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Abstract

Peer-to-peer (P2P) systems are very popular today. Their usage goes from instant
messaging to file sharing, from distributed backup and storage to even live-video
streaming. Among P2P protocols, gossip-based protocols are a family of protocols
which have been the object of several research works in the last decade. The reasons
behind the interest in gossip-based protocols are that they are considered robust, easy to
implement, and that they have interesting scalability properties. They are then appealing
candidates for implementing dynamic and large-scale distributed systems.

This thesis tackles two problems faced by gossip-based protocols when deployed on
a practical scenario as the Internet. The first problem is coping with Network Address
Translators (NATs) in the context of gossip-based peer sampling protocols. These
protocols make the assumption that, at any moment, each node is able to communicate
with any other node of the network. This assumption is false when some nodes use
NATs. We present Nylon, a peer sampling protocol which works despite the presence
of NATs. Nylon introduces a low overhead to cope with NATs and fairly balances this
overhead among nodes using a NAT and those which do not.

The second problem that we study is the possibility to limit the dissemination
of “spam” messages in gossip-based dissemination protocols. These protocols are
in fact ideal vectors to spread spam messages due to the fact that there is no central
authority in charge of filtering messages based on their content. We propose FireSpam,
a gossip-based dissemination protocol which allows limiting the dissemination of
“spam” messages. FireSpam implements a decentralized filtering mechanism (each node
participates to the filtering). Moreover, it works despite the presence of a fraction of
malicious nodes (also called “Byzantine” nodes) and despite the presence of so called
“rational” nodes (also called “selfish” nodes). These latters are willing to deviate from
the protocol if they have an interest in doing so.

Keywords. peer-to-peer (P2P) systems, gossip-based protocols, peer sampling ser-
vice, Network Address Translators (NATs), large-scale information dissemination, fault
tolerance.
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Résumé

Les systèmes pair-à-pair (P2P) sont aujourd’hui très populaires. Leur utilisation va
de la messagerie instantanée au partage de fichiers, en passant par la sauvegarde et le
stockage distribué ou encore le streaming video. Parmi les protocoles P2P, les protocoles
basés sur le "gossip" sont une famille de protocoles qui a fait l’objet de nombreux
travaux de recherche durant la dernière décennie. Les raisons de l’engouement pour les
protocoles basés sur le "gossip" sont qu’ils sont considérés robustes, faciles à mettre
en oeuvre et qu’ils ont des propriétés de passage à l’échelle intéressantes. Ce sont
donc des candidats intéressants dès lors qu’il s’agit de réaliser des systèmes distribués
dynamiques à large échelle.

Cette thèse considère deux problématiques rencontrées lorsque l’on déploie des
protocoles basé sur le "gossip" dans un environnement réel comme l’Internet. La
première problématique est la prise en compte des pare-feux (NAT) dans le cadre des
protocoles d’échantillonnage basés sur le "gossip". Ces protocoles font l’hypothèse
que, a tout moment, chaque noeud est capable de communiquer avec n’importe quel
noeud du réseau. Cette hypothèse est fausse dès lors que certains noeuds utilisent des
NAT. Nous présentons Nylon, un protocole d’échantillonnage qui fonctionne malgré
la présence de NAT. Nylon introduit un faible surcoût pour gérer les NAT et partage
équitablement ce surcoût entre les noeuds possédant un NAT et les autres noeuds.

La deuxième problématique que nous étudions est la possibilité de limiter la dis-
sémination de messages de type "spam" dans les protocoles de dissémination basés
sur le "gossip". Ces protocoles sont en effet des vecteurs idéaux pour diffuser les
messages de type "spam" du fait qu’il n’y a pas d’autorité de contrôle permettant de
filtrer les messages basés sur leur contenu. Nous proposons FireSpam, un protocole
de dissémination basé sur le "gossip" qui permet de limiter la diffusion des messages
de type "spam". FireSpam fonctionne par filtrage décentralisé (chaque noeud participe
au filtrage). Par ailleurs, il fonctionne malgré la présence d’une fraction de noeuds
malicieux (aussi appelés "Byzantins") et malgré la présence de noeuds dits “rationnels”
(aussi appelés "égoïstes"). Ces derniers sont prêts à dévier du protocole s’ils ont un
intérêt à le faire.

Mots-clés. systèmes pair-à-pair (P2P), protocoles basé sur le "gossip", service d’
échantillonnage, pare-feux (NAT), dissémination d’information à large échelle, tolérance
aux fautes.
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Preface

This thesis presents the research conducted in the SARDES team of the Inria Grenoble
- Rhône-Alpes research institute to pursue the Ph.D. in the speciality “Informatics”
from the Doctoral School “Mathématiques, Sciences et Technologies de l’Information,
Informatique” of the Université de Grenoble. The research activities have been carried
out under the supervision of Jean-Bernard Stefani and Vivien Quéma.

The thesis focuses on two problems faced by gossip-based protocols when deployed on
a practical context as the Internet: (i) coping with Network Address Translators (NATs)
in gossip-based peer sampling protocols, (ii) limiting the dissemination of “spam”
messages in gossip-based dissemination protocols, while accounting for malicious and
selfish behaviors of the nodes.

Novel contributions to tackle the aforementioned problems have been the content of the
following published works:

• NAT-resilient Gossip Peer Sampling. Anne-Marie Kermarrec, Alessio Pace,
Vivien Quéma, Valerio Schiavoni. In Proceedings of the 29th IEEE International

Conference on Distributed Computing Systems (ICDCS), June 2009.

• FireSpam: Spam Resilient Gossiping in the BAR Model. Sonia Ben Mokhtar,
Alessio Pace, Vivien Quéma. In Proceedings of the 29th IEEE International

Symposium on Reliable Distributed Systems (SRDS), October 2010.
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Common terminology

In the rest of this document, usually a single mostly used term is employed to refer
to a given concept. Nevertheless, some alternative terms or expressions might be found
sometimes. Table I provides a summary of the most common cases.

Concept Common term used
Possible alternative

term(s) used

A participant in a distributed system or
(more specifically) in a peer-to-peer

system
node peer

Node arrivals and departures churn -

Full membership knowledge of the
nodes in the system

global view complete view

Partial membership knowledge of the
nodes in the system

local view partial view

The node returned by the peer sampling
service, which is the node to gossip with

target node destination node

The data type stored in a node’s view,
which references and contains info

about a node’s neighbor
(view) entry

(view) neighbor
descriptor

A node arbitrarily or maliciously
deviating from the protocol

Byzantine node malicious node

A node deviating from the protocol to
increase its net benefit from the

participation in the system
rational node selfish node

Table I – Common used terminology in this document.

Note: even if node remains the most frequently used term in the document to designate
a participant in a distributed system, the term peer is preserved in naming the Peer

Sampling Service (PSS), as this is in fact the name used in literature to call this service.

ix
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1
Introduction

Contents

1.1 Peer-to-peer systems . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Distributed Hash Tables . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Gossip-based protocols . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Objectives and contributions of this thesis . . . . . . . . . . . . 7

1.5 Research methodology . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Organization of this document . . . . . . . . . . . . . . . . . . 9

Internet applications and services are used by millions of people every day. People
might for instance participate and benefit from them using a desktop computer when
they are at home, their tablets when they are in a meeting or traveling, or they can access
them via their smartphones whey they are on the go. As common usage scenarios,
we may, for example, list surfing the Web, catching up with a friend on an instant
messaging chat application, watching a movie trailer, posting a picture when back from
(or ever more, while being in) vacation on an online photo album, or changing the status
on an online social network or micro-blogging service.

Albeit different in purpose, all of the above are examples of distributed systems.
In each of them, some nodes of the network provide a service, and some other nodes
consume this service and benefit from it. The Internet is the common communication
channel which allows the nodes providing services (the server nodes) and the nodes
consuming services (the client nodes) to be connected and interact.

Despite the simple concepts illustrated above, distributed systems are not as simple
when dealing with their actual design, implementation and deployment. In fact, dis-
tributed systems must cope with the dynamicity of the environment: they must take into
account the possible continuous arrival and departure, as well as the possible failure,
of the nodes. For example, in an Internet TV broadcasting service, nodes could join
or leave the channel at will and at any time. Distributed systems must also account
for the growing or shrinking —possibly in a little amount of time— of the number of
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1.1. PEER-TO-PEER SYSTEMS

nodes, as well as the overall volume of information generated or consumed by them.
Still considering an Internet TV broadcasting service, a massive amount of nodes could
join (resp., leave) the service approximately at the same moment, that is, around the
announced start (resp., end) time of it. And this number of nodes could go from hun-
dreds to thousands of nodes during the course of the broadcast, which means distributed
systems must be scalable.

Given this scenario, the traditional client/server model shows soon its limitations.
In fact, in such a model the server is the only node providing the service and, if it is not
capable of doing so effectively, it becomes the bottleneck and single point of failure
of the whole distributed system. Moreover, this centralized architecture, put aside the
possible important costs to keep it up and running, does not leverage the resources of
client nodes, which passively participate and benefit from the provided service.

1.1 Peer-to-peer systems

The peer-to-peer (P2P) model has consolidated in the last decade or so as an
effective approach to deal with the dynamicity and scalability requirements of today’s
distributed systems. Here nodes act as both clients and servers, thus contributing to the
service they participate in. This has led to the term servent (server and client) [1] to
indicate their twofold role (cfr. Figure 1.1b). Each node has then the same responsibility,
and the resources shared with the other nodes to collaborate in the functioning of the
distributed systems can be of different types: CPU cycles, network bandwidth, memory,
disk storage, and so on.

������

�����	 �����	

�����	�����	 ������	 ������	

������	������	


�������	
������������ ������������
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Figure 1.1 – (a) Client/server model: nodes acting only as clients; (b) P2P model:
nodes acting as both clients and servers (servents).

To convey the popularity of P2P systems, a recent study conducted by Cisco [2] has
shown how peer-to-peer file sharing alone accounts to roughly 25% of the US Internet
traffic, slightly below the amount of traffic generated by streaming on video sites like
YouTube [3] or Vimeo [4]. But P2P file sharing (nowadays mainly represented by the
BitTorrent [5] protocol), is not the only widespread application of peer-to-peer. Other
services range from applications like instant messaging (e.g., ICQ [6], Jabber [7]) to
voice/video call (e.g., Skype [8]), from cooperative backup/storage (e.g., Wuala [9])
to video streaming (e.g., SopCast [10], PPLive [11], Veetle [12]) or even online social
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networks (e.g., Diaspora [13]).

As illustrated in [14], regardless of the kind of specific application or service, peer-
to-peer systems can be defined in terms of their properties and characteristics, and also
in terms of how nodes are linked to each other forming the underlying communication
graph, which is usually referred to as the overlay network.

Properties and characteristics. We list here a few distinguishing properties and
characteristics of peer-to-peer systems, as recently presented in a survey by Rodrigues
and Druschel [14].

High degree of decentralization. Nodes act as both clients and servers, so that the state
and the work of the distributed system are spread on the nodes. They in fact contribute
to the computing power, network bandwidth and disk storage capacities of the system.
“Pure” (fully decentralized) peer-to-peer systems have no dedicated nodes keeping a
centralized state, while other systems might allocate a few nodes in charge of it. While
this might simplify certain tasks (e.g., keeping an index of live nodes or of the resources
shared by them), it falls shortly into similar limitations as those of the aforementioned
client/server model.

Self-organization. When a node wants to enter the system, very little (or even no)
configuration is required to make the node join and to have the system adjust accordingly.
Usually in fact the joining node needs to know only the address of one or more nodes
which are already part of the system.

Multiple administrative domains. Nodes do not usually belong to the same organization.
Instead, they are typically individual nodes joining the system at their will.

Low barrier to deployment. Differently from the client/server model, P2P systems do
not demand a dedicated infrastructure, thus reducing the initial costs to run a service.

Organic growth. Peer-to-peer systems can grow almost with unbounded limit, and do
not require a suspension/replacement/upgrade/restart of the infrastructure to cope with
increased node population.

Resilience to faults and attacks. Given the fact that there is generally no single central
node in peer-to-peer systems, they are by nature more resilient to faults and attacks than
centralized systems. To degrade the quality of a P2P system, an attacker might have to
target or compromise a significant fraction of the nodes.

Abundance and diversity of resources. Only few organizations in the world can dispose
of the amount of resources that popular P2P systems have. Furthermore, these resources
differ in hardware and software architecture, network capabilities, storage capacity,
geographical location and so on.

Moreover, P2P systems have to ensure the properties of the system as a whole despite
the fact that typically nodes only have a small local knowledge of the entire system.
To ensure the desired system properties, nodes then communicate and collaborate via
a distributed protocol which should not make assumptions on the (well) behavior of
nodes or on the reliability of communications.

3



1.2. DISTRIBUTED HASH TABLES

Operating principles: overlay networks. We have previously discussed how fully

decentralized P2P systems provide appealing scalability properties. They can be defined
in terms of the P2P overlay network which characterizes them. An overlay network is
a logical network sitting on top of another network (e.g., the IP network), connecting
the nodes of a P2P system. In the simplest scenarios, two nodes connected through the
same overlay can communicate between each other via classical IP routing mechanisms.
In the context of overlays, such two nodes are usually called neighbors. Neighbors
relationship might not necessarily be symmetric: a node might know the existence and
address of another node, while this latter being unaware of the first. This is why the
term view is usually employed to indicate the current set of nodes known or stored
as neighbors by a given node. The actual topology of an overlay network is then
determined by considering the neighbors relationships among the views of all nodes.

With respect to the topology, there exist two main classes of overlay networks:
structured and unstructured overlay networks. The first class is best represented by
Distributed Hash Tables (DHTs), while the second class by gossip-based communication
protocols. In the next sections we briefly present their operating principles before
delineating the objectives and contributions of this thesis.

1.2 Distributed Hash Tables

In a Distributed Hash Table (DHT), nodes are logically arranged in a large numerical
identifier space. The identifier of a node determines its position in the overlay network,
whose topology is specific to the given DHT implementation. Among the most known
overlay topology examples, there are those where identifiers are logically placed on a
circular ring (Chord [15], Pastry [16], Bamboo [17]), on a d-dimensional coordinate
space (CAN [18]), or based on XOR metrics (Kademlia [19]).

Each DHT topology defines a distance metric to evaluate the distance among two
given identifiers. This distance metric comes into play in the overlay maintenance proto-
col run by nodes and in the lookup algorithm described next. The overlay maintenance
protocol essentially accomplishes two tasks. First, nodes pick as their neighbors the
“closest” nodes according to the distance metric. For example, on a ring-based topology,
they pick the immediate successor and predecessor nodes on the ring (e.g., [15, 16]).
This set of neighbors is usually called neighbors set (or leaf set), and it ensures con-
nectivity of the overlay and basic routing capabilities, as it will be illustrated next.
Second, they pick other “distant” nodes according to a criterion which is specific to
the given DHT implementation. For example, the criterion might be choosing nodes
with increasingly longer common prefixes with respect to the identifier of the node
(e.g., [16]). This second set of neighbors is usually called routing table, as it is used to
speed up the lookup routing algorithm described next.

A DHT provides a variant of consistent hashing [20] to deterministically map a
key (i.e., an identifier, for instance obtained by hashing the content of an object) to a
node, being the node in charge of the key typically the one whose position immediately
follows the key on the identifier space (e.g., [15]). The procedure to lookup for this
node is known as key-based routing (KBR) [21] and roughly works accordingly to the
following greedy algorithm. Once a node receives a lookup request for a given key k,
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two scenarios may arise: if the node has in its neighbors set or routing table a node
with closer identifier to k, then it routes the lookup to that node; otherwise, the node
concludes it must be the node to be in charge of k and responds to the lookup. DHT
implementations (e.g., [15,16]) are designed such that this key-based routing is efficient,
typically in the order of log(N) hops, N being the number of nodes in the overlay.

This lookup(k) primitive is the block on top of which the actual Distributed Hash
Table API is built: put(k, v) and get(k). The put(k, v) function allows assigning a
value v to the key k, which means making the node in charge of k store the value v.
Analogously, the get(k) function allows retrieving the value(s) associated to a given
key k by previous invocation(s) of the put(). To increase resiliency to node arrivals and
departures (churn), DHTs usually employ a replication strategy (e.g., [22, 23, 24]) to
add redundancy to the copies of a given {k, v} stored pair.
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Figure 1.2 – DHT with ring topology: put() with {key, value} replication on the
most immediate successors of the node in charge of the key. (Based on: [14])

Figure 1.2 illustrates a graphical example of what we explained so far. In the
example, the DHT has a ring topology, and the node with id 65a1fc issues a put() for
the key d46a1c. This translates in the request being routed along various hops with
increasingly longer common identifier prefix, until the request reaches the node whose
identifier is the closest to the given key. This turns out to be node d462ba, which also
replicates the stored key/value pair on its two most immediate successor nodes.

1.3 Gossip-based protocols

As described previously, Distributed Hash Tables are characterized by a given
structured topology. This topology remains static when there are no node arrivals or
departures. In fact, in absence of churn, the overlay network maintenance protocol will
eventually make the neighbors relationships converge to the ones which best satisfy the
distance metric function and routing table criteria. Once the overlay has converged to
this state, nothing changes if no node joins or leaves. The overlay will only reactively
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1.3. GOSSIP-BASED PROTOCOLS

adjust its links in case of network dynamics.

Gossip-based overlay networks, instead, reside at the other side of the spectrum.
In fact, gossip-based protocols (e.g., [25, 26, 27]) aim at building and maintaining an
unstructured topology with random graph [28] properties, for that they fairly balance the
load among the nodes, and are highly robust to node failures. Furthermore, this random
topology is dynamic, as nodes proactively keep continuously changing neighbors.

Figure 1.3 – Gossip protocols: random graph topology.

In a gossip-based protocol each node periodically exchanges (“gossips”) informa-
tion with one (or generally, more than one) node of the system, selected from its view.
This turns out to ensure the progressive and reliable diffusion of the information to all
nodes with high probability (e.g., [29, 30]). Due to this approach, gossip protocols are
also referred to as rumor mongering protocols [31] (due to the similarities with the
spreading of a rumor), or —very commonly— as epidemic protocols [29] (due to the
similarities with the diffusion of a virus).

The gossip paradigm was first proposed in distributed systems by Demers et al. [29],
in the context of the Xerox Clearinghouse service [32], to maintain database replicas
consistent by having replicas gossip updates among them. Since this seminal paper,
gossip-based protocols have been used in various contexts and for different purposes:
data broadcasting [25,30,33], failure detection [34], data aggregation (e.g., network size
estimation) [35, 36], slicing of the node population based on some node property [37,
38, 39], topology management (i.e., clustering nodes based on certain criteria) [40, 41],
and even live video streaming [42, 43], to name a few.

A generic framework to describe gossip protocols has been provided by Kermarrec
et al. [44], and its simple and concise pseudo-code1 is reported in Figure 1.4. Each
node runs both a periodic active part which selects the target node of the gossip and the
data to exchange with it, and a passive part which handles the reception of the data and
(possibly) which takes care of sending the response to it. The main aspects of a generic
gossip protocol are thus: (i) peer selection, (ii) data exchange, and (iii) data processing.
Whereas the last two aspects are specific to the application context, the first one, peer
selection, turns out to be a common underlying fundamental building block of every

1The pseudo-code of the gossiping framework presented in [44], as well as other pseudo-codes
presented in the rest of this document, have been adapted to follow similar style conventions.
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gossip protocol: the so called peer sampling service (PSS) [45].

A gossip protocol in fact periodically picks one (or more than one) random node
to gossip with by means of a selectPeer() call to the peer sampling service. The
possibility to rely on a uniform random sample of nodes, returned by the peer sampling
service, has been shown to ensure the reliability and scalability properties of several
gossip-based protocols (e.g., [30, 36, 38, 46]).
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Figure 1.4 – Functioning of a generic gossip protocol.

Such a random peer sampling service is also typically implemented in a decentral-
ized fashion via gossiping, by so called gossip-based peer sampling protocols [26,27,47].
In these protocols each node locally maintains a small view of the system, and peri-
odically exchanges its view with a node selected from the view itself. This approach
has been shown experimentally [26, 27] and analytically [48] to result in views which
represent a continuously changing random sample of all nodes.

1.4 Objectives and contributions of this thesis

This thesis settles its grounds in the area of gossiping protocols given their appealing
characteristics for building large-scale distributed systems: they are scalable, robust,
highly resilient to churn, lightweight and simple to implement.

Little attention has been devoted to their behavior in real-world deployment sce-
narios, where these protocols might face practical problems. Specifically, this thesis
addresses two problems. The first problem we address is coping with Network Address
Translators (NATs) in gossip-based peer sampling protocols. The second problem we
address is limiting the dissemination of “spam” messages in gossip-based dissemination
protocols, while accounting for malicious and selfish behaviors of the nodes.

NAT-resilient Gossip Peer Sampling. In gossip peer sampling protocols (e.g., [27]),
each node keeps a local set of neighbors (its local view) which it periodically exchanges
with another node of the system that is selected from the local view itself. This view
is expected to be a sample of the nodes picked uniformly at random among all the
nodes of the system. These protocols rely on the implicit assumption that any node
is able to communicate with any node contained in its local view. But, it is a well
known fact that nowadays a large fraction of nodes in the Internet are behind Network
Address Translators (NATs) [49, 50, 51,52]. NAT devices allow several nodes with a
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private IP address to share a single public IP address. NATs implement firewall-like
functionalities which drop unsolicited incoming messages. Consequently, the presence
of NATs may prevent communication among nodes. Whereas the issue of NATs has
been considered in the case of structured P2P overlay networks [49, 53, 54], it has been
almost ignored in the area of gossip protocols.

Our first contribution in this area is to show how the mere presence of NATs
significantly impacts the properties of gossip-based peer sampling protocols with
respect to the connectivity of the overlay network and the randomness of the returned
sample. In fact, we show how above a given threshold of nodes sitting behind a NAT,
the overlay network gets partitioned, a condition that a peer sampling protocol precisely
should avoid. Also, we show how the local views of nodes present many references
to nodes which are actually unreachable. This implies that an application using the
peer sampling service could effectively use only a subset of the entries in the view,
corresponding basically to the nodes which are not behind a NAT.

Our second contribution in this area is the design and evaluation of Nylon [55], a
fully decentralized NAT-resilient gossip-based peer sampling protocol. Nylon is built
on the gossip-based peer sampling framework [27] and it is based on a decentralized
hole punching [56, 57] approach to traverse NATs and establish paths of relay nodes in
order to initiate the communication towards nodes behind a NAT device. We show how
Nylon: (i) ensures the properties of the peer sampling service, despite the presence of
large fractions of nodes sitting behind NATs, (ii) fairly balances the load among nodes
(be they behind or not a NAT device), (iii) efficiently handles churn.

Spam-resilient Gossiping in the BAR model. Peer-to-peer systems can be used to
build decentralized communication and content distribution services as, for example,
Internet forums. In such a context, an appealing and effective way to disseminate
the content produced by a node to all other participants is by means of gossip-based
dissemination protocols [25, 30]. In a gossip-based dissemination protocol, once a
node receives a new message, it forwards it to a random subset of its neighbors. The
advantages of such a scheme are it simplicity and its proved reliability [30].

Our first contribution in this area is to show how such a gossiping approach turns
out to be also an ideal vector for the dissemination of spam content in the system.
We consider as spam a message whose content is inappropriate for participating users
(e.g., false information diffused on the forum). We base our analysis on the notion
of filtering capability (also called “pollution awareness” in [58]) and we show how a
simple strategy consisting in having each node locally filter the messages it detects as
spam does not work. In fact, gossip-based dissemination protocols are highly redundant
and random: each node receives messages multiple times from different nodes.

Our second contribution in this area is the design and evaluation of FireSpam [59],
a gossiping protocol which is able to limit the spam dissemination. In FireSpam,
nodes are organized in a ladder topology according to their capability to filter spam:
nodes having a high (resp. low) filtering capability are located at the top (resp. bottom)
of the ladder. Messages are disseminated from the bottom to the top of the ladder,
which acts as a progressive spam filter. The rationale behind this topology is that
nodes that actively filter spam (i.e., those with a high filtering capability) progressively
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climb the ladder and will eventually be less overwhelmed by spam messages. While
organizing nodes in a ladder topology can easily be achieved if all nodes in the system
behave correctly (e.g., by clustering nodes [40, 41]), it appears challenging to build
such a topology in the presence of nodes acting selfishly or maliciously. Nodes with
such behaviors are common in P2P systems and they do thus need to be taken into
account. We designed FireSpam in the BAR model [60]. This model states that there
are three kinds of nodes: altruistic nodes that strictly follow the protocol, Byzantine

nodes that can behave arbitrarily, and rational nodes that are willing to deviate from the
protocol if there is a gain in doing so. In order to tolerate rational nodes, FireSpam
encompasses a set of incentive-compatible mechanisms that make the protocol a strict
Nash equilibrium [61]. More precisely, the incentive mechanisms used in FireSpam
ensure that it is in a rational node’s best interest to always follow the protocol. Moreover,
FireSpam encompasses a set of mechanisms guaranteeing that Byzantine nodes are
detected and evicted from the system. These mechanisms assume a known upper bound
on the number of Byzantine nodes in the system.

1.5 Research methodology

We have conducted an experimental evaluation of the two protocols presented in
this thesis: Nylon and FireSpam. For FireSpam, we provided also a more formal
study and proof of its properties.

The experimental evaluation of the two protocols consisted in studying their behav-
ior through simulations, which allowed to systematically evaluate them using different
configuration parameters. For each of the two protocols, a dedicated lightweight round-
based P2P simulator inspired by PeerSim [62] has been developed and used to run the
experiments. The two P2P simulators share the same architecture and general design
principles, they diverge in the implementation language and specific characteristics:

• for Nylon: the simulator has been written in Java, and it has support for simu-
lating the functioning of Network Address Translators. This is used to simulate
dropping or receiving messages due to (in)valid NAT filtering rules.

• for FireSpam: the simulator has been written in C++ and tuned for perfor-
mances due to the relatively (with respect to Nylon) higher computational cost
of the simulations (periodic creation and dissemination of messages).

1.6 Organization of this document

The rest of this document is organized in the following chapters.

Chapter 2 - Peer Sampling Service and Network Address Translators. This chap-
ter first describes the peer sampling service and illustrates two approaches: ran-
dom walk and gossip-based. Afterwards, it describes the functioning of Network
Address Translators. Focusing on the case of gossip peer sampling [27], the
chapter studies how NAT devices, by limiting connectivity among nodes, strongly
impact the properties of the gossip peer sampling service.
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Chapter 3 - Nylon: NAT-resilient Gossip Peer Sampling. This chapter first describes
NAT traversal techniques [56,57] allowing communication towards nodes behind
a NAT: relaying and hole punching. It then presents and evaluates Nylon [55], a
NAT-resilient gossip peer sampling protocol built on the gossip peer sampling
framework [27]. Nylon is based on a decentralized hole punching approach to
traverse NATs and establish paths of relay nodes in order to initiate the communi-
cation with nodes behind a NAT device.

Chapter 4 - Spam and the presence of Byzantine and rational nodes. This chapter
first describes gossip-based dissemination as a lightweight, robust and reliable
approach for information dissemination in an overlay network. Focusing on the
case of the protocol described in [30], the chapter shows how the randomness
and redundancy of gossiping make it an ideal vector for disseminating spam.
Then, the chapter presents the system model under which we target designing
a solution to the spam dissemination. This model is made of Byzantine nodes,
which can arbitrarily fail, and rational nodes, which want to maximize their
benefit while reducing their contribution. A few practical systems taking into
account Byzantine faults are illustrated, as well as a few systems dealing with
both rational and Byzantine behaviors.

Chapter 5 - FireSpam: Spam-resilient Gossiping in the BAR Model. This chapter
first proposes a ladder organization of the nodes of the system based on their spam
filtering capability. The ladder can be used to reliably deliver good messages
among nodes via gossiping, while limiting the diffusion of spam messages via the
progressive filtering exercised by the nodes themselves along the ladder dissemi-
nation. Then, the chapter presents and evaluates the FireSpam protocol [59].
The protocol guarantees the ladder properties (correct nodes placement in the
ladder, reliable dissemination of messages), while: (i) tolerating a (configurable)
bounded number of Byzantine nodes, and (ii) encouraging all non-Byzantine
nodes to follow the protocol by means of a set of incentives.

Chapter 6 - Conclusions. This chapter concludes this document, providing a summary
of the results of this thesis, and discussing elements for possible future research.
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Gossip-based protocols rely on the ability for a node to periodically exchange
(“gossip”) information with other random nodes. The service providing every node
with this random sample of nodes is called peer sampling service (PSS) [45].

Nevertheless, an implicit assumption of gossip protocols is that any node is able
to communicate, and hence perform the gossip exchange, with any other node in the
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system. This is generally not the case on the Internet, where a significant proportion
of nodes might be behind Network Address Translators (NATs) [49, 50, 51, 52]. NAT
devices in fact, by employing firewall-like mechanisms, limit the connectivity of nodes
and as such they can harm the properties of a random peer sampling service, and
consequently of the protocols relying on it for their functioning.

This chapter is organized as follows. Section 2.1 presents two approaches to
random peer sampling: one based on random walk methods and one based on gossiping.
Section 2.2 illustrates the basic functioning of Network Address Translators and the
limitations they impose on node to node communication. Section 2.3 studies the impact
of NATs on gossip-based peer sampling protocols. Section 2.4 discusses two existing
solutions for gossiping in presence of NATs. Section 2.5 concludes this chapter.

2.1 Peer sampling service

In gossip-based protocols, each node periodically exchanges information with one
(or generally, more than one) node of the system. The peer sampling service [45] is the
distributed abstraction which provides every node with this sample of nodes to gossip
with. As depicted in Figure 2.1, the same peer sampling service can generally be used
by more than one gossip protocol at once, thus constituting the common underlying
building block of a gossip-based network application.
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Figure 2.1 – Gossip protocols: importance of the peer sampling service as
underlying building block.

A key aspect in gossiping is the uniform random sample of nodes to gossip with.
Several gossip protocols (e.g., [30,36,38,46]) in fact owe their reliability and scalability
properties to the randomness of such a sample. In [46], Pittel proves that if each node
at periodic rounds picks a random node to gossip information with, then with high
probability the number of gossip rounds to have the information spread among the
whole set of nodes of the system is in the order of log2(N) + ln(N) +O(1), N being
the total number of nodes in the system.

