
HAL Id: tel-00637362
https://theses.hal.science/tel-00637362

Submitted on 1 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Steady-State Scheduling of Task Graphs onto
Heterogeneous Platforms

Matthieu Gallet

To cite this version:
Matthieu Gallet. Steady-State Scheduling of Task Graphs onto Heterogeneous Platforms. Modeling
and Simulation. Ecole normale supérieure de lyon - ENS LYON, 2009. English. �NNT : �. �tel-
00637362�

https://theses.hal.science/tel-00637362
https://hal.archives-ouvertes.fr

No d’ordre : — No attribué par la bibliothèque : ——–

- École normale supérieure de Lyon -
Laboratoire de l’Informatique du Parallélisme

THÈSE

en vue d’obtenir le grade de

Docteur de l’Université de Lyon - École normale supérieure de Lyon

Spécialité : Informatique

au titre de l’École Doctorale Informatique et Mathématiques

présentée et soutenue publiquement le 20 octobre 2009 par

Matthieu GALLET

Steady-State Scheduling
of Task Graphs

onto Heterogeneous Platforms

Directeur de thèse : Frédéric VIVIEN
Co-encadrant de thèse : Yves ROBERT

Après avis de : Arnold ROSENBERG Rapporteur
Olivier BEAUMONT Rapporteur

Devant la commission d’examen formée de :

Claire HANEN Membre
Arnold ROSENBERG Rapporteur
Olivier BEAUMONT Rapporteur
Jean-François MÉHAUT Membre
Yves ROBERT Membre
Frédéric VIVIEN Membre

ii

Remerciements

Ma décision d’effectuer ma thèse au sein du LIP et de l’ENS Lyon est venue suite à un stage
de M2 réalisé dans l’équipe Graal. Ce stage étudiant des problématiques d’ordonnancement m’a
donné envie de continuer dans cette voie et de me lancer dans une thèse.

Tout d’abord, je tiens à remercier mes directeurs de thèse, Yves et Frédéric, pour leur en-
cadrement et leur savoir. Je pense que sans eux, je n’aurais jamais autant apprécié ces trois
ans.

Merci à Arnold Rosenberg et Olivier Beaumont pour avoir accepté d’être les rapporteurs de
ma thèse, ainsi qu’à Claire Hanen et Jean-François Méhaut pour avoir accepté de faire partie de
la commission d’examen.

J’aimerais également dire merci à l’ensemble de L’équipe Graal et du LIP, Anne, Loris,
Jean-Yves, Bora, Eddy, Frédéric, Évelyne, Mathias, Clément, Fanny, Ghislain, Benjamin, Paul,
Veronika, Emmanuel, Jean-François, Raphaël.

Je pense également les autres amis que j’ai découverts à Lyon et avec qui j’ai passé sept
excellentes années : Chac et So, Anne-So, Séverine, Joubs, Julien, tous ceux d’infoens. Cela ne
me fait pas oublier mes amis de longue date, Séb qui a subi mes répétitions, Jonathan, Fred,
Audrey, Vince, Valériane, Blandine.

Je finirai avec une pensée toute particulière pour Marion, mes parents et ma famille qui me
soutiennent depuis toujours.

iii

iv REMERCIEMENTS

Contents

Remerciements iii

Introduction i

I Divisible load theory 1

1 Presentation of the Divisible Load Theory 3
1.1 Introduction . 3

1.1.1 Motivating Example . 4
1.1.2 Classical Approach . 4

1.2 Divisible Load Approach . 7
1.2.1 Bus-Shaped Network . 7
1.2.2 Star-Shaped Network . 10

1.3 Extensions of the Divisible Load Model . 15
1.3.1 Introducing Latencies . 15
1.3.2 Multi-Round Strategies . 18
1.3.3 Return Messages . 26

1.4 Conclusion . 26

2 Scheduling divisible loads on a chain of processors 29
2.1 Introduction . 29
2.2 Problem and notation . 29
2.3 An illustrative example . 30

2.3.1 Presentation . 30
2.3.2 Solution of [88], one-installment . 32
2.3.3 Solution of [88], multi-installment . 32
2.3.4 Conclusion . 36

2.4 Optimal solution . 36
2.5 Possible extensions . 38

2.5.1 Optimal number of installments . 39
2.5.2 Upper bound on the gain using multi-installment strategies 43

2.6 Experiments . 44
2.7 Conclusion . 46

v

vi CONTENTS

II Steady-state scheduling 49

3 General presentation of steady-state scheduling 51
3.1 Introduction . 51
3.2 Problem formulation . 52

3.2.1 Platform model . 52
3.2.2 Application model . 52
3.2.3 Definition of the allocations . 54

3.3 Periodic steady-state scheduling . 54
3.4 Dynamic vs. static scheduling . 55
3.5 Content of this part . 56

4 Mono-allocation schedules of task graphs 57
4.1 Introduction . 57
4.2 Notation, hypotheses, and complexity . 58

4.2.1 Platform and application model . 58
4.2.2 Allocations . 58
4.2.3 Upper bound on the achievable throughput 59
4.2.4 NP-completeness of throughput optimization 62

4.3 Mixed linear program formulation for optimal allocations 62
4.3.1 Single path, fixed routing . 63
4.3.2 Single path, free routing . 64
4.3.3 Multiple paths . 66

4.4 Heuristics . 67
4.4.1 Greedy mapping policies . 67
4.4.2 Rounding of the linear program . 67
4.4.3 An involved strategy to delegate computations 68
4.4.4 A neighborhood-centric strategy . 70

4.5 Performance evaluation . 70
4.5.1 Reference heuristics . 71
4.5.2 Simulation settings . 72
4.5.3 Results . 73

4.6 Conclusion and perspectives . 75

5 Dynamic bag-of-tasks applications 79
5.1 Introduction . 79
5.2 Notation and models . 80

5.2.1 Platform model . 80
5.2.2 Constant applications model . 80
5.2.3 A stochastic formulation for dynamic applications 81

5.3 Approximation and heuristics . 82
5.3.1 Resolution of the constant case . 82
5.3.2 An ε-approximation . 83
5.3.3 Heuristic solutions to the online problem 87
5.3.4 Reference heuristics . 89

5.4 Experiments . 93
5.4.1 Simulation settings . 93

CONTENTS vii

5.4.2 Results . 94
5.5 Conclusion and perspectives . 105

6 Computing the throughput of replicated workflows 107
6.1 Introduction . 107
6.2 Notation and hypotheses . 108

6.2.1 Application model . 108
6.2.2 Platform model . 108
6.2.3 Replication model . 109

6.3 Timed Petri net models . 110
6.3.1 A short introduction to timed Petri nets 110
6.3.2 Mappings with replication . 110
6.3.3 Overlap One-Port model . 112
6.3.4 Strict One-Port model . 114

6.4 Computing mapping throughputs . 115
6.4.1 Overlap One-Port model . 115
6.4.2 Strict One-Port model . 124

6.5 Experiments . 125
6.6 Conclusion . 125

7 Task graph scheduling on the Cell processor 127
7.1 Introduction . 127
7.2 Modeling the Cell . 128

7.2.1 Processor model . 128
7.2.2 Application model and schedule . 130
7.2.3 NP-completeness of throughput optimization 131

7.3 A steady-state scheduling algorithm . 132
7.4 Experiments . 134
7.5 Conclusion . 139

8 Conclusion and Perspectives 141
8.1 Conclusion . 141
8.2 Perspectives . 143
8.3 Final Remarks . 144

A Bibliography 145

B Publications 151

C Notation 153

viii CONTENTS

Introduction

Since their origins during the Second World War, computers have become faster and faster,
more and more powerful. The first machines were slow, like the Zuse’s Z3 clocked at 10 Hz,
the Colossus clocked at 5.8 MHz or the ENIAC at 100 kHz, but their clock frequency and their
overall power quickly increased up to 3−4 GHz during the first years of the twenty-first century.
Since a few years, the clock frequency remains stable but the computing power is still growing
as processors can execute more instructions during a single clock cycle.

Despite this constant increase of processing capacity, there were still people asking for more
power, and a single processor computer was not powerful enough to fulfill their requirements.
The first step to dramatically increase the computing power was made by assembling several
processors around the same memory resource shared by all processors. This introduced new
algorithmic challenges, mainly due to simultaneous accesses to the same data. This also led to
new results, like the famous Amdahl’s law giving an upper bound on the theoretical speed-up
that can be reached using multiple processors [6].

Since the number of processors in the same computer and using the same memory is limited
by hardware constraints, the next step was to gather some computers to form a cluster, each
processor having its own private memory. Since the programmer has to take care of communi-
cating data from a processor to another one, clusters bring further algorithmic problems, since
communication times and latencies need to be taken into account during the algorithm design
phase. Thanks to the deployment of large-scale networks, public ones like the internet or dedi-
cated ones, several clusters can be inter-connected to form a computing grid [46]. At the same
time, some specialized supercomputers were replaced by large clusters of simpler but cheaper
personal computers, and the multi-core technology was progressively added to processors, even
into mainstream processors. Nowadays, the high-end computing clusters are built around pro-
cessors assisted by graphic cards and heterogeneous multi-core processors, and while dedicated
computing structures made of several hundreds or thousands of processors are not uncommon,
while public computing grid can reach tens of thousands of processors. In addition of these
dedicated structures, more and more users offer idle time of their own desktop computers to
form a desktop grid, made of numerous but strongly different computers.

From an algorithmic point of view, the models used for the computing platforms became
more and more complex, starting from a single processor to many unrelated processors linked
by heterogeneous communication links, as summed up by Figure 1. However, this evolution
was necessitated by the corresponding hardware evolution. To efficiently handle such large
platforms, programs are cut into several tasks, that have to be scheduled. These tasks can be
independent, or can have several dependencies, in which case they form a task graph. Thus,
the role of scheduling algorithms is to decide where (on which processors) and when to execute
these tasks, while taking care of the communications. The goal of such algorithms is to use the
hardware as efficiently as possible. However, this notion needs to be carefully explained to define

i

ii INTRODUCTION

the objective function of the algorithms. The most classical, and perhaps the most intuitive,
objective function is to minimize the makespan, or, in other words, the overall time necessary
for the platform to achieve all computations.

homogeneous communications
heterogeneous processors

heterogeneous communications
unrelated processors

Grid computing with
computations using graphic cards
and heterogeneous multicore processors

no communications
homogeneous processors

time

Clusters

Grid computing
Heterogeneous clusters

Multiprocessor units

single processor

First computers

homogeneous communications
homogeneous processors

heterogeneous communications
heterogeneous processors

Figure 1: Short summary of the evolution of platform models.

However, when minimizing the makespan, simple scheduling problems are NP-hard, even
in the context of homogeneous resources [30]: if we have only two identical processors and
no communications, minimizing the completion time of several jobs is already NP-hard [67].
Furthermore, this objective function is not adapted to all scheduling problems, especially when
the user wants to schedule a continuous flow of tasks (the makespan is undefined in this case).
If this flow is made of a sequence of identical computations applied to hundreds or thousands
of data sets, then one could prefer to maximize the throughput of the platform, i.e., the average
number of data sets which are executed by the platform every time unit. Considering the
average throughput of the platform instead of the makespan leads to focus on the heart of the
schedule, leaving apart the matter of optimizing both the initialization and the termination of
the execution. If the number of tasks is large enough, we hope that optimizing the steady-state
is enough to ensure an efficient use of the platform.

Problems and platforms

This thesis is mainly focused on scheduling large numbers of independent jobs, these jobs
being atomic or, on the contrary, being split into several tasks with inter-task dependencies,
which form an acyclic graph. Minimizing the total completion time is a hard problem, and thus
we have to relax some constraints to keep the problem tractable. To formally define the problem
to study, we need to precisely model the target platforms and applications, taking different
points of view into account.

First, we can consider an experimental point of view. Many of real parallel applications are
made of several tasks, these tasks being simply dispatched onto different processors. This is an
easy way to exploit the parallelism of both the application and the platform, but the possible
benefit of this parallelism may be not fully reached. Due to its simplicity, the underlying
theoretical problems are well understood, and it its easy to compute the latency or the period
of the system, generally being given by a critical resource or a critical path.

On the other side, we have fully theoretical solutions to the same problems. These solutions
are more efficient, but may be very complex. One may think to the general solution to the
problem of maximizing the throughput of a platform processing a continuous flow of copies of a
given application graph. An optimal schedule is made of a large number of concurrent allocations,

iii

and a complete algorithm has been written to determine the set of suitable allocations and build
a description of a corresponding schedule. However, such solutions have their own drawbacks,
even if they provide an optimal throughput. Due to its complexity, minimizing the latency (the
time passed by an instance in the system) is hard. High latencies also mean potentially huge
numbers of instances simultaneously present in the system, consumming lot of memory. In fact,
even simply compute the latency is a hard problem.

In this thesis, we focus on two relaxations of the complete problem, to obtain theorical
solutions, which achieve a reasonnable trade-off between simplicity and efficiency.

Communication models

Because the target platforms are made of distant resources, having a realistic model for com-
munications is very important. However, communication protocols are very complex, especially
the TCP/IP protocol which is probably the most widespread one. Indeed, they are difficult to
model and a model which is very close to the reality may be untractable due to its complexity,
leading us to prefer simpler models. Even a single communication is hard to precisely model; we
simply consider that the time taken by a communication is proportional to the size of the data,
ignoring latencies and the overhead of headers. In this thesis, several communication models are
used to deal with multiple communications. In a first model, a resource cannot simultaneously
work on a task and communicate, and, when communicating, it can communicate with at most
one other resource; this is the strict one-port model. This can be the case of a single-thread
application, and this model also corresponds to the behavior of two widespread MPI libraries,
IBM MPI and MPICH, which serialize asynchronous communications as soon as message sizes
exceed a few tens of kilobytes [73]. In the context of homogeneous communication links, for
example in a small cluster, this model can also be interesting because the whole bandwidth of
any resource can be used by a single communication: two simultaneous communications could
be slower than two successive ones.

Both limitations can be alleviated. First, if the application is multithreaded and if the
computing resource can dedicate a processor to the communication (for example, any recent
network card has an integrated coprocessor), then we assume that the computing resource can
simultaneously work on a task and communicate with another resource: this is the one-port
model with overlap of communications by computations. We could also consider that a resource
can simultaneously communicate with many distant resources, as soon as the sum of the band-
widths of these communications doest not exceed the bandwidth of its own network card: this
is the bounded multiport model, presented by Hong and Prasanna [56]. It requires multithreaded
communication libraries, each communication being processed by a distinct thread. Recent ver-
sions of communication libraries such as MPICH2 [61] are now multithreaded and allow such
concurrent communications. This model is well-suited to heterogeneous networks. For example,
a web server has a large bandwidth compared to its clients and is massively multithreaded to
simultaneously serve dozens of clients.

We only presented the communication models which were used in this thesis. We can see that
the choice of the communication model depends on the available hardware, even if most recent
hardware allow simultaneous computations and communications, but also on the available soft-
ware resources (do we have a multithreaded communication library?) and, finally, on the target
application: if any recent application should be designed to be multithreaded, it could be hard
to modify an old existing application to efficiently overlap communications by computations.

We concentrate on two different relaxations: the Divisible Load Theory and the Steady-State

iv INTRODUCTION

scheduling.

Divisible Load Theory

This first part is devoted to the Divisible Load Theory, a classical relaxation of makespan
minimization problems. In Chapter 1, we present this relaxation through the schedule of an
example of application on a star-shaped platform, using several familiar results. The essence
of the Divisible Load Theory is to consider a single load, which can be arbitrarily divided into
several chunks. We also discuss the use of several installments to distribute the entire load to
workers and the introduction of latencies in the communication model, instead of a simple linear
cost model.

In Chapter 2, we consider a linear network of heterogeneous processors and several indepen-
dent divisible loads, each load having its own characteristics in terms of communication data
and amount of computation. All loads are initially stored on the first processor of the chain,
which keeps a fraction of each load and redistributes the remaining to the second processor. As
soon as this second processor has received its fraction of a load, it keeps a fraction of it and
forwards the remaining to the third processor, and so on along the processor chain. The whole
framework is fully described in Section 2.2. This problem was first studied by Min, Veeravalli,
and Barlas in [87, 88]. However, their solution is not optimal, or even not valid. Thus, we expose
a valid, and optimal, solution to this problem in Section 2.4, before comparing all strategies in
Section 2.6. This work has been published in [C3], in [A1], and in [A2].

Steady-State scheduling

In this second part, we turn our attention to the schedule of many instances of the same
task or the same task graph on a heterogeneous platform. Instead of minimizing the makespan,
which is hard and not really useful for this problem, we rather study the maximization of the
platform throughput, without considering the start nor the end of generated schedules.

After a general presentation of the Steady-State techniques in Chapter 3, we study the
scheduling of complex but static applications, made of acyclic task graphs, on a heterogeneous
platform. However, schedules remain quite simple, made of a single allocation. In a second step
(in Chapter 5), we focus on a collection of simpler but dynamic applications: the characteristics of
their instances are varying. Designing static schedules taking care of this dynamicity is difficult,
even in case of simple bag-of-tasks applications. Chapter 6 deals with pipeline applications,
with more complex schedules: several tasks are replicated on several processors to increase the
global throughput. In this case, even if instances are distributed in a simple Round-Robin
fashion and if the mapping is completely specified, computing the throughput of the platform
is difficult. Finally, Steady-State techniques are actually used in Chapter 7, being adapted to a
single heterogeneous multi-core processor.

Chapter 3 introduces some notions, which are common to the different chapters constituting
this part. We give a general formulation of the problem, explaining the model used for platforms
and applications in Section 3.2. In Section 3.3, we give the formal definition of a periodic
schedule. In a nutshell, a periodic schedule of period T is made of a sequence of allocations of
tasks to processors which is repeated every T time units. In Section 3.4, we briefly compare the
respective advantages and drawbacks of periodic schedules and of dynamic strategies, which are
commonly used on computing grids.

v

Chapter 4 is centered on providing simple but efficient periodic schedules of complete task
graphs on a heterogeneous platform. These schedules are made of a single allocation, i.e., all
instances of a given task are mapped on the same processor, in order to decrease the required
flow control. Section 4.3 gives an optimal solution to this problem. However, the associated
decision problem is proven to be NP-hard, and the complexity of our optimal solution is expo-
nential and cannot be computed for large instances. Thus, we also propose several heuristics
in Section 4.4. All these mono-allocation heuristics are compared to two dynamic scheduling
strategies in Section 4.5, proving the strong efficiency of our approach. This work has been
published in [B3] and in [B1].

Instead of full task graphs, Chapter 5 deals with different bag-of-tasks applications, i.e.,
applications which are made of several independent tasks. The target computing structure is
a star-shaped platform, made of several workers organized around a master processor, which
initially owns all data. Applications such that all instances have identical sizes are the most
commonly studied. However, there are many applications, such that instances have similar but
different characteristics. In Section 5.3, we first recall the solution when all instances of each
application share the same characteristics, before proposing an ε-approximation to the off-line
problem (all instances are known before the execution of the algorithm) and a heuristic to the
online problem (instances are progressively submitted to the scheduler). In Section 5.4, some
experiments show that our approach offers good results in comparison with dynamic demand-
driven policies.

In Chapter 6, we discuss schedules of linear task graphs, or workflows, mapped on a fully
connected platform. Contrarily to the previous situations, a given task can be mapped on
several processors in a Round-Robin fashion: if a task is mapped on two processors, then the
first one processes each even instance of the task, while the second processor process odd ones,
independently of their respective speeds. It appears that even if the whole mapping of tasks
on processors is given, then determining the period is a complex problem. To solve it, we
present in Section 6.3 models based on timed Petri nets. This technique allows us to compute
the throughput of the platform in Section 6.4, once the mapping is given. This work has been
published in [B2].

Contrarily to the other chapters, which are mostly devoted to large structures like clusters
or grids, Chapter 7 is dedicated to a single processor. This processor, the Cell made by IBM,
is very different from common multi-core processors because of its two types of cores. Around
a classic PowerPC core, we find eight smaller cores called SPEs. If these cores perform very
well in vectorial computing, there are less efficient in some other tasks like double precision
floating-point operations. In Section 7.2, we describe all the hardware components of the Cell
from a theoretical point of view. This heterogeneity is one of the reasons of the complexity of
programming for the Cell, especially in the case of multiple instances of the same task graph.
Thus, in Chapter 7.3, we apply steady-State techniques using a single allocation to obtain
efficient schedules: a complete framework for using such schedules has been implemented, and
some experimental comparisons to basic schedules are given in Section 7.4.

vi INTRODUCTION

Part I

Divisible load theory

1

Chapter 1

Presentation of the Divisible Load Theory

1.1 Introduction

This first part targets the problem of scheduling a large and compute-intensive application
on parallel resources, typically organized as a master-worker platform. We assume that we can
arbitrarily split the total work, or load, into chunks of arbitrary sizes, and that we can dis-
tribute these chunks to an arbitrary number of workers. The job has to be perfectly parallel,
without any dependence between sub-tasks. In practice, this model is a reasonable relaxation
of an application made up of a large number of identical, fine-grain parallel computations. Such
applications are found in many scientific areas, like linear algebra [32], satellite pictures pro-
cessing [64], multimedia contents [4, 5] broadcasting, image processing [64, 69], large databases
searching [41, 29], biological pattern-matching [66]. This model is known as the Divisible Load
model and has been widespread by Bharadwaj, Ghose, Mani, and Robertazzi in [28]. Steady-
state scheduling, detailed in Part II, is another relaxation, more sophisticated but well-suited
to complex applications. In [71], Robertazzi shows that the Divisible Load model is a tractable
approach, which applies to a great number of scheduling problems and to a large variety of
platforms, such as bus-shaped, star-shaped, and even tree-shaped platforms.

Divisible load theory provides a simple framework for the mapping of independent tasks onto
heterogeneous platforms. From a theoretical standpoint, the success of the divisible load model
is mostly due to its analytical tractability. Optimal algorithms and closed-form formulas exist
for the simplest instances of divisible load problems. We are aware of only one NP-completeness
result in the DLT [91] without memory constraints. This is in sharp contrast with the theory of
task graph scheduling, which abounds in NP-completeness theorems and in inapproximability
results.

In this chapter, we motivate the Divisible Load model using the example of a seismic tomog-
raphy application processed by a star-shaped platform. We recall to solve this example first with
the classical approach in Section 1.1.2, and then using the Divisible Load model in Section 1.2.
After the presentation of the complete resolution, we use weaker assumptions to expose more
general but harder problems in Section 1.3. Finally, we conclude this chapter in Section 1.4.
Chapter 2 applies these DLT techniques to the problem of scheduling several applications on
a different type of platforms, based on linear chains of processors. In this second chapter, we
present an optimal solution using a given number of installments. We also show that any optimal
solution requires an infinite number of rounds.

3

4 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

1.1.1 Motivating Example

We use a specific example of application and platform combination as a guideline, namely
an Earth seismic tomography application deployed on a heterogeneous platform of processors
and presented by Genaud, Giersch and Vivien in [49]. The logical topology of the network is
a star, whose center is the master processor. The application is used to validate a model for
the internal structure of the Earth, by comparing for every seismic event the propagation time
of seismic waves as computed by the model with the time measured by physical devices. Each
event is independent from the others and there is a large number of such events: 817,101 events
were recorded for the sole year of 1999. The master processor owns all items, reads them, and
scatters them among n active workers. Then each worker can process the data received from
the master independently. The objective is to minimize the total completion time, also known
as the makespan. The simplified code of the program can be written as:

if (rank = MASTER)
raydata ← read Wtotal lines from data file;

MPI_Scatter(raydata,Wtotal/n,...,rbuff,...,MASTER,MPI_COMM_WORLD);
compute_work(rbuff);

This application fulfills all assumptions of the Divisible Load model, since it is made of a
very large number of fine grain computations, and these computations are independent. Indeed,
we do not have any dependence, synchronization, nor communication between tasks.

Throughout this chapter we will consider two different types of platforms. The first one is
a bus-shaped master-worker platform, where all workers are connected to the master through
identical links, and the second one is a star-shaped master-worker platform, where workers are
connected to the master through links of different characteristics.

1.1.2 Classical Approach

In this section, we aim at solving the problem in a classical way. The target platform is a
bus-shaped network, as shown in Figure 1.1. Workers are a priori heterogeneous, hence they
have different computation speeds. We enforce the full one-port communication model: the
master can communicate to at most one worker at a time. Finally, each worker receives its
whole share of data in a single message.

We will use the following notation, as illustrated in Figure 1.2:

Figure 1.1: Example of bus-shaped network.

M
w0

c c

c
c

c
c

P1
w1

P2
w2 w3

P6
w6

w5

P5P4
w4

P3

Figure 1.2: Theoretical model of a bus-shaped
network.

1.1. INTRODUCTION 5

– M is the master processor, which initially holds all the data to process.
– There are n workers, denoted as P1, . . . , Pn. In order to simplify some equations, P0

denotes the master processor M .
– Worker Pi takes a time wi to execute a task. M = P0 requires a time w0 to process such

a load.
– Any worker Pi needs c time units to receive a unit-size load from the master. Recall that

all workers communicate at the same speed with the master.
– M initially holds a total load of size Wtotal , where Wtotal is a very large integer.
– M will allocate ni tasks to worker Pi. ni is an integer, and since all tasks have to be

processed, we have
∑p

i=0 ni = Wtotal (we consider that the master can also process some
tasks).

– The completion time Ti corresponds to the end of the computations of Pi.
We allow the overlap of communications by computations on the master, i.e., the master

can send data to workers while computing its own data. A worker cannot begin its computa-
tions before having received all its data. This constraint captures the case of a single-thread
application. Considering multithreaded workers, which could begin their work before the end of
their initial communications, leads us to new issues. Can we consider that the worker start its
work as soon as a single byte is transmitted? What happens when communications are slower
than computations, could we assume that computations take the same time as communications?
Due to these new problems, we only consider single-thread applications. However, multi-round
strategies presented in can be seen as a beginning of answer to these problems.

The objective is to minimize the total completion time T needed to compute the load Wtotal .
We have to determine values for the ni’s that minimize T . Let us compute the completion time
Ti of processor Pi: If we assume that processors are served in the order P1, . . . , Pn, equations
are simple:

– P0: T0 = n0 · w0,
– P1: T1 = n1 · c+ n1 · w1,
– P2: T2 = n1 · c+ n2 · c+ n2 · w2,
– Pi: Ti =

∑i
j=1 nj · c+ ni · wi for i ≥ 1.

These equations are illustrated by Figures 1.3, 1.4, and 1.5. If we let c0 = 0 and ci = c for i ≥ 1,
we render the last equation more homogeneous: Ti =

∑i
j=0 nj · cj + ni · wi for i ≥ 0.

By definition, the total completion time T is equal to:

T = max
0≤i≤n

 i∑
j=0

nj · cj + ni · wi

 . (1.1)

If we rewrite Equation (1.1) as

T = n0 · c0 + max

n0 · w0, max
1≤i≤n

 i∑
j=1

nj · cj + ni · wi

 ,

we recognize an optimal sub-structure for the distribution of Wtotal −n0 tasks among processors
P1 to Pn. This remark allows to easily find a solution for n0, . . . , np using dynamic program-
ming. Such a solution is given by Algorithm 1 1, presented in [49]. The complexity of this
algorithm is pseudo-polynomial, because an instance can be coded in size log(n) + log(Wtotal) +

6 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

0
Idle

P3

P2

Work Communication

time

M

P1

Figure 1.3: M computes and sends data to P1.

0
IdleCommunication

time

M

P1

P3

P2

Work

Figure 1.4: M and P1 compute, M sends data
to P2.

0 end
Idle

M

P1

P3

P2

Work Communication

time

Figure 1.5: Complete schedule.

∑n−1
i=0 (log(wi) + log(ci)) and the algorithm requires more than Wtotal operations.

Nevertheless, this solution is not really satisfying and suffers from several drawbacks. First,
we do not have a closed form solution (neither for the ni’s nor for T). Moreover, the order of
the processors during the distribution is arbitrarily fixed (the master communicates with P1,
then with P2, P3, and so on). Since processor speeds are a priori different, this order could be
sub-optimal, and this solution does not help us to find the right order among the n! possible
orders. There are by far too many possible orders to try an exhaustive search. Furthermore,
the time complexity of this solution is W 2

total × n, so the time to decide for the right values of
the ni’s can be greater than the time of the actual computation! Finally, if Wtotal is slightly
changed, we cannot reuse the previous solution to obtain a new distribution of the ni’s and we
have to redo the entire computation.

Even if we have an algorithm, which gives us a (partial) solution in pseudo-polynomial time,
we can still look for a better way to solve the problem. Let us consider the Divisible Load model.
If we have around 800, 000 tasks for 10 processors, there are on average 80, 000 tasks on each
processor. So, even if we can have a solution in rational numbers (i.e., a non-integer number
of tasks on each processor), we easily afford the extra-cost of rounding this solution to obtain
integer numbers of tasks and then a valid solution in practice. The new solution will overcome
all previous limitations.

1. Algorithm 1 builds the solution as a list. Hence the use of the constructor cons that adds an element at
the head of a list.

1.2. DIVISIBLE LOAD APPROACH 7

Algorithm 1: Solution for the classical approach, using dynamic programming
solution[0, n]← cons(0,NIL)
cost [0, n]← 0
for d← 1 to Wtotal do

solution[d, n]← cons(d,NIL)
cost [d, n]← d · cn + d · wn

for i← n− 1 downto 0 do
solution[0, i]← cons(0, solution[0, i+ 1])
cost [0, i]← 0 for d← 1 to Wtotal do

(sol ,min)← (0, cost [d, i+ 1])
for e← 1 to d do

m← e · ci + max(e · wi, cost [d− e, i+ 1])
if m < min then

(sol ,min)← (e,m)

solution[d, i]← cons(sol , solution[d− sol , i+ 1])
cost [d, i]← min

return (solution[Wtotal , 0], cost [Wtotal , 0])

1.2 Divisible Load Approach

The main principle of the Divisible Load model is to relax the integer constraint on the
number of tasks on each worker. This simple idea can lead to high-quality results, even if we
loose a little precision in the solution. Now, let us instantiate the problem using this relaxation:
instead of an integer number ni of tasks, processor Pi (with 0 ≤ i ≤ n) will compute a fraction
αi of the total load Wtotal , where αi ∈ Q. The number of tasks allocated to Pi is then equal
to ni = αiWtotal and we add the constraint

∑n
i=0 αi = 1, in order to ensure that the whole

workload will be computed.

1.2.1 Bus-Shaped Network

In this paragraph, we keep exactly the same platform model as before: i.e., a bus-shaped
network with heterogeneous workers, and data is distributed to workers in a single message,
following a linear cost model. Equation (1.1) can easily be translated into Equation (1.2).

T = max
0≤i≤n

 i∑
j=0

αj · cj + αi · wi

Wtotal . (1.2)

Using this equation, one can prove several important properties of optimal solutions, which
were first given in [28]:

– all processors participate (∀i, αi > 0) and end their work at the same time (Lemma 1.1),
– the master processor should be the fastest computing one but the order of other processors

is not important (Lemma 1.2).

Lemma 1.1. In an optimal solution, all processors participate and end their processing at the
same time.

8 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

0 end
Idle

M

P1

P3

P2

Work Communication

time

(a) P1 finishes earlier than P2.

0 end
Idle

M

P1

P3

P2

Work Communication

time

(b) A fraction of the load allocated to P2 is given to
P1.

0 end
Idle

M

P1

P3

P2

Work Communication

time

(c) This new schedule is strictly better.

Figure 1.6: Discharging some work from P2 to P1 to obtain a better schedule.

Proof. Consider any solution, such that at least two workers do not finish their work at the
same time. Without any loss of generality, we can assume that these two processors are Pi
and Pi+1 (with i ≥ 0) and such that either Pi or Pi+1 finishes its work at time T (the total
completion time). In the original schedule, Pi finishes at time Ti, Pi+1 finishes at time Ti+1 and
max(Ti, Ti+1) = T . We transfer a fraction δ of work from Pi+1 to Pi (Figure 1.6), assuming that
transferring a negative amount of work corresponds to a transfer from Pi to Pi+1. In this new
schedule, Pi finishes at time T ′i and Pi+1 finishes at time T ′i+1. We want Pi and Pi+1 to finish
at the same time, thus we have the following equations:

T ′i = T ′i+1

⇔
(∑i

j=0 αjcj

)
+ δci + αiwi + δwi =

(∑i
j=0 αjcj

)
+δci + (αi+1 − δ)(ci+1 + wi+1)

⇔ δci + αiwi + δwi = δci + αi+1(ci+1 + wi+1)
−δ(ci+1 + wi+1)

⇔ δ (wi + ci+1 + wi+1) = αi+1 (ci+1 + wi+1)− αiwi

Therefore,

T ′i = T ′i+1 ⇔ δ =
αi+1 (ci+1 + wi+1)− αiwi

wi + ci+1 + wi+1
.

We have:
T ′i+1 − Ti+1 = δ (ci − ci+1 − wi+1) ,

T ′i − Ti = δ (ci + wi) .

We know that ci+1 ≥ ci ≥ 0 (because ci = c if i ≥ 1 and c0 = 0). Thus, if δ is positive, then
we have T = Ti+1 > T ′i+1 = T ′i > Ti, and T = Ti > T ′i = T ′i+1 > Ti+1 if δ is negative. In both

1.2. DIVISIBLE LOAD APPROACH 9

cases, processors Pi and Pi+1 finish strictly earlier than T . Finally, δ cannot be zero, since it
would mean that Ti = T ′i = T ′i+1 = Ti+1, contradicting our initial hypothesis.

Moreover, there are at most n− 1 processors finishing at time T in the original schedule. By
applying this transformation to each of them, we exhibit a new schedule, strictly better than
the original one. In conclusion, any solution such that all processors do not finish at the same
time can be strictly improved, hence the result.

�

Lemma 1.2. If we can choose the master processor, it should be the fastest processor, but the
order of the other processors has no importance.

Proof. Let us consider any optimal solution (α0, α1, . . . , αn). By using Lemma 1.1, we know
that T = T0 = T1 = . . . = Tn. Hence the following equations:

– T = α0 · w0 ·Wtotal ,
– T = α1 · (c+ w1) ·Wtotal and then α1 = w0

c+w1
α0,

– T = (α1 · c+ α2 · (c+ w2))Wtotal and then α2 = w1
c+w2

α1,
– for all i ≥ 1, we derive αi = wi−1

c+wi
αi−1.

Thus, we have αi =
∏i
j=1

wj−1

c+wj
α0 for all i ≥ 0. Since

∑n
i=0 αi = 1, we can determine the value

of α0, and thus we have closed formulas for all the αi’s:

αi =

∏i
j=1

wj−1

cj+wj∑n
k=0

(∏k
j=1

wj−1

cj+wj

) .
Using these formulas, we are able to prove the lemma. Let us compute the work done in

time T by processors Pi and Pi+1, for any i, 0 ≤ i ≤ n − 1. As in Section 1.1.2, we let c0 = 0
and ci = c for 1 ≤ i ≤ n, in order to have homogeneous equations. Then, the two following
equations hold true:

T = Ti =

 i−1∑
j=0

αj · cj

+ αi · wi + αi · ci

 ·Wtotal , (1.3)

T = Ti+1 =

 i−1∑
j=0

αj · cj

+ αi · ci + αi+1 · wi+1 + αi+1 · ci+1

 ·Wtotal . (1.4)

With K =
T−Wtotal ·(

∑i−1
j=0 αj ·cj)

Wtotal
, we have

αi =
K

wi + ci
and αi+1 =

K − αi · ci
wi+1 + ci+1

.

The total fraction of work processed by Pi and Pi+1 is equal to

αi + αi+1 =
K

wi + ci
+

K

wi+1 + ci+1
− ci ·K

(wi + ci) (wi+1 + ci+1)
.

Therefore, if i ≥ 1, ci = ci+1 = c, and this expression is symmetric in wi and wi+1. We can then
conclude that the communication order to the workers has no importance on the quality of a

10 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

Figure 1.7: Example of star-shaped network.

w6

P1
c3

c5

c6c1

c2 c4

M
w0

w1

P2
w2

P3
w3

P4
w4

P5
w5

P6

Figure 1.8: Theoretical model of a star-shaped
network.

solution, even if it is contrary to the intuition. However, when i = 0 the amount of work done
becomes:

α0 + α1 =
K

w0
+

K

w1 + c
.

Since c > 0, this value is maximized when w0 is smaller than w1. Hence, the root processor
should be the fastest computing ones, if possible. �

The previous analysis can be summarized as:

Theorem 1.1. For Divisible Load applications on bus-shaped networks, in any optimal solution,
the fastest computing processor is the master processor, the order of the communications to the
workers has no impact on the quality of a solution, and all processors participate in the work
and finish simultaneously. A closed-form formula gives the fraction αi of the load allocated to
each processor:

∀i ∈ {0, . . . , p}, αi =

∏i
j=1

wj−1

cj+wj∑n
k=0

(∏k
j=1

wj−1

cj+wj

) .
1.2.2 Star-Shaped Network

The bus-shaped network model can be seen as a particular case, with homogeneous com-
munications, of the more general star-shaped network. Now, we focus our attention on such
star-shaped networks: every worker Pi is linked to M through a communication link of different
capacity as shown in Figure 1.7, and processors have different speeds.

Notation is similar to the previous ones and are illustrated by Figure 1.8: a master processor
M , and n workers P1, . . . , Pn. The master sends a unit-size message to Pi (with 1 ≤ i ≤ n) in
time ci, and Pi processes it in time wi. The total workload is Wtotal , and Pi receives a fraction
αi of this load (with αi ∈ Q and

∑n
i=1 αi = 1).

We assume that the master does not participate in the computation, because we can always
add a virtual processor P0, with the same speed w0 as the master and with instantaneous
communications: c0 = 0. As before, M sends a single message to each worker, and it can
communicate to at most one worker at a time, following the one-port model.

This new model seems to be a simple extension of the previous one, and we will check
whether our previous lemmas are still valid. We show that the following lemmas (first shown by
Beaumont, Casanova, Legrand, Robert and Yang in [14]) are true for any optimal solution:

1.2. DIVISIBLE LOAD APPROACH 11

M

P1

P3

P2

0
Work IdleCommunication

time
endend

M

P1

P3

P2

0
Work IdleCommunication

time
endend

Figure 1.9: Some work is added to Pk.

– all processors participate in the work (Lemma 1.3),
– all workers end their work at the same time (Lemma 1.4),
– all active workers must be served in the nondecreasing order of the ci’s (Lemma 1.5),
– an optimal solution can be computed in polynomial time using a closed-form expression

(Lemma 1.6).

Lemma 1.3. In any optimal solution, all processors participate in the work, i.e., ∀i, αi > 0.

Proof. Consider an optimal solution (α1, . . . , αp) and assume that at least one processor Pi
remains idle during the whole computation (αi = 0). Without any loss of generality, we can also
assume that communications are served in the order (P1, . . . , Pn). We denote by k the greatest
index such that αk = 0 (i.e., Pk is the last processor which is kept idle during the computation).
We have two cases to consider:

– k < n
By definition, Pn is not kept idle and thus αn 6= 0. We know that Pn is the last processor
to communicate with the master, and then there is no communication during the last
αn · wn ·Wtotal time units. Therefore, once Pn as received its share of work, we can send
αn·wn·Wtotal

ck+wk
> 0 load units to the processor Pk, as illustrated in Figure 1.9, and it would

finish its computation at the same time as Pn.
– k = n

We modify the initial solution to give some work to the last processor, without increasing
the total completion time. Let k′ be the greatest index such that αk′ 6= 0. By definition,
since Pk′ is the last served processor, there is no communication with the master during at
least ak′ .wk′ ·Wtotal time units. As previously, we can give αk′ ·wk′ ·Wtotal

cn+wn
> 0 load units to Pn

and then exhibits a strictly better solution than the previous optimal one, as represented
by Figure 1.10.

Then, in all cases, if at least one processor remains idle, we can build a solution processing strictly
more work within the same time. Then, scaling everything, this leads to a solution processing
the same amount of work in strictly less time. This proves that in any optimal solution, all
processors participate in the work. �

Lemma 1.4. In any optimal solution, all workers end their work at the same time.

Proof. Consider any optimal allocation. Without loss of generality, we suppose the processors
to be numbered according to the order in which they receive their shares of the work. We
denote our optimal solution (α1, . . . , αn). Thanks to Lemma 1.3, we know that all workers
participate in the computation and then all αi’s are strictly positive. Consider the following
linear program (1.5):

12 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

M

P1

P3

P2

0
Work IdleCommunication

time
endend

M

P1

P3

P2

0
Work IdleCommunication

time
endend

Figure 1.10: Some work is added to Pm.


Maximize

∑n
i=1 βi under the constraints

(1.5a) ∀i, βi ≥ 0,

(1.5b) ∀i,
i∑

k=1

βkck + βiwi ≤ T
(1.5)

The αi’s obviously satisfy the set of constraints above, and from any set of βi’s satisfying
the set of inequalities, we can build a valid schedule that processes exactly

∑n
i=1 βi units of

load. Let (β1, . . . , βn) be any optimal solution to this linear program. By definition, we have∑n
i=1 αi =

∑n
i=1 βi.

We know that one of the extremal solutions S1 of the linear program is one of the vertices
of the convex polyhedron P induced by the inequalities [75]: this means that in the solution S1,
there are at least n equalities among the 2 · n inequalities, n being the number of variables. If
we use Lemma 1.3, we know that all the βi’s are positive. Then this vertex is the solution of
the following (full rank) linear system

∀i ∈ (1, . . . , n),

i∑
k=1

βkck + βiwi = T.

Thus, we derive that there exists at least one optimal solution, such that all workers finish
simultaneously.

Now, consider any other optimal solution S2 = (δ1, . . . , δn), different from S1. Similarly to
S1, S2 belongs to the polyhedron P. Now, consider the following function f :

f :

{
R→ Rn
x 7→ S1 + x(S2 − S1)

.

By construction, we know that
∑n

i=1 βi =
∑n

i=1 δi. Thus, with the notation f(x) =
(γ1(x), . . . , γn(x)):

∀i ∈ (1, . . . , n), γi(x) = βi + x(δi − βi),

and

∀x,
n∑
i=1

γi(x) =

n∑
i=1

βi =

n∑
i=1

δi.

Therefore, all the points f(x) that belong to P are extremal solutions of the linear program.

1.2. DIVISIBLE LOAD APPROACH 13

Since P is a convex polyhedron and both S1 and S2 belong to P, then ∀x, 0 ≤ x ≤ 1, f(x) ∈
P. Let us denote by x0 the largest value of x ≥ 1 such that f(x) still belongs to P. x0 is finite,
otherwise at least one of the upper bounds or one of the lower bounds would be violated. At least
one constraint of the linear program is an equality in f(x0), and this constraint is not satisfied
for x > x0. We know that this constraint cannot be one of the upper bounds: otherwise, this
constraint would be an equality along the whole line (S1, f(x0)), and would remain an equality
for x > x0. Hence, the constraint of interest is one of the lower bounds. In other terms, there
exists an index i, such that γi(x0) = 0. This is in contradiction with Lemma 1.3 and with the
fact that the γi’s correspond to an optimal solution of the problem.

We can conclude that S1 = S2, and thus that for a given order of the processors, there
exists a unique optimal solution and that in this solution all workers finish simultaneously their
work. �

Lemma 1.5. In any optimal solution all active workers must be served in the nondecreasing
order of the ci’s.

Proof. We use the same method as for proving Lemma 1.2: we consider two workers Pi and Pi+1

(with 1 ≤ i ≤ n−1) and we check whether the total work which can be done by them in a given
time T is dependent of their order.

For these two processors, we use Lemma 1.4 to obtain the following Equations (1.6) and
(1.7), similar to Equations (1.3) and (1.4) derived in the case of a bus-shaped network:

T = Ti =

 i−1∑
j=1

αj · cj

+ αi(wi + ci)

 ·Wtotal , (1.6)

T = Ti+1 =

 i−1∑
j=1

αj · cj

+ αi · ci + αi+1(wi+1 + ci+1)

 ·Wtotal . (1.7)

With K =
T−Wtotal ·(

∑i−1
j=1 αj ·cj)

Wtotal
, Equations (1.6) and (1.7) can be respectively rewritten as:

αi =
K

wi + ci
and αi+1 =

K − αi · ci
wi+1 + ci+1

.

The time needed by communications can be written as:

(αi · ci + αi+1 · ci+1) ·Wtotal =((
ci

wi + ci
+

ci+1

wi+1 + ci+1

)
− ci · ci+1

(wi + ci)(wi+1 + ci+1)

)
·K ·Wtotal .

We see that the equation is symmetric, thus that the communication time is completely inde-
pendent of the order of the two communications.

The total fraction of work is equal to:

αi + αi+1 =

(
1

wi + ci
+

1

wi+1 + ci+1

)
·K − K · ci

(wi + ci)(wi+1 + ci+1)
.

If we exchange Pi and Pi+1, then the total fraction of work is equal to:

αi + αi+1 =

(
1

wi + ci
+

1

wi+1 + ci+1

)
·K − K · ci+1

(wi + ci)(wi+1 + ci+1)
.

14 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

The difference between both solutions is given by

∆i,i+1 = (ci − ci+1)
K

(wi + ci)(wi+1 + ci+1)
.

Contrarily to the communication time, the fraction of the load done by processors Pi and Pi+1

depends on the order of the communications. If we serve the fastest-communicating processor
first, the fraction of the load processed by Pi and Pi+1 can be increased without increasing the
communication time for other workers. In other terms, in any optimal solution, participating
workers should be served by nondecreasing values of ci. �

Lemma 1.6. When processors are numbered in nondecreasing values of the ci’s, the following
closed-form formula for the fraction of the total load allocated to processor Pi (1 ≤ i ≤ n) defines
an optimal solution:

αi =

1
ci+wi

∏i−1
k=1

(
wk

ck+wk

)
∑p

i=1
1

ci+wi

∏i−1
k=1

wk
ck+wk

.

Proof. Thanks to the previous lemmas, we know that all workers participate in the computation
(Lemma 1.3) and have to be served by nondecreasing values of ci (Lemma 1.5) and that all
workers finish simultaneously (Lemma 1.4).

Without loss of generality, we assume that c1 ≤ c2 ≤ . . . ≤ cn. By definition, the completion
time of the i-th processor is given by:

Ti = T = Wtotal

(
i∑

k=1

αkck + αiwi

)
= αiWtotal (wi + ci) +

i−1∑
k=1

(αkckWtotal) . (1.8)

Then, an immediate induction solves this triangular system and leads to:

αi =
T

Wtotal

1

ci + wi

i−1∏
k=1

(
wk

ck + wk

)
. (1.9)

To compute the total completion time T , we just need to remember that
∑n

i=1 αi = 1, hence

T

Wtotal
=

1∑p
i=1

1
ci+wi

∏i−1
k=1

wk
ck+wk

.

So, we can have the complete formula for the αi’s:

αi =

1
ci+wi

∏i−1
k=1

(
wk

ck+wk

)
∑p

i=1
1

ci+wi

∏i−1
k=1

wk
ck+wk

.

�

We summarize the previous analysis as:

Theorem 1.2. For Divisible Loads applications on star-shaped networks, in an optimal solution:
– workers are ordered by nondecreasing values of ci,
– all participate in the work,
– they all finish simultaneously.

1.3. EXTENSIONS OF THE DIVISIBLE LOAD MODEL 15

Closed-form formulas give the fraction of the load allocated to each processor.

We conclude this section with two remarks.
– If the order of the communications cannot be freely chosen, Lemma 1.3 is not always true;

for instance, when sending a piece of work to a processor is more expensive than having it
processed by the workers served after that processor [49].

– In this section, we considered that the master processor did not participate in the process-
ing. To deal with cases where we can enroll the master in the computation, we can easily
add a virtual worker, with the same processing speed as the master, and a communication
time equal to 0. Finally, if we also have the freedom to choose the master processor, the
simplest method to determine the best choice is to compute the total completion time in
all cases: we have only n different cases to check, so we can still determine the best master
efficiently (although not as elegantly as for a bus-shaped platform).

1.3 Extensions of the Divisible Load Model

In the previous section, we have shown that the Divisible Load approach enables one to solve
scheduling problems that are hard to solve under classical models. With a classical approach,
we are often limited to solving simpler problems, featuring homogeneous communication links
and linear cost functions for computations and communications. In Section 1.2, we have seen
how the Divisible Load model could help solve a problem that was already difficult even with
homogeneous resources.

Realistic platform models are certainly intractable, and crude ones are not likely to be
realistic. A natural question arises: how far can we go with Divisible Load theory? We present
below several extensions to the basic framework described so far. In Section 1.3.1, we extend
the linear cost model for communications by introducing latencies. Next, we distribute chunks
to processors in several rounds in Section 1.3.2.

In the latter two extensions, we still neglect the cost of return messages, assuming that data
is only sent from the master to the workers, and that results lead to negligible communications.
To conclude this section, we introduce return messages in Section 1.3.3.

1.3.1 Introducing Latencies

In the previous sections, we used a simple linear cost model for communications. The time
needed to transmit a data chunk was perfectly proportional to its size. On real-life platforms,
there is always some latency to account for. In other words, an affine communication and
affine computation model would be more realistic. We have to introduce new notation for these
latencies: Ci denotes the communication latency paid by worker Pi for a communication from
the master, and Wi denotes the latency corresponding to initializing a computation. If Pi has to
process a fraction αi of the total load, then its communication time is equal to Ci + ciαiWtotal

and its computation time is equal to Wi + wiαiWtotal .
This variant of the problem is NP-complete [91] and thus much more difficult than the

previous one. However, some important results can be shown for any optimal solution:
– Even if communication times are fixed (bandwidths are supposed to be infinite), the

problem remains NP-complete, as shown by Yang, Casanova, Drozdowski, Lawenda, and
Legrand in [91].

– All participating workers end their work at the same time (Lemma 1.7).

16 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

– If the load is large enough, all workers participate in the work and must be served in
nondecreasing order of ci’s (Lemma 1.9).

– An optimal solution can be found using a mixed linear program (Lemma 1.8).

Lemma 1.7. In any optimal solution, all participating workers have the same completion time.

Proof. This lemma can be shown using a proof similar to the proof of Lemma 1.4. A detailed
proof is given in [13]. �

The following mixed linear program (1.10) aims at computing an optimal distribution of the
load among workers.



