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Résumé

La technologie OFDMA (Orthogonal frequency division multiple access) a été adoptée par

les systèmes de télécommunications de 4ème génération (4G) comme technique de transmission

et d’accès multiple pour ses performances supérieures en termes d’efficacité spectrale. Dans

ce type de systèmes, l’adaptation dynamique du débit en fonction de la qualité du canal CQI

(Channel Quality Indicator) constitue une problématique de recherche d’actualité qui attire

l’attention de plusieurs acteurs académiques et industriels. Ce problème d’adaptation dy-

namique est encore plus complexe à gérer dans des environnements multi-utilisateurs hétérogènes

et à ressources limitées tels que les systèmes OFDMA comme WiMAX Mobile et Long-

term Evolution (LTE). Dans cette thèse, nous nous intéressons au problème d’allocation de

ressources de l’information de feedback relative au CQI dans le cadre de systèmes OFDMA

multi-porteuses multi-utilisateurs. Dans le but de réduire la charge (overhead) du feedback,

nous proposons une méthode de prédiction du CQI basée sur l’exploitation de la corrélation

temporelle de ce dernier et d’une solution inter-couches. L’objectif est de trouver des schémas

d’allocation de ressources adaptatifs respectant les contraintes de qualité de service (QoS)

applicatives.

Nous proposons en premier lieu un algorithme de réduction de feedback PBF (Predic-

tion Based Feedack) qui permet à la station de base (BS) à prédire certaines occurrences du

CQI en se basant sur l’algorithme des moindres carrés récursif RLS (Recursive least-square).

Les résultats de simulation montrent que l’outil de prédiction du CQI réduit sensiblement

l’overhead du feedback et améliore par conséquent le débit de la liaison montante. Nous pro-

posons, par la suite, une version opportuniste de PBF pour atténuer les éventuels effets de

sur et sous estimations liées à l’algorithme de prédiction. Dans ce mécanisme, nous exploitons

les informations inter-couches pour améliorer les performances des mécanismes de feedbacks

périodiques dont PBF fait partie. L’approche opportuniste améliore sensiblement les perfor-

mances du système pour les cas de mobilité élevée comparés aux cas de faible mobilité.

Dans un second temps, nous proposons une plateforme (FEREP : feedback resource allo-

cation and prediction) basée sur une approche inter-couches. Implémentée au niveau de la

station BS, FEREP intègre les fonctionnalités de prédiction, d’adaptation dynamique du CQI

et d’ordonnancement des demandes de feedback. Elle comporte trois modules. Le module

FWA (feedback window adaptation) gère dynamiquement la fenêtre de feedbacks de chaque

station mobile (MS) en se basant sur les messages ARQ (Auto.. ) reçus qui reflètent l’état

actuel des canaux respectifs. Le module PBFS (priority-based feedback scheduling) effectue



iv

ensuite l’ordonnancement des feedbacks en tenant compte de la taille de la fenêtre de feedback,

du profil de l’utilisateur sous la contrainte de la limitation des ressources globales du systèmes

réservées au feedback. Afin de choisir les paramètres de transmission MCS (modulation and

coding schemes), le module PBF (prediction based feedback) est utilisé pour les utilisateurs

dont le feedabck n’a pas pu être ordonnancé dans la trame courante. Les résultats de sim-

ulation ont montré un gain significatif des performances de FREREP en comparaison à un

mécanisme de référence, en particulier, sous de fortes contraintes de limitation des ressources

du feedback.

Le protocole ARQ génère un accusé de réception uniquement si l’utilisateur est sélectionné

par l’ordonnanceur pour envoyer des données sur la liaison descendante. Dans le cas où la

fréquence d’ordonnancement des utilisateurs sur le lien descendant est réduite, les messages

ARQ s’en trouvent également réduits, dégradant par conséquent les performances de la plate-

forme FEREP proposée ci-dessus. En effet, dans ce cas la signalisation ARQ devient insuff-

isante pour adapter efficacement la fenêtre de feedback de chaque utilisateur. Pour pallier à ce

problème, nous proposons l’algorithme DCRA (dynamic CQI resource allocation) qui utilise

deux modes d’estimation de la fenêtre de feedback. Le premier est un mode hors-ligne basé

sur des études empiriques permettant d’estimer la fenêtre moyenne optimale de feedback en

utilisant les profils applicatif et de mobilité de l’utilisateur. Notre analyse de performance par

simulation montre que la fenêtre de feedback peut être estimée en fonction de la classe de ser-

vice des utilisateurs et de leurs profils de mobilité pour un environnement cellulaire donné. Le

second mode de fonctionnement de DCRA effectue une adaptation dynamique de la fenêtre en

temps réel dans le cas où la signalisation ARQ est suffisante. Une étude comparative avec les

mécanismes DFS (deterministic feedback scheduling) et OFS (opportunistic feedback schedul-

ing), a montré que DCRA arrive à réaliser un meilleur gain en ressources montantes grâce à

la réduction de l’overhead des feedbacks, sans pour autant trop dégrader le débit descendant

des utilisateurs. Du point de vue des utilisateurs, DCRA améliore les contraintes de QoS tels

que le taux de perte de paquets et réduit la consommation énergétique des terminaux grâce à

la réduction de feedback.

Mots-clés : OFDMA, système multiutilisateurs multiporteuses, la réduction de la feed-

back, l’allocation des ressources des feedbacks, feedback limitée, la prédiction des feedback

CQI, le conception inter-couche, feedback du canal adaptatif, la différenciation des services.



Abstract

Orthogonal frequency division multiple access (OFDMA) technology has been adopted by

4th generation (a.k.a. 4G) telecommunication systems to achieve high system spectral effi-

ciency. A crucial research issue is how to design adaptive channel quality indicator (CQI)

feedback mechanisms so that the base station can use adaptive modulation and coding (AMC)

techniques to adjust its data rate based on the channel condition. This problem is even

more challenging in resource-limited and heterogeneous multiuser environments such as Mo-

bile WiMAX, Long-term Evolution (LTE) networks. In this thesis, we consider CQI feedback

resource allocation issue for multiuser multicarrier OFDMA systems. We exploit time-domain

correlation for CQI prediction and cross-layer information to reduce feedback overhead for

OFDMA systems. Our aim is find resource allocation schemes respecting the users QoS con-

straints.

Our study begins with proposing prediction based feedback (PBF) which allows the base

station to predict the CQI feedbacks based on recursive least-square (RLS) algorithm. We

showed that it is useful to use channel prediction as a tool to reduce the feedback overhead

and improve the uplink throughput. Then, we propose an opportunistic periodic feedback

mechanism to mitigate the possible under and over estimation effects of CQI prediction. In this

mechanism, we exploited the cross-layer information to enhance the performance of periodic

feedback mechanisms. The opportunistic mechanism improves the system performance for

high mobility cases compared to low mobility cases.

For OFDMA systems with limited feedback resource, we propose an integrated cross-layer

framework of feedback resource allocation and prediction (FEREP). The proposed framework,

implemented at the BS side, is composed of three modules. The feedback window adaptation

(FWA) module dynamically tunes the feedback window size for each mobile station based

on the received ARQ (Automatic Repeat Request) messages that reflect the current channel

condition. The priority-based feedback scheduling (PBFS) module then performs feedback

allocation by taking into account the feedback window size, the user profile and the total

system feedback budget. To choose adapted modulation and coding schemes (MCS), the

prediction based feedback (PBF) module performs channel prediction by using recursive least

square (RLS) algorithm for the user whose channel feedback has not been granted for schedule

in current frame. Through extensive simulations, the proposed framework shows significant

performance gain especially under stringent feedback budget constraint.
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ARQ protocol receives users acknowledgement only if the user is scheduled in the downlink.

The reduction in users scheduling frequency also reduces the rate of ARQ hints and degrades

the performance of above contributions. In this case, it is difficult to exploit the ARQ signal

to adapt the feedback window for that user. To address this issue, we propose a cross-layer

dynamic CQI resource allocation (DCRA) algorithm for multiuser multicarrier OFDMA sys-

tems. DCRA uses two modes for feedback window estimation. The first one is an off-line

mode based on empirical studies to derive optimal average feedback window based on user

application and mobility profile. Our experimental analysis shows that the feedback window

can be averaged according to users service class and their mobility profile for a given cell envi-

ronment. DCRA performs a realtime dynamic window adaptation if sufficient cross-layer hints

are available from ARQ signaling. DCRA increases uplink resource by reducing feedback over-

head without degrading downlink throughout significantly compared to deterministic feedback

scheduling (DFS) and opportunistic feedback scheduling (OFS). From the users perspective,

DCRA improves QoS constraints like packet loss rate and saves users power due to feedback

reduction.

Keywords: OFDMA, multiuser multicarrier system, feedback reduction, feedback resource

allocation, limited feedback, CQI feedback prediction, cross-layer design, adaptive channel

feedback, service differentiation.
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Chapter 1

Introduction

Users today expect the same wireline broadband access and multimedia Internet experi-

ence from new generation of wireless networks. Recent 3G operators’ statistics have shown

a significant increase in mobile data usage with a rapid growth of traffic volume [82]. Many

reasons are driving this trend: the proliferation of powerful smartphone devices, the increasing

audio/video streaming and IPTV1 demand and the diversified offers from operators for price-

cutting flat-rate tariffs. To face this rapid growth in broadband data usage, most operators

are installing the 4G networks that should provide a large range of new data and multimedia

services with low costs, high reliability and quality. As an example, in USA, Sprint Nextel has

begun using Mobile WiMAX2 since 2008 and Verizon Wireless has began using LTE3 service

since 2010.

The high bandwidth and flexibility offered by 4G systems are mainly due to the orthogonal

frequency division multiple access (OFDMA) technology which has been adopted in almost all

wireless broadband access standards. OFDMA is an extension of orthogonal frequency division

multiplexing (OFDM), which is currently the choice for high speed data access systems such

as IEEE4 802.11n [88] wireless WLAN5 (Wi-Fi6), IEEE 802.16e/m Mobile WiMAX [89] [90],

3GPP7 LTE [1] and LTE-Advanced[108], etc. These systems are known as multi-user multi-

carrier system where a base station can schedule more than one user at the same time using

1Internet Protocol television
2Worldwide Interoperability for Microwave Access
3Long Term Evolution
4Institute of Electrical and Electronics Engineers
5Wireless Local Area Network
6Wireless-Fidelity, name given to WLAN IEEE 802.11b standard-based products
73rd Generation Partnership Project
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time-frequency resources.

1.1 Motivation and Goals

In this thesis, we deal with the channel quality indicator (CQI) feedback reduction and

resource allocation issues in multi-user multi-carrier OFDMA systems. Using CQI feedback

information is common in wireless communications. This has been widely used for example

in 2G/3G systems in the form of link adaptation. CQI feedback has become essential in 4G

systems to have multi-user diversity, time-diversity, space diversity in MIMO8, etc. As the

wireless channel is dispersive by nature, each user needs to send the CQI information of each

subchannel to the base station to increase the reliability and achieve complete multiuser di-

versity gain. However, the available radio spectrum is scarce, and the energy consumption is

limited. If the base station receives CQI feedbacks from all users, large feedback overhead ex-

hausts the limited uplink capacity. The large feedback overhead issue can be solved by various

feedback reduction schemes like opportunistic feedback, periodic feedback, best-m feedback,

etc. However, opportunistic feedback strategy does not have any effect if the BS has enough

capacity to schedule all the mobile stations in the same frame. The existing periodic feedback

strategies do not take into account the over and under estimation of channels in between two

consecutive feedbacks. Some periodic feedbacks consider the subcarrier power prediction in

frequency or time domain to mitigate the feedback delay in the same physical frame but they

do not consider long range prediction over multiple frames.

Considering above reasons, one of our goals is to introduce a periodic feedback mechanism

which reduces the effect of over and underestimation of channels. We believe that there are

real potentials to reduce the feedback overhead by means of CQI prediction using time domain

correlations. Such approach brings new interesting issues including, e.g., performance analysis

of the system in case of prediction errors and the mitigation of these prediction errors.

As the CQI feedback resource is limited, periodic feedback mechanisms allow each user

to send its channel feedback once in every w frame (w is referred to as feedback window).

A user with good channel does not need to send its feedback as frequently as an MS with

bad channel. In such context, assigning a fixed w for each user is not optimal. However,

4th generation wireless systems are designed to support heterogeneous environments. On

one hand, heterogeneity concerns the channel conditions experienced by users. On the other

8Multiple Input Multiple Output
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hand, the system is supposed to support heterogeneous applications, each of which has its

specific requirement in terms of quality of service (QoS) [5]. Consequently, applying the same

feedback strategy for all users is not adapted in these heterogeneous environments [60]. In

such context, natural but crucial questions are raised: i) how to reduce the feedback overhead

for better resource utilization without degrading the system performance, ii) how to allocate

the available feedback slots in the OFDMA frames among the active heterogeneous MSs to

send their channel condition, given the total budget constraint, and iii) how to design adapted

feedback mechanism for heterogeneous MSs?

Having these questions in mind, another goal is to propose algorithms to adapt feedback

window for each user dynamically, to determine users priority to send feedback according to

their application profiles and QoS requirements. This approach brings other interesting issues

including, e.g., varying feedback resource frame-by-frame for the system, determining feedback

scheduling strategies for users with different QoS constraints, and identifying the link between

feedback scheduling and downlink data scheduling.

1.2 Contributions

Following the aforementioned challenges, the contributions of the present thesis can be

summarized as follows.

• We propose a prediction based feedback (PBF) to reduce CQI feedback overhead by CQI

prediction at the base station side. The results of this work has been published in [13]

– M. A. Awal and L. Boukhatem, ”Effect of Feedback Prediction on OFDMA Sys-

tem Throughput”, International Wireless Communications and Mobile Computing

Conference (IWCMC09), Leipzig, Germany, June 2009.

• We define the error distribution from the error data thus, we derive the probability of

error in each adaptive modulation level.

• We present the analytical model for system performance with and without CQI predic-

tion. The results of these works has been published in [14]

– M. A. Awal and Lila Boukhatem, ”Analysis of Feedback Prediction Error on the

Downlink Performance of OFDMA Systems”, IEEE Personal, Indoor and Mobile

Radio Communications Symposium (PIMRC09), Tokyo, Japan, September 2009.
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• We propose periodic feedback mechanisms named OIBF (opportunistic interval based

feedback) and OPBF (opportunistic prediction based feedback) to mitigate the possible

under and over estimated CQI. We exploit the hints from MAC9 ARQ10 protocol to

enhance the performance of periodic feedback mechanisms. The results of this work has

been published in [18]

– M. A. Awal and Lila Boukhatem, ”Opportunistic Periodic Feedback Mechanisms

for OFDMA Systems under Feedback Budget Constraint”, accepted to the IEEE

Vehicular Technology Conference (VTC’11-Spring), Budapest, Hungary, May 2011.

• We propose feedback window adaptation (FWA) algorithm to determine the CQI feed-

back window frame-by-frame for each user exploiting cross-layer information. The results

of this work has been published in [15]

– M. A. Awal and Lila Boukhatem, ”Cross-Layer CQI Feedback Window Adaptation

for OFDMA Systems under Feedback Budget Constraint”, accepted to the IEEE

Symposium on Computers and Communications (ISCC’11), Kerkyra (Corfu), Greece,

June 2011.

• We propose priority-based feedback scheduling (PBFS) algorithm with service differen-

tiation in the case of total CQI feedback budget constraint.

• We propose a framework named FEREP (feedback resource allocation and prediction) to

be used as plug-n-play in practical OFDMA systems without changing any parameters.

The results of these works has been submitted for publication in [19]

– M. A. Awal and Lila Boukhatem, ”An Integrated Cross-Layer Framework of Adap-

tive Feedback Resource Allocation and Prediction for OFDMA Systems”, submitted

to Elsevier Journal of Computer Networks.

• We propose a dynamic CQI feedback resource allocation (DCRA) scheme which allocates

the CQI resources dynamically on a frame-by-frame basis. The results of these works

has been published in [16] [17]

– M. A. Awal and Lila Boukhatem, ”Dynamic CQI Resource Allocation for OFDMA

Systems”, accepted to the IEEE Wireless Communication and Networking Confer-

ence (WCNC’11), Quintana-Roo, Mexico, March 2011.

9Medium Access Control
10Automatic Repeat Request
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– M. A. Awal and Lila Boukhatem, ”Efficient CQI Resource Allocation for QoS Con-

strained OFDMA Systems”, under preparation to be submitted in a journal.

Some initial works and literature review at the beginning of my PhD has been published

in [12]

– M. A. Awal and L. Boukhatem, ”WiMAX and end-to-end QoS support”, Radio

Resources Management in WiMAX: From theoretical capacity to system simulations,

ISTE & Wiley, February 2009.

1.3 Outline of the Thesis

The rest of this thesis is structured as follows.

• In chapter 2, we provide a literature review related to the feedback issues in OFDMA

systems. At first, we introduce the multi-user multi-carrier OFDMA technology, then we

present the CQI basics and main feedback mechanisms. We describe the related works

dealing with feedback reduction and feedback resource allocation. Then we review the

state of the art in channel predictions.