The first gossip protocols (e.g., [29, 33]) relied on the assumption that each node
could sample nodes uniformly at random by keeping a complete knowledge of all
the other nodes of the system, that is, a global view. In a P2P system, which can be
composed of a huge number of nodes and be highly dynamic, keeping a global view
up-to-date can impose important communication and storage costs on nodes. Scalable
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peer sampling services have then be proposed afterwards, relying on nodes only having
a small, partial view of the system.

In the following, we describe then two existing approaches for implementing a
random peer sampling where nodes only have a partial view of the system. First, we
describe a peer sampling service based on random walk methods. Then, we describe
instead a generic gossip-based peer sampling framework.

2.1.1 Random walks based peer sampling

The random peer sampling algorithms presented in [63, 64, 65] rely on random
walk methods [66]. RaWMS [63] targets wireless ad-hoc networks, while instead the
algorithm presented in [64] allows to sample a node at random in a Distributed Hash
Table. We focus here on the Sample&Collide algorithm [65], for it allows performing
random walks to return a random sample of the nodes using a method which is not tied
to a specific networking context or a specific overlay network structure.

In the following paragraphs, we first illustrate the operating principles of random
walks on a graph. Then, we describe the Sample&Collide peer sampling protocol,
which is based on random walk methods.

2.1.1.1 Random walks on a graph

A P2P overlay network can be seen as a graph G=(V,E), where V is the set of nodes
in the system and E are the edges among these nodes. In particular, an edge from a
node p to a node q exists if q is present in p’s local view. Roughly speaking then, a
random walk is a sequence of hops from one node (the “initiator node”) initiating the
random walk, to a given “end node” (which can be the initiator node itself), and where
the next hop along the path is randomly chosen from the neighbors in the local view of
the current node.

Figure 2.2 illustrates a possible random walk on a graph, starting from some initiator
node and, after three steps, ending at a different node of the graph.

2.1.1.2 The Sample&Collide algorithm for nodes counting and sampling

The Sample&Collide (in the rest, S&C) [65] is a protocol to measure system size,
that is, the number of nodes in the system. The S&C protocol, in order to measure the
system size, relies on a sub-routine which is actually a random peer sampling based on
a random walk, and that is hence our focus here. The S&C protocol in fact provides a
system size estimation which is based on the number of uniform random samples that
a node picks before reaching a given number of redundant samples. We illustrate the
functioning of the S&C peer sampling, and discuss its properties, based on the study
conducted by Le Merrer et al. in [67].

The S&C approach is based on the inverted birthday paradox described in [68].
The original birthday paradox [69] problem proves what is the probability P (N,K) of
having, within a group of K people, at least two of them born on the same day of the
year, assuming the probability of a person to be born on a given day is uniform across
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Figure 2.2 – A possible random walk on a graph.

all the days of the year. The inverted birthday paradox method [68] takes the inverted
approach to the problem. That is, it seeks determining the probability distribution of
the number X(N) of people which have to be consecutively selected at random, before
finding two people who are born on the same day of year. The value of X(N) tends to
be around

√
2N when N is large. The S&C then leverages this result in the following

way: the nodes of the system correspond to the dates of the stated problem, and the
algorithm continues sampling a random node until it finds a duplicate sample. If there
have been X samples before seeing a duplicate sample, then the estimation N̂ of the
system size is N̂ = X2/2.

The S&C algorithm improves the above inverted birthday paradox method in
providing a uniform sample of nodes even if nodes have different in-degrees, the in-
degree of a node being the number of nodes having it as neighbor in their local views.
The algorithm works as follows. An initiator node i starts a timer with some predefined
value T > 0, and the timer is enclosed in a sampling request message which is meant
to be disseminated in a random walk fashion. In fact any node j, either because it is
the initiator node itself or because it has received the sampling message, executes the
following tasks. First, it decrements the timer by log(1/R)/dj , where R is a randomly
thrown value in [0, 1] and dj is the out-degree (i.e., the number of neighbors) of node
j. Afterwards, if at this point T > 0, then node j continues the random walk by
forwarding the sampling request message to a random node chosen among its neighbors.
Otherwise, the random walk ends at node j: it either sends to the initiator node i
a sampling response message containing its identifier as sampling result, or handles
locally this value if node j coincides with node i.
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1 def s e l e c t P e e r ( )
2 t i m e r ← i n i t _ t i m e r ( )
3 s a m p l i n g _ r e q u e s t ← 〈REQUEST, s e l f , t i m e r 〉
4 p r o c e s s _ s a m p l i n g _ r e q u e s t ( s a m p l i n g _ r e q u e s t )

5 def p r o c e s s _ s a m p l i n g _ r e q u e s t 〈REQUEST, i n i t i a t o r , t i m e r 〉
6 r a n d _ v a l ← r and ( ) / / r e t u r n s a random v a l u e i n [ 0 , 1]

7 t i m e r ← t i m e r − l o g ( 1 / r a n d _ v a l ) / d e g r e e ( s e l f )
8 i f t i m e r ≤ 0 then

9 i f i n i t i a t o r = s e l f then

10 h a n d l e _ r e t u r n e d _ s a m p l e ( s e l f . i d )
11 e l s e

12 send 〈RESPONSE, s e l f . i d 〉 to i n i t i a t o r
13 e l s e / / e l s e fo rward t o a random n e i g h b o r

14 n e i g h b o r ← s e l e c t _ r a n d o m ( view )
15 send 〈RESPONSE, i n i t i a t o r 〉 to n e i g h b o r

16 def h a n d l e _ r e t u r n e d _ s a m p l e ( i d )
17 / / do s o m e t h i n g w i t h t h e r e t u r n e d random sampled node i d

18 on r e c e i v e 〈REQUEST, i n i t i a t o r , t i m e r 〉
19 p r o c e s s _ s a m p l i n g _ r e q u e s t 〈 REQUEST, i n i t i a t o r , t i m e r 〉

20 on r e c e i v e 〈RESPONSE, id , t i m e r 〉
21 h a n d l e _ r e t u r n e d _ s a m p l e ( i d )

Figure 2.3 – Sample&Collide: pseudo-code.

The pseudo-code in Figure 2.3 summarizes the functioning of the algorithm. The
method selectPeer() initializes the timer and encloses it in a sampling request
message. Any node, being it the initiator node or a node along the random walk which
has received the sampling request message, processes this message by means of the call
to the method process_sampling_request(). Eventually, the initiator node
will receive the id of the node at which the random walk ended, and it will handle the
result via the call to handle_returned_sample().

The Sample&Collide peer sampling sub-routine provides random samples of nodes
in both dynamic and static settings (i.e., with or without node arrivals and departures).
The distribution of the returned sample tends towards the desired uniform distribution for
increasing values of the system parameter T . The value of T to be chosen depends on the
characteristics of the overlay network graph. Roughly speaking, an underlying overlay
network with strong connectivity and with random graph properties is a favorable graph
topology for the Sample&Collide peer sampling service quality.

In the next section, we illustrate a gossip-based peer sampling framework, which
besides providing a uniform sample of the nodes of the system, is also able to build and
maintain a dynamic overlay network with random graph properties, thus making it an
appealing standalone solution.
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2.1. PEER SAMPLING SERVICE

2.1.2 Gossip based peer sampling

A generic gossip-based peer sampling framework [27] has been proposed, which can
be used to implement existing (e.g., Cyclon [26], Newscast [47]) or novel gossip-based
peer sampling protocols.

The approach of the framework is based on having each node maintain a small
limited knowledge of the nodes of the system, that is, a local view. The framework then
implements a random peer sampling by building and maintaining an overlay network
with random graph properties, by means of continuously exchanging among nodes (via
gossiping) their local view entries. The local views of nodes are in fact expected to:
(i) store a continuously changing random sample of the nodes of the system, and (ii)

quickly adapt in case of node arrivals and departures (churn).

A local view entry contains a reference to a neighbor node. This reference contains
the neighbor node’s identifier and its IP address and port number. Additionally, a
local view entry contains an age field indicating the time spent in the local view.
This information plays a role in the possible instantiation variants of the framework.
Furthermore, the local view size at each node has a fixed maximum size chosen in the
order of ln(N) + c neighbors, where N is the number of nodes in the system and c
is a constant parameter. In fact, if a node has ln(N) + c (random) neighbors, then
the probability of the so formed (random) overlay graph to be connected evolves as
exp(exp(−c)) [70].

The functioning of the framework is summarized by the pseudo-code1 of Figure 2.4.
Periodically, each node (called the “source node”) selects a node in its local view
(called the “target node”) to gossip with. This peer selection actually represents
the selectPeer() primitive of the peer sampling service. Depending on the view

propagation strategy, the source and/or target nodes send (a subset of) their local view
entries to the other node. A node receiving a non empty set of entries, merges them in
its local view and truncates the result to the maximum view size. This whole gossip
operation is typically called view shuffling (or view exchange), and the period at which
the operation is performed is the shuffling period2.

The framework captures then different variants with respect to:

• Peer selection. It specifies how the node to gossip with is chosen, via the
method selectPeer(), among the ones currently present in a node’s local
view. Possible implementation strategies are selecting a random node (rand

selection), and the one selecting the oldest node, i.e. the node with the highest
age (tail selection).

The authors point out that selecting the node with the lowest age is not considered,
as it would make the two gossiping nodes keep a rather correlated local view
among them, resulting ultimately in a fairly static overlay.

1The pseudo-code portrays a simplified description of the framework, the reader can refer to the
original paper [27] for full details.

2Nodes are not required to synchronize their periodic gossip executions, but only to use the same
shuffling period, which is typically set in the order of a few seconds, e.g., 5s.
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1 every s h u f f l i n g _ p e r i o d u n i t s do

2 / / I n c r e a s e by one t h e age o f each r e f e r e n c e

3 i n c r e a s e _ v i e w _ a g e ( view )
4 t a r g e t ← s e l e c t P e e r ( view )
5 i f p u s h _ p u l l or push then

6 / / I n s e r t s e l f r e f e r e n c e w i t h f r e s h i n i t i a l age

7 view_s ← s e l e c t _ n e i g h b o r s ( view ) ∪ ( s e l f , 0 )
8 e l s e / / p u l l mode

9 view_s ← {}
10 send 〈REQUEST , v iew_s 〉 to t a r g e t

11 on r e c e i v e 〈REQUEST , v iew_s 〉 from s o u r c e do

12 i f p u s h _ p u l l or p u l l then

13 / / I n s e r t s e l f r e f e r e n c e w i t h f r e s h i n i t i a l age

14 v i ew _ t ← s e l e c t _ n e i g h b o r s ( view ) ∪ ( s e l f , 0 )
15 send 〈RESPONSE , v i e w_ t 〉 to s o u r c e
16 i f p u s h _ p u l l or push then

17 view ← merge_and_ t runca te ( view , v iew_s )

18 on r e c e i v e 〈RESPONSE , v i e w_ t 〉 from t a r g e t do

19 view ← merge_and_ t runca te ( view , v i ew _ t )

Figure 2.4 – Gossip-based peer sampling framework: pseudo-
code. The methods selectPeer(), select_neighbors() and
merge_and_truncate() allow the different combination of implementa-
tion strategies of the framework.

• View propagation. It states which nodes participating in a gossip exchange
actually send a subset of their local view entries to the other gossip partner. In
the push/pull strategy (see Figure 2.5), both the source and the target node send
entries to the other one. In the pull-only strategy (see Figure 2.6), the source node
sends an empty set, while the target node replies with a subset of its local view
entries. Conversely, in the push-only strategy (see Figure 2.7), only the source
node sends its local view entries, and the target node is not even required to send
back a message.

The authors point out that neither the pull-only nor the push-only strategies are
satisfactory. The pull-only strategy is not a suitable solution as it would prevent a
node which has an empty local view to refill it. For the push-only strategy, they
have experimentally shown it is a non adequate solution, as it tends to partition
the overlay graph by forming clusters of nodes, even when there is no churn.

• View selection. It determines how to select the subset of local view entries to
send to the gossiping partner (the method select_neighbors()), and how
to merge and truncate the current local view using the entries received from the
other node (the method merge_and_truncate()) in order to create the new
local view for the node. In case of duplicates when merging the received entries
with the local ones, the entry with the lowest age is kept. The subset size of local
entries to be sent is usually called the shuffle length and it is typically chosen to
be half of the maximum size of the local view.
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Figure 2.5 – View propagation: PUSH/PULL.
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Figure 2.6 – View propagation: PULL-only.

�����������

�

�

�

	�



�

�

�

�

	�



�

Figure 2.7 – View propagation: PUSH-only.
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Three general view selection strategies are considered: (i) random entries are
selected upon sending and kept upon merging and truncating (blind strategy), or
(ii) the youngest entries are selected and kept (healer strategy), or (iii) random
entries are selected and the ones received from the other node are kept when
truncating the local view to its maximum view size (swapper strategy).

View selection select_neighbors() merge_and_truncate()

blind select random entries keep random entries
healer select freshest entries keep freshest entries

swapper select random entries
swap the sent entries with the

received ones

Table 2.1 – Gossip-based peer sampling: view selection strategies.

The framework variants have been evaluated experimentally along different dimen-
sions: randomness of the returned sample of nodes (considering the sequence of entries
obtained from the selectPeer() call), load balancing (studying the distribution of
the number of views in which a node is present), robustness in case of churn (studying
the connectivity and size of the biggest connected graph in case of node departures).
It turns out that no single variant is the best in all dimensions. In fact, whereas all
variants provide a good uniform random sample of nodes returned at each node (“local
randomness”), the swapper variant tends more closely to a random graph (having load
more fairly balanced among the nodes), while instead the healer variant is more robust
to churn. The trade-off choice depends hence on the application. Nevertheless, and
very importantly, all variants manifest a self-organizing property: they convergence to
their final topology regardless of the initial configuration of the overlay network.

2.1.3 Summary

We have presented the peer sampling service API and two existing implementations.
In the sequel, we focus on the gossip-based peer sampling framework, as it is an
appealing and standalone solution for implementing a random peer sampling service by
building and maintaining a random overlay network graph. The gossip peer sampling
assumes each node can communicate with any other node at any given time. Yet,
Network Address Translators, employing firewall-like mechanisms, determine which
(incoming) messages are accepted.

In the following sections, we first illustrate the behavior of NATs. Then, we study
how NATs impact the properties of gossip peer sampling.

2.2 Network Address Translators

Network Address Translators (NATs) [71] were introduced as a (supposed) tempo-
rary solution for the shortage of IPv4 addresses, to allow several nodes with a private
IP address to share a single public IP address (that of the NAT). NATs have become
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nowadays commonplace, for instance used as the way to access the Internet at individual
customers’ homes.

But, a NAT also orchestrates the communication between nodes sitting behind
it (in the following, “natted nodes”) and nodes in the rest of the network (in the
following, “external nodes”). To do so, it implements firewall-like functionalities,
dropping unsolicited incoming messages. In fact, when a natted node opens an outgoing
TCP or UDP session through a NAT, the NAT assigns the session a public IP address
and port number to allow subsequent messages from an external node to be received. In
addition, the NAT assigns the session a filtering rule, which specifies whether messages
received from external nodes on the assigned public IP address and port should be
forwarded or not to the natted node’s private IP address and port. The public IP address
and port mapping, as well as the filtering rule, only remain valid a limited time after the
last message was sent (or received) in a session.

Furthermore, existing NATs differ in the way they assign public IP addresses and
ports, as well as in the filtering rules they implement. In the rest, we assume the
communication among nodes is based on UDP. In fact, in the context of a random peer
sampling service, nodes only need to communicate once and transmit small data. This
gossip exchange does not dictate a reliable communication channel. Also, a node does
not need to keep persistent connections with the neighbors in its local view, which are in
fact continuously changing after each gossip exchange. From the above arguments, in
the following we concentrate on the classification and functioning of NATs as presented
in STUN [72], which focuses on communication based on UDP. Nevertheless, similar
reasoning can be applied to the case of TCP [56].

In the rest of this section, to help understanding the four NAT types described
in [72], we illustrate their functioning through graphical examples. In each of them,
a natted node has internal (private) IP address 10.0.0.1 and initiates communication
(towards one or more external nodes) from its source port 6789. The natted node is
behind a NAT device which has public IP address 1.1.1.1. Furthermore, all the external
nodes in the examples are assumed to be not sitting behind a NAT device and accepting
the incoming messages addressed to them.

2.2.1 Full Cone (FC) NAT

This is the most permissive type of NAT. The NAT assigns the same public IP
address and port to all sessions started from a given natted node’s private IP address
and source port. These sessions all share the same filtering rule, which states that the
NAT must forward all incoming messages directed to the (mapped) external IP address
and port to the internal (private) IP address and source port.

Figure 2.8 illustrates the behavior of FC NAT. A natted node 10.0.0.1 starts a
communication session from its source port 6789, towards the external node 2.2.2.2 on
port 6789. The NAT assigns to this session the public address 1.1.1.1 and port 7777.
The filtering rule which is created is such that any incoming message to 1.1.1.1:7777,
regardless of its source IP and port, will be forwarded by the NAT to 10.0.0.1:6789.
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dest=1.1.1.1:7777

src=2.2.2.2:6789,

dest=1.1.1.1:7777

Figure 2.8 – Full Cone NAT. Node 10.0.0.1 is behind the NAT 1.1.1.1.

2.2.2 Restricted Cone (RC) NAT

This type of NAT imposes restrictions on the IP addresses of external nodes that can
send messages to natted nodes. As for FC NATs, the RC NAT assigns the same public
IP address and port to all sessions started from a given natted node’s IP address and port.
All the sessions started from a given natted node’s IP address and port, and involving the
same target IP address, share the same filtering rule: the NAT only forwards messages
coming from this IP address.

10.0.0.1

src=10.0.0.1:6789,

dest=2.2.2.2:6789 2.2.2.2
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src=1.1.1.1:7777,

dest=2.2.2.2:6789

src=2.2.2.2:6789,

dest=1.1.1.1:7777

src=2.2.2.2:6789,

dest=10.0.0.1:6789

3.3.3.3

src=3.3.3.3:9999,

dest=1.1.1.1:7777

src=2.2.2.2:8888,

dest=1.1.1.1:7777

X

src=2.2.2.2:8888,

dest=10.0.0.1:6789

Figure 2.9 – Restricted Cone NAT. Node 10.0.0.1 is behind the NAT 1.1.1.1.

Figure 2.9 illustrates the behavior of RC NAT. A natted node 10.0.0.1 starts a
communication session from its source port 6789, towards the external node 2.2.2.2 on
port 6789. The NAT assigns to this session the public address 1.1.1.1 and port 7777.
The filtering rule which is created is such that any incoming message to 1.1.1.1:7777
coming from the IP address 2.2.2.2, regardless of its source port, will be forwarded
by the NAT to 10.0.0.1:6789. Incoming messages from any other IP address will be
dropped by the NAT.
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2.2.3 Port Restricted Cone (PRC) NAT

This type of NAT imposes restrictions on the IP addresses and ports of external
nodes that can send messages to natted nodes. As for the previous NAT types, the NAT
assigns the same public IP address and port to all sessions started from a given natted
node’s IP address and port. Nevertheless, each session started from a given natted
node’s IP address and port towards a target IP address and port, has its own filtering
rule. This rule states that the NAT only forwards messages coming from the target IP
address and port to which the session has been opened.
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src=2.2.2.2:6789,

dest=10.0.0.1:6789

3.3.3.3

src=3.3.3.3:9999,

dest=1.1.1.1:7777

src=2.2.2.2:8888,

dest=1.1.1.1:7777

X

X

Figure 2.10 – Port Restricted Cone NAT. Node 10.0.0.1 is behind the NAT
1.1.1.1.

Figure 2.10 illustrates the behavior of PRC NAT. A natted node 10.0.0.1 starts a
communication session from its source port 6789, towards the external node 2.2.2.2 on
port 6789. The NAT assigns to this session the public address 1.1.1.1 and port 7777.
The filtering rule which is created is such that any incoming message to 1.1.1.1:7777
coming from the IP address 2.2.2.2 and source port 6789 will be forwarded by the NAT
to 10.0.0.1:6789. Incoming messages from any other port of the node 2.2.2.2, or from
any other IP address and port, will be dropped by the NAT.

2.2.4 Symmetric (SYM) NAT

This is the most restrictive type of NAT. For every session started from a given
natted node’s IP address and port, the NAT always assigns the same public IP address
but a different port. Note that contrarily to other NAT types, the mapping is destination
(IP and port) dependent. The filtering rule is similar to the one used in PRC NATs: the
NAT only forwards messages coming from the target IP address and port to which the
session has been opened.

Figure 2.11 illustrates the behavior of SYM NAT. A natted node 10.0.0.1 starts
three communication sessions, all of them from its source port 6789:

• one session towards the external node 2.2.2.2 on its port 6789. The NAT assigns
to this session the public address 1.1.1.1 and port 7777.
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• another session towards the external node 2.2.2.2 but this time to the port 9876.
The NAT assigns to this session the public address 1.1.1.1 but this time on port
8888.

• one session towards the external node 3.3.3.3 on its port 6789. The NAT assigns
to this session the public address 1.1.1.1 and this time again on a different port
with respect to the other sessions, that is port 9999.
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Figure 2.11 – Symmetric NAT. Node 10.0.0.1 is behind the NAT 1.1.1.1.

Note that, despite the fact that the natted node initiates a session always from its
port 6789, the NAT device maps this port to a different public port for each different
destination IP address and port pair.

Furthermore, as in the case of the Port Restricted Cone NAT, for each of the three
started sessions, a different filtering rule is created. Each rule is such that an incoming
message to a mapped public IP and port pair is forwarded to the private IP and port
composing the mapping only if the message comes exactly from the IP address and port
towards which the session originally initiated.

2.3 Impact of NATs on gossip peer sampling

As described in the previous sections, the gossip-based peer sampling framework is
an appealing and standalone solution for implementing a random peer sampling service
by building and maintaining a random overlay network graph. We focus on such a
framework in the sequel, and study the impact of NATs on its properties. In fact, the
gossip peer sampling assumes each node can communicate with any other node at any
given time. Yet, Network Address Translators, employing firewall-like mechanisms,
determine which (incoming) messages are accepted.

To study the impact of NATs, we evaluated six different configurations of the
generic gossip-based peer sampling framework described in Section 2.1.2. The six
configurations result from the combination of the possible variants of the peer selection
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(rand or tail) and view selection (blind, swapper, healer) strategies. In fact, as explained
previously, the only suitable view propagation strategy is the push/pull strategy, as it
has been shown to consistently exhibit better performances than the push-only or pull-
only gossip exchange modes [27]. This is then the one used in the all six configurations.

The experiments have been obtained through extensive simulations. The network
size is set to 10,000 nodes, and the bootstrapping procedure is such that at the beginning
of the simulation all nodes’ local views are filled with randomly chosen public nodes.
The initial graph is thus always connected. No churn was considered. Moreover, for the
sake of simplicity, only PRC NATs are considered in the experiments presented in this
section. We evaluated the protocols along the following metrics: (i) the resilience of
the protocol with respect to network partitioning; (ii) the ratio of stale references in the
views of nodes and; (iii) the randomness of the resulting views.

2.3.1 Overlay network partitions

Figure 2.12 shows the size of the biggest connected graph as a function of the
percentage of natted nodes for two chosen local view sizes (15 and 27). The biggest
graph size is expressed as the percentage of nodes of the system belonging to it. As
explained in the previous section, a gossip peer sampling protocol should ensure that the
graph never partitions in the absence of churn. This means that the biggest connected
graph should always contain 100% of the nodes. We clearly see that this property is
not ensured when the percentage of natted nodes reaches a certain threshold (50% and
70% for the considered view sizes). We observe that, as expected, increasing the view
size has a positive impact on the biggest connected graph size for all the six protocol
configurations. One can legitimately consider that increasing the view sizes is enough
to prevent partitions in the presence of NATs. This is actually what is proposed in the
cache-based solution described in ARRG [73]. We show in the reminder of this section
that increasing the view size is not a satisfactory solution with respect to the two other
metrics: the randomness and ratio of stale references.

2.3.2 Stale references

Figure 2.13 shows the average percentage of stale references in the local views of
nodes for two different view sizes (15 and 27). A reference to a neighbor is said to
be stale when it is not possible to communicate with this node (due to the presence
of NATs). We observe that a small percentage of natted nodes suffices to cause nodes
to have stale references in their view, and that the percentage of stale references
almost linearly grows with the percentage of natted nodes. This is not acceptable
for applications relying on a peer sampling protocol. Moreover, we observe that: (i)

the percentage of stale references increases when the view size increases, and (ii) the
percentage of stale references decreases for view size 15 when the percentage of NATs
reaches a certain threshold (85%).

These two observations can be easily explained by two facts. First, increasing
the view size decreases the probability that two nodes shuffle with each other twice
during the lifetime of a NAT filtering rule. Second, with a large percentage of NATs
and view size 15, the network starts to significantly partition in many small clusters.
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(a) Local view size: 15
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(b) Local view size: 27
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Figure 2.12 – Size of the biggest connected graph using two different local view
sizes: (a) 15, (b) 27.
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Consequently, two nodes within a cluster have a very high probability to shuffle with
each other twice during the lifetime of a NAT filtering rule. They will thus have much
fewer references than nodes in the biggest cluster, which in turn reduces the average
number of stale references over all nodes. To illustrate this, consider the extreme case
of a small cluster of two nodes: they will eventually only have one reference in their
view (i.e., a reference towards the other node in the cluster). This reference will always
be valid, as the two nodes continuously shuffle together, thus refreshing the validity of
their NAT filtering rule.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80  90  100

A
v
e
ra

g
e
 p

e
rc

e
n
ta

g
e
 o

f 
s
ta

le
 r

e
fe

re
n
c
e
s

Percentage of NATs

push/pull,rand,healer - view size = 15
push/pull,rand,healer - view size = 27

Figure 2.13 – Percentage of stale references.

2.3.3 Randomness

Figure 2.14 shows the average percentage of non-stale references that correspond to
natted nodes. Again, we consider two different view sizes (15 and 27). The evaluations
show that with 40% of natted nodes and a view of size 15, nodes have on average
only 10% of their non-stale references that correspond to natted nodes. This typically
means that 40% of the nodes are sampled only 10% of the time, which is obviously
a non uniform random sampling. As in Figure 2.13, we observe that increasing the
view size negatively impacts the protocol. We also observe that when the percentage of
NATs reaches a certain threshold (70%), the average percentage of non-stale references
increases. The explanation is similar to the one given for Figure 2.13. In fact, the
percentage of non-stale references towards natted nodes increases when nodes selecting
natted nodes as shuffling targets have higher probability to be able to communicate.
This happens when the view size decreases and when the network partitions.
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Figure 2.14 – Percentage of non-stale references towards natted nodes.

2.3.4 Summary

We have shown how the presence of natted nodes significantly impacts the properties
of the peer sampling protocol with respect to both the randomness of the provided
samples and the connectivity. Effectively, above a given threshold of natted nodes,
potentially unreachable without specific actions, the network gets partitioned. Note
that this is precisely what gossip protocols are expected to avoid. In addition, the
mere presence of nodes behind NATs alters the properties of the protocol. Typically,
many entries in the views of nodes are unreachable (stale references), and therefore the
number of entries that an application running on top of the protocol can effectively use
are mostly those which correspond to nodes which do not sit behind a NAT.

We describe in the following section two existing solutions aimed at accounting for
NATs in gossiping protocols, and discuss their drawbacks.

2.4 Gossiping in presence of NATs: existing solutions

To the best of our knowledge, the only works dealing with NATs in gossip protocol
are [73, 74]. We first describe the principles behind each of them. Then, we discuss
why they do not represent a satisfactory solution for realizing a random peer sampling
service.

2.4.1 ARRG: Actualized Robust Random Gossiping

In [73], a gossip protocol called ARRG is proposed. Together with the protocol, a
fallback cache mechanism is proposed. This fallback cache is a mechanism which can
be added to existing gossip-based protocols, without changing their basic behavior. The
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goal of the cache is to make gossiping protocols more resilient to connectivity problems,
i.e. firewalls or Network Address Translators.

We describe the usage of this fallback cache by using the gossip-based peer sampling
framework described previously in this chapter. To do so, we adapt a push/pull instance
of the peer sampling framework to make use of the fallback cache. Figure 2.15 illustrates
this variant of the gossip peer sampling framework using the cache.

1 every s h u f f l i n g _ p e r i o d u n i t s do

2 t a r g e t ← s e l e c t P e e r ( view )
3 view_s ← s e l e c t _ n e i g h b o r s ( view ) ∪ ( s e l f , 0 )
4 send 〈REQUEST , v iew_s 〉 to t a r g e t
5 s t a r t r e c e i v e _ t i m e r f o r t a r g e t

6 on t r i g g e r r e c e i v e _ t i m e r f o r t a r g e t do

7 t a r g e t _ f r o m _ c a c h e ← s e l e c t R a n d ( f a l l b a c k _ c a c h e )
8 view_s ← s e l e c t _ n e i g h b o r s ( view ) ∪ ( s e l f , 0 )
9 send 〈REQUEST , v iew_s 〉 to t a r g e t _ f r o m _ c a c h e

10 on r e c e i v e 〈REQUEST , v iew_s 〉 from s o u r c e do

11 f a l l b a c k _ c a c h e . u p d a t e _ w i t h ( s o u r c e )
12 v i ew _ t ← s e l e c t _ n e i g h b o r s ( view ) ∪ ( s e l f , 0 )
13 send 〈RESPONSE , v i e w_ t 〉 to s o u r c e
14 view ← m e r g e _ a n d _ t r u n c a t e ( view , v iew_s )

15 on r e c e i v e 〈RESPONSE , v i e w_ t 〉 from t a r g e t do

16 s t o p r e c e i v e _ t i m e r
17 f a l l b a c k _ c a c h e . u p d a t e _ w i t h ( s o u r c e )
18 v i ew _ t ← s e l e c t _ n e i g h b o r s ( view ) ∪ ( s e l f , 0 )
19 send 〈RESPONSE , v i e w_ t 〉 to s o u r c e
20 view ← m e r g e _ a n d _ t r u n c a t e ( view , v i ew _ t )

Figure 2.15 – Push/pull instance of the gossip-based peer sampling framework
using ARRG fallback cache technique: pseudo-code.

