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Résumé en français

Dans la limite “diluée” où les nombres d’arêtes et de sommets divergent de manière
comparable, on s’attend à ce que le comportement asymptotique de nombreux invari-
ants de graphes ne dépende que de statistiques purement locales. Cette heuristique
provient de l’étude thermodynamique de certains systèmes désordonnés en physique
statistique, où la contribution microscopique de chaque particule est insensible aux
perturbations lointaines. Mathématiquement, une telle absence d’interactions à
longue portée se traduit par la continuité de l’invariant vis-à-vis de la topologie de la
convergence locale faible. En particulier, l’invariant admettra une limite détermin-
iste le long de la plupart des suites de graphes aléatoires classiques, et pourra être
efficacement approximé par des algorithmes locaux et distribués, indépendamment
de la taille totale du système.

Dans cette thèse, nous étudions quatre invariants de graphes qui jouent un rôle
essentiel en théorie comme dans les applications : la distribution spectrale empirique,
la dimension du noyau de la matrice d’adjacence, la taille d’un couplage maximum,
et le polynôme énumérant certaines familles de sous-graphes couvrants. Nous mon-
trons qu’il existe une unique manière localement cohérente d’étendre chacune de
ces notions aux limites locales faibles de graphes finis, et que ce prolongement est
continu. Pour les modèles de graphes aléatoires classiques, les équations de co-
hérence locale se simplifient en une équation aux distributions que nous résolvons
explicitement. Cela conduit à de nouvelles formules asymptotiques, ainsi qu’à la
simplification, l’unification et la généralisation de divers résultats jusqu’alors isolés.

2010 Classification MCS. Primaire 05C80, 05C30, 60K35. Secondaire 60B20,
82B23, 82B44.

Mots-clés. Graphes aléatoires, convergence locale faible, méthode de la cavité,
couplage maximum, distribution spectrale, invariants de graphes
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Abstract

In the so-called sparse regime where the numbers of edges and vertices tend to
infinity in a comparable way, the asymptotic behavior of many graph invariants is
expected to depend only upon local statistics. This heuristic originates from the
thermodynamic study of certain disordered systems in statistical physics, where the
microscopic contribution of each particle is insensitive to remote perturbations of
the system. Mathematically, such a lack of long-range interactions can be formalized
into a continuity statement with respect to the topology of local weak convergence of
graphs. Among other consequences, continuous invariants are guaranteed to admit
a deterministic limit along most of the classical sequences of sparse random graphs,
and to be efficiently approximable via local distributed algorithms, regardless of the
size of the global structure.

In this thesis, we focus on four graph invariants that play an important role in
theory and applications : the empirical spectral distribution, the kernel dimension
of the adjacency matrix, the matching number, and the generating polynomial of
certain classes of spanning subgraphs. Each of these notions is shown to admit a
unique locally self-consistent extension to local weak limits of finite graphs, and this
extension is proven to be continuous. When specialized to the classical models of
sparse random graphs, the limiting system of local self-consistency equations sim-
plifies into a single distributional equation, which we solve explicitly. This leads to
new asymptotic formulae and to the simplification, unification and generalization of
various results that were previously relying on model-specific arguments.

2010 Mathematics Subject Classification. Primary 05C80, 05C30, 60K35.
Secondary 60B20, 82B23, 82B44.

Key words and phrases. Sparse random graphs, local weak convergence,
cavity method, matching number, empirical spectral distribution, subgraph enu-
meration
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Chapter 1

Introduction

The broad theme of this thesis is the asymptotic study of algebraic, combinatorial or
probabilistic parameters associated with graphs as the numbers of edges and vertices
tend to infinity in a comparable way. In many situations, it is believed that such
asymptotics should depend only upon the limiting local geometry of the graphs,
with the following important implications:

1. practically, the parameter of interest can be efficiently approximated via dis-
tributed, local message-passing algorithms ;

2. theoretically, a unique self-consistent infinite limit can be defined (and some-
times even explicitly determined) by purely local specifications.

Originating from the study of disordered systems in statistical physics, this general
heuristic has given rise to a powerful non-rigorous computational formalism known
as the cavity method [79, 77, 78]. Although the exact conditions for its validity are
still far from being completely understood, it has already inspired many remarkably
efficient approximation algorithms (see e.g. [37, 89, 73]), and some of its most fas-
cinating analytical predictions have recently received a mathematical confirmation.
The present thesis aims to contribute to the program of making this ansatz rigorous
in a broad setting using the modern framework of local weak convergence. Before
describing our results, we start with a brief recall of local weak convergence. Since
there are good surveys and books on the subject (among which [8, 7, 47]), we have
opted here for a concise presentation.

1.1 The framework of local convergence

1.1.1 Context

In the same way that random walks can be rescaled to converge to the Brownian
motion, implying the convergence of many related functionals, classical sequences
of random graphs happen to converge in a natural, local sense to a discrete limiting
random graph, hence guaranteeing the convergence of any graph parameter that
can be shown to be continuous with respect to this local topology. Furthermore,
in fortunate circumstances, the structure of the limiting random graph is simple

13



14 CHAPTER 1. INTRODUCTION

enough to allow for an explicit determination of the graph parameter. This modern
approach was introduced by Benjamini and Schramm [21] in the context of random
walks on planar graphs. It was then developed further in the objective method by
Aldous and Steele [8], and in a more recent survey by Aldous and Lyons [7] ; it now
provides a powerful framework for the unified study of sparse random graphs and has
already led to several new asymptotic results. Two prototypical examples are the
celebrated ζ(2) limit in the random assignment problem due to Aldous [5], and the
asymptotic enumeration of spanning trees in large graphs by Lyons [71]. Since then,
other beautiful applications have been found in various contexts, including (but
not limited to) planar triangulations [9, 10], planar quadrangulations [39], property
testing [92, 22], combinatorial optimization [8, 95, 56, 55], subgraph enumeration
[19], spectral graph theory [32], and spin glass models [14, 48, 84].

1.1.2 Graph-theoretical terminology

A (simple unoriented) graph is an ordered pair G = (V,E) comprising a countable
set V of vertices and a countable set E of edges. Each edge e = {i, j} is an unordered
pair of distinct vertices i and j, which are declared to be adjacent, or neighbors.
The set of neighbors of i is denoted by ∂i, and its cardinality is called the degree of
i. When the degree of every vertex is finite, we say that G is locally finite. When
the set V itself is finite, we say that G is finite. A path of length d from a vertex
i to a vertex j is a sequence of d + 1 consecutively adjacent vertices, the first one
being i and the last one being j. When such a path exists, i is said to be connected
to j, and the graph distance from i to j is then defined as the minimum length
of a path from i to j. We speak of a simple path when all vertices are pairwise
distinct, and of a simple cycle when d ≥ 2, i = j and all other vertices are pairwise
distinct. Being connected to is clearly an equivalence relation on V ; the associated
equivalence classes are called the connected components of G. When there is only
one connected component we say that G is connected. A connected graph without
simple cycles is called a tree. Equivalently, a tree is a graph in which any two
vertices are connected by a unique simple path.

1.1.3 Local convergence of rooted graphs

A rooted graph is a graph together with the specification of a particular vertex
o, called the root. An isomorphism from a rooted graph (G, o) to a rooted graph
(G′, o′) is a bijection γ : V → V ′ that preserves

• the root: γ(o) = o′ ;

• the edges: {i, j} ∈ E ⇐⇒ {γ(i), γ(j)} ∈ E ′.

When such a γ exists we say that (G, o) is isomorphic to (G′, o′), and we write
(G, o) ≡ (G′, o′). We let G⋆ denote the set of locally finite connected rooted graphs,
taken up to the equivalence relation ≡. This will constitute our basic workspace.
Given (G, o) ∈ G⋆ and d ∈ N, we let [G, o]d denote the (finite) rooted subgraph
obtained from (G, o) by keeping only those vertices that lie at graph distance at
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most d from o, and all the edges between them. In G⋆, a sequence {(Gn, on) : n ∈ N}
converges locally to (G, o) is for every radius d ∈ N, there exists nd ∈ N such that

n ≥ nd =⇒ [Gn, on]d ≡ [G, o]d.

It is not hard to see that the function

d : (G, o), (G′, o′) 7−→ 1/sup {d ∈ N : [G, o]d ≡ [G′, o′]d}

defines a distance which metrizes this notion of convergence and turns G⋆ into a
complete separable metric space.

1.1.4 local weak limits of finite graphs

As a consequence (see e.g. [26]), we can endow G⋆ with its Borel σ−algebra and
consider the complete separable metric space of probability measures over G⋆, de-
noted by P(G⋆). In the latter, a sequence (Ln)n∈N converges weakly to L if for
every bounded continuous function ϕ : G⋆ → R,

Ln [ϕ] −−−→
n→∞

L [ϕ] ,

where L[ϕ] =
∫
ϕ(G, o)dL(G, o) denotes the expectation of ϕ with respect to L.

Uniform rooting is a natural procedure for turning a finite deterministic graph G
into a random element of G⋆: one simply chooses uniformly at random a vertex o to
be the root, and restrict G to the connected component containing o. If (Gn)n∈N is
a sequence of (deterministic) finite graphs and if the sequence of their laws under
uniform rooting admits a weak limit L ∈ P(G⋆), we call L the local weak limit of
the sequence (Gn)n∈N and write

Gn
LW−−−→
n→∞

L.

In words, L describes the asymptotic distribution of Gn when viewed locally from
a uniformly chosen vertex. This simple and natural notion of convergence happens
to have remarkable implications, to the study of which this thesis is devoted. Note
that there are various other natural (and complementary) notions of convergence
for sparse graphs, which capture non-local rather than local information. For more
details, the interested reader is referred to [53, 1, 35] and to the surveys [30, 31].

1.2 Classical examples

Over the past decades, numerous models for random graphs have been introduced
and analyzed in great details. In the sparse regime where |V | → ∞ and |E| =
Θ(|V |) (sometimes rather called the extremely sparse or diluted regime), the
large majority of these models happen to admit almost surely a natural local weak
limit. We list here some of the most important examples. For more details on
random graphs models, the interested reader can refer to the classic monographs
[29, 52] or to the recent course note [63].
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1.2.1 Erdős-Rényi random graphs

Introduced by Gilbert [57] in the late fifties, the Erdős-Rényi random graph is
undoubtedly the simplest and most popular random graph model. On a set of n
vertices, each of the

(
n
2

)
possible edges is randomly and independently drawn with

some probability p ∈ [0, 1]. The name is after Paul Erdős and Alfréd Rényi, whose
impressive seminal work [54] has spawned an extensive literature. In the sparse
regime where the edge probability p = p(n) scales like c/n as n→ ∞ for some fixed
constant c > 0, a sequence of jointly defined Erdős-Rényi random graphs admits
almost surely a famous local weak limit L ∈ P(G⋆): the Poisson-Galton-Watson

distribution with mean c. This celebrated law is concentrated on rooted trees and
was historically used as a model for genealogical family trees. Initially, an isolated
root o gives birth to a random number N of children according to the Poisson
distribution with parameter c,

P(N = n) = e−c
cn

n!
.

In turn, each of these children (should there be any) independently gives birth to
a random number of children according to the same distribution, and so on. The
whole process is called a Galton-Watson branching process. It generates a random
locally finite rooted tree whose law is called the Poisson-Galton-Watson distribution
with mean c. For a detailed study of branching processes, refer to [12, 61]. A proof
of the almost sure local weak convergence of the Erdős-Rényi model can be found
in [47, Proposition 2.6].

1.2.2 Random regular graphs

Figure 1.1: A portion of the 3−regular infinite rooted tree

Let d ≥ 3. A graph in which every vertex has degree d is called d−regular. A
random d−regular graph of size n is a graph chosen uniformly at random among
all d−regular graphs on a fixed set of n vertices. This model has a long history,
and we refer the interested reader to the comprehensive survey by Wormald [105].
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A sequence of jointly defined random d−regular graphs with diverging size admits
almost surely a local weak limit L which is concentrated on a single element of
G⋆: the d−regular infinite rooted tree (also called Bethe lattice in statistical
mechanics). Here the convergence is a direct consequence of the fact that short
cycles are asymptotically rare in random d−regular graphs (see e.g. [28]).

1.2.3 Random graphs with prescribed degree profile

In the past few years, the need for more realistic models of various types of complex
networks has naturally led to the subtle problem of constructing random graphs
in which the degrees approximately have some prescribed distribution π ∈ P(N)
[20, 83, 28, 75]. In the so-called configuration model, the degree of each vertex
is first generated independently according to the distribution π, and the resulting
half-edges or stubs are then pairwise matched at random to form edges (successively,
uniformly and independently). This process may of course result in self-loops and
multiple edges, but the former are deleted and the latter merged so as to produce
a proper graph. If π has finite mean, the empirical distribution of degrees in the
resulting random graph converges to the prescribed degree distribution π as the
number of vertices tends to infinity, as established in [38]. A few variants exist, see
[63, Chapter 7] or [29, Section 2.4].

If (Gn)n∈N is a sequence of (jointly defined) random graphs resulting from the
above construction, and if their size diverges as n → ∞, then (Gn)n∈N admits
almost surely a particular local weak limit L, namely the unimodular Galton-

Watson distribution with degree π (see Example 1.1 in [7]). It is the law of
the random rooted tree obtained by a Galton-Watson branching process where the
root has offspring distribution π and all other genitors have the size-biased offspring
distribution π̂ ∈ P(N) defined by

∀n ∈ N, π̂n =
(n + 1)πn+1∑

k kπk
. (1.1)

Note that both the Poisson-Galton-Watson tree (π = π̂ = Poisson(c)) and the
regular infinite tree (π = δd, π̂ = δd−1) are in fact special cases of unimodular
Galton-Watson trees. Thus, this local weak limit has some kind of universality in
the realm of sparse random graphs. A detailed proof of the almost sure local weak
convergence can be found in [47, Proposition 2.5]. See also [24] for a closely related
result.

1.2.4 Uniform random trees

The most natural way of defining a random tree of size n consists in selecting it
uniformly at random among the nn−2 possible trees that can be built on the vertex set
{1, . . . , n}. Any sequence of jointly defined such random trees admits almost surely
a special local weak limit L as n→ ∞: the (law of the) so-called Infinite Skeleton

Tree. To describe the latter, consider an infinite sequence of independent random
rooted trees (T1, o1), (T2, o2), . . . with the Poisson-Galton-Watson distribution with
mean 1. Recall that all these trees are finite with probability one. The Infinite
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Skeleton Tree may then be constructed by placing an edge between ok and ok+1

for each k ≥ 1, and declaring o1 as the overall root. The convergence was first
established by Grimmett [60]. Alternative proofs and generalizations can be found
in Devroye [50] and Aldous [4].

o2 o3 o4 o5 o6 o7 o8 o9o1

Figure 1.2: A portion of the Infinite Skeleton Tree

1.3 Overview of the results

In this thesis, we use the framework of local weak convergence to investigate the
asymptotic behavior of four widely studied graph parameters that play a deep and
central role in graph theory:

• the empirical spectral distribution (Chapter 2) ;

• the kernel dimension of the adjacency matrix (Chapter 3) ;

• the matching number (Chapter 4) ;

• the enumerating polynomial for spanning subgraphs subject to local con-
straints (Chapter 5).

In each case, we show that a suitably normalized version of the parameter φ satisfies
a continuity theorem of the form

(
Gn

LW−−−→
n→∞

L
)

=⇒
(
φ(Gn) −−−→

n→∞
φ(L)

)
,

where (Gn)n∈N is an arbitrary sequence of finite graphs. Reasonable conditions are
imposed on the local weak limit L so that a limiting parameter φ(L) can be properly
defined, typically via an infinite set of local equations. We then apply this purely
deterministic result to the aforementioned random graph models. Thanks to the
particular self-similar nature of their local weak limit L, the set of local equations
determining φ(L) simplifies into a recursive distributional equation (see the
survey [6] by Aldous and Bandyopadhyay), which we solve explicitly. This leads
to new asymptotic formulae or to the simplification, unification and generalization
of various known results that were previously relying on model-specific arguments.
The reader will find below a slightly shortened version of the introduction of each
chapter, together with the main results that it contains.



1.3. OVERVIEW OF THE RESULTS 19

1.3.1 Empirical spectral distribution (Chapter 2)

A finite graph G = (V,E) on n vertices V = {v1, . . . , vn} can be equivalently
represented by a {0, 1}−valued n× n matrix A called its adjacency matrix:

Aij = 1{vi,vj}∈E.

Since A is symmetric, it has n real eigenvalues λ1 ≤ . . . ≤ λn. The empirical spectral
distribution of the graph G is the probability distribution

µG =
1

n

n∑

k=1

δλk
∈ P(R).

This graph invariant encodes considerable information about G, and constitutes the
very basis of spectral graph theory [42, 41]. It also plays a role in number theory,
via the important notion of expander graphs [46]. Many works have been devoted
to the typical behavior of µG as |V | → ∞. The regime where |E| >> |V | is now
well-understood: after a suitable normalization, Wigner’s universal semi-circle law
typically arises in the limit for many natural models. More details and references
will be given in the introduction of Chapter 2. Regarding the (extremely) sparse
regime |E| = Θ(|V |), the earliest result is known as the Kesten-McKay law [74] and
concerns random d−regular graphs on n vertices:

µGn
(dλ)

P(R)−−−→
n→∞

d
√

4(d− 1) − λ2

2π(d2 − λ2)
1(|λ|<2

√
d−1)dλ.

For the Erdős-Rényi model with p(n) = c/n (c > 0 is fixed and n → ∞), a
similar convergence was established more recently by Khorunzhy, Shcherbina, and
Vengerovsky [67], but in that case the limiting spectral distribution is only implicitly
determined. Also, Bhamidi, Evans and Sen [25] established the convergence of the
empirical spectral distribution for various models of random trees.

As we have already seen, sparse random regular graphs, sparse Erdős-Rényi
graphs and uniform random trees are typical examples of almost surely convergent
graph sequences. In light of this observation, the following question naturally arises:
can the asymptotic behavior of the empirical spectral distribution be directly read
off on the local weak limit of the underlying graph sequence ? Idealistically, we
would like to re-interpret the aforementioned results as special cases of a general,
unifying statement of the form

Gn
LW−−−→
n→∞

L =⇒ µGn

P(R)−−−→
n→∞

µL,

where µL ∈ P(R) is some suitably defined spectral distribution associated with the
local weak limit L. As we will see, a sense can indeed be given to such an object,
provided L is concentrated on self-adjoint graphs. Moreover, in that case, the above
implication actually holds.

Theorem (Theorem 2.1). If L ∈ P(G⋆) is concentrated on self-adjoint graphs, then
the implication

Gn
LW−−−→
n→∞

L =⇒ µGn

P(R)−−−→
n→∞

µL

holds true for any sequence of finite graphs (Gn)n∈N.
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For this result to be operational, we now need to investigate the question of self-
adjointness for graphs that typically arise in the limit of classical models. The notion
of self-adjointness of graphs was first considered by Mohar [80], who established that
any graph with bounded degree is self-adjoint, and who originally believed that any
locally finite graph would be self-adjoint. Counter-examples were soon constructed
[81, 85], and to the best of our knowledge, there is no simple graph-theoretical
translation of self-adjointness. For more details, we refer the reader to [82, 45]. Our
second contribution is an exact characterization in the case of trees (see Theorem
2.2 in Chapter 2 for the precise statement), from which it follows in particular that

Theorem (Corollary 2.3). A tree with finite branching number is self-adjoint.

Introduced by Lyons [70] (see also [72]), the branching number is, for many differ-
ent purposes (including flows, percolation, electrical networks, Hausdorff dimension
and random walks), the relevant measurement of how big an infinite tree is. It is
formally defined as

brT = sup

{
λ ≥ 1 : inf

K : cut

∑

e∈K
λ−|e| > 0

}
∈ [1,∞].

where |e| denotes the distance from the edge e to the root, and where a cut K is a
finite set of edges whose removal makes the connected component of the root finite.
(This is easily seen not to depend on the choice of the root.) The branching number
of a Galton-Watson tree is simply its average offspring distribution, almost surely on
the event of non-extinction ([70, Proposition 6.4]). For a unimodular Galton-Watson
tree with degree distribution π, each proper subtree is a Galton-Watson tree whose
offspring distribution π̂ is given by (1.1). Clearly, the mean of π̂ is finite if and only
if π has finite variance.

