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Abstract

This PhD thesis is devoted to the study of several combinatorial optimization
problems which arise in the field of parallel embedded computing. Optimal mem-
ory management and related scheduling problems for dataflow applications exe-
cuted on massively multi-core processors are studied. Two memory access opti-
mization techniques are considered: data reuse and prefetch. The memory access
management is instantiated into three combinatorial optimization problems.

In the first problem, a prefetching strategy for dataflow applications is investi-
gated so as to minimize the application execution time. This problem is modeled
as a hybrid flow shop under precedence constraints, an NP-hard problem. An
heuristic resolution algorithm together with two lower bounds are proposed so as
to conservatively, though fairly tightly, estimate the distance to the optimality.

The second problem is concerned by optimal prefetch management strate-
gies for branching structures (data-controlled tasks). Several objective functions,
as well as prefetching techniques, are examined. In all these cases polynomial
resolution algorithms are proposed.

The third studied problem consists in ordering a set of tasks so as to minimize
the number of times the memory data are fetched. In this way the data reuse
for a set of tasks is optimized. This problem being NP-hard, a result we have
established, we have proposed two heuristic algorithms. The optimality gap of
the heuristic solutions is estimated using exact solutions. The latter ones are
obtained using a branch and bound method we have proposed.
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Résumé

Cette thése est consacrée a I'étude de plusieurs problémes d’optimisation combi-
natoire qui se présentent dans le domaine du calcul paralléle embarqué. En par-
ticulier, la gestion optimale de la mémoire et des problémes d’ordonnancement
pour les applications flot de données exécutées sur des processeurs massivement
multiceeurs sont étudiés. Deux techniques d’optimisation d’accés a la mémoire
sont considérées : la réutilisation des données et le préchargement. La gestion des
acceés & la mémoire est déclinée en trois problémes d’optimisation combinatoire.

Dans le premier probléme, une stratégie de préchargement pour les applica-
tions flot de données est étudiée, de facon a minimiser le temps d’exécution de
Iapplication. Ce probléme est modélisé comme un flow shop hybride sous con-
traintes de précédence, un probléme N'P-difficile. Un algorithme de résolution
heuristique avec deux bornes inférieures sont proposés afin de faire une estima-
tion conservatrice, quoique suffisamment précise, de la distance & 'optimum des
solutions obtenues.

Le deuxiéme probléme traite de l’exécution conditionnelle dépendante des
données et de la gestion optimale du préchargement pour les structures de branche-
ment. Quelques fonctions économiques, ainsi que des techniques de précharge-
ment, sont examinées. Dans tous ces cas des algorithmes de résolution polyno-
miaux sont proposés.

Le troisiéme probléme consiste & ordonner un ensemble de taches de fagon a
maximiser la réutilisation des données communes. Ce probléme étant N P-difficile,
ce que nous avons établi, nous avons proposé deux algorithmes heuristiques. La
distance & 'optimum des solutions est estimée en utilisant des solutions exactes.
Ces derniéres sont obtenues a ’aide d’'une méthode branch-and-bound que nous
avons proposée.
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Introduction

A combinatorial optimization problem consists in finding in a huge, but finite,
set of elements an element which has the optimal cost. The branch of mathe-
matics which treats such type of problems is one of its most frequently applied
branches. Combinatorial optimization problems arise in many industrial fields,
the computer industry is not an exception. Moreover, the combinatorial field
experienced a tremendous growth from the time the first computer appeared to
nowadays. New resolution methods and algorithms were possible due to comput-
ing capacities offered by the computers.

The computer industry is concerned with the development of software, the
design of computer architectures and networks, the manufacture of computing
systems, etc. Complex combinatorial problems routinely crop up in all these
areas, a non exhaustive list includes program scheduling and optimization, net-
work routing and dimensioning, ending with more classic production planning
problems.

This thesis deals with a number of combinatorial problems arising in the field
of computation intensive embedded systems. Such systems consist of the com-
ponents needed to perform one or few specific computationally intensive tasks
under soft or even hard real-time constraints. Schematically, such a computing
system is made up of a microprocessor (possibly multi-core), some memory, 1O
interfaces and an application. Because of technological limitations, memory ac-
cess speed is small when compared to the computing speed of processors. In order
to reduce the performance gap between the memory subsystem and the comput-
ing subsystem special attention should be paid to the management of memory
accesses. Namely, it is in this context of memory access optimization that our
works are situated. The results of this thesis have been reported in a number of
publications, refer to Chapter “List of publications” on page 11.

Many different ways for representing computer applications exist. One of
them, which was proved to be viable for programming the currently emerging
generation of massively multi-core architectures (more than a hundred of cores),
is the dataflow model. In this model, an application is represented as a set of
tasks, or equivalently actors, communicating through FIFO channels. The actors
are sequential programs. Besides exhibiting a convenient kind of determinism,
this model provides under certain conditions interesting properties: compile-time
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knowledge of memory accesses, pseudo-static scheduling, compile-time communi-
cation channel dimensioning, etc. In the context of embedded applications these
properties are enforced by the manner of programming and compiling embedded
software. The goal of this thesis is to exploit the additional properties offered
by the dataflow model for the optimization of the external memory access, via
data reuse and data prefetch techniques, in the context of computation intensive
embedded applications. In the following paragraph we are going to define in more
details the data reuse and data prefetch optimization techniques.

The memory locations accessed by an application generally exhibit a certain
degree of temporal and/or spatial locality. In other words, either the same loca-
tion is accessed several times in a small interval of time or neighboring locations
are accessed successively. A common optimization technique is to use a cache
memory (possibly a hierarchy of caches). The cache is a fast memory, faster
than the main memory, but it is smaller in size. The cache intent is to store
the most frequently used main memory locations for latter reuse. This memory
access optimization, which allows to reduce the number of times the same data
is fetched from memory, is called data reuse. The mechanism which decides what
memory locations to store in the cache and what locations to evict from the cache
is called a cache replacement policy. Many cache replacement policies have been
proposed. The lack of knowledge about future memory accesses makes the cache
replacement policies to speculatively choose which locations to push out of the
cache. From the quality of this “foreseeing” depends the application speedup.
The accessed memory locations are gradually revealed during the execution of an
application. The memory locations accessed by an instruction must be loaded
into the cache before the execution of this instruction can start. Evenmore, it is
possible to request the memory data several processor cycles before the instruc-
tion which uses them starts. In the meantime other instructions are executed. In
this way the application is sped up by the saved cycles. The process of loading
data in advance to their actual use, described above, is called data prefetching.
The prefetch is speculative when there is no certainty that the fetched data will
be effectively used (e.g. prefetching for branch instructions). The data prefetch
can be interpreted as masking the memory access latency by processor compu-
tations. In parallel processors prefetching is further relied upon so as to keep
several computing units fed with data, hence busy.

Our research focuses on clustered massively multi-core processors. They are
composed of several hundreds of computational cores organized in clusters. Each
cluster has its own shared memory! to which the computational cores have access.
The memory hierarchy of these processors consists of the external (main) memory,
the cluster shared memory (L2 cache) and the processor cache (L1 cache). In this
hierarchy the data reuse and data prefetch optimizations have two instantiations:
(i) between the external memory and the cluster memory, (ii) between the cluster

! Cluster shared memory can be either seen as a “normal” cache or as a scratchpad.
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memory and the processor cache memory. The first instantiation corresponds to
the optimization at the dataflow level of abstraction. Whilst the second one
corresponds to the memory access optimization for an actor, which is simply
a sequential program. The memory access optimizations aspects for sequential
programs have been extensively studied in the literature. Here, we limit our
discussion to the optimization of memory accesses between the external memory
and the cluster shared memory.

The manuscript is organized in four chapters along with an introduction chap-
ter and some concluding remarks. In what follows we give a brief overview of each
chapter and the motivations behind the studied optimization problems.

The aim of Chapter 1 is to introduce the context, related works and motivation
of our research in more details. The first section deals with the description of
the components which form a computation intensive embedded system. Namely,
an example architecture of a massively multi-core microprocessor, the dataflow
model of computation for representing embedded applications and an execution
model which allows to efficiently and correctly execute dataflow applications are
described. In the following section a review of existing works on memory access
optimization is introduced. More specific related works are introduced along the
discussion in each chapter. In the last section of this chapter we state in more
details on the motivation of our research.

Our first research problem, discussed in Chapter 2, consists in optimizing the
data prefetching so that the execution time of a dataflow application is min-
imized. In a dataflow graph when an actor is executed, some data (possibly
including code, actor proprietary or input data) may have to be loaded from the
external memory to the cluster memory. Only after the data has been loaded
the execution of the actor can start. Thus, an actor is executed in two steps:
the loading of data and the execution itself. Only one communication channel
exists between the external memory and the cluster memory, so the data loading
operations have to be serialized. Whereas, the actor execution can be performed
on one of the available computing cores. We model the prefetch optimization
problem as a hybrid two-stage flow shop (HFS) under precedence constraints.
More formally, we are given a set of n jobs. Each job has two operations, thus
a job is executed in two stages. The first stage operations are executed on a
single machine, whereas the second stage ones are executed on m parallel ma-
chines. The second stage operations are constrained by precedence relations. No
preemption is allowed in operation execution. The objective of this problem is to
minimize the makespan (the total execution time). Two HFS versions are con-
sidered, the classical version where idle time between the operations of the same
job is allowed and the no-wait version where idle time is not permitted. The HFS
problem is NP-hard. An adaptive randomized list scheduling heuristic is pro-
posed for solving the HF'S problem. The distance to optimality of the obtained
solutions are conservatively estimated using two global lower bounds which we
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have introduced. The evaluation of the heuristic is done on a set of randomly
generated instances. The solutions for the classical HF'S in average are provably
situated below 2% from the optimal ones, and on the other hand, in the case of
the no-wait HFS the average deviation is below 5%.

In Chapter 3 we study the problem of optimal prefetch management for
branching structures. Besides actors which have a static execution, as those con-
sidered in the previous optimization problem, the dataflow model of computation
contains also data-controlled actors. The program structure which permits to con-
ditionally execute one actor from a set of actors is called a branching structure.
The branching structure selects the actor to execute in function of a conditional
input. Often, it is possible to load some data for the n actors before the condi-
tional input value is available. The interval of time during which the data prefetch
is possible is called prefetching time and we suppose that it is a random variable.
Our goal is to find a prefetch strategy to apply during the prefetching time such
that the execution time is minimized. By prefetch strategy we mean either what
ratios of data to prefetch for each actor, or, in which order to prefetch the ac-
tors. The branching structures are random processes for which we cannot employ
deterministic objective functions. That is why we analyze two statistical objec-
tives: (i) the expected execution time and (ii) the worst-case execution time. It is
shown that the mathematical expectation objective leads to elementary models.
In contrast to this, the case with the worst-case execution time objective requires
more advanced resolution techniques. Nevertheless, for both objective functions
and prefetching strategies polynomial resolution algorithms are given.

In Chapter 4 is studied a task ordering and memory management problem. As
stated previously, an actor is executed in two steps: data loading and execution.
The data loading durations are not necessarily constant, as we have supposed for
previously discussed problems. Each actor uses a set of input data and some input
data may be common for two or more actors. Executing consecutively (or near
enough) two actors which are using the same data allows to cache these data into
cluster memory and consequently to save some external memory accesses. Thus,
the data loading durations can vary in function of the order in which the actors
are executed. Given a set of n tasks, the goal of the task ordering and memory
management problem is to find an optimal task execution order which minimizes
the number of times the same input data is fetched. The execution of the actors is
not constrained by any precedence relation, which, as we shall see further, is not
an overly restrictive assumption. The task ordering and memory management
problem was proved to be NP-hard. Two heuristic algorithms are introduced
for solving this problem. In order to compare the distance to the optimality of
heuristic solutions either global lower bounds or optimal solutions are needed.
There is little hope to be able to obtain tight global lower bounds, as this is
already a very difficult task for a particular case of our problem. So, we introduce
an exact resolution method. More particularly we describe the components of a
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branch-and-bound algorithm. The evaluation of the heuristics and of the branch-
and-bound algorithm is done using randomly generated instances having from 10
to 30 tasks. Approximatively 67% of the instances were solved to optimality by
the branch and bound method. The best heuristic is situated in average below
2% from the optimum.

This thesis is concluded by a chapter which discusses several perspectives in
terms of both research and application directions.
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Chapter 1

Research context and motivations

1.1 Computation intensive embedded systems

According to Moore’s law the number of transistors which can be placed on an
integrated circuit doubles each 2 years. This rule was verified for more than
40 years and is expected to be true for at least ten more years. Despite of the
exponential growth of transistor count the performance of practical computing
systems does not follow the same growth rate. Several causes exist. The clock
frequency cannot overpass a predefined limit because either the power consump-
tion prohibitively increases’ or the distance between the transistors is so small
that it becomes comparable to the clock wavelength, which requires additional
hardware resynchronization mechanisms between multiple parts of the integrated
circuit. The only viable option, today, is to convert the additional transistors into
computing power at relatively low clock frequency by designing and using parallel
processing systems. Nowadays, the mainstream processors have gone multi-core
and the next generation of circuits, known as massively multi-core chips, has to
contain hundreds if not thousands of cores.

The majority of existing applications (excluding the programs used in com-
puter simulations), which have appeared during the last decades, were developed
with the principles of sequential programming in mind. Due to this, even if more
computing power is available, under the form of parallel cores, it is not straight-
forward to exploit it. Such processors, which are intrinsically complex systems,
require a systemic approach for their design, from new programming paradigms
down to innovative compilation technologies and execution models. In the next
subsections we are going to describe the elements of an innovative approach to

!The dynamic power dissipation of processors is proportional to the square of the operating
voltage and linearly proportional to the clock value. The minimum admissible supply voltage
augments with the clock frequency increase. That is why the increase of power dissipation due
to the augmentation of the clock frequency cannot be compensated by reducing the supply
voltage.

13



14 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

embedded parallel computing which will make the parallel microprocessors capac-
ities accessible to mainstream programmers and not only to specialists in parallel
programming. We start with the description of the hardware architecture. In
the sequel, we describe a programming model and an execution model allowing
deterministic and high performance execution of applications.

1.1.1 Massively parallel processor architecture

Roughly speaking, a parallel computing system integrates a number of process-
ing elements, an interconnection network and a coordination mechanism that
distributes the work between the processing elements. The Flynn’s taxonomy
[37| gives a coarse classification of computing systems, especially of parallel ones.
Following this classification the computing systems can be divided in 4 groups
according to the available number of parallel instructions and data streams: Sin-
gle Instruction Single Data (SISD), Single Instruction Multiple Data (SIMD),
Multiple Instruction Single Data (MISD) and Multiple Instruction Multiple Data
(MIMD). Only the last three categories describe parallel execution possibility,
while the first one is for usual sequential processors, where at each step one
instruction is executed on a single data. Almost all of the parallel computing sys-
tems are either SIMDs or MIMDs. The SIMD are easily programmable because
there is only one program flow, but the available parallelism is harder to exploit.
On the other hand, in MIMD systems each processor executes its own program
flow which makes them more flexible.

The existing parallel computing MIMD systems can be grouped, according to
the memory organization, into distributed memory machines (DMM) and shared
memory machines (SMM). The distributed memory machines consist of a number
of processing elements which are interconnected using a network. Each process-
ing element has its own local memory which it can access directly. In order to
retrieve data from other processor’s local memory a message-passing operation is
performed via the interconnection network. A special attention should be paid
to the programming of DMMs, particularly to the data layout since local data
are accessed significantly faster than non-local ones.

In a shared memory system a number of processing cores are connected to
a shared memory space. The communications between the cores is done using
common variables in the shared memory, thus by reading and writing to a shared
address in the memory. Concurrent accesses to the same memory data by several
processors should be carefully managed since unpredictable results can occur.
An advantage of the SMM over DMM is that the communications via the shared
memory are easy to perform and no data replication is needed. However, the
increase of the number of processors in a SMM is limited because the intercon-
nection fabric must provide a higher bandwidth. The use of a larger number of
processors leads to an increase in effective memory bus access times since collisions
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Clustered massively parallel processor Cluster

""" Pl ] (B
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5 L] ©
“. |[ Cluster shared memory }{~
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.

(@ External memory

Figure 1.1: Clustered massively multi-core architecture (a - processor, b - pro-
cessor cache, c - cluster shared memory, d - cluster, e - cluster interconnection
network (NoC), f - external memory access controller, g - external memory, h -
network adapter).

become more frequent. In real architectures the maximum number of processors
rarely exceeds 32 on a single bus [97].

A massively multi-core processor is an integrated circuit containing hundreds,
if not thousands, of processing cores, some memory hierarchy and the supporting
infrastructure making possible their joint work. In order to be efficient such a
processor needs to be scalable and provide a high level of performance. We have
seen that the SMM systems are efficient in terms of computing power but hardly
scale to more than 32 processors. At the same time, DMMs are easily scaled
but the communication between the processors becomes slower, so for DMMs
the performance increase is also upper-bounded. A clustered massively multi-core
processor is a compromise solution between the drawbacks of SMMs in terms
of scalability and of DMMs in terms of performance. Roughly speaking, this
architecture is a DMM in which the nodes are SMMs, but not single processors.

Such a processor architecture is illustrated in Figure 1.1. This type of architec-
ture is built up of many processing elements organized in clusters. A processing
element contains a processing core and a private cache memory. Each cluster, be-
sides its processing elements, has also a shared memory space. The architecture
includes a network-on-chip (NoC), which interconnects the clusters. The comput-
ing system in which this processor is used, has an additional external memory for
storing application data and instructions (which do not necessary fit the internal
shared memory). External memory locations are accessed without direct core
involvement, i.e. the latter only initiates and finishes the data transfers. The
external memory access controller is responsible for fetching data from and to
the external memory.

The processors of the same cluster can exchange data efficiently using the
shared memory space. The same cannot be said about the processors belonging
to different clusters which must use the chip interconnection network (NoC) for
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data transfers. In order to assure a high degree of performance the NoC must
provide enough bandwidth needed for the inter-cluster communication. That is
why the NoC plays a primary role in the design of massively parallel processors.
Basically a NoC is built up from routing nodes (routers) and links which are
connected according to different network topologies. The topology describes the
geometrical structure used to arrange the routers and links. FEach cluster is con-
nected to a routing node via a network adapter. In this way the clusters have
access to the NoC. The communication on the NoC is packet-based and differ-
ent routing techniques can be used. A routing technique determines along which
path the packets are transfered from the sender to the receiver. The network
communication times have practically the same value and are not proportional to
the distance between the communicating clusters. For more information on NoC
design issues please refer to [10].

1.1.2 Dataflow models of computation

Programming parallel systems is far from a straightforward job. Processor ar-
chitectures with more than a hundred processing cores, with complex memory
hierarchies and communication modules (NoC) are full scaled parallel machines.
When an application is developed for such an intrinsically complex system one
must handle at the same time the following issues: efficiently exploit system
parallel architecture, allocate limited resources (memory, NoC), efficiently and
correctly execute large parallel programs. The main obstacle in writing parallel
programs is the synchronization between program tasks. One can express the
synchronization structures explicitly, but this job is difficult and error-prone. In
order to lighten the developer work and make the developed programs more reli-
able one should get rid of the synchronization constructs or at least mask their
explicit use.

The dataflow programming model matches quite well the requirements ex-
posed earlier. It allows to express parallel programs easily without worrying
about explicit synchronization. The instructions in a dataflow program are exe-
cuted when its operands (data) are available. This is different from the control-
flow execution? in which the instructions are sequentially ordered using a pro-
gram counter. Pioneer works in the field of dataflow computing, which date
from the early 1970s, relied on fine-grained expression of the inherent program
parallelism. The overhead incurred in the execution of fine-grained dataflow pro-
gram is higher when compared to the control-flow counterpart. That was the
main reason why the interest in dataflow computing models fell down. A re-
newed interest in dataflow programming has appeared due to the scarcity of
advancements in the conventional parallel processing field. Instead of using pure,

2The control-flow execution is the conventional execution model used in the majority of
nowadays computers.
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fine-grain dataflow programs, coarser-grained dataflow models are studied. A hy-
bridization between the dataflow computing and the control-flow one is produced.
The smallest dataflow program bricks are full scaled tasks, whose instructions are
sequenced using the conventional control-flow paradigm.

A leading work on dataflow programming models was introduced by Lee and
Parks [75]. In the sequel we base our discussion on this work. Alike the Kahn
process networks (KPN) [64] the dataflow process networks exhibits some sort of
determinism. More particularly, for a given input data the computation results
produced by the network do not depend on the execution order of processes, on
nondeterministic execution times or on other kind of execution hazards. This
property is primordial in parallel computing.

A dataflow model of computation is simply a set of actors, or equivalently
tasks. The actors are communicating through unbounded unidirectional first-in-
first-out (FIFO) channels, and exclusively through these channels. A dataflow
network can be represented as a directed graph which nodes represent the tasks
and which edges represent the communication channels. Traditional concepts
such as “variable” or “memory’are missing®. The data that passes through the
FIFO channels is quantized into tokens. A data token is indivisible and represents
the smallest quantum of data that traverses the channels. The number of tokens
in a channel is potentially infinite. A stream denotes the flow of tokens on a
channel. We shall note that the dataflow model of computation is only an abstract
model that does not constrain at all the implementation on a real platform.
For example in a static execution model, the communication channels must be
actually dimensioned if the execution of the dataflow network is envisaged.

An actor is executed, or fired, when all its input channels contain the required
quantity of data tokens. The data tokens on the input channels are consumed
by the actor and result tokens are produced. The result tokens are then written
to the output channels and subsequently are yielded to next actors. The syn-
chronization between the tasks is done implicitly via the data which traverse the
FIFO channels. The number of produced and consumed data tokens together
with their types is called the signature of an actor. An actor can have more than
one signature. Two types of actors are distinguished: static actors and dynamic
actors. A static actor has one or more signatures. A dynamic actor has at least
two signatures, the choice of signature is data-dependent. The difference between
static and dynamic actors is that the next signature to use for a static actor is
predictable whilst for a dynamic actor it is not. As we will see in the next para-
graphs according to the restrictions that are imposed to the signatures of the
actors a multitude of dataflow computing models are defined. We orient inter-
ested readers to |60, 43, 86, 73| for an in-depth description of dataflow models of

3The actors of a dataflow application are simple control-flow programs for which the notions
of variable and memory are defined. The absence of these concepts at global level in dataflow
applications enforces its deterministic behavior.
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Figure 1.2: A CSDF application example. The application calculates the average
of elements situated on a line for a 4 x 3 matrix (stored in the memory as a
contiguous range). The resulting 4-element vector is returned reversed.

computation.

