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1.1

1.1.1

CHAPTER ]

Introduction

Preamble. This habilitation thesis summarizes a selection of my research results obtained
since my PhD thesis. This summary is not exhaustive. I will not discuss [38], a result in
the vein of my PhD thesis, or results of [36, 30|, using different formalisms and techniques
than most results presented here. Nor will I discuss my results in the field of mathematics
of juggling [39, 14]. By convention, citations of my own work will use a plain, numerical
style, e.g. |1], while I will refer to other work using alpha-numerical style, e.g., [ABBT05].

Security protocols and the need for formal verification

Security protocols everywhere!

Security protocols are distributed programs that aim at establishing some security prop-
erties, e.g., confidentiality of some data, authentication or anonymity, over an untrusted
network, e.g., the Internet. To achieve these properties the protocols generally use cryp-
tography to encrypt or digitally sign messages. A typical example of such a protocol is
the Transport Layer Security (TLS) protocol and its predecessor, the Secure Sockets Layer
(SSL). These protocols are for instance used for guaranteeing a secure connection to a web
site in particular for secure payment over the Internet. Most web browsers display a small
lock to indicate that you are executing a secure session using one of these protocols. As
A. Mercier reported in his PhD thesis [Mer09]: according to the “Fédération du e-commerce
et de la vente & distance” (federation for e-commerce and remote selling) in 2008 in France
78% of French people use remote selling, 80% of these sales use the Internet. Another
example is the use of mobile phones which need to authenticate to the phone operator (to
avoid someone else passing phone calls on your account). Yet another emergent example
of a security protocol is electronic voting with its obvious security risks: in March 2011, in
Estonia (for the sixth time) as well as in Switzerland, Internet voting will be available for
the parliamentary elections (even though in Switzerland the number of voters with access
to this mode of voting is not yet known); in Norway, at the end of 2011 municipal and
county elections will be held and legally binding internet voting will be available in selected
municipalities and for selected voter groups [Kril0].
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The need for formal methods

It has been shown that security protocols are notoriously error-prone, even on protocols of
moderate size. To illustrate this we give three examples.

e In 1995, for instance, Lowe [Low95] was able to find a flaw! in the Needham-Schroeder
public key protocol [NS78|, 17 years after its publication. This attack has become a
kind of “benchmark” example for automated tools.

e More recently, the SAML 2.0 Web Browser Single Sign-On authentication system
developed by Google has been attacked. The Single Sign-On protocol allows a user
to identify himself only once and then access to various applications (such as Gmail
or Google calendar). While designing a formal model of this protocol, Armando et
al. [ACCT08] discovered that a dishonest service provider could actually impersonate
any of its users at another service provider. This flaw has been corrected since.

e Using fully automated tools, Bortolozzo et al. [BCFS10| were able to find serious
security flaws in several commercial tokens implementing the PKCS#11 Cryptoki
standard.

Such flaws can have serious economic (or political) consequences. To avoid them, security
protocols must be built on solid foundations and rigorous proofs of security are needed.
Formal methods such as model-checking and automated reasoning have shown very effective
for analyzing critical systems. As we will see in the following section, a variety of formal
techniques have been applied to the analysis of security protocols.

An example of a security protocol

For illustration purposes we present a simple handshake protocol (which was also used
in Blanchet’s habilitation thesis [Bla08| for the same purpose). The protocol is executed
between an initiator A and a responder B. The protocol’s goal is that A and B share a
secret s at the end of the execution. The honest execution of the protocol is depicted as
in Figure 1.1. A first generates a fresh symmetric session key k and signs this key with his
private signature key ska, yielding the message sign(k, ska). Then A uses an asymmetric
encryption scheme to encrypt the signed key with the public key corresponding to B’s
private decryption key: aenc(sign(k, ska),pk(dkb)). The rationale of this message is as
follows: when B receives such a message, A’s signature ensures that the message originated
from A and the encryption is expected to ensure the confidentiality of the key k (as only
B can decrypt this message). B can now use the secret key k to symmetrically encrypt s
and send return this message to A.

As already mentioned, in Figure 1.1, we only represent the intended execution of the
protocol, which is often misleading. As we will see later, a better representation is to model
the two roles separately, as two communicating processes. Indeed this naive handshake
protocol admits a man-in-the-middle attack, which we describe in Figure 1.2: if A initiates
a session with a malicious entity C, then C' is able to fool the responder B and make B
believe that he shares the secret s with A, while it is actually shared with C.

Tt is arguable whether Lowe’s attack is in the scope of the initial hypothesis [NS78], but the attack
should certainly be considered in the context of an open network.
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A
aenc(sign(k, ska), pk(dkb))

senc(s, k)

Figure 1.1: (Flawed) handshake protocol

A C
aenc(sign(k, ska), pk(dkc)) aenc(sign(k, ska), pk(dkb))

senc(s, k)

Figure 1.2: Man in the middle attack

This attack is possible because there is no link between A’s signature on k£ and the
entity whose key is used for the encryption. The usual way to avoid this kind of attacks
(also suggested by Lowe [Low96]) is to include the participant’s identities in the messages.
A corrected version of the protocol, adding the identities A and B to the signature is
presented in Figure 1.3.

Many more examples of protocols can be found in a survey by Clark and Jacob [CJ97],
in the Security Protocols Open Repository (SPORE) [SPO| and the AVISPA collection of
security protocols [AVI].

Some existing results

The use of symbolic methods for analyzing security protocols goes back to Needham and
Schroeder [NS78| and in particular to the seminal paper of Dolev and Yao [DYS81|. The
“ingredients” of symbolic methods can be summarized as follows. Messages are represented
using an abstract term algebra. While the adversary is computationally unbounded it is
however only allowed to manipulate messages according to a predefined set of rules. More-
over, random numbers are represented by fresh names and collisions are impossible. The
adversary is supposed to have full control of the network: any message that is output is sent
to the adversary, who can replay, modify or forge new messages, according to his current
knowledge. Moreover, the adversary can initiate an unbounded number of sessions with
honest protocol participants. This kind of model contrasts with computational models
where adversaries are arbitrary probabilistic polynomial-time Turing machines and mes-

A
aenc(sign((A, (B, k)), ska), pk(dkb))

senc(s, k)

Figure 1.3: Corrected handshake protocol
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sages are bitstrings without any particular structure. Hence, random numbers are drawn
from a finite set of bitstrings making collisions possible.

In this section we give a short overview of existing work. The aim is certainly not to
be exhaustive, but to give an overview of the variety of techniques and results.

What can we decide about security protocols?

Before discussing different analysis techniques we will review some of the decidability and
complexity result that have been obtained. We first discuss reachability properties. Even
a simple property such as secrecy (modelled as undeducibility) is undecidable in general.
Several proofs of undecidability have been presented when the number of sessions is un-
bounded, e.g. in [EG83, DLM04, CLCO05, Ara08|. Undecidability can even be shown when
we bound the size of messages [DLMO04].

There exist however particular decidable subclasses. Rusinowitch and Turuani [RT01]
have shown that deciding secrecy is coNP-complete when the number of sessions is bounded.
This first result was obtained for protocols that only use encryption. These results have
been lifted to protocols that use exclusive or [CKRT03b| and Diffie-Hellman exponentia-
tion [CKRT03a].

There also exist decidable subclasses of protocols in the case of an unbounded number
of sessions: an early result is the PTIME complexity result by Dolev et al. [DEK82] for
a restricted class, called ping-pong protocols. Other classes have been proposed by Ra-
manujam and Suresh [RS03, RS05|, and Lowe [Low98|. However, in both cases, temporary
secrets, composed keys and ciphertext forwarding are not allowed which discards proto-
cols, such as the Yahalom protocol [CJ97]. More recently, we [26] have shown for a class
of tagged protocols, that these restrictions can be avoided.

For indistinguishability, much less results are known. As one may expect, the problem
is undecidable as soon as the number of sessions is unbounded. Hiittel [Hiit02] has also
shown that in the Spi calculus [AG99], framed bisimilarity (modelling indistinguishability
in the presence of an active adversary) is undecidable for the finite control fragment. Hiittel
also presents a decision procedure for a bounded number of sessions (the fragment without
replication). However, the procedure has multi-exponential time complexity. A subproblem
for deciding indistinguishability of processes is to decide whether two sequences of terms
are indistinguishable. This problem, formalized as static equivalence, is decidable for a
large number of equational theories [AC06, CD07, BCD09, 6].

Models for security protocols and proof techniques

Process algebras. Process algebras provide a natural modelling of protocols where each
role of a protocol corresponds to an independent process. Process algebras such as CSP
have been extensively used for modelling and analysing security protocols [RSG100]. Lowe
designed an analysis tool, Casper [Low97|, built on top of the finite model-checker FDR.
Schneider and Heather [HS00] used rank functions as a proof technique for showing the
security for an unbounded number of sessions. The CCS variant CryptoSPA [FM99] has
also been used to analyse security protocols. Abadi and Gordon introduced a variant of the
pi calculus, the spi-calculus [AG99] with constructs for particular cryptographic primitives.
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The applied pi calculus [AF01]| generalizes the spi calculus and allows to model crypto-
graphic primitives using arbitrary equational theories. This yields an accurate (symbolic)
modelling of protocols, in particular generation of fresh nonces (using restriction) and the
possibility for an unbounded number of sessions by using replication.

The main difference between the different models based on process algebra lies in the
definition of security properties. Many models [AL00, ALV02a, Bor01] consider reachabil-
ity properties. Other models [AG99, AF01] base their definition of security properties on
an observational equivalence allowing to model a wider range of properties including for
instance anonymity properties. In several of these calculi [ BDNP99, AG98, Cor02, BN02],
coinductive characterization of observational equivalence in terms of a bisimulation have
been proposed, yielding powerful (manual) proof techniques. Several symbolic bisimu-
lations have also been proposed for the spi calculus [BBN04, Bor08| and the applied pi
calculus 31, 9, LL10].

Trace based models and inductive reasoning. The strand space model [Gut01, THG99|
is a model representing the set of possible traces of a protocol execution. The model comes
with an appealing graphical representation, and some proof techniques [GT00b|. Protocol
composition results have also been obtained [GT00a]. However, the model and its proof
techniques strongly rely on the assumption that the message algebra is free and it seems
difficult to extend the model with more complex cryptographic primitives.

Paulson [Pau98| also defined a model where the set of protocol traces is defined in-
ductively and used the Isabelle theorem prover to analyze protocols. However, human
interaction is needed to guide the theorem prover and many important lemmas used as
proof techniques are tightly bound to the particular cryptographic primitives defined in the
model. Some key lemmas would for instance be wrong if one allows keys to be constructed
rather than atomic.

Tree automata and Horn clauses. Tree automata and Horn clauses (which can encode
tree automata) can be used to compute an over-approximation of the attacker knowledge
for an unbounded number of sessions. They provide a low-level representation of proto-
cols, when assuming an unbounded number of sessions, which is convenient to manipulate
with automated tools. Weidenbach [Wei99| encoded both the protocol and the attacker
capabilities in Horn clauses and applied the theorem prover Spass to the verification of
security protocols. Genet and Klay [GK00| combined the use of tree automata and rewrit-
ing to verify security protocols, which lead to a recent tool TA4SP, which is part of the
AVISPA tool suite [ABBT05]. Goubault-Larrecq [Gou05] identified a class of Horn clauses
for which resolution is decidable (but still approximating the security of protocols). A
recent extension of his tool [Gou08] can be used to automatically derive security proofs in
the Coq theorem prover. Blanchet developed Horn clause resolution techniques, dedicated
to the verification of security protocols, that have been implemented in the ProVerif tool.
This tool has been developed for nearly 10 years and is now one of the state of the art
tools which is able to verify confidentiality [Bla01|, authentication [Bla09] and even some
equivalence properties [Bla04, BAF05| for many cryptographic primitives, specified as an
equational theory.
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Constraint solving. A symbolic trace of a protocol, i.e. an interleaving of roles, can be
represented using a constraint system. As Horn clauses can be used as a low level repre-
sentation when considering an unbounded number of sessions, constraint systems can be
thought of as such a representation when the number of sessions is bounded. (Constraint
systems are however an exact representation.) For the analysis of security protocols, con-
straint systems were first used by Shmatikov and Millen [MSO01], who proposed a prototype
tool based on a constraint solving algorithm. The tool was optimized by Corin et al. [CE03]
and extended to verify properties in an LTL like logic with past, called PS-LTL [CES06].
Since then more constraint solving algorithms have been proposed in order to handle more
cryptographic primitives with algebraic properties [CS03, Shm04] and for verifying par-
ticular properties [33, CCZ10]. The probably most mature tool using constraint solving
technique is Turuani’s CL-Atse protocol analyzer [Tur06] which also provides support for
exclusive or and exponentiation.

The problem of verifying trace properties corresponds to the satisfiability of constraint
systems. In [Bau05|, Baudet noted that the indistinguishability of two symbolic traces
corresponds to checking whether two constraint systems have the same set of solutions.
He proposes a first procedure for deciding the equivalence of constraint systems. More,
recently, a new decision procedure, more suitable for implementation, was proposed by
Cheval et al. [CCD10] together with a prototype implementation.

Logics for security protocols. Dedicated logics, in the style of Hoare logics, have been
proposed for the analysis of security protocols. As for program analysis, assertions about
the protocol are propagated according to a set of rules. This type of logics goes back to the
famous BAN logic [BAN89| which has known many extensions and variations in the early
nineties, e.g. [GNY90, SvO94]. Recently, a new effort in this direction has been made
by Mitchell et al. [DDMR07, RDDT08] with a particular emphasis on compositionality
resulting in the Protocol Composition Logic (PCL). This logic allows for assume-guarantee
reasoning for parallel and sequential composition.

Automated tools

We discuss here some protocol verification tools. Again, our intention is not to be exhaus-
tive.

The AVISPA tool suite. The AVISPA tool suite [ABBT05] regroups four tools which
take a common input language HLPSL (which is compiled to an intermediate format IF,
specifying a transition system, taken as input by the tools).

e CL-AtSe (Constraint-Logic-based Attack Searcher) is a tool based on constraint solv-
ing techniques. It is able to verify the security of a protocol for a bounded number
of sessions and an unbounded message size. It provides support for some algebraic
properties such as exclusive or, exponentiation and associative pairing and is able to
verify secrecy and authentication properties.

e OFMC (On-the-fly Model-Checker) is a state exploration tool performing bounded
verification. The tool allows to specify algebraic properties using a language of oper-
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ator properties which are then handled using rewriting techniques. However, termi-
nation is only obtained by specifying bounds on the message depth and the number
of intruder operations used to create new terms. Due to these bounds the tool cannot
guarantee completeness.

e SATMC (SAT-based Model-Checker) translates the protocol and the property to
verify into a propositional formula which can be checked using efficient SAT solvers.
However, only a bounded unrolling of the transition system specified by the IF input
is considered.

e TA4SP (Tree Automata based on Automatic Approximations for the Analysis of
Security Protocols) analyses an unbounded number of sessions by approximating
the intruder knowledge by a regular tree language. If the secret is not included in
the language, we can conclude the security of the protocol. TA4SP can also under-
approximate the intruder knowledge in order to prove that a protocol is flawed.

ProVerif. ProVerif [Bla01] is a tool for analyzing security protocols without bounding the
number of sessions nor the message size. It is based on dedicated Horn clause resolution
strategies. The tool is incomplete in the sense that it may fail to prove the security of a
protocol, i.e. the tool may find false attacks. Moreover, the tool may not terminate (except
for a subclass of tagged protocols [BP03] for which termination is ensured). However, the
tool performs extremely well in practice. The input language of ProVerif is the applied
pi calculus which is then compiled into Horn clauses. Cryptographic primitives may be
specified by an arbitrary convergent equational theory (even though the tool may not
terminate or fail to prove the convergence of too complicated theories). One of the strong
points of ProVerif is that it is able to prove reachability properties, such as deduction
based secrecy and (injective) correspondence properties [Bla09|, as well as equivalence
properties [Bla04, BAF05]. The tool has demonstrated its applicability on a large number
of case studies, e.g. [ABF07, BC08, BHMO08, 37, 19|

Scyther. Scyther [Cre08a, Cre08b] is a recent tool for verifying protocols. The tool does
not use any approximation and hence it does not produce false attacks. When the verifica-
tion fails a counter-example can always be produced. Moreover, the tool is guaranteed to
terminate: whenever it is unable to establish unbounded verification, it establishes a form
of bounded verification. The theory of Scyther shares a lot of similarities with the strand
space model, in particular with [DGTO07].

Maude-NPA. Meadows’ NRL Protocol Analyzer (NPA) [Mea96] was one of the first
tools which was able to prove the correctness of security protocols without bounding the
number of sessions or the message size. The tool is based on rewriting techniques and
uses a backward search to determine whether a set of “bad” states is reachable. Maude-
NPA [EMMO09] is the successor of the original NPA and has theoretical foundations in
rewriting logic and narrowing. The tool supports equational theories, including associative-
commutative (AC) operators, building in particular on the finite variant property [CDO05].
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1.2.4 The computational approach

1.3

1.3.1

Since the 1980s, two distinct communities have analyzed secure protocols. On the one
hand symbolic, or Dolev-Yao, methods, as the ones described above, have been developed
with the aim of designing automated tools. These models take a rather simplistic view
of cryptography, in the sense that the possible attacker actions are explicited. On the
other hand, computational models consider adversaries which are arbitrary probabilistic
polynomial Turing machines. While such models are arguably more realistic, proofs are
also more complex and more difficult to automate. In their seminal paper, Abadi and
Rogaway [AR02] have shown that it is possible to bridge these two worlds and “get the best
of both”: automated proofs which imply the existence of a security proof in a computational
model. In [AR02], Abadi and Rogaway considered a setting where the adversary is a pure
eavesdropper and only symmetric encryption is used. As they have shown even in such a
rather simple setting such proofs are not straightforward, as subtle differences exist between
these two settings, (e.g., problems related to key cycles and ciphertexts revealing the length
of plaintexts). Since this first paper, many extensions have been proposed, considering
more cryptographic primitives, e.g., [BLMWO07, 11, 12] and stronger (adaptive [MP05, 32|
and active [BPW03, MW04, CCO08]) adversaries. Another direction consists in developing
automated tools which perform proofs directly in a computational model [Bla06|. We refer
the reader to our recent survey [7] for an extensive bibliography on this topic.

Contributions and outline

A summary of my contributions

My PhD thesis was on the design [46, 47] and analysis [45, 42, 40, 17, 15] of fair exchange
protocols. I proposed the use of a temporal logic with game semantics in order to express
some of the properties of fair exchange protocols in terms of strategies. In particular this
allowed to express, in a natural way, complex properties such as abuse-freeness in optimistic
contract signing protocols [42]. The analysis of protocols was automated using the finite
state model-checker MocCHA and allowed among others to find a fundamental flaw in a
multi-party contract signing protocol [40, 15]. Since then I got interested in many areas
related to the formal analysis of security protocols.

Modelling and analyzing particular security properties

Electronic voting protocols. During my post-doc at the University of Birmingham I
initiated a study of electronic voting protocols together with M. Ryan [37]. At that time we
identified several challenges that arised when analysing e-voting protocols: such protocols
use non-standard cryptographic primitives which are not treated by most of the existing
formalisms, the required properties are non trivial to model and the protocols themselves
are complex (several authorities, need for synchronization points, ...) The applied pi
calculus [AF01] seemed to be a good choice for a modelling language as it allows to model
cryptographic primitives in a general way by the means of an equational theory, offers a
rich language for specifying the protocols and allows to easily specify reachability as well as
indistinguishability properties. In our first paper [37] we analysed the protocol by Fujioka
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et al. [FOO92] covering a series of properties, such as fairness (no early results), eligibility
(only eligible voters have the right to vote) and anonymity or vote privacy (votes and voters
cannot be linked). However, electronic voting requires stronger privacy properties than
merely anonymity. To avoid vote selling and coercion one requests that voters cannot prove,
even if he wishes to, how he voted. In collaboration with S. Delaune and M. Ryan [34, 13],
we have formalized these notions in the applied pi calculus and provided the first symbolic
definitions for these properties. We analyzed several electronic voting protocols and our
analysis emphasizes which election administrators need to be trusted in order to ensure
them. A summary of our work on privacy properties has been published as an invited
chapter in a special LNCS volume dedicated to electronic voting [1]. Yet another important
property for electronic elections is werifiability: individual voters should be able to check
that their vote has been counted in the outcome and any observer should be able to
check that the tally is correct. In collaboration with M. Ryan and B. Smyth [20] we
have formalized these properties and analysed several protocols (FOO’92 [FO092|, Helios
2.0 [AdiO8]| and JCJ/Civitas [JCJ05, CCMO08|). Again, our approach highlightens which
are the exact part of the voting system that need to be trusted in order to achieve the
properties.

Security APIs. As viruses and malware may infect computers, sensitive data such as keys
should not be stored in a memory which may be accessed by other applications. One way
of preventing this is to use tamper proof cryptographic hardware to manipulate such data.
PKCS#11 defines an API (Application Programming Interface) for cryptographic devices
that has been widely adopted in industry. However, it has been shown to be vulnerable
to a variety of attacks that could, for example, compromise the sensitive keys stored on
the device. When G. Steel joined our research group I started working on security APIs.
In [28, 10] we propose a formal model of the operation of this API. One difference with
classical models of security protocols is that it accounts for non-monotonic mutable global
state, i.e. some parts of the state can be accessed and modified by different sessions.
We give decision results for this model and implement the resulting decision procedure
using the model checker NuSMV. We report some new attacks and prove the safety of
some configurations of the API in our model. We also analyse proprietary extensions
proposed by nCipher (Thales) and Eracom (Safenet), designed to address the shortcomings
of PKCS#11. Another hardware module which is included in most modern laptops is the
Trusted Platform Module (TPM). The TPM provides a way to store cryptographic keys
and other sensitive data in its shielded memory. Through its API, one can use those keys
to achieve some security goals. Although the TPM specification [RSA04] consists of more
than 700 pages, the expected security guarantees are not clearly stated. In [19] we model
several TPM commands, concentrating on the authentication mechanisms, and identify
security properties the TPM should guarantee. We argue that the properties we identified
are the ones intended given the security mechanisms that are deployed. Moreover, these
properties are indeed the ones that were violated in some known attacks. Using ProVerif
we were able to rediscover these known attacks and some new variations on them. We also
discuss some fixes to the API, and prove our security properties for the modified APL.
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Automated verification

Automated verification of equivalence properties. While studying privacy properties
of e-voting protocols I realized that the tool support for deciding equivalence properties
was insufficient. While the tool ProVerif is able to prove some equivalences [BAF05], there
were two reasons why we could not use it to automate privacy proofs on our case studies:
(i) the equivalence proven by ProVerif is too fine and (7) the equational theories used to
model complex cryptographic primitives are beyond the scope of what ProVerif can prove.
To overcome the first limitation, I suggested to develop a symbolic semantics for the finite
(replication free) fragment of the applied pi calculus. The aim was to to reduce verification
of observational equivalence to the equivalence of constraint systems (which was shown
decidable by M. Baudet for an important class of equational theories). With S. Delaune
and M. Ryan [31, 9] we defined symbolic semantics and a symbolic bisimulation for the
applied pi calculus. We have shown this symbolic bisimulation to be sound even though
not complete. Nevertheless, our symbolic bisimulation has shown to be “complete enough”
to show privacy in e-voting properties. To cover more complex equational theories with
9. Ciobacd and S. Delaune we designed a procedure |23, 6] that decides static equivalence
for many equational theories, including some theories that were not known to be decidable
before. S. Ciobaca also implemented this procedure yielding an efficient prototype. An
early version of this work was part of S. Ciobacd’s master thesis and the latest version will
be part of his PhD thesis. With A. Mercier and R. Treinen, we investigated combination
results of non-disjoint equation theories |25, 8] for the decision of static equivalence. In
particular we could use this result to decide static equivalence for a theory of bilinear
pairing. This work was part of A. Mercier’s PhD thesis [Mer09].

Group protocols. In [30] we investigate automated verification of a particular type of
security protocols, called group protocols, in the presence of an eavesdropper, i.e., a pas-
sive attacker. The specificity of group protocols is that the number of participants is not
bounded. Our approach consists in representing an infinite set of messages exchanged dur-
ing an unbounded number of sessions, one session for each possible number of participants,
as well as the infinite set of associated secrets. We use so-called visibly tree automata with
memory and structural constraints (introduced recently by Comon-Lundh et al. [CJP07])
to represent over-approximations of these two sets. We identify restrictions on the speci-
fication of protocols which allow us to reduce the attacker capabilities guaranteeing that
the above mentioned class of automata is closed under the application of the remaining
attacker rules. The class of protocols respecting these restrictions is large enough to cover
several existing protocols, such as the GDH family, GKE, and others. This work was part
of A. Mercier’s PhD thesis [Mer09].

Compositional reasoning and refinement

As protocols are getting more and more complex and are used as parts of large systems
it is interesting to reason about them in a modular and compositional way. We would
like to analyze protocols in isolation and conclude that they are secure in an arbitrary
environment when executed in the presence of other protocols. It is not difficult to model
show that in symbolic models security is preserved when protocols do not share any secrets.
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Therefore, one might want to never use the same keying material for different protocols.
This is however unrealistic when secrets are user-chosen passwords. Typically, a user
will reuse the same password for different protocols. With S. Delaune and M. Ryan [27]
we have studied the compositionality of resistance against offline dictionary attacks for
password based protocols. We show that resistance against offline dictionary attacks indeed
composes in the case one considers a passive adversary, but not in the presence of an
active adversary. We show that a simple transformation, where the password is tagged
by a protocol identifier using a hash function, both preserves resistance against offline
dictionary attacks and guarantees composition even if the same password is reused in
different protocols. Another situation where the same keying material is reused is when we
execute different sessions of a same protocol which uses long-term keys. With M. Arapinis
and S. Delaune [26], we have studied this kind of self-composition: the aim is to show that
when a protocol is secure for one session it is also secure when composed with itself in
many sessions. While this is obviously not true in general we have designed a compiler
which adds a preamble to the protocol where participants agree on a dynamically created
tag included in each encryption, signature and hash. For this class of compiled protocols,
we show that confidentiality properties are preserved under self-composition. This result
can also be interpreted as a class of protocols for which confidentiality is decidable for an
unbounded number of sessions. This work was part of M. Arapinis’ PhD thesis.

In computational models, universal composability [Can01] (UC) and reactive simulata-
bility [BPWO07] (RSIM) were designed to achieve composability. Another aspect of the UC
and RSIM frameworks is that ideal functionalities, which one can think of as specifications,
can be refined while preserving security protocols. With S. Delaune and O. Pereira [24] we
have designed a similar framework for the applied pi calculus. While at first we thought
that this would be a straightforward exercise, with the aim of better understanding the
corresponding computational models, it turned out to be a non trivial task. In particular
the concurrency model of the applied pi calculus differs significantly from the sequential
scheduling mechanisms in computational models. Changing the concurrency model raised
several interesting questions and led to different design choices.

Computational soundness

Since the 1980s, two approaches have been developed for analyzing security protocols.
One of the approaches relies on a computational model that considers issues of complexity
and probability. This approach captures a strong notion of security, guaranteed against
all probabilistic polynomial-time attacks. The other approach—which my previous work is
part of—relies on a symbolic model of protocol executions in which cryptographic primitives
are treated as “black boxes”, in the sense that the attacker can only perform a given set
of actions. Since the seminal work of Dolev and Yao, it has been realized that this latter
approach enables significantly simpler and often automated proofs. Unfortunately, the high
degree of abstraction and the limited adversary power raise questions regarding the security
offered by such proofs. Potentially, justifying symbolic proofs with respect to standard
computational models has tremendous benefits: protocols can be analyzed using automated
tools and still benefit from the security guarantees of the computational model. In their
seminal work, Abadi and Rogaway [AR02] prove the computational soundness of formal
(symmetric) encryption in the case of a passive attacker. Since then, many results have been
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obtained (see [7] for our recent survey on this topic). Each of these results considers a fixed
set of primitives, for instance symmetric or public key encryption. In [35, 12|, we design
a general framework for comparing formal and computational models in the presence of a
passive attacker. We define the notions of soundness and faithfulness of a cryptographic
implementation with respect to equality, static equivalence and (non-)deducibility and
present proof techniques for showing soundness results illustrated on several examples (xor,
ciphers and lists). In [32] we generalise this framework to consider an adaptive adversary,
which is strictly more powerful than a passive one. Computational and symbolic models
also differ on the way security properties are specified. The standard symbolic deducibility-
based notions of secrecy are in general insufficient from a cryptographic point of view,
especially in the presence of hash functions: indeed given h(s) the secret s is not deducible,
while a real-or random style, computational definition would trivially not be satisfied if the
attacker is presented with either the real secret s or a fresh random s’. In [33] we consider
an active adversary and devise a more appropriate secrecy criterion which exactly captures
a standard cryptographic notion of secrecy for protocols involving public-key encryption
and hash functions: protocols that satisfy this criterion are computationally secure while
any violation of our criterion directly leads to an attack.

Qutline

The thesis is organized as follows. In Chapter 2, we present notations and basic definitions
on term algebras, as well as the applied pi calculus that we use for modelling protocols (for
most of our results). We also illustrate the modelling of some security properties in that
model. In the following two chapters (Chapters 3 and 4) we review our results on modelling
and analyzing properties of particular types of protocols: electronic voting protocols and
security APIs. In Chapter 5, we summarize our work on automated methods for deciding
equivalence properties. In Chapter 6 we discuss our work on protocol composition and
refinement, allowing analysis of protocols in a modular way. Then, in Chapter 7 we sum-
marize our work on computational soundness with the aim of using symbolic techniques
to obtain computational proofs. In Chapter 8 we conclude and give directions for future
work.

