

1.2 Four-particle systems

To pursue the study of the geometry of zero-coupled particles further, 8He, a

typical correlated four-particle system will be investigated as a prototype. 8He

boasts the largest neutron-to-proton ratio of any known particle-stable nucleus.

†If no ambiguity arises, we will use “correlated” to mean zero-coupled in the LS coupling
scheme throughout.
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The nature of the four valence neutrons in 8He is still not quite clear. Some be-

lieve that like its isotope 6He, 8He is also a halo nucleus with four halo neutrons

and an α particle core because of its large neutron density distribution. Others

point out that the large neutron distribution in 8He is better understood as a thick

neutron skin [16]. In the ground state of 8He, the four neutrons are usually con-

sidered to form a full 0p3/2 subshell [17], whereas recent studies [18, 19, 20, 21]

suggest a non-negligible presence of the paired-up double di-neutron structure

(0p3/2)2(0p1/2)2.

As for the geometric configurations of 8He, we intend to extend the results

obtained for two-particle systems to a general 0+ state of four correlated identi-

cal particles in p shells, and find the connection with the two particle case, i.e.

6He.(Chapter 5).
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2
Two-particle correlations

2.1 Description of the approach

2.1.1 Choice of the LS-coupling scheme

Most of the calculations concerning two-particle correlations in this chapter

will be done in the LS-coupling scheme. Although nuclear physicists, after the in-

troduction of the nucleonic spin-orbital interaction by Mayer [22] and by Jensen

et al. [23], have been converted to adopting the jj coupling scheme, the alterna-

tive LS coupling still has arguments in favor of it. One argument is that it allows

a clear separation between spin and spatial degrees of freedom. One of the basic

properties of nucleon-nucleon interactions is its short-range, attractive character

which favors spatial symmetry and its consequences are most easily understood

in LS coupling. To see why, let us consider a special case, an extreme limit of

short-range interactions, the δ interaction that we will discuss later in detail.

The δ interaction δ(~r1 − ~r2) has non-vanishing two-body interaction matrix ele-

ments only between the space symmetric states with S = 0,T = 1, or S = 1,T = 0.

Another argument is that realistic two-body shell-model interactions, such as
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the USD interaction for the sd shell [24] and the GX1A interaction for the pf

shell [25], have matrix elements more diagonal in LS-coupling than they are in

jj-coupling. Last but not least, light nuclei (in the 0p shell and the beginning of

1s0d shell), to a good approximation can be classified in LS coupling [26].

2.1.2 Two-particle correlation functions

Since our intention is to learn about the spatial structure of two valence nu-

cleons outside a much stabler core, as in the case of 6He, one choice of physical

observables to probe is the relative distance between the two nucleons and the

distance between the core and the center of mass (henceforth denoted by CM)

of the two nucleons†. Consequently, the expectation values of δ functions will

be called two-particle correlation functions. A typical two-particle correlation

function corresponds to the expectation value of δ(~r −~r12), where ~r12 ≡ ~r1 −~r2 is

the difference between the position vectors of the two particles, ~r1 and ~r2, and ~r

an arbitrary vector. The expectation value of this operator, multiplied with the

appropriate volume element, measures the probability of finding the pair of par-

ticles separated by ~r. Here one is only interested in this probability as a function

of the distance r12 ≡ |~r1 − ~r2| between the two particles which then involves the

operator δ(r − r12). Also, it is often useful to probe in addition the distance of the

pair of particles from the core and this can be achieved by calculating the expec-

tation value of δ(r − r12)δ(R −R12) where R12 ≡ |~r1 +~r2|/2 is the radial coordinate

of the CM of the two particles.

These notions can be defined for any quantum-mechanical many-body state

in which case we define the correlation functions

Cαα′ (~r) ≡ 〈α|
n∑

i>j=1

δ(~r −~rij)|α′〉,

Cαα′ (r) ≡ 〈α|
n∑

i>j=1

δ(r − rij)|α′〉,

†The CM issue will be discussed later.
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Cαα′ (r,R) ≡ 〈α|
n∑

i>j=1

δ(r − rij)δ(R−Rij)|α′〉, (2.1.1)

where the sum is over all particles in the many-body states |α〉 and |α′〉 with n

particles, characterized by a set of quantum numbers, collectively denoted as α

or α′, and typically comprising the total orbital angular momentum L, the total

spin S, the total angular momentum J and its projection M. It will often be

convenient to refer to all correlation functions (2.1.1) simultaneously, in which

case the notation Cαα′ will be used. The interpretation of Cαα′ as a probability

distribution is valid in the diagonal case, α = α′, but expressions of the non-

diagonal matrix elements are needed as well in the following. As the operators

δ(r − r12) and δ(r − r12)δ(R−R12) are scalar under rotation, their matrix elements

are diagonal in J as well as in M. This is not the case for the operator δ(~r −~r12),

which therefore leads to more complicated expressions for its matrix elements.

Correlation functions satisfy the normalization conditions

∫
<3

Cα(~r)d~r =
n(n− 1)

2
,

4π
∫ +∞

0
Cα(r)r2dr =

n(n− 1)
2

,

16π2
∫ +∞

0
r2dr

∫ +∞

0
Cα(r,R)R2dR =

n(n− 1)
2

,∫
<3

Cαα′ (~r)d~r = 0,∫ +∞

0
Cαα′ (r)r

2dr = 0,∫ +∞

0
r2dr

∫ +∞

0
Cαα′ (r,R)R2dR = 0, (2.1.2)

where the notation Cα ≡ Cαα is used. Note that these are generic conditions, valid

for any of the correlation functions that will be derived below.
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2.2 Two identical particles in LS-coupling

We begin with some elementary definitions, mainly to fix our notation. A

single-particle state is determined by its spatial part φn`m` (~r) ≡ φn`m` (r,θ,ϕ) =

Rn`(r)Y`m` (θ,ϕ), characterized by the radial quantum number n, the orbital an-

gular momentum `, and its projectionm`, multiplied with the spinor χ1/2,ms with

ms = ±1
2 in units of ~. For two nucleons of the same type, as is the case of the halo

neutrons of 6He, the single-particle isospin projection on z is ±1, and the total

isopin is T = 1. In such a case, a two-nucleon state in LS coupling is denoted

by |n1`1
1
2 ,n2`2

1
2 ;LSJMJ〉 ≡ |n1`1n2`2;LSJMJ〉. As the particles always have s = 1

2 ,

their spins are not shown explicitly but their coupled value is indicated as S.

When the two identical particles (T = 1) are in the same n` orbital, the values

of the total orbital angular momentum L and the total spin S are restricted by

the overall antisymmetry of the wave function, that is, even L for S = 0 (spatially

symmetric) and odd L for S = 1 (spatially antisymmetric). Since the operators

δ(r − r12) and δ(r − r12)δ(R−R12) are diagonal in the spin quantum numbers, the

correlation functions only depend on the orbital angular momenta ` and L. Note,

however, that allowed values of L are determined by S, so there exists an indirect

dependence on the total spin of the two particles. For completeness the total

angular momentum J , obtained from the coupling of L and S, and its projection

MJ can also be given.

2.2.1 Talmi-Moshinsky transformation

The evaluation of the correlation functions Cαα′ is significantly simplified

if the particles are placed in a harmonic-oscillator potential. The simplifi-

cation arises because for the harmonic oscillator the transformation from the

individual particle coordinates ~r1 and ~r2 to the relative and CM coordinates,

~r12 = (r12,θ12,ϕ12) ≡ ~r1 − ~r2 and ~R12 = (R12,Θ12,Φ12) ≡ (~r1 + ~r2)/2, can be carried
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out by means of Talmi-Moshinsky brackets [27, 28, 29] that can be calculated

with an efficient algorithm [30].

We recall that a Talmi-Moshinsky bracket, denoted here by an1`1n2`2
n`NL,L , is char-

acterized by the radial and orbital quantum numbers of the two particles (n1`1

and n2`2), the similar quantum numbers pertaining to the relative and CM coor-

dinates (n` andNL), and the coupled angular momentum L,

〈~r1,~r2|n1`1n2`2;LML〉

=
∑
n`NL

an1`1n2`2
n`NL,L 〈~r12/

√
2,
√

2~R12|n`NL;LML〉

=
∑
n`NL

an1`1n2`2
n`NL,L [φn`(~r12/

√
2)⊗φNL(

√
2~R12)](L)

ML

=
∑
n`NL

an1`1n2`2
n`NL,L Rn`(r12/

√
2)RNL(

√
2R12)[Y`(θ12,ϕ12)⊗YL(Θ12,Φ12)](L)

ML
.

(2.2.1)

The number of oscillator quanta is the same before and after the transformation

which translates into the condition 2n1 + `1 + 2n2 + `2 = 2n+ ` + 2N +L. In these

expressions Rn`(r) is the radial wave function of the harmonic oscillator [1] with

r expressed in units of the oscillator length b =
√
~/mω where m is the nucleon

mass and ω the oscillator frequency. Note that we follow the conventions of

Barber and Cooper [30] for the definition of Talmi-Moshinsky brackets, which is

different from those used by Brody and Moshinsky [31]. The latter does not have

the scale factors
√

2 and 1/
√

2 for r and R respectively.

2.2.2 Expressions of the correlation function matrix elements

When dealing with composite wave functions and spherical tensor operators,

one can resort to the Wigner-Eckart theorem in order to separate out the de-

pendence of matrix elements on the projection m, and the reduction rules for

spherical tensor operators to reduce the matrix elements to basic one-body ma-

trix elements [1]. The Wigner-Eckart theorem and the reduction rules facilitate
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the evaluation of the matrix elements of correlation functions.

a. Calculation of Cαα′ (~r)

By use of the multipole expansion

δ(~r −~r12) =
δ(r − r12)
rr12

∑
λµ

Y ∗λµ(θ,ϕ)Yλµ(θ12,ϕ12), (2.2.2)

the first of the correlation functions (2.1.1) can be expressed as

〈n1`1n2`2;LMLSMS |δ(~r −~r12)|n′1`
′
1n
′
2`
′
2;L′M ′LS

′M ′S〉

= δSS ′δMSM
′
S
(−)L+L′−ML

[
(2L+ 1)(2L′ + 1)

32π

]1/2∑
λµ

(−)λ
√

2λ+ 1

 L λ L′

−ML µ M ′L


×Y ∗λµ(θ,ϕ)

∑
n`n′`′NL

(−)L
√

(2` + 1)(2`′ + 1) an1`1n2`2
n`NL,L a

n′1`
′
1n
′
2`
′
2

n′`′NL,L′

×

 ` λ `′

0 0 0


 ` L L

L′ `′ λ

Rn`(r/√2)Rn′`′ (r/
√

2), (2.2.3)

where the symbols in round and curly brackets are Wigner 3j symbols and Racah

coefficients, respectively [1].

b. Calculation of Cαα′ (r)

The correlation function Cαα′ (r) is independent of the polar and azimuthal

angles, allowing a simpler expression of matrix element:

〈n1`1n2`2;LMLSMS |δ(r − r12)|n′1`
′
1n
′
2`
′
2;L′M ′LS

′M ′S〉

= δSS ′δMSM
′
S
δLL′δMLM

′
L

∫
<3

d~R12

∫
<3

d~r12

∑
n`NL

an1`1n2`2
n`NL,L 〈n`NL;LML|~r12/

√
2,
√

2~R12〉

× δ(r − r12)
∑

n′`′N ′L′
a
n′1`
′
1n
′
2`
′
2

n′`′N ′L′ ,L〈~r12/
√

2,
√

2~R12|n′`′N ′L′;LML〉. (2.2.4)
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When expressed in spherical coordinates, Eq.(2.2.4) takes the following form:

〈n1`1n2`2;LMLSMS |δ(r − r12)|n′1`
′
1n
′
2`
′
2;L′M ′LS

′M ′S〉

= δSS ′δMSM
′
S
δLL′δMLM

′
L

×
∫ +∞

0
R2

12dR12

∫ π

0
sinΘ12dΘ12

∫ 2π

0
dΦ12

∫ +∞

0
r2
12dr12

∫ π

0
sinθ12dθ12

∫ 2π

0
dφ12

×
∑
n`NL

an1`1n2`2
n`NL,L 〈n`NL;LML|r12/

√
2,θ12,φ12,

√
2R12,Θ12,Φ12〉δ(r − r12)

×
∑

n′`′N ′L′
a
n′1`
′
1n
′
2`
′
2

n′`′N ′L′ ,L〈r12/
√

2,θ12,φ12,
√

2R12,Θ12,Φ12|n′`′N ′L′;LML〉. (2.2.5)

The radial and angular parts can then be evaluated separately. It follows from

the closure relation that:

∫ +∞

0
R2

12|
√

2R12〉〈
√

2R12|dR12 =
1

2
√

2
1̂.

One also has

∫ +∞

0
r2
12|r12/

√
2〉δ(r − r12)〈r12/

√
2|dr12 = |r/

√
2〉r2〈r/

√
2|.

Eq.(2.2.5), then, can be expressed in the bra-ket notation:

〈n1`1n2`2;LMLSMS |δ(r − r12)|n′1`
′
1n
′
2`
′
2;L′M ′LS

′M ′S〉

=
1

2
√

2
δSS ′δMSM

′
S
δLL′δMLM

′
L
r2

∑
n`NL

∑
n′`′N ′L′

an1`1n2`2
n`NL,L a

n′1`
′
1n
′
2`
′
2

n′`′N ′L′ ,L

× 〈n`NL;LML|r/
√

2〉〈r/
√

2|n′`′N ′L′;LML〉, (2.2.6)

which leads to:

〈n1`1n2`2;LMLSMS |δ(r − r12)|n′1`
′
1n
′
2`
′
2;L′M ′LS

′M ′S〉

=
1

2
√

2
δSS ′δMSM

′
S
δLL′δMLM

′
L
r2

∑
n`NL

∑
n′`′N ′L′

an1`1n2`2
n`NL,L a

n′1`
′
1n
′
2`
′
2

n′`′N ′L′ ,L
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×
∑
m1m2
m′1m

′
2

〈`m1Lm2|LML〉〈`′m′1L
′m′2|LML〉〈n`m1NLm2|r/

√
2〉〈r/

√
2|n′`′m′1N

′L′m′2〉

=
1

2
√

2
δSS ′δMSM

′
S
δLL′δMLM

′
L
r2

∑
n`NL

∑
n′`′N ′L′

an1`1n2`2
n`NL,L a

n′1`
′
1n
′
2`
′
2

n′`′N ′L′ ,L

×
∑
m1m2
m′1m

′
2

〈`m1Lm2|LML〉〈`′m′1L
′m′2|LML〉〈n`m1|r/

√
2〉〈r/

√
2|n′`′m′1〉〈NLm2|N ′L′m′2〉

=
1

2
√

2
δSS ′δMSM

′
S
δLL′δMLM

′
L
δ``′r

2
∑
n`NL

∑
n′`′N ′L′

δNN ′δLL′a
n1`1n2`2
n`NL,L a

n′1`
′
1n
′
2`
′
2

n′`NL,L

×
∑
m1m2
m′1m

′
2

δm1m
′
1
δm2m

′
2
〈`m1Lm2|LML〉2〈n`m1|r/

√
2〉〈r/

√
2|n′`m1〉

=
1

2
√

2
δSS ′δMSM

′
S
δLL′δMLM

′
L
r2

∑
nn′`NL

an1`1n2`2
n`NL,L a

n′1`
′
1n
′
2`
′
2

n′`NL,LRn`(r/
√

2)Rn′`(r/
√

2).

(2.2.7)

The total number of oscillator quanta is conserved, entailing the following rela-

tions:

2n1 + `1 + 2n2 + `2 = 2n+ ` + 2N +L,

2n′1 + `′1 + 2n′2 + `′2 = 2n′ + ` + 2N +L, (2.2.8)

from which it follows that `1 + `2, `′1 + `′2 and ` +L have the same parity.

c. Calculation of Cαα′ (r,R)

In the same fashion, we obtain for Cαα′ (r,R) the matrix element

〈n1`1n2`2;LMLSMS |δ(r − r12)δ(R−R12)|n′1`
′
1n
′
2`
′
2;L′M ′LS

′M ′S〉

= δSS ′δMSM
′
S
δLL′δMLM

′
L
r2R2

∑
nn′`
NN ′L

an1`1n2`2
n`NL,L a

n′1`
′
1n
′
2`
′
2

n′`N ′L,L

×Rn`(r/
√

2)Rn′`(r/
√

2)RN `(
√

2R)RN ′`(
√

2R), (2.2.9)
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where

2n1 + `1 + 2n2 + `2 = 2n+ ` + 2N +L,

2n′1 + `′1 + 2n′2 + `′2 = 2n′ + ` + 2N ′ +L, (2.2.10)

and `1 + `2, `′1 + `′2 and ` +L have the same parity.

With δ(~r−~r12), δ(r− r12) and δ(r− r12)δ(R−R12) being spin-independent scalar

observables, the factor δSS ′δLL′δMLM
′
L

arises naturally in the expressions of corre-

lation functions.

2.2.3 Antisymmetrization

The above expressions are valid if particle 1 is in orbital n1`1 (n′1`
′
1) and par-

ticle 2 in orbital n2`2 (n′2`
′
2), that is, for non-antisymmetrized states in the bra

and the ket. Since we deal with identical particles with T = 1, states must

be antisymmetrized. An normalized antisymmetrized state will be denoted by

|n1`1n2`2;LS〉nas and has the form:

|n1`1n2`2;LS〉nas =
|n1`1n2`2;LS〉 − (−)`1+`2+1/2+1/2−L−S |n2`2n1`1;LS〉√

2(1 + δn1n2
δ`1`2

)

=
|n1`1n2`2;LS〉+ (−)`1+`2−L−S |n2`2n1`1;LS〉√

2(1 + δn1n2
δ`1`2

)
, (2.2.11)

leading to the following expression for the matrix element of any scalar operator

Ô12 between antisymmetrized states in the same LS configuration:

nas〈n1`1n2`2;LS |Ô12|n′1`
′
1n
′
2`
′
2;LS〉nas =

1

2
√

(1 + δn1n2
δ`1`2

)(1 + δn′1n′2δ`′1`′2)

×
(
〈n1`1n2`2;LS |Ô12|n′1`

′
1n
′
2`
′
2;LS〉+ σ〈n2`2n1`1;LS |Ô12|n′1`

′
1n
′
2`
′
2;LS〉

+σ ′〈n1`1n2`2;LS |Ô12|n′2`
′
2n
′
1`
′
1;LS〉+ σσ ′〈n2`2n1`1;LS |Ô12|n′2`

′
2n
′
1`
′
1;LS〉

)
,

(2.2.12)
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where σ = (−)`1+`2−L−S and σ ′ = (−)`
′
1+`′2−L−S . Changing the coupling order, we get

a direct term and an exchange term:

nas〈n1`1n2`2;LS |Ô12|n′1`
′
1n
′
2`
′
2;LS〉nas =

1√
(1 + δn1n2

δ`1`2
)(1 + δn′1n′2δ`′1`′2)

×
(
〈n1`1n2`2;LS |Ô12|n′1`

′
1n
′
2`
′
2;LS〉+ σ ′〈n2`2n1`1;LS |Ô12|n′1`

′
1n
′
2`
′
2;LS〉

)
.

(2.2.13)

In the case of states of two particles in the same n` orbital, the expression (2.2.13)

can be simplified. Finally, three cases can be distinguished:

nas〈n1`1n2`2;LS |Ô12|n′1`
′
1n
′
2`
′
2;LS〉nas = 〈n1`1n2`2;LS |Ô12|n′1`

′
1n
′
2`
′
2;LS〉

+σ ′〈n2`2n1`1;LS |Ô12|n′1`
′
1n
′
2`
′
2;LS〉,

nas〈n1`1n2`2;LS |Ô12|n′`′n′`′;LS〉nas =
√

2〈n1`1n2`2;LS |Ô12|n′`′n′`′;LS〉,

nas〈n`n`;LS |Ô12|n′`′n′`′;LS〉nas = 〈n`n`;LS |Ô12|n′`′n′`′;LS〉, (2.2.14)

where it is assumed that (n1`1) , (n2`2) and (n′1`
′
1) , (n′2`

′
2).

2.2.4 Correlation functions within a single orbital: Cα(r,R)

With these preliminaries we can investigate the correlation functions of a pair

of particles in different configurations. We start with a single orbital, and plot the

correlation function C(n`)2;LS(r,R) ≡ 〈(n`)2;LS |δ(r − r12)δ(R − R12)|(n`)2;LS〉. It is

worth mentioning that such a correlation function possesses a symmetry gener-

ated by the parity with respect to reflection about origin inherent in spherical

harmonics. Let Π represent the parity operator that takes ~r to −~r:

Π|~r〉 = | −~r〉. (2.2.15)
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It is hermitian

Π† = Π, (2.2.16)

and has eigenvalues ±1. The operator Π2 is the identity operator

Π2|~r〉 = Π| −~r〉 = |~r〉, (2.2.17)

We differentiate parity operators for different particles by the subscript i, e.g.

Π1 is the parity operator for the first nucleon, and evaluate the matrix element

〈(n`)2;LS |Π1δ(r − r12)δ(R−R12)|(n`)2;LS〉.

〈(n`)2;LS |Π1δ(r − r12)δ(R−R12)|(n`)2;LS〉

= 〈(n`)2;LS |
(
Π1δ(r − r12)δ(R−R12)|(n`)2;LS〉

)
= 〈(n`)2;LS |

Π1δ(r −
∣∣∣~r1 −~r2∣∣∣)δ(R−

∣∣∣~r1 +~r2
∣∣∣

2
)|(n`)2;LS〉


= 〈(n`)2;LS |δ(r −

∣∣∣−~r1 −~r2∣∣∣)δ(R−

∣∣∣−~r1 +~r2
∣∣∣

2
)Π1|(n`)2;LS〉

= 〈(n`)2;LS |δ(r − 2R12)δ(R− r12

2
)Π1|(n`)2;LS〉

= (−1)`〈(n`)2;LS |δ(
r
2
−R12)δ(2R− r12)|(n`)2;LS〉. (2.2.18)

The last line follows from the fact that spherical harmonics have the parity of

(−1)`.

On the other hand, since Π is hermitian, we also have

〈(n`)2;LS |Π1δ(r − r12)δ(R−R12)|(n`)2;LS〉

=
(
〈(n`)2;LS |Π1

)
δ(r − r12)δ(R−R12)|(n`)2;LS〉

= (−1)`〈(n`)2;LS |δ(r − r12)δ(R−R12)|(n`)2;LS〉. (2.2.19)
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Equating the last line of Eq. (2.2.18) with that of Eq. (2.2.19), we get

〈(n`)2;LS |δ(
r
2
−R12)δ(2R− r12)|(n`)2;LS〉

= 〈(n`)2;LS |δ(r − r12)δ(R−R12)|(n`)2;LS〉, (2.2.20)

or

Cα(r,R) = Cα(2R,
r
2

), (2.2.21)

a “reflection-like” symmetry about the plane defined by r = 2R that will be fre-

quently encountered throughout this section.

a. The s orbitals

Fig. 2.1 shows the correlation functions for different s orbitals. The fact that

the total spin S has to be 0 signifies that the spatial wave function must be sym-

metric. For |(ns)2;00〉 with different radial quantum numbers n, n + 1 maxima

(peaks) are observed. The n + 1 maxima are positioned on n + 1 concentric cir-

cles radiating out from the center and all lie on the line r = 2R. In each figure,

the farther the peaks are from the origin, the higher they are. The pattern of the

recurring peaks can be easily understood as the effect of nodes inherent to ra-

dial wave functions, that is, a radial wave function characterized by the quantum

number n has n nodes and hence n+ 1 maxima.

b. The 0p orbital

The three possible configurations for the 0p shell are LS = 00,11,20 whose cor-

relation functions are shown in Fig. 2.2. Two maxima are observed for |(0p)2;00〉;

one for |(0p)2;11〉, whereas an indistinct coexistence of two maxima can be per-

ceived in the |(0p)2;20〉 plot.

A closer look at the expressions of correlation functions of the three possible
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(a) |(0s)2;00〉 (b) |(1s)2;00〉

(c) |(2s)2;00〉

Figure 2.1: The correlation function Cα(r,R) for different s-orbital two-particle
configurations.
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(a) |(0p)2;00〉 (b) |(0p)2;11〉

(c) |(0p)2;20〉

Figure 2.2: The correlation function Cα(r,R) for different two-particle configura-
tions in the 0p orbital.
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states in the 0p orbital may shed some light on these results. If we substitute the

dimensionless r and R for r/b and R/b respectively, the correlation functions for

the three configurations become:

C(0p)2;00(r,R) =
4

3π
(e−

r2
2 −2R2

r6R2 − 8e−
r2
2 −2R2

r4R4 + 16e−
r2
2 −2R2

r2R6), (2.2.22)

C(0p)2;11(r,R) =
64
9π
e−

r2
2 −2R2

r4R4, (2.2.23)

C(0p)2;20(r,R) =
8

15π
(e−

r2
2 −2R2

r6R2 + 16e−
r2
2 −2R2

r2R6). (2.2.24)

As expected from the relation in Eq. (2.2.21), the correlation function

C(0p)2;00(r,R) has two maxima at

(r,R) =

√2(2−
√

2),

√
1
2

(2 +
√

2)

 and

(r,R) =

√2(2 +
√

2),

√
1
2

(2−
√

2)

 ,
and C(0p)2;11(r,R) has only one at (r,R)=(2,1). As for C(0p)2;20(r,R), it is a linear

combination of C(0p)2;00(r,R) and C(0p)2;11(r,R):

C(0p)2;20(r,R) =
2
5
C(0p)2;00(r,R) +

3
5
C(0p)2;11(r,R), (2.2.25)

which explains the vaguely perceivable two-maximum structure.

c. The 1p orbital

By analogy with the correlation functions of ns orbital particles, we expect to

see, for the 1p orbital, that each plot in Fig. 2.2 is repeated in an approximate

way on a circle farther away from the origin with higher peaks. This is confirmed

by the plots in Fig. 2.3.
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(a) |(1p)2;00〉 (b) |(1p)2;11〉

(c) |(1p)2;20〉

Figure 2.3: The correlation function Cα(r,R) for different two-particle configura-
tions in the 1p orbital.
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(a) |(0d)2;00〉 (b) |(0d)2;11〉

d. The 0d orbital

In addition to the pattern concerning the radial quantum number n, as one

goes to higher orbitals, another pattern related to ` shows up. Examining the cor-

relation functions for configurations in the 0d orbital in Fig. 2.4, we notice that as

` increases by 1 from p to d, for the LS = 00 state, we get one more maximum. In-

deed, if we think back to what has been observed previously for s and p orbitals,

when coupled to LS = 00, a pair of particles possesses one more maximum in the

0p orbital than in the 0s orbital. One is tempted to speculate that the number of

peaks is related to ` and is equal to ` + 1. A third pattern worth mentioning is

that for the first few coupled configurations of a certain orbital, the number of

maxima decreases by one as the total angular momentum L increases by one.

e. The 0f orbital

The patterns described above are confirmed as one examines other orbitals.