Minimize Tf under the constraints
(1.10a) ∀i, 1 ≤ i ≤ n, αi ≥ 0

(1.10b)
n∑
i=1

αi = 1

(1.10c) ∀j, 1 ≤ j ≤ n, , yj ∈ {0, 1}
(1.10d) ∀i, j, 1 ≤ i, j ≤ n, xi,j ∈ {0, 1}

(1.10e) ∀j, 1 ≤ i ≤ n,
n∑
i=1

xi,j = yj

(1.10f) ∀i, 1 ≤ i ≤ n,
n∑
j=1

xi,j ≤ 1

(1.10g) ∀j, 1 ≤ i ≤ n, αj ≤ yj

(1.10h) ∀i, 1 ≤ i ≤ n,
∑i−1

k=1

∑n
j=1 xk,j(Cj + αjcjWtotal)

+
∑n

j=1 xi,j(Cj + αjcjWtotal +Wj + αjwjWtotal) ≤ Tf
(1.10)

Lemma 1.8. An optimal solution can be found using the mixed linear program above (with a
potentially exponential computation cost).

Proof. In [14], the authors added the resource selection issue to the original linear program
given by Drozdowsky in [41]. To address this issue, they added two variables: yj , which is a
binary variable equal to 1 if, and only if, Pj participates in the work, and xi,j , which is a binary
variable equal to 1 if, and only if, Pj is chosen for the i-th communication from the master.
Equation (1.10e) implies that Pj is involved in exactly yj communication. Equation (1.10f)
states that at most one worker is used for the i-th communication. Equation (1.10g) ensures
that non-participating workers have no work to process. Equation (1.10h) implies that the
worker selected for the i-th communication must wait for the previous communications before
starting its own communication and then its computation.

This linear program always has a solution, which provides the selected workers and their
fraction of the total load in an optimal solution. �

Lemma 1.9. In any optimal solution, and if the load is large enough, all workers participate in
the work and must be served in nondecreasing order of communication time ci.

1.3. EXTENSIONS OF THE DIVISIBLE LOAD MODEL 17

Proof. We want to determine the total amount of work which can be done in a time T . Let
us consider any valid solution to this problem. The set of the k active workers is denoted
S = {Pσ(1), . . . , Pσ(k)}, where σ is a one-to-one mapping from [1 . . . k] to [1 . . . n] and represents
the order of communications. Let nTASK denote the maximum number of processed units of
load using this set of workers in this order.

– Consider the following instance of our problem, with k workers P ′σ(1), . . ., P
′
σ(k), such that

∀i ∈ {1, . . . , k}, C ′i = 0,W ′i = 0, c′i = ci, w
′
i = wi (in fact, we are just ignoring all latencies).

The total number of work units n′TASK which can be executed on this platform in the time
T is greater than the number nTASK of tasks processed by the original platform:

nTASK ≤ n′TASK .

Using Theorem 1.2, we know that n′TASK is given by a formula of the following form:

n′TASK = f(S, σ) · T.

The main point is that n′TASK is proportional to T .
– Now we will determine the number of work units n′′TASK , which could be done in a time
T ′′ = T −

∑
i∈S(Ci+Wi). n′′TASK is clearly smaller than nTASK since it consists in adding

all latencies before the beginning of the work:

n′′TASK ≤ nTASK .

The previous equality still stands:

n′′TASK = f(S, σ)

(
T −

∑
i∈S

(Ci +Wi)

)
.

We have n′′TASK ≤ nTASK ≤ n′TASK and then

f(S, σ)

(
1−

∑
i∈S(Ci +Wi)

T

)
≤ nTASK

T
≤ f(S, σ).

Therefore, when T becomes arbitrarily large, the throughput of the platform becomes close to
the theoretical model without any latency. Thus, when T is sufficiently large, in any optimal
solution, all workers participate in the work, and chunks should be sent on the ordering of
nondecreasing communication times ci.

Without any loss of generality, we can assume that c1 ≤ . . . ≤ cp and then the following
linear system returns an asymptotically optimal solution:

Minimize T under the constraints

(1.11a)
n∑
i=1

αi = 1

(1.11b) ∀i ∈ {1, . . . , n},
i∑

k=1

(Ck + ckαkWtotal) +Wi + wiαiWtotal = T

(1.11)

Moreover, when T is sufficiently large, this solution is optimal when all ci are different, but
determining the best way to break ties among workers with the same communication speed
remains an open question.

�

18 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

end
IdleCommunication

time

M

P1

P3

P2

Work

Figure 1.11: Multi-round execution over a bus-shaped platform.

1.3.2 Multi-Round Strategies

So far, we only used models with a strict one-port communication scheme, and data were
transmitted to workers in a single message. Therefore, each worker had to wait while previous
one were communicating with the master before it could begin receiving and processing its own
data. This waiting time can lead to a poor utilization of the platform. A natural solution to
quickly distribute some work to each processor is to distribute data in multiple rounds: while
the first processor is computing its first task, we can distribute data to other workers, and then
resume the distribution to the first processor, and so on. By this way, we hope to overlap
communications with computations, thereby increasing platform throughput (see Figure 1.11).
This idea seems promising, but we have two new questions to answer:

1. how many rounds should we use to distribute the whole load?
2. which size should we allocate to each round?
If we follow the lesson learnt using a single-round distribution, we should try to solve the

problem without latencies first. However, it turns out that the linear model is not interesting in
a multi-round framework: the optimal solution has an infinite number of rounds of size zero, as
stated by Theorem 1.3.

Theorem 1.3. Let us consider any homogeneous bus-shaped master-worker platform, following
a linear cost model for both communications and computations. Then any optimal multi-round
schedule requires an infinite number of rounds.

Proof. This result was widely accepted but was not formally shown. We prove this theorem by
contradiction. Let S be any optimal schedule using a finite number K of rounds, as illustrated
in Figure 1.12. We still have n workers in our platform, and the master allocates a fraction αi(k)
to worker i (1 ≤ i ≤ n) during the k-th round. Without any loss of generality, we suppose that
workers are served in a round-robin fashion, in the order P1, . . . , Pn: if you want P2 to be served
before P1, just use a round distributing data only to P2 (and a null fraction to other processors)
followed by a round distributing data to other processors.

Since we consider any schedule, we need general notation: if we have 1 ≤ i ≤ n and
1 ≤ k ≤ K, Commstart

i,k (respectively Commend
i,k , Compstarti,k , Compendi,k) denotes the start of the

communication from the master to worker Pi of the data for the k-th round (respectively the

1.3. EXTENSIONS OF THE DIVISIBLE LOAD MODEL 19

time

M

P1

P3

P2

Work Communication

Figure 1.12: The original schedule, using two
rounds.

time

M

P1

P3

P2

Work Communication

Figure 1.13: We split the first communication
in two parts.

time

M

P1

P3

P2

Work Communication

Figure 1.14: P1 can start its work earlier.

time

M

P1

P3

P2

Work Communication

Figure 1.15: We split the second communica-
tion in two parts, P1 can finish its total work
strictly earlier.

end of the communication, the start and the end of the computation). We assume Commend
i,0 = 0

and Compendi,0 = 0 for all 1 ≤ i ≤ n, to simplify some equations. With these new notation, any
valid schedule has to respect the following constraints:

– two successive communications cannot overlap:

∀i, k, 2 ≤ i ≤ n, 1 ≤ k ≤ K, Commstart
i,k ≥ Commend

i−1,k

∀k, 1 ≤ k ≤ K, Commstart
1,k ≥ Commend

p,k−1

(1.12)

– a computation cannot begin before the end of the corresponding communication:

∀i, k, 1 ≤ i ≤ n, 1 ≤ k ≤ K,Compstarti,k ≥ Commend
i,k (1.13)

We force any computation to begin after the end of the previous one:

∀i, k ≤ i ≤ n, 2 ≤ k ≤ K,Compstarti,k ≥ Compendi,k−1. (1.14)

This constraint is not necessary to obtain a valid schedule, but it allows to simplify equations
and do not change the completion time of schedules, since the order of computations allocated
to a worker has no importance.

We can easily modify the proof of Lemma 1.1 to show that in any optimal schedule, all
workers finish their work simultaneously: basically, we just have to modify the last chunk. We
want to show that we can build a new schedule S ′ based on S, such that P1 ends its work earlier
than before, and other processors end their work at the same time as before.

As P1 initially holds no data, it stays temporarily idle (i.e., it does not compute anything)
at some points during schedule execution, waiting for some data to process. Let k0 be the last

20 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

round during which P1 stays idle. Therefore, P1 receives a positive load fraction during this
round (otherwise it would also be idle at the beginning of round k0 + 1).

From the schedule S, we build S ′, mostly identical to S except that we replace the k0-th
round by two successive rounds, as shown in Figure 1.13. In fact, we only send the fraction
allocated to the first worker during round k0 in two parts. Formally, using the same notation
for S ′ than for S, but adding prime symbols, S ′ is defined as follows:

– the first k0 − 1 rounds are identical in both schedules:
∀k, i, 1 ≤ k ≤ k0 − 1, 1 ≤ i ≤ n, α′i(k) = αi(k),

– round k0 is defined as follows:
α′1(k0) = 1

2α1(k0) and ∀i, 2 ≤ i ≤ n, α′i(k0) = 0.
– round k0 + 1 is defined as follows:
α′1(k0 + 1) = 1

2α1(k0) and ∀i, 2 ≤ i ≤ n, α′i(k0 + 1) = αi(k0).
– finally, the last rounds are identical in both schedules:
∀i, k, 1 ≤ i ≤ n, k0 + 1 ≤ k ≤ K,α′i(k + 1) = αi(k).

Now, focus on start and finish times for all workers, except the first one:
– The first k0 − 1 rounds are unchanged, hence:

∀k, i, 1 ≤ k ≤ k0 − 1, 1 ≤ i ≤ n, Comm ′ starti,k = Commstart
i,k ,

∀k, i, 1 ≤ k ≤ k0 − 1, 1 ≤ i ≤ n, Comm ′ endi,k = Commend
i,k ,

∀k, i, 1 ≤ k ≤ k0 − 1, 1 ≤ i ≤ n, Comp′ starti,k = Compstarti,k ,

∀k, i, 1 ≤ k ≤ k0 − 1, 1 ≤ i ≤ n, Comp′ endi,k = Compendi,k .

– We easily establish the following equations for round k0:

i = 1 Comm ′ start1,k0
= Comm ′ start1,k0

∀i, 2 ≤ i ≤ n, Comm ′ starti,k0
= Comm ′ end1,k0

,

i = 1 Comm ′ end1,k0
= Comm ′ start1,k0

+ 1
2αi(k0) · c ·Wtotal ,

∀i, 2 ≤ i ≤ n, Comm ′ endi,k0
= Comm ′ start1,k0

,

∀i, 2 ≤ i ≤ n, Comp′ starti,k0
= Comp′ endi,k0−1,

∀i, 2 ≤ i ≤ n, Comp′ endi,k0
= Comp′ starti,k0

.

– And for the following round k0 + 1:

i = 1 Comm ′ start1,k0+1 = Comm ′ end1,k0
,

∀i, 2 ≤ i ≤ n, Comm ′ starti,k0+1 = Commstart
i,k0

,

i = 1 Comm ′ end1,k0+1 = Comm ′ start1,k0+1 + 1
2αi(k0) · c ·Wtotal ,

∀i, 2 ≤ i ≤ n, Comm ′ endi,k0+1 = Commend
i,k0

,

∀i, 2 ≤ i ≤ n, Comp′ starti,k0+1 = Compstarti,k0
,

∀i, 2 ≤ i ≤ n, Comp′ endi,k0+1 = Compendi,k0
.

– Finally, for the last K − k0 rounds:

∀k, i, k0 + 1 ≤ k ≤ K, 1 ≤ i ≤ n, Comm ′ starti,k+1 = Commstart
i,k ,

∀k, i, k0 + 1 ≤ k ≤ K, 1 ≤ i ≤ n, Comm ′ endi,k+1 = Commend
i,k ,

∀k, i, k0 + 1 ≤ k ≤ K, 2 ≤ i ≤ n, Comp′ starti,k+1 = Compstarti,k ,

∀k, i, k0 + 1 ≤ k ≤ K, 2 ≤ i ≤ n, Comp′ endi,k+1 = Compendi,k .

1.3. EXTENSIONS OF THE DIVISIBLE LOAD MODEL 21

Consider the first processor P1. Using Equations 1.13 and 1.14 on the original schedule S,
we have:

Compend1,k0 = max(Compend1,k0−1,Commend
1 k0) + α1(k0) · w1 ·Wtotal . (1.15)

But we know that P1 is idle just before the start of its computation, hence:

Compend1,k0−1 < Commend
1,k0 = Commstart

1,k0 + α1k0 · c ·Wtotal ·

Using this remark, we expand Equation 1.15 to obtain:

Compend1,k0 = Commstart
1,k0 + α1k0 · c ·Wtotal + α1(k0) · w1 ·Wtotal

> Compend1,k0−1 + α1(k0) · w1 ·Wtotal . (1.16)

Using Equations 1.13 and 1.14 on the new schedule S ′, we have:

Comp′ end1,k0 = max(Comp′ end1,k0−1,Comm ′ end1,k0) +
1

2
α1(k0) · w1 ·Wtotal , (1.17)

Comp′ end1,k0+1 = max(Comp′ end1,k0 ,Comm ′ end1,k0+1) +
1

2
α1(k0) · w1 ·Wtotal . (1.18)

Combining Equations 1.17 and 1.18, and noting that Comp′ end1,k0−1 = Compend1,k0−1, leads to:

Comp′ end1,k0+1 =
1

2
α1(k0) · w1 ·Wtotal + max(Comm ′ end1,k0+1,

max(Compend1,k0−1,Comm ′ end1,k0) +
1

2
α1(k0) · w1 ·Wtotal). (1.19)

By definition, we have Comm ′ end1,k0
= Commstart

1,k0
+ 1

2α1(k0) · c ·Wtotal and thus Comm ′ end1,k0+1 =

Commstart
1,k0

+ α1(k0) · c ·Wtotal .
Then we can expand Equation 1.19 into:

Comp′ end1,k0+1 = max


Commstart

1,k0
+ α1(k0) · c ·Wtotal + 1

2α1(k0) · w1 ·Wtotal ,

Compend1,k0−1 + α1(k0) · w1 ·Wtotal ,

Commstart
1,k0

+ 1
2α1(k0) · c ·Wtotal + α1(k0) · w1 ·Wtotal .

Since we have α1(k0) > 0, we have respectively :

Commstart
1,k0 +

(
c+

1

2
w1

)
α1(k0)Wtotal < Commstart

1,k0 + (c+ w1)α1(k0)Wtotal ,

Commstart
1,k0 +

(
1

2
c+ w1

)
α1(k0)Wtotal < Commstart

1,k0 + (c+ w1)α1(k0)Wtotal .

Using these inequalities and equation 1.16, we state that:

Comp′ end1,k0+1 < Compend1,k0 .

In other words, if we split the previous distribution into two rounds, P1 can finish its fraction of
work strictly earlier, as shown in Figure 1.14; part of its idle time is switched from before round
k0-th to before round k0 +1 of the original schedule S (which is round k0 +2 of the new schedule
S ′). If we repeat this process, P1 will be idle just before its last round, and, at the next step,
will finish its work before its original finish time (see Figure 1.15).

22 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

We have previously shown that if a processor finish its work strictly before other workers,
then we can build a better schedule (see Lemma 1.1). This is sufficient to prove that S is not
an optimal schedule, and thus, any schedule with a finite number of rounds can be strictly
improved. �

On the contrary, when latencies are added to the model, they prevent solutions using such
an infinite number of rounds. However, the problem becomes NP-complete. In the following, we
first assume that a maximum number of rounds is given and we explain how to obtain optimal
solutions, before presenting asymptotically optimal solutions when there is no bound on the
number of rounds. Finally, we assess the gain of multi-round strategies with respect to one-
round solutions. In the next section, we abandon the linear cost model leading to this infinite
number of rounds and we introduce latencies.

Bus-Shaped Network and Homogeneous Processors, Fixed Number of Rounds

The simplest case to explore is a bus-shaped network of homogeneous processors, i.e., with
homogeneous communication links, and when the number of rounds to use is given to the
algorithm.

Intuitively, rounds have to be small to allow a fast start of computations, but also have to
be large to amortize the cost of latencies. These two contradictory objectives can be merged by
using small rounds at the beginning, and then increasing them progressively to amortize paid
latencies.

The first work on multi-round strategies was done by Bharadwaj et al. using a linear cost
model for both communications and computations [27]. This was followed by Yang and Casanova
in [90], who used affine models instead of linear ones. In the following, we present their solution.

Since we only consider homogeneous platforms, we have for any worker i (with 1 ≤ i ≤ n)
wi = w, Wi = W , ci = c, and Ci = C. Moreover, R denotes the computation-communication
ratio (R = w/c) and γj denotes the time to compute the chunk j excluding the computation
latency: γj = αj · w ·Wtotal . We assume that we distribute the whole load in M rounds of n
chunks. For technical reasons, chunks are numbered in the reverse order, from Mn− 1 (the first
one) to 0 (the last one).

Using this notation, we can write the recursion on the γj series:

∀j ≥ n,W + γj =
1

R
(γj−1 + γj−2 + . . .+ γj−n) + n · C, (1.20)

∀0 ≤ j < n,W + γj =
1

R
(γj−1 + γj−2 + . . .+ γj−n) + j · C + γ0, (1.21)

∀j < 0, γj = 0. (1.22)

Equation (1.20) expresses that a worker j must receive enough data to compute during
exactly the time needed for the next n chunks to be communicated, ensuring no idle time on the
communication bus. This equation is of course not true for the last n chunks. Equation (1.21)
states that all workers have to finish their work at the same time. Finally, Equation (1.22)
ensures the correctness of the two previous equations by setting out-of-range terms to 0.

This recursion corresponds to an infinite series in the γj , of which the first nM values give
the solution to our problem. Using generating functions, we can solve this recursion. Let

1.3. EXTENSIONS OF THE DIVISIBLE LOAD MODEL 23

G(x) =
∑∞

j=0 γjx
j be the generating function for the series. Using Equations (1.20) and (1.21),

the value of G(x) can be expressed as (see [90]):

G(x) =
(γ0 − n · C)(1− xn) + (n · C −W) + C ·

(
x(1−xn−1)

1−x − (n− 1)xn
)

(1− x)− x(1− xn)/R
.

The rational expansion method [52] gives the roots of the polynomial denominator and then
the correct values of the γj ’s, and finally, the values of the αj ’s. The value of the first term γ0

is given by the equation
∑Mn−1

j=0 γj = Wtotal · w.

Bus-Shaped Network, Computing the Number of Rounds

In the previous section, we assumed that the number of rounds was given to the algorithm,
thus we avoided one of the two issues of multi-round algorithms. Now, we suppose that the
number of chunks has to be computed by the scheduling algorithm as well as their respective
sizes. As we said before, we have to find a good compromise between a small number of chunks, to
reduce the overall cost of latencies, and a large one, to ensure a good overlap of communications
by computations.

In fact, finding the optimal number of rounds for such algorithms and affine cost models is
still an open question. Nonetheless, Yang, van der Raadt, and Casanova proposed the Uniform
Multi-Round (UMR) algorithm [92]. This algorithm is valid in the homogeneous case as well as
in the heterogeneous case, but we will only look at the homogeneous one for simplicity reasons.
To simplify the problem, UMR assumes that all chunks sent to workers during the same round
have the same size. This constraint can limit the overlap of communications by computations,
but it allows to find an optimal number of rounds.

In this section, αj denotes the fraction of the load sent to any worker during the j-th round,
and M denotes the total number of rounds. Then there are n chunks of size αj , for a total of
n ·M chunks. The constraint of uniform sizes for chunks of the same round is not used for the
last round, allowing the workers to finish simultaneously. To ensure a good utilization of the
communication link, the authors force the master to finish sending work for round j + 1 to all
workers when worker p finishes computing for round j. This condition can be written as:

W + αj · w ·Wtotal = p · (C + αj+1 · c ·Wtotal),

which leads to:
αj =

(c

n · w

)j
(α0 − γ) + γ, (1.23)

where γ = 1
w−n·c ·(n·C−W). The case w = n·c is simpler and detailed in the original paper [92].

With this simple formula, we can give the makespanM of the complete schedule, which is
the sum of the time needed by the worker n to process its data, the total latency of computations
and the time needed to send all the chunks during the first round (the 1

2 factor comes from the
non-uniform sizes of the last round, since all workers finish simultaneously):

M(M,α0) =
Wtotal

n
+M ·W +

1

2
· n · (C + c · α0). (1.24)

The complete schedule needs to process the entire load, which can be written as:

G(M,α0) =
M−1∑
j=0

p · αj = Wtotal . (1.25)

24 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

Using these equations, the problem can be expressed as minimizing M(M,α0) subject to
G(M,α0). The Lagrange Multiplier method [24] leads to a single equation, which cannot be
solved analytically but only numerically. Several simulations showed that uniform chunks can
reduce performance, when compared to the multi-round algorithm of the previous section, when
latencies are small; but they lead to better results when latencies are large. Moreover, the
UMR algorithm can be used on heterogeneous platforms, contrarily to the previous multi-round
algorithm.

Asymptotically optimal algorithm. Finding an optimal algorithm that distributes data to
workers in several rounds, is still an open question. Nevertheless, it is possible to design asymp-
totically optimal algorithms. An algorithm is asymptotically optimal if the ratio of its makespan
obtained with a load Wtotal over the optimal makespan with this same load tends to 1 as Wtotal

tends to infinity. This approach is coherent with the fact that the Divisible Load model already
is an approximation well suited to large workloads.

Theorem 1.4. Consider a star-shaped platform with arbitrary values of computation and com-
munication speeds and latencies, allowing the overlap of communications by computations. There
exists an asymptotically optimal periodic multi-round algorithm.

Proof. The main idea is to look for a periodic schedule: the makespan T is divided into k
periods of duration Tp. The initialization and the end of the schedule are sacrificed, but the large
duration of the whole schedule amortizes this sacrifice. We still have to find a good compromise
between small and large periods. It turns out that choosing a period length proportional to the
square-root of the optimal makespan T ∗ is a good trade-off. The other problem is to choose the
participating workers. This was solved by Beaumont et al. using linear programming [13]. If
I ⊆ {1, . . . , p} denotes the selected workers, we can write that communication and computation
resources are not exceeded during a period of duration Tp:∑

i∈I
(Ci + αi · ciWtotal) ≤ Tp,

∀i ∈ I,Wi + αi · wi ·Wtotal ≤ Tp·
We aim to maximize the average throughput ρ =

∑
i∈I

αi·Wtotal
Tp

, where αi·Wtotal
Tp

is the average
number of load units processed by Pi in one time unit, under the following linear constraints:{

∀i ∈ I, αi·Wtotal
Tp

wi ≤ 1− Wi
Tp

(overlap),∑
i∈I

αi·Wtotal
Tp

ci ≤ 1−
∑

i∈I Ci

Tp
(1-port model)

This set of constraints can be replaced by the following one, stronger but easier to solve: ∀i ∈ {1, . . . , p},
αi·Wtotal

Tp
wi ≤ 1−

∑p
i=1 Ci+Wi

Tp
(overlap),∑p

i=1
αi·Wtotal

Tp
ci ≤ 1−

∑p
i=1 Ci+Wi

Tp
(1-port model)

(1.26)

Without any loss of generality, assume that c1 ≤ c2 ≤ . . . ≤ cp and let q be the largest index,
such that

∑q
i=1

ci
wi
≤ 1. Let ε be equal to 1 −

∑q
i=1

ci
wi

if q < p, and to 0 otherwise. Then the
optimal throughput for system (1.26) is realized with

∀1 ≤ i ≤ q, αi·Wtotal
Tp

= 1
ci

(
1−

∑p
i=1 Ci+Wi

Tp

)
αq+1·Wtotal

Tp
=

(
1− 1

Tp

∑p
i=1 (Ci +Wi)

)(
ε

cq+1

)
∀q + 2 ≤ i ≤ n αi = 0

1.3. EXTENSIONS OF THE DIVISIBLE LOAD MODEL 25

and the throughput is equal to

ρ =

p∑
i=1

αi ·Wtotal

Tp
=

(
1−

∑p
i=1Ci +Wi

Tp

)
ρopt with ρopt =

q∑
i=1

1

wi
+

ε

cq+1
.

To prove the asymptotic optimality of this algorithm, we need an upper bound on the optimal
throughput ρ∗. This upper bound can be obtained by removing all latencies (i.e., Ci = 0 and
Wi = 0 for any worker i). By definition, we have ρ∗ ≤ ρopt. If we call T ∗ the optimal time
needed to process B load units, then we have

T ∗ ≥ B

ρ∗
≥ B

ρopt
.

Let T denote the time needed by the proposed algorithm to compute the same workload B. The
first period is dedicated to communications and is lost for processing, so k =

⌈
B
ρ·Tp

⌉
+ 1 periods

are required for the whole computation.
We have T = k · Tp, therefore:

T ≤ B

ρ
+ 2 · Tp ≤

B

ρopt

(
1

1−
∑p

i=1
Ci+Wi
Tp

)
+ 2 · Tp,

and, if Tp ≥ 2 ·
∑p

i=1Ci +Wi,

T ≤ B

ρopt
+ 2 · B

ρopt

p∑
i=1

Ci +Wi

Tp
+ 2 · Tp

and if Tp is equal to
√

B
ρopt

,

T

T ∗
≤ 1 + 2

(
p∑
i=1

(Ci +Wi) + 1

)
1√
T ∗

= 1 +O

(
1√
T ∗

)
.

That suffices to show the asymptotic optimality of the proposed algorithm. �

Maximum benefit of multi-round algorithms. Using multi-round algorithms brings new dif-
ficulties to an already difficult problem. It is worth to assess how much such algorithms can
improve the solution. We answered this question with the following result:

Theorem 1.5. Consider any star-shaped master-worker platform where communication cost
and computation cost each follows either a linear or an affine model. Any multi-round schedule
cannot improve an optimal single-round schedule by a factor larger than 2.

Proof. Let S be any optimal multi-round schedule, using a finite number K of rounds. We have
n workers in our platform, and the master allocates a fraction αi(k) to worker i (1 ≤ i ≤ n)
during the k-th round. Let T denote the total completion time obtained by S. From S we
build a new schedule S ′ which sends in a single message a fraction

∑K
k=1 αi(k) to worker i (the

messages are sent in an arbitrary order.) The master does not spend more time communicating
under S ′ than under S. Therefore, no later than time T all workers will have finished to receive
their work. No worker will spend more time processing its fraction of the load under S ′ than
under S (the loads have same sizes). Therefore, none of them will spend more than T time-units
to process its load under S ′. Therefore, the makespan of the single round schedule S ′ is no
greater than 2T .

�

26 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

1.3.3 Return Messages

In previous sections, we assumed that computations required some input data but produced
a negligible output, so we did not take its transmission back to the master into account. This
assumption could be unduly restrictive for those computations producing large outputs, such
as cryptographic keys. In this section, we incorporate return messages into the story. Which
properties are still valid?

The problem has been studied in [2], its precursor [72] and in [1], showing that taking these
return messages into account has a dramatic impact on the design of algorithms. In the general
case, there is no correlation between input and output sizes, but we simplify the problem by
assuming the same size for input and output messages. In other words, if M needs ciαiWtotal

time units to send the input to worker Pi, Pi needs the same time to send the result back to
M after having completed its computation. The communication medium is supposed to be bi-
directional (as most of network cards are now full-duplex), so the master M can simultaneously
send and receive data.

In our first framework with linear cost models and distribution in a single round, all workers
participated in the work and we were able to find an optimal order to distribute data. If we allow
return messages, we have two new issues: the order of return messages could be different from
the distribution order and several workers could remain idle during the whole computation. Two
simple ordering strategies are the FIFO strategy (return messages are sent in the same order as
the input messages) and the LIFO strategy (return messages are sent in reverse order). In fact,
several examples are exhibited in [20], where the optimal order for return messages is neither
FIFO or LIFO, as illustrated by Figure 1.16, or where the optimal makespan is reached with
some idle processors, as illustrated by Figure 1.17. The best FIFO and LIFO distribution are
easy to compute, since all processors are involved in the work, they are served in nondecreasing
values of communication times and do not remain idle between the initial message and the
return message [20]. Furthermore, all FIFO schedules are optimal in the case of a bus-shaped
platform [2].

Moreover, the distribution of data in a single round induces long waiting times, and a multi-
round distribution could really improve this drawback. Regrettably, any optimal multi-round
distribution for the linear cost model uses an infinite number of rounds. Thus, affine cost models
are required to have realistic solutions, and the problem then seems to be very hard to solve.

1.4 Conclusion

In this chapter, we have dealt with the Divisible Load model, a simple and useful relaxation
to many scheduling problems. A general applicative example, the execution of a distributed
computation made of independent tasks on a star-shaped platform, has been used as a guideline
through this chapter. Without any relaxation, this example is a tractable problem, but the
known solution to this problem is only partial and has a large computational complexity. More-
over, the linear cost function used for communications and computations, and the homogeneous
communication model, limit the practical significance of this approach. We showed how to use
the Divisible Load theory to simplify the problem and then solve it completely.

Because we have simplified the problem with the Divisible Load relaxation, we can afford to
use a more complicated model: we can deal with heterogeneous communication links and/or we
can include latencies in communications and computations. This new model is more realistic,
but still tractable thanks to the Divisible Load approach. However, it also has its own limits!

1.4. CONCLUSION 27

13.13

Optimal schedule

Best FIFO schedule

13.44

w1 = 6

w3 = 5

w2 = 5

c3 = 12

Best LIFO schedule

14.98

c2 = 8

c1 = 7

P3

P2

P1

P3

P2

P1

P1 P2

P3

M

Figure 1.16: Optimal order can be neither FIFO nor LIFO.

w1 = 1

FIFO, optimal makespan with 2 processors

w3 = 1

w2 = 1

135/61 = 2.21 2

LIFO, best schedule with 3 processors

c1 = 1
c2 = 1

c3 = 5

P1 P2

P3

M

P2

P3

P1

Figure 1.17: Example with an idle worker.

28 CHAPTER 1. PRESENTATION OF THE DIVISIBLE LOAD THEORY

Indeed, we have seen that problem complexity quickly increases as soon as we add latencies.
In this chapter, memory constraint were not used, even if they can be very important on real
machines. This problem has been studied in the past few years by Bharadwaj [68] and by
Drozdowski [42, 43], which has shown that this problem is NP-hard.

In a few words, we can say that the Divisible Load theory is a tractable model which is
well-suited to a specific class of problems, but adding new constraints to it like return messages
or memory constraints often leads to NP-hard problems, losing the main advantage of the simple
initial Divisible Load model, which was its tractability.

Chapter 2

Scheduling divisible loads on a chain of
processors

2.1 Introduction

Several papers in the Divisible Load Theory field consider master-worker platforms [28, 49,
14]. However, in communication-bound situations, a linear network of processors can lead to
better performance: on such a platform, several communications can take place simultaneously,
thereby enabling a pipelined approach. Recently, Min, Veeravalli, and Barlas have proposed
strategies to minimize the overall execution time of one or several divisible loads on a het-
erogeneous linear processor network [87, 88]. Initially, the authors targeted single-installment
strategies, that is strategies under which a processor receives all its share of a load in a single
communication. But for cases where their approach failed to design single-installment strategies,
they also considered multi-installment solutions.

In this chapter, we define the framework and some notation in Section 2.2. Next we show with
a very simple example (Section 2.3) that the approach proposed in [88] does not always produce
a solution and that, when it does, the solution is often suboptimal. The fundamental flaw of
the approach of [88] is that the authors are optimizing the scheduling load by load, instead
of attempting a global optimization. The load by load approach is suboptimal and unduly
over-constrains the problem. On the contrary, we show (Section 2.4) how to find an optimal
scheduling for any instance, once the number of installments per load is given. In particular,
our approach always finds the optimal solution in the single-installment case. We also formally
state (Section 2.5) that under a linear cost model for communications and communications, as
in [87, 88], an optimal schedule has an infinite number of installments. Such a cost model can
therefore not be used to design usable multi-installment strategies. Finally, in Section 2.6, we
report the simulations that we performed in order to assess the actual efficiency of the different
approaches. We now start by introducing the framework.

2.2 Problem and notation

We summarize here the framework of [87, 88]. The target architecture is a linear chain of n
processors (P1, P2, . . . , Pn). Processor Pi is connected to processor Pi+1 by the communication
link li (see Figure 2.1). The target application is composed of m loads, which are divisible,
meaning that each load can be split into an arbitrary number of chunks of any size, and these
chunks can be processed independently. All the loads are initially available on processor P1,

29

30 CHAPTER 2. SCHEDULING DIVISIBLE LOADS ON A CHAIN OF PROCESSORS

L1

L2

L3

P1 P2 P3 PnPn−1

Figure 2.1: Linear network, with n processors and n− 1 links.

which processes a fraction of them and delegates (sends) the remaining fraction to P2. In turn,
P2 executes part of the load that it receives from P1 and sends the rest to P3, and so on along
the processor chain. In this chapter, we use the strict one-port model, as explained in the
introduction: communications can be overlapped with (independent) computations, but a given
processor can be active in at most a single communication at any time-step: sends and receives
are serialized.

Since the last processor Pn cannot start computing before having received its first message, it
is useful for P1 to distribute the loads in several installments: the idle time of remote processors
in the chain will be reduced due to the fact that communications are smaller in the first steps
of the overall execution.

We deal with the general case in which the k-th load is distributed in Qk installments of
different sizes. For the j-th installment of load k, processor Pi takes a fraction γkj (i), and sends
the remaining part to the next processor while processing its own fraction (that is, processor Pi
sends a volume of data equal to

∑n
u=i+1 γ

k
j (u) to processor Pi+1).

In the framework of [87, 88], loads have different characteristics. Every load k (with 1 ≤ k ≤
m) is defined by a volume of data Vcomm(k) and a quantity of computation Vcomp(k). Moreover,
processors and links are not identical either. We let si be the speed of processor Pi (1 ≤ i ≤ n),
and bw i be the bandwidth used by Pi to send a load to Pi+1 (over link li, 1 ≤ i ≤ n− 1). Note
that we assume a linear model for computations and communications, as in the original articles,
and as is often the case in divisible load literature [28, 50, 71].

For the j-th installment of the k-th load, let Commstart
i,k,j denote the starting time of the

communication between Pi and Pi+1, and let Commend
i,k,j denote its completion time; similarly,

Compstarti,k,j denotes the start time of the computation on Pi for this installment, and Compendi,k,j

denotes its completion time. The objective function is to minimize the makespan, i.e., the time
at which all loads are computed.

2.3 An illustrative example

2.3.1 Presentation

To show the limitations of [87, 88], we deal with a simple revealing example. We use 2
identical processors P1 and P2 with s1 = s2 = 1/λ, and bw1 = 1. We consider m = 2 identical
divisible loads to process, with Vcomm(1) = Vcomm(2) = 1 and Vcomp(1) = Vcomp(2) = 1. Note
that when λ is large, communications become negligible and each processor is expected to process
around half of both loads. But when λ is close to 0, communications are very important, and

2.3. AN ILLUSTRATIVE EXAMPLE 31

the solution is not obvious.
We first consider a simple schedule which uses a single installment for each load. Processor

P1 computes a fraction γ1
1(1) = 2λ2+1

2λ2+2λ+1
of the first load, and a fraction γ1

1(2) = 2λ+1
2λ2+2λ+1

of the
second load. Then the second processor computes a fraction γ1

2(1) = 2λ
2λ2+2λ+1

of the first load,
and a fraction γ1

2(2) = 2λ2

2λ2+2λ+1
of the second load. The makespan achieved by this schedule is

equal to makespan1 =
2λ(λ2+λ+1)
2λ2+2λ+1

.
In order to further simplify equations, we write α instead of γ1

2(1) (i.e., α is the fraction of
the first load sent from the first processor to the second one), and β instead of γ2

2(1) (similarly,
β is the fraction of the second load sent to the second processor).

We used simpler notation than the one used in [88]. However, as we want to explicit the
solutions proposed by [88] for our example, we need to use the original notation to enable the
reader to double-check our statements. The necessary notation from [88] are recalled in Table 2.1.

T kcp Time taken by the standard processor (w = 1) to compute the load Lk.
T kcm Time taken by the standard link (z = 1) to communicate the load Lk.
Lk Size of the k-th load, where 1 ≤ k ≤ m.
Ll,k Portion of the load Lk assigned to the l-th installment for processing.
α

(l)
k,i The fraction of the total load Ll,k to Pi, where

0 ≤ α(l)
k,i ≤ 1, ∀i = 1, . . . , n and

∑n
i=1 α

(l)
k,i = 1.

tl,k The time instant at which is initiated the first communication for
the l-th installment of load Lk (Ll,k).

Cl,k The total communication time of the l-th installment of load Lk when Ll,k = 1;

Cl,k = Tk
cm
Lk

∑n−1
p=1

((
1−
∑p

j=1 α
(l)
k,j

)
bwp

)
.

El,k The total processing time of Pn for the l-th installment of load Lk when Ll,k = 1;

El,k =
α
(l)
k,n

sn
T kcp

1
Lk

.
T (l, k) The finish time of the l-th installment of load Lk; it is defined as the time instant

at which the processing of the l-th installment of load Lk ends.
T (k) The finish time of the load Lk; it is defined as the time instant

at which the processing of the k-th load ends, i.e., T (k) = T (Qk)
where Qk is the total number of installments required to finish processing load Lk.
T (m) is the finish time of the entire set of loads resident in P1.

Table 2.1: Summary of the notation of [88] used in this chapter.

In the solution of [88], both P1 and P2 have to complete the first load at the same time,
and the same holds true for the second load. The transmission for the first load will take α
time units, and the one for the second load β time units. Since P1 (respectively P2) will process
the first load during λ(1− α) (respectively λα) time units and the second load during λ(1− β)
(respectively λβ) time units, we can write the following equations:

λ(1− α) = α+ λα (2.1)

λ(1− α) + λ(1− β) = (α+ max(β, λα)) + λβ

There are two cases to discuss:

32 CHAPTER 2. SCHEDULING DIVISIBLE LOADS ON A CHAIN OF PROCESSORS

1. max(β, λα) = λα: the solution uses a single installment to distribute the entire load.
2. max(β, λα) = β: in this case, the load is distributed using several installments.

2.3.2 Solution of [88], one-installment

We are in the one-installment case when L2C1,2 ≤ T (1)−t1,2, i.e., β ≤ λ(1−α)−α (Equation
(5) in [88], where L2 = 1, C1,2 = β, T (1) = λ(1 − α) and t1,2 = α). The values of α and β are
given by:

α =
λ

2λ+ 1
and β =

1

2
.

This case is true for λα ≥ β, i.e., λ2

2λ+1 ≥
1
2 ⇔ λ ≥ 1+

√
3

2 ≈ 1.366.
In this case, the makespan is equal to:

makespan2 = λ(1− α) + λ(1− β) =
λ(4λ+ 3)

2(2λ+ 1)
.

Comparing both makespans, we have:

makespan2 −makespan1 =
λ
(
2λ2 − 2λ− 1

)
8λ3 + 12λ2 + 8λ+ 2

.

For all λ ≥
√

3+1
2 ≈ 1.366, our solution is better than theirs, since:

1

4
≥ makespan2 −makespan1 ≥ 0.

Furthermore, the solution of [88] is strictly suboptimal for any λ >
√

3+1
2 . Intuitively, the

solution of [88] is worse than the schedule of Section 2.3.1 because it aims at locally optimizing
the makespan for the first load, and then optimizing the makespan for the second one, instead of
directly searching for a global optimum. A visual representation of this case is given in Figure 2.2
for λ = 2.

2.3.3 Solution of [88], multi-installment

In the second case, we have max(β, λα) = β. P1 does not have enough time to completely
send the second load to P2 before the end of the computation of the first load on both processors.
The way to proceed in [88] is to send the second load using a multi-installment strategy.

By using Equation (2.1), we can compute the value of α:

α =
λ

2λ+ 1
.

Then we have T (1) = (1 − α)λ = λ+1
2λ+1λ and t1,2 = α = λ

2λ+1 , i.e., the communication for the
second request begins as soon as possible.

We know from Equation (1) of [88] that αl2,1 = αl2,2, and by definition of the α’s, αl2,1 +αl2,2 =

1, so we have αl2,i = 1
2 . We also have C1,2 = 1 − αl2,1 = 1

2 , E1,2 = λ
2 , Y

(1)
1,2 = 0, X(1)

1,2 = 1
2 ,

H = H(1) =
X

(1)
1,2C1,2

C1,2
= 1

2 , B = C1,2 + E1,2 −H = λ
2 .

We will denote by β1, . . . , βk the sizes of the different installments processed on each processor
(then we have Ll,2 = 2βl).

2.3. AN ILLUSTRATIVE EXAMPLE 33

t

P1

l1

T (2)

λ(1− β)

11
5

T (1)t1,1

0 6
5

7
10

2
5

t1,2

βα

λα λβ

P2

Figure 2.2: The schedule of [88] for λ = 2, with α = γ1
2(1) and β = γ1

2(2).

Since the second processor is not left idle, and since the size of the first installment is such
that the communication ends when P2 completes the computation of the first load, we have
β1 = T (1)− t1,2 = λα (see Equation (27) in [88], in which we have C1,2 = 1

2).
By the same way, we have β2 = λβ1, β3 = λβ2, and so on (see Equation (38) in [88], we

recall that B = λ
2 , and C1,2 = 1

2):
βl = λlα.

Each processor computes the same fraction of the second load. If we have Q installments,
the total processed portion of the second load is upper bounded as follows (when λ 6= 1):

Q∑
l=1

(2βl) ≤ 2

Q∑
l=1

(
αλl
)

= 2
λ

2λ+ 1
λ
λQ − 1

λ− 1

=
2
(
λQ − 1

)
λ2

2λ2 − λ− 1
.

If λ = 1, we have Q = 2 and:
Q∑
l=1

(2βl) ≤
2λ2Q

2λ+ 1
.

We have three sub-cases to discuss:

1. 0 < λ <
√

17+1
8 ≈ 0.64: Since λ < 1, we can write for any nonnegative integer Q:

Q∑
l=1

(2βl) <

∞∑
l=1

(2βl) =
2λ2

(1− λ)(2λ+ 1)
.

We have 2λ2

(1−λ)(2λ+1) < 1 for all λ <
√

17+1
8 . So, even in the case of an infinite number of

installments, the second load will not be completely processed. In other words, no solution

34 CHAPTER 2. SCHEDULING DIVISIBLE LOADS ON A CHAIN OF PROCESSORS

λ
2

P1

l1

0

t1,1

λα λβ1 λβ2

α β3β1 β2

3
8

1
4

1
2

5
8

t2,2

t1,2 T (1) t3,2

t

P2

Figure 2.3: The example with λ = 1
2 , α = γ1

2(1) and βl = γl2(2).

is found in [88] for this case. A visual representation of this case is given in Figure 2.3
with λ = 0.5.

2. λ =
√

17+1
8 : We have 2λ2

(1−λ)(2λ+1) = 1, so an infinite number of installments is required to
completely process the second load. Again, this solution is obviously not feasible.

3.
√

17+1
8 < λ <

√
3+1
2 : In this case, the solution of [88] is better than any solution using a

single installment per load, but it may require a very large number of installments. This
case is illustrated by Figure 2.4 with λ = 1.

Now, let us compute the number of installments if λ 6= 1. We know that the i-th installment
is equal to βi = λiγ1

2(1), except the last one, which can be smaller than λQγ1
2(1). So,

instead of writing
∑Q

i=1 2βi =
(∑Q−1

i 2λiγ1
2(1)

)
+ 2βQ = 1, we write:

Q∑
i=1

2λiγ1
2(1) ≥ 1⇔

2λ2
(
λQ − 1

)
(λ− 1)(2λ+ 1)

≥ 1

⇔ 2λQ+2

(λ− 1)(2λ+ 1)
≥ 2λ2

(λ− 1)(2λ+ 1)
+ 1.

2.3. AN ILLUSTRATIVE EXAMPLE 35

7
6

P1

l1
t

1

t1,1

α

t1,2

β1

t2,2T (1) T (1, 2)

β2

β2
1
3

5
6

2
3

β1α

0

T (2) = T (2, 2)

P2

Figure 2.4: The example with λ = 1, α = γ1
2(1) and βl = γl2(2).

If λ is strictly smaller than 1, we obtain:

2λQ+2

(λ−1)(2λ+1) ≥ 2λ2

(λ− 1)(2λ+ 1)
+ 1.

⇔ 2λQ+2 ≤ 4λ2 − λ− 1

⇔ ln(λQ) ≤ ln

(
4λ2 − λ− 1

2λ2

)
⇔ Q ln(λ) ≤ ln

(
4λ2 − λ− 1

2λ2

)

⇔ Q ≥
ln
(

4λ2−λ−1
2λ2

)
ln(λ)

.

We thus obtain:

Q =


ln
(

4λ2−λ−1
2λ2

)
ln(λ)

 .
When λ is strictly greater than 1 we obtain the exact same result (then λ − 1 and ln(λ)
are both positive).
To see that this choice is not optimal, consider the case λ = 3

4 . The algorithm of [88]
achieves a makespan equal to

(
1− γ1

2(1)
)
λ+ λ

2 = 9
10 . The first load is sent in one install-

ment and the second one is sent in 3 installments (according to the previous equation).
However, we can come up with a better schedule by splitting both loads into two install-
ments, and distributing them as follows:
– during the first round, P1 processes 0 unit of the first load,
– during the second round, P1 processes 317

653 unit of the first load,
– during the first round, P2 processes 192

653 unit of the first load,
– during the second round, P2 processes 144

653 unit of the first load,

36 CHAPTER 2. SCHEDULING DIVISIBLE LOADS ON A CHAIN OF PROCESSORS

– during the first round, P1 processes 0 unit of the second load,
– during the second round, P1 processes 464

653 unit of the second load,
– during the first round, P2 processes 108

653 unit of the second load,
– during the second round, P2 processes 81

653 unit of the second load.
This scheme gives us a total makespan equal to 781

653
3
4 ≈ 0.897, which is (slightly) better

than 0.9. This shows that among the schedules having a total number of four installments,
the solution of [88] is suboptimal.
If λ = 1, we have:

Q∑
i=1

2λiγ1
2(1) ≥ 1,

simply leading us to Q = 2 and to a feasible solution.

Thus, this algorithm may lead to unfeasible solutions when communications are large, and
to suboptimal solutions in case of small communication times.

2.3.4 Conclusion

Despite its simplicity (two identical processors and two identical loads), the analysis of this
illustrative example clearly outlines the limitations of the approach of [88]: this approach does
not always return a feasible solution and, when it does, this solution is not always optimal.

As we said before, the main drawback of the previous approach is to search for local opti-
mums. The authors of [88], by forcing each load to finish at the same time on all processors,
designed their solution as if the optimality principle, which is only true for a single load, was
true for several loads. Moreover, they wanted to remove, on each processor, any potential com-
putation idle time between the processing of two consecutive loads. However, these constraints
are useless to obtain a valid schedule, but can artificially limit the solution space.

2.4 Optimal solution

In this section we show how to compute an optimal schedule, when dividing each load into
any prescribed number of installments. We will discuss the computation of the right number of
installments in Section 2.5.

When the number of installments is set to 1 for each load (i.e., Qk = 1, for any k in [1,m]),
the following approach solves the problem originally targeted by Min, Veeravalli, and Barlas.

To build our solution we use a linear programming approach. In fact, we only have to list all
the (linear) constraints that must be fulfilled by a schedule, and write that we want to minimize
the makespan.

All these constraints are captured by the linear program (2.2). This linear program simply
encodes the following constraints (where a number in parentheses is the number of the corre-
sponding constraint of linear program (2.2)):

– Pi cannot start a new communication to Pi+1 before the end of the corresponding com-
munication from Pi−1 to Pi (2.2a),

– Pi cannot start to receive the next installment of the k-th load before having finished to
send the current one to Pi+1 (2.2b),

– Pi cannot start to receive the first installment of the next load before having finished to
send the last installment of the current load to Pi+1 (2.2c),

– any transfer has to begin at a nonnegative time (2.2d),

2.4. OPTIMAL SOLUTION 37

– the duration of any transfer is equal to the product of the time taken to transmit a unit
load (2.2e) by the volume of data to transfer,

– processor Pi cannot start to compute the j-th installment of the k-th load before having
finished to receive the corresponding data (2.2f),

– the duration of any computation is equal to the product of the time taken to compute a
unit load (2.2g) by the volume of computations,

– processor Pi cannot start to compute the first installment of the next load before it has
completed the computation of the last installment of the current load (2.2h),

– processor Pi cannot start to compute the next installment of a load before it has completed
the computation of the current installment of that load (2.2i),

– processor Pi cannot start to compute the first installment of the first load before its
availability date (2.2j),

– every portion of a load dedicated to a processor is necessarily nonnegative (2.2k),
– any load has to be completely processed (2.2l),
– the makespan is no smaller than the completion time of the last installment of the last

load on any processor (2.2m).



Minimize makespan under the constraints
(2.2a) ∀i < n− 1, k ≤ m, j ≤ Qk, Commstart

i+1,k,j ≥ Commend
i,k,j

(2.2b) ∀i < n− 1, k ≤ m, j < Qk, Commstart
i,k,j+1 ≥ Commend

i+1,k,j

(2.2c) ∀i < n− 1, k < m, Commstart
i,k+1,1 ≥ Commend

i+1,k,Qk

(2.2d) ∀i ≤ n− 1, k ≤ m, j ≤ Qk, Commstart
i,k,j ≥ 0

(2.2e) ∀i ≤ n− 1, k ≤ m, j ≤ Qk, Commend
i,k,j = Commstart

i,k,j +
Vcomm(k)

bw i

n∑
l=i+1

γjl (k)

(2.2f) ∀i ≥ 2, k ≤ m, j ≤ Qk, Compstarti,k,j ≥ Commend
i,k,j

(2.2g) ∀i ≤ n, k ≤ m, j ≤ Qk, Compendi,k,j = Compstarti,k,j +
γji (k)Vcomp(k)

si
(2.2h) ∀i ≤ n, k < m, Compstarti,k+1,1 ≥ Compendi,k,Qk

(2.2i) ∀i ≤ n, k ≤ m, j < Qk, Compstarti,k,j+1 ≥ Compendi,k,j

(2.2j) ∀i ≤ n, Compstarti,1,1 ≥ τi
(2.2k) ∀i ≤ n, k ≤ m, j ≤ Qk, γji (k) ≥ 0

(2.2l) ∀k ≤ m,
n∑
i=1

Q∑
j=1

γji (k) = 1

(2.2m) ∀i ≤ n, makespan ≥ Compendi,m,Q

(2.2)

Lemma 2.1. Consider, under a linear cost model for communications and computations, an
instance of our problem with one or more load, at least one processor, and a given maximum
number of installments for each load. If, as in [87, 88], loads have to be sent in the order of
their submission, then the linear program (2.2) finds a valid and optimal schedule.