Collaborators
The content of this thesis is based on joint work with the following persons:

e Myrto Arapinis, University of Birmingham, UK

Mathieu Baudet, MLstate, France

Rohit Chadha, LSV, France

Stefan Ciobaci, LSV, France

Véronique Cortier, LORIA, France

Stéphanie Delaune, LSV, France

Ralf Kiisters, University of Trier, Germany
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Laurent Mazaré, Goldman Sachs, UK

Antoine Mercier, Ministry of Defense, France
Olivier Pereira, University of Louvain, Belgium
Mark D. Ryan, University of Birmingham, UK
Ben Smyth, LORIA, France

Graham Steel, LSV, France

Ralf Treinen, PPS, France

Bogdan Warinschi, University of Bristol, UK

A complete list of all my co-authors can be found on page 131. In particular some of these
works have been done in collaboration with students that I had the pleasure to advise.

Antoine Mercier defended his PhD thesis [Mer09] entitled “Contributions & l’analyse
automatique des protocoles cryptographiques en présence de propriétés algébriques :
protocoles de groupe, équivalence statique” in December 2009. The thesis was co-
advised by Ralf Treinen. In particular the results described in Section 5.2 were part
of Antoine’s thesis.

Stefan Ciobécd is scheduled to defend his PhD thesis in fall 2011. This thesis is
co-advised by Véronique Cortier. In particular the results described in Section 5.1
will be part of Stefan’s thesis. I also co-advised Stefan’s Magter thesis with Stéphanie
Delaune.

Additionally, Myrto Arapinis was in 1998 at LSV on a one year temporary research
and teaching position to finish her PhD thesis. I co-advised her (with Stéphanie Delaune)
during that year. I also had the chance to work with several post-doctoral fellows at LSV:
Laurent Mazaré, Graham Steel, Joe-Kai Tsay and Céline Chevalier.

Moreover, part of the future work described in 8.1 is Robert Kiinnemann’s PhD topic.
Robert Kiinnemann started his PhD in October 2010 and is co-advised by Graham Steel.
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CHAPTER 2

Preliminaries: messages, protocols and
properties

In this chapter we introduce some preliminary definitions and notations. We first
introduce basic concepts related to how messages are modelled and manipulated: term
algebras, equational theories, deduction and static equivalence. Then, we introduce the
applied pi calculus which we will use to model protocols. Finally, we show how several
kinds of security properties can be modelled in the applied pi calculus. A reader familiar
with these notions can safely skip this chapter.

Term algebras

A sorted signature (S,F) is defined by a set of sorts S = {s,s1,s2,...} and a set of
function symbols F = {f, f1, fa,... } with arities of the form arity(f) =s1 X -+ X sp = s
where k > 0. If k£ = 0 the symbol is called a constant and its arity is simply written
s. When § is a singleton we say that the algebra is unsorted and we simply refer to the
signature as F. In that case we write arity(f) = k for arity(f) = s1 x -+ X s — s.

We fix an infinite set of sorted names A and an infinite set of variables X'. The set of
terms of sort s is defined inductively by :

t on= term of sort s
| =z variable z of sort s
| n name n of sort s
| f(ti,...,tx) application of symbol f € F
where each t; is a term of sort s; and arity(f) = s; X -+ X sp — s. The set of terms

T(F,N,X) is the union of the sets of terms of sort s for every s € S. We denote by
sort(t) the sort of term t. We write vars(t) and names(t) for the set of variables and
names occurring in ¢, respectively. A term t is ground iff vars(t) = (). The set of ground
terms is denoted by T (F,N).

The positions Pos(t) of a term t are defined as usual by Pos(u) = {€} when u e NUX
and Pos(f(t1,...,tn)) ={e}U{i-7m|1<i<n,m € Pos(t;)} otherwise. The subterm of ¢

15
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at position p is written ¢|,, and the replacement in ¢ at position p by u is written t[u],.

A substitution o written o = {z1 — t1,..., 2, — t,} (or sometimes {11/, ;... " /. 1)
with domain dom(o) = {z1,...,2,} is a mapping from {z1,...,2,} C X to T(F,N,X).
We only consider well sorted substitutions in which x; and t; have the same sort. A
substitution o is ground if all ¢; are ground. We homomorphically extend the substitution
to apply on terms rather than only variables. The application of a substitution o to a term
t is written to.

Equational theories and rewriting systems

An equation is an equality ¢ = uw where ¢ and u are two terms of the same sort. An
equational theory £ is a finite set of equations. We denote by =¢ the smallest congruence
relation on T (F, N, X) such that to =¢ uo for any t = u € £ and for any substitution o.

A term rewriting system R is a finite set of rewrite rules | — r where | € T(F,N,X)
and r € T(F,N,vars(l)). A term u € T(F,N,X) rewrites to v by R, denoted u —x v
if there is a rewrite rule [ — r € R, a position p € Pos(u) and a substitution o such
that u|, = lo and v = u[ro],. We write =% for the transitive and reflexive closure of
—nr. We often write — instead of —x when R is clear from the context. Given a set
of equations &, u rewrites modulo € by R to v, denoted u —g/e v, if u =¢ tllo], and
tlro], =¢ v for some context ¢, position p € Pos(t), rule | — r in R, and substitution o. R
is E-terminating if there are no infinite chains t; =g/ t2 2r/e ... R is E-confluent iff
whenever t = /¢ u and t —g /¢ v, there exist u’,v’ such that u —R/e u', v —R/e v/, and
u =¢ v'. R is E-convergent if it is E-terminating and E-confluent. A term ¢ is in normal
form with respect to (R/€) if there is no term s such that t =5 /e s. If ¢ —%/e § and s is
in normal form then we say that s is a normal form of t. When this normal form is unique
(up to &) we write s =t |g/¢.

Frames, deduction and static equivalence

We can assemble messages into a frame. A frame ¢ = vn.o consists of a finite set of
restricted names 7 and a substitution o. The domain of a frame ¢, denoted dom(¢p) is the
domain of the underlying substitution, i.e., dom(c). Given two frames ¢; and pg we write
Y1 =q 2 wWhen 1 and @9 are equal up to a-conversion of restricted names.

Given a frame we can define different notions of knowledge of an adversary: deduction
and static equivalence. Deduction models the fact that the adversary can compute the
value of a given message.

Definition 2.1 Let ¢ = vn.o be a frame. We say that a term t is deducible from ¢ in the
equational theory £, written ¢ ¢ t iff there exists a term R such that names(R) N1 = ()
and Ro =¢ t.

We call the term R in the above definition a recipe and when ¢ can be deduced using the
recipe R we sometimes write ¢ I—? t.

Another notion of adversary knowledge can be expressed in terms of indistinguishability
of frames, called static equivalence.
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Definition 2.2 Let ¢ be a frame. We say that two terms M, N are equal in @ under
the equational theory &, written (M =g N)p, iff there exist n,o such that p =4 vi.o,
m(M,N)Nn=0 and Mo =¢ No.

Two frames @1, o are statically equivalent in the equational theory £, written @1 ~¢
w2, iff dom(p1) = dom(p2) and for all terms M, N (M =¢ N)p1 < (M =g N)ps.

The applied pi calculus: syntax and semantics

The applied pi caculus [AF01] is an extension of the pi calculus which allows to transmit
complex data terms on channels rather than just names. We suppose that terms are
generated by a term algebra as introduced above and respect a simple sort system. We
distinguish terms of channel sort and terms of base sort. Function symbols only take
arguments of base sort and return results of base sort.

Syntax. In the applied pi calculus, one has plain processes and extended processes. Plain
processes are built up in a similar way to processes in the pi calculus, except that messages
can contain terms (rather than just names). Below, M and N are terms, n is a name,
x a variable and wu is a metavariable, standing either for a name or a variable. Extended
processes add active substitutions and restriction on variables.

P,Q,R := plain processes A, B,C := extended processes
0 P
PlQ A|B
vn.P vn.A
if M = N then P else Q ve.A
in(u, x).P M/
out(u, N).P

{M/.} is the substitution that replaces the variable x with the term M. Active sub-
stitutions generalise “let”. The process vx.({M /,} | P) corresponds exactly to the process
“let x = M in P”. As usual, names and variables have scopes, which are delimited by
restrictions and by inputs. We write fu(A), bv(A), fn(A) and bn(A) for the sets of free
and bound variables and free and bound names of A, respectively. We also assume that,
in an extended process, there is at most one substitution for each variable, and there is
exactly one when the variable is restricted. We say that an extended process is closed if
all its variables are either bound or defined by an active substitution.

Active substitutions are useful because they allow us to map an extended process A to
its frame ¢(A) by replacing every plain process in A with 0. (As we will see below any
frame is structurally equivalent to a frame as introduced in the previous section.) A frame
is an extended process built up from 0 and active substitutions by parallel composition
and restriction. The frame ¢(A) can be viewed as an approximation of A that accounts for
the static knowledge A exposes to its environment, but not A’s dynamic behaviour. The
domain of a frame are the variables defined by active substitutions that are not restricted.
The domain of a process is the domain of its frame, i.e. dom(A) = dom(¢(A)). We assume
that all variables in the domain of a process are of base sort.
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As usual a context is a process with a hole. An evaluation context is a context whose
hole is not under an input, output or conditional (equivalently, it is an extended process
with a hole instead of an extended process).

Semantics. The semantics of the applied pi calculus is defined by two relations.

Structural equivalence, noted =, is the smallest equivalence relation on extended pro-
cesses that is closed under a-conversion on names and variables, application of evaluation
contexts, and such that:

PAR-0 A0 = A

PAr-A A|(B|C) = (A|B)|C

Par-C A|B = B|A

NEw-0 vn0 = 0

NEw-C vuvv.A = vvvu A

New-PArR A |vu.B = vu.(A|B) if ue fn(A)U fu(A)
ALiAs ve{M/,} = 0

Susst (M1 A = (M)} A/}

REWRITE M/ = N/} if M =¢ N

Internal reduction, noted —, is the smallest relation on extended processes closed under
structural equivalence and application of evaluation contexts such that

ComMm out(a, M).P | in(a,z).Q — P |Q{M/,}
THEN if M =N then Pelse Q — P where M =¢ N
ELsSE if M =N then Pelse Q@ — Q

for any ground terms M and N such that M #¢ N

Security properties are generally defined to be closed under application of evaluation
contexts, i.e., they must hold when run in parallel with any adversary which can be written
as an applied pi calculus process. While this yields intuitive definitions the universal
quantification over all evaluation contexts makes proofs difficult. Therefore, Abadi and
Fournet |AF01] introduced a labelled semantics which allows processes to directly interact
with the environment.

The labelled semantics extends the semantics given above by the relation = where «
is

e cither an input in(a, M) where a is a channel name and M is a term that can contain
names and variables,

e or an output out(a,u) or vu.out(a,u) where a is a channel name and wu either a
variable of base type or a channel name.
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(7 .
A= A" w does not occur in o

IN in(a,x).P M P{M/s} Score vu. A S vu A
OuT-ATOM out(a, u).P outla, p A% A l;)zgg% Q}CZ((g)) :g))
OPEN-ATOM A OM(Q—%) A uFa o AlB f A1 B

A L, g STRUCT A= BAzil/ ~=F

In the following we decorate relations with * to denote their reflexive, transitive closure
and write = for ((—*) = (—=*) )*, i.e. any sequence of internal and labelled reductions.

Security properties

We now illustrate on some examples how we can express security properties in the applied
pi calculus.

Secrecy. Secrecy or confidentiality is one of the most basic properties. As usual in sym-
bolic models we express secrecy of a term as the adversary’s inability to interact with the
process and reach a state where this term can be deduced. As a first approximation we
could state secrecy as follows:

Let A be a closed extended process and t a closed term. ¢ is secret in A iff for
any evaluation context C[ ], we have that if C[A] —* B then ¢(B) t¢ t.

This definition is however not satisfactory: because of a-conversion any term ¢ can always
be deduced. Correctly expressing the secrecy of a term is slightly more tricky. One way
of doing so (which we adopted in [22]) is by annotating processes with (parametrized)
events. We will not give a precise formalization of events here and refer the reader to [22]
or |[Bla09]. We suppose that we annotate a process with an event secret(t) in order to
specify secrecy of the term ¢. When an event is executed it is stored and we say that the
event holds from that point on. The events are stored such that they remain in the scope
of the restricted names occuring in them so that they are subject to a-conversion.

Let A be a closed extended process and t a closed term. ¢ is secret in A iff for
any evaluation context C| |, we have that if C[A] —* B then secret(¢) holds in
B and ¢(B) /¢ t.

An alternative modelling based on the labelled semantics would be as follows.

Let A be a closed extended process and t a closed term. t is secret in A iff if
C[A] = B then secret(t) holds in B and ¢(B) t/¢ t.

Correspondence properties. Correspondence assertions again suppose that processes have
been annotated with events. A correspondence assertion end(M) = begin(V) ensures that
for any occurrence of the end event there exists a previous occurrence of the corresponding

begin event (such that common variables in M and N have been instantiated in the same
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way). The correspondence is said to be injective if there exists a 1 to 1 mapping between
occurrences of the end and the begin events.

Correspondence assertions have been classically used to model authentication, going
back to the work of Woo and Lam [WL92|. We will use such assertions to model a general
security property of the TPM in Chapter 4.

Equivalence properties. An important part of our work is related to equivalence prop-
erties which can be modelled using observational equivalence. As we will see equivalence
properties are particularly useful for modelling anonymity properties, real-or-random prop-
erties and indistinguishability from ideal functionalities. We are now defining observational
equivalence and observational preorder. For this we introduce the notion of a barb. Given
an extended process A and a channel name a, we write A |} @ when A —* Clout(a, M).P]
for some term M, plain process P, and evaluation context C| | that does not bind a.

Definition 2.3 (observational preorder, equivalence) Observational preorder (<) (resp.
equivalence (/2)) is the largest (resp. largest symmetric) relation on extended processes hav-
ing same domain such that A R B implies

1. if Al a then B | a;
2. if A—>* A, then B —* B' and A’ R B’ for some B’;
3. C[A] R CIB] for all closing evaluation contexts C[_].

As we have already explained the universal quantification over all evaluation con-
texts makes proofs complicated. Therefore a more convenient relation to manipulate is
(bi)simulation which relies on the labelled semantics.

Definition 2.4 (labelled (bi)similarity) A relation R on closed extended processes is
a simulation relation if A R B implies

1. ¢(A) ~ ¢(B),
2. if A— A', then B —* B’ and A’ R B’ for some B’,

3. if A S A and fv(a) C dom(A) and bn(a) N fn(B) = 0, then B —*%—* B’ and
A" R B’ for some B'.

If R and R™Y are both simulation relations we say that R is a bisimulation relation.
Labelled similarity (<), resp. labelled bisimilarity (/y), is the largest simulation, resp.
bisimulation relation.

Abadi and Fournet [AF01, Theorem 1| have shown that ~= ~y. Observational preorder
and similarity were not introduced in [AF01]. However, these definitions seem natural and
were convenient for our framework of simulation based security (Chapter 6). Obviously we
have that ~C=< and ~; C=y. In [24] we prove that labelled similarity is a precongruence.

Proposition 2.1 Let A and B be two extended processes such that A <y, B. We have that
C[A] Z¢ C[B] for all closing evaluation context C|_].
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From this proposition it follows that <, C <. Hence, we can use labelled similarity
as a convenient proof technique for observational preorder. We actually expect the two
relations to coincide but did not prove it as we did not need it.
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CHAPTER 8

Modelling electronic voting protocols and
their properties

In this chapter we give an overview of our work on modelling and verifying e-voting
protocols. We started this line of work in [37] with a case study of the protocol by Fujioka
et al. [FOO92]. At that time we identified several challenges that arised when analysing
e-voting protocols: such protocols use non-standard cryptographic (e.g. blind signatures,
trapdoor commitments, non-interactive zero knowledge proofs, . .. ), the required properties
are non trivial to model and the protocols themselves are complex (several authorities, need
for synchronisation points, ...) The applied pi calculus seemed to be a good choice as a
modelling language as it allows to model cryptographic primitives in a general way by
the means of an equational theory, offers a rich language for specifying the protocols and
allows to easily specify reachability as well as indistinguishability properties. In our first
paper [37] we analysed the protocol by Fujioka et al. [FO092] covering a series of properties,
such as fairness (no early results), eligibility (only eligible voter have the right to vote) and
anonymity. In the following sections we describe in more details our work on privacy type
properties [37, 34, 13, 22| and verifiability properties [20].

Privacy-type properties

In this section we describe our work on privacy-type properties. We distinguish three such
properties:

e Vote-privacy: the fact that a particular voter voted in a particular way is not revealed
to anyone.

e Receipt-freeness: a voter does not gain any information (a receipt) which can be used
to prove to a coercer that she voted in a certain way.

e (Coercion-resistance: a voter cannot cooperate with a coercer to prove to him that
she voted in a certain way.

23
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The weakest of the three, called vote-privacy, roughly states that the fact that a voter
voted in a particular way is not revealed to anyone. When stated in this simple way,
however, the property is in general false, because if all the voters vote unanimously then
everyone will get to know how everyone else voted. The formalisation we give in fact says
that no party receives information which would allow them to distinguish one situation
from another one in which two voters swap their votes.

Receipt-freeness says that the voter does not obtain any artefact (a “receipt”) which can
be used later to prove to another party how she voted. Such a receipt may be intentional
or unintentional on the part of the designer of the system. Unintentional receipts might
include nonces or keys which the voter is given during the protocol. Receipt-freeness is a
stronger property than privacy. Intuitively, privacy says that an attacker cannot discern
how a voter votes from any information that the voter necessarily reveals during the course
of the election. Receipt-freeness says the same thing even if the voter voluntarily reveals
additional information.

Coercion-resistance is the third and strongest of the three privacy properties. Again,
it says that the link between a voter and her vote cannot be established by an attacker,
this time even if the voter cooperates with the attacker during the election process. Such
cooperation can include giving to the attacker any data which she gets during the voting
process, and using data which the attacker provides in return. When analysing coercion-
resistance, we assume that the voter and the attacker can communicate and exchange data
at any time during the election process. Coercion-resistance is intuitively stronger than
receipt-freeness, since the attacker has more capabilities.

Of course, the voter can simply tell an attacker how she voted, but unless she pro-
vides convincing evidence the attacker has no reason to believe her. Receipt-freeness and
coercion-resistance assert that she cannot provide convincing evidence. Coercion-resistance
cannot possibly hold if the coercer can physically vote on behalf of the voter. Some mecha-
nisim is necessary for isolating the voter from the coercer at the moment she casts her vote.
This can be realised by a voting booth, which we model here as a private and anonymous
channel between the voter and the election administrators.

Note that in literature the distinction between receipt-freeness and coercion-resistance
is not very clear. The definitions are usually given in natural language and are insufficiently
precise to allow comparison. The notion of receipt-freeness first appeared in the work of
Benaloh and Tuinstra [BT94|. Since then, several schemes [BT94, Oka96| were proposed
in order to meet the condition of receipt-freeness, but later shown not to satisfy it. One
of the reasons for such flaws is that no formal definition of receipt-freeness has been given.
The situation for coercion-resistance is similar. Systems have been proposed aiming to
satisfy it; for example, Okamoto [Oka97] presents a system resistant to interactive coercers,
thus aiming to satisfy what we call coercion-resistance, but this property is stated only
in natural language. A rigorous definition in a computational model has been proposed
by Juels et al. for coercion-resistance [JCJ05]| and in the UC framework by Canetti and
Gennaro [CG96], Moran and Naor [MNO06] and Unruh and Miiller-Quade [UM10]. To the
best of our knowledge our definition is the first “formal methods” definition of receipt-
freeness and coercion-resistance. It is difficult to compare our definition and the ones
proposed in [JCJ05, MN06, UM10| due to the inherently different models. Our work has
later been extended by Backes et al. [BHMO08] who aim automation of coercion-resistance
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using ProVerif. There exist also recent definitions of receipt-freeness and coercion resistance
in epistemic [BRS07, KT09| and game-theoretic [KTV10] models.
This section is based on the results published in [37, 34, 13].

Formalising voting protocols

Before formalising security properties, we need to define what is an electronic voting proto-
col in the applied pi calculus. Different voting protocols often have substantial differences.
However, we believe that a large class of voting protocols can be represented by processes
corresponding to the following structure.

Definition 3.1 (Voting process) A wvoting process is a closed plain process
VP=va.(Vor |- |Von | A1 |-+ | Am).

The Vo; are the voter processes, the Ajs the election authorities which are required to be
honest and the n are channel names. We also suppose that v € dom(o;) is a variable which
refers to the value of the vote. We define an evaluation context S which is as VP, but has
a hole instead of two of the Vo;.

In order to prove a given property, we may require some of the authorities to be honest,
while other authorities may be assumed to be corrupted by the attacker. The processes
Aq, ..., Ay, represent the authorities which are required to be honest. The authorities under
control of the attacker need not be modelled, since we consider any possible behaviour for
the attacker (and therefore any possible behaviour for corrupt authorities). In this case
the communication channels are available to the environment.

Vote-privacy

The privacy property aims to guarantee that the link between a given voter V' and his
vote v remains hidden. Anonymity and privacy properties have been successfully studied
using equivalences, e.g. [SS96] . However, the definition of privacy in the context of voting
protocols is rather subtle. While generally most security properties should hold against an
arbitrary number of dishonest participants, arbitrary coalitions do not make sense here.
Consider for instance the case where all but one voter are dishonest: as the results of the
vote are published at the end, the dishonest voter can collude and determine the vote of the
honest voter. A classical trick for modelling anonymity is to ask whether two processes, one
in which V4 votes and one in which Vg votes, are equivalent. However, such an equivalence
does not hold here as the voters’ identities are revealed (and they need to be revealed at
least to the administrator to verify eligibility). In a similar way, an equivalence of two
processes where only the vote is changed does not hold, because the votes are published
at the end of the protocol. To ensure privacy we need to hide the link between the voter
and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we need to suppose that at least
two voters are honest. We denote the voters V4 and Vp and their votes a, respectively
b. We say that a voting protocol respects privacy whenever a process where V4 votes a
and Vp votes b is observationally equivalent to a process where V4 votes b and Vg votes a.
Formally, privacy is defined as follows.
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Definition 3.2 (Vote-privacy) A wvoting protocol respects vote-privacy (or just privacy)
if

SWVal®/o} | VB{"/o}) = S[Va{®/o} | VB{*/}]
for all possible votes a and b.

The intuition is that if an intruder cannot detect if arbitrary honest voters V4 and Vg
swap their votes, then in general he cannot know anything about how V4 (or Vg) voted.
Note that this definition is robust even in situations where the result of the election is
such that the votes of V4 and Vp are necessarily revealed. For example, if the vote is
unanimous, or if all other voters reveal how they voted and thus allow the votes of V4 and
Vg to be deduced.

As already noted, in some protocols the vote-privacy property may hold even if author-
ities are corrupt, while other protocols may require the authorities to be honest. When
proving privacy, we choose which authorities we want to model as honest, by including
them in Definition 3.1 of VP (and hence S).

Receipt-Freeness

Similarly to privacy, receipt-freeness may be formalised as an observational equivalence.
We also formalise receipt-freeness using observational equivalence. However, we need to
model the fact that Vy is willing to provide secret information, i.e., the receipt, to the
coercer. We assume that the coercer is in fact the attacker who, as usual in the Dolev-Yao
model, controls the public channels. To model V4’s communication with the coercer, we
consider that V4 executes a voting process which has been modified. We denote by P
the plain process P that is modified as follows: any input of base type and any freshly
generated names of base type are output on channel ch. We do not forward restricted
channel names, as these are used for modelling purposes, such as physically secure channels,
e.g. the voting booth, or the existence of a PKI which securely distributes keys (the keys
themselves are forwarded but not the secret channel name on which the keys are received).
In the remainder, we assume that ch & fn(P)U bn(P) before applying the transformation.
Given an extended process A and a channel name ch, we to define the extended process
A\out(eh) a5 peh. (A lin(ch, ). Intuitively, such a process is as the process A, but hiding
the outputs on the channel ch.

We are now ready to define receipt-freeness. Intuitively, a protocol is receipt-free if,
for all voters V4, the process in which V4 votes according to the intruder’s wishes is
indistinguishable from the one in which she votes something else. As in the case of privacy,
we express this as an observational equivalence to a process in which V), swaps her vote
with Vp, in order to avoid the case in which the intruder can distinguish the situations
merely by counting the votes at the end. Suppose the coercer’s desired vote is ¢. Then we
define receipt-freeness as follows.

Definition 3.3 (Receipt-freeness) A voting protocol is receipt-free if there exists a closed
plain process V' such that

o 1//\out(che,) ) VA{a/U}7
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o S[Va{/u} | VB{®/u}] = SIV' | VB{*/u}],

for all possible votes a and c.

As before, the context S in the second equivalence includes those authorities that are
assumed to be honest. V' is a process in which voter V4 votes a but communicates with the
coercer C' in order to feign cooperation with him. Thus, the second equivalence says that
the coercer cannot tell the difference between a situation in which V) genuinely cooperates
with him in order to cast the vote c and one in which she pretends to cooperate but actually
casts the vote a, provided there is some counter-balancing voter that votes the other way
around. The first equivalence of the definition says that if one ignores the outputs V’
makes on the coercer channel che, then V' looks like a voter process V4 voting a.

The first equivalence of the definition may be considered too strong; informally, one
might consider that the equivalence should be required only in a particular S context rather
than requiring it in any context (with access to all the private channels of the protocol).
This would result in a weaker definition, although one which is more difficult to work with.
In fact, the variant definition would be only slightly weaker; it is hard to construct a natural
example which distinguishes the two possibilities, and in particular it makes no difference
to the case studies of later sections. Therefore, we prefer to stick to Definition 3.3.

According to intuition, if a protocol is receipt-free (for a given set of honest authorities),
then it also respects privacy (for the same set):

Proposition 3.1 If a voting protocol is receipt-free then it also respects privacy.

Coercion-Resistance

Coercion-resistance is a stronger property as we give the coercer the ability to communicate
interactively with the voter and not only receive information. In this model, the coercer
can prepare the messages he wants the voter to send. As for receipt-freeness, we modify
the voter process. In the case of coercion-resistance, we give the coercer the possibility to
provide the messages the voter should send. The coercer can also decide how the voter
branches on if-statements.

We denote by P the plain process P that is modified as follows: any input of base
type and any freshly generated names of base type are output on channel ¢;. Moreover,
when M is a term of base type, any output out(u, M) is replaced by in(cg,x).out(u, z)
where z is a fresh variable and any occurrence of if M = N is replaced by in(co, z). if x =
true.

As a first approximation, we could try to define coercion-resistance in the following
way: a protocol is coercion-resistant if there is a V'’ such that

SWVal’ /o3 | Va{*/u}] = SIV' | VB{*/o}]. (3.1)

On the left, we have the coerced voter V4{’/,}“*2; no matter what she intends to vote
(the “7”), the idea is that the coercer will force her to vote ¢. On the right, the process
V' resists coercion, and manages to vote a. Unfortunately, this characterisation has the
problem that the coercer could oblige Va{’/,}¢° to vote ¢’ # c. In that case, the process
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VB{¢/»} would not counter-balance the outcome to avoid a trivial way of distinguishing
the two sides.

To enable us to reason about the coercer’s choice of vote, we model the coercer’s
behaviour as a context C' that defines the interface c1,co for the voting process. The
context C' coerces a voter to vote c. Thus, we can characterise coercion-resistance as
follows: a protocol is coercion-resistant if there is a V' such that

SICIVa{ /oy 2] | VB{*/o}] ~e SICIV'] | VB{/}], (3:2)

where C is a context ensuring that the coerced voter Va{’/,}**2 votes c. The context
C models the coercer’s behaviour, while the environment models the coercer’s powers to
observe whether the coerced voter behaves as instructed. We additionally require that the
context C' does not directly use the channel names 7 restricted by S. Formally one can
ensure that Va{’/,}¢°2 votes ¢ by requiring that C[Va{’/,}*??] a2 Va{¢/,}". We ac-
tually require a slightly weaker condition, S[C[Va{"/,}"?] | VB{®/,}] ~¢ S[Va{¢/,}* |
VB{%/,}], which results in a stronger property. Backes et al. [BHMO08] propose a variant
of our definitions: instead of forcing the coercer’s vote to ¢, they require the existence of
an eztractor process which extracts the vote of the coercer to enable counter-balancing.
Putting the above ideas together, we get to the following definition:

Definition 3.4 (Coercion-resistance) A wvoting protocol is coercion-resistant if there
exists a closed plain process V' such that for any C = vey.ves (| P) satisfying nNfn(C) =
0 and SICIVa{* o} | VB{*/u}] e SIVa{®/u}" | VB{*/0}], we have

° C[V/]\out(chc,-) ~ VA{a/v};
o SICWVa{*/u}re2] | VB{*/u}] 2 SICIV'] | VB{*/u}]-

Note that Va{’/,}*® does not depend on what we put for “?”.

