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INTRODUCTION

La premiere partie de cette these (articles I et II) est consacrée a 1'étude du
comportement asymptotique des solutions de dynamiques du second ordre avec
dissipation évanescente.

Dans I'article I, nous nous intéressons a une équation hyperbolique semi-
linéaire amortie. Soit V' et H deux espaces de Hilbert réels. Soit a : V x V — R
une forme bilinéaire, continue, symétrique, positive et semi-coercive (c’est-a-dire
IAN>0,u > 0telque Vu € V,  alu,u)+Nul3; > pllul|?). Nous associons a af(., .)
I'opérateur linéaire continu A : V' — V’ défini par (Au, v)yr v = a(u,v) pour tout
u,v € V. Etant donnée une fonction f : V — H, nous considérons I’équation
d’évolution semi-linéaire du second ordre

2

() Ca(0) 40 (0) + Ault) + F(u(t) =0, >0,

ou vy : Ry — Ry avec limy, o y(f) = 0. Cette équation modélise par exemple
des phénomenes de propagation d’ondes ou de vibrations soumis a une force
extérieure — f(u) et a une force de frottement ou d’amortissement évanescente
—7‘2—1;. Dans un cadre fonctionnel différent, Cabot, Engler et Gadat [10, 11] ont
étudié le comportement asymptotique des solutions de ’équation différentielle du
second ordre plus générale suivante

(S) B(t) + () i (t) + VO(x(t) =0, >0,

ol H est un espace de Hilbert et ® : H — R est une fonction de classe C* et
convexe. [’analyse repose sur 'utilisation de la fonction énergie définie par

£() = Sl#(1) + B(a(1))

qui est I’énergie mécanique du point matériel. Lorsque ~(t) = v > 0, ’équation
(81) est dénommée probleme de la boule pesante avec frottement et a été etudiée
par Alvarez [2]. Les premiers résultats obtenus par Cabot, Engler et Gadat [10, 11]
sur la sommabilité et la convergence de la fonction énergie £ du systéme (S;) sont
les suivants:
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Proposition 0.1 Supposons v : R, — R, dérivable et décroissante, ® : H — R
C! et convexe, alors toute solution x de (S;) vérifie

(i) E(t) = —y(b)]i(t)]*
St de plus Argmin® # &, alors toute solution x bornée dans H vérifie

(i) J,7 v () (E(t) — min )dt < oo,
(iii) si de plusy ¢ L'(0,+00), alorslim;_, o, £(t) = min @ et donc lim;_, o |2(¢)]
0 et limy, o P(t) = min d.

Nous obtenons des résultats similaires dans le cas de I'équation (E) en utilisant
une fonction énergie appropriée. Dans le cas d’'un amortissement constant (t) =
v > 0, la convergence des solutions de (EF) a été obtenue par Alvarez et Attouch
[3]. La fonction f:V — H est supposée conservatrice

JF € CHV,R)/ Yu,v eV, (F'(u),v)vv = (f(u),v)n,

et monotone

Vu,v €V, (f(u) — f(v),u—v)y > 0.
Les auteurs ont obtenu le théoreme suivant:

Théoréme 0.1 Supposons~y(t) =~ > 0. Soita : VXV — R une forme bilinéaire
continue, symétrique, positive et semi-coercive et soit f : V. — H conservatrice
et monotone. Supposons que S = {v € V; Av+ f(v) = 0} # @. Alors toute
solution u de (E) converge faiblement dans V quand t — +o00 vers un point de

S.

Nous généralisons ces résultats de convergence a ’équation (F) dans le cas d'un
amortissement évanescent. Sous les mémes hypotheses sur la forme bilinéaire
a(.,.) et sur la fonction f, nous obtenons la convergence faible dans V' vers un
point de S de toute solution bornée dans H si l'application v tend lentement
vers 0 quand t — +oo (par exemple, s’il existe a €]0; 1] tel que 7(¥) t% quand
t — +00).

Dans 'article II, nous nous intéressons a ’algorithme proximal inertiel suivant

(A) Try1 = Tp — Qn(Ty — Tp1) + Br0P(2541) 30,

ou H est un espace de Hilbert, ® : H — R U {+o00} est une fonction convexe
propre s.c.i., () et (5,) sont des suites strictement positives. Nous pouvons
réécrire 1'algorithme (A) de la fagon suivante:

Tni1 — an + Tp—1 1- Qp
Bn Bn

L’algorithme (A) apparait donc comme une discrétisation implicite du systeme
l—oan

continu (S7) avec un pas de temps égal a /[, tandis que T correspond a la

valeur de v au temps ¢, = Y ,_, /B L'algorithme (A) a été étudié par Alvarez
[2] qui a obtenu le résultat suivant:

(@ — p_1) + 0P(zn11) 2 0.
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Théoréme 0.2 Supposons que  : H — RU {+o0} est s.c.i., convexe et propre.
Soit (av,) et (By) des suites de réels strictement positifs telles que o, < @ < 1, (5,)
majorée et (3*) décroissante. Si Argmin® # @, alors toute suite (x,) générée
par (A) converge faiblement dans H vers un minimiseur de ®.

L’étude repose sur l'utilisation d’une fonction énergie et du lemme d’Opial ou
I'hypothese «,, < @ < 1 joue un role crucial. Nous étudions la convergence de (\A)
sous ’hypothése plus générale 0 < «,, < 1 et examinons le cas lim, . o, = 1.
Dans un premier temps, nous étudions la convergence de la fonction énergie

1
2671—1
ou (x,) est générée par (A). Nous obtenons des résultats de sommabilité et de

convergence de la suite (&,) similaires aux résultats obtenus a la Proposition 0.1
dans le cas du systeme continu (S;). Dans larticle [10], Cabot, Engler et Ga-

gn ‘xn - xnfl‘Z + q)(l'n),

dat ont prouvé que, si f0+°° e~ Jor)dsgy = 00, toute solution = de (S;) telle que
((0),2(0)) ¢ Argmin ® x {0} ne converge pas. Nous trouvons des résultats ana-
logues dans le cas discret pour l'algorithme (A).

La deuxieme partie de cette these (articles III a VI) est consacrée a I’étude de
plusieurs algorithmes de type proximal. Nous montrons que ces algorithmes con-
vergent vers des solutions de certains problemes de minimisation. Dans chaque
cas, une application est donnée dans le cadre de la décomposition de domaine
pour les EDP.

X, Y, Z sont des espaces de Hilbert, f : X - RU{+o0} et g:Y — RU{+o0}
sont des fonctions s.c.i., convexes et propres, A: X — Z et B:)Y — Z sont des
opérateurs linéaires continus. Nous considérons la fonction convexe @, : X x Y —
R U {400} définie par

B, (z,y) = f(z) + 9ly) + %HA:U Byl

ol v est un parametre strictement positif. Dans le but de minimiser la fonction
®., Attouch, Bolte, Redont et Soubeyran [5] ont introduit 'algorithme alterné
avec termes de couts-aux-changements

. 1 o
uss = Arguin { 7(0)+ - lAe = Bl + o — i e )
(Al) 1 v
Ynt1 = Argmin {g(y) + %HAmn-I—l — By|lz + Slly = unll3; € y} :

ou «, v sont des parametres strictement positifs. Les auteurs ont montré que toute
suite générée par I’algorithme (.A;) converge faiblement vers un point solution du
probleme



(P1) min {®,(z,y); (z,y) € X x YV}

_ mm{f<a:> Fol)+ AT = Byl (5.9) € X % y}.

L’algorithme (\A;) utilise la structure de la fonction objectif @, pour résoudre
le probleme initial sur X x ) en résolvant respectivement des problemes sur X
et Y. Dans un article antérieur, Acker et Prestel [1] avaient étudié le probleme
fortement couplé (X =Y, A = B =7 et « = v = 0 dans l'algorithme). Dans
I'article III, nous généralisons les méthodes et les résultats de convergence de [1]
au probleme faiblement couplé (P;). Nous retrouvons la convergence faible dans
X x Y de la suite (z,,y,) générée par l'algorithme (A;) vers un point solution
de (Py) et montrons la convergence forte dans Z de la suite de variables duales
(—%(Axn — By,)) vers I'unique solution du probleme dual®

inf { (A2 + 9" (~B"=) + 21N 2 e 2]

Le cadre d’application a la décomposition de domaine pour les EDP est le suiv-
ant: nous considérons un domaine borné Q2 = Q; U Qs UT de RY suffisamment
régulier qui peut se décomposer en deux sous-domaines €2 et {25 avec une interface
commune ['.

Nous choisissons X = H(Qy), Y = H(Qy) et Z = L*(T'). Les opérateurs A :
X — Zet B:Y — Z sont les opérateurs traces sur I'. Le terme [w] = Au — Bv
u sur €

a travers 'interface I'. Les
v osur ()

correspond au saut de 'application w = {

fonctions f et g sont définies par

1 1
flu)== [ |Vul? —/ hu et gv)== [ |Vu? —/ hv.
2 (951 91 2 Qo Q2

La fonction h € L?() est fixée. Dans ce cas 1'algorithme (.A;) permet de résoudre
par décomposition le probleme de minimisation suivant

Lr:Z 5 RU{+oo} et g* 1 Z — RU {+oo} sont les conjuguées de Fenchel des fonctions f et g,
A*: Z — X et B*: Z — Y sont les opérateurs adjoints de A et B.
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1 1 1
min{— IVl + = |VU|2+—/[w]2—/hw; we HY(), v eHl(Qg)},
2 Jo, 2 Ja, 2y Jr Q
qui est la formulation variationnelle du probleme avec conditions au bord mixtes
de Dirichlet-Neumann suivant sur €2y

—Au=h dans
g—:‘l =0 sur 0§ NN
ﬁz—%(u—u) sur T,

et QQ
—Av=nh dans €y
% =0 sur 08y N 0N
U=Llu—v) sur T.
n "y

Ce type de probleme peut apparaitre dans la description de phénomemes au-
torisant des discontinuités a travers I'interface I'.
Le probleme de minimisation avec contraintes

(P2) min {f(z) + g(y); Az = By}

correspond formellement a minimiser la fonction ®, avec v = 0. Dans 'article IV,
nous remplagons dans 'algorithme (A;) le parametre constant v par une suite
strictement positive (,,) qui tend vers 0. L’algorithme s’écrit

. 1 Q@
uss = Argnin {311 £(@) + gllAe = Bl + o~ nalfi o€ )
(A2) 1 v
s = Argiin {1,31900) + gl A — Byl + 5y~ mli eV}

La fonction ¥(z,y) = 1||Az — By||% agit comme une fonction de pénalisation de
la contrainte Ax = By et %n apparait comme un parametre de pénalisation. Sous
des hypotheses adéquates, la suite générée par le nouvel algorithme (Ay) con-
verge faiblement vers un point solution de (Ps), c’est-a-dire minimise la fonction
O(z,y) = f(x)+g(y) sur Argmin ¥ = {(z,y) € X x)Y; Az = By}. Ce type de
minimisation hierarchisée a été étudié par Cabot [9]. Soit ¢ : R™ — R U {+o0}
une fonction s.c.i., convexe et ¢ : R™ — R une fonction finie et convexe. Avec ces
notations, 'algorithme de [9] s’écrit

Tny1 = Argmin {W) + Yor16(@) + 7 = alin; T ER } .

La vitesse de convergence de la suite (7,) vers zéro joue un réle primordial dans
le processus de minimisation. Soit (w,,) la suite définie par

w, = inf {Y(x) + Yn1(e(r) —ming)},

zeR™

Cabot [9] a obtenu, dans le cadre de la dimension finie, le résultat suivant:
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Théoréme 0.3 Supposons que la suite (o) vérifie, pour tout n € N, 0 < a <
a, < a. Supposons que ’ensemble C' = Argmini) soit non vide, que la fonction
© soit minorée et que l'ensemble Argming @ soit non vide et borné. Si (v,) ¢ I*
alors

(i) lim, o ¥(z,) = miney et lim, . @(x,) = ming @,
(i) si de plus

(h1) (w,) €1,

alors (x,) converge vers un élément de Argming ¢.

L’hypothese (v,) ¢ ' exprime que la suite (7,) converge lentement vers zéro
alors que I'hypothese (hy) exprime que la suite (7,) ne converge pas trop lente-
ment vers zéro (sous des hypotheses adéquates sur les fonctions ¢ et p, (hy) est
réalisée si (y,) € [?). Nous utilisons des hypotheses similaires sur la suite (7,)
dans larticle IV et montrons que la suite générée par I'algorithme (Ay) converge
faiblement vers un point solution du probleme (P,). L’analyse est aussi étendue
au cadre des opérateurs maximaux monotones. Avec le cadre d’application aux
EDP précédent, la contrainte force le saut a travers 'interface a étre nul et inter-
dit les discontinuités a travers l'interface. L’algorithme permet de résoudre par
décomposition le probleme de minimisation suivant

1
min{—/|Vw|2—/hw; wGHl(Q)},
2 Ja Q

qui correspond a la formulation faible variationnelle du probleme de Neumann
sur le domaine €

9w —( sur ON.

{—Aw = h dans €
on

Dans I'article V, la suite (7,) est supposée tendre vers +oo. L’algorithme s’écrit

1
xm1=»ngmn{fw>+2

n+1
1

2 n+1

«
42 = Bulls + Sllo - malli =€ ¥
(A)

Yn+1 = Argmin {g(y) + | Azpy1 — Byl|% + gHy —ualys v € y} :
Nous pouvons supposer sans perte de généralité que min f = ming = 0. Dans
ce cas, c’est la fonction ®(z,y) = f(z) + g(y) qui agit comme une fonction de
pénalisation de la contrainte Argmin f X Argming et 7, comme un parametre
de pénalisation. De maniere symétrique a l’article précédent, nous retrouvons un
processus de minimisation hierarchisée et la suite générée par le nouvel algorithme
(A3) converge faiblement vers un point solution de

(P3) min {HAQZ — By||%;  (z,y) € Argmin f x Argming} )
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Nous utilisons une hypothese introduite par Attouch et Czarnecki [6]. Les auteurs
ont étudié le systeme dynamique continu suivant

1
v(t)

olt H est un espace de Hilbert, ¢ : H — R, U{+o00} et ¢ : H — RU{+00} sont
des fonctions s.c.i., convexes et propres et v : Ry — R;\{0} est une fonction
de classe C! telle que lim,_, v(t) = +oo. Les auteurs ont obtenu le résultat
suivant:

(S2) #(t) + p(x(t) + —=0v(t) 3 0,

Théoreme 0.4 Supposons de plus que C = Argming = ¢ 1(0) # @ et que
Argmingp # @. Soit v : Ry — R \{0} une fonction de classe C' croissante
telle que + soit majorée et?

(hs) Vp € R(N¢), <g0* (%) — o0 <%)) e LY(0, +00).

Soit x une solution forte’ du systeme (Sy). Alors

(i) limy ., o p(t) =0 et limy, o ¥ (t) = ming ¥,
(ii) x converge faiblement dans H wvers un point de Argming ).

La vitesse de croissance de la fonction v vers 'infini joue la encore un role pri-
mordial pour assurer la convergence des trajectoires vers ’ensemble d’équilibre.
L’hypothese 4 majorée exprime que la fonction v tend lentement vers 'infini
alors que I'hypothese (hy) exprime que la fonction v ne tend pas trop lentement
vers l'infini (sous des hypotheses adéquates sur la fonction ¢, (hy) est réalisée
si % € L?(0,400)). Avec des hypotheses analogues traduites dans le cas discret,
nous obtenons la convergence faible de la suite générée par I'algorithme (A3) vers
un point solution du probleme (P3). Dans le cadre des EDP, I'algorithme permet
de résoudre le probleme de minimisation suivant

win {5 [T}

. R e sur €
ou |[w] est le saut de w a travers l'interface I', w = st A

v sur €
v € H'(€y) sont solutions faibles des problemes avec conditions aux bords de
Neumann suivants

et u € H'(Q),

2 Nc(z) est le cone normal &4 C en «,
Ne(z)={pe X:(p,(—z)x <0 V(€ X}.

R(Nc¢) est 'image de N¢, c’est-d-dire p € R(N¢) si et seulement s’il existe un x € C tel que
p € Nc(x). oc est la fonction support de C: pour tout z € X, oc () = supec x (z, () x.

3 Dans le sens de Brezis ([8], définition 3.1). En particulier, 2 est absolument continue sur tout intervalle
[0;T] avec T' < +o0.



—Au =h dans —Av =nh dans €
%:O sur 0y, g—Z:O sur 0y,

et h € L*(Q2) est une fonction donnée.
Enfin, dans le dernier article, nous utilisons des méthodes proximales et la-
grangiennes inspirées des articles [12, 7] dans le but de résoudre le probleme

(Py) min {f(z); Axe€C},

oun f: X — RU{+oo} est une fonction s.c.i, convexe et propre, A : X — Y
est un opérateur linéaire continu et C est un ensemble convexe fermé de ). Dans
I'article [12], Chen et Teboulle ont considéré le probleme de minimisation avec
contraintes linéaires suivant

(Qu) min {f(z) +g(y); Az =y},

ou f:R™ - RU{+o0} et g : R” - RU {400} sont des fonctions s.c.i, convexes
et propres et A : R™ — RP est un opérateur linéaire. La fonction de Lagrange
associée au probleme (Q,) est la fonction £ : R x RP x R? — RU {400} définie
par
L(z,y,p) = f(x)+g(y) + (1, Az — y)ws.

Elle est s.c.i, convexe pour les variables primales x et y et concave pour la vari-
able duale p. Les auteurs ont introduit un algorihme basé sur une minimisation
proximale pour les variables x et y et sur une maximisation proximale pour la
variable p. Par linéarité, ’algorithme s’écrit

/]nJrl = Hn + )\n+1(Axn - yn)>
Tpi1 = Argmin § L(2, Yn, fint1) + ﬁ”x — Zpllgm; T € Rm} )

Yn+1 = Argmin § L(Tn, Y, fin1) + g5 1Y — vnllies v € RP} :
fint1 = fn + A1 (AZni1 — Ynir)-

Le résultat principal obtenu dans [12] est:

Théoréme 0.5 Supposons que l’ensemble des points selles* de L soit non vide
et que la suite (\,) vérifie, pour tout n € N,

<\ < mi (1—6 1—6)
e<\, <min | ——, —— |,
2 "2|A]

pour 0 < € < min( > Alors (T, Yn, tin) converge vers un point selle de

11
30 TN
L et donc (y,,y,) converge vers un point solution du probléme primal (Qy).

4 (z*,y*, 1u*) € R™ x RP x RP est un point selle de £ si, pour tout (z,y, u) € R™ x RP x R?,

Lz, y",pw) < L%, y", p1") < Lz, y, p1").
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Dans l'article VI, nous étendons ces résultats de convergence a la dimension
infinie pour le probleme de minimisation (P,). Pour cela, nous introduisons une
variable de contrainte v € R? et une fonction de pénalisation P : Y — (RT)?
telle que y € C si et seulement si P(y) = 0. La fonction de Lagrange considérée
est la fonction L : X X Y x Y x RY — R U {+oo} définie par L(z,y,u,v) =
f(x) + (1, Ax — y)y + (v, P(y))re. Nous introduisons un algorithme inspiré de
[12]. Nous montrons que, si la fonction P est lipschitzienne et sous des hypotheses
adéquates sur la suite (\,), la suite (2., Yn, fin, Vn) générée par cet algorithme
converge faiblement dans X x ) x ) x R vers un point selle de L et donc (z,,, y,)
converge faiblement dans X' x ) vers un point solution de (Py). L’étude est aussi
étendue au cadre des opérateurs maximaux monotones. L’algorithme permet de
résoudre le probleme de minimisation suivant

min {% Jo, IVul? = [o hu+ 35 [o IVU]* = [, hv; (u,v) € H'(Q1) x H' Q) et up > v‘p}.

Ce type de probleme peut intervenir dans la description de phénomenes faisant
intervenir un matériau semi-conducteur ou un systeme de valve.
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Summary. Let V and H be Hilbert spaces such that V ¢ H C V' with dense and continuous
injections. Consider a linear continuous operator A : V — V' which is assumed to be symmetric,
monotone and semi-coercive. Given a function f : V — H and a map v € Wltcl (R4, R4) such that
lim;— 100 y(t) = 0, our purpose is to study the asymptotic behavior of the following semilinear hyper-

bolic equation

d*u du
(B) S0 + 1) T (@) + Au(t) + f(u(t) =0, ¢ >0,
The nonlinearity f is assumed to be monotone and conservative. Condition f0+°° y{#)dt = + o0

guarantees that some suitable energy function tends toward its minimum. The main contribution of
this paper is to provide a general result of convergence for the trajectories of (E): if the quantity
~(t) behaves as k/t*, for some a €]0,1[, K > 0 and ¢ large enough, then u(t) weakly converges in V'
toward an equilibrium as ¢ — 4-0c0. Strong convergence in V' holds true under compactness or symmetry
conditions. We also give estimates for the speed of convergence of the energy under some ellipticity-like
conditions. The abstract results are applied to particular semilinear evolution problems at the end of
the paper.

Key words: Semilinear evolution problem, dissipative hyperbolic equation, non-autonomous damping,
asymptotic behavior, rate of convergence.
Subject classification:34G10, 34G20, 35B40, 35L70.

1 Introduction

Throughout this paper, V' stands for a real Hilbert space, whose scalar product
and norm are respectively denoted by ((-,-)) and || - ||. Let H be another real
Hilbert space with scalar product (-,-) and norm | - |. Suppose that V' is dense
in H with continuous injection. By duality, the topological dual space H' of H is
identified with a dense subspace of the topological dual V’ of V. Identifying H
with H', we obtain V' C H C V', where each space is dense in the next one, each
injection being continuous. We denote by (-, )y~ the duality pairing between V'
and V. Let a: V x V — R be a continuous bilinear form satisfying
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(h1) a(.,.) is symmetric, positive,

(ha) IA>0,u>0 suchthat VueV, a(u,u)+ Mul> > pllul®.

This last property is known as the semi-coercivity of the form a. We associate
with a(.,.) the continuous operator A : V' — V' defined by (Au,v)y v = a(u,v)
for all u,v € V. We denote by D(A) the domain of the operator A, i.e. D(A) =
{v € V; Av € H}. Given a function f : V — H and a map v € W2 (R, R,),
we consider the following semilinear evolution equation of second-order in time
2
() o)+ () S + Au(t) + F(u(t) =0, +>0,
The nonlinearity f is assumed to be conservative, i.e. derives from some potential
F € CY(V,R). The main purpose of the paper is to investigate the asymptotic
behavior of the trajectories of (F) for a vanishing damping term, i.e. y(t) — 0 as
t — +o00. It is clear that the decay properties of the map ~ play a central role in
the analysis. In particular, if the quantity (¢) tends to 0 too rapidly as t — 400,
convergence of the trajectories may fail. To motivate our study, let us show how
it is connected to other questions of interest.

Case of a constant damping. If v(t) = -, existence and uniqueness are well-
known in the framework of damped wave equations. More precisely, if the map
f 'V — H is Lipschitz continuous on the bounded sets of V' and if the map F
satisfies suitable growth conditions, then for any (ug,vg) € D(A) x V, there
exists a unique solution u € W,o(R, V) N W2X(Ry, H) of (E) such that
u(0) = up and %(0) = vy, see [12, Theorem I1.3.2.1] or [20, Ch. IV, Theorem
4.1]. The trajectories of (E) are known to converge toward an equilibrium point
U € {v €V, Av+ f(v) = 0} under assumptions like monotonicity or analyticity.
In the case of a monotone map f, convergence is obtained for the weak topology
of V' and the main ingredient of the proof is the Opial lemma, cf. [3]. When the
nonlinearity is analytic, convergence of the trajectories relies on the Lojasiewicz
inequality, see [15, 16] and the pioneering work [19] for parabolic problems.

Averaged heat equation. With the same assumptions as above, consider the

abstract heat equation
dv

—(s) + Av(s) =0, s>0. (1)
ds
It may be of interest to examine the case where the velocity %(s) is proportional,
not to the instantaneous vector Av(s), but to some average taken over the interval
[0, s]. The simplest such equation is

dv 1 /[°
%(5)4_;/0 Av(o)do =0, s> 0. (2)
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After multiplying this equality by s and differentiating, we obtain the following
second-order in time equation

d*v dv
it A — .
S (s)+ 7 (s)+ Av(s) =0, s>0

The change of variable s = % allows to rewrite the above equation as

d*u 1 du
—(t - —(t Au(t) =0 t>0
Py 28 1w =0, 150,

where the map w is defined by u(t) = v (%) for every t > 0. This is exactly

equation (E) with y(t) = 1 and f = 0. Assuming that the injection V < H is
compact, there exists a nondecreasing sequence (\;);>1 of eigenvalues of A, along
with a complete orthonormal basis of H, (e;);>; consisting of the corresponding
eigenvectors. Let u(t) = > u;(t) e; be the decomposition of the solution u(t) on

the basis of eigenfunctions. Every component u; satisfies the following equation

1

It ensues that each kernel component u;, i e {1,...,dim(Kerd)} verifies u;(t) =
a; Int 4 b;, for some a;,b; € R. In particular, it cannot converge as t — 400,
unless it is stationary. When the eigenvalue \; is positive, we let the reader check

that
ui(t) = a; Jy <\/)\7t) + 1Yy <\/)\7t) ,  for some a, b € R,

where Jy and Y denote respectively the zeroth Bessel functions of the first and
second kind®. Recalling that

2 T 2 T
Jo(t) ~ ”E cos <t_1) and  Yy(t) ~ ”E sin <t_1) as t — o0,

we deduce that u;(t) ~ NG cos(v/Ait—p;) ast — +o0, for some ¢;, ¢; € R. Coming
back to the averaged heat equation (2), we then obtain for each component v;

s%cos<2 )\is—goi> as s — +00.

VilS) ~
(5)~ o
It converges toward zero much more slowly than the corresponding component of
the “pure” heat equation, equal to v;(0) e=**. The above discussion shows that
the global behavior of (2) -or more generally (E)- differs considerably from the
one of equation (1).

% See [1, 5] for standard references on Bessel equations.



16 A. Cabot and P. Frankel

Heavy ball with asymptotically small friction. Given a continuous map 7 :
R, — R, and a potential ® : H — R of class C! with a locally Lipschitz
gradient, let us consider the following ordinary differential equation in the Hilbert
space H

Z(t) +y(t) 2(t) + VP(z(t)) =0, ¢>0. (3)

When v(t) = v > 0, the above equation is known under the terminology of “Heavy
Ball with Friction” system, (HBF') for short. From a mechanical point of view,
(HBF) corresponds to the equation describing the motion of a material point
subjected to the conservative force —V®(z) and the viscous friction force —v i.
The (HBF') system can be studied in the classical framework of the theory of
dissipative dynamical systems, cf. [11, 13]. The trajectories of (H BF') are known
to converge toward a critical point of ® under various assumptions (see [2, 4] for
convex potentials and [14] for analytic ones). In the recent papers [8, 9], it is con-
sidered the case of a vanishing damping v(t) — 0 as t — +o00. The corresponding
equation is typically obtained from a first-order gradient system involving some
memory aspects, see [7]. If the function ® is convex and has a unique minimum
Z, condition f0+°° v(t) dt = 400 is sufficient to ensure (weak) convergence of the
trajectories of (3) toward . When the function ® has a continuum of equilib-

+
ria, the more stringent condition / e~ o1 ds g < oo is necessary to obtain
0
convergence of the trajectories. In the one-dimensional case, the slightly stronger
+oo
condition e 0l ds gy o +00, for some 6 €]0, 1] is shown to be sufficient.

In the highgr—dimensional case, the general question of convergence is left open
in [8, 9]. The new techniques developed in the present paper allow to address this
question and to fill partially the gap between necessary and sufficient conditions
for convergence, see comments below.

Let us come back to equation (£) and precise now the framework of the paper.
The nonlinearity f is assumed to be monotone and conservative, i.e. derives from
some convex potential ' € C'(V,R). The set of equilibria S = {v € V, Av+f(v) =
0} is supposed to be nonempty. It is not our purpose to develop the well-posedness
of equation (F) for given initial conditions. Throughout the paper, we assume the
existence of a solution to equation (F) in the class

ue WoH R, V)NWENR,, H). (4)

loc loc

We define the energy function £ along each trajectory by

£(t) = % fl—?:(t) + % a(u(t), u(t)) + F(u(t)).

The major contribution of this paper is to provide a result of (weak) conver-
gence in V' for the trajectories of (E): if the quantity v(¢) behaves as k/t®, for
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some « €]0,1[, & > 0 and t large enough, there exists an equilibrium u., € S
such that u(t) — ue weakly in V as ¢ — +oo. The exact statement is in fact
slightly more general, see Theorem 3.3. The main ingredients of the proof are the
Opial lemma along with accurate estimates of the energy decay, cf. Proposition
3.2. Strong convergence in V' holds true under compactness or symmetry condi-
tions. The technique of the proof is new and is also applicable to the differential
equation (3).

The second contribution of the paper is to give sharp estimates for the speed
of convergence of the energy £(t) as t — +o0. In the linear case (f = 0) and
under some ellipticity-like condition, we obtain the following estimate

Et)~Ke™ Jrds ag ¢ 5 400, for some K > 0. (5)

Notice that this estimate fails to be true if the trajectory is contained in KerA,
see Theorem 2.1 for a precise statement. In the nonlinear case, the same kind of
estimate is obtained at a slightly lower degree of precision?, cf. Theorem 3.4.

Outline of the paper. Section 2 is concerned with the linear hyperbolic equation
(Ep) obtained by taking f = 0in (E). We analyze the behavior of the trajectories
by studying respectively their components with respect to the spaces KerA and
(KerA)L. A sharp estimate of the energy decay is given under some ellipticity-like
condition. In section 3, we deal with the general equation (F) by assuming that
the nonlinearity f is monotone. It is shown in paragraph 3.1 that the energy £(¢)
vanishes as ¢ — 400, which allows to prove (weak) convergence of the trajectories
in the case of a unique minimum. The general problem of convergence for a
continuum of minima is treated in paragraph 3.2, which is the core of the paper.
Additional results of strong convergence in V' are given under some compactness
or symmetry assumptions. Finally, the abstract results are applied to particular
semilinear evolution problems in section 4.

2 Linear hyperbolic equation

Let a : V x V — R be a continuous bilinear form satisfying (h)-(h2) and let
A 'V — V'’ be the associate operator. Given a map v € T/Vli’cl(RJr,RJr), we
consider the following linear hyperbolic equation

d*u

(Eo) ) 1) (1) + Aut) =0, 120,

We assume the existence of a solution to equation (Ejp) in the class (4). We define
the energy function £ along each trajectory by

4 In this case, a factor 2 has to be introduced in the exponent of formula (5).
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1
E(t) ==~
=1
We have € € W2 (R,) and

0= (G0 G0) + (a0 %(t)>v“‘”

du, |?
E(t) <0 a.e onRy,

= (1)

hence the function £ is a Lyapunov function for the system (Ep). The purpose
of this section is to establish results of convergence for the trajectory u, along
with estimates of the energy decay. For every t > 0, we set u(t) = Pu(t), where
P denotes the orthogonal projection onto the subspace® KerA in the sense of H.
Since u(t) € KerA for every ¢ > 0, we have

d2ﬂ d@
vt > —(t) + —(t) = 0.
E20, () +(t) (1) =0

By integrating this equality twice, we find

t ~
vt >0, u(t)=1u(0)+ </ e~ Jo 'y(r)drds) Ccll_:“(o) (6)
0

t
= Pugy + (/ e~ Jo 7(T)dTals) Puy.
0

If Pug # 0, the above equality shows that the asymptotic behavior of the compo-
nent U is strongly related with the convergence of the integral fOJrOO e~ Jo (M7 g,
The next proposition summarizes the different possible cases.

Proposition 2.1 Let us set w = [ el 7097 ds € R, U {+00}.
If vy € (KerA)t, then u(t) = Pug for every t > 0.
If vy ¢ (KerA)t, then the solution U converges if and only if W < +o00. More
precisely, we have lim |u(t)| = +o0 if W = +o00 while lim u(t) = P(up+wuvy)
t—+o00 t—+o00
if W < 400.
Our purpose is now to evaluate the energy decay along each trajectory u(.).
We start with a preliminary result corresponding to the case KerA = {0}.

Lemma 2.1 Assume that the bilinear form a(.,.) satisfies (hy)-(hs) and that
In>0,VueV, a(u,u)>nlul’ (7)
Let v € WERL,RL) be a function such that limy,,ooy(t) = 0 and 4 €

loc

LY0,400). Let u be a solution in the class (4) to equation (Ey). Then, either
the solution u is stationary, or there exists K > 0 such that

E(t) ~ Ke™ [A®ds s ¢ too.

® By using assumptions (h1)-(he), it is easy to check that KerA is closed in H. See also Remark 3.2.
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Proof. The main idea of the proof consists in using the function F defined by®

du, > 1 ~(t) (du

%(t) + §a(u(t), u(t)) + o <E(t)’ u(t))

—E(t) + %’5) (2—?(15), u(t)) .

Ft) =3

We have F € W5 (R,) and by differentiating the function F, we find for almost
every t > 0

2

du

F = €0+ 1P (GF0a0) + 12 (Trw.un) + 5o
7@ |du, [P () At ()P (du
=205 0] - Blawo.ue + (1P - 15 (Go.u).
Therefore we have
F(t)+ () F(t) = @ (%(t),u(t)) a.e.on R,. (8)

Since |(L(t),u(t))| < %‘d—;‘(t)f + S u(t))? and a(u(t),u(t)) > nlu(®)® by as-
sumption (7), we have

’ <‘Cll_1;(t),u(t)) ’ < CE(t),  for some C > 0. 9)

Recalling that lim;_, ;. 7(t) = 0, the expression of F shows that
F(t)~E() ast— 4oo. (10)

We deduce from (8), (9) and (10) the existence of D > 0 and ¢, > 0 such that

Ft)+~)F @) < DIX(t)|F(t) a.e on [ty,+o0l.

Let us multiply each member of this inequality by elo s and set Gg(t) =
elo 7(#)ds F (). We obtain

IG(t)] < D |4(t)|G(t) a.e. on [to, +o0l. (11)

Observe that if G(t1) = 0 for some t; > ¢y, then we have F(t;) = 0 and £(t1) = 0.
Since the map & is nonincreasing, we conclude that £(t) = 0 for every t > 1, i.e.
the solution u is stationary. Now assume that G(t) > 0 for every ¢t > ¢, and divide

% The use of such an auxiliary function is classical, see for example [13, Lemma 3.2.6] in the case of
an autonomous damping.
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each member of equality (11) by G(t). Since 4 € L'(0,+o00) by assumption, we
deduce that )
d G(2)]
9 4 = F\I
9]0 =56

It ensues that th+m InG(t) exists in R. We deduce that lim elo 1(9)ds (t) =
— 400

t—+00
K > 0. The conclusion immediately follows from estimate (10).

€ L'(0, +00).

Remark 2.1 A result similar to Lemma 2.1 can be obtained by ielimmatmg the
first order term in (Ey) via the change of variable v(t) = e2Jo 7y (t). The
details are left to the reader.

Remark 2.2 (Case 7 constant) Assuming that~y(t) =~ > 0 and that a(u,u) >
n|ul|® for every uw € V, the estimate E(t) = O (e~ ") remains true as t — +oo if
v < 202, see [18, Lemma 3.2.6]. However, it fails to be valid if v > 2n'/?, see
[13, Proposition 3.2.5].

We now assume the following ellipticity-like condition

Yu eV, a(u,u)>nlu— Pul|?, for somen > 0. (12)

Remark 2.3 Under (hy), this condition is equivalent to the following one’

YueV, a(u,u)>n"|u— Pul®, for somen > 0. (13)

Indeed, assume that condition (12) is satisfied. Recalling that Pu € KerA, we
deduce from (hg) that

Vu eV, a(u,u)+ \u— Pul*> p|u— Pul?

It ensues that <1 + %) a(u,u) > p|lu— Pul|* for every u € V and finally (13) is
fulfilled with ' = L&

N+’

Remark 2.4 Suppose that the injection V. — H is compact and that (hy)-(hs)
hold true. The eigenvalues of A then define a nondecreasing sequence of nonneg-
ative scalars tending to +00 and there exists an orthonormal basis of H consist-
ing of the corresponding eigenvectors, see for example [17, 20]. If n denotes the
smallest eigenvalue of A greater than 0, it is clear that a(u,u) > n|ul?® for every
u € (KerA)* NV and therefore condition (12) holds true.

The next result allows to estimate the energy decay under condition (12).

