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Résumé 

En dehors des effets cytostatiques ou cytotoxiques sur les cellules tumorales, 

certaines thérapies anti-cancéreuses (anthracyclines, l'oxaliplatine, rayons X) 

peuvent déclencher la mort cellulaire immunogénique, libérant ainsi les signaux de 

danger pour alerter le système immunitaire. Nous avons montré que les cellules T 

CD8+ T (Tc1) productrices d‟IFN- et spécifiques de la tumeur sont nécessaires pour 

le succès de la chimiothérapie et la diminution de la croissance tumorale. L‟amorçage 

d‟une réponse bénéfique Tc1 dépend de la sécrétion d'IL-1β par les cellules 

dendritiques confrontées à des cellules tumorales traitées avec de l‟anthracycline 

libérant de l‟ATP. Afin d‟identifier les composants inflammatoires qui lient les 

réponses immunitaires innées et adaptatives, nous avons analysé l'influence de la 

chimiothérapie immunogène sur le microenvironnement de la tumeur. Nous avons 

identifié une up-régulation de gènes associés à la réponse Th1 et Th17 dans un 

modèle de tumeur répondant au traitement par les anthracyclines par un retard de 

croissance. En interférant avec les voies IFN- ou l'IL-17A, l'effet thérapeutique de la 

doxorubicine et l'oxaliplatine a été aboli dans ce modèle et le vaccin à base de 

cellules tumorales mortes a perdu de son efficacité à protéger les souris de la 

réintroduction de cellules tumorales vivantes. Nous avons également découvert que 

des sous-populations distinctes de lymphocytes T  (V4+ et V6+) colonisent des 

tumeurs peu de temps après la chimiothérapie, où ils ont proliféré et sont devenus 

producteurs majeurs de l‟IL-17 au sein de la tumeur. Nous avons constaté une forte 

corrélation entre la présence de lymphocytes T  producteurs d‟IL-17 ( T17) et de 

TIL CD8+ (Tc1) dans trois modèles différents de tumeurs traitées par la 

chimiothérapie ou la radiothérapie. IL-17A agit sur la signalisation en amont de l'IFN- 

puisqu‟un défaut d‟expression d‟IL-17RA conduit à la perte complète de la production 

des Tc1 spécifiques de l‟antigène. La contribution des cellules  T17 (V4+ et V6+) 

dans l‟effet bénéfique de la chimiothérapie est essentielle puisque les souris V4/6-/- 

ont montré une réduction de leur sensibilité à la chimiothérapie et la vaccination 
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anti-tumorale et l'infiltration tumorale par les cellules  T17 et Tc1 a été réduite au 

niveau basal chez ces souris. L‟axe IL-1β/IL-1R, mais pas IL-23/IL-23R, est 

essentielle pour la production d'IL-17 par les cellules T et l‟effet bénéfique de la 

chimiothérapie. Le transfert adoptif de lymphocytes  T peut rétablir l'efficacité de la 

chimiothérapie dans le modèle de souris IL-17A-/- et peut améliorer l'effet de la 

chimiothérapie chez la souris wt, à condition qu'ils conservent l'expression de l'IL-1R 

et de l'IL-17A. Nos résultats suggèrent fortement l‟existence d‟un axe fonctionnel: DC 

(IL-1β) → cellules T (IL-17) → Tc1 (IFN-), déclenché par la chimiothérapie induisant 

la mort des cellules tumorales, un phénomène essentiel pour une réponse 

thérapeutique favorable.   

  Pour renforcer la réponse immunitaire, nous essayons aussi de combiner la 

chimiothérapie « immunogène » avec le vaccin anti-tumoral en présence d‟adjuvants 

(poly (A:U), l'agoniste de TLR3). Ce type de thérapie séquentielle combinée, que 

nous avons appelé VCT, pourrait retarder considérablement la croissance des 

tumeurs, voire éradiquer complètement la tumeur et établir une protection à long 

terme spécifique de la tumeur. Pour décortiquer l'effet de la poly (A:U) sur le système 

immunitaire et sur les cellules tumorales exprimant le TLR3, nous avons effectué un 

traitement VCT chez la souris nude, TRIF-/- et les souris présentant une diminution de 

l‟expression de TRIF au niveau des cellules tumorales. Nos résultats montrent que 

l'effet anti-tumoral de VCT requiert les lymphocytes T et la voie de signalisation TRIF 

intacte au niveau de l'hôte et des cellules tumorales. Le traitement poly (A:U) peut 

induire un niveau élevé de production de certaines chimiokines associées à la 

réponse de type Th1 (CCL5 et CXCL10 notamment) par les cellules tumorales in vitro 

et in vivo, ce qui peut influencer  négativement et positivement les résultats 

thérapeutiques. Le découplage de l‟action de CCL5 et de CXCL10, pourrait améliorer 

le traitement par la VCT. En résumé, notre étude souligne le rôle des facteurs 

inflammatoires dérivés de la tumeur et de l‟hôte dans la régulation de la réponse 

immunitaire anti-tumorale. Nous résultats suggèrent également que les applications 

thérapeutiques des agonistes TLR peuvent être optimisées grâce à la régulation du 

profil de chimiokines associées à la réponse de type Th1 produites in situ. 
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Summary 

Besides exerting cytostatic or cytotoxic effects on tumor cells, some anti-cancer therapies 

(anthracyclines, oxaliplatin, X-Rays) could trigger an immunogenic cell death modality, 

releasing danger signals to alert immune system. We have shown that tumor-specific 

IFN- producing CD8
+ 

T cells (Tc1) are mandatory for the success of chemotherapy to 

prevent tumor outgrowth. Priming of Tc1 response depends on IL-1β secretion by DC 

confronted with anthracycline-treated tumor cells releasing ATP. To identify the 

inflammatory components which link innate and cognate immune responses, we analyzed 

the influence of immunogenic chemotherapy on tumor microenvironment. We found an 

upregulated Th1- and Th17-related gene expression pattern in growth-retarded tumor 

after anthracycline treatment. By interfering with IFN- or IL-17A pathways, therapeutic 

effect of doxorubicin and oxaliplatin was abolished and dying tumor cell-based vaccine 

lost its efficacy to protect mice from live tumor cell rechallenge. Interestingly, we 

discovered that distinct subsets of  T lymphocytes (V4
+
 and V6

+
) colonized tumors 

shortly after chemotherapy, where they proliferated and became the dominant IL-17 

producers within tumor beds. In three tumor models treated with chemotherapy or 

radiotherapy, a strong correlation between the presence of IL-17-producing  T ( T17) 

and IFN--producing CD8
+
 TIL (Tc1) was discovered. IL-17A signaling acts as upstream of 

IFN- since defect in IL-17RA led to complete loss of antigen specific Tc1 priming. The 

contribution of  T17 cells (V4
+
 and V6

+
) to chemotherapy is critical as V4/6

-/- 
mice 

showed reduced sensitivity to chemotherapy and vaccination. Also, tumor infiltrating  

T17 and Tc1 cells were reduced to basal level in this strain. IL-1β/IL-1R, but not 

IL-23/IL-23R, is pivotal for IL-17 production by  T cells and the success of chemotherapy. 

Importantly, adoptive transfer of  T cells could restore the efficacy of chemotherapy in 

IL-17A
-/-

 mice and ameliorate the effect of chemotherapy in wild type host, provided that 

they retain the expression of IL-1R and IL-17A. Our research suggest a DC (IL-1β) →  

T cells (IL-17) → Tc1 (IFN-) immune axis triggered by chemotherapy-induced dying 

tumor cells, which is critical for the favorable therapeutic response. 
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  To boost the immune system, we try to combine immunogenic chemotherapy with tumor 

vaccine in the presence of TLR3 agonist Poly (A:U). This sequential combined therapy, 

which we named VCT, could significantly retard tumor growth or even completely 

eradicate tumor and establish long-term protection against rechallenge in highly 

tumorigenic models. To dissect the effect of Poly (A:U) on immune system and that on 

TLR3 expressing-tumor cells, we performed VCT treatment in nude mice, TRIF
-/-

 mice and 

with TRIF-silencing tumors. Interestingly, our results suggested that anti-tumor effect of 

VCT required T cells and intact TRIF signaling pathway at the level of the host and that of 

tumor cells. Poly (A:U) treatment could induce high level of CCL5 and CXCL10 production 

from tumor cells both in vitro and in vivo, which could negatively and positively influence 

the therapeutic outcome. By uncoupling the effect of CCL5 from that of CXCL10, the VCT 

treatment can be ameliorated. Our study emphasizes that both tumor and host derived 

inflammatory factors participate in regulating anti-tumor response. We also highlight that 

therapeutic application of TLR agonists can be optimized through regulating the profile of 

chemokines and their downstream signaling events. 

 

 

Keywords:  

Tumor, cell death, chemotherapy, immune response, tumor infiltrating leukocytes,  T, 

IL-17A, IL-1β, Poly (A:U), CCL5, CXCL10 
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Introduction 

Cancer, a leading lethal disease, could account for around one out of four deaths 

worldwide. In Europe alone, one in three people will be affected by cancer in their lifetime 

and approximately half of them will receive chemotherapy. Thus, it is of the utmost 

importance to understand how anticancer therapies occasionally work and elicit the host 

immune system for long-term tumor protection, and how to improve and predict the 

therapeutic effect shortly after chemotherapy.  

Immunosurveillance: friend or foe for tumor control? 

Immunosurveillance versus immunediting 

Immunosurveillance functions as an effective extrinsic tumor-suppressor system which 

influences the incidence and the clinical outcome of tumors [1]. In Japan, a 11-year 

follow-up of 3625 healthy people showed that reduced occurrence of common cancers 

was associated with medium and high cytotoxic activity of peripheral-blood lymphocytes 

[2]. Cancer may arise under conditions of reduced immune capacity. Immunosuppressive 

treatments applied in transplant recipients could increase the risk of malignancy and 

enable accelerated tumor growth by supporting oncogenesis caused by viruses or 

impaired immune surveillance [3,4]. In a cohort of 23729 female first cadaver kidney 

recipients who received therapeutic immunosuppression, the observed incidence of 11 

major cancer types (except breast cancer) was significantly higher than expected [5]. In a 

retrospective cohort of 4178 patients undergoing renal replacement therapy, of whom 

3592 were exclusively on dialysis and 1821 later had transplants, Birkeland et al observed 

significant excess cancer risks occurred after transplantation but not during dialysis [6]. 

Recently, it was reported that certain Immunosuppressive treatments display higher risk 

for post-transplant cutaneous squamous cell carcinoma [7].  

Compelling evidences from mouse studies prove that the immune system can indeed 

protect mice from the outgrowth of various types of primary and transplanted tumors. The 
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incidence of spontaneous neoplasia upon aging and the susceptibility to MCA 

carcinogen-induced sarcomas are much more prominent in mice lacking IFN- [8-10] or 

type I IFN responsiveness [11,12], or in immunodeficient mice lacking T cell [13], T and B 

cell [10,14,15], NK [15,16], NKT [15,17] and  T cells [18,19]. The Link between 

susceptibility to tumorogenesis and defined immunodeficiencies has been 

comprehensively reviewed in mouse models [20]. 

The encounter between the immune system and nascent tumors initiates a process 

termed “cancer immunoediting” which puts functional imprint onto the emerging tumor 

repertoire. This event brings about three outcomes or stages of tumorigenesis: tumor 

elimination, tumor equilibrium and tumor escape [21-23]. Host immune system could 

eliminate some tumor cells but the this process is not always complete, thus surviving 

tumor variants may enter into the “equilibrium” phase, where tumor cells can become 

functionally dormant or even remain clinically unapparent throughout the life of the host 

[22-24]. During this phase, adaptive immune cells (eg. CD4
+
, CD8

+
 T cells) and effector 

molecules (eg. IFN-, IL-12) are responsible for preventing tumor outgrowth [23]. Under 

these selective pressures, some tumor cells eventually acquire further mutations, become 

more resistant to the immune destruction and therefore escape the immunosurveillance 

(Figure 1.1). Indeed, a significant portion (40%) of MCA sarcomas derived from 

immunodeficient Rag2
−/−

 mice were spontaneously rejected when transplanted into naive 

syngeneic wild type mice, whereas 100% of MCA sarcomas derived from 

immunocompetent wild type mice grew progressively [10]. In this sense, immune system 

could facilitate tumor growth through “editing” or selecting tumor cells that are more 

capable of escaping immune detection, or by establishing the pro-tumoral 

microenvironment which favors the eventual tumor outgrowth [20,25]. Taken together, 

these findings suggest the dual host-protective and tumor-sculpting actions of immunity 

on developing tumors. 
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Figure 1.1 Cancer immunoediting consists of three sequential phases: elimination, equilibrium, 

and escape. Immune molecules and cells could recognize and eliminate transformed cells to prevent 

tumor outgrowth. While some rare cancer cell variants are not completely destroyed in the elimination 

phase. They may then enter the equilibrium phase, accumulating mutations and acquire the ability to 

avoid immune eradication under the selection pressure of immune system. (figure from [25]). 

 

Role of inflammation in oncogenesis and tumor escape 

Some stimuli, such as tobacco smoke, contaminated or unhealthy food, infections, obesity, 

radiation and environmental pollutants, can induce and promote cancer development 

[26,27]. One common process induced by all these risk factors is inflammation. Inducers 
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of inflammation can be exogenous (microbial inducer, allergens, irritants, foreign bodies or 

toxic compounds) or endogenous (stressed, damaged cells or malfunctioning tissues) [28]. 

Chronic inflammation have a broad impact on tumor initiation by generating genotoxic 

stress, on tumor promotion by inducing cellular proliferation, and on tumor progression by 

enhancing angiogenesis and tissue invasion [26]. Thus, immune system does sometimes 

inadvertently provide a tumor-prone microenvironment and the causative connection 

between inflammation and tumors has been mechanistically established [26,29,30]. 

Up to 20% of all cancers arise in association with persistent and unresolving 

inflammation and most, if not all, solid tumors contain inflammatory infiltrates [31]. 

Inflammation, cytokines, and signal transducer and activator of transcription 3 (STAT3) 

have been classified as the “Unholy Trinity” that shapes the pro-tumorigenic 

microenvironment [32]. In ovarian, lung and gastro-oesophageal cancer patients, elevated 

IL-1β, IL-6 and IL-8 have been detected in ascites, bronchoalveolar lavage (BAL) fluid, 

serum and tumor tissues [33-36], correlating with a poor prognosis [35-43]. Chemical 

carcinogenesis in MCA-treated mice requires the participation of pro-inflammatory 

cytokines/signaling, such as IL-1β, IL-23, IL-10 and myeloid differentiation primary 

response gene (88) (MyD88) [20]. In murine transplantable tumor models, IL-1β derived 

from the host and that originated from tumor cells is involved in promoting tumor growth, 

angiogenesis, metastasis, myeloid cells recruitment as well as supporting drug resistance 

[44-46]. Tumor necrosis factor-alpha (TNF-), a major inflammatory cytokine that can 

induce rapid hemorrhagic necrosis and tumor destruction, also plays a paradoxical 

tumor-promoting role through enhancing oncogene activation, tumor cell invasion, 

angiogenesis and chemotherapy resistance [47,48]. Plasma TNF- was increased in 

various cancer patients, especially those with poor prognosis [49-51]. STAT3 acts as a 

point of convergence for numerous oncogenic signaling pathways. It is constitutively 

activated both in immune cells and in tumor cells within the tumor microenvironment. 

Activation of STAT3 induces upregulation of several key genes involved in cell 

proliferation and survival (eg. c-Myc, survivin, cyclin D1/D2). It also promotes 

pro-oncogenic inflammation (IL-6, VEGF, MMP2, MMP9, HIF-1) and immune 

suppression (IL-10, TGF-β) while opposing STAT1- and NF-κB-mediated anti-tumor Th1 
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response (IL-12, CXCL10, IFN-, IFN-β, MHC class II, CD80, CD86) [52-54]. 

Unexpectedly, various factors derived from the tumor microenvironment also contribute to 

systemic anti-inflammation besides desensitizing local inflammation. Thus, neoplastic 

disorders are often associated with a defective capacity to mount inflammatory reactions 

at sites other than the tumor [29]. 

 

Dynamic interconnection between pro- and anti-tumor inflammation 

Taken together, the crosstalk between tumor and immune system constitutes a paradox in 

terms of inflammatory response. The nature, timing, intensity and sites of inflammation 

might explain this apparent contradiction. Chronic inflammation might expedite tumor 

formation while acute inflammation might well hamper the process [55]. The 

tumor-promoting and tumor-disruptive inflammation could coexist within the same tumor 

bearer, even at the same tissue site, and are dynamically interconnected [20,25,56] 

(Figure 1.2). What‟s more, the same inflammatory molecule may promote or prevent 

tumor formation depending on the biological context in the tumor microenvironment [20]. 

This phenomenon is a vivid proof of the fascinating Yin-Yang dialectics and further 

investigations should bring us more clues to the proper manipulation of inflammation 

against cancer.  

 

 



17 
 

 

Figure 1.2 A schematic diagram of how inflammation participates in the different phases of tumor 

development. It shows how host immune system positively and negatively regulates tumor initiation and 

formation through immunosurveillance and immunoediting, how chronic inflammation assist rapid tumor 

progression and how acute inflammation induced by immunotherapy could retard tumor outgrowth [56]. 

 

Tumor microenvironment and tumor infiltrating immune cells 

Solid tumors are not merely composed of heterogeneous clones of tumor cells. To some 

extent, tumor formation can resemble the process of tissue remodeling and organ 

development [57]. They contain multiple cell types (tumor cells, fibroblasts, endothelial 

cells, blood vessels, lymph vessels and immune cells), soluble factors (cytokines, 

chemokines and products of cellular metabolism) and extracellular matrix [1,57]. Immune 

cells infiltrate tumors and make up a significant component of the tumor microenvironment. 

The complicated cellular and molecular interactions between tumor cells and infiltrating 

immune cells influence the capacity of tumors to progress and to metastasize.  

 

The impact of tumor infiltrating immune cells and their effector molecules on tumor 

progression 

The type, density, activation status and location of tumors infiltrating lymphocytes could 

predict patient outcome. A high CD8 and low forkhead box P3 (FOXP3) cell infiltration 

pattern after neoadjuvant chemotherapy was significantly associated with improved 

progression-free survival (PFS) and overall survival (OS) [58]. A high infiltration of CD3
+
, 

CD8
+
, Granzyme B

+
, and CD45RO

+
 cells in the center and/or in the invasive margin of the 

tumors are of good prognosis and prolonged survival [59,60]. A coordinated expression of 

Th1 specific genes and cytotoxic markers (but not Th2-, immunosuppression-, 

inflammation- or angiogenesis-related genes) was associated with high density of 

CD45RO
+
 memory cells. CD8

+
 plus CD45RO

+
 cells provide a useful immune criterion for 
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the prediction of low tumor recurrence and long-term survival in patients with early-stage 

colorectal cancer [61]. Furthermore, a significant positive correlations between markers of 

cytotoxic and effector memory T-cells, and that between markers of innate immune cells 

and early-activated T cells have been observed in colorectal cancer tumors with high 

densities of T cells, suggesting a coordinated immune reaction is needed to concentrate 

the most efficient effectors at the tumor site [62]. Based on the convincing evidence from 

colorectal tumors studies, Fridman and his colleagues proposed the primary tumor 

infiltration by memory T cells, particularly of the Th1 and cytotoxic types, as a strong 

prognostic factor in terms of DFS and OS. This immune scoring could help 

decision-making regarding the application of adjuvant therapies in early-stage human 

cancers [63,64]. Interestingly, the presence of tumor-associated lymphocytes in breast 

cancer is also an independent predictor of response to anthracycline/taxane neoadjuvant 

chemotherapy [65].  

Even if, in general, a high lymphocytic infiltrate remains of good prognosis, tumors could 

also recruit various immune cells with “Janus face” [66]. NK cells are present in many 

tumors but elucidation of their role is still needed [67]. B cells infiltrating breast carcinoma 

show oligoclonal expansion and affinity maturation in situ, representing a tumor-specific 

humoral immune response [68,69]. In metastatic ovarian carcinoma, however, B cell and 

NK cell infiltration correlates with poor overall survival of patients [70]. In a mouse 

squamous carcinogenesis model, adoptive transfer of B cells or serum from K14-HPV16 

transgenic mouse could reinstate necessary parameters that promote de novo 

carcinogenesis [71]. In this model, autoantibodies secreted by B cells are deposited in the 

tumor stromal and locally activate FcR-mediated signaling on resident and recruited 

myeloid cells to promote premalignant progression [72]. B cell derived IL-10 is also 

instrumental to induce M2 polarization of tumor-associated macrophages (TAM) [73]. 

Depending on the Th1- or Th2-like cytokine profile and co-stimulatory milieu, NKT cells 

could improve or suppress anti-tumor response [74-76]. Functionally distinct populations 

of NKT cells do exist in tumor models [76]. Whilst V14J18
-
 type II NKT cells may be 

responsible and sufficient for the negative regulation of antitumor immunity, V14J18
+
 

type I NKT cells could provide protection against tumor [77,78].   
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In addition, tumors could hijack regulatory pathways of the host immune system and 

acquire resistance to immune attack. Tumor microenvironment can be dominated by 

regulatory T cells (Treg) which create a suppressive milieu [79,80]. High numbers of Treg 

cells can be detected in tumor bed [81-84], peripheral blood [85,86] and lymphoid 

aggregates [87], mitigating the immune response against cancer, negatively affecting the 

clinical disease course. Depleting Treg or inhibiting its immunosuppressive function could 

enhance anti-tumor response and improve therapeutic effect [88,89]. Myeloid derived 

suppressor cells (MDSC) are also present in most cancer patients and experimental 

animals bearing tumors [90], acting as regulators of immune system to facilitate tumor 

escape [91-93].  

 

Tumor-derived factors impair the function of immune cells 

Cancer cells can also instruct immune cells to undergo changes that promote malignancy. 

Tumor cells can block function of T and NK cells through secretion of soluble ligands of 

NKG2D [94]. TGF-β production by tumor cells can convert effector T cells into Treg which, 

in turn, suppress other tumor infiltrating effector T cells [95]. Unknown tumor-derived 

factors induce upregulation of macrophage scavenger receptor 1 (MSR1) on DCs, 

resulting in excessive uptake of extracellular lipids which reduces their capacity to process 

antigens [96]. Human breast cancer cells-derived thymic stromal lymphopoietin (TSLP) 

could drive the development of IL-13- and TNF--producing inflammatory Th2 cells, which 

are conducive to breast tumor development through inducing OX40 ligand expression on 

DC [97]. In tumor bearing mice, tumor derived granulocyte colony-stimulating factor 

(G-CSF) could promote bombina variagata peptide 8 (Bv8) expression in bone marrow 

CD11b
+
 Gr1

+
 cells, facilitating myeloid cell mobilization (especially neutrophils), tumor 

angiogenesis and promote tumor growth [98]. Bone marrow stromal protein 2 (BST2) 

released from tumor cells can subvert plasmacytoid DC (pDC) through 

immunoglobulin-like transcript 7 (ILT7) signaling and make pDC fail to respond to danger 

signals for type 1 IFN production. Pretreatment with IFN- and TNF- significantly 
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increased BST2 secretion, suggesting that the inflammatory status of tumor 

microenvironment support this immunoregulatory pathway [99]. Human and mouse 

tumors releasing cholesterol metabolites could dampen the expression of CCR7 on 

maturing DC by triggering liver X receptor (LXR), thereby impairing DC migration and 

allowing tumor escape [100]. Co-expression of T cell immunoglobulin mucin-3 (Tim-3) and 

programmed Death 1 (PD-1) on CD8+T cells indicates an exhausting state. While PD-1 

ligand (PDL1) and Tim-3 ligand (galectin-9) expression on tumor cells are involved in 

strengthen CD8
+
 T cell exhaustion and increase the lethality of advanced acute 

myelogenous leukemia [101]. 

Compared with normal tissue, tumor microenvironment possesses several unique 

physiological features, such as hypoxia, low extracellular pH and high glycolysis. These 

factors could regulate global gene expression profiles [102] to facilitate metabolic 

adaptation, resistance to cell death, drug tolerance, angiogenesis and metastasis 

[103-108], as well as regulating the biological functions of tumor-infiltrating immune cells, 

such as neutrophils [109], dendritic cells (DC) [110], macrophages, Treg [111] and 

cytotoxic T lymphocytes (CTLs) [102,112]. 

  Investigations on cell populations, distribution, activation states and functional 

polarization of immune infiltrates, as well as the tumor-stromal interactions in local 

microenvironment could provide targets for novel therapeutic approaches.  

 

Immunogenicity of chemotherapy and radiotherapy induced cell death 

Chemotherapy and radiotherapy could trigger immune response 

Tumor could evolve into an immune privileged site due to its autologous origin, the 

process of immunoediting and its unique microenvironment [113]. Physiological cell death, 

which occurs as a continuous byproduct of cellular turnover, is non-immunogenic or even 

tolerogenic. While massive cell death caused by chemotherapy or radiotherapy might 

saturate the local capacity of silent corps removal, trigger acute inflammation and 

anti-tumor immunity. Vaccination with irradiated tumor cells engineered to secret GM-CSF 
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could recruit DC, plasma cells, invariant NKT cells and tumor reactive CD4
+
 and CD8

+
 T 

cells, both in mice and in metastatic cancer patients, and evoke potent, specific and 

long-lasting anti-tumor immunity [114]. Neoadjuvant irradiation of cutaneous melanoma 

tumors prior to surgical resection reduces lung metastases greater than 20-fold [115]. In 

the absence of any adjuvant, subcutaneously inoculation of dying tumor cells pretreated 

with doxorubicin or mitoxantrone could prevent tumor growth upon syngeneic live cell 

rechallenge in immunocompetent mice [116,117]. Local irradiation or chemotherapeutic 

drug gemcitabine treatment could induce sufficient tumor antigen cross-presentation by 

tumor stroma which leads to eradication of established cancer [118].  

 

Checkpoints for generating immunogenic cell death and anti-tumor response 

In addition to trigger protective antineoplastic immunity, cancer therapy can also trigger an 

inflammatory response by causing trauma, necrosis, and tissue injury that stimulate tumor 

re-emergence and resistance to therapy [26]. Whether or not a beneficial immune 

response can be triggered by chemotherapy is determined by at least four checkpoints 

[119], including: the intrinsic properties of drugs, the chemo-responsiveness and 

immunogenicity of tumors, the capability of the host to sense and to react to tumor cell 

death, and the coordinated infiltration of immune effectors into tumor microenvironment. 

 

The property of the drugs 

A striking diversity does exist among anticancer drugs concerning the ability to regulate 

immune response directly or indirectly. A unbiased functional screen by Tanaka et al. 

unveiled that most topoisomerase inhibitors and antimicrotubule agents, but not alkylating 

agents, antimetabolites, platinum-based compounds or hormonal agents, could promote 

DC maturation [120]. Some 20 different apoptosis-inducing agents that operate through 

distinct mechanisms were tested for their ability to induce protective immune response. 

Most of the compounds, including agents that target the endoplasmic reticulum (ER), 
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mitochondria or DNA did not induce immunogenic cell death. In sharp contrast, 

anthracyclines (doxorubicin, daunorubicin, idarubicin and mitoxanthrone) were the most 

potent inducers of immunogenic cell death in several mice tumor models [116,121]. 

Noticeably, chemotherapeutic drugs could regulate the function of immune effectors or 

sensitize tumors for the immune eradication [122]. Cytotoxic drugs could stress tumor 

cells through various signaling pathways, triggering differed death modalities and 

releasing diverse cell death derived danger signals. Thus, high-throughput screening the 

immunogenic property of drugs, both chemotherapeutic and other clinical approved ones, 

is of utmost importance for improving their clinical application [123].  

 

Tumor derived factors and their perception 

Whether tumor cells die in response to the therapeutic insult or the cell death occurs in an 

immunogenic manner [124] is another critical decision-making point. Multidrug resistance 

(MDR) gene products and genetic changes (eg, Bcl-2, Bcl-xL, Mcl-1 and p53) contributing 

to the anti-apoptotic pathways could account for the chemoresistance [122]. 

In the context that robust chemotherapy or radiotherapy could induce tumor cell death, 

cell death associated “danger signals” are emanated and they could trigger sterile 

inflammation. The release of positive and negative chemotactic signals and the ensemble 

of changing cell surface structures influence the choice of the host phagocytes to engulf, 

activate, differentiate and subsequently to prime the adaptive immunity [125]. The 

particular assembly of certain cell death-associated molecules originated from dying or 

dead cells could act like a combinatorial code to unlock antineoplastic inflammatory and 

immune responses. This “key-lock” paradigm is being progressively unraveled and 

corresponding counter-acting factors are also being demonstrated, explaining why current 

chemotherapy only works moderately.  

Anthracyclines, oxaliplatin, UVC and -radiation could induce pre-apoptotic 

translocation of calreticulin (CRT) and the disulfide isomerase ERp57 to the tumor plasma 

membrane which became receptive for engulfment by dendritic cells (DC). Both CRT and 
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ERp57 exposure have been proved to determine the immunogenicity of cell death 

[121,126,127]. CD47 interacting with its receptor SIRP- on macrophages could 

negatively regulate phagocytosis. It has been shown that pro-phagocytic effects of plasma 

membrane-exposed CRT are counteracted by the expression of CD47 on the same cell 

[128].  

High mobility group box 1 protein (HMGB1), an abundant nuclear protein and 

transcription factor, are extruded from apoptotic cells into the extracellular milieu. HMGB1 

could alert and recruit inflammatory cells, such as monocyte derived immature DC [129] 

and neutrophil [130]. Binding of HMGB1 to TLR4 could facilitate tumor antigen 

cross-presentation by DC [131], and negatively regulate the immunosuppressive function 

of Treg [132]. The immunostimulatory role of HMGB1 can be modified at the 

post-transcriptional level. Activation of caspases during apoptosis could induce ROS 

production which oxidizes HMGB1 and induce immune tolerance [133], albeit oxidized 

HMGB1 increases the cytotoxicity of chemotherapeutic agents or ionizing radiation and 

induces cancer cell apoptosis via the mitochondrial pathway [134].  

  Heat shock protein (HSP) is commonly overexpressed in tumor, probably due to the 

stressful tumor microenvironment. It could inhibit apoptosis and exhibit cytoprotective 

activity. Binding of HSP72 to inositol-requiring enzyme 1 alpha (IRE1) enhances 

IRE1/XBP1 (X-box binding protein 1) signaling at the ER and inhibits ER stress-induced 

apoptosis [135]. HSP72 associated with tumor-derived exosomes could restrain tumor 

immune surveillance through promoting the suppressive function of MDSC by triggering 

STAT3 activation in the TLR2/MyD88-dependent manner [136]. Some HSP, such as 

HSP27, HSP70 and HSP90, are strongly induced upon anticancer drugs treatment, 

oxidative stress and irradiation. The membrane expression of HSP on stressed or dying 

tumor cells could be potently immunostimulatory, due to their ability to interact with certain 

receptors on antigen presenting cells (APC), such as CD91, lectin-type oxidized LDL 

receptor 1 (LOX-1) and CD40, which facilitate DC maturation, tumor antigens presentation 

[137-141]. Further, HSP could activate NK cells [142] and act as the immunoadjuvant.  

Under physiological conditions, a 10
6
-fold gradient between cytosolic and extracellular 

ATP is maintained as a result of the activities of extracellular ecto-apyrase (NTPDase1) 
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and ecto-ATPase (NTPDase2), which metabolize ATP into ADP, AMP and adenosine. The 

release and extracellular accumulation of ATP could promote immune cell activation and 

pro-inflammatory responses [143,144]. In response to chemoattractants, neutrophils 

release ATP from the leading edge of the cell surface to amplify chemotactic signals and 

promote orientated cell migration, in an autocrine feedback manner through P2Y2 and A3 

receptors [145]. ATP could also provide a costimulatory signal to T cells during their brief 

encounter with APCs [146]. It is also involved in driving the differentiation of intestinal T 

helper 17 cells (Th17) [147]. Importantly, in the setting of chemotherapy, ATP released 

from dying tumor cells could trigger the activation of NACHT, LRR and PYD 

domains-containing protein 3 (NALP3) inflammasome through binding P2X purinoceptor 7 

(P2RX7) on DC, cumulating in caspase-1 activation and IL-1β secretion which is 

indispensible for the anti-tumor CTL priming [117]. However, NTPDase1 and NTPDase2, 

expressed on tumor cells [148], Treg [149] and endothelial cells [150] may quench this 

potent immunostimulatory factors. In addition, ATP can also have anti-inflammatory 

effects, especially when extracellular ATP is generated chronically and at low 

concentrations [143]. 

Cell death derived danger molecules could indeed promote inflammation and their 

contribution to the success of chemotherapy is determined by their proper perception by 

the host immune system. These findings might ultimately lead to an algorithm which could 

predict anticancer immune responses elicited by chemotherapy or radiotherapy and 

provide instructions to induce the “desirable” cell death. 

 

Hereditary factors from the host  

The host intrinsic factors also present a checkpoint for chemotherapy to eradicate tumors. 

Several single nucleotide polymorphisms (SNPs) have been associated with the 

sensibility of tumor to chemotherapy. A sequence polymorphism in Tlr4 (896A/G, 

Asp299Gly, rs4986790) affecting the extracellular domain of TLR4 resulted in the 

impaired capacity of monocyte-derived DCs (Mo-DCs) to cross-present melanoma 
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antigens to CTLs. In breast cancer patients (n = 280) treated with local surgery, local 

radiotherapy and systemic anthracycline injections (FEC protocol: (Fluorouracil (5FU), 

epirubicin and cyclophosphamide), those who bear this loss-of-function allele of TLR4 

developed metastasis more rapidly. And metastatic colorectal cancer patients (n = 338) 

bearing this SNPs undergoing an oxaliplatin-based regimen manifested a reduced PFS 

and OS [131]. A loss-of-function polymorphism that affects P2RX7 (Glu496Ala, 

rs3751143), lowering its affinity for ATP and thus IL-1β release in human monocytes, 

decrease the beneficial effect of anthracyclines to control metastasis in breast cancer 

[117]. The prognostic value of the SNPs in MMP genes is analyzed with 349 primary lung 

cancer patients. Tumor stage IIIB carrying MMP2 C-735T variant allele showed a 

significantly worse response. While the PFS and OS was significantly prolonged in MMP1 

G-1607GG variant allele carriers and MMP12 A-82G variant allele bearers respectively in 

small cell lung cancer patients [151]. These studies strongly suggest the ability of host to 

sense tumor cell death and to create a beneficial environment for launching anti-tumor 

immunity is of vital importance for the therapeutic success. Verified results from these 

studies should be considered as criteria for personalized treatment in the future.  

 

Coordinated function of immune cells and effector molecules 

Immunogenic cell death and its perception modulate the immune contexture of tumor 

microenvironment, which also acts as a critical checkpoint for the therapeutic success. A 

series of immunosuppressive factors, such as S100A9 associated with MDSC, 

prostaglandin E2 (PGE2), IL-6, TGF-β, CXCL8, IL-10, gangliosides, reactive oxygen 

species (ROS), indoleamine 2,3-deoxygenase (IDO) and extracellular adenosine, have 

been described to interrupt the tumor→DC→T cell cascade, with STAT3 acting as the “evil 

core” [152]. This immunsuppresive host-tumor equilibrium is reversed during the course of 

successful chemotherapies (Figure 1.3).  

Innate and cognate immune responses elicited by anti-cancer agents are required for 

an optimal therapeutic outcome. Indeed, tumoricidal activity of oxaliplatin or 10-Gy 



26 
 

irradiation against transplanted tumors was completely abolished in mice deficient for the 

recombination activating protein 2 (Rag2, which lack T, B and NKT cells), in athymic nu/nu 

mice (which lack T cells), and in wild type mice depleted of CD8
+
 lymphocytes [117]. Using 

CD11c-DTR transgenic mice in which conventional DC could be depleted by diptheria 

toxin, it was found that DC mobilized by doxorubicin-treated dying tumor cells were 

indispensable to elicit specific anti-tumor immunity [116]. DC derived IL-1β was shown to 

be a key cytokine which gears the Tc1 polarization of TCR-triggered CD8
+
 T cells and 

IFN- is indispensible for the tumor control by chemotherapy [117].  

  Immune effectors need to work in a coordinated fashion to achieve long-term protection 

by tumor vaccination, as well as to maximize tumor eradication. The cooperative 

functional pathways exist between various DC subsets [153]. Macroporous poly 

lactide-co-glycolide (PLG) matrices co-delivering GM-CSF, CpG-ODN and tumor lysates 

could recuit pDC, CD8
+
 DC and CD11b

+
 DC and potently prime local and systemic CD8

+
 

cytotoxic T lymphocyte (CTL). This tumor vaccine could completely eliminate distant and 

established melanoma and both pDC and CD8
+
 conventional DC (cDC) are necessary for 

generating this protective antitumor immunity [154]. CD11b
+
 stromal cells could capture 

tumor antigen from surrounding cancer cells, thus eliminating bystander antigen-loss 

tumor variants [155,156], in the IFN-- and TNF--dependent manner [157]. During this 

process, the cooperation between CD4
+
 and CD8

+
 T cells is mandatory because CD4

+
 T 

cells were needed not only for optimal CD8+ T cell activation but also at the effector stage 

within the tumor microenvironment [158]. The crosstalk between NKT,  T, NK and DC 

could also deliver substantial help for DC maturation and T cell priming [152] (Figure 1.3).  