The condition that S[C[Va{’/u}"?] | VB{%/s}] =~¢ S[Va{¢/s}"¢ | V{?*/»}] means
that the context C' outputs the secrets generated during its computation; this is required
so that the environment can make distinctions on the basis of those secrets, as in receipt-
freeness. The first bullet point expresses that V' is a voting process for A which fakes the
inputs/outputs with C' and succeeds in voting a in spite of the coercer. The second bullet
point says that the coercer cannot distinguish between V' and the really coerced voter,
provided another voter Vp counter-balances.

As in the case of receipt-freeness, the first equivalence of the definition could be made
weaker by requiring it only in a particular S context. But we chose not to adopt this extra
complication, for the same reasons as given in the case of receipt-freeness.

Remark 3.1 The context C' models the coercer’s behaviour; we can see its role in equiv-
alence (3.2) as imposing a restriction on the distinguishing power of the environment in
equivalence (3.1). Since the coercer’s behaviour is modelled by C while its distinguishing
powers are modelled by the environment, it would be useful to write (3.2) as

CISIVa{’/u}ee2] | VB{®/o}] me CISIV! | VB{*/u}]. (3:3)

We have shown that equivalences (3.2) and (3.3) are the same.
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Remark 3.2 Note that our definition of coercion-resistance cannot cover attacks such as
the ballot-as-signature attack (also known as the Italian attack) [DC] where the number of
possible votes is extremely high and therefore a particular vote is unlikely to appear twice
and can hence be identified by a coercer. Such an attack is not in the scope of our definition,
as we suppose in our definition that there exists a second voter that votes as the coercer
requested.

However, our definitions can capture attacks such as vote duplication attacks where
the attacker duplicates your vote (without knowing its value) in order to deduce it from
the result. Smyth and Cortier [SC10] have demonstrated that such an attack exists on the
Helios protocol using our definition of privacy.

According to intuition, if a protocol is coercion-resistant then it respects receipt-freeness
too (as before, we keep constant the set of honest authorities):

Proposition 3.2 If a voting protocol is coercion-resistant then it also respects receipt-
freeness.

Case studies

We have analysed the above discussed privacy-type properties for three protocols: Fujioka
et al. [FO092], Okamoto [Oka96] and Lee et al. [LBD104]. As we only model authorities
that are required to be honest for these protocols to hold we are able to identify which
authorities need to be trusted for these particular properties. When analysing these three
properties the existence of the process V' for receipt-freeness and coercion-resistance turned
out to be easy. In the protocol specification these processes are generally described as the
way of achieving the properties. The equivalence properties could however not be proved
automatically and required hand proofs. We were however able to rely on ProVerif for
some Lemmas on static equivalence. We summarise the results of these three case studies
in Figure 3.1.

Property Fujioka et al. Okamoto Lee et al.
Vote-privacy v v v
trusted authorities none timeliness mbr. administrator
Receipt-freeness X v v
trusted authorities n/a timeliness mbr. admin. & collector
Coercion-resistance X X v
trusted authorities n/a n/a admin. & collector

Figure 3.1: Summary of protocols and properties

An epistemic logic for the applied pi calculus

As already argued, the applied pi calculus is a convenient and flexible formalism for de-
scribing the processes which model the protocol. However, security properties are more
difficult to specify. As we have seen some properties may directly be specified using obser-
vational equivalence, but this is generally not very natural and convenient. A sometimes
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more natural approach to verify protocols for correctness would be to define a suitable
logic interpreted over the terms of the calculus and express the desired security goal in
that logic.

In [22] we define an epistemic logic for the applied pi calculus suitable for expressing
security goals. The logic itself is an LTL like temporal logic with a special predicate Has
that models deducibility of messages by an intruder and a knowledge operator K which
allows us to reason about the intruder’s knowledge, as defined in epistemic logics. In
epistemic reasoning, such as in [FHMVO95|, an agent knows a formula ¢ if ¢ holds on
all runs that are “equivalent” to the current run. This notion of equivalent runs models
imperfect knowledge of the current state: an observer can only identify a set of possible
runs which are compatible with its partial view of the system. In the context of security
protocols imperfect information may for instance stem from the fact that a message is
encrypted with a secret key. In [22] we define the partial view of the adversary to be the
set of all traces that are statically equivalent (naturally lifted to traces) to the actually
observed trace. Epistemic logics have already been used to model security properties, e.g.
in [HOO05]. However, these works rarely specify a modelling language for the protocols,
starting directly from a set of traces equipped with a partitioning of this set modelling
partial views. In our work we provide a concrete modelling language (the applied pi
calculus) and an equivalence relation (static equivalence on traces) which allows us to both
specify the protocol and the properties.

Our logic can be used for a range of security properties: secrecy, authentication as well
as fairness in contract signing protocols. In particular we can specify privacy in voting
protocols, which relies on the epistemics of the intruder. We show that a definition of
vote privacy in terms of process equivalence as defined in the previous section implies vote
privacy in terms of epistemic logic, as defined in [BRS07| (and rephrased in our logic).
When we slightly weaken the equivalence based definition, replacing observational equiv-
alence with trace equivalence, under reasonable assumptions, we show that the converse
implication, i.e. epistemic privacy implies privacy as equivalence, also holds. This result is
important in that it clarifies the relationship between two definitions of privacy employed
in the literature. Furthermore, the result suggests that trace equivalence might be more
appropriate to model vote privacy even though observational equivalence is often more
convenient to manipulate.

Election verifiability

We present a definition of election verifiability which captures three desirable aspects:
individual, universal and eligibility verifiability. We formalise verifiability as a triple of
Boolean tests ®'V, ®YV HEV which are required to satisfy several conditions on all possible
executions of the protocol. ®V is intended to be checked by the individual voter who
instantiates the test with her private information (e.g., her vote and data derived during
the execution of the protocol) and the public information available on the bulletin board.
®YV and ®EY can be checked by any external observer and only rely on public information,
i.e., the contents of the bulletin board.

The consideration of eligibility verifiability is particularly interesting as it provides
an assurance that the election outcome corresponds to votes legitimately cast and hence
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provides a mechanism to detect ballot stuffing. We note that this property has been largely
neglected in previous work and an earlier work of ours [51] only provided limited scope for.

A further interesting aspect of our work is the clear identification of which parts of
the voting system need to be trusted to achieve verifiability. All untrusted parts of the
system will be controlled by the adversarial environment and do not need to be modelled.
Ideally, such a process would only model the interaction between a woter and the voting
terminal; that is, the messages input by the voter. In particular, the voter should not
need to trust the election hardware or software. However, achieving absolute verifiability
in this context is difficult and one often needs to trust some parts of the voting software
or some administrators. Such trust assumptions are motivated by the fact that parts of
a protocol can be audited, or can be executed in a distributed manner amongst several
different election officials. For instance, in Helios 2.0 [Adi08], the ballot construction can
be audited using a cast-or-audit mechanism. Whether trust assumptions are reasonable
depends on the context of the given election, but our work makes them explicit.

Of course the tests ®'V, ®YY and ®EY need to be verified in a trusted environment
(if a test is checked by malicious software that always evaluates the test to hold, it is
useless). However, the verification of these tests, unlike the election, can be repeated
on different machines, using different software, provided by different stakeholders of the
election. Another possibility to avoid this issue would be to have tests which are human-
verifiable as discussed in [Adi06, Chapter 5.

This section is based on the results presented in [20].

Formalising voting protocols for verifiability properties

To model verifiability properties we add a record construct to the applied pi calculus.
We assume an infinite set of distinguished record variables r,rq1,.... The syntax of plain
processes is extended by the construct rec(r, M).P. We write fn(A) and fn(M) for the
set, of record variables in a process and a term. Intuitively, the record message construct
rec(r, M).P introduces the possibility to enter special entries in frames. We suppose that
the sort system ensures that r is a variable of record sort, which may only be used as a first
argument of the rec construct or in the domain of the frame. Moreover, we make the global
assumption that a record variable has a unique occurrence in each process. Intuitively, this
construct will be used to allow a voter to privately record some information which she may
later use to verify the election.

As discussed in the introduction we want to explicitly specify the parts of the election
protocol which need to be trusted. Formally the trusted parts of the voting protocol can
be captured using a voting process specification.

Definition 3.5 (Voting process specification) A voting process specification is a tu-
ple (V, A) where V is a plain process without replication and A is a closed evaluation context
such that fo(V) = {v} and fn(V) = 0.

For the purposes of individual verifiability the voter may rely on some data derived
during the protocol execution. We must therefore keep track of all such values, which is
achieved using the record construct. Given a finite process P without replication we denote
by R(P), the process which records any freshly generated name and any input, i.e., we
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replace any occurrence of vn with vn.rec(r,n) and in(u, z) with in(u, z).rec(r, ) for some
fresh record variable r for each replacement.

Definition 3.6 Given a wvoting process specification (V,A), integer n € N, and names
S1,.--,5n, we build the augmented voting process VP (s1,...,s,) = AV | --- | V]
where V" = R(V){" /s H{" /s | € fn(R(V))}.

Given a sequence of record variables 7, we denote by 7; the sequence of variables
obtained by indexing each variable in 7 with i. The process VP, (s1,...,s,) models the
voting protocol for n voters casting votes s1,...,s,, who privately record the data that
may be needed for verification using record variables 7.

Election verifiability

We formalise election verifiability using three tests ®'V, ®YV, ®EV. Formally, a test is built
from conjunctions and disjunctions of atomic tests of the form (M =g N) where M, N are
terms. Tests may contain variables and will need to hold on frames arising from arbitrary
protocol executions. We now recall the purpose of each test and assume some naming
conventions about variables.

Individual verifiability: The test ®'V allows a voter to identify her ballot in the bulletin
board. The test has:

a variable v referring to a voter’s vote.

a variable w referring to a voter’s public credential.

e some variables x,Z, 2, ... expected to refer to global public values pertaining to the
election, e.g., public keys belonging to election administrators.

e a variable y expected to refer to the voter’s ballot on the bulletin board.

e some record variables rq,...,ry referring to the voter’s private data.

Universal verifiability: The test ®YV allows an observer to check that the election outcome
corresponds to the ballots in the bulletin board. The test has:

e a tuple of variables © = (v1,...,v,) referring to the declared outcome.

e some variables x, %, Z,... as above.

e a tuple § = (y1,...,yn) expected to refer to all the voters’ ballots on the bulletin
board.

e some variables z, Z, 2, ... expected to refer to outputs generated during the protocol

used for the purposes of universal and eligibility verification.

Eligibility verifiability: The test ®FY allows an observer to check that each ballot in the
bulletin board was cast by a unique registered voter. The test has:

e a tuple w = (wq,...,w,) referring to public credentials of eligible voters.

e a tuple y, variables x,Z,,... and variables 2,2, 2,... as above.
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Individual and universal verifiability.

The tests suitable for the purposes of election verifiability have to satisfy certain conditions:
if the tests succeed, then the data output by the election is indeed valid (soundness); and
there is a behaviour of the election authority which produces election data satisfying the
tests (ejfectweness) Formally these requirements are captured by the definition below.
We write T ~ T’ to denote that the tuples T and T’ are a permutation of each others
modulo the equational theory, that is, we have T = Ty,... Ty, T! = T],...T) and there
exists a permutation y on {1,...,n} such that for all 1 <i <n we have T; = T’X(i).

Definition 3.7 (Individual and universal verifiability) A wvoting specification (V, A)
satisfies individual and universal verifiability if for all n € N there ewzist tests ®'V, ®YV
such that fn(®V) = fn(®YVY) = fm(®YV) = 0, m(®V) C Mm(R(V)), and for all names
§=(51,...,5n) the conditions below hold. Let 7 = fn(®"V) and & = oV {% /, i /:}.

Soundness. For all contexts C and processes B such that C[VP} (s1,...,5,)] = B and
¢(B) = vn.o, we have:
Vi,j. oo ndNo=i=j (3.4)
W A BV /5lo = G0 ~ U0 (3.5)
/\ N/ tondWo = >0 (3.6)
1<i<n
Effectiveness. There exists a context C and a process B, such that C[VP; (s1,...,5,)]
= B, ¢(B) = vn.c and
N oV{¥/tonaWe (3.7)
1<i<n

An individual voter should verify that the test ®V holds when instantiated with her
vote s;, the information 7; recorded during the execution of the protocol and some bulletin
board entry. Indeed, Condition (3.4) ensures that the test will hold for at most one bulletin
board entry. (Note that @LV and <I>'jV are evaluated with the same ballot yo provided by
C[_].) The fact that her ballot is counted will be ensured by ®YV which should also be
tested by the voter. An observer will instantiate the test ®YY with the bulletin board
entries § and the declared outcome . Condition (3.5) ensures the observer that ®YV only
holds for a single outcome. Condition (3.6) ensures that if a bulletin board contains the
ballots of voters who voted si,...,s, then ®YV only holds if the declared outcome is (a
permutation of) these votes. Finally, Condition (3.7) ensures that there exists an execution
where the tests hold. In particular this allows us to verify whether the protocol can satisfy
the tests when executed as expected. This also avoids tests which are always false and
would make Conditions (3.4)—(3.6) vacuously hold.
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Eligibility verifiability.

To fully capture election verifiability, the tests ®"V and ®YY must be supplemented by a
test ®EY that checks eligibility of the voters whose votes have been counted. We suppose
that the public credentials of eligible voters appear on the bulletin board. ®EY allows an
observer to check that only these individuals (that is, those in possession of credentials)
cast votes, and at most one vote each.

Definition 3.8 (Election verifiability) A wvoting specification (V, A) satisfies election
verifiability if for all n € N there exist tests ®V, ®YV, ®EY such that fn(®V) = fn(dYV) =
fn(®EY) = fn(@YV) = m(®EY) = 0, (@) C m(R(V)), and for all names § = (s1,...,5)

we have:
1. The tests ®V and ®YV satisfy each of the conditions of Definition 3.7;
2. The additional conditions 3.8, 3.9, 3.10 and 3.11 below hold.

Lot 7= (@), & = OV, 5 Ji3 /), X = fo(@EY)\domVPy (si...., 5,)

Soundness. For all contexts C and processes B such that C[VP{ (s1,...,s,)] = B and
¢(B) = vn.o, we have:

Vo A BEV(Y /), | 2 € X\J}o = o ~ o (3.8)
N Vo nd®{"/i}e = o ~io (3.9)

1<i<n
Vo AN BEV(Y /), | 2 € X\b}o = jo ~ o (3.10)
Effectiveness. There exists a contert C and a process B such that C[VP{ (s1,...,s,)]

— B, ¢(B) =vn.oc and

/\ dNo A dWo A DV (3.11)
1<i<n

The test ®EV is instantiated by an observer with the bulletin board. Condition (3.8) ensures
that, given a set of ballots jo, provided by the environment, ®EVY succeeds only for one
list of voter public credentials. Condition (3.9) ensures that if a bulletin board contains
the ballots of voters with public credentials wo then ®EY only holds on a permutation of
these credentials. Condition (3.10) ensures that, given a set of credentials w, only one set
of bulletin board entries §j are accepted by ®EV (observe that for such a strong requirement
to hold we expect the voting specification’s frame to contain a public key, to root trust).
Finally, the effectiveness condition is similar to Condition (3.7) of Definition 3.7.
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Case studies

We have analysed verifiability in three protocols: the Fujioka et al. [FOO92|, Helios
2.0 [AAMPQO09] and JCJ [JCJO05] recently implemented as Civitas [CCMO08|. In partic-
ular for each of these protocols we identify the exact parts of the system and software that
need to be trusted. As an illustration we consider the protocol by Fujioka et al. [FOO92|.

Definition 3.9 The voting process specification (Vioo, Afoo) s defined as

Vioo = vrnd.outv.outrnd  and  Agoo| | =

Intuitively, this specification says that the voter only needs to enter into a terminal a fresh
random value rmd and a vote v. The voter does not need to trust any other parts of
the system or the administrators. Whether, a voter can generate a fresh random value
(which is expected to be used as the key for a commitment), enter it in a terminal and
remember it for verifiability or whether some software is trustworthy to achieve this task is
questionable. Our analysis makes this hypothesis explicit. We have shown that the above
voting specification indeed respects individual and universal verifiability.

Theorem 3.1 (Viyo, Afoo) satisfies individual and universal verifiability.

However, the protocol by Fujioka et al. does not satisfy eligibility verifiability (even if all
the parts of the protocol are trusted).

Similarly, Helios 2.0 does only satisfy individual and universal verifiability. We assume
the following parts to be trusted.

e The browser script that constructs the ballot. Although the voter cannot verify it,
the trust in this script is motivated by the fact that she is able to audit it. She does
that by creating as many ballots as she likes and checking all but one of them, and
then casting the one she didn’t verify.

e The trustees. Although the trustees’ behaviour cannot be verified, voters and ob-
servers may want to trust them because trust is distributed among them.

JCJ/Civitas does achieve full election verifiability considering the following trust as-
sumptions.

e The voter is able to construct her ballot; that is, she is able to generate nonces m, m’,
construct a pair of ciphertexts and generate a zero-knowledge proof.

e The registrar constructs distinct credentials d for each voter and constructs the voter’s
public credential correctly. (The latter assumption can be dropped if the registrar
provides a proof that the public credential is correctly formed [JCJ05].) The registrar
also keeps the private part of the signing key secret.

The analyses were carried out by hand, but the proofs were surprisingly straightforward.
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Conclusion and perspectives

In this chapter we summarised our work on modelling and analysis of electronic voting
properties. We have provided first symbolic definitions for privacy type properties such
as receipt-freeness and coercion-resistance as well as verifiability properties. In particular
we identified eligibility verifiability which is a crucial aspect as it allows to verify that no
“ballot stuffing” occurred and which has generally been neglected. It would be interesting to
analyse more protocols and compare them on the basis of the parts that need to be trusted
in order to achieve verifiability. We would also like to investigate whether the notion of
receipt-freeness/coercion-resistance and verifiability could be useful in other applications
where anonymity would need to be enforced or results to be verified. For example, Dong
et al. [DJP10] have used our definitions to study receipt-freeness in an auction protocol.

We are also planning to extend our epistemic logic. In particular we plan to introduce
the notion of an agent which would allow us to reason about the knowledge of protocol
participants rather than only the attacker. We expect to be able to express Kiisters et
al.’s epistemic definition of coercion-resistance [KT09] in this logic and maybe compare it
to our definition. Currently most of our proofs were only possible by hand. Therefore,
important future work is to design algorithms and procedures for automatically verifying
equivalence properties. This will be the topic of the following chapter. Related to this, we
would also like to investigate the decidability of (fragments of) our epistemic logic.



CHAPTER 4

Security APls

Specialized hardware with tamper resistant memory has been designed to allow the
execution of untrusted code without compromising the security of the keys. This kind
of hardware ranges from expensive Hardware Security Modules (HSMs) used in banking
networks to rather cheap USB tokens implementing PKCS#11 or Trusted Platform Mod-
ules (TPMs), included in most modern laptops. The main role of these devices is to offer
secure key management (generation, import and export of keys) and usage of these keys
for encryption, decryption or signing. The functionalities of these devices are available
through an Application Programming Interface (APT).

The aim of API level attacks is to break a security property by a sequence of calls
to this API, in a way not foreseen by the designers. An API can be seen as a collection
of short security protocols and analysed as such. The first attacks of this style we are
aware of go back to Longley and Rigby [LR92] and Bond and Anderson discovered many
more [Bon01, BAO1], in particular on the IBM 4758 CCA and the Visa Security Module,
two HSMs for securing bank transactions. Many of these attacks exploit the algebraic
properties of exclusive or which is extensively used in these devices. Since then, efforts
have been made to formally analyse APIs using model checkers, theorem provers, and
customised decision procedures |[CDS07, CKS07, CM06, Ste05]. However, none of these
models account for mutable global state, which was identified by Herzog [Her06] as a
major barrier to the application of security protocol analysis tools to verify APIs. In
security protocol analysis, it is standard to assume that independent runs or sessions of
the protocol share no mutable state. They might share long term keys, and they might
have local mutable state (they might create session keys, for example), but independent
sessions are assumed not to affect each other. Many security APIs however do not have
this characteristic. Indeed, the fact that calls to some functions, for example key import
commands, do indeed change the internal state of the device, is vital for the way they
function. In this chapter we report on our work on analyzing PKCS#11 [10, 28] and the
TPM [19] for whose analyses we needed to take state into account.

37
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Analysis of PKCS#11

RSA Laboratories Public Key Standards (PKCS) #11 defines the ’Cryptoki” API, designed
to be an interface between applications and cryptographic devices such as smartcards,
Hardware Security Modules (HSMs), and USB key tokens. It has been widely adopted
in industry, promoting interoperability of devices. However, the API as defined in the
standard gives rise to a number of serious security vulnerabilities [Clu03]. In practice,
vendors try to protect against these by restricting the functionality of the interface, or
by adding extra features, the details of which are often hard to determine. This has lead
to an unsatisfactory situation in which widely deployed security solutions are using an
interface which is known to be insecure if implemented naively, and for which there are
no well established fixes. The situation is complicated by the variety of scenarios in which
PKCS#11 is used: an effective security patch for one scenario may disable functionality
that is vital for another.

In this section, we describe our work [28, 10] on analyzing PKCS#11 which aims to
lay the foundations for an improvement in this situation by defining a formal model for
the operation of PKCS#11 key management commands, proving the decidability of certain
security properties in this model, and describing an automated framework for proving these
properties for different configurations of the API.

Formal model

To model PKCS+#11 and attacker capabilities we define a rule-based description language.
It is close to a guarded command language a la Dijkstra (see [Dij75]) and to the multi-set
rewriting framework for protocol analysis (e.g., [Mit02]). One particular point is that it
makes a clean separation between the intruder knowledge part, i.e., the monotonic part,
and the current system state which is formalized by the attributes that may be set or
unset. The semantics will be defined in a classical way as a transition system. We will
only give an informal description of the semantics here which will be sufficient to present
our results.

Modelling messages and attributes. As usual we suppose that messages are modelled by
a term algebra. We will denote by PT (F, N, X) the set of plain terms modelling messages.
We also consider a finite set A of unary function symbols, disjoint from F which we call
attributes. The set of atiribute terms is defined as

AT (A, F, N, X) = {att(t) | att € A,t € PT(F,N,X)}.

We define the set of terms as T (A, F,N,X) = AT (A, F, N, X)UPT(F,N,X). Attribute
terms will be interpreted as propositions. A literal is of the form a or —a where a €

AT (A, F,N, X).

Modelling language. The description of a system is given as a finite set of rules of the
form

T, L 2 7
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Wrap (sym/sym) : h(x1,y1), h(x2,y2); wrap(xy), extract(xa) — senc(y,y1)
Wrap (sym/asym) :  h(xy, priv(z)), h(xa,y2); wrap(x1),extract(xa) — aenc(ya, pub(z))
Wrap (asym/sym) :  h(xy,y1), h(xz, priv(z)); wrap(xy),extract(xa) — senc(priv(z),y1)

Unwrap (sym/sym) :
h(x1,y2),senc(y1,y2); unwrap(x;) —% h(ny,y1); extract(ny), L

Unwrap (sym/asym) :

h(x1, priv(z)), aenc(y1, pub(z)); unwrap(x;) ——" h(n1,y1); extract(ny), L
Unwrap (asym/sym) :

h(x1,y2),senc(priv(z),y2); unwrap(xy) ——"% h(ny,priv(z)); extract(ny), L

KeyGenerate : new ik h(ny, ki ); mextract(ny), L
KeyPairGenerate : 2 h(ng,s), pub(s); —extract(ny), L
SEncrypt : h(x1,y1),y2; encrypt(x1) —  senc(yz,y1)
SDecrypt :  h(x1,y1),senc(y2,y1); decrypt(x1) — 2
AEncrypt : h(x1, priv(z)), y1; encrypt(xq) — aenc(yi, pub(z))
ADecrypt :  h(xy, priv(z)), aenc(yz, pub(z)); decrypt(x1) — vy
Set_ Wrap : h(x1,y1); —wrap(x;) — wrap(xy)
Set Encrypt : h(x1,y1); —encrypt(xy) — encrypt(x;)
UnSet_ Wrap : h(x1,y1); wrap(xy) — —wrap(x1)

UnSet Encrypt:  h(xy,y1); encrypt(xy) — —encrypt(xy)

where L = —wrap(ny), ~unwrap(ny), —encrypt(ny), ~decrypt(ny), —sensitive(ny). The ellipsis in the
set and unset rules indicates that similar rules exist for some other attributes.

Figure 4.1: PKCS4#£11 key management subset.

where T and T” are sets of plain terms in P7 (F,N,X), L and L’ are sets of literals and 7
is a set of names in A/. The intuitive meaning of such a rule is the following. The rule
can be fired if all terms in T are in the intruder knowledge and if all the literals in L are
evaluated to true in the current state. The effect of the rule is that terms in 7" are added
to the intruder knowledge and the valuation of the attributes is updated to satisfy L’. The
newn means that all the names in 7 need to be replaced by fresh names in 77 and L'
This allows us to model nonce or key generation: if the rule is executed several times, the
effects are different as different names will be used each time.

We always suppose that L’ is satisfiable, i.e., it does not contain both a and —a.
Moreover, we require that names(T U L) = () and names(T" U L") C n. We also suppose
that any variable appearing in T" also appears in T, i.e., vars(T") C vars(T), and any
variable appearing in L’ also appears in L, i.e., vars(L") C vars(L). These conditions were
easily verified in all of our experiments with PKCS#11.

Example 4.1 As an ezample consider the rules given in Figure 4.1. They model o part
of PKCS#11. We detail the first rule which allows wrapping of a symmetric key with a
symmetric key. Let us first explain the modelling of handles: h is a symbol of arity 2 which
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allows us to model handles to keys. We will use it with a nonce (formally a name) as
the first argument and o key as the second argument. Adding a nonce to the arguments
of h allows us to model several distinct handles to the same key. For instance having two
handles h(n1, k1) and h(na, ki) models the fact that two distinct memory locations ny and
ny hold the same key ky.

We can now explain the first rule. Intuitively the rule can be read as follows: if the
attacker knows the handle h(x1,y1), a reference to a symmetric key y1, and a second han-
dle h(xa,y2), a reference to a symmetric key ya, and if the attribute wrap is set for the
handle h(x1,y1) (note that the handle is uniquely identified by the nonce x1) and the at-
tribute extract is set for the handle h(xa,y2) then the attacker may learn the wrapping
senc(y2,Y1), i.e., the encryption of yo with y;.

Given a set of such rules R we define a transition system (Q, go, ~>) as follows:

e () is the set of states: each state is a pair (S, V), such that S C PT(F,N) and V is
a partial valuation of AT (A, F,N). (V is extended from propositions to literals in
the expected way and sets of literals as V(L) = A,c; V(£).)

e qo = (So, Vo) is the initial state. Sy is the initial attacker knowledge and Vj defines
the initial valuation of some attributes.

e ~» C @ x @ is the transition relation induced by the R (as explained above).

Queries. Security properties are expressed by the means of queries.

Definition 4.1 A query is a pair (T, L) where T is a set of terms and L a set of literals
(both are not necessarily ground).

Intuitively, a query (7, L) is satisfied if there exists a substitution 6 such that we can reach
a state where the adversary knows all terms in 70 and all literals in L6 are evaluated to
true.

Definition 4.2 A transition system (Q,qo,~) satisfies a query (T, L) iff there exists a
substitution 6 and a state (S,V) € Q such that go~*(S,V), T C S, and V(L) = T.

Decidability

Well-moded derivations. In order to obtain a decidability result we will show that when
checking the satisfiability of a query, it is correct to restrict the search space by considering
only well-moded terms. The notion of mode is inspired from [CRO06]|. It is similar to the
idea of having well-typed rules, but we prefer to call them well-moded to emphasize that
we do not have a typing assumption. Informally, we do not assume that a device is able
discriminate between bitstrings that were generated, e.g., keys and random data. We
simply show that if there exists an attack, then there exists an attack where bitstrings are
used for the purpose they were originally created for.
Let us illustrate the notion of modes through the following example.
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Example 4.2 We consider the following set of modes:
Mode = {Cipher, Key, Seed, Nonce, Handle, Attribute}.
The following rules define the modes of the associated function symbol:

h : Nonce x Key — Handle
senc : Key x Key — Cipher
aenc : Key x Key — Cipher
pub : Seed — Key
priv. : Seed — Key
att : Nonce — Attribute for all att € A

X1,X2,n1,Nn2 : Nonce
Y1,Y2, kl, k2 . Key
z,s : Seed

Intuitively, these modes can be interpreted as sorts. The rules described in Figure 4.1 are
well-moded w.r.t. the modes described above. This is also the case of the following rules
which represent the deduction capabilities of the attacker:

y1, Y2 — senc(yi,y2)
senc(y1,y2), Y2 — Y1
y1, Y2 — aenc(y1,y2)
aenc(yi, pub(z)), priv(z) — v1
aenc(y1, priv(z)), pub(z) — 1
z — pub(z)

The term senc(senc(ki, ko), k1) s not well-moded because of its subterm senc(ki, kz).

We say that a derivation is well-moded if each of its states is well-moded. We have
shown that it is correct to only consider well-moded derivations.

Theorem 4.1 Let R be a set of well-moded rules. Let qy = (So, Vo) be a well-moded state
such that for each mode m, there exists a well-moded term ty, € Sy of mode m. Let Q) be a
well-moded query that is satisfiable. Then there exists a well-moded derivation witnessing
this fact.