" Condition (13) is used in [21, Section 4], where estimates of the energy decay are provided in the
case of an autonomous damping.
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Theorem 2.1 Assume that the bilinear form a(.,.) satisfies conditions (hy)-(h2)
and (12). Let v € WL (R, R,) be a function such that lim, . y(t) = 0 and

4 € LY(0,+00). Let u be a solution in the class (4) to equation (Ey). Then, either
the trajectory is contained in KerA, or there exists K > 0 such that

E(t) ~ Ke Jor@ids g ¢ 4oo. (14)

Proof. For every t > 0, we set u(t) = Pu(t) and u(t) = u(t) — Pu(t). Since

u(t) € KerA, %(t) € KerA and %(t) € (KerA)*, we have for every t >0

et) = %0+ o[+ Laaee + a0, a0 + a0
=5 |5 0] +5|50] +50@0.70) (15

From equality (6), we deduce that for every ¢t > 0

du

du
—(t
o ()

E(O)

2
— 2 f(f ~(s)ds

(16)

Let us now set Vi = (KerA) NV, a1 = qpy,x1, and A; = Ap,. It is clear that @
is a solution of jrse e

w(t) + (t)dt( ) + Aqu(t) = 0.
On the other hand, condition (12) implies that a;(u,u) > n|u|* for every u € V;.
By applying Lemma 2.1 to the solution u, we obtain that either the map u is
stationary or there exists K; > 0 such that

Llda, | 1 . - .
S|S0+ 5@, 70) ~ Ky e O a5 o boo (1)
We now combine equalities (15), (16) with estlmate (17). If f s)ds = +o0,
we immediately obtain (14) with K = K. If fo s)ds < 400, then
lim £(t) = 5 e 20 d—%) Ry e B
t—+o00 2 dt ’

hence (14) is satisfied with K = = Jor > A (s)ds }d_ﬁ (0 ‘2 + K.

l
2 €
Remark 2.5 If the trajectory u(.)
valid. In this case, we infer from equality (16) that E(t) = é =2 Jg v(s)ds }fl;;

for every t > 0.

is contained in KerA, estimate (14) is no more
’2

Corollary 2.1 Under the hypotheses of Theorem 2.1, assume moreover that v &
LY(0,+400). Then we have lim;_, 1, E(t) = 0. If KerA = {0}, then u(t) — 0
strongly in V as t — 4o00.
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Proof. The first assertion is an immediate consequence of estimate (14), while the
second one follows from

V20, E) > () u() > T ()

NN

see inequality (13).

When KerA # {0}, convergence of the trajectories is obtained under the following
stronger assumption

1

+o0
/ e~ 2do I gg < 0. (18)
0

Corollary 2.2 Under the hypotheses of Theorem 2.1, assume moreover that con-
dition (18) is satisfied. Then, there ezists u,, € KerA such that u(t) — ue
strongly in' 'V as t — 400.

Proof. First assume that the trajectory is contained in KerA. Observing that
w= fOJrOO e~ Jo1(Md7ds < 400, we deduce from Proposition 2.1 that u(t) converges
strongly in H as t — +4o00. If the trajectory is not contained in KerA, we derive
from estimate (14) that

d ¢
d—?:(t)’ =0 (e’%fo WS)dS) as t— +oo,

hence % € L'(Ry, H) in view of condition (18). The trajectory u has a finite
length, hence strongly converges in H toward some u,, € KerA. Using now the

semi-coercivity condition (hs), we have

pllu(t) — uoo|l® < Au(t) — o |* + au(t) — tioo, u(t) — too)
= AMu(t) — uoo|* + a(u(t), u(t)).

Since limy 4 oo |u(t) — | = 0 and limy, o0 a(u(t), u(t)) = 0 in view of Corollary
2.1, we conclude that lim;, o [|u(t) — usl|| = 0.

Example 2.1 Suppose that there exist a, k > 0 such that y(t) = & for ¢ large
enough. If the bilinear form a(.,.) satisfies conditions (hi)-(h2) and (12), we de-

duce from Theorem 2.1 and Corollary 2.2 that
o if w>1, then lim &(t) > 0;
t—-+o0

e if « =1, then £(t) ~ th as t — 400 and the trajectory u(.) strongly converges
in V as soon as k > 2;

o if € (0,1), then E(t) ~ Ke """ as t — +o0o and the trajectory u(.)
strongly converges in V' for every k& > 0.

Other results of convergence will be provided in the more general framework of
semilinear equations.
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3 Monotone conservative nonlinearity

The assumptions concerning the spaces V', H, the linear operator A : V. — V’
and the map v : R, — R, are the same as in section 2. We consider the following
semilinear hyperbolic equation

d*u du

(E) )+ ()50 + Ault) + F(u(t) =0, 20,

We suppose that the nonlinearity f : V — H is conservative, i.e.

(k1) 3F € C'(V,R) such that Vu,v € V, (F'(u),v)y v = (f(u),v).

Moreover, we assume that the map f is monotone

(k2) Vu,0 €V, (f(u) = f(v),u—v) =0,

which is equivalent to the convexity of the potential F'. Defining ® : V— R by
®(v) = sa(v,v) + F(v),

we obtain a function of class C!' whose first derivative is given by (®'(u), v)y/y =
a(u,v) + (f(u),v), or equivalently ®'(u) = Au + f(u). Moreover, ® is convex,
which amounts to

Vu,v €V, alu,v —u) + (f(u),v —u) < &(v) — O(u). (19)
Consequently, minimum and stationary points of ® coincide, 1i.e.
Argmin® = {v € V | Av + f(v) = 0}, (20)
where Argmin® = {v € V' | &(v) = inf ®}. We suppose that
(k3) S = Argmin® # .

It is clear in view of equation (F) that nothing is changed if some constant is
added to the potential ®. Without loss of generality, we will systematically assume
that inf & = 0.

Remark 3.1 Assume that a is coercive, i.e. (hy) holds with A = 0. Then the
map u — a(u,u) is strongly convex and since the function I is convex, the map
® is also strongly convexr. This implies immediately that the set Argmin® is a
singleton, hence the non-vacuity condition (k3) holds true. Now assume that (hs)
holds with X\ > 0. To overcome the lack of coercivity, suppose that there exist
e >0 and C > 0 such that F(u) > € |u|?* — C for every u € V. Without loss of
generality, we can assume that ¢ < % For every u € V', we have
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1
D(u) = §a(u,u) + F(u) > ; a(u,u) + F(u)
£
2 Jul[? = & [u? + & |u|* —
S
= g~

which shows that limj,|— 4o O(u) = 4o00. Since the function ® is conver and
continuous, this classically implies condition (k3).

It is immediate to check that the set S is convex, closed in V' and that S C
D(A).

Remark 3.2 Under assumption (hs), let us show that S is closed in H. Let (uy,)
be a sequence in S such that lim, . u, = u strongly in H, for someu € H.
Since the function F is convex, there exist b,c € R such that, for all u € V,
F(u) > —blu| — c¢. Therefore we have for allu € V,

%a(u, u) < @(u) + blu| + c. (21)

Recalling that ®(u,) =0 for every n € N, we deduce that 2a(u,, u,) < blu,| + ¢,
hence the sequence (a(tn,uy)) is bounded. From hypothesis (hs), we infer that the
sequence (uy,) is bounded in V. It ensues that there existu € V and a subsequence
(tn,) such that limg_, ;oo Uy, = U weakly in V. We immediately have u = u and
the weak lower semicontinuity of ® implies that ®(u) < liminfg_, 4 P(u,, ) =0,
henceu € S.

Remark 3.3 (Case f(0) =0) If f(0) = 0 then we have
S=KerAn{veV|f(v)=0}#0.

)
Indeed, if w € S then in particular (Aw,w)+ (f(w), w) = 0, and by monotonicity
of f we have (f(w) — f(0),w) > 0, hence (Aw,w) = (f(w), w) = 0 and therefore
Aw = 0.

In the sequel, we assume the existence of a solution to equation (F) in the
class (4). We define the energy function £ along each trajectory by

1 |du

E(t) = 5|7 () + ().

We have £ € W2 (R, ) and

loc

£(t) = (%(t), Ccll—q;(t)) + <Au(t) + f(u(t)), Ccll—q;(t)>wv
<
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hence the function £ is a Lyapunov function for the equation (F). We deduce
that for every t > 0

1 2

2

du

Eﬂw <E()<E(0) and  P(u(t)) < E(t) < E(0). (22)

In particular, we have % € L*(R,, H). In the sequel, we will consider solutions
which are bounded in H, i.e. satisfying u € L>*(R,, H).

Remark 3.4 Under assumption (hy), it is easy to see that u € L>®°(R,, H) im-
plies u € L>®°(R,, V). Indeed, let us assume that {u(t);t > 0} is bounded in H.
From inequality (21), we have sa(u(t), u(t)) < ®(u(t))+blu(t)|+c for allt € R,.
Recalling that ®(u(t)) < £(0) in view of (22), we infer that {a(u(t),u(t));t > 0}
is bounded. From hypothesis (hy), we conclude that {u(t);t > 0} is bounded in V.

3.1 Summability of the energy. Case of a unique equilibrium
We now prove that the map v £ is summable over R, and that lim; , ., E(t) = 0.

Proposition 3.1 Assume that the bilinear form a(.,.) and the function f satisfy
respectively hypotheses (hy)-(hy) and (ki)-(ks). Let v € WS (R, R,) be a map

such that i € L*(0,+00). Let u be a solution in the class (4) to equation (E) and
assume that u € L*°(R,, H). Then

(i) 75 (1) E() dt < +c0.
(ii)If moreover v & L*(0,+00), then tliin E(t) =0, hence

t—4o00

—(t)' =0 and lim ®(u(t)) =0. (23)

Proof. (i) The proof follows the same arguments as those of [8, Prop. 3.1]. Let
us take v € S and define the function p : Ry — Ry by p(t) = 3 |u(t) — v|*. By
differentiating, we find for every ¢t > 0

i) = (G000 —0).

Since % € WL (R,, H) by assumption, it is immediate to check that p €

I/Vlic1 (R.). Hence the map p is differentiable almost everywhere on R, and we

have
2

i) = (G a0 o) + | G0

By combining the expressions of p, p and by using the convexity of the function
®, we obtain

a.e.on R.
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B(t) +7(0)p(t) = alu(t), v —u(t)) + (f(u(t)),v — ult)) + %(t)
du |?
< —D(u(t)) E(t) a.e. on Ry. (24)
It follows that
() + AP0 +E() < 5| S| e on R, (25)

Let us multiply this inequality by 7(¢) and integrate on [0, ¢]. By using the fact
that £(t) = —v(¢) Ccll—;‘(t)}2 almost everywhere on R, we derive that

[ e s < G —e0) - [ @i = [P e

For the last two integrals, let us use a technique of integration by parts.

—év@mwwzwwmww@mw+év@mww (27)

Recall that the map v is bounded in H by assumption. On the other hand, the
map % is bounded in H, see (22). Hence we infer the existence of M > 0 such

that p(t) < M and [p(t)] < M for every ¢ > 0. Therefore

- [ 2@t < 2300+ 230 + M [ i) as.

Since ¥ € L'(0,+00) by assumption, the right-hand side is majorized by some
M’ > 0. On the other hand, we have

—Av@%@MFfMWMm—%WMﬂ+2Av@%@ﬂﬁﬁ (25)

ngW+wwéwwww%

Using again the assumption 4 € L'(0, +00), we obtain that the right-hand side
is majorized by some M"” > 0. Coming back to inequality (26), we conclude that
fot Y(s)E(s)ds < 2E(0) + M’ + M" for every ¢ > 0 and the expected estimate
follows.

(ii) Let us argue by contradiction and assume that lim; , . E(t) = { > 0. The
map & is nonincreasing, hence £(t) > [ for every ¢ > 0. Since v ¢ L*(0, +00), we
deduce that

/M V(B E@) dt > 1 /M Y (#) dt = +oo,

a contradiction with the result of (i). The last assertion is immediate.
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In view of the previous result, we can prove weak convergence of the trajectories
in the case of a unique equilibrium. The general case of multiple equilibria is more
delicate and will be discussed in section 3.2.

Corollary 3.1 (Case of a unique equilibrium) Under the hypotheses of Propo-
sition 3.1, assume moreover that Argmin® = {u} for some w € V. Then the
solution u(t) weakly converges in V' toward uw as t — +o00. Furthermore, if u(t)
strongly converges® in H then it strongly converges in V.

Proof. By assumption, the solution u is bounded in H. In view of hypothesis (hs)
and Remark 3.4, it is also bounded in V. Hence there exist u,, € V and a subse-
quence (t,) tending to +oo such that lim,, ,, . u(t,) = us weakly in V. Since ®
is convex and continuous for the strong topology of V, it is lower semicontinuous
for the weak topology of V. Hence, we have ®(uy,) < liminf, ;. ®(u(t,)). From
the second part of (23) we deduce that ®(uy) < 0, i.e. Uy € Argmin® = {u}.
Hence @ is the unique limit point of the map ¢ — u(t) as t — +oo for the weak
topology of V. It ensues that lim; ,, ., u(t) = u weakly in V. Let us now prove
the second point. The argument is given in [3, p. 548-549] but we recall it for the
sake of completeness. From (hs), we have

pollut) —al* < Mu(t) —a* + a(u(t) — @, u(t) — @) (29)

= Au(t) —a)* +2®(u(t)) — 2 F(u(t)) — 2a(u(t),n) + a(T,u).
Since u(t) — u strongly in H and weakly in V', we have lim; ,, o, |u(t) —u* = 0
and limy, o a(u(t),w) = a(u,u). On the other hand, by weak lower semi-
continuity of the continuous convex function F' : V — R, we infer that

liminf, o F(u(t)) > F(u). Recalling finally property (23), we deduce from in-
equality (29) that

p limsup |lu(t) —a|* < -2 F(u) — a(u,w) = 0.

t—4o00

We conclude that u(t) — @ strongly in V.

3.2 Convergence of the trajectories
Case of a non vanishing damping

When the damping coefficient «(t) is constant, i.e. ¥(t) = > 0, the solutions of
(E) weakly converge in V' toward an equilibrium point, see [3]. We are going to
show that this property still holds true if

limy oo Y(t) = 700 > 0

(L)

v € LY(0,+00).

8 This assumption is satisfied if the injection V < H is compact.
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Theorem 3.1 Assume that the bilinear form a(.,.) and the function f satisfy
respectively (hi)-(hy) and (ki)-(ks). Let v € WEI(R,,Ry) be a map satisfying
(I1). Let u be a solution in the class (4) to equation (E). Then, there exists
Uy € S such that u(t) = ue weakly in 'V as t — +oo. Furthermore, if u(t)

strongly converges in H then it strongly converges in V.

Proof. Let v € S and define the map p : Ry — Ry by p(t) = 5 |u(t) — vf* as in
the proof of Proposition 3.1. Inequality (24) implies that

du |?
—(t
- (@)

pt) +y@)p(t) < a.e.on R,.

Let us multiply each member of this inequality by e/o ¥ 47 and integrate on [0, ¢].
Recalling that p € W'llocl (R, ), we obtain

2

du o\ s, (30)

t
pt) < e~ oD (0) 4 = o) ar / el | 2
S

0

(s)

We now show that the right member of the above inequality is a summable
function. Since lim; o Y(t) = Yoo > 0, there exists ty > 0 such that vy(t) > v../2
for every ¢ > ty. From Lemma 3.1 (i) below, we have

+00 .
/ e~ Jo 1A gt < 400 (31)
0

Lemma 3.1 Let us assume that there exist k > 0 and ty > 0 such that v(t) > k
for every t > ty. Then we have

+o0 ‘
(Z)/ e~ Do g < J o0
O+OO t d 1 s d
(1) e~ o dr gy < e e o 1A for s large enough.

Lemma 3.1 is a particular case of a more general result that will be proved next,
see Lemma 3.3. Coming back to inequality (30), we find by applying Fubini

theorem
du 2 Foo
E(S)' dsdt = /0

—+o0 t
/ o I w(‘r)d‘r/ oJs vy ar
0 0

From Lemma 3.1 (ii), we obtain

du

2 N +oco
elo W(T)dT/ e~ Jo 1 AT gt gs. (32)
S S

(s)

. +o00 2 4
o W(T)dT/ e Jor g < 2 < 5(s).

IYOO (e’

Recalling that £(t) = —(t) ()
oo. Hence we deduce from equality (32) that

? we have the estimate 0+O° v(s) ’i—?(s)f ds < +
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d

+oo ; to 2
/ e~ Jitr)dr / eJs @ | N g dt < oo, (33)
0 0 ds

By combining inequality (30) with estimates (31) and (33), we infer that [p], €
L*(0,+00) and hence t1i+m p(t) exists. In particular the map u is bounded in H.
—00

The end of the proof is the same as in [3, Theorem 3.1] but the arguments are given
for the sake of completeness. Since u € L*(R, H), we deduce from hypothesis
(he) and Remark 3.4 that u € L>°(R,, V). Let w € V be a weak cluster point of
{u(t);t — 400} for the weak topology of V. There exists a sequence t, — +00
such that u(t,) — u weakly in V as n — +4o00. Since the function ® is lower
semicontinuous for the weak topology of V, we have® in view of Proposition 3.1

O (u) < liminf ®(u(t,)) = lim P(u(t)) =0,
n—+o00 t—+o00
which implies that @ € S. Let us prove that {u(t);t¢ — +oc} has a unique
cluster point for the weak topology in V. We apply the following argument due
to Opial [18]. Let @y, us € S be two cluster points of {u(t);¢ — 400} for the
weak topology of V. According to the first part of the proof, we can assert that
limy_, 4 oo |u(t) —7;|* = I; exists for each i = 1, 2. Moreover there exists a sequence
t, — 400 such that u(t,) — w, weakly in V' as n — +4o00. Since the injection
V < H is continuous, u(t,) — u; weakly in H as n — +o0. From the equality

IU(t) — ﬂl‘Z — IU(t) — HQ‘Z = ‘El —E2’2 + Q(El - Eg,ﬂg — U(t)),

we infer that I} — Iy = —[u; — Uy|*. On the other hand, if we take ¢, — +o0 such
that u(t,,) — Uy weakly in V as m — +o0, we find [} — Iy = |[u; — u|*. As a
consequence, [t; — Us|?> = 0. This establishes the uniqueness of the cluster points
of {u(t);t — +oo} for the weak topology of V. Hence u(t) — uq, weakly in V' as
t — +oo for some uy, € V.

For the second point, the reader is referred to the corresponding argument in
the proof of Corollary 3.1.

An interesting situation ensuring strong convergence in V is the case where
the non-linearity satisfies the symmetry property F'(—u) = F(u) for all u € V.

Theorem 3.2 Under the hypotheses of Theorem 3.1, assume moreover that the
function F is even, i.e. F(—u) = F(u) for allu € V. Then there exists us € S
such that u(t) — us strongly in V.

Proof. The argument was originated by Bruck, see [6, Theorem 5|. It has been
adapted to the framework of second-order in time equations, see for example |2,
Theorem 2.4 (i)] or [3, Remark 3.2] in the case of a constant damping parameter
7. Let us fix tg > 0 and define the map ¢ : [0, 5] — R by

9 Observe that Proposition 3.1 applies rightfully since we have proved that u € L (R, H).
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1
q(t) = u(t)® = [ulto)|* - 5 lult) = u(to) .

A first differentiation gives for all ¢ € [0, to]

i(t) = (G000 + ult)).

Since ‘2—1; € VV;C1 (R, H) by assumption, it is immediate to check that the map ¢

is absolutely continuous, hence differentiable almost everywhere on [0, to] and we

have
2

a.e. on [0, to].

i) = (G 000+ uw)) + |50

By combining the expressions of ¢, ¢, we obtain for almost every t € [0, ¢,]

2

) + (1)) = ~a(u(t), u(t) + ulto)) — (F(u(t)),u(t) + ulto)) + |G (1)
- _<q)/(u(t))7 u(t) + u(tO)>V’,V + %(t) (34)

Since the function ® is convex and even, we have for all u,v € V
P(v) — D(u) = P(—v) — P(u) > —(P'(u), v+ u)yy.

Hence inequality (34) gives

2

du

Gt) +v(t)q(t) < (ulty)) — P(u(t)) + E(t) a.e. on [0, to]. (35)

Recalling that the energy function £(t) is nonincreasing, we have 1 ’%(t)f +

2
O (u(t)) > }%(to)‘z + P (u(ty)) for every t € [0, t]. Therefore

2

1 |du
vt € [0,t0], P(ulty)) — P(u(t)) < 2 E(t)

Using inequality (35), we deduce that

2

du

E(t) a.e. on [0, o).

i) +(0ilt) < 5

Let us multiply each member of this inequality by eJo (M) dm and integrate on [0, ¢].
Since the map ¢ is absolutely continuous, we find

2

d
Y ds.

t 3 t t s
q(t) < e o140y + 56* Jov(7) dT/ eJo V(m)dr %(3)

0
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Let us integrate this inequality on [t, t], we obtain

~a0) < d00) [ EO ds 4 Sht) — hio),

where we have set

t s
ht) = / o Ji () dr / oJT A dr
0 0

We deduce from the previous inequality that

2

d
d—?(a) do ds.

SO =) < (O ~[ulta) F+i(0) [ B s Sntto) —(0). (36)

In the proof of Theorem 3.1, we showed that tliin lu(t) — v|* exists for all v €
—+00

Argmin®. Since ® is convex and even, we have 0 € Argmin®, hence th+m lu(t)|?
—+00

exists. On the other hand, the integral ["* e~ /o 7" ds is finite from (31), while
lim h(t) exists in view of estimate (33). We then deduce from inequality (36)

t—+400

that {u(t);t — +oo} is a Cauchy net in H hence strongly converges in H. It
suffices to use the second part of Theorem 3.1 to obtain the strong convergence
in V.

Case of a vanishing damping

It is assumed in this paragraph that the damping parameter (¢) vanishes as
t — 400. The trajectories of (E) are clearly more volatile in this framework. Our
purpose is to obtain results of convergence for the trajectories, assuming that
v(t) tends slowly enough toward 0. We are going to show that the convergence
properties stated in the previous paragraph still hold true if the quantity 7(t)
behaves as k/t*, for some a €]0,1[, £ > 0 and ¢ large enough. The main step
consists in establishing a refinement of Proposition 3.1 via sharp estimates for
the energy decay. Let us start with a technical lemma that will be crucial in the
sequel.

Lemma 3.2 Assume that the bilinear form a(.,.) and the function [ satisfy res-
pectively hypotheses (hi)-(hy) and (k1)-(ks). Let v € W' (R4, Ry) be a function

loc
such that limy_, o ¥(t) = 0. Let u be a solution in the class (4) to equation (E)
and assume that u € L=(Ry, H). We are given some ty > 0 along with a non
constant map X € C3([to, +0o[, R) such that \(t) > 0, A(t) > 0, A\(¢) > 0 and

A (t) <0 for every t > to. Assume that the map t — )\(t) %(t)’ is bounded, that
FONE) ()| dt < +oo and that M(t)y(t) > 2\(t) for every t > to. Then the

t
foollowmg estimates hold true

(i) [,/ Mt) E(t) dt < +o0.
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(Z.Z.}imt*FFOO () (t) =
(Z@ZL+ NORIGREAC )} dt < +00.

Proof. Let us consider the map p defined by p(t) = 3 |u(t) — v|* for some v € S,
see the proof of Proposition 3.1. Recall that we have from inequality (25)

Et) < § du

<3 E(t) —p(t) —y(t)p(t) a.e. on Ry. (37)

Now define the map &, : [to, +oo[— Ry by Ex(t) = A(t) E(t). It is clear that
Ex € Wh([to, +00]). Since E(t) = —v(2) Z—?(t)f for almost every t > 0, we have

loc

du

EN(t) = ME E(E) = A1) 1 (D) | (1)

a.e. on [tg, +00. (38)

From the assumption () y(t) > 2 A(t) for every t > to, we deduce that

2

o) | 5

< %)\(t) E(t) — %SA(t) a.e. on [ty, +00l. (39)

By combining inequalities (37) and (39), we infer that
M) E(t) < =3Ex\(t) — 4 M) [p(t) + (1) p(t)]  a.e. on [, +ool.

Let us integrate this inequality on [t, t]; we find

t

/ A(s) £(s)ds < 3 Ex(to) — 4 / A(s) (s) ds — 4 / A(s) () p(s)ds.  (40)

to to to
For the last two integrals, let us use a technique of integration by parts.

—/Awmwwzﬁme+Mmmm+/x@mww

to to

— () p(t) + Alto) B(to) + ME) p(t) — Alto) plto)
—/t A (s) p(s) ds.

The map wu is bounded in H by assumption hence there exist M, M’ > 0 such
that p(t) < M and [p(t)| < M’ |%(t)| for every ¢ > 0. Therefore we deduce from
the above equality that

du
dt

- [ s ds < i it

to

o)

MR+ M /t ()| ds.

Recalling that )\ (t) < 0 and that the map ¢ — A(t) |94 (¢)| is bounded by some
M" > 0, we obtain



SEMILINEAR HYPERBOLIC EQUATIONS WITH NON-AUTONOMOUS DAMPING 33

- /t A(s) p(s)ds <2M' M" + M A(t) + M (A(to) — A(t)) = 2 M' M”" + M A(ty).

t
° (41)
On the other hand, we have

- / A() 7() B(5) ds = —A(E) () p(8) + A(to) ¥ (Fo) plto) + / A(5)7(5) p(s) ds

to to

+ [ i)ps) ds

to

< M Mto) y(to) +M/ v(s) ds (42)

+M/ s)| ds.

[ 3(6)as)ds = Monte) = Mtan o) = [ A)ics)ds

to

Observe that

<A+ [ M) ()l ds (3

to

Since lim;_, 1, y(t) = 0, we have for every ¢t > tg

At (1) = At / T (s ds < A(D) / T is) ds < / M) A(s) ds,

the last equality being a consequence of the fact that the map A is non decreasing.
The finiteness of the integral f s) |¥(s)| ds is ensured by assumption. In view
of (43), we deduce that

/ A(s)y(s)ds < / h A(s) [5(s)] ds < 4oo0.

to to

Coming back to (42), we infer that

—/ A(s)y(s) p(s) ds < M A(to) y(to) +2 M /t h A(s) |[y(s)| ds < +00.  (44)

to

By combining inequalities (40), (41) and (44), we conclude that the quantity
fti A(s) E(s)ds is uniformly majorized with respect to ¢, whence (i).

Let us now come back to equation (38). By taking the positive part of each
member, we find (£,)4+(t) < A(#)E(t). This implies that (£,)y € L'(0,+00)
and therefore | = lim;, o A(t) E(f) exists in Ry. We have to prove that
[ = 0. Let us argue by contradiction and assume that [ > 0. Then &(t) ~
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[/A(t) for t large enough. From (i), we deduce that ft (s)/A(s)ds < +oo,
i.e. limy oo I A(f) <+ oco. Hence the nondecreasing convex map A has a fi-
nite limit as ¢ — +oo, which implies that it is constant. But it contradicts the
assumption and we conclude that | = 0, which shows (ii).

By integrating equality (38) on [y, t], we obtain

JRGEE

to

%(S) ds:/ A(s) E(s) ds + Enlto) — E(t)

to

< /+OO A(s) E(s) ds + Ex(to) < +o0.

=/,
Letting t — +00, we immediately obtain (iii).

A repeated application of Lemma 3.2 allows to derive sharp estimates for the
energy decay under some suitable conditions. These estimates will be the keystone
for proving convergence of the trajectories.

Proposition 3.2 Assume that the bilinear form a(.,.) and the function f satisfy
respectively hypotheses (hy)-(hy) and (k1)-(ks). Let v € W2 (R, Ry) be a func-

+o0
tion such that limy_, ;o y(t) = 0. Assume that / #-(2)" |¥(t)| dt < 400 for

0
some n € N and that there exists tg > 0 such that (t) > % for everyt > ty. Let
u be a solution in the class (4) to equation (E) and assume that u € L>®(R,, H).
Then we have

(z')/+°° #1-(2)" g(t) dt < +o0.
(ii) lim_¢* -() gy =o0.
du

i O 0 |G

Proof. First we use Lemma 3.2 with the map Ay defined by Ao(t) = ¢ for ev-
ery t > 0. Let us verify that the assumptions of Lemma 3.2 are satisfied.
Recall that the map t — ‘ } is bounded, see (22). On the other hand,

the finiteness of the integral f F(t)| dt is a consequence of the assumption
f+oo -(2)" |9(t)| dt < +oo. Flnally, the assumption \o(t)y(t) > 2 \o(t) is triv-
ially verified since y(t) > 4 for every ¢ > ;. Lemma 3.2 (i) then shows that
lim;_, 1o t E(t) = 0. Since E(t ) > 1| (t)}2 we deduce that limy_, o t1/% [%(¢)| =

2
dt < 4o0.

I

dt
0. This suggests to apply Lemma 3.2 with the map \; defined by \(t) = t3/ 2 The

boundedness of the map M } ‘ is guaranteed by the previous step. The other
assumptions of Lemma 3.2 are tr1v1ally satisfied. Lemma 3.2 (11) then shows that
limy_, 4o t32 E(t) = 0, thus implying that lim,_, . t3/* " ‘ = 0. By using re-

cursively Lemma 3.2, we let the reader check that limHJroo tl_(%) E ’ = 0.
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Define the map A, by A\, (t) = 2=(3)" The boundedness of the map A, }dt} is
implied by the previous step, while the integral f A(t) |7(t)|dt is finite by
assumption. Lemma 3.2 applied with the map A\, y1elds conclusmns (i), (ii) and
(iii) of Proposition 3.2.

Given n € N, £ > 0 and ¢ty > 0, the following condition plays a central role in the
sequel

(limy 400 y(t) =0
400 . 1)" )
(Iy) < /0 1= |y ()| dt < +o0
Vit > to, V(t)ZW~
\ t \2

Hypothesis (I3) automatically implies 4 € L'(0, +00) together with v ¢ L'(0, 4+00).

Remark 3.5 Assume that the map v : Ry — R, is nonincreasing and that there
exist a €]0,1[, k, k' > 0 and to > 0 such that

k
V>t <) < (45)

Let us show that condition (ly) is satisfied if the integer n € N is chosen such
that'® o € ]1 — (—) — (%)n } Since a < 1 — (§)n+ , we have
k k

and the third condition of (l3) is proved. Recalling that 4(t) < 0, an immediate
integration by parts gives

/ s y(s) ds = - / ()" 5 (s) ds
e (1 B (%)")

Since 0 < ~v(t) < i% for every t > ty, we infer that

/t:81( )" |4(s)| ds < téf(%)n v(to) + K (1 - (%)n) /t: Saf(sé)"’

10 Tts explicit expression is given by n = — [1“(11:20‘)

[N

] — 1, where [z] denotes the integer part of x € R.
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n T ds
From the choice of n, we have o + ( ) > 1, hence the integral / 18

1
? oo so+(3)

) J(s) ds < +

(S

+00
convergent. In view of the above inequality, we conclude that / sl_(
to

+o0
oo. Notice that if n = 0, this condition reduces to / |¥(t)| dt < + oo, which
0

1

1s automatically satisfied since v < 0. It follows that if o € ]O, 5], one may take

k' = +o0 in condition (45) (no required upper bound).

Let us now state the main result of this section.

Theorem 3.3 Assume that the bilinear form a(.,.) and the function f satisfy
respectively (h1)-(hy) and (ki)-(k3). Let v € WEI(R,,Ry) be a map satisfying
(I3). Let u be a solution in the class (4) to equation (E) and assume that u €
L>*(Ry, H). Then, there ezists usx, € S such that u(t) — uo weakly in V as
t — +oo. Furthermore, if u(t) strongly converges'* in H then it strongly converges

i V. Finally, iof the potential function F' is even, the convergence is strong in V.

Proof. The proof follows the same lines as the ones of Theorem 3.1. Given v € S,

we define the map p : Ry — Ry by p(t) = 5 |u(t) — v|*. Recall that

2

du [ as (46)

t
plt) < e B07p(0) o0 [ oo
0 S

(see formula 30). We have to show that the right member of the above inequality
is a summable function. From Lemma 3.3 (i) below applied with § =1 — (l)nJrl

2
we have

)

o0 .
/ e Jo 1M gt < Jo0. (47)
0

Lemma 3.3 Let us assume that there exist 8 € [0,1[, k > 0 and to > 0 such that
y(t) > t% for every t > ty. Then

+o0 .
(Z)/ e~ Jo I gt < 4 00;
0
(i1 )For every ¢ > 1, we have for s large enough

+oo
/ e lormdr g < % s e~ Jo ()T (48)

If 0 =0, one can take c = 1 in the above inequalily.

The proof of Lemma 3.3 is postponed to the appendix. On the other hand, by
applying Fubini theorem, we find

“+oo t 2 +oo
/ e*f&“/(f)df/ IS Ay ar dsdt:/
0 0 0

11 This assumption is satisfied if the injection V < H is compact.

du

d_u
ds ds

2 +oco
elo v dr / e Jg () dr dtds. (49)

(s)

(s)
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From Lemma 3.3 (ii) applied with § =1 — (%)nﬂ, we obtain

)n+1

e [ ‘() d 2 11
o 7) 7/ e gp < 2 5103
S

Since y(s) > ————r, we derive that

S-(3)

Nl | o

s +oo 2 n
elo (0 dT/ e Jormdr gy < % §2(3) 7(s).

From Proposition 3.2 (iii) we have f0+°° $2(2)" ~(s) }2—;‘(3)‘2 ds < 400, hence we
deduce from equality (49) that

“+o00 t
/ e~ f(f ~(7) dr / 6[; ~(7) dr du
0 0 ds

—(s) 2 ds dt < 4o0. (50)

By combining inequality (46) with estimates (47) and (50), we infer that [p|, €
L*(0,400) and hence . liin p(t) exists. The end of the proof is the same as the one
—+o0

of Theorem 3.1. For the second point, the reader is referred to the corresponding
argument in the proof of Corollary 3.1. Finally, if the potential function F'is even,
the arguments of the proof of Theorem 3.2 apply directly. Details are left to the
reader.

Remark 3.6 The assumption u € L>®(R,, H) arises in the statement of The-
orem 8.3, while it is useless in the framework of Theorem 3.1. In the proof of
this last one, the existence of limy_, o [u(t) — v|* relies on the general estimate
v ‘%‘ ‘e LY(0,+00), and gives the boundedness of u as a by-product. By contrast,
in Theorem 3.3 the existence of lim;_, 4o [u(t) —v|* needs a sharper estimate (see
Proposition 3.2 (iii)), which uses some boundedness assumption for the map u.
The question to know if the assumption uw € L*®(R,, H) is really necessary in

Theorem 3.3 remains open.

In view of Remark 3.5, we obtain directly the following corollary of Theo-
rem 3.3.

Corollary 3.2 Assume that the bilinear form a(.,.) and the function f satisfy
the same hypotheses as in Theorem 3.3. Let vy € Wl’l(R+, R, ) be a nonincreasing

loc

map and suppose that there exist o €]0,1[, k, ¥ > 0 and ty > 0 such that'?

k K
Vi, o <A(l) <

S e
Then we have the same conclusions as in Theorem 3.3.
kll

'? This condition is satisfied if there exists k” > 0 such that y(t) ~ %+ as t — +o0. On the other hand,
one can take k' = +o0 if a € ]0, %}, see Remark 3.5.



38 A. Cabot and P. Frankel
3.3 Decay estimates for a strong set of minima

Recall that the set S = Argmin® is convex and closed in H, see Remark 3.2. Let
us denote by Ps the projection operator onto the set .S in the sense of H. In this
paragraph, we assume that the function ® : V — R satisfies’®

dn >0 suchthat YueV, &(u)> g]u — Ps(u) . (51)

If v ¢ L*(0,+00), we know from Proposition 3.1 (ii) that lim;, . E(t) = 0.
Under assumption (51), we are able to evaluate the speed of convergence of £(¢)
as t — 4o00.

Theorem 3.4 Assume that the bilinear form a(.,.) and the function f satisfy
respectively (hy)-(hy) and (k1)-(ks). Let v € W,oH(Ry, R, be a function satisfying
lim; 100 y(t) = 0 and §(t) = o (y(t)) as t — +o0. We suppose that the function
®: V — R defined by ®(u) = ja(u,u) + F(u) satisfies condition (51). Let u be
a solution in the class (4) to equation (E). Then, for all m €]0, %[, there exist
C >0 and ty > 0 such that:

Vt>ty, E(t) < Ce ™),

Proof. Define the map ¢ : R, — R by ¢(t) = 2d%(u(t), S), where dg(., S) stands

2
for the distance function from the set S in the sense of H. By differentiating, we
find for every t > 0

) = (% 000~ Pou(0) ). (52

Since 2 € WL (R,, H) by assumption, it is immediate to check that ¢ €

WL R,), hence the map ¢ is differentiable almost everywhere on R . Consider

now some t > 0 where the maps ¢ and ‘f# are both differentiable, and let us
majorize the quantity ¢(¢). For that purpose, we use a technique of differential

quotient. For all h # 0, we have

1

HEGUEEORE €

<. ult+h) = Ps(u(t + h)) = u(t) + Ps(U(t)))

+% (Z—z(t +h) — %(t)’ u(t + h) — Ps(u(t + h))) -

The monotonicity of Ps implies that

_% (Z_?(t% Ps(u(t+ h)) — Ps(u(t)))

13 1f f = 0, the set S coincides with KerA and we recover condition (12) of section 2.
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< s (0 ) = ) = 1 0, Pt 1) = Pe(ut) ).