For the 0f orbital, as shown in Fig. 2.5, the LS = 00, 11 and 20 configurations

display four, three and two maxima respectively. For high total momenta the

plots are less distinctly defined.
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(c) |(0d)2;20〉 (d) |(0d)2;31〉

(e) |(0d)2;40〉

Figure 2.4: The correlation function Cα(r,R) for different two-particle configura-
tions in the 0d orbital.

(a) |(0f )2;00〉 (b) |(0f )2;11〉
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(c) |(0f )2;20〉 (d) |(0f )2;31〉

(e) |(0f )2;40〉 (f) |(0f )2;51〉

(g) |(0f )2;60〉

Figure 2.5: The correlation function Cα(r,R) of different two-particle configura-
tions in the 0f orbital.
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f. Conclusions

To summarize, other than the “reflection-like” symmetry described by Eq.

(2.2.21), the correlation function of two particles in the n` orbital coupled to

total angular momentum L exhibits a few patterns related to n, ` and L. Such

a correlation function displays an n + 1 circle structure in that, compared to the

maxima observed for the configuration |(0`)2;LS〉, n+1 times as many peaks posi-

tioned on n+1 concentric circles radiating out from the center exist for |(n`)2;LS〉.

This can be explained through the fact that the radial wave function Rn`(r) has

n nodes and hence its square has n + 1 maxima. On each circle, the number of

maxima is related to ` and L. For L = 0, there are ` + 1 maxima on each circle.

As L increases by one, the number of maxima decreases by one for the first few

L. For large values of L, the peak shapes become less defined. Catara et al [32],

who studied two-particle correlations in the jj coupling scheme, made similar

but less conclusive observations, and did not give any analytical explanation.

Section 2.2.6 will look into the ` and L related patterns from another point of

view. We will find analytic explanations for the relations between the numbers

of maxima on each circle and the quantum numbers ` and L.

2.2.5 Correlation functions between different orbitals: Cαα′(r,R)

This section has its interest in correlations between different orbitals:

Cαα′ (r,R), where |α〉 and |α′〉 stand for different two-particle states |(n`)2;LS〉 and

|(n′`′)2;LS〉 respectively. As opposed to Cα(r,R), which has its physical interpre-

tation as the probability distribution of the state |α〉 versus r and R, Cαα′ (r,R)

makes for better understanding of the interference of contributions from differ-

ent orbitals. Such an understanding is useful when studying the correlation func-

tion, or the probability distribution of any state that is an admixture of |(n`)2;LS〉

and |(n′`′)2;LS〉.

First of all, in order to examine the role of parity, some plots of correlation
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functions Cαα′ (r,R) between a pair of orbitals of the same parity and a pair of

orbitals of opposite parity are presented respectively in Fig. 2.6 and Fig. 2.7.

(a) |α〉 = |(0s)2;00〉, |α′〉 = |(0d)2;00〉 (b) |α〉 = |(0p)2;00〉, |α′〉 = |(0f )2;00〉

(c) |α〉 = |(0s)2;00〉, |α′〉 = |(0g)2;00〉 (d) |α〉 = |(0p)2;00〉, |α′〉 = |(0g)2;00〉

Figure 2.6: The off-diagonal correlation function Cαα′ (r,R) between orbitals of
the same parity.

Following the argument leading to Eq. (2.2.21) in the previous section, it is

straightforward to derive the relation satisfied by Cαα′ (r,R)

(−1)`C(n`)2LS,(n′`′)2LS(r,R) = (−1)`
′
C(n`)2LS,(n′`′)2LS(2R,

r
2

). (2.2.26)

Between a pair of orbitals of the same parity, Cαα′ (r,R) has a “reflection-like”

symmetry as Cα(r,R) does, obeying the relation in Eq. (2.2.21), while between a

pair of orbitals of opposite parity, the underlying relation becomes

Cαα′ (r,R) = −Cαα′ (2R,
r
2

), (2.2.27)
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giving rise to a “rotation-like” symmetry with respect to the line r = 2R.

(a) |α〉 = |(0s)2;00〉, |α′〉 = |(0p)2;00〉 (b) |α〉 = |(0s)2;00〉, |α′〉 = |(0f )2;00〉

(c) |α〉 = |(0p)2;00〉, |α′〉 = |(0d)2;00〉 (d) |α〉 = |(0p)2;11〉, |α′〉 = |(0d)2;11〉

Figure 2.7: The off-diagonal correlation function Cαα′ (r,R) between orbitals of
opposite parity.

The radial quantum number n also plays a role as indicated in Fig. 2.8. The

radial wave functions with different values of n can contribute constructively or

destructively in different regions due to their orthogonality.

2.2.6 The “angle” of angles

a. The angular correlation function

From another angle, spatial structures of two particles should be reflected by

the angular separation between them. As a matter of fact, for a pair of particles

in the same orbital that are coupled to 0+, it follows from the spherical harmonic
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(a) |α〉 = |(0s)2;00〉, |α′〉 = |(1s)2;00〉 (b) |α〉 = |(0p)2;00〉, |α′〉 = |(1p)2;00〉

Figure 2.8: The off-diagonal correlation function Cαα′ (r,R) between orbitals of
different n.

addition theorem

P`(cosθ12) =
4π

2` + 1

∑̀
m=−`
Y ∗`m(θ1,φ1)Y`m(θ2,φ2), (2.2.28)

that its wave function can be expressed as

〈~r1,~r2|n1`,n2`;0〉

=Rn1`(r1)Rn2`(r2)
∑̀
m=−`
〈`m` −m|00〉Y`m(θ1,φ1)Y`−m(θ2,φ2)

=Rn1`(r1)Rn2`(r2)
∑̀
m=−`

(−1)`−m
√

2` + 1
(−1)mY`m(θ1,φ1)Y ∗`m(θ2,φ2)

=Rn1`(r1)Rn2`(r2)(−1)`
√

2` + 1
4π

P`(cosθ12), (2.2.29)

where P` is the `th Legendre polynomial. The angular part of the wave function,

therefore, is a function of the relative angle θ12 between the two particles.

This result brings us to wonder about the angular part of the probability den-

sity of a more general case: |n1`1n2`2;LS〉 with any total angular momentum L.

Without causing ambiguity, we denote the coordinates (ri ,θi ,φi) of particle i by
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(i) and write a two-particle wave function as

〈~r1,~r2|n1`1n2`2;LML〉 ≡ [φn1`1
(1)⊗φn2`2

(2)]LML

=Rn1`1
(1)Rn2`2

(2)
∑
m1m2

〈`1m1`2m2|LML〉Y`1m1
(1)Y`2m2

(2)

(2.2.30)

To evaluate the angular probability density for an arbitrary total orbital angular

momentum L, all the projections on z (−L ≤ML ≤ L) should be averaged as follows

1
2L+ 1

∑
ML

[Y ∗`1
(1)⊗Y ∗`2

(2)]LML
[Y`1

(1)⊗Y`2
(2)]LML

. (2.2.31)

In the spirit of generality, we will first evaluate the expression

1
2L+ 1

∑
ML

[Y ∗`1
(1)⊗Y ∗`2

(2)]LML
[Y`′1(1)⊗Y`′2(2)]LML

, (2.2.32)

of which expression (2.2.31) is a special case. The general expression (2.2.32) is

analyzed in Appendix A and here we only cite the final result

1
2L+ 1

∑
ML

[Y ∗`1
(1)⊗Y ∗`2

(2)]LML
[Y`′1(1)⊗Y`′2(2)]LML

=
ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

(4π)2 (−)L
∑
L1

(−)L1L̂2
1

`2 `′2 L1

`′1 `1 L


`1 `′1 L1

0 0 0


`2 `′2 L1

0 0 0

PL1
(cosθ12).

(2.2.33)

Expression (2.2.33) is a Legendre polynomial expansion having the cosine of

the relative angle θ12 between the two particles as its argument; `1 +`′1 and `2 +`′2

have to be of the same parity, otherwise expression (2.2.33) vanishes. More specif-

ically, if `1 + `′1 and `2 + `′2 are even, it is an expansion of even-degree Legendre

polynomials, whereas if `1+`′1 and `2+`′2 are odd, it is an expansion of odd-degree

Legendre polynomials.
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Availing of the expression in (2.2.33) involving two two-particle states

|`1`2;LS〉 and |`′1`
′
2;LS〉, we can evaluate the angular probability density of two

particles, in the same n` orbital or in two orbitals characterized by the same `,

coupled to a total orbital angular momentum L. It takes the form of an expansion

of even-degree Legendre polynomials,

1
2L+ 1

∑
ML

[Y ∗` (1)⊗Y ∗` (2)]LML
[Y`(1)⊗Y`(2)]LML

=
(2` + 1)2

(4π)2 (−)L
∑
L1

(2L1 + 1)

` ` L1

` ` L


` ` L1

0 0 0


2

PL1
(cosθ12). (2.2.34)

Without loss of generality, one of the particles can be assumed to be in the zenith

direction. Consequently the angular separation θ12 is the polar angle of the other

particle, the probability of finding which in the (differential) solid angle element

dΩ = sinθ12dθ12dφ is

(2` + 1)2

4π
(−)L

∑
L1

(2L1 + 1)

` ` L1

` ` L


` ` L1

0 0 0


2

PL1
(cosθ12)sinθ12dθ12dφ.

(2.2.35)

Integrating expression (2.2.35) over φ, we get the expression for the probability

of finding the other particle within dθ12. We will refer to the corresponding

probability density as the angular correlation function for two ` orbital particles

coupled to L

P`L(θ12) ≡

(2` + 1)2

2
(−)L

∑
L1

(2L1 + 1)

` ` L1

` ` L


` ` L1

0 0 0


2

PL1
(cosθ12)sinθ12.

(2.2.36)

The angular correlation functions for the s, p, d and f orbitals are plotted in
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Fig. 2.9 ∼ Fig. 2.12. They are to be compared with Fig. 2.1 ∼ Fig. 2.5. Both of

them are illustrations of the spatial structure nucleon pairs, but from different

perspectives.

Π

4
Π

2
3 Π

4 Π
Θ12

0.1

0.2

0.3

0.4

0.5
P00HΘ12L

Figure 2.9: The angular correlation function P00(θ12) for configurations in the s
orbitals.

The former (Fig. 2.9 ∼ Fig. 2.12) can be best described as the projected 2D

images along the direction r = 2R of the latter (Fig. 2.1 ∼ Fig. 2.5), which corrob-

orates the observations made in the last section.

b. Understanding the patterns

We have seen in Sec. 2.2.4 that the number of circles and the number of peaks

on one circle of a correlation function Cα(r,R) for two particles in a single or-

bital are directly connected with the radial quantum number n and the angular

momentum ` characterizing the orbital respectively. The connection with n is

explained by the properties of the radial wave function, while the connection

concerning `, as we will see, can be understood by analyzing the angular correla-

tion function obtained in Eq. (2.2.36).

Between the Legendre polynomials and 3j-symbols there exists the relation:

1
2

∫ π

0
P`1

(cosθ)P`2
(cosθ)P`3

(cosθ)sinθdθ =

`1 `2 `3

0 0 0


2

, (2.2.37)
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(a) L = 0
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(b) L = 1
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(c) L = 2

Figure 2.10: The angular correlation function P`L(θ12) for configurations in the p
orbitals.
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(a) L = 0
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(b) L = 1
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(c) L = 2
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(d) L = 3
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(e) L = 4

Figure 2.11: The angular correlation function P`L(θ12) for configurations in the d
orbitals.
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(a) L = 0
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(b) L = 1
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(c) L = 2
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(d) L = 3
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(e) L = 4
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(f) L = 5
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(g) L = 6

Figure 2.12: The angular correlation function P`L(θ12) for configurations in the f
orbitals.
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which, written in the bra-ket notation becomes

1
2
〈P`1

P`2
|P`3
〉 =

`1 `2 `3

0 0 0


2

. (2.2.38)

Expression (2.2.36), then, can be reformulated in the bra-ket notation as follows:

P`L(θ12) ≡

(2` + 1)2

2
(−)L

∑
L1

2L1 + 1
2

` ` L1

` ` L

〈P 2
` |PL1

〉〈PL1
|cosθ12〉sinθ12. (2.2.39)

Since the Legendre polynomials are orthogonal yet unnormalized on the in-

terval of orthogonality [−1,1], the closure relation is written

∑
n

2n+ 1
2
|Pn〉〈Pn| = 1̂.

When L equals zero, we have

(2` + 1)2

2
(−)L

∑
L1

2L1 + 1
2

` ` L1

` ` L

〈P 2
` |PL1

〉〈PL1
|

=
2` + 1

2

∑
L1

2L1 + 1
2
〈P 2
` |PL1

〉〈PL1
|(−1)L1

=
2` + 1

2
P 2
` 1̂. (2.2.40)

The Last line follows from the fact that for odd L1, 〈P 2
` |PL1

〉 vanishes. As a result,

the angular correlation function P`0(cosθ12) assumes a very simple form

2` + 1
2

P 2
` (cosθ12)sinθ12, (2.2.41)

In this particular case of L = 0, the wave function in expression (2.2.29) can

be equally used to directly obtain Eq. (2.2.41).
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Eq. (2.2.41) is proportional to the square of the `th-degree Legendre poly-

nomial. The degree ` of a Legendre polynomial P`(x) indicates that there are `

zeros on the x axis, and thus P`(x) changes sign ` times. Besides, P`(x) is either

symmetric (for even `) or antisymmetric (for odd `), and has its maximal absolute

values 1 on the boundaries x = 1 and x = −1. As a consequence, P 2
` (x) has ` + 1

maxima, two of which are on the boundaries, except for P0(x) that is a constant.

The first five Legendre polynomials are drawn in Fig. 2.13(a), and their squares

in Fig. 2.13(b).

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

P4HxL
P3HxL
P2HxL
P1HxL
P0HxL

(a)

-1.0 -0.5 0.5 1.0
x

0.2

0.4

0.6

0.8

1.0

IP2M4HxL
IP2M3HxL
IP2M2HxL
IP2M1HxL
IP2M0HxL

(b)

Figure 2.13: The first five Legendre polynomials and their squares.

Since cosθ12 is a monotonically decreasing function on the interval [0,π] and

has the range [1,−1], the aforementioned features of P`(x) and P 2
` (x) are also

true for P`(cosθ12) and P 2
` (cosθ12) on the interval [0,π]. In expression (2.2.41),
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P 2
` (cosθ12) is multiplied with sinθ12 introduced by the solid angle element. As

far as the number of maxima is concerned, the ` + 1 maximum feature still holds

except for the fact that each maximum on the boundary is pushed inwards a little

bit, because on the boundaries the angular correlation function vanishes as does

sinθ12. The special case P 2
0 (x), when multiplied with sinθ12, is simply sinθ12,

which has one maximum at θ12 = π/2 and thus also fits the ` + 1 maximum

rule. This is illustrated in Fig. 2.14. Thus we proved that the angular correla-

tion function of two `-orbital particles coupled to L = 0 is characterized by ` + 1

well-defined maxima (there is a zero between two adjacent maxima and on each

boundary).
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Figure 2.14: The functions P 2
` (cosθ12) (a) and P 2

` (cosθ12)sinθ12 (b) for a few an-
gular momenta `

For L = 1, we know from previous observations that one maximum is “miss-
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ing” compared to the case L = 0. The evaluation of the angular correlation func-

tions for L = 1 is a little trickier because the 6j-symbol

` ` L1

` ` L

, then, depends

on L1. The ` orbital angular correlation function (2.2.39) becomes

P`1(θ12) =

(2` + 1)2

2

∑
L1

2L1 + 1
2

(
2`(` + 1)−L1(L1 + 1)

2`(` + 1)(2` + 1)

)
〈P 2
` |PL1

〉〈PL1
|cosθ12〉sinθ12,

(2.2.42)

which can be separated into two sums:

2` + 1
2

∑
L1

2L1 + 1
2
〈P 2
` |PL1

〉〈PL1
|cosθ12〉sinθ12

− 2` + 1
4`(` + 1)

∑
L1

2L1 + 1
2

(L1(L1 + 1))〈P 2
` |PL1

〉〈PL1
|cosθ12〉sinθ12. (2.2.43)

The first summation equals P`0(θ12) that has been solved above. The second

summation, given that L1(L1+1) is proportional to the eigenvalue of the square of

the total angular momentum operator L̂2 acting on an L1th-rank spherical tensor,

can be rewritten as

− 2` + 1
4`(` + 1)

∑
L1

2L1 + 1
2
〈P 2
` |

L̂2

~2 |PL1
〉〈PL1

|cosθ12〉sinθ12

= − 2` + 1
4`(` + 1)

〈P 2
` |

L̂2

~2 |cosθ12〉sinθ12. (2.2.44)

Once again, we used the closure relation for the Legendre polynomials.

Let’s evaluate 〈cosθ| L̂2

~2 |P 2
` 〉 ≡

(
〈P 2
` |

L̂2

~2 |cosθ〉
)†

in the first place. The square of

total angular momentum in space representation is

L̂2 = −~2
(

1
sinθ

∂
∂θ

(
sinθ

∂
∂θ

)
+

1

sin2θ

∂2

∂φ2

)
.



46

Then 〈cosθ| L̂2

~2 |P 2
` 〉 is equal to

−
(

1
sinθ

∂
∂θ

(
sinθ

∂
∂θ

)
+

1

sin2θ

∂2

∂φ2

)
P 2
` (cosθ)

= − 1
sinθ

∂
∂θ

(
sinθ

∂
∂θ

)
P 2
` (cosθ)

= 4cosθP`(cosθ)P ′` (cosθ)− 2sin2θP ′2` (cosθ)− 2sin2θP`(cosθ)P ′′` (cosθ).

(2.2.45)

The associated Legendre polynomials, of which the Legendre polynomials are a

special case for m = 0, are solutions of the general Legendre equation

(1− x2)y′′ − 2xy′ +
(
`(` + 1)− m2

1− x2

)
y = 0. (2.2.46)

Therefore, the last line in (2.2.45) equals

2`(` + 1)P 2
` (cosθ)− 2sin2θP ′2` (cosθ). (2.2.47)

substituting the identity just obtained

〈cosθ| L̂
2

~2 |P
2
` 〉 = 2`(` + 1)P 2

` (cosθ)− 2sin2θP ′2` (cosθ) (2.2.48)

into the expression (2.2.44) of the second summation, we get

− 2` + 1
4`(` + 1)

(
2`(` + 1)P 2

` (cosθ12)− 2sin2θP ′2` (cosθ12)
)
sinθ12

= −P`0(θ12) +
2` + 1

2`(` + 1)
sin3θ12P

′2
` (cosθ12). (2.2.49)

Finally, expression (2.2.43) for P`1(θ12) is equal to:

P`1(θ12) =
2` + 1

2`(` + 1)
sin3θ12P

′2
` (cosθ12). (2.2.50)

Following the same train of thought that has led us to the conclusion of ` + 1
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maxima in L = 0 configurations previously, we readily see that P ′` in the expres-

sion of P`1(θ12) is of degree ` − 1 due to the differentiation, one degree less than

P` which is in the expression of P`0(θ12); hence the ` maxima.

The single-` angular correlation function for higher values of L can be derived

similarly. However, as we said before that P`L(θ12) is a sum of even-degree Legen-

dre polynomials up to the degree 2`. There are `+ 1 of them. Consequently, for a

certain orbital `, its angular correlation functions are constructed from a basis of

`+1 polynomials, less than the number (2`+1) of total angular angular momenta

to which the two particles can be coupled. This implies that all the P`L(θ12) are

not independent, which explains in a way the less distinct maxima of P`L(θ12)

shown earlier. For example, in section 2.2.4, we have seen in Eq. (2.2.25) that

〈(0p)2;20|Cα(r,R)|(0p)2;20〉 is a combination of 〈(0p)2;00|Cα(r,R)|(0p)2;00〉 and

〈(0p)2;11|Cα(r,R)|(0p)2;11〉. The relation still holds if we replace each correlation

function by their angular counterpart such that

P12(θ12) =
2
5
P10(θ12) +

3
5
P11(θ12). (2.2.51)

c. Angular correlations between different angular momenta

We just studied the angular correlations for one pair of identical nucleons

in the same orbital or in orbitals having the same `. A more general angular

correlation can be obtained similarly and is found to be:

ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

2
(−)L

∑
L1

(−)L1L̂2
1

`2 `′2 L1

`′1 `1 L


`1 `′1 L1

0 0 0


`2 `′2 L1

0 0 0


× PL1

(cosθ12)sinθ12. (2.2.52)

For the purpose of comparison with the results presented in Fig. 2.6 and 2.7

in Sec. 2.2.5, several plots for angular correlation functions between two orbitals
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with different angular momenta are given in Fig. 2.15, where P``′L(θ12) equals

ˆ̀2 ˆ̀′2

2
(−)L

∑
L1

(−)L1L̂2
1

 ` `′ L1

`′ ` L


` `′ L1

0 0 0


2

PL1
(cosθ12)sinθ12. (2.2.53)
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Figure 2.15: The angular correlation function P``′L(θ12) between different angu-
lar momenta.

They are projected 2D images of the 3D plots of correlation function in Fig.

2.6 and 2.7. The reflection symmetry about the line θ12 = π
2 between orbitals

of the same parity and the rotational symmetry around the point (π2 ,0) between

orbitals of opposite parity are determined by the 3j symbol in the expression

(2.2.53). If ` and `′ are both even or both odd, L1 must be even, resulting in

symmetric Legendre polynomials PL1
(x) and reflection symmetric P``′L(θ12); oth-

erwise only anti-symmetric Legendre polynomials contribute and the rotational

symmetry ensues.
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3
Two-particle correlations in 6He with

the δ interaction

3.1 Introduction

In the previous chapter, both spatial and angular correlation functions in the

two-particle case were examined. In this chapter, the particular case of 6He will

be investigated. The harmonic oscillator potential will be used to describe the

single particle motion, and the splittings induced by the spin-orbit interaction

and the centrifugal term will be neglected † . The α particle being inert with the

proton and neutron 0s1/2 shells filled up, only the two valence neutrons come

into play. We consider the δ interaction, through which the two valence neutrons

interact. Later we will draw our inspiration from the concept of the spurious

component free cluster-orbital shell model (COSM) to eliminate the CM motion

of the system.

† This will be discussed briefly in Sec. 3.3.
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3.2 δ interaction

The δ interaction, a zero range interaction, is the extreme limit of short-range

interactions. Defined as −gδ(~r1 − ~r2), the δ interaction takes effect only when

the two particles in question are in contact. In the definition, g is the positive

strength of the interaction given in units of MeV·fm3, and the minus sign serves

to emphasize its attractive nature. Despite its seeming simplicity, the δ interac-

tion reproduces fairly well many properties of nuclei.

Although spin variables do not appear in the definition of the δ interaction,

the antisymmetrization introduces an implicit dependence on the total spin S.

For a matrix element of the δ interaction to be non-zero, it is requisite that the

spatial part of the wave function be symmetric, as any space antisymmetric state

of the form φ1(~r1)φ2(~r2) −φ2(~r1)φ1(~r2) vanishes whenever ~r1 = ~r2. Therefore, in

order to obey the Pauli principle, the wave function concerning the other degrees

of freedom must be antisymmetric. In other words, the sum of the total spin

and the total isospin S + T must be odd. Since we are dealing with two identical

particles, T equals 1, which implies that S must be 0.

The matrix element of the δ interaction can be obtained using either the defi-

nition of the δ function in spherical coordinates or its multipole expansion. The

δ function δ(~r1 −~r2) in spherical coordinates is

δ(~r1 −~r2) =
1
r1r2

δ(r1 − r2)δ(cosθ1 − cosθ2)δ(ϕ1 −ϕ2),

whereby the following expression is obtained for the matrix element

〈n1`1n2`2;LMLSMS | − gδ(~r1 −~r2)|n′1`
′
1n
′
2`
′
2;L′M ′LS

′M ′S〉

= −gδLL′δMLM
′
L
δSS ′δMSM

′
S

ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

4π

 `1 `2 L

0 0 0


 `
′
1 `′2 L

0 0 0


×
∫ +∞

0
Rn1`1

(r)Rn2`2
(r)Rn′1`′1(r)Rn′2`′2(r)r2dr. (3.2.1)
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Alternatively, we use once again the multipole expansion

δ(~r −~r12) =
δ(r − r12)
rr12

∑
λµ

Y ∗λµ(θ,ϕ)Yλµ(θ12,ϕ12), (3.2.2)

which has been introduced earlier in section 2.2 on the occasion of evaluating

the correlation function Cαα′ (~r). The matrix element obtained thereby in (2.2.3)

of section 2.2 can be adopted for our current purpose if we simply take ~r12 and

obtain

〈n1`1n2`2;LMLSMS | − gδ(~r1 −~r2)|n′1`
′
1n
′
2`
′
2;L′M ′LS

′M ′S〉

= −gδLL′δMLM
′
L
δSS ′δMSM

′
S

1

8
√

2π

∑
nn′N `

an1`1n2`2
n`N L,0 a

n′1`
′
1n
′
2`
′
2

n′`N L,0 Rn`(0)Rn′`(0)

= −gδLL′δMLM
′
L
δSS ′δMSM

′
S

1

8
√

2π

∑
nn′N

an1`1n2`2
n0N L,L a

n′1`
′
1n
′
2`
′
2

n′0N L,L Rn0(0)Rn′0(0),

(3.2.3)

where the last step follows from the fact that only s-waves have non-vanishing

values at the origin. From the conservation of oscillator quanta, we have the

relations

2n1 + `1 + 2n2 + `2 = 2n+ 2N +L, and

2n′1 + `′1 + 2n′2 + `′2 = 2n′ + 2N +L.