We may note that our proof of Theorem 4.1 is constructive: given a derivation we can
always transform it into a well-moded one by replacing ill-moded subterms by t,, where m
is the expected mode of the replaced subterm.

Note that we do not assume that an implementation enforces well-modedness. We allow
an attacker to yield derivations that are not well-moded. Our result however states that
whenever there exists an attack that uses a derivation which is not well-moded there exists
another attack that is. Our result is arguably even more useful than an implementation that
would enforce typing: it seems unreasonable that an implementation could detect whether
a block has been encrypted once or multiple times, while our result avoids consideration
of multiple encryptions
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Unfortunately, Theorem 4.1 by itself is not very informative: it is always possible to
have a single mode Msg which implies that all derivations are well-moded. However, the
modes used in our modelling of PKCS# 11 imply that all well-moded terms have bounded
message length. It is easy to see that well-moded terms have bounded message length
whenever the graph on modes is acyclic. Note that for instance a rule which contains
nested encryption does not yield a bound on the message size.

However, bounded message length is not sufficient for decidability. Indeed, undecid-
ability proofs [DLM04, TEBO05| for security protocols with bounded message length and

unbounded number of nonces are easily adapted to our setting. We only need to consider

rules of the form T "™ 77 (no literal) to realize their encodings of the Post Correspon-

dence Problem. Therefore we bound the number of atomic data of each mode, and obtain
the following corollary of Theorem 4.1:

Corollary 4.1 Let R be a set of well-moded rules such that well-modedness implies a bound
on the message length. Let qo = (So, Vo) be a well-moded state such that for each mode m,
there exists a well-moded term tn, € So of mode m. The problem of deciding whether the
query Q is satisfiable is decidable when the set of names N is finite.

Analysis of PKCS#11

The main application of the previous result is the fragment of PKCS#11 described in
Figure 4.1. Thanks to Corollary 4.1, we are able to bound the search space and to realize
some experiments with a well-known model-checker, NuSMV, [CCGT02].

PKCS#11 is a standard designed to promote interoperability, not a tightly defined
protocol with a particular goal. As such, the aim of our experiments was to analyse a
number of different configurations in order to validate our approach. The configuration
is defined by a policy which dictates how attributes may be set, in particular indicating
conflicting attributes for a key. We take as our security property the secrecy of sensitive
keys, stated in the manual as a property of the interface, [RSA04, p. 31]. Roughly speaking,
our methodology was to start with a configuration involving only symmetric keys, and to
try to restrict the API until a secure configuration was found. We then added asymmetric
keypairs, and repeated the process. A secure configuration proved only to be possible by
adding the ‘trusted keys’ mechanism introduced in PKCS#11 v2.20. We have also analyzed
proprietary extensions to the standard used by two commercial providers (nCipher and
Eracom) of cryptographic hardware.

Our experiments give an idea of how difficult the secure configuration of a PKCS#11
based API is. Although none of the attacks are particularly subtle or complex, there
are so many variations that without some formal work, it is very hard to be sure that a
certain configuration is secure. We have seen that no matter how many pairs of conflicting
attributes are identified, the fact that the attacker can re-import the same key several times
means he can always circumvent the restrictions. To prevent this, we investigated three
solutions: the trusted keys mechanism, which is part of the standard, and the proprietary
measures of nCipher and Eracom.

All experiments are available at http://www.lsv.ens-cachan.fr/“steel/pkcsil.

As a follow-up to this work, Steel et al. [BCFS10] developed a more mature version
of this tool, called Tookan (using SAT-MC as the underlying tool with many optimiza-
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tions and automating configuration extraction of tokens). Their tool was able to analyze
commercially available PKCS#11 security tokens. In particular Tookan automates a re-
verse engineering process to extract the configuration of a token in order to analyze it.
In [BCFS10] 17 devices were studied: 9 of them were vulnerable to attacks while the 8
other had severely restricted functionality (they did not allow to import/export sensitive
keys).

Analysis of the TPM

An overview of the TPM

The TPM stores cryptographic keys and other sensitive data in its shielded memory, and
provides ways for platform software to use those keys to achieve security goals. To store
data using a TPM, one creates TPM keys and uses them to encrypt the data. TPM keys
are arranged in a tree structure, with the storage root key (SRK) at its root. To each
TPM key is associated a 160-bit string called authdata, which is analogous to a password
that authorises use of the key. A user can use a key loaded in the TPM through the
interface provided by the device. This interface is actually a collection of commands that
(for example) allow one to load a new key inside the device, or to certify a key by another
one. All the commands have as an argument an authorisation HMAC that requires the user
to provide a proof of knowledge of the relevant authdata. Fach command has to be called
inside an authorisation session which may regroup several commands. The TPM offers two
kinds of authorisation sessions: Object Independent Authorisation Protocol (OIAP), which
creates a session that can manipulate any object, but works only for certain commands,
as well as Object Specific Authorisation Protocol (OSAP), which creates a session that
manipulates a specific object specified when the session is set up. We will not go into
the details of these session mechanisms: the main idea is that the sessions use a system
of rolling nonces to ensure the freshness and the link between these messages. For each
message a new nonce is created. Nonces from the user process are called odd nonces, and
nonces from the TPM are called even nonces. Fach message includes an hmac on the most
recent odd and even nonce.

Commands. The TPM provides a collection of commands that allow one to create new
keys and to manipulate them. These commands are described in [TCGO07|. To store data
using a TPM, one creates a TPM key and uses it to encrypt the data. TPM keys are
arranged in a tree structure. The Storage Root Key (SRK) is created by a command called
TPM _TakeOwnership. At any time afterwards, a user process can create a child key of
an existing key. Once a key has been created, it may be loaded, and used for operations
requiring a key. We have concentrated on the following four commands:

e TPM_CreateWrapKey generates a new key and wraps (i.e., encrypts) it under a
parent key, which is given as an argument. It returns the wrapped key.

e TPM_LoadKey2 takes as argument a wrap (previously created by the command
TPM _CreateWrapKey), and returns a handle, that is, a pointer to the key stored in
the TPM memory.
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e TPM _CertifyKey requires two key handle arguments and returns a key certificate,
i.e. it signs the public part of one key with the private part of the other key.

e TPM_UnBind allows decryption with the secret key of a stored handle (the encryption
is supposed to be performed in software without the help of the TPM).

As an illustration we will detail the TPM _CertifyKey command a bit more. The com-
mand requires two key handle arguments, representing the certifying key and the key to
be certified, and two corresponding authorisation HMACs. It returns the certificate.

Assume that two OIAP sessions are already established with their current even rolling
nonce nej and neg respectively, and that two keys handle(auth;, sk;) and handle(authg, sk2)
are already loaded inside the TPM. The TPM CertifyKey command can be informally
described as follows:

n,noi, nos, new Neq,new Nes -
hmac(auth;, (cfk,n,ney,noy)) Ney, Neo, certif
hmac(authg, (cfk, n, nes, nog)) hmac(auth;, (cfk,n, Ney, no, certif))
handle(auth;, sk ), handle(authg, sk2) hmac(authg, (cfk, n, Neg, nos, certif))

where certif = cert(sk;, pk(skz)). The intuitive meaning of such a rule is: if an agent
(possibly the attacker) has the data items on the left, then, by means of the command, he
can obtain the data items on the right. The new keyword indicates that data, e.g. nonces
or keys, is freshly generated.

The user requests to certify the key pk(skz) with the key sk;. For this, he generates a
nonce n and two odd rolling nonces no; and nos that he gives to the TPM together with the
two authorisation HMACs. The TPM returns the certificate certif. Two authentication
HMACs are also constructed by the TPM to accompany the response. The TPM also
generates two new even rolling nonces to continue the session.

Modelling the TPM

In this section, we describe some of the modelling choices. Some of them are related
to the tool ProVerif that we used to perform our analysis. We chose ProVerif after first
experimenting with the AVISPA toolsuite [ABB105], which provides support for mutable
global state. However, of the AVISPA backends that support state, OFMC and CL-AtSe
require concrete bounds on the number of command invocations and fresh nonces to be
given. It is possible to avoid this restriction using SATMC [FS09], but SATMC performed
poorly in our experiments due to the relatively large message length, a known weakness of
SATMC. We therefore opted for ProVerif using abstractions to model state, as we explain
below. We will explain how the TPM commands as well as its security properties can be
formalized in our framework.

Modelling state. One of the difficulties in reasoning about security APIs such as that of
the TPM is non-monotonic state. If the TPM is in a certain state s, and then a command
is successfully executed, then typically the TPM ends up in a state s’ # s. Commands that
require it to be in the previous state s will no longer work. Some of the over-approximations
made by tools such as ProVerif do not work well with non-monotonic state. For example,
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although private channels could be used to represent the state changes, the abstraction of
private channels that ProVerif makes prevents it from being able to verify correctness of
the resulting specification.

We address these restrictions by introducing the assumption that only one command
is executed in each session. This assumption appears to be quite reasonable. Indeed,
the TPM imposes the assumption itself whenever a command introduces new authdata.
Moreover, tools like TPM/J [Sar| that provide software-level APIs also implement this
assumption. Again to avoid non-monotonicity, we do not allow keys to be deleted from
the memory of the TPM; instead, we allow an unbounded number of keys to be loaded.

An important aspect of the TPM is its key table that allows one to store cryptographic
keys and other sensitive data in its shielded memory. Our aim is to allow the key ta-
ble to contain dishonest keys, i.e. keys for which the attacker knows the authdata, as
well as honest keys. Some of these keys may also share the same authdata. Indeed, it
would be incorrect to suppose that all keys have distinct authdata, as the authdata may
be derived from user chosen passwords. Our first idea was to use a binary function sym-
bol handle(auth, sk) to model a handle to the secret key sk with authdata auth. We use
private functions, i.e. functions which may not be applied by the attacker, to allow the
TPM process to extract the authdata and the secret key from a handle. This models a
lookup in the key table where each handle can indeed be associated to its authdata and
private key. Unfortunately, with this encoding ProVerif does not succeed in proving some
expected properties. The tool outputs a false attack based on the hypothesis that the
attacker knows two handles handle(authi, sk) and handle(auths, sk) which are built over
two distinct authdata but the same secret key (which is impossible). We therefore use a
slightly more involved encoding where the handle depends on the authdata and a seed;
the secret key is now obtained by applying a binary private function symbol (denoted hsk
hereafter) to both the authdata and the seed. Hence, handle(authi, s) and handle(auths, )
will now point to two different private keys, namely hsk(authy, s) and hsk(authso, s). This
modelling avoids the above mentioned false attacks.

Modelling commands. In our modelling we have two processes for each command: a user
process and a TPM process. The user process (e.g. User CertifyKey) models an honest
user who makes a call to the TPM while the TPM process (e.g. TPM _ CertifyKey) models
the TPM itself. The user process first takes parameters, such as the key handles used for
the given command, and can be invoked by the adversary. This allows the adversary to
schedule honest user actions in an arbitrary way without knowing himself the authdata
corresponding to the keys used in these commands.

Our model assumes that the attacker can intercept, inject and modify commands sent
by applications to the TPM, and the responses sent by the TPM. While this might not be
the case in all situations, it seems to be what the TPM designers had in mind; otherwise,
neither the authentication HMACs keyed on existing authdata, nor the encryption of new
authdata would be necessary.

Modelling security properties of the TPM The TPM specification does not detail ex-
plicitly which security properties are intended to be guaranteed, although it provides some
hints. The specification [TCGO7, Part I, p.60] states that: “The design criterion of the
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protocols is to allow for ownership authentication, command and parameter authentica-
tion and prevent replay and man in the middle attacks." We will formalise these security
properties as correspondence properties:

1. If the TPM has executed a certain command, then a user in possession of the relevant
authdata has previously requested the command.

2. If a user considers that the TPM has executed a certain command, then either the
TPM really has executed the command, or an attacker is in possession of the relevant
authdata.

The first property expresses authentication of user commands, and is achieved by the
authorisation HMACs that accompany the commands. The second one expresses authen-
tication of the TPM, and is achieved by the HMACs provided by the TPM with its answer.
We argue that the TPM certainly aims at achieving these properties, as otherwise there
would be no need for the HMAC mechanism.

Analysing the TPM with ProVerif

All the files for our experiments described below are available on line at:
http://www.lsv.ens-cachan.fr/~delaune/TPM/

Our methodology was to first study some core key management commands in iso-
lation to analyse the weakness of each command. This leads us to propose some fixes
for these commands. Then, we carried out an experiment where we consider the com-
mands TPM _ CertifyKey, TPM _CreateWrapKey, TPM LoadKey2, and TPM_UnBind to-
gether. We consider the fixed version of each of these commands and show that the
security properties are satisfied for a scenario that allows:

e an attacker to load his own keys inside the TPM, and
e an honest user to use the same authdata for different keys.

In a first serie of experiments, we model the command TPM _CertifyKey in isola-
tion. Then, we model only the command TPM _CreateWrapKey. Lastly, we consider
a model where the commands TPM _CertifyKey, TPM _CreateWrapKey, TPM LoadKey2,
and TPM__UnBind are taken into account. In all experiments, the security properties under
test are the correspondence properties explained above.

Experiments with TPM _CertifyKey First, we consider a configuration with two keys
loaded inside the TPM. The attacker is assumed to know the two handles handle(authy, sk1)
and handle(authg, sks). From the handle handle(authy, sk1), the attacker can obtain the
corresponding public key pk(sk1). However, he can obtain neither the private key sk;, nor
the authdata auth; required to manipulate the key through the device. For the moment,
we assume that the attacker does not have his own key loaded onto the device.

ProVerif discovers an attack, described (in a slightly simplified form) in Figure 4.2, that
comes from the fact that the command involved two keys. The attacker can easily swap
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the role of these two keys: he swaps the two HMACSs, the two key handles, and the rolling
nonces provided in input of the command. Hence, the TPM will output the certificate
cert(ska, pk(sk1)) whereas the user asked for obtaining the certificate cert(ski, pk(sks2)).

By performing also the swap on the answer provided by the TPM, the attacker can
provide two valid HMACs to the user who will accept the wrong certificate. Hence, the
second correspondence property is not satisfied. Note that if the user chooses to verify the
certificate he received with the checkcert algorithm, then this attack is not valid anymore
and ProVerif is able to verify that this second correspondence property holds.

Initial knowledge of Charlie: handle(authi, sk1), handle(auths, sk2).
Trace: Charlie swaps the two authorisation HMACs, and swaps the two response HMACs.

USER — TPM . request to open two OIAP sessions
TPM — USER : neq, nes
USER requests key certification to obtain cert(sk, pk(sk2))
USER — Charlie : n, nop, nos,
hmac(authy, (cfk, n, nei, no1)),hmac(auths, (cfk, n, nes, nos))
Charlie — TPM . n, nog, noi,

hmac(auths, (cfk, n, nes, nos)),hmac(authy, (cfk, n, nei, noy))

TPM  —  Charlie : nel, nel, cert(ske,pk(ski)),

hmac(auths, (cfk,n, nej, no2)), hmac(authy, (cfk, n, ne,, noy))
Charlie — USER : neb, nej, cert(ska, pk(sk1)),

hmac(authy, (cfk, n, ne,, no1)), hmac(auths, (cfk, n, nej, nos))

USER checks the HMACs and accepts the certificate cert(ska, pk(sk1)).

Figure 4.2: Attack trace for Experiment 1.

We patch the command TPM __ CertifyKey by considering two different tags for the two
different HMACs. More precisely, we replace the constant cfk with cfk; (resp. cfky) in the
first (resp. second) HMAC provided by the user and also the one provided by the TPM.
The attacks reported in our first experiment are prevented and ProVerif is able to verify
the two correspondence properties.

As a further step we add to the initial configuration another key for Alice and assume
that this new key sk’ has the same authdata as a previous key of Alice already loaded onto
the TPM. Hence, in our model, we have that handle(authy, sk1), handle(auths, sk2), and
handle(auths, skb) are terms known by the attacker Charlie. ProVerif discovers another
attack where the attacker can exchange the key handle handle(auths, sko) provided by
the honest user in entry of the command with another handle having the same authdata,
i.e. handle(auths, sky). The TPM will answer by sending the certificate cert(sky, pk(sk5))
instead of cert(sk1, pk(sk2)).

This attack comes from the fact that the HMAC is only linked to the key via the
authdata. Thus, as soon as two keys share the same authdata, this leads to some con-
fusion. A way to fix this would be to add the key handle inside the HMAC, but the
TPM designers chose not to do this because they wanted to allow middleware to unload
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and reload keys (and therefore possibly change key handles) without the knowledge of
application software that produces the HMACs. A more satisfactory solution, that has
been proposed for future versions of the TPM, is to add (the digest of) the public key
inside the HMAC. Hence, for instance, the HMAC built by the user is now of the form
hmac(auth, (cfkl, pk(sk),n,nei, no1)). The same transformation is done on all the HMACs.

The previous attacks do not exist anymore and ProVerif is able to verify that the two
correspondence properties hold.

Next, we assume that the attacker has his own key loaded onto the device. This means
that he knows a key handle handle(auth;, sk;) and the authdata auth; that allows him to
manipulate sk; through the device. He has also access to the public key pk(sk;). However,
he does not know sk; that is stored inside the TPM. We rediscover the attack of [GRST07],
showing that the attacker can manipulate the messages exchanged between the USER and
the TPM in such a way that the TPM will provide the certificate cert(skq, pk(sk;)) to a
user that has requested the certificate cert(sky, pk(sk2)).

The attack of [GRST07] comes from the fact that the attacker can replace the user’s
HMAC with one of his own (pertaining to his own key). The TPM will not detect this
change since the only link between the two HMAGs is the nonce n known by the attacker.
To fix this, it seems important that each HMAC contains something that depends on the
two keys involved in the certificate. So, we add a digest of each public key inside each
HMAC. For instance, the first HMAC built by the user will now be of the form:

hmac(authy, (cfkl, pk(sk1), pk(sk2),n,ne1,noy)).

The above attack is not possible anymore as the TPM will only accept two HMACs that
refer to the same pair of public keys.

ProVerif is now able to verify that the two correspondence properties hold. However,
it does not succeed in proving injectivity for the property expressing authentication of the
user. This is due to a limitation of the tool and does not correspond to a real attack.

Experiments with TPM _ CreateWrapKey We now study the TPM _ CreateWrapKey com-
mand in isolation. For this command, we need an OSAP session. We consider a config-
uration with 2 keys pairs (ski, pk(sk1)) and (sk2, pk(sk2)) loaded inside the TPM known
to the attacker. For the moment, the intruder does not have his own key loaded onto the
device.

For this simple configuration, ProVerif is able to verify that the two correspondence
properties hold. Note that this command involves only one key, thus the kind of con-
fusion that exists for the TPM_CertifyKey command is not possible on the command
TPM _ CreateWrapKey.

As a first step we again add another key for Alice to the initial configuration and assume
that this new key sk} has the same authdata as a previous key of Alice already loaded in
the TPM.

We discover an attack of the same type as for TPM _CertifyKey where the attacker
replaces handle(auths, sko) by handle(auths, sk). Hence, at the end, the user will obtain
a wrap that is not the expected one. Note that the user cannot detect that the wrap he
received has been performed with pk(sk}) instead of pk(skz) since he does not have access
to the private part of the key.
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As in the case of the TPM _CertifyKey command, a way to fix this, is to add pk(sk)
inside the HMAC. Then ProVerif is able to verify the two correspondence properties even
if we load a ‘dishonest’ key inside the TPM, i.e. a key for which the attacker knows the
authdata.

Experiments with the complete model We now consider a much richer scenario. We
consider the commands:

e TPM _ CertifyKey (the patched version described above to avoid the previous attacks),

e TPM _CreateWrapKey, TPM LoadKey2, and TPM_ UnBind for which we add the
public key inside the HMAC (again to avoid the kind of attacks that we described
above).

We consider a scenario where an honest key and a dishonest key are already loaded inside
the TPM. Using TPM _CreateWrapKey and TPM _LoadKey2, the honest user and the at-
tacker will be able to create and load new keys into the device. Hence, having only two
keys loaded in the TPM in the initial configuration is not a restriction. An honest user is
allowed to use the same authdata for different keys.

ProVerif is able to establish the 8 correspondence security properties. However, as
above, in one case, it is not able to verify the injective version of the property.

Conclusion and perspectives

In this chapter we described our work on two standardized security APIs, PKCS#11 and
the TPM. Both APIs required to model non-monotonic state making these case studies
non-trivial for existing tools. In both cases we were able to rediscover known attacks and
some non-trivial variants of them. In the case of the TPM identifying the security property
which we argue should be guaranteed by the TPM is in itself an interesting contribution.

Most of the existing work on security APIs relied on the experience of the use of formal
methods in the analysis of security protocols. While security protocols are similar to APIs,
there are some important differences which motivate the development of a dedicated theory
for analysing APIs. We give here some concrete topics that we would explore.

Models with storage. As already discussed one difference with most security protocols'
is that security APIs rely on the storage of some data which is persistent, and can be read
or modified by different calls to the API, and which affects the execution of API commands.
An example of such a storage are attributes of keys in the PKCS# 11 standard. One of
our aims is to develop models and analysis techniques which allow us to consider such a
data store which can be read and updated by parallel processes accessing it.

!One may note that a similar notion of state also appears in optimistic fair exchange protocols [ASW97]
where a trusted third party needs to store the status of a given transaction to ensure responding in a
coherent way.
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Security properties as ideal systems. As we have noticed in this chapter it is sometimes
difficult to define what is the expected security property that a security API should ensure.
Therefore, an appealing approach would be to specify the security of APIs by the means
of an ideal API. One direction would be to use the framework of universal composability
(UC) |Can01]. UC has emerged during the last years as a powerful model for showing the
security of complex systems. The main idea is to start with a system which is trivially
secure by construction and then refine each of the components towards a realization, gen-
erally relying on cryptography. The individual components are generally specified by an
interface and it seems natural to use similar ideas in the context of security APIs. We
could also build on our recent work on UC in the applied pi calculus [24].

Computational soundness. During recent years there has been a drive to relate symbolic
(aka Dolev-Yao) security proofs and computational security proofs [AR02, 12, CCO08| (see
also Chapter 7). However, the hypotheses which are needed seem to be unrealistic in the
context of security APIs. For instance, the hardware module underlying the API may have
restricted computational power and needs to execute efficient encryption algorithms that
may not satisfy strong security assumptions that are needed for existing soundness results.
We wish to investigate how these hypotheses can be weakened in the particular context
of security APIs, exploiting the particular structure of the data which is allowed in the
requests to the API. This work may also built on recent developments in cryptography, e.g.
deterministic authenticated encryption [RS06]|, allowing for instance to securely encrypt
keys with their attributes.
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CHAPTER o)

Automated verification of equivalence
properties

In the Chapter 3 we have described our modelling of privacy type properties in e-
voting in terms of equivalence properties. When analysing protocols we were faced with
the lack of tools and decision procedures for deciding (or trying to prove) equivalence
properties. A notable exception in this area is the tool ProVerif which succeeds in proving
some equivalences [BAF05]. However, ProVerif tries to prove a relation which is finer than
observational equivalence, called diff equivalence. In particular for the examples which
arised in e-voting this relation was too fine. Sometimes, we could rely on ProVerif to
prove lemmas about static equivalence of particular frames. However, for some equational
theories ProVerif was not able to prove static equivalence either and none of the existing
decidability results for static equivalence [AC06| did apply.

While we got initially interested in deciding equivalence properties through privacy in
electronic voting, equivalence properties are of interest in many other applications. They
can for instance be used to model anonymity properties in other areas [DJP10, DDS10,
AF04], resistance against offline guessing attacks [CDE05, Bau05, 27|, strong flavours of
secrecy [Bla04] or indistinguishability between a protocol and an ideal version which can
be thought of as the protocol specification [AG99, Can01, BPW07].

In this chapter we describe three results. First, we describe a decision procedure for
static equivalence [23, 6] which will be part of §. Ciobaca’s PhD thesis work. Then we
describe a combination result [25, 8] for static equivalence (for disjoint equational theories),
which was part of A. Mercier’s PhD thesis. Finally we describe a symbolic semantics 31, 9]
for the applied pi calculus which allows to decide a sound approximation of observational
equivalence for a fragment of the applied pi calculus.

A decision procedure for static equivalence

In this section we describe a procedure for the problem of static equivalence which is
correct, in the sense that if it terminates it gives the right answer, for any convergent

51
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equational theory. For the remainder of this section we suppose that the equational theory
& can indeed be oriented into a convergent rewrite system Rg. As deduction and static
equivalence are undecidable for this class of equational theories [AC06], the procedure does
not always terminate. However, we show that it does terminate for the class of subterm
convergent equational theories (already shown decidable in [ACO06]) and several other theo-
ries among which the theory of trapdoor commitment encountered in our electronic voting
case studies. This work is also a part of S. Ciobéacid’s PhD thesis work and he imple-
mented the procedure in an efficient prototype. Our procedure relies on a simple fixed
point computation based on a few saturation rules, making it convenient to implement.

Preliminary definitions

We counsider two binary predicates > and ~ on terms, which we write using infix notation.
These predicates are interpreted over frames ¢ as follows:

1. Rt is true whenever R is a recipe for deducing ¢ in ¢
2. U ~V whenever (U =¢V)p

The main data structures of our algorithm are two types of Horn clauses, written here as
[H < {Ly,...,Ly}] (read as L1 A...A Ly, implies H), which we call deduction, respectively
equational facts.

Definition 5.1 (facts) A deduction fact (resp. equational fact) is an expression denoted
[U>u < Al (resp. [U ~V < A]) where A is a finite set of the form {X1>t1,..., X, >t,}
that contains the hypotheses of the fact. Moreover, we assume that:

o ut,... tn € T(F,N,X) with vars(u) C vars(t1,...,tn);
e UV eT(F,N,X) and Xy,...,X, are distinct variables;
o vars(U,V,Xq,...,X,) Novars(u,ty, ..., t,) = 0.

A fact is solved if t; € X (1 < i < k). Otherwise, it is unsolved. A deduction fact is
well-formed if it is unsolved or if u € X.

For notational convenience we sometimes omit curly braces for the set of hypotheses
and write [U>u < X1>t1,..., X, >t,]. When n = 0 we simply write [U > u] or [U ~ V].

We say that two facts are equivalent if they are equal up to bijective renaming of
variables. In the following we implicitly suppose that all operations are carried out modulo
the equivalence classes. In particular set union will not add equivalent facts and inclusion
will test for equivalent facts. Also, we allow on-the-fly renaming of variables in facts to
avoid variable clashes.

We now introduce the notion of generation of a term ¢ from a set of facts F. A term ¢
is generated with recipe R from a set of facts F if R>¢ is a consequence of the solved facts
in F. Formally, we have:

Definition 5.2 (generation) Let F be a finite set of well-formed deduction facts. A term
t is generated by F with recipe R, written F F® ¢, if
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1. eithert=2x € X and R = x;

2. or there exist a solved fact [Ry >ty < X1 > x1,...,X, > x,) € F, some terms R;
for 1 < i < n and a substitution o with dom(o) C wvars(ty) such that t = tyo,
R=Ro[X1~ Ry,..., X, — Ry], and F -5 20 for every 1 <i < n.

A term t is generated by F, written F & t, if there exists R such that F ¢,

From this definition follows a simple recursive algorithm for effectively deciding whether
F F ¢, providing also the recipe. Termination is ensured by the fact that |z;o| < |t| for
every 1 < i < n. Note that using memoization we can obtain an algorithm in polynomial
time.

Example 5.1 Consider the following set of facts:

[ w1 > enc(b k) ] (f1)
[ b > b ] (f2)
[ enc(Y1,Y2) B> enc(yi,y2) <=Yi>uy, Yoy (f3)

where wy 1s a variable in the domain of the frame, a,b, k are names, and Y1, Ys,y1,y2 are
variables. We have that enc(enc(b, k),b) is generated with recipe enc(wy,b). This follows
easily by instantiating the hypotheses of f3 with f1 and respectively fs.

Given a finite set of equational facts E and terms M, N, we write E = M ~ Nift M ~ N
is a consequence, in the usual first order theory of equality, of

{Uc~Vo|[U~V <= Xi>ay,..., X, D> ag] € E} where 0 = {X; — zihi<i<k.

Note that it may be the case that x; = x; for ¢ # j (whereas X; # Xj).

Saturation procedure

We define for each deduction fact f its canonical form such that for a solved deduction fact
[R>t < Xj>xy, ..., X >z each variable x; occurs at most once in the hypotheses and
at least once in t. Unsolved deduction facts are kept unchanged. This canonical form is
useful to characterize the form of solved facts when we prove termination.

A knowledge base is a tuple (F, E) where F is a finite set of well-formed deduction facts
that are in canonical form and E a finite set of equational facts.

Definition 5.3 (update) Given a factf = [R>t < X >t1,..., X, >ty] and a knowledge
base (F,E), the update of (F,E) by f, written (F,E) ®f, is defined as

(FU{f'},E) if f is solved and F I/t useful fact
where f' is the canonical form of f
(F,EU{[R' ~ Ro|}) if f is solved and F -t redundant fact

where FHE t and o = {X1+—=t1,..., Xp— tp}
(FU{f},E) if £ is not solved unsolved fact
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The choice of the recipe R’ in the redundant fact case is defined by the implementation.
While this choice does not influence the correctness of the procedure, it might influence its
termination as we will see later. Note that, the result of updating a knowledge base by a
(possibly not well-formed and/or not canonical) fact is again a knowledge base. Facts that
are not well-formed will be captured by the redundant fact case, which adds an equational
fact.