Hence we obtain

() - $(0) < 7 (%@% ult+h) = u@))
+% (u(t +h) —u(t) — h%(t), Ps(u(t+h)) — Ps(U(t)))
+% (%(t +h) — é—?:(t),u(t +h) — Ps(u(t + h))) -

Taking the limit as h — 0, we derive that

d*u

%(@'2 + <W(t), u(t) — Ps(u(t))) . (53)

pt) <

By combining formulae (52) and (53), and using the convexity of the function &,
we deduce that for almost every ¢t € R,

60420900 < | 0] + (G50 + 20 G0 ) - Patute))
= %40~ a(u(t) u(t) ~ Ps(u(t) ~ (F(u(t), u(t) ~ Ps(u(r))
< (B~ wuin)) + e(Psun) = | 20| — aun).
It follows that
" . 3ldu, |?
S(t) +v(t)o(t) + E(t) < 3 E(t) a.e. on R,.

Multiplying this formula by 24(¢) and recalling that Et) = —(t) ‘i—?(t)f for
almost every ¢ € R, we obtain

2

gv(t) (B +vOeE) +EB + 37 EB <0 ae onRy  (54)

This suggests to define the function F : R, — R by

1 2

T3

= £(1) + 27(1) £(0)

du
7 (t)

+ 200 (SO0 - Pt 69)

In view of inequality (54), we immediately find
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F+or(F () < - (ws) - %W) (i—?(t»u(t) _ Ps<u<t>>) a.e. on R;.
(56)

Since |(2(t), u(t) — Ps(u())]| < 5 |2(0)]* + L u(t) — Ps(u(t))]* and ®(u(t)) >
u(t) — Ps(u(t))]* by assumptlon we have
' (%(t),u(t) _ Pg(u(t))) ' < CE®),  for some C > 0. (57)

Recalling that lim; ,, ., v(t) = 0, the expression of F shows that
F(t)~E() ast— +oo. (58)

Let us fix some m €]0, 2[. Using the fact that §(t) = o(y(t)) and v(t)* = o(v(t))
as t — 400, we deduce from (56), (57) and (58) the existence of ¢y > 0 such that,

.F(t) + %'y(t)]:(t) < (% — m) v(t)F(t) a.e. on [ty, +00,

hence F(t)+m~(t)F(t) < 0 for almost every ¢ > t,. Let us multiply by e™ Jo (s
and integrate on [tg,t]. Since the function F is absolutely continuous, we find
F(t) < DemJov®)ds with D = em Jo® (s)ds F(ty). Conclusion follows from esti-
mate (58).

Remark 3.7 Under the hypotheses of Theorem 3.4, assume that there exists k >
3 such that y(t) >k ¢ fort large enough. Fizx m € } From Theorem 3.4, there
exist C' > 0 and t 2 0 such that

Posl

1 |du

vt > to, - E(t)

Hence we have }%(t)’ < (fg—,zi; and since mk > 2, we deduce that }dt} €

LY(0,+00). The trajectory u has a finite length, therefore it strongly converges
i H toward some us € S.

4 Application to particular semilinear evolution problems

We suppose that €2 is a bounded open subset of R™ with boundary 02 sufficiently
regular.

4.1 Hyperbolic problems of order two in space

Example 4.1 Given a map v : R, — R, and a function f € C!(R), let us
consider the following damped wave equation
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d*u du
W+7(t)ﬁ —Au+ f(u) =0 on Qx]0,+o0], (59)

with Dirichlet boundary condition:
u=0 on 002x]0,+o0l. (60)

The functional setting of the evolution problem (59)-(60) is given by
H=1*Q), V=H(Q) and a(u,v)= / Vu(z)Vo(z)dz.
Q

Hypothesis (hy) is trivially verified while hypothesis (hs) is satisfied with A = 0,
since the bilinear form a is coercive. On the other hand, we assume that the
function f satisfies the following properties:

(i) There exist C, a > 0 such that (n—2)a < 2and |f'(r)| < C (1 +|r|*) Vre R
(ii) f is nondecreasing.

Define the function F' € C*(R) by F(r) = [; f(s)ds for every r € R. For simplic-
ity of notation, we write F'(u) for [, F'(u(z)) dz. Hypothesis (ki) is a consequence
of assumption (i) above, see for example [10, pp. 73-75]. The monotonicity hy-
pothesis (k3) is ensured by point (ii). Finally the coercivity of the bilinear form a
implies that the equilibrium set is a singleton {u}, see Remark 3.1. In particu-
lar, the non-vacuity condition (ks) is satisfied. If the map v € W' (R, R,) is
such that 4 € L*(0,400) and v ¢ L*(0,+00), we derive from Corollary 3.1 that
u(t) — u weakly in H}(Q) as t — +o0o. Since the injection H}(Q) < L*(Q) is
compact, the second part of Corollary 3.1 shows that the convergence is strong
in Hyj(2). On the other hand, the coercivity of a implies that condition (51) is
fulfilled. If the map  satisfies lim; ;o y(t) = 0 and ¥(t) = o(y(t)) as t — 400,
Theorem 3.4 then shows that for every m &€ ]O 2

) (I

Example 4.2 Let us consider the damped wave equation (59) with Neumann

boundary condition % =0 on 092x]0,+oo[. The functional setting of the evolu-

tion problem is given by:

2 t
+|Vu(t, x)]Q} d:ic—l—/ F(u(t,z))dx = O (e’mfo V() ds) as t — 4o00.
0

H=1IL*Q), V=H(Q) and a(u,v)= /QVu(x).Vv(x)dx.

The bilinear form a is semi-coercive, hypothesis (hy) is satisfied with A = p = 1.
To overcome the lack of coercivity, assumptions (i)-(ii) above are supplemented
with the following one



42 A. Cabot and P. Frankel

(iii) There exist € > 0 and D > 0 such that F(r) >er?— D for every r € R.

Assumption (iii) implies that condition (k3) is verified, see Remark 3.1. Hypothe-
ses (k1 )-(ky) are fulfilled as in the previous example. If the map v € W2 (R, R,)
satisfies ({1) (resp. (I2)), we derive from Theorem 3.1 (resp. 3.3) that there exists
a solution wu, of

{—Au+f(u) =0in Q

g—Z:OonﬁQ

such that u(t) — us weakly in H'(Q) as ¢ — +o0. Since the injection H'(Q) <
L*(Q) is compact, the second part of Theorem 3.1 (resp. 3.3) shows that the
convergence is strong in H'(Q).

Example 4.3 Let us consider the following equation

d? d

) S —Au—Mu+ fw)=0 on Qx]0,+ool, (61)
dt? dt

with Dirichlet boundary condition. Here \; stands for the smallest eigenvalue of
the Laplacian-Dirichlet operator. The functional setting of the evolution problem

is given by:
H=1*Q), V=H;(Q) and a(u,v)= /Q Vu(z).Vo(z) — Mu(z)v(x)] d.

It is immediate to check that (h1)-(hs) are satisfied. Under the above assumptions
(i), (ii) and (iii), we obtain as previously that conditions (k;)-(k3) hold true. If
the map v € W' (R, R,) satisfies (I;) (resp. (I2)), we derive from Theorem 3.1
(resp. 3.3) that there exists a solution s, of

—Au— X u+ f(u)=0in
u = 0 on 0f)

such that u(t) — s strongly in H}(Q) as t — +oo.

Example 4.4 The equation arising in the previous example can be generalized
as follows

fu A —f Pu+ fu)=0 on 9x]0,+oo
dt2 ry dt Uu 2:1772 ’Lu u)= n ) OO,

see [21, Example 4.5]. We still assume Dirichlet boundary conditions. Let us
explicit the notations: (\;);>1 (respectively (e;);>1) is the sequence of eigenvalues
(respectively eigenfunctions normalized in L?(Q)) of (—A) in H}(Q). For each
i > 1, P, denotes the orthogonal projection on span{e;} in the sense of L*(().
We assume that the nonnegative sequence (7;);>1 is bounded and that n; < \; for
every ¢ > 1. The functional setting of the evolution problem is given by
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400
H=1*Q), V=H;(Q) and a(u,v)= / Vu(x).Vv(x)dx—Z 772-/ Pu(z).Pu(x)d.

It is easy to check that hypotheses (hy)-(ha) hold true. Under the additional as-
sumptions (i), (ii) and (iii), we then obtain (k;)-(k3). If the map v € W2 (R, Ry)
satisfies (I1) or (l3), we obtain as in the previous example the existence of an equi-
librium us, such that u(t) — us strongly in H}(Q) as t — +o0.

4.2 A higher-order example
Example 4.5 Let us consider the following equation

dz—u+ ()d——i—AQ + f(u) =0 Qx]0, +oo| (62)
dt2 dt u = on s 1,

with the boundary condition:

u= g—z =0 on 00x]0,+o0]. (63)

The functional setting of the evolution problem (62)-(63) is given by:

H=1IL*Q), V= {u € H*(Q), u= % =0 on GQ} and a(u,v) = /QAu(:U).Av(x)dx.

Hypothesis (hy) is trivially verified. Moreover, from the regularity results rela-
tive to the Laplacian-Dirichlet problem, there exists £ > 0 such that |u|p2@) <
K |Aulp2(q). Hence condition (hsy) is satisfied with A = 0, i.e. the bilinear form a
is coercive. We assume that the function f satisfies assumption (ii) along with
the following variant of (i)

(i) There exist C, o > 0 such that (n—4)a < 4 and |f'(r)| < C (1 +|r|*) Vre R.

By using Sobolev’s imbedding theorem, we let the reader check that hypothesis
(k1) is a consequence of assumption (i’) above. The monotonicity hypothesis (ko)
is ensured by (ii). Finally in view of Remark 3.1, the coercivity of the bilinear
form a implies that the equilibrium set is a singleton {@} and in particular (k3)
holds true. If the map v € W,i! (R, R,) is such that 4 € L'(0,+00) and v ¢
L'(0,+00), we derive from Corollary 3.1 that u(t) — u strongly in H?(2) as
t — +o00. On the other hand, the coercivity of a implies that condition (51)
is fulfilled. If the map ~ is such that lim;, . 7(t) = 0 and 4(¢) = o(y(t)) as
t — 400, Theorem 3.4 then shows that for every m &€ }O

Sl af

» 31

()P} dac+/ Fluft. ) de = O (e 710%)  as i oo,
Q
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Appendix

Proof of Lemma 3.3. (i) From the assumption () > %, we deduce the exis-

tence of & € R such that fo ) dr > {5170 + o for every t > to. Therefore, we

have
+oo t +o0 k_11—-0
/ e~ Jor(mdr gy < eo‘/ e T80 dt < 400.
0 0

ii) By using the assumption v(t) > %, we find
(i) y(t) >

“+o00 . 1 —+00
/ 6*f0 y(r)dr dt S E/ t ,-)/( )6 fo T)dr dt. (64)

An integration by parts in the right-hand side then yields
+oo t t +o0 oo t
/ 0~ (t) e Jor D gt — [—t9 e o WW] +6 / 0= emJo ™ gt (65)
s s s

Remark that ¢¥ e Jo () dr < el e T- Tt 9, hence limy_, o t% e~ Jor(mdr —
Therefore, we deduce from (64) and (65) that

+00 . 1 s 4 +o0 .
/ e~ Jor(mdr gy < T s? e Jormdr 4 T / 0= e Jor(Mdr gy

If # = 0, formula (48) is proved with ¢ = 1. Now assume that 6 €]0, 1] and take
c¢ > 1. The right term in the above inequality is clearly negligible with respect to

g [t ¢ 1 oo
the left one, hence E/ 0=t e= o (Mdr gy < (1 — —) / e o A g for
S (& S

s large enough. Formula (48) follows immediately. O
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Summary. Given a Hilbert space H and a closed convex function ® : H — R U {+o0}, we consider
the inertial proximal algorithm

(A) Tn4+1 — Tn — Oln(xn - xnfl) + Bnaé(l"nnkl) > 07

where (an) and (Sn) are nonnegative sequences. The notation 0® stands for the subdifferential of
® in the sense of convex analysis. This algorithm can be viewed as the implicit discretization of a
continuous gradient system involving a memory term. We give conditions that ensure that a suitable
discrete energy decreases to inf ® as n — +o0o. When ® has a unique minimum, the question of the
convergence of () is solved. In the case of multiple minima, it is proved that if ([]}_, cax) ¢ I' and
if a suitable geometric condition on the set Argmin® is fulfilled, then non stationary sequences of (\A)
cannot converge.

Key words: Proximal point algorithm, averaged gradient method, dissipative dynamical system, mem-
ory effect.
Subject classification:65K10, 49M25.

1 Introduction

Let H be a Hilbert space endowed with the scalar product (.,.) and the corre-
sponding norm |.|. We consider a smooth convex potential function ® : H — R
to be minimized. A classical approach consists in following the orbits of the steep-
est descent method. In a series of recent papers [6, 7, 8|, a special attention was
devoted to gradient systems involving memory terms. The model considered in
[6] corresponds to the following continuous dynamical system

(S) x(t) + %/0 h(s) V®(z(s))ds =0, t>0,

where h, k : [0, +00) = R¥ are continuous maps. If k(t) ~ fg’ h(s)ds as t — 400,
this equation can be interpreted as an averaged gradient system. When ¢ is
convex and has multiple minima, it is proved in [6] that the trajectories of ()
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converge if and only if the weighted memory privileges the recent past enough.

For numerical purposes, it is natural to deal with a discretized version of (.S).
In this paper, we are interested in the following implicit discretization of (.S)

n

ntliso

Tyl — Tn +

where (h,,) and (k,) are suitable sequences. A special attention will be devoted
to the particular case corresponding to h, = n%, k, = n® for every n € N. A
major goal of this paper is to give a satisfying description of the behavior of the
corresponding algorithm, for every a, b > 0. Iteration (1) can be rewritten as

knJrl (-TnJrl - xn) - kn (xn - xnfl) + hn VCD(-TnJrl) = 0,
which is in turn equivalent to

Tp41 — Tp — Qn(xn - xnfl) + ancb(xrﬂrl) == 07

by setting a,, = kk—il and 3, = kh—"l The extrapolation term «, (x,, — ,_1) takes

+
into account a kind of inertia associated with the sequence. If the convex function
® is not assumed to be smooth and takes its values in RU{+oc} , one can easily
adapt the previous algorithm as follows

(-’4) Tpy1 — Tp — an(xn - zn—l) + Bnaq)(zn-kl) = 07

where 0 denotes the subdifferential in the sense of convex analysis. When «,, = 0,
we recover the standard proximal point algorithm, for which we refer the reader
to the abundant literature on this subject [15, 17, 18, 20]. The inertial proximal
algorithm (A) was studied in [1, 2] and various extensions were considered in
3, 13, 16, 19]. It is proved in [1] that the sequence (z,) generated by (A) weakly
converges toward a minimum of ®, provided that the sequence () is bounded
from above by some @ € [0, 1[. One of the purposes of this paper is to get rid of
this assumption and to examine what happens when lim,, , ., o, = 1.

The paper is organized as follows. In section 2, we exhibit a discrete energy
(E,) for algorithm (,A) and we compute the corresponding decay. It is shown
in section 3 that the energy (F,) converges toward min ® as n — +oo, under
suitable conditions on (a;,) and (/3,). This enables us to solve the question of the
convergence of (z,,) in the case of a unique minimum. The case of multiple minima
is more delicate and is discussed in section 4. We prove that if ([]}_, ox) & I*
and if a suitable geometric condition on the set Argmin® is fulfilled, then non
stationary sequences of (LA) cannot converge. The question of the convergence
under condition ([];_; os) € I! is difficult and still open in its full generality.
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2 General facts. Energy decay

In the entire paper, we assume that & : H — R U {+o0} is a closed convex
function and that the sequences (), (5,) are positive. Iteration (A) can be
equivalently rewritten as

Tpy1 = Jg, (Tn + an(Ty — Tpo1))

where Js, = (I + (3,0®)~! is the resolvent of index 3, of the maximal monotone
operator 9®. This shows that for any couple (xg,x;) € H? of initial data, there
exists a unique sequence () satisfying algorithm (A).

Remark 2.1 [t is worthwhile noticing that algorithm (A) can be reformulated as

Tny1 — an + Tp1 + 1- Op

Bn Bn

Hence algorithm (A) appears as a discretization of the following second-order in
time differential inclusion

(Xn — Tp_1) + 0P(2y41) 2 0. (2)

Z(t) + y(t)x(t) + 0P(x(t)) 2 0, t>0, (3)

where 7y is a time-dependent damping. In the finite difference scheme (2), the
step length equals \/[,, while 1&%1 corresponds to the value of ~(.) at time t, =

Y reoVBr. This interpretation of (A) will be used to enlighten some aspects of
the paper.

The result below states the decay property of the energy (E,,) defined, for every
n € N, by?

E, = |2n — 21 |* + ®(2).

1
257171
Proposition 2.1 Let & : H — R U {+00} be a closed convex function and let
(), (Bn) be two positive sequences such that o, < 1 and o, < Bn for every

5n—1
n > 1. Then any sequence (x,) defined by (A) satisfies’

1—a,
En+1 — Lk, < —anﬂ - $n|2' (4)

If moreover the function ® is bounded from below then

(i) The nonincreasing sequence (E,) converges toward some E., € R.
(ii)There exists C > 0 such that |x,11 — x,| < C\/ By for every n > 0. In partic-
ular, if (\/Bn) € 1! then (|wpy1 — x,|) € 1Y, hence T = lim,,_, o T, exists.

(iiiThe following estimate holds true: > 2 1;;‘" |Tp11 — Ta]? < +00.

3 Notice that there is a slight difference with the corresponding energy given in [1].

4 The expression of the energy decay is clearly related to the damping coefficient 1&%‘ , see Remark 2.1.
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Proof. Let &,11 € 0P(x,41) be such that x,+1 — 2, —an (T —2p—1) + B Ens1 = 0.
From the definition of the subdifferential of ®, we have

P(znt1) — ©(wn) < (Enr1, Trgr — Tn)

1 5

= _E‘anrl — T |” + E@n — Tp_1, Tnt1 — Tn)

< —ma P — P S g —
Bn 25n 206,

We infer that
Bt = B = 5 [t0s1 = al? = s [ = 201+ D(anin) — O(r,)
206, 261
< _12571 |Tng1 — Zo> + = L <g: i) [
Bn

Inequality (4) is then a consequence of «a;, < for every n > 1.

anl
(i) From the assumption «,, < 1 for every n > 1, the sequence (E,) is nonincreas-
ing. Since (FE,) is minorized by inf ®, it is convergent.

(i) For every n > 1, we have E,, < Ej, hence

1
261171
and the conclusion immediately follows.
(iii) By summing inequality (4) from n = 1 to N, we obtain Z
7, < Ey — Exy < By — inf @, which allows to conclude.

2y, — 11| < B — inf @,

leﬂ

Example 2.1 Assume that «,, = @ +bl > and [, = (nﬁ)b for every n € N. It is
immediate to check that the assumptlon a, < 1is equivalent to b > 0 while the
assumption «, < 56: is equivalent to a > 0. If b — a > 2, we have (\/Bn) el
and we deduce from Proposition 2.1(ii) that the corresponding sequence (z,)

converges (not in Argmin® in general, see Remark 2.2 below).

Remark 2.2 If (\/B,) € I', the sequence of discrete times t, = >_,_, /5, tends
toward t,, < +oo. This implies that the asymptotic behavior of (A) as n —
+00 is not related to the one of the continuous system (3) as t — +o00. As a
consequence, the minimization process of ® does not hold and in general, the
limit point = lim,,_, y *, is not a minimum point of ®.

Remark 2.3 In order to deal with numerical applications, it is convenient to
authorize at each iteration n an error ¢, in the evaluation of the subdifferential.
More precisely, denoting by 0. the e-approximate subdifferential, we are led to
the following algorithm:

(-’45) Tp+1 — Tp — O‘n(zn - zn—l) + Bn aenq)(zn-kl) > 0
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The sequence (g,,) of errors is assumed to be summable so as to remain close to
the exact subdifferential. If one uses algorithm (.A.) instead of (A), one has to
add the quantity ¢, in the right-hand side of inequality (4). The sequence (E,)
is not necessarily nonincreasing, but it is still convergent. The other conclusions
of Proposition 2.1 are unchanged.

3 Summability of the energy. Case of a unique minimum

We now show that the sequence <(1 — ) (Epy1 — min <I>)> is summable. This

property implies the convergence of the sequence (E,) toward min ® provided
that the sequence (1 — «,) itself is not summable.

Theorem 3.1 Let ® : H — R U {+o0} be a closed convex function such that
Argmin® # (. Let (av,) be a positive nondecreasing sequence such that o, < 1

for every n € N. Let (5,) be a positive sequence such that o, < Bfil for every
n > 1. Assume that the sequence ({;%Z) is bounded®. Defining the sequence (0,,)
by 0,, = 1,2?} suppose that (aps10p+1—(1+0ay,)0,+0,_1) € I*. Then any bounded®
sequence (x,) generated by algorithm (A) satisfies

<(1 — ay)(Epy1 — min @)) el
If additionaly (1 — «,) & Y, then lim,_, o E, = min®. As a consequence,

lim,, 4 o0 ﬁ]ajn — 2 1|* =0 and lim,,_, y o, ®(z,,) = min .
Proof. Without loss of generality, we can assume that min ® = 0. Given z € Argmin®,
let us set ¢, = 1|z, — z|>. We have for every n € N

1
Pnt+1 — Pn = <xn+1 — Tny, Tpt+1 — Z> - §’$n+1 - xn‘Q‘ (5)

Set ¥, = ©ni1 — ©n — Wu(Pn — @n_1) and let &,.1 € OP(x,41) be such that
Tpt1 — Tp — Oy (T — Tp_1) + Bn&as1 = 0. We then have

77Z)n - <xn+1 — Tn — O‘n(zn - zn—l)axn—kl - Z> + Oén<$n — Tp—-1,Tpt1 — $n>
1 o

_é‘zn-kl - $n|2 + 7n|xn - xn—1|2

oy, — 1

2

S _5n<€n+la Tn41 — Z> + Oén‘xn - xnfl‘Z + ’anrl — Ty 2

Since &,41 € 0P(z,41) and ®(z) = 0, we have

5 Recall that from Remark 2.1 the term 1&%" can be interpreted as a damping coefficient.

% Notice that the sequence (z,) is automatically bounded if the function ® is coercive, i.e. ®(£) — 400
as [&| = +oo.
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1

<€n+17 Tp4+1 — Z> > CD(-TnJrl) = FEpp — ﬁ’xrﬁl

Hence we deduce that

(67
77Z)n + BnEn-I—l S O‘n‘zn - zn—1|2 + 7n|xn+1 - xn|2'

Let us multiply this inequality by 1= 5 . Since a1 < o, <1 and o, < ﬁﬁn for
every n > 1, we derive that

1— 1—a, 1—
g, Vn (=) By < =g B il g s —al”. 0
Let us set 6, = 1 BO‘" and sum these inequalities from n = 1 to N. In view of

Proposition 2.1 (111) we have for every N € N

+oo
Z‘gnqu)n"i_z an n+1 < Zgn 1|£L‘n Lp— 1|2 2‘9 ‘zn-I—l < +00.
n=1

It suffices now to prove that the sequence (ZnN:1 0,1, is bounded with respect
to N. Setting w, = ap16p1 — (1 + ay,)0, + 0,1 and using a technique of Abel
transformation, we find

N N
D 0nthn = wapn + (pnnfn — onanabnin) — ey + ponby.  (7)
= n=1

Since the sequence (z,) is bounded, the sequence (g,) is also bounded, say by
» > 0. Since (w,) € I! by assumption, we deduce that

—+o0
g&Z]wn\ < +00. (8)
n=1
Now observe that
on+10n — onvant1O0ns1 = (One1 — on)On + on(On — anOng).  (9)

The summability of (w,) shows that lim, . o161 — 0, exists. We deduce
that
on(On — ayi10n41) is bounded with respect to N. (10)

Coming back to equality (5) and using the boundedness of the sequence (z,,), we
derive the existence of A > 0 such that |oni1 — on| < Alzy — x| for every
N > 0. Recalling from Proposition 2.1 (ii) that |zy,1 — x| < Cv/By, we obtain
for every N > 0 that
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1‘_(1N

VBN

) is majorized, hence we infer that

lont1 — en|n < ACN/ By = AC

1—ap

VBn

By assumption, the sequence (

(pns1 — ¢n)On is bounded with respect to V. (11)

By combining (7), (8), (9), (10) and (11), we conclude that the quantity Zf:[:l Onhn,
is bounded with respect to N, which ends the proof of the summability of the
sequence ((1 — ay) En+1)-

Let us now assume that (1 — «a,) ¢ . If E, = lim, ;o F, > 0, then
(1 = an)Eny1) ¢ 1. Hence the limit E., equals zero. The other assertions are
immediate.

nb

Example 3.1 Let a, b > 0 and assume that «, = (S and 3, =
every n € N. It is immediate to check that

b 1
n =1-— O(— 5 n - Qp =
o ~t (n2) Qpi1 — Q

ﬁ for

b 1
ot O(E) asn — +oo. (12)

We have 1522 ~ hbn" 5=  asn — +oo. Hence the sequence 222 is bounded if
VBn VBn

and only if b—a < 2. On the other hand, by setting w, = 110,01 — (1+a,)0,+
0,,—1 as in the previous proof, we have

Wp = (9n+1 — 20, + enfl) - (1 - 04n+1)(9n+1 - en) + (OénJrl - @n)en- (13)

An easy computation allows to find the following asymptotic expansions as
n— —+00

0, =bn" "1 +O(n""7?), (14)
Ons1 — Op =b(b—a—1)n"""2 4 O(nP~*73), (15)
Oni1 — 20, + 0,1 =b(b—a—1)(b—a—2)n" "4 O(n"**). (16)

By combining the asymptotic expansions (12) and (14)-(16), we find in view of
equality (13)

wp=—b(b—a—2)(a+1)n"3 4+ O(n"%) as n — +00.

This sequence is clearly summable if b—a < 2. We conclude that the assumptions
of Theorem 3.1 are satisfied if a, b > 0 and b — a < 2. If moreover b > 0, we have
(1 — ) ¢ 1!, hence we deduce from Theorem 3.1 that lim,, ,, « F, = min ®.

Remark 3.1 Consider the approximate algorithm (A.) defined in Remark 2.3.
The arguments developed in the proof of Theorem 3.1 are still valid for (\A.), we
simply have to add the term (1 — «,) &, in the right member of inequality (6).
Since (1 — a,) e, < &, and since (g,,) € I* by assumption, the rest of the proof is
the same and the conclusions of the theorem are identical for algorithm (.A.).
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We are now able to investigate the question of the convergence of the sequence
(x,) in the case of a unique minimum.

Corollary 3.1 Under the hypotheses of Theorem 3.1 together with condition (1—
a,) & 1Y, assume that Argmin® = {T} for some T € H. Then any bounded
sequence (z,,) generated by (A) weakly converges to @ in H.

Proof. Since the sequence (z,,) is bounded, there exist z., € H and a subsequence
(xn,) of (z,,) such that limy_, o T, = Too weakly in H. Since ® is convex and
closed for the strong topology, it is closed for the weak topology. Hence, we
have ®(2) < liminf,_, . ®(x,, ). On the other hand, by applying Theorem 3.1,
we obtain lim, ;. ®(z,) = min ®. Therefore we deduce that ®(z) < min P,
i.€. Too € Argmin® = {T}. Hence T is the unique limit point of the sequence (z,,)
for the weak topology. It ensues that lim,,_, . x, =T weakly in H.

We say that T € H is a strong minimum for & if for every x € H, ®(z) >
®(7) + 0(|]z — 7|), where the map ¢ : Ry — Ry is such that 6(¢,) — 0 implies
t, — 0 for every sequence (t,) C R,.

Corollary 3.2 Under the hypotheses of Theorem 3.1 together with condition (1—
an) & 1Y, assume that T is a strong minimum for ®. Then any bounded sequence
(x,) generated by (A) strongly converges to T in H.

Proof. By applying Theorem 3.1, we obtain lim, , . ®(z,) = min® = &(7).
Since T is a strong minimum for ®, we deduce that lim,,_, ;. 0(|z,, —Z|) = 0 and
we conclude that lim,, ., |z, —Z| = 0.

Remark 3.2 Condition (1 — o) ¢ I* is equivalent to lim, o0 [[,_, i, = 0. In
the case of functions having a unique minimum T, this condition is sufficient to
obtain the (weak) convergence of the iterates x,, toward T. It will be shown in the
next section that the more stringent condition ([[_, c) € I* is required to ensure
the convergence of the sequence (x,,) for potentials ® with multiple minima.

4 The problem of convergence of algorithm (.A) for
potentials with multiple minima

We are going to investigate the question of convergence of the sequences asso-
ciated to (A) when the convex potential ® has multiple minima. Let us first
consider the particular case ® = 0. Algorithm (A) then becomes z,,1 — z, —
oy, (T, — x,-1) = 0 and an immediate computation shows that

Tyl =T+ (ZHO%) (x1 — x0).

n=1 k=1
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It ensues that, when ® = 0, the sequence (z,,) converges if and only if the quantity

;’3 [T, @ is finite. Therefore it is natural to ask whether for a general poten-
tial @, the sequence (z,,) is convergent under the condition ([],_, o) € I'. This
question in its full generality is difficult and still open. The purpose of this section
is to show that, conversely if (T];_, cu) & I' then non stationary sequences cannot
converge. Let us give a preliminary result that emphasizes the role of condition

(ITi—y o) # 1.
Lemma 4.1 Let (o) be a nonnegative sequence such that ([],_, cx) &€ I
(i) Suppose that a sequence (p,) C R satisfies

vn Z no, Pn+1 — Pn — an(pn _pnfl) S 0.

Then, we have either lim,, o P, = —00 0T P, > Pn_1 for every n > ng.
(11) Suppose now that a sequence (x,) C H satisfies

Vn > ng, Tpyr — T — Ty — xp_q) = 0.
Then, either lim,_, o |T,| = 400 or x, = x,, for every n > ny.

Proof. (i) Assume that there exists ny > ng such that p,, < pn,—1. Then we have

n
Vn>mni,  ppt1 — P < (H ak> (Pny = Pry—1)-

k=n1

By summing from n = n; to N, we find

N n
pN+1 _pn1 S Z (H Oék) (pn1 _pn1—1)'

n=n1 \k=ni
Since pp, < pn,—1 and since ([[,_, ax) & I*, we conclude that limy_, o py = —00.

(ii) Assume now that there exists ny > ng such that x,, # z, 1. The same
computation as above shows that

N n
Vno>ni, Ty — T, = ) (H ak> (Tny — Tny—1)-

n=n1 \k=n;

Since @y, # Tn,—1 and since ([]i_; ax) & I}, we conclude that limy_, o [2n] =
+00.

Given a closed convex set S C H and T € S, recall that the normal cone Ng(7)
and the tangent cone Ts(T) are respectively defined by
NS(f):{feH’ VxES, <€,.CL"—E>§O}
Ts(T) = cl[UrsoA (S — T)].
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The polar cone K* of a cone K C H is defined by
K*={ye Hl VrxekK, (r,y) <0}

The convex cones Ng(T) and Ts(T) are polar to each other, i.e. Ng(T) = [Ts(T)]*
and Ts(T) = [Ng(T)]*. A cone K is said to be pointed if KN—K = {0}. For further
details relative to convex analysis, the reader is referred to classical textbooks
[21, 22]. In the sequel, the notation B (resp. S) stands for the closed unit ball
(resp. sphere) of H. Before stating the result of non-convergence for algorithm
(A), we need the following lemma.

Lemma 4.2 Assume that dim H < +oo. Let ® : H — R U {400} be a closed
convez function and let T € S = Argmin®. Assume that

—Ng(z) C int (Ts(T)) U {0}. (17)

Then there exist a scalar X > 0, a convex cone K C H which is closed and
pointed, along with a neighborhood V' of T such that

KNBcC A(int(S)—7)U{0} and —0®(x) CK foreveryx e V. (18)

Proof. If T € int (.5), there exists a neighborhood V' of  such that condition (18)
is satisfied with K = {0} and any A > 0. Now assume that T € bd (S). Let us
define the set K by

K={xe€eH, d(z,—Ns@))<d(z,H\Ts(T))}.
It is immediate to check that the set K is a closed cone satisfying
K Cint(Tg(z)) U {0} (19)

and
—Ng(7) \ {0} C int (K). (20)
Since T € bd (5), there exists u € H \ {0} such that R u C Ng(Z). By polarity,
we have Ts(7) C {z € H, (z,u) <0}, hence
Kc{xeH, (x,u)<0}uU{0}.
It ensues that the cone K is pointed. To prove the convexity of the set K, we

resort to the following claim.

Claim 4.1 Let C' C H be a nonempty convex set. Then we have:

(i) The function d(.,C') is convex on H.
(i)lf C # H, the function d(., H \ C) is concave on C.
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The first point is elementary. The second one is given as an exercise by N. Bour-
baki [5, Exercise 18, p. 150], see” also [12]. We deduce from this claim that the
function A = d(., —Ng(Z)) —d(., H\Ts(T)) is convex on Ts(T). In view of formula
(19), we have K C Ts(T) and we infer that the set K = {z € Ts(T), A(z) <0}
is convex as a sublevel set of the convex function A. Using again inclusion (19)
and recalling that int (T5(Z)) = UxsoA (int (S) — T), we obtain

KNS C Upso (int (S) — 7).

From the compactness property of K NS, we can extract a finite cover of K N'S:
there exist Ay, ..., A, > 0 such that

KNS c U\ (int(S) — 7). (21)

Setting A = max{Ai,..., A}, observe that \; (S — %) C A(S — Z) for every
i € {1,...,n}. Taking the interior of each member, we infer that U, \; (int (S) —
7) C A(int(S) — ), hence K N'S C A(int(S) — T) in view of (21). It ensues
immediately that K N B C X (int (S) — 7) U {0}, which proves the first part of
assertion (18).

Let us finally prove that there exists a neighborhood V of Z such that
—0®(x) C K for every x € V. Let us argue by contradiction and assume that
there exist a sequence (z,) tending to T as n — 400, along with a sequence (&,)
such that &, € —0®(x,,) and §,, € H \ K. Since the sequence (§,/|¢,|) is bounded,
it has a subsequence, still denoted by (&,/|&,|) such that lim,_, o & /|| = &,
for some ¢ € H. Recalling that K is a cone, we have &,/|&,| € H \ K for every
n € N, hence

E€c(H\K)=H)\int(K). (22)

Let us now fix x € S. From the fact that —¢, € 0®(x,,), we infer that
(=&, — ) < B(x) — D(2,) <0

Dividing by |¢,| and taking the limit as n — +o00, we derive that (—¢,z —Z) < 0.
Since this is true for every x € S, we deduce that —¢ € Ng(7). Recalling that
¢ # 0, we obtain from inclusion (20) that £ € int (K'), which clearly contradicts
(22).

A closed convex cone K C H is said to be acute (resp. obtuse) if K C —K*
(resp. K D —K™*). These notions are widely used in the field of optimization, see
for example [4, 9, 10, 11, 14]. Condition (17) amounts to saying that the cone
N () is strictly acute or equivalently that the cone Ts(T) is strictly obtuse. This
condition is satisfied in particular if the set S is smooth® at T € bd(S). When
H = R, condition (17) is satisfied if and only if the interval Argmin® is not a
singleton.

" The first author is indebted to L. Thibault (U. Montpellier IT) for suggesting references [5, 12].
8 Recall that the set S is smooth at Z € bd () if there exists d # 0 such that Ns(%) = R..d.
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Let us now state the general result of non-convergence for the sequences asso-
ciated to (A) under the condition (J],_, ax) & I*.

Theorem 4.1 Assume that dim H < 4o00. Let ® : H — R U {+o0} be a closed
conver function such that for every T € S = Argmin®,

—Ng(7) Cint (Ts(7)) U {0}.

Let (o), (Bn) be nonnegative sequences and assume that ([];_, o) & I*. If the
sequence (z,,) defined by algorithm (A) is non stationary’ then it cannot converge
toward T € S.