• Chapter 3 deals with reducing the feedback overhead using CQI prediction and reducing

the over/under estimation effects in periodic feedback. At first, we introduce the system

model we used in this thesis. Then, we show that it is useful to use channel prediction

as a tool to reduce the feedback overhead and improve the uplink throughput. Then we

introduce the analytical model for system performance with and without prediction. We

define the error distribution from the error data to derive the probability of error in each

adaptive modulation level and some performance metrics with both predicted CQI and

actual CQI. In order to mitigate the possible under and over estimation effects of CQI

prediction, we propose an opportunistic periodic feedback mechanism. In this mecha-

nism, we exploit the hints from MAC-layer ARQ protocol to enhance the performance

of periodic feedback mechanisms.

• Chapter 4 deals with adaptive feedback window, users priority, and limited feedback

resource. As the fixed feedback window for all users is not optimal, we develop a CQI

feedback window adaptation (FWA) algorithm to determine the feedback window for

each user dynamically. The FWA algorithm uses cross-layer information like ARQ signals
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in the absence of real CQI feedback. In current systems, the operators reserve a fixed

number of slots for CQI feedback and this does not change frame-by-frame. If the number

of users is greater than number of CQI slots, users compete for the CQI resources. We

propose priority-based feedback scheduling (PBFS) algorithm to determine users priority

to send feedback according to their service class and QoS requirements. We apply our

prediction based feedback (PBF) to predict the CQI for the users not scheduled to send

CQI feedback. We integrated all three modules under a framework named feedback

resource allocation and prediction (FEREP).

• Chapter 5 deals with limited ARQ hints, feedback resource, and dynamic resource al-

location. It is more natural to set smaller feedback window for that users experiencing

heavily fluctuating channel so that BS knows their channel state more frequently. But

because of fixed and limited number of CQI slots in each frame, the users miss the chance

to send their CQI in time. To mitigate this issue, we propose to determine the number

of CQI slots dynamically frame-by-frame. The ARQ protocol receives user acknowledge-

ment only if the user is scheduled in the downlink. The reduction in users scheduling

frequency also reduces the rate of ARQ hints and degrades the performance of above

contributions. In this case, it is difficult to exploit the ARQ signal to adapt the feedback

window for that user. In this chapter, we propose a dynamic feedback resource alloca-

tion (DCRA) scheme. DCRA uses two modes for feedback window estimation. The first

one is an off-line mode based on empirical studies to derive optimal average feedback

window based on user application and mobility profile. The second one is a realtime op-

eration mode where the feedback window is dynamically adapted based on ARQ hints.

Exploiting this feedback window information, DCRA allocates the CQI resources on a

frame-by-frame basis to respect users QoS requirements.

• Chapter 6 concludes the document and summarizes the basic insights. Finally, it proposes

suggestions for future research investigations.
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Chapter 2

Literature Review

The background of the technologies and prior work related to the research of thesis are

described in this section. Section 2.1 presents the OFDMA basics. Section 2.2 describes the

CQI mechanisms and its importance in OFDMA based systems. Literature review of CQI

feedback overhead is presented in Section 2.3 and literature of channel prediction is presented

in Section 2.4.4.

2.1 OFDMA Basics

Several of today’s communication standards are based on orthogonal frequency division

multiplexing (OFDM). In particular, OFDM is used in commercial standards for wireless local

area networks (WLAN), namely, IEEE 802.11a [2]; IEEE 802.16 worldwide inter-operability

for microwave access (WiMAX) standards [89] and the long term evolution (LTE) [1], LTE-

Advanced [108]; for terrestrial digital video broadcasting (DVB-T) [40]; for terrestrial digital

audio broadcasting (DAB-T) [39]; and for asymmetric digital subscriber line (ADSL) systems.

Link adaptation, OFDM and multiple antenna methods are among the key physical layer

solutions in most of the beyond 3G systems [105] like in LTE and the WiMAX standards.

OFDM [30, 84] is a multiplexing technique that subdivides the bandwidth into multiple

frequency subcarriers. In an OFDM system, the input data stream is divided into several

parallel sub-streams of reduced data rate (thus increased symbol duration) and each sub-stream

is modulated and transmitted on a separate orthogonal subcarrier. The increased symbol

duration improves the robustness of OFDM to delay spread. Furthermore, the introduction of
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Figure 2.1: Frame structure of an OFDMA system (IEEE 802.16e)

the cyclic prefix (CP) can completely eliminate Inter-Symbol Interference (ISI) in case of CP

duration is longer than the channel delay spread which eliminates the need for an equalizer.

OFDM exploits the frequency diversity of the multipath channel by coding and interleaving the

information across the subcarriers prior to transmissions. OFDM modulation can be realized

with efficient Inverse Fast Fourier Transform (IFFT) with low complexity, which enables a

large number of subcarriers (up to 2048). In an OFDM system, resources are available in the

time domain by means of OFDM symbols and in the frequency domain by means of subcarriers

as shown in Figure 2.1. The time and frequency resources can be organized into sub-channels

for allocation to individual users. Orthogonal frequency division multiple access (OFDMA) is

a multiple-access/multiplexing scheme that provides multiplexing operation of data streams

from multiple users onto the downlink sub-channels and uplink multiple access by means of

uplink sub-channels.

The OFDMA symbol structure consists of three types of subcarriers known as i) Data

subcarriers for data transmission, ii) Pilot subcarriers for estimation and synchronization pur-

poses and iii) Null subcarriers for no transmission; used for guard bands and DC carriers.

Active (data and pilot) subcarriers are grouped into subsets of subcarriers called subchannels.
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OFDMA systems like WiMAX [89] and LTE-Advanced [108] supports sub-channelization in

both downlink and uplink. There are two types of subcarrier permutations for subchanneliza-

tion; diversity and contiguous. The diversity permutation draws subcarriers pseudo-randomly

to form a sub-channel. It provides frequency diversity and inter-cell interference averaging.

The contiguous permutation (also known as band-AMC) groups a block of contiguous subcar-

riers to form a subchannel. Contiguous permutation enables multi-user diversity by choosing

the subchannel with the best frequency response. In general, diversity subcarrier permutations

perform well in mobile applications while contiguous subcarrier permutations are well suited

for fixed, portable, or low mobility environments. These options enable the system designer to

trade-off mobility for throughput.

2.2 Channel Quality Indicator (CQI)

In all the OFDMA systems, CQI at the receiver and/or transmitter is necessary for a

number of advanced communication techniques. In particular, the transmitter needs CQI to

apply link adaptation, pre-coding, pre-equalization, and adaptive transmit antenna diversity

[56] [22] [115] [53]. Furthermore, at the receiver CQI is required for antenna combining and

space-time decoding. For example, in [110] it has been found that CQI is important to realize

the full potential of MIMO communication systems.

The mechanism behind the link adaptation is simple. If the channel is in a deep fade, a low

order modulation is employed or the transmission is even truncated in this channel for a while.

In the case of good channel conditions, a high data rate can be achieved employing high order

modulation. Similarly, code rate and transmission power can be optimized according to the

instantaneous channel conditions and the required transmission rate and reliability. Adaptive

modulation and coding is a crucial part of all evolved communication standards. Goldsmith

et al. has presented the channel capacity with channel side information for the different power

and rate adaptation cases in [49]. Further results on spectral efficiency are shown in [48] [28]

presenting the efficiency of power and rate adaptation also with a practical set of modulation

alphabets. Adaptive modulation provides a significant performance enhancement also with

fixed transmission power [28] [113].

In wireless communication systems, it is much more difficult to obtain reliable CQI than

in wired systems. This is because the estimation error for time and frequency selective chan-

nels contains, in addition to a component due to noise. Schafhuber et al. presents different
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approaches to obtain the CQI in OFDMA systems [97]. The CQI feedback mechanism mainly

depends on the subchannelization of OFDMA systems because of multipath fading and fre-

quency selectivity. There are two types of sub-carrier permutations for sub-channelization

• Diversity Subchannelization

• Contiguous Subchannelization

When an MS is assigned a subchannel with diversity subchannelization (e.g. PUSC1 in

WiMAX), it sends the averaged SNR level of all the allocated subcarriers that are distributed

over allowable spectrum range, to remove the effect of frequency-selective fading. In diversity,

subcarriers in a subchannel are separated each other more than the coherence bandwidth

and each subcarrier experiences independent rayleigh fading (multipath fading). Since a CQI

feedback contains the averaged channel condition of the subcarriers, the effect of multipath

fading on the CQI feedback will disappear due to averaging [123]. Therefore, there will be no

effect of multipath fading and every subcarrier allocated to the MS uses the same modulation

and coding scheme (MCS) level.

When an MS uses contiguous subchannelization (e.g. band-AMC in WiMAX), it sends

the quantized signal to noise ratio (SNR) level of each subcarrier for each subband to a BS

to utilize frequency-selective fading. According to CQI reporting method, the user may fully

or partially utilize frequency-selective fading. If CQI is reported for each CQI band, then the

SINR level of each subchannel can be known and thus frequency-selective fading can be fully

utilized. CQI can be reported for some selected CQI band or only differential information can

be reported [93]. In this case, the SNR level of each subchannel can be known partially and

thus frequency-selective fading can be partially utilized [93] [26]. After the CQI is reported,

the BS determines an MCS level for each subchannel on the basis of this information.

2.3 CQI Feedback Overhead

Since the channel condition of a mobile station (MS) changes over time or frequency domain,

due to the fading, interference and path loss, the recent wireless communication systems use

link adaptation by means of adaptive modulation and coding scheme (MCS) and dynamic

channel allocation. Adaptive MCS technique is used to the users data rate based on the

1Partially Used Subchannelization
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CQI in terms of signal-to-noise ratio (SNR). The adaptive MCS helps to increase the downlink

spectral efficiency with the penalty of feedback overhead from each user and reduces the uplink

efficiency for the users. A user needs to send Nsc×b bits of information to the base station (BS)

to inform full subchannel information, where Nsc is the number of subcarriers in a channel and

b = log2(γsc) bits required to represent the SNR γsc for each subcarrier. To give a numerical

example, for Nsc = 24 as in WiMAX [89] with 10MHz spectrum bandwidth, the use needs to

feedback at least 120 bits as CQI. Usually there are other additional information in a feedback

message. So, the actual CQI feedback size is larger according to WiMAX [89].

The CQI feedback overhead problem becomes harder in case of using multiuser diversity

provides a further degree-of-freedom that can be utilized in multiuser communication systems.

When the number of users is large, there is a high probability that at least one of the users

has a strong channel [72]. The basic principle to maximize multiuser diversity is to transmit

to the users with the largest receive signal-to-noise ratio (SNR) at each channel resulting in

maximum system throughout [110][72].

Another area of research experiences tremendous CQI feedback overhead is dynamic channel

allocation. Dynamic channel assignment for multiple users can be performed in the time [72],

frequency [115] and space [110] domains for both the uplink and downlink directions. To know

the full channel information, each user needs to inform the CQI for all the subchannels. So,

the feedback over increases to Nsc × log2(γsc)×Nch bits per user where Nch is the number of

subchannels in the system.

2.4 CQI Feedback Reduction

2.4.1 Quantization

A straightforward way to decrease the feedback rate is by quantization of the SNR measure-

ments before feedback transmission. Since the SNR values are real-valued, some quantization

must be applied; the question is how few bits can be used with a maintained high total through-

put of the multiuser system. Johansson [66] and Floren et al. [44] are early studies of the effect

of feedback quantization. They conclude that 1-bit quantization is good enough in many cases,

if the average SNR of each user is known. In their example, a throughput of more than 90%

of the throughput with unquantized feedback is achievable, with a 1-bit quantizer optimized

for the correct average user SNR and number of users. Sanayei et al. [96] and Somekh et
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al. [102] shows that one bit feedback per user can provide nearly maximum sum-rate capacity

with a properly defined threshold when the number of users is large. But these works are for

TDMA where only user is served in each scheduling slot out of large number of active users.

The OFDMA system like Mobile WiMAX uses 5-bits quantization for.

2.4.2 Opportunistic Feedback

The feedback load of multiuser systems can be reduced by using selective multiuser diversity

(SMUD) [46] [47] [54] where only the users enjoying a good channel state send a feedback

message. In [46], Gesbert and Alouini propose a SMUD scheme, by letting the users report

CQI only when the channel quality exceeds a predefined threshold. If no users have an SNR

that exceeds the threshold, a random user is scheduled. When the number of users is large

K > 25, the SMUD scheme leads to a remarkable reduction of the average number of users

transmitting feedback, with a reduction of the feedback rate down to 10% of full feedback for

the best case, with small or no loss in terms of system capacity. Hassel et al. [55], improves

the SMUD scheme by requesting full feedback transmission from all users if no user had a

SNR above threshold; this guarantees the full multiuser diversity gain, at the cost of some

extra feedback compared with original SMUD. These opportunistic mechanisms behaves like

a max-SNR scheduling scheme by letting the users with highest channel quality to send the

feedback. To maintain the fairness among users, Yang et al. [118] propose to select the user k

with the largest γk/γ̄k, where γk is the CQI of user k, and γ̄k is the short-term averaged CQI.

Hassel et al. [54] develops the SMUD scheme further by exploiting multiple SNR thresholds

used sequentially. The base station first requests feedback from those users with an SNR

exceeding the highest threshold. If there are none, the threshold is successively lowered until

a user fulfilling the requirement is found. Special attention is given to problems with feedback

collisions, when several users reply to the same threshold query, and to scheduling outage

with a scheduling deadline, when no feedback is received before a scheduling decision must

be made. However, opportunistic feedback originally was proposed for TDMA or FDMA

system. The feedback messages of different users may collide in the feedback channel due to

the contention based feedback transmission, resulting in a loss of system performance. However,

the bandwidth of the feedback channel is limited despite of the number of users. Opportunistic

feedback provides a good tradeoff between the system performance and the feedback overhead

[46]. Multiuser diversity and threshold optimization with an imperfect estimator and a noisy

feedback channel have been addressed in [117].
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The drawback to the subchannel-wise feedback method is the fact that the feedback over-

head grows linearly with the increasing number of subchannels. The feedback overhead can

be reduced by using a group-wise one bit strategy, in which one bit indicates the quality of

the group of channels [24] [25]. Opportunistic feedback has been examined also for OFDMA

systems in several studies [4] [25] [24] [6] [3]. The authors in [4] [6] [3] have studied weighted

sum rate maximization for sequential and contention based feedback schemes.

2.4.3 Best-M Feedback

Svedman et al. [106] [91] discuss an OFDM multiuser scenario, where each user sends

feedback about theM best subcarriers. To reduce the feedback rate, they divide the subcarriers

into subchannels, and each user computes the average SNR within the subchannels and feeds

back the indices and CQIs of the M strongest subchannels. For each subchannel, the base

station chooses the user with the highest CQI. With this scheme, some subchannel indices

may not be fed back by any user, and then the available transmit power is divided only

among the assigned subchannels. The best-M methods have been considered also for practical

networks such as WiBro [26]. Moreover, the total feedback load can be controlled using an

adaptive and selective feedback scheme which takes the number of users, fairness and the QoS

into account [106]. A QoS aware best-M feedback method has been considered also for MIMO

systems [27]. The drawback of the best-M feedback scheme is the fact that it is sensitive to

feedback bit errors [91]. For that reason, Kovacs et al. [74] use a bit mask to indicate the

M best channels resulting in the same overhead as in the RB-wise one bit feedback scheme.

Because of feedback budget constraint and increase of high datarate applications, practical

systems uses best-1 feedback.

2.4.4 Channel Prediction

When the CQI feedback arrives to the transmitter, the estimated CQIs are outdated after a

time period equal to a fraction of the channel coherence time. Therefore, to obtain up-to-date

CQI, time and frequency selective channels need to be tracked continuously. For techniques

that require CQI at the transmitter, outdated CQI is a severe problem. If CQI is obtained

from the receiver via a feedback link, a significant percentage of the data rate of the feedback

link may be required to transmit channel parameters. Here, CQI may be outdated due to

transmission delays. On the other hand, in a time division duplex (TDD) communication
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scheme, if the channel is estimated by the transmitter while in receive mode, this CQI could

be outdated as well when applied subsequently. Depending on the application, accurate CQI

is required to achieve performance gains similar to those that have been demonstrated with

perfect channel knowledge. Communications over time and frequency selective fading channels

inherently suffers from channel uncertainty. The detrimental effects of channel uncertainty can

be particularly pronounced for large bandwidths.

Recently, several techniques were developed to predict future behavior of the mobile chan-

nel. In [35], the multivariate adaptive regression splines (MARS) model was used to capture

the dynamics for predicting parameters of wideband fading channels several millisecond ahead

for fast vehicle speed. The sub-space based [57] root-MUSIC method [61] and ESPRIT type

algorithm [10] were employed to estimate the power spectrum that constitutes the fading pro-

cess. Then these sinusoids were extrapolated to predict future samples. These methods were

tested using synthetic and measured data, and it was concluded that reliable prediction is

feasible at least one wavelength into the future.

An adaptive long-range prediction (LRP) method for flat fading channel was also proposed

in [41] [42] [59] [34]. This algorithm employs an autoregressive (AR) model to characterize the

fading channel and computes the minimum mean-square-error (MMSE) estimate of a future

fading coefficient based on a number of past observations. The advantage of this algorithm

relative to conventional methods is due to its low sampling rate (on the order of twice the

maximum Doppler shift and much lower than the data rate), which results in longer memory

span and prediction further into the future for a fixed filter length. The low sampling rate also

results in reduced feedback rate. The LRP can be implemented adaptively and thus is less

complex and more robust than other fading prediction techniques. More recently, the LRP was

extended to frequency selective channels. In [119] [120], LRP and adaptive modulation using

CQI of another carrier was addressed, and in [77], LRP for frequency hopping (FH) systems was

investigated. In [33], they developed the long-range prediction algorithms for OFDM systems.