The functioning of this modified instance of the gossip-based peer sampling frame-
work protocol becomes thus the following. As in the original version, periodically each
node selects from its local view a target node to gossip with. But, differently from the
peer sampling framework, upon sending a request, the node also registers a timer (line
5) in order to detect a possible connectivity problem towards the target node. If no
response from the target node arrives before the timer elapses, the source node retries
(only once) by picking a random entry from its fallback cache (line 7). This cache is
composed of a (fixed size) set of nodes with which the sender node has successfully
communicated in the past. The presence of this cache is supposed to ensure that at any
time a node has a high probability to know a node it can communicate with.

2.4.2 Balancing gossip exchanges in networks with firewalls

In [74], the authors first discuss how in a topology with connectivity limitations
(due to firewalls or NATs), nodes do not typically participate in a fairly balanced number
of gossip exchanges. In particular, public nodes —by being reachable by all nodes—

30



end up participating in more gossip exchanges, and thus consuming more resources,
than natted nodes.

The authors propose then a gossip protocol which balances the number of gossip
exchanges the nodes perform. Figure 2.16 provides a simplified pseudo-code description
of the protocol. The protocol relies on two main components. First, the protocol assumes
that each node relies on an external peer sampling service (line 2) which only returns
public nodes or nodes sitting behind the same NAT device. This ensures that the target
node can accept a message from the sender node. Second, each node keeps track of the
number of gossip exchanges it actually initiated or answered to. Then, upon receiving a
request, a node will handle it and send a response (line 9-12) if the number of initiated
gossips exceeds the number of gossip requests it has responded to. Otherwise, the
node does not respond to the gossip request, but instead forwards it to the last node it
had previously communicated with in the past (line 15). The forwarding of the gossip
request continues until a node with a balanced quota to accept the request is found, or
when the maximum number of allowed hops is reached. The gossip response is then
sent back to the node which sent the request by traversing backward the same path of
nodes which carried the request.

1 every g o s s i p _ e x c h a n g e _ p e r i o d u n i t s do

2 t a r g e t ← p e e r _ s a m p l i n g . s e l e c t P e e r ( )
3 p a t h ← [ ] ∪ s e l f
4 num_hops ← 1
5 send 〈REQUEST , pa th , 1 〉 to t a r g e t
6 quota ← quota +1

7 on r e c e i v e 〈REQUEST , pa th , num_hops 〉 from p do

8 i f quota >0 or num_hops = MAX_HOPS or l a s t _ c o n t a c t e d =⊥
9 quota ← quota−1
10 // handle the gossip request

11 backward_pa th ← p a t h \ p
12 send 〈RESPONSE , backward_pa th 〉 to p
13 e l s e

14 // forward to last node it communicated with

15 send 〈REQUEST , p a t h ∪ s e l f , num_hops+1 〉 to l a s t _ c o n t a c t e d

16 i f hop = 1 then

17 l a s t _ c o n t a c t e d ← p

18 on r e c e i v e 〈RESPONSE , backward_pa th 〉 from q do

19 i f backward_pa th = [ ] then

20 // handle the gossip response

21 e l s e

22 nex t_hop ← l a s t _ o f ( backward_pa th )
23 send 〈RESPONSE , backward_pa th \ nex t_hop 〉 to nex t_hop

Figure 2.16 – Pseudo-code for “Balancing gossip exchanges in networks with
firewall”.

.

31



2.5. CONCLUSION

2.4.3 Summary

We have illustrated two existing solutions to account for NATs in gossiping pro-
tocols. Neither of the two provides a satisfactory solution for realizing a random peer
sampling service in presence of Network Address Translators.

In [73], the presence of the fallback cache is expected to ensure that at any time
a node has a high probability to know a node it can communicate with. Needless to
say, such a simple mechanism does not ensure a uniform random sample of the nodes.
Moreover, we have previously shown how —above a given threshold of natted nodes—
the local view of nodes end up containing many potentially unreachable references,
causing the network to get partitioned.

In [74], albeit the number of gossip exchanges performed is balanced among public
and natted nodes, the number of gossip exchanges requested is not. The solution relies
on an external peer sampling service to return to a node either nodes picked among
the public nodes or nodes sitting behind the same NAT device. This does not ensure a
uniform random sample. Moreover, if there is a high percentage of NATs, and that there
are very few nodes behind the same NAT device (as in the case of home boxes), the
public nodes would have to receive most of the gossip requests initiated by all nodes of
the system.

2.5 Conclusion

Gossip protocols have received an increasing attention in distributed computing
over the past decade as they are robust, simple and highly resilient to failures and
node arrivals and departures (aka churn). Gossip random peer sampling protocols are
extensively used in this area to build and maintain unstructured networks and provide
each node with a random sample of the network in a fully decentralized way. Such
protocols provide a core building block for gossip based dissemination [25], data
aggregation [36], slicing [39], etc.

In gossip peer sampling, each node typically maintains a set of neighbors (called
its local view) which it periodically exchanges with another node, picked from its
view. This view is expected to be a sample of nodes picked uniformly at random
among all nodes. Such protocols rely on the implicit assumption that a node is able
to communicate with any node of its view. Yet, it is a well known fact that today, a
large number of nodes sit behind Network Address Translators (NATs) [49, 50, 51, 52].
NAT devices allow several nodes with a private IP address to share a single public
IP address and implement firewall-like mechanisms that drop unsolicited incoming
messages. Consequently, the presence of NATs between nodes may prevent them from
being able to communicate directly. To the purpose, we have shown how the presence of
NATs impacts the properties of the gossip peer sampling. The local views of nodes end
up containing many stale references that hurt the randomness of the provided sample,
as well as the connectivity of the overlay, even in the absence of churn.

While the problem of limited connectivity has been addressed in the context of
structured P2P networks [49, 53, 54], it has been mostly ignored in the area of gos-
sip protocols. To the best of our knowledge, the only works dealing with NATs in
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gossip protocol are [73, 74]. In [73], a node stores in a cache the nodes with which
it successfully communicated in the past. The presence of this cache is expected to
ensure that at any time the node has a high probability to know another node it can
communicate with. Needless to say, such a simple mechanism cannot ensure that the
network will remain connected. In [74], the proposed solution ensures balancing the
number of gossip exchanges performed by public and natted nodes. Nevertheless, it
does not ensure that the actual number of gossip exchanges received is balanced among
public and natted nodes.

The problem of limited connectivity has also been addressed in works [34,75,76,77]
which rely on an explicit structure to route messages on top of a gossip protocol. These
solutions use proactive mechanisms to ensure that communication between natted nodes
is possible under the implicit assumption that the network is fairly static.

In the next chapter, we present and evaluate Nylon, a novel gossip-based peer
sampling protocol which takes into account NATs, while ensuring the desired properties
of the random peer sampling service.
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In the previous chapter we have presented various gossip protocols implementing
the peer sampling API. These protocols all assume that every node can communicate
with any other node. We have shown that this is not the case on the Internet, due to
the presence of Network Address Translators, which prevent the direct communication
towards natted nodes. As a result, the local views of nodes end up containing many stale
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references that hurt the randomness of the provided sample, as well as the connectivity
of the overlay, even in the absence of churn.

A straightforward cope out is to associate every natted node to a public node. Pro-
vided the natted node accepts incoming messages from its associated public node, the
latter can act as a relay between this natted node and any other node. Obviously, this
imposes a significant overhead on public nodes which is not acceptable. Furthermore,
the failure of public nodes would severely impact the overall connectivity and function-
ing of the system. The popular Skype P2P VoIP and Video calling service suffered from
this very same issue recently [78], causing several hours of downtime of the system for
millions of users worldwide.

To the best of our knowledge, no existing gossip-based peer sampling protocol
accounts for the presence of NATs. In this chapter, we present Nylon, a novel NAT-
resilient gossip peer sampling protocol that leverages “NAT traversal techniques” [56,
57] to build a peer sampling protocol that works despite the presence of NATs. This
protocol ensures that the communication between a node and its neighbors is always
possible, even for the case when a neighbor is natted. In fact, as soon as a node picks a
neighbor n in its local view to initiate a gossip with, it uses as relay the node which gave
it this specific reference to set up a communication with n, and becomes itself a relay
to n. Note that the node might rely on more than one relay to set up a communication
with n. We evaluated Nylon through an extensive simulation study, showing that: (i) it
ensures that the properties of the peer sampling are preserved in the presence of NATs,
(ii) it evenly balances the relay load between nodes (be they public or natted), and (iii)

it is highly resilient to churn.

The rest of this chapter is organized as follows. Section 3.1 presents general
techniques to traverse Network Address Translators in order to communicate towards
natted nodes. These techniques are the foundations upon which the Nylon protocol
relies, as illustrated in our NAT-resilient protocol description in Section 3.2. Section 3.3
presents a set of optimizations to the base protocol in order to help reducing the length
of the chain of relays which are used to communicate towards natted nodes. We evaluate
Nylon in Section 3.4, while Section 3.5 concludes this chapter.

3.1 NAT traversal techniques

In the presence of NATs, the public IP address and port mapping and the filtering
rules determine how nodes can communicate. As previously illustrated in the example
scenario of Section 2.2.1, as long as a node behind a Full Cone (FC) NAT regularly
sends or receives messages through the public address and port the NAT device assigned
to it, it will have a valid filtering rule forcing the NAT device to forward it all incoming
messages, regardless of the IP address and port they are coming from. Consequently,
nodes behind a FC NAT can almost behave like public nodes. Rather, if the target
node is behind a Restricted Cone (RC) NAT, Port Restricted Cone (PRC) NAT, or
Symmetric (SYM) NAT, the source node willing to communicate with it will have to
apply a so-called “NAT traversal technique” to be able to do so effectively.

There exist two different NAT traversal techniques [56, 57] depending on the
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combination of source and target node’s NAT type. These techniques rely on the use of
rendez-vous peers (RVPs) which are able to exchange messages with both the source
and the target nodes1. Table 3.1 summarizes which one of the two techniques should
be used for a given combination of source and target node’s NAT type. As explained in
Chapter 2, we consider UDP-based implementations of gossip protocols. Consequently,
we describe in this section NAT traversal techniques designed especially for UDP
message exchanges. Similar techniques for TCP messages exchanges are also described
in [56].

X
X
X

X
X
X

X
X

X
X

source
target

public RC PRC SYM

public direct hole punching hole punching hole punching
RC direct hole punching hole punching hole punching

PRC direct hole punching hole punching relaying
SYM direct (mod.) hole punching relaying relaying

Table 3.1 – NAT traversal technique to use for a given combination of source/tar-
get node’s NAT type.

In the following two sections, we present the hole punching and relaying NAT
traversal techniques.

3.1.1 Hole punching

We illustrate the hole punching technique in Figure 3.1, where for completeness
we consider the case where both the source and target nodes are behind NATs. In the
example, we assume no prior recent message exchange has taken place between the
source and target node. We also assume that the source node knows the target’s node
mapped public IP address and port (e.g., querying the RVP for example).

First the source node sends a PING message to the target node. The message is
dropped by the target node’s NAT. Nevertheless, the action of sending it makes the
source node’s NAT device create a filtering rule which allows to forward to the source
node subsequent messages coming from the target node. In jargon, the source node
has opened a hole in its NAT to allow communication from the target node. Then, the
source node sends an OPEN_HOLE message to the RVP, to declare that it wants to
communicate with the target node. The RVP forwards the OPEN_HOLE message to the
target node.

As soon as the target node receives the OPEN_HOLE message, it sends a PONG

message to the source node. At this point, also the NAT device of the target node has a
valid filtering rule allowing incoming messages from the source node. That is, also the
target node has opened a hole in its NAT. Finally, as soon as the source node receives
the PONG message, it can start sending the messages to the target node. A little more
care has to be taken when the source node is behind a SYM NAT. In fact, the hole
punching technique needs to be slightly modified: because the target node does not

1In the generic description of a RVP, this is usually a public node to which the source and target node
periodically send PING messages to keep their filtering rules valid for the RVP.
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Figure 3.1 – NAT traversal via hole punching.

know the public IP address and port that has been assigned to the source node by the
NAT (as they change on a per session basis), it uses the RVP to send the PONG message
to the source node.

Note that for most combinations (i.e., those not involving SYM NATs), after the
hole punching technique has been performed, the target node can also successfully send
messages directly to the source node.

3.1.2 Relaying

We illustrate the relaying technique in Figure 3.2, again assuming no prior recent
message exchange has taken place between the source and target nodes.

This technique can be used as a fallback solution when the hole punching cannot
be used, i.e. when the target node is behind a SYM NAT and the source node is either
behind a PRC NAT or a SYM NAT, or when the target node is behind a PRC NAT
and the source node is behind a SYM NAT. This is due to the fact that the SYM NAT
device assigns a different port to every new session started by a node towards another
node, and this port is generally not known in advance2. The only possibility for sending
messages effectively to the target node is then to use the RVP as a relay, as illustrated in
Figure 3.2.

The RVP is a node which can communicate with both the source and target nodes.
The source node then sends to the RVP a REQUEST message indicating which node is
actually the intended target node. Upon reception of the message, the RVP successfully
relays it to the target node.

2Some SYM NAT devices implement predictable port assignment strategies, making it possible to use
so called “port prediction techniques”. This is nevertheless not always the case.

38



10.0.0.1:6789

type=REQUEST,

src=10.0.0.1:6789,

dest=3.3.3.3:6789,

target=2.2.2.2:8888

3.3.3.3:6789

RVP

192.168.0.1:6789

type=REQUEST,

src=1.1.1.1:7777,

dest=3.3.3.3:6789,

target=2.2.2.2:8888

type=REQUEST,

src=3.3.3.3:6789,

dest=2.2.2.2:6789,

requester=1.1.1.1:7777

type=REQUEST,

src=3.3.3.3:6789,

dest=192.168.0.1:6789,

requester=1.1.1.1:7777

1.1.1.1
2.2.2.2

N

A

T

N

A

T

Figure 3.2 – NAT traversal via relaying.

3.2 The Nylon protocol

Before providing the description of the approach and pseudo-code of the Nylon
protocol, we start by providing some preliminary observations which led to its design.

3.2.1 Preliminary observations

A possible approach for systematically allowing to traverse NATs is to employ
public RVPs [79, 80]. This could allow to build a NAT-resilient peer sampling protocol
as follows: a source node needing to communicate with a target natted node, would
contact first the natted node’s public RVP to forward an OPEN_HOLE message to the
target node. This simple scheme suffers however from several drawbacks. First, the
extra load induced by the presence of NATs is supported only by the public nodes. This
creates an uneven distribution of the load, where public nodes contribute much more to
the protocol than natted nodes. Another issue is the non uniform impact of failures of
natted and public nodes. A public node’s failure invalidates all references to the natted
nodes bound to it. A possible solution would be to use several RVPs for each natted
node. Nevertheless, this solution has its drawbacks as well. First, increased bandwidth
consumption, caused by having to disseminate together with a node’s reference also the
list of its RVPs. Second, the additional need of having to maintain this list in presence
of failures, or in order to fairly balance the RVPs bound to the natted nodes.

In order to overcome the limitations imposed by using only public RVPs, we
designed a fully decentralized protocol that uses both natted and public nodes as RVPs.
Relying also on natted nodes for implementing RVPs is challenging. Indeed, an RVP
must be reachable by all nodes willing to communicate with nodes for which it acts
as RVP. It is obviously impossible to ensure that a natted RVP will have valid NAT
filtering rules for every nodes in the system.

The design of Nylon relies on the following two observations:

1. In a gossip peer sampling protocol, it is not required that every node be

reachable at any time by all nodes. In fact, at a given time, the only nodes a
given node might want to communicate with are those that are in its (continuously
changing) local view. Consequently, each node only needs to be able to commu-
nicate with a very small, continuously changing, subset of nodes. Typically, in
the gossip peer sampling protocols described in Section 2.1.2, this subset has a
size in the order of ln(N), N being the number of nodes in the system.
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2. In a gossip peer sampling protocol, although a node might want to commu-

nicate with any node in its local view at any time, it does not. In fact, only a
single node from its local view is picked upon each gossip operation. Moreover,
it might even be the case that a node p in the local view of a node q is removed
from q’s local view without p and q actually gossiped with each other.

Nylon leverages these two observations to build a NAT-resilient gossip-based peer
sampling protocol in which all nodes can act as RVPs. The first observation is taken into
account by implementing a hole punching protocol for only a subset of the system. The
second observation is taking into account by implementing a reactive hole punching
protocol which consists in performing the actual hole punching protocol between two
nodes only when needed, namely when a gossip between the two nodes is initiated.
This avoids to systematically send an OPEN_HOLE message to all the natted nodes that
a node adds in its view.

3.2.2 Protocol description

The main idea of Nylon is to implement reactive hole punching. Intuitively, this
works as follows: a node only performs hole punching towards nodes it gossips with.
Hole punching is implemented using a chain of RVPs that forward the OPEN_HOLE

message until it reaches the gossip target node.

The chain of RVPs is built as follows. Consider the case of a node n1 shuffling with
a node n2. After having performed hole punching towards n2 (using a chain of RVPs),
nodes n1 and n2 can directly communicate with each other. Thus, they both become
RVP for each other. Consider now that later, one of them, say n2, shuffles with a node
n3 and gives it a reference to n1. Before shuffling, node n2 performs hole punching
towards n3. Consequently, as between n1 and n2, node n2 and n3 both become RVP
for each other. Finally, consider that n3 shuffles with a node n4 and gives it a reference
to n1. A chain of RVPs has thus been created, as shown in Figure 3.3. This chain
allows n4 to shuffle with node n1. For this purpose, it performs hole punching towards
node n1 by sending an OPEN_HOLE message to n3 that will in turn forward it to n2,
that will forward it to n1.

As we can see from the figure, an RVP field is added in the entry data type for
the purpose of specifying the next RVP to use to establish communication towards a
node. When this field is empty (“-”), it means that direct message exchange with the
given node is possible (e.g., either because the given node is public, or because a hole
punching has been performed).

Furthermore, a time to live (TTL) field is also added to the entry data type, which
is only used for references to natted nodes. The time to live specifies the remaining
duration of the filtering rule of the chain of RVPs towards the given natted node: being
part of the entry data type, TTLs are in fact exchanged by nodes during shuffling.
Also, the TTLs fields are decreased every shuffling period, and refreshed every time
a message from a given RVP is received. Note that the TTL mechanism assumes that
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Figure 3.3 – Nylon operating principle.

there is a known upper bound on the latency between each pair of nodes3.

Let us note that, in addition to maintaining entries in its local view, each node
maintains also entries in a routing table data structure, in order to be able to route
messages towards nodes no longer present in its local view. The routing table data
structure is in fact maintained as follows. Each time an entry is added (or updated) in
the local view, it is also added (or updated) in the routing table4. Whenever an entry
is removed from the local view (e.g., as part of the merge and truncate procedure), it
remains in the routing table as long as the TTL does not expire. This allows a node
to route messages along the chain of RVPs even when the intended target is no more
among its current local view neighbors. Moreover, if the TTL of an entry expires, the
entry is removed from the routing table and from the local view (if it is currently present
there as well). As en effect of continuously exchanging neighbors among nodes as part
of the gossiping protocol, also RVPs in Nylon are constantly changing and following
the reactive flavor of the protocol. Also, RVPs do not proactively refresh holes by
sending keep alive messages.

3.2.3 Pseudo-code

The pseudo-code of the Nylon protocol is presented in Figure 3.4. The protocol is
built on top of the gossip-based peer sampling framework presented in Section 2.1.2.
The basis of the protocol is the (push/pull, rand, swapper) configuration, which in
the original study [27] (without NATs) has been shown to obtain good load balancing
among the nodes. The only additions to the protocol are for handling NAT traversal
techniques and implementing the RVP chaining mechanism previously described.

3If the upper bound is not met, this could cause a node’s reference in the routing table to become stale.
We show in Section 3.4 that the protocol resists to the simultaneous departure of 40% of the nodes. This
shows that the protocol would resist to 40% of the message exchanges simultaneously exceeding the upper
bound.

4Technically, the two data structures contain the very same entry object.
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3.2. THE NY LON PROTOCOL

1 every s h u f f l i n g _ p e r i o d u n i t s do

2 d e c r e a s e _ r o u t i n g _ t a b l e _ t t l s ( )
3 t a r g e t ← s e l e c t P e e r ( view )
4 view_s ← s e l e c t _ n e i g h b o r s ( view ) ∪ ( s e l f )
5 / / I f souce node can communicate d i r e c t l y t o g o s s i p t a r g e t

6 i f ( t a r g e t i s p u b l i c or next_RVP ( t a r g e t ) = t a r g e t ) then

7 send 〈REQUEST , view_s , s e l f , t a r g e t 〉 to t a r g e t
8 e l i f ( ( t a r g e t i s SYM and s e l f i s PRC) or s e l f i s SYM) then

9 / / E l s e e i t h e r NAT t r a v e r s a l v i a r e l a y i n g . .

10 send 〈REQUEST , view_s , s e l f , t a r g e t 〉 to next_RVP ( t a r g e t )
11 e l s e

12 / / . . or NAT t r a v e r s a l v i a h o l e punch ing

13 send 〈OPEN_HOLE , s e l f , t a r g e t 〉 to next_RVP ( t a r g e t )
14 / / I f s o u r c e i s n a t t e d , open h o l e on i t s NAT f o r t h e t a r g e t

15 i f s e l f i s not p u b l i c then

16 send 〈 P ING 〉 to t a r g e t

17 on r e c e i v e 〈REQUEST , view_s , s r c , d e s t 〉 from p do

18 update_next_RVP ( p , p , HOLE_TIMEOUT)
19 i f d e s t 6= s e l f then

20 / / R e l a y i n g r e q u e s t t o t h e n e x t RVP along t h e c h a i n

21 send 〈REQUEST , view_s , s r c , d e s t 〉 to next_RVP ( d e s t )
22 e l s e / / s e l f node i s t h e g o s s i p t a r g e t node

23 v i ew _ t ← s e l e c t _ n e i g h b o r s ( view )
24 i f ( s r c i s SYM and s e l f i s not p u b l i c )

or ( s e l f i s SYM and s r c i s not p u b l i c ) then

25 / / Respond ing v i a r e l a y i n g a long t h e c h a i n o f RVPs

26 send 〈RESPONSE , view , s r c 〉 to next_RVP ( s r c )
27 e l s e

28 / / Respond ing d i r e c t l y t o t h e g o s s i p s o u r c e node

29 send 〈RESPONSE , view , s r c 〉 to s r c
30 view ← merge_and_ t runca te ( view , v iew_s )
31 u p d a t e _ r o u t i n g _ t a b l e ( v iew_s )

32 on r e c e i v e 〈RESPONSE , v iew_t , d e s t 〉 from p do

33 update_next_RVP ( p , p , HOLE_TIMEOUT)
34 i f d e s t 6= s e l f then

35 / / R e l a y i n g r e s p o n s e t o t h e n e x t RVP along t h e c h a i n o f RVPs

36 send 〈RESPONSE , view , d e s t 〉 to next_RVP ( d e s t )
37 e l s e

38 view ← merge_and_ t runca te ( view , v i ew _ t )
39 u p d a t e _ r o u t i n g _ t a b l e ( v i ew _ t )

40 on r e c e i v e 〈OPEN_HOLE , s r c , d e s t 〉 from p do

41 update_next_RVP ( p , p , HOLE_TIMEOUT)
42 i f d e s t = s e l f then

43 send 〈PONG〉 to s r c
44 e l s e

45 send 〈OPEN_HOLE , s r c , d e s t 〉 to next_RVP ( d e s t )

46 on r e c e i v e 〈 P ING 〉 from p do

47 update_next_RVP ( p , p , HOLE_TIMEOUT)
48 send 〈PONG〉 to s r c

49 on r e c e i v e 〈PONG 〉 from p do

50 update_next_RVP ( p , p , HOLE_TIMEOUT)
51 send 〈REQUEST , view , s e l f , p 〉 to p

Figure 3.4 – The Nylon protocol: pseudo-code.
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The routing table code is abstracted by four methods. The method next_RVP()
returns the next RVP to be used to route a message to a given node: if the des-
tination is directly reachable (because either the destination is public or the node
acts as an RVP for the destination), the method returns the destination itself. The
method update_next_RVP() is used to create a new entry or refresh the TTL
of an existing entry in the routing table for the node from which a message is re-
ceived. The method update_routing_table() is called to update the routing
table taking as parameter the entries that have been received during a view shuffling.
This method adds an entry in the routing table for each exchanged node reference,
and specifies that the RVP for each of the references to natted nodes among them
to be the node with which the shuffle has just been performed. Finally, the method
decrease_routing_table_ttls() is used to (periodically) decrease the TTLs
of the existing routing table entries accounting for the elapsed interval since the last
gossip execution. The routing table entries whose TTL drops to zero are discarded from
the routing table. Furthemore, every local view entry referencing one of these nodes or
having as RVP one of these nodes, is discarded as well.

3.2.4 Discovery of NAT type and hole timeout

As we can note in the pseudo-code, nodes need to be aware of their NAT type and
TTL duration, as well as those of the nodes they want to gossip with, in order to be able
to decide which communication strategy to adopt: direct, hole punching, relaying.

Nylon does not directly provide a built-in solution to discover the NAT type and
TTL durations, but it can rely on existing methods. In fact, a possible viable and
practical solution for a node to discover its NAT type before joining the Nylon overlay,
is to run the client part of the STUN protocol [72], and contact a public STUN server
available on the Internet5. STUN is a client/server protocol which allows a client to
discover whether it is sitting behind a NAT, and if that is the case, what is the type of the
NAT and the public IP address that the NAT device assigned to the client as part of the
mapping procedure. Similarly to the way a node can discover its NAT type, the node
can also discover the duration of its NAT hole timeout by having the server attempt to
delay sending a message to the client (and this one, sending back an ack to attest the
reception) [82].

The NAT type information (either manually set or discovered), and its initial TTL
duration, can then respectively be stored in the entry data type in the fields nat_type
and ttl. And, by means of the regular view shuffling, nodes can spread their NAT
type information and be aware of the NAT type of their neighbors.

We point out that the aforementioned methods to discover a node’s NAT type and
TTL duration could be implemented within the Nylon protocol itself (having each node
implement both the client and server side part), and be run by a node upon joining the
overlay network.

5The STUN servers are listed in [81].
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3.3. OPTIMIZATIONS

3.3 Optimizations

We present in the following a set of optimizations to Nylon. Their purpose is to
reduce the length of the chains of RVPs, and thus the latency in establishing direct
communication towards natted nodes.

3.3.1 Entry optimization predicate

Let us assume that a node s has an entry P in its local view referencing the natted
node q. When s receives an entry E referencing node q, it updates its local entry if: (i)

E has a TTL greater or equal than that of P , and (ii) E has an “estimated path length”
towards q which is strictly lower than that currently stored in P .

The motivation behind the first point is to guarantee the invariant condition that
the TTL of a hop along the chain of RVPs is equal or greater than that of the previous
hop(s). Violating this invariant can cause routing problems: OPEN_HOLE messages
might in fact be dropped along the chain of RVPs because routing tables entries have
been discarded due to an expired TTL at one of the hops.

The motivation behind the second point, requiring the strictly lower estimated path
length, is the following. If a node s receives from a node d an entry E which references
a natted node q, the length of the path to reach q from s using d as its next RVP would
then in fact be one hop longer than that from d itself to q. In order to provide a node
with the information about the (estimated) length of the chain of RVPs towards a given
natted node, the entry data type is extended with an estimated_path_length

field, which is initialized as follows. Taking again Figure 3.3 as example, at first node
n1 successfully communicates directly with the node n2. At this point, both n1 and
n2 have an estimated path equal to 1 towards each other. When n2 gives to n3 its
entry referencing n1, the node n1 being natted, n3 stores n2 as its RVP towards n1 and
increments by one the estimated path information received from n2.

The optimizations described in the following sections aim at improving the accuracy
of the estimated_path field, and at using chains of RVPs which lead to shorter
paths towards natted nodes. For each of the optimizations, we first present their rationale,
then we illustrate their functioning via a graphical example, and finally we provide the
details of how to implement the optimization within the protocol.

3.3.2 Optimization 1: Shuffled entries optimization

Rationale. This optimization leverages the shuffling among nodes. It allows a node to
possibly optimize its local entries referencing the same destinations referenced by the
entries received via shuffling. In fact, if a received entry has a path to a destination q
which is shorter than the path previously known by the receiver node, this node will
update its (local view and/or routing table) entry referencing q to route messages along
the same path used by the sender node.

Example. Figure 3.5 illustrates the “shuffled entries optimization”. All nodes repre-
sented in the example are natted. Node s participates in a view exchange with node d,
and receives d’s entry referencing node q. The path to reach q using d as the next RVP
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is one hop shorter (→ d → q) than the path previously known by s (→ n1 → n2 → q).
Consequently, s updates its entry referencing q to use d as its next RVP.
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Figure 3.5 – Shuffled entries optimization: example. Node s optimizes its path
towards node q, passing from 3 hops (→ n1 → n2 → q) to 2 hops (→ d → q).

Details. When a node receives a shuffle request/response, it tests each entry contained
in the shuffle request/response against the optimization predicate. When the predicate
holds, the data of the received entry are used by the node to update its local entry. Note
that this optimization leverages all the entries received via shuffling, but only the ones
kept from the view merge and truncate procedure are stored in the local view. The other
entries only end up being updated in the routing table.

3.3.3 Optimization 2: Backward optimization

This optimization leverages the transit of an OPEN_HOLE message. We describe
the optimization in two parts: the “backward optimization towards the source”, and the
“backward optimization towards the destination”. Note that successfully applying the
first optimization is a prerequisite to apply the second one.

3.3.3.1 Backward optimization towards the source

Rationale. This optimization allows each node forwarding an OPEN_HOLE message
along the chain of RVPs to possibly optimize its entry referencing the source node s
which originated the OPEN_HOLE. In fact, if the path traversed by the OPEN_HOLE

from the source node s to a node p is shorter than the path p knows to reach s, then p
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3.3. OPTIMIZATIONS

will update its entry referencing s to route messages backward along the path traversed
so far by the OPEN_HOLE. To do so, p will use the previous hop as its next RVP for s.