Corollary (Corollary 2.4). A unimodular Galton-Watson tree whose degree distri-
bution π has finite variance is self-adjoint with probability one.

In a tree T = (V,E) with an arbitrarily fixed root o ∈ V , an end is an infinite
simple path starting from o. If there are finitely many such ends, then clearly
br(T ) = 1. For example, the Infinite Skeleton Tree has almost surely one end, and
is hence almost surely self-adjoint. In fact, a general result due to Aldous and Lyons
[7, Proposition 6.3] asserts that the local weak limit of any sequence of finite trees
must be concentrated on trees with at most two ends. Thus,

Corollary (Corollary 2.1). Any random rooted tree arising as the local weak limit
of a sequence of finite trees is self-adjoint with probability one.

In other words, the self-adjointness condition in Theorem 2.1 is automatically
fulfilled for trees. We state this separately, since it simplifies and generalizes a recent
result due to Bhamidi, Evans and Sen [25, Theorem 4.1].

Corollary (Corollary 2.2). If a sequence of finite trees admits a local weak limit L,
then the sequence of their empirical distributions converges to µL.

In addition to the characterization of self-adjointness for trees, Theorem 2.2 also
provides a local, recursive description of µL via its Stieltjes-Borel transform, which
will be crucially used in Chapter 3 to derive new explicit formulae for the multiplicity
of the eigenvalue zero.



1.3. OVERVIEW OF THE RESULTS 21

1.3.2 Rank and nullity (Chapter 3)

The nullity η(G) of a finite graph G = (V,E) is the multiplicity of the eigenvalue
zero in its spectrum:

η(G) = dim ker(A) = |V| − Rank(A) = |V|µG({0}).

This graph parameter plays an important role in graph theory and computer science,
notably as a simple bound for computationally intractable (NP-hard) invariants
[101, 3]. It is therefore natural to investigate its typical behavior for classical random
graphs. Bauer and Golinelli [15] have computed exactly the expected rank of a
uniform random tree of size n, for any n ∈ N∗. For the Erdős-Rényi model with
edge probability p = p(n) on n vertices, the regime where p(n) = a logn/n (a > 0
fixed, n → ∞) has been studied by Costello, Tao and Vu [43] and Costello and Vu
[44]. Their results imply that for a > 1, the nullity is zero with high probability
while for 0 < a < 1, it scales like n1−a. In the sparse regime where p(n) = cn, the
answer is only known if c ≤ e, but a conjecture has been formulated for c > e by
Bauer and Golinelli [16].

Conjecture. In the Erdős-Rényi model with p(n) = c/n, for all c > 0,

µGn
({0}) a.s.−−−→

n→∞
λ∗ + e−cλ∗ + cλ∗e

−cλ∗ − 1,

where λ∗ ∈ (0, 1) denotes the smallest root of λ = e−ce
−cλ

.

We settle this conjecture, thereby also answering one of the open questions in
Costello and Vu [44]. More generally, we consider sequences of graphs (Gn)n≥1

whose local weak limit L is a unimodular Galton-Watson distribution. If the degree
distribution π has a finite second moment, we know from Chapter 2 that the tree is
almost surely self-adjoint and that

lim sup
n→∞

µGn
({0}) ≤ µL({0}).

Our first result is the explicit computation of this natural upper bound. The formula
involves a function M : [0, 1] → R defined in terms of the degree generating function
φ(λ) =

∑∞
n=0 πnλ

n as follows:

M(λ) = φ′(1)λλ+ φ(1 − λ) + φ
(
1 − λ

)
− 1 with λ =

φ′(1 − λ)

φ′(1)
.

Theorem (Theorem 3.1). Let π ∈ P(N) have a finite second moment. Then for the
unimodular Galton-Watson distribution L with degree distribution π,

µL({0}) = max
λ∈[0,1]

M(λ).

Moreover, any λ where the above maximum is achieved must satisfy λ = λ.
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To obtain a lower bound, we use the following observation, due to Bauer and
Golinelli [16]. A leaf in a graph is simply a vertex of degree 1. The nullity η(G)
is well-known to be invariant under the action of deleting an arbitrary leaf and its
unique neighbor. Iterating this procedure eventually produces a core with minimum
degree at least 2, plus a certain number of isolated vertices which is a simple lower
bound for η(G). In order to determine its asymptotic behavior for large sparse ran-
dom graphs, we analyze the leaf-removal process directly on the limiting unimodular
Galton-Watson tree. We show that the probability that the root eventually becomes
isolated is precisely given by the first local extremum of the above-defined function
M . Consequently, we obtain a general asymptotic lower bound.

Theorem (Theorem 3.2). For any sequence of finite graphs (Gn)n∈N whose local
weak limit is a unimodular Galton-Watson distribution,

lim inf
n→∞

µGn
({0}) ≥M(λ∗),

where λ∗ ∈ (0, 1) is the smallest root of λ = λ.

Combining the upper and the lower bound, we obtain the following result.

Corollary. Let L be the unimodular Galton-Watson distribution with degree dis-
tribution π. Assume that π has a finite second moment, and that the first local
extremum of M is its global maximum. Then, for any sequence of finite graphs
(Gn)n∈N whose random weak is L,

µGn
({0}) −−−→

n→∞
µL({0}) = M(λ∗),

where λ∗ ∈ (0, 1) is the smallest root of λ = λ. Moreover, a simple sufficient
condition for the above assumption to hold is that log(φ′′) is concave on (0, 1).

In the Erdős-Rényi case, the local weak limit is almost surely the Poisson-Galton-
Watson distribution with mean c, whose degree generating function is φ(λ) =
ecλ−c. φ′′ is clearly log-concave, and hence the above conjecture is settled. For
the d−regular infinite tree, the second derivative of φ(λ) = λd is also trivially log-
concave and M(λ∗) = M(0) = 0, in agreement with the fact that the Kesten-McKay
distribution µL is absolutely continuous with respect to Lebesgue’s measure. How-
ever, we will also exhibit simple degree distributions π such that the lower bound
M(λ∗) does not match the upper bound maxM . The asymptotic behavior of the
nullity in that case remains an interesting open question.

1.3.3 Matching number (Chapter 4)

A matching on a finite graph G = (V,E) is a subset of mutually non-adjacent edges
M ⊆ E. The matching number ν(G) is the largest possible cardinality of a matching
on G. This simple invariant plays an important role in graph theory, and we refer
the interested reader to the monographs [58, 69] for more details. Karp and Sipser
[66] investigated its behavior in the case of the Erdős-Rényi random graph with
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average degree c > 0 on n vertices. Using a detailed analysis of the leaf-removal
process, they showed that

ν(Gn)

|Vn|
−−−→
n→∞

1 − λ∗ + e−cλ∗ + cλ∗e
−cλ∗

2
, (1.2)

where λ∗ ∈ (0, 1) is the smallest root of λ = e−ce
−cλ

. More recently, the same
technique has been applied to leafless random graphs with a prescribed log-concave
degree distribution (Bohmann and Frieze [27]), resulting in the asymptotic existence
of an almost perfect matching in the following sense:

ν(Gn)

|Vn|
−−−→
n→∞

1

2
. (1.3)

Here we show that the asymptotic behavior of the matching number can in fact be
directly deduced from the local weak convergence of the underlying graph sequence,
thereby simplifying, unifying and generalizing the two aforementioned results.

Theorem (Theorem 4.1). Let (Gn)n∈N be a sequence of finite graphs admitting a
local weak limit L. Then,

ν(Gn)

|Vn|
−−−→
n→∞

ν(L), (1.4)

where ν(L) ∈ [0, 1
2
] is described by a local recursion defined directly on the local weak

limit L. When the latter is the unimodular Galton-Watson distribution with degree
π, we have the explicit formula

ν(L) =
1

2
− 1

2
max
λ∈[0,1]

M(λ).

That the atomic spectral mass at zero and the asymptotic matching number be
described by the very same function M may surprise at first sight. However, if G =
(V,E) is a finite tree, it is well-known that 2ν(G) = |V |−η(G). In a sense, the above
result thus extends this identity to the case of an infinite unimodular Galton-Watson
tree. For Erdős-Rényi random graphs with average degree c, the local weak limit is
a.s. the Poisson-Galton-Watson distribution with mean c (i.e. φ(λ) = exp(cλ− c)),
so we recover precisely Karp and Sipser’s formula (1.2). Similarly, for random graphs
with a prescribed degree sequence, the log-concave assumption made by Bohmann
and Frieze in [27] guarantees that the above maximum is achieved at λ = 0, hence
(1.3) follows automatically.

Nevertheless, Theorem 4.1 is far from being a direct implication of our results
for the spectral mass at zero. The main difference, apart from the fact that the
convergence (1.4) holds without any self-adjointness assumption, is that the crucial
condition maxM = M(λ∗) is not imposed anymore. As we will show, this condition
is equivalent to a precious property known as correlation decay, which usually plays
a central role in the objective method. Its failure (called ergodicity breaking in
[106]) implies non-trivial long-range correlations between the edges in a uniformly
chosen largest matching. Our main contribution consists in overcoming this lack
of correlation decay. Specifically, we relax the constraint of largest cardinality by
means of a variable parameter called the activity, and we show that correlation decay
always holds under these relaxed constraints. The size of the largest matching can
then be recovered by sending the activity to infinity.
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1.3.4 Weighted subgraph enumeration (Chapter 5)

In the last chapter of this thesis, we consider the more general framework of a finite
graph G = (V,E) whose spanning subgraphs (V, F ), F ⊆ E are weighted according
to their local aspect around each vertex as follows:

µ(F ) =
∏

i∈V
µi(F ∩ Ei).

Here, a spanning subgraph (V, F ) is identified with its edge-set F ⊆ E, and each µi
is a given non-negative function over the subsets of Ei := {e ∈ E; e is incident to i}.
We call µ the global measure induced by the local measures µi, i ∈ V . Of particular
interest in combinatorial optimization is

M(G) = max {|F | : F ∈ supp(µ)} ,

which is the maximum possible size of a spanning subgraph F satisfying the local
constraint µi(F ∩ Ei) > 0 at every vertex i ∈ V . More generally, counting the
weighted number of spanning subgraphs of each given size in G, i.e. determining
the generating polynomial

Z(G; t) =
∑

F⊆E
µ(F )t|F |

is a fundamental task, of which many combinatorial problems are special instances.
Intimately related to this is the study of a random spanning subgraph F sampled
from the Gibbs-Boltzmann law:

P
t
G(F = F ) =

µ(F )t|F |

Z(G; t)
,

where t > 0 is a variable parameter called the activity. In particular, the expected
size of F is called the energy U(G; t) and is connected to Z(G; t) via the elementary
identity

U(G; t) = t
d

dt
logZ(G; t).

Our concern is the behavior of these quantities in the infinite volume limit: |V | → ∞,
|E| = Θ(|V |).

As already explained, the cavity method is a powerful non-rigorous technique
for evaluating such asymptotics on graphs that are locally tree-like. The heuristic
consists in neglecting cycles in order to obtain an approximate local fixed point
equation (the so-called cavity equation) for the marginals of the Gibbs-Boltzmann
law. Despite its remarkable practical efficiency and the mathematical confirmation
of its analytical predictions for various important models [97, 5, 56, 89, 19, 48, 33],
this ansatz is still far from being completely understood, and the exact conditions for
its validity remain unknown. More precisely, two crucial questions arise in presence
of cycles:

1. convergence: is there a unique solution to the cavity equation ?
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2. correctness: is the latter related to the Gibbs-Boltzmann law ?

Using the theory of negative association for measures initiated by Pemantle [86],
we exhibit a new, general condition under which the cavity method is valid for
counting spanning subgraphs subject to local constraints. Specifically, we positively
answer question 1 for arbitrary finite graphs and their local weak limits (Propositions
5.1 and 5.2), under the only assumption that each local measure enjoys a certain
form of negative association which we call the cavity-monotone property. In the
exchangeable case, the latter simply boils down to ultra-log-concavity (see Section
5.2 for the precise definitions). Our proof of the uniqueness for any local weak limit
relies on a powerful notion of spatial invariance known as unimodularity, to which
Aldous and Lyons have dedicated a whole survey [7]. Regarding question 2, we
prove asymptotic correctness for any sequence of graphs whose local weak limit is
concentrated on trees (Theorem 5.2). In particular, we obtain that the so-called
internal energy and thermodynamic pressure,

U(G; t)

|V | and
1

|V | logZ(G; t),

converge to quantities that are directly described in terms of the limiting cavity
equation. Consequently, we state a large deviation principle with speed |V | for the
relative size |F|/|V | of a random spanning subgraph sampled proportionally to µ.
Finally, in the important case where the local weak limit is a unimodular Galton-
Watson distribution, the cavity equation simplifies into a recursive distributional
equation which can be solved explicitly. As an illustration, let us here describe the
implications of our work in the special case of b-matchings.

An important combinatorial structure that fits in the above framework is ob-
tained by fixing b ∈ N and taking µi(F ) = 1(|F | ≤ b) for all i ∈ V . The induced
global measure µ is then nothing but the counting measure for b−matchings in G,
i.e. spanning subgraphs with maximum degree at most b. The reader is referred
to the monograph [93] for a comprehensive survey on b−matchings. The associated
quantities Mb(G) and Zb(G; t) are important graph invariants respectively known
as the b−matching number and b−matching polynomial. The case of matchings
(b = 1) has been investigated in great detail, notably for the purpose of understand-
ing monomer-dimer systems [62, 23]. Determining Z1(G; t) is a classical example of
a computationally hard problem [100], although efficient approximation algorithms
have been designed [18, 14]. The scaled convergence of Z1(G; t) as |V | → ∞ was
established in [62] for the lattice case, and in [19] under a restrictive large girth
assumption. Contrastingly, only little is known for b ≥ 2. To the best of our knowl-
edge, the limit of 1

|Vn|Mb(Gn) is only known to exist in the sparse Erdős-Rényi case
[55, Theorem 3], and could not be explicitly determined. As a special case of our
main result, it will follow that

Theorem (Theorem 5.1). For any sequence of finite graphs (Gn)n∈N satisfying
|En| = O(|Vn|) and whose local weak limit L is concentrated on trees, the limits

hb(L; t) := lim
n→∞

1

|Vn|
logZb(Gn; t) and mb(L) := lim

n→∞

Mb(Gn)

|Vn|
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exist and depend only on the local weak limit L. When L is the unimodular Galton-
Watson distribution with degree π, we have the explicit formula

mb(L) =
b

2
min
λ∈[0,1]

{
2 − gb(λ) − (gb ◦ fb)(λ) +

c

b
fb(λ)(fb ◦ fb)(λ)

}
,

where c, f, g are defined in terms of φ(λ) =
∑

k πkλ
k as follows:

c = φ′(1), fb(λ) =
1

c

b−1∑

k=0

λkφ(k+1)(1 − λ)

k!
and gb(λ) =

b∑

k=0

λkφ(k)(1 − λ)

k!
.

Moreover, any λ achieving this minimum must be a root of λ = (fb ◦ fb)(λ).



Chapter 2

Empirical spectral distribution

Joint work with Charles Bordenave and Marc Lelarge

The empirical spectral distribution of a finite graph plays a central role in spectral
graph theory, and this chapter is devoted to the study of its asymptotics as the size
of the graph tends to infinity. Our first result is that if a sequence of finite graphs
admits a local weak limit L, then the corresponding sequence of empirical spectral
distributions converges to a certain measure µL, provided L is concentrated on self-
adjoint graphs. Our second contribution is a characterization of self-adjointness in
the important case of trees, as well as a recursive fixed point equation for determining
µL. As a by-product, we obtain that any tree with finite branching number is
self-adjoint, which includes in particular all the local weak limits described in the
introduction as well as any local weak limit of finite trees.
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0 0 1 0 1 1

1 1 0 1 0 0

0 0 0 1 0 0

Figure 2.1: A graph and its adjacency matrix
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2.1 Introduction

A finite graph G = (V,E) on n vertices V = {v1, . . . , vn} can be equivalently
represented by a {0, 1}−valued n× n matrix A called its adjacency matrix :

Aij = 1{vi,vj}∈E.

Since A is symmetric, it has n real eigenvalues λ1 ≤ . . . ≤ λn. The empirical

spectral distribution of the graph G is the probability distribution

µG =
1

n

n∑

k=1

δλk
∈ P(R).

This graph invariant encodes considerable information about G, and constitutes the
very basis of spectral graph theory [42, 41]. It also plays an important role in number
theory, via the notion of expander graphs [46]. Many works have been devoted to the
typical behavior of µG as the size of G tends to infinity. The word typical implicitly
assumes the specification of an underlying probability distribution over graphs.

The most natural choice for constructing a random graph Gn on n vertices is
undoubtedly the Erdős-Rényi model with edge probability p = p(n) ∈ [0, 1]. Up to
symmetry, the adjacency matrix of Gn simply consists of i.i.d. Bernouilli random
variables. This elementary entry distribution has a finite support, which is much
more than what is actually required for the following celebrated principle to hold
(see the monograph [13] for a complete introduction to the spectral theory of random
matrices): provided np(n) → ∞,

µGn

(
1√
nσn

dλ

)
d−−−→

n→∞

1

2π

√
4 − λ21(|λ|<2)dλ, (2.1)

where σ2
n = p(n)(1 − p(n)). The limiting distribution is known as the semicir-

cle law and was originally discovered by Wigner [104] for Gaussian entries. Its
most remarkable feature is its universality. To illustrate this, let us replace the
Erdős-Rényi graph Gn by a random d(n)−regular graphs on n vertices, thereby in-
troducing non-trivial correlations between the entries of the adjacency matrix (since
each row/column must now sum to d(n)). Remarkably enough, (2.1) still holds with
σ2
n = d(n)

n
(1 − d(n)

n
), provided d(n) → ∞. The proof of this latter fact is very recent

[51, 99].
In these two examples, the conditions np(n) → ∞ and d(n) → ∞ have the

same meaning : the underlying graphs should be rather dense, in the sense that
|E| >> |V |. Regarding the (extremely) sparse regime |E| = Θ(|V |), the earliest
result is known as the Kesten-McKay law [74] for random regular graphs : when the
degree d(n) = d is kept constant as n→ ∞,

µGn
(dλ)

d−−−→
n→∞

d
√

4(d− 1) − λ2

2π(d2 − λ2)
1(|λ|<2

√
d−1)dλ.

In the sparse Erdős-Rényi model (p(n) = c/n where c > 0 is fixed), a similar
convergence was established more recently [67], but in that case the limiting spectral
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distribution is only implicitly determined, and important questions concerning its
atomic and absolutely continuous part are still open [17]. Bhamidi, Evans and
Sen [25] have established the convergence of the empirical spectral distribution for
various models of random trees.

As we have already seen, sparse random regular graphs, sparse Erdős-Rényi
random graphs and uniform random trees are typical examples of convergent graph
sequences in the local weak sense. In light of this observation, the following question
naturally arises : can the asymptotic behavior of the empirical spectral distribution
be directly read off on the local weak limit of the underlying graph sequence ?
Idealistically, we would like to re-interpret the aforementioned results as special
cases of a general, unifying statement of the form

Gn
LW−−−→
n→∞

L =⇒ µGn
−−−→
n→∞

µL,

where µL ∈ P(R) is directly defined on the local weak limit L. As we shall soon
see, such an implication holds as soon as L is concentrated on self-adjoint graphs

(Theorem 2.1). Our main contribution here is an explicit characterization of self-
adjointness of trees, as well as a recursive fixed point equation for determining µL
(Theorem 2.2). The latter will be crucially used in the next chapter to derive new
results concerning the asymptotic multiplicity of the eigenvalue zero for Erdős-Rényi
graphs and other popular models of sparse random graphs.

2.2 Rooted spectral measures

For a comprehensive introduction to the theory of linear operators on Hilbert spaces
– and in particular the spectral theorem for self-adjoint operators – the reader is
referred to the textbooks [87, 88, 98], or to the beautiful expository note [94]. A
locally finite graph G = (V,E) can be naturally identified with a certain linear
operator A on the Hilbert space

ℓ2(V ) =

{
ψ : V → C :

∑

i∈V
|ψ(i)|2 <∞

}
,

endowed with its canonical inner product 〈ψ, ϕ〉 =
∑

i∈V ψ(i)ϕ(i). Specifically, the
domain of A is the dense subspace of finitely supported functions Cc(V ) ⊆ ℓ2(V ),
and the action of A on the canonical orthonormal basis (δi)i∈V (where δi(j) = 1{j=i})
is given by

Aδi =
∑

j∈∂i
δj .