It is generally assumed that antitumor immune responses are generated and controlled 

in the tumor draining lymph nodes. However, the tumor microenvironment may contain 

lymphoid-like structures that could regulate local adaptive immune responses. In CRC 

and lung cancer, adjacent tertiary lymphoid structures, composed of mature dendritic cells 

(T and B cells organized as germinal centers), have been postulated as the site of 

tumor-initiated immune reaction [64]. Tumor infiltrating-bronchus associated lymphoid 

tissues (Ti-BALTs), orchestrated as DC-Lamp
+
/CD4

+
 T cell clusters surrounded by CD20

+
 

B-cell follicles, have been recently described in non-small cell lung cancers endowed with 
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favorable clinical outcome [159]. Lymphotoxin , β and their receptor (LTβR), lymphoid 

tissue inducer (LTi) cells, dendritic cells, B and NK22 cells have been reported as 

contributive to tertiary lymphoid structures formation [160-164]. It remains to be 

investigated which cells are involved in tumor antigen uptaken and the priming of 

anti-tumoral adaptive immunity in tumor microenvironment.  

 

 

 

Figure 1.3 The Yin-Yang dialogue between tumor cells and immune cells. Live tumor cells produce 

or express a variety of metabolites or proteins that subvert the capacity of bona fide APC to initiate 

tumor-specific T cell responses (at all levels: engulfment, recruitment, differentiation, migration, activation, 

cross-presentation), contribute to activate MDSC or Treg competing against effector T cells and directly 

promoting angiogenesis or metastases (blue circle). In contrast, tumor cell death (intrinsically or 

extrinsically triggered) might either reenforce tumor-induced tolerance (via engulfment by inflammatory 

phagocytes and/or tolerogenic molecular pathways) or instead, reset immune responses by exposing 

appropriate „cell death-associated molecular patterns‟ which recruite key innate effectors, reboot APC 

functions and T cell polarization (red circle). 

 

Objectives of research 

In this study, we are intended to investigate the immune-relevant genes expression profile 

and the dynamic changes of the frequency, composition, activation status and repertoire 
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of tumor infiltrating leukocytes (TILs). We also assessed the possibility to use certain 

immune signatures to predict therapeutic outcome of chemotherapy, and to develop 

strategies for compensating insufficient immune stimulation and augmenting therapeutic 

effect of conventional chemotherapy.  

  We are attempted to address these questions: 

 What are the key mediators (immune cells and inflammatory molecules) during 

immunogenic chemotherapy? 

 How does immunogenic chemotherapy modify the tumor microenvironment? 

 What are the links and crosstalk among immunogenic cell death, innate and adaptive 

immunity triggered by chemotherapy?  

 What are the factors to activate tumor infiltrating leukocytes? Are they critical or 

sufficient? 

 The possible strategies to restore or potentiate anti-tumor immunity. 
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Materials and Methods 

Mice. Wild type C57BLl/6 (H-2
b
) and BALB/c (H-2

d
) mice aged between 7-12 weeks were 

purchased from Harlan (Gannat, France). Nude mice were bred in the animal facility of 

IGR or obtained from the Centre d‟élevage Janvier, the Mollegaard Breeding and 

Research Centre. TCR 
-/-

, IL-1R1
-/-

 and IL-17RA
-/-

(H-2
b
) mice were bred at CDTA, 

Orléans, France through BR and PP (as for TCR 
-/-

). IL-23p19
-/-

 and IL-17A
-/-

 (H-2
b
) were 

kindly provided by MJS. V46
-/-

 mice (H-2
b
) were kindly provided by GM and KI. CD1d

-/-
 

and CCR6
-/-

 (H-2
b
) were bred at St Vincent de Paul Hospital AP-HP, Paris, France and 

provided by KB. TRIF
-/-

, CXCR3
-/-

,CCR5
-/-

 mice were bred at CNRS IEM 2815, Orléans, 

France and INSERM U543, Paris, France. Experimental protocols were approved by the 

Ethics Committee in the animal facility of Institut Gustave Roussy.  

 

Genotyping. Mouse tail DNA was extracted with Maxwell® 16 Instrument. PCR was 

performed with GoTaq® Green Master Mix (Promega). For IL-17A KO genotyping, a 

195bp PCR product can be obtained from WT or HE mice with the primers (forward) 

5‟-TCTCTGATGCTGTTGCTGCT-3‟ and (reverse) 5‟-CGTGGAACGGTTGAGGTAGT-3‟.  

 

Cell lines. CT26 (H-2
d
) colon cancer, MCA205 (H-2

b
) and MCA2 (H-2

d
) sarcoma, TS/A 

mammalian cancer (H-2
d
) and EG7 thymoma (H-2

b
), B16-OVA melanoma (H-2

b
) cells 

were cultured in RPMI1640 containing 10% FBS, 2 mM L-glutamine, 100 IU/ml 

penicillin/streptomycin, 1 mM sodium pyruvate, and 10 mM HEPES at 37°C, 5% CO2. 

Murine GL26 glioma cells (H-2b) were maintained in DMEM supplemented with 10% FBS, 

2 mM L-glutamine, 100 IU/ml penicillin/streptomycin, 10 mM HEPES and 50 μM 

beta-mercaptoethanol. Human breast cancer primary cultures were established at Institut 

Gustave Roussy from metastatic patients suffering from ascitis after informed consent. 

Cells were used after three passages propagation in AIM-V culture medium. All media 

were purchased from GIBCO, France.  
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Reagents. Recombinant mouse IL-1β, IL-23, IL-6, TGF-β and IL-18 BPd/Fc were from 

R&D system. AhR antagonist CH223191 was from Calbiochem. Doxorubicin 

hydrochloride (D1515), mitoxantrone dihydrochloride (M6545) and DiOC6(3) were from 

Sigma Aldrich. Mouse IL-17A, IL-1β, IL-23p19 ELISA kits were purchased from 

eBioscience. Mouse ELISA kits and neutralizing antibody for IL-22 (AF582) (AB108C as 

isotype control) were purchased from R&D system. Antibodies for CD45.2 (104), CD3ε 

(145-2C11 or 17A2), CD4 (GK1.5), CD8 (53-6.7), TCR  GL-3, CD69 (H1.2F3), IL-17A 

(TC11-18H10) or IFN- (XMG1.2) were from BD bioscience or eBioscience. Anti-SCART2 

polyclonal serum was provided by Dr Jan Kisielow, Swiss Federal Institute of Technology 

(ETH), Switzerland. Neutralizing antibodies for IL-17A (MAB421), IFN- (XMG1.2), CCL20 

(MAB760), IL-23 (AF1619), IL-23R (MAB1686) and IL-6 (MAB406) were from R&D 

system. CpG oligodeoxynucleotide (ODN) 1668 was from MWG Biotech AG. Anti-TGF-β 

peptide P17 and control peptide were from JJL [165]. 

  Poly(A:U) was obtained from Innate Pharma (Marseille, France). The murine type I 

interferon was produced by M.F (Istituto Superiore di Sanità, Rome, Italy). Human 

interferon 2b and ELISA kits for CCL5 and CXCL10 were from R&D Systems, Europe 

(Lille, France). Ovalbumin holoproteins were from Calbiochem (France Biochem, Meudon, 

France). CpG oligodeoxynucleotide (ODN) 1668 was purchased from MWG Biotech AG 

(Ebersberg, Germany). Culture medium, fetal bovine serum and antibiotics were obtained 

from GIBCO (Invitrogen, France) or Sigma Chemicals (St. Louis, MO, USA). MetRantes 

was kindly provided by A.P (Merck Serono Geneva Research Center, Switzerland). 

 

Tumor models and chemo/radiotherapy. 810
5
 MCA205, EG7, CT26, TS/A or MCA2 

tumor cells were inoculated s.c. near the thigh into syngeneic mice. Chemotherapy was 

performed in MCA205 and CT26 models by intratumoral injection of DX (2 mM, 50 l, i.t) 

or OX (5 mg/kg body weight, i.p) when tumors reached the size of 25-45mm
2
. 

Radiotherapy was performed by local X-ray irradiation (10 Gy, RT250, Phillips) at the 

unshielded tumor area when TS/A tumor reached a size 40-60 mm
2
. 

  3×10
5
 B16-OVA or 6×10

5
 GL26 cells were inoculated s.c. into the left flank of C57BL/6 

mice. Vaccines were composed either of CpG ODN 1668 (5 μg/mouse) plus Ovalbumin (1 
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mg/mouse) or cells (10
6 

B16-OVA or GL26) pretreated with type I IFN (1000 IU/ml) for 

18hrs and then 20μM of doxorubicin for 24 hrs. Vaccines were injected into the right 

footpad (for CpG ODN) or right flank (for cell-based vaccines). Chemotherapy (oxaliplatin) 

was applied i.p. at 5mg/kg. Poly(A:U) was injected i.p. at 100 μg/mouse in B16-OVA 

model and at 500 μg/mouse in the GL26 model. MetRantes (10 μg/mouse) was injected 

i.p. daily for 3 weeks to block CCL5. Necrotic cells (F/T) were obtained following 2 

consecutive cycles of freezing (in liquid nitrogen) and thawing (at 37°C). For 

pre-immunization, CpG ODN 1668 (5 μg/mouse) plus Ovalbumin (1 mg/mouse) were 

injected into the right footpad 7 days before inoculation of tumor cells. To neutralize 

CXCR3, Anti-CXCR3-173 neutralizing monoclonal Ab and the control monoclonal Ab (PIP) 

were injected i.p. at 200 μg/mouse every other day for 12 days starting from 5 days before 

challenging with live tumor cells. 

 

Gene Expression Assays. Whole RNA was extracted using RNeasy Mini Kit, QIAGEN 

from tumor homogenates. 5 μg of RNA from each sample were reverse-transcribed using 

Quantitect Reverse Transcription Kit (QIAGEN). Gene expression assays were performed 

with custom TaqMan® Low Density Arrays using StepOnePlus™ Real-Time PCR System. 

PPIA was chosen as the endogenous control to perform normalization between different 

samples. 

 

Tumor dissection and FACS analysis. Tumor burdens were carefully removed, cut into 

small pieces and digested in 400 U/ml Collagenase IV and 150 U/ml DNase I for 30 min at 

37°C. Single cell suspension was obtained by grinding the digested tissue and filtering 

through 70M cell strainer. Cells were blocked with 10g/ml anti-CD16/CD32 

(eBioscience) before surface staining (2.5 μg/ml of each antibody). LIVE/DEAD Fixable 

Dead Cell Stain Kit (Invitrogen) was used to distinguish live and dead cells. For 

intracellular staining, freshly isolated cells were treated with 50 ng/ml PMA, 1 μg/ml 

ionomycin and Golgi-stop (BD Pharmingen) for 4hrs, at 37°C in RPMI containing 2% 

mouse serum (Janvier, France). Cells were then stainied with anti-IFN- and anti-IL-17A 

using BD Cytofix/Cytoperm™ Kit. 
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Protein extraction. Tumors were mechanically dissociated with electronic homogenizer 

in lysis buffer (T-PER Tissue Protein Extraction Reagent, PIERCE) containing protease 

inhibitor (complete Mini EDTA-free, Roche). Tumor lysate was then centrifuged at 

10000×g, 5min, 4°C to obtain supernatant. The supernatant were either tested freshly or 

aliquoted and stored at -80°C. 

 

Purification and adoptive transfer of T cells. The skin-draining LNs (inguinal, 

popliteal, superficial cervical, axillary and brachial LNs) were harvested from naïve mice 

(8-12 weeks). Dead cells were removed from single cell suspension (Dead Cell Removal 

Kit) before T cells purification (TCR
+
 T Cell Isolation Kit) using AutoMACS™ 

Separator (Miltenyi Biotec) with recommended programs. Purity of this isolation normally 

reached above 95%. The TCR 
–
 CD3

+
 cell fraction was also collected and used as „non 

T cells for some experiments. Day 2 after chemotherapy, 2.5×10
5
 cells were injected 

directly into the tumor with insulin syringes for the adoptive transfer setting. 

 

T cell priming and tumor vaccination. EG7 cells pretreated with 5 μg/ml OX overnight 

or left untreated were washed thoroughly and injected at 1 million/50 μl into the foodpad of 

naïve syngeneic mice. CpG/OVA (5g CpG+1 mg OVA/mouse) and PBS injection were 

used as positive and negative controls. In some setting, neutralizing antibody (200 

g/mouse) for IL-17A or CIg was injected i.p. 5 days later, the popliteal lymph node cells 

were harvested, seeded in a 96 well plate at 3×10
5
/well and restimulated with 1 mg/ml 

OVA protein. IFN-secretion was measured by OptEIA™ Mouse IFN- ELISA kit (BD 

Bioscience). MCA205 cells were treated with 2 M MTX overnight, washed thoroughly 

and injected into left flank s.c. at 0.3 million/mouse. PBS was used as control. Mice were 

rechallenged with 5×10
4
 live MCA205 cells in the right flank 7 days later. Tumor growth 

was monitored every 2-3 days. 

 

DC-tumor mixed lymphocyte cultures. DC were propagated in Iscoves‟s medium 

(Sigma Aldrich) with J558 supernatant (containing 40ng/ml GM-CSF), 10% FCS, 100 
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IU/ml penicillin/streptomycin, 2 mM L-glutamine, 50 M 2-mercaptoethanol (Sigma) and 

used between day 8 and 12 when the proportion of CD11c/MHC class II+ cells was > 80%. 

In mixed cocultures, DC were seeded at 10
5
/100 l/well in U bottom 96 well plates. Tumor 

cells were treated overnight with 25M DX or left untreated, washed and used at 

7.5×10
4
/100 l/well. 2×10

4
/50 l

 
T cells were added 12 hrs later. Supernatant was 

collected 36 hrs later.  

 

In vitro tumor stimulation with type I IFN and TLR3L assays. 5×10
4 
B16-OVA or GL26 

and 2×10
5 
primary human breast cancer cells were seeded in 24 well plates, treated with 

1000 IU/ml of type I interferon for 18hrs, then washed and cultured with fresh medium or 

medium containing poly(A:U) for 48hrs. Supernatants were collected to dose production of 

CCL5 and CXCL10 by ELISA. 

 

Lentivirus based shRNA construction. The lentivirus construction and viral particules 

were designed and produced by Vectalys SA (Labège, Toulouse, France). As for the 

lentivirus carrying the shRNA knocking down RANTES,  the forward primer 5‟-CGC GAC 

GTC AAG GAG TAT TTC TAT TCA AGA GAT AGA AAT ACT CCT TGA CGT TTT TTT 

GCA-3‟ and the reverse primer 3‟- TGC AGT TCC TCA TAA AGA TAA GTT CTC TAT 

CTT TAT GAG GAA CTG CAA AAA A-5‟ were annealed and ligated into lentiviral vector 

(pLV-H1-EF1-PURO-IRES-GFP (pV2.3.127)) containing a RNA polymerase III promoter, 

by cohesive MluI/NsiI ligation to generate pLV-H1-shRANTES-EF1-PURO-IRES-GFP 

vector. A similar technical approach was used to generate control 

pLV-H1-shLaminA/C-EF1-PURO-IRES-GFP designed to knock down Lamin A/C 

expression (forward primer: 5‟-CGC GGA AGG AGG GTG ACC TGA TAT TCA AGA GAT 

ATC AGG TCA CCC TCC TTC TTT TTT GCA-3‟; reverse primer: 5‟-AAA AAG AAG GAG 

GGT GAC CTG ATA TCT CTT GAA TAT CAG GTC ACC CTC CTT C-3‟). 

 

Statistical analyses of experimental data. All results are expressed as mean ± SEM or 

as ranges when appropriate. For two groups, normal distributions were compared by 
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unpaired t test. Non-normal samplings were compared using the Mann-Whitney's test or 

Wilcoxon matched paired test when appropriate. The log-rank test was used for analysis 

of Kaplan-Meier survival curve. Statistical analyses were performed using Prism 5 

software (GraphPad, San Diego, CA). P values of <0.05 were considered significant. 
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Results and Discussion 

Part I. The contribution of IL-17 producing  T cells during 

chemotherapy and radiotherapy 

This works has been published in The Journal of Experimental Medicine (2011 Mar 

14;208(3):491-503. PMID: 21383056) as attached in annex 3. 

 

Chemotherapy induced the expression of immune genes in tumor bed 

Doxorubicin (DX) has been identified as one of the most potent chemotherapeutic drugs 

to induce immunogenic cell death according to our previous work. And it could 

significantly control the outgrowth of MCA205 sarcoma. To identify the profile of triggered 

immune response in tumor bed, we first selected 40 immune genes (including 

transcription factors, chemokines, cytokines and cytokine receptors) and compare gene 

expression in DX versus PBS treated tumor with quantitive RT-PCR using Custom 

TaqMan® Array 96-Well Plates. Interestingly, we noticed from the unsupervised 

hierarchical clustering analysis that Th1 response related genes expression (Eomes, 

Tbx21, IFN-, Ltxb, Ccl5, Cxcl10, Cxcl9, and Tnf) were significantly upregulated. Another 

set of genes encoded IL-7R, IL-21, AhR, CXCL2, and Foxp3 were also overexpressed, 

correlating with Th17 response. The expression of some IL-1 family members (IL-1, 

membrane-bond and soluble form of IL1RL1) or immunosuppressive factors (IL-10, Foxp3, 

IL-27) were also enhanced, suggesting a new balance between inflammation and 

anti-inflammation factors has been triggered by chemotherapy. While Ccl2, Il6, 

RAR-related orphan receptor C (Rorc), Ccl25, Cxcl1 expression were not changed 

compared with PBS group (Figure a). To confirm this finding at the protein level, we dosed 

IFN- and IL-17A, representative cytokines for Th1 and Th17 response, within tumor 

lysate by ELISA, or with single cell suspension dissociated from tumor by FACS. Indeed, 
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IFN- and IL-17A secretion was enormously increased 8 days after DX treatment as 

shown by both ELISA and intracellular staining. Interestingly, more IL-17A accumulated in 

tumor bed only 3 days after chemotherapy, indicating that IL-17A and IFN- related 

response initiated at different phases and could be originated from separate sources 

(shown in published Figure 1A-E).  

 

Figure a. Gene expression pattern in MCA205 tumor bed 8 days after DX versus PBS treatment. 

Relative gene expression normalized with Ppia is shown as a heat map and the fold change above 2 is 

used as the threshold of significance.   

 

The source of IL-17A and IFN- in tumor bed triggered by chemotherapy 

The role of IL-17 in generation of cytokine and chemokine responses, induction of 

antimicrobial proteins, recruitment for neutrophils and monocytes to the inflammatory site 

and triggering of adaptive immunity has emerged [166]. IL-17 and other Th17-related 

cytokines are involed in multiple pathological processes [167,168], such as autoimmune 

diseases (EAE/multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus) 

[169-171], inflammatory skin and bowel disease [172,173], transplant rejection [174-176], 

host defense against infection [177], AIDS pathogenesis [178] and cancer [179]. 

Both innate and adaptive immune cells could be the source of IL-17, activated through 

various signal pathways in several pathological processes. CD4
+
T [167], Treg [180,181], 

CD8
+ 

T [182-184], CD4
-
 NKT [185,186],  T [187,188], mucosal-associated invariant T 
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cells (MAIT) [189], NK [190], neutrophils [191], eosinophils [192] and several newly 

discovered innate lymphoid cells (ILC) including lymphoid tissue inducer cells (LTi) 

[193-195] and LTi-like cells [196] have been reported capable of secreting IL-17. A 

β-TCR
+
 CD4

-
CD8

-
T cell population can also produce IL-17 in both human and mouse 

[197,198].  

  By careful analysis with a combination of cell surface markers, we revealed that IL-17 

was originated from CD3
+
 CD45

+
 TILs rather than from tumor cells. The majority of 

IL-17A-producing lymphocytes were CD3
bright

, a phenotype indicating that they were most 

likely to be  T cells [199]. A reverse gating on all IL-17A
+
 cells confirmed that most of 

them (60-70%) do co-express CD3 and TCR , but not CD4, CD8 or Gr1. CD8
+ 

T cells 

were the major contributor of IFN-. It is interesting that  T cells exclusively produce 

IL-17A but rarely IFN and we could not see IFN- and IL-17 co-expressing cells (shown in 

published Figure 1F-G). Since the remaining 20-30% of the IL-17 producing cells did not 

express CD8 and they are partially CD4
+
, it is possible that Th17 and probably β-TCR

+
 

CD4
-
CD8

-
 T and/or CD4

-
 NKT cells constitute this fraction.  

 

The contribution of IFN- and IL-17A during chemotherapy 

Consistently, IFN- and IL-17 production by tumor-infiltrating CD8
+
T and  T cells were 

substantially enhanced by DX (shown in published Figure 1F-G and S2A). These findings 

can also be extended to CT26 colon cancer and TS/A mammalian cancer models treated 

with DX and radiotherapy. In TS/A model, it should be noted that the accumulation of both 

Tc1 and  T17 lymphocytes occurred only in regressing tumors responding to 

radiotherapy but not in progressing tumors (shown in published Figure 3A-F). Thus, it 

remains possible that coordinated Tc1 and  T17 infiltration in tumor bed after 

chemotherapy or radiotherapy could be a beneficial prognostic factor for therapeutic 

response.  

  IFN- is widely recognized to be contributive for immunosurveillance and it plays a 

central role in coordinating anti-tumor immune responses [200,201]. IFN- could restrain 
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the outgrowth of chemically induced primary tumors and transplanted tumors. It could 

enhance MHC class I expression on tumors and promote their recognition by 

tumor-specific T cells. IFN- exerts anti-proliferative and pro-apoptotic effect on tumor 

cells and it could induce angiostasis [202]. While it could also upregulate classical and 

nonclassical MHC class I expression on tumor cells, which promote the activation of 

inhibitory NK receptors (such as CD94/NKG2A) on NK cells and CTLs and suspended 

their license to kill [203].  

In the context of chemotherapy, genetic defects in IFN- or IFN-R or IFN- 

neutralization with antibody totally abolished the efficacy of oxaliplatin and doxorubicin 

against EG-7/EL-4 thymoma and CT26 colon cancer [117]. By system administration of 

IFN- neutralizing antibody (clone XMG1.2, 200 μg per injection for total 3 injections, 

every other day since the day of DX treatment), we confirmed the critical role of IFN- 

during anthracycline DX-based treatment (shown in published Figure 4A). In the follow-up 

research (collaboration with Mark J Smyth‟s lab), we proved that deleting CD8
+
 T cells 

(with CD8- or CD8β- specific antibody), the cellular source of IFN-, also resulted in 

failure of chemotherapy. The IFN-/CD8
+
T-dependency of chemoefficacy could be 

generalized to other transplanted tumor models, such as C57BL/6-derived AT3 and 

E0771 tumors and BALB/c-derived H2N100 mammary adenocarcinoma and MCA2 

fibrosarcoma, as well as MCA induced primary tumors (Mattarollo SR, Cancer Res. 2011, 

accepted). 

  The function of IL-17A/IL-17R pathway in the context of cancer is quite controversial 

[204,205]. By acting on stromal cells and fibroblasts, IL-17 induces a wide range of 

angiogenic mediators, including vascular endothelial growth factor (VEGF), IL-6 and 

PGE2, which markedly promote inflammation and tumor angiogenesis [206]. 

IL-17-overexpressing human derived cancer cells showed greater ability to form tumors in 

immunocompromised mice [207,208]. Poor immunogenic MCA205 murine fibrosarcoma 

transfected with retroviral vector carrying mouse IL-17 showed enhanced tumorigenic 

growth in syngenic immunocompetent as well as irradiated mice, suggesting the critical 

role of non-hematopoietic derived factors. And the level of Th17 cells was positively 

correlated with microvessel density in tumors [209]. In contrast, IL-17-transduced Meth-A 
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fibrosarcoma cells did not show any differences in tumor growth when inoculated 

subcutaneously into BALB/c nude mice while they were rejected in conventional BALB/c 

mice, due to their augmented expression of MHC class I and class II antigens and 

induction of tumor-specific antitumor immunity [210]. 

Mast cells, MDSC-derived IL-17A and Treg-erived IL-9 acted as a positive feedback 

loop to strengthen immunosuppression in tumor microenvironment [211]. In B16 

melanoma and MB49 bladder carcinoma where CD4
+
 T cells were the source of IL-17A, 

this cytokine promoted IL-6 production by IL-17 receptor-bearing tumor cells and 

tumor-associated stromal cells, activating STAT3 which could up-regulate pro-survival and 

pro-angiogenic genes [212]. STAT3 masters the balance between IL-23 and IL-12 

favoring the procarcinogenic immune responses [213]. However, still in B16 melanoma, in 

vitro polarized tumor-specific Th17 exhibited stronger therapeutic efficacy than Th1 cells 

upon adoptive transfer. These Th17 cells converted into effective IFN- producers after 

infusion [214]. In the tumor model which B16-F10 melanoma were injected intravenously, 

IL-17A deficient mice exhibited increased numbers of tumor foci and larger tumor size. 

Adoptively transferred Th17 cells retained their IL-17-producing signature and triggered 

the expansion, differentiation, and tumor-homing of tumor-specific CD8
+
 T cells, exhibiting 

stronger therapeutic efficacy than Th1 cells [215]. IL-17 could induce Th1-type 

chemokines CXCL9 and CXCL10, recruiting effector T cells to the tumor 

microenvironment. And IL-17 in tumor ascites was reported as a significant predictor of 

patient survival [216]. Inhibiting pDC derived immunoregulatory enzyme IDO induced in 

situ conversion of Treg to the Th17 phenotype, which markedly enhanced the activation 

and antitumor efficacy of CD8
+
 T cells [217]. IL-17-producing CD8

+
 T cells could 

differentiate into long-lasting IFN- producers and reduce the volume of large established 

tumors [218]. In contrast, Kwong et al. described a tumor-promoting, IL-17-producing TCR 

β
+
CD8

+
 tumor infiltrating subset with regulatory potential and reduced cytotoxicity in the 

two-stage chemical cutaneous carcinogenesis model [219]. Therefore, the heterogeneous 

source, differed doses, varied target cells in the microenvironment and different stages of 

disease determine the biological function of IL-17, especially in cancer. 

Whether conventional anticancer therapies could modulate IL-17 secretion and/or Th17 
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polarization, and whether IL-17 contribute to anti-tumor response remain to be explored 

[220]. In IL-17A deficient mice, or by neutralizing IL-17A or blocking IL-17R, we found that 

the therapeutic effect was completely abolished in MCA205, MCA2 treated with 

doxorubicin, and EG-7, CT26 treated with oxaliplatin (shown in published Figure 4A-E), 

suggesting IL-17 acted as an indispensible anti-tumor factor. Reinforcing this discovery, 

we confirmed that IL-17A/ IL-17RA signaling is also critical to control tumor outgrowth of 

AT3, H2N100 and E0771 mammary gland carcinoma in DX based chemotherapy. And this 

conclusion also held true in the treatment of MCA induced primary carcinoma (Mattarollo 

SR, Cancer Res. 2011, accepted). We noticed that IFN-, but not rIL-17, could significantly 

suppress tumor proliferation in vitro (data not shown), indicating that IL-17 exert its 

tumor-retarding effect indirectly through regulating the inflammatory tumor 

microenvironment. These data suggest that though IL-17 can be involved in pro-tumoral 

chronic inflammation and angiogenesis, it is a critical acute inflammatory factor for 

inducing protective anti-tumor immunity when massive tumor cell death occur upon the 

lethal hit of chemotherapy and radiotherapy. 

 

The role of  T cells and associated cytokines during chemotherapy 

 T cells are involved in both immunosurveillance and immunoregulation [221].  

They are recognized as one of the most potent antitumor cytolytic mediators since they 

could kill a vast repertoire of tumors cell lines, primary tumor samples and tumor stem 

cells in a major histocompatibility complex-independent manner [222]. Both human and 

mouse  T cells could mediate antibody-dependent cellular cytotoxicity (ADCC) 

[223-225]. They produce cytokines like IFN- and IL-17 rapidly and promote inflammation, 

partly due to their inherent epigenetic and transcriptional programs [226]. Certain subsets 

of T cells also possess the antigen-presenting ability, such as human V9V2
+
 T cells 

[227-230] and murine dendritic epidermal  T cells (DETC) [231,232]. Similar with other T 

cell populations,  T cells also show regulatory activities. They are involved in 

inflammation resolution [233-235]. Distinct subsets of  T cells have non-overlapping 
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functional potentials and the outcome depends on their functional balance [236]. 

Interestingly,  T cells were found as the dominant producers of IL-17 in both ischemic 

brain injury and bleomycin induced lung injury models while the “same” population exerted 

completely opposite effects by either promoting or controlling inflammation [235,237]. 

The contribution of  T cells in tumor immunosurveillance is still elusive [238]. In 

C57BL/6 mice,  T cells strongly protected the host against chemically induced 

cutaneous malignancy in a NKG2D-dependent manner [18,239].  T cells were recruited 

quickly to the tumor sites and provided an early source of IFN- which was critical to 

induce tumor antigen-triggered β T cell response [19]. Tumor inifiltrating IL-17-producing 

 T mediated the therapeutic effect of BCG treatment against bladder cancer through 

recruiting neutrophils [240]. However, this population was supportive for tumor 

progression through promoting angiogenesis in fibrosarcoma- or skin carcinoma-bearing 

BALB/c mice while IL-23, IL-6, TGF-β, TCR and NKG2D contributed to the IL-17 

production [241].  T cells have been suggested as suppressor cells in early tumor 

formation. They secreted IL-10 and TGF-β, but not IL-4 or IFN-, which attenuated the 

activity of CTLs and NK cells [242,243]. In human, V1
+
  T cells infiltrating breast tumors 

suppressed naive and effector T cell responses and blocked the maturation and function 

of dendritic cells [244]. On the contrary, they were associated with a reduced occurrence 

of cancers in transplanted patients bearing a CMV infection [245,246], and with long-term 

relapse-free survival after bone marrow transplantation [247]. V2
+
  T cells can be 

activated by various synthetic ligands to produce Th1-like cytokines, exhibit cytotoxic 

functions against tumors [248] and mediate anti-tumor effects in patients [249,250]. In 

summary, the cell subsets, effector molecules and corresponding activating factors in the 

microenvironment, the stage of cancer and the genetic background of the host determined 

the anti- or pro-tumoral behaviour of  T cells.  

T17 cells have been reported to share most phenotypic markers with Th17 cells 

(expressing CCR6, RORt, AhR, IL-23R, IL-17A, IL-22) [251]. They are unrestricted by V 

usage (although they are mostly V in the context of mycobacteria [251] and 

experimental autoimmune encephalitis [252]. Recent work suggests that thymic selection 

does little to constrain  T cell antigen specificities, but instead determines their effector 
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fate. When triggered through the T cell receptor, ligand-experienced cells make IFN-, 

strongly self-reactive cells make IL-4 whereas ligand-naïve  T cells produce IL-17 

[188,253,254]. CD27 also regulates  T cells differentiation. CD27
+
  thymocytes 

expresse LTβR and genes associate with a Th1 phenotype, in contrast to CD27
−
  

thymocytes which give rise to IL-17-producing cells [255]. It is reported that IL-17- and 

IFN--producing  T cells express CD25 (IL-2Rα) and CD122 (IL-2Rβ) respectively. 

CD25 expression may be downregulated on  T cells that have experienced antigen in 

the thymus, making them less sensitive to endogenous IL-2 production [256]. 

IFN--secreting  T cells in the periphery also express NK1.1, whereas IL-17-secreting  

T cells express CCR6, which is also known to be expressed by Th17 cells [257]. Finally, 

the scavenger receptor SCART2 is highly expressed on IL-17 producing  T cells homing 

to the peripheral LN and dermis. SCART2
high

 cells are enriched for V4 but strong TCR 

stimulation leads to SCART2 down-regulation [258].  

To analyse the functional relevance of IL-17-producing  T cells (that we termed “ 

T17”) in cancer, we performed phenotype of these tumor infiltrating cells after 

chemotherapy. Most  T17 TILs showed an effector memory phenotype (preponderantly 

CD69
+
 granzyme B

+
 CD44

+
 CD62L

-
). They did not express CD27, CD122, CD24, c-kit or 

NKG2D and they were negative for Scart 2 and CCR6, perhaps due to activation-induced 

down regulation (Figure. b). Ectonucleotidase CD39 (ENTPDase1) and 

ecto-5‟-nucleotidase CD73, which are responsible to generate the immunosuppressive 

and pro-angiogenic extracellular adenosine [259], were highly expressed on tumor 

infiltrating Treg while  T17 TILs were CD39
low

 (Figure. c). 
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Figure b. Phenotype of tumor infiltrating  T cells after DX therapy.MCA205 tumors were analyzed 

8 days post-DX. After gated on live CD45.2
+
CD3

+
TCR 

+
 cells, IL-17 production versus certain molecule 

expression was analyzed. A typical dot plot is depicted. The experiment has been performed 3 times 

yielding similar results. 
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Figure c. CD39 and CD73 expression on tumor infiltrating Tregand T17 after DX treatment. MFI 

of CD39 (left) and CD73 (right) staining on CD4+ T and T cells were shown, comparing Foxp3
+
 vs 

Foxp3
-
, IL-17A

+
 vs IL-17

- 
fractions.  

 

FACS indicated that around 60-75% of T17 utilized V4 chain according to Heilig and 

Tonegawa‟s nomenclature [260] (Figure. b and published Figure S2B) but expression of 

V1 and V7 chain was rarely found (published Figure S2B). We then sorted V1

V4


V7


 

 T17 TILs and performed single-cell PCRs [261] to examine their Vchain usage. These 

experiments revealed that 21 out of 23 sorted single cells contained a functional V6 

rearrangement identical to the one found in fetal T cells (shown in published Figure 

S2C-E), suggesting that most T17 TILs express either V4 or V6. Indeed, T cell 

subsets appear to be biased to carry out particular functions which are somehow 
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predetermined in the thymus [262]. V4
+
 T cells are expanded and they potently 

produce IL-17A at the inflammatory sites in the murine collagen-induced arthritis (CIA) 

[263] and experimental autoimmune encephalomyelitis (EAE) models [252], exacerbating 

the disease process. The TCR invariant V6V1 T cells functionally differentiate to 

produce IL-17 within thymus and thereafter express CD25 to be maintained in the 

periphery [256]. They form a small population at steady-state while expanding rapidly only 

when their functions are required. During E. coli and Listeria infection, V6V1 cells 

become responsible for most of the IL-17 production within hours. They present in 

expanded numbers and continue to produce IL-17 for several days [264,265]. 

  DX based chemotherapy could efficiently inhibit tumor growth in immunocompetent wild 

type mice while its efficacy was greatly dampened when the bulk of T cells were absent 

or the V4
+
 and V6

+
 cells were deficient (shown in published Figure 6A). Consistently, 

IL-17A production by tumor infiltrating cells was abolished in V4/6
-/-

 mice (shown in 

published Figure 6B). Importantly, T cells are critical for the tumor-retarding effect of DX 

in both MCA205 sarcoma and AT3 breast cancer while NKT cells, especially the 

anti-tumor J18
+
 NKT1, are dispensable (Mattarollo SR, Cancer Res. 2011, accepted). 

Mitoxantrone treated dying MCA205 tumor cells could vaccinate wild type mice against 

syngeneic tumor cell rechallenge. This vaccine could not protect athymic nude mice, 

suggesting the critical contribution of T, B and NKT cells. Importantly, the percentages of 

tumor free mice were significantly reduced in V4/6
-/-

 mice but not in NKT cell deficient 

CD1d
-/-

 mice (shown in published Figure 5B), indicating that the indispensible role of 

IL-17A/IL-17R pathway and V4
+
 and V6

+
 cells in triggering protective adaptive immunity 

against tumor. 

The biological rationale for using adoptively transfer ex vivo-expanded autologous  T 

cells in clinical trials of cancer treatment has been shown in mouse prostate tumor model. 

Tumor-bearing mice treated i.v. with supraphysiological numbers of syngeneic  T cells 

developed measurably less disease and superior survival [266]. We further investigated 

the possibility to potentiate the tumor-retarding effect of chemotherapy by adoptive 

transferring T17 cells. We chose to purify T17 cells from peripheral LNs (inguinal, 

popliteal, superficial cervical, axillary and brachial LNs) rather than spleen or thymus 
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because IL-17
+
 T cells are much more enriched in LNs than that in the spleen or 

thymus (Figure d). Similarly, it has been reported by other group that IL-17
+
 T cells in 

the spleen were present at a low frequency (~3%) and they were absent in the mesenteric 

LN [267]. It is probably due to the fact that LN  T cells express higher IL-23R [268]. 