Proof. First, we can ensure that the provided schedule is valid:

38 CHAPTER 2. SCHEDULING DIVISIBLE LOADS ON A CHAIN OF PROCESSORS

– all starting time and installment sizes are nonnegative (2.2d, 2.2k),
– each computation only begins after the reception of the corresponding data (2.2f),
– at most one computation is processed at any time on any processor, and installments are

processed following the submission order (2.2g, 2.2h, 2.2i, 2.2j),
– any load is completely processed (2.2l),
– all communications respect the strict one-port model and the submission order (2.2a, 2.2b,

2.2c, 2.2e).
The only non-essential constraint is the respect of the submission order by the computations

(which is imposed by (2.2g), (2.2h), (2.2i)), since we could have inverted the computation of
two installments on the same processor. This constraint allows the linear program to give a
complete description of the schedule, with starting and ending time for any computation and
any communication.

Moreover, this constraint does not change the minimum makespan: we know that an optimal
algorithm to the problem described as 1|rj |Cmax (minimizing the makespan on one machine with
release dates) in [30, p. 63] is the classical FCFS (First Come, First Served) algorithm. Thus
imposing to process tasks according to their the submission order on a processor does not change
the total computation time.

Since all other constraints are essential to have a valid schedule, we can assert than the
schedule obtained by finding an optimal solution to the linear program is an optimal schedule. �

Altogether, we have a linear program to be solved over the rationals, hence a solution in poly-
nomial time [60]. In practice, standard packages like Cplex citecplex, Maple [33] or GLPK [51]
will return the optimal solution for all reasonable problem sizes.

Note that the linear program gives the optimal solution for a prescribed number of install-
ments for each load. We will discuss the problem of the number of installments in Section 2.5.

2.5 Possible extensions

There are several restrictions in the model of [88] that can be alleviated. First the model uses
uniform machines, meaning that the speed of a processor does not depend on the task that it
executes. It is easy to extend the linear program for unrelated machines, introducing ski to denote
the speed of Pi while processing a part of load k. Also, all processors and loads are assumed to
be available from the beginning. In our linear program, we have introduced availability dates
for processors. In the same way, we could have introduced release dates for loads. Furthermore,
instead of minimizing the makespan, we could have targeted any other objective function which
is an affine combination of the load completion times and of the problem characteristics, like the
average completion time, the maximum or average (weighted) flow, etc. We could also change
the communication model, switching from the strict one-port model to the bidirectionnal one-
port model. In this case, processors can receive and send data simultaneously. Removing
Constraint 2.2b is enough to capture this new communication model.

The formulation of the problem does not allow any piece of the k′-th load to be processed
before the k-th load is completely processed, if k′ > k. We can easily extend our solution to
allow for m rounds of the m loads, each load being still divided into several installments. This
would allow to interleave the processing of the different loads.

2.5. POSSIBLE EXTENSIONS 39

2.5.1 Optimal number of installments

The divisible load model is linear, which causes major problems for multi-installment ap-
proaches. Indeed, once we have a way to find an optimal solution when the number of install-
ments per load is given, the question is: what is the optimal number of installments? Under
a linear model for communications and computations, the optimal number of installments is
infinite, as the following theorem states:

Theorem 2.1. Consider, under a linear cost model for communications and computations, an
instance of our problem with one or more load and at least two processors, such that all processors
are initially idle. Then, any schedule using a finite number of installments is suboptimal for
makespan minimization.

Proof. This theorem is proved by building, from any schedule using a finite number of install-
ments, another schedule with a strictly smaller makespan.

We first remark that in any optimal solution to our problem all processors work and complete
their share simultaneously. To prove this statement, we consider a schedule where one processor
completes its share strictly before the makespan (this processor may not be doing any work at
all). Then, under this schedule there exists two neighbor processors, Pi and Pi+1, such that one
finishes at the makespan, denotedM, and one strictly earlier. We have two cases to consider:

1. There exists a processor Pi which finishes strictly before the makespanM and such that
the processor Pi+1 completes its share exactly at time M. Pi+1 receives all the data
it processes from Pi. We consider any installment j of any load Lk that is effectively
processed by Pi+1 (that is, Pi+1 processes a non null portion of the j-th installment of
load Lk and processes nothing hereafter). We modify the schedule as follows: Pi enlarges
by an amount ε, and Pi+1 decreases by an amount ε, the portion of the j-th installment
of the load Lk it processes. Then, the completion time of Pi is increased, and that of
Pi+1 is decreased, by at least an amount proportional to ε as our cost model is linear.
More precisely, the completion time of Pi is increased by an amount equal to εVcomp(k)/si
and the completion time of Pi+1 is decreased by an amount between εVcomp(k)/si+1 and
ε(Vcomm(k)/bw i + Vcomp(k)/si+1).
If ε is small enough, both processors complete their work strictly before M. With our
modification of the schedule, the size of a single communication was modified, and this
size was decreased. Therefore, this modification did not enlarge the completion time of
any processor except Pi. Therefore, the number of processors whose completion time is
equal toM is decreased by at least one by our schedule modification.

2. No processor which completes it share strictly before time M is followed by a processor
finishing at timeM. Therefore, there exists an index i such that the processors P1 through
Pi all complete their share exactly atM, and the processors Pi+1 through Pn complete their
share strictly earlier. Then, let the last processing of processor Pi be that of installment j
of load Lk. We have Compendi+1,j,k, . . . ,Compendn,j,k <M.
Then Pi decreases by a size ε, and Pi+1 increases by a size ε, the portion of the j-th
installment of load Lk that it processes.
Then the completion time of Pi is decreased by an amount εVcomp(k)/si, thus proportional
to ε. The completion time of processor Pi+1 is increased by at most ε(Vcomp(k)/si+1 +
Vcomm(k)/bw i), while the completion times of the processors Pi+2 through Pn is at most
increased by an amount εVcomm(k)/bw i, proportional to ε.

40 CHAPTER 2. SCHEDULING DIVISIBLE LOADS ON A CHAIN OF PROCESSORS

Let A be equal to:

max

(
max

i+1≤u≤n

(
M− Compendu,j,k

Vcomm(k)/bw i

)
,

M− Compendi+1,j,k

Vcomm(k)/bw i + Vcomp(k)/si

)
.

Therefore, if ε is small enough (i.e., 0 < ε < A), the processors Pi through Pn complete
their work strictly beforeM.

In both cases, after we modified the schedule, there is at least one more processor which completes
its work strictly before timeM, and no processor is completing its share after that time. If no
processor is any longer completing its share at time M, we have obtained a schedule with a
better makespan. Otherwise, we just iterate our process. As the number of processors is finite,
we will eventually end up with a schedule whose makespan is strictly smaller thanM. Hence, in
an optimal schedule all processors complete their work simultaneously (and thus all processors
work).

We now prove the theorem itself by contradiction. Let S be any optimal schedule using
a finite number of installments. As processors P2 through Pn initially hold no data, they stay
temporarily idle during the schedule execution, waiting to receive some data to be able to process
them. Let us consider processor P2. As the idleness of P2 is only temporary (all processors are
working in an optimal solution), this processor is only idle because it is lacking data to process
and it is waiting for some. Therefore, the last moment at which P2 stays temporarily idle under
S is the moment it finished to receive some data, namely the j0-th installment of load Lk0 sent
to him by processor P1.

As previously, Ql is the number of installments of the load Ll under S. Then from the
schedule S we build a schedule S ′, identical to S except that we replace the j0-th installment
of load Lk0 by two new installments. The replacement of the j0-th installment of load Lk0 only
affects processors 1 and 2: for the others the first new installment brings no work to process
and the second brings exactly the same amount of work as the j0-th installment of load Lk0 in
S. Formally, using the same notation for S ′ than for S, but with an added prime, S ′ is defined
as follows:

– All loads except Lk0 have the exact same installments under S ′ as under S: ∀k ∈ [1,m] \
{k0}, Q′k = Qk and ∀i ∈ [1, n], ∀j ∈ [1, Qk], γ

′j
i (k) = γji (k).

– The load Lk0 has Q′k0 = (1 +Qk0) installments under S ′, defined as follows:
– The first (j0−1) installments of Lk0 under S ′ are identical to the first (j−1) installments

of this load under S: ∀i ∈ [1, n], ∀j ∈ [1, j0 − 1], γ′ji (k0) = γji (k0).
– Installment j0 of Lk0 is defined as follows:
γ′j01 (k0) = γj01 (k0),
γ′j02 (k0) = 1

2γ
j0
2 (k0),

∀i ∈ [3, n], γ′j0i (k0) = 0.
– Installment j0 + 1 of Lk0 is defined as follows:
γ′j0+1

2 (k0) = 0,
γ′j0+1

2 (k0) = 1
2γ

j0
2 (k0),

∀i ∈ [3, n], γ′j0+1
i (k0) = γj0i (k0).

– The last (Qk0 − j0) installments of Lk0 under S ′ are identical to the last (Qk0 − j0)
installments of this load under S: ∀i ∈ [1, n], ∀j ∈ [j0 + 1, Q′k0], γ′ji (k0) = γj−1

i (k0).
Since the j0-th installment of the k0-th load is the first modified one, starting and ending times

2.5. POSSIBLE EXTENSIONS 41

of each previous installment remain unchanged:

∀k < k0 and ∀j ∈ [1, Qk] or k = k0 and ∀j ∈ [1, j0 − 1],

∀i ∈ [1, n− 1],Comm ′ starti,k,j = Commstart
i,k,j ,

∀i ∈ [1, n− 1],Comm ′ endi,k,j = Commend
i,k,j ,

∀i ∈ [1, n],Comp′ starti,k,j = Commstart
i,k,j ,

∀i ∈ [1, n],Comp′ endi,k,j = Compendi,k,j .

(2.3)

Now, let us focus on the j0-th installment. We can easily derive the following properties for
the first processor:

Comp′ start1,k0,j0 = Compstart1,k0,j0 ,

Comp′ end1,k0,j0 = Compend1,k0,j0 ,

Comp′ start1,k0,j0+1 = Compend1,k0,j0 ,

Comp′ end1,k0,j0+1 = Compend1,k0,j0 .

We can write the following equations about the communication between P1 and P2:

Comm ′ start1,k0,j0 = Commstart
1,k0,j0 ,

Comm ′ end1,k0,j0 = Commstart
1,k0,j0 +

1

2
γj01 (k0) ∗ Vcomm(k0)/bw1, (2.4)

Comm ′ start1,k0,j0+1 = Comm ′ end1,k0,j0 ,

Comm ′ end1,k0,j0+1 = Commend
1,k0,j0 . (2.5)

There are only two constraints on the beginning of the computation on P2:

Comp′ start2,k0,j0 = max
{

Comm ′ end1,k0,j0 ,Comp′ end2,k0,j0−1

}
, (2.6)

Compstart2,k0,j0 = max
{

Commend
1,k0,j0 ,Compend2,k0,j0−1

}
. (2.7)

Of course, Equations (2.6) and (2.7) are only true for j0 > 1, we have to replace Comp′ end2,k0,j0−1

(respectively Compend2,k0,j0−1) by Comp′ end2,k0−1,Qk0−1
(respectively Compend2,k0−1,Qk0−1

) if we have
k0 > 1 and j0 = 1, and by 0 in both cases if k0 = 1 and j0 = 1, we recall that all processors are
initially idle.

This constraint is a bit too strong. The theorem is still true when only one processor
(different from P1) is initially idle. If all processors have strictly positive release
times, they can finish their first communication and immediately start to compute
the first installment of the first load, without any idle time between their release
date and their first computation, and our theorem is false.

42 CHAPTER 2. SCHEDULING DIVISIBLE LOADS ON A CHAIN OF PROCESSORS

By definition of j0 and k0, P2 is idle right before the beginning of the computation of the
j0-th installment of the k0-th load, therefore:

Compend2,k0,j0−1 < Commend
1,k0,j0 . (2.8)

Using Equation (2.7), we thus have:

Compstart2,k0,j0 = Commend
1,k0,j0 . (2.9)

Moreover, since we have γj02 (k0) > 0, the communication of the j0-th installment between
P1 and P2 in S ′ ends strictly earlier than the communication of the j0-th installment between
these processors in S:

Comm ′ end1,k0,j0 < Commend
1,k0,j0 = Compstart2,k0,j0 . (2.10)

We can apply Equation (2.3) for the (j0 − 1)-th installment of the k0 load, and use Equa-
tions (2.8) and (2.9):

Comp′ end2,k0,j0−1 = Compend2,k0,j0−1 < Compstart2,k0,j0 (2.11)

In our new schedule S ′, by using Equations (2.6), (2.10), and (2.11), we can say that the
computation on the new j0-th installment begins strictly earlier on P2:

Comp′ start2,k0,j0 < Compstart2,k0,j0 , (2.12)

Comp′ start2,k0,j0+1 = max
{

Comp′ end2,k0,j0 ,Comm ′ end1,k0,j0+1

}
. (2.13)

By definition of Comp′ end2,k0,j0
, and Comp′ end2,k0,j0+1, we have the two following Equations (2.14)

and (2.15):

Comp′ end2,k0,j0 = Comp′ start2,k0,j0 +
Compend2,k0,j0

− Compstart2,j0,k0

2
, (2.14)

Comp′ end2,k0,j0+1 = Comp′ start2,k0,j0+1 +
Compend2,k0,j0

− Compstart2,j0,k0

2
. (2.15)

If we use (2.15), (2.14), (2.13) and (2.5):

Comp′ end2,k0,j0+1 = max

{
Compend

2,k0,j0
−Compstart

2,j0,k0
2 + Commend

1,k0,j0
,

Comp′ start2,k0,j0
+ Compend2,k0,j0

− Compstart2,k0,j0

. (2.16)

Since we have Equation (2.8) and 0 < γk02 (j0), we have Compend2,k0,j0
> Compstart2,k0,j0

and then

Compend2,k0,j0
− Compstart2,j0,k0

2
+ Commend

1,k0,j0 <

Compend2,k0,j0 − Compstart2,j0,k0 + Commend
1,k0,j0

= Compend2,k0,j0 . (2.17)

By using Equation (2.12), we can ensure:

Comp′ start2,k0,j0 + Compend2,k0,j0 − Compstart2,k0,j0 < Compend2,k0,j0 . (2.18)

2.5. POSSIBLE EXTENSIONS 43

By combining (2.17), (2.18) and (2.16), we have:

Comp′ end2,k0,j0+1 < Compend2,k0,j0 . (2.19)

Therefore, under schedule S ′ processor P2 completes strictly earlier than under S the compu-
tation of what was the j0-th installment of load Lk0 under S. If P2 is no more idle after the time
Comp′ end2,k0,j0

, then it completes its overall work strictly earlier under S ′ than under S. P1 com-
pletes its work at the same time. Then, using the fact that in an optimal solution all processors
finish simultaneously, we conclude that S ′ is not optimal. As we have already remarked that its
makespan is no greater than the makespan of S, we end up with the contradiction that S is not
optimal. Therefore, P2 must be idled at some time after the time Comp′ end2,k0,j0

. Then we apply
to S ′ the transformation we applied to S as many times as needed to obtain a contradiction.
This process is bounded as the number of communications that processor P2 receives after the
time it is idle for the last time is strictly decreasing when we transform the schedule S into the
schedule S ′. �

An infinite number of installments obviously does not define a feasible solution. Moreover,
in practice, when the number of installments becomes too large, the model is inaccurate, as
acknowledged in [28, p. 224 and 276]. Any communication incurs a startup cost l, which we
express in bytes. Consider the k-th load, whose communication volume is Vcomm(k): it is split
into Qk installments, and each installment requires n − 1 communications. The ratio between
the actual and estimated communication costs is roughly equal to ρ = (n−1)Qkl+Vcomm (k)

Vcomm (k) > 1.
Since l, n, and Vcomm(k) are known values, we can choose Qk such that ρ is kept relatively small,
and so such that the model remains valid for the target application. Another, and more accurate
solution, would be to introduce latencies in the model, as in Section 1.3.1. This latter article
shows how to design asymptotically optimal multi-installment strategies for star networks. A
similar approach should be used for linear networks.

Note that Theorem 2.1 also holds true in case of star-shaped networks. We show it in [A1]
by adapting the proof of Theorem 2.1.

2.5.2 Upper bound on the gain using multi-installment strategies

Thus, any optimal solution uses many installments. However, the benefit of distributing the
entire load using several installments can be bounded, as stated by the following theorem.

Theorem 2.2. Consider, under a linear cost model for communications and computations, an
instance of our problem with one or more load, such that all processors are initially idle. Then,
the minimum makespan using a single installment for each load is less than (bn/2c + 1) times
the optimal makespan obtained with several installments.

Proof. Consider several loads distributed to a chain of n processors, using a schedule with Q
installments. Let makespanQ be the makespan of this schedule, and let αki be the fraction of
the k-th load allocated to each processor: ∀i ≤ n, αki =

∑Q
j=1 γ

j
i (k).

Consider a new schedule using a single installment, such that any processor computes the
same fraction αki of each load. Let makespan1 be the makespan of this solution.

By definition of makespanQ, any processor Pi requires less than makespanQ time units to
complete all its communications (receptions and transmissions) and less than makespanQ to
complete its computations. Thus, P2 has finished to receive its own data and to send the
remaining share to P3 before time makespanQ. Similarly, P4 can finish its incoming and outgoing

44 CHAPTER 2. SCHEDULING DIVISIBLE LOADS ON A CHAIN OF PROCESSORS

communications before time 2×makespanQ, and so on: P2i is able to finish its communications
before time i×makespanQ and P2i+1 has received its data at this time. More generally, Pj has
received its data before time bj/2cmakespanQ and can finish its computation at most at time
(bj/2c+ 1)makespanQ.

If Ti denotes the completion time of Pi, we have by definition of makespan1:

makespan1 = max
1≤i≤n

Ti ≤ max
1≤i≤n

{(⌊
i

2

⌋
+ 1

)
makespanQ

}
=
(⌊n

2

⌋
+ 1
)

makespanQ.

This concludes our proof. Note that our new schedule is suboptimal, since all processors do
not finish at the same time.

To check whether this bound is tight, we consider a chain of n processors, and a single load
of size 1: Vcomm(1) = Vcomp(1) = 1. The platform is defined by:

∀i, 1 ≤ i < n, si = 0,

sn = 1/2,

∀i, 1 ≤ i < n, bw i = 1.

Only the last processor can perform some work, and communication links are homogeneous.
There is only one valid single-installment schedule, whose makespan is easily computed: the

entire load has to be sent in time (n − 1) to processor Pn, which finishes its work at time
makespan1 = (n− 1) + 2 = n+ 1.

Now, let us compute the makespan makespanQ of a schedule usingQ identical installments, of
size 1/Q. Any communication from P1 to Pn passes through n−1 links. Indeed, the first round is
received by Pn at time (n−1)/Q, and is completely processed at time (n−1+2)/Q = (n+1)/Q.
Due to the strict one-port model, the second round is sent by P1 at time 2/Q and is received
by Pn at time (n + 1)/Q. Finally, the Q-th round (the last one) is received by Pn at time
(n− 3 + 2Q)/Q. Pm achieves its computation at time makespanQ = (n− 1 + 2Q)/Q.

Indeed, we have the following relation:

makespan1 = makespanQ

(
(n+ 1)Q

n− 1 + 2Q

)
.

Considering large numbers of installments leads to:

lim
Q→∞

makespan1

makespanQ
=
n+ 1

2
.

Thus, the bound is tight with an infinite number of installments for odd numbers of processors.
�

2.6 Experiments

Using simulations, we now assess the relative performance of our linear programming ap-
proach, of the solutions of [87, 88], and of simpler heuristics. We first describe the experimental
protocol and then analyze the results.

2.6. EXPERIMENTS 45

Experimental protocol. We use Simgrid [65] to simulate linear processor networks. Schedules
are pre-computed by a script, and their validity and theoretical makespan are checked before
running them in the simulator.

We study the following algorithms and heuristics:
– The naive heuristic Simple distributes each load in a single installment and proportionally

to the processor speeds.
– The strategy for a single load, SingleLoad, presented by Min and Veeravalli in [87]. For

each load, we set the time origin to the availability date of the first communication link
(in order to try to prevent communication contentions).

– The MultiInst k strategy. The main strategy proposed by Min, Veeravalli and Barlas
is to split each loads into several installments, in order to overlap communications by
computations, and we called it MultiInst. However, they do not fix any limit on the
total number of installments, and MultiInst k is a slightly modified version of Multi-
Inst which ensures that a load is not distributed in more than k installments, the k−-th
installment of a load distributing all the remaining work of that load.

– The Heuristic B presented by Min, Veeravalli, and Barlas in [88].
– LP k: the solution of our linear program where each load is distributed in k installments.
We measure the relative performance of each heuristic on each instance: we divide the

makespan obtained by a given heuristic on a given instance by the smallest makespan obtained,
on that instance, among all heuristics. Considering the relative performance enables us to
produce meaningful statistics among instances with very different makespans.

Instances. We emulate a heterogeneous linear network with n = 10 processors. We consider
two distribution types for processing powers: homogeneous where each processor Pi has a pro-
cessing power si = 100 MFLOPS, and heterogeneous where processing powers are uniformly
picked between 10 and 100 MFLOPS. Communication link li has a bandwidth bw i uniformly
chosen between 10 Mb/s and 100 Mb/s, and a latency between 0.1 and 1 ms (links with high
bandwidths having small latencies). For homogeneous and heterogeneous platforms, loads have
their computation volumes either all uniformly distributed between 6 GFLOPS and 4 TFLOPS,
or all uniformly distributed between 6 and 60 GFLOPS. For each combination of processing
power distribution and task size, we fix the communication to computation volume of all tasks
to either 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, or 100 (bytes per FLOPS). Each instance contains 50
loads. Finally, we randomly built 100 instances per combination of the different parameters,
hence a total of 3,600 instances simulated and reported in Table 2.2. The code and the exper-
imental results can be downloaded from: http://graal.ens-lyon.fr/~mgallet/downloads/
DivisibleLoadsLinearNetwork.tar.gz.

We only present the results of the simulation with Simgrid, without giving the pre-computed
makespans (computed during the validity check of each schedule). Schedules were computed
without latency according to the model. However, the communication model used for the sim-
ulation is realistic and thus includes latencies (see Section 2.5). Theses latencies are small, less
than one millisecond as in many modern clusters. This is sufficient to have a small difference
between predicted makespans and experimental ones, less than 1%, but since both values were
very close, only experimental values are given.

We fixed an upper-bound to the number of installments per load used by the different
heuristics: MultiInst to either 100 or 300, SingleLoad to 100, and LP k to either 1, 2,
3, or 6.

http://graal.ens-lyon.fr/~mgallet/downloads/DivisibleLoadsLinearNetwork.tar.gz
http://graal.ens-lyon.fr/~mgallet/downloads/DivisibleLoadsLinearNetwork.tar.gz

46 CHAPTER 2. SCHEDULING DIVISIBLE LOADS ON A CHAIN OF PROCESSORS

Heuristic Average Std dev. Max Best result Optimal solutions found
Simple 1150.42 1.6 103 8385.94 3.66 0.00 %
SingleLoad 100 1462.65 2.0 103 10714.41 6.03 0.00 %
MultiInst 100 1.13962 1.8 10−1 1.98712 1. 7.64 %
MultiInst 300 1.13963 1.8 10−1 1.98712 1. 6.99 %
Heuristic B 1.13268 1.7 10−1 2.01865 1. 4.72 %
LP 1 1.00047 8.5 10−4 1.00498 1. 89.97 %
LP 2 1.00005 9.6 10−5 1.00196 1. 97.32 %
LP 3 1.00002 4.7 10−5 1.00098 1. 97.35 %
LP 6 1.00000 0 1.00001 1. 99.82 %

Table 2.2: Summary of results.

Discussions of the results. As we can see in Table 2.2, experimental values show that the linear
program give almost always the best experimental makespan. There is a difference between pre-
computed and experimental values, since LP 6 always give the best theoretical makespan but
can be 0.01‰ away from the apparent best solution in the experimental results.

LP 1, LP 2, LP 3, and LP 6 achieve equivalent performance, always less than 5‰ away
from the best result, and even LP 1 gives the best makespan in almost 90% of instances. This
may seem counter-intuitive but can readily be explained: multi-installment strategies mainly
reduce the idle time incurred on each processor before it starts processing the first task, and
the room for improvement is thus quite small in our (and [88]) batches of 50 tasks. The strict
one-port communication model forbids the overlapping of some communications due to different
installments, and further limits the room for performance enhancement. Except in some peculiar
cases, distributing the loads in multi-installments do not induce significant gains. In very special
cases, LP 6 does not achieve the best performance during the simulations, but this fact can be
explained by the latencies existing in simulations, and not taken into account in the linear
program (2.2).

The bad performance of Simple, which can have makespans 8000 greater than the optimal,
justify the use of sophisticated scheduling strategies. The slight difference performance be-
tween MultiInst 100 and MultiInst 300 shows that MultiInst sometimes uses a very large
amount of installments for an insignificant negative gain (certainly due to latencies). When
communication links are slow and when communications dominate computations, MultiInst
and Heuristic B can have makespans 98% higher than the optimal.

2.7 Conclusion

We have shown that a linear programming approach allows to solve all instances of the
scheduling problem addressed in [87, 88]. In contrast, the original approach was providing a
solution only for particular problem instances. Moreover, the linear programming approach
returns an optimal solution for any given number of installments, while the original approach
was empirically limited to very special strategies, and was often sub-optimal.

Intuitively, the solution of [88] is worse than the schedule of Section 2.3.1 because it aims
at locally optimizing the makespan for the first load, and then optimizing the makespan for
the second one, and so on, instead of directly searching for a global optimum. We did not
find elegant closed-form expressions to characterize optimal solutions but, through the power of

2.7. CONCLUSION 47

linear programming, we have been able to find an optimal schedule for any instance.

48 CHAPTER 2. SCHEDULING DIVISIBLE LOADS ON A CHAIN OF PROCESSORS

Part II

Steady-state scheduling

49

Chapter 3

General presentation of steady-state
scheduling

3.1 Introduction

In the first part, we studied the Divisible Load Theory, which is a common relaxation to
a specific class of scheduling problems. In this second part, we focus on another relaxation
scheme: we now target directed acyclic task graphs, of which a large number of instances has
to be processed on a possibly heterogeneous computing platform. As said in the introduction,
minimizing the total computation time (the makespan) often is a NP-complete problem, even
in very constrained cases. Moreover, this criterion can be unadapted to the actual situation.

In this part, we consider a large number of independent copies, or instances, of the same task
graph, that we plan to process on a modern computing platform, such as a heterogeneous grid.
This great number of copies allows to minimize the effect of small variations in resource capacities
or in task characteristics. Today, such a situation happens in many contexts, for example when
a continuous flow of information has to be processed as fast as possible. Due to the higher
bandwidth of ADSL lines or even optic-fiber connexions, which are now widespread, multimedia
applications like real-time video broadcast of public events are more and more common, and
require a lot of real-time processing from the digital video camera to the end user. More scientific
applications also produce lots of data, which have to be processed on-the-fly before being stored;
one could think of the 15 petabytes annually produced by the Large Hadron Collider (LHC) [44].

Obviously, we could use classical makespan minimization algorithms for this problem, but
minimizing the total processing time of a continuous flow of data is nearly non-sense. Moreover,
applying such general algorithms to such a problem does not permit to efficiently use its regular
structure. In fact, we should take care of its regularity in the earliest stages of the algorithm
design, to be sure to properly use it. In [16], Beaumont et al. have shown that the initialization
and the end of the schedule have little importance as soon as the number of instances is large
enough. This leads to only optimize the heart of the schedule, the steady-state phase, keeping
out the start of the execution and its termination. Optimizing the steady-state phase means
maximizing the number of instances of our task graph processed by the whole platform within
T time units, i.e., the throughput, which will be denoted by ρ in the following pages. In
several cases, maximizing the throughput ρ remains a tractable problem, while the makespan
minimization turns out to be NP-hard in most situations [76, 9].

To be representative of actual computing grids, the platform model may be rather sophisti-
cated: such grids are often distributed over several physical locations, and are owned by different

51

52 CHAPTER 3. GENERAL PRESENTATION OF STEADY-STATE SCHEDULING

organizations and were bought at different times. Thus, the computing power of the nodes are
strongly dependent of the processor architecture and their age. The same problem stands for
communication times, and is even more complex since the same communication should not take
the same time if both nodes are in the same cluster or on both sides of the Atlantic Ocean.

As said before, the regularity of our problem brought by the multiple copies of the same
task graph is an important feature that we will take advantage of. The main idea behind the
steady-state scheduling is to consider that after a reasonably short period of initialization, the
throughput of each resource (either computing, or communicating resource) becomes stable,
allowing us to deal with average numbers of tasks processed by resources during a single time
unit, instead of working with integer numbers.

In Section 3.2, we expose the formulation of the problem, introducing notation common to
all chapters of this part. Our solutions mainly use periodic steady-state schedules, which are
presented in Section 3.3, while main differences between dynamic and static schedules are given
in Section 3.4. Finally, Section 3.5 describes the different chapters of this part.

3.2 Problem formulation

In this part, we detail the modeling of the platform and the general form of the target
applications.

3.2.1 Platform model

According to our need of modeling a great variety of heterogeneous platforms, we represent
any platform by a graphGP = (VP , EP), where the set VP = {P1, . . . , Pn} of vertices corresponds
to processors and the set EP of edges to communication links. For the sake of simplicity, the
word “resource” means either a processor (computation resource) or a link (communication
resource), and other network resources like routers or switches are treated as processors without
computational power.

A communication link Pi → Pj is characterized by its bandwidth bw i,j , measured in B/s (byte
per second). We restrict ourself to a linear communication model: the time to send a message
is proportional to its size, and a message of size S needs a time S/bw i,j to be transfered from Pi
to Pj . Since the exact communication and computation model is specific to each chapter, we do
not present it here in depth. An short example of a 6-processor platform is shown in Figure 3.1.
As we can see, the platform graph is not a clique and all processors are not directly connected,
and any communication from P1 to P6 should pass through P2 and P5.

3.2.2 Application model

Steady-state techniques apply to a wide range of applications. However, we only focus
our attention to applications that can be modeled by Directed Acyclic Graph (DAGs). We
denote by GA = (VA, EA) the application graph, where VA = {T1, . . . , Tm} denotes the set
of computing tasks, and EA is the set of dependencies between these tasks, which are usually
materialized by files: a task produces a file which is necessary for the processing of some other
task. Fk,l = (Tk → Tl) ∈ EA is the file produced by Tk and consumed by Tl. The dependency file
Fk,l has size datak,l, so its transfer through link Pi → Pj takes a time datak,l

bw i,j
. The computation

time of each task follows an unrelated model, that is, a processor could be slower to process
some tasks, and faster to compute some other tasks. Thus, we denote by wi,k the time needed by

3.2. PROBLEM FORMULATION 53

P6

P3

P1

P2

P4

P5

Figure 3.1: Example of platform graph, made of six processors, two of them being routers.

T3

T5T4

T2

T1

T6

Figure 3.2: Example of application graph, made of 6 tasks.

processor Pi to entirely process task Tk. Using this notation, we can model the benefits which
can be drawn on specific hardware architectures by specially optimized tasks: certain types
of tasks are especially well-suited to the vectorial units of processors like the Power5 of IBM.
For example, a Cholesky factorization can be 5.5 times faster when using a GeForce 8800GTX
graphic card than when using only the CPU, while a LU factorization is only 3 times faster in
the same conditions [83]. Unrelated performance may also come from memory requirements.
Indeed, a given task requiring a lot of memory will be completed faster when processed by a
slower processor but with a larger amount of memory as soon as the hard drive is intensively
used by the fast processor while the memory of the slow processor is large enough. Grids are
often composed of several clusters bought over several years, thus with very different memory
capacities, even if processors are rather similar.

N is the (large) number of instances of the graph GA to be scheduled on the platform GP .
The notation GuA = (V u

A , E
u
A) refers to the u-th instance of GA. Similarly, T uk is the u-th instance

of Tk, and F uk,l is the u-th instance of Fk,l. Figure 3.2 presents a simple example of an application
DAG.

54 CHAPTER 3. GENERAL PRESENTATION OF STEADY-STATE SCHEDULING

3.2.3 Definition of the allocations

Scheduling an application on a parallel platform requires at least to define where each task
will be processed, i.e., which processor will execute it, and when the tasks will be computed. In
this section, we only define an allocation of tasks to processors.

Definition 3.1 (allocation). An allocation σ (GuA) of an instance u of the application graph GA
to the platform graph GP is a function σ associating:

– to the instance u of each task Tk, a processor Pi = σ (T uk),
– to the instance u of each file Fk,l, a set of communication links σ

(
F uk,l

)
, to transmit the

file from Pi = σ (T uk) to Pj = σ (T ul).

Since this definition remains general, we do not specify the routing policy used to transmit
the communication from the source to the destination. Moreover, this definition only applies
to a single instance of the task graph. Thus, two distinct instances of GA may have different
allocations. If a schedule uses the same allocation for all instances, then we simplify notation
and σ (GuA) denotes a function associating a processor σ (Tk) to each task Tk of the application
graph, and a set of links σ (Fk,l) to each a file Fk,l.

3.3 Periodic steady-state scheduling

As explained in the previous section, we only focus our attention on the steady-state phase of
the schedule, and, to preserve the simplicity of the studied problem, we look for periodic sched-
ules. Given a platform GP and a target application GA, there is a finite number, even if it may
be very large, of possible allocations: if we consider a homogeneous, fully-connected platform,
there are at least nm allocations of tasks to processors, without taking care of communications.
The complete schedule of all the N instances of GA could be very complicated, made by a large
subset of interleaved allocations. This situation leads us to look for simpler, periodic schedules.
They are made of a given pattern of allocations, which is repeated every T time units, ensuring
a regular structure to the schedule:

Definition 3.2 (periodic schedule). A periodic schedule of period (or length) T is a set of nT
allocations {σ1, . . . , σnT }, such that any resource can process its workload (either communications
or computations) in at most T time units.

We formally define what we call the “throughput”, that is the average number of instances
that can be processed per time-unit in steady state.

Definition 3.3 (throughput). Assume that the number of instances to be processed is infinite,
and let N(t) be the number of instances totally processed by a schedule at time t. The throughput

ρ of this schedule is given by ρ = lim
t→∞

N(t)

t
.

Due to this periodicity, the average time spent on a given task by each resource is easily
computed. In [16], Beaumont et al. exposed a general algorithm to build from these average
values a complete schedule ensuring the same throughput nT /T , without knowledge on the
original allocations and taking care of dependencies. Thus, only the average behavior of each
resource needs to be specified by a schedule algorithm to produce a valid steady-state schedule.
However, in the general case, the number of used allocations can be exponential in the size of the
instance. Two examples of allocations of the same application graph GA on the same platform
are given in Figure 3.3.

3.4. DYNAMIC VS. STATIC SCHEDULING 55

F2,4

F4,6

F5,6

F2,4

F3,5 F4,6

F3,5

F1,2

F1,3

F1,2 F1,3

F5,6

T1

T2, T3

T4

T2

T1

T4

T3T5

T6 T5, T6

P4

P2

P3

P5

P6 P6

P5

P2

P1

P4P3

P1

Figure 3.3: Two possible allocations of the same task graph.

3.4 Dynamic vs. static scheduling

Many scheduling strategies use a dynamic approach: task graphs, or even tasks, are processed
one after the other. This is usually done by assigning priorities to waiting tasks, and then by
allocating resources to the task with highest priority, as long as there are free resources. This
simple strategy is the best possible in some cases: (i) when we have no knowledge on the future
workload (i.e., the tasks that will be submitted in the near future, or released by the processing
of current tasks), or (ii) under a very unstable environment, where machines join and leave the
system with a high turnout rate.

Contrarily to the typical use of dynamic schedulers, we have more knowledge on the system
when scheduling several instances of a given application. First, we can take advantage of the
regularity of the pending jobs: the input is made of a large collection of data sets, on which
the same treatments are applied, resulting in the same task graphs. Second, the computing
platform is considered to be stable enough so that we can use performance measurement tools
like NWS [86] in order to get some information on machine speeds and link bandwidths. Taking
advantage of this knowledge, we aim at using static scheduling techniques, that is to anticipate
the mapping and the scheduling of the whole workload at its submission date. Since periodic
schedules are computed before the actual execution, one can check whether its platform is able
to ensure a given throughput, and whether the memory requirements are fulfilled. Thus, both
memory and throughput constraints can be guaranteed by a periodic schedule, offering a strong
advantage against dynamic ones. The stability of the performance of the platform is a strong
condition to efficiently use static schedulers, often requiring dedicated platforms without any
other user.

56 CHAPTER 3. GENERAL PRESENTATION OF STEADY-STATE SCHEDULING

3.5 Content of this part

The term “steady-state scheduling” covers a wide range of different problems, several ones of
them being studied in the next chapters. The fundamental idea of using steady-state techniques
in scheduling comes from a article of Bertsimas and Gamarnik [25], mainly focused on routing
communication packets in computer networks. This approach has been successfully applied to
problems as diverse as pipelining broadcasts [18], scheduling independent tasks [12] or divisible
loads [56] on heterogeneous platforms. A steady-state approach for scheduling collections of
identical task graphs was proposed in [19]. The solution given in [19], although asymptotically
optimal under reasonable assumptions, may not be usable by reason of the very large number
of involved allocations. Periodic schedules may be composed of several allocations, as exposed
in Section 3.3. However, dealing with many allocations can be a drawback, mainly due to the
difficulty of precisely controlling the data flows. Thus, in Chapter 4, we study the problem of
finding efficient schedules made of a single allocation. Due to the intrinsic complexity of this
problem, we also provide several heuristics.

In Chapter 5, the problem under study is somewhat different: instead of working with many
instances of the same task graph, we want to schedule several collections of independent, hetero-
geneous tasks. The characteristics of these tasks are given by probability laws, and are grouped
in collections following these laws. Thus, we can compare the results of smart approximations
of the optimal schedule to simple schedule policies like Round-Robin and on-demand.

In Chapter 6, application graphs are restrained to simple pipelines, mapped on a heteroge-
neous platform following several allocations. If the Round-Robin policy ensures a simple control,
determining the period T of the system is a complex problem, even if a complete allocation is
given. Modeling this problem using timed Petri nets permits to establish this period for several
communication models.

The next chapter, Chapter 7, is devoted to a small-scale, practical application of these steady-
state scheduling techniques to the Cell processor. Built around a classical PowerPC core and
height simpler cores called SPEs, the Cell processor is an innovative heterogeneous CPU designed
by IBM as a new way to obtain high-performance processors. However, efficiently mapping an
application graph on these different cores is really hard. To alleviate this constraint and ease the
development of complex programs, we modeled this problem as a classical steady-state problem.

Chapter 4

Mono-allocation schedules of task graphs on
heterogeneous platforms

4.1 Introduction

In this chapter, we investigate the problem of mapping an application onto the computing
platform, being interested both in optimizing the performance of the mapping (that is, process
the data as fast as possible), and in keeping the deployment simple, so that we do not have to
deploy complex control softwares on a large number of machines.

We only consider Grid jobs made of the same workflow applied to a large collection of
different input data sets, or, in other words, these Grid jobs are constituted of a large number
of instances of the same task graph. Therefore, the context presented in Chapter 3 is perfectly
matched. We already saw that there are many ways to map a single instance to the platform,
and that a single periodic schedule can be decomposed in many allocations. The control system
to ensure that all dependency files are sent to right processors is complex to deploy. Thus,
we concentrate on how to compute periodic schedules from a single allocation, allowing lighter
flow-control systems.

In the context of scheduling series of task graphs, we can take advantage of two sources
of parallelism to increase performance. First, parallelism comes from the data, as we have to
process a large number of instances. Second, each instance consists in a task graph which may
well include some parallelism: some tasks can be processed simultaneously, or the processing of
consecutive tasks of different instances can be pipelined, using some control parallelism. In such
a context, several scheduling strategies may be used.

We may only make use of data parallelism. Then, the whole workflow corresponding to the
processing of a single input data set is executed on a single resource, as if it was a large sequential
task. Different workflow instances are simultaneously processed on different processors. This is
potentially the solution with the best degree of parallelism, because it may well use all available
resources. This imposes that all tasks of a given instance are performed on each processor,
therefore that all services must be available on each participating machine. However, it is
likely that some services have heterogeneous performance: many legacy codes are specialized for
specific architectures and would perform very poorly if run on other machines. Some services
are even likely to be unavailable on some machines. In the extreme, most specified case, it may
happen that no machine can run all services; in that case the pure data-parallelism approach
is infeasible. Moreover, switching, on the same machine, from one service to another may well
induce some latency to deploy each service, thus leading to a large overhead. Finally, a single

57

58 CHAPTER 4. MONO-ALLOCATION SCHEDULES OF TASK GRAPHS

input data set may well produce a large volume of data to process or require a large amount
of memory. Processing the whole workflow on a single machine may lead to a large latency for
this instance, and may even not be possible if the available storage capacity or memory of the
machine cannot cope with the workflow requirements. For these reasons, application workflows
are usually not handled using a pure data-parallelism approach.

Another approach consists in simultaneously taking advantage of both data and control
parallelism. In [15, 17], it is proved that in a large number of cases, when the application graph
is not too deep, we can compute an optimal schedule, that is a schedule which maximizes the
system throughput. This approach, however, asks for a lot of control as similar files produced by
different data sets must follow different similar files produced by different data sets must follow
different paths in the interconnection network. In this chapter, we focus on a simpler framework:
we aim at finding a single mapping of the application workflow onto the platform. This means
that all instances of a given task must be processed on the same machine. The corresponding
service has to be deployed on a single machine, and all instances are processed the same way.
Thus, the control of the Grid job is much simpler, and the number of needed resources is kept
low. Moreover, some applications require that all instances of any task are processed on the
same processor. For example, this is the case of some video processing applications like the
MPEG2 compression or medical applications dealing with high resolution pictures, when the
process of a frame depends on the following video frames.

4.2 Notation, hypotheses, and complexity

In Section 3.2, we presented most of used variables, except the communication model. Here
we complete this description, and we present the complexity of our problem.

4.2.1 Platform and application model

As said before, we denote by GP = (VP , EP) the undirected graph representing the platform.
The edges of EP represent the communication links between these processors. The maximum
bandwidth of the communication link Pq → Pr is denoted by bw q,r. Moreover, we suppose that
processor Pq has a maximum incoming bandwidth bw in

q and a maximum outgoing bandwidth
bwout

q . Figure 4.2(a) gives an example of such a platform graph. A path from processor Pq to
processor Pr, denoted Pq ; Pr, is a set of adjacent communication links going from Pq to Pr.

In this chapter, we use a bidirectional multiport model for communications: a processor can
perform several communications simultaneously. In other words, a processor can simultaneously
send data to multiple targets and receive data from multiple sources, as long as the bandwidth
limitation is exceeded neither on links, nor on incoming or outgoing ports. The computation
model is unrelated: a processor can be fast to process a given type of task, while being slow to
execute another type of task. We denote by wi,k the time required by processor Pi to process a
single instance of task Tk.

4.2.2 Allocations

Our definition of allocation given in Subsection 3.2.3 does not comprise the communication
scheme, since a file Fi,j may be transfered differently from σ(Ti) to σ(Tj) depending on the
routing policy enforced on the platform. We distinguish three possible policies:

4.2. NOTATION, HYPOTHESES, AND COMPLEXITY 59

Single path, fixed routing. The path for any transfer from Pq to Pr is fixed a priori. We do
not have any freedom on the routing. This scenario corresponds to the classical case where
we have no freedom on the routing between machines: we cannot change the routing tables
of routers.

Single path, free routing. We can choose the path from Pq to Pr, but a single route must
be used for all data originating from Pq and targeting Pr. This policy corresponds to
protocols allowing us to choose the route for any of the data transfer, and to reserve some
bandwidth on the chosen routes. Although current network protocols do not provide this
feature, bandwidth reservation, and more generally resource reservation in Grid network,
is the subject of a wide literature, and will probably be available in future computing
platforms [47].

Multiple paths. Data from Pq to Pr may be split along several routes taking different paths.
This corresponds to the uttermost flexible case where we can simultaneously reserve several
routes and bandwidth fractions for concurrent transfers.

The three routing policies allow us to model a wide range of realistic situations, current and
future. The techniques exposed in Section 4.3 enable us to deal with any of these models and
even with combinations of them.

In the case of single path policies, σ(Fi,j) is the set of the links constituting the path. In
the case of multiple paths, σ(Fi,j) is a weighted set of paths {(wα, Pa)}: for example σ(F7,8) =
{(0.1, P1 → P3), (0.9, P1 → P2 → P3)} means that 10% of the file F7,8 go directly from P1 to P3

and 90% are transfered through P2.
Figure 4.1 gives, for each routing policy, an example of allocation of the application graph

of Figure 4.2(b). The task mapping is always the same: σ(T1) = P1, σ(T2) = σ(T3) = P2,
σ(T4) = σ(T5) = P5 and σ(T6) = P6. In Figure 4.1(b), the path for any transfer is fixed; in
particular, all data from P2 targeting P5 must pass through P3. In Figure 4.1(c), we assume a
free routing policy: we can choose to route some files via P3 and some others via P4. Finally,
in Figure 4.1(d), we are allowed to use multiple paths to route a single file, which is done for
file F3,5.

4.2.3 Upper bound on the achievable throughput

We first derive a tight upper bound on the throughput of any schedule, as it was defined
in Section 3.3. We are only interested in very specific schedules, consisting of only one alloca-
tion. We now show how to compute an upper bound on the achievable throughput for a given
allocation. We later show that this bound is tight.

First, we consider the time spent by each resource on one instance of a given allocation σ.
In other words, we consider the time spent by each resource for processing a single copy of our
workflow under allocation σ.

– The computation time spent by a processor Pq for processing a single instance is: tcomp
q =∑

i,σ(Ti)=Pq

wi,q.

– The total amount of data carried by a communication link Pq → Pr for a single instance
is dq,r =

∑
(i,j),Pq→Pr∈σ(Fi,j)

datai,j for single-path policies, and dq,r =
∑
Fi,j

∑
(wa,Pa)∈σ(Fi,j)
Pq→Pr∈Pa

wa×

datai,j for the multiple-paths policy. This allows us to compute the time spent by each
link, and each network interface, on this instance:

60 CHAPTER 4. MONO-ALLOCATION SCHEDULES OF TASK GRAPHS

T2, T3

T1

T6

T4, T5P5

P2

P1

P4P3

P6

(a) Task allocation.

F3,5

F2,4

T1

T6

T4, T5

T2, T3

P1

P4P3

P6

P5

P2

(b) Single path,
fixed routing.

F3,5F2,4

T1

T6

T4, T5

T2, T3

P1

P4P3

P6

P5

P2

(c) Single path,
free routing.

1
2F3,5

F2,4
1
2F3,5

T1

T6

T4, T5

T2, T3

P4P3

P6

P5

P2

P1

(d) Multiple
paths.

Figure 4.1: Allocation examples for various routing policies.

4.2. NOTATION, HYPOTHESES, AND COMPLEXITY 61

– on link Pq → Pr: tq,r = dq,r/bw q,r;
– on Pq outgoing interface: tout

q =
∑

r dq,r/bwout
q ;

– on Pq incoming interface: tinq =
∑

r dr,q/bw in
q .

We can now compute the maximum time T spent by any resource for the processing of one

instance: T = max

{
max
Pq

{tcomp
q , tout

q , tinq }, max
Pq→Pr

tq,r

}
. This gives us an upper bound on the

achievable throughput: ρ ≤ ρmax = 1/T . Indeed, as there is at least one resource which spends
a time T to process its share of a single instance, the throughput cannot be greater than 1
instance per T units of time. We now show that this upper bound is achievable in practice, i.e.,
that there exists a schedule with throughput ρmax. In the following, we call “throughput of an
allocation” the optimal throughput ρmax of this allocation.

P2

P1

P3 P4

P5

P6

(a) Platform graph

T1

T2 T3

T4 T5

T6

(b) Application graph

T4, T5

T6

T1

T2, T3
F2,4

F3,5

(c) Allocation

4τ3τ2τ

P1→ P2

P2

P6

P5→ P6

P5

P3→ P5

P2→ P3 and

...

...

...

...

...

...

...

τ0

P1

time8τ7τ6τ5τ

T5T4

T6

T1

T2 T3

F2,4

F4,6

F3,5

F5,6

F1,2

F1,3

(d) Example of a periodic schedule

Figure 4.2: Example of periodic schedule. Only the first instance is represented with task and
file labels.

The upper bound is achievable. Here, we will only explain on an example how one can
build a periodic schedule achieving the throughput ρmax. Indeed, we are not interested here
in giving a formal definition of periodic schedules, nor to formally define and prove schedules
which achieve the desired throughput, as this goes far beyond the scope of this chapter. The
construction of such schedules, for applications modeled by DAGs, was introduced in [15], and
a fully comprehensive proof can be found in [17].

Figure 4.2 illustrates how to build a periodic schedule of period T for the workflow described
on Figure 4.2(b), on the platform of Figure 4.2(a), using the allocation of Figure 4.2(c). Once

62 CHAPTER 4. MONO-ALLOCATION SCHEDULES OF TASK GRAPHS

the schedule has reached its steady state, that is after 6T in the example, during each period,
each processor computes one instance of each task assigned to it. More precisely, in steady state,
during period k (k ≥ 6), that is during time-interval [kT ; (k + 1)T], the following operations
happens:

– P1 computes task T1 of instance k,
– P1 sends F1,2 and F1,3 of instance k − 1 to P2,
– P2 processes T2 and T3 of instance k − 2,
– P2 sends F2,4 and F3,5 of instance k − 3 to P5 (via P3),
– P4 processes tasks T4 and T5 of instance k − 4,
– P5 sends F4,6 and F5,6 of instance k − 5 to P6,
– P6 processes task T6 of instance k − 6.