A is naturally called the adjacency operator of G. It is symmetric, in the sense
that 〈δi|Aδj〉 = 〈Aδi|δj〉. In the infinite-dimensional case however, symmetry is not
enough to guarantee a suitable spectral decomposition. This translates the fact that
the spectrum

σ(A) = {z ∈ C : A− z does not have a bounded inverse}
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is not necessarily real. When it is, A and G are said to be (essentially) self-adjoint.
Mohar [80] was the first to consider spectra of infinite graphs. His original belief
was that any locally finite graph would be self-adjoint, but counter-examples were
soon constructed [81, 85]. For more details on spectra of graphs, we refer the reader
to [82, 45]. To the best of our knowledge, there is no simple graph-theoretical
translation of self-adjointness. This contrasts with many simpler properties of A
(for proofs, see e.g. [82]):

1. A is bounded (i.e. continuous) ⇐⇒ G has bounded degree ;

2. A is compact ⇐⇒ G has finitely many edges ;

3. A =
⊕

k Ak, where
⊕

denotes the orthogonal sum and the Ak are the adja-
cency operators of the connected components of G.

From these three elementary observations however, it already follows that any graph
with bounded degree is self-adjoint, as well as any sub-critical graph (a graph whose
connected components are finite). Moreover, since self-adjointness is preserved un-
der addition of a bounded operator (a consequence of Kato-Rellich Theorem [88,
Theorem X.12]), we obtain the following simple yet powerful criterion.

Proposition 2.1 (Sufficient condition). For a graph G = (V,E) to be self-adjoint,
it is enough that its edge-set can be written as E = E1 ∪ E2 in such a way that
G1 = (V,E1) is sub-critical and G2 = (V,E2) has bounded degree.

In particular, the Infinite Skeleton Tree defined in Section 1.2 is almost-surely
self-adjoint. In fact, this is true for any local weak limit of trees.

Corollary 2.1. Any random rooted tree arising as the local weak limit of a sequence
of finite trees is self-adjoint with probability one.

Proof of Corollary 2.1. In a rooted tree T = (V,E, o), an end is as an infinite simple
path starting from the root o. A result due to Aldous and Lyons asserts that any
random rooted tree arising as the local weak limit of a sequence of finite trees has
almost surely at most two ends [7, Proposition 6.3]. But any tree with finitely many
ends is self-adjoint, since it satisfies the condition of Lemma 2.1 with E2 = E \ E1

and E1 consisting of those edges that are traversed by an end.

Similarly, a Galton-Watson tree whose offspring distribution has finite mean can
be shown to satisfy the condition of Proposition 2.1 with probability one. We do
not go into details since the self-adjointness of Galton-Watson trees will also follow
from Corollary 2.3 below. Regarding measurability issues, we simply note that self-
adjointness can be expressed as a union and intersection of countably many cylinder
events (i.e. events depending only on [G, o]d for some large enough d). Indeed, by
the basic criterium for essential self-adjointness [87, Theorem VIII.3], we have for
any countable locally finite graph G with adjacency operator A,

G is self-adjoint ⇐⇒ Ran(A ± i)−1 is dense in ℓ2(V)

⇐⇒ ∀o ∈ V, ∀n ∈ N
∗, ∃d ∈ N

∗, min
supp(ϕ)⊆Bo,d

‖(A± i)ϕ− δo‖ <
1

n
.
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with i =
√
−1 and where Bo,d ⊆ V denotes the set of vertices lying at graph distance

at most d from o in G. Clearly, the above minimum depends only on [G, o]d+1.
We henceforth assume that G is self-adjoint, and we let

H = {z ∈ C : Im(z) > 0}

denote the upper complex half-plane. The spectral theorem for self-adjoint operators
then guarantees that for every ψ ∈ ℓ2(V ) with ‖ψ‖ = 1, there exists a unique
probability measure µ∗

ψ ∈ P(R) satisfying

〈ψ|(A− z)−1ψ〉 =

∫

R

1

λ− z
µ∗
ψ(dλ), (2.2)

for all z ∈ H. µ∗
ψ is usually called the spectral measure associated with the pair

(A,ψ). In particular, for every vertex o ∈ V of a self-adjoint graph G = (V,E),
we may consider the spectral measure associated with the vector δo. We denote
it by µ∗

(G,o) and call it the rooted spectral measure of the rooted graph (G, o).
Intuitively, µ∗

(G,o) may be thought of as the local contribution of the vertex o to the
spectrum of G. The following Lemma gives a rigorous meaning to this idea in the
case where G is finite.

Lemma 2.1 (Spatial average). The empirical spectral distribution of a finite graph
G is the spatial average of its rooted spectral measures :

µG =
1

|V |
∑

o∈V
µ∗

(G,o).

Proof. In finite dimension, there exists an orthonormal basis of eigenvectors (φ1, . . . , φn)
corresponding to the eigenvalues λ1, . . . , λn. Any vector ψ ∈ Cn can be decomposed
in this basis, yielding successively

(A− z)ψ =

n∑

k=1

(λk − z)〈ψ|φk〉φk,

(A− z)−1ψ =
n∑

k=1

1

λk − z
〈ψ|φk〉φk,

〈ψ|(A− z)−1ψ〉 =
n∑

k=1

1

λk − z
|〈ψ|φk〉|2.

Comparing the last line with (2.2), we see that

µ∗
ψ =

n∑

k=1

|〈ψ|φk〉|2δλk
.

In words, the spectral measure associated with ψ is a mixture of atoms located at
eigenvalues, the mass of each atom being the square norm of the projection of ψ
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onto the corresponding eigenspace. Now if ψ1, . . . , ψn is an arbitrary orthonormal
basis of Cn, we have :

1

n

n∑

i=1

µ∗
ψi

=
1

n

n∑

k=1

(
n∑

i=1

|〈ψi|φk〉|2
)
δλk

=
1

n

n∑

k=1

‖φk‖2δλk

= µG.

Since (δi)i∈V is an orthonormal basis, the result is proved.

2.3 Continuity under local convergence

From the orthonormal decomposition of the adjacency operator along connected
components, it follows that a locally finite graph G is self-adjoint if and only if all
its connected components are self-adjoint. Also, the rooted spectral measure at a
vertex o depends only on the connected component containing o. Moreover, these
notions are clearly preserved under isomorphism. Consequently, self-adjointness is
a well-defined property on G⋆ and (G, o) 7→ µ∗

(G,o) is a well-defined mapping over the
self-adjoint elements of G⋆. This mapping is continuous with respect to the topology
of local convergence.

Lemma 2.2 (Continuity of rooted spectral measures). Let (G, o) and
(G1, o1), (G2, o2), . . . be self-adjoint elements of G⋆. Then,

(Gn, on)
G⋆−−−→

n→∞
(G, o) =⇒ µ∗

(Gn,on)

P(R)−−−→
n→∞

µ∗
(G,o).

Proof. By assumption, for any radius d ∈ N there exists nd ∈ N such that

n ≥ nd =⇒ [Gn, on]d ≡ [G, o]d. (2.3)

Since the elements of G⋆ have at most countably many vertices and are only con-
sidered up to isomorphism, we may without loss of generality embed the graphs
(G, o), (G1, o1), (G2, o2), . . . into the same vertex set V . Their respective adjacency
operators A,A1, A2, . . . thus act on the same Hilbert space ℓ2(V ), the action being
defined as zero on the orthogonal complement of the subspace spanned by their
proper vertices. A canonical choice for V is the set N∗ =

⋃∞
d=0 Nd of finite words

over integers : the root is represented by the empty-word, and vertices at distance d
from the root are represented by words of length d, in such a way that the relation
≡ appearing in (2.3) becomes a true equality. Now fix a word i ∈ V with length d.
By construction, for every n ≥ nd, we have that i is a proper vertex of Gn if and
only if it is a proper vertex of G. Even better, for n ≥ nd+1 the neighbors of i are
the same in Gn and in G, which precisely mean that Anδi = Aδi. By linearity, it
follows that any finitely supported vector ψ : V → C must satisfy

n ≥ nψ =⇒ Anψ = Aψ,
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for some large enough nψ ∈ N. Since finitely supported vectors are dense in ℓ2(V ),
[87, Theorem VIII.25(a)] guarantees that An → A in the norm resolvent sense, which
in particular implies the weak convergence of the rooted spectral measures. Note
that this last statement does not depend anymore on the particular way in which
the graphs have been embedded.

We are now in position to prove the following simple but important result, which
guarantees that the asymptotic properties of the empirical spectral distribution of
sparse graphs may be directly read off on their local weak limit. This idea is not
new (see [32]), but the precise statement is.

Theorem 2.1 (Convergence of empirical spectral distributions). If L ∈ P(G⋆) is
concentrated on self-adjoint graphs, then the implication

Gn
LW−−−→
n→∞

L =⇒ µGn

P(R)−−−→
n→∞

µL

holds true for any sequence of finite graphs (Gn)n∈N, with µL = L
[
µ∗

(G,o)

]
.

This generalizes various known results that had been proven separately for spe-
cific models of sparse random graphs, such as random regular graphs [74] and Erdős-
Rényi random graphs [67]. In the special case of trees, the self-adjointness condition
is automatically fulfilled by virtue of Corollary 2.1. We state this separately, since
it generalizes a recent result [25, Theorem 4.1].

Corollary 2.2 (Trees). If a sequence of finite trees admits a local weak limit L, then
the sequence of their empirical distributions converges to µL.

Proof of Theorem 2.1. Fix a bounded continuous function f : R → R. We want to
show ∫

R

f dµGn
−−−→
n→∞

∫

R

f dµL,

or equivalently, thanks to Lemma 2.1,

E

[
f̂(Xn)

]
−−−→
n→∞

E

[
f̂(X)

]
, (2.4)

where Xn denotes a random element of G⋆ obtained by uniform rooting of Gn, X
denotes a random element of G⋆ with law L, and for every self-adjoint element
(G, o) ∈ G⋆,

f̂(G, o) =

∫

R

f dµ∗
(G,o).

But f̂ is clearly bounded by ‖f‖∞, and continuous by Lemma 2.2, so (2.4) is a

direct consequence of the weak convergence Xn
d−−−→

n→∞
X, which is precisely what

the Theorem asserts.
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2.4 Exact characterization on trees

There are two caveats in Theorem 2.1: first, the class of self-adjoint graphs is not
well characterized and second, the limiting spectral distribution µL = L[µ∗

(G,o)] is
not very explicit. Here we fix these two problems in the special case of trees. Recall
that any probability measure µ ∈ P(R) is characterized by its Stieltjes-Borel

transform [98], which is the analytic function from H to H defined by

z 7→
∫

R

1

λ− z
µ(dλ).

In all this section we consider a locally finite tree T = (V,E). Once an arbitrary
root o ∈ V has been specified, we may use the notation j → i to mean that j is a
child of i in the rooted tree (T, o). For i ∈ V we define Ti as the subtree consisting
of i and all its descendants in T , and we let Vi denote its vertex set. Given z ∈ H,
a solution to the cavity recursion at activity z on (T, o) is a family (xi)i∈V ∈ HV

satisfying everywhere the local equation

xi =
−1

z +
∑

j→i xj
.

This recursion is not new (see e.g. Proposition 2.1 in [68]). As it will appear in
the proof of Lemma 2.6 below, it can be seen as an operator-theoretic version of
Schur’s complement formula. Note that any solution to the above equation must
immediately satisfy

|xi| ≤
1

Im z
(2.5)

at every i ∈ V . In particular, the existence of a solution to the cavity recursion
is always guaranteed by compactness. The goal of this section is to establish the
following recursive characterization.

Theorem 2.2 (Self-adjointness of trees). The following are equivalent :

1. the tree T is essentially self-adjoint;

2. for some z ∈ H, the cavity recursion on (T, o) has a unique solution;

3. for every z ∈ H, the cavity recursion on (T, o) has a unique solution.

Moreover, in that case, the solution at a given vertex i ∈ V is exactly the Stieltjes-
Borel transform of the rooted spectral measure µ∗

(Ti,i)
: for all z ∈ H,

xi(z) =

∫

R

1

λ− z
µ∗

(Ti,i)
(dλ). (2.6)

As an application, let us first derive a simple and general sufficient condition for
self-adjointness. Introduced by Lyons [70] (see also [72]), the branching number

of a tree is, for many different purposes (including flows, percolation, electrical
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networks, Hausdorff dimension and random walks), the relevant measurement of
how big an infinite tree is. It is formally defined as

brT = sup

{
λ ≥ 1 : inf

K : cut

∑

e∈K
λ−|e| > 0

}
∈ [1,∞].

where |e| denotes the height of the edge e, and where a cut K is a finite set of edges
whose removal makes the connected component of the root finite. Here our interest
for brT lies in the following property.

Lemma 2.3. Let T = (V,E) be a rooted tree and let λ > brT . Then 0 is the only
bounded function f : V → R+ satisfying at every i ∈ V

f(i) ≤ 1

λ

∑

j→i

f(j). (2.7)

Proof of Lemma 2.3. Let K be a finite cut. Starting from the root o and iterating
the inequality (2.7) until the cut K is reached yields

f(o) ≤ M
∑

e∈K
λ−|e|,

where M = supi∈V f(i). The fact that λ > brT precisely means that this upper-
bound can be made as small as desired by choosing K appropriately, hence f(o) = 0.
To obtain f(i) = 0 for every i ∈ V , simply replace T by the subtree Ti in the above
argument (note that brTi ≤ brT ).

Now if x = (xi)i∈V and x′ = (x′i)i∈V are solutions to the cavity recursion at
activity z, then f : i 7→ |xi − x′i| is bounded by (2.5) and clearly satisfies (2.7) with
λ = (Im z)2. Consequently, we obtain the following result.

Corollary 2.3. A tree with finite branching number is self-adjoint.

The branching number of a Galton-Watson tree is its average offspring distri-
bution, almost surely on the event of non-extinction ([70, Proposition 6.4]). In a
unimodular Galton-Watson tree with degree distribution π, each subtree has the
biased offspring distribution π̂ given by (1.1), which has finite mean if and only if π
has a finite second moment. Thus,

Corollary 2.4. A unimodular Galton-Watson tree whose degree distribution π has
finite second moment is almost surely self-adjoint.

Proof of Theorem 2.2

The remaining of the section is devoted to the proof of Theorem 2.2, which we divide
into three Lemmas. Since the choice of a root o does not affect the self-adjointness
of T , it should not affect either the uniqueness of a solution to the cavity recursion.
We first establish this elementary but useful invariance.
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Lemma 2.4 (Root invariance). Fix z ∈ H and o, o′ ∈ V . Then there is a bijection
between the solutions to the cavity recursion at activity z on (T, o) and the solutions
to the cavity recursion at activity z on (T, o′).

Proof. By transitivity it is enough to show the result in the case where o′ and o are
neighbors. By symmetry it is enough to find an injection between the solutions on
(T, o) and those on (T, o′). Given a solution x to the cavity recursion at activity z
on (T, o), we construct a solution x′ to the cavity recursion at activity z on (T, o′)
by setting x′i = xi for all i /∈ {o, o′}, then

x′o =
−1

z +
∑

i∈∂o\o′ xi
and finally x′o′ =

−1

z +
∑

i∈∂o′\o xi + x′o
.

Clearly, x′ is a solution to the cavity recursion at activity z on (T, o′), since any
i ∈ V \ {o, o′} has the same children in (T, o) and in (T, o′), while the set of children
of o and o′ becomes respectively ∂o \ o′ and ∂o′ in (T, o′). Moreover the map x 7→ x′

can be inverted by setting xi = x′i for all i /∈ {o, o′}, then

xo′ =
−1

z +
∑

i∈∂o\o′ x
′
i

and finally xo =
−1

z +
∑

i∈∂o\o′ x
′
i + xo′

.

This concludes the proof. Note that the bijection is even constructive.

For any node i ∈ V , we let |i| denotes its distance to the root and [o, i] denote the
set of |i|+ 1 vertices that compose the unique simple path from i to o. As observed
in [80], the adjoint A∗ of the adjacency operator A of T is formally defined by

(A∗ϕ)(i) =
∑

j∈∂i
ϕ(j),

and its domain Dom(A∗) consists precisely of those ϕ ∈ ℓ2(V ) with A∗ϕ ∈ ℓ2(V ).

Lemma 2.5 (self-adjointness =⇒ uniqueness). If A is self-adjoint then for each
z ∈ H there is a unique solution to the cavity recursion on (T, o).

Proof. To each solution (x)i∈V to the cavity equation at activity z ∈ H on (T, o),
we associate a function ϕ : V → C \ {0} as follows :

ϕ(i) = (−1)|i|
∏

k∈[o,i]

xk.

Let us first show that for any node i ∈ V and any finite set S ⊆ Vi,

Im(z)
∑

k∈S
|ϕ(k)|2 ≤ |ϕ(i)|2Im(xi)

|xi|2
. (2.8)

When S is empty, the thesis is trivial. Now by induction, we may write

Im(z)
∑

k∈S
|ϕ(k)|2 ≤ Im(z)|ϕ(i)|2 + Im(z)

∑

j→i

∑

k∈S∩Tj

|ϕ(k)|2

≤ Im(z)|ϕ(i)|2 +
∑

j→i

|ϕ(j)|2Im(xj)

|xj |2

≤ |ϕ(i)|2
(

Im(z) +
∑

j→i

Im(xj)

)
=

|ϕ(i)|2Im(xi)

|xi|2
,
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where we have successively used the induction hypothesis, the product-form of ϕ(j)
and finally the fact that x is a solution to the cavity equation. Hence (2.8) is proved.
In particular, taking i = o, we obtain

∑

k∈S
|ϕ(k)|2 ≤ Im (xo)

Im(z)
,

for any finite S ⊆ V , which shows that ϕ ∈ ℓ2(V ). Now let i ∈ V \ o, and let i′

denote its father. Using ϕ(i) = −xiϕ(i′) and the fact that x is a solution to the
cavity recursion, one finds

(A∗ϕ)(i) = ϕ(i′) +
∑

j→i

ϕ(j) = ϕ(i)

(
− 1

xi
−
∑

j→i

xj

)
= zϕ(i).

Similarly, for the case i = o, we have

(A∗ϕ)(o) =
∑

j→o

ϕ(j) = −xo
∑

j→o

xj =

∑
j→o xj

z +
∑

j→o xj
= 1 + zxo.

Summing up, we have shown

ϕ ∈ Dom(A∗) and A∗ϕ = zϕ + δo. (2.9)

To conclude, let x,x′ both satisfy the cavity recursion at activity z, and let ϕ, ϕ′ be
the vectors resulting from the above construction. Then by (2.9) ϕ−ϕ′ must belong
to Ker(A∗− z). If A is self-adjoint then Ker(A∗− z) = {0} ([88, Theorem X.1]), and
hence ϕ = ϕ′, which is clearly equivalent to the desired identity x = x′.

Lemma 2.6 (uniqueness =⇒ self-adjointness). Fix z ∈ H. If there is a unique
solution x = (xi)i∈V to the cavity recursion at activity z on (T, o), then A is self-
adjoint and (2.6) holds.

Proof. For an operator X, we adopt the general notation Xij = 〈δi|Xδj〉. Let A′

be any self-adjoint extension of A. Such an extension always exists since A is real
and symmetric (this is Von Neumann’s Theorem, [88, Theorem X.3]). For every
i ∈ V , we let A′

i denote the projection of A′ onto ℓ2(Vi), which is also self-adjoint. In
particular, A′

o = A′. Let S denote the adjacency operator of the star formed by the
edges that are incident to o. Setting B = A′−S, we obtain the following orthogonal
decomposition :

B =
⊕

i→o

A′
i,

The second resolvent formula [87, Theorem VIII.2] asserts that

(B − z)−1 − (A′ − z)−1 = (A′ − z)−1S(B − z)−1.

Explicitating the definition of S, we obtain for any j ∈ V ,

(B−z)−1
oj − (A′−z)−1

oj =
∑

i→o

(
(A′ − z)−1

oo (B − z)−1
ij + (A′ − z)−1

oi (B − z)−1
oj

)
. (2.10)
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But since each ℓ2(Vi), i→ o is a stable subspace for B, we know that

(B − z)−1
ij =





−z−1 if i = o and j = o
0 if i = o and j 6= o

(A′
i − z)−1

jk if i→ o and j ∈ Vi
0 if i→ o and j /∈ Vi

Therefore, taking j = o and j = i ∈ ∂o in (2.10) yields respectively

(A′ − z)−1
oo =

1

z

∑

i→o

(A′ − z)−1
oi − 1

z

and (A′ − z)−1
oi = −(A′ − z)−1

oo (A′
i − z)−1

ii ,

which can be combined into the following recursive identity :

(A′
o − z)−1

oo =
−1

z +
∑

i→o(A
′
i − z)−1

ii

.