An ideal MMSE method that utilizes previous observations in time and frequency domain, and

robust adaptive LRP algorithms are developed and compared. The LRP is utilized in adaptive

bit and power allocation for the OFDM system.

As the channel statistics are unknown in practical applications, and thus they would have

to be estimated prior to the design of the MMSE-based channel predictor [97]. The pilot

symbol assisted MMSE channel estimation is shown problematic since practical channels are

stationary only for a certain time. Fortunately, the estimation of the channel statistics can
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be completely avoided by the application of adaptive channel predictors like normalized least-

mean-square (NLMS) algorithm or the recursive least-squares (RLS) algorithm. The adaptive

channel predictors do not require any statistical prior knowledge and they are able to track

nonstationary channel and noise statistics. We consider RLS-based prediction in this thesis

as they converges faster compared to the NLMS algorithm and and has a smaller excess MSE

[97].

Ekman et al. [36] deal with the channel prediction with single carrier systems like GSM.

They showed the noise reductions in channel estimation and then showed the prediction of

the power. They applied the channel prediction in link adaptation to increase the system

performance. For the end user point of view, the channel power or channel tap prediction

complexity increase with number of subcarriers. To apply the idea of RLS-based prediction to

predict the CQI feedback of OFDMA systems, we also propose to implement the prediction

algorithm in BS-side to reduce the MS-side complexity. The use of RLS-based prediction

algorithm has also been proposed in [68] [33]. Jordan et al. [68] used RLS in opportunistic

beamforming to mitigate the reporting delay from the MS because of propagation delay. They

calculate filter coefficients only once for every angle in the beamforming process and reuse

these coefficients in further cyclic periods of the beamforming process. Duel-Hallen et al. [33]

used RLS-based long range prediction to track correlated sub-carriers so that the MS sends

only one CQI for all the correlated sub-carriers.

Adaptive modulation was combined with single carrier channel prediction also shown in

[59] [58] [34] [43] [87]. Adaptive OFDM with imperfect channel state information was analyzed

in [103] [116] [122].



16

Chapter 3

Prediction Based CQI Feedback To

Reduce Feedback Overhead

CQI prediction has been introduced in many works [36] [97] [33] [7] to reduce the CQI

feedback overhead. Most of the feedback prediction proposals are aimed at mitigating the

feedback reporting delay and maximizing the downlink throughput. A few of them [36] pro-

posed to predict the CQI several frames in advance, but in fact, they predicted only one frame

in advance. Ekman et al. shown in [36] that the channel prediction provides significant gain in

in adaptive MCS upto 10ms which is equivalent to 2 frames duration for practical system like

Mobile WiMAX. Besides, reducing the uncertainty effect of channel prediction has received

much less attention. Our goal is to reduce the CQI feedback overhead as much as possible

related to each user by predicting the CQI in the BS and use this saved bandwidth to carry

more user data traffic, hence, increase the overall uplink throughput.

This chapter shows how the CQI prediction can provide significant gain in feedback reduc-

tion with negligible degradation of the downlink throughput. We present our total overhead

reduction model in two phases. In first phase, we use the RLS1-based time-domain CQI pre-

diction and investigate its feasibility in multiuser environments. Like any other prediction

algorithm, RLS generates prediction errors and it increases with prediction horizon. Then, we

determine the effect of the prediction error on the downlink performance. In a second phase,

we introduce a cross-layer based opportunistic periodic feedback algorithm to reduce the effect

of prediction errors. The BS takes hints from ARQ protocol about the possible prediction

error and creates a vector of scaling coefficients. Then it applies these scaling coefficients in

1Recursive Least Square
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the past history of CQI values to mitigate the prediction error in future predicted CQI.

3.1 System Model

Figure 3.1: Multiuser wireless communication system with a single base station

We consider an OFDMA cellular system with bandwidth B consisting of Nc subcarriers.

The system has a set K of K simultaneously active mobile stations (MSs, also referred to as

users throughout the paper) communicating with a single base station (BS) as shown in Fig-

ure 3.1. The subcarriers are distributed among the users using partially used subchannelization

(PUSC) and each user subchannel has Ns = Nc/K subcarriers. The BS and all MSs have one

antenna each. The channel process of each user is assumed independent and stationary. The

channel gain is assumed constant over a frame duration Tf , but may vary frame-by-frame. The

signal received by user k at frame t, is given by

yk(t) = Hk(t)xk(t) + nk(t), k = 1, 2, ...,K (3.1)

where xk(t) ∈ CNs×1 is the complex transmitted signal, yk(t) ∈ CNs×1 is the complex re-

ceived signal, and nk(t) ∈ CNs×1 is assumed to be a zero mean complex Gaussian noise

vector with variance σ2n; and Hk(t) is the diagonal channel response matrix given by Hk(t) =

diag{hk,1(t), ..., hk,Ns(t)}, where hk,n(t) are the complex valued wireless channel fading random

processes and hk(t) v CN (0N , σ
2
h) is i.i.d over different users. The instantaneous Signal-to-

Noise Ratio (SNR) of subcarrier i in frame t for MS k is defined as γik(t) =
|hk,i(t)|2

σ2
n

.
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3.1.1 CQI Measurements

There are several works discussed in literature about using a single value to denote the

CQI for a subchannel or a group of subcarriers [114]. Each MS k measures average SNR γavgk

over all the subcarrier of the preamble except the guard subcarriers and the DC subcarriers as

below.

γavgk =
1

Nc

Nc∑
i=1

γik (in dB) (3.2)

where Nc is the number of subcarriers except the guard and DC subcarriers, and γik is estimated

SNR of user k on subcarrier i. Reporting this SNR would entail perfect CQI at the BS.

To provide such high precision for CQI, the number of bits would be large. Since feedback

load of the SNR quantization increases rapidly with the number of quantization levels, one-

bit quantzation has been studied in [96] [24]. Optimal distribution of feedback bits with

quantization precision is discussed in [6]. We assume to use the CQI statistics be quantized in

1 dB increments according to IEEE 802.16e [89] shown below

γavgk ≈ ⌈ 1

Nc

Nc∑
i=1

γik⌉ (in dB) (3.3)

It is assumed that the BS receives SNR without any error and with zero-delay from the MS.

We note that in case of contiguous subchannelization like band-AMC, averaged CQI does

not provide the BS with any knowledge on the frequency selectivity. To cope with this channel

variations in frequency selectivity, effective SNR is also adopted [121] in mobile WiMAX.

Effective SNR is defined as

γeffk , −βln( 1

Ns

Ns∑
i=1

e
γik
β ) (in dB), (3.4)

where γik are the per subcarrier SNR values of user k and which are typically different in a

frequency selective channel. Parameter β is function of MCS for a given coding scheme. MS

reports the effective SNR to the BS, and allows the BS to decide MCS level and power boosting

adjustment. In contrast to the averaged CQI in equation 3.2, the power adaptation for each

effective SNR is MCS dependant and does not change linearly. For simplicity, in this study,

we used the averaged CQI under PUSC assumptions.

3.1.2 Adaptive Modulation and Coding Scheme

The system uses MCS, that is, the coding scheme and the modulation constellation depend

on the channel SNR of the selected user [28]. The transmit power is allocated to each subchan-
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Figure 3.2: Quantization regions and thresholds of the SNRs

nel identically. Upon receiving the SNR from the MS, the BS maps it into a quantization level.

Let {Qj}m−1
j=0 be the m quantization levels (Fig. 2) of the SNRs defined by Qj = [qj , qj+1), with

0 ≤ j ≤ m − 1, q0 = 0 and qm = ∞, where qj are the SNR values to limit each quantization

level. Specifically, we assign one MCS level to each quantization level Qj and a corresponding

data rate of rj bits/symbol. When the instantaneous SNR γ falls within a given quantization

level, the associated signal constellation is transmitted. No signal is transmitted if γ ≤ q0.

The best quantization varies with the mean SNR, the number of available resources, the user

position in the queue and the selected optimization criteria [78]. Moreover, the lower and upper

boundaries for each MCS level can be selected according to the performance of the available

modulation methods and coding rates with a predefined error rate constraint [8]. This thesis

does not cover the optimization of the SNR quantization regions but related literature can be

found in [8] [9].

3.1.3 Uncertainty Period

Figure 3.3: Uncertainty period

We define the uncertainty period as the period when the BS does not have any knowledge
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about any possible channel change. We illustrate the uncertainty period by an example shown

in Figure 3.3 where the BS receives CQI feedback from an MS at frames t and t + 4Tf . The

time duration during the frames t+ Tf to t+ 3Tf is the uncertainty period when the BS does

not receive any feedback.

3.1.4 Automatic Repeat Request

The system uses automatic repeat request (ARQ) in the data link layer to increase the

reliability of packets. During a packet transmission, the MS uses explicit acknowledgements

(ack) and negative acknowledgement (nack) packets to inform BS that it has received the

packet correctly or not. The BS sends the next packet on the queue if it receives an ack from

the MS. The BS retransmits the last sent packet if it receives a nack message from the MS. The

sender may also uses implicit nack with the help of a timer. Upon sending a packet, the BS

starts a timer. If a specific period of time elapses before an ack is received (which is termed as

timeout), the BS assumes that the packet is not received correctly and retransmits the packet.

The BS usually re-transmits the packet until the BS receives an ack or exceeds a predefined

number of retransmissions for that packet. If the maximum number of retransmission Nmax
re

for each packet is very large, it would violate the delay constraints for real-time applications

like VoIP, video streaming, etc. Liu et al. [79] proposes truncated ARQ combined with MCS

to limit the Nmax
re according to the delay constraints of real-time applications.

3.1.5 Doppler Frequency

A user channel quality is subject to various fading effects2 (environment, fading, mobility,

etc.). Doppler frequency is used to represent the user mobility which is denoted by fd, fd = s/λ,

and λ = c/fc. s is user speed, c is the speed of light, and fc is the carrier frequency. We will

use this Doppler frequency information in later chapters of this thesis.

3.2 Interval Based Feedback (IBF)

Interval based feedback has been used in many works [86] [64] [89] [112] [31]. In this

technique, each MS is allowed to send its channel feedback periodically once in every w frame.

Once a feedback is received, BS acts on deciding the MCS level to use for next w frames

2Since we assume a single OFDMA cell, inter-cell interference is not considered.
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to transmit till the next feedback is received and regardless of probable change in channel

condition within this w feedback period. Here, the BS sends data to a MS using last determined

MCS level based on last received CQI. If the BS receives a CQI at frame t, the amount of error

eibf caused during the uncertainty period can be measured by

eibf (t+ i) , γ(t)− γ̂(t+ i), 1 ≤ i < w − 1 (3.5)

where γ̂(t+ i) is the estimated CQI at the ith frame of the uncertainty period. Let Qj be the

selected MCS level for last received CQI γlast. For any eibf > 0, if the current MCS level should

be Qj−1 but the BS still using MCS level Qj , the situation is considered as overestimated.

Overestimated CQI introduces an increase in the system throughput while increasing the BER

as well, hence increases the chance of packet loss. On the other hand, for any eibf < 0, if

the current MCS level should be Qj+1 but data are still being sent using MCS level Qj , the

situation is considered as underestimated. Underestimated CQI leads to a decrease in the

system throughput but also reduces the packet lossrate because of lower BER. Perfect MCS

estimations occur either if no error is made or the induced error maintains γ̂(t + i) in MCS

level Qj .

3.3 Prediction Based Feedback (PBF)

In this section, we discuss our prediction based feedback mechanism. We first describe

our CQI prediction model. Then we describe the model to determine the prediction error

probability and derive the system performance.

3.3.1 Prediction Model

We propose to implement a RLS prediction algorithm [94] in the BS-side for the specific

purpose of anticipating the future SNR level of the received signal at the receiver side. In our

work, we assume that each MS sends the average SNR for all the sub-carriers assigned to it.

We use short range prediction in every frame to estimate the most probable SNR level that the

receiver is going to experience and avoid explicit feedback from the receiver. The predictability

relies on error measures expressed in terms of a time average of the actual received SNR instead

of a statistical average. The least square error eRLS for a MS based on time average of window
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size w is defined as [94]

erls(t) =
t∑

j=t−w

(λ(t−j)e∗(t)e(t)) (3.6)

where λ is the scalar weighting factor with 0 < λ ≤ 1 that can change the performance of the

prediction. λ is applied to the previous w input data. e∗(t) is the complex conjugate of the

prediction error e(t). At any frame t, the amount of error epbf caused by prediction can be

measured by

epbf (t) , γ(t)− γ̂(t), t ≥ w (3.7)

where γ(t) is the actual SNR experienced by the MS during frame t, and γ̂(t) is the predicted

SNR for frame t. The SNR is predicted as [94]

γ̂(t) , Z(t− 1)Γpbf (t), t ≥ w (3.8)

where γ̂(t) is the predicted SNR for frame t, Z(t) is the w-th order prediction filter coefficient

and Γpbf (t) is the previous real or predicted SNRs of moving window of size w up to frame

t. The prediction filter Z(t) is determined using RLS gain vector G and covariance matrix M.

The prediction filter coefficient is updated as

Z(t) = Z(t− 1) + G(t)e∗pbf (t), t ≥ 1 (3.9)

where e∗pbf is the conjugate of prediction error epbf . Vector G is calculated recursively as

G(t) , M−1(t− 1)Γpbf (t)

λ+ ΓT
pbf (t)M

−1(t− 1)Γpbf (t)
, t ≥ w (3.10)

Here we observe that the inverse of M is required. To reduce the time complexity, the inverse

of M can be recursively calculated as

M−1(t) , 1

λ
[M−1(t− 1)−G(t)ΓT

pbf (t)M
−1(t− 1)], t ≥ w (3.11)

where ΓT
pbf (t) is the transpose of w×1 matrix Γpbf (t) and λ is the scalar weighting factor with

0 < λ ≤ 1 that can change the performance of the prediction. The recursion is initialized as

Z(0) = G(0) = γ(0) = 0,M−1(0) = dIww

where Iww is an w × w identity matrix and d is a large positive constant. We put d = 5000.

We summarize the whole algorithm in Algorithm 1

To show the performance of CQI prediction using RLS algorithms, we ran simulations

for users having rayleigh channel with ITU pedestrian (3km/h) and ITU vehicular mobility
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Algorithm 1 CQI Prediction Algorithm

1: procedure PBF

2: input: γ(t), ∀t ∈ N

3: output: γ̂opbf (t), t ≥ w and ∀t ∈ N

4: initialize: δ = 5000, λ = 0.99,Z(0) = 0,G(0) = 0,M−1(0) = δIww

5: for each scheduling time, t = w,w + 1, ... compute do

6: γ̂pbf (t) = Z(t− 1)Γpbf (t) (w2 flops)

7: epbf (t) = γ(t)− γ̂pbf (t) (w flops)

8: α = ΓT
pbf (t)M

−1(t− 1) (w2 flops)

9: β = λ+ αΓpbf (t) (w flops)

10: G(t) = αT

β (w flops)

11: M′ = G(t)α (w2 flops)

12: M−1(t) = 1
λ [M

−1(t− 1)−M′] (w2 flops)

13: Z(t) = Z(t− 1) +M(t)e(t) (w flops)

14: end for
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Figure 3.4: Actual and Predicted SNR with prediction error for feedback SNR with period

w = 2.

(3km/h). Figure 3.4 shows the performance of real SNR γk, predicted SNR γ̂k of user k with

period w = 2 and the error according to Eq. 3.7. The value w means the MS sends one CQI

feedback out of w frames. In other words, BS predicts the CQI for w − 1 frames in every w

frames. Here, for simplicity and visibility, we show the result of first 100 frames only. The
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prediction error seems too high at the initial iterations of the algorithm as the covariance

knowledge of the CQI feedback is zero. With further iterations, the algorithm gains knowledge

about the covariance and reduces the prediction error. We observe that the prediction error

of RLS algorithm converges as early as 7 frames (Figure 3.4).
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Figure 3.5: Average error variance (from left to right in this order) for different feedback

window. For each window, two groups of histograms are shown representing IBF (left group)

and PBF (right group).
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Figure 3.6: Distribution of under, perfect, and over estimations (from left to right in this

order) for different feedback window. For each window, two groups of histograms are shown

representing IBF (left group) and PBF (right group).
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In Figure 3.5, we compare the estimation error variance of IBF and PBF schemes according

to Eq. 3.5 and Eq. 3.7, respectively. It is trivial that lower mobility case shows smaller error

variance for both methods. On the other hand, IBF method always presents larger error

variance than PBF method. For high mobility case, the difference between error variance

increases with the increase in feedback window.

In Figure 3.6, we compare the MCS decision distribution for both IBF and PBF methods.

The MCS decisions fall in three categories which are under, perfect and over estimations. Both

feedback methods lose the ability of perfect estimation with mobility and feedback window.

In IBF method, the under and over estimations are symmetric meaning the rate of under and

over estimations are equal. In PBF scheme, the under estimation rate is higher than the over

estimation rate in all cases. This can be explained by the behavior of our RLS algorithm which

is biased towards the underestimation. It is possible to create an algorithm biased towards the

overestimation or unbiased but that will increase the BER and increase packet loss rate. The

biased behavior of the RLS algorithm is detailed in [36].