One instance is thus completed after each period, achieving a throughput of 1/T .

4.2.4 NP-completeness of throughput optimization

We now formally define the decision problem associated to the problem of maximizing the
throughput.

Definition 4.1 (DAG-Single-Alloc). Given a directed acyclic application graph GA, a platform
graph GP , and a bound B, is there an allocation with throughput ρ ≥ B?

Theorem 4.1. DAG-Single-Alloc is NP-complete for all routing policies.

Proof. We first have to prove that the problem belongs to NP, that is that we can check in
polynomial time that the throughput of a given allocation is greater than or equal to B. Thanks
to the previous section, we know that this check can be made through the evaluation of a simple
formula; DAG-Single-Alloc is thus in NP.

To prove that DAG-Single-Alloc is NP-complete, we use a reduction from the Minimum
Multiprocessor Scheduling, known to be NP-complete [48]. Consider an instance I1 of Multi-
processor Scheduling, that is a set of n independent tasks Ti,1≤i≤n and a set of m processors
Pu,1≤u≤m, where task i takes time t(i, u) to be processed on processor Pu. The problem is to
find a schedule with total execution time less than a given bound T . We construct a very similar
instance of DAG-Single-Alloc:

– The application DAG is a simple fork, made of all tasks Ti plus a task T0, root of the fork:
for each 1 ≤ i ≤ n, there is an edge F0,i, with data0,i = 0.

– The platform consists of the same set of processors as I1, connected with a complete
network where all bandwidths are equal to 1. The time needed to process task Ti on
processor Pu is wi,u = t(i, u) for each 1 ≤ i ≤ n, and w0,u = 0.

Note that communications need not being taken into account during performance evaluation,
since all data sizes are null. Thus, this reduction applies to any routing policy. The throughput
of an allocation is directly related to the total execution time of the set of tasks: an allocation
has throughput ρ if and only if it completes all the tasks in time 1/ρ. Thus finding a schedule
with completion time less than T is equivalent to finding an allocation with throughput greater
than 1/T . �

4.3 Mixed linear program formulation for optimal allocations

In this section, we present a mixed linear program formulation that allows to find optimal
allocations with respect to the total throughput.

4.3. MIXED LINEAR PROGRAM FORMULATION FOR OPTIMAL ALLOCATIONS 63

4.3.1 Single path, fixed routing

In this section, we assume that the path to be used to transfer data from a processor Pq to a
processor Pr is determined in advance; we have thus no freedom on its choice. We then denote
by Pq ; Pr the set of edges of EP which are used by this path.

Our linear programming formulation makes use of both integer and rational variables. The
resulting optimization problem, although NP-complete, is solvable by specialized softwares (see
Section 4.5 about simulations). The integer variables can take 0 or 1 value. The only integer
variables are the following:

– y’s variables which characterize where each task is processed: ykq = 1 if and only if task
Tk is processed on processor Pq;

– x’s variables which characterize the mapping of file transfers: xk,lq,r = 1 if and only if file
Fk,l is transfered using path Pq ; Pr; note that we may well have xk,lq,q = 1 if processor Pq
executes both tasks Tk and Tl.

Obviously, these two sets of variables are related. In particular, for any allocation, xk,lq,r =
ykq × ylr. This redundancy allows us to write linear constraints.

Minimize T under the constraints
(4.1a) ∀Fk,l, ∀Pq ; Pr, xk,lq,r ∈ {0, 1}, ykq ∈ {0, 1}
(4.1b) ∀Tk,

∑
Pq
ykq = 1

(4.1c) ∀Fk,l,∀Pq ; Pr, xk,lq,r ≤ ykq
(4.1d) ∀Tl, ∀Fk,l,∀Pr, ykr +

∑
Pq;Pr

xk,lq,r ≥ ylr
(4.1e) ∀Pq,

∑
Tk
ykqwq,k ≤ T

(4.1f) ∀Pq → Pr, dq,r =
∑

Ps;Pt with
Pq→Pr∈Ps;Pt

∑
Fk,l

xk,ls,tdatak,l

(4.1g) ∀Pq → Pr,
dq,r
bwq,r

≤ T

(4.1h) ∀Pq
∑

Pq→Pr∈EP

dq,r
bwout

q
≤ T

(4.1i) ∀Pr
∑

Pq→Pr∈EP

dq,r
bw in

q
≤ T

(4.1)

Linear Program (4.1) expresses the optimization problem for the fixed-routing policy. The
objective function is to minimize the maximum time T spent by all resources, in order to
maximize the throughput 1/T . The intuition behind the linear program is the following:

– Constraints (4.1a) define the domain of each variable: x, y lie in {0, 1}, while T is rational.
– Constraint (4.1b) ensures that each task is processed exactly once.
– Constraint (4.1c) asserts that a processor can send the output file of a task only if it

processes the corresponding task.
– Constraint (4.1d) asserts that the processor computing a task holds all necessary input

data: for each predecessor task, it either received the data from that task or computed it.
– Constraint (4.1e) ensures that the computing time of a processor is no larger than T .
– In Constraint (4.1f), we compute the amount of data carried by a given link, and the fol-

lowing constraints ((4.1g),(4.1h),(4.1i)) ensure that the time spent on each link or interface
is not larger than T , with a formulation similar to that of Section 4.2.3.

We denote ρ∗ = 1/Topt, where Topt is the value of T in any optimal solution of Linear
Program (4.1). The following theorem states that ρ∗ is the maximum achievable throughput.

64 CHAPTER 4. MONO-ALLOCATION SCHEDULES OF TASK GRAPHS

Theorem 4.2. An optimal solution of Linear Program (4.1) describes an allocation with maxi-
mal throughput for the fixed routing policy.

Proof. We first prove that for any allocation of throughput ρ, described by x’s and y’s variables,
(x, y, T = 1/ρ) satisfies the constraints of the linear program.

– All tasks of the workflow are processed exactly once, thus Constraint (4.1b) is verified.
– In any allocation, xk,lq,r = ykq × ylr, thus Constraint (4.1c) is verified.
– If ylr = 1, that is if Pr processes Tl, then Pr must own all files Fk,l. It can either have

it because it also processed Tk (in this case ykr = 1) or because it received it from some
processor Pq (and then xk,lq,r = 1). In both cases, Constraint (4.1d) is satisfied.

– As the allocation has throughput ρ, it means that the occupation time of each processor,
each link, and each network interface is at most 1/ρ. This is precisely what is stated by
Constraints (4.1e), (4.1g), (4.1h) and (4.1i). Thus, these constraints are satisfied.

As all allocations satisfy the constraint of the linear program, and ρ∗ is the maximal value of
the throughput under these constraints, then all allocations have a throughput smaller than, or
equal to, ρ∗.

We now prove that any solution of the linear program represents an allocation. We have to
verify that all tasks are performed, all input data needed to process a task are correctly sent to
the corresponding processor, and that the allocation has the expected throughput 1/T .

– All tasks are processed exactly once due to constraint (4.1b).
– Thanks to Constraint (4.1c), a processor is allowed to send a file Fk,l only if it processed
Tk.

– Thanks to Constraint (4.1d), a task Tl with predecessor Tk is processed on Pr only if Pr
either processed Tk, or received Fk,l from some processor Pq.

– Thanks to Constraints (4.1e), (4.1g), (4.1h) and (4.1i), we know that the maximum uti-
lization time of any resource (processor, link or network interface) is at least equal to T ,
the corresponding allocation has a throughput at most 1/T .

Thus, any solution of the linear program describes a valid allocation. In particular, there is an
allocation with throughput ρ∗. �

4.3.2 Single path, free routing

We now move to the free routing setting. The transfer of a given file between two processors
can take any path between these processors in the platform graph. We introduce a new set of
variables to take this into account. For any file Fk,l and link Pi → Pj , f

k,l
i,j is an integer value,

with value 0 or 1: fk,li,j = 1 if and only if the transfer of file Fk,l between the processor processing
Tk to the one processing Tl takes the link Pi → Pj . Using these new variables, we transform the
previous linear program to take into account the free routing policy. The new program, Linear
Program (4.2) has exactly the same constraints as Linear Program (4.1) except for the following:

1. the new variables are introduced (Constraint (4.2a));

2. the computation of the amount of data in Constraint (4.1f) is modified into Constraint (4.2f)
to take into account the new definition of the routes;

3. the new set of constraints (4.2j) ensures that a flow of value 1 is defined by the variables
fk,l from the processor executing Tk to the one executing Tk.

4.3. MIXED LINEAR PROGRAM FORMULATION FOR OPTIMAL ALLOCATIONS 65



Minimize T under the constraints

(4.2a)
∀Fk,l,∀Pq ; Pr,

xk,lq,r ∈ {0, 1}, ykq ∈ {0, 1}, f
k,l
i,j ∈ {0, 1}

(4.2f) ∀Pq → Pr, dq,r =
∑

Fk,l
fk,li,j datak,l

(4.2j)
∀Pq, ∀Fk,l,

∑
Pq→Pr

fk,lq,r −
∑

Pr′→Pq
fk,lr′,q

=
∑

Pt
xk,lq,t −

∑
Ps
xk,ls,q

and (4.1b), (4.1c), (4.1d), (4.1e), (4.1g), (4.1h), (4.1i)

(4.2)

In the following lemma, we clarify the role of the f variables.

Lemma 4.1. Given a file Fk,l, the following two properties are equivalent

(i) ∀Pq,
∑

Pq→Pr

fk,lq,r −
∑

Pr′→Pq

fk,lr′,q =


1 if Pq = Pprod

−1 if Pq = Pcons

0 otherwise

(ii) the set of links Pq → Pr such that fk,lq,r = 1 defines a route from Pprod to Pcons.

Proof. The result is straightforward since Property (i) is a simple conservation law of f quanti-
ties. Note that this route may include cycles. These cycles do not change the fact that the links
can be used to ship the files from Pprod to Pcons, but the time needed for the transportation
is artificially increased. That is why in our experiments these cycles are sought and deleted to
keep routes as short as possible.

�

The following theorem states that the linear program computes an allocation with optimal
throughput: again, we denote ρ∗ = 1/Topt, where Topt is the value of T in any optimal solution
of this linear program.

Theorem 4.3. An optimal solution of Linear Program (4.2) describes an allocation with optimal
throughput for the free routing policy.

Proof. Similarly to the proof of Theorem 4.2, we first consider an allocation, define the x, y and
f variables corresponding to this allocation, and prove that they satisfy the constraints of the
linear program.

– Since fk,li,j describes if transfer Fk,l uses link Pi → Pj , all constraints except (4.2j) are
satisfied by the same justifications as in Theorem 4.2.

– In any allocation, file Fk,l must be routed from the processor executing Tk to the processor
executing Tl (provided that these tasks are excepted by different processors). Thus, f
define a route between those two processors. Then, we note that

∑
Pt

xk,lq,t −
∑
Ps

xk,ls,q =


1 if Pq executes Tk and not Tl
−1 if Pq executes Tl and not Tk
0 otherwise

If Tk and Tk are executes on the same processor, all corresponding f and x variables are
equal to 0. Thus, thanks to Lemma 4.1, all Constraints (4.2j) are verified.

66 CHAPTER 4. MONO-ALLOCATION SCHEDULES OF TASK GRAPHS

We now prove that any solution of Linear Program (4.2) defines a valid allocation with
throughput ρ under the Free routing policy.

– As in the proof of Theorem 4.2, we can prove that x and y variables define an allocation
with throughput ρ.

– As above, we note that for a given file Fk,l

∑
Pt

xk,lq,t −
∑
Ps

xk,ls,q =


1 if Pq executes Tk and not Tl
−1 if Pq executes Tl and not Tk
0 otherwise

If tasks Tk and Tl are not executed on the same processors, we know thanks to Lemma 4.1
that the f variables define a route from the processor executing Tk to the one executing
Tl.

Thus, any solution of the linear program describes a valid allocation. In particular, there is an
allocation with throughput ρ∗. �

4.3.3 Multiple paths

Finally, we present our linear programming formulation for the most flexible case, the
multiple-paths routing: any transfer may now be split into several routes in order to increase
its throughput. The approach is extremely similar to the one used for the single route, free
routing policy: we use the same set of f variables to define a flow from processors producing
files to processors consuming them. The only difference is that we no longer restrict f to integer
values: by using rational variables in [0; 1], we allow each flow to use several concurrent routes.
Theorem 4.4 expresses the optimality of the allocation found by the linear program. Its proof
is very similar to the proof of Theorem 4.3.


Minimize T under the constraints

(4.3a)
∀Fk,l, ∀Pq ; Pr,

xk,lq,r ∈ {0, 1}, ykq ∈ {0, 1}, f
k,l
i,j ∈ [0; 1]

and (4.1b), (4.1c), (4.1d), (4.1e), (4.2f), (4.1g), (4.1h), (4.1i), (4.2j)

(4.3)

Theorem 4.4. An optimal solution of Linear Program (4.3) describes an allocation with optimal
throughput for the multiple paths policy.

Proof. Consider the subgraph of the platform graph comprising only the links Pq → Pr such that
fk,lq,r 6= 0. We construct the set of weighted routes by the following iterative process. We extract
a route r from Pprod to Pcons from this graph (such a route exists thanks to the conservation
law). We then compute the minimum weight w of the links in route r. Route r is added with
weight w to the set of weighted routes, and the subgraph is pruned as followed: w is subtracted
from the value of fk,l of all links included in route r, and links whose fk,l value becomes null are
removed from the subgraph. We can prove that Property (i) still holds with value 1−w instead
of 1. We continue the process until there is no more link in the subgraph. �

4.4. HEURISTICS 67

4.4 Heuristics

Due to the exponential complexity of the algorithms used to solve mixed linear programs,
using the formulation given in the previous section is unrealistic for large problems. One could
think to use the algorithm described in [15] for finding the optimal solution using several allo-
cations, selecting only the most significant one. However, this method leads to very large linear
programs: the number of variables may exceed 500, 000 on problems with around 20 tasks and
20 processors, leading to an excessive memory consumption. Thus, we present in this section
several faster heuristics, which are more adapted to large problems.

4.4.1 Greedy mapping policies

In this section, we propose greedy strategies to find an allocation of task graphs on processors.
Greedy algorithms are fast, easy to implement, and often effective to find reasonable solutions.

Simple greedy. This heuristic is described by Algorithm 2. We first compute the weight of
a task Tk as its maximum execution time over all processors. Then we consider the task with
maximum weight, and allocate it to a processor so that the updated computation time of the
processor is minimum. As we focus on steady state, we do not consider dependencies and only
try to minimize the processor occupation time. (Dependencies are taken care of when building
the schedule from the steady-state characterization [19].)

Algorithm 2: Simple_greedy(GP , GA)

foreach Tk do weight [Tk]← maxPi wi,k;
foreach Pi do processing_time[Pi]← 0;
foreach Tk in decreasing order of weight do

Find Pi such that processing_time[Pi] + wi,k is minimized;
processing_time[Pi]← processing_time[Pi] + wi,k;
mapping [Tk]← Pi;

return mapping ;

Refined greedy. The previous heuristic attempts to balance the computing workload on proces-
sors, but do not take communications into account. We try to refine the search of an allocation
in this heuristic, inspired from the classical HEFT algorithm for task graph scheduling [82].
Again, dependencies are not taken into account since we focus on steady state (see the remark
on Simple_Greedy). Algorithm 3 describes this heuristic.

4.4.2 Rounding of the linear program

Since our problem is expressed as a mixed linear program, a natural way to find a solution is
to relax the linear program to solve it over rational numbers, and then to round-off the rational
solution into an integer one. Several different approaches exist for the rounding-off of rational
solutions. We present two of them: a greedy rounding and a randomized one. Both variants are
described in Algorithm 4.

In the first variant (RLP_max), at each step, we search among the yki ’s (which have not
yet been set) for the one with the largest value. This yki is then set to 1 in the Linear Program.
After n steps, each task has been mapped to a processor, which defines a whole allocation.

68 CHAPTER 4. MONO-ALLOCATION SCHEDULES OF TASK GRAPHS

Algorithm 3: Refined_greedy(GP , GA)

avg_comp_time[Tk]← average computation time of Tk over all processors;
avg_comm_time[Fk,l]← average communication time of Fk,l over all links;
foreach source Tk of the task graph do

weight [Tk]← 0;
foreach Tl in topological order do

weight [Tl]← maxFk,l
(weight [Tk] + avg_comm_time[Fk,l]) + avg_comp_time[Tl];

foreach Tk in decreasing order of weight do
Find Pi such that the maximum of occupation time over all resources is minimized;
mapping [Tk]← Pi;
Update the occupation time of all involved resources (Pi and communication links);

return mapping ;

Algorithm 4: RLP(GP , GA)

Constraints ← initial set of constraints, given in Linear Program (4.1);
for m = 1 to n do

Solve over the rationals the linear program associated to Constraints;
if using RLP_max then

Find the maximum of the yki ’s over all Tk’s and Pi’s, such that yki has not yet
been set;

else if using RLP_rand then
Randomly choose some task Tk which has not yet been mapped;
Randomly choose a processor Pi, using probability ykj for Pj ;

Constraints ← Constraints ∪ {yki = 1};

In the second variant (RLP_rand), we make use of a randomized rounding, which is known
to sometimes lead to very efficient solutions [36]. At each step, we randomly select a task that
has not yet been mapped. Then we randomly choose the processor that will process this task
using a probability distribution defined by the yki : each processor Pi has probability yki to be
chosen for the processing.

4.4.3 An involved strategy to delegate computations

In this section, we present an iterative strategy to build an efficient allocation. Contrarily
to the previous heuristics, this algorithm is not based on the linear program formulation. This
method, called Delegate, consists in iteratively refining an allocation by moving some work
from a highly loaded processor to a less loaded one. In the beginning, all tasks are mapped to
the source processor Psource. Then, we select one task and some of its neighbors and delegate
them to another processor. This refinement procedure is repeated as long as the throughput can
be improved, as described in Algorithm 5.

At each step, we consider a candidate move (Tk,Pi), i.e., delegating task Tk to processor
Pi (assuming that Tk is not already mapped to Pi). Delegating a single task Tk to another
processor may not be interesting because of communications involving this task. Thus, we look
for a cluster of tasks containing Tk that it would be beneficial to delegate to Pi.

We define a neighborhood of Tk as 1) a connected set of tasks, 2) which contains Tk, and

4.4. HEURISTICS 69

Algorithm 5: DELEGATE(GP , GA, depth)
foreach Tk do current_mapping [Tk]← Psource;
current_value ← evaluate(current_mapping);
continue ← TRUE;
while continue do

best_value ← 0;
foreach Tk do

foreach Pi such that current_mapping [Tk] 6= Pi do
forall connected neighborhood S of Tk do

mapping ← move (current_mapping , S, Pi);
mapping ← refine_move (mapping , S, Pi);
value ← evaluate(mapping);
if (value > best_value) then

(best_value,best_mapping) ← (value,mapping);

if (best_value > current_value) then
(current_value,current_mapping) ← (best_value,best_mapping);
continue ← TRUE;

else continue ← FALSE;
return current_mapping ;

3) which only contains tasks which are at most at a distance depth from Tk in the task graph.
depth is a parameter of the algorithm. In practice we set the value of depth to 2. We will see in
Section 4.5 that this value is large enough for our purpose.

We test all neighborhoods, trying in turn to map each of them on processor Pi. This is done
through the move function. We then select the best move among all neighborhoods of all tasks.
If this best move induces an improvement in performance, we perform the move. Otherwise, we
end the overall process.

Evaluation metric. This algorithm strongly depends on the evaluation function, which is used
both to identify the best move, and to decide whether the overall performance is improved. We
have several possible choices for this evaluation function:

– Obviously, we could use the throughput of an allocation as a measure of its quality. We
can compute the throughput as described in Section 4.2.3: the total throughput is the
inverse of the maximum occupation time of any resource. It can similarly be computed
with

ρ = min

{
min
Pq

{
1

tcomp
q

,
1

tout
q

,
1

tinq

}
, min
Pq→Pr

1

tq,r

}
.

Using the global throughput allows us to ensure that the overall performance is improved
at each step, but may lead to sub-optimal scenarios: when two processors are evenly
loaded, we can only decrease the occupation time of a single processor at each algorithm
step. Two successive moves are thus required for the overall throughput to decrease. This
cannot be done with this evaluation function the way we designed Algorithm 5.

– To overcome the issue of using the throughput metric, we rather use a different way to
compare two allocations, thanks to the lexicographical order. Instead of computing a single
value for each allocation, we sort all resource occupation times by decreasing order, and

70 CHAPTER 4. MONO-ALLOCATION SCHEDULES OF TASK GRAPHS

use the lexicographical order to compare two allocations. The underlying idea is to first
minimize the occupation of the most used resource —the one defining the throughput—
and then the occupation of the other resources.

Further improvements. Algorithm 5 can be improved in several ways:
– To keep computation time low, we have to set parameters depth to small values. However,

this prevents large subset of tasks to be simultaneously delegated to a same processor.
Thus, we introduce a function, refine_move, which enlarges the subset of tasks to del-
egate to a processor. It greedily considers in an arbitrary order any neighbor task of the
tasks currently in the subset S, and add this task to S if this leads to a better allocation.

– The search for an allocation continues until Algorithm 5 cannot improve the allocation any
further. When using the lexicographical order, however, the number of iterations might
be large before no more local improvement is possible. To keep a low execution time, we
could bound the maximum number of iterations.

In the following experiments, we always use the refine_move improvement, but never bound
the number of iterations.

4.4.4 A neighborhood-centric strategy

In this section, we expose a simpler strategy called Neighborhood, based on the evaluation
of the mapping of a task Tk and its neighbors, i.e., any task Tl such the file Fk,l (or the Fl,k)
exists. For any task, we initially evaluate the cost of the mapping of it and its neighborhood
on an idle platform to define its priority: the higher this cost, the higher its priority. For any
pair (Tk, Pi), we consider all the neighbors of Tk in an arbitrary order, temporarily mapping
them on the processor ensuring the best partial mapping. To compare two partial mappings,
we first compare the occupation times of the most used resources, or those of the second most
used resources in case of tie, and so on. The priority of Tk is then defined as the average of the
inverse of the throughputs of the partial mappings over all processors Pi.

After this evaluation, we consider all tasks in the decreasing order of their priority. At each
step, we consider a candidate processor Pi for the task Tk. Given this processor, we consider
the neighbors of Tk in an arbitrary order, temporarily mapping them on the processor which
minimizes the occupation time (the exact comparison of two partial mappings is done as in the
previous paragraph). We finally map Tk on the processor, which allows the best partial mapping.
The complete procedure is described in Algorithm 6.

4.5 Performance evaluation

In this section, we present the simulations performed to study the performance of our strate-
gies. Simulations allow us to test different heuristics on the very same scenarios, and also to
consider far more scenarios than real experiments would. We can even test scenarios that would
be quite hard to run real experiments with. This is especially true for the flexible or multiple-
path routing policies. Our simulations consist here in computing the throughput obtained by a
given set of heuristics on a given platform, for some application graphs. We also study another
metric: the latency of the heuristics, that is the time between the beginning and the end of the
processing of one input data set. A large latency may lead to a bad quality of service in the case
of an interactive workflow (e.g., in image processing), and to a huge amount of temporary files.
This is why we intend to keep the latency low for all input data sets.

4.5. PERFORMANCE EVALUATION 71

Algorithm 6: Neighborhood(GP , GA)
foreach Tk do

foreach Pi do
foreach Pi do time[Pi]← 0;
foreach Pi → Pj do time[Pi → Pj]← 0;
time[Pi]← wi,k;
foreach neighbor Tl of Tk do

foreach Pj do
timej ← time;
timej [Pj]← timej [Pj] + wj,l ;
add to timej the cost of the transfer of Fk,l (or Fl,k) from Pi to Pj ;

time ← minPj (timej) ;
time ′i ← time ;

priority [Tk]← averagePi
(time ′i) ;

foreach Pi do time[Pi]← 0;
foreach Pi → Pj do time[Pi → Pj]← 0;
foreach Tk in decreasing order of priority do

foreach Pi do
timei ← time ;
timei[Pi]← timei[Pi] + wi,k ;
foreach neighbor Tl of Tk do

if mapping [Tl] is undefined then
foreach Pj do

time ′j ← timei;
time ′j [Pj]← time ′j [Pj] + wj,l ;
add to time ′j the cost of the transfer of Fk,l (or Fl,k) from Pi to Pj ;

timei ← minPj (time ′j) ;

else
add to timei the cost of the transfer of Fk,l (or Fl,k) from Pi to Pmapping[Tl] ;

time ← minPi (timei) ;
mapping [Tk]← argminPi

(timei);
return mapping ;

4.5.1 Reference heuristics

In order to assess the quality and usefulness of our strategies, we compare them against
three classical task-graph scheduling heuristics. These heuristics (HEFT, Data-Parallel and
Clustering) are dynamic strategies: they allocate resources to tasks in the order of their
arrival.

HEFT. This heuristic builds up a schedule by applying the classical Heterogeneous Earliest
Finish Time [82] strategy to a collection of a given number (usually 1, 000) of instances of the
original task graph.

Pure data-parallelism. We also compare our approach to a pure data-parallelism strategy:
in this case, all tasks of a given instance are processed sequentially on a given processor, as

72 CHAPTER 4. MONO-ALLOCATION SCHEDULES OF TASK GRAPHS

detailed in the introduction.

Clustering. Another reference heuristic is the clustering method presented by Sarkar in [74].
This method gathers tasks into clusters before dispatching these clusters on the available pro-
cessors, trying to minimize the overall communication cost.

Multi-allocations upper bound. In addition to the previous classical heuristics, we also
study the performance when mixing control- and data-parallelism. This approach uses con-
current allocations to reach the optimal throughput of the platform, as is explained in detail
in [17]. Rather than using the complex algorithm described in that chapter for task graphs with
bounded dependencies, we use an upper bound on the throughput based on this study, which
consists of a simple linear program close to the one described in this chapter, and solved over
the rational numbers. This bound is tight when the task graph is an in- or out-tree, but may
not take all dependencies into account otherwise. This upper bound, however, has proved to be
a very good comparison basis in the following, and is used as a reference to assess the quality
of other heuristics. No latency can be derived from this bound on the throughput, since no real
schedule is constructed.

4.5.2 Simulation settings

All algorithms are simulated using the SimGrid framework [31]. The number N of instances
to process is set to a large number (between 100 and 1000). For all steady-state strategies (MLP,
Simple_Greedy, Refined_Greedy, RLP_max, RLP_rand, and Delegate), we run the
corresponding algorithm to build the allocation; then we construct the schedule corresponding
to the steady-state allocation for the N instances. Then, each schedule is executed in the Sim-
Grid simulator [31]. We compute the experimental throughput as the ratio between the total
completion time and the number N of instances. For steady-state heuristics, we also compute a
theoretical throughput, based on the study of Section 4.2.3. The theoretical and experimental
throughputs may differ due to the slight differences between our multiport model and the Sim-
Grid network model. Nevertheless, they are quite close in our experiments. Table 4.1 gives the
average error (and its standard deviation) between theoretical and experimental throughputs
for each algorithm. The more communication-aware the heuristics, the smaller the error.

Algorithm Average error Standard deviation
MLP 3% 3%

Simple_Greedy 8% 11%
Refined_Greedy 5% 6%

RLP_max 8% 12%
RLP_rand 16% 28%
Delegate 2% 2%

Neighborhood 6% 12%

Table 4.1: Average error (and its standard deviation) between theoretical and experimental
throughputs for each algorithm.

We perform two sets of simulations. First, we compare all algorithms on rather small prob-
lems (up to 12 tasks in the task graphs); we have 135 platform/application scenarios in this set.
Then, we compare the heuristics on larger simulation settings, with task graphs including up to

4.5. PERFORMANCE EVALUATION 73

47 tasks; this set comprises 445 scenarios. We exclude the MLP algorithm from the latter set
of problems because of its prohibitive running time on the larger task graphs (several days).

Platforms. We use several platforms representing existing computing Grids. The descriptions
of the platforms were obtained through the SimGrid simulator repository [31]:

– DAS-3, the Dutch Grid infrastructure,
– Egee, a large-scale European multi-disciplinary Grid infrastructure, gathering more than

68,000 CPUs,
– Grid5000, a French research Grid with targets 5000 processors,
– GridPP, the UK Grid infrastructure for particle physics.
Most of the time, users do not have access to a whole Grid but to a limited subset of a Grid,

usually through a reservation. To simulate this behavior, a subset of the available processors is
first randomly selected for each platform/application scenario, and then used by all heuristics.
It is composed of around 10 processors for the small problems, and between 40 and 70 processors
for larger problems. To evaluate our fixed-routing strategies, we pre-compute a shortest-path
route between any pair of processors, which is used as the compulsory route.

Applications. Several workflows are used to assess the quality of our strategies, with a number
of tasks between 8 and 12, and up to 47 tasks otherwise:

– pipeAlign [70], a protein family analysis tool,
– several random task graphs generated by the TGFF generator [40],
– several random task graphs generated by the DagGen generator [80].
In order to evaluate the impact of communications on the quality of the result, we artifi-

cially modify the applications’ communication-to-computation ratios (CCR) by multiplying the
overall volume of communications by a constant factor. We use the CCR as the basis for our
comparisons. There are many possible ways to define this ratio. We chose to define an average
computation time tcomp by dividing the sum of all computation volumes by the average com-
putational power of the platform. We similarly defined an average communication time tcom by
dividing the sum of all communication volumes by the average bandwidth in the platform. We
then define the CCR as the ratio tcom/tcomp.

Finally, we impose the first and last tasks of each task graph to be processed on the first
processor Psource. Psource is then the processor used to communicate with the outside world: it
receives the input data sets and sends back the results. These first and last tasks have a size 0
and correspond to the storage of input and output data. Our application settings includes both
related and unrelated applications, as discussed in Section 4.2.1, but we do not distinguish them
as they lead to comparable results.

4.5.3 Results

Study on small task graphs

In this set of experiments, we include all heuristics and the MLP algorithm which computes
the optimal allocation. As different scenarios may lead to very different throughputs, we nor-
malize all results so that the optimal single-allocation algorithm MLP has throughput one. An
interesting question we want to answer is whether restricting to a single allocation limits the
achievable throughput, compared to a strategy like HEFT. Top of Figure 4.3 shows that the
optimal single-allocation strategy MLP is better than HEFT as soon as communications are

74 CHAPTER 4. MONO-ALLOCATION SCHEDULES OF TASK GRAPHS

not negligible, that is when the CCR is greater than 0.02, and better than Data-Parallel
when the CCR is greater than 0.04. When the communication-to-computation ratio exceeds
0.05, HEFT and Data-Parallel do not exceed 70% of the optimal throughput of a single al-
location. This both justifies our claim that static scheduling techniques can outperform classical
schedulers, and motivates the search for single-allocation schedules. When the communication-
to-computation ratio is very small (smaller than 0.01), communications are negligible and the
best solution may be to execute a different instance of the task graph on each processor (except
for peculiar applications whose tasks have strong unrelated characteristics). This explains the
performance of HEFT for very low values of the CCR: it is able to use more resources. On the
other hand, when the CCR is very high (larger than one), sometimes communications are so
expensive that all tasks must be mapped on the source processor Psource. All these heuristics
(Data-Parallel, Delegate and HEFT) that are able to detect this then deliver the optimal
throughput.

In the second diagram of Figure 4.3 and in the first one of Figure 4.4, we compare the optimal
solution using a single allocation (MLP) and the Delegate strategy to an upper bound of the
throughput reachable using many allocations. On average, this upper bound is 40% better than
the optimal mono-allocation solution, and this difference quickly tends to zero when the CCR
increases. Thus, using a single allocation is often sufficient to reach a good throughput.

In the other diagrams of Figures 4.3 and 4.4, we compare the optimal allocation strategy
MLP to the allocation-building heuristics described in Section 4.4. The Delegate heuristic al-
ways achieves the best throughput among the steady-state heuristics, except few cases dominated
by Neighborhood. Furthermore, its performance is very close to the optimal performance de-
fined by the mixed linear program (MLP). We also notice that strategies based on the rounding-
off of relaxed linear programs are not significantly more efficient than our greedy strategies,
despite their higher complexity. Neighborhood sometimes returns very high throughputs, but
on average Delegate returns by far higher throughputs.

The attentive reader will notice that, sometimes, the Delegate heuristic builds an allocation
with a higher throughput than the optimal allocation given by MLP. This apparent paradox
does not contradict the optimality of MLP. Indeed, MLP gives an allocation with optimal
theoretical throughput, and we have seen that the experimental throughput may slightly differ
from the theoretical throughput. This is why Delegate appears sometimes to be “better than
the optimal”.

Study on larger task graphs

Figure 4.5 shows a comparison between some steady-state heuristics (Refined_Greedy
and Delegate) and the HEFT strategy on larger task graphs. Due to the high running times
of the RLP_max and RLP_rand heuristics, we only ran them on a subset of the larger task
graphs on which they happened to perform poorly. Therefore, we do not report here on their
performance.

As we cannot compute the optimal single-allocation throughput anymore, we normalize all
results so that Delegate gives a throughput of one. Note that the normalized throughput
is exactly the inverse of the normalized makespan, as we defined the throughput as the ratio
between the number of task graph instances and the makespan.

Greedy heuristics (Simple_Greedy and Refined_Greedy) and Clustering perform
similarly. Similarly to the small task graphs case, as soon as communications matter, Delegate
provides the best results, while HEFT performs similarly to greedy strategies. However, when

4.6. CONCLUSION AND PERSPECTIVES 75

communications are almost negligible, greedy strategies and HEFT outperform Delegate. In
other words, Delegate is the best heuristic in the complex cases, that is when communications
do not impose trivial solutions (no parallelism when communications are too large, one task graph
per processor when there are no communications). On average, Delegate achieves makespans
2.35 times shorter than those of HEFT, and 1.76 shorter than those of Data-Parallel. On
average, the upper bound is 15% larger than the throughput obtained by Delegate, showing
that using a single allocation is acceptable to reach good throughputs. Neighborhood offers
worse results than Delegate, being on average 75% slower than Delegate. However, its
results are mainly unpredictable, since they can be very good, being even better than Delegate,
or very bad.

Running times

We also study the running times of the different heuristics. The CPLEX software [38] allows
us to solve mixed linear programs in about one minute for the small settings. However, for
task graphs larger than about 20 tasks, the running time is often more than a full day. Both
RLP_max and RLP_rand needs to solve many linear programs (over the rationals). Since
these linear programs are quite big, the total running time of these heuristics often reach 10
minutes for the large settings. The greedy heuristics Simple_Greedy and Refined_Greedy
are very fast (less than one second), whereas Delegate computes an allocation in about one
half of the time needed for HEFT to compute its schedule on 1000 instances.

4.6 Conclusion and perspectives

In this chapter, we have studied the scheduling of a collection of task graphs on a het-
erogeneous platform. Rather than attempting the classical makespan minimization, we have
taken advantage of the regularity of our problem to optimize the system throughput by ap-
plying steady-state techniques. We have presented a mixed linear programming approach to
compute the optimal allocation, and several heuristic algorithms to easily build solutions. We
have performed extensive simulations to compare the performance of our heuristics to a classical
scheduler, HEFT. Simulation results show the benefit of our approach as soon as communica-
tion times are not negligible. Our heuristic of choice, Delegate, almost always gives the best
makespan. On average, Delegate achieves makespans which are twice shorter than HEFT’s
ones, in our simulation settings, while having a lower running time.

76 CHAPTER 4. MONO-ALLOCATION SCHEDULES OF TASK GRAPHS

0.04

N
or
m
al
iz
ed

th
ro
ug

pu
t

0.01 0.02

1

0.8

0.6

0.4

0.2

log(CCR)
104210.40.20.1

1.2

Delegate
HEFT
Data-parallel

0.01

N
or
m
al
iz
ed

th
ro
ug

pu
t

log(CCR)

2.5

2

1.5

1

0.5

104210.40.20.10.040.02

Upper bound
Delegate

N
or
m
al
iz
ed

th
ro
ug

pu
t

0.01 0.02 0.04 0.1 0.2 0.4 1 2 4 10
log(CCR)

0

0.2

0.4

0.6

0.8

1

1.2

Refined_Greedy
Simple_Greedy
Delegate
Clustering

0.01 0.02 0.04 0.1 0.2 0.4 1 2 4 10

log(CCR)

0

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

th
ro
ug

pu
t

RLP_RAND
RLP_MAX
Neighborhood
Delegate

Figure 4.3: Performance on the small task graphs. Results are normalized such that MLP has
throughput one.

4.6. CONCLUSION AND PERSPECTIVES 77

0.04

N
or
m
al
iz
ed

th
ro
ug

pu
t

0.01 0.02

1

0.8

0.6

0.4

0.2

log(CCR)

104210.40.20.1

1.2

Delegate
HEFT
Data-parallel

N
or
m
al
iz
ed

th
ro
ug

pu
t

0.01 0.02 0.04 0.1 0.2 0.4 1 2 4 10

log(CCR)

0

0.2

0.4

0.6

0.8

1

1.2

Refined_Greedy
Simple_Greedy
Delegate
Clustering

0.01 0.02 0.04 0.1 0.2 0.4 1 2 4 10

log(CCR)

0

0.2

0.4

0.6

0.8

1

1.2

N
or
m
al
iz
ed

th
ro
ug

pu
t

RLP_RAND
RLP_MAX
Neighborhood
Delegate

Figure 4.4: Performance on the small task graphs. Results are normalized such that Delegate
has throughput one.

78 CHAPTER 4. MONO-ALLOCATION SCHEDULES OF TASK GRAPHS

0.04

1.6

0.02

1.4

1.2

N
or
m
al
iz
ed

th
ro
ug

pu
t

1

0.8

0.6

0.4

0.2

0

log(CCR)

104210.40.20.10.01

Neighborhood
Delegate
HEFT
Data-parallel

N
or
m
al
iz
ed

th
ro
ug

pu
t

2

1.5

1

log(CCR)
104210.40.20.10.040.020.01

Upper bound
Delegate

0.01 0.02 0.04 0.1 0.2 0.4 1 2 4 10
log(CCR)

0

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

th
ro
ug

pu
t

Refined_Greedy
Simple_Greedy
Clustering
Delegate

Figure 4.5: Performance on the larger task graphs. Results are normalized such that Delegate
has throughput one.

Chapter 5

Steady-state scheduling of dynamic
bag-of-tasks applications

5.1 Introduction

In this chapter, we study a rather classical parallel scheduling problem: a set of independent
tasks and a simple master–worker platform, i.e., a main processor, which initially owns all the
tasks and redistributes them to a pool of secondary processors, or workers, which process the
tasks. We aim at the average number of tasks processed by the platform per time unit. This
kind of application, commonly called a bag of tasks, is an accurate model for numerous large-
scale applications. It typically applies to problems processed through the world-wide BOINC
framework [7] inspired by SETI@home [62, 8], or the similar Folding@home [63] project.

This simple but successful model has been studied for a long time and is now well-known.
However, considering that all tasks have identical characteristics is a strong assumption, which
is violated in many cases; for example, this is the case of projects deployed through the BOINC
framework. Furthermore, most frameworks can simultaneously process multiple applications
that are very different in nature: files to be processed, images to be analyzed, matrices to be
inverted or multiplied, etc. Thus, a better model consists in using several types of tasks or
several applications, given to the master and redistributed to the workers. Even if two tasks of
the same type can have different characteristics, they should remain rather similar, especially
their communication-to-computation ratio (CCR), while two tasks of different types may have
completely different characteristics: a number to be factorized [37] requires a very small amount
of data but a lot of computation, while an image to be analyzed may have a high CCR.

This model leads to a new challenge, since the scheduler needs to choose which application is
processed by which worker. For example, tasks with a small amount of data but requiring a lot
of computations should be delivered to workers with a poor bandwidth—like clients connected to
the internet through a RTC connexion—while tasks with a large amount of data but a smaller
amount of computation are well-suited to many computers linked by a high-speed enterprise
network.

Currently, many bag-of-tasks applications use simple policies like an On-Demand dynamic
algorithm or a Round-Robin distribution to distribute jobs to workers. While theses strate-
gies offer good performance in many situations and computational power become cheaper and
cheaper, one could wonder whether clever schedulers are still needed. In [22], Benoit et al. ex-
pose situations with several constant bag-of-task applications requiring such schedulers. In this
chapter, we study the impact of small variations between the multiple instances of applications

79

80 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

to schedule, to assess the limits of a static schedule in this context.
In Section 5.2, platform and application models are described. We first give notation for

constant applications, i.e., all instances of a given application are identical, even if several
different applications need to be scheduled, and then we present our stochastic formulation
used to model the variations between instances. Similarly, Section 5.3 first solves the simpler,
constant case, before describing an ε-approximation and several heuristics, which all apply to
the stochastic formulation. In Section 5.4, both heuristic and approximation are compared
to the On-Demand and Round-Robin algorithms, showing that a little knowledge about
applications is sufficient to really improve scheduling results. We conclude in Section 5.5 with
some final remarks.

5.2 Notation and models

In this section, we refine the model presented in Section 3 and we expose some notation
specific to this chapter.

5.2.1 Platform model

We focus on star-shaped platforms, made of a master computer P0 linked to n − 1 worker
processors P1, . . . , Pn−1. Since bag-of-tasks applications are often deployed over the internet
or on a computing grid, computing resources are mainly heterogeneous. This heterogeneity
is modeled by the speed si and the bandwidth bw i of processor Pi. In this chapter, we use
the bounded multi-port model. In this model, we consider that a resource can simultaneously
communicate to many distant resources, as soon as its total bandwidth is not exceeded. In our
case, only the master P0 can communicate to several other processors, as long as its bandwidth
bw0 is not exceeded.

5.2.2 Constant applications model

As we said in Section 5.1, we gather all tasks into several applications. First, we assume that
all instances of a given application have identical characteristics. In this chapter, contrarily to the
previous ones, we do not need a graph representation anymore since all tasks are independent.
Thus, Tk denotes the set of tasks of application k (with 1 ≤ k ≤ m), and all instances are
defined by a volume of communication Vcomm(k) in bytes and a volume of computation Vcomp(k)
in Flops. An instance of application Tk is sent in time Vcomm(k)/b, where b is the average
bandwidth allocated to the communication, and computed by worker Pi in time Vcomp(k)/si.
We allow overlap of computations by communications: any worker can work at the already
received data, while it is retrieving the next instances from the master. This hypothesis is
consistent with the bounded multi-port communication model, as it is enabled by the same
multi-core machines and multithreaded technologies. The master does not participate in the
work, acting as a dedicated file server.

Following the steady-state approach, each application is assumed to have a really large
number of instances, allowing us to consider a continuous flow rather than a finite number of
instances. The overall number of instances is a priori different from an application to another.
To cope with this new parameter, each application has a positive priority πk: if application T1

has a priority π1 = 1 and T2 has another priority π2 = 2, then the throughput of application T2

5.2. NOTATION AND MODELS 81

T2, Vcomm(2) = 10, Vcomp(2) = 30, π2 = 3

T1, Vcomm(1) = 30, Vcomp(1) = 10, π1 = 4

T3, Vcomm(3) = 15, Vcomp(3) = 10, π3 = 2

P4: bw 4 = 3, s4 = 30

P0: bw 0 = 30

P3: bw 3 = 20, s3 = 15

P1: bw 1 = 20, s1 = 20

P2: bw 2 = 10, s2 = 10

Figure 5.1: Example A: platform graph, made of a master P0 and 4 workers, and 3 applications.

must be twice the throughput of application T1. In the example shown in Figure 5.1, we have
three applications, with respective priorities equal to 4, 3 and 2.

We still aim at maximizing the throughput of our platform. Due to the priorities of tasks, we
enforce the constraint that the throughput ρ(k) of an application k is proportional to its priority:
if application T1 has a priority π1 and T2 has a priority π2, then we have ρ(1)/π1 = ρ(2)/π2. Any
processor Pi participates in the global throughput ρ(k) of Tk, and we denote its participation by
ρ

(k)
i .

Finally, we can distinguish two models, depending on the knowledge we have about our
application:

off-line model: in this model, we assume to know the future: all instances, as well as their vol-
umes of computation or their data sizes, are known before the execution of the scheduling
policy,

online model: in this other model, instances arrive in the system while the algorithm is being
executed, and the scheduler needs to map an incoming instance on the fly.

5.2.3 A stochastic formulation for dynamic applications

In the previous section, we presented a model using several applications with identical in-
stances. Although this model is representative of many real cases, some applications deal with
instances with different characteristics: the time required to factorize a number greatly varies
from a number to another one, even if they are close. A first solution to cope with this problem
is to split the global set of tasks into different “virtual” applications of identical data size and
computation time, even if computations have different natures. However, this can lead to almost
as many virtual applications as instances, and it can be hard to predict the exact characteristics
of an incoming task. A common way to deal with such an uncertainty is to model the size and

82 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

the volume of computation of our tasks by random variables. Obviously, we could model in-
stances of all applications by a single random variable for communication sizes, and another one
for computation times. However, it seems reasonable to keep two varying characteristics for each
application, one for computations and one for communications, especially if different applica-
tions have very different characteristics. In the following, we still have m different applications,
and Tk (with 1 ≤ k ≤ m) denotes such an application.

Thus, we define the two following notation:
– X

(k)
comm is a random variable, such that X(k)

comm(u) is the data size of the u-th instance of
the k-th application.

– X
(k)
comp is another random variable, such that X(k)

comp(u) is the volume of computation of
the u-th instance of the k-th application.

We assume we know a lower bound and upper bound for both communication and computa-
tion sizes of any application. Lower bounds are respectively denoted by min

(k)
comm and min

(k)
comp ,

while upper bounds are denoted by max
(k)
comm and max

(k)
comp . Finally, we need to know the

following probability distributions:
– ∀k, ∀c1 ≥ 0, ∀c2 ≥ c1,P

(
c1 ≤ X(k)

comp ≤ c2

)
,

– ∀k,∀d1 ≥ 0, ∀d2 ≥ d1,P
(
d1 ≤ X(k)

comm ≤ d2

)
,

– ∀k,∀c1, d1 ≥ 0, ∀c2 ≥ c1, ∀d2 ≥ d1,P
(
c1 ≤ X(k)

comp ≤ c2; d1 ≤ X(k)
comm ≤ d2

)
.

There is no reason for X(k)
comm and X(k)

comp to be independent for any application Tk; on the
contrary, one can imagine that a small file would require less computation than a larger task,
or can be synonymous of more computations than a larger one, for example due to a higher
compression of the data.

5.3 Approximation and heuristics

In this section, we explain the solution given in [22], before giving an ε-approximation and
heuristics adapted to the dynamic formulation.

5.3.1 Resolution of the constant case

First, we recall the solution to the problem, assuming that all instances of a given application
are identical. We can easily write all the constraints that apply when we look at the throughput
of our platform, i.e., the average number of instances of any application processed in one time
unit. As we said in Section 5.2.2, the total throughput of application Tk is the sum of the
contributions of all processors to this application:

∀Tk,
∑

1≤i<n
ρ

(k)
i = ρ(k).

We know that the throughput of Tk is proportional to its priority, and this can be written as:

∀Tk,
ρ(k)

πk
=
ρ(1)

π1
.

The sum of all computation times on any worker per time-unit takes less than one time unit:

∀1 ≤ i < n,
∑
Tk

ρ
(k)
i

Vcomp(k)

si
≤ 1.

5.3. APPROXIMATION AND HEURISTICS 83

4

P input

2P computations

P computations1

P input1

P output0

P computations3

P input3

P computations4

P input

2

Figure 5.2: Execution of the first instances of Example A.

Similarly, the sum of all incoming communication times on any worker per time-unit takes less
than one time unit:

∀1 ≤ i < n,
∑
Tk

ρ
(k)
i

Vcomm(k)

bw i
≤ 1.

Finally, the master cannot exceed its own bandwidth:∑
1≤i<n

∑
Tk

ρ
(k)
i

Vcomm(k)

bw0
≤ 1.

All these constraints form a rational linear program given in (5.1).

Maximize ρ(1) under the constraints
(5.1a) ∀Tk,

∑
1≤i<n ρ

(k)
i = ρ(k)

(5.1b) ∀Tk, ρ(k)

πk
= ρ(1)

π1

(5.1c) ∀1 ≤ i < n,
∑

Tk
ρ

(k)
i

Vcomp(k)
si

≤ 1

(5.1d) ∀1 ≤ i < n,
∑

Tk
ρ

(k)
i

Vcomm (k)
bw i

≤ 1

(5.1e)
∑

1≤i<n
∑

Tk
ρ

(k)
i

Vcomm (k)
bw0

≤ 1

(5.1)

All variables are rational, so we can find the solution in polynomial time [60]. Figure 5.2
presents a solution of this linear program applied to example A (itself presented on Figure 5.1).
As we can see, P3 and P4 are kept idle, due to their low bandwidth, while communication links
of P1 and P2 are saturated.

5.3.2 An ε-approximation

We previously presented a solution to our problem when all instances of a given application
are identical. When we have variations between instances, one could argue that it should be

84 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

0 Computation amount
0

1

2Instance of T

Instance of T

3Instance of T

Data size

Figure 5.3: Example A bis: partition of instances with ε = 0.4.

sufficient to split each application into as many different, virtual, applications as there are
different types of instances. Nonetheless, this solution would mainly lead to two new issues:

– the number of variables will dramatically increase, because we may end up with as many
virtual applications as tasks,

– even if we consider continuous flows of instances, actual applications have a finite number
of instances, and a large number of virtual applications means small numbers of instances,
in contradiction with the steady-state hypothesis.

However, we recall that we assumed to know the distribution of computation and communi-
cation sizes of the instances of any application, as well as lower and upper bounds, as stated in
Section 5.2.3. This knowledge is sufficient to propose an ε-approximation for our problem. In
other words, if ε is any positive number, we are able to compute a solution whose throughput ρ
is at least equal to ρ∗/(1 + ε), where ρ∗ is the throughput of any optimal solution.

The idea underlying this ε-approximation is to split each application into several virtual
applications such that two instances of the same virtual applications only have small differences
in term of data sizes and computation volumes.