Example. Figure 3.6 illustrates the “backward optimization towards the source”. All
nodes represented in the example are natted. Node s originates an OPEN_HOLE

message targeted to node d, which is forwarded along the chain of RVPs. Each RVP
along the chain increments in the OPEN_HOLE the number of hops traversed so far
from s. Node p receives the OPEN_HOLE from n1, and learns that the path to reach
s passing via n1 is shorter (→ n1 → s) than the path via n2 it previously knew
(→ n2 → n3 → s). Consequently, p updates its entry referencing the source node s to
use n1 as its next RVP.
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Figure 3.6 – Backward optimization towards the source. Node p optimizes its
path towards the source node s, passing from 3 hops (→ n2 → n3 → s) to 2
hops (→ n1 → s).

Details. The OPEN_HOLE message data type is extended with a backward_entry
field. Whenever a hop along the OPEN_HOLE chain forwards the OPEN_HOLE mes-
sage to the next hop, it also stores in this field its local entry referencing the source
node s6. Upon reception of the OPEN_HOLE, the current hop tests the contained
backward_entry against the optimization predicate. Analogously to what explained
in Section 3.3.2, if for the backward_entry the optimization predicate holds, the
current hop will update its local entry using the data contained in the received entry.

6When it is the source node s sending the OPEN_HOLE to the first hop of the chain, the field
backward_entry is left empty. In fact, the first hop is in direct communication with the node s.
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3.3.3.2 Backward optimization towards the destination

Rationale. The OPEN_HOLE in transit can also be leveraged to optimize the path
towards the destination node d, reaching it backwardly through the source node s. In
fact, once the hole punching procedure completes, the source node s and the destination
node d can communicate directly, hence “extending” the validity of the backward path
(from a hop along the chain of RVPs, towards the source node s) up to the destination
node d itself. According to this, if the path (plus one additional hop) traversed by the
OPEN_HOLE from the source node s to a node p is shorter than the path p currently
knows to reach d, then p will update its entry referencing d to route messages backward
along the path traversed by the OPEN_HOLE. To do so, p will use the previous hop as
its next RVP for d.

Example. Figure 3.7 illustrates the “backward optimization towards the destination”.
Again, all nodes in the example are natted. When node p receives the OPEN_HOLE

from s, it learns that the path to reach d via s (→ s → d) is shorter than the path via
n1 it previously knew (→ n1 → n2 → d). Consequently, p updates its local entry
referencing the destination node d to use s as its next RVP.
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Figure 3.7 – Backward optimization towards the destination. Node p optimizes
its path towards the destination node d, passing from 3 hops (→ n1 → n2 → d)
to 2 hops (→ s → d).

Details. First, a hop node p along the chain of RVPs creates a “candidate” entry E ref-
erencing d. This entry E leads to a path which passes through s, going backward along
the same path which the OPEN_HOLE traversed to reach p. The entry E is initialized
in the following way. The RVP and TTL are those of p’s local entry referencing s. As
estimated path length value, that of its local entry referencing s, incremented by one
unit. Then, in order for a hop node p to actually replace its previous entry referencing d
with this candidate entry E, two conditions must hold. First, the node p is the first RVP
along the chain, or it has successfully applied the backward optimization towards the
source s (cfr. previous Section 3.3.3.1). Second, the candidate entry E referencing d
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passes the optimization predicate. Finally, if the optimization is applied, the concrete
changes to the entry referencing the destination node d are delayed, by a gossip period.
In fact, direct communication between the source node s and the destination node d is
only possible once the hole punching procedure has completed. This is not the case yet
while nodes are still forwarding the OPEN_HOLE message. An immediate change to
the routing table entry referencing the node d would then result in a possible (transient)
invalid route to d.

3.3.4 Optimization 3: Forward optimization

Rationale. This optimization is the “symmetric” version of the backward optimization
previously described. It still aims at optimizing the entries referencing the source
node s and destination node d of the OPEN_HOLE message. But, in this case, the
optimized paths towards s and towards d are oriented along the same direction of the
path traversed by the OPEN_HOLE. After receiving the OPEN_HOLE, the destination
node d originates a so called ACK_OPEN_HOLE message. This message is sent to s by
traversing backward the very same path originally traversed by the OPEN_HOLE. If
the path traversed by the ACK_OPEN_HOLE from the destination node d to a node p is
shorter than the path p knows to reach d, then p will update its local entry referencing d
to route messages backward with respect to the path traversed by the ACK_OPEN_HOLE

(i.e., along the same direction of the path originally traversed by the OPEN_HOLE to d).
To do so, p will use its previous ACK_OPEN_HOLE hop as its next RVP for d. Similar
reasoning applies to optimize the path towards s by passing through d.

Example. Figure 3.8 illustrates the “forward optimization”. Again, all nodes in the
example are natted. When node p receives the ACK_OPEN_HOLE from n3, it learns
that the path to reach d via n3 is 2 hops distant. Consequently, p updates its (inaccurate)
knowledge of the distance to d. This also means that the path to reach s passing
through d (→ n3 → d → s) is shorter than the path via n4 that p previously knew
(→ n4 → n5 → n6 → s). Consequently, p updates its local entry referencing the
source node s to use n3 as its next RVP.

Details. To realize this optimization, a new message type is introduced, which is called
ACK_OPEN_HOLE, and it is used as follows. Once the OPEN_HOLE message reaches
the destination node d, this node originates an ACK_OPEN_HOLE message which is sent
along the very same chain of RVPs that originally forwarded the OPEN_HOLE. In order
to be able to traverse backward the original path, when nodes forward an OPEN_HOLE
message, they (temporarily) associate to its message id and source node id, the identifier
of the previous RVP along the chain. Analogously to what done in the case of the
backward optimization, when a node forwards the ACK_OPEN_HOLE message to the
next hop along the path towards the source node s, it stores in a forward_entry
field its local entry referencing the destination node d7. In a first place, upon reception
of the ACK_OPEN_HOLE, a hop along the chain of RVPs attempts to optimize its local
entry referencing the destination node d. This is actually the “forward optimization
towards the destination”. If it succeeds in applying this optimization, it then attempts to
optimize its local entry referencing the source node s and passing through the node d.

7When the destination node originates the ACK_OPEN_HOLE, the field forward_entry is empty.
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Figure 3.8 – Forward optimization towards source and destination. After the
transit of the ACK_OPEN_HOLE, p updates its knowledge of the path length
towards d (from the inaccurate 3 hops, to the actual 2 hops), and optimizes its
path towards the source node s passing from 4 hops (→ n4 → n5 → n6 → s)
to 3 hops (→ n3 → d → s).
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This is actually the “forward optimization towards the source”. The conditions to apply
them are the same ones described in Section 3.3.3.1 and Section 3.3.3.2.

3.4 Evaluation

In this section, we report the results of the evaluation of the Nylon protocol. We
evaluate in both the base and optimized variants (that we refer to as Nylon++). We
show that the protocol: (i) achieves a uniform random peer sampling, (ii) constructs
chains of RVPs with reasonable length, (iii) is highly resilient to churn, and (iv) induces
little overhead and homogeneously balances the load among natted and public nodes.

Experimental settings. To the best of our knowledge, existing P2P simulators do not
take into account NATs. We thus developed a Java cycle-based event-driven simulator
à la PeerSim [62], which takes into account the four types of NATs described in
Section 2.2. Message latency is set to 50ms, the NAT hole timeout is set to 90s (a fair
estimate of real values [50]), and the shuffling period is set to 5s.

Although we experimented with all four types of NATs, experiments with FC NAT
are not reported. In fact, as explained in Section 2.2.1, nodes behind FC NATs behave
similarly to public nodes as long as they frequently send or receive messages. The
distribution we used is the following: 50% of RC NATs, 40% of PRC NATs, and 10%
of SYM NATs. This distribution mostly accounts for the fact that SYM NAT behavior,
which imposes relaying to be overcome, constitutes the smallest proportion of deployed
NATs, according to findings and recent measurements [50]. Note that we evaluated
other distributions and obtained comparable results. Experiments were conducted on
a 1,000 nodes system, with a view size set to 10 and shuffle length set to 5. Unless
explicitly stated differently, all experiments were run with 30 different seeds, and the
results reported are the average of those 30 runs. Finally, experiments lasted a long
enough time to observe, most of the time, a negligible variance. However, any non
negligible observed variance is indicated in the graphs.

We do not report the preliminary analysis results: we indeed first checked that
during execution there were no network partitions in absence of churn, and that no stale
references were present in the views of the nodes. We start then by presenting an analysis
of the randomness of the protocol. Then, we study the average latency (expressed in
terms of length of the chain of RVPs) incurred in establishing a communication towards
natted nodes. Afterwards, we study the resiliency of Nylon to churn. Finally, we
show the network bandwidth overhead with respect to standard gossip peer sampling
protocols.

3.4.1 Randomness

Similarly to what is done in [27], we assessed the randomness properties of the
graph formed by nodes: each node is a vertex, and we consider that there is a directed
edge from node p to node q when q is in the local view of p. To determine whether the
graph is a random graph, we study the in-degree of nodes and clustering coefficient of
the graph. Moreover, to compare with results presented in Section 2.3.3, we present the
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percentage of non-stale references towards natted nodes in views.

We present the results obtained for the following three protocols: (i) a refer-
ence (push/pull, rand, swapper) instance of the generic peer sampling framework;
(ii) the base Nylon protocol; (iii) the Nylon protocol with optimizations (Nylon++).
While for the first case we simulated an overlay without NATs, in the latter two cases
the percentage of NATs was set to 70% of the nodes of the system, which is a realistic
value on the Internet [49].

Following the study conducted in [27], to study the stability and convergence of
the graph properties during the execution of the protocols, they are evaluated under the
following three different bootstrapping scenarios:

Growing. There is initially only one node (the bootstrapping node). At each shuffling
period, 50 new nodes are added, with their views initialized only containing the
bootstrapping node. The addition of nodes continues periodically until the total
number of nodes is reached.

Ring. Nodes are randomly ordered on a ring space, and each node’s view is filled with
an equal number of closest nodes on its left and right side on the ring. In the cases
of Nylon and Nylon++, whenever a natted node is put into the view of a node
as part of the bootstrapping procedure, a NAT hole is artificially opened (and
routing tables are updated accordingly) in order to guarantee that the reference
will not be initially stale.

Random. Views of the nodes are initially filled with randomly chosen nodes. In the
cases of Nylon and Nylon++, we artificially open NAT holes as described in the
previous scenario.

As suggested in [27], to properly show the dynamic properties of the protocols,
results show the behavior from a single run. Nevertheless, we ran all the scenarios
using 30 different seeds obtaining very similar results. The run duration was set to 300
shuffling periods, which was enough to observe the convergence of the behavior of the
different protocols.

3.4.1.1 In-degree

The in-degree of a node p is equal to the number of nodes storing a reference to p
in their local view. From a load-balancing perspective, nodes should have a comparable
in-degree. We depict: (i) the standard deviation of the in-degrees during the protocol
execution; (ii) the distribution of the in-degree at the end of the execution.

In-degree standard deviation. Figure 3.9 shows the standard deviation of the in-
degree of nodes, during the protocol execution, for the three bootstrapping scenarios.
We can make three remarks. First, taking individually each protocol, it consistently
converges around the same value of the standard deviation in each bootstrapping
scenario. This means that the starting topology does not affect the behavior exhibited
by the protocols. Second, the standard deviation of the in-degree of nodes is fairly
low. This means that the load on the nodes is fairly well balanced. Third, Nylon and

51



3.4. EVALUATION

Nylon++ manifest very similar behavior with respect to the reference protocol. This
means the modifications to the original peer sampling protocol, to take into account
NATs, have not affected the original properties of the resulting graph.

In-degree distribution. Figure 3.10 shows the in-degree distribution of the various
protocols at the end of the simulation, for the three bootstrapping scenarios. Two things
can be noted. First, we observe that all protocols manifest very comparable behavior.
Second, the in-degree distribution has a quite narrow width. In fact, the in-degree
value corresponding to the peak of the curves is slightly below the view size used in
the configuration (10 nodes), and very few nodes have a much higher in-degree. This
means the load on nodes is fairly well balanced.

3.4.1.2 Clustering coefficient

The clustering coefficient of a graph is defined as follows [83]. Consider a vertex
p and its neighbors. Then, consider the number of all edges which can exist among
these neighbors. The clustering coefficient Cp of p is defined as the fraction of these
edges which actually exist. The higher the value of Cp, the more the neighbors of p
resemble a clique. The clustering coefficient C of the whole graph is then computed by
averaging the clustering coefficients of all its vertices. From the point of view of fault
tolerance, it is preferable to have a low clustering coefficient C, as this means that the
graph is not clustered.

Figure 3.11 shows the clustering coefficient during protocol execution, for the three
bootstrapping scenarios. We can make three observations. First, taking each protocol
individually, the clustering coefficient converges around the same value in each scenario.
Second, all protocols behave very similarly: the modifications to the protocol to handle
NATs have not impacted the behavior of the protocol with respect to the clustering
coefficient. Third, the average clustering coefficients are very low (between 0.02 and
0.03), which, as explained before, is a desirable characteristic.

3.4.1.3 Non-stale references towards natted nodes

Figure 3.12 shows the percentage of non-stale references towards natted nodes in
the local views of nodes during the execution of Nylon and Nylon++. Recall that
there are 70% of natted nodes in the system. We do thus expect local views of nodes
to approximately contain around 70% of non-stale references towards natted nodes.
Figure 3.12 shows that this is indeed the case for all the three bootstrapping scenarios.

3.4.2 RVP chains length

We study the average length of the chain of RVPs between two nodes. The longer
the length, the larger the time to initiate a message exchange with a natted node. In
Figure 3.13 we observe that the number of RVPs increases with the percentage of NATs.
Also, the optimizations in Nylon++ reduce the path length with respect to the base
protocol up to a 15% in a configuration with 90% of NATs. Overall, the average length
of the chains of RVPs, even in presence of high percentage of NATs, remains very
reasonable (smaller than four hops, considering its optimized flavor).
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(a) Growing scenario
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(b) Ring scenario
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(c) Random scenario
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Figure 3.9 – In-degree standard deviation during protocol execution for the three
bootstrapping scenarios.
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(a) Growing scenario
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(b) Ring scenario
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(c) Random scenario
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Figure 3.10 – In-degree distribution (Y axis in logarithmic scale) for the three
bootstrapping scenarios at the end of the simulation.
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(a) Growing scenario
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(b) Ring scenario
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(c) Random scenario
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Figure 3.11 – Clustering coefficient during protocol execution for the three
bootstrapping scenarios.
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(a) Growing scenario
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(b) Ring scenario
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(c) Random scenario
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Figure 3.12 – Percentage of non-stale references towards natted nodes in the
views during protocol execution, for the three bootstrapping scenarios.
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Figure 3.13 – Path length towards selected natted nodes.

3.4.3 Churn resiliency

We evaluate the resiliency of the protocols to churn. For that purpose, we study to
which extent the graph of nodes remains connected when a large percentage of nodes
leave at the same time. We convey the resiliency of the protocol in the form of the size
of the biggest connected cluster formed by the remaining nodes.

The experiments were conducted adopting the random bootstrapping scenario,
and removing a varying percentage of nodes after each of them had performed 1000
shuffling periods. Public and natted nodes were removed proportionally to their number
in the system. We present results in Figure 3.14. The different bar types correspond to
different percentages of NATs. On the X axis is represented the percentage of nodes
that have left the system. The Y axis represents the size of the biggest cluster 200
shuffling periods after the massive churn took place. We observe that the protocol is
highly resilient to churn, tolerating the departure of 40% of the nodes basically without
partitioning. Even with higher percentages of nodes leaving the system, the protocol
exhibits very good performances. This result can be explained by the fact that each
node can be reached by different chains of RVPs at the same time, thus reducing the
likelihood of broken paths due to departed nodes. Also, Nylon++ presents in general a
slightly better churn resiliency with respect to the base protocol. This is a consequence
of the fact that its chains of RVPs are shorter.

3.4.4 Network bandwidth consumption

We evaluated the bandwidth consumed by Nylon and Nylon++. For comparison,
in the plots we indicate also the bandwidth consumed by the reference (push/pull, rand,
swapper) implementation of the peer sampling framework. As explained in Section 3.2,
one of the objectives of Nylon is to ensure that all nodes contribute almost equally to

57



3.4. EVALUATION

(a) Nylon
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(b) Nylon++
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Figure 3.14 – Biggest cluster size after massive churn.
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the protocol8.

Figure 3.15 and Figure 3.16 show respectively the average number of bytes per
second that each node sends and receives as a function of the percentage of NATs.
Both Nylon and Nylon++ consume less than 150B/s in download and upload. Al-
beit Nylon++ has shorter paths towards natted nodes (cfr. Section 3.4.2), its exchanged
neighbor entries contain additional fields needed by the optimizations. Hence the higher
bandwidth with respect to the base Nylon.

Moreover, we observe that the bandwidth consumption does not evolve linearly
with the number of NATs. This comes from the fact that the length of the chain of RVPs
does not evolve linearly with the number of NATs (cfr. Section 3.4.2). This is reflected
in the figures, which show the average number of bytes per second sent and received by
public and natted nodes. We observe also that public nodes send and receive slightly
less than natted nodes. This comes from the fact that albeit all nodes can act as RVP,
public nodes (i) do not receive OPEN_HOLE messages for themselves, and (ii) do not
send PONG messages.
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Figure 3.15 – Average number of bytes/s sent by a node.

3.5 Conclusion

A large fraction of computers on the Internet sit behind NATs. This impacts
potentially many peer-to-peer protocols relying on the assumption that any node can
communicate with any other node provided it knows its IP address and port number. In
particular, this impacts gossip protocols that traditionally assume that each node in the

8The only exception being that messages sent and received by nodes sitting behind SYM NATs must
be relayed by public nodes.
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Figure 3.16 – Average number of bytes/s received by a node.

system can communicate with any other node.

We have designed and evaluated Nylon, a fully decentralized NAT-resilient gossip
peer sampling protocol. Nylon leverages the fact that in a gossip protocol each node
actually communicates with only a subset of nodes in the system. This enables to use a
reactive hole punching protocol, which creates a path of relay nodes to setup commu-
nications. Experiments have shown that Nylon accommodates a large proportion of
NATs without impacting the properties of the peer sampling. Moreover, Nylon evenly
spreads the overhead induced by NATs between public and natted nodes and is highly
resilient to churn.
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Internet communication and collaboration platforms such as Web groups (e.g., [84])
or Questions and Answers (Q&A) Web sites (e.g., [85, 86]) are commonly used by
Internet users every day. An appealing way to realize such services in a distributed
manner, and to effectively disseminate the content produced by users, is by relying on
gossip-based dissemination protocols (e.g., [25, 30, 33]). In gossip-based dissemination
protocols, each node forwards all the messages it receives to a randomly chosen subset
of nodes. The advantages of gossip-based dissemination protocols are that they are
simple to design, and yet they allow fast and reliable dissemination of messages to large
networks of nodes.

Nevertheless, an implicit assumption of gossip-based dissemination protocols is
that nodes well-behave in their participation. Nodes are assumed to generate content
which is of interest for all other nodes, and they are assumed to follow the specifications

63



4.1. GOSSIP-BASED DISSEMINATION

of the protocol by forwarding in turn the messages they receive. But, in the context of
P2P Internet collaboration services, there is no central authority controlling what they
do. In this “wilder” environment, gossip-based dissemination protocols face scenarios
they were not traditionally designed up front to account for. For instance, nodes can
act maliciously and leverage the gossip reliable dissemination to actually disseminate
spam messages [87]. Or, nodes can act selfishly and deviate from the protocol to
maximize their own benefit while reducing their costs in the participation [60], e.g., by
not forwarding to other nodes the messages they receive.

This chapter is organized as follows. Section 4.1 provides some background on
gossip-based dissemination, illustrating a probabilistic dissemination protocol based
on the gossip peer sampling service described in Chapter 2. Section 4.2 studies the
impact of spam on gossip-based dissemination protocols. Section 4.3 provides some
background on fault models and details a few existing P2P systems designed to take
into account malicious behavior, or malicious and selfish behavior altogether. With
the characteristics of these existing systems in mind, this section ends identifying a
set of requirements for a spam-resilient gossip protocol accounting for malicious and
selfish behavior, and a summary of whether the presented existing systems match these
requirements. Section 4.4 concludes this chapter.

4.1 Gossip-based dissemination

The gossip paradigm owes its origins to the probabilistic mathematical studies on
the diffusion of an epidemic [88]. Inspired by the way an epidemic is spread, gossip
protocols disseminate information among nodes similarly to how humans infect each
other in case of a disease. This analogy makes gossip protocols usually be referred to
also as epidemic protocols [29]. In fact, as in the diffusion of an epidemic, once a node
receives a message for the first time (when it gets infected), it forwards the message to
other random nodes (it infects other nodes), which in turn do the same, contributing
to quickly and effectively spread the message (the infection) to a large fraction of the
system population.

This simple approach turns out to be very effective. In fact, taking again the
epidemic analogy, as pointed out in [89], once an epidemic starts, it is very hard to
stop. It is enough for very few people to start infecting other people, to make the
disease spread among a large fraction of a group, despite the fact that people may die
before infecting other people, or despite the presence of immunized people who do not
contribute in spreading the disease. Sharing these similar properties, gossip protocols
represent then a simple, yet robust approach to spread information in the system.

In the following, we first illustrate the general functioning, parameters and analytical
results underlying the gossip-based dissemination approach. Then, we discuss a simple
and effective gossip-based dissemination protocol which leverages the gossip-based
peer sampling framework we illustrated in the previous chapters.
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4.1.1 Probabilistic dissemination

In [89] the authors discuss the parameters1 underlying the gossip-based dissemina-
tion approach. Each time a node receives a message for the first time, it forwards the
message to a random subset of f target nodes of the system, which is usually called the
dissemination fanout. A node performs periodically this forwarding to f random nodes
for a limited amount of r times, which is usually called the number of dissemination
repetitions. Moreover, each subsequent hop in the dissemination path from the node
which originated a given message is usually called dissemination round.

Still following the epidemic analogy, the dissemination scheme where r = 1 is
usually referred to as the “infect-and-die” model, as it mimics the epidemic scenario in
which somebody dies just after infecting other individuals. Figure 4.1 illustrates how
information is spread among nodes according to this type of dissemination scheme.
In the example, once a node receives the message for the first time, it forwards just
once the message to a fanout f composed of two randomly chosen nodes. After four
dissemination rounds, all the nodes have received the message. As we can infer from the
example, proactively selecting random communication targets introduces redundancy
in the message dissemination: nodes possibly receive the same message multiple times.
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Figure 4.1 – Gossip-based dissemination example: infect-and-die model. Upon
receiving a message for the first time, a node forwards it just once (r=1) to two
(f=2) random target nodes.

1The authors describe also a buffer capacity parameter and possible buffer management strategies. We
consider this an orthogonal issue with respect to the description and functioning of the protocols presented
in the rest of this document, and we thus omit its discussion in the following.
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In the following paragraphs, we first report the analytical results2 on the reliability
properties and latency behavior of gossip-based dissemination protocols. Then, we
discuss the crucial point upon which these analytical results are based: the possibility
for each node to select f random dissemination targets.

Atomic dissemination. Given the number N of nodes comprising the system popula-
tion, the choice of the parameter f is crucial for the reliable dissemination of messages.
Based on the results by Erdös and Renyi on the branching factor of nodes to ensure
connectivity in a graph [70], Kermarrec et al. [30] have analytically and experimentally
studied the probability of achieving atomic dissemination (all the nodes receive the
message) in the case of gossiping. Their results show that, in the “infect-and-die” model,
when the fanout f of random targets is chosen in the order of ln(N)+ c, the probability
of achieving atomic dissemination follows the function:

Patomic = e−e−c

(4.1)

In other words, this result can be read as follows: adequate redundancy of message
dissemination (achieved by tuning the fanout f ) ensures reliable dissemination with
very high probability. Moreover, their study proves that this probabilistic guarantee is
ensured when the fanout used by nodes is on average O(ln(N)), even if individually
each node employs a different fanout value.

Latency of dissemination. When the fanout f is chosen in the order of ln(N) + c
to provide atomic dissemination, an important analytical result has been provided
concerning the latency of dissemination. In fact, Bollobás [28] has shown that, in the
“infect-and-die” model, the number R of rounds it takes to achieve atomic dissemination
follows the function:

R =
ln(N)

ln(ln(N))
+O(1) (4.2)

This result, together with the first one in Formula 4.1, prove the scalability of gossip
protocols with respect to the system size. Fanout and latency in fact increase only
logarithmically with the system size.

Ensuring random choices of the targets. From what discussed so far, gossip-based
protocols stand as a simple, yet scalable and (probabilistically) highly reliable solution
for information dissemination. Nevertheless, an assumption upon which the analytical
results are based, is that a node is actually able to select uniformly at random f
dissemination targets from all nodes of the system. We have discussed in the previous
chapters of this document how it is possible to sample nodes uniformly at random
in a scalable way by relying on gossip-based peer sampling protocols (e.g. [26, 27,
55]). These protocols are in fact capable of maintaining partial views which contain a

2The reader can find in the work by Eugster et al. [89] description and references of several mathematical
results in the theory of epidemics which inspired gossip protocols.
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(continuously changing) random sample of the whole system, and that these views are
able to quickly adapt to node arrivals and departures.

We illustrate in the next section an example of a gossip-based dissemination protocol
which builds on top of the gossip-based peer sampling framework [27] for the selection
of random dissemination targets.

4.1.2 The RandCast protocol

The gossip-based dissemination protocol presented in [30] relies on each node
having only a partial view of the system. This partial view is assumed to be assigned by
a membership protocol which is able to ensure that each node’s view contains a uniform
random sample of the nodes. In [90], the authors propose to instantiate the gossip-based
dissemination protocol presented in [30] (which they refer to as RandCast3), on top
of the gossip-based peer sampling framework [27] discussed in previous chapters of
this document. The gossip-based peer sampling ensures in fact that nodes have a
continuously changing uniform random sample of the nodes in their local (partial)
views. From the analytical results reported in the previous section, it follows that
the peer sampling protocol can then be configured such that the size of the partial
view maintained at each node is at least equal to the fanout value required by the
dissemination protocol to achieve reliable dissemination with high probability.

The functioning of the RandCast dissemination protocol can then be summarized
by the pseudo-code of Figure 4.2. When a node originates a message, or when a node
receives a message for the first time, it disseminates the message to f random nodes.
The choice of these targets is encapsulated in the select_targets() function.
This function, which can be provided by a modular component of the dissemination
protocol, selects the f random targets relying either on a complete or on a partial view
of the system, depending on the underlying view maintenance protocol.

4.1.3 Summary

Gossip-based dissemination protocols are a simple, yet reliable and scalable, ap-
proach for disseminating information in large-scale peer to peer systems. Nevertheless,
the very same underlying principle —random choice of gossiping targets— which
ensures the reliable dissemination among all nodes with very high probability, has also
its drawbacks. First, the random choice of targets introduces a lot of redundancy in the
message dissemination, where nodes can receive the same message multiple times [30].
Second, it is not trivial to stop the dissemination of a message: all copies of a message
should in fact be deleted [29].

We discuss in the next section how gossip-based dissemination protocols are affected
by the injection in the network of messages with junk content, i.e. spam messages.

3For convenience, in the rest of this document we keep using RandCast to refer to the gossip-based
probabilistic dissemination protocol described in [30].
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4.2. IMPACT OF SPAM IN GOSSIP-BASED DISSEMINATION

1 on o r i g i n a t e _ m e s s a g e (m)
2 d i s s e m i n a t e (m)

3 on r e c e i v e 〈 B r o a d c a s t ,m〉 from p do

4 / / I f f i r s t t i m e t h i s message was r e c e i v e d

5 i f m not in b u f f e r then

6 d i s s e m i n a t e (m)

7 def d i s s e m i n a t e (m)
8 add m to b u f f e r
9 t a r g e t s ← s e l e c t _ t a r g e t s ( )
10 foreach t a r g e t in t a r g e t s :
11 send 〈 B r o a d c a s t , m〉 to t a r g e t

12 / / Modular t a r g e t s s e l e c t i o n f u n c t i o n

13 def s e l e c t _ t a r g e t s ( )
14 re turn f random n e i g h b o r s

Figure 4.2 – RandCast protocol: pseudo-code

4.2 Impact of spam in gossip-based dissemination

Gossip-based dissemination protocols can be an effective solution to disseminate
information in a collaborative service. But, in a collaborative service where there is no
central authority controlling the actions of nodes, these latter might act maliciously and
deviate from the guidelines of the service they participate in. As studied in [87], nodes
might for instance exploit the high reliability of gossiping to inject spam messages (i.e.,
messages with unsolicited or junk content) in the network and just expect them to be
spread to a very large fraction of nodes.

To the best of our knowledge, the work in [87] represents the most relevant study on
the impact of spam in gossip-based dissemination protocols. In the following section,
we first illustrate this existing solution to limit spam dissemination, and then we discuss
the drawbacks of the approach.

4.2.1 Canning Spam in Wireless Gossip Networks

In [87], the authors study the impact of spam in wireless ad-hoc networks, when
gossiping is used for information dissemination. In a wireless ad-hoc network, there is
generally no preexisting routing infrastructure. Each node exchanges information with
nodes in its network proximity, resulting in nodes collaborating to route data to a given
destination. The given study, conducted in the context of wireless ad-hoc networks, is
generalizable to the case of gossiping in peer-to-peer networks as well.

In their work, the authors first study the impact of spam on the wireless network
node population. To do so, they simulate a system in which nodes exchange information
by leveraging a push/pull gossip-based dissemination protocol. Each node periodically
selects one node among their current set of wireless neighbors as the gossip target. The
node sends to the target node a subset of the messages it has currently stored in its local
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buffer, and receives in turn a subset of the messages in possession by the target node.

The study shows that due to the randomness and redundancy of gossiping, it is
sufficient to have just a few nodes inject spam, to have it progressively spread among
the whole node population. The authors propose to limit spam dissemination based on
the following assumption on the malicious nodes behavior. As message dissemination
relies on nodes forwarding the message among each other, a malicious node could
modify the content of a message and forward a spam-modified version in place of the
original published content. They suggest then to tackle the spam problem employing
digital signatures and integrity checks along the path. According to this, the source
node can digitally sign the messages it publishes4. Then, potentially each node along
the dissemination path can check the digital signature of each message it receives.