3.3.2 Effect of Feedback Prediction Error

In this section we propose an analytical procedure to investigate the effect of feedback

prediction on downlink system performance. Based on the collected prediction error data from

simulation experiments we obtained using the Algorithm 1, we define the error distribution.

Then, we derive the probability of error in each MCS level. We define three performance

parameters which enables us to obtain the average spectral efficiency, average bit error rate

(BER) and average throughput. These metrics will be evaluated with both predicted feedback

and actual feedback. For brevity, we conduct the analysis in this thesis based on the error

distribution obtained for w = 2. Similar analysis can be done for the error distributions derived

for higher feedback windows (w > 2).

Let us define the probability density function (PDF) and cumulative distribution function

(CDF) of SNR γ are denoted pγ(γ) and Pγ(γ), respectively. Due to the Rayleigh fading

assumption γ is exponentially distributed with mean γ̄ as below [92].

pγ(γ) =

 1
γ̄ e

−γ/γ̄ γ ≥ 0

0 otherwise
(3.12)

Pγ(γ) = 1− e−γ/γ̄ γ ≥ 0 (3.13)
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The spectral efficiency of our modulation scheme equals its average data rate per unit

bandwidth (D/B). When we send rj bits/symbol for some SNR γ ∈ Qj , the instantaneous data

rate is rj/Ts (bps), where Ts is the symbol time. Assuming Nyquist data pulses (B = 1/Ts),

for discrete rate adaptation, the spectral efficiency is given by

D

B
=

N−1∑
j=0

rj

∫ qj+1

qj

pγ(γ)dγ bps/Hz (3.14)

and the throughput is given by

η =

N−1∑
j=0

rj

∫ qj+1

qj

(1− BER(γ))Lpγ(γ)dγ bps (3.15)

where L stands for the number of bits per transmission to one user. As shown by Goldsmith et

al. [28], the BER for M-QAM modulation schemes (and also for BPSK) can be approximated

for each user with unit power as

BER(γ) ≈ 0.2e
−1.6 γ

2r(γ)−1 (3.16)

where the r(γ) = ⌊(log2(γ)⌋ is the corresponding bits/symbol for γ and ⌊x⌋ is floor operation
which provides largest integer not greater than x. Hence the average BER is computed as

BER =
E[number of error bits per transmission]

E[number of bits per transmission]

=

∑N−1
j=0 rj

∫ qj+1

qj
BER(γ)pγ(γ)dγ∑N−1

j=0 rj
∫ qj+1

qj
pγ(γ)dγ

(3.17)

Using 3.13, the probability that γ lies in quantization level j before applying the prediction,

i.e., P(γ ∈ Qj) is given by

P(γ ∈ Qj) = Pγ(qj+1)− Pγ(qj)

= P(ξ|ξ = 0)

∫ qj+1

qj

pγ(γ)dγ (3.18)

where P(ξ) denotes the probability of prediction error ξ and P(ξ|ξ = 0) = 1 as there is no

prediction applied yet.

Let denote the PDF of the prediction error ξ as pξ(ξ) for −∞ ≤ ξ ≤ ∞. Fig. 3.7 shows

the density distribution of all the prediction errors obtained in from our previous experiments

with 30 users and 10 seeds. The distribution shows a very high pick around 0 and compara-

tively much smaller picks around ±1 and ±2. The distribution does not fit to any standard
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Figure 3.7: Density distribution of prediction errors

distribution because of these features. Consequently, we used kernel density estimation [98] to

fit our error distribution as shown in Fig. 3.7. The error estimation can then be defined as

pξ(ξ) =
1

Hs

H∑
i=1

N (
ξ − ξi
s

) (3.19)

where N is a kernel function and s is a smoothing parameter called the bandwidth. {ξi}Hi=1 are

collection of H histograms identically distributed samples of a random variable. The kernel N
is taken to be a standard gaussian function with mean zero and variance 1. Thus the variance

is controlled indirectly [98] through the parameter s as

N (
ξ − ξi
s

) =
1√
2π
e−

(ξ−ξi)
2

2s2 (3.20)

Due to the tail area of the error distribution, the prediction algorithm will provide the

underestimated or overestimated SNR compared to the actual SNR. In case of P(ξ < 0),

this underestimated SNR could act on deciding lower MCS level and results in throughput

degradation. At the same time, while the actual MCS should be higher, choosing the lower

level of MCS would act on reducing the BER. Similarly, in case of P(ξ > 0), the overestimated

SNR could act on deciding higher MCS level and results in throughput enhancement with the

cost of an increased BER.
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To determine the effect of underestimation or overestimation, we first need to determine

the probability of predicted SNR falling in reference quantization level Qj . This probability

depends on three parameters:

• the width of that reference quantization level (i.e. qj+1 − qj)

• how far the actual instantaneous SNR value is from the boundaries of quantization level

Qj?

• the amount of prediction error ξ

The condition {(γ̂ ∈ Qj) = (γ + ξ ∈ Qj)|γ ∈ Qj and − ∞ ≤ ξ ≤ ∞} does not create

any underestimation or overestimation of MCS level, means the system can tolerate these

prediction errors without degrading/enhancing the throughput or BER. This condition would

be satisfied for all ξ which keep the predicted SNR γ̂ in the same quantization level Qj as the

actual SNR γ. As the feedback prediction process is completely independent of the SNR data,

we define the probability of this condition as

P(Qj0) = P(Qj |γ ∈ Qj and γ̂ ∈ Qj)

=

∫ qj+1

qj

∫ (qj+1−qj−γ)

−γ
pγ(γ)pξ(ξ)dξdγ (3.21)

On the other hand, the condition {(γ̂ ∈ Qj) = (γ + ξ ∈ Qj)|γ ∈ Qi and 0 ≤ i < j and ξ > 0}
creates overestimation of actual quantization level Qi. This overestimation makes the system

to send data with higher bitrate which increases the throughput but, at the same time, also

increases the BER. We define the probability of this condition as

P(Qj+) = P(Qi|γ ∈ Qi and γ̂ ∈ Qj and 0 ≤ i < j)

=

j−1∑
k=0

qk+1∫
qk

(qj+1−qk−γ)∫
(qj−qk−γ)

pγ(γ)pξ(ξ)dξdγ (3.22)

Similar analysis can be done for underestimation case also. The condition {(γ̂ ∈ Qj) = (γ+ξ ∈
Qj)|γ ∈ Qi and j < i ≤ N − 1 and ξ < 0} creates underestimation of actual quantization level

Qi. This makes the system to send data with lower bitrate which decreases the throughput

and the BER at the same time. We define the probability of this condition as

P(Qj−) = P(Qi|γ ∈ Qi and γ̂ ∈ Qj and j < i ≤ N − 1)

=

N−1∑
k=j+1

qk+1∫
qk

(qj+1−qk−γ)∫
(qj−qk−γ)

pγ(γ)pξ(ξ)dξdγ (3.23)
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Based on this analysis, the probability that the predicted SNR γ̂ lies in quantization level j,

i.e., P(γ̂ ∈ Qj) can be written as the sum of Eq. 3.21, Eq. 3.22 and Eq. 3.23; and defined after

some manipulations as

P(γ̂ ∈ Qj) =

∫ ∞

−∞

∫ qj+1−ξ

qj−ξ
pξ(ξ)pγ(γ)dγdξ (3.24)

At this step, the performance parameters can be determined using the above probability of

prediction error. For discrete rate adaptation, the average spectral efficiency with prediction

is given by

D̂

B
=

N−1∑
j=0

rj

∫ ∞

−∞

∫ qj+1−ξ

qj−ξ
pξ(ξ)pγ(γ)dγdξ (3.25)

The average throughput with prediction is given by

η̂ =
N−1∑
j=0

rj

∫ ∞

−∞

∫ qj+1−ξ

qj−ξ
(1− BER(γ))Lpξ(ξ)pγ(γ)dγdξ (3.26)

The average bit error rate with prediction B̂ER is computed as

B̂ER =

∑N−1
j=0 rj

∫∞
−∞

∫ qj+1−ξ
qj−ξ BER(γ)pξ(ξ)pγ(γ)dγdξ∑N−1

j=0 rj
∫∞
−∞

∫ qj+1−ξ
qj−ξ pξ(ξ)pγ(γ)dγdξ

(3.27)

Table 3.1: Minimum receiver SNR required to use in MCS

Modulation Level Coding Minimum
Receiver
SNR (db)

BPSK 1 1/2 3.0

QPSK
2 1/2 5.5

3 3/4 8.0

16QAM
4 1/2 10.0

5 3/4 13.5

64QAM
6 2/3 17.0

7 3/4 18.5

We investigate the performance evaluation of the downlink system of above analytical model

using Matlab and Maple simulations. For error distribution with kernel density estimation

(Fig. 3.7), we found the best fit with s = 0.05 and H = 64. We used these values for all the

analysis of average spectral efficiency, average bit error rate and average downlink throughput.



3.3. PREDICTION BASED FEEDBACK (PBF) 30

(a) Average spectral efficiency (b) Average BER

(c) Average downlink throughput

Figure 3.8: Numerical results for actual and predicted CQI.

To calculate the downlink throughput, the MAC frame size is fixed as d = 2000 bits for all

the users. The minimum receiver SNR required to decide each level of MCS according to

the WiMAX standard [89] is shown in Table 3.1. The error is independent of the SNR data

and from Fig. 3.7, it is observed that the error distribution is almost symmetric. These two

information lead to the fact that any jump because of error from an MCS levels i to MCS level

j has almost equal probability of jumping in reverse. Because of this phenomenon, we observe

from Fig. 3.8a that the average spectral efficiency for actual and predicted SNR is almost same.
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The spectral efficiency for lower SNR shows small differences between them but the average

spectral efficiency tends to be equal with higher SNR values.

From Fig. 3.8b, we observe that the average BER for both actual and predicted SNR case

are same. Even though the average BERs are identical, for some situations the system BER

performance could be worst because of predicted SNR. According to the Eq. 3.23, while the

actual MCS level should be higher, the prediction error enables the BS to choose lower MCS

level. This situation would reduce the system throughput for choosing lower MCS level but

increases the reliability by decreasing the BER as well. Similarly, according to the Eq. 3.22,

the prediction error enables the BS to choose higher MCS level which would increase the

system throughput but decreases the reliability by increasing the BER. Fig. 3.8c shows the

average downlink throughput (packet/slot/user) for actual and predicted feedback case. For

lower SNR (5 dB), the average throughput with predicted feedbacks is 6.35% less than the

average throughput with actual feedbacks. We observe that the average throughput improves

with increasing SNR. For average SNR with 30 dB, the average throughput with predicted

feedbacks is only 0.67% less than the average throughput with actual feedbacks.

3.4 Opportunistic Periodic Feedback

When employing either periodic feedback strategy (i.e. IBF or PBF) and scheduling data

with estimated or predicted CQI, it is merely impossible in realtime to become certain about

any CQI estimation or prediction error during a uncertain period (recall fig. 3.3). If data is

scheduled with over estimated CQI (i.e. higher MCS level), the BER performance is deterio-

rated significantly, which in turn, makes the MS unable to decode the packet correctly. In this

situation, a system with ARQ or hybrid ARQ (HARQ) issues an explicit or implicit nack to the

BS to retransmit the packet. While the probability of receiving an ack/nack largely depends on

the channel condition, we opportunistically use this ack/nack information to reduce the effect

of over or under estimations and to compensate for the unavailability of real CQI information

during the uncertain period.

For this purpose, we introduce a cross-layer based opportunistic periodic feedback algo-

rithm. We act during the uncertain period, thanks to ARQ protocol the BS does not need to

wait for next CQI. In IBF or PBF, if we can detect the channel estimation as early as possible,

it is possible to reduce the over or under estimation effect in frames during rest of the uncertain

period. We define a w × 1 matrix Ψ = [ψ(t), ψ(t + 1), ψ(t + 2), ..., ψ(t + w − 1)]) where each



3.4. OPPORTUNISTIC PERIODIC FEEDBACK 32

element ψ is a scaling coefficient determined based on the received ack/nack. At any given

frame t, we define ψ(t) as

ψ(t) ,

 u, if an ack is received in frame t, u ≥ 1

v, if a nack is received in frame t, v ≤ 1
(3.28)

where u and v are system parameters to determine the scaling coefficient. Parameter u is

used to scale up the underestimated CQI and v is used to scale down the overestimated CQI.

These scaling parameters will help in adjusting the previous memorized estimated or predicted

CQI values (during the uncertain period) which are used to determine the next CQI. This

opportunistic strategy helps in reducing the estimation/prediction error probability of next

CQI.

3.4.1 Opportunistic Interval Based Feedback (OIBF)

When a CQI feedback γ(t) received by BS at frame t, the uncertain period lasts for next

w − 1 frames when the estimated CQI could be over or under estimated. We define a w × 1

matrix Γibf = [γ(t), γ̂(t+1), ..., γ̂(t+w−1)] which contains the real and estimated CQI data. In

OIBF, the last w−1 elements of Γibf are equal to the first element which means γ̂(t+ i) = γ(t)

for 1 ≤ i ≤ w−1, as the BS uses last received CQI to decide the MCS level for next w−1 frames.

From this, we define the w×1 matrix Eibf = [γ(t)−γ(t), γ(t+1)−γ(t), ..., γ(t+w−1)−γ(t)] =
[0, eibf (t+1), ..., eibf (t+w−1)] which contains the CQI estimation errors calculated according

to Eq. 3.5. We apply Ψ to reduce the effect of the estimation error as below

Γoibf , Γibf .Ψ (3.29)

where Γoibf contains the element-by-element scalar product of Γibf and Ψ. As an example, if

we scale Γibf after receiving an ack/nack at frame t+ i for 1 ≤ i < w−1, there are possibilities

of smaller estimation error in frames t+ i+ 1 to t+ w − 1.

3.4.2 Opportunistic Prediction Based Feedback (OPBF)

We define a w× 1 matrix Γpbf = [γ(t), γ̂(t+1), ..., γ̂(t+w− 1)] which contains the real and

predicted CQI data. The last w−1 elements of Γpbf are calculated according to Eq. 3.8. From

this, we define the w× 1 matrix Epbf = [γ(t)− γ(t), γ(t+1)− γ̂(t+1), ..., γ(t+w− 1)− γ̂(t+
w−1)] = [0, epbf (t+1), ..., epbf (t+w−1)] which contains the CQI estimation errors calculated
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according to Eq. 3.7. We apply Ψ to reduce the effect of the prediction error as below

Γopbf , Γpbf .Ψ (3.30)

where Γopbf includes the element-by-element scalar product of Γpbf and Ψ. As an example, if

we scale Γpbf after receiving an ack/nack at frame t+ i for 1 ≤ i < w−1, there are possibilities

of smaller prediction error in frames t + i + 1 to t + w − 1. The Eq. 3.8 can be written to

achieve OPBF as

γ̂opbf (t) , Z(t− 1)Γopbf (t), t ≥ w (3.31)

If u = 1 and v = 1 in Eq. 3.31, implies no scaling coefficient is used, hence Eq. 3.8 becomes a

special case of Eq. 3.31. The OPBF algorithm is summarized in Algorithm 2.

Algorithm 2 Opportunistic Prediction Based Feedback

1: procedure OPBF

2: input: γ(t), ∀t ∈ N

3: output: γ̂opbf (t), t ≥ w and ∀t ∈ N

4: for each scheduling time, t = w,w + 1, ... compute do

5: γ̂opbf (t) = Z(t− 1)Γopbf (t)

6: e(t) = γ(t)− γ̂opbf (t)
7: α = ΓT

opbf (t)M
−1(t− 1)

8: β = λ+ αΓopbf (t)

9: G(t) = αT

β

10: M′ = G(t)α

11: M−1(t) = 1
λ [M

−1(t− 1)−M′]

12: Z(t) = Z(t− 1) + G(t)e(t)

13: end for

3.5 Simulation Results

3.5.1 Simulation Settings

In this section, we evaluate the performance of our proposed opportunistic periodic feedback

mechanisms via extensive simulations and gain further insight about how the parameters in-

fluence the performance. The simulations were performed using Matlab[83]. In the simulation

model, system level parameters of downlink OFDMA environment are set to be compatible
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Table 3.2: Simulation parameters

Parameters Value

Channel bandwidth 10 MHz

Frame duration 5 ms

Downlink subchannelization method PUSC (1 channel × 2 symbol)

Uplink subchannelization method PUSC (1 channel × 3 symbol)

# of downlink subchannels 30

# of uplink subchannels 35

Downlink:Uplink Ratio 2:1

# of downlink symbols 27

# of uplink symbols 18

Slow Mobility Channel ITU Ped-A 3 km/h

Fast Mobility Channel ITU Veh-B 60 km/h

Cell radius 1 km

Path loss PL (d) 12 log(4πd/λ)− 27

Maximum number of retransmission in ARQ (Nmax
re ) 4

VoIP packet size per frame 12 bytes

Video packet size per frame 121 bytes

with the IEEE 802.16e standard [89]. We consider a single-cell, single-sector system with 10

MHz bandwidth where BS communicates with 30 MSs. In each scenario, MSs are randomly

distributed in the cell with cell radius 1 km. For all the simulated scenarios, we conduct a set

of experiments using two channel patterns indicative of the typical Mobile WiMAX mobility

profiles, the ITU pedestrian A model representing low mobility scenario of 3 km/h, and the

ITU vehicular B model corresponding to high mobility scenario of 60 km/h.