Before going further, we need to define several variables. Let γ(k)
q be equal to (1 + ε)q min

(k)
comp ,

with q between 0 and Q(k) = 1 +

 ln

(
max

(k)
comp

min
(k)
comp

)
ln(1+ε)

, and δ(k)
r be equal to (1 + ε)r min

(k)
comm , with

r between 0 and R(k) = 1 +

 ln

(
max

(k)
comm

min
(k)
comm

)
ln(1+ε)

. An instance of application Tk is said to be in the

interval I(k)
q,r =

[
γ

(k)
q ; γ

(k)
q+1

]
×
[
δ

(k)
r ; δ

(k)
r+1

]
if its volume of computation is comprised between γ(k)

q

and γ
(k)
q+1 and its data size is between δ

(k)
r and δ

(k)
r+1. Finally, let ρ(k)

i,q,r be the contribution of

processor Pi to the throughput of instances of application Tk in the interval I(k)
q,r . On Figure 5.3,

an example with 3 applications, similar to Example A, shows the partition of a small set of
instances with ε = 0.4. As we can see, some intervals remain empty.

5.3. APPROXIMATION AND HEURISTICS 85

To simplify equations, we denote by p(k)
q,r the probability of an instance of application Tk to

be in a given interval I(k)
q,r :

p(k)
q,r = P

(
γ(k)
q ≤ X(k)

comp < γ
(k)
q+1; δ(k)

r ≤ X(k)
comm < δ

(k)
r+1

)
.

By construction, we have:
∀k,
∑
q,r

p(k)
q,r = 1. (5.2)

Our hypotheses ensure that if there are t instances of application Tk, then we expect t · p(k)
q,r

instances in the interval I(k)
q,r . These instances constitute the virtual application Tk,q,r.

The total throughput of any virtual application of Tk is the sum of the contributions of all
processors to this virtual application. The total throughput of any virtual application Tk,q,r
of Tk is also equal to the throughput of the whole application Tk times the probability of an
instance to be in the interval I(k)

q,r :

∀k,∀q < Q(k), ∀r < R(k),
∑

1≤i<n
ρ

(k)
i,q,r = p(k)

q,rρ
(k).

The throughput of Tk is still proportional to its priority:

∀Tk,
ρ(k)

πk
=
ρ(1)

π1
.

Since the precise computation and communication sizes are not available, we overestimate
them, ensuring the feasibility of our schedule. By definition, the computation of any instance

of application Tk in the interval I(k)
q,r takes less than

γ
(k)
q+1

si
on processor Pi. The sum of all

computations, on any worker and per time-unit, must take less than one time unit. We enforce
a stronger constraint by considering that all instances in the interval I(k)

q,r take a time exactly

equal to
γ
(k)
q+1

si
:

∀1 ≤ i < n,
∑
Tk

∑
q<Q(k),r<R(k)

(
ρ

(k)
i,q,r

γ
(k)
r+1

si

)
≤ 1.

Similarly, the communication to Pi of any instance of application Tk in the interval I(k)
q,r takes

less than
δ
(k)
q+1

bw i
, and the sum of all incoming communications of any worker takes less than one

time unit. Again, we use a stronger constraint, by considering that all communications take

exactly
δ
(k)
q+1

bw i
time units:

∀1 ≤ i < n,
∑
Tk

∑
q<Q(k),r<R(k)

(
ρ

(k)
i,q,r

δ
(k)
r+1

bw i

)
≤ 1.

Finally, the master cannot exceed its own bandwidth:

∑
Tk

∑
q<Q(k),r<R(k)

(
ρ

(k)
i,q,r

δ
(k)
r+1

bw0

)
≤ 1.

86 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

All theses constraints can be gathered into the rational linear program (5.3):

Maximize ρ = ρ(1) under the constraints
(5.3a) ∀Tk, ∀q < Q(k),∀r < R(k),

∑
1≤i<n ρ

(k)
i,q,r = p

(k)
q,rρ(k)

(5.3b) ∀Tk, ρ(k)

πk
= ρ(1)

π1

(5.3c) ∀1 ≤ i < n,
∑

Tk

∑
q<Q(k),r<R(k)

(
ρ

(k)
i,q,r

γ
(k)
q+1

si

)
≤ 1

(5.3d) ∀1 ≤ i < n,
∑

Tk

∑
q<Q(k),r<R(k)

(
ρ

(k)
i,q,r

δ
(k)
r+1

bw i

)
≤ 1

(5.3e)
∑

1≤i<n
∑

Tk

∑
q<Q(k),r<R(k)

(
ρ

(k)
i,q,r

δ
(k)
r+1

bw0

)
≤ 1

(5.3)

Theorem 5.1. An optimal solution of Linear Program (5.3) describes a solution with a through-
put ρ larger than ρ∗/(1 + ε), where ρ∗ is the optimal throughput of application T1.

Proof. The proof contains three steps: we first show that this linear program returns a valid
solution, we then compute an upper bound ρmax of the optimal throughput ρ∗, and finally, we
show that the throughput ρ of the solution is larger than ρ∗/(1 + ε).

1. Consider the N (1) first instances of application T1. Due to the priorities, we also consider
the N (k) =

⌊
πk
π1
N (1)

⌋
first instances of application Tk (with 1 ≤ i ≤ m). By definition of

the p(k)
q,r ’s, if n

(k)
q,r denotes the actual number of instances in the interval I(k)

q,r among the
first N (k) instances of Tk, we have:

p(k)
q,r = lim

N(1)→∞

n
(k)
q,r

N (k)
. (5.4)

Linear program (5.3) is equivalent to linear program (5.1) with
∑

k

(
Q(k)R(k)

)
applications

named Tk,q,r and defined by:

– Vcomm(k)q,r = δ
(k)
r+1,

– Vcomp(k)q,r = γ
(k)
q+1,

– πk,q,r = p
(k)
q,rπk.

Let (q0, r0) be such that p(1)
q0,r0 is positive. We know [22] that linear program (5.1) returns

a valid schedule σ for this set of new applications, ensuring a throughput ρ(k)
q,r to the

application Tk,q,r:

ρ(k)
q,r =

πkp
(k)
q,r

π1p
(1)
q0,r0

ρ(1)
q0,r0 .

If we use σ to process
⌊
p

(1)
q0,r0N

(1)
⌋
instances of T1,q0,r0 in time TN(1) , then

⌊
p

(k)
q,rN (k)

⌋
instances of Tk,q,r are concurrently processed, and we have:

ρ(k)
q,r = lim

N(1)→∞

⌊
p

(k)
q,rN (k)

⌋
TN(1)

= lim
N(1)→∞

p
(k)
q,rN (k)

TN(1)

.

5.3. APPROXIMATION AND HEURISTICS 87

Since an instance in the interval I(k)
q,r has by definition a size less than (δ

(k)
q+1,r+1, γ

(k)
q+1,r+1),

σ can process the
⌊
p

(k)
q,rN (k)

⌋
first instances of the original application Tk found in each

interval I(k)
q,r in time TN(1) . Thanks to Equation (5.4), we have:

ρ(k)
q,r = lim

N(1)→∞

n
(k)
q,r

TN(1)

.

Thus, for each virtual application, an optimal solution of (5.3) describes the average num-
ber of instances processed by the resources, allowing to reach the desired throughput equal
to ρ(k) =

∑
q,r ρ

(k)
q,r to application Tk. By definition of ρ∗, we have ρ ≤ ρ∗.

2. An upper bound ρmax of the optimal throughput is easily obtained, by solving the linear
program (5.5). This linear program corresponds to the problem obtained by replacing any
instance of application Tk belonging to interval I(k)

q,r by a smaller instance of size (δ
(k)
q,r , γ

(k)
q,r).

Thus, the optimal throughput for this new set of applications is larger than the one of the
original applications. Since this linear program returns the optimal throughput of this new
set, we have an upper bound of the optimal throughput, which can be reached with our
original applications Tk’s:

ρ∗ ≤ ρmax.



Maximize ρmax = ρ′(1) under the constraints
(5.5a) ∀Tk, ∀q < Q(k), ∀r < R(k),

∑
1≤i<n ρ

′(k)
i,q,r = p

(k)
q,rρ′(k)

(5.5b) ∀Tk, ρ′(k)

πk
= ρ′(1)

π1

(5.5c) ∀1 ≤ i < n,
∑

Tk

∑
q<Q(k),r<R(k)

(
ρ
′(k)
i,q,r

γ
(k)
q

si

)
≤ 1

(5.5d) ∀1 ≤ i < n,
∑

Tk

∑
q<Q(k),r<R(k)

(
ρ
′(k)
i,q,r

δ
(k)
r
bw i

)
≤ 1

(5.5e)
∑

1≤i<n
∑

Tk

∑
q<Q(k),r<R(k)

(
ρ
′(k)
i,q,r

δ
(k)
r
bw0

)
≤ 1

(5.5)

3. By definition, we have δ(k)
r+1 = (1 + ε)δ

(k)
r and γ

(k)
q+1 = (1 + ε)γ

(k)
q . Since all constraints

are linear, one can easily check that
(
ρ
′(k)
i,q,r

)
k,i,q,r

is a solution of (5.5) if, and only if,(
ρ

(k)
i,q,r = ρ

′(k)
i,q,r/(1 + ε)

)
k,i,q,r

is a solution of (5.3). Using Equations (5.2) and (5.3a), we

have ρ(1) =
∑

i,q,r ρ
(1)
i,q,r, leading to ρ′(1) = ρ∗ = (1 + ε)ρ.

Altogether, we have ρ ≤ ρ∗ ≤ (1 + ε)ρ: the throughput ρ is larger than ρ∗/(1 + ε),
concluding the demonstration.

�

5.3.3 Heuristic solutions to the online problem

In the previous subsection, we presented an ε-approximation requiring a lot of knowledge
about the application to schedule, as said in Section 5.2.3. If determining a lower bound and
an upper bound on both communication and computation sizes is often realistic, determining
the distribution of the communication and computation sizes involves a lot of informations on

88 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

0

Data size

Computation amount0

(a) Arithmetical method

Data size

Computation amount0

0

(b) Geometrical method

Data size

Computation amount0

0

(c) Recursive method

Figure 5.4: Partition of samples following the three different methods.

the tasks, which can be unreachable to the user. Moreover, when a new instance arrives in the
system, even if its data size could be easily determined, its volume of computation could remain
undetermined. Thus, we can distinguish several cases depending on the available knowledge:

– All communication and computation sizes are known before the execution of the algorithm.
This is the off-line, or the clairvoyant case.

– The semi-clairvoyant case: both communication and computation sizes of an instance are
known when it is submitted to the system; the computation volume may be deduced more
or less precisely from the communication size,

– The computation volume is not predictable when the instance is submitted, only the
communication size is known; this is the non-clairvoyant case.

To circumvent these difficulties, we propose several online heuristics, based on the previous
ε-approximation. All of them use the first instances as a sample to get a sufficient knowledge
about the distributions of the random variables.

These heuristics use the first instances to obtain a preview of the involved distributions, and
then to split the following instances in several buckets following different methods. In the fol-
lowing lines, we consider an example with a sample set of eight values {minpre = 1, 2, 4, 5, 6, 8, 9,
13 = maxpre} to split into s = 4 buckets. All the methods are applied to this example in
Figure 5.4; only computations are taken into account.

Arithmetical: buckets are defined such that the difference of size between two instances in the
same bucket is less than maxpre−minpre

s . In our example, the first bucket contains values
between 1 and 4, the second one values between 4 and 7, the third one values between 7
and 10, the last one values between 10 and 13 (see Figure 5.4(a)).

Geometrical: buckets are defined such that the ratio between two instances in the same bucket
is less than s

√
maxpre

minpre
. The four buckets for our example are [1; 1.89], [1.89; 3.60], [3.60; 6.84],

and [6.84; 13] (see Figure 5.4(b)).
Recursive: at each of the log(s) steps, we split our values into two buckets with the same

number of values. This method requires s to be a power of two. In our case, buckets are
(1, 2), (4, 5), (6, 8), and (9, 13). Only distinct values are taken into account to form these
buckets. If the size of an incoming instance falls outside these buckets, we assume that
this instance belongs to its nearest bucket. In our case, this is equivalent to consider that
the buckets are [0; (2+4)/2), [(2+4)/2; (5+6)/2), [(5+6)/2; (8+9)/2), and [(8+9)/2;∞)
(see Figure 5.4(c)).

The number of instances in each bucket divided by the size of the sample gives us an indi-
cation of the probability required to solve our linear program. In our experiments, we assumed

5.3. APPROXIMATION AND HEURISTICS 89

that the computation volume could not be determined from the data size, thus we only used
communication sizes for the split.

5.3.4 Reference heuristics

To assess the quality of our heuristics, we compare them to two classical scheduling policies:

Round-Robin: incoming instances are distributed in turn to each worker,

On-Demand: each instance is allocated to the first available worker. To allow an overlap of
computations by communications, workers maintain a buffer of b tasks: while an instance
is processed, any worker can receive and store at most b instances.

Contrarily to our static methods, Round-Robin and On-Demand do not take care of the
differences between workers, but the dynamicity of On-Demand allows to not overload slow
workers. Moreover, as soon as only communications or computations matter, then On-Demand
offers very good performance.

Theorem 5.2. As soon as communications (or, symmetrically, computations) are dominant,
the On-Demand heuristic returns asymptotically optimal schedules. More formally, communica-
tions are said dominant if the smallest communication time is larger than the largest computation
time:

min1≤k≤m (Vcomm(k))

max0≤i≤n (bw i)
≥ max1≤k≤m (Vcomp(k))

min1≤i≤n (si)
.

Computations are said dominant if we have:

bw0 ≥
n∑
i=1

bw i and
min1≤k≤m (Vcomp(k))

max1≤i≤n (si)
≥ max1≤k≤m (Vcomm(k))

min0≤i≤n (bw i)
.

The constraint on the bandwidth of the master is required since we do not specify the com-
munication policy in case of contentions, and a worker could suffer from starvation, leading to
very large communication times.

Proof. In the following proof, we use the following notation:
– b is the size of the buffer used to store incoming instances on each processor,
– bw tot is the sum of the bandwidths of all workers (bw tot =

∑n
i=1 bw i),

– N is the number of scheduled instances: N (k) = πkN is the number of instances of Tk,
– ρ∗(N) is the optimal throughput that can be obtained, and T ∗(N) is the associated

makespan (ρ∗(N) = T ∗(N)/N),
– T (N) is the makespan achieved by an On-Demand schedule, and ρ(N) is associated

throughput (ρ(N) = T (N)/N),

– Γ =
max1≤k≤m

(
max

(k)
comp

)
min1≤i≤n(si)

is the maximum computation time,

– ∆ =
max1≤k≤m

(
max

(k)
comm

)
min1≤i≤n(bw i)

is the maximum communication time,
– Ti is the completion time of processor Pi,
– t is the minimum completion time among all processors,
– Qi (respectively, Ri) is the volume of communications (respectively, computations) given

to Pi,
– Q (respectively, R) is the total volume of communications (respectively, computations).

90 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

By definition, we have: Q =
∑m

k=1 (NπkVcomm(k)) =
∑n

i=1Qi andR =
∑m

k=1 (NπkVcomp(k))
=
∑n

i=1Ri.

Dominating computations. First, we have bw0 ≥
∑n

i=1 bw i. Thus, the master can simulta-
neously communicate with all workers without being slowed down by its own bandwidth:
each worker begins its work at the latest at time ∆. The reception of a single instance
takes less time that the computation of any other instance (by definition of dominating
computations): as soon as a worker begins its work, its communications are overlapped by
computations and it continuously processes instances until its termination.
Let Pj be the first worker to terminate (Tj = t). Since Pj finishes at time t, there is no
more instances to process at this time. Moreover, just before time t, any Pk may have
solicited for at most b instances. So, Pk has at most b + 1 instances to process, counting
the instance which is handled at time t, and Pk finishes its work before time t+ (b+ 1)Γ:

T (N) ≤ t+ (b+ 1)Γ⇔ T (N)− (b+ 1)Γ ≤ t. (5.6)

The processing time of Pi is Ri/si. Since Pi begins its work before time ∆, we have:

∀i ≥ 1, t ≤ Ti ≤
Ri
si

+ ∆⇒ si (t−∆) ≤ Ri.

Summing these inequalities and applying (5.6) gives:
n∑
i=1

si(T (N)− (b+ 1)Γ−∆) ≤
n∑
i=1

si(t−∆) ≤
n∑
i=1

Ri = R. (5.7)

A lower bound on the makespan associated to an optimal throughput is given by:

T ∗(N) ≥ R∑
i si

= N

(∑
k πkVcomp(k)∑n

i=1 si

)
. (5.8)

Using Equations (5.7) and (5.8) leads to:(
n∑
i=1

si

)
(T (N)− (b+ 1)Γ−∆) ≤ R ≤

(
n∑
i=1

si

)
T ∗(N).

And then:
T (N)

T ∗(N)
≤ 1 +

(b+ 1)Γ + ∆

T ∗(N)
.

Thanks again to Equation (5.8), we have limN→∞ T
∗(N) = ∞ and then T (N)

T ∗(N) ≤ 1 +

oN→∞(1). Thus, On-Demand is asymptotically optimal when computations dominate:

lim
N→∞

ρ(N)

ρ∗(N)
= 1.

Dominating communications. The reception of a single instance takes more time than the
computation of another instance (by definition of dominating communications): as soon
as a worker begins to receive data at time 0, it is kept continuously receiving data until its
last communication, immediately followed by the computation of the last instance. Only
the computation of the last instance is not overlapped by communications.
Since the master bandwidth is shared among all workers, two cases needs to be studied.

5.3. APPROXIMATION AND HEURISTICS 91

1. The master bandwidth does not limit communications: bw0 ≥
∑n

i=1 bw i.
This first case is quite similar to the previous situation. Assume that Pk is still the
last processor to finish (Tk = T (N)), while Pj is the first one (Tj = t). Since Pj
finishes at time t, there is no more instances to process at this time. Moreover, just
before time t, Pk may have requested for at most b instances, and it finishes its work
before time t+ b∆ + Γ:

T (N) ≤ t+ b∆ + Γ⇔ T (N)− b∆− Γ ≤ t. (5.9)

The total communication time of Pi is Qi/bw i. Pi begins its communications at time
0 and finishes its work before time Qi/bw i + Γ:

∀i ≥ 1, Ti ≤
Qi
bw i

+ Γ⇒ bw i (t− Γ) ≤ Qi.

If we sum these inequalities and if we apply Equation (5.9), we obtain:

(T (N)− b∆− 2Γ) bw tot ≤ (t− Γ)

n∑
i=1

bw i ≤
n∑
i=1

Qi = Q. (5.10)

The makespan of an optimal schedule is larger than the time to communicate all data:

Q

bw tot
=

1

bw tot
N

(∑
k

πkVcomm(k)

)
≤ T ∗(N). (5.11)

Thanks to Equations (5.10) and (5.11), we can write:

T (n)− b∆− 2Γ ≤ Q

bw tot
≤ T ∗(N).

And then:
T (N)

T ∗(N)
≤ 1 +

b∆ + 2Γ

T ∗(N)
.

Thanks again to Equation (5.11), we have T (N)
T ∗(N) ≤ 1+oN→∞(1). Thus, On-Demand

is asymptotically optimal:

lim
N→∞

ρ(N)

ρ∗(N)
= 1.

2. The master cannot simultaneously serve all workers at full speed: bw0 <
∑n

i=1 bw i.
Without any loss of generality, we assume that the bandwidth of the master is larger
than any other bandwidth: ∀i ≥ 1, bw0 ≥ bw i.
Let βi(v) denote the bandwidth allocated at time v to processor Pi. By definition,
we have for all processor Pi and at any time v:

0 ≤ βi(v) ≤ bw i and
n∑
i=1

βi(v) ≤ bw0.

The first worker achieves its work at time t. At this time, there is no more instances
to process. Moreover, just before time t, any other processor Pi may have requested

92 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

for at most b instances, otherwise its buffer would be overloaded. The master can
send all these (n − 1)b instances in time (n− 1) b∆. So, Pi finishes its work before
time t+ (n− 1) b∆ + Γ:

∀i ≥ 1, Ti ≤ t+ (n− 1) b∆ + Γ⇒ T (N)− (n− 1) b∆− Γ ≤ t. (5.12)

Since Qi is the total volume of data received by worker Pi, we have:

∀i ≥ 1, Qi =

∫ Ti

0
βi(v)dv.

The instantaneous bandwidth is a non-negative function:

∀i ≥ 1,

∫ t−Γ

0
βi(v)dv ≤

∫ Ti−Γ

0
βi(v)dv ≤

∫ Ti

0
βi(v)dv.

We can sum these inequalities:∫ t−Γ

0

n∑
i=1

βi(v)dv =
n∑
i=1

∫ t−Γ

0
βi(v)dv ≤

n∑
i=1

Qi = Q.

From time 0 to time t− Γ, all processors are receiving data from the master. Thus,
the sum of all instantaneous bandwidths corresponds to the whole master bandwidth,
even if the transmission rate is variable:

∑n
i=1 βi(v) = bw0. This leads us to:

bw0 (t− Γ) =

∫ t−Γ

v=0

n∑
i=1

βi(v) ≤ Q. (5.13)

The makespan of an optimal schedule is larger than the time to communicate all data:

Q

bw0
=

1

bw0
N

(∑
k

πkVcomm(k)

)
≤ T ∗(N). (5.14)

Combining Equations (5.12) and (5.14) to Equation (5.13) gives us:

bw0 (T (N)− 2Γ− (n− 1) b∆) ≤ bw0 (t− Γ) ≤ Q ≤ T ∗(N)bw0.

Similarly to the previous cases, we have:

T (N)

T ∗(N)
≤ 1 +

2Γ + (n− 1) b∆

T ∗(N)
.

Thanks again to Equation (5.14), we have limN→∞ T
∗(N) =∞ and then:

T (N)

T ∗(N)
≤ 1 + oN→∞(1).

We finally have shown that On-Demand is asymptotically optimal when communi-
cations dominate:

lim
N→∞

ρ(N)

ρ∗(N)
= 1.

5.4. EXPERIMENTS 93

T2, Vcomm(2) = 5, Vcomp(2) = 15, π2 = 1

T1, Vcomm(1) = 1, Vcomp(1) = 2, π1 = 2

P1: bw 1 = 1, s1 = 1

P0: bw 0 = 1

The reception buffer is full

0

1

1
P computations

P output

P input

Figure 5.5: Performance loss with a On-Demand scheduler using finite buffers.

Thus, if computations or communications are dominant, the simple On-Demand heuristic
with finite buffers is asymptotically optimal.

�

One could think that a weaker condition (for any task, the worst communication time is
smaller than its best computation time: ∀Tk, Vcomp(k)

max1≤i≤n(si)
≥ Vcomm (k)

min0≤i≤n(bw i)
) is sufficient to ensure

the optimality of the On-Demand policy. However, this requires infinite buffers, while actual
On-Demand implementations are often limited to a buffer of 2 or 3 instances. If we consider
the simple example with a buffer limited to 2 instances, given in Figure 5.5. This weaker
condition holds true, but the overlap of communications by computations is not complete: the
long reception of an instance of T1 cannot be started during the long computation of an instance
of the same application since the reception buffer is full.

An attentive reader could note that the result of the previous results does not depend on
the number b of tasks in the buffer. In fact, the finite value of b imposes an upper bound to the
gap between the first processor to finish and the last one. When the total computation time
becomes very large, this gap becomes negligible, explaining the result.

5.4 Experiments

5.4.1 Simulation settings

All algorithms are simulated using the SimGrid framework [31], while the solution of the lin-
ear programs is given by GLPK [51]. Each simulation is made of three or four applications, each
application being represented by 100, 1, 000 or 5, 000 instances. First, the communication size is
chosen using a uniform probability law over an interval [mincomm ; maxcomm], such that maxcomm

is selected in the set {mincomm , 1.35 mincomm , 1.65 mincomm , 2.35 mincomm 2.65 mincomm}.

94 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

Then, the volume of computations is computed using a correlation factor φ between 0 and
1: if φ is equal to 0, then there is no correlation between the communication size and the
volume of computations. On the contrary, if φ is equal to 1, then there is a strong correlation
between the volume of computations and the communication size of the instance. Let Vcomm(i)
be the communication size of the i-th instance of application Tk, and let Vcomp(i) be its volume
of computations. Since Vcomm(i) is randomly chosen between min

(k)
comm and max

(k)
comm , there

exists λ, such that Vcomm(i) = λmin
(k)
comm +(1 − λ) max

(k)
comm . Taking the correlation factor

into account, Vcomp(i) is randomly chosen between
(

(φλ+ 1− φ) min
(k)
comp +φ(1− λ) max

(k)
comp

)
and

(
φλmin

(k)
comp +(1− λφ) max

(k)
comp

)
. Thus, if φ is equal to 0, then the communication size is

not used to choose the volume of computations. On the contrary, if φ is equal to 1, then the
computation amount is completely determined by Vcomm(i).

Finally, instances of all applications are shuffled before the submission of the whole set of
instances to the schedule algorithm.

Platforms were constituted of 3, 5, 10, or 15 workers. The master has a bandwidth which is
equal to 1, 5, or 100 times the average bandwidth of the workers; in the first case, its bandwidth
may limit the communications, while in the last case it should not slow communications down.
Many combinations of heuristics, bandwidths, processor speeds, data sizes, and volumes of
computations were used, explaining the grand total of more than 540, 000 runs.

The average throughput is computed using the number of instances divided by the total
computation time (the makespan), with the hope that there are enough instances to dismiss the
effects of the initialization and termination phases of steady-state methods. An upper bound of
the throughput is computed using the throughput given by the 0.05-approximation, neglecting
both initialization and termination phases: by definition of an ε-approximation, the optimal
throughput is less than 1.05 times the theoretical throughput of the 0.05-approximation.

Steady-state methods. In our experiments, we denote by LP_samp(m, c, d) the heuristic
described in Section 5.3.3, splitting the instances following the m method into cd buckets, file
sizes being split into c intervals and computation volumes being split into d intervals. m is either
GEOM (the geometrical method explained in paragraph 5.3.3), ARITH (the arithmetical one,
see paragraph 5.3.3) or REC (the recursive one, explained in paragraph 5.3.3).

Both On-Demand and Round-Robin were tested on all sets. We also used a 0.2- and a
0.05-approximation, as well as LP_samp(m, c, d) using 10% of the instances as sample, splitting
the values into 1, 2, 4, and 8 buckets. To use the same conditions for all heuristics, these first
10% are ignored by other methods. The approximations are clairvoyant algorithms, while the
LP_samp(m, c, d) are semi-clairvoyant.

Running times. Solving linear programs requires complex algorithms such as the Simplex and
one can be scared by long running times, but tests with 20 workers and 100 different applications,
each with 5, 000 instances lead to a running time of 2 seconds for parsing all data and solving
the linear program, while the whole run takes 22 seconds. As soon as linear programs are solved
over the rationals, the running times are very small.

5.4.2 Results

Theoretical example. First, we used our framework to run simple situations. Consider the
small example explained in [22], with a master, two workers and two applications, as described

5.4. EXPERIMENTS 95

T2, Vcomm(2) = 10, Vcomp(2) = 1, π2 = 1

T1, Vcomm(1) = 1, Vcomp(1) = 10, π1 = 1

P2: bw 2 = 1, s2 = 10P1: bw 1 = 10, s1 = 1

P0: bw 0 = 100

Figure 5.6: Example B: two applications deployed on a two-worker platform.

1

2

1

0

2

P output

P input

P input

P computations

P computations

Figure 5.7: Example B: Execution of the first instances using the On-Demand policy.

in Figure 5.6. When a processor is asking for an instance to process, the On-Demand policy
does not consider the different volumes of communication or computation. Since all instances
are shuffled, any instance has the same probability of being processed by either processor P1 or
processor P2. Thus, a large number of instances leads to roughly the same number of instances
of T1 and T2 processed on P1 and P2, giving a throughput equal to 2/11 ≈ 0.182. An actual
schedule of this situation is shown on Figure 5.7, and results in a poor use of the resources.

On the contrary, the optimal schedule is obtained by placing all instances of T1 on P2 and
all instances of T2 on P1. Our ε-approximation, shown in Figure 5.8, returns this placement and
leads to a far better use of the platform with a throughput 1.0. Simulations are in agreement
with theoretical numbers: the effective throughput of the first solution is 0.18 instance of each
application computed per time unit, while the second one provides an average throughput of
0.999. This is a typical example of situations in which dynamic algorithms perform poorly in
regard to static policies.

Mainstream simulations. The previous example demonstrates that clever schedules are re-
quired in some configurations to reach a good throughput. However, such situations may be

96 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

0

2

1

2

1

P input

P output

P input

P computations

P computations

Figure 5.8: Example B: Execution of the first instances using the solution of the linear program.

rarely encountered, or even pathological. Thus, we performed a large number of simulations
corresponding to many different contexts. For each set, we normalized the average throughput
of each method to the best result among all methods, and to the upper bound of the throughput
provided by the 0.05-approximation. We also provide the standard deviation of these normalized
values, and their minimum.

A summary of all the results is displayed in Table 5.1. At a first glance, we see that the
best solution is given by the 0.05-approximation with an average throughput equal to 99% of
the best solution, followed by the 0.2-approximation (98.5%) and LP_samp(m, 1, 1) (97.1%).
Splitting into more buckets surprisingly leads to worse results: only 79%. Finally, the On-
Demand policy returns better results than the Round-Robin one (83.8% versus 79.7%), but
remains worse than the LP_samp(m, 1,1) policies. In the following paragraphs, we present the
influence of the most important parameters on the different methods.

Communication-to-computation ratio. Results obtained with several CCRs are given in Ta-
bles 5.2, 5.3, 5.4, 5.5, 5.6. We see that the On-Demand returns very good schedules in case of
very large (Table 5.6 with CCR = 20) CCRs or very small ones (Table 5.2, with CCR = 0.05),
with a throughput being equal on average to 99% of the best one. They are also very close
to the upper bound of the optimal values (0.93%). These good results are in agreement with
Theorem 5.1, while its results with CCRs between 0.625 and 1.67 are around 80%.

On the contrary, the Round-Robin policy is worse with such extreme values than with
moderate CCRs, reaching on average 71% of the best solution with CCRs equal to 0.05 or 20,
compared to the 79.5% obtained with CCRs comprised between 0.625 and 1.67.

Our LP_samp(m, c, d) heuristic is mostly independent of the CCR, presenting very small
variations, less than 5%. Our ε-approximation is very slightly affected by extreme CCRs, still
offering an average throughput larger than 97% of the best solution, instead of the 98% or the
99%, that are reached with more balanced CCRs. In all cases, results of our methods are close
to the optimal, realizing more than 90% of the optimal throughput.

Number of instances. Contrarily to the On-Demand and the Round-Robin policies, the
steady-state approach requires large number of instances to be efficient. Thus, we present in
Tables 5.7, 5.8, and 5.9 the results of the different methods with respectively 100, 1, 000 and

5.4. EXPERIMENTS 97

Heuristic Normalized to best Normalized to UB
On-Demand 0.87 (σ = 0.108, min = 0.638) 0.821 (σ = 0.109, min = 0.529)
Round-Robin 0.779 (σ = 0.123, min = 0.443) 0.736 (σ = 0.126, min = 0.371)
LP_samp(ARITH, 1, 1) 0.971 (σ = 0.0362, min = 0.692) 0.917 (σ = 0.0651, min = 0.573)
LP_samp(ARITH, 2, 1) 0.86 (σ = 0.107, min = 0.226) 0.814 (σ = 0.121, min = 0.175)
LP_samp(GEOM, 2, 1) 0.875 (σ = 0.106, min = 0.248) 0.829 (σ = 0.122, min = 0.2)
LP_samp(REC, 2, 1) 0.868 (σ = 0.106, min = 0.239) 0.822 (σ = 0.122, min = 0.197)
LP_samp(ARITH, 2, 2) 0.834 (σ = 0.129, min = 0.219) 0.791 (σ = 0.144, min = 0.177)
LP_samp(GEOM, 2, 2) 0.842 (σ = 0.129, min = 0.213) 0.799 (σ = 0.144, min = 0.186)
LP_samp(REC, 2, 2) 0.831 (σ = 0.132, min = 0.0442) 0.788 (σ = 0.147, min = 0.04)
LP_samp(ARITH, 4, 1) 0.815 (σ = 0.131, min = 0.167) 0.773 (σ = 0.145, min = 0.134)
LP_samp(GEOM, 4, 1) 0.819 (σ = 0.13, min = 0.213) 0.777 (σ = 0.144, min = 0.183)
LP_samp(REC, 4, 1) 0.81 (σ = 0.131, min = 0.213) 0.769 (σ = 0.145, min = 0.186)
LP_samp(ARITH, 4, 4) 0.81 (σ = 0.14, min = 0.0541) 0.769 (σ = 0.154, min = 0.0495)
LP_samp(GEOM, 4, 4) 0.812 (σ = 0.139, min = 0.0896) 0.771 (σ = 0.153, min = 0.0775)
LP_samp(REC, 4, 4) 0.803 (σ = 0.141, min = 0.00353) 0.763 (σ = 0.155, min = 0.00313)
LP_samp(ARITH, 8, 1) 0.791 (σ = 0.137, min = 0.171) 0.751 (σ = 0.15, min = 0.137)
LP_samp(GEOM, 8, 1) 0.795 (σ = 0.136, min = 0.151) 0.754 (σ = 0.149, min = 0.139)
LP_samp(REC, 8, 1) 0.784 (σ = 0.14, min = 0.171) 0.744 (σ = 0.153, min = 0.151)
0.05-approx 0.993 (σ = 0.022, min = 0.111) 0.937 (σ = 0.0555, min = 0.097)
0.2-approx 0.985 (σ = 0.0201, min = 0.178) 0.93 (σ = 0.0513, min = 0.148)

Table 5.1: Summary of all experiments. Given figures are the average throughput, the standard
deviation σ and the minimum throughput (27,360 runs of each heuristic).

Heuristic Normalized to best Normalized to UB
On-Demand 0.993 (σ = 0.00687, min = 0.924) 0.937 (σ = 0.0397, min = 0.728)
Round-Robin 0.716 (σ = 0.101, min = 0.444) 0.676 (σ = 0.104, min = 0.393)
LP_samp(ARITH, 1, 1) 0.97 (σ = 0.0443, min = 0.715) 0.917 (σ = 0.0749, min = 0.631)
LP_samp(ARITH, 2, 1) 0.869 (σ = 0.122, min = 0.281) 0.823 (σ = 0.133, min = 0.238)
LP_samp(GEOM, 2, 1) 0.878 (σ = 0.118, min = 0.268) 0.832 (σ = 0.132, min = 0.221)
LP_samp(REC, 2, 1) 0.847 (σ = 0.116, min = 0.239) 0.803 (σ = 0.131, min = 0.197)
LP_samp(ARITH, 2, 2) 0.853 (σ = 0.152, min = 0.25) 0.809 (σ = 0.162, min = 0.223)
LP_samp(GEOM, 2, 2) 0.86 (σ = 0.148, min = 0.246) 0.816 (σ = 0.16, min = 0.223)
LP_samp(REC, 2, 2) 0.814 (σ = 0.15, min = 0.193) 0.773 (σ = 0.164, min = 0.171)
LP_samp(ARITH, 4, 1) 0.796 (σ = 0.147, min = 0.205) 0.756 (σ = 0.158, min = 0.175)
LP_samp(GEOM, 4, 1) 0.797 (σ = 0.144, min = 0.214) 0.756 (σ = 0.155, min = 0.183)
LP_samp(REC, 4, 1) 0.771 (σ = 0.148, min = 0.213) 0.732 (σ = 0.159, min = 0.194)
LP_samp(ARITH, 4, 4) 0.802 (σ = 0.157, min = 0.193) 0.761 (σ = 0.169, min = 0.171)
LP_samp(GEOM, 4, 4) 0.801 (σ = 0.157, min = 0.193) 0.761 (σ = 0.169, min = 0.171)
LP_samp(REC, 4, 4) 0.771 (σ = 0.162, min = 0.203) 0.733 (σ = 0.173, min = 0.179)
LP_samp(ARITH, 8, 1) 0.759 (σ = 0.153, min = 0.216) 0.721 (σ = 0.163, min = 0.184)
LP_samp(GEOM, 8, 1) 0.76 (σ = 0.151, min = 0.211) 0.722 (σ = 0.162, min = 0.181)
LP_samp(REC, 8, 1) 0.739 (σ = 0.154, min = 0.171) 0.702 (σ = 0.165, min = 0.151)
0.05-approx 0.979 (σ = 0.0392, min = 0.763) 0.926 (σ = 0.0714, min = 0.621)
0.2-approx 0.974 (σ = 0.0376, min = 0.743) 0.92 (σ = 0.0691, min = 0.622)

Table 5.2: Communications / Computations = 0.05 (2,880 simulations).

98 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

Heuristic Normalized to best Normalized to UB
On-Demand 0.843 (σ = 0.0852, min = 0.665) 0.789 (σ = 0.0834, min = 0.563)
Round-Robin 0.781 (σ = 0.115, min = 0.482) 0.732 (σ = 0.118, min = 0.384)
LP_samp(ARITH, 1, 1) 0.973 (σ = 0.0312, min = 0.765) 0.912 (σ = 0.0685, min = 0.573)
LP_samp(ARITH, 2, 1) 0.849 (σ = 0.105, min = 0.258) 0.798 (σ = 0.123, min = 0.199)
LP_samp(GEOM, 2, 1) 0.86 (σ = 0.105, min = 0.258) 0.809 (σ = 0.125, min = 0.218)
LP_samp(REC, 2, 1) 0.857 (σ = 0.106, min = 0.264) 0.806 (σ = 0.126, min = 0.201)
LP_samp(ARITH, 2, 2) 0.828 (σ = 0.129, min = 0.257) 0.78 (σ = 0.148, min = 0.211)
LP_samp(GEOM, 2, 2) 0.833 (σ = 0.129, min = 0.226) 0.785 (σ = 0.149, min = 0.186)
LP_samp(REC, 2, 2) 0.829 (σ = 0.131, min = 0.0908) 0.781 (σ = 0.151, min = 0.0814)
LP_samp(ARITH, 4, 1) 0.795 (σ = 0.127, min = 0.261) 0.749 (σ = 0.144, min = 0.199)
LP_samp(GEOM, 4, 1) 0.796 (σ = 0.125, min = 0.25) 0.75 (σ = 0.143, min = 0.205)
LP_samp(REC, 4, 1) 0.79 (σ = 0.127, min = 0.236) 0.745 (σ = 0.144, min = 0.198)
LP_samp(ARITH, 4, 4) 0.803 (σ = 0.141, min = 0.111) 0.758 (σ = 0.159, min = 0.0974)
LP_samp(GEOM, 4, 4) 0.804 (σ = 0.139, min = 0.0896) 0.758 (σ = 0.157, min = 0.0775)
LP_samp(REC, 4, 4) 0.798 (σ = 0.14, min = 0.148) 0.753 (σ = 0.158, min = 0.128)
LP_samp(ARITH, 8, 1) 0.766 (σ = 0.131, min = 0.219) 0.722 (σ = 0.147, min = 0.188)
LP_samp(GEOM, 8, 1) 0.77 (σ = 0.131, min = 0.239) 0.725 (σ = 0.147, min = 0.2)
LP_samp(REC, 8, 1) 0.761 (σ = 0.133, min = 0.22) 0.718 (σ = 0.149, min = 0.182)
0.05-approx 0.993 (σ = 0.0241, min = 0.111) 0.931 (σ = 0.0632, min = 0.097)
0.2-approx 0.985 (σ = 0.0203, min = 0.178) 0.923 (σ = 0.0583, min = 0.148)

Table 5.3: Communications / Computations = 0.625 (7,200 simulations).

Heuristic Normalized to best Normalized to UB
On-Demand 0.81 (σ = 0.115, min = 0.638) 0.763 (σ = 0.115, min = 0.529)
Round-Robin 0.81 (σ = 0.12, min = 0.51) 0.764 (σ = 0.125, min = 0.414)
LP_samp(ARITH, 1, 1) 0.958 (σ = 0.0419, min = 0.75) 0.903 (σ = 0.0686, min = 0.578)
LP_samp(ARITH, 2, 1) 0.85 (σ = 0.104, min = 0.226) 0.804 (σ = 0.12, min = 0.175)
LP_samp(GEOM, 2, 1) 0.866 (σ = 0.103, min = 0.248) 0.819 (σ = 0.121, min = 0.2)
LP_samp(REC, 2, 1) 0.865 (σ = 0.102, min = 0.299) 0.818 (σ = 0.12, min = 0.244)
LP_samp(ARITH, 2, 2) 0.832 (σ = 0.122, min = 0.241) 0.788 (σ = 0.139, min = 0.185)
LP_samp(GEOM, 2, 2) 0.841 (σ = 0.122, min = 0.246) 0.796 (σ = 0.139, min = 0.191)
LP_samp(REC, 2, 2) 0.835 (σ = 0.125, min = 0.0442) 0.792 (σ = 0.142, min = 0.04)
LP_samp(ARITH, 4, 1) 0.812 (σ = 0.126, min = 0.167) 0.77 (σ = 0.142, min = 0.134)
LP_samp(GEOM, 4, 1) 0.815 (σ = 0.124, min = 0.226) 0.772 (σ = 0.14, min = 0.183)
LP_samp(REC, 4, 1) 0.81 (σ = 0.124, min = 0.239) 0.767 (σ = 0.14, min = 0.186)
LP_samp(ARITH, 4, 4) 0.817 (σ = 0.133, min = 0.0541) 0.775 (σ = 0.149, min = 0.0495)
LP_samp(GEOM, 4, 4) 0.819 (σ = 0.132, min = 0.265) 0.776 (σ = 0.148, min = 0.212)
LP_samp(REC, 4, 4) 0.814 (σ = 0.134, min = 0.00353) 0.771 (σ = 0.15, min = 0.00313)
LP_samp(ARITH, 8, 1) 0.792 (σ = 0.13, min = 0.171) 0.751 (σ = 0.145, min = 0.137)
LP_samp(GEOM, 8, 1) 0.794 (σ = 0.129, min = 0.276) 0.752 (σ = 0.144, min = 0.215)
LP_samp(REC, 8, 1) 0.784 (σ = 0.132, min = 0.222) 0.743 (σ = 0.146, min = 0.198)
0.05-approx 0.995 (σ = 0.0128, min = 0.807) 0.938 (σ = 0.0528, min = 0.647)
0.2-approx 0.985 (σ = 0.0166, min = 0.289) 0.929 (σ = 0.0499, min = 0.267)

Table 5.4: Communications / Computations = 1 (7,200 simulations).

5.4. EXPERIMENTS 99

Heuristic Normalized to best Normalized to UB
On-Demand 0.86 (σ = 0.0897, min = 0.67) 0.817 (σ = 0.0929, min = 0.586)
Round-Robin 0.796 (σ = 0.135, min = 0.446) 0.757 (σ = 0.137, min = 0.371)
LP_samp(ARITH, 1, 1) 0.98 (σ = 0.0258, min = 0.812) 0.932 (σ = 0.0511, min = 0.649)
LP_samp(ARITH, 2, 1) 0.877 (σ = 0.101, min = 0.237) 0.835 (σ = 0.113, min = 0.225)
LP_samp(GEOM, 2, 1) 0.891 (σ = 0.102, min = 0.26) 0.849 (σ = 0.116, min = 0.23)
LP_samp(REC, 2, 1) 0.887 (σ = 0.102, min = 0.258) 0.845 (σ = 0.115, min = 0.213)
LP_samp(ARITH, 2, 2) 0.841 (σ = 0.121, min = 0.219) 0.803 (σ = 0.134, min = 0.177)
LP_samp(GEOM, 2, 2) 0.848 (σ = 0.123, min = 0.213) 0.809 (σ = 0.135, min = 0.202)
LP_samp(REC, 2, 2) 0.842 (σ = 0.126, min = 0.213) 0.804 (σ = 0.138, min = 0.202)
LP_samp(ARITH, 4, 1) 0.844 (σ = 0.123, min = 0.201) 0.805 (σ = 0.135, min = 0.189)
LP_samp(GEOM, 4, 1) 0.846 (σ = 0.124, min = 0.213) 0.807 (σ = 0.136, min = 0.202)
LP_samp(REC, 4, 1) 0.843 (σ = 0.123, min = 0.213) 0.804 (σ = 0.136, min = 0.202)
LP_samp(ARITH, 4, 4) 0.821 (σ = 0.133, min = 0.179) 0.784 (σ = 0.144, min = 0.168)
LP_samp(GEOM, 4, 4) 0.824 (σ = 0.133, min = 0.236) 0.787 (σ = 0.145, min = 0.209)
LP_samp(REC, 4, 4) 0.818 (σ = 0.135, min = 0.225) 0.781 (σ = 0.146, min = 0.209)
LP_samp(ARITH, 8, 1) 0.826 (σ = 0.13, min = 0.213) 0.789 (σ = 0.142, min = 0.187)
LP_samp(GEOM, 8, 1) 0.829 (σ = 0.129, min = 0.151) 0.791 (σ = 0.141, min = 0.139)
LP_samp(REC, 8, 1) 0.821 (σ = 0.135, min = 0.227) 0.784 (σ = 0.146, min = 0.187)
0.05-approx 0.994 (σ = 0.016, min = 0.15) 0.945 (σ = 0.0437, min = 0.136)
0.2-approx 0.988 (σ = 0.0119, min = 0.702) 0.939 (σ = 0.038, min = 0.67)

Table 5.5: Communications / Computations = 1.67 (7,200 simulations).

Heuristic Normalized to best Normalized to UB
On-Demand 0.987 (σ = 0.0162, min = 0.845) 0.938 (σ = 0.0416, min = 0.695)
Round-Robin 0.719 (σ = 0.0965, min = 0.443) 0.684 (σ = 0.099, min = 0.376)
LP_samp(ARITH, 1, 1) 0.977 (σ = 0.0364, min = 0.692) 0.93 (σ = 0.0586, min = 0.573)
LP_samp(ARITH, 2, 1) 0.862 (σ = 0.108, min = 0.291) 0.821 (σ = 0.118, min = 0.248)
LP_samp(GEOM, 2, 1) 0.894 (σ = 0.105, min = 0.381) 0.851 (σ = 0.116, min = 0.309)
LP_samp(REC, 2, 1) 0.874 (σ = 0.109, min = 0.291) 0.833 (σ = 0.119, min = 0.248)
LP_samp(ARITH, 2, 2) 0.812 (σ = 0.139, min = 0.268) 0.775 (σ = 0.149, min = 0.237)
LP_samp(GEOM, 2, 2) 0.835 (σ = 0.137, min = 0.269) 0.797 (σ = 0.146, min = 0.235)
LP_samp(REC, 2, 2) 0.812 (σ = 0.145, min = 0.207) 0.776 (σ = 0.154, min = 0.175)
LP_samp(ARITH, 4, 1) 0.82 (σ = 0.14, min = 0.241) 0.783 (σ = 0.149, min = 0.207)
LP_samp(GEOM, 4, 1) 0.838 (σ = 0.138, min = 0.217) 0.8 (σ = 0.147, min = 0.187)
LP_samp(REC, 4, 1) 0.818 (σ = 0.139, min = 0.217) 0.781 (σ = 0.149, min = 0.187)
LP_samp(ARITH, 4, 4) 0.79 (σ = 0.148, min = 0.221) 0.755 (σ = 0.157, min = 0.19)
LP_samp(GEOM, 4, 4) 0.796 (σ = 0.148, min = 0.233) 0.76 (σ = 0.157, min = 0.21)
LP_samp(REC, 4, 4) 0.785 (σ = 0.151, min = 0.233) 0.75 (σ = 0.16, min = 0.21)
LP_samp(ARITH, 8, 1) 0.799 (σ = 0.148, min = 0.221) 0.763 (σ = 0.157, min = 0.19)
LP_samp(GEOM, 8, 1) 0.81 (σ = 0.144, min = 0.278) 0.773 (σ = 0.153, min = 0.23)
LP_samp(REC, 8, 1) 0.795 (σ = 0.147, min = 0.223) 0.759 (σ = 0.156, min = 0.191)
0.05-approx 0.993 (σ = 0.0194, min = 0.806) 0.944 (σ = 0.0449, min = 0.692)
0.2-approx 0.986 (σ = 0.0142, min = 0.883) 0.937 (σ = 0.038, min = 0.754)

Table 5.6: Communications / Computations = 20 (2,880 simulations).

100 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

5, 000 instances of each application. Table 5.7 clearly shows that if 100 instances are often enough
to reach good throughputs with a steady-state approach (on average 98% of the best solution for
the ε-approximation, between 68% and 75% for the LP_samp(m, c, d) heuristics), some cases
are really tough: the minimum throughput of the ε-approximation can be as low as 11% of the
best solution, while the LP_samp(m, 1, 1) has a worst case equal to 69%. Splitting into more
buckets returns worse solutions, and the situation tends to be catastrophic when buckets are
formed using both communications and computations: LP_samp(m, 4, 4) has some worst cases
reaching less than 10% of the best solution. There are two reasons to these poor results: the
small size of the sample (only 10 instances of each application), which returns bad indications
on the distribution of communication sizes and volumes of computations, and the small numbers
of effectively processed instances. However, 100 instances are enough to be quite close to the
upper bound on the optimal, since our ε-approximation realizes on average more than 87% of
the optimal throughput, while our LP_samp(ARITH, 1, 1) realizes around 85% of this bound.

Using 1, 000 (Table 5.8) or 5, 000 instances (Table 5.9) significantly increases the average
results of LP_samp(m, c, d) using several buckets. Worst cases are also better: the 0.05-
approximation has a throughput at least equal to 80% of the best one, while the LP_samp(m, 1,
1) methods offer at least 83% of the best solution. This situation is similar for all methods using a
steady-state approach. 1, 000 instances are enough to almost reach the optimal, the performance
being around 95% of the optimal, both for our approximation and our LP_samp(() m, 1, 1)
heuristic. With 5, 000 instances, the situation is even better, since our 0.05-approximation offers
an average throughput equal to 97% of the upper bound, while our LP_samp(m, 1, 1) realizes
more than 96% of the optimal. Moreover, splitting into more buckets is more efficient as the
number of instances: on average around 90% of the best solution with 5, 000 instances, instead
of around 80% with 1, 000 instances, and 70% with 100 instances. However, it is still less efficient
than using a single bucket.