Proof. Let us prove the contraposition of the previous statement and assume that
there exists * € S such that lim,,_, . x, = T. We must prove that the sequence
(x,,) is stationary. In view of Lemma 4.2, there exist a convex cone K C H which
is closed and pointed, along with A > 0 and ny > 0 such that

KN % B C (int(S)—7)u{0} and —0P(x,) C K forevery n > ngy. (23)
Let v € K*. Observing that for every n > ng
Tpt1 — Ty — Qp (T — Tp_q) € —L,0P(2p41) C K,
we deduce that
Vn >ng, (Tpi1 — xp — apn (T, — 24-1),v) < 0.

Let us apply Lemma 4.1(i) to the sequence (p,) defined by p, = (z,,v). From
the boundedness of the sequence (z,,), we infer that (x,,1,v) > (x,,v) for every
n > ng. Since this is true for every v € K*, we derive that z, — x,,; € K**
for every n > ng. Recalling that K** = K for every closed convex cone K, we
conclude that

Vn > ny, Ty — Tpy € K. (24)

The cone K is stable under addition and closure operation, hence we deduce by
summation from n to oo that

Vn > no, x, —T € K. (25)

Since lim,,_, 1 x, = T, there exists ny > ng such that z, — = € %]B% for every
n > ny. In view of (23), we infer that x,, € int (S) U {Z} for every n > n;. Let us
now distinguish the following two cases:

(a)For every n > ny, we have z,, € int (5).

9 If the function ® is differentiable, inclusion (A) holds as an equation and the principle of backward
uniqueness applies. Stationary sequences are then characterized by the initial conditions x¢ € S and
X1 = Xo.
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(b)There exists ny > ny such that x,, = 7.

Case (a) We then have 0®(z,) = {0} for every n > ny, so that algorithm (.A)
becomes
Y >ny, Tpy — T — o (T, — 1) = 0.

From Lemma 4.1(ii) and the fact that the sequence (x,,) is bounded, we deduce
that x,, = z,, for every n > n;.

Case (b) Since x,, = T by assumption, we derive from (24) and (25) that
Tpgtl — Tpy = Tpyy1 — T € (—K)N K.

Recalling that the cone K is pointed, we have (—K)NK = {0}, hence x,,,41 =T
An immediate recurrence then shows that z, = T for every n > ns.

As a conclusion, we have proved in both cases (a) and (b) that the sequence
(x,,) is stationary, which ends the proof.

TLb
(1P
for every n € N. Since [[;_, ay = m, condition ([];_, o) & I' is satisfied if
b < 1. Hence, we deduce from the previous theorem that if b < 1, then the non
stationary sequences of (\A) cannot converge in S.

Example 4.1 Let ® be as in the previous theorem. Assume that «,, =

In view of the previous theorem the iterates of (LA) cannot converge in S, but
they may tend toward some T € H \ S. To prevent this eventuality, we now give
sufficient conditions on (), (f,), ensuring that any converging sequence (z,)
generated by (A) tends toward a minimum point of ®.

Proposition 4.1 Let & : H — R be a continuous convex function. Let (o), (5n)
be nonnegative sequences satisfying the following assumptions

i) |an—an_1|=0(5,) asn— +o0

i) (Ba) @18 or [(Ba) €18 (02 Br) €11, limy oo vy = 1]

Let (z,,) be a sequence defined by algorithm (A) and assume that lim,,_, o T, = T.
Then we have T € Argmin®.

Since the proof is a little bit technical, we postpone it to the appendix.
b

G and B, = (n+1
of all, observe that a,, = 1 — % + 0 (n ), hence ay, 41 —ay, = O (ng) as n — +00.
It ensues that condition |a,, — ap,—1| = O(fB,) is realized if b — a < 2. On the
other hand, condition (8,) ¢ I* holds if b—a < 1, while condition (3, ;) ¢ I*
holds if b — a €]1, 2]. Therefore we deduce from the previous proposition that, if
b —a < 2 then any converging sequence (z,) generated by (A) tends toward a
minimum point of ®.

Example 4.2 Assume that o, = for every n € N. First
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Conclusion and perspectives. To end this paper, let us come back to the
proximal-like iteration

1 &K,
Tp+1 — Tn + m Z 1 Vq)(xﬂ_l) = 0, (26)
=0

where a, b > 0 and ® : H — R is a differentiable convex function. As explained
in the introduction, an elementary transformation of the above iteration leads

to algorithm (A) associated with the coefficients oy, = —2—. B, = —22 for

(n+1)b? (n+1)b
every n € N. Let us now list our results of convergence for algorithm (26). First
of all, the energy sequence (FE,,) defined by E,, = ﬁ\xn — T |* + @(z,) is

nonincreasing. Let us distinguish the cases b —a > 2 and b —a < 2.

o Ifb—a> 2 we derive from Example 2.1 that T = lim,,_,, , z,, exists but T is
not a minimum of ® in general.

e If b—a < 2 and b > 0, Example 3.1 shows that lim, ., F, = min®. If
Argmin® = {7}, this implies that lim,, . x, =T weakly in H.
Assume now that ® has multiple minima.
— If b < 1, we deduce from Examples 4.1 and 4.2 that (x,,) does not converge

in general.

— If b > 1, the problem of the convergence of (z,) is open.

It would be interesting to replace the subgradient in algorithm (A) by a max-
imal monotone operator. The main difficulty lies in the fact that no energy se-
quence is available in this framework. In view of numerical computations, another
interesting problem would consist in studying an explicit version of (A), namely
with 0®(z,,) in place of 0®(z,,41). These remarks certainly indicate directions for
future investigation.

Appendix: Proof of Proposition 4.1

Let us argue by contradiction and assume that 0 ¢ 0®(7). It is then possible to
strictly separate the convex compact set {0} from the nonempty closed convex
set 0®(7). Therefore, there exist p € H and m € R such that

VE € 00(T), (£,p) > m. (27)
Let us first prove that there exists ng € N such that
Vn > ng, V€ € 0®(x,), (&,p) > m. (28)

If this was not true, there would exist a subsequence (z,,) of (z,) along with a
sequence (&) such that & € 0®(x,,) and (&, p) < m for every k € N. Since
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the convex function ® is continuous on H, the operator 0® : H = H is lo-
cally bounded, hence the sequence (£;) is bounded. Therefore, there exist £ € H
and a weakly converging subsequence of (§), still denoted by (&) such that w-
limy_s 400 & = &. On the other hand, by using the graph-closedness property of
the operator 0® in H x w-H, we find £ € d®(Z). By combining this property
with the fact that (€, p) < m, we clearly obtain a contradiction with (27). Hence
property (28) is proved. Without loss of generality, we will assume that ng = 0
in the sequel.

Case (3,) € I*. From the definition of algorithm (A), for every k > 1, there exists
&y € 0P(wg41) such that

Tp1 — T — (@) — Tp—1) + Berrr = 0.

By summing from £ = 1 to n and by using a technique of Abel transformation,
we obtain

n n

Z(Oék+1 — ) T + [Tp1 — Q1 Ty — T1 + Q1 To) + Zﬁk Eky1 =10
k=1 k=1

or equivalently

n

Z(ak-i-l — Oék) (I‘k — I‘n) -+ [zn-i-l — 01Xy — I + aq I‘o] + Zﬁk §k+1 = 0 (29)
k=1 k=1

Recalling that |a, — a,_1| = O(B,) as n — +o0, that (3,) € I' and that
lim,,, o x, = T, we have

n

Z(akﬂ —ag) (2 — ) =0 (Z Bk> , asn — +oo. (30)

k=1

On the other hand, from assertion (28) applied with § = & for k = 1,...,n,

we derive that
<Z B §k+1,p> >m > B (31)
k=1 k=1

Since the sequence (z,,) is bounded, the term between brackets in equality (29)
is negligible with respect to >";_, B as n — +oo and we obtain a contradiction
in view of (30) and (31). As a conclusion, we have proved that 0 € 0®(7) in the
case (3,) & I'.

Case (B,) € I', ( +oo B)) € I* and lim,,_, o v, = 1. By using the same technique

k=n
of Abel transformation as above, we obtain

—+00 “+o00

Z(ak;-l—l — ag) T + [ Ty — X + Zﬁk §kt1 = 0.

k=n k=n
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Observing that 1 — «,, = Zzz(akﬂ — ay), this can be equivalently rewritten as

+00 +oo
Z(akJrl — o) (Tk — Tn—1) + [Tt — Ta] + Z Bk k1 = 0.
k=n k=n
By summation from n =1 to N we obtain
N +oo N 4o
DY (ki — o) (zh = 2n1) + [10 —an] + DY Bebe = 0. (32)
n=1 k=n n=1 k=n

Recalling that |oy, — a1 = O(B,) as n — +oo0, that (3,2 B) ¢ I' and that
lim, .o x, =T, we have

Z Z(O‘kﬂ —ap) (th —Tp1) =0 (Z Zﬁk> ., as N — +oo. (33)

n=1 k=n

On the other hand, from assertion (28) applied with £ = &,y for k =n, n+1,...

we derive that
N +oo N +o
<225k5k+1,]ﬂ> >m > > B (34)

n=1 k=n n=1 k=n
Since the sequence (z,,) is bounded, the term between brackets in equality (32)
is negligible with respect to Zf:[:l ,:r:; Br as N — 400 and we obtain a con-

tradiction in view of (33) and (34). This achieves the proof of 0 € 0®(Z) in the
second case. O
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Summary. Given real Hilbert spaces X,Y, Z, closed convex functions f : X — R U {400}, g :
Y — R U {+o0o} and linear continuous operators A : X — Z, B: Y — Z, we study the following
alternating proximal algorithm

. 1 a
o = Argmin { (0) + - 1AC ~ Bunls + S~ malfs Ce X
(A) ] )
Ynt1 = Argmin {9(77) + g5 MAznes = Bullz + Sl - yally m e y} :

where v, o and v are positive parameters. Under suitable conditions, we prove that any sequence
(zn,yn) generated by (A) weakly converges toward a minimum point of the function (z,y) — f(x) +

9(y) + 3= | Az — By||% and that the sequence of dual variables (—%(Axn — Byn)) strongly converges

in Z toward the unique minimizer of the function z — f*(A*z) + ¢*(—B*z) + Z||z||%. An application
is given in variational problems and PDE’s.

Key words: Convex minimization, alternating minimization, proximal algorithm, domain decompo-
sition for PDE’s.
Subject classification: 65K05, 65K10, 49J40, 90C25.

1 Introduction

Let X, Y, Z be real Hilbert spaces. We note respectively (., )x, (.,.)y and (., .)z
the scalar product of the spaces X', Y or Z, and ||.||x, |||}y, ||-|| z the corresponding
norms. Given closed convex proper functions f : X — RU{+o0}, g: Y —
R U {+0o0} and linear continuous operators A : X — Z, B : Y — Z, we
consider the convex function ® : X x Y — R U {+o0} defined by

() = f(x) + 9y) + %HA:U Byl

where 7 is a positive real parameter. We denote by (P) the following minimization
problem



70 P. Frankel
(P) inf{®(z,y); xze€X,yeV}.

The weak coupling term Q(x,y) = ||Az — By||% allows asymmetric and partial
relations between the variables z and y, contrary to the strong coupled problem

{ﬂm+mw+%m~yﬁ;xeﬂweﬂ}

where x and y lie in the same Hilbert space ‘H and are involved in a symmetric way.
We study the alternating algorithm with costs-to-move introduced by Attouch,
Redont and Soubeyran [5]:

: 1 !
uss = Argmin { £(0)+ 514G = Bl + 51— malli ¢ )
(4) 1 .
Yn+1 = Argmin {9(77) + %HAanrl = Bz +35lln—wally; me y} :

where a and v are positive real numbers. This algorithm generates a sequence
(2, yn) whose convergence is studied in [2]. In references [1, 6], a particular case
of algorithm (A) with @« = v = 0 is studied for the strong coupled problem
(¥ =Y and A = B = 7). In this paper, we generalize some convergence results
of [6] to the weak coupled problem (P). More particularly, we prove that, if ® is
bounded from below, the sequence (x,,¥,) is a minimizing sequence for ® which
slightly improves the corresponding convergence result of [2]. By a different way,
we show that, if Argmin® # @, the sequence (x,,,y,) weakly converges toward a
minimum point of ¢. Moreover, a special attention is devoted to some dual prob-
lem (P*) associated to problem (P). We prove that the sequence of dual variables

<—%(Axn — Byn)) strongly converges to the unique minimizer of problem (P*).

Attouch, Bolte, Redont and Soubeyran have given in [2] an application of algo-
rithm (A) to domain decomposition for PDE’s. They have studied a minimization
problem with Dirichlet boundary condition associated to problem (P). Here we
consider the corresponding problem with Neuman boundary condition.

The paper is organized as follows. We establish the convergence of algorithm
(A) in section 2. The sequence of dual variables <—%(Aa:n - Byn)) is studied in
section 3. An application to PDE’s is given in section 4.

2 Convergence of the algorithm

Let f: X — RU{+o0}, g: Y — RU{+0o0} be closed convex proper functions
and let A: X — Z, B:)Y — Z be linear continuous operators. We consider
the convex function ® : X x Y — R U {400} defined by
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1
P (z,y) =f(ﬂf)+g(y)+gHAw—ByH%> (1)

where v is a positive real parameter. Given positive coefficients «, v > 0 and
initial data (zg,yo) € X x Y, let us consider the following alternating proximal
algorithm

1
s = Argmin { Q) + 140~ Bl + Sc —malfs ce )
A

. 1 v
o = Argmin {0 + 5L Aawes = Bulls + 5ln -l ne ¥},

By writing down the optimality conditions, it is immediate to check that points

ZTpt+1 and y,41 are characterized by
1
——A"(Azp1 — Byn) — a(@ny1 — 2,) € Of (Tp41)
! (2)
aB*(Aan = BYni1) = V(Unt1 — Yn) € 99(Ynt1),

where A* € L(Z,X) and B* € L(Z,)) denote the respective adjoint operators
of A and B. It ensues that we have, for all z € X and y € ),

1
f(x) = f(wng1) + §<Byn — Azpy1, ATpy1 — A7)z — (Tpg1 — Ty Tpgr — ) > 0

1
9W) = 9(Ynt1) + ;<A$n+1 — BYyn+1, Byn+1 — BY)z — V{Ynt1 — Yn, Ynt1 — y)y = 0.
(3)
These inequalities will be used intensively in the sequel. The next theorem states
the main convergence properties of algorithm (.A).

Theorem 2.1 Let o, v and 7y be positive coefficients and let A € L(X,Z), B €
L(Y, Z) be linear continuous operators. Let f : X — RU {400} and g:Y —
RU{+o0} be closed convex proper functions. Assume that the function ® defined

by equality (1) is bounded from below. If (z,,yn) is a sequence generated by (A),
then

(1)Vn € N, ®(Tni1, Ynt1) < @(Tnp1, Yn) < P(Tn, Yn);
(T imy, s 4 oo P(Tni1, Yn) = limy 400 P(24, Yn) = inf O;
(iithe sequences (||2n11 — 2n %) and (||[yns1 — ynll3) are summable;
(wif Argmin® # @, then for all (z,y) € Argmin®,
(a)the sequences (| Az — Az, ||%Z + ya|z, — |5 +vl|yn-1 — yll3) and (|| By —
By,|1z +val|lz, — z||3 +v|lyn — yl|3) are nonincreasing and convergent;
(b)the sequences (||(Ax — By) — (Az, — By)|%), (II(Az — By) — (Azni —
By)l1%), (®(zn,yn) — ®(z,y)) and (®(T,11,Yn) — P(x,y)) are summable;
(c)the sequence (x,,y,) weakly converges in X x Y toward a minimum point
(Z,y) of . Moreover f(z,) — f(T) and g(y,) — g(¥) as n — +oo;
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(v)if Argmin® = &, then ||2,||x + [|yally — +00 as n — +oo.
Proof. The arguments follow the same lines as those of Bauschke, Combettes and

Reich [6].
(i) From the definition of algorithm (.A), we have

1 a 1
f(@ng1) + QHA%H — Bya|% + 5 lnsr = Tall% < flan) + ZHA% — By,||%,

1 v 1
9(Yns1) + %HA%H-I — Byn1llZ + §Hyn+1 —ynlly < 9(yn) + %HA%H-I — By, |

We deduce that, for all n € N

1
Q(Tni1, Unt1) = [(Tng1) + 9(Uny1) + %HALH-I — Byni1l1%
1 v
< f(Zni1) + 9(Ynta) + EHALH-I — Byn1llZ + §Hyn+1 - yn||§)
1
< f(anrl) + g(yn) + ﬂ”AwnJrl - BynHQZ = CD(-TnJrla yn)
1 g o 9
< f(@ny1) + 9(yn) + %HA%H — Bya|lz + §H37n+1 — |3
1
< f(xn) + g(yn) + %HA%z - Byn||22 = CID(xn, yn)v

which ends the proof of (i).

(ii) The sequence (®(xy,y,)) is nonincreasing and minorized hence convergent
toward ¢ > inf ®. By item (i), (®(x,41,yn)) converges toward ¢ too.

Let us use the following lemma borrowed from [6].

Lemma 2.1 Let (s,t,u,v,w) € Z°, then
[s—ullZ = [[s—wlZ+w—0v[[Z—|s=tlZ+[(s—t)— (u—v)[|Z+2(s—w, w—v) s+2{u—v,v~1) z.
Taking s = Az, t = By, u = Ax,, v = By,, w = Ax,,,, we obtain

| Az — Az, ||% — |Az — Aznia]Z
= | Azpi1 — BynllZ — Az — Byl|% + [|(Az — By) — (Az, — Byn)IZ (4)
+ 2(Ax — Axyyq, Axyyy — Byn) z + 2(Ax,, — By,, By, — By)z.

In view of inequalities (3), we have
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|Az — Az, ||% — [|[Az — Azpiq||%
> | Az — Bynllz — || Az — Byl|Z + ||(Az — By) — (Az, — By,)||%
+2 {V(f(xnﬂ) - f(f)) + Va<xn+1 — Tpy Tp41 — x)x}
+2{7(9(yn) — 9(¥) + (Y0 — Yn—1,Yn — Y3}

1 1
oy {f(xm) +9(0n) + 5 WA — Bunlls — f0) — g(0) - -1 Az - ByH%}

+ [[(Az — By) — (Az, — By,)|1%

+ 290 Tng1 = Ty Tng1 — T)a + 29{Yn — Yn—1,Yn — Y)y
= 27 {®(n+1,yn) — (2,9)} + [[(Ax — By) — (Aw, — By,)|%

+ 290 Trg1 = Ty Tng1 — ) + 29Yn — Yn—1,Yn — Y)y
= 29 {®(wn+1,9n) — (2,9)} + [[(Ax — By) — (Az, — By,)||Z

+ya(|zn = 2alld + [lone — 2ll% = 20 — 2[1%)

+ (Y0 = Y1l + lyn = yll5 = a1 — ylI3).

Finally, we find

1Az — Az |12 +yallzn — 2l + 9vllyn-1 = yll5
— |4z — Az |2 = vallznss — 2llz — ywllyn — yll5
> 29 {®(ns1,Yn) — (2, 9)} + [(Az — By) — (Az, — Byn)|Z
el zner = 2ol + 9y — Yol (5)
Let us prove that inf ® > ¢, thus implying inf ® = . Let us argue by con-

tradiction and assume that inf ® < ¢. There exist x € X and y € ) so that
inf & < &(x,y) < p. By summing inequality (5), we get

293 (o — B(a,y)) < [[Ax — Az|% +yalles — 2ll% +llyo — gl < +oo.

n>1

and we obtain a contradiction hence inf ® > ¢.
(iii) Taking z = z,, and y = y,—; in inequality (5), we obtain

aHxn—I—l - xn”?\/ + VHyn - yn—l“%} S @(In,yn—ﬁ - q)(xn—I—la yn)

By summing this inequality, we infer

QZ Hanrl - anQX + VZ Hyn - ynlegj S CD(JH,Z/O) —inf ® < +OO7

n>1 n>1

this achieves the proof of item (iii).

(iv)(a) In view of inequality (5), the sequence (||Az — Az,||% + val|z, — z|% +
Y| Yn—1 — y||3) is nonincreasing and nonnegative hence convergent. Let us prove
the same result for the sequence (|| By — By,||%Z +vallz, — z||3 +vv|yn — yll3)-
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Using Lemma 2.1 with s = By, t = Ax, v = By,, v = Ax,11, w = By,1, we
obtain

1By — Byulz — 1By — Bynt1llz = [ Byni1 — Azpia ||z — | By — Az||%
+||(By — Az) — (Byn — Aznya)l%
+2(BYy — BYnt1, BYnt1 — Avpia) 2
+2(By, — Azpi1, Az — Az, (6)

Using inequalities (3), we have

||By - Byn||22,' - ||By - Byn+1H2Z

> || Byns1 — Aznia || — | By — Az||% + [|(By — Az) — (Byn — Aznpi|%
+ 27 {9Wn+1) — 9(¥) + V{Yn+1 = Yns Ynt1 — Y)»}
+ 2y {f(xn-i-l) - f(x) + O‘<xn+1 — Tny Tnt+1 — x);(} )

and by using the same arguments as above, we obtain

1By = Bynllz + yallen — 2l + wlyn = yll5
=By = Bynallz — vallzan — 2% = wlynr — vl5
> 29{®(n41, Y1) — (2, 9)} + | (Ar — By) — (Azns1 — By |1z
+ FYO‘Hanrl - -TnH%( + PYVHynJrl - yﬂ”%ﬂ (7)
this achieves the proof of (iv)(a).
(iv)(b) This claim follows by summing inequalities (5) and (7).
(iv)(c) Here we adapt an argument borrowed from [2]. Let us use Opial’s lemma

8], that we recall below for the sake of completeness.

Lemma 2.2 (Opial) Let H be a Hilbert space endowed with the norm N. Let
(&n) be a sequence of H such that there exists a monempty set S C H which
verifies

(1)For all § € S, lim,, oo N(§ — &) emists. B
(2)If (&) — & weakly in H as k — 400, we have £ € S.

Then the sequence (&,) weakly converges in H as n — +oo toward a point of S.

Let us define the norm N(z,y) = (||By|% + yallz|% + ”yl/HyH%,)l/Q on the space
X x Y. Since the linear operator B is continuous, the norm N is equivalent to
the canonical norm on X x ). Thus, in view of (iv)(a),

V(z,y) € Argmin®, N((x,,y,) — (z,y)) has a limit when n — o0,

which shows point (1). Let (z,,,¥ys,) be a subsequence of (x,,y,) which weakly
converges toward (7, 7). Using the closedness of ® and item (ii), we can write

Y
O(7,y) < liminf ®(z,,,y,, ) = lim P(z,,y,) = inf ®,

k—+o0 n—+o00
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hence (7,7) € Argmin®, which shows point (2). Opial’s lemma then shows that
(n, yn) weakly converges toward a point (Z,7) in Argmin®.

Let us prove that f(z,) — f(T) as n — +o0o. Using the closedness of f, we have
f(Z) < liminf, ;. f(x,). By using inequality (3) with z = Z, we obtain

1
f(f) > f(anrl) - §<A-Tn+1 — By, AT — Aanrl)Z - O‘<-77n+1 — Tp, T — xn+1>X-

Since the linear operator A is continuous and since the sequence (z,) weakly
converges towards T, we derive that the sequence (Az,) weakly converges to-
wards AZ. Moreover, from item (iv)(b), the sequence (Ax,.; — By,) strongly
converges in Z toward (AT — BY) and, from item (iii), the sequence (x,41 — )
strongly converges in X toward 0. Hence we deduce from the above inequality
that limsup,,_,, . f(z,) < f(Z) and finally lim,_,; f(z,) = f(Z). In a similar
way, we easily infer that lim,, . g(y,) = 9(7).

(v) Let us argue by contradiction and assume that the conclusion is false. We
can extract a subsequence (z,,Yn,) which weakly converges toward a point of
X x Y. The closedness of ® implies that this point is a minimizer of ®, which is
a contradiction.

3 Dual problem

Let us define the map p : Z — R by p(z) = inf{f(z) + g(y) + %HA[L’ — By —
z||%; = € X,y € Y}. We recover the primal problem (P) for z = 0. Since the
map (z,y,2) € X x Y x Z — f(x) +g(y) + 5 [|Av — By — z[|Z € RU{+00} is
convex, the map p is convex. Moreover p is locally majorized, hence continuous.
By the Fenchel Moreau Rockafellar’s theorem, we can assert that

p(2) = sup{(z*,2)z —p*(z"); 2" € Z},

where p* : Z — RU{+o0} is the conjugate function of p. In particular we obtain
p(0) = —inf{p*(z*); 2* € Z}. The map p* is precised in the following lemma.

Lemma 3.1 Vz* € Z, p*(2*) = f*(A*2*) + ¢*(—B*2*) + 2||2*||%.
Proof.

pr(2") = 25 2)z —p(2);2 € 2}

sup

up {

{ 1

}p{ zZ—<f<x>+g<y>+5qu—By—zué);xex,yey};ze
S

1
z* zZ—1nf{f(x)+g(y)+a||Ax—By—z||22;a:EX,yey};zEZ}

?)

1
sup sup{ o z—<f<x>+g<y>+5qu—By—zué);zez};xex,yey}

1
f(x —i—sup{(z*,z}Z—%HA:U—By—zHQZ;zEZ};:UGX,yEy}.
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By a differential computation, we let the reader check that
sup {(Z*>Z>Z — 3| Av — By — z[[%;2 € Z} = (572" + Av — By)z — 3||*[|%
Hence, we deduce that

p(=") = sup { =f(@) = g(y) + (=",7=" + Ax = By)z — J|"|iw € Xy € V|
= sup { 2713 + (4", @) = f(2) + (~B'=" y)y — gly)iz € X,y € V]
= 211 + sup {42 @)x — f(@)iw € X} +sup{(=B"2" y)y — g(v)iy € V)
= 2l Z + F A=) + g7 (=B,
We denote by (P*) the following minimization problem
(P¥) inf {f*(A*z*) b g (—B ) + %nz*y@; e z} .

Hence problems (P) and (P*) are linked by the relation inf P = — inf P*. Since
the function 2* — f*(A*z*) + g*(—B*z*) + 2||2*||% is closed, proper and strongly
convex, (P*) has a unique solution z*.

Proposition 3.1 Let v be a positive coefficient and let A € L(X,Z), B €
L(Y, Z) be linear continuous operators. Let f: X — RU {400} and g:Y —
RU{+o0} be closed convex proper functions. Assume that the function ® defined
by equality (1) is bounded from below. Let z* be the unique minimizer of (P*).
If (un,vy) is a sequence in X X Y such that lim, ;o ®(un,v,) = inf &, then
lim,, o0 —%(Aun — Bu,,) = z* strongly in Z.

Proof. Recalling that inf ® = —inf P* = —{ f*(A*z%) 4 ¢*(—B*z*) + %[|2*||%}, we
have
Bt 1) 08 ® = Fun ) (AT gl0)+" (BT )+ A= B [+ 2,
Using the Fenchel’s inequality, we find
B, vn) = inf @ 2 (AT )+ (~ BT )y + 5[ A = B3+ JIF
= %Hﬂygjt Au,, — Bv,||%.

Since lim,, oo P(u,, v,) = inf @, the conclusion is immediate.

Remark 3.1 Assume moreover that Argmin® # &. Then for every (x,y) €
Argmin®, the vector (Ax — By) is constant' and we have z* = —%(Aa: — By).
This is obvious from the previous proposition by taking (un,v,) = (x,y) for every

n € N.

! 'We can recover this result by observing that, for every (z,y) € Argmin®, lim,— 1 ||Az — By —
(Azy, — Byn)||%Z = 0 from Theorem 2.1 (iv)(b).
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We are now able to deduce the following corollary of Theorem 2.1.

Corollary 3.1 Under the assumptions of Proposition 3.1, consider a sequence
(n, yn) generated by (A). Then the sequences (—%(Axn — Byn)> and (—%(Axnﬂ — Byn)>

strongly converge in Z to the unique minimizer z* of (P*).

Proof. This follows immediately from Proposition 3.1 and Theorem 2.1 (ii).

4 Application to domain decomposition for PDE’s

Let us consider a bounded domain © = Q,UQ,UT of RY which can be decomposed
in two nonoverlapping subdomains §2; and 2y with a common interface I'. We
assume that the open sets Q1 and Qy are of class C! and that HY~1(T") > 0, where
HN-1 is the Hausdorff measure of dimension N — 1.

4 N

0 r Qs

& J

Given some h € L?(Q) such that [,h = 0, we are interested in the following
variational problem

7 1 1 1
min {—/ |Vul? + —/ Vol + — /[w]2 — / hw; w€ H' (Q),v € Hl(Qg)}
2 Ja, 2 Ja, 27 Jr Q
u on . )
where w = and [w] =jump of w through the interface I.
v on {2y

This kind of minimization problems often arises in the description of phe-
nomena where the boundary is free, i.e. no external action is exerted on 02,
and involving discontinuities through the interface. Attouch, Bolte, Redont and
Soubeyran consider in [2] the corresponding Dirichlet version of problem (P).
On the other hand, the companion paper [4] analyses the Neumann problem (P)
formally associated with the value v = 0. This forces the jump to be equal to
zero and the corresponding solutions satisfy a Neumann problem on the whole
set . The recent paper [7] studies the opposite situation corresponding formally
to 7 = oo, see the concluding comments for more details.
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Let us now show how algorithm (A4) can be applied so as to solve problem
(P). The space X = H'(£;) is equipped with the scalar product (uj,us)xy =
le(Vul.VuQ + ujug) and the corresponding norm. The same holds for ) =
H'(Qy) by replacing €y with Q,. The space Z = L*(T) is equipped with the
scalar product (z1,29)z = fr 2125 and the associate norm. Problem (P) can be
reformulated as

min {®(u,v); ue X, ve Y}

1
:mm{ﬂw+mw+%w%—3wg ueXwey}

1 1
flu) = —/ |Vul? _/ hu and g(v) = _/ Vo|? _/ ho,
2 91 Q1 2 Qs o

and the operators A : X — Z and B : Y — Z are respectively the trace
operators on I'. Algorithm (A) runs as follows

where

. 1 a
Upy1 = Argmin {f(u) + ZHAU — Bu,||% + §||u —Uup||3; u € X}
. 1 v
i = Magain { o(0) + 54w = Bl + 5o =l ve ),

where o and v are fixed positive parameters. An elementary directional derivative
computation shows that the weak variational formulation of algorithm (A) is
given by

1
Yu e X, Viun1.Vu+ — /(Aun+1 — Buv,)Au
Q Y Jr

+a/ (Vupi1 — Vu,).Vu + oz/ (Ung1 — Up)u = / hu, (8)
o o o

1
Yo e, Vu,1.Vo + — /(varl — Auyy1)Bo
Q2 7Y Jr

+1// (Vugyr — Vu,). Vo + I// (Unp1 — Vp)v = / hv. 9)
Qo Qo Qo

Equality (8) is the variational weak formulation of the following mixed Dirichlet-
Neumann boundary value problem on €2,

—(14 a)Aupy1 + quy = h — alAu, + au, on

(14 )2t = 9un on 99, N AL
(1+ a)—alg;jl + %unﬂ =q% 4 %vn on T,

where, for u € X, g—z = Vu.V7 and 7 is the unit outward normal to 9. In
the same way, equality (9) gives
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—(1+v)Avyy + vv,1 = h — vAv, + v, on s
(1+ )av"+1 y9un on 0, N ON
(14 v)=5H 8”"“ + vn+1 = 1/8”” + un+1 on I

In order to apply Theorem 2.1, let us describe the set Argmin®.
Claim 4.1 If (u,v) € Argmin®, then Argmin® = {(u+ C,v+ C); C € R}.

Proof. In view of hypothesis fQ h = 0, it is immediate to check that, for all C' € R,
O(u+ C,v+ C) = &(u,v) hence (u+ C, v+ C) € Argmin®. Let us prove the
reverse inclusion. By a differential computation, (@, 7) € Argmin® if and only if

Vk e X, Vu.Vk = / hk — E /(Aﬂ — Bv) Ak, (10)
Q Q1 Y Jr

viey, [ vovi- / W+ /(Au _ BY)BL (11)
Qo Qo Y Jr

Let (@, 01),(tua, 02) be in Argmin®. Using equality (10) respectively with (@, v;)
and (us,s), then subtracting, we find
1

veex, [ Vim-m).Vh-— /(A(a1 _ ) — BT, — 7)) Ak.
4 I

Taking k = u; — u9, we infer that
1
|V (U —2)|* + — /(A(a1 —Uy) — B(ty — 02))A(uy — ug) = 0.
o 7 Jr
In the same way, using equality (11), we have

5 — )P -~ U —Up) — B0, — v V) — Uy) =
[ 9@ e /F(A“ ) — B(®1 — 1)) B(@) — 12) = 0.

Finally we find

1

V(i — )|+ | V(@0 —72)]* + = /(A(ﬂl — ) — B(, — 72))* = 0.
951 Qo P)/ I

We deduce that V(u; —uy) = V(U3 —03) = 0, hence iy —uy = C) and 77 — Ty = Cy

for some Cy,Cy € R. Using HN"HT') > 0 and [.(A(u; — uz) — B(v; —13))* = 0,

we conclude that C; = (5.

Remark 4.1 Fqualities (10) and (11) are the variational weak formulations of
the following mixed Dirichlet-Neumann boundary value problems respectively on

0

—A@:h on
%:O on 02 NON

(%:—%(U—E) on T,



80 P. Frankel

and €y

-Av=h on 9
% — () on 0y N OS2
—z%(ﬂ—ﬁ) on T.

We must prove that the set Argmin® is nonempty. Let us note the symmetric
continuous bilinear form @ : (X x YV) x (X x ) — R and the linear continuous
form L : X x Y — R respectively defined, for all (u,v), (k,l) € X x Y, by

Q) (1) = [ VaVk+ [ Vovig / (Au — Bo)(Ak — BI),

1951 Qo Y
L(u,v) :/ hu+/ hv.
o Qs

First observe that the bilinear form @ is not coercive on the space (X x ) x (X x
V). To remedy this lack of coercivity, we have to consider the following suitable
closed hyperplane? F of X x ) defined by?

}":{(u,v)eXxy; u+/v:0}.
(951 Qo

Claim 4.2 There ezists € > 0 such that, for every (u,v) € F,

Q((u,v), (u,0)) = €ll(u, V)| 2210y £2 (620

Proof. The proof uses the same arguments as those of [3, Theorem 5.4.3]. Let
us argue by contradiction and assume that there exists a sequence (u,,v,) in F,
(Un, vy) # 0, such that

1 1
Vu, >+ [ |[Vua|* + —/(Aun — By,)? < = (/ ui%—/ vi) :
Ql QQ ,7 r n Ql Q2

Let us take (G, 0n) = (Un,Vn)/[|(tn, Vn)||L2000)x22(020)- We have (@, 7,) € F,
H(amﬁn)HLQ(Ql)XLQ(QQ) =1 and le ‘Vﬂn|2 + fQQ ‘Vﬁn|2 + %fF(Aan - Bﬁn)2 < %7
hence lim,,_, | o le |V, |+ fQQ |V©,|* = 0. We deduce that the sequence (i, 0,,)
is bounded in X x ) and, by the Rellich-Kondrakov theorem, we can extract a
subsequence (i, , U,, ) which strongly converges in L?(Q;) x L*(€s) toward (@, v).
Since limy 100 g, [Viin,|*+ Jq, [VOn,|* = 0, we infer that the sequence (y, , Un, )
strongly converges in X x Y and [, |Val]> + [, [VO]* + > [.(Ad — B0)? = 0.
Hence, as in the proof of Claim 4.1, we deduce that (@,7) = (C,C) for some
C € R. Since the hyperplane F is closed, we have (C,C) € F thus implying that
C = 0 which is a contradiction with ||(C, C)| r2,)xr2(0.) = 1.

2 The author is indebted to A. Cabot for this pertinent remark.
3 Notice that the hyperplane F is the orthogonal space of the one-dimensional closed subspace
{(C,C); C eR}of X xY which naturally appears in Claim 4.1.
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We deduce from Claim 4.2 that the bilinear form () is coercive on the space F x F.
We can now state the following result.

Claim 4.3 There ezists (u,v) € X x Y which verifies le u+ fQQ v = 0, such that
Argmin® = {(u+ C, v+ C); C eR}.