The matrix element (3.2.1) has a few interesting properties. To begin with, the

δ interaction δ(~r1 −~r2) is diagonal in the LS coupling scheme. Besides, `1 + `2 + L

and `′1 + `′2 + L must be even, and accordingly `1 + `2 and `′1 + `′2 must be of the

same parity, otherwise the 3j symbols would vanish and the quanta conservation

relations would not hold. In the current context, our focus is on 0+ states that

necessitate equal `1 and `2 and equal `′1 and `′2, which results in even values of L,

otherwise the matrix element (3.2.1) (or (3.2.3)) would vanish.

The diagonal matrix elements have the interpretation of energy shifts with
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respect to the unperturbed energies of two-particle configurations. It is obvious

from (3.2.1) that for a given `, the relative energy splittings

〈n1`n2`;LS | − gδ(~r1 −~r2)|n1`n2`;LS〉

= −g (2` + 1)2

4π

` ` L

0 0 0


2∫ +∞

0
R2
n1`

(r)R2
n2`

(r)r2dr, (3.2.4)

depend uniquely on

` ` L

0 0 0


2

and are unaffected by the nature of the central

potential, which only engenders an overall factor through the radial integral.

Although we are concerned with 0+ configurations, it is worthwhile to digress

from our main interest for a while to include higher angular momenta in our

discussion.

In LS coupling, for a given `, the energy splitting given in Eq. (3.2.4) is pro-

portional to the quantity

` ` L

0 0 0


2

, which is plotted for ` = 5 in Fig. 3.1(a). A

crucial result is that, for two identical particles in the same orbital, the energy of

the Lπ = 0+ † state is lowered the most, followed by possible higher even total

angular momenta: Lπ = 2+, 4+, 6+ · · · . It is not, however, monotonic in the region

of large values of L (towards the highest possible value of L = 2`). In terms of

spacings between two consecutive levels, the one from 0+ to 2+ is the largest. The

lowering of the 0+ state is fundamental in accounting for why even-even nuclei

have 0+ ground states. The large gaps between 0+ and 2+ states are also in good

agreement with experimental data.

It is not surprising that in the jj-coupling scheme, the energy splittings cre-

ated by the δ interaction have quite similar properties to the LS coupling case, as

illustrated in Fig. 3.1(b) for j = 11/2. The Jπ = 0+ state is lowered the most and

the difference between 0+ and 2+ is big. Unlike the observation in LS coupling,

† When no confusion is likely to arise, in LS coupling, we denote a state of total orbital
angular momentum L and total spin S = 0 by Lπ, π as usual being the parity.
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(a)

(b)

Figure 3.1: Splittings in LS and jj couplings (a) two particles in a orbital ` = 5,
(b) two particles in a orbital j = 11

2 .
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the energy splitting in jj coupling is a monotonic function of J .

Now the last consequence to point out before finishing the discussion on the

δ interaction: for an L = 0 state, the energy splitting is proportional to 2` + 1, the

degeneracy of the orbital `.

3.3 Study of the 0p shell

Imagine supposedly the simplest description of 6He in terms of an inert α-

particle core with the neutron pair in the 0p orbital of a harmonic oscillator. In

an approximation prompted by the choice of LS coupling, no splitting of single-

particle levels due to spin-orbital effects will be considered. More on that below.

Obviously an interaction-free scenario where the two valence neutrons simply

stay in any single-particle state would be dismissed as improbable, given that in a

Borromean nucleus, any two-body subsystem is unbound. However, if a residual

interaction is in action, the degeneracy of two-particle configurations is lifted.

With the δ interaction in particular, the Hamiltonian of the form

Ĥδ =
~p2

1

2m
+

1
2
mω2~r2

1 +
~p2

2

2m
+

1
2
mω2~r2

2 − gδ(~r1 −~r2) (3.3.1)

is diagonal in LS coupling. Here ~p is the momentum, ~r is the position, m and ω

are the mass and the angular frequency. The ground state 0+ is lowered to a much

greater extent than 2+. The last possible configuration LS = 11 is left unaffected.

The nucleus 6He has a Jπ = 0+ ground state, which can arise from LS = 00

or LS = 11. The argument above rules out the possibility that LS = 11 is a com-

ponent of the ground state if the δ interaction is, indeed, the dominant interac-

tion. Alternatively, the Cohen-Kurath effective interaction for the 0p shell [33]

can be used to show that two nucleons in the 0p shell have 99% probability of

being in the state |(0p)2;00〉 and 1% probability of being in the state |(0p)2;11〉.
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The agreement between the two methods validates the choice of the LS coupling

scheme. As for the spin-orbit splitting we have neglected so far, it would only

lower slightly the total single particle energy of the LS = 00 states and would not

alter the conclusions drawn below whatsoever.

When the neutron pair is confined to the 0p shell, the Cα(r,R) and P`L(θ12)

for the three configurations LS = 00,11,20 in the 0p orbital are equivalent to the

graphs in Fig. 2.2(a) and in Fig. 2.10(a) (For convenience, we set the oscillator

length b to 1 fm for the moment, which only modifies the scale of the plots.). The

cigar-like and the di-neutron configurations are manifested with equal probabil-

ity in the ground state 0+.

On a side note, Zhukov et al. [14], using the COSMA (cluster-orbital shell

model approximation) model, have found a pure (0p)2 configuration for 6He that

fits the r.m.s radius and the momentum distribution of realistic three-body cal-

culations.

3.4 Study of many major harmonic oscillator shells

When confined to the 0p orbital, the two valence neutrons interacting through

the δ interaction have the ground state |(0p)2;00〉. In this section, the restriction

to the 0p orbital is removed. The effect of configuration mixing via the δ inter-

action on the two-particle correlation of the 0+ ground state is examined. More

explicitly, we study the properties of Cα(r,R) of the two-valence-neutron ground

state as a function of ξ ≡ gb−3/~ω, in the basis composed only of 0+ states.

It is worth mentioning that since the spin-orbital interaction is neglected, the

ground-state wave function and hence the two-particle correlation function, de-

pend on a single parameter ξ, the ratio of the interaction strength g to the spacing

between two consecutive harmonic-oscillator levels ~ω = ~2

mb2 , which indicates the

competition between the harmonic oscillator potential and the δ interaction.

Our second interest concerns the effect of the valence space. We choose, a pri-
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ori, a truncated valence space and examine the evolution of the spatial structure

of the ground state by having ξ run from 0 to +∞. Then more and more major

shells will be allowed in the calculation to enlarge the valence space.

Major harmonic oscillator shells N = 1,2,3

We start with the valence space comprising major shells N = 1 (0p), N = 2 (1s,

0d), and N = 3 (1p, 0f ).

The normalized ground-state (henceforth denoted by g. s.) correlation func-

tions for ξ assuming increasing positive values are presented in Fig. 3.2.

As g increases, the δ interaction has different effects on the two maxima ob-

served above in the ground state of two valence neutrons confined in the 0p shell.

These effects stem from the interferences from other orbitals, either constructive

or destructive. The di-neutron configuration stands firm while the cigar-like con-

figuration subsides. The probability of the di-neutron configuration increases as

ξ increases until ξ becomes very large (� 100 fm3), when it drops a little bit from

the maximum value of about 70%. This is due to the fact that higher orbitals in

the valence space become more involved. As a result, we perceive small max-

ima originating from higher orbitals and arranged on concentric circles emerge

at larger radii, a phenomenon resulting from the behavior of the correlation func-

tion Cα(r,R) that has been studied in section 2.2.4.

Contrastingly, the probability of the cigar configuration diminishes with in-

creasing ξ until ξ � 100. Meanwhile, in both configurations the relative dis-

tances between the two particles also alter perceivably with increasing ξ. The

two neutrons are drawn closer towards each other and the size of the neutron

pair is reduced.
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(a) ξ = 1 (b) ξ = 5

(c) ξ = 10 (d) ξ = 30

(e) ξ = 50 (f) ξ = 100
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(g) ξ = 1000 (h) ξ = 5000

Figure 3.2: Evolution of the g. s. correlation function with increasing ξ in the
valence space containing N = 1,2,3.

Major harmonic oscillator shells N = 1,2,3,4

We now incorporate the N = 4 major shell, that is, the 2s, 1d and 0g orbitals,

and inspect the evolution of the g. s. correlation function in this valence space in

Fig. 3.3. What has been observed above for the valence space up to N = 3 is still

true.

As for the effect of the valence space dimension, the bigger the valence space

is, the more sensitive the wave function and consequently the correlation func-

tion of the ground state are to the variation of ξ. For example, in the current

valence space, a given value of ξ, say 5, brings about a stronger shrinkage (Fig.

3.3(a)) of the cigar configuration than it does previously (Fig. 3.2(b)). This is not

a coincidence and has its physical interpretation to which we will return later in

Sec. 3.5.3 while looking for realistic values of g.

Major harmonic oscillator shells N = 1,2,3,4,5

As we continue to expand the valence space, the evolution of the g.s. corre-

lation function maintains the major properties observed above. For brevity, only

graphs for some extreme values of ξ are presented in Fig. 3.4 for the valence
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(a) ξ = 5 (b) ξ = 10

(c) ξ = 20 (d) ξ = 30

(e) ξ = 50 (f) ξ = 100
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(g) ξ = 200 (h) ξ = 500

Figure 3.3: Evolution of the g.s. correlation function with increasing ξ in the
valence space N = 1,2,3,4.

space containing N = 5. We also notice that with expanding valence space, the

di-neutron configuration grows more pronounced.

(a) ξ = 5 (b) ξ = 10

Major harmonic oscillator shells N = 1,2,3,4,5,6

Fig. 3.5 shows the evolution of the g.s. correlation function in the valence

space containing N = 1,2,3,4,5,6. The results obtained so far provide us with

the evidence indicating that the effect of the δ interaction behaves similarly in

various many-shell valence spaces starting from the 0p shell.
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(c) ξ = 100

Figure 3.4: Evolution of the g.s. correlation function with increasing ξ in the
valence space N = 1,2,3,4,5.

(a) ξ = 5 (b) ξ = 10

(c) ξ = 100

Figure 3.5: Evolution of the g.s. correlation function with increasing ξ in the
valence space N = 1,2,3,4,5,6.
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3.5 Elimination of the center of mass motion

3.5.1 Spurious states

The assumption of a single-particle mean field essential to the shell model has

a conceptual flaw that lies in the existence of a fixed origin of the single-particle

potential. Such a fictitious origin is in violation of translational invariance that

is a requisite for an internal nuclear Hamiltonian. In other words, a Hamiltonian

H0 with an origin fixed in space does not commute with the total momentum

operator
∑A
i=1 ~pi , the generator of the translation group, and therefore contains

a Hamiltonian for the center of mass that is not one for a free particle. What is

termed a spurious state is a nuclear state whose CM wave function is not a plane

wave.

In the study of the structure of an A-nucleon nucleus, only the relative move-

ments of the A components are of interest, requiring 3(A− 1) degrees of freedom

in Euclidean space. The other 3 degrees of freedom belong to the CM and should

be treated to remove the overall translation of the system.

In a harmonic oscillator potential, the CM Hamiltonian separates out nicely

as shown in the following. For A nucleons in a harmonic oscillator potential, the

Hamiltonian is

Ĥ0 =
1

2m

A∑
i=1

~p 2
i +

1
2
mω2

A∑
i=1

~r 2
i . (3.5.1)

If we define the CM coordinate by

~r =
1
A

A∑
i=1

~ri , (3.5.2)
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and consequently the CM momentum by

~p =
A∑
i=1

~pi , (3.5.3)

H0 can be divided into an intrinsic component of the relative coordinates and a

CM component

Ĥ0 =
1

2m

A∑
i=1

~p ′2i +
1
2
mω2

A∑
i=1

~r ′2i +
1

2mA
~p 2 +

1
2
mAω2~r 2, (3.5.4)

where ~r ′i are the relative coordinates and ~p ′i the relative momenta given by

~r ′i = ~ri −~r, ~p ′i = ~pi −
1
A
~p. (3.5.5)

Therefore, the CM Hamiltonian is also a harmonic oscillator with the mass Am.

3.5.2 Cluster-orbital shell model

A peculiarity of a halo nucleus is the formation of a more stable core with a

few weakly bound nucleons penetrating into regions far from the core, resulting

in a very different nuclear density from that of the core, both in dimension and in

shape. In the case of 6He, the matter r.m.s. radius of 4He is 1.57 (4) fm [34] and

that of 6He is about 2.48 (3) fm [34], making the radius of the halo neutrons of

the order of 4.01 fm. The 4He core is strongly bound, while the valence neutrons

are loosely bound to 4He at 0.972(1) MeV [35] and do not have any bound excited

state. This naturally makes one conjecture that few-body models in terms of an

inert core plus the individual valence nucleons would be appropriate to describe

halo nuclear systems. Furthermore, it has been argued, based on the total spins

of halo neutrons determined by measurements, that in spite of the unusual ex-

tended neutron densities, the valence neutrons in many neutron-rich nuclei, such

as 6He ((0p3/2)2), 8He ((0p3/2)4) and 11Li ((0p3/2)4(0p1/2)2), to name a few, are still
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very much likely to follow the orbital ordering that the shell model builds on.

Based on the arguments mentioned above, Suzuki et al. proposed the cluster-

orbital shell model (COSM) [15, 36, 37] that unifies the shell model and the clus-

ter model to account for different aspects of halo nuclei.

One great advantage of COSM is that it is free from spurious CM motion,

which is achieved by introducing translationally invariant coordinates between

the nucleons and the CM of the core. One set of coordinates used in COSM is

defined as follows. If ~r1, ~r2, · · · , ~rn are the positions of the n valence nucleons and

~rn+1, ~rn+2, · · · , ~rn+f those of the f nucleons in the core, then the normalized CM

coordinate of the core is

~Rc =
(

1
f

) 1
2

(~rn+1 +~rn+2 + · · ·+~rn+f ). (3.5.6)

The valence nucleons coordinates ~xi and the core nucleons coordinates ~ρi relative

to the CM of the core become

~xi = ~ri −
(

1
f

) 1
2
~Rc, i = 1,2, . . . ,n,

~ρi = ~ri+n −
(

1
f

) 1
2
~Rc, i = 1,2, . . . , f , (3.5.7)

and the normalized total CM coordinate

~R =
(

1
f +n

) 1
2

(~r1 +~r2 + · · ·+~rn) +
(
f

f +n

) 1
2
~Rc. (3.5.8)

In the new system of coordinates, the total kinetic energy, after setting the CM

momentum of the core to zero, is found to be

K̂ = K̂c +
n∑
i=1

1
2µ
~p 2
i +

n∑
j>i=1

1
(f + 1)µ

~pi · ~pj . (3.5.9)

In the expression (3.5.9), the first term K̂c and and the second term
∑n
i=1

1
2µ~p

2
i
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are the internal kinetic energy of the core and that of the valence nucleons re-

spectively, and as such are expressed in terms of −i~~∇~ρi and −i~~∇~xi , the momenta

conjugate to the relative coordinates. The reduced mass µ = f
f +1m of the core plus

one valence nucleon system arises when relative coordinates are used. The cross

term in (3.5.9) is due to the non-orthogonality of the new coordinate system.

The total COSM Hamiltonian Ĥ , the sum of the kinetic energy K̂ and the

nucleon-nucleon interactions V̂ :

V̂ = V̂c +
n∑
i=1

n+f∑
j=n+1

v̂ij +
n∑

j>i=1

v̂ij , (3.5.10)

is given by

Ĥ = Ĥc +
n∑
i=1

ĥi +
n∑

j>i=1

(
v̂ij +

1
(f + 1)µ

~pi · ~pj
)
, (3.5.11)

with

ĥi =
1

2µ
~p 2
i +

n+f∑
j=n+1

v̂ij ,

Ĥc = K̂c + V̂c. (3.5.12)

Under the assumption that the core-valence nucleon interactions do not de-

pend on the individual core nucleon coordinates ~ρi , ĥi can be replaced by a single-

particle Hamiltonian ĥ′i

ĥ′i =
1

2µ
~p 2
i + Ûi . (3.5.13)

The total Hamiltonian of the valence neutrons, after the omission of Ĥc, then

takes the form

Ĥ =
n∑
i=1

(
1

2µ
~p 2
i + Ûi

)
+

n∑
j>i=1

(
v̂ij +

1
(f + 1)µ

~pi · ~pj
)
. (3.5.14)
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Despite the similarity between Eq. (3.5.13) and the usual shell-model Hamilto-

nian, the approximation of two-body interactions with a single-particle potential

makes Ûi generally a non-local potential [37].

3.5.3 Correlation function of 6He after the elimination of the

CM motion

Suzuki et al. have studied the helium isotopes in the strictly formulated

cluster-orbital shell model (COSM) in Refs. [15, 37]. Our intention is not to repli-

cate the results of earlier work, but to explore two-particle spatial correlations in

a harmonic oscillator potential and to apply it to the testing ground 6He, and the

non-spurious COSM Hamiltonian provides a convenient means to exclude the

undesired CM motion.

To eliminate the CM motion, Hamiltonian (3.3.1) should be modified to con-

form to Hamiltonian (3.5.14). With the δ force interaction, the modified Hamil-

tonian with f = 4 and µ = f
f +1m = 4

5m reads

Ĥ ′δ =
2∑
i=1

(
1

2µ
~p2
i +

1
2
µω2~x2

i

)
− gδ(~x1 − ~x2) +

1
(f + 1)µ

~p1 · ~p2

=
2∑
i=1

( 5
8m

~p2
i +

2
5
mω2~x2

i

)
− gδ(~x1 − ~x2) +

1
4m

~p1 · ~p2, (3.5.15)

and has its potential origin properly defined as the CM of the α particle. Correla-

tion functions in various valence spaces are to be re-evaluated with Hamiltonian

(3.5.15). In addition, we will get an idea of the two-neutron separation energy

S2n.

Before going ahead to evaluate S2n, due to the fact that a harmonic oscillator

potential is always bound, we must first define phenomenologically the single-

particle energy in the 0p shell, the lowest single-particle energy level available

for the valence neutrons. This is equal to adding a constant potential term to



67

Hamiltonian (3.5.15). If we picture 5He as an α particle plus one neutron in the

0p shell, as did Hafstad et al. in Ref. [38] and Friedrich in Ref. [39], both of whom

obtained binding energies for 5He in nice agreement with experimental data, the

single-particle energy of the 0p shell relative to the α particle can be equated

with the opposite of the neutron separation energy Sn of the single neutron in

the unbound nucleus 5He, which has been measured to be −0.89(5) MeV [35].

The single-particle level spacing ~ω is related to the oscillator length b

through

~ω =
~2

mb2 . (3.5.16)

The factor ~2/m has the value 41.43 MeV fm2 for neutrons. With the COSM

Hamiltonian, the reduced mass must be used. The oscillator length b is deter-

mined phenomenologically from the r.m.s. radius of the valence neutrons as fol-

lows. In the CM referential frame of the 6He nucleus, the CM coordinates of the

core ~rc are

~rc = −1
6

(~x1 + ~x2), (3.5.17)

and those of the valence neutrons are

~rv1 =
5
6
~x1 −

1
6
~x2, ~rv2 =

5
6
~x2 −

1
6
~x1. (3.5.18)

where ~x1 and ~x2, together with ~ρi used below, are the coordinates relative to ~rc

defined above. Since the matter r.m.s. radius of 6He, Rm(6He), is measured in the

CM referential frame of 6He, we have

6R2
m(6He) =

2∑
i=1

〈(~rc + ~xi)
2〉+

4∑
i=1

〈(~rc + ~ρi)
2〉

= 6〈~r2
c 〉+

2∑
i=1

〈~x2
i 〉+

4∑
i=1

〈~ρ2
i 〉+ 2

2∑
i=1

〈~rc · ~xi〉. (3.5.19)
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If we take into account relation (3.5.17), Eq. (3.5.19) becomes

6R2
m(6He) =

1
6
〈(~x1 + ~x2)2〉+ 〈~x2

1〉+ 〈~x
2
2〉 −

1
3
〈(~x1 + ~x2)2〉+

4∑
i=1

〈~ρ2
i 〉

=
5
6
〈~x2

1 + ~x2
2〉 −

1
3
〈~x1~x2〉+ 4R2

m(4He)

=
5
3
〈~x2

1〉 −
1
3
〈~x1 · ~x2〉+ 4R2

m(4He). (3.5.20)

The expectation values 〈~x2
1〉 and 〈~x1 · ~x2〉 are directly related to b through the

wave function. To get an idea of the order of magnitude of b, we consider the

wave function of the neutrons both in the 0p shell coupled to the total orbital

angular momentum L = 0. In such a case, we have 〈~x2
1〉= (1 + 3

2 )b2 and 〈~x1 · ~x2〉=0.

Experimental estimates give 2.48 (3) fm for Rm(6He) and 1.57 (4) fm for Rm(4He),

yielding 2.55 fm for b. It is with this value of b that we will re-examine the spatial

correlation of 6He.

The general properties that have been observed in Sec. 3.4 for the spatial

correlation in 6He obtained with Hamiltonian (3.3.1) are still valid despite the

modification of the Hamiltonian, and hence will not be reiterated.

We have seen in Sec. 3.4 that the bigger the valence space is, the more sensi-

tive Cα(r,R) is to the variation of g. However, we have yet to determine a realistic

value of g, which we expect to diminish with expanding valence space. It is

worthwhile to mention that the three-dimensional δ interaction only has phys-

ical meaning in a truncated space. It has been proved that for free neutrons,

asymptotically, the magnitude of g varies inversely with the cutoff momentum in

a momentum space [40]. Therefore, we must choose a truncation that suits our

problem.

The δ interaction defined simply as V0δ(~r1−~r2) with V0 characterized in terms

of the free neutron scattering length is often dismissed as overestimating the free

interaction in the nuclear interior [41]. It is then often given a density depen-

dence and called density dependent δ interaction (DDDI). The effective DDDI
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can be translated into different forms. The most widely used effective DDDI is

expressed as the free neutron δ interaction V0δ(~r1−~r2) multiplied with a function

of (~r1 +~r2)/2 [40, 41] to simulate the effect of the density that is also supposed to

be a function over (~r1 +~r2)/2. The choice of parameters including the cutoff en-

ergy is done in such a way as to meet the experimental data, e.g., the separation

energy, and to reproduce pairing gaps calculated with other forces. In another

approach, Matsuo [42], by assuming a low-density uniform nuclear matter envi-

ronment, studied the spatial structure of neutron Cooper pairs in relation to the

total density by means of BCS calculations using a bare force and the effective

Gogny interaction. He subsequently showed that a zero-rangle δ interaction of

the form ∝ V0(ρtot)δ(~r1 −~r2) can also describe the spatial structure, provided that

V0(ρtot) and the cutoff energy is chosen specifically for each value of total density

so that both the pairing gaps and the spatial structure are reasonably reproduced.

At first glance, it seems that there is no density dependence in our case. How-

ever, the interaction strength g plays the role of V0(ρtot), even though ρtot will not

be explicitly determined. Since the first excited state of 6He is a 2+ state found

at 1.797(25) MeV [43], we will identify this value with the calculated 2+ − 0+ en-

ergy difference that is a function of g, and thus obtain a realistic value of g in

each valence space, with which the spatial correlation will be examined and the

ground-state energy evaluated.

We denote the value of g that reproduces the correct 2+−0+ energy difference

by gr (r for realistic), and plot in Fig. 3.6 the value of gr in each valence space that

has been tried fromN = 2 up toN = 19. As expected, gr goes down as the valence

space expands.

With the values of gr obtained above, the wave functions of the 0+ ground

state in various valence spaces are remarkably consistent with each other, with

about 92% probability (probability amplitude of about 0.96) of being |(0p)2;00〉,

followed by about 4% probability (probability amplitude of about 0.2) of being

|(0d)2;00〉. The contributions from other basis vectors are extremely marginal. In
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Figure 3.6: The value of gr that generates the correct 2+ − 0+ energy splitting vs.
the number of orbits contained in the valence space.

consequence, the correlation function Cα(r,R) of the 0+ ground state in a realis-

tic case is determined by the two major components from 0p and 0d shells and

practically does not depend on the size of the valence space as long as it contains

the N = 2 major shell (to include the 0d shell). This is illustrated in Fig. 3.7. The

probability of the di-neutron configuration reaches 60% with the first truncation

and 61% with the second.

(a) Nmax = 3, gr = 302 MeV· fm3 (b) Nmax = 4, gr = 272 MeV· f m3

Figure 3.7: Realistic correlation functionCα(r,R) obtained with gr in two different
valence spaces.

Fig. 3.8 shows the ground-state energy in each valence space calculated with
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gr . The 0+ ground-state energy, that is, the two neutron separation energy S2n ob-

tained thus decreases with the dimension of the valence space and would finally

converge, should we continue to expand the valence space.

Figure 3.8: The energy of 0+ vs. the number of orbits contained in the valence
space.