The role of the update function is to add facts to the knowledge base, while performing
some redundancy elimination. If F I/ ¢, then the new fact clearly provides interesting
information and it is added to the knowledge base. If the new fact is unsolved, it is added
anyway (because it might prove useful later on). If the new fact is solved and F |- ¢, then
this deduction fact does not provide new information about deducible terms, but it might
provide a new recipe for terms we already know deducible. Therefore, an equational fact
is added instead, stating that the two recipes are equal provided the required hypotheses
are satisfied.

Example 5.2 Consider the knowledge base formed of the following set F of deduction facts

[ wy > enc(bk) ] (f1)
[ b > b ] (f2)
[ enc(Y1,Y2) > enc(yi,y2) < Yi>y, Yoy (f3)

and the empty set E of equational facts.

We have already seen that enc(enc(b, k),b) is generated by F with recipe enc(wi,b).
Updating the knowledge base by [war>enc(enc(b, k), b)] would result in no modification of the
set of deduction facts, since we already know that enc(enc(b, k),b) is generated. However,
a new equational fact [we ~ enc(wi,b)] would be added to the set of equational facts.

Initialisation. Given a frame ¢ = vin.{w; — t1,...,w, — t,}, our procedure starts from
an tnitial knowledge base associated to ¢ and defined as follows:

Init(p) = (0,0)

f(Xl,...,Xk) Df(xl,...,xk) = X3 I>J,’1,...[>Xkl>l’k]
Example 5.3 Consider the equational theory modelling malleable encryption

Emal = {dec(enc(z,y),y) = z, mal(enc(z,y), z) = enc(z,y)}.

This malleable encryption scheme allows one to arbitrarily change the plaintext of an
encryption. This theory certainly does not model a realistic encryption scheme but it yields
a simple example of a theory which illustrates well our procedures. In particular all existing
decision procedure we are aware of fail on this example. The rewriting system Re_ obtained
by orienting the equations from left to right is convergent.

mal
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Consider the frame ¢ = va, k.{w, — enc(b,k)}. The knowledge base Init(y) is made
up of the following deduction facts:

[ w1 > enc(bk) | (f1)
[ b > b ] (f2)
[ enc(Y1,Y2) > enc(yr,y2) < Yi>uy, Yoy (f3)
[ dec(Yl, }/2) > dec(yl, y2) <Y > Y1, Yo > yg] (f4)
[ maI(Yl, YQ) > mal(yl, yg) =Y > Y1, Yo > yg] (f5)

Saturation. The aim of our saturation procedure is to produce

1. a set of solved deduction facts which have the same set of syntactic consequences as
the initial set of deduction facts modulo the equational theory;

2. a set of solved equational facts whose consequences are exactly the equations holding
in the frame.

The main part of this procedure consists in saturating the knowledge base Init(y) by means
of the transformation rules described in Figure 5.1. The rule Narrowing is designed to apply
a rewriting step on an existing deduction fact. Intuitively, this rule allows us to get rid
of the equational theory and nevertheless ensures that the generation of deducible terms
is complete. This rule might introduce unsolved hypothesis. The rule F-Solving is then
used to instantiate the unsolved hypotheses of an existing deduction fact. Unifying and
E-Solving add equational facts which remember when different recipes for the same term
exist.

Note that this procedure may not terminate and that the fixed point may not be unique
(the @ operation that adds a new fact to a knowledge base is not commutative).

We write =" for the reflexive and transitive closure of =—.

Example 5.4 Continuing Frample 5.3, we illustrate the saturation procedure. We can
apply the rule Narrowing on fact f4 and rewrite rule dec(enc(x,y),y) — x, as well as on
fact f5 and rewrite rule mal(enc(x,y), z) — enc(z,y) adding facts

[dec(Y1,Ys) > x < Y >enc(z,y), Yo >y (fe)
[mal(Y1,Y2) > enc(z,y) < YiD>enc(x,y),YsD> 2] (f7)

The facts fg and f7 are not solved and we can apply the rule F-Solving with f1 adding the
facts:

[dec(w,Y2) > b < Yo > k] (fs)
[mal(wy,Y2) > enc(z, k) <Y 2] (fo)

Rule Unifying can be used on facts f1/fs, f3/fg as well as f1/fy to add equational facts.
This third case allows one to obtain figp = [w1 ~ mal(wy,Y2) < Yo > b] which can be
solved (using E-Solving with fa) to obtain f11 = [w1 ~ mal(wi,b)], etc. When reaching a
fixed point, fg, f11 and the facts in Init(y) are some of the solved facts contained in the
knowledge base.

We now state the soundness and completeness of our transformation rules.
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Narrowing

f=[M>C[t] €« Xi>ay,...,XpgDaxp] €EF, l > reRe
with t € X, o =mgu(l,t) and wvars(f) Nvars(l) = 0.

(F,E) = (F,E)®fy
where fo = [M > (Clr])o < Xi>z10,..., X, > xi0).
F-Solving
fi=Mpt « Xpu,X1>t,..., XpgD>tg], fo=[N>s <« Yi>y,....,.Yo>y] €F
with u € X, o =mgu(s,u) and wars(f;) N vars(fz) = 0.
(F,E) = (F,E)®&fo
where fo = [M{X — N} >to <= {XZ > tia}lgigk @] {YZ > yiJ}lgige].

Unifying
fi=Mpt « Xqi>ay,....Xpa), fo=[N>s « Yi>uy,....Yes>y] €F
with 0 = mgu(s,t) and wvars(fi) Nwvars(fz) = 0.
(Fv E) = (Fv EU {fO})
where fo = [M ~ N < {X,; > z;0}1<i<i U{Yi > yio hi<i<i].

E-Solving
fi=lU~VEYD>s, Xi>t,..., XDt €E fo=Mp>t<Yi>y,..., Yo >y €F
with s € X, 0 = mgu(s,t) and vars(f;) N vars(fz) = 0.

where fo = [U{Y — M} ~ V{Y — M} = {Xi > tia'}lgigk U {}/z > yia}lgigg].

Figure 5.1: Saturation rules

Theorem 5.1 (soundness and completeness) Let ¢ be a frame and (F,E) be a satu-
rated knowledge base such that Init(p) =* (F,E). Lett € T(F,N) and F* = FU{[n>
n] | n € fn(t) ~ bn(e)}. We have that:

1. For all M € T(F,N Udom(p)) such that fn(M)Nbn(p) =0, we have that
Me=¢t< 3N, E=M ~N and F -V 5.

2. For all M,N € T(F,N Udom(y)) such that fn(M,N) N bn(p) =0, we have
(M =¢ N)p & Ej=M~ N.

Procedure for static equivalence

Let ¢1 and o be two frames. The procedure for checking ¢; ~g @2 runs as follows:

1. Apply the transformation rules to obtain (if possible) two saturated knowledge bases
(Fi, Ez), 1= 1,2 such that Inlt(goz) = (Fl, EZ), 1 =1,2.

2. For {i,7} = {1,2}, for every solved fact [M ~ N < X; > x1,...,X) > ag] in E;,
check if (Mo =¢ No)p; where o0 = {X1 — x1,..., X — i}

3. If so return yes; otherwise return no.

The correctness of this procedure follows nearly directly from Theorem 5.1.
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5.1.4 Termination

As already announced the saturation process will not always terminate.

Example 5.5 Consider the convergent rewriting system consisting of the single rule f(g(x)) —
g(h(x)) and the frame ¢ = va.{wy — g(a)}. We have that

Init(p) 2 {[wr & g(a)], [f(X) > f(z) < X > a]}.

By Narrowing we can add the fact fi = [f(X) > g(h(z)) < X > g(z)]. Then we can
apply F-Solving to solve its hypothesis X > g(x) with the fact [wy > g(a)] yielding the solved
fact [f(w1) > g(h(a))]. Applying iteratively F-Solving on f1 and the newly generated fact,
we generate an infinity of solved facts of the form [f(... f(w1)...) > g(h(...h(a)...))].
Intuitively, this happens because our symbolic representation is unable to express that the
function h can be nested an unbounded number of times when it occurs under an application

of g.

We have shown that our procedure terminates on the class of subterm convergent
equational theories [AC06], and different particular theories: malleable encryption (defined
in Example 5.4), a theory for trap-door commitment (£yq) encountered when studying
electronic voting protocols [13], a theory of blind signatures (Epling) Which we introduced
first in [37] and which has also been studied in [ACO06], as well as theories for addition
(€add) and homomorphic encryption (Ehom) which have been studied in [AC06]. We may
note that for the procedure to terminate on the theory modelling homomorphic encryption
we need to rely on a particular saturation strategy, which we require to be fair.

5.1.5 The KiSs tool

A C++ implementation of the procedures described here is provided in the KiSs (Knowledge
In Security protocols) tool [Cio09].

The tool implements a partially fair saturation strategy which is sufficient to decide the
theory Ehom. Moreover the tool implements several optimizations described in [6, Section
6.1]. This makes the procedure terminate in polynomial time for subterm convergent
equational theories, and the theories Epjind, Emal and Eg.

5.1.6 Related work

Several papers study the decision of static equivalence. Most of these results introduce a
new procedure for each particular theory and even in the case of the general decidability
criterion given in [AC06, CDO7], the algorithm underlying the proof has to be adapted for
each particular theory, depending on how the criterion is fulfilled. A combination result
was obtained in [ACDO7]: if deduction and static equivalence are decidable for two disjoint
equational theories, then deduction and static equivalence are also decidable for the union
of the two theories.

The first generic algorithm that has been proposed handles subterm convergent equa-
tional theories [AC06] and covers the classical theories for encryption and signatures. This
result is encompassed by the recent work of Baudet et al. [BCDO09] in which the authors
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propose a generic procedure that works for any convergent equational theory, but which
may fail or not terminate. This procedure has been implemented in the YAPA tool [Bau08|
and has been shown to terminate without failure in several cases (e.g. subterm conver-
gent theories and blind signatures). However, due to its simple representation of deducible
terms (represented by a finite set of ground terms), the procedure fails on several inter-
esting equational theories like the theory of trapdoor commitments. Our representation of
deducible terms overcomes this limitation by including terms with variables which can be
substituted by any deducible terms. The performances of the KiSs tool are comparable
to the YAPA tool [Bau08, BCD09] and on most examples the tool terminates in less than
a second. In [BCDO09] a family of contrived examples is presented to diminish the perfor-
mance of YAPA, exploiting the fact that YAPA does not implement DAG representations
of terms and recipes, as opposed to KiSs. As expected, KiSs indeed performs better on
these examples. In [BCDO09| a class of equational theories for which YAPA terminates
is identified and it is not known whether our procedure terminates on this specific class.
However, we have shown that our procedure terminates on all examples of equational theo-
ries presented in [BCD09]. This requires to prove termination of our saturation procedure
for each equational theory presented in [BCDO09|. In addition, our tool terminates on the
theories Emnal and Eq whereas YAPA does not. Of course, YAPA may also terminate on
examples outside the class exhibited in [BCD09]. Hence the question whether termina-
tion of our procedures encompasses termination of YAPA is still open. Independently of
our work, specific decision procedures for the theory of trapdoor commitment and that of
reencryption have been presented in [BBRC09].

Another tool that can be used to check static equivalence is ProVerif [Bla01, BAF05].
This tool can handle various equational theories and analyse security protocols under active
adversaries. However, termination is not guaranteed in general and the tool performs some
safe approximations.

Reducing equational theories for the decision of static
equivalence

Our goal was to develop combination results for the decision of static equivalence for non-
disjoint equational theories. As discussed above, a combination result for disjoint equa-
tional theories was presented in [ACDO07|. We here exhibit criteria on equational theories
allowing simplifications for the decision of static equivalence. The kind of simplification
we describe is the removal of a particular symbol which we call a valve. This allows us to
reduce a static equivalence problem modulo some equational theory to some other static
equivalence problems modulo simpler equational theories. We will illustrate our result on
a running example, a theory for bilinear pairings for which we obtain a deducibility result.
This work was part of A. Mercier’s PhD thesis and was published in |25, §].

Running example

We will illustrate our specific definitions and lemmas by a running example involving two
distinct algebraic groups GG1 and G2 and a pairing operation e mapping two elements of
G to an element of Ga. A concrete definition in a cryptographic setting can be found
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in [BF01]. In general, a pairing operation maps elements of an additive group to elements
of a multiplicative group in the following way.

e: G1><G1 — G2
e(agr,bga) = elg1,92)?

In some protocols, e.g. [Jou00], one has in fact g = g2. We use this assumption in order to
simplify our notations. Moreover, we use a multiplicative notation to represent elements
of G, e.g. we write expy(z) for both zg; and zgs.

Let Spp be the set of sorts {R,G1,G2}, R is the sort of the exponents of a chosen
generator of the G;, and Gy (resp. G2) are the sorts of the elements of the groups G;
(resp. Ga). Let Fyp, be the following set of symbols:

+,-: RXR—R addition, multiplication of exponents
—: R—R inverse of exponents
Op,1p: R constant exponents
exp;: R— G i €{1,2} exponentiation
x; 0 G; x Gy — G; i€ {1,2} multiplication in G;
e: G1 xG1— Gy pairing

The properties of these function symbols are defined by the following equational theory
Epp.

r+y = y+x Op+z = =z
(@+y)+z = z+(y+2) z+(-z) = Ogr
Ty = y-x z-(y+z2) = (z-y)+(z-2)
(@-y)-z = x-(y-2) lg-z =
exp;(x) *; expi(y) = expi(z+y) ie{1,2}
e(expi(z),expi(y)) = expa(z-y)

This signature and this equational theory represent operations realized in protocols where
the exchanged messages are elements of the groups G;. The symbol e represents a pairing
operation.

Example 5.6 Bilinear pairing is a central primitive of the Jouz protocol [Jou00], a three
participant variation of the Diffie-Hellman protocol. It implicitly relies on the decisional
Bilinear Diffie-Hellman Assumption (BDH) which can be formally modelled using static
equivalence as follows:

va,b,c,r{x1 — expi(a), 2 — exp1(b), x3 — expi(c),y1 — expa(a-b-c)}

Ngbp
va,b,c,r{x1 — expi(a), zo — expi(b), x5 — expi(c),y1 — expa(r)}

Valves and reducibility

Our main result concerns signatures involving a special function symbol which we call a
valve. Intuitively, as it is suggested by the name, a valve f is a symbol that allows to go
into one direction, but such that there is no way to go back. More exactly, a valve f takes
arguments of sorts si, ..., si, and yields a result of sort s, such that no term of sort s; has
a subterm of sort s.

We borrow here some useful notions from graph theory.
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Definition 5.4 (Signature graph) Let (S, F) be a sorted signature. The graph G(S, F

is the directed labelled graph (V,E) where V=8 and E CV xV x F. We write r Iy s
for (rys, f) € E and require that arity(f) = s1 X ... X s — s and s; = r for some i.

We recall that a path in a graph is a sequence of edges such that for two consecutive

edges r Iy sand ' L s we have s = 1. When S7 and Sy are sets of vertices we say that

there exists a path from S to Sy iff there exist s1 € S1, so € S5 such that there is a path
from s1 to so.

Definition 5.5 (valve) A symbol f of arity s; X ... X sp — s is a valve iff

1. for every path 7 from {si,...,sx} to {s} in G(S,F) there is a j, 1 < j < k, such

that ™ contains s; i> S;

2. and there is no path from {s} to {s1,..., sk}

In other words, f is a valve iff every path from {si,...,s;} to {s} contains exactly one f.
When f of arity s1 X ... X s — s is a valve, we also say that f is a valve from {s1,...,si}
to s.

Example 5.7 Let us consider the sorted signature (Spp, Fop) introduced in our running
ezample in Section 5.2.1. The signature graph G(Spp, Fop) is given in Figure 5.2. The
symbol e is a valve from {G1} to {Ga} as G1 = Gy lies on every path from {G1} to {Ga},
and since no path leads from {Ga} to {G1}. We also have that expy is a valve from {R} to
{G1}. However, exps is not a valve from {R} to {Ga} as the sequence R <% G1,G1 5 Gy
is a path from {R} to {G2} not involving exps.

*1
19>

+_ e

€2,
" @3
*9

Figure 5.2: The signature graph G(Spp, Fop)-

We are now able to present the central notion of reducibility.

Definition 5.6 (reducible) Let f be a valve of arity s1 X ... X s — s. An equational
theory & is reducible for f iff for every n > 0 and sorts r1,...,mn € {s1,...,8k} there

exist m public contexts Ti[xy, ..., xpn], ..., Tnlx1, ... xn] of arity r1 X ... X 1y — s such
that for all k public contexts Ci[x1,...,xy] of arity r1 X - X 1y — 8; with 1 < i < k there
exists a public context Dly1, ..., ym| of arity s X --- X s — s such that for any ground terms
t1,...,tn of sort r1,...,r, respectively we have that

F(CL .. CR)[t1, . ta] =5 D[T1, ..., Tl[t1, - - ., tn]
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Figure 5.3: Reducibility. Grey objects are of sort si,...,$,, while clear objects are of
sort s. The choice of the T; only depends on the sorts ¥ = rq,...,r,, while the choice of
D depends both on the contexts C' = C4,...,C) and the sorts 7.

Intuitively, reducibility for a valve f means that given a vector (rq,...,r,) of sorts that
are all argument sorts of f, there are finitely many maps 7; from r; X ...xry, to s such that
any computation of the form f(Ci,...,Ck) can be simulated by some D entirely inside
the sort s by making use of the maps T;. The crucial point is that the contexts T; depend
only on the sorts r1,...,r, but not on the contexts C;. A pictorial view of this definition
is given in Figure 5.3.

Proposition 5.1 &y is reducible for e if the set of names of sort Gi Ng, = 0.

Indeed, for any integer n we can define m = n + % contexts
T, = e(zyexpi(lg)) for 1 <i<n
Ti; = e(zi,zy) for1<i<j<n

which satisfy the conditions of Definition 5.6.
We now define the reduction of a frame.

Definition 5.7 (reduction) Let the equational theory £ be reducible for f, where f is
a valve from A to s, and let ¢ = vin{zy — t1,...,2, — tn} be an A-sorted frame. The
reduction of ¢ is defined as ¢ = vi{yr = Ti[t1,-.-tnl, -, Ym = Tmlt1, ... tn)} where T;
are contexts as defined in Definition 5.6.

We note that ¢ is {s}-sorted.

Example 5.8 Let ¢oppy be the Gi-restriction of the frames presented in Frxample 5.6:
¢ppH = va,b,c,r{x1 — expi(a),x2 — expi(b), x3 — expi(c)}. Using the set of terms T;
and T;; defined above, we get

¢ppu = va,b,e,r{ y1+— e(expi(a),expi(1)), y2 — e(expi(b),expi(1)),
, yn — e(expi(a), expi(a)),
), w13 > e(expi(a), expi(c)),
b;;, ya3 — e(exp1(b), expi(c)),
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Getting rid of reducible symbols

We now show that if an equational theory &£ is reducible for f then it is possible to get
rid of f when deciding static equivalence. In the we only consider signatures (S, F) where
f € Fis a valve from {s1,...,s,} to s such that in G(S,F) the only sorts accessible from
{s1,...,8n} are {s1,...,8n, s}. Consequently, the only sort accessible from s is s. This is
sufficient to cover our running example and simplifies the presentation of our results.

In order to eliminate f from the equational theory we require additional properties of
the equational theory.

Definition 5.8 (sufficiently complete [Com94|) & is a sufficiently complete equational
theory with respect to f if for every ground term t € T(FW{f},N) there ezxists a ground
term u € T(F,N) such that t =¢ u.

Definition 5.9 (sufficient equational theory) Let (S,F W {f}) be a sorted signature
and € an equational theory. An equational theory &' is sufficient for €& without f iff for
any terms u,v € T(F,N), u=¢ v iff u =g v and &' does not involve f.

We denote by £~4 the equational theory £ without equations of sort in A.
Theorem 5.2 Let £ be an equational theory on the sorted signature (S, FW{f}) such that
o f is a valve,
o & is a reducible equational theory for f, and
o & is sufficiently complete w.r.t. f.

If there exists an equational theory £ sufficient for £ without f then for any {A, s}-sorted
frames ¢1 and ¢2, we have that

1~ 2 Uf Prya ~ve—s Poja and Gy adrs ~er-a Pajads

A criterion for sufficient equational theories

In this section we make a first attempt to find sufficient criteria for applying Theorem 5.2.
Future work includes finding broader criteria. We also briefly explain how our running
example fits this criterion.

Definition 5.10 (decomposition) A pair (R,E’) is a decomposition of an equational
theory & iff

e &' is an equational theory,
e R is a rewriting system convergent modulo &',
e for any terms u and v u =¢ v iff u lg/er= v IR/

Definition 5.11 (exclusively define) Let (S, FW{f}) be a sorted signature. A rewriting
system R exclusively defines f if any term in normal form modulo R/E" is in T(F,N)
and if for any rewrite rule | > r € R, f appears in [.
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Lemma 5.1 Let (S, FW{f}) be a signature. If a theory € on this signature has a decom-
position (R,E") and if R exclusively defines f then &' is sufficient for & without f.

Example 5.9 (continued) We define Rypp to be the rewriting system obtained by orient-
ing the rule e(expi(z), expi(y)) = expa(x - y) from left to right, and &, the equational
theory Epp without this rule. We remark that (R,El’)p) is a decomposition of Epp and it is
easy to see that Rpp exclusively defines e.

Corollary 5.1 If the sets of names of sorts Gy and Go are empty then static equivalence
for Eup is decidable for {G1,G2}-sorted frames.

Removing the function symbol e we reduce the decision of static equivalence for Epp to
deciding static equivalence for two theories that correspond both to the classical equational
theory modelling Diffie-Hellman. This problem is is known to be decidable [32] for frames
whose only names are of sort R.

Symbolic bisimulation for the applied pi calculus

In this section we describe our results on observational equivalence, which models indistin-
guishability in the presence of an active adversary. One of the difficulties in automating
proofs of observational equivalence is the infinite number of possible behaviours of the
attacker, even in the case that the protocol process itself is finite, 7.e., without replication.
When the process requests an input from the environment, the attacker can give any term
which can be constructed from the terms it has learned so far in the protocol, and therefore
the execution tree of the process is potentially infinite-branching. To address this problem,
researchers have proposed symbolic abstractions of processes, in which terms input from the
environment are represented as symbolic variables, together with some constraints. These
constraints describe the knowledge of the attacker (and therefore, the range of possible
values of the symbolic variables) at the time the input was performed. Reachability prop-
erties and also existence of off-line guessing attacks can be verified by solving the constraint
systems arising from symbolic executions (e.g. [ALV02b, Bau07]). Our idea was to design
symbolic semantics for the applied pi calculus and rely on Baudet’s decision procedure for
deciding equivalence of constraint systems, i.e., whether two constraint systems have the
same set of solutions (as opposed to the classical satisfiability where one checks the exis-
tence of a solution). Symbolic methods have already been used in the case of observational
equivalence or bisimulation properties in classical process algebras (e.g. [HL95, BN96]).
In particular, Borgstrém et al. [BBN04] have defined a sound symbolic bisimulation for
the spi calculus. Defining symbolic semantics for the applied pi calculus has shown to be
surprisingly difficult technically. In this section we will not describe our symbolic seman-
tics in detail but rather discuss the difficulties that we encountered and the approach we
took to circumvent them. A complete description of the symbolic semantics can be found
in 31, 9].
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The problem of designing a sound and complete symbolic structural
equivalence

A natural first step seems to define a symbolic structural equivalence (=) which is sound
and complete in the following (informal) sense:

Soundness: Ps =5 Qs implies for any valid instantiation o, Pso = Qs0;
Completeness: Pso = @ implies 3 Q5 such that P =5 Qs and Q50 = Q.

However, it seems difficult to achieve this. Consider the process
P =in(c,z).in(c,y).out(c, f(x)).out(c, g(y))
which can be reduced to
P' = out(c, f(My)).out(c, g(Ms))

where M; and My are two arbitrary terms provided by the environment. When f(M;) =¢
g(My), i.e. f(My) and g(Ms) are equal modulo the equational theory, we have that P’ =
vz.(out(c, z).out(c, z) | {/M1)/.}), but this structural equivalence does not hold whenever
f(My) #¢ g(Ma).

The symbolic process P, = out(c, f(z)).out(c, g(y)) has to represent the different cases
where f(z) and g¢(y) are equal or not. Hence, the question of whether the structural
equivalence P! =, vz.(out(c, z).out(c, 2) | {f(*)/.}) is valid cannot be decided, as it depends
on the concrete values of x and y. Therefore, symbolic structural equivalence cannot be
both sound and complete. This seems to be an inherent problem and it propagates to
internal and labelled reduction, since they are closed under structural equivalence.

The absence of sound and complete symbolic structural equivalence, mentioned above,
significantly complicates the proof of our main result given in [31, 9]. We therefore split
this proof into two parts:

1. We define a more restricted intermediate semantics which will provide an intermedi-
ate representation of applied pi calculus processes and define an intermediate labelled
bisimulation which coincides with the original one.

2. We define a symbolic semantics which is sound and complete w.r.t. the intermediate
semantics. Based on the symbolic semantics we define a sound symbolic bisimulation.

Intermediate semantics

Intermediate processes are a selected (but sufficient) subset of the original processes. One
may think of them as being processes in some kind of normal form. They only have name
restriction (no variable restriction) and all restrictions have to be in front of the process.
They have to be name and variable distinct (nv-distinct) meaning that we have to use
different names (resp. variables) to represent free and bound names (resp. variables),
and also that any name (resp. variable) is at most bound once. Moreover, we require an
intermediate process to be applied meaning that each variable in the domain of the process
occurs only once. For instance, the process Al = vb.in(c,y).out(a, f(b)) is the intermediate
process associated to the process A = v.(in(c, y).vb.out(a, z) | {/®/,}).
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In the symbolic semantics we will keep the constraint systems separate from the process.
This allows us to have a clean division between the bisimulation and the constraint solving
part. A side-effect of the separation between the processes and the constraint system is that
we forbid a-conversion on symbolic processes as we lose the scope of names in the constraint
system, but allow explicit renaming when necessary. We will already forbid a-conversion
in the intermediate semantics using naming environments. A naming environment N is a
function which maps each variable and name to one of n, f, b (standing for “new” (i.e.,
fresh), “free” and “bound” respectively). An intermediate process is a pair (A4 ; N) where
A is an intermediate extended process and N a naming environment, compatible with A.
By compatible we mean that bound names in A should indeed be declared to be bound by
N, etc.

To show soundness and completeness of the relations =;, —;, 2, defining the inter-
mediate semantics we introduce the relation = on intermediate processes. Intuitively, =
captures the structural equivalences that are “missing” in =; with respect to =.

Definition 5.12 (=) We define = to be the smallest equivalence relation on intermediate
processes closed under bijective renaming of bound names and variables and such that

NeEw-N; (va.vm.A; N)
REW-N;  (A{M/,};N)

(vn.A; N) if m ¢ fn(A)
(A{"/z}sN) if M =¢ N

212

This enables us to show soundness and completeness of =;, —;, —; up to .

Based on the intermediate semantics we can define an intermediate labelled bisimulation
~;. Using the soundness and completeness of the semantics we show that ~; coincides with
the original labelled bisimulation.

Theorem 5.3 Let A and B be two nv-distinct extended processes and N be a naming
environment compatible with Al and Bl. We have that

A= B if and only if (Al ; N) =~; (BJ ; N)

Constraint systems

Before introducing our symbolic semantics we first define constraint systems.

Definition 5.13 (constraint system) A constraint system C is a set of constraints where
every constraint is of one of the following forms:

o “vlFa” where ¢ = vu.o for some tuple of names and variables 4 and some substi-
tution o, and x 1s a variable which does not appear under a restriction of any frame
nor in the domain of any frame;

o “M = N’ where M and N are terms;
o “M # N” where M and N are terms;

o “gd(M)” where M is a term;
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The constraint ¢ I- z is useful for specifying the information ¢ held by the environ-
ment when it supplies an input x, i.e., the environment may only instantiate = by a
term that is deducible from ¢. The constraint gd(M) means that the term M is ground.
We denote by Ded(C) the deducibility constraints of C, i.e. {¢IFz | “pl-2” € C}. When
Ded(C) = {¢1 IF x1,..., 00 Ik 2}, we define cv(C) = {x1,...,x¢} to be the constraint vari-
ables of C.

The constraint systems that we consider arise while executing symbolic processes. We
therefore restrict ourselves to well-formed constraint systems, capturing the fact that the
knowledge of the environment always increases along the execution: we allow it to use more
names and variables (less restrictions) or give it access to more terms (larger substitution).
The fact that the constraint system is not arbitrary is useful when solving the constraints
such as in [MSO01].

We say that two well-formed constraint systems C and C" have same basis if Ded(C) =
{o1 Ik 21,... 00 I 20} and Ded(C') = {¢} IF 27,...,¢) IF 2}} are such that z; = z and
dom(yp;) = dom(y}) for 1 < i < /.

Given a well-formed constraint-system C such that Ded(C) = {¢1 IF z1,...,p¢ IF 24} an
E-solution of C is a substitution § whose domain is cv(C) which satisfies the constraints of C.
We require that vars(z;6) N (dom(yp) . dom(y;)) = 0, to ensure that the environment does
not use information that will only be revealed “in the future”; it can use only the entries
of the frame that have previously been added. Moreover, we require names(z;0) Na; = 0
and vars(z;0) Na; = 0 to dissallow the environment to use restricted names and variables
which are supposed to be secret; thus, they ensure that the value z;0 can be deduced from
public data. We denote by Solg(C) the set of E-solutions of C and by Solg(C) the set of
all closed &-solutions of C.