Proof. The bilinear form @) is symmetric, continuous and coercive on F x F and
the linear form L is continuous on F. By applying the Lax-Milgram theorem, there
exists a unique (u,v) € F such that, for all (k,1) € F, Q((w,v), (k1)) = L(k,1),

.e.
1
Vu.Vk+ V@.Vl:/ hk+/ hl——/(Aa—Ba)(Ak—Bl). (12)
951 Qo Q1 Qo v Jr

Let (k,1) € X x )Y and let us note C' = m <fﬂl k+ [o, l), we can verify that
(k—C,l—C) € F. Thus, using equality (12) with (k — C,l — C), we obtain that
(w, ) verifies equalities (10) and (11) hence (u,v) is a minimizer of ® on X x Y.
It suffices to apply Claim 4.1 to achieve the proof.

We conclude from Theorem 2.1 (iv)(c) and the above analysis that any sequence
(tn, v,) generated by (A) weakly converges in H'(€;) x H(2,) toward a mini-
mum point (u+C,7+C), (C € R) of problem (P). Without loss of generality, we
can assume that C' = 0. Since the injections H'(Q;) < L?(Q) and H'(Qy) —
L?(y) are compact, the convergence is strong in L?(€2;) x L*(€y). Moreover, from
Theorem 2.1 (iv)(c), we have lim,,_, f(u,) = f(@) and lim,_, 1 g(v,) = g(7),
hence lim, 00 fo [Vun|? = [, [VE[* and lim, 100 fo [Von|* = [ [VT[*. As
a consequence, we have lim,_, oo ||(Un, Vn) || 51 1) x 11 (22) = |(@, D) || 51 (1) x 11 (92)-
Since (uy, v,) weakly converges in H'(Q) x H'(Qy) toward (u, v), the convergence
is strong in H'(Q) x H'(Qy). We can state the following theorem.

Theorem 4.1 Let Q = Q; U Qy UT be a bounded domain of RN which can be
decomposed in two nonoverlapping subdomains Q0 and Qy of class Ct with a
commun interface T'. Assume that HYN"1(T) > 0. Let h € L*(Q) be such that
th = 0. Then any sequence (un,v,) generated by (A) strongly converges in
HY(Qy) x HY(Qy) toward a minimum point of problem (P).

Notice that the algorithm (A) allows to solve the initial problem (P) on Q by
solving separately Dirichlet-Neumann problems on €2; and €25. Let us describe
the dual problem (P*) associated to (P) studied in section 3,

(P*) inf { (4% + 9" (=B + 215 = e 2]
In view of the symmetry on f and g, let us focus on f*.

f*(A*2*) = sup {(A*z*,u)X — % |Vul? +/ hu; u € X}

Q o
1

:—inf{— ]Vu\Q—/ hu—/z*Au; ueX}.
2 Ja, o r

(13)
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If le h+fF z* # 0, we easily deduce by using constant functions that f*(A*z*) =
~+00. Let us suppose that le h+ fr z* = 0. Let us introduce the bilinear symmetric
and continuous form a : X x X — R defined by a(uq,us) = le Vu1.Vuy and the
linear continuous form [ : X — R defined by [(u) = le hu+ [, 2* Au. Let us note
U the closed hyperplane of X defined by U = {u S fﬂl u= O}. From the

Poincaré-Wirtinger inequality, we deduce that a is coercive on U x U and from
the Lax-Milgram theorem that the following minimization problem

1
inf{— ]Vu\Q—/ hu—/z*Au; uGZ/I}
2 Ja, o r

has a unique solution u,« € U. Moreover u,- is characterized by

Vk e U, Vu,-.Vk :/ hk+/z*Ak.
951 91 I

Notice that, for all £k € X, <k; — |Q—11‘ le k:) € U. Hence, using the hypothesis

le h+ [,z* =0, the map u.- is a solution of the minimization problem (13).
Moreover u,- satisfies

VkeX, [ Vu.-.Vk :/ hik —l—/Z*A/{:. (14)
Q1 (o1 I

This is a variational weak formulation of the following mixed Dirichlet-Neumann
boundary value problem on €2,

—Au, =h on
Q=0 on 9 NN

Buz*
on

=z* on I.

From equalities (13)-(14), we infer that

1 1
2+/ h - —i—/z*Auz* = —/ h - +—/ 2" Aty
0 r 2 Jo, 2 Jo,

1
f*(A*Z*) = __/ ’Vuz*
2 0
1
= - (V|
2 0

In the same way, if fQ2 h— J.z* =0, we have

1 1 1
g (=B*z") = —/ hv,« — —/Z*sz* = —/ Vv,
2 Ja, 2 Jr 2 Ja,

where v,« is solution of the following mixed Dirichlet-Neumann boundary value
problem on 2

2

)
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—Av,«=h  on ()
65’—;* =0 on 0y NN
v, *
on
Notice that, since [, h = 0, we have [, h = — [, h. Finally problem (P*) has

the following expression

1 1
inf{—/hwz*+—/z*[wz*]+l/z*2; z* € Z such that /z*+/ h:()}
2 Ja 2Jr 2 Jr r o

Uyx on £y

=—2z* on I.

. From Corollary 3.1, the sequence < (Au,, — an))

1
V,+ on g v

where w,« = {

strongly converges in Z toward the unique minimizer z* of (P*).

Concluding comments and related papers. In this paper, the parameter ~
is supposed to be constant in algorithm (A). In the companion paper [4], the
authors consider the case of a sequence (7, ) which decreases toward zero. Under
suitable conditions on the decay rate of (7,), the associated algorithm minimizes
the function (z,y) — f(x)+g(y) over the space V = {(z,y) € Xx), Ax = By}.
Another situation of interest corresponds to an increasing sequence (7,) which
tends toward infinity. It is shown in [7] that the associated algorithm minimizes
the function (z,y) — 3||Az — Byl||% over the set Argminf x Argming. We refer
the reader to [4, 7] for the corresponding applications in domain decomposition
for PDE’s.
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Summary. Let X,Y, Z be real Hilbert spaces, let f: X - RU {400}, g: Y — RU {400} be closed
convex functions and let A : X — Z, B : )Y — Z be linear continuous operators. Let us consider the
constrained minimization problem

(P) min{f(z) +g(y) : Az = By}.

Given a sequence (7v,) which tends toward 0 as n — +o00, we study the following alternating proximal
algorithm

. 1 «

o Tpt1 = Argmm{%ﬂ f(¢)+ §||AC — Bya|l% + EHC —zn|%; C€ X}
. 1 v

Ynt1 = Argmm{%ﬂ g(n) + §||Axn+1 - Bn|%z + §H77 —ynll3; € 3/},

where o and v are positive parameters. It is shown that if the sequence (v,) tends moderately slowly
toward 0, then the iterates of (A) weakly converge toward a solution of (P). The study is extended to
the setting of maximal monotone operators, for which a general ergodic convergence result is obtained.
Applications are given in the area of domain decomposition for PDE’s.

Key words: Convex minimization, alternating minimization, proximal algorithm, variational inequal-
ities, monotone inclusions, domain decomposition for PDE’s.

Subject classification: 65K05, 65K10, 49J40, 90C25.

1 Introduction

Let X, Y, Z be real Hilbert spaces respectively endowed with the scalar products
(., )x, {.,.)y and (.,.)z and the corresponding norms. Let f : X — R U {+o0},
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g :Y — RU {400} be closed convex proper functions and let A : X — Z,
B 'Y — Z be linear continuous operators. In this study, our aim is to solve
convex structured minimization problems of the form

(P) min{ f(z) +g(y): Az = By}.

In order to find a point that minimizes the map (z,y) — ®(z,y) = f(z)+¢g(y) on
the subspace {(z,y) € X x ), Ax = By} we propose the following alternating
algorithm:

. 1
w L Argmin{ 11 £(Q) + IAC = Bynl: + FIIC =l ¢ € X}

. 1 v
a1 = Argmin{ 11 9(n) + 5| Avass — Boll + 5 In— vall3s m € VY,

where «, v are positive real numbers and (v,) is a positive sequence that tends’
toward 0 as n — +o00. Due to the structured character of the objective function
®(z,y) = f(x)+g(y), alternating algorithms imply a reduction on the size of the
subproblems to be solved at each iteration. Our particular choice of (\A) is based
on the following ideas:

a) Alternating algorithms with costs-to-move. Consider the convex function @, :
X x Y — RU {+o0o} defined by

B, (z,y) = f(z) + gly) + %HA:U Byl

where 7 is a positive real parameter. The minimization of the function ®, is
studied in [13], where the authors introduce the alternating algorithm with costs-
to-move

. 1 Q
Tpy1 = Argmin{ f({) + EHAC — Bya||%Z + §HC — x5 C€ X}
. 1 v
Ynt1 = Argmin{g(n) + %HA%H = Bz + 5l —wal3 me

a and v being positive coefficients. If Argmin®., # @, it is shown in [7] that the
sequence (T, y,) converges weakly toward a minimum of ®,. The framework of
[7, 13] extends the one of [1, 19] from the strong coupled problem to the weak
coupled problem with costs-to-change. More precisely, Q(z,y) = ||z — y||% is a
strong coupling function with X = )Y = Zand A = B = 7 while Q(x,y) =
| Az — By||% is now a weak coupling function which allows for asymmetric and
partial relations between the variables x and y. The interest of the weak coupling
term is to cover many situations, ranging from decomposition methods for PDE’s

® In another direction, algorithm (A) has been recently studied in [23] in the case of a sequence (7»)
increasing toward +oo as n — 4o00.
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to applications in game theory. In decision sciences, the term Q(z,y) = ||Az —
Byl|% allows to consider agents who interplay, only via some components of their
decision variables. For further details, the interested reader is referred to [7].
Observing that problem (P) corresponds formally to the minimization of the
function @, with v — 0, it is natural to consider a vanishing sequence (7,) in

algorithm (A).

b) Prox-penalization methods. Setting ¥(z,y) = 5||Az — By||%2 and x = (z,y) €
X x Y = X, we can rewrite problem (P) as

min{ ¢(x): x € ArgminV }.

This situation is studied in [12, 22|, where the authors use a diagonal proximal
point algorithm combined with a penalization scheme. This kind of technique can
be traced back to the pioneering work [16]. The algorithm of [12, 22] applied to
our setting reads as

1
(A) Xp41 € Argmin {'yn d(x) + U(x) + §HX — Xan(} )

Under suitable conditions on the sequence (7,), it is shown in [12, 22] that the
iterates of algorithm (A") converge weakly to a solution of (P).

These ideas lead us to the formulation of algorithm (.A), which has the fol-
lowing distinctive marks. First, it uses the structured character of the objective
function to reduce the size of the subproblem solved at each iteration. Second, it
combines proximal iterations with a penalization scheme in a simple way, meaning
that no new nonlinearities are introduced by the latter, unlike most penalization
procedures available in the literature. Consider, for instance, the functions 6 de-
scribed in [24] (see also the references therein).

The main result of the paper asserts that if the solution set is nonempty and if
(7n) tends moderately slowly toward 0, then the iterates of (A) weakly converge
toward a solution of (P). When the space R(A)+ R(B) is closed in Z, the above

condition on (7,) is satisfied if the sequence <L — i) is bounded from above

Yn41 Tn
and if (v,) € %

We apply our abstract results to the framework of splitting methods for PDE’s.
For that purpose, we consider a domain 2 C RY that can be decomposed into two
non overlapping subdomains €2y, {25 with a common interface I'. The functional
spaces are X = H'(Qy), Y = H'(,) and Z = L?(T"), the operators A : X — Z
and B : ) — Z being respectively the trace operators on I'. The term Au — Bv
u on

v on O through the interface I'.

corresponds to the jump of the map w =
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It is shown that algorithm (\A) allows to solve some given boundary value prob-
lem on €2 by solving separately mixed Dirichlet-Neumann problems on €2; and €2,.

Finally observe that by writing down the optimality conditions satisfied by the
iterates of algorithm (A), we obtain

{0 S TYn+1 af(xn—I—l) + A*(Axn—I—l - Byn) + a(zn-I—l - zn)
0€ Yns1 ag(yn-l—l) — B*(Amyq — Byn-l—l) + V(yn—l—l - yn)'

This suggests to extend the previous study to the framework of maximal mono-
tone operators, by replacing respectively the subdifferential operators df and dg
with two maximal monotone operators M and N. Indeed, in this more general
setting we are able to prove the convergence of the sequence of weighted averages.

The paper is organized as follows. Section 2 is devoted to fix the general setting
and notations that are used throughout the paper. In section 3, we prove a general
result of weak ergodic convergence for the iterates of (LA) in a maximal monotone
setting. The key conditions are the closedness of the space R(A) + R(B) and
the assumption (v,) € [?\ I'. The subdifferential case is analyzed in section 4,
where we establish a result of weak convergence toward a solution of (P). We
also discuss on the robustness of the algorithm with respect to computational
errors. Section 5 presents further convergence results for the strongly coupled
problem without cost-to-move. Finally, the applications to domain decomposition
for PDE’s are illustrated in section 6.

2 General setting and notations

We recall that X', ), Z are real Hilbert spaces respectively endowed with the scalar
products (., )x, (.,.)y, {.,.)z and the corresponding norms. Let M : X = X,
N : Y = Y be maximal monotone operators such that domM # (), domN # (.
Let A: X - Z, B: )Y — Z be linear continuous operators with adjoints
A* 1 Z - X and B* : Z — ). Let (y,) be a positive sequence such that

lirf n = 0. Given positive coefficients o, v > 0 and initial data (x¢, yo) € X' XY,
n—-+0oo

let us consider the alternating proximal algorithm defined implicitly by

(A) {O € Yor1 Mxp + A*(Ax,i1 — Byn) + a(Tps1 — )

0 € Yns1 Nyns1 — B (Azpi1 — Byns1) + V(Ynt1 — Yn)-

Observe that the linear continuous operator A*A is maximal monotone, hence
the operator ~v,.1 M + A*A is also maximal monotone, see for example [20].
Therefore the iterate z,,; is uniquely defined by Minty’s theorem. The same
holds true for the iterate v, .
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Remark 2.1 (Strong coupling without cost-to-move) Assume that X =
Y = Z and that A = B = I, which corresponds to a situation of strong cou-
pling. In this case, algorithm (A) is well-defined even if « = v = 0. We denote
by (Ao) the corresponding algorithm

0€ Yyt Mxpiy + Tyg1 — Yn
(Ao) _
O € Yn+1 Nyn-I—l + Yn+1 Tn+1,

that can be equivalently rewritten as

Tny1 = (I + Y1 M)y
Unt1 = (I + Y1 N) 2.

It ensues that the sequences (x,,) and (y,) satisfy the following recurrence formulae
Tpt1 = (I+7n+1 M)il([—i_ﬁ)/n N)il Tn, Yn+1 = (I+7n+1 N)il(j—i_ﬁ)/nJrl M)il Yn.-

This scheme consisting of a double backward step has been previously studied by
Passty [31]. Algorithm (A) can be viewed as an extension of iteration (Ay), so
that our present paper appears as a continuation of the seminal work [31].

Let X = X x Y and denote by V the closed subspace {(z,y) € X, Az = By}.
The normal cone operator Ny, takes the constant value Ny, = V* on its domain V.
Setting x = (z,y), define the monotone operators M: X = X and T : X = X
respectively by

Mx = (Mz, Ny)
and
Mx + V*ifx €V
0 ifx V.

We denote by & = T710 the null set of T. It is also convenient to define the
bounded linear operator

Tx = Mx + Ny(x) = {

A: X — Z
(z,y) — Az — By,

and the map
v: X — R
(z,y) = 5llAz — By||%.

Recall that the Fenchel conjugate U* : X — RU{+oc} of the map V is defined by
U*(p) = supyex {(P,x)x — V(x)} for every p € X. The next proposition shows
that dom¥* = R(A*) and gives the expression of the function ¥* on its domain.

Proposition 2.1 With the same notations as above, we have domV* = R(A*)
and U*(A*z) = Ld2% (2, Ker(A*)) for every z € Z.

2
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Proof. Let us fix p € X. From the definition of ¥ and U*, we have U*(p) =
Supyex {(P,X)x — 3||Ax||%}. This maximization problem can be reformulated as

~ il {F(x) + G(A%)}, 1)

where F': X — R and G : Z — R are respectively defined by F'(x) = —(p,x)x
and G(z) = 1||z||% for every x € X, z € Z. Let us introduce the following

minimization problem

A 6 ) = it {Sen (AT 51 @)
. 1 * (12
=l I ®)
A*z* =p

Since the functions F' and G are convex and continuous, problems (1)-(2) are
dual each to other, see for example [25, Chap. III]. Observing that the Moreau-
Rockafellar qualification condition is satisfied, we derive from [25, Theorem 4.1,
p. 59] that the infimum values of problems (1)-(2) are simultaneously finite and
in this case they coincide. Expression (3) shows that the infimum in (2) is finite if
and only if p € R(A*). Coming back to problem (1), we deduce that p € domU*
if and only if p € R(A*). Now assume that p = A*z for some z € Z. Then we
have
. 1 *112 . 1 * (12 1 2 *
dnf iz = inf o Sll7z = 5dz (=, Ker(AY),
A*z* =p 2* — 2z € Ker(A¥)

which ends the proof.

3 Maximal monotone framework: ergodic convergence
results

The notations and hypotheses are the same as in the previous section. Given any
initial point (zg,yo) € X, the iterates generated by algorithm (A) are denoted
by (Tn,yn), n € N.

3.1 Preliminary results

Let us start with an estimation that is at the core of the convergence analysis.
For (z,y) € X set

ho(z,y) = al|z, — |3 + vl|ly. — ¥l + || By. — By|%. (4)

Then we have the following:



ALTERNATING PROXIMAL ALGORITHMS 93

Lemma 3.1 For every (x,y) €V and ((,n) € T(x,y), there exists p € V> such
that

Pn1 (2, y) — I (2, y) + 29041 | (G Tnpr — T)x + (0 Yngr — ?J)y}
+allzni = 2% + vlyne = vall3 + [[Az0s1 — ByallZ < 272,97 (p). (5)
Proof. To simplify the notation we set h,, = h,(z,y). The definition of (x,1)

gives
«a

(Tpy1 — n) + A*(Azpy1 — Byn) € —Mxpyy.

Tn+1 Tn+1
On the other hand since (¢,n) € T(z,y), there exists p = (p, q¢) € V= such that

(eMx+p and ne Ny+gq.
In particular, we have p — ( € —Mx, which by the monotonicity of M implies

(%

<95n+1—$m $n+1—x>x+ <A*(A$n+1—Byn)a $n+1—x>X < (p—Ca $n+1—x>X'

Tn+1 Tn41
This is equivalent to

allzn g — )% + allznn — 2all3 < allzn — )% — 2(Az0 1 — Byn, Azpiy — Az)z
+ 2911 (P, Tp1 — ) v — 29041(C, Tng1 — T) &
In a similar way we obtain
UYns1 — Y13 + vyt — Ually < vlyn — yll3 — 2(BYns1 — Aznir, Byni1 — By)z
+ 2904 140 Ynr1 — V)Y — 241 (M, Ynt1 — Y) -

Using the properties of the inner product and the fact that Ax = By, we let the
reader check that

—2<Al’n+1 — Byn, ATpi1 — Al’>z - 2<Byn+1 — AZpy1, BYni1 — BZ/)Z =
1BYyn — ByllZ — 1 Byn+1 — Byllz — [ Azni1 — Byallz — |ATns1 — By [|Z-
Since (z,7) € V and p = (p, q) € V*, we have

(D, Tps1 — ) + (¢, Yns1 — V)y = (P, Tng1)x + (¢, Uns1)y = (Ps (Tnt1s Ynt1)) x-
Gathering all this information and writing
Cn = hpy1 — Iy + 29541 [(C, Tpy1 — 95>X + <777 Ynt1 — y>y]
+ ol zni1 — Tall% + VYot — ynlly + | AZni1 — Byall%
we deduce that
Cp < 27n+1<p, ($n+1>yn+1)>x - HAanrl - Byn+1H22
=2 [<’Yn+1P, ($n+1> yn+1)>X - ‘1’(37n+1, Z/n+1)] :

By definition of U*, the term between brackets is majorized by W*(~,.1p). Since
U (Yn+1P) = 1241 V*(p), inequality (5) immediately follows.
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In order to exploit inequality (5), we may assume that U*(p) < +oo for every
p € V1. In view of Proposition 2.1, this amounts to saying that V* ¢ domU¥* =
R(A*). Since V* = Ker(A)* = R(A*), this condition is equivalent to the closed-
ness of the space R(A*), which is in turn equivalent to the closedness of R(A) in
Z. From now on, we assume in this section that

R(A) = R(A) + R(B) isclosed in Z.

By using Lemma 3.1, we now prove the boundedness of the sequence (x,,y,)
along with the summability of the sequences (||zn41 —2,[|%); (|Ynt1 —ynll3) and

(| Azn — Bynl%).-

Proposition 3.1 Assume that the space R(A) is closed in Z and that (v,) € I*.
Suppose that the set 8 is nonempty and let (T,7) € S. We have the following

(i) liT ho(Z,7) exists, hence the sequence (T,,yy) is bounded.
n——+0o0

(ii)The sequences (||xpi1 — Zull%), (1Yns1 — Unll3) and (| Az, — Byn||%) are
summable. In particular,

im ||zp11 — Znllx = m ||yps1 — ynlly = lim ||Az, — By,|lz =0 (6)
n—-+o0o n—-+o0o n—-+o0o

and every weak cluster point of the sequence (x,,y,) lies in V.

Proof. (i) Taking ({,n) = (0,0) in inequality (5) and setting h,, = h,(Z,7), we
obtain

T = b0 T =2l % VY —yul3 1 Ao = ByallZ < 2951, ¥ (p)- (7)

In particular, b, — h, < 272, U*(p). Since (y,) € ? and U*(p) < +oo,
the following lemma shows that (h,) converges, which in turn implies that the
sequence (z,,y,) is bounded.

Lemma 3.2 Let (a,) and (e,) be two real sequences. Assume that (a,) is mi-
norized, that (¢,) € I* and that a,+1 < a, + €, for every n € N. Then (a,)
converges.

(ii) Let us sum up inequality (7) from n = 0 to +oo. Recalling that (v,) € I?,
that ¥*(p) < +oo and that h, > 0, we immediately deduce the summability of
the sequences (||zn1 =22 [|%), (1Yn+1—¥all3) and (|[Az,41—By,l|%). Since || Az, —
Byu|% < 2| Awny1 — Bynll3 + 2| Az gy — Az, ||%, the sequence (|| Az, — Byal|%)

is also summable. For the last part use the fact that lim ||Az, — By,||%2 =0
n—-+oo

and the weak lower-semicontinuity of the function (z,y) — ||Ax — By||%.

Remark 3.1 Proposition 3.1 still holds if one assumes only that R(A*)NR(M) C
R(A*), a condition that is weaker than the closedness of R(A). The reason is that
one uses Lemma 3.1 for (z,y) = (T,7) € S.
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3.2 Ergodic convergence

From now on we assume that (v,) € [*\ ['. Condition (v,) ¢ I' is standard
and common to most proximal-type algorithms®. For practical purposes it states
that the sequence (7,,) does not tend to 0 too fast as n — +o00. The condition
(7n) € 1?\ I' expresses that the sequence (7,) tends moderately slowly toward 0.
This kind of assumption appears in several works related to proximal algorithms
involving maximal monotone operators with alternating features. See for example
the seminal work [31] (or also [12] and [22]). In some particular cases it is possible
to obtain convergence of our algorithm under the sole assumption that (v,) ¢
I' (see Remark 5.1) but this relies strongly on the geometry of the problem.
Finding the general conditions for convergence when (v,) ¢ [? is an interesting
and challenging open question.
Let us define the averages

_ 1 < .1
Tn = — > e and g, = . > V. (8)
" k=1 " k=1

and prove that the sequence (7,,y,) converges weakly to a point in S.

Theorem 3.1 Assume that the space R(A) is closed in Z and that (vy,) € I*\1'.
Assume moreover that the operator T is maximal monotone with 8 = T~0 # ().

Then the sequence (T, yn) of averages converges weakly as n — 400 to a point
n S.

Proof. Let us first prove that every weak cluster point of the sequence (Z,,Uy)
is in §. Fix ((,n) € T(x,y). By summing up inequality (5) of Lemma 3.1 for
k=0,...,n—1, we obtain

~ - 1

Let (Zoo, Uso) be a weak cluster point of (Z,,7,) as n — +oo and let n tend
to +oo in the above inequality. By using the fact that U*(p) < +o0c and that
(vn) € >\ I', we deduce that

<Ca/foo - x>X + <77a leoo - y>)7 S 0. (9)

Since this holds whenever (¢,n) € T(z,y) we conclude (T, Joo) € S by maxi-
mality of the monotone operator T.

Now observe that the sequence (Z,,¥,) is bounded by Proposition 3.1. In
order to establish the weak convergence of the sequence (z,,¥,) it suffices to

6 When the proximal point algorithm is seen as a discretization of the differential inclusion —(t) €
Ax(t), the partial sums o = Y, _, v have a natural interpretation as discrete times. In this setting,
the condition (v,) ¢ I' is an analogue for t — ~+oo.
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prove that it has at most one weak cluster point”. Indeed, let (z,y) and (2/,)
be two such points, which must belong to 8. Define the quantity Q(u,v) =
allull + vljv]l} + | Bvl|% for every (u,v) € X. From Proposition 3.1 (i), the
limits

Ux,y) = lim Q(x, —x,yn — 1Y) and 02 y) = lim Q(x, — 2,y — )

n—-+oo n—-+oo
exist. Observe that
Qrn —2,yn —y) = Q(@n — 2, yn — ) + Qv — 2",y — ¢/)

+ 20&<.f17n — x/,x/ —-T>X +2V<yn - y/ay/ _y>y
+ 2(B(yn —v'), Bly' — y))=- (10)

Taking the average and letting (Z,,,yn,) — (2/,v') as k — 400 we obtain

Uz, y) =L, y) + Qx — 2,y — ).

In a similar fashion we deduce that

(2 y') = x,y) + Q. — 2",y — )

and hence Q(z — 2/, y — y') = 0 which implies (z,y) = (2, ).

3.3 Links with Passty theorem.

Assume that X = )Y = Z and that A = B = Z, along with a = v = 0. This
induces a situation of strong coupling without cost-to-move. The corresponding
algorithm is denoted by (Ap), see Remark 2.1. Since R(A) = X, the closedness
of R(A) is automatically satisfied. It is immediate that 0 € T(x,y) if and only if
r =y and Mx 4+ Nx 3 0. Therefore we have

S=T'0={(z,2) € X*, z€(M+N)'0}.

Assume that the operator M + N is maximal monotone with (M + N)7'0 # (.
Let (7,) be a positive sequence such that (v,) € {?\['. By arguing as in the proof
of Proposition 3.1, we obtain that

(a) lirf lyn — T||% exists for every 7 € (M + N)~10.
n—-+0o0
(b)The sequence (||Z,11 — yn||%) is summable, hence lirf |Zns1 — ynllx = O.
n—-+0o0o
Take ( = 0 and x = y in the proof of Theorem 3.1. Observe that (0,7) € T(y,y)

holds if and only if n € (M + N)y. Hence formula (9) implies that (1, Yoo —y)y < 0
for every n € (M + N)y. We deduce that 7., € (M + N)~'0 by maximality of the

" This idea, inspired by the Opial lemma [30] (see Lemma 4.2 below), can also be found in [31].
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monotone operator M + N. This proves that every weak cluster point of the se-
quence () lies in (M + N)~10. Then we prove that the sequence (7, ) has at most
one weak cluster point. It suffices to adapt the proof of Theorem 3.1 by invoking
point (a) above and by using the quantity Q(v) = ||v||3 (instead of Q(u,v)). We
obtain that the sequence (¥,,) weakly converges toward some ¥, € (M + N)~10.
By using point (b) above, we infer that the sequence (Z,) weakly converges to-
ward Too = Yso. As a conclusion, we recover the following result

Theorem (Passty [31]) Assume that the operator M + N is mazximal monotone
with (M + N)7'0 # 0. Let (v,) be a positive sequence such that (v,) € 1*\ I*
and let (x,,y,) be any sequence generated by algorithm (Ap). Then there exists
Too € (M + N)7'0 such that both sequences of averages (T,,) and (y,) converge
weakly toward T.

3.4 Strong monotonicity.

Under strong monotonicity assumptions, we are able to prove the strong conver-
gence of the sequence (x,,y,) itself (not only in average). Let us recall that the
operator M is said to be strongly monotone with parameter a if, for every xq,
To € domM and every & € Mxy, & € Mxy, we have

(6o =&, 20 — 1) > aljzs — x1||§(

Assuming in the same way that the operator N is strongly monotone, we obtain
that the operators M and T = M + N,, are strongly monotone. Hence if the set
S = T7'0 is nonempty it must be reduced to a single point, say S = {(Z,7)}.

Proposition 3.2 Assume that the space R(A) is closed in Z and that (v,) €
12\ I*. If the operators M and N are strongly monotone and if S # 0 then the
sequence (T, y,) converges strongly to the unique (T,7) € S.

Proof. Let us suppose that the operators M and N are strongly monotone, res-
pectively with parameters a, b > 0. We let the reader check that this assumption
leads to a stronger form of inequality (5), which in turn implies

hn-l—l(E? y) - hn(fu y) + 2aryn+1 Hxn—l—l - E||2X + 2b’7n+1||yn+l - y”; < 2rY727,+1 \IJ*(p)

Since (7,) € [* and ¥*(p) < +oo, and recalling that h,(Z,7) > 0, the summation
of the above inequality implies

+oo
Zﬁ)/n [Hxn _fH%( + Hyn - yHgi} < +0o0

n=1

and hence
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+0o0 +o0 +o0
> @7 <Y Aallz, —Z3 + @+ 1BIP)D vallyn — Tl < +oo.
n=1 n=1 n=1

Since (v,) € ' and since lirf hn(Z,7y) exists, this limit must be equal to 0 and
n——+0oo

we deduce that lim (x,,y,) = (T, 7).
n—-+oo

Remark 3.2 Observe that the mazximality of the operator T does not come into
play in the previous proof. Notice also that if the operator T is both maximal
and strongly monotone, then condition 8 # () is automatically satisfied, see for
example [20, Cor. 2.4] or [36, Prop. 12. 54).

4 The subdifferential case: weak convergence results

4.1 Preliminaries

Let f: X - RU{+0o0}, g:Y — RU{+00} be closed convex proper functions.
Define the maximal monotone operators M and N respectively by M = Of
and N = dg. The operator M coincides with the subdifferential of the function ®
defined by ®(z,y) = f(x)+g(y) for every (x,y) € X. Observe that the monotone
operator T = 0® + Ny, = 0P + 00y is maximal if, and only if,

0P + 0oy = 0 (P + dy) .

Maximality is guaranteed if one assumes some qualification condition such as
the Moreau-Rockafellar one [29, 34] or the Attouch-Brézis one [8]. In order to
cover various applications to PDE’s (see paragraph 6.2), we assume the following
Attouch-Brézis qualification condition

(QC) U A(domf x domg — V) is a closed subspace of X x V.
A>0

Under (QC) the following claim shows that the set & = T~!0 can be interpreted
as the set of minima of a suitable function.

Claim 4.1 We have
S C Argminy,® = Argmin{ f(z) + g(y) : Az = By}.
If condition (QC) is satisfied, the above inclusion holds true as an equality.

Proof. First recall that the inclusion 0® + 9y, C 9 (P + dy) is always satisfied.
It ensues immediately that

S=T710=[0d+ 0y ' 0C [0(P+dy)] " 0= Argmin,, .

If condition (QC') is satisfied, the set (., A(dom® —domdy) is a closed subspace
of X. This classically implies that 0® + 99y, = O(P + dy) and the conclusion
follows.
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Recall that the iterate (2,41, yn+1) of algorithm (A) is implicitly defined by

{O € Vi1 0f (Tpy1) + A*(Azyy1 — Byn) +a(rpy1 — x,)

" 11
0 € Yn+109(Yn+1) — B (ATny1 — BYns1)V(Yns1 — Yn)- (11)

These are the optimality conditions associated to the following minimization prob-
lems

Ly [ = At 4 SIAC = B2 + 51 - 2allds ¢ € )
rir = Argmin{ing(n) + 5 ATas — Bals + olln— vl ne V)
For each (z,y) € X, define

() = o = 2l + vllgn — 913 + 1By — Bolld (12)

as in section 3. Define also the sequence (¢,) by
1
on = J(@n) + g(yn) + 5|l Awn - By, |z (13)

Lemma 4.1 With the above notations and hypotheses, we have the following®

(i) For every (x,y) € Argminy,® and for every n > 0,
hn+1(x7 y) - hn(l',y) + 2ry71+1 (f(xn—l—l) + g(yn—l—l) - m\;n (I)> + ||A$n+1 - Byn+1||22
HAzp1 = ByllZ + allznis = zall% + vy — yall3 (04

(ii)For every n > 0,

1 1 1
Ont1 — Pn < 3 ( - _) | Az, — BynHZZ' (15)
Yn+1 Tn

Proof. In view of the optimality conditions (11), for all (z,y) € X x ) we can
write the subdifferential inequalities

Tn+1 (f(.l") - f(anrl)) > _<Axn+1 — By, Ax _Axn+1>2 - O‘<xn+1 —Ipn,T _xn+1>X
(16)
and

Yn+1 (g(y) - g(yn+1)) > <A$n+1 — Byn11, By — Byn+1>2 - V<yn+1 —UYn, Y — yn+1>y-
(17)

Using the properties of the inner product the reader can check that

8 Inequalities (5) and (14) are closely related, even if they rely on different techniques (monotonicity
in the first case and subdifferential inequalities in the second one).
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1By = ByallZ = I|1BY = Bynrillz = | Bynt1 — Avara|z — || By — Az||Z
+|By — Az — (Byn — Ay |1
+2(BY — BYn+1, Bynt1 — ATny1)z
+2(Byn, — Axpyr, Arpyy — Ax) 2.

Combining (16) and (17) we deduce that

By — Byullz — | By — Byni1ll%
> || Byns1 — Axnsr |2 — | By — Az||Z + || By — Az — (By, — Az |12
+ 2911 [f (Tn11) — f(2) + 9(Ynt1) — 9(y)]

+ 20‘<$n+1 — Tn, Tpy1 — 95>X + 2V<yn+1 — Yn, Yn+1 — ?J)y
= A1 — Bynsalz — |Az — By||%Z + || By — Az — (Byn — Aznia)|%
+ 2941 (f(Tng1) + 9(Yns1) — f(2) — 9(v))
+a(ll e — zal% + 2 — 2l — llzn — 2[%)
2 2 2
+V([[ynt1 = Yully + Ynrr = vll5 = llyn — ylI3)-
We infer that for all (z,y) € X x ),

h(@,y) = Pogr (2,9) 2 2901 (f(@ni1) + 9(yns) — f(2) — 9(y)) — || Az — By||Z
+[[Azni1 = Byniilz + | By — Az — (By, — Az,i1)|1%
+ollznis = ully + Vilynes = wnlly- (18)

Now let (z,y) € Argmin,,®. Then Az = By and f(z) + ¢g(y) = miny, ® so that

inequality (18) becomes (14). On the other hand, by using inequality (18) with
r =z, and y = y,, we infer that

2% i1 (f(@n11) + 9(Un11) = F(20) = 9(yn)) + | Azpir — Bynia % < [[ Az, — By |
(19)
We finally divide by 27,41 and rearrange the terms to obtain (15).

4.2 Weak convergence
Assuming that Argmin,,® # 0, let us set
. 1 .
o= nt A3le = Byl 2 (£ + o) - min ) §
— inf {w o (@(x) —min@) | 2
Jnf J ¥(x) + 7 ($(x) —min (20)

Denote by (w;,) the negative part of (w,). In the sequel, we will assume the key
condition

(w;) €l

This kind of hypothesis was introduced by the second author in [22].
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Proposition 4.1 Assuming that Argminy,® # 0, consider the following asser-
tions:

(1) (v.) € 12, the space R(A) is closed in Z and condition (QC') is satisfied.
(iivn) € I and there exists X €V and p € R(A*) such that —p € 0P (X)°.
(i) € IL.

Then we have the implications (i) = (ii) = (ii1).

Proof. (i) = (ii) Let X € Argmin,,®. Since condition (QC') is satisfied, we
deduce from Claim 4.1 that X € § = [8@ + Vl] 0. Hence there exists pe vt
such that —p € 9®(X). The closedness of R(A) implies the closedness of R(A*),
hence we have V= = Ker(A)* = R(A*) and finally p € R(A*).

(ii) = (iii) The subdifferential inequality gives for every x € X,

O(x) = (X) = (-p,x = X)x = (-P, X)x,

where the last equality is a consequence of p € R(A*) C V* and X € V. Since
®(X) = miny, ¢, we deduce that

U(x) + 0 (0(x) = min @) = W(x) = 70 (P, X)ux.

Taking the infimum over x € X, we find

Wa 2 = SUp {1 (P, X)x — ¥(x)} = =V (y,p) = =2 ¥ (p).