To reduce the computational cost on the wireless network nodes, which typically
have constrained resources, the authors propose to employ a probabilistic check of
the received messages. Figure 4.3 illustrates a possible pseudo-code of the proposed
solution. Nodes only check a received message with a fixed probability Pcheck (line
16), and if the message is not valid, it is discarded (lines 17-18). The approach turns
out to limit the dissemination of tampered messages: the more the distance from a
node which has tampered a message, the more the probability for this message to be
discarded along the path. Furthermore, the overall amount of tampered messages in the
network decreases when increasing the probability of checking Pcheck.

In a subsequent work [91], the authors have enhanced the above solution by making
each node dynamically adjusts its Pcheck probability based on the amount of spam
it perceives from its neighbors. Moreover, this dynamically adjusted probability is
maintained on a per-neighbor basis, as different neighbors could have different (spam)
behavior. Thanks to this approach, the nodes which are closer to the nodes injecting
spam perform the resource consuming task of checking the integrity of messages and
filtering them, whereas more distant nodes can simply leverage on the action taken by
the former nodes. To reduce the workload induced on the nodes which are close to
the nodes injecting spam, nodes keep track of the spam messages they receive on a
per-neighbor basis. This allows a node to detect if a neighbor is consistently presenting
a malicious behavior, and if so, the node can refuse to communicate with it.

Drawbacks. We identify the following drawbacks in the proposed solution. First, on
the Internet, the problem of spam cannot considered merely an integrity check problem,
which can be solved by signing and (probabilistically) verifying messages. In fact,
nodes can inject false information on an Internet forum which can be detected as junk
only by human users. For example, in a discussion group dedicated to football, a user
could post a message claiming to know that a given player has signed for a team, while
this information is not true, thus polluting the content of the collaborative service. Or
even worse, on a technical Questions&Answers web site, a user could ask a question on
how to fix a configuration problem of its OS, and a malicious user could reply by giving
a false answer which could damage the computer of the user who posted the question.

Second, not all users are capable, or willing, to effectively detect and filter junk

4The solution assumes the use of a Certification Authority (CA), which certifies the public keys used
by nodes.
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4.2. IMPACT OF SPAM IN GOSSIP-BASED DISSEMINATION

1 every s h u f f l i n g _ p e r i o d u n i t s do

2 t a r g e t ← s e l e c t P e e r ( )
3 msgs ← s e l e c t M s g s T o S e n d ( )
4 send 〈Gossip , msgs 〉 to t a r g e t

5 on r e c e i v e 〈Gossip , msgs 〉 from s o u r c e do

6 msgs_resp ← s e l e c t I t e m s T o S e n d ( )
7 send 〈Goss ipResponse , msgs_resp 〉 to s o u r c e
8 v e r i f y ( msgs )
9 b u f f e r ← se l ec tMsgsToKeep ( b u f f e r , msgs )

10 on r e c e i v e 〈Goss ipResponse , msgs_resp 〉 from s o u r c e do

11 v e r i f y ( msgs_resp )
12 b u f f e r ← se l ec tMsgsToKeep ( b u f f e r , msgs_resp )

13 def v e r i f y ( msgs )
14 foreach m in msgs :
15 / / V e r i f y each message w i t h p r o b a b i l i t y Pcheck

16 i f r and ( 0 , 1 ) < Pcheck

17 i f m i s not v a l i d :
18 msgs ← msgs \ {msg}
19 re turn msgs

20 def s e l e c t P e e r ( )
21 re turn a node among t h e w i r e l e s s ne twork n e i g h b o r s

Figure 4.3 – Pseudo-code for the push/pull gossip-based dissemination protocol
used in “Canning Spam in Wireless Ad-Hoc Networks”.

content. That is, users have a different “pollution awareness” [58]. Moreover, to actually
be encouraged in participating in the filtering of spam in a collaborating service, nodes
should be rewarded for filtering spam. That is, users contributing more in filtering
should receive less spam in return.

Third, in a P2P context, nodes gossip with targets choosing uniformly at random
among the whole node population, thus limiting the effectiveness of such an approach
based on fixed neighbor relationships, and relying only on direct first-hand experience
with malicious nodes.

Taking into account the points discussed so far, we study in the next section the
impact of spam on the RandCast protocol which we have described in Section 4.1.2.

4.2.2 Impact of spam on RandCast

From the points discussed in the previous section, we have studied the impact of
spam dissemination in a P2P context where nodes actually gossip with random nodes
taken from the whole node population. We have used the RandCast gossip-based
dissemination protocol [30], which we have modified so that each node i has a (fixed)
probability Pi to detect (and stop forwarding) each spam message it receives for the first
time. In Figure 4.4, we present the results of a simulation study on a system composed
of 1, 000 nodes. Moreover, we have evaluated the dissemination of spam using three
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different distributions of the nodes’ probability to detect and filter spam:

• uniform distribution: nodes have a probability to filter spam which is uniformly
spread in the range [0, 1];

• power-law distribution: most of the nodes have a probability to filter spam which
is rather low;

• inverse of the power-law distribution: most of the nodes have a probability to
filter spam which is rather high.
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Figure 4.4 – RandCast: percentage of spam messages received by nodes for
three different spam filtering capability distributions.

We can observe two things from the results. First, regardless of the actual different
capability of nodes to filter spam, the percentage of spam received by each node is
roughly the same. This is due to the randomness and redundancy of gossiping. Second,
the amount of spam received by nodes is quite high. In fact, as pointed out in [89], once
an epidemic starts, it is hard to stop.

4.2.3 Summary

We have seen how gossip-based dissemination protocols are ideal vectors to dissem-
inate spam messages. Indeed, simple strategies consisting in having each node locally
filter the messages it detects as spam do not work. The reason is that gossip-based
protocols are highly redundant and random: each node receives messages multiple
times from different nodes. Consequently, it is enough that a small subset of nodes do
not filter a spam message to have it received by a large fraction of nodes.

In order to design a gossip protocol able to limit the dissemination of spam, special
care should be taken when considering the possible behavior of the participant nodes in
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4.3. BYZANTINE AND RATIONAL BEHAVIOR

a context like the Internet. In the next section, we describe which behavior nodes can
have in practice in the Internet, and we detail the mechanisms that existing practical
P2P solutions adopt to tolerate/discourage this behavior.

4.3 Byzantine and rational behavior

P2P Internet collaborative services are based on the participating nodes contributing
their resources to the overall functioning of, and getting the benefits from, the collabora-
tive services themselves they participate in. The design of protocols implementing such
distributed systems should account then for the possible behaviors of the participating
nodes. In the simplest of the scenarios in fact, nodes might silently disconnect without
notice, or just fail because of a crash of the machine. This behavior is called the crash

model, and protocols designed accounting for this behavior are said to be crash fault

tolerant protocols. For what we have illustrated in the previous sections, gossip-based
dissemination protocols are by nature crash-tolerant. In fact, the randomness and
redundancy of the probabilistic dissemination approach ensures reliability with high
probability even in case of node disconnections [30].

But, as pointed out in [60], in a practical context like the Internet, where there
is no central authority controlling what nodes do, nodes may also deviate from the
protocol for the following two other reasons. First, nodes can deviate because of a
bug, a misconfiguration, or even because an intruder takes control of their machine
and uses it to perform an attack to a given node or to the system as a whole. This
more generic fault behavior is called the Byzantine model [92], and protocols designed
to tolerate this behavior are said to be Byzantine fault tolerant protocols. Second,
nodes may also selfishly deviate from the protocol to maximize their benefit in the
participation while reducing their costs, e.g., by getting a “free-ride” and not forwarding
messages [93,94]. This behavior is in game theory referred to as rational behavior [95].
The BAR model [60] is a fault model accounting for Byzantine and rational behavior
altogether, and protocols designed to tolerate these behaviors are said to be BAR fault

tolerant protocols.

Figure 4.5 illustrates the fault model resiliency hierarchy that we refer to in the
following. A protocol which is crash-tolerant is not necessarily also Byzantine-tolerant.
In turn, a Byzantine-tolerant protocol is not necessarily also BAR-tolerant.
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Figure 4.5 – Fault tolerance hierarchy.
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In the following sections, we first detail the functioning of two existing P2P systems
designed under the Byzantine model. Then, we discuss the BAR model [60], which
accounts for Byzantine and rational behavior altogether, and we detail the functioning
of two existing P2P systems designed under this model. With the characteristics of
these four existing systems in mind, the section ends identifying a set of requirements
for a spam-resilient gossip protocol in the BAR model, and it summarizes whether the
presented four systems match these requirements.

4.3.1 Byzantine-tolerant systems

In the Byzantine Fault Tolerance (BFT) model [92], it is usually assumed an
upper bound of nodes which might deviate from the protocol. Such nodes, called
Byzantine nodes, can deviate for arbitrary of reasons: they might for instance be
bugged, misconfigured, or even compromised. Byzantine Fault Tolerant protocols are
then those protocols designed to tolerate the Byzantine behavior, that is, designed to
ensure the desired system properties even in presence of the maximum allowed number
of Byzantine nodes deviating from the protocol.

In the following two sections, we provide a detailed description of the functioning
of two existing P2P systems considering the Byzantine fault tolerance model: Secure-
Stream [96], which implements a live streaming protocol on top of the Fireflies [97, 98]
membership protocol, and Nysiad [99], a system which translates a crash-tolerant
protocol into a Byzantine-tolerant one.

4.3.1.1 Fireflies/SecureStream

SecureStream [96] is a live streaming protocol built on top of Fireflies [97, 98], a
Byzantine-tolerant membership protocol. Fireflies ensures that, despite the presence
of a possible upper bound of nodes exhibiting Byzantine behavior, each node has a
complete view of the live nodes of the system. Such membership is leveraged by the
SecureStream streaming protocol for the choice of dissemination partners.

Despite the fact that in Fireflies nodes maintain a complete view of the system, the
protocol actually requires nodes to communicate with (and about) just a small subset of
the nodes. These characteristics make the protocol a suitable solution for applications
where the system size is in the order of hundreds or thousands of nodes.

Fireflies architecture. Fireflies relies on a probabilistic approach to provide each
node with an up-to-date global view, and it is composed of the following three protocols:

• an adaptive pinging protocol to detect if nodes are live or not;

• a membership protocol which relies on accusations and rebuttals to ensure
nodes maintain an up-to-date global view of the system;

• a gossiping protocol to reliably disseminate the accusation and rebuttal member-
ship messages among non-Byzantine nodes.

Nodes are logically organized into 2t + 1 rings. The organization of nodes on
the rings has two properties. First, nodes have a different position on each ring. The
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4.3. BYZANTINE AND RATIONAL BEHAVIOR

position of a node on a ring is in fact given by hashing with a collision resistant hash
function H the identifier of the node concatenated with that of the given ring:

pos[ring_id] = H(node_id||ring_id) (4.3)

Second, the use of such a hash function deterministically specifies the global
ordering of nodes on each ring, and hence the relative positions among nodes. In
Fireflies, such ordering specifies which nodes each node monitors and from which
nodes it is itself monitored, which plays a role in the functioning of the membership
protocol described next. Taking Figure 4.6 as an example, it illustrates a possible
ordering of 7 nodes on 3 rings for a given hash function. In this example, node A is a
monitor for nodes B, D and F (respectively, on the outer, middle and inner most ring),
while at the same time being monitored by the nodes F, E and G (respectively, on the
outer, middle and inner most ring).
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Figure 4.6 – Fireflies: example of a possible ordering of 7 nodes on 3 rings.
Node A is monitored by nodes F , E, G and it monitors nodes B, D, F . (Based

on: [96])

Fireflies group membership. On each of the 2t + 1 rings, each node ni monitors
the first successor node nj which, according to its view of the system, it knows to
be live. To do so, ni performs an adaptive probing by means of a pinging protocol5.
If the monitored node nj does not reply to the ping, the node monitor ni sends an
accusation (failure notice) for node nj . The accusation is progressively diffused to
all nodes by means of a gossip-based dissemination protocol (detailed later), whose
latency is probabilistically upper bounded by a 2∆ time period. Thanks to this ∆,
when an accused node nj receives an accusation about itself, it can send —still via the
aforementioned gossip-based dissemination protocol— a rebuttal message meant to
state its liveness to all nodes, thus invalidating the accusation. A node nk which has
received an accusation about a node nj in fact will remove nj from its view only after a
2∆ time period from the first reception of the accusation about nj .

Fireflies utilizes the following mechanisms to prevent Byzantine monitors from
causing non-Byzantine nodes to be removed form the views of non-Byzantine nodes.
First, nodes digitally sign the accusations and rebuttals they send. Second, an accusation

5The reader can refer to the Fireflies paper [97] for details of the adaptive ping protocol.
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for a node nj can only be sent relative to the most recent rebuttal that the node nj has
sent in the overlay. Third, a rebuttal contains an enabled bitmap which specifies
which t+ 1 rings among the 2t+ 1 are allowed to actually send an accusation for that
rebuttal, being otherwise the accusation not considered valid by any non-Byzantine
node. The number of Byzantine monitors that each node (and hence the protocol) can
tolerate depends then on the value of t.

To choose a proper value for t, Fireflies applies the following reasoning. If by system
configuration any live node can be Byzantine with probability Pbyz , it is possible to
calculate the number of 2t + 1 rings to compose the Fireflies overlay such that the
probability for a node to have more than t live Byzantine monitors is very small. Fireflies
chooses this minimum value of t by solving the cumulative binomial distribution
reported in the Formula 4.4:

min(t) : P = B(t, 2t+ 1, 1− Pbyz) < ǫ (4.4)

Fireflies membership protocol leverages the fact that, if the probability of having
more than t Byzantine monitors is very low, then: (i) a non-Byzantine node, by disabling
t rings in the enabled bitmap, can effectively prevent all the (possible) Byzantine
monitors from maliciously accusing itself, and (ii) a Byzantine node, by disabling t
rings in the enabled bitmap, will still nevertheless have (at least) a non-Byzantine
monitor able to send an accusation for it.

The accusation and rebuttal messages are diffused to all nodes using gossiping. A
node originating a message, sends it to f random nodes selected from the view, where
f is the dissemination fanout. Nodes that receive a message will in turn forward it to f
randomly chosen nodes. As previously discussed in Section 4.1.1, if the fanout used by
each node is (on average) ln(N) +O(1), then all nodes receive the message with very
high probability [30], and the upper bound ∆ to have all the nodes receive the message

is in the order of ln(N)
ln(ln(N)) +O(1) gossip dissemination rounds [28].

SecureStream. SecureStream [96] is a Byzantine-tolerant streaming protocol built
on top of Fireflies. It relies on Fireflies to maintain membership even in presence
of a bounded number of Byzantine nodes, and it leverages Fireflies multiple rings
topology to build a Byzantine-tolerant pull-based live-streaming protocol. Nodes are
in fact allowed to request for the most up to date packets to their predecessors on
the various rings. The approach ensures the following two properties. First, nodes
cannot be overwhelmed with requests, because the number of nodes which are actually
allowed to pull packets from them is limited to their successors on the rings. Second,
as the ordering on each ring is dictated by a pseudo-random hash function specific
for each ring, the graph formed by connecting the various nodes according to the
predecessor/successor relationship on the various rings turns out to resemble a random
graph. For the probabilistic properties of the choice of the fanout in gossip-based
dissemination [30] which we have illustrated in the previous sections, it follows that by
adequately tuning the number of rings (and hence, the number of predecessors from
which it is possible to receive packets), the dissemination service is ultimately resilient
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4.3. BYZANTINE AND RATIONAL BEHAVIOR

to omission attacks by the Byzantine nodes.

The protocol also provides an auditing mechanism to ensure nodes participate in
uploading at least a certain percentage of the received stream. This mechanism involves
a two-level auditing architecture. First, the nodes themselves act as “local auditors” by
exchanging among each other “receipts” of messages received from their neighbors.
This allows to determine if a node has not uploaded the minimum percentage of stream
or it is reporting false information about data received from another node. Second,
“external auditors” are in charge of collecting complaints from local auditors, and to
decide to punish misbehaving nodes accordingly.

4.3.1.2 Nysiad

Nysiad [99] is a system which is able to translate a P2P protocol which is only
crash-tolerant into one which is Byzantine-tolerant, by adopting an approach based
on State Machine Replication (SMR) [100]. In State Machine Replication a node is
replicated on multiple nodes, called the replicas. The replicas run a replication protocol
which ensures that they remain synchronized on the state of the replicated node. This
is achieved by executing in the same order the requests to the replicated node, even in
case of possible networking issues or failures.

Nysiad makes use of State Machine Replication as follows. Each participant node
is modeled by a replicated state machine, and if the replicated node does not faithfully
follow the protocol, its replicated state machine is halted. In such latter case the node
would be considered as crashed by the other nodes, which is a behavior that is ultimately
tolerated if the original protocol being translated is crash tolerant.

Nysiad architecture. The state machine replicas of each node are assigned to (at
least) 3t+ 1 nodes, including the node itself. These nodes are called the guards of the
replicated node. Furthermore, each two nodes have (at least) 2t+ 1 common guards,
which are called the monitors of the two nodes. Nysiad makes the assumption that an
upper bound t of guards of a node can be Byzantine, and that message communication
between non-Byzantine guards is reliable. Also, the guards assignment is made by a
(logically) centralized 3rd party trusted entity called the “Olympus”.

The overall system is composed of two main protocols: one run by the various
replicated nodes, while the other one is run by the Olympus. The participant nodes run
a replication protocol which is composed of a base reliable ordered broadcast protocol,
plus attestation and credit sub-protocols. These three protocols ensure the following:

1. Reliable ordered broadcast protocol: the guards (the replicas) are synchronized
on the state of the node they replicate.

2. Attestation protocol: only messages corresponding to a faithful protocol execu-
tion are delivered to the guards (the replicas) of a node.

3. Credit protocol: a node is considered as crashed by other nodes if it does not
fairly process all its input.

The Olympus does not take part to the replication protocol. It runs a replica
maintenance protocol, to assign and maintain the replicas for the various nodes. In
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the following, we first illustrate the various parts of the replication protocol. Then, we
discuss the role of the Olympus.

Nodes state machine replication protocol. We illustrate in the following the func-
tioning of the three sub-protocols forming the state machine replication protocol.

(i) Reliable ordered broadcast protocol. This protocol ensures the guards (the replicas)
are synchronized on the state of the node they replicate. To achieve this, the replicated
node uses a reliable ordered broadcast protocol for communication with its guards.
This protocol, depicted in Figure 4.7, works as follows. When a node ni wants to
send an input message m to its guards, it first sends an order request message to its
guards containing the hash of m. Guards reply with an order certificate message, which
includes a sequence number c that they maintain on behalf of the replicated node ni.
The node ni is able to collect (at least) Gi − t order certificates, Gi being the number
of guards of ni. In fact, for what specified previously, t is the assumed upper bound of
Byzantine guards of a node. A consistent sequence number in Gi − t order certificates
constitutes an order proof for the message m to be delivered. At this point, ni delivers
the messages m to its own running replica of its state machine, and sends the message
m with the order proof to all its guards. If a guard assesses the order proof is valid, it
delivers the message m to its running replica of ni’s state machine, and gossips it with
the other guards of ni to ensure that if a non-Byzantine guard delivers a message, also
all other non-Byzantine guards will be able to do so.
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Figure 4.7 – Nysiad: reliable ordered broadcast protocol. Node ni initiates
a reliable ordered broadcast. The guard node ng3 is Byzantine and does not
participate in the protocol. (Based on: [99])

The reliable ordered broadcast protocol ensures synchronization among guards
(the replicas) of a node, but it does not preclude to a node the possibility of forging
or ignoring inputs. The attestation and credit protocols described next provide the
complementary pieces to take these two misbehaviors into account.

(ii) Attestation protocol. This protocol ensures that only messages corresponding to
a faithful protocol execution are delivered to the guards (the replicas) of a node, thus
precluding to a node the possibility to forge invalid inputs. If for example in the original
protocol the node ni was sending a message m to node nj , this in the translated protocol
would correspond to having the state machine of ni sending m to the state machine of
nj . To preclude the possibility to nj of forging arbitrary inputs, the guards of nj need
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also a “proof of validity” with every message that is sent by nj via the reliable ordered
broadcast described before. This proof of validity that nj has to provide is a set of t+ 1
attestations from nodes which are guards of both ni and nj (their monitors). In fact,
each (non-Byzantine) guard of ni runs ni’s state machine replication, and has thus the
same state for ni which led to sending the message m. Each (non-Byzantine) guard
hence sends an attestation message to nj . These attestations are required only in the
last part of the reliable ordered broadcast, so they can be requested in parallel with the
request of order certificates.

(iii) Credit protocol. This protocol ensures a node is considered as crashed by other
nodes if it does not fairly process all its input. Crashing is a behavior that the original
crash tolerant protocol being translated can handle. The credit protocol relies on the
following principle: a node must get t+ 1 credits from its guards to able to send new
inputs to its guards by means of the reliable ordered broadcast. Non-Byzantine guards
provide these credits if they have seen the replicated node faithfully processing the
previous inputs. Furthermore, an attempted reliable ordered broadcast message sent by
a node without the valid credits constitutes a proof of misbehavior. Such messages are
reported to the Olympus, and their consequences are described in the next paragraph.

Olympus: replica maintenance protocol. A logically centralized trusted entity6,
called the “Olympus”, is in charge of assigning and maintaining guards (the state
machine replicas) for nodes. The Olympus is unaware of which protocol is being
replicated at each node, and —apart from collecting proofs of misbehavior— it does
not take part to any of the three replication sub-protocols described previously. Its
functioning is based essentially on monitoring two things. First, the Olympus checks
if nodes are live by means of running a simple ping/pong protocol. Second, as part
of the credit protocol, it collects the proofs of misbehavior from the guards of a node,
which assess with evidence that a node has not followed the protocol. Then, according
to the fact that a node is no longer live, or that a node has to be evicted from the system
because it has provably misbehaved, the Olympus updates the guards. To do so, it signs
and sends to nodes epoch certificates, which attest a node’s identifier and its current
guards.

4.3.2 BAR model: accounting for Byzantine and rational behavior

The BAR model has been introduced in [60] pointing out how, in Internet collab-
orative services, nodes might actually deviate from a given protocol for two different
reasons. In fact, not only a bounded number of nodes could deviate because bugged,
misconfigured or compromised (as in the Byzantine fault tolerance model [92]), but
also possibly all nodes could deviate motivated by a rational behavior [95], that is, with
the intent of maximizing their own benefit, for instance attempting to reduce their costs
in the participation by “free-riding” [93, 94].

In the rest of this section, we first provide the concepts (categories of nodes,
classes of protocols in the BAR model, game theory background to understand rational
behavior) underlying the BAR model based on the original formalization found in the

6In the original description [99], the authors suggest a Byzantine-tolerant implementation of the
“Olympus”, e.g., replicated with a protocol like PBFT [101].
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BAR seminal paper [60] and present in Martin’s dissertation [102]. Then, we provide
the superset of assumptions on rational behavior found in the first two P2P protocols
designed in the BAR model [42, 60].

Categories of nodes in the BAR model. The name BAR stands for “Byzantine-
Altruistic-Rational” model, as it classifies nodes into the following homonymous three
categories [60, 102]:

• Byzantine nodes. They are nodes which can exhibit arbitrary deviations from
the protocol specifications: they could be bugged, misconfigured, compromised
by an attacker.

• Altruistic nodes. They are nodes which always follow each one of the steps
mandated by the protocol specifications.

• Rational nodes. They are selfish nodes which are willing to deviate from the
protocol specifications if by doing so they can increase their utility, i.e., if they
can maximize their benefits while reducing their costs.

Ensuring system properties in the BAR model. To ensure the properties of a system
to all non-Byzantine nodes, the following two classes of protocols in the BAR model
have been defined [60, 102]:

• Incentive-Compatible Byzantine Fault Tolerant (IC-BFT) protocols: they are
protocols which tolerates a bounded number of Byzantine nodes deviating from
the protocol, and all rational nodes expect to obtain the highest utility by faithfully
following the protocol.

• Byzantine Altruistic Rational Tolerant (BAR-Tolerant or BART) protocols:
they are protocols which tolerate a bounded number of Byzantine nodes and
possibly all rational nodes deviating from the protocol.

As it can be inferred from the description, and as summarized graphically by
Figure 4.8, IC-BFT protocols are a subset of BART protocols.

Modeling rational nodes: game theory. As explained in [102], in the BAR model
the behavior of rational nodes is modeled in a game theoretic framework [95]. Rational
nodes are modeled as players of an infinitely repeating game. In such a game, a rational
player seeks to modify its game playing strategy in order to maximize its benefit, but
only if by doing so it does not risk compromising its benefit in the next play of the game.
A game is then said to be a Nash equilibrium [61] if no player can increase its utility by
changing playing strategy while the other players continue following their strategies.

This drives the design of Incentive-Compatible Byzantine-Fault-Tolerant (IC-BFT)
protocols in the BAR model along two points [60, 102]: (i) an IC-BFT protocol must
account for, and tolerate, a possible upper bound of Byzantine nodes deviating from
the protocol for arbitrary reasons (Byzantine Fault Tolerance); (ii) an IC-BFT protocol
must provide incentives to discourage rational nodes from deviating from the protocol,
i.e. by designing the protocol to be a Nash equilibrium (Incentive Compatibility).
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Figure 4.8 – BAR model: classes of protocols. All Incentive-Compatible Byzan-
tine Fault Tolerant (IC-BFT) protocols are also BAR-Tolerant (BART) protocols.

Assumptions on rational behavior. According to the aforementioned points, when
designing a protocol in the BAR model, the behavior of rational nodes in a collaborative
service is usually characterized by the following set of assumptions [42, 60]:

• rational nodes seek long term benefit in their participation.

• rational nodes are conservative in their actions: they expect the upper bound of
Byzantine nodes to behave in the way which could harm the most their utility
(assuming that all other non-Byzantine nodes follow the protocol).

• rational nodes have no benefit in delaying sending a message if they are neverthe-
less going to send it.

• rational nodes have no interest in receiving (or even more, sending) messages
which are not part of the protocol specifications.

• rational nodes consider the benefits of the service much more important than the
costs of participation.

• rational nodes have no interest in deviating from the protocol if by following it
they receive the same utility.

• rational nodes will always follow the protocol if this latter provides a Nash
equilibrium.

• rational nodes do not collude7, only Byzantine nodes can collude.

• rational nodes suppose the other (non-Byzantine) nodes are altruistic and follow
the protocol8.

In the following two sections, we provide a detailed description of the functioning
of the first two P2P systems which have been proposed in the BAR model: BAR-B [60],
a collaborative backup service implemented on top of a generic framework, and BAR
Gossip [42], a gossip-based live streaming application.

7This is a Nash equilibrium limitation.
8This is a Nash equilibrium artifact proof.
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4.3.2.1 BAR-B

BAR-B [60] is the first P2P system in the BAR model. It proposes a generic 3-
level architecture to build collaborative services in the BAR model, and it presents a
collaborative backup service as example of instantiation of this architecture. The 3-level
architecture, from the lowest to the highest level, is made of:

• Level 1: Primitives. This level ensures reliable communication among nodes by
means of an IC-BFT replicated state machine built on top of them.

• Level 2: Work Assignment. This level allows to reliably request work to do to
nodes.

• Level 3: Application (Backup). This level implements a given collaborative
service, e.g., a collaborative backup.

This architecture is aimed at providing a practical BAR framework to realize
collaborative services made from tens to a few hundreds of nodes. Moreover, it assumes
an upper bound of n−2

3 Byzantine nodes in the system. The layered-architecture
allows simplified design for the upper layer(s), by leveraging low-level mechanisms
provided by the layer(s) below. In the following paragraphs, we thus detail more on the
functioning of the two lowest, and most important, levels of the architecture.

Level 1: Primitives. This level provides an IC-BFT Replicated State Machine which
allows nodes to issue commands via an IC-BFT Terminating Reliable Broadcast (TRB)
protocol. The TRB protocol rotates the node which can send a command (the leader)
after each executed instance of the protocol. This ensures that each node has its
possibility to issue a command to the replicated state machine by attempting the three-
phase commit (agree/write/show-quorum) depicted in Figure 4.9.
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Figure 4.9 – BAR-B: Terminating Reliable Broadcast. (Based on: [60])

A set of mechanisms are then put into place at this level of the architecture to
discourage rational nodes from: (i) omitting sending the messages they are actually
supposed to send; (ii) sending the less costly message, among various possible valid
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responses, instead of the “faithful” (and possibly bigger in size) message; and (iii)

delaying sending the messages. These mechanisms are described in the following.

Discouraging message omission. Each node locally maintains message queues for
the communication to and from any other node in the system. These queues ensure
predictable communication patterns by working accordingly to the “If you don’t talk
to me, then I won’t talk to you” principle [103]: a node will refuse any incoming or
outgoing communication with a given node if this latter has not complied to sending
a message the former node is expecting. The use of these message queues, with their
unilateral blacklisting, encourages every rational node r to follow the protocol. In fact,
when it is r’s TRB turn, if the upper bound of f Byzantine nodes have blacklisted r,
and even only one non-Byzantine node has blacklisted r because of misbehavior, then
r will not be able to reach a TRB protocol quorum of n − f − 1 nodes to actually
issue a command in the state machine. For what illustrated in the previous section on
the assumptions on rational behavior, a rational node r seeks long term benefit in the
system and does not want to risk it by attempting to reduce the costs. This means the
rational node r is encouraged to send the messages expected by other nodes, in order to
be able to issue commands via the state machine when it is its turn.

Discouraging sending cheap valid messages. The design of messages follows a
balanced cost principle: the valid messages for a given protocol step are all of the same
size. In this way, sending the message which faithfully corresponds to following the
protocol, or sending another (still valid) message, would result having the same network
cost. For what illustrated among the assumptions on a rational node’s behavior, this
means a rational node will have no interest in not following the protocol.