The fact that the sought wave function is made up principally of |(0p)2;00〉

with a much smaller contribution of |(0d)2;00〉 and is influenced by the truncated

valence space only negligibly as long as the cut-off on N has N = 2 included,

agrees with the argument that halo nucleons can only exist in s and p waves [9]

and gives us reason to believe that it is appropriate to truncate the valence space

at N = 2 or at most N = 3. Once the valence space truncation is determined, so is

S2n. For N = 2, S2n is 0.91 MeV and for N = 3, 0.81 MeV. They are in quite good

agreement with the measured two-neutron separation energy 0.972(1) MeV for

the ground state of 6He.

3.6 Conclusions

In this chapter, we analyzed the two-particle spatial correlation of the halo

neutron pair in 6He. We first employed a simple harmonic oscillator potential to
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describe the single-particle levels and the δ interaction as the residual interac-

tion between the valence neutrons. The effects of the interaction as a function of

ξ ≡ gb−3/~ω, and the effects of truncated valence spaces were investigated. We

showed that when the neutron pair is confined to the 0p shell, the two configu-

rations show up with equal probability as a pure consequence of the geometry

of the p shell in the LS coupling scheme. The cigar-like and the di-neutron con-

figurations respond quite differently to the zero-range interaction. The former

lessens in probability with increasing ξ until it becomes very large, whereas the

latter is enhanced by the interaction. Commonly for both configurations, the

neutron pair reduces in size.

Subsequently, a more realistic calculation was carried out based on the con-

cept of COSM that is free from spurious center-of-mass motion. The origin of the

harmonic oscillator potential is supposed to be the CM of the α particle, and the

oscillator length is chosen phenomenologically. In different truncated valence

spaces, the values of gr that give the correct energy difference between the first

excited state 2+ and the ground state 0+ are obtained and used to evaluate the

wave function of the ground state and the two-neutron separation energy S2n of

6He. The ground-state wave function varies only insignificantly with the expan-

sion of valence space and is mainly in the 0p orbit (≈ 92%), the second biggest

component being in the 0d orbital accounting for only 4% probability. The va-

lence space is therefore truncated according to the wave function composition

and S2n is determined to be between −0.91 MeV and −0.81 MeV.
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4
Two-particle correlations in 6He with

the pairing interaction

The δ interaction is a zero-range interaction defined in coordinate space. Its

second quantized form is found with Eq. (4.0.1) that represents the one-to-one

correspondence between a “normal” two-body operator V̂ from first quantization

and its second quantization representation.

V̂ =
1
4

∑
ijkl

nas〈ij |V̂ |kl〉nasa
+
i a

+
j alak , (4.0.1)

where nas〈ij |V̂ |kl〉nas are two-body matrix elements between normalized antisym-

metrized wave functions, a+
i is the fermion creation operator of a particle in the

state denoted by i and ai the fermion annihilation operator of a particle in the

state i. It is also possible to define interactions directly in second quantization.

The pairing interaction that will be applied to the 6He nucleus in this chapter is

such an example that shows the tendency to correlate nucleons in zero-coupled

pairs.
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4.1 Pairing Interaction

The pairing interaction in a single orbital in the jj-coupling scheme [44] reads

V̂ = −G
∑

m>0,m′>0

(−1)j+m(−1)j+m
′
a+
jma

+
j−maj−m′ajm′ . (4.1.1)

It annihilates a pair of identical nucleons in the states (j,m′) and (j,−m′) and

scatters it into any other pair of states (j,m) and (j,−m). The strength G, given in

units of MeV, being constant for all values ofm, the matrix elements of the pairing

interaction in the two-particle subspace of nucleon pairs (−1)j+ma+
jma

+
j−m|0〉 (|0〉 is

a closed-shell state), is also constant:

〈0|(−1)j+m
′
aj−m′ajm′ |V̂ |(−1)j+ma+

jma
+
j−m|0〉 = −G,

which makes the scattering isotropic in “m” space.

Alternatively, by defining the pair creation operator

S+
j =

1√
Ωj

∑
m>0

(−1)j+ma+
jma

+
j−m, (4.1.2)

that creates a nucleon pair in the Jπ = 0+ state, and its adjoint, the pair annihila-

tion operator

Sj =
1√
Ωj

∑
m>0

(−1)j+maj−majm, (4.1.3)

that annihilates a nucleon pair in the Jπ = 0+ state, the pairing interaction in Eq.

(4.1.1) can be rewritten as

V̂ = −GΩjS
+
j Sj . (4.1.4)

Here Ωj = j + 1
2 is the shell degeneracy or the maximum number of pairs in the
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shell. The commutation relation between S+
j and Sj is

[
Sj ,S

+
j

]
= 1− n̂

Ωj
, (4.1.5)

where n̂ =
∑
m a

+
jmajm is the particle number operator. For small numbers of parti-

cles,
[
Sj ,S

+
j

]
≈ 1, the reason why Sj and S+

j are often called quasi-boson operators.

Some other useful relations are

〈0|(Sj)n(S+
j )n|0〉 =

n!(Ωj − 1)!

(Ωj)n−1(Ωj −n)!
, (4.1.6)

and

[
Sj , (S

+
j )n

]
=
n
Ωj

(Ωj − n̂+n− 1)(S+
j )n−1. (4.1.7)

Diagonalizing the matrix representation of V̂ in the subspace of nucleon pairs

(−1)j+ma+
jma

+
j−m|0〉

−G



1 1 1 1 · ·

1 1 1 1 · ·

1 1 1 1 · ·

· · · · · ·

· · · · · ·


, (4.1.8)

one gets the eigenstates and eigenvalues of the pairing interaction. The lowest

eigenvalue is −GΩj and corresponds to the eigenstate S+
j |0〉. All the other eigen-

states (Jπ = 2+,4+, · · · , (2j − 1)+) are degenerates at eigenvalue 0, indicating that

they are not affected by such an interaction. This should be compared with the δ

interaction, with which the 0+ is lowered the most, and the other coupled states

Jπ = 2+,4+, · · · , (2j − 1)+, are also affected, albeit to a lesser extent. A schematic

comparison between the two interactions is shown in Fig. 4.1. In Chapter 1, the

link between pairing and attractive short-range interactions was explained by
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Figure 4.1: The energy levels of δ interaction (left, blue) and pairing interaction
(right, purple).

way of multipole expansion. It is high multipole order components found to be

important in short-range interactions that are responsible for pairing effect, e. g.,

the lowering of the 0+ state and the succession of states with higher angular mo-

menta much less affected than 0+ in the level scheme. In this sense, the pairing

interaction is an even “shorter” range interaction than the δ interaction, though

strictly speaking, the pairing interaction is only defined in second quantization

and thus has no counterpart in coordinate space.

The pairing interaction for a single shell in the jj coupling scheme can be

extended to include more than one shell and to the LS-coupling scheme. We

construct similarly a pair of nucleons with angular momentum ` and spin s = 1/2

coupled to L = S = 0 by defining the pair creation operator in the LS coupling

S+
` =

1
√
Ω`

∑
m,ms>0

(−1)`+m(−1)s+msa+
`msms

a+
`−ms−ms

= − 1
√
Ω`

∑
m

(−1)`+ma+
`m 1

2
a+
`−m−1

2
, (4.1.9)

where ms is the spin projection and Ω` = 2` + 1. In the last line of Eq. (4.1.9), the

spin quantum number s is omitted since it is always 1/2 for nucleons. Its adjoint,
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S` is accordingly

S` = − 1
√
Ω`

∑
m

(−1)`+ma`−m−1
2
a`m 1

2
. (4.1.10)

The single-shell pairing interaction in LS coupling is therefore

V̂ = −GΩ`S
+
` S`, (4.1.11)

which can be generalized to multiple shells

V̂ = −
∑
n`,n′`′

Gn`,n′`′
√
Ω`Ω`′S

+
n`Sn′`′ . (4.1.12)

The strength Gn`,n′`′ in the multi-shell pairing interaction (4.1.12) may be

shell-dependent when it comes to scattering between different shells. Precaution

must be taken with the sign of Gn`,n′`′ . With the Biedenharn-Rose (BR) phase

convention that uses spatial single-particle wave functions of the form

φn`m` (~r) =Rn`(r)i`Y`m` (θ,ϕ), (4.1.13)

Gik is invariably positive. The BR phase convention is quite often used in pairing

theory. It has the advantage that by acting with the time-reversal operator on the

wave function (4.1.13), a convenient phase factor is generated that is consistent

with the phase factor required to transform the annihilation operator ajm into a

covariant tensor of rank j, (−1)j+majm [45]. In this work, we use exclusively the

Condon-Shortley (CS) convention defining single-particle wave functions with-

out the phase factor i`. By inspecting the matrix elements of the zero-range at-

tractive δ interaction between different orbitals, we see that

〈n`n`;0|δ(~r1 −~r2)|n′`′n′`′;0〉 =

(−1)`+`
′
√

(2` + 1)(2`′ + 1)
4π

∫ +∞

0
R2
n`(r)R

2
n′`′ (r)r

2dr, (4.1.14)
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which has the sign of (−1)`+`
′
. Therefore, for the interaction in (4.1.12) to be short-

range attractive, unlike Gik, Gn`,n′`′ must also has the sign of (−1)`+`
′
, a difference

made by the phase (i`)2(i`
′
)2. To make this point explicit in the expression of the

interaction, we reformulate (4.1.12) as

V̂ = −
∑

n,`,n′ ,`′

(−1)`+`
′
Gn`n′`′

√
Ω`Ω`′S

+
n`Sn′`′ , (4.1.15)

so that Gn`n′`′ is invariably positive.

The matrix elements of the pairing interaction can be evaluated with relations

(4.1.5), (4.1.6), and (4.1.7). For one pair of particles, we have, with the pairing

interaction defined in (4.1.15)

〈0|Sn′`′ V̂ S+
n` |0〉 = −(−1)`+`

′
Gn`n′`′Ω`Ω`′ . (4.1.16)

4.2 Pairing Interaction in 6He

In this section, we will study 6He with basically the same approach as in

Chapter 3 with the exception that instead of the δ interaction, a pairing interac-

tion with constant Gn`n′`′ = G will be used. More specifically, the pairing Hamil-

tonian uncorrected for CM motion will first be used to examine correlation func-

tions in a general sense, and then the CM will be corrected with the non-spurious

COSM Hamiltonian (3.5.14) to allow for the evaluation of the two-neutron sepa-

ration energy and the realistic values of G in several truncated spaces.

a. The pairing Hamiltonian uncorrected for CM motion

Since the pairing interaction is only defined in second quantization, the one-body

part of the Hamiltonian should also be expressed in second quantization for con-
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sistency. The pairing Hamiltonian uncorrected for CM motion is

Ĥpair =
∑
n`mms

εn`mmsa
+
n`mms

an`mms −
∑
n`n′`′

(−1)`+`
′
G
√
Ω`Ω`′S

+
n`Sn′`′ , (4.2.1)

which, under the assumption that all the single-particle states in an orbital n` are

degenerate, can be also rewritten as

Ĥpair = −
∑
n`

εn`
√

2(2` + 1)[a+
n` 1

2
⊗ ãn` 1

2
]00 −

∑
n`n′`′

(−1)`+`
′
G
√
Ω`Ω`′S

+
n`Sn′`′ , (4.2.2)

The operator ã`m 1
2ms

, or ãjm in jj coupling, is the hole creation operator defined

in LS coupling or jj coupling respectively as follows,

ã`m 1
2ms

= (−1)`+m+ 1
2 +msa`−m 1

2−ms
,

ãjm = (−1)j+maj−m. (4.2.3)

The hole creation operator defined thus is a spherical tensor that can be coupled

with other spherical tensors such as a+
`m 1

2ms
or a+

jm using Clebsch-Gordan coeffi-

cients. The coupled product, [a+
j ⊗ ãj ′ ]

J
M is expressed by

[a+
j ⊗ ãj ′ ]

J
M =

∑
mm′
〈jmj ′m′ |JM〉a+

jmãj ′m′ . (4.2.4)

It follows that the coupled product in the Hamiltonian (4.2.2) is

[a+
n` 1

2
⊗ ãn` 1

2
]00 = − 1√

2(2` + 1)
n̂n`, (4.2.5)

with n̂n` the number operator in the n` orbital

n̂n` =
∑
mms

a+
n`mms

an`mms . (4.2.6)

As far as one pair of nucleons is concerned, the pairing Hamiltonian (4.2.2)

only allows ground states of the form
∑
n`αn`S

+
n` |0〉 formed by a pair of nucleons
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in the same orbital, as opposed to δ interaction, with which the ground state 0+

is an admixture of zero-coupled states |n`n′`;00〉.

In the following, the correlation of the valence neutrons in the ground state of

6He interacting via the pairing interaction in a HO potential will be investigated

in terms of ξ ≡ G/~ω and the size of valence space. We proceed in the same way

as we did for the δ interaction in Sec.3.4. The correlation functions as a function

of ξ in the valence spaces containing respectively the major shells N = 1,2,3 and

N = 1,2,3,4 are shown in Fig. 4.2 and 4.3.

(a) ξ = 0.1 (b) ξ = 0.2

(c) ξ = 1 (d) ξ = 100

Figure 4.2: Evolution of the g.s. correlation function with increasing ξ in the
valence space containing N = 1,2,3.

Inspecting Fig. 4.2 and 4.3, we see that the conclusion drawn in Sec.3.4 with

the δ interaction concerning the evolution of the two major configurations under

the influence of ξ and the valence space, etc still holds with pairing interaction.
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(a) ξ = 0.1 (b) ξ = 100

Figure 4.3: Evolution of the g.s. correlation function with increasing ξ in the
valence space containing N = 1,2,3,4.

With the pairing interaction, the effect of higher orbitals is more pronounced for

large values of ξ. Another peculiarity is that when ξ tends to +∞, the probability

of the ground state being in a certain orbital is proportional to the degeneracy

Ω = 2` + 1 of that orbital. In other words, in the asymptotic ground-state wave

function
∑
n`αn`S

+
n` |0〉, the coefficient αn` ∝

√
2` + 1.

b. The pairing Hamiltonian corrected for CM motion

The next step is to correct the CM motion of the Hamiltonian (4.2.2) by adding

the two-body cross term 1
(f +1)µ~pi ·~pj , which can be transformed into second quan-

tized form with either Eq. (4.0.1), or its equivalent angular momentum coupled

form for nucleons (4.2.7)

Ĥ =− 1
4

∑
n1`1n2`2
n3`3n4`4LS

〈n1`1
1
2
n2`2

1
2

;LSMLMS |Ĥ |n3`3
1
2
n4`4

1
2

;LSMLMS〉(1 + δn1`1,n2`2
)

1
2

(1 + δn3`3,n4`4
)

1
2 × (2L+ 1)

1
2 (2S + 1)

1
2

[
[a+
n1`1

1
2
⊗ a+

n2`2
1
2
]LS ⊗ [ãn3`3

1
2
⊗ ãn4`4

1
2
]LS

]00
.

(4.2.7)

Here, the four creation or annihilation operators are coupled into pairs using

Clebsch-Gordan coefficients, and ML and MS are respectively the projection on z

of the total orbital angular momentum L and that of the total spin S. Therefore,
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in second quantization, the CM corrected Hamiltonian with pairing interaction

is

Ĥpair = −
∑
n`

εn`
√

2(2` + 1)[a+
` 1

2
⊗ ã` 1

2
]00 −

∑
n`n′`′

(−1)`+`
′
G
√
Ω`Ω`′S

+
n`Sn′`′

− 1
4

∑
n1`1n2`2
n3`3n4`4LS

〈n1`1
1
2
n2`2

1
2

;LSMlMS |
1

(f + 1)µ
~p1 · ~p2|n3`3

1
2
n4`4

1
2

;LSMLMS〉

((1 + δn1`1,n2`2
)(1 + δn3`3,n4`4

))
1
2 × (2L+ 1)

1
2 (2S + 1)

1
2

×
[
[a+
`1

1
2
⊗ a+

n2`2
1
2
]LS ⊗ [ãn3`3

1
2
⊗ ãn4`4

1
2
]LS

]00
. (4.2.8)

To evaluate the correlation function of 6He with the pairing interaction,

parameters such as the oscillator length b determined phenomenologically in

Sec.3.5.3 are used. Realistic values of G, Gr , are still adjusted by the energy dif-

ference between 2+ and 0+ in various truncated valence spaces. The composition

of wave function in various valence spaces is perfectly consistent with what has

been found for δ interaction, that is, ≈ 92% of |(0p)2;00〉 and ≈ 4% of |(0d)2;00〉,

with minor contributions from the other orbitals. The plots of the correlation

functions (Fig. 4.4), as determined by the wave functions, are accordingly almost

identical to Fig. 3.7. The probability of the di-neutron configuration is estimated

to be 61% ∼ 62%.
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(a) Nmax = 3, Gr = 0.291 MeV (b) Nmax = 4, Gr = 0.262 MeV

Figure 4.4: The correlation functions Cα(r,R) in two different valence spaces ob-
tained with Gr determined from the 2+ excitation energy.
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5
Angular correlations in 8He

8He is generally considered to have a α + 4n structure with the four valence

neutrons in the 0p shell. From the point of view of shell model, in the ground

state, the four neutrons should stay in the 0p 3
2

shell. However, the four neutrons

can also pair up in the state (0p 3
2
)2(0p 1

2
)2. Indeed, with 8He bound by 3.1

MeV to 4He, it is not hard to imagine that the double di-neutron structure

plays a role. In this chapter we will try to shed some light on the geometry

of the two 0+ states of 8He. The geometry of admixed states will also be discussed.

5.1 Configuration 0+
1 : |(0p3

2
)4;0〉

We shall denote |(0p 3
2
)4;0〉, the 0+ state in which the valence neutrons com-

pletely fill up the 0p 3
2

shell by 0+
1 . In section 5.1.1 we shall obtain the expression

for the angular part of its probability density and in section 5.1.2 the spatial

configurations that possess the maximum angular probability density.
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5.1.1 Angular probability density of 0+
1

If single particle states are denoted by φjm, for example, φ 3
2

3
2

= |j = 3
2 ,m = 3

2〉,

the non-antisymmetric wave function is given by:

φ 3
2

3
2
(1)φ 3

2
1
2
(2)φ 3

2
−1
2

(3)φ 3
2
−1
2

(4). (5.1.1)

As the core degrees of freedom are decoupled from those of the valence neutrons,

only the wave function of the valence neutrons needs to be anti-symmetrized,

which is done by taking the Slater determinant of wavefunction (5.1.1):

1
√

4!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ 3
2

3
2
(1) φ 3

2
1
2
(1) φ 3

2
−1
2

(1) φ 3
2
−3
2

(1)

φ 3
2

3
2
(2) φ 3

2
1
2
(2) φ 3

2
−1
2

(2) φ 3
2
−3
2

(2)

φ 3
2

3
2
(3) φ 3

2
1
2
(3) φ 3

2
−1
2

(3) φ 3
2
−3
2

(3)

φ 3
2

3
2
(4) φ 3

2
1
2
(4) φ 3

2
−1
2

(4) φ 3
2
−3
2

(4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.1.2)

The radial wave function of the 0p shell is:

R(r) =

√
8

3
√
πb3

0

(
r
b0

)
exp

(
− r

2

2b2
0

)
,

with b0 the oscillator length. In the study of 8He, we focus our interest on the

angular aspect of its geometry; therefore the radial wave function is neglected

in the following and subsequent discussions are valid for any p shell. After the

omission of radial wave function, the single-particle wave functions in the 0p 1
2

shell are

φ 3
2

3
2

= Y1,1(θ,φ) ·χ 1
2
,

φ 3
2

1
2

=

√
1
3
Y1,1(θ,φ) ·χ−1

2
+

√
2
3
Y1,0(θ,φ) ·χ 1

2
,

φ 3
2
−1
2

=

√
1
3
Y1,−1(θ,φ) ·χ 1

2
+

√
2
3
Y1,0(θ,φ) ·χ−1

2
,
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φ 3
2
−3
2

= Y1,−1(θ,φ) ·χ−1
2
, (5.1.3)

where Yl,m are spherical harmonics:

Y1,1(θ,φ) = −1
2

√
3

2π
(x+ iy)
r

,

Y1,0(θ,φ) =
1
2

√
3
π
z
r
,

Y1,−1(θ,φ) =
1
2

√
3

2π
(x − iy)
r

,

and χ spinors defined as follows:

χ+ =

1

0

 , χ− =

0

1

 .
From now on, we use a shorthand notation leaving out the spin variable 1/2 and

simplifying the projection quantum numbers ms = ±1/2 to + and −.

Put the single particle wave functions in (5.1.3) back into the antisym-

metric wave function (5.1.2) and we get the normalized antisymmetric wave

function of the four neutrons coupled to 0+ in the 0p 3
2

shell written be-

low. It is a linear combination of products of spatial wave functions of

the four particles Φ0+
1m1,m2,m3,m4

(~r1,~r2,~r3,~r4) and tensor products of their spins

χm1
(1)χm2

(2)χm3
(3)χm4

(4). There are 24 − 2 = 14 such tensor products since all

four particles in the p shell cannot have the same spin projection, which excludes

the tensor products χ+(1)χ+(2)χ+(3)χ+(4) and χ−(1)χ−(2)χ−(3)χ−(4). For brevity,

the factor
(

1
2

√
3

2π

)4
1

r1r2r3r4
1√
4!

4
3 is moved out of the sum. We obtain for the angular

part of the wavefunction

Ψ0+
1

(~r1,~r2,~r3,~r4,χ1,χ2,χ3,χ4) =

1
2

√
3

2π

4
1

r1r2r3r4

1
√

4!

4
3

×
∑
m1,m2
m3,m4

Φ0+
1m1,m2,m3,m4

(~r1,~r2,~r3,~r4) ·χm1
(1)χm2

(2)χm3
(3)χm4

(4), (5.1.4)
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with

Φ0+
1−−++(~r1,~r2,~r3,~r4) (5.1.5)

= x2x4y1y3 − x1x4y2y3 − x2x3y1y4 + x1x3y2y4 + x2x4z1z3 + y2y4z1z3

− x1x4z2z3 − y1y4z2z3 − x2x3z1z4 − y2y3z1z4 + x1x3z2z4 + y1y3z2z4

+ i(−x4y2z1z3 + x2y4z1z3 + x4y1z2z3 − x1y4z2z3 + x3y2z1z4 − x2y3z1z4

− x3y1z2z4 + x1y3z2z4), (5.1.6)

Φ0+
1 ++−−(~r1,~r2,~r3,~r4)

= x2x4y1y3 − x1x4y2y3 − x2x3y1y4 + x1x3y2y4 + x2x4z1z3 + y2y4z1z3

− x1x4z2z3 − y1y4z2z3 − x2x3z1z4 − y2y3z1z4 + x1x3z2z4 + y1y3z2z4

+ i(x4y2z1z3 − x2y4z1z3 − x4y1z2z3 + x1y4z2z3 − x3y2z1z4 + x2y3z1z4

+ x3y1z2z4 − x1y3z2z4), (5.1.7)

Φ0+
1−+−+(~r1,~r2,~r3,~r4)

= −x3x4y1y2 + x1x4y2y3 + x2x3y1y4 − x1x2y3y4 − x3x4z1z2 − y3y4z1z2

+ x1x4z2z3 + y1y4z2z3 + x2x3z1z4 + y2y3z1z4 − x1x2z3z4 − y1y2z3z4

+ i(x4y3z1z2 − x3y4z1z2 − x4y1z2z3 + x1y4z2z3 + x3y2z1z4 − x2y3z1z4

+ x2y1z3z4 − x1y2z3z4), (5.1.8)

Φ0+
1 +−+−(~r1,~r2,~r3,~r4)

= −x3x4y1y2 + x1x4y2y3 + x2x3y1y4 − x1x2y3y4 − x3x4z1z2 − y3y4z1z2

+ x1x4z2z3 + y1y4z2z3 + x2x3z1z4 + y2y3z1z4 − x1x2z3z4 − y1y2z3z4

− i(x4y3z1z2 − x3y4z1z2 − x4y1z2z3 + x1y4z2z3 + x3y2z1z4 − x2y3z1z4

+ x2y1z3z4 − x1y2z3z4), (5.1.9)
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Φ0+
1−++−(~r1,~r2,~r3,~r4)

= x3x4y1y2 − x2x4y1y3 − x1x3y2y4 + x1x2y3y4 + x3x4z1z2 + y3y4z1z2

− x2x4z1z3 − y2y4z1z3 − x1x3z2z4 − y1y3z2z4 + x1x2z3z4 + y1y2z3z4

+ i(x4y3z1z2 − x3y4z1z2 − x4y2z1z3 + x2y4z1z3 + x3y1z2z4 − x1y3z2z4

− x2y1z3z4 + x1y2z3z4), (5.1.10)

Φ0+
1 +−−+(~r1,~r2,~r3,~r4)

= x3x4y1y2 − x2x4y1y3 − x1x3y2y4 + x1x2y3y4 + x3x4z1z2 + y3y4z1z2

− x2x4z1z3 − y2y4z1z3 − x1x3z2z4 − y1y3z2z4 + x1x2z3z4 + y1y2z3z4

− i(x4y3z1z2 − x3y4z1z2 − x4y2z1z3 + x2y4z1z3 + x3y1z2z4 − x1y3z2z4

− x2y1z3z4 + x1y2z3z4), (5.1.11)

Φ0+
1−−−+(~r1,~r2,~r3,~r4)

= −x3y2y4z1 + x2y3y4z1 + x3y1y4z2 − x1y3y4z2 − x2y1y4z3 + x1y2y4z3

+ i(x3x4y2z1 − x2x4y3z1 − x3x4y1z2 + x1x4y3z2 + x2x4y1z3 − x1x4y2z3), (5.1.12)

Φ0+
1 +++−(~r1,~r2,~r3,~r4)

= x3y2y4z1 − x2y3y4z1 − x3y1y4z2 + x1y3y4z2 + x2y1y4z3 − x1y2y4z3

+ i(x3x4y2z1 − x2x4y3z1 − x3x4y1z2 + x1x4y3z2 + x2x4y1z3 − x1x4y2z3), (5.1.13)

Φ0+
1−−+−(~r1,~r2,~r3,~r4)

= x4y2y3z1 − x2y3y4z1 − x4y1y3z2 + x1y3y4z2 + x2y1y3z4 − x1y2y3z4

+ i(−x3x4y2z1 + x2x3y4z1 + x3x4y1z2 − x1x3y4z2 − x2x3y1z4 + x1x3y2z4), (5.1.14)

Φ0+
1 ++−+(~r1,~r2,~r3,~r4)

= −x4y2y3z1 + x2y3y4z1 + x4y1y3z2 − x1y3y4z2 − x2y1y3z4 + x1y2y3z4
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+ i(−x3x4y2z1 + x2x3y4z1 + x3x4y1z2 − x1x3y4z2 − x2x3y1z4 + x1x3y2z4), (5.1.15)

Φ0+
1−+−−(~r1,~r2,~r3,~r4)

= −x4y2y3z1 + x3y2y4z1 + x4y1y2z3 − x1y2y4z3 − x3y1y2z4 + x1y2y3z4

+ i(x2x4y3z1 − x2x3y4z1 − x2x4y1z3 + x1x2y4z3 + x2x3y1z4 − x1x2y3z4), (5.1.16)

Φ0+
1 +−++(~r1,~r2,~r3,~r4)

= x4y2y3z1 − x3y2y4z1 − x4y1y2z3 + x1y2y4z3 + x3y1y2z4 − x1y2y3z4

+ i(x2x4y3z1 − x2x3y4z1 − x2x4y1z3 + x1x2y4z3 + x2x3y1z4 − x1x2y3z4), (5.1.17)

Φ0+
1 +−−−(~r1,~r2,~r3,~r4)

= x4y1y3z2 − x3y1y4z2 − x4y1y2z3 + x2y1y4z3 + x3y1y2z4 − x2y1y3z4

+ i(−x1x4y3z2 + x1x3y4z2 + x1x4y2z3 − x1x2y4z3 − x1x3y2z4 + x1x2y3z4), (5.1.18)

Φ0+
1−+++(~r1,~r2,~r3,~r4)

= −x4y1y3z2 + x3y1y4z2 + x4y1y2z3 − x2y1y4z3 − x3y1y2z4 + x2y1y3z4

+ i(−x1x4y3z2 + x1x3y4z2 + x1x4y2z3 − x1x2y4z3 − x1x3y2z4 + x1x2y3z4). (5.1.19)

It can be observed that for a tensor product composed of two spins up and

two spins down such as χ−(1)χ−(2)χ+(3)χ+(4) (5.1.5), its spatial wave function

Φ0+
1−−++(~r1,~r2,~r3,~r4) and that of its opposite counterpart χ+(1)χ+(2)χ−(3)χ−(4)

(5.1.7) are complex conjugate to each other, while for a tensor product composed

of only one spin different from the other three, such as χ−(1)χ−(2)χ−(3)χ+(4)

(5.1.12), its spatial wave function Φ0+
1−−−+(~r1,~r2,~r3,~r4) is the opposite of the com-

plex conjugate of that of its opposite counterpart χ+(1)χ+(2)χ+(3)χ−(4) (5.1.13).