Compared to the best solution, the throughput reached on average by the On-Demand and
the Round-Robin policies is not related to the number of instances. On average, On-Demand
has a throughput equal to respectively 88%, 87% and 86% with 100, 1, 000 and 5, 000 instances.
The corresponding average throughputs of Round-Robin are equal to 78%, 78% and 77%.
Even their worst cases are independent of the number of instances, always being around 64%
for On-Demand and 45% for Round-Robin.

The upper bound on the reachable throughput provided by the ε-approximation is more
precise as the number of instances increases. With 100 instances of each application, On-
Demand reaches on average 79% of this bound, compared to the 88% of the ε-approximation.
As expected due to the increased precision of the upper bound, the results are better when
dealing with 1, 000 or 5, 000 instances: On-Demand reaches 83% of the upper bound. Similarly,
Round-Robin has an average throughput equal to 70% of the upper bound with 100 instances,
and 75% with at least 1, 000 instances.

5.4. EXPERIMENTS 101

Heuristic Normalized to best Normalized to UB
On-Demand 0.879 (σ = 0.101, min = 0.64) 0.788 (σ = 0.104, min = 0.529)
Round-Robin 0.781 (σ = 0.119, min = 0.443) 0.702 (σ = 0.124, min = 0.371)
LP_samp(ARITH, 1, 1) 0.951 (σ = 0.0448, min = 0.692) 0.853 (σ = 0.0691, min = 0.573)
LP_samp(ARITH, 2, 1) 0.788 (σ = 0.13, min = 0.226) 0.708 (σ = 0.132, min = 0.175)
LP_samp(GEOM, 2, 1) 0.793 (σ = 0.127, min = 0.248) 0.713 (σ = 0.129, min = 0.2)
LP_samp(REC, 2, 1) 0.786 (σ = 0.127, min = 0.239) 0.706 (σ = 0.129, min = 0.197)
LP_samp(ARITH, 2, 2) 0.731 (σ = 0.146, min = 0.219) 0.658 (σ = 0.15, min = 0.177)
LP_samp(GEOM, 2, 2) 0.734 (σ = 0.145, min = 0.213) 0.661 (σ = 0.148, min = 0.186)
LP_samp(REC, 2, 2) 0.717 (σ = 0.146, min = 0.0442) 0.646 (σ = 0.15, min = 0.04)
LP_samp(ARITH, 4, 1) 0.715 (σ = 0.144, min = 0.167) 0.644 (σ = 0.148, min = 0.134)
LP_samp(GEOM, 4, 1) 0.718 (σ = 0.142, min = 0.213) 0.647 (σ = 0.146, min = 0.183)
LP_samp(REC, 4, 1) 0.709 (σ = 0.143, min = 0.213) 0.639 (σ = 0.148, min = 0.186)
LP_samp(ARITH, 4, 4) 0.697 (σ = 0.148, min = 0.0541) 0.628 (σ = 0.153, min = 0.0495)
LP_samp(GEOM, 4, 4) 0.698 (σ = 0.147, min = 0.0896) 0.629 (σ = 0.152, min = 0.0775)
LP_samp(REC, 4, 4) 0.687 (σ = 0.146, min = 0.00353) 0.62 (σ = 0.151, min = 0.00313)
LP_samp(ARITH, 8, 1) 0.694 (σ = 0.146, min = 0.171) 0.626 (σ = 0.15, min = 0.137)
LP_samp(GEOM, 8, 1) 0.696 (σ = 0.144, min = 0.151) 0.627 (σ = 0.149, min = 0.139)
LP_samp(REC, 8, 1) 0.684 (σ = 0.147, min = 0.171) 0.617 (σ = 0.152, min = 0.151)
0.05-approx 0.98 (σ = 0.034, min = 0.111) 0.879 (σ = 0.0618, min = 0.097)
0.2-approx 0.98 (σ = 0.0308, min = 0.178) 0.878 (σ = 0.0596, min = 0.148)

Table 5.7: Summary of results, with 100 instances of each application (9,120 simulations).

Heuristic Normalized to best Normalized to UB
On-Demand 0.866 (σ = 0.111, min = 0.64) 0.834 (σ = 0.108, min = 0.605)
Round-Robin 0.778 (σ = 0.124, min = 0.499) 0.749 (σ = 0.122, min = 0.477)
LP_samp(ARITH, 1, 1) 0.977 (σ = 0.0269, min = 0.819) 0.941 (σ = 0.031, min = 0.763)
LP_samp(ARITH, 2, 1) 0.881 (σ = 0.0753, min = 0.554) 0.849 (σ = 0.0762, min = 0.518)
LP_samp(GEOM, 2, 1) 0.897 (σ = 0.0668, min = 0.604) 0.864 (σ = 0.0678, min = 0.569)
LP_samp(REC, 2, 1) 0.889 (σ = 0.0661, min = 0.579) 0.856 (σ = 0.0674, min = 0.555)
LP_samp(ARITH, 2, 2) 0.856 (σ = 0.0905, min = 0.433) 0.825 (σ = 0.0911, min = 0.409)
LP_samp(GEOM, 2, 2) 0.864 (σ = 0.0843, min = 0.394) 0.833 (σ = 0.0848, min = 0.37)
LP_samp(REC, 2, 2) 0.852 (σ = 0.0857, min = 0.465) 0.821 (σ = 0.0863, min = 0.446)
LP_samp(ARITH, 4, 1) 0.836 (σ = 0.0921, min = 0.403) 0.806 (σ = 0.0933, min = 0.379)
LP_samp(GEOM, 4, 1) 0.839 (σ = 0.0916, min = 0.413) 0.809 (σ = 0.0926, min = 0.39)
LP_samp(REC, 4, 1) 0.828 (σ = 0.0933, min = 0.404) 0.798 (σ = 0.0943, min = 0.379)
LP_samp(ARITH, 4, 4) 0.826 (σ = 0.103, min = 0.219) 0.796 (σ = 0.103, min = 0.21)
LP_samp(GEOM, 4, 4) 0.828 (σ = 0.101, min = 0.427) 0.798 (σ = 0.101, min = 0.405)
LP_samp(REC, 4, 4) 0.819 (σ = 0.106, min = 0.384) 0.79 (σ = 0.106, min = 0.369)
LP_samp(ARITH, 8, 1) 0.804 (σ = 0.107, min = 0.346) 0.775 (σ = 0.107, min = 0.327)
LP_samp(GEOM, 8, 1) 0.808 (σ = 0.105, min = 0.347) 0.779 (σ = 0.105, min = 0.325)
LP_samp(REC, 8, 1) 0.797 (σ = 0.109, min = 0.347) 0.768 (σ = 0.11, min = 0.328)
0.05-approx 0.998 (σ = 0.00744, min = 0.803) 0.961 (σ = 0.013, min = 0.751)
0.2-approx 0.988 (σ = 0.0109, min = 0.702) 0.952 (σ = 0.0146, min = 0.676)

Table 5.8: Summary of results, with 1,000 instances of each application (9,120 simulations).

102 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

Heuristic Normalized to best Normalized to UB
On-Demand 0.863 (σ = 0.112, min = 0.638) 0.84 (σ = 0.109, min = 0.618)
Round-Robin 0.779 (σ = 0.127, min = 0.509) 0.758 (σ = 0.125, min = 0.494)
LP_samp(ARITH, 1, 1) 0.984 (σ = 0.0241, min = 0.83) 0.958 (σ = 0.0245, min = 0.804)
LP_samp(ARITH, 2, 1) 0.911 (σ = 0.0575, min = 0.691) 0.886 (σ = 0.0574, min = 0.672)
LP_samp(GEOM, 2, 1) 0.935 (σ = 0.0492, min = 0.734) 0.91 (σ = 0.0489, min = 0.714)
LP_samp(REC, 2, 1) 0.928 (σ = 0.0496, min = 0.716) 0.903 (σ = 0.0496, min = 0.694)
LP_samp(ARITH, 2, 2) 0.915 (σ = 0.055, min = 0.626) 0.89 (σ = 0.055, min = 0.606)
LP_samp(GEOM, 2, 2) 0.928 (σ = 0.0456, min = 0.61) 0.903 (σ = 0.0454, min = 0.592)
LP_samp(REC, 2, 2) 0.922 (σ = 0.0471, min = 0.124) 0.897 (σ = 0.0472, min = 0.12)
LP_samp(ARITH, 4, 1) 0.894 (σ = 0.0725, min = 0.475) 0.87 (σ = 0.072, min = 0.459)
LP_samp(GEOM, 4, 1) 0.899 (σ = 0.0713, min = 0.608) 0.875 (σ = 0.0706, min = 0.588)
LP_samp(REC, 4, 1) 0.893 (σ = 0.0699, min = 0.586) 0.869 (σ = 0.0694, min = 0.563)
LP_samp(ARITH, 4, 4) 0.908 (σ = 0.058, min = 0.511) 0.884 (σ = 0.058, min = 0.495)
LP_samp(GEOM, 4, 4) 0.91 (σ = 0.0566, min = 0.574) 0.886 (σ = 0.0565, min = 0.559)
LP_samp(REC, 4, 4) 0.903 (σ = 0.0628, min = 0.354) 0.878 (σ = 0.0625, min = 0.344)
LP_samp(ARITH, 8, 1) 0.877 (σ = 0.0825, min = 0.436) 0.853 (σ = 0.0817, min = 0.424)
LP_samp(GEOM, 8, 1) 0.88 (σ = 0.0818, min = 0.504) 0.857 (σ = 0.081, min = 0.485)
LP_samp(REC, 8, 1) 0.872 (σ = 0.0847, min = 0.476) 0.849 (σ = 0.0839, min = 0.461)
0.05-approx 0.999 (σ = 0.00442, min = 0.807) 0.972 (σ = 0.00563, min = 0.787)
0.2-approx 0.986 (σ = 0.0102, min = 0.709) 0.959 (σ = 0.0109, min = 0.69)

Table 5.9: Summary of results, with 5,000 instances of each application (9,120 simulations).

Range of random variables. As said in Section 5.4.1, communication and computation volumes
are determined following a uniform probability law. These volumes may be constant, or, on the
contrary, may vary over a large range of values. The standard deviation is not suited to measure
these variations, since large applications may have a large standard deviation even if their sizes
are almost constant. Thus, if we consider the bounds min

(k)
comm , max

(k)
comm , min

(k)
comp and max

(k)
comp

on the volumes of an application Tk, we define the deviation of this application as:

ν(k) =
max

(k)
comm −min

(k)
comm

min
(k)
comm

+
max

(k)
comp −min

(k)
comp

min
(k)
comp

.

In Tables 5.10, 5.11, 5.12 and 5.13, the deviation is the same for all applications, even if they
have different sizes, and is equal in these tables to respectively 0.05, 0.75, 1.1 and 10.7. When
instances are almost constant (ν(k) = 0.05), steady-state methods ensure very good throughputs
and offering in almost all cases the best solution. In this case, steady-state methods are extremely
close to the upper bound on the optimal: 97.5% for the ε-approximation, between 90% and 97.5%
for the heuristics . Even with large deviations, up to 10.7, using a single bucket for all instances
remains the most efficient solution among all LP_samp(m, c, d) methods. Our steady-state
heuristics are almost unaffected by large deviations. Due to its dynamicity, On-Demand is able
to easily cope with large deviations, giving higher throughputs than our LP_samp(m, c, d) by
a short hand. Finally, our ε-approximation still returns the highest throughputs.

Splitting methods. Table 5.9 provides a good overview of the results of the methods using our
LP_samp(m, c, d) heuristic. The choice of method to gather instances into buckets has a little
importance, but the geometrical remains slightly better than the arithmetical one, itself better
than the recursive one. In this table, the difference between the average results of these three
methods is less than 2%.

5.4. EXPERIMENTS 103

Heuristic Normalized to best Normalized to UB
On-Demand 0.986 (σ = 0.00384, min = 0.975) 0.962 (σ = 0.00371, min = 0.953)
Round-Robin 0.706 (σ = 0.0948, min = 0.562) 0.688 (σ = 0.0932, min = 0.547)
LP_samp(ARITH, 1, 1) 1 (σ = 0.00028, min = 0.997) 0.975 (σ = 0.00178, min = 0.97)
LP_samp(ARITH, 2, 1) 1 (σ = 0.00028, min = 0.997) 0.975 (σ = 0.00178, min = 0.97)
LP_samp(GEOM, 2, 1) 1 (σ = 0.00028, min = 0.997) 0.975 (σ = 0.00178, min = 0.97)
LP_samp(REC, 2, 1) 0.953 (σ = 0.0248, min = 0.859) 0.93 (σ = 0.0248, min = 0.837)
LP_samp(ARITH, 2, 2) 1 (σ = 0.00028, min = 0.997) 0.975 (σ = 0.00178, min = 0.97)
LP_samp(GEOM, 2, 2) 1 (σ = 0.00028, min = 0.997) 0.975 (σ = 0.00178, min = 0.97)
LP_samp(REC, 2, 2) 0.927 (σ = 0.0443, min = 0.786) 0.904 (σ = 0.0441, min = 0.764)
LP_samp(ARITH, 4, 1) 0.954 (σ = 0.0343, min = 0.783) 0.93 (σ = 0.0341, min = 0.761)
LP_samp(GEOM, 4, 1) 0.952 (σ = 0.0333, min = 0.806) 0.928 (σ = 0.0332, min = 0.784)
LP_samp(REC, 4, 1) 0.92 (σ = 0.0439, min = 0.769) 0.897 (σ = 0.0438, min = 0.749)
LP_samp(ARITH, 4, 4) 0.939 (σ = 0.0438, min = 0.767) 0.916 (σ = 0.0436, min = 0.745)
LP_samp(GEOM, 4, 4) 0.938 (σ = 0.043, min = 0.772) 0.915 (σ = 0.0429, min = 0.75)
LP_samp(REC, 4, 4) 0.873 (σ = 0.0794, min = 0.657) 0.851 (σ = 0.0786, min = 0.638)
LP_samp(ARITH, 8, 1) 0.932 (σ = 0.0362, min = 0.788) 0.909 (σ = 0.0362, min = 0.766)
LP_samp(GEOM, 8, 1) 0.933 (σ = 0.0359, min = 0.811) 0.91 (σ = 0.036, min = 0.789)
LP_samp(REC, 8, 1) 0.894 (σ = 0.0606, min = 0.688) 0.871 (σ = 0.0602, min = 0.669)
0.05-approx 1 (σ = 0.000292, min = 0.998) 0.975 (σ = 0.00179, min = 0.97)
0.2-approx 1 (σ = 0.000292, min = 0.998) 0.975 (σ = 0.00179, min = 0.97)

Table 5.10: ν(k) = 0.05, with 5,000 instances of each application (240 simulations).

Heuristic Normalized to best Normalized to UB
On-Demand 0.829 (σ = 0.103, min = 0.661) 0.807 (σ = 0.101, min = 0.642)
Round-Robin 0.791 (σ = 0.135, min = 0.534) 0.77 (σ = 0.132, min = 0.519)
LP_samp(ARITH, 1, 1) 0.98 (σ = 0.0269, min = 0.874) 0.954 (σ = 0.0269, min = 0.846)
LP_samp(ARITH, 2, 1) 0.909 (σ = 0.0534, min = 0.693) 0.884 (σ = 0.0528, min = 0.673)
LP_samp(GEOM, 2, 1) 0.932 (σ = 0.0469, min = 0.749) 0.907 (σ = 0.0466, min = 0.727)
LP_samp(REC, 2, 1) 0.929 (σ = 0.0478, min = 0.742) 0.904 (σ = 0.0474, min = 0.72)
LP_samp(ARITH, 2, 2) 0.913 (σ = 0.0534, min = 0.626) 0.889 (σ = 0.053, min = 0.606)
LP_samp(GEOM, 2, 2) 0.925 (σ = 0.0451, min = 0.69) 0.9 (σ = 0.0449, min = 0.669)
LP_samp(REC, 2, 2) 0.924 (σ = 0.0456, min = 0.688) 0.899 (σ = 0.0453, min = 0.668)
LP_samp(ARITH, 4, 1) 0.892 (σ = 0.0686, min = 0.665) 0.869 (σ = 0.0678, min = 0.645)
LP_samp(GEOM, 4, 1) 0.895 (σ = 0.0684, min = 0.683) 0.871 (σ = 0.0677, min = 0.659)
LP_samp(REC, 4, 1) 0.896 (σ = 0.0674, min = 0.691) 0.872 (σ = 0.0667, min = 0.669)
LP_samp(ARITH, 4, 4) 0.91 (σ = 0.0572, min = 0.69) 0.886 (σ = 0.0568, min = 0.665)
LP_samp(GEOM, 4, 4) 0.912 (σ = 0.0562, min = 0.598) 0.887 (σ = 0.0557, min = 0.581)
LP_samp(REC, 4, 4) 0.907 (σ = 0.0594, min = 0.683) 0.883 (σ = 0.0589, min = 0.658)
LP_samp(ARITH, 8, 1) 0.877 (σ = 0.0796, min = 0.568) 0.853 (σ = 0.0786, min = 0.547)
LP_samp(GEOM, 8, 1) 0.882 (σ = 0.0769, min = 0.599) 0.859 (σ = 0.0759, min = 0.578)
LP_samp(REC, 8, 1) 0.873 (σ = 0.0815, min = 0.565) 0.85 (σ = 0.0805, min = 0.548)
0.05-approx 0.999 (σ = 0.00589, min = 0.807) 0.973 (σ = 0.00607, min = 0.787)
0.2-approx 0.987 (σ = 0.00904, min = 0.955) 0.96 (σ = 0.01, min = 0.925)

Table 5.11: ν(k) = 0.75, with 5,000 instances of each application (1,440 simulations).

104 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

Heuristic Normalized to best Normalized to UB
On-Demand 0.846 (σ = 0.115, min = 0.638) 0.823 (σ = 0.112, min = 0.618)
Round-Robin 0.784 (σ = 0.128, min = 0.509) 0.762 (σ = 0.125, min = 0.494)
LP_samp(ARITH, 1, 1) 0.977 (σ = 0.0306, min = 0.83) 0.95 (σ = 0.0308, min = 0.804)
LP_samp(ARITH, 2, 1) 0.884 (σ = 0.0615, min = 0.702) 0.86 (σ = 0.0613, min = 0.679)
LP_samp(GEOM, 2, 1) 0.923 (σ = 0.0581, min = 0.764) 0.898 (σ = 0.0581, min = 0.738)
LP_samp(REC, 2, 1) 0.908 (σ = 0.0592, min = 0.718) 0.883 (σ = 0.0592, min = 0.694)
LP_samp(ARITH, 2, 2) 0.902 (σ = 0.0535, min = 0.68) 0.877 (σ = 0.0533, min = 0.662)
LP_samp(GEOM, 2, 2) 0.925 (σ = 0.0421, min = 0.734) 0.899 (σ = 0.042, min = 0.711)
LP_samp(REC, 2, 2) 0.918 (σ = 0.046, min = 0.696) 0.892 (σ = 0.0459, min = 0.676)
LP_samp(ARITH, 4, 1) 0.862 (σ = 0.0894, min = 0.561) 0.838 (σ = 0.0886, min = 0.541)
LP_samp(GEOM, 4, 1) 0.873 (σ = 0.0881, min = 0.608) 0.849 (σ = 0.0874, min = 0.588)
LP_samp(REC, 4, 1) 0.87 (σ = 0.0869, min = 0.61) 0.846 (σ = 0.0862, min = 0.589)
LP_samp(ARITH, 4, 4) 0.901 (σ = 0.0603, min = 0.511) 0.876 (σ = 0.06, min = 0.495)
LP_samp(GEOM, 4, 4) 0.906 (σ = 0.0579, min = 0.678) 0.88 (σ = 0.0578, min = 0.659)
LP_samp(REC, 4, 4) 0.901 (σ = 0.0621, min = 0.568) 0.876 (σ = 0.0618, min = 0.554)
LP_samp(ARITH, 8, 1) 0.848 (σ = 0.101, min = 0.436) 0.824 (σ = 0.0999, min = 0.424)
LP_samp(GEOM, 8, 1) 0.85 (σ = 0.103, min = 0.539) 0.827 (σ = 0.102, min = 0.517)
LP_samp(REC, 8, 1) 0.843 (σ = 0.104, min = 0.555) 0.82 (σ = 0.103, min = 0.535)
0.05-approx 1 (σ = 0.00144, min = 0.984) 0.972 (σ = 0.00377, min = 0.946)
0.2-approx 0.987 (σ = 0.0108, min = 0.709) 0.959 (σ = 0.0111, min = 0.69)

Table 5.12: ν(k) = 1.1, with 5,000 instances of each application (1,680 simulations).

Heuristic Normalized to best Normalized to UB
On-Demand 0.986 (σ = 0.00707, min = 0.972) 0.953 (σ = 0.00768, min = 0.934)
Round-Robin 0.728 (σ = 0.0993, min = 0.557) 0.704 (σ = 0.0976, min = 0.538)
LP_samp(ARITH, 1, 1) 0.983 (σ = 0.0126, min = 0.935) 0.95 (σ = 0.0143, min = 0.899)
LP_samp(ARITH, 2, 1) 0.856 (σ = 0.0362, min = 0.742) 0.827 (σ = 0.0357, min = 0.723)
LP_samp(GEOM, 2, 1) 0.975 (σ = 0.0165, min = 0.917) 0.942 (σ = 0.0172, min = 0.882)
LP_samp(REC, 2, 1) 0.885 (σ = 0.0309, min = 0.803) 0.855 (σ = 0.0306, min = 0.775)
LP_samp(ARITH, 2, 2) 0.847 (σ = 0.0641, min = 0.65) 0.819 (σ = 0.0639, min = 0.624)
LP_samp(GEOM, 2, 2) 0.948 (σ = 0.0327, min = 0.78) 0.916 (σ = 0.0331, min = 0.754)
LP_samp(REC, 2, 2) 0.867 (σ = 0.061, min = 0.669) 0.838 (σ = 0.0612, min = 0.64)
LP_samp(ARITH, 4, 1) 0.864 (σ = 0.0541, min = 0.643) 0.835 (σ = 0.0534, min = 0.609)
LP_samp(GEOM, 4, 1) 0.955 (σ = 0.0293, min = 0.776) 0.923 (σ = 0.0297, min = 0.75)
LP_samp(REC, 4, 1) 0.89 (σ = 0.0441, min = 0.721) 0.86 (σ = 0.0436, min = 0.703)
LP_samp(ARITH, 4, 4) 0.87 (σ = 0.0628, min = 0.672) 0.841 (σ = 0.0633, min = 0.638)
LP_samp(GEOM, 4, 4) 0.9 (σ = 0.0617, min = 0.715) 0.87 (σ = 0.0612, min = 0.677)
LP_samp(REC, 4, 4) 0.869 (σ = 0.0714, min = 0.583) 0.84 (σ = 0.0706, min = 0.567)
LP_samp(ARITH, 8, 1) 0.888 (σ = 0.0617, min = 0.658) 0.858 (σ = 0.0611, min = 0.625)
LP_samp(GEOM, 8, 1) 0.926 (σ = 0.0419, min = 0.795) 0.895 (σ = 0.0415, min = 0.763)
LP_samp(REC, 8, 1) 0.888 (σ = 0.0574, min = 0.69) 0.858 (σ = 0.0573, min = 0.655)
0.05-approx 0.995 (σ = 0.0221, min = 0.862) 0.963 (σ = 0.025, min = 0.817)
0.2-approx 0.992 (σ = 0.00587, min = 0.975) 0.958 (σ = 0.00781, min = 0.934)

Table 5.13: ν(k) = 10.7, with 5,000 instances of each application (240 simulations).

5.5. CONCLUSION AND PERSPECTIVES 105

Heuristic Normalized to best Normalized to UB
On-Demand 0.856 (σ = 0.104, min = 0.638) 0.749 (σ = 0.104, min = 0.556)
Round-Robin 0.773 (σ = 0.115, min = 0.517) 0.676 (σ = 0.115, min = 0.45)
LP_samp(ARITH, 1, 1) 0.976 (σ = 0.0294, min = 0.83) 0.854 (σ = 0.0294, min = 0.723)
LP_samp(ARITH, 2, 1) 0.888 (σ = 0.0606, min = 0.691) 0.776 (σ = 0.0606, min = 0.605)
LP_samp(GEOM, 2, 1) 0.909 (σ = 0.0549, min = 0.734) 0.795 (σ = 0.0549, min = 0.643)
LP_samp(REC, 2, 1) 0.903 (σ = 0.0551, min = 0.716) 0.79 (σ = 0.0551, min = 0.624)
LP_samp(ARITH, 2, 2) 0.907 (σ = 0.0513, min = 0.626) 0.793 (σ = 0.0513, min = 0.545)
LP_samp(GEOM, 2, 2) 0.927 (σ = 0.0413, min = 0.69) 0.811 (σ = 0.0413, min = 0.602)
LP_samp(REC, 2, 2) 0.921 (σ = 0.0449, min = 0.124) 0.805 (σ = 0.0449, min = 0.108)
LP_samp(ARITH, 4, 1) 0.862 (σ = 0.0781, min = 0.475) 0.753 (σ = 0.0781, min = 0.413)
LP_samp(GEOM, 4, 1) 0.864 (σ = 0.079, min = 0.608) 0.756 (σ = 0.079, min = 0.529)
LP_samp(REC, 4, 1) 0.859 (σ = 0.0763, min = 0.586) 0.751 (σ = 0.0763, min = 0.507)
LP_samp(ARITH, 4, 4) 0.904 (σ = 0.0543, min = 0.511) 0.791 (σ = 0.0543, min = 0.445)
LP_samp(GEOM, 4, 4) 0.907 (σ = 0.0525, min = 0.598) 0.794 (σ = 0.0525, min = 0.523)
LP_samp(REC, 4, 4) 0.902 (σ = 0.056, min = 0.354) 0.789 (σ = 0.056, min = 0.31)
LP_samp(ARITH, 8, 1) 0.837 (σ = 0.0881, min = 0.436) 0.732 (σ = 0.0881, min = 0.381)
LP_samp(GEOM, 8, 1) 0.839 (σ = 0.0885, min = 0.504) 0.734 (σ = 0.0885, min = 0.436)
LP_samp(REC, 8, 1) 0.83 (σ = 0.0899, min = 0.476) 0.726 (σ = 0.0899, min = 0.415)
0.05-approx 0.999 (σ = 0.00737, min = 0.807) 0.874 (σ = 0.00737, min = 0.708)
0.2-approx 0.985 (σ = 0.00897, min = 0.929) 0.861 (σ = 0.00897, min = 0.809)

Table 5.14: φ = 0, with 5,000 instances of each application (3,040 simulations).

Correlation factor. Tables 5.14, 5.15, and 5.16 show that On-Demand, Round-Robin, and
our ε-approximation are mostly independent of the correlation between computations and com-
munications. On the contrary, the relative performance of LP_samp(m, c, 1) is increased when
there is a correlation between both values (φ > 0). However, these heuristics remain worse than
LP_samp(m, 1, 1), using a single bucket for each application.

5.5 Conclusion and perspectives

In this chapter, we have focused our attention on the scheduling of multiple bags of tasks on
a star-shaped heterogeneous platform. We considered the case of tasks, whose characteristics
follow probability laws, rather than being constant. We presented an ε-approximation using a
rational linear program, appropriate for the off-line model, as well as a heuristic suitable for the
online model. We compared these method to two well-known policies, Round-Robin and On-
Demand, with a large number of simulations. These simulations essentially showed that the best
method is our varepsilon-approximation, which is an off-line algorithm, and our LP_samp(1)
heuristic, which a semi-clairvoyant method. Round-Robin is outperformed by other methods,
but also that On-Demand performed very well on average, but offers a throughput up to 30%
smaller than our steady-state schedules. We only used the first instances of each application to
get a sufficient knowledge before running LP_samp(1) once. We could improve this method by
running LP_samp(1) every n instances, using our knowledge about these n instances to obtain
a better representation of the distribution.

In this chapter, we used a related heterogeneous model for computations, but the linear
programming approach we used could be easily extended to an unrelated model. In comparison,
dynamic policies like On-Demand do not take into account this difference and should perform
worse.

106 CHAPTER 5. DYNAMIC BAG-OF-TASKS APPLICATIONS

Heuristic Normalized to best Normalized to UB
On-Demand 0.863 (σ = 0.0979, min = 0.658) 0.756 (σ = 0.0979, min = 0.577)
Round-Robin 0.779 (σ = 0.111, min = 0.509) 0.683 (σ = 0.111, min = 0.445)
LP_samp(ARITH, 1, 1) 0.982 (σ = 0.0195, min = 0.898) 0.86 (σ = 0.0195, min = 0.784)
LP_samp(ARITH, 2, 1) 0.912 (σ = 0.0441, min = 0.732) 0.799 (σ = 0.0441, min = 0.64)
LP_samp(GEOM, 2, 1) 0.937 (σ = 0.0332, min = 0.789) 0.821 (σ = 0.0332, min = 0.693)
LP_samp(REC, 2, 1) 0.93 (σ = 0.0341, min = 0.788) 0.815 (σ = 0.0341, min = 0.688)
LP_samp(ARITH, 2, 2) 0.913 (σ = 0.0494, min = 0.65) 0.8 (σ = 0.0494, min = 0.561)
LP_samp(GEOM, 2, 2) 0.925 (σ = 0.0406, min = 0.61) 0.81 (σ = 0.0406, min = 0.533)
LP_samp(REC, 2, 2) 0.918 (σ = 0.0428, min = 0.669) 0.805 (σ = 0.0428, min = 0.576)
LP_samp(ARITH, 4, 1) 0.895 (σ = 0.0539, min = 0.573) 0.784 (σ = 0.0539, min = 0.499)
LP_samp(GEOM, 4, 1) 0.9 (σ = 0.05, min = 0.674) 0.789 (σ = 0.05, min = 0.587)
LP_samp(REC, 4, 1) 0.894 (σ = 0.0496, min = 0.684) 0.783 (σ = 0.0496, min = 0.598)
LP_samp(ARITH, 4, 4) 0.906 (σ = 0.0515, min = 0.528) 0.794 (σ = 0.0515, min = 0.464)
LP_samp(GEOM, 4, 4) 0.908 (σ = 0.0502, min = 0.687) 0.796 (σ = 0.0502, min = 0.599)
LP_samp(REC, 4, 4) 0.901 (σ = 0.0563, min = 0.642) 0.789 (σ = 0.0563, min = 0.562)
LP_samp(ARITH, 8, 1) 0.877 (σ = 0.0604, min = 0.617) 0.768 (σ = 0.0604, min = 0.539)
LP_samp(GEOM, 8, 1) 0.881 (σ = 0.0586, min = 0.626) 0.772 (σ = 0.0586, min = 0.547)
LP_samp(REC, 8, 1) 0.872 (σ = 0.0617, min = 0.571) 0.764 (σ = 0.0617, min = 0.497)
0.05-approx 0.999 (σ = 0.00345, min = 0.944) 0.876 (σ = 0.00345, min = 0.813)
0.2-approx 0.985 (σ = 0.0106, min = 0.709) 0.863 (σ = 0.0106, min = 0.621)

Table 5.15: φ = 0.5, with 5,000 instances of each application (3,040 simulations).

Heuristic Normalized to best Normalized to UB
On-Demand 0.871 (σ = 0.0919, min = 0.677) 0.763 (σ = 0.0919, min = 0.595)
Round-Robin 0.784 (σ = 0.111, min = 0.541) 0.688 (σ = 0.111, min = 0.472)
LP_samp(ARITH, 1, 1) 0.995 (σ = 0.0058, min = 0.954) 0.872 (σ = 0.0058, min = 0.834)
LP_samp(ARITH, 2, 1) 0.933 (σ = 0.0389, min = 0.742) 0.818 (σ = 0.0389, min = 0.651)
LP_samp(GEOM, 2, 1) 0.959 (σ = 0.026, min = 0.803) 0.84 (σ = 0.026, min = 0.702)
LP_samp(REC, 2, 1) 0.952 (σ = 0.0281, min = 0.812) 0.834 (σ = 0.0281, min = 0.709)
LP_samp(ARITH, 2, 2) 0.924 (σ = 0.0461, min = 0.675) 0.81 (σ = 0.0461, min = 0.59)
LP_samp(GEOM, 2, 2) 0.932 (σ = 0.0404, min = 0.701) 0.817 (σ = 0.0404, min = 0.611)
LP_samp(REC, 2, 2) 0.927 (σ = 0.0389, min = 0.721) 0.813 (σ = 0.0389, min = 0.632)
LP_samp(ARITH, 4, 1) 0.926 (σ = 0.0434, min = 0.688) 0.812 (σ = 0.0434, min = 0.601)
LP_samp(GEOM, 4, 1) 0.933 (σ = 0.0383, min = 0.734) 0.817 (σ = 0.0383, min = 0.643)
LP_samp(REC, 4, 1) 0.927 (σ = 0.0389, min = 0.721) 0.813 (σ = 0.0389, min = 0.632)
LP_samp(ARITH, 4, 4) 0.914 (σ = 0.0502, min = 0.684) 0.801 (σ = 0.0502, min = 0.596)
LP_samp(GEOM, 4, 4) 0.915 (σ = 0.0493, min = 0.574) 0.802 (σ = 0.0493, min = 0.503)
LP_samp(REC, 4, 4) 0.905 (σ = 0.0564, min = 0.568) 0.794 (σ = 0.0564, min = 0.499)
LP_samp(ARITH, 8, 1) 0.917 (σ = 0.047, min = 0.701) 0.804 (σ = 0.047, min = 0.611)
LP_samp(GEOM, 8, 1) 0.921 (σ = 0.0445, min = 0.672) 0.807 (σ = 0.0445, min = 0.588)
LP_samp(REC, 8, 1) 0.914 (σ = 0.0488, min = 0.674) 0.801 (σ = 0.0488, min = 0.588)
0.05-approx 0.999 (σ = 0.00291, min = 0.986) 0.876 (σ = 0.00291, min = 0.859)
0.2-approx 0.988 (σ = 0.00913, min = 0.962) 0.866 (σ = 0.00913, min = 0.842)

Table 5.16: φ = 1, with 5,000 instances of each application (3,040 simulations).

Chapter 6

Computing the throughput of replicated
workflows

6.1 Introduction

In this chapter, we focus our attention on simplified task graphs, as we only work on streaming
applications, or workflows, whose dependency graph is a linear chain composed of several tasks,
or stages. Such applications operate on a collection of data sets that are executed in a pipeline
fashion [78, 77, 84]. They are a popular programming paradigm for streaming applications like
video and audio encoding and decoding, DSP applications, etc. [39, 81, 89].

We still consider a large number of instances of the same workflow executed on a large
heterogeneous computing platform. As explained in Chapter 3, we aim at maximizing the
throughput ρ of our platform in steady-state, or, equivalently, at minimizing its period T , which
is defined as the inverse of the throughput.

When mapping application tasks onto processors, we enforce the rule that any given processor
will execute at most one task. However, the converse is not true. If the computations of a given
task are independent from one data set to another, then two consecutive computations (different
data sets) for the same task can be mapped onto distinct processors. Such a task is said to
be replicated, using the terminology of Subhlok and Vondran [78, 79] and of the DataCutter
team [26, 77, 85]. This corresponds to the dealable stages of Cole [35]. Thus, contrarily to
Chapter 4, we deal in this chapter with multi-allocations mappings. If a stage is replicated onto
several processors, then instances are distributed to the involved processors into a Round-Robin
fashion. If this can lead to a poor use of some processors (especially if a task is replicated on a
fast processor and a slow one), this replication method requires is an easy way to ensure that
processed data are output in their order of appearance and does not require temporary buffers
to reorder data.

Given an application and a target heterogeneous platform, the problem to determine the
optimal mapping (maximizing the throughput) has been shown NP-hard in [23]. The main
objective of this chapter is to assess the complexity of computing the throughput when the
mapping and the order of communications are given. The problem is easy when workflow tasks
are not replicated, i.e., when each task is assigned to a single processor: in that case the period
is dictated by the critical hardware resource. But when tasks are replicated, i.e., when a task
is assigned to several processors, the problem gets surprisingly complicated, and we provide
examples where the optimal period is larger than the largest cycle-time of any resource. In
other words, during the execution of the system, any resource will be idle at some point. We

107

108 CHAPTER 6. COMPUTING THE THROUGHPUT OF REPLICATED WORKFLOWS

F3 (Vcomm(3) bytes)

T1 (Vcomp(1) flop)

T2 (Vcomp(2) flop)

T3 (Vcomp(3) flop)

T4 (Vcomp(4) flop)

F1 (Vcomm(1) bytes)

F2 (Vcomm(2) bytes)

Figure 6.1: Example of a 4-stage pipeline.

present in Section 6.2 the detailed framework. We then show a model based on timed Petri nets
in Section 6.3 and how to use them in Section 6.4 to compute the optimal period in the general
case, and we provide a polynomial algorithm for the one-port model with overlap. Finally, we
report in Section 6.5 comprehensive simulation results on the gap between the optimal period
and the largest resource cycle-time, before concluding this chapter in Section 6.6.

6.2 Notation and hypotheses

Most variables were already defined in Section 3.2, we only briefly recall these definitions
and complete them by notation that is specific to this chapter.

6.2.1 Application model

As said in the introduction, we restrain our applications to streaming ones, or workflows,
whose dependency graph is a linear chain composed of m tasks, called Tk (1 ≤ k ≤ m). Each
task Tk has a size Vcomp(k), expressed in FLOP. Compared to general applications presented in
Section 3.2, the dependency scheme is simplified: Tk needs an input file Fk−1 of size Vcomm(k−1),
expressed in BYTES and produces an output file Fk of size Vcomm(k), which is the input file of
stage Tk+1. All these sizes are independent of the data set. Note that T1 produces the initial
data and does not receive any input file (Vcomm(0) = 0), while Tm gathers the final data and
does not send any file (Vcomm(m) = 0). Figure 6.1 shows a simple example of a 4-task pipeline.

6.2.2 Platform model

The workflow is executed on a fully connected, heterogeneous platform GP with n processors;
the timed needed by Pu to process Tk is equal to wu,k, following the unrelated model. We assume
that Pu → Pv is a bidirectional link from Pu to Pv, with bandwidth bwu,v. For instance, we can
have a physical star-shaped platform, where all processors are linked to each other through a
central switch. The time needed to transfer a file Fi from Pu to Pv is Vcomm (i)

bwu,v
. In this chapter,

we use two of the communication models presented in the introduction, and we recall their
characteristics:

6.2. NOTATION AND HYPOTHESES 109

Overlap One-Port. This first model permits overlap of communications by computations:
any processor can simultaneously receive data set i+ 1, compute the result of data set i,
and send the resulting data set i− 1 to the next processor.

Strict One-Port. In this model, there is no overlap of communications by computations:
a processor can either receive a given set of data, compute its result, or send this result.

6.2.3 Replication model

If we assume that a processor can process at most a single application task, any task can
be replicated onto several processors. Since instances of a same task are independent from one
data set to another, two successive computations are done onto distinct processors without extra
communications. Note that the computations of a replicated task can be fully sequential for a
given data set, what matters is that they do not depend from previous results for other data sets,
hence the possibility to process different data sets in different locations. The following schema
illustrates the replication of a task Tk onto three processors:

. . . Tk−1

� Tk on P1: data sets 1, 4, 7, . . . �
—– Tk on P2: data sets 2, 5, 8, . . . —–
� Tk on P3: data sets 3, 6, 9, . . . �

Tk+1 . . .

We remark that if no other task is replicated, then we have three distinct allocations. Since
the platform is said to be a fully-connected graph, any allocation is completely defined by giving
σ (Tk) for all tasks.

To fully describe a schedule, we obviously need the mapping of all tasks to processors but we
also need the order of processors for the Round-Robin distribution of instances on processors. If
task Tk is replicated onto a tuple (P3, P4, P7), then we assume that the first instance is processed
by P3, the second one is processed by P4, the third one by P7, the fourth one by P3, and so on.
This order is required to determine which communication links are used, and is respected even if
another processor is available. In the following pages, we assume without any loss of generality
that if we have i < j, then Pi processes its first instance before Pj . By definition, all processors
given in a tuple must be distinct.

The objective is to maximize the throughput ρ of the system. Equivalently, we aim at
minimizing the period T , which is the inverse of the throughput and corresponds to the time-
interval that separates two consecutive data sets entering the system. We can derive a lower
bound for the period as follows. Let Cexec(i) be the cycle-time of processor Pi. If we enforce
the Overlap One-Port model, then Cexec(i) is equal to the maximum of its reception time
Cin(i), its computation time Ccomp(i), and its transmission time Cout(i) (assuming that Cin(1) =
Cout(n) = 0):

Cexec(i) = max {Cin(i), Ccomp(i), Cout(i)} .

If we enforce the Strict One-Port model, then Cexec(i) is equal to the sum of the three
operations:

Cexec(i) = Cin(i) + Ccomp(i) + Cout(i).

In both models, the maximum cycle-time, Mct = max1≤i≤nCexec(i), is a lower bound for the
period.

Given an application and a target heterogeneous platform, determining a mapping which
maximizes the throughput has been shown to be an NP-hard problem in [23], even in the
simple case where no task can be replicated (thereby enforcing a one-to-one mapping of tasks

110 CHAPTER 6. COMPUTING THE THROUGHPUT OF REPLICATED WORKFLOWS

to processors). The proof of [23] was given for the Strict One-Port model but can be
easily extended to the Overlap One-Port model. In this chapter, we deal with the following
problem, which in appearance looks simpler: given the mapping of tasks to processors, how can
we compute the period T ? If no task is replicated, then the period is simply determined by
the critical resource (maximum cycle-time): T =Mct. Again, this problem is addressed in [23]
for the Strict One-Port model but the same result can be easily shown for the Overlap
One-Port model. However, when tasks are replicated, the previous result is no longer true,
and we need to use more sophisticated techniques such as timed Petri nets.

6.3 Timed Petri net models

6.3.1 A short introduction to timed Petri nets

In this section, we aim at modeling mappings with timed Petri nets (TPNs) as defined in [10],
in order to be able to compute the period of a given mapping. In the following, only TPNs with
the event graph property will be considered (see [11]). First, we recall the fundamentals of Petri
nets.

A timed Petri net is a 5-tuple (S, T,W, ν,M0), where:
– S is a finite set of places,
– T is a finite set of transitions, such that T ∩ S = ∅,
– W : (S × T) ∪ (T × S) → N defines a set of weighted arcs from a transition t ∈ T to a

place p ∈ S, or from a place p to a transition t: if W (x, y) is a positive integer, then there
is an arc of weight W (x, y) from x to y. Otherwise, W (x, y) is equal to 0.

– ν : T → R+ specifies the time required to fire a transition.
– M0 : S → N is the initial marking, i.e., a function associating an initial number of tokens

to places.
A place p is an input place of a transition t if, and only if, there is an arc from p to t:

W (p, t) > 0. Similarly, p is an output place of t if, and only if, there is an arc from t to p:
W (t, p) > 0.

A transition t is enabled if any input place p of t has enough tokens: M0(p) ≥W (p, t). If t is
fired at time τ , then the content of places connected to p are changed: tokens of input places are
consumed at time τ and some tokens are created on output places τ + ν(t). The new marking
M is defined at time τ by:

∀p ∈ S,M(p) = M0(p)−W (p, t).

At time τ + ν(t), tokens are created and the definitive marking M ′ is defined by:

∀p ∈ S,M ′(p) = M(p) +W (t, p).

As said before, we only consider event graphs: each place of the Petri net has exactly one
input and one output transition.

6.3.2 Mappings with replication

We consider mappings where some tasks may be replicated, as defined in Section 6.2.3: a
task can be processed by one or more processors. As already stated, two rules are enforced
to simplify the model: a processor can process at most one task, and if several processors are
involved in the computation of one task, they are served in a Round-Robin fashion. For example,

6.3. TIMED PETRI NET MODELS 111

T2(128)

73126

T2 (147)

(146)T3 (23) T3 T3(104)

T4(73)

T1(22)

165157

186

68

13
57

192

77

67

P2

P6

P3

P1

P4 P5

P7

Figure 6.2: Example A: Mapping with replication: T2 on 2 processors, T3 on 3 processors.

Input data Path in the system
0 P1 → P2 → P4 → P7

1 P1 → P3 → P5 → P7

2 P1 → P2 → P6 → P7

3 P1 → P3 → P4 → P7

4 P1 → P2 → P5 → P7

5 P1 → P3 → P6 → P7

6 P1 → P2 → P4 → P7

7 P1 → P3 → P5 → P7

Table 6.1: Example A: Paths followed by the first input data.

if Tk is mapped onto the tuple (P1, P2), P1 processes each odd instance of Tk starting from the
first one and P2 processes each even instance, even if P1 is faster than P2. In all our Petri
net models, the use of a physical resource during a time t (i.e., the computation of a task or
the transmission of a file from a processor to another one) is represented by a transition with
a firing time t, and dependencies are represented using places. Now, let us focus on the path
followed in the pipeline by a single input data set, for a mapping with several tasks replicated
on different processors. Consider Example A described in Figure 6.2: the first data set enters
the system and proceeds through processors P1, P2, P4 and P7. The second data set is first
processed by processor P1, then by processor P3 (even if P2 is available), by processor P5 and
finally by processor P7. Paths followed by the first eight input data sets are summarized up in
Table 6.1: as we can see, there are 6 different paths followed by the data sets, and then data set
i takes the same path as data set i− 6. Since the platform is a fully-connected graph, the path
followed by a data set is equivalent to an allocation. We have the following easy result:

Proposition 6.1. Consider a pipeline of m tasks T1, . . . , Tm, such that task Ti is mapped onto
Ri distinct processors. Then the number of paths followed by the input data in the whole system,

112 CHAPTER 6. COMPUTING THE THROUGHPUT OF REPLICATED WORKFLOWS

or, equivalently, the number of allocations, is equal to R = lcm (R1, . . . ,Rm).

Proof. Let R be the number of paths Pj followed by the input data. Assume that task Ti is
processed by processors Pi,0, . . . , Pi,Ri−1. By definition, all paths are distinct. Moreover, the
Round-Robin order is respected: path Pj is made of processors (P1,j mod R1 , . . . , Pi,j mod Ri

,
. . . , Pm,j mod Rm). The first path P0 is made of (P1,0, P2,0, . . . , Pm,0). By definition, R is the
smallest positive integer, such that the (R + 1)-th used path is identical to the first one:

∀i ∈ {1, . . . ,m} ,R mod Ri = 0.

R is then the smallest positive integer that is divisible by each Ri, i.e., R = lcm (R1, . . . ,Rm). �

The TPN model described in this chapter is rather similar to what has been done to model
jobshops with static schedules using TPNs [55]. Here, however, replication imposes that each
path followed by the input data must be fully developed in the TPN: if P1 appears in several
distinct paths, as in Figure 6.2, there are several transitions corresponding to P1. Furthermore,
we have to add dependencies between all the transitions corresponding to the same physical
resource to avoid the simultaneous use of the same resource by different input data. These
dependencies differ according to the model used for communications and computations.

6.3.3 Overlap One-Port model

First, let us focus on the Overlap One-Port model: any processor can receive a file and
send another one while computing. All allocations or paths followed by the input data in the
whole system have to appear in the TPN. We use the notation of Proposition 6.1.

Let R denote the number of allocations of our mapping. Then the i-th input data follows the
(i mod R)-th allocation, and we have a rectangular TPN, with R rows of 2m − 1 transitions,
due to them transitions representing the use of processors and them−1 transitions representing
the use of communication links. The i-th transition of the j-th row is named Tr ji . The time
required to fire a transition Tr j2i (corresponding to the processing of task Ti on processor Pu) is
set to wu,k, and the one required by a transition Tr j2i+1 (corresponding to the transmission of a
file Fi from Pu to Pv) is set to Vcomm(i)/bwu,v.

Then we add places between these transitions to model the following set of constraints:
1. The file Fi cannot be sent before the computation of Ti: a place is added from Tr j2i to

Tr j2i+1 on each row. Similarly, the task Ti+1 cannot be processed before the end of the
communication of Fi: a place is added from Tr j2i+1 to Tr j2(i+1) on each row j. All these
places are shown in Figure 6.3(a).

2. When a processor appears in several rows, the Round-Robin distribution imposes depen-
dencies between these rows. Assume that processor Pi appears on rows j1, j2, . . . , jk. Then
we add a place from Tr jl2i to Tr

jl+1

2i with 1 ≤ l ≤ k− 1, and a place from Tr jk2i to Tr j12i . All
these places are shown in Figure 6.3(b).

3. The one-port model and the Round-Robin distribution of communications also impose
dependencies between rows. Assume that processor Pi appears on rows j1, j2, . . . , jk and
does not compute the last task. Then we add a place from Tr jl2i+1 to Tr

jl+1

2i+1 with 1 ≤
l ≤ k − 1, and a place from Tr jk2i+1 to Tr j12i+1 to ensure that Pi does not send two files
simultaneously. All these places are shown in Figure 6.3(c).

4. In the same way, if Pi does not compute the first task, we add a place from Tr jl2i−1 to
Tr

jl+1

2i−1 with 1 ≤ l ≤ k − 1, and a place from Tr jk2i−1 to Tr j12i−1 to ensure that Pi does not
receive two files simultaneously. All these places are shown in Figure 6.3(d).

6.3. TIMED PETRI NET MODELS 113

T3 T4

P6

P4

P7

P7

P7P5

P6P1

P1

P7

P1

P1

P3

P2

P3

P2

P3

P2
T2T1

P1

P1

P7

P4

P5

P7

P3→ P4P1→ P3

P1→ P2

P1→ P3

P1→ P2
F1 F2

P2→ P4
F3

P4→ P7

P6→ P7

P4→ P7

P6→ P7

P5→ P7P3→ P5

P3→ P6

P5→ P7P2→ P5

P2→ P6

P1→ P3

P1→ P2

(a) Dependencies between communications and
computations.

P1

P4

P7

P7

T4
P7

T3
P4

P5

P2

P3

P2

P3

P2
T2T1

P1

P1

P1

P1

P7P1 P6

P5 P7

P7

P6

P3

P3→ P5

P1→ P3

P1→ P2

P1→ P3

P1→ P2

P1→ P3

P1→ P2
F1 F2

P2→ P4
F3

P4→ P7

P6→ P7

P4→ P7

P6→ P7

P5→ P7

P3→ P6

P5→ P7P2→ P5

P2→ P6

P3→ P4

(b) Dependencies due to the Round-Robin distribu-
tion of computations.