The most representative dataflow models are: synchronous dataflow (SDF)
[74], cyclo-static dataflow (CSDF) |9] and boolean dataflow (BDF) [15]. In the
SDF model all the tasks are static. Their signatures are unique and do not
change during the execution. The quantity of produced and consumed data on
the output and input FIFO channels is the same between two consecutive task
firings. The CSDF model authorizes static actors with a single or a finite list of
signatures. For actors having more than one signature, at each actor firing the
next signature from the list is employed. After the last signature was used this
process restarts and the first signature is reused. The number of produced and
consumed data tokens changes cyclically. For an example of CSDF application
refer to Figure 1.2. The values situated at the ends of each arc represent the
actor’s signatures. Actor J has 4 signatures: in the first execution it consumes
one token on input channel 4 (the lowest one) and forwards it to the output
channel, the same happens for the next 3 input channels and then the process
restarts.

The BDF model is a generalization of the SDF in which data control execution
is envisaged. Static and dynamic actors are used in the BDF model. Dynamic
actors have two signatures. The choice between the two signatures is made in
function of a boolean token consumed on an input channel. The BDF model can
be easily generalized so that dynamic actors with more than two signatures are
defined. The choice of the signature being made by an integer data token®.

The first two models described above (SDF and CSDF) exclude any form of
nondeterminism. That is why several fundamental properties, such as deadlock

4The integer-valued control dataflow model (IDF) was introduced in [14]. Besides the gen-
eralization of boolean controlled actors it includes several definitions which permit to express
iterative constructs easier.



1.1. COMPUTATION INTENSIVE EMBEDDED SYSTEMS 19

freeness or whether the memory required by the FIFO channels is bounded, are
decidable for them. In contrast, these properties of dataflow networks are not
decidable for BDF models. Nevertheless, approximate analysis of BDF networks
is possible [98]. The big advantage of BDF model over SDF or CSDF is its Turing
completeness®. The last fact implies an increased expressive power of the BDF
networks over SDF or CSDF.

In what follows we introduce more formal definitions for the actors of a BDF
programming language. Our further discussion will be grounded in this program-
ming model.

In the context of real parallel processors several system actors, mainly for
data access, data reorganization and conditional execution, should be defined.
For more detailed information refer to [49, 50, 65]. Two system agents for reading
and writing data are introduced. The actors take a range of memory addresses as
parameter. At each actor firing, a memory location from the range is read /written
in a round-robin fashion. The next class of actors are the data reorganization
ones: SPLIT, JOIN and DUP. They permit to partition and assemble streams of
data. Without going into too much detail, SPLIT actor partition the data stream,
JOIN actor assembles several data streams, DUP duplicates input data stream into
several output streams. In the application from Figure 1.2 the following actors
are used: R, W - data read and write, S, J - split and join, Avi - computes
the average of 3 data tokens. Underneath the data access actors are given the
memory ranges which they point to (Rg and Wy are fictitious). The SPLIT actor
S partitions the matrix stream into lines while the JOIN J assembles 4 separate
values into a stream.

The data dependent execution is introduced by a pair of actors: SWITCH and
SELECT. In function of the used control value type SWITCH and SELECT actors
can be divided into boolean-value (as in BDF) and integer-value control actors
(as in IDF). The integer-value control actor is a generalization of the boolean-
value control one. In what follows, we are not going to make a difference between
these two types of control actors. Figure 1.3 illustrates the SWITCH actor and the
SELECT actor. A SWITCH control actor is a dynamic actor with one data input,
one control input and n, n > 2, output channels. A token from the data input
channel is forwarded to one of the output channels in function of the control input
token value. A SELECT actor has n data inputs, one control and one data output
channels. Equivalently to the SWITCH actor, the SELECT actor forwards the data
from one of its input channel to the output channel in function of the control
actor token. In what follows we are going to denote by branch an output/input
channel of respectively SWITCH/SELECT actor.

A branching structure is a traditional conditional schema made up of a SWITCH
actor and a SELECT actor. Refer to Figure 1.4 for an illustration of a branching

5The Turing completeness means that a BDF network can implement an universal Turing
machine.
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Figure 1.3: Data controlled actors.
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Figure 1.4: A branching structure with n branches. The actor to execute is chosen
in function of the control token generated by actor C.

structure with n branches, also called an n-way branching structure. This schema
allows data dependent execution of an actor from a set of n actors Ty, Ths,...,
T,. The branch to execute is chosen in function of the value of the control
token generated by C. To be more precise, suppose that the task C generates a
data token with value 7. This token is send to SWITCH and SELECT actors. The
SWITCH actor forwards the data generated by actor A to the task T, which at its
turn consumes this data and sends the result to the SELECT actor. The SELECT
actor forwards the data present on input ¢ to its output channel.

1.1.3 Execution model

The dataflow graphs, as defined in the previous section, allow to represent paral-
lel applications. This model of computation specifies only application constraints
but does not define how to execute the application on a embedded hardware plat-
form. An execution model is a formal specification for a dataflow graph execution
technique on hardware platforms. It includes several steps: dataflow graph opti-
mization, consideration of repetitive execution and hardware constraints, schedul-
ing.

The optimization of the dataflow graph is needed in order to reduce the
complexity of the graph caused by programmer-oriented (abstract) constructs
(SPLITs, JOINS, etc.). In Figure 1.5 is depicted an example of a possible optimiza-
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Figure 1.5: Optimized version of the dataflow program presented in Figure 1.2.

tion for the CSDF graph example from the previous section. We can see that
the data distribution actors, S and J, together with data read/write ones, R and
W, in the initial graph are replaced by direct read/write actors Ri and Wi. This
optimization avoids an useless copy of the data streams in the SPLIT and JOIN
actors.

Usually in the field of embedded computing, the dataflow graphs are cyclically
executed on unbounded streams of data. In a cyclic execution of the original
dataflow graph the actors are executed periodically. Each execution of an actor
is denoted as instance of the actor. The execution of actors is not preemptive, thus
once started the execution must continue without interruption until it is finished.
Following the terminology from the dataflow literature [74], an acyclic precedence
graph (APG) is a graph (potentially infinite) composed of the actor instances.
The edges of APG correspond to precedence relations from the initial dataflow
graph and to precedence relations between the instances of actors (instances of
an actor must be ordered). A simple dataflow graph together with its APG
representation are depicted on Figure 1.6. An iteration of a dataflow graph
corresponds to the number of times each actor should execute such that the
system comes back to its initial state (in terms of token number on each edge).
In the example, an iteration consists of two executions of actor A and three
executions of actor B. We can observe that the number of actor instances does
not correspond to the number of dataflow graph executions. The last is caused
by the non-homogeneity in production/consumption rates of actors.

Another example is illustrated in Figure 1.7. The APG corresponds to the
upper pipeline of actors from the example in Figure 1.5. As in previous example
the numbers in superscript after the actor name differentiate the instances. The
precedence relations between the instances of the same task imposes an order
over the instance execution. If in the initial pipeline there was no parallelism, in
the APG data parallelism is present. For example up to 3 instances of actor Av,
can be executed in parallel on different streams of data.



22 CHAPTER 1. RESEARCH CONTEXT AND MOTIVATIONS

I

Figure 1.6: A simple dataflow graph (on the left-hand side) and the corresponding
APG (on the right-hand side). In superscript actor instances are numbered. Unit
production/consumption rates are omitted.

(100 (2,0,

Figure 1.7: The APG of one pipeline of 3 actors from the example in Figure 1.5.

In the APG model only precedence relations between the actors and actor
instances are considered. When the execution of a dataflow program on a hard-
ware target is envisaged special attention should be paid to the dimensioning of
inter-actor communication buffers. The size of a communication channel can be
dimensioned by restricting the number of concurrent actor instances. In the APG
from Figure 1.7 the buffer dimensioning problem is considered. Suppose that the
buffer size between the actors Ry and Avy have to be limited to 9 tokens. Know-
ing that Ry produces 3 tokens per firing, the number of concurrent instances of
R, should be limited to 3. This is accomplished by adding additional precedence
relations between the instance i of Av; and the instance i + 3 of Ry (dotted lines
in the example). By introducing additional precedence relations the buffer size is
bounded (no more than 3 productions will occur before a consumption will take
place) but the data parallelism is reduced.

Parallel processor scheduling (97, 55] consists in allocating tasks to processors
and ordering their execution on each processor in order to minimize an objective
function (e.g. schedule length or makespan, mean flow time, throughput etc.).
The two steps can be done either at run time - dynamic scheduling, at compile
time - static scheduling or both. The execution of a dynamic schedule is more
flexible, but a larger overhead is introduced as scheduling decisions (allocation
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and ordering) must be done at run time. Whereas in a fully static schedule
data dependent execution or variability in the execution times cannot be easily
considered. Compromise solutions exist where the task allocation is done at
compile time and the ordering is done at run time.

In case of hierarchical parallel processors the scheduling problem becomes hi-
erarchical too and is defined for each level of hierarchy. In the clustered massively
multi-core processor introduced in Subsection 1.1.1 the scheduling problem is de-
fined at system level and at cluster level. At system level the tasks are allocated
to clusters. The set of tasks allocated to a cluster together with the precedence
relations between these tasks is an independent scheduling problem at cluster
level. In order to assure an acceptable level of flexibility and to provide a high-
performance execution the task are statically allocated to clusters and the cluster
scheduling is entrusted to a run time scheduler.

The dynamic scheduling at cluster level does not necessary mean bad, or, far
from optimal schedules. Additional precedence relations can be added in order to
constrain the possible schedules a dynamic scheduler can obtain. Thus, near opti-
mal or optimal schedules can be favored. Such a method of over-constraining the
tasks precedence relations can also be used to assure other interesting properties
of program execution. A first example will be the dimensioning of communica-
tion buffers described earlier, which is achieved by adding precedence relations.
Other examples would be data reuse maximization and hiding memory accesses
with task executions (data prefetching).

In the dataflow model of computation the communication between the tasks
is done through channels (modeled as FIFO buffers). When two communicating
tasks are allocated to the same cluster a direct implementation of the communi-
cation channel is possible, e.g. in the cluster shared memory a space is reserved
for each communication channel. More attention is required for the case when
two communicating tasks are allocated to different clusters. The communica-
tion is implemented as packet-based data transfers via the NoC. For the sake of
genericity, these types of communication links are replaced by couples of dummy
data read and data write tasks. Distinct interpretation of communication links
is excluded, thus the same mechanism of communication is preserved regardless
the task allocation. The dataflow graph obtained after the addition of dummy
read /write tasks has at least one connected component for each cluster. The
APG representation also contains at least one connected component per cluster.

Direct implementation on a hardware platform of the APG representation of
a dataflow graph is not possible®. One should define a mechanism that encodes
the APG in a convenient manner for the run time task scheduler. The scheduler
will then track the completion of tasks, detect enabled ones and schedule them
for execution. A methodology for partially ordering tasks on a distributed system
are vector clocks [81, 36]. This mechanism allows to isomorphically encode task

6A direct implementation will need to memorize and work with a potentially huge graph.
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precedence relations from the APG. More information about the implementation
of vector clocks we use is given in the technical report [99] and the patent [100].

An example of vector clock valuation is given in Figure 1.7 (see the vectors
above the instances). The fourth instance of actor Ry is preceded by the first
instance of Av; and the third instance of R; which is well reflected by the cor-
responding vector clock values (1,1,0) < (4,1,0) and (3,0,0) < (4,1,0). Whilst
the second instance of actor Ry can be executed in parallel with the first instance
of Av; so we have (2,0,0) || (1,1,0).

1.2 Memory access optimization techniques

1.2.1 Caching

In the last decades, the performance of processors in computing systems has
drastically increased. However, this cannot be said about the performance of the
memory sub-system which has increased at lower rates. A performance gap be-
tween the memory sub-system and the computing one appeared. The processors
were not able to deliver their full computing power because of memory stalls. A
way for reducing memory stalls consists in using data caching techniques. The
utility of caching resides in an empirically observed fact which states that for an
application only 10% of the data is accessed 90% of times [57]. That is to say,
it exists a locality in accessing memory data by an application. The data access
locality can be divided in two types: temporal locality when a referenced object
will be referenced again soon and spatial locality when neighboring objects of a
referenced object will be accessed soon.

The memory sub-system of modern processors includes several levels of cache.
In the memory hierarchy the size of cache memories is inversely proportional to
their access speeds. For example in the clustered processor architecture illustrated
in Figure 1.1, the processor cache has a smaller size than the cluster memory, but
the data can be retrieved faster from the cache memory than from the cluster
memory. As stated earlier, the aim of employing cache memories is for saving
a copy of the most frequently used memory data for later reuse, thus potential
memory stalls are avoided.

Prior to the existence of caching techniques the execution flow in a processor
could be schematically represented as in Figure 1.8a. Initially, the application
executed on the processor establishes a request for memory data with references
r1 and ro. Then, the memory sub-system loads the data from the external memory
to the processor (memory line in the illustration). In the meantime the processor
is stalled and no useful work is done. After some time, the processor requests
again memory data with references ry, ro, and other new memory references rj,
r4. It can be easily seen that if the memory references r; and ro would have
been stored “somewhere” for future use, the next time the processor would have
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Figure 1.8: Gain in performance due to caching and prefetching techniques.

requested them the data loading process would have been faster. That is precisely
the goal of the cache memory to be the place where to store memory data for
future reuses. The study of hierarchical memory systems together with the benefit
of caching schemes date from the early sixties |68, 108].

During the execution of an application when the processor needs data from the
memory it establishes a load request, see Figure 1.8b for an illustration. When a
load request is generated by the processor the memory sub-system verifies whether
the requested data is present in the cache (for multi-level caches this process
is repeated for each level of cache). If the data is present, then it is directly
forwarded to the processor, if not, a cache miss is generated. At each cache
miss the memory sub-system fetches (loads) data from the main memory into
the cache and subsequently forwards it to the processor. In case there is not
enough space in the cache for the new data, the memory sub-system has to evict
some entries. What particular entry to evict is decided using a cache replacement
policy. Some well know replacement heuristics are: least recently used (LRU)
when the most early used entry is chosen, first in first out (FIFO) when the entry
that has entered the first into the cache is chosen and randomly choose what
entry to evict.

In some conditions the caching technique always generates cache misses. The
compulsory misses happen when the requested data is accessed for the first time,
since only the previously accessed data are stored in the cache. Capacity misses
happen when the requested data was previously accessed but it was evicted from
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the cache because of the application of the cache replacement policy. The data
must be brought again from the main memory to the cache involving full memory
access latency.

1.2.2 Prefetching

A further evolution of memory access optimization is done via the utilization of
data prefetching technique, which is aimed for minimizing the number of compul-
sory and capacity misses. Data prefetching is the process of loading data from the
main memory to the cache memory (for multi level caches, from an upper level
of the memory hierarchy to a lower one) before these data are actually needed.
Subsequently, when the processor will need these data it will use them directly
from the cache. The main memory accesses are overlapped with computations
thus the overall execution time is minimized. Early studies on cache memories [4]
revealed the benefit of prefetching memory data before their explicit reference.

The data is prefetched upon a prefetch request, refer to Figure 1.8c for an
illustration. In fact, the only difference between a memory load request and a
prefetch request is that in the latter case a memory load request is issued in
advance of the actual reference to the memory by the processor. The prefetch
request is treated by the memory subsystem in the same way as a load request,
thus by bringing into the cache memory the requested data but without direct
processor involvement. In the best case, the prefetched data will arrive just
in time for the processor to access it. Other, less favorable situations are if
the data arrives too late the processor is stalled for some time, or, if the data
arrives too soon it can be evicted from the cache by the replacement policy. A
drawback of the prefetching is that unnecessary cache misses could be created by
the prefetched data which replace cache entries that should be used before the
prefetched data itself is used. This process is called cache pollution.

A more aggressive approach to prefetching is the speculative prefetching. The
speculative prefetching is the process of loading data from the main memory to
the cache memory (equivalently, from higher levels of memory hierarchy to lower
ones) before it is even known that this data will be needed.

The prefetch request is established either by the application itself or by a
dedicated hardware module in the processing system which has the function of
generating prefetch requests. The prefetch is called software prefetching if it is
generated by the application in execution or hardware prefetching if it is generated
by the dedicated hardware module. Furthermore, hybrid prefetching techniques
exist where the prefetch requests are established by the executed application in
conjunction with dedicated hardware modules.

In software prefetch schemes an overhead is created because of required im-
plicit memory load instructions. Contrary to software prefetch there is no over-
head when using hardware prefetch techniques because no implicit instructions
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are needed. Although no overhead is created in hardware prefetching schemes,
usually they generate more unnecessary prefetches because hardware techniques
infer future memory accesses without having any compile-time information. If
the speculations on what to prefetch are incorrect, useless data are loaded into
the cache memory. This does not create any problem for the execution of the ap-
plication except the fact that the memory bandwidth is unnecessarily augmented
and, potentially, the cache is polluted.

The use of a prefetching scheme in computing systems increases the bandwidth
to the external memory, which in certain cases cannot be neglected. Sure that by
minimizing processor stall time, the frequency rate at which the external memory
locations are accessed by the application increases. The same amount of data
must be loaded into the cache memory in a smaller time frame. The augmentation
of external memory bandwidth must be supported by the computing system, i.e.
the memory sub-system must be designed to cope with this higher bandwidth to
avoid becoming saturated and make the prefetch worthless. A great attention
must be taken in parallel computing systems where the memory bus utilization
is typically higher than in sequential ones.

The concept of prefetching is not limited to processor memory system, it
can be found also in the client-server paradigm [104, 54]. The server which is
replying to requests from the client can anticipate future requests and perform a
pre-computation of the replies to these requests.

Apart from prefetch optimization, other approaches that increase the perfor-
mance of a computing system exist: increase the width of memory access bus
(fetch 4 bytes per cycle instead of one), interlaced memories, etc. The increase
of the cache memory block size will reduce the number of cache misses in pro-
grams with a high spatial data locality. The disadvantages of this technique,
compared to prefetching mechanisms based on data locality, will be discussed in
the next section. An interesting approach is to modify the memory placement of
program data in order to augment the spatial and /or temporal data access local-
ity [32, 109, 82]. We can also use alternative memory schemes [80] or augment
the number of cache levels in the memory hierarchy. In multiprocessor systems
memory bandwidth can be saved by reducing the level of consistency between
different processors.

In what follows an overview of existing prefetch strategies from literature are
described and it drawsmainly from the works [106, 16]. We mostly restrict our
discussion to data prefetching schemes.

1.2.2.1 Software prefetching

In the majority of modern processors some kind of fetch instruction is supported.
The fetch is a non-blocking memory load instruction, thus the processor is not
stalled during the time the memory sub-system brings the data into the cache.
The hardware required to implement the fetch instruction is modest when com-
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pared to other prefetch approaches. The main difficulty consists in the smart
insertion of fetch instructions within the program code. The last problem is
known as prefetch scheduling.

The insertion of fetch instructions can be done either by the programmer or by
the compiler during an optimization phase. In comparison to other optimizations
that occur too frequently or that are too annoying to be done by hand the prefetch
optimization can be done directly by the programmer. In practice it was observed
that very few fetch instructions placed at strategic positions can have a huge
impact on program performance.

Usually, software prefetching is applied on program loops for large array com-
putations because a large amount of memory data is accessed with regular mem-
ory access patterns. This kind of computations are often used in scientific pro-
grams. The low data locality in such loops makes useless the caching techniques.
In contrast, the memory access pattern can be easily found in these types of codes
making the prefetch an useful optimization. Schematically, fetch instructions are
placed inside loop bodies in order to prefetch data that will be accessed in future
iterations. In this way the memory access latency for future iteration data is
covered by the current iteration code execution. A further optimization can be
done by using a prologue code block, in which, prior to the loop execution, the
first data from the arrays are prefetched in order to avoid cache misses at the
beginning of the loop execution.

Another problem that should be considered is whether executing a fetch in-
struction one iteration ahead of the actual data use is sufficient for hiding memory
access latency. Early studies considered that one iteration is sufficient [18]. How-
ever, this is not always true when considering loops with small computational
bodies. It may be necessary to prefetch the future data several iterations before
the data is referenced. This number is known as prefetch distance and is expressed
in number of loop iterations. It can be approximated as the ratio between the
memory access latency to the execution time of the loop body. By using smallest
or largest execution time the prefetch can be done more or less conservative.

The loop prefetching technique described above can be easily integrated in a
compiler chain. In [85] such kind of automatic prefetch technique, which inserts
fetch instructions, is described. Different works [8, 95| measured the speed up
brought by such an optimization for different processors (PowerPC 601 and HP
PA-8000 based computing systems). In the majority of benchmarks the prefetch-
ing improved the run-times, although for some benchmarks the applications were
slowed down. The loss in performance was due to prefetch instruction overhead.

The main drawback of automatic loop prefetching is that the memory access
pattern must be reliably predicted, thus array access indices must be linear func-
tions of array indices. This is generally true for scientific codes as said earlier,
but far less for general programs. Several attempts to generalize this prefetch
optimization for general programs were made [29, 76, 79|, but the results were
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not good enough. The main cause being the irregular memory access pattern. In
the case of algorithms working on data structures as graphs or linked lists there is
a little chance that successive memory blocks will be accessed. Even more, often
general applications have a high degree of temporal data access locality resulting
in a high cache utilization, thus the potential benefit of prefetching is reduced.

The main issues to consider in a software prefetching scheme is the overhead
introduced by the fetch instructions, the significant code expansion which neg-
atively affects the instruction cache performance and the last but not least the
fact that software prefetching is done statically, thus it is unable to detect if the
prefetched block is still in the cache memory (and eventually re-fetching it if it
was evicted from the memory by the cache replacement algorithm).

1.2.2.2 Hardware prefetching

Hardware prefetching schemes introduce a prefetch possibility without program-
mer or compiler involvement. The existing program codes and executables do
not need any change because hardware prefetching is done without explicit fetch
instructions (the overhead due to fetch instructions is entirely eliminated). In
contrast to software approaches which are normally applied to prefetch data,
hardware schemes can be used to prefetch data as well as program instructions.
Also hardware prefetching schemes can take advantage of program run-time in-
formation, thus a hardware prefetching is potentially more effective.