Consistently, by using IL-23 receptor GFP reporter mice, Awasthi and colleagues found 

that expression of IL-23R were detected mainly in the LNs but not in the spleen. The small 

proportion of IL-23R-expressing cells (~1.4%) were CD3
+
 and the majority of them were  

T cells [269]. It would be also interesting to know whether  T cells from different organs 

or various subsets of  T cells express IL-1R at different levels.  

 

 

Figure d. IL-17 production by  T cells in spleen, thymus and peripheral LNs. Single cell 

suspension from spleen (left), thymus (middle) and peripheral LNs (right) were stimulated with PMA and 

ionomycin in the presence of GolgiStop for 4 hrs before intracellular staining for IL-17A. 

 

We purified  T cells with AutoMACS (purity above 90%, shown in Figure e) and 

adoptively transfer these cells directly into tumor bed 2 days after chemotherapy.  T cells 

transfer showed addictive effect to control tumor growth provided that chemotherapy (DX) 

was applied in advance (shown in published Figure 7A). IL-17
-/-

  T cells adoptive 

transfer could not improve the efficacy of chemotherapy but IL-17-sufficient wild type  T 

cells could restore the chemosensitivity of MCA205 sarcoma. These findings strongly 

suggest that IL-17 derived from  T cells is critical for the success of DX based 

chemotherapy (shown in published Figure 7B, 7D).  
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Figure e. The percentage of TCR + CD3+ cells before and after AutoMACS sorting. 

 

The link between IL-17A/ T and IFN-/CD8
+
T response 

To analyze the kinetics of TILs accumulation and activation in MCA205 tumor, we 

sacrificed tumor-bearing mice 2 days before and 4, 6, 8 or 10.days after chemotherapy.  

TILs were quickly switched on to proliferate and produce IL-17A within 4 days after DX, 

resulting in around 9 fold increase of  T17 cells above the basal level. Their activation 

sustained and peaked around day 8 after DX. In sharp contrast, the priming of Tc1 

response act in the exponential manner. It took more than 6 days to “warm up” and 

become fully primed (as indicated in their IFN-
+
 Ki-67

+
 phenotype) within the following 2 

days. PBS treatment could modify neither IFN- or IL-17A secretion throughout the 

chosen time points (shown in published Figure 2A, 2C).  T cells activated by IL-1β and 

IL-23 could promot IL-17 production by CD4
+
 T cells and increase susceptibility to EAE 

[252]. We noticed that tumor infiltrating  T17 cells did not sustain long after Th1 

response was primed. And we could not find significant increase of Th17 TILs, suggesting 

that albeit  T17 was the major source of IL-17A in tumor bed, they did not manage to 

amplify the adaptive Th17 response after chemotherapy. Instead, we noticed that a clear 

positive correlation existed between tumor invading  T17 and Tc1 cells in MCA205, 

CT26 and TS/A models as analyzed by linear regression (shown in published Figure 3G), 

implying that early IL-17 production may facilitate the priming of Tc1 adaptive immune 

response. 
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  To test this hypothesis, we checked the role of IL-17A during Tc1 priming triggered by 

tumor cells undergoing immunogenic cell death. We have previously reported that IFN- 

production by OVA-specific T cells in the draining LNs could be triggered by footpad 

injection of oxaliplatine-treated EG7 cells. The absence of IL-17RA fully abolished 

antigen-specific T cell priming in response to dying cells, yet had no negative effect on T 

cell priming by OVA holoprotein admixed with CpG oligodeoxynucleotides. Consistently, a 

neutralizing anti-IL-17A antibody but not the isotype control immunoglobulin markedly 

impaired the OVA-specific T cell induction in the same setting (shown in published Figure 

5A). And IL-17R
-/-

 mice could not mount a protective immunity after dying tumor vaccine 

(shown in published Figure 5B). We also noticed that tumor infiltrating CD8
+
 T cells failed 

to produce IFN- in V4/6
-/-

 mice (shown in published Figure 6B). 

  IL-17 production by innate cells may function as a bridge between innate and adaptive 

immunity. The link between IL-17 and Th1 (IFN-) response has been reported in mouse 

models and clinical research. IL-17 is required in the induction of optimal Th1 response 

and protective immunity against M. bovis BCG infection [270]. We could not find 

enhanced proliferation of CD8
+
 T cells or upregulated CD121a (IL-1R1) expression on 

CD8
+
 T cells after incubation with IL-17A with or without CD3 and CD28 crosslinking (data 

not shown). Thus, it is unlikely that IL-17A could directly act on CD8
+
 T cells. IL-17R is 

ubiquitously expressed by a variety of target cells including fibroblasts, epithelial and 

endothelial cells, monocytes/macrophages and mast cells. We noticed that IL-17R are 

mainly expressed on CD3
-
 fractions in spleen and LNs, implying that the potential target of 

IL-17A were probably not T cells directly (data not shown). IL-17A could induce IL-12 

production by dendritic cells and mediate Th1 responses against intracellular pathogen F. 

tularensis [271]. IL-17A signaling was suggested proximal to its downstream IL-12/IFN- 

signaling in a mouse kidney ischemia-reperfusion injury model [191]. Though IL-12 

contributes to the chemotherapeutic effect, it doesn‟t seem to be the sole key factor since 

DX partially retained its efficacy in IL-12p35 deficient mice (Mattarollo SR, Cancer Res. 

2011, accepted). IL-17A derived from  T cells is required for the generation of 

antigen-specific CD8
+
 CTL response against primary Listeria monocytogenes infection 

through enhancing DC cross presentation [272]. IL-23-activated  T cells produce IL-17 
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and they could render β effector T cells refractory to the suppressive activity of Treg cells 

and also prevent the conversion of conventional T cells into Foxp3
+
 Treg cells in vivo [273]. 

What‟s more, IL-17 could synergize with IFN- to stimulate CXCL9 and CXCL10 

production and recruit effector T cells to the tumor microenvironment [216]. Interestingly, 

in experimental lung metastasis B16 and 3LL tumor models, tumor microenvironment 

derived IL-1β promoted  T cells recruitment and IL-17 production. IL-1β deficiency 

resulted in reduced IFN- production by CD8
+
 TILs while IL-17, which acted mainly 

downstream of IL-1β, did not contribute to DC maturation or Tc1 response and it 

suppressed IL-12 production by CD11c
+
 cells in tumor bed [274]. Thus, coordinated IL-17 

production by  T and IFN- secretion by CD8
+
 T cells predict the beneficial anti-tumor 

response. The orchestration and interactions of  T cell with other immune cell in the 

tumor microenvironment may be critical to determine their host protective and immune 

regulatory function. Further studies are needed to dissect the cell subsets and contributive 

factors linking IL-17 and Tc1 response. 

 

Contributive factors for  T17 activation in the context of chemotherapy induced 

tumor cell death 

The differentiation factors (TGF-β plus IL-6 or IL-21), the growth and stabilization factor 

(IL-23) and the transcription factors (STAT3, RORt, and ROR) are involved in the 

development of Th17 cells. Innate IL-17 producing cell populations share some common 

activating signals, as well as unique pathways [275]. Mouse  T, NKT, memory T cells 

and human MAIT cells express IL-23R and RORt constitutively and they could rapidly 

produce IL-17 after TCR ligation and/or IL-23 stimulation. Pathogen associated molecular 

pattern (PAMP), stress-induced proteins, pathogen metabolites and glycolipids could 

either activate  T cells directly or through inducing IL-1β and/or IL-23 production from 

antigen presenting cells [251].  T cells express pattern recognition receptors (PRRs), 

such as Dectin-1 and TLR1 and TLR2, which could be engaged by corresponding ligands 

to induce IL-17 production and IL-23 could amplify this process [251]. Soluble factors (IL-6, 
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IL-23 and TGF-β), engagement of NKG2D and TCR has been reported to activate  T 

produce IL-17 [241]. 

  By in vitro experiment, we confirmed that  T from peripheral LNs potently produced 

IL-17A, and IL-22 to a lesser extent, in response to IL-1β+IL-23, CD3 crosslinking and 

IL-1β or/and IL-23 (Figure f). To mimic the microenvironment after chemotherapy, we 

cocultured  T with BMDC and dying/live tumor cells and tested IL-17A, IL-22 and IFN- 

in the supernatant. Although DX-treated MCA205 cells failed to directly induce IL-17 or 

IL-22 secretion byT cells, they could do so indirectly through triggering IL-1β 

production by BMDC. It is noteworthy that these stimuli specifically activated IL-17A, but 

not IFN- production by  T cells. And none of these cytokins were induced by live tumor 

cells. We and others have described that peripheral LN  T cells express IL-18R and 

could produce IL-17 in response to IL-18 plus IL-23 without TCR ligation [276,277]. The 

DC/T cell cross-talk in the presence of dying cells relied on IL-1β/IL-1R but not 

IL-18/IL-18R, as IL-1RA completely abrogated IL-17 production while IL-18BP did not 

interfere with it. IL-23/IL-23R signaling only moderatly regulated IL-17 production by  T 

cells. IL-22 production was completely abolished by blocking the IL-1β/IL-1R or 

IL-23/IL-23R pathways but not affected by IL-18R blockade (shown in published Figure 

5C). Although IL-1β production could be readily detected in dying tumor/BMDC coculture, 

IL-23 production form this system was below the detection limit of our ELISA kits (from 

R&D and eBioscience). Interestingly, chemotherapy completely lost its anticancer activity 

in IL-1R1 deficient mice, yet maintained its efficacy in mice treated with IL-23p19 

neutralizing antibodies or in IL-23p19
-/-

 mice (shown in published Figure 5E-G). Adoptive 

trasfer of IL-1R
-/- 
T cells could not improve the efficacy of chemotherapy. These findings 

emphasize the pivotal contribution of IL-1β, but not IL-18 or IL-23, during chemotherapy. 
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Figure f. IL-17 secretion by T cells purified from peripheral LNs in the presence of various 

cytokines and CD3 crosslinking. 

 

IL-22 is a member of the IL-10-related cytokine family which comprises IL-19, IL-20, 

IL-24, IL-26, IL-28, and IL-29. It signals through a heterodimeric receptor that consists of 

the IL-10Rβ and the IL-22R chain. IL-22 signalling is mediated by JAK 1 and STAT1, 3 

and 5 [278]. It can be secreted by Th17 [279],  T [251], NK22 [280,281], LTi and RORt
+
 

NKR-LTi cells [282,283], involving in protection against infection and homostasis. 

Interestingly, IL-22R expression is restricted to cells of the non-haematopoietic lineage, 

therefore IL-22 does not serve the communication between immune cells but is a T cell 

mediator that directly promotes the innate, nonspecific immunity of tissues [284]. Innate 

IL-22-producing cells have a largely protective function probably through their instruction 

of epithelial cells to express antimicrobial and tissue-protective genes. In induced 

pulmonary fibrosis model,  T cells derived IL-17 [285] and IL-22 [286] act as the critical 

factor to in either tissue destruction or tissue protection through differed mechanisms, 

supporting the notion that their functional spectra are generally distinct [287]. IL-22 is 

tissue protective in the absence of IL-17A while it is proinflammatory in the presence of 

IL-17A. IL-17A inhibited IL-22 production by Th17 cells, suggesting the balance between 

IL-17 and IL-22 production is decisive for a disease-promoting or protective role of these 

cells [288]. In our experiments, IL-1-activated T cells produced IL-17 as well as IL-22 

in vitro. However, we could not detect IL-22 expression at mRNA level in CD45
+
 cells 

purified from tumor bed. Neither could we obtain postive intracellular staining of IL-22 in 
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TILs by FACS. We also proved that IL-22 did not play an essential role in the antitumor 

effects promoted by chemotherapy (shown in published Figure S3A).  

It remains possible that TCR signaling facilitates  T17 activation in our setting. 

Possible ligands of  TCR have been summarized elsewhere [289,290]. Irradiation and 

chemotherapeutic drugs, especially anthracyclines, could generate high level of oxidative 

stress on tumor cells [291] which is known to induce cardiolipin remodeling. Cardiolipin 

moves from the inner to the outer mitochondrial membranes during apoptosis and this 

phospholipid provides a recognition site for Bcl2 proteins, notably t-Bid, to bind to 

mitochondria and promote the apoptotic process [292]. Cardiolipin is also expressed on 

the surface of apoptotic cells, showing a clustered distribution localized mostly on surface 

blebs before the incidence of DNA fragmentation [293]. It was reported that hybridomas 

expressing murine  TCR were found to produce cytokines in response to cardiolipin and 

structurally related anionic phospholipids. Cardiolipin can be presented by CD1d to 

subsets of  T cells in the spleen and liver of mice [294,295]. Chemotherapy induced 

stress could upregulate MHC class-I-related chain A/B (MICA/B) which has been proved 

as TCR ligand in human [296]. Tumors have been shown to overexpress HSP while 

chemotherapy could induce some HSP expression on the membrane of stressed tumor 

cells. Intracellular overexpression of HSP could inhibit apoptosis and exhibit 

cytoprotective activity while membrane expression of HSP could be potently 

immunostimulatory. Around 10-20% of normal splenic and lymph node  T cells have 

been reported responding to HSP60 [297].  T cells could elicit cytotoxic activity toward 

macrophages and neutrophils that express Hsp60 and Hsp70 respectively [298]. It would 

be interesting to investigate the tumor derived molecules elicited by chemotherapy which 

could engage  TCR to facilitate  T17 activation.  

 

Contribution of AhR, CCR6/CCL20, TGF-β and IL-6 pathway during chemotherapy  

Aryl hydrocarbon receptor (AhR) is highly expressed on Th17 [299-301] and  T17 cells 

[251]. This transcriptional factor is closely related to the induction of IL-22. It remains 
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unclear how AhR contributes to Th17 differentiation, but Th17 cells are functionally 

underdeveloped in the absence of AhR as noted in the substantially decreased incidence 

of EAE pathology in AhR deficient mice [302]. AhR can cooperate with RORt to induce 

maximal amounts of IL-17 and IL-22 production and to inhibit TGFβ-induced Foxp3 

expression [303]. Based on the effects of TCDD, an AhR agonist, neutrophils, 

macrophages, NK cells and dendritic cells have been suggested to possess AhR [304]. 

Langerhans cells were shown to express high levels of AhR and absence of AhR resulted 

in impaired maturation and antigen presenting capacity [305]. AhR could show a negative 

regulatory role in inflammatory responses of macrophages induced by LPS through 

forming a complex with STAT1 and NF-κB [306]. In mice expressing LysMCre mediated 

AhR deletion in the myeloid lineage, macrophages exerted hyperreactive IL-1 responses 

to LPS challenge, resulting in increased susceptibility to septic shock [307].  

AhR was significantly upregulated in the context of DX-induced tumor growth 

retardation (Figure a). By blocking AhR with its pure antagonist CH-223191, we showed 

that AhR activation was contributive to the success of anthracycline-based therapy. 

CH-223191 had no cell-autonomous effects on the tumor cells, alone or in combination 

with anthracyclines (Figure g). We noticed that AhR inhibition significantly reduced IL-17 

production by  T cells stimulated by cytokines with or without CD3 crosslinking, which 

may partially account to the AhR-dependency of chemotherapeutic effect. In contrast, 

activation of  T cells was not interfered by AhR blockade as indicated by CD69 staining 

(Figure h). It remains possible that AhR may play a role in regulating the function of 

antigen presenting cells or other immune cells. Due to the widely expression of AhR, it 

could exert anti-tumor or pro-inflammotory roles in the same context or at different 

phases.  
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Figure g. The impact of the AhR-blocking agent, CH-223191, on the proapoptotic effect of DX or 

MTX against MCA205. A reduction in mitochondrial membrane potential indicated by decreased 

DiOC6(3) fluorescence was used to measure imminent apoptosis. 

 

 

Figure h. The impact of CH-223191 on the activation and IL-17 production by  T cells. Single cells 

suspension from peripheral LNs of naive C57BL/6 mice were seeded in 96 well plates, stimulated with 

cytokines with or without anti-CD3 crosslinking in the presence of GolgiStop (BD Bioscience) for 6 hrs. 

IL-17 production and CD69 expression by  T cells with or without CH-223191 are depicted. 

 

Expression of CCR6 is a phenotypic and functional hallmark of Th17 cells during some 

inflammatory processes. Since CCL20 was abundant in tumor tissues post-chemotherapy 

(data not shown), we therefore analyzed the role of CCR6 in the efficacy of chemotherapy 

and whether  T17 cells could be recruited in a CCL20/CCR6-dependent manner. The 

tumoricidal activity of doxorubicin against CT26 was not affected by repetitive systemic 
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injections of neutralizing anti-CCL20 mAb before and during anthracycline treatment 

(shown in published Figure S3B). Consistently, anthracycline treatment against 

established MCA205 sarcoma remained efficient in CCR6 loss-of-function mice. Moreover, 

CCR6 deficiency did not block tumor infiltration by  T17 (Figure i), suggesting 

CCR6/CCL20 are dispensable for the IL-17A/IFN--dependent chemotherapy against 

tumor. IL-6 and TGF-β also failed to play a role in the immunogenicity or therapeutic 

effects of anthracyclines (shown in published S3C-D). 

 

 

Figure i. CCR6 is dispensable for the efficacy of chemotherapy and the infiltration of  T17 in 

tumor bed. Tumor growth was monitored in WT and CCR6
-/-

 mice after PBS or DX treatment (left). Flow 

cytometry analyses of the  T17 cells in the gate of live, CD45.2+, CD3+ T cells invading MCA205 

tumors at day 8 post-DX in WT versus CCR6 loss of function mice (right). 

 

Strategies to improve anti-cancer therapy with  T cells 

Recent advances in the characterization of the functional capabilities of human resident 

V1 and circulating V2 T cells indicate that they are suitable candidates as anti-tumor 

effectors. MHC class I chain-related molecules A/B (MICA/MICB) and UL-16-binding 

proteins (ULBP) are constitutively expressed or induced to variable levels on many 

epithelial tumor cells. V1 T cell could recognize these tumor-derived ligands through TCR 

or its activating natural killer receptors while V2 T cells could also recognize 

phosphoantigens, ectopically expressed mitochondrial ATPase and isopentenyl 
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pyrophosphate (IPP) [248]. The application of synthetic phosphoantigens and 

aminobisphosphonates (N-BPs) is intended to enhance the expansion, cytotoxicity and 

IFN- production of mainly V9V2 cells, directly or indirectly through accumulating 

intermediate metabolites IPP which is assumed as tumor antigens in target cells. Recent 

clinical trials show that these drugs could enhance anti-tumor therapy, but with moderate 

success. Accumulating knowledge of T cells, concerning their unique features of 

antigen specificities, requirements for antigen recognition, activation, polarization, 

migration and tissue distribution, should be integrated for their optimized therapeutic use. 

To translate our finding from bench to bedside, we propose these strategies to facilitate 

CTL priming with T17 cells. 

 

A. Adoptive cell transfer of autologous T17 cells expanded in vitro.  

Adoptive transfer strategy normally requires supraphysiological numbers of  T cells 

which restrain tumor outgrowth through their potent cytotoxicity and IFN- secretion. 

Importantly, in vitro expanded V9V2 T cells maintained their antitumor activity in vivo as 

shown in a xenografted human tumor model [308]. Autologous V9V2 cells could be 

reprogrammed to manifest Th17 polarization in vitro with phospholipids and cytokines. 

Such protocol has recently been developed by Caccamo and colleagues. Coculture naive 

V9V2 cells with phosphoantigens and a cocktail of cytokines (IL-1β, TGF-β, IL-6 and 

IL-23) leads to selective expression of the transcription factor RORt and polarization 

towards IL-17 production. These cells shared similar phenotype with IL-17
+
 V9V2 

lymphocytes observed in the peripheral blood and at the site of disease of meningitis 

children [309]. Similar to our finding, these IL-17
+ 

cells retain their cytotoxicity, expressing 

Granzyme B, FasL and TRAIL and they vigorously kill tumor cells though TRAIL. To 

expand and polarize  T17 cells for adoptive transfer, tumor-infiltrating  T cells may be 

a better choice than circulating ones since they are enriched for tumor reactive clones and 

probably maintain their tumor-homing properties. Our preliminary experiments show 

peripheral LN derived  T cells (mostly V4
+
) expanded with TCR crosslinking (clone 

UC7-13D5, 5 g/ml coated plate) and rIL-2 (100 U/ml) remained as potent IL-17 

producers 8 days after in vitro culture. Using the same culture system,  T cells purified 
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from thymus (which poorly produced IL-17 originally) could significantly upregulate IL-17 

secretion, suggesting a preferential expansion of IL-17 producers or activation/maturation 

of T17 progenitors (not shown). Another challenging issue is how to guide infused 

T17 towards tumor vicinity. IL-17
+
 V9V2 T cells preferentially express CCR6 while 

IFN-
+ 

V9V2 T cells express CXCR3 and CCR5, indicating that they could be recruited 

to tumor bed through different chemokines [309]. Leukotriene B4 (LTB4), a potent 

chemokine for DC [310], has been recently reported also capable of attracting T cells 

[311]. Further investigation on tumor-derived chemotactic factors triggered by 

chemotherapy will shed light on the optimal combination of chemotherapy with T17 

cells infusion.  

 

B. Educating or activating T17 in vivo.  

Another alternative strategy is to create a favorable microenvironment in vivo for T17 

activation. Unacceptable toxicities and side effects can be encountered already at very 

low doses of cytokine delivery, preventing escalation to therapeutically active 

concentrations. Therefore, this treatment should be applied in a well-controlled manner 

(eg, timing, dosing and specificity for T17).  

TCR-targeted delivery of pro-Th17 cytokines is a feasible choice. Antibody-based 

targeted delivery of cytokines (eg. IL-1β, IL-23), which has been termed as 

“immunocytokines” [312], could enhance the therapeutic index of recombinant cytokines. 

Cytokines-based fusion proteins-containing antibody targeting TCR could be a 

promising option to activate/polarize T17 cells in vivo. Nanoparticle-mediated delivery 

system may well suit this delicate demand. The polymer poly(lactide-co-glycolide) (PLG) 

is already approved by the FDA for drug delivery applications due to its safety, excellent 

biocompatibility, and “tunable” release rates. This technology is well-suited toward 

stimulation and manipulation of immune cell. Nanoparticles can be coated with antibody 

targeting  T cells surface molecules or phospholipids mimicking TCR ligand. The 

presentation of multiple targeting ligands per nanoparticle can ensure high valency and 

avidity of preferential contact with  T cells. And multiple pro-Th17 cytokine molecules 

can be encapsulated within the same nanoparticle to maximize their synergistic effect. 
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This biorecognition dependent delivery ensures relatively high concentration of cytokine 

precisely within the microenvironment of the targeted cell, avoiding systemic exposure to 

the therapeutic cytokine [313]. To specifically target TILs and release bioactive component 

locally, it is possible to take advantage of the properties of tumor microenvironment. 

These cytokines can be encapsulated in pH sensitive drug delivery vehicles, such as 

polyketal nanoparticles, which could targets to the acidic environments of tumors [314] 

and spare other tissues. Nanoparticles-based technology also facilitates sustained 

release at the desired period, perhaps shortly after chemotherapy.  

 

C. T17 activation through DC. 

As we have shown, dying tumor cells could induce IL-1β production by DC, which is 

indispensible for T17 and Tc1 activation. It would be interesting to test whether 

autologous DC loaded with polyclonal primary tumor cells pretreated with immunogenic 

chemo drugs could be used for adoptive transfer. It remains a fascinating possibility since 

these DC could induce and coordinate both innate T17 and adaptive tumor specific Tc1 

response. Several PRR, such as TLR1, TLR2 and dectin-1, are specifically expressed on 

CCR6
+ 

IL-17-producing T cells [251]. They can be targeted directly to induce IL-17 

production by T cells, or indirectly to enhance this process through triggering IL-23 

production from DC. Thus, TLR2 or dectin-1 ligands should be considered as candidate 

components of nanoparticles targeting  T cells or used during autologous DC generation 

for infusion. 

 

D. Tumor-infiltrating or circulatingT17 as a potential beneficial prognostic factor. 

We discovered that T17 induction in tumor bed appears shortly after chemotherapy, 

sustained and correlated with the priming of Tc1 cells within tumor bed, both of which are 

critical for the efficacy of chemotherapy. It would be interesting to analyze whether tumor 

infiltrating or circulating T17 could be an early prognostic factor after chemotherapy and 

whether correlated T17 and Tc1 infiltration predict superior clinical outcome.  



59 
 

Part II. Optimized therapeutic application of TLR3 agonist by uncoupling 

tumor derived chemokines 

This works has been published in Cancer Reasearch (2010 Jan 15; 70(2):490-500. PMID: 

20068181) as attached in annex 3. 

 

Tumors do not spontaneously release much danger signals. Therefore, they could not 

elicit strong immune reactions. Synthetic molecules have been developed which mimic 

pathogen invasion at the tumour site [56], among which TLR agonists are most widely 

used to boost immunity. Noticeably, neoplastic process may subvert antitumor TLR 

signaling to proinflammatory and/or immunosuppressive pathway and advance cancer 

progression. Thus, TLR agonists act like a double-edged sword during cancer treatment 

[315].  

TLR3 ligands, such as polyinosinic:polycytidylic acids (Poly (I:C)) mimicing the viral 

double-stranded RNA, could boost innate immunity (eg. cytotoxicity of NK, antigen 

cross-presentation of DC) and augment adaptive immune responses (eg. antigen-specific 

CD8
+
 T cells) and they are being evaluated for the treatment of cancer [316,317]. 

Combined CD40 and Poly (I:C) could decrease L-arginase activity of tumor infiltrating DC, 

enhance their production of type I IFN and IL-12, thus transform them from 

immunosuppressive to immunostimulatory cells [318]. Poly (I:C) could signal through 

TLR3 and cytosolic receptors retinoic acid-inducible gene-I (RIG-I) [319] and melanoma 

differentiation-associated Gene 5 (MDA5) [320], to trigger IL-12, type I IFN and IFN- 

production from immune cells [321-324].  

Preclinical study and clinical application of Poly (I:C) have been limited by its high 

toxicity [317,325]. A non-toxic synthesized dsRNA Polyadenylic:polyuridylic acid (Poly 

(A:U)), which signals uniquely through TLR3, has also been utilized in preclinical and 

clinical studies. When combined with a candidate protein or viral antigen in mice, Poly(A:U) 

can promote antigen specific Th1-immune responses and boost antibody production 

[326,327]. When combined with radiotherapy, chemotherapy or used as alone, Poly(A:U) 
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showed moderate success for treating breast gastric cancers without toxic side effect 

[328-330].  

Surprisingly, various functional TLRs are also expressed on a wild variety of tumor cells 

and their biological function remains to be fully understood [331]. Some of the TLR, 

especially TLR4 and TLR9, activation on tumor cells could promote tumor proliferation 

and resistance to apoptosis, induce inflammatory factors secretion by tumor cells, as well 

as enhance tumor invasion and metastasis [331]. TLR3 expression has been found on 

hepatocellular carcinoma [332], melanoma [333,334] and breast cancer [335]. TLR3 

signaling could directly inhibit tumor proliferation, reduce metastasis [334,336] and induce 

apoptosis of tumor cells [335,337]. TLR3-mediated cell death involves the activation of 

caspases and engages both extrinsic and intrinsic apoptotic pathways [338]. This effect is 

mediated either dependent or independent of type I IFN [334,339]. Interestingly, Poly (I:C) 

induced TLR3 activation on prostate cancer cells could increase HIF- expression and its 

nuclear accumulation, which renders tumor cells resistant to apoptosis and augments 

their VEGF production [340]. In Poly (A:U) based treatment of breast cancer patients, high 

TLR3 expression level on tumor cells has been suggested as the biomarker for decreased 

risk of metastatic relapse [341]. While in a cohort of recurrenced breast carcinoma, TLR3 

was significantly upregulated on tumor cell and associated with higher probability of 

metastasis [342]. These conflicting data suggest that different stages of malignancy, 

hypoxic gene expression, the intrinsic property of triggered systematic inflammatory 

reaction could influence the beneficial responsiveness to TLR3 agonists. Therefore, it is of 

utmost importance to uncouple the pro-tumoral and anti-tumoral effect of TLR agonists to 

achieve their maximum beneficial therapeutic effect. 

This study is intended to dissect the effect of Poly (A:U) on TLR3-expressing tumor cells 

and that on host immune system. We are focused in analyzing key factors which mediate 

the crosstalk between tumor and host immunity initiated by TLR3 agonist and their 

contribution to anti-tumor effect. We chose two TLR3-expressing murine tumor models, 

the highly aggressive metastatic B16OVA melanoma and highly tumorigenic GL26 glioma. 

Implanted B16OVA tumors did not respond to chemo drug oxaliplatine, tumor vaccine or 

poly (A:U) monotherapy. Neither could these tumors be controlled by the combination of 
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either two of these therapies. Interestingly, sequential administration of a tumor vaccine 

followed by oxaliplatin and poly (A:U), which we termed VCT, are necessary and sufficient 

to significantly retard tumor growth and prolong survival of tumor-bearing mice. This 

anti-tumor effect relies on intact T cells and TLR3-TRIF signal pathway of the host as its 

therapeutic effect was completely abolished in athymic nu/nu and TRIF
-/-

 mice (shown in 

published Figure 1). Importantly, around 11% of all the wild type mice became tumor free 

after VCT treatment and 2/3 of them gained long time immunity against tumor 

rechallenge.  

Our group previously showed that doxorubicin (DX) induced cell death was 

immunogenic in various tumor cell lines including B16OVA. DX treated B16OVA could 

elicit the recruitment of antigen specific IFN--producing CD8
+
T cells into the draining LNs 

when injected into footpad. B16F10A2/gp100 cells (melanoma cells present peptides from 

the human gp100 tumor antigen in the context of HLA class I A2) treated with DX could 

also significantly delay tumor growth when inoculated subcutaneously into “humanized” 

mice expressing an HLA.A2 transgene [116]. Therefore, we also compared the efficacy of 

dying tumor cell-based vaccines with that composed of adjuvant (CpG) admixed with 

model antigen ovalbumin (OVA) in our VCT therapy. DX could only induce around 20-30% 

cell death (8-20% apoptotic) as tested by Annexin/PI staining after 24hrs of treatment in 

B16OVA cell lines. To improve the lethality of DX, we combine it with type I IFN since this 

natural adjuvant could also induce cell cycle arrest, inhibit proliferation and trigger 

apoptotic cell death in various cell types including tumor [343-347]. Although we could not 

find any synergistic effect between type I IFN and DX to induce cell death, tumor cells 

under this treatment completely lose its tumorigenicity after inoculated into the mice. And 

these cells could vaccinate mice and prevent tumor outgrowth after rechallenged whileas 

tumor cells treated by repeated freeze and thawn were poorly immunogenic (shown in 

published Figure 2A, 2B). Type I IFN+DX based tumor cell vaccine was as potent as CpG 

admixed with OVA in terms of control tumor growth and prolong survival (shown in 

published Figure 2C, 2D). And type I IFN plus DX could better induce immunogenic cell 

death than DX alone as it afforded better efficacy in VCT therapy (not shown). Similarly, 

our tumor cell vaccine and VCT treatment could prevent outgrowth of GL26 in both the 
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prophylactic setting and the therapeutic setting. Importantly, the success of VCT therapy 

depended on intact TRIF signaling in the host as well as that in tumor cells. Knockdown 

TRIF expression using lentivirus-based shRNA abolished the efficacy of VCT (shown in 

published Figure 3A-C).  

TRIF is so far the sole adaptor for TLR3 signaling pathway in response to 

double-stranded RNA [348,349] and Poly (A:U) signals uniquely through TLR3. 

Interestingly, we found that Poly (A:U) induced copious amount of CCL5 (RANTES) and 

CXCL10 (IP-10) from TLR3 expressing-tumor B16OVA in a dose dependent manner. 

Albeit type I IFN alone did not trigger CCL5 and CXCL10 production, pre-incubation with 

type I IFN could enhance this effect when combined with Poly (A:U). Type I IFN, 

particularly IFN-β could up-regulate TLR3 expression in both murine and human. 

IFN-β-induced TLR3 up-regulation on murine macrophages requires IFNAR1, STAT1, and 

in part IRF-1 [350]. GM-CSF, which can be spontaneously secreted by tumor cells 

[351-353], is able to upregulate TLR3 expression through activation of mitogen-activated 

protein kinase (MAPK) and phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathways 

[354]. Indeed, we confirmed that type I IFN upregulated TLR3 expression on both B16F10 

(parental cell line of B16OVA) and GL26 by immunochemistry staining (shown in 

published Figure S1). 

Interestingly, B16OVA spontaneously produce huge amount of CXCL1 (KC) while it is 

completely abolished by Poly (A:U) with or without type I IFN pretreatment. Similar 

phenomenon has been found in GL26 glioma (shown in published Figure 4A, 4B). It has 

been previously reported that TLR3 agonist Poly (I:C) can induce CCL5, CXCL10 and 

TLR2 agonist Pam3Cys could induce CXCL1 production by bone marrow derived 

macrophage. Albeit CXCL10 and CCL5 production depend on TRIF instead of MyD88, 

CXCL1 production relies on MyD88 but not TRIF [355]. Macrophages from IRF3-deficient 

mice showed complete inhibition of CCL5 (RANTES) and CXCL10 (IP-10) production, but 

no effect on CXCL2 (MIP-2) or CXCL1 in response to P. aeruginosa stimulation [356]. Our 

results indicate that activation of TLR3-TRIF signaling pathway potentiate CCL5 and 

CXCL10 production and switch off or counteract with MyD88 mediated CXCL1 production 

by tumor cells. This change could modulate the tumor microenvironment and perhaps the 
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profile of immune cells infiltrating tumor.  

To validate this finding in vivo, we performed VCT treatment in B16OVA tumor model 

and tested these cytokines within tumor lysate by ELISA before and after each procedure 

of VCT treatment. We noticed that CCL5 dramatically increased shortly after each Poly 

(A:U) injection. Production of CCL5 was a transient event as its level dropped quickly 

before the next Poly (A:U) injection was given 3-4 days later. CXCL10 in tumor bed 

gradually decrease as tumor progress in control (NaCl) group. Interestingly, after 

chemotherapy (oxaliplatine) was given, VCT treatment substantially increase CXCL10 

production at all the time points observed. To dissect the relative contribution of host and 

that of tumor cells to chemokine production, we purified CD45
+
 TILs and also CD45

-
 cells 

from dissociated tumor and dosed CCL5 and CXCl10 in each fraction before and after 

each Poly (A:U) injection. In accordance with in vitro data, the increased tissular 

concentration of CXCL10 paralleled that of CCL5 in Poly (A:U)-based VCT treatment. We 

also confirmed that accumulating source of both chemokines resided in the tumor 

parenchyma (shown in published Figure 4C, 4D).  

Certain chemokines are involved in forming immune contexture in situ within tumors. An 

improved prognosis is associated with the expression of specific chemoattractants and 

adhesion molecules. In a system biology study performed with a cohort of 108 CRC 

patients, the highest prediction score concerned the chemokine genes CX3CL1, CXCL9, 

and CXCL10. Indeed, when experimentally tested, high expression of these genes in the 

tumors correlated with high densities of Th1/cytotoxic memory T cells and with favorable 

prognosis [357]. To investigate the impact of CCR5/CCL5 on the synergistic effects of our 

immunochemotherapy, we performed the VCT treatment in wild type mice versus CCR5 

loss of function mice. We noticed that tumor growth in CCR5 deficient mice was slightly 

slower (3-4 days delay, data not shown) than in wild type control. So we started the VCT 

treatment in both strain when B16OVA tumor reached the similar size. Interestingly, VCT 

worked more efficaciously when it was applied to Ccr5
-/-

 mice rather than to WT mice. 

Consistently, when combined with VCT protocol, MetRantes (a pharmacologic inhibitor of 

CCL5) showed significant addictive effect on VCT therapy to retard tumor growth, even if 

we doubled the normal tumor cell inoculum. Importantly, when CCL5 expression in 
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B16OVA tumor was stably knockdown with shRNA by lentivirus transfection (shown in 

published Figure S6), VCT therapy provided superior tumor control and prolonged survival 

(shown in published Figure 5A-D). Altogether, these data suggest that tumor derived 

CCL5 and CCR5 expressing-host derived immune effector are deleterious for the 

outcome of VCT immunotherapy. 