It ensues that w, < ~2¥*(p). Since p € R(A*) = dom¥* (see Proposition 2.1),
the conclusion follows from the summability of (72).

Notice that in infinite dimensional spaces, conditions (ii) or (iii) can be satisfied
even if the space R(A) is not closed. An example will be provided in the last
section.

Let us now state the main result of the paper.

Theorem 4.1 Let f : X — RU {400} and g : Y — R U {+o0} be closed
convex proper functions. Let A : X — Z and B : Y — Z be linear contin-
uous operators. Assume that the qualification condition (QC) holds and that
Argmin{ f(z) + g(y) : Az = By} # 0. Let (v,) be a positive sequence such

that <%1H — %n) 15 magorized by some M > 0. Finally suppose that condition

(w;,) € I' holds, where the sequence (w,) is defined by (20). Then we have

(1) (T, yn) converges weakly to a point (Teo, Yoo) € Argmin{ f(x)+g(y) : Az = By}.
(i) im f(zn) = f(ro) and lm g(yn) = g(yeo).

9 The corresponding z € Z such that p = A*z plays the role of a Lagrange multiplier.
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Proof. Let us start with several preliminary claims.

Claim 4.2 For every (z,y) € Argmin,,®,

lim oz, — 2% + vllyn — ylI3 + | Byn — Byl%  exists in R.

n—-+00

Proof of Claim 4.2. Fix (z,y) € Argmin,,® and set h, = ||z, — z||% + v|lyn —
y|I3 + | Byn — By||% as in (12). From inequality (14) we deduce that

Prg1 = B + 2wp 41 + [[Apg — BynHZZ + af|Tng1 — l’an( + U||Ynt1 — ynHi <0.
This implies
st — b+ [ A1 = Bualls + allznss = 2l + vllgnss -yl < 27,1(21)

It ensues that h,1 — h, < 2w, . Since (w,) € I', owing to Lemma 3.2, we

conclude that lim h,, exists. O
n—-+o0o

Claim 4.3 The sequence (| Az, —By,||%) is summable, and therefore lim,,_, ;o || Az, —

Proof of Claim 4.3. Let us sum up inequalities (21) which are obtained for n = 0
to +00. Recalling that (w,) € ' and that h, > 0, we immediately deduce the
summability of the sequences (||zp11 — znll%), ([Ynt1 — ¥ull3) and (||Azyq —
By,||%). Since ||Ax, — By,||2 < 2||Az,1 — Bynl|% + 2||Azpy1 — Ax,||%, the
sequence (||Az,, — By,||%) is also summable. O

Claim 4.4 Setting ¢, = f(zn) + 9(yn) + iHAa:n — By,||% as in (13), we have

lim ¢, = miny, ®.
n—-+o0o

Proof of Claim /.4. Since <%—1+1 — Vin) < M, we derive from inequality (15) that

M
Pn+1 — Pn S 7”14:[‘“ - Byn“é (22)

From the previous claim the sequence (|| Az, — By, ||%) is summable. By applying
Lemma 3.2 we deduce that the sequence (¢,) converges. Let us now set

N
_ 1
o =23 fon () + 9t) — in®) + 5l s, — B3 }.
n=0

From inequality (14), the sequence (hy + ay) is nonincreasing. Moreover the
assumption (w, ) € [* allows us to assert that, for all n € N,

+oo
ay > —QZw; > —00.

n=0



ALTERNATING PROXIMAL ALGORITHMS 103

Thus the sequence (hx + ay) is bounded from below, hence convergent. As a
consequence,

N
Nlil}rloo ay = ngfoo 2 z% Tn (cpn — min <I>> exists in R. (23)
n—=

. 1 1 1 1
Since T < M for every n > 0, we deduce that ~,, > Mt L hence (v,) ¢ '

Recalling that lim ¢, exists in R, we infer from (23) that lim ¢,, = miny, .
n——+00 n—-+00 0

Claim 4.5 lim ®(z,,y,) = miny ®.

n—-+0o

Proof of Claim 4.5. Let (x,y) € Argmin,,®. Since condition (QC) holds, we
deduce from Claim 4.1 that (z,y) € & = T~'0. Hence there exists (p,q) € V*
such that —(p,q) € 0®(x,y). The convex subdifferential inequality then gives

CID(:L'T“ yn) > (I)(I,y) + <_(p7 Q)v (Im yn) - (x7y)>)(><y
= m\;nq) — (P, @) (@ns Yn) ) x5y (24)

Let us prove that lirf ((p,q), (Tn,yn))xxy = 0. From Claim 4.2 the sequence
n—-+0o0

(2, yn) is bounded, hence it suffices to prove that 0 is the unique limit point of
(((p, @), (ns Yn)) axy)- Let ({(p, @), (Tny, Yny)) ¥xy) e a convergent subsequence.
We can extract a subsequence of (x,,,Yn, ), still denoted by (z,,,yn,), which
weakly converges toward (Z,7). The weak lower semicontinuity of the function
(z,y) — ||Az — By||% combined with Claim 4.3 implies that

— =2 < Timi . 2 . - 2 _
147 — Byl z < lim inf | Azn, — Byn, [z = lim [|Az. — Byallz =0,

hence (Z,7) € V. Recalling that (p,q) € V*, we infer that

khm <(p7 q)a (xnk7 ynk)>X><y = <(pa Q)> (Ea y))XX)) = 0.

—+00

We immediately deduce that the whole sequence ({(p, q), (s, yn))xxy) converges
toward 0. Hence from (24) we obtain that liminf ®(z,,y,) > miny ®. On the

——+o00
other hand, since ®(z,,y,) < ¥n, we have in view of Claim 4.4

limsup ®(z,,y,) < lim ¢, = m‘}n .

n——4o00 n—+00

We conclude that lim ®(z,,y,) = miny, .

n—-+00

The proof of (i) relies on the Opial’s lemma [30], that we recall for the sake of
completeness.
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Lemma 4.2 (Opial) Let H be a Hilbert space endowed with the norm N. Let
(&n) be a sequence of H such that there ezists a nonempty set = C H which verifies

(a)for all £ € 2, lirf N (&, — &) euwists,
n——+0o0
(b)if (€,,) — € weakly in H as k — +oo, we have £ € .

Then the sequence (&,) weakly converges in H as n — 400 toward a point of =.

Let us define the norm N(u,v) = [a|ul} + v|v]3 + || Bv[%] Y2 on the space
X x ). Since the linear operator B is continuous, the norm N is equivalent to the
canonical norm on X' x ). In view of Claim 4.2, the quantity N(x, —z,y, —y) does
have a limit as n — +oo for every (z,y) € Argmin,,®, which shows point (a).
Let (xn,, Yn, ) be a subsequence of (z,,, y,) which weakly converges towards (7, 7).
The weak lower semicontinuity of the function (z,y) — [|Az — Byl||% combined
with Claim 4.3 implies that

— 2 . . 2 _ s _ 2
147 — Byl z < liminf | Az, — Byn [z = lim [|Az, — Byallz =0,

hence (7,7) € V. In the same way, using Claim 4.5 and the weak lower semicon-
tinuity of ®, we infer that (7,7) € Argmin,,®. This shows point (b) of Opial’s
lemma and ends the proof of (i).

Let us now prove that lirf f(z,) = f(2s). Using the weak lower semiconti-
n——+00
nuity of f, we have f(zy) < lim inf f(z,,). On the other hand, we deduce from
n—-+0oo

Claim 4.5 that
limsup f(x,) = limsup(f(,) + 9(¥n) — 9(¥n))
n—-—+o0o n——+00

= [ (o) + 9(yoo) — liminf g(y,).

By the weak lower semicontinuity of g, we have g(ys) < lim Jirnf 9(yn). We infer
n—-+0o0

that limsup f(x,) < f(z), and finally lirf f(zn) = f(2s). In the same way,
n—-+0o0

n—-+00

we have liT 9(Yn) = 9(Yso), which ends the proof of (ii).
n——+0o0

4.3 Inexact computation of the iterates

Due to the implicit character of the iterations it is important to account for pos-
sible computation errors in their implementation. The optimality conditions (11)
defining x,,+1 and y,41 can be relaxed without losing the convergence properties
of the algorithm. Suppose the sequences (z,) and (y,) satisfy

{0 € Ynt1 a€n+l f(%n-l—l) + A*(A§n+1 - B;yvn) +O‘(%n+1 _gn) (25)
0 € Ynr1 aan+19(yn+1) — B*(AZp 11 — BYni oV (Unt1 — Un),
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where 0. denotes the approximate e-subdifferential'®.

The arguments in the proof of Lemma 4.1 give an additional term 4+,, 16,41 on
the right-hand side of inequality (14) and an additional 2¢,,; on the right-hand
side of (15). As a consequence, Claims 4.2 and 4.3 remain true if >~ e, <

+00. Claims 4.4 and 4.5 also hold if > &, < +o0.

Corollary 4.1 Theorem 4.1 holds under the same hypotheses if the iterates sat-
isfy (25) instead of (11) provided (e,) € I*.

There is a rich literature regarding the treatment of errors in proximal-type
algorithms. The interested reader may consult [35], [15] or [37]. See also [6] for
an alternative approach to computational errors.

5 Further convergence results for strongly coupled
problems

In this section, we assume that X = ) = Z and that A = B = Z, along with
a = v = 0. Given closed convex functions f, g : X — R U {400}, consider the
following particular case!! of algorithm (A)

Tpy1 = Argmin{%ﬂ f(O)+ %HC —yala; C€ X}
(Ao)

) 1
Ynt1 = Argmm{%ﬂ 90 + Sllener = nllz; € X}-
Using the same notations as in the previous sections, we have
V={(z,x);z € X} and Argmin,,® = {(z,z);x € Argmin(f + g)}.

Let us first start with an example.

Example 5.1 Take X = R and define the functions f, g : R — R respectively
by f(z) = 3(z —1)% and g(y) = 1(y + 1)*>. We then have Argmin(f + g) = {0}.
By writing down the optimality conditions for algorithm (Ap), we immediately
obtain the following recurrence formulae (see also Remark 2.1)

'Vn-l—l(‘fn—l—l - 1) + Tyl — Yn = 0
Yrt1(Unt1 + 1) + Ynp1 — Tny1 = 0.

We infer that )
1 Tn+1

Ynt1 = U — T g
T 02 (U )

19 Tn Hilbert space H, given € > 0 and F : H — R U {+o0}, the approximate e-subdifferential of F' at
€ is defined by 0-F(§) ={€" € H : F({)>F(&) +(",¢(—& —e V(e H}

11 See Remark 2.1, where algorithm (Ap) has been introduced in the framework of maximal monotone
operators.
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2
a +w oz and b, #ﬁm We deduce from the above equality
that |yni1| < anlyn| + bn. To prove the convergence of the sequence (y,), we use

the following lemma borrowed from [32, Lemma 3, p. 45].

Lemma 5.1 Let (a,) and (b,) be real sequences such that 0 < a,, <1 and b, >0
for every n € N. Assume moreover that (1 —a,) ¢ I* and that llmn_,+oo = = 0.
Let (u,,) be a real sequence such that u, 1 < apu, + b, for everyn € N. Then we
have limsup,,_, o u, < 0.

Let us set a,, =

It is easy to check that, if the sequence (7,) is not summable, then the sequence
(1—ay,) is not summable. Moreover we have lim,, 1 « lf—zn = lim,, o 217;““ =0

Thus the previous lemma implies that limsup,,_, . . |y,| < 0, hence lim,,_, o y,, = 0.
Finally we have proved that if (v,) € ' then lim, o (2, yn) = (0,0).

It is worthwhile noticing that the assumption (v,) € [* does not come into play
in the above example. This is in fact a consequence of a general result that will be
brought to light by Theorem 5.1 (i), see also Remark 5.1. Before stating Theorem
5.1, we need the following preliminary result.

Proposition 5.1 Let f, g : X — RU {400} be closed convex functions which
are bounded from below and such that domf N domg # 0. Let (v,) be a positive
nonincreasing sequence such that lim, ..y, = 0. Then any sequence (x,,Yyy,)
generated by (Ag) satisfies im,,_ o0 ||Tn — Ynllx = 0.

Proof. Let us define the sequence (¢,) by

1
Un = (f(2n) + 9(yn)) + QHxn — ynl[%- (26)
We have ]
Un 2y inf @ + S len — yall%, (27)

hence the sequence (¢, — 7, inf ®) is nonnegative. By using inequality (19) with
A = B =17, we deduce that, for every n € N,

Unt1 — U < (Yns1 — V) inf O.

This shows that the sequence (1, — 7, inf ®) is nonincreasing, hence convergent.
Since lim,, {0 75 = 0, the sequence (v,) also converges. Let us apply inequality
(18) with A= B =7, a =v =0 and z = y; we find for all x € dom f Ndomg # 0,

20011 = 291 (f(2) + 9(2)) < llyn — 2% = llynsr — 2l
By summing the above inequalities for n = 0, ..., N, we obtain

N

2> [hni1 = Y (F (@) + 9(@)] < llyo — )%

n=0
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Since this is true for every N € N, we derive that

lim inf [y 1 — i (f () + g())] <0.
But both terms are convergent, so we have lim, ., ¥, < 0. From (27) we im-
mediately deduce that lirf |z — ynll3 = 0.
n—-—+0oo

The approach that we now develop relies on topological ingredients that can
already be found in [5, 10, 18, 22]. The result below shows that if (v,) ¢ [' and
lim 7, = 0, the iterates z,, y, of algorithm (Ay) approach the set Argmin(f+g)

n—-+o0o
as n — +oo. Weak convergence is obtained under the extra assumption (v,) € [*.

In the next statement, we denote by d(-, Argmin(f + g)) the distance function to
the set Argmin(f + g).

Theorem 5.1 Let f,g : X — R U {+oc} be closed convexr functions which are

bounded from below. Assume that either f or g is inf-compact'®. Let (v,) be a

positive nonincreasing sequence such that (v,) & I* and liril Yo = 0. Finally, let
n—-+00

(Tn, yn) be a sequence generated by (Ag). Then

(z')nl_igloo dy (xn, Argmin(f + g)) = nl_lgloo dy (yn, Argmin(f + g)) = 0.

(i)If (v.) € 1%, and if condition (QC) is satisfied'®, then the sequence (T, Yn)
converges weakly to a point (T,T) with T € Argmin(f + g).
%1+1 — %) 15 majorized by some M > 0, then the

sequence (T, y,) converges strongly in X.

(#ii)f moreover the sequence

Proof. First, if dom fNdomg = @) then Argmin(f+g) = X, condition (QC) cannot
hold and the result is trivial. Hence we assume domf N domg # (). We can also
assume that the function f is inf-compact. Since the function ¢ is bounded from
below, we derive that the function f+ g is inf-compact, hence Argmin(f+g) # 0.
(i) In view of Proposition 5.1, it suffices to prove that nl_1£100 dx (yn, Argmin(f +

9)) = 0.Set A=B =17 and o = v = 0 in inequality (14) to deduce that for
every y € Argmin(f 4 ¢) and every n € N we have

9n+1 _ych —lyn —Z/ch + 27011 <q)(1’n+1>yn+1) - m‘}n cb) + |70 g1 —yn+1H%( <0.
(28)

12 Recall that a function is said to be inf-compact if its sublevel sets are relatively compact.
'3 Tn our present setting, it is easy to check that condition (QC) is satisfied if and only if

U A(domf — domyg) is a closed subspace of X.
A>0

This is precisely the Attouch-Brézis condition, which ensures that 9f + dg = 9(f + g) and hence
(0f + 9g)'0 = Argmin(f + g).
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Let P denote the projection operator onto the closed convex set Argmin(f + g)
and take y = P(y,). Setting u, = d% (yn,Argmin(f + g)), we derive from (28)
that

Unt1 — Un + 2941 (@(an, Ynt1) — m\;n CID) <0. (29)

We now follow the same arguments as those used by the second author in [22,
Theorem 3.1]. We distinguish two cases:

(a)There exists ny € N such that for all n > ng, ®(x,, y,) > miny, P.
(b)For all ny € N, there exists n > ng such that ®(z,,y,) < miny, .

Case (a). Assume there exists ng € N such that for all n > ng, ®(x,,y,) >
miny, ®. From inequality (29), we deduce that the sequence (uy,),>n, is nonincreas-
ing and convergent. We must prove that lim,,_, ., u, = 0. Using again inequality
(29), we can assert that the sequence (7, (®(zn, y,) —miny, ®)) is summable. More-
over, since (7,) ¢ ', we have liminf,_, ., ®(z,,y,) = miny, ®. Consider a subse-

quence of (z,,y,), still denoted by (z,,y,), such that lirf ®(z,, y,) = miny, .
n—-—+0oo

Since the function g is bounded from below, the sequence (f(x,)) is majorized.
Using the inf-compactness of the map f, we obtain that the sequence (z,) is
relatively compact in X. Thus there exist a subsequence (x,, ) along with 7 € X

such that klim Zn, = T strongly in X. In view of Proposition 5.1 we also have
—+00

klim Yn, = T strongly in X. The closedness of the function ® allows to assert
—+o00

that ®(7,7) < liminf, . (2, ,ys,) = miny ®. Hence (7,7) € Argmin,,®,
i.e. T € Argmin(f 4 g). Thus

lim u,, = lirf d% (Yn,, Argmin(f + g)) = d% (T, Argmin(f + g)) = 0.
n—-+00

k—+o00

Recalling that the sequence (u,) is convergent, we conclude that lirf u, = 0.
n—-+00

Case (b). We assume that for all ng € N there exists n > ng such that ®(x,,, y,) <

miny, ®. Let us define

v = max{n € Nyn < N and ®(z,,y,) < rrgn o}

The integer 7y is well-defined for N large enough and limy_, . 7nv = oo. If
Tn < N inequality (29) implies u,11 < wu, whenever 7y < n < N — 1. In
particular,

UN < Upy- (30)

Notice that if 7y = N this inequality is still true. Therefore it suffices to prove
that lim w, = 0. First observe that ®(z,, vy, ) < miny, ® for all sufficiently

n— 400
large n by definition. We deduce, as before, that the sequence (z,,) is relatively

compact, hence bounded in X. In view of Proposition 5.1, the sequence (y,,)
is also bounded in X', whence the boundedness of the real sequence (u,, ). The
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proof will be complete if we verify that every convergent subsequence of (u,, ) must

vanish. Indeed, assume that lim wu,, exists. We may assume, upon passing to a
k——o00

subsequence if necessary, that limy_, o Ty, = limg 1 o0 Yr,, =T for some T € X.
The closedness of ® then gives

®(z,7) < liminf ®(x, ,yr, ) < rrgn b,

k—o0

which implies (Z,7) € Argmin,,®. As before, this implies klim U, =0 and we
—+o00

deduce that the whole sequence (u,,) converges toward 0. Then inequality (30)
shows that lim,,_, o u, = 0.

(ii) Let us assume that (y,) € [ and that condition (QC) is satisfied. Observe
that R(A) + R(B) = R(Z) = X, so the closedness of the space R(A) + R(B) is
fulfilled. By Proposition 4.1, the sequence (w,) defined by

o= inf {§||x ol + 2 (F@) + 9(0) —mgn@)}

(z,y)ex?
satisfies (w,,) € I'. Let y € Argmin(f + g). From inequality (28), we obtain
lyms = yll% = llyn — yll% < 2w,
Since (w,, ) € ! this implies in view of Lemma 3.2 that

Vy € Argmin(f + g), EIJIrl 9 — yl|3 exists. (31)

On the other hand, recalling that liril dx(Yn, Argmin(f + g)) = 0, every weak
n—-+00

cluster point of the sequence (y,) lies in Argmin(f + g). We infer from Lemma
4.2 that the sequence (y,) weakly converges toward some point in Argmin(f+ g).
Finally Proposition 5.1 shows that the sequences (z,) and (y,) tend weakly to-
ward the same limit.

(iii) Let us first prove that the sequence (p,) defined by formula (13) is
bounded. By applying inequality (18) with A = B = Z, a = v = 0 and
(5,9) = (20, ), we casily find

1 1 1
n _n+ T, _-Tn2+ Yn _yn2 §_< __) xn_ynZ-
Prnt+1—F 2 it (H +1 1% + yn+1 HX) 2\t ™ I 1%
(32)
Observe that this inequality is slightly more precise than (15), where two terms
were omitted. Since % — L < M by assumption and since ||z, — yn||3 <

2 |Tns1 — ynll3 + 2| Tne1 — Tall%, inequality (32) implies

T = 2allZ <M ([lzns — vall % + l12nes — 2all%) -

Pnt+1 — Pn + 9
TYn+1
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From the fact that lim,, o 7, = 0, we immediately derive that for n large enough

Ony1 —on <M Hanrl - ynHQX (33)

Recall that the sequence (w,, ) is summable, see the proof of (ii). The summability
of (|Tns1 — ynll%) is then an immediate consequence of inequality (21), with
A=B=7and a =v = 0. In view of (33), we infer from Lemma 3.2 that
the sequence (¢,) is convergent, hence bounded. Since the function ¢ is bounded
from below, the sequence (f(x,)) is majorized. The inf-compactness of f allows
to deduce that the sequence (x,,) is relatively compact in X'. Hence there exists
T € X along with a subsequence (z,,) such that limy_, . x,, = T strongly in
X. From Proposition 5.1, we also have limy_, y,, = 7 strongly in X. In view
of (i), it is clear that T € Argmin(f + g). Taking y = T in assertion (31), we
deduce that lim, 1 ||yn — Z||x = 0. Owing to Proposition 5.1, we conclude that
lim, oz, = lim, .y, = T strongly in X.

Remark 5.1 Observe that if Argmin(f 4 g) = {€}, Theorem 5.1 (i) shows that
any sequence generated by (Ag) converges strongly to (£,€), even if (v,) & I2.

Remark 5.2 No qualification condition is required in the proof of Theorem 5.1
(i), which is a distinctive mark with respect to the proof of Theorem 4.1 (see
specially Claim 4.5).

Remark 5.3 Recall from Remark 2.1 that the iterates of algorithm (Ag) satisfy
the following equalities

Tos1 = (I + Y1 0f) (I + 7, 09) " 2,
Ynt1 = (L + Ynt1 39)71([ + Vo1 OF) 7 Y.

This corresponds to a double resolvent scheme studied by Passty in [31]. In this
reference, weak ergodic convergence of such sequences is established for general
mazimal monotone operators such that the sum s itself maximal, provided that
(7n) € >\ I'. Under some inf-compactness assumption, Theorem 5.1 (ii) (resp.
(#ii)) shows that weak ergodic convergence is replaced by weak (resp. strong) con-
vergence in the subdifferential framework. Hence our result is an improvement of
Passty theorem when applied to subdifferential operators.

6 Application to domain decomposition for PDE’s

Let us consider a bounded domain Q C RY with C? boundary. Assume that the
set €2 is decomposed in two nonoverlapping Lipschitz subdomains €2; and 25 with
a common interface I'. This situation is illustrated in the next figure.
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6.1 Neumann problem

Given a function h € L%*(2), let us consider the following Neumann boundary
value problem on 2
{ —Aw=~h on

g—;‘l’:() on 0f),

where g_l: = Vw.n and n is the unit outward normal to 0€2. We assume that
th = 0, which is a necessary and sufficient condition for the existence of a
solution. The weak solutions of the above Neumann problem satisfy the following

minimization problem

min{%/ﬂ]Vw]Q—/Qhw; weHl(Q)}, (34)

see for example [9, 21, 27, 33]. Moreover, denoting by @ a particular solution, the
solution set of (34) is of the form {@w + C, C' € R}. Assuming that €2 is of class
C?, we know from the regularity theory of weak solutions that @ € H?((), see
for instance [3, 4, 26]. Notice that, if w € H'(2) then the restrictions u = wjq,
and v = wjn, belong respectively to H'(Q;) and H'(Q) and moreover ujr = vr.
Conversely, if u € H'(Qy), v € H'(Q) and if ur = vy, then the function w

u on )y )
defined by w = belongs to H'(€2). As a consequence, problem (34)
V 0o1n iy

can be reformulated as
(P)  min{f(u)+g(v): (u,v) € H'(Q) x H'(Q) and up = vyr} .

where

f(u):% \Vu|2—/ﬂhu and g(v)zé |vv|2—/ﬂzw. (35)

Q1 Q2

Let us show how the algorithm (\A) can be applied so as to solve problem (P). The
set X = H'(Qy) is equipped with the scalar product (uy,us)y = le(Vul.VuQ +
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uyus) and the corresponding norm. The same holds for J) = H!(Qy) by replacing
Q; with Qy. The set Z = L*(T') is equipped with the scalar product (z1,20)z =
fr 2122 and the corresponding norm. The operators A: X - Zand B:)Y — Z
are respectively the trace operators on I', which are well-defined by the Lipschitz
character of the boundaries of €2; and € (see [17, Theorem I1.46] or [28, Theorem
2]). Algorithm (.A) runs as follows

) 1 a
Upyr = Argmin{ry, 1 f(u) + éHAU — Bu,||%Z + 5““ —upl}; ue X}
. 1 v
Upg1 = Argmin{v,119(v) + §||Aun+1 — Bu|% + §||U —u3; ve V)

where a and v are fixed positive parameters. An elementary directional derivative
computation shows that the weak variational formulation of algorithm (A) is
given by

Vi1 | Vuu1.Vu+ oz/ (Vupi1 — Vuy,).Vu

Q1 Ql

+ 04/ (unJrl - un>u + /(AunJrl - BUn)*Au = 7n+1/ hu
951 T 951

and

Yni1 [ Vup.Vo+ u/ (Vuper — Vu,).Vo

QQ Q2

+ V/ (UnJrl - Un)” + /(an+1 - AunJrl)Bv = 7n+1/ hv
Qo r Qo

for all w € X and v € Y. These are the variational weak formulations of the
following mixed Dirichlet-Neumann boundary value problems respectively on €2y

—(Yny1 + @) Aty + Ml = Ynt1h — aAu, + au, on Q)

(’Yn+1 + o) 2t — a%“rj on 9 NON
(Y1 + Oé) AL + un+1 adin 4y, on T,
and €y
e T
(Yng1 + ZT;H"H + Upy1 =V Z: + Upt1 on I 2

Let us now check the validity of the assumptions of Theorem 4.1. The qualifi-
cation condition (QC') is automatically satisfied since domf = X and domg = ).
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In view of Proposition 4.1, assumption (w, ) € [ is verified! if (v,) € [* and if
there exist (u,v) € X x Y such that ujr = ?r along with z € Z satisfying

—A*z€df(u) and B*z € dg(v). (36)

Take & = W), and ¥ = W)q, the restrictions of W respectively to €2; and €. Let
us multiply the equality —A% = h by u € H*(€;) and integrate on €. Using
Green’s formula and the fact that % = 0 on 02 N Iy, we obtain

o0
Yu € H'(Qy), Vavu— | Sl = / hu.
oh r on o

Hence we deduce that for every u € H'(y),

1 5 . ou
f(u)—§ Ql\Vu] - QlVu.Vu—i—/F%u

and therefore

-
fl) = 1@ =5 [ [vu=vap+ [ T-a)

951

ou ou

Mop—ay={ a2 gy
- F@n(u u) < on " u>X

This shows that A*9% € 9f () and we find in the same way B*2 € dg(v). Since

%IF = _%IF’ condition (36) is proved with z = 22, which belongs to L*(T') since
v € H*(Q).

We conclude from Theorem 4.1 (i) and the preceding argument that if

<%1H — %) is bounded from above and if (v,) € [, then any sequence (u,,v,)

generated by (A) weakly converges in H'(Q;) x H*();) to a minimum point
(u+ C,v+ C), (C € R) of problem (P). Without loss of generality, we can
assume that C' = 0. Since €2y and €2y are Lipschitz domains, the injections
HY () < L*(;) and H'(Qy) < L*(y) are compact by the Rellich-Kondrachov
Theorem (see [2, Theorem 6.2] or [17, Theorem I1.55]). It ensues that the se-
quence (uy,,v,) converges to (u,?) strongly in L*(€) x L*(€)y). Moreover, from
Theorem 4.1 (ii), we have nl_lgloof(un) = f(u) and nEToog(v") = ¢(v), hence

ngrfoo Jo, [Vunl? = [, [V@[* and ngrfoo Jo, IVoal?> = [, VD>, As a consequence,

we have

4 Observe that we have R(A) = R(B) = H'/?(T). Hence the set R(A) + R(B) = H'/?(I') is dense in
Z = L*(T) and condition (w;,) € I' cannot be verified by using assertion (i) of proposition 4.1. This
remark may suggest to take Z = H'Y/? (") endowed with the corresponding norm. In this case, the
closedness of the set R(A) + R(B) is automatically ensured. However the practical implementation
of algorithm (.A) will be more complicated due to the use of the H*/2(I') norm. The details are out
of the scope of the paper.
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m | (e, V) | (1) x 1 (2) = (2, 0) || 11 (000w E (020) -

Since (u,, v,) weakly converges in H*(€;)x H(£2,) toward (u, v), the convergence
is strong in H'(Q) x H'(Qy). We have proved the following:

Theorem 6.1 Let Q C RY be a bounded domain which can be decomposed in two
nonoverlapping Lipschitz subdomains 2y and 2y with a common interface I'. We
assume that the set Q is of class C*. Let h € L*(Q) be such that [, h = 0 and define
the functions f : H*(Q1) — R and g : H'(Q2) — R by formulas (35). Assume

that (v,) s a positive sequence such that (v,) € I> and the sequence <%1+1 — %n)

is bounded from above. Then any sequence (un,v,) generated by algorithm (A)
strongly converges in H'(Q1) x HY(Qy) and the limit (@, ) is such that the map

~ uonly )
w=19q is a solution of the Neumann problem (34).
v oon ()

Algorithm (A) allows to solve the initial Neumann problem on € by solving
separately mixed Dirichlet-Neumann problems on §2; and §25. A similar method is
developed in [14], where the authors consider alternating minimization algorithms
based on augmented Lagrangian approach.

6.2 Problem with an obstacle

As a model situation, let us consider the variational problem with an obstacle
constraint

1
min{ﬁ/\Vw\Q—/hw; we HY(Q), w>0 on Q} (37)
0 0

It can be cast into our framework by taking

1 1
fw) =1 / IVl / hutde,(u) and  g(v) = - / Vo - / ho+dcs (1),
2 Ql Q1 2 QQ QQ

where d¢, is the indicator function of the convex set C; = {u >0; ue H' ()}
and d¢, is the indicator function of the convex set Cy = {v > 0; v € H'()}.
Problem (37) can be reformulated as

(P)  min{f(u)+g(v); (u.v)€ H(Q)x H'(2) and up = vyr} .

Let us show that Attouch-Brézis qualification condition (QC') is satisfied in this
situation (by contrast with Moreau-Rockafellar condition which fails to be satis-
fied for N > 2). Indeed, we are going to verify that

domf x domg — V = H'(Q)) x H'(Qy).

To that end we introduce two trace lifting operators
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r o HYA(D) — HY(Q)
ry s HYAH(D) — HY(Q)

such that for every z € HY2(T'), 2z >0 = r(z) >0, i = 1,2. Such operators
can be easily obtained by taking any lifting operator and then taking its positive
part. Precisely, we use that for any v € H'(Q;), ut = max{u,0} € H'(Q),
u” = max{0,—u} € H'(Q;) and u = v" — »~. Similarly, for any v € H' (),
vt € HY(Qy), v~ € HY(Qy) and v = vT—v ™. Forany u € H'(Q;) and v € H (),
we denote respectively by ur and vjp their Sobolev traces on I'. Let us now
perform the following decomposition: for any (u,v) € H'(Qy) x H' ()

(u,v) = (um —u",v)

= (ot ra((u)ir)) = (w2 ))) - (38)

Let us notice that (u™,r2((u™)r)) belongs to V because u~ and r5((u™)r) have
the same trace on I'. Let us perform once more this operation: set v = v +
r5((u™)r) which belongs to H' ().

(ut,v) = (ut,vi —v7)
= (" () vT) = (r (Vi) svT) - (39)
Combining (38) and (39) we finally obtain

(uv) = (u" +r (v )ie), v = [ (6ie)sv7) o+ (e (i) ]

By construction of the trace lifting operator, and by v~ > 0 we have r; ((V*)‘p) >
0. Thus, we have obtained a decomposition of (u,v) as a difference of an element
of HY()T x HY(Qy)" and an element of H'(2). The decomposition algorithm

can now be developed in a very similar way as in the unconstrained case.
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Summary. Let X, Y, Z be real Hilbert spaces, let f : X — RU{+o0}, g : Y — RU{+o0} be
closed convex functions and let A : X — Z, B : J) — Z be linear continuous operators. Given a
sequence (v, ) which increases toward infinity as n — +o0, we study the following alternating proximal
algorithm

. 1
Znt+1 = Argmin{f(¢) + —||A¢ — Byn”QZ + QHC _ xnlli, ¢ e X}
(A) 2Yn+1 2

. 1 v
Yn+1 = Argmin{g(n) + m”Al”nH - Bn|% + §H77 —ynly: me Y},

where a and v are positive parameters. If the sequence (v, ) increases moderately slowly toward infinity,
the algorithm (A) tends to minimize the function (z,y) + ||[Az — By||%Z over the set C' = Argminf x
Argming (assumed to be nonempty). An illustration of this result is given in the area of domain
decomposition for PDE’s.

Key words: Convex minimization, alternating minimization, proximal algorithm, hierarchical mini-
mization, domain decomposition for PDE’s.
Subject classification: 65K05, 65K10, 49J40, 90C25.

1 Introduction

Let X, ), Z be real Hilbert spaces respectively endowed with the scalar products
(., )x, (-, )y and (.,.)z and the corresponding norms. Let f: X — RU {+o0},
g:Y — RU {400} be closed convex proper functions and let A : X — Z,
B 'Y — Z be linear continuous operators. We consider the convex function
P, : X x Y — RU {400} defined by

B, (r,y) = [(x) +gly) + %nAx Byl
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where v is a positive real parameter. In order to minimize the function ®,, At-
touch, Redont and Soubeyran [7] introduced the alternating algorithm with costs-
to-move

. 1 Q
Tpy1 = Argmin{ f({) + EHAC — Bya||%Z + §HC — x5 C€ X}
. 1 v
Ynt1 = Argmin{g(n) + %HA%H = Bz + 5l —wal3 me Y},

where a and v are positive real numbers. This algorithm generates a sequence
(2, yn) whose convergence is studied in [4]. It is proved that, if Argmin®., # @,
the sequence (x,,y,) weakly converges toward a minimum of ®,.

The framework of [4, 7] extends the one of [1, 10] from the strong cou-
pled problem to the weak coupled problem with costs-to-change. More precisely,
Q(x,y) = ||x—y||% is a strong coupling function with X =Y =Z and A=B=17
while Q(z,y) = ||Ar — Byl||% is now a weak coupling function which allows
for asymmetric and partial relations between the variables x and y. Further-
more authors of [1, 10] do not use costs-to-changes (a/2)||¢ — z,||%, ¢ € X and
(v/2)|n—ynll3, n € Y, taking o« = v = 0. The interest of the weak coupling term
is to cover many situations, ranging from decomposition methods for PDE’s to
applications in game theory. In decision sciences, the term Q(x,y) = || Az — By||%
allows to consider agents who interplay, only via some components of their deci-
sion variables. For further details, the interested reader is referred to [4].

In this study, the constant parameter v of the above mentioned algorithm is
replaced by a sequence (7,) which increases toward infinity as n — +oo. The
corresponding algorithm is denoted by (.A)

Tap1 = Argmin{f(C) + 5——[|AC = Byallz + S1¢ — wallks ¢ € X)
(.A) 7f+1

Yn+1 = Argmin{g(n) +

v
|Azyi1 — Bnl|%Z + <|ln — yn“%ﬂ ne Y}
2’7n+1 2

The coupling term asymptotically vanishes as n — —+o0o. Assuming that the

sequence vi is summable, we show that any sequence (z,,y,) generated by

(A) weakly converges toward a point of C' = Argminf X Argming (assumed
to be nonempty). The limit does not depend explicitly on the operators A and
B because the sequence (7,) tends too fast toward infinity. Now consider the

case corresponding to (%ﬂ) ¢ I'. We prove that, if the sequence (v,) increases
moderately slowly?, algorithm (A) tends to minimize the function (x,y) — || Az —
Byl|% over the set C.