Sequential prefetching A sequential prefetching scheme prefetches memory
blocks which are next to the currently referenced block. In a caching scheme
multiple memory words are grouped into a single block in order to take advan-
tage of spatial data access locality. Thus data caching can be seen as an implicit
prefetch of data that are likely to be accessed in the near future. One can use
larger memory block sizes in order to increase the implicit data prefetch, which
is not always beneficial. With the increase of cache block size, the amount of po-
tentially useful data evicted from the cache (by the cache replacement technique)
increases too. This is why in certain cases the further increase of cache block
size results in performance loss. The limitations of the implicit prefetching (data
caching) are prevented by using smaller cache block sizes along with a sequential
prefetching method.

The simplest sequential prefetching scheme is the one block lookahead (OBL)
approach. It acts as follows: when a memory block with reference r is accessed
the next block, with reference r+1, is prefetched. This sequential prefetching dif-
fers from simply doubling memory block sizes, because the prefetched blocks are
treated separately by the cache replacement policy. Potentially, more frequently
referenced data can be stored in two smaller cache blocks than in a single larger
one.
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Several OBL implementations exist [101]. They are different on what type
of access to block r initiates a prefetch of block » + 1. The most interesting
approach is the tagged prefetch. In this method a tag bit is associated with each
block. This bit is used to track the blocks that were demand fetched or the
prefetched blocks which were referenced for the first time. In both of these cases
the next block is prefetched. We shall note that in some OBL implementations
a direction parameter is used in order to perform either a forward (r 4+ 1) or a
backward (r — 1) prefetch.

One drawback of the OBL prefetch appears in program loops with small bod-
ies. The prefetch is not established early enough from the actual use in order to
avoid processor stall times. To cope with this issue one can prefetch K sequential
blocks instead of a single one, where K is the degree of prefetching. When a
prefetched block r is accessed for the first time, the next r+1,...,r+ K memory
blocks which are not present in the cache are prefetched. It could be tempting
to use large values for K, however the overhead (in terms of additional memory
bus traffic and cache pollution) introduced by prefetching K blocks in program
phases that have little spatial locality tends to make the prefetch gain negative
for the whole program. In [89], it is stated that the overall gain in performance for
values of K larger than one is nullified by the induced overhead on the memory
bandwidth and because of cache pollution. We shall note that the prefetching
schemes described above, one and K block lookahead, can be directly used to
prefetch program instructions. Even more, their efficiency for code prefetching
will be higher than for data prefetching as usually the subsequent program in-
structions are very often close to each other in memory.

A straightforward solution for the above performance issue is an adaptive
sequential prefetching scheme introduced in [30]. In this approach, the value of
the parameter K is changed in function of the spatial locality exhibited by the
program at a particular instant of time. A prefetch efficiency metric, expressed as
the ratio between the number of successful prefetches (i.e. number of prefetches
resulting in a cache hit) to the total number of prefetched blocks, is periodically
calculated during the execution of the program. Initially the value of parameter
K is set to one. During the execution, if the efficiency metric goes over an upper
threshold, the value of K is incremented and respectively if the efficiency metric
drops below a lower threshold the value of K is decremented. If the value of K
becomes zero, thus prefetch is disabled, the efficiency metric based on number of
good prefetches is changed to a metric based on the frequency of cache misses
to block r + 1 when block r is in the cache. Experimental evaluations of the
adaptive sequential prefetching method revealed some improvements over the K
block lookahead method, although the overall performance gain was not as one
would expect.

Another improvement which minimizes the cache pollution of K block looka-
head prefetch scheme was introduced in [63]. It consists in adding a FIFO stream
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buffer into which the K prefetched blocks are brought from the memory before be-
ing transfered to the cache. Whether the head position block of the stream buffer
is accessed, it is brought into the cache memory. Afterwards, a new memory
block is prefetched into the tail position. If the block accessed by the processor
is not situated in the head position of the stream buffer, the buffer is flushed.
Thus, in order to be effective the prefetched blocks must be referenced in the
order they have been brought into the buffer. A further improvement suggested
by the authors is to use several stream buffers that are acting in parallel.

Arbitrary stride prefetching The sequential prefetching schemes described
above can be easily implemented with relatively simple hardware and provide
a reasonable improvement of the execution time. The sequential prefetching
for programs which use scalar references, array accesses with large strides or
other non-sequential memory access patterns results in a lot of useless prefetches
because these types of accesses do not expose enough spatial locality.

Several prefetching methods have been proposed to cope with strided memory
accesses resulting from looping structures [5, 39, 28|. These methods are based on
the comparison of successive referenced addresses of memory access instructions.
The prefetch scheme from [28] computes at each iteration the difference between
the addresses referenced by a memory access instruction in the current 7, and in
the previous ry iterations. If the difference, © = ro — rq, is not zero then © is
assumed to be the memory stride of this memory instruction. During the loop
execution, the prefetch scheme predicts that the data with address ro + © will be
accessed during the next iteration and prefetches it. The prefetching continues in
the same way until the prediction is no longer valid, that is the prefetched data
is no longer the real referenced location.

In this approach, the previously referenced address and the last detected stride
must be recorded for each memory access instruction. Storing this information
for all program memory instructions is practically impossible. Instead, only the
reference histories of the most recently used memory instructions is stored in a
dedicated cache called reference prediction table (RPT). For each entry of the
RPT a state machine is used to track whether the predicted stride is correct or
not, and also to initiate prefetches of the predicted data.

The prefetching scheme described above behaves better in the case of strided
memory accesses when compared to sequential approaches. However it cannot
manage loops with small bodies as the prefetch distance is limited to one iter-
ation. A solution to this issue is the introduction of a distance field to RPT
which specifies explicitly the prefetch distance. The next address to prefetch will
be situated at © - distance from the currently referenced address. A more so-
phisticated mechanism is needed to manage the update (increment/decrement)
of the distance field. We shall note that these techniques can be adapted to
multi-dimensionally strided memory access patterns.
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A large part of existing prefetching schemes require regular memory access
patterns in order to be efficient. Nevertheless some works discuss an extension
of the RPT prefetching scheme for data structures linked by pointers (i.e. linked
lists, graphs). A special mechanism detects indirect memory reference strides
using a modified RTP table. An approach for prefetching data in programs that
are using linked list data structures is discussed in [93]. But instead of extracting
reference patterns for a single memory instruction this method detects depen-
dencies between load instructions. In particular, the memory loaded values that
serve as base addresses for subsequent loads are recorded and used for prefetching
linked data structures.

It was observed that a cache miss to a given address is followed by another miss
to a set of predictable addresses. Several studies proposed prefetching schemes
that associate to the current cache miss address a set of likely subsequent miss
addresses. The set of potential cache miss addresses is built and updated either
using previous observations 2] or Markov predictors [62].

1.2.2.3 Hybrid prefetching

As we have seen earlier, the software prefetching schemes take advantage of com-
pile time information in order to guide the prefetching. Whereas the hardware
prefetching methods adapt their prefetch strategy at run-time in function of the
executed code. Each method has its strengths and its weaknesses. The soft-
ware approach introduces additional fetch instructions which increase the total
execution time. In contrast, the hardware approach do not introduce any over-
head as prefetch decisions are taken by a dedicated hardware at execution. The
main disadvantage of hardware prefetching is that many useless prefetches are
generated because the speculation on the next accesses is less informed. Many
researchers came to the conclusion that a hybrid prefetching scheme, an approach
which combines software and hardware techniques, will overcome the weakness
of each method.

In the adaptive sequential prefetching, the degree of prefetching K is adapted
at run-time in function of the observed prefetch efficiency. Much time and memory
bandwidth is lost until the value of K becomes adapted to the currently executed
code. The authors of work [47] propose to compute the value of K at compile
time and to pass it to the prefetch hardware. A special fetch instruction that
manages such behavior is introduced. Prefetching for non-sequential referencing
is managed using normal fetch instructions. A similar approach was proposed
in [27] with the exception that compile time prefetch instructions are given to a
hardware strided prefetch engine, namely the RTP prefetching scheme. Entries
(tag, address and stride) are inserted into the RTP table before program loops
which can benefit from strided prefetch.

In [112] a hybrid prefetching scheme for irregular memory accesses is proposed.
Memory locations are tagged in such a way that the reference to an object element
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either initiates prefetches for other elements of this object or the object pointed
by it. The compiler has the responsibility to tag memory objects and a hardware
part (situated within the memory system) handles the prefetching.

1.2.2.4 Prefetching for parallel processors

The memory access sub-system is already a bottleneck which opposes the per-
formance increase of sequential processors. The data access problem is more
distinguishable in parallel processing systems because of many processors which
compete for using the shared memory bus. Many of the prefetching schemes de-
scribed in the previous sections can be directly applied in many-core processors.
Although, a special attention should be paid to balancing the computing cores
competition for memory bandwidth, assuring the coherence of the data between
the multiple copies on different processors, balancing processors usage between
prefetching (prediction, pre-execution) and computing. A multi-core processing
systems has several points that differentiate it from a single-core processor:

e Typically, parallel programs are written with different programming para-
digms, which offer additional information on the program parallelism and
memory access patterns.

e The memory hierarchy of a multi-core processor is usually built up of more
levels (layers) than a memory hierarchy in a single-core computing system.
This provides different possibilities for choosing prefetch source and desti-
nation.

e The prefetching scheme in a multi-core processor can have a higher impor-
tance (when compared to single-core prefetching) in increasing the overall
system performance, because a well managed prefetching tends to provide
better memory bandwidth utilization.

In paper [38] the authors studied the performance improvement due to data
prefetching mechanisms in vectorized parallel processor applications. In vector-
ized applications the stride information of memory accesses is explicitly available
(as all the operations are done on vectors) and no special analysis (software or
hardware) is needed to extract it. The information about memory access strides
is encoded in vector references and is directly available for the prefetch hardware.
Two prefetching schemes were used. They are variations of the K block looka-
head approach with some modifications that consider the available information
about memory access strides. Simulation results revealed that both prefetching
strategies increase the performance of the computing system when compared to
executions with disabled prefetching.

A prefetching approach that significantly differs from previous ones is de-
scribed in [48]. In this paper, prefetch possibilities in a distributed memory
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multiprocessor with global and local memories, interconnected by a network, are
studied. Instead of prefetching one word (cache block) at a time, the data is
prefetched in large blocks (i.e. many cache blocks per memory access) from the
global memory to the local one. In this way a better bandwidth utilization over
the interconnection network is obtained in comparison to having a single word
transfer per memory access. Like in compiler driven software prefetching schemes,
in this approach, the compiler inserts prefetch instructions in the program code
around looping constructions. But rather than inserting fetch instructions for
each word referenced within the loop body, larger blocks of data are prefetched
before the loop is executed. In this way the overhead introduced to the program
code is significantly smaller. The limitations of this prefetching scheme are: the
referenced data must remain read-only between the prefetch and its use because
no coherence mechanism is provided, also, the prefetching of conditional accesses
is not done in order to avoid prefetching potentially a large amount of useless
data or worse prefetching nonexistent one. Due to these limitations approxima-
tively 42% of memory references could not be prefetched in the six benchmark
programs the authors have used.

In the context of a shared-memory multiprocessor architecture the authors of
[84] study two different prefetch approaches. In the first one, a remote access cache
(RAC), placed between the interconnection network and the shared memory,
is used to store prefetched memory data blocks. In the second approach, the
prefetched memory block is directly stored in processor cache. The use of a
dedicated RAC cache for prefetched data was supposed to increase the overall
system performance by separating prefetched data from demand-fetched data.
Simulation experiments proved that the use of RAC did not offer the expected
result, the speedup of prefetching directly into processor cache being higher.

With a large amount of computing power available in parallel processing sys-
tems, more complex software prefetching algorithms can be used. Several works
[41, 78] proposed to pre-execute the application on a free processor (or during idle
processor cycles in a single-core system) in order to predict future cache misses.
Usually in these methods, a restricted version of the program is pre-executed, i.e.
the conditional code is not executed, a prediction of code executed in future is
done.

1.3 Research motivation

The management of memory accesses plays a crucial role in high-performance ex-
ploitation of the computing power offered by a parallel processor. Two memory
access optimization techniques augment the execution performance of applica-
tions. Data reuse allows to reduce the number of times the same data is accessed,
whereas data prefetching reduces the memory access time lag.

We place ourselves in the context of the execution of dataflow applications
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on clustered massively multi-core processors (as that depicted in Figure 1.1). To
each cluster an APG (as defined in 1.1.3) graph is associated. This graph is
cyclically executed. The execution of an actor can start only after some of its
data (including code, actor proprietary or input data) has been loaded from the
external memory to the processor cache. The actor code is not mutable. Whereas
the content of actor data can change in consecutive dataflow graph iterations. In
what follows, we are not going to differentiate between the data and the code
loading operations. By abuse of language we denote both operations as data
loading.

All the memory communications must transit the cluster memory, i.e. the
processors cannot directly access the external memory. The data is loaded either
from the external memory to the cluster memory or from the cluster memory to
the processor cache memory. Depending on the place where the memory access
optimizations take place we differentiate high-level and low-level optimizations,
thus we have high-level /low-level data reuse and data prefetching. The high-level
optimization aims to optimize the data reuse/prefetch strategy at the level of
the dataflow graph executed on a cluster. Whereas the low-level optimization
is responsible for the data reuse/prefetch strategy at actor level. We suppose
that the cluster memory is a kind of software-controlled scratchpad memory.
The executed application decides what data to prefetch, store and evict from
the cluster memory. When the cluster memory is sufficiently large to store the
code and data of all actors it is less necessary to worry about memory access
optimization. The data access operations are executed once and then the data is
reused at each cyclic firing. However, if only a part of actors code and data fits
in the cluster memory the access optimization becomes a crucial issue.

In the following subsections we describe several problems which aim to provide
optimal (or nearly optimal) data access management strategies. In order to be
certain that the data prefetch and the data reuse strategies found off-line are
respected in an on-line execution environment (cluster run time scheduler) one
should add new precedence constraints to the APG graph. An over-constrained
APG, which follows the prefetch strategies, is obtained. In this way, the prefetch
strategies would not interfere with existent compilation technique and execution
model. Another solution will the the addition of a helper actor which will apply
the given optimization strategy.

1.3.1 Data prefetching memory access optimization

The data prefetching strategies can be divided into two groups, generic prefetch-
ing is a general prefetching technique which is applied to any application and
specific prefetching is a prefetching strategy which is tailored to each applica-
tion. Specific prefetching is furthermore differentiated into adaptive and adapted.
An adaptive prefetching updates its prefetching technique on the fly, i.e. at run
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time (e.g. parameter estimation of a Markovian model). Whereas in an adapted
prefetching only informations available at compile time are used. We can fur-
ther divide the specific adapted prefetching into a prior: when only intrinsic or
statically obtained information about the application are used and a posterior:
when additionally are included information (i.e. actor execution times, branch
probabilities) captured during application profiling.

Traditional prefetch methods, found in the literature, can be used to load in
advance actor data and code from the cluster memory to the processor cache. As
the application of our work specifically targets prefetching at the dataflow level
of abstraction, we do not consider low-level prefetching models. Furthermore,
the latter models have been extensively addressed in the literature. Literature on
prefetch techniques for dataflow graphs is scarce and limited to a few particular
cases [107, 17, 87]. This is the main motivation of our research. In a compila-
tion environment for dataflow applications, initially we build a prefetching strat-
egy from application characteristics known at compile time (specific prefetching
adapted « priori), and in the sequel, this prefetching strategy is refined with
run time feedback information (i.e. actor execution times, branch probabilities)
obtained after profiling the application execution (specific prefetching adapted a
posteriori). Thus, our first research motivation is to investigate the high-level,
adapted prefetching management specific for each dataflow application. This moti-
vation is instantiated into two problems: (i) prefetching for dataflow applications
and (ii) speculative prefetching for branching structures. In what follows we are
going to briefly introduce these problems.

As stated earlier, the execution of an actor cannot start until all its data have
been loaded from the external memory to the cluster memory. We consider that
the actors are executed in two steps, operations: a data loading operation and
an execution operation. The operations are not preemptive, thus once started
they must finish without interruption. The data loading operations of a dataflow
application must be executed sequentially as only one memory access channel is
available between the external memory and the cluster shared scratchpad. Whilst
the execution operations are performed in parallel on one of the available cluster
computing cores. The execution operations are constrained by the precedence
relations of the dataflow graph. The objective will be to find a schedule of data
loading and execution operations which minimizes the total execution time. The
problem defined in this way can be modeled as a hybrid flow shop under precedence
constraints. This problem is discussed in details in Chapter 2.

The main limitation of the previous model is that the data-controlled actors
are not considered. In the next optimization problem we are going to examine
optimal prefetching strategies for branching structures separately. We recall that
a branching structure is the programmatic construction that permits to execute
one actor from a set of actors in function of a control input data. We suppose that
the available prefetching time is a random variable, so that probabilistic execution
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times could be taken into account. The goal of the speculative prefetching for
branching structure problem, examined in Chapter 3, is to find optimal prefetch
strategies for branching structures such that statistical objective functions are
minimized. By prefetch strategy we mean either ratios of branch data (fractional
strategy) to load or ordering of data loading operations (all-or-nothing strategy).
Two objective are examined: expected execution time and worst-case execution
time. As long as the branch to execute is unknown some data is loaded to the
cluster memory following the prefetch strategy. When the branching structure
will choose the actor to execute, some or all of the actor data will be already
present in the memory of the cluster.

1.3.2 Data reuse memory access optimization

In a dataflow application the actors are using external memory data for their ex-
ecution. Some of this data is common for several actors’. Loading several times
the same data objects is redundant and engenders higher memory bandwidth,
larger NoC traffic, ineffective utilization of the available memory, etc. For perfor-
mance issues one should avoid as much as possible to load repeatedly the same
data object.

The traditional data reuse optimization consists in the addition of a hierarchy
of cache memories. The data objects, once fetched from the main memory, are
stored in a special memory, or cache, for later reuse. If the same data object
is accessed for a second time, soon enough, then potentially the execution time
gains one memory access. In the clustered parallel architecture we study, data
reuse can be done either at high-level or at low-level. The low-level data reuse
refers to an actor execution, whilst the high-level data reuse refers to an entire
dataflow graph. Many works which treat the data caching for sequential pro-
grams exist in the literature. The execution of an actor being equivalent to the
execution of a sequential program we do not study the low-level aspect of the data
reuse optimization. Few works on caching techniques for dataflow applications
exists. One representative paper is [70] in which the authors describe cache aware
scheduling for SDF applications. Our second research motivation is to propose
optimal high-level data reuse strategies for dataflow applications. In the following
paragraph we describe a problem intended to provide such data reuse strategies.

The task ordering and memory management problem is studied in Chapter 4.
Like previously, the actors are executed in two steps: data loading and execution.
In contrast, we suppose that the duration of data loading operations change in
function of their order. The common data between the actors is stored in the
cluster memory for later use. So the data loading durations of successive actors

"As soon as a dataflow application involves data parallelism some actors can share the same
code and potentially some shared constants, dataflow implementations of the FFT algorithm
are archetypal of this.
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using the same data is potentially smaller. The objective of the task ordering
and memory management problem is to find an execution order of data loading
operations such that the data reuse is maximized. Because of a single memory
access channel the data loading operations have to be serialized. We suppose
that the number of available cores for actors executions is unlimited. Under this
hypothesis only the data reuse aspect of the problem is considered. This is not
necessarily a drawback, for example the found order of data loadings can be used
to prioritize an on-line cluster scheduler.



Chapter 2

Prefetching for dataflow
applications

A dataflow application executed on a massively multi-core processor is repre-
sented by a graph of task instances (in what follows, we omit the term task
instances and use simply tasks) or APG (Acyclic Precedence Graph). The tasks
are using external memory data. In the context of clustered architectures, be-
fore the execution of a task can start all the data on which it depends must be
loaded from the external memory to the cluster memory. This representation of
dataflow application scheduling allows to naturally model data prefetching, be-
cause the memory access operations are separated from task executions and can
start in advance.

The work of this chapter will appear in Computers & Operations Research
[26].

Hereafter, we introduce a formal definition of a dataflow application scheduling
problem which optimizes the data prefetching. We model it as a two-stage hybrid
flow shop (HFS) problem with precedence constraints and parallel machines at
second stage. Two versions are examined, the classical HFS where idle time
between the operations of the same job is allowed and the no-wait HFS where
such idle time is not permitted. Each APG task can be viewed as two consecutive
operations, the first one is the loading of the data used by the task from the
external to the cluster memory and the second one is the task execution itself.
Usually in a parallel computer the memory accesses are done sequentially, so only
one data loading can be done at a time, whereas the execution of the tasks can be
done concurrently on the available processors. Hence data loading corresponds
to the first stage operation in the HFS problem, and task execution corresponds
to the second stage operation. Second stage precedence relations between the
operations are equivalent to the partial order of APG and reflects the internal data
dependencies (amongst other dependencies). In order to limit data buffering, the
execution of a task has to start when its data loading is finished, this corresponds

39
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to the no-wait case of the HF'S, whereas the classical HF'S corresponds to the case
when no space limit is imposed on data buffering.

The chapter is organized as follows. A formal definition and complexity result
of the hybrid flow shop problem are given in Section 2.1, afterwards in Section 2.2
a brief description of flow shop scheduling related works is introduced. Two global
lower bounds are proposed in Section 2.3. Section 2.4 presents a list scheduling
heuristic, and, in Section 2.5 we describe a randomized version of this algorithm.
In Section 2.6 the lower bounds and heuristics performances are compared using
randomly generated instances and Section 2.7 concludes the chapter.

2.1 Problem formulation and complexity

This work considers the hybrid flow shop problem under precedence constraints.
More precisely the two-stage hybrid flow shop HF (1, P,,) with precedence con-
straints on the second stage is studied, by abuse of notation we denote it HF'S in
what follows. Assume a set of n jobs have to be processed in two stages. There
is only one machine for the first stage and m identical parallel machines for the
second stage. Each job i € {1,...,n} consists of two operations: the first opera-
tion of duration a; > 0 is executed on the first stage, and afterwards the second
operation of duration b; > 0 is executed on the second stage. No preemption
is allowed in operation execution. The precedence constraints of the operations
on the second stage are given by a directed acyclic graph G = (V, E), where V
represents the set of jobs and E gives the dependence relations between those
jobs. There are no precedence constraints between the operations on the first
stage.