Each MS has a data session of 156 seconds equivalent to 31200 frames. During a simulation

scenario, 50% of the total users are video users and rest 50% are VoIP users. Video and

VoIP users have a data rate of 176 kbps with H.264 format and 5.3 kbps with G723.1 [101]

respectively. Considering MAC header and fragmentation or packing header overhead, the data

rates are 189 kbps (121 bytes per frame) and 18.75 kbps (12 bytes per frame) for video and

VoIP users respectively. At this step, we use a simple downlink scheduling mechanism at the

BS as in [101] where each MS is scheduled in each frame. More advanced downlink scheduling

mechanisms will be used in next chapters. Each user k sends its feedback periodically in uplink
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based on its feedback window wk. In case of a packet loss, the ARQ protocol uses maximum

number of retransmission Nmax
re = 4 to send the packet, otherwise the packet is considered as

lost. We run the simulation 30 times with different seeds then we calculate the means and 95%

confidence intervals to plot the curves. The minimum received SNR required to decide each

MCS level shown in Table 3.1 is obtained by simulations setting target BER = 10−3.
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Figure 3.9: Average BER for different feedback windows.
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Figure 3.10: Average BER of under estimated cases for different feedback windows.
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Figure 3.11: Average BER of over estimated cases for different feedback windows.

3.5.2 Performance Evaluation

We want to show the effect of scaling parameters u and v and the performance of our op-

portunistic scheme. We start with a scenario consisting 30 MSs. As we have seen in Figure 3.5

that the CQI prediction is better than using last received CQI, PBF method generates smaller

average BER compared to IBF shown in Figure 3.9.

To get a more in-depth insight on the property of estimation errors, we study the BER of

under and over estimation cases separately. In Figure 3.10, we analyze all under estimated cases

and compare the average BER of IBF and PBF methods with actual BER. Similar analysis

has been undertaken for overestimation cases as shown in Figure 3.11. As slow mobility users

experience smaller error variance, the difference between the actual BER and IBF/PBF BER

is less significant compared to fast mobility users scenarios. Among the underestimated cases

shown in Figure 3.10, average BER is not really affected by feedback window variation which is

true for both mobility cases. This is due to the fact that the variation of BER values below 10−4

is not noticeable. On the other hand, among the overestimated cases shown in Figure 3.11, the

high mobility users experience increasing average BER with the increase of feedback windows,

while average BER is almost constant for different feedback windows in slow mobility cases.

We also observe that the average BER is higher than target BER 10−3 which acts on higher

packet loss rate.
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Figure 3.12: Average throughput results for different values of u (% of increase) and v (% of

decrease).
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Figure 3.13: MAC frame loss rate for different values of u (% of increase) and v (% of decrease).

To examine the effect of our scaling coefficient parameters, we show the performance results

of OIBF and OPBF with varying u and v simultaneously. Note that the reference IBF and PBF

scheme corresponds to the case with 0% scaling where no opportunistic behavior is considered.

Figure 3.12, Figure 3.13, and Figure 3.14 present the average throughput, MAC layer packet
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Figure 3.14: MAC frame retransmission rate for different values of u (% of increase) and v (%

of decrease).

loss rate, and retransmission rate, respectively for varying u and v where u increases and v

decreases identically. All the figures shows the results for pedestrian and vehicular mobilities.

From the results, it is trivial to show that the opportunistic mechanism is not useful for low

mobility case. As the channel variation is low in pedestrian mobility, the application of scaling

parameters further deteriorates the channel rather than improving.

On the other hand, our opportunistic mechanism shows performance improvement for ve-

hicular mobility case. The average throughput (Figure 3.12b) achieves the global maximum

at 5% scaling. We can also observe that this scaling of combined u and v corresponds to the

optimal MAC frame lossrate (Figure 3.13b) and retransmission rate (Figure 3.14b) for the con-

sidered scenario. The reduction in retransmission rate has a positive effect on maintaining the

QoS of delay-sensitive applications. It is worth observing that the performance improvements

is bigger for higher feedback window w = 8 compared to lower feedback windows w = 4 or

w = 2.

3.5.3 Space and Memory Complexity for Prediction Algorithm

The practical implementation of our PBF scheme requires the integration of the prediction

module at the BS side. For each active MS, the BS has to handle a dedicated prediction module.
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The complexity grows linearly with the number of active MS. The space complexity depends on

the prediction window for each MS. Each instance of the algorithm occupies 4+4w+4w2 unit

double type or O(w2) space. Apart from the prediction window w, the time complexity depends

on the matrix and vector multiplication. In Algorithm 1, we showed the time complexity line

by line. We used flops as an abbreviation for one addition (subtraction) + one multiplication

(floating point operation). The overall complexity of the algorithm is O(w2) operations (flops)

per time iteration. If we assume that the largest prediction window w = 8 as in Mobile WiMAX

[89] [90], for each MS, the space complexity of our algorithm is upper bounded by O(82) and

time complexity O(82).

3.6 Conclusion

In this chapter, we propose a novel mechanism to reduce the feedback overhead in multiuser

multicarrier OFDMA systems. We propose prediction based feedback (PBF) which allows the

BS to predict the CQI feedbacks based on RLS algorithm. The PBF reduces the error variance

compared to interval based feedback (IBF) and reduces over and under estimation variations.

We show that it is useful to use channel prediction as a tool to reduce the feedback overhead.

Then we introduce the analytical model for system performance with and without predic-

tion. We define the error distribution from the error data to derive the probability of error in

each adaptive modulation level and some performance metrics with both predicted CQI and

actual CQI. Our analytic model and numerical results shows the throughput degradation in

downlink channel created by the lack of CQI feedback. The performance degradation becomes

negligible for channels with high SNR.

In order to mitigate the possible under and over estimation effects of CQI prediction,

we propose an opportunistic periodic feedback mechanism. In this mechanism, we exploit

the hints from MAC-layer ARQ protocol to enhance the performance of periodic feedback

mechanisms. The opportunistic mechanism improves the system performance for high mobility

cases compared to low mobility cases.

However, this chapter deals with fixed feedback window for each MS. As the channel condi-

tion for the MSs changes over time, having a fixed feedback window is not a optimal solution.

In current systems, the operators reserve a fixed number of slots for CQI feedback and it

does not change frame-by-frame. If the number of users is greater than number of CQI slots,

users compete for the CQI resources. In order to address these issues, we present a novel and
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complete framework in the next chapter.
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Chapter 4

Adaptive Feedback Resource

Allocation and Prediction

4.1 Introduction

In this chapter, we deal with the CQI allocation problem in a multi-user environment with

strict feedback budget constraint. Our main objective is to determine the users priority to

send CQI feedback in a heterogeneous environment and distribute the CQI resource to the

users in each scheduling frame. To achieve this goal, we propose an integrated cross-layer

framework named FEREP (Feedback Resource Allocation and Prediction). The proposed

framework, implemented at the BS side, is composed of three modules: the feedback window

adaptation (FWA), the priority-based feedback scheduling (PBFS) and the prediction based

feedback (PBF). In the FWA module, the feedback window size wk is tuned based on the

received ack/nack from Automatic Repeat Request (ARQ) protocol that implicitly reflects the

current channel condition. The PBFS module then performs feedback scheduling by taking

into account the feedback window size, the user profile (heterogeneous among MSs), and the

total system feedback budget. The PBF module performs CQI prediction by using recursive

least square (RLS) algorithm when the channel feedback is not scheduled in current frame to

choose proper MCS level.

Our contribution of this work is threefold. First, we propose a novel and practical framework

for feedback resource allocation in OFDMA system with total CQI feedback budget constraint.

Second, our framework takes into account, for the first time, to the best of our knowledge,
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service differentiation in the CQI feedback allocation strategy. Finally, our framework enhances

the system performance by exploiting the cross-layer strategies and the CQI prediction tool in

the absence of real CQI feedback.

4.2 Related Works

The challenge of reducing feedback overhead started mostly with the evolution of multiuser

systems to exploit the multiuser diversity [72] [46]. The overhead increased exponentially in

multiuser multicarrier systems like OFDMA [25] [52] [75] [63] and with the use of advanced

technologies like MIMO [109] [100] [69] [95] [81].

An important line of work for feedback reduction in multiuser diversity is opportunistic

feedback [46] [54] [47] [26] [52] [38] [95] [4] [3] [125]. Each user having CQI value above some

known threshold value are allowed to send feedback. It has been proved very efficient in the

case of serving a few number of MSs out of a large number of simultaneously active users. The

opportunistic method is applied to a multichannel system in [26] [52] [95] [125] to have feedbacks

for best-n subcarriers. This scheme is designed for frequency-selective fading channels where

contiguous subcarriers are assigned to each MS and mainly used for low mobility cases [20]. It

also carries huge overhead as every MS needs to send CQI for n subcarriers. The schemes [89]

[86] [76] [64] designed for distributed subcarriers allow to send one averaged CQI per MS and

generate less feedback overhead compared to previous schemes.

In a multicarrier multiuser system, the opportunistic feedback scheme will have no effect

in feedback reduction if all the MSs need to be scheduled in each scheduling slot. An OFDMA

system (e.g. WiMAX) with 10 MHz frequency bandwidth and simple scheduling can support

upto 82 voice-over-IP (VoIP) users in each scheduling slot [101]. Scheduling the feedback of

these MSs with 2:1 DL and UL frame ratio consumes 40% of uplink bandwidth [45], besides

other overheads from ARQ ack and periodic ranging. To overcome this problem, [89] employs

interval-based feedback (IBF) [89] [112] [31] which is based on a feedback window w. Each MS

sends feedback periodically in round robin fashion once in every w frames and uses this received

feedback in next (w − 1) frames as last received feedback. Hyeju Oh et al. [86] proposed an

adaptive CQI feedback period algorithm based on user mobility in terms of doppler frequency.

The feedback window for each MS is estimated according to the doppler frequency experienced

by the MS. Fast users are assigned smaller feedback windows and vice-versa. Iijima et al. [64]

extended the work in [86]. They adapt the feedback period to different time slots according
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to different MCS while keeping the packet size and scheduling time fixed. Both schemes have

to synchronize based on maximum doppler frequency experienced in the system. Allocating

the scheduling and feedback period based on doppler spread may not be a good idea. Doppler

effect cannot track the MSs which are moving perpendicular to the BS. Besides, it is possible

that the MSs experience good channel condition while moving in faster speed, or vice-versa.

Prediction based feedback (PBF) is proposed in [14]. Unlike the IBF, the PBF predicts the

feedback for next (w − 1) frames instead of using last received feedback. [14] showed that it is

possible to reduce the feedback load which in terms increases the uplink capacity. However,

the lack of feedback affects also the downlink capacity. [13] analyzed and showed that downlink

degradation is almost negligible compared to the uplink gains. In those works, we did not take

into account any hints from MAC-layer ARQ protocol. Allocating all the uplink capacity for

CQI feedback is too inefficient from a network operators point of view [23] [45]. For a better

resource optimization, the operators gain in limiting CQI overhead to some percentage of the

total uplink capacity or the total number of MSs [124] [73].

Compared with existing work, we develop a cross-layer framework of adaptive feedback

with prediction for OFDMA systems. Our contribution lies in the integration of the feedback

window adaptation and channel condition prediction in the resource-limited environment with

total feedback budget constraint, which shows significant performance gain as demonstrated by

simulation performed in both scenarios, especially in the case with stringent feedback budget

constraint. In our work, we assumed the perfect CQI reception by at the BS. The studies with

imperfect CQI are done in [104] [63] [111] [91]. The emission of CQI channel has been proposed

in [32] [7] by exploiting ARQ protocol. They used the signalization of ARQ protocol for link

adaptation. In this work, we used cross-layer information from ARQ protocol to adapt the

feedback window for each user [15] [16].

The channel correlation was proposed in [34] [33] to reduce the feedback overhead. They

proposed long-range prediction of subcarrier correlations so that one feedback can represent

the correlated feedbacks. The prediction also used in [67] to predict MIMO beamforming. The

channel prediction in frequency domain has been studied in [11]. Channel prediction in time

domain has been studied in [13] [36] [97] [65] [35] [99] [21]. We proposed CQI prediction using

RLS algorithms as in [13].
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Figure 4.1: OFDMA system

4.3 System Model

The system has a set K of K simultaneously active mobile stations (MSs, also referred to

as users throughout the chapter) communicating with a single base station (BS) as shown in

Figure 4.1. To allow the BS to apply adapted MCS, MSs periodically send channel information

to the BS. The BS maintains a set W of feedback window wk for each MS k and allows MS k

to send channel feedback once in each wk frames. The system also has a total feedback budget

constraint, denoted as F , meaning that each frame can carry the feedback of at most F MSs

defined as set F . In other words, at most F MSs can send feedback in a frame. If the number

of MSs scheduled to send their feedback is larger than F , the BS should admit at most F

among them to send feedback.

Modern multiuser multicarrier OFDMA systems are aimed to support user heterogeneity.

In our model, each MS k is characterized by its service priority, denoted by αk, an operator

defined parameter which represents the aggregation of several users priority metrics such as QoS

requirements, user profile, and the amount of payment to the operator, etc. For Mobile WiMAX

systems, service differentiation is one of the key elements. Operators are supposed to propose

diversified offers for subscribers while maximizing system performance, e.g., subscribers can

be virtually grouped by the operator according to different metrics (e.g. high/low tariffs,

private/corporate subscriptions, sensibility/tolerance to QoS degradations) and provide for

each group dedicated and differentiated treatments. In this regard, MSs with higher α values

are supposed to get better service than those with lower α values.
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4.4 Feedback Resource Allocation and Prediction (FEREP)

As mentioned previously, in current standardized OFDMA systems [89] [2] [108], each MS

is assigned a feedback window without taking into account user heterogeneity in terms of

application, mobility, QoS constraint, etc. However, today’s wireless systems are typically

composed of MSs with different applications (e.g. VoIP and video) and mobility profiles (e.g.

vehicular and pedestrian). In such context, applying a homogeneous feedback mechanism to

heterogeneous MSs is clearly non-adaptive. The situation deteriorates in the case where there

is a stringent constraint on the total number of feedbacks sent by MSs due to the limited radio

resource in OFDMA systems (i.e., only F CQI slots are dedicated for K MSs to send feedback

while usually K > F ). This motivates our proposition of a cross-layer framework of adaptive

feedback with prediction, consisting of three modules: the feedback window adaptation (FWA),

the priority-based feedback scheduling (PBFS) and the prediction based feedback (PBF).

At the beginning of each frame, FWA algorithm at the BS dynamically calculates the

feedback window for each MS based on the ARQ signaling with explicit ack/nack, received

for the packets transmitted in previous frames. As there are only F CQI slots in each frame

available to send feedback, the PBFS algorithms selects the F out of K MSs to send feedback

in that frame based on a weighted-priority algorithm. The rest of the (K − F ) MSs are not

scheduled to send feedback in that frame, instead, their CQIs are predicted by the PBF module

based on recursive least square (RLS) algorithm. Figure 4.2 gives a system-level overview of

the proposed framework and represents the interaction between physical and MAC layers. In

the following, we provide a detailed analysis on the proposed framework modules.

4.4.1 Feedback Window Adaptation (FWA)

The objective of the FWA algorithm is to dynamically calculate the appropriate feedback

window size based on MSs’ channel condition. As explained in related works, using the doppler

frequency as metric [64] [86] may be inappropriate as a MS experiencing high doppler frequency

may still have sufficiently good channel to recover lost packets correctly. Another point is, in

existing systems where CQI is sent once in every w frames (w > 1), the BS has no knowledge

about the channel change within the interval between two successive CQIs. In FWA, we exploit

the ack/nack packets of the ARQ protocol which are returned in every frame to adjust the

feedback window size.

More specifically, we assume that the ARQ protocol employs go-back-n mechanism. If a
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Figure 4.2: FEREP Framework

packet is recovered by the MS properly, it sends an ack frame back to the BS. Otherwise, the

MS sends a nack frame and the BS retransmits the packet1. The ARQ protocol maintains a

parameter for maximum number of retransmissions Nmax
re . When a packet is retransmitted

Nmax
re times and no ack is received, it is considered lost. Nmax

re is application dependant and

increasing its value would violate the delay constraint for an application [80].

The proposed FWA algorithm based on the above ARQ model implemented at the base

station to calculate the feedback window size for MS k (denoted as wk) is shown in Algorithm 3.

The core idea is to increase the feedback window size of a MS when its channel condition is

good, reflected by consecutively received ACKs, and decrease the feedback window size once

a nack is received, implying a possible deterioration of the channel quality. Note that a small

feedback window size means that the real measured CQI is returned to BS more frequently

(maximum, is sending in every frame) and larger window size relies on more predicted CQI

at the expense of a higher risk of alteration due to the prediction error (which effect is more

negligible in good channel condition [13]).