P2

P5

P4
T3

P7
T4

P7

P7P6

P4

P7

P7

P7

P3

P5

P6P1

P1

P1

P1

P1

P1
T1 T2

P2

P3

P2

P3 P3→ P4

P1→ P3

P1→ P2

P1→ P3

P1→ P2

P1→ P3

P1→ P2
F1 F2

P2→ P4
F3

P4→ P7

P6→ P7

P4→ P7

P6→ P7

P5→ P7P3→ P5

P3→ P6

P5→ P7P2→ P5

P2→ P6

(c) Dependencies due to the Round-Robin distribu-
tion of outgoing communications.

P2

P5

P4
T3

P7
T4

P7

P7P6

P4

P7

P7

P7

P3

P5

P6P1

P1

P1

P1

P1

P1
T1 T2

P2

P3

P2

P3 P3→ P4

P1→ P3

P1→ P2

P1→ P3

P1→ P2

P1→ P3

P1→ P2
F1 F2

P2→ P4
F3

P4→ P7

P6→ P7

P4→ P7

P6→ P7

P5→ P7P3→ P5

P3→ P6

P5→ P7P2→ P5

P2→ P6

(d) Dependencies due to the Round-Robin distribu-
tion of incoming communications.

Figure 6.3: Overlap One-Port model: places imposed by the different constraints described
in Subsection 6.3.3. Circuits model the Round-Robin distribution, and the single token in each
circuit models the fact that any resource can process at most one job at a time.

114 CHAPTER 6. COMPUTING THE THROUGHPUT OF REPLICATED WORKFLOWS

P5

P7

P5

P4
T3

P7
T4

P7

P7P6

P3

P4

P7

P2

P3

P2

P3

P2
T2T1

P1

P1

P1

P1

P1

P1 P6

P7

P1→ P3

P3→ P4

P3→ P5

P3→ P6

P5→ P7P2→ P5

P2→ P6

P6→ P7

P4→ P7

P6→ P7

P4→ P7
F3

P2→ P4
F2F1

P1→ P2

P1→ P3

P1→ P2

P1→ P3

P1→ P2

P5→ P7

Figure 6.4: Complete TPN of Example A for the Overlap One-Port model.

Finally, any resource, before it is use for the first time, is ready to compute or communicate,
and is waiting only for the input file. Indeed, a token is put in every place going from a transition
Tr jki to a transition Tr j1i , as defined in the previous lines. The complete TPN of Example A for
the Overlap One-Port model is given in Figure 6.4.

6.3.4 Strict One-Port model

In the Strict One-Port model, any processor can either send a file, receive another one,
or perform a computation while these operations were happening concurrently in the Overlap
One-Port model. Hence, we require a processor to successively receive the data corresponding
to an input file Fi, compute the task Ti+1 and send the file Fi+1 before receiving the next data
set of Fi. Allocations are obviously the same as in Subsection 6.3.3, and the structure of the
TPN remains the same (R rows of 2m− 1 transitions).

The first set of constraints is also identical to that of the Overlap One-Port model, since
we still have dependencies between communications and computations, as in Figure 6.3(a).
However, the other dependencies are replaced by those imposed by the Round-Robin order of
the Strict One-Port model.

Indeed, when a processor appears in several rows, the Round-Robin order imposes dependen-
cies between these rows. Assume that processor Pi appears on rows j1, j2, . . . , jk. Then we add a
place from Tr jl2i+1 to Tr

jl+1

2i−1 with 1 ≤ l ≤ k−1, and a place from Tr jk2i+1 to Tr j12i−1. These places
ensure the respect of the model: the next reception cannot start before the completion of the
current sequence reception-computation-sending. All these places are shown in Figure 6.5(a).

Any physical resource can immediately start its first communication, since it is initially
waiting only for the input file. Thus a token is put in every place from a transition Tr jki to
a transition Tr j1i , as defined in the previous lines. The complete TPN of Example A for the
Strict One-Port model is given in Figure 6.5(b).

The automatic construction of the TPN in both cases has been implemented. The time
needed to construct the Petri net is linear in its size: O(mR). This notation may hide the
potentially exponential size of the Petri net: for example, this is the case if all tasks are replicated
on distinct prime numbers of processors.

6.4. COMPUTING MAPPING THROUGHPUTS 115

T2

P3

P2

P3

P2

P3

P2
T1
P1

P1

P1

P1

P1

P1 P6

P5 P7

P7

P7

P4

P6 P7

P7

T4
P7

T3
P4

P5

P5→ P7

P2→ P6

P3→ P4

P5→ P7

P1→ P3

P1→ P2

P1→ P3

P1→ P2

P1→ P3

P1→ P2
F1 F2

P2→ P4
F3

P4→ P7

P6→ P7

P4→ P7

P6→ P7

P3→ P5

P3→ P6

P2→ P5

(a) Dependencies imposed by the Round-Robin
distribution.

P6P3

P2

P3

P2

P3

P2
T2T1

P1

P1

P1

P1

P1

P1

P5 P7

P7

P7

P4

P6 P7

P7

T4
P7

T3
P4

P5

P6→ P7

P3→ P5

P3→ P6

P5→ P7P2→ P5

P2→ P6

P3→ P4

P1→ P3

P1→ P2

P1→ P3

P1→ P2

P1→ P3

P1→ P2
F1 F2

P2→ P4
F3

P4→ P7

P4→ P7

P6→ P7

P5→ P7

(b) Complete TPN.

Figure 6.5: Strict One-Port model: places imposed by the different constraints described in
Subsection 6.3.4.

6.4 Computing mapping throughputs

TPNs with the event graph property make the computation of the throughput of a complex
system possible through the computation of critical cycles, using (max,+) algebra [11]. For any
cycle C in the TPN, let L(C) be its length (the sum of the time of its transitions) and t(C) be
the total number of tokens in places traversed by C. Then a critical cycle achieves the largest
ratio maxCcycle L(C)/t(C), and this ratio is the period T of the system: indeed, after a transitive
period, every transition of the TPN is fired exactly once during a period of length T [11].

Critical cycles can be computed with softwares like ERS [59] or GreatSPN [34] with a com-
plexity O(R3m3). By definition of the TPN, the firing of any transition of the last column
corresponds to the completion of the last task, i.e., to the completion of an instance of the work-
flow. Moreover, we know that all the R transitions (if R is still the number of rows of the TPN)
of this last column are fired in a Round-Robin order. In our case, R data sets are completed
during any period T : the obtained throughput ρ is R

T .

6.4.1 Overlap One-Port model

The TPN associated to the Overlap One-Port model has a regular structure, which
facilitates the determination of critical cycles. In the complete TPN, places are linked to tran-
sitions either in the same row and oriented forward, or in the same column. Hence, any cycle
only contains transitions belonging to the same “column”: we can split the complete TPN into
2m − 1 smaller TPNs, each sub-TPN representing either a communication or a computation.
However, the size of each sub-TPN (the restriction of the TPN to a single column) is not nec-
essarily polynomial in the size of the instance, due to the possibly large number of rows, equal
to R = lcm (R1, . . . ,Rm).

It turns out that a polynomial algorithm exists to find the weight L(C)/t(C) of a critical
cycle: only a fraction of each sub-TPN is required to compute this weight, without computing
the cycle itself. This is the main technical contribution of this chapter, given in the following

116 CHAPTER 6. COMPUTING THE THROUGHPUT OF REPLICATED WORKFLOWS

Theorem 6.1.
Before explaining this theorem and proving it, we present a result, giving the number of

connected components of the sub-TPN corresponding to a single communication. If a given
processor Pi sends data to Pj1 and to Pj2 (or receive data from them), then there is a dependency
between the Pj1 and Pj2 . In the TPN, this dependency is expressed by a place between the
transition corresponding to the communication from Pi to Pj1 and the transition corresponding
to the communication from Pi to Pj2 . More generally, if we consider the dependency graph,
then two transitions belong to the same connected component if, and only if, there is a set
of dependencies from one to the other. Due to the Round-Robin distribution, being in the
connected component is an equivalence relation.

Lemma 6.1. Assume that the communication of any file Fi involves a senders and b receivers.
The graph of dependencies between transitions is made of gcd(a, b) connected components of the
same size.

Proof. Consider any communication between a senders and b receivers. Without any loss
of generality, assume that senders are named P0, P1, . . . , Pa−1, and that receivers are named
Q0, Q1, . . . , Qb−1. Let Pik be the sender of the transmission of the k-th instance, while Qjk is
the receiver. By definition of the Round-Robin distribution, we have:

ik ≡ k (mod a) and jk ≡ k (mod b). (6.1)

A dependency exists between the k-th instance and the k′-th one if, and only if, they have
the same receiver (Pik = Pik′) or the same sender (Qjk = Qjk′). Thanks to Equation (6.1), there
exist two integers x and y, verifying:

k′ = k + ax and k′ = k + by.

Reciprocally, if there exist two integers x and y, such that k′ = k + ax + by, then there is a
dependency between the transitions corresponding to the k-th instance and to the k′-th one.

Thus, the transitions corresponding to the k-th instance and to the k′-th one are in the same
connected component if, and only if, there exist x and y, such that:

k − k′ = ax+ by.

This is a classical Diophantian equation, which has solutions if, and only if, k − k′ is a multiple
of the greatest common divisor d of a and b (d = gcd(a, b)).

Thus, we have d equivalence classes, corresponding to d connected components, which are
fully determined by the communication of the first d instances. Moreover, the i-th connected
component is made of communications between processors Pi+xd (with 0 ≤ x < a/d) and
processors Qj+yd (with 0 ≤ y < b/d).

�

Theorem 6.1. Consider a pipeline of m tasks T1, . . . , Tm, such that task Ti is mapped onto Ri

distinct processors. Then the throughput of this system can be computed in time
O
(∑m−1

i=1

(
(RiRi+1)3

))
.

Proof. We saw that the throughput of the platform is given by the weight of a critical cycle. As
said before, a critical cycle can only be found in a column of transitions, and we have two cases:

– transitions correspond to the computation of a task Ti,

6.4. COMPUTING MAPPING THROUGHPUTS 117

T1(1)

1

1

1 1
10

T2(1) T2(1) T2(1)

T1(1)T1(1)
10

10
10

11010

T2(1)

10

P7P4 P6P5

P3P2P1

Figure 6.6: Example B: T1 is replicated on 3 processors, and T2 on 4 processors.

7757

165

68

157

P3 → P4

P2 → P4 P2 → P5

P3 → P5 P3 → P6

P2 → P6

13

Figure 6.7: Sub-TPN corresponding to the transmission of F1 in Example A (Overlap One-
Port model).

– transitions correspond to the transmission of a file Fi.
The first case is the simplest one: each transition appears in exactly one cycle, and each

cycle passes through exactly one physical resource (all the transitions correspond to the same
task Ti on the same processor Pu). The average time required by Pu to process a single instance
is equal to

(
wu,i

Ri

)
(we recall that Ti is replicated onto Ri distinct processors). Thus, the running

time to compute cycle times for those columns is O (
∑m

i=1 Ri).
The second case is more complex: each transition appears in exactly two cycles. The first

cycle is created by the Round-Robin distribution on the output port of the emitter, and the
second one comes from the Round-Robin distribution on the input port of the receiver. By con-
struction, the corresponding sub-TPN is made of several elemental cycles, each elemental cycle
corresponding to the successive receptions of Fi by a processor participating to the computation
of Ti+1, or to the successive transmissions of Fi by a processor working on Ti. If any critical cycle
passes through both types of elemental cycles, then all resources can have idle times in the final
schedule. This is shown by Figure 6.10, which represents the Gantt chart of the first instances
of Example B. This example, presented in Figure 6.6, is made of a single communication, whose
sub-TPN is displayed in Figure 6.8; a critical cycle is drawn with dotted arrows.

118 CHAPTER 6. COMPUTING THE THROUGHPUT OF REPLICATED WORKFLOWS

P2→ P4

P3→ P4

P1→ P4

P3→ P6P3→ P5

P2→ P6

P1→ P6 P1→ P7

P2→ P7

P1→ P5

P2→ P5

P3→ P7

1

1

1

1 11010

10

10 10

10 10

Figure 6.8: Sub-TPN corresponding to the transmission of F1 in Example B (Overlap One-
Port model).

T1

T3T3T3

T4 T4

T3

T2T2

T1

T2

T1

T4

T3

P55

P28 P29 P30 P53

P6 P7 P26

P2P1 P5

P54 P64

P27

Figure 6.9: Example C: Tasks are respectively replicated on 5, 21, 27 and 11 processors.

6.4. COMPUTING MAPPING THROUGHPUTS 119

P3

P5 (in)

P4

P4 (in)

P2 (out)

P2

P7

P1

P7 (in)

P1 (out)

P6

P6 (in)

P3 (out)

P5

Period 4 Period 5

Period 6 Period 7 Period 8

Period 1 Period 2 Period 3

Figure 6.10: Gantt diagram of the first periods of Example B.

120 CHAPTER 6. COMPUTING THE THROUGHPUT OF REPLICATED WORKFLOWS

55 patterns

pattern

v = 9

u = 7

Figure 6.11: A complete connected component G (corresponding to Example C).

The communication of Fi involves Ri senders and Ri+1 receivers. The transmission of F1 in
Example C, displayed in Figure 6.9, is used for a better understanding of our proof. Let R be
the least common multiple of (R1, . . . ,Rm), and p the greatest common divisor of Ri and Ri+1

(p = gcd(Ri,Ri+1)). Let u be equal to Ri/p and v be equal to Ri+1/p. Thanks to Lemma 6.1 the
complete sub-TPN (denoted by G) is made of p connected components. Each of them are based
on c = R/lcm(Ri,Ri+1) copies of a pattern P of size u× v. If Ti is replicated on A0, . . . , ARi−1

and Ti+1 is replicated on B0, . . . , BRi−1, then this pattern P corresponds to communications
between processors Ai+xd (with 0 ≤ x < u) and processors Bj+yp (with 0 ≤ y < v). One of
these components is shown in Figure 6.11. Let Ca be a critical cycle. By definition of a cycle,
Ca is contained in one of the p connected components. Thus, without any loss of generality, we
now assume that the complete sub-TPN is reduced to a single connected component.

In the case of Example C, R1 = 5, R2 = 21, R3 = 27 and R4 = 11. Thus, we have R = 10395,
p = 3, c = 55, u = 7 and v = 9. There are 3 connected components, reflecting the fact that any
sender communicates with only 9 distinct receivers. For example, P6 only communicates with
P27, P30, P33, . . . , P51, and P7 only communicates with P28, P31, P34, . . . , P52.

Let us call xkij the transition on column i (0 ≤ i < u), row j (0 ≤ j < v) and pattern k
(0 ≤ k < c).

The structure of any connected component is very regular:
– if 0 ≤ i < u, then there is a place from xkij to xk(i+1)j , corresponding to the Round-Robin

on the receiver,

6.4. COMPUTING MAPPING THROUGHPUTS 121

v = 9 columns

u = 7 rows

Figure 6.12: A single pattern G′.

– if 0 ≤ j < v, then there is a place from xkij to x
k
i(j+1), corresponding to the Round-Robin

on the sender,
– if 0 ≤ k < c, then there is a place from xk(u−1)j to x

k+1
0j and from xki(v−1) to xk+1

i0 ,
– there is a place from xc−1

(u−1)j to x
0
0j and from xc−1

i(v−1) to x0
i0.

Thus, any critical cycle passes through all patterns of G. Now, let us call G′ the smaller graph
made of a single pattern of G. G′ has uv transitions, denoted by xij (with 0 ≤ i < u and
0 ≤ j < vb) and 2uv places, such that:

– if 0 ≤ i < u, then there is a place from xij to x(i+1)j ,
– if 0 ≤ j < v, then there is a place from xij to xi(j+1),
– there is a place from x(u−1)j to x0j and from xi(v−1) to xi0.

In Figure 6.12, we can see this graph G′, corresponding the full graph shown in Figure 6.11.
We need some other definitions:
– If we consider a cycle Ca in G, then by construction of P , the only way to pass through P is

to enter by either the first column or the first line. Let ka be the number of such entrances.
Similarly, if we consider a cycle Ca in G′, let ka be the number of places x(u−1)j → x0j and
xi(v−1) → xi0.

– Let La be the sum of all transitions of a cycle Ca.
– If Ca =

(
xk0i0,j0 , x

k1
i1,j1

, . . . , xkaia,ja

)
is a cycle in G, let Cb = (xi0,j0 , xi1,j1 , . . . , xia,ja) be its

projection in G′; by construction, the same place can appears many times in Cb.
– A cycle Ca in G′ can be dived into G to obtain a cycle Cb in G. This transformation is

shown in Figure 6.13.
– On the contrary, a cycle Ca in G can be projected on G′ to obtain a cycle Cb in G′. This

transformation is shown in Figure 6.14.
Obviously, if Ca is a cycle in G, then ka is a multiple of p, the total number of patterns in G.
Now, by construction of the sub-TPN, there is a single token in each place between the last and
the first pattern. Thus, the number of tokens in Ca is equal to ka/p.

1. Let C1 be any critical cycle of G. Its weight (or length) is L1, and the number of tokens is
equal to k1/p. Since C1 is critical, L1 × p

k1
is maximal.

122 CHAPTER 6. COMPUTING THE THROUGHPUT OF REPLICATED WORKFLOWS

CbCa

G ′ G

Figure 6.13: Diving Ca from G′ to G to obtain Cb.

Cb

G G ′

Ca

Figure 6.14: Projection of Ca from G to G′ to obtain Cb.

6.4. COMPUTING MAPPING THROUGHPUTS 123

2. Let C2 be the projection of C1 in G′. By construction of C2, k2 = k1 and L2 = L1.
However, there is no reason for C2 to be elemental. We split C2 into

(
C2

1 , . . . , C2
r2

)
, where

C2
i is elemental. Moreover, we have

∑r2
i=1 L2

i = L2 and
∑r2

i=1 k
2
i = k2.

3. Let C3 be one of the C2
i such that L3/k3 ≥ L2/k2. Such an C2

i exists, otherwise we have a
contradiction: assume that we have

∀i,L2
i /k

2
i < L2/k2

⇔ ∀i,L2
i /k

2
i <

∑r2
j=1 L2

i∑r2
j=1 k

2
i

⇔ ∀i,L2
i

r2∑
j=1

k2
j < k2

i

r2∑
j=1

L2
j .

We can sum these inequalities:

⇒
r2∑
i=1

L2
i

r2∑
j=1

k2
j

 <

r2∑
i=1

L2
i

r2∑
j=1

k2
j



⇔

(
r2∑
i=1

L2
i

) r2∑
j=1

k2
j

 <

(
r2∑
i=1

L2
i

) r2∑
j=1

k2
j

 .

This last inequality is obviously wrong, showing that our C3 exists.

4. Let C4 be any elemental cycle of G′, such that L4/k4 is maximal. Since C3 is elemental,
we have L4/k4 ≥ L3/k3. Such a critical cycle can be found in time O

(
(uv)3

)
[11].

5. Let C5 the diving of C4 in G. C5 is made of c = lcm(p, k4)/k4 copies of C4. Thus, we have
L5 = mL4 and k5 = mk4. Finally, L5/k5 = L4/k4. Again, there is no reason for C5 to be
an elemental cycle. We split C5 into

(
C5

1 , . . . , C5
r5

)
, where C5

i is elemental.

6. Let C6 be one of the C5
i such that L6/k6 ≥ L5/k5. As before, we can ensure that C6 exists,

and C6 is elemental. Moreover, the number of tokens in C6 is equal to k6/p.

7. Finally, we have:

L6/k6 ≥ L5/k5 = L4/k4 ≥ L3/k3 ≥ L2/k2 = L1/k1.

Since p is positive, we have:

L6p/k6 ≥ L5p/k5 = L4p/k4 ≥ L3p/k3 ≥ L2p/k2 = L1p/k1.

We know that L1p/k1 is maximal; since C6 is an elemental cycle, we have: L6/k6 = L1/k1

and thus,
L4/k4 = L1/k1.

We have shown that:
– C4 has the same critical weight as C1,
– C4 can be found without any knowledge on G nor C1,
– C4 is computed over G′, which has a polynomial size.

124 CHAPTER 6. COMPUTING THE THROUGHPUT OF REPLICATED WORKFLOWS

P7P3

P2

P3

P2

P3

P7
T4

P7

P7P6

P4

P1

P7

P7

P2
T2T1

P5

P6P1

P1

P1

P5

P4
T3

P1

P1

P2→ P5

P3→ P4

P1→ P3

P1→ P2

P1→ P3

P1→ P2

P1→ P3

P1→ P2
F1 F2

P2→ P4
F3

P4→ P7

P6→ P7

P4→ P7

P6→ P7

P5→ P7P3→ P5

P3→ P6

P5→ P7

P2→ P6

Figure 6.15: Complex critical cycles on Example A.

Hence, even if the sub-TPN has an exponential size, the length of its critical cycles can be found
in polynomial time for each of its connected components.

Since we compute the critical cycles for all the p connected components, the total running
time for the i-th communication is O

(
(uv)2p

)
= O

(
(RiRi+1)3

)
.

Thus, the total running time for all communications is O
(∑m−1

i=1

(
(RiRi+1)3

))
.

�

In Example A, a critical resource is the output port of P1, whose cycle-time is equal to the
period, 189. However it is possible to exhibit cases without critical resource: see for instance
Example B presented in Figure 6.6. Its critical resource cycle-time is Mct = 258.3 and corre-
sponds to the outgoing communications of P3. It is strictly smaller than the actual period of
the complete system, T = 291.7. While the resource cycle-time can be computed by hand, the
period of the system is given by ERS [59].

6.4.2 Strict One-Port model

Cycles in the TPN associated to the Strict One-Port model are more complex and less
regular, since corresponding TPNs have backward edges. An example of such a cycle is shown in
Figure 6.15. The intuition behind these backward edges is that a processor Pu cannot compute
an instance of Ti before having completely sent the result Fi of the previous instance of Ti to
the next processor Pv. Thus, Pu can be slowed by Pv. As for the Overlap One-Port model,
there exist mappings for which all resources have idle times during a complete period. With
the Strict One-Port model, this is the case for Example A, whose Gantt chart is presented
in Figure 6.16: the critical resource is P2, which has a cycle-timeMct = 215.8, strictly smaller
than the period T = 230.7.

6.5. EXPERIMENTS 125

Size (stages, processors) Computation times Communication times #exp without critical
resource / total

With overlap:
(10, 20) and (10, 30) between 5 and 15 between 5 and 15 0 / 220
(10, 20) and (10, 30) between 10 and 1000 between 10 and 1000 0 / 220

(20, 30) between 5 and 15 between 5 and 15 0 / 68
(20, 30) between 10 and 1000 between 10 and 1000 0 / 68

(2, 7) and (3, 7) 1 between 5 and 10 0 / 1000
(2, 7) and (3, 7) 1 between 10 and 50 0 / 1000
Without overlap:

(10, 20) and (10, 30) between 5 and 15 between 5 and 15 14 / 220 (diff less than 9%)
(10, 20) and (10, 30) between 10 and 1000 between 10 and 1000 0 / 220

(20, 30) between 5 and 15 between 5 and 15 5 / 68 (diff less than 7%)
(20, 30) between 10 and 1000 between 10 and 1000 0 / 68

(2, 7) and (3, 7) 1 between 5 and 10 10 / 1000 (diff less than 3%)
(2, 7) and (3, 7) 1 between 10 and 50 0 / 1000

Table 6.2: Numbers of experiments without critical resource.

6.5 Experiments

In Section 6.4, we have shown examples of mappings without any critical resource, i.e., whose
period is larger than any resource cycle-time, for both communication models. We have con-
ducted extended experiments to assess whether such situations are very common or not. Several
sets of applications and platforms were considered, with between 2 and 20 stages and between 7
and 30 processors. All relevant parameters (processor speeds, link bandwidths, number of pro-
cessors computing the same stage) were randomly chosen uniformly within the ranges indicated
in Table 6.2. Finally, each experiment was run for both models. We compared the inverse of the
critical resource cycle-time and the actual throughput of the whole platform. A grand total of
5, 152 different experiments were run. Table 6.2 shows that the cases without critical resources
are very rare. In fact no such case was actually found with the Overlap One-Port model!

The computation times closely depends on the duplication factor of each stage: the com-
putation of an example with 10 stages and 20 processors ranges from 2 to 150, 000 seconds on
powerful machines such as a quadri-core server.

6.6 Conclusion

In this chapter, we have studied the throughput of streaming applications mapped on het-
erogeneous platforms. The major originality of this work, and also its major difficulty, is that we
consider stage replication. Although this technique is classical in the literature, the computation
of the throughput of such complex mappings had not been addressed yet (at the best of our
knowledge). We have introduced TPNs (timed Petri nets) to determine the critical cycles of the
mapping. The complexity of throughput evaluation depends on the communication model. Even
the simple Round-Robin distribution implies complex interactions between involved resources,
resulting in schedules without any critical resource: there exist schedules such that all resources
remain partially idle, and this is true for both models. However, experiments show that such
cases are very rare under the Overlap One-Port model. In addition, we have established the

126 CHAPTER 6. COMPUTING THE THROUGHPUT OF REPLICATED WORKFLOWS

P7

P6

P6 (out)

P7 (in)

P1

P1 (out)

P2 (in)

P2

P2 (out)

P3 (in)

P3

P3 (out)

P4 (in)

P4

P4 (out)

P5 (in)

P5

P5 (out)

P6 (in)

Period 2 Period 3Period 1

Figure 6.16: Gantt diagram of a schedule without critical resource.

polynomial complexity of the problem for this Overlap One-Port model, while it remains
open for the Strict One-Port model.

In our model, we used a Round-Robin distribution of replicated tasks to their different
processors. We can easily remove this constraint to capture more general schedules, allowing a
faster processor to process more instances than a slower one, by modifying the given computation
time. However, this problem is studied in [16] and our complex model using Petri Nets has no
significant advantage in this case.

This work was focused on static platforms, opening the way to future work on finding good
schedules on dynamic platforms, whose speeds and bandwidths are modeled by random variables.
Ongoing works show that we can compute the average throughput in polynomial time in the
case of a homogeneous communication network (i.e., all communication times are given by the
same exponential law). In the case of a heterogeneous network, the average throughput can be
computed in a time exponential in the product of two successive replication counts.

Chapter 7

Task graph scheduling on the Cell processor

7.1 Introduction

Contrarily to the previous chapters, in which we studied the deployment of applications
on very large platforms such as computing grids, we now target a smaller platform: the Cell
processor. This processor is an example of the emerging heterogeneous multi-core architectures,
which can be made of homogeneous multi-core processors assisted by graphics processing units
(GPUs), or by heterogeneous multi-core processors.

If homogeneous multi-core processors are now widespread, heterogeneous ones are quite
recent, and softwares squeezing the most out of them are still rare. In this chapter, we study the
Cell, which is made of a single, classical, PowerPC processing unit, and of up to eight smaller
cores, dedicated to vectorial computing. As usual, we study the deployment of applications
modeled by DAGs: we have many instances of the same DAG to schedule, and we aim at
maximizing the throughput of the platform.

The Cell being the processor of game consoles like the Sony PlayStation 3, multimedia
softwares are an obvious target of our work, but many scientific applications can also benefit from
it, as soon as they are fine-grain parallel, streaming applications. Indeed, the usefulness of the
Cell for scientific computing has lead IBM to sell server blades [58] based on two Cell processors.
Due to its singularity, several solutions using a stream approach have been specifically developed
for the Cell, like the StreamIt framework [53] or the DataCutter-Lite implementation [54]. Some
other frameworks allow to handle communications and are well suited to matrix operations, like
ALF [57], Sequoia [45], CellSs [21] or BlockLib [3].

We enforce the rule that all instances of the same task are mapped on the same resource:
we use a single allocation, as explained in Section 4.1. This rule allows simpler flow control, and
the strong memory constraints we have also incite us to enforce this rule: running the same task
on different cores would lead to a useless duplication of variables. Splitting an application into
fine-grain tasks is naturally done by associating a task to any function; however, dispatching
these tasks to the available cores is a difficult problem, due to all the constraints.

We begin by describing in Section 7.2 the model of the Cell that we use to design our algo-
rithms. Then we explain our optimal solution, obtained through the resolution of a mixed linear
program in Section 7.3. In Section 7.4, we present the results of our preliminary experiments,
before concluding this chapter in Section 7.5.

127

128 CHAPTER 7. TASK GRAPH SCHEDULING ON THE CELL PROCESSOR

7.2 Modeling the Cell

In this section, we present our theoretical view of the Cell processor, as well as some useful
notation, which were not presented in the general introduction in Section 3.2.

7.2.1 Processor model

As said in the introduction, the Cell is a heterogeneous multi-core processor jointly devel-
oped by Sony Computer Entertainment, Toshiba, and IBM, in which we can find the following
components:
One Power core: also known as the PPE (standing for Power Processing Element) and re-

specting the Power ISA 2.03 standard, this core is two-way multithreaded. Its main role
is to control the other cores, and to be used by the OS due to its similarity with existing
processors. It has a 512-kB Level 2 cache and a 64-kB Level 1 cache, split into a 32-kB
cache for the data and a 32-kB cache for the instructions. A SIMD instruction set, known
as AltiVec or VMX, is also included in the PPE. We model multi-processor platforms by
a single Cell processor with more Power cores. These Power cores are hereafter denoted
by PPE i.

Several Synergistic Processing Elements (SPE) cores: these cores constitute the main
innovation of the Cell processor and are small 128-bit RISC processors specialized in
simple precision, SIMD operations. These differences induce that some tasks are by far
faster when processed on a SPE, while some other tasks can be slower, as stated by
the unrelated machine. Each SPE has its own local memory (called local store) of size
mem = 256 kB, and can access to other local stores and to the main memory only through
explicit asynchronous DMA calls. While the current Cell model has eight SPEs, only six
of them are available in the PS3, and IBM is working on models with up to 32 SPEs.
Therefore, we have to consider any number of SPEs in our model.

The main XDR memory: only PPEs have a transparent access to it. The dedicated memory
controller is integrated in the Cell and allows a fast access to the requested data. Since
this memory is by far larger than the SPE’s local stores, we consider it as always large
enough. Thus, we do not take its size into account in the following.

An Element Interconnect Bus (EIB): this ring bus links all parts of the Cell to each other.
The EIB has a bandwidth BW = 200 GB/s, and each component is connected to the EIB
through a bidirectional interface, with a bandwidth bw = 25 GB/s.

All these components are displayed in Figure 7.1, and a more schematic image is shown in
Figure 7.2. To simplify further equations, PPEs = {PE 0, . . . ,PEnp−1} denotes the set of PPEs,
while SPEs = {PEnp , . . . ,PEnp+ns−1} is the set of SPEs. Let n be the total number of cores,
i.e., n = np + ns.

Communication model. The bus is able to route all concurrent communications, and all com-
munication elements are fully bidirectional. We use a bounded-multiport, linear communication
cost model: a data of size S is sent or received in time S/b, where b is the bandwidth used for
this communication, and the sum of incoming or outgoing communications of any element does
not exceed its bandwidth. Memory accesses are counted as communications. Due to the limited
size of the DMA stack on each SPE, each SPE can issue at most 16 simultaneous DMA calls,
while the PPEs can issue at most eight simultaneous DMA calls to or from a given SPE. Since
each core has a dedicated DMA engine, communications can be overlapped by computations.

7.2. MODELING THE CELL 129

Figure 7.1: The complete Cell processor, and all its components.

EIBPPE 0

SPE 3SPE 2

SPE 6SPE 7SPE 1SPE 0

SPE 4

M
E
M
O
R
Y

SPE 5

Figure 7.2: Theoretical view of the Cell.

130 CHAPTER 7. TASK GRAPH SCHEDULING ON THE CELL PROCESSOR

7.2.2 Application model and schedule

The targeted applications are modeled by DAGs, as explained in Section 3.2.2. Thus, we
consider a graph GA = (VA, EA). Due to the fine-grain model, we have to consider the dif-
ference between communications between two tasks Tk and Tl, which are denoted by Fk,l, and
communications between a task Tk and the main memory. Indeed, we note readk the number of
bytes read in memory by each instance of task Tk, and writek the number of bytes it writes to
memory. Moreover, processing the t-th instance of task Tk requires the data corresponding to
the t-th instance of a file Fl,k, but may also require the data corresponding to a given number
of the next instances of the same file (let peekk be this number). In other words, Tk may need
information on the near future (i.e., the next instances) before actually processing an instance.
For example, if Tk is processed by PE i and if peekk is equal to 3, then PE i can process the first
instance of Tk when all the data corresponding to the fourth one are received by Pi and buffered
into its local store. This requirement must be taken into account while designing algorithms,
due to the strong memory constraints.

Since computing speeds of PPEs and SPEs are unrelated, wPPE(Tk) denotes the time re-
quired for a PPE to complete a single instance of Tk, while wSPE(Tk) is the time needed by a
SPE to process a single instance of Tk. As all SPEs and all PPEs are identical, these two values
suffice to fully describe the computation requirements.

Schedule reconstruction. Given a complete allocation σ (GA) of GA on GP , we use the same
technique as in Section 3.3 to obtain the complete description of a valid periodic schedule π.
Remind that a schedule is a function π associating:

– to each instance t of each task Tk, a starting computation time π (Tk, t),
– to each instance t of each file Fk,l, a starting transfer time π (Fk,l, t).
Since π is a periodic schedule of period T , the starting time of the t-th instance of a given

task Tk is given by a simple relation: π (Tk, t) = π (Tk, 0) + tT ; a similar relation holds true for
the starting times of file communications. The whole execution is split into periods of length T ,
and the u-th period of the schedule is the time interval between (u− 1) T and uT .

Due to dependency and peek constraints, we need to carefully select the first period, during
which a task (or a communication) is executed.

Theorem 7.1. Given a task graph GA and a valid allocation scheme σ with a throughput ρ =
1/T , we obtain a valid periodic schedule by applying the following rules:

1. If Tk has no incoming dependency, then its first instance is processed during the first period,

2. If the first instance of Tk is processed during the u-th period and if Tk produces a file Fk,l,
then the first instance of Fk,l is sent during the (u+ 1)-th period,

3. If Tl has a peek equal to peek l and requires files Fk0,l, . . . , Fkj ,l, . . . , Fkd,l, and if the first
instance of Fkj ,l is sent during the uj-th period, then the first instance of Tl is processed
during the (max0≤j≤d (uj) + peek l + 1)-th period.

Since there is no dependency between two communications or computations inside the same
period, the order of the different tasks in a given period does not matter. By construction, this
order is the same in every period.

Proof. During a time interval of length T , any resource has to process at most a single instance
of each task or file allocated to it. By definition of the period of the allocation, this duration is

7.2. MODELING THE CELL 131

enough to process all these instances. Indeed, all the first instances of tasks without dependency
can be executed during the first period, as required by rule (1).

If the t-th instance of task Tk is processed during the u-th period, then it is finished before
the end of this period. Therefore, any file Fk,l produced by Tk can be sent during the (u+ 1)-th
period as expected by rule (2).

Let us consider a task Tl requiring files Fk0,l, . . . , Fkj ,l, . . . , Fkd,l and with a peek peek l.
To be processed, the t-th instance of Tk requires all instances of these files between the t-th
and the (t + peekk)-th ones. Since the required instances of file Fkj ,l are received from the
uj-th to the (uj + peek l)-th period, the t-th instance of task Tl can be executed during the
(max0≤j≤d (uj) + peek l + 1)-th period as expected by rule (3).

Finally, the execution period of any instance of any task is well defined by these rules,
and dependencies and peek constraints are respected. Once the order of execution within a
given period is fixed (but it has no importance, since there is no dependency between tasks or
communications within a period), we obtain a complete description of a valid periodic schedule.

�

µ(Tk) denotes the period during which the first instance of Tk is executed. Similarly, µ(Fk,l)
denotes the period of the communication of the first instance of file Fk,l.

Determining buffer sizes. Since SPEs have only 256 kB of local store, memory constraints
on allocations are tight, and we need to precisely model them and to compute the size of the
required buffers. Mainly for technical reasons, the code of the whole application is replicated to
the local stores of all SPEs and to the memory shared across the PPEs. However, the buffers
required for communications are allocated only on the nodes really processing the tasks. If
Tl requires a file Fk,l with a peek peek l, then we allocate an incoming buffer of size buff k,l =
(datak,l. (µ(Tl)− µ(Tk))): the data of instance t sent by Tk are received during the (µ(Tk)+t)-th
period, but are used during the (µ(Tl) + t − 1)-th period. Note that the peek number is taken
into account during the determination of the µ(v) alues. To simplify the communication scheme,
buffers have the same size on the sender and on the receiver.

7.2.3 NP-completeness of throughput optimization

We now formally define the decision problem associated to the problem of maximizing the
throughput.

Definition 7.1 (Cell-Single-Alloc). Given a directed acyclic application graph GA, a Cell pro-
cessor model with at least two cores, and a bound B, is there an allocation with throughput
ρ ≥ B?

Theorem 7.2. Cell-Single-Alloc is NP-complete.

Proof. We first have to prove that the problem belongs to NP, that is that we can check in
polynomial time that the throughput of a given allocation is greater than or equal to B. Thanks
to Section 3.3, we know that this check can be made through the evaluation of a simple formula;
Cell-Single-Alloc is thus in NP.

To prove that Cell-Single-Alloc is NP-complete, we use a reduction from 2-Partition, known
to be NP-complete [48]. Consider an instance I1 of 2-Partition, that is a set I of c positive

132 CHAPTER 7. TASK GRAPH SCHEDULING ON THE CELL PROCESSOR

integers ai,1≤i≤c. The problem is to find a subset J , such that:∑
ai∈J

ai =
∑

ai∈I\J

ai.

We construct an instance I2 of Cell-Single-Alloc:
The application DAG is a simple collection of independent tasks, made of c + n − 2 tasks

T1, . . . , Tc+n−2, with the same computation time when executed on a SPE or on a PPE. The
computation time of task Tk is given by:

wPPE(Tk) = wSPE(Tk) =

{
ak if 1 ≤ k ≤ c,∑
ai∈I
2 if c < k ≤ c+ n− 2.

The throughput B to reach is set to 2/(
∑

ai∈I ai). Obviously, this construction is polynomial
in the size of the original instance I1.

In any solution of I2, the last n − 2 tasks are mapped on n − 2 cores, and no other task
can be mapped on these cores without exceeding the bound 1/B on the computation time.
Consequently, all the first c tasks are mapped on two cores. Without any loss of generality, we
assume that these two cores are SPE 0 and SPE 1.

Consider any solution J of I1. If ai belongs to J , then we map Ti on SPE 0. Otherwise Ti
is mapped on SPE 1. By construction, all tasks mapped on SPE 0 and SPE 1 can be executed
within a period equal to 1/B, and we have an allocation of the n + c − 2 tasks providing a
throughput B.

Reciprocally, consider any solution of I2. J is the set of all ais, such that Ti is mapped on
SPE 0. We have

∑
ai∈J ai ≤ 1/B = (

∑
ai∈I ai)/2 and

∑
ai∈I\J ai ≤ 1/B. By definition of B,

we have
∑

ai∈J ai =
∑

ai∈I\J ai.
Thus, finding an allocation with throughput greater than B is equivalent to finding a so-

lution to the instance of 2-Partition, and the transformation from a solution to another one is
polynomial.

Therefore, Cell-Single-Alloc is NP-complete.
�

7.3 A steady-state scheduling algorithm

We saw in the previous section that a valid allocation has many constraints to respect; if
ignoring some limitations like the communication bandwidths only leads to poor performance,
violating some memory constraints may lead to unfeasible solutions.

We aim at maximizing the throughput ρ of the processor using the solution of a linear
program gathering all these constraints. Before writing the constraints to respect, we introduce
two variables:

– αki =

{
1 if Tk is mapped on core PEk,
0 otherwise.

– βk,li,j =

{
1 if, and only if, file Fk,l is transfered from PE i to PE j ,
0 otherwise.

By definition, βk,li,j is equal to αki × αlj , but this redundancy between variables is required to
write linear constraints. Constraints on these variables have different origins, as stated below:

7.3. A STEADY-STATE SCHEDULING ALGORITHM 133

The application structure: – Each task is mapped on exactly one processor:

∀Tk,
n−1∑
i=0

αki = 1.

– Given a dependency Fk,l, the core computing Tl must receive the corresponding data:

∀Fk,l,∀j, 0 ≤ j < n,

n−1∑
i=0

βk,li,j ≥ α
l
j .

– Given a dependency Fk,l, only the processor computing Tk is able to send the corre-
sponding file to only one PE:

∀Fk,l, ∀i, 0 ≤ i < n,

n−1∑
j=0

βk,li,j ≤ α
k
i .

The achievable throughput ρ = 1/T : – On a given PPE, all tasks must be completed within
T :

∀i, 0 ≤ i < np,
∑
Tk

αkiwPPE(Tk) ≤ T .

– The same constraint holds true for the SPEs:

∀i, np ≤ i < ns,
∑
Tk

αkiwSPE(Tk) ≤ T .

– All incoming communications must be completed within T :

∀i, 0 ≤ i < n,
∑
Tk

αki readk +
∑
Fk,l

∑
0≤j<n,i6=j

βk,lj,i
datak,l

bw
≤ T .

– All outgoing communications must be completed with T :

∀i, 0 ≤ i < n,
∑
Tk

αki writek +
∑
Fk,l

∑
0≤j<n,i6=j

βk,li,j
datak,l

bw
≤ T .

The hardware limitations of the Cell. The Cell has very specific constraints, especially on
communications between cores. Even if SPEs are able to receive and send data while
they are doing some computation, they are not multithreaded and the computation must
be interrupted to initiate a communication (but the computation is resumed immediately
after the initialization of the communication). There are two ways to transfer data from
a core to another:

1. The sender writes data into the destination local store;
2. The receiver reads data from the source local store. This method is a bit faster, and

we decide to use it.

Due to the absence of auto-interruption mechanism, the computation thread regularly
checks the status of current communications. Moreover, any core has a limited number of
available identifiers for DMA calls. Since it is hard to precisely control the communication
sequence, we assume that all communications within a given period are simultaneous.

134 CHAPTER 7. TASK GRAPH SCHEDULING ON THE CELL PROCESSOR

– All temporary buffers used by SPEs must fit into their local stores:

∀i, np ≤ i < n,
∑
Tk

αki
∑
Fk,l

buff k,l +
∑
Fl,k

buff l,k

 ≤ mem.

– Any SPE can perform at most 16 simultaneous incoming DMA calls

∀i, np ≤ i < n,
∑

0≤j<n,i6=j

∑
Fk,l

βk,lj,i ≤ 16.

– Any PPE can perform at most eight simultaneous DMA calls from a given SPE:

∀i, 0 ≤ i < np, ∀j, np ≤ j < n,
∑
Fk,l

βk,lj,i ≤ 8.

These constraints form the following linear program:



Minimize T under the constraints
(7.1a) ∀Tk,

∑n−1
i=0 α

k
i = 1

(7.1b) ∀Fk,l,∀j, 0 ≤ j ≤ n− 1,
∑n−1

i=0 (βk,li,j) ≥ αlj
(7.1c) ∀Fk,l,∀i, 0 ≤ i ≤ n− 1,

∑n−1
j=0 (βk,li,j) ≤ αki

(7.1d) ∀i, 0 ≤ i < np,
∑

Tk
(αkiwPPE(Tk)) ≤ T

(7.1e) ∀i, np ≤ i < n,
∑

Tk
(αkiwSPE(Tk)) ≤ T

(7.1f) ∀i, 0 ≤ i < n, αki readk +
∑

Fk,l

∑
0≤j<n,j 6=i(β

k,l
j,i

datak,l

bw) ≤ T

(7.1g) ∀i, 0 ≤ i < n, αki writek +
∑

Fk,l

∑
0≤j<n,j 6=i(β

k,l
i,j

datak,l

bw) ≤ T

(7.1h) ∀i, np ≤ i < n,
∑

Tk

(
αki

(∑
Fk,l

buff k,l +
∑

Fl,k
buff l,k

))
≤ mem

(7.1i) ∀i, np ≤ i < n,
∑

0≤j<n,i6=j
∑

Fk,l
βk,lj,i ≤ 16

(7.1j) ∀i, 0 ≤ i < np,∀j 6= i, 0 ≤ j < n,
∑

Fk,l
βk,lj,i ≤ 8

(7.1)

7.4 Experiments

To assess the quality of both our model and our solution, we conduct several experiments.
We used a real hardware platform: a Sony PlayStation 3. This game console is built around a
single Cell processor, with 6 usable SPEs and a single Power core.

Scheduling framework. Together with this hardware platform, we also needed a software
framework to execute our schedules while handling communications. If there already exist some
frameworks dedicated to stream applications [53, 54], none of them are able to deal with complex
task graphs while allowing to statically select the mapping. Thus, we decided to develop one.
Our scheduler only requires the description of an allocation as input. Even if it was designed
to use the solution returned by the linear program (7.1), it can also use any mono-allocation
schedule. We will now briefly describe our scheduler which is mainly divided into two main
phases.

7.4. EXPERIMENTS 135

Signal new Data

Wait Resources

Process Task

Select a Task

Communicate

C
om

pu
ta

ti
on

P
ha

se
Communicate

(a) Computation Phase.

No

No more comm.

No

Get Data

Watch DMA

Check input buffers

Check input data

C
om

m
un

ic
at

io
n

P
ha

se

Compute

For each inbound comm.

(b) Communication Phase.

Figure 7.3: Scheduler state machine.

Computation phase: during which the scheduler selects a task and processes it.

Communication phase: during which the scheduler performs asynchronous communications.

These steps, depicted on Figure 7.3, are executed by every processing element. Moreover,
since communications are supposed to be overlapped by computations, our scheduler cyclically
alternates between these two phases.

The computation phase, which is shown on Figure 7.3(a), begins with the selection of a
runnable task according to the provided schedule, then it waits for the required resources (input
data and output buffers) to be available. If all required resources are available, the selected task
is processed, otherwise, it skips to the communication phase. When new data is produced, the
scheduler signals it to dependent processing elements.

The communication phase, depicted in Figure 7.3(b), aims at performing every incoming
communication, most often by issuing DMA calls. Therefore, the scheduler begins by watching
every previously issued DMA call in order to unlock the output buffer of the sender when data
had been received. Then, the scheduler checks whether there is new incoming data. In that
case, and if enough input buffers are available, it issues the proper Get command.

In our implementation, we had to deal with several issues:
– The Cell is, by nature, heterogeneous on several aspects:

– The SPEs are 32 bits whereas the PPE is a 64-bit architecture.
– Different communication mechanisms and constraints exist, depending on which pro-

cessing elements are implied in the communication. For instance, we used the following
intrinsics:
– mfc_get for SPEs’ inbound communications;
– spe_mfcio_put for PPEs’ inbound communications from SPEs;
– memcpy for PPEs’ inbound communications from main memory.

– Many variables need to be statically initialized in each local store before the execution of
the first instances:
– Information on tasks to execute on a given core,

136 CHAPTER 7. TASK GRAPH SCHEDULING ON THE CELL PROCESSOR

Vocoder

StepSource
work=21
I/O: 0->1

*** STATEFUL ***

IntToFloat
work=6

I/O: 1->1

Delay
work=215
I/O: 1->1

*** STATEFUL ***

DUPLICATE(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
work=null

RectangularToPolar
work=9105
I/O: 30->30

WEIGHTED_ROUND_ROBIN(1,1)
work=null

DUPLICATE(1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,1)
work=null

PolarToRectangular
work=5060
I/O: 40->40

FIRSmoothingFilter
work=3300
I/O: 15->15

Identity
work=90

I/O: 15->15

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Deconvolve
work=450

I/O: 30->30

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Duplicator
work=195

I/O: 15->20

LinearInterpolator
work=2010
I/O: 15->60

*** PEEKS 1 AHEAD ***

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Multiplier
work=220

I/O: 40->20

Decimator
work=320

I/O: 60->20

Identity
work=120

I/O: 20->20

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

Duplicator
work=195

I/O: 15->20

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,18,1)
work=null

FloatVoid
work=60

I/O: 20->0

WEIGHTED_ROUND_ROBIN(1,0)
work=null

InvDelay
work=9

I/O: 1->1
*** PEEKS 13 AHEAD ***

Identity
work=6

I/O: 1->1

Doubler
work=252

I/O: 18->18

Identity
work=6

I/O: 1->1

WEIGHTED_ROUND_ROBIN(1,18,1)
work=null

Pre_CollapsedDataParallel_1
work=207

I/O: 20->20

Adder
work=146
I/O: 20->2

Subtractor
work=14
I/O: 2->1

ConstMultiplier
work=8

I/O: 1->1

FloatToShort
work=12
I/O: 1->1

FileWriter
work=0

I/O: 1->0

Figure 7.4: Task graph corresponding to the Vocoder application.

– Control variables, such as the addresses of all memory blocks or the identifiers of the
currently processed instance,

– Variables internally used by tasks,
– Reception and transmission buffers.
This initialization phase is mainly complicated by two trends:
– Data structures, which are statically allocated, have varying sizes depending on the

considered processing element (32/64 bits);
– Runtime memory allocation.

The application. For our performance evaluation, we choose to fully implement a real-life
application: the Vocoder. This application, whose task graph is presented in Figure 7.4, applies
some modifications to any sound (often human voice) passed to its input. For instance, the
Vocoder can be used to get a robot-like voice from a regular human voice, or to disguise a
voice. To decrease the framework overhead, instances are aggregated into sets of 80 instances.
Moreover, the original application was slightly modified to have balanced computations and
communications, by artificially increasing the computation cost of some tasks.

This task graph is rather big (we have 141 tasks to schedule) and unbalanced since it has

7.4. EXPERIMENTS 137

embarrassingly parallel parts as well as more sequential ones. It is therefore not straightforward
to schedule this kind of graph on a heterogeneous parallel architecture like the Cell.

The mixed linear program is solved by Cplex [38] in less than two minutes, depending on
the machine solving the linear program.

Reference heuristic. Since we have a large number of tasks, defining a schedule by hand is not
feasible. Indeed, we use Algorithm 7 as a basis for comparisons. This algorithm tends to fill the
local stores of the SPEs before allocating the remaining tasks to the first PPE. As experiments
are run on a single-PPE platform, this limitation does not matter.