The objective is to minimize the mazimum completion time or makespan. Two
different cases of HF'S can be distinguished: the no-wait HF'S when once a job has
started it is executed on all the stages without being interrupted (the end time of
first stage operation coincides with the start time of second stage operation) and
the classical HFS when no such constraint is imposed. In the « | 5 | 7 notation
the flow shop problems we examine are HF (1, P,,) | G1 = 0, Gy = G | C)pq and
HF (1,P,) | G =0,Gy = G,no — wait | Cae-

Despite that no precedence relations are defined for the first stage operations,
the second stage constraints can be extended over the first stage because they are
dominating the order in which the first stage operations are executed. This fact is
obvious in the case of no-wait HFS. On the other hand in a classical HF'S several
orders of first stage operations can be defined for the same second stage schedule
such that the solution value does not change. In what follows we consider that if
a second stage operation must be executed after another second stage operation
then the corresponding first stage operations must follow the same order.

The HFS problem described above is clearly NP-hard. The proof is simple
and inspired from [52]. Actually, if all the first stage operations have zero du-
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rations, then we obtain a problem of minimizing the makespan on m parallel
machines subject to precedence constraints. As the latter is known to be NP-
hard in the ordinary sense [105] we conclude that the HFS problem is AN/P-hard
too. We can furthermore prove that the HFS problem is strongly NP-hard be-
cause its particular case, the hybrid flow shop problem with at least two machines
at one stage, is strongly N'P-hard [58].

2.2 Related works

The literature on the hybrid flow shop problem under precedence constraints is
quite scarce, even though lot of works exist on the hybrid flow shop and on the
flow shop with precedence relations. For a review of the plentiful work on the
hybrid flow shop problem we refer to [94, 91]. We shall note that most of the work
is done for the general m-stage hybrid flow shop, nevertheless many authors tried
to adapt the Johnson algorithm for the two-stage flow shop. A model close to
ours, the two-stage hybrid flow shop with parallel machines at first stage only is
studied in [53]. The authors determine the optimal ordering on the second stage
given a scheduling of jobs on first stage and introduce some interesting lower
bound concepts.

Although less represented in the literature, the flow shop problem under prece-
dence constraints is quite well studied. In [44] the authors provide a classification
of two and three machine flow shop problems under machine-dependent prece-
dence constraints. Different models of shop scheduling problems with precedence
constraints are considered in [103]. In their study the authors introduce two
types of precedence constraints and provide complexity results and some poly-
nomial time algorithms for shop scheduling models. The authors of [51] propose
to reduce the job shop problem to a flow shop problem under precedence con-
straints, and introduce several modified flow shop heuristics for solving the flow
shop problem constrained by precedence relations.

The hybrid flow shop problem under precedence constraints is studied in a few
papers [34, 11, 12, 94|, from an applicative point of view. In the studies mentioned
above some heuristics are proposed. The authors are using stage-independent
precedence relations between the jobs and different optimization criteria.

2.3 Lower bounds

Without loss of generality we suppose, in what follows, that the digraph G =
(V, E) describing the precedence relations between the operations on the second
stage contains one source vertex, denoted 0, and one sink vertex, denoted *, with
zero processing times. Also we suppose that the number of jobs is greater than
the number of available second stage machines, n > m.
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Iststage| Qo | Aoy | Goy /

2nd stage (b, 1st machine

[ / 2nd machine

Figure 2.1: Second stage idle time needed to execute first stage operations (in
this example the total idle time equals to (a,, + Gy, + Aoy — boy) + (Goy + agy))-

2.3.1 Global lower bound 1

Some concepts of the following lower bound were introduced in [52] for the hybrid
flow shop problem. We have adapted it in order to take advantage of second stage
precedence relations.

GLB1 = max (GLB1', GLB1?)

In the first part GLB1! of the bound we take into account that there is
inevitably an idle time on the second stage machines during the execution of the
first m 4+ 1 jobs. During this idle time the first stage operations of the respective
jobs are executed (see Figure 2.1 for an illustration).

Let o1,...,0,41 be the ordering of the first executed m + 1 jobs on the first
stage, o; represents the job on position i. For any precedence constraint between
two jobs i, j, thus any edge (i,7) € E of graph G, if both jobs i, j belong to
the ordering then relation o; ' < aj-’l must be verified (o; ' is the position of
job 7). The precedence relations can be rephrased as: operation o; has to be a
successor of the source node 0 such that o) has only one predecessor (which is

the source node itself), operation o must verify pred (o) C {0,01,...,0%_1},
and so on. Hereafter, succ (i1, ...,1), pred (i,..., i), represents the union of
successors, respectively predecessors, of vertices i1, ..., in the graph G.

The idle time on the second stage machine where job o, is executed, is at
least Zle 4y, + max (ZZZL Ay, — boy s 0). For the ordering oy,...,0,,41 the
total second stage idle time is:

m k m+1
Zy = Z <Zaa¢ + max ( Z a, —bgk,()))

k=1 i=1 i=k+1

The sum between the minimum possible idle time Z; and the total amount
of second stage jobs duration divided by the number of available second stage
machines gives a lower bound on the execution time. As all processing times are
integers the lower bound should have also an integer value, a ceiling operator | |

is used for this purpose:
LBl = |~ (72 +§n:b»
m 1 ot 7
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In order to find the sequence o4, ..., 0,1 which satisfies the precedence con-
straints and minimizes Z;, the following combinatorial problem must be solved:

m k m-+1
71 = Minimize Z <Z Gy, + max ( Z Ay, — bgy s 0))

k=1 \i=1 i=k+1
s.t.  pred(og) € {0,01,...,06-1}

The following relaxation makes this problem solvable in polynomial time (here
relation anc (1) gives the ancestor vertices of vertex [):

m

Z1 =Minimize Z g1 (M —k +1)

Ok

k=1
m m—+1
+ Minimize E max E Agl — bf’i’ 0
2 :
Tk k=1 i=k+1

s.t. }anc (af{)‘ <k 1=1,2

The relaxation consists in minimizing the two parts of the objective function
separately. Firstly, an ordering o' that minimizes the left side of Z] and after-
wards a new ordering o2 which minimizes the right side of objective, should be
found. The solution of the relaxed problem can be used for lower bound calcula-
tion in place of the initial problem solution because Z] < Z;. Algorithm 2.1 finds
the solution Z] of the relaxed problem. We shall note that in our experiments,
we have obtained a deviation between the optimal global lower bound (calculated
using Z;) and the relaxed version (calculated using Z}) less than 0.2%. This fact
indicates that there is no much benefit from using the optimal calculation for
7y when compared to relaxed computation 77, especially that in the majority of
cases (>75%) the same solution is found.

The second part GLB1? of the bound, takes into consideration the fact that
the execution cannot finish before all the operations on the first stage are pro-
cessed. Additionally, in the best case, the last operations executed on the second
stage are those that are predecessors of the sink node and have minimal processing
times. Refer to Figure 2.2 for an illustration of such configuration.

Let o4,...,0, be the last m jobs executed on the second stage in reverse
order, that is oy is the last job, o9 the penultimate one, etc. Like in the previous
case, job precedence relations must be verified. Thus, the job on position k,
k =1...m, must verify succ (oy) C {*,01,...,06_1}.

Job o) can start on the second stage, only after all the first stage operations
which are executed before are finished. In this case, the completion time of job
oy is at least 3, a; + Z5, where Z§ = b,, — S." | a; represents the exceedance of
job k over the total first stage workload.

A lower bound for the HFS problem is given by (2.1), where Z; represents
the least possible exceedance for any sequence of final jobs. In order to find the
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Algorithm 2.1 Algorithm for finding the optimal solution of the relaxed problem
used in GLB1! calculation.

1: Bl, B2 =1
2: for k=1tom-+1do
3. o, = argminay, such that |anc (i)| < k and i ¢ B!
4. B'=B'U{o}}
5. op = argmaxb;, such that |anc (i)| < k and i ¢ B>
6: B? = B?U {‘713}
7. end for
8: Zi =0
9: S = Ayt
m+1
10: for k =m to 1 do
1 2 =7 +ag - (m—k+ 1)+ max (S—bUQ,())
k k
12: S=5+ ()
13: end for
1st stage [ T o] o, | a0, o
2nd stage . 1st machine D b, ?D
2nd machine /] =
3rd machine boy |

Figure 2.2: Final moments of a HFS with 3 machines on the second stage.

ordering of last m operations for which Z, is minimal the combinatorial problem
(2.2) must be solved.

GLBI* = a;+ 2, (2.1)
=1

k—1
Z5 = Minimize max [ b,, — .
2 k=1..m ( k ; ) (2.2)

s.t.  succ(og) C {*,01,...,06-1}

Proposition 2.1. Optimal solution of optimization problem (2.2) is given by the
recurrent relation

o) = arg min b;

ie{*ﬂjl 7777 Uk—l}
succ(?)C{*,01,....,0k—1}

foralli=1...m.
Proof. Suppose that oq,...,0,, is the optimal solution of the problem having

value Z,, and also, suppose that there exists an operation p, succ (p) = *, such
that b, < by, :
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Figure 2.3: Solution Z} compared to the initial one Z,. On the right-hand side in
dashed line are presented execution intervals of operations in the initial solution.

1. If p ¢ {o1,...,0m} a new solution p,oy,...,0,_1 (see Figure 2.3 for an
illustration) will have the following value:

m—2
!/
Zy =max | by, by, —ap, ..., 05, | — E Ay, — Qp | =
i=1
k—1

m—1
max (bp, riliilx (bak — Z aai> — ap) < Zs

i=1
The last result, Z, < Z,, contradicts the fact that Z, is the optimal solution.

2. If p € {oy1,...,0n} a new solution can be obtained by moving operation p
before oy (thus, p will be the last executed job). In an analogous way, we
prove that the new solution is better.

We deduce that in an optimal solution o1 = arg miny, g,cc(j)= bi- Applying the
same methodology the proposition is proved by induction. O

Algorithm 2.2 finds the optimal solution for the minimization problem in
polynomial time using the previous result.

2.3.2 Global lower bound 2

In this subsection we introduce a global lower bound based on release times
(heads) and delivery times (tails) adjustments. Let us assume that operation i
cannot start earlier than its release date r;, it is processed for either a; or b; time
in function of the stage and must remain in the system for at least g; time, which
is the tail of operation ¢. In order to differentiate the first stage heads and tails
from the second stage ones they are superscripted, so r!, ¢/ are the heads and
tails on the first stage and respectively 7/ ¢/ on the second stage. We use heads

and tails instead of release dates and deadlines because many constraint concepts
can be symmetrically expressed for heads and tails.
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Algorithm 2.2 Algorithm for finding the optimal solution Z of the problem
used in GLB1? calculation.
: A={i |7 € pred (x),succ (i) = %}
B=10
: for £ =1tomdo
o) = argminb;, such that i € Aand i ¢ B
B=BU {Ui}
A=AU{i|i € pred(ox),succ(i) C {*,01,...,06-1}}
end for
ZQ - 0
S=0
for k =1tomdo
Zy = max (Zy, by, — 5)
S=S5 + ay,
: end for

[t

— e e
AR el

A straightforward lower bound is (2.3), the first stage release dates and tails
are not taken into account because they are dominated by the second stage heads
and tails.

GLB2 = max (r;" +b; + ¢/") (2.3)

In what follows we introduce several constraints that the heads and tails must
verify. Using constraint propagation techniques the heads and tails are iteratively
adjusted until no modification is observed, the obtained GLB2 is a lower bound
to the HF'S problem.

2.3.2.1 Inter-stage precedence relations

In a two-stage flow shop the first stage operation of a job ¢ must finish before
its second stage operation starts: r!’ > r! + a;. In the case of a no-wait flow
shop this relation is more constrained by the fact that no idle time is permitted
between the stages, so for the no-wait HFS we have r/{ = r! + q,.

The same type of relations can be deduced for job tails: ¢/ > ¢/ + b; for the
classic HFS and ¢/ = ¢! + b; for the no-wait case.

2.3.2.2 Jobs precedence relations

The precedence relation graph G = (V, E) for second stage operation is translated
into the following constraint: r!f > rjU +0b; for all j € pred (¢). Symmetrically for
job tails: ¢/" > ¢}’ +b; for all j € succ (i). For the no-wait HFS the second stage
precedence relations directly influence the partial order of first stage operations
because of relations introduced in the previous section. In the case of classic HF'S
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the things are a little bit different, but it can be easily proved that the second
stage precedence relations are dominating over the first stage ones.

2.3.2.3 Cumulative previous work

As said above, the second stage precedence constraints define a partial ordering
over the first stage operations, thus before the execution of first stage operation
¢ can start, all its first stage ancestors, defined by the second stage precedence
constraints, must be completed. The release date r! must be larger than the mini-
mum makespan of a one-machine scheduling problem with release dates composed
of ancestors of operation i. Let C”. (i) be the optimal makespan of problem
1| rj | Cnas for operations j € anc (i) with release dates r; and processing times
aj, then the head of first stage operation i must verify ! > C*' (i).

The one-machine scheduling with release dates for jobs ji, ..., j, is solved in
polynomial time using the recurrent relation ¢;, = max (r;,,c;, ,)+aj, (Jackson’s
rule) with initial conditions ¢;, = rj, +a;, and r; <rj;, <... <7;. Completion
time c;, of the last job is the solution of the problem.

A straightforward relaxation of this constraint is r/ > jeanc(i) @ Which has
a linear time computation, but it produces weaker release date bounds.

A constraint for the tails of the first stage operation is obtained in a similar
way. The tail of operation i must verify ¢/ > C% (i) where C< (i) is the so-
lution of the one-machine scheduling problem for descendants j € desc (i) with
release date ¢; and processing times a;. A direct relaxation is obtained equiva-
lently ¢/ > D jedese(i) @ T MiNjedesc(i) q;. In the above expression, the “min” term
is added because the tails are not necessary zero as in the case with release dates.

In order to deduce equivalent relations for the heads and tails of the second
stage operations, the parallel processor scheduling problem Pm | r; | Cyq, should
be solved. The later problem is N'P-hard [42], thus a polynomial algorithm for
solving it does not exist (unless P = N'P). The parallel processor scheduling
problem can be relaxed to a one-machine scheduling problem by dividing the
processing times of the jobs by the number of processors. That is to say, we con-
sider that a job can be executed simultaneously on all of the available processors.

For the second stage operation i, we consider the one-machine scheduling

problem 1 | 7; | Ciney for ancestor jobs of i with processing times b; = b;/m
and release dates TJU for any j € anc (7). Let Cf,j;x (1) be the optimal makespan

of the above problem. The release date of second stage operation ¢ must verify
rif > [C’;’Zm (z)-‘, a ceiling operator is used because the release date must be

integer. A linear relaxation of the above constraint is:

. N
T"UZ {Z]Ganc(z) ]—‘ + min TJII

! m j€anc(i)
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Symmetrically for the tails of the second stage operation i the following con-
straint is deduced ¢/ > €% (i). Where C4. (i) is the optimal solution of the
one-machine scheduling problem for the descendants j € desc (i) of operation i
with processing times b;» = b;/m and release dates g;. Equivalently the following

linear relaxation is inferred, here we have min;edesc(i) qu I'= gl =0:

q{[ Z |VZj€deSC(i) b]“

m

2.3.2.4 Jackson’s preemptive schedule

Jackson’s preemptive schedule (JPS) was introduced in [19]. It gives the optimal
makespan for the preemptive one-machine scheduling with release dates and de-
livery times 1 | r;, ¢;, pmnt | Cpae. The obtained makespan value is a tight lower
bound for the non-preemptive problem 1 | r;,q; | Craz. JPS is the list schedule
found by prioritizing the jobs with the most remaining work. The jobs are exam-
ined in increasing order of their release dates. At time instant ¢ the job with the
largest delivery time among the available jobs is scheduled, even if another job is
in execution.

In GLB2 calculation the HFS problem is relaxed to 1 | 7/, ¢/ | Cpe by
dropping out the second stage and looking only at the first stage problem. The
JPS is then used to adjust the global lower bound GLB2.

The JPS can also be used to adjust the heads and tails of operations. To
adjust the head of operation ¢, one can build the JPS schedule where operation
¢ has an infinite priority, thus operation ¢ will start at time r.. If the obtained
schedule length is bigger than the upper bound UB of the HF'S problem then
the head of operation ¢ can be increased. Let a; be the residual processing time
of operation ¢ at time r. in the modified JPS schedule. Take the operations of
Kf = {z’ | af >0,q > qc} in increasing order of ¢; and find the first operation s
for which relation 7. +ac+ 3, -, a; + qs > UB is verified. If such an operation
exists then 7, = max (r., max,,>,, C;) where C; is the completion time of operation
i in the usual JPS (where job ¢ does not have an infinite priority). See [21] for
more information and for an O (nlogn) algorithm for updating the heads of all
operations. Similarly the tails of operations can be adjusted by interchanging the
roles of heads and tails.

2.3.2.5 Energetic reasoning

The previous constraints do not fully consider the limited number of machines
on the second stage. In order to do so, we use the so called energetic reasoning
in lower bound calculation for the multiprocessor scheduling problem [6, 35, 72].

Let d; = UB' — ¢!* be the deadline of second stage operation i, where UB’
represents an attempt of upper bound for the HFS problem. Given a time interval
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[t1,t2] C [0,UB'] we calculate for each job i the left-work Wi.s (i,t1,t2) and the
right-work Wiigne (1,11, t2) which represents the part of operation ¢ that must be
processed between t; and t, when the operation starts as soon as possible, thus
at time r!1, and respectively as late as possible, at time d; — b;. The mandatory
amount of work for operation i over the interval [ti, 5] is the minimum between
its left-work and right-work:

w (Z> tl> t2) = min (VVl@ft (7’7 tlv t2) ) Wright (Za tl? t2))

The total amount of work for interval [¢;,t5] is the sum of works W (i, ¢, 1)
for all the operations:

Wt te) = > W (i, ty, o)

If the total amount of work W (¢, t2) exceeds the amount of available “energy”
m (ty — t1) then the problem is infeasible. This property can be used to increase
the global lower bound value. Let L be the best value of GLB2 obtained so far.
Set UB' = L and do the above computations. If an interval [t1, 3] for which the
problem is infeasible is found then the current UB’ value can be increased by at
least:

Aty = [l

m

The UB’ value is adjusted by adding to it the maximal increase calculated
for each time interval, the new value of UB’ becomes a lower bound to the HFS
problem:

/
UB'=L+ Mgg}{gﬂ (A (t1,t2),0) (2.4)

The direct calculation of maximal increase using relation (2.4) is pseudo-
polynomial because the number of time intervals that must be examined is pro-
portional to L?. Hopefully not all the intervals are relevant, in [6] it is proved that
only O (n?) increase calculations are representative. Particularly, in a simplified
version, only the intervals [t1,ts], such that ¢; € {r;} U {r; + b;} U {d; — b;} and
ty € {d;} U {r; +b;} U{d; — b;}, have to be examined.

The available energy can also be used to calculate time bound adjustments
for operations release dates and deadlines. Let SL (i,t1,t) = m(to —t;) —
W (t1,t2) + W (i, t1,t2) be the available energy over [t1,%s] when operation i is
not considered. If the left-work Wi.s: (7,1, t2) of an operation ¢ is bigger than the
available energy SL (i,t1,ts), then only a part, smaller or equal to SL (i,t,t5),
of i can be processed during the interval [t;,t5]. The release date of operation i
can be updated: r; =ty — SL (i,t1,t2). Similarly if Wign (i,t1,t2) > SL (4,11, t2)
then the deadline is adjusted d; = t; + SL (1,11, t5).
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2.3.2.6 GLB2 computation

The computation of the global lower bound G L B2 is performed as follows. Firstly,
the inter-stage precedence, jobs precedence and cumulative previous work con-
straints are grouped into a constraint programming model and a constraint prop-
agation method is used to compute the heads and the tails for each operation.
The heads and tails obtained in this way are used in a list scheduling heuristic
(defined in the sequel) in the priority function calculation. The solution found
by the list scheduling is an upper bound, UB, for the HFS problem. Which
afterwards together with the JPS and energetic constraints are added to the con-
straint programming model defined above. Using the propagation technique new
and eventually better values for operations heads and tails are obtained.

Due to the use in the JPS and energetic constraints of an upper bound, it is
clear that the more this upper bound is tight the more the GLB2 is constrained,
thus potentially better values for GLB2 could be obtained. The last fact moti-
vated us to find an upper bound candidate UB’, UB’ € [GLB2,U B], such that for
UB’ the HF'S problem is feasible and for U B’ — 1 the problem becomes infeasible.
A dichotomization procedure is introduced in order to explore the [GLB2,U B]
interval more optimally. In this way, a new global lower bound GBL2%" = U B’
is obtained. The calculation of this bound is pseudo-polynomial and depends
on initial U B’ limits. In our calculation experiments the dichotomization proce-
dure takes, in the worst case, less than 10 seconds, taking into account that the
optimization of the constraint propagation code was not envisaged.

2.4 List scheduling

A reliable heuristic from the multiprocessor scheduling literature is the list schedul-
ing (LS). Roughly speaking, in a LS algorithm the tasks are ordered (statically
or dynamically) according to a priority rule and then are assigned in this or-
der to the first available processor. Different priority rules have been proposed.
Critical path based rules are known to provide the best results in the contest of
multiprocessor scheduling.

Algorithm 2.3 is a modified version of the LS heuristic which is used for
solving the HFS problem. The main difference from the list scheduling used in
multiprocessor problems is that in this algorithm the start time of a job takes
into account also the first stage processing. The following notation are used in
the algorithm: 7' is a variable that stores the time when the first stage machine is
available (initially it is available at instant zero). When a second stage machine
M is chosen for the current job to be scheduled we denote by F' the moment
of time when it is available. The only difference between the list scheduling we
propose for the classical and for the no-wait HFS consists in how the update of
the first stage machine availability time 7" is made (algorithm line 10).
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Algorithm 2.3 List scheduling (LS) algorithm for the HFS problem (s; - second
stage start time of job j).

1: S = {0} {Jobs ready for scheduling}

2: S = 0

3: T=0

4: while S # () do

5. Calculate priorities p; for jobs i € S

6:  Choose top priority job j = argmax,cgpi, S =95 —j

7. Choose the earliest available second stage machine M for j
8  Determine time £’ when machine M is available

9:  Schedule j on M at time s; = max (T + a;, F)

10:  Classical HFS: T'= T + a;. No-wait HFS: T' = s;

11: S =S5U{i€succ(j)} such that all the predecessors of i are finished
12: end while

Two priority rules are proposed. The first priority rule P is critical path
based, particularly the CP/MISF (critical path/most immediate successors first)
rule described in [66]. Priority value (2.5) is computed for each job ¢ € S and the
job with the largest p! is chosen for being scheduled next.