We use the notation ~rij = (xij , yij , zij) = ~ri ×~rj = (yizj −yjzi , zixj − zjxi ,xiyj −yixj)
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and ~rij,kl = (xij,kl , yij,kl , zij,kl) = ~rij ×~rkl , and calculate each term in sum (5.1.4):

Φ0+
1−−++(~r1,~r2,~r3,~r4)

= x2x4y1y3 − x1x4y2y3 − x2x3y1y4 + x1x3y2y4 + x2x4z1z3 + y2y4z1z3

− x1x4z2z3 − y1y4z2z3 − x2x3z1z4 − y2y3z1z4 + x1x3z2z4 + y1y3z2z4

+ i(−x4y2z1z3 + x2y4z1z3 + x4y1z2z3 − x1y4z2z3 + x3y2z1z4 − x2y3z1z4

− x3y1z2z4 + x1y3z2z4)

= −x4y3(x1y2 − x2y1) + x3y4(x1y2 − x2y1) + x4z3(z1x2 − z2x1)− y4z3(y1z2 − y2z1)

− x3z4(z1x2 − z2x1) + y3z4(y1z2 − y2z1)] + i[x4z3(y1z2 − y2z1) + y4z3(z1x2 − z2x1)

− x3z4(y1z2 − y2z1)− y3z4(z1x2 − z2x1)]

= (x1y2 − x2y1)(x3y4 − x4y3) + (z1x2 − z2x1)(z3x4 − z4x3) + (y1z2 − y2z1)(y3z4 − y4z3)

+ i[(y1z2 − y2z1)(z3x4 − z4x3)− (z1x2 − z2x1)(y3z4 − y4z3)]

= x12x34 + y12y34 + z12z34 + i(x12y34 − y12x34)

= ~r12 ·~r34 + i z12,34, (5.1.20)

Φ0+
1 ++−−(~r1,~r2,~r3,~r4) = ~r12 ·~r34 − i z12,34, (5.1.21)

Φ0+
1−+−+(~r1,~r2,~r3,~r4)

= −x3x4y1y2 + x1x4y2y3 + x2x3y1y4 − x1x2y3y4 − x3x4z1z2 − y3y4z1z2

+ x1x4z2z3 + y1y4z2z3 + x2x3z1z4 + y2y3z1z4 − x1x2z3z4 − y1y2z3z4

+ i(x4y3z1z2 − x3y4z1z2 − x4y1z2z3 + x1y4z2z3 + x3y2z1z4 − x2y3z1z4

+ x2y1z3z4 − x1y2z3z4)

= x4y2(x1y3 − x3y1)− x2y4(x1y3 − x3y1)− x4z2(z1x3 − z3x1) + y4z2(y1z3 − y3z1)

+ x2z4(z1x3 − z3x1)− y2z4(y1z3 − y3z1) + i[−x4z2(y1z3 − y3z1)− y4z2(z1x3 − z3x1)

+ y2z4(z1x3 − z3x1) + x2z4(y1z3 − y3z1)]

= −(x1y3 − x3y1)(x2y4 − x4y2)− (z1x3 − z3x1)(z2x4 − z4x2)− (y1z3 − y3z1)(y2z4 − y4z2)]
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+ i[−(y1z3 − y3z1)(z2x4 − z4x2) + (z1x3 − z3x1)(y2z4 − y4z2)]

= −x13x24 − y13y24 − z13z24 + i(y13x24 − x13y24)

= −~r13 ·~r24 − i z13,24, (5.1.22)

Φ0+
1 +−+−(~r1,~r2,~r3,~r4) = −~r13 ·~r24 + i z13,24, (5.1.23)

Φ0+
1−++−(~r1,~r2,~r3,~r4)

= x3x4y1y2 − x2x4y1y3 − x1x3y2y4 + x1x2y3y4 + x3x4z1z2 + y3y4z1z2

− x2x4z1z3 − y2y4z1z3 − x1x3z2z4 − y1y3z2z4 + x1x2z3z4 + y1y2z3z4

+ i(x4y3z1z2 − x3y4z1z2 − x4y2z1z3 + x2y4z1z3 + x3y1z2z4 − x1y3z2z4

− x2y1z3z4 + x1y2z3z4)

= −x4y1(x2y3 − x3y2) + x1y4(x2y3 − x3y2) + x4z1(z2x3 − z3x2)− y4z1(y2z3 − y3z2)

− x1z4(z2x3 − z3x2) + y1z4(y2z3 − y3z2) + i[−x4z1(y2z3 − y3z2)− y4z1(z2x3 − z3x2)

+ y1z4(z2x3 − z3x2) + x1z4(y2z3 − y3z2)]

= (x2y3 − x3y2)(x1y4 − x4z1) + (z2x3 − z3x2)(z1x4 − z4x1) + (y2z3 − y3z2)(y1z4 − y4z1)

+ i[−(y2z3 − y3z2)(z1x4 − z4x1) + (z2x3 − z3x2)(y1z4 − y4z1)]

= z23z14 + y23y14 + x23x14 + i(−x23y14 + y23x14)

= ~r14 ·~r23 + i z14,23, (5.1.24)

Φ0+
1 +−−+(~r1,~r2,~r3,~r4) = ~r14 ·~r23 − i z14,23, (5.1.25)

Φ0+
1−−−+(~r1,~r2,~r3,~r4)

= −x3y2y4z1 + x2y3y4z1 + x3y1y4z2 − x1y3y4z2 − x2y1y4z3 + x1y2y4z3

+ i(x3x4y2z1 − x2x4y3z1 − x3x4y1z2 + x1x4y3z2 + x2x4y1z3 − x1x4y2z3)

= y4z1(x2y3 − x3y2)− y4z2(x1y3 − x3y1) + y4z3(x1y2 − x2y1)

+ i[−x4z1(x2y3 − x3y2) + x4z2(x1y3 − x3y1)− x4z3(x1y2 − x2y1)]
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= (y4 − i x4)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.1.26)

Φ0+
1 +++−(~r1,~r2,~r3,~r4) = −(y4 + i x4)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.1.27)

Φ0+
1−−+−(~r1,~r2,~r3,~r4)

= x4y2y3z1 − x2y3y4z1 − x4y1y3z2 + x1y3y4z2 + x2y1y3z4 − x1y2y3z4

+ i(−x3x4y2z1 + x2x3y4z1 + x3x4y1z2 − x1x3y4z2 − x2x3y1z4 + x1x3y2z4)

= −y3z1(x2y4 − x4y2) + y3z2(x1y4 − x4y1)− y3z4(x1y2 − x2y1)

+ i[x3z1(x2y4 − x4y2)− x3z2(x1y4 − x4y1) + x3z4(x1y2 − x2y1)]

= (−y3 + i x3)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.1.28)

Φ0+
1 ++−+(~r1,~r2,~r3,~r4) = (y3 + i x3)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.1.29)

Φ0+
1−+−−(~r1,~r2,~r3,~r4)

= −x4y2y3z1 + x3y2y4z1 + x4y1y2z3 − x1y2y4z3 − x3y1y2z4 + x1y2y3z4

+ i(x2x4y3z1 − x2x3y4z1 − x2x4y1z3 + x1x2y4z3 + x2x3y1z4 − x1x2y3z4)

= y2z1(x3y4 − x4y3)− y2z3(x1y4 − x4y1) + y2z4(x1y3 − x3y1)

+ i[−x2z1(x3y4 − x4y3) + x2z3(x1y4 − x4y1)− x2z4(x1y3 − x3y1)]
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= (y2 − i x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.1.30)

Φ0+
1 +−++(~r1,~r2,~r3,~r4) = −(y2 + i x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.1.31)

Φ0+
1 +−−−(~r1,~r2,~r3,~r4)

= x4y1y3z2 − x3y1y4z2 − x4y1y2z3 + x2y1y4z3 + x3y1y2z4 − x2y1y3z4

+ i(−x1x4y3z2 + x1x3y4z2 + x1x4y2z3 − x1x2y4z3 − x1x3y2z4 + x1x2y3z4)

= −y1z2(x3y4 − x4y3) + yiz3(x2y4 − x4y2)− y1z4(x2y3 − x3y2)

+ i[x1z2(x3y4 − x4y3)− x1z3(x2y4 − x4y2) + x1z4(x2y3 − x3y2)]

= (−y1 + i x1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.1.32)

Φ0+
1−+++(~r1,~r2,~r3,~r4) = (y1 + i x1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.1.33)

Once the spatial wave functions Φ0+
1m1,m2,m3,m4

are simplified, Ψ ∗0+
1
Ψ0+

1
, the

probability density of the wave function (5.1.4), can be expressed as


1

2

√
3

2π

4
1

r1r2r3r4

1
√

4!

4
3


2 ∑
m1,m2
m3,m4

Φ∗0+
1m1m2m3m4

(~r1,~r2,~r3,~r4)Φ0+
1m1m2m3m4

(~r1,~r2,~r3,~r4)

=
3

210π4

1

r2
1 r

2
2 r

2
3 r

2
4

∥∥∥~r12 ·~r34 + i z12,34

∥∥∥2
+
∥∥∥−~r13 ·~r24 − i z13,24

∥∥∥2
+
∥∥∥~r14 ·~r23 + i z14,23

∥∥∥2
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+ ‖(y4 − i x4)‖2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ ‖(−y3 + i x3)‖2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ ‖(y2 − i x2)‖2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ ‖(−y1 + i x1)‖2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 
=

3
210π4

1

r2
1 r

2
2 r

2
3 r

2
4

(~r12 ·~r34)2 + (~r13 ·~r24)2 + (~r14 ·~r23)2 + z2
12,34 + z2

13,24 + z2
14,23

+ (x2
1 + y2

1 )

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ (x2
2 + y2

2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ (x2
3 + y2

3 )

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ (x2
4 + y2

4 )

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣

2  (5.1.34)

The probability density in (5.1.34) can be simplified with the identities

x2
12,34 + x2

13,24 + x2
14,23

= x2
1

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ x2
2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ x2
3

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ x2
4

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

and

y2
12,34 + y2

13,24 + y2
14,23

= y2
1

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ y2
2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ y2
3

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ y2
4

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣

2
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that will be demonstrated below by using the vector cross product properties

(A×B)× (C ×D) = (A · (B×D))C − (A · (B×C))D, (5.1.35)

and

A · (B×C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
Ax Bx Cx

Ay By Cy

Az Bz Cz

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.1.36)

By using the identity (A×B)× (C ×D) = (A · (B×D))C − (A · (B×C))D, we have:

x12,34 = (~r1 ·~r24)x3 − (~r1 ·~r23)x4

x13,24 = (~r1 ·~r34)x2 + (~r1 ·~r23)x4

x14,23 = −(~r1 ·~r34)x2 + (~r1 ·~r24)x3

x34,12 = (~r2 ·~r34)x1 − (~r1 ·~r34)x2

x24,13 = −(~r2 ·~r34)x1 − (~r1 ·~r24)x3

x23,14 = (~r2 ·~r34)x1 − (~r1 ·~r23)x4

Consequently we find,

2(x2
12,34 + x2

13,24 + x2
14,23)

= x2
12,34 + x2

13,24 + x2
14,23 + x2

34,12 + x2
24,13 + x2

23,14

=
[
(~r1 ·~r24)x3 − (~r1 ·~r23)x4

]2 +
[
(~r1 ·~r34)x2 + (~r1 ·~r23)x4

]2 +
[
−(~r1 ·~r34)x2 + (~r1 ·~r24)x3

]2 +
[
(~r2 ·~r34)x1 − (~r1 ·~r34)x2

]2

+
[
−(~r2 ·~r34)x1 − (~r1 ·~r24)x3

]2 +
[
(~r2 ·~r34)x1 − (~r1 ·~r23)x4

]2

= 3(~r1 ·~r23)2x2
4 + 3(~r1 ·~r24)2x2

3 + 3(~r1 ·~r34)2x2
2 + 3(~r2 ·~r34)2x2

1 − 2x3x4(~r1 ·~r24)(~r1 ·~r23) + 2x2x4(~r1 ·~r34)(~r1 ·~r23)

− 2x2x3(~r1 ·~r34)(~r1 ·~r24)− 2x1x2(~r2 ·~r34)(~r1 ·~r34)

+ 2x1x3(~r2 ·~r34)(~r1 ·~r24)− 2x1x4(~r2 ·~r34)(~r1 ·~r23)

= 2(~r1 ·~r23)2x2
4 + 2(~r1 ·~r24)2x2

3 + 2(~r1 ·~r34)2x2
2 + 2(~r2 ·~r34)2x2

1
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+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

x1 x2 x3 x4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= 2
(
(~r1 ·~r23)2x2

4 + (~r1 ·~r24)2x2
3 + (~r1 ·~r34)2x2

2 + (~r2 ·~r34)2x2
1

)
. (5.1.37)

Given the property that A · (B ×C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
Ax Bx Cx

Ay By Cy

Az Bz Cz

∣∣∣∣∣∣∣∣∣∣∣∣∣
, Eq. (5.1.37) can be rewritten

as:

x2
12,34 + x2

13,24 + x2
14,23

= x2
1

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ x2
2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ x2
3

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ x2
4

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(5.1.38)

Similarly, we have

y2
12,34 + y2

13,24 + y2
14,23

= y2
1

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ y2
2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ y2
3

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ y2
4

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(5.1.39)

Eq. (5.1.38) and (5.1.39) enable us to further simplify the probability density

in (5.1.34).

Ψ ∗0+
1
Ψ0+

1

=
3

210π4

1

r2
1 r

2
2 r

2
3 r

2
4

[(~r13 ·~r24)2 + (~r14 ·~r23)2 + (~r12 ·~r34)2 + z2
12,34 + z2

13,24 + z2
14,23

+ x2
12,34 + x2

13,24 + x2
14,23 + y2

12,34 + y2
13,24 + y2

14,23]
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=
3

210π4

1

r2
1 r

2
2 r

2
3 r

2
4

[(~r13 ·~r24)2 + (~r14 ·~r23)2 + (~r12 ·~r34)2 + ‖~r12 ×~r34‖2 + ‖~r13 ×~r24‖2

+ ‖~r14 ×~r23‖2]

=
3

210π4

1

r2
1 r

2
2 r

2
3 r

2
4

[(~r13 ·~r24)2 + (~r14 ·~r23)2 + (~r12 ·~r34)2 + ‖~r12 ×~r34‖2 + ‖~r13 ×~r24‖2

+ ‖~r14 ×~r23‖2]

Let θij stand for the angle between ~ri and ~rj and θij,kl the angle between ~rij

and ~rkl . The dot product ~rij · ~rkl and the cross product ~rij × ~rkl are equal to

rirj sinθijrkrl sinθkl cosθij,kl and rirj sinθijrkrl sinθkl sinθij,kl respectively. In con-

sequence,

Ψ ∗0+
1
Ψ0+

1

=
3

210π4

1

r2
1 r

2
2 r

2
3 r

2
4

[(r1r2 sinθ12)2(r3r4 sinθ34)2 cos2θ12,34

+ (r1r4 sinθ14)2(r2r3 sinθ23)2 cos2θ14,23 + (r1r3 sinθ13)2(r2r4 sinθ24)2 cos2θ13,24

+ (r1r2 sinθ12)2(r3r4 sinθ34)2 sin2θ12,34 + (r1r4 sinθ14)2(r2r3 sinθ23)2 sin2θ14,23

+ (r1r3 sinθ13)2(r2r4 sinθ24)2 sin2θ13,24]

=
3

210π4 (sin2θ13 sin2θ24 + sin2θ14 sin2θ23 + sin2θ12 sin2θ34) (5.1.40)

We have just found the angular part of the probability density for the 0+
1 state:

|
(
0p 3

2

)4
;0〉. It is a function of the six relative angles formed by the four vectors

connecting the four neutrons and the α core, and is invariant under permutation

of valence neutrons. Only five of the six relative angles are independent.

5.1.2 Geometry of 0+
1 with the maximum probability density

In this section, we look for configurations at which the angular probability

density of 0+
1 has its absolute maximum.

For convenience, we define a factor c = 3
210π4 that will be used henceforth such
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that the correlation function in terms of relative angles of the four particles takes

a simpler form:

c(sin2θ12 sin2θ34 + sin2θ13 sin2θ24 + sin2θ14 sin2θ23). (5.1.41)

As has been said at the end of the last section, the six relative angles are not in-

dependent; one angle can be derived from the others. Besides, any five angles are

correlated. As a result, it is practical to express function (5.1.41) in terms of the

particles’ azimuthal and polar angles in spherical coordinates. There are eight

such angles, only five of which are independent because of rotation-invariance.

Consequently, we can fix one of the particles, say, particle 4, in the zenith direc-

tion, i. e. θ4 = 0„ and another particle, say, particle 1, in the φ1 = 0 plane, so

as to have five independent variables: θ1,θ2,θ3,φ2,φ3. Note that under such an

assumption, we have θ1 = θ14,θ2 = θ24,θ3 = θ34. For convenience, we keep φ1

for the moment and write:

f (θ1,θ2,θ3,φ1,φ2,φ3)

= c(sin2θ12 sin2θ34 + sin2θ13 sin2θ24 + sin2θ14 sin2θ23)

= c
{

sin2θ3

[
1− (cosθ1 cosθ2 + cos(φ1 −φ2)sinθ1 sinθ2)2

]
+ sin2θ2

[
1− (cosθ1 cosθ3 + cos(φ1 −φ3)sinθ1 sinθ3)2

]
+ sin2θ1

[
1− (cosθ2 cosθ3 + cos(φ2 −φ3)sinθ2 sinθ3)2

]}
. (5.1.42)

The absolute maximum that we look for occurs at critical points where the

first partial derivatives with respect to the 5 variables vanish. However, the

search for the absolute maximum will be complicated by the fact that function

(5.1.42) has a large number of local extrema and saddle points where the first

partial derivatives also vanish.
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The condition ∂θ1
f = 0 leads to:

3− cos2θ1 − cos2θ2 − cos2θ1 cos2θ2 − cos2θ3 − cos2θ1 cos2θ3 − cos2θ2 cos2θ3

+ 3cos2θ1 cos2θ2 cos2θ3 − 2cos(φ1 −φ2)cosθ1 cosθ2 sinθ1 sinθ2

+ 2cos(φ1 −φ2)cosθ1 cosθ2 cos2θ3 sinθ1 sinθ2 − cos2(φ1 −φ2)sin2θ1 sin2θ2

+ cos2(φ1 −φ2)cos2θ3 sin2θ1 sin2θ2 − 2cos(φ1 −φ3)cosθ1 cosθ3 sinθ1 sinθ3

+ 2cos(φ1 −φ3)cosθ1 cosθ2
2 cosθ3 sinθ1 sinθ3 − 2cos(φ2 −φ3)cosθ2 cosθ3 sinθ2 sinθ3

+ 2cos(φ2 −φ3)cos2θ1 cosθ2 cosθ3 sinθ2 sinθ3 − cos2(φ1 −φ3)sin2θ1 sin2θ3

+ cos2(φ1 −φ3)cos2θ2 sin2θ1 sin2θ3 − cos2(φ2 −φ3)sin2θ2 sin2θ3

+ cos2(φ2 −φ3)cos2θ1 sin2θ2 sin2θ3

= 0,

which reduces to

cos2θ23 sin2θ1 + cos2θ13 sin2θ2 + cos2θ12 sin2θ3

− cosθ13
cosθ3 sin2θ2

cosθ1
− cosθ12

cosθ2 sin2θ3

cosθ1
− sin2θ1 = 0. (5.1.43)

Similarly, from ∂θ2
f = 0 we have

cos2θ23 sin2θ1 + cos2θ13 sin2θ2 + cos2θ12 sin2θ3

− cosθ23
cosθ3 sin2θ1

cosθ2
− cosθ12

cosθ1 sin2θ3

cosθ2
− sin2θ2 = 0, (5.1.44)

and from ∂θ3
f = 0

cos2θ23 sin2θ1 + cos2θ13 sin2θ2 + cos2θ12 sin2θ3

− cosθ23
cosθ2 sin2θ1

cosθ3
− cosθ13

cosθ1 sin2θ2

cosθ3
− sin2θ3 = 0. (5.1.45)

Note that Eqs. (5.1.44) and (5.1.45) can be obtained by permuting particle 1, 2

and particle 1, 3 in Eq. (5.1.43) respectively, which is obvious given that function
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(5.1.41) is invariant under permutation of any two neutrons.

The condition ∂φ1
f = 0 leads to:

2cosθ1 cosθ2 sin(φ1 −φ2)sinθ1 sinθ2 − 2cosθ1 cosθ2 cos2θ3 sin(φ1 −φ2)sinθ1 sinθ2

+ 2cos(φ1 −φ2)sin(φ1 −φ2)sin2θ1 sin2θ2 − 2cos(φ1 −φ2)cos2θ3 sin(φ1 −φ2)sin2θ1 sin2θ2

+ 2cosθ1 cosθ3 sin(φ1 −φ3)sinθ1 sinθ3 − 2cosθ1 cos2θ2 cosθ3 sin(φ1 −φ3)sinθ1 sinθ3

+ 2cos(φ1 −φ3)sin(φ1 −φ3)sin2θ1 sin2θ3 − 2cos(φ1 −φ3)cos2θ2 sin(φ1 −φ3)sin2θ1 sin2θ3

= 0,

which reduces to

sinθ1 sinθ2 sinθ3(sin(φ1 −φ3)sinθ2 cosθ13 + sin(φ1 −φ2)sinθ3 cosθ12) = 0.

(5.1.46)

By permutation, we obtain the equations for the other two derivatives:

sinθ1 sinθ2 sinθ3(sin(φ2 −φ3)sinθ1 cosθ23 − sin(φ1 −φ2)sinθ3 cosθ12) = 0

(5.1.47)

and

sinθ1 sinθ2 sinθ3(sin(φ2 −φ3)sinθ1 cosθ23 + sin(φ1 −φ3)sinθ2 cosθ13) = 0.

(5.1.48)

We note that Eqs. (5.1.46), (5.1.47) and (5.1.48) are not independent, to which

one possible solution is sinθ1 sinθ2 sinθ3 = 0. We can simplify Eqs. (5.1.46),

(5.1.47) and (5.1.48) by removing the factor sinθ1 sinθ2 sinθ3 without loss of gen-

erality because the resulting equations also allow the solution sinθ1 sinθ2 sinθ3 =

0.