Iterating this argument, we see that the family (xi)i∈V defined by

xi = (A′
i − z)−1

ii

is a solution to the cavity recursion at activity z on (T, o). But there is more. If
j ∈ V \ o, then j belongs to exactly one of the Vi, i→ o, and (2.10) yields

(A′ − z)−1
oj = −xo(A′

i − z)−1
ij .

Iterating this argument, we obtain that for every j ∈ V ,

(A′ − z)−1
oj = (−1)|j|

∏

k∈[o,j]

xk.

Consequently, if there is a unique solution x to the cavity recursion at activity z on
(T, o), then it follows that any two self-adjoint extension A′, A′′ of A must satisfy
for all j ∈ V ,

(A′′ − z)−1
oj = (A′ − z)−1

oj .

By Lemma 2.4, this must in fact hold for any choice of the root o ∈ V . But the
resolvent is a bounded operator, and is hence fully determined by its action on the
orthonormal basis. Thus, (A′′ − z)−1 = (A′ − z)−1, i.e. A′′ = A′: all self-adjoint
extensions of A coincide, which means that A is self-adjoint.



Chapter 3

Rank and nullity

Joint work with Charles Bordenave and Marc Lelarge

In this chapter, we obtain new results concerning the asymptotic multiplicity of the
eigenvalue zero in the spectrum of large diluted random graphs. In the special case
of Erdős-Rényi graphs with fixed average connectivity, our work answers an open
question of Costello and Vu and settles a conjecture due to Bauer and Golinelli.
First, we provide a recursive characterization for the atomic mass at zero in the
spectrum of a general self-adjoint tree T . Second, we explicitly solve this recursion
in the important case where T is a unimodular Galton-Watson tree, leading to a
previously unknown formula involving the degree generating function φ of T . Third
we prove that, under a simple condition on φ, the above formula gives indeed the
asymptotic spectral mass at zero along any sequence of graphs whose local weak
limit is T . Our proofs borrow ideas from analysis of algorithms and random matrix
theory. The results presented here have been published in [34].

39



40 CHAPTER 3. RANK AND NULLITY

3.1 Introduction

The nullity η(G) of a finite graph G = (V,E) is the multiplicity of the eigenvalue
zero in its spectrum :

η(G) = dim ker(A) = |V| − Rank(A) = |V|µG({0}),

where A denotes the adjacency matrix of G and µG its empirical spectral distri-
bution, as defined at the beginning of the previous chapter. This graph parameter
plays an important role in graph theory and computer science, notably as a simple
bound for computationally intractable (NP-hard) invariants [101, 3]. It also have
applications in chemistry [36].

It is therefore natural to investigate its typical behavior for classical random
graphs. Bauer and Gollineli [15] have computed exactly the expected rank of a
uniform random tree of size n, for any n ∈ N. For the Erdős-Rényi model with edge
probability p = p(n) on n vertices, the regime where p(n) = a log n/n (a > 0 fixed,
n → ∞) has been studied by Costello, Tao and Vu [43] and Costello and Vu [44].
Their results imply that for a > 1, the nullity is zero with high probability while for
0 < a < 1, it scales like n1−a. In the sparse regime p(n) = cn (c > 0), the answer is
only known if c ≤ e, but a conjecture has been formulated for c > e by Bauer and
Golinelli [16]:

Conjecture 3.1. In the Erdős-Rényi model with p(n) = c/n, for all c > 0,

µGn
({0}) a.s.−−−→

n→∞
λ∗ + e−cλ∗ + cλ∗e

−cλ∗ − 1, (3.1)

where λ∗ ∈ (0, 1) denotes the smallest root of λ = e−ce
−cλ

.

We will settle this conjecture, thereby also answering one of the open questions in
Costello and Vu [44]. More generally, we will consider sequences of graphs (Gn)n≥1

whose local weak limit L is a unimodular Galton-Watson distribution. Recall from
the previous chapter that when the degree distribution π has a finite second moment,
the tree is a.s. self-adjoint and

µGn
−−−→
n→∞

µL,

In particular, this weak convergence implies that almost surely,

lim sup
n→∞

µGn
({0}) ≤ µL({0}). (3.2)

Our first result is the explicit computation of this natural upper bound. The formula
involves a function M : [0, 1] → R defined in terms of the degree generating function
φ(λ) =

∑∞
n=0 πnλ

n as follows :

M(λ) = φ′(1)λλ+ φ(1 − λ) + φ
(
1 − λ

)
− 1 with λ =

φ′(1 − λ)

φ′(1)
.
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Theorem 3.1. Let π ∈ P(N) have a finite second moment. Then for the unimodular
Galton-Watson distribution L with degree distribution π,

µL({0}) = max
λ∈[0,1]

M(λ).

Moreover, any λ where the above maximum is achieved must satisfy λ = λ.

To obtain a lower bound, we will analyze the so-called leaf removal process,
which was originally introduce by Karp and Sipser [66] as a heuristic algorithm for
constructing a large matching (subset of pairwise disjoint edges) on a sparse graph
G. A leaf in a graph is simply a vertex of degree 1. The leaf removal is the action
of deleting an arbitrary leaf and its unique neighbor. The nullity η(G) is well-known
to be invariant under such a transformation (a proof can be found for example in
[45]). Iterating this procedure eventually produces a core K with minimum degree
at least 2, plus a certain number of isolated vertices LR(G) ∈ N. Both K and LR(G)
are easily checked to be independent of the successive choices that have been made
at each removal step. Clearly,

η(G) = LR(G) + η(K). (3.3)

Motivated by the computation of the size of a largest matching, Karp and Sipser [66]
analyzed the leaf-removal process on a Erdős-Rényi random graph with connectivity
c on n vertices (see [11, 27] for refinements of the method). They approximated the
dynamics by a system of differential equations which they explicitly solved in the
n→ ∞ limit. In particular, they obtained that

LR(Gn) ∼ n
(
λ∗ + e−cλ∗ + cλ∗e

−cλ∗ − 1
)
,

as n → ∞ and that the size of the remaining core K is o(n) if and only if c ≤ e .
Thus, their result implies that the conjecture (3.1) holds when c ≤ e, as observed
by Bauer and Golinelli [16]. However for c > e, the size of the core is not negligible
and the same argument only leads to the following inequality :

lim inf
n→∞

µGn
({0}) ≥ λ∗ + e−cλ∗ + cλ∗e

−cλ∗ − 1.

To generalize this lower bound, we will define and study the leaf-removal process on
an arbitrary unimodular Galton-Watson tree (T, o). As we will see, the probability
that the root eventually becomes isolated is exactly given by the first local extremum
of the above-defined function M . Consequently,

Theorem 3.2. For any sequence of finite graphs (Gn)n∈N whose random weak is a
unimodular Galton-Watson distribution,

lim inf
n→∞

µGn
({0}) ≥M(λ∗), (3.4)

where λ∗ ∈ (0, 1) is the smallest root of λ = λ.

Combined with Theorem 3.1, this lower bound yields the following result.
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Corollary 3.1. Let L be the unimodular Galton-Watson distribution with degree
distribution π. Assume that π has a finite second moment, and that the first local
extremum of M is its global maximum. Then, for any sequence of finite graphs
(Gn)n∈N whose random weak is L,

µGn
({0}) −−−→

n→∞
µL({0}) = M(λ∗),

where λ∗ ∈ (0, 1) is the smallest root of λ = λ. Moreover, a simple sufficient
condition for the above assumption to hold is that log(φ′′) is concave on (0, 1).

In the Erdős-Rényi case, the local weak limit is a.s. the Poisson-Galton-Watson
distribution with mean c, for which φ(λ) = ecλ−c. Clearly, φ′′ is log-concave, and
hence Conjecture 3.1 is proved. A plot of M for c = 4 is shown in red in Figure
3.1. The yellow and green curves both correspond to a situation where the tree
is leafless (π0 = π1 = 0), implying λ∗ = 0 and M(λ∗) = 0. For the yellow one
(3−regular random graphs) we see that µL({0}) = 0, in agreement with the fact
that the Kesten-McKay distribution µL is absolutely continuous with respect to
Lebesgue’s measure. Contrastingly, for the green one (75% of vertices have degree
3 and 25% have degree 15), we see that µL({0}) > 0. Here the lower bound M(λ∗)
does not match the upper bound maxM , and the asymptotic behavior of the nullity
in that case remains an interesting open question.

To the best of our knowledge, the above formula was previously unknown. How-
ever, this remains only a small achievement for the global understanding of the
asymptotic spectral spectral distribution. For example, in the Erdős-Rényi case,
the atomic part of the limiting spectral distribution µL is dense in R, and nothing is
known concerning the atomic masses other than the one at 0. There is also a inter-
esting conjecture concerning the absolutely continuous part of µL: a measure µ with
absolutely continuous part µac is said to have extended states (resp. no extended
state) at E ∈ R if λ 7→ µac(−∞, λ) is differentiable at λ = E and its derivative is
positive (resp. null). This notion was introduced in mathematical physics in the
context of spectra of random Schrödinger operators [68] ; a recent treatment can
be found in Aizenman, Sims and Warzel [2]. For Erdős-Rényi graphs, Bauer and
Golinelli have conjectured that µL has no extended state at E = 0 when 0 < c ≤ e,
and has extended states at E = 0 when c > e. More generally, one may wonder
whether the absolutely continuous part of µL is zero when 0 < c ≤ e. Finally, the
existence of a singular continuous part in µL is apparently unknown.

The remainder of the chapter is organized as follows : in Section 3.2, we provide
a recursive characterization of the spectrum at zero for a general self-adjoint tree.
In section 3.3 we show that for a unimodular Galton-Watson tree, this recursion
simplifies into a recursive distributional equation that can be solved explicitly, lead-
ing to Theorem 3.1. Finally, section 3.4 is devoted to the leaf-removal process and
to the proof of Theorem 3.2.

3.2 A recursion for the atomic mass at zero

Let T = (V,E) be a self-adjoint tree, and let o ∈ V be an arbitrarily chosen root.
Our goal here is to characterize µ∗

(T,o)({0}), the atomic mass at zero of the rooted
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spectral measure µ∗
(T,o). More generally, for i ∈ V we set

mi = µ∗
(Ti,i)

({0}) ∈ [0, 1].

Proposition 3.1 (Recursive characterization of the spectral mass at zero). The
family (mi)i∈V is the largest solution in [0, 1]V to the system of equations

mi =


1 +

∑

j→i

(
∑

k→j

mk

)−1



−1

, (3.5)

with the conventions 1/0 = ∞ and 1/∞ = 0.

Proof. To avoid confusions with our notation for vertices, the canonical complex
root of −1 is denoted by i. Taking z = it (t > 0) in (2.6) gives

∫

R

λ+ it

λ2 + t2
µ∗

(Ti,i)
(dλ) = xi(it).

Multiplying this identity by it and letting t → 0, we obtain by the dominated
convergence theorem

−itxi(it) −−→
t→0

mi.

Figure 3.1: Plots of λ 7→ M(λ) for φ(λ) = e4λ−4 (red), φ(λ) = λ3 (yellow) and
φ(λ) = 3

4
λ3 + 1

4
λ15 (green). The maximum of the curve gives the value of µL({0})

(upper bound for the asymptotic nullity), and the first local extremum gives the
probability that the root ever becomes isolated during the leaf-removal process (lower
bound for the asymptotic nullity).
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But on the other hands, using twice the fact that x is the solution to the cavity
recursion, we may write

−itxi(it) =

(
1 +

∑

j→i

xj(it)

it

)−1

=


1 +

∑

j→i

(
t2 − it

∑

k→j

xk(it)

)−1



−1

. (3.6)

Letting t→ 0 in this last identity gives precisely the recursion (3.5). When the tree
T is finite, this recursion characterizes the family (mi)i∈V , since it can be computed
iteratively from the leaves up to the root. However, when T is infinite, (3.5) may
admit several other solutions. Fortunately, among all of them, (mi)i∈V is always the

largest, as we will now see. For a fixed radius d ∈ N, we let x(d)
i (z) denote the value

at the root of the unique solution to the cavity recursion at activity z on the finite
truncated tree [Ti, i]d. Since [Ti, i]d converges locally to (Ti, i) as d → ∞, Lemma
2.2 guarantees that

x
(d)
i (z) −−−→

d→∞
xi(z).

Now consider any solution (m′
i)i∈V ∈ [0, 1]V to (3.5), and fix t > 0. Let us show by

induction that for every d ∈ N,

∀i ∈ V, m′
i ≤ −itx

(2d)
i (it), (3.7)

This will conclude our proof since we may let d → ∞ and then t → 0 to reach the
desired m′

i ≤ mi. When d = 0, our thesis is trivial since the right-hand side is 1.
Now, if (3.7) holds for some d ∈ N, then it must holds for d+1 as well since we may
write for every i ∈ V ,

m′
i =


1 +

∑

j→i

(
∑

k→j

m′
k

)−1



−1

≤


1 +

∑

j→i

(
t2 +

∑

k→j

m′
k

)−1



−1

≤



1 +
∑

j→i

(
t2 − it

∑

k→j

x
(2d)
k (it)

)−1



−1

≤ −itx
(2d+2)
i (it).

For the last line we have simply applied (3.6) to the tree [Ti, i]2d+2.

3.3 Explicit formula for Galton-Watson trees

In this section, we solve the above recursion in the special case where the rooted
tree (T, o) is a unimodular Galton-Watson tree whose degree distribution π has a
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finite second moment. Owing to the Markovian nature of the branching process,
the set of equations (3.5) characterizing µ∗

(T,o) takes the much simpler form of a
recursive distributional equation (RDE). The latter is a common ingredient in
the objective method (see the survey [6]). Given ν, ν ′ ∈ P(N) and P ∈ P([0, 1]), we
define Θν,ν′(P ) ∈ P([0, 1]) to be the distribution of the random variable

Y =


1 +

N∑

i=1

(
Ni∑

j=1

Xij

)−1



−1

, (3.8)

where N ∼ ν, Ni ∼ ν ′, Xij ∼ P , all of them being independent. With this notation
in hands, Proposition 3.1 clearly implies the following.

Corollary 3.2. The random variable µ∗
(T,o)({0}) has distribution Θπ,bπ(P ), where

P ∈ P([0, 1]) is the largest solution to the RDE

P = Θ
bπ,bπ(P ). (3.9)

In the above sentence the word largest refers to the usual stochastic order on
P([0, 1]): P1 ≤ P2 if for any continuous, increasing function ϕ : [0, 1] → R,

∫

[0,1]

ϕdP1 ≤
∫

[0,1]

ϕdP2.

We will now explicitly solve the distributional fixed point equation (3.9). From now
on, we assume that π0 + π1 < 1, otherwise π̂ = δ0, and the only solution to (3.9) is
clearly P = δ1. We recall that φ(λ) =

∑
n∈N

πnλ
n denotes the generating function

of π, and that for any λ ∈ [0, 1],

M(λ) = φ′(1)λλ+ φ(1 − λ) + φ(1 − λ) − 1 where λ = φ′(1 − λ)/φ′(1).

First observe that M ′(λ) = φ′′(1 − λ)(λ − λ). Thus, M ′(0) ≥ 0, M ′(1) ≤ 0, and

any λ ∈ [0, 1] where M admits a local extremum must satisfy λ = λ. We will say

that M admits an historical record at λ if λ = λ and M(λ) > M(λ′) for any
0 ≤ λ′ < λ. Since [0, 1] is compact and M is analytic, there are only finitely many
such records. As we will now see, they are in one-to-one correspondence with the
solutions to (3.9).

Proposition 3.2. Let λ1 < . . . < λr denote the locations of the historical records of
M . Then, the RDE (3.9) admits exactly r solutions, and they can be stochastically
ordered : P1< . . .<Pr. Moreover, for any 1 ≤ i ≤ r,

(i) Pi({0}) = 1 − λi ;

(ii) Θπ,bπ(Pi) has mean M(λi).

In view of Corollary 3.2, we have in particular

E[µ∗
(T,o)({0})] = max

λ∈[0,1]
M(λ),

which is precisely what Theorem 3.1 asserts. The proof of Proposition 3.2 relies on
two lemmas, the first one being straightforward.



46 CHAPTER 3. RANK AND NULLITY

Lemma 3.1. For any ν, ν ′ ∈ P(N)\{δ0}, Θν,ν′ is continuous and strictly increasing
on P ([0, 1]).

Lemma 3.2. For any P ∈ P ([0, 1]), letting λ = P ({0}c), we have

(i) Θ
bπ,bπ(P ) ({0}c) = λ

(ii) if Θ
bπ,bπ(P ) ≤ P , then the mean of Θπ,bπ(P ) is at least M(λ).

(iii) if Θ
bπ,bπ(P ) ≥ P , then the mean of Θπ,bπ(P ) is at most M(λ);

In particular, if P satisfies (3.9) then λ = λ and Θπ,bπ(P ) has mean M(λ).

Proof of Lemma 3.2. In equation (3.8) it is clear that Y > 0 if and only if for each
1 ≤ i ≤ N , there exists 1 ≤ j ≤ N ′

i such that Xij > 0. Denoting by φ̂ the generating
function of π̂, this rewrites as follows.

Θ
bπ,bπ(P ) ({0}c) = φ̂

(
1 − φ̂ (1 − λ)

)
.

But from (1.1) we see that φ̂(λ) = φ′(λ)/φ′(1), i.e. φ̂ (1 − λ) = λ, hence the first
result. Now let X ∼ P , N ∼ π, N̂ ∼ π̂, and let S, S1, . . . have the distribution of
the sum of N̂ i.i.d. copies of X, all these variables being independent. Then, the
mean of Θπ,bπ(P ) is

E

[
1

1 +
∑N

i=1 Si
−1

]
= E

[(
1 −

∑N
i=1 Si

−1

1 +
∑N

i=1 Si
−1

)
1{∀i=1...N,Si>0}

]
.

= P (∀i = 1 . . . N, Si > 0) −
∞∑

n=1

nπnE

[
S−11{S>0,∀i=1...n−1,Si>0}

1 + S−1 +
∑n−1

i=1 Si
−1

]

= φ(1 − φ̂(1 − λ)) − φ′(1)
∞∑

n=0

π̂nE

[
S−11{S>0,∀i=1...n,Si>0}

1 + S−1 +
∑n

i=1 Si
−1

]

= φ(1 − λ) − φ′(1)E

[
S−1

1 + S−1 +
∑

bN
i=1 Si

−1
1{S>0,∀i=1... bN,Si>0}

]

= φ(1 − λ) − φ′(1)E

[
S−1

Y −1 + S−1
1{S>0,Y >0}

]

= φ(1 − λ) − φ′(1)E

[
Y

S + Y
1{S>0}

]
.

Now, for any fixed s > 0, y 7→ y
s+y

is increasing. Thus, depending on whether
Θ

bπ,bπ(P ) ≥ P or Θ
bπ,bπ(P ) ≤ P , the above quantity is at most/least

φ(1 − λ) − φ′(1)E

[
X

X + S
1{S>0}

]
. (3.10)

To conclude the proof, we simply need to check that this last quantity is precisely

M(λ). Recall that P(X > 0) = λ, and set K =
∑

bN
i=1 1{Xi>0}. Let also X∗ have the
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law of X conditioned on {X > 0}, and let X∗
1 , X

∗
2 , . . . be i.i.d. copies of X∗, all of

them being independent of K. Then,

φ′(1)E

[
X

X + S
1{S>0}

]
= φ′(1)λE

[
X∗

X∗ +
∑K

i=1X
∗
i

1{K≥1}

]

= φ′(1)λE

[
1

K + 1
1{K≥1}

]

= φ′(1)λ
∞∑

n=1

π̂n

n∑

k=1

(
n

k

)
λk(1 − λ)n−k

k + 1

=
∞∑

n=1

πn+1

n∑

k=1

(
n+ 1

k + 1

)
λk+1(1 − λ)n−k

=

∞∑

n=2

πn
(
1 − (1 − λ)n − nλ(1 − λ)n−1

)

= 1 − φ(1 − λ) − λφ′(1 − λ).