Example 5.10 Let C = {vkws. {6k / F/ VY IF o' gd(c), o' = s}. Let € be the
equational theory dec(enc(x,y),y) = = and § = {4W1¥2) / 1\ We have that 0 is a closed &-
solution of C. Note that 6/ = {4Wk) / Y is not an E-solution of C. Indeed, names(x'6')N
{k,s} = {k} and thus is not empty.

Symbolic semantics

A symbolic process is a triple (A ; C ; Ng) where A is an intermediate extended process,
C is a constraint system and Ny is a symbolic naming environment. A symbolic naming
environment is similar to an intermediate naming environment, but may map variables to
c for “constraint”. We obviously only consider well-formed processes such that A, C and
Ny are consistent.

Given a well-formed symbolic process (A ; C ; Ng) we define by Solg(C ; Ng), resp.
Solg'(C ; Ng), the set of solutions, resp. closed solutions, of C which are compatible with
Ns. In order to link symbolic and intermediate processes we note that each solution 6 €
Solg(C ; Ng) defines a corresponding (closed) intermediate process which we call the 6-
concretization.

Definition 5.14 (#-concretization) Let (A ;C ; Ng) be a well-formed symbolic process.
Let 8 € Solg(C,Ns). We say that an intermediate process (A ; N) is the 8-concretization of
(Ag; C 5 Ny) if A= As(0o)* where o is the mazimal frame of C and N = Ng|arux-
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We define the symbolic semantics by the means of the relations =,, —5 and —. Intu-
itively, when processes evolve they add constraints to C. For instance, the input rule adds
a deduction constraint and the conditionals add equality and disequality constraints. We
show that each of these relations is sound and complete w.r.t. its intermediate counterpart.

In order to be able to define our symbolic labelled bisimulation we first define symbolic
static equivalence using an encoding similar to the one in [Bau05]. The tests used to
distinguish two frames in the definition of static equivalence are encoded by means of two
additional deduction constraints on fresh variables x,y and by the equation x = y.

Definition 5.15 (symbolic static equivalence) We say that two closed well-formed sym-
bolic processes (As ; Ca ; Ns) and (Bs ; Cp ; Ng) are symbolically statically equivalent,
written (As ; Ca ; Ng) ~s (Bs ; Cp ; Ng) if for some variables z,y, the constraint systems
C'y, Clz have the same basis and Solg(C'y ; N.) = Solg (Cl; ; N.) where

i NS({xay}) =n,
i N;:NS[{L‘,yHC],
o Cy =CaU{d(As) IFz,¢(As) IFy, z =y}, and

o C,B :CBU{QZ)(BS) -z, gb(Bs) “_y>$:y}-

The following proposition states the correctness of the symbolic static equivalence with
respect to the concrete one.

Proposition 5.2 (soundness of symbolic static equivalence) Let (A5 ;Ca ; Ns) and
(Bs ; Cp ; Ng) be two closed and well-formed symbolic processes such that (As ; Ca ; Ng) ~s
(Bs ;Cp ; Ng). Then we have that:

1. Sol¢(Ca ; Ng) = Solg(Cp ; Ny), and

2. for all 0 € Sol2(Ca ; Ny) we have that ¢(As(004)*) ~ ¢(Bs(0op)*), where o4 (resp.
o) is the substitution corresponding to the mazimal frame of C4 (resp. Cp).

Although we do not need completeness of symbolic static equivalence for our result,
we may note that it follows from Baudet’s result [Bau05]. By completeness we mean that
A ~ B implies that (A ; 0 ; Ng) ~5 (B ;0 ; Ns) for any compatible naming environment
A
We now define symbolic labelled bisimulation using our symbolic semantics.

Definition 5.16 (Symbolic labelled bisimilarity (=,)) Symbolic labelled bisimilarity
is the largest symmetric relation R on closed well-formed symbolic processes with same
naming environment, such that (As ; Ca ; Ns)R(Bs ; Cp ; Ng) implies

1. (As ;Ca s Ns) ~s (Bs ;CB; NS)

2. if (As 5 Ca 3 Ng) —5 (AL 5 C 3 Ng) with Solg(C)y 5 Ng) # 0, then there exists a
symbolic process (BY ; Cly ; Ng) such that

e (Bs;Cp;Ny) =% (B, ;Cg;Ny), and
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o (AL;C 5 Ng) R (BL;Cp ;3 Ny);

8. if (As 3 Ca 3 Ng) S35 (AL 5 C 5 NL) with Sold(Cy 3 NL) # 0, then there exists a

S
symbolic process (BY ; Cly ; Ni) such that

L4 (Bs 5 CB 5 Ns) _>*a—5>s_>: (B; ; /B ; N;); and

S
o (A, ;C,;N,) R (B,;Cy;N,).
The side condition Solg (C/y ; N.) # 0 ensures that we only consider symbolic executions
that correspond to at least one concrete execution.

Soundness of symbolic bisimulation
We can now state our main result: the soundness of symbolic bisimulation.

Theorem 5.4 (Soundness of symbolic bisimulation) Let A and B be two closed, nv-
distinct extended processes. For any symbolic naming environment Ng compatible with Al,
Bl and the empty constraint system we have that

(Al ;05 Ng)=ps(Bl ;05 Ng) implies Ax~yB

Note that limiting the theorem to nv-distinct processes is not an onerous restriction. If
we want to prove that A~yB, we can construct by a-conversion two nv-distinct processes
A’, B' such that A’ = A and B’ = B. Showing A’~;B’ implies that A~;B, since ~ is
closed under structural equivalence.

However, our symbolic bisimulation is not complete. Our techniques suffer from the
same sources of incompleteness as the ones described for the spi calculus in [BBN04]. In a
symbolic bisimulation the instantiation of input variables is postponed until the point at
which they are actually used, leading to a finer relation.

Although our symbolic bisimulation is not complete we are able to prove labelled bisim-
ulation on interesting examples for which the method implemented in the state-of-the-art
ProVerif tool [Bla01] fails. For instance, ProVerif is unable to establish labelled bisimilarity
between out(c,a) | out(c,b) and out(c,b) | out(c,a) whereas of course we are able to deal
with such examples. A more interesting example, for which our symbolic semantics plays
an important role is as follows.

Example 5.11 Consider the following two processes.

P = wveci.(in(eg, z).out(cy, x).out(cg, a) | in(cr,y).out(ca,y))

Q = wvei.(in(eg, z).out(cy, x).out(ca, x) | in(cq,y).out(co, a))
These two processes are labelled bisimilar and our symbolic labelled bisimulation is complete
enough to prove this. In particular, let P' = vey.(out(cq,2).out(ca,a) | in(e1,y).out(ca,y))
and Q' = vcy.(out(eq, x').out(co,2’) | in(er,y).out(ce,a)). The relation R, that witnesses
the symbolic bistmulation, includes

(P50;Ns) R (Q;05N,)
R

(P {ve1.01F 2’ | gd(c2)} ; NY) (Q ;{ve1.01F 2’ gd(c2)} 5 NY)
(vey.(out(eg, a) | out(ca, z)) ; (vey.(out(eg, 2’) | out(cg,a)) ;
er 0k o gd(e)  gdlen)} s N {wer 0k ' gd(es) , gd(en)) s NY)
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The example above is inspired by the problems we encountered when we analysed a
bisimulation representing the privacy property in an electronic voting protocol. ProVerif
is not able to prove this kind of equivalence; its algorithm is limited to cases that the two
processes P, @) have the same structure, and differ only in the terms that are output. In this
example, the processes differ in their structure, providing the motivation for our methods.
Our symbolic bisimulation seems to be “sufficiently” complete to deal with examples of
privacy and anonymity properties arising in protocol analysis. We demonstrate that more
fully in an example in [9], which considers the privacy property of a simplified version of
the FOO [FOO92| protocol.

We may note that recently sound and complete bisimulations have been proposed by
Borgstrom [Bor08| for the spi calculus, by Johansson et al. [JVP09| for psi-calculi and
by Liu and Lin for the applied pi calculus [LL10]. None of these bisimulations however
directly yields a decision procedure. The latter work actually relies on our intermediate
semantics. Cortier and Delaune [CD09a| have also shown that for determinate processes
trace equivalence and observational equivalence coincide and adapted our work to yield a
sound and complete symbolic bisimulation for this class of processes. Relying on the work
by Baudet [Bau07| or more recent work by Cheval et al. [CCD10]| or Chevalier and Rusi-
nowitch [CR10| our work and the one by Cortier and Delaune provide decidability results
for symbolic bisimulations for finite processes with no else branches when the equational
theory is subterm convergent.

Conclusion and perspectives

In this chapter we summarized our results on the decision of equivalence properties. While
the picture for static equivalence is rather complete and efficient tools exist for large classes
of equational theories the situation is less clear when we consider indistinguishability in
the presence of an active adversary. Even the definition of observational equivalence is
questionable. An alternate, slightly weaker definition could be testing equivalence as in-
troduced in the spi calculus. (Observational equivalence which has a characterization in
terms of bisimulation can of course be used as a proof technique of testing equivalence.)

Decidability and complexity. Obviously, when we allow for replication, equivalence prop-
erties become undecidable. As shown by Hiittel [Hiit02], this is even the case for the finite
control fragment, for which observational equivalence is decidable in the original pi calcu-
lus. Even though, one may expect observational and testing equivalence to be decidable for
many classes of equational theories such results are currently missing and our theoretical
understanding of this decision problem is currently very limited. Therefore we foresee to
investigate decidability and complexity results for different (families of ) equational theories.

One may note that equivalence of constraint systems such as [Bau07, CCD10, CR10],
allows us to decide the equivalence of two symbolic traces. While this is an interesting first
step towards the decision of equivalence properties it is not sufficient for deciding testing
equivalence or observational equivalence (except for restricted classes of processes [CC10]).
(These results nevertheless allow us to approximate observational equivalence using for
instance our symbolic bisimulations.)
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Combination. In order to develop decision procedure in a modular way it would be
interesting to obtain combination results of the following type: if observational equivalence
is decidable for the equational theory &£ and for the equational theory £ then observational
equivalence is also decidable for & U &. Such results have been obtained for disjoint
theories in the case of static equivalence [ACDO7|, as well as for disjoint theories |[CRO5|
and hierarchical theories [CR06| in the case of reachability properties. To the best of our
knowledge no such combination results exist for equivalence properties in the presence of
an active attacker.

Efficient procedures. While a theoretical understanding of the decidability and complex-
ity is important and interesting, it is equally important to develop practical tools that can
be used to analyse and verify protocols. With §. Ciobacd and R. Chadha we are cur-
rently working on a generalization of the procedure implemented in KiSs to decide trace
equivalence for the finite applied pi calculus and selected equational theories.



CHAPTER 6

Modular analysis of security protocols

As protocols are getting more and more complex and are used as parts of large systems
it is interesting to reason about them in a modular and compositional way. We would like to
analyze protocols in isolation and conclude that they are secure in an arbitrary environment
when executed in the presence of other protocols. As, by definition, security properties
hold when executed in the presence of an arbitrary environment security is preserved when
protocols do not share any secrets. Therefore, one might want to never use the same
keying material for different protocols. This is however unrealistic in many situations.
Distributing keys and getting them certified is often difficult and when smartcards are used
for key management the available key-storage may limit the number of keys. We may also
mention the notion of cryptographic agility [ABBC10| where different schemes (meeting a
same security notion) reuse the same key and make key sharing between different protocols
(or versions of a protocol) more likely.

In this vein, Cortier et al. [CDD07, CD09b| have investigated parallel composition of
protocols which share some secrets. Their result can be summarized as

if vk.PEy then vk.(P|Q)Ey

for an arbitrary process @ provided that any two encrypted submessages coming from two
different protocol specifications cannot be unified. This condition can easily be achieved
using a tagging mechanism: in each encryption a tag, e.g., the protocol name, is added to
the plaintext before encrypting (and similar for other primitives). Their results hold for
protocols using symmetric and asymmetric encryption, hash functions and signatures. The
security property ¢ is expressed in a fragment of the logic PS-LTL (defined in [CES06]),
covering essentially trace properties. Cortier and Ciobaca [CC10] have recently generalized
this composition result by allowing an arbitrary interleaving of two processes for any equa-
tional theory given that the two protocols use digjoint primitives. Again the disjointness
of the primitives can be ensured for many primitives using a tagging mechanism. Their
result allows in particular to achieve sequential composition, e.g., show that a key exchange
protocol establishing a shared key and a protocol supposing a shared key can be composed
safely.

71
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A situation where not reusing secrets is particular unrealistic arises when secrets are
user-chosen passwords. Typically, a user will reuse the same password for different proto-
cols. With S. Delaune and M. Ryan [27]| we have studied the compositionality of resistance
against offline dictionary attacks for password based protocols (a property which is not
covered by previous composition results). We have shown that

if vp.P is resistant against offline guessing attacks
and  vp.Q) is resistant against offline guessing attacks

then wvp.(P | Q) is resistant against offline guessing attacks

holds in the case one considers a passive adversary, but not in general in the presence of
an active adversary. We show that again a simple transformation, where the password
is tagged by a protocol identifier using a hash function, both preserves resistance against
offline dictionary attacks and guarantees composition even if the same password is reused in
different protocols. Note that different ways of tagging may compromise resistance against
guessing attacks, i.e., the untagged protocol is secure while the tagged one is not. These
results will be described in more detail in Section 6.1.

Another situation where the same keying material is reused arises when several sessions
of a same protocol which uses long-term keys are executed. With M. Arapinis and S. De-
laune [26], we have studied this kind of self-composition: the aim is to show that when
a protocol is secure for one session it is also secure when composed with itself in many
sessions, i.€.,

if vk.Pl=¢ then vk!P[Eo

While this is obviously not true in general we have designed a compiler which adds a
preamble to the protocol where participants agree on a dynamically created session tag
included in each encryption, signature and hash. For this class of compiled protocols we
show that confidentiality properties are preserved under self-composition. We describe
the result in more details in Section 6.2. This result can also be interpreted as a class of
protocols for which confidentiality is decidable for an unbounded number of sessions. The
use of tags to ease protocol analysis can also be found in several other works [BP03, RS03,
RS05, ADO07|.

In computational models, universal composability (UC) [Can01| and reactive simu-
latability (RSIM) [BPWO7| were designed to achieve composability. In UC and RSIM
frameworks ideal functionalities, which one can think of as specifications, can be refined
while preserving security protocols. With S. Delaune and O. Pereira [24] we have designed
a similar framework for the applied pi calculus. While at first we thought that this would
be a straightforward exercise, with the aim of better understanding the corresponding
computational models, it turned out to be a non trivial task. In particular the concur-
rency model of the applied pi calculus differs significantly from the sequential scheduling
mechanisms in computational models. Changing the concurrency model raised several in-
teresting questions and led to different design choices. We detail this work in Section 6.3.
We also note that in order to obtain joint state results, which correspond to composition
with shared secrets, a unique session identifier is supposed to be given. While it is often
omitted how such a session id can be established one way would be to use the technique
we propose in [26] to establish session tags. These session ids are then used in a similar
way as the tags in other symbolic composition results.
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Please note that the above discussion on composition is not exhaustive and we omit
for instance to discuss different frameworks for compositional reasoning such as the PCL
logic [DDMRO7] or composition results in other symbolic models, e.g., results in the strand
space model [GT00c|. Also the use of tags, which shows to be one of the main tools to
achieve composition, was already hinted to as a prudent engineering rule [AN06]. We
here go one step further showing that we can actually prove the soundness of some “safe”
engineering rules.

Composition of password-based protocols

Modelling guessing attacks

We first define what it means for a frame to be resistant against offline guessing attacks.
The idea behind the definition is the following. Suppose the frame ¢ represents the infor-
mation gained by the attacker by eavesdropping one or more sessions and let w be the weak
password. Then, we can represent resistance against guessing attacks by checking whether
the attacker can distinguish a situation in which he guesses the correct password w and a
situation in which he guesses an incorrect one, say w’. We model these two situations by
adding {*/,} (resp. {*'/4}) to the frame. We use static equivalence to capture the notion
of indistinguishability. This definition is due to Baudet [Bau05|, inspired from the one
of [CDE05]. In our definition, we allow multiple shared secrets, and write @ for a sequence
of such secrets.

Definition 6.1 Let ¢ = vw.¢' be a frame. We say that the frame ¢ is resistant to guessing
attacks against w if

vib.(¢' | {?/z}) ~ vib(¢' | v {*'/z})
where T a sequence of variables such that & N dom(¢p) = 0.

Note that this definition is general w.r.t. to the equational theory and the number of
guessable data items.

Now, we can define what it means for a protocol to be resistant against guessing attacks
(in presence of an active attacker). Intuitively, a protocol A is resistant against guessing
attacks on a weak password w if it is not possible for an active attacker to mount a guessing
attack on it even after some interactions with the protocol during a first phase. In other
words, for any process B such that A = B (note that the attacker can intercept and send
messages during this phase), the frame ¢(B) has to be resistant to guessing attack.

Definition 6.2 Let A be a process and w C bn(A). We say that A is resistant to guessing
attacks against w if, for every process B such that A = B, we have that the frame ¢(B)
1s resistant to guessing attacks against w.

Example 6.1 In the remaining of this section we will consider the equational theory Eenc,
defined by the following equations:

sdec(senc(z,y),y) = = adec(aenc(z, pk(y)), y) x
senc(sdec(z,y),y) = = proj;((z1,22)) = x; (1€ {1,2})
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Consider the following simple handshake protocol vw.(A | B) where
e A = vn.out(c,senc(n,w)). in(e, z). if sdec(z,w) = f(n) then P
e B =in(y). out(senc(f(sdec(y,w)), w)).

where P models an application that is executed when B has been successfully authenticated.
An interesting problem arises if the shared key w is a weak secret, i.e. vulnerable to brute-

force off-line testing. In such a case, the protocol has a guessing attack against w. Indeed,
we have that vw.(A | B) = D with ¢(D) = vw.on. ({50 /4 [{M/,)).

The frame ¢(D) is not resistant to guessing attacks against w. The test f(sdec(xy,x))
sdec(xa, ) allows us to distinguish the two associated frames:

° Vw.l/n.({senc("’w)/zl} | {M/CCQ} | {*/2}), and
o v .vw.wn. ({0 /A (M) {w//m})

This corresponds to the classical guessing attack on the handshake protocol (see [Gon93]).
After a normal execution of one session of this protocol, the attacker learns two messages,
namely senc(n, w) and senc(f(n),w). By decrypting these two messages with his guess x, he
can easily test whether x = w and thus recover the weak password w by brute-force testing.

?

Composition Result — Passive Case

The goal of this section is to establish a composition result in the passive case for resistance
against guessing attacks. We first show the equivalence of three definitions of resistance
against guessing attacks: the first definition is due to Baudet [Bau05| and the second one
is due to Corin et al. [CDEO05|. The last definition is given in a composable way and
establishes our composition result (see Corollary 6.1).

Proposition 6.1 Let ¢ be a frame such that ¢ = vw.¢'. The three following statements
are equivalent:

1. ¢ is resistant to guessing attacks against w (according to Definition 6.1),
2. ¢ ~vw.¢/,
3. ¢ ~ ¢{% [} where W' is a sequence of fresh names.

Now, by relying on Proposition 6.1 (item 8.), it is easy to show that resistance to
guessing attack against w for two frames that share only the names w is a composable
notion. This is formally stated in the corollary below:

Corollary 6.1 Let ¢1 = vw.¢| and ¢po = vw.¢)y be two frames. If ¢1 and ¢p2 are resis-
tant to guessing attacks against w then vw.(¢) | @) is also resistant to guessing attacks
against w.

Note that a similar result does not hold for deducibility: even if w is neither deducible
from ¢ nor from ¢9, it can be deducible from ¢ | ¢o.
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A = vk, na. B = vr,nb.
out(senc(pk(k),w)). in(y1).
in(xy). out(senc(aenc(r, sdec(y1, w)), w)).
let ra = adec(sdec(z1,w), k). in(y2).
out(senc(na, ra)). out(senc((sdec(ya, r), nby,r)).
in(xg). |n(y5)
if proj, (sdec(z2,ra)) = na then if sdec(ys, ) = nb then
out(sdec(projy(sdec(xz,ra)), ra)).0 0

Figure 6.1: Modelling of the EKE protocol

Example 6.2 Consider again the equational theory Eenc. Consider the frames: ¢1 =
{senc(wsenc(w.w)) /Y and dy = {sen(Ww) / Y We have that vw.¢; e w fori = 1,2 whereas
v, ({senclwsenc(ww)) /| [senc(ww) /o VY e w. Indeed, the term sdec(z1, x2) is a recipe of
the term w.

In the case of password-only protocols, i.e., protocols that only share a password be-
tween different sessions and do not have any other long-term shared secrets we have the
following direct consequence. We can prove resistance against guessing attacks for an un-
bounded number of parallel sessions by proving only resistance against guessing attacks
for a single session. An example of a password-only protocol is the well-known EKE proto-
col [BM92|. This protocol has also been analysed using the applied pi calculus in [CDEO05]
and in computationally sound settings in [AW05, ABW10|.

Example 6.3 The EKE protocol [BM92] can be informally described by the following 5
steps. A formal description of this protocol in our calculus is given in Figure 6.1.

A — B: senc(pk(k),w) (EKE.1)
B — A senc(aenc(r, pk(k)), w) (EKE.2)
A — B senc(na,r) (EKE.3)
B— A senc((na,nb),r) (EKE.4)
A —- B senc(nb,r) (EKE.5)

In the first step (EKE.1) A generates a new private key k and sends the corresponding
public key pk(k) to B, encrypted (using symmetric encryption) with the shared password w.
Then, B generates a fresh session key r, which he encrypts (using asymmetric encryption)
with the previously received public key pk(k). Finally, he encrypts the resulting ciphertext
with the password w and sends the result to A (EKE.2). The last three steps (EKE.3-5)
perform a handshake to avoid replay attacks. One may note that this is a password-only
protocol. A new private and public key are used for each session and the only shared secret
between different sessions is the password w.

We use again the equational theory Eenc (¢f Example 6.1) to model this protocol. An
execution of this protocol in the presence of a passive attacker yields the frame vw.¢ where

d) = vk,r, na, nb{ senc(pk(k),w) /xl’senc(aenc(r,pk(k)),w) /x2
senc(na,r)/ senc((na,nb),r)/ senc(nb,r)/ }
39 T4 x5
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We have that vw.(¢ | {*/2}) ~ vw,w'.(¢ | {*'/+}). We have verified this static equivalence
using the YAPA tool [Bau08§].

Corin et al. [CDE05| also analysed one session of this protocol (with a slight difference
in the modelling). Tt directly follows from our previous result that the protocol is secure
for any number of sessions as the only secret shared between different sessions is the
password w.

Composition Result — Active Case

In the active case, contrary to the passive case, resistance against guessing attacks does
not compose: even if two protocols separately resist against guessing attacks on w, their
parallel composition under the shared password w may be insecure. Consider the following
example.

Example 6.4 Consider the processes defined in Figure 6.1 where the occurrence of 0 in B
has been replaced by out(w). Let A" and B’ be these two processes. The process vw.(A' | B')
models a variant of the EKE protocol where B’ outputs the password w if the authentication
of A" succeeds. We have that vw.A' and vw.B' resist against quessing attacks on w. We
have verified these statements by using the ProVerif tool [Bla0j]. However, vw.(A’ | B)
trivially leaks w. More generally any secure password only authentication protocol can be
modified in this way to illustrate that resistance against quessing attacks does not compose
i the aclive case.

The previous example may not be entirely convincing, since there is no environment
in which either of the separate processes vw.A’ and vw.B’ is executable. We do not give a
formal definition of what it means for a process to be executable. Therefore we present a
second example (more complicated but in the same spirit) in which each of the constituent
processes admits a complete execution.

Example 6.5 Consider the processes A and B defined in Figure 6.1 where the occurrences
of 0 in A and B have been replaced by out(senc(w, ra)) and in(y).out(sdec(y, r)) respectively.
Let Ay and By be these two processes. We can see vw.(A1 | B) and vw.(A | By) as
two extensions of the EKE protocol with an additional exchange. Note also thatl these
two protocols admit a normal execution and in this sense are executable. We have that
vw.(A1 | B) and vw.(A | By) are resistant against guessing attacks on w. In particular the
additional exchange does not lead to an attack. We have verified these statements using the
tool ProVerif. However, vw.(A; | B1) and thus vw.((A1 | B) | (A | By)), trivially leaks w.

This example shows that there is no hope to obtain a general composition result that
holds even for a particular and relatively simple equational theory. To reach our goal, we
consider a restricted class of protocols: the class of well-tagged protocols.

Well-tagged Protocols

Intuitively, a protocol is well-tagged w.r.t. a secret w if all the occurrences of w are of the
form h(o, w). We require that h is a hash function (i.e., has no equations in the equational
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theory), and « is a name, which we call the tag. The idea is that if each protocol is tagged
with a different name (e.g. the name of the protocol) then the protocols compose safely.
In the remainder, we will consider an arbitrary equational theory &, provided there is no
equation for h.

Definition 6.3 (well-tagged) Let M be a term and w be a name. We say that M is
a-tagged w.r.t. w if there exists M’ such that M'{"®®) / \ =¢ M.

A term is said well-tagged w.r.t. w if it is a-tagged w.r.t. w for some name o. An
extended process A is a-tagged if any term occurring in it is a-tagged. An extended process
s well-tagged if it is a-tagged for some name .

A protocol can be easily transformed into a well-tagged protocol. We have shown that
the simple transformation where we replace the password w with h(a, w) indeed preserves
resistance against offline guessing attacks.

Theorem 6.1 Let A = vw.A’ be a process resistant to gquessing attacks against w, then
we have that vw.(A'{"@w) / V) is also resistant to guessing attacks against w.

Other ways of tagging a protocol exist in the literature. For example, in [CDDO07]
encryption are tagged to ensure that they cannot be used to attack other protocols. That
particular method would not work here; on the contrary, that kind of tagging is likely to
add guessing attacks.

Example 6.6 Let A = vw,s.out(senc(s,w)). We have that A is resistant to guessing
attacks against w. However, the corresponding well-tagged protocol, according to the defi-

nition given in [CDDO07], is not. Indeed,
A" = vw, s.out(senc({a, s), w))

is not resistant to guessing attack against w. The tag o which is publicly known can be
used to mount such an attack. An attacker can decrypt the message senc({c,s,),w) with
his guess x and check whether the first component of the pair is the publicly known value «.
Hence, he can test whether © = w and recover the password w by brute force testing.

Another tagging method we considered is to replace w by (o, w) (instead of h(«, w)),
which has the advantage of being computationally cheaper. This transformation does not
work, although the only counterexamples we have are rather contrived.

Example 6.7 Consider the equational theory Eenc-
Let A = vw, k.out(senc(w, k)).in(z). if proj; (dec(x, k)) = « then out(w).

Note that we can built a similar example without using « in the specification of A.
We can simply compare the first component of two ciphertexts issued from the protocols.
This should lead to an equality (i.e. a test) which does not necessarily exist in the original
protocol. In [Syv96], Syverson already noted that ezplicitness, as recommended in prudent
engineering principles [AN06, AN95|, may break resistance against guessing attacks.



6.1.5

6.2

6.2.1

78 Modular analysis of security protocols

Composition Theorem

We show that any two well-tagged protocols that are separately resistant to guessing attacks
can be safely composed provided that they use different tags. The following theorem
formalizes the intuition that replacing the shared password with a hash parametrized by
the password and a tag is similar to using different passwords which implies composition.

Theorem 6.2 (composition result) Let Ay and Ay be two well-tagged processes w.r.t. w
such that the process Ay (resp. As) is a-tagged (resp. [-tagged) and vw.(Ay | Ag) is a
process (this can be achieved by using a-renaming).

If vw.A1 and vw.As are resistant to guessing attacks against w and o # 3, then we
have that vw.(A; | A2) is also resistant to guessing attacks against w.

Self-composition using dynamic tags

We will describe this work only informally. In [26], the results are obtained in a role
based model with pattern matching and a fixed set of cryptographic primitives (pairing,
symmetric and public key encryption, signatures and hash functions) which we will not
introduce here formally.

We consider the secrecy property and we propose a protocol transformation which maps
a protocol that is secure for a single session to a protocol that is secure for an unbounded
number of sessions. This provides an effective strategy to design secure protocols: (i) design
a protocol intended to be secure for one protocol session (this can be efficiently verified
with existing automated tools); (ii) apply our transformation and obtain a protocol which
is secure for an unbounded number of sessions.

The protocol transformation

Given an input protocol II, our transformation will compute a new protocol II which
consists of two phases. During the first phase, the protocol participants try to agree on
some common, dynamically generated, session identifier 7. For this, each participant sends
a freshly generated nonce NN; together with his identity A; to all other participants. (Note
that if broadcast is not practical or if not all identities are known to each participant, the
message can be sent to some of the participants who forward the message.) At the end of
this preamble, each participant computes a session identifier: 7 = ((A1, N1), ..., (Ag, Ng)).
An active attacker may of course interfere with this initialization phase, intercept and
replace some of the nonces. Hence, the protocol participants do not necessarily agree on
the same session identifier 7 after this preamble. In fact, each participant computes his own
session identifier, say 7;. During the second phase, each participant j executes the original
protocol in which the dynamically computed identifier is used for tagging each application
of a cryptographic primitive. In this phase, when a participant opens an encryption, he
will check that the tag is in accordance with the nonces he received during the initialization
phase. In particular he can test the presence of his own nonce.