3 For example, if the functions f and g behave as the square of the distance to their respective argmin
sets, the condition on (7y,) becomes (%) e PP\
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We apply our abstract results to the framework of splitting methods for PDE’s.
For that purpose, we consider a domain 2 C R that can be decomposed into two
non overlapping subdomains €2y, {25 with a common interface I'. The functional
spaces are X = H'(Q), Y = H'(,) and Z = L?(T"), the operators A : X — Z
and B : ) — Z being respectively the trace operators on I'. The term Au — Bv
u on
v on )
Let us consider the set of couples (u,v) € H'(Q1) x H'(€)y) of solutions that
satisfy some boundary value problems, respectively on €}; and €2y. Under suitable
assumptions, the iterates (u,, v,) of algorithm (\A) tend toward a couple solution
that minimizes the L?(T')-norm of the jump through the interface T

corresponds to the jump of the map w = through the interface T.

The paper is organized as follows. General results for algorithm (A4) are given
in section 2, including the case (%n) € ['. The case (%n) ¢ I' is analyzed in
section 3 and an application to decomposition domain for PDE’s is illustrated in
section 4. Further convergence results in the finite dimensional setting are given
in section 5.

2 General results

Let f: X — RU{+00}, g: Y — RU{+o00} be closed convex proper functions
and let A: X — Z, B:)Y — Z be linear continuous operators. Let (v,) be
a nondecreasing sequence of positive reals such that lim, .. v, = +00. Given
positive coefficients «, v > 0 and initial data (zg,yo) € X x Y, let us consider the
following alternating proximal algorithm

. 1 Q
vy = Argmin{f(Q) + 5——JIAC — Byall + 51¢ —mls € X}
(A) 7]7_1+1
. 1%
Y1 = Argmin{g(n) + 5 1 | Az — Bnll% + Sl = yall3; me Y}
n+

The coupling term asymptotically vanishes as n — +oo. It is clear from the
definition of the sequence (z,,y,) that nothing is changed if some constant is
added to the function f (resp. g). We will assume in the sequel that inf f =
inf g = 0.

By writing down the optimality conditions, it is immediate to check that points
ZTp+1 and y,41 are characterized by

1

TYn+1
1

Yn+1

where A* € L(Z,X) and B* € L(Z,)) denote the respective adjoint operators
of A and B. It ensues that we have, for all x € X and y € ),

A*(A$n+1 - Byn) - O‘(xn—kl - xn) € af@n-I—l)

B*(Aan — BYny1) = V(Ynt1 — yn) € 59(yn+1)>
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1

Tn+1

<A$n+1 - Bynu Axn—l—l - Ax)Z - a<xn+1 — Ty Tpt1 — ZE)X Z 0

f(x) = f(rn) —

1
9y) = 9(Ynt1) + ﬁ<Axn+1 — BYns1, BYni1 — BY)z — V(Un+1 — Yns Yns1 — ¥)y > 0.
n+
(1)

These inequalities will be useful in the sequel. We first give general results which
do not depend on the growth speed of the sequence (7,) as n — +oo.

Proposition 2.1 Let o, v > 0 and let A € L(X,Z), B € L(V,Z) be linear
continuous operators. Let f : X — RU{+o00} and g : Y — RU{+o0} be closed
convez functions such that inf f =inf g = 0. Let (7,) be a positive nondecreasing
sequence such that im,,_, o 7, = +00. Then, for any sequence (T,,y,) generated
by algorithm (A) we have

(i) the sequence <f(:1:n) + g(yn) + iHAacn — BynH%> is nonincreasing and tends

toward 0 asn — +oo. As a consequence, lim,, o f(z,) = lim, 10 g(yn) = 0
and every weak limit point of the sequence (x,,y,) belongs to Argminf X
Argming;

(i )the sequences (|21 — 2n %) and (||[yns1 — ynll3) are summable.

Proof. The arguments are similar to those of [10, Theorem 4.6].
(i) Let us set 0, = f(zn) + g(yn) + iHAwn — By,||%. From the definition of
algorithm (A), we have

1

n+1

[ Az, — Bya|Z,

1 o
f(xn-I—l) + 5 HAmn-I—l - Byn||2z + EHxn—i—l - anQX < f(xn) + 5

n+1

[AZ0 11 — Byal%-

1%
9(Yn1) + |AZpi1 — ByniallZ + §Hyn+1 —ynll3 < gyn) +

2Yn41 2Yn41

By using these inequalities, we deduce successively that, for all n € N,

Op1 < f(xpi1) + 9(yn) + |Azyi1 — Bynll%

2%+1

1
HAxn - BynHQZ
2 n+1

< f(zn) + 9(yn) +

Since the sequence (7,) is nondecreasing, we finally find 6,,,; < 6,. Let us now
use the following lemma borrowed from [10].

Lemma 2.1 Let (s,t,u,v,w) € Z°, then

Is —ullz =lls —wllZ + [lw — o[z = s =tz + [I(s =) = (u —v)|Z

+2(s —w,w —v)z +2(u —v,v —1)z.

Forx € X,y € J, we take s = By, t = Ax, u = By,, v = Ax,11, w = Bypi1.
We obtain
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By — Byall% — | By — Byns1llz = | Byns1 — Azpii||z — || By — Az||Z
+[|By — Az — (Byn — Azpp1)||%
+2(BY — BYnt1, Byny1 — ATni1)z
+2(By,, — Azpy1, ATpy — Az) 2.

Using inequalities (1), we deduce that
IBy = ByallZ — 1By — Byn+1l%
> | Azpia — BynJrlHQZ — || Az — ByHQZ
+ 2%n11[f (Tng1) — f(7) + a{Tpgr — Tny Tnga — 7) ]
+ 29419 (Yn+1) — 9(Y) + V{Ynt1 — Yns Ynt1 — Y)]
= 2911 [f(#ni1) + 9(Wni1) = f(2) = 9(W)] + |Azni1 — ByasallZ — [ Az — By||%
+ na(l[zass — zallf + lznm — 2% = [lz, — 2[%)

+ Yot 1V (|Yns1 = Ynll3 + vns1 — yll3 = llvn — ll3)-
Finally, we obtain
1By — Bynll% + ynrrallzn — )% + Ynsrvllyn — yll3

—[|By — Byn+1H22 — Y10 Trg1 — 37“%( — Yot 1V||Ynt1 — yng

> 2941 [f(Tng1) + 9(Unt1) — f(x) — 9(y)] (2)
| Azpi1 — Byniallz — [|Az — Byl|Z + vas1al|@nsr — Zoll3 + Yor1¥||[Ynsr — yn’@

Dividing by 7,41 and using %H < 7, we deduce that

1
1By = Bynllz + allzn — % + vily. — ylly

1By = Bynailz — allzn — 2% = vllynes — ylly

TYn+1
> 2[f(#nt1) + 9(yns1) — f2) — 9(y)] (3)
2 Az - Byl — By|z + allzuer — allx + VY1 — yall3-
n+

Let us set by, = =~ || By—Bynl|Z +a|lwn—|3+v|lya—yl3. The previous inequality
implies that
Py = o £ 2[f (@n11) + 9(Yni1) = F(2) = 9(y)]

1
HA%H-I - Byn+1||22 -
Tn+1 TYn+1

|Az — By||% <0, (4)

or equivalently

2001 < 2(f(2) + 9(y)) + — Az — By||Z + hn — hus.

n+1
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Let us sum from n =1 to N. Since hy,1 > 0, we infer that

N

2) On1 S2N (f(2)+9g(y)) + (Z

n=1

) | Az — ByHé + hy.

n+1

Using that the sequence (6,,) is nonincreasing, we deduce that

N

Oxin < F(2) T g(y) + (Z — ) Az — By|% +

N \ & S 2N
Take now the upper limit as N — 400 in the above inequality. By using the
fact that limy_ oo WLN = 0, we derive that limsupy_, . Onvi1 < f(z) + g(y).
Since this is true for every z € X and y € ) and since inf f = infg = 0,
we infer that limsupy_, . 0ny1 < 0. Recalling that the sequence (fy) is
nonnegative, we conclude that limy_ .. 0y = 0, which in turn implies that
lmyi00 f(zn) = limy 100 g(yn) = 0. Finally, let (z,,,y,,) be a subsequence
which weakly converges toward (Z,7). Using the closedness of f and g, we find

f@) +9@) < 1;15‘1135 f(xn,) + lim +11(30f 9(WYny,) = Jlim (zn) + lim g(yn) =0,

n—-+o0o

hence (Z,7) € Argminf x Argming.
(ii) By applying inequality (3) with = z,,, y = y,, and recalling that v, < v,.1,
we deduce that

9n+1 - en S _QHanrl - anZX - VHynJrl - ynH%;

Let us sum from n =1 to N to derive that

N N
a Z [0t — 2l + v Z [Yns1 — ynll3 < 01 — Onga < 1.
n=1 n=1

It suffices then to let IV tend to infinity.

When the sequence (%n) is summable, we can easily establish the weak conver-
gence of the algorithm toward a point of C' = Argminf x Argming. Notice that
the assumption (%n) € [ means that (v,) increases fast toward infinity.

Proposition 2.2 Under the hypotheses of Proposition 2.1, assume moreover that
C = Argminf x Argming # & and that (,Yin) € ' If (xn,y,) is a sequence
generated by (A), then

i) for every (z,y) € C, the sequence (o ||z, — x||% + v ||yn — y||3) is convergent;
Y Yy X Y Ylly )
(1N Tn, Yn) weakly converges toward a point of C'.
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Proof. (i) Fix (z,y) € C and set hy, = o-|| By — Bya||% +allz, — /5 +v|y. —yl3
as in the proof of Proposition 2.1. From inequality (4) we deduce that

1

n+1

Since the sequence (7—11) is summable, we can apply Lemma 2.2 hereafter to
prove the convergence of the sequence (h,). We deduce that the sequence (y,) is

bounded, which in turn implies that %HB?J — By,||% — 0 when n — +oo. This
achieves the proof of (i).

Lemma 2.2 Let (a,) and (,) be two real sequences. Assume that (ay) is mi-
norized, that (,) is summable and that a,+1 < a, + &, for every n € N. Then
lim,,_, o a, exists.

Proof of Lemma 2.2. Define the sequence (w,) by w, = a, — Z;é ex. The
sequence (w,) is bounded from below and nonincreasing, hence convergent. It
follows that limy, o0 @n = > peg €k + lim, 4 o0 Wy

(ii) The proof of the weak convergence relies on the Opial’s lemma [16], that we
recall below for the sake of completeness.

Lemma 2.3 (Opial) Let H be a Hilbert space endowed with the norm N. Let
(&) be a sequence of H such that there exists a nonempty set S C H which
verifies

(a)For all§ € S, limy, 00 N(§n — &) exists. B
(b)If (&) — & weakly in H as k — 400, we have £ € S.

Then the sequence (&,) weakly converges in H as n — +oo toward a point of S.

Let us define the norm N(u,v) = (al[u||} + v[[v]|3)"/? on the space H = X x Y.
Norm N is clearly equivalent to the canonical norm on X x Y. In view of (i),
N((Zn,yn) — (x,y)) does have a limit for every (x,y) € C, which shows point
(a). On the other hand, point (b) is a consequence of Proposition 2.1 (i). Hence
we conclude from Opial’s lemma that the sequence (z,,y,) weakly converges in
X x Y toward a point of C.

3 Case of a slowly increasing parameter

The purpose of this section is to study the case (%n) ¢ ' and to bring to
light a phenomenon of selection with respect to the viscosity function (z,y) —
|Az — Byl||%. Assuming that the sets Argminf and Argming are nonempty and
that min f = ming = 0, let us consider the following hypotheses introduced by
Attouch-Czarnecki [6]

(P P
(Hf) Vp € R(NArgminf)’ (f (%) - JArgminf (%)) et
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(H,) Vg € R(]\[Argming)7 <g* <%) ~ 9Argming (%)) el

Let us explicit notations: f* is the Fenchel conjugate of f defined by f*(z) =
supcext(z, Q) — f(¢)} for every x € X. Given a subset D C X, op is the support
function of D: op(x) = supecp(w, () for every x € X Notice that op coincides
with the Fenchel conjugate (dp)* of the indicator function dp. On the other hand,
Np(z) is the normal cone to D at z,

Np(z)={pe X :(p,(—x)x <0 V(e D}.

R(Np) is the range of Np, i.e. p € R(Np) if and only if p € Np(z) for some x € D.
Remark that, from the inequality f < § Argminy> We get f* > (¢ Argmin f)* =
O Argmin ;- In a similar way, we have ¢* > o Argming’ hence the sequences arising
in (Hy)-(H,) are nonnegative.
Example 3.1 Let us illustrate assumptions (Hy) and (H,). Since they are sym-
metric, we focus on (Hy) and we suppose that there exist @ > 0 and r > 1 such
that

f > ad%(., Argminf). (5)

The notation dy (., Argmin f) stands for the distance function to the set Argminf.
We have

d (., Argminf) = [[.[[% +¢ 5Argminf’

where +, denotes the epigraphical sum. It ensues that
< (a HHTX)* + JArgrninf' (6)

First assume that r = 1. Since ||| = Jp,, where By denotes the closed unit ball
of X centered at 0, we deduce from (6) that

= 9Argminf < OBy -

Since lim,, o0 1/, = 0, it is clear that for every p € X', we have dp, (p/7n) = 0
for n large enough. Hence condition (Hy) is automatically satisfied.

Now assume that r > 1. Since (||.|[%/7)* = (||.||% /r*), where 7* is the conjugate
exponent of r, i.e. 7* = 1/(1 — 1/r), we deduce from (6) that

(ar)l—r*
/= OArgming < - I

r*

X

Hence condition (Hy) is satisfied if <$n) € I"". Notice finally that the combination

of the conditions <$n) ¢ [' and <$n) € 1" expresses that (v,) tends moderately
slowly toward infinity:.
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Let us now state the main result of the paper. Some techniques of the proof
are similar to the ones of [6, Theorem 3.1] in a continuous framework.

Theorem 3.1 Under the hypotheses of Proposition 2.1, let us define the set
S = Argmin{||Ax — By||Z : (z,y) € Argminf x Argming},

assumed to be nonempty. Suppose additionally that the sequence (Yni41 — Yn) 1S
bounded and that assumptions (Hs)-(H,) are satisfied. Then any sequence (., yYn)
generated by (A) weakly converges toward a point of S.

Proof. For the sake of readibility, we introduce the maps ® : X x) — RU{+o0}
and U : X xY — R, respectively defined by ®(x,y) = f(z)+g(y) and ¥(z,y) =
LAz — By||%, for every (z,y) € X x Y. Setting C' = Argminf x Argming, it is

easy to check that
(p,q)) ((p,CJ)) (p) (p)
o' —= ) —0oc|—)=f"|—)—-0 : —
( Vo Y - Argminy -
« [ 4 q
- Argming -

and R(N¢) = R(NArgminf) X R(NArgming)' Hence assumptions (Hf)-(H,) can
be equivalently rewritten as

V(p.q) € R(Nc), <q>* <M) —oc ((p, Q))) el (7)

Tn Tn

The proof of Theorem 3.1 is divided into several claims.

Claim 3.1 For every (x,y) € S, lim, o a||z, — x|} + v |lyn — Y||35 exists in
R.

Proof of Claim 3.1. Fix (v,y) € S and set h,, = =-|| By, — By|% + allz, — 2% +
v||yn — yl|3 as in the proof of Proposition 2.1. We can rewrite inequality (4) as
follows

1

Tn+1

hn-I—l - hn +2 {q)(xn—I—la yn+1) + (‘Ij(xn-kl? yn-!-l) - \I/(:L‘, y))} < 0. (8)

Since (z,y) € S = Argmin ¥, we have —VW(x,y) € No(z,y). Setting (p,q) =
—VV¥(z,y), we deduce that

\D(anrbynJrl) - \IJ(.T’ y) > <_(p> Q)a (anrla ynJrl) - (IL’,y)>X><y. (9)

Moreover the definition of the conjugate ®* implies that

Q(Tpt1, Ynt1) = <(p’ Q), ($n+1,yn+1)>xxy -0 ((p’ Q)) : (10)

Tn+1 Tn+1
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and, as (z,y) € C and (p,q) € No(z,vy),

() = (o), w

By combining (9), (10) and (11), inequality (8) gives

Tnt1 Tn+1
Using formulation (7) of assumptions (Hy)-(H,), we deduce from Lemma 2.2

that lim,,, 1o h, exists. As a consequence, the sequence (z,,y,) is bounded and
limy, o0 a|2n — 2|3 + v||yn — y||3 exists and is equal to limy, oo fn. 0

Claim 3.2 The sequence (®(x,,y,)) is summable.

N
Proof of Claim 3.2. Let us set ay = 2 Z {@(xn, Yn) + %(‘I’(ﬂfm yn) — U(x, y))}

n=0 n

From inequality (8), we can assert that the sequence (h, + a,) is nonincreasing.
Moreover, the above calculations and condition (7) allow us to assert that, for all

N €N,
() ()

thus the sequence (h, + a,) is bounded from below, hence convergent. As a
consequence, lim,,_, . a, exists, i.e.

N
: 1 L
Nl—lg—loo gt {q)(xn> yn) + %(\Ij(xm yn) - \IJ(x’ y))} exists in R. (12)

Recalling that ®(z,41,yn+1) > 0 and using the fact that 2 (p,q) € Neo(z,y), we
infer from inequality (8) that

o[ (52 (22)

(V(@nt1, Yny1) — ¥(z, y))} <0.

1
Py — Iy + 2 {5@(%“, Ynt1) +
7n+1

By arguing as above, we deduce from condition (7) that

N
1 1
lim Z {éq)(xn, Un) + 7—(‘11(%, Yn)) — ‘Il(x,y))} exists in R,

N—+o0 n

which, in view of (12), implies that the sequence (®(z,,y,)) is summable. O
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Claim 3.3 lim,,, o V(2,, y,) = ming ¥,

Proof of Claim 3.3. Let us define the sequence (FE,) by

By applying inequality (2) with = z,, and y = y,,, we deduce that

En-{—l - En S (’Yn+1 - 'Yn)q)(zm yn) - Ofyn—l—len—f—l - xn“%{ - VrYn—l—lHyn-I—l - yn”%}
S (771-1—1 - 'Vn)q)(xm yn)‘

As the sequence (7V,.1 — 7,) is bounded by assumption and the sequence
(®(xy,yn)) is summable from Claim 3.2, Lemma 2.2 shows that lim, . E,
exists in R. On the other hand, we derive from (12) that
Al
lim — (B, — ¥(z,y)) exists in R. (13)
N—+o00 — Yn
By assumption, there exists M > 0 such that v,,1 —~, < M for all n € N. Hence
we have v, < Mn + v, thus implying that ( w%) ¢ I*. We immediately infer from
(13) that lim, 1 £, = ¥(x,y). Since ¥ (z,,y,) < E,, we obtain

lim sup (2, yn) < ¥(z,9). (14)

n—-+00

Recall now that the sequence (x,,, y,) is bounded from Claim 3.1. If a subsequence
(@n,,» Yn, ) Wweakly converges toward (T,7), we can assert by Proposition 2.1 (i) that
(z,y) € C. We deduce that (—(p,q), (Z,7) — (x,y))xxy > 0, hence every limit
point of ((—(p,q), (¥n, yn) — (z,¥))xxy) is nonnegative, that is

lim inf(—(p. q), (Zn, yn) = (2. 9))axy = 0.

In view of inequality (9), we obtain liminf, , . V(z,,y,) > ¥(x,y) and we
conclude in view of inequality (14). O

To end the proof of Theorem 3.1, we define the norm N(u,v) = (af|ul3 +
v||v||3)"/?, which is equivalent to the canonical norm on X x Y. In view of
Claim 3.1, N((xy, yn) — (z,y)) does have a limit for every (z,y) € S, which shows
point (a) of Lemma 2.3. Let now (z,,,yn,) be a subsequence of (z,,y,) which
weakly converges toward (Z,7). From Proposition 2.1 (i), we have (7,7) € C.
Using Claim 3.3 and the closedness of U, we easily infer that (Z,7) € S, which
shows point (b) of Lemma 2.3. Hence we conclude from Opial’s lemma that the
sequence (z,,y,) weakly converges in X x ) toward a point of S.
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4 Application to domain decomposition for partial
differential equations

Let us consider a bounded domain = Q; U Qs UT of RY which can be decom-
posed in two non overlapping Lipschitz subdomains €; and {2, with a common
interface I'. We assume that HY=1(T") > 0, where HV~! is the Hausdorff measure
of dimension N — 1. This situation is illustrated in the next figure.

We consider the following problem

1
(P) min {— /[w]Q},

2 Jr
. . . u on
where [w] is the jump of w through the interface, w =

v on (o

v € H'(Sy) are solutions of some boundary value problems, respectively on €
and ). This kind of minimization problems often arises in the description of
phenomena involving discontinuities on the interfaces between subdomains. To
illustrate the results of section 3, we will assume that u, v are respectively weak
solutions to the following Neumann boundary value problems

andu € H'(Qy),

—Au=~h on —Av="h on
g—Z:O on 891, g—Z:O on 8(22,

where h € L*(Q) is a given function. Notice that the corresponding Dirichlet
version of these problems was considered in [4] in a slightly different framework,
see also [13]. We assume that [, h = [, h =0, which is a necessary and sufficient

condition for the existence of a solution. Defining the functions f : H'(Q;) — R
and g : H'(Qy) — R by

1 1
flu) = \vu|2—/ huand g(o) = |vv|2—/ o, (15)
Q1 Q1 92 Q2

it is classical that the solutions u and v of the above Neumann boundary value
problems satisfy respectively the following minimization problems
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(P1) min{f(u); uEHl(Q1)}>

(P2) min {g(v); ve H (D)},

see for example [11, 14, 17]. Moreover, denoting by u (resp. v) a particular solution
of (Py) (resp. (Pz)), we have

Argminf = {u+c¢;; ¢ € R}, Argming = {U+ ¢; ¢y € R}.

Hence in our framework, problem (P) amounts to minimizing over R? the map

1 N - 2
(c1,¢2) — 5/ (u|p — U+ ¢ — cg) )
r

It is immediate to verify that the minimum is reached when

1 ~ ~
CQ_Cl:HTI(P)\/FOLF_UF)'

Without loss of generality, we can assume that fr Ur = fr Up = 0. Then the
above relation gives ¢; = cg, hence the set of solutions of (P) is of the form
{@W+c,v+c¢); ceR}

Let us now show how algorithm (.4) can be applied so as to solve problem
(P). The set X = H'() is equipped with the scalar product (uj,us)y =
le(Vul.VUQ + ujug) and the corresponding norm. The same holds for Y =
H'(Qy) by replacing €; with Qy. The set Z = L*(T") is equipped with the scalar
product (z1, z9)z = fr 2129 and the associate norm. The operators A : X — Z
and B : Y — Z are respectively the trace operators on I', which are well-defined
by the Lipschitz character of the boundaries of 2; and €2 (see [8, Theorem I1.46]
or [15, Theorem 2]). Algorithm (\A) runs as follows

1 a
Upy1 = Argmin {f(u) + 5 | Au — anHQZ + §Hu — unHi, = X}
n+1
) 1 v
i = Arguin {g(0) + - Aunss = Bolls + Slo -l ve ),
Yn+1 2

where o and v are fixed positive parameters. An elementary directional derivative
computation shows that the weak variational formulation of algorithm (A) is
given by

Yu e X, Vu,1.Vu +
(921 7n+1

+a/ (Vi1 — Vuy,).Vu + a/ (Ups1 — Up)u = / hu,
951 Q1 931

/(AunH — Bu,)Au
r



134 A. Cabot and P. Frankel

Yv e, Vu,e1.Vo +
Qo 7n+1

—i—l// (Vop11 — Vu,). Vo + 1// (Unp1 — vp)v = / hv.
Qo Q2 Q2

These are the variational weak formulations of the following mixed Dirichlet-
Neumann boundary value problems respectively on €2y

/(anH — Auyyq)Bo
r

—(1+ a)Aupyq + oty = h — alAu, + au, on
(14 )2t = g 9un on 99 NAQ
(14 o) 2wt 4 L

Upy1 = ozaa% + Up, on I,

1
Yn+1

Tn+1
and ()
—(1+v)Avpyq + Vo1 = h — vAv, + v, on )
L 1;)8%";1 = 1/29% 1 on 99, NN
(1 -+ 7/)8“—”“ + 'Yn+lvn+1 = I/% + 'Yn—HUn-i—l on F

To apply Theorem 3.1, we have to check that assumptions (Hy) and (H,) are
satisfied. In view of the symmetry of f and g, let us focus on (Hy). Since
Argminf = {u + ¢;; ¢; € R} is an affine space directed by the vector space
of constant functions, it is clear that for every u € Argminf

NArgminf(u) ={pe X, (p)x =0} = {p € X,/Q p= ()} .
1
In the sequel, we denote by V' this hyperplane of X. For every p € V, we have

O Argminy (P) = fi%@*‘ 1, p)x = (U, p)x. (16)

From the definition of f and since u € Argminf, we have for every u € X
' 1 9 1 2 ~
flu)—minf=—- [ |Vul*— | hu—= [ |Vul"+ [ hu. (17)
2 (951 951 2 Q1 1951
Recalling that the weak variational formulation of (P;) gives

Yu € X, Vu.Vu = / hu,
Q1 Q1
we derive from (17) that
: 1 2
f(u) —min f = - [ |Vu— Vaul|. (18)

2 Ja,

In view of (16) and (18), we find for every p € V
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ueX

= sup {<p, ux — %/ﬂ !Vu\2} : (19)

Consider the following minimization problem in V'

(1 = £ (5) = 0 Argmins () = sup { (pu— 20— 5 [ (9= v

(P*) inf {% |Vul® — (p,u)x; u € V} .
951

Let us introduce the bilinear form a : V' x V' — R defined by a(u,v) = [, Vu.Vu.
From the Poincaré-Wirtinger inequality, there exists some constant m > 0 such
that
Yu eV, / u? <m? [ |Vul
97 Q1
We immediately deduce that

Yu eV, |Vul? >

2

Hence the bilinear form a is coercive on V' x V' and we infer that problem (P*)
has a unique solution, that we denote by u*. Equivalently u* is the solution of
the variational problem

VueV, Vu*Vu = (p,uyy = [ Vp.Vu +/ . (21)
o o o

It is immediate to check that u* is a solution of the corresponding problem in X.
Hence the supremum in expression (19) is attained at u* and we derive in view
of (21) that

1

1
(f = min f)*(p) = o Aveming (P) = 2, [Vu'|* = 5(29, u)x (22)

From inequality (20) applied with u = u*, we infer that
sl < [V = ) < el
1+ m? - ol ’ -

This implies that |Ju*||x < (1 + m?)||p|lx. Hence we derive from (22) that for
every p eV

s 1 +m?
(f —min f)*(p) — JArgmimf(p) < THPH%(
Since the right hand-side of the above inequality is quadratic, assumption (Hy) is
satisfied as soon as <$n) € [* and the same holds for (H,). We conclude from The-

orem 3.1 and the above analysis that if (7,41 — 75) is bounded and if <$n) €2
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then any sequence (u,, v,) generated by (A) weakly converges in H' () x H' ()
to a minimum point (u + ¢, v + ¢), (¢ € R) of problem (P). Without loss of gen-
erality, we can assume that ¢ = 0. Since 2; and {2, are Lipschitz domains, the
injections H'(Qy) < L*(Q) and H'(Qy) < L*(€)y) are compact by the Rellich-
Kondrachov Theorem (see [2, Theorem 6.2] or [8, Theorem I1.55]). It ensues that
the sequence (u,,v,) converges to (u,v) strongly in L?(£2;) x L*(2y). Moreover,
from Proposition 2.1 (i), we have lim,_, o f(u,) = f(@) and lim, o g(v,) =
9(0), hence limy, o0 [o, [Vun|* = [, [VA]* and lim, o [o, [Vva|* = [, [VO].
As a consequence, we have limy,, ¢ oo [|(tn, Vn) || 100 < 11 (22) = || (W 0) || (00 ) 111 (020) -
Since (uy, v,) weakly converges in H'(Q)x H'(Qy) toward (u, v), the convergence
is strong in H'(Q) x H'(Qy). We can state the following theorem.

Theorem 4.1 Let 2 be a bounded domain of RN which can be decomposed in
two nonoverlapping Lipschitz subdomains 21 and Qs with a common interface T'.
We assume that HN~'(T) > 0. Let h € L*(Q) be such that [, h = [, h =0
and define the functions f: H' (1) = R and g : H () — R by formulas (15).
Let (7v,) be a positive nondecreasing sequence such that (%n) € 1? and assume

that the sequence (Yn11—n) is bounded. Then any sequence (u,,v,) generated by
algorithm (A) strongly converges in H'(2;) x HY(Qy) to a minimum point (u, )
of problem (P).

Remark 4.1 The above analysis gives an exact expression of the conjugate f*.

However, it is possible to verify directly assumption (Hy) without resorting to an

exact computation of f*. The method consists in checking that inequality (5) of

Ezxample 3.1 is satisfied with v = 2. From the Poincaré-Wirtinger inequality, we
N 1

have
U—U— ——
/91 1] Jo,

Since u + ‘Q—lﬂ Jo,(w—1) € Argminf, we deduce that

2
<m? [ |Vu-Viu]*
951

(u =)

1
|Vu — Va|* > —u—— [ (u—1)
o 1+1m2 4] Jo, x (23)
> md%((u, Argminf).

In view of (18) and (23), we find, for every u € X,

1

2 .
m dX(U, A?"gmmf)

f(u) —min f >

From Ezample 5.1, we conclude that the assumption (Hy) is satisfied if (=) € [*.

1
Yn



ALTERNATING PROXIMAL ALGORITHMS WITH VANISHING COUPLING 137

5 Further convergence results in the finite dimensional
setting

From now to the end of this section, X and ) are finite-dimensional Hilbert
spaces. The approach that we now develop relies on topological ingredients that
can already be found in [3, 9, 12]. The first result shows that the iterates (z,, y,)
of algorithm (A) approach the optimal set S as n — +o0.

Theorem 5.1 Under the hypotheses of Proposition 2.1, assume that the spaces
X and Y are finite-dimensional. Let us define the set

S = Argmin{||Az — By||% : (x,y) € Argminf x Argming},
assumed to be nonempty and bounded. Suppose that the sequence () satisfies

Tn
(@, yn) generated by (A) satisfies limy, oo dxxy((Tn, yn), S) = 0.

<L) € IP\I'. Let us consider algorithm (A) with a = v. Then any sequence

Proof. Let us define the maps ® : X x Y — RU{+oc0} and ¥ : X x Y —
R, respectively by ®(z,y) = f(x) + g(y) and ¥(z,y) = ;[|Az — By|/%, along
with the set C' = Argminf x Argming. Consider the sequence (h,) defined by
hy = 2d% (0, yn), S) for every n € N. Denoting by Ps(zy,y,) = (P%, PY) the
projection of (z,,y,) € X X Y onto the convex set S, we have

1
hn 25"(xn>yn) - PS(xmyn)Hg\/Xy
1
=5 1@, yn) = Ps(@n, yn) = (@ns1, Yns1) = Ps (@1, Ynt )| 3xy + hnia

+ (s Yn) = Ps(@n, Yn) — (@041, Ynt1) — Ps(Tnr1s Ynt1)), (Tnt1, Ynt1) — Po(Trts Yns1)) xxy-
Since Ps(z,,y,) € S, we have
(Ps(Tn, Yn) — Ps(Tnt1, Ynt1)s (Tnt1s Ynt1) — Ps(@ng1, Yny1)) aexy < 0,
hence
Png1 — hn < (Tng1 — T, Tng1 — Py x + (Yngt = Yno Ynr — Piii)y. (24)

Using subdifferential inequalities (1) with o = v, we have

1 1
<$n+1 — Tny T4l — P§+1>X < ——f($n+1) - <A$n+1 — By, A$n+1 —A ;f+1>z
Q AYn+1
1
<yn+1 — Yn, Ynt1 — P;;,J+1>)) S __g(ynJrl) + <Axn+1 - Byn+1> BynJrl - BP;ZJ_H)Z-
o AYn+1

(25)
On the other hand, since VU (z,y) = (A*(Ax — By), —B*(Az — By)) we have
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\I’(P,fﬂ, Pn+l) ‘I’($n+1> yn+1) > <A$n+1 — Bynq1, AP;”H - A$n+1>z
—(AZn41 = By, BP 1 — Byni1)z. (26)

Then inequalities (24), (25) and (26) give

1 1 .
hn+1 - hn + aq)(xn—kla yn—I—l) + Yt (\Ij(xn—kla yn-{—l) - mén \Ij)
+ <Byn+1 - Bym Aanrl Apn_|_1> O,
QY1
hence
1

hps1—hp+——(V(Tpe1, Yne1)—min ¥ By, By, Az, AP

+1 +a%+1( (Tn+1, Yn+1) mn ) < H Ynt1— DY HZ+204%HH Tn+1— +1Hz

Let us set u, = iHBynH — By,||%. As the linear operator B is continuous and
since (||yns1 — Ynl|3) is summable, (y,,) is also summable. In the same way, there
exists a constant M > 0 such that L[| Az,y1 — APZ 1% < M2y — P2 % <
Mh,, 4. Setting p, = 1— there exists ng € N such that p,, > 0 for all n > ny.
Finally we find

a,YQ )

Prsrhngr — fon + (U(Zni15Ynt1) — mCiYn U) < fin.

Y41

Let us note pf, = [[1_,, pi and h;, = pl,(hy + > 1), then, proceeding as in the
proof of [3, Theorem 3], we find, for all n > ny,

h’/Jrl +pn

v —minW¥) < h),. 2
a%ﬂ( (Trt1, Ynt1) mn ) < hy, (27)
We now follow the same arguments as those used by the first author in [12,
Theorem 3.1]. We distinguish two cases:

(a)There exists n; > ng such that for all n > ny, V(z,41,Yns1) > ming V.
(b)For all ny > nyg, there exists n > n; such that ¥ (2,41, Yp+1) < ming .

Case (a). We assume that there exists ny > ng such that for all n > ny,
U (Zpi1, Yns1) > ming V. Then (h])p>n, 18 nonincreasing, hence convergent. Re-
mark that, since ( 2) is summable, lim,_, - pf, = p €]0, 1], therefore (h,,) is also

convergent. We must prove that lim,,_,, h, = 0. Using inequality (27), we can
assert that (% (U(xp, yn) — ming ¥)) is summable. Moreover, since (%n) is not
summable, we have liminf, . ¥(z,,y,) = ming V. Consider a subsequence of
(Zn, Yn), still denoted by (z,,yn), such that lim, ;o V(2,,y,) = ming W. As the
sequence (h,,) converges and since the set S is bounded, we infer that the sequence
(@, Yn) is bounded. Since (z,,y,) lies in the finite-dimensional space X' x ), we

can extract a subsequence (x,,,Yn,) of (Z,,y,) which converges toward (7,y) €
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X x Y. In view of Proposition 2.1 (i), we have (Z,7) € C. Moreover the map V is
continuous, hence limy_, oo V(2p, , Yn,) = ¥(T,7) = mine V. Finally (7,7) € S,
and limy_y 40 My, = 1My joo 58% 3 (Tny s Yny ), S) = 3d%y((T,7), S) = 0. Re-
calling that the sequence (h,,) is convergent, we conclude that lim,, ,, h, = 0.
Case (b). We assume that, for all ny > ng, there exists n > n; such that

U (Zpi1, Ynt1) < ming W. Let us define

v =max{n € Nyn < N and ¥(x,,y,) < mCiYn U},

The integer 7y is well-defined for N large enough and limy_, o 77 = 4o00. If
v < N — 1, we have h;, < h;, for all n € {7y, N — 1}, therefore

hy < I . (28)

If 7v = N, inequality (28) is still true. Because of Proposition 2.1 (i), we have
limy,, s 400 ®(2p, yn) = 0, hence there exists My > 0 such that, for every n € N,
O (2, yn) < My. From the definition of 7, we have ¥(x,,, vy, ) < mine V. Hence
we have

(o) € [0 < Mo] 01 [0 < mim 0],

as soon as (T, , Yry) is defined. It is proved in [12, Lemma 3.3] that the bounded-
ness of S = Argmin V¥ implies the boundedness of the set [® < M, N[V <
ming V). It ensues that the sequence (h,,) is bounded and the same holds
true for the sequence (A, ). Let us show that limy_, o b, = 0. For that pur-
pose, we prove that 0 is the unique limit point of the bounded sequence (h! ).
Considering a converging subsequence (h’TNk) of (hl,), we can extract a sub-
sequence of (xTNk,yTNk), still denoted by (xTNk,yTNk), which converges toward
(7,7) € X x Y. Using Proposition 2.1 (i) and since [U < ming U] is closed as

a sublevel set of the continuous function W, we infer that (Z,7) € S. There-

fore limy 400 hiry, = limy s 1o %dgfxy((a:mk,ymk), S) = 1d%,y((7,7),S) = 0 and
hence limy_ 400 h’TNk = 0. We immediately deduce that the whole sequence (A, )
converges toward 0. Then inequality (28) implies that limy_, ;o Ay = 0, which

allows to conclude that limy ., hy = 0.