Algorithm 7: Greedy(GP , GA)

current_core ← SPE 0 ;
foreach Tk do

if memory and DMA calls constraints are respected then
mapping [Tk]← current_core ;

else
if current_core 6= SPEns−1 then

current_core ← next SPE ;
else

current_core ← PPE 0 ;
mapping [Tk]← current_core ;

return mapping ;

Experimental results. We compare the throughput obtained using our generated schedule to
the one obtained using Algorithm 7, and the one placing all tasks on the PPE. We can see on
Figure 7.5 that we outperform both other schedules: our throughput is more than 5.2 times
higher with six SPEs than the one achieved by placing every task on the PPE, and 2.6 times
higher than the one achieved by greedy.

We now consider how our scheduling technique scales when the number of SPE is increased.
We see that our approach scales better than the greedy algorithm. However, when comparing
the theoretical throughput predicted by the linear program to the real throughput achieved by
our application, there is a gap that could be explained mainly by the overhead introduced by
our scheduling framework, and by our modeling of communications that might be too simple.
These two trends still need to be precisely evaluated in future work.

Figure 7.6 shows that the steady state requires a quite large number of instances before
being reached: the overall throughput is equal to 357 instances per second when using 2, 000
instances, while it becomes equal to 403 instances per second when using 5, 000 instances. Using
more than 20, 000 instances does not significantly increase the overall throughput (431 instances
per second, compared to the theoretical throughput equal to 457. This can be explained by the
size of the task graph, and by the number of tasks peeking some data, increasing the finish time
of the first instances.

138 CHAPTER 7. TASK GRAPH SCHEDULING ON THE CELL PROCESSOR

Experimental LP

Experimental Greedy

Theoretical Greedy

Theoretical LP

2 3.5 4 4.5 5 5.5 6
Number of SPEs

100

150

200

250

300

350

400

450

T
hr
ou

gh
pu

t
(i
ns
ta
nc

e
/
se
c)

fo
r
10

00
0
in
st
an

ce
s

0 0.5 1 1.5 2.5 3

Figure 7.5: Throughput of Vocoder according to the number of SPEs used.

Theoretical

Experimental

350

450

T
hr
ou

gh
pu

t
(i
ns
ta
nc
e
/
se
c)

40,00032,50027,50022,50017,50012,5007,5002,5000

Number of instances

0

50

100

150

200

250

300

400

Figure 7.6: Throughput of Vocoder according to the number of instances used.

7.5. CONCLUSION 139

7.5 Conclusion

Mainly due to the heterogeneity of the Cell and its strong hardware constraints, placing
tasks on its different cores is a difficult problem, which has to be solved to efficiently use this
processor. In this chapter, we first introduced a theoretical model of the Cell processor. We
aim at scheduling a continuous flow of identical task graphs, and we use a steady-state approach
using a single allocation of tasks on cores to maximize the throughput.

To assess the validity and usefulness of our approach, we implemented a complete framework,
allowing to simply execute any steady-state schedule. Our method is compared to more classical
scheduling techniques, and outperforms them in our experiments.

140 CHAPTER 7. TASK GRAPH SCHEDULING ON THE CELL PROCESSOR

Chapter 8

Conclusion and Perspectives

8.1 Conclusion

In this thesis, we explored several problems, which are all focused on the scheduling of large
numbers of instances of the same application. We aimed at optimizing the use of the computing
platform by minimizing the computation time of these instances. Our main contributions are
recalled in the following paragraphs.

Scheduling multiple divisible loads on a linear network

Our first contribution is a work on the well-known Divisible Load Theory. Concentrating on
the scheduling of multiple divisible loads on a linear chain of processors, we intend to minimize
their total completion time. Section 2.3 gives emphasis to the issues in the existing solution of
this already studied problem, and this work gives in Section 2.4 a new and optimal solution.
Moreover, we prove in Section 2.5 the intuitive assertion claiming that any optimal distribution
of divisible loads on a linear chain of processors requires an infinite number of installments, as
soon as a linear communication cost model is considered; this result remains valid if the linear
chain of processors is replaced by a star-shaped platform.

Mono-allocation steady-state scheduling

Current computing grids are often as large as heterogeneous, and finding an efficient way to
deploy many instances on them is a hard problem. Furthermore, even if a productive theoretical
solution can be exhibited, this solution can be too complex to be actually implemented. The
first issue was (partially) solved by changing the objective function: instead of minimizing the
makespan which is the total completion time, we maximize the throughput, which is the average
number of instances processed by the whole platform. However, an optimal solution maximizing
the throughput is often made of a very large number of allocation schemes, and, thus, is not
feasible.

This conclusion leads us to find in Chapter 4 clever solutions using a simpler allocation
scheme, in order to allow a minimal program control while still reaching high throughputs.
Although our solution presented in Section 4.3 is optimal, it is not feasible for large problems due
to its high complexity in relation with the NP-completeness of our problem. Thus, we propose in
Section 4.4 several heuristics, especially Delegate. Experiments presented in Section 4.5 show
that this heuristic outperforms classical scheduling algorithms such as HEFT or Data-parallel
and that it is close to the optimal mono-allocation solution.

141

142 CHAPTER 8. CONCLUSION AND PERSPECTIVES

Steady-state scheduling of dynamic bag-of-tasks applications

Bag-of-tasks applications, which are made of a set of independent tasks, are now frequently
set up on dedicated computing grids, as well as on the so-called desktop grids. Simple star-
shaped platforms, constituted of a single master processor owning all initial data and sending
them to its worker, are commonly used to process these applications. In Chapter 5, we address
the problem of finding schedules in this situation. The most employed schedulers are dynamic
policies like on-demand or Round-Robin. However, while these strategies are versatile, they
do not take into account the regularity of the application nor the peculiarities of the platform,
downgrading the utilization of the physical resources.

This issue was already solved by adapted static schedulers when all instances of an ap-
plication have identical characteristics, but we studied the problem when the instances of an
application follow a given probability law in Section 5.3, and we proposed an ε-approximation
in Subsection 5.3.2. Since this approximation requires knowledge about incoming instances (off-
line model), we also describe an efficient heuristic in Subsection 5.3.3. Many experiments using
the Simgrid framework prove the advantage of using such static schedules, even in the online
case, when instances are only partially known.

Computing the throughput of replicated workflows

In Chapter 6, we consider a linear task graph, or workflow, of which we have a great number
of copies to schedule on a heterogeneous platform. Unlike in the previous chapters, we assume
that instances of a given task may be processed by distinct processors, and we apply a Round-
Robin distribution of instances to processors. In other words, such a task is replicated on several
processors. Two common communication models are analyzed. In the Overlap One-Port
model, processors can process data while it is still both receiving and sending some other data in
parallel, while a processor following the Strict One-Port model needs to do these operations
sequentially.

Even if the mapping is given, computing the throughput is difficult, and we need to introduce
complex models based on timed Petri nets in Section 6.3. These models enabled us to determine
the throughput for both communication models, as established in Section 6.4. An amazing result
is the absence of critical resource in some periodic schedules, any physical resource having idle
times. Nonetheless, some simulations showed in Section 6.5 that these cases are infrequent.

Cell scheduling

While other chapters target large physical platforms, our last chapter, Chapter 7, is devoted
to a single processor. This processor is the IBM Cell, a heterogeneous multi-core processor based
on a single regular 32-bit PowerPC core and up to eight smaller 64-bit cores, called SPEs. All
these cores are organized around a ring bus called EIB. These SPEs do not have cache memory,
only a small local store, and the main memory is available through explicit DMA calls. Due to
these features, optimizing a code for the Cell architecture is a hard work. In this chapter, we
aim at scheduling a continuous flow of instances of a given task graph.

Our first contribution is a tractable theoretical model of this processor explained in Sec-
tion 7.2. We also provide, in Section 7.3, an algorithm to schedule these instances while achiev-
ing a good throughput. To ease the use of periodic schedules and to assess the quality of our
solution in Section 7.4, a new programming framework was created and a real-world application

8.2. PERSPECTIVES 143

was implemented. Preliminary results present an actual throughput close to that predicted by
theory and better throughput than that returned by simpler greedy scheduling policies.

8.2 Perspectives

Few research topics can be considered as definitely closed, and those presented in this thesis
make no exception. We expose hereinafter some guidelines for further research.

Mono-allocation schedules of task graphs on heterogeneous platforms

In Chapter 4, we look at periodic schedules made of a single allocation. Since all instances
of a given task are processed on the same computing node, a schedule may require a lot of
communications to use the largest possible number of processors. If these communications
take a lot of time, some tasks may be duplicated on several processors to avoid several costly
communications. Thus, even if this duplication increases the computation time, it may decrease
the communication load of some critical links, especially in case of high communication-to-
computation ratios. Moreover, another interest of this redundancy is fault tolerance. Tolerance
to faults and maximization of throughput often are conflicting objectives. Thus, we may use
bicriteria strategies to find a convenient trade-off.

Steady-state scheduling of bag-of-tasks applications

In Chapter 5, target platforms are constituted of related heterogeneous processors. However,
due to the increasing heterogeneity of current computing grids, especially in the case of applica-
tions deployed through the BOINC framework, processors are more and more unrelated: a given
processor which can quickly execute a given application may be quite slow to processor another
one. Thus, we should extend our model to cope with this new source of heterogeneity. At a
first glance, our solution should still be efficient in this case, contrarily to the On-Demand al-
gorithm: even in the case of dominating computations, On-Demand is no more asymptotically
optimal.

Replicated workflows on heterogeneous platforms

In Chapter 6, we expose how can be computed the throughput of replicated workflows on
a heterogeneous platform. However, this computation requires the mapping to be known, and
currently there is no clever approach to produce efficient mappings and schedules. Thus, since
we can determine the effectiveness of a given schedule, we could search for efficient algorithms
to take advantage of the platform. Due to the complexity of this problem, we should turn to
polynomial heuristics rather than optimal schedules.

In this thesis, we deal with static applications, and we should move to dynamic ones, such that
their instance data sizes and computation amounts conform to given probability laws. Another
source of dynamicity comes from the platform itself. If processor speeds and link bandwidths
are rather stable over time in the case of dedicated computing structures, many clusters or
grids are shared by many users, implying considerable variations in resource loads resulting in
variations in speeds and bandwidths. It would be interesting to investigate the computation of
the throughput when tasks or resources are dynamic, and to see how to determine good schedules
in this setting.

144 CHAPTER 8. CONCLUSION AND PERSPECTIVES

Task graph scheduling on the Cell processor

Although Chapter 7 is devoted to a single processor rather than a large computing platform,
it is noteworthy to see how techniques originally designed to work on large-scale structures can
also work at this scale. The solution we give in Section 7.3 is based on a mixed linear program
and is not adapted to very large applications. Since our programming framework accepts any
Steady-state schedule, we could elaborate some heuristics to decrease the exponential complexity
of our heuristic while keeping a strong productivity. Moreover, our results are based on a single
application, and we should apply our framework to several other applications to consolidate our
results.

8.3 Final Remarks

During these last three years, the focus has been set on schedules specifically adapted to
the execution on many identical, or at least similar, instances of the same job. Regularity
played a key role in the solution design. Static schedules outperform dynamic ones because of
this underlying regularity of the applications. We abandoned makespan minimization to deal
with throughput optimization. However, even with this new “relaxed” objective, it turns out
that computing the optimal solution is often too costly due to the inherent complexity of the
problems, requiring the design of smart heuristics.

Appendix A

Bibliography

[1] M. Adler, Y. Gong, and A. Rosenberg. Asymptotically optimal worksharing in hnows: How
long is “sufficiently long?”. In ANSS ’03: Symposium on Simulation, page 39, Washington,
DC, USA, 2003. IEEE Computer Society Press.

[2] M. Adler, Y. Gong, and A. Rosenberg. On “exploiting” node-heterogeneous clusters opti-
mally. Theory of Computing Systems, 42(4):465–487, 2008.

[3] M. Ålind, M. Eriksson, and C. Kessler. BlockLib: a skeleton library for Cell broadband
engine. In IWMSE ’08: 1st international workshop on Multicore software engineering,
pages 7–14, New York, NY, USA, 2008. ACM.

[4] D. Altilar and Y. Paker. An optimal scheduling algorithm for parallel video processing. In
ICMCS’98: International Conference on Multimedia Computing and Systems, volume 0,
page 245, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

[5] D. Altilar and Y. Paker. Optimal scheduling algorithms for communication constrained
parallel processing. In Euro-Par 2002, number 2400 in LNCS, pages 197–206, New York,
NY, USA, 2002. Springer-Verlag.

[6] G. Amdahl. Validity of the single processor approach to achieving large-scale computing
capabilities. In AFIPS’67: American Federation of Information Processing Societies, pages
483–485, New York, NY, USA, 1967. ACM Press.

[7] D. Anderson. BOINC: A system for public-resource computing and storage. In GRID’04:
5th IEEE/ACM International Workshop on Grid Computing, pages 4–10, Washington,
DC, USA, 2004. IEEE Computer Society Press.

[8] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@home: an
experiment in public-resource computing. Communication ACM, 45(11):56–61, 2002.

[9] G. Ausiello, P. Crescenzi, V. Kann, G. Gambosi, and A. Marchetti-Spaccamela. Complex-
ity and Approximation: Combinatorial Optimization Problems and Their Approximability
Properties. Springer-Verlag, January 2000.

[10] F. Baccelli, G. Cohen, and B. Gaujal. Recursive equations and basic properties of timed
petri nets. Journal of Discrete Event Dynamic Systems, 1(4), 1992.

[11] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Linearity.
Wiley, 1992.

[12] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-centric
allocation of independent tasks on heterogeneous platforms. In IPDPS’02: International

145

146 APPENDIX A. BIBLIOGRAPHY

Parallel and Distributed Processing Symposium, Los Alamitos, CA, USA, 2002. IEEE Com-
puter Society Press.

[13] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang. Scheduling divisible
loads on star and tree networks: Results and open problems. Research report RR-4916,
INRIA, 2003.

[14] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang. Scheduling divisible
loads on star and tree networks: results and open problems. IEEE Transactions on Parallel
and Distributed Systems, 16(3):207–218, 2005.

[15] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Scheduling strategies for mixed
data and task parallelism on heterogeneous clusters. Parallel processing letters, 13(2),
2003.

[16] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Assessing the impact and limits of
steady-state scheduling for mixed task and data parallelism on heterogeneous platforms.
In ISPDC’04: International Symposium on Parallel and Distributed Computing, pages
296–302, July 2004.

[17] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Assessing the impact and limits of
steady-state scheduling for mixed task and data parallelism on heterogeneous platforms.
Research report RR-2004-20, LIP, ENS Lyon, France, April 2004.

[18] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Pipelining broadcasts on heteroge-
neous platforms. IEEE Transactions on Parallel and Distributed Systems, 16(4):300–313,
2005.

[19] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Steady-state scheduling on hetero-
geneous clusters. International Journal of Foundations of Computer Science, 16(2):163–
194, 2005.

[20] O. Beaumont, L. Marchal, and Y. Robert. Scheduling divisible loads with return messages
on heterogeneous master-worker platforms. In HiPC’05: International Conference on High
Performance Computing, pages 123–132. Springer-Verlag, 2005.

[21] P. Bellens, J. Perez, R. Badia, and J. Labarta. CellSs: a programming model for the Cell
BE architecture. In SC’06: ACM/IEEE Super Computing Conference, pages 5–5, Nov.
2006.

[22] A. Benoit, L. Marchal, and Y. Robert. Who needs a scheduler? Research report RR-2008-
34, LIP, 2008.

[23] A. Benoit and Y. Robert. Mapping pipeline skeletons onto heterogeneous platforms. Jour-
nal of Parallel and Distributed Computing, 68(6):790–808, 2008.

[24] D. Bertsekas. Constrained optimization and Lagrange Multiplier methods. Athena Scien-
tific, 1996.

[25] D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithms for job shop scheduling
and packet routing. Journal of Algorithms, 33(2):296–318, 1999.

[26] M. Beynon, T. Kurc, A. Sussman, and J. Saltz. Optimizing execution of component-based
applications using group instances. Future Generation Computer Systems, 18(4):435–448,
2002.

[27] V. Bharadwaj, D. Ghose, and V. Mani. Multi-installment load distribution in tree networks
with delays. IEEE Transactions on Aerospace and Electronic Systems, 31(2):555–567, April
1995.

147

[28] V. Bharadwaj, D. Ghose, V. Mani, and T. Robertazzi. Scheduling Divisible Loads in
Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos, CA, USA,
1996.

[29] J. Blazewicz, M. Drozdowski, and M. Markiewicz. Divisible task scheduling - concept and
verification. Parallel Computing, 25:87–98, 1999.

[30] P. Brucker. Scheduling Algorithms. Springer-Verlag, Secaucus, NJ, USA, 2001.

[31] H. Casanova, A. Legrand, and M. Quinson. SimGrid: a generic framework for large-scale
distributed experimentations. In UKSIM/EUROSIM’08: International Conference On
Computer Modeling and Simulation, volume 0, pages 126–131, Los Alamitos, CA, USA,
2008. IEEE Computer Society Press.

[32] S. Chan, V. Bharadwaj, and D. Ghose. Large matrix-vector products on distributed bus
networks with communication delays using the divisible load paradigm: performance and
simulation. Mathematics and Computers in Simulation, 58:71–92, 2001.

[33] B. Char, K. Geddes, G. Gonnet, M. Monagan, and S. Watt. Maple Reference Manual,
1988.

[34] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN: Graphical editor and
analyzer for timed and stochastic petri nets. Performance Evaluation, 24(1-2):47–68, 1995.

[35] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel
Programming. Parallel Computing, 30(3):389–406, 2004.

[36] D. Coudert, H. Rivano, and X. Roche. A combinatorial approximation algorithm for the
multicommodity flow problem. In WAOA’03: Lecture Notes in Computer Science, number
2909 in LNCS, pages 256–259. Springer-Verlag, 2003.

[37] J. Cowie, B. Dodson, E. Huizing, A. Lenstra, P. Montgomery, and J. Zayer. A world
wide number field sieve factoring record: On to 512 bits. In Advances in Cryptology —
ASIACRYPT ’96, pages 382–394. Springer-Verlag, London, UK, 1996.

[38] ILOG CPLEX: High-performance software for mathematical programming and optimiza-
tion. http://www.ilog.com/products/cplex/.

[39] DataCutter Project: Middleware for Filtering Large Archival Scientific Datasets in a Grid
Environment. http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.
htm.

[40] R. Dick, D. Rhodes, and W. Wolf. TGFF: task graphs for free. In CODES, pages 97–101,
1998.

[41] M. Drozdowski. Selected Problems of Scheduling Tasks in Multiprocessor Computer Sys-
tems. PhD thesis, Instytut Informatyki Politechnika Poznanska, Poznan, 1997.

[42] M. Drozdowski and P. Wolniewicz. On the complexity of divisible job scheduling with
limited memory buffers. Technical Report RA-001/2001, Instytut Informatyki Politechnika
Poznanska, 2001.

[43] M. Drozdowski and P. Wolniewicz. Divisible load scheduling in systems with limited
memory. Cluster Computing, 6(1):19–29, 2003.

[44] C. Eck, J. Knobloch, L. Robertson, I. Bird, K. Bos, H. Brook, D. Düllmann, I. Fisk,
D. Foster, B. Gibbard, C. Grandi, F. Grey, J. Harvey, A. Heiss, F. Hemmer, S. Jarp,
R. Jones, D. Kelsey, M. Lamanna, H. Marten, P. Mato-Vila, F. Ould-Saada, B. Panzer-
Steindel, L. Perini, Y. Schutz, U. Schwickerath, J. Shiers, and T. Wenaus. LHC computing

http://www.ilog.com/products/cplex/
http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.htm
http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.htm

148 APPENDIX A. BIBLIOGRAPHY

Grid: Technical design report. version 1.06 (20 jun 2005). Technical Report CERN-LHCC-
2005-024, CERN, June 2005.

[45] K. Fatahalian, T. Knight, M. Houston, M. Erez, D. Reiter Horn, L. Leem, J. Park, M. Ren,
A. Aiken, W. Dally, and P. Hanrahan. Sequoia: Programming the memory hierarchy.
SC’06: ACM/IEEE Super Computing Conference, 0:4, 2006.

[46] I. Foster and editors C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan-Kaufmann, 1998.

[47] I. Foster, M. Fidler, A. Roy, V. Sander, and L. Winkler. End-to-end quality of service for
high-end applications. Computer Communications, 27(14):1375–1388, 2004.

[48] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

[49] S. Genaud, A. Giersch, and F. Vivien. Load-balancing scatter operations for grid comput-
ing. Parallel Computing, 30(8):923–946, 2004.

[50] D. Ghose and T. Robertazzi, editors. Special issue on Divisible Load Scheduling. Cluster
Computing, 6, 1, 2003.

[51] GLPK (GNU Linear Programming Kit). http://www.gnu.org/software/glpk/.
[52] R. Graham, D. Knuth, and O. Patashnik. Concrete mathematics: a foundation for com-

puter science. Wesley, 1994.
[53] X. Hang. A streaming computation framework for the Cell processor. M.eng. thesis,

Massachusetts Institute of Technology, Cambridge, MA, Aug 2007.
[54] T. Hartley and U. Catalyurek. A component-based framework for the Cell broadband

engine. In IPDPS’09: International Parallel and Distributed Processing Symposium, Los
Alamitos, CA, USA, june 2009. IEEE Computer Society Press.

[55] H. Hillion and J.-M. Proth. Performance evaluation of job shop systems using timed event
graphs. IEEE Transactions on Automatic Control, 34(1):3–9, 1989.

[56] B. Hong and V. Prasanna. Distributed adaptive task allocation in heterogeneous com-
puting environments to maximize throughput. In IPDPS’04: International Parallel and
Distributed Processing Symposium, Los Alamitos, CA, USA, 2004. IEEE Computer Society
Press.

[57] IBM. Accelerated library framework. http://www.ibm.com/developerworks/blogs/
page/powerarchitecture?entry=ibomb_alf_sdk30_1&S_TACT=105AGX16&S_CMP=EDU,
2007.

[58] IBM. IBM BladeCenter QS22. http://www-03.ibm.com/systems/bladecenter/
hardware/servers/qs21/index.html, 2009.

[59] A. Jean-Marie. ERS: a tool set for performance evaluation of discrete event systems.
http://www-sop.inria.fr/mistral/soft/ers.html.

[60] L. Kachiyan. A polynomial algorithm in linear programming. Soviet Mathematics Doklady,
20:191–194, 1979.

[61] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled implementation of the
message passing interface. Journal of Parallel and Distributed Computing, 63(5):551 – 563,
2003. Special Issue on Computational Grids.

[62] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky. SETI@home-massively
distributed computing for SETI. Computing in Science and Engineering, 3(1):78–83,
Jan/Feb 2001.

http://www.gnu.org/software/glpk/
http://www.ibm.com/developerworks/blogs/page/powerarchitecture?entry=ibomb_alf_sdk30_1&S_TACT=105AGX16&S_CMP=EDU
http://www.ibm.com/developerworks/blogs/page/powerarchitecture?entry=ibomb_alf_sdk30_1&S_TACT=105AGX16&S_CMP=EDU
http://www-03.ibm.com/systems/bladecenter/hardware/servers/qs21/index.html
http://www-03.ibm.com/systems/bladecenter/hardware/servers/qs21/index.html
http://www-sop.inria.fr/mistral/soft/ers.html

149

[63] S. Larson, C. Snow, M. Shirts, and V. Pande. Folding@Home and Genome@Home: Using
distributed computing to tackle previously intractable problems in computational biology.
Computational Genomics, 2002.

[64] C. Lee and M. Hamdi. Parallel image processing applications on a network of workstations.
Parallel Computing, 21:137–160, 1995.

[65] A. Legrand, L. Marchal, and H. Casanova. Scheduling Distributed Applications: The
SimGrid Simulation Framework. In CCGrid’03: International Symposium on Cluster
Computing and the Grid, pages 138–145, May 2003.

[66] A. Legrand, A. Su, and F. Vivien. Minimizing the stretch when scheduling flows of bio-
logical requests. In SPAA’06: Symposium on Parallelism in Algorithms and Architectures,
pages 103–112, New York, NY, USA, 2006. ACM Press.

[67] J. Lenstra, A. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling problems.
Annals of Discrete Mathematics, 1:343–362, 1977.

[68] X. Li, V. Bharadwaj, and C. Ko. Divisible load scheduling on single-level tree networks with
buffer constraints. IEEE Transactions on Aerospace and Electronic Systems, 36(4):1298–
1308, Oct 2000.

[69] X. Li, B. Veeravalli, and C. Ko. Distributed image processing on a network of workstations.
International Journal of Computers and Applications, 25(2):1–10, 2003.

[70] Pipealign. http://bips.u-strasbg.fr/PipeAlign/Documentation/.
[71] T. Robertazzi. Ten reasons to use divisible load theory. IEEE Computer, 36(5):63–68,

2003.
[72] A. Rosenberg. Sharing partitionable workloads in heterogeneous NOWs: Greedier is not

better. In CLUSTER ’01: 3rd IEEE International Conference on Cluster Computing, page
124, Washington, DC, USA, 2001. IEEE Computer Society Press.

[73] T. Saif and M. Parashar. Understanding the behavior and performance of non-blocking
communications in MPI. In Euro-Par 2004, number 3149 in LNCS, pages 173–182, New
York, NY, USA, December 2004. Springer-Verlag.

[74] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press,
Cambridge, MA, USA, 1989.

[75] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, New-York,
1986.

[76] B. Shirazi, A. Hurson, and K. Kavi. Scheduling and load balancing in parallel and dis-
tributed systems. IEEE Computer Society Press, Los Alamitos, CA, USA, 1995.

[77] M. Spencer, R. Ferreira, M. Beynon, T. Kurc, U. Catalyurek, A. Sussman, and J. Saltz.
Executing multiple pipelined data analysis operations in the grid. In 2002 ACM/IEEE
Supercomputing Conference. ACM Press, 2002.

[78] J. Subhlok and G. Vondran. Optimal mapping of sequences of data parallel tasks. In
Proc. 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP’95, pages 134–143. ACM Press, 1995.

[79] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data parallel
pipelines. In SPAA’96: Symposium on Parallelism in Algorithms and Architectures, pages
62–71, New York, NY, USA, 1996. ACM Press.

[80] F. Suter. Dag generation program. http://www.loria.fr/~suter/dags.html, 2009.

http://bips.u-strasbg.fr/PipeAlign/Documentation/
http://www.loria.fr/~suter/dags.html

150 APPENDIX A. BIBLIOGRAPHY

[81] K. Taura and A. Chien. A heuristic algorithm for mapping communicating tasks on
heterogeneous resources. In HCW’00: Heterogeneous Computing Workshop, pages 102–
115, Los Alamitos, CA, USA, 2000. IEEE Computer Society Press.

[82] H. Topcuoglu, S. Hariri, and M. Wu. Task scheduling algorithms for heterogeneous pro-
cessors. In HCW’99: Heterogeneous Computing Workshop, page 3, Washington, DC, USA,
1999. IEEE Computer Society Press.

[83] V. Volkov and J. Demmel. LU, QR and Cholesky factorizations using vector capabilities
of GPUs. Technical Report UCB/EECS-2008-49, U. of California, Berkeley, May 2008.

[84] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Saddayappan, and J. Saltz. Toward optimiz-
ing latency under throughput constraints for application workflows on clusters. In Euro-
Par 2007, number 4641 in LNCS, pages 173–183, New York, NY, USA, 2007. Springer-
Verlag.

[85] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Saddayappan, and J. Saltz. A duplication
based algorithm for optimizing latency under throughput constraints for streaming work-
flows. In ICPP’08: International Conference on Parallel Processing, pages 254–261, Los
Alamitos, CA, USA, 2008. IEEE Computer Society Press.

[86] R. Wolski, N. Spring, and J. Hayes. The network weather service: a distributed resource
performance forecasting service for metacomputing. Future Generation Computer Systems,
15(10):757–768, 1999.

[87] H. Min Wong and B. Veeravalli. Scheduling divisible loads on heterogeneous linear daisy
chain networks with arbitrary processor release times. IEEE Transactions on Parallel and
Distributed Systems, 15(3):273–288, 2004.

[88] H. Min Wong, B. Veeravalli, and G. Barlas. Design and performance evaluation of load
distribution strategies for multiple divisible loads on heterogeneous linear daisy chain net-
works. Journal of Parallel and Distributed Computing, 65(12):1558–1577, 2005.

[89] Q. Wu and Y. Gu. Supporting distributed application workflows in heterogeneous com-
puting environments. In ICPADS’08: 14th International Conference on Parallel and Dis-
tributed Systems, Los Alamitos, CA, USA, 2008. IEEE Computer Society Press.

[90] Y. Yang and H. Casanova. Extensions to the multi-installment algorithm: Affine cost and
output data transfers. Technical Report CS2003-0754, Dept. of Computer Science and
Eng., Univ. of California, San Diego, July 2003.

[91] Y. Yang, H. Casanova, M. Drozdowski, M. Lawenda, and A. Legrand. On the complexity
of multi-round divisible load scheduling. Research report RR-6096, INRIA, 2007. http:
//hal.inria.fr/inria-00123711.

[92] Y. Yang, K. van der Raadt, and H. Casanova. Multiround algorithms for scheduling
divisible loads. IEEE Transactions on Parallel and Distributed Systems, 16(11):1092–1102,
2005.

http://hal.inria.fr/inria-00123711
http://hal.inria.fr/inria-00123711

Appendix B

Publications

The publications are listed in reverse chronological order.

Articles in international refereed journals and book chapter

[A1] Matthieu Gallet, Yves Robert, and Frédéric Vivien. Divisible load scheduling. In Intro-
duction to Scheduling. Chapman and Hall/CRC Press, 2008. To appear.

[A2] Matthieu Gallet, Yves Robert, and Frédéric Vivien. Comments on “design and perfor-
mance evaluation of load distribution strategies for multiple loads on heterogeneous linear
daisy chain networks”. Journal of Parallel and Distributed Computing, 68(7):1021–1031,
2008.

Articles in international refereed conferences

[B1] Matthieu Gallet, Loris Marchal, and Frédéric Vivien. Efficient scheduling of task graph
collections on heterogeneous resources. In Proceedings of the 23rd International Parallel
and Distributed Processing Symposium (IPDPS’09), 2009.

[B2] Anne Benoit, Matthieu Gallet, Bruno Gaujal, and Yves Robert. Computing the through-
put of replicated workflows on heterogeneous platforms. In Proceedings of the 38th In-
ternational Conference on Parallel Processing (ICPP’09), 2009.

[B3] Matthieu Gallet, Loris Marchal, and Frédéric Vivien. Allocating series of workflows on
computing grids. In Proceedings of the 14th IEEE International Conference on Parallel
and Distributed Systems (ICPADS’08), 2008.

[B4] Matthieu Gallet, Yves Robert, and Frédéric Vivien. Scheduling multiple divisible loads
on a linear processor network. In Proceedings of the 13rd IEEE International Conference
on Parallel and Distributed Systems (ICPADS’07), 2007.

[B5] Matthieu Gallet, Yves Robert, and Frédéric Vivien. Scheduling communication requests
traversing a switch: complexity and algorithms. In Proceedings of the 15th Euromicro
Workshop on Parallel, Distributed and Network-based Processing (PDP’2007), pages 39–
46. IEEE Computer Society Press, 2007.

Research reports

[C1] Matthieu Gallet, Anne Benoit, Yves Robert, and Bruno Gaujal. Computing the through-
put of replicated workflows on heterogeneous platforms. Research report RR-2009-08,
ENS Lyon, 2009.

151

152 APPENDIX B. PUBLICATIONS

[C2] Matthieu Gallet, Loris Marchal, and Frédéric Vivien. Allocating series of workflows on
computing grids. Research report RR-6603, LIP, ENS Lyon, 2008.

[C3] Matthieu Gallet, Yves Robert, and Frédéric Vivien. Scheduling multiple divisible loads
on a linear processor network. Research report RR-6235, INRIA, 2007.

[C4] Matthieu Gallet, Yves Robert, and Frédéric Vivien. Comments on “design and per-
formance evaluation of load distribution strategies for multiple loads on heterogeneous
linear daisy chain networks”. Research report RR-6123, INRIA, 2007. Also available as
LIP RR-2007-07.

[C5] Matthieu Gallet, Yves Robert, and Frédéric Vivien. Scheduling communication requests
traversing a switch: complexity and algorithms. Research report RR-2006-25, LIP, ENS
Lyon, 2006. Also available as LIP research report.

Appendix C

Notation

Chapter 1: Introduction to the Divisible Load Theory

αi Fraction of the total load allocated to processor Pi.
c Time needed by any worker to receive a unit-size load (in case of homogeneous

platform).
ci Time needed by worker Pi to receive a unit-size load.
C Communication latency in case of homogeneous platform.
Ci Communication latency of processor Pi.
M The master processor, equal to P0.
n Number of processors in the system.
ni Number of tasks processed by processor Pi.
Pi Processor i, where i = 0, . . . , n.
R Computation-communication ratio: R = w/c.
T Total completion time of the system.
Ti Completion time of processor Pi.
Wtotal Number of tasks to process on the workers.
w Time needed by any worker to process a unit-size load (in case of homogeneous

platform).
W Computation latency, in case of homogeneous platform.
wi Time required by processor Pi to process a single task.
Wi Computation latency of processor Pi.

Chapter 2: Divisible Load Theory and Linear chains

bw i Bandwidth used by Pi to transmit a load to Pi+1.
βl Fraction γl2(2) corresponding to the l-th installment of the second load processed

by P2.
Commend

i,k,j End time of communication from processor Pi to processor Pi+1

for the j-th installment of the k-th load.
Commstart

i,k,j Start time of communication from processor Pi to processor Pi+1

for the j-th installment of the k-th load.
Compendi,k,j End time of computation on processor Pi

153

154 APPENDIX C. NOTATION

for the j-th installment of the k-th load.
Compstarti,k,j Start time of computation on processor Pi

for the j-th installment of the k-th load.
γji (k) Fraction of the k-th load computed on processor Pi during the j-th installment.
λ Time taken by P1 and P2 to process a unit-size load.
m Total number of loads to process in the system.
n Number of processors in the system.
Qk Total number of installments for k-th load.
Pi Processor i, where i = 1, . . . , n.
si Speed of processor Pi.
τi Availability date of Pi (time at which it first becomes available for processing the

loads).
Vcomm(k) Volume of data for the k-th load.
Vcomp(k) Volume of computation for the k-th load.

Chapter 3: Introduction to steady-state scheduling

Most of these variables are also used in Chapters 4 – 7.
bw i,j Bandwidth of link Pi → Pj .
EA Set of dependencies between tasks.
EP Set of communication links between processors.
datak,l Size of the file Fk,l.
Fk,l Dependency between task Tk and task Tl, materialized by a file.
F uk,l u-th instance of file Fk,l.
GA Directed Acyclic Graph model of the considered application, we have GA =

(VA, EA).
GuA u-th instance of the complete application.
GP Graph model of the computing platform, with GP = (VP , EP).
m Number of tasks in the considered task graph.
n Number of available processors.
Pi Processor i, where i = 1, . . . , n.
Pi → Pj Communication link between Pi and Pj .
σ (GuA) Allocation of a single instance of the application graph GA.
ρ Average number of task graphs processed by the platform.
Tk Task k, where k = 1, . . . ,m.
T uk u-th instance of task Tk.
T Period of a periodic schedule.
VA Set of tasks, with VA = (T1, . . . , Tm).
VP Complete set of processors, with VP = (P1, . . . , Pn).

Chapter 4: Mono-allocation schedules of task graphs on heteroge-
neous platforms

bw in
q Maximum incoming bandwidth of processor Pq.

bwout
q Maximum outgoing bandwidth of processor Pq.

155

fk,li,j Average number of files Fk,l traversing the link Pi → Pj ,
where Pi → Pj belongs to any path Pi ; Pj .

Pq ; Pr Any path from processor Pq to processor Pr,
made of a set of adjacent links from Pq to Pr.

tcomp
q Time passed by processor Pq to the execution of a single instance of GA.
tinq Time passed by processor Pq to the receptions

during the execution of a single instance of GA.
tout
q Time passed by processor Pq to the outgoing communications

during the execution of a single instance of GA.
tq,r Average occupation of Pq → Pr during the execution

of a single instance of GA.
wi,k Time needed by Pi to execute a single instance of task Tk.
xk,lq,r Binary variable, equal to 1 if, and only if, file Fk,l

is sent from processor Pq to processor Pr.
ykq Binary variable, equal to 1 if, and only if, task Tk

is processed on processor Pq.

156 APPENDIX C. NOTATION

Chapter 5: Steady-state scheduling of dynamic bag-of-tasks appli-
cations

bw0 Network card capacity of the master processor P0,
which initially owns all data.

bw i Bandwidth limit of worker Pi.
γkq Bounds of intervals of computation amount for application Tk(

γkq = min
(k)
comp (1 + ε)q

)
.

δkq Bounds of data sizes intervals for application type Tk(
δkq = min

(k)
comm (1 + ε)r

)
.

ε Desired precision of our approximation.
Ikq,r Cross product of a data size interval(

Ikq,r =
[
γkq ; γkq+1

]
×
[
δkr ; δkr+1

])
.

max
(k)
comm Upper bound on the data sizes of Tk instances.

max
(k)
comp Upper bound on the amount of computations of Tk instances.

min
(k)
comm Lower bound on the data sizes of Tk instances.

min
(k)
comp Lower bound on the amount of computations of instances of application Tk.

Nk First instances of application Tk
(
Nk =

⌊
πk
π1
N1
⌋)

.
nkq,r Actual number of Tk instances in interval Ikq,r among Nk first ones.
pkq,r Probability of an instance of application Tk to be in an interval Ikq,r.
πk Priority of application Tk.
Qk Number of intervals of computation amount of application TkQk = 1 +

 ln

(
max

(k)
comp

min
(k)
comp

)
ln(1+ε)


.

Rk Number of data size intervals of application type TkRk = 1 +

 ln

(
max

(k)
comm

min
(k)
comm

)
ln(1+ε)

.

si Speed of processor Pi.
Tk,q,r Virtual application made of instances of Tk in the Ikq,r interval.
ρk Average number of instances of application Tk processed by the whole platform.
ρki Average number of instances of application Tk processed by processor Pi.
ρki,q,r Contribution of processor Pi to the throughput of instances of application Tk in

the interval Ikq,r.
Vcomm(k) Volume of data for the k-th application type Tk.
Vcomp(k) Volume of computation for the k-th application Tk.
X

(k)
comm Random variable describing the data size of instances of application Tk.

X
(k)
comp Random variable describing the amount of computation of instances of application

Tk.

Chapter 6: Computing the throughput of replicated workflows

157

Cexec(i) Cycle-time of processor Pi.
Cin(i) Reception time of processor Pi.
Cout(i) Transmission time of processor Pi.
Ccomp(i) Computation time of processor Pi.
Fk Dependency between Tk and Tk+1.
L(C) Length of cycle C, i.e., the sum of the time of its transitions.
Mct Maximum cycle-time, over all processors (Mct = max1≤i≤nCexec(i)).
R Number of different paths followed by the instances in the system.
Rk Replication factor of stage Tk.
t(C) Number of tokens present in cycle C.
Tr ji i-th transition of the j-th row.

Tr j2i corresponds to the computation of Ti.
Tr j2i+1 corresponds to the transmission of a file Fi.

Vcomm(k) Size of the dependency Fk.
Vcomp(k) Computation volume of stage Tk.

Chapter 7: Task graph scheduling on the Cell processor

αki Binary variable, equal to 1 if, and only if,
task Tk is processed on processing element PE i.

βk,li,j Binary variable, equal to 1 if, and only if,
file Fk,l is sent from element Pi to element Pj .

buff k,l Size of the buffer used for transmission of Fk,l.
bw Bandwidth of the link between the EIB and one of the Cell component.
BW Bandwidth of the EIB ring bus.
mem Size of the local store of each SPE (currently 256 KB).
PE i i-th processing element (including PPEs as well as SPEs).
peekk Number of further instances of Tk required for processing a single one.
PPE i i-th PPE core.
readk Number of bytes read in memory before processing an instance of Tk.
SPE i i-th SPE core.
µ(Tk) Period during which the first instance of task Tk is processed.
writek Number of bytes written in memory after the execution of an instance of Tk.
wPPE(Tk) Time required by a PPE to compute an instance of task Tk.
wSPE(Tk) Time required by a SPE to compute an instance of task Tk.

158 APPENDIX C. NOTATION

Résumé :
Les travaux présentés dans cette thèse portent sur l’ordonnancement d’applications sur des plate-
formes hétérogènes à grande échelle. Dans la mesure où le problème général est trop complexe
pour être résolu de façon exacte, nous considérons deux relaxations.

Tâches divisibles : La première partie est consacrée aux tâches divisibles, qui sont des appli-
cations parfaitement parallèles et pouvant être arbitrairement subdivisées pour être réparties sur
de nombreux processeurs. Nous cherchons à minimiser le temps de travail total lors de l’exécution
de plusieurs applications aux caractéristiques différentes sur un réseau linéaire de processeurs,
sachant que les données peuvent être distribuées en plusieurs tournées. Le nombre de ces tour-
nées étant fixé, nous décrivons un algorithme optimal pour déterminer précisément ces tournées,
et nous montrons que toute solution optimale requiert un nombre infini de tournées, résultat
restant vrai sur des plate-formes non plus linéaires mais en étoile. Nous comparons également
notre méthode à des méthodes déjà existantes.

Ordonnancement en régime permanent : La seconde partie s’attache à l’ordonnancement
de nombreuses copies du même graphe de tâches représentant une application donnée. Au lieu
de chercher à minimiser le temps de travail total, nous optimisons uniquement le cœur de l’or-
donnancement. Tout d’abord, nous étudions des ordonnancements cycliques de ces applications
sur des plate-formes hétérogènes, basés sur une seule allocation pour faciliter leur utilisation.
Ce problème étant NP-complet, nous donnons non seulement un algorithme optimal, mais éga-
lement différentes heuristiques permettant d’obtenir rapidement des ordonnancements efficaces.
Nous les comparons à ces méthodes classiques d’ordonnancement, telles que HEFT.
Dans un second temps, nous étudions des applications plus simples, faites de nombreuses tâches
indépendantes, que l’on veut exécuter sur une plate-forme en étoile. Les caractéristiques de ces
tâches variant, nous supposons qu’elles peuvent être modélisées par des variables aléatoires. Cela
nous permet de proposer une ε-approximation dans un cadre clairvoyant, alors que l’ordonnan-
ceur dispose de toutes les informations nécessaires. Nous exposons également des heuristiques
dans un cadre non-clairvoyant. Ces différentes méthodes montrent que malgré la dynamicité
des tâches, il reste intéressant d’utiliser un ordonnancement statique et non des stratégies plus
dynamiques comme On-Demand.
Nous nous intéressons ensuite à des applications, dont plusieurs tâches sont répliquées sur plu-
sieurs processeurs de la plate-forme de calcul afin d’améliorer le débit total. Dans ce cas, même
si les différentes instances sont distribuées aux processeurs tour à tour, le calcul du débit est
difficile. Modélisant le problème par des réseaux de Petri temporisés, nous montrons comment
le calculer, prouvant également que ce calcul peut être fait en temps polynomial avec le modèle
Strict One-Port.
Enfin, le dernier chapitre est consacré à l’application de ces techniques à un processeur multi-
cœur hétérogène, le Cell d’IBM. Nous présentons donc un modèle théorique de ce processeur ainsi
qu’un algorithme d’ordonnancement adapté. Une implémentation réelle de cet ordonnanceur a
été effectuée, permettant d’obtenir des débits intéressants tout en simplifiant l’utilisation de ce
processeur et validant notre modèle théorique.

Mots-clés :
Tâches divisibles, réseaux linéaires, multi-tournées, ordonnancement en régime per-
manent, plate-forme en étoile, maître-esclave, modèles stochastiques, réseaux de Petri
temporisés, heuristiques, programmes linéaires, plate-formes hétérogènes, maximiza-
tion du débit.

Abstract:
This thesis mainly deals with the mapping and the scheduling of applications on large heteroge-
neous platforms. As the general scheduling problem is untractable, we consider two relaxations
which apply to specific problems.

Divisible load scheduling: Divisible loads are perfectly parallel applications, which can be
split into chunks of arbitrary sizes to be distributed to many workers. We focus our attention on
scheduling several divisible loads with different characteristics on linear networks of processors,
in order to minimize the total processing time. This distribution may be done using several
installments. Given a number of installments, we expose an algorithm giving an optimal dis-
tribution of loads on processors, and we compare it to a pre-existing solution. Moreover, we
show that any optimal distribution uses an infinite number of installments, leading to unfeasible
solutions. This results also holds true for star-shaped platforms.

Steady-state scheduling: In the second part, we discuss the issue of scheduling many copies
of a given application, which is represented by a complex task graph. Instead of minimizing
the completion time, we concentrate on the heart of the schedule and we try to maximize the
throughput of the whole platform, without considering the start nor the end of our schedules. In
this part, we first study the scheduling of complex but static applications, made of acyclic task
graphs, on general heterogeneous platforms. To preserve a simple deployment of the application,
produced schedules are made of a single allocation. Due to the NP-completeness of the problem,
we not only provide an optimal solution, but also several heuristics returning efficient schedules.
We compare our solutions to classical scheduling algorithms such as HEFT.
In a second step, we focus on a collection of simpler but dynamic applications to schedule on
fully heterogeneous master-workers platforms: the characteristics of their instances are varying.
Designing static schedules taking care of this dynamicity is difficult, even in case of simple bag-
of-tasks applications. Assuming that these variations are represented by random variables, we
provide an ε-approximation in clairvoyant context and efficient heuristics for both the semi-
clairvoyant and non-clairvoyant cases. We present many simulations to assess their qualities
compared to the Round-Robin or the On-Demand policies.
In a third step, we deal with pipeline applications, of which several tasks are replicated on
different processors to increase the global throughput. In this case, even if instances are dis-
tributed in a simple Round-Robin fashion and if the mapping is completely specified, computing
the throughput of the platform is difficult. We expose a model based on Timed Petri Nets to
compute them; we also prove that the throughput can be computed in polynomial time for the
Strict One-Port communication model.
Finally, steady-state techniques are effectively used to schedule complex task graph on a hetero-
geneous multi-core processor, the IBM Cell. We present a theoretical model of this processor
and an efficient algorithm to schedule many instances of complex task graphs. An complete
implementation of this algorithm shows strong performances, while actual throughputs are very
close to those predicted by our solution.

Keywords:
Divisible loads, linear networks, multi-installlments, Steady-state scheduling, star-
shaped platforms, master-worker, stochastic models, Timed Petri Nets, heuristics,
linear programs, heterogeneous platforms, throughput maximization.

	Remerciements
	Introduction
	I Divisible load theory
	1 Presentation of the Divisible Load Theory
	1.1 Introduction
	1.1.1 Motivating Example
	1.1.2 Classical Approach

	1.2 Divisible Load Approach
	1.2.1 Bus-Shaped Network
	1.2.2 Star-Shaped Network

	1.3 Extensions of the Divisible Load Model
	1.3.1 Introducing Latencies
	1.3.2 Multi-Round Strategies
	1.3.3 Return Messages

	1.4 Conclusion

	2 Scheduling divisible loads on a chain of processors
	2.1 Introduction
	2.2 Problem and notation
	2.3 An illustrative example
	2.3.1 Presentation
	2.3.2 Solution of WongVeBa05, one-installment
	2.3.3 Solution of WongVeBa05, multi-installment
	2.3.4 Conclusion

	2.4 Optimal solution
	2.5 Possible extensions
	2.5.1 Optimal number of installments
	2.5.2 Upper bound on the gain using multi-installment strategies

	2.6 Experiments
	2.7 Conclusion

	II Steady-state scheduling
	3 General presentation of steady-state scheduling
	3.1 Introduction
	3.2 Problem formulation
	3.2.1 Platform model
	3.2.2 Application model
	3.2.3 Definition of the allocations

	3.3 Periodic steady-state scheduling
	3.4 Dynamic vs. static scheduling
	3.5 Content of this part

	4 Mono-allocation schedules of task graphs
	4.1 Introduction
	4.2 Notation, hypotheses, and complexity
	4.2.1 Platform and application model
	4.2.2 Allocations
	4.2.3 Upper bound on the achievable throughput
	4.2.4 NP-completeness of throughput optimization

	4.3 Mixed linear program formulation for optimal allocations
	4.3.1 Single path, fixed routing
	4.3.2 Single path, free routing
	4.3.3 Multiple paths

	4.4 Heuristics
	4.4.1 Greedy mapping policies
	4.4.2 Rounding of the linear program
	4.4.3 An involved strategy to delegate computations
	4.4.4 A neighborhood-centric strategy

	4.5 Performance evaluation
	4.5.1 Reference heuristics
	4.5.2 Simulation settings
	4.5.3 Results

	4.6 Conclusion and perspectives

	5 Dynamic bag-of-tasks applications
	5.1 Introduction
	5.2 Notation and models
	5.2.1 Platform model
	5.2.2 Constant applications model
	5.2.3 A stochastic formulation for dynamic applications

	5.3 Approximation and heuristics
	5.3.1 Resolution of the constant case
	5.3.2 An -approximation
	5.3.3 Heuristic solutions to the online problem
	5.3.4 Reference heuristics

	5.4 Experiments
	5.4.1 Simulation settings
	5.4.2 Results

	5.5 Conclusion and perspectives

	6 Computing the throughput of replicated workflows
	6.1 Introduction
	6.2 Notation and hypotheses
	6.2.1 Application model
	6.2.2 Platform model
	6.2.3 Replication model

	6.3 Timed Petri net models
	6.3.1 A short introduction to timed Petri nets
	6.3.2 Mappings with replication
	6.3.3 Overlap One-Port model
	6.3.4 Strict One-Port model

	6.4 Computing mapping throughputs
	6.4.1 Overlap One-Port model
	6.4.2 Strict One-Port model

	6.5 Experiments
	6.6 Conclusion

	7 Task graph scheduling on the Cell processor
	7.1 Introduction
	7.2 Modeling the Cell
	7.2.1 Processor model
	7.2.2 Application model and schedule
	7.2.3 NP-completeness of throughput optimization

	7.3 A steady-state scheduling algorithm
	7.4 Experiments
	7.5 Conclusion

	8 Conclusion and Perspectives
	8.1 Conclusion
	8.2 Perspectives
	8.3 Final Remarks

	A Bibliography
	B Publications
	C Notation