Thus, (3.10) is precisely M(λ), as desired.

Proof of Proposition 3.2. Fix λ ∈ [0, 1] such that λ = λ. Set P0 = Bernoulli(λ) and
then iteratively Pk+1 = Θ

bπ,bπ(Pk) for every k ∈ N. By Lemma 3.2, Pk ({0}c) = λ
for every k ∈ N. Since Bernoulli(λ) is the largest element of P([0, 1]) putting mass
λ on {0}c, we have P1 ≤ P0. Consequently, Lemma 3.1 guarantees that (Pk)k∈N is
decreasing and that the limit

P∞ = lim
k→∞

↓ Pk

is a solution to (3.9). Note that λ∞ = P∞ ({0}c) satisfies λ∞ ≤ λ. Moreover, the
mean of Θπ,bπ(P∞) must be both

- equal to M(λ∞) by applying lemma 3.2 to P∞ ;

- at least M(λ) since for every k ∈ N the mean of Θπ,bπ(Pk) is at least M(λ) by
applying Lemma 3.2(ii) to Pk.

To sum up, we have just shown both M(λ) ≤ M(λ∞) and λ∞ ≤ λ. Consequently,
if M admits an historical record at λ, then we must have λ∞ = λ, so we have
constructed a solution to (3.9) satisfying P∞ ({0}c) = λ.

Conversely, let P be any solution to (3.9) and set λ = P ({0}c). By Lemma

3.2, λ = λ. We claim that P = P∞ and that M must admit an historical record
at λ. Indeed, the inequality P ≤ Bernoulli(λ) implies P ≤ P∞ (since Θπ,bπ is
increasing), and in particular λ ≤ λ∞. But we already had λ∞ ≤ λ, so λ = λ∞ and
M(λ) = M(λ∞). In other words, the ordered distributions Θ

bπ,π(P ) ≤ Θ
bπ,π(P∞)

share the same mean, hence are equal. This ensures that P = P∞. Finally, if λ′ < λ
is any historical record location, we may apply the above argument to λ′ instead of
λ and obtain that

P ′
∞ = lim

k→∞
↓ Θ

(k)
bπ,bπ (Bernoulli(λ′))
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satisfies (3.9) and P ′
∞ ({0}c) = λ′. But Bernoulli(λ′) < Bernoulli(λ), so P ′

∞ ≤ P∞.
The latter inequality is in fact strict because P ′

∞ ({0}c) < P∞ ({0}c). Consequently,
Θπ,bπ(P

′
∞) < Θπ,bπ(P∞) and taking expectations, M(λ′) < M(λ). Thus, M admits

an historical record at λ.

3.4 The leaf-removal process

On a locally finite graph G = (V,E), the leaf-removal process can be described
as an iterative procedure that produces two non-decreasing sequences of subsets of
V , A1 ⊆ A2 ⊆ . . . and B1 ⊆ B2 ⊆ . . ., as follows : initially, A0 consists of all isolated
vertices of G, and B0 is empty. Then, at each step t ∈ N, we consider the remaining
graph Gt = G \ (At ∪ Bt), on which we perform the following action : all leaves of
Gt whose unique neighbor is not a leaf in Gt are added to At, and all their unique
neighbors are added to Bt. Leaves whose unique neighbor is also a leaf (i.e. isolated
edges) are ignored. This defines At+1 and Bt+1, and we pursue iteratively. In the
limit, the process results in the following two (disjoint) subsets of V :

A =

∞⋃

t=0

↑ At and B =

∞⋃

t=0

↑ Bt.

Their interest for us lies in the following property (first observed in [16]).

Lemma 3.3 (Leaf-removal on finite graphs). For any finite graph G,

η(G) ≥ |A| − |B|.

Proof. Fix t ∈ N. For each vertex i ∈ Bt+1 \ Bt, we may arbitrarily select one of its
neighboring leaves i′ in Gt, and remove both of them from Gt. It is a well-known
and elementary fact that each such leaf removal does not alter the nullity of the
underlying graph (a proof can be found for example in [45]). However, the resulting
graph G̃t is not yet Gt+1, since each i ∈ Bt+1 \Bt may have other neighboring leaves
than i′ in Gt. Their total number is clearly |At+1 \ At| − |Bt+1 \ Bt|, and they are
isolated in G̃t. An isolated vertex corresponds to an index in the adjacency matrix
for which both the line and column are full of zeros, so its removal decreases the
nullity by one. Thus,

η(Gt) = η(Gt+1) + |At+1 \ At| − |Bt+1 \ Bt|.

"Integrating" over t, we obtain

η(G) = η(Gt) + |At| − |Bt| ≥ |At| − |Bt|, (3.11)

and the result follows by letting t→ ∞.

When G is infinite the difference |A|−|B| does not make any sense. However, we
may ask whether a given vertex o belongs to A, or to B or to none of them. Then,
Lemma 3.3 admits the following infinite analog.
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Lemma 3.4 (Leaf-removal on local weak limits). Let (Gn)n∈N be a sequence of finite
graphs admitting a local weak limit L ∈ P(G⋆). Then,

lim inf
n→∞

µGn
({0}) ≥ L (o ∈ A) − L (o ∈ B) .

Proof. Fix t ∈ N. By construction, the events {o ∈ At}, {o ∈ Bt} depend only on
[G, o]2t+1, so (G, o) 7→ 1{o∈At} and (G, o) 7→ 1{o∈Bt} are continuous with respect to
the topology of local convergence. Now for a finite graph G, (3.11) may be rewritten
as

µG({0}) ≥ 1

|V |
∑

o∈V
1{o∈At} −

1

|V |
∑

o∈V
1{o∈Bt},

where we recognize expectation with respect to uniform rooting on G. Thus, taking

G = Gn and letting n→ ∞, Gn
LW−−−→
n→∞

L implies

lim inf
n→∞

µGn
({0}) ≥ L (o ∈ At) − L (o ∈ Bt) .

Letting finally t→ ∞ concludes the proof.

To prove Theorem 3.2, it now remains to compute L (o ∈ A) − L (o ∈ B) when
L is the law of a unimodular Galton-Watson tree. We adopt the notations of the
previous section.

Lemma 3.5 (Leaf-removal on a unimodular Galton-Watson tree). When L is a
unimodular Galton-Watson distribution, we have

L (o ∈ A) − L (o ∈ B) = M(λ∗),

where λ∗ is the smallest root of λ = λ.

Proof. The argument is close to that appearing in [66, Section 4]. For the leaf-
removal process we write At(G) and Bt(G) when we want to make the dependency
upon the underlying graph G explicit. Let T = (V,E) be a tree rooted at o. To
obtain a proper recursion, let us first slightly modify our tree so that the leaf removal
process evolves only from children to parents. Specifically, we let T̃ denote the tree
obtained from T by attaching an extra infinite simple path to the root o. For every
i ∈ V , we let T̃i denote the result of performing this operation on the rooted tree
(Ti, i). By construction, a node i satisfies i ∈ Bt(T̃i) if and only if at least one of
its children j → i satisfies j ∈ At(T̃j). Similarly, i ∈ At+1(T̃i) if and only if all its
children j → i satisfy j ∈ Bt(T̃j). Therefore, when the initial tree (T, o) is obtained
by a homogeneous Galton-Watson branching process with offspring distribution π̂,
the numbers

αt = P

(
o ∈ At(T̃ )

)
and βt = P

(
o ∈ Bt(T̃ )

)

must satisfy the recursion βt = 1 − φ̂(1 − αt) and αt+1 = φ̂(βt), where φ̂(λ) =∑∞
n=0 π̂nλ

n is the generating function of the offspring distribution π̂. As already
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pointed out, (1.1) implies φ̂(λ) = φ′(λ)/φ′(1), and hence φ̂ (1 − λ) = λ. Thus, we
obtain that for every t ∈ N,

βt = 1 − αt and αt+1 = αt

But λ 7→ λ is non-decreasing and continuous, and α0 = 0 (o is not isolated in T̃ ).
Thus, the sequence (αt)t∈N is non-decreasing and converges to the smallest root of

λ 7→ λ. We have thus shown

P

(
o ∈ A(T̃ )

)
= λ∗ and P

(
o ∈ B(T̃ )

)
= 1 − λ∗.

Let us now see how these numbers change when T̃ is replaced by T . By construction,

1. if all children of o satisfy i ∈ Bt(T̃i), then o ∈ At+1(T ) ;

2. if all children of o satisfy i ∈ Bt(T̃i), except one which satisfies i /∈ Bt(T̃i) ∪
At+1(T̃i), then again o ∈ At+1(T ) ;

3. if o has at least two children i 6= j satisfying i ∈ At+1(T̃i) and j /∈ Bt(T̃j), then
o ∈ Bt+1(T ) ;

4. in all other cases, o /∈ At+1(T ) ∪ Bt+1(T ).

Therefore, if L is the law of a unimodular Galton-Watson tree with degree distribu-
tion π, we obtain

L (o ∈ At+1) = φ(βt) + (1 − αt+1 − βt)φ
′(βt)

L (o ∈ Bt+1) = 1 − φ(1 − αt+1) − αt+1φ
′(βt).

Finally, letting t→ ∞ yields

L (o ∈ A) = φ(1 − λ∗) + (λ∗ − λ∗)φ
′(1 − λ∗)

L (o ∈ B) = 1 − φ(1 − λ∗) − λ∗φ
′(1 − λ∗),

and hence L (o ∈ A) −L (o ∈ B) = M(λ∗), where we have used λ∗ = λ∗.

To conclude this chapter, we finally show that the concavity of log(φ′′) is a

sufficient condition for M(λ∗) = maxM to hold. Setting h : λ 7→ λ − λ, we easily
find that for every λ ∈ (0, 1),

h′′(λ) =
φ′′ (1 − λ)

φ′(1)

φ′′ (1 − λ
)

φ′(1)

[
φ′′(1 − λ)φ′′′(1 − λ)

φ′(1)φ′′(1 − λ)
− φ′′′(1 − λ)

φ′′(1 − λ)

]
.

Now, if φ is log-concave, then λ 7→ φ′′′(λ)/φ′′(λ) is non-increasing on (0, 1), and
therefore, the term inside the square brackets is decreasing (as the difference of a
decreasing term and a non-decreasing one). Consequently, h′′ can vanish at most
once on (0, 1), hence h′ admits at most two zeros on [0, 1], and h at most three. The
unique root of λc = λc is always one of them, and if λ is another one, then so is λ.
Therefore, only two cases are possible :
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• either λc is the only zero of h ; then h(0) > 0 and h(1) < 0, so M is maximum
at λc.

• or h admits exactly three zeros λ∗ < λc < λ∗ ; in this case the decreasing term
inside the brackets has to vanish somewhere in (0, 1), so h′′ is positive and
then negative on (0, 1). Consequently, h is decreasing, then increasing, and
then decreasing again. In other words, M is minimum at λc and maximum at
λ∗, λ∗.

In both cases, the first local extremum of M is its global maximum.
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Chapter 4

Matching number

Joint work with Charles Bordenave and Marc Lelarge

In this chapter, we prove that the local weak convergence of a sequence of graphs
is enough to guarantee the convergence of their normalized matching numbers. The
limiting quantity is described by a local recursion defined directly on the weak limit
of the graph sequence. However, unlike most standard applications of the local
weak convergence machinery, this recursion may admit several solutions, implying
non-trivial long-range dependencies between the edges of a largest matching. We
overcome this lack of correlation decay by introducing a perturbative parameter,
which we let progressively go to zero. When the local weak limit is a unimodular
Galton-Watson tree, the recursion simplifies into a distributional equation, resulting
into an explicit formula that considerably extends the well-known one by Karp and
Sipser for Erdős-Rényi random graphs. These results can be found in the pre-print
[33].

Figure 4.1: A graph and a (perfect) matching on it

53
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4.1 Introduction

A matching on a finite graph G = (V,E) is a subset of mutually non-adjacent
edges M ⊆ E. The matching number ν(G) is the largest possible cardinality of a
matching on G. This simple invariant plays an important role in graph theory, and
we refer the interested reader to the monographs [58, 69] for more details.

Karp and Sipser [66] investigated its behavior in the case of the Erdős-Rényi
random graph with average degree c > 0 on n vertices. Using a detailed analysis of
the leaf-removal process (introduced in section 3.4), they showed that

ν(Gn)

|Vn|
−−−→
n→∞

1 − λ∗ + e−cλ∗ + cλ∗e
−cλ∗

2
, (4.1)

where λ∗ ∈ (0, 1) is the smallest root of λ = e−ce
−cλ

. More recently, the same
technique has been applied to leafless random graphs with a prescribed log-concave
degree distribution (Bohmann and Frieze [27]), resulting in the asymptotic existence
of an almost perfect matching in the following sense :

ν(Gn)

|Vn|
−−−→
n→∞

1

2
. (4.2)

As we have already seen, Erdős-Rényi graphs with fixed average connectivity and
random graphs with a prescribed degree distribution are two prototypical examples
of convergent graph sequences in the local weak sense. Here we show that the
asymptotic behavior of the matching number can in fact be directly deduced from
the local weak convergence of the underlying graph sequence, thereby simplifying,
unifying and generalizing the aforementioned results.

Theorem 4.1. Let (Gn)n∈N be a sequence of finite graphs admitting a local weak
limit L. Then,

ν(Gn)

|Vn|
−−−→
n→∞

ν(L),

where ν(L) ∈ [0, 1
2
] is described by a local recursion defined directly on the local weak

limit L. When the latter is the unimodular Galton-Watson distribution with degree
π, we have

ν(L) = min
λ∈[0,1]

{
1 − 1

2
λφ′(1 − λ) − 1

2
φ(1 − λ) − 1

2
φ

(
1 − φ′(1 − λ)

φ′(1)

)}
,

where φ is the probability generating function of the degree distribution π. Moreover,
any λ achieving the above minimum must satisfy

λ =
1

φ′(1)
φ′
(

1 − φ′(1 − λ)

φ′(1)

)
. (4.3)

For Erdős-Rényi random graphs with average degree c, the local weak limit is
a.s. the Poisson-Galton-Watson distribution with mean c (i.e. φ(λ) = exp(cλ− c)),
so that (4.3) becomes λ = e−ce

−cλ

. We thus recover precisely Karp and Sipser’s
formula (4.1). Similarly, for random graphs with a prescribed degree sequence, the
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log-concave assumption made by Bohmann and Frieze in [27] guarantees that the
above minimum is achieved at λ = 0, hence (4.2) follows automatically. In fact,
both these examples fall into the simple situation where a crucial property known
as correlation decay holds, which allows for a direct application of the objective
method (Section 4.2). However, we will exhibit simple examples of graphs on which
correlation decay fails to hold. This phenomenon known as ergodicity breaking [106]
implies non-trivial long-range correlations between the edges in a uniformly chosen
largest matching. Our main contribution consists in overcoming this lack of corre-
lation decay. Specifically, we relax the constraint of largest cardinality by means of
a variable parameter called the activity, and we show that correlation decay always
holds under these relaxed constraints (Section 4.3). The size of the largest matching
can then be recovered by sending the activity back to infinity (Section 4.4).

4.2 Correlation decay at infinite activity

In this introductory section, we briefly explain how Karp and Sipser’s formula can be
recovered by a standard application of the objective method, thanks to correlation
decay. Detailed proofs are omitted since the results will anyway be implied by the
more sophisticated approach adopted in the subsequent sections. Our starting point
is an elementary recursion. On the vertices of a finite tree T = (V,E) rooted at
o ∈ V , let us attach [0, 1]−valued numbers xi, i ∈ V inductively from the leaves up
to the root using the following formula.

mi =


1 +

∑

j→i

(
∑

k→j

mk

)−1



−1

, (4.4)

where → denotes the child to parent relation, and where an empty sum is zero.
What matters to us is the value mo produced at the root, which we shall rather note
π(T, o). We then extend this definition to any finite rooted graph (G, o) by applying
the recursion (4.4) to a certain rooted tree associated with (G, o), namely the tree

of self-avoiding walks T(G,o): its vertices are the self-avoiding paths i = v0 . . . vd
starting at v0 = o in G, the root is the trivial path v0, and the parent of a path
i = v0 . . . vd is the truncated path i′ = v0 . . . vd−1. Note that if G is a tree, then there
is a unique self-avoiding walk from o to each vertex and therefore T(G,o) ≡ (G, o). It
is a well-known observation due to Godsil [59] that the tree of self-avoiding walks
T(G,o) captures considerable information about the matchings on G and is easier to
work with than G itself. Here, the number π(G, o) will play a decisive role for the
following reason.

Lemma 4.1. The number π(G, o) is the probability that o remains unmatched in a
uniformly chosen largest matching on the finite graph G. In particular,

ν(G)

|V | =
1

|V |
∑

o∈V

1 − π(G, o)

2
. (4.5)
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When the graph G is infinite, the idea of a uniform largest matching becomes
of course meaningless. However, the tree of self-avoiding walks T(G,o) ∈ G⋆ is well-
defined for any (G, o) ∈ G⋆, so we may consider the (now infinite) system of equations
(4.4) on T(G,o). If the latter admits a unique solution, we say that (G, o) exhibits
correlation decay, and we define π(G, o) to be the resulting value at the root. By
compactness and uniqueness, we must then automatically have

π(Gn, on) −−−→
n→∞

π(G, o), (4.6)

for any sequence (Gn, on)n∈N of finite rooted graphs converging in the local sense to
(G, o). Combining this with Lemma 4.1 (in which we recognize expectation under
uniform rooting) immediately yields the following result.

Proposition 4.1. Let (Gn)n∈N be a sequence of finite graphs admitting a local weak
limit L, and assume that L is concentrated on rooted graphs (G, o) ∈ G⋆ exhibiting
correlation decay. Then,

ν(Gn)

|Vn|
−−−→
n→∞

ν(L) =
1 −L [π(G, o)]

2
,

This weaker form of Theorem 4.1 is already enough to recover the aforementioned
results (4.1)-(4.2). Indeed, on a unimodular Galton-Watson tree, the recursion (4.4)
has been solved in the previous chapter (Proposition 3.2) and in particular,

Proposition 4.2. Let (T, o) be a unimodular Galton-Watson tree with degree gen-
erating function φ. For λ ∈ [0, 1] set

M(λ) = λφ′(1 − λ) + φ(1 − λ) + φ

(
1 − φ′(1 − λ)

φ′(1)

)
− 1. (4.7)

Then (T, o) exhibits a.s. correlation decay if and ony if the maximum of M coincides
with the first local extremum and in that case, L[π(T, o)] = maxM. Moreover, a
sufficient condition for this to hold is that φ′′ is log-concave.

For Erdős-Rényi random graphs with connectivity c, the limiting degree gener-
ating function is φ(t) = exp(c− ct), and its second derivative is clearly log-concave,
so we recover exactly Karp and Sipser’s formula (4.1). Similarly, for random graphs
with a prescribed degree sequence, the assumption made by Bohmann and Frieze
easily guarantees that maxM = M(0) = 0, hence (4.2) follows automatically. How-
ever, this is not the end of the story yet : as we have seen in the previous chapter,
the degree distribution [75% degree 3, 25% degree 15] provides a simple example
of a local weak limit which does not exhibit correlation decay. In such a case, the
central compactness/uniqueness argument collapses, and to the best of our knowl-
edge, the asymptotic behavior of the matching number is unknown. Our main result
here consists in bypassing correlation decay, i.e. establishing convergence despite the
coexistence of several distinct solutions to the limiting recursion.
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4.3 The monomer-dimer model

The key idea consists in relaxing the constraint of largest cardinality on matchings by
introducing a perturbative parameter t > 0, which we call the activity. Specifically,
given any finite graph G = (V,E), we consider a random matching Mt

G sampled
from the following distribution :

P(Mt
G = M) =

t|M |

PG(t)
, with PG(t) =

∑

M

t|M |.