Let A stand for sinθ1 cosθ23, B for sinθ2 cosθ13 and C for sinθ3 cosθ12. The
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six equations transform to:

A2 +B2 +C2 −Bcosθ3 sinθ2

cosθ1
−C cosθ2 sinθ3

cosθ1
− sin2θ1 = 0, (5.1.49)

A2 +B2 +C2 −Acosθ3 sinθ1

cosθ2
−C cosθ1 sinθ3

cosθ2
− sin2θ2 = 0, (5.1.50)

A2 +B2 +C2 −Bcosθ1 sinθ2

cosθ3
−Acosθ2 sinθ1

cosθ3
− sin2θ3 = 0, (5.1.51)

Bsin(φ1 −φ3) = −C sin(φ1 −φ2), (5.1.52)

Asin(φ2 −φ3) = C sin(φ1 −φ2), (5.1.53)

Asin(φ2 −φ3) = −Bsin(φ1 −φ3). (5.1.54)

To find the absolute maxima by solving the equation set (5.1.49)∼(5.1.54)

would be a tedious task because of all the local extrema and saddle points. By

observing the equation set, one obvious possibility stands out

|A| = |B| = |C| , 0. (5.1.55)

Here zero is ruled out because |A| = |B| = |C| = 0 leads to a trivial solution. The

validity of the solution (5.1.55) as leading to the absolute maximum can be alter-

natively supported by a Monte-Carlo simulation that will be explained later on.

In the following, we will look for the configurations with the maximum proba-

bility density satisfying Eq. (5.1.55).

If we set the extra degree of freedom φ1 to 0, Eqs. (5.1.52), (5.1.53) as well as

A, B, and C turn into:

sinφ3 sinθ2(cosθ1 cosθ3 + cosφ3 sinθ1 sinθ3)

= −sinφ2 sinθ3(cosθ1 cosθ2 + cosφ2 sinθ1 sinθ2), (5.1.56)

sin(φ2 −φ3)sinθ1(cosθ2 cosθ3 + cos(φ2 −φ3)sinθ2 sinθ3)

= −sinφ2 sinθ3(cosθ1 cosθ2 + cosφ2 sinθ1 sinθ2), (5.1.57)

A = sinθ1(cosθ2 cosθ3 + cos(φ2 −φ3)sinθ2 sinθ3), (5.1.58)
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B = sinθ2(cosθ1 cosθ3 + cosφ3 sinθ1 sinθ3), (5.1.59)

C = sinθ3(cosθ1 cosθ2 + cosφ2 sinθ1 sinθ2). (5.1.60)

Eq. (5.1.55) is equivalent to

∣∣∣sin(φ1 −φ2)
∣∣∣ =

∣∣∣sin(φ1 −φ3)
∣∣∣ =

∣∣∣sin(φ2 −φ3)
∣∣∣ . (5.1.61)

We only consider the case sin(φ1 −φ2) = sin(φ1 −φ3) = sin(φ3 −φ2), as the other

cases such as sin(φ1 − φ2) = sin(φ1 − φ3) = −sin(φ3 − φ2), etc, lead to the same

results. Without loss of generality, we may suppose that φ3 ≥ φ2. From φ1 = 0,

we have

sinφ2 = sinφ3 = sin(φ2 −φ3) φ3 ≥ φ2.

Several cases can be distinguished according to different values of φ2:



φ3 = φ2 if φ2 = 0

φ3 = φ2 if φ2 = π

φ3 = π −φ2 if 0 ≤ φ2 ≤ π
2

φ3 = 3π −φ2 if π < φ2 ≤ 3π
2 ,

which leads to

φ3 = φ2 = 0

φ3 = φ2 = π

sin(2φ2 −π) = sinφ2

sin(2φ2 − 3π) = sinφ2

⇒


φ3 = φ2 = 0

φ3 = φ2 = π

sin2φ2 = −sinφ2

⇒



φ3 = φ2 = 0

φ3 = φ2 = π

sinφ2 = 0

cosφ2 = −1
2 .

Therefore, we find all the solutions to the condition sin(φ1 −φ2) = sin(φ1 −φ3) =
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sin(φ3 −φ2):



φ3 = φ2 = 0

φ3 = φ2 = π

φ2 = 0,φ3 = π

φ2 = 4π
3 ,φ3 = 5π

3 .

(5.1.62)

We shall see below that those solutions lead to configurations that fall into

two categories that we shall name “great-circle (GC) configurations" (the first

three solutions) and “tetrahedral configurations" (the last solution). In the 0+
1

state, the former corresponds to local maxima while the latter corresponds to the

absolute maxima.

i Great-circle configurations

When φ1 = φ2 = φ3 = φ4 = 0 (the first solution in (5.1.62)), the four particles

are in a plane that passes through the center, i.e. they are on a great circle. As a

result, expression (5.1.42) can be simplified to give:

f (θ1,θ2,θ3,0,0) = c
(
sin2θ1 sin2(θ2 −θ3) + sin2θ2 sin2(θ1 −θ3) + sin2θ3 sin2(θ1 −θ2)

)
.

(5.1.63)

The partial derivatives with respect to θ1, θ2 and θ3s are:

∂θ1
f = c

(
sin2θ1 sin2(θ2 −θ3) + sin2θ2 sin2(θ1 −θ3) + sin2θ3 sin2(θ1 −θ2)

)
= 0,

∂θ2
f = c

(
sin2θ1 sin2(θ2 −θ3) + sin2θ2 sin2(θ1 −θ3)− sin2θ3 sin2(θ1 −θ2)

)
= 0,

∂θ3
f = −c

(
sin2θ1 sin2(θ2 −θ3)− sin2θ2 sin2(θ1 −θ3) + sin2θ3 sin2(θ1 −θ2)

)
= 0.

Adding up ∂θ1
f and ∂θ2

f , ∂θ1
f and ∂θ3

f , and ∂θ2
f and ∂θ3

f separately, we ob-
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tain:

sin2θ1 sin2(θ2 −θ3) + sin2θ2 sin2(θ1 −θ3) + sin2θ1 sin2(θ2 −θ3) + sin2θ2 sin2(θ1 −θ3)

= 2sinθ1 sin(θ2 −θ3) (cosθ1 sin(θ2 −θ3) + sinθ1 cos(θ2 −θ3))

+ 2sinθ2 sin(θ1 −θ3) (cosθ2 sin(θ1 −θ3) + sinθ2 cos(θ1 −θ3))

= 2sinθ1 sin(θ2 −θ3)sin(θ1 +θ2 −θ3) + 2sinθ2 sin(θ1 −θ3)sin(θ1 +θ2 −θ3)

= 2(sinθ1 sin(θ2 −θ3) + sinθ2 sin(θ1 −θ3)) sin(θ1 +θ2 −θ3)

= 0,

sin2θ1 sin2(θ2 −θ3) + sin2θ3 sin2(θ1 −θ2)− sin2θ1 sin2(θ2 −θ3) + sin2θ3 sin2(θ1 −θ2)

= 2sinθ1 sin(θ2 −θ3) (cosθ1 sin(θ2 −θ3)− sinθ1 cos(θ2 −θ3))

+ 2sinθ3 sin(θ1 −θ2) (cosθ3 sin(θ1 −θ2) + sinθ3 cos(θ1 −θ2))

= 2sinθ1 sin(θ2 −θ3)sin(θ2 −θ3 −θ1) + 2sinθ3 sin(θ1 −θ2)sin(θ1 −θ2 +θ3)

= 2(sinθ1 sin(θ2 −θ3)− sinθ3 sin(θ1 −θ2)) sin(θ2 −θ3 −θ1)

= 0,

sin2θ2 sin2(θ1 −θ3)− sin2θ3 sin2(θ1 −θ2)− sin2θ2 sin2(θ1 −θ3) + sin2θ3 sin2(θ1 −θ2)

= 2sinθ2 sin(θ1 −θ3) (cosθ2 sin(θ1 −θ3)− sinθ2 cos(θ1 −θ3))

+ 2sinθ3 sin(θ1 −θ2) (cosθ3 sin(θ1 −θ2)− sinθ3 cos(θ1 −θ2))

= 2sinθ2 sin(θ1 −θ3)sin(θ1 −θ2 −θ3) + 2sinθ3 sin(θ1 −θ2)sin(θ1 −θ2 −θ3)

= 2(sinθ2 sin(θ1 −θ3) + sinθ3 sin(θ1 −θ2)) sin(θ1 −θ2 −θ3)

= 0.

Therefore, the requirement on the first partial derivatives reduces to:

(sinθ1 sin(θ2 −θ3) + sinθ2 sin(θ1 −θ3)) sin(θ1 +θ2 −θ3) = 0, (5.1.64)

(sinθ1 sin(θ2 −θ3)− sinθ3 sin(θ1 −θ2)) sin(θ2 −θ3 −θ1) = 0, (5.1.65)

(sinθ2 sin(θ1 −θ3) + sinθ3 sin(θ1 −θ2)) sin(θ1 −θ2 −θ3) = 0. (5.1.66)
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We can choose that θ1 ≥ θ2 ≥ θ3. The solutions to Eqs. (5.1.64), (5.1.65) and

(5.1.66) are:

1. θ1 = θ2 = θ3,

2. θ2 = θ3 = 0,

3. θ2 = π,θ3 = 0,

4. θ1 = π,θ3 = 0,

5. θ1 = θ2 = π,

6. θ1 = π,θ2 = θ3 = 1
2π,

7. θ1 = θ2 = 1
2π,θ3 = 0.

Except for the last two solutions (θ1 = π,θ2 = θ3 = 1
2π; θ1 = θ2 = 1

2π,θ3 = 0),

all the other solutions yield zero for the probability density (5.1.63) and can

be ruled out. Therefore, when φ1 = φ2 = φ3 = φ4 = 0, the probability density

(5.1.63) reaches its maximum value 2c at the configuration θ14 = θ24 = 1
2π,θ34 = 0

(Fig. 5.1(a)) and θ14 = π,θ24 = θ34 = 1
2π (Fig. 5.1(b)). Note that these figures, as

well as the other geometric configurations in this chapter, are shown from such

viewpoints as for them to be easy on the eye, rather than to have one particle in

the zenith direction as is assumed in the calculation for convenience.

By inspecting function (5.1.42), we can see that it is inversion-invariant with

respect to the origin. In other words, we can change the coordinates of any parti-

cle (θ,φ) to (π − θ,π +φ) without changing the value of function (5.1.42). Thus,

by inverting particle positions in configuration 5.1(a) or 5.1(b), a third configu-

ration is found to be θ1 = π,φ1 = 0;θ2 = 1
2π,φ2 = π;θ3 = 1

2π,φ3 = 0 as shown in

Fig. 5.1(c).

The configurations with the maximum probability density for the second and

the third solution in (5.1.62) (φ1 = φ2 = φ4 = 0,φ3 = π and φ1 = φ4 = 0,φ2 = φ3 =
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(a) (b)

(c)

Figure 5.1: Great-circle configurations of 8He
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π) can be obtained in the same manner and turn out to be equivalent to those

that have just been found.

However, we have gotten a bit ahead of ourselves calling them “maximum"

without verifying whether they are local maxima, local minima or saddle points.

To do so, it is necessary to evaluate the Hessian matrix:



∂2
θ2

1
f ∂2

θ1θ2
f ∂2

θ1θ3
f ∂2

θ1φ2
f ∂2

θ1φ3
f

∂2
θ2θ1

f ∂2
θ2

2
f ∂2

θ2θ3
f ∂2

θ2φ2
f ∂2

θ2φ3
f

∂2
θ3θ1

f ∂2
θ3θ2

f ∂2
θ2

3
f ∂2

θ3φ2
f ∂2

θ3φ3
f

∂2
φ2θ1

f ∂2
φ2θ2

f ∂2
φ2θ3

f ∂2
φ2

2
f ∂2

φ2φ3
f

∂2
φ3θ1

f ∂2
φ3θ2

f ∂2
φ3θ3

f ∂2
φ3φ2

f ∂2
φ2

3
f


,

that is the square matrix of second partial derivatives of function (5.1.42) for each

configuration in Fig. 5.1:

a

−4 0 2 0 0

0 −4 2 0 0

2 2 −4 0 0

0 0 0 0 0

0 0 0 0 0


,

b

−4 −2 2 0 0

−2 −4 0 0 0

2 0 −4 0 0

0 0 0 0 0

0 0 0 0 0


,

c

−4 −2 2 0 0

−2 −4 0 0 0

2 0 −4 0 0

0 0 0 0 0

0 0 0 0 0


. (5.1.67)

A sufficient but not necessary condition for a function to have a local maxi-

mum at a point where all its first partial derivatives are zero is that the Hessian

matrix is definite negative at that point. However the matrices for the great-circle

configurations are all negative semi-definite, which is inconclusive. This is due

to the fact that at those configurations the probability density has an improper

maximum that will be explained below [46].

Definition. A multivariate function f (x1,x2, · · · ,xn) is said to have at a definite po-

sition (a1, a2, · · · , an) a proper maximum (or a proper minimum) if n arbitrarily small
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positive quantities δλ(λ = 1,2, · · · ,n) can be found such that for all the points situated

in the neighborhood

|xλ − aλ| < δλ (λ = 1,2, · · · ,n)

it is always true that

f (x1,x2, · · · ,xn)− f (a1, a2, · · · , an) < 0 (or > 0)

The maximum or minimum is improper if the equality sign appears with the inequality

sign, i.e

f (x1,x2, · · · ,xn)− f (a1, a2, · · · , an) ≤ 0 (or ≥ 0)

takes the place of

f (x1,x2, · · · ,xn)− f (a1, a2, · · · , an) < 0 (or > 0).

Indeed, if one of the θ, say, θ1 equals 0 or π, function (5.1.42) reduces to

2c(1 − cos2θ2)(1 − cos2θ3) and is independent of φ2 and φ3. As a consequence,

if the polar angles θ are chosen as they are in the three GC configurations found

above, the probability density is independent of azimuthal angles, that is, the

four particles can rotate around the z axis and retain the same probability den-

sity value 2c. As an illustration of this particularity, two configurations having

the same polar angles as GC configurations but randomly chosen φ2 and φ3 are

shown in Fig. 5.2.

The second-derivative test (Hessian matrix) for local extremes and all types of

saddle points is based on the quadratic approximation or the second-order Taylor

expansion, because at stationary points we have, provided that the second-order
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(a) (b)

Figure 5.2: Configurations with θ1 = 0 (a) or π (b) but random φ2,φ3

derivatives of the function f (x1,x2, · · · ,xn) do not all vanish:

f (x1 + h1,x2 + h2, · · · ,xn + hn)− f (a1, a2, · · · , an)

=
1
2

∑
λ,µ

{(
∂2f (x1,x2, · · · ,xn)

∂xλ∂xµ

)
a1,··· ,an

hλhµ

}
. (5.1.68)

If for arbitrarily small values h1,h2, · · · ,hn, the homogeneous quadratic form

in expression (5.1.68) is always negative (or positive) at a stationary point

(a1, a2, · · · , an), then f (x1,x2, · · · ,xn) has a maximum (or minimum) on that posi-

tion.

As is stated above, the quadratic form in (5.1.68) is only negative semi-definite

for the three configurations in Fig. 5.1, which requires further investigation be-

fore a conclusion can be drawn on their nature.

Note that in matrices (5.1.67) the sub-matrices comprised only of second

derivatives with respect to θ1,θ2 and θ3 are on the other hand negative definite.

If we reformulate the quadratic form (5.1.68) by separating the second deriva-

tives containing φ and those not, we have:

f (θ1 + hθ1
,θ2 + hθ2

,θ3 + hθ3
,φ2 + hφ2

,φ3 + hφ3
)− f (θ1,θ2,θ3,φ2,φ3)
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=
1
2

∑
θλ,θµ

{(
∂2f (θ1,θ2,θ3,φ2,φ3)

∂θλ∂θµ

)
θ1,θ2,θ3,φ2,φ3

hθλhθµ

}

+
1
2

∑
φλ

∑
αµ

{(
∂2f (θ1,θ2,θ3,φ2,φ3)

∂φλ∂αµ

)
θ1,θ2,θ3,φ2,φ3

hφλhαµ

}
with α ∈ {θ1,θ2,θ3,φ2,φ3}. (5.1.69)

The only uncertain situation arises when hθ1
,hθ2

and hθ3
are all zero, in which

case (5.1.69) vanishes. Nevertheless we have shown that when θ are chosen as

they are in Fig. 5.1, f (θ1,θ2,θ3,φ2,φ3) is a constant so that for those configura-

tions we find that:

f (θ1 + hθ1
,θ2 + hθ2

,θ3 + hθ3
,φ2 + hφ2

,φ3 + hφ3
)− f (θ1,θ2,θ3,φ2,φ3){

< 0 δhθ1 ,0
δhθ2 ,0

δhθ3 ,0
= 0

= 0 δhθ1 ,0
δhθ2 ,0

δhθ3 ,0
= 1

,

and no higher-order (higher than 2) Taylor expansion is needed to be sure of that.

Therefore, the great-circle configurations in Fig. 5.1 are local maxima (improper)

of expression (5.1.42). Such cannot be said of the configurations in Fig. 5.2 with

randomly chosen angles φ because the submatrix of second partial derivatives

with respect to θs may not be negative definite.

ii Tetrahedral configurations

When φ2 = 4π
3 and φ3 = 5π

3 (the fourth solution in (5.1.62)), according to Eqs.

(5.1.52) ∼ (5.1.54), A = B = −C, so we have:

A−B

= sinθ1 cosθ2 cosθ3 − sinθ2 cosθ1 cosθ3

= cosθ3 sin(θ1 −θ2)

= 0
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that has the solutions

1. θ2 = 0,θ1 = π

2. θ3 = π
2

3. θ1 = θ2

The first possibility that θ2 = 0,θ1 = π can be eliminated because it makes the

probability density (5.1.42) vanish.

The second possibility θ3 = π
2 leads to B +C = 0 = cosθ1 cosθ2, and function

(5.1.42) reduces to

9
4
c − c

4
(cos2θ1 + cos2θ2)

that has the maximum 9
4c when θ1 = θ2 = θ3 = π

2 where the Hessian matrix is

indefinite. Therefore, we are left with the last possibility: θ1 = θ2.

When θ1 = θ2, we have

B+C

= 0

= sinθ2 cosθ1 cosθ3 + sinθ3 cosθ1 cosθ2

= cosθ1 sin(θ2 +θ3),

whose solutions are:

1. θ1 = θ2 = π
2

2. θ1 = θ2 = π −θ3 .

Again each solution will be checked. When θ1 = θ2 = π
2 , we find again the

solution θ1 = θ2 = θ3 = π
2 that has just been eliminated.
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If θ1 = θ2 = π −θ3, the expression of B (5.1.59) and Eq. (5.1.49) become:

B = sinθ1(
3
2

sin2θ1 − 1)

3B2 + 2sinθ1B− sin2θ1 = 0 (5.1.70)

Equation set (5.1.70) can be easily solved

3sin2θ1(
3
2

sin2θ1 − 1)2 + 2sin2θ1(
3
2

sin2θ1 − 1)− sin2θ1

= sin2θ1

[
3(

3
2

sin2θ1 − 1)2 + 2(
3
2

sin2θ1 − 1))− 1
]

=
9
2

sin4θ1(
3
2

sin2θ1 −
4
3

)

= 0 (0 < θ < π)

to give the solutions

1. sinθ1 = 0

2. sinθ1 = 2
√

2
3

of which the first solution gives a probability density of 0 and so can be ruled out.

The second solution sinθ1 = 2
√

2
3 yields two configurations:

θ1 = θ2 = 70.53◦(0.39π),θ3 = 109.47◦(0.61π),φ1 = 0,φ2 = 240◦(
4π
3

),φ3 = 300◦(
5π
3

),

θ1 = θ2 = 109.47◦(0.61π),θ3 = 70.53◦(0.39π),φ1 = 0,φ2 = 240◦(
4π
3

),φ3 = 300◦(
5π
3

)

that correspond to Fig. 5.3(a) and 5.3(b). Applying inversion to particle positions

in configuration 5.3(a) or 5.3(b), we obtain yet another one shown in Fig. 5.3(c)

with θ1 = θ2 = θ3 = 109.5◦,φ1 = π,φ2 = π
3 ,φ3 = 5π

3 . Their Hessian matrices are

negative definite, which confirms that they are indeed maxima.

We note that in all three configurations, the relative angles θij are either

109.47◦, which is the tetrahedral angle in a regular tetrahedron, or 70.53◦, the

supplementary angle of the tetrahedral angle. As a matter of fact, as can be
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(a) (b)

(c)

Figure 5.3: Tetrahedral configurations of 8He
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clearly seen in Fig. 5.3(c), the four neutrons are at the vertices of a regular tetrahe-

dron centered at the α core, and the other two configurations are its derivatives;

hence the name “tetrahedral configurations". Also in all three configurations,

sinθ12 = sinθ34 = sinθ13 = sinθ24 = sinθ14 = sinθ23 = 2
√

2
3 and the probabil-

ity density (5.1.42) equals c(sin2θ12 sin2θ34 +sin2θ13 sin2θ24 +sin2θ14 sin2θ23) =

64
27c = 2.37c, which is the absolute maximum. At the same time, we prove that

the GC configurations (probability value 2c) are local maxima as opposed to the

absolute maxima represented by the tetrahedral configurations.

In parallel with the analytic work discussed above, a Monte-Carlo simulation

aimed to look for the maximum probability density of 0+
1 has also been done.

Basically, a random input is generated for each of the five variables of function

(5.1.42) on the basis of a uniform distribution. The probability density is

evaluated for this set of random inputs. This procedure is repeated 105 times

and only the set of inputs that yields the maximum value for function (5.1.42)

is retained. Running this simulation as many times as required, one always

finds one of the three tetrahedral configurations in Fig. 5.3, which corroborates

the conclusion that the tetrahedral configurations are the absolute probability

density maxima of the 0+
1 state.

In this section, we obtained the function of the angular probability density of

0+
1 and found the configurations for which the function has a maximum. We ob-

tained two families of configurations with distinctive features: great-circle con-

figurations and tetrahedral configurations. The GC configurations proved to be

local maxima instead of absolute maxima represented by the tetrahedral config-

urations.
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5.2 Configuration |(0p3
2
)2;0〉|(0p1

2
)2;0〉

We just studied the 0+
1 state of 8He. When the four neutrons are in the 0p

shell, there exists another 0+ state: |(0p 3
2
)2;0〉|(0p 1

2
)2;0〉 in which he neutrons are

paired up two by two. This section will be organized in the same way as Sec. 5.1

is: first we will discuss the function of the angular probability density of 0+
2 and

then the maximum probability configurations.

5.2.1 Angular probability density of 0+
2

The non-antisymmetric wavefunction of 0+
2 is

ψ
(
j1 =

3
2
j2 =

3
2

;0,0
)
ψ
(
j3 =

1
2
j4 =

1
2

;0,0
)

=
(1
2
ψ 3

2
3
2
(1)ψ 3

2
−3
2

(2)− 1
2
ψ 3

2
1
2
(1)ψ 3

2
−1
2

(2) +
1
2
ψ 3

2
−1
2

(1)ψ 3
2

1
2
(2)− 1

2
ψ 3

2
−3
2

(1)ψ 3
2

3
2
(2)

)
×
(

1
√

2
ψ 1

2
1
2
(3)ψ 1

2
−1
2

(4)− 1
√

2
ψ 1

2
−1
2

(3)ψ 1
2

1
2
(4)

)

=
1

2
√

2


∣∣∣∣∣∣∣∣∣
ψ 3

2
3
2
(1) ψ 3

2
−3
2

(1)

ψ 3
2

3
2
(2) ψ 3

2
−3
2

(2)

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
ψ 3

2
1
2
(1) ψ 3

2
−1
2

(1)

ψ 3
2

1
2
(2) ψ 3

2
−1
2

(2)

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣
ψ 1

2
1
2
(3) ψ 1

2
−1
2

(3)

ψ 1
2

1
2
(4) ψ 1

2
−1
2

(4)

∣∣∣∣∣∣∣∣∣ . (5.2.1)

In wavefunction (5.2.1), ψ
(
j1 = 3

2j2 = 3
2 ;0,0

)
and ψ

(
j3 = 1

2j4 = 1
2 ;0,0

)
are al-

ready antisymmetrized separately. Therefore, the antisymmetrization of wave-

function (5.2.1) yields:

1
√

4!
√

2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ 3
2

3
2
(1) ψ 3

2
−3
2

(1) ψ 1
2

1
2
(1) ψ 1

2
−1
2

(1)

ψ 3
2

3
2
(2) ψ 3

2
−3
2

(2) ψ 1
2

1
2
(2) ψ 1

2
−1
2

(2)

ψ 3
2

3
2
(3) ψ 3

2
−3
2

(3) ψ 1
2

1
2
(3) ψ 1

2
−1
2

(3)

ψ 3
2

3
2
(4) ψ 3

2
−3
2

(4) ψ 1
2

1
2
(4) ψ 1

2
−1
2

(4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ 3
2

1
2
(1) ψ 3

2
−1
2

(1) ψ 1
2

1
2
(1) ψ 1

2
−1
2

(1)

ψ 3
2

1
2
(2) ψ 3

2
−1
2

(2) ψ 1
2

1
2
(2) ψ 1

2
−1
2

(2)

ψ 3
2

1
2
(3) ψ 3

2
−1
2

(3) ψ 1
2

1
2
(3) ψ 1

2
−1
2

(3)

ψ 3
2

1
2
(4) ψ 3

2
−1
2

(4) ψ 1
2

1
2
(4) ψ 1

2
−1
2

(4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


=

1
√

4!
√

2

(
1− P̂13 − P̂14 − P̂23 − P̂24 + P̂13P̂24

)
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
∣∣∣∣∣∣∣∣∣
ψ 3

2
3
2
(1) ψ 3

2
−3
2

(1)

ψ 3
2

3
2
(2) ψ 3

2
−3
2

(2)

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
ψ 3

2
1
2
(1) ψ 3

2
−1
2

(1)

ψ 3
2

1
2
(2) ψ 3

2
−1
2

(2)

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣
ψ 1

2
1
2
(3) ψ 1

2
−1
2

(3)

ψ 1
2

1
2
(4) ψ 1

2
−1
2

(4)

∣∣∣∣∣∣∣∣∣
 . (5.2.2)

As before, we leave out the radial wave function. In addition to the single-

particle wave functions in the 0p 3
2

shell that have been given in section 5.1, those

in the 0p 1
2

shell are also needed:

ψ 1
2

1
2

=

√
2
3
Y1,1(θ,φ) ·χ−1

2
−
√

1
3
Y1,0(θ,φ) ·χ 1

2
,

ψ 1
2
−1
2

=

√
1
3
Y1,0(θ,φ) ·χ−1

2
−
√

2
3
Y1,−1(θ,φ) ·χ 1

2
. (5.2.3)

In what follows, we will proceed to obtain the 0+
2 wavefunction and prob-

ability density in a rather similar fashion as in section 5.1 with 0+
1 . To avoid

repetition, only the differences will be addressed.