On the contrary, expression of the CXCL10 receptor CXCR3 in the tumor bearing mice 

is compulsory for the beneficial effect of VCT therapy. Footpad vaccination with CpG plus 

OVA could trigger antigen specific IFN- production, correlating with enriched 

IFN--producing CXCR3
+
 CD8

+
 T cells in the draining LNs. But it did not induce T cell 

priming in the tumor draining LNs on the other side. We also observed increased CXCR3
+
 

CD8
+
 cells infiltrating tumor bed after VCT (shown in published Figure 6A, 6B). These 

evidences imply the notion that tumor vaccine could prime antigen specific 

CXCR3-expressing CD8
+
 T cells in the LNs. These cells can be recruited to tumor bed 

through tumor-derived CXCL10 in the presence of Poly (A:U) treatment and contribute to 

tumor control. In the absence of tumor vaccine or chemotherapy, the tumorigenicity of 

B16OVA tumor cells was greatly enhanced by 10 times if they are pretreated with type I 

IFN plus Poly (A:U) (shown in published Figure 6C). When the mice are immunized with 

CpG plus OVA, mice are protected from these type I IFN and Poly (A:U) pre-stimulated 

tumor cells. But this protection vanished if neutralizing antibody for CXCR3 was applied 

systematically.  

Therefore, Poly (A:U) simultaneously enhances CCL5 and CXCL10 production by 

tumor cells which negatively and positively affect the anti-tumor immunity through host 

derived CCR5
+
 and CXCR3

+
 cells respectively (Figure j). This study emphasizes the 

contribution of tumor derived factors which initiate the crosstalk among tumor, 

tumor-associated stromal cells and tumor infiltrating TILs. A more intensive analysis of 

these factors and resulting modification of tumor microenironment is of great importance 

for better application of TLR3 agonist during anti-cancer therapies. Future studies should 

also explore the target cells responding to these tumor derived factors which beneficially 

or detrimentally influence tumor malignancy and anti-tumor immunity.  
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Figure j The protumoral and antitumoral effect of Poly (A:U) on TLR3 expressing cancer. TLR3 

expression on tumor cells could be induced and/or upregulated by type I IFN. Activation of TLR3 on 

tumor cells leads to CCL5 secretion which activates tumor parenchyma and/or recruit CCR5 expressing 

tumor infiltrating cells (such as MDSC, Treg), facilitating tumor progression. Poly (A:U) treatment also 

induce CXCL10 secretion from tumor. When combined with vaccine and/or chemotherapy, both of which 

potentiate tumor antigen presentation and CTL priming, Poly (A:U) enables antigen specific 

CXCR3-expressing CTL recruitment into tumor bed to eradicate tumor. 
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Perspective 

Every coin has two sides. Immune system could eliminate tumor cells but it also creates 

selection pressure for non-immunogenic tumor cells to survive and escape 

immunosurveillance. High doses broad inflammation could induce tumor cell eradication 

by specific immunity while low doses local inflammation facilitate tumor invasiveness, 

metastasis and immune suppression [358]. In the context of tumor, the defined stage of 

disease, local microenvironment and target cells/molecules/signal pathway should be 

taken into consideration to interpret the biological function of immune cells and effector 

molecules. Dying cells could stimulate a robust inflammatory response through releasing 

danger signals or. To boost the immunogenicity of tumor and reset the immune system 

against cancer with chemotherapy, radiotherapy and adjuvant, the following issues need 

to be explored:   

1. What are the tumor cell derived danger signals (intracellular/hidden molecules) or 

proinflammatory molecules generated from extracellular components with the capacity 

to trigger inflammation? Are these molecules sufficient to trigger a robust anti-tumor 

response? How does chemotherapy induce the exposure of these molecules? Or how 

to compensate or maximize the effect of anti-cancer drugs in proper combination with 

other drugs? 

2. How to modulate tumor metabolism and generate novel immunogenic epitope? For 

example, qualitative and quantitative changes in glycosylation are consistent features 

of malignancies. Tumor-specific somatic mutation in a chaperone gene Cosmc 

abolishes the activity of a glycosyltransferase and produces a tumor-specific antigen 

which induces the generation of a high-affinity antibody with antitumor activity [359]. 

3. The mechanisms of immune cells infiltrating tumor bed, sensing danger signals 

released by tumor cells and uptaking tumor associated antigen. How could the 

adaptive antitumor immunity be primed? What are the key effector molecules and 

immune cells during this process?  

4. How to manipulate the stromal microenvironment of tumors to induce immune 
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recognition and destruction and to prevent recurrence?  

5. How to improve coordinated immune response against cancer with immunoadjuvant 

and/or tumor vaccine? How to switch the balance between pro-tumoral and 

anti-tumoral inflammation? What are the molecules and pathways that can be 

targeted for therapeutic intervention? 
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Annex 1: Protocols 

Protocol 1: RNA extraction, reverse transcription into cDNA and quantitative 

RT-PCR analysis of gene expression. 

 

1. Tumor samples are freshly collected, washed briefly by RPMI1640 media (GIBCO). 

2. Cut tissue samples to a maximum thickness in any one dimension of 0.5 cm and place 

the fresh tissue in 5 volumes of RNAlater® (Sigma Aldrich). Samples can be stored at 

room temperature if processed for RNA extraction on the same day or stored at 4°C 

for less than 1 month. 

3. RNA extraction from each tumor (up to 30 mg/sample) is performed using RNeasy 

Mini Kit (QIAGEN) following the instructions. 

4. RNA concentration and purity is tested by NanoDrop Spectrophotometers (Thermo 

Scientific). 

5. Reverse transcription: 

1) mRNA (containing 2.5-5 μg RNA in 30 μl RNase and DNase free water) is 

incubated at 65°C 10 min, then placed on ice for 2 min. Maintain the mRNA on ice 

until use. 

2) Prepare master mix (from Promega or Invitrogen) 

Reagent      Stock         working         Qte (μl) 

dN6                50 ng/μl     3 ng/ul         3 

dNTP               10 mM     1 mM         5 

Buffer            5X         1X           10 

RNAsin            40 U/μl     40U          1 

Superscript® III RT   200 U/μl     200U         1 

Total                                       20 

3) Add 20 μl of the master mix into the processed mRNA sample. Incubate at 50°C 

for 1h and then inactivate the reaction at 75°C for 15 min. 
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6. qRT-PCR: 

1) Dilute the cDNA of each sample at 1:3 with DNase free water. And then 5ul of 

diluted cDNA is used for qRT-PCR.  

2) For each sample, add 

Reagent                                 Qte (μl) 

H2O                                4 

TaqMan® Assay Mix (20X)               1 

TaqMan® Gene Expression Master Mix (2X)  10 

Diluted cDNA                              5 

Total                                20 

3) Perform 45 cycles with standard PCR program using StepOnePlus™ system 

(Applied Biosystems). 
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Protocol 2: Generating BMDC of C57bl/6 origin with J558 supernatant, GM-CSF+IL-4 

or Flt3 ligand 

 

1. Prepare the red cell lysate buffer (ACK solution: 8.29g NH4Cl, 0.037g EDTA, 1g 

KHCO3 in 1L ddH2O) and IMDM culture media (10% heat inactivated fetal calf serum, 

2 mM L-glutamine, 100 IU/ml penicillin/streptomycin and 510
-5 

M β-mercaptoethanol 

complemented with 3% of J558 supernatant (equal to 40ng/ml GM-CSF final), 10 

ng/ml rmGM-SCF and 10 ng/ml rmIL-4 (R&D system), or 100ng/ml rFlt3L 

(PeproTech)). 

2. Femurs and Tibia are removed from the hind legs of the C57bl/6 mice. The skin is 

peeled off and the muscle tissue is removed with tweezers and disposable scalpels. 

The bones are decontaminated with 70% alcohol briefly and maintained in RPMI1640 

on ice before use.  

3. The ends of the bones are cut to expose the bone marrow (BM) and BM cells are 

flushed thoroughly with syringes loaded with RPMI1640 using 21-22.5 gauge needles. 

The BM is pipetted gently and filtered through 100 μM cell strainer to create single cell 

suspensions.  

4. The BM cells suspension is mixed with equal volume of ACK buffer, kept at room 

temperature for 3 min before centrifugation at 200g, 10 min to lyse red blood cells. 

The cell pellet is washed with IMDM culture media once to remove remaining ACK 

solution. 

5. Femurs and tibias from 8 week old mice should yield 10-15 million BM cells per bone. 

The BM cells are counted and seeded at 10 million cells in 20 ml media per 150 mm
2
 

petri-dish for J558 BMDC on day 0, or 2 million cells in 4 ml media for GM-CSF/IL-4 

and Flt3L DC. 

6. On day 3, 7 and 10, cell culture are gently resuspended and collected. The cells 

remaining on original culture dish are briefly digested with cold 0.5% typsin and 

combined with the suspension cells. Cells are counted and seeded in fresh complete 

media into new dishes at the original density for J558 DC and GM-CSF/IL-4 DC. For 

Flt3L DC, all cells are added back into the original plate. 
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7. BMDC can be used since day 7 to day 12. The purity of culture should be at least 

above 70% as tested by FACS with CD11c and MHC II staining. And less than 30% of 

the DC should be MHC II
high

. 
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and oxaliplatin, elicit tumor-specific, interferon- –producing CD8+  T lymphocytes (Tc1 
CTLs) that are pivotal for an optimal therapeutic outcome. Here, we demonstrate that chemo-
therapy induces a rapid and prominent invasion of interleukin (IL)-17–producing  (V 4+

and V 6+) T lymphocytes (  T17 cells) that precedes the accumulation of Tc1 CTLs within 
the tumor bed. In T cell receptor /  or V 4/6 /  mice, the therapeutic efficacy of chemo-
therapy was compromised, no IL-17 was produced by tumor-infiltrating T cells, and Tc1 CTLs 
failed to invade the tumor after treatment. Although  T17 cells could produce both IL-17A 
and IL-22, the absence of a functional IL-17A–IL-17R pathway significantly reduced tumor-
specific T cell responses elicited by tumor cell death, and the efficacy of chemotherapy in 
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efficacy of chemotherapy in IL-17A /  hosts. The anticancer effect of infused  T cells was 
lost when they lacked either IL-1R1 or IL-17A. Conventional helper CD4+  T cells failed to 
produce IL-17 after chemotherapy. We conclude that  T17 cells play a decisive role in 
chemotherapy-induced anticancer immune responses.

© 2011 Ma et al. This article is distributed under the terms of an Attribution–

Noncommercial–Share Alike–No Mirror Sites license for the first six months after 

the publication date (see http://www.rupress.org/terms). After six months it is 

available under a Creative Commons License (Attribution–Noncommercial–Share 

Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/

by-nc-sa/3.0/).

The current management of cancer patients re-

lies upon the therapeutic use of cytotoxic agents 

that are supposed to directly destroy cancer cells 

through a diverse array of cell death pathways. 
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(and perhaps the targets) of IL-17 in the tumor microenvi-

ronment may determine whether this cytokine negatively or 

positively affects tumor growth. Whether conventional anti-

cancer therapies such as chemotherapy and radiotherapy 

modulate IL-17 secretion and/or Th17 polarization remains 

to be explored (Maniati et al., 2010).

Similarly, the contribution of T cells in tumor immuno-

surveillance is still elusive (Hayday, 2009). In humans, V 1+

T cells have been shown to mediate immunosuppressive ac-

tivities (Peng et al., 2007) or, on the contrary, to be associated 

with a reduced occurrence of cancers in transplanted patients 

bearing a CMV infection (Déchanet et al., 1999; Couzi et al., 

2010) and with long-term relapse-free survival after BM 

transplantation (Godder et al., 2007). V 2+  T cells can be 

activated by various synthetic ligands to produce Th1-like cyto-

kines, exhibit cytotoxic functions against tumors (Kabelitz  

et al., 2007), and mediate antitumor effects in patients (Wilhelm 

et al., 2003; Dieli et al., 2007). Although various  T cell 

subsets are capable of producing IL-17 during microbial in-

fection or autoimmune disorders of mice (Shibata et al., 2007; 

O’Brien et al., 2009), very little is known about the incidence 

and functional relevance of IL-17–producing  T cells (that 

we termed  T17) in cancer (Gonçalves-Sousa et al., 2010). 

 T17 cells have been reported to share most phenotypic 

markers with Th17 cells (expressing CCR6, ROR t, aryl hy-

drocarbon receptor [AhR], IL-23R, IL-17A, and IL-22; Martin 

et al., 2009).  T17 cells depend upon TGF-  but not IL-23 

or IL-6 for their development and maintenance (Do et al., 

2010) and can be activated by IL-1  plus IL-23 (Sutton et al., 

2009). They are unrestricted by V  usage (although they are 

mostly V 4 in the context of mycobacteria [Martin et al., 

2009] and experimental autoimmune encephalitis [Sutton  

et al., 2009]). Recent work suggests that thymic selection does 

little to constrain  T cell antigen specificities, but instead de-

termines their effector fate. When triggered through the TCR, 

ligand-experienced cells secrete IFN- , whereas ligand-naive 

 T cells produce IL-17 (Jensen et al., 2008). CD27+  thy-

mocytes expressed LT R and genes associated with a Th1 

phenotype, in contrast to CD27  thymocytes which give 

rise to IL-17–producing  cells (Ribot et al., 2009).

Therapy-induced immunogenic tumor cell death that 

stimulates a therapeutic anticancer immune response can be 

expected to influence the composition and/or the architec-

ture of tumor immune infiltrates, which in turn contribute to 

the control of residual tumor cells. Here, we demonstrate that 

both IL-17A/IL-17RA signaling and  T cells are required 

for optimal anticancer responses and that the source of IL-17A  

is the  T population during immunogenic chemotherapy 

and radiotherapy. We show that an early tumor infiltration by 

 T17 cells is a prerequisite for optimal tumor colonization 

of IFN- –producing CD8+ T cells.  T cell activation de-

pends on IL-1R1 and IL-1  (but not IL-23) produced by 

DCs in response to immunogenic dying tumor cells. Finally, 

the adoptive transfer of WT  T17 cells can restore the ther-

apeutic efficacy of anticancer chemotherapy that is compro-

mised in IL-17A /  hosts.

Nonetheless, several lines of evidence point to a critical con-

tribution of the host immune system to the therapeutic activ-

ity mediated by tumoricidal agents (Nowak et al., 2002, 2003). 

Indeed, in some instances, the cell death triggered by chemo-

therapy or radiotherapy allows recognition of dying (anthra-

cycline-treated or irradiated) tumor cells by antigen-presenting 

cells, thus eliciting a tumor-specific cognate immune response 

for tumor resolution. Whether cell death is immunogenic or 

not depends on the presence of tumor-specific antigens, as 

well as on the lethal hit. Thus, oxaliplatin (OX) and anthracy-

clines induce immunogenic cell death, whereas other chemo-

therapeutic agents such as cisplatin and alkylating agents tend 

to induce nonimmunogenic cell death (Casares et al., 2005; 

Obeid et al., 2007). Stressed and dying tumor cells may emit 

a particular pattern of “danger signals,” and these cell death–

associated molecules are either exposed on the surface of  

dying cells or secreted into the microenvironment. The com-

bined action of “find-me” and “eat-me” signals, together with 

the release of hidden molecules that are usually secluded 

within live cells may influence the switch between silent 

corpse removal and inflammatory reactions that stimulate the 

cellular immune response (Zitvogel et al., 2010). We initially 

described the crucial importance of an eat-me signal represented 

by the early translocation of the endoplasmic reticulum resi-

dent calreticulin–ERp57 complex to the plasma membrane 

for the immunogenicity of tumor cell death (Obeid et al., 

2007; Panaretakis et al., 2008, 2009). Next, we showed that 

the nuclear alarmin HMGB1 must be released into the tumor 

microenvironment to engage TLR4 on host DCs to facilitate 

antigen processing and presentation (Apetoh et al., 2007). We 

also reported that ATP released from dying tumor cells could 

trigger the purinergic P2RX7 receptor on host DC, stimulat-

ing the release of IL-1 , which in turn facilitates the priming 

of CD8+ tumor-specific T cells for IFN-  production that is 

indispensable for the success of chemotherapy (Ghiringhelli 

et al., 2009).

Although the contribution of IFN-  to tumor surveil-

lance and anticancer immune responses is clearly established, 

that of the IL-17A–IL-17R pathway remains controversial 

(Martin-Orozco and Dong, 2009; Muranski and Restifo, 

2009; Ngiow et al., 2010). In tumor models where CD4+  

T cells are the source of IL-17, this cytokine could induce 

Th1-type chemokines, recruiting effector cells to the tumor 

microenvironment (Kryczek et al., 2009) or promote IL-6–

mediated Stat3 activation, acting as a protumorigenic trigger 

(Kortylewski et al., 2009; Wang et al., 2009). Tumor-specific 

Th17 exhibited stronger therapeutic efficacy than Th1 cells 

upon adoptive transfer, and converted into effective IFN-

producers (Muranski et al., 2008) and/or triggered the ex-

pansion, differentiation, and tumor homing of tumor-specific 

CD8+ T cells (Martin-Orozco et al., 2009). IL-17–producing 

CD8+ T cells also reduced the volume of large established  

tumors and could differentiate into long-lasting IFN-  pro-

ducers (Hinrichs et al., 2009). In contrast, Kwong et al. 

(2010) described a tumor-promoting, IL-17–producing TCR 
+CD8+ cell subset. Therefore, the heterogeneous source 

 on M
ay 17, 2011

jem
.rupress.org

D
ow

nloaded from
 

Published March 7, 2011



JEM VOL. 208, March 14, 2011

Article

493

CD8+ T and  T cells were polarized to become potent pro-

ducers of IFN-  and IL-17, respectively. DX-based chemo-

therapy substantially enhanced IFN-  production by CD8+ and 

CD4+ TILs, as well as IL-17 production by  TILs (Fig. 1 G).

 T17 cells preceded and predicted the accumulation  
of Tc1 CTLs in tumor beds after chemotherapy
Kinetic experiments revealed that  TILs invaded MCA205 

tumor beds and produced IL-17 shortly after chemotherapy, 

with significant increases ( 9-fold) over the background 4 d 

after DX injection (Fig. 2 A, left).  TILs still rapidly divided 

(as indicated by the expression of Ki67) 8 d after DX treat-

ment (Fig. 2 B). This early induction of IL-17–producing 

T cells (Fig. 2 C, left) contrasted with the comparatively late 

induction of IFN- –producing CD8+ T cells, which emerged 

sharply 8 d after chemotherapy (Fig. 2 C, right) and rapidly 

proliferated (Fig. 2 B). Altogether, anthracyclines induced an 

early Th17-biased inflammation together with a marked Th1 

polarization in MCA205 tumor beds, associated with a brisk 

infiltration of  T17 cells followed by Tc1 effectors.

To generalize these findings, we systematically immuno-

phenotyped TILs in CT26 colon cancer treated by a single 

intratumoral injection of DX, which significantly retarded  

tumor growth (Fig. 3 A). Indeed, the majority of IL-17A+

TILs were CD45+CD3bright. They failed to express CD4, but 

were positively stained with anti-TCR –specific antibodies 

(Fig. S2 A). Consistently, chemotherapy dramatically increased 

the frequency of IFN- –producing CD8+ T lymphocytes 

(Tc1; Fig. 3 B) and IL-17A–producing  T cells (  T17; 

Fig. 3 C) in the tumor microenvironment. Next, we moni-

tored transplantable TS/A mammary carcinomas treated with 

local radiotherapy, which operates in a T cell–dependent 

manner (Apetoh et al., 2007). Irradiation of TS/A tumors led 

either to tumor regression or to no response, and hence tumor 

progression (Fig. 3 D). An accumulation of both Tc1 (Fig. 3 E) 

and  T17 (Fig. 3 F) lymphocytes was found in those  

tumors that responded to radiotherapy, but not in those that 

continued to progress or in untreated controls. Importantly, in 

each of the three tumor models that we tested, a clear correla-

tion was observed between tumor invading  T17 and Tc1 

cells (Fig. 3 G).

 T17 TILs were preponderantly CD44+ CD62L  CD69+

and Granzyme B+. They did not express CD24, c-kit, NKG2D, 

CD27 (a thymic determinant for IFN- –producing   

T cells; Ribot et al., 2009), SCART2 (a specific marker for 

peripheral IL-17–producing cells which can be down-regulated 

upon activation; Kisielow et al., 2008), or CD122 (a marker 

for self antigen-experienced  T cells with potential to pro-

duce IFN-  (Jensen et al., 2008; unpublished data). FACS in-

dicated that 60% of  T17 used V 4 chain (nomenclature 

of V  genes according to Heilig and Tonegawa [1986]), but 

expression of V 1 and V 7 chain was rarely found (Fig. S2 B). 

We then sorted V 1 V 4 V 7  T17 TILs (Fig. S2 C) and 

performed single-cell PCRs and sequencing (Pereira and 

Boucontet, 2004) to examine their V  chain usage. The ma-

jority of these cells (21 of 23 clones) contained functional 

RESULTS
A marked Th1 pattern 8 d after chemotherapy
Anthracyclines induce immune responses that culminate in 

CD8+ T cell– and IFN- /IFN- R–dependent antitumor  

effects (Ghiringhelli et al., 2009). To further study chemo-

therapy-induced immune effectors at the site of tumor retar-

dation, we performed quantitative RT-PCR to compare the 

transcription profile of 40 immune gene products expressed 

in MCA205 tumors, which were controlled by the anthracy-

cline doxorubicin (DX) 8 d after treatment (Fig. 1 A, top), 

with that of progressing, sham-treated (PBS) tumors (Fig. 1 A, 

bottom). Several Th1-related gene products were specifically 

induced in regressing tumors (Fig. 1 B). In particular, the Th1 

transcription factors Eomes and Tbx21 (also called T-bet) and 

their target, IFN- , were increased by 4–5 fold in DX versus 

PBS-treated tumors (Fig. 1 C, left). Unsupervised hierarchical 

clustering indicated that IFN-  production correlated with 

that of the quintessential Th1 transcription factor, Tbx21.  

By day 8, the protein levels of IFN-  also increased in 

DX-treated MCA205 sarcomas (Fig. 1 D, left). Other sur-

rogate markers of Th1 responses (lymphotoxin- , Ccl5, 

Cxcl10, Cxcl9, and TNF) were also significantly induced at 

the mRNA level after DX treatment (Fig. 1, B and C, left). 

Another set of gene products was also overexpressed in the 

context of DX-induced tumor regression. These genes en-

coded IL-7R, IL-21, AhR, Cxcl2, and Foxp3, suggesting 

that inflammation and/or tissue repair occurred in the  

tumor bed (Fig. 1, B and C, right). Indeed, by day 3 after 

chemotherapy, the protein levels of the inflammatory cytokine 

IL-17 were significantly increased within tumor homogenates 

(Fig. 1 D, right).

Reinforcing this finding, we found that AhR, a sensor of 

small chemical compounds, is involved in the success of  

anthracycline-based therapy in this model. AhR is recognized 

as a transcriptional regulator for the optimal IL-17–associated 

immune response, promoting the differentiation and/or mainte-

nance of IL-17–producing cells (Esser et al., 2009). CH-223191 

is a pure antagonist of AhR because it does not have any ago-

nist actions up to 100 μM (Kim et al., 2006). Blocking AhR 

with CH-223191 markedly reduced the efficacy of DX on 

established cancers in vivo (Fig. S1 A). This contrasts with the 

observation that CH-223191 had no cell autonomous effects 

on the tumor cells, alone or in combination with anthracy-

clines (Fig. S1 B).

DX (compared with PBS) induced a threefold increase in 

the proportions of both IFN- – and IL-17–producing  

tumor-infiltrating lymphocytes (TILs) as tested by flow cytom-

etry (FACS; Fig. 1 E). To identify the cellular source of IFN-

and IL-17, TILs were immunophenotyped by cell surface 

staining and intracellular detection of the cytokines with 

FACS. Careful analyses revealed that the major source of 

IFN-  was CD8+ T cells, whereas that of IL-17 was mostly 

TCR + T cells rather than CD4+ Th17 cells 8 d after che-

motherapy in MCA205 sarcomas (Fig. 1 F). We further ana-

lyzed the IFN-  and IL-17 production by each subset of 

TILs. CD4+ T cells could secrete IFN- , but rarely IL-17. 
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Figure 1. Th1 and Th17 immune response in tumors after chemotherapy. (A) Mice bearing MCA205 tumors were treated with PBS (solid symbols) or 

DX (open symbols) intratumorally at day 7 after tumor inoculation. Tumor growth was monitored at the indicated time points. (B and C) 8 d after chemo-

therapy (day 15 after tumor inoculation), tumor homogenates in PBS and DX groups were tested by quantitative RT-PCR (qRT-PCR). (B) Fold changes of gene 

expression are shown as a heat map. (C) Th1- and Th17-related gene expression in DX versus PBS groups (with a fold change >2) are listed. (D) Measurements 

of IFN-  and IL-17A protein in tumor homogenates by ELISA at the indicated time points. (E and F) Single-cell suspension of MCA205 tumors (day 8 after DX) 

were analyzed by FACS. (E) Expression of IFN-  and IL-17A in TILs was tested by intracellular staining gated on live, CD45+ and CD3+ cells. (F) IFN- + and  

IL-17A+ cells were gated, and the proportions of CD3+ CD8+ cells and CD3+ TCR + cells were examined in DX-treated tumors. A typical dot plot analysis (left) 

and the absolute numbers of Th17 and  T17 cells in the whole tumors (right) are shown. (G) IFN-  and IL-17A production by total CD4+, CD8+, and TCR +

TILs. Representative FACS plots in DX-treated tumors (left) and the percentages in PBS- or DX-treated tumors (right) are shown. Each group contained at least 

five mice, and each experiment was performed at least twice, yielding similar results. Graphs depict mean ± SEM of fold change of gene expression (C), pro-

tein content (D), percentages, or absolute numbers of positive cells (E and G). *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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abolished antigen-specific T cell priming in re-

sponse to dying cells, yet had no negative effect 

on T cell priming by OVA holoprotein admixed 

with CpG oligodeoxynucleotides (Fig. 5 A, left). 

Consistently, a neutralizing anti–IL-17A anti-

body, but not the isotype control Ig (CIg), 

markedly impaired the OVA-specific T cell in-

duced by OX-treated EG7 (Fig. 5 A, right). Be-

cause Th1/Tc1 immune responses against dying 

tumor cells mediate a prophylactic protection against rechal-

lenge with live tumor cells (Apetoh et al., 2007; Ghiringhelli 

et al., 2009), we addressed the functional relevance of the  

IL-17A–IL-17RA pathway in this setting. Subcutaneous in-

jection of mitoxantrone (MTX)-treated MCA205 sarcoma 

cells could protect WT mice, but not athymic nude mice, 

against rechallenge with live MCA205 tumor cells (Fig. 5 B). 

The efficacy of this vaccination was attenuated in IL-17RA /

mice. Because IL-17 was not significantly produced by CD4+

or CD8+ T cells, neither in tumor beds during chemotherapy 

(Fig. 1 G) nor in the tumor draining LNs (unpublished data), 

we refrained from investigating Th17 cells and rather focused 

on  T and NKT cells as potential IL-17 producers (Mills, 

2008; Pichavant et al., 2008) that might contribute to the anti-

cancer vaccination by dying tumor cells. Although CD1d /

mice, which lack all NKT population (Godfrey et al., 2010), 

were undistinguishable from WT controls in their ability to 

resist live tumor cells rechallenge after a dying tumor cell vac-

cine, V 4/6 /  mice (Sunaga et al., 1997) exhibited a reduced 

capacity to mount this anticancer immune response (Fig. 5 B). 

These results suggest that IL-17A, IL-17R, and  T17 cells 

all play a partial role in the afferent phase of the immune re-

sponse against dying tumor cells, which includes T cell prim-

ing for IFN-  production.

IL-1 –dependent, but not IL-23-dependent, activation  
of  T lymphocytes
The IL-1 –IL-1R1 pathway is mandatory for eliciting Tc1 

immune responses and for the efficacy of chemotherapy 

(Ghiringhelli et al., 2009). Moreover, we found an IL-1– 

related gene expression signature after chemotherapy in tumor 

beds (Fig. 1 B), prompting us to address its role in the activa-

tion of  T17 cells.

To explore the molecular requirements for  T17 activa-

tion in situ, we sorted  T cells from the skin-draining LNs 

V 6 rearrangements identical to those found in fetal   

T cells (Lafaille et al., 1989). These experiments show that most 

 T17 TILs express V 4 or V 6 chains (Fig. S2, D and E).

Thus, chemotherapy and radiotherapy could trigger the 

accumulation of cytokine producing TILs in the tumor bed. 

This applies to distinct subsets of  T cells that rapidly invaded 

tumor and become IL-17 producers, correlating with the accu-

mulation of Tc1 cells, which contribute to the chemotherapy-

induced anticancer immune response.

The IL-17A–IL-17R pathway is involved  
in the immunogenicity of cell death
Because both Tc1 and  T17 cells accumulated within tumors 

after chemotherapy or radiotherapy in a coordinated fashion, 

we determined whether neutralizing their signature cytokines 

IFN-  and IL-17A could mitigate the efficacy of anticancer 

therapies. Antibody-mediated neutralization of either IFN-

or IL-17A negatively affected the growth-retarding effect of 

DX against MCA205 tumors (Fig. 4 A). The mandatory role 

of the IL-17A–IL-17RA pathway was confirmed using neu-

tralizing anti–IL-17RA antibodies and IL-17A /  mice in 

the same tumor model (Fig. 4 B), in DX-treated MCA2 sar-

comas (Fig. 4 C), as well as in OX-treated, OVA-expressing 

EG7 thymomas or CT26 colon cancers (Fig. 4, D and E).

To rationalize the sequential recruitment of  T17 and 

Tc1 cells into the tumor bed after chemotherapy, we hypoth-

esized that  T17 might act as helper cells for Tc1 priming. 

We previously reported that specific antitumor immune re-

sponses rely on Tc1 cells primed by tumor cells undergoing 

immunogenic cell death by using a system in which IFN-

production by OVA-specific T cells could be triggered by 

OX-treated EG7 cells (Ghiringhelli et al., 2009). We used this 

system to check whether IL-17 is involved in initiating the 

specific antitumor response, comparing normal WT with  

IL-17RA /  mice. In this assay, the absence of IL-17RA fully 

Figure 2.  T17 cells preceded Tc1 CTL into tumors 
after chemotherapy. (A) The percentages of IL-17– and 

IFN- –producing cells among all tumor infiltrating  T 

cells and CD8+ T cells, respectively, are plotted before and 

at the indicated time points after tumor inoculation. Mice 

were treated with PBS (filled symbols) or DX (open sym-

bols) at day 7. (B) Ki67 expression on  T and CD8+ TILs 8 d  

after treatment. (C) The percentages of  T17 and Tc1 

among all CD3+ TILs at the indicated time points after 

tumor inoculation. DX was given at day 7. These experi-

ments were performed twice on 5–10 tumors at each time 

point. *, P < 0.05; **, P < 0.01.
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Thus, BM-derived DCs (BMDCs) that had been loaded with 

DX-treated MCA205 (Fig. 5 C; or CT26, not depicted), but 

not with live tumor cells, produced IL-1  and markedly stim-

ulated the release of IL-17 and IL-22 by  T cells (Fig. 5 C). 

As a quality control for in vitro–generated DCs, the expres-

sion of CD11c, MHC class II, CD11b, and F4/80 was as-

sessed. Only qualified DC preparations that contain functional 

DCs (>80% CD11c+MHCII+) rather than macrophages 

(>70% CD11b+F4/80+CD11c ) could activate  T cells for 

IL-17A production when they encountered DX-treated tumor 

cells. CD11b+Gr1+ neutrophils reportedly produce IL-17 and 

promote downstream IL-12/IFN-  contributing to reperfu-

sion injury (Li et al., 2010). Interestingly, CD11b+Gr1+ cells 

sorted from DX-treated tumor beds bearing the IL-1  mes-

senger RNA failed to secrete IL-1  or IL-17A protein and 

failed to activate  T cells for IL-17A production in vitro 

(unpublished data). IL-17 production by  T cells was de-

pendent on IL-1  because the IL-1R1 antagonist IL-1RA 

entirely abrogated the DC/  T cell cross talk in the presence 

of naive mice (around 1–2% of the LN T cell pool). Among 

these  T cells, 70% harbored the V 4 TCR. Moreover, 

these cells vigorously produced IL-17A (but not IFN- ) upon 

stimulation with PMA/ionomycin (Fig. S2 F; Do et al., 2010). 

In contrast to Th17 cells (Ivanov et al., 2006), LN-resident 

T cells failed to produce IL-17 in response to TGF-  or IL-6 

alone, or in combination with IL-1 . However, they potently 

secreted IL-17 and IL-22 in response to the combined stimu-

lation of IL-1  plus IL-23 (unpublished data; Sutton et al., 

2009). TCR engagement also synergized with IL-1  (and to 

a lesser extent with IL-23) to trigger IL-17 and IL-22 secre-

tion by LN-resident  T cells (unpublished data). It is note-

worthy that these stimuli specifically activated IL-17A, but 

not IFN-  production by  T cells. Because  T17 cells were 

activated (as indicated by their Ki67+, GzB+, CD69+, and IL-17+

phenotype) after chemotherapy, we addressed whether dying  

tumor cells could directly promote the activation of  T17. 

Although DX-treated MCA205 cells failed to directly in-

duce IL-17 secretion by  T cells, they did so indirectly. 

Figure 3. Recruitment of both Tc1 and  T17 cells in CT26 and TS/A tumors that correlate with better tumor control. (A–C) CT26 colon cancer 

treated with anthracyclines. (A) Tumor size before and 8 d after treatment with PBS (filled symbols) or DX (open symbols). (B) The percentage of CD8+ T cells 

among CD3+ cells and of IFN- –producing cells among CD8+ T cells. (C) The percentage of  T cells among CD3+ cells and of IL-17A–producing cells among 

CD3+  T cells. Data are presented as mean ± SEM with five tumors/group. (D–F) TS/A mammary cancer treated with x rays. (D) Established TS/A tumors were 

treated with local irradiation (open symbols) on day 10. Mice were segregated into nonresponders (tumor progression [TP], triangles) and responders (tumor 

regression [TR], circles) 22 d after radiotherapy (n = 5). (E) The percentage of CD8+ T cells among CD3+ cells and of IFN- -producing cells among CD8+ T cells; 

(F) The percentage of  T cells among CD3+ cells and of IL-17A–producing cells among CD3+  T cells are indicated as mean ± SEM. (G) The correlation 

between the percentages of  T17 and Tc1 TILs in all tumors (treated or not) was plotted for MCA205, CT26, and TS/A tumors (each dot representing one 

mouse). Data are representative of two to three independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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 T lymphocytes are indispensable  
for the immune-dependent effects  
of chemotherapy
To further evaluate the contribution of   

T cells to the therapeutic action of DX on es-

tablished MCA205 sarcomas, such tumors 

were implanted into age- and sex-matched 

WT, TCR / , V 4/6 /  mice, and then 

subjected to chemotherapy. As compared with 

WT controls, the absence of the TCR  chain, 

as well as that of V 4 and V 6  T cells, 

greatly reduced the efficacy of chemotherapy 

(Fig. 6 A). At day 8 after chemotherapy, when 

 T17 and Tc1 massively infiltrated tumor 

beds in WT mice, these cytokine-producing 

TILs were either absent or greatly reduced in 

V 4/6 /  mice (Fig. 6 B), suggesting that the 

presence of V 4 and V 6  T cells are critical 

for the optimal Tc1 response in tumor beds.

Expression of CCR6 is a phenotypic and functional hall-

mark of Th17 cells (Reboldi et al., 2009) during some inflam-

matory processes. We therefore analyzed the role of CCR6 in 

the efficacy of chemotherapy. Because CCL20 was detectable 

in tumor tissues before and after chemotherapy (unpublished 

data), we assessed whether  T17 cells could be recruited in 

a CCL20/CCR6-dependent manner. The tumoricidal activ-

ity of DX against CT26 was not affected by repetitive sys-

temic injections of neutralizing anti-CCL20 antibody before 

and during anthracycline treatment (Fig. S3 B). Consistently, 

anthracycline treatment against established MCA205 sarcoma 

remained efficient in CCR6 loss-of-function mice. Moreover, 

CCR6 deficiency did not influence tumor infiltration by 

T17 (unpublished data). Therefore, V 4 and V 6  T cells 

contribute to the immune-mediated action of anticancer 

agents in a CCR6-independent fashion.