To this end, initially (line 1), wk is initialized to winit
k . Upon receiving an ack from MS

k, the BS increases the counter nack which memorizes the number of consecutive received

ACKs (lines 3− 4). If the consecutive number of received ack exceeds the threshold N th
ack(αk)

1Note that our mechanism works also with implicit ARQ. In this case, retransmissions are performed after
time-out.
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Algorithm 3 Feedback Window Adaptation procedure to calculate wk

1: initialization: Set N th
ack(αk), wk ← winit

k , nack ← 0,

2: loop

3: if ack received then

4: nack ← nack + 1

5: if nack ≥ N th
ack(αk) then

6: wk ← wk + 1

7: nack ← 0

8: end if

9: else if nack received or timeout then

10: wk ← max{wk − 1, 1}
11: nack ← 0

12: end if

13: end loop

which depends on the service priority of MS k αk, then the BS increases wk by 1 and nack

is reset to 0 (lines 5 − 8). Otherwise upon receiving a nack, the BS reduces wk by 1(lines

9 − 12) and nack is reset to 0. A desirable property of the proposed FWA algorithm is that

by tuning the parameters N th
ack(αk), the BS can achieve a balance between the robustness and

feedback overhead, e.g., a larger value of N th
ack(αk) leads to a more conservative increase in wk,

the algorithm is thus more robust at the price of more feedback overhead caused by potential

under-estimation of the feedback window size.

4.4.2 Priority-based Feedback Scheduling (PBFS) under Total Budget Con-

straint

Due to limited radio resource, Mobile WiMAX systems impose a budget constraint on

the total number of feedbacks sent by the MSs to the BS. A critical question in this context

is which MSs should be admitted to send feedback given the total budget constraint. In this

subsection, we establish a priority-based feedback scheduling algorithm, in which the admissible

MSs allowed to send feedback at frame t are chosen based on their priority according to their

feedback window size, the last feedback sending time and their service priority αk.

The proposed PBFS algorithm, performed after the FWA algorithm, determines which MSs
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are admitted to send CQI at frame t based on the following metric {Yk, k ∈ K}:

Yk(t) , g(αk)(t− tlastk )/wk, k ∈ K, (4.1)

where g(αk) is a function of the service priority of MS k, t is the current time, tlastk is the

time of the last received feedback from the MS k, and wk is feedback window size of MS k.

The priority score is thus the priority (t− tlastk )/wk, determined by the feedback window and

the last serving time, weighted by the user-dependent service priority. The PBFS algorithm

is executed at the BS in the case where the number of MSs scheduled to send their feedback

exceeds the total budget F . In this case, the PBFS algorithm admits the F MSs with highest

priority scores. By doing so, the BS prioritizes MSs with bad channel condition (small feedback

window size) and higher service priority while maintaining certain fairness by integrating tlastk

in Yk.

To conclude this subsection, it is insightful to study the proposed PBFS algorithm from

the perspective of scheduling. To this end, rewrite Yk as

Yk =
g(αk)

wk
(t− tlastk ). (4.2)

The PBFS algorithm can be essentially viewed as the round-robin scheduling scheme weighted

by coefficient g(αk)/wk depending on the users’ service priority and feedback window size.

Consequently, for a MS k for which the feedback should be scheduled (i.e., wk < t − tlastk ),
g(αk)

wk
F∑

i∈K,wi<t−tlast
i

g(αi)

wi

slots are allocated in average among the total budget F . In the degenerated

case where g(αk)/wk takes the same value for all MSs, the PBFS algorithm becomes the

classical round-robin scheduling that ensures absolute fairness among MSs in terms of feedback

resource allocation.

4.4.3 Prediction Based Feedback (PBF)

The PBF algorithm predicts the channel condition, i.e., SNR, when the feedback is not

scheduled in the current frame t. To this end, we integrate the prediction mechanism we

proposed in chapter 3. The algorithm is shown again in Algorithm 4.

4.5 Performance Metric for Feedback Window Adaptation

In this section, we derive the performance metric of our FWA algorithm. We intend to

derive probability of receiving nack P(nack) which acts on increasing the feedback window.
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Algorithm 4 Opportunistic Prediction Based Feedback

1: procedure OPBF

2: input: γ(t), ∀t ∈ N

3: output: γ̂opbf (t), t ≥ w and ∀t ∈ N

4: for each scheduling time, t = w,w + 1, ... compute do

5: γ̂opbf (t) = Z(t− 1)Γopbf (t)

6: e(t) = γ(t)− γ̂opbf (t)
7: α = ΓT

opbf (t)M
−1(t− 1)

8: β = λ+ αΓopbf (t)

9: G(t) = αT

β

10: M′ = G(t)α

11: M−1(t) = 1
λ [M

−1(t− 1)−M′]

12: Z(t) = Z(t− 1) + G(t)e(t)

13: end for

From P(nack) we can derive P(ack), the probability of receiving an ack which is used to

increase the feedback window.

4.5.1 Interval Based Feedback (IBF) Case

In IBF, BS uses the most simplest mechanism to employ partial feedback. BS uses the last

received CQI to decide the MCS level for next wk− 1 frames, where wk > 1, ∀k. Any probable

change in the channel condition will enable the user to experience over or under estimation of

the MCS level. In Figure 4.3a, we can see that actual channel conditions at times t and t+Tf

fall in two MCS quantization levels Qj and Qj−1 respectively. When CQI γk(t) of user k is

received at time t, IBF creates overestimation at time t + Tf when user k is scheduled using

last MCS level Qj instead of actual MCS level Qj−1. The probable SNR estimation error can

be calculated from the difference between last received SNR at time t and the current channel

condition at time t+dTf . As all the following analysis holds for all MSs, we drop the subscript

k.

If the SNR γ at time t is known, and we expect to estimate SNR γ̂ in next frame after

time dTf , the distribution of γ̂ conditioned on γ is in turn a non-central Chi-squared (NCχ2)
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distributed random variable with two degrees of freedom having pdf [92]

fγ(γ̂|γ) =
σ2n
σ2e
e
−σ2

n
σ2
e
(γ̂+ρ2γ)

I0(2
σ2n
σ2e

√
γ̂ρ2γ) (4.3)

where I0 is the zeroth order modified Bessel function of the first kind, σ2n gaussian noise

variance, and σ2e is the prediction error variance. Wong et al. [63] approximated the above

NCχ2 distribution using Gamma distribution as

fγ(γ̂|γ) ≈
βα

Γ(α)
γ̂α−1e−βγ̂ (4.4)

where α = (κρ2 + 1)2/(2κρ2 + 1) is the Gamma pdf shape parameter with κ = γ σ2
n

σ2
e
, and

β = α/(γρ2 + σ2
e

σ2
n
) as scale parameter.

Let define the probability of experiencing γ̂(t + dTf ) ∈ Qj−1 conditioned on γ(t) ∈ Qj as

P(γ(t + dTf ) ∈ Qj−1|γ(t) ∈ Qj). To derive this probability, we first need to calculate the

probability of γ̂(t + dTf ) ∈ Qj−1 conditioned on last received CQI γ(t) regardless any MCS

level. Let define this probability as P(γ̂(t+dTf ) ∈ Qj−1|γ(t)). Using [50, Section 3.383.3], one

can calculate the probability of γ̂(t+ dTf ) falling above some SNR threshold qj as

P(γ̂(t+ dTf ) ≥ qj |γ(t)) =

∫ ∞

qj

βα

Γ(α)
γ̂α−1e−βγ̂dγ̂

=
Γ(α, qj/β)

Γ(α)
(4.5)

where Γ(., .) is the incomplete Gamma function, and Γ(.) is the Gamma function. Hence,

P(γ̂(t+ dTf ) ∈ Qj−1|γ(t)) is calculated as

P(γ̂(t+ dTf ) ∈ Qj−1|γ(t))

= P(γ̂(t+ dTf ) ≥ qj−1|γ(t))− P(γ̂(t+ dTf ) ≥ qj |γ(t))

=
Γ(α, qj−1/β)

Γ(α)
− Γ(α, qj/β)

Γ(α)
(4.6)

According to Equation 3.16, the BER increases exponentially with the size of modulation

constellation for a fixed SNR. Consequently, the PER also increases exponentially and is largely

responsible for not recovering the MAC frame properly by MAC layer, hence produces nack.

Now we are ready to derive the probability of receiving a nack or ack. For simplicity, we

assume that the system always maintains the target BER and no nack is generated for w = 1.

A nack may be generated when the MCS is overestimated. Once we know the probability of

having a nack, we can tackle the overestimation by reducing the w to increase the rate of CQI
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(a)

(b)

Figure 4.3: Overestimation in (a) interval based feedback (IBF) (b) prediction based feedback

(PBF)

feedback. Using Equation 4.6, we can derive the Pibf (nack), the probability of receiving a nack

in IBF scheme as

Pibf (nack)

=
1

m

m∑
j=1

P(γ̂(t+ dTf ) ∈ Qj−1|γ(t) ∈ Qj)

=
1

m

m∑
j=1

∫ qj+1

qj

P(γ̂(t+ dTf ) ∈ Qj−1|γ(t))dγ (4.7)

with q1 = 0, qm+1 = ∞ and we derive Pibf (ack), the probability of receiving an ack in IBF
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scheme as

Pibf (ack) = 1− Pibf (nack) (4.8)

The feedback window is increased by one after N th
ack number of consecutive acks are received

with probability of
∏Nth

ack
i=1 Pibf (ack) if we consider the errors are independent.

4.5.2 Prediction Based Feedback (PBF) Case

In prediction based feedback (PBF), the BS uses a linear predictor based on RLS algorithm

to predict the CQI. Unlike IBF method, this predicted SNR is used instead of last received

SNR to schedule data in next w − 1 frames, where w > 1. In Figure 4.3b, we can see the real

and predicted channel conditions at times t + Tf fall in two MCS quantization levels Qj and

Qj−1 respectively. Once the last CQI is received at time t, the overestimation at time t+ dTf

is estimated with respect to the difference between approximated real SNR γ̂(t + dTf ) and

predicted SNR γ̃(t+ dTf ). We can estimate γ̂(t+ dTf ) using the distribution in Equation 4.3.

Now we have to estimate the predicted SNR γ̃(t + dTf ) conditioned on γ̂(t + dTf ). Let us

define the prediction error of SNR predictor as ξ. As there is no correlation between the

channel condition and prediction error [94][36], the predicted SNR is

γ̃ = γ̂ + ξ (4.9)

where ξ has a Gaussian distribution with variance σ2ξ .

To determine the overestimation, we determine P(γ̃(t+ dTf ) ∈ Qj |γ̂(t+ dTf ) ∈ Qj−1), the

probability of γ̃(t+ dTf ) ∈ Qj conditioned on γ̂(t+ dTf ) ∈ Qj−1 as [13]

P (γ̃(t+ dTf ) ∈ Qj |γ̂(t+ dTf ) ∈ Qj−1)

=

∫ qj+1−qj

qj−qj−1

[∫ qj

qj−1

fξ(ξ)fγ̂(γ̂)dγ̂

]
dξ (4.10)

where fξ(ξ) is the probability density function of ξ and fγ̂(γ̂) is, in fact, fγ(γ̂|γ) from Equa-

tion 4.3. Hence, for last received SNR γ(t) ∈ Ql, we can write

P(γ̃(t+ dTf ) ∈ Qj |γ̂(t+ dTf ) ∈ Qj−1 and γ(t) ∈ Ql)

=

∫ ql+1

ql

[∫ qj+1−qj

qj−qj−1

[∫ qj

qj−1

fξ(ξ)fγ̂(γ̂|γ)dγ̂
]
dξ

]
dγ (4.11)

Using Equation 4.11, the probability of receiving a nack in PBF scheme is Ppbf (nack)
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Table 4.1: Simulation parameters

Parameters Value

Channel bandwidth 10 MHz

Frame duration 5 ms

Downlink subchannelization method PUSC (1 channel × 2 symbol)

Uplink subchannelization method PUSC (1 channel × 3 symbol)

# of downlink subchannels 30

# of uplink subchannels 35

Downlink:Uplink Ratio 2:1

# of downlink symbols 27

# of uplink symbols 18

Slow Mobility Channel ITU Ped-A 3 km/h

Fast Mobility Channel ITU Veh-B 60 km/h

Cell radius 1 km

Path loss PL (d) 12 log(4πd/λ)− 27

Maximum number of retransmission in ARQ (Nmax
re ) 4

VoIP packet size per frame 11.5 bytes

Video packet size per frame 121 bytes

defined as

Ppbf (nack)

=
1

m

m∑
j=1

P(γ̃(t+ dTf ) ∈ Qj |γ̂(t+ dTf ) ∈ Qj−1 and γ(t) ∈ Ql)

and the Ppbf (ack), the probability of receiving an ack in PBF scheme as

Ppbf (ack) = 1− Ppbf (nack) (4.12)

The feedback window is increased by one after N th
ack number of consecutive acks are received

with probability of
∏Nth

ack
i=1 Ppbf (ack) if we consider the errors are independent.

4.6 Simulation Study
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Table 4.2: Minimum receiver SNR required to use in MCS

Modulation Level Coding Minimum Receiver SNR (db) Bitrate

BPSK 1 1/2 3.0 1

QPSK
2 1/2 6.0 2

3 3/4 8.5 2

16QAM
4 1/2 11.5 4

5 3/4 15.0 4

64QAM
6 2/3 19.0 6

7 3/4 21.0 6

In this section, we evaluate the performance of the proposed framework via extensive simu-

lations using Matlab [83] and gain further insight on how different system parameters influence

the performance. More specifically, we study the behavior of the proposed framework in both

homogenous scenario where users have the same service priority α, and heterogeneous scenario

where users have different service priorities. For both scenarios, we conduct a set of simulations

using two channel patterns indicative of the typical Mobile WiMAX mobility profiles, the ITU

pedestrian A model representing low mobility scenario of 3km/h, and the ITU vehicular B

model corresponding to high mobility scenario of 60km/h.

4.6.1 Simulation Setting

We study a single-cell, single-sector system where the BS communicates with K MSs ran-

domly distributed in the cell with radius 1km. The network parameters, as shown in Table 1,

are set following the IEEE 802.16e standard [89]. As mentioned previously, two channel mo-

bility models are simulated: ITU pedestrian A (3km/h) and ITU vehicular B (60km/h). Each

MS has a session of 156 seconds equivalent to 31200 frames (200 frames/sec for 5ms frame

duration). Among the MSs, 50% of them are voice over IP (VoIP) users and other 50% are

video users. The VoIP users have data rate of 5.3 kbps with G723.1 Annex A format [101].

The video users have data rate of 176 kbps with H.264 format. Taking consideration of MAC

header and fragmentation or packing header overhead, the data rates are 18.75 kbps and 189

kbps for VoIP and video users, respectively. We assume a simple downlink scheduling algo-

rithm as in [101] where each MS is scheduled in each frame. The minimum received SNR
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required to decide each MCS level is shown in Table 2 [89]. Each simulation is run 10 times

with different seeds.

4.6.2 Homogenous Scenario

We start with the homogenous scenario consisting of K = 30 MSs with the same service

priority α. In Figure 4.4, we show the effect of feedback constraint parameter F on the

performance of the proposed framework with the IBF reference scheme in terms of average

goodput2. In this scenario, F out of K MSs send feedback in each frame, and every MS has

same priority to send feedback. In the reference scheme, MSs are scheduled to send feedback in

round robin fashion. MSs who are not scheduled to send feedback, their last received feedbacks

are used as the current channel condition according to the IEEE 802.16e standard [89] or works

in [86] [112] [31]. Note that when F = K, the reference scheme as well as FEREP evolve to

the optimal case in which all the MSs send channel feedback in each frame.
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Figure 4.4: System Goodput for available CQI slots with homogeneous users in (a) pedestrian

mobility (b) vehicular mobility.

The results show that FEREP outperforms the reference scheme in both mobility scenarios.

The performance gain is more significant in high mobility scenario and with most stringent

total feedback budget (i.e., small F ), which demonstrates that in such cases, using the same

feedback strategy for all MSs is clearly not optimal, and that the proposed adaptive feedback

2goodput = throughput - lossrate
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mechanism with prediction can effectively improve the system performance by integrating the

feedback window adaptation and CQI prediction under the total feedback budget constraint.
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Figure 4.5: (a) CQI (b) Feedback Window for a MS with ITU vehicular B channel model.

To get a more in-depth insight on the property of the proposed framework, we study the

feedback window size at the output of the feedback window adaptation (FWA) module. Fig-

ure 4.5a plots the real channel condition from time 1 to 1000 of a vehicular MS and Figure 4.5b

shows the correspondent feedback window size as derived by FWA. We can observe that with

the average channel quality improvement over time, the average feedback window also increases.

More specifically, when the channel quality varies significantly, the FWA module generates a

relatively small feedback window, which allows the BS to have more channel feedback, when

the channel quality variation decreases, the feedback window size increases as less feedback

is required to estimate the channel condition. As a result, the FWA module dynamically

tunes the feedback window size based on the channel condition, thus reaching an appropriate

feedback window size.

The system parameter N th
ack acts actively on the performance of FEREP scheme. Figure

Figure 4.6 shows the results of FEREP with varying N th
ack for VoIP and video applications

for fixed mobility of 60 km/h. We observe that the average feedback window is inversely

proportional to N th
ack value. As N th

ack increases, the system acts comparatively slowly to raise

the value of w. Definitely, a smaller feedback window provides more knowledge about the

channel state and helps to achieve higher goodput. Besides, larger feedback window saves

uplink resources with the tradeoff of downlink throughput degradation. We found from our
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Figure 4.6: Average feedback window for different N th
ack values with homogeneous users in

vehicular mobility.

simulation results that N th
ack > 4 maintains our target BER and PER.