The wave function is formulated similarly to (5.1.4):

Ψ0+
2

(~r1,~r2,~r3,~r4,χ1,χ2,χ3,χ4)

=

1
2

√
3

2π

4
1

r1r2r3r4

1
√

4!
√

2

4
3

∑
m1,m2
m3,m4

Φ0+
2m1m2m3m4

(~r1,~r2,~r3,~r4) ·χm1
(1)χm2

(2)χm3
(3)χm4

(4).

(5.2.4)

The expressions of Φ0+
2m1m2m3m4

(~r1,~r2,~r3,~r4) · χm1
(1)χm2

(2)χm3
(3)χm4

(4) are

similar to those of Φ0+
1m1m2m3m4

(~r1,~r2,~r3,~r4) · χm1
(1)χm2

(2)χm3
(3)χm4

(4); some are

even identical:

Φ0+
2−−++(~r1,~r2,~r3,~r4) = −2~r12 ·~r34 + i z12,34,

Φ0+
2 ++−−(~r1,~r2,~r3,~r4) = −2~r12 ·~r34 − i z12,34,

Φ0+
2−+−+(~r1,~r2,~r3,~r4) = 2~r13 ·~r24 − i z13,24,

Φ0+
2 +−+−(~r1,~r2,~r3,~r4) = 2~r13 ·~r24 + i z13,24,

Φ0+
2−++−(~r1,~r2,~r3,~r4) = −2~r14 ·~r23 + i z14,23,
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Φ0+
2 +−−+(~r1,~r2,~r3,~r4) = −2~r14 ·~r23 − i z14,23,

Φ0+
2−−−+(~r1,~r2,~r3,~r4) = (y4 − i x4)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Φ0+
2 +++−(~r1,~r2,~r3,~r4) = −(y4 + i x4)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Φ0+
2−−+−(~r1,~r2,~r3,~r4) = (−y3 + i x3)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Φ0+
2 ++−+(~r1,~r2,~r3,~r4) = (y3 + i x3)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Φ0+
2−+−−(~r1,~r2,~r3,~r4) = (y2 − i x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Φ0+
2 +−++(~r1,~r2,~r3,~r4) = −(y2 + i x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Φ0+
2 +−−−(~r1,~r2,~r3,~r4) = (−y1 + i x1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Φ0+
2−+++(~r1,~r2,~r3,~r4) = (y1 + i x1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Φ0+
2−+−−(~r1,~r2,~r3,~r4) = (y2 − i x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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Φ0+
2 +−++(~r1,~r2,~r3,~r4) = −(y2 + i x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Φ0+
2 +−−−(~r1,~r2,~r3,~r4) = (−y1 + i x1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Φ0+
2−+++(~r1,~r2,~r3,~r4) = (y1 + i x1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The probability density of wave function (5.2.4), Ψ ∗0+
2
Ψ0+

2
, is equal to


1

2

√
3

2π

4
1

r1r2r3r4

1
√

4!
√

2

4
3


2 ∑
m1,m2
m3,m4

Φ∗0+
2m1m2m3m4

(~r1,~r2,~r3,~r4)Φ0+
2m1m2m3m4

(~r1,~r2,~r3,~r4)

=
3

212π4

1

r2
1 r

2
2 r

2
3 r

2
4

2
∥∥∥−2~r12 ·~r34 + i z12,34

∥∥∥2
+ 2

∥∥∥2~r13 ·~r24 − i z13,24

∥∥∥2
+ 2

∥∥∥−2~r14 ·~r23 + i z14,23

∥∥∥2

+ 2‖(y4 − i x4)‖2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ 2‖(−y3 + i x3)‖2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ 2‖(y2 − i x2)‖2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ 2‖(−y1 + i x1)‖2

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 
=

3
212π4

1

r2
1 r

2
2 r

2
3 r

2
4

8(~r13 ·~r24)2 + 8(~r14 ·~r23)2 + 8(~r12 ·~r34)2 + 2z2
12,34 + 2z2

13,24 + 2z2
14,23

+ 2(x2
1 + y2

1 )

∣∣∣∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ 2(x2
2 + y2

2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4

z1 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ 2(x2
3 + y2

3 )

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

z1 z2 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣

2
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+ 2(x2
4 + y2

4 )

∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 
=

3
211π4

1

r2
1 r

2
2 r

2
3 r

2
4

(
4(~r13 ·~r24)2 + 4(~r14 ·~r23)2 + 4(~r12 ·~r34)2 + z2

12,34 + z2
13,24 + z2

14,23

+ x2
12,34 + x2

13,24 + x2
14,23 + y2

12,34 + y2
13,24 + y2

14,23

)
=

3
211π4

1

r2
1 r

2
2 r

2
3 r

2
4

(
4(~r13 ·~r24)2 + 4(~r14 ·~r23)2 + 4(~r12 ·~r34)2 + ‖~r12 ×~r34‖2 + ‖~r13 ×~r24‖2

+ ‖~r14 ×~r23‖2
)

=
3

211π4

(
4sin2θ13 sin2θ24 cos2θ13,24 + 4sin2θ14 sin2θ23 cos2θ14,23

+ 4sin2θ12 sin2θ34 cos2θ12,34 + sin2θ13 sin2θ24 sin2θ13,24 + sin2θ14 sin2θ23 sin2θ14,23

+ sin2θ12 sin2θ34 sin2θ12,34

)
=

3
211π4

(
sin2θ13 sin2θ24(1 + 3cos2θ13,24) + sin2θ14 sin2θ23(1 + 3cos2θ14,23)

+ sin2θ12 sin2θ34(1 + 3cos2θ12,34)
)

Thus we obtain the probability density of 0+
2 :

c
2

[
sin2θ13 sin2θ24(1 + 3cos2θ13,24) + sin2θ14 sin2θ23(1 + 3cos2θ14,23)

+ sin2θ12 sin2θ34(1 + 3cos2θ12,34)
]

(5.2.5)

5.2.2 Geometry of 0+
2 with the maximum probability density

Looking for the maximum of function (5.2.5) in the same way as we did for

function (5.1.41) in Sec. 5.1, we find again the two categories of configurations

discussed in Sec. 5.1, the only difference being that it is the great-circle configu-

rations that becomes favored as the absolute maxima with the value 4c, while the
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tetrahedral configurations are local maxima with the value 32
27c.

5.3 Two-State Mixing

Interactions in the 0p shell as well as spin-orbit interactions mix the two 0+

states of 8He. In such a case the ground state is their linear combination:

α | 0+
1〉+ β | 0

+
2〉 = α|(0p 3

2
)4;0〉+ β|(0p 3

2
)2;0〉|(0p 1

2
)2;0〉, (5.3.1)

with α2 +β2 = 1. In this section, we will see how the probability density function

as well as its maximum evolve with the mixing of the two states.

With functions (5.2.5) and (5.1.41) derived earlier, it is a simple matter to find

that the probability density for an ad-mixed state fmix is

(
αΨ ∗0+

1
+ βΨ ∗0+

2

)(
αΨ0+

1
+ βΨ0+

2

)
≡ fmix(θ1,θ2,θ3,φ2,φ3)

= α2‖Ψ0+‖2 + β2‖Ψ0+
2
‖2 + 2Re(αβΨ ∗0+Ψ0+

2
)

= α2c
(
sin2θ12 sin2θ34 + sin2θ13 sin2θ24 + sin2θ14 sin2θ23

)
+ β2 c

2

[
sin2θ13 sin2θ24(1 + 3cos2θ13,24) + sin2θ14 sin2θ23(1 + 3cos2θ14,23)

+ sin2θ12 sin2θ34(1 + 3cos2θ12,34)
]

+ 2αβ
c
√

2

[
sin2θ13 sin2θ24(1− 3cos2θ13,24) + sin2θ14 sin2θ23(1− 3cos2θ14,23)

+ sin2θ12 sin2θ34(1− 3cos2θ12,34)
]

= sin2θ13 sin2θ24(λ+µcos2θ13,24) + sin2θ14 sin2θ23(λ+µcos2θ14,23)

+ sin2θ12 sin2θ34(λ+µcos2θ12,34) (5.3.2)

with λ =
(
α2 + 1

2β
2 +
√

2αβ
)
c, µ =

(
3
2β

2 − 3
√

2αβ
)
c.
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In function (5.3.2), “Re" stands for the real part. The properties of fmix depend

on the ratio of λ to µ, which represents the competition between

sin2θ12 sin2θ34 + sin2θ13 sin2θ24 + sin2θ14 sin2θ23

that favors the tetrahedral configuration and

sin2θ13 sin2θ24 cos2θ13,24 + sin2θ14 sin2θ23 cos2θ14,23 + sin2θ12 sin2θ34 cos2θ12,34

that favors the great-circle configurations. Therefore it is convenient to write

function (5.3.2) in terms of µ
λ :

λ
[
sin2θ13 sin2θ24(1 +

µ

λ
cos2θ13,24) + sin2θ14 sin2θ23(1 +

µ

λ
cos2θ14,23)

+ sin2θ12 sin2θ34(1 +
µ

λ
cos2θ12,34)

]
(5.3.3)

when λ does not vanish; λ = 0 will be discussed at the end of this section.

The ratio µ
λ ranges from −1 to +∞, which can be easily seen as follows. We

make the substitution u = β
α ,

µ

λ
=

(
3
2β

2 − 3
√

2αβ
)
b(

α2 + 1
2β

2 +
√

2αβ
)
b

=
3
2u

2 − 3
√

2u

1 + 1
2u

2 +
√

2u

= 3− 12
√

2(u +
√

2)

(u +
√

2)2
+

18

(u +
√

2)2

=
18

(u +
√

2)2
− 12

√
2

u +
√

2
+ 3

= 18
(

1

u +
√

2
−
√

2
3

)2

− 1 (5.3.4)

Since 1
u+
√

2
can take all non-zero real numbers, µλ goes from −1 to +∞. When µ

λ

equals 0 or 3, we have the pure 0+
1 or 0+

2 state.
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For admixtures of the two states, those critical points where the probability

density peaks (locally or globally) that have been discussed for the pure 0+
1 and

0+
2 states in the last two sections also have vanishing first partial derivatives and

thus are good candidates for maxima. Thus, it is tempting to examine the nature

of the GC configurations and the tetrahedral configurations for admixtures of

the two states.

5.3.1 Great-circle configurations

For great-circle configurations, fmix equals 2(λ+ µ), or 2λ(1 + µ
λ ), linearly de-

pendent on µ
λ . Take the configuration θ1 = π, θ2 = θ3 = π

2 , φ1 = φ2 = φ3 = 0 [Fig.

5.1(b)] as an example. The Hessian matrix at this point takes the form of a block

matrix:

λ

A 0

0 B

 = λ



−4− 4µλ 2 + 2µλ 2 + 2µλ 0 0

2 + 2µλ −4− 4µλ 0 0 0

2 + 2µλ 0 −4− 4µλ 0 0

0 0 0 −4µλ 4µλ

0 0 0 4µλ −4µλ


Matrix A has eigenvalues −4(1+ µ

λ ), (2
√

2−4)(1+ µ
λ ), (−2

√
2−4)(1+ µ

λ ) and is always

negative-definite as µ
λ goes from −1 to infinity. Matrix B has eigenvalues 0, −8µλ .

The five eigenvalues are plotted in Fig. 5.4. For clarity, the factor λ is left out.

We have seen in section 5.1 that at µ
λ = 0, i.e. for the pure 0+

1 state, the great-

circle configurations are local maxima. To the left of the origin, the Hessian is

indefinite; to the right of the origin, the Hessian is always negative semi-definite

with one vanishing eigenvalue. However, the matrix A is negative-definite. Fol-



124

-1 1 2 3

Μ

Λ

-25

-20

-15

-10

-5

5

Figure 5.4: Eigenvalues of great-circle configurations

lowing the reasoning in Sec. 5.1, we have

fmix(π+ hθ1
,
π
2

+ hθ2
,
π
2

+ hθ3
,hφ2

,hφ3
)− fmix(π,

π
2
,
π
2
,0,0)

=
1
2

∑
θλ,θµ

{(
∂2f (θ1,θ2,θ3,φ2,φ3)

∂θλ∂θµ

)
π,π2 ,

π
2 ,0,0

hθλhθµ

}

+
1
2

∑
φλ

∑
αµ

{(
∂2f (θ1,θ2,θ3,φ2,φ3)

∂φλ∂αµ

)
π,π2 ,

π
2 ,0,0

hφλhαµ

}
α ∈ {θ1,θ2,θ3,φ2,φ3}

(5.3.5)

Matrix A being negative-definite, the first term

1
2
∑
θλ,θµ

{(
∂2f (θ1,θ2,θ3,φ2,φ3)

∂θλ∂θµ

)
π,π2 ,

π
2 ,0,0

hθλhθµ

}
is always negative provided that

hθ1
, hθ2

and hθ3
do not all vanish. As for B =

−4µλ 4µλ

4µλ −4µλ

, the second term:

1
2

∑
φλ

∑
αµ

{(
∂2f (θ1,θ2,θ3,φ2,φ3)

∂φλ∂αµ

)
π,π2 ,

π
2 ,0,0

hφλhαµ

}
= −2

µ

λ
(hφ2
− hφ3

)2 (5.3.6)

is negative unless hφ2
= hφ3

, in which case it is equal to zero. As a result, unless

hθ1
, hθ2

and hθ3
all vanish and hφ2

= hφ3
, expression (5.3.5) is always negative. If

hθ1
, hθ2

and hθ3
do all vanish and hφ2

= hφ3
, expression (5.3.3) reduces to λ(2+2µλ ),
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which is equal to fmix(π,
π
2 ,
π
2 ,0,0). This is obvious considering that configurations

are rotation-invariant. If φ2 and φ3 in a great-circle configuration turn around

axis z by the same amount, the configuration does not change. In conclusion,

fmix(π+ hθ1
,
π
2

+ hθ2
,
π
2

+ hθ3
,hφ2

,hφ3
)− fmix(π,

π
2
,
π
2
,0,0){

< 0 δhθ1 ,0
δhθ2 ,0

δhθ3 ,0
δhφ2 ,hφ3

= 0

= 0 δhθ1 ,0
δhθ2 ,0

δhθ3 ,0
δhφ2 ,hφ3

= 1
(5.3.7)

which proves that when µ
λ ≥ 0, θ1 = π, θ2 = θ3 = π

2 , φ1 = φ2 = φ3 = 0 in Fig.

5.1(b) is a (local or absolute) improper maximum.

5.3.2 Tetrahedral configurations

For tetrahedral configurations, fmix = 64
27λ and is independent of µ

λ since all

the inter-cross-product angles (θ12,34, θ13,24, θ14,23) are either π
2 or 3π

2 .

As an example, let’s take the configuration θ1 = θ2 = θ3 = 70.5◦, φ1 = 0, φ2 =

120◦, φ3 = 240◦ [Fig. 5.3(b)]. It has the Hessian matrix



8
9(µλ − 2) −4

9(µλ + 2
3 ) −4

9(µλ + 2
3 ) 8

9

√
2
3(µλ −

2
3 ) −8

9

√
2
3(µλ −

2
3 )

−4
9(µλ + 2

3 ) 8
9(µλ − 2) −4

9(µλ + 2
3 ) 0 8

9

√
2
3(µλ −

2
3 )

−4
9(µλ + 2

3 ) −4
9(µλ + 2

3 ) 8
9(µλ − 2) −8

9

√
2
3(µλ −

2
3 ) 0

8
9

√
2
3(µλ −

2
3 ) 0 −8

9

√
2
3(µλ −

2
3 ) 64

81(µλ − 2) −32
81(µλ − 2)

−8
9

√
2
3(µλ −

2
3 ) 8

9

√
2
3(µλ −

2
3 ) 0 −32

81(µλ − 2) 64
81(µλ − 2)


The evolution of the five eigenvalues

− 64
27

2
27

−26 + 17
µ

λ
−
√

164− 372
µ

λ
+ 289

µ

λ

2

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2
27

−26 + 17
µ

λ
+

√
164− 372

µ

λ
+ 289

µ

λ

2


2
81

−46 + 35
µ

λ
−
√

580− 1684
µ

λ
+ 1225

µ

λ

2


2
81

−46 + 35
µ

λ
+

√
580− 1684

µ

λ
+ 1225

µ

λ

2


as a function of µ
λ is plotted in Fig. 5.5.
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-1 1 2 3
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Figure 5.5: Eigenvalues of tetrahedral configurations

Two eigenvalues cross the x axis at x0 = 1. To the left of x0 all the eigenvalues

are negative, i.e. the Hessian matrix is negative-definite and the tetrahedral con-

figurations are maxima; to the right of x0, some of the eigenvalues are positive

and some are negative, i.e. the matrix is indefinite and the tetrahedral configura-

tions are saddle points. Left unsolved is the tricky point x0 itself.

At x0 = 1, the Hessian matrix is negative semi-definite. The splitting lemma

[47] provides a way of transforming a function in a neighborhood of a degenerate

critical point to a canonical form through a series of changes of variables. The

local properties at a degenerate critical point (or non-Morse critical point) then

can be studied via the catastrophe germ that is left of the Taylor series expansion

of the function at that point after the transformations.
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First of all, we rewrite fmix in terms of coordinates of particle 1, 2, 3 as we did

previously

fmix(θ1,θ2,θ3,φ2,φ3)

= λ
[
(sin2θ12 sin2θ34(1 +

µ

λ
cos2θ12,34) + sin2θ13 sin2θ24(1 +

µ

λ
cos2θ12,34)

+ sin2θ14 sin2θ23(1 +
µ

λ
cos2θ14,23)

]
= λ

{
sin2θ3

[
1− (cosθ1 cosθ2 + cos(φ1 −φ2)sinθ1 sinθ2)2

]
+
µ

λ
(cos(φ1 −φ3)sinθ1 sinθ3 cosθ2 − cos(φ2 −φ3)sinθ2 sinθ3 cosθ1)2

+ sin2θ2

[
1− (cosθ1 cosθ3 + cos(φ1 −φ3)sinθ1 sinθ3)2

]
+
µ

λ
(cos(φ1 −φ2)sinθ1 sinθ2 cosθ3 − cos(φ2 −φ3)sinθ2 sinθ3 cosθ1)2

+ sin2θ1

[
1− (cosθ2 cosθ3 + cos(φ2 −φ3)sinθ2 sinθ3)2

]
+
µ

λ
(cos(φ1 −φ3)sinθ1 sinθ3 cosθ2 − cos(φ1 −φ2)sinθ1 sinθ3 cosθ2)2

}
. (5.3.8)

It is convenient to take the point of interest to the origin of the coordinate system

and rewrite fmix as a function of θ′1, θ′2, θ′3, φ′2, φ′3 by replacing θ1, θ2, θ3, φ2,

φ3 with θ′1 + 70.5◦, θ′2 + 70.5◦, θ′3 + 70.5◦, φ′2 + 120◦, φ′3 + 240◦. The fact that the

Hessian matrix has a degenerate critical point means that one has to consider

higher-degree terms in the Taylor expansion. In the first stage, we expand the

function to the third degree and obtain

2.37037− 0.395062φ′22 + 0.395062φ′2φ
′
3 − 0.395062φ′23 + 0.241925φ′2θ

′
1 − 0.241925φ′3θ

′
1

− 0.444444θ′21 + 0.241925φ′3θ
′
2 − 0.740741θ′1θ

′
2 − 0.444444θ′22 − 0.241925φ′2θ

′
3

− 0.740741θ′1θ
′
3 − 0.740741θ′2θ

′
3 − 0.444444θ′23 − 0.798311φ′22 φ

′
3 − 0.798311φ′2φ

′2
3

− 1.32692φ′22 θ
′
1 + 2.51416φ′2φ

′
3θ
′
1 − 1.32692φ′23 θ

′
1 − 1.45407φ′2θ

′2
1 + 1.45407φ′3θ

′2
1

− 0.139675φ′22 θ
′
2 + 0.139675φ′2φ

′
3θ
′
2 − 1.32692φ′23 θ

′
2 + 2.48047φ′2θ

′
1θ
′
2 + 1.30946θ′21 θ

′
2

− 1.45407φ′3θ
′2
2 + 1.30946θ′1θ

′2
2 − 1.32692φ′22 θ

′
3 + 0.139675φ′2φ

′
3θ
′
3 − 0.139675φ′23 θ

′
3

− 2.48047φ′3θ
′
1θ
′
3 + 1.30946θ′21 θ

′
3 − 2.48047φ′2θ

′
2θ
′
3 + 2.48047φ′3θ

′
2θ
′
3 − 0.733296θ′1θ

′
2θ
′
3
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+ 1.30946θ′22 θ
′
3 + 1.45407φ′2θ

′2
3 + 1.30946θ′1θ

′2
3 + 1.30946θ′2θ

′2
3 +O(4), (5.3.9)

where O(4) stands for terms of degrees higher than 3. Again, the factor λ is left

out.

The next step is to find five independent linear combinations of the five vari-

ables and transform away all the second-degree cross terms. By using the five

linearly independent eigenvectors, the Hessian matrix can be put in the form of:

H = P −1ΛP , (5.3.10)

where Λ is the diagonal matrix whose diagonal elements are the eigenvalues ofH

and P is the invertible orthogonal matrix whose rows are normalized eigenvectors

corresponding to the eigenvalues in Λ. For our critical point in question,

H =



−8
9 −20

27 −20
27

8
27

√
2
3 − 8

27

√
2
3

−20
27 −8

9 −20
27 0 8

27

√
2
3

−20
27 −20

27 −8
9 − 8

27

√
2
3 0

8
27

√
2
3 0 − 8

27

√
2
3 −64

81
32
81

− 8
27

√
2
3

8
27

√
2
3 0 32

81 −64
81


,

Λ =



−64
27 0 0 0 0

0 −4
3 0 0 0

0 0 −44
81 0 0

0 0 0 0 0

0 0 0 0 0


,
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P =



0.57735 0.57735 0.57735 0 0

0.272166 −0.136083 −0.136083 −0.666667 0.666667

0 0.369274 −0.369274 −0.603023 −0.603023

0.648886 0 −0.648886 0.39736 0.

0.414174 −0.715391 0.301217 −0.184457 −0.438086


.

Through the linear transformation



x1

x2

x3

x4

x5


= P ·



θ′1

θ′2

θ′3

φ′2

φ′3


, (5.3.11)

the second-order terms in expansion (5.3.9) can be transformed to a diagonal

form:

− 32
27
x2

1 −
2
3
x2

2 −
22
81
x2

3. (5.3.12)

where the factor for each term is one-half of the corresponding eigenvalue. As a

result of the transformation, the sum in (5.3.9) becomes (after the constant term

is dropped):

− 1.18519x2
1 − 0.666667x2

2 − 0.271605x2
3 − 1.37091x3

1 + 1.99252x1x
2
2 + 0.31019x3

2

+ 0.418787x1x
2
3 − 0.58383x2x

2
3 − 1.67429x1x2x4 − 0.0585341x2

2x4 − 0.548293x1x3x4

− 0.650155x2x3x4 − 0.325971x2
3x4 + 0.203726x1x

2
4 + 1.0279x2x

2
4 + 0.0990851x3x

2
4

− 1.06867x1x2x5 − 0.0373614x2
2x5 + 0.85901x1x3x5 + 1.0186x2x3x5 − 0.208062x2

3x5

+ 0.0354642x1x4x5 + 3.57869x2x4x5 − 0.091992x3x4x5 − 4.03897x2
4x5 + 0.187264x1x

2
5

− 0.633353x2x
2
5 − 0.0990851x3x

2
5 − 0.703095x4x

2
5 + 1.19673x3

5 +O(4). (5.3.13)
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Bear in mind that the ultimate goal is to put sum (5.3.9) in Morse canonical

form [47]:

V = CG(l) +
n∑

j=l+1

λjy
2
j , (5.3.14)

where n is the number of variables, l is the number of degenerate eigenvalues and

the function CG(l) is called catastrophe germ; therefore we have to get rid of all

the third-degree terms that contain the “good" variables: x1, x2, x3. To that end,

we define an axis-preserving transformation:

x′r = xr +∆r = xr +
5∑

i≥j=1

α
ij
r xixj +O(3) r = 1,2,3 (5.3.15)

and then look for αijr that transform away all the third-degree terms containing

any good variable in Eq. (5.3.13). The coefficients αijr are not uniquely deter-

mined. One particular choice can be made to yield the transformation:

x′1 = x1 + 0.578353x2
1 − 0.840595x2

2 − 0.176676x2
3 + 0.706341x2x4 + 0.231311x3x4

− 0.0859469x2
4 + 0.450845x2x5 − 0.362395x3x5 − 0.0149615x4x5 − 0.079002x2

5

x′2 = x2 − 0.232643x2
2 + 0.437874x2

3 + 0.0439007x2x4 + 0.487617x3x4 − 0.770927x2
4

+ 0.0280211x2x5 − 0.763952x3x5 − 2.68402x4x5 + 0.475016x2
5

x′3 = x3 + 0.600083x3x4 − 0.182407x2
4 + 0.383023x3x5 + 0.169349x4x5 + 0.182407x2

5,

which turns expression (5.3.13) into:

− 1.18519x′21 − 0.666667x′22 − 0.271605x′23 − 4.03897x2
4x5 − 0.703095x4x

2
5

+ 1.19673x3
5 +O(4). (5.3.16)

We could go out to quartic terms in (5.3.13) and cubic terms in (5.3.15) to get

rid of the quartic terms and rinse and repeat to do the higher-degree terms, but
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the conclusion remains the same: the terms involving good variables can always

be transformed to a diagonal quadratic form. As for the cubic terms concerning

the “bad” variables x4, x5 in (5.3.16), it suffices to carry out a sequence of changes

of variables in the same fashion. We ultimately obtain the form:

− 1.18519x′21 − 0.666667x′22 − 0.271605x′23 + (x′24 x
′
5 − x

′3
5 ),

which satisfies the Morse canonical form.

