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THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS VI
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“I therefore believe it’s true that with a suitable class of quantum machines you could
imitate any quantum system, including the physical world.”

Richard P. Feynman [1]
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Synopsis

Au cours de ce travail de doctorat, j’ai participé au montage complet d’une expérience
visant à refroidir et manipuler deux espèces atomiques alcalines fermioniques, 6Li et
40K. Le dispositif expérimental a pour objectifs l’étude des mélanges de fermions ultra-
froids de masses différentes et la réalisation d’un simulateur analogique quantique flex-
ible. En effet, là où certains problèmes quantiques à N corps en interaction, comme la
supraconductivité à haute température critique ou l’antiferromagnétisme frustré, sont
difficiles à aborder analytiquement et numériquement, les atomes froids, systèmes purs
et contrôlables jusque dans leur interaction, offrent un point de vue complémentaire
intéressant.

Lors de la conception du dispositif expérimental, nous avons assemblé une en-
ceinte à ultra-vide, réalisé un système laser stabilisé complet pour chaque espèce et
mis en place deux sources atomiques performantes, un ralentisseur Zeeman de 6Li et
un piège magnéto-optique bidimensionnel de 40K; la plupart des grandeurs optiques et
électriques ainsi que les diagnostiques d’imagerie étant contrôlés par voie informatique.
Ces premières étapes ont permis l’obtention d’un piège magnéto-optique à deux espèces
performant, contenant typiquement 5 × 109 atomes de 6Li et 8 × 109 atomes de 40K.
Dans cette configuration, nous avons produit les premières molécules hétéronucléaires
de 6Li40K∗ par photoassociation, pour lesquelles nous avons observé et identifié 70 raies
rovibrationnelles.

Dans une seconde partie, je décris en détail le transport magnétique du mélange
atomique entre la cellule du piège magnéto-optique et une cellule d’expérience, où règne
un vide poussé et bénéficiant d’un grand accès optique. Ce dispositif complet, de sa
conception à son optimisation expérimentale, en passant par son assemblage mécanique
et la mise en place du programme de contrôle et des diagnostiques numériques, constitue
le coeur de mon travail. Son efficacité a pu être testée et optimisée, permettant ainsi
un transfert performant du mélange vers la cellule finale.

Aussi, à l’issue de cette thèse, tous les outils sont opérationnels pour poursuivre le
refroidissement du mélange par évaporation dans un piège magnétique, et par conséquent
le champ est ouvert pour la simulation quantique et la compréhension de problèmes à
N corps dans les mélanges de gaz de Fermi ultra-froids.
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Abstract

During my PhD, I participated in the full setup from scratch of an experiment that
aims at cooling down and manipulating two fermionic alkaline atomic species, 6Li
and 40K. Our goal is to study ultracold Fermi mixtures with mass imbalance, and to
realize a flexible quantum analog simulator. In fact, for certain quantum many-body
problems, such as high critical temperature superconductivity and frustrated anti-
ferromagnetism, there is neither complete analytical nor numerical solution. Therefore,
cold atoms systems, due to their purity and their high degree of tunability, even on
their interaction itself, offer an interesting complementary point of view in the study
of those phenomena.

As far as the experimental setup is concerned, we built an ultra-high vacuum system,
a complete and stable laser source for each species, as well as two performing atomic
sources, a 6Li Zeeman slower and a 40K bidimensionnal magneto-optical trap; most of
the optical and electrical quantities, as well as the imaging diagnostics, being computer
controlled. Once those preliminary steps have been performed and optimized, we could
obtain an efficient double magneto-optical trap, containing typically 5× 109 atoms of
6Li and 8 × 109 atoms of 40K. In this configuration, we produced the first 6Li40K∗

heteronuclear molecules by photoassociation, for which we identified 70 rovibrational
lines.

In a second part, I describe in detail the magnetic transport of the atomic mixture,
between the magneto-optical trap chamber and a science cell, located in an ultra-
high vacuum region with large optical access. The complete setup, from its design to
its experimental implementation and optimization, as well as the development of the
program and the useful numerical diagnostics, are the heart of my work. The transport
efficiency could be tested and optimized, allowing for an efficient transfer of the mixture
in the science cell.

Thus, after this thesis, all the experimental tools are operational in order to allow
for evaporative cooling of the mixture in an optically plugged magnetic trap. Therefore,
the field is open for quantum simulation and understanding of many-body problems in
ultracold Fermi mixtures.
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Richard Pescari, Michel Quidu, Saysavanh Souramasing, Thierry Bastien, Pascal Travers,
Cyril Le Gallo, David Le Gallo, Georges Cornudet, Florence Thibout, Jack Olejnik,
Nabil Garroum, Pascal Morfin, Stefano Lun Kwong Leon, Jean-Claude Paindorge, Al-
lan Hourdry, as well as the others and the trainees.

I also thank the workshop of electronics, for the same reasons: Bernard Trégon,
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Introduction

Quantum many body physics is an active research topic, since it generates rich and
spectacular effects that are still difficult to understand. One commonly illustrates this
through some puzzling condensed matter phenomena, such as high critical temperature
superconductors, quantum Hall effect or frustrated Néel anti-ferromagnetism, but other
exciting fields of physics involve those strongly interacting N -body systems as well;
for instance, the quarks-gluons plasma in nuclear physics [2], or the neutron stars in
astrophysics.

However, in spite of the numerous simplified hamiltonian models that have been
developed along the years, those problems remain difficult to handle analytically and
numerically. Therefore, in the early eighties, Richard Feynman suggested to develop a
quantum analog simulator, in order to simulate the associated phenomena [1]. Such an
apparatus would consist of an experimental system whose behavior would be controlled
by the same hamiltonian as the one of interest, and whose parameters could be finely
adjusted. Thus, similarly to the principle of classical analog simulators, that existed
before our actual programmable computers (see Figure 1), the solution could be directly
observed without any calculation.

Due to their high degree of purity, control, imaging and tunability, ultracold atomic
systems have been proposed as a relevant choice for the creation of such a simulator [3].
For instance, it is already feasible to simulate Hubbard-like hamiltonians using ultracold
atoms in optical lattices, as already demonstrated through the Mott insulator transition
[4, 5]. In fact, focusing on fermions, such an hamiltonian is given by the expression:

H = −t
∑
〈i, j〉,σ

(c†i,σcj,σ + c†j,σci,σ) + U
∑
i

ni,↑ni,↓ , (1)

where t describes the tunneling between two neighboring sites, U quantifies the inter-
action on a given site, c†i,σ and ci,σ are the creation and annihilation operators on site i

with spin σ, and ni,σ = c†i,σci,σ is the number operator on site i with spin σ. Therefore,
this hamiltonian can be simulated by placing ultracold atoms in an optical lattice (see
Figure 2), created by a stationary laser wave.

In the following, we recall the recent progresses in the field of ultracold quantum
gases, before focusing on the particular topic of fermionic mixtures. Then, we give
an overview of the existing experiments in the world that combine the 6Li and 40K
fermions. Finally, we present the outline of this dissertation.

17
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Figure 1: An example of classical analog simulator: the astronomical clock of Notre
Dame de Strasbourg. Built in the fourteenth century, this device simulates the motion
of planets in the solar system.

Figure 2: An example of quantum analog simulator: the Hubbard simulator. Using cold
atoms in an optical lattice, it simulates the Hubbard model (see equation 1).
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I. Quantum degenerate gases

A cold neutral atomic gas of density n can be described by two characteristic lengths.
First, the classical average distance between two particles n−1/3. Secondly, the quantum
thermal de Broglie wavelength λdB = h/

√
2πmkBT , where m is the atomic mass and

T the temperature of the gas. This length represents the average size of the atomic
wave function. At very low temperatures, when those quantities become of the same
order, one can no longer distinguish two identical atoms. Depending on the atomic
intrinsic angular momentum, the spin, nature allows two different kind of particles in
3D space. Bosons, of integer spin, obey Bose-Einstein statistics and tend to occupy the
same fundamental state at ultra-low temperature. Thus, they form a single coherent
macroscopic wave-function: the Bose-Einstein Condensate (BEC). Fermions, of half-
integer spin, obey Fermi-Dirac statistics and can not occupy the same state according
to Pauli’s exclusion principle. At ultra-low temperature, they populate the energy
states by order of increasing energy until the Fermi energy EF, forming the so-called
Fermi sea.

Bose-Einstein condensation

Bose-Einstein condensation was predicted for an ideal gas, by Satyendranath Bose [6]
and Albert Einstein [7]. It was first observed experimentally through superfluidity
of 4He in 1938 [8]. This phase-transition was then observed for quasi-ideal gases in
1995 [9, 10, 11]. Afterwards, several major results were obtained and confirmed the
coherence and the superfluidity of a BEC. Let us mention, for instance, the matter wave
interferences [12], the observation of vortices [13] as well as dark and bright solitons
[14, 15], the Mott insulator transition [4], and the Anderson localization of matter
waves [16, 17]. Moreover, Feshbach resonances [18] that allow to change the scattering
length a, or equivalently the s-wave elastic cross-section σ = 4πa2, were observed in
a BEC [19], opening the way to the study and control of interactions at ultra-low
temperatures, as well as the formation of molecular bound states.

Degenerate Fermi gases

In contrast with the Bose-Einstein condensation in 3D, there is no phase transition
for an ideal Fermi gas. It is degenerate when its temperature becomes lower than
the Fermi temperature TF = EF/kB. The first degenerate quasi-ideal Fermi gas was
observed in 1999 [20]. The reason why it was achieved after the BEC is due to its
more complex cooling procedure. In fact, according to Pauli’s exclusion principle,
the s-wave collisions are suppressed for undistinguishable fermions. Moreover, the
collisions with higher momentum orders, such as p-wave collisions, reduce drastically
with temperature, since more and more states are occupied below the Fermi energy.
This mechanism is known as Pauli blocking and was nicely observed in [21]. Both effects
tend to suppress the collisions, and thus the crucial thermalization in the evaporative
cooling process. A solution was to cool down the fermions in two distinguishable
spin states [20]. Sympathetic cooling of fermions by evaporatively cooled bosons was
demonstrated as well [22]. The characterization of ideal Fermi gases continued with
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Figure 3: Weakly bound molecules of heavy and light fermionic atoms were theoreti-
cally demonstrated to be characterized by a long-range intermolecular repulsion and to
undergo a gas-crystal quantum transition if the mass ratio exceeds a critical value [49].

the observation of Fermi pressure [23], for instance.

In presence of attractive interactions, fermions can form bosonic pairs and undergo
a BEC phase transition as well. This was observed for the first time in 1911 through
superconductivity of mercury [24], which was then explained by the Cooper pairing and
the BCS theory of superconductors [25]. In 1972, the same mechanism was observed
through superfluidity of 3He [26]. Interacting Fermi gases were studied as well, using
Feshbach resonances [18]. Long-lived weakly-bound molecules were created [27, 28,
29, 30, 31], which allowed to create the first molecular BEC [27, 32, 33]. Then, the
first Fermi superfluids were observed [34, 35, 36], and the superfluid character was
demonstrated through the observation of vortices [37]. The cross-over between those
two phases was explored [36, 38]. Recent studies allowed to measure the velocity of
sound in a Fermi gas [39], and the critical velocity for a superfluid flow across the BEC-
BCS crossover [40]. A fermionic Mott insulator was also created in an optical lattice
[5, 41], and a direct measurement of the equation of state of a strongly interacting Fermi
gas was obtained [42, 43], opening the way to thermodynamical studies of ultracold
gases.

Ultracold Fermi mixtures

The study of ultracold Fermi mixtures started with spin population imbalance and
the observation of the associated phase separation [44, 45]. Mixtures of fermions with
different masses are also of interest in the understanding of pairing mechanisms, due
to their resulting unmatched Fermi surfaces. New exotic quantum phases, such as the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [46, 47], or the breached pair phase
[48], have been predicted theoretically but have not been observed so far. A Wigner-
type crystalline phase transition (see Figure 3) has been predicted as well [49]. Optical
lattices and species-specific potentials could allow to study disorder and Anderson
localization [50], or mixed dimensions physics [51]. Furthermore, another exciting
topic is the formation of ultracold polar molecules [52, 53]. They are of interest in the
study of ultracold dipolar gases, where the long-range interaction would allow for new
quantum phases as well.
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II. 6Li-40K experiments in the world

6Li and 40K are the favorite candidates in the study of Fermi mixtures with mass imbal-
ance, since they are the only stable alkali fermionic isotopes, and since the associated
heteronuclear molecules have a large dipolar moment in their ground-state [54]. At
the time of this thesis, four other groups in the world are studying ultracold Fermi
mixtures: the group of Kai Dieckman in Singapore [55], the group of Jook Walraven in
Amsterdam [56], the group of Rudolf Grimm in Innsbruck [57], and the group of Martin
Zwierlein in Boston [58]. In each case, this is performed with the particular 6Li and 40K
species, demonstrating the interest of such a mixture. So far, quantum degeneracy has
been observed with typically 105 atoms of each species at a fraction of TF [59, 57, 58],
interspecies Feshbach resonances have been identified [60, 61], weakly-bound molecules
have been produced by magnetoassociation [62], and a strongly interacting Fermi mix-
ture has been characterized [63]. While designing our experiment, we had interesting
discussions with people from these groups, and it was useful to study and compare
their strategies. Here are the main characteristics of those experiments.

The Singapore group studies a triple mixture of 6Li, 40K and 87Rb. The atomic
sources are a Zeeman slower of 6Li, and a vapor for 40K and 87Rb. They allow to load
a MOT containing 3.2× 107 atoms of 6Li, 1.5× 107 atoms of 40K and 5.4× 109 atoms
of 87Rb. Then, after a triple magnetic trap stage, the mixture is magnetically trans-
ferred towards a ultra-high vacuum chamber, where it is loaded into a Ioffe-Pritchard
magnetic trap. There, the bosonic 87Rb is cooled down further by evaporation, leading
to sympathetic cooling of the fermions 6Li and 40K.

The Amsterdam group studies a mixture of 6Li and 40K. The double MOT is loaded
from two single-species 2D-MOTs. It contains 3× 109 atoms of 6Li, and 2× 109 atoms
of 40K. In the same chamber, the cloud is then transferred into an optically plugged
magnetic trap in which evaporative cooling of 40K in three spin states is performed,
leading to sympathetic cooling of 6Li. Finally, the mixture is optically transferred
towards an ultra high vacuum region.

The Innsbruck group studies a mixture of 6Li and 40K. The experiment allows to
add a third species, 87Sr, as well. The MOT is loaded from a single Zeeman slower for
all the species. It contains 109 atoms of 6Li, and 107 atoms of 40K. Then, in the same
chamber, the cloud is transferred into an optical dipole trap, where it is cooled down
by evaporative cooling of 6Li in two spin states, and by sympathetic cooling of 40K.

The Boston group studies a triple mixture of 6Li, 40K and 41K. The MOT is loaded
from a 6Li Zeeman slower and a potassium Zeeman slower. It contains 109 atoms
of 6Li, and 5 × 107 atoms of 40K. The cloud is transferred into an optically plugged
magnetic trap, where evaporative cooling is performed on the bosonic 41K, leading to
sympathetic cooling of the fermions 6Li and 40K.

Our group, in Paris, studies a double mixture of 6Li and 40K. The double MOT is
loaded from a 6Li Zeeman slower and a 40K 2D-MOT. It contains 5× 109 atoms of 6Li,
and 8 × 109 atoms of 40K. Then, the cloud is transferred into a magnetic trap before
being magnetically transported towards a ultra-high vacuum chamber. There, it is
transferred into an optically plugged magnetic trap, where evaporative cooling will be
started and pursued in an optical trap. A possible strategy of evaporative cooling relies
on evaporation of 40K in two spin states, and sympathetic cooling of 6Li. However, our
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system is flexible and we could explore other possibilities as well.

III. Outline of the dissertation

During this thesis, we designed and assembled from scratch the complete experimental
setup that allows to produce, control and study ultracold atomic Fermi mixtures of
6Li and 40K. (see Figure 4). The main goal of our design was to produce a degenerate

Figure 4: The lab at the beginning (left), and at the end of my PhD (right).

fermionic mixture with large atom numbers, in order to reach a high Fermi temperature,
which allows to observe quantum behaviors at higher temperature, and to have a large
signal-to-noise ratio. Moreover, this allows to have a high flexibility in the evaporative
cooling process and a versatility in the studied phenomena.

The outline of this dissertation follows the natural chronology of a cooled atomic
gas, from a hot vapor to its evaporative cooling in an optically plugged magnetic trap.
In chapter 1, we describe the experimental setup, including the ultra-high vacuum
chamber, the optics and the atomic sources. In chapter 2, we present our large double
6Li-40K magneto-optical trap, including the imaging device and the recent photoas-
sociation of 40K40K∗ and 6Li40K∗ molecules. In chapter 3, we describe the magnetic
trap, as well as its preliminary stages. We also give an overview of the next steps:
evaporative cooling in an optically plugged magnetic trap, optical dipole trapping and
high resolution imaging. In chapter 4, we present the design of the magnetic transport
from a theoretical point of view. We characterize it experimentally in chapter 5.

Chapter 1 - Experimental Setup

We describe our ultra-high vacuum chamber, with a residual pressure inferior to 10−11 mbar
in the final cell. Then, we present a powerful laser system giving typical powers of
500 mW for each species, at several stabilized frequencies, as well as two performing
atomic sources: a 6Li Zeeman slower and a 40K 2D-MOT, with respective MOT loading
rates of 1.2× 109 atoms.s−1 and 1.4× 109 atoms.s−1.
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Chapter 2 - Magneto-optical trap

After recalling the principles and limits of magneto-optical trapping of neutral atoms,
we focus on our performing single-species and double-species MOTs of 6Li-40K, as well
as the imaging diagnostics. In single species operation, we obtain 8.9× 109 40K atoms
at a temperature of 290 µK with a central density of 3×1010 atoms.cm−3, and 5.4×109

6Li atoms at a temperature of 1.4 mK with a central density of 2× 1010 atoms.cm−3.
In double species operation, we obtain 8 × 109 atoms of 40K and 5 × 109 atoms of
6Li. Those values are optimized by reducing the inelastic losses through a Dark MOT
scheme. Then, we present the the first photoassociation of homonuclear 40K40K∗ and
heteronuclear 6Li40K∗ molecules.

Chapter 3 - Magnetic trap

We present the magnetic trapping, from its principle and loss mechanisms to its ex-
perimental characterization. After compression and spin-polarization of the cloud, we
load the magnetic trap, with an axial magnetic gradient of 85 G.cm−1, and we obtain
typically 109 atoms of each species, after 1 s of trapping. The temperatures are 400 µK
for 40K, and 1.3 mK for 6Li. The design of the forthcoming stages are described as well.
They consist of an optically plugged magnetic trap in the science cell and an optical
dipole trap, where quantum degeneracy will be reached by evaporative and sympa-
thetic coolings. In addition, we present our high-resolution imaging scheme involving
a 404 nm 40K transition.

Chapter 4 - Magnetic transport: theoretical aspects and engi-
neering

We designed, assembled an studied a complete magnetic transport system allowing
to move the magnetically trapped cloud to a region of ultra-high vacuum, and large
optical access. In this chapter, we focus first on the theoretical aspects, such as the
static algorithm that allows to control the shape of the trap at a given position of its
center, and the dynamical issues linked to Majorana losses, adiabaticity, and inertia.
Then, we describe the engineering part, through the mechanics, the winding, the logics,
the security and the computer control.

Chapter 5 - Magnetic transport: experimental characterization

We present the experimental characterization of magnetic transport. The normalized
full efficiency is calculated, measured and optimized to expected values of 80 % for
40K, and 30 % for 6Li. In addition, the lifetime is measured to be 30 s in the science
cell. Finally, we show that our results enable evaporative cooling for 40K in one single
spin state, and sympathetic cooling of 6Li.
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Chapter 1

Experimental setup

During this thesis, we have built from scratch a complete system of production, control
and study of ultra-cold atomic Fermi mixtures of 6Li and 40K. The main objective was to
allow for large atomic numbers in the quantum degenerate regime. In order to achieve
this, a special care has been taken on comparing the existing techniques and choosing
the more relevant for our system. As detailed in the introduction of this dissertation,
four similar experiments in the world study ultracold atomic Fermi mixtures with 6Li
and 40K [55, 56, 57, 58].

In this chapter, we describe successively the vacuum assembly, the optics, the two
atomic sources, 40K 2D-MOT and 6Li Zeeman slower, and the computer control. We
present both the design aspects and the experimental characterization.
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Figure 1.1: Schematics of the vacuum assembly (see also Figure 1.2). The dual-species
MOT is loaded from a 2D-MOT for 40K and a Zeeman slower for 6Li. A magnetic
transport allows to transfer the cloud to a UHV science cell with large optical access.

1.1 Vacuum system

This section is dedicated to the description of the vacuum chamber, from its design
and assembly to its baking out, in order to create an ultra-high vacuum environment.

1.1.1 Description

A three-dimensional Catia view of the vacuum system and a picture of the experimen-
tal setup are shown in Figures 1.1 and 1.2. The vacuum manifold consists of two
trap chambers and three flux regions, essentially made from MDC-Caburn vacuum
elements. The first trap chamber is a central octagonal cell (see engineering drawing
in appendix A.6) where the 6Li-40K dual-species MOT is prepared. The second cham-
ber is a glass science cell (see engineering drawing in appendix A.6), in which we will
evaporatively cool the mixture down to quantum degeneracy.

The three flux regions are all connected to the octagonal chamber and are divided
in two parts: first, the atom sources, namely a 2D-MOT for 40K and a Zeeman slower
for 6Li; secondly, a magnetic transport connecting the octagonal chamber to the final
science cell. The magnetic transport consists of a spatially fixed assembly of magnetic
coils which creates a moving trapping potential of constant shape by applying time-
varying currents, as explained in chapter 4.

The octagonal chamber can be isolated from the source regions and the science cell
by all-metal UHV valves, which allow for separate baking and trouble-shooting. The
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Figure 1.2: Picture of the experimental setup from top (see also Figure 1.1).

2D-MOT and the Zeeman slower regions are pumped by one and three 20 L.s−1 Varian
ion pumps, respectively. The octagonal chamber is pumped by a 40 L.s−1 Varian ion
pump and the science chamber by a 40 L.s−1 Varian ion pump and a Varian titanium
sublimation pump. Two differential pumping tubes connect the two source regions to
the octagonal chamber, in order to create a high vacuum environment in the octagonal
cell. In a similar way, the science chamber is connected to the octagonal chamber
via a combination of standard DN16 and DN10 vacuum tubes to further increase the
vacuum quality, as explained in part 1.1.3.

The Hellma glass science cell benefits from a large optical access. It is made of
fused silica dioxide (Vycor). Its thickness is constant and equals 4 mm, with a 10 µm
precision. Apart from a DN 16 flange, a metal-to-glass adapter and a glass tube, it
consists of a rectangular parallelepiped of 23×23×10 mm3 inner volume (see Figure 1.3
and engineering drawing in appendix A.6). Hellma guarantees a maximal deformation
of 770 nm between the center and the edges of the windows, due to the 1 bar difference
of pressure.

1.1.2 Assembly and baking

We mounted the vacuum chamber as explained in the following. First, we cleaned up
the dirty components with acetone in an ultrasonic bath before baking them in an
oven. Then, wearing clean latex gloves we assembled all the parts using copper gaskets
and making sure that no couple of force was applied to the gaskets. We installed a
turbomolecular pump as well as a Residual Gas Analyzer (RGA), after a dedicated
valve in order to remove them once the baking procedure is over. Then, we ran the
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Figure 1.3: Picture of the Hellma science cell connected to a standard DN16 tube. It
consists of a rectangular parallelepiped of 23× 23× 10 mm3 inner volume.

turbomolecular pump during a few hours before starting the baking, while recording
the partial pressures for different molecular masses.

The principle of baking is the following. First, we placed thermocouples (Hanna
SFILS1) on key points such as valves and chambers. Then, we wrapped the complete
vacuum system with some resistive heater tape connected to AC transformers (Variacs),
and we covered the whole with aluminum foils, including the ion pumps. We then
ramped up the voltage slowly, in order to ensure a smooth heating of the chamber to
prevent the view-ports and other fragile elements from breaking. We reached 250◦ C
after a day. There, we waited two days before launching the titanium sublimation pump
during two hours. Then, we switched this pump off and launched the ion pumps. We
stayed in this configuration during an additional week. Finally, we ramped the heating
down to zero over a day. At room temperature of 22◦C, the RGA indicated a total
residual pressure of 10−10 mbar in the region of the octagonal chamber. We finally
disconnected the RGA and the turbomolecular pump using the associated valve.

1.1.3 Differential pumping

Collisions of trapped atoms with background impurities limit the lifetime in a trap.
Therefore, we now estimate the background pressure in the final science cell. For this
purpose, let us introduce a simple model of gas conductance in a channel by analogy
to Ohm’s law in electricity:

Q = C∆P ,

where Q is the PV -flux, C is the channel conductance and ∆P is the difference of
pressure along the channel. In the balistic regime, the conductance C (expressed in
L.s−1) of a cylindrical channel of length L and diameter D (expressed in cm) is given
by the expression [64]:

C ≈ 2.6× 10−4D
3

L
< v > , (1.1)
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Figure 1.4: Schematics of the differential pumping of the science cell. P1 is the MOT
pressure, P2 is the pressure in the science cell, C is the conductance of the tube between
the MOT chamber and the pump located at the elbow, and S is the effective pumping
speed at the elbow.

where < v >=
√

8kBT/πm is the average atomic speed (expressed in cm.s−1) in the
considered gas (usually air) of atoms with mass m. Using this electrical analogy we can
describe the differential pumping between the MOT and the science cell as a pressure
divider (see Figure 1.4). P1 is the MOT pressure. Since the transport pump is located
at the elbow, we assume that there is no flow in the second arm of the transport,
that is between the elbow and the science cell, as for an electrical resistor with one
unconnected extremity. This hypothesis is valid if the outgasing speed of the second
arm walls is negligible compared to the effective pumping speed of the pump. In this
model, the pressure P2 at the elbow is the same as the one in the science cell. We
describe the elbow pump as a pressure ground (P = 0) connected to the elbow through
a conductance S, where S is the effective pumping speed at the elbow which takes into
account the commercial one Sp = 40 L.s−1 in series with the conductance Cp of the tee
connector of the pump:

S =
CpSp

Cp + Sp

, (1.2)

where Cp ≈ 34 L.s−1, for background air thermalized with the walls at room tempera-
ture of 22◦C, using our real dimensions: D = 3.8 cm and L = 19.7 cm in equation 1.1.
Thus, we find S ≈ 18 L.s−1. We can now estimate the pressure ratio as follows:

P2

P1

=
C

S + C
.

Using three consecutive tubes of respectively 1.6 cm, 1 cm and 1.6 cm diameters, and
4.7 cm, 15.6 cm and 7.6 cm lengths, we can estimate this ratio to be 3.4 %, leading to a
final pressure of P2 = 3.4×10−12 mbar, with P1 = 1×10−10 mbar (see part 1.1.2). Note
that replacing the differential pumping tube (the second tube, with diameter 1 cm) by
a standard DN16 one would have increased this final pressure by a factor 2.6.

The collision rate involving background impurities is proportional to the background
density and thus to the pressure. Therefore, the lifetime in a trap due to collisions with
background impurities is proportional to the inverse of the background pressure. As
detailed in parts 3.3.5 and 5.4.1, we measured a lifetime of 3 s for the magnetic trap in
the octagonal chamber (see Figure 3.10), and a lifetime of 30 s in the science chamber
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(see Figure 5.20). Then, there is a factor 3 missing with respect to the previous
calculation, indicating a probable outgasing in the second arm.

1.2 Optics

Figure 1.5: Picture of a part of the lithium optical table.

In this section, we describe the optical system. The hyperfine structures of 6Li and
40K D2 lines are shown in Figure 1.6 [65, 66]. Since we work with two different atomic
species, we built two separate laser systems. Each one is located on a dedicated sealed
hole optical table with tuned damping (Newport RS2000/RL2000). Then, the beams
are independently sent through single-mode polarization-maintaining optical fibers (Oz
Optics, LPSC-03) towards the main table, where the vacuum chamber is located (see
part 1.1.1).

After a general description of the two optical systems, we focus on three key stages
of the laser light production: first, the emission of a narrow linewidth laser beam by
an extended cavity laser diode; secondly, its frequency stabilization through saturated
absorption spectroscopy and electronic locking; thirdly, its amplification by a tapered
amplifier.

1.2.1 General description

A scheme of the optical table for each species is given in Figure 1.7. The collimated
light emitted by an extended cavity laser diode (see part 1.2.2) is locked to a saturated
absorption line using a phase modulation through an Electro-Optical Modulator (see
part 1.2.3). It is then amplified through a tapered amplifier (see part 1.2.4), before
passing through a single-mode polarization-maintaining optical fiber, for spatial fil-
tering and decoupling of the alignment stages. Then, due to the several applications
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Figure 1.6: Hyperfine structures of 6Li and 40K D2 lines. The laser diodes are locked to
the indicated crossover frequencies. For potassium, due to the low natural abundance
of 40K, the lock is performed on a 39K crossover line (see appendix A.1 for the 39K
hyperfine spectrum).

such as cooling, repumping, spin-polarization, imaging or trapping, it is split in several
parts which are shifted in frequency through Acousto-Optic Modulators (AOM). Such
a modulator is a crystal excited by a radio-frequency signal of frequency f , coming
from a home-made Voltage Control Oscillator and amplified using a 1 W amplifier
(Minicircuits ZHL-1-2W). This creates a traveling density wave which modulates the
refractive index. The modulation wavelength Λ is given by:

Λ = cs/f ,

where cs is the speed of sound in the crystal. Thus, the crystal acts as a Bragg
grating. We generally use the positive and negative first orders of diffraction since
they correspond to a more efficient transmission. Two configurations can be used: the
single-pass one is used for switching on and off the beam, whereas the double-pass one
[67] is used for scanning the frequency. In fact, in the double-pass method we place a
lens and a mirror after the crystal, in a cat’s eye configuration, which ensures that the
reflected beam goes back in parallel with the incident one for any AOM frequency. With
Crystal Technology and IntraAction AOMs, we reach typical efficiencies of 75% after
spatial filtering in the first optical fiber. The fact that these tunings can be achieved
with AOM, and do not request any additional master diode, is a direct consequence
of the small hyperfine splittings in the spectra of both atoms (see Figure 1.6). After
modulation, some of the beams are recombined (cooling and repumping frequencies for
instance) and amplified using tapered amplifiers (see part 1.2.4), and they are all sent
to the main table through optical fibers. Optical components (CVI-Melles-Griot) such
as cubes, waveplates or lenses, are anti-reflexion coated.



32 Chapter 1. Experimental setup

Figure 1.7: Schematics of the laser systems of 6Li and 40K. The light emitted by a col-
limated laser diode (DL) is locked to a saturated absorption line (see part 1.2.3) using
a phase modulation through an Electro-Optic Modulator (EOM). It is then amplified
through a tapered amplifier (TA), before passing through a single-mode polarization-
maintaining optical fiber (FI), for spatial filtering and decoupling of the alignment
stages. Then, it is split in several parts which are, depending on their purpose, shifted
in frequency through Acousto-Optic Modulators (AOM) in single-pass (sp) or double-
pass (dp) configuration. Some of them are reamplified using TA, and they are all sent
to the main table through FI.
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1.2.2 Laser diode

The master laser diodes are home-made external cavity diodes [68]. They are mounted
in Littrow configuration where the first order beam diffracted by a grating serves as a
feedback into the diode. Apart from its coarse tuning with current and temperature,
the output frequency can be finely tuned by moving the grating using a piezoelectric
actuator (Piezomechanik). We decided to use this configuration instead of the Littman-
Metcalf one, where the output direction is fixed and an external feedback mirror is
moved, because of its higher output power.

For 6Li, the chip is a Mitsubishi diode (ML101J27) which is commonly used in
the DVD industry. Therefore, it is not expensive due to its high production. The
wavelength at room temperature is in the 654-664 nm range, and it can be shifted to the
desired 671 nm (see Figure 1.6) by heating to 70-80◦C. To reach these temperatures,
we pass current trough two resistors with radiators fixed on the mount of the laser
diode, we cover the inside of the mount with PET foils (Mylar) and we wrap the whole
with an isolating foam. We finally get 40 mW of output power at a 150 mA driving
current, and a spectral width smaller than 500 kHz. The typical lifetime of such a
diode is six months, at these current and temperature.

For 40K, the chip is an Eagleyard antireflexion-coated diode (EYP-RWE-0790-0400-
0750-SOT03-0000). Its wavelength at room temperature is in the 760-780 nm range.
Thus, we do not need to heat the mount in that case. We get 35 mW of output power
at a 90 mA driving current, and a spectral width smaller than 500 kHz. The typical
lifetime of such a diode is one year, at these current and temperature.

In both cases, the driving currents of the diodes are controlled via home-made
current supplies, built in the electronics workshop of Laboratoire Kastler Brossel by
Bernard Trégon and Lionel Pérennès. The temperature is also controlled via a home-
made PID box, where the error signal is the voltage of a Wheatstone bridge. This
voltage differs from zero when a 10 kΩ thermistance (Thorlabs, TH10K) placed in the
laser mount is different from the chosen set-point resistance. The subsequent correction
of temperature is then performed by a Peltier device (Roithner Lasertechnik, TEC1-
12705T125) placed under the mount.

1.2.3 Frequency lock

On each optical table, a small part of the light emitted by the master diode, less than
a milliwatt, is collected on a polarizing beam splitter in order to pass through a satu-
rated absorption spectroscopy arm (see Figure 1.7). There, the beam is absorbed by
an atomic vapor of the corresponding species contained inside a dedicated cell, before
being collected by a 125 MHz low noise photodiode (New Focus 1801). In addition,
the light is phase-modulated through a 20 MHz electro-optic modulator. This allows
to generate the derivative of the absorption signal with a Pound-Drever-Hall device
(Toptica PDD110). This box works like a synchronous demodulator: it multiplies the
signal by the synchronous modulation signal and averages it. The obtained derivative
signal serves as an error signal. It is sent in a PID device (Toptica PID110) that dis-
places the grating through another box (Toptica SC110) which drives the high voltage
of the piezoelectric (see part 1.2.2). Thus, the master laser diode can be efficiently
locked to an absorption line. The overall resolution of this spectroscopy is limited by
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Figure 1.8: Saturated absorption D2 lines of 6Li. Peak 2 is the crossover peak used for
lock. Peaks 1 and 3 correspond to transitions from the two hyperfine ground-states to
the upper unresolved multiplet (see Figure 1.6). The unmarked peaks are the D1 lines
of 7Li.

the intensity broadening of the lines to approximately 20-30 MHz. Therefore, we do
not resolve the P3/2 hyperfine substructures, since their widths equal 4.5 MHz for 6Li
(see Figure 1.6), and 33.8 MHz for 39K [56], which is the isotope used for the locking
of the 40K master diode, as explained below.

For 6Li, the laser is locked −331 MHz (see Figure 1.7) away from the crossover line
shown in Figure 1.6. The saturated absorption D2 lines of 6Li is shown in Figure 1.8,
where peak 2 is the crossover peak used for lock. The absorption cell consists of a 50 cm
MDC-Caburn DN38 pipe, heated to 350◦C since the saturated vapor pressure of lithium
at room temperature is low [69]. At each end of the tube there is a window. Inside, a
solid lithium sample has been placed. The whole is heated by two thermocoax wires
with opposite currents in order to avoid the creation of a bias magnetic field, that would
lead to Zeeman shifting of the lines. As the lithium can chemically reacts with glass
and obstruct the viewports, an argon buffer gas at 0.1 mbar has been added inside the
tube. In addition, water cooling is performed in the vicinity of the windows. Finally, to
avoid the fixation of lithium on those cold points, a stainless steel mesh (Alpha Aesar,
013477) covers the inside of the pipe. Thus, since lithium surface tension decreases
with temperature, capillary forces tend to bring back the lithium towards hot regions
[70].

Due to the very low natural isotopic abundance of 40K (39K: 93.36 %, 40K: 0.012 %,
41K: 6.73 %), its lines are not visible in the absorption cell at room temperature.
Therefore, the laser is locked +240 MHz (see Figure 1.7) away from the crossover line
of 39K (see Figure 1.6). Figure 1.9 shows the saturated absorption D2 lines of 39K (see
appendix A.1 for the 39K hyperfine spectrum). The middle peak is the crossover peak
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Figure 1.9: Saturated absorption D2 lines of 39K (see appendix A.1 for the 39K hyperfine
spectrum). The middle peak is the crossover peak used for lock. The two others corre-
spond to the transitions from the two hyperfine ground-states to the upper unresolved
multiplet (see Figure 1.6).

used for lock. The two others correspond to the transitions from the two hyperfine
ground-states to the upper unresolved multiplet. The absorption cell consists of a
5 cm long cylindrical ampoule containing natural potassium and heated to 40◦C, by
passing current inside two resistors and radiators fixed on a copper bracelet surrounding
the ampoule. The ampoule has been prepared by engineer Florence Thibout from
Laboratoire Kastler Brossel.

1.2.4 Tapered amplifier

In parts 1.2.2 and 1.2.3 we saw how to generate and stabilize in frequency the laser
light. Let us now turn to its amplification. We need typically 600 mW for potassium
2D and 3D MOTs and 300 mW for lithium Zeeman slower and 3D MOT, whereas we
have only 40 mW after a single laser diode. In addition, we loose power in the numerous
fiber couplings and AOM (see Figure 1.7). Therefore, amplification is necessary. For
both optical tables we decided to preamplify the laser beam before the spatial filtering
in the first fiber and the shiftings in the AOMs, and to amplify it again afterwards,
before it is sent to the main table through optical fiber (see Figure 1.7).

The device we use is a tapered amplifier [68, 71] which is driven by a current
supply (Newport 525B) and whose temperature is regulated by a similar combination
of home-made PID circuit and Peltier device as the one used for the master diodes
(see part 1.2.2). It consists of a semiconducting device where the light is amplified
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by electro-photoluminescence and where the size of the medium increases in space so
that the intensity remains constant. For lithium, the chip is a Toptica one (TA-670-
0500-5) which gives 500 mW output power at 1 A of driving current, for a 20 mW
input optical power. For potassium, the chip is an Eagleyard one (EYP-TPA-0765-
01500-3006-CMT03-0000) which gives 1.5 W output power at 2.5 A of driving current,
for a 20 mW input optical power. Since the chips are mounted on different heatsinks,
depending on their supplier, we used slightly different designs for the two models but
the principle remains similar. The chip is placed in between two aspherical collimation
lenses of 4.5 mm focal length (Thorlabs, C230TME-B). In addition, since its output is
astigmatic, it requires a special collimation assembly. For optimal mode matching with
the filtering optical fiber (50 % coupling efficiency) we need to have a gaussian beam
of 1.1 mm waist. Thus, we use two additional lenses placed outside the mounts : first
a spherical one (fK = 4 cm and fLi = 15 cm), secondly a cylindrical one (fK = 2.5 cm
and fLi = 8 cm) with only one direction of collimation, the other one not affecting the
beam.

As a remark, such a tapered amplifier is a non-linear medium [71]. Parametric am-
plification can occur between close frequencies, leading to sidebands that reduce the
power in the main mode and that can correspond to harmful resonant transitions in
the experiment. Since we combine cooling and repumping light (see Figure 1.7) before
injecting the four final tapered amplifiers for 40K and 6Li MOTs, 40K 2D-MOT and 6Li
Zeeman slower, this could be an issue. For MOTs this is not harmful, because the two
frequencies are sufficiently different with a spacing of 1.3 GHz for 40K and 228 MHz
for 6Li, and because the sidebands do not correspond to any resonant transition. We
measured the power lost in the sidebands, with a Fabry-Pérot cavity, to be 5 % in the
case of 6Li and 0.2% in the case of 40K. For instance, Figure 1.10 shows the output spec-
trum of 40K MOT tapered amplifier, for various input power ratios between principal
cooling frequency (P) and repumping (R) one. However, as far as the Zeeman slower
tapered amplifier is concerned, the two beams are separated by 228 MHz and are both
red-detuned by 446 MHz (see Figure 1.6). Since the detuning equals approximately
two times 228 MHz, this leads to a resonant sideband. Thus we decided to amplify
only the cooling frequency in that case (see Figure 1.7 and part 1.3.8).

1.3 6Li Zeeman slower

In previous sections we described the vacuum manifold and the optics, let us turn now
to the atomic sources. We focus here on 6Li. Since we wish to get high atom numbers
in the MOT, it would not be efficient to proceed with a lithium vapor directly inside
the MOT chamber. In fact, due to the low saturated vapor pressure of 6Li, this requires
to heat the chamber a lot. We thus decided to implement a Zeeman slower [72] since
it is nicely working and mastered in the lithium group at ENS [65].

We recall here first the well-known principle of Zeeman slowing and we describe the
magnetic profile, as well as the stability of such a method, before characterizing the
jet itself. In our case, we use a spin-flip Zeeman slower in order to avoid interactions
between the slowing beam and the MOT. Then, we present the technical and exper-
imental aspects concerning the oven, the vacuum, the coils and the laser beam, that
allow us to get a flux of 1.2× 109 atoms.s−1.
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Figure 1.10: Output spectrum of 40K MOT tapered amplifier, for various input power
ratios between principal cooling frequency (P) and repumping (R) one.

1.3.1 Principle

In this part, we present the theoretical principle of Zeeman slowing. We first calculate
the maximal acceleration induced by a resonant laser beam, from which we deduce
typical size and time of slowing. Then, we estimate the Doppler effect in order to
understand why we need an additional Zeeman effect to compensate it.

Maximal acceleration

The Zeeman slower technique relies on the radiative pressure. As depicted in Fig-
ure 1.11, an atomic jet coming out from an oven through a small hole is slowed down
by a counter-propagating resonant laser beam.

In order to understand the slowing efficiency of such a laser beam, we estimate an
order of magnitude of the distance and time needed to slow down the atomic jet. Let
us consider a 6Li atom of mass m escaping the oven at temperature T with the initial
speed v∗ =

√
3kBT/m in the laser direction. On resonance, the maximal radiative

pressure force F along the jet direction is given by:

F = −Γ~k
2

,

with k the wave vector of the laser. Thus, the acceleration is constant and equals:

a = −Γ~k
2m

. (1.3)

Putting numbers (see appendix A.1) gives a ≈ 2× 106 m.s−2. We already see that this
acceleration is approximately 2×105 times gravity. With such a constant acceleration,
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Figure 1.11: An atomic jet coming out from an oven through a small hole is slowed
down by a counter-propagating resonant laser beam. Picture taken from [73].

Figure 1.12: The radiative pressure is a lorentzian function in frequency (see equa-
tion 2.1 and Figure 2.4), with a full width Γ. Picture taken from [73].

the velocity v evolves as:

v = v∗ + at . (1.4)

Thus, using equations 1.3 and 1.4, we find that the atom is stopped after a time:

τ0 = −v
∗

a
=

12mkBT

Γ~k
,

and a length:

l0 = −v
∗2

2a
=

3kBT

Γ~k
.

With a resonant beam we thus can stop a 6Li atom, escaping from an oven at 500 ◦C
with a typical speed v∗ ≈ 2000 m.s−1, in 1 ms over 90 cm.

Doppler effect

In the previous estimate, we assumed that the laser beam was resonant. However,
since we are stopping atoms which have a typical initial speed of 2000 m.s−1, the
Doppler effect must play a significant role. Indeed, the radiative pressure is a lorentzian
function in frequency (see equation 2.1) since it is based on the imaginary part of the
polarizability. The associated full width is given by Γ, as shown in Figure 1.12. Thus,
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the typical width in velocity ∆vz for which the beam is resonant is given through the
Doppler correspondence :

k∆vz = Γ ,

which gives ∆vz ≈ 4 m.s−1. This result means that after a diminution of 0.2% of its
initial speed the atom is not slowed down anymore. Therefore, it is impossible to slow
down a jet with a simple laser beam of fixed frequency. Three solutions to this issue
exist. First, we can use another tuning effect : the linear Zeeman shift induced by a
bias field [72]. Secondly, we can tune the laser in a time-dependent way, in order to
maintain the resonance with the slowed atoms [74]. Thirdly, we can use a controlled
Stark shift to maintain the resonance along the path [75]. In our experiment, we use
the first method as described in the following.

1.3.2 Magnetic profile

In this part, we calculate the magnetic profile B(z) allowing for a constant acceleration
αa along the slower, with α < 1, where α is a positive safety factor that we explain in
part 1.3.3, and where a is the maximal acceleration given at equation 1.3. On the jet
axis, one can write by conservation of energy:

v2 = v2
c + 2αaz , (1.5)

where we have introduced the capture speed vc, which corresponds to the speed for
which the resonance condition is verified at the entrance in the slower. We explain its
role further at the end of this part. Let us define as well, from equation 1.5, the final
velocity vf at the exit of the slower:

v2
f = v2

c + 2αal , (1.6)

where l is the length of the slower.
To maintain a constant acceleration, the Doppler effect should be exactly compen-

sated, at any point, by the Zeeman effect. We consider in the following a closed σ+

transition between the states |F = 3/2,mF = 3/2〉 and |F ′ = 5/2,mF ′ = 5/2〉 for
which atoms can always see the slowing beam, since there is no connexion to any dark
F or mF state. Furthermore, for those stretched states the Zeeman energy shift is
linear with the field B(z), even for high fields (see Figures 1.6 and 3.2), and equals re-
spectively −µBB(z) and −2µBB(z) (see equation 3.2). Thus, the resonance condition
expresses as follows:

~δ − µBB(z) + ~kv(z) = 0 . (1.7)

We see through this equation that in the σ+ case the field decreases with z. Using
equations 1.5, 1.6 and 1.7, we find:

B(z) =
∆B

1− vf
vc

[
δ′ +

√
1−

(
1− v2

f

v2
c

)
z

l

]
, (1.8)

where we have introduced the undimensioned detuning:

δ′ =
δ

kvc

,
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Figure 1.13: Ideal magnetic profile of the 6Li Zeeman slower, plotted from equation 1.8
with vc = 838 m.s−1, l = 55 cm, δ = −75 Γ and α = 0.34.

and the magnetic amplitude of the slower:

∆B = B(0)−B(l) =
~kvc

µB

(
1− vf

vc

)
.

Choosing δ′ = 0 would be harmful since the beam would be resonant with the MOT
atoms, leading to consequent losses in this trap. Thus, we need to have a high detuning.
Experimentally we chose δ = −75 Γ. Then B vanishes at z = l(1 − δ′2)/(1 − v2

f /v
2
c )

and becomes negative until z = l, as plotted in Figure 1.13. The chosen parameters
are vc = 838 m.s−1, l = 55 cm, and α = 0.34 (see part 1.3.3). This implies vf =
95 m.s−1 (see equation 1.6). We see that the final speed is larger than the capture
speed of the 6Li MOT, which is estimated to be approximately 20 m.s−1 (see part 2.1.7).
However, the atoms are still decelerated significantly in the region between the slower
exit and the MOT and are thus expected to be captured by the MOT, as finally
observed experimentally. Atoms with an initial speed higher than vc will never fulfill
the resonance condition 1.7 an thus can not be slowed down. On the contrary, atoms
with an initial speed smaller than vc, but bigger than vf, will be on resonance somewhere
inside the slower, and thus will be slowed down as well until vf. The capture speed is
thus the maximal speed of the atoms for which the slower is efficient. Note that our
capture speed is smaller than the most probable speed in the jet vp =

√
3kBT/m ≈

2000 m.s−1 (see part 1.3.5), which reduces the overall efficiency. However, due to the
square root dependency of vc in the length l (see equation 1.6), it would have required
a 4.5 bigger slower to obtain a capture speed of the order of this most probable speed,
which would have raised other issues linked with the jet divergence. An interesting
additional feature of the Zeeman slower comes at this point. Since almost all the
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speeds smaller than vc are reduced to vf by the slower, there is a reduction of the width
of the velocity distribution, and thus a cooling effect in the direction of the slower.
Therefore, a Zeeman slower is a cooling device.

The δ′ < 0 configuration is a so called “spin-flip Zeeman slower” [76] since the sign
of the magnetic field changes. As detailed in part 1.3.7, it consists of two coils: one
big Zeeman slower creating a positive field up to B(0) = 570 G and one small inverted
slower creating a negative field down to B(l) = −220 G. In the ideal case, the absolute
spin orientation remains constant and anti-parallel to the entrance field and only the
magnetic field flips. This technique is performing since it avoids the use of high fields
at the entrance of the slower. In fact, had we used a simple Zeeman slower with δ′ > 0,
the entrance field would have been of the order of B(0) ≈ 570 + 2 × 220 ≈ 1000 G
(see equation 1.7) in order to get a similar amplitude ∆B and a same final detuning.
This means a two times higher current and then a four times higher dissipated Joule
power, demonstrating the interest of our spin-flip configuration. However, it requires
additional care. First, it is compulsory to add a counter Zeeman coil (see part 1.3.7)
to compensate the bias field created by the inverted slower at the MOT position.
Secondly, in the region of zero field, at the junction of the two slowers, the atoms can
be depolarized to the wrong hyperfine ground-state F = 1/2, thus a repumping beam is
required as well (see part 1.3.8). This region is also harmful since crossings of Zeeman
levels can occur under B ≈ 2 G.

1.3.3 Stability

We already introduced the safety factor α in part 1.3.2. The Zeeman slower is a robust
system if α < 1. We explain this point here, with similar arguments as [77].

For fixed geometry, field profile and capture speed, α is completely determined by
the derivative of B(z). For instance in z = 0, according to equations 1.5 and 1.7, we
have the following relationship:

α =
µBvc

~ka

(
dB

dz

)
z=0

. (1.9)

Thus, whatever the used laser intensity, α is fixed, which means that the slower is in
fact efficient somewhere away from exact resonance. More precisely, one can write:

α =
s

1 + s
=

s0

1 + s0 + 4 δ
′′2

Γ2

, (1.10)

where δ′′ is the real detuning seen by an atom in the operating regime of acceleration
αa, and where:

s =
s0

1 + 4 δ
′′2

Γ2

, (1.11)

is the saturation parameter, which equals s0 = I/Isat on resonance. Since α ≈ 1/3, we
find with equation 1.10 that s ≈ 1/2. In our case the slowing laser beam of 50 mW
power is focused around the oven and has a waist of 1.5 cm at the MOT center (see
part 1.3.8). Using the approximative dimensions of the system (see scale in Figure 1.1)
we thus estimate the radius to be of the order of 1 cm in the Zeeman slower, which gives
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Figure 1.14: Evolution of the normalized saturation parameter with distance for a speed
vc/2 (blue) and vc/2 − 1 m.s−1 (pink). In the operating regime (blue), an atom expe-
riencing an unexpected deceleration (pink) will be less resonant and thus will be less
decelerated by the slower. Therefore, it will move forward until it reaches the good s/s0

value and stick back to the operating regime downstream.

s0 ≈ 6 using appendix A.1 for the saturation intensity value. Thus, with equation 1.11
we deduce that an atom is away from resonance by typically δ′′ = 2 Γ in the operating
regime.

We can understand the interest of such a security factor α. On Figure 1.14, the
blue curve shows s/s0 as a function the distance z in the slower for a fixed speed
vc/2. Note that the resonance condition happens after ∼ 40 cm in the slower, for this
particular speed. The pink curve shows the same function but for a speed 1 m.s−1

smaller. We place the atom on the blue curve for s/s0 corresponding to our fixed value
of α (here for pedagogical purposes the picture is wrong since actually s/s0 ≈ 1/12).
Let us now consider an irregularity in the process: for instance a field deviation from
the theoretical value or too much absorption with respect to the average acceleration.
This can cause the speed to be reduced by 1 m.s−1, for instance, from its expected value
at this point. Thus, the atom (see the pink curve) will be less resonant and thus will
be less decelerated. Therefore, it will move forward until it reaches the good s/s0 value
again, and stick back to the operating regime downstream. Inversely, a slight increase
in speed, would bring the atom closer to resonance which will decelerate it more until
it sticks back to the operating regime downstream. In conclusion, we see that such a
Zeeman slower is stable. On the contrary, a choice of α = 1 would be critical. In fact,
it implies a perfect resonance δ′′ = 0. Then, an atom in the operating regime which,
for a practical reason, is not decelerated as it should be, will get a higher velocity than
the maximal authorized one at this point and will be definitely lost. Quantitatively,



1.3. 6Li Zeeman slower 43

let us express the fact that the decceleration −αa can not exceed the maximal one −a:

−αa = −dv

dt
= −dv

dz
v = −µBv

~k
dB

dz
≤ −a ,

where we have used equation 1.7 to connect v and B. If α = 1, the last inequality
becomes an equality. Thus, any slight local increase of magnetic gradient reduces
the maximal authorized speed v at this point. Therefore, an atom initially in the
operating regime will be lost since its velocity is higher than the new maximal one.
We thus need to reduce α for stability reasons. However, for fixed geometry and field
profile, reducing α implies a reduction of the capture speed according to equation 1.9,
and thus a reduction of the overall efficiency. Our chosen value α ≈ 1/3 is a typical
trade-off value.

1.3.4 Jet divergence

An important aspect of the Zeeman slower is the divergence of the atomic jet. In
order to estimate this number, we first quantify the initial jet divergence due to the
collimation and pumping tubes, as well as the transverse heating due to spontaneous
emission phenomena.

Between the oven and the slower, there is a collimation tube of 80 mm length and
3 mm radius (see engineering drawing in appendix A.6), as well as two differential
pumping tubes which both have a 100 mm length and respective diameters of 5 mm
and 10 mm (see part 1.3.6). This ensemble creates a selection cone, of r = 5 mm
radius and L ≈ 300 mm length, that limits the transverse velocity with respect to the
longitudinal one. For a longitudinal velocity vc, we find a maximal transverse velocity
of:

v⊥ ≈ vcr/L , (1.12)

which is of the order of 15 m.s−1.
In contrast with the longitudinal cooling effect explained in part 1.3.2, a transverse

heating is induced all along the trajectory inside the slower. It is due to the spontaneous
emission that follows each absorption of photon. In fact, by isotropy of emission, a
photon can be reemitted in a transverse direction where there is no cooling effect.
By conservation of linear momentum, this induces a recoil kick on the atomic linear
momentum in this direction. We estimate the associated heating now. This random
process can be described as a random walk in velocity space (see part 2.1.4), for which
the evolution of the variance of one transverse component vx is given by:

d〈v2
x〉

dt
= 2D , (1.13)

where D is the 1D diffusion coefficient in velocity. Let us estimate it with simple
arguments. D should be homogenous to a speed squared divided by a time. The
typical 1D speed of this problem is the recoil one vr = ~k/m, and the typical time
is the inverse of the cycling rate αΓ/2, including the safety factor α that reduces the
intensity. Thus, we can write:

D =
1

3

(~k)2αΓ

2m2
, (1.14)
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where the factor 1/3 accounts for the average fact that only a third of the photons are
emitted in the x-direction. Using equations 1.13 and 1.14 it follows:

∆〈v2
x〉

〈v2
x〉(0)

=
〈v2
x〉(t)− 〈v2

x〉(0)

〈v2
x〉(0)

=
(~k)2αΓ

3m2〈v2
x〉(0)

t . (1.15)

Then, we can express 〈v2
x〉(0) using the temperature. However, as in equation 1.12,

we must add a geometrical factor that takes into account the spatial limitation of the
inner tube:

〈v2
x〉(0) ≈ r2

L2
〈v2
z〉(0) =

kBTr
2

mL2
. (1.16)

Since the acceleration αa is constant, the total time τ spent in the slower for an atom
of initial speed vc is given by:

τ = −vc − vf

αa
. (1.17)

Thus, combining equations 1.3, 1.15, 1.16 and 1.17, we find:

∆〈v2
x〉

〈v2
x〉(0)

= 2
L2

r2

(vc − vf)vr

v∗2
,

where we have introduced the 3D RMS velocity of the oven v∗ =
√

3kBT/m. Putting
numbers leads to a transverse heating of approximately 16 % in variance, and thus
8 % in RMS velocity, which means an increase in transverse velocity of approximately
2.5 m.s−1.

Thus, we can neglect the contribution of the transverse heating in comparison with
the initial transverse velocity and use v⊥ to estimate the final divergence. Let us
consider an atom entering the slower with a longitudinal velocity vc and a transverse
one v⊥. From equation 1.17, the time spent in the oven by the atom is approximately
1.2 ms. It exits with a longitudinal velocity vf and then moves freely over approximately
20 cm, before reaching the MOT center (see Figure 1.1), which requires approximately
2 additional milliseconds. The total time to consider is thus around 3.2 ms, which
gives with v⊥ ≈ 15 m.s−1 a transverse spreading of approximately 5 cm in radius at
the MOT center.

In conclusion, this divergence is not negligible. We reduce it experimentally by
focusing the slowing beam around the oven (see part 1.3.8), since this creates a balanced
transverse absorption and thus a transverse cooling [76]. Moreover, we use large 2
inches MOT optics in order to create a large capture volume in the MOT.

1.3.5 Atomic flux and efficiency

By measuring the MOT loading rate for small loading times (in order to neglect the
MOT losses, see part 2.3.4), we found an optimum loading rate of 1.2×109 atoms. s−1.
In the following, we give simple arguments in order to understand this number and to
connect it to the flux of the atomic jet. We thus estimate the overall efficiency of MOT
loading by our Zeeman slower.

We describe the lithium oven by a 500◦C thermalized box with an output tube of
radius

√
A/π ≈ 2.5 mm and length d = 200 mm, in order to describe the collimation
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tube (see engineering drawing in appendix A.6) and the first differential pumping tube
that limit the jet extension (see part 1.3.6). The flux of atoms Φi entering the tube is
simply given by:

Φi =
nv̄A

2
, (1.18)

where n is the density in the oven, v̄ =
√

8kBT/πm the average speed in the oven, and
where the factor 2 accounts for the fact that, by isotropy, only half of the atoms have
a positive longitudinal velocity in the direction of the tube. To get the flux Φo at the
end of the tube, we just multiply Φi by the portion of solid angle corresponding to the
exit of the tube:

Φo = Φi
A

2πd2
=
nv̄A2

4πd2
. (1.19)

Putting numbers gives Φo ≈ 5× 1013 atoms.s−1.
Then, we need to multiply this flux Φo by the probability R(T ) for an atom to have

a speed inferior to vc. To calculate R(T ), we assume a Maxwell-Boltzmann distribution
in the oven, at temperature T :

f(v) = n

(
m

2πkBT

)3/2

exp

[
− mv2

2kBT

]
,

where n =
∫
d3vf(v) is the density in the oven. Then, the number d4N(v) of atoms

that escape the oven, through a hole of area A, with a velocity v, during an infinitesimal
time dt, is given by:

d4N(v) = f(v)vAvzd
3dt ,

where vz = v ·uz is the component of the velocity in the jet direction, vz being positive
if the atom escapes the oven. We can now rewrite this in spherical coordinates and
integrate over the possible angles given by the geometry of the collimation tube. Apart
from a constant factor, the distribution P (v) of atoms escaping the oven per time unit
with speed v is given by the expression:

P (v) ∝ v3 exp

[
− mv2

2kBT

]
. (1.20)

This function is plotted in Figure 1.15. It is maximal for the most probable speed in
the jet: vp =

√
3kBT/m, which happens to be equal to the 3D RMS speed of the oven.

Using equation 1.20, we find the probability R(T ) for an atom to have a speed inferior
to vc:

R(T ) =

∫ vc
0
dvv3 exp

(
−mv2

kBT

)
∫∞

0
dvv3 exp

(
−mv2

kBT

) ≈ 14% . (1.21)

We have seen in part 1.3.4 that the final transverse spreading of the jet is of the
order of 5 cm in radius, which is typically five times bigger than the radius of the MOT
beams (see part 2.3.1). Thus, we should add a capture factor in section of R′ ≈ 4%.

In addition, we can assume that the two Zeeman sub-levels of F = 1/2 and the four
Zeeman sub-levels of F = 3/2 are all equally populated at the entrance of the slower. In
fact, for a maximal field of 570 G (see part 1.3.2) the Zeeman shift in energy corresponds
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Figure 1.15: Distribution of speed in the atomic jet (see expression 1.20). Its maximum
corresponds to the most probable speed in the jet: vp =

√
3kBT/m. Picture taken from

[73].

to ∼ 50 mK, which is very small compared to the oven temperature (773 K), leading to
a Boltzmann ratio of ∼ 1. Therefore, only an average fraction R′′ ≈ 1/6 of the atoms
is initially in the appropriate |F = 3/2,mF = 3/2〉 state for the Zeeman slower.

Finally, assuming that the gas in the oven is an ideal gas at T = 773 K, we can
calculate the density n = Ps(T )/kBT ≈ 4.5× 1019 m−3, where we have introduced the
saturated vapor pressure in the oven Ps(773) = 4.8×10−3 mbar [78]. Consequently, the
expected loading rate is ΦoRR

′R′′ ≈ 5 × 1010 atoms.s−1. However, our experimental
loading rate equals only ∼ 2.5 % of this value, but we assumed a ballistic flight in this
estimate, and we neglected the collisions between the MOT atoms and the unslowed hot
atoms which occur above 475◦C [79], and which reduce the MOT loading efficiency.
For temperatures below 475◦C, with the same arguments, we find an experimental
flux which equals ∼ 15 % of the theoretical one (see Figure 1.16). At those lower
temperatures, we attribute the remaining factor ∼ 6 to a partial capture of the slowed
atoms crossing the MOT capture region.

1.3.6 Oven and vacuum

The lithium oven consists of a vertical reservoir tube connected to an horizontal colli-
mation tube (see Figure 1.1 and engineering drawing in appendix A.6). The vertical
tube has a 16 mm diameter and a 180 mm length. Its open extremity, on the top,
is sealed with a blank DN38 stop that can be replaced by a turbomolecular pump in
case of prebaking. The horizontal tube has a 6 mm diameter and a 80 mm length. Its
open extremity DN38 is connected to the Zeeman slower. After prebaking at 600◦C
during a day, in order to eliminate the remaining LiH impurities from the 6Li sample
provided by Cambridge Isotope Laboratory, the oven contains nearly 3 g of pure solid
6Li. In working conditions, it is heated to 500◦C using a Thermocoax heating wire (SEI
10/50-25/2xCM10) connected to an AC transformer (Variac) that can provide a 110 V
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voltage. We thus used nickel gaskets, instead of copper ones that react with hot lithium
and that can not sustain such high temperatures. In addition, the ensemble is covered
by glass wool and aluminum foils, and the heating circuit contains a thermostated
regulation system (Omega CN1501-TC-1) linked to a thermocouple (Hanna SFILS1),
in order to stabilize the temperature and thus the atomic flux (see part 1.3.5). Finally,
we placed a mechanical shutter (Danaher Motion BRM-27503) inside the vacuum to
allow for blocking of the jet. It has a subsidiary task which is to serve as an alignment
target for the Zeeman laser beam.

In order to isolate the MOT chamber from the high pressure in the oven of typically
5 × 10−3 mbar, we added two differential pumping tubes of both 100 mm length and
respectively 5 mm and 10 mm diameters. Note that the collimation tube is playing a
differential pumping role as well. After each of these three tubes we placed a Varian
ion pump of 20 L.s−1. Thus, the pressure in the MOT chamber remains inferior to
10−8 mbar when the oven is on (see part 1.1.3 for similar calculations).

Let us now estimate the lifetime of the oven. First, we assume that all the atoms
entering the collimation tube are lost. Thus, using equation 1.18 we find a mass loss
rate of:

Γm = Φim ≈ 7× 10−6g.s−1 ,

where we used, as in part 1.3.5, the ideal gas law n = Ps(T )/kBT ≈ 4.5×1019 atoms.m−3,
with Ps(773) = 4.8× 10−3 mbar [78]. Therefore, in approximately ten operating days,
all the lithium would have been expelled from the oven.

However, since most of the lithium atoms in this calculation are sent to the colli-
mation tube walls and not far away in the experiment walls, we can recycle them. As
for the absorption cell (see part 1.2.3), we actually covered the collimation tube inner
walls with a stainless steel mesh (Alpha Aesar 013477). Thus, since lithium surface
tension decreases with temperature, capillary forces bring back the lithium towards the
oven [70]. The mass loss rate is thus rather given by the mass flux coming out of the
collimation pipe, similarly to equation 1.19:

Γm =
nmv̄A2

4πd′2
≈ 4× 10−9g.s−1 ,

where
√
A/π ≈ 2.5 mm is the effective radius, since the capillarity meshing reduces

the radius by 0.5 mm, and d′ = 80 mm is the length of the collimation tube. This
corresponds to a lifetime of ∼ 50 years. Therefore, we could in principle increase the
oven temperature, in order to increase exponentially the atomic flux, and thus the
loading rate of the MOT. However, above 475◦C, collisions of the unslowed atoms of
the oven with the MOT atoms start to play a significant role and are harmful for the
MOT lifetime. Then, we decided not to exceed 500◦C. This effect of collisions has been
observed by blocking the jet with the mechanical shutter, for different temperatures,
while measuring the MOT lifetime. We also see it on Figure 1.16, where we plot the
6Li-MOT capture rate as a function of the lithium oven temperature. The solid curve
is a fit from expression L(T ) ∝ Φ0(T )R(T )R′R′′ found for the theoretical flux in the
previous part (see equations 1.18 and 1.21). The fit is good until 475◦C, where it starts
to diverge from the experimental data, showing that our ballistic model is not valid
anymore above this temperature: intrabeam collisions inside the collimation tube and
collisions with MOT atoms become probable.
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Figure 1.16: 6Li MOT loading rate as a function of oven temperature. The solid curve
is a fit using the theoretical flux of the Zeeman slower (see equations 1.18 and 1.21).
The fit is good until 475◦C, where it starts to diverge from the experimental data,
showing that our ballistic model is not valid anymore: intrabeam collisions inside the
collimation tube and collisions with MOT atoms occur.

1.3.7 Coils

As explained in part 1.3.2, we choose the following parameters for the Zeeman slower:
vc = 838 m.s−1, l = 55 cm, δ = −75 Γ and α = 0.34. This leads to the theoretical
profile shown in Figure 1.13.

To design the assembly of coils that can generate such profile, we proceeded the
following way. In a Mathematica program, for each of the two parts of the spin-flip
slower, we superimpose on top of each other N solenoids of lengths li and radii ai
(i = 1, N), those quantities being a priori different for the two sides (see Figure 1.17).
The current I and the number of loops per meter n are identical for all the layers and
for the two sides of the slower. The quantities n and ai are fixed by the size of the
square wire (APX France copper CL H 1.6 mm × 2.5 mm with a 0.5 mm insulation
layer), by the internal radius of the slower, fixed to be 3.3 cm, and by the fact that
the layers are on top of each other. In the normal Zeeman side, all the layers start
at zs

i = 0 and end at ze
i = li. In the inverted Zeeman side, the layers start at zs

i = l
and end at ze

i = l − li. For given numbers of layers, we fit the theoretical profile of
Figure 1.13 by the sum of the fields generated by each layer i:

Bi(z) =
µ0nI

2

[
z − zs

i√
a2
i + (z − zs

i )
2
− z − ze

i√
a2
i + (z − ze

i )
2

]
.

The fit variables are the common current I and the lengths li. We then optimize the
results by changing the numbers of layers. This give us a final current of I = 12 A, 18
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Figure 1.17: Sectional drawing of the numerical model of the 6Li Zeeman slower. Each
side of the spin-flip Zeeman slower is made from superimposed solenoids of length li
and radius ai (i = 1, N).

layers for the normal slower and 8 layers for the inverted one. The numbers of turns
of each layer are respectively for the two sides (136, 134, 129, 117, 106, 94, 81, 65,
51, 17, 16, 16, 16, 16, 16, 16, 16, 16) and (18, 17, 16, 16, 15, 14, 13, 11). In order
to compensate the bias field created at the MOT center by the inverted Zeeman, we
added a counter Zeeman coil 12.7 cm after the MOT (see Figure 1.1). It consists of
4 layers, over a 10 cm total length. The field obtained with this design, as well as a
Catia view of the coils assembly are shown in Figure 1.18.

Before we started winding the Zeeman slower, we performed a numerical simulation
in order to check the effect of this magnetic field on the atoms. It is based on a simple
dynamic simulation, where the force is the radiative pressure, including the Zeeman
shift calculated from the profile B(z) of Figure 1.18, and the Doppler shift kv. We used
a uniform random assignation of the initial positions and a thermal-gaussian random
assignation of the initial velocities. This simulation confirmed our choice by giving an
efficiency close to the theoretical one (see part 1.3.5).

We then assembled the slower (see Figure 1.19) and measured the axial field with a
home-made Hall probe (from chip UGM3503U). Results are in perfect agreement with
the theoretical field, as shown in Figure 1.18.

The total coil assembly is mounted in series and fed with a common Delta Power
supply in constant current (CC) mode. This supply is remote controlled via an analog
output of the main computer (see part 1.5). In addition, a metal-oxide semiconductor
field-effect transistor (MOSFET) such as the one used for transport (see part 4.5.2)
allows to switch the Zeeman field on and off. The counter Zeeman has an additional
power supply placed in parallel, to allow for fine adjustments of the bias field. By
observing the 40K MOT position in pulsed mode for the Zeeman currents we could
tune this offset current to 6 A, so that the MOT remains at the same position, whether
the Zeeman field is on or off.

Since the Zeeman coils can not be easily wound on the vacuum system, we wound
it on the tube before assembling the vacuum chamber. Thus, it required special care
as far as the baking was concerned. First, the wire insulation can stand 200◦C and
there is a thermal insulating Kapton layer just under the coils. Secondly, a Garnisch
heating cable (GGCb250-K5-19) was wound around the vacuum tube for heating. We
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Figure 1.18: 6Li Zeeman slower magnetic field as a function of the position in the
slower. The solid line is the theoretical magnetic field obtained with the assembly of
solenoids in order to be close from the desired profile of Figure 1.13. The dots are
the measurements inside the Zeeman tube, performed before assembling the vacuum
system with a home-made Hall probe. In addition, we superimpose a Catia view of
the coil assembly. Note the presence of a normal slower, an inverted one, as well as a
compensating counter slower placed after the MOT in order to reduce the bias field of
the inverted Zeeman slower.

Figure 1.19: 6Li Zeeman slower.
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Figure 1.20: 6Li capture rate as a function of the Zeeman slowing power. The repump-
ing power is kept to 5.5 mW. With our 45 mW value we are in the saturation regime.
The fact that this curve does not saturate around 8 mW, which corresponds to Isat in
the Zeeman slower, is due to the security factor α that shifts the atoms from resonance
in the operating regime of the slower (see part 1.3.3), and to the gaussian beam profile
that reduces the intensity seen by the atoms away from the axis of the slower.

then covered it by two layers of water tubing, before winding the solenoids, to allow
for efficient cooling during experimental operation.

1.3.8 Laser beam

As explained in part 1.3.2, the slowing laser beam is a bichromatic beam containing
both the slowing and repumping frequencies. The first is amplified through a dedicated
tapered amplifier, whereas the second is not amplified, as shown in Figure 1.7. Both
beams are recombined on the lithium optical table (see part 1.2.1) and transferred
towards the main table through a polarization maintaining single-mode optical fiber.
The total power equals 50 mW, with 8 times more slowing than repumping power in the
optimal case (see Figures 1.20 and 1.21). In order to take into account the divergence
of the jet, and to add a transverse cooling effect, the slowing beam is first extended
and then focalized on the oven. Thus, the diameter equals 31 mm at the MOT center.
Using those numbers we estimated the resonant saturation parameter s0 to be of the
order of 6. Both frequencies are red detuned by δ = −75 Γ (see Figure 1.6) and their
linear polarizations are converted into a σ+ one, with respect to the entrance field of
the Zeeman, using a polarizing beam-splitter and a quarter-wave plate. Note that, due
to the different Zeeman effects occurring for the two hyperfine ground-states [69], the
repumper light is resonant only in the inversion region where B = 0. Note also that,
since the polarizations of both frequencies are orthogonal due to their recombination on
a polarizing beam-splitter before the fiber, we loose 50 % of the power on the polarizing
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Figure 1.21: 6Li capture rate as a function of the ratio between Zeeman repumping
and slowing intensities. The slowing power is kept to 45 mW. We see that without
repumping the efficiency of the slower is very small, which we attribute to the zero
field depolarizing region of the spin-flip slower. On the other hand, we only need a few
milliwatts of repumper light since the efficiency saturates quickly.

beam-splitter that is placed after the fiber and before the quarter-wave plate. Even if
we did not have any lack of optical power at the time of this thesis, we could avoid this
loss in the future by mixing both frequencies with the same linear polarization before
the fiber, using a small angle between the beams.

1.4 40K 2D magneto-optical trap

As for 6Li, due to the low saturated vapor pressure of 40K, we can not use a direct 3D
magneto-optical trap loading from a vapor in the case of 40K. Moreover, the natural
isotopic abundance of 40K equals 0.012 % (see part 1.2.3), thus the other isotopes
would pollute strongly the vacuum quality. Thus, we also need an atomic source for
40K. Nevertheless, the Zeeman slowing technique presented in section 1.3 would not
be a relevant choice due to the low abundance of 40K. Even with an enrichment of
a few percent, the Zeeman slower would require a strong heating and thus a large
consumption of the expensive enriched 40K. We thus decided to a implement another
efficient loading technique, requiring a smaller temperature : the 2D magneto-optical
trap (2D-MOT) [80, 81]. Even if it is less robust than a Zeeman slower, since it
depends on precise beam alignment and power, it offers the advantage of avoiding
the bias magnetic field of an inverted slower (see part 1.3.2). Once our 2D-MOT was
optimized, we could get a 40K flux of 1.4× 109 atoms.s−1.

In this section, we present first a description of the 2D-MOT, including our coils
design. Then, we turn to technical aspects about the vacuum, before giving an exper-
imental characterization of the 2D-MOT optics and the atomic jet.
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Figure 1.22: Scheme of the 40K 2D-MOT loading of the MOT.

1.4.1 Description

A schematic drawing of our 2D-MOT is given in Figure 1.22. The principle is similar
to the one of the 3D MOT (see part 2.1): a combination of red-detuned counter
propagating laser beams slows down the atoms at the center of a magnetic quadrupole
trap. However, as indicated by its name, the 2D-MOT works in two dimensions,
transversally to the jet axis. In the longitudinal direction there is a priori no cooling
effect, and the central line is characterized by a zero field so that there is no trapping
along this axis. Nevertheless, in our case we add a 1D optical molasses in this direction
[80] in order to cool down the sample further, and we increase the power of the pushing
beam with respect to the one of the retarding beam, in order to push the atoms towards
the MOT region, 45 cm further. For this purpose, there is a 2 mm hole placed on the
45◦ retro-reflecting mirror of the retarding beam to allow for the atoms to pass through.

The hole in the retro-reflecting mirror plays two additional roles. First, it serves as
differential pumping tube, as described in part 1.4.2. Secondly, it collimates the atomic
jet by spatial filtering of the transverse velocities, similarly to the Zeeman slower tubes
(see part 1.3.4). Note that this transverse filtering ensures as well that the exiting
atoms are longitudinally cooled. In fact, an atom with a small longitudinal velocity
will spend a longer time in the transverse cooling region than an atom with a higher
longitudinal velocity. Therefore, its transverse velocity will be more efficiently reduced.
Thus, in average, longitudinally slow atoms will be less filtered out by the hole than
the others, inducing an effective cooling effect of the distribution after the hole.

The 2D-MOT chamber consists of a rectangular parallelepipedic glass cell of 110×
55×55 mm3 (see Figure 1.22). It is connected to the octagonal MOT chamber through
a 45 cm DN38 tubing (see Figure 1.1), including an inner differential pumping tube and
a separation Ultra-High Vacuum (UHV) valve from MDC-Caburn. The retro-reflecting
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mirror, inside the glass cell, is a 45◦ polished stainless steel mirror, with 50 % nominal
reflectivity. It has a 2 mm hole at its center in order to let the atomic jet exiting the
cell towards the MOT.

Four home-made rectangular coils are placed around the cell in a PVC cage system.
They create a transverse quadrupole profile which is invariant by longitudinal transla-
tion, if we neglect the border effects. Each coil is connected by an individual 15 V-10 A
Delta power supply for fine tuning of the field profile, as explained in part 1.4.3. The
transverse gradient around the central line equals 11 G.cm−1.

1.4.2 Vacuum and pressure

The potassium atoms originate from a 100 mg Technical Glass ampoule with an en-
riched vapor of 4 % in 40K. This sample costs around 1000 e per milligramme of 40K
which is expensive. The ampoule is placed inside the vacuum in a soft DN16 bellow ap-
pendix connected through a UHV valve to the intermediate region in between 2D-MOT
and MOT (see Figure 1.1). However, note that due to the presence of a differential
pumping tube (see engineering drawing in appendix A.6), there is no direct connexion
between the ampoule and the MOT region, without passing by the 2D-MOT cell. The
ampoule could be broken after baking by simply bending the bellow.

The partial pressure of 40K is of the order of 10−9 mbar at room temperature [56],
which is not sufficient enough to have a good atomic flux exiting from the Zeeman. Our
pressure measurements by absorption in the cell [82] showed that the optimum loading
rate of the MOT is obtained for a 2.3 × 10−7 mbar total potassium pressure, which
corresponds to 45◦C. Under this value, the rate increases linearly with the pressure.
Above, it decreases because of the collisions that start to play a role. Thus, we heat
the 2D-MOT region to 45◦C using a similar system as the one used for the lithium
oven (see part 1.3.6), including the regulating circuit and thermocouple, as well as the
thermocoax connected to an AC Transformer (Variac).

Due to the heating of the potassium ampoule, the vacuum quality would reduce in
the MOT region. Therefore, in order to prevent the 2D-MOT region from polluting
the MOT region, it is compulsory to add a differential pumping stage in between. It
consists of three joined pipes (see engineering drawing in appendix A.6): the cylinder
hole in the mirror (see part 1.4.1) of 2 mm diameter and 20 mm length, a tube of 5 mm
diameter and 116 mm length, and a tube of 10 mm diameter and 86 mm length. Then,
there is a standard DN38 tube over a distance of ∼ 25 cm, including the separation
valve, until the center of the MOT chamber, the latter being pumped by a 40 L.s−1

Varian ion pump. Using similar calculations as the one developed in part 1.1.3, we
estimate the MOT pressure to be approximately 340 times lower than the 2D-MOT
one, that is of the order of 7× 10−10 mbar, which is reasonable for MOT operation.

Let us finally estimate the lifetime of our potassium reservoir. Since the 2D-MOT
region is connected to a 20 L.s−1 ion pump and isolated from the MOT region by the
differential pumping tube described above, the lifetime of the potassium is directly
given by the effective pumping speed S of the pump. Assuming an ideal gas law, as in
part 1.3.5, the mass loss rate is given by:

Γm =
Psat(T )

kBT
mS ,
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Figure 1.23: 40K MOT loading rate as a function of the detuning of the cooling light.

where m is approximated by the 39K mass, since this is the more abundant isotope.
Using the numbers given above, and S ≈ 9 L.s−1, due to the approximate 50 cm long
DN38 tube between the pump and the cell (see equations 1.1 and 1.2), we find a lifetime
of the sample of 3.2 × 107 s, which is of the order of two years of 12 hours operating
days. Nevertheless, note that in principle the pumped potassium could be recycled by
heating the pump.

1.4.3 Laser system

The cooling and repumping lights used for the 2D-MOT beams and the 1D molasses
come from a single bichromatic beam originating from the potassium optical table (see
part 1.2.1). As shown in Figure 1.7, the principal and repumping beams are recombined
before a tapered amplifier in which they are amplified. After a single-pass AOM used
as a switch, the beam is sent to the main table through a polarization-maintaining
single-mode optical fiber. Its total power equals 450 mW, with a third of it attributed
to the repumper. This optimal value is quite high and we attribute it to the small
hyperfine structure of the excited state of 40K. The cooling frequency is red-detuned
by −2.5 Γ and the repumping one by −3.5 Γ (see Figure 1.6). We see on Figure 1.23
that there is a MOT-like trade-off behavior as far as the cooling detuning is concerned:
high detunings lead to bigger capture speeds, since vcap ≈ −δ/k due to the Doppler
resonance condition (see part 2.1.7), whereas low detunings increase the cooling force.

Then, the beam is expanded with a telescope to a diameter of 27.5 mm before being
divided into two parts using a polarizing beam-splitter and a half-wave plate. The first
part is dedicated to the transverse cooling. It contains 75 % of the power. The second
part is dedicated to the 1D imbalanced molasses.

As shown in Figure 1.24, the transverse cooling power is not sufficient to reach sat-
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Figure 1.24: 40K MOT loading rate as a function of the power of the transverse cooling
light, the ratio between repumping and cooling powers being kept constant.

uration, but gives an acceptable MOT loading rate. The transverse beam is doubled
in size along the atomic jet direction, using a cylindrical telescope, before being circu-
larly polarized through a quarter-wave plate. The counter-propagating beam of each
transverse direction is obtained by a retro-reflexion on a prism, fixed on a micrometric
mount (Newport M-UMR5.16) which has the property to conserve the helicity and the
direction after reflexion on its 90◦ corner. Due to 20 % losses in the glass cell and the
prism, leading to a subsequent power imbalance in a given transverse direction, the
quadrupole zero line is slightly shifted by changing the individual currents of the coils
(see part 1.4.1) in order to optimize the MOT loading rate.

The beam dedicated to the longitudinal 1D imbalanced molasses contains the re-
maining 25 % of the initial power. It remains linearly polarized, since we do not have
any trapping in the longitudinal direction, and it is divided in two parts using another
polarizing beam-splitter and a half-wave plate. The first ones serves as a pushing beam
and contains 85 % of the molasses power, which corresponds to the optimal loading
rate as shown in Figure 1.25. As a remark, this high ratio between pushing an retard-
ing beam is due to the fact that just above the hole there is no pushing beam anymore
due to the presence of a dark cylinder. Thus, the retarding beam pushes the atoms
down to the mirror or to the walls of the hole, if the initial pushing acceleration is not
sufficient.

1.4.4 Atomic jet

In this part, we describe the atomic jet obtained with the optimal parameters given
in the previous ones. First, we could get two important pieces of information by
recording the number of atoms in the 40K MOT, after having switched on the 2D-
MOT, and during short times in order to neglect the one and two body losses that
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Figure 1.25: 40K MOT loading rate as a function of the intensity ratio between the
pushing and retarding beams of the 1D molasses.

occur at high numbers of atoms. Results are shown in Figure 1.26. Assuming a
ballistic evolution, which means neglecting the collisions, is a valid hypothesis at our
2D-MOT temperature according to [82]. In that case, the delay of 23 ms observed on
the graph between the switching on of the 2D-MOT and the loading of the MOT is
directly due to the time needed for the jet to reach the octagonal MOT chamber. If
we divide the average length of 50 cm between the two traps (see Figure 1.22) by this
delay, we get an estimate of the jet velocity. It is of the order of 22 m.s−1 which is close
from the 40K MOT capture speed that equals ∼ 14 m.s−1 (see part 2.1.7), leading to
a better capture efficiency than the 6Li Zeeman slower. In addition, the slope of the
curve gives the loading rate. It equals 1.4× 109 atoms.s−1, which is close from the one
we have for the 6Li Zeeman slower (see part 1.3.5).

Another feature of the atomic jet, as for the 6Li Zeeman slower (see part 1.3.4), is its
divergence. Using the dimensions of the differential pumping tubes given in part 1.4.2,
we see that the second tube is the one limiting the angle. The half-angle divergence
is approximately 20 mrad, which means a maximal transverse displacement of 1 cm at
the MOT center. This value is slightly smaller than the radial size of the MOT beams
(see part 2.3.1). Therefore, in contrast with the 6Li Zeeman slower, the divergence of
the 2D-MOT is not critical.

In this calculation, we forgot gravity. This approximation is relevant since in τ =
23 ms the transverse displacement equals gτ 2/2 ≈ 2.6 mm, which is small compared
to the divergence itself.

In conclusion, our 2D-MOT technique seems more efficient than our Zeeman slower,
both in terms of velocity and divergence, demonstrating that this was a good choice
for this expensive rare element. However, the loading rate remains very close from the
one obtained for 6Li, which comes from the fact that 40K is only present to 4 % in
the potassium ampoule, whereas 6Li is nearly pure in the lithium oven. With 39K, we
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Figure 1.26: Number of 40K atoms in the MOT as a function of time. t = 0 corresponds
to the switching on of the 2D-MOT.

would expect a 25 times higher loading rate.

1.5 Computer control

Some particular stages in the experimental sequence require accurate timings. For
instance, the 40K optical pumping (see part 3.2.3) lasts 50 µs. Moreover, several
tasks have to be performed simultaneously. Before magnetic trapping, we have to hide
simultaneously the beam with mechanical shutters, switch off their AOM and shift their
frequencies, while switching off the field and starting the optical pumping sequence.
Therefore, the experiment is controlled via two computers, connected together through
a dedicated network. One main National Instrument computer contains the main
program as well as the analog and digital cards. One analysis Dell computer contains
the imaging software (see part 2.2.2) as well as the transport program (see part 4.5.6)
and stores the experimental data.

The main computer is connected to an external Digital Output/Input (DOI) board,
which serves as an independent clock, with a clock rate of 20 MHz. Therefore, a
computer slow down does not affect the experiment. Because of the high loading
time requested by the big number of time steps, and since the typical timing of the
experimental control is not below 1 ms, the clock step is increased to 500 µs. However,
imaging and spin-polarization request fast sequences. Thus, for imaging, the time step
is reduced to 10 µs, whereas for spin-polarization, the fast sequence is loaded into
an external Stanford Research Systems (SRS) arbitrary function generator, which is
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triggered by the slow sequence (see part 3.2.3). In all cases, the DOI board is preloaded
with the experimental sequence and then runs it through three analog cards and two
digital ones. The analog cards (National Instruments PXI-6713) contain 8 BNC output
ports each, delivering voltages up to 10 V with a maximal power of 2.5 W. Each digital
card (National Instruments PXI-6533) contains 5 registers of 8 ports that deliver 0-5 V
TTL signals.

Analog ports control either the Voltage Control Oscillators of the AOMs, or the
output voltage of the power supplies. In both cases, the outputs are isolated from the
command. However, this is not the case for the digital outputs, because they control
the switching of the circuits involving the previous power supplies, through Metal-
Oxide Semiconductor Field-Effect Transistors (MOSFET) and Insulated Gate Bipolar
Transistor (IGBT). Thus, since the card can be damaged by high feedback currents
passing through the gates of those transistors, we isolated the card and the experiment
by optocouplers (Avago Tech ACPL-J313). The isolation box and its power supply
were designed with engineer Toufik El Atmani, and assembled by Lionel Pérennès,
both from the electronics workshop of Laboratoire Kastler Brossel. The principle is
very similar to the isolation part of the transport logics box (see Figure 4.31).

The main program is written in C#. The interface window is divided in columns of
chosen durations, each line corresponding to a port where the desired value is entered.
In addition to constant values, it allows to ramp some signals from their initial values to
the entered ones, during the column duration. It also allows to loop a given sequence,
while scanning some parameters. After each sequence, an ASCII file containing all the
values is saved on the analysis computer, which is of great help for debugging and data
analysis. Symmetrically, the program can read a wave from an external ASCII file and
assign it to a given port. This is the strategy we used for the transport sequence as
described in part 4.5.6. Note that we recently decided to replace the main program by a
similar but more versatile control software: Cicero Word Generator, which is available
online and was written by Aviv Keshet, in the group of Wolfgang Ketterle at MIT. Its
full implementation in our experiment will be performed soon.
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1.6 Summary

In this chapter, we presented our experimental setup.
First, we assembled an ultra-high vacuum chamber allowing for a residual pressure

inferior to 10−11 mbar in the final cell, through several differential pumping tubes.
Then, using a Master Oscillator Power Amplifier (MOPA) scheme, we prepared a
powerful laser system giving typical powers of 500 mW for each species, at several
stabilized frequencies. The whole experiment is computer controlled.

Finally, we designed two performing atomic sources: a 6Li Zeeman slower, with a
loading rate in the MOT of 1.2 × 109 atoms.s−1, and a 40K 2D-MOT, with a loading
rate in the MOT of 1.4× 109 atoms.s−1.

Using this system, we can load a large double 6Li-40K MOT, as developed in chap-
ter 2.



Chapter 2

Magneto-optical trap

In chapter 1, we described the vacuum chamber as well as the two laser systems, the
two atomic sources and the computer control. In the present chapter, we focus on the
obtention of a large double 6Li-40K Magneto-Optical Trap (MOT) of respectively 5×109

and 8 × 109 atoms. This achievement is summarized in a dedicated publication [79].
In addition, we present the recent photoassociation of heteronuclear 6Li40K∗ molecules
in the MOT chamber. This result is the main topic of a coming publication [83].

The chapter is divided as follows. First, we present the principle of magneto-optical
trapping. Then, we describe the imaging diagnostics that allow us to observe and ana-
lyze the trapped atomic clouds, before presenting the experimental characterization of
the single-species and double-species traps. Finally, we present the first photoassocia-
tion of cold 40K40K∗ homonuclear molecules, and cold 6Li40K∗ heteronuclear molecules.

61
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Figure 2.1: 1D principle of Doppler cooling. The counter-propagating laser beams of
pulsation ωL are red-detuned with respect to the atomic transition of pulsation ωat.
Then, for an atom of velocity v and a laser wave-vector k, the Doppler effect −k · v
compensates the red-detuning only for k · v < 0. As a consequence, an atom preferen-
tially absorbs a photon of opposite impulsion, and thus is slowed by its recoil impulsion.
Picture taken from [73].

2.1 Principle

After several attempts with direct evaporative cooling on hydrogen [84], the magneto-
optical trap (MOT) was found to be a key intermediate stage in the production of
the first BEC [9]. It is now commonly used in cold atoms experiments as an efficient
technique to precool down alkali atoms, or atomic mixtures [85], to a few hundreds of
microkelvins.

In this section, we present the general principles of the MOT, including the cooling
and trapping forces, the Doppler temperature and the rescattering process. We finally
estimate the phase space-densities and the trap depths of the 40K and 6Li single species
MOTs.

2.1.1 Doppler cooling

In a first approximation, the MOT cooling principle is the Doppler cooling, which is
depicted in 1D in Figure 2.1. The counter-propagating laser beams are red-detuned.
Then, for an atom of velocity v and a laser wave-vector k, the Doppler effect −k·v com-
pensates the red-detuning only for k · v < 0. As a consequence, an atom preferentially
absorbs a photon of opposite impulsion, and thus is slowed by its recoil momentum.
Since the subsequent spontaneous emission is isotropic, it does not contribute to the
average velocity of the atom.

2.1.2 Zeeman trapping

The trapping principle is explained on picture 2.2. For a pedagogical purpose, we
depicted a simple two level transition in 1D: from F = 0 to F ′ = 1, in a quadrupolar
field (see part 3.1.1). Due to Zeeman effect, and since the beams are red-detuned and
have opposite σ-polarizations, the beam coming from the right is more resonant with
an atom placed on the right than the beam coming from the left, leading to a pushing
in the left direction, and thus a restoring force.
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Figure 2.2: 1D principle of a magneto-optical trap. For a pedagogical purpose, we
depicted a simple two level transition: from F = 0 to F ′ = 1, in a quadrupolar field
chosen to be positive on the right and negative on the left. Thus, the Zeeman effect
increases the energy of m = 1 on the right, and decreases it on the left. Then, due to
the positive helicity of both laser beams, we have a σ− polarization on the right and a
σ+ one on the left. Since the beams are red-detuned, the beam coming from the right
is more resonant with an atom placed on the right than the one coming from the left,
leading to a pushing in the left direction, and thus a trapping at the center.

Figure 2.3 shows a 3D drawing of a MOT. The principle is similar to the one
introduced in 1D: in addition to the 3D quadrupolar magnetic trap generated by a
pair of anti-Helmholtz coils, two counter-propagating laser beams per direction of space
slow down the atoms at the center of the trap.

2.1.3 Total force

Let us now combine quantitatively the cooling and trapping principles introduced in
part 2.1.1 and 2.1.2. At low intensity (s0 = I/Isat << 1), we can approximate the
MOT force by the sum of the radiation pressures [76] of the two counter-propagating
cooling beams. Thus, in 1D along z, the total MOT force F (z, v) = F (z, v)uz is given
by:

F (z, v) = ~k
Γs0

2

(
Γ2/4

(δ − kv − µBbz/~)2 + Γ2/4
− Γ2/4

(δ + kv + µBbz/~)2 + Γ2/4

)
, (2.1)

where k = kuz (k > 0) is the wave-vector of the laser propagating towards increasing
z, and where the magnetic gradient b is positive, by our choice of current orientation.
Figure 2.4 shows a plot of F (0, v). For instance, we see that for v > 0 the force
is negative, leading to a friction effect. Moreover, around v = 0, this force can be
developped as a linear friction. The same arguments stand for the plot of F (z, 0), for
which we obtain a spring-like restoring force around the center.

Let us make three comments here. First, expression 2.1 is not valid anymore for in-
tensities of the order of Isat. An exact expression would take into account the total local
field amplitude and the interferences, as well as the saturation of the atomic transition.
Secondly, this cooling and trapping technique based on resonant light absorption con-
tains some fundamental limits as far as the maximal achievable phase-space density is
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Figure 2.3: Schematics of a magneto-optical trap. In addition to quadrupolar magnetic
trapping (field lines in blue), generated by a pair of anti-Helmholtz coils (see part 3.1.1),
a radiative cooling is realized through two counter-propagating laser beams per direction
of space (red). Those two beams have opposite circular polarizations with respect to the
chosen quantification axis.

Figure 2.4: 1D total MOT cooling force (dashed line) at the center of trap as a function
of velocity (see expression 2.1). The single radiation pressures of each laser beam are
plotted in solid line. For v > 0, the force is negative, leading to a friction effect. Around
v = 0, the force can be developped as linear friction. Picture taken from [73].
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concerned. We study this further in part 2.1.5 and 2.1.4. Thirdly, a two-level atom is
needed for the resonance condition to remain identical. This can be approximated by a
closed transition in presence of σ-polarized light. Nevertheless, the hyperfine structures
of the excited states of 6Li and 40K (see Figure 1.6) are so small that such a closed
transition does not exist in our case, leading to losses towards the wrong hyperfine
ground-state. Thus, it is compulsory to add a repumping light in the experiment, in
order to bring back the atoms in the cooling transition.

2.1.4 Doppler temperature

In this part, we recall a simple Doppler model in order to estimate the temperature in
a MOT. For this purpose, we restrict ourselves to a two level atomic spectrum. During
the absorption-emission cycles, since the spontaneous emission is a random process,
the MOT atoms follow a random walk in momentum space with a step of the order of
the photon momentum ~k. This process heats the atoms and thus limits the minimal
temperature we can obtain by laser cooling. We now estimate the minimal temperature
reachable in our 6Li-40K MOT. As for any random walk, the variance of the atomic
momentum 〈p2〉 follows a diffusion process:

d〈p2〉
dt

= 2D ,

where D is the diffusion coefficient whose exact calculation can be found in [86]. Let
us estimate it with simple arguments here. D should be homogenous to a momentum
squared divided by a time. The typical momentum of this problem is the recoil mo-
mentum ~k, and the typical time is the inverse of the cycling rate Γs, where s is the
saturation parameter. Thus, we can write:

D = (~k)2Γs . (2.2)

For this process the fluctuation-dissipation relation is given by:

kBT =
D

γ
, (2.3)

where γ is the friction coefficient, obtained by linearizing the MOT cooling force (see
equation 2.1) Fcool around null velocities:

Fcool = −γv = 2~k2s
Γδ

δ2 + Γ2/4
v .

Combining this expression with equations 2.2 and 2.3 leads to the equilibrium condi-
tion:

kBT =
~Γ

2

δ2 + Γ2/4

Γ|δ| . (2.4)

When δ = −Γ/2, this quantity reaches a minimum given by kBTD = ~Γ/2. TD is
called the Doppler temperature and equals approximately 140 µK for 6Li and 40K
(see appendix A.1). Putting the detunings of our double MOT (see table 2.1) in
equation 2.4 gives: TK = 225 µK and T Li = 358 µK. Those values are slightly higher
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than the Doppler temperature, since the optimal detunings are different from −Γ/2
(see part 2.3.2).

One should keep in mind that other effects are not taken into account in this
simple estimate. For instance, in the case of 40K, the sub-Doppler mechanisms linked
to the hyperfine structure of the atomic spectra can reduce the minimal temperature
[87, 88, 89]. For 6Li, on the contrary, due to the small hyperfine splitting of the excited
state the sub-Doppler cooling is reduced.

2.1.5 Light rescattering

In a MOT, atoms are continuously absorbing and emitting resonant photons. As a
consequence, the light absorbed by an atom is reemitted and can be absorbed by
another one. At high densities, this generates an average repulsive force [90] that,
among other effects such as oscillations [91], limits the density. Let us consider two
atoms separated by a distance r and introduce the saturation parameter:

s =
I

Isat

(Γ/2)2

δ2 + (Γ/2)2
,

In our MOT, according to table 2.1, we have sK ≈ 30 % and sLi ≈ 4 %. Thus we
can suppose s � 1 as a first approximation. Then, excited by the six detuned MOT
laser beams, the first atom emits 6Γs/2 photons per second. The second one absorbs a
fraction σ/(4πr2) of it, where we have introduced the absorption cross-section σ defined
as:

σ =
3λ2

2π

(Γ/2)2

δ2 + (Γ/2)2
.

Therefore, including the photon linear momentum ~k, we find a radiative pressure force
that repels the second atom from the first one:

Fscat = 3Γs~k
σ

4πr3
r .

This is a long-range, repulsive, diatomic force analogous to the Coulomb one. Note
that in fact σ should be replaced by the difference between emission and absorption
cross sections ∆σ = σe − σa [90]. Using this force we can estimate the equilibrium
density inside the MOT. Let us assume a constant density n in a spherical MOT of
radius R. The Gauss theorem gives a total force which is linear with r:

Ftot = nΓs~kσr .

Atoms are also feeling the MOT trapping force (see expression 2.1), that can be ap-
proximated around the center, for a null velocity, by a spring restoring force:

Ftrap = 2kµbs
Γδ

δ2 + Γ2/4
r ,

where µ is the atomic magnetic moment and b the MOT gradient. For δ < 0 those two
forces are opposite. They equilibrate when:

n =
16πµb

3~λ2

|δ|
Γ2

, (2.5)
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which does not depend on light intensity. Note that we can not increase too much |δ|
since it would reduce the capture efficiency. We finally estimate the maximal density for
each species using our optimized parameters reported in table 2.1: nLi ≈ 4×1010 cm−3

and nK ≈ 2 × 1010 cm−3. Nevertheless, this simple model does not take into account
a shielding effect, happening at high densities, that reduces the intensity seen at the
center of the cloud. This would lead to an additional compression [92].

2.1.6 Phase-space density

To estimate how close from degeneracy we can be in a MOT let us calculate the phase-
space density:

nλ3
dB = n(2πmkBTD)−3/2 ,

where we have introduced the de Broglie wavelength λdB and the atomic mass m. This
ratio is of the order of 1 when the system reaches degeneracy. Using equations 2.5, 2.4
and table 2.1, we find nλ3

dB ≈ 10−7 for 40K and nλ3
dB = 2×10−6 for 6Li. As we can see,

those values are far away from nλ3
dB ≈ 1. Magnetic trapping and evaporative cooling,

described in chapter 3, will bridge the gap.

2.1.7 Capture velocity and trap depth

Let us now give an order of magnitude of the MOT depth. We can estimate the capture
velocity by considering that the cooling force is maximal at resonance, that is for the
Doppler condition (see Figure 2.4):

vcap ≈ δ/k .

Using our MOT values (table 2.1) this gives: vK
cap ≈ 14 m.s−1 and vLi

cap ≈ 20 m.s−1.
Converting this into temperatures leads to TK

depth ≈ 0.9 K and T Li
depth ≈ 0.3 K. As we

can see, those trap depths are hundreds time bigger than the Doppler temperature
estimated in part 2.1.4.

2.2 Imaging and analysis

In this section, we describe the imaging tools, fluorescence imaging and absorption
imaging, and we illustrate the latter by characterizing the numbers of atoms, the
densities and the temperatures of the single 40K and 6Li MOTS, as well as those of the
double 6Li-40K MOT.

2.2.1 Fluorescence imaging

In the particular case of MOT, the cloud continuously absorbs the cooling photons, and
reemits them by spontaneous decay. Thus, a MOT emits light as shown in Figure 2.5.
This light can be collected by a lens and focused on a photodiode. Then, the number
of atoms can be deduced from the signal, as explained in the following.
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Figure 2.5: Picture showing 40K-MOT fluorescence in the preliminary experimental
setup.

Let us consider a cloud of N atoms. The steady-state population Ne of the excited
state of the cooling transition is given by:

Ne =
1

2

s0

1 + s0 + (2δ/Γ)2
N ,

which corresponds to an emitted power of:

P =
NΓ~ω0

2

s0

1 + s0 + (2δ/Γ)2
. (2.6)

The detected power P ∗ is then an angular fraction of P :

P ∗ =
πr2

4πd2
P , (2.7)

where r is the radius of the collecting lens, placed at distance d from the cloud. Then
combining equations 2.6 and 2.7, we obtain:

N =
8d2

r2

P ∗

Γ~ω0

1 + s0 + (2δ/Γ)2

s0

.

Note that this formula requests a calibration of the photodiode in power, and a
precise calculation of the solid-angle. Furthermore, it is not valid at high numbers of
atoms for which rescattering occurs (see part 2.1.5), and it contains some inhomoge-
neous Zeeman shift due to the presence of the quadrupolar magnetic field. Therefore,
it is less precise than the absorption imaging technique (see part 2.2.2). We thus only
use it, after calibration, as a diagnostic tool for optimization and control of the MOT
concerning its position, shape, size, fluorescence level and loading time. Nevertheless,
it has the great advantage to be a continous detection method, so that we used it for
photoassociation experiments (see part 2.4), where the precise number of atoms was
not of major interest.
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Practically, we have two such diagnostics. One for each species. The fluorescence
light is separated on a cube and sent to two identical detection systems. Each one
consists of a f = 4 cm lens (1 inch diameter), a 10 nm interference filter centered on the
desired wavelength, and a home-made amplified photodiode (Hamamatsu 1223018E)
mounted on a micrometric xy-mount (Newport M-UMR5.16).

In addition, an infra-red TV-camera control system is continuously sending pictures
from the fluorescence. It gives rudimentary information about the presence of clouds,
its shape and its position. This information is collected in a different direction than
the photodiodes one, leading to an overall 3D diagnostic.

2.2.2 Absorption imaging

This part is dedicated to the description of the absorption imaging diagnostics. First,
we explain the principle of this method, by showing how we can obtain the 1D-
integrated density profile of the cloud. Secondly, we present some technical aspects
on the imaging beam. The imaging program Eric, written in Python, is identical to
the one used in the lithium group at ENS [93].

Principle

The absorption imaging is based on the following principle. A resonant laser beam is
sent on the atomic cloud, and the transmitted profile, after partial inhomogeneous ab-
sorption, is recorded on a Charge-Coupled Device (CCD) camera. For a given imaging
direction x, the transverse intensity profile I(y, z) on the camera equals:

I(y, z) = Ibg(y, z) + T (y, z) · I0(y, z) . (2.8)

In this formula, Ibg(y, z) is the background intensity on the camera, in absence of
imaging beam. It includes the ambient light and the dark current of the camera.
T (y, z) is the transverse transmission profile due to the cloud, and I0(y, z) is the beam
intensity at the camera position, in absence of atoms. The latter can be measured by
taking a reference image of intensity Iref(y, z), without atoms, and by substracting the
background intensity:

I0(y, z) = Iref(y, z)− Ibg(y, z) . (2.9)

Let us introduce the optical density D(y, z) = − ln[T (y, z)] along the beam path. At
low intensity with respect to Isat (see appendix A.1), D(y, z) is determined by the
1D-integrated density profile through a Beer-Lambert law:

D(y, z) = σ

∫ ∞
−∞

dx n(x, y, z) , (2.10)

where n(x, y, z) is the local density of the cloud, and σ the absorption cross-section at
low intensity given by:

σ ≈ C2 σ0

1 + (2δ/Γ)2
, (2.11)

where σ0 = 3λ2/(2π) = Γ~ω0/(2Isat) is the resonant cross-section, and C is the Clebsh-
Gordan coefficient of the imaging transition. This coefficient equals 1 for a closed two
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level transition. When the atoms are not optically pumped to the cycling transition
before imaging, which is our case, it is given by the average C2 of all possible transitions,
if we assume equally populated Zeeman levels. Then, it equals typically 0.5 for 6Li and
0.4 for 40K. Note that, at low intensity with respect to Isat, σ does not depend on
the imaging intensity (see equation 2.11), which is a key requirement of this imaging
technique.

Finally, using equations 2.8, 2.9 and 2.10, we can summarize:∫ ∞
−∞

dx n(x, y, z) =
1

σ
ln

[
Iref(y, z)− Ibg(y, z)

I(y, z)− Ibg(y, z)

]
. (2.12)

We see that it requests three pictures to obtain the 1D integrated density profile: one in
presence of the cloud; one reference picture without the atoms, by waiting enough time
or detuning sufficiently the beam to avoid absorption; and one background picture,
without atoms and beam. In part 2.2.3, we deduce some thermodynamical properties
of the MOTs from this integrated density profile.

Imaging beam and camera

As described above, we need small imaging powers. Therefore, the imaging beam of
each species is not reamplified through a tapered amplifier, but is directly collected
from the output of the first optical fiber (see Figure 1.7). Note also that it does not
contain the repumping frequency, since this makes no significant difference, as observed
experimentally. However, in the particular case of Dark-MOT technique used for the
MOT (see part 2.3.3), it is compulsory to perform a preliminary 500 µs hyperfine
pumping before taking an image, in order to pump back the atoms from the wrong
hyperfine ground-state.

On the main table, the beams of both species are combined into one single bichro-
matic beam using a dichroic mirror, before being expanded by a factor ten. Then,
the bichromatic beam is divided into two parts using a broadband polarizing beam-
splitter: one part for the MOT chamber imaging, the other one for the science cell
imaging. Finally, each part is circularly polarized by a zeroth order quarter-wave plate
at the potassium wavelength - which happens to work sufficiently well at the lithium
wavelength. Both frequencies are resonant with the corresponding atomic transitions
(see Figure 1.6), and their intensities are of the order of s0 = 1% of Isat (see ap-
pendix A.1). After the cloud, the exiting beam is focused on a CCD sensor by a 6 cm
lens for the MOT chamber, and by a 7.5 cm lens for the science cell. In both cases, the
magnification factor equals 0.4. The duration of each imaging pulse was chosen to be
τim = 100 µs. This corresponds to Γτims0/2 ≈ 20 photons absorbed per lithium atom
during the imaging time, and thus a typical Doppler shift of typically Γ/2. Therefore,
this imaging time is a maximal limit. In contrast, a smaller time would reduce the
intensity-to-noise ratio, as observed experimentally.

To improve the accuracy of imaging, we can increase and fix the value of coefficient
C2 (see equation 2.11). For this purpose, we need to control the spin state of the
atoms before imaging. An efficient solution is to switch on a small bias field after the
magnetic trapping stage, in order to adiabatically bring the polarization of the atoms
in the same orientation, without changing their internal spin state. We thus wound two
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Figure 2.6: 40K Number of atoms in the science cell after 1.1 ms time-of-flight as a
function of imaging frequency, for different imaging configurations. The bias field is
vertical and parallel to the imaging beam.

coils of ten turns and 5.5 cm radius in Helmholtz configuration and placed them in the
same direction as the final quadrupole trap ones (vertical axis). In those coils, we pass
a 5 A current which creates a bias field of the order of 2 G at the center. We checked
experimentally that this could help, in combination with the σ+ polarization of the
imaging beam, to image the atoms into the closed transition: |F = 9/2,mF = 9/2〉 to
|F ′ = 11/2,m′F = 11/2〉 for 40K and |F = 3/2,mF = 3/2〉 to |F ′ = 5/2,m′F = 5/2〉 for
6Li, and thus to ensure a C2 = 1 coefficient, as for a two level transition. Figure 2.6
shows such a result. We actually find a factor 2 between the maxima.

As far as the CCD cameras are concerned, we use two Pixelfly cameras, one for
each chamber. Their chip consists of 1394× 1024 square pixels of size 6.45 µm. They
can detect signals down to typically s0 ≈ 10−8 for each species, which corresponds
to the dark noise limit. The double tracks memory allows for a 5 µs delay between
two single pictures, and it has a readout time of 45 ms. Thus, we could implement a
fast imaging sequence, in order to limit the fluctuations between the imaging pulses:
first, the main picture is taken; secondly, 2 ms after, the reference one is taken, with a
−10 Γ detuning in order to have a transparent medium for the beam (since the cloud
is still present after 2 ms); thirdly, the background picture is taken, 45 ms later. Such
a normalized absorption picture is shown in Figure 3.8.
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2.2.3 Analysis

As explained in part 2.2.2, the absorption imaging technique allows to get the 1D-
integrated density profile. We can extract some relevant thermodynamical quantities
of the cloud from this integrated profile, such as numbers of atoms, local densities and
temperatures.

According to equation 2.12, the atom number is given by 2D-transversally integrat-
ing the optical density:

N = − 1

σ

∫ ∞
−∞

∫ ∞
−∞

dydz ln[T (y, z)] . (2.13)

Eric program offers to directly doubly integrate the optical density. It also displays
the central optical density value. Using the optimal parameters of Table 2.1, we obtain
single-species MOTs with large numbers of atoms: 8.9 × 109 for 40K, and 5.4 × 109

for 6Li, as plotted in Figure 2.7. Note that for the double 6Li-40K MOT, the numbers
of atoms were slightly smaller: 8 × 109 for 40K and 5.2 × 109 for 6Li. This is due to
inelastic interspecies collisions (see part 2.3.5). However, the optimal MOT parameters
of Table 2.1 were chosen in order to minimize those losses.

Since most of the traps that we use have a cylindrical symmetry around a z-axis,
the local density profile, and thus the sizes, are given by the inverse Abel transform of
the optical density:

n(r, z) =
1

σπ

∫ ∞
r

dy√
y2 − r2

∂ ln[T (y, z)]

∂y
, (2.14)

where r =
√
x2 + y2. This integral can be evaluated numerically and we computed

such a program. However, for the gaussian density case, it is easy to show that the
optical density D(y, z) is also a 2D-gaussian with the same widths. Thus, Eric program
offers to directly fits the optical density by a 2D-gaussian, and displays the y and z-
widths. With the parameters of Table 2.1, we find densities of 3× 1010 atoms.cm−3 for
40K, and 2×1010 atoms.cm−3 for 6Li, which are of the same order as the ones estimated
in part 2.1.5. Note that the typical diameter of the cloud is of the order of 1 cm in
both cases.

Finally, we can deduce the axial temperatures of the cloud by performing a time-
of-flight measurement. It consists in recording the diameter of the cloud under free
expansion, for various times t after the switch-off of the trap. In fact, in a given axis
x of ballistic expansion, the RMS position σ(t) =

√
< x(t)2 > is given by:

σ(t) =
√
< [x(0) + v(0)t]2 > =

√
σ(0)2 +

kBT

m
t2 , (2.15)

where T is the initial temperature in the x axis, and m the atomic mass. Therefore,
measuring the slope of σ(t)2 as a function of t2 gives the initial temperature. Using
this procedure, we found T = 290 µK for 40K, and 1.4 mK for 6Li. Figure 2.8, shows a
typical temperature measurement for 40K. Those values are above the Doppler cooling
limits calculated in part 2.1.4, mostly because of photon multiple scattering within the
atomic cloud (see part 2.1.5). As a remark, using a cooling transition with a narrower
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Figure 2.7: Number of atoms in the single-species MOTs of 40K (a) and 6Li (b), as
a function of the detuning of the imaging beam. The dots are the experimental data
obtained by double integration of the optical density (see equation 2.13). Since on
resonance the optical densities are too high, each graph saturates to a central plateau
and thus deviates from the expected lorentzian curve. Therefore, the lorentzian fit (line)
was performed on the wings only, with a fixed width that was measured independently at
low numbers of atoms in the MOT. Below are shown the absorption images of 40K (c)
and 6Li (d), as well as the 1D-integrated optical densities along the vertical direction,
which are proportional to the doubly integrated atomic densities ¯̄n (see equation 2.10).
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Figure 2.8: Time-of-flight measurement of 40K MOT temperature (see equation 2.15).

linewidth, like the 4S1/2−5P1/2 one for 40K [94] or the 2S1/2−3P3/2 one for 6Li [95, 96],
would help to decrease the Doppler temperature to a few tens of microkelvin. We plan
to test this idea for 40K with the 404 nm blue laser source that we built for high
resolution imaging (see part 3.4.6). An alternative option would be to use sub-Doppler
cooling [89, 97].

2.3 Experimental characterization

In section 2.1, we gave a simple theoretical picture of the MOT. Here, we present the
experimental optimization and characterization of both single MOTs of 6Li and 40K,
as well as the double 6Li-40K MOT. First, we describe the technical aspects about
optics and coils and we summarize the optimal parameters. Secondly, we present the
Dark-MOT scheme that allowed us to reach large numbers of atoms in the MOTs.
Thirdly, we study the lifetime in the trap and the inelastic losses. Finally, we present
the double species MOT and we quantify the interspecies collisions.

2.3.1 Practical aspects

Six beams are needed to generate the MOT configuration (see Figure 2.3). In addition,
those beams should contain both cooling and repumping frequencies of each species
(see part 2.1.3), and be σ-polarized (see Figure2.2). This configuration is achieved as
explained in the following.

The bichromatic beams of each species (see part 1.2.1) are combined on the main
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Physical quantity 40K 6Li

δcool [Γ] -3 -5
δrep [Γ] -5 -3
Ptot [mW] 220 110
Irep/Icool [%] 5 20
∂Bz/∂z [G.cm−1] 8 8

Table 2.1: Optimal parameters of the double 6Li-40K-MOT.

table using a dichroic mirror. The resulting beam is expanded by a telescope to a
1.1 cm waist. Afterwards, using two broadband polarizing beam-splitters, and some
broadband mirrors, the beam is separated into four parts. Before each cube, we use a
combination of two fourth order half-wave plates: one at the lithium wavelength, the
other at the potassium wavelength. In fact, a fourth order half-wave plate for the first
species acts almost as a lambda-plate for the second species in our case, and thus does
not change the second polarization. The four beams are attributed as follows: one of
them is used for the down-up vertical beam; another one for the up-down beam; and
the two others for the two horizontal directions. In each horizontal direction, there
is a reflexion on a flat mirror after the chamber, in order to generate the counter-
propagating beam. In addition, a f = 10 cm lens is placed before each retro-reflexion
mirror, in order to focalize the beam before its second passing through the chamber,
and to compensate the loss of intensity due to absorption in the first passing. Before
entering the chamber, the MOT beams are polarized with the helicities depicted in
Figure 2.3. As we can see, those helicities are identical for both beams in a given
direction, leading to opposite σ-polarizations with respect to the field orientation. In
addition, due to Maxwell’s law ∇ · B = 0, the field orientation is opposite between
an horizontal direction and the vertical direction of the anti-Helmholtz pair (see equa-
tion 3.3). Thus, the helicities have to be opposite between the horizontal plan and the
vertical axis.

As far as the MOT coils are concerned, we use the pair described in part 3.3.1 for
the magnetic trap. It is fed by a single 45 V-140 A Delta power supply whose output is
controlled in voltage (CV mode, see part 3.2.3) through the analog card of the National
Instrument computer (see part 1.5). The pair resistance is R = 0.178 Ω and it creates
an axial magnetic gradient of 0.936 G.cm−1.A−1.

2.3.2 Optimized parameters

The optimal parameters of the double-species MOT were found to be those presented in
Table 2.1. They allow us to generate the big and cold MOTs described in part 2.2.3. In
this part, we present some optimization graphs on the single MOTs, about the powers
and frequencies of the laser beams, as well as the dependency of the atom numbers
on the magnetic field. In each of those graphs, all the constant parameters are fixed
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Figure 2.9: Number of atoms in each single-species MOT: 40K (left) and 6Li (right),
as a function of the detuning of the cooling frequency.

Figure 2.10: Number of atoms in each single-species MOT: 40K (left) and 6Li (right),
as a function of the cooling power in each of the six beams.

to their optimal value for the double-species MOT, registered in Table 2.1. Note that,
due to the high number of parameters, the optimization process required many loops
over all the parameters. Here, we only present a summary of this procedure, and we
restrict it to single-species MOTs.

Let us start with the principal cooling beams. Figure 2.9 shows the number of atoms
in each single-species MOT as a function of the detuning of the cooling beams. In both
cases, we find the typical MOT trade-off behavior between high capture velocities at
high red-detunings, and high cooling efficiencies at low red-detunings. For 40K the
optimal detuning equals −3 Γ, whereas it reaches −5 Γ for 6Li. We fixed the detunings
to those optimal values. Figure 2.10 shows the number of atoms in each single-species
MOT as a function of the cooling power. In both cases, we observe a threshold behavior
and a saturation effect : for too low intensities, the cooling is not efficient enough to
reduce the atom energy notably under the trap depth; for too high intensities the
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Figure 2.11: Number of atoms in single 40K-MOT as a function of the ratio between
repumping and cooling powers, for different detunings of the repumper frequency: −3 Γ
(black, cross), −5 Γ (red, full) and −7 Γ (blue, point). The cooling power is kept at
40 mW in each beam.

cooling transition gets saturated and some additional effects, such as rescattering (see
part 2.1.5) or inelastic collisions (see part 2.3.4), appear and lead to trap losses; in
between the trapped numbers are quasi-proportional to the cooling intensities. For
40K we have a power of approximately 40 mW per beam, focalized over a waist of
8 mm, which corresponds to a resonant saturation parameter of s0 = 13. For 6Li we
have a typical power of 20 mW per beam, which corresponds to a resonant saturation
of s0 = 4.

The optimization of the repumping light is presented in Figures 2.11 and 2.12.
Note that the cooling power is kept constant to its value of Table 2.1. As we can see,
the behavior is slightly different for the two species. For 40K, at a given detuning of
the repumping light, we observe a trade-off behavior with a clear maximum: without
repumping, the small hyperfine structure of the excited state (see Figure 1.6) implies
a complete leak of the atoms in the dark F = 7/2 ground-state, whereas a lot of
repumping power forces the atoms to remain in the cycling transition where the high
cooling power used can induce losses through inelastic collisions (see part 2.3.4). The
fact that the optimal repumping power is quite small for an atom with such a narrow
hyperfine structure is explained in part 2.3.3. Besides, the displacement of the optimal
ratio towards small repumping powers with increasing detuning is not clear. This could
be due to the fact that the repumping light is more resonant with the jet from the 2D-
MOT at high detunings, since with a jet speed of 22 m.s−1 (see part 1.4.4) the Doppler
resonance condition occurs at a detuning of −5.6 Γ. For 6Li, on the contrary, there is
no trade-off behavior at a given detuning of the repumping light. The number increases
with repumping power and saturates. We attribute the absence of decrease at high
repumping powers to the narrow hyperfine structure of 6Li in the excited state (see
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Figure 2.12: Number of atoms in single 40K-MOT as a function of the ratio between
repumping and cooling powers, the cooling power being kept at 20 mW in each beam.

Figure 1.6) that induces huge leaks towards the wrong hyperfine ground-state F = 1/2.
Figure 2.13 shows the number of 40K atoms in the single MOT as a function of the

axial magnetic gradient. The graph also shows two 6Li values for reference. For 40K,
we observe a maximum around 7.5 G.cm−1, whereas for 6Li the maximum is at higher
currents, the crossing value being at 10 G.cm−1. Since during double MOT operation
we want to attenuate the interspecies two-body losses (see part 2.3.5), we limit the
common magnetic gradient to 8 G.cm−1, in order to reduce those losses by reducing
the densities.

2.3.3 Dark magneto-optical trap

Measuring the total number of atoms as depicted in Figure 2.7 implies to perform a
preliminary hyperfine pumping just before the imaging, as explained in part 2.2.2. In
fact, in the MOT steady-state regime, a fraction of the atoms is not in the cooling
hyperfine ground-state but in the other one which is a dark state with respect to the
imaging beam.

In order to quantify the fraction of atoms that is actually in the cooling transition
during the MOT operation, we performed the following measurement for 40K. 600 µs
before imaging, we switch off all the MOT beams so that all the atoms decay in the two-
ground-states, since the lifetime of the excited state is of the order of 2π/Γ ≈ 0.2 µs.
Then, without pumping back the atoms from F = 7/2 to F = 9/2, as for an usual
imaging procedure, we take a picture with an imaging beam that is resonant with the
cooling transition. The number of atoms obtained represents in a good approximation
the sum of the MOT populations of F = 9/2 and F ′ = 11/2. In fact, an atom
in F ′ = 11/2 can not decay towards F = 7/2 due to the selection rules that forbid
∆F = −2. Moreover, we can neglect the contribution of the atoms initially in F ′ = 9/2
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Figure 2.13: Numbers of trapped atoms in the single-species MOTs, as a function of
the axial magnetic gradient.

to the measured number since, with our detunings (see Figure 1.6) and intensities (see
Table 2.1), most of the excited atoms are in F ′ = 11/2. The experimental results are
shown in Figure 2.14.

We understand the plotted behavior with a simple model. Let us consider a four
level transition between two ground-states, F1 = 9/2 and F2 = 7/2, and two excited
states, F ′3 = 11/2 and F ′4 = 9/2, with the respective populations N1, N2, N3 and N4.
State F1 is connected to F ′3 and F ′4 by spontaneous emission of rates A13 and A14, and
by stimulated emission/absorption of rates B13IC and B14IC, where IC is the cooling
intensity. State F2 is connected to state F ′4 by spontaneous emission of rate A24 and
by stimulated emission/absorption of rates B24IR, where IR is the repumping intensity.
Thus, for a constant total number of atoms, the Einstein’s rate equations are:

Ṅ1 = A13N3 + A14N4 +B13IC(N3 −N1) +B14IR(N4 −N1) ,

Ṅ2 = A24N4 +B24IR(N4 −N2) ,

Ṅ3 = −A13N3 +B13IC(N1 −N3) ,

Ṅ4 = −Ṅ1 − Ṅ2 − Ṅ3 .

(2.16)

The steady-state of equation 2.16 leads to:

N1 +N3

N1 +N2 +N3 +N4

=
1

1 + a+ bIC/IR

, (2.17)

with:

a =
2(

1 + B13IC
A13+B13IC

)(
1 + A14

B14IC

) ,

and:

b =
A24

B24IC

a

2
.
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Figure 2.14: Fraction of atoms in F = 9/2 or F ′ = 11/2 in the MOT steady-state,
as a function of the ratio between repumping and cooling powers, the latter being kept
to its value indicated in Table 2.1. The graph shows the experimental data (circles)
fitted with a theoretical function (line) obtained through einstein’s coefficients in a four
level transition (see equation 2.17). The imaging procedure is the following: 600 µs
before imaging, all the MOT beams are switched off so that all the atoms decay in the
two-ground-states before imaging. Then, a picture with an imaging beam on resonance
with the cooling transition is taken. The number of atoms obtained represents in a good
approximation the sum of the MOT populations of F = 9/2 and F ′ = 11/2 since atoms
in F ′ = 11/2 can not decay towards F = 7/2 due to the selection rules. Moreover,
the contribution of the atoms initially in F ′ = 9/2 (or lower F ′) to the measured
number can be neglected since, with our detunings (see Figure 1.6) and intensities (see
Table 2.1), most of the excited atoms are in F ′ = 11/2.
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Fitting the experimental data with expression 2.17 gives a good agreement as shown
in Figure 2.14.

Since our ratio between repumping and cooling powers equals 5 % (see Table 2.1),
the fraction of atoms in the cooling transition equals only 20 %, according to Fig-
ure 2.14. Thus, a key ingredient of our big number of atoms in the MOT is the
Dark-MOT configuration [98], where a majority of cooled atoms falls in the wrong
ground-state, due to low repumping, and thus do not see the cooling light. In fact, this
intense light leads to rescattering (see part 2.1.5), that increases volume and tempera-
ture, or to inelastic losses (see part 2.3.4). The same Dark-MOT technique is used for
6Li, with a larger ratio between repumping and cooling powers of 20 % (see Table 2.1),
due to the narrower hyperfine structure of 6Li (see figure 1.6). Note that the use of
small repumping powers is also a key ingredient to get a large double MOT, since it
decreases the interspecies inelastic collisions as well (see part 2.3.5).

2.3.4 Trap losses and lifetime

To describe the single species MOT loading, as well as its lifetime and losses, let us
introduce the following rate equation on the number N of atoms in the MOT:

dN

dt
= L− γN − β

∫
n2 dV . (2.18)

L is the loading rate, from the Zeeman slower for 6Li (see part 1.3.5), and from the
2D-MOT for 40K (see part 1.4.4). γ is the one-body loss rate, that is the rate of
losses due to collisions with the vacuum impurities. Finally, β characterizes the two-
body losses. According to parts 2.1.7 and 2.2.3, the temperatures of the trapped
clouds are typically a few hundreds times smaller than the trap depths. Thus, we can
neglect the losses due to elastic collisions: β describes only the light-induced inelastic
collisions. For instance, let us consider a collision between two 6Li atoms initially in
the cooling ground-state F = 3/2. In presence of resonant light, this collision can
form a temporary excited 6Li−6 Li∗ state, with one excited atom inside. The principle
is similar to the one of photoassociation described in part 2.4.1, apart from the fact
that the formed state is not a proper bound state here. In the attractive part of the
interaction potential, the excited pair can evolve to lower potential energies, before the
radiative decay happens. The difference of energy will then be converted into kinetic
energy for the atomic pair, which induces some trap losses. Other mechanisms, known
as spin changing and hyperfine changing collisions, can also happen. They involve some
exothermic transitions in the fine or hyperfine structures, which lead to trap losses as
well.

Equation 2.18 can not be integrated for all regimes, due to the integral term. For
instance, at low numbers, we can assume a gaussian density in the trap since around
the center the potential is harmonic (see equation 2.1). Then, the volume only depends
on the temperature. On the contrary, the density becomes constant at high numbers,
due to the rescattering process (see part 2.1.5): the volume is proportional to the atom
number in that case. However, we can still use equation 2.18 in some specific regimes,
in order to obtain the loss coefficients from our experimental data.
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Figure 2.15: Lifetime measurement of 40K MOT. At t = 0, the 2D-MOT is switched
off. The long-term behavior is fitted with a single exponential decay, according to equa-
tion 2.19. The long-term decay time is found to be 7.5 s.

First, the loading rates L were measured using small loading times after having
switched on the MOT magnetic field. In fact, for small trapped numbers, equation 2.18
becomes:

dN

dt
= L ,

and thus the number of trapped atoms grows linearly with time, with a slope L. For
40K, we found LK = 1.4× 109 atoms.s−1, as mentioned in part 1.4.4. For 6Li, we found
LLi = 1.2× 109 atoms.s−1, as mentioned in part 1.3.5.

Second, the one-body loss rate γ was obtained by performing a lifetime experiment,
that is by recording the number of atoms after having switched off the atomic source, 6Li
Zeeman slower (see section 1.3) or 40K 2D-MOT (see section 1.4). Then, the data was
fitted by a single exponential decay, as shown in Figure 2.15 for 40K. In fact, without
loading (L = 0), and at low numbers of atoms in a deloading trap, equation 2.18
becomes:

dN

dt
= −γN . (2.19)

We measured a lifetime of 7.5 s and thus γ ≈ 0.13 s−1 for both species, which is
coherent with the fact that the one-body losses are due to collisions with background
impurities and do not depend much on the trapped species.

Thirdly, we extracted the inelastic collision rates β for each species, by measuring
the steady-state numbers of atoms. In fact, the MOT density can be assumed to be
constant at high numbers of atoms in a MOT (see part 2.1.5). Thus, the steady-state
of equation 2.18 leads to:

β =
1

n

(
L

N
− γ
)
,
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where n is the steady-state density of the full loaded MOT, and N its number of atoms.
Using our previous estimates of LK, LLi and γ, as well as the numbers and densities
given in part 2.2.3, we found: βK ≈ 8.0× 10−13 cm3.s−1 and βLi ≈ 4.4× 10−12 cm3.s−1.
Those numbers correspond to typical times (nβ)−1 of respectively 42 s and 11 s, which
are larger than γ−1 at maximal densities. This last result is coherent with the reduced
inelastic losses in our Dark-MOT scheme (see part 2.3.3) and with the full loading
times of the MOTs, that were measured to be of the order of 5 s and 6 s respectively,
which are close to γ−1. In contrast, in standard MOTs with more repumping light
(IR/IP = 20 % for 40K, and IR/IP = 50 % for 6Li), we observed an usual double
exponential decay with typical inelastic losses times of few seconds, which are smaller
than γ−1.

2.3.5 Double 6Li-40K magneto-optical trap

Using the double optical system described in part 2.3.1, as well as the parameters of
Table 2.1, we could obtain a large double 6Li-40K MOT containing 8×109 atoms of 40K
and 5× 109 atoms of 6Li. Those numbers are respectively 10 % and 4 % smaller than
the single MOT ones (see part 2.2.3). The difference is due to inelastic interspecies
collisions, which can be described by an additional loss term in equation 2.18:

dNA

dt
= LA − γNA − βAA

∫
n2

A dV − βAB

∫
nAnB dV , (2.20)

where A and B denote the two species. We reduced the interspecies inelastic collisions
by reducing the densities, through the magnetic gradient, as explained in part 2.3.2.
Moreover, since those collisions are induced by the cooling light, the use of low re-
pumping light (see part 2.3.3) allowed to reduce the number of atoms in the cooling
transition, and thus the colliding population.

Coefficients βKLi and βLiK depend on light intensities but not on the field. We
estimated them in our configuration (Table 2.1) by increasing the magnetic field in
order to increase the losses. In that case, the mutual influence of the two clouds was
increased, as shown in Figures 2.16 and 2.17. Moreover, by decreasing LA sufficiently
we could make sure that the cloud A was contained inside the cloud B and that nB

was constant in the volume VA. In this configuration, the steady-state of equation 2.20
leads to:

βAB =
LA − γNA − βAANAnA

NAnB

.

Thus, by measuring the reduced LA as in part 2.3.4, as well as the densities and
number of atoms, and using the value of γ obtained in part 2.3.4, we found βKLi ≈
3× 10−12 cm3.s−1 and βLiK ≈ 1× 10−12 cm3.s−1.

2.4 Molecular photoassociation

Molecular photoassociation is the formation of molecules induced by light. Since its
first experimental achievement [99], molecular photoassociation of ultra-cold atoms has
been being a fascinating topic for several reasons. First, it allows to perform precise
molecular spectroscopy [100] and to create molecules that are unknown in nature,
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Figure 2.16: 40K-MOT number of atoms in presence or not of 6Li-MOT. The loading
rate of 40K is reduced in order to have a small 40K-MOT and a constant 6Li density.
The axial gradient magnetic gradient is increased to 16 G.cm−1 in order to increase
the densities and thus the inelastic losses.

Figure 2.17: 6Li-MOT number of atoms in presence or not of 40K-MOT. The loading
rate of 6Li is reduced in order to have a small 6Li-MOT and a constant 40K density.
The axial gradient magnetic gradient is increased to 16 G.cm−1 in order to increase
the densities and thus the inelastic losses.
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Figure 2.18: Principle of 6Li40K∗ photoassociation. A laser beam, red-detuned with
respect to a 40K atomic asymptotic transition, is resonant with a transition towards a
rovibrational bound-state of one of the excited electronic states of the molecule.

opening the way to new chemical engineering at ultra-low temperatures. Secondly,
it offers to create ultracold heteroatomic molecules [101], and thus ultracold polar
molecules [102], which are of interest in many-body physics and quantum information
for the study of long-range interactions in dipolar gases. Finally, it offers a convenient
way to measure accurately the atomic scattering properties [103].

The particular 6Li40K molecule is of great interest due to its large electric dipole
of 3.6 D in its ground-state [54]. Magnetoassociation, through Feshbach resonances,
already allowed to study its scattering properties [60], as well as its formation in a
weakly bound vibrational state of the electronic ground-sate [62] .

Apart from the design and optimization of the experiment towards quantum degen-
eracy, we could perform the first photoassociation of 40K40K∗ and 6Li40K∗ molecules.
This is described in detail in Armin Ridinger’s thesis [82], as well as in a dedicated
publication [83]. Therefore, we restrict ourselves to the main aspects of this result in
the present section.

After a general description of the experiment, we give the basic theoretical aspects
for data analysis. Then, we present the first photoassociation of 40K40K∗ homonuclear
molecules and 6Li40K∗ heteronuclear molecules.

2.4.1 Principle and setup

The principle of atomic photoassociation is depicted in Figure 2.18 for the particular
case of 6Li40K∗. A laser beam, red-detuned with respect to an asymptotic atomic
transition, is resonant with a transition towards a rovibrational bound-state of one of



86 Chapter 2. Magneto-optical trap

the excited electronic states of the molecule.
In the following, we describe the signature of photoassociation on the number of

atoms in a MOT and we present the associated experimental setup.

Signature of photoassociation

In an MOT, the photoassociation process leads to inelastic losses since the molecule has
a different spectrum than its individual atoms. Thus, for a double MOT, equation 2.20
becomes:

dNA

dt
= LA − γNA − βAA

∫
n2

A dV − βAB

∫
nAnB dV − βpa

∫
nAnB dV , (2.21)

where βpa is the photoassociation rate coefficient, which depends on the frequency
and intensity of the photoassociation beam, but also on the selection rules as well as
the overlap between the initial and final total wave-functions via the so-called Franck-
Condon factors. Assuming constant densities, which is reasonable for large MOT (see
part 2.1.5), and assuming that cloud A is included in cloud B, the steady state of
equation 2.21 leads to:

NA(βpa) =
LA

γ + βAAnA + (βAB + βpa)nB

. (2.22)

Therefore, in principle, we can detect the photoassociation of molecules by directly
observing a diminution in the steady-state atom number while scanning the photoas-
sociation frequency (see part 2.4.1). The principle is exactly the same for homonuclear
photoassociation in a single MOT, by removing the heteronuclear inelastic term βAB

in equation 2.21.

Experimental setup

The experimental setup is drawn in Figure 2.19. The photoassociation laser beam
consists of a dedicated potassium laser diode (see part 1.2.2), amplified through a ta-
pered amplifier (see part 1.2.4). After a single-mode polarization-maintaining optical
fiber, the power equals 660 mW on the main table. The frequency is recorded by
a wavelength-meter (High Finesse Angstrom WS-6) and scanned through the piezo-
electric actuator of the laser diode (see part 1.2.2). The scanning speed is typically
15 MHz.s−1, in order to allow for full reloading of the MOT between two photoas-
sociation lines. The total scanning range is of the order of 300 GHz, below the
F = 9/2− F ′ = 11/2 transition of 40K (see Figure 1.6).

As explained above, measuring the numbers of atoms in each MOT through the
calibrated fluorescence (see part 2.2.1) allows to detect the photoassociation lines.
However, optimizing the signal requires some care. Indeed, according to equation 2.22,
we have:

NA(0)−NA(βpa)

NA(0)
=

βpanB

γ + βAAnA + (βAB + βpa)nB

.

For instance, in the case of 6Li40K∗ photoassociation, we record the number of 6Li
atoms in the MOT in order to forget the 40K40K∗ lines. Therefore, we have to increase
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Figure 2.19: Experimental setup of the photoassociation experiment. The photoasso-
ciation laser is sent to the MOT. While its frequency is swept, the numbers of atoms
in the MOT are recorded through fluorescence (see part 2.2.1). A diminution of the
number of atoms is a signature of photoassociation process, according to equation 2.22.
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the density of 40K, by increasing the magnetic gradient to 20 G.cm−1, while decreasing
the density of 6Li and the βLiK coefficient, by reducing the powers of the MOT beams
to sLi

0 = 0.5 and sK
0 = 10, as well as the lithium loading rate LLi. In addition, we make

sure that we have a steady-state stability of a few percents in fluorescence, and that
the 6Li-MOT is contained inside the 40K one.

2.4.2 Theoretical aspects

In this part, we present the main theoretical aspects that were used to analyze the
experimental data. First, we give the Leroy-Bernstein formula for the long-range vi-
brational spectrum. Secondly, we characterize the rotational substructure.

Vibrational spectrum

Let us assume an interaction potential V (r) = −Cαr−α, with a hard core repulsive
barrier in r = R0, and let us consider the weakly bound states. For α > 2, the
associated energies E(n), labelled by the integer n ≥ 1, can be approximated by the
Leroy-Bernstein formula [104]:

E(n) = −Aα(nα − n)2α/(α−2) , (2.23)

with:

Aα = Cα

(
Γ(1/α + 1)π~(α− 2)

Γ(1/α + 1/2)Γ(1/2)
√

2µCα

)2α/(α−2)

,

where we have introduced the gamma function Γ(x) and the reduced mass µ. The
reference in energy is chosen to be at the dissociation limit, where n = nα, with nα a
given number between 0 and 1.

The interaction in the electronic ground-state is a van der Waals interaction in R−6,
thus α = 6. However, the interaction potential in the excited state depends on the
molecule. In the case of homonuclear 40K40K∗, the resonant dipole interaction gives
α = 3, whereas in the heteronuclear case 6Li40K∗, the van der Waals interaction gives
α = 6.

Rotational barrier

For a symmetrically spherical potential V (r), the wave-function can be developed in
the spherical harmonic basis, and the variables can be separated. In addition to the
potential V (r), a repulsive term thus appears in the radial problem:

V ∗(r) = V (r) +
~2l(l + 1)

2µr2
,

where l is the rotational angular momentum quantum number, and µ the reduced
mass. In the case of collisions in the electronic ground-state, we have a van der Waals
interaction V (r) = −Cgs

6 r
−6, as mentioned above. By differentiating V ∗(r), we obtain

the height of the rotational barrier:

V ∗max(l) =

(
~2l(l + 1)

3µ(2Cgs
6 )1/3

)3/2

. (2.24)
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Figure 2.20: Fluorescence of single 40K MOT as a function of the photoassociation
detuning (−δ) with respect to the cooling transition. Note that close from resonance
the photoassociation beam is harmful for the MOT, as expected. Note also that the
atom density is maximal at intermediate detunings due to the attractive optical dipole
forces (see part 3.4.4) created by the intense photoassociation beam. The experimental
setup is described in Figure 2.19.

Putting numbers, we find V ∗max(0) = 0.3 mK and V ∗max(1) = 1.5 mK for 40K40K∗, and
V ∗max(0) = 2.6 mK and V ∗max(1) = 13.4 mK for 6Li40K∗. Since the barrier grows like
∼ l3, we can neglect collisions with l ≥ 2 according to our MOT temperatures (see
part 2.2.3). Thus, taking into account the spins of the two colliding atoms, the maximal
spin-orbit momentum J equals 2. The selection rule ∆J = 0,−1,+1 allows to reach
J ′ = 3 for the excited molecule, which means 4 rotational line per vibrational line at
maximum.

2.4.3 Results

In this part, we present the first photoassociation of 40K40K∗ homonuclear molecules
and 6Li40K∗ heteronuclear molecules.

Homonuclear molecules : 40K40K∗

With the setup described in part 2.4.1, we first observed the homonuclear 40K40K∗ lines,
as plotted in Figure 2.20. Using Leroy-Bernstein formula 2.23 for α = 3 (see part 2.4.1),
we could fit the experimental data by a sixth order power. As plotted in Figure 2.21,
the agreement is good and gives C3 = 14.20± 0.02 a.u. which is very close from Wang
et al. experimental value for the 0+

u excited potential of 39K39K∗: C3(0+
u ) = 14.14 ±
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Figure 2.21: Leroy-Bernstein fit (see formula 2.23 with α = 3) of the 40K40K∗ photoas-
sociation binding energies found in Figure 2.20.

0.05 a.u. [105], where 0+
u is the spectroscopic notation of the considered excited state.

In addition, we found another series, with peaks of smaller amplitude in Figure 2.20,
corresponding to another excited potential. There also, the Leroy-Bernstein fit is good,
leading to C3 = 13.37 ± 0.05 a.u., which is very close from Wang et al. experimental
value for the 1g excited potential of 39K39K∗: C3(1g) = 13.54 ± 0.1 a.u. [105]. Note
that in both cases, due to the large reduced mass µ of 40K40K∗, and its large typical
radius, the rotational substructure (see equation 2.24) remains unresolved.

Finally, using those results, we could determine the linewidth Γ of the 4p atomic
state of 40K [106]:

Γ

2π
=

d2ω3

3πε0c3h
,

where ω is the pulsation of the atomic transition, and d the matrix element 〈4S|µ|4P 〉,
connected to the C3 values by the theoretical prediction C3(0+

u ) = 5d2/3 and C3(1g) =
(2 +

√
7)d2/3 [107]. Putting numbers, we find Γ/(2π) = 6.136 ± 0.017 MHz, which is

close to the experimental value of Wang et al., Γ/(2π) = 6.042±0.011 MHz [106], used
all along this thesis (see appendix A.1).

Heteronuclear molecules : 6Li40K∗

As far as 6Li40K∗ heteronuclear photoassociation is concerned, the experimental data
was more complex than in the homonuclear 40K40K∗ case. Figure 2.22 shows the exper-
imental binding energies, put in an increasing order. As we can see, in contrast with
40K40K∗ (see Figure 2.21), the single heteronuclear Leroy Bernstein fit (see formula 2.23
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Figure 2.22: 6Li40K∗ photoassociation binding energies by increasing order.

with α = 6) does not work. The assignment of the resonances is more complex. First,
heteronuclear molecules have less restrictive selection rules, leading here to five accessi-
ble excited potentials: Ω = 0+, Ω = 0−, Ω = 1down, Ω = 1up and Ω = 2, in spectroscopic
notation. Secondly, due to the smaller reduced mass and the smaller typical radius,
the rotational substructure (see equation 2.24) is now comparable to the vibrational
spacing. Thirdly, the Leroy-Bernstein formula 2.23 is less precise due to the smaller in-
ternuclear distances, where other terms in the potential start to play a role, and where
chemical bonding becomes important. We do not explain the complete resolution of this
spectrum, since it was the object of [82], but we recall the main results: the five excited
vibrational series were identified, and their rotational substructure as well. The rota-
tionless binding energies were fitted by the heteronuclear Leroy-Bernstein formula 2.23,
as shown in Figure 2.23. The C6 coefficients obtained from the fits give C2

6 = 9170 a.u.,
C1up

6 = 9240 a.u., C1down
6 = 25220 a.u., C0−

6 = 22800 a.u., C0+
6 = 25454 a.u., which are

in a good agreement with the theoretical predictions [108].
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Figure 2.23: Leroy-Bernstein fits (see formula 2.23 with α = 6) of the 6Li40K∗ pho-
toassociation binding energies found in Figure 2.22, for five excited potentials.

2.5 Summary

In this chapter, we presented our performing double 6Li-40K MOT and its optimization,
as well as the first photoassociation of homonuclear 40K40K∗ and heteronuclear 6Li40K∗

molecules.
First, we recalled the principles of a MOT and we described our imaging diagnostics,

from which we measured the thermodynamical properties of the trapped cloud. For
40K, we obtained 8.9× 109 atoms at a temperature of 290 µK and a central density of
3×1010 atoms.cm−3. For 6Li, we obtained 5.4×109 atoms at a temperature of 1.4 mK
and a central density of 2 × 1010 atoms.cm−3. In the double MOT configuration, we
obtained 8×109 atoms of 40K and 5×109 atoms of 6Li. Those values were optimized by
reducing the inelastic losses through a Dark MOT scheme with low repumping light,
as shown through the measured loss rates and hyperfine populations.

Using this double MOT, we produced the first homonuclear 40K40K∗ and heteronu-
clear 6Li40K∗ molecules. In the first case, this allowed to measure the linewidth of the
4p atomic state of 40K, that was found to be Γ/(2π) = 6.136 ± 0.017 MHz, which is
close from the value obtained by Wang et al. [106]. In the second case, it allowed to
assign precisely five series of rovibrational lines, which opens the way to future photoas-
sociation of polar 6Li40K molecules in their electronic ground-sate. This is of interest
for the study of dipolar gases.

Due to the continuous absorption-emission process that occurs in a MOT, the phase-
space density can not exceed 10−6. Therefore, in order to get closer from quantum
degeneracy, we then transfer the mixture in a quadrupolar magnetic trap, as developed
in chapter 3.



Chapter 3

Magnetic trap

In chapters 1 and 2, we described our system and showed how we could reach a double
MOT with high numbers for 40K and 6Li. However, event if a MOT is a necessary
step towards quantum degeneracy, it contains some fundamental limits linked to its
dissipative character as far as density (see part 2.1.5) and temperature (see part 2.1.4)
are concerned. They limit from reaching higher phase-space densities than typically
10−6, as shown in part 2.1.6, which is still far from the quantum degenerate regime.
Then, to obtain quantum degeneracy, we transfer the mixture into a conservative trap
where evaporative cooling will be performed.

A possible solution is to directly use a red-detuned optical dipole trap [109]. How-
ever, creating such a trap with a depth of the order of 1 mK and a capture volume
close to the MOT volume would require an unrealistic laser power. Therefore, it is
more efficient to load the atoms first in a magnetic trap and to start evaporation there,
before transferring the obtained dense mixture in an optical trap, as already performed
by the group of Amsterdam [56].

In the present chapter we describe such a magnetic trap. After a theoretical de-
scription of magnetic trapping and loss mechanisms, we explain how to prepare the
sample before loading it into the trap. Then, we characterize experimentally our trap.
We finally present the optically plugged magnetic trap, where evaporative cooling will
be performed, and we describe the forthcoming optical dipole trap as well as the high
resolution imaging and the design of the Feshbach coils. The magnetic transport be-
tween the MOT chamber and the science cell is described in chapters 4 and 5 that are
dedicated to this purpose.

93
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3.1 Principle

As already explained in the introduction of this chapter, in order to increase the phase-
space density we transfer the atoms in a conservative trap. In this section, we describe
the theoretical principle of such a trap: the quadrupolar magnetic trap. We first
describe its potential energy manifold. Then, we present the so-called Majorana losses
mechanism and estimate an associated lifetime. Finally, we present the issue of spin-
relaxation.

3.1.1 Trapping potential

Let us consider an atom, described by a total magnetic moment operator µ̂, inside a
magnetic field B. The coupling hamiltonian Ĥ is given by the minimal coupling:

Ĥ = −µ̂ ·B . (3.1)

For an atom whose magnetic moment is adiabatically following the magnetic field B
during its movement, the magnetic energy E is given by the perturbation theory of
hamiltonian 3.1 in the hyperfine basis [110]:

E = µBgFmFB , (3.2)

where B is the modulus of the magnetic field, µB the Bohr magneton, gF the hyperfine
Landé factor, and mF the hyperfine magnetic quantum number. Here, we have assumed
that the hyperfine Zeeman effect remains linear, which in not necessarily true but valid
in our case as discussed at the end of this part. We see that finally only the modulus
of the field matters and not the vectorial quantity.

By applying a current to a pair of coils in anti-Helmholtz configuration, one can
generate a field whose expression is given by the Taylor expansion in the neighborhood
of the center of the pair:

B(r) = B(0) + (r ·∇)r=0B + ...

Since by antisymmetry B(0) = 0, this leads to a quadrupolar field:

B(r) ≈ (r ·∇)r=0B = (bxx, byy, bzz) ,

where bi = ∂Bi/∂ri. Using cylindrical symmetry and Maxwell-Thomson’s equation
∇ ·B = 0, we finally find:

B = b(−x,−y, 2z) , (3.3)

where z is the axial coordinate and −b = bx = by the magnetic gradient in the or-
thogonal plan. b happens to be positive in our experiment, by our choice of current
orientation. Note that this approximative expression also satisfies the static Maxwell-
Ampère equation ∇×B = 0, as expected, and that it is valid until a distance of the
order of the coils radius. After this distance, the non-linear terms of the Taylor devel-
opment above can not be neglected anymore. However, the radius of the MOT coils
being of the order of 6 cm, which is more than ten times bigger than the cloud radius
(see part 3.3.2), the quadrupolar approximation is valid to describe our magnetic trap.
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5.1 Principe du transport magnétique 85

Z

X Y

Figure 5.2 – Une paire de bobines parcourues par des courants opposés crée un piège quadru-
polaire pour des atomes polarisés

le gradient b′
z dans la direction des bobines est deux fois plus grand que celui dans le plan

orthogonal :

b′
x = b′

y =
1

2
b′
z (5.6)

5.1.2 Caractéristiques du nuage piégé

Dans ce paragraphe, nous allons étudier les caractéristiques d’un nuage d’atomes froids dans
un piège magnétique quadrupolaire. Nous nous intéressons en particulier à la taille du nuage et
la durée de vie des atomes dans le piège.

Que se passe-t’il quand on branche soudainement le piège magnétique pour capturer un
nuage d’atomes préalablement piégé dans un PMO ? Évaluons la taille du nuage d’atomes dans
le piège magnétique avec l’hypothèse que la phase de mélasse a été efficace et l’énergie cinétique
initiale des atomes est négligeable au branchement du piège.

A l’équilibre, l’énergie initiale se répartit entre l’énergie cinétique Ec et l’énergie potentielle
Epot dont la relation dans un piège linéaire est donnée par le théorème du viriel :

〈Ep〉 = 2〈Ec〉 (5.7)

En considérant que le gradient est deux fois plus fort dans l’une des deux directions, on
obtient la relation suivante sur la taille du nuage :

rz =
1

2
rx,y =

4

9
rPMO (5.8)

avec rPMO le rayon du nuage avant le branchement du piège magnétique1.
Nous pouvons donner des valeurs indicatives de taille de nuage et de température applicable

à notre expérience. Typiquement, rPMO vaut quelques millimètres. Pour fixer les idées, prenons
rPMO = 1 mm. Pour un gradient de 100 G.cm−1, la température à l’équilibre vaut 300 µK
et le rayon du nuage rz est de l’ordre du demi millimètre. On reste alors largement dans la
zone linéaire du piège qui est du même ordre que les distances typiques du système : pour notre
expérience, la distance entre les bobines et les atomes ou bien le rayon des bobines valent environ
3 cm.

Un problème majeur du piège quadrupolaire est l’existence de pertes Majorana : la fréquence
de Larmor étant faible au voisinage du centre du piège de champ nul, la polarisation des atomes
se déplaçant dans le piège ne peut pas suivre adiabatiquement la variation de champ magnétique
si bien qu’ils se trouvent non piégés. On peut estimer la durée de vie due à ce phénomène (voir

1Pour simplifier le calcul, on suppose que le PMO est sphérique.

Figure 3.1: Atomic cloud trapped in a quadrupole potential created at the center of an
anti-Helmholtz pair of coils.

Using expression 3.3, the magnetic energy of equation 3.2 becomes:

E = µBgFmF b
√
x2 + y2 + 4z2 . (3.4)

A minimum of magnetic potential energy is then created at the center of the pair of
coils for the anti-parallel (low field seeking) Zeeman states, i.e. with mF > 0 when
gF > 0. Thus, it is possible to trap a spin-polarized atomic cloud (see Figure 3.1) [111].

We just saw that, prior to the trapping, it is important to optically pump the atoms
into a mF > 0 state. Moreover it is of interest to maximize mF in order to confine
more efficiently the atoms, especially regarding the forthcoming magnetic transport in
the DN10 differential pumping tube (see chapter 4), and to avoid spin-relaxation (see
part 3.1.3). Figure 3.2 shows the Zeeman effect on the two hyperfine ground sates
of both 40K and 6Li, obtained from the Breit-Rabi formula [112], the ground-states
of the cooling transitions being respectively F = 9/2 and F = 3/2. We thus wish
to polarize 40K in the stretched mF = 9/2 state and 6Li in the stretched mF = 3/2
one. However, since an option for evaporative cooling is to cool down 40K first and then
sympathetically cool down 6Li (see part 3.4.3), we may want to have an incomplete spin-
polarization of 40K, in order to keep also some atoms into the unstretched mF = 7/2
state for collisions.

Note finally that, according to Figure 3.2, the Zeeman effect is linear even at high
field for the two chosen stretched states. Moreover, until typically 357 G (see arrow
for 40K on Figure 3.2) our assumption of linear Zeeman effect is valid also for the
unstretched mF = 7/2 state. Situation would have been different with 6Li because the
linear Zeeman effect stands only until typically 27 G (see arrow for 6Li on Figure 3.2).
In conclusion, linear Zeeman effect can be assumed and equation 3.2 can be used to
describe precisely magnetic trapping and magnetic transport, if we restrict ourselves
to the three mentioned states and to magnetic fields lower than 357 G, which is the
case.
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Figure 3.2: Zeeman effect of the two hyperfine ground-states of 40K and 6Li obtained
from the Breit-Rabi formula [112]. Note the inverted structure for 40K.

3.1.2 Majorana losses

If one wishes an atom of mass m to remain in such a trapped state, its magnetic
moment µ has to follow adiabatically the magnetic field. This implies, for an atom
with velocity v at distance r from the center, that the Larmor period ~/µbr, where b
is the gradient, remains small in comparison with the typical flipping time r/v of the
field seen by the atom. If this condition is not satisfied, the atomic spin eventually
flips to an untrapped magnetic state. This loss mechanism is called Majorana loss. A
direct consequence is the existence of a minimal safety distance rmin(v) for each class
of velocity:

rmin(v) =

√
v~
µb

. (3.5)

Let us now estimate the Majorana loss rate of each species by considering its RMS
velocity v∗, instead of each class of velocity. In addition, we assume that the trap
is spherical, since we are only interested in obtaining an order of magnitude of the
loss rate. During an infinitesimal time dt, the average volume dV of gas entering the
spin-flip region is given by:

dV = 4πr2
min(v∗)v∗dt .

The rate Ṅ of atoms entering the spin-flip region is then obtained by multiplying dV/dt
by the typical density in the trap:

Ṅ =
4πr2

min(v∗)v∗

4πR3/3
N , (3.6)

where R is the average cloud radius. The loss rate is then simply given by:

1

τM

=
3r2

min(v∗)v∗

R3
. (3.7)



3.2. Preliminary stages 97

Now let us invoke the virial theorem for a linear trap, in order to connect the average
quantities R and v∗:

mv∗2 = µbR . (3.8)

Finally, using equations 3.5, 3.6 and 3.8, one can rewrite equation 3.7 as:

τM =
m

3~
R2 . (3.9)

This simple estimate in spherical geometry gives a similar result as [113]:

τM = κ
m

~
R2 ,

where κ ≈ 0.36 was obtained experimentally.
In the worst case, R is of the order of a millimeter. We deduce that τK

M ≈ 200 s
and τLi

M ≈ 30 s, which will be useful numbers for the choice of the magnetic transport
dynamics, as explained in part 4.3.3.

3.1.3 Spin-relaxation

Another mechanism can induce harmful trap losses in a magnetic trap. Let us have a
closer look at the hyperfine spectra of both species shown in Figure 1.6. The hyperfine
structure of 6Li reveals that the cooling ground sate F = 3/2 is above F = 1/2 in
energy. Thus, for F = 3/2, if the magnetic traps contains atoms in both mF = 3/2
and mF = 1/2 Zeeman states, a collision may occur between them that ends up in
F = 1/2 sublevels [65]. The difference of hyperfine energy is converted into 230 MHz
kinetic energy, that is 11 mK, which is of the order of the trap depth (see parts 3.3.4
and 3.4.1). This is the reason why the 6Li spin-polarization should be realized perfectly
and why this isotope can not be cooled down alone in a magnetic trap [22]. The case
of 40K is quite different. As shown in Figure 1.6, its structure is inverted: F = 9/2 is
below F = 7/2. As a consequence the spin-relaxation mechanism is suppressed in the
case of 40K. This is the reason why evaporative cooling of 40K by sympathetic cooling
between mF = 9/2 and mF = 7/2 is working in F = 9/2 [56].

3.2 Preliminary stages

Before loading atoms into the magnetic trap described above, we need first to prepare
the cloud in order to optimize the transfer. As already explained before, we have to
spin-polarize the cloud, that is to optically pump the atoms into their highest mF state.
Since this optical pumping has to take place in a constant and low field environment,
it is compulsory to switch off completely and quickly the quadrupole (see part 3.3.1
for technical details on switches). Then, the atoms are not trapped anymore and shall
experience a free expansion that creates some additional potential energy, and thus
temperature, after the forthcoming magnetic trap is switched on.

This implies two things. First the spin-polarization step has to be the shortest
possible as explained in part 3.2.3. Secondly, it may be interesting to compress the
MOT (at constant temperature) before the spin-polarization time-of-flight, in order to
minimize the additional potential energy. In addition, this compression allows for high
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Figure 3.3: Temperature of the 40K compressed MOT (CMOT) measured by time-of-
flight method (see part 2.2.3).

interspecies collision rate which is helpful for thermalization and evaporative cooling.
We tried this idea of compressed MOT for both species, as described in part 3.2.1, and
we found out a better method for 40K: the Cold MOT, as explained in part 3.2.2).

3.2.1 Compressed magneto-optical trap

In order to reduce the initial size of the cloud before the spin-polarization phase and
to ensure a high interspecies collision rate in the magnetic trap, we tried to add a
compressed MOT (CMOT) phase [114] for potassium and lithium. Results are reported
here.

Potassium

In the case of 40K, our best results were obtained by using a three steps process: a first
one, lasting 15 ms, where the MOT current is ramped linearly to IM = 50 A in order
to increase the density; a second one, lasting 2 ms, where the current is brought back
linearly to its standard MOT value IM = 9 A, while the cooling frequency is detuned
by additional −1.5 Γ in order to cool down the cloud; a third one, lasting 3.5 ms, where
the MOT current is ramped down to zero while the cooling frequency is detuned even
more by additional −2 Γ, and where the repumping light is tuned to resonance in order
to bring back all the atoms hidden in F = 7/2 towards F = 9/2 (hyperfine pumping)
before the spin-polarization starts.

With those optimized parameters, we could increase the 40K atomic density to
∼ 1 × 1011 cm−3. However this induced some heating as shown in Figure 3.3. The
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40K MOT temperature of 290 µK increased by compression to approximately 500 µK.
With such a CMOT, the number of atoms was reduced by a factor 2. Then, since we
were loosing in temperature and number in the magnetic trap, we decided to implement
another method for potassium: the Cold MOT (see part 3.2.2), more adapted to achieve
efficient magnetic trapping, transport and to ensure high phase-space densities in the
final cell.

Lithium

In the case of 6Li, our best results were obtained by using a similar CMOT protocol as
the one described in [115]. In our experiment, the optimal CMOT phase lasts 5.5 ms
and the cooling frequency is brought back closer from resonance by 2 Γ leading to a
total detuning of −3 Γ, while its intensity is ramped down to zero in order to reduce
the rescattering process (see part 2.1.5) and thus the temperature. In parallel, the
repumper intensity is simply reduced by 30 %. This leads to a final temperature of
1 mK instead of 1.4 mK in the standard MOT, and a doubling of the atomic density
that reaches 3.5× 1010 cm−3.

3.2.2 Cold magneto-optical trap

The CMOT phase described in part 3.2.1 heats the for 40K cloud as shown in Figure 3.3.
We then found a better way to increase the density while reducing the temperature,
without loosing atoms: the Cold MOT.

Its philosophy is quite different from the CMOT one. In fact our Cold MOT is
comparable to an optical molasses. There is no magnetic field and the cooling frequency
is detuned furthermore to diminish the heating induced by radiation pressure. The Cold
MOT consists of a 3.5 ms step where the magnetic field is linearly ramped down to
zero whereas the cooling frequency is detuned by additional −2.5 Γ, resulting in a total
detuning of −5.5 Γ. What is particular to our system is that the repumping frequency
is brought from −5 Γ to only −Γ, that is closer to resonance. This allows for a strong
hyperfine repumping of the atoms hidden in F = 7/2 towards F = 9/2 before the
spin-polarization starts, as explained for the CMOT in part 3.2.1.

With this method, the MOT temperature could be reduced from 290 µK to 200 µK
and the atomic density could reach 5× 1010 cm−3, which is equal to almost twice the
MOT density. Moreover we did not see any consequent loss in atom number which
confirmed us that the Cold MOT is more relevant in our system for 40K. However, this
may not be appropriated for 6Li, and an optimized compression stage has to be find
for the 6Li-40K mixture.

3.2.3 Optical pumping

As explained above, before loading the atoms into the magnetic trap we need to op-
tically pump them into the stretched state, that is the one maximizing mF for the
cooling ground-states: F = 9/2 for 40K and F = 3/2 for 6Li.

To achieve this, after the end of Cold MOT, where all the atoms hidden in the
repumper states have been brought back into their cooling ground-state by hyperfine
pumping, we shine a vertical resonant laser beam with circular σ+ polarization on the
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Figure 3.4: Dependency of 40K atom number on the spin-polarization principal AOM
frequency. The maximum corresponds to the atomic resonance. The picture has been
taken after 54 ms in the magnetic trap and 2.1 ms of time-of-flight (see part 2.2.3).

atomic sample. In parallel, we add a 2 G vertical bias magnetic field along the beam,
in order to have a vertical guiding field for the σ-polarizations. As usual, this resonant
beam induces a transition towards the levels: F ′ = 11/2 for 40K and F ′ = 5/2 for
6Li, but with conservation of angular momentum comes the additional selection rule:
∆mF = +1. Therefore, after the pumping light is off, the atoms tend to accumulate in
their cooling ground-state with mF = 9/2 for 40K and mF = 3/2 for 6Li, as expected.
In the following, we give precise details regarding our experimental achievement of
spin-polarization. Note that the optimization of the 6Li optical pumping is still in
progress, following the one already implemented in the lithium group at ENS [22].

First of all, the pumping beam originates from the MOT MOPAs. Actually, for
each atomic species, there is a single-pass switch AOM after the MOT MOPA as shown
in Figure 1.7. The diffraction order used for the MOT beam is the first one. Since
the MOT beam and the spin-polarization beam are never used simultaneously, we
decided to derivate the zeroth order of this AOM for the spin-polarization beam. This
beam contains both principal and repumping light, in a controlled ratio, and passes
through an additional shift AOM, in order to have the desired resonant frequency
before injecting an independent polarization-maintaining single-mode fiber. Figure 3.4
shows the spin-polarization efficiency as a function of the AOM frequency. The curve
is a standard lorentzian resonance function. Its full width at half maximum is of the
order of 2 Γ instead of the expected Γ, which we attribute to the Zeeman broadening
of the bias magnetic field. In fact, 2 G correspond to 2.8 MHz, i.e. approximately Γ/2.
Note that the circularly polarized imaging beam is horizontal, and thus not σ+ in this
configuration.
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Figure 3.5: Dependency of the 40K atom number on the power of the spin-polarization
principal beam. As far as it is concerned, repumping power equals 30 mW. The picture
has been taken after 54 ms in the magnetic trap and 2.1 ms of time-of-flight (see
part 2.2.3).

The output of the spin-polarization fiber is located on the main table. There,
the beams of each species are joined together using a dichroic mirror that passes one
wavelength and reflects the other. The obtained beam is expanded to a 1.3 cm waist
using a telescope, so that it is slightly bigger than the MOT size (see part 2.3.1). Then,
using a broadband cube, it splits into two beams of equal intensities. One is joining
the down-up MOT beam, on a cube, while the other is joining the up-down beam in
a similar way. The idea here is, with a constant total intensity, to avoid the vertical
acceleration created by the radiation pressure of a strong single spin-polarization beam.
In fact, the intensities are the following: IK ≈ 63 IK

sat and ILi ≈ 10 ILi
sat, where the Isat

are given in appendix A.1. Figure 3.5 shows the dependency of the number of 40K
atoms with the principal power of the beams. We see that we are in the saturation
regime with the chosen intensities.

As far as the timings are concerned, the pumping stage lasts 500 µs, which is the
minimal time step available in our actual computer sequence. Then the magnetic trap
is ramped up in 3 ms, with a corresponding 150 A overshoot in the constant voltage
(CV) analog command. Note that using the constant current (CC) mode or the CV
mode without overshoot would have required a too high ramp up time, of the order of
10 ms. Another point is that the pumping beam is not always on during those 500 µs,
otherwise it would heat and expel all the atoms from the trap region. It is actually
on only during 50 µs in the case of 40K and 250 µs in the case of 6Li. To achieve this
we use a Stanford Research Systems (SRS) function generator where we program the
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Figure 3.6: Number of 40K atoms in the magnetic trap, with and without the optical
pumping stage after the Cold MOT. The pumping efficiency is close to 100 % since
there is no short-time loss when the beam is on (dots). In absence of optical pumping
(crosses), we notice a fast initial decay due to expulsion of atoms in high-field seeking
states (occurring on a 5 ms time scale) and spin-relaxation among trapped magnetic
states. The fact that the initial atom number seems to be different from the Cold MOT
atom number is an artifact: there is a different Clebsh-Gordan coefficient in the imaging
diagnostic (see equation 2.11) due to spin-polarization of the cloud. Note also that both
curves show a long-term one-body decay due to collisions with residual background gas
(see part 3.3.5).

short pulse that feeds the amplitude port of the VCO of the spin-polarization AOM.
This pulse ends 150 µs before the end of the 500 µs pumping stage and it is trigged by
the digital control of the AOM.

Finally, note that the AOM amplitude of the repumping beam is kept at 100 %, in
order to have a lot of repumper light in the spin-polarization beam to bring back again
the atoms from the ground-state F = 7/2.

With these parameters, we could get almost 100 % of pumping efficiency for 40K, as
shown in Figure 3.6, and 30 % for 6Li for which optimization is still in progress. Note
that, despite the different imaging Clebsh-Gordan coefficient in a fully polarized cloud
that can lead to errors in the evaluation of the numbers of atoms (see equation 2.11), we
can assume that the initial number of atoms in Figure 3.6 corresponds to the number
measured in the Cold MOT. Indeed, we do not observe any initial loss on a 5 ms time
scale, which demonstrates the absence of high-field seeking states and spin-relaxation.

The long-term decay of both curves on the graph is due to the vacuum quality. It
is studied in part 3.3.5. We conclude from the short-term data that the pumping is
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compulsory if we do not want to loose 90 % of the atoms due to spin-relaxation or high
field seeking states.

Unfortunately, this process is still not perfect since it induces a consequent heating.
In fact, due to the pumping beam intensity the potassium horizontal temperature
reaches 344 µK in the cooler case, and the vertical one 423 µK. We could avoid this
effect by attenuating the pumping beam but the transfer efficiency then also decreased.
Thus, there is a trade-off between high numbers and low temperatures. The final fine
tuning of this intensity will be achieved during the evaporation stage, where we will
try to maximize the phase-space density, knowing that we may need an imperfect
pumping for 40K, since we may use both mF = 7/2 and mF = 9/2 for thermalization
(see part 3.4.3).

Let us finally mention that we want to remove any possible source of stray light
during magnetic trapping. Thus we shut down all the AOM with the VCO attenuators
and detune strongly their frequencies. AOM have a short switch-off time of less than a
microsecond. However their attenuation is limited to 10−4, thus we need to add some
mechanical shutters. Those have a full attenuation but are quite slow in comparison
to AOM, since they need 100 µs to mask the beam once they start to move. They
are of two kinds, home-made ones with razor blades glued on electromagnets (Tyco
Electronics, T90N1D12-12), or commercial iris-type from Uniblitz. In both cases, they
have a delay in response time of the order of 5 ms that we had to calibrate precisely and
incorporate in our computer time sequence. Note that this delay is only a calibrated
offset in the response time, before the shutter moves, which is independent from the
100 µs switching time.

3.3 Experimental characterization

After the previous preliminary steps, 6Li CMOT, 40K Cold MOT and spin-polarization,
we load the atomic mixture into the magnetic trap. In this section we present its
main experimental characteristics, such as temperatures, numbers of atoms, sizes and
lifetimes, after a brief overview about some technical aspects on power, switches and
security.

3.3.1 Technical overview

The pair of coil of the magnetic trap is the MOT pair. It is fed by a single 45 V-140 A
Delta power supply whose output is controlled in voltage (CV mode, see part 3.2.3)
through the analog card of the National Instrument computer (see part 1.5). The pair
resistance isR = 0.178 Ω and it creates an axial magnetic gradient of 0.936 G.cm−1.A−1.

We need to take pictures in order to get information about the trapped cloud.
Because of the inhomogeneous Zeeman effect it is necessary to switch off completely
the magnetic field to get homogenous detunings as far as the imaging frequency is
concerned (see part 2.2.2). However, the current in the magnetic quadrupole pair can
reach IM = 150 A. With such a high current, a standard MOSFET switch (such as the
one used for transport, described in part 4.5.2) was shown to be too slow, as it would
require approximately 10 ms to switch off, which is the duration after which the size
of the 40K cloud reaches the imaging limits. Instead we decided to use an Insulated
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Gate Bipolar Transistor (IGBT) from Mitsubichi Electric (CM600HA-24H), for which
the closing time at high currents is of the order of 1 ms.

Besides, to protect the IGBT during switch-off phases, we put a varistor on the
drain-source channel to limit the overloads created by electromotive forces. We also
installed flyback diodes (Vishay 400U120D) on the power supply, in order to prevent
strong negative Lenz currents from flowing back inside the power supply. In addition,
the gate-source digital command is isolated from the computer by the optocoupling
box described in part 1.5.

Finally, note that the coil M is home-made. We used an Ertacetal mount and hollow
wire (4 mm outside diameter, 2.5 mm inside diameter) in order to pass water directly
inside for cooling. For safety reasons, we placed a 10 kΩ thermistance to control the
temperature of the pair, as well as a water flux-meter. Both thermistance and flux-
meter are coupled to the interlock circuit of the power supply to turn it off in case of
problem.

3.3.2 Atomic cloud properties

Using the 6Li CMOT (part 3.2.1), the 40K Cold MOT (part 3.2.2), the optical pumping
(part 3.2.3) and the technical aspects (part 3.3.1) described before we could get single
magnetic traps of typically 1× 109 atoms for each species. With our biggest MOT we
could even reach the value of 3 × 109 for 40K (see Figure 3.6). Note that, due to the
1 ms switching time of the coils, it was not possible to get in-situ pictures so we had
to wait usually 2 ms before taking an image.

As far as they are concerned, the temperatures of the two single-trapped atoms are
quite different: TK ≈ 400 µK (see Figure 3.7) and T Li ≈ 1.3 mK.

From these temperatures we can deduce sizes. By definition of the RMS velocity
in 1D, we have:

1

2
mv∗2 =

1

2
kBT . (3.10)

This result, combined with virial relation 3.8, leads to:

R =
kBT

µBb
. (3.11)

Thus, with a vertical gradient b = bz = 85 G.cm−1 (corresponding to IM = 90.5 A)
we get RK = 0.7 mm and RLi = 2.3 mm in the vertical direction, which is also in
accordance with the sizes that we extract directly from the 2 ms time of-flight pictures,
a snapshot of which is given in Figure 3.8. For the shallower horizontal direction, that
has half the vertical gradient, we just have to multiply those numbers by a factor 2,
according to equation 3.11.

Using the sizes of the clouds and the numbers of atoms we can obtain the average
densities. We find n ≈ 2× 1011 atoms.cm−3 for 40K, and n ≈ 5× 109 atoms.cm−3 for
6Li.

The results presented above concern only single species traps. The study of the
double magnetic trap is still in progress and should give some useful data about the
mutual influence of polarized 6Li and 40K soon. In particular, we expect to get some
quantitative information about thermalization and inter-species collisions.
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Figure 3.7: Vertical and horizontal temperatures of 40K atoms in the magnetic trap
measured by time-of-flight method (see part 2.2.3).

Figure 3.8: Screen capture of a 2.1 ms time-of-flight picture (see part 2.2.3) of the 40K
magnetic trap, using Eric software.
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Figure 3.9: Evolution with time of the ratio between vertical and horizontal tempera-
tures, in a 40K magnetic trap.

3.3.3 40K p-wave cross-section

Due to Pauli exclusion principle, s-wave intraspecies collisions are suppressed for
fermions in a single spin state. Nevertheless, for a temperature greater than a thresh-
old temperature of 100 µK in the case of 40K, p-wave collisions can occur [116]. Those
collisions are characterized by an elastic cross-section of approximately 2× 10−11 cm2.

While measuring the temperature in the 40K magnetic trap, we noticed that the
vertical and horizontal temperatures were actually different just after the loading of the
trap. We attribute this to the spin-polarization phase that heats the cloud vertically.
Moreover, the two temperatures equilibrate to a same value after a few seconds, as
shown in Figure 3.9, and the thermalization time τ is of the order of a second. From this
measurement we estimate the 40K p-wave elastic cross-section, through its definition:

σ =
1

τv∗n
, (3.12)

where v∗ =
√

3kBT/m is the 3D RMS velocity, and n is the average 40K density in the
magnetic trap. Using the numbers given in part 3.3.2, we obtain σKK ≈ 1.2×10−11 cm2,
which is in good agreement with the value from JILA [116]. Note that this estimate
relies on the fact that spin-polarization in a single spin state is perfect, since the s-
wave elastic cross-section is of the same order as the p-wave elastic cross-section at the
temperature of the magnetic trap.

This result is important. It demonstrates that, above a few tens of microkelvins,
collisions still occur in a 40K cloud polarized in a single spin state. Therefore, it offers
an additional strategy for evaporative cooling above a few tens of microkelvins (see
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part 3.4.3), which consists of cooling down the purely polarized 40K atoms only. With
this technique, it is not necessary to transfer some atoms in another spin state before
evaporation. This measurement will be implemented as well for the double cloud, in
order to probe the interspecies elastic collisions.

3.3.4 Trap depth and gravity

Using equation 3.11 and including a D = 3 cm minimal distance from the center to
the walls (see Figure 4.7), one can obtain the trap depth in temperature units:

Tdepth =
µBbD

kB

, (3.13)

independently of the atomic mass. Putting numbers, and using b = −bx = 0.5 bz, leads
to Tdepth ≈ 8.5 mK, which is six times greater than the critical T Li: we do not loose
atoms by evaporation on the MOT chamber walls. Finally we can verify that gravity
can be forgotten in such a trap. Let us compare the gravitational force mg to the
typical vertical magnetic force µBbz, in the case of the heavy 40K:

mKg

µBbz
≈ 8% ,

which does not affect strongly the trap depth. We can neglect losses due to the gravity
tilt in the magnetic trap.

3.3.5 Lifetime

We notice on Figure 3.6 that, apart from the quick losses due to 40K in untrappable
states, there is a long term decay. Actually, in the vacuum chamber where the trapping
takes place there is a background gas thermalized with the room temperature walls. It
is composed of impurities due to partial baking out as well as atoms from the vapor of
6Li and 40K. Because of the finite depth of the trap calculated in part 3.3.4, collisions
between the trapped atoms and the background gas can lead to losses. Neglecting other
loss mechanisms, such as Majorana losses or spin-relaxation, the number of trapped
atoms N in a magnetic trap evolves with the rate equation:

dN

dt
= −N

τ
,

where τ is the lifetime associated to those one-body losses. We measured this expo-
nential decay for both 6Li and 40K magnetic traps and found out τ ≈ 3 s in both cases.
A typical experimental curve for 40K is given in Figure 3.10. The absorption pictures
has been taken after various durations in the magnetic trap and an additional 2.6 ms
delay in order to ensure the complete switch off of the coils (see part 3.3.1). We can
make three comments about this lifetime.

First, it is disconnected from Majorana losses since we found in part 3.1.2 that
τK

M ≈ 200 s and τLi
M ≈ 30 s, and from spin-relaxation and high field seeking states losses

that happen in the first 100 ms (see Figure 3.6).
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Figure 3.10: Number of 40K atoms in the magnetic trap (IM = 90.5 A) as a function
of time.

Secondly, it is almost half smaller than the MOT lifetime which is 7.5 s for both
species. This is not surprising if we compare the depth of both traps. For the magnetic
trap, we found in part 3.3.4: Tdepth ≈ 8.5 mK. For the MOT, we found in part 2.1.7:
TK

depth ≈ 0.9 K and T Li
depth ≈ 0.3 K, which are respectively 100 and 30 times bigger than

the magnetic trap depth. According to [117] the lifetime is proportional to T
1/6
depth: this

is consistent with the approximate factor 2 that we observe.
Thirdly, those lifetimes, both for MOT and magnetic traps, are quite low. We thus

performed an helium leak-test on the vacuum chamber showing no major leak. We also
side-checked that separating the atomic sources by closing the valves during 24 hours
would not change these lifetimes, removing the hypothesis of pollution by the source
regions. We finally think that incomplete outgassing could be the reason of such a low
lifetime. Nevertheless, the science cell is separated from this region by a differential
pumping tube (part 1.1.3), and it is pumped out by a Varian 40 L.s−1 ionic pump and
a titanium sublimation pump. Therefore, we reach a vacuum with 30 s lifetime in the
final magnetic trap, as measured in Figure 5.20, which is reasonable for evaporative
cooling of the mixture.

3.4 Next stages

As explained above we measured the one-body lifetime of the magnetic trap (see Fig-
ure 3.10) to be 3 s, which is too small to allow for evaporative cooling of the atomic
sample. Moreover, the optical access is not optimal in the MOT chamber, due to nu-
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merous 2 inches MOT optics. We then transfer the mixture from the MOT octagonal
chamber to a glass science cell, 60 cm and an elbow away, where the lifetime was mea-
sured to be of the order of 30 s. This transfer is exhaustively described in chapter 4
and 5.

Once the atoms reach this final cell, they are kept in the transported magnetic
trap. However, if one cools down the sample by evaporation, the Majorana lifetime τM

reduces with temperature T . In fact, combining equation 3.9 with equation 3.11 leads
to: τM ∝ T 2. Thus, efficient evaporative cooling is impossible in a simple quadrupole
trap.

Various solutions to this issue exist, three of them being in magnetic traps. The
first one is the Ioffe-Pritchard configuration [118], also-called QUadrupole-Ioffe Config-
uration (QUIC). In such a trap, the harmful minimum of magnetic magnitude is shifted
from zero to a finite value by adding a single coil orthogonally to the pair axis. The
second method is the so-called Time-average Orbiting Potential (TOP) [113], which
was historically used for the observation of the first BEC in 1995 [9]. Its principle is to
add a rotating magnetic field in the transverse plan of the quadrupole, with a frequency
small in comparison with Larmor frequency (otherwise additional Majorana spin-flips
may occur), but higher than the typical oscillation frequency in the quadrupole poten-
tial (see equation 4.16). The time-averaged potential acts on the atoms as an effective
harmonic potential with a finite minimum in field magnitude seen by the atoms. We
decided to implement a third method: the optically plugged trap which led to the first
Na BEC in 1995 [11], and which was proven to be efficient for 6Li-40K [56]. This trap
is a combination of a standard magnetic quadrupole and a repulsive blue-detuned laser
beam passing through its center and thus blocking the region where Majorana losses
occur. We describe it further in part 3.4.2 and we present the evaporative cooling
schemes in part 3.4.3.

Once evaporative cooling in the optically plugged magnetic trap has sufficiently
reduced the temperature, and thus the size of the cloud, we can transfer the mixture
into an optical dipole trap, where the evaporation process can be continued. We
describe its principle in part 3.4.4.

Then, in part 3.4.5, we present the design of the Feshbach coils allowing for Feshbach
resonances [18], and thus for control of the interatomic interactions. Finally, we present
our high resolution imaging device in part 3.4.6.

3.4.1 Final quadrupole trap

At the end of the transport sequence, the mixture is kept in the quadrupole trap created
by the penultimate pair of transport coils: the quadrupole pair. Its total resistance is
R = 0.11 Ω and it creates an axial magnetic gradient of 3.75 G.cm−1.A−1. The power
supply, the coil winding, the switch details and the safety operations are the same as
the ones described in part 3.3.1 for the initial magnetic trap coils. We can reach under
these conditions an axial gradient of 560 G.cm−1 at 150 A during a minute, without
major heating. The Helma science cell having a minimal horizontal half-size of 1.1 cm,
the associated trap depth estimated through equation 3.13 is of the order of 20 mK.
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3.4.2 Optically plugged magnetic trap

The principle of the Plugged Magnetic Trap [11, 119] is to add a repulsive blue-detuned
dipole barrier (see part 3.4.4) at the center of the trap, in order to repel the atoms
from the dangerous low field region. The waist of the laser creating the dipole barrier
should be bigger than the Majorana radius given at equation 3.5 and estimated for the
RMS velocity of the sample. For 560 G.cm−1 (see part 3.4.1), and in the worst case of
6Li at 1 mK, this gives a RMS Majorana size of 3 µm. Thus, a typical laser waist of
20-30 µm s is acceptable for the plugged barrier.

In addition, simulations of Majorana losses have been performed. They showed
that a 660 nm MOPA of 500 mW focused on 30 µm was not creating a high enough
repulsive barrier (770 µK for 40K and 140 µK for 6Li) whereas a 532 nm Verdi laser of
10 W was satisfactory (1 mK for both species).

We decided to install the latter in the vertical direction, using the imaging Pixel Fly
CCD camera for fine pointing. The Verdi consists of an intracavity-doubled Nd:YVO4
laser with 12 W maximal output power(Coherent, Verdi V12). We focus 7 W of
its power over a waist of 20 µm using high power optics. Those are placed in a
Thorlabs cage system to avoid the presence of dust on the beam path and to ensure
pointing stability. In addition, to control this pointing, the penultimate mirror on
the beam path is electronically controlled by a Thorlabs circuit (TST001 and ZST13).
Finally, the switch-off of the Verdi is realized with a 110 MHz AOM (AA optoelectronic,
MCQ110-A2). This modulator is controlled by an home-made VCO amplified through
a Minicircuits RF-amplifier (ZHL-5W-1) and it is air-cooled.

3.4.3 Evaporative cooling

Since we are working with fermions, it is compulsory to perform the ultimate evapora-
tive cooling stage through sympathetic cooling between two distinguishable fermions or
spin states [20]. In fact, s-wave collisions are forbidden for undistinguishable fermions,
due to Pauli’s exclusion principle, whereas p-wave collisions are suppressed under
100 µK for 40K [116] and 6 mK for 6Li [120], by Pauli blocking [21].

As explained in part 3.1.3, using two different hyperfine states of 6Li would not work
in a magnetic trap because of spin-relaxation. One solution consists in evaporatively
cooling 40K, using a mixture of |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉 states in
an optically plugged magnetic trap. In this protocol, 6Li is sympathetically cooled by
40K. The associated potassium intraspecies s-wave scattering length equals a = 170 a0

[121], which is larger than the interspecies one of 64 a0 [122], leading to higher cross-
section σ = 4πa2, and thus to better rethermalization and cooling efficiency.

According to the result summarized in part 3.3.3, above a few tens of microkelvins
another possible strategy is to cool down by evaporation the purely polarized 40K
atoms in |F = 9/2,mF = 9/2〉. In this protocol also, 6Li is sympathetically cooled by
40K. Then, around 50 µK, the mixture can be transferred into an optical dipole trap,
and the evaporative cooling can be continued using an intraspecies Feshbach resonance,
in order to increase the elastic collision rate.

Nevertheless, other strategies of evaporative cooling are possible with our design,
and we could choose another one depending on the initial conditions. For instance,
the following procedures have already been tested in other 6Li-40K experiments. In



3.4. Next stages 111

Singapore [55], the bosonic 87Rb is cooled down by evaporation, leading to sympathetic
cooling of the fermionic 6Li and 40K. In Amsterdam [56], 40K in three spin states
is evaporatively cooled down, leading to sympathetic cooling of 6Li. In Innsbruck
[57], 6Li in two spin states is evaporatively cooled down in an optical trap, leading to
sympathetic cooling of 40K. In Boston [58], evaporative cooling is performed on the
bosonic 41K, leading to sympathetic cooling of the fermionic 6Li and 40K.

Evaporative cooling is performed using microwaves signals that couple a trapped
and an untrapped state at a certain distance of the trap center. We have already
installed and tested the radio-frequency synthesizer (Agilent Technologies MXG ATE
N5161A) and the associated antennas in the final quadrupole trap, by blasting out all
the atoms from the science cell. In addition, a simulation of evaporation efficiency in
a plugged trap, created with a 10 W Verdi laser, has been performed and confirms
its feasibility. Finally, we measured the lifetime in the final cell and compared the
associated loss rate to the elastic collision rate, as developed in part 5.4.2.

3.4.4 Optical dipole trap

Once the evaporation process is sufficiently advanced in the optically plugged magnetic
trap, we plan to transfer the mixture in another conservative trap, the optical dipole
trap [109, 123], in order to cool down further the cloud before studying it or transferring
it into optical lattices [124]. Note that the optical dipole forces have also several
applications in biology and micromechanics [125, 126]. In this part, we present the
general principle of the optical dipole trap, as well as our first low-power experimental
realization of dipolar trapping for 40K in the MOT chamber. Then, we characterize
the trap that we plan to get with a Coherent high-power laser, before presenting our
simulations of parametric heating induced by the noise in this high-power laser.

General principle

In the theory of linear response, the classical polarizability of an atom is described
by a complex number. In presence of an electrical field, such as the one carried by a
laser beam, its imaginary part is maximal at resonance and it is linked to dissipation
and radiation pressure that are used in laser cooling. On the contrary, the real part of
the polarizability is linked to non-dissipative processes. It is null at resonance and it
induces a potential that can be written far off-resonance as [86, 127, 128, 123]:

Udip(r) =
3πc2Γ

2ω3
0

I(r)

∆
, (3.14)

where ∆ is the detuning, I(r) the beam intensity profile and ω0 the transition pulsation.
For a red detuning (∆ < 0), this potential is attractive: atoms seek high intensities and
thus are trapped at the focus point. On the contrary, far off-resonance blue-detuned
light (∆ > 0) can be used to generate some repulsive potentials around the cloud
[129, 130]. This is a possible way to confine the cloud in a plan, or even on a line, and
thus to reduce the effective dimension of the problem.

Even if the detuning of the laser is large, its intensity is large also so that absorption
of photons can still occur and heat the cloud. Therefore, another important number
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Figure 3.11: 40K dipole trap picture.

to characterize an optical dipole trap is the scattering rate of photons Γscat(r). Its
expression is given by [123]:

Γscat(r) =
Udip(r)

~∆
Γ . (3.15)

Experimental realization with low-power laser

We did not install yet a strong far off-resonance dipole trap in the science cell, but
we tested its principle in the MOT chamber, using a low-power low-detuned focalized
laser beam. An absorption picture is given in Figure 3.11. It consists of 5 × 107 40K
atoms in an optical dipole trap of 3.5 mK depth. The trapping beam was generated by
the additional diode and MOPA (see part 1.2.4) that we used for the photoassociation
experiment (see part 2.4.1). Its fiber output power equals 660 mW. The beam is
extended to a waist of w = 2.2 mm using a telescope, before being focalized over a
waist of w′ = fλ/πw = 110 µm (gaussian focal-to-focal magnification) using a lens
with focal length f = 1 m, and its frequency is red-detuned by 104 Γ/2π ≈ 60 GHz.
The resulting maximal scattering rate equals Γscat ≈ 10−3 Γ. The horizontal size equals
1.8 mm and the vertical one equals 420 µm.

Preliminary estimations with high-power laser

We decided to purchase a 25 W Coherent infra-red laser at 1064 nm. Then, it is feasible
to focalize at least 10 W of power over a waist of 30 µm. From equations 3.14 and 3.15,
we can estimate the associated trap depth for 40K to be of the order of ∼ 400 µK, and
the scattering rate to be of the order of ∼ 8 × 10−8 Γ, which is reasonable to trap
efficiently a cloud at ∼ 50 µK. For 6Li, the trap depth equals ∼ 180 µK and the
scattering rate is of the order of ∼ 2× 10−8 Γ.
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Simulation of parametric heating with high-power laser

Before purchasing the expensive Coherent high-power laser, we simulated the effect of
the intensity noise of the laser on the energy distribution of the atoms. Actually, due
to the direct dependencies on intensity in equation 3.14 and to the inherent intensity
noise of the lasers, parametric heating may occur in the trap and induce consequent
losses.

First, according to [131], at a given trap frequency f we can connect the parametric
heating rate Γp(f) to the relative intensity noise spectrum S(f) by the relation:

Γp(f) = π2f 2S(2f) .

The parametric heating time Tp is then simply given by Tp = 1/Γp. Since we could not
get the noise data of the desired Coherent infra-red laser at 1064 nm, we used instead
the data of another Coherent laser: the 10 W Verdi laser (V10) at 532 nm. Its noise
spectra was obtained from the measurements of Scott Diddams at NIST (see Figure 3.12
(a)). Afterwards, Zoran Hazdibabic from Cambridge sent us the noise spectrum of the
Coherent infra-red laser which happens to be similar to the Verdi one. Figure 3.12 (b)
shows the calculated parametric heating time as function of trap frequency. We see
that under 24 kHz the parametric heating time is above 5× 104 s, which is reasonable
for experiments that last less than a minute. For higher trap frequencies up to 70 kHz,
it remains greater than 500 s, apart from a narrow spike (certainly due to the noise in
the internal power supply that drives the pump diodes) where it reaches 190 s. This
value is still acceptable.

Secondly, we obtained the lifetime in such a noisy trap through a numerical simu-
lation. The evolution of the energy distribution n(E, t) with time t follows a Fokker-
Planck equation [132]:

∂n(E, t)

∂t
=

Γp

4
E2∂n(E, t)

∂E2
− Γp

2
n(E, t) ,

where the total number N(t) of trapped atoms is given by:

N(t) =

∫ 0

U0

dE n(E, t) ,

with U0 = Udip(0). A typical result for Γp = 1000 s and an initial temperature such
as T/U0 = 1% is given in Figure 3.13. The initial trap loss rate depends on the initial
temperature of the trapped atomic cloud, however the asymptotic form of the solution
of the Fokker-Planck equation [133], gives a trap loss rate of 9Γp/16 ≈ Γp/2, which is
of the same order of magnitude as Γp.

Let us estimate now the trap frequency. For a single beam of waist w, the stronger
confinement is in the radial direction with a trap frequency of [123]:

fr =
1

2π

√
4U0

mw2
,

where m is the atomic mass. For the light 6Li, with a laser of 10 W at 1064 nm,
focused on a waist of 30 µm, we find a trap frequency of fr ≈ 5 kHz, for which the
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Figure 3.12: Parametric heating time for Verdi 10 W laser of 532 nm. (a) Relative
Intensity Noise (RIN) as a function of frequency. (b) Parametric heating time as a
function of trap frequency.
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Figure 3.13: Time evolution of the energy distribution in an optical trap. The para-
metric heating time is chosen to be 1000 s. The initial temperature is chosen such as
T/U0 = 1%.

parametric heating time is largely bigger than 1000 s (see Figure 3.12). The Coherent
infra-red laser is thus acceptable regarding noise issues in optical dipole traps.

However, one should keep in mind that with optical lattices higher trap frequencies
are reached. In 1D, along the lattice direction we have for instance:

fz =
1

2π

√
8U0k2

m
,

which gives fz ≈ 300 kHz for a 10 µK lattice depth. Thus, in future, the high frequency
noise spectrum should be studied carefully as well.

3.4.5 Feshbach coils

Finally, during optical trapping, we will use one more time the quadrupole coils of
the final magnetic trap (see part 3.4.1), but they will be switched into Helmholtz
configuration in order to generate high and uniform bias magnetic fields. This will
allow for interspecies Feshbach resonances between 6Li and 40K [60, 61], as well as for
intraspecies resonances, and thus for a general control of the interactions.

For this purpose, we designed a new set of coils with stable mounts in order to
replace the home-made quadrupole pair. Each coil of this new pair contains actually
two coils: one big internal coil of 4 by 11 turns to generate strong bias fields of 10 G.A−1,
and one small coil of 4 by 4 turns giving a field of 2.64 G.A−1 in order to sweep quickly
the field around a Feshbach resonance. We calculated that their theoretical overall
inhomogeneity in magnetic field is of the order of a ppm over a cloud size of 100 µm.
This inhomogeneity is acceptable to address physics at unitarity, since for a resonance
of 155 G we need a precision of 43 mG according to [56], which means an inhomogeneity
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Figure 3.14: Partial 40K fine spectrum. λ1 is the wavelength used for cooling and
standard imaging. λ2 is the wavelength used for high-resolution imaging.

of 3×10−4. The winding of this new pair is being performed at the moment by Oswald
company and the coils will be installed as soon as we receive them.

3.4.6 High resolution imaging

High resolution imaging of single atoms in optical lattices is one of the hot topics
in cold atoms physics nowadays [134, 135]. If one tries to image a single atom at a
wavelength λ, by using a lens of focal length f and diametral aperture d, the Airy
diffraction pattern obtained from Huygens principle has a radius of:

r = 1.22
λf

d
.

Therefore, following Rayleigh’s criterium, in order to distinguish two atoms they have
to be typically separated by r. Since the best numerical aperture d/f we can obtain
for a spherical lens is of the order of unity, the spatial resolution of such a lens is of
the order of λ. As we wish to study atoms in optical lattices that have a periodicity
of λ∗/2, where λ∗ is the wavelength used to generate the lattice, we see that we need
to have λ ≤ λ∗/2. Since we plan to use a λ∗ = 1064 nm Coherent infrared laser
to generate the lattice (see part 3.4.4), we designed a high-resolution imaging system
using the λ = 404.414 nm blue transition of 40K shown in Figure 3.14 [136]. The
diode used is a Sharp chip (GH02040A2GE). The design is a similar extended cavity
Littrow configuration as the one described in part 1.2.2. As shown in Figure 3.15, we
could observe the saturated absorption profile of this transition, using an absorption
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Figure 3.15: Saturated absorption lines of the 4S1/2−5P3/2 transition of 39K. The middle
peak is the crossover between the two others peaks that correspond to the transitions
from the two hyperfine ground-states to the upper unresolved multiplet.

cell heated to 150◦C. We then locked the laser on the cross-over line, with a similar
synchronous detection as the one introduced in part 1.2.3.



118 Chapter 3. Magnetic trap

3.5 Summary

In this chapter, we presented our magnetic trap for 6Li and 40K, as well as the prelim-
inary and forthcoming stages.

First, we described the general principle of magnetic trapping, as well as the losses
mechanisms. In particular, we estimated the Majorana loss rates, that will be useful
for the design of the magnetic transport.

Secondly, we characterized the preliminary stages for efficient magnetic trapping:
compression and spin-polarization. For 40K, using a quick Cold MOT scheme, we could
compress the cloud to a density of 5× 1010 atoms.cm−3, and cool it further to 200 µK,
with 100 % efficiency. Then, we could optically pump it into the |F = 9/2,mF = 9/2〉
state, with 100 % efficiency. For 6Li, using a quick CMOT scheme, we could compress
the cloud to a density of 3.5 × 1010 atoms.cm−3, and cool it further to 1 mK, with a
100 % efficiency. Then, we could optically pump it into the |F = 3/2,mF = 3/2〉 state,
with 30 % efficiency.

After those preliminary stages, we could load single-species magnetic traps with an
axial magnetic gradient of 85 G.cm−1, and we obtained typically 109 atoms in each
case, after 1 s of trapping. With our biggest MOT we could even reach the value of
3×109 for 40K. The temperatures were measured to be 400 µK for 40K, and 1.3 mK for
6Li. The thermalization time of 40K was found to be of the order of 1 s, leading to an
estimated p-wave cross-section, σKK = 1.2× 10−11 cm2, close to the value obtained at
JILA [116]. This offers an interesting strategy for evaporative cooling in an optically
plugged magnetic trap above a few tens of microkelvin, by allowing for the cooling of
40K in a single spin-state |F = 9/2,mF = 9/2〉.

Finally, the forthcoming stages have been described. We designed the optically
plugged magnetic trap in the science cell, where evaporative cooling will be initiated,
as well as the optical dipole trap, where quantum degeneracy will be reached. Besides,
we presented our high resolution imaging scheme, based on a 404 nm transition of 40K,
as well as the design of the Feshbach coils.

In order to perform evaporative cooling, and to study degenerate Fermi mixtures
in optical traps, it is crucial to ensure a ultra-high vacuum environment and a good
optical access. Therefore, we transfer the magnetic trap from the octagonal chamber to
a final science cell. The design and engineering of this magnetic transport are described
in chapter 4.



Chapter 4

Magnetic transport: design

During my thesis I designed, set up and studied a magnetic transport system for a
cold 6Li -40K mixture. Starting from the magnetic trap described in chapter 3, we first
ramp up the gradients in order to confine more the cloud and to avoid future losses
by evaporation on the walls during transfer. Then we move the trap center over a
total distance L4 = 64.7 cm so that the atomic cloud is transferred into the science cell
where vacuum and optical access are better than in the octagonal chamber of the MOT.
Thus evaporative cooling becomes possible and, furthermore, different trap types can
be achieved: optically plugged magnetic trap, optical trap or optical lattices of various
dimensions and geometries. In addition, the final quadrupole pair being closer from
the cloud than the MOT pair is, one can reach steeper confinement.

In this chapter, we present the theoretical aspects and the design of such a transport
device. A following chapter is dedicated to its experimental implementation. Note that
on one hand the displacement velocity should be high enough to prevent Majorana
losses (see part 3.1.2) but on the other it should be low enough to ensure adiabaticity
and protect the transport against losses due to heating. Two versions of this transport
technics have been implemented. The first one, developed in the group of T. Hänsch
and I. Bloch in Munich [137] relies on time-varying currents in a static ensemble of
pairs of coils. The second one, invented in the group of E. Cornell in Boulder [138], is
based on a physical displacement of the trap coils. We have chosen the first method,
more complex but excluding mechanical vibrations of the system and more reliable
after optimization of the various currents has been performed.

119
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88 Chapitre 5. Transport magnétique d’un nuage d’atomes froids

Il est nécessaire à ce stade de faire une remarque importante. Sauf cas particulier exotique,
la géométrie du piège n’est pas constante au cours du transport entre les deux paires de bobines.
Appelons A le rapport d’aspect du piège dans le plan horizontal :

A =
b′
x

b′
y

(5.14)

On démarre avec A = 1 puis le piège s’allonge dans la direction du transport y quand on
commence à mettre du courant dans la deuxième paire de bobines (A > 1 avec notre convention).
Ensuite, le rapport d’aspect redescend à 1 (voir figure 5.8) quand le courant ne circule que dans
la seconde paire. Cette variation de A peut être une source nuisible de chauffage pour notre
nuage d’atomes. Il serait souhaitable de pouvoir garder la géométrie du piège constant au cours
du transport mais cela n’est pas possible si deux bobines seulement sont en jeu à un instant
donné. En effet, les deux courants nous permettent de contrôler deux paramètres : la position
du centre du piège et le gradient suivant l’axe de confinement fort (axe vertical z). Le rapport
d’aspect du piège A constitue un troisième paramètre à contrôler. Il faut donc un troisième degré
de liberté. Une solution simple est d’utiliser une troisième paire de bobines.

5.1.4 Trois paires de bobines

Partons d’une situation où les deux premières paires de bobines sont parcourues par le même
courant. La valeur de A dépend du chevauchement et de la taille des bobines ainsi que de la
distance entre les bobines et les atomes. En général, le piège est allongé dans la direction du
transport2 (voir figure 5.5). Pour déplacer le piège, on éteint progressivement la première paire de
bobines pendant qu’on allume la troisième. Le centre du piège se déplace vers la troisième paire.
Avec des courbes temporelles de courant judicieuses, il est possible de garder le rapport d’aspect
constant. Quand le courant dans la première paire atteint zéro, la situation est la symétrique
de la situation de départ avec un courant égal dans la deuxìeme et troisième paire. On peut
maintenant répéter le système pour transporter les atomes sur une longue distance.

Z

X Y

Figure 5.5 – Avec trois paires de bobines utilisées en même temps, on peut garder le rapport
d’aspect constant au cours du transport

On peut noter que concrètement le transport débute et finit avec une seule paire de bobine
allumée. Dans les deux cas, le rapport d’aspect vaut obligatoirement 1 et il est donc nécessaire
que le rapport d’aspect varie au début et à la fin du transport.

2D’un point de vue théorique, rien n’interdit de réaliser le transport avec un rapport d’aspect de 1. Cependant,
cela nécessite des courants négatifs ce qui rend le système d’alimentation difficile à mettre en place avec le matériel
à notre disposition.

Figure 4.1: Changing the currents in three consecutive anti-Helmholtz pairs of coils
moves the center of the trap: if we decrease the current in the first pair of coils as we
increase the current in the third one (see arrows), the center of the trap moves toward
this third pair.

4.1 Statics

In this section, we present the principle of the algorithm that calculates the current
in each coil for a a given position of the trap, with gradients equal to the constraints
at this point. We also describe the three critical points in the transfer: injection from
magnetic trap, turning at the elbow and transfer into the final quadrupole trap.

4.1.1 Algorithm

The principle of the magnetic transport is described below. As explained in part 3.1.1
about the magnetic trap, the linear Zeeman shift (equation 3.2) is valid in our case
and the quadrupolar development (equation 3.3) of the field created by the MOT coils
as well. We note Ox the direction of the transport, even after the elbow, and Oz the
vertical one. We want to impose and control the shape and the position of the trap.
Thus we need to control four parameters: the trap position in the x axis, and the three
gradients. However the gradients are not independent, since they are linked through
the Maxwell equation:

∇ ·B = 0 .

We can then restrict ourselves to three control parameters. For instance: centre posi-
tion x∗, gradient component by = dBy/dy, and aspect ratio A = bx/bz. Note, that the
latter necessarily varies if the trap evolves from a MOT configuration to a transport
one, where the cylindrical symmetry is broken since several pairs of coils contribute at
the same time. Three control parameters means three independent variables: the cur-
rents in three consecutive pairs of coils. Moreover one can show [139] that the optimal
situation corresponds to the intuitive case where the distance between pairs is equal to
the external radius of a single pair. A larger distance induce a sharp movement during
transfer, whereas a smaller one implies a bigger total number of coils for a similar
transfer. With such a triplet configuration, one easily understands that if we switch
off the first pair of coils as we switch on the third one, the center of the trap moves
toward this third pair (see Figure 4.1). When the first current reaches zero, we switch
on a fourth pair of coils and then simply repeat the process. We first have to write an
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algorithm that calculates the currents in all the coils as a function of the position of
the center of the trap. Then we can easily add the temporal dynamics by assigning a
time at each position of the center of the trap. The principle of this algorithm relies
on a resolution of the following system of equations:

B(r∗) = 0 ,
by(r

∗) = b∗y(r
∗) ,

A(r∗) = A∗(r∗) ,

where r∗ = (x∗, y∗, 0) is the chosen position of the center, A∗ the chosen aspect ratio
function and b∗y the chosen gradient function. For three consecutive pairs indexed by
i=0, 1, 2, with three currents I0, I1, I2, and the associated fields and gradients by unit
of current B̃i and b̃i, the system of equations becomes:

∑2
i=0 B̃i,x(r

∗)Ii = 0 ,∑2
i=0(b̃i,x(r

∗) + b̃i,z(r
∗))Ii = −b∗y(r∗) ,

A(r∗) = A∗(r∗) .

(4.1)

We solve this 3D system using Mathematica and exact formulas for the magnetic
field created by a single loop of current (see appendix A.2 and A.3). We start from
three pairs and when I0 = 0 we increment the pair index. The chosen sampling
precision is the millimeter which means a total number of points of the order of 647
since L4 = 64.7 cm.

4.1.2 Injection

The initialization of the transport raises two main issues. First, in the method of
transport described here we switch from a simple quadrupole trap situation, with a
single pair of coils, to a transport situation with three pairs simultaneously working.
As a consequence the chosen aspect ratio and gradient have to follow some ramps from
their initial values to their transport values. Secondly, the first coils of the transport are
the MOT ones (M). Due to size of the octagonal chamber, and especially the vertical
view port flange, those coils have a small possible overlap with other coils. Thus it
is compulsory to add a pushing coil (P) behind the MOT and a pulling pair (T1/2)
between the MOT and the transport in order to allow the transfer of the cloud toward
the transport coils. A schematics of the transport is given in Figure 4.2. We separate
the initialization phase in two steps. A first pushing step where the pushing coil, the
MOT coils and the first pair of transport coils are switched on. This step ends when the
pushing current reaches zero after a pushing length L1 = 6.8 cm, which is a parameter
of the program: we can change its value, once the geometry has been fixed, to optimize
the transport. Then, between the positions x = L1 and x = L2 = 12 cm, comes a
ramp step where the y-gradient and the aspect ratio finish to reach their transport
values. The transport then starts with constant gradient and aspect ratio. Note that
the current of the pushing coil is not a variable like the others. It is actually imposed
in our design, in order to allow for a finite pushing step and reasonable variations of
currents with time. At the beginning of the algorithm the variable are simply the three
next pairs of coils: MOT, T1/2 and T1 (see Figure 4.2) and the second member of
system 4.1 is slightly modified by including the contribution of the pushing coil.
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Figure 4.2: Schematics of the two arms of the transport. By convention, x is the
position in the transport direction, even after the elbow.The MOT octagonal cell is
centered on x = 0. The pushing coil (P) is in green. The pulling pair (T1/2) is in
blue. The other coils in the first arm of the transport are in orange, those in the second
one are in yellow and the red ones belongs to both arms. x = L3 = 30.95 cm is the
position of the elbow. x = L4 = 64.7 cm is the position of the final quadrupolar trap,
in the science cell.

4.1.3 Elbow

If we perform a single axis transport we loose the transport axis for imaging or laser
manipulation. Moreover the vacuum can be polluted by atoms in ballistic flight coming
from the MOT chamber. A trick introduced by the group of Munich [137] is to add
a 90 ◦ elbow (see Figure 4.2) on the transport way. We also applied this idea to our
design. The principle is the following. Let us call L3 = 30.95 cm the distance from
the initial octagonal cell to the elbow. When the transport reaches this point, the
only pair which is on is the fourth transport pair (see Figure 4.2). We are back to
a cylindrical symmetry, and the aspect ratio has been ramped progressively to −0.5.
Then we switch on the coils in the second arm and ramp one more time the aspect
ratio to its transport value −0.3. The principle is then identical to the first arm. Note
that, due to the fact that only a single pair is switched on at the elbow, the angle of
the elbow does not matter and we can keep x as the transport direction.

An engineering drawing of the elbow cross is shown in appendix A.6. Apart from the
two connexions for the transport tubing, the three others allow to pump the chamber,
to observe the atomic fluorescence (see part 2.2.1), and to have a laser beam in the
direction of the second arm.

4.1.4 Outcoupling

After a total transport distance L4 = 64.7 cm, the cloud is finally transferred into
a standard quadrupolar trap, generated by the penultimate pair of transport coils.
The constraints on aspect ratio and y-gradient have been ramped to their final values
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during the end of the transport. Note that those coils are different from the standard
transport ones. After a future transfer in an optical trap, they will be converted into
Feshbach coils. They are one millimeter away from the science cell walls and their inner
diameter is 3.1 cm in order to allow for optical access for the high resolution imaging.
This implies by the way, that the two adjacent pairs, the so called “neighbor pairs”
(see Figure 4.2), are smaller than the transport pairs by 1.55 cm in radius.

4.2 Atomic cloud properties

We would like to study now the evolution of size and temperature of the cloud as
a function of our magnetic constraints. Moreover, an additional differential pumping
stage has been introduced in the transport tube in order to improve the vacuum quality
in the final cell. We thus want to quantify the losses due to this pumping tube of 10 mm
diameter. As explained above, in order to prevent the cloud from being heated, the
sequence must be adiabatic. We can look for an adiabatic invariant in our quadrupolar
geometry. Then, knowing the initial conditions, we can use this quantity to express the
temperature and the size of the cloud as a function of the gradients only. In particular,
it is relevant to compare the size with the tube dimensions, in order to control the
chosen ramps on the gradients. The transport coils have an average diameter of the
order of 6.5 cm and are located 3.5 cm away from the tube axis (DN16 or DN10).
Thus, the typical length on which non-linearities appear in the energy is bigger than
the tube size. We can then neglect them and assume that we remain in a quadrupolar
trap truncated on the transport walls.

4.2.1 Adiabatic evolution

For a Boltzmann ideal gas in a quadrupole trap, we have the following adiabatic in-
variant (see appendix A.4):

T

|bxbybz|2/9
= cte =

T 0∣∣b0
xb

0
yb

0
z

∣∣2/9 , (4.2)

where the bi are the three components of the gradient and T is the temperature of
the cloud. In addition, since we assume independent particles, we can write in each
direction:

(∆ri)
2 ≡< r2

i >=
1

z

∫ ∫
drdp

h3
r2
i e
−β
(
p2

2m
+µ
√∑

i b
2
i r

2
i

)
=

(
2kBT

µbi

)2

, (4.3)

with m the atomic mass, µ the magnetic moment and z the monoatomic partition
function (see appendix A.4). Then, combining equations 4.2 and 4.3, the RMS positions
in the trap are given by:

∆ri =
2kB

µ

T 0∣∣b0
xb

0
yb

0
z

∣∣2/9 |bxbybz|
2/9

bi
= α
|bxbybz|2/9

bi
,

where we have introduced the parameter α. Note that the factor 2 comes from the
algebraic definition of ri, whereas in equation 3.11 the square root was taken before the
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statistical averaging. In the program, the constraints are fixed on by and A = bx/bz,
where x is the transport direction and the z the vertical one. One can rewrite the RMS
positions in each direction and the temperature as functions of those two constraints
only:

∆x = α
|A+ 1|5/9

|A|7/9
1

|by|1/3
, (4.4)

∆y = α
|A|2/9

|A+ 1|4/9
1

|by|1/3
, (4.5)

∆z = α |A|2/9 |A+ 1|5/9 1

|by|1/3
, (4.6)

T =
T 0∣∣b0

xb
0
yb

0
z

∣∣2/9 |A|2/9

|A+ 1|4/9
|by|2/3 . (4.7)

As a remark, those quantities do not depend on the atomic mass: they are identical for
both species, at fixed temperature. Let us finally calculate the fraction Rσ of atoms in
the volume Ω = 23∆x∆y∆z, the fraction R2σ in the volume 23Ω, and the fraction R3σ

in the volume 33Ω:

Rσ =
1

z

∫ ∫
Ω

dpdr
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)
/kBT ≈ 44% , (4.8)
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)
/kBT ≈ 97% . (4.10)

4.2.2 Size and temperature

The ramps on by and A are given on Figure 4.3 and 4.4. Let us consider that
we initiate the transport with a T 0 = 1 mK cloud, which is reasonable for 6Li, and
slightly over-estimated and safe for 40K. The cylindrical symmetry in the initial mag-
netic trap implies A0 = −0.5. We choose an initial gradient of b0

y = −67 G.cm−1,
which corresponds to the limit of the first power supply. Then during the pushing and
ramp steps the constraints evolve until they reach their transport values A = −0.3
and by = −155 G.cm−1. The gradient by is fixed at this last value whereas the as-
pect ratio is brought back to A = −0.5 during the two pulling steps: at the elbow
(x = L3 = 30.95 cm) and at the end of the transport (x = L4 = 64.7 cm).

Thanks to formulas 4.4, 4.5, 4.6 and 4.7, we can plot the RMS sizes and the tem-
perature during the whole transport. Results are shown on Figures 4.5 and 4.6. We
notice that temperature remains reasonably low, under 2 mK.

We then compare the sizes to the tube dimensions as shown in Figure 4.7 and 4.8.
It seems that in the worst case the efficiency is close to R2σ ≈ 86% (see equation 4.9)
with our choice of constraints. Note that on Figure 4.7 we can recognize the MOT
chamber walls, the DN10 differential pumping tube, and the main DN16 tube. To
define the tube size in the transport direction we have taken the minimal distance
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If@xm < Lmax, Imax * Hxm ê LmaxL^2, If@xm < Lp, Imax * HHxm - LpL ê HLmax - LpLL^2, 0DD;
Plot@8H-asp@xD * gby@xD ê Hasp@xD + 1LL, gby@xD, -gby@xD ê Hasp@xD + 1L<, 8x, 0, La2<,
AxesLabel Ø 8"Transport distance @cmD", "x,y,z-gradients @GêcmD"<D

Plot@asp@xD, 8x, 0, La2<, PlotRange Ø All, AxesOrigin Ø 80, 0<,
AxesLabel Ø 8"Transport distance @cmD", "Aspect ratio"<D

H* Calcul de la taille du nuage transporté *L
kB = 1.3806505 * 10^H-23L;
mu = 9.273 * 10^H-24L;
btildeini = Abs@gbymD * H2L^H1 ê 3L; H* gradient moyen géométrique initial *L
Tini = 0.001; H* température initiale en K *L
alpha = 2 * kB ê mu * Tini ê HbtildeiniL^H2 ê 3L * 10 000;
H* coefficient de l'invariant adiabatique T*
b^H-2ê3L tenant compte de la conversion GaussêTesla *L

temp@xm_D = 1000 * Tini ê btildeini^H2 ê 3L * Abs@gby@xmDD^H2 ê 3L *
HAbs@asp@xmDD ê HAbs@asp@xmD + 1DL^2L^H2 ê 9L; H* température du nuage transporté

en mK: attention on utilise les contraintes pas les valeurs réelles ici *L
deltax@xm_D = alpha * Abs@asp@xmD + 1D^H5 ê 9L ê Abs@asp@xmDD^H7 ê 9L ê Abs@gby@xmDD^H1 ê 3L;
H* rayon du nuage selon x en
cm: attention on utilise les contraintes pas les valeurs réelles ici *L

deltay@xm_D = alpha * Abs@asp@xmDD^H2 ê 9L ê Abs@asp@xmD + 1D^H4 ê 9L ê Abs@gby@xmDD^H1 ê 3L;
deltaz@xm_D = alpha * Abs@asp@xmDD^H2 ê 9L * Abs@asp@xmD + 1D^H5 ê 9L ê Abs@gby@xmDD^H1 ê 3L;
sizex@xm_D = If@xm < La1, Min@rc + xm, La1 + 0.8 - xmD, Min@0.8 + Hxm - La1L, La2 + 1.5 - xmDD;
H* demi-taille tuyau selon x en cm *L
sizey@xm_D = If@xm < 3, 2, If@xm < 7.7, 0.8, If@xm < 23.31, 0.5, 0.8DDD;
sizez@xm_D = sizey@xmD;
Plot@temp@xD, 8x, 0, La2<, PlotRange Ø All, AxesOrigin Ø 80, 0<,
AxesLabel Ø 8"Transport distance @cmD", "Temperature @mKD"<D

Plot@8deltax@xD, deltay@xD, deltaz@xD<, 8x, 0, La2<, PlotRange Ø All, AxesOrigin Ø 80, 0<,
AxesLabel Ø 8"Transport distance @cmD", "Cloud x,y,z-sizes @cmD"<D

Plot@8deltax@xD, sizex@xD<, 8x, 0, La2<, PlotRange Ø All, AxesOrigin Ø 80, 0<,
AxesLabel Ø 8"Transport distance @cmD", "Cloud and tube x-sizes @cmD"<D

Plot@-deltax@xD + sizex@xD, 8x, 0, La2<, PlotRange Ø All, AxesOrigin Ø 80, 0<D;
Plot@-deltax@xD + sizex@xD, 8x, 26, 34<, PlotRange Ø All, AxesOrigin Ø 826, 0<D
H* zoom sur le coude *L;

Plot@8deltax@xD, sizex@xD<, 8x, 26, 34<, PlotRange Ø All, AxesOrigin Ø 826, 0<,
AxesLabel Ø 8"Transport distance @cmD", "Cloud and tube x-sizes @cmD"<D

H* zoom sur le coude *L
Plot@8deltay@xD, sizey@xD<, 8x, 0, La2<, PlotRange Ø All, AxesOrigin Ø 80, 0<,
AxesLabel Ø 8"Transport distance @cmD", "Cloud and tube y-sizes @cmD"<D

Plot@-deltay@xD + sizey@xD, 8x, 0, La2<, PlotRange Ø All, AxesOrigin Ø 80, 0<D;
Plot@8deltaz@xD, sizez@xD<, 8x, 0, La2<, PlotRange Ø All, AxesOrigin Ø 80, 0<,
AxesLabel Ø 8"Transport distance @cmD", "Cloud and tube z-sizes @cmD"<D

Plot@-deltaz@xD + sizez@xD, 8x, 0, La2<, PlotRange Ø All, AxesOrigin Ø 80, 0<D;
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Figure 4.3: Constraints on magnetic gradients: x-gradient (blue), y-gradient (pink),
and z-gradient (yellow).
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Figure 4.4: Constraint on magnetic aspect ratio A = bx/bz.
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Figure 4.5: Theoretical cloud temperature during the adiabatic transport. The initial
temperature is chosen to be 1 mK. Since the cloud temperature is proportional to the
initial temperature according to equation 4.7, the graph can be used for any initial
temperature by adding the initial factor.

10 20 30 40 50 60
Transport distance @cmD

-0.5

-0.4

-0.3

-0.2

-0.1

Aspect ratio

10 20 30 40 50 60
Transport distance @cmD

0.5

1.0

1.5

Temperature @mKD

10 20 30 40 50 60
Transport distance @cmD

0.2

0.4

0.6

Cloud x,y,z-sizes @cmD

4   MASTER9.nb

Figure 4.6: Theoretical RMS sizes of the cloud during adiabatic transport (see equa-
tions 4.4, 4.5 and 4.6). x-size in blue, y-size in pink and z in yellow. The confinement
is weaker in the second arm because the coils are farther from the cloud, since they are
mounted on top of the first arm.
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Figure 4.7: Theoretical RMS size (see equation 4.5) of the transported cloud (blue),
and radius of the tube (pink) along y.
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Figure 4.8: Theoretical RMS size (see equation 4.4) of the transported cloud (blue),
and radius of the tube (pink) along x. Zoom around the elbow. To define the tube size
in the transport direction we have taken the minimal distance to the walls.
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H* Profondeur du piège *L
bradP@x_,z_D=

HTable@Sum@br@Lp+x-bob@@j,1DD,z-bob@@j,2DD-Hk-1L*bob@@j,7DD,bob@@j,6DD+bob@@j,3DDê
2+i*bob@@j,3DDD,8i,0,bob@@j,4DD-1<,8k,1,bob@@j,5DD<D,8j,1,2<D

-Table@Sum@br@Lp+x-bob@@j,1DD,z+bob@@j,2DD+Hk-1L*bob@@j,7DD,
bob@@j,6DD+bob@@j,3DDê2+i*bob@@j,3DDD,8i,0,bob@@j,4DD-1<,

8k,1,bob@@j,5DD<D,8j,1,2<DL.8int@2,LpD,int@3,LpD<;
baxeP@x_,z_D=HTable@Sum@bz@Lp+x-bob@@j,1DD,z-bob@@j,2DD-Hk-1L*bob@@j,7DD,bob@@j,6DD+

bob@@j,3DDê2+i*bob@@j,3DDD,8i,0,bob@@j,4DD-1<,8k,1,bob@@j,5DD<D,8j,1,2<D
-Table@Sum@bz@Lp+x-bob@@j,1DD,z+bob@@j,2DD+Hk-1L*bob@@j,7DD,

bob@@j,6DD+bob@@j,3DDê2+i*bob@@j,3DDD,8i,0,bob@@j,4DD-1<,
8k,1,bob@@j,5DD<D,8j,1,2<DL.8int@2,LpD,int@3,LpD<;

BtotP@x_,z_D=Sqrt@HbradP@x,zDL^2+HbaxeP@x,zDL^2D;
Plot3D@BtotP@x, zD ê 10, 8x, -2 re, 2 re<, 8z, -re, re<, AxesLabel Ø

8"x @cmD", "z @cmD", "Potential energy @mKD"<D

14   profondeur piège transport.nb

Figure 4.9: Profile of the trap in the x− z plan. The height of the box corresponds to
50 mK. Center corresponds to x = y = z = 0, start of the transport.

to the walls (which is the relevant definition at the elbow). However let us keep in
mind that the linear approximation in the energy is only valid until a length of the
order of the coil size (roughly 6.5 cm in radius): if the x-distance to the walls is bigger
than the coil size, we have to find the real dimensions of the trap by plotting the
exact magnetic field profile. As an illustration, we computed this at the beginning of
transport on Figure 4.9. There, the distance along x between the edge and the center
of the potential equals approximately 10 cm. This implies that the x-size of the cloud
around the x = 6 cm transport position (the worst case, cf peak in Figure 4.6) is
smaller than the trap size.

Finally, it seems that the efficiency is still close to R2σ ≈ 86% (see equation 4.9).
However, one should keep in mind that this study was performed for T 0 = 1 mK,
which is over-estimated for potassium where we rather have T 0 = 500 µK. Thus we
should have a better efficiency. In addition, we use the 3D quantity Rσ, even if only
one or two directions are critical but this is justified if we assume ergodicity, which is
experimentally relevant as explained in chapter 5.

4.3 Dynamics

In the previous parts we saw how the currents at each position are calculated and
we established the adiabatic evolution of size and temperature. But a transfer is a
dynamical process. Thus we need to add time in our program in order to move the
trap and then we need to send this complete information to the National Instrument
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cards. Adding time is a simple task, we only need to make a bijective correspondence
between position and time. Nevertheless the overall timing has to be chosen carefully
in order to prevent losses during transfer: neither too fast in order to smoothen the
acceleration of inertia nor too long to keep Majorana losses negligible. The same care
should be taken during ramp phases, where trap geometry varies, in order to ensure
adiabaticity. In fact, since gradients vary with time, the transported quadrupole is not
a conservative trap anymore: energy can be transferred to the cloud if one does not
transport with care.

4.3.1 Inertia

When one drives a car, if the acceleration is too strong, the body is pushed back.
This common phenomenon is an illustration of the inertia forces that take place in
an accelerated frame. For atoms in a magnetic trap the effect is the same: if the trap
center accelerates too much, the center of mass of the atomic cloud is pushed away from
it and since the trap has a finite height, this shift can induce a consequent loss of atoms.
Therefore it is compulsory not to exceed a maximal acceleration that we estimate now.
Let us first propose a rough estimate of this quantity. The typical acceleration that
we can associate to a quadrupole trap contains the Bohr magneton µB, the gradient b
and the atomic mass m. The only acceleration we can build dimensionally with those
quantities is:

amax =
µBb

m
. (4.11)

In the case of potassium, the heaviest atom, and if we consider the minimal x-gradient
bx = −34 G.cm−1 (see Figure 4.3), this acceleration is approximately equal to 47 m.s−2,
i.e. roughly five times the gravity. To get a clearer picture we can differentiate the
magnetic energy given at equation 3.4, and consider the equation of motion on the
transport axis x for a single atom:

ẍ′ = −a∗ − µBbx
m

sign[x′] , (4.12)

where x′ is the distance to the trap center position and a∗ the transport acceleration.
We see here that the acceleration found in equation 4.11 corresponds actually to the
vanishing of the trapping force. In other words, with such a transport acceleration the
linear trap is tilted so much by inertia that the trapping potential becomes constant
and null for x′ < 0. But we should not forget that that the trap is not a perfect
quadrupole. As we already mentioned, non-linearities appear on a distance Rtrap (of
the order of the coils size) and limit the trap depth. So, even if the the acceleration
remains smaller than amax, if the center of mass is shifted by a distance comparable to
Rtrap from the trap center atoms can leave the trap. One more time, using equation 3.1
we can write a 1D potential energy E including the inertia tilt due to a∗:

E = m[a∗x′ + amax |x′|] ,

which means for x′ < 0:

E = m(amax − a∗) |x′| . (4.13)
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Figure 4.10: Static trap profile in the transport direction at x = L1. The small asym-
metry is due to the coils asymmetry since x = L1 is between the MOT pair (M) and
the first transport pair (T1).

Now let us assume that the atoms are lost if the trap depth is of the order of the cloud
temperature, i.e. T ≈ 1 mK in the worst case. If we plot the static trap profile in the
transport direction at x = L1 (Figure 4.10), which is the position of the trap with the
smaller trap depth, we see that for negative x′ the trap ends after |x′| = Rtrap ≈ 12 cm.
Thus, using equation 4.13, a∗ should not exceed:

a∗max ≈ amax −
kBT

mRtrap

.

In the worst case of potassium, this acceleration approximately equals 45 m.s−2 which
is close to amax. Note that due to non-linearities in the trap, the maximal acceleration is
in fact slightly smaller, as we can guess in Figure 4.10 by noticing the finite curvature
at x′ = −2 cm. We calculate it by computing the exact trap profile for a given
acceleration a∗ and find the acceleration value a∗max that leads to a trap depth of 1 mK.
The result is a∗max = 28 m.s−2 and the associated dynamical trap profile is shown on
Figure 4.11. From a∗max we can estimate a minimal time for the transport, assuming
constant acceleration. Since we have two arms, there is, in the simplest sequence, a
succession of four steps of constant acceleration. In fact each arm can be separated
into two equal phases, the first with acceleration a∗max and the second with deceleration
−a∗max. The total time τ in is then given by the free fall formula:

τ in = 4

√
2d

a∗max

,

where we have taken into account four half-arms of length d ≈ 15 cm. Thus the
transport should last more than τ in ≈ 400 ms:

ttot � τ in . (4.14)
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Figure 4.11: Dynamical trap profile in the transport direction at x = L1, including a
critical inertia tilt of a∗max = 28 m.s−2. Due to non-linearities, the dynamical capture
region in the transport axis is reduced to approximately 2 cm.

4.3.2 Adiabaticity

In addition to the limits on acceleration and total transport time found above, we have
to look carefully at the ramp phases, where the trap shape changes. In fact, to prevent
the sample from heating, the typical variation time of the trap geometry τvar has to
be greater than the characteristic evolution times in the trap: T Li and TK. The worst
case being the one of the heaviest atom, we want:

τvar � TK . (4.15)

This is the adiabaticity criterium. However, since the quadrupole trap is a linear trap
we can obviously not define a unique period. One can nevertheless estimate a maximal
time for an atom to cross the full cloud, which is the important information regarding
adiabaticity. With R the size of the cloud, b the gradient, m the mass of the atom and
µB the Bohr magneton, we can dimensionally build only one quantity homogeneous to
a time:

T =

√
mR

µBb
, (4.16)

In the case of potassium, this leads to TK ≈ 15 ms for an atom R = 1 cm away from
the center, if b = 34 G.cm−1. In fact those numbers correspond to the actual lowest
gradient in our transport sequence (it happens in the x direction, at x = L1), which
is the worst case as far as the adiabaticity criterium is concerned. In conclusion the
transport, and furthermore the ramp phases, should last more than TK. Further more,
we can deduce from this a maximal transport velocity. Let us admit the intuitive
statement that we do not want an atom to move over a distance of the order of the
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Figure 4.12: Position of the center of the trap.

cloud size in a time smaller than TK. For typical x-size R = 0.6 cm (see Figure 4.6) it
leads to:

vmax = 0.4 m.s−1 .

4.3.3 Trap trajectory

In chapter 3, we deduced with formula 3.9 that the Majorana lifetimes of both species
are τK

M ≈ 200 s and τLi
M ≈ 30 s, for a cloud of typical size R = 1 mm. As a consequence

the total transport duration ttot must follow:

ttot � τLi
M . (4.17)

Using equations 4.14, 4.15 and 4.17, we can write finally:

TK � τ in � ttot � τLi
M . (4.18)

In summary, since TK ≈ 15 ms, τ in ≈ 400 ms, and τLi
M ≈ 30 s, a transport duration

of the order of a few seconds seems reasonable. Knowing this we could build a proper
position-to-time correspondence. We also made sure that the typical velocities are
smaller than vmax. Our final transport trajectory is described on Figures 4.12, 4.13
and 4.14. We cut the transport in five stages of independent timings: injection until
the tube, transport in the first arm, stop at the elbow, first half of the second arm
and second half. We used second order polynomials in position, to ensure constant
acceleration, except during the second step where we used a third order polynomial
because of the number of continuity constraints, and the elbow stop where the center
of the trap is stationary. On Figure 4.14 we can note that our total time is around
ttot = 4.6 s and that our maximal acceleration is of the order of 0.3 m.s−2, which is a
hundred times weaker than a∗max (see part 4.3.1). In addition, on Figure 4.13 we notice
than v < vmax. To sum up, we fulfill all our requirements.
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Figure 4.13: Velocity of the center of the trap.
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Figure 4.14: Acceleration of the center of the trap.



134 Chapter 4. Magnetic transport: design

H* Interpolation des courants *L
int1bis = Interpolation@Table@8courant@@i, 1DD, courant@@i, 3DD<,

8i, 1, Length@courantD<D, InterpolationOrder Ø 1D;
int12 = Interpolation@Table@8courant@@i, 1DD, courant@@i, 4DD<, 8i, 1, Length@courantD<D,

InterpolationOrder Ø 1D;
int13 = Interpolation@Table@8courant@@i, 1DD, courant@@i, 5DD<, 8i, 1, Length@courantD<D,

InterpolationOrder Ø 1D;
int14 = Interpolation@Table@8courant@@i, 1DD, courant@@i, 6DD<, 8i, 1, Length@courantD<D,

InterpolationOrder Ø 2D;
int15 = Interpolation@Table@8courant@@i, 1DD, courant@@i, 7DD<, 8i, 1, Length@courantD<D,

InterpolationOrder Ø 1D;
int16 = Interpolation@Table@8courant@@i, 1DD, courant@@i, 8DD<, 8i, 1, Length@courantD<D,

InterpolationOrder Ø 1D;
int17 = Interpolation@Table@8courant@@i, 1DD, courant@@i, 9DD<, 8i, 1, Length@courantD<D,

InterpolationOrder Ø 1D;
int21 = Interpolation@Table@8courant2@@i, 1DD, courant2@@i, 2DD<,

8i, 1, Length@courant2D<D, InterpolationOrder Ø 1D;
int22 = Interpolation@Table@8courant2@@i, 1DD, courant2@@i, 3DD<,

8i, 1, Length@courant2D<D, InterpolationOrder Ø 1D;
int23 = Interpolation@Table@8courant2@@i, 1DD, courant2@@i, 4DD<,

8i, 1, Length@courant2D<D, InterpolationOrder Ø 1D;
int24 = Interpolation@Table@8courant2@@i, 1DD, courant2@@i, 5DD<,

8i, 1, Length@courant2D<D, InterpolationOrder Ø 1D;
int25 = Interpolation@Table@8courant2@@i, 1DD, courant2@@i, 6DD<,

8i, 1, Length@courant2D<D, InterpolationOrder Ø 1D;
int26 = Interpolation@Table@8courant2@@i, 1DD, courant2@@i, 7DD<,

8i, 1, Length@courant2D<D, InterpolationOrder Ø 2D;
int27 = Interpolation@Table@8courant2@@i, 1DD, courant2@@i, 8DD<,

8i, 1, Length@courant2D<D, InterpolationOrder Ø 1D;
int28 = Interpolation@Table@8courant2@@i, 1DD, courant2@@i, 9DD<,

8i, 1, Length@courant2D<D, InterpolationOrder Ø 1D;
H* génération de fonctions d'interpolations pour les courants dans les bobines *L
line@x_D = 77;
line2@x_D = 153;
Plot@8If@x < La1, intp@xD, int21@xDD, If@x < La1, int12@xD, int22@xDD,

If@x < La1, int13@xD, int23@xDD, If@x < La1, int14@xD, int24@xDD,
If@x < La1, int15@xD, int25@xDD, If@x < La1, int16@xD, int26@xDD,
If@x < La1, int17@xD, int27@xDD, If@x < La1, int1bis@xD, int28@xDD<, 8x, 0, La2<,

PlotRange Ø All, AxesLabel Ø 8"Transport distance @cmD", "Raw current solutions @AD"<D
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Figure 4.15: Raw current solutions of the transport.

4.4 Results and checking

After having reported how the static transport program works and having characterized
the regime where the dynamics would not be harmful for the cloud, let us have a closer
look at the evolution of the currents during the transport sequence. Furthermore we
explain how we double checked the obtained values and the effect of negative currents.

4.4.1 Currents

First of all, after an optimization of the mechanical and physical parameters of the
design, essentially in order to improve the injection and transfer steps, we finally ob-
tained some reasonable curves for the currents regarding their shape and their maximal
values. The raw results are shown on Figure 4.15. However, as one can notice on the
curves, the results include some negative currents. This is an issue if the currents are
not of constant sign: commercial power supplies for such high currents are polarized
and can not afford alternative currents. A first solution to this problem would have
been to reverse the current sign by using switches circuits based on Insulated Gate
Bipolar Transistors (IGBT). But this method costs a lot of digital commands to con-
trol all the IGBTs gates. A simpler solution consists on putting to zero the negative
part of the currents that are not of constant sign, which means replacing those currents
Ii(x) by the functions I ′i = Max [Ii(x), 0] as shown on Figure 4.16. Nevertheless this
idea imposed to side-check that the modification of currents did not affect too strongly
the gradients. We describe this procedure in the next two sub-sections. Note that, as
described in the engineering section, we have only five power supplies for all the coils,
and thus the currents controlled by a same power supply are now joined together (same
color on the graphs).
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Figure 4.16: Positive currents asked to the five power supplies.

4.4.2 Checking the constraints

In addition to the control of the error induced by removing the negative currents, it
was compulsory to check that the currents we obtained by solving the system 4.1 were
really corresponding to the desired gradients for the atoms. Thus, using currents from
Figure 4.16 we recalculated all the gradients at each position of the trap centre and
we compared them to the initial constraints. Results are plotted on Figures 4.17, 4.18
and 4.19. As we see, there is a perfect agreement except for the regions where we
nullify the negative currents. In the second arm the difference can even reach 50 % at
x = 54 cm for the gradient along the transport direction. But this is not be dangerous
if we pass through those regions sufficiently slowly, since those variations are actually
equivalent to some kind of new ramps for the trap geometry and that they increase
the size of the cloud only in the transport axis where there is no wall. Nevertheless,
for safety reasons, we decided to quantify the heating induced by those unnecessary
ramps, as described below.

4.4.3 Numerical simulation of a default

In order to test the effect of the forced cancellation of negative currents we simulated
numerically a magnetic bump. More precisely this involved a resolution of the 1D
equation 4.12 where the trap center position x∗ follows a uniform movement, with
velocity ẋ∗ = 10 cm.s−1, and where the defect is 4 cm long and corresponds to a
relative variation of 50 % on the gradient. The simulation has been performed in
Fortran 90, using a fourth order Runge-Kutta routine [140]. The initial assignation
of velocities and position into the trap is done accordingly to the associated phase-
space distributions in such a trap for a 1.5 mK lithium cloud and a 500 µK potassium
cloud. Results for 10000 independent atoms of each species are shown in Figure 4.20.
According to this simulation, it seems that for small velocities the variation of total
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Plot@8If@x < La1, gbytest1@xD, gbytest2@xDD, gby @xD<, 8x, 0, La2<, PlotRange Ø All,
AxesLabel Ø 8"Transport distance @cmD", "y-gradient, real and constraint @GêcmD"<,
AxesOrigin Ø 80, 0<D H* grad y et consigne grad y *L

Plot@8If@x < La1, -asptest1@xD * gbytest1@xD ê Hasptest1@xD + 1L,
-asptest2@xD * gbytest2@xD ê Hasptest2@xD + 1LD,

-asp@xD * gby@xD ê Hasp@xD + 1L<, 8x, 0, La2<, PlotRange Ø All,
AxesLabel Ø 8"Transport distance @cmD", "x-gradient, real and constraint @GêcmD"<,
AxesOrigin Ø 80, 0<D H* grad x et consigne grad x *L

Plot@8If@x < La1, -gbytest1@xD ê Hasptest1@xD + 1L, -gbytest2@xD ê Hasptest2@xD + 1LD,
-gby@xD ê Hasp@xD + 1L<, 8x, 0, La2<, PlotRange Ø All,

AxesLabel Ø 8"Transport distance @cmD", "z-gradient, real and constraint @GêcmD"<,
AxesOrigin Ø 80, 0<D H* grad z et consigne grad z *L

Plot@100 HIf@x < La1, gbytest1@xD, gbytest2@xDD - gby @xDL ê gby @xD,
8x, 0, La2<, PlotRange Ø AllD H* erreur grad y *L;

Plot@8If@x < La1, asptest1@xD, asptest2@xDD, asp@xD<, 8x, 0, La2<, PlotRange Ø All,
AxesLabel Ø 8"Transport distance @cmD", "Aspect ratio, real and constraint @GêcmD"<,
AxesOrigin Ø 80, 0<D H* aspect et consigne aspect *L;

Plot@100 HIf@x < La1, asptest1@xD, asptest2@xDD - asp@xDL ê asp@xD,
8x, 0, La2<, PlotRange Ø All, AxesOrigin Ø 80, 0<D H* erreur aspect *L;
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Figure 4.17: y-gradient: constraint (pink) and recalculated with the positive currents
(blue).

Plot@8If@x < La1, gbytest1@xD, gbytest2@xDD, gby @xD<, 8x, 0, La2<, PlotRange Ø All,
AxesLabel Ø 8"Transport distance @cmD", "y-gradient, real and constraint @GêcmD"<,
AxesOrigin Ø 80, 0<D H* grad y et consigne grad y *L

Plot@8If@x < La1, -asptest1@xD * gbytest1@xD ê Hasptest1@xD + 1L,
-asptest2@xD * gbytest2@xD ê Hasptest2@xD + 1LD,

-asp@xD * gby@xD ê Hasp@xD + 1L<, 8x, 0, La2<, PlotRange Ø All,
AxesLabel Ø 8"Transport distance @cmD", "x-gradient, real and constraint @GêcmD"<,
AxesOrigin Ø 80, 0<D H* grad x et consigne grad x *L

Plot@8If@x < La1, -gbytest1@xD ê Hasptest1@xD + 1L, -gbytest2@xD ê Hasptest2@xD + 1LD,
-gby@xD ê Hasp@xD + 1L<, 8x, 0, La2<, PlotRange Ø All,

AxesLabel Ø 8"Transport distance @cmD", "z-gradient, real and constraint @GêcmD"<,
AxesOrigin Ø 80, 0<D H* grad z et consigne grad z *L

Plot@100 HIf@x < La1, gbytest1@xD, gbytest2@xDD - gby @xDL ê gby @xD,
8x, 0, La2<, PlotRange Ø AllD H* erreur grad y *L;

Plot@8If@x < La1, asptest1@xD, asptest2@xDD, asp@xD<, 8x, 0, La2<, PlotRange Ø All,
AxesLabel Ø 8"Transport distance @cmD", "Aspect ratio, real and constraint @GêcmD"<,
AxesOrigin Ø 80, 0<D H* aspect et consigne aspect *L;

Plot@100 HIf@x < La1, asptest1@xD, asptest2@xDD - asp@xDL ê asp@xD,
8x, 0, La2<, PlotRange Ø All, AxesOrigin Ø 80, 0<D H* erreur aspect *L;
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Figure 4.18: x-gradient: constraint (pink) and recalculated with the positive currents
(blue).
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Figure 4.19: z-gradient: constraint (pink) and recalculated with the positive currents
(blue).

Figure 4.20: Numerically simulated relative variation of energy for 10000 40K atoms
(black) and 10000 6Li atoms (red), due to a local magnetic defect in the sequence. The
defect is 4 cm long and corresponds to a relative variation of 50 % on the gradients.
The simulation has been performed in Fortran 90, using a fourth order Runge-Kutta
routine [140].
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Figure 4.21: Vertical trap profile at x = L1, with (blue) and without (pink) the gravita-
tional tilt. There the vacuum tube has a DN16 size (0.8 cm radius), and the position
x = L1 is 9 mm away from the DN10 transport tube (0.5 cm radius).

energy does not exceed 20 %, which is acceptable compared to the worst trap depth
shown in Figure 4.21 .

4.4.4 Trap depth and gravity

A complementary check of our sequence, was to use the solutions for currents to cal-
culate the exact trap profile at every position of the trap center, in order to avoid
too small trap depths. In addition, we included the gravity tilt mgz in the vertical
direction, since this could have a strong effect in the DN10 transport tube. Figure 4.21
shows the vertical trap depth of the trap, in presence of gravity or not, at x = L1,
which is the point of weakest gradients in our sequence. There the vacuum tube has
a DN16 size (0.8 cm radius), and the position x = L1 is 9 mm away from the DN10
transport tube (0.5 cm radius). As we can see, the gravity tilt is small in such a trap.
Moreover there is no risk of loosing atoms on the tube walls, even in a DN10 (radius
of 5 mm) tube since x−L1 = 5 mm corresponds almost to a 4 mK vertical depth. The
x direction is also not harmful since there is no walls in this axis. On the contrary,
the y direction is the critical one regarding trap depth, because of the tube limit and a
smaller gradient compared to the vertical one. However, in this region the y-gradient
equals 70 % of the vertical one, which still gives a reasonable 3 mK trap depth for a
DN10 tube, in the worst point. During the experimental implementation of magnetic
transport (see chapter 5), we deeply investigated this possible issue of losses on the
walls in the transverse direction. This is developed in part 5.3.2.

4.5 Engineering

The previous part exposed the theoretical aspects of the transport design. This last
section is dedicated to actual engineering and construction of the transport system.
We intend here to give details about technical aspects such as mechanics and winding,
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Figure 4.22: Scaled Catia transport drawing with 1 pushing coil (green), 2 MOT coils
(blue), 2 quadrupole coils (red), 18 transport coils and 4 neighbor coils (white). On top
of the transport coils is the cooling plate. This drawing does not show the additional
pulling coil T1/2, placed over the cooling in between the MOT and first transport coils
(see Figure 4.24). See engineering drawings in appendix A.6.

power issues, cooling of the coils, security, electronics and logics, as well as computer
interface.

4.5.1 Mechanics and winding

The theoretical parameters in the program were chosen in order to ensure the lowest
positive currents and to fit with standard sizes (thread diameters for instance). The
main values are shown in appendix A.5. Using this data we could design a complete
mounting system under Catia with engineer Jean-Michel Isac from Laboratoire Kastler
Brossel’s workshop. A view of the design is shown in Figure 4.22. The assembly
contains a single pushing coil (P) of resistance R = 0.06 Ω creating an axial field of
0.25 G.A−1 at the MOT center; a pair of MOT coils (M) of resistance R = 0.178 Ω
creating an axial magnetic gradient of 0.936 G.cm−1.A−1; nine pairs of transport coils
(T1 to T9, see picture in Figure 4.23 and engineering drawing in appendix A.6) of
resistance R = 0.36 Ω creating an axial magnetic gradient of 3.2 G.cm−1.A−1; a pair of
quadrupole coils (Q) of resistance R = 0.11 Ω creating an axial magnetic gradient of
3.75 G.cm−1.A−1. In addition, a pair of pulling coil (T1/2, see Figure 4.24) is placed
in between the MOT and the first transport ones. This pair is actually made with four
standard transport coils. In addition, a fifth single one is placed on top in order to
generate a small bias field, if necessary during injection. Finally, note that just before
and after the final quadrupole pair, we do not have standard transport coils, because
they would obstruct the vertical optical access. Instead we have two so-called neighbor
pairs (V1 and V2, see engineering drawing in appendix A.6), which are simply slightly
smaller transport coils. Note that the transport coils are flat discs in order to allow
for small changes of the distance to the transport axis. All the pairs are roughly in
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Figure 4.23: Single transport coil. See engineering drawing in appendix A.6.

Figure 4.24: Pulling coil (T1/2) placed in between the MOT pair (M) and the first
transport pair (T1). In addition, a fifth single one is placed on top in order to gen-
erate a small bias field, if necessary during injection. See engineering drawings in
appendix A.6.



4.5. Engineering 141

Figure 4.25: Full transport setup. See engineering drawings in appendix A.6.

anti-Helmoltz configuration, for efficiency, except Q which is close to the science cell
to allow for curvature and strong confinement. Figure 4.25 shows a real side-view of
the complete transport assembly. The system is mostly in Dural aluminum, due to the
lightness of this metal, except for the cooling plate described in Part 4.5.3 which is in
brass, due to its higher thermal conductivity. All the mechanics has been performed
by the workshop team. The winding of the transport and quadrupole coils has been
performed by Oswald company directly in our mountings. The other coils were winded
by us using copper cables insulated with Nomex tape, a material that can sustain high
temperatures of the order of 200 ◦C. Finally, Eddy currents are reduced by inserting
holes inside the mount, orthogonally to the current flow.

4.5.2 Power supplies

As far as the power supplies are concerned we decided to work with only five indepen-
dent sets of power supplies since they are quite expensive. Moreover, they are controlled
by the main computer through National Instrument analog cards (see part 1.5) and
since we have only 24 analog ports, it would have been impossible to dedicate 15 of
them to command 15 supplies. We then preferred to use only five sets of power sup-
plies, and switch from one coil to another using transistor switches and some adapted
logics as described in part 4.5.5. Each power supply is a Delta power supply whose
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ground is floating, with a power of 3 kW or 6 kW and an response time smaller than
a millisecond. It is programmable using analog or GPIB ports, and the grounds of
command and load are decoupled by a galvanic isolation, which protects the analog
cards from high currents. The assignation is as follows:

• an ensemble of two 15 V-400 A power supplies in series for P coil,

• an ensemble of two 30 V-200 A in series for T1/2 coils,

• a single 45 V-140 A for M, T3, T6, T8 and Q coils,

• a single 45 V-140 A for T1, T4, T9 and V2 coils,

• a single 45 V-140 A for T2, T5, T7 and V1.

Regarding the analog programming, we saw experimentally that it is important to
drive all the power supplies in control voltage mode (CV) rather than control current
mode (CC). In fact, the response time of the power supply to quick changes of the
command is smaller in CV mode: we could actually reduce in such a way the delay
between loads and command signals from 10 ms in CC mode to less than 1 ms in
CV (see part 5.1.2). However, as far as the magnetic field is concerned, the relevant
quantity remains the current in the coils. Thus we needed to calibrate the commands,
by measuring precisely the resistances of the coils, including the connections. Note
that this is slightly more complicated than it seems since the resistances of the coils
driven by a same power supply are not necessary identical (see for instance M and
T1 coils): the solution is just to use once again the resistance calibrations in order to
add a corrective factor on each coil directly inside the Mathematica waves. This is the
reason why currents seem different between Figures 4.15 and 4.16.

To optimize the switching of the coil circuits great care has been taken. First we
used metal-oxide semiconductor field-effect transistors (MOSFET). More precisely we
used negative power MOSFETS from IXYS (ref: IXFN 200N10) controlled by TTL
signals coming out of the logics (see part 4.5.5). Those transistors can sustain 200 A.
They are all put in the same isolated box shown in picture 4.26. For coil P, whose
current reaches 300 A, we put two in parallel and in all cases we put varistances to limit
the voltage both on the drain-source (100 V max) and the gate-source channels (20 V
max), the latter being the critical one. Without these protections, the components
happened to die frequently because of overloads created by counter-electromotive forces
LdI/dt during switch off phases, where L is the self-inductance of the pair. In addition
to those varistances, note that we put flyback diodes (Vishay 400U120D) on each power
supply, in order to prevent strong negative Lenz currents from flowing back inside the
power supply.

4.5.3 Cooling system

The MOSFETs described before are all fixed on a metallic mount in order to radiate
their heat. Joints are ensured by the use of thermal paste.

As far as the coils are concerned, as already plotted in Figure 4.15, the currents
in this assembly can reach quite high values. More precisely, the dissipated Joule
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Figure 4.26: The transport switch box with MOSFETs. The blue circles are the current
transducer probes (LEM).

power can reach PJoule = RI2 ≈ 2 kW during typically 0.5 s. Thus an energy of
EJoule = 1 kJ per transport cycle is dissipated in the mount. We now evaluate the
increase of temperature ∆T linked to this energy. Let us consider that a coil is a block
of copper of mass m = 1 kg. Thus the heat Qcoil of the coil is given by the formula:

Qcoil = mcp∆T ,

where cp = 385 J.K−1.kg−1 is the specific heat at atmospheric pressure per unit of
mass. Then, assuming that the whole Joule energy heats the copper we find:

∆T ≈ 2.5 K .

This value is not harmful for the transport coils or the vacuum chamber. However, it
can modify the resistance calibration used in CV mode, since the resistance depends
on the temperature. Moreover, a transport sequence is repeated a lot in a normal
experimental day (typically a cycle per minute). In addition, problems may occur, or
longer sequences could be tested, so that it is compulsory to have a cooling system and
some diagnostics and security tools (see part 4.5.4). Therefore, we designed a brass
cooling plate covering all the transport coils (see Figure 1.2 and engineering drawing
in appendix A.6). Note that this cooling plate serves also as a mounting support for
the transport assembly and has M6 holes drilled on it for optics fixation purposes. In
addition, as explained in chapter 3, we used hollow wire (4 mm outside, 2.5 mm inside)
for M and Q coils in order to pass water directly inside since they are working during
longer times. For instance, during evaporative cooling, the Q coil can be on at high
currents (∼ 150 A) during half a minute.
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Figure 4.27: In parallel with each coil a LED is placed in series with a 1 kΩ resistance,
in order to control where the current is flowing.

4.5.4 Diagnostics and security

The transport system is a complicated device involving high currents and numerous
fragile components such as MOSFETs. Thus it is compulsory for security and debug-
ging to have some feedback tools about the system. Firstly, some 10 kΩ thermistances
are measuring continuously the temperature of each coil. Moreover, we have installed
water flux-meters on each cooling tube. If one of the associated signals is not as
expected, a coupling to the interlock circuit of the power supplies makes them turn
off immediately. Secondly, a current transducer probe (LEM HTFS800-P) is placed
around each coil line to check the currents flowing inside (see Figure 4.26). Thus, if one
MOSFET fails, the measured current will be different from the asked one, or even zero:
it is thus straightforward to detect the defective component without disconnecting and
testing them one by one. In addition, in parallel with each coil a LED is placed in series
with a 1 kΩ resistance, as shown in Figure 4.27. The LED has a threshold voltage of
1.6 V. If some current is flowing inside the coil, a little part of it (given by the ratio of
the coil resistance over 1 kΩ) flows in the LED which thus emits light. This group of
LED was of great help to debug the transport.

4.5.5 Logics

An organization chart of the transport control is given in Figure 4.28. As explained in
part 4.5.2, to control the coils we chose to use five sets of power supplies and to create a
logic circuit that switches on and off the currents through MOSFETs at desired timings.
This box is called “caterpillar” for reasons that will be clear below. It has been designed
at ENS with engineer Bernard Trégon and assembled by Lionel Pérennès, both from
the electronics workshop of Laboratoire Kastler Brossel. It consists of a third order
shift-register (NXP 74HC4017) with a leg per MOSFET. This counter moves leg by
leg a triplet of 5V signals each time an incoming clock signal is received. Thus only
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Figure 4.28: Organization chart of the transport control.
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Figure 4.29: Shift register circuit for the transport command.

three pairs of consecutive coils can be on simultaneously, according to the principle
explained in part 4.1.1. The design software used was Eagle. The circuit is shown on
Figure 4.29.

To control this logic stage the National Instrument digital card (see part 1.5) sends
to the shift register an increment TTL signal at each shifting time in the sequence. This
clock signal is called “intops” and is shown on Figure 4.30. Its profile is calculated in
the Mathematica transport program in order to make a correspondence between 5 V
fronts and annulations of currents in the transport sequence (see part 4.1.1 for details).
In addition to this clock digital command, the caterpillar has two other entries: one
which acts as an on/off or reset knob, and another one controlling for a simultaneous
switch between T3 and T6, and T5 and T7, in order to manage the elbow rotation (see
Figure 4.30).

Besides, MOSFETs have a common source (the “ground” for a negative transistor)
for drain-source and gate-source channels. As a direct consequence some high currents
could possibly flow inside the command cables and reach the logics or even the Na-
tional Instrument cards. In order to avoid this, an optocoupling stage has been placed
in between the logics and the MOSFETs. Each MOSFET command has its own op-
tocoupler (Avago Tech ACPL-J313). It is contained inside the caterpillar box and it
is similar to the other one which is placed just after the National Instrument digital
cards (see part 1.5). Its Eagle map is given on Figure 4.31.
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Figure 4.30: Digital clock sequence to drive the transport shift logics (blue), and switch
at the elbow (pink).

Figure 4.31: Optocoupling stage between the logics and the MOSFETs.
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Figure 4.32: Effective currents asked to the five power supplies.

4.5.6 Computer control

As far as engineering is concerned, we presented in previous parts, the mechanics,
the power and the logics of transport. Let us turn now to computer control. We
already mentioned that the Mathematica program creates a clock signal for the shifting
logics (see Figure 4.30). Combining static positive currents (Figure 4.16) and dynamics
(Figure 4.12) it also creates a time-wave for each current as shown in Figure 4.32. Those
two pieces of information are joined and exported into a CSV file and sent via ethernet
connection from the analysis computer to the main computer. Then the main program
reads this file and sends its values to the National Instrument analog and digital cards
(see part 1.5) during the transport phase.



4.6. Summary 149

4.6 Summary

In this chapter, we presented the design of the magnetic transport, as well as its
engineering.

First, we explained the main algorithm of the program that calculates the currents
in all the coils, in order to control the trap geometry and its position. We also calculated
an adiabatic invariant, that allowed us to obtain the sizes and temperatures of the
transported clouds as functions of the ramps on the gradients. We then compared those
theoretical sizes to the tube dimensions, which was useful to validate the chosen ramps.
The transport horizontal transverse gradient equals 160 G.cm−1 and the magnetic
aspect ratio between the transport and the vertical directions equals bx/bz = −0.3.

Secondly, we presented the transport dynamics. The sequence should be quick
enough to reduce the Majorana losses, and slow enough to ensure adiabaticity and to
reduce the inertia forces. We estimated that Majorana losses occur on a time scale of
10 s, whereas the inertia forces become harmful below a total transport time of 400 ms.
Therefore, a transport time of a few seconds was estimated to be a relevant tradeoff.
Using the limit conditions, we could built a proper trajectory for the trap.

Then, we presented the currents calculated by the program and we checked that
they correspond to the chosen ramps on the gradients, apart from a few regions of
negative currents, where we replaced the currents by zero. In order to check the effect
of those corrections, we performed a numerical simulation an checked that the defects
were not increasing the average energy of the cloud by more than 20 %. We also
calculated the 3D trap depth along the transport, and showed that it never goes below
3 mK in our sequence.

Finally, we presented the engineering of the transport system, including mechanics,
differential pumping, winding, logics, power, cooling, security and computer control.

With this design, we expect ∼ 80 % of transport efficiency. The experimental
characterization of the system is developed in chapter 5.
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Chapter 5

Magnetic transport :
characterization

In chapter 4, we introduced the magnetic transport of 6Li-40K through its theoretical
aspects, before describing the engineering of the system. After completing the design,
we installed the transport assembly in the experiment and performed its experimental
characterization.

In the present chapter, we present those experimental aspects and we particularly
focus on the optimization of the transport efficiency. The main problem we encountered
and solved was the trap depth at the most critical point of the transport: the entrance
of the DN10 differential pumping tube. Actually, this particular region happens to be
also the point of weakest gradients, since it is located in between the MOT center and
the transport assembly, where the overlap is small.

The chapter is divided in four parts. In the first one, we present the experimental
characterization of the hardware: currents, fields and computer control. In the second
one, we study the dynamics of the transport that has to be chosen carefully in order to
ensure adiabaticity and to avoid heating issues linked with the acceleration. The third
part investigates the statics of the transport through the problem of trap depth. Finally,
we summarize the results obtained after optimization, and we show that they are
reasonable to start evaporative cooling of 40K in one single spin state, and sympathetic
cooling of 6Li.

151
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Figure 5.1: Measurement (black) of the x-field at the center of the final quadrupole
pair as a function of the transport time. Theoretical calculation (red) obtained with the
transport program. The total transport sequence lasts 1 s here. The measurement was
performed before assembling the transport system on the experiment, with a homemade
Hall probe mounted on a xyz-translation mount.

5.1 Hardware and software

Before launching the transport sequence in presence of atoms, we checked the reliability
of the transport system. This was done by comparing the map of the magnetic field
with the theoretical one and by checking the matching of the actual currents measured
in each pair of coils with the asked one. Therefore, we could check the fidelity of
the computer control and the commutation logics, as well as the absence of delays,
shortcuts and electrical defects. In addition, we could validate the field calculation of
the software, since any error in the field definition would have led to a difference with
the measurements.

5.1.1 Magnetic field

The mechanical and electrical parts of the transport setup are presented in part 4.5.
Prior to their final installation, we assembled them beside the vacuum chamber. There,
we recorded the 3D magnetic field at the center of each pair as a function of time,
apart from the MOT pair and the pushing coil, since they were already assembled. An
example of result is shown in Figure 5.1 where we plotted the x-field at the center of the
final quadrupole pair. The measurement was performed with a homemade amplified
Hall probe (UGM3503U) mounted on a Newport xyz-translation mount and connected
to an oscilloscope in single trace mode. The field detection was triggered by a digital
signal (see part 1.5) sent at the beginning of the transport sequence. For each coil of
the assembly, starting from the third transport pair (since before the field is wrong in
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absence of MOT coils), we compared the measurements to the values calculated by the
transport program from the currents of Figure 4.32. There was no major deviation (see
Figure 5.1 for instance), which validates the hardware after the third transport pair,
as well as the field expression in the program. However, in order to control the timings
on the millisecond scale, we then recorded the real currents with current transducer
probes, and we compared the results to the theoretical values.

5.1.2 Currents

As explained in part 4.5.4, a current transducer probe (LEM HTFS800-P) is placed
around each coil circuit in order to monitor continuously the current passing through
it (see Figure 4.26). This allowed us to compare the actual currents in all coils with
the ones asked by the transport program (see Figure 4.32). By zooming around the
switching times, we observed systematic 10 ms delays between commands and loads
in Constant Current (CC) mode. This may be harmful for the cloud. In fact, looking
at Figure 4.13, the maximal speed of the cloud in the sequence is of the order of
35 cm.s−1. Thus, if we tolerate a maximal error on the cloud position of the order
of 1 mm, we can not accept more than approximately 3 ms in timing precision. As
explained in part 4.5.2, the delay could be reduced to less than 1 ms by switching
to Constant Voltage (CV) mode in the power supplies, which increased the overall
transport efficiency by approximately 10 %.

An example of final results is shown in Figure 5.2, where we plot the theoretical
currents asked to four pairs of coils (before the conversion into voltages for the CV
mode operation) as well as the real currents passing in those pairs. As we can see, the
agreement is perfect. In conclusion, the chain between the transport program and the
current is reliable, and there is no shortcut or electrical defect since, in CV mode, any
change of resistance would imply a change of current. Moreover, we checked that the
result is identical while repeating the sequence over several minutes, showing that the
change of resistance due to heating is negligible.

5.2 Dynamics

After having tested the technical aspects of the transport system, as presented in
section 5.1, we characterized and optimized the physical aspects of the transport by
running the sequence in presence of atoms. The transport sequence starts after a 50 ms
magnetic trapping stage (see chapter 3). As explained in chapter 4, the transport
program is divided in two independent parts: first, a routine defining the static trap
geometry at each given position, and calculating the associated currents; secondly, a
routine fixing the time evolution of the trap center. In this section, we focus on the
dynamics. Section 5.3 is dedicated to the study of the statics.

As far as the dynamics is concerned, we first optimized the transport efficiency by
changing the timings in each of the four parts: injection, first arm of the transport,
elbow and second arm. We could thus obtain a preliminary efficiency of transfer of
15 % for 40K and 7 % for 6Li, including the vacuum losses. The associated trajectory
is the one shown in Figure 4.12, with the acceleration profile of Figure 4.14. Besides,
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Figure 5.2: Measurement of the currents passing through four pairs of coils connected
to a same power supply (see parts 4.5.1 and 4.5.2) as a function of transport time.
The coils are T1 (red), T4 (blue), T9 (green), V2 (pink). The graph shows also the
theoretical current asked by the transport program (black). The measurements were
performed using the current transducer probes described in part 4.5.4, and for a total
transport duration of 4.6 s. The fact that the V2 current does not match with its
value on the green curve of Figure 4.32 is due to two reasons: first, the opposite sign
is a consequence of the chosen orientation of currents in this pair to account for its
negative current in Figure 4.15; secondly, in Figure 4.32 there is a scaling calibration
factor depending on the pair, which is due to the CV operation where a single voltage
is asked to a power supply that drives four pairs of different resistances.
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Figure 5.3: Position of the 40K cloud and the theoretical trap center as a function of
transport time, for a constant acceleration of 0.7 m.s−2. The cloud position is obtained
by absorption imaging (see part 2.2.2).

we also tried to have smoother acceleration profiles, such as higher orders polynomials,
sinusoidal or gaussian profiles, but it appeared not to be critical.

Here, we study successively the dynamics of the injection stage, the acceleration,
and the temperature of the transported cloud over a round-trip experiment.

5.2.1 Injection

After the preliminary optimization of the timings mentioned above, we checked the
injection in the transport by recording the real position of the cloud as a function of
the transport time and by comparing it to the expected trap position. The position
was measured by absorption imaging (see part 2.2.2), the imaging being limited by the
optical access in the MOT chamber to 1 cm in the transport direction. The result is
shown in Figure 5.3 for 40K with a constant acceleration of 0.7 m.s−2. As we can see,
the injection is nicely working at this acceleration which corresponds approximately to
twice the maximal acceleration of the chosen profile shown in Figure 4.14. Moreover,
no major losses were observed during this injection stage.

5.2.2 Inertia

The effect of the acceleration of inertia was presented in part 4.3.1. We found a maximal
acceleration of a∗max = 28 m.s−2, above which atoms are theoretically lost due to the
force of inertia. In order to check this, we recorded the real cloud position when the
trap center reaches x = 8 mm, for several accelerations of the transported trap.The
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Figure 5.4: Lag of 40K cloud with respect to a theoretical trap center position (8 mm)
as a function of the trap acceleration.

result is shown in Figure 5.4, for 40K. As expected, a lag between the trap center and
the cloud appears at high acceleration. On the contrary, at low acceleration, the two
positions match. The threshold is approximately 0.1 m.s−2. With a∗max = 28 m.s−2, the
lag equals 7 mm. At x = L1 = 6.8 cm, where the gradients are the smallest, the RMS
size of the cloud reaches 7.5 mm (see Figure 4.6). This means a total 1.5 cm typical
radial deviation from the theoretical trap center, which is of the same order as the trap
extension in presence of inertia, as shown in Figure 4.11. Therefore, our estimate of
a∗max was correct, and with the chosen acceleration a = 0.3 m.s−2 (see Figure 4.14),
there is no risk of loosing atoms by inertia.

5.2.3 Adiabaticity

Even in absence of inertia forces, a bump in the sequence or a local misalignment can
be harmful, since it may lead to a violation of the adiabaticity criterium presented
in part 4.3.2. As a consequence, the cloud can be heated. This is undesirable as far
as the forthcoming evaporative cooling stage is concerned, since it reduces the elastic
collision rate and thus the cooling efficiency. Furthermore, it may also induce some
consequent trap losses during transport. Therefore, we checked the temperature of the
cloud after a round-trip in the transport. An example of result is shown in Figure 5.5,
for a 40K round-trip to 1 cm in 200 ms. Compared to the initial Th = 344 µK and
Tv = 423 µK in the 40K magnetic trap (see Figure 3.7), there is only a slight increase of
temperature. It is in accordance with the adiabatic compression (see formula 4.7) from
the gradient of the magnetic trap, by = −42.5 G.cm−1, to the initial transport value,
by = −67 G.cm−1. In addition, no significant loss in number of atoms was observed.
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Figure 5.5: Time-of-flight (see part 2.2.3) of the 40K cloud after a transport round-
trip to 1 cm in 200 ms. The linear fits give a vertical temperature of 517 µK and an
horizontal one of 455 µK.

As a conclusion concerning the transport dynamics, there is no problem of inertia
and adiabaticity with the chosen trajectory of Figure 4.12. To optimize the sequence
we then had to study the static trap depth.

5.3 Trap depth

In this part, we present the static transport optimization through the issue of trap
depth. We first show the main diagnostics, the round-trip experiment that allows us
to localize the main losses of atoms. Then, we present our investigation of the causes
of those losses, by analyzing the sources of truncation of the atomic distribution on the
transport walls. Besides, we check the hypothesis of evaporative cooling due to this
truncation. Finally, we study the trap depth along the transport direction.

5.3.1 Round-trip experiment

The main diagnostics that we use while optimizing the transport system is the round-
trip experiment mentioned in part 5.2.3. It consists of probing each position of the
transport by moving the trap to this point before going back to the octagonal chamber,
where absorption imaging is performed (see part 2.2.2). However, it is important to
normalize the obtained number of atoms by the vacuum losses measured in the fixed
magnetic trap (see part 3.3.5) for a duration identical to the transport time, in order
to measure the absolute efficiency of the transport independently of the vacuum losses.
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Figure 5.6: Trajectory of the center of the trap in a round-trip transport experiment to
x = 8 cm.

This diagnostics is more precise than imaging directly the atoms in the final cell,
for two reasons: it gives a local information along the transport direction, and the
imaging setup of the transported cloud is identical to the initial imaging. Note that
the transport efficiency should not depend on the initial number of atoms. In fact, at
500 µK, we are still far from a Fermi-Dirac distribution for which the maximal energy
increases with the number of atoms. In addition, there is almost no collision in the
magnetic trap (see part 3.3.3). Thus, the truncation of the distribution remains a quasi
one-body problem.

Nevertheless, one should keep in mind that this diagnostics introduces some dynam-
ical artifacts. First, the trajectory profile is different from the real one (see Figure 4.12),
as shown in Figure 5.6. In fact, even if we adapt the overall timings so that the maxi-
mal acceleration is close to the one of Figure 4.14, we introduce some differences in the
sequence. For instance, with the round-trip at x = 8 cm shown in Figure 5.6, we have
a null velocity at x = 8 cm, which is completely different from the full transport case,
where the velocity is nearly maximal and equals 25 cm.s−1. However, since we do not
exceed the maximal acceleration of 0.3 m.s−2, we can assume than the inertia does not
play a significant role, according to part 5.2.2. As far as ergodicity is concerned, we
could argue that staying at a given point or passing twice through it is quite different
from passing once and quickly through it. However, as demonstrated in the following,
the typical time of ergodization equals a few tens of milliseconds which remains small
in comparison with the typical transport times.

Secondly, the number of atoms at a given point is not independent from the number
of atoms at a point placed before in the sequence. As an example, if a defect occurs
somewhere in the sequence, leading to swinging of the cloud (and thus heating), the
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Figure 5.7: Initial transport efficiency of 40K as a function of transport distance. Each
point is an average over 6 measurements. The efficiency at a given point is defined as
the ratio between the number of atoms measured after a round-trip to this point and
the number of atoms in a fixed magnetic trap during the same duration. The initial
number is 5× 108 in the magnetic trap.

efficiency at further points will be reduced. Once again, the dynamical check described
part 5.2.3, ensures that no major heating occurs during the round-trip experiment,
which allow us to be confident in the round-trip diagnostics.

Finally, one should keep in mind that we are actually interested in the absolute num-
ber of atoms and not the transport efficiency. In fact, in case of a bump in the magnetic
trajectory, moving slowly can reduce the losses due to transport but it increases the
losses due to vacuum (see part 3.3.5), especially in the region of the octagonal chamber
where the vacuum quality is not as good as the one in the final science cell. Thus,
after understanding and optimizing the key parameters of the transport through the
round-trip diagnostics, it will be important to change the overall timing in order to
find the trade-off between transport efficiency and lifetime in the trap.

Practically speaking, the round-trip experiment implies to calculate a new tra-
jectory for each distance travelled in the transport, as the one shown in Figure 5.6.
Moreover it requires to disconnect the switch box of the transport (see part 4.5.5)
since it does not allow to come back in the sequence. Instead, we directly control the
MOSFETs described in part 4.5.2, through the digital outputs of the main computer
(see part 1.5). Finally, we performed the measurement with 40K first since it is cooler,
and thus less sensitive to losses.

After turning to CV control of the power supplies, as described in part 5.1.2, and
for maximal accelerations of the order of 0.3 m.s−2, according to part 5.2.2, we could
record the round-trip curve depicted in Figure 5.7 for 40K. The efficiency is close to
100 % before x = 6 cm where is starts to reduce until 30 % at x = 12 cm.

After x = 13 cm, the raw number of transported 40K atoms equals approximately
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7 × 107 atoms and remains constant until the elbow located at x = 30.95 cm (see
Figure 4.2). We attribute this to the differential pumping tube which starts at x =
7.7 cm (see part 1.1.3), and which already divides by two the background pressure at
x = 13 cm. Therefore, after x = 13 cm, we normalize the transported number of atoms
by the number of atoms remaining in a fixed magnetic trap, for a duration equal to
the one needed to transport the trap to x = 13 cm. The transport efficiency is thus
estimated to be of the order of 30 % at the elbow. The total round-trip until the elbow
lasts 4 s.

In addition, as already mentioned in section 5.2, we performed a first test of full
transport that gave 15 % for 40K and 7 % for 6Li of transfer efficiency, including the
vacuum losses.

In the following, we investigate the possible causes of those losses, in order to
optimize the transport.

5.3.2 Truncation on the tube

In part 5.3.1, we presented our initial results from the round trip diagnostics. Figure 5.7
reveals the existence of a critical region in between 6 cm and 12 cm. This region can
be harmful for several reasons.

First, the differential DN10 pumping tube, starting at x = 7.7 cm and ending at
x = 24 cm, reduces the inner diameter from 1.6 cm to 1.0 cm, which can truncate the
wings of the atomic distribution.

Secondly, according to Figure 4.3, x = L1 = 6.8 cm corresponds to the minimal
gradient in x and z directions, and to a gradient close to its minimal value in the
y direction. This is due to the fact that x = L1 is in the region of weak overlapping
between MOT and transport coils. This implies that the atoms are close from the walls
in this region (see Figure 4.7). Note also that the MOT pair goes off at x = 12.8 cm
(see Figure 4.16).

Thirdly, this region is the place of smallest trap depth in x direction, where it equals
3.4 mK. This particular point is studied in part 5.3.4.

Fourthly, according to Figures 4.3 and 4.4, the ramps on the gradients last until
x = L2 = 12 cm. However, we checked that reducing L2 to 8 cm had no major effect.

In this part, we focus on the transverse trap depth. We present successively our
theoretical and numerical models of ergodic truncation, the role of the initial tem-
perature, the effect of a misalignment, and the dependency of the trap depth on the
gradient and the size of the tube.

Theoretical model

To understand the losses in the transport tube, we assume a truncation of the distri-
bution in the transverse directions y and z (see Figure 5.8). We also assume ergodicity,
which means that atoms have enough time to explore the whole available phase space.
Thus, they are removed if their energy is greater than the trap depth (see equation 3.4):

Edepth =
µBbr

kBT
, (5.1)
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Figure 5.8: Cartoon of the analytical (see equation 5.2) and numerical models for the
truncation of the atomic distribution: each time an atom have enough energy to reach
the walls of the differential pumping tube, it is lost (red).

where r is the radius of the tube, −b is the y-gradient, and T is the temperature of the
cloud. This hypothesis is reasonable since the typical time for an atom to cross the
trap is of the order of 15 ms for potassium (see equation 4.16). Moreover, we found
numerically a typical ergodization time of 20 ms for 40K, as explained below.

Therefore, using the density of energy in a linear trap (see appendix A.4), the
transport efficiency ε(x) can be defined as:

ε(x) =

∫ a(x)r(x)

0
du u7/2e−u∫∞

0
du u7/2e−u

, (5.2)

where r(x) is the effective radius of the tube at transport position x, and:

a(x) =
µBb(x)

kBT (x)
, (5.3)

whith −b(x) the y-gradient, and T (x) the cloud temperature.
According to parts 4.3.2 and 5.2.3, we assume that the transport is adiabatic.

Therefore, equations 4.7 and 5.3 lead to:

a(x) =
µBb(x)1/3(b0)2/3

kBT 0

[
2|1 + A(x)|2
|A(x)|

]2/9

, (5.4)

with an initial cylindrical trap of aspect ratio A = −0.5, y-gradient b0
y = −b0 and

temperature T 0. Thus, a(x) is completely determined by the initial temperature in
the magnetic trap T 0, and by the ramps on y-gradient by(x) = −b(x), and aspect ratio
A(x), given in Figures 4.3 and 4.4.

Using this model, we calculate in the following the influence of the initial tempera-
ture, an hypothetic misalignment and the gradients. We also fit the experimental data
in various conditions.
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Figure 5.9: Numerical simulation of the percentage of 40K atoms remaining in a static
quadrupole trap with by = −100 G.cm−1 as a function of time, for various conditions:
T = 0.5 mK and DN10 tube (black), T = 1 mK and DN16 tube (pink), T = 1 mK and
DN10 tube (blue), T = 0.5 mK and DN10 tube misaligned by 5 mm (red), T = 1 mK
and DN10 tube misaligned by 5 mm (green).

Ergodicity

In addition to the analytical model of equations 5.2 and 5.4, we performed a numerical
simulation containing the same ingredients, in order to validate the hypothesis of er-
godicity and to double check our results. Similarly to one described in part 4.4.3 and
[140], the program has been written in Fortran 90, using a fourth order Runge-Kutta
routine. The initial assignation of velocities and position of 10000 40K atoms into the
trap is done accordingly to the initial phase-space distribution. The magnetic force is
calculated with the ramps given in Figures 4.3 and 4.4, as well as the trap trajectory of
Figure 4.12. Finally, each time an atom comes outside the tube defined in Figure 4.7,
it is removed from the cloud. Thus, the efficiency is given by the ratio between the
final and initial numbers of atoms.

Figure 5.9 shows the numerical simulation of the percentage of 40K atoms remaining
in a static magnetic trap as a function of time, for several conditions. We see that
it requires between 10 and 20 ms, after the initial cut in distribution, to fulfill the
ergodicity criterium, that is for a 40K atom of energy greater than the trap depth to be
removed from the trap. This time is small compared to the typical time of variation
of the trap, as explained in part 4.3.2. Therefore, our model of equation 5.2 is valid.
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Figure 5.10: Theoretical efficiency of trapping 6Li and 40K atoms in a static magnetic
trap of gradient 93 G.cm−1 as a function of temperature, for three different tubes: DN10
(blue), DN16 (pink), and DN38 (yellow). The model used is given in equations 5.2 and
5.4.

Temperature

Using equations 5.2 and 5.4, as well as the numerical simulation described above, we
studied the effect of temperature on the losses.

We saw in Figure 5.9 that the temperature is very critical in a DN10 tube, since
the efficiency goes from approximately 90 % to 20 % by heating the cloud from 0.5 mK
to 1 mK.

To confirm this, using our analytical model of equations 5.2 and 5.4, we studied the
percentage of atoms remaining in a static magnetic trap as a function of temperature,
in various tubes. The y-gradient is fixed to by = −b = −93 G.cm−1, since it is the value
at the entrance of the differential pumping tube (x = 7.7 cm), as shown in Figure 4.3,
which corresponds to the weakest distance to the tube (see Figure 4.7). The result is
plotted in Figure 5.10. There is a good agreement with the results of the numerical
simulation shown in Figure 5.9. Furthermore, the graph confirms that the temperature
is critical above 0.5 mK in a DN10 tube. On the contrary, the situation is safe below this
value. According to the round-trip experiment (see Figure 5.7), the transfer efficiency
for 40K equals approximately 60 % at x = 7.7 cm, which corresponds to an initial
temperature of 700 µK. We checked the initial temperature in the compressed magnetic
trap before the transport and we actually found a temperature of 700 µK. The difference
between this high value and the temperature measured in the magnetic trap TK ≈
400 µK (see part 3.3.2) means that our ramping to the initial transport value is not
adiabatic. In fact, starting from TK ≈ 400 µK in a magnetic trap of y-gradient
42.5 G.cm−1 and ramping it up adiabatically to 67 G.cm−1, which is the transport initial
value (see Figure 4.3), one should get approximately 540 µK, according to equation 4.7.

We then optimized the ramping of the magnetic trap after the spin-polarization
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Figure 5.11: Transport efficiency of 40K as a function of transport distance. Each point
is an average over 6 measurements. The efficiency at a given point is defined as the
ratio between the number of atoms measured after a round-trip to this point and the
number of atoms in a fixed magnetic trap during the same duration, in order to account
for vacuum losses (see part 3.3.5). After x = 13 cm, the raw number of 40K atoms
stabilizes to approximately 1.3 × 108 atoms until the elbow located at x = 30.95 cm
(see Figure 4.2). Therefore, after x = 13 cm, we normalize the transported number
of atoms by the number of atoms remaining in a fixed magnetic trap, for a duration
identical to the one needed to transport the trap to x = 13 cm. The total round-trip
until the elbow lasts 4 s.

stage (see part 3.2.3), by directly reaching the transport gradient of 67 G.cm−1 in 3 ms.
The initial temperature could be reduced to 500 µK, as already shown in Figure 5.5.
The associated round-trip experiment is shown in Figure 5.11. The efficiency before the
entrance of the DN10 tube became greater than 90 %. The efficiency at x = 8 cm could
be increased from 60 % to 80 %, as expected in Figure 5.10 with an initial temperature
of 500 µK. In fact, note that according to Figure 5.10 the real temperature is close to
the initial one at x = 7.7 cm.

After the entrance of the DN10 tube, the efficiency reduces until 40 % at x = 13 cm.
After x = 13 cm, the raw number of transported 40K atoms equals approximately
1.3 × 108 atoms, and remains constant until the elbow located at x = 30.95 cm (see
Figure 4.2). The new transport efficiency is estimated to be of the order of 40 % at
the elbow.

We improved the efficiency before the entrance of the DN10 tube. However, the
losses in the tube depicted in Figure 5.7 are still present and can not be explained by the
temperature since the efficiency decreases whereas we ramp up the gradient. Indeed,
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Figure 5.12: Theoretical efficiency of trapping 6Li and 40K atoms in a static magnetic
trap of gradient 93 G.cm−1 in a DN10 tube as a function of misalignment, for four
temperatures: 0.3 mK (green), 0.4 mK (yellow), 0.5 mK (red), and 0.7 mK (blue).
The model used is given in equations 5.2 and 5.4. In addition, a numerical simulation
at 0.5 mK in an identical magnetic trap is shown (dashed line).

according to equation 5.2 and Figure 4.4, the efficiency should increase adiabatically
with the gradient, independently of the real temperature of the cloud. We thus study
an hypothetic misalignment, as well as the trap depth, in the following.

As a remark, T Li ≈ 1.3 mK in the magnetic trap (see part 3.3.2). Thus, the
transfer efficiency of 6Li equals 20 %. Therefore, we have to reduce its temperature by
improving the CMOT (see part 3.2.1) and spin-polarization stages (see part 3.2.3) for
6Li.

Misalignement

With the same procedure as for the temperature, we studied the effect of an hypothetic
misalignment of the DN10 differential pumping tube with respect to the center of the
magnetic trap. The study was performed at the entrance of the tube where the cloud
is the closest from the walls (see Figure 4.7). The y-gradient is fixed to its value at
the entrance of the DN10 tube: by = −b = −93 G.cm−1. The results of numerical
simulations and analytical calculations based on equations 5.2 and 5.4 are summarized
in Figure 5.12. Once again they are in good agreement. In addition, the graph shows
that a misalignment of 1 mm could explain the 40 % efficiency obtained in Figure 5.11
at x = 13 cm. In fact, for an initial temperature of 500 µK, the real temperature at
this point equals approximately 700 µK (see Figure 4.5). Therefore, we decided to
move the transport assembly by a few millimeters in several directions. In addition,
we installed a single coil on top of one coil of the T1/2 pair (see Figure 4.24) in order
to shift vertically the position of the trap. In both cases it did not help.
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Figure 5.13: 40K transfer efficiency at x = 9 cm as a function of the gradient at
x = 9 cm. α is the ratio between the y-gradient and the y-gradient of the normal
sequence (see Figure 4.3). The initial number of atoms is 5 × 108 and the initial
temperature is 500 µK. The fit is based on equations 5.2 and 5.4, normalized by the
vacuum losses in 1.6 s. Its outputs are a radius of the tube of 6 mm and an initial
number of atoms of 4× 108.

Transverse trap depth

In order to check the effect of the gradient on the transverse trap depth in the DN10
tube, we performed two studies.

First, we measured the 40K transfer efficiency in a round trip experiment at x =
9 cm, which is 1cm inside the DN10 tube where the losses occur (see Figure5.11), as
a function of the gradient at this point. The sequence is the following. We first move
normally to x = 9.cm, then we stay at this point, while reducing adiabatically the
current by a factor α. Afterwards, we ramp up again the currents and the cloud is
brought backwards to the octagonal chamber. Therefore, we can precisely probe the
truncation on the DN10 tube. Results are shown in Figure 5.13. The initial number of
atoms is 5× 108 and the initial temperature is 500 µK. We then performed a fit using
equations 5.2 and 5.4, normalized by the vacuum losses in the sequence time. The free
parameters of the fit are the radius of the tube, r = 6 mm and the initial number
of atoms, N0 = 4 × 108. As we can see, those numbers are close to the real values,
r = 5 mm and N0 = 5 × 108. The slight difference may be due to the fluctuations in
number of atoms. Therefore, we can conclude that we are close from saturation with
our value α = 1. This means that we are not limited by the gradient.

Secondly, we plotted the full theoretical transfer efficiency of 6Li and 40K, as a
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Figure 5.14: Theoretical transfer efficiency of 6Li and 40K as a function of transport
distance, for three temperatures: 0.3 mK (yellow), 0.5 mK (pink), and 0.7 mK (blue).
The model used is given in equations 5.2 and 5.4, and takes into account the full ramps
on the gradients (see Figure 4.3).

function of transport distance. The model is once again based on equations 5.2 and 5.4
and takes into account the real ramps on the gradients described in Figures 4.3 and
4.4. Results are shown in Figure 5.14, for three initial temperatures. We conclude that,
with a minimal y-gradient of 93 G.cm−1 in the tube, and with an initial temperature
in the compressed magnetic trap of 500 µK, we should have a full transport efficiency
of ∼ 85 %, as already demonstrated in Figure 5.10 and measured in Figure 5.11.

In conclusion of this part dedicated to the truncation on the transport tube, we
could suppress the losses occurring after x = 6 cm in Figure 5.7, by reducing the
initial temperature, as depicted in Figure 5.11. However, the efficiency after x =
8 cm decreases until 40 %, where it stabilizes. The problem seems no to be linked to
the transverse trap depth, since, according to Figure 5.14, we should have a transfer
efficiency of 80 % with our initial 40K temperature of 500 µK. In the following, we thus
study the longitudinal trap depth. Before, since we expect 20 % losses on the transport
walls, we present an estimate of evaporative cooling in the tube.

5.3.3 Evaporative cooling in the tube

In part 3.3.3, we calculated the 40K p-wave elastic cross-section to be close from the
value obtained at JILA [116], σ = 2× 10−11 cm−2. Using, this value in equation 3.12,
we can estimate the collision time τ in the 40K transported magnetic trap, for an
initial temperature in the transport of T = 500 µK, and a number of atoms of 5× 108.
The calculation leads to τK ≈ 280 ms, using the transport gradients (see Figure 4.3)
and equation 3.11 to calculate the atomic density in the tube, and noticing that the
temperature in the tube is nearly 1.3 higher than the initial one (see Figure 4.5).
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H* THERMALIZATION TIME *L
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In[11]:= H* ELASTIC CROSS-SECTION *L

n = 1 * 10^9 ê H4 ê 3 * Pi * 0.0007 * 0.0014^2L;H* density mag trap *L
kB = 1.38 * 10^-23;
T = 0.0004;H* temp mag trap *L
tau = 1; H* thermalization time *L
m = 40 * 1.67 * 10^-27; H* potassium 40 mass *L
v = Sqrt@3 * kB * T ê mD; H* thermal velocity *L
sigma = 1 ê Hn * tau * vL H* elastic cross-section *L

Out[17]= 1.15425 µ 10-17

In[54]:= H* EVAPORATION RATE *L
T = 0.0005 * 1.3 ;
mu = 9.27 * 10^-24;
sigma = 2 * 10^-17;
n = 5 * 10^8 ê H4 ê 3 * Pi * HkB * T ê muL^3 * 1 ê H1.6 * 0.6 * 2.2LL;
v = Sqrt@3 * kB * T ê mD;
tau = 1 ê Hn * sigma * vL;
P@x_, y_D = Integrate@u^Hx - 1L * Exp@-uD, 8u, 0, y<D ê

Integrate@u^Hx - 1L * Exp@-uD, 8u, 0, Infinity<D; H* incomplete gamma fonction *L
evap@eta_D = 1 ê tau * Exp@-etaD * Heta - 11 ê 2 * P@11 ê 2, etaD ê P@9 ê 2, etaDL;
H* evaporation rate in a linear trap *L
Plot@evap@etaD, 8eta, 0, 10<, AxesLabel Ø 8"Tdepth ê T", "Evaporation rate @êsD"<D
1 ê evap@6D H* minimum evaporation time *L
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Figure 5.15: 40K evaporation rate in the transported magnetic trap as a function of the
evaporation parameter η = Tdepth/T (see equation 5.5). The evaporation rate is defined
as the rate of atoms that reach an energy higher than the trap depth after an elastic
collision.

Using this collision time, we calculate the evaporation rate Γevap in a linear trap as
a function of the evaporation parameter η = Tdepth/T . The evaporation rate is defined
as the rate of atoms that reach an energy higher than the trap depth after an elastic
collision. According to [141], we can write:

Γevap(η) =
1

τ
e−η

[
η − 11

2

P (11/2, η)

P (9/2, η)

]
, (5.5)

with:

P (x, y) =

∫ y
0
du ux−1e−u∫∞

0
du ux−1e−u

.

Γevap(η) is plotted for 40K in Figure 5.15. In the most critical position of the transport,
the entrance of the DN10 tube at x = 7.7 cm where by = −93 G.cm−1, the transverse
trap depth equals 3.1 mK (see equation 5.1), for a temperature of the cloud of 500 µK,
which means η = 6. With this value, we find Γevap(6) ≈ 14 × 10−3 s−1, according
to equation 5.5, which corresponds to a typical evaporation time of ∼ 70 s. This is
large compared to the transport duration. Therefore, we can neglect the evaporation
process in the transport tube for 40K. The same conclusion stands for 6Li, since p-wave
collisions are suppressed under 6 mK for this fermionic atom [120].

5.3.4 Longitudinal trap depth

In this part, we study the trap depth in the transport direction. Using the auxiliary
pulling pair of coils T1/2 (see Figure 4.24), we previously increased it to more than
6 mK at the most critical point x = L1, as shown in Figure 5.16.
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Figure 5.16: Trap profile along the transport direction at x = L1 = 6.8 cm.

However, we finally understood that due to the new overlapping geometry, the most
critical point was actually displaced from x = L1 = 6.8 cm to x = 8 cm. Indeed, with
an independent program calculating the field profile at each position in the transport
we could generate a movie of the transported trap. A snapshot at the most critical
point x = 8 cm is given in Figure 5.17. As we can see, the maximal field reaches 50 G,
which is equivalent to 3.4 mK in temperature units. Therefore, the longitudinal static
trap depth is comparable to the 3.1 mK one in the transverse direction, which leads
to losses, as developed in part 5.3.2. Moreover, dynamical effects can appear in the
transport direction, which make this small depth even more dangerous, especially at
the entrance of the DN10 tube. Note that we saw another dangerous region at the
end of the transport, where once again the overlapping is reduced since we leave the
transport region (transport coils) to enter the science cell (final quadrupole coils), by
passing through the metal-to-glass adapter of the science cell, of 5 mm radius.

We thus decided to increase the trap depth, by changing the aspect ratio ramp
A(x) of Figure 4.4 around x = 8 cm. The result for A(x = 8 cm) = −0.5 is shown
in Figure 5.18. With this new ramp, the linear trap is doubled. This could finally
solve the problem of efficiency in the differential pumping tube, between x = 8 cm and
x = 12 cm. Actually, the two loss regions initially observed in Figure 5.7 were due to
a combination of two simultaneous effects: a truncation on the walls of the transport,
and a reduced trap depth along the transport, which is not directly controlled by the
transport program (see part 4.1.1). We present the final results in following section 5.4.

5.4 Final results and evaporative cooling

In this section, we present the optimized results on transport efficiency, we characterize
the lifetime in the final cell, and we show that the obtained numbers are reasonable to
start evaporative cooling in the optically plugged magnetic trap for 40K in one single
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Figure 5.17: Magnetic profile in the transport direction at x = 8 cm (old sequence).

Figure 5.18: Magnetic profile in the transport direction at x = 8 cm (new sequence).
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Figure 5.19: Screen capture of an absorption image (see part 2.2.2) of the first trans-
ported 6Li cloud. The number of atoms equals 8.3× 107 here.

spin state, with sympathetic cooling of 6Li.

5.4.1 Final results

We understood the losses in the tube (see Figure 5.11), and we reduced them by in-
creasing the longitudinal trap depth (see part 5.3.4). In addition, we could magnetically
trap and transport a double mixture of 6Li-40K.

For 40K, we obtained a full efficiency (normalized with vacuum losses) of 80 %,
as expected with our theoretical model for an initial temperature of 500 µK (see Fig-
ure 5.14). For the hotter 6Li, we obtained a full efficiency (normalized with vacuum
losses) of 30 %. An absorption picture of 6Li in the science cell is shown in figure 5.19.
Some improvement could be performed by reducing the initial temperature. However,
in our scenario of evaporative cooling (see parts 3.4.3 and 5.4.2), the atom number of
6Li is not critical since we plan to evaporate 40K only.

The horizontal and vertical temperatures of the mixture in the science cell were
measured to be Th = 567 µK and Tv = 500 µK, and the lifetime was measured to be
30 s, as shown in Figure 5.20.

5.4.2 Starting evaporative cooling

The results presented in part 5.4.1 are reasonable to start evaporative cooling in the
optically plugged quadrupole trap (see parts 3.4.2 and 3.4.3). In fact, let us consider
∼ 108 atoms of each species, at ∼ 500 µK, in the final quadrupole trap with an
horizontal gradient of 110 G.cm−1. According to part 3.4.3, we consider evaporative
cooling of 40K in one single spin state |F = 9/2,mF = 9/2〉, through p-wave elastic
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Figure 5.20: Lifetime of 6Li atoms in the final magnetic trap. The exponential fit (see
part 2.3.4) gives a characteristic time of ∼ 30 s.

collisions.
Using equations 3.11 and 3.12, with σ ≈ 1.2× 10−11 cm2 as obtained in part 3.3.3,

we find an elastic collision rate of ΓK
el ≈ 100 s−1. This is ∼ 3000 times larger than

the inelastic loss rate Γin = 1/30 ≈ 0.03 s−1, measured in Figure 5.20. Thus, we can
reasonably start the evaporative cooling of 40K. According to equation 5.5, we find the
evaporation rate shown in Figure 5.21. For a typical evaporation parameter η = 4, this
gives an evaporation rate of Γevap(4) ≈ 1.2 s−1.

The 6Li atoms will be cooled done as well, through sympathetic cooling. In fact, the
interspecies scattering length equals a = 64 a0 [122]. Then, using a similar calculation
where σ = 4πa2, we find an interspecies elastic collision rate of ΓLiK

el ≈ 12 s−1, which is
approximately ∼ 400 times larger than Γin.

Therefore, in principle, we could cool down typically 107 atoms of each species to
a temperature of 50 µK, since for η = 4 we have δN/N ∼ δT/T [141]. Finally, this
would be sufficient to load the high-power optical dipole trap presented in part 3.4.4.

We then started the evaporative cooling procedure and the alignment of the optical
plug.
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In[1]:= H* if increasing adiabatically the final gradient by a factor alpha,
just multiply the collision rate by alpha^H4ê3L,
since the density is proportional to b and the velocity to b^H1ê3L,
due to the invariance of Têb^H2ê3L in adiabatic regime *L

In[96]:= m = 40 * 1.67 * 10^-27; H* mass *L
T = 500 * 10^-6; H* temperature in final quadrupole *L
kB = 1.38 * 10^-23;
mu = 9.27 * 10^-24;H* Bohr magneton *L
b = 1.1; H* horizontal gradient in Têm *L
Nn = 10^8; H* number of atoms in final quadrupole *L
vol = 4 ê 3 * Pi * HkB * T ê muL^3 * 1 ê H2 b^3L;
H* volume of the cloud in final quadrupole *L
n = Nn ê Hvol * H1L^3L; H* density in final quadrupole for F=7ê2 *L
v = Sqrt@3 * kB * T ê mD; H* thermal velocity *L
a = 64 * 53 * 10^-12; H* KK scattering length in two spin states *L
sig2 = 4. * Pi * a^2 H* KK elastic cross-section *L
H*sig=1.2*10^-15*L
sig = 1.2 * 10^-15
tauK = n * sig * v H* KK collision rate in s^-1 *L
tauLiK = n * sig2 * vH* LiK collision rate in s^-1 *L
lftime = 30; H* lifetime in the science cell *L
tauK * lftime
tauLiK * lftime

Out[104]= 1.44584 µ 10-16

Out[105]= 1.2 µ 10-15

Out[106]= 102.941

Out[107]= 12.4031

Out[108]= 3088.24

Out[109]= 372.093

In[110]:= P@x_, y_D = Integrate@u^Hx - 1L * Exp@-uD, 8u, 0, y<D ê
Integrate@u^Hx - 1L * Exp@-uD, 8u, 0, Infinity<D; H* incomplete gamma fonction *L

evap@eta_D = tauK * Exp@-etaD * Heta - 11 ê 2 * P@11 ê 2, etaD ê P@9 ê 2, etaDL;
H* KK evaporation rate in a linear trap *L
Plot@evap@etaD, 8eta, 0, 10<, AxesLabel Ø 8"Tdepth ê T", "Evaporation rate @êsD"<D
evap@4D
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Figure 5.21: 40K evaporation rate in the final magnetic trap as a function of the evap-
oration parameter η = Tdepth/T (see equation 5.5). The evaporation rate is defined
as the rate of atoms that reach an energy higher than the trap depth after an elastic
collision. We consider ∼ 108 atoms of 40K in a single spin state |F = 9/2,mF = 9/2〉,
at a temperature of ∼ 500 µK, in the final quadrupole with an horizontal gradient of
110 G.cm−1.

5.5 Summary

In this chapter, we presented the experimental characterization of our magnetic trans-
port system, as well as its optimization based on an analytical model and a numerical
simulation. With our results, we could start evaporative cooling of 40K in one single
spin state, and sympathetic cooling of 6Li.

First, we checked that the currents and fields measured as functions of time were
identical to the theoretical ones. After the hardware optimization, we could improve
the overall efficiency by 10 %.

Then, we performed a round-trip experiment in order to probe the harmful regions
of the transport, and we observed two critical regions: one after x = 6 cm and another
one after x = 8 cm, leading to a 40K transfer efficiency of 60 % at x = 8 cm, and 30 %
at the elbow.

Using an analytical model of truncation of the atomic distribution on the transport
tube, as well as a numerical simulation, we understood the experimental dependencies
of the transfer efficiency on temperature, misalignment, and size of the tube. These
studies allowed us to understand that the initial temperature in the transport was
critical. We thus managed to reduce it to 500 µK in the initial transport trap of
67 G.cm−1 horizontal gradient, and we obtained the improved efficiencies of 90 % before
x = 8 cm, and 40 % at the elbow. Then, we could fit the behavior of the efficiency
inside the tube for different trap depths, with a good agreement. This showed that
increasing the gradients would not help anymore. We then understood that some losses
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after x = 8 cm were due to the longitudinal trap depth of 3.4 mK. We could increase
this trap depth by changing the magnetic aspect ratio to bx/bz = −0.5 at this point.

After optimization, we transported efficiently the double mixture of 6Li-40K. For
40K, we obtained a full efficiency (normalized with vacuum losses) of 80 %, as expected
with our theoretical model for an initial temperature of 500 µK. For the hotter 6Li,
we obtained a full efficiency (normalized with vacuum losses) of 30 %, which is large
enough since we evaporate only 40K in our evaporative cooling scenario.

Finally, the lifetime in the science cell was measured to be 30 s. Therefore, we
started evaporative cooling of 40K in one single spin state, since the associated elastic
collision rate ΓK

el ≈ 100 s−1 is ∼ 3000 times larger than the inelastic loss rate due to
vacuum losses. The 6Li atoms can be cooled down as well by sympathetic cooling,
since the interspecies collision rate is ∼ 400 times larger than the inelastic loss rate.



Conclusion

During this thesis work, we designed and assembled from scratch a complete experi-
mental setup allowing to produce, control and study ultracold imbalanced atomic Fermi
mixtures of 6Li and 40K.

We built an ultra-high vacuum chamber, with a residual pressure inferior to 10−11

mbar in the final cell. We prepared a powerful laser system giving typical powers
of 500 mW for each species, at several stabilized frequencies, and we designed two
performing atomic sources: a 6Li Zeeman slower, with a loading rate in the MOT of
1.2 × 109 atoms.s−1, and a 40K 2D-MOT, with a large loading rate in the MOT of
1.4× 109 atoms.s−1.

Using this system, we could load a performing double MOT of 6Li-40K. We ob-
tained 8.9 × 109 40K atoms at a temperature of 290 µK with a central density of
3 × 1010 atoms.cm−3, and 5.4 × 109 6Li atoms at a temperature of 1.4 mK with a
central density of 2×1010 atoms.cm−3. In the double MOT configuration, we obtained
8×109 atoms of 40K and 5×109 atoms of 6Li. Those values were optimized by reducing
the inelastic losses through a Dark MOT scheme.

In this MOT, we produced the first homonuclear 40K40K∗ and heteronuclear 6Li40K∗

molecules. This allowed to measure the linewidth of the 4p atomic state of 40K, that
was found to be Γ/(2π) = 6.136±0.017 MHz, which is close from the value obtained by
Wang et al. [106]. It also allowed to assign precisely five series of 6Li40K∗ rovibrational
lines, which opens the way to future photoassociation of polar 6Li40K molecules in their
electronic ground-sate. This is of strong interest in the study of dipolar gases.

Using a Cold MOT scheme, we could compress the 40K MOT cloud to a density
of 5 × 1010 atoms.cm−3, and cool it further to 200 µK, with 100 % efficiency. Then,
we optically pumped it into the |F = 9/2,mF = 9/2〉 state, with 100 % efficiency.
Using a CMOT scheme, we could compress the 6Li MOT cloud to a density of 3.5 ×
1010 atoms.cm−3, and cool it further to 1 mK, with a 100 % efficiency. Then, we
optically pumped it into the |F = 3/2,mF = 3/2〉 state, with 30 % efficiency. After
those preliminary stages, we loaded the single-species magnetic traps, with an axial
magnetic gradient of 85 G.cm−1, and we obtained typically 109 atoms in each case,
after 1 s of trapping. With our biggest MOT we could even reach the value of 3× 109

for 40K. The temperatures were measured to be 400 µK for 40K, and 1.3 mK for 6Li.
The thermalization time of 40K was found to be of the order of 1 s, leading to an
estimated p-wave cross-section, σKK = 1.2× 10−11 cm2, close to the value obtained at
JILA [116].

In parallel, we designed, assembled an studied a complete magnetic transport sys-
tem allowing to move the magnetically trapped cloud to a region of ultra-high vacuum,
and large optical access. Its efficiency could be calculated, measured and optimized,
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leading to a performing simultaneous transfer of the mixture in the science cell. For
40K, we obtained a full efficiency (normalized with vacuum losses) of 80 %, as expected
with our theoretical model for an initial temperature of 500 µK. For the hotter 6Li,
we obtained a full efficiency (normalized with vacuum losses) of 30 %, which is large
enough since we evaporate only 40K in our evaporative cooling scenario. In the final
trap, the lifetime equals 30 s, which is sufficient to enable evaporative cooling in an op-
tically plugged magnetic trap for 40K in one single spin state, and sympathetic cooling
of 6Li.

The forthcoming stages have been prepared as well. They consist of an optically
plugged magnetic trap in the science cell and an optical dipole trap, where quantum
degeneracy will be reached. In addition, we developed a high-resolution imaging scheme
involving a 404 nm 40K transition, and we designed the Feshbach coils.

At the end of my PhD, everything is ready to perform an efficient evaporative cool-
ing of the mixture. Actually, the evaporation has been initiated in the final quadrupole
trap and the fine alignment of the optical plug is in progress. Therefore, our group
shall cool down soon a 6Li-40K mixture with large numbers of atoms to quantum de-
generacy in an optical dipole trap, and study further ultracold Fermi mixtures in bulk
or in optical lattices.

In close future, the Cooper pairing mechanism [25] and the BEC-BCS cross-over
[36, 38] could be studied in presence of mass imbalance, the thermodynamics [42, 43]
of the ultracold Fermi mixture could be explored as well, and we could investigate the
universal properties of a Fermi mixture in low and mixed dimensions [51].



Appendix A

A.1 Atomic data

Physical quantity 40K 6Li

m [u] 39.96 6.02
λsp [nm] 767 671
Γ/(2π) [MHz] 6.04 5.87
Isat [mW.cm−2] 1.75 2.54

Potassium has one stable fermionic isotope 40K (0.012 %), and two stable bosonic
isotopes 39K (93.258 %) and 41K (6.730 %). Lithium has one stable fermionic isotope
6Li (7.42 %), and one stable bosonic isotope 7Li (92.58 %).
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Figure A.1: Hyperfine structure of the 39K D2 line.
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A.2 Magnetic field of a current loop

Let us consider a single current loop with axis z, radius a and current I. By cylindical
symetry the orthoradial field is null. The axial and radial ones are given everywhere
by the first and second order elliptical functions, K and E: Br = γB0

π
√
Q

[
1+α2+β2

Q−4α
E(k)−K(k)

]
,

Bz = B0

π
√
Q

[
1−α2−β2

Q−4α
E(k) + K(k)

]
,

with the following definitions:

B0 = µ0I
2a

,
α = r

a
,

β = z
a
,

γ = z
r
,

Q = [(1 + α)2 + β2] ,

k =
√

4α
Q
.
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A.3 Transport routine

This appendix shows a sample of the Mathematica transport code. It is in fact the
matrix inversion of the system 4.1 that calculates the currents from the constraints.
All the mechanical information on the coils (thread diameter, number of turns, number
of layers, inner and outer radius...) is saved in the bob[i, j] matrix, where i is the pair
index and j the data index. This data can be found in appendix A.5. br, gbr and gbz
are the x-field, x-gradient and z-gradient per unit of current. They follow the formulas
given in appendix A.2. gby and asp are the y-gradient and aspect ratio constraints.
And the IF loop is the incrementation procedure when a current reaches zero.H* Calcul des courants tirée 1 *L
xm =.;
Do@mat = 8Table@Sum@br@xm - bob@@j, 1DD,

0 - bob@@j, 2DD - Hk - 1L * bob@@j, 7DD, bob@@j, 6DD + bob@@j, 3DD ê 2 + i * bob@@j, 3DDD,
8i, 0, bob@@j, 4DD - 1<, 8k, 1, bob@@j, 5DD<D, 8j, l - 2, l<D,

HTable@Sum@gbr@xm - bob@@j, 1DD, 0 - bob@@j, 2DD - Hk - 1L * bob@@j, 7DD,
bob@@j, 6DD + bob@@j, 3DD ê 2 + i * bob@@j, 3DDD,

8i, 0, bob@@j, 4DD - 1<, 8k, 1, bob@@j, 5DD<D, 8j, l - 2, l<DL -
asp@xmD HTable@Sum@gbz@xm - bob@@j, 1DD, 0 - bob@@j, 2DD - Hk - 1L * bob@@j, 7DD,

bob@@j, 6DD + bob@@j, 3DD ê 2 + i * bob@@j, 3DDD,
8i, 0, bob@@j, 4DD - 1<, 8k, 1, bob@@j, 5DD<D, 8j, l - 2, l<DL,

-Table@Sum@gbr@xm - bob@@j, 1DD, 0 - bob@@j, 2DD - Hk - 1L * bob@@j, 7DD,
bob@@j, 6DD + bob@@j, 3DD ê 2 + i * bob@@j, 3DDD,

8i, 0, bob@@j, 4DD - 1<, 8k, 1, bob@@j, 5DD<D, 8j, l - 2, l<D -
Table@Sum@gbz@xm - bob@@j, 1DD, 0. - bob@@j, 2DD - Hk - 1L * bob@@j, 7DD,

bob@@j, 6DD + bob@@j, 3DD ê 2 + i * bob@@j, 3DDD,
8i, 0, bob@@j, 4DD - 1<, 8k, 1, bob@@j, 5DD<D, 8j, l - 2, l<D<;

courantco = Inverse@matD.80, 0, gby@xmD<;
If@courantco@@1DD < 0.5, l = l + 1;
mat = 8Table@Sum@br@xm - bob@@j, 1DD, 0 - bob@@j, 2DD - Hk - 1L * bob@@j, 7DD,

bob@@j, 6DD + bob@@j, 3DD ê 2 + i * bob@@j, 3DDD,
8i, 0, bob@@j, 4DD - 1<, 8k, 1, bob@@j, 5DD<D, 8j, l - 2, l<D,

HTable@Sum@gbr@xm - bob@@j, 1DD, 0 - bob@@j, 2DD - Hk - 1L * bob@@j, 7DD,
bob@@j, 6DD + bob@@j, 3DD ê 2 + i * bob@@j, 3DDD,

8i, 0, bob@@j, 4DD - 1<, 8k, 1, bob@@j, 5DD<D, 8j, l - 2, l<DL -
asp@xmD HTable@Sum@gbz@xm - bob@@j, 1DD, 0 - bob@@j, 2DD - Hk - 1L * bob@@j, 7DD,

bob@@j, 6DD + bob@@j, 3DD ê 2 + i * bob@@j, 3DDD,
8i, 0, bob@@j, 4DD - 1<, 8k, 1, bob@@j, 5DD<D, 8j, l - 2, l<DL,

-Table@Sum@gbr@xm - bob@@j, 1DD, 0 - bob@@j, 2DD - Hk - 1L * bob@@j, 7DD,
bob@@j, 6DD + bob@@j, 3DD ê 2 + i * bob@@j, 3DDD,

8i, 0, bob@@j, 4DD - 1<, 8k, 1, bob@@j, 5DD<D, 8j, l - 2, l<D -
Table@Sum@gbz@xm - bob@@j, 1DD, 0. - bob@@j, 2DD - Hk - 1L * bob@@j, 7DD,

bob@@j, 6DD + bob@@j, 3DD ê 2 + i * bob@@j, 3DDD,
8i, 0, bob@@j, 4DD - 1<, 8k, 1, bob@@j, 5DD<D, 8j, l - 2, l<D<;

courantco = Inverse@matD.80, 0, gby@xmD<D;
vect = 80, 0, 0, 0, 0, 0, 0, 0<;
vect@@l - 1DD = courantco@@1DD;
vect@@lDD = courantco@@2DD;
vect@@l + 1DD = courantco@@3DD;
courant = Join@courant, 8Join@8xm<, vectD<D,
8xm, Lt1 + 0.0000001, La1, pas<D

MASTER9.nb  11

Figure A.2: Sample of Mathematica transport code.



A.4. Adiabatic invariant of the quadrupole trap 181

A.4 Adiabatic invariant of the quadrupole trap

For a single atom with mass m and magnetic moment µ, in a magnetic quadrupole
trap of gradient b, the density of energy ρ is given by:

ρ(ε) =

∫ ∫
dpdr

h3
δ

ε− p2

2m
− µ

√∑
i

b2
i r

2
i

 = B
ε7/2

|bxbybz|
,

where the bi are the three components of the gradient and B a constant number. At
temperature T , the monoatomic partition function z can be written as:

z =

∫
dερ(ε)e−ε/kBT = C

T 9/2

|bxbybz|
,

where C is another constant number. For N atoms of an ideal gas, and for a low
enough phase-space density, one can approximate the total partition function Z as:

Z ≈ zN

N !
.

We can then deduce the free energy F :

F (N, T, {bi}) = −kBT lnZ = −NkBT ln

(
CT 9/2

|bxbybz|

)
+ kBT ln(N !) ,

and the entropy S:

S

NkB

= − 1

NkB

(
∂F

∂T

)
N,{bi}

=
9

2
+ lnC − 1

N
ln(N !) + ln

(
T 9/2

|bxbybz|

)
.

Assuming S = cte and N = cte, we obtain the adiabatic invariant:

T

|bxbybz|2/9
= cte =

T 0∣∣b0
xb

0
yb

0
z

∣∣2/9 .
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A.5 Mechanical parameters of the transport

Parameter Value

number of layers pushing coils 8
number of layers MOT coils 6
number of layers transport and neighbour coils 2
number of layers quadrupole coils 4
number of turns per layer pushing coil 4
number of turns per layer MOT coils 14
number of turns per layer transport coils 47
number of turns per layer neighbour coils 34
number of turns per layer quadrupole coils 19
thread diameter pushing coil 0.21 cm
thread diameter MOT and quadrupole coils 0.42 cm
thread section transport and neighbour coils 0.27× 0.12 cm2

MOT chamber radius 8.70 cm
MOT chamber height 7.00 cm
Pushing coil inner radius 4.59 cm
Pushing coil outer radius 5.44 cm
MOT coils inner radius 3.25 cm
MOT coils outer radius 9.29 cm
transport and neighbour coils inner radius 1.14 cm
transport coils outer radius 6.63 cm
neighbour coils outer radius 5.08 cm
quadrupole coils inner radius 6.75 cm
quadrupole coils outer radius 9.75 cm
distance between edge of MOT chamber and center of transport coils 2.00 cm
distance between edge of MOT chamber and first pushing loop 1.05 cm
L1 6.80 cm
L2 12.00 cm
L3 30.95 cm
L4 64.70 cm
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A.6 Engineering drawings

The Catia files of the mountings are kept by engineer Jean-Michel Isac, from the
workshop of Laboratoire Kastler Brossel at ENS. Here are the most useful plans.

Figure A.3: 6Li oven (dimensions in millimeters).
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Figure A.4: 2D-MOT chamber with differential pumping tube inside (dimensions in
millimeters). The differential pumping tube consists of three joined pipes: the cylinder
hole in the mirror of 2 mm diameter and 20 mm length, a tube of 5 mm diameter and
116 mm length, and a tube of 10 mm diameter and 86 mm length.
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Figure A.5: Octagonal MOT chamber (dimensions in millimeters).
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Figure A.6: Mount of a transport coil (dimensions in millimeters).



A.6. Engineering drawings 187

Figure A.7: Mount of a neighbor coil (dimensions in millimeters).
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Figure A.8: Transport elbow cross (dimensions in millimeters).
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Figure A.9: Hellma science cell (dimensions in millimeters).
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Figure A.10: Transport cooling plate (dimensions in millimeters).
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Towards quantum degenerate atomic Fermi

mixtures

Thomas SALEZ

During my PhD, I participated in the full setup from scratch of an experiment that aims at
cooling down and manipulating two fermionic alkaline atomic species, 6Li and 40K. Our
goal is to study ultracold Fermi mixtures with mass imbalance, and to realize a flexible
quantum analog simulator. In fact, for certain quantum many-body problems, such as
high critical temperature superconductivity and frustrated anti-ferromagnetism, there is
neither complete analytical nor numerical solution. Therefore, cold atoms systems, due
to their purity and their high degree of tunability, even on their interaction itself, offer
an interesting complementary point of view in the study of those phenomena.

As far as the experimental setup is concerned, we built an ultra-high vacuum system,
a complete and stable laser source for each species, as well as two performing atomic
sources, a 6Li Zeeman slower and a 40K bidimensionnal magneto-optical trap; most of
the optical and electrical quantities, as well as the imaging diagnostics, being computer
controlled. Once those preliminary steps have been performed and optimized, we could
obtain an efficient double magneto-optical trap, containing typically 5× 109 atoms of 6Li
and 8×109 atoms of 40K. In this configuration, we produced the first 6Li40K∗ heteronuclear
molecules by photoassociation, for which we identified 70 rovibrational lines.

In a second part, I describe in detail the magnetic transport of the atomic mixture, between
the magneto-optical trap chamber and a science cell, located in an ultra-high vacuum
region with large optical access. The complete setup, from its design to its experimental
implementation and optimization, as well as the development of the program and the
useful numerical diagnostics, are the heart of my work. The transport efficiency could be
tested and optimized, allowing for an efficient transfer of the mixture in the science cell.

Thus, after this thesis, all the experimental tools are operational in order to allow for
evaporative cooling of the mixture in an optically plugged magnetic trap. Therefore, the
field is open for quantum simulation and understanding of many-body problems in ultracold
Fermi mixtures.
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