4.6.3 Heterogeneous Scenario

In this subsection, we study the case of a more realistic scenario including heterogeneous

users. More specifically, 7 VoIP users and 7 video users are high priority users with service

priority αk = 1.0, while the others are low priority users with αk = 0.5. g(αk) is set to a linear

function g(αk) = αk. Figure 4.7 shows the system goodput as a function of F . We observe

the same behavior as in the homogenous scenario, i.e., our proposed framework outperforms

the reference scheme in both cases with more significant gain with high mobility channel and

more stringent feedback budget.

We then study the average goodput of individual MS of different classes for VoIP and video

applications in Figure 4.8 and Figure 4.9, respectively. We report the observation that the

high priority users always enjoy better performance in terms of goodputs. Such performance

gap between high priority and low priority users is more significant for video application in

terms of goodputs. This can be explained as follows: as the packet size for VoIP is much

smaller than that of video, the difference in the feedback window has much less impact on

the final goodput for VoIP users than for video users. Indeed, we do observe significant

difference in feedback window (thanks to the FWA module, high priority users have smaller
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Figure 4.7: System goodput for available CQI slots with heterogeneous users in (a) pedestrian

mobility (b) vehicular mobility.
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Figure 4.8: System goodput for available CQI slots with heterogeneous VoIP users in (a)

pedestrian mobility (b) vehicular mobility.

feedback window size, thus can send feedback more frequently), as shown in Figure 4.10. The

above results demonstrate that the proposed framework is adapted to heterogeneous network

scenarios and can be used easily to realize efficient service differentiation.
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Figure 4.9: System Goodput for available CQI slots with heterogeneous Video users in (a)

pedestrian mobility (b) vehicular mobility.
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Figure 4.10: Average Feedback Window for available CQI slots in vehicular mobility with (a)

VoIP users (b) Video users.

4.7 Conclusion

In this chapter, we have developed an integrated cross-layer framework of adaptive feed-

back with prediction for multiuser multicarrier OFDMA systems. The proposed framework,



4.7. CONCLUSION 60

implemented at the BS side, is composed of three modules. The feedback window adaptation

(FWA) module dynamically tunes the feedback window size for the mobile stations based on

the received ack/nack that reflects their current channel condition. The priority-based feedback

scheduling (PBFS) module then performs feedback scheduling by taking into account the feed-

back window size, the user profile and the total system feedback budget. The prediction based

feedback (PBF) module performs CQI prediction by using recursive least square (RLS) algo-

rithm for users which channel feedback that has not been scheduled in current frame. Through

extensive simulations, the proposed framework shows significant performance gain especially

in the case with stringent feedback budget constraint. Operators with 4th generation systems

(i.e. Mobile WiMAX or LTE-Advanced) can easily take advantage of this framework to ef-

ficiently reduce feedback overhead while maintaining a high system performance in terms of

radio resource utilization, service differentiation and adaptability.

However, having a strict feedback budget constraint in all frames forces some users to miss

the chance of sending their CQI in time. To mitigate this issue, in next chapter, we propose to

determine the number of CQI slots dynamically frame-by-frame. The ARQ protocol receives

users acknowledgement only if the user is scheduled in the downlink. The reduction in users

scheduling frequency also reduces the rate of ARQ hints and degrades the performance of above

contributions. In this case, it is difficult to exploit the ARQ signal to adapt the feedback window

for that user. In next chapter, we propose a dynamic feedback resource allocation (DCRA)

scheme to address these issues.
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Chapter 5

Dynamic CQI Resource Allocation

for QoS Constrained OFDMA

Systems

5.1 Introduction

In this chapter, we deal with the CQI allocation problem to reduce feedback overhead in a

multi-user environment. Our main objective is to select a subset of users to send CQI among

all the users to be scheduled in next frame while keeping the system throughput maximum and

maintaining users’ QoS constraints. To achieve this goal, we propose a dynamic CQI resource

allocation (DCRA) algorithm to allocate resources for CQI feedback on frame-by-frame basis.

The DCRA algorithm is a cross-layer scheme which uses the physical CQI information, ARQ

protocol signals, Doppler based mobility tracking, and MAC layer service classifier. The use

of a cross-layer strategy helps DCRA to combine information from two levels (physical and

MAC) which jointly give a good insight on the channel quality of the user and its effect on

the MAC frames in terms of PER (packet error rate), delay, etc. As each application reacts

differently at MAC layer for the errors encountered at the physical layer, DCRA relies on hints

from both MAC and physical levels to derive best feedback window periodicity to meet QoS

application constraints.
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5.2 System Model

Figure 5.1: The frame structure of the OFDMA/TDD system [29]

The BS allows F MSs to send feedback in each scheduling frame for 0 ≤ F ≤ K and F is

determined dynamically frame-by-frame to meet users QoS constraints. We assume uniform

power allocation across users, thus the transmitted power is allocated identically to each sub-

channel. The system uses MCS, that is, the coding scheme and the modulation constellation

is adapted to SNR realization of the selected MS.

From the known SNR γk(t) of user k, the user data rate at frame t is defined as (in terms

of number of slots)

Rk(t) =

⌈
L

Qi(γk(t)).Nsym

⌉
(5.1)

where Qi(γk(t)) is the number of bits/symbol for SNR γk(t) with corresponding MCS level Qi;

Nsym is the number of symbols per OFDMA slot; L is the data block size for a user.

5.3 Downlink Scheduling and Feedback Allocation Strategy

Due to the limited radio resources, OFDMA systems impose a budget constraint on the

total number of feedback sent by the MSs to the BS. A critical question in this context is, under

limited resource, which MSs should be admitted to send feedbacks. The goal in this work is to

propose an adaptive feedback allocation strategy which purpose is two folds: i) allocating uplink

feedback resources and ii) reducing total feedback overhead of the system without impacting the

global QoS observed by users. Our feedback scheme operates in conjunction with the downlink

scheduling module. Let us define the set of active users as K with cardinality K = |K|. In each

frame a set of users S, S ⊆ K (with cardinality S) are selected to be scheduled in downlink
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and a set of users F (with cardinality F ), F ⊆ K are selected to send CQI feedback. As shown

in Figure 5.1, at the beginning of downlink subframe (t− 1), admissible users F(t− 1) will be

informed to send CQI at uplink subframe (t− 1). Once CQI feedbacks of F(t− 1) are received

at uplink subframe (t − 1), the PFS algorithm is performed to allocate resources to users in

S(t) for downlink transmission at frame t. The DCRA scheme determines F(t) afterwards.

The PFS and DCRA schemes are introduced in following sections.

5.3.1 Downlink Proportional Fair Scheduling (PFS)

Schedulers in OFDMA-based systems can be designed to fully exploit multiuser and chan-

nel diversities in both time and frequency dimensions and to maximize total system capacity

[72] [63] [81]. However, such schedulers do not take into account individual users’ QoS. Other

schemes have then been proposed to cope with users unequal channel conditions while keeping

awareness of cell throughput maximization [70] [115] [106] [37] [71] [85] [51]. Among them, the

proportional fair scheduling (PFS) scheme [70] has been very popular for its fairness among

QoS constrained users. In this chapter, we adopt PFS scheme to schedule users in the downlink.

We consider two main classes of users: realtime (RT) users which support latency-sensitive

applications and non-realtime (NRT) users which are not time-constrained. To enable propor-

tional fairness among all the users, we define Uk(t), the priority value of MS k at frame t and

Uk(t) is defined as

Uk(t) =

 urt.{ dk(t)
Dk(t)

}, if k is RT user,

unrt.{ rk(t)−r̄k(t)
rk(t)

}, if k is NRT user
(5.2)

where qrt and qnrt are the basic priorities for RT and NRT services, respectively and urt > unrt;

dk is the delay that the head-of-line (HoL) packet of user k has experienced till frame t and Dk

is the maximum delay tolerance; rk is the minimum required transmission data rate of user k

and r̄k(t) is the average transmission rate of user k till frame t. The r̄k(t) is given by

r̄k(t) = (1− 1

T
)r̄k(t− 1) +

1

T
rk(t), k = 1, 2, ...,K (5.3)

where T is the observing window size. As OFDMA allows the BS to schedule multiple users

at the same physical layer frame, the set of users S are selected to be scheduled in downlink

of frame t with maximum priority score as

S(t) = argmax
θ

∑
k∈θ

Uk(t) (5.4)
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subject to ∑
k∈θ

Rk(t) ≤ Cdl, ∀Rk(t) > 0 (5.5)

where Rk(t) is the number of slots required by user k in frame t defined in Eq. 5.1, θ denotes

the possible subset of K = {1, 2, ...,K}, and Cdl denotes the downlink capacity in number of

slots. Therefore, there are 2K combination of θ, which grows exponentially when K increases.

For simplicity, we sort all users priority according to Uk(t), then choose the S = |S(t)| users
with top priority to fit downlink capacity Cdl according to (5.5).

5.3.2 CQI Feedback Scheduling Strategy

Figure 5.2: Decision making for feedback scheduling strategy for user k.

Let us define wk as the average CQI feedback window of user k which means, user k sends

CQI feedback once in every wk frames. Now we define hk as the average downlink scheduling

window. It is determined by observing the downlink scheduling frequency of user k (expressed

in number of frames) and is used as an input to determine our feedback scheduling strategy

as shown in Figure 5.2.
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Deterministic Feedback Scheduling

When hk presents large values, user k is not scheduled in downlink very frequently and

therefore does not require frequent feedback in uplink. The BS specifically asks to send feedback

only those users who are going to be scheduled in the next frame. We call this method as

deterministic feedback scheduling (DFS). With this method, no further feedback optimization

is possible. A new and fresh feedback is mandatory since the last feedback value is out of

date and cannot be exploited (large hk value) and this falls in the case of (hk ≥ wk). In other

notation, we say S ⊆ K and S = F .

Opportunistic Feedback Scheduling

In this scheme, the BS broadcasts the CQI threshold γth and the users F = {k|γk > γth, k =

1, 2, ...,K} send the feedback to BS. Then the BS selects S ⊆ F users to schedule in the

downlink using PFS. We call this CQI feedback method as opportunistic feedback scheduling

(OFS). There is a CQI feedback outage if S ( F and the BS randomly selects some users to

schedule in downlink using the most robust MCS level. To avoid the feedback outage problem,

the BS needs to rebroadcast the CQI threshold γth with a smaller value. This also increases

the opportunity for more users to send CQI feedback hence increases feedback overhead.

As the number of high data rate users increases (more specially realtime users), BS needs

to schedule them more frequently to fulfill their delay constraints Dk (expressed in terms of

number of frames), hence leading to users with smaller scheduling window hk. To capitalize

multiuser diversity and exploit the MCS, the BS also requires more frequent feedbacks from

those users leading to smaller wk values. In this case of high feedback load, DCRA scheme is

used to reduce the feedback resources.

5.4 Dynamic CQI Resource Allocation (DCRA)

DCRA is the core part of our feedback allocation strategy. In DCRA, to achieve feedback

overhead reduction with minimum system throughput degradation, the base station adapts the

feedback window of each user dynamically to fulfill its applications QoS requirements. MSs

may have different types of applications (realtime, non-realtime) and mobility profiles (e.g.

vehicular and pedestrian). To maintain QoS demands (for example in terms of delay or loss

rate), we propose to use MAC layer hints to adapt feedback window as these hints provide
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a good global insight about the channel condition effect on MAC frames. As previously, we

assume an ARQ protocol with go-back-n mechanism. The performance of ARQ protocol is

highly dependent on users applications and mobility profiles. As an example, packet size of

video traffic is usually larger than VoIP traffic. The packet error rate (PER) varies over packet

size for the same target BER. On the other hand, PER varies over BER for same target packet

size. Sending an ack/nack of ARQ protocol depends on the PER of the packet. This PER

diversity among different application and mobility users can be used to adapt their feedback

rate to achieve maximum system throughput. We note that similar approach of using ARQ

signaling has been proposed in [62][111] to solve other networking issues like power and rate

adaptation. The authors used ack/nack signals to cope up with imperfect CQI feedbacks in

non-constraint feedback budget environment (i.e. F = K).

A necessary condition for the high-performance of DCRA is the availability of frequent

ack/nack hints. Such ARQ signaling rate is strongly related to the scheduling window hk.

Hence, based on the scheduling window of a user, we propose two operation modes for DCRA: i)

DCRA with realtime feedback window adaptation (RTw-DCRA), and ii) DCRA with empirical

feedback window (EMw-DCRA). In case of frequent user scheduling (for example hk = 1, i.e.

user is scheduled in every frame), frequent ARQ signaling can compensate the lack of frequent

CQI feedback. Such knowledge allows to further reduce the feedback overhead using larger

wk as long as the MAC layer is not affected by errors. RTw-DCRA adapts feedback window

in realtime which allows the BS to determine average feedback window size on a frame-by-

frame basis for all users. EMw-DCRA uses the empirically determined feedback windows to

schedule feedbacks while the ARQ signaling is not frequent because the user is not scheduled

very frequently (e.g. in each frame) in downlink.

5.4.1 RTw-DCRA: DCRA with Realtime Feedback Window Adaptation

RTw-DCRA part of DCRA is executed in realtime for those users which show a small

scheduling window size hk. The objective of RTw-DCRA algorithm is to dynamically calculate

the appropriate feedback window size based on MSs’ channel condition. We compute the

feedback window for each user based on the feedback window adaptation (FWA) algorithm

proposed in chapter 4. The algorithm is shown again in Algorithm 5.

We take benefit of this feedback window adaptation procedure in the DCRA algorithm

shown in Algorithm 6. DCRA determines the set of users F to send feedback in each frame

among all the users selected to be scheduled in downlink (set S) by PFS. The feedback window
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Algorithm 5 Feedback Window Adaptation procedure to calculate wk

1: procedure Adapt w k

2: input: N th
ack, wk

3: Set nack ← 0,

4: if ack received then

5: nack ← nack + 1

6: if nack ≥ N th
ack then

7: wk ← wk + 1

8: nack ← 0

9: end if

10: else if nack received or timeout then

11: wk ← max{wk − 1, 1}
12: nack ← 0

13: end if

14: return wk

of each user k is maintained separately by BS and initialized with 1 (line 3). The user k is

scheduled to send feedback if the BS did not receive feedback since wk frames (lines 14− 19).

Each time a user k is scheduled, we calculate its average scheduling window hk (line 17). If hk

is sufficiently small so that we have enough ARQ hints, procedure Adapt w k is called (lines

7 − 8) to adapt wk accordingly. We define a threshold hth to decide how much small the hk

should be in order to apply the procedure Adapt w k. hth is a system parameter to be tuned

by system operator.

For some user k, if hk > hth then the BS may not have enough ARQ hints to decide

the feedback window perfectly for that user. In this case, the BS depends on a empirically

determined feedback window matrix W . Each entry of W is a function of service class e and

moving velocity v. The system parameter hth determines when the BS should use RTw-DCRA

or EMw-DCRA. If the hk is larger than hth but smaller than wk, the BS determines the service

class e and mobility profile v for the user and uses the feedback window with W (e, v) value

(lines 9− 12). The procedure to determine matrix W is explained in next subsection.
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Algorithm 6 Dynamic CQI Resource Allocation procedure

1: procedure DCRA

2: input: W,T

3: Set t← 0, tlastk ← 0, hk ← 0, wk ← 1

4: loop

5: F ← {}
6: for each user k ∈ S to be scheduled do

7: if hk < hth then

8: wk ← procedure Adapt w k

9: else if hk < wk then

10: e← determine service class of user k

11: v ← determine mobility profile of user k

12: wk ←W (e, v)

13: end if

14: if t− tlastk ≥ wk then

15: schedule user k to send feedback

16: F ← F ∪ {k}
17: hk ← (1− 1

T )hk +
1
T (t− t

last
k )

18: tlastk ← t

19: end if

20: end for

21: allocate |F| slots in uplink for CQI feedback

22: t← t+ 1

23: end loop
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Algorithm 7 Procedure to determine matrix W

1: procedure DetermineW

2: for each e ∈ E do

3: for each v ∈ V do

4: Set N th
ack, wk ← winit, wavg = 0, i← 0

5: loop

6: wsaved(i)← procedure Adapt w k

7: i← i+ 1

8: wavg ← average(wsaved)

9: end loop

10: W (e, v)← wavg

11: end for

12: end for

13: end procedure

5.4.2 EMw-DCRA: DCRA with Empirical Feedback Window

During the network planning phase, the network operator creates a feedback window matrix

W for each cell in the network by running extensive experiments according to our Algorithm 7.

The operator first determines its supported service classes and mobility profiles. Each service

class has specific target BER, PER, packet size, delay constraints which are determined ac-

cording to users QoS requirements. As small velocity variation does not change the variance of

Doppler spread significantly, the change in feedback rate also would not be significant. Hence,

we define a finite number of mobility profiles, each one supporting a range of moving velocities.

Let us define the set of all the possible service classes as E and the set of all possible mobility

profiles as V. The network operator then launches several experiments with different values of

e and v to derive the corresponding average feedback window w. It is worth mentioning that

in these experiments users evolve in the same cell propagation environment and that inter-cell

interference is neglected.