The catastrophe term is cubic; thus we conclude that when µ
λ = 1, the tetrahe-

dral configurations are saddle points.

In short, when µ
λ is less than 1, the tetrahedral configurations are (local or

absolute) maxima, but they are no longer for µ/λ ≥ 1.

When λ = 0, the tetrahedral configurations disappear (64
27λ = 0). The great-

circle configurations, on the other hand, are absolute maxima with fmix = 2µc =

6c.

5.3.3 Conclusions

Before ending the discussion in this section, let’s say a few words about the

connection between four-particle and two-particle geometries in p shells. We

have seen that two identical particles in a p shell coupled to LS = 00 exhibit two

spatial configurations: cigar-like and di-neutron. When a short-range attractive

interaction is in effect, the di-neutron configuration becomes favored. For four

particles, the λ = 0 case, and consequently the great-circle configurations corre-

spond to LS = 00. The great-circle configuration in Fig. 5.1(a) can be seen as two

di-neutron configurations, Fig. 5.1(b) a di-neutron and a cigar-like configuration

and Fig. 5.1(c) two cigar-like configurations. When a short-range attractive in-

teraction is in effect among the four particles, analogously one would guess that

the configuration in Fig. 5.1(a) should be the predominant one among the six

configurations discussed above. As a matter of fact, many studies have shown an
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important contribution of the double di-neutron configuration to the 8He ground

state. [20, 21].

We summarize Sec. 5.3 with Fig. 5.6 in which the angular probability densi-

ties weighted by 1/λ of the two classes of configurations are plotted. The green

lines give the correspondence between the parameter µ
λ and the configurations

with the maximum probability density. Between µ
λ = −1 and µ

λ = 5
27 , the tetra-

hedral configurations are absolute maxima. The transition occurs at µ
λ = 5

27 , at

which point the role of the maximum configuration changes hands as the angu-

lar probability density of the great-circle configurations is equal to that of the

tetrahedral configurations. When µ
λ goes from 0 to 5

27 , the great-circle configu-

rations are local maxima, and when it goes from 5
27 to 1 (not including 1), the

tetrahedral configurations are local maxima.

Figure 5.6: The maximum configurations for an admixed state, and the natures
of the two classes of configurations as a function of µ

λ .
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6
Conclusions and perspectives

To sum up this work, we studied the geometry of two identical nucleons in the

LS coupling scheme in a general sense with an emphasis on zero-coupled states,

and those of four identical nucleons in the p shells.

We proved analytically that two-particle systems characterized by a valence

nucleon pair outside a stable core have some fascinating geometric properties

linked to the radial and angular momentum quantum numbers n and `, as well

as the total angular momentum L. In the particular case of 6He which we studied

in great detail, the two neutrons may correlate in two geometric configurations:

the di-neutron configuration (with a small relative distance between the two neu-

trons), and the cigar-like configuration (with a large relative distance) (see also

Figs. 1.1 and 1.2). We showed that when the neutron pair is confined to the 0p

shell, the two configurations show up with equal probability as a pure conse-

quence of the geometry of the p shell in the LS coupling scheme. In addition,

if the nucleon pair, while keeping paired up, is free to scatter into higher or-

bitals, the presence of an attractive short-range interaction tends to hamper the

appearance of the cigar-like configuration and enhance the di-neutron configu-

ration. For 6He, reasonable two neutron separation energies were also obtained.
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Meanwhile, the predictions that we have made for two-particle systems in the

other orbitals await experimental exploration, through, say knockout reactions

that probe the shape of the nuclear surface and surface nucleons in a nucleus.

We also studied four-particle correlations. Here, we concentrated on 8He and

calculated the angular probability densities of both the 0+
1 state ((0p3/2)4) and the

0+
2 state ((0p3/2)2(0p1/2)2), as well as their mixing. The angular correlation func-

tion in terms of relative angle in two-particle cases was generalized to that in

four-particle cases through six relative angles. One class of three equi-probable

configurations was found for each 0+ state. The two classes of configurations were

named great-circle and tetrahedral configurations according to their geometries.

The great-circle configurations can be identified with the di-neutron and cigar-

like configurations in 6He, and represent the realistic spatial configurations of

8He. A phase diagram for the geometry of admixed four-particle 0+ states in p

shells is established. The transition point where the role of the absolute maxi-

mum switches from one class to the other class of configurations for an admixed

state was found.

There is still much work to do in the future. For 8He, it would be interest-

ing to look into the evolution of its spatial structure when scattering into higher

orbitals is allowed. We also would like to get a holistic picture of the geometry

of four-particle systems, and make predictions for the geometry of an arbitrary

shell as we do for two-particle systems. More specifically, the 18C nucleus with

four neutrons in the 0d5/2 shell is worth studying. Furthermore, the geometry

of correlated different types of nucleons (and hence the role of isospin) are to be

explored.
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A
Derivation of the angular

correlation function

In this appendix, we evaluate the general expression

1
2L+ 1

∑
ML

[Y ∗`1
(1)⊗Y ∗`2

(2)]LML
[Y`′1(1)⊗Y`′2]LML

. (A.1)

1
2L+ 1

∑
ML

[Y ∗`1
(1)⊗Y ∗`2

(2)]LML
[Y`′1(1)⊗Y`′2]LML

=
1

2L+ 1

∑
ML

∑
m1m2

〈`1m1`2m2|LML〉Y ∗`1m1
(1)Y ∗`2m2

(2)

×
∑
m′1m

′
2

〈`′1m
′
1`
′
2m
′
2|LML〉Y`′1m′1(1)Y`′2m′2(2)

=
1

2L+ 1

∑
ML

∑
m1m2
m′1m

′
2

(−1)m1+m2〈`1m1`2m2|LML〉〈`′1m
′
1`
′
2m
′
2|LML〉

×Y`1−m1
(1)Y`2−m2

(2)Y`′1m′1(1)Y`′2m′2(2). (A.2)
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For spherical harmonics Y`m(~r), one has the relation

Y`1m1
(~r)Y`2m2

(~r) =
∑
`m

ˆ̀
1

ˆ̀
2

ˆ̀

4π

 `1 `2 `

m1 m2 m

Y ∗`m(~r)

`1 `2 `

0 0 0

 . (A.3)

Expression (A.2), then, can be expanded to give:

1
2L+ 1

∑
ML

∑
m1m2
m′1m

′
2

(−1)m1+m2〈`1m1`2m2|LML〉〈`′1m
′
1`
′
2m
′
2|LML〉

×
∑
L1m

ˆ̀
1

ˆ̀
2L̂1

4π

 `1 `′1 L1

−m1 m′1 m

Y ∗L1m
(1)

`1 `′1 L1

0 0 0


×

∑
L2m′

ˆ̀′
1

ˆ̀′
2L̂2

4π

 `2 `′2 L2

−m2 m′2 m′

Y ∗L2m′
(2)

`2 `′2 L2

0 0 0

 ,
which, given the relation between 3j-symbols and Clebsch-Gordan coefficients,

leads to

ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

4π

∑
ML

∑
m1m2
m′1m

′
2

(−1)m1+m2(−1)ML+ML

 `1 `2 L

m1 m2 −ML


 `
′
1 `′2 L

m′1 m′2 −ML


× (−1)`1−`2+`′1−`

′
2

∑
L1m
L2m

′

L̂1L̂2

 `1 `′1 L1

−m1 m′1 m


`1 `′1 L1

0 0 0

Y ∗L1m
(1)

×

 `2 `′2 L2

−m2 m′2 m′


`2 `′2 L2

0 0 0

Y ∗L2m′
(2)

=
ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

4π

∑
ML

∑
m1m2
m′1m

′
2

∑
L1m
L2m

′

(−1)m1+m2(−1)m+m′ (−1)L1+L2L̂1L̂2YL1−m(1)YL2−m′ (2)

×

 `1 `2 L

m1 m2 −ML


 `
′
1 `′2 L

m′1 m′2 −ML


 `1 `′1 L1

−m1 m′1 m


 `2 `′2 L2

−m2 m′2 m′


×

`1 `′1 L1

0 0 0


`2 `′2 L2

0 0 0


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=
ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

4π

∑
ML

∑
m1m2
m′1m

′
2

∑
L1L2m′

(−1)m1+m2(−1)L1+L2L̂1L̂2YL1−m(1)YL2−m′ (2)

×

 `1 `2 L

m1 m2 −ML


 `
′
1 `′2 L

m′1 m′2 −ML


 `1 `′1 L1

−m1 m′1 m


 `2 `′2 L2

−m2 m′2 −m


×

`1 `′1 L1

0 0 0


`2 `′2 L2

0 0 0

 (A.4)

where we have used the notation ĵ =
√

2j + 1. In the expression above, m +m′ =

m1 −m′1 +m2 −m′2 = ML −ML = 0, and therefore (−1)m+m′ = 1 and m = −m′. Also,

`1 + `′1 + L1 and `2 + `′2 + L2 have to be even, otherwise the 3j symbol

`1 `′1 L1

0 0 0


and

`2 `′2 L2

0 0 0

 would vanish.

Expression (A.4) can be simplified with the following relation between 3j-

symbols and 6j-symbols:

 J1 J2 J3

M1 M2 M3


J1 J2 J3

J4 J5 J6

 =
∑

M4M5M6

(−1)J4+J5+J6+M4+M5+M6

×

 J1 J5 J6

M1 M5 −M6


 J4 J2 J6

−M4 M2 M6


 J4 J5 J3

M4 −M5 M3

 . (A.5)

If we change the coupling order in the 3j-symbols in expression (A.4) using sym-

metry properties of 3j-symbols, we obtain a more convenient form of (A.4) that

corresponds to relation (A.5):

ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

4π

∑
ML

∑
m1m2
m′1m

′
2

∑
L1L2m

(−1)m1+m2L̂1L̂2YL1−m(1)YL2m(2)

×

 `2 `1 L

m2 m1 −ML


 `
′
1 `′2 L

−m′1 −m
′
2 ML


 `
′
1 `1 L1

m′1 −m1 m


 `2 `′2 L2

−m2 m′2 −m


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×

`1 `′1 L1

0 0 0


`2 `′2 L2

0 0 0

 . (A.6)

Now we can identify J1, M1, J2, M2, J3, M3, J4, M4, J5, M5, J6 and M6 with `2, m2,

`′2, −m′2, L1, m, `′1, m′1, `1, m1, L, and ML respectively and apply relation (A.5) to

get:

∑
m1m

′
1ML

(−1)m1+m2

 `2 `1 L

m2 m1 −ML


 `
′
1 `′2 L

−m′1 −m
′
2 ML


 `
′
1 `1 L1

m′1 −m1 m


= (−1)m+L+L1

∑
m1m

′
1ML

(−1)`1+`′1+L+m1+m′1+ML

×

 `2 `1 L

m2 m1 −ML


 `
′
1 `′2 L

−m′1 −m
′
2 ML


 `
′
1 `1 L1

m′1 −m1 m


= (−1)m+L+L1

 `2 `′2 L1

m2 −m′2 m


`2 `′2 L1

`′1 `1 L

 . (A.7)

Expression (A.6), then, can be further simplified:

ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

4π

∑
m2m

′
2

∑
L1L2m

(−1)m+L+L1L̂1L̂2YL1−m(1)YL2m(2)

×

 `2 `′2 L1

m2 −m′2 m


`2 `′2 L1

`′1 `1 L


 `2 `′2 L2

−m2 m′2 −m


`1 `′1 L1

0 0 0


`2 `′2 L2

0 0 0


=

ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

4π

∑
m2m

′
2

∑
L1L2m

(−1)m+L+L1L̂1L̂2YL1−m(1)YL2m(2)

×

 `2 `′2 L1

m2 −m′2 m


`2 `′2 L1

`′1 `1 L


 `2 `′2 L2

m2 −m′2 m


`1 `′1 L1

0 0 0


`2 `′2 L2

0 0 0


=

ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

4π

∑
L1L2m

(−1)m+L+L1L̂1L̂2
1

2L1 + 1
δL1L2

YL1−m(1)YL2m(2)

×

`2 `′2 L1

`′1 `1 L


`1 `′1 L1

0 0 0


`2 `′2 L2

0 0 0


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=
ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

4π

∑
L1m

(−1)m+L+L1

`2 `′2 L1

`′1 `1 L


`1 `′1 L1

0 0 0


`2 `′2 L1

0 0 0

YL1−m(1)YL1m(2)

(A.8)

The last three lines of expression (A.8) follow from the orthogonality relations

of 3j-symbols.

Once again, we apply the spherical harmonic addition theorem (2.2.28) to the

result in (A.8) and obtain

1
2L+ 1

∑
ML

[Y ∗`1
(1)⊗Y ∗`2

(2)]LML
[Y`′1(1)⊗Y`′2(2)]LML

=
ˆ̀
1

ˆ̀
2

ˆ̀′
1

ˆ̀′
2

(4π)2 (−1)L
∑
L1

(−1)L1L̂2
1

`2 `′2 L1

`′1 `1 L


`1 `′1 L1

0 0 0


`2 `′2 L1

0 0 0

PL1
(cosθ12).

(A.9)
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Introduction

Cette thèse est motivée par notre volonté de comprendre et de décrire la géo-

métrie de différents noyaux, en particulier l’6He et l’8He, pour les raisons qui

seront décrites ci-dessous.

Systèmes à deux particules

Les systèmes à deux particules se référent à des noyaux avec deux nucléons de

valence identiques. Ils sont bien illustrés par l’6He, qui est généralement dépeint

comme un 4He particulièrement stable (particule α) ayant la couche proton 0s1/2

et la couche neutron 0s1/2 pleines, accompagné de deux neutrons de valence.

Aussi simple que cela puisse paraître, l’6He a été au coeur d’un long débat quant

à savoir si les neutrons de valence se représentent comme une configuration di-

neutron (Fig. 1.1) , ou une configuration cigare. (Fig. 1.2) (voir Sec. 1.1.3). L’6He

possède des caractéristiques intéressantes, parmi lesquels sont l’appariement, le

phénomène de halo, les noyaux borroméens, etc.

L’appariement

Les nucléons identiques ont tendance à s’apparier. L’appariement explique

pourquoi tous les noyaux pair-pair ont des états fondamentaux Jπ = 0+, et que
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les noyaux pair-impair ont le moment cinétique total du dernier nucléon impair

†. Une autre preuve directe est la différence de masse entre les noyaux pairs et

impairs, soulignant le fait que pour le même type de nucléons, les protons ou

les neutrons, le gain en énergie de liaison est plus important lorsqu’un noyau

doublement pair est formé que lorsque ses voisins isotoniques ou isotopiques de

masses impaires sont formés. Ceci est illustré dans la Fig. 1.3 par l’échelonnement

des énergies de séparation du neutron S(n) (Fig. 1.3(a)) de certains isotopes du

ruthénium près du 100
44 Ru, et des énergies de séparation du proton S(p) (Fig.

1.3(b)) de certains isotones du 100
44 Ru.

Dans ce contexte ci, le fait que 6He ait un état fondamental 0+, alors que l’5He,

l’isotope de l’6He avec un neutron en moins, ne soit pas lié et ait le moment

cinétique total 3/2−, ne peut s’expliquer que par un phénomène d’appariement

important.

Les noyaux à halo et les noyaux borroméens

La notion de halo est présente dans de diverses disciplines scientifiques. Il

s’agit d’une composante anormalement diluée et étendue autour d’un noyau plus

solide et massif. En physique nucléaire, la loi de puissance 1/3

R = r0A
1/3, (A.10)

où r0 = 1.25 fm et A est le nombre de masse, qui est approximativement vérifiée

pour les rayons des noyaux stables, est dérogée par les noyaux sur les lignes d’in-

stabilité. L’6He, le 11Li, le 11Be, le 19C et le 17Ne, entre autres, présentent tous

des distributions de la matière nucléaire très étendues. Le 11Li, pour sa part, a

le même rayon de la matière que celui du 208Pb qui est beaucoup plus lourd [4].

† Strictement parlant, les noyaux avec plus d’un nucléon de valence peut avoir un moment
cinétique total autre que celui du dernier nucléon impair dans l’état fondamental en raison des
interactions résiduelles. Par exemple, bien que le 45

22Ti et le 47
22Ti aient tous les deux le dernier

neutron impair dans la couche 0f7/2, le premier a un état fondamental 7/2− tandis que le second,
un état fondamental 5/2− en raison de la corrélation quadripolaire.
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En outre, dans tous ces noyaux, la distribution de la matière étendue est générée

par les quelques nucléons de valence qui, en étant faiblement liés au coeur plus

stable, pénètrent dans les régions interdites par la physique classique. Le nom du

halo a été ainsi inventé.

Une classe intrigante de noyaux halo est les noyaux borroméens nommés

d’après les anneaux de Borromée (Fig. 1.6) figurant sur le blason de la famille

italienne des Borromée depuis le XIXe siècle. Les trois anneaux sont imbriqués

de telle manière qu’il n’existe pas de sous-système à deux corps lié ; si l’un d’eux

est cassé, les deux autres s’effondrent. Par analogie, les noyaux borroméens sont

des noyaux à halo à trois corps, où aucun des sous-systèmes à deux corps est lié,

et pourtant dans leur ensemble, les trois constituants conduisent à un état lié. Si

on retire un neutron de valence de l’6He (ou du 11Li), l’isotope résultant, le 5He

(ou le 10Li) est non-lié. Par ailleurs, le sous-système de di-neutron est également

non-lié. Par conséquent, l’6He et le 11Li sont deux noyaux borroméens.

Notre intention est d’abord de montrer que, dans l’6He, les deux configura-

tions di-neutron et cigare, apparaissent comme une pure conséquence géomé-

trique d’une paire de nucléons identiques dans la couche p couplés à zéro en

couplage LS, et de fournir des prédictions théoriques pour les géométries d’une

paire de particules identiques dans une couche arbitraire. Puis, l’6He étant un la-

boratoire idéal pour étudier la corrélation de deux particules, il sera étudié dans

un second temps afin de comprendre les particularités des noyaux borroméens

(Chapitre 3 et 4).

Systèmes à quatre particules

Afin de poursuivre l’étude de la géométrie des particules plus loin, l’8He,

un prototype des systèmes à quatre particules corrélées sera étudié. La nature

des quatre neutrons de valence dans l’8He n’est pas encore très claire. Certains

croient que comme son isotope l’6He, l’8He est aussi un noyau halo avec quatre
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neutrons appartenant au halo et un coeur de particule α en raison de sa dis-

tribution diluée des neutrons. D’autres soulignent que la distribution des neu-

trons est mieux comprise comme une peau de neutron épaisse [16]. Dans l’état

fondamental de l’8He, les quatre neutrons sont normalement considérés comme

formant une sous-couche complète 0p3/2 [17], alors que des études récentes

[18, 19, 20, 21] suggèrent une présence non négligeable de la structure double

di-neutron (0p3/2)2(0p1/2)2.

Quant aux configurations géométriques de l’8He, nous avons l’intention

d’étendre les résultats obtenus pour les systèmes à deux particules à un état 0+

général de quatre particules identiques corrélées dans les couche p, et de trouver

le lien avec le cas de deux particules, i.e. l’6He (Chapitre 5).
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Conclusions et perspectives

En résumé, nous avons étudié la géométrie de deux nucléons identiques en

couplage LS dans un sens général avec un accent sur les états 0+, ainsi que la

géométrie de quatre nucléons identiques dans les couche p.

Nous avons prouvé analytiquement que les systèmes à deux particules carac-

térisés par une paire de nucléons de valence en dehors d’un noyau stable ont des

propriétés géométriques fascinantes liées au nombre quantique radial n, au mo-

ment angulaire `, ainsi qu’au moment angulaire total L. Dans le cas particulier

de l’6He que nous avons étudié en détail, les deux neutrons peuvent être cor-

rélés dans deux configurations géométriques : la configuration di-neutron et la

configuration cigare. Nous avons montré que, si la paire de neutrons est confinée

dans la couche 0p, les deux configurations se présentent avec la même proba-

bilité comme une pure conséquence de la géométrie de la couche p. En outre,

si la paire de neutrons, tout en restant appariée, est autorisée à se diffuser dans

des couche supérieures, la présence d’une interaction attractive à courte portée

tend à entraver l’apparition de la configuration cigare et à faire croître la confi-

guration di-neutron. Pour l’6He, des énergies de séparation des deux neutrons

raisonnables ont également été obtenues. En même temps, les prédictions faites

pour les systèmes à deux particules dans les autres couches attendent des explo-

rations expérimentales, par, par exemple les réactions de knockout qui sondent

la forme de la surface nucléaire et les nucléons de surface dans un noyau.
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Nous avons également étudié des corrélations de quatre particules. Nous nous

sommes concentrés sur l’8He et avons calculé dans ce cas les densités de probabi-

lité angulaire pour l’état 0+
1 ((0p3/2)4) et pour l’état 0+

2 ((0p3/2)2(0p1/2)2), ainsi que

pour leur combinaison linéaire. La fonction de corrélation angulaire en termes

d’un angle relatif dans le cas de deux particules a été généralisée aux cas de

quatre particules en termes de six angles relatifs. Une classe de trois configu-

rations équiprobables a été trouvée pour chaque état 0+. Les deux classes de

configurations ont été nommées les configurations grand-cercle et les configu-

rations tétraédriques d’après leurs géométries. Les configurations grand-cercle

peuvent être identifiées avec la configuration di-neutron et la configuration ci-

gare de l’6He, et représentent les configurations spatiales réalistes de l’8He. Un

diagramme de phase pour la géométrie de quatre particules dans les couche p a

été établi. Le point de transition où le rôle du maximum global passe d’une classe

de configurations à l’autre pour un état mixé a été trouvé.

Il y a encore beaucoup de travail à faire à l’avenir. Pour 8He, il serait inté-

ressant d’examiner l’évolution de sa structure spatiale si la diffusion dans les

couches supérieures est autorisée. Nous aimerions également obtenir une image

globale de la géométrie des systèmes à quatre particules, et faire des prédictions

pour la géométrie d’une couche arbitraire comme nous le faisons pour les sys-

tèmes à deux particules. Plus précisément, le 18C avec quatre neutrons dans la

couche 0d5/2 est un noyau intéressant à étudier. Par ailleurs, la géométrie des.

différents types de nucléons (et donc le rôle de l’isospin) doivent être explorées.
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Résumé:
Dans un système nucléaire, chaque nucléon est soumis aux forces nucléaires exer-
cées par les autres. L’état fondamental témoigne de la nature des interactions. La
fonction d’onde d’un noyau est une mesure de la probabilité d’une géométrie parti-
culière. De ce fait, elle montre une image illustrative des structures géométriques à
l’intérieur du noyau. La connaissance des géométries de la matière nucléaire dans
des états quantiques spécifiques aide à comprendre la structure et les interactions nu-
cléaires, fournit une validation théorique et permet une prédiction des résultats ex-
périmentaux. Cette thèse porte sur les géométries des systèmes à deux et à quatre
particules identiques, en particulier celles résultant du caractère attractif et à courte
portée d’interactions nucléaires. Pour les systèmes à deux particules couplées à un
moment angulaire arbitraire, on trouve des configurations spatiales et angulaires dis-
tinctes liées aux nombres quantiques, ce qui est expliqué analytiquement. L’application
au 6He, un noyau halo Borroméen, avec d’abord l’interaction δ et ensuite l’interaction
d’appariement montre la coexistence de la configuration di-neutron et de la cigare, avec
une prédominance de la première sur la dernière. Quant aux systèmes à quatre par-
ticules, 8He est étudié comme prototype. L’expression de la densité de probabilité an-
gulaire est déduite analytiquement pour un état 0+ général. Les configurations avec la
densité de probabilité angulaire maximale entrent dans deux catégories de géométries
avec des symétries spécifiques, ce qui peut être considéré comme la généralisation des
géométries d’un système à deux particules à celles d’un système à quatre particules.

Spatial particle correlations in 6He and 8He

Abstract:
In a nuclear system, each nucleon is subject to nuclear forces exerted by the others, and
the structure of states provides evidence of the nature of the interactions. On the other
hand, the nuclear wave function is a measure of the probability of a particular geometry.
As such, it provides an illustrative picture of the geometric structures inside the nucleus.
Knowledge of the geometries of nuclear matter in specific quantum states helps under-
stand nuclear structure and interactions, provides theoretical validation and allows pre-
diction of experimental results. This thesis has its focus on the geometries of two and four
identical particle systems, in particular, those resulting from the short-range attractive
nature of nuclear interactions. For two-particle systems coupled to an arbitrary angular
momentum, distinct spatial and angular configurations are found regularly related to
the quantum numbers, which is explained analytically. Application to the Borromean
halo nucleus 6He with first the δ interaction and then the pairing interaction shows the
coexistence of the di-neutron and the cigar-like configurations, with a predominance of
the former over the latter. As for four-particle systems, 8He is studied as a prototype.
The expression of the angular probability density is derived analytically for a general
0+ state. Configurations in terms of relative angles where the angular probability den-
sity peaks fall into two categories of geometries with specific symmetries, which can be
considered as the generalization of the geometries of a two-particle system to those of a
four-particle system.
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