Discouraging late responses. Nodes measure the timeliness of messages sent by other
nodes, and can unilaterally punish non-timely nodes via a penance mechanism which
roughly works as follows. When a node is the TRB leader, it includes in the command
that is proposed to the state machine a fixed size untimely vector (a bitmap) of nodes it
has seen to be untimely. Once the command is executed by the SMR, all nodes (but the
leader) expect to receive (leveraging the message queues mechanism described above)
a penance message from the untimely nodes. Again, the use of a fixed-size for this
vector encourages a rational node to actually specify the nodes it has perceived as non
timely: in fact, not specifying any would result in the same network cost. Furthermore,
when a node p detects a node q is misbehaving (e.g., q has not sent a message p was
expecting), p marks q as faulty in its local badlist vector. As the untimely vector, this
vector is diffused together with the command issued by node p when p is the leader in
the TRB protocol. Non-Byzantine nodes will then stop communicating with any node q
that is observed to be present in at least f + 1 different badlist vectors diffused as part
of the TRB protocol. A rational node is then encouraged to follow the protocol.

Level 2: Work Assignment. This level allows requesting work to do to nodes (e.g.,
storing data), and ensuring that a node responds accordingly to the request, or that there
is evidence that the node did not answer. It relies on the abstraction of a trusted altruistic
node, called the “witness node”, for the communication between nodes. The altruistic
witness node abstraction is implemented on top of the participant nodes by means of
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the IC-BFT replicated state machine of the underlying layer9. The Work Assignment
protocol is composed of the following three sub-protocols.

(i) Guaranteed Response protocol. This protocol ensures rational nodes will provide a
response to the requests they receive. When a node p has to send a request to node q, p
can first attempt to send the request directly to q. If q does not reply, node p can then
rely on the witness node (the replicated state machine) for delivering the request and
obtaining the response. This latter way is more costly for q than the direct response.
The credible threat of having to incur in higher communication costs encourages a
rational node q to actually prefer the first way and reply to a direct request from a node.
Moreover, if q is not responding for a request issued through the replicate state machine,
the state machine after a given timeout will provide p the evidence that q did not reply.

(ii) Periodic Work protocol. This protocol allows leveraging the witness node to expect
a periodic work to be performed by nodes (whose type depends on the application
level services). If a node does not comply to this periodic work, the witness node can
generate a Proof Of Misbehavior (POM) (described next) about the misbehaving node.
A rational node has then the incentive to always follow this protocol.

(iii) Authoritative Time Service protocol. This protocol allows nodes to keep a consistent
and updated time. This time is used by nodes to estimate the timeliness of messages
and detect misbehaving nodes.

Level 3: Application (Backup). This level apart from defining the actual application
benefits to nodes (i.e., fruition of the backup service), it allows also nodes to be able
to detect invalid responses (e.g., incorrect stored data). An example suggested by the
authors is the following: a node might first adhere to store a file, by returning a signed
hash of the stored file. But later, upon a request to read that file, the node replies with a
signed message that contains data not corresponding to the hash. These two messages
together represent a POM that the node has misbehaved.

The role of POMs. POMs are periodically distributed to other nodes via the Work

Assignment periodic work sub-protocol described previously. Leveraging this, it is
possible to enforces nodes to send a POM if they have it, or a NOPOM message if they
do not. This NOPOM message, following the balanced cost principle, has the same
size of a POM message, hence rational nodes have no interest in not reporting a POM.
By distributing the POMs, each node of the system can evict the misbehaving nodes.

4.3.2.2 BAR Gossip

BAR Gossip [42] is the first P2P live video streaming application designed in the
BAR model, and it relies on the gossip-based paradigm for disseminating chunks of the
stream among nodes.

In this work, the authors point out how gossip protocols owe their robustness to the
randomness which drives the choice of partners to gossip with, but that this very same
randomness poses problems in a model where nodes might deviate from the protocol.

9Details of how to implement the “witness node” via the SMR can be found in the original paper [60].
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Thanks to this non determinism, nodes could for example justify the fact of exchanging
chunks of the stream with only certain nodes. Or, nodes could free-ride, omitting to
forward chunks to other nodes without being detected and blamed for this. In BAR
Gossip the proposed approach is then to rely on a verifiable pseudo-random selection
of the gossip partner. In this way, non determinism is avoided, and the robustness and
scalability properties of gossip are still ensured.

BAR Gossip works as follows. An altruistic broadcaster node streams a live event.
Client nodes sign up for the event before the start of the streaming, after which joining
is not allowed. On signing up, each client generates a public/private key pair and
sends both of them to the broadcaster node. Before the start of the live streaming, the
broadcaster node publishes the list of participating client nodes together with their
identity (e.g., IP address) and public key. Client nodes are in fact required to digitally
sign all messages they send, thus being accountable for what they do [104].

The broadcaster diffuses the stream in the form of chunks of fixed size that in BAR
Gossip are called updates. Time is divided into rounds of duration T + δ. Here, T is the
assumed upper bound length necessary to complete the gossip exchange described next.
Instead, δ is assumed to be the maximum difference in the clocks of (non-Byzantine)
nodes. A client node plays the streaming data contained in an update once its expiration
time has elapsed, and then discards the update.

At each round, the broadcaster sends the current updates to a certain number of
random client nodes. The authors point out that this number should be chosen to ensure
that, with very high probability, the updates are broadcast to at least a non-Byzantine
client, so that subsequent exchange to the rest of the nodes is ensured via the following
two protocols (illustrated in Figure 4.10) which are described next:

• Balanced exchange protocol. The two gossiping client nodes exchange an equal

number of updates between each other.

• Optimistic push protocol. The two gossiping client nodes exchange an unequal

number of updates between each other.

Balanced exchange protocol. This protocol encourages rational nodes to fairly ex-
change stream chunks between them. The authors have in fact designed, and proved,
that each phase of the protocol is a Nash equilibrium [61], meaning that the whole
protocol is a Nash equilibrium. In a Nash equilibrium, rational nodes are encouraged to
follow the protocol, because deviating from it does not increase their utility in the partic-
ipation in the system. As previously discussed, under the Nash equilibrium framework
rational nodes do not collude, and they assume other nodes follow the protocol.

The protocol is made of four phases. We briefly describe them illustrating why, in
each phase, a rational node is encouraged to follow the protocol.

(1) Partner selection. In the first phase (not represented in the figure), a node chooses
a gossip partner to exchange updates with. The choice is: (i) deterministic, because a
pseudo-random generator (shared by all client nodes) is fed with the current streaming
round number, and (ii) unpredictable, because this round number is signed by the
initiator node. The chosen gossip partner, from the partner selection message itself, can
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Figure 4.10 – BAR Gossip: Balanced Exchange and Optimistic Push protocols.
(Based on: [42])

then decrypt and verify it is the intended valid gossip partner. If it is not the case, this
received message, signed and thus non repudiable by the sender, represent a Proof Of

Misbehavior (POM) of the initiator node. We describe afterwards the role of POMs.

(2) History exchange. Once a receiver node has accepted gossiping with the sender node,
the two nodes exchange their list of the unexpired updates they have. In particular, the
sending partner first sends a hashed history, and only after obtaining the other partner’s
history (in clear) it sends its history in clear. Again, this allows the receiver nodes to
verify that the sender has correctly followed the protocol by transmitting valid update
identifiers. Being this not the case, these two last messages represent a POM for the
sender node.

(3) Update exchange. On reception of the updates histories, the two client nodes
compute the maximum number k of updates that a node is missing and the other node
can offer, thus leading to an exchange based on an equal number of updates. This
implies the history exchange phase encourages nodes to announce all their unexpired
updates in order to benefit from the maximum number of unexpired updates from the
receiver node. Each of them then sends a briefcase message to the other node specifying
the update ids being shipped and the updates themselves in encrypted form. A rational
node is encouraged to ship in the briefcase message the update ids corresponding to the
k updates supposed to be exchanged given the already sent history exchange message,
making otherwise these two messages represent a POM against itself.

(4) Key exchange. A node requests to the gossip partner the key it used to encrypt the
updates shipped in the briefcase exchanged in the former phase, so that it will then
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4.3. BYZANTINE AND RATIONAL BEHAVIOR

be able to decrypt them. A rational node is encouraged to reply including in the key
exchange message the key it used to encrypt updates in the briefcase message, otherwise
these two messages altogether would represent a POM against itself. Also, if a node
does not respond to a key request, the requester node continues sending the request.
A rational node is then encouraged to provide the key in order to avoid wasting its
download bandwidth by receiving the key requests from the other node.

The role of POMs. In BAR Gossip, a centralized trusted entity (which works in co-
operation with the broadcaster) periodically collects POMs from nodes. The interaction
relies, as in BAR-B [60], on the balanced cost principle: the reply of nodes must be
of a fixed size. Sending or not the POMs thus does not increase the benefit of rational
nodes (e.g., they cannot save bandwidth). Furthermore, also the identity of non replying
nodes is communicated to the broadcaster. These nodes are then evicted from the live
streaming by means of an eviction list (of fixed size) which is sent together with the
updates diffused by the broadcaster. Because of these mechanisms, a rational node is
thus encouraged to follow the protocol.

Optimistic push protocol. The balanced exchange protocol requires that clients can
exchange an equal number of updates, which can be a limitation if clients genuinely
have no updates to exchange (e.g., they did not get the latest updates due to networking
issues). The optimistic push protocol comes into play to overcome this situation. The
protocol takes its name from the fact that a gossiping node is exchanging updates with
the selected gossip partner with no guarantees provided by the protocol that this latter
will do the same. Its functioning is similar to that of the balanced exchange protocol,
but it allows an unequal number of updates to be exchanged between the two gossiping
nodes. The optimistic push protocol is in fact not designed as a Nash equilibrium (as
the balanced exchange protocol), and it allows more flexible participation of rational
nodes in the history exchange: the authors experimentally showed that is beneficial for
rational nodes to faithfully participate in it.

Tolerating Byzantine behavior. In BAR Gossip, due to the signature used by broad-
caster when diffusing updates, Byzantine nodes cannot compromise the streaming
content by forging the updates. Also, the authors have shown through experimental
evaluations that non-Byzantine nodes perceive high quality (predictable throughput and
low latency) of the streaming service despite a large portion (20%) of Byzantine nodes.

Dynamic membership and optimizations: FlightPath. FlightPath [105] is a refine-
ment of BAR Gossip, in which the authors modify the original protocol in order to cope
with dynamic membership and improve performances, e.g., jitter reduction and better
bandwidth utilization. To achieve that, the protocol is designed to be an approximate

Nash equilibrium [95] instead of a strict Nash equilibrium: rational nodes have some
flexibility in the execution of the protocol. For example, this makes it possible to reduce
jitter, by allowing an unbalanced exchange of stream updates. And also, it makes nodes
better use their bandwidth, by allowing them to redirect the requests to other nodes if
they are unable to respond to them.
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4.3.3 Summary

In the previous sections, we have discussed the Byzantine and the BAR model.
Moreover, we have detailed the functioning of a few practical P2P systems tolerating
Byzantine behavior (Fireflies/SecureStream and Nysiad), or Byzantine and rational
behavior altogether (BAR-B and BAR Gossip). We provide in the following the
set of requirements that would ideally drive the design of a spam-resilient gossiping
protocol accounting for both Byzantine and rational behavior. Then, we discuss why
the previously illustrated systems do not provide a solution which satisfy all of these
requirements.

4.3.3.1 Requirements of a spam-resilient gossip protocol

We provide here a list of the desired characteristics of a gossip protocol able to limit
spam, and accounting for Byzantine and rational behavior.

• Spam-resilient dissemination. The dissemination protocol should be able to
limit the diffusion of spam messages, while still ensuring reliable dissemination
of non-spam messages. Furthermore, the protocol should be designed tacking
inspiration by reputations systems [106], in which nodes build a reputation during
time. As such, nodes which send less spam and contribute more to the filtering
of spam messages, should receive less spam in return.

• Tolerating an upper bound of Byzantine nodes. The protocol should be de-
signed in order to ensure the system properties assuming an upper bound of
Byzantine nodes might misbehave for arbitrary reasons (provided other non-
Byzantine nodes follow the protocol).

• Incentives to follow the protocol. Accordingly to the assumptions about a
rational node’s behavior discussed in Section 4.3.2, nodes seek long term benefit
in the participation. Hence, the protocol should be designed so that by deviating
a node should fear to have its benefits reduced. The protocol should then provide
incentives to encourage rational nodes to follow the protocol.

• Incentives to monitor nodes and report misbehaviors. Related to the pre-
vious point, the protocol should also provide incentives for nodes to monitor
other nodes’ behavior, and report in case of misbehavior, in order to ensure the
monitored nodes follow the protocol.

• Scalable number of monitors per node. For the monitoring to be scalable, it
should be limited to few monitors per node.

• No external entity to assign monitors. For the protocol to be scalable, it should
not rely on an external (possibly distributed) entity to assign monitors to node.
The assignment of monitors should be done in a decentralized fashion by means
of a protocol run by the participant nodes themselves.

• No external entity to punish misbehaviors. For the protocol to be scalable,
it should not rely on an external (possibly distributed) entity to take eviction
decisions either. Participant nodes, in particular the monitors of a node, should
decide about whether to punish a monitored node or not.
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4.3.3.2 Drawbacks of existing solutions

We briefly summarize here why the existing systems presented so far do not satisfy
the aforementioned requirements.

Fireflies [97]/SecureStream [96]. Fireflies is a Byzantine-tolerant group membership
protocol on top of which an application layer, like the SecureStream streaming protocol,
can be implemented. In SecureStream nodes forward an update to the successor nodes
on each Fireflies ring. We can comment on these two protocols individually. Concerning
the Fireflies protocol, it is “only” Byzantine-tolerant, and not Incentive-Compatible
Byzantine Fault Tolerant. In fact, no mechanisms encourage a rational node to actually
forward the gossip messages it receives. This could possibly impact the reliability of
gossip if a large percentage of nodes does not participate in the gossiping. Concerning
SecureStream, the fact of forwarding to the multiple rings successors ensures reliability
due to the randomness and redundancy of the multiple rings overlay. Yet, as we have
discussed in Section 4.2, this turns out to be the ideal condition to also effectively spread
spam messages. Also, SecureStream assumes that generally only a limited fraction of
nodes could behave selfishly, and proposes a simple auditing mechanism which relies
on external auditing entities.

Nysiad [99]. It translates a crash-tolerant protocol in a Byzantine-tolerant protocol
by replicating each node with a state machine composed of a few guards, which are
assigned by a logically centralized entity. Furthermore, Nysiad replication protocol
is not IC-BFT. In fact, as an example, the replicas could choose to omit sending
the gossip messages in the final phase of the reliable ordered broadcast. This could
possibly compromise the effective synchronization of the replicas in the case in which
a Byzantine primary has only sent the order certificate to a subset of its replicas.

BAR Replicated State Machine [60]. The first two layers of the BAR-B architecture
provide an IC-BFT replicated state machine. This state machine abstracts a trusted
altruistic “witness node”, and it is implemented by all nodes. Whenever a node does
not comply to the protocol, other nodes have and share evidence of the misbehavior and
can individually refuse to communicate with the misbehaving node, without relying on
a 3rd party entity. The approach does not scale over tens or few hundreds of nodes, as
all the communication made by a node passes through the state machine composed by
all other nodes. Also, nodes can issue commands in turns, according to a round-robin
leader rotation.

BAR Gossip [42]. It is an IC-BFT one-to-many broadcasting protocol. It allows
preserving the randomness and robustness of gossiping by employing a deterministic,
yet (pseudo) random, choice of the dissemination targets. Furthermore, an incentive-
compatible balanced exchange protocol ensure nodes exchange stream chunks, other-
wise a proof of their misbehavior is collected by a 3rd party centralized entity, which will
lead to the eviction of misbehaving nodes. Nevertheless, the choice of dissemination
targets still follows a random scheme, which from what we said in Section 4.2, makes
gossiping an ideal vector for spreading spam if BAR Gossip is used for a many-to-many
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dissemination service. Moreover, the cooperation on a short timescale (the time of a
single gossip exchange) limits nodes to having only short-term reputation. Yet, in a
collaborative service where nodes have to filter spam, nodes should be able to build a
long-term reputation so that the nodes which filtered the most of spam are rewarded by
receiving less spam in the future.

Table 4.1 shows, for each requirement of a spam-resilient gossiping protocol,
whether the existing systems presented in this chapter provide or not a satisfactory
solution. From the table, we observe that none of the described systems provide a
comprehensive solution allowing to implement a scalable and reliable gossip protocol
which is able to limit the diffusion of spam messages in presence of Byzantine and
rational behavior.

h
h

h
h
h

h
h
h

h
h
h

h
h
hh

Property

System
Fireflies /

Secure-

Stream

Nysiad
BAR State

Machine

BAR

Gossip

Spam-resilient dissemination X X - X
Byzantine-tolerant

√ √ √ √

Incentives to follow the protocol X X
√ √

Incentives to monitor nodes and
report misbehaviors

X X
√ √

Scalable # of monitors per node
√ √

X -
No external entity for assignment

of monitors for the nodes
√

X - -

No external entity for punishing
misbehaviors

X X
√

X

Table 4.1 – Properties of the presented Byzantine and BAR tolerant P2P systems.
Legenda: (

√
): prop. holds; (X): prop. does not hold; (-): prop. does not apply.

4.4 Conclusion

An effective way to disseminate information in P2P collaborative services (e.g.,
a P2P Web forum or Q&A Web site) is by employing gossip-based dissemination
protocols. In gossip-based dissemination protocols, once a node receives a message for
the first time, it forwards it to a random subset of nodes. This simple approach has been
shown to be highly scalable and reliable in spreading the information in the network.

Nevertheless, gossip-based dissemination protocols have a drawback: they are
unable to limit the dissemination of spam messages. Indeed, messages are randomly
and redundantly disseminated in the system, and it is enough that a small subset of
nodes forward spam messages, to have them received by a large percentage of nodes.

To make things worse, in a practical context like the Internet, where there is no
authority controlling what nodes do, nodes can deviate from the protocol for different
reasons. Nodes can arbitrarily deviate from the protocol due to a bug or misconfigura-
tion, or even because compromised by a malicious attacker who took control of their
machines (Byzantine behavior). But also, nodes can deviate from the protocol following
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a selfish choice, seeking to maximize their net benefit while reducing their costs, e.g.,
by not forwarding messages they are supposed to forward (rational behavior). The BAR
model is a model accounting for both these two classes of faults.

To the best of our knowledge, no currently existing gossip-based dissemination
protocol is able to limit the dissemination of spam, while accounting for Byzantine
and rational behavior. In the next chapter, we present FireSpam, a novel gossiping
protocol designed in the BAR model, that is able to limit the diffusion of spam.
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We have shown in the previous chapter that gossip-based dissemination protocols
are ideal vectors for the diffusion of spam. In fact, the straightforward approach of
letting nodes locally filter the messages they detected as spam is not effective. This
is due to the fact that gossip-based dissemination protocols are highly redundant and
random: nodes possibly receive the same message several times and from different
nodes. It is then enough that a few nodes do not stop the dissemination of a spam
message, to have it spread to a significant fraction of nodes.

To the best of our knowledge, no currently existing gossip-based dissemination pro-
tocol is able to limit the dissemination of spam. In this chapter we present FireSpam, a
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novel gossiping protocol that is able to limit spam dissemination. In fact, in FireSpam
nodes are organized in a ladder topology according to their capability to filter spam:
nodes having a high (resp., low) filtering capability are located at the top (resp., bottom)
of the ladder. Messages are disseminated from the bottom to the top of the ladder, which
acts as a progressive spam filter. The rationale behind this topology is that nodes that
actively filter spam (i.e., those with a high filtering capability) progressively climb the
ladder and will eventually be less overwhelmed by spam messages.

While organizing nodes in a ladder topology can easily be achieved if all nodes in
the system behave correctly [40, 41], it appears challenging to build such a topology
in the presence of nodes acting maliciously or selfishly. Nodes with such behaviors
are common in P2P systems and they do thus need to be taken into account when
designing FireSpam for it to be usable in practice. Consequently, we have designed
FireSpam considering the BAR model [60]. This model states that there are three
kinds of nodes: altruistic nodes that strictly follow the protocol, Byzantine nodes that
can behave arbitrarily (hence, to the extreme, maliciously), and rational nodes that
behave selfishly and are willing to deviate from the protocol if there is a gain in doing
so. We have thus designed FireSpam as an Incentive-Compatible Byzantine Fault
Tolerant (IC-BFT) protocol [60] in order to tolerate Byzantine nodes and discourage
rational nodes from acting selfishly. In fact, FireSpam design choices are such that it
tolerates an upper bound of Byzantine nodes, which by misbehaving cannot harm the
system properties. Moreover, FireSpam mechanisms allow misbehaving nodes to be
detected and evicted from the system. Furthermore, FireSpam encompasses a set of
incentive-compatible mechanisms that make the protocol a strict Nash equilibrium [61].
More precisely, the incentive mechanisms used in FireSpam ensure that it is in a
rational node’s best interest to always follow the protocol, as it will have no gain
in not doing so. We have built FireSpam on top of the Fireflies [97] Byzantine-
tolerant overlay network. The Fireflies protocol tolerates Byzantine nodes but is not
explicitly designed for coping with rational behavior. In order then to actually have a
full Incentive-Compatible Byzantine Fault Tolerant protocols stack (FireSpam on top
of Fireflies), we illustrate in Appendix A the modifications to Fireflies to discourage
rational behavior and thus to make it an IC-BFT protocol.

We assessed the robustness of FireSpam both theoretically and practically. From
a theoretical point of view, we proved that the protocol is a strict Nash equilibrium:
rational nodes will follow the protocol as they cannot expect a gain by deviating, or
worse, they fear to compromise their benefit, by deviating. From a practical point of
view, we assessed through an extensive simulation study that FireSpam: (i) reliably
delivers good messages; (ii) drastically limits the dissemination of spam messages; (iii)

cannot be harmed by a set of Byzantine nodes colluding to break the ladder topology;
and (iv) has reasonable bandwidth costs due to the robustness properties.

The rest of this chapter is organized as follows. In Section 5.1 we present the system
model underlying the FireSpam protocol. We describe the design and functioning
of the protocol in Section 5.2. Its robustness is discussed in Section 5.3 (a sketched
proof of its incentive-compatibility is further given in Appendix B). We present the
performance evaluation in Section 5.4 before concluding in Section 5.5.
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5.1 System Model

In this section we present the system model underlying the FireSpam protocol.
The system model decomposes into a message model, a spam filtering capability model,
a fault model, and a set of system assumptions.

Messages. Nodes can generate two types of messages: good messages and spam mes-
sages. Good messages are of interest to all the nodes and must be reliably disseminated
in the network. Instead, spam messages should be filtered during the dissemination
process in order to reach as few nodes as possible. By spam message we do not refer
merely to junk content, for which automatic spam filtering solutions could be employed
from the artificial intelligence / machine learning field. We consider in fact the more
general (and subtle) type of spam message whose content is irrelevant, inappropriate or
just misleading for the other participants, but which nevertheless could pass undetected
an automatic spam filter. Taking as example the case of an Internet forum dedicated
to a single soccer team, one malicious user might spread a false information about the
club or its players, yet this message would pass through an automatic filter.

Node filtering capability. Each node in FireSpam has a spam filtering capability

(also called “pollution awareness” in [58]) that expresses the ability of a node to detect
spam messages. We assume that the messages classified by nodes as good or spam

effectively fall into that category with a very high probability. That is, nodes do very
few (i.e., less than 5%) false positive or false negative message classification (good

messages classified as spam and spam messages classified as good, respectively).

Fault model. We consider the BAR model [60], in which nodes can be Byzantine,
altruistic or rational. Altruistic nodes behave exactly as dictated by the protocol, and
they can only fail by crashing. On the other side of the spectrum, Byzantine nodes can
deviate from the protocol for any reason (e.g., a failure, a bug, a threat) and in doing
so, they can take arbitrary decisions (e.g., dropping good messages). Furthermore,
Byzantine nodes can collude together. Finally, rational nodes aim at maximizing their
benefit according to a known utility function. We suppose that rational nodes join and
remain in the system for a long time and seek a long-term benefit. Moreover, rational
nodes do not collude and assume that other nodes are altruistic. A rational node can
deviate from the protocol if the generated utility increases accordingly (e.g., they can
decide not to forward messages for saving bandwidth). We consider the utility to be
proportional to the amount of good messages received and conversely proportional
to the amount of spam messages received as well as to the amount of bandwidth
consumed by receiving/forwarding messages from/to other nodes. Specifically, the
utility perceived by a rational node can be represented along the following axes:

1. (G) Receiving as much as possible (possibly, all) of the good messages dissemi-
nated in the system;

2. (S) Receiving as little as possible (possibly, none) of the spam messages dissemi-
nated in the system;

3. (F) Forwarding as little as possible (possibly, none) of the received messages.
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We can thus informally define the utility function as:

B = αG+ βS + γF (5.1)

where α ≫ β ≫ γ, intuitively meaning that nodes do not want to trade-off the
reliable reception of good messages to receive less spam or consume less bandwidth.
Furthermore, for a node it is of more benefit receiving less spam, rather than saving
some bandwidth.

System assumptions. We assume a cryptographic identification of nodes as it is as-
sumed in many practical gossip-based content dissemination protocols (e.g., [42]). Each
message sent in the network is therefore signed using the sender’s cryptographic key.
We also assume cryptographic primitives cannot be subverted, which (i) exclude the
impersonation attacks [107], and (ii) make senders accountable [104] for the messages
they send. Furthermore, we assume that non-Byzantine nodes maintain clocks synchro-
nized within δ seconds and communicate over reliable links. Moreover, we assume that
messages sent by a sender to a given receiver are always received within a bounded
time. We also assume that trivial Denial-of-Service (DoS) attacks can be detected and
suppressed (e.g., [108]).

5.2 The FireSpam protocol

We present here FireSpam, a spam resilient gossiping protocol in the BAR model.
FireSpam organizes the nodes in a ladder topology, and it employs a set of mecha-
nisms to tolerate Byzantine behavior and to discourage rational behavior. We start by
a description of the ladder topology as a progressive spam filter approach. Then, we
describe the challenges raised by the construction of the ladder in the presence of Byzan-
tine and rational nodes. Afterwards, we illustrate the basic mechanisms underlying the
FireSpam protocol and finally we explain its functioning in more detail.

5.2.1 Ladder topology

In FireSpam, nodes are organized according to their filtering capability in a ladder
topology. Nodes at the bottom of the ladder have the lowest filtering capability, whereas
nodes at the top of ladder have the highest filtering capability. Messages produced by
a node p are first sent to a set of nodes located at the bottom of the ladder (called the
Publication View of p). When a node q receives a given message for the first time, it
decides whether to filter it (when it considers it as a spam message) or to forward it to a
set of nodes which surround it in the ladder (called the Forwarding View of q). Good
messages will thus eventually reach all nodes in the ladder, whereas spam messages
will be progressively filtered by nodes along the ladder. The rationale behind this ladder
topology is that nodes that actively filter spam (i.e., have a high filtering capability), will
progressively climb the ladder and be located at the top of it. Consequently, they will
receive less spam than nodes with a lower filtering capability. Nodes are thus rewarded
to filter spam.

Figure 5.1 shows an example of message dissemination in FireSpam. In this
figure, a node p generates a spam message m and sends it to its publication view (in
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the figure, the three nodes at the bottom of the ladder). Nodes that are able to filter m
are represented with a thick border, whereas nodes represented with a thin border are
not able to filter m. Note that as nodes are organized in the ladder according to their
filtering capability, it is more likely to find nodes able to filter m at the middle and top
of the ladder rather than at the bottom of it. In the example, nodes that do not filter m,
forward it to nodes in their forwarding view. We observe that m is eventually filtered as
it progressively reaches nodes that are able to filter it, thus preventing nodes at higher
positions of the ladder from receiving it (in the figure, unfilled circles).
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Figure 5.1 – FireSpam ladder topology: example of spam message dissemina-
tion and filtering.

5.2.2 Ladder construction challenges

Organizing nodes in a ladder topology can easily be achieved if all nodes in the
system behave correctly. In fact, gossip-based protocols like T-Man [40] / Vicinity [41]
can be employed to organize nodes according to a given proximity function. In such
protocols, nodes gossip their value and that of their current proximity function optimal
neighbors. In this way, nodes can adjust their views with better neighbors (according
to the proximity function) and ultimately make the overlay converge to the desired
topology. For the case of our desired ladder topology, nodes would exchange their (self-
announced) spam filtering capability and that of their current neighbors. On merging
the views, the proximity function would return the nodes which have closest filtering
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5.2. THE FIRESPAM PROTOCOL

capability, thus converging ultimately to a ladder topology.

But, it appears challenging to build, and leverage for message dissemination, such
a ladder topology in the presence of rational and Byzantine nodes. In particular, for
FireSpam to function under this possible behavior of the participant nodes we need
to ensure:

• Reliable dissemination: good messages must be forwarded by all nodes. Con-
sequently, rational and Byzantine nodes should be discouraged or punished when
dropping good messages.

• Correct node evaluation: in order for the ladder to have a correct topology, it is
crucial that the filtering capability of nodes is regularly and correctly assessed.
For instance, rational and Byzantine nodes should not have ways to forge filtering
capability assessment.

• Correct view assignment: the publication and forwarding views of nodes must
be correctly assigned (i.e., according to their filtering capability). For instance,
rational and Byzantine nodes should not be able to forge view assignments in
order to take a larger benefit from the protocol (e.g., choosing as neighbors nodes
with a high filtering capability).

The three concepts are tied together, as summarized in Figure 5.2. In fact, the view
assignment determines to which nodes messages should be disseminated. Message
dissemination —how a node contribute in forwarding good and/or spam messages—
on the other side, is the criterion upon which a node is evaluated with respect to other
nodes. And, according to the results of the node evaluation, a node is supposed to have
a (forwarding) view assigned which is made of nodes with similar filtering capability.
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Figure 5.2 – FireSpam main concepts.

5.2.3 Protocol mechanisms

In order to deal with the aforementioned challenges, FireSpam decomposes in a
set of mechanisms enabling the reliable construction of the ladder topology and the
reliable dissemination of (good) messages within it.

To enable the reliable dissemination of good messages, nodes classify messages
in three categories, as illustrated in Figure 5.3. The good and spam categories are

96



used when the node can assess with evidence that the message is a good or a spam
message, respectively. Instead, the undetermined category is used when the node is not
able to assess with certainty whether the message is a spam or a good message. This
classification allows detecting nodes that intentionally filter good messages. Indeed, a
node is expected to send all messages that it classifies in the good and undetermined

categories. Consequently, if a node does not receive a message m it classified as good

from a node p it is in the forwarding view of, it will conclude that p intentionally filtered
the message m. In this case, as we will see, it will take actions to punish p.
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Figure 5.3 – FireSpam message classification categories.