This is known as the monomer-dimer model on G [106, 62]. The normalizing
factor PG(t) is a famous graph invariant called the matching polynomial. Its leading
term corresponds precisely to the largest matchings on G. Therefore, Mt

G converges
in law to a uniform largest matching as t→ ∞, and

E[|Mt
G|] −−−→

t→∞
ν(G). (4.8)

Now fix a vertex o ∈ V . A matching on G either leaves o unmatched, or matches
it to some neighbor v ∈ ∂o and hence,

PG(t) = PG−o(t) + t
∑

v∈∂o
PG−o−v(t). (4.9)

This elementary formula has two important consequences. First, the probability
that o remains unmatched in Mt

G is simply πt(G, o) = PG−o(t)/PG(t) and second,
πt(G, o) can be computed recursively using the following local rule :

πt(G, o) =

(
1 + t

∑

v∈∂o
πt(G− o, v)

)−1

. (4.10)

This may be more conveniently rewritten as a child-to-parent recursion on the
tree of self-avoiding walks T(G,o) as follows : any node i in the latter represents
a certain simple path v0, v1, . . . vd starting from v0 = o in G, and we set xi =
πt (G− {v0, . . . , vd−1}, vd). Then (4.10) becomes simply

xi =

(
1 + t

∑

j→i

xj

)−1

. (4.11)

This recursion is not new : it already appeared in [59, 64, 40, 96, 18, 106]. Here
we study (4.11) directly on an infinite tree. A [0, 1]−valued solution always exists
by compactness, but nothing guarantees anymore its uniqueness. When this is the
case, we say that correlation decay holds at activity t on (G, o), and we denote by
πt(G, o) the resulting value at the root. Under the change of variable yi = i

√
txi,

(4.11) becomes precisely the cavity recursion at activity z = i/
√
t characterizing the

rooted spectral measure of T(G,o). In particular, Theorem 2.2 admits the following
corollary.
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Corollary 4.1 (self-adjointness =⇒ correlation decay). A sufficient condition for
correlation decay to hold at any activity t on (G, o) ∈ G⋆ is that T(G,o) is self-adjoint.
In particular, it is enough that G has bounded degree.

Instead of exploiting this correspondence with the previous chapter, we have
chosen to present a more direct proof of correlation decay for bounded degree graphs,
based on monotony and analyticity with respect to the activity.

Proposition 4.3 (Convergence for the monomer-dimer model). Let (Gn)n∈N be a
sequence of finite graphs with uniformly bounded degree admitting a local weak limit
(G, o) ∼ L. Then for every activity t > 0,

E[|Mt
Gn

|]
|Vn|

−−−→
n→∞

1 − L[πt(G, o)]

2
,

where πt(G, o) is the value at o of the a.s. unique solution to (4.11) on T(G,o).

Proof. Since the size of a matching is always half the number of matched vertices,
we have for any finite graph G = (V,E),

E [|Mt
G|]

|V | =
1

|V |
∑

o∈V

1 − πt(G, o)

2
.

We again recognize expectation under uniform rooting and thus, Proposition 4.3
boils down to showing that (G, o) 7→ πt(G, o) is well-defined and continuous on
graphs with bounded degree. Consider a locally finite tree T = (V,E) with root
o ∈ V , and a fixed activity t > 0. The recursion (4.11) is nothing but a fixed point
equation x = Γx in the product space [0, 1]V . Specifically, Γ: [0, 1]V → [0, 1]V maps
x = (xi)i∈V to y = (yi)i∈V , where

yi =

(
1 + t

∑

j→i

xj

)−1

. (4.12)

The mapping Γ is clearly decreasing with respect to coordinate-wise order, and
it maps the minimal configuration x0 = 0 to the maximal one, x1 = Γx0 = 1.
Consequently, if we define iteratively xk+1 = Γxk for every k ≥ 1, then the limits

x− = lim
k→∞

↑ x2k and x+ = lim
k→∞

↓ x2k+1 (4.13)

always exist in [0, 1]V , and any fixed point x = Γx must satisfy x− ≤ x ≤ x+.
Moreover, Γ is obviously continuous with respect to the product topology, so that
Γx+ = x− and Γx− = x+. Thus, correlation decay boils down to the identity
x− = x+. The latter clearly holds in the low activity regime t < deg(T )−1/2, since in
that case the mapping Γ is contracting for the supremum norm on [0, 1]V . It then
automatically extends to any t > 0, thanks to the remarkable fact that x− and x+

depend analytically upon the activity. Indeed, instead of working with each fixed
activity separately, we may view Γ as acting at the level of analytic functions of the
activity. Specifically, we allow t to take complex values in the right open half-plane
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H+ = {t ∈ C : ℜ(t) > 0}, and we consider the set K of all analytic functions
x : H+ → C that satisfy

ℜ (x(t)) ≥ 0, ℜ (tx(t)) ≥ 0 and |x(t)| ≤ |t|
ℜ(t)

. (4.14)

There are two capital observations to make about K: first, it is easily seen to be
stable under the transformation (4.12), so that xk remains in KV for every k ∈ N.
Second, it is compact within the space of analytic functions on H+, by Montel’s
Theorem. This guarantees that the point-wise limits x− and x+ belong to KV , and
in particular, that they are analytic in t ∈ H+, as desired. Such an absence of phase
transition in the monomer-dimer model is well-known [62, 23].

To sum up, for any t > 0 and any rooted graph (G, o) with bounded degree, the
recursion (4.11) on T(G,o) admits a unique solution. In order to make the dependency
upon the activity and the underlying graph explicit, we write πkt (G, o) for xko and
π±
t (G, o) for x±o , or simply πt(G, o) when π−

t (G, o) = π+
t (G, o). It remains to show

that (G, o) 7→ πt(G, o) is continuous on the space of rooted connected graphs with
bounded degree. Consider any convergent sequence,

(Gn, on) −−−→
n→∞

(G, o).

By (4.13), we have that for any k, n ∈ N,

π2k
t (Gn, on) ≤ π−

t (Gn, on) ≤ π+
t (Gn, on) ≤ π2k+1

t (Gn, on). (4.15)

But by construction, πkt (Gn, on) depends only on [Gn, on]k and must therefore equal
πkt (G, o) as soon as n ≥ nk (local convergence). Consequently, letting n → ∞ and
then k → ∞ in (4.15) yields

π−
t (G, o) ≤ lim inf

n→∞
π−
t (Gn, on) ≤ lim sup

n→∞
π+
t (Gn, on) ≤ π+

t (G, o),

or simply πt(Gn, on) −−−→
n→∞

πt(G, o) when all graphs have bounded degree.

4.4 Back to largest matchings

We can finally prove Theorem 4.1. We start with a slightly weaker version.

Proposition 4.4. Theorem 4.1 holds under the additional assumption that the se-
quence (Gn)n∈N has bounded degree, and in that case

ν(L) =
1 − L[π(G, o)]

2
,

where π(G, o) is the value at the root of the largest solution to (4.4) on T(G,o).

The proof is divided into two steps : first, we let the activity tend to infinity
and establish that the unique solution to (4.11) always converges to the largest
solution to (4.4), despite the possible existence of several other solutions (Lemma
4.2). Second, we provide a uniform control which guarantees that the n → ∞ and
t→ ∞ limits of E[|Mt

Gn
|]/|Vn| may be interchanged (Lemma 4.3), as illustrated by

the following diagram.
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E|Mt
Gn

|
|Vn|

t→∞

��

n→∞
// 1−L[πt(G,o)]

2

t→∞

��
ν(Gn)
|Vn| n→∞

// 1−L[π(G,o)]
2

Lemma 4.2. Let T = (V,E, o) be a rooted tree with bounded degree, and let x(t) ∈
[0, 1]V be the unique solution to the recursion (4.11). Then the limit

m = lim
t→∞

x(t)

exists in the product space [0, 1]V , and is the largest solution to (4.4).

Proof. With the notations of Section 4.2, we have for every i ∈ V , n ∈ N,

xn+2
i (t) =



1 +
∑

j→i

(
t−1 +

∑

k→j

xnk(t)

)−1



−1

. (4.16)

Both x0 = 0 and x1 = 1 are (constant and hence) non-increasing functions of the
activity t. By an immediate induction over n ∈ N using the above equation, the
same must hold for all xn, n ∈ N. Letting n→ ∞, we finally obtain that the limit x

is non-decreasing with the activity. This proves the existence of the infinite activity
limit

m = lim
t→∞

↓ x(t) ∈ [0, 1]V .

Letting t → ∞ in (4.16), we automatically get that m must be a solution to the
recursion (4.4). Finally, consider an arbitrary solution m′ ∈ [0, 1]V to (4.4), and let
us show by induction over n ∈ N that for every t > 0,

m′ ≤ x2n+1(t). (4.17)

The statement is trivial when k = 0 because x1 = 1, and is preserved from n to
n+ 1 because for every i ∈ V ,

x2n+3
i (t) =


1 +

∑

j→i

(
t−1 +

∑

k→j

x2n+1
k (t)

)−1



−1

≥



1 +
∑

j→i

(
∑

k→j

mk

)−1



−1

= mi.

Letting n→ ∞, then t→ ∞ in (4.17) yields m′ ≤ m, as desired.

Lemma 4.3. For any finite graph G = (V,E), and any activity t ∈ (0, 1),

0 ≤ ν(G) − E
[
|Mt

G|
]
≤ |E| log 2

log t
.
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Proof. f : t 7→ E [|Mt
G|] is non-decreasing with f(+∞) = ν(G). Thus, for any

t ∈ (1,∞),
1

log t

∫ t

1

f(s)

s
ds ≤ f(t) ≤ ν(G).

Now use P ′
G(s)/PG(s) = f(s)/s to explicitate the left-hand side :

1

log t

∫ t

1

f(s)

s
ds =

1

log t
log

PG(t)

PG(1)
≥ ν(G) − |E| log 2

log t
,

where the inequality follows from the fact that the total number of matchings PG(1)
is at most 2|E|, while PG(t) is at least tν(G).

Proof of Proposition 4.4 and Theorem 4.1. By the triangular inequality,
∣∣∣∣
ν(Gn)

|Vn|
− 1 − E[π(G, o)]

2

∣∣∣∣ ≤
∣∣∣∣∣
ν(Gn)

|Vn|
− E

[
|Mt

Gn
|
]

|Vn|

∣∣∣∣∣

+

∣∣∣∣∣
E
[
|Mt

Gn
|
]

|Vn|
− 1 − E[πt(G, o)]

2

∣∣∣∣∣

+

∣∣∣∣
E[πt(G, o)] − E[π(G, o)]

2

∣∣∣∣ .

By lemmas 4.2 and 4.3, the first and third term can be made arbitrarily small
by choosing t large enough (uniformly in n), while the middle term tends to zero
as n → ∞ by virtue of Proposition 4.3. This shows Proposition 4.4. We finally
need to remove the restriction of bounded degree. To this end, we introduce the
d−truncation Gd (d ∈ N) of a graph G = (V,E), obtained from G by isolating all
vertices with degree more than d, i.e. removing any edge incident to them. This
transformation is clearly continuous with respect to local convergence. Moreover,
its effect on the matching number can be easily controlled :

ν(Gd) ≤ ν(G) ≤ ν(Gd) + #{v ∈ V : degG(v) > d}. (4.18)

Now, consider a sequence of finite graphs (Gn)n∈N admitting a local weak limit
(G, o) ∼ L. First, fixing d ∈ N, we may apply Theorem 4.4 to the bounded-degree
sequence (Gd

n)n∈N to obtain :

ν(Gd
n)

|Vn|
−−−→
n→∞

1 −L[π(Gd, o)]

2
.

Second, we may rewrite (4.18) as
∣∣∣∣
ν(Gd

n)

|Vn|
− ν(Gn)

|Vn|

∣∣∣∣ ≤
1

|Vn|
∑

o∈Vn

1(degGn
(o)>d),

where we recognize expectation with respect to uniform rooting of Gn. Letting
n→ ∞, we obtain

lim sup
n→∞

∣∣∣∣
1 − L[π(Gd, o)]

2
− ν(Gn)

|Vn|

∣∣∣∣ ≤ L (degG(o) > d) ,
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This last line is, by an elementary application of Cauchy criterion, enough to guar-
antee that the limits

lim
n→∞

ν(Gn)

|Vn|
and lim

d→∞

1 − L[π(Gd, o)]

2

exist and are equal. Hence the convergence promised by Theorem 4.1. Note that
because of the possible absence of correlation decay, the largest solution π(G, o) is
not a continuous function of (G, o) ∈ G. In particular, we do not know whether it
is always the case that

ν(L) =
1 − L[π(G, o)]

2
, (4.19)

as established in Proposition 4.4 for graphs with bounded degree. However, (4.19)
holds in the particular case where (G, o) is a unimodular Galton-Watson tree. In-
deed, Proposition 3.2 implies that L[π(G, o)] = maxM where M : [0, 1] → R is
defined by (4.7). The important point is the fact that maxM depends continuously
upon the degree distribution. Now, the d−truncation of a unimodular Galton-
Watson tree is again a unimodular Galton-Watson tree, whose degree distribution
converges to the original one as d → ∞. Hence, L[π(Gd, o)] −−−→

d→∞
L[π(G, o)], so

Theorem 4.1 follows.



Chapter 5

Weighted subgraph enumeration

Using the theory of negative association for measures initiated by Pemantle, we es-
tablish the validity of the cavity method for counting spanning subgraphs subject to
local constraints in asymptotically tree-like graphs. Specifically, the thermodynamic
pressure is shown to converge along any sequence of graphs whose local weak limit is
a tree, and the limit is directly expressed in terms of the unique solution to a limiting
cavity equation. On a unimodular Galton-Watson tree, the latter simplifies into a
recursive distributional equation which can be solved explicitly. As an illustration,
we provide an explicit limit theorem for the b−matching number of an Erdős-Rényi
random graph with fixed average degree and diverging size, for any b ∈ N. These
results can be found in the pre-print [91].

63
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5.1 Introduction

The general framework we consider is that of a finite graph G = (V,E), in which
spanning subgraphs (V, F ), F ⊆ E are weighted according to their local aspect
around each vertex as follows :

µ(F ) =
∏

i∈V
µi(F ∩ Ei). (5.1)

Here, a spanning subgraph (V, F ) is identified with its edge-set F ⊆ E, and each µi
is a given non-negative function over the subsets of Ei := {e ∈ E; e is incident to i}.
We call µ the global measure induced by the local measures µi, i ∈ V . Of particular
interest in combinatorial optimization is

M(G) = max {|F | : F ∈ supp(µ)} , (5.2)

which is the maximum possible size of a spanning subgraph F satisfying the local
constraint µi(F ∩ Ei) > 0 at every vertex i ∈ V . More generally, counting the
weighted number of spanning subgraphs of each given size in G, i.e. determining
the generating polynomial

Z(G; t) =
∑

F⊆E
µ(F )t|F | (5.3)

is a fundamental task, of which many combinatorial problems are special instances.
Intimately related to this is the study of a random spanning subgraph F sampled
from the Gibbs-Boltzmann law :

P
t
G(F = F ) =

µ(F )t|F |

Z(G; t)
, (5.4)

where t > 0 is a variable parameter called the activity. In particular, the expected
size of F is called the energy U(G; t) and is connected to Z(G; t) via the elementary
identity

U(G; t) = t
d

dt
logZ(G; t). (5.5)

Our concern is the behavior of these quantities in the infinite volume limit : |V | →
∞, |E| = Θ(|V |).

As already explained, the cavity method is a powerful non-rigorous technique
for evaluating such asymptotics on graphs that are locally tree-like. The heuristic
consists in neglecting cycles in order to obtain an approximate local fixed point
equation (the so-called cavity equation) for the marginals of the Gibbs-Boltzmann
law. Despite its remarkable practical efficiency and the mathematical confirmation
of its analytical predictions for various important models [97, 5, 56, 89, 19, 48, 33],
this ansatz is still far from being completely understood, and the exact conditions for
its validity remain unknown. More precisely, two crucial questions arise in presence
of cycles :

1. convergence: is there a unique solution to the cavity equation ?
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2. correctness: is the latter related to the Gibbs-Boltzmann law ?

In this chapter, we exhibit a general condition under which the cavity method
is valid for counting spanning subgraphs subject to local constraints. Specifically,
we positively answer question 1 for arbitrary finite graphs and local weak limits of
such graphs (Propositions 5.1 and 5.2), under the only assumption that each local
measure enjoys a certain form of negative association which we call the cavity-

monotone property (see Section 5.2 for the precise definition). Regarding question
2, we prove asymptotic correctness for any sequence of graphs whose local weak
limit is concentrated on trees (Theorem 5.2). In the important case of a unimodular
Galton-Watson tree, the cavity equation simplifies into a recursive distributional
equation which can be solved explicitly. As a motivation, let us first describe the
implications of our work in the special case of b-matchings.

An important combinatorial structure that fits in the above framework is ob-
tained by fixing b ∈ N and taking µi(F ) = 1(|F | ≤ b) for all i ∈ V . The induced
global measure µ is then nothing but the counting measure for b−matchings in G,
i.e. spanning subgraphs with maximum degree at most b. The reader is referred
to the monograph [93] for a comprehensive survey on b−matchings. The associated
quantities Mb(G) and Zb(G; t) are important graph invariants respectively known as
the b−matching number and b−matching polynomial. Determining Z1(G; t)
is a classical example of a computationally hard problem [100], although efficient
approximation algorithms have been designed [18, 14]. The mathematical proper-
ties of Zb(G; t) have been investigated in detail, notably in the case b = 1 for the
purpose of understanding monomer-dimer systems [62, 23]. The scaled convergence
of Z1(G; t) as |V | → ∞ was established in [62] for the lattice case, and in [19] un-
der a restrictive large girth assumption. Interestingly, the geometry of the complex
zeros of Zb(G, t) has been proven to be quite remarkable (see [62] for b = 1, [90] for
b = 2, and [103] for the general case). The asymptotics of M1(G) = ν(G) have been
studied in the previous chapter (Theorem 4.1). Contrastingly, only little is known
for b ≥ 2: to the best of our knowledge, the limit of 1

|Vn|Mb(Gn) is only known to
exist in the Erdős-Rényi case [55], and could not be explicitly determined. As a
special case of our main result (Theorem 5.2), it will follow that

Theorem 5.1 (b−matchings in locally tree-like graphs). For any sequence of finite
graphs (Gn)n∈N satisfying |En| = O(|Vn|) and whose local weak limit L is concen-
trated on trees, the limits

hb(L) := lim
n→∞

1

|Vn|
logZb(Gn; t) and mb(L) := lim

n→∞

Mb(Gn)

|Vn|
exist and depend only on the local weak limit L. In the important case where L is the
unimodular Galton-Watson distribution with degree π, we have the explicit formula

mb(L) =
b

2
min
λ∈[0,1]

{
2 − gb(λ) − (gb ◦ fb)(λ) +

c

b
fb(λ)(fb ◦ fb)(λ)

}
,

where c, f, g are defined in terms of φ(λ) =
∑

k πkλ
k as follows :

c = φ′(1), fb(λ) =
1

c

b−1∑

k=0

λkφ(k+1)(1 − λ)

k!
and gb(λ) =

b∑

k=0

λkφ(k)(1 − λ)

k!
.
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Moreover, any λ achieving this minimum must be a root of λ = (fb ◦ fb)(λ).

For example, in the case of Erdős-Rényi random graphs with average degree c > 0
on n vertices, the local weak limit L is a.s. the Poisson-Galton-Watson distribution
with mean c (φ(λ) = ecλ−c). Hence,

Mb(Gn)

n

a.s.−−−→
n→∞

b

2
min
λ∈[0,1]

{
2 − fb+1(λ) − (fb+1 ◦ fb)(λ) +

c

b
fb(λ)(fb ◦ fb)(λ)

}
,

and any λ where the minimum is achieved must satisfy λ = (fb ◦ fb)(λ), where

fb(λ) = e−cλ
b−1∑

k=0

(cλ)k

k!
.

In the case of matchings (b = 1) we recover Karp and Sipser formula [66].
The remainder of the chapter is organized as follows : in section 5.2, we recall the

necessary notions and properties pertaining to measures over subsets. In section 5.3,
we define and study the cavity equation associated with a finite network. In section
5.4, we extend the results to infinite networks that arise as local weak limits of finite
networks. Finally, section 5.5 is devoted to the study of the cavity equation in the
limit of infinite activity, and to its explicit resolution in the case of b−matchings.

5.2 Preliminaries

In this section, we define the important notions pertaining to (non-negative) mea-
sures µ over the subsets of an arbitrary finite ground set E. Later on, these will
be specialized to the local measures (µi)i∈V attached to the vertices of a graph G.
First, µ is characterized by its multivariate generating polynomial

Z(w) =
∑

F⊆E
µ(F )wF ,

where w = (we)e∈E and wF =
∏

e∈F we. Since Z is affine in each we, e ∈ E, it can
be decomposed as

Z(w) = weZ
/e(w′) + Z\e(w′), (5.6)

where w′ = (wf)f 6=e and Z\e, Z/e are the multi-affine polynomials with ground set
E \ e respectively obtained from Z by setting the variable we to 0 (deletion) and
differentiating with respect to we (contraction). By definition, the cavity ratio of
the pair (µ, e) is then simply the multi-affine rational function

Γeµ(w
′) =

Z/e(w′)

Z\e(w′)
.