Next, we determined the contribution of adoptively trans-

ferred  T cells to the efficacy of chemotherapy. The infusion 

of  T cells derived from skin-draining LNs (from naive 

of dying cells. The neutralization of IL-18R, IL-23, or IL-23R 

failed to abolish IL-17 production by  T cells co-cultured 

with DCs (Fig. 5 D). IL-22 production was completely abol-

ished by blocking the IL-1 –IL-1R or IL-23–IL-23R path-

ways but not affected by IL-18R blockade. Interestingly, 

chemotherapy lost part of its anticancer activity in IL-1R1–

deficient mice, yet maintained its efficacy in mice treated with 

IL-23p19–neutralizing antibodies or in IL-23p19 /  mice 

(Fig. 5, E–G). IL-1 –activated  T cells produced IL-17 and 

IL-22 (Fig. 5, C and D). However, IL-22 did not play an es-

sential role in the antitumor effects promoted by chemother-

apy (Fig. S3 A). It is of note that the antibody we used in this 

experiment could block the bioactivity of IL-22 in a lung 

bacterial infection model (Aujla et al., 2008), and IL-22 

mRNA in the bulk TILs was below the detection limit of 

quantitative RT-PCR. Collectively, these results underscore 

the importance of IL-1  and IL-17 for the immune-dependent 

anticancer effects of chemotherapy, yet suggest that both IL-23 

and IL-22 are dispensable for such effects.

Figure 4. A mandatory role for the IL-17A–IL-
17RA pathway in the efficacy of chemotherapy. 
(A) Mice bearing established MCA205 sarcomas were 

treated with local PBS (filled symbols) or DX (open 

symbols) 7 d after tumor inoculation and with sys-

temic neutralizing antibodies against mouse IFN-

(left), IL-17A (right), or control Ig (CIg) i.p. every 2 d  

(3 injections, 200 μg/mouse) starting on the day of DX. 

(B–E) WT (circles or squares) or IL-17A /  (triangles) 

mice bearing established MCA205 sarcomas (B),  

MCA2 (C), EG7 (D), or CT26 (E) tumors were treated with 

PBS (B-E, solid symbols), DX (B and C, open symbols), or 

OX (D and E, open symbols) together with systemic 

administration of neutralizing antibodies against IL-

17RA (squares) or CIg. Tumor sizes are plotted as 

mean ± SEM for 5–15 mice/group, and each experi-

ment was repeated at least 2 times, yielding similar 

results. *, P < 0.05; **, P < 0.01.
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Figure 5. Role of  T17 in the priming of T cell responses during an immunogenic cell death and regulation by IL-1 . (A) OX-treated EG-7 

cells were inoculated in the footpad of WT versus IL-17RA /  mice (n = 5; left) along with anti–IL-17A neutralizing antibody (or CIg; right panel). OVA-

specific IFN-  secretion by draining LN cells was measured in vitro by ELISA after stimulation with OVA protein (1 mg/ml). OVA/CpG immunization was 

used as positive control. (B) Immunization with MTX-treated MCA205 and rechallenge with a tumorigenic dose of live MCA205 were performed at day 0 

and day 7, respectively in WT C57Bl6 (n = 10), nude (n = 10), V 4/6 /  (n = 15), IL-17RA /  (n = 8), and CD1d /  (n = 6) mice. The percentages of tumor-

free mice were scored at the indicated time points. Experiments in A and B were performed twice with similar results. (C) Production of IL-1 , IL-17A, and 

IL-22 from mixed co-cultures of LN-derived  T cells and/or BMDCs loaded or not loaded with live or DX-treated MCA205 was monitored by ELISA. Data 

are shown as mean ± SEM (D) Co-cultures of DX-treated MCA205/BMDC/  T were performed in the presence of 20 μg/ml IL-1RA (Amgen), anti–IL-23, or 
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When exploring the source of IL-17A 

elicited by dying tumor cells, we found that 

 T cells were the quantitatively and func-

tionally most important IL-17A producers, 

based on several observations. First, in the 

context of chemotherapy, IL-17–producing 

cells accumulated in tumors, and most of 

them were positive for  T markers. Sec-

ond, antigen-specific CD4+ T cells in LNs 

draining the dying tumor cells showed a Th1 (IL-2 and 

IFN- ) instead of a Th17 cytokine pattern (Ghiringhelli et al., 

2009). CD4+ and CD8+ TILs were polarized to produce 

IFN-  instead of IL-17. Also, IL-6 and TGF- , two key regu-

latory cytokines essential for the differentiation of Th17 cells 

(Ivanov et al., 2006; Veldhoen et al., 2006), were dispensable 

for the efficacy of chemotherapy or vaccination with dying 

tumor cells (Fig. S3, C and D), suggesting that Th17 cells may 

not be required for the anticancer immune response after 

chemotherapy. Third, when popliteal LNs were recovered 

from mice that had been injected with dying (but not live) 

tumor cells through footpad, the restimulation of LN-resident 

cells using anti-CD3  plus IL-23 readily enhanced IL-17 

production (unpublished data), a feature common to memory 

T cells (van Beelen et al., 2007), innate NKT (Rachitskaya  

et al., 2008), and  T cells (Sutton et al., 2009). Fourthly,  

the subset of NKT cells capable of producing IL-17 in LNs 

(CD103+CD4 NK1.1 CCR6+CD1d tetramer+; Doisne et al., 

2009) did not appear to be specifically triggered by dying 

cells in vivo (unpublished data). Moreover, CD1d /  mice, 

which lack NKT cells, were indistinguishable from WT mice 

when the efficacy of chemotherapy was assessed in prophy-

lactic vaccination settings. Fifthly, knockout of V 4/6 or 

TCR  attenuated the protective antitumor vaccination with 

dying tumor cells and reduced the efficacy of the anthra-

cycline-based chemotherapy on established tumors. Finally, 

the adoptive transfer of WT  T cells into IL-17A /  hosts 

could restore the clinical response to chemotherapy and improve 

WT mice) into tumor beds 2 d after DX potentiated the 

growth-retarding effect of chemotherapy, yet had no effect 

on PBS-treated tumors (Fig. 7 A). Importantly, synergistic 

antitumor effects of DX and adoptively transferred   

T cells were lost when the  T cells were obtained from 

IL-17A /  or IL-1R1 /  donors (Fig. 7, B and C), emphasiz-

ing the role of IL-1  responses and IL-17 production in the 

function of  T cells. Moreover, the adoptive transfer of WT  

 T cells could restore the antitumor efficacy of chemotherapy 

in IL-17A–deficient mice (Fig. 7 D). Collectively, these results 

emphasize the important contribution of  T17 cells to the 

immune-dependent effects of anticancer chemotherapy.

DISCUSSION
Our results highlight a role of  T cells, particularly the  

V 4- and V 6-expressing subsets that produce the effector 

cytokine IL-17A, in the anticancer immune response induced 

by cytotoxic chemotherapeutics. We demonstrated that the 

IL-17A–IL-17RA signaling pathway is required for the priming 

of IFN- –secreting, antigen-specific T cells by tumor cells ex-

posed to chemotherapy. This tumor-specific, Tc1-mediated im-

mune response is essential for anticancer immunity because the 

protective effect of dying tumor cell vaccination is lost in athymic 

nude mice or when CD8+ T cells are depleted (Casares et al., 

2005), and chemotherapy fails to work when the IFN- –IFN-

R system is blocked (Ghiringhelli et al., 2009). Accordingly, we 

found that the absence of the IL-17A–IL-17RA pathway reduced 

the capacity of mice to mount a protective antitumor response.

IL-23R neutralizing antibodies, or 10 μg/ml IL-18BP. Experiments in C and D were repeated three to six times. (E and G) Tumor size was monitored in WT 

(circles), IL-1R1 /  (diamonds), and IL-23p19 /  (squares) mice treated with PBS (filled symbols) or DX (open symbols; E and F), or in WT mice treated 

with systemic anti–IL-23 neutralizing antibodies (squares) or CIg (circles; G). Data are representative of 2 experiments with 6–10 mice/group. *, P < 0.05; 

**, P < 0.01; ***, P < 0.001.

Figure 6. The therapeutic activity of anthra-
cyclines and tumor colonization of Tc1 depend 
upon V 4 V 6  T cells. (A) WT, TCR / , or 

V 4/6 /  mice with established MCA205 tumors 

were injected intratumorally with PBS or DX. Tumor 

size was measured at the indicated time and plotted 

as mean ± SEM (n = 8/group). (B) Percentage of IL-

17A– or IFN- –expressing cells within CD3+ TCR +

and CD3+ CD8+ TILs, respectively, in WT or V 4/6 /

mice. A typical dot plot is shown (left) and statisti-

cal analysis was performed with combined data 

from two independent experiments (right). *, P < 

0.05; ***, P < 0.001.
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results imply a causal relationship between the presence of 

T17 cells and the recruitment of antitumor effector Tc1 cells 

into tumor beds.

 T cells represent a major source of IL-17 during lung 

infection by Mycobacterium tuberculosis (Lockhart et al., 2006; 

Umemura et al., 2007) and liver infection by Lysteria (Hamada 

et al., 2008).  T cell-derived IL-17 is critical for the recruit-

ment of neutrophil recruitment into the peritoneal cavity  

after Escherichia coli inoculation (Shibata et al., 2007).   

T cells can be directly stimulated through TLR2, TLR1, and/or 

dectin-1 in response to Mycobacterium tuberculosis and Candida  

albicans to produce IL-17 in synergy with IL-23 (Martin  

et al., 2009). As to the mechanisms that link chemotherapy-

elicited tumor cell death to the accumulation of  T17 cells, 

our data suggest that IL-1  acts as a major trigger. One previ-

ous report demonstrated the pivotal function of IL-1  in 

regulating  T17 cells in experimental autoimmune enceph-

alomyelitis (EAE; Sutton et al., 2009). In that model, IL-1

synergized with IL-23 to promote IL-17 production by  T, 

which in turn, stimulated the differentiation of pathogenic 

Th17 cells.

Our data can be interpreted to support the contention 

that the context and immune orchestration at the site of cell 

death may be critical for an optimal contribution of the im-

mune system to the efficacy of anticancer therapies. The pres-

ent data introduces the idea that  T17 cells are part of the 

innate immune response that facilitates the subsequent cognate 

anticancer T cell responses. It remains a formidable challenge for 

investigating further how the innate and cognate immune effec-

tors develop a dialog within the three-dimensional architec-

ture of the tumor composed of dying and live tumor cells, as 

well as multiple stromal elements. Should  T17 cells also be 

recruited into human tumor beds after chemotherapy, it would 

be of the utmost importance to determine their TCR V   

usage to propose combination therapy of phosphoantigens 

(for V 2+) or other ligands or innate cytokines (for V 2 ) and 

anthracyclines to increase therapeutic benefit in neoadjuvant 

settings or prevent metastases.

MATERIALS AND METHODS
Mice. WT C57BLl/6 (H-2b) and BALB/c (H-2d) mice aged between 7 and 

12 wk were purchased from Harlan. Nude mice were bred in the animal facil-

ity of Institut Gustave Roussy. TCR / , IL-1R1 / , and IL-17RA / (H-2b)

mice were bred at Cryopréservation, Distribution, Typage, et Archivage Ani-

mal (Orléans, France) by B. Ryffel (CNRS, Orleans, France) and P. Pereira 

(Institut Pasteur, Paris, France; TCR /  was bred in the same manner).  

IL-23p19 /  and IL-17A /  (H-2b) were provided by M.J. Smyth (Peter Mac-

Callum Cancer Centre, Victoria, Australia). V 4 6 /  mice (H-2b) were provided 

by G. Matsuzaki (University of the Ryukyus, Okinawa, Japan) and K. Ikuta 

(Kyoto University, Kyoto, Japan). CD1d /  and CCR6 /  (H-2b) mice were 

bred at St. Vincent de Paul Hospital AP-HP (Paris, France) and provided by 

K. Benlagha. The experimental protocols were approved by the Animal Care 

and Use Committee in the animal facility of Institut Gustave Roussy.

Cell lines and reagents. CT26 (H-2d) colon cancer, MCA205 (H-2b) and 

MCA2 (H-2d) sarcoma, TS/A mammalian cancer (H-2d), and EG7 thymoma 

(H-2b) were cultured in RPMI 1640 containing 10% FBS, 2 mM l-glutamine, 

100 IU/ml penicillin/streptomycin, 1 mM sodium pyruvate, and 10 mM 

the response in WT hosts, and this latter effect was lost 

when  T cells from IL-17A /  (rather than WT) donors 

were used.

In the context of immunogenic chemotherapy, it appears 

clear that IL-1  plays a major role in stimulating IL-17 pro-

duction and the anticancer function of  T cells. The key 

role of IL-1  in regulating  T cells function was shown by 

using IL-1RA in co-cultures of DCs/  T cells in the pres-

ence of dying tumor cells. Also,  T cells that lack IL-1R1 

lose the capacity to amplify the tumoricidal action of anthra-

cyclines. Interestingly, inflammasome-dependent IL-1  secre-

tion from DCs was also found to be mandatory for the 

polarization of CD8+ T cells toward a Tc1 pattern (Ghiringhelli 

et al., 2009), suggesting that a connection between DCs, 

T17 cells, and Tc1 cells might be important for optimal anti-

cancer immune responses. We noticed a strong correlation 

between  T17 and Tc1 cells after chemotherapy in three 

different tumor models. We also noticed that the production 

of IL-17 production preceded that of IFN-  by TILs. It is well 

possible that besides helping the development of Tc1 response, 

 T17 cells might enhance the chemoattraction of effector 

Tc1 into the tumor beds. These results are compatible with 

observations obtained in a cancer-unrelated context, micro-

bial infection, in which  T17 associated with Th1 responses 

exert protective immune response (Umemura et al., 2007).  

As IL-17 could not directly induce IFN-  production or 

enhance proliferation of CD8+ T cells (unpublished data), our 

Figure 7. Role of  T cell–derived IL-17A during chemotherapy. 
CD3+ TCR + or CD3+ TCR  T cells from WT mice (A), CD3+ TCR + T cells 

from IL-17A /  (B), or IL-1R1 /  (C) mice were injected intratumorally 

into MCA205-bearing WT mice (A–C) or IL-17A /  mice (D) 2 d after PBS 

or DX treatment. Tumor sizes are plotted as mean ± SEM for five mice/

group. Experiments were repeated two to three times with similar results. 

*, P < 0.05; **, P < 0.01.
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IL-17A or CIg was injected i.p. 5 d later, the popliteal LN cells were har-

vested, seeded in a 96-well plate at 3 × 105/well and restimulated with 1 mg/ml 

OVA protein. IFN-  secretion was measured by OptEIA Mouse IFN-

ELISA kit (BD). MCA205 cells were treated with 2 μM MTX overnight, 

washed thoroughly, and injected into left flank s.c. at 3 × 105/mouse. PBS 

was used as control. Mice were rechallenged with 5 × 104 live MCA205 cells 

in the right flank 7 d later. Tumor growth was monitored every 2–3 d.

DC-tumor mixed lymphocyte cultures. DCs were propagated in Iscoves’s 

medium (Sigma-Aldrich) with J558 supernatant (40 ng/ml GM-CSF), 

10% FCS, 100 IU/ml penicillin/streptomycin, 2 mM l-glutamine, 50 μM 

2-mercaptoethanol (Sigma-Aldrich) and used between day 8 and 12 when the 

proportion of CD11c/MHC class II+ cells was >80%. In mixed co-cultures, 

DCs were seeded at 105/100 μl/well in U-bottom 96-well plates. Tumor cells 

were treated overnight with 25 μM DX or left untreated, washed, and used 

at 7.5 × 104/100 μl/well. 2 × 104/50 μl  T cells were added 12 h later.  

Supernatant was collected 36 h later.

Statistical analyses of experimental data. All results are expressed as 

mean ± SEM, or as ranges when appropriate. For two groups, normal distri-

butions were compared by unpaired Student’s t test. Non-normal samplings 

were compared using the Mann-Whitney test or Wilcoxon matched paired 

test when appropriate. The log-rank test was used for analysis of Kaplan-

Meier survival curve. Statistical analyses were performed using Prism 5 soft-

ware (GraphPad). P values of <0.05 were considered significant.

Online supplemental material. Fig. S1 shows the effect of AhR antago-

nist on the efficacy of chemotherapy (DX). Fig. S2 depicts the V  chain usage 

of tumor-infiltrating  T17 and  T cells in the LNs of naive mice. Fig. S3 

shows the effect of neutralizing IL-22, CCL20, IL-6, or blocking TGF-  on 

the efficacy of chemotherapy or vaccine. Online supplemental material is avail-

able at http://www.jem.org/cgi/content/full/jem.20100269/DC1.
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  Figure S1.   AhR antagonist partially impaired the effi cacy of anthracyclines.  (A) AhR antagonist CH223191 was dissolved with DMSO and diluted 

in olive oil. Mice treated with either PBS or DX received a daily systemic inoculation (i.p.) of CH223191 (2 mM, 100 μl) for 4 d from the day of PBS or DX 

treatment. Tumor size was measured at the indicated time points. One representative experiment out of three is shown. (B) Apoptosis of MCA205 cells 

treated with media, DX, or MTX with or without the indicated concentration of AhR inhibitor CH-223191. Apoptosis is indicated by a reduction in mito-

chondrial membrane potential detected by decreased DiOC6(3) fl uorescence. This experiment was performed twice with similar results. ***, P < 0.001. ns, 

not signifi cant.   
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 �  �  T17 cells contribute to anticancer chemotherapy  | Ma et al. S2

  Figure S2.   V �  chain usage by  �  �  T17 cells in tumor bed and skin draining LNs of naive mice.  (A) CD45, CD3, CD4, and TCR  �  expression by IL-

17A–producing cells from tumor beds of mice 8 d after chemotherapy. (B) V �  usage in live CD45 +  CD3 +  TCR  �  +  IL-17 +  cells in tumor beds after DX. Num-

bers represent the percentage of V � 1 + , V � 4 + , or V � 7 +  cells among TCR  �  +  IL-17 +  cells as indicated. One experiment representative of three is shown. (C–E) 

Individual V � 1  �  V � 4  �  V � 7  �    �  �  T17 TILs as gated in (C) were sorted in PCR plates, and DNA was amplifi ed with primers specifi c for V � 2-J � 2 or V � 6-J � 1 

rearrangements. (D) Presence (+) or absence ( � ) of specifi c amplifi cation bands in 24 clones analyzed. (E) Junctional sequences of the V � 6-J � 1 amplifi ca-

tions present in 21 clones in D. GL denotes the germline sequences of the V � 6 and J � 1 ends as indicated. (F) LN cells from naive mice were stimulated 

with PMA/ionomycin, and total  �  �  T cells (top) or V � 4 +  cells (bottom) were gated and analyzed for intracellular IL-17 (middle) or IFN- �  (right) by FACS. 

Numbers indicate the percentage of cells inside the gates. One experiment representative of four is shown.   
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  Figure S3.   Dispensable roles of IL-22, CCL20, IL-6, and TGF- �  for the effi cacy of chemotherapy.  (A and B) Neutralizing antibodies against IL-

22 (50 μg/mouse; A), CCL20 (200 μg/mouse; B), or CIg were administered i.p. every other day for 1 wk starting at the day of chemotherapy in MCA205- or 

CT26-bearing WT mice. Tumor growth was measured at the indicated time points. One representative experiment out of two is shown. (C) Subcutaneous 

CT26 colon cancers were treated with DX in the presence of systemic administration of neutralizing antibody against IL-6 (300 μg/mouse) or CIg. (D) Mice 

were immunized with DX-treated CT26 (injected s.c. into the right fl ank) and concomitantly challenged with live CT26 tumor cells (injected into the op-

posite fl ank at day 0). In parallel, anti–TGF- �  or a control peptide (100 μg/mouse) was administered locally (on the site of the vaccination) daily from day 

0 to 10. Tumor size was measured at the indicated time points ( n  = 5 mice/group). The experiment was performed twice with similar results. ns, not 

signifi cant.   
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Opposing Effects of Toll-like Receptor (TLR3) Signaling
in Tumors Can Be Therapeutically Uncoupled to Optimize
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Many cancer cells express Toll-like receptors (TLR) that offer possible therapeutic targets. Polyadenylic-
polyuridylic acid [poly(A:U)] is an agonist of the Toll-like receptor TLR3 that displays anticancer properties.
In this study, we illustrate how the immunostimulatory and immunosuppressive effects of this agent can be
uncoupled to therapeutic advantage. We took advantage of two TLR3-expressing tumor models that produced
large amounts of CCL5 (a CCR5 ligand) and CXCL10 (a CXCR3 ligand) in response to type I IFN and poly(A:U),
both in vitro and in vivo. Conventional chemotherapy or in vivo injection of poly(A:U), alone or in combination,
failed to reduce tumor growth unless an immunochemotherapeutic regimen of vaccination against tumor
antigens was included. CCL5 blockade improved the efficacy of immunochemotherapy, whereas CXCR3 block-
ade abolished its beneficial effects. These findings show how poly(A:U) can elicit production of a range of
chemokines by tumor cells that reinforce immunostimulatory or immunosuppressive effects. Optimizing the
anticancer effects of TLR3 agonists may require manipulating these chemokines or their receptors. Cancer Res;
70(2); 490–500. ©2010 AACR.
Introduction

Agonists of Toll-like receptors (TLR) are being evaluated
for the treatment of cancer (1, 2). Preclinical studies revealed
that systemic administration of TLR agonists can boost in-
nate immunity, augment antibody-dependent effector func-
tions, and enhance adaptive immune responses (1–3). TLR3
is the critical sensor of viral double-stranded RNA (4). The
synthetic polyinosinic:polycytidylic acid [poly(I:C)] is a
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TLR3 ligand (TLR3L) that mediates potent adjuvant effects
in thus far that it strongly enhances antigen-specific CD8+

T-cell responses (5, 6), promotes antigen cross-presentation
by dendritic cells (7), and directly acts on effector CD8+ T
and natural killer (NK) cells to augment IFN-γ release (8).
Poly(I:C) is recognized by both the endosomal receptor
TLR3 and cytosolic receptors, including RNA helicases such
as RIG-I and the melanoma differentiation–associated gene 5
(MDA5). In the poly(I:C)-induced immune responses in vivo,
MDA5 is critical for IFN-γ induction, whereas TLR3 is man-
datory for IL-12p40 release (9).
Another synthetic double-stranded RNA, polyadenylic:

polyuridylic acid [poly(A:U)], which only signals through
TLR3, has also been widely used in preclinical and clinical
studies. When combined with a candidate protein or viral an-
tigen in mice, poly(A:U) can promote antigen-specific Th1-
immune responses and boost antibody production (10, 11).
Poly(A:U) has been safely used with moderate success for
treating breast or gastric cancers as a monotherapy (12–
14). Retrospective analyses highlighted that TLR3-expressing
breast cancers may be selectively sensitive to the antitumor
effects of poly(A:U). Indeed, TLR3 is not only expressed by
immune cells but also by some epithelial (15) or endothelial
cells (16). Intracellular staining for TLR3 was reported for hu-
man breast cancers (17) and melanoma (18) and its expres-
sion can be induced by type I IFNs. TLR3 signaling can
directly inhibit the proliferation of carcinoma cells (19) or
can induce apoptosis when combined with protein synthesis
inhibitors or type I IFN (17, 18). Besides these beneficial ef-
fects on established cancers, TLR3 signaling may also
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participate in proinflammatory reactions contributing to
tumorigenesis, suggesting that exploiting the TLR system in
cancer might be a doubled-edged sword (20–22). Conse-
quently, there is a need for a fine dissection of the direct
(on tumor cells) versus the indirect (on immune cells) effects
of TLR agonists as their potential anticancer effects are being
evaluated.
Taking advantage of two murine tumor models expressing

TLR3, we show that poly(A:U) acts not only in host cells but
also in the tumor parenchyma to generate the opposite ac-
tion of two chemokines, CXCL10 and CCL5, which are favor-
able and deleterious for the clinical outcome, respectively.
These findings support the idea that manipulating TLR3 sig-
naling for cancer therapy will benefit from uncoupling che-
mokine receptor signaling at the tumor/host interface.

Materials and Methods

Reagents. Poly(A:U) was from Innate Pharma. The murine
type I IFN was produced by M. Ferrantini (Istituto Superiore
di Sanità). Human IFN α2b and ELISA kits for CCL5 and
CXCL10 were from R&D Systems. Ovalbumin was from Cal-
biochem. CpG oligodeoxynucleotide (ODN) 1668 was from
MWG Biotech AG. Methionylated RANTES (MetRantes) was
provided by Amanda Proudfoot (Merck Serono Geneva Re-
search Center, Geneva, Switzerland).
Mice and cell lines. B16-OVA murine melanoma cells

were maintained in RPMI 1640 supplemented with 10% fetal
bovine serum (FBS), 2 mmol/L L-glutamine, 100 IU/mL pen-
icillin/streptomycin, 1 mmol/L sodium pyruvate, 1 mmol/L
nonessential amino acids, and 10 mmol/L HEPES. Murine
GL26 glioma cells (H-2b) were maintained in DMEM supple-
mented with 10% FBS, 2 mmol/L L-glutamine, 100 IU/mL
penicillin/streptomycin, 10 mmol/L HEPES, and 50 μmol/L
β-mercaptoethanol. Human breast cancer primary cultures
were established at Institut Gustave Roussy from metastatic
patients suffering from ascitis; patients provided informed
consent. Cells were used after three passages of propagation
in AIM-V culture medium.
C57BL/6 mice were purchased from Charles River. C57BL/

6 nude mice were obtained from animal facility of Institut
Gustave Roussy. Trif−/−, Cxcr3−/−, and Ccr5−/− green fluorescent
protein (GFP) mice were bred at Centre National de la Recher-
che Scientifique IEM 2815, Orléans, France, and Institut Na-
tional de la Santé et de la Recherche Médicale, U543, Paris,
France. The experimental protocols were approved by the An-
imal Care and Use Committee of Institut Gustave Roussy.
In vitro tumor stimulation assays. B16-OVA (or GL26;

5 × 104) or primary human breast cancer cells (2 × 105) were
seeded in 24-well plates, treated with 1,000 IU/mL of type I
IFN for 18 h, and then treated with poly(A:U) for 48 h. Super-
natants were collected to dose chemokine production.
Tumor models and immunotherapy. B16-OVA (3 × 105 or

6 × 105) and GL26 (6 × 105) cells were inoculated s.c. into the
left flank of mice. Vaccines were injected into the right foot-
pad [for CpG+OVA: CpG ODN 1668 (5 μg/mouse) plus oval-
bumin (1 mg/mouse)] or right flank [or cell vaccines: 106

B16-OVA or GL26 pretreated with type I IFN (1,000 IU/mL)
www.aacrjournals.org
for 18 h and then doxorubicin (20 μmol/L) for 24 h for each
mouse]. Chemotherapy (oxaliplatin) was applied i.p. at
5 mg/kg. Poly(A:U) was injected i.p. at 100 μg per mouse in
B16-OVA model and at 500 μg per mouse in the GL26 model.
MetRantes (10 μg/mouse) was injected i.p. daily for 3 wk to
block CCL5. Necrotic cells (F/T) were obtained following
two consecutive cycles of freezing (liquid nitrogen) and
thawing (37°C). For preimmunization, OVA-CpG vaccine
was injected into the right footpad 7 d before inoculation
of tumor cells. To block CXCR3, anti–CXCR3-173 neutraliz-
ing monoclonal antibody (mAb) or the control mAb (PIP)
were injected i.p. at 200 μg per mouse every other day for
12 d since 5 d before tumor cell inoculation.
Lentivirus-based short hairpin RNA construction. The

lentivirus construction and viral particles were designed
and produced by Vectalys SA. As for the lentivirus carrying
the short hairpin RNA (shRNA) knocking down CCL5, the
forward primer 5′-CGCGACGTCAAGGAGTATTTCTATT-
CAAGAGATAGAAATACTCCTTGACGTTTTTTTGCA-3′ and
the reverse pr imer 3 ′ -TGCAGTTCCTCATAAAGA-
TAAGTTCTCTATCTTTATGAGGAACTGCAAAAAA-5′ were
annealed and ligated into vector [pLV-H1-EF1-PURO-IRES-
GFP (pV2.3.127)] by cohesive MluI/NsiI ligation. A similar
approach was used to knockdown Lamin A/C and TRIF ex-
pression targeting sequences 5′-GAAGGAGGGTGACCTGA-
TA-3′ and 5′-GGAAAGCAGTGGCCTATTA-3′, respectively.
Flow cytometry. Cells from tumor, tumor draining lymph

node (DLN), or vaccine DLN were isolated by mechanical
dissociation and filtered through a 70-μm cell strainer.
CD3ε-PerCP, CD8-FITC (BD Pharmingen), CXCR3-PE (R&D
System), NK1.1-Pacific Blue (eBioscience), and isotype con-
trol antibodies (2.5 μg/mL) were used for the surface staining
at 4°C for 30 min. Hydroxystilbamidine (Molecular Probes,
Invitrogen) was used to exclude dead cells. For intracellular
staining, freshly isolated cells were treated with 50 ng/mL
phorbol 12-myristate 13-acetate, 1 μg/mL ionomycin, and
Golgi-stop (BD Pharmingen) for 4 h at 37°C in RPMI contain-
ing 2% mouse serum (Janvier). Cells were then fixed, permeabi-
lized, and stainedwith IFN-γ–allophycocyanin (BD Pharmingen)
with fixation/permeabilization kits (BD Bioscience).
Protein extraction. Tumors were mechanically dissociat-

ed with lysis buffer (T-PER Tissue Protein Extraction Re-
agent, Pierce) containing a protease inhibitor (complete
Mini EDTA-free, Roche). Tumor lysate was then centrifuged
at 10,000 × g for 5 min at 4°C to obtain supernatant. Alterna-
tively, tumors were digested with 400 U/mL Collagenase IV
and 150 U/mL DNase I for 30 min. Single-cell suspension was
sorted using AutoMACS (Miltenyi Biotec) to obtain CD45+

and CD45− fractions, and whole-cell protein was extracted
using lysis buffer (1 × 106 cells/100 μL buffer).
Statistical analyses. Comparison of continuous data and

categorical data were achieved by the Mann-Whitney U test
and by χ2 as appropriate. The log-rank test was used for
analysis of Kaplan-Meier survival curves. Statistical analyses
were performed using GraphPad Prism 5.0. All P values are
two-tailed. All P values <0.05 were considered statistically sig-
nificant for all experiments. *, **, and *** indicated P values
of <0.05, <0.01, and <0.001, respectively.
Cancer Res; 70(2) January 15, 2010 491
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Results

Synergistic effects between vaccines, chemotherapy, and
poly(A:U). To characterize the relative importance of direct
effects of poly(A:U) on tumor parenchyma versus indirect, im-
mune-mediated effects, we took advantage of the B16-OVA,
which expresses TLR3 (data not shown), such as the parental
cell line B16F10 (Supplementary Fig. S1) as well as the model
antigen ovalbumin (OVA). Albeit mediating significant cyto-
Cancer Res; 70(2) January 15, 2010
static effects on B16-OVA tumor cells in vitro (Supplementary
Fig. S2), oxaliplatin-based chemotherapy failed to hamper tu-
mor progression in vivo when it was administered alone or
combined with the poly(A:U) (Fig. 1B), following the protocol
detailed in Fig. 1A. However, the administration of a vaccine
composed of OVA plus the adjuvant CpG before the combina-
tion of oxaliplatin and poly(A:U) significantly retarded tumor
growth (Fig. 1B) and prolonged the survival of tumor-bearing
C57BL/6 mice (Fig. 1C). This vaccine, when applied in the
Figure 1. Sequential immunochemotherapy is efficient against established melanoma. A, therapeutic setting of VCT treatment is shown as a scheme. B and
C, B16OVA tumor growth was monitored in WT mice receiving single-agent therapy (V, C, or T), two agent–based therapy (VC, VT, or CT), or sequential
tritherapy (VCT). Points, mean of tumor size from one representative experiment out of five (n = 5 mice per group); bars, SEM (B). The survival curve
shows 35 mice in each group (C). D, tumor growth curve in nu/nu (left) or TRIF−/− (right) C57Bl/6 mice treated with or without VCT.
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footpad opposite to the flank where the tumor was growing,
stimulated an OVA-specific Th1 immune response in the DLN
(Supplementary Fig. S3). It is noteworthy that B16-OVA did
not express TLR9 and did not respond to CpG ODN in vitro
(data not shown). The antitumor effects of the sequential ad-
ministration of a vaccine followed by oxaliplatin and TLR3L
was well reproducible in immunocompetent wild-type (WT)
C57BL/6 mice, yet failed to be observed in nu/nu and Trif−/−

mice (Fig. 1D), indicating the obligate contribution of T cells
and TRIF-dependent signals to the therapeutic effect. Alto-
gether, 11% of WT mice were completely protected from mel-
anoma by the sequential therapeutic regimen (Fig. 1C), and
67% among the tumor-free mice developed long-term protec-
tive immunity and hence became resistant to a later challenge
with live tumor cells (data not shown).
We observed a similar antitumor effect when chemother-

apy and poly(A:U) injections were combined with a cell-
based anticancer vaccine. The freeze-thawing technique
aimed at mediating the nonimmunogenic cell death (necro-
sis) in contrast to anthracycline-induced tumor cell death
that generates an endoplasmic reticulum stress response
(23). In accordance with our previous reports, type I IFN
and doxorubicin induced immunogenic cell death of B16-
OVA cells and injection of dying cells induced a protective
immunity against later rechallenge with live B16-OVA cells
www.aacrjournals.org
(Fig. 2A and B). This cell-based vaccine boosted the antitu-
mor activity of the combination of oxaliplatin plus poly(A:
U) (Fig. 2C) and enhanced survival (Fig. 2D) when used in
a therapeutic setting after the implantation of tumors. Very
similar results were obtained when B16-OVA melanoma cells
were replaced by another TLR3-expressing cell line, GL26
glioblastoma (Supplementary Fig. S1), which only bears nat-
ural tumor antigens. Vaccination of immunocompetent mice
with GL26 cells that were dying in response to type I IFN and
doxorubicin was efficient in preventing tumor outgrowth in
the prophylactic setting (Fig. 3A) and also in the therapeutic
setting only if the vaccination was combined with oxaliplatin
and TLR3L following a regimen identical to that presented in
Fig. 1A (Fig. 3B). To further show the importance of the TLR3
agonist on tumor parenchyma during vaccine+chemotherapy
+TLR3L (VCT) therapy, we selectively knocked down the
TRIF adaptor molecule in GL26 glioblastoma (Lamin as a
negative control). Interestingly, VCT therapy failed to control
the tumor outgrowth of TRIF knockdownGL26 in vivo (Fig. 3C).
Altogether, it seems that poly(A:U) could mediate syner-

gistic antitumor effects with chemotherapy against estab-
lished TLR3-expressing tumors, provided that this
combined therapy was preceded by anticancer vaccination.
For the sake of brevity, we will refer to this therapeutic
schedule as “immunochemotherapy.”
Figure 2. Immunochemotherapy of melanoma with cell-based vaccines inhibits tumor outgrowth. A, prophylactic setting in a schematic view. Naïve C57b/6
mice were vaccinated with B16-OVA pretreated with type I IFN plus doxorubicin (doxo) or freeze-thawed (F/T). Forty-five days later, mice were rechallenged
with live syngeneic tumor cells. B, tumor growth is depicted with five mice per group following prophylactic setting. C and D, the therapeutic regimen
depicted in Fig. 1A was performed with two different vaccines, OVA-CpG or the cell-based vaccine (same as in A), and tumor growth was monitored (C).
Survival curve with 10 mice per group; the P value indicates the comparison between each treated and control group (D).
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TLR3-expressing tumors directly responded to poly(A:U).
The finding that TRIF must be intact both in the host's im-
mune system and the tumor parenchyma for full antitumor
effects (Figs. 1D and 3C) suggested that poly(A:U) might exert
direct effects on the tumor parenchyma. When added to B16-
OVA cells in vitro, poly(A:U) induced the secretion of copious
amounts of both CCL5/RANTES and CXCL10/IP-10. This ef-
fect could be further enhanced by preincubation with type I
IFN (Fig. 4A). Type I IFN plus poly(A:U) showed an additive
effect on CCL5 secretion by both GL26 (Fig. 4B) and human
breast cancer cells (in three of four primary cultures; Supple-
mentary Fig. S4). GL26 cells also secreted more CXCL10
when treated with type I IFN plus poly(A:U) compared with
either treatment alone (Fig. 4B). TRIF knockdown GL26 cells
lost their response to poly(A:U) stimulation, whereas Lamin
knockdown GL26 behaved like parental cells (Supplementary
Cancer Res; 70(2) January 15, 2010
Fig. S5). Interestingly, the secretion of CXCL1 by B16-OVA
was abolished by poly(A:U) (Fig. 4A).
To validate these findings in vivo, we studied the concen-

tration of CCL3/MIP-1α, CCL5, and CXCL10 within tumor
beds at each single step of the tritherapy in B16-OVA model.
We observed a significant production of CCL5 at baseline be-
fore chemotherapy. This CCL5 production dropped after the
first TLR3L injection but increased again after the third in-
jection of poly(A:U) (Fig. 4C, top left), whereas no CCL3 was
produced (data not shown). In accordance with in vitro data,
the tissular concentration of CXCL10 paralleled that of CCL5
in vivo after oxaliplatin injection and the third injection of
poly(A:U) (Fig. 4C, bottom right). To further dissect whether
chemokine production originated from leukocytes or tumor
cells, we sorted CD45+ versus CD45− cells from dissociated
tumor beds after each poly(A:U) injection and observed that
Figure 3. Immunochemotherapy is efficient against established glioblastoma. A, naïve C57bl/6 mice were vaccinated with GL26 tumor cells pretreated with
type I IFN plus doxorubicin and rechallenged with live syngeneic tumor cells 7 d later. The kinetics of tumor outgrowth are monitored. B, the cell-based
vaccine was then assessed for its therapeutic efficacy in the VCT setting outlined in Fig. 1A. C, after knockdown TRIF expression in GL26 (Lamin as a
control), established tumors were treated with the VCT protocol starting from day 15. Tumor growth kinetics are shown from one representative experiment
with five mice per group.
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Figure 4. CXCL10 and CCL5 release upon stimulation with poly(A:U). B16-OVA (A) and GL26 (B) were treated with type I IFN and poly(A:U) and the
supernatants were harvested to dose the chemokine secretion. Columns, mean of two triplicated experiments (#, P < 0.05; ##, P < 0.01; and ###, P <0.001);
bars, SEM. Established B16-OVA tumors from the NaCl and VCT groups were harvested at various time points and either were dissociated to measure their
contents of CCL5 and CXCL10 (NA, not available due to limited tumor size; C) or cell sorted after tumor dissociation on the basis of CD45 staining to
monitor their chemokine content 36 h after each poly(A:U) injection (D). Columns, means of chemokine per milligram of tumor (C) or per milliliter per 1× 107

cells (D); bars, SEM.
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the accumulating source of chemokines resided in the tumor
parenchyma (Fig. 4D).
Altogether, these results indicate that poly(A:U) can direct-

ly act on tumor cells to stimulate the production of chemo-
kines, both in vitro and in vivo.
Deleterious role of CCL5 and CCR5. TLR3 stimulation

can trigger the release of a variety of chemokines, including
CCL5 (24, 25), as confirmed for the tumors studied in this
Cancer Res; 70(2) January 15, 2010
article, whereas the role of CCR5 (CCL5 receptor) in cancer
remains controversial. CCR5 expression in tumor epithelia
has been associated with tumorigenesis (26) although some
cancer immunotherapies require a functional CCR5 path-
way (5, 27, 28). Therefore, we investigated the impact of
CCR5 on the synergistic effects of our immunochemother-
apy. Surprisingly, the tritherapy was more efficacious when
it was applied to Ccr5−/− mice rather than to WT mice (Fig. 5A
Figure 5. CCR5 signaling antagonized the efficacy of immunochemotherapy. B16-OVA tumor growth was compared in WT versus Ccr5−/− mice with or
without VCT treatment. Each curve features one single animal (A); NS, not significant. The time needed for tumors to reach the size of 200 mm2 was shown
for each group (B). C, 0.6 × 106 B16-OVA were inoculated and VCT was performed along with daily administration of MetRantes for 3 wk. D, the efficacy of
VCT was compared between CCL5 and Lamin knockdown B16-OVA. All experiments were conducted with five mice per group at least twice, yielding
identical results.
Cancer Research
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and B). We corroborated these data using a pharmacologic
inhibitor recombinant MetRantes that could inhibit agonist-
induced activities (29). MetRantes significantly improved tumor
growth retardation caused by the immunochemotherapy in
the B16-OVA model (Fig. 5C). This result was also confirmed
in the GL26 glioblastoma (data not shown).
To further show that the source of the deleterious CCL5

was indeed the tumor cells stimulated by poly(A:U) during
our sequential therapy, we carried out CCL5 knockdown in
B16-OVA by lentiviruses carrying a shRNA-targeting CCL5
(Lamin as a control). This infection induced a significant
suppression of the poly(A:U)-induced CCL5 production
in vitro (Supplementary Fig. S6). The tritherapy mediated
enhanced antitumor activity and long-term survival against
established B16-OVA–shRNA CCL5 compared with estab-
lished B16-OVA–shRNA Lamin control (Fig. 5D), whereas
the spontaneous growth of each transfectant was compa-
rable in vitro (data not shown).
Altogether, these results support the idea that the inter-

action between CCL5 that originated from tumors and
CCR5 that was expressed in the host-derived immune ef-
fector has a negative impact on the outcome of immuno-
chemotherapy.
CXCR3 as a positive mediator of immunochemotherapy.