To enable correct node evaluation and correct view assignment, a node is determin-
istically assigned a set of node monitors. The reason why FireSpam relies on node
monitors for node evaluation and view assignment is the following: a node obviously
should not self-assess its filtering capability. Otherwise, rational nodes could simply
claim they have the highest possible filtering capability. An intuitive idea would be
to rely on nodes that are in the view of the node to be assessed. Indeed, these nodes
receive all messages sent by p and seem thus to be good candidates to evaluate its
capability to filter spam. Nevertheless, these nodes could act rationally by forging the
evaluation of nodes with high filtering capabilities in order to keep them close by in the
ladder and benefit from their filtering capability. It is thus necessary to rely on third
party node monitors and to define incentive mechanisms guaranteeing that these node
monitors will behave correctly. Node monitors of a node p are actually responsible for
the following tasks:

• Assessing the filtering capability of p.

• Assigning the publication and forwarding views of p.

• Detecting any misbehavior of p and possibly blacklisting and evicting p from the
system.

• Detecting any misbehavior of other node monitors of p and possibly evicting
them from the system.

Node monitors for every node in the system are allocated using the Fireflies overlay
network [97]. The Fireflies protocol relies on a multiple rings topology and allows
to deterministically associate to each node a set of nodes (node monitors in the case
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5.2. THE FIRESPAM PROTOCOL

of FireSpam) such that, with very high probability, a majority of them are non-
Byzantine. Note that in FireSpam the node monitors also use the gossip broadcasting
sub-protocol provided by Fireflies in order to reliably disseminate a message among all
the non-Byzantine node monitors. This gossiping sub-protocol ensures that messages
are reliably delivered, despite the presence of Byzantine nodes, and within a bounded
time1. As we previously pointed out, we illustrate in Appendix A the modifications to
Fireflies to make it an IC-BFT protocol.

5.2.4 Protocol description

The FireSpam protocol is decomposed in a set of seven steps that are illustrated in
Figure 5.4 and that are described in the following. The design choices which make the
protocol tolerate Byzantine nodes as well as the incentive mechanisms that are used to
encourage rational nodes to follow each one of the protocol steps are further discussed
in the next section.
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Figure 5.4 – FireSpam roles and protocol steps.

(1) Message publication. To publish a message m, node p sends it to all the nodes in
its publication view, i.e., nodes n4, n5, and n6.

(2) Message forwarding. When node p receives a message m, if it does not classify it
as spam, it forwards it to all nodes in its forwarding view, i.e., nodes n1, n2, and n3.

(3) Message reporting. When nodes receive a message from p, they send a REPORT

1Timeouts can be dynamically set based on the monitoring of the current message delivery latency
across the gossip-based platform.
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message to p’s node monitors.

(4) Node evaluation. Node monitors use the reports received about p to assess its
filtering capability. This is made possible by the fact that all messages are broadcast
in the entire network. Consequently, it is possible for a node monitor to compare the
filtering capability of two nodes by simply comparing the overall number of messages
they sent during the same time interval: a node p sending less (resp., more) messages
than a node q if it has a higher (resp., lower) filtering capability than q. Recall that we
make the assumption that a node does not incur in more than 5% misclassifications
when assessing whether messages are spam or good. If a node was evaluating other
nodes throughout the lifetime of a system, it could thus theoretically achieve a 5%
precision on the evaluation of other nodes. In practice, however, nodes are evaluated
on finite time intervals. To obtain a reasonable precision, we evaluate nodes on time
intervals during which a large number of messages are broadcast (i.e., 1000 messages
in the evaluation presented in Section 5.4).

In order to compute the number of messages actually sent by a node p, node
monitors rely on MAJORITYREPORT messages. These reports are sent by p’s node
monitors whenever they receive a majority of REPORT messages stating that p sent a
message m. On reception of the first MAJORITYREPORT message from a node monitor
of node p, a node monitor updates the evaluation of p by incrementing by one the
number of messages sent by p.

Two things must be noted. First, MAJORITYREPORT messages are sent to all node
monitors in the system in order to inform them that p has actually sent the message m
to a majority of nodes in its view. Second, the reception of REPORT messages is also
used by node monitors to detect if a monitored node p did not forward good messages.
Specifically, node monitors of a node p check that p correctly forwarded the messages
that it considers good. If that is not the case, it considers that p has not followed the
protocol and can take actions against p.

(5) Node monitor collaboration. In order to ensure that node monitors follow the
protocol, each node monitor of node p is responsible for controlling whether other
node monitors are behaving correctly or not. Specifically, each time a node monitor
sends a message to other node monitors, it expects to receive a “similar” message from
other node monitors (i.e., if it sends a MAJORITYREPORT for the node p, it expects
the other monitors to send a MAJORITYREPORT for p as well, possibly made with
REPORT messages produced by different neighbors of p). The reason is that they follow
a deterministic protocol that produces the same outputs provided they receive the same
inputs. If a node monitor does not receive an expected message from one of the other
node monitors, it collaborates with the other node monitors of p in order to evict it from
the system (if a majority of node monitors are willing to do it).

(6) View assignment. Nodes belonging to the set of node monitors of node p period-
ically compute a forwarding view and a publication view for p. They then send the
computed views to the other node monitors of p, which check their correctness. If a
node monitor q does not send a view or sends a wrong view, the other node monitors
can possibly evict q (if a majority of node monitors are willing to do it).

The computation of views is performed as follows: every node monitor knows the
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set of nodes in the system and their filtering capability (thanks to the MAJORITYREPORT

messages it receives). Views are then assigned using the same mechanism than the
one used in Fireflies to assign monitors to nodes [97]. This mechanism allows to
deterministically associate to each node sets of 2t + 1 nodes, out of which there is
a probability P that at most t nodes are Byzantine. The larger the set of nodes from
which the 2t + 1 nodes are chosen, the higher the probability P . In the remaining
of this paper, we call candidate set the set of nodes from which the 2t+ 1 nodes are
chosen. Additionally, we impose that the forwarding and publication views of any node
be disjoint from its node monitors set. This condition is necessary to ensure that node
monitors have no incentive in not adhering to the protocol for their own good.

(7) Report checking. As rational nodes assume that other nodes are altruistic, a rational
node may decide to save bandwidth by omitting to send reports. In order to avoid this
behavior, nodes sending messages periodically query their node monitors to check that
nodes in their views correctly reported about the messages they sent. Node monitors
having received REPORT messages send them back to senders. Note that these replies
have fixed size in order to encourage node monitors to actually reply with the correct
information: there is indeed no incentive in sending wrong information as this will
consume the exact same amount of bandwidth.

5.3 Robustness

Assessing the robustness of FireSpam against both Byzantine and rational behav-
iors implies showing that the protocol is actually Incentive-Compatible Byzantine

Fault Tolerant (IC-BFT) [60]. This means that the protocol should satisfy the following
two requirements:

1) Byzantine fault tolerance. The desired protocol properties (i.e., reliable dissem-
ination, correct node evaluation and correct view assignment) are guaranteed
even in the presence of a bounded number of Byzantine nodes, provided that

non-Byzantine nodes follow the protocol.

2) Incentive-compatibility. Rational nodes follow the protocol as they have no in-
centives in deviating from it: in deviating (i) they expect to get the same or an
inferior utility from the participation in the system, or even worse (ii) they fear to
be blacklisted by some nodes or evicted from the system.

5.3.1 Tolerating Byzantine behavior

As discussed in Section 5.2, FireSpam design choices guarantee the desired
protocol properties in the presence of a bounded amount of Byzantine nodes, provided
that all other nodes follow the protocol. Indeed, forwarding and publication views,
as well as node monitors are assigned in a way that guarantees that they comprise a
majority of non-Byzantine nodes. In particular, as in FireSpam the node monitors
of a node are allocated using the Fireflies [97] overlay network, we first report the
mechanism used in Fireflies to assign to a node with high probability a majority of
non-Byzantine node monitors selected from the whole node population. Then, using the
same mechanism, we describe how to assign to a node with high probability a majority
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of non-Byzantine nodes in the view, this time selected from a small candidate set of
nodes surrounding the node in the ladder.

Tolerating Byzantine nodes in the node monitors set. Consider the underlying
Fireflies multiple rings overlay network2. This underlying network is made of 2k + 1
rings, such that the position, and hence the ordering, of the nodes on each ring is
deterministically dictated by a pseudo-random hash function: H(node_id||ring_id).
In FireSpam, the predecessors of a node p on each of the 2k + 1 Fireflies rings
form the node monitors set for the node p. Suppose now that the bounded amount of
Byzantine nodes which can be tolerated in the system is b. This means that for any node
taken in the whole system made of n total nodes, the probability for it to be a Byzantine
node is b/n = Pn

byz . Given this probability Pn
byz , we have discussed in Section 4.3.1.1

the approach employed in Fireflies to choose the number 2k+ 1 of rings, and hence the
number of the pseudo-random node monitors assigned to each node, in order to select
the smallest k for which the probability of having more than k Byzantine nodes in the
node monitors set is very small. This minimum value of k can be obtained by solving
the cumulative binomial distribution in Formula 5.2:

min(k) : P = B(k, 2k + 1, 1− Pn
byz) < ǫ (5.2)

As an example, if we aim at tolerating at most 5% of Byzantine nodes among
all the nodes in the system, choosing k = 2 would lead to a 99.88% probability of
having (at least) a majority of non-Byzantine nodes in a node monitors set of size
2k + 1 = 5. Nevertheless, as noted in Fireflies [97], if node monitors rely on their
successors on the multiple rings to gossip messages intended to be delivered to all the
node monitors of the system, the choice of the number of the rings —and hence of the
gossip targets— must be (on average) in the order of ln(N) +O(1) to ensure reliable
atomic dissemination to all nodes [30]. This means for example that for a system size
of 1,000 nodes, a k = 4 would be a suitable value.

Tolerating Byzantine nodes in the views. The probabilistic assignment of a majority
of non-Byzantine nodes in the views follows from similar probabilistic arguments as
the one discussed before for node monitors sets. Accordingly to the ladder topology of
FireSpam design, the forwarding view of a node p should be composed of the nodes
whose filtering capability surrounds that of p. Consider then that we might want to
select 2t+ 1 (random) nodes to form the forwarding view of p from a candidate set of
c nodes surrounding p, e.g., taken from a contiguous range which is half immediately
below p and the other half immediately above p in the ladder. Then, if c ≤ b (the
bounded amount of Byzantine nodes), in the worst case where all Byzantine nodes
form a contiguous block together, the probability to find a Byzantine node in this range
is 100%. Increasing c to be r ∗ b, then the probability to find a Byzantine node in the
contiguous candidate set is reduced by a factor r, thus becoming P c

byz = 1/r. It follows
that the candidate set size (and hence, the P c

byz = 1/r), together with the view size
2t + 1, must be appropriately chosen such that the probability P to have at most t

2The reader can find in Section 4.3.1.1 of this document a description of the functioning of Fireflies,
and can refer to the original Fireflies paper [97] for additional details.
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Byzantine nodes out of the 2t+ 1 in the view is very low. This probability P is again
expressed by a cumulative binomial distribution, as indicated by Formula 5.3:

min(t) : P = B(t, 2t+ 1, 1− P c
byz) < ǫ (5.3)

As an example of how to pick the candidate set size c and the view size 2t + 1,
we consider again the case where we aim at tolerating at most 5% Byzantine nodes
among all the system nodes. If we choose c = 5∗ b and t = 6, there would be a 99.29%
probability of having (at least) a majority of non-Byzantine nodes in a view of size
2t+ 1 = 13.

As final considerations on the views, the following three things can be noted. First,
they are asymmetric: if a node p is in node q’s forwarding view, the opposite is not
necessarily true. Second, the very same aforementioned discussion about majority of
non-Byzantine nodes in forwarding views applies also to the assignment of publications
views. In fact, in this case the candidate set for the publication view of a node p is
made of the first c nodes in the ladder, instead of the c nodes surrounding p. Third,
the majority value t+ 1 should be a proper fanout to ensure the reliable dissemination
among all the nodes of the system. In fact, FireSpam dictates to forward a message
to all the 2t + 1 nodes in its view: this accounts for the fact that only the t + 1 non-
Byzantine nodes among them might forward it afterward. In the evaluations presented
in Section 5.4, we have experimentally found that view size made of 13 nodes ensured
reliable dissemination in a system with 1,000 nodes.

5.3.2 Discouraging rational behavior: incentive-compatibility

In order to show that rational nodes follow the protocol, we prove in a game
theoretic framework along the lines of systems like BAR-B [60] and BAR Gossip [42]
that FireSpam is a strict Nash equilibrium [61]. Towards this purpose, we need to
demonstrate that each of the seven steps of the protocol (presented in Section 5.2) is
a strict Nash equilibrium, meaning that a rational node cannot expect to increase its
utility by deviating from the protocol. As done in BAR Gossip [42], we point out that in
the rest of the discussion a rational node assuming other nodes to behave altruistically
is a Nash equilibrium artifact proof.

We informally present here the incentive mechanisms provided in FireSpam to
discourage rational nodes from deviating from the protocol, while instead we sketch a
more formal proof in Appendix B.

(1) Incentives for message publication. A rational node r publishes a message m by
sending it to all nodes in its publication view PVr. In fact, as it is in r’s interest to have
its message m reliably delivered to all nodes of the system, and for what discussed in
Section 5.3.1 on the required dissemination fanout to tolerate Byzantine nodes in the
views, the rational node r will then follow the protocol and send the message m to all
the nodes in its publication view PVr.

(2) Incentives for message forwarding. Upon the reception of a message m which
is not classified as spam, a rational node r always forwards m to all the nodes in its
forwarding view FVr. In fact, r forwards m, otherwise it risks:
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• To be blacklisted by a node p in FVr to which r did not forward m. Specifically,
if p receives a message from another node than r and classifies it as good, it will
detect r’s misbehavior and blacklist r.

• To be blacklisted and suggested for eviction by a node p among its node monitors
set Mr. Specifically, if p receives m and classifies it as good, it will expect the
reception of a majority of REPORT messages from nodes in r’s forwarding view.
If p does not receive such reports, it will blacklist r and suggests to evict it. A
majority of node monitors suggesting for eviction of r will then cause r removal
from the system.

(3) Incentives for message reporting. Upon reception of a message m from a node
p, a rational node r will always send a REPORT message to all the node monitors of
p about the reception of m. In fact, p periodically checks on its node monitors and
for each message it has forwarded, that all the nodes in its forwarding view sent the
corresponding REPORT message. The node monitors reply to the sender with a fixed size

response that contains the signed evidence of the reception of those REPORT messages.
If r did not send a REPORT message, p will detect it and will consequently blacklist r.

(4) Incentives for correct node evaluation. At the heart of correct node evaluation is
the MAJORITYREPORT dissemination performed by node monitors. Once a rational
node monitor r has collected a majority of REPORT messages about a monitored node
p for a given message m, the node monitor r will disseminate this information in
the system. In fact, all p’s node monitors (including r) have collected an equivalent
majority of REPORT messages. Thus, as the dissemination in the node monitors overlay
is reliable despite the presence of an upper bound number of Byzantine nodes (as
previously discussed in Section 5.3.1), the other node monitors can observe whether r
has actually disseminated the report or not. In this latter case, r will be blacklisted.

(5) Incentives for monitor collaboration. A rational node monitor r of a node p
always sends correct messages to other node monitors of the same node. In fact, each
time a node monitor sends a message to other node monitors, it expects to receive the
same message from other node monitors (e.g., MAJORITYREPORT messages). Thus, if
a node monitor does not receive an expected message from r, it collaborates with the
other node monitors of p in order to evict r from the network.

(6) Incentives for correct view assignment. Similarly to the correct evaluation of
nodes, biased view assignment can be very easily detected by node monitors as this
process is deterministic. Hence, a node monitor that computes and disseminates a
wrong forwarding or publication view risks eviction by other node monitors of the same
monitored node.

(7) Incentives for report checking and answering to report checks. A rational node
r periodically checks on its node monitors the existence of REPORT messages sent by
nodes in r’s forwarding view. If r does not check for the reception of those reports,
its evaluation may be biased (e.g., by Byzantine nodes) and it also risks blacklisting
and eviction. Hence, report checking allows a node to ensure that its node monitors
are aware of its forwarding activity and discourage neighbors from not sending reports.
Furthermore, a rational node monitor r, once queried by a monitored node p about
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reports sent by one of its neighbors, always replies and with the correct answer. In
fact, if r does not reply, p will blacklist it. Then, the incentive to provide the correct
answer is given by the following two mechanisms. First, the response must be of a
given fixed size, otherwise r will be blacklisted by p. Second, as the monitor node r
and the monitored node p can not be in each other’s forwarding view, then r has no
interest in not providing the correct answer to p.

5.4 Evaluation

We performed a simulation-based evaluation of FireSpam. To that purpose, we
developed a C++ event-based simulator à la PeerSim [62]. We simulated a system
composed of 1,000 nodes for three different filtering capability distributions: uniform,
power-law, inverse of power-law. Moreover, we varied the percentage of Byzantine
nodes that are in the system and that FireSpam is configured to tolerate: 1%, 3%, 5%.

In all experiments, the candidate sets from which to select the nodes for views has a
size which is 5 times the number of Byzantine nodes to tolerate in the system. From
what already said in Section 5.3.1, this guarantees that in a system with at most 5%
Byzantine nodes, selecting 13 nodes in each view will ensure with probability 99.29%
that a majority of them are non-Byzantine nodes. From similar reasoning, as discussed
in Section 5.3.1, choosing a number of node monitors per node made by 9 nodes, it
guarantees with probability 99.99% that each node has a majority of non-Byzantine
node monitors when at most 5% of the nodes of the system are Byzantine.

We compare FireSpam against the gossip based dissemination protocol presented
in [30], and that —as previously done by [90]— we refer to as RandCast in the
following. In RandCast each node forwards the messages it receives to a set of nodes
that continuously changes and that represents a random sample of the network. It
has been proved that this set must have a size of log(N) + c (where N is the size of
the network and c is a constant) to ensure reliable delivery of messages [30]. In our
experiments, this size is set to 13 to mimic the behavior of FireSpam, in which each
node forwards a message to every node in its view. Moreover, as we have described and
studied in Section 4.2.2, we have further modified the RandCast protocol to take into
account spam filtering capabilities of nodes, so that they do not forward the messages
they detect as spam.

We first assess the correctness of the forwarding views that FireSpam assigns
to nodes. Our experiments show that each node has in its forwarding view a set of
nodes actually selected from the candidate set of c nodes in the surroundings of its
position in the ladder, as explained in Section 5.3.1. We then show that albeit both
FireSpam and RandCast ensure reliable dissemination of good messages, FireSpam
presents an increased latency due to its ladder topology, and within it, depending on
the percentage of Byzantine nodes to tolerate. Afterwards, we show the evaluation
of the average percentage of spam messages received by each node as a function of
the distribution of filtering capabilities and of the percentage of Byzantine nodes in
the system. This evaluation shows that in all cases FireSpam drastically reduces the
percentage of spam messages received by the nodes that are in the upper part of the
ladder. It also shows that the higher the filtering capability of a node, the lower the
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percentage of spam messages it receives. We then assess the behavior of FireSpam
under an eclipse attack [109], i.e. when a set of Byzantine nodes collude to break
the ladder topology. This experiment shows that under an eclipse attack, FireSpam
successfully maintains the ladder topology, ensures reliable dissemination of good
messages, and keeps filtering spam messages in an efficient way. Finally, we assess the
cost of FireSpam in terms of bandwidth consumption with respect to RandCast.

We point out that, in our simulations, Byzantine nodes do not forward good mes-
sages, do not filter spam messages, send randomly generated reports, and take random
decisions when they act as node monitors. To measure their impact, blacklisting and
eviction has been disabled in all the evaluation contexts, except for the evaluation of
Byzantine nodes colluding together and attempting to break the ladder.

5.4.1 Correctness of forwarding views

Figure 5.5 illustrates the forwarding views assigned to nodes by FireSpam, con-
figured to tolerate an upper bound of Byzantine nodes respectively comprising 1%, 3%
and 5% of the nodes of system. We observed very similar results for the three spam
filtering distributions, we thus only report results for the uniform distribution. The X
and Y axes both represent nodes, ordered by filtering capability. The forwarding view
of a given node on the X axis is made by the set of nodes on the Y axis for which a
point is plotted in the graph.

As explained before, each forwarding view is made of 13 nodes that are selected
from a candidate set which is 5 times the number of Byzantine nodes to tolerate in the
system. This means that the candidate set for a given node p is made of, respectively,
the 50, 150, and 150 nodes surrounding p in the ladder, when FireSpam is configured
to tolerate an upper bound of, respectively, 1%, 3%, and 5% of the nodes of the system
being Byzantine. We indeed observe that FireSpam correctly assigns forwarding
views: every node has a forwarding view that comprises 13 nodes that are randomly
chosen from the candidate set of nodes surrounding it in the ladder.

5.4.2 Reliability and latency of good messages delivery

Figure 5.6 compares RandCast and FireSpam with respect to the average percent-
age of nodes reached by a good message as a function of the number of hops from the
publisher node. Again, for FireSpam we show the results obtained in the presence
respectively of 1%, 3%, and 5% of the nodes of the system being Byzantine (i.e.,
not forwarding good messages). The observed results were very similar for the three
spam filtering distributions, as a consequence of the fact that they all lead to similar
forwarding view assignments, as noted in the previous section. We thus only show the
latency results for the uniform distribution.

We observe that both protocols achieve 100% reliability in delivery. Nevertheless,
we observe that the average latency (expressed in the number of hops) to reach all
nodes is higher for FireSpam than for RandCast. This comes from the usage of the
ladder, in which messages are progressively disseminated from the bottom to the top.
Moreover, we observe that the latency decreases with the number of Byzantine nodes
that are tolerated by FireSpam. This comes from the fact that this decreases the size
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(a) 1% Byzantine nodes
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(b) 3% Byzantine nodes
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(c) 5% Byzantine nodes
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Figure 5.5 – Forwarding views assigned by FireSpam as a function of the node
filtering capability for three different percentage of Byzantine nodes.
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of the candidate set from which forwarding views are assigned, as shown previously in
Figure 5.5. As a consequence, the height of the ladder increases, and thus the time it
takes to disseminate messages.
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Figure 5.6 – Cumulative distribution of the average percentage of nodes reached
by a good message, after a given number of hops from the publisher node.

5.4.3 Percentage of spam messages received

Figure 5.7 shows the percentage of spam messages that are received by every
node. The X axis represents nodes, ordered by filtering capability. Nodes on the left
(resp., right) of the X axis are thus located at the bottom (resp., top) of the ladder.
We plot results for RandCast and FireSpam for the three spam filtering capability
distributions. Regarding FireSpam, we plot results obtained when the system is made
of, and FireSpam is configured to tolerate, respectively 1%, 3% and 5% of the nodes
being Byzantine.

We can first observe that, when using RandCast, the percentage of spam messages
that are received is the same for all nodes. This comes from the fact that each node has
the same probability to communicate with all nodes in the network. Thus, the benefit
of spam filtering is uniformly spread among nodes. Not surprisingly, we also observe
that the percentage of spam messages that are received is much lower when using the
inverse power-law distribution (38%) than when using other distributions (around 75%).
This comes from the fact that in the former case, many nodes have a very high filtering
capability.

The second observation we can make is that using FireSpam, nodes receive a
percentage of spam messages that is conversely proportional to their spam filtering
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(a) Uniform distribution
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(b) Power-law distribution
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(c) Inverse power-law distribution
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Figure 5.7 – Percentage of spam messages received by nodes for the three
different spam filtering capability distributions: (a) uniform, (b) a power-law, (c)
inverse power-law.
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capability. We do thus see that nodes have a clear incentive to filter spam messages,
as this will consequently decrease the percentage of spam messages they receive. For
instance, in all three distributions, the very best nodes receive at least 5 times less spam
messages than the worst nodes.

We also observe that nodes that are at the bottom of the ladder receive more spam
than using RandCast, but also much more spam than nodes that follow them in the
ladder. This is explained by the fact that these nodes receive all messages that are
generated in the system because they are in the publication views of nodes. Once they
have received messages, the filtering process starts and nodes located higher in the
ladder receive fewer spam.

Finally, we can also observe that in all three distributions, increasing the number of
Byzantine nodes that can be tolerated decreases the overall spam filtering efficiency.
This is explained by the fact that the candidate sets used to assign forwarding views
become bigger, as previously shown in Figure 5.5. This in fact results in a faster
dissemination from the bottom to the top of the ladder topology, thus reducing the
probability for spam messages to be filtered while being disseminated using the ladder.

5.4.4 Behavior under an eclipse attack

In this section, we study the behavior of FireSpam when 5% of the nodes are
Byzantine and collude with the aim of harming the ladder. We consider a uniform
distribution of the spam filtering capabilities. In order to harm the ladder, Byzantine
nodes behave as follows: during a long enough period of time, they all behave similarly,
filtrating and forwarding the same messages. Consequently, they end up at the same
location in the ladder (in the middle in the presented experiment). Once they have
all reached the middle of the ladder, they all start the attack simultaneously. During
the attack, they do not forward good messages, and they do not filter spam messages.
Figure 5.8 shows the percentage of spam messages that are actually received by every
node in the system. Nodes are depicted in the X axis, ordered by spam filtering
capability. We plot three different lines: before the attack (T0), during the attack (T1),
and after the attack (T2).

Before the attack (line T0), the percentage of spam messages that are received
is the same as the one depicted in Figure 5.7 for the uniform distribution and 5% of
Byzantine nodes. During the attack (line T1), we observe that the percentage of spam
messages that are received by nodes in the upper part of the ladder (i.e. on the right
of the X axis) slightly increases. This is due to the fact that the 50 colluding nodes no
longer filter spam messages. These colluding nodes are located between x = 475 and
x = 525, hence the increase of the percentage of spam received by nodes located above
the colluding nodes in the ladder (i.e. nodes located on the right of x = 525). Finally,
we observe that some time after the attack (line T2), colluding nodes have been evicted
from the network. The percentage of spam messages received by nodes in the upper
part of the ladder is thus very close to the one that was observed before the attack (line
T0). The slight difference comes from the fact that before the attack, colluding nodes
were participating in the filtering of spam messages.

Moreover, we assessed the reliability of good messages delivery before, during
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and after the attack. Our results show that FireSpam was able to reliably deliver
good messages to all nodes during all the experiment, even when under attack by the
colluding nodes.
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Figure 5.8 – Percentage of spam messages that are received by nodes before the
attack, during the attack, and after the attack (uniform distribution of the spam
filtering capabilities).

5.4.5 Bandwidth consumption

We evaluated the bandwidth consumption of FireSpam by assessing its overhead
in message dissemination with respect to the RandCast protocol which we used as a
reference. We have simulated a system with 1,000 nodes, with FireSpam configured
to tolerate 5% of Byzantine nodes. In the experiment, we simulated the scenario
of an Internet discussion group where a uniformly selected participant creates a new
discussion topic, or answers to an existing one, on average every 5 minutes. Furthermore,
we assumed that such created user messages carry an average content (i.e., the text
being published) of size 4 KB.

We observe that message dissemination alone (i.e., RandCast), requires an upload
bandwidth cost of 180 B/s. Adding to that the REPORT and MAJORITYREPORT

messages dissemination, the upload bandwidth cost reaches 6.574 KB/s. A large
fraction of the generated traffic in FireSpam is in fact due to fault tolerance, in
particular to disseminate the MAJORITYREPORT messages. For what said in the
protocol description, this is in fact required to properly asses the filtering capability of
all nodes of the system, by ordering them by the number of forwarded messages. The
correct node evaluation is indeed ensured by the fact that all (non-Byzantine) monitors
of a monitored node disseminates a MAJORITYREPORT for each single message sent by
one of their monitored nodes. Furthermore, this MAJORITYREPORT created by a single
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monitor is reliably broadcast in all the system using the Fireflies gossiping service on top
of the multiple rings overlay. Note that our design choices in FireSpam are dictated
by favoring robustness against rational and byzantine behaviors, while performance has
been a secondary concern. A number of optimizations can be investigated to reduce the
overhead generated by FireSpam.
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Figure 5.9 – FireSpam: upload bandwidth consumption.

5.5 Conclusion

Gossip-based dissemination protocols are known to allow reliable and fast delivery
of information in large-scale networks. Nevertheless, they cannot limit the amount of
spam. We have designed and evaluated FireSpam, a novel gossiping protocol able
to limit spam dissemination. FireSpam organizes nodes in a ladder topology: nodes
with low spam filtering capability are at the bottom of the ladder, whereas nodes with
a high filtering capability are at the top. FireSpam has been designed in the BAR
model: it can thus tolerate a bounded number of Byzantine nodes, and it provides
incentive-compatible mechanisms to discourage rational nodes to deviate from the
protocol. We have extensively evaluated FireSpam using simulations. Our results
show that it allows drastically to limit the dissemination of spam, without hurting the
reliability of good message delivery.
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6
Conclusion

This chapter concludes the document by providing first a summary of the contribu-
tions of this thesis, and then illustrating some possible open research directions.

6.1 Contributions of this thesis

In this thesis, we have tackled practical problems that gossip protocols face when
deployed on the Internet. In particular, we focused of the following two axes: NAT-
resilient gossip peer sampling, and spam-resilient gossiping in the BAR model.

NAT-resilient Gossip Peer Sampling. In gossip-based peer sampling, each node
maintains a partial local view of the system and periodically exchanges a subset of its
view with another node, selected from its view. This periodic exchange ensures that the
local views of nodes represent a continuous uniform random sample of all the nodes
in the system [27]. Nevertheless, gossip-based protocols assume that any node is able
to communicate with any node picked from its view. This is not the case in practical
deployment scenarios as the Internet, where a large fraction of nodes may very well
be sitting behind a Network Address Translator (NAT). NATs implement firewall-like
mechanisms which drop unsolicited incoming packets if no prior message was sent from
behind the NAT. Consequently, the presence of NAT prevents direct communication
among nodes. In Chapter 2, taking the case of the generic gossip-based peer sampling
framework [27], we have studied how the mere presence of NATs severely impacts the
properties of gossip-based peer sampling. The randomness of the returned sample and
the connectivity of the overlay network are affected by the presence of NATs: nodes end
up having many stale references in their view, and the graph of nodes gets partitioned
because of many unreachable references. In Chapter 3 we have presented Nylon [55], a
novel NAT-resilient gossip peer sampling protocol. Nylon is built on the gossip-based
peer sampling framework [27] and it is based on a decentralized hole punching [56, 57]
approach. The approach allows to traverse NATs by establishing a path of relay nodes
to initiate the communication towards natted nodes. We have extensively evaluated
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Nylon showing that: (i) it ensures the properties of the peer sampling service; (ii) it
fairly balances the communication costs on the nodes (whether they are natted or not);
(iii) it is highly robust to churn.