Under the additional assumptions (Hy)-(H,) introduced in section 3, one can
obtain the convergence of the whole sequence (z,,y,) toward a point (Z,7) € S.

Proposition 5.1 Under the hypotheses of Theorem 5.1, assume moreover that
conditions (Hys)-(Hy) hold. Then, any sequence (z,,y,) generated by algorithm
(A) converges to a point (Z,7) € S.

Proof. Let (z,y) € S and define the sequence (g,) by gn = 3[|(@n, yn) — (2, y) |3 xy
for every n € N. By arguing as in the proof of Theorem 5.1, we obtain
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1 1 .
Gn+1 — Gn + — | P(Tng1, Ynt1) + (U(2p41, Ynt1) — min ‘1’)}
(0% Vn-}—l C
1
+ (BYynt1 — Byn, Axy — Ax)z < 0.
OérYn—f—l

Setting (p,q) = —VV¥(z,y), we obtain as in the proof of Theorem 3.1 that

1 . * ) Y
P(Tpt1, Ynt1) + (U(Zn41, Yns1) —min V) > —P (M) +oc (M) ‘
Tn+1 c Tn+1 Yn+1

We infer from the above inequality that

g < [0 (2L) oo (LD 4 LBl 5

Tn+1 Tn+1

20/771—}—

Tn+1 TYn+1
sequence (\,) is summable from assumptions (Hy)-(H,), see formula (7). Since

the linear operator B is continuous and since (||yn41 — ¥al|3) is summable, the
sequence (i) is also summable. On the other hand, there exists M > 0 such that
WAz — Az||% < Y|zpsr — 2|3 < Mgpya. Let us note p, = 1 — 2 There
exists ng € N such that p, > 0 for all n > ny and we find

Let us set A, = = [CD* <M) —oc <(p—q)] and fi, = 3= ||Byn+1 — Bynl%. The

Pn+19n+1 — Gn S )\n + Hn -

By setting p], = H?:no pi; and g, = pl. g, we infer that for all n > ny,

Gt — G < 0L (An + pn).

Recall that, because (%) is summable, lim,,_, . p}, = p €]0, 1[. Since (A, + pn)
is summable, we deduce that the right member of the previous inequality is also
summable. Then we can apply Lemma 2.2 to assert that lim,,, 1, g/, exists, hence
lim,, .1~ g, also exists. We have proved that

lim ||(zn, yn) — (2, y)||xxy exists for any (x,y) € S. (29)
n——+00
Hence the sequence (z,,y,) is bounded, therefore we can extract a subsequence
(%n,,, Yn, ) Which converges toward (Z,y). From Theorem 5.1, we have (7,7) € S.
Taking (z,y) = (Z,7) in (29), we deduce that lim, o ||(Zn, yn) — (T, 79) || xxy
exists and finally lim,,, o || (2, Yn) — (T, 7)|| xxy = 0.

Remark 5.1 Theorem 5.1 and Proposition 5.1 rely on techniques which differ
from the ones of section 3. Notice that they do not assume that the sequence
(Ynt1 — Yn) @s bounded, as it is the case in Theorem 3.1. The main drawback
1s that the involved spaces X and Y are finite-dimensional, which precludes the
potential applications to PDE’s.

[ Az 41— Az
1
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Concluding comments. In this paper, we focused our attention on the case
Vn — +00 as n — +00. Another situation of interest corresponds to a decreasing
sequence (,) tending to 0 as n — 4o00. Under suitable conditions on the decay
rate of (,), the associated algorithm minimizes the function (x,y) — f(z)+g(y)
over the space V = {(z,y) € X x Y, Az = By}. This situation is analyzed in the
companion paper [5].
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Summary. Let X,Y be real Hilbert spaces. Consider a bounded linear operator A : X — Y and a
nonempty closed convex set C C Y. In this paper we propose an inexact proximal-type algorithm to
solve constrained optimization problems

(P) inf{f(xz) : Az € C},
where f is a proper lower-semicontinuous convex function on X; and variational inequalities
(VI) 0 € Mz + A*N¢(Ax),

where M : X = X is a maximal monotone operator and N¢ denotes the normal cone to the set C. Our
method combines an exact penalization procedure involving a bounded sequence of parameters, with
the predictor corrector proximal multiplier method of [12]. Under suitable assumptions the sequences
generated by our algorithm are proved to converge weakly to solutions of (P) and (VZ). As applications,
we describe how the algorithm can be used to find sparse solutions of linear inequality systems and
solve partial differential equations by domain decomposition.

Key words: Convex optimization, proximal methods, Lagrangian, domain decomposition for PDE’s.
Subject classification: 65K05, 65K10, 46N10, 49J40, 49M27, 90C25
3

Introduction

Let X,Y be real Hilbert spaces. Given a proper lower-semicontinuous function
f X — RU {400}, a nonempty closed convex subset C of Y and a bounded
linear operator A : X — Y, consider the following problem

(P) min{f(z) : Az € C}.

Here f is the objective function and C is a set of constraints for the observations
of x given by Ax. Denote by S the solution set of (P). Let us mention two simple
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instances of this problem:

1. Inequality constraints in mathematical programming. Let A = (A')) bea M x N
matrix and let b € RM. For the problem of minimizing f : RY — R subject to
Az < b the set C is given by C = {y € RM : y,, < b, m =1,..., M}. More
generally, one can require the observations Ax of the vector x to take values
under given thresholds ¢y, ..., c; for valuation functions g1, ..., g;. In that case,
C={yeRM:g(y)<cj, j=1,...,J}. O

2. Domain decomposition for partial differential equations. Let us consider a
bounded domain Q C RY which is decomposed in two non-overlapping subdo-
mains 2; and 2y with a common interface I'. Consider the problem of finding a
function on 2 satisfying some elliptic differential equations on €2, and {2, and such
that the jump when passing from 2; to €2, is nonnegative. For the Poisson equa-
tion with right-hand side h and Neumann boundary conditions, the variational
formulation is

1 1
inf{—/ |Vul? —/ hu + —/ |Vol? —/ hv; (u,v) € H' (1) x H'(Qs) and up > Up} :
2 Ql Q1 2 QQ QQ

Here X = H' () x H'(), Y = L*(T), A(u,v) =ur—vr,C={y €Y :y >0}
and f(u,v) = 3 [ [Vul> = [o hu+3 [o [Vo]> = [y ho. O

This paper is concerned with a new algorithm of proximal type that provides
a solution for problem (P). It can also be applied to solve constrained variational
inequalities of the form

(V) 0 € Mz + A*Ne(Ax),

where M : X = X is a maximal monotone operator and N¢ denotes the normal
cone to the set C.

Notice that z is a solution of problem (P) if and only if 0 € O(f + d¢ 0 A)(x),
where J¢ is the indicator function of the set C. Recalling that 0d¢ = N¢, we ob-
serve that if M = Jf then any solution of (VZ) is a solution of (P). Equivalence
holds under qualification conditions. It occurs, for instance, if C — A(domf) is a
neighborhood of the origin (see [9, Theorem 2.168]).

Our method has been inspired by two classical approaches:

1. Penalization. Let us introduce an exact penalization function P : Y — [0, +00)
such that P(y) = 0 if, and only if, y € C. Following [7], [14] or [4], one way to
approximate points in .S is to apply either a diagonal or an alternating proximal
point algorithm to the family (fx) of functions given by
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() = f(x) + BP(Az), (1)

while letting 8, — 4o00. The idea behind is that, since the proximal point al-
gorithm tends to minimize the function f;, once [, is large, the cost given by
BrP(Az) will force Az to be close to C in some sense. This approach is especially
useful when the set C is expressed as a sublevel set of a convex function or as inter-
sections of such sets. Several theoretical or practical choices for the function P are
available. For instance, one can take P(-) = d(-,C), the distance function to C. For
the case of linear inequality constraints one can use P(y) = Zf\f:l [Ym — by
where [r], denotes the positive part of r € R.

+7

The penalization procedure described above using (1) provides a solution of
(P). However, it often involves parameters that tend either to 0 or 400, which
might lead to numerical instabilities or ill-conditioning. 0

2. Lagrangian duality. Let oc denote the support function of the set C and define
the Lagrangian function L£(x,u) = f(x) + (u, Az) — oc(u), where (-,-) denotes
the inner product in Y. Observe that problem (P) is

(P) inf sup L(z,p) = it {f(z): Az € C}
(see [8, Chapter V]). If (z*, u*) is a saddle point of £ then Az* € C and z* is
a solution of (P)%. The operator T : X x Y = X x Y defined by T'(z,u) =
(Of (z) + A*p, Ooc(p) — Az) is maximal monotone and its zeroes coincide with
the saddle points of £ (see [20]). Therefore, one can obtain solutions of (P) by
applying the proximal point algorithm to 7" (see [10], [21] or [19]). One drawback

is the implementation complexity due to the presence of the support function oc.
O

In order to solve problems (P) and (VZ) we propose a Lagrangian-based ap-
proach that incorporates a sort of penalization function for the set C. It is worth
mentioning that neither divergent penalization parameters nor vanishing step
sizes come into play. The method uses the prediction-correction ideas introduced
in [12] for minimization problems, but keeping a multiplier for the constraint
involving P. This multiplier can also be interpreted as a vector of penalization
parameters with an updating rule that prevents them from growing indefinitely.
The prediction-correction steps also allow to circumvent the problem of comput-
ing resolvents of sums. All the analysis is carried out in a Hilbert space setting.

4 Also p* is a solution of the dual problem

(P*) sup inf L(z, 1) = sup{f*(—=A"pn) — oc(p)}-

ney € HEY
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This paper is organized as follows: In Section 1 we discuss on the problems
(P) and (VI), alternative formulations and their sets of solutions. We present our
Lagrangian-based algorithm with explicitly evaluated prediction/correction steps
for the Lagrange multipliers and describe our main results. The convergence anal-
ysis in the context of problem (VZ) is presented in Section 2. Section 3 contains
additional results for problem (P). The remainder is devoted to applications. In
Section 4 we explain how the algorithm can be used to obtain sparse solutions
for a system of linear inequalities. Section 5 contains a domain decomposition
method for partial differential equations with a unilateral transfer through the
boundary.

1 Preliminaries

Since no confusion should arise, all inner products (in X, Y and RM) will be
denoted by (-,-) and the corresponding norms by | - |.

Let P = (pm)M_, be a I-Lipschitz vector-valued function on Y such that each
component p,, is nonnegative and convex. Assume that the set C is defined by

C={yeY:Py =0}

Set H= X xY xY xRM_ In order to simplify the notation, let us write OP =
(Opm)M_,. Following [20, 6], given a maximal monotone operator M : X = X
we define the monotone® operator Ny : H = H by

Nam(z,y, p,v) = (Mx + A, —p+ (v, 0P(y)), — Az +y, —P(y)).

Since each component p,, is continuous, for each fixed v € RM we have
I((v, P(-)))(y) = (v,0P(y)) for all y € Y. Therefore, the operator (v,0P) :
Y = Y is maximal monotone. Write Sy, = ./\/'/\_/,10 and observe that a point
(x*,y*, u*, v*) € H belongs to Sy, if, and only if,

—A*ut e Mx*, pte (v, 0P(y")), Az*=vy*, and P(y*)=0.

If (z*, y*, u*,v*) € Spq then z* satisfies (VZ) because (v*,0P(y*)) C NC( *). The
converse depends on the function P. For example, if P(- ) d(-,C) and x* satisfies

(VI), then there exist y*, u* and v* such that (z*, y*, u*, v*) € Su.

On the other hand, by introducing an auxiliary variable y € Y we can rewrite
(P) as
inf{f(z) : Axr =y and P(y) = 0} = inf{f(x) : (z,y) € C},
where

5 Maximality is irrelevant for our convergence analysis.



LAGRANGIAN-PENALIZATION ALGORITHM 149

C={(r,y) e X XY : Az =y,yeC}

is the set of primal feasible points.

Define the Lagrangian function L : H — R U {400} by

L(z,y,p,v) = f(x) + (u, Az — y) + (v, P(y)). (2)

A point w* = (z*,y*, u*,v*) € H is a saddle point of L if
L(x"y", pyv) < L(a*,y" 0 v") < Lz, y, 1, V") (3)

for all (x,y, u,v) € H. The set of saddle points of L coincides with Syy (see [20]).
Observe that if (z*, y*, u*, v*) is a saddle point of the Lagrangian then (z*,y*) € C
and x* is a solution of (P).

In order to find points in S, we propose the following method. Let us take

0 k=1 _

w® € H and define the sequence (w*) inductively as follows: given w
(k=1 yk=L k=1 vE=1) we introduce a prediction (i*, 7¥) for the multipliers using
the proximal point algorithm. This idea is motivated by [12]. By linearity, this
accounts to

~k k—1 k—1 k—1
fi* = p* 4 A (At =yt
(A1) { Ok = pE=1 4 A P(yF1).

Proximal steps with respect to the state variables (x,y) read

rk — k-1 y’“ i y’“*l M
_T —A*ﬁk -~ Ml'k and — T +,11k € Z I;Z;apm(yk)? (4)

m=1

respectively. If M = 0f these correspond to

ot = Argmin,e y y L(z, y* ' 3%, 0F) + 5o — x’Hy?}

yk = ArgminyGY L(‘%‘kil? Y, ﬂk7 ljk) + i\y - yk’1|2} .
Due to the maximal monotonicity of M and (v, dP), each of the inclusions
given by (4) has a unique solution by virtue of Minty’s Theorem. However, since

they might be difficult to solve it is important to use approximate or relaxed
versions. For € > 0 set

Max={z"eX : (" —u"x—u)>—c forallu*" € Mu }.

We always have M C M.. Moreover, if M = Jf then df C 0.f C (0f).,
where 0. denotes the standard e-approximate subdifferential. We consider the
inclusions
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(A2)
Pk — gkt .k i yr—ytt = " k
SV At e M, @ and SV Ut e Z Uy O P (Y,

m=1

for €, > 0. Finally, the multipliers are updated using:

k k—1 k k
pt = p 4 A (A — y")
(A3) T m

In the following sections we shall prove the weak convergence of the sequence
(w*) generated by (A1) — (A3) to a point in Sy, under a summability assump-
tion on the error sequence (¢;) and a boundedness assumption on the step sizes
(Ax). For a general maximal monotone operator M we require Y to be finite-
dimensional, an assumption that is already present in [12]. When M is the subd-
ifferential of some proper lower-semicontinuous function f : X — RU{+o0c}, this
hypothesis on the dimension of Y can be eliminated. Moreover, we also establish
the existence of limy,_, o L(z*, y*, ¥, v*) and lim,_, o f(2¥), which provide a key
tool for upgrading convergence from weak to strong in the application described
in Section 5.

2 Convergence toward Si,

The purpose of this section is to prove the following:

Theorem 2.1 Let X be a real Hilbert space andY = RP. Let Sy # 0 and assume
(er) €0t and 0 < A< M\ <A< max{m, ﬁ} Any sequence (2, y*, u*, v*)
generated by Algorithm (A1) — (A3) converges weakly as k — +oo to some
(xoo7 yoo7 ’uoo’ VOO) € S/\/l

We start by deriving the fundamental estimations that will support the con-
vergence analysis. For w € H, let us write

lwl? = |2* + [y[* + |pf* + |v|*.
Lemma 2.1 Let (z*,y*, u*,v*) € Spq. Then for all k € N we have
l® —w*? = ™ = w | 4 [ = P [

+ (L=2X A7) |2 = 2" P+ (1= X2+ 1) [y* — " P < 20(M + 1)gyf5)

Proof. Let (z*,y*, u*,v*) € Sp. From the definition of M. and (A2) we have

k k-1

T —x .

<A* *_/\7_A*Mk7x*_xk>§€k7
k
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and we infer that
2% — 2 |* — |2 — 2P |2 — 2P 20 (B -t AR — 27)) < 2. (6)
On the other hand, the ,-approximate subdifferential inequality for each 7*p,,
gives
k—1

k _
AP, P(y*) — P(y")) > =2, <% — iRy - y’“> o\ Me,

by summation. Hence

=y Py =y Py g T P20 (5, Py )= P(y)) 20 (0, v =) < 20 Mey,.
(7)

Moreover we have p* € (v*, 0P(y*)), and so

2N (=" Y™ = ) = 200", P(yY) — P(y*)) < 0. (8)
Summing up inequalities (6), (7) and (8), and using that Az* = y*, one obtains
|:L‘k _x‘2 _ |xk—1 _x‘2 + |:L‘k _xk—1|2

S AT el AT e (T T

2N [(AF — p, Aat —yh) + (0 =05 P(Y))] S 20 (M + Ve (9)
We rewrite the term in the bracket as follows
A )+ 7= P
= (" =, Adt — y*) + (08 = V8 P(yY) + (i -t At =)+ (F =0 P(YY)

1 1
)\ < /Lk—,uk_1>+)\—k<l7k—yk,l/k—yk_1>

1 1 k k k—1
+A—<u —pt =+ Ak<v -V =vT)

1 _ - _ - _ -
vt A e T Bl T W ol At il LAl Bl AR A

1 1
+KH k—,U*‘Q—f‘ ’Iuk_lukflp_ ‘Iukfl _M*IZ] _‘_2_)%Hyk_y*‘2+ ’Vk_yk71’2_ ‘kal —I/*‘Q].

(10)
To simplify the notation, define
pr = ‘[L’k k 1‘2+’y k 1’2_‘_‘Iak_luk71‘2+’Dk_ykflyg

Recall that |Jw|]* = |z|? + |y|* + |u|* + |v|* for w € H. Replacing equality (10) in
(9), we deduce that

lw® —wl? = " = w I + o = 7" = PP = 17" = VP < 20(M + 1)ey
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To conclude, observe that
= P = WIAG k) — (PP < AP - A 20—
while

7 =P = NP = PP < NP -y

Adding the last three inequalities we obtain (5). |

In order to prove the convergence of the algorithm first recall the following
elementary result for real sequences. A proof can be found, for instance, in [5,
Lemma 2].

Lemma 2.2 Let (ai), (bx) and (ny) be real sequences. Assume that (ay) is
bounded from below, (by) is nonnegative and (n;,) € I'. Assume also that apyi —
ay + by, < my, for every k € N. Then (ay,) converges and (by) € .

An immediate consequence of Lemmas 2.1 and 2.2 is the following:

Proposition 2.1 Let Sy, # 0 and assume (¢,) € £* and 0 < A < M\, < X <
max{m, ﬁ} We have the following:

(i)the sequences (|zF — *712), (Jy* — ¢* 2, (JAz" — ¥*?), (|P(y")]?) are
summable;

(ii for every (x*,y*, v*, p1*) € Spq, limp_syoo [|(2F, v%, 1F, V%) — (2%, y*, u*, v*)|| ex-
1sts in R.

In order to prove the main result of this section we shall use Opial’s Lemma
[18], which we recall for the sake of completeness:

Lemma 2.3 (Opial) Let H be a Hilbert space endowed with the norm || .||. Let
(&n) be a sequence of H such that there exists a monempty set = C H which
verifies
(a)for all £ € E, lirf &0 — &|| exists,

n——+0o0
(b)if (€,,) — € weakly in H as k — +00, we have £ € .

Then the sequence (&,) converges weakly in H as n — +oo to a point in =.

We are now in position to prove the main result of this section.

Proof of Theorem 2.1. Let (2%, 4% u* v¥) be a sequence generated by Algo-
rithm (A1) — (A3). In view of item (ii) of Proposition 2.1, the quantity [|w* —w||
has a limit as n — +oo for every w € Sy This shows point (a) in Opial’s
Lemma. To prove point (b), suppose a subsequence of (z*,y*, u*,v*), still de-
noted (2%, y*, u*, v*), that converges weakly to (2>, y>, u>°,v>), i.e. () weakly
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converges toward 2 in X and (y*, u*, v*) strongly converges toward (y>°, u>°, v>°)
in Y xY xRM™. We must show that (z°°,y>°, u>,v>°) € S,. Using the closedness
of the function (z,y) € X xY — |Ax —y|* € R, and the continuity of the
function P and item (i) of Proposition 2.1, we have
|Az™ — y>=|* < liminf |Az* — y*|? = 0,
k—+o00

P(y*) = lim P(y") =0,

hence Az>® — y* = 0 and P(y>°) = 0, which implies (z*°,y*) € C. Let (z,z")
be in the graph of M. In view of (A2), we have

k_ k-1
-
T ST
Ak
Notice that, in view of Proposition 2.1(i), limkHJroo—xkj\ikfl = 0. Moreover
limy_, ;o0 |A2® — y*| = 0, hence the sequence (ji*) strongly converges in Y to-

ward p®. Using also the continuity of the operator A*, we can pass to the limit
in the above inequality to obtain

(A" > — 2" 2™ —x) > 0.

Using the maximality of the operator M, this implies —A*u> € Mx>. Let now
(y,y*) in the graph of (v*>° JP), we have

v, P(y*) = P(y)) > (y".y" — v).

Moreover in view of (A2), we have

S Pu) — PlyF)) > A A M
(", Ply) = P(y")) = N TEu— €k

Adding these two last inequalities, we obtain

k_ k=1
0 = RPN - P = (o + S = - ) - M
kb1

Ak
hence the sequence () strongly converges in Y toward . We can pass to the
limit in the above inequality to obtain

In view of Proposition 2.1(i), limg_, 4o = 0. Moreover limy_, , o, P(y*) = 0,

(p> —y*y> —y) > 0.

By maximality of the operator (v¥>°,0P), this implies that > € (v>°,0P(y™)).
This achieves to prove that (x>, y>, u™=, v>*) € Sp. [ |
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Remark 2.1 If M is strongly monotone with parameter o > 0, the algorithm
can be slightly modified in order to obtain strong convergence in Theorem 2.1. It
suffices to redefine the operator M, for e > 0 as

.//\/lvea::{x*EX C (@ =t —u) > allr—ul|*—e  for allut € Mu }.

The strong monotonicity of M implies that one still has M C Mve. Following the
argument in Lemma 2.1 we deduce that

flw® —w I =l = w|? + 20A|2* — 27* < 20:(M + D)ey

for all k € N, where x* is the unique solution of (VI) and w* is any element in
S. The details are left to the reader. This immediately implies that x* converges
strongly to x* as k — +o00.

3 Further results for M = 9f

If M = 0f a more detailed analysis can be carried out and some results can
be improved. In particular, the assumption on the dimension of Y can be omit-
ted. Moreover, part (ii) in Proposition 3.1 below is used in Section 5 to upgrade
convergence from weak to strong in a domain decomposition method for par-
tial differential equations. In this section, we assume that the primal steps are
computed using the approximate subdifferentials. Namely,
(A2)

k k—1 1
_$ /\f _A*/]k S aakf(xk) and & +:u S Z v aekpm 7

for e, > 0. We shall prove the following:

Theorem 3.1 Let X and Y be real Hilbert spaces. Let Spr # 0 and assume

(ex) €L and 0 < A< N\ <A< max{\/—”A” \/m} Any sequence (x*,y*, uk, V%)

generated by Algorithm (A1) — (A2') — (A3) converges weakly as k — 400 to
some (z°°,y>°, u>°, v>°) € Syy.

We begin with a reinforced version of Lemma 2.1:

Lemma 3.1 Let (z*,y*, u*,v*) have the saddle-point property. Then for allk € N
we have

[ —w*|* - \Hwkfl il e T R 7 Ve
+ (1 =2X A7) 2" = 2" 4 (1= N2+ 1) [y =y
+2); [L(xk, y* ot v — L,y )t 1/*)} <20 (M 4+ 1)44.1)
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Proof. The subdifferential inequality for f gives

ok k=1

M(fe) - 1) = x5

= |o" — 2 — 2" — p? 4 2 — 2PN 20 (BF, A2 — 7)) — 20er

-+ A*ﬂk,x - $k> - 2/\k5k

for all z € X. On the other hand, the subdifferential inequality for each 7*p,,
gives

# Ply)— P > —on (YT e N o
20 (0%, P(y) — P(y")) > =2\ 3 By —y 2\, Mey,
k
=y =y = [y =y + = 20 (7 Y — o) — 20 Mg

for all y € Y. Summing up, one obtains
‘[L’k o .T‘Q o ‘xkfl o .T‘Q 4 ‘[L’k o xkfl‘Q
S A el (T T e A Vi
+ 2 | Lk, o, 7%, %) — Lz, y, i, ﬁk)] < 20 (M + 1)z (12)
Let (z*,y*, u*, v*) have the saddle-point property and take x = z* and y = y* in
(12). Since L(z*,y*, i*, %) < L(x*, y*, u*,v*), we obtain
’xk - x*‘Q - ‘xkfl - [L’*F 4 ‘xk o xkfl‘Q
A el (T T e VA Vi
N, [L(xk,yk,/]k, oY = L(a*,y*, i, y*)] < 2 (M + 1)y, (13)
We can write
L(xka yka ﬂk7 I;k) - L($*79*7H*7 V*) = L(xka yka ﬂk7 I;k) - L(xka yka M*7 V*)
+L(xkaykau*a V*) - L(aj*ay*au*a 14 )
= (" — p*, Az — o) + (FF =", P(yY)
+L(xk7ykau*7y*) - *)

*

L(x™, g, p, v").

Using equality (10), complete the proof of (11) as in Lemma 2.1. |

The following complements Proposition 2.1.

Proposition 3.1 Let Spr # 0 and assume (g) € * and 0 < A < N < A <
max{m, ﬁ} We have the following:

(i) for each (z*,y*,v*, u*) € Say, the sequence (L(z*, y*, u*, v*)— L(z*, y*, u*, v*))
is in 0';
(iilimy sy oo L(z%, y*, pk 08 = L(z*, y*, p*, v*) and limg_, o f(2%) = f(2%).
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Proof. Item (i) is an immediate consequence of Lemmas 3.1 and 2.2 because each
of the terms L(z"*, y*, u*, v*)—L(z*, y*, u*, v*) is nonnegative in view of the saddle-
point property. We deduce that limy_, o (L(2", y*, u*, v*) — L(z*, y*, u*, v*)) =
0. By Proposition 2.1(i), limy_,, o Az* — y* = 0, limg_, o P(y*) = 0 and the
sequences (p*) and (%) are bounded. This easily implies (ii). |

We can now prove the main result of this section.

Proof of Theorem 3.1. Let (z*,y*, ¥, v*) be any sequence generated by Algo-
rithm (A1) — (A2') — (A3). In view of item (ii) of Proposition 2.1, the quantity
lw* — w|| has a limit as n — +oo for every w € Syy. This shows point (a)
in Opial’s Lemma. To prove point (b), suppose a subsequence of (z*, y*, u*, %),
still denoted (z*, %, u*, v¥), converges weakly to (z°°, y>, u>, v>°). We must show
that (2°°,y>°, u>°,v>) is a saddle-point for the Lagrangian function L. Using the
closedness of the functions (z,y) € X x Y — |Az — y|* € R, and |P| and item
(i) of Proposition 2.1, we have

|Ax™ — y>=|* < liminf |Az* — y*|? = 0,
k—+o00
|P(y>)| < liminf |P(y*)| = 0,
k—+o00

hence Az>® — y> = 0 and P(y>°) = 0, which implies (z*°,y>°) € C. Let us fix
(z,y) € X x Y. For all N € N we have

N e’}
2> ML, b, 1, ) = L, y, i, %)) < e =P+ [° =y +2MM+1) ) e
k=1 k=1

in view of inequality (12). Therefore, lim infy_, o (L(z*, y*, i*, 7*)— L(z,y, i*, o)) <
0. Notice that, since lim |Az* —y*| = lim |P(y*)| = 0, the sequence (i, %)
k—4-00 k—4o00

converges weakly to (u>°,v>®) € Y x R. We deduce that

Jm Ly, i, 0% = T (f(2) + (55 Az —y) + (7%, P(y)))
= f(z) + (1>, Ax — y) + (v™, P(y))
— L(z,y, 1=, v™).
Moreover
L(a®, oF, i%, 0%) = f(a®) + (@*, Ac® — ") + (7%, P(y")) (14)

and the last two terms tend to 0 as k — +o0o. Whence

liminf f(z") = llim inf L(2®, o, i* o) <liminf L(z,y, i* %) = lim L(z,y, i*, %)

k—+o0 —+00 k—+o0 k—+o0

= L(z,y, p>=,v>).
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Finally, using the fact that every limit point of (z*,y*) is feasible along with
closedness of the function f, we infer that

L(@™, >, pu>,v>°) = f(2%) < liminf f(z%) < L(z,y, p>°, v*).

—+o00

We now must prove that, for every (u,v) € Y x R, we have
L@, y>, p,v) < L(x™, 5%, p™, v>).

This is clear since Ax>* —y> = 0 and P(y>°) = 0. We have proved that every weak
cluster point of the sequence (z*,y*, ¥, %) is a saddle-point for the Lagrangian
function L and the result follows from Opial’s Lemma. |

Remark 3.1 Our penalization scheme is exact in the following sense: Let (z*, y*, u*,v*) €
Sar and let
T € Argmin{f(x) + (v, P(Ax)),

with vy, > v, form = 1,..., M. Then T is a solution of (P). Indeed, from the
definition of T and the saddle-point property (3), we have

f@) + (v, P(AT)) < f(2") < f(T) + (v, P(AT)).

Since vy, > v, for each m = 1,..., M one must have P(AZ) = 0 and f(Z) <
f(x*), which implies T is a solution of (P).

4 Sparse solutions for linear inequality systems
Let A= (A") be a M x N matrix and let b € RM and consider the problem
min{ ||z][y : Az <b}. (15)

This is the convex relaxation of the nonconvex problem (see [17]) of finding
the sparsest solutions to the system of inequalities Az < b, which is stated as

min{ ||z|lo : Az <b},

where || - ||o denotes the counting norm (number of nonzero entries). The inter-
ested reader may consult [11], [13], [16].

The problem defined in (15) can be restated as
min{ ||z]y : Az =y, y<b}.

Form=1,..., M take
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pm(y) = [ym - bm} L

Begin with (2F~1 %=1 p*=1 v*=1) and apply the multiplier prediction steps
following (A1):
Iak — Iukfl + )\k(A.Tkil o ykfl)

and form=1,...,M

T L if ' < b
™ bt Ayl — bi) otherwise.

Next, the exact primal step with respect to the z-variable

E k-1
B at e af (et
Ak
reduces to
.Tﬁ_l — )\k(A*/]k)n — A\ if xﬁ_l — )\k(A*/]k)n > A\
aF = & okl N(AYR), A A i 2R — A (A*R), < =

0 if I‘ﬁil — )\k(A*ﬂk)n c [—)\k, )\k]
forn=1,..., N. On the other hand, for the y-variable we have
Y=y y -
Fe Z Uy Opm (Y"),
which we rewrite as

yr b Nefik, — Nl i yEt A Nk, — by > Ak,
Ym = Yot ki, YR ARy, — by <0
b if =1 Mk — by € 0, AP

form=1,..., M.
Finally we update the multipliers
= iR A (A — )
and form=1,.... M

v m
" k U+ Me(y¥, — by,) otherwise.

A simple illustration. With no intention to test the numerical performance of
the method we present the following academic example to illustrate the imple-
mentation. Let
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-1 0-1 1 01 -2

0-1 0-1 01 -1

0 I-1 0 10 -1
A=|-1 1 0 1-10 and b= 0
1 0-1-1-11 -2

-1-1 0 0 01 —1

0-1 1-1-11 0

The sparsest solution of the system of inequalitites given by Az < b is
2=00100 —1)".

We implement our algorithm in SCILAB with A\, = 0.4, starting from 10 ran-
domly generated initial points in [—2, 2]%. The average outcome after 20 iterations
was

z=(001.005200 —0.9913)

and the average processing time was 0.1 seconds in a laptop computer with a
U9300 Intel(R) Core(TM)2 CPU and 3 GB of RAM.

5 Domain decomposition for partial differential equations

Let us consider a bounded domain = Q; U Qs UT of RN which can be decom-
posed in two non overlapping Lipschitz subdomains €2; and €2, with a common
interface I'. We assume that HY=1(T") > 0, where HV~! is the Hausdorff measure
of dimension N — 1. This situation is illustrated in the next figure.

Let h € L*(€). We consider the following problem

Minimize {% Jo, IVul?> = [o hu+ 35 [, [VU]* = [, hv} ;
subject to (u,v) € H' () x H'(Q) and ujr > oyr.

(16)

This kind of minimization problems often arises in the description of phe-
nomena where the boundary is free, i.e. no external action is exerted on 02,
and involving discontinuities through the interface I'. Here we consider the prob-
lem where the jump when passing from €2; to {2, is nonnegative. The case with
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no condition on the jump through the interface is treated in [1] with Dirichlet
conditions on the boundary of Q2 and in [15] with Neumann conditions. In [6] (res-
pectively [3]) the authors consider the problem with a no-jump condition through
the interface and Dirichlet conditions on the boundary of Q (respectively Neu-
mann conditions), which amounts to solving a Dirichlet problem (respectively
Neumann problem) on the whole set €2 by decomposition.

Notice that Problem (16) is not coercive. Under the assumptions [, h = 0 and
le h < 0, we can use [2, Theorem 15.1.2] to prove the existence of solutions.
Let us now show how the algorithm described by (A1) —(A2') — (A3) can be ap-
plied to solve problem (16). The space X = H'(;)x H'(€)y) is equipped with the
scalar product ((u1,v1), (u2,v2))x = le (Vuy.Vug +ujug) + fQQ(Vvl.va + vyv9)
and the corresponding norm. The space Y = L*(T") is equipped with the scalar
product (y1,92)y = [pv1y2 and the associated norm. We denote respectively
Ay HY Q) — Y and Ay : H'(Qy) — Y the trace operators on I'. Problem (16)
can be reformulated as problem (P) with the following notations

(P) min{f(u) +g(v); (w,v)€X, Au,v)—y=0, yeC},
where
_1 2 _1 2
s =5 [ 190 /Q b and ) =5 [ 190 /Q o,  (17)

the operator A : X — Y is defined by A(u,v) = Aju — Asv and the set C is
the closed convex cone of the space Y defined by C ={y €Y; vy > 0}. We now
describe the computation of the primal steps. The auxiliary varibles y and v are
used in the computation of the Lagrange multiplier approximations f* and pF.
Their definition depends on the particular choice of the function P. One can take
P(y) = d(y,C), which in this case is the L?>-norm of the negative part of y.

Description of the primal steps. A derivative computation allows to express
the exact primal steps

uf = Argmin {f(u) + (", Avu) + g-lu— P w e Hl(Ql)}
(18)
v* = Argmin {g(v) — (¥, Agv) + g-|v =P v e Hl(Qg)} :

as
Jo, Vu* - Vu+ 5= fo V(b — o1 Vut 5= fo (@f —u* = o hu— [ 7F A
Jo, VO - Vo + 5= [ V(0F = 0¥ 1) - Vo + 5= fo (0F =" o = [ ho + [ i* Ag,

for all u € H'(Q;) and v € H' (). These are the variational weak formulations
of the following mixed Dirichlet-Neumann boundary value problems respectively
on Ql
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—(1+ 5)Auf + uk = h — FAGF + Lub on O

(1+ A_lk)%ij — Alk atgy_l on 0 NN
3% = — it on T

and QQ

U
k=1

%L = o on 9 NN
k—1

%— =1 81} +,u on I

—(1+/\—1}€)Avk+ k—h—iAkl—i— vE=t on Q,
(
(

57
+3)

Convergence. Since this matter is out of the scope of this paper, we shall not
enter into the details concerning the existence of saddle points here. Instead we
shall assume that there are such points. Under these conditions, any sequence
(uF, v*) generated by (18) converges strongly in Hl(Ql) x H'(€s) to a solution
(w,v) of problem (16). Indeed, let ((u®,v*), y*, u*, *) be a sequence generated by
(A1)—(A2')—(A3) so that (u*, v*) satisfies (18). In view of Theorem 3.1, (u*, v*)
converges weakly in H'(2;) x H'(€),) to a minimum point (%,v) of problem (P).
For the strong convergence, observe that, by the Rellich-Kondrachov Theorem,
the sequence (u*,v*) converges to (u,v) strongly in L?(£2;) x L?*(). Moreover,
from Proposition 3.1 (ii), we have limy_, o f(u*) + g(v*) = f(u) + g(v), which in
turn implies that

lim / |Vu*|? 4 \Vvk\Qz/ Vul*+ [ |Vl
k—=+too Jq, Qs o) Qs

As a consequence, we have limy_, oo | (t¥, 0%)| 1101 x 1 (@0) = (@) | 1101 x 11 (@)
and we conclude that the convergence is strong.

Observe that the algorithm allows to solve the initial problem on €2 by solving
separately problems on €2; and 2.
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