The OVA-CpG vaccine, which elicited potent IFN-γ–polarized
T-cell responses in WT mice (Supplementary Fig. S3),
failed to promote the tumoricidal activity when combined
with chemotherapy and TLR3L in nu/nu C57BL/6 mice
(Fig. 1D), suggesting that IFN-γ–producing T lymphocytes
are required for the antitumor effects. Knowing that IFN-
γ–polarized T cells express CXCR3 (30) and TLR3L pro-
motes CXCL10 secretion (a CXCR3 ligand) by tumor cells
(31), we compared the efficacy of the immunochemother-
apy in WT versus Cxcr3−/− mice carrying B16-OVA tumors.
In contrast to WT littermate controls, in which immuno-
chemotherapy yielded a significant delay in tumor growth,
no beneficial effect was observed for the control of tumors
growing in Cxcr3−/− mice (Fig. 6A). Therefore, the chemo-
kine receptor CXCR3, which is widely expressed in NK
cells and activated Th1 and CTLs, is mandatory for the
therapeutic success of the combined therapy. Accordingly,
functional immunophenotyping revealed that immuno-
chemotherapy induced augmented recruitment of CD8+

CXCR3+ T lymphocytes in the vaccine DLN but not in
the tumor DLN (data not shown). These lymphocytes were
able to produce IFN-γ upon restimulation with OVA (Sup-
plementary Fig. S3; Fig. 6B). NK cells did not express CXCR3
in these settings (data not shown). Importantly, the percent-
age of CD8+ CXCR3+ T cells increased among tumor-infiltrat-
ing lymphocytes (TIL) after immunochemotherapy (Fig. 6B),
supporting the notion that this T-cell subset contributes to
the anticancer efficacy of immunochemotherapy.
Next, we incubated B16-OVA with type I IFN and poly(A:U)

(which both mediated cytostatic effects on B16-OVA in vitro
as shown in Supplementary Fig. S2) and inoculated these tu-
mor cells into WT animals. This pretreatment reduced the
minimal tumorigenic dose (the number of cells that had to
be inoculated to generate a tumor; Fig. 6C). This gain of tu-
www.aacrjournals.org
morigenicity was lost when the animals were immunized
with the OVA-CpG vaccine (Fig. 6D), indicating that the di-
rect effect of poly(A:U) stimulation of the tumor cells is ben-
eficial only when the host has been immunized (when
specific CTL against tumoral antigen are present within the
host). The beneficial effect of prophylactic immunization
with OVA-CpG was abrogated if the tumor cells were in-
jected together with an anti-CXCR3 neutralizing antibody
(Fig. 6D). Altogether, these results underscore the impor-
tance of the chemokine receptor CXCR3 for allowing
immune effectors to control tumor growth in vivo.

Discussion

Although TLR agonists may contribute to the activation of
anticancer responses, they may also directly increase the tu-
morigenic potential of TLR-expressing tumor cells (3, 15).
The aim of this study was to weigh the relative impact of in-
dividual components of the chemokine cascade resulting
from chronic stimulation of the tumor epithelium with the
TLR3L in vivo. Our findings revealed that poly(A:U) triggers
the concomitant secretion of both CCL5 and CXCL10 from
TLR3-expressing tumor in vitro and in vivo (Fig. 4), and inter-
fering with CCR5 engagement on host hematopoietic cells
enhanced the efficacy of an immunogenic treatment that
stimulated a T-cell– and CXCR3-dependent anticancer im-
mune response (Figs. 1D and 6A and D). These results suggest
that the optimization of anticancer therapies relying on TLR
adjuvants may require uncoupling of the chemokine cascade.
It is known that systemic administration of poly(A:U) can

exert immunoadjuvant effects through TLR3 and TLR7 (32).
Although both TLR3 and TLR7 were required for the clonal
expansion of antigen-specific CD8+ T cells, only TLR3 was
mandatory to generate IFN-γ–producing CD8+ T cells (32).
Our biweekly administration of poly(A:U) was not able to
trigger potent immunoadjuvant effects when poly(A:U) was
given alone. However, combined with vaccines and chemo-
therapy, poly(A:U) triggers an efficient T-cell–dependent
and TRIF-dependent antitumor response. TRIF signaling
leads to type I IFN production by host allophycocyanin,
which might directly act on tumor cells to upregulate TLR3
expression (33, 34) and/or synergize with TLR3 to stimulate
the release of chemokines (Fig. 4). Of note, we could measure in-
creased levels of CXCL10 and CCL5 in tumor beds only after
three systemic administrations of poly(A:U), supporting that
host factors (such as type I IFN) may cooperate with poly(A:U)
to stimulate the induction of chemokines by tumor cells.
As shown by other groups (35), combinations of specific

tumor vaccines with chemotherapy may significantly amelio-
rate progression-free survival. Surprisingly, although two dif-
ferent vaccines could elicit prophylactic antitumor effects
(Figs. 2B and 3A) and IFN-γ–producing T cells on their
own (Supplementary Fig. S3 or data not shown), we could
not achieve significant synergistic effects by associating such
vaccines with taxanes or oxaliplatin for the treatment of mel-
anoma (Fig. 1 and data not shown). One possible explanation
for this absence of synergy might be the failure of tumor beds
to produce chemokines that attract polarized effector CD8+
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T cells (Fig. 4C). Indeed, some reports (36, 37) supported the
notion that intratumoral chemokines (such as lymphotactin/
XCL1 or CXCL10) could enhance the trafficking of effector
T cell to tumors and ameliorate the anticancer efficacy of
adoptively transferred T lymphocytes.
Although highly activated CD8+ T cells can coexist with

autoantigen-expressing hepatocytes without causing overt
tissue damage (38), engagement of TLR3 could break this im-
munoprivileged state by triggering IFN-γ and tumor necrosis
Cancer Res; 70(2) January 15, 2010
factor-α–dependent CXCL9 expression in the liver and by re-
cruiting CXCR3+ autoreactive CTLs (38). Indeed, a TLR3 ag-
onist could induce the VLA-4–dependent homing of specific
CTL into central nervous system tumors (39). Accordingly,
several reports described that TLR3 signaling in astrocytes
or glioma induced multiple proinflammatory cytokines and
chemokines, including IP-10, IL-8, or GROα (39, 40). Howev-
er, the theory that TLR3 agonists augment trafficking of CTL
into tumor beds has been challenged by a recent report
Figure 6. CXCR3-dependent antitumor effects mediated by VCT therapy associated with CXCR3+ TILs. A, the mean tumor size at day 19 in VCT or control
group is compared between Cxcr3−/− versus WT mice. B, DLNs from the vaccine site or the contralateral site were collected at day 13 from VCT or
control group. Cells were restimulated with OVA protein (or PBS) either for 48 h to monitor the OVA-specific IFN-γ production in the supernatants by ELISA
(top left) or for 12 h before intracellular stainings showing IFN-γ production by CD8+CXCR3+ T cells (percentages and absolute numbers). Tumors from
NaCl versus VCT-treated mice were dissociated at day 16 and analyzed for the percentage of CXCR3+ cells among CD8+ cells (bottom right). C, B16-OVA
cells were pretreated with type I IFN followed by poly(A:U) and the minimal tumorigenic dose of B16-OVA cells was determined. The percentages of
tumor-bearing mice at day 68 are depicted. D, mice were preimmunized with OVA-CpG and challenged 7 d later with the minimal tumorigenic dose of
B16-OVA tumor cells (0.33 × 105) presensitized with poly(A:U) and type I IFN. CXCR3-173 neutralizing mAb or control PIP mAb were applied. The graph
depicts the percentages of tumor-bearing mice at day 68 in one of two experiments.
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showing that injections of double-stranded RNA [poly(I:C)]
into mesotheliomas did not stimulate the recruitment of
newly primed antitumor T cells and rather reactivated local
CD8+ T cells in a type I IFN–dependent manner (41). Howev-
er, it has not been clarified whether mesothelioma cells ex-
press TLR3 and it remains formally possible that poly(I:C)
may activate TLR3-independent signaling pathways that im-
prove clinical outcome by alternative mechanisms of action.
Secretion of CC chemokines is a major determinant for

chemoattraction of macrophages, neutrophils, and lympho-
cytes into tumor beds in human carcinogenesis (42). In
breast cancer for instance, mesenchymal stem cells produce
CCL5, which enhances the metastatic potential of tumors
and correlates with disease progression (43, 44). Moreover,
tumor-infiltrating leukocytes may express high levels of the
CCL5 receptors CCR1 and CCR5 (45). Injection of a CCL5 an-
tagonist can reduce the migration of macrophages to tumor
beds and facilitate tumor regression (45). In WT animals,
CXCR3 expression in tumor-specific IFN-γ–producing T cells
was enhanced, which facilitates their trafficking to the tumor
beds (Fig. 6B), whereas in Ccr5−/− mice, we failed to observe
an exaggerated accumulation of Tc1 cells (data not shown).
Although concanavalin A–treated Ccr5−/− mice suffered from
severe hepatitis related to pronounced recruitment and acti-
vation of IFN-γ–producing NK cells into the liver (46), we
failed to monitor an enhanced proportion of CXCR3+ NK
cells in the tumor or DLNs (data not shown). It remains con-
ceivable that CXCR3 can be downregulated in NK cells upon
engagement with local chemokines. Therefore, the beneficial
effect of CCR5 inhibition may be most likely related to the
disappearance of subsets of immunosuppressive cells rather
than to the recruitment or activation of effector IFN-γ–pro-
ducing CD8+ T cells.
Within the hematopoietic system, CCR5 is expressed in

regulatory T cells (47) and myeloid-derived suppressor cells
(MDSC; ref. 5), making them potential candidates for im-
www.aacrjournals.org
mune suppressors. However, we failed to improve the effica-
cy of the immunochemotherapy either by using metronomic
dosages of cyclophosphamide that reduce functionally active
regulatory T cells (48), or by administering sildenafil, a phos-
phodiesterase-5 inhibitor known to downregulate the princi-
pal immunosuppressive effectors (arginase-1 and NOS-2) of
MDSC (data not shown; ref. 49). These results suggested that
Treg and MDSCs may not be the CCR5+-immunosuppressive
subsets to be identified.
Our results support two important conclusions. First, TLR3

agonists can promote TLR3+ tumor cells to produce chemo-
kines that accumulate locally to physiologically relevant con-
centrations. Second, these intratumoral chemokines likewise
are not neutral in their clinical significance and need to be
uncoupled to boost the efficacy of immunochemotherapy.
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An attractive, yet hitherto unproven concept predicts that the promotion of tumor regression should

elicit the host’s immune response against residual tumor cells to achieve an optimal therapeutic effect.

In a way, chemo- or radiotherapy must trigger “danger signals” emitted from immunogenic cell death and

hence elicit “danger associated molecular patterns” to stimulate powerful anticancer immune responses.

Here, based on the recent experimental and clinical evidence, we will discuss the molecular identity of

the multiple checkpoints that dictate the success of “immunogenic chemotherapy” at the levels of the

drug, of the tumor cell and of the host immune system.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the 1990s, the genetic engineering of recombinant viral vec-

tors facilitated the emergence of a novel concept of anticancer

vaccines that prevailed until recently. Indeed, irradiated genetically

modified autologous or allogeneic tumor cells were broadly uti-

lized in preclinical studies and clinical trials to elicit tumor-specific

humoral and cellular immune responses that were occasionally

associated with tumor regression [1]. To enhance the potency of

antitumor immunity, several groups devised strategies to augment

the uptake and cross-presentation of dying tumor cells by dendritic

cells (DCs). Among these, one of the most successful was that devel-

oped by Dranoff and colleagues, who vaccinated with irradiated

tumor cells (cell lines or autologous dissociated tumor pieces) that

were engineered to secrete granulocyte-macrophage colony stim-

ulating factor (GM-CSF) by means of recombinant retroviruses or

adenoviruses. Such dying cells were able to mobilize DC, plasma

cells, invariant NKT cells and tumor reactive CD4+ and CD8+ T cells,

both in mice and cancer patients, alone or in conjunction with anti-

∗ Corresponding author at: INSERM U848, Institut Gustave Roussy, PR1, 114 rue

Edouard Vaillant, F-94805 Villejuif, France. Tel.: +33 1 42 11 60 46;
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CTLA4 Ab [2]. Importantly, GM-CSF expressing dying tumor cells

could promote tumor destruction, necrosis and fibrosis correlating

with humoral immune responses and favorable clinical outcome

[3,4]. The comprehensive analyses of the specificities recognized by

the post-vaccine IgG antibodies revealed key autoantigens involved

in cell cycle regulation, cellular stress and oncogenesis [5–9].

Unfortunately, the state-of-the-art GMP conditions required to

freeze–thaw irradiated tumor cells before injection into patients in

Phase III trials, jeopardizing the immunogenic potential of the vac-

cine while suggesting that the specific characteristics of dying cells

dictate the clinical outcome (Pardoll and Dranoff, personal commu-

nications). Indeed, Albert et al. reported that apoptotic cell death

could be immunogenic by facilitating antigen cross-presentation

by DC, a phenomenon that could be relevant to the pathogenesis

of autoimmune paraneoplastic syndromes [10,11]. These findings

inaugurated the debate on how cellular death, whether necrotic,

apoptotic, autophagic, senescent or associated with mitotic castas-

trophe, may generate tolerance, ignorance or immunity [12,13] and

how this knowledge might be exploited to generate optimal cancer

vaccines.

2. Cell death inducers do not always mediate

immunosuppression and can synergize with

immunomodulators

The effects of anticancer drugs on the immune system have

been detailed in previous reviews [14,15]. As a reminder, radia-

1044-5323/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.smim.2010.03.001
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tion therapy (either as a single or fractionated dose) can induce

tumor-specific Th1 and Tc1 cells in the draining lymph nodes of the

irradiated tumor and even favors the trafficking of effector cells into

tumors in an IFN-�-dependent manner [16,17]. Moreover, potent

synergistic effects against established tumors between passively

transferred CTLs [18], intratumoral DC [19] or TLR9 ligands [20]

and ionizing radiation have been reported. A recent translational

study performed on colon and prostate cancer patients under-

going radiation therapy (plus or minus chemotherapy) revealed

that survivin-specific CD8+ T cell responses, which were already

detectable in 50% cases prior to therapy, increased significantly

post-therapy in the vast majority of patients. Moreover, in those

responding to the therapeutic regimen, higher levels of nuclear

(rather than cytoplasmic) survivin were detected in tumor beds

[21].

Interestingly, not only cancer cells but also stromal cells can

be directly targeted by chemotherapy-induced CTLs [22]. Hans

Schreiber and coworkers elegantly showed that in cases of low

antigen expression by tumor cells, antigen transfer to stromal

cells is mandatory for complete cure. Treating advanced tumors

with local chemotherapy or radiotherapy caused the transfer of

tumor-specific MHC/peptide complexes to stromal cells, allow-

ing adoptively transferred CTLs to efficiently attack the tumor

[22].

The host immune system also contributes to the effects of so-

called “targeted” therapies that have been recently added to the

oncological armamentarium. In combination with intratumor inoc-

ulation of adenoviruses engineered to express IL-12 and 4-1BB,

daily administration of the tyrosine kinase inhibitor sunitinib sig-

nificantly improved long-term survival in mice bearing large tumor

burdens while each therapeutic approach alone failed to mediate

antitumor efficacy [23].

Finally, classic immunization and chemotherapeutical strate-

gies can synergize. Using DNA-based-vaccination targeting an

oncogenic protein involved in tumor maintenance, Chiarle et al.

demonstrated that plasmids encoding the cytoplasmic domain of

anaplastic lymphoma kinase (ALK) can immunize mice against

anaplastic large cell lymphoma (ALCL) in a CD8+ and IFN-�-

dependent manner and cure animals bearing advanced ALCL when

combined with doxorubicin [24].

Correale et al. pioneered the field of chemoimmunotherapy in

Phase II trials launched in metastatic colon cancer by combin-

ing immunogenic chemotherapy (gemcitabine + oxaliplatine) with

GM-CSF and IL-2 [25,26] and showed that tumor antigen-specific

immune responses and autoimmune side effects can accompany

encouraging clinical outcome [27].

These examples illustrate that radiotherapy or chemotherapy

can elicit anticancer immune responses or cooperate with tumor

vaccines, in line with the notion that conventional anti-neoplastic

therapies may be compatible with therapeutically relevant antitu-

mor immune responses.

3. Checkpoints for tumor immunogenicity at the drug level

Some apoptosis-inducing agents or cytotoxic anticancer drugs

may directly or indirectly boost the immune system, in three dif-

ferent ways [14,15]. Firstly, some therapeutic regimen can elicit

specific cellular responses that render tumor cell death immuno-

genic. Secondly, some drugs may have off-target effects that

stimulate the immune system, for instance by transient lymphode-

pletion, by the subversion of immunosuppressive mechanisms,

or by direct or indirect stimulatory effects on immune effectors.

Thirdly, some drugs can sensitize tumor cells to lysis by CTL or NK

cells. Here, we will focus our discussion on drugs that elicit T cell

responses against tumor cells.

3.1. Systematic screenings

Tanaka et al. examined the biological effects of 54 chemother-

apeutic agents on DC functions (maturation and APC function,

survival and growth) using a DC biosensor system (DC line

XS106 expressing the yellow fluorescent protein under the

control of the IL-1� promoter) [28]. This unbiased functional

screen unveiled a striking diversity among anticancer drugs. Most

topoisomerase inhibitors and antimicrotubule agents promoted

DC maturation. In contrast, alkylating agents, antimetabolites,

platinum-based compounds and hormonal agents failed to do

so. The Vinca alkaloid vinblastine was the most efficacious in

inducing CD40, CD80, CD86 and MHC class II expression on

mouse and human DC and in stimulating the secretion of IL-

1�, IL-6 and IL-12p40. At low dosages (0.1–1 �M), vinblastine

markedly improved the uptake of FITC-dextran, antigen cross-

presentation and allogeneic or tumor antigen-specific T cell

responses in vivo, specifically in tumor bearing hosts [28,29]. Vin-

blastine mediated more pronounced antitumor effects against B16

melanoma in immunocompetent mice than in immunocompro-

mised littermates, while the antitumor effects of cisplatin were

indistinguishable in both groups [29]. These results suggest that

partial or temporal disruption of the intracellular microtubule

network may be sensed by DC as an immunostimulatory sig-

nal.

Our groups also performed a systematic screening of anticancer

compounds for their ability to induce immunogenic cancer cell

death. For this study, CT26 colon cancer cells were treated with

a panel of chemotherapeutic agents that all induced 70 ± 10% of

apoptosis (assessed by staining with and Annexin V). Then, the

dying or dead cells were inoculated subcutaneously, in the absence

of any adjuvant, into one flank of immunocompetent syngeneic

BALB/c mice, which were rechallenged one week later with injec-

tion of live CT26 cells in the opposite flank. The absence of tumor

growth was then scored as an indication of a productive anti-

cancer immune response. Some 20 different apoptosis-inducing

agents that operate through distinct modes of action failed to

induce immunogenic cancer cell death. This applied to drugs that

kill cancer cells through mitochondria, lysosomal stress, as well as

tyrosine kinase inhibitors, proteasome inhibitors or DNA-damaging

agents (alkylating agents or topoisomerase inhibition). In sharp

contrast, anthracyclines (daunorubicin, idarubicin, mitoxanthrone)

were the most potent inducers of immunogenic cell death, not

only in CT26 tumors, but also in EL4 thymomas and MCA205 sar-

comas [30,31]. Anthracyclines, whose chemical structure is based

on samine and tetra-hydro-naphthacene-dione, inhibit DNA and

RNA synthesis by intercalating between base pairs of the DNA/RNA

strand, thus preventing the replication of rapidly growing can-

cer cells. They also create iron-mediated free oxygen radicals

that damage the DNA and cell membranes. We found that dox-

orubicin could elicit immunogenic signals on enucleated tumor

cells [31], suggesting that the immunologically relevant changes

induced by anthracyclines are cytoplasmic. Indeed, we found that

anthracyclines can elicit the rapid (within hours) phosphoryla-

tion of the eukaryotic (translation) initiation factor 2� (eIF2�),

through the activation of the eIF2� kinase PERK [32] and the dis-

sociation of the eIF2� phosphatase complex composed by PP1

and GADD34 [33]. In general, it appears that chemotherapeu-

tic agents that stimulate eIF2� phosphorylation, which is a sign

of endoplasmic reticulum (ER) stress, are particularly efficient

in eliciting immunogenic cell death. Based on these considera-

tions, as well as on the molecular identification of immunogenic

signals emanating from dying cells, we are currently devising

high-throughput screens for the identification of drugs that can

induce immunogenic (as opposed to non-immunogenic) cell death

(Figs. 1 and 2).
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Fig. 1. Biosensor cell lines for the measurement of immunogenic signals. (A)

Schematic representation of the redistribution of GFP-CRT fusion protein from a

diffuse perinuclear localizaton within the endoplasmic reticulum to a peripheral

cytoplasmic puncta. Note that this redistribution of GFP-CRT can occur before cells

manifest morphological signs of apoptosis, in which case it predicts immunogenic

cell death. (B) Redistribution of GFP-HMGB1 from the nucleus to the cytoplasm

and to the extracellular milieu. The release of GFP-HMGB1 occurs when secondary

necrosis (necrosis after apoptosis) becomes manifest and the plasma membrane is

permeabilized. (C) Release of ATP allowing a luciferase enzyme tethered via a GPI

anchor to the plasma membrane to emit photons upon hydrolysis of luciferin.

3.2. Metronomic cyclophosphamide

In mice, low (so-called “metronomic”) doses of the alkylating

agent cyclophosphamide potentiate delayed-type hypersensitiv-

ity (DTH) responses by acting on a cyclophosphamide-sensitive

suppressor T cell subset [34]. Metronomic cyclophosphamide

decreases the number and inhibitory function of CD4+CD25+ regu-

latory T (Treg) cells [35,36]. The cyclophosphamide-stimulated IFN�
production might account for the augmented antibody responses

and the persistence of memory T cells [37,38]. All these effects

may contribute to the eradication of immunogenic tumors in

synergy with specific immunotherapies [39–41]. Early clinical tri-

als performed on a limited number of patients indicate that the

combination of metronomic dosing of cyclophosphamide with vac-

cines do augment DTH responses [42], decrease the frequency

of circulating CD4+2H4+ (CD45) suppressor T cells [43] and pro-

long the survival of metastatic cancer patients [44]. This contrasts

with recent trials using intravenous 300 mg/m2/day of cyclophos-

phamide that failed to reduce the number or functional activity

of tumor-induced regulatory T cells [45]. Nonetheless, one daily

administration of oral cyclophosphamide for one month to end-

Fig. 2. Biochemical pathways leading to the translocation of calreticulin (CRT)

and ERp57 to the plasma membrane. Depicted are key steps of the process that

may be detected in chemotherapy-exposed tumor cells. Thus, antibodies that

recognize phospho-neoepitopes present on phosphorylated PERK and serine 57-

phosphorlated eIF2�, as well antibodies that recognize cleaved caspase-8 and

cleaved BAP31 might be used for the immuno(histo)chemical detection of molec-

ular events that predict CRT/ERp57 exposure. Moreover, antibodies specific for the

activated conformation of Bax and Bak may be useful for this purpose.

stage cancer patients significantly reduced peripheral Treg numbers

and inhibited the suppressive action of Treg cells on both T and

NK cells [46]. Interestingly, another alkylating agent, dacarbazine,

was shown to enhance memory CD8+ T cell responses to peptide

vaccines in melanoma patients, suggesting that a diverse array of

alkylating agents may mediate immunostimulatory functions [47].

3.3. Gemcitabine

Gemcitabine, a synthetic pyrimidine nucleoside analogue,

induced sizeable T cell responses against established hemag-

glutinin (HA)-transfected AB1 tumors in BALB/c mice [48] and

mediates synergistic antitumor effects with a CD40 ligand [49].

Likewise, gemcitabine acts at two levels to mediate tumor immuno-
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genicity. Gemcitabine facilitates antigen cross-presentation by

dendritic cells and decreases the expansion of tumor-induced

myeloid derived suppressor cells in the spleen, leading to the induc-

tion of antitumor immunity not only in mice [50], but also in

humans [51].

3.4. Ionizing irradiation

Local irradiation of a single tumor site can induce the reduction

of non-irradiated metastases located at a distant site, a phe-

nomenon known as “the abscopal effect”, which is mediated by the

immune system. Low doses of ionizing irradiation modulate the

repertoire of tumor-derived peptides [18] upregulate the expres-

sion of MHC class I molecules, tumor-associated antigens [52] and

CD95/Fas on tumor cells, thereby boosting CTL activity [53], and

finally promote T cell trafficking towards irradiated tumor sites

[16]. At present, it is not known which among these multiple effects

of ionizing irradiation accounts for the abscopal effect.

3.5. Tyrosine kinase inhibitors

Our own studies indicate that the paradigmatic c-kit tyrosine

kinase inhibitor imatinib mesylate (IM) boosts IFN-� secretion by

NK cells, both in mice and in GIST patients [54,55]. The effects of IM

on cognate immune responses have been reviewed elsewhere [56]

stressing that IM does not prevent and even boosts peptide specific

vaccines in chronic myeloid leukemia. Other groups investigated

the immunological effects of the two novel multi-kinase inhibitors,

sorafenib and sunitinib, which both have been successfully intro-

duced in the treatment of patients with renal cell carcinoma (RCC).

While sorafenib inhibited the function of DC and markedly reduced

antigen-specific T cell responses in vivo [57], sunitinib reduced the

numbers of circulating Treg [57,58] and myeloid derived suppressor

cells, restored the production of IFN-� by T cells, and downreg-

ulated the suppressive microenvironment of tumor beds [23,59].

However, the clinical responses of RCC patients to sunitinib did

not correlate with any of the immunological parameters investi-

gated thus far [58]. Therefore, it remains to be determined whether

sunitinib might exert part of its therapeutic effect via the immune

system.

4. Checkpoints for the immunogenicity of cell death at the

tumor level

Chemotherapy might fail because tumor cells do not die in

response to the therapeutic insult or because cell death occurs in

a non-immunogenic manner, meaning that the immune system is

not mobilized by the tumor cell distress. The molecular dialogue

between cellular damage and innate effectors, which culminates in

tumor antigen-specific cognate T cell responses, is being progres-

sively unraveled.

4.1. Eat-me signal: calreticulin

Obeid et al. demonstrated that anthracyclines, oxaliplatin and

ionizing irradiation have the potential to trigger immunogenic cell

death by regulating the translocation of an ER resident protein

complex (composed of calreticulin (CRT) and the disulfide iso-

merase ERp57) to the plasma membrane of tumor cells [31,59].

CRT/ERp57 is considered as an eat-me signal that is required for

DC to engulf dying tumor cells, thereby eventually inducing T cell-

dependent chemotherapeutic effects against tumors [31,60,61].

CRT exposure occurs well before the cells exhibit phosphatidylser-

ine residues, and is abolished by blockade of ER calcium efflux

[62] or caspase inhibition [31]. CRT exposure results from an ER

stress response that results in the phosphorylation of eIF2� (see

above). Downstream of the ER stress response, a subapoptotic

event causes partial caspase-8 activation, Bap31 cleavage and con-

formational changes in Bax and Bak that are usually associated

with apoptosis. Next, CRT/ERp57 complexes appear at the cell sur-

face as a result of their SNARE-dependent exocytosis following

an anterograde ER-Golgi trafficking of CRT/ERp57-containing vesi-

cles [32]. Therefore, an entirely new class of proteins that have no

significant impact on cell death, yet determine whether immuno-

genic CRT exposure occurs, could influence the clinical outcome

of chemotherapy. When ERp57-deficient tumors (which cannot

expose CRT at the cell surface) are implanted in mice, they are

resistant against anthracycline-based chemotherapy unless exoge-

nous CRT is injected [59]. This contrasts with the cell-autonomous

response of ERp57-deficient cancer cells, which respond normally

to anthracylines in vitro. Hence, the failure to emit immunogenic

signals can result in ineffictive chemotherapy responses. We sus-

pect that the expression levels and phosphorylation status of key

players of the CRT exposure pathway (such as PERK, eIF2alpa,

caspase-8, Bap31 and others) and apoptotic regulation (such as

Bcl-2 family proteins and IAP proteins) might ultimately lead to

an algorithm that predicts anticancer immune responses elicited

by chemotherapy or radiotherapy.

4.2. Don’t eat me signal: CD47

CD47 is an Ig-like protein known to functionally interact with

integrins and thrombospondin-1. It is also interacting with its

receptor SIRP-� on macrophages to negatively regulate phagocy-

tosis [63]. CD47 is constitutively upregulated on mouse and human

myeloid leukemias, and overexpression of CD47 favors disease dis-

semination by evading macrophage-mediated phagocytosis [64].

It has been shown that the pro-phagocytic effects of plasma

membrane-exposed CRT are counteracted by the expression of

CD47 on the same cell that exposes CRT [65]. Interestingly, cross-

linking of CD47 on a chronic lymphocytic leukemia could induce

caspase-independent cell death [65,66]. Moreover, an antibody

that blocks anti-CD47 was able to elicit macrophage-mediated

phagocytosis of non-apoptotic CD47hi human acute lymphoblastic

leukemia cells [67]. On theoretical grounds, preventing the inter-

action between CD47 and SIRP-�, could enforce the phagocytosis

of tumor cells by professional APC such as DC. Whether this is the

case requires urgent confirmation. Moreover, it remains an open

conundrum whether inhibition of CD47 can stimulate an anticancer

immune response.

4.3. Anti-inflammatory factor: milk fat globule epidermal growth

factor VIII

Through studies performed in GM-CSF-deficient mice, Dranoff

and Tahara identified milk fat globule epidermal growth factor

VIII (MFG-E8, also called lactadherin) as a critical determinant of

the pro- versus anti-inflammatory properties of GM-CSF [68]. GM-

CSF induces the secretion of MFG-E8 from resting (that is non

TLR-induced) phagocytes. MFG-E8 binds to phosphatidylserine-

expressing dying cells, and signals through �v�3 and �v�5

integrins to promote the uptake of apoptotic cells and the secre-

tion of TGF-� and CCL22 by myeloid cells, all contributing to the

maintenance of Foxp3+ Treg. In addition, MFG-E8 expression and

secretion is induced in tumor cells exposed to cytotoxic compounds

and represents a potent anti-apoptotic event. Blocking antibodies

to MFG-E8 could subserve four independent functions that might

explain their marked synergistic anticancer effects when com-

bined with chemotherapy, radiotherapy and molecular targeted

compounds [69]. First, anti-MFG-E8 antibodies increase the suscep-

tibility of tumor cells to drug-induced apoptosis [69]. Second, they

facilitate the Fc�R-mediated uptake of dying cells by DC, thereby
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promoting cross-presentation of tumor antigens to CD4+ and CD8+

T cells [69]. Third, they may evoke Th1 reactivities and enhance

tumor infiltration by CTL by virtue of their capacity to suppress the

accumulation of Foxp3+ Treg cells [69]. Fourth, they may interfere

with the intrinsic aggressiveness of a variety of tumor cells [70]. As

a result, it may be important to monitor the MFG-E8 release from

tumor cells before and after anticancer therapy to appreciate the

functional outcome of the drug/tumor/host interaction.

4.4. DAMP: HMGB1

High mobility group box 1 protein (HMGB1) is an abundant

nuclear protein that is tightly associated with chromatin and acts

as a transcription factor, when present in the nucleus, as well

as a pro-inflammatory cytokine, when it is released from cells

[71]. Damaged and necrotic cells were primarily shown to release

HMGB1 into the extracellular milieu, where it triggers an inflam-

matory response to necrosis. Necrotic fibroblasts derived from

hmgb1−/− mice failed to induce the maturation of DC, in conditions

in which necrotic cells from wild type mice were able to trigger DC

maturation. Inhibitors of HMGB1 (such as neutralizing Ab or the

HMGB1 inhibitory fragment box A) hampered the reactivity of APC

to necrotic cells. Moreover, apoptotic lymphoma cells were poorly

immunogenic unless they were combined with supernatants from

necrotic fibroblasts. The “adjuvanticity” of the necrotic cell-derived

supernatants was partially ablated by HMGB1 blockade [72]. RAGE

was reported to be the receptor for HMGB1 in these experi-

ments. Recently, several groups reported that apoptotic cells also

extrude HMGB1 into the extracellular milieu [73–75], thereby

mediating an immunogenic cell death pathway. Indeed, binding

of HMGB1 to TLR4 on DC facilitates the processing and presen-

tation of tumor antigens by DC-derived MHC class I molecules.

This effect could be attributed to the TLR4-dependent inhibition

of the lysosome-dependent degradation of the phagocytic cargo,

resulting in improved tumor antigen cross-presentation [75].