Spam-resilient Gossiping in the BAR model. In a gossip-based dissemination pro-
tocol, once a node receives a new message, it forwards it to a random subset of its
neighbors. The advantages of such a scheme are its simplicity and reliability, ensured
by the randomness and redundancy, where nodes possibly receive the same message
multiple times [30]. Such protocols can be used to implement effectively Internet
collaborative services (e.g., a Q&A web site or a forum) in a distributed manner, where
participant nodes contribute to the information dissemination. Nevertheless, in practical
deployment scenarios as the Internet, nodes may deviate from the guidelines of the
protocol and from those of the collaborative service itself. In fact, nodes might publish
spam messages which are of no interest for the participants. In Chapter 4 we have
discussed how the characteristics of gossip-based dissemination protocols, namely
randomness and redundancy, make them ideal vectors to disseminate spam messages
to a large fraction of nodes. To design a spam-resilient gossip-based dissemination
protocol, special care must be given to the actual behavior that nodes may exhibit when
participating to a collaborative service, where no central authority controls what they
do. We considered the BAR model [60] as a practical fault tolerance model to cope with
the possible behaviors of nodes. Accordingly to the BAR model in fact, together with
(altruistic) nodes who follow the protocol, there might be (Byzantine) nodes deviating
for arbitrary reasons (due to a bug or possibly attempting to harm other nodes), or
even (rational) nodes that seek maximizing their net benefit in the participation (e.g.,
by not forwarding messages they should have to). In Chapter 5 we have presented
FireSpam [59], a novel spam-resilient gossip protocol designed in the BAR model
and accounting for the three aforementioned classes of behavior. FireSpam encom-
passes a set of mechanisms ensuring that Byzantine nodes are detected and evicted
from the system. These mechanisms assume a maximum number of Byzantine nodes.
Furthermore, FireSpam encompasses a set of incentive-compatible mechanisms that
make the protocol a strict Nash equilibrium [61]. These incentive mechanisms ensure
that it is in a rational node’s best interest to always follow the protocol.

6.2 Future directions

The BAR (Byzantine-Altruistic-Rational) model [60] is of valuable importance to
characterize the behavior of participant nodes in Internet collaborative services. With
respect to designing and building practical distributed systems in the BAR model, we
define the following axes for a possible future research investigation.

General purpose and scalable P2P BAR Framework. Almost all the P2P systems
designed in the BAR model are suited to the specific application scenario they address:
BAR Gossip [42] and FlightPath [105] for one-to-many live-streaming, FireSpam [59]
for many-to-many spam-resilient information dissemination. The only work providing
a more generic framework is the 3-levels architecture employed by BAR-B [60]. In
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this framework, an incentive-compatible replicated state machine is implemented on
top of all nodes, so that it abstracts what the authors call a trusted altruistic “witness
node”, enforcing each non-Byzantine node to follow the protocol, and ensuring that
any misbehavior can be detected. Nevertheless, this solution does not scale over a few
hundreds nodes, and has the limitations we have examined in Section 4.3.3. Thus, the
following natural question arises:

Can we design a scalable P2P BAR framework to build BAR tolerant

versions of existing (e.g., collaborative backup, broadcasting, ..) or novel

application-level protocols?

In particular, we wonder if it is possible to abstract generic API from the stack
FireSpam on top of Fireflies, and build a general purpose Incentive-Compatible
Byzantine Fault-Tolerant P2P framework.

BAR model and social links. In all systems designed so far in the BAR model [42,
59, 60, 105], all nodes are classified accordingly to these three classes of behavior:
Byzantine, Altruistic, Rational behavior. This classification accounts for the behavior
of nodes taken individually. A protocol designed in the BAR model tolerates a max-
imum number of misbehaving or malicious Byzantine nodes, and provides incentive
mechanisms so that all the remaining non-Byzantine nodes do not have an interest in
rationally deviating from the protocol to gain more benefit. In the BAR model, rational
nodes do not collude together, only Byzantine nodes possibly can. Nevertheless, in the
age of online social networks, the graph of nodes and the interactions among them are
usually driven by existing social relationships among the participants. This typically
means that a node’s behavior might legitimately be different with respect to the node it
interacts with. The following natural question arises:

How should the BAR model account for social links among nodes?

In particular, we wonder if it is possible to simplify/adapt the incentive mechanisms
and the assumptions used by BAR protocols when modeling interactions between
“friends” or, transitively, “friends or friends”.

BAR model and anonymous communications. We have discussed how, in the BAR
model [60], rational nodes will follow the protocol as long as there is a “credible
threat” for them to be caught while misbehaving, and consequently punished for their
actions. Nevertheless, existing BAR protocols [42, 59, 60, 105] rely on the fact that
nodes are accountable [104] for what they do. Yet, recent systems like Gossple [110]
have highlighted how, in the age of large scale social networks, users could benefit
from the information contained in what the authors call “network of anonymous social
acquaintances”. Put simply, users could increase the quality of their search results by
querying the information contained in the profiles of users who area not necessarily
their friends in the real life, but who nevertheless share similar interests in the social
network. To implement such a communication protocol, Gossple leverages anonymous
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communication exchanges à la onion routing [111]. In onion routing, nodes exchange
messages through a sequence of hops which ensure that no node can tell that two nodes
are indeed exchanging data. The following natural question arises:

How can a protocol relying on anonymous communications be designed in

the BAR model?

In particular, a recent work (Dissent [112]) shows that it is possible to ensure both
anonymity and accountability in a system, and we wonder how the two properties could
be ensured in a large-scale communication protocol designed in the BAR model.
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A
Making Fireflies IC-BFT

We have illustrated the Fireflies [97] Byzantine-tolerant membership protocol in
Section 4.3.1.1. While the protocol has originally been shown to be Byzantine fault
tolerant in (probabilistically) guaranteeing up to date view membership and reliable
gossip dissemination, one might wonder if it is also Incentive-Compatible Byzantine
Fault Tolerant (IC-BFT) in the BAR model [60]. This implies that not only the desired
protocol properties (i.e., correct view membership and reliable dissemination in the
Fireflies overlay) are guaranteed in the presence of a bounded number of Byzantine
nodes (Byzantine Fault Tolerance), but also that it must be in the best interest of rational
nodes to actually follow each step of the protocol (Incentive-Compatibility).

We question then here if Fireflies provides incentives for a rational node to actually
follow each step of the protocol. That is, a rational node must have incentives to:

1. ping and issue an accusation for a successor if this does not reply to a ping;

2. reply to a ping by sending back a pong;

3. issue a rebuttal note for an accusation about itself;

4. forward a gossip message to other k random nodes taken from the view.

It is enough for a rational node to deviate from a single step of the protocol to make
Fireflies not incentive-compatible. First, we discuss in Section A.1 why the protocol is
not incentive-compatible. Then, in Section A.2, we illustrate the modifications to make
the protocol incentive-compatible.

A.1 Is Fireflies incentive-compatible?

We consider individually each step of the protocol and we discuss whether or not
a rational node has incentives to actually follow the protocol at that step. As said
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A.1. IS FIREFLIES INCENTIVE-COMPATIBLE?

previously, it is enough for a rational node to have incentives to deviate from a single
step of the protocol to make Fireflies not incentive-compatible.

Question (1): Does a rational node r have incentives to ping a successor node s and

issue an accusation for s if this is not responding to the ping?

An accusation for node s can only be issued relative to the most recent note that the
node s has sent. Also, a note has an enabled bitmap which specifies which t + 1
among the 2t+ 1 rings are allowed to actually issue an accusation for that note, being
otherwise the accusation not valid. As we have detailed in Section 4.3.1.1, the rings
construction guarantees with very high probability that each node has (at least) t+ 1
non-Byzantine predecessor nodes. This means that a Byzantine node s could exclude t
out of the t+ 1 non-Byzantine predecessors from issuing an accusation.

Let’s consider the point of view of a rational node r which is the remaining non-
Byzantine predecessor of s not excluded by the enabled bitmap. This rational node
r has an incentive in incurring the (neglectable) costs of pinging the node s and that
of issuing an accusation for s if it is not responding. In not doing so in fact, it risks to
cause keeping a disconnected node in its and each other node’s view. Because the very
same views are the ones used to select nodes to gossip not only the accusations, but
also the rebuttal notes, by keeping disconnected nodes in the views of the members, a
rational node would risk impacting the reliability of the very same messages (i.e., the
rebuttal notes) it might disseminate itself in the overlay. This turns out to be ultimately
not in its best interest, hence a rational node is encouraged to follow the protocol.

=⇒ Answer (1): YES.

Question (2): Does a rational node r have incentives to reply to a ping from a prede-

cessor node p situated on a ring enabled in the last note issued by r?

A rational node r has clearly an incentive in replying to a ping from a predecessor p
which is on a ring which is enabled in the last note sent by r. In fact, if r does not reply
to a ping (with a cheap pong message), it expects p to issue an accusation for it. At
that point, being the accusation valid, the node r would be obliged to issue a new note
message as a rebuttal for this accusation, otherwise it would be considered no more
alive. This would go against the assumption that a rational node seeks long term benefit
by its permanence in the system.

=⇒ Answer (2): YES.

Question (3): Does a rational node r have incentives to issue a rebuttal note for a valid

accusation about itself?

A rational node r has clearly an incentive in sending a rebuttal note about a valid
accusation. In fact, if it does not do that, it would be considered disconnected by the
other nodes of the overlay. This would go against the assumption that a rational node
seeks long term benefit by its permanence in the system.

=⇒ Answer (3): YES.
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Question (4): does a rational node r have incentives to forward a message received via

gossiping?

We described in Section 4.3.1.1 the rationale behind the reliable dissemination of ac-
cusations and notes in the Fireflies overlay. In fact, to ensure the timely and reliable
dissemination of accusations and notes, Fireflies relies on nodes to pick f nodes to
gossip with from their complete view of the system. If f is (on average) ln(N) +O(1),
then all the nodes are ensured to receive a given message with high probability [30]. Be-
cause of these probabilistic guarantees, a rational node might decide to omit forwarding
messages received via gossiping from other nodes, in order to save bandwidth. In fact,
as it believes other non-Byzantine nodes act altruistically, the redundancy of gossiping
would still guarantee that these messages are diffused to all nodes.

=⇒ Answer (4): NO.

But, if Byzantine nodes behave maliciously and omit forwarding, and if all rational
nodes apply this strategy to maximize their utility, then the “tragedy of commons” [113]
happens, where nobody forwards messages and thus nobody receives the messages.
The protocol needs then to be modified to encourage all non-Byzantine nodes to follow
the protocol and forward the messages they receive.

A.2 Making Fireflies incentive-compatible

We have discussed why the Fireflies protocol is not incentive-compatible with
respect to the gossiping of accusation and rebuttal notes, as rational nodes could
omit forwarding these messages in order to save bandwidth. We describe here the
modifications to actually encourage rational nodes to forward accusations and rebuttal
notes. This makes gossiping accusations and rebuttal notes on Fireflies incentive-
compatible, thus resulting in making the protocol as a whole incentive-compatible
from what said in the previous section. The modifications leverage the concepts of
predictable communication patterns, credible threats and balanced costs which can be
found in the seminal BAR paper [60].

The modifications to the gossiping sub-protocol are an extension of the approach
proposed by Fireflies to prevent nodes from being overhelmed with load from malicious
nodes. In particular, Fireflies proposes to leverage the multiple rings to impose the
fixed set of nodes, specifically its rings predecessors, that a node can gossip accusations
and rebuttals with. The same approach is used by SecureStream [96], a live-streaming
protocol built on top of Fireflies, to impose the fixed set of nodes that a node can query
—via gossiping— to get updated chunks of the live stream.

From what pointed out in the previous section about the suitable choice of the
f random dissemination targets to probabilistically ensure reliable dissemination, it
follows that the number of successors of a node, and hence the number of the Fireflies
overlay rings, should account for this value. Then, in order to make the gossip sub-
protocol of Fireflies incentive-compatible the following modification could be done.
A credible threat should encourage rational nodes to follow this gossip sub-protocol
and hence actually forward messages to their successors. The rationale behind this
credible threat is explained through the example illustrated in Figure A.1. Here node A
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A.2. MAKING FIREFLIES INCENTIVE-COMPATIBLE

publishes a message by sending it to all its successors nodes on the various rings. Upon
reception of the message for the first time, a node forwards it in turn to all its successors.
In the example, we see how the probabilistic guarantees provided by gossiping on the
multiple rings allow for the reliable dissemination of the message despite the fact that
the node D omits forwarding.
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Figure A.1 – Fireflies: possible ordering of 7 nodes on 3 rings (Based on: [96]).
Here node A publishes a message which is disseminated via gossiping to all
the successors on the Fireflies multiple rings. Message is delivered to all nodes
despite node D omitting forwarding the message.

Because of the probabilistic reliable dissemination on the overlay formed by the
rings, a node n expects to receive the same message being forwarded by all of its
predecessors on the rings. If n does not receive the message from a predecessor p1,
then the node n can employ a local blacklisting mechanism à la BAR-B [60]. In
order for this blacklisting incentive mechanism to be effective, we propose to enhance
the messages disseminated via the gossip sub-protocol with an additional fixed-sized
blacklisted bitmap which specifies which nodes have been blacklisted by the node
sending the message. The blacklisted nodes are supposed not to be given the message
during its dissemination on the rings. The fixed size length of the bitmap provides a
balanced cost incentive for rational nodes to actually specify the blacklisted nodes when
they create and send the message. In fact, not setting their bits would not decrease the
communication cost in transmitting the message.

We conclude this study of how to modify Fireflies to make it IC-BFT by pointing
out two things. First, the proposed extension makes the gossiping sub-protocol used
to disseminate Fireflies-specific messages (accusations and rebuttal notes) incentive-
compatible. Second, the very same gossip sub-protocol can also be used to disseminate
messages published as part of an application-level protocol running on top of Fire-
flies, thus resulting in having a general purpose incentive-compatible gossip-based
dissemination service to be used by Fireflies and on top of Fireflies.

1Nodes can adjust an adaptive timeout for messages to be received by their predecessors, e.g., how
long to wait for the reception of the messages after one predecessor has forwarded it.
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B
FireSpam Incentive-Compatibility: proof

sketch

In this appendix we provide a more formal description of FireSpam incentive-
compatibility than that given in Section 5.3.2. In fact, we sketch here the demonstration
of why it is in the rational nodes’ best interest to follow the protocol, based on the as-
sumptions usually made by BAR systems (e.g., [42,60,102]), and listed in Section 4.3.2
of this document. We provide here a short summary for convenience.

We recall that we do not assume a bounded number of rational nodes: all non-
Byzantine nodes could behave rationally if they are able to maximize their utility
function in doing so. The only assumption we made is that rational nodes do not
collude. Relaxing this assumption is possible future work.

We assume rational nodes seek long term benefit from participating in the system.
In fact, a rational node would join and remain in the system to be able to reliably
receive and publish messages, as it would be the case for a user forum for example.
Furthermore, as already conveyed by Formula 5.1, we assume rational nodes do not
want to risk decreasing their benefit while attempting to reduce the participation cost, as
the value of the service is considered more important than its associated communication
costs. Also, in case of same net benefit in following or deviating from the protocol, we
assume rational nodes decide to follow it.

We also assume that rational nodes adhere to the promptness principle [60]: if
they have no benefit in delaying the sending of a message, they will send it as soon as
possible.

We assume rational nodes are conservative in their actions with respect to the
estimated impact of Byzantine nodes. This means that a rational node assumes that the
maximum number of Byzantine nodes will possibly act in a malicious way, and that a
Byzantine node will take the protocol action which could harm the most the rational
node.
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B.1. PRELIMINARY DEFINITIONS

B.1 Preliminary definitions

Before proving the protocol, we introduce some preliminary definitions which we
reuse throughout the proof.

Definition B.1 (Correct forwarding view assignment). A node p has a correctly as-

signed forwarding view if this contains nodes which, according to the ordering given

by the filtering capabilities of nodes, fall into the candidate set composed of the nodes

which surround p in the ladder.

Definition B.2 (Correct publication view assignment). A node p has a correctly as-

signed publication view if this contains nodes which, according to the ordering given by

the filtering capabilities of nodes, fall into the candidate set composed of nodes located

at the bottom of the ladder.

Definition B.3 (Correct forwarding view membership). A node s has a correct for-

warding view membership if, for each node p whose forwarding view s is member of, s
does not violate p’s forwarding view correctness definition (cfr. Definition B.1).

Definition B.4 (Correct publication view membership). A node s has a correct publica-

tion view membership if, for each (if any) node p to whose publication view s is member

of, s does not violate p’s publication view correctness definition (cfr. Definition B.2).

In the rest, by simply “correct view assignment” we mean both correct publication
and forwarding view assignment. Similarly, for “correct view membership”.

B.2 Demonstration

In order to prove that rational nodes follow the protocol, we prove in a game
theoretic framework along the lines of works like BAR-B [60] and BAR Gossip [42]. If
it is possible to prove that the protocol provides a strict Nash equilibrium, then it will
be in rational nodes’ best interest to always follow it [61]. As done in BAR Gossip [42],
we point out that in the rest a rational node assuming other nodes to behave altruistically
is a Nash equilibrium artifact proof.

The incentive-compatibility proof of the protocol is then described by means of the
following two theorems:

Theorem B.1 (Stepping Theorem). If at time ti (with i ≥ 0) a rational node r has a

correct view assignment and a correct view membership, then r will follow the protocol

to have a correct view assignment and membership at time ti+1, otherwise risking

blacklisting by some nodes or even eviction from the system.

Theorem B.2 (Incentive Compatibility Theorem). If the Stepping Theorem holds, and

if it possible to provide a correct view assignment and membership for a rational node

r at time t0, then r will follow the protocol at any time ti (with i ≥ 0).

Proof sketch. Directly following its enunciation, the Incentive Compatibility Theorem
is proved by natural induction.
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For the Incentive Compatibility Theorem to be proved, we need to prove that its two
conditions hold. We prove the possibility to give a correct initial view assignment and
membership to a rational node by means of the Lemma B.1. This Lemma proves to be
even more generic: it is not only possible to guarantee a correct initial view assignment
and membership for a rational node at t0, but to every node in general.

Lemma B.1. It is always possible to provide a correct initial view assignment and

membership for a node p at time t0.

Proof sketch. A node p joining the system is considered initially to have very low
filtering capability. This implies that its node monitors will be able to provide it a
correct view assignment and membership. In fact, the node monitors of p can correctly
give to it a forwarding view containing nodes currently with low filtering capability
(at the bottom of the ladder). And, the node monitors of p can correctly put p in the
forwarding view of nodes with low filtering capability, and might choose it as candidate
for the publication view of other nodes in the system.

To prove the Stepping Theorem instead, we decompose it in various Lemmas which
represent the distinct parts of the FireSpam protocol in which we prove why a rational
node would follow the protocol. Proving all these parts will have the effect of proving
the Stepping Theorem itself, and thus also the Incentive Compatibility Theorem which
depends on it.

In the following, to prove the Stepping Theorem provides a Nash equilibrium,
we rely on the following principles present in the seminal BAR paper [60]: ensuring
long term benefit, predictable communication partners, credible threats, balanced costs.
Moreover, we leverage local ternary message classification (good/spam/undetermined)
to detect omissions.

Lemma B.2. A rational node r does not expect a benefit in being blacklisted by a node

p.

Proof sketch. By being blacklisted by a node p, a rational node r will decrease its
benefit in the system because it will not be able to receive messages published by p.
In fact, the rational node r knows that altruistic nodes will not forward a message m
to it as the publisher specified r is blacklisted and hence they will follow the protocol
by not forwarding m to r. Also, as for what we said a rational node has conservative
reasoning with respect to Byzantine nodes, r will expect that also the Byzantine nodes
it is in the forwarding view of will not forward the message m to it.

Lemma B.3. A rational node r does not expect a benefit in being evicted from the

system.

Proof sketch. Being evicted would be against the rational node r’s long term benefit
seek. In fact, as a rational node r’s benefit is given by the receiving and publishing of
messages, the eviction would prevent it from doing so.

Lemma B.4. A rational node r does not accept a message m from a node p if r is not

a member of the (publication or forwarding) view of p.
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B.2. DEMONSTRATION

Proof sketch. The rational node r does not have a net benefit in accepting messages out-
side of the dissemination protocol guidelines. In fact, even if the message disseminated
by p is good, r will anyway eventually receive it from its legitimate neighbors, thanks
to the reliable dissemination of (good) messages. For what specified in the assumptions,
having the exact same utility1 in accepting or not the message m, the rational node r
will follow the protocol and ignore m.

Lemma B.5. A rational node r does not send a message m to a node p if p is not in its

(publication or forwarding) view.

Proof sketch. As a rational node assumes other nodes behave altruistically thus follow-
ing the protocol, it has no incentive in sending a message to a node which is not in its
(publication or forwarding) view as this latter will not accept it. Furthermore, send-
ing message outside of the protocol will increase its cost because of more bandwidth
consumption.

Lemma B.6. A rational node r, if maliciously blacklisted by a Byzantine node p, does

not incur the risk of being blacklisted by non-Byzantine nodes or being evicted.

Proof sketch. Each message published by p lists r in the blacklist field of the message
m. As such, the non-Byzantine forwarding view neighbors of r know that r cannot
possibly forward m as previous nodes along the path, by adhering to the protocol, have
not forwarded it to r. Thus, they will not blacklist r if they do not receive m from it. A
similar reasoning applies for the node monitors: not receiving a MAJORITYREPORT

from r’s forwarding view neighbors for the given message m, they will neither blacklist
r nor suggest r for eviction. In fact, they see that r is blacklisted by the publisher of m
and so it could not forward m.

Lemma B.7. If a rational node r detects that a node p is not following the protocol, r
will always blacklist p.

Proof sketch. Blacklisting a node does not add an extra cost on the rational node r. In
fact, according to the balanced cost principle, the blacklist field in the message being
published by a r is of fixed size, so r will not save any byte in not indicating p in the
list. Also, in the case r is blacklisted in turn by node p, r does not incur a risk of being
blacklisted by other nodes or evicted from the system, as stated by Lemma B.6.

Lemma B.8. A rational node r never blacklists a node p if p has followed the protocol.

Proof sketch. For what proved so far, blacklisting or not a node p does not add an
extra cost in itself (cfr. Lemma B.7), as the blacklist field in a message published by
r is of fixed size. But, by falsely blacklisting nodes, the rational node r will see its
benefit decreased because of two things. First, its published messages will reach a
fewer number of nodes. Second, by falsely blacklisting a node p, it may cause the
blacklisted node p to seek “vengeance” by blacklisting in return r. This for what said
by Lemma B.2 is of no interest for the rational node r.

1Note that in the utility function that we presented in Formula 5.1 we do not consider the fact of
receiving “earlier” a message as of increasing benefit, as long as the message is eventually received.
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Lemma B.9. A rational node r never forwards a message m to a node p which is listed

as blacklisted by the publisher of the message.

Proof sketch. The proof comes from similar reasoning of the proof of Lemma B.6.
Furthermore, by adhering to the semantic of the blacklisting, the rational node r will
save bandwidth by not forwarding to the blacklisted (by the publisher) node.

Lemma B.10. A rational node r when it publishes a message m, it sends it to all nodes

in its publication view.

Proof sketch. It is in the rational node r’s interest to disseminate its published message
m reliably in the system.

Lemma B.11. A rational node r never forwards a message m it locally classified as

spam.

Proof sketch. By forwarding a spam message, the rational node r would increase its
overall amount of forwarded messages, and hence decrease the filtering capability that
is assessed by its node monitors. This is against the terms of its utility function for
two reasons. First, r would waste bandwidth in forwarding m as it is not supposed to.
Second, by making appear as it had a lower filtering capability, it will be assigned a
lower position in the ladder topology than the one it would deserve, thus receiving more
spam messages.

Lemma B.12. Upon the first reception of a given message m not classified as spam, a

rational node r always forwards it to all the nodes in its forwarding view.

Proof sketch. By not adhering to the protocol in fact the rational node r knows that it
risks:

• to be blacklisted by a node p in its forwarding view to which r did not forward m.
Specifically, if p receives the message m from another node than r and classifies
it as good, p will detect r’s misbehavior and blacklist it.

• to be blacklisted and suggested for eviction by a node q among its node monitors.
Specifically, if q receives m and classifies it as good, it will expect the reception
of a majority of REPORT messages from nodes in r’s forwarding view. If q does
not receive such reports, it will blacklist r and suggest to the other node monitors
of r to evict it. A majority of monitors suggesting for eviction of r will then
cause the removal of r from the system.

Because of these credible punishments, the rational node adheres to the protocol. Not
doing it would lead to no benefit, as already proved by Lemma B.2 and Lemma B.3.

Lemma B.13. A rational node r, which is a node monitor for a node p, always replies

and with the correct answer to a check request made by p.

Proof sketch. If r does not reply, p will blacklist r, which is against r’s interest as
proved by Lemma B.2. Also, as a check response should be of fixed size (according
to the balanced cost principle), and as the monitor and the monitored node cannot be
in each other forwarding view according to the protocol view assignment construction
choices, the monitor node has no interest in not providing the correct answer.
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B.2. DEMONSTRATION

Lemma B.14. A rational node r always checks on its node monitors that all its neigh-

bors reported about a given message m it forwarded to them.

Proof sketch. The rational node r in fact has to check that its monitors receive a
consistent majority of REPORT messages about r having forwarded m, otherwise risking
blacklisting and even eviction, which is against r’s interest as proved in Lemma B.2
and Lemma B.3. As r conservatively assumes in its view there is the maximum allowed
of Byzantine nodes, it will have to check for all of the neighbors to have reported about
the message m.

Lemma B.15. A rational node r always blacklists a neighbor node p if this did not

report about r having forwarded a given message m.

Proof sketch. This is proved as a consequence of Lemma B.14 and Lemma B.7.

Lemma B.16. Once a rational node r receives a message m from a node p (being r in

p’s forwarding view), r always reports to all the monitors of p about the message m
received from p.

Proof sketch. Because the node p checks on its monitors about the reports received and
monitors actually provide the answer, the node r would be detected as not reporting
about the received message m and would thus be blacklisted by p, which is not in its
interest as said in Lemma B.2.

Lemma B.17. Once a rational node r has collected a majority of reports about a

monitored node p’s forwarding for a given message m, it will always disseminate this

information in the network.

Proof sketch. The rational node r disseminates the MAJORITYREPORT message be-
cause other monitors in the same monitor set of p have an equivalent report. Thus,
thanks to the reliable dissemination in the node monitors overlay2, they can observe
whether each other monitor in the monitors set has indeed disseminated this informa-
tion. If r does not disseminate the MAJORITYREPORT message, it will then fear to be
blacklisted by the other nodes in the monitor set of p, and it has no interest in doing so,
as already stated by Lemma B.2.

Lemma B.18. A rational node r always checks whether another node monitor q
belonging to the same node monitors set for a monitored node p has not disseminated a

MAJORITYREPORT message about a message m forwarded by p, and if so, r always

blacklists q and suggests for eviction of q.

Proof sketch. From the rational node r point of view there is no extra bandwidth cost3 in
observing whether other nodes have indeed disseminated a MAJORITYREPORT message.
Thus, from the assumptions we made in this section, in case of same cost the node will
follow the protocol, hence blacklisting the monitor which omitted disseminating (cfr.
Lemma B.7). Also, as suggesting for eviction a node is a subject to the balanced cost
principle, a node monitor has no benefit in not informing other node monitors that one
has not followed the protocol.

2The reliability of message dissemination in the monitors overlay is provided by Fireflies [97], which
we show in Appendix A how it can be made incentive-compatible.

3We do not consider reducing CPU utilization as a deciding factor here.
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Lemma B.19. A rational node r always sends the eviction suggestion to the other

monitors of the same monitor set for a node p, and always says the truth (true/false)

about the eviction suggestion of p.

Proof sketch. The demonstration is similar to the one of Lemma B.13. As an eviction
suggestion message is of fixed size and has the rational node r has not interest in not
reporting the truth, it will send the correct value.

Lemma B.20. A rational node r always blacklists and suggests for eviction a node

monitor p which did not participate in the view assignment or that proposed a wrong

view.

Proof sketch. The proof comes from what said in Lemma B.7 and Lemma B.19.

Lemma B.21. A rational node r always participates in the periodic view assignment

with the other node monitors of a node p, and it always proposes the correct view.

Proof sketch. The rational node r fears to be blacklisted or evicted if not participating
in view assignment or in proposing a wrong view, which is against r’s interest as stated
in Lemma B.2 and Lemma B.3. In fact, this will be done either by non-Byzantine
nodes (as they follow the protocol) or by Byzantine nodes themselves (as the rational
node conservatively foresees the Byzantine nodes’ behavior that could impact it the
most).

As we have proved so far, a rational node’s best interest is to adhere to each part of the
protocol. This ultimately proves the Theorem which states that the whole protocol is a
strict Nash equilibrium. As a desidered consequence of rational nodes following the
protocols and from the design choices about the bounded number of Byzantine nodes,
we have the following:

Corollary B.1. The dissemination of (good) messages is reliable among all nodes of

the system.

Summary. Finally, Table B.1 gives a summary of which main Lemma provide the
incentives for each one of the seven protocol steps of FireSpam.

Protocol step Lemma(s)

Message publication B.10
Message forwarding B.12
Message reporting B.16
Node evaluation B.17, B.18

Node monitor collaboration B.19
View assignment B.20, B.21
Report checking B.13, B.14, B.15

Table B.1 – FireSpam: summary of protocol steps and associated lemma(s).
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B.2. DEMONSTRATION
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