I 1, Isuce (i)
. p— . —_— 2-5

This priority function ensures that the next job to schedule is the one which has
the largest tail. Or, when the tails of two jobs are equal, it selects the job with
the largest number of successors.

A second rule P! is proposed because the critical path based rule does not
take into account the idle time a list scheduling algorithm potentially creates on
the first stage. In this priority rule, the next job to schedule is the one that fits the
best the first stage machine free time, i.e. the job i € S having the highest value
(2.6) is chosen for scheduling (here we use the same notation as in Algorithm 2.3).

pH = —|F — (T + a)| (2.6)

This priority rule has similarities with the ETF (Earliest Time First) rule from
the multiprocessor scheduling [59], and actually when relation 7'+ a; < F'is
satisfied, P! is the ETF priority rule.

2.5 Adaptive randomized list scheduling
A drawback of the list scheduling heuristic is that it returns a single solution

by breaking any ties in the priority value of two or more jobs arbitrarily. Bad
decisions in choosing the job to schedule (among the jobs having same priority),
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potentially, makes the heuristic to find low quality solutions on some instances.
In order to overcome this drawback, the list scheduling algorithm can be executed
several times, each time breaking ties randomly.

Inspired by the work [56] on the randomization of greedy algorithms, we
further generalize this method by introducing a randomization parameter «,
a € [0;1], which aims to control the randomness of the list scheduling. TLet
S be the set of ready jobs to be scheduled and let p,,.. = maxX;cs Pi, Pmin =
min;cg p; be the maximum, respectively the minimum priority values of these
jobs. At each iteration of the list scheduling algorithm the next job to sched-
ule is chosen uniformly from the jobs with the priorities belonging to the range
[Dmaz — @ (Pmaz — Pmin) ; Pmaz)- In this way, by adjusting coefficient « different
behaviors of the list scheduling can be obtained, i.e. for a = 0 we have the list
scheduling with random ties breaking and for o = 1 we obtain a list scheduling
with a random priority rule.

The randomized list scheduling algorithm consists in executing the list schedul-
ing with the random selection rule described above for a number of times and to
retain the best obtained schedule as solution.

During the experimental phase a drawback of the randomized list scheduling
was revealed. Actually the randomization parameter o cannot be chosen unequiv-
ocally for different problem parameters, as number of jobs, stage work loads, etc.
The adaptive randomized list scheduling (ARLS) algorithm is then introduced to
overcome this issue, see Algorithm 2.4. In this algorithm a preliminary phase is
performed, during which the quality of solutions obtained for each randomization
parameter is estimated. Thus, the randomized list scheduling is executed for each
a € A, where A is the set of used randomization parameters, the same number of
times SampCnt and the best solution S, is saved. Afterwards, in function of the
distance of S, from the worst solution obtained so far .5,,,, a proportional quota
N, from the total iteration count IterCnt is assigned to parameter a. Thus,
better is the solution S, more iterations with parameter « are done in the second
phase. When all the solutions are equal the total iteration count is split into
equal parts for each «. Finally, the randomized list scheduling is executed for
each a, N, iterations and the best obtained solution is returned.

The performance of ARLS relies on the good choice of sampling phase number
of iterations SampCnt, on the randomization parameters o and on the second
phase iterations count IterCnt. The parameter SampCnt must give statistically
reliable estimates of P,. In order to control the overall complexity of the ARLS
algorithm the number of second iterations /terCnt shall be carefully chosen.

We must note that there is practically no use of adapting on-line the random-
ization parameter o. An ARLS version which is updating a during the execution
was tested, the differences in the obtained solutions were negligible.
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Algorithm 2.4 Adaptive randomized list scheduling (ARLS).
Input: A - randomization parameters « to use
Input: SampCnt - number of sample runs for each «
Input: lterCnt - number of iterations for the search phase
Output: Best found solution, best
: So = RandomizedListScheduling (o, SampCnt) , Va € A
Sinar = MaXy Sy,
Syin = ming, S,
if S0z # Smin then

P, = (Smae=5a) /52 (Simac—S.), Vo € A
else

=14, Va € A
end if
N, = P, - IterCnt, Va € A
best = S,n
: for all « € A do
sol = RandomizedListScheduling (o, N,)
if best > sol then
best = sol
end if
: end for
. return best

[ S T T T =
NSk B2
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2.6 Experimental results

The algorithms described earlier were implemented using the C++ language.
We have used the constraint propagation framework from TLOG CP solver to
implement the GLB2 calculation. The dichotomization procedure of GLB2%<"
calculation was implemented as a goal for CP solver. We shall note that only the
constraint propagation feature of ILOG CP solver was used. The test programs
were executed on an Intel Core2 Duo P8600 system without explicit paralleliza-
tion!.

2.6.1 Instance generation

For testing the performance of the proposed heuristics and global lower bounds
we use a set of 360 graphs from the “standard task graph set”, which can be found
at [1]. One half of the graph instances contain 50 jobs, the other half has 100
jobs. The graphs have either fully random structure or are composed of layers
of random sizes. Each task processing time is randomly sampled using uniform,
exponential or normal distributions with either one or two modes.

A HFS instance from such a graph is generated as follows. The precedence
relations between the tasks are used as precedence relations for second stage
operations.

The processing time ¢; of task ¢ is split into two parts, a; = pc; and b; =
(1 — p) ¢;. Values a; and b; are rounded to the nearest integers such that relation
¢; = a; + b; remains valid. The coefficient p is used to obtain different load
balancing between the first stage and the second stage. Let r = zzbjm denote the
desired ratio between the first and second stage work load (i.e. when r = 1 the
processing load is balanced between the stages). Then the coefficient p can be
computed using relation:

r

p:T+m

Three ratios r are used in order to examine the performance of heuristics
and of lower bounds for different load balances between the stages. For each
task graph several HF'S instances are generated, so 180 different HF'S instances
are obtained for each number of jobs, load ratio and number of second stage
machines.

2.6.2 Global lower bounds

In the first experiment we examine the relative performance of the global lower
bounds for each version of HFS problem, the classical and the no-wait one. The
global lower bounds GLB1, GLB2 and GLB2%" are computed for 9720 problem

! As a multi-start heuristic, our algorithm can be straightforwardly parallelized.
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GLB1 vs. GLB2%<h
n > = <
Classic | 50 | 8.58% | 23.17% | 68.25%
100 | 11.67% | 26.98% | 61.36%
No-wait | 50 | 8.48% | 22.16% | 69.36%
100 | 11.63% | 26.11% | 62.26%

Table 2.1: Relative comparison of GBL1 and GLB2%", Percentage of instances
for which GLB1 > GLB2%" GLB1 = GLB2%" and GLB1 < GLB2%",

instances generated as described earlier, with r € {2/3,1,3/2}, m € 2,...,10 and
n = 50, 100.

Firstly we want to study the improvement brought by the dichotomization
procedure on the GLB2 quality. The instances for which the lower bound calcu-
lated by dichotomization, GLB2%<" is strictly better than GLB2 are counted.
For the classical HFS the dichotomization improved the lower bound of 1561
problem instances, which represents 16% from the total number. In the case of
no-wait HFS the improvement was observed in 4355 (45%) cases. For instances of
100 jobs the number of improvements decreases slightly (<1%) when compared
to instances of 50 jobs. In order to sample the quality of these improvements
the deviations 1 — GLB2/grpadiech were calculated for each instance. In the case of
classical HF'S the average deviation is less than 0.1% and for the no-wait HF'S less
than 0.5%. Although the dichotomization procedure improves the GLB2 bound
quality, its relatively high computation cost limits its use.

In a second experiment we study the relative performance of GLB1 and
GLB2%h  The number of instances for which GLB1 is strictly better, both
bounds give the same value and GLB2%" is strictly better are counted. The
results in percentage from the total number of instances are presented in Ta-
ble 2.1. As we can observe there is no substantial difference in the behavior of
bounds for classic and no-wait HF'S, probably because the same set of instances
are equally difficult for GLB2%" in both HFS types. Another interesting fact
is that the quality of GLB1 increases for instances with more jobs. The result
changes for “layered” instances, for which the GLB1 is strictly better than (equal
to) GLB24" in 13% (27%) of the cases for instances of 50 jobs and 17% (34%)
for instances of 100 jobs no matter the HFS type.

In order to compare the performance of lower bounds function of load ratio
and number of second stage machines, for each pair (r,m) we count the number
of times each global lower bound is strictly better than the other bound. Let
p1 (r,m) and p, (r,m) be the ratio the first bound is better GLB1 > GLB2%"
and respectively the second is better GLB1 < GLB2%" expressed in percents
from the total number of instances for each (r,m) and let p; 5 (r,m) be the ratio
the bounds are equal. In Figure 2.4 p; (r,m), p12 (r,m) and ps (r,m) are plotted
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for each pair (r,m). The results for classic HFS and no-wait HFS are practically
the same, consequently only the no-wait case is only plotted.

We observe that for load ratios r = 1 and r = 3/2 the GLB1 bound is practi-
cally never greater than GLB2%<". For small number of second stage machines
m the first bound performs better than for large m, being equal to GLB2%" in
approximatively 60% of the cases for r = 3/2 and 40% for r = 1 when m = 2.
We suppose that this is due to the fact that for instances with large first stage
workloads the one-machine based constraints perform better than the simple sum
of first stage durations, used in GLB1.

When the second stage workload is dominating, r = 2/3, the first global lower
bound performs better than in the previous cases. The best results of GLB1 are
obtained for m = 4 the first bound being better in more than 50% of the cases. For
other values of second stage machines, lesser or greater than 4, the performance
of GLB1 decreases. The definition of GLB1 makes it perform better on instances
where the workloads are asymmetrically distributed between the stages. This can
be seen in the results, the overall performance of GLB1 is lower for r = 1 than
for other two load ratios.

For all load ratios, with the increase of number of machines m the relative
performance of the second global lower bound also increases, obviously due to
the fact that for large values of m the second stage critical path plays a higher
role in the HF'S execution.

2.6.3 List scheduling heuristics

Firstly we investigate the influence of sampling phase iterations count SampCnt
and second phase number of iterations IterCnt on the ARLS performance. The
goal is to choose parameters that produce good solutions of the heuristic when
compared to its complexity. The same set of instances as in previous section is
used.

The randomization parameter « takes five values from the set A:

A €{0,0.2,0.4,0.6,0.8}

As the fully randomized list scheduling is outside the scope of this study value
1 for parameter « is not used?. Theoretically, when o = 1 the used scheduling
priority rule should not influence the results because the list scheduling is fully
random. A finer division for « is not necessary because the performance increases
insignificantly, but the total number of iterations raises.

In the sampling phase of ARLS heuristic 6 values of iterations count SampCnt
have been tested: 50, 100, 150, 200, 250 and 300. In order to have the same total
number of iterations independently of SampCnt value the number of second

2We have executed the ARLS heuristic also with o = 1 but no increase in the quality of the
solutions was observed.
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Figure 2.4: Relative comparison of GLB1 and GLB2%" for each pair (r,m) of
parameters.
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phase iterations count is IterCnt = n” + (300 — SampCnt) - |A|, where 1.5 <
£ < 2. Six values for  are experimented with such that the obtained IterCnt
are equidistantly situated. The execution time, in the worst observed case, is
under 5 seconds and mainly depends on the graph edge density.

In order to minimize the influence of the randomness on the performance
study, for each problem instance the ARLS algorithm is executed 10 times and
the averaged result is retained for comparison. The deviation S/GLBua. — 1

of the averaged solution S from the maximal global lower bound GLB,,,. =
(GLB1, GLB2%¢") is calculated for each instance.

A preliminary experiment has proved that better solutions are obtained when
the ARLS heuristic is executed two times, firstly with priority rule P’ and after
with Pl keeping the best solution of each run, even if the total number of
iterations is two times smaller.

The averaged deviations for each SampCnt and IterCnt are illustrated in
Figure 2.5. We observe that when the second phase iterations count is the lowest
IterCnt = n'?, better results are obtained for larger sampling phase iterations
count. This can be explained by the fact that the second phase iterations number
is insufficient in order to explore the solution space. Another interesting fact is
that for large second phase iterations count it is not always better to have larger
sampling phases. We suppose this is due to the fact that parameter P, (see 2.4)
is reliably enough estimated for smaller SampCnt and it is better to do more iter-
ations in the second phase. For IterCnt = n? the difference in solutions obtained
with different SampCnt is insignificant, being under 0.01%. It can be seen that
a sampling phase with SampCnt = 100 gives statistically reliable estimations for
the parameter P,. Note that, contrary to IterCnt, SampCnt can be chosen in-
dependently of the instance size, based on statistical convergence considerations.
So we use this sample phase iterations number in the next experiments, n? is used
for second phase iterations count.

In the next experiment the priority rules are compared. It was determined
that for the classical HF'S the PI priority rule dominates in average PII in all the
test instances, which can be explained by the dominance of the multiprocessor
scheduling problem in the classical HF'S, for which critical path rules are better.
In the case of no-wait HF'S the second priority rule PII produces better solutions
for load ratios r = 2/3, r = 1 and for a second stage machines count m < 4.

In order to see the improvement of the randomization on the ordinary list
scheduling in Table 2.2 the quality of solutions obtained by the ARLS heuris-
tic and the ordinary list scheduling heuristic are compared. The randomization
always improves the solutions found by the list scheduling, the deviations of so-
lutions are decreased by ARLS with approximatively 40%.

Table 2.3 presents the average deviations of the solutions calculated by the
ARLS heuristic in function of work load ratio r, second stage machines count m
and number of jobs n. Also in the table are illustrated the averaged values of
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Figure 2.5: Influence of parameters SampCnt and IterCnt on the average devi-
ation of the ARLS algorithm (the IterCnt parameter is on horizontal axis and
different bar colors represent SampCnt). The deviation is computed for the min-
imal solution obtained by the two priority rules.

50 100

LS |ARLS| LS |ARLS
Classic [ 2.98% [ 1.83% [ 1.95% [ 1.21%
No-wait [ 7.83% | 4.62% [ 7.97% | 4.94%

Table 2.2: Upper bound on the average deviations established by algorithms
ARLS and LS together with GLB,,45-
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n 50 100
m\r | 2/3 1 3/2 dev,y, 2/3 1 3/ devy,
2 1047% 3.23% 0.24% | 1.31% | 0.24% 2.16% 0.07% | 0.82%
3 1082% 3.41% 0.48% | 1.57% | 0.47% 2.36% 0.31% | 1.06%
4 1.17% 3.29% 0.74% | 1.73% | 0.55% 2.31% 0.78% | 1.21%
Y 1.50% 2.99% 1.54% | 2.01% | 0.67% 2.16% 1.05% | 1.29%
6 1.64% 2.72% 2.37% | 2.25% | 0.77% 1.79% 1.33% | 1.30%
7 1 1.63% 2.25% 3.07% | 2.32% | 0.82% 1.63% 1.80% | 1.42%
8 1.20% 1.82% 3.17% | 2.07% | 0.65% 1.26% 2.08% | 1.33%
9 10.78% 1.29% 3.14% | 1.73% | 0.53% 1.01% 2.29% | 1.28%
10 [ 0.45% 0.92% 3.03% | 1.46% | 0.33% 0.86% 2.50% | 1.23%
dev, | 1.07% 2.44% 1.98% | 1.83% | 0.56% 1.73% 1.36% | 1.21%
(a) Classical HFS
n 20 100
m\r | 23 1 3/2 dev,y, 2/3 1 3/2 dev,y,
2 2.53% 10.18% 2.59% | 5.10% | 2.80% 11.56% 3.32% | 5.89%
3 1314% 9.67% 2.32% | 5.04% | 3.09% 10.64% 2.72% | 5.49%
4 1353% 894% 2.78% | 5.08% | 3.09% 10.07% 3.43% | 5.53%
5 13.61% 7.75% 3.56% | 4.97% | 3.21% 9.35% 3.84% | 5.47%
6 |3.69% 7.03% 4.52% | 5.08% |3.09% 821% 4.21% | 5.17%
7 1349% 6.03% 5.28% | 4.93% | 2.83% 7.13% 4.79% | 4.92%
8 2.66% 4.97% 5.44% | 4.36% | 2.34%  5.93% 5.00% | 4.42%
9 1.86% 3.81% 5.59% | 3.75% | 1.86% 4.82% 5.24% | 3.98%
10 | 1.22%  2.96% 5.69% | 3.29% | 1.32% 3.96% 5.58% | 3.62%
dev, | 2.86% 6.81% 4.20% | 4.62% | 2.62% 7.96% 4.24% | 4.94%

(b) No-wait HFS

Table 2.3: Average deviation of the minimal solution found by the ARLS heuristic
using both priority rules.
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deviations for each m and r. As we can see on average for the classical HF'S the
deviation is lower than 2% and for the no-wait case the deviation is under 5%.
The deviations per number of second stage machines, dev,,, tend to decrease for
larger values of m. In both HFS types the hardest instances are those for which
the workload is balanced between the stages, i.e. r = 1, the largest deviations
being obtained for small m. In the case of no-wait HFS, when m =2 and r = 1
the deviation is <11% for 50 jobs and <12% for 100 jobs. With the increase of
the number of second stage machines this deviance decreases, being under 4% for
m = 10. A closer examination revealed that the largest deviations are obtained
for instances for which the processing times distributions follow an exponential
law. In order to see what is their influence, the deviations were recalculated
without the exponential processing time instances. It was found that in the case
of no-wait HFS the worst observed deviation falls down from 12% to 8%.

2.7 Conclusions

In this chapter, two versions of the two-stage hybrid flow shop problem with
second stage precedence constraints and parallel machines were investigated,
the classical case and the no-wait one. An adaptive randomized list schedul-
ing (ARLS) heuristic, together with two priority rules, were proposed for solving
both problem versions. Our heuristic is made of a constructive part (ARLS) as-
sociated to a global lower bound which allows to obtain provably good solutions.

The practical application of the hybrid flow shop problem occurs in the
scheduling of dataflow applications on clustered multi-core processors. Using
this problem allows a fine-grain modeling of a dataflow application, below the
task level.

The evaluation of the heuristic was done using randomly generated problem
instances. The ARLS algorithm produced better schedules for all of the examined
cases when compared to the ordinary list scheduling. The best results were ob-
tained in the case of the classical HF'S problem version, with an average deviation
established by the algorithm under 2% from the optimum. For the no-wait HFS
version, that deviation was smaller than 5%. The critical path based priority rule
provided better solutions in average.
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Chapter 3

Speculative prefetching for dataflow
branching structures

In the previous chapter, prefetching strategies for dataflow applications executed
on clustered multi-core processors have been studied. For keeping the process-
ing cores busy, we have to heavily rely on prefetching data from the external
memory to the cluster memory. To achieve high performances in presence of
data dependent control (conditional execution), one should further speculate on
data prefetching. In this chapter we examine the speculative prefetching possi-
bilities offered by a special construction in dataflow applications: the branching
structure. We focus on finding optimum prefetch strategies for a simple, n-way
branching structure with respect to several objective functions and exhibit poly-
nomial algorithms for doing so.

A reduced version of the works presented in this chapter has been published in
the Proceedings of the International Symposium on Combinatorial Optimization
[23].

This chapter, is organized as follows. After a detailed description in Section 3.1
of the speculative data prefetching problem for branching structures, we present
some related works in Section 3.2. Further, in Section 3.3 we focus on expected
execution time objective, Section 3.4 deals with the more complicated situation
of worst-case execution time objective and Section 3.5 concludes.

3.1 Problem formulation

An n-way branching structure is a construction in the dataflow model which
executes one task from a set of n tasks in function of the value received on
its conditional input. The branching structure assures conditional execution in
dataflow graphs. In Figure 3.1 we recall the illustration of an n-way branching
structure. Each task T; is composed of two operations: data loading of duration
a; and ezecution of duration b;. The data loading operations load data from

63
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ay, by

condition
condition

©

Figure 3.1: An n-way branching structure annotated with data loading duration
a;, execution duration b; and branch execution probability p;.

. Prefetching , Execution time
: time :
[Tl [ Ti|

--

C T,

Figure 3.2: Tllustration of prefetching and execution times for branching structure
in Figure 3.1. The i-th branch is selected for execution by the output of task C.

the external memory into the cluster memory. These operations are executed
sequentially because of a single memory access channel. We assume that there are
no common data between the branches!, thus the data loading durations do not
depend on one another. The execution of a task can start only after all its data is
loaded, i.e. the corresponding data loading operation is finished. Task execution
depends also on the branch selected for execution by the branching structure.
Whilst the task data loading can be executed in advance, without knowing what
branch will be selected. In this way, speculative data prefetching can be performed
until the branching structure’s control input becomes available, in our example
until task C finishes. In what follows, we call this period prefetching time. We call
branching structure execution time, or simply ezecution time, the period between
the start of the SWITCH actor and the end of the SELECT actor. That is to say
the prefetching time is not included in the execution time. Refer to Figure 3.2
for more details (data loading operations are colored in grey).

Besides data loading and execution durations, each branch has a statistical
measure associated. Let p; denote the probability of the ¢-th branch to be exe-
cuted, or simply branch probability. Clearly that relation ) . p; = 1 is verified.

!Hereafter we use the notions of task and branch on an equivalent basis.
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It is assumed that subsequent decisions are independent, thus the probability
of branch execution is independent from previous executions of the branching
structure (in the context of cyclic execution of dataflow applications). Several
ways can be used to retrieve probability values for branches. The simplest way
is to assume that the branches are equiprobable, i.e. p; = 1/n for any branch
i €1,...,n. If empirical results about application execution are available? then
accurate statistical estimates of the probabilities can be obtained, e.g. the aver-
age execution rate of a branch. Another way is to use a priori knowledge from the
program designer, thus the person who writes the dataflow program must assign
probabilities to each branch.

Our goal is to define data prefetching strategies, so as to minimize several
objective functions: expected execution time and worst-case execution time. The
mathematical expectation objective is interesting because it allows to obtain, in
average, higher execution performances. The price to pay is the induced indeter-
minism in the execution time of branching structures. On the other hand, the
worst-case objective permits to precisely bound the execution time of branch-
ing structures. Two distinct prefetching strategies are examined: a fractional
strategy, in which one is allowed to prefetch fractions of branch data, and an
all-or-nothing strategy, in which this possibility is not allowed.

The available prefetching time, T, is supposed to be a continuous random
variable. After this time elapses, one and only one of the branches is executed.
The probability density function (pdf) of the prefetching time T is a bijection
gD — [0,1] such that g (t) = Pr(T'=t) for any t € D and D = [0, . a,[ is the
domain of definition. With no loss of generality we exclude the degenerate case,
T > >".a;, when all the data can be prefetched.

3.2 Related works

To the best of our knowledge, there are practically no works that treat specu-
lative adapted (compile-time) prefetching problematics in branching structures.
In paper [87] an adaptive (run-time) prefetching strategy for boolean-value con-
trol actors is studied. One can mention the works dealing with conditional task
graphs, which are task graphs containing conditional branches (a kind of branch-
ing structures). The literature on task graphs with conditional branches is scarce
and mainly consists in methods for allocating and scheduling them onto multi-
processor systems |110, 77].

2Empirical results about application execution can be retrieved using program profiling tech-
niques. This method is interesting in an iterative compilation process [40] where the compiler
chain “learns” from the application executions.
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Figure 3.3: Example of a 2-way branching structure execution.

3.3 Expected execution time

In this section we examine the expected execution time minimization objective.
We start by investigating the fractional prefetch strategy and then we study the
all-or-nothing prefetch strategy. In both cases, we examine particular cases of the
problem in terms of the available prefetching time. Afterwards we examine the
more general case in which the available prefetching time is a continuous random
variable.

3.3.1 Fractional prefetch

Suppose we have an n-way branching structure. Each branch ¢, i € 1,... n, has
parameters: a; (data loading time), b; (execution time) and p; (branch probabil-
ity). Let oy, 0 < a; < a4, denote the fraction of the data loading operation @
which is executed during the prefetching period, i.e. «; is the prefetching time of
branch . We suppose that the available prefetching time is constant and is de-
noted by t. We look for optimal prefetching durations «; such that the expected
execution time is minimal.

Suppose that the branch ¢ (prefetched for a; time) is executed, then the ex-
ecution time will be a; — o; + b;. An example of a 2-way branching structure
execution is presented in Figure 3.3. The expected execution time is the aver-
age of branch execution times weighted by respective branch probabilities. The
following linear program minimizes the expected execution time of a branching
structure under a prefetching time constraint:

Minimize Zpi (a; — o + b;)

S.t. Zai =t

o; € [O,CLZ'] s \4)

The last linear program is reformulated by substituting o; = a; - x; and taking the
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complement of the objective function (knowing that ). p; (a; + ;) is constant):

Maximize E DPia;T;

i
s.t. Z a;xr; = t

i

€[0,1], Vi

This program is nothing else but the linear programming form of the fractional
knapsack problem. The fractional knapsack problem can be solved exactly in
polynomial time using the well-known Dantzig algorithm [67]. In Algorithm 3.1
is illustrated an adaptation of Dantzig’s algorithm for the context of our problem.
This algorithm consists in prefetching the branches in decreasing order of their
probabilities, as long as the prefetching time allows it.

Algorithm 3.1 Expected execution time minimization algorithm, fractional
prefetch.
Input: Branch parameters a;, b;, p; forany i =1,...,n
Input: Available prefetching time ¢
Output: Prefetching ratios «;
: Sort branches in decreasing order of p;
a;=0foranyi=1,...,n
k=0
while ¢t > 0 and k£ <n do
oy = min (¢, a)
t=1t— (073
end while

Although elementary, this is a very interesting result: we obtain a solution
whose structure does not depend on the available prefetching time ¢. So, the
above hypothesis about fixed prefetching time can be neglected. In an optimal
prefetching strategy, for any given prefetching time pdf g (¢), priority should be
given to the branch with the highest probability.

3.3.2 All-or-nothing prefetch

In the case of an all-or-nothing prefetch strategy an order over the branches
should be defined. We suppose that the available prefetching time follows an
uniform distribution over the interval D, i.e. ¢ € D with equal probabilities. Let
o € II(n) be an ordering of data loading operations. We want to find an order o
such that for any prefetching time ¢ the expected execution time is minimal. Let
Jez : II(n)xD — RY be a function that associates to a branch order o € II (n) and
an available prefetching time ¢ € D the branching structure expected execution
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Execution time

o hta hta G
Prefetching time

Figure 3.4: Branch prefetch ordering optimality condition proof.

time f., (0,t). Using this function, our problem consists in finding a permutation
o such that fe, (0,t) < fer (0’,t) for any o’ and t.

In what follows we suppose that the branch prefetch order o is 1,...,n. The
time at which the branch at position k is fully prefetched, is denoted by [, =
> i< @i When the prefetching time is zero the execution time is independent of
the branch prefetch order and is equal to f., (.,0) = >, pi (a; + b;). The function
fex (0,t) is a piecewise, strictly decreasing linear function. It is defined by the
following relation for k =1,...,n and ¢t € [ly_1, [ :

fex (th) = fex ( 70) — Pk (t - lk:—l)

The next proposition describes the optimality condition of a branch order-
ing. It is used to build an algorithm that computes the branch ordering which
minimizes the expected execution time.

Proposition 3.1. In an optimal branch prefetch order o we have py) > po(j)
for any i, such that 1 < j.

Proof. The proposition is proven by contradiction. Suppose that in an optimal
order ¢’ the above condition is not satisfied. Thus, it exists two consecutive
branches j and ¢, j < ¢, such that p; < p;. Let us inter-change the place of
branches ¢ and j and denote the new ordering o. In Figure 3.4 are illustrated the
expected execution time functions for both orderings. The derivative of f., (o,1)
(equal to p;) is larger then the derivative of f., (¢/,t) (equal to p;) on interval
[t1,t1 + @;], thus the first function decreases faster then the second one on this
interval. We deduce that the expected execution time function is smaller for
ordering o then that for ordering o', fe. (0,t) < fer (¢/,t). Our supposition that
o' is an optimal order is not valid. In consequence, the branch 7 in an optimal
prefetching order should be ordered before the branch j.

O

Using the last proposition the optimal order of branch prefetch can be de-
duced. The branches are prefetched in decreasing order of their probabilities, that



3.4. WORST-CASE EXECUTION TIME 69

is, a branch is entirely loaded before the next branch will start to be prefetched.
We observe that the same solution method as in previous sub-section is obtained
for both prefetching strategies: all-or-nothing and fractional.

When the available prefetching time follows a generic distribution, other then
the uniform distribution we have supposed earlier, the minimization problem
does not change. The prefetching time random variable is denote by 7. When a
random variable is used for prefetching time the objective function of the problem
becomes a continuous random variable too f., (o,7). It is easy to verify that
relation fo, (0,T) < fer (0, T) is equivalent to fo, (0,t) < fer (07, t) for any ¢ € D.
Thus, the obtained objective function is the same as the objective function we
have studied earlier.

In the all-or-nothing prefetch strategy when the branch probabilities are equal,
the order in which the branches are prefetched does not matter. So, the ex-
pected execution time minimization model is interesting when reliable estimates
of branch probabilities are available. The same conclusion is true for the frac-
tional prefetching strategy, i.e. it does not matter fractions of what branches are
prefetched as long as something is prefetched.

3.4 Worst-case execution time

As in the previous section, we begin by investigating the fractional prefetching
strategy, and then, we consider the all-or-nothing strategy for the worst-case
execution time minimization problem. Before describing the proposed resolution
methods we introduce a proposition which defines a basic particular case of the
problem.

Proposition 3.2. An n-way branching structure with parameters a; and b; for
each i € 1,...,n is given. The worst-case execution time of this branching struc-
ture is lower bounded by max; b;.

Proof. Suppose that the prefetching time ¢ is sufficient to prefetch all the branches,
ie. t > > . a;. The worst-case execution time will be the maximum of branch
execution times, max; b;. Obviously that when less prefetching time is available
the worst-case execution time will be at least max; b;. O

In what follows, without loss of generality we suppose that relation max; b; <
min; (a; + b;) is verified.
3.4.1 Fractional prefetch

As above, let us consider an n-way branching structure, and suppose that the
available prefetching time is constant and equal to t. We look for optimal prefetch-
ing durations 0 < «; < a;, such that the worst-case execution time is minimal.
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During the prefetching period (see Figure 3.3), branch ¢ is prefetched for
«; time. If the branch i is executed, then the execution time will be equal to
a; —a;+b;. Our goal is to minimize the worst-case execution time, thus the largest
one of these terms. The problem can be stated as a mathematical program:

Minimize max (a; — o; + b;)
7

s.t. ZO&Z‘ =1

This formulation can be easily rewritten as a linear program:

Minimize I
s.t. a; — o, + bz S F, \4)

The solution of the above linear program consists in prefetching the branches
with the largest remaining execution times, as long as the prefetching time allows
it. We introduce Algorithm 3.2 which computes optimal prefetch durations «;
for a fixed prefetching time t. The same procedure is applied when the available
prefetching time is a random variable.

Algorithm 3.2 Worst-case execution time minimization algorithm, fractional
prefetching strategy.
Input: Branches 1,...,n with parameters a; and b;
Input: Available prefetching time ¢
Output: Prefetch durations «;
: Sort branches ¢ = 1,...,n in decreasing order of a; + b;
Compute A; = (a; + bz) (@jg1 + biyq) forany i=1,...,n—1
A, = (a, + b,) — max; b;
a;=0foranyt=1,...,n
k=0
while ¢t > 0 and k£ <n do
c=min (t, Ay - k)
t=t—c
a; =a;+¢eforanyi=1,... k
end while

._.
@
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3.4.2 All-or-nothing prefetch

In this sub-section, we aim to define an optimal branch prefetching order o €
IT (n) which minimizes the worst-case execution time. As we shall see further,
it is not always possible to totally order the branches such that the worst-case
execution time is minimal for any prefetching time. As in the previous section
we suppose that the available prefetching time ¢ follows an uniform distribution
over the interval D. Let fy. : II(n) x D — RT be a function that associates to
a branch order o € II (n) and a prefetching time ¢ € D the branching structure’s
worst-case execution time fy. (0, 1).

In the sequel we suppose that the ordering o defines a linear order, i.e. 1,..., n.
We recall the definition of [y, [, =) .., a;. Forany k=1,... ,nand t € [l_1, li]
the worst-case execution time function definition is:

fuwe (0,t) = max (Ag, ap + by, — t + l_1)

where Ay, — max;~x (a; + b;) if k< 1'1,
max; b; otherwise.

More formally the all-or-nothing prefetch with worst-case execution time min-
imization problem consists in finding a permutation of branches o € Il (n) such
that fue(0,t) < fue(0',t) for any o’ € 11 (n) and ¢ € D. This problem can have
instances for which the solution space is empty, that is to say the employed ob-
jective function does not totally order the branches. This result is proved in the

next proposition.

Proposition 3.3. For a given n-way branching structure an order o € 11 (n) that
minimizes the worst-case execution time fy.(o,t) for any t € D cannot be always

defined.

Proof. To prove it, we provide a simple counterexample for which an order that
minimizes fy. (0,t) does not exist.

Suppose a 2-way branching structure, such that the relations a; +b; > as + by
and a; > ay are verified. Refer to Figure 3.5 for an illustration. Two branch
orders are possible: o7 = (1,2) and oy = (2,1). It is easy to see that for ¢t €
[0, a1 + by — bo] we have fi.(01,t) < fue (02,t) and for ¢ € [ay + by — ba, a1 + as]
we have fuc(01,t) > fue (02,t). Thus, for this problem instance, worst-case exe-
cution time functions fi,. (01,t) and fy. (02,t) cannot be compared. We conclude
that, in the general case also, an order that minimizes the worst-case execution
time is not always defined. n

Rather than attempting to compute a Pareto front, we modify the objective
function as follows: we look for a branch prefetching order o € II (n), such that for
any o’ € I (n) we have E [fy (0,t)] < E[fue (0/,1)]. We recall that the available
prefetching time t is uniformly distributed over D, thus the pdf is constant and
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Figure 3.5: An example of branching structure for which a total order is not
defined.

equal to g(t) = /5,4 for any ¢t € D. The mathematical expectation of the
worst-case execution time is:

Elfuc(o0] = [ fetenig@di = o [ fotonya

The minimization of the worst-case execution time expectation is equivalent
to the minimization of the area of the region bounded by the worst-case execution
time function. The integral of the worst-case execution time function over the
range [lx_1, lx[ is equal to (for branch ordering 1,...,n):

I 1
fuwe (0,t) dt = Agay + 5 max (0, ax + by — Ak)2

l—1

In what follows, we suppose that the branches are indexed in the decreasing
order ofai—l—bi, that is a1+b1 Za2+b2 Z 2 an+bn.

Proposition 3.4. Let o be the optimal branch prefetching order. If in this order
branches p+ 1,p+2,...,r are situated before the branch p, then their order does
not matter.

Proof. Since a,+0b,, is greater than or equal to ap;1+0pi1, . . ., a,+b, the worst-case
execution time f,.(0,t) during the prefetch of branches p + 1,...,r is equal to
a,+b,. Refer to Figure 3.6 for an illustration. Therefore, the integral of f,. (o,1),
over the interval when the branches p + 1,...,r are prefetched, is constant and
does not depend on their order (the grey rectangle in the illustration).

m

Proposition 3.5. If o is an optimal branch prefetching order, then it has the
following form: o = (r,...,1,0'), r > 1, where o’ is an optimal order over the
branches r+1...n.
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Prefetched branches:

.'§<—p+1,p+2,,,,,7~_>§<_p

ap + by

Execution time
+
;E'

Prefetching time

Figure 3.6: An example of branch ordering where the order of branches p+1,p+
2,...,r does not change the worst-case execution time expectation (used in the
proof of Proposition 3.4).

A : 5 Lor (o
2 k—Lk4l,.r—1 i 1 iri g i JwelD
: i ay + by

Execution time

Prefetching time

Figure 3.7: Illustration of the contradiction from Proposition 3.5.

Proof. Let r be the branch with the largest index ordered before the branch 1
in o, that is, r is the branch with the lowest a; + b; ordered before the branch
1. Suppose that a branch k, k € [2,7 — 1], is ordered after the branch 1. By
interchanging branch r with 1 (see Figure 3.7) we obtain a new subset suborder
that is strictly better than the initial order o, which is in contradiction with the
initial hypothesis which states that o is an optimal order.

In the same manner, the proof is generalized to any sub-set of the branches
in place of only one branch k. Also, we can state that the optimal sub-order ¢’
satisfies this proposition recurrently. O

For solving the all-or-nothing prefetch problem with worst-case execution time
expectation minimization we introduce an optimal, polynomial time algorithm.
This algorithm is based on the shortest path computation in a specific graph G
that we introduce in the sequel. In the construction of the graph G' we consider
the result obtained in Proposition 3.4 and Proposition 3.5.

Definition 3.1. Let G = (V, E, ¢) be a directed graph, where V is a set of nodes,
E, aset of edges and c: F — R, a cost function that assigns a real, non-negative
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number to each edge of the graph. The graph G contains n + 1 nodes numbered
from 0 to n. The meaning of the node ¢ is that the branches 1,...,7 have been
prefetched. For any i and j, the graph contains the edge (i,7j) if and only if
i < j. The value associated by the cost function ¢ to the edge (,j) is equal to
the integral of function f,. (o,t) over the period of time when the branch order
J,7 —1,...,1+ 1 is prefetched, taking into account that branches 1,... 7 have
been already prefetched.

An example of such a graph is presented in Figure 3.8. It corresponds to
the graph built for a 4-way branching structure. In the illustration we shorten

the integral notation and [ (i1,...,%,) denotes the integral of the worst-case
execution time function over the period of time when the ordering iy,...,,, is
prefetched.

Figure 3.8: An example of graph G for a 4-way branching structure.

Let P = (iy = 0,4s,...,i, = n) be a path from node 0 to node n in the graph
G. The branch prefetching order that corresponds to the path P is built in the
following manner: we begin by an empty order o = (), for every k = 2,...,p, the
partial order (ig,ix — 1,...,9k_1 + 1) is appended to the end of o, finally, o will
be the branch prefetching order that corresponds to path P.

Proposition 3.6. Let P = (i; = 0,4s,...,1, =n) be a path from node 0 to node
n in the graph G and o be the branch prefetching order that corresponds to P.
Then, the cost of the path P is equal to the value of the integral of f (o,t) over

D, that is Yy _oc (ig—1,1k) = [p fue (0,1)dt .
Proof. The proof of this proposition relies on the following transformations:

p p liy, lip In
Zc(ik—laik):Z/ fwc(07t)dt:/ fwc(aat)dt: wa(O',t)dt
k=2 k=2 7 lig_y liy lo
As D = [ly, l,,], the last equality proves the proposition. O

The next proposition proves that the shortest path in the graph G corresponds
to the optimal branch prefetching order.
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Proposition 3.7. Let G = (V, E, ¢) be a graph built as described in Definition 3.1,
and, let P = (iy = 0,1s,...,1i, = n) be the shortest path from node 0 to node n in
this graph. Then, the branch prefetching order o that corresponds to path P is an
optimal one.

Proof. From the definition of the graph G and the propositions 3.4, 3.5, the set
of all possible paths, from node 0 to node n, covers the set of all possible branch
orders I (n). Since the values of a path and its corresponding branch prefetching
order are the same, a shortest path P corresponds to a minimal valued branch
prefetching order o. O]

The procedure of finding optimal branch prefetching order described above can
further be simplified. The graph G has a special structure (it contains only edges
(1,7) for i < j) and it is possible to bypass its construction. Using this property
we introduce a dynamic programming algorithm in which we make use of graph’s
special structure for computing the optimal prefetching order. We introduce
Algorithm 3.3 for finding the optimal branch prefetching order. During the i-
th iteration of the algorithm first loop the optimal prefetch order for branches
1,...,% is computed.

Algorithm 3.3 Dynamic programming algorithm for finding the branch prefetch-
ing order which minimizes the worst-case execution time expectation.
Output: o,, ¢, - optimal branch prefetching order and cost

1. cgp=0and ¢g=oc foranyi=1,...,n

2: ;=0 foranyi=0,...,n

3: fori=1tondo

4: for j=0toi—1do

5: o=o0;+(i,i—1,...,7+ 1){Here the sign "+" denotes the concatenation

of two orderings}

6: c= fli f(0,t) dt

7 if ¢; > ¢; + c then
8: C; =2¢C

9: g, =0

10: end if

11:  end for

12: end for

Now, let us suppose that the available prefetching time is a continuous random
variable with pdf g (¢). The worst-case execution time expectation (the objective
function we search to minimize) becomes:

E [fue (0,1)] = / fue (0,8) g (1) dt
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It is easy to prove that propositions 3.4 and 3.5 remain valid when this objective
function is used. An optimal branch prefetching order when the prefetching time
is a random variable is found using Algorithm 3.3. A single modification of
the algorithm is required: instead of ¢ = fli fwe (0,t)dt in the line 6 relation

c= fli’ fuwe (0,t) g (t) dt shall be used.

3.5 Conclusions

In this chapter we examined the problem of speculative data prefetching in
dataflow applications. Although the dataflow applications were restricted to a
single n-way branching structure we obtained interesting results. When the op-
timization objective was the mathematical expectation of the execution time an
optimum branch prefetching order was defined, which structure was furthermore
independent on the available prefetching time. In the case of worst-case execution
time objective, a polynomial procedure for finding optimal branch prefetching or-
der was introduced.



Chapter 4

Task ordering and memory
management

The tasks of a dataflow application, executed on a clustered multi-core processor,
are often using some common data (shared code or constants for example). These
data can be stored, or cached, in the cluster shared memory for later reuse. For
performance issues the same data objects accessed by several tasks should be
reused as much as possible. In a traditional caching scheme, a cache replacement
policy decides either to keep or to discard a memory block. The cache policy is
prescribed in memory system hardware and the application which runs cannot
influence it. Contrary to this, the cluster memory in the processor architecture
we use can be seen as a software-controlled scratchpad memory. Thus, one can
decide in software what memory blocks to store for future reuse.

Suppose given an APG (Acyclic Precedence Graph) associated to a dataflow
application which is executed on a cluster of the multi-core processor. As stated
earlier, the tasks are executed in two steps: data loading and execution. Fur-
thermore, we suppose that the data loading durations can change in function of
their order. This variation is due to the reuse of external memory data which
were previously stored in the cluster memory. That is to say, the duration of data
loading operations for two successively executed tasks which are using common
data is potentially smaller. Certainly, the order in which the tasks are executed
influences the quantity of possible common data. In this chapter we introduce
the task ordering and memory management problem, which tries to maximize the
data reuse by optimally ordering tasks. Because of a single external memory
access channel the data loading operations should be serialized. We suppose that
there is an unlimited number of processing cores for task execution, in this way
only the data reuse aspect is considered. As we shall see later, the practical rel-
evance of the task ordering and memory management problem is not limited to
its direct use (optimization of memory accesses) but also to the estimation of the
degree of parallelism for an application.

77
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A part of the results described in this chapter have been presented at CPAIOR
2010 workshop on Combinatorial Optimization for Embedded System Design and
will appear in the Proceedings of the 17th Annual International Computing and
Combinatorics Conference [25].

This chapter is organized as follows. A formal definition of the problem and
a complexity result are given in Section 4.1, in Section 4.2 several applications
of this optimization problem are described, followed by a survey on the existing
work in Section 4.3. In Section 4.4 the issue of internal memory management for
a fixed task calculation order is studied, and then, an exact branch-and-bound
algorithm and two heuristics are described respectively in Section 4.5 and Section
4.6. At the end a computational study, Section 4.7, and some concluding remarks
are given.

4.1 Problem formulation and complexity

In this section some useful definitions used throughout this chapter are introduced
and a formal definition for the task ordering and memory management problem
together with its NP-hard complexity proof are given.

An application is a set of tasks. Each task uses external memory data which
needs to be fetched into an internal memory before the task execution can start.
The smallest unit of data is called an input, hereafter we use the terms of external
memory data and input equivalently. Let A = (S, E,J) denote an application
where S are application’s tasks, F represent the set of inputs used by the appli-
cation and § : S — 2% is a function that associates to any task s, s € S, a set
of inputs 0 (s) needed for its calculation. When the intersection of ¢ function for
two tasks is not empty then these tasks are using common data. We also suppose
that there are no precedence relations between application tasks. Although this
model seems to be limited the methods described further can be easily modified
to take into account the precedence constraints. As we shall see later, an im-
portant motivation of studying this problem is to estimate the achievable degree
of parallelism for an application. In this context, the ordering problem without
precedence relations can be interpreted as a coarse-grained view of application
task graphs where the set of tasks producing an outcome are grouped into a single
task.