In the context of impaired phagocytosis of apoptotic cells

(clearance deficiencies), secondary necrosis can occur and HMGB1-

nucleosome complexes are released from dead cells. Such HMGB1-

nucleosome complexes cause the maturation of macrophages and

DC (secretion of IL-1�, IL-6, TNFa, IL-10), thus breaking tolerance

to dsDNA in a TLR2-dependent manner [76]. Adding some more

complexity, Kazama et al. succeeded in switching tolerogenic into

immunogenic cell death by inducing post-transcriptional modifi-

cations in HMGB1 using a ROS scavenger. Indeed, in splenocytes

undergoing apoptosis, activated caspase-3 and caspase-7 cleave the

p75 kDa subunit of the respiratory complex leading to production

of ROS which oxidize Cys106 in HMGB1, disabling its potential to

activate DC [76]. Hence, the avoidance of HMGB1 oxidation may

have immunostimulatory effects. The clinical relevance of HMGB1

and its post-transcriptional changes remain to be established in

patients undergoing anticancer chemotherapy.

4.5. DAMP: uric acid

In certain conditions of cell stress, an endogenous adjuvant

activity is delivered to the environment of the damaged tissues,

influencing the inflammatory and immune outcome. Shi et al. pio-

neered the field demonstrating that monosodium urate crystals

are danger signals that are released by dying mammalian cells

and then stimulate DC and promote antigen-specific CD8+ T cell

responses [77]. During chemotherapy by bleomycine, a selective

inhibitor of DNA synthesis used to treat a variety of human malig-

nancies, oxidative damage and cell death of alveolar macrophages

and epithelial cells create acute lung injury culminating in inter-

stitial pulmonary fibrosis. Gasse et al. showed that uric acid is the

danger signal activating the Nlrp3 inflammasome leading to IL-1�

release and IL-1R1/Myd88-dependent lung fibrosis [78,79]. In spite

of these insights, it remains elusive whether uric acid has a positive

or negative effect on chemotherapy-induced anticancer immune

responses.

4.6. DAMP: HSP70–HSP90

A common adaptive response to cell stress, including that

induced by chemotherapy, is the transcriptional activation of a

series of molecular chaperones that belong to the class of inducible

heat-shock proteins (HSPs). Such HSPs protect against cell death

by refolding damaged proteins, by directing damaged proteins to

proteasome-mediated degradation and finally by inhibiting apop-

tosis [80]. HSPs can also stimulate the immune system by acting on

the scavenger receptor CD91 on the surface of DCs, thereby trans-

mitting a maturation signal [81] or by chaperoning tumor-specific

antigens to MHC class I and II pathways for efficient T cell activation

as detailed elsewhere [15,82]. In human myeloma cells treated with

the proteasome inhibitor bortezomib [83], HSP90 appears on the

surface of tumor cells and serves as a contact-dependent activation

signal for autologous DCs.

4.7. Pro-inflammatory and find-me signal: ATP

The systematic screening of various anticancer drugs induc-

ing cell death with distinct mechanisms on a variety of cancer

cell lines revealed that cell death is accompanied by a reduc-

tion of intracellular ATP concentrations and an accumulation of

extracellular ATP [84]. Chemotherapy affects ATP levels at the

pre-apoptotic level, before and during the entry of cells into the

step-wise process leading to apoptosis and secondary necrosis [85].

It remains to be determined whether ATP is passively or actively

exocytosed (via vesicular trafficking) from cancer cells undergo-

ing the chemotherapeutic hit and as such, ATP release may indeed

represent a checkpoint to the immunogenicity of chemotherapy.

Irrespective of these incognita, it appears clear that depletion of

ATP from dying cells by inhibition of ATP synthesis or by addition

of the ATP-degrading enzyme apyrase abolishes the immunogenic-

ity of cancer cell death [84]. Indeed, ATP released from tumor cells

acts on the purinergic P2RX7 receptor present on DC to facilitate

anticancer immune responses (see below).

ATP and UTP can also play the role of non-redundant find-

me signals that are released by apoptotic cells for their efficient

clearance by monocytes/macrophages that express the purinergic

receptor P2RY2 [86]. Forced expression of CD39 (NTPDase-1), an

ecto-apyrase responsible for the degradation of NTP by immune

cells in vivo [87] abrogated the chemoattractant activity of apop-

totic cells [86], suggesting that tumor cells could control their

clearance via the expression of CD39 or other enzymes that degrade

ATP [88]. CD39 is overexpressed on some cancer cell types such as

melanomas [89], and it will be interesting to correlated the expres-

sion of CD39 (and other ATP-degrading enzymes) with anticancer

immune responses elicited by chemotherapy or radiotherapy.

4.8. Pro-tolerogenic factors: Gas6

The receptor tyrosine kinase Mer is involved in the phagocytosis

of apoptotic cells by certain macrophage subpopulations [90]. The

role of Mer in the immunoregulation of TLR signaling [91] and in

the apoptosis-induced inactivation of CD11c+CD8�+ dendritic cells

has been established [92]. Mutant mice lacking the three receptor

tyrosine kinases TAM (Tyro3, Axl, Mer) show defective clearance of

apoptotic bodies and develop severe lymphoproliferative disorders

accompanied by broad spectrum autoimmunity [93]. The growth

arrest specific gene 6 (Gas6) detectable on the surface of dying cells

is a phosphatidylserine opsonin and a ligand for Mer (and Axl).
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Blocking Gas6 prevents the inhibitory effects of apoptotic cells on

CD11c+CD8�+ DC, restoring their activation and T cell stimulatory

activity [92]. Axl/Gas6 signaling has been shown to regulate sur-

vival, proliferation and migration of a variety of tumor cell lines of

epithelial, mensenchymal and hematopoietic origin, to be inducible

by chemotherapy and to confer drug resistance [94,95]. Overex-

pression of Axl/Gas6 in renal cell carcinoma or glioblastoma or

leukemia correlated with poor prognosis [96–98]. It remains to be

established whether the TAM/Gas6 interaction affects clinical out-

come through a tumor cell-autonomous pathway or rather through

an effect on the dialogue between tumor cells and phagocytes.

5. Checkpoints for the immunogenicity of cell death at the

host level

As outlined above, chemotherapy may fail because it is intrinsi-

cally unable to stimulate immunogenic cell death or because cells

fail to emit the appropriate set of immunogenic signals as they die.

In addition, chemotherapy may fail because the immune system

is unable to perceive immunogenic signals or because it has been

subjected to local or systemic immunosuppression.

5.1. The role of DC and T cells

If the host immune system plays a role in the antitumor effects

mediated by cytotoxic agents, then, certain defects in genes encod-

ing immune functions should subvert the clinical efficacy of these

anticancer compounds. The first in vivo studies performed in 1973,

comparing immunocompetent versus compromised mice, indi-

cated that part of the antitumor activity of anthracyclines could be

attributed to the host’s immune system [99]. These findings were

corroborated in various experimental models, and anthracyclines

were shown to enhance innate and cognate immune functions in

vivo [100,101]. Doxorubicin induces specific immune functions and

cytokine expression in peritoneal cells [30,102]. However, for his-

torical reasons, drug discovery programs for cancer therapy have

overlooked the possibility that immune reactions might contribute

to the success of treatment. Indeed, in 1976, the National Can-

cer Institute (NCI) edited guidelines for drug screening, prompting

investigators to validate their strategy using human tumor cells

xenotransplanted into immunodeficient mice [103].

Recently, we discovered that the oxaliplatin-mediated tumorici-

dal activity against EL-4 was completely abolished in mice deficient

for the recombination activating protein 2 (Rag2, which lack both

B and T cells), in athymic nu/nu mice (which lack T cells), and in

wild type mice depleted from CD8+ lymphocytes [84]. Similarly, the

antitumor efficacy of 10 Gy-irradiation against the breast cancer

TS/A was severely compromised in nu/nu mice [75]. Neutraliz-

ing antibodies directed against anti-CD4+ and CD8+ lymphocytes

also abrogated the immune response against dying tumor cells

[30]. Using CD11c-DTR transgenic mice in which diptheria toxin

depletes conventional DC, it was found that dendritic cells mobi-

lized by doxorubicin-treated tumor cells are indispensable to elicit

CTL responses that protect mice against rechallenge with live tumor

cells [30]. Accordingly, tumor antigens derived from doxorubicin or

oxaliplatin-treated cells can be cross-presented by host DC to MHC

class I-restricted Tc1 lymphocytes [31,84]. Thus, cross-presentation

of tumor antigens by DC may be decisive for dying cancer cells to

elicit specific immune responses.

Since the mouse CD8�+ DC excels at cross-presenting anti-

gens [104]. Sancho et al. went on studying myeloid C type

lectins uniquely expressed on this subset and their role in the

immunogenicity of cell death. They showed that mouse CD8�+

DC take advantage of one of their surface molecules, DC/NK

lectin group receptor-1 (DNGR-1, also called CLEC9A), to regulate

cross-presentation of necrotic cells by signaling via SYK kinase

[105]. The CLEC9A receptor handles dying cells resulting from

secondary necrosis promoted through UV light, anthracyclines,

freeze-thawing, or serum deprivation, but does not function in the

phagocytosis of latex particles. Rather, the CLEC9A/SYK pathway

may activate DC in response to dead cells, presumably in coor-

dination with other danger receptors because targeting this DC

receptor with antigen epitopes covalently coupled to a specific anti-

body requires adjuvant to elicit T cell priming [104]. Moreover, it

is currently unknown whether CLEC9A contributes to anticancer

immune responses.

5.2. The coordinated action of TLR4 and P2RX7

The systematic screening of the danger receptors such as Toll-

like (TLR) and Nod-like receptors (NLR) revealed a major role for

TLR4 and NLRP3 in the immunogenicity and efficacy of chemother-

apy or radiotherapy in mice. Mutations in TLR4 that affect receptor

signaling markedly decreased the efficacy of conventional anti-

cancer therapies applied to a series of tumors growing on syngenic

mice. This applies to X-rays used for the cure of established

TS/A mammary cancers, oxaliplatin employed against EL-4 thy-

moma and GOS osteosarcoma, as well as doxorubicin administered

against CT26 colon cancers [75]. Accordingly, dying tumor cells

failed to elicit antigen-specific Tc1 immune responses in TLR4−/−

mice unless they were loaded onto bone marrow-derived DC

bearing a TLR4 WT genotype. These results suggested that TLR4

must function within host DC for optimal efficacy of chemother-

apy [75]. TLR4 signaling in DC involved Myd88 (but not TRIF)

adaptor molecules and appeared to be critical for the dynamic

of the endocytic compartments, the processing of the phago-

cytic cargo and the presentation of antigens by MHC class I

molecules. TLR4 engagement by HMGB1 acted in coordination

with the Nlrp3 inflammasome complex to induce the process-

ing and maturation of IL-1� in DC [84]. Indeed, DC loaded with

oxaliplatin-treated tumor cells secreted IL-1� in an Nlrp3-, ASC-

and caspase-1-dependent fashion, and IL-1� secretion was blocked

by neutralizing HMGB1 [84]. Therefore, the efficacy of doxorubicin

or oxaliplatin against established tumors (whether transplantable

or methycholanthrene-induced) was markedly impaired in animals

bearing genetic defects in the Nlrp3 → ASC → Casp-1 → IL-1� → IL-

1R1 axis and mice treated with neutralizing anti-IL-1� antibodies

(Fig. 3). In contrast, IL-1� and IL-18 did not contribute to the anti-

tumor effects of these therapies [84].

Purinergic receptors P2RX7 expressed on DC were found to be

strictly required for the activation of the Nlrp3 inflammasome and

for the immune response against dying tumor cells [84]. P2RX7

receptors sense extracellular ATP. Removal of ATP from dying

cells, scavenging of ATP by the ATP-degrading enzyme apyrase, or

excess amounts of P2X receptor antagonists prevented the prim-

ing of tumor antigen-specific T cells by dying tumor cells and the

prophylactic effects of vaccines composed of mitoxanthrone or

doxorucin-treated CT26 against rechallenge with live cells [84].

Why is IL-1� produced by DC encountering dying tumor cells

so critical for the efficacy of chemotherapy? The immune response

ensuing in the draining lymph nodes of a tumor, 5–7 days post-

exposure to X-rays or local doxorubicin or systemic oxaliplatin,

requires tumor antigen-specific CD8+ T cells that produce IFN-

� in an TLR4-, caspase-1- and IL-1R1-dependent manner [84].

However, these IFN-� producing T cells did not exhibit potent

cytolytic activities against tumor cells. Accordingly, we found that

signaling through IFN-�R and IFN-� was mandatory for the effi-

cacy of chemotherapy against a variety of different tumors, while

IL-12R�2, perforin or TRAIL were dispensable [84]. Finally, IL-

1� was shown to be a key cytokine gearing the polarization of

TCR-triggered CD8+ (but not CD4+) T lymphocytes in vitro, yet lack-
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Fig. 3. IL-1�-dependent antitumor effects of chemotherapy. CT26 colon adenocarcinomas were established in BALB/c mice and treated on days 7 and 14 with PBS or oxaliplatin

(5 mg/kg i.p.) in the presence of control immunoglobulin (Co Ig), neutralizing anti-IL-1�, anti-IL-1�, or anti-IL-1R antibodies (250 �g i.p./mouse, twice weekly from days 4

to 21). The growth kinetics was monitored twice a week. A representative experiment of 5 mice/group repeated twice with identical results is depicted as means ± SEM of

tumor sizes over time. *p < 0.05.

ing the potential to modulate antigen processing or activation in

DC.

Altogether, these results support the contention that two DAMP

receptors, TLR4 (which senses HMGB1) and P2RX7 (which senses

ATP), have to be activated in a concerted fashion to allow for

anticancer immune responses to be efficient. Thus, a defined

spatiotemporary pattern of cell death-associated DAMPs (CRT

exposure, HMGB1 release, ATP release) functions like a “key”

to open the “lock” that usually precludes an immune response,

through the action of defined receptor present on the surface of

DC.

6. Clinical data supporting the key/lock paradigm

A polymorphism in human TLR4 (rs4986790) resulting in a

single-nucleotide exchange (896A/G) in the tlr4 gene and in an

amino acid substitution (Asp299Gly) in the extracellular domain

of TLR4 has been associated with decreased responses to inhaled

lipopolysaccharide [106]. This substitution not only decreased the

binding of HMGB1 to TLR4 but also resulted in a weaker activation

of the transcription factor NF-�B ([107] and unpublished data) as

well as in a profound alteration of the capacity of monocyte derived-

human DC to cross-present melanoma tumor antigens from dying

melanoma cell lines [75]. In a retrospective study, we analyzed the

time to metastatic progression in a cohort of 280 patients that had

been treated for non-metastatic breast cancer with local lymph

node invasion, following a standard protocol of local surgery, local

radiotherapy and systemic anthracycline injections (FEC protocol).

Patients carrying TLR4 Asp299Gly allele (about 17%) did not dif-

fer from patients displaying the normal TLR4 allele for all classical

prognostic factors. However, patients bearing the TLR4 Asp299Gly

allele developed metastasis more rapidly than patients bearing the

normal TLR4 allele, establishing TLR4 Asp299Gly as an independent

predictive factor of early disease progression [75].

Next, we investigated whether the same loss-of-function

allele of tlr4 could affect the progression-free survival (PFS) of

metastatic colorectal cancer (CRC) patients (n = 338) undergoing

an oxaliplatin-based regimen. Patients that were heterozygous or

homozygous for the tlr4 Asp299Gly/Thr399Ile allele (n = 48) did

not differ from patients bearing the normal TLR4 allele (n = 290)

with respect to prognostic parameters relevant in CRC. Once again,

patients bearing the normal TLR4 allele manifested an increased

PFS (Hazard ratio 0.73, CI [0.53; 1.00], p ≤ 0.05) and overall survival

(OS) (Hazard ratio 0.72, CI [0.52; 1.01], p = 0.05), as compared to

patients bearing the loss-of-function allele of TLR4. In contrast, in

a cohort of stage II CRC patients (n = 258) who were treated with

surgical removal of the primary tumor in a curative intent, without

any adjuvant chemotherapy, no statistical differences in the terms

of disease-free survival among patients bearing the normal or vari-

ant allele of tlr4. This result suggests that tlr4Asp299Gly is not a

prognostic factor but rather a predictive factor of the response to

oxaliplatin [108].

More recently, we investigated the prognostic value of a

single-nucleotide polymorphism in the ligand-gated cation chan-

nel P2RX7 at nucleotide position 1513 (1513A > C) changing a

glutamic acid to alanine at aa 496 (Glu496Ala) which abrogates

the ATP-induced Ca2+ and ethidium influx (and the K+ efflux) and

severely retards the ATP-dependent IL-1� release from monocytes

[109]. We analyzed a cohort of 225 sporadic breast cancer patients

that were stratified according to the P2RX7 genotype (normal (64%)

versus variant (36%) P2RX7). While there was no significant dif-

ferences in classical prognostic factors between the normal and

variant groups of patients, the P2RX7 loss-of-function allele had a

significant negative prognostic impact on metastatic disease-free

survival (Log rank test; p = 0.02). A multivariate Cox regression

model revealed a significant effect, both for the tumor grade and

for the P2RX7 genotype.

Altogether, these data suggest that selective immune defects

(in the DC-mediated presentation of antigen from dying cells

or in IL-1� release) can compromise the response to anticancer

radiotherapy and chemotherapy, at least in node positive (N+)

breast cancers treated with adjuvant anthracyclines. However, it

is noteworthy that in vitro studies indicated that homozygous loss-

of-function of P2RX7 are accompanied with a marked defect in

IL-1� release and that P2RX7 also initiates downstream events such

as the stimulation of a metalloproteinase causing the shedding

of l-selectin from monocytes and lymphocytes [109]. Therefore,

prospective long-term studies correlating immune functions with

loss-of-function SNPs and time to progression are needed.

7. Immunological prospects for personalized

chemotherapy

7.1. Promoting the immune response following tumor cell death

Several strategies have been attempted in preclinical studies

that have been reviewed elsewhere [110,111]. Some recent findings

will be reported below.
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Fig. 4. Checkpoints of immunogenic cell death at the level of the host. Determining whether genetic defects in the relevant immune genes (SNPs search using whole genome

CHIPs or dedicated immune CHIPs), and innate or acquired transcriptional and functional defects residing at various levels (B, T, NK, DC, TLR4, P2RX7, etc.) will require

systematic prospective and translational studies on a large series of patients; correlations between these parameters and the clinical outcome will shed some light into the

relevant immunological pathways during given therapies.

Inducing cell death by targeting TRAIL receptors may be a

reasonable strategy not only to bypass tumor resistance to mito-

chondrial membrane permeabilizing agents, but also to generate

an immunogenic cell death pathway [112]. When comparing the

immunogenicity of B16F10 killed by a specific TRAIL-expressing

DC cell subpopulation versus perforin/Granzyme B expressing

NK cells, we found that tumor cells are particularly effective

in eliciting prophylactic antitumor activity [113]. Accordingly,

TRAIL can stimulate CRT exposure on tumor cells [32]. Low dose

cyclophosphamide may induce TRAIL expression on T and/or NK

effectors and promote the eradication of TRAIL-sensitive tumors

[114]. When combined with TLR2/4 agonists, cyclophosphamide

induced TRAIL expression on DC and DC became tumor killers

leading to antigen cross-presentation and T cell and TRAIL-

dependent antitumor effects [115]. Finally, antibodies targeting

not only DR5 but also costimulatory molecules expressed by

DC (such as anti-CD40 or anti-CD1d Ab) and T cells (such as

anti-CD137 mAb) mediated potent synergistic antitumor effects

against TRAIL-sensitive tumors [116]. In TRAIL-resistant tumors,

the combination of doxorubicin or gemcitabine with anti-CD1d

and anti-CD137 agonistic Ab improved antitumor activity [117].

Finally, it is feasible to improve targeted therapies of ErbB-2/HER2+

breast cancer by using a combination of anti-DR5 and anti-ErbB-

2 antibodies, which both significantly suppressed the growth

of advanced spontaneous tumors arising in ErbB-2/neuT trans-

genic mice, in a CD11b+ and CD8+ T cell-dependent manner

[118].

In genetically engineered Hgf-Cdk4R24C mice where sporadic

melanomas develop, complete cure of primary and metastatic dis-

ease could only be achieved by a combination of four strategies,

i.e. (i) chemotherapy (alkylating agents), (ii) the adoptive transfer

of p-mel specific CD8+ T cells, (iii) adenoviral vectors engineered

to express the gp100 antigen and (iv) immunostimulatory nucleic

acids in the tumor microenvironment, all culminating in expan-

sion, differentiation and survival of IFN-� producing CTLs, sparing

healthy tissues [119].

Neutralizing immunosuppressive pathways together with

chemotherapy has also been successful. Combining anti-CTLA4

with a conditioning regimen for allogeneic hematopoietic stem

cell transplantation proved safe and efficient for 3/29 patients

in relapse, without causing overt graft-versus-host disease [120].

Combining anti-PD-1 Ab with gemcitabine was synergistic in a

mouse model of pancreatic cancer [121]. Chemoimmunotherapy

associating chemotherapy (paclitaxel, gemcitabine or cyclophos-

phamide) with the D stereoisomer of 1-methyl-tryptophan

(inhibitors of indoleamine 2,3-dioxygenase) was more efficacious

than each agent alone [122]. Promoting the exhaustion and apopto-

sis of intratumoral Treg using a combination of cyclophosphamide

and agonistic anti-OX40 Ab may result in potent synergistic anti-

tumor effects against B16F10 melanoma [123].

These examples illustrate the possibility to combine thera-

pies that induce immunogenic cell death with immunostimulatory

regimes to mediate an “immunochemotherapeutic” synergy.

7.2. Compensating defects at the level of the tumor and of the host

Pinpointing the molecular defects at the level of the tumor might

result in a specific therapeutic intervention. Thus, restoring the

capacity of a tumor to expose CRT can be achieved by manipu-

lating the PERK → eIF2a axis and the PP1-GADD34 complex using

specific ER stress response modifiers or specific inhibitory com-

pounds, respectively [32,33]. Local injection of recombinant CRT

into tumors that lack essential compounds of the CRT translocation

machinery (such as Erp57) can also re-establish the sensitivity to

chemotherapy [59].

Identifying the immunological defects at the level of the host

may also facilitate a targeted compensation (Fig. 4). This has been

achieved by using chloroquine in mice deficient for TLR4 [75] or by

coadministering TLR3 or TLR9 agonists [107]. In the former case,

the lysosomotropic chloroquine given at the time of cell death may

restore the dynamics of the endocytic compartments in DC, thereby

favoring antigen cross-presentation and T cell priming [75]. In the

latter case, TLR3 or TLR9 likewise stimulate the Myd88 pathway

that fails to be activated by deficient TLR4. In mice that lacked

P2RX7, elements of the Nlrp3 inflammasome (Nlrp3, caspase-1) or

IL-1�, we could show that exogenous recombinant IL-1� or rIL-12

restored the Tc1 immune response triggered by cell death inducers

[84]. However, exogenous IL-1� was unable to restore the failing

anticancer immune response in mice lacking TLR4. These results

underscore the importance of diagnosing immune defects in order

to proceed to a case-specific therapeutic restoration of the immune

response.

8. Concluding remarks

An ideal vaccination strategy against tumors should rely on

specific antigens required for tumor maintenance, such as those

involved in the oncogenic process or the autoantigens dictating

cell cycle regulation or cell stress. Strong preclinical and clinical

evidence supports that X ray-induced death of tumor cells geneti-

cally modified to express GM-CSF do mount humoral and cellular

immune responses while in parallel, the contribution of the host
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Fig. 5. Accounting for treatment failure. Revisiting the reasons. On the basis of about 10% responders for all types of vaccines and 30–40% of long-term survivors for all

chemotherapies, one might consider that treatment is not efficient. However, predicting upfront the subset of complete responders would allow a 100% success. By selecting

only patients not harbouring a mutation in P2RX7 nor TLR4 and a therapeutic regimen mediating “an immunogenic ER stress response and cell death”, and a tumor inducible

for cell stress, one should expect that a full antigen spreading will allow an efficient and broad repertoire of T cell responses which will synergize with the cell death inducer.

We depict the scenarios whereby one of these checkpoints might jeopardize the success of therapy and suggest potential compensatory strategies.

immune system in the efficacy of some chemotherapies is being

demonstrated. In all cases, the clinical success remains limited or

the “immunochemotherapy” approach is adequate or suitable for a

limited subset of tumors and/patients that remains to be identified

based on the molecular dialogue between dying tumor cells and

immune effectors.

Prospective translational studies are required to elucidate which

among the theoretical checkpoints dictating the immunogenic cell

death and residing at the level of the tumor, of the drug and of

the host will prevail in controlling humoral and cellular immune

responses, as well as the clinical outcome. We anticipate that the

validation of at least some of these checkpoints will allow (i) to

device algorithms predictive of clinical responses, (ii) to personalize

therapy with cell death inducers, and (iii) to re-orient immuniza-

tion strategies according the pre-existing immune status of the

patients (Fig. 5).
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The dendritic cell–tumor cross-talk in cancer
Yuting Ma1,2,3, Laetitia Aymeric1,2,3, Clara Locher1,2,3, Guido Kroemer4,5,7,8

and Laurence Zitvogel1,2,3,6,9

The question as to whether the tumor grows because of or

despite the host immune system is being progressively

addressed with refined technology, gene targeting in mice and

human translational research. The productive interplay

between major actors of the antitumor immunity is actively

compromised by the tumor microenvironment subverting the

links between innate and cognate immunity and/or generating

devastating new players. The complexity of the host–tumor

equilibrium could be dissected at the reduced level of the

dialogue between professional antigen presenting cells (APC),

more precisely dendritic cells, and tumor cells that may

profoundly dictate the outcome of the neoplasma. This review

will summarize the novel mechanisms by which tumor cells

regulate DC recruitment, differentiation, activation and cross-

presenting functions in tumor beds and how innate players

might counterbalance these interactions. Finally, we will

highlight interesting strategies that harness the DC potential to

fight against cancer.
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Tumor microenvironment and deficient
antigen presenting functions
Cancer-induced tolerance relies on the unresponsiveness

of the host immune system to professional antigen pre-

senting cells (APC) invading tumor beds or residing in the

vicinity (tumor-draining lymph nodes) of developing

tumors. Tumor progression induces defects in DC

recruitment, differentiation, maturation and survival

(Figure 1). The mechanisms of inadequate DC functions

causing and/or resulting from tumor escape have been

reviewed elsewhere [1,2]. It is noteworthy that the regu-

latory capacity of tumor infiltrating DC is not related to a

definedDC subset but rather results from the influence of

tumor microenvironment. Over the past decade, a series

of immunosuppressive factors (such as GM-CSF and

S100A9 associated with myeloid derived suppressor cells

(MDSC), M-CSF, IL-6, VEGF, TGF-b, CXCL8, IL-10,

gangliosides, altered glycosylation of tumor associated

antigens, reactive oxygen species, indoleamine 2,3-deox-

ygenase (IDO) and extracellular adenosine) have been

described to block DC recruitment and/or functions,

mainly through activation of signal transduction and

activator of transcription STAT3 [3].

Immunohistochemical analyses of breast cancer tissues

revealed that plasmacytoid DC (pDC) invade 13% of

primary tumors and predict short progression free survival

[4]. In the same malignancy, Gobert et al. demonstrated a

strong association between the DC-LAMP+ DC and

Tregs in a CCR4/CCL22 chemokine milieu also associ-

ated with poor prognosis if located in the periphery of

tumors [5]. Interestingly, BST2 released from tumor cells

can subvert pDC through ILT7 signaling and make pDC

fail to respond to danger signals for type 1 IFN pro-

duction. Pretreatment with IFN-a and TNF-a signifi-

cantly increased BST2 secretion, suggesting that the

inflammatory status of tumor microenvironment support

this immunoregulatory pathway [6��].

Moreover, prostaglandin E2 (PGE2), the major cycloox-

ygenase 2 metabolite released by tumor cells, can inter-

rupt the tumor > DC > T cell cascade by inducing an IL-

10-dependent reduction of DC infiltration in tumors and

of DC maturation, and PGE2 compromises CCR7-de-

pendent DC migration in LN promoting abortive CD8+

T cell responses [7]. These data extended the pioneering

finding that tumor growing in PGE2 receptor deficient

hosts exhibited markedly enhanced DC differentiation

and antitumor CTL responses compared with WT litter-

mates [8]. In humans, maturation of DC in the presence

of PGE2 resulted in upregulation of CD25 and IDO

culminating in DC-mediated T cell inhibition, a scenario

compatible with the DC phenotype found in human

tumors [9]. More recently, novel mechanisms of altera-

tions of DC cross-presenting functions were unraveled.

Herber et al. reported accumulation of triacylglycerol

through exacerbated macrophage scavenger receptor 1

(MSR1)-mediated uptake in DC from tumor bearers.

Lipid-laden DC were severely altered in their ability
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to cross-present soluble antigen or tumor associated anti-

gens unless an inhibitor of acetyl-CoA carboxylase was

added to DC in vitro and in vivo [10��]. Patients bearing

head and neck tumors also presented with lipid accumu-

lation in their circulating, tumoral and lymph node

Lin�CD4+ DC [10��]. Human and mouse tumors releas-

ing cholesterol metabolites could dampen the expression

of CCR7 on maturing DCs by triggering liver X receptor

(LXR), thereby impairing DC migration and allowing

tumor escape [11��]. Interestingly, cancer stem cells

may not differ from parental tumor cells in their spectrum

of antigen expression [12] and the lack of immune tol-

erance to pluripotency antigen (such as the transcription

factor octamer-binding protein 4 (OCT4)) in cancer

patients suggests that tumor outgrowth may not result

from a primary defect of DC recognition of tumor stem

cells [13].

Come-and-get-me signals emanating from
tumor cells
During tumor progression, there is constant and in some

cases prominent apoptosis (such as Burkitt lymphoma)

that is part of a vicious circle. Indeed, apoptotic cells

express phosphatidylserine (PS) on their surface at late

stages of apoptosis, and several PS receptors or adaptors

have been described [such as T cell immunoglobulin and

mucin domain-containing protein 4 (Tim4), Mer tyrosine

kinase (MerTK), milk fat globule-EGF factor 8 protein

(MFG-E8), brain-specific angiogenesis inhibitor 1

(BAI1)] on macrophages to ensure prompt clearance of

apoptotic cells and elicitation of tolerance before full

blown inflammatory necrosis [14–16,17��]. During the

pre-apoptosis phase, cells upregulate sphingosine kinase

1 expression, allowing the release of sphingosine-1-phos-

phate (S1P) that causes cytoskeletal rearrangements and

chemoattraction of macrophages, even at low nanomolar

ranges [18]. However, in vivo studies showed that tumors

expanding in S1P2
�/� (the G protein-coupled receptor for

S1P) animals exhibited a higher infiltration with

CD11b+Gr1�CD34� bone marrow cells including F4/

80+ macrophages in a high VEGF, TGF-b1, basic FGF

and IL-1b stromal environment with augmented tumor

angiogenesis and growth [19]. S1P may even synergize

with other chemokine-like factors such as lysophospha-

tidylcholine (LPC) [20], IL-8 or CCL2 that can be

released by dying cells [18]. The G protein-coupled

receptors G2A, unlike its relative GPR4, is involved in

the chemotaxis of monocytic cells and could be a pha-

gocyte receptor for find me signals such as LPC secreted

by dying cells [21].

However, contrasting with the theory whereby inflam-

matory phagocytes mediate a status of clearance and

tolerance of tumor cell debris, a different view positioning

2 Antigen processing
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Figure 1

CRT, calreticulin; LRP, lipoprotein Receptor-related protein 1; LPC, lysophosphatidylcholine; SIRPα, Signal regulatory protein α;
TAG, triacylglycerol; MSR1, macrophage scavenger receptor 1; PGE2, prostaglandin E2; DNGR-1, DC NK lectin group receptor 1;
Tim3, T cell immunoglobulin domain and mucin domain 3 ;ROS, reactive oxygen species; IDO, indoleamine 2,3-deoxygenase.
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Tumor

The yin/yang dialogue between tumor cells and immune players in cancer. Live tumor cells produce or express a variety of metabolites or proteins that

subvert the capacity of bona fide antigen presenting cells to initiate tumor-specific T cell responses (at all levels: engulfment, recruitment, differentiation,

migration, activation, cross-presentation) and/or contribute to activate MDSC or Treg competing against effector T cells and/or directly promoting

angiogenesis or metastases (blue circle). Tumor cell death (intrinsically or extrinsically regulated) might either reenforce tumor-induced tolerance (via

engulfment by inflammatory phagocytes and/or tolerogenic molecular pathways) or instead, reset immune responses by exposing appropriate ‘cell death-

associated molecular patterns’ (rebooting APC functions and T cell polarization) and/or recruiting key innate effectors (red circle).
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macrophages as scavengers preventing dissemination of

circulating and live tumor cells has recently emerged.

Indeed, the pentaspanin integrin associated protein

CD47 was found to be overexpressed on myeloid leuke-

mia and migrating hematopoietic progenitors (and also

solid tumors), resulting in reduced uptake by signal-

regulatory protein alpha (SIRPa) expressing macro-

phages. The level of CD47 expression correlated with

the ability to evade phagocytosis and macrophage-de-

pendent immunosurveillance against developing leuke-

mia [22�,23]. It is likely that an ‘eat me’ signal, like

calreticulin, might be expressed in cis on leukemic cells

to engage a counterreceptor mediating efficient uptake

(via lipoprotein receptor-related protein 1 (LRP) [24]) by

the phagocyte. However, peripheral tolerance is governed

by efficient phagocytosis of apoptotic cells and cross-

presentation of self-antigens by CD8a+ DC [25]. This

subset may not use CD36, DEC205, avb3/avb5 integrins

for the clearance of dying self. Using UV-irradiated thy-

mocytes, Nakayama et al. demonstrated that Tim3

expressed on CD8a+ DC is crucial for the uptake of

dying cells and prevention of autoimmunity [26]. Using

Fas-expressing tumor cells, Qiu et al. discovered that

blood borne cell associated antigens are cross-presented

bymarginal zone splenic CD8a+CD103+DEC207+ DC to

provide peripheral tolerance [27].

Tertiary lymphoid organogenesis (TLO):
friends or foes?
The tumormicroenvironment may contain lymphoid-like

structures that could regulate local adaptive immune

responses. Tumor infiltrating-bronchus associated lym-

phoid tissues (Ti-BALTs) have been recently described

in non-small cell lung cancers endowed with very favor-

able clinical outcome [28]. Ti-BALTs appear to be orche-

strated around DC-Lamp+ DC that interact with CD4+ T

cells of a memory phenotype. The DC/CD4+ T cell

clusters were associated with CD8+ T cells of a Th1

pattern (T-bet+) residing in tumor nests and surrounded

by B cell follicles containing germinal center DC. While

concordant with previous reports showing the association

between TLO and autoimmune flare up or atherogenesis,

this clinical observation is contrasting with a mouse study

unveiling the protumorigenic behaviour of LN paracortex

stroma-like areas containing lymphoid tissue-inducer

cells and high endothelial venules [29�]. Such structures

were induced by tumor cells overexpressing CCL21, a

CCR7 ligand promoting recruitment of Treg and MDSC.

By contrast, CCL21-deficient tumors induced antitumor

immunity. The tolerogenic switch triggered by the

CCL21-driven mimicry of the LN stroma was associated

with a recruitment of naı̈ve T cells to peripheral sites (as

opposed to memory T cells), CCL21 promoting their

differentiation into Treg and inducing effector T cell

senescence [30]. Moreover, the mouse study failed to

mention B cell follicles (in contrast to the former setting)

that could elicit a humoral anticancer immune response

synergizing with T cell reactivities. Future studies will

pinpoint the role of RORgt, LTb, IL-7/IL-7R and NK22

cells, features associated with lymphoid tissue-inducer

cells, in the induction or maintenance of long term

protective antitumor immune responses.

Sensing of tumors by CD8a+DC: tolerance or
immunity?
CD8a+ DC have been shown to be a masterpiece of

peripheral tolerance to cell associated self/tumor antigens

[25]. However, the same DC subset is pivotal for anti-

tumor immunosurveillance against MCA induced sar-

coma, which depended upon IFN type I and type II

receptors and lymphocytes [31]. Deletion of the transcrip-

tional factor Batf3 ablated development of CD8a+ DC

that provoked tumor outgrowth of very immunogenic

tumor variants [32�]. Importantly, Reis e Sousa and co-

workers identified DC NK lectin group receptor 1

(DNGR-1), a SYK-coupled C type lectin receptor, selec-

tively expressed by CD8a+ DC and involved in sensing

and cross-presenting antigens from necrotic cells [33].