The transformation, using the informal Alice-Bob notation, is described below and relies
on the tagging operation [m], which adds the tag 7 to each application of a cryptographic
primitive.
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Phase 1 Phase 2
A — Aj1 om Ay — All - <A17N1> Aiy — Ajl : [ml]T
II= : I = : :
Ai[ — Ajg oMy Ap — All : <Ak,Nk> Aiﬂ — Ajg : [me]T
where 7 = (tagy, ..., tag,) with tag, = (4;, N;)

Note that the above Alice-Bob notation only represents what happens in a normal
execution, i.e. with no intervention of the attacker. Of course, in such a situation, the
participants agree on the same session identifier 7 used in the second phase.

The composition result
In [26, Theorem 1], we show the following result, restated here.

Let II be a k-party protocol, I be its corresponding transformed protocol,
and Tp be a finite set of ground atoms (the adversary’s initial knowledge).

Let m be a term appearing in I1(j) for some 1 < j < k and m be its counterpart
in II(j). Let CK, the critical keys, be the set of longterm keys not in 7Ty and
assume that keys in CK do not appear in plaintext.

If II preserves the secrecy of m w.r.t. Ty when considering one honest session
of each role, then II preserves the secrecy of m w.r.t. Ty (for an unbounded
number of sessions).

Our result states that if the compiled protocol admits an attack that may involve several
honest and dishonest sessions, then there exists an attack which only requires one honest
session of each role (and no dishonest sessions). We may note that, en passant, we identify
a class of tagged protocols for which security is decidable for an unbounded number of
sessions. This directly follows from our main result as it stipulates that verifying security
for a single protocol session is sufficient to conclude security for an unbounded number of
sessions.

Our dynamic tagging is useful to avoid interaction between different sessions of the
same role in a protocol execution and allows us for instance to prevent man-in-the-middle
attacks. We have also considered an alternative, slightly different transformation that does
not include the identities in the tag, i.e., the tag is simply the sequence of nonces. In that
case we obtain a different result: if a protocol admits an attack then there exists an attack
which only requires one (not necessarily honest) session for each role. In this case, we
need to additionally check for attacks that involve a session engaged with the attacker.
On the example of the Needham-Schroeder protocol the man-in-the-middle attack is not
prevented by this weaker tagging scheme. However, the result requires one to also consider
one dishonest session for each role, hence including the attack scenario. In both cases, it
is important for the tags to be collaborative, i.e. all participants do contribute by adding
a fresh nonce.

Different kinds of tags have also been considered in [AD07, BP03, RS03|. However these
tags are static and have a different aim. While our dynamic tagging scheme avoids confus-
ing messages from different sessions, these static tags avoid confusing different messages
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inside a same session and do not prevent that a same message is reused in two different
sessions. Under some additional assumptions (e.g. no temporary secret, no ciphertext for-
warding), several decidability results [RS05, Low99] have been obtained by showing that
it is sufficient to consider one session per role. But those results can not deal with proto-
cols such as the Yahalom protocol or protocols which rely on a temporary secret. In the
framework we consider here, the question whether such static tags would be sufficient to
obtain decidability is still an open question (see [AD0T7]).

Simulation based security

In this section we present our symbolic simulation based framework.

Basic definitions

The simulation-based security approach classically distinguishes between input-output chan-
nels, which yield the internal interface of a protocol or functionality to its environment and
network channels, which allow the adversary to interact with the functionality. We sup-
pose that all channels are of one of these two sorts: 10 or NET. Moreover the sort system
ensures that names of sort NET can never be conveyed as data on a channel, i.e. these
channels can never be transmitted. We write fnet(P) for fn(P) N NET.

Definition 6.4 A functionality F is_a closed plain process. Anﬂgdversary for F is an
evaluation contert A[_] of the form: vnet1.(Ar | vneta.(As | ... [vnety.(Ay | _)...)) where
each A; (1 <i < k) is a closed plain process, fnet(F) C |J;«;< net; € NET, and fn(A[_])N
10 =0. o

One may note that the nested form of the adversary process allows to express any arbitrary
context while expliciting the restricted names whose scope ranges on the hole. We also
note that if A[ ] is an adversary for F then fnet(A[_|) = fnet(A[F]).

Lemma 6.1 Let F be a functionality and Ai[ ] be an adversary for F. Then A1[F] is a
functionality. If As]_] is an adversary for Ai[F], then A3[A1[_]] is an adversary for F.

While adversaries control the communication of functionalities on NET channels, 10
contexts model the environment of functionalities, providing inputs and collecting outputs.

Definition 6.5 An 10 context is an evaluation context Cio[_] of the form vio1.(Cy |
vioy.(Cy | ... |viog.(Cx | _)...)) where each C; (1 <i < k) is a closed plain process, and
Ulgigk iOi g |O

Note that if F is a functionality and Cj,[ ] is an 10 context, then C;,[F] is a functionality.

Strong simulatability

The notion of strong simulatability [KDMRO0S8|, which is probably the simplest secure
emulation notion used in simulation-based security, can be formulated in our setting.
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Definition 6.6 (strong simulatability) Let F; and F2 be two functionalities. F; em-
ulates Fo in the sense of strong simulatability, written Fi <>° Fo, if there ezists an
adversary S for Fa (the simulator) such that fnet(Fi) = fnet(S[Fz]) and F1 < S[F2].

The definition ensures that any behavior of F; can be matched by F> executed in the
presence of a specific adversary §. Hence, there are no more attacks on F; than attacks
on Fo. Moreover, the presence of S allows abstract definitions of higher-level functionalities,
which are independent of a specific realization. One may also note that 0 <55 F for any
functionality F. This seems natural in a simulation based framework which only aims at
preserving security. Non-triviality conditions may be imposed independently [Can01].

Example 6.8 Let
Fec = in(i01, z5).out(netec, ok).in(netee, x). if © = ok then out(iog, )

The functionality models a confidential channel and takes a potentially secret value s as
input on channel i01. The adversary is notified via channel netcc that this value is to be
transmitted. If the adversary agrees the value is output on channel i0o. This functionality
can be realized by the process

P =vk.( in(io1,x).out(net,senc(z, k)) |
in(net,y). if test(y, k) = ok then out(ioa,sdec(y, k)) else 0)

assuming the equational theory induced by
sdec(senc(z, k), k) = x test(senc(z,y),y) = ok
Let
S = vnetee.(in(netec, x).vr.out(net,r) | in(net, z). if x = r then out(nete,ok) | )
We indeed have that P <y S[Fcc| and fnet(P) = fnet(S[Fc]).

In order to examine the properties of strong simulatability in our specific setting, we
now define a particular adversary D[ ] which is called a dummy adversary: intuitively,
it acts as a relay which forwards all messages. The formal definition is technical because
D] ] needs to both restrict all names in fnet(F) and ensure that fnet(F) = fnet(D[F]). It

therefore relies on two internal channels sim;/ ? for inputs, resp. outputs, for each channel

in fnet(F).

Definition 6.7 (dummy adversat/'yv) Let F be a functionaolity. The dummy adversary

for F is the adversary D[_] = vsim.(Dy | vnet.(Dy | ) where net = fnet(F) =
{nety,...,nety}; sim = {sim}, ..., sim?,simg, ..., sim%} C NET; and
e D; = lin(nety, x).out(sim}, ) | ... |lin(net,, z).out(sim?, x) |
lin(sim§, x).out(nety, z) | ... |lin(sim?, x).out(net,, x);
e Dy = lin(simi,z).out(nety, ) | ... |lin(sim?,, x).out(net,, ) |
lin(nety, x).out(simf,z) | ... |lin(nety,, z).out(sim?, x).
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By construction we have that fnet(D[F]) = fnet(F).
Lemma 6.2 Let F be a functionality and D[ | be the dummy adversary for F: F < D[F].

However, we do not have that F ~ D[F], since D[F| has more non-determinism than F.
A direct consequence of this lemma is that 71 =< F» and fnet(F;) = fnet(F2) implies
that Fy <55 Fy: as Fy =< DI[F,] we have by transitivity that F; < D[F2]. We use these
observations to show that <°° is a preorder (Lemma 6.3) , which is closed under application
of 1O contexts (Proposition 6.2) and parallel composition (Proposition 6.3).

Lemma 6.3 Let F1, Fo be two functionalities. We have that:
1. F <55 Fi;

2. F1 <3 Fy and Fo < Fy = F1 <> Fs.

Proposition 6.2 Let Fi, Fo be two functionalities and Ci, be an 10 context.
F1 <55 Fy = C,[F1] <35 Cho[Fa).

Proposition 6.3 Let Fi, Fo and F3 be three functionalities. We have that:

1. Fi <3 Fy = Fi | F3 <55 Fy | F3; and

2. Fy <5 F = \F <SSR

While, (1) is a direct consequence of Proposition 6.2 (notice that | F3 is an I0O-
context) the proof of (2) is more involved.

Remark 6.1 The idea of comparing a security protocol to an idealized version of this
protocol which is correct by construction goes back to [GMW87]. In a symbol setting the
use of observational equivalence for this purpose was presented in the spi calculus [AG99].
In [AG99] the protocol is expected to be observationally equivalent to an ideal functionality
without the presence of a simulator. In order for such ideal functionalities to be equivalent
to the concrete protocol they are in most cases tailored to the particular protocol and it
s difficult to provide several implementations for one, more abstract ideal functionality.
The ideal functionalities given in [AG99] are comparable to the ideal functionality obtained
when composed with a simulator in the setting of strong simulatability.

Other notions of simulation based security

Several other notions of simulation based security appear in the literature. We present
them, and show that they all coincide in our setting. This coincidence is regarded as
highly desirable [KDMRO8, Kiis06], while it does not hold in most simulation-based security
frameworks [Can01, BPWO0T7].

Definition 6.8 Let F; and Fo be two functionalities and A be any adversary for Fj.
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o Fi emulates Fy in the sense of black box simulatability, F; <BB® F,, iff
3S. VA. A[F1] = A[S[F2]] where S is an adversary for Fa with fnet(S[F2]) = fnet(F).

o F1 emulates Fo in the sense of universally composable simulatability, F; <uc Fa, iff
VA.3S. A[F1] = S[Fs) where S is an adversary for Fa s.t. fnet(A[Fi]) = fnet(S[F2)).

o Fi emulates Fo in the sense of universally composable simulatability with dummy
adversary, F; <UPA F, iff 3S. D[F1] = S[Fs] where D is the dummy adversary
for Fi1 and S is an adversary for Fa such that fnet(S[Fz]) = fnet(D[F1]).

Theorem 6.3 We have that <55 = <BB — <UC — <UCDA

The above security notions can also be defined replacing observational preorder by
observational equivalence denoted <2 <BB <UC and <UYCDA SQurprisingly, the use of ob-
servational equivalence turns out to be too strong, ruling out natural secure emulation
cases: for instance, the <2° relation is not reflexive, due to the extra non-determinism that
the simulator introduces. While symbolic analysis techniques typically rely on bisimula-
tion relations, this is however consistent with the definitions proposed in the task-PIOA
framework [CCK™ 07|, which also allows non-deterministic executions for simulation based

security.

6.3.4 Applications

In [24] we illustrate our framework by showing the secure emulation of a mutual authenti-
cation functionality by the Needham-Shroeder-Lowe (NSL) protocol [Low95]. As the NSL
protocol uses public key encryption we first introduce real and ideal functionalities for
asymmetric encryption.

The real public key encryption functionality Ppke generates a new fresh private key
sk when initialized and publishes the corresponding public key. Then the process is
ready to receive encryption or decryption requests. The idealized version Fpe differs
from traditional ideal functionalities for asymmetric encryption which produce cipher-
texts by encrypting random strings [BPWO07, Can01, KT08|. An association table (plain-
text /ciphertext) is then necessary to perform decryption. In our symbolic setting we avoid
such a table (which would be cumbersome to encode) by using two layers of encryption
and a secure key ssk. During the initialization of Fye the secret key sk is chosen by the
adversary. However, neither pk(ssk) nor ssk are ever transmitted by Fpke, guaranteeing
that it is impossible to decrypt such a ciphertext outside the functionality, even if the key
sk is adversarially chosen. This will be a crucial feature for our joint state composition re-
sult which is the motivation to have an ideal encryption functionality in a symbolic setting.
As expected, we show that Ppie <55 Froke-

We will now explain our joint state result. While <33 is stable under replication this
is not always sufficient to obtain composition guarantees. Indeed replication of a process
also replicates all key generation operations. In order to obtain self-composition and inter-
protocol composition with common key material we need a joint state functionality, i.e. a
functionality that realizes !F,ue while reusing the same key material. We actually consider
the functionality Fpke, which is a variant of Fpye in which each message is tagged. More

precisely, the process Fpe is defined as Fpke, except that (i) the functionality additionally
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inputs a session id sid during the initialization, (ii) each input and output contain this sid
and the corresponding checks are performed.

We then define an 10 context Pjs[_| for the initial functionality Fpke. Pjs[_| offers
the same IO interface as the modified functionality Fpke and “translates” requests and
responses by adding or removing the session identifier to the plaintexts that are submitted
or received from Fpre. In that way the joint state functionality Pjs[Fpke] uses a single
instance of Fpye for all protocol sessions and tags the encryptions of each session using the
session identifier, in a similar way as in the previous section. Our joint joint state result
can be summarized as follows:

Pjs[}—pke] §SS !]:pke
a A
VI VI

Pjs [ppke] gSS !Ppke

Note in particular the importance of having defined an ideal encryption functionality where
the attacker chooses the secret key sk. Indeed, PJS[Ppke]fsS!Ppke as the attacker can observe

that different public keys are output in Py, while a unique public key is used in Pjs[Ppke]-
When using the ideal functionality, the “trick” is to have the simulator send the same sk
to each copy of Fpje.

In [24] we design a functionality for mutual authentication F,un which roughly works as
follows. Both the initiator and the responder receive a request for mutual authentication.
They forward this request to the adversary and, if both parties are honest, to a trusted
host which compares these requests and authorizes going further if they match. Eventually,
when the adversary asks to finish the protocol, then both participants complete the protocol
session. We have shown that F,uh can be realized by a functionality which implements
the Needham-Schroeder-Lowe protocol [Low95]. Using the joint state result for asymmetric
encryption we lift this emulation to hold for an unbounded number of sessions.

Conclusion and perspectives

In this chapter we have summarized our work on composition. Future work on composition
can be structured in three themes.

Proving design principles sound. Many guidelines and principles suggesting good en-
gineering practices for security protocols have been proposed, e.g., [AN06, AN95, WL94,
GS95|. Such principles provide valuable, yet informal guidelines and “thumb rules”. Formal-
izing these guidelines and studying what guarantees they can ensure would be interesting.
One such principle is that of full information, proposed by Woo and Lam [WL94], stating
that any message should contain the history of all previous messages, using for instance
hashes, such as in the SSL protocol. Another design methodology is that of fail-stop pro-
tocols which requires protocols to halt as soon as soon as there is any derivation from the
designed execution path.

From trace to indistinguishability properties. Currently, most works on composition are
limited to trace properties. It would be interesting to investigate whether these results can
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be transferred to indistinguishability properties. Is it possible to find sufficient conditions
such that
if vk.P~vk.(Q then vk.(P|R)~vk(Q|R)

and similarly for self-composition
if vk.P~(@Q then vk!P~!Q

The proofs in [CD09b, 26| are based on a constraint solving procedure for deciding security
properties. In recent work, Cheval et al. [CCD10] also use a constraint solving procedure
to decide equivalence properties. A concrete question is whether the proofs of [CD09b, 26|
can be adapted to this procedure to obtain composition results for indistinguishability
properties.

Simulation based security. Our work on symbolic simulation based security is still in its
beginning. We would like to explore the use of this setting on particular applications. A
first application would be security APIs (which we will discuss in more detail in Chapter 4).
Security properties expected from an API are often not clear and depend on the particular
application which uses the API. Reasoning about an idealized API seems therefore a natural
approach.

Another more ambitious application is electronic voting. As we have seen in Chapter 3,
security properties of electronic voting are difficult to formalize. Again, an ideal function-
ality which does not need to explicit the properties seems appealing. However, in our
current setting, as was pointed out by D. Unruh in a personal communication, anonymity
properties may not be transferred from an ideal functionality to its implementation due to
the use of an observational preorder instead of an observational equivalence. D. Unruh is
currently working on an extension of our setting to overcome this limitation.






CHAPTER 7

Computational soundness

Since the 1980s, two approaches have been developed for analyzing security protocols.
One of the approaches relies on a computational model that considers issues of complexity
and probability. This approach captures a strong notion of security, guaranteed against
all probabilistic polynomial-time attacks. The other approach—which my previous work
is part of—relies on a symbolic model of protocol executions in which cryptographic prim-
itives are treated as “black boxes”, in the sense that the attacker can only perform a given
set of actions. Since the seminal work of Dolev and Yao, it has been realized that this
latter approach enables significantly simpler and often automated proofs. Unfortunately,
the high degree of abstraction and the limited adversary power raise questions regarding
the security offered by such proofs. Potentially, justifying symbolic proofs with respect to
standard computational models has tremendous benefits: protocols can be analyzed using
automated tools and still benefit from the security guarantees of the computational model.
In their seminal work, Abadi and Rogaway prove the computational soundness of formal
(symmetric) encryption in the case a passive attacker. Since then, many results have been
obtained. Each of these results considers a fixed set of primitives, for instance symmetric
or public key encryption. In [35, 12|, we design a general framework for comparing formal
and computational models in the presence of a passive attacker. We define the notions
of soundness and faithfulness of a cryptographic implementation with respect to equality,
static equivalence and (non-)deducibility and present proof techniques for showing sound-
ness results illustrated on several examples (xor, ciphers and lists). In [32] we generalise
this framework to consider an adaptive adversary, which is strictly more powerful than a
passive one. These result as well as a soundness result for a theory of bilinear pairings [11]
will be presented in the following sections.

Computational and symbolic models also differ on the way security properties are
specified. The standard symbolic, deducibility-based notions of secrecy are in general
insufficient from a cryptographic point of view, especially in presence of hash functions.
In [33] we consider an active adversary and devise a more appropriate secrecy criterion
which exactly captures a standard cryptographic notion of secrecy for protocols involving
public-key encryption and hash functions: protocols that satisfy it are computationally

87
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secure while any violation of our criterion directly leads to an attack. We briefly summarize
this work in Section 7.3.

During the last years there has been a large amount of work on this topic. In this
chapter we will only mention a small fragment of the papers on symbolic methods for
computational proofs of cryptographic protocols. For a more intensive survey we refer the
reader to |7].

Computational algebras

We now give terms and frames a concrete semantics, parametrized by an implementation
of the primitives. Provided a set of sorts S and a set of function symbols F, a (S, F)-
computational algebra A consists of

e a non-empty set of bit-strings [s]4 C {0, 1}* for each sort s € S;

e a computable function [f]a : [s1]a X ... X [sg]a — [s]a for each f € F with
arity(f) = s1 X ... X 8 = §;

e an effective procedure to draw random elements from [s] 4; we denote such a drawing

by x & [s] 4;

Assume a fixed (S, F)-computational algebra A. We associate to each frame ¢ = {x; —

t1,...,&y — ty} a distribution ¥ = [¢] 4, of which the drawings J & 1 are computed as
follows:

. ~ R
1. for each name a of sort s appearing in t1,...,t,, draw a value @ <— [s] 4;

2. for each x; (1 <i < n) of sort s;, compute t; € [si]a recursively on the structure of
terms: F(t, 2 th) = [Ta(Bh- - 1)

3. return the value ¢ = {1 —=11,... 20— t,}.

Such values ¢ = {1 = e1,...,x, = e, } with e; € [s;]4 are called concrete frames. We
extend the notation [.J4 to (tuples of) closed terms in the obvious way.

In the following we focus on asymptotic notions of cryptographic security and consider
families of computational algebra (A,) indexed by a complexity parameter n > 0. (This
parameter 77 might be thought of as the size of keys and other secret values.) The concrete
semantics of a frame ¢ is a family of distributions over concrete frames ([¢]4,). We only
consider families of computational algebras (A,) such that each required operation on alge-
bras is feasible by a (uniform, probabilistic) polynomial-time algorithm in the complexity
parameter 7. This ensures that the concrete semantics of terms and frames is efficiently
computable (in the same sense).

Families of distributions (ensembles) over concrete frames benefit from the usual notion
of cryptographic indistinguishability. Intuitively, two families of distributions (1) and (¢/;)
are indistinguishable, written (1)) =~ (¢;), iff no probabilistic polynomial-time adversary
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A can guess whether he is given a sample from 1, or 1 with a probability significantly
greater than % Formally, we ask the advantage of A,

ARP (g, ) = [P 5 by = AD) = 1] — Pl <=l = A(D) = 1]

to be a negligible function of n, that is, to remain eventually smaller than any =" (n > 0)
for sufficiently large 7.

Soundness of equational theories

Definitions of soundness and faithfullness

We introduce the notions of sound and faithful computational algebras with respect to the
formal relations studied here: equality, static equivalence and deducibility.

Definition 7.1 Let £ be an equational theory. A family of computational algebras (A,) is

o =c-sound iff for every closed terms 11,15 of the same sort, Th1 =¢ T implies that
Ples,eo & [T1, Tx] a, : e1 =a, e2] is overwhelming;

o —c-faithful iff for every closed terms Ty, T5 of the same sort, T #¢ To implies that
Pley, e & [T1, To]a, : e1 =a, e2] is negligible;

o ~gc-sound iff for every frames @1, s with the same domain, ©1 ~g o implies that
(Ipala,) = ([p2]a,);
o ~c-faithful iff for every frames 1,2 of the same domain, w1 #g o implies that

there exists a polynomial-time adversary A for distinguishing concrete frames, such
that A™P(A,n, [e1]a,, [2]a,) is overwhelming;

o Ye-sound iff for every frame ¢ and closed term T such that names(T) C names(y),
@ He T implies that for each polynomial-time adversary A,

Plo, e & [, T]a, : A(P) =a, €] is negligible;

o He-faithful iff for every frame ¢ and closed term T such that names(T) C names(yp),
@ Fe T implies that there exists a polynomial-time adversary A such that

Plp, e Eid [, T]4, : A(P) =4, €] is overwhelming.

Sometimes, it is possible to prove stronger notions of soundness that hold without
restriction on the computational power of adversaries. We call these notions unconditional.

Definition 7.2 Let £ be an equational theory. A family of computational algebras (A,) is

e unconditionally =¢-sound iff for every closed terms 11, T of the same sort, T1 =¢ T5
implies that Pley, ey il [T1, To]a, : e1=4, €] =1;

e unconditionally ~g¢-sound iff for every frames o1, @2 with the same domain, 1 ~g P2
implies ([p1],) = ([e2]a,);
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e unconditionally t/g-sound iff for every frame @ and closed term T such that names(T') C
names(p) and ¢ t/g T, the drawings for ¢ and T are independent: for all ¢o, eo, we

have that P[¢o, eo & [¢, T]4,] = Plpo & [¢]a

(<i [T 4,) is collision-free.

] X Pleg id [T]4,], and the drawing

The fact that the first two unconditional notions are stronger than their computational
counterparts is clear from the definitions. As for the unconditional I/¢-soundness, observe

that if the drawings for ¢ and T are independent, and the drawing (<£ [1] 4,) is collision-
free, then any adversary 4 has negligible probability of retrieving the value of T"

R R R

]P)[¢7€ — [[807 T]]A'q : A(d)) :An e] = ]P)[d) — [[(p]]Arﬂe — HT]]AU : A((Zs) :An e]
R
< sup,, Ple <= [T] 4, : e =4, €0
Generally, (unconditional) =g-soundness is given by construction. Indeed true formal
equations correspond to the expected behavior of primitives and should hold in the concrete
world with overwhelming probability. The other criteria are however more difficult to fulfill.
Therefore it is often interesting to restrict frames to well-formed ones in order to achieve
soundness or faithfulness: for instance Abadi and Rogaway [AR02] do forbid encryption
cycles.

It is worth noting that the notions of soundness and faithfulness introduced above are
not independent.

Proposition 7.1 Let (A;) be a =¢-sound family of computational algebras. Then
1. (Ay) is t/e-faithful;

2. if (Ay) is also =g-faithful, (Ay) is ~g-faithful.

Proposition 7.2 Let (A;) be a family of ~g-sound computational algebras. Assume that
free binary symbols hs : s x Key — Hash are available for every sort s, where the sort
Key is not degenerated in £, and the drawing of random elements for the sort Hash,

(ﬁ [Hash] a, ), is collision-free. Then
1. (Ay) is =¢g-faithful;
2. (Ay) is l/g-sound;

3. Assume the implementations for the symbols hg are collision-resistant, that is, assume
that for all T1,Ts of sort s, given a fresh name k of sort Key, the quantity

P 6176276/176,2 & [[T1>T27 hS(Tlak)v hS(TQakj):ﬂAn - el #An €2, 6/1 —Ay 6/2
is negligible. Then (Ay) is =g-sound, e-faithful and ~g-faithful.

We extend soundness of static equivalence to the adaptive setting from [MP05]. In
~g-soundness the adversary observes the computational value of a fixed frame whereas in
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this setting the adversary sees the computational value of a sequence of adaptively chosen
frames.

The adaptive setting is formalized through the following cryptographic game. Let (A,)
be a family of computational algebras and A be an adversary. A has access to a left-right
evaluation oracle Opr which given a pair of symbolic terms (¢, 1) outputs either the
implementation of #y or of ;. This oracle depends on a selection bit b and uses a local
store in order to record values generated for the different names (these values are used
when processing further queries). With a slight abuse of notation, we omit this store and
write:

b
OLgr,a, (o t1) = [to] 4,

Adversary A plays an indistinguishability game and its objective is to find the value of b.
Formally the advantage of A is defined by:

ADP O; @)
ARLET () = [BLATE~ A0 = 1] — PA%ER 0 1)
Without further restrictions on the queries made by the adversary, having a non-negligible
advantage is easy in most cases. For example the adversary could submit a pair (0,1) to

his oracle. We therefore require the adversary to be legal.

Definition 7.3 (Adaptive soundness) An adversary A is legal if for any sequence of
queries (tf),tﬁ)lgign made by A to its left-right oracle, queries are statically equivalent:

{a:l »—>t(1),...,:rnl—>tg} ~g {wl =t T, »—>t?}
A family of computational algebras (Ay) is
o ~¢-ad-sound iff the advantage Aﬁ“Dlle(n) of any polynomial-time legal adversary A
1s negligible.

e unconditionally ~g-ad-sound iff the advantage Aﬁ?jj(n) of any legal adversary A is

0.

Note that as variables are typed, any query (t),t]) of a legal adversary to the oracle is
such that ¢{ and ¢] have the same sort. Adaptive soundness implies the original soundness
notion for static equivalence.

Proposition 7.3 Let (A,) be a family of computational algebras. If A, is ~g-ad-sound
then A, is also ~g-sound but the converse is false in general.

Proposition 7.4 Let (A,) be a family of computational algebras. A, is unconditionally
~g-ad-sound iff A, is unconditionally ~g-sound.

Soundness of several theories

Symmetric encryption We consider the case of symmetric encryption as in the models
from [AR02] and from [MPO05]. Hence we assume that the implementation of the symmetric
encryption scheme is semantically secure [GM82].
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Our symbolic model consists of the set of sorts S = {Data}, an infinite number of
names for sort Data called keys and the function symbols:

senc,sdec : Data X Data — Data encrypt, decrypt
pair : Data X Data — Data pair constructor
projy, proj,  : Data — Data projections
samekey : Data x Data — Data key equalities test
tenc,tpair : Data — Data type testers
0,1 : Data constants

A name k is used at a key position in a term ¢ if there exists a sub-term senc(t', k) of ¢.
Else k is used at a plaintext position. We consider the equational theory &ym generated
by:

sdec(senc(z,y),y) = = samekey(senc(zx,y),senc(z,y)) = 1
proj; (pair(x,y)) = = tenc(senc(z,y)) = 1
projp(pair(z,y)) = tpair(pair(z,y)) = 1

The importance of key cycles was already described in [AR02]. In general INDCPA
is not sufficient to prove any soundness result in the presence of key cycles. Thus, as in
numerous previous work, we forbid the formal terms to contain such cycles. Let < be a
total order among keys. A frame ¢ is acyclic for < if for any subterm senc(t, k) of ¢, if &/
occurs in ¢ then k' < k. Moreover as noted in [MP05], selective decommitment [DNRSO03]
can be a problem. The classical solution to this problem is to require keys to be sent
before being used to encrypt a message or they must never appear as a plaintext. A frame
o ={z1—t1,..., 2y — tn} is well-formed for < if

e o is acyclic for <;

e the terms t; only use symbols senc, pair, 0 and 1, and only names are used at key
positions;

e if £ is used as plaintext in ¢;, then k cannot be used at a key position in ¢; for j <.

An adversary is well-formed for < if the sequence of queries (t},t})1<;<, that he makes to
his oracle yields two well-formed frames {z1 + t},..., 2, = t8} and {z1 — t],..., 2, —
11} for <.