To determine the average feedback window w for each e and v (lines 2−3), initially w is set

to winit (line 4). Then, an iteration loop executes the feedback window adaptation procedure

Adapt w k (line 6). In each iteration, Adapt w k returns the adapted window w which is stored

in array wsaved to calculate the average wavg (lines 7 − 8). Finally, wavg is saved in W (e, v)

(line 10). The experiment duration to determine each W (e, v) entry should be long enough to
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ensure that wavg is sufficiently steady. In our simulations, we found that wavg converges within

10−4 after 10000 iterations.

Table 5.1: Simulation Parameters

Parameters Value

Channel bandwidth 10 MHz

Frame duration 5 ms

Downlink slot PUSC (1 channel × 2 symbols)

Uplink slot PUSC (1 channel × 3 symbols)

# of downlink slots Cdl 330

# of uplink slots Cul 210

Cell radius 1 km

Path loss PL (d) 12log10(4πd/λ)− 27

Video packet size per frame 121 bytes

VoIP packet size per frame 12 bytes

Mobility model ITU Vehicular with 3, 15, 30, 45, 60 km/h

ARQ maximum number of retries 4

N th
ack 4

Target BER 10−3

Target packet loss rate 1%

T 1000

winit 1

5.5 Simulation Results and Analysis

In this section, we evaluate the performance of the proposed DCRA scheme via extensive

simulations and gain further insight on how different system parameters influence the per-

formance. The simulations are performed using Matlab tool [83]. We study the behavior of

DCRA in both empirical feedback window adaptation (EMw-DCRA) and realtime feedback

window adaptation (RTw-DCRA) scenarios. For each scenario, we conduct a set of simulations
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Table 5.2: Minimum receiver SNR required to use in MCS and their bitrates per symbol per

carrier

Modulation Level Coding Minimum Receiver SNR (db)

BPSK 1 1/2 3.0

QPSK
2 1/2 5.5

3 3/4 8.0

16QAM
4 1/2 10.0

5 3/4 13.5

64QAM
6 2/3 17.0

7 3/4 18.5

using 5 channel patterns indicative of the typical Mobile WiMAX mobility profiles, from the

ITU pedestrian A model representing low mobility scenario of 3km/h to the ITU vehicular

B model corresponding to high mobility scenario of 60km/h. Then we compare the perfor-

mance of DCRA with two reference mechanisms (i) DFS the deterministic feedback scheduling

proposed in many works [89][86] [64], (ii) OFS the opportunistic feedback scheme introduced

in [46][107]. For downlink resource allocation, all three schemes use similar proportional fair

scheduling (PFS) as in [70].

5.5.1 Simulation Environment

We study a single-cell, single-sector system where the BS communicates with upto 32

MSs randomly distributed in the cell with radius 1km. The network parameters, as shown

in Table 5.1, are set following the IEEE 802.16e standard [89]. As mentioned previously, 5

channel mobility models are simulated: ITU pedestrian A (3km/h), 15km/h, 30km/h, 45km/h

and ITU vehicular B (60km/h). The system supports two service classes with video and VoIP

applications. Video and VoIP users have a data rate of 176 kbps with H.264 format and 5.3

kbps with G723.1 [101] respectively. Taking consideration of MAC header and fragmentation

or packing header overhead, the data rates are 189 kbps and 18.75 kbps for video and VoIP

users, respectively. During a simulation scenario, 50% of the total users have service class of

video application and rest 50% are VoIP users. The minimum received SNR required to decide

each MCS level is shown in Table 5.2.

In the simulation scenario, MSs are created randomly in the cell and use simplified random

waypoint model to move within the cell with different constant velocities. Application session
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duration is fixed to 200 seconds which is equivalent to 40000 frames. Each simulation is run

300 times with different seeds then we calculate the means and 95% confidence intervals to

plot the curves.

5.5.2 Empirical Study: Determining Matrix W
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Figure 5.3: Average feedback window for different vehicular mobility speeds.

To evaluate the performance of DCRA, first we derive the matrix W . We simulate using an

application delay constraint Dk = 1 frame ∀k so that the average scheduling window becomes

hk = 1. By doing so, we can receive the ARQ hints in frame-by-frame basis and fully exploit

this cross-layer knowledge. In realtime operations, if we have less ARQ hints in the case of large

hk values, we use W to take intuitive decisions to choose wk for a user with a known service

class and mobility profile. In Figure 5.3, we present the average feedback window experienced

by a user for different service classes and for each mobility profile. The figure shows that the

average feedback window decreases with the increase of user mobility. High mobility users

require to send feedbacks more frequently to track their large channel variation. It also shows

different feedback windows for video and VoIP applications due to packet size.

As we have stated in section 5.4.1, the system parameter N th
ack acts actively on the perfor-

mance of DCRA scheme. Figure 5.4 shows the results of DCRA scheme with varying N th
ack for

video and VoIP applications for fixed mobility of 60 km/h. We observe that the average feed-
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Figure 5.4: Average feedback window for different N th
ack values.

back window is inversely proportional to N th
ack value. As N th

ack increases, the system acts more

lately to raise the value of w. Definitely, a smaller feedback window provides more knowledge

about the channel state and helps to achieve higher throughout. Besides, larger feedback win-

dow saves uplink resources with the tradeoff of downlink throughput degradation. We found

from our simulation results that N th
ack ≥ 4 maintains our target BER and PER.

5.5.3 Performance of DCRA

In this set of experiments, we set CQI threshold γth = 10db for OFS scheme and maintained

it fixed for all delay constrained applications even though it is possible to change this threshold

value in realtime. Note that in terms of overhead, the opportunistic approach requires addi-

tional signaling to announce the new threshold values. In our simulations, we neglected the

protocol signaling overhead and only consumed resources for CQI slots have been considered.

Figure 5.5 shows the average throughput per user as a function of D (the delay constraint of

realtime applications). It shows that our scheme always outperforms OFS scheme but presents

lower performance (maximum 7% degraded throughput for Dk = 3) compared to the DFS,

in case of low delay constrained applications. This is mainly due to the reduced feedback of

DCRA which involves less knowledge about channel condition. The performance of DCRA

converges to DFS for high delay constraints as hk > wk, while OFS shows lower performance



5.5. SIMULATION RESULTS AND ANALYSIS 74

1 2 3 4 5 6 7 8 9 10 11 12
30

40

50

60

70

80

90

100

Application Delay Tolerance (Frames)

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

kb
ps

)

 

 

DFS
OFS
DCRA

Figure 5.5: Average throughput per user for varying application delay constraint
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Figure 5.6: Average packet loss rate per user for varying application delay constraint

because of its large outage probability. According to the OFS scheme specifications, the BS

transmits data in downlink with a robust MCS level if there is a feedback outage for a scheduled

user.

Figure 5.6 shows the packet loss rate as a function of D. For low delay constrained applica-

tions, DCRA under performs compared to DFS and OFS but the lossrate never exceeds 3.5%
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Figure 5.7: Average CQI feedback load for varying application delay constraint
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Figure 5.8: Average throughput per user for varying number of active users

which is tolerable for most realtime applications (e.g. VoIP and video). Figure 5.7 presents the

average feedback overhead per frame for different delay limits and shows that DCRA always

outperforms DFS and OFS. In this scenario, DCRA reduces upto 37% feedback load compared

to DFS and upto 400% compared to OFS while maintaining the QoS constraints (target delay

and lossrate) of the applications. One may argue that the feedback overhead for OFS can be
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Figure 5.9: Average packet loss rate per user for varying number of active users
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Figure 5.10: Average CQI feedback load for varying number of active users

further reduced by increasing the CQI threshold but this will be at the expense of increased

feedback outage probability degrading the overall system throughput. Note that the feedback

overhead with DCRA is lower than with DFS for D ≤ 6. For D > 6, DCRA scheme has

hk > wk and converges to DFS performance.

Finally, we study the system performance while varying K, the number of active users in
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the network. We increase K while keeping the total system downlink capacity Cdl fixed to 330

OFDMA slots and D = 4. Figure 5.8 shows the average throughput per user. All schemes

report similar performance for limited number of users (k ≤ 20). The average throughput

of DCRA as well as reference schemes decreases with increasing K. However, our scheme

still outperforms OFS scheme. Figure 5.9 shows the average packet loss rate in the network

which reports similar performance compared to the reference schemes. Figure 5.10 presents

the feedback overhead for different values of total number of users. It proves that DCRA

scheme can maintain downlink system performance similar to other schemes while reducing

the feedback overhead significantly and maintaining QoS requirements of each user.

5.6 Conclusion

In this chapter, we proposed a cross-layer dynamic CQI resource allocation (DCRA) algo-

rithm for multiuser multicarrier OFDMA systems. DCRA uses the ARQ information, Doppler

based mobility tracking, and MAC layer service classifier. During the network planning phase,

an operator can derive the average feedback window values based on the user velocity and

service class for a target packet error rate. Our experimental analysis shows that the feedback

window can be averaged according to users service class and their mobility profile for a given

cell environment. The empirical information collected during network planning phase can be

extremely valuable for network operator to achieve the dynamic CQI resource allocation during

realtime operation. DCRA performs a realtime dynamic window adaptation in case of suffi-

cient cross-layer hints are available from ARQ signaling. DCRA increases uplink resource by

reducing feedback overhead without degrading downlink throughout significantly compared to

deterministic feedback scheduling (DFS) and opportunistic feedback scheduling (OFS). From

the users perspective, DCRA improves QoS constraints like packet loss rate and saves MS

power due to feedback reduction.
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Chapter 6

Conclusions

In this chapter, we first conclude our work on efficient CQI feedback resource allocation,

and discuss the advantages and disadvantages of CQI feedback resource allocation. We then

present some open problems in this research area.

6.1 Conclusions

The wireless communications industry is gaining momentum in both fixed and mobile ap-

plications. The continued increase in demand for all types of wireless services (voice, data, and

multimedia) is fueling the need for higher capacity and data rates not only in fixed but also

in mobile applications. WLANs and 3G cellular networks are experiencing several difficulties

for reaching a complete mobile broadband access, bounded by factors such as bandwidth, cov-

erage area, or infrastructure costs. In this context, multiuser multicarrier OFDMA systems

like Mobile WiMAX, LTE-Advance appear to fulfil these requirements, providing vehicular

mobility and high service areas and data rates. Defined as broadband wireless access, they are

increasingly providing high data rate applications like video streaming, group video chatting,

online gaming, etc. Since the channel condition of a mobile station (MS) changes over time

due to the fading, interference and path loss, the wireless systems use adaptive modulation

and coding scheme (MCS) techniques to change their sending rates based on the CQI in terms

of estimated signal-to-noise ratio (SNR). If the base station receives CQI feedbacks from all

users, large feedback overhead exhaust the limited uplink capacity. This thesis is devoted to the

study of CQI feedback resource allocation for these multiuser multicarrier OFDMA systems.
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In chapter 2, we provided a literature review related to the feedback issues in OFDMA

systems. At first, we introduced the OFDMA technology, then we presented the CQI basics

and main feedback mechanisms. We described the related works dealing with feedback reduc-

tion and feedback resource allocation. Afterwards, we review the state of the art in channel

predictions.

In chapter 3, we reviewed a model for multiuser multicarrier OFDMA systems together with

a model for random time varying wireless channel. We also reviewed the CQI generation and

CQI quantization model. We reviewed the doppler mobility model and ARQ protocol to use in

our cross-layer approaches. These models provided a basis for our development in subsequent

chapters. We presented the most used periodic feedback mechanism for distributed subcarriers

as interval based feedback (IBF). Then we proposed prediction based feedback (PBF) which

allows the BS to predict the CQI feedbacks based on RLS algorithm [14]. The PBF reduces

the error variance compared to interval based feedback (IBF) and reduces over and under

estimation variations. We showed that it is useful to use channel prediction as a tool to reduce

the feedback overhead and improve the uplink throughput.

Then we introduced the analytical model for system performance with and without predic-

tion [13]. We defined the error distribution from the error data to derive the probability of error

in each adaptive modulation level and some performance metrics with both predicted CQI and

actual CQI. Our analytic model and numerical results showed the throughput degradation in

downlink channel created by the lack of CQI feedback. The performance degradation becomes

negligible for channels with high SNR. In order to mitigate the possible under and over esti-

mation effects of CQI prediction, we proposed an opportunistic periodic feedback mechanism

[18]. In this mechanism, we exploited the hints from MAC-layer ARQ protocol to enhance

the performance of periodic feedback mechanisms. The opportunistic mechanism improves the

system performance for high mobility cases compared to low mobility cases.

In chapter 4, we have developed an integrated cross-layer framework for feedback resource

allocation and prediction (FEREP) for multiuser multicarrier OFDMA systems [19]. The

proposed framework, implemented at the BS side, is composed of three modules. The feedback

window adaptation (FWA) module dynamically tunes the feedback window size for the mobile

stations based on the received ack/nack that reflects their current channel condition [15]. In

current systems, the operators may reserve a fixed number of slots for CQI feedback which is

not changed frame-by-frame. If the number of users is greater than number of CQI slots, users

compete for the CQI resource. To cope with this issue, we proposed priority-based feedback
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scheduling (PBFS) module which performs feedback scheduling by taking into account the

feedback window size, the user profile and the total system feedback budget.

The prediction based feedback (PBF) module performs CQI prediction by using recursive

least square (RLS) algorithm for user which channel feedback has not been scheduled in current

frame. Through extensive simulations, the proposed framework shows significant performance

gain especially in the case with stringent feedback budget constraint. Operators exploiting 4G

systems (i.e. Mobile WiMAX or LTE-Advanced) can easily take advantage of this framework

to efficiently reduce feedback overhead while maintaining a high system performance in terms

of radio resource utilization, service differentiation and adaptability.

In chapter 5, we proposed a cross-layer dynamic CQI resource allocation (DCRA) algorithm

for multiuser multicarrier OFDMA systems [16] [17]. While FEREP operates on a strict

feedback budget constrained scenario, DCRA operates on a relaxed CQI feedback budget in

a frame-by-frame basis to determine the necessary CQI budget exploiting the cell dynamics.

DCRA uses two modes for feedback window estimation. The first one is an off-line mode based

on empirical studies to derive optimal average feedback window based on user application and

mobility profile. ARQ protocol receives users acknowledgement only if the user is scheduled in

the downlink. The reduction in users scheduling frequency also reduces the rate of ARQ hints

and degrades the performance of above contributions. In this case, it is difficult to exploit

the ARQ signal to adapt the feedback window for that user. During the network planning

phase, an operator can derive the average feedback window values based on the user velocity

and service class for a target packet error rate. Our experimental analysis showed that the

feedback window can be averaged according to users service class and their mobility profile for

a given cell environment.

The empirical information collected during network planning phase can be extremely valu-

able for network operator to achieve the dynamic CQI resource allocation during realtime

operation. DCRA performs a realtime dynamic window adaptation in case of sufficient cross-

layer hints are available from ARQ signaling. DCRA increases uplink resource by reducing

feedback overhead without degrading downlink throughout significantly compared to deter-

ministic feedback scheduling (DFS) and opportunistic feedback scheduling (OFS). From the

users perspective, DCRA improves QoS constraints like packet loss rate and saves MS power

due to feedback reduction.
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6.2 Issues for Further Work

We finally provide some suggestions for future research concerning possible extensions of

the work presented in this thesis.

• The idea of CQI feedback prediction can be extended to wireless MIMO-OFDMA sys-

tems which have been proposed for modern 4G communication systems. It has been

demonstrated in [53] that CQI is required to exploit the full potential of MIMO systems.

This CQI can be acquired by prediction. An important application of such a scheme

could be space-time decoding. If the spatial correlations or structure of the MIMO chan-

nel can be exploited, the performance of channel prediction can be expected to improve.

However, the results will critically depend on the channel model used.

• The idea of CQI feedback prediction for distributed subcarriers can be extended to the

contiguous subcarriers like band-AMC. But it will also increase the space and time com-

plexity of the system.

• Our theoretical analysis of prediction error could be extended to communication systems

using orthogonal frequency division multiple access (OFDMA) for the uplink. Specifi-

cally, it would be interesting to consider the capacity regions for OFDMA communications

over time and frequency selective fading channels.

• As regards to the prediction tool, we used the feedback prediction model using RLS

which has certain prediction errors. These errors create over and under estimations

of the channel. One can reduce these estimation errors by improving the prediction

algorithm.

• With the integration of MIMO features, the feedback overhead increases drastically with

the number of transmitting and receiving antenna. An essential investigation can be the

adaptation of FEREP or DCRA schemes in open loop and closed loop MIMO scenarios.

In the open loop MIMO, it is required for each MS to send only one CQI value (the best

one) instead of whole CQI matrix. Our ongoing investigations show that the application

of FEREP or DCRA in open loop MIMO is more intuitive than close loop MIMO.

• We have used the cross-layer information from MAC-layer ARQ protocol to enhance the

performance of our schemes. We also used a decision making parameter to determine to

use the offline or online mode of DCRA scheme. We could extend the idea of cross-layer
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mechanism to use application layer information, more specifically, for high datarate video

applications with on-off model of data bursts. One idea could be that the BS schedules

the MSs to send CQI feedback during their on period of data bursts, and MSs with no

data burst do not send any feedback.

• Similar to the majority of researches in OFDMA systems, we have used the simulation as

a tool to evaluate the performance of our approaches and to extrapolate conclusions. It

would be useful to verify the simulation results by implementing our FEREP and DCRA

approaches and measure the performance in a practical 4G network.
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