Despite the fact that DNGR-1 is an endocytic receptor,

its main function may not be phagocytosis but rather to

maintain the phagocytic cargo away from lysosomal com-

partments to allow retrieval of antigens for efficient cross-

presentation. The DNGR-1-SYK pathway does not acti-

vate DC in response to dead cells and targeting of

DNGR-1 with a specific antibody coupled to a tumor

antigen requires TLR3 adjuvants to promote antitumor

immunity [34��]. The putative human equivalents have

been recently reported by several teams, showing that

BDCA3highDNGR-1+ Lin�DR+DC, constituting 0.1% of

human spleen cellularity, express most of the mouse

CD8a+ DC markers (Necl2, CD205, CD207, BATF3,

TLR3, IRF8), internalize dead cells and respond to

TLR3 and TLR8 agonists to cross-present long peptides

[35��]. Whether this novel human DC subset could be

exploited for immunological interventions against cancer

remains an open conundrum.

Alternatively, bona fide CD8a+ DC residing in the LN

can acquire MHC I/peptide complexes generated by

cross-presentation from inflammatory monocyte-derived

DC [36�]. Such cross-dressing can prime naı̈ve CD4+ and

CD8+ T cells against tumor antigens from a necrotic

tumor (but not live tumor) that have been uptaken by

monocyte-derived DC [37,38].

There are anatomical determinations as to whether

CD8a+ versus CD8a� DC might be more eligible for

efficient cross-presentation. It remains unclear how the

tumor microenvironment might dictate such events and

how cell death (either spontaneous or therapy-induced)

might edit the biological features of cross-presentation.

In as much as immunogenic tumors might be frequently

invaded by effector memory TILs [39] and since DC also
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play a major role in reactivating memory CD8+ T cell

responses [40], one wonder whether tumor infiltratingDC

(as opposed to LN-residing DC) contribute to the pool of

tumor-reactive T cells. Arguing against that hypothesis,

memory T cells appear to better respond to LN resident

CD8a+ DC than migratory CD8a� DC located in

inflamed peripheral tissues during influenza virus infec-

tion (such as virally infected-skin or lung) [41].

It is noteworthy that other inflammatory phagocytes such

as neutrophils, diverging ontogenically from DC, may be

able to transport tumor antigens from peripheral tissues to

lymphoid organs [42], and to cross-present tumor antigens

to naı̈ve T cells [43�]. However, neutrophils may con-

tribute to tumor-induced tolerance as suggested by

clinical reports associating the presence of intratumoral

neutrophils with short recurrence-free survival in loca-

lized renal cell carcinoma [44].

Innate cells providing help for antitumor T cell
immune responses
NK cell-killing of target cells is far more efficient at

eliciting humoral and cellular immunity than the UV or

gamma irradiation-driven cell death modality. The

immunogenicity of the NK cell-killing pathway involves

TRIF/Myd88 signaling and both type I and II IFNR [45].

Recognition of tumor cells by NK cells can occur via

downregulation of MHC class I molecules as well as

expression of stress associated ligands or costimulatory

molecules (such as CD70 and CD80), all engaging NK

cell signaling. The coinciding inflammatory signals with

cytotoxicity appear to optimally gear the ensuing adaptive

immune response. Indeed, the NK-DC cross-talk plays a

dominant role in T cell priming, either by boosting DC

maturation (and production of IL-12 and type 1 IFN

[46,47]), or by eliminating DC to limit adaptive immunity

(as shown in viral infections, [48]). Other innate subsets

could do both, kill tumor cells and promote DC matu-

ration. CD1d-restricted NKT cells can induce IL-12p70

production by DC in a CD40-dependent fashion [49] and

were shown to promote help for DC cross-presentation to

CD8+ T cells in a CCL17/CCR4 dependent manner [50].

Vd1 gdT cells can trigger DC maturation in a TNFa and

CD1c-dependentmanner, and synergize with LPS for the

induction of naı̈ve CD4+ T cell responses [51].

Concluding remarks and novel prospects
Immunotherapeutic interventions may have not been

very successful so far because of their inability to counter-

act tumor-induced immunosuppressive pathways and/or

of their low capacity to elicit potent and coordinated

interactions in the immune network. Resetting the

DC/tumor dialogue may be approached in many advan-

tageous ways [52]. A few novel strategies of active or

passive immunization will be developed in this con-

clusion.

Can we ameliorate the coordination of the multiple DC

subtypes?

The cooperative functional pathways existing between

various DC subsets have been extensively reviewed [25].

Consequently, a spatiotemporal delivery by poly (lactic-

co-glycolic acid) matrices of high levels of GM-CSF

containing tumor lysates as well as polyethylenimine-

condensed CpG ODN could provide a secondary immu-

nostimulatory site of tumor antigen presentation eliciting

efficient CD8+ T cell responses and tumor eradication

[53��]. Such matrices could recruit up to 1.2 � 106 pDC,

6 � 105 CD8a+ DC and 3 � 106 CD11b+DC correlating

with the local expansion of antitumor CTLs (and the

proportional decrease of Tregs) and their recirculation to

spleens. Importantly, this local orchestration of a DC

network was concomitant with the accumulation of type

1 IFN and IL-12 (and the reduction of TGF-b and IL-

10). The prophylactic antitumor efficacy of this vaccine

was proportional to the presence of pDC, CD8a+ DC and

IL-12.

How could we best handle CD4+ T cell help?

Naı̈ve CD4+ T cells could become cytotoxic and highly

contribute to tumor rejection. Adoptively transferred

naı̈ve CD4+ T cell (ACT) specific for self/tumor antigens

can differentiate into Th1 and LAMP1/GrzB/Pfr positive

cells capable of eradicating large melanoma and inducing

autoimmunity. Therapy was independent of prior vacci-

nation, exogenous cytokine support, B or CD8+T or NK

or NKT lymphocytes but strongly relied upon common

IL-2R g chain [54]. It appeared that improper DC acti-

vation (i.e. low MHC class II and CD86 expression and

low sensitivity of DC to respond to and to produce IL-12

and IL-15) will dramatically affect Th1 priming of the

CD4+ T cell based-ACT. Low IFN-gmay also contribute

to reduced CXCL9 production by the tumor milieu

causing a poor recruitment of CXCR3 expressing Th1

CD4+ T cells [55]. Cytokine/antibody immune com-

plexes to IL-15 or IL-2 or IL-7 may mimic the effects

of lymphopenia required for such an efficient ACT of

naı̈ve CD4+ T cells. These findings highlight the poten-

tial of harnessing host DC or ex vivo derived DC to better

control ACT in the future.

Can chemotherapy reset tumor immunogenicity?

Certain tumor cell death modalities differentially trig-

gered by routinely administered chemotherapies can be

immunogenic, and act as cryptic vaccines [56]. We indeed

characterized the molecular pathways associated with an

immunogenic cell death during chemotherapy or radio-

therapy of cancer. Anthracyclines, oxaliplatin and X Rays,

by promoting an ER stress response before apoptosis,

induce the exposure of calreticulin (CRT) [57] and the

release of high-mobility group box 1 (HMGB1) from

dying tumor cells [58]. CRT and HMGB1 play the role

of an ‘eat me’ and a ‘danger’ signal, respectively, thereby

facilitating engulfment and processing of apoptotic
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bodies by DC. In addition, dying tumor cells must release

ATP to engage P2RX7 on host DC, triggering the acti-

vation of the inflammasome plateformNlrp3, culminating

in the release of IL-1b, which in turn elicits tumor-

specific IFN-g producing CD8+ T cells that are indis-

pensable for the success of chemotherapy [59].

TRAIL (and Fas)-mediated tumor cell death is accom-

panied by CRT exposure on dying tumor cells [60].

Interestingly, anti-DR5 antibody targeting mouse

TRAIL promoted tumor clearance through a mechanism

involving CD11c+DC [61] suggesting a role for DC in

cross-presentation of anti-TRAIL Ab-directed dying

tumor cells.

Genetically modified tumor vaccines hold promise in

breaking immune tolerance to the tumor by various

interesting mechanisms [62] but their GMP manufactur-

ing should take into account the ‘cell death-associated

molecular patterns’ that appear crucial for an appropriate

orchestration of immune effectors.
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Abstract Chemotherapy or radiotherapy could induce

various tumor cell death modalities, releasing tumor-

derived antigen as well as danger signals that could either

be captured for triggering antitumor immune response or

ignored. Exploring the interplay among therapeutic drugs,

tumor cell death and the immune cells should improve

diagnostic, prognostic, predictive, and therapeutic manage-

ment of tumor. We summarized some of the cell death-

derived danger signals and the mechanism for host to sense

and response to cell death in the tumor microenvironment.

Based on the recent clinical or experimental findings,

several strategies have been suggested to improve the

immunogenicity of cell death and augment antitumor

immunity.
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MDR Multidrug resistance

CTX Cyclophosphamide

TSC Tumor stem cells

DLN Draining lymph node

IDO Indoleamine-pyrrole 2,3-dioxygenase

1 Immunogenicity of chemotherapy and radiotherapy

Chemotherapy and radiotherapy are commonly believed to

kill cancer cells by apoptosis. This cell death modality is

generally considered as a non-immunogenic. However,

massive cell death might saturate the local capacity of

silent corps removal, causing the accumulation of late-stage

apoptotic cells. What is more important is that accumulat-

ing evidence suggest that certain chemotherapeutic agents

and ionizing radiation could confer dying tumor cells

immunogenic.

Irradiated tumor cells (cell lines or autologous dissoci-

ated tumor pieces) engineered to secrete GM-CSF are able

to mobilize dendritic cells (DC), plasma cells, invariant

NKT cells, and tumor-reactive CD4+ and CD8+ T cells,

both in mice and in metastatic cancer patients [1]. This

vaccine could promote tumor destruction, necrosis, and

fibrosis correlating with humoral immune responses and

favorable clinical outcome [2, 3]. In a lung metastasis

model (B16F0 melanoma), irradiation of cutaneous mela-

nomas prior to their resection resulted in more than a 20-

fold reduction in lung metastases after systemic challenge

with untreated melanoma cells. This study suggests that

neoadjuvant irradiation of cutaneous melanoma tumors

prior to surgical resection can stimulate an endogenous

anti-melanoma immune response [4].

Our group has performed screening of anticancer

compounds for their ability to induce immunogenic cancer

cell death. In the absence of any adjuvant, subcutaneous

inoculation of dying CT26 tumor cells pretreated with some

chemotherapeutic agents could prevent tumor growth upon

live CT26 cell rechallenge in immunocompetent Balb/c

mice. Anthracyclines (daunorubicin, idarubicin, mitoxan-

throne) were the most potent immunogenic cell death

inducers not only in CT26 colon cancer but also in EL4

thymomas and MCA205 sarcomas [5, 6].

Furthermore, chemotherapy and immunotherapy could

synergize. DNA-based vaccination targeting an oncogenic

protein anaplastic lymphoma kinase (ALK) can immunize

mice against anaplastic large cell lymphoma (ALCL) in a

CD8+ T cell- and IFN-γ-dependent manner and cure

animals bearing advanced ALCL when combined with

doxorubicin [7]. In a phase II trial launched in metastatic

colon cancer, gemcitabine plus FOLFOX-4 (oxaliplatin,

fluorouracil, and folinic acid) polychemotherapy in combi-

nation with GM-CSF and IL-2 could elicit tumor antigen-

specific immune responses and induce very high objective

response and disease control rates [8].

Many chemotherapeutic agents used to treat malignant

diseases damage lymphocytes and consequently suppress

cell-mediated immunity. More recently, new cancer treat-

ment agents such as tyrosine kinase inhibitors, thalidomide

and its derivatives, proteasome inhibitors, and interferons

have been found to have diverse immunomodulatory

activities blocking immune surveillance of the malignancy

and permitting disease recurrence, or, favorably, by reprog-

ramming immunity to increase autologous antitumor

effects.

These findings suggest that certain chemotherapy could

reset tumor immunogenicity and tumor cell death modali-

ties triggered by specific antitumor response and act as

cryptic vaccines [9].

2 Cell death-derived DAMP could induce sterile

inflammation

Robust acute inflammation could be triggered by sterile cell

death which induces damage-associated molecular patterns

(DAMP) exposed on the plasma membrane or secreted

extracellularly. These cell-derived DAMP, such as uric acid,

DNA (specifically unmethylated CpG-rich regions),

HMGB1, SAP130, S100 proteins, and heat shock proteins

(HSP) [10–16] could stimulate an IL-1- and inflammasome-

dependent response [17]. Interestingly, inflammations trig-

gered by sterile cell death and microbial stimulus differ in

their dependency of the IL-1R-Myd88 pathway [18]. Upon

chemotherapy or radiotherapy, various cell death modalities

occur, including apoptosis, necrosis, autophagy, mitotic

catastrophe, and pyroptosis. Here, we will give a brief

summary of the DAMP profile derived from dying tumor

cells and sensors from host phagocytes, especially focusing

on the immunogenic cell death modules.

2.1 “Find me” DAMP

Dying cells could recruit phagocytic cells owing to the

release of various “find me” signals. Apoptotic micro-

particles could transfer chemokine receptors and arachi-

donic acid between cells, activate complement, promote

leukocyte rolling, and stimulate the release of pro-

inflammatory mediators [19]. Lysophosphatidylcholine

(lysoPC), but none of the lysoPC metabolites or other

lysophospholiplids, represents the essential apoptotic at-

traction signal able to trigger a chemotactic response

through phagocyte receptor G2A [20, 21]. The prototypical

DAMP high-mobility group box 1 protein (HMGB1) is

released with sustained autophagy, late apoptosis, and
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necrosis. HMGB1 could act as chemotactic and/or activat-

ing factors for macrophages, neutrophils, and DC [22–24].

ATP and UTP released by apoptotic or necrotic cells play a

non-redundant role in dying cell clearance by monocytes/

macrophages that express the purinergic receptor P2RY2.

Forced expression of CD39 (NTPDase-1, an ecto-apyrase

responsible for the degradation of NTP) could abrogate the

chemoattractant activity of apoptotic cells [25]. Both pan-

sphingosine kinase (SphK) inhibitor and chemotherapeutic

drug doxorubicin could induce apoptosis and upregulate

sphingosine kinase 1 expression, allowing the release of

sphingosine-1-phosphate which causes cytoskeletal rear-

rangements and chemoattraction of macrophages, even at

low nanomolar ranges [26]. Despite emerging “find me”

signals identified, future research should also dissociate the

factors recruiting antitumor versus pro-tumor effectors.

2.2 “Eat me” and “don’t eat me” signals

Calreticulin (CRT) is a highly conserved Ca2+-binding

protein mainly located in the lumen of the endoplasmic

reticulum (ER) and also in the nucleus and cytoplasm [27].

Cancer cells treated with UVexpose larger amounts of ecto-

CRT (CRT on the plasma membrane), which is redistrib-

uted in the form of “patches” and pre-dominantly co-

localized with phosphatidylserine (PS) [28]. Cytotoxic

treatment, such as anthracyclines, oxaliplatin, UVC, and

γ-radiation, could induce apoptotic cancer cell death and

exposure of ecto-CRT, which became receptive for engulf-

ment by DC [6, 29, 30]. Ecto-CRT exposure was found to

be a pre-apoptotic event accompanied by the co-

translocation of ERp57. Both Ecto-CRT and ERp57 have

been proven to determine the immunogenicity of cell death

[31]. ER stress, and more specifically the PERK/eIF2α arm

of the unfolded protein response pathway, plays an

important role in ecto-CRT/ERp57 translocation [32].

Myeloid leukemia, migrating hematopoietic progenitors,

and also solid tumors were found to overexpress CD47,

resulting in a reduced uptake by SIRPα-expressing macro-

phages. Thus, CD47 could act as a “don’t eat me” signal

that prevents the recognition and removal of apoptotic cells

by professional and nonprofessional phagocytes.

Tumors have been shown to overexpress HSP, probably

due to the stressful tumor microenvironment [33]. Intracel-

lular overexpression of HSP could inhibit apoptosis and

exhibit cytoprotective activity [34], while membrane

expression of HSP could be potently immunostimulatory

[35]. Ecto-HSP70 and HSP90 could determine the immu-

nogenicity of stressed or dying tumor cells due to their

ability to interact with a number of antigen-presenting cells

(APC) surface receptors, such as CD91, LOX1, and CD40,

and facilitate cross-presentation of tumor antigens [36–38].

Furthermore, HSP could promote DC maturation [39] and

activate NK cells [40, 41] and act as an immunoadjuvant.

Interestingly, stress tissue-derived HSP are more immunos-

timulatory than recombinant HSP [42]. Large stress protein

(e.g., HSP110 and GRP170) chaperoned protein antigen

could induce a superior antitumor response compared with

peptide antigen [43]. These findings will provide a rational

chaperoning-based antitumor vaccine designing for clinical

investigation.

2.3 Sensors of cell death on phagocytes

Several receptors expressed on phagocytes could act as

sensors of cell death. Tim (T cell immunoglobulin mucin)

family member (Tim4 and Tim1) expression on profession-

al phagocytes, such as resident peritoneal macrophages and

splenic dendritic cells, or semiprofessional, non-myeloid

phagocytes could specifically bind PS and are critical for

the efficient apoptotic cell clearance [44]. Liver X receptor

[45], MerTK [46, 47], MFG-E8 [48, 49], and BAI1 [50] are

also important phagocyte receptors responsible for apopto-

tic cell clearance. Blocking these signal pathways may

evoke extensive tumor cell apoptosis, revert immunotol-

erance [51], trigger efficient pro-inflammatory cytokine

secretion and cross-presentation of dying tumor cells

[48, 52, 53]. Mincle (macrophage-inducible C-type lectin)

expression is induced after exposure to various stimuli and

stresses on macrophages. It detects dead cell-derived

spliceosome-associated protein 130 (SAP130) and acts as

the sensor of non-homeostatic cell death for inflammatory

response [12, 54].

3 Tumor antigen presentation: APC and mechanisms

APC provide a critical link between tumor cell death

and adaptive immunity. Kenneth Murphy’s group dis-

covered Batf3 as the transcription factor for CD8α+ DC,

and they proved the critical role of CD8α+ DC-mediated

cross-presentation in tumor rejection using Batf3 knockout

mice [55]. By targeting CD8+ and CD8− DC using

chimeric monoclonal antibodies for CD205 and 33D1,

respectively, Dudziak et al. [56] showed that these two DC

populations are specialized in presenting antigen on major

histocompatibility complex (MHC) class I and class II,

respectively. As these two populations could capture

comparable amounts of soluble and bead-associated

antigen, the possible explanation may be that CD8α+ DC

are equipped with a specialized machinery for cross-

presentation [57]. Both CD8+ and CD8− DC are effective

at cross-presenting HA tumor antigen, but they may differ

in the expression of co-stimulatory receptor, thus contrib-

uting to either induction or regulation of tumor-specific

responses [58].
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Langerin (CD207), a C-type lectin that is sufficient to

induce the formation of Birbeck granules, is expressed on

Langerhans cell as well as dermal DC [59]. In the skin-

draining lymph nodes and spleen, Langerin is also

expressed by the resident CD8+ DC at lower levels [60].

The proportion of CD8+Langerin+ DC in lymphoid tissues

varies among inbred mouse strains and is more prominent

in Balb/c mice [61]. With genetically engineered antibody

targeting extracellular domain of Langerin, Idoyaga et al.

[62] showed that OVA targeting Langerin results in

efficient presentation to OVA-specific CD4+ and CD8+

transgenic T cells. Intravenous administration of horse cyt c

was previously shown to specifically deplete cells capable

of shuttling Ag through the cytosol, thereby removing cells

capable of cross-presentation [63]. Interestingly, only the

Langerin+ compartment of the CD8α+ splenic DC popula-

tion showed a dramatic dose-dependent reduction in

response to horse cyt c, and they are critically involved in

the cross-presentation of systemic soluble antigen [64].

Among five distinguishable skin DC subsets, the

CD207+CD103+ dermal DC subset is endowed with the

unique capability of cross-presenting antigens expressed by

keratinocytes [65].

Splenic marginal metallophilic macrophages (MMM)

could efficiently capture and transfer antigen exclusively to

splenic CD8+ DC for cross-priming cytotoxic T lympho-

cytes; thus, tumor antigen targeting to MMM is very

effective as an antitumor immunotherapy [66]. After

irradiation or chemotherapy, CD11b+ tumor stromal cells

(containing immature myeloid cells, macrophages, bone

marrow-derived endothelial precursors, and other pro-

angiogenic cells such as pericytes) [67] could acquire and

cross-present tumor antigen, thus facilitating direct killing

of parental tumor cells as well as bystander elimination

of antigen loss variants. This process requires the

cooperation of CD4+ and CD8+ T cells and can lead to

the complete destruction of well-established solid tumors

[68–70]. Besides the myeloid lineage, cells of the

lymphoid lineage could also act as antigen-presenting

cells. Freshly isolated human peripheral blood gammadelta

T cells can phagocytose via Ab opsonization and CD16

(FcgammaRIII) [71] and upregulate expression of co-

stimulatory MHC class I and II molecules, leading to Ag

processing and presentation [72].

Possible mechanisms for the transfer of tumor antigen to

DC for cross-presentation include phagocytosis of cell-

associated antigens, pinocytosis/endocytosis of soluble

antigen, capture of soluble antigen bound to HSP, capture

of exosomes, “nibbling” of live tumor cell membranes, and

“cross-dressing” whereby DC acquire peptide MHC com-

plexes from contact with dying tumor cells [73]. Interest-

ingly, DC could also receive preprocessed antigenic

peptides from tumor directly through gap junction. Infect-

ing both human and murine melanoma cells with Salmonella

can induce connexin 43 (Cx43) upregulation and facilitate

gap junction formation between DC and tumor cells. The

Cx43-dependent cross-presentation pathway provides a

novel strategy for DC loading [74].

4 Antitumor therapy and tumor microenvironment

4.1 Immune effectors in tumor microenvironment

The tumor microenvironment contains innate immune cells

(γδ T, NK cells, neutrophils, macrophages, mast cells,

myeloid-derived suppressor cells (MDSC), and DC) and

adaptive immune cells (T and B lymphocytes) in addition to

tumor cells and their surrounding stroma (fibroblasts,

endothelial cells, pericytes, and mesenchymal cells) [75].

Natural cytotoxicity receptors and DNAX accessory

molecule-1 (DNAM-1) are critical for NK cell-mediated

innate immunity to melanoma cells [76, 77]. Reduced

DNAM-1 expression on bone marrow NK cells is associ-

ated with impaired killing of CD34+ blasts in myelodys-

plastic syndrome [78]. DNA-damaging agents can induce

the expression of NKG2D ligands on tumor cells [79].

Myeloma cells treated with low doses of common thera-

peutic agents, such as doxorubicin, melphalan, and borte-

zomib, upregulate DNAM-1 and NKG2D ligands [80].

Novel therapeutic drugs such as histone deacetylase

inhibitors could induce MICA and MICB [81], poliovirus

receptor (CD155), and Nectin-2 (CD112) [82] expression

on tumor cells, leading to better NK-mediated killing via

NKG2D and DNAM-1. Chemotherapy-induced genotoxic

stress could promote MHC-independent NKR-P1B:Clr-b

missing self-axis in leukemia cells and enhance cytotoxicity

mediated by NKR-P1B(+) NK cells [83]. Immunomodula-

tory drugs lenalidomide could induce γδ T cell expansion,

improvement of IFN-γ secretion, and enhancement of

cytotoxicity as well as inducing expression of CD1c on

tumor cells. Proteasome inhibitors bortezomib, the first

proteasome inhibitor to be used in the treatment of multiple

myeloma, can also sensitize tumor cells to chemotherapeu-

tic drugs or radiation through the improvement of TRAIL-

mediated lysis or NK-mediated killing by downregulation

of HLA class I molecules and upregulation of DNAM-1

and NKG2D ligands [84]. Azacytidine enhances tumor

antigenicity by upregulating MHC class I and tumor

antigen expression, increasing the release of pro-

inflammatory cytokines and danger signals, and promoting

antigen uptake by DC and killing by NK cells.

Infiltration of the primary tumor by memory T cells,

particularly of the Th1 and cytotoxic types, is the strongest

prognostic factor in terms of disease-free and overall

survival at all stages of clinical disease [85]. We and others
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have shown the critical role of tumor-specific cytotoxic T

cells (CTLs) during chemotherapy and radiotherapy [5, 86–

88]. Depending on different models, their antitumor effect

relies on IFN-γ or cytolytic machinery (perforin, granzyme,

TRAIL, TNF-α, etc.). Introduction of tumor-specific Th1-

dominant immunity has been reported to be crucial for

inducing tumor-specific CTL. A combined therapy of local

radiation with Th1 cell could augment the generation of

tumor-specific CTL at the tumor site and might also be

effective for the treatment of distant metastases [88].

Tumor-infiltrating immune cells could also favor pro-

tumor immunity [89] and act as mediators of solid tumor

metastasis [90]. MDSCs are CD11b+Gr1+ cells which

accumulate in peripheral blood of cancer patients as

well as in tumors and lymphoid organs [91–93]. It is a

phenotypically heterogeneous cell population that

includes myeloid progenitor cells as well as immature

myeloid cells [94]. The suppressive activity of MDSCs is

associated with the intracellular metabolism of L-arginine,

which serves as a substrate for inducible nitric oxide

synthase (iNOS/NOS2) that generates NO and arginase 1

(ARG1) which converts L-arginine into urea and L-

ornithine. Tumor-derived exosome-associated Hsp72

could trigger Stat3 activation in MDSCs and determine

their suppressive activity in a TLR2/MyD88-dependent

manner [95]. MDSC could suppress the activation of

CD4+ and CD8+ T cells through sequestration of cysteine,

and perturb T cell trafficking through down-regulating

L-selectin [96]. MDSCs caused dissociation between

TCR and CD3zeta molecules, disrupting TCR complexes

on T cells [97].

Increasing evidence suggests that regulatory T cells

(Treg) accumulate in peripheral blood, ascites, tumors,

and tumor-draining lymph nodes in a variety of solid

cancers such as lung, head and neck, gastrointestinal, and

ovarian. They can be preferentially attracted by the CCR4/

CCL22 axis to tumor and lymphoid aggregates and

correlate with adverse clinical outcome [98, 99]. More

recently, human and murine pancreatic adenocarcinomas

have been shown to secrete CCL5, which preferentially

attracts Treg through CCR5 [100]. Possible mechanisms of

their suppressive activity include cell contact-dependent

factors such as membrane TGF-β, CTLA-4, perforin/

granzyme, extracellular adenosine, gap junction formation

infusing cAMP, as well as soluble immunosuppressive

cytokines such as IL-10, TGF-β, and IL-35.

4.2 Role of chemotherapeutic drugs on immune cells

Besides acting on tumor cells, chemotherapeutic drugs also

regulate the immune effectors. Paclitaxel, cisplatin, and

doxorubicin could upregulate mannose-6-phosphate recep-

tors on tumor cells of mouse and human origin and increase

their permeability to granzyme B to facilitate NK and CTL

killing [101]. Paclitaxel and cyclophosphamide (CTX)

appear to amplify the antigen-specific Th1 response [102]

and CTX could reduce Treg in both mice and in end-stage

cancer patients [103–105], while tyrosine kinase inhibitors

such as imatinib and dasatinib are immunosuppressive,

blocking T cell function but sparing CD4+ CD25+ FoxP3+

Treg. Vinblastine, chlorambucil, and docetaxel could inhibit

cytotoxic T cell- and NK cell-mediated killing of target

cells, while asparaginase, bleomycin, and doxorubicin

could enhance it [106]. STAT3 inhibitors and TK inhibitors

such as sunitinib could inhibit MDSC maturation, and

gemcitabine can block MDSC accumulation [107].

Targeting the tumor microenvironment with more so-

phisticated and selective tumoricidal drugs could differen-

tially regulate tumor-promoting or tumor-eliminating

immune cells and improve the therapeutic outcome [108].

5 Strategies to improve immunogenicity of tumor cell

death during cytotoxic therapy

5.1 At the level of tumor

Decreased intracellular drug concentration mediated by

multidrug resistance (MDR) gene products, alterations in

drug activity, and half-life enhanced DNA repair and

defects in cell death pathways could account for chemo-

resistance, which remains one of the most significant

obstacles to the progress of chemotherapy [109]. Possible

chemosensitization strategies include cocktail therapy,

blocking drug resistance gene expression or activity as

well as modulation of the cell death pathways.

Mutated N-Ras oncogene has recently been implicated in

melanoma resistance to cisplatin, both in vitro and in vivo

[110]. Overexpression of Bcl-2, Bcl-xL, and Mcl-1 and

mutation of p53 in malignant cells contribute to the anti-

apoptotic axis [111]. Therapeutics designed to reboot the

pro-apoptotic axis will make chemotherapy-induced death

the only option. Secretory clusterin could stabilize Ku70-

Bax complexes as a protein chaperone, retenting Bax in

the cytosol to prevent cytochrome c release which

triggers cell apoptosis [112]. Its expression leads to

broad-based resistance to chemotherapeutic agents such

as doxorubicin, cisplatin, etoposide, camphothecin, and

death-inducing molecules (TNF-α, Fas and TRAIL, or

histone deacetylase inhibitors) [113]. Mer (MerTK) and

Axl receptor tyrosine kinases are expressed at abnormally

high levels in a variety of malignancies. Inhibiting their

activity or knockdown of their expression could increase

apoptosis and perhaps also reduce the silent clearance of

tumor cells by phagocytes [114]. Interestingly, depending

on its redox status, reducible HMGB1 induces Beclin 1-
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dependent autophagy and promotes tumor resistance to

chemotherapeutic agents or ionizing radiation, while oxidized

HMGB1 increases the cytotoxicity of these agents and

induces apoptosis via the mitochondrial pathway [115].

Galectin-3, a beta-galactoside-binding protein with anti-

apoptotic activity, protects papillary thyroid cancer against

both TRAIL- and doxorubicin-induced apoptosis, at least

partially through he PI3K-Akt axis [116].

Both ER stress and autophagy follow a “yin–yang”

principle by which their low to moderate activity is cell

protective and supports chemoresistance (“yin”), but where

severe conditions will aggravate these mechanisms to the

point where they abandon their protective efforts and

instead will trigger cell death (“yang”) [117].

Some tumor cells survive and grow again after cytotoxic

therapy, probably arising from the residual self-renewing

tumor stem cells (TSC) which possess MDR properties.

Preclinical studies suggested targeting leukemia stem cell

surface molecules using antibody to enhance leukemia

therapy [118]. Identification of components in the tumor

microenvironment required for maintaining self-renewal,

differentiation, and quiescence of TSC in the face of

cytotoxic therapeutic regimens could also help in targeting

TSC niches to prevent ultimate recurrence [119].

5.2 At the level of immune system

5.2.1 Antitumor vaccination

Each of the components of tumor vaccine (antigens,

adjuvants, delivery systems) contributes specifically to

induction and maintenance of T cell responses. Tumor-

specific antigens (MAGE-A, NY-ESO-1, etc.), oncogenic

proteins which are overexpressed in tumors (WT1 protein),

as well as antigens selectively expressed by tumor-initiating

cells or cancer stem cells are ideal targets for vaccine

designing [120]. Depending on the delivery vehicles (such

as liposomes, virosomes, DC, etc.), antitumor vaccines

differ in their ability to induce various immune response as

well as the intensity of immune response [121]. The first

generation of DC-based tumor vaccine proves that this

strategy is feasible to induce, regulate, and maintain T cell

immunity [122, 123], and further improvement should be

made to generate quantitative and qualitative CTLs and T

helper cells as well as to break the immunosuppressive

microenvironment. Cytokines (GM-CSF, IL-2, IFN, Flt-3

ligand), saponins, bacterial exotoxins, and, most impor-

tantly, TLR/NLR/RLR ligands are commonly used immu-

noadjuvants for antitumor vaccine [121]. CpG+OVA-

liposome administered near the draining lymph node

(DLN) of the tumor mass plus radiation-augmented

induction of OVA-specific CTLs in DLN of tumor-bearing

mice greatly inhibited tumor growth, and approximately

60% of the mice treated were completely cured [124]. Our

group developed a combined therapy using vaccination,

chemotherapy, and TLR3 agonist ploy(A:U) (VCT) against

B16OVA melanoma and GL-26 glioma. Type I IFN and

poly(A:U) could induce tumor cells and produce large

amounts of CCL5 and CXCL10. Interestingly, VCT therapy

relies on CXCR3-expressing CTLs and could be further

improved when CCL5 derived from tumor or CCR5

expression on the host is blocked. Combination of

chemotherapy and TLR3 agonist could not control tumor

growth unless vaccination is given in advance [125]. TLR7

Chemotherapy 
Radiotherapy

Host
immune cells

Chemosensitization
Triggering 
immunogenic cell death 
modality
Eliminating tumor stem 
cells

Activation, expansion 
or recruition of anti-
tumor effectors
Elimination or 
inhibition of pro-tumor 
effectors 

Tumor vaccine
Rebooting immune system to 
counteract immunosuppressive 
factors and facilitate T cell priming
Adoptive cell transfer

Tumor antigen exposure
Cell death associated DAMP 
release (‘Find me’ or ‘eat me’ 
signals)
Stress induced ligand expression

Tumor cells

Fig. 1 Strategies to improve the immunogenicity of chemotherapy

and radiotherapy. The interplay among chemotherapy and radiother-

apy, tumor cells, and host immune system determines the therapeutic

outcome. Strategies aiming at triggering sufficient immunogenic cell

death and resetting tumor microenvironment at the level of therapy,

releasing tumor-derived antigen, danger signals, and stress-induced

molecules at the level of tumor are listed. In addition, the efficacy of

chemotherapy and radiotherapy could further be improved in

combination with tumor vaccine, immunomodulation, and adoptive

cell transfer
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and TLR8 ligands could also trigger pro-inflammatory

cytokines, chemokines, and type I interferon production

and upregulate co-stimulatory molecule expression [121].

5.2.2 Blocking immunosuppressive factors

A small population of plasmacytoid DCs in mouse tumor-

draining LNs can express immunosuppressive enzyme,

indoleamine-pyrrole 2,3-dioxygenase (IDO), which directly

activates resting Treg for potent suppressor activity [126].

Inhibiting IDO with 1-methyl-tryptophan could enhance the

antitumor efficacy elicited by DC-based vaccine [127].

Stat3 is the key transcription factor mediating immunosup-

pression. Silencing Stat3 combined with CpG greatly

increases killing activity and tumor infiltration of trans-

ferred T cells [128]. TGF-β expression in the tumor

microenvironment modulates a complex web of intercellu-

lar interactions that aggregately promote metastasis and

progression. TGF-beta antibodies could reverse this effect

[129]. IL-6 is a key molecule involved in malignancies and

could activate Stat3 signaling [130]. Targeting IL-6R using

antibody could significantly reduce tumor growth and

suppress tumor angiogenesis [131, 132].

5.2.3 Enhancing T cell priming

Co-expression of inhibitory molecules LAG-3 and PD-1,

Tim-3 and PD-1 on CD8+ T cells is associated with

impaired in IFN-γ/TNF-alpha production (T cell anergy or

exhaustion) [133–136]. B and T lymphocyte attenuator was

identified as a novel inhibitory receptor with structural and

functional similarities to CTLA-4 and PD-1 [137]. Anti-

body targeting these inhibitory receptors could reverse T

cell anergy and prolong and sustain T cell activation and

proliferation [138–141]. Combination of three agonist

antibodies consisting of anti-DR5, anti-CD40, and anti-

CD137 could eradicate a large proportion of subcutaneous

renal cell carcinoma tumors (75% long-term survival) and

orthotopic tumors (55% survival) in combination with IL-2

[142].

5.2.4 Adoptive cellular therapy

Adoptive transfer of autologous tumor-infiltrating T cells

expanded in vitro leads to potent antitumor responses in

patients with refractory metastatic melanoma after lympho-

depletion [143]. Without the need for in vitro expansion,

small numbers of naive tumor-reactive CD4+ T cells

transfer into lymphopenic recipients in combination with

CTLA-4 blockade and could eradiate poorly immunogenic

established B16 melanoma and spontaneous mouse mela-

noma [144]. After expansion, in vitro, polarized tumor-

reactive Th17 and Tc17 are capable of rejecting established

melanoma [145, 146]. Adoptive transferred haploidentical

NK cells can persist and expand in vivo and help in the

treatment of poor prognosis acute myeloid leukemia [147].

Transfusion of gene-modifying primary mouse NK cells

expressing specific receptor for tumor-associated antigen

could inhibit tumor progression [148].

6 Conclusions

Effective antitumor therapy should induce sufficient tumor

cell death in order to release tumor antigen as well as

danger signals attracting phagocytes to uptake and present

tumor antigen for specific adaptive immunity. Proper cell

death modality should be triggered in both tumor cells,

tumor stem cell, and stromal cells. Combining cocktail

regimen of chemotherapy and radiotherapy with tumor-

specific vaccine using proper immunoadjuvant as well as

counteracting the immunosuppressive factors in tumor

microenvironment will harness the maximum antitumor

response following tumor cell death (Fig. 1).
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