We suppose that senc is implemented by a symmetric encryption scheme SE€ and that
pairing is implemented by some usual implementation that realizes a pairing operation.
We suppose that INDCPA is a length-concealing variant of semantic security and INDCPA'
is a non-adaptive version of INDCPA, i.e., the adversary may make one single query, but
submitting two lists of plaintexts, rather that multiple queries consisting each of a pair of
plaintexts.

Theorem 7.1 Let < be a total order among keys. In the remainder of this proposition
we only consider well-formed adversaries for <. Let (Ay) be a family of computational
algebras based on a symmetric encryption scheme SE.

o (Ay) is ~e,,-ad-sound if SE is INDCPA but the converse is false.
o (Ay) is ~g,,-sound if SE is INDCPA’ but the converse is false.
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Ciphers and lists We now detail the example of symmetric, deterministic and length-
preserving encryption schemes. Such schemes, also known as pseudo-random permutations
or ciphers [PP04], are widely used in practice, the most famous examples (for fixed-length
inputs) being DES and AES.

Our formal model consists of a set of sorts S = {Data, Datag, Data, ... Datay, ...}, an
infinite number of names for every sort Data and Data,, and the following symbols (for
every n > 0):

enc,,dec, : Data, X Data — Data,, encryption, decryption
cons, : Data X Data, — Datanyq list constructor
head,, : Datayr1 — Data head of a list
tail, : Datany1 — Datay, tail of a list
nil : Datag empty list
0,1 : Data constants

We consider the equational theory Eipher generated by the following equations (for every
n > 0 and for every name ag of sort Datay):

dec,(enc,,(z,y),y) T enco(nil,z) = nil

ency,(decy(z,y),y) = =« deco(nil,z) = nil

head, (cons,(z,y)) = =« tailp(z) = nil

tail, (cons,(z,y)) = vy apg = nil
consy,(head,,(z), tail,(z)) = =

where x,y are variables of the appropriate sorts in each case. The effect of the last four
equations is that the sort Datag is degenerated in Ecipher, that is, all terms of sort Datag are
equal. Notice that each term has a unique sort. As the subscripts n of function symbols
are redundant with sorts, we tend to omit them in terms. For instance, if k, k" : Data, we
may write enc(cons(k, nil), k") instead of ency(consy(k, nil), &’).

The concrete meaning of sorts and symbols is given by the computational algebras A,,
n > 0, defined as follows:

e the carrier sets are [Data] 4, = {0,1}" and [Data,]a, = {0,1}"" equipped with the
uniform distribution and the usual equality relation;

e enc,,dec, are implemented by a cipher for data of size nn and keys of size n;

e [nil] 4, is the empty bit-string, [cons,]., is the usual concatenation, [0]4, = 07,
[1]4, = 17, [head,]a, returns the n first digits of bit-strings (of size (n + 1))
whereas [tail,] 4, returns the last nn digits.

As previously, we restrict frames to those with only atomic keys and no encryption
cycles. A closed frame is well-formed iff it has only atomic keys, contains no encryption
cycles and uses no head and tail symbols. We have shown the following soundness result

given a classical cryptographic assumptions for ciphers, super pseudo-random permutation
(SPRP) [PP04].

Theorem 7.2 (~g¢

cipher

-soundness) Let @1 and @y be two well-formed frames of the same
domain. Assume that the concrete implementations for the encryption satisfies the SPRP

assumption. If o1 ~ Ecinher P2 then ([[cpl]]An) ~ ([[(pQ]]A").
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Exclusive Or We study the soundness and faithfulness problems for the natural the-
ory and implementation of the exclusive OR (XOR), together with constants and (pure)
random numbers.

The formal model consists of a single sort Data, an infinite number of names, the infix
symbol @ : Data x Data — Data and two constants 0,1 : Data. Terms are equipped with
the equational theory £g generated by:

(z8y)®2z = z28(ydH2) x®r = 0

As an implementation, we define the computational algebras A,, n > 0:

e the concrete domain [Data] 4, is the set of bit-strings of length 7, {0,1}", equipped
with the uniform distribution;

e @ is interpreted by the usual XOR function over {0, 1}7;
e [0]a, =07 and [1]4, = 1.

Theorem 7.3 The usual implementation of XOR for the considered signature, (A;), is
unconditionally =g -, ~g,- and /g, -sound. It is also =g -, ~¢g. - and Vg, -faithful.

From Proposition 7.4 unconditional ~g-ad-sound directly follows as one would expect
for this theory.

In [32] we have also shown adaptive soundness of static equivalence for a joint, hierar-
chical theory of encryption and exclusive or where the exclusive or cannot appear on top
of an encryption.

Diffie-Hellman exponentiation As a further application, we study soundness of modular
exponentiation. The cryptographic assumption we make is that the Decisional Diffie-
Hellman (DDH) problem is difficult: even when given ¢* and ¢¥, it is difficult for any
feasible computation to distinguish between ¢*¥ and ¢", when z,y and r are selected at
random. The original Diffie-Hellman protocol [DH76] has been used as a building block
for several key agreement protocols that are widely used in practice (e.g. SSL/TLS and
Kerberos V5) as well as for group key exchange protocols such as AKE1 [BCPO01] or the
Burmester-Desmedt protocol [BD94].

The symbolic model consists of two sorts G (for group elements) and R (for ring
elements), an infinite number of names for R (but no name for sort G) and the symbols:

exp : R—G exponentiation
+,- : RxR— R add, mult
— : R—R inverse
¥ : GXGE—=>G multin G
Or,1p : R constants

We consider the equational theory £qn generated by:
r+y=y+w rTy=y-x (z+y)+z=2+ (y+2)

x-(y+2)=x-y+z-2 (x-y)-z=z-(y-2) z+ (—x) =0g
Op+x==x lg-z==x exp(z) x exp(y) = exp(x + y)



7.3

Computational sound symbolic secrecy 95

We put two restrictions on formal terms: products have to be power-free, i.e., ™ is forbid-
den for n > 1, and products must not contain more than [ elements for some fixed bound
l,ie. x1-...-x, is forbidden for n > [. Both restrictions come from the DDH assumption
and seem difficult to avoid [BLMWO7]. Furthermore we are only interested in frames using
terms of sort G.

We show that the DDH assumption is necessary and sufficient to prove adaptive sound-
ness.

Theorem 7.4 Let (Ay) be a family of computational algebras. (Ay) is ~g,, -sound iff (A,)
satisfies the DDH assumption. (Ay) is ~g,, -ad-sound iff (A;) satisfies the DDH assumption.

The proof mainly relies on the 3DH assumption [BLMWO07| which has been shown
equivalent to DDH.

As for exclusive or, in [32] we have shown adaptive soundness of static equivalence for
a joint, hierarchical theory of encryption and modular exponentiation where the exponen-
tiations can either appear in key or plaintext positions.

Bilinear pairing In a slightly different setting which we will not introduce here we have
also shown a soundness result for a model of bilinear pairing and symmetric encryption [11].
The result was shown for a pattern equivalence (=), as in [AR02], rather than static equiv-
alence. The result holds holds under the bilinear DDH assumption and relies on similar

proof techniques as for modular exponentiation [BLMWO7].

Theorem 7.5 ([11]) Let ty and t1 be two acyclic well-formed terms, such that ty = t;.
Let SE be a symmetric encryption scheme that is secure for INDCPA and IG be an instance
generator satisfying BDDH, then [to]se 1a =~ [ti]se.1a-

We have applied our soundness result to prove computational security of Joux’s tri-
partite Diffie-Hellman protocol [Jou00], and Al-Riyami and Paterson’s TAK-2 and TAK-3
protocols [ARP03]. By computational security we mean that the generated key is indistin-
guishable from a random element. To illustrate the scope of our result we also designed a
new pairing based variant of the Burmester-Desmedt [BD94| protocol and prove its security
in the passive setting.

Computational sound symbolic secrecy

In this section we briefly summarize our result on computationally sound secrecy for asym-
metric encryption and hash functions in the presence of an active adversary. These results
were obtained in a role-based model close to the one defined in [CW05]. We will not go
into the details of this model which are not important for the presentation of the results.

For some security notions like integrity and authentication, the derivation of computa-
tional guarantees out of symbolic ones can be done with relative simplicity [BJ03, MW04|.
In contrast, analogous results for the basic notion of secrecy proved significantly more elu-
sive and have appeared only recently [BP05b, CW05, GS05, CH06|. The apparent reason
for this situation is the striking difference between the definitional ideas used in the two
different models. Symbolic secrecy typically states that the adversary cannot deduce the
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entire secret from the messages it gathers in an execution. On the other hand, computa-
tional secrecy requires that not only the secret, but also no partial information is leaked
to the adversary. A typical formulation that is used requires the adversary to distinguish
between the secret and a completely unrelated alternative.

In [33] we investigate soundness results for symbolic secrecy in the presence of hash
functions. One of the main motivations for considering hash functions, which have not
been considered in the aforementioned results, is that they present a new challenge in
linking symbolic and cryptographic secrecy: unlike ciphertexts, hashes have to be publicly
verifiable, 4.e., any third party can verify if a value h is the hash value corresponding to
a given message m. This implies that a simple-minded extension of previous results on
symbolic and computational secrecy fails. Assume, for example, that in some protocol the
hash h = h(s) of some secret s is sent in clear over the network. Then, while virtually all
symbolic models would conclude that s remains secret (and this is also a naive assumption
often made in practice), a trivial attack works in computational models: given s, s’ and
h, compare h with h(s) and h(s’), and therefore recover s. Similar verifiability properties
also occur in other settings, e.g. digital signatures which do not reveal the message signed.

We propose a new symbolic definition for nonce secrecy in protocols that use party
identities, nonces, hash functions, and public key encryption. The definition that we give
is based on the intuitively appealing concept of patterns [AR02].

Definition 7.4 (Patterns) Given a set of closed terms ¢ = {My, Ms,..., My} and a
term T, we define Patp(¢) = {Path(M,), Pati(My), . .., Path(My)}, where Path(M) de-
fined recursively by:

Pati(a) — { yoTla

otherwise
Patf.((My, Ma)) = (Pati( M1 PatT(M2)>
Pat if , T+ sk(a) or if r € Randaqy
Pat? ({ M" = 7( Pk(a)
atr({ }pk(a)) { O otherwise
h(Pat (M)) ife, THM
Patf.(h(M)) = T ’
atT(h( ) D otherwise

Pat? is extended to set of messages as expected: Pat?(S) = Uies Pat?(t).

Given a protocol II we denote by Msg®(II) the set of sets of messages which can be
learned by the adversary in a valid symbolic executions. We can then define nonce secrecy
based on this notion of patterns.

Definition 7.5 (Nonce secrecy) Let I be a protocol and Xﬁl a nonce variable occurring

in some role A;. We say that Xf4 is secret in I and we write II =° SecNonce(i, j), if for
every wvalid set of messages ¢ € Msg®(Il) it holds that for every session number s, the
symbolic nonce n®7* does not occur in Pat, ;s ().

The central aspect of our criterion is that it captures precisely security in the compu-
tational world in the sense that it is both sound and complete. More specifically, nonces
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that are secret according to our symbolic criterion are also secret according to a standard
computational definition. Furthermore, there exist successful attacks against the secrecy
of any nonce that does not satisfy our definition. The computational definition of nonce
secrecy is defined through the following experiment.

Definition 7.6 Consider the experiment Expsé(cefci?A (1,7)(n) parametrized by a bit b and
that involves an adversary A against protocol 11. The experiment takes as input a security
parameter n and starts by generating two random nonces ng and ni. Then the adversary A
starts interacting with the protocol I1. At some point in the execution the adversary initiates
a session s in which the role of A; is executed, and declares this session under attack. In
this session, the variable Xﬁ‘i 18 instantiated with ny. At some point the adversary requires
the two nonces ng and ni and has to output a guess d. The bit d is the result of the
experiment. We define the advantage of the adversary A by:

. .. 3 1 .o 3 0 .o
AdvEL, ,(1,7)(n) = PExpgo, |, (4,5)(n)=1] — PExpg . (i,5)(n)=]

We say that nonce Xﬁli is computationally secret in protocol II, and we write II |=°
SecNonce(i, j) if for every p.p.t. adversary A its advantage is negligible.

Theorem 7.6 Let II be an executable protocol and let Xﬁli be a monce wvariable occur-
ring in some role A;. If the encryption scheme AE used in the implementation of 11
is INDCCA secure and the hash function is interpreted by a random oracle then 11 =°
SecNonce(i, j) if and only if II =¢ SecNonce(i, 7).

In the proofs we combine different techniques from cryptography and make direct use
of a (non-trivial) extension of the mapping theorem of [MWO04] to hash functions.

Our second important result is to prove the decidability of our symbolic secrecy criterion
(w.r.t. a bounded number of sessions). This is a crucial result that enables the automatic
verification of computational secrecy for nonces. We give an NP-decision procedure based
on constraint solving, a technique that is suitable for practical implementations [ABB105].
While the constraint solving technique is standard in automatic protocol analysis, we
had to adapt it for our symbolic secrecy criterion: for the standard deducibility-based
secrecy definition it suffices to transform constraint systems until one obtains a so-called
simple form (on which satisfiable of the constraints is trivially decidable). However, for
our symbolic secrecy criterion further transformations might be required in order for the
procedure to be complete. Identifying a sufficient set of such transformations and proving
that they are sufficient turned out to be non-trivial.

Related Work. We shortly compare this results to some related work. The papers that
are immediately related to our work are those of Cortier and Warinschi [CW05|, Backes and
Pfitzmann [BP05b], and Canetti and Herzog [CH06], who study computationally sound se-
crecy properties, as well as the paper by Janvier et al. [JLMO06], that presents a soundness
result in the presence of hash functions. In this context, our work is the first to tackle
computationally sound secrecy in the presence of hashes. We study the translation of sym-
bolic secrecy into a computational version in a setting closely related to that in [CWO05].
However, the use of hashes requires new notions and non-trivial extensions of the results
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proved there. In [JLMO06|, Janvier et al. present a soundness result that differs however
from this one. On the one hand they do not consider computational secrecy of nonces sent
under hash functions. On the other hand, they present a new security criterion for hash
functions, which is not the random oracle, although no implementation of a hash function
satisfying their criterion is currently known. The work in [BP05b| and [CHO06] is concerned
with secrecy properties of key-exchange protocols in the context of simulation-based secu-
rity, and hence, they study different computational settings. Interestingly, the symbolic
criterion used in [CHO6] is also formalized using patterns, but their use is unrelated to ours.
None of the mentioned works considers decidability issues. In a more recent paper [CCO08],
Comon-Lundh and Cortier present a soundness result for observational equivalence in (a
fragment of ) the applied calculus for an equational theory of symmetric encryption. Obser-
vational equivalence obviously allows to directly express computational secrecy. It should
also be relatively easy to extend their result for asymmetric encryption and hash functions
(instantiated as random oracles).

Conclusion and perspectives

In this chapter we summarized our contributions in the area of computational soundness.
Most of our work is related to design a general framework to reason about the soundness
of the implementation of symbolic models where messages are modelled as a term algebra
with an underlying equational theory.

While soundness in the presence of a passive or adaptive adversary is rather well un-
derstood the state-of-the-art in the presence of an active adversary is much less advanced.
Most results are obtained for a specific protocol language and the definitions are generally
tailored to a specific equational theory with monolithic soundness proofs. Our aim is to
design a modular framework to show soundness in the presence of an active adversary.
This is currently work in progress with H. Comon-Lundh and J.-K. Tsay.

The aim is to define notions of -¢-act-soundness and ~g-act-soundness as cryptographic
games, in the style of the soundness definitions for passive and adaptive adversaries. Such
games will be independent of a particular protocol language avoiding unnecessary details
of a given protocol language. Fg-act-soundness can then be used to prove trace mapping
results easily for any reasonable protocol specification language, hence avoiding to reprove
the soundness results “from scratch” for each language. Similar, ~g-act-soundness will
imply a notion of tree soundness introduced in [CCO8| to show observational equivalence.
Our preliminary results indicate that we can also get rid of the unique parsing assumption
which underlies an impossibility result for soundness of exclusive or in the reactive simu-
latability framework [BP05a]. We also investigate combination results allowing to obtain
soundness results for equational theory £ U & from soundness results £ and &,.
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CHAPTER 8

Perspectives

In this thesis I have summarized a selection of results I obtained in the last few years.
I now describe some directions for future work. Parts of these perspectives for future work
were already sketched in the conclusions of previous chapters. These research directions
will be organized around 4 themes: security APIs, equivalence properties, computational
soundness and privacy properties.

A theory for security APls

Hardware security modules are designed to allow untrusted code to be executed without
compromising the security of key material. Keys are supposed to appear in the clear only in
the device’s shielded memory. Functionalities of the device, such as encrypting or signing
data, are available through an API which generally allows to refer to keys using handles
without knowing the keys’ values. API level attacks [LR92, BAO1] aim at breaking the
security policy of such devices, e.g. extracting the value of a secret key, by a sequence
of calls to the API, which was not foreseen by the designers. Most existing work on
formally analyzing security APIs relied on the experience of the use of formal methods
in the analysis of security protocols. While security protocols are similar to APIs, there
are some important differences which motivate the development of a dedicated theory for
analysing APIs. We give here some concrete topics that we plan to explore. This line of
research is the PhD topic of Robert Kiinnemann who started his PhD in October 2010.

Models with storage. As already discussed in Chapter 4 one difference with most security
protocols is that security APIs rely on the storage of some data which is persistent. These
data can be read or modified by different calls to the API, and affect the execution of
API commands. This notion of state was identified by Herzog [Her06| as a major barrier
to the application of security protocol analysis tools to verify APIs. We can distinguish
different kinds of such state. In some applications we need an unbounded number of
stores which take a value chosen from a finite domain. This is for instance the case in
PKCS#11 where a particular combination of attributes is associated to each key (and the

99
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number of keys is a priori unbounded). In optimistic fair exchange protocols a similar
situation arrives and the trusted third party needs to associate to each session identifier
its status (unseen, aborted or resolved). Analyzing protocols which maintain this kind of
state was the topic of a recent paper by Mddersheim [M6d10|. However, first experiences
with Mddersheim’s tool showed that the abstractions he proposes are too coarse to analyze
PKCS#11. In other APIs a different kind of state may arise: the TPM for instance has
Platform Configuration Registers (PCRs) which can be extended using arbitrary messages.
For this kind of applications we need a model that allows a finite number of data stores,
which may however take an unbounded number of possible values.

One of our aims is to develop models and analysis techniques which allow us to consider
data stores which can be read and updated by parallel processes accessing it. This line of
research includes extending cryptographic process calculi with constructs for state. While
such state could be encoded in existing process calculi, having dedicated constructs and
corresponding proof techniques would be more convenient. Another direction is to revisit
decidability and complexity results for models with state when the number of sessions
and fresh names is bounded (which may imply that the number of stores or possible
values is bounded as well). We also plan to design abstractions which allow to analyse an
unbounded number of sessions, as it has been done successfully in the case of “standard”
protocols using for instance Horn clauses. A first concrete direction would be to refine
Médersheim’s abstraction tool [M6d10] to be able to treat examples such as PKCS#11.

Security properties as ideal systems. As we have noticed in Chapter 4 it is sometimes
difficult to define what is the expected security property that a security API should ensure.
Therefore, an appealing approach would be to specify the security of APIs by the means
of an ideal API. One direction would be to use the framework of universal composability
(UC) |Can01]. UC has emerged during the last years as a powerful model for showing the
security of complex systems. The main idea is to start with a system which is trivially
secure by construction and then refine each of the components towards a realization, gen-
erally relying on cryptography. The individual components are specified by an interface
and it seems natural to use similar ideas in the context of security APIs. We could also
build on our recent work on UC in the applied pi calculus [24]. In particular such an ideal
version would ensure that key management and key usage do not interfere. For instance,
in PKCS#11 encryption and decryption of data do interfere with the wrap and unwrap
constructs for exporting and importing keys which is one of its main sources of flaws. A
concrete objective would be to show that APIs such as the ones described in [CS09] and
[CCO09]|, which have been shown secure in different models, could implement such a secure
functionality.

Computational soundness. During recent years there has been a drive to relate symbolic
security proofs and computational security proofs (see 7] for a survey). However, the
hypotheses which are needed seem to be unrealistic in the context of security APIs. For
instance, the hardware module underlying the API may have restricted computational
power and needs to execute efficient encryption algorithms that may not satisfy strong
security assumptions that are needed for existing soundness results. We wish to investigate
how these hypotheses can be weakened in the particular context of security APIs, exploiting
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the particular structure of the data which is allowed in the requests to the API. This work
may also built on recent developments in cryptography, e.¢g. deterministic authenticated
encryption [RS06], allowing for instance to securely encrypt keys with their attributes.

From trace properties to indistinguishability properties

The notion of indistinguishability, such as static equivalence, observational equivalence or
testing equivalence, has shown to be extremely useful to model security properties. As we
have seen in Chapter 3, privacy-type properties of electronic voting can be expressed in
terms of observational equivalence. Also, strong notions of secrecy [Bla04], resistance to
guessing attacks [CDE05, Bau05, 27| or more generally real-or-random properties can be
modelled using indistinguishability. Indistinguishability of processes can also be used to
express security by the means of ideal systems [AG99, 24].

While we have a good understanding of trace properties, such as deduction based se-
crecy and authentication, the situation is different for indistinguishability properties. The
picture for static equivalence is also rather complete [AC06, CD07, ACD07, BBRC09]
and exact [BCD09, 23, 6] and approximate [BAF05] tools exist for large classes of equa-
tional theories. The situation is however less clear when we consider indistinguishability
in the presence of an active adversary. Current results allow to approximate observational
equivalence for an unbounded [BAF05], respectively bounded number of sessions [31, 9],
or decide it on a restricted class of processes [CD09a], relying on decision procedure for
deciding the equivalence of two symbolic traces |[Bau05, CR10]|, for subterm convergent
equational theories.

Decidability and complexity. Obviously, when we allow for replication, equivalence prop-
erties become undecidable. As shown by Hiittel [Hiit02], this is even the case for the finite
control fragment, for which observational equivalence is decidable in the original pi calcu-
lus. It may however be possible to identify subclasses of protocols for which the problem
becomes decidable, as for trace properties [DEK82, RS03, RS05, Low98, 26]. Even though,
one may expect observational and testing equivalence to be decidable for many classes of
equational theories for the finite applied pi calculus (i.e. the fragment without replica-
tion) such results are currently missing and our theoretical understanding of this decision
problem is currently very limited. Therefore we foresee to investigate decidability and
complexity results for different (families of) equational theories.

One may note that equivalence of constraint systems such as [Bau07, CCD10, CR10],
allows us to decide the equivalence of two symbolic traces. While this is an interesting first
step towards the decision of equivalence properties it is not sufficient for deciding testing
equivalence or observational equivalence (except for restricted classes of processes [CD09a]
for which the problem has been shown to be co-NP complete). (These results neverthe-
less allow us to approximate observational equivalence using for instance our symbolic
bisimulations [31, 9].)

Combination. In order to develop decision procedure in a modular way it would be
interesting to obtain combination results of the following type: if observational equivalence
is decidable for the equational theory £ and for the equational theory £ then observational
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equivalence is also decidable for & U &. Such results have been obtained for disjoint
theories in the case of static equivalence [ACDO7]|, as well as for disjoint theories [CRO5]
and hierarchical theories [CR06] in the case of reachability properties. To the best of our
knowledge no such combination results exist for equivalence properties in the presence of
an active attacker.

Efficient procedures. While a theoretical understanding of the decidability and complex-
ity is important and interesting, it is equally important to develop practical tools that can
be used to analyse and verify protocols. The Proverif tool indeed allows to approximate
observational equivalence [BAF05| by showing a finer relation. However, this relation is too
fine in examples such as the electronic voting protocols we studied in [37, 34, 13]. Also, the
procedures for deciding equivalence of two constraint systems presented in [Bau07, CCD10]
are non-deterministic and not suitable for an implementation. In [CCD10| a procedure
and and a prototype implementation are presented, but only for a fixed signature. With
S. Ciobacd and R. Chadha we are currently working on a generalization of the procedure
implemented in KiSs to decide trace equivalence for the finite applied pi calculus and
subterm equational theories.

Composition. Currently, most works on composition are limited to trace properties [CDDO07,
CD09b, CC10, 26]. It would be interesting to investigate whether these results can be
transferred to indistinguishability properties. The aim is to find sufficient conditions such
that

if vk.P~vk.(Q then vk.(P|R)~vk.(Q|R)

and similarly for self-composition
if vk.P~(@Q then vk!P~!Q

The proofs in [CD09b, 26| are based on a constraint solving procedure for deciding security
properties. In recent work, Cheval et al. [CCD10] also use a constraint solving procedure
to decide equivalence properties. A concrete question is whether the proofs of [CD09b, 26|
can be adapted to this procedure to obtain composition results for indistinguishability
properties.

Modular computational soundness results

A first computational soundness result was obtained by Abadi and Rogaway [AR02]. Sub-
sequent work extended the adversary capacities, the cryptographic primitives which are
considered and the properties. While soundness in the presence of a passive or adaptive
adversary is rather well understood the state-of-the-art in the presence of an active ad-
versary is much less advanced. Most results are obtained for a specific protocol language
and the definitions are generally tailored to a specific equational theory with monolithic
soundness proofs. Our aim is to design a modular framework to show soundness in the
presence of an active adversary. This is currently work in progress with H. Comon-Lundh
and J.-K. Tsay.
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The aim is to define notions of -¢-act-soundness and ~g-act-soundness as cryptographic
games, in the style of the soundness definitions for passive and adaptive adversaries. One
of the main differences with the games for passive and adaptive adversaries is that the
attacker may himself compute and submit bitstrings to the oracles, rather than only sym-
bolic terms. Such games will be independent of a particular protocol language avoiding
unnecessary details of a given protocol language and allow us to concentrate on the hy-
potheses we need on the cryptographic primitives. Fg-act-soundness can then be used
to prove trace mapping results easily for any reasonable protocol specification language,
hence avoiding to reprove the soundness results “from scratch” for each language. Simi-
larly, ~¢-act-soundness will imply a notion of tree soundness introduced in [CC08] to show
observational equivalence. Our preliminary results indicate that we can also get rid of the
unique parsing assumption which underlies an impossibility result for soundness of exclu-
sive or in the reactive simulatability framework [BP05a]. Hence, we hope to get results
that can be summarized as follows:

~

[i—g—act—soundness :>[ mapping lemma ]

i

[Ng—act—soundness

7

~

:>[ tree soundness ]

J

We also investigate combination results allowing to obtain soundness results for equa-
tional theory & U&s from soundness results £ and £. While we cannot expect to achieve
such results in general we aim at identifying sufficient conditions for such combination
results to hold.

Another direction for research in the area of computational soundness is to make sound-
ness results more applicable to real case studies. Currently, many simplifying hypotheses
are made to allow such soundness proofs. For instance, encryption schemes are supposed
to be length concealing and adversaries are not allowed to generate keys in an arbitrary
way which is not realistic in practice. Hence, many of these results need to be refined
to be applicable. We believe that giving a computational proof of the anonymity of a
simple voting protocol such as [FOO92] using a soundness result would be a challenging
task which would highlighten many shortcomings in the current results. Another applica-
tion area which we already mentioned in the previous section and which certainly needs
to adapt existing results are security APIs. When trying to apply such soundness results
we may also need to sometimes refine symbolic models and adapt the symbolic analysis
techniques.

Privacy properties

Strong notions of privacy. In our previous work on electronic voting protocols [34, 13]
we have studied strong notions of privacy, such as receipt-freeness and coercion resistance.
The aim of these properties is to avoid that a voter can break privacy himself, i.e., the
voter should not be able to prove how he voted to a third party. While these properties
are natural in the context of electronic voting we believe that similar notions of strong
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privacy also arise in other contexts. Receipt-freeness has for instance been identified as
a desirable property in electronic auction protocols [AS02| to avoid bid-rigging and this
property has recently been modelled and analysed [DJP10] using definitions based on our
work in the context of electronic voting. Such strong notions of privacy can certainly be
applied in other areas. For instance, Backes et al. [BMM10| recently proposed symbolic
abstractions for secure multi-party computations. We plan to investigate formalization of
strong notions of privacy in the general case of secure multi-party computations.

We are also planning to extend our epistemic logic [22] to be able to express notions such
as receipt-freeness and coercion-resistance. In particular we need to introduce the notion
agents and their knowledge. We expect to be able to express Kiisters et al.’s epistemic
definition of coercion-resistance [KT09] in this logic and maybe compare it to definitions
in terms of indistinguishability.

Privacy and mobility. The proliferation of mobile devices, such as mobile smart phones,
RFID tags, ..., and ad-hoc networks has lead to a wide range of security problems. In par-
ticular, privacy properties, such as unlinkability, are of increasing importance and difficult
to ensure. Recently, the use of RFID tags in passports has been formally studied [ACRR10].
This analysis was conducted in the applied pi calculus. The applied pi calculus is however
limited as it does not have particular constructs for mobility. While specialized calculi
with constructs for modelling mobility exist [CG00, NH06|, they do not have constructs
for modelling cryptographic primitives. An interesting direction for research would be to
enhance such calculi with a term algebra as in the applied pi calculus to be able to rea-
son explicitly about security properties in such mobile environments. Some works in this
direction already exist, such as Blanchet and Aziz’s crypto-loc calculus [BA03] and higher
order cryptographic pi calculi [KH11, SS09] for modelling mobile code.
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