When positive values are assigned to the variables (a so-called external field), we
may consider the probability distribution

P
w

µ (F = F ) =
µ(F )wF

Z(w)
.
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A quantity of interest is the expected size of F when viewed as a function of the
external field. We call this the energy:

Uµ(w) = E
w

µ [|F|] .
From the decomposition (5.6), it follows immediately that

P
w

µ (e ∈ F) =
weΓ

e
µ(w

′)

1 + weΓeµ(w
′)

(5.7)

Uµ(w) =
∑

e∈E

weΓ
e
µ(w

′)

1 + weΓeµ(w
′)
. (5.8)

The following properties will be of crucial importance throughout the paper.

Definition 5.1 (Cavity-monotone measures). The measure µ is called

• Rayleigh if every two distinct ground elements e 6= f are negatively correlated
in F under any external field w > 0:

P
w

µ (e ∈ F , f ∈ F) ≤ P
w

µ (e ∈ F) P
w

µ (f ∈ F) .

• Size-increasing if every ground element e has positive influence on the total
size |F| under any external field w > 0:

E
w

µ

[
|F|1(e∈F)

]
> E

w

µ [|F|]Pw

µ (e ∈ F).

• Cavity-monotone if its satisfies µ(∅) > 0 and those two properties.

Rayleigh measures were introduced in the context of matroid theory [102], but
soon found their place in the modern theory of negative dependence for probability
measures [86, 65]. The size-increasing property can be viewed as a weak form of the
so-called normalized matching property, or as a strong form of the so-called Feder-
Mihail property (see [65] for definitions). Cavity-monotone measures will play a
major role in our study, for the following elementary reason.

Lemma 5.1 (Monotony of energy and cavity ratios).

µ(∅) > 0 ⇔ each Γeµ, e ∈ E is well-defined on [0,∞)E\e.

µ is Rayleigh ⇔ each Γeµ, e ∈ E is non-increasing in each variable.

µ is size-increasing ⇔ Uµ is increasing in each variable;

⇔ for each e ∈ E,w′ > 0, t 7→ tΓeµ(tw
′) is increasing.

Proof. Differentiating the corresponding quantities and playing with the definition
of P

w

µ easily yields

∂Γeµ(w
′)

∂wf
=

Pw

µ (e ∈ F , f ∈ F) − Pw

µ (e ∈ F) Pw

µ (f ∈ F)

wewfPw
µ (e /∈ F)2

.

∂Uµ(w)

∂we
=

Ew

µ

[
|F|1(e∈F)

]
− Ew

µ [|F|] Pw

µ (e ∈ F)

we
.

∂
(
tΓeµ(tw

′)
)

∂t
=

Etw
µ

[
|F|1(e∈F)

]
− Etw

µ [|F|] Ptwµ (e ∈ F)

twePtwµ (e /∈ F)2 .
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Remark 5.1 (Matroids). Interestingly, the support of a cavity-monotone measure
admits a remarkable structure : it follows from [102, Theorem 4.6] that for µ
Rayleigh with µ(∅) > 0, I = suppµ is a matroid:

• I is not empty ;

• If B ∈ I and A ⊆ B, then A ∈ I ;

• If A,B ∈ I and |A| < |B|, then ∃e ∈ B \ A such that A ∪ e ∈ I.

The cavity-monotone property admits a particularly simple characterization in
the important case where µ is exchangeable, i.e. µ(F ) = c(|F |) for some non-
negative coefficients c(0), . . . , c(m), m = |E|:
Lemma 5.2 (The exchangeable case). An exchangeable measure µ with coefficients
c(0), . . . , c(m), (m = |E| ≥ 1) is cavity-monotone if and only if

1. c is log-concave, i.e. c2(k) ≥ c(k − 1)c(k + 1) for all 0 < k < m, and

2. the support {0 ≤ k ≤ m : c(k) > 0} is an interval containing 0 and 1.

Corollary 5.1. For any b ≥ 1, the local measure µi(F ) = 1(|F |≤b) describing the
degree constraints in a b−matching is cavity-monotone.

Proof of Lemma 5.2. The result essentially follows from the work of Pemantle [86].
Indeed, Theorem 2.7 therein guarantees that µ is Rayleigh if and only if the sequence
c is log-concave and its support is an interval. That the latter must contain 0
is nothing but the last property in the definition of a cavity-monotone measure.
That it is not reduced to 0 is imposed by the strict inequality in the size-increasing
property. Conversely, let us show that any exchangeable measure µ with c(0) > 0
and c(1) > 0 is size-increasing. Fix an external field w > 0. By Lemma 2.9 in [86],
the law obtained from Pw

µ by conditioning on the event {|F| = k} is stochastically
increasing in k. By Proposition 1.2 in [86], this implies in particular that for every
e ∈ E, the following weak inequality holds :

E
w

µ

[
|F|
∣∣e ∈ F

]
≥ E

w

µ [|F|] .

Note that the condition c(1) > 0 guarantees that this conditional expectation is
well-defined. Since we have not yet used the fact that c(0) > 0, the above inequality
remains true if one changes the coefficient c(0) to 0. Setting it then back to its
initial (positive) value does not affect the left-hand side, but strictly decreases the
right-hand side, hence the desired strict inequality.

5.3 The cavity equation on finite networks

Let G = (V,E) be a finite graph at the vertices of which some local measures
µi, i ∈ V are specified. We call the resulting object a network. A configuration

x is an assignment of numbers xi→j ≥ 0 to every oriented edge i→ j ∈ ~E. Starting
from a configuration x, we define a new configuration y = ΓG(x) by

yi→j = Γijµi
(xk→i : k ∈ ∂i \ j) , (5.9)
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where ∂i denotes the set of all neighbors of i. Each xi→j may be thought of as a
message sent by i to j along the edge ij, and ΓG as a local rule for propagating
messages. For t > 0, the fixed point equation

x = tΓG(x) (5.10)

is called the cavity equation (also known as Belief Propagation (BP) equation) at
activity t on the network G. Its relation to the global measure µ induced by the
(µi)i∈V is revealed by the following Lemma.

Lemma 5.3 (Validity on trees). Assume that G is finite and acyclic. Then, for
every activity t > 0,

1. convergence: the cavity equation admits a unique solution x(t), which can
be reached from any initial configuration by iterating tΓG a number of times
equal to the diameter of G ;

2. correctness: for every i ∈ V , the exact marginal law of F ∩ Ei under
the Gibbs-Boltzmann law PtG is given by directly imposing the external field
{xj→i(t) : j ∈ ∂i} onto the local measure µi.

The important consequence is that on trees, the energy U(G; t) can be deter-
mined using only local operations :

U(G; t) =
1

2

∑

i∈V
Uµi

(xj→i(t) : j ∈ ∂i) (5.11)

=
∑

ij∈E

xj→i(t)xi→j(t)

t+ xj→i(t)xi→j(t)
, (5.12)

where the second equality is obtained by applying (5.8) to each µi, i ∈ V .

Proof. The result stated in Lemma 5.3 is well-known (see e.g. Mézard and Montanari
[76, Theorem 14.3]). We give a proof for completeness. When i is a leaf, the message
yi→j defined by equation (5.9) does not depend at all on the initial configuration
x. Iterating this argument immediately proves the convergence part, and we now
focus on correctness. Let G = (V,E) be a finite tree, o a vertex, and i a neighbor
of o. We let Gi→o denote the subtree induced by o and all vertices that the edge
io separates from o. Now assume that G is equipped with local measures, and let
Gi→o inherit from these local measures, except for µo which we replace by the trivial
local measure with constant value 1. With these notations, any spanning subgraph
F ⊆ E can be uniquely decomposed as the disjoint union of a subset I ⊆ Eo and a
spanning subgraph Fi on each Gi→o, i ∈ ∂o, with io /∈ Fi. Thus, writing µG for the
global measure on the network G, we have

µG(F )t|F | = µo(I)
∏

i∈I
t|Fi|+1µGi→o

(Fi ∪ io)
∏

i/∈I
t|Fi|µGi→o

(Fi).
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Fixing I and summing over all possible values for Fi, i ∈ ∂o, we obtain

P
t
G(F ∩ Eo = I) = Cµo(I)

∏

i∈I
P
t
Gi→o

(io ∈ F)
∏

i/∈I
P
t
Gi→o

(io /∈ F).

= C ′µo(I)
∏

i∈I

PtGi→o
(io ∈ F)

PtGi→o
(io /∈ F)

,

where C,C ′ are normalizing constants that do not depend on I. This already proves
that the law of F ∩ Eo can be obtained from the local measure µo by imposing on
each edge io ∈ Eo the external field

xi→o(t) :=
PtGi→o

(io ∈ F)

PtGi→o
(io /∈ F)

. (5.13)

In turn, this ratio can now be computed by applying the result to the vertex i in
the network Gi→o, and using formula (5.7):

PtGi→o
(io ∈ F)

PtGi→o
(io /∈ F)

= tΓioµi
(xk→i(t) : k ∈ ∂i \ o) ,

which shows that the configuration x(t) defined on G by (5.13) satisfies the cavity
equation (5.10).

There are two distinct parts in Lemma 5.3: convergence and correctness. As
we will now show, the convergence part extends to arbitrary graphs under the only
assumption that each local measure µi, i ∈ V is cavity-monotone. Henceforth, such
a network will be called a cavity-monotone network.

Proposition 5.1 (Convergence on finite cavity-monotone networks). On a finite
cavity-monotone network, the cavity equation admits a unique, globally attractive
fixed point x(t) at any activity t > 0.

Proof. Fixing t > 0 and starting with the minimal configuration x0 := 0, we set
inductively

xk+1(t) := tΓG(xk(t)),

for all k ∈ N. By Lemma 5.1, the Rayleigh property of the local measures µi, i ∈ V
ensures that ΓG is coordinate-wise non-increasing on the space of configurations.
Therefore, the limiting configuration

x−(t) := lim
k→∞

↑ x2k(t) and x+(t) := lim
k→∞

↓ x2k+1(t) (5.14)

exist, and any fixed point x = tΓG(x) must satisfy x−(t) ≤ x ≤ x+(t). Moreover,
ΓG is clearly continuous with respect to the product topology on configurations, so
that tΓG(x−(t)) = x+(t) and tΓG(x+(t)) = x−(t). Thus, the existence of unique
globally attractive solution to (5.10) boils down to the equality

x−(t) = x+(t). (5.15)



5.4. THE INFINITE VOLUME LIMIT 71

Now applying (5.8) to the local measure at a fixed vertex i ∈ V yields

Uµi

(
x−j→i(t) : j ∈ ∂i

)
=

∑

j∈∂i

x−j→i(t)x
+
i→j(t)

t+ x−j→i(t)x
+
i→j(t)

,

Uµi

(
x+
j→i(t) : j ∈ ∂i

)
=

∑

j∈∂i

x+
j→i(t)x

−
i→j(t)

t+ x+
j→i(t)x

−
i→j(t)

.

Summing over all vertices i ∈ V , we therefore obtain

∑

i∈V
Uµi

(
x−j→i(t) : j ∈ ∂i

)
=

∑

ij∈E

x−j→i(t)x
+
i→j(t)

t+ x−j→i(t)x
+
i→j(t)

+
x+
j→ix

−
i→j(t)

t+ x+
j→i(t)x

−
i→j(t)

=
∑

i∈V
Uµi

(
x+
j→i(t) : j ∈ ∂i

)
.

This implies (5.15), since by Lemma 5.1 each Uµi
, i ∈ V is strictly increasing in

every coordinate.

5.4 The infinite volume limit

In the previous section, we have established existence and uniqueness of a cavity so-
lution on any finite cavity-monotone network. Our concern is its asymptotic meaning
as the size of the underlying graph tends to infinity. Following the principles of the
objective method [8], we replace the asymptotic analysis of finite networks by the
direct study of their infinite limits.

5.4.1 Local convergence of rooted networks

The framework of local convergence described here slightly differs from the one given
in the introduction or in [7], so as to take into account the local measures that are
now attached to the vertices. A network is a denumerable graph G = (V,E) whose
vertices are equipped with local measures µi, i ∈ V . A rooted network (G, o) is
a network together with the specification of a particular vertex o ∈ V , called the
root. For ε ≥ 0, we write (G′, o′)

ε≡ (G, o) if there exists a bijection γ : V → V ′ that
preserves

• the root : γ(o) = o′ ;

• the adjacency : {i, j} ∈ E ⇐⇒ {γ(i), γ(j)} ∈ E ′ ;

• the support of the local measures : µi(F ) > 0 ⇐⇒ µ′
γ(i)(γ(F )) > 0, with

γ(F ) = {{γ(i), γ(j)} : {i, j} ∈ F}.

• the values of the local measures, up to ε: |µ′
γ(i)(γ(F )) − µi(F )| ≤ ε.

We let G⋆ denote the set of all locally finite connected rooted networks considered

up to the isomorphism relation
0≡. In the space G⋆, a sequence {(Gn, on);n ∈ N}
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converges locally to (G, o) if for every radius d ∈ N and every ε > 0, there is
nd,ε ∈ N such that

n ≥ nd =⇒ [Gn, on]d
ε≡ [G, o]d,

where [G, o]d denotes the finite rooted network obtained by keeping only the vertices
lying at graph-distance at most d from o. It is not hard to construct a distance which
metrizes this notion of convergence and turns G into a complete separable metric
space. We can thus import the usual machinery of weak convergence of probability
measures on Polish spaces.

Uniform rooting is a natural procedure for turning a finite deterministic net-
work G into a random element of G⋆: one simply chooses uniformly at random a
vertex o to be the root, and restrains G to the connected component of o. If (Gn)n∈N

is a sequence of finite networks and if the sequence of their laws under uniform root-
ing admits a weak limit L ∈ P(G⋆), we call L the local weak limit of the sequence
(Gn)n∈N. In [7], it was shown that any such limit enjoys a remarkable invariance
property known as unimodularity: let G⋆⋆ denote the space of locally finite con-
nected networks with an ordered pair of distinguished adjacent vertices (G, o, i),
taken up to the natural isomorphism relation and endowed with the natural topol-
ogy. A measure L ∈ P(G⋆) is called unimodular if it satisfies the Mass-Transport

Principle: for any Borel function f : G⋆⋆ → [0,∞],

L
[
∑

i∈∂o
f(G, o, i)

]
= L

[
∑

i∈∂o
f(G, i, o)

]
, (5.16)

where we have written L[·] for the expectation with respect to L. This is a deep
and powerful notion, which we will now use to extend the results of section 5.3 to
the infinite setting.

5.4.2 Main result : validity of the cavity method

The definition of ΓG remains valid for any locally finite network G. When the
latter is cavity-monotone, the configurations x−(t),x+(t) introduced in the proof
of Proposition 5.1 remain perfectly well-defined, and the convergence of the cavity
method again boils down to the identity x−(t) = x+(t). However, the proof of the
latter involves a summation over all edges, which is no longer valid in the infinite
setting. Instead, the desired x−(t) = x+(t) will be derived from unimodularity,
and will thus hold for any local weak limit of finite networks. Indeed, applying the
Mass-Transport Principle to the function (which is Borel as the point-wise limit of
continuous functions)

f(G, o, i) :=
x−i→o(t)x

+
o→i(t)

t+ x−i→o(t)x
+
o→i(t)

yields L
[
Uµo

(x−i→o(t) : i ∈ ∂o)
]

= L
[
Uµo

(x+
i→o(t) : i ∈ ∂o)

]
. If this expectation is

finite, then the size-increasing property of µo implies that L−almost surely, x−i→o(t) =
x+
i→o(t) for all i ∈ ∂o. This then automatically extends to every oriented edge since

under unimodularity, everything shows up at the root (another fruitful application of
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the Mass-Transport-Principle, see [7, Lemma 2.3]). We state this as a Proposition
below. Note that the energy Uµ of a measure µ is bounded by the rank of µ, where

rank(µ) = max {|F|; F ∈ supp(µ)} .

In particular, for the measure µo(F ) = 1|F |≤b describing the local constraint at a
vertex o for counting b−matchings, rank(µo) = b ∧ deg(o) ≤ b.

Proposition 5.2 (Convergence of the cavity method). Let L ∈ P(G⋆) be a unimod-
ular probability measure supported by cavity-monotone networks. If

L [rank(µo)] <∞,

then the cavity equation admits L−a.-s. a unique, globally attractive solution x(t)
at any activity t > 0.

By analogy with formula (5.11) in the finite case, the quantity

u(L; t) =
1

2
L
[
∑

i∈∂o

xi→o(t)xo→i(t)

t+ xi→o(t)xo→i(t)

]
(5.17)

appears as a natural candidate for the limiting energy of any sequence of finite
networks whose local weak limit is L. Our main result is precisely the validity of
this cavity ansatz when L is concentrated on trees.

Theorem 5.2 (Main result). Let (Gn)n∈N be a sequence of finite cavity-monotone
networks admitting a local weak limit L which is concentrated on cavity-monotone
trees. Assume that the rank of the local measure at a uniformly chosen vertex is
uniformly integrable as n→ ∞. Then,

U(Gn; t)

|Vn|
−−−→
n→∞

u(L; t). (5.18)

If moreover |En| = O(|Vn|) and all the local measures take values in {0, 1} or more
generally in {0} ∪K for a fixed compact K ⊆ (0,∞), then

1

|Vn|
logZ(Gn; t) −−−→

n→∞
L[log µo(∅)] +

∫ t

0

u(L; s)

s
ds, (5.19)

M(Gn)

|Vn|
−−−→
n→∞

m(L) := lim
t→∞

↑ u(L; t). (5.20)

Remark 5.2 (Large deviation principle). Integrating (5.18) yields

1

|Vn|
log

Z(Gn; t)

Z(Gn; 1)
−−−→
n→∞

∫ t

1

u(L; s)

s
ds.

It will later be checked that t 7→ u(L; t) is continuous on R+. Therefore, for a
random spanning subgraph Fn with the Gibbs-Boltzmann law P1

Gn
, Gärtner-Ellis

Theorem [49] guarantees that |Fn|/|Vn| obeys a large deviation principle with speed
|Vn| and good rate function y 7→

∫∞
0

(y − u(L; es))+ ds.
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5.4.3 Proof of the main result

The proof makes use of a classical ingredient known as the spatial Markov prop-

erty, which we first briefly recall. Let G = (V,E) be a finite network and let S be an
induced subgraph. We let ∂S denote the boundary of S, i.e. the set of edges having
one end-point in S and one in Sc. Any boundary condition B ⊆ ∂S can be used
to assign local measures to the vertices of S, namely µBi (F ) := µi (F ∪ (B ∩ Ei)).
Note that these local measures differ from the original ones only for vertices that
are adjacent to the boundary. The resulting network is denoted by S|B. Now, a
spanning subgraph F ⊆ E is clearly the disjoint union of a spanning subgraph Fint of
S, a boundary condition B ⊆ ∂S and a spanning subgraph Fext in Sc. The product
form of µG immediately yields :

P
t
G(F = F ) = P

t
S|B(F = Fint)P

t
G(F ∩ ∂S = B)PtSc|B(F = Fext). (5.21)

In other words, conditionally on the boundary B := F ∩ ∂S, the restrictions of F
to S and Sc are independent with law PtS|B and PtSc|B, respectively.

Lemma 5.4 (Tree approximation). Let (G, o) be a finite cavity-monotone network,
and let k ∈ N. If [G, o]2k+2 is a tree, then for every activity t > 0,

Uµo

(
x2k
i→o(t) : i ∈ ∂o

)
≤ E

t
G [|F ∩ Eo|] ≤ Uµo

(
x2k+1
i→o (t) : i ∈ ∂o

)
.