Let v : S — 2% be a function that associates a set of inputs ~ (s) to any
task s, s € S. The set of inputs 7 (s) gives the internal memory state at the
beginning of task s calculation. Tt is evident that for any task s, - (s) contains
at least all the inputs used by this task, ¢ (s) C 7 (s). Remaining inputs that do
not belong to J (s), come from data reuse. Data reuse is the process of reusing
inputs already present in memory, originating from previously calculated tasks.
Throughout this paper we suppose that available internal memory size is equal
to C, thus condition | (s)| < |y (s)| < C must be verified for any s € S. Without
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Figure 4.1: Illustration of graph transformations used to obtain an instance of
our problem.

loss of generality we suppose that the total number of inputs is larger than the
internal memory size, i.e. |E| > C.

The task ordering and memory management problem consists in finding a
permutation 7 of tasks S such that the number of external memory accesses,
given by cost function (4.1) is minimized.

S|

‘_}'Z"Y Sn(4) \’7 Sr(i— 1))| (41)

Proposition 4.1. Task ordering and memory management problem is N'P-hard.

Proof. Let G = (V,A) be an arbitrary non-oriented graph. The problem of
existence of a Hamiltonian path in graph G is N'P-complete [42, p.199].
proceed by restriction, by showing that any instance of Hamiltonian path exis-
tence problem can be reduced to a special case of our problem. The following
transformations are used.

Each vertex of graph G becomes a task in our problem S =V (see Figure 4.1
for an illustration). To each edge of graph G an input is associated. The internal
memory size equals to the maximum degree of graph vertices, C' = max,cy deg (s).
For any task s € S, § (s) contains the set of input-edges that are adjacent to s in
the graph, plus a set of C' — deg (s) dummy inputs specific for each task. In this
way v (s) =0 (s) and |y (s) Ny (s")] =1 for any pair of adjacent task s,s" € S.

The problem obtained in such a way is a special case of our problem. It has
a solution of cost n-C'—n + 1 (n being the number of tasks) if and only if it
exists a Hamiltonian path in graph G. As far as the question of existence of a
Hamiltonian path in graph G is N'P-complete, our problem is N/P-hard. O

4.2 Applications

The task ordering and memory management problem can be directly employed to
optimize the sequential execution of an application. An algorithm for solving this
problem will try to order tasks that are using common data close to each other
in order to maximize the data reuse. The lack of support for task precedence
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relations does not diminish the interest in this method. Actually, many real
life applications are made up of several, smaller tasks that are accomplishing
different objectives and are using some common data inputs. We shall note that
the task ordering and memory management problem is not limited to data load
optimization but can be also applied to optimize the code load. Let’s imagine
that the application’s tasks are using common pieces of code. It will be interesting
to execute two tasks that are using the same piece of code one after another. In
doing so, the common piece of code is loaded only once from the external memory
and it is used two times by each task.

Another use of the task scheduling and memory management problem is to
model a series of problems related to efficient memory bandwidth management
in parallel processor architectures. In particular, we are interested in estimating
the memory bandwidth A required for the sequential execution of a parallel appli-
cation so as to estimate the number of tasks which may execute in parallel with
respect to an external memory bandwidth A constraint. In the best case, when
the application parallelism is not an impediment, the maximum number of tasks
which can be executed in parallel is limited to A/x. This estimation is called the
achievable degree of parallelism. We are going to give an example. Consider an
application which in average fetches 10 units of data per second. The memory
bandwidth of the application is A = 10units/sec.. Suppose that the available exter-
nal memory bandwidth is A = 100units/sec., then in the best case 10 application
tasks can be executed in parallel with respect to the hardware bandwidth con-
straint. By maximizing the data reuse in an application (via task ordering) we
obtain less conservative estimates of the achievable degree of parallelism (A dimin-
ishes). In a compiler chain proceeding by parallelism reduction (via task fusion
[46]), such an estimation can be used to fix an appropriate target for the degree of
parallelism. This estimation can also be used within an Algorithm-Architecture
Adequation framework to perform an initial assessment.

4.3 Related work

Previous work related to our problem is quite rare. In the “compilers” research
community similar problematics can be found. Actually, they try to minimize
the execution time for an application by augmenting the reuse of data. Approxi-
mate resolution methods are proposed. Compared to these studies, our problem
considers the task graph at a much larger level of granularity.

It appears that Ding and Kennedy [32] were the first to study a problem rela-
tively close to ours. In their work they intend to reorder program instructions so
as to improve program data access locality. The goal of locality minimization is
to reduce the distance between instructions that are using the same data, thereby
to augment data reuse. However, instead of using an optimal cache management
policy for calculating the distances, a sufficient-only condition is used. The latter
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requires that the time distance, which is the number of instructions between two
accesses, is bounded by a constant in order to ensure a cache hit. This problem is
modeled as a bandwidth-minimization problem. In their paper, the authors de-
scribe a tool that reorders program instructions and provide experimental results
for a set of benchmark programs.

Some earlier works, [109, 82|, describe methodologies for optimizing data reuse
in program loops. In a series of two papers |31, 33| describe two program trans-
formations: locality grouping, which reorders program data accesses in order to
improve data temporal reuse, and dynamic data packing, which consists in reor-
ganizing data layout so as to improve data spatial reuse. Other papers [88, 102]
describe similar approaches of data locality improvement and provide benchmark
analysis.

In the combinatorial optimization domain one can mention the sequence
dependent setup times (SDST) scheduling problems. The SDST one machine
scheduling problems have similarities with the task ordering and memory man-
agement problem as in both cases the execution time for a task depends on the
history. In the SDST it depends solely on previously executed task, in contrast to
our problem where the “execution time” (in terms of number of memory accesses)
of a task depends on the order of all the tasks executed so far. For a survey of
SDST scheduling problems refer to [3].

4.4 Memory management for a fixed sequence of
tasks

We start by investigating the internal memory data management separately from
the task ordering as it is an important issue of our problem. Let A = (S, E, )
be an application. Suppose that a permutation of tasks sq,...,s, is given. We
recall that for any task s € S, § (s) are the inputs that must be loaded into the
internal memory before s starts. It is obvious that the duration of loading inputs
d (s) depends on the position of task s in this sequence and on the content of the
internal memory. Namely, on already loaded inputs originating from data reuse
process. We are interested to find the internal memory states 7 (s) for any s,
s € S, such that the number of external memory accesses (4.1) is minimal.

It can be easily seen that internal memory size C' plays an important role in
problem modeling. In the following paragraph we introduce a special case for
which the optimal data management is trivial. When the internal memory size
is sufficient to store all the inputs (i.e. |E| < C) then the minimal solution has
a value of |F|. The optimal data management consists in simply loading new
inputs into the internal memory without dropping them out.

For solving the memory management problem, we introduce an incremental®

IThe incremental formulation is useful in the branch-and-bound procedure we introduce in
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algorithm, see Algorithm 4.1, which updates the optimal memory states for a
sequence of tasks si,...,s,-1 with the data reuse induced by a task s, added to
the end of this sequence. The complexity of this algorithm is O (p-m), where
m is the number of inputs. The algorithm is based on the principle used in
optimal cache replacement algorithm proposed by |7]. In our context?, it may be
informally stated as follows: “when a memory location is needed for a given input
and the internal memory is full, free space should be obtained by dropping out
the input which is to be used in the farthest future”.

The next proposition describes the relation between the internal memory
states of two solutions. One solution being longer by a task, which is situated at
the end.

Proposition 4.2. Let s1,...,s,_1 be a task ordering and s1,...,s, an extension
of this ordering with a task s,. The optimal memory states of ordering si, ..., sp—1
are y1,...,Yp—1 and of ordering sy,...,s, are vy,...,7,. The following relation
1s valid for any ke 1,...,p—1:

Ve = e U en

k—1 p—1
e C <5me5i>\U5i
=1 i=k

Proof. Let e be an input which is stored for reuse during task s, execution in the
initial ordering, e € v and e ¢ 0. The input e must be used by a task executed
earlier and later then s;, we can write:

p—1 k—1
ec A= ( U 5mU5i>\5k
=1

i=k+1
Two cases can be distinguished:

1. The internal memory permits to store in 7 only the earliest C' — |0y inputs
from A. In this case, when the task s, is added to the end of the ordering
the memory state 7 remains unchanged, v, = .

2. There is enough memory space to store all the inputs from A. When the
task s, is added to the end of the ordering then several inputs from J,, are
added to the memory state of task s;. Thus we have:

p k—1 k—1 p—1
€, C < U 6Z~DU5Z»>\(5,€\A: <5me5i>\U5i

i=k+1

the next section, where it is necessary to recalculate the data reuse induced only by the last
task.

2We do not use the algorithm described in Belady’s paper, because in their model at each
step only a single memory location is loaded. Contrary to our model, where at each step we
can load more than one input.
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]

Algorithm 4.1 Incremental internal memory management algorithm (for the

sake of simplicity we consider v; = 7y (s;) and 6; = 0 (s;)).

Input: sq,...,s,-; - task ordering with already computed memory states
Y1, 7’71)—1

Input: s, - new task to be added to the end of the ordering

Output: 7, ...,7, - updated memory states

Lk=p—1

2: while £ > 1 and |v,| < C do {Find last task with full internal memory, if it
exists}

3: k=k—1

4: end while

5 = fori=1,... k

6: fori=k+1top—1do

7. L=(0,\v)N~i_, {Potential inputs to reuse}

8 l=min(|L],C —|vl)

9: 7. =; U{First [ elements of L according to a linear order}

10: end for
11: 7y, = 0p

In order to find the optimal memory management for a sequence of tasks
S1,...,8, the algorithm is executed n — 1 times, each time adding task s;, © =
2...n, to the end of previously computed sequence. The algorithm is depicted
in Algorithm 4.2. The global complexity of this procedure is O (n*-m). The
minimal number of external memory accesses can be found using expression (4.1)
from the calculated memory states.

From a implementation point of view the algorithm complexity can be de-
creased. The optimization consists in using a more efficient structure for rep-
resenting sets. In the above complexity result we have considered that the set
operations cost O (m), which corresponds to a non optimal set representation.
When the number of inputs is not too large® the sets can be represented as m-bit
bit arrays for which the set operations are done in constant time O (1). In other
cases balanced binary trees can be used and instead of O (m) the set operations
will have a complexity of O (log, m).

The optimal internal memory data management based on the calculated mem-
ory states is easily found. For first task s; all the inputs 7 (s1) are loaded into
the internal memory. For next tasks s;, i > 2, before the execution of task s;
starts, inputs v (s;) \ 7 (s;—1) are loaded into the internal memory in place of

inputs v (s;—1) \ v (s:)-

3Less than the word width of PCs, which usually does not exceed 64 bits.
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Algorithm 4.2 Internal memory management algorithm.

Input: sq,...,s, - task ordering
Output: v (s1),...,7(s,) - optimal internal memory states
Loy (s1) =0(s1)
2: for k=2 tondo
3:  Compute memory states 7y (s1),...,7 (sg) using Algorithm 4.1
4: end for

4.5 Branch-and-bound

The fact that the task ordering and memory management problem is A/P-hard
legitimates the use of a branch-and-bound procedure (see |20, 69] for a detailed
description of the method) for solving it. One practical utility of an exact reso-
lution approach is for finding optimal solutions which could be used to evaluate
heuristic methods, because obtaining tight global lower bounds for a particular
case of this problem is already a difficult task [3].

In what follows we describe the proposed branch-and-bound algorithm as well
as each of the used components. The branch-and-bound algorithm starts with an
empty sequence of tasks. At each branching decision it adds to the end of this
sequence a new task from the set of not yet ordered ones. A leaf is obtained when
all the tasks are ordered. Lower bounds as well as a dominance relation are used
in algorithm in order to reduce the search space.

Before describing the branch-and-bound procedure we introduce some useful
definitions. Let us denote by (I, 7) a permutation of tasks or task ordering, where
I C Sis aset of tasks and 7 : {1,...,|I|} — {1,...,|I|} is a permutation of
tasks of I. In the case when [ = S the task permutation is called a complete
permutation, when it is not - a partial permutation.

A triplet w = (I,7,7), where (I,7) is a task ordering and v : I — 2F are
optimal memory states at the beginning of each task calculation, is a solution.
When the solution contains a partial ordering, we call it a partial solution, and
when not a complete solution. Let €2 be the set of all possible partial and complete
solutions.

A task ordering (I',7") begins with the partial task ordering (I, ) if the fol-
lowing relations are satisfied: I’ = T U K for K C S\ [ and 7’ (i) = 7 (i) for any
s; € 1. Respectively, solution (I’,7’,+") begins with the partial solution (I, 7,)
when (I',7') begins with (I, 7).

Let f: Q — NT be a bijection that assigns to any solution w € € a positive
integer f (w), where f(w) represents the minimum number of external memory
accesses of solution w, calculated using Algorithm 4.2.

In what follows we describe each of the components used in the branch-and-
bound algorithm.



4.5. BRANCH-AND-BOUND 85

4.5.1 Branching rule

A partial or a complete task ordering (I, ;) is respectively a node or a leaf of the
search tree, here I denotes the set of already ordered tasks and 7 is a permutation
of tasks I. The root node of the search tree is (), 7y) and it corresponds to an
empty task ordering. At a node (I,7;) of the search tree, for each task s € S\ I
the nodes (I U{s},mu(s)) beginning with (I,7) are created. Thus, branching
from node (I, 7) creates a number of |S\ /| new nodes.

4.5.2 Lower bounds

A lower bound is a bijection g : @ — NT that assigns a positive integer g (w) to a
solution w € Q. Let w’ be a complete solution that begins with w. The minimum
number of external memory accesses of solution w’ must verify g (w) < f(w'),
thus we say that ¢ (w) is a lower bound to solutions that begin with w.

Before describing the proposed lower bounds, we introduce a proposition that
relates the costs of two solutions w and w’, where w’ begins with w. To decrease
the wordiness in what follows, we suppose that task ordering is linear, i.e. for
a permutation (I,7), w (i) = i for any s; € I. Also, we make the following
abbreviations: v (s;) =; and 0 (s;) = §;.

Proposition 4.3. Let w = (I,7,7) and ' = (I',7',7') be two solutions such
that W' begins with w. We have:

1|

fFl)=fw+ )

i=|I|+1

%( \ %/'—1‘

Proof. Suppose that |I| = p and |I'| = n.
Using expression (4.1) the cost functions f (w) and f (w’) can be written:

F @) =Iml+D b\ vl
i=2

P n
F@) =D ANl + D i\l
1=2

i=p+1

Initially, when there are no data to reuse: v; = 7 = d;. If we show that
h,’c \ 71@1‘ = |7k \ Yk—1] for any k € 2,...,p, then the proposition will be demon-
strated.

The memory state 7, is a superset of v, (see Proposition 4.2) for any k €
2,...,p and the excess € = 7}, \ Y contains inputs from v, _; (i.e. 7, = 7 U ¢
and €, C v;,_,). Furthermore, the excess €;_; of memory state ;,_; contains only
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inputs from the tasks s,11,...,s,. The last fact is a generalization of Proposi-
tion 4.2. Using the above relations we have:

Ve N Yee1 = e \ Vo1 Y er \ Vi1 = 7k \ €r—1 \ V-1
—_——— N——

0 Vi

From the last relation }7,@ \ 7,’%1} = |y \ Yk—1| for any k& € 2,... p, thus the
proposition is proved. ]

Let w = (I, m,7) be a partial solution associated to the node (I, 7) of the
search tree. Two lower bounds are proposed for computing an underestimated
value of current partial solution.

The following lemma is stated without proof.

Lemma 4.1. If ay,...,a, are sets, then ({J;_,a;) \ a1 € U\ (a; \ ai—1).

In the first lower bound, for a given partial solution the internal memory
capacity constraint is relaxed for the not yet ordered tasks.

Proposition 4.4. Let w = (I,7,7) be a solution. Suppose that ' = (I',7’,~)
is a new solution that begins with w, where I' = T U{sq} and s; is a dummy task
containing all the inputs of not yet ordered tasks, i.e. 6 (sq4) = Useq 70 (s). Then
g1 (w) = f (') is a lower bound of solution w.

Proof. Let @ = (S,7,7) be the optimal solution that begins with w. Suppose
that |/| = p and |S| = n. Using Proposition 4.3 we can write:

F@)=fw+ > 1%\ %l (4.2)

i=p+1

Let us examine the rightmost term of this expression. Applying consecutively set
property |a| + |b] > |a U b| and Lemma 4.1 we obtain:

(O 71’) \ Y

It is evident that (Ji_,,, % = Ui_,,, d because 3; C (J;_; d; for any i = p +

1=p+1
i=p+1

1,...,n. Using the last relation we have:
If the last inequality is introduced in relation (4.2) a lower bound is obtained (the

|< U %‘) \ Y

i=p+1

right-hand side of (4.3)):
( U 5i> \
i=p+1

n

Z 1% \ Vi1 >

i=p+1

n

U (% \ ¥i-1)

i=p+1

>

f(@) > f(w)+ (4.3)
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The main inconvenient is that the optimal internal memory state 7, must be
known. In order to avoid the computation of an optimal solution 7, is replaced
by «, which is the internal memory state in a task ordering w' composed of w
extended by a dummy task s;. The inputs used by the dummy task are § (s4) =
Ui —p+1 0i- In this way, the following lower bound is obtained (and the proposition
is proven):

g1 (w) = f(w)+]0(sa) \ | = f (&)
0

In the following proposition a computationally cheaper lower bound, but
weaker than the previous one is described.

Proposition 4.5 (Lower bound 2). Let w = (I,7,7) be a solution. Then gs (w)
s a lower bound of w:

92((«0 U5 \(5 Sm - B

seS\I

where

B=min | C — ‘5 (SII\) ,

Udsn U 6| \d(sn)

SES\I S/EI\{SH'}

Proof. Let w = (5,7,7%) be the optimal solution that begins with w and we
suppose that |I| = p and |S| = n. Resuming the proof of Proposition 4.4 from

expression (4.3) we have:
i=p+1

For the optimal internal memory state 7, we have 7, = 0, Ue, where €, represents
the data to reuse and 0, N¢, = 0 is verified. Using this expression and the set
property |a\ (bUc)| =]a\ bl — |aN¢| for bNc = we obtain:

i=p+1
Subsequently, fOY the SiZG Of the set, Ep we have:

f(w) >

- |Ep|
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1. The data to reuse that is transfered during task s, execution is limited by
the internal memory size C":

’€p| <C- |‘5p|

2. From the definition of ¢, we have ¢, C ( LN UL A ) \ d,, thus:

|€p| <

(Uam U 5)\5

i=p+1

Combining together the above expressions we obtain the bound gs (w):

| 05) 0|2

o g

i=p+1

@)= flw g2 (w)

B = min (C— 10,],

4.5.3 Dominance relation

A dominance relation, described in Proposition 4.6, is proposed. It is applied
before the exploration starts, so as to divide the search space into several inde-
pendent search spaces.

Proposition 4.6. Suppose that the set of tasks S can be divided into p distinctive
sets of tasks S, ..., S, that are not using common inputs, thus verifying relations:
Sin Sy =0 and J,eg, 0 (s)N Us’esj d(s") =0 for any i # j. Then any complete
solution w = (S, m,) is dominated by solution w' = (S,n',7') that is built from
p independent permutations of tasks (S, mx), k= 1...p, that is to say (S,n') =
[(S1,m1),(S2,m2) ..., (Sp, mp)].

Proof. This result being evident, a methodological proof is not given, only an idea
of proof is presented. The sets S1,...,S, can be ordered independently because
they are not containing any common input. O

In order to divide the set of tasks S into p distinctive sets Si,...,.5,, a
graph theory algorithm for finding connected components is used [71]. This
algorithm is applied on the input dependency graph G;p = (V, A,t), defined
as follows. An input dependency graph is an undirected graph G;p = (V, A, 1),
where the set of nodes V' represent algorithm tasks (i.e. V' =.5), the set of edges
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A represents dependencies on inputs between the tasks and t : A — N* is a
weighting function assigning to each graph edge (s;,s;) € A a positive number,
t(si,s5) = |0 (si) Nd(s;)]. For any pair of tasks s;,s; € V, edge (s;,s;) belongs
to the graph G;p if and only if 6 (s;) N d (s;) # 0.

The fact that the sets Si,..., 5, are not using common inputs allows us to
apply the branch-and-bound algorithm separately on each of these sets. In this
way, the number of solution search space is reduced from |S|! to >7_ [S;|!l. After
the application of the branch-and-bound procedure onto each set of task sets
Si,...,5p, p partial solutions wy,...,w, are obtained. Complete solution w is
obtained by joining together these partial solutions. The cost of complete solution

@is f(@) =20 f (wi)

4.5.4 Selection rules

Before describing selection rules we introduce an useful definition. For a search
tree node w = (I, 7), let K be a set that contains the tasks from the neighborhood
of already ordered tasks I in the input dependency graph:

K={sp e S\I:(s;,sx) €A, s, €Il}.

The next node to be examined is selected in a greedy fashion, the immediate
profit is privileged. The next three rules are applied successively on the set of
feasible nodes. The first rule is applied until there are no nodes whose last two
tasks are adjacent in the input dependency graph, the second rule is applied until
the set K is empty, and afterwards the third one is applied to the remaining
nodes. In this way the outputs that are neighbors in the input dependency graph
are prioritized.

1. Select the currently active node (I, 7) with the largest cost ¢ (sﬂ(m,l), sﬂ(m)),
such that (sﬂ(‘1|,1),sﬂ(|1‘)) € A, in the input dependency graph G;p =
(V, A t).

2. Select the currently active node (I, ) with the largest edge cost ¢ (s, 37r(|[|)>7
such that sy € K and s € I, in the input dependency graph G;p =
(V. A, t).

3. Select the currently active node w = (I, 7) with the least lower-bound cost
g (w).

4.6 Heuristics

In this section we propose two heuristics. Our motivation to introduce a heuristic
method is, firstly, the NP-hardness aspect of the task ordering and memory
management problem, and secondly, the necessity in practical situations to find
solutions to the problem in a reasonable time.
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4.6.1 Two-stage TSP based heuristic (2STSP)
4.6.1.1 One-step history limited data reuse

Let us consider the task ordering and memory management problem for an ap-
plication (S, E,d). We suppose that tasks are calculated one by one, and we can
reuse only the inputs loaded for previously calculated task, thus the data reuse
is limited to one-step history. In this case the objective function to minimize
becomes:

IS|
(S y) = 18 (sw) |+ D 10 (35) \8 (s26-1)]
=2
This special case of the task ordering and memory management problem resembles
to the one machine scheduling problem with SDST.

For a given application (S, E,9) we build a digraph G = (V, A, ¢), defined as
follows. The set of vertices V = SU{s4} contains application tasks plus a dummy
task sy, which does not use any input d (sq) = (. The set of edges A define a
complete graph. The cost function ¢ : A — N associates to each edge (s, s’) the
number of external memory accesses needed to execute task s" after task s, thus
c(s,8) = 13 (') \ 6 (s)]:

Then, it can be easily shown that the solution of the asymmetric travel-
ing salesman (TSP) problem applied on graph G gives the optimal solution to
the task ordering and memory management problem with one-step limited data
reuse. Let H be the lowest cost Hamiltonian circuit in graph G, then relation
dtipyen €(63) < X e (i, ) is true for any other circuit H'. 1If the cost
function c is replaced with its definition we obtain the objective function of the
one-step limited data reuse problem, taking into account that § (sg) = (0.

Although, the asymmetric TSP is an N P-complete problem, it allows to solve
our problem special case using well studied exact or approximate applications,
see [22].

4.6.1.2 A simple two-stage heuristic

In this section we describe a simple two-stage TSP based heuristic for solving the
task ordering and memory management problem. The idea behind this heuristic
is to divide the problem into two sub-problems and solve each of them inde-
pendently. The one-step history limited data reuse special case described in the
previous section together with the optimal memory management algorithm are
employed. The heuristic is depicted in Algorithm 4.3.

The first sub-problem consists in finding a task ordering that minimizes the
total number of external memory accesses when only an one-step history is per-
mitted. It is solved using any approximate method for the asymmetric TSP
problem. We have chosen the randomized arbitrary insertion (RAI) algorithm
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introduced by Brest and Zerovnik [13| because it finds near optimal solutions for
asymmetric TSP instances from TSPLIB library [90].

The second sub-problem is to find a memory management for a given task
ordering, which is solved in polynomial time using Algorithm 4.2.

Algorithm 4.3 Two-stage TSP based heuristic.
Input: An application (S, E, ).

1: Build the complete digraph G = (SU{ss},A,c) as defined in Subsec-
tion 4.6.1.1.

2: Find the optimal Hamiltonian circuit starting in s; using the TSP heuristic
RAL

3: Find the task ordering o which corresponds to the optimal Hamiltonian cir-
cuit.

4: Remove the dummy task s; from the sequence o.

5: Calculate the number of external memory accesses by applying Algorithm 4.2
on task sequence o.

4.6.2 Randomized cheapest insertion heuristic (RCI)

The work of Rosenkrantz et al. [92] on heuristic algorithms for TSP inspired us
to propose an algorithm similar to the cheapest insertion heuristic. We call our
algorithm randomized cheapest insertion heuristic. It is a pure greedy heuristic
with randomization.

Suppose an application (S, F,¢) is given. The heuristic starts from an empty
sequence of tasks. At each step it adds a not yet ordered task in the most favorable
place, on position that gives the lowest partial solution cost. The insertions are
repeated until a complete task ordering is obtained. The task to add is chosen
randomly. This process is repeated a large number of times. The best solution
obtained so far is stored as result. We have chosen to repeat it n? times. No
theoretical arguments influenced our choice. This repetition count gives good
results in a short time and also is proportional to the problem size. The algorithm
is presented in 4.4.

4.7 Computational results

4.7.1 Employed instances

The evaluation of the proposed exact and approximate methods are done on
randomly generated problem instances. Besides the randomly generated instances
we have tested the proposed algorithms on an image processing application. In
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Algorithm 4.4 Randomized cheapest insertion heuristic.
Input: An application (5, E, 9).
Output: A solution (I,nin, Tmin) of cost Cpuin

L: (Imina 7Tmin) = (@, 0 — @)

2: Chpin = 00

3: for iter = 0 to n? do

£ (L) =(0,0 = 0)

5. while [ # S do

6: Choose randomly a task t € S\ T
T Insert ¢ in permutation 7 on the cheapest position
8: I=1U {t}

9: end while

10. if f(I,7) < Cyin then

11: (Limin, Tmin) = (I, )

12: Coin = [ (I,7)

13:  end if

14: end for

what follows we describe how the random instances are generated and in sequel
how the image processing application is acquired.

A randomly generated problem instance is characterized by five parameters:
the number of tasks n € {10,20,30}, the number of algorithm inputs m €
{Y/2,1,3/2,2} -n, the average number of inputs per task (IpT) p € {1/2,Y/4,1/8}-m,
the standard deviation o € {1/2,1/4,1/8} - u of IpT and the distribution used for
generating IpT. Three random distributions are used for IpT value generation:
U(p—o,u+0), N(u,0%) and Ezponential (u='). An instance is generated as
follows:

e a number z of inputs per task is randomly generated using one of the
distribution functions with parameters p and o, and x is rounded to the
nearest integer (eventually z is floored or ceiled in order to verify 1 < x <
m),

e for each task s the set of inputs J (s) is uniformly drawn from the set of all
inputs ey, ..., e, such that the length of § (s) is x.

For each random problem instance we define the minimal size of internal memory
size as Cypin = ming |0 (s;)|. In order to be feasible problem’s internal memory
size C' must be bigger than C),;,. In our experiments we use six values for C,
C = r - Cpin where r € {1.0,1.1,1.2,1.3,1.4,1.5}. For each combination of
parameters three instances are generated, in total 5832 problem instances are
obtained.
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The hypothesis about intrinsically parallel applications constrains us to limit
computational experiments to easily parallelizible applications. A good example
of these are image processing algorithms. A highly parallel execution is possible
for many of them. Image processing algorithms are working with huge amounts
of data, e.g. one of the smallest image resolution being 640 x 480 pixels. Because
of this fact, and of course, the N'P-hardness of the task ordering and memory
management problem, exact resolution of practical instances is out of reach of
even the most sophisticated methods. In order to be able to compare the proposed
heuristics with the exact branch-and-bound method, we limit our computational
results to small instances of image processing algorithms. Nevertheless, we can use
the solutions of small instances so as to probe the structures of optimal solutions
for real world image processing applications. Thereafter, we do so for the classical
image processing primitive: image convolution (see [45] for more details).

Image processing application input and output parameters are images. An
application task uses several pixels from the input image to calculate a pixel for
the output one. We search to order the execution of tasks so as to minimize
the number of external memory accesses. Then, guided by the obtained results
we try to find patterns in task execution order and to generalize them to higher
resolution images.

Image convolution algorithm calculates the convolution product of an image
I with a kernel K, >, > I'[p—i,q—j]- Kli,j]. It computes the value of an
output image pixel in function of its neighborhood pixels in the input image,
for our experiments we use a 3 X 3 square neighborhood. We suppose that a
task calculates the convolution product for one output pixel, so each task uses 9
inputs. Different image sizes are used.

4.7.2 Branch-and-bound evaluation

In this subsection we investigate the performance of the proposed branch-and-
bound method. Initially the randomly generated instances are tested followed by
the image convolution ones.

4.7.2.1 Random instances

The branch-and-bound algorithm is executed on each randomly generated prob-
lem instance with a time limit of 20 minutes. We are considering as optimal
solutions the solutions for which the branch-and-bound method explored the en-
tire search tree. In reality the number of optimal solutions could be larger because
in tree search methods much time is spent for optimality proof.

Table 4.1 presents the number of found optimal solutions for each parameter.
From the total of 5832 problem instances 3854 were solved to optimality, which
corresponds to approximatively 67%. When the internal memory is larger the
number of optimal solutions increases as well, we can see that augmenting C' by
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1.0 1.1 1.2 1.3 1.4 1.5
56% 60% 64% 68% 2% 76%

(a) Internal memory size ratio 7.

10 20 30
100% 63% 35%

(b) Number of tasks n.

1/on n 3/an 2n
5% 66% 64% 59%

(¢) Number of inputs m.

L/am Lam 1/sm
70% 59% 70%
(d) Average number of IpT u.

Yap Yap Ysp
1% 65% 63%

(e) Standard deviation of IpT o.

Uniform Normal Exponential
50% 61% 87%
(f) IpT distribution function.

Table 4.1: Optimal number of solutions (in percents) for each parameter.

50% (r = 1.5) the number of optimal solutions increases from 56% to 76%. All the
instances built of 10 tasks are solved to optimality, this percentage decreases for
instances of 20 and 30 tasks to 63% and respectively 35%. Instances with larger
input sets (number of inputs m) become more difficult, which is counterintuitive
as one can think that with the increase of number of inputs the problem becomes
more decoupled because the number of common inputs between tasks decreases.
Another interesting fact is that for exponential number of inputs per task, 87% of
instances are solved to optimality. Which is explained by relatively large internal
memory sizes when compared to the average number of inputs per task, thus the
data reuse is privileged.

4.7.2.2 Image convolution

As image convolution example we take a 7 x 7 input image instance, in this case
the number of tasks will be 25 (output image pixels belonging to image boundaries
are not calculated) and the number of inputs 49. We have used nine different
internal memory sizes, C' € 9,...,17. The obtained solutions (minimal number
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| Memory size, C | 9 J10[11]12]13][14[ 15| 16 | 17 |
Optimal solution 81 73 | 65|61 | 57|56 55 | 53 | 49
Execution time, total 3000 | 745 |70 | 36 | 9 |46 | 213 | 112 | <1
seconds bestsol. | 209 | 33 | 2 | 2 | 1 | 3 | <1 | 12 | <1

Table 4.2: Branch-and-bound method results for 7 x 7 image convolution instance.
The internal memory size varies from 9 to 17. Besides the optimal solutions, the
time needed to find these solutions (“best sol.” row) and the total run time (“total”
row) are presented.

1 2 3 4 5 6 7 1 2 3 N-2N-1 N
1
2| [1]2]3]4]s 1
3| fwo]o]s8]7]s i
4| |11]12|13(14]15
5| [20]19]18]17]16 M-2 1
6| |21]|22|23|24|25 M-1 1
7 M

(a) (b)

Figure 4.2: Image convolution task processing order for C' = 9.

of external memory accesses) and execution times are depicted in Table 4.2. The
minimal internal memory size is C' = 9 (the maximum number of inputs per task).
This is the most constrained instance and the search time is less than an hour. As
often observed with branch-and-bound algorithms, the minimal solution is rapidly
found and most of the calculation time is spent on optimality proof completion,
e.g. for C' =9 the best solution is found in approximatively 3 minutes and more
than 45 minutes are needed for optimality proof. The convolution instance with
the largest memory size, C' = 17, allows to load each input from the external
memory only once. The search time is less than one second for this example.

In Figure 4.2a is illustrated the calculation order of output image pixels found
by the branch-and-bound for the image convolution with the minimum possible
memory size C' = 9. The optimal number of external memory accesses for this
instance is 81.

It is easy to see that two consecutively calculated output image pixels are
either horizontal or vertical neighbors. Thus, we conjecture that if the calculation
order of output image pixels satisfies the last rule, then this order is an optimal
one. It is straightforward to deduce output image pixels calculation order for
higher resolution images based on this rule, e.g. a possible order is given in
Figure 4.2b. We note that for each output image pixel, 3 input image pixels must
be loaded, except the first output image pixel for which 9 pixels must be loaded.
Thus, the number of external memory accesses is 3 (M —2) - (N —2) + 6 for a
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Image size 6X6 | 7TXT|8X8|6X8|7Tx8|8x6|8xT7
Memory size 15 17 19 15 17 15 17
Calculation order No matter which Vertical Horizontal

Table 4.3: internal memory sizes allowing to load input image pixels only once.

N x M input image.

Current processor technology admits bigger internal memory sizes than we
have used for the above image convolution instance. Therefore, we carry out an
experiment that aims to find the minimal internal memory size allowing to load
only once each one of input image pixels. Several convolution instances with
different image dimensions, varying from 5 x 5 to 8 x 8 pixels, were tested. The
results are presented in Table 4.3. We can see that if the internal memory size
equals to 2-min (N, M)+ 3 for a N x M input image then the number of external
memory accesses equals to N - M. E.g. for a 640 x 480 image, if the internal
memory size can store 963 (2 - 480 + 3) pixels then each input image pixel will
be accessed exactly once, i.e. 307200 external memory accesses; contrary to a 9
pixel internal memory for which approximatively 3 times more external memory
accesses are needed (914898). We shall note that two different calculation orders
of output image pixels were found by the branch-and-bound algorithm. The first
one is horizontal, here output image pixels are calculated line by line? and the
second one is vertical order, output pixels being calculated column by column.

4.7.3 Heuristics evaluation
4.7.3.1 Random instances

The two-step TSP based and randomized cheapest insertion heuristics were exe-
cuted on the 3854 random instances that were solved to optimality by the branch-
and-bound method. In this way, we are able to compare the solutions found by
the heuristics to the minimum possible ones.

The number of instances for which optimal solutions are obtained for the
2STSP heuristic is 2543 (66%) and for the RCI heuristic is 3185 (83%). Thus
the RCI heuristic finds more optimal solutions than the 25TSP. The percentage
of optimal solutions found by the heuristic algorithms for each random instance
parameter are depicted in 4.4. Here too, the RCI heuristic gives better results.

The average deviation from the optimum is the average of deviations of heuris-
tic solutions from the optimal values. Namely, the average of ratios (5—5%)/s
where S represent heuristic solution and S* the optimal solution value. The
2STSP heuristic is situated at 5.14% from the optimum in average, whilst the
RCT is situated at less than 2% (1.85%) from the optimum in average. In terms

4In figure 4.2b a horizontal order is illustrated
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Heuristic\ r

1.0 1.1

1.2

1.3

1.4

1.5

25TSP

65% 62%

61%

63%

68%

75%

RCI

95% 81%

76%

78%

81%

87%

(a) Internal memory size ratio 7.

Heuristic\n

10

20

30

25TSP

69%

51%

86%

RCI

88%

67%

94%

(b) Number of tasks n.

Heuristic\m

1/on

n

3/an

2n

25STSP

80%

62%

59%

60%

RCI

90%

83%

7%

80%

(¢) Number of inputs m.

Heuristic\

/am

Lam

1/sm

2STSP

6%

60%

60%

RCI

89%

82%

7%

(d) Average number of IpT u.

Heuristic\o

Yap

Yap

Ysp

25TSP

73%

66%

58%

RCI

87%

83%

78%

(e) Standard deviation of IpT o.

Heuristic\ Dist.

Uniform

Normal

Exponential

25TSP

45%

58%

84%

RCI

68%

76%

95%

(f) IpT distribution function.

Table 4.4: 2STSP and RCI heuristics number of optimal solutions (in percents)
for each parameter.
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| Memory size, C' | 9 [10 [ 11 [12[13]14 |15 [16 [17 [ 18] 19|20 | 21 |

B&B 81 | 73 |65 | 61 |57 |56 |55 |53 49|49 |49 |49 |49
25TSP 8L | 77| 73169 |65 |61|57(53]49 |49 |49 |49 |49
RCI 81| 73165 |61 |58 |57 |55(54|53]52]52|50|49

Table 4.5: Comparison between the exact solution (B&B) and the approximate
solutions: two-stage TSP based heuristic (2STSP) and randomized cheapest in-
sertion heuristic (RCI).

of deviation from the optimum the RCI is also better than 2STSP.

In order to discriminate between the optimal solutions found by each heuristic
apart we perform a cross comparison. The number of solutions for which the
2STSP heuristic is strictly better, equal and strictly worse than the RCI are
counted. Solely in one case the 2STSP found a better solution than RCI, for 2664
(69%) instances the solutions values are the same, and, the RCI heuristic found
better solutions for 1189 (31%) instances. We conjecture that the employment of
the RCI heuristic is more appealing as it outperforms the 2STSP heuristic.

4.7.3.2 Image convolution

In Table 4.5 are presented the optimal and the approximate solutions found by the
2STSP and RCI heuristics. The same image convolution instance as in branch-
and-bound evaluation is used. We recall that it was a 7 x 7 image convolution
with 25 tasks and 49 inputs. The internal memory size ranges from 9 to 21. As we
can observe for the minimum memory size, C' = 9, the three solutions coincide.
This can be explained by the fact that for the image convolution with a minimal
internal memory size, the data reuse is limited to one-step history. As the internal
memory size grows worse solutions are found by the 2STSP heuristic. This trend
lasts until C' = 17, from which on the heuristic provides optimal results. The
RCI heuristic has an opposite behavior. For small values of internal memory
size the heuristic gives optimal results, whereas for large values near optimal
solutions. The minimum possible number of memory accesses is obtained by the
branch-and-bound and 2STSP for C' = 17 and by the RCI heuristic heuristic for
C =21.

4.7.3.3 Two-stage heuristic evaluation

Some others image processing algorithm instances (e.g. the Hough transforma-
tion) have been used to test the proposed heuristic, giving the same kind of
insights.
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4.8 Conclusions

In this chapter, the task ordering and memory management problem was exam-
ined. The aim of the last is to find a task execution order and an external memory
data loading strategy so as to minimize the total number of external memory ac-
cesses for a dataflow application. The main constraint is that the cluster memory
is limited in size, thus an optimal data management strategy is necessary. Besides
its direct utilization for optimizing the memory accesses of an application, this
problem can be also used to find the achievable degree of parallelism for a parallel
application, which in a compiler chain proceeding by parallelism reduction will
help to fix an appropriate target.

Initially we have supposed that we are given a task ordering, so as to study the
issue of internal memory data management separately from the ordering problem.
We have proposed a polynomial algorithm for its resolution. This algorithm relies
on Belady’s principle for virtual memory management.

We have proposed a branch-and-bound algorithm for the task ordering and
memory management problem and described its building blocks (lower bound,
dominance relation etc.). Because exact methods cannot be used for optimizing
real applications we have proposed two heuristic methods. The first one (2SSTS)
is a two-step heuristic based on Hamiltonian circuit search and the second one is
a randomized cheapest insertion (RCI) algorithm.

Firstly we have performed computational experiments with randomly gener-
ated problem instances. The branch-and-bound procedure found optimal solution
for more than two thirds (67%) of the cases. The heuristic methods were tested
on these instances. The RCI heuristic produced optimal solutions in 83% of the
instances, while the 25TSP only in 66%. Afterwards, several tests were done
with an image processing application: the image convolution. The branch-and-
bound algorithm was not able to solve instances of image processing applications
applied on real, high resolution images, because the size of the search space is
unimaginably huge for an exact algorithm. However we solved instances with low
resolution input images and generalized the results for high resolution images.
The heuristic methods performed quite well on these instances. With different
internal memory size configurations they have found near optimal solutions.
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Conclusions and future work

In this thesis, we have examined memory access management and scheduling is-
sues for dataflow applications executed on embedded multi-core processors. These
were instantiated into three combinatorial optimization problems. Two of them
deal with optimal prefetch strategies and the third one studies data reutilization
techniques. In the first problem the prefetch optimization aspect for a dataflow
application was studied. We have modeled it as a hybrid flow shop problem
under precedence constraints with makespan minimization as objective. The sec-
ond problem considered prefetching for branching structures (tasks which provide
data-controlled execution). The objective was to find an optimal data prefetching
strategy which minimizes different execution time statistics. The last problem,
the data reutilization one, consisted in sequencing data loading operations having
as objective the data reuse maximization.

For each of the above problems we have proposed resolution methods, mainly
heuristic algorithms, and auxiliary utilities (global lower bounds, exact resolution
algorithms) needed for their performance assessment. The resolution methods
quality has been experimentally established on synthetic instances and, in some
cases, on practical applications.

Several possibilities exist for estimating the quality of an approximate res-
olution algorithm. At one extreme, one may rely only on experimental data.
Alternatively, one may develop exact resolution algorithms so as to estimate the
quality of the results obtained on a benchmark of small instances. It is fur-
ther possible to develop computation-intensive global lower bounds (e.g. via the
polyhedral approach or SDP) to push this experimental validation in the realm of
larger instances. Even better, when one can obtain computationally cheap though
tight enough global lower bounds, these bounds can become part of the algorithm
itself providing a precise estimation of the optimality gap for each instance ever
to be solved. To the exception of the case of heuristics for which an universal
(and acceptable) optimality gap bound is known®, the latter is in our opinion the
best case. For the most representative work of this thesis, the flow shop problem,
we have been able to fulfill the requirements of the latter approach, hence prov-
ing acceptable optimality gaps for any solved problem instance. In contrast, for

SHowever, such results are very hard to obtain and occur mainly for simple algorithms
dedicated to “pure” mathematical problems.
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the data reutilization problem we have analyzed the quality of the solutions on
a benchmark of small instances, using an exact resolution method, because there
is a little hope to obtain cheap tight global lower bounds.

A number of perspective research directions, in our opinion, represent a nat-
ural continuation of these thesis works. In particular it should be interesting
to consider prefetch scheduling problems with probabilistic durations and condi-
tional execution as an extension of the studied hybrid flow shop. A first attempt
[24] was to examine probabilistic parameters (e.g. job heads and tails) of dataflow
applications with conditional execution tasks. Another research direction will be
to optimize the speculative prefetch management for recursive (hierarchies of)
branching structures and also to consider dispersion-like objectives®.

In terms of more practical applications of this work, it should be emphasized
that the aforementioned flow shop problem closely modelizes the execution model
for a real-world massively (>200 cores) multi-core embedded processor. As such,
our resolution method can be considered for integration in a future release of
the industry-grade dataflow compilation chain presently developed within a joint
lab with a semiconductor industry partner, in particular, as already stated in
this manuscript, when large memory footprint applications have to be executed
on such highly-constrained platforms. On top of this, the described methods
can be applied on highly-dynamic, control-oriented applications such as H.264
video encoding algorithm with early motion estimation termination [111, 96|,
classifier-based object tracking applications [61], cognitive radio [83], as well as
next generation video coding standards such as HEVC (H.265).

As already stated, the increasing complexity of both microprocessors and their
associated compilation chains reinforce the need for advanced OR techniques. By
tackling a number of problems from that field, we hope to have contributed to
both the advancement and the perception of combinatorial optimization as one of
the key scientific discipline to make the new generation of multi-core processors
a reality!

In the embedded computing field repeatability guarantees (obtained by dispersion mini-
mization) sometimes have a larger importance than other execution time statistics.
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