Proof. By the spatial Markov property for the tree S = [G, o]2k+2, we have

E
t
G [|F ∩Eo|] =

∑

B⊆∂S
P
t
G(F ∩ ∂S = B)Et

S|B [|F ∩ Eo|]

=
∑

B⊆∂S
P
t
G(F ∩ ∂S = B)Uµo

(
x

(B)
i→o(t) : i ∈ ∂o

)
,

where in the second line we have applied Lemma 5.3 to the tree S|B and writ-
ten x(B)(t) for the unique solution to the cavity equation at activity t thereon.
By monotony of the cavity operator, each x

(B)
i→o(t), i ∈ ∂o must satisfy x2k

i→o(t) ≤
x

(B)
i→o(t) ≤ x2k+1

i→o (t), and since µo is size-increasing, we get

Uµo

(
x2k
i→o(t) : i ∈ ∂o

)
≤ Uµo

(
x

(B)
i→o(t) : i ∈ ∂o

)
≤ Uµo

(
x2k+1
i→o (t) : i ∈ ∂o

)
.

Re-injecting this into the above equation yields the desired inequalities.

Proof of Theorem 5.2. Let (Gn)n∈N be a sequence of finite cavity-monotone net-
works admitting a local weak limit L which is concentrated on cavity-monotone
trees. Denote by Ln ∈ P(G⋆) the law under uniform rooting of Gn, so that Ln ⇒ L.
We will use the short-hand uk(G, o) = Uµo

(
xki→o(t) : i ∈ ∂o

)
, and χk(G, o) for the

indicator function that [G, o]2k+2 is a tree. Lemma 5.4 guarantees that for any finite
cavity-monotone network G and any vertex o,

E
t
G [|F| ∩Eo] ≥ χk(G, o)u2k(G, o)

E
t
G [|F| ∩Eo] ≤ χk(G, o)u2k+1(G, o) + (1 − χk(G, o))rank(µo).
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As functions of (G, o), these lower and upper bounds are continuous on G⋆, since
they depend only on [G, o]2k+2. Moreover, both are dominated by (G, o) 7→ rank(µo)
which is assumed to be uniformly integrable with respect to the sequence (Ln)n∈N.
Thus, their expectation under Ln tends to their expectation under L as n → ∞.
But χk is zero on the support of L, so we are simply left with

lim inf
n→∞

U(Gn; t)

|Vn|
≥ 1

2
L
[
Uµo

(
x2k
i→o(t) : i ∈ ∂o

)]

lim sup
n→∞

U(Gn; t)

|Vn|
≤ 1

2
L
[
Uµo

(
x2k+1
i→o (t) : i ∈ ∂o

)]
.

Since the local weak limit L is unimodular, Proposition 5.2 implies that both the
lower and upper bounds tend to L [Uµo

(xi→o(t) : i ∈ ∂o)] = u(L; t) as k → ∞. Note
that the requirement L[rank(µo)] < ∞ in Proposition 5.2 is here automatically
fulfilled, thanks to the uniform integrability assumption.

It now remains to show (5.19) and (5.20). The identity (5.5) implies that for any
activity t > 0 and any finite network G satisfying µ(∅) > 0,

1

|V | logZ(G; t) =
1

|V |
∑

o∈V
logµo(∅) +

∫ t

0

U(G; s)

s|V | ds.

Now take G = Gn and let n → ∞: the compactness assumption guarantees that
logµo(∅) is bounded uniformly in n, so the first term converges to L[logµo(∅)]. As
per the second one, it tends to

∫ t
0
u(L;s)
s
ds because of (5.18), provided we can show

that the uniform domination holds in Lebesgue’s dominated convergence Theorem.
This is ensured by (5.22) in Lemma 5.5 below, combined with the compactness
assumption and the fact that |En| = O(|Vn|). The inequality (5.23) easily guarantees
(5.20).

Lemma 5.5 (Uniform controls for the energy). Let G be a finite cavity-monotone
network. As a function of the activity t, the energy U(G; t) increases from 0 to
M(G). Furthermore, the rate of convergence to these two extrema can be precisely
controlled :

∀t > 0, U(G; t) ≤ t
∑

ij∈E
A(µi)A(µj); (5.22)

∀t > 1, U(G; t) ≥ M(G) − 1

log t

(
|E| log 2 +

∑

i∈V
logA(µi)

)
. (5.23)

where A(µ) = maxµ/minµ, with maxµ = max{µ(F ) : F ∈ supp(µ)} and minµ =
min{µ(F ) : F ∈ supp(µ)}.

Proof of Lemma 5.5. That the energy increases with the activity is equivalent by
(5.5) to the convexity of θ 7→ logZ(G; eθ), a direct consequence of Hölder’s inequal-
ity. This also implies that for any t > 1

U(G; t) log t ≥ log
Z(G; t)

Z(G; 1)
.
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Clearly Z(G; t) ≥ tM(G) minµ and Z(G; 1) ≤ 2|E| maxµ and A(µ) ≤∏i∈V A(µi), so
(5.23) follows. Regarding (5.22), we have for any t > 0

U(G; t) =
∑

ij∈E
P
t(ij ∈ F)

= t
∑

ij∈E

∑
F⊆E\ij µ(F ∪ ij)t|F |
∑

F⊆E µ(F )t|F |

≤ t
∑

ij∈E
max

F⊆E\ij,µ(F )>0

µ(F ∪ ij)
µ(F )

≤ t
∑

ij∈E
A(µi)A(µj),

where the third line uses the standard inequality a+b
c+d

≤ max(a
c
, b
d
) for any a, b, c, d >

0, and the fact that µ(F ∪ ij) > 0 =⇒ µ(F ) > 0 (Remark 5.1).

5.5 Explicit resolution for b−matchings

The goal of this section is to describe the important quantity m(L) introduced in
Theorem 5.2 directly in terms of a certain local equation which we naturally call
the cavity equation at infinite activity. This will then be used to establish the
explicit formulae that have been mentioned in the introduction.

5.5.1 The cavity equation at infinite activity

Let G be a cavity-monotone network. From Lemma 5.1, it follows that (t,x) 7→
tΓG(tx) is increasing in t and decreasing in x. We may thus define a limiting cavity-
operator by

ΓG(x) := lim
t→∞

↑ tΓG(tx).

By monotony, ΓG : [0,∞)
~E → (0,∞]

~E is well-defined without any ambiguity regard-
ing the order in which the limits t → ∞ and x → 0 are taken. Note also that ΓG
can be composed with ΓG : (0,∞]

~E → [0,∞)
~E, yielding a two-step local update rule

on (0,∞]
~E which will now play a crucial role.

Proposition 5.3 (The cavity equation at infinite activity). Let G be a cavity-
monotone network on which the cavity equation at activity t admits a unique globally
attractive fixed point x(t), for every t > 0. Then,

x := lim
t→∞

↑ x(t) (5.24)

exists in (0,∞]
~E, and is the smallest solution to the so-called cavity equation at

infinite activity on G:
x =

(
ΓG ◦ ΓG

)
(x). (5.25)
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In particular, for any unimodular probability measure L concentrated on cavity-
monotone networks, and satisfying L [rank(µo)] <∞, we have

m(L) =
1

2
L [Uµo

(xi→o : i ∈ ∂o)] .

Proof of Proposition 5.3. By assumption xk(t) → x(t) for any t > 0, where x0 ≡ 0

and for all k ∈ N,

xk+1(t) = tΓG

(
t
xk(t)

t

)
i.e.

xk+1(t)

t
= ΓG

(
xk(t)

)
. (5.26)

But (t,x) 7→ tΓG(tx) is increasing in t and decreasing in x, so an immediate induc-
tion over k shows that t 7→ t−1xk(t) and t 7→ xk(t) are respectively non-increasing
and non-decreasing, for every k ∈ N. Thus, t 7→ x(t) is non-decreasing, hence the
existence of (5.24). The identity (5.25) is then obtained by passing to the limits in
(5.26). Finally, if y ∈ (0,∞]

~E satisfies y = (ΓG ◦ ΓG)(y), then for every k ∈ N and
t > 0,

x2k(t) ≤ y. (5.27)

Indeed, the property is trivial when k = 0, and is preserved from k to k+ 1 because
tΓG(tw) ≤ ΓG(w) for any w ∈ [0,∞)

~E. Letting k → ∞ and then t → ∞ in (5.27)
yields x ≤ y, as desired.

Remark 5.3 (Continuity with respect to the activity). Incidentally, we have just
obtained that t 7→ t−1x(t) and t 7→ x(t) are respectively non-increasing and non-
decreasing, so that

0 < s ≤ t =⇒ s

t
x(t) ≤ x(s) ≤ x(t).

This guarantees the continuity of t 7→ x(t), and hence that of u(L; t), as promised
in Remark 5.2.

5.5.2 b−matchings on Galton-Watson trees

As explained in the introduction, many classical sequences of diluted random graphs
admit almost surely a particularly simple local weak limit L, namely a unimodular
Galton-Watson tree. Recall that this random rooted tree is parametrized by a prob-
ability distribution π ∈ P(N) with finite mean, called its degree distribution, and
that it is obtained by a Galton-Watson branching process where the root has off-
spring distribution π and all other genitors have the size-biased offspring distribution
π̂ ∈ P(N) defined by

∀n ∈ N, π̂n = (n+ 1)πn+1/
∑

k

kπk.

Thanks to the markovian nature of the branching process, the cavity equation at
infinite activity again simplifies into a recursive distributional equation (RDE) (see
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[6] for a survey). Let us describe it and solve it in the case of b−matchings, where
b ≥ 1 is fixed. The local cavity and energy ratios are

Γ(x1, . . . , xn) =

∑
I⊆[n]:|I|≤b−1

∏
i∈I xi∑

I⊆[n]:|I|≤b
∏

i∈I xi

U(x1, . . . , xn) =

∑
I⊆[n]:|I|≤b |I|

∏
i∈I xi∑

I⊆[n]:|I|≤b
∏

i∈I xi
.

In the infinite activity limit, the local cavity ratio becomes

Γ(x1, . . . , xn) =

∑
I⊆[n]:|I|=b−1

∏
i∈I xi∑

I⊆[n]:|I|=b
∏

i∈I xi
,

where all conventions regarding degenerate cases are obtained by taking the corre-
sponding limits. Given Q ∈ P((0,∞]), we let Θ(Q) ∈ P ([0, 1])) denote the law of
Γ
(
Y1, . . . , Y bN

)
, where N̂ has law π̂ and Y1, Y2, . . . are i.i.d. with law Q, independent

of N̂ . Similarly, given P ∈ P([0, 1]), we let Θ(P ) ∈ P ((0,∞]) denote the law of
Γ
(
X1, . . . , X bN

)
, where N̂ has law π̂ and X1, X2, . . . are i.i.d. with law P , indepen-

dent of N̂ . With this notation in hands, the law Q ∈ P((0,∞]) of a message sent
towards the root in the configuration x must satisfy the RDE Q = (Θ ◦ Θ)(Q).
Equivalently, P = Θ(Q) must satisfy P = (Θ ◦Θ)(P ). More precisely, letting H(P )
denote the expectation of 1

2
U (Y1, . . . , YN), where N has law π and Y1, Y2, . . . are

i.i.d. with law Q = Θ(P ), independent of N , we may rephrase Proposition 5.3 as
follows.

Corollary 5.2. m(L) = H(P ), where P ∈ P([0, 1]) is the largest solution to the
RDE P = (Θ ◦ Θ)(P ).

The fixed points of Θ ◦ Θ turn out to be in one-to-one correspondence with the
historical minima of a certain function M : [0, 1] → R defined in terms of the
degree generating function φ(λ) =

∑
k πkλ

k:

M(λ) =
b

2

(
2 − g(λ) − (g ◦ f)(λ) +

c

b
f(λ)(f ◦ f)(λ)

)
,

with c = φ′(1), f(λ) =
1

c

b−1∑

k=0

λkφ(k+1)(1 − λ)

k!
and g(λ) =

b∑

k=0

λkφ(k)(1 − λ)

k!
.

A historical minima of M is a number λ ∈ [0, 1] satisfying M ′(λ) = 0 and M(λ′) >
M(λ) for all λ′ < λ.

Proposition 5.4 (Resolution of the RDE). Let λ1 < . . . < λr denote the historical
minima of the function M . Then, the distributional equation P = (Θ◦Θ)(P ) admits
exactly λ solutions, and they are stochastically ordered : P1 < . . . < Pr. Moreover,
for each 1 ≤ i ≤ r, we have H(Pi) = M(λi).

In particular, m(L) = minM , which is exactly the formula given in Theorem 5.1.
Proposition 5.4 was established in chapter 2 for the special case b = 1 (Proposition
3.2), but the proof can easily be adapted to the general case. For the sake of
completeness, we have included a general proof.
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5.5.3 Resolution of the RDE

First observe that the mappings Θ,Θ and H are all decreasing with respect to
stochastic order, and continuous with respect to weak convergence. Note also that
cf ′(λ)λ = bg′(λ), so thatM ′(λ) = cf ′(λ) ((f ◦ f)(λ) − λ) . ThusM ′(0) ≤ 0,M ′(1) ≥
0, and M ′(λ) = 0 if and only if (f ◦ f)(λ) = λ.

Lemma 5.6 (Properties of Γ,Γ and U).

1. Let (x1, . . . , xn) ∈ [0, 1]n and yi = Γ(xk : k 6= i). Then,

(a) Γ(x1, . . . , xn) = ∞ ⇐⇒∑n
i=1 1{xi>0} < b ;

(b)
n∑

i=1

xiyi
1 + xiyi

1{yi<∞} = b1n

Pn
i=1

1{xi>0}>b
o

2. Let (y1, . . . , yn) ∈ (0,∞]n and x′i = Γ(yk : k 6= i). Then,

(a) Γ(y1, . . . , yn) > 0 ⇐⇒∑n
i=1 1{yi=∞} < b;

(b)
n∑

i=1

x′iyi
1 + x′iyi

1{yi<∞} = U(x′1, . . . , x
′
n) − b ∧

n∑

i=1

1{yi=∞}.

Proof. Properties 1.a and 2.a are straightforward from the definition of Γ and Γ.
Regarding property 1.b, set K = # {i ∈ [n] : xi > 0} . If the sum is non-zero then
there must be an i satisfying both yi < ∞ and xi > 0. By 1.a, this implies K > b.
Conversely, if K > b then yi <∞ for every i ∈ [n]. We have just shown

n∑

i=1

xiyi
1 + xiyi

1{yi<∞} = 1{K>b}

n∑

i=1

xiyi
1 + xiyi

.

= 1{K>b}

n∑

i=1

∑
|I|=b,I∋i

∏
k∈I xk∑

|I|=b
∏

k∈I xk

= b1{K>b},

where the second equality is obtained by replacing yi = Γ(xk : k 6= i) by its definition.
For property 2.b, set L = # {i ∈ [n] : yi = ∞} . When L = 0, 2.b boils down to
formula (5.8). The case 1 ≤ L ≤ b can then be obtained by successively setting
each of the L variables to ∞, which amounts to condition on the presence of the
corresponding ground elements. For L ≥ b, both sides of the equation are zero.

Lemma 5.7. Let P ∈ P([0, 1]) and P ′ = (Θ ◦ Θ)(P ). Set also λ = P ({0}c) and
λ′ = P ′({0}c). Then,

1. λ′ = (f ◦ f)(λ) ;

2. P ′ ≤ P =⇒ H(P ) ≤M(λ) ;

3. P ′ ≥ P =⇒ H(P ) ≥M(λ).

In particular, if P = (Θ ◦ Θ)(P ) then H(P ) = M(λ) and M ′(λ) = 0.
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Proof. In the whole proof, N denotes a generic random integer with law π, N̂
a generic random integer with law π̂, X,X1, X2, . . . generic [0, 1]−valued random
variables with law P , Y, Y1, Y2, . . . generic (0,∞]−valued random variables with law
Θ(P ), and X ′, X ′

1, X
′
2, . . . generic [0, 1]−valued random variables with law P ′. We

use the convention that all variables appearing under the same expectation are
independent. With these notations, properties 1.a and 2.a in Lemma 5.6 give

P (Y = ∞) = P




bN∑

i=1

1{Xi>0} < b



 and P (X ′ > 0) = P




bN∑

i=1

1{Yi=∞} < b



 ,

which, in view of the definition of f , yields exactly the first claim of the Lemma.
Now, using property 1.b and 2.b, we respectively obtain the two following identities:

E

[
XY 1{Y <∞}

1 +XY

]
=

∑

n∈N

π̂(n)E

[
XΓ (X1, . . . , Xn)

1 +XΓ (X1, . . . , Xn)
1{Γ(X1,...,Xn−1)<∞}

]

=
∑

n∈N

π(n)nE

[
XΓ (X1, . . . , Xn−1)

1 +XΓ (X1, . . . , Xn−1)
1{Γ(X1,...,Xn−1)<∞}

]

=
∑

n∈N

π(n)E

[
n∑

i=1

XiΓ (Xk : k 6= i)

1 +XiΓ (Xk : k 6= i)
1{Γ(Xk:k 6=i)<∞}

]

= bP

(
N∑

i=1

1{Xi>0} > b

)

= b(1 − g(λ)).

E

[
X ′Y 1{Y <∞}

1 +X ′Y

]
=

∑

n∈N

π̂(n)E

[
Y Γ (Y1, . . . , Yn)

1 + Y Γ (Y1, . . . , Yn)
1{Y <∞}

]

=
∑

n∈N

π(n)nE

[
Y Γ (Y1, . . . , Yn−1)

1 + Y Γ (Y1, . . . , Yn−1)
1{Y <∞}

]

=
∑

n∈N

π(n)E

[
n∑

i=1

YiΓ (Yk : k 6= i)

1 + YiΓ (Yk : k 6= i)
1{Yi<∞}

]

= E [U(Y1, . . . , YN)] − E

[
b ∧

N∑

i=1

1{Yi=∞}

]

= 2H(P )− b(1 − g(λ)) − cλf(λ).

Since the mapping xy
1+xy

is increasing in x, claims 2 and 3 follow.

Proof of Proposition 5.4. Fix λ ∈ [0, 1] satisfying M ′(λ) = 0, i.e. (f ◦ f)(λ) = λ.
Define P (0)

λ ∈ P([0, 1]) to be the Bernoulli distribution with parameter λ, and set
then iteratively

P
(k+1)
λ = (Θ ◦ Θ)(P

(k)
λ )
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for all k ∈ N. By part 1 in Lemma 5.7, P (1)
λ is a distribution on [0, 1] satisfying

P
(1)
λ ({0}c) = λ. Since P (0)

λ is the largest such distribution, P (1)
λ ≤ P

(0)
λ . But both

Θ and Θ are decreasing, so by immediate induction, the sequence (P
(k)
λ )k∈N is non-

increasing. Thus, the limit Pλ = limk→∞ ↓ P (k)
λ exists in P([0, 1]). Setting λ∞ =

Pλ({0}c), we claim that

1. Pλ is a fixed point of Θ ◦ Θ ;

2. H(Pλ) = M(λ∞);

3. λ∞ ≤ λ;

4. M(λ∞) ≤ M(λ).

Part 1 follows from the continuity of Θ and Θ. Part 2 is guaranteed by Lemma 5.7.
Part 3 is a consequence of the fact that Pλ ≤ P

(0)
λ . Finally, for each k ∈ N, we have

P
(k)
λ ({0}c) = λ and P (k)

λ ≥ P
(k+1)
λ , so Lemma 5.7 guarantees that H(P

(k)
λ ) ≤ M(λ).

Letting k → ∞ yields exactly part 4.
We are now in position to prove the equivalence between the historical minima

of M and the solutions to (Θ ◦Θ)(P ) = P . If λ is a historical minimum, then parts
3 and 4 force λ∞ = λ so P = Pλ is a solution satisfying H(P ) = M(λ), as desired.
Conversely, let us now show that any solution P is in fact of the form Pλ for some
historical minimum λ. Set λ = P ({0}c), which satisfies M ′(λ) = 0 by Lemma 5.7.
We claim that P ≤ P

(k)
λ for any k ∈ N: indeed, this holds for k = 0 because Pλ(0)

is the largest element of P([0, 1]) such that P (0)
λ ({0}c) = λ, and it then inductively

extends to all k ∈ N by monotony of Θ ◦ Θ. Letting k → ∞, we obtain P ≤ Pλ ;
but by Lemma 5.7 we also have H(P ) = M(λ), and H(Pλ) ≤M(λ). Thus, P = Pλ
(H is decreasing). Finally, if λ′ < λ is any historical minimum then P

(0)
λ′ ≤ P

(0)
λ ,

which implies Pλ′ ≤ Pλ. In fact the inequality is strict, because Pλ′({0}c) = λ′ <
λ = Pλ({0}c). Applying the decreasing mapping H yields M(λ′) > M(λ), which
shows that λ is a